1984_Motorola_Bipolar_Power_Transistor_and_Thyristor_Data_Section_1 1984 Motorola Bipolar Power Transistor And Thyristor Data Section 1

User Manual: 1984_Motorola_Bipolar_Power_Transistor_and_Thyristor_Data_Section_1

Open the PDF directly: View PDF PDF.
Page Count: 1000

Download1984_Motorola_Bipolar_Power_Transistor_and_Thyristor_Data_Section_1 1984 Motorola Bipolar Power Transistor And Thyristor Data Section 1
Open PDF In BrowserView PDF
Power Transistors
Index and Cross Reference
Selector Guide
Data Sheets

11-.

l1li

Thyristors
Index and Cross Reference
Selector Guide
Data Sheets

TMOS Power MOSFET

tl-.

Selector Guide

Rectifiers
Selector Guide

Regulator and Reference Diodes
Selector Guide

"t-.

Outline Dimensions/Leadform . - .
Options/Mounting Hardware
& Techniques
A'pplication Literature

Chipscretes, Designers', Duowatt, EpiBase, PowerBase, PowerTap, SUPERBRIDGES, Surmetric,
Switchmode, Thermopad, TMOS, Thermowatt, Unibloc, and Uniwatt are trademarks of Motorola Inc.
Annular Semiconductors are patented by Motorola Inc.

ii

MOTOROLA
POWER DEVICE DATA
Prepared by
Technical Information Center

This book presents technical data for Motorola's broad line of silicon
power transistors, thyristors, and triggers. Complete specifications are provided in the form of data sheets and accompanying selection guides provide
a quick comparison of characteristics to simplify the task of choosing the
best device for a circuit. In addition, separate selector guides for power
MOSFETs, power rectifiers, as well as voltage regulator and reference diodes
offer a quick technical overview of Motorola's power discrete device lines fo'r
power supply and power circuit designs.
The information in this book has been carefully checked and is believed to
be accurate; however, no responsibility is assumed for inaccuracies.
Motorola reserves the right to make changes without further notice to any
products herein to improve reliability, function or design. Motorola does not
assume any liability arising out of the application or use of any product or
circuit described herein; neither does it convey any license under its patent
rights nor the rights of others. Motorola and ® are registered trademarks of
Motorola, Inc. Motorola, Inc. is an Equal Employment Opportunity/Affirmative Action Employer.
Motorola, Inc. general policy does not recommend the use of its components in life support applications wherein a failure or malfunction of the
component may directly threaten life or injury. Per Motorola Terms and
Conditions of Sale, the user of Motorola components in life support applications assumes all risks of such use and indemnifies Motorola against all
damages.

Fourth Edition
@MOTOROLA INC. 1984
Previous Edition @1982
"All Rights Reserved"

Printed in U.S.A.

iii

iv

11'1
MOTOROLA
POWER TRANSISTORS
IN BRIEF
Wide Range of Transistor Specifications
Bipolar transistors, NPNs and PNPs, S,ingle and multiple (Darlington) transistor
structures, metal and plastic packages, Motorola's inventory of more than 1100
standard (off-the-shelf) power transistors covers the widest range of specifications
for virtually every potential applications requirement.
Current Range - 0.5 to 300 Amperes
Voltage Range - 25 to 1500 Volts
Power Dissipation Range - 5 to 500 Watts.
Darlingtons
Consisting of two transistors, up to two resistors, and (up to) two diodes on a
single chip, Darlington transistors achieve gain figures up to 20,000 in a single
package. Rapid line expansion, and the resulting widespread implementation make
Motorola Darlingtons highly cost-effective in a fast growing number of
applications.
Chips, Chips, Chips!
Designing a hybrid? Motorola's total repertoire of power transistors is available ..
UNENCAPSULATED: Check with your Motorola Sales representative for price and
delivery.
Specials Unlimited
Need a unique transistor with specifications not available off-the-shelf? Chances
are Motorola can produce it quickly and inexpensively. Routine use of four major
power processes and more than two decades of experience in the pioneering of new
structures and geometries provide the insight and capability to meet any required
specification within the limits of today's technology.

v

POWER
TRANSISTORS
Index and Cross Reference

The table on the subsequent pages contains an
Alphanumeric index of Silicon power transistors
currently manufactured and available to the
industry.
The column headed "Similar" lists units with characteristics that might represent suitable replacements. In cases where such a replacement is
contemplated, the Motorola device data sheet
should be carefully compared with one for the
device being replaced to determine any variations
that could affect circuit performance.

1-1

1m

INDEX CROSS-REFERENCE

-

Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

2N1487
2N1488
2N1489
2N1490
2N1702
2N3016
2N3021
2N3022
2N3023
2N3024

2N5877
2N5878
2N5877
2N5878
2N5877
2N5337
2N3789
2N3789
2N3789
2N3791

1-196
1-196
1-196
1-196
1-196
1-158
1-112
1-112
1-112
1-112

2N3667
2N3713
2N3714
2N3715
2N3715JAN
2N3715JTX
2N3715JTXV
2N3716
2N3716JAN
2N3716JTX

2N3713
2N3714
2N3715
2N3715JAN
2N3715JTX
2N3715JTXV
2N3716
2N3716JAN
2N3716JTX

1-199
1-82
1-82
1-82
1-49
1-49
1-49
1-82
1-49
1-49

2N3025
2N3026
2N3054
2N3054A
2N3055
2N3055A
2N3055H
2N3055JAN
2N3055SD
2N3055UB

2N3791
2N3791

2N3055A
2N5302JAN
2N3055A
2N3055A

1-112
1-112
1-58
1-58
1-62
1-65
1-65
1-50
1-65
1-65

2N3716JTXV
2N3719
2N3720
2N3738
2N3739
2N3739JAN
2N3739JTX
2N3739JTXV
2N3740
2N3740A

2N3716JTXV
2N3719
2N3720
2N3738
2N3739
2N3739JAN
2N3739JTX
2N3739JTXV
2N3740
2N3740A

1-49
1-88
1-88
1-93
1-93
1-49
1-49
1-49
1-97
1-97

2N3076
2N3079
2N3080
2N3171
2N3172
2N3173
2N3174
2N3183
2N3184
2N3185

2N6249
2N5838
2N6542
2N3789
2N3789
2N3790
2N6226
2N3789
2N3789
2N3790

1-257
1-193
1-309
1-112
1-112
1-112
1-189
1-112
1-112
1-112

2N3740JAN
2N3740JTX
2N3740JTXV
2N3741
2N3741A
2N3741JTX
2N3741JTXV
2N3766
2N3766JAN
2N3766JTX

2N3740JAN
2N3740JTX
2N3740JTXV
2N3741
2N3741A
2N3741JTX
2N3741JTXV
2N3766
2N3766JAN
2N3766JTX

1-49
1-49
1-49
1-97
1-97
1-49
1-49
1-100
1-49
1-49

2N3186
2N3195
2N3196
2N3197
2N3198
2N3202
2N3203
2N3204
2N3232
2N3233

2N6226
2N3789
2N3789
2N3790
2N6226
2N3719
2N3720
2N6303
2N5877
2N5632

1-189
1-112
1-112
1-112
1-189
1-88
1-88
1-88
1-196
1-178

2N3766JTXV
2N3767
2N3767JAN
2N3767JTX
2N3767JTXV
2N3771
2N3772
2N3773
2N3788
2N3789

2N3766JTXV
2N3767
2N3767JAN
2N3767JTX
2N3767JTXV
2N3771
2N3772
2N3773

1-49
1-100
1-49
1-49
1-49
1-104
1-104
1-108
1-309
1-112

2N3234
2N3235
2N3236
2N3237
2N3238
2N3239
2N3240
2N3418
2N3419
2N3420

2N5760
2N3055
2N5632
2N5302
2N5882
2N5882
2N5882
2N5336
2N5336
2N5336

1-189
1-62
1-178
1-154
1-199
1-199
1-199
1-158
1-158
1-158

2N3790
2N3791
2N3791JAN
2N3791JTX
2N3791JTXV
2N3792
2N3792JAN
2N3792JTX
2N3792JTXV
2N3863

2N3790
2N3791
2N3791JAN
2N3791JTX
2N3791JTXV
2N3792
2N3792JAN
2N3792JTX
2N3792JTXV

2N5336

1-158
1-69
1-71
1-74
1-74
1-74
1-74
1-76
1-76
1-76

2N3864
2N3865
2N3867
2N3867JAN
2N3867JTX
2N3867JTXV
2N3867SJAN
2N3867SJTX
2N3867SJTXV
2N3868

2N3421
2N3441
2N3442
2N3445
2N3446
2N3447
2N3448
2N3583
2N3584
2N3585

2N3054
2N3054A
2N3055
2N3055A

2N3441
2N3442
2N3445
2N3446
2N3447
2N3448
2N3583
2N3584
2N3585

*Consult factory if a direct replacement is necessary
**To be introduced. Contact factory for Data Sheet.

1-2

2N5881

2N6542
2N3789

2N3715
2N5632
2N5634
2N3867
2N3867JAN
2N3867JTX
2N3867JTXV
2N3867SJAN
2N3867SJTX
2N3867SJTXV
2N3868

1-112
1-112
1-49
1-49
1-49
1-112
1-49
1-49
1-49
1-82
1-178
1-178
1-88
1-49
1-49
1-49
1-49
1-49
1-49
1-88

INDEX CROSS-REFERENCE (Continued)
Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

Industry
Part Number

2N5347

1-49
1-49
1-49
1·49
1·49
1-49
1·170
1·170
1·116
1·166

2N4910
2N4911
2N4912
2N4913
2N4914
2N4915
2N4918
2N4919
2N4920
2N4921

2N3997
2N3998
2N3999
2N4000
2N4001
2N4002
2N4003
2N4070
2N4071
2N4111

2N5347
2N5347
2N5347
2N5347
2N5339
2N6274
2N6274
2N6306
2N6306
2N3715

1·166
1·166
1-166
1·166
1-158
1·261
1-261
1·274
1·274
1·82

2N4922
2N4923
2N4998
2N4999
2N5000
2N5001
2N5002
2N5003
2N5004
2N5005

2N4113
2N4115
2N4116
2N4231A
2N4232A
2N4233A
2N4240
2N4296
2N4297
2N4298

2N3716
2N5347
2N5347

1-82
1-166
1-166
1·120
1·120
1·120
1·76
1-93
1·93
1·124

2N5034
2N5035
2N5036
2N5037
2N5038
2N5038JAN
2N5038JTX
2N5038JTXV
2N5039
2N5039JAN

1·124
1·158
1·158
1·158
1-158
1-158
1·158
1·88
1-71
1·174

2N5039JTX
2N5039JTXV
2N5050
2N5051
2N5052
2N5067
2N5068
2N5069
2N5083
2N5084

1·128
1-128
1·124
1·124
1-50
1·50
1-50
1·158
1·128
1·128

2N5085
2N5147
2N5148
2N5149
2N5150
2N5151
2N5152
2N5153
2N5154
2N5157

1-128
1·189
1·189
1·189
1·189
1·189
1-189
1-112
1·112
1-112

2N5190
2N5191
2N5192
2N5193
2N5194
2N5195
2N5202
2N5239
2N5240
2N5241

2N3868JAN
2N3868JTX
2N3868JTXV
2N3868SJAN
2N3868SJTX
2N3868SJTXV
2N3878
2N3879
2N3902
2N3996

2N4299
2N4300
2N4301
2N4305
2N4307
2N4309
2N4311
2N4314
2N4347
2N4348
2N4387
2N4388
2N4398
2N4399
2N4399JAN
2N4399JTX
2N4399JTXV
2N4877
2N4S98
2N4899
2N4900
2N4901
2N4902
2N4903
2N4904
2N4905
2N4906
2N4907
2N4908
2N4909

2N3868JAN
2N3868JTX
2N3868JTXV
2N3868SJAN
2N3868SJTX
2N3868SJTXV
2N5428
2N5430
2N3902

2N4231A
2N4232A
2N4233A
2N4240
2N3738
2N3738
2N6235
2N6235
2N5337
2N5337
2N5337
2N5337
2N5339
2N5337
2N3868
2N4347
2N5630"
2N4898
2N4898
2N4398
2N4399
2N4399JAN
2N4399JTX
2N4399JTXV
2N5337
2N4898
2N4899
2N4900
2N6226"
2N6226"
2N6226"
2N6226"
2N6226"
2N6226"
2N3791
2N3791
2N3792

"Consult factory if a direct replacement is necessary.
""To be introduced. Contact factory for Data Sheet.

1-3

Motorola
Direct
Replacement

Motorola
Similar
Replacement
2N3054"
2N3054"

2N4912
2N5758"
2N5758"
2N5758"
2N4918
2N4919
2N4920
2N4921
2N4922
2N4923
2N5347
2N6187
2N5347
2N6187
2N5347
2N6187
2N5347
2N6187
2N3055
2N3055
2N3055
2N3055
2N5038
2N5038JAN
2N5038JTX
2N5038JTXV
2N5039
2N5039JAN
2N5039JTX
2N5039JTXV
2N5050
2N5051
2N5052

Page #
1·58
1·58
1·131
1·189
1·189
1·189
1·134
1-134
1·134
1-138
1-138
1·138
1·166
1·245
1·166
1·245
1·166
1·245
1-166
1·245
1·62
1·62
1·62
1-62
1·142
1·50
1·50
1-50
1·142
1-50

2N5758"
2N5758"
2N5758"
2N5347
2N5347

1·50
1·50
1-144
1·144
1·144
1-189
1·189
1·189
1·166
1·166

2N5347
2N6191
2N5337
2N6191
2N5337
2N6191
2N5337
2N6191
2N5337
2N6545

1·166
1·248
1·158
1·248
1·158
1·248
1·158
1-248
1·158
1-315

2N5428
2N6306
2N6544
2N3902"

1-146
1-146
1·146
1·150
1·150
1·150
1·170
1·274
1·315
1·116

2N5190
2N5191
2N5192
2N5193
2N5194
2N5195

III

INDEX CROSS-REFERENCE (Continued)

III

Induslry
Part Number

Motorola
Direct
Replacement

2N5264
2N5284
2N5285
2N5286
2N5287
2N5293
2N5294
2N5295
2N5296
2N5297
2N5298
2N5301
2N5302
2N5302JAN
2N5302JTX
2N5302JTXV
2N5303
2N5303JAN
2N5303JTX
2N5303JTXV
2N5326
2N5333
2N5334
2N5335
2N5336
2N5337
2N5338
2N5339
2N5344
2N5345
2N5346
2N5347
2N5348
2N5349
2N5384
2N5385
2N5386
2N5387
2N5388
2N5389
2N5404
2N5405
2N5406
2N5407
2N5408
2N5409
2N5410
2N5411
2N5427
2N5428
2N5429
2N5430
2N5466
2N5467
2N5477
2N5478
2N5479
2N5480
2N5490
2N5491

Motorola
Similar
Replacement

Motorola
Direct
Replacement

Molorola
Similar
Replacement

Page #

Industry
Part Number

2N6249
2N5347
2N5347
2N6189
2N6189
2N6123
2N6123
2N6121
2N6121
2N6122

1-257
1-166
1-166
1-245
1-245
1-241
1-241
1"241
1-241
1-241

2N5492
2N5493
2N5494
2N5495
2N5496
2N5497
2N5508
2N5539
2N5559
2N5575

2N6292
2N6292
2N6290
2N6290
2N6292
2N6292
2N5428
2N6379
2N5633
2N5685

1-238
1-238
1-238
1-238
1-238
1-238
1-170
1-285
1-178
1-185

2N6122

1-241
1-154
1-154
1-50
1-50
1-50
1-154
1-50
1-50
1-50

2N5578
2N5598
2N5600
2N5602
2N5604
2N5606
2N5610
2N5612
2N5614
2N5616

2N5685
2N5428
2N5428
2N5428
2N5430
2N5428
2N5428
2N5430
2N3448
2N3448

1-185
1-170
1-170
1-170
1-170
1-170
1-170
1-170
1-74
1-74

2N5347
2N6303
2N5337
2N5337

1-166
1-88
1-158
1-158
1-158
1-158
1-158
1-158
1-162
1-162

2N5618
2N5629
2N5630
2N5631
2N5632
2N5633
2N5634
2N5651
2N5655
2N5656

2N3448

1-74
1-174
1-174
1-174
1-178
1-178
1-178
1-254
1-182
1-182

1-166
1-166
1-166
1-166
1-245
1-245
1-142
1-319
1-319
1-319

2N5657
2N5660
2N5664
2N5665
2N5671
2N5672
2N5678
2N5683
2N5683JAN
2N5683JTX

2N5683
2N5683JAN
2N5683JTX

1-182
1-254
1-254
1-254
1-282
1-282
1-285
1-185
1-50
1-50

1-248
1-248
1-248
1-248
1-245
1-245
1-245
1-245
1-170
1-170

2N5683JTXV
2N5684
2N5684JAN
2N5684JTX
2N5684JTXV
2N5685
2N5685JAN
2N5685JTX
2N5685JTXV
2N5686

2N5683JTXV
2N5684
2N5684JAN
2N5684JTX
2N5684JTXV
2N5685
2N5685JAN
2N5685JTX
2N5685JTXV
2N5686

1-50
1-185
1-50
1-50
1-50
1-185
1-50
1-50
1-50
1-185

1-170
1-170
1-315
1-315
1-166
1-166
1-166
1-166
1-238
1-238

2N5686JAN
2N5686JTX
2N5686JTXV
2N5729
2N5730
2N5733
2N5734
2N5737
2N5738
2N5739

2N5686JAN
2N5686JTX
2N5686JTXV

1-50
1-50
1-50
1-158
1-158
1-261
1-282
1-196
1-178
1-196

2N5301
2N5302
2N5302JAN
2N5302JTX
2N5302JTXV
2N5303
2N5303JAN
2N5303JTX
2N5303JTXV

2N5336
2N5337
2N5338
2N5339
2N5344
2N5345
2N5346
2N5347
2N5348
2N5349
2N6187
2N6187
2N5038
2N6546
2N6546
2N6546
2N6191
2N6192
2N6191
2N6193
2N6187
2N6189
2N6187
2N6189
2N5427
2N5428
2N5429
2N5430
2N6545
2N6545
2N5347
2N5347
2N5349
2N5349
2N6290
2N6290

*Consult factory if a direct replacement is necessary.
**To be introduced. Contact factory for Data Sheet.

1-4

2N5629
2N5630
2N5631
2N5632
2N5633
2N5634
2N6235
2N5655
2N5656
2N5657
2N6233
2N6233
2N6235
2N6338
2N6339
2N6378

2N5337
2N5347
2N6274
2N6338
2N5878
2N6229
2N5878

Page #

INDEX CROSS-REFERENCE (Continued)
Industry
Part Number
2N5740
2N5741
2N5742
2N5743
2N5744
2N5745
2N5745JAN
2N5745JTX
2N5745JTXV
2N5758
2N5759
2N5760
2N5804
2N5805
2N5838
2N5839
2N5840
2N5867
2N5868
2N5869
2N5870
2N5871
2N5872
2N5873
2N5874
2N5875
2N5876
2N5877
2N5878
2N5879
2N5880
2N5881
2N5882
2N5883
2N5884
2N5885
2N5886
2N5929
2N5930
2N5931

Motorola
DIrect
Replacement

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page II

Industry
Part Number

1-178
1-203
1-174
1-203
1-463
1-124
1-50
1-50
1-50
1-189

2N5983
2N5984
2N5985
2N5986
2N5987
2N5988
2N5989
2N5990
2N5991
2N6021

1-189
1-189
1-274
1-309
1-193
1-193
1-193
1-112
1-112
1-82

2N6022
2N6023
2N6024
2N6025
2N6026
2N6029
2N6030
2N6031
2N6032
2N6033

1-82
1-112
1-112
1-82
1-82
1-196
1-196
1-196
1-196
1-199

2N6034
2N6035
2N6036
2N6037
2N6038
2N6039
2N6040
2N6041
2N6042
2N6043

2N6034
2N6035
2N6036
2N6037
2N6038
2N6039
2N6040
2N6041
2N6042
2N6043

1-217
1-217
1-217
1-217
1-217
1-217
1-221
1-221
1-221
1-221

2N6338
2N6338
2N6341

1-199
1-199
. 1-199
1-203
1-203
1-203
1-203
1-282
1-282
1-282

2N6044
2N6045
2N6049
2N6050
2N6051
2N6051JAN
2N6051JTX
2N6051JTXV
2N6052
2N6052JAN

2N6044
2N6045
2N6049
2N6050
2N6051
2N6051JAN
2N6051JTX
2N6051JTXV
2N6052
2N6052JAN

1-221
1-221
1-225
1-228
1-228
1-50
1-50
1-50
1-228
1-50

2N6338
2N6338
2N6341
2N6338
2N6341
2N6318
2N6317
2N6317
2N5882
2N5882

1-282
1-282
1-282
1-282
1-282
1-278
1-278
1-278
1-199
1-199

2N6052JTX
2N6052JTXV
2N6053
2N6054
2N6055
2N6056
2N6057
2N6058
2N6058JAN
2N6058JTX

2N6052JTX
2N6052JTXV
2N6053
2N6054
2N6055
2N6056
2N6057
2N6058
2N6058JAN
2N6058JTX

1-50
1-50
1-232
1-232
1-232
1-232
1-228
1-228
1-50
1-50

MJ15003

1-720
1-207
1-207
1-207
1-210
1-210
1-210
1-833
1-833
1-213

2N6058JTXV
2N6059
2N6059JAN
2N6059JTX
2N6059JTXV
2N6077
2N6078
2N6079
2N6098
2N6099

2N6058JTXV
2N6059
2N6059JAN
2N6059JTX
2N6059JTXV
2N6077
2N6078

1-50
1-228
1-50
1-50
1-50
1-236
1-236
1-254
1-301
1-301

2N6229
2N5883
2N6029
2N5883
MJ4502
2N5745
2N5745JAN
2N5745JTX
2N5745JTXV
2N5758
2N5759
2N5760
2N6306
2N6542
2N5838
2N5839
2N5840
2N3789'
2N3790'
2N3713'
2N3714'
2N3789'
2N3790'
2N3713'
2N3714*
2N5875
2N5876
2N5877
2N5878
2N5879
2N5880
2N5881
2N5882
2N5883
2N5884
2N5885
2N5886

2N5932
2N5933
2N5935
2N5936
2N5937
2N5954
2N5955
2N5956
2N5970
2N5971
2N5972
2N5974
2N5975
2N5976
2N5977
2N5978
2N5979
2N5980
2N5981
2N5982

Motorola
Similar
Replacement

2N5974
2N5975
2N5976
2N5977
2N5978
2N5979
MJE2955'
MJE2955'
2N5988'

'Consult factory if a direct replacement is necessary.
"To be introduced. Contact factory for Data Sheet.

1-5

MJE3055'
MJE3055'
2N5991,
2N5986
2N5987
2N5988
2N5989
2N5990
2N5991
2N6126
2N6126
2N6124
2N6124
2N6125
2N6125
2N6029
2N6030
2N6031
2N6275
2N6277

2N6235
2N6487
2N6487

Paga II
1-833
1-833
1-213
1-213
1-213
1-213
1-213
1-213
1-213
1-241
1-241
1-241
1-241
1-241
1-241
1-174
1-174
1-174
1-261
1-261

INDEX CROSS·REFERENCE (Continued)

l1li

Industry
Part Number
2N6100
2N6101
2N6102
2N6103
2N6106
2N6107
2N6108
2N6109
2N6110
2N6111
2N6121
2N6122
2N6123
2N6124
2N6125
2N6126
2N6127
2N6128
2N6129
2N6130
2N6131
2N6132
2N6133
2N6134
2N6175
2N6176
2N6177
2N6178
2N6179
2N6180

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Motorola
Direct
Replacement

Motorola
Similar
Replacemant

Page #

Industry
Part Number

1-301
1-301
1-301
1-301
1-238
1-238
1-238
1-238
1-238
1-238

2N6251
2N6253
2N6254
2N6257
2N6258
2N6259
2N6260
2N6261
2N6262
2N6263

1-241
1-241
1-241
1-241
1-241
1-241
1-297
1-282
1-47
1-47

2N6264
2N6270
2N6271
2N6272
2N6273
2N6274
2N6274JAN
2N6274JTX
2N6274JTXV
2N6275

1-47
1-47
1-47
1-47
1-933
1-933
1-333
1-929
1-929
1-946

2N6276
2N6277
2N6277JAN
2N6277JTX
2N6277JTXV
2N6278
2N6279
2N6280
2N6281
2N6282

2N6276
2N6277
2N6277JAN
2N6277JTX
2N6277JTXV

2N6282

1-261
1-261
1-50
1-50
1-50
1-261
1-261
1-261
1-261
1-265

2N6487
2N6488
2N6488
2N6486
2N6107
2N6107
2N6109
2N6109
2N6111
2N6111
2N6121
2N6122
2N6123
2N6124
2N6125
2N6126
2N6436
2N6338
2N6129
2N6130
2N6131
2N6132
2N6133
2N6134
MPSU10
MPSU10
2N6559
MPSU06
MPSU05
MPSU56

2N6251
2N5877
2N5878
2N6257
2N5686
2N5631
2N4231A
2N4233A
2N5760
2N5050
2N5051
2N6338
2N6338
2N6338
2N6338
2N6274
2N6274JAN
2N6274JTX
2N6274JTXV
2N6275

2N6274
2N6275
2N6276
2N6277

Page #
1-257
1-196
1-196
1-104
1-185
1-174
1-120
1-120
1-189
1-144
1-144
1-282
1-282
1-282
1-282
1-261
1-50
1-50
1-50
1-261

2N6181
2N6186
2N6187
2N6188
2N6189
2N6190
2N6191
2N6192
2N6193
2N6211

2N6186
2N6187
2N6188
2N6189
2N6190
2N6191
2N6192
2N6193
2N6211

1-946
1-245
1-245
1-245
1-245
1-248
1-248
1-248
1-248
1-251

2N6283
2N6283JAN
2N6283JTX
2N6283JTXV
2N6284
2N6284JAN
2N6284JTX
2N6284JTXV
2N6285
2N6286

2N6283
2N6283JAN
2N6283JTX
2N6283JTXV
2N6284
2N6284JAN
2N6284JTX
2N6284JTXV
2N6285
2N6286

1-265
1-50
1-50
1-50
1-265
1-50
1-50
1-50
1-265
1-265

2N6212
2N6213
2N6226
2N6227
2N6228
2N6229
2N6230
2N6231
2N6233
2N6234

2N6212
2N6213
2N6226
2N6227
2N6228
2N6229
2N6230
2N6231
2N6233
2N6234

1-251
1-251
1-189
1-189
1-189
1-178
1-178
1-178
1-254
1-254

2N6286JAN
2N6286JTX
2N6286JTXV
2N6287
2N6287JAN
2N6287JTX
2N6287JTXV
2N6288
2N6289
2N6290

2N6286JAN
2N6286JTX
2N6286JTXV
2N6287
2N6287JAN
2N6287JTX
2N6287JTXV
2N6288·

1-50
1-50
1-50
1-265
1-50
1-50
1-50
1-238
1-238
1-238

2N6235
2N6242
2N6243
2N6244
2N6245
2N6246
2N6247
2N6248
2N6249
2N6250

2N6235

1-254
1-671
1-707
1-707
1-707
1-199
1-199
1-65
1-257
1-257

2N6291
2N6292
2N6293
2N6294
2N6295
2N6296
2N6297
2N6298
2N6298JAN
2N6298JTX

MPSU55

MJ13015
MJ13334
MJ13333
MJ13334
2N5879
2N5880
MJ15016
2N6249
2N6250

'Consult factory if a direct replacement is necessary.
*'To be introduced. Contact factory for Data Sheet

1-6

2N6288
2N6290
2N6290
2N6292
2N6292
2N6294
2N6295
2N6296
2N6297
2N6298
2N6298JAN
2N6298JTX

1-238
1-238
1-238
1-270
1-270
1-270
1-270
1-232
1-49
1-49

INDEX CROSS-REFERENCE (Continued)
Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

2N6298JTXV
2N6299
2N6299JAN
2N6299JTX
2N6299JTXV
2N6300
2N6300JAN
2N6300JTX
2N6300JTXV
2N6301

2N6298JTXV
2N6299
2N6299JAN
2N6299JTX
2N6299JTXV
2N6300
2N6300JAN
2N6300JTX
2N6300JTXV
2N6301

1-49
1-232
1-49
1-49
1-49
1-232
1-49
1-49
1-49
1-232

2N6378
2N6378JAN
2N6378JTX
2N6378JTXV
2N6379
2N6379JAN
2N6379JTX
2N6379JTXV
2N6380
2N6381

2N6301JAN
2N6301JTX
2N6301JTXV
2N6302
2N6303
2N6306
2N6306JAN
2N6306JTX
2N6307
2N6308

2N6301JAN
2N6301JTX
2N6301JTXV

1-49
1-49
1-49
1-174
1-88
1-274
1-49
1-49
1-274
1-274

2N6382
2N6383
2N6383JAN
2N6383JTX
2N6383JTXV
2N6384
2N6384JAN
2N6384JTX
2N6384JTXV
2N6385

1-49
1-49
1-120
1-120
1-120
1-278
1-278
1-278
1-278
1-537

2N6385JAN
2N6385JTX
2N6385JTXV
2N6386
2N6387
2N6388
2N6406
2N6407
2N6408
2N6409

1-537
1-537
1-537
1-31
1-31
1-31
1-31
1-31
1-31
1-282

2N6410
2N6411
2N6412
2N6413
2N6414
2N6415
2N6416
2N6417
2N6418
2N6419

1-50
1-50
1-50
1-282
1-282
1-282
1-50
1-50
1-50
1-282

2N6420
2N6421
2N6422
2N6423
2N6424
2N6425
2N6436
2N6437
2N6437JAN
2N6437JTX

2N6420
2N6421
2N6422
2N6423
2N6424
2N6425
2N6436
2N6437
2N6437JAN
2N6437JTX

1-76
1-76
1-76
1-76
1-93
1-93
1-297
1-297
1-50
1-50

1-228
1-228
1-228
1-228
1-203
1-336
1-278
1-278
1-278
1-285

2N6437JTXV
2N6438
2N6438JAN
2N6438JTX
2N6438JTXV
2N6465
2N6466
2N6467
2N6468
2N6469

2N6437JTXV
2N6438
2N6438JAN
2N6438JTX
2N6438JTXV

1-50
1-297
1-50
1-50
1-50
1-457
1-457
1-457
1-457
1-199

2N6308JAN
2N6308JTX
2N6312
2N6313
2N6314
2N6315
2N6316
2N6317
2N6318
2N6322
2N6323
2N6324
2N6325
2N6326
2N6327
2N6328
2N6329
2N6330
2N6331
2N6338
2N6338JAN
2N6338JTX
2N6338JTXV
2N6339
2N6340
2N6341
2N6341JAN
2N6341JTX
2N6341JTXV
2N6354
2N6355
2N6356
2N6357
2N6358
2N6359
2N6371
2N6372
2N6373
2N6374
2N6377

2N5630
2N6303
2N6306
2N6306JAN
2N6306JTX
2N6307
2N6308
2N6308JAN
2N6308JTX
2N6312
2N6313
2N6314
2N6315
2N6316
2N6317
2N6318
MJ10015
MJ10015
MJ10015
MJ10015
2N6326
2N6327
2N6328
2N6329
2N6330
2N6331
2N6338
2N6338JAN
2N6338JTX
2N6338JTXV
2N6339
2N6340
2N6341
2N6341JAN
2N6341JTX
2N6341JTXV
2N6339
2N6057
2N6057
2N6058
2N6058
2N5885
2N6569
2N6316
2N6315
2N6315
2N6377

'Consult factory if a direct replacement is necessary.
"To be introduced. Contact factory for Data Sheet.

1-7

2N6378
2N6378JAN
2N6378JTX
2N6378JTXV
2N6379
2N6379JAN
2N6379JTX
2N6379JTXV
2N6377
2N6378
2N6379
2N6383
2N6383JAN
2N6383JTX
2N6383JTXV
2N6384
2N6384JAN
2N6384JTX
2N6384JTXV
2N6385
2N6385JAN
2N6385JTX
2N6385JTXV
2N6386
2N6387
2N6388

1-285
1-50
1-50
1-50
1-285
1-50
1-50
1-50
1-285
1-285
1-285
1-289
1-49
1-49
1-49
1-289
1-49
1-49
1-49
1-289

MJE171
MJE172
MJE181'
MJE182'

1-49
1-49
1-49
1-293
1-293
1-293
1-797
1-797
1-797
1-797

MJE200'
MJE210
MJE180
MJE181
MJE170
MJE171
MJE243
MJE243
MJE253
MJE253

1-801
1-801
1-797
1-797
1-797
1-797
1-807
1-807
1-807
1-807

MJ3247
MJ3247
MJ3237
MJ3237
2N5879

III

INDEX CROSS-REFERENCE (Continued)

III

Industry
Part Number
2N6470
2N6471
2N6472
2N6473
2N6474
2N6475
2N6476
2N6477
2N6478
2N6486

Motorola
Direct
Replacement

Motorola
Similar
Replacement

1-199
1-199
1-199
1-46
1-46
1-46
1-46
1-46
1-46
1-301

2N6576
2N6577
2N6578
2N6579
2N6580
2N6581
2N6582
2N6583
2N6584 .
2N6591

2N6591

2N6055
2N6056
2N6056
2N6316
2N6339

1-301
1-301
1-301
1-301
1-301
1-232
1-232
1-232
1-278
1-282

2N6592
2N6593
2N6594
2N6609
2N6648
2N6648JAN
2N6648JTX
2N6648JTXV
2N6649
2N6649JAN

2N6592
2N6593
2N6594
2N6609
2N6648
2N6648JAN
2N6648JTX
2N6648JTXV
2N6649
2N6649JAN

1-343
1-343
1-347
1-108
1-289
1-49
1-49
1-49
1-289
1-49

2N5430
2N6306
2N6306
2N6544
2N6545
2N6544
TIP101

1-305
1-305
1-305
1-170
1-274
1-274
1-315
1-315
1-315
1-975

2N6649JTX
2N6649JTXV
2N6650
2N6650JAN
2N6650JTX
2N6650JTXV
2N6653
2N6654
2N6655
2N6666

2N6649JTX
2N6649JTXV
2N6650
2N6650JAN
2N6650JTX
2N6650JTXV

1-49
1-49
1-289
1-49
1-49
1-49
. 1-707
1-707
1-707
1-351

2N6667
2N6668
2N6669
2N6671
2N6672
2N6673
2N6674
2N6675
2N6676
2N6677

2N6667
2N6668

2N6678
2N6833
2N6834
2N6835
2N6836
2N6837

2N6486
2N6487 .
2N6488
2N6489
2N6490
2N6491

2N6497
2N6498
2N6499
2N6500·
2N6510
2N6511
2N6512
2N6513
2N6514
2N653O

2N6497
2N6498
2N6499

2N6531
2N6532
2N6534
2N6535

TIP102
TIP102
2N6301
TIP102
TIP102

2N6542
2N6543
2N6544
2N6545
2N6546

2N6542
2N6543
2N6544
2N6545
2N6546

1-975
1-975
1-232
1-975
1-975
1-309
1-309
1-315
1-315
1-319

2N6546JAN
2N6546JTX
2N6547
2N6547JAN
2N6547JTX
2N6548
2N6549
2N6551
2N6552
2N6553

2N6546JAN
2N6546JTX
2N6547
2N6547JAN
2N6547JTX
2N6548
2N6549
2N6551
2N6552
2N6553

1-50
1-50
1-319
1-50
1-50
1-323
1-323
1-326
1-326
1-326

2N6678
2N6833
2N6834
2N6835
2N6836
2N6837
2SA483
2SA489
2SA490
2SA496

2N6554
2N6555
2N6556
2N6557
2N6558
2N6559
2N6569
2N6573
2N6574
2N6S75

2N6554
2N6555
2N6556
2N6557
2N6558
2N6559
2N6569

1-330
1-330
1-330
1-333
1-333
1-333
1-336
1-319
1-319
1-319

2SA505
2SA566
2SA613
2SA614
2SA616
2SA623
2SA624
2SA626
2SA627·
2SA633

2~6536

Motorola
Similar
Replacement

Page #

2N5881
2N5881
2N5882
FT317
FT317A
FT417
FT417A
FT317A
FT317B

2N6487
2N6488
2N6489
2N6490
2N6491
2N6492
2N6493
2N6494
2N6495
2N6496

Motorola
Direct
Replacement

Industry
Part Number

2N6546
2N6546
2N6547

·Consult factory If a direct replacement IS necessary.
•0To be introduced. Contact factory for Data Sheet.

1-8

2N6576
2N6577
2N6578
MJ13080
MJ13080
MJ16004
MJ13080
MJ13080
MJ16008

MJ13332
MJ13332
MJ13333
2N6666

MJE15028
2N6544
MJ13080
MJ13080
MJ13090
MJ13090
2N6676
2N6677

Page #
1-340
1-340
1-340
·1-683
1-683
1-735
1-683
1-683
1-750
1-343

1-351
1-351
1-909
1-315
1-683
1-683
1-689
1-689
1-355
1-355

2N6420
2N6126
2N6125
2N4918

1-355
1-359
1-359
1-367
1-374
1-381
1-76
1-241
1-241
1-134

2N4919
2N6420
2N4899
2N4900
2N3741
D41E1
D41E5
2N6226
2N6226
D41E1

1-134
1-76
1-128
1-128
1-97
1-411
1-411
1-189
1-189
1-411

INDEX CROSS-REFERENCE (Continued)
Industry
Part Numbar

Motorola
Dlract
Raplacemant

Motorola
Similar
Replacamant

Paga 1/

Industry
Part Numbar

Motorola
Direct
Raplacament

Motorola
Similar
Raplacamant

Page 1/

2SA634
2SA635
2SA636
2SA645
2SA646
2SA647
2SA648
2SA652
2SA653
2SA656

041E5
04107
2N6556
041010
2N6556
2N6556
2N6230
2N6420
2N6420
2N6228

1-411
1-407
1-330
1-407
1-330
1-330
1-178
1-76
1-76
1-189

2SA897
2SA898
2SA899
2SA900
2SA907
2SA908
2SA909
2SA922
2SA939
2SA940

MPSU55
MJE350
MJE350
MJE210
MJ15016
MJ15002
MJ15023
2N4918
MJE350
MJE15031

1-946
1-815
1-815
1-801
1-65
1-717
1-728
1-134
1-815
1-909

2SA657
2SA658
2SA663
2sA670
2SA671
2SA679
2SA680
2SA681
2SA682
2SA698

2N6226
2N6226
2N6226
2N6125
2N6125
MJ15016
2N5880
MJE253
MJE253
MOS60

1-189
1-189
1-189
1-241
1-241
1-65
1-199
1-807
1-807
1-439

2SA949
2SA957
2SA958
2SA962
2SA963
2SA965
2SA966
2SA968
2SA969
2SA971

MJE15031
MJE15031
MJE15031
MPSU55
MJE171
MJE15029
TIP32
MJE15031
MJ3238
2N6609

1-909
1-909
1-909
1-946
1-797
1-909
1-957
1-909
1-457
1-108

2SA699
2SA700
2SA703
2SA706
2SA714
2SA715
2SA738
2SA739
2SA755
2SA756

041E5
TIP30
041E1
MPSU55
2N6228
MJE170
MJE170
MJ6502
2N6125
2N6226

1-411
1-955
1-411
1-946
1-189
1-797
1-797
1-467
1-241
1-189

2SA980
2SA981
2SA982
2SA1001
2SA1002
2SA1003
2SA1007
2SA1008
2SA1010
2SA1011

2N6229
2N6230
2N6231
2N6438
2N6438
2N6438
2N6231
TIP32C
TIP42C
MJE15031

1-178
1-178
1-178
1-297
1-297
1-297
1-178
1-957
1-967
1-909

2SA757
2SA758
2SA762
2SA764
2SA765
2SA766
2SA768
2SA769
2SA770
2SA771

2N6227
2N6228
2N6211
2N6317
2N6318
2N6420
2N6125
2N6126
2N6109
2N6107

1-189
1-189
1-251
1-278
1-278
1-76
1-241
1-241
1-238
1-238

2SA1012
2SA1020
2SA1040
2SA1041
2SA1042
2SA1043
2SA1044
2SA1045
2SA1046
2SA1063

TIP42A
TIP32
2N6438
2N6438
2N6436
2N6438
2N6436
2N6052
2N6052
2N6228

1-967
1-957
1-297
1-297
1-297
1-297
1-297
1-228
1-228
1-189

2SA775
2SA779
2SA780
2SA794
2SA795
2SA807
2SA808
2SA814
2SA815
2SA816

TIP30C
2N4918
2N4919
MJE253
MJE253
2N3789
2N3790
TIP30C
TIP30C
TIP30B

1-955
1-134
1-134
1-807
1-807
1-112
1-112
1-955
1-955
1-955

2SA1064
2SA1065
2SA1067
2SA1068
2SA1069
2SA1110
2SA1111
2SA1112
2SB502
2SB503

2N6231
2N6231
2N6230
2N6231
TIP42B
MJE350
MJE15031
MJE15031
2N3741
2N3741

1-178
1-178
1-178
1-178
1-967
1-815
1-909
1-909
1-97
1-97

2SA818
2SA835
2SAB37
2SA839
2SA843
2SA861
2SA877
2SA878
2SA882
2SA887

MPSU60
MPSU60
2N6226
TIP32C
MJE15031
MPSU51
2N5876
2N6230
2N6231
041E7

1-950
1-950
1-189
1-957
1-909
1-942
1-196
1-178
1-178
1-411

2SB506
2SB507
2S8509
2S8511
2S8513
2S8514
2SB515
2S8518
2S8519
2SB520

2N6228
2N6125
2N6126
TIP32
2N6126
TIP32A
TIP32A
2N6226
2N6227
2N6228

1-189
1-241
2-241
1-957
1-241
1-957
1-957
1-189
1-189
1-189

*Consult factory if a direct replacement is necessary.
**To be introduced. Contact factory for Oata Sheet.

1-9

INDEX CROSS-REFERENCE (Continued)

-

Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

256521
256522
256523
256524
256526
258527
256528
256529
258530
258531

TIP42A
TIP42A
2N5193
2N5194
2N4920
2N4920
2N4920
2N5193
2N6230
2N6226

1-967
1-967
1-150
1-150
1-134
1-134
1-134
1-150
1-178
1-189

256648
256649
256653
256654
256655
256656
256668
256669
256673
258674

MJE350
MJE350
2N6227
2N6227
MJ15002
MJ15002
TIP32A
TIP326
2N6042
2N6041

1-815
1-815
1-189
1-189
1-717
1-717
1-957
1-957
1-221
1-221

256532
256536
256537
256539
256541
256546
256547
256548
258549
256552

2N6226
2N6126
2N6126
2N6231
2N6230
MJE15031
MJE15031
2N4920
2N4920
MJ15023

1-189
1-241
1-241
1-178
1-178
1-909
1-909
1-134
1-134
1-728

256675
256676
256677
256679
256681
256689
256690
258691
256692
258693

2N6040
TIP127
TIP125
TIP117
MJ15002
TlP42C
TIP42C
MJE4352
MJE4352
2N6287

1-221
1-982
1-982
1-979
1-717
1-967
1-967
1-839
1-839
1-265

256554
256555
256556
258557
256558
256559
256565
256566
258567
258568

MJ15023
MJ15012
MJ15012
2N6230
2N6229
2N4918
2N6125
2N6126
MJE15031
MJE15031

1-728
1-723
1-723
1-178
1-178
1-134
1-241
1-241
1-909
1-909

256694
256695
256696
258697
256707
256708
258711
258712
256713
258717

MJ11015
MJE4352
2N6231
MJ15002
2N6107
2N6107
2N6041
2N6042
MJE4352
MJE350

1-636
1-839
1-178
1-717
1-238
1-238
1-221
1-221
1-839
1-815

258569
256570
256571
258572
258573
258574
256575
258576
256577
258578

MJE3310
MJE3311
MJE3312
2N5193
2N5194
2N5195
2N5193
2N5194
2N5195
MJE2955

1-835
1-835
1-835
1-150
1-150
1-150
1-150
1-150
1-150
1-833

258718
256719
258720
256722
258723
258724
258727
258743
256744
258750

MJE350
MJE15031
MJE15031
MJ15002
MJ15023
TIP32A
MJE15029
MJE170
MJE172
TIP115

1-815
1-909
1-909
1-717
1-728
1-957
1-909
1-797
1-797
1-979

256579
258580
256581
256582
258583
256584
256585
256586
256587
256588

2N5975
2N5976
2N5976
'MJE6040
MJE6041
MJE6042
2N6053
2N6054
2N6050
2N6051

1-207
1-207
1-207
1-221
1-221
1-221
1-232
1-232
1-228
1-228

256751
258753
258754
258772
25C41
25C42
25C4ZA
25C43
25C44
25C101

MJE703T
TIP42C
2N6109
MJE170
MJ410
MJ410
MJ410
2N4347
2N4347
2N5050

1-823
1-967
1-238
1-797
1-443
1-443
1-443
1-71
1-71
1-144

256589
256595
258596
256600
256604
256628
258630
258631
256632
258633

2N6052
TIP42C
2N6126
MJ15012
2N6126
MJE15031
MJE15031
2N4920
2N4918
TlP42C

1-228
1-967
1-241
1-723
1-241
1-909
1-909
1-134
1-134
1-967

25C161
25C240
25C241
25C242
25C243
25C244
25C245
25C246
25C270
25C407

2N3447
2N4347
2N3447
2N4347
MJ410
2N3447
2N4347
MJ410
MJ411
MJ15011

1-74
1-71
1-74
1-71
1-443
1-74
1-71
1-443
1-443
1-723

*Consult factory if a direct replacement is necessary.
**To be introduced. Contact factory for Data 5heet.

1-10

INDEX CROSS-REFERENCE (Continued)
Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

2SC408
2SC409
2SC410
2SC411
2SC412
2SC431
2SC432
2SC433
2SC434
2SC435

MJ15011
2N6249
2N6249
2N6546
2N6546
2N6341
2N6341
MJ15022
MJ15022
MJ10000

1-723
1-257
1-257
1-319
1-319
1-282
1-282
1-725
1-725
1-495

2SC783
2SC789
2SC790
2SC791
2SC792
2SC793
2SC794
2SC795
2SC806
2SC807

2N3738
2N6123
TIP31A
2N5050
2N5840
2N5758
2N5758
2N3739
MJ431
MJ413

1-93
1-241
1-957
1-144
1-193
1-189
1-189
1-93
1-445
1-445

2SC436
2SC483
2SC487
2SC488
2SC489
2SC490
2SC491
2SC492
2SC493
2SC494

MJ10000
2N3583
2N3583
2N6233
2N3441
2N3766
2N5050
2N4347
2N4347
2N3447

1-495
1-76
1-76
1-254
1-69
1-100
1-144
1-71
1-71
1-71

2SC808
2SC825
2SC833
2SC840
2SC840A
2SC861
2SC862
2SC867
2SC884
2SC885

MJ411
2N3585
2N6235
2N5050
2N5051
MJ3029
MJ3030
2N3739
2N5050
2N6307

1-443
1-76
1-254
1-144
1-144
1-453
1-453
1-93
1-144
1-274

2SC495
2SC496
2SC508
2SC515
2SC518
2SC518A
2SC519
2SC519A
2SC520
2SC520A

2N4923
2N4921
2N6233
2N3739
2N3448
2N3448
2N5759
2N5760
2N3448
2N3448

1-138
1-138
1-254
1-93
1-74
1-74
1-189
1-189
1-74
1-74

2SC886
2SC887
2SC888
2SC889
2SC895
2SC897
2SC898
2SC901
2SC901A
2SC902

2N6306
MJ410
MJ410
MJ410
2N3441
2N5760
2N5760
2N6306
2N6306
2N5634

1-274
1-443
1-443
1-443
1-69
1-189
1-189
1-274
1-274
1-178

2SC521
2SC521A
2SC558
2SC582
2SC586
2SC642
2SC643
2SC646
2SC647
2SC664

2N3447
2N3448
MJ3029
2N3739
MJ410
BU204
BU204
2N3447
2N3448
2N5758

1-74
1-74
1-453
1-93
1-443
1-388
1-388
1-74
1-74
1-189

2SC931
2SC932
2SC935
2SC936
2SC937
2SC939
2SC940
2SC961
2SC962
2SC981

MJE205
2N5977
2N5840
BU204
BU204
MJ15001
2N6249
2N5759
2N5758
2N5430

1-805
1-210
1-193
1-388
1-388
1-717
1-257
1-189
1-189
1-170

2SC665
2SC675
2SC676
2SC677
2SC678
2SC679
2SC680
2SC681
2SC685
2SC687

2N5760
2N6306
2N6306
2N6306
2N6306
2N3585
2N5052
MJ15011
2N3739
MJ410

1-189
1-274
1-274
1-274
1-274
1-76
1-144
1-723
1-93
1-443

2SC999
2SC1004
2SC1004A
2SC1005
2SC1013
2SC1014
2SC1025
2SC1030
2SC1031
2SC1034

BU205
BU204
BU205
BU207
MDS26
MDS27
2N6233
2N5760
2N3585
BU204

1-388
1-388
1-388
1-393
1-437
1-437
1-254
1-189
1-76
1-388

2SC736
2SC758
2SC759
2SC760
2SC768
2SC769
2SC770
2SC771
2SC779
2SC782

2N4347
2N6307
2N6306
2N6306
2N3055
2N5633
MJ15011
MJ15011
2N3739
2N3739

1-71
1-274
1-274
1-274
1-62
1-178
1-723
1-723
1-93
1-93

2SC1046
2SC1050
2SC1051
2SC1055
2SC1059
2SC1060
2SC1061
2SC1078
2SC1079
2SC1080

BU207
MJ411
2N5760
2N5430
2N3739
TIP31A
TIP31A
BU204
MJ15001
MJ15001

1-393
1-443
1-189
1-170
1-93
1-957
1-957
1-388
1-717
1-717

*Consult factory if a direct replacement is necessary.
**To be introduced. Contact factory for Data Sheet.

1 -11

INDEX CROSS-REFERENCE (Continued)

l1li

Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

2SC1086
2SC1088
2SC1089
2SC1096
2SC1098
2SC1099
2SC1100
2SC1101
2SC1102
2SC1104

BU207
MJE3439
MJE3439
MOS26
2N6552
BU207
BU207
BU204
2N3739
2N3585

1-393
1-837
1-837
1-437
1-326
1-393
1-393
1-388
1-93
1-76

2SC1295
2SC1304
2SC1309
2SC1316
2SC1322
2SC1325
2SC1343
2SC1348
2SC1358
2SC1367

BU204
2N3739
BU207
MJ13005
2N6250
MJ12005
MJ15011
BU207
BU208
BU204

1-388
1-93
1-393
1-881
1-257
1-657
1-723
1-393
1-393
1-388

2SC1105
2SC1106
2SC1107
2SC1108
2SC1109
2SC1110
2SC1111
2SC1112
2SC1113
2SC1114

2N3739
2N5840
2N6123
2N6123
2N6123
2N6123
2N5634
2N5634
MJ3247
2N6542

1-93
1-193
1-241
1-241
1-241
1-241
1-178
1-178
1-457
1-309

2SC1381
2SC1382
2SC1391
2SC1402
2SC1403
2SC1409
2SC1410
2SC1413
2SC1418
2SC1419

MJE182
MJE182
2N3739
2N5634
2N5634
TIP47
TIP47
BU207
TIP31
TIP31

1-797
1-797
1-93
1-178
1-178
1-971
1-971
1-393
1-957
1-957

2SC1115
2SC1116
2SC1124.
2SC1125
2SC1130
2SC1131
2SC1132
2SC1140
2SC1141
2SC1142

2N5634
MJ15011
MPSU04
MPSU10
2N6543
2N6542
BU207
2N6547
2N6546
MJ13015

1-178
1-723
1-925
1-933
1-309
1-309
1-393
1-319
1-319
1-671

2SC1429
2SC1431
2SC1433
2SC1434
2SC1436
2SC1440
2SC1441
·2SC1444
2SC1445
2SC1447

MPSU01
2N5050
MJ411
2N6546
2N6249
MJ15001
2N6249
2N5428
2N5430
TIP47

1-921
1-144
1-443
1-319
1-257
1-717
1-257
1-170
1-170
1-971

2SC1143
2SC1151
2SC1152
2SC1153
2SC1154
2SC1155
2SC1156
2SC1157
2SC1160
2SC1161

MJ13014
BU204
2N5840
BU204
MJ12003
040013
2N6543
2N6553
2N3738
2N3738

1-671
1-388
1-193
1-388
1-649
1-407
1-309
1-326
1-93
1-93

2SC1448
2SC1449
2SC1450
2SC1454
2SC1456
2SC1463
2SC1466
2SC1467
2SC1468
2SC1469

TIP47
MJE180
2N3583
MJ411
2N3739
2N6543
2N3585
MJ13005
MJ13091
MJ13091

1-971
1-797
1-76
1-443
1-93
1-309
1-76
1-881
1-689
1-689

2SC1162
2SC1167
2SC1168
2SC1170
2SC1170A
2SC1171
2SC1172
2SC1173
2SC1174
2SC1184

MJE180
BU204
2N3739
BU207
BU208
BU204
BU208
TIP31
MJ12003
BU204

1-797
1-388
1-93
1-393
1-393
1-388
1-393
1-957
1-649
1-388

2SC1477
2SC1501
2SC1504
2SC1505
2SC1506
2SC1507
2SC1514
2SC1516
2SC1517
2SC1519

MJ10006
MJE3439
MJ13005
TIP48
TIP48
TIP48
MJE3439
MJE3300
2N4922
2N6557

1-513
1-837
1-881
1-971
1-971
1-971
1-837
1-835
1-138
1-333

2SC1185
2SC1195
2SC1224
2SC1226
2SC1227
2SC1228
2SC1229
2SC1237
2SC1243
2SC1292

2N5840
2N5838
2N6591
2N6548
MJ10006
MJ13091
MJ10006
TIP31B
D40K3
2N5840

1-193
1-193
1-343
1-323
1-513
1-689
1-513
1-957
1-415
1-193

2SC1520
2SC1521
2SC1576
2SC1577
2SC1578
2SC1579
2SC1580
2SC1584
2SC1585
2SC1586

2N6557
2N6557
MJ13091
MJ13091
MJ10014
MJ10013
MJ10014
2N6249
2N6249
2N6250

1-333
1-333
1-689
1-689
1-531
1-531
1-531
1-257
1-257
1-257

*Consult factory if a direct replacement is necessary.
**To be introduced. Contact factory for Data Sheet

1 -12

INDEX CROSS-REFERENCE (Continued)
Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

2SC1609
2SC1610
2SC1617
2SC1618
2SC1619
2SC1628
2SC1629
2SC1630
2SC1664
2SC1667

2N6340
2N6341
MJ411
2N5758
2N5758
MPSU04
MJ100l
MPSU04
2N6300
2N5758

1-282
1-282
1-443
1-189
1-189
1-925
1-449
1-925
1-232
1-189

2SC1942
2SC1983
2SC1984
2SC1985
2SC1986
2SC2024
2SC2027
2SC2068
2SC2071
2SC2073

MJ12003
TIP111
TIPl12
TIP41B
TIP41C
2N4923
MJ12005
D40N4
MJE3440
TIP47

1-649
1-979
1-979
1-967
1-967
1-138
1-657
1-419
1-837
1-971

2SC1669
2SC1672
2SC1683
2SCl722
2SCl723
2SC1728
2SC1749
2SC1755
2SC1756
2SC1757

TIP47
2N6341
TIP47
TIP48
TIP48
MPSU07
MJE340
MJE2360T
MJE2360T
MJE2360T

1-971
1-282
1-971
1-971
1-971
1-931
1-811
1-829
1-829
1-829

2SC2080
2SC2085
2SC2121
2SC2122
2SC2123
2SC2126
2SC2127
2SC2128
2SC2138
2SC2139

MJE180
MJE2361T
MJ411
MJ431
MJ10014
MJE13004
2N6249
MJ10015
MJ13091
MJ13091

1-797
1-829
1-443
1-445
1-531
1-881
1-257
1-537
1-689
1-689

2SC1760
2SC1761
2SC1768
2SC1777
2SC1782
2SC1783
2SC1784
2SC1785
2SC1786
2SC1818

MPSU07
MPSU01
MJ3041
2N5882
MJ15001
2N6249
MJ15001
2N6249
2N6250
2N6340

1-931
1-921
1-455
1-199
1-717
1-257
1-717
1-257
1-257
1-282

2SC2140
2SC2147
2SC2148
2SC2151
2SC2159
2SC2167
2SC2168
2SC2189
2SC2190
2SC2191

MJ13091
MJ10015
MJ13091
MJ10014
MJ10015
MJE15030
MJE15030
MJ15001
2N6545
2N6547

1-689
1-537
1-689
1-531
1-537
1-909
1-909
1-717
1-315
1-319

2SC1819
2SC1826
2SC1827
2SC1829
2SC1830
2SC1831
2SC1832
2SC1846
2SC1847
2SC1848

MJE2361T
TIP41B
TIP41C
MJ3041
2N6578
2N6056
MJ10009
MJE180
MJE181
D40E7

1-829
1-967
1-967
1-455
1-340
1-232
1-519
1-797
1-797
1-411

2SC2198
2SC2199
2SC2204
2SC2209
2SC2220
2SC2229
2SC2230
2SC2233
2SC2235
2SC2236

2N6301
MJ11018
MJ10016
MJE181
MJ10016
TIP47
TIP47
2N6497
TIP47
TIP31

1-232
1-638
1-537
1-797
1-537
1-971
1-971
1-305
1-971
1-957

2SC1866
2SC1868
2SC1869
2SC1870
2SC1875
2SC1880
2SC1881
2SC1883
2SC1884
2SC1891

2N5760
MJ13090
2N5634
2N6546
MJ12003
TIP112
TIP110
TIP122
2N6301
BU204

1-189
1-689
1-178
1-319
1-649
1-979
1-979
1-982
1-232
1-388

2SC2238
2SC2239
2SC2242
2SC2243
2SC2244
2SC2245
2SC2246
2SC2247
2SC2248
2SC2249

TIP47
2N5052
MJE2361T
2N6543
2N6545
MJ13091
2N6547
2N6543
2N6545
MJ10015

1-971
1-144
1-829
1-309
1-315
1-689
1-319
1-309
1-315
1-537

2SC1892
2SC1893
2SC1894
2SC1895
2SC1896
2SC1903
2SC1904
2SC1905
2SC1922
2SC1929

BU205
MJ12003
BU208
MJ12005
MJ12005
MJE341
MJE341
MJE2361T
MJ12003
TIP48

1-388
1-649
1-393
1-657
1-657
1-813
1-813
1-829
1-649
1-971

2SC2250
2SC2256
2SC2260
2SC2261
2SC2262
2SC2270
2SC2278
2SC2292
2SC2293
2SC2298

MJ10016
2N6249
2N6249
2N6249
2N6249
2N5194
MJE3439
MJ13091
MJ13091
MJE270

1-537
1-257
1-257
1-257
1-257
1-150
1-837
1-689
1-689
1-42

*Consult factory if a direct replacement is necessary.
**To be introduced. Contact factory for Data Sheet.

1 -13

INDEX CROSS-REFERENCE (Continued)

III

Industry
Part Number

Motornla
Direct
Replacement

Motorola
Similar
Replacement

Page #

Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

2SC2311
2SC2321
2SC2322
2SC2323
2SC2324
2SC2331
2SC2333
2SC2334
2SC2335
2SC2337

2N4922
2N5634
MJ15015
MJ15001
2N6038
MJE13004
MJE13005
MJE15030
MJE13007
2N5634

1-138
1-178
1-65
1-717
1-217
1-881
1-881
1-909
1-887
1-178

2S018
2S024
2S026
2S026A
2S0268
2S026C
2S028
2S029
2S0041
2S045

MJ15011
2N3739
2N5758
2N5758
2N5758
2N5760
2N3767
2N3767
2N3716
2N5760

1-723
1-93
1-189
1-189
1-189
1-189
1-100
1-100
1-82
1-189

2SC2344
2SC2354
2SC2356
2SC2357
2SC2358
2SC2359
2SC2366
2SC2371
2SC2373
2SC2388

TIP47
2N3739
MJ13091
MJ12010
MJ12010
MJ13005
MJ10016
MJE3439
MJE13006
2N6543

1-971
1-93
1-689
1-659
1-659
1-881
1-537
1-837
1-887
1-309

2S046
2S047
2S049
2S050
2S051
2S052
2S053
2S055
2S056
2S057

2N5760
2N5758
2N5050
2N5758
2N5758
2N5758
2N5759
2N6328
2N3738
2N3766

1-189
1-189
1-144
1-189
1-189
1-189
1-189
1-38
1-93
1-100

2SC2397
2SC2402
2SC2403
2SC2428
2SC2429
2SC2430
2SC2431
2SC2432
2SC2433
2SC2434

MJE3055T
2N6546
MJ10015
2N6249
MJ16010
2N5633
MJ15015
2N5882
MJ11016
2N6327

1-833
1-319
1-537
1-257
1-765
1-178
1-65
1-199
1-636
1-38

2S058
2S060
2S067
2S068
2S069
2S070
2S071
2S073
2S074
2S080

2N3766
2N5760 .
2N5759
2N5758
2N5760
2N3766
2N5050
2N5758
2N5760
2N5758

1-100
1-189
1-189
1-189
1-189
1-100
1-144
1-189
1-189
1-189

2SC2435
2SC2436
2SC2442
2SC2443
2SC2448
25C2449
2SC2450
2SC2451
2SC2452
25C2453

2N6059
2N6059
MJ10016
MJ10016
MJ13091
MJ13091
MJ13091
MJ13091
MJ13091
MJ13091

1-228
1-228
1-537
1-537
1-689
1-689
1-689
1-689
1-689
1-689

2S081
2S082
2S083
2S084
2S088
25090
25091
2S092
25093
25094

2N5758
2N5758
2N5760
MJ15011
2N5758
2N3766
2N3766
2N3583
2N5051
2N5052

1-189
1-189
1-189
1-723
1-189
1-100
1-100
1-76
1-144
1-144

2SC2482
25C2487
25C2488
2SC2489
2SC2492
2SC2493
2SC2500
25C2516
2SC2534
25C2535

MJE2361T
2N5634
2N5634
2N5634
2N5633
2N5634
TIP31
2N6497
MJE13003
MJE13005

1-829
1-178
1-178
1-178
1-178
1-178
1-957
1-305
1-875
1-881

2S0102
250103
250107
250108
250110
2S0111
2S0113
2S0114
2S0116
250117

2N3583
2N5050
2N6056
2N6056
2N5634
2N5632
MJ802
2N5686
2N5758
2N5760

1-76
1-144
1-232
1-232
1-178
1-178
1-447
1-185
1-189
1-189

2SC2536
25C2541
(T0218)
25C2562
25C2569
25C2590
2S012
25015
25016
2S017

2N6499

1-305

MJ13091
TIP42A
2N5760
MJE341
2N5758
2N5758
2N5758
2N5760

1-689
1-967
1-189
1-813
1-189
1-189
1-189
1-189

250118
2S0119
250124
2S0124A
250125
2S0125A
2S0126
250129
2S0130
250131

2N5760
2N5758
2N5758
2N5758
2N5758
2N5758
2N5760
2N3767
2N3766
2N5758

1-189
1-189
1-189
1-189
1-189
1-189
1-189
1-100
1-100
1-189

'Consult factory if a direct replacement is necessary.
"To be introduced. Contact factory for Oata Sheet.

1 -14

INDEX CROSS-REFERENCE (Continued)
Industry
Part Number

Motorola
Dlract
Replacement

Motorola
Similar
Replacement

Page #

Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Pagl #

250132
250138
250139
250141
250142
250143
250144
250146
250147
250148

2N6338
2N3738
2N3739
2N3766
2N3766
2N3767
2N3767
2N4912
2N4912
2N4912

1-282
1-93
1-93
1-100
1-100
1-100
1-100
1-131
1-131
1-131

250241
250242
250243
250244
250246
250247
250249
250250
250251
250254

2N3766
2N3767
MJ3247
MJ3248
BU208
2N5758
2N5302
2N6328
2N5052
2N3767

1-100
1-100
1-457
1-457
1-393
1-189
1-154
1-38
1-144
1-100

250150
250151
250152
250154
250155
250156
250157
250158
250159
250161

2N3583
2N5632
2N3583
2N3767
2N3767
2N3738
2N3739
2N3738
2N3739
2N5633

1-76
1-178
1-76
1-100
1-100
1-93
1-93
1-93
1-93
1-178

250255
250256
250257
250258
250259
250260
250262
250265
250266
250271

2N3767
2N3766
2N3767
MJ3247
MJ3248
2N5758
2N6546
2N6545
2N6545
MJE13005

1-100
1-100
1-100
1-457
1-457
1-189
1-319
1-315
1-315
1-881

250163
250164
250165
250166
250168
250171
250172
250173
250174
250175

2N3715
2N5632
2N5634
MJ15011
2N6385
2N6543
2N5877
2N5632
2N5877
2N5632

1-82
1-178
1-178
1-723
1-289
1-309
1-196
1-178
1-196
1-178

250272
250273
250274
250283
250284
250285
250286
250287
250288
250289

MJE13005
2N6545
2N6545
MJ3247
MJ3247
MJ3247
MJ15011
MJ15011
TIP31B
TlP31B

H81
1-315
1-315
1-457
1-457
1-457
1-723
1-723
1-957
1-957

250176
250177
250180
250181
250188
250189
250189A
250198
250199
250200

2N5632
2N5634
2N5758
MJ15001
2N5758
2N5758
2N5758
2N5840
BU204
BU204

1-178
1-178
1-189
1-717
1-189
1-189
1-189
1-193
1-388
1-388

250290
250291
250292
250293
250294
250295
250296
250297
250299
250300

2N5428
2N37ti7
2N3767
2N6547
2N6547
MJ13335
MJ13335
MJ3248
MJ12004
MJ12004

1-170
1-100
1-100
1-319
1-319
1-707
1-707
1-457
1-651
1-651

250201
250202
250203
250206
250207
250208
250211
250212
250213
250214

2N5758
2N5759
2N5760
2N5877
2N5632
2N5634
2N5877
2N5632
2N5633
2N5634

1-189
1-189
1-189
1-196
1-178
1-178
1-196
1-178
1-178
1-178

250301
250310
250311
250312
250313
250314
250315
250316
250317
250318

2N6385
2N6547
2N6547
2N6543
TIP31A
TIP31A
2N3766
2N3716
TIP31A
TIP31A

1-289
1-319
1-319
1-309
1-957
1-957
1-100
1-82
1-957
1-957

250217
250218
250226
250231
250232
250234
250235
250236
250237
250238

2N5633
2N5634
2N3766
2N5302
2N6275
TIP31A
TIP31A
2N4912
2N4912
2N3583

1-178
1-178
1-100
1-154
1-261
1-957
1-957
1-131
1-131
1-76

250319
250320
250321
250322
250323
250324
250325
250326
250330
250331

2N5633
2N5840
2N6306
MJ4247
MJ4248
2N3739
TIP31
2N3739
TIP31A
TIP31A

1-176
1-193
1-274
1-457
1-457
1-93
1-957
1-93
1-957
1-957

'Consult factory if a direct replacement is necessary.
"To be introduced. Contact factory for Data 5heet.

1-15

\

-

..

INDEX CROSS-REFERENCE (Continued)
Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

25D334
25D335
25D338
25D339
25D340
25D341
25D342
25D343
25D344
25D345

2N5759
2N5758
2N5758
2N5758
MJ15015
MJ15015
TIP31B
TIP31B
TIP31B
TIP31B

1-189
1-189
1-189
1-189
1-65
1-65
1-957
1-957
1-957
1-957

25D423
25D424
25D425
25D426
25D427
25D428
25D429
25D430
25D431
25D432

MJE13004
MJ15001
2N5634
2N5633
2N5759
2N5758
2N6547
2N5759
2N5633
2N5634

1-881
1-717
1-178
1-178
1-189
1-189
1-319
1-189
1-178
1-178

25D346
25D347
25D348
25D350
25D351
25D353
25D356
25D357
25D358
25D359

TIP41A
TIP41A
MJ12005
MJ12004
2N6545
2N5838
2N4923
2N4923
2N4923
2N5190

1-967
1-967
1-657
1-651
1-315
1-193
1-138
1-138
1-138
1-146

250433
250434
25D435
25D436
25D437
250457
250458
25D459
250460
250461

MJ15011
MJ13330
MJ13332
MJ13333
MJ13091
MJ10015
MJ13091
TIP121
TIP122
MJ411

1-723
1-701
1-707
1-707
1-689
1-537
1-689
1-982
1-982
1-443

25D360
25D361
25D363
25D364
25D365
250366
25D368
25D369
25D371
250372

2N5190
2N5191
MJ10015
MJ10016
TIP31A
TIP31A
MJ12005
2N3716
2N5758
MJ10015

1-146
1-146
1-537
1-537
1-957
1-957
1-657
1-82
1-189
1-537

25D463
250464
25D475
250476
25D478
25D479
250480
25D481
250482
25D483

2N6056
2N6056
2N6122
2N6123
TIP47
2N6037
2N6038
2N6039
2N5655
2N5656

1-232
1-232
1-241
1-241
1-971
1-217
1-217
1-217
1-182
1-182

25D373
25D374
250375
25D376
25D377
25D379
25D380
25D381
25D382
25D383

MJ10015
MJ10016
MJ13330
MJ13331
MJ13334
2N5758
MJ12005
MJE15030
MJE15030
MJ411

1-537
1-537
1-701
1-701
1-707
1-189
1-657
1-909
1-909
1-443

25D484
25D485
250486
25D487
250488
250489
25D490
25D491
250492
250493

2N5657
2N5190
2N5191
2N5192
2N4921
2N4922
2N4923
MJE3055
2N3055
2N5977

1-182
1-146
1-146
1-146
1-138
1-138
1-138
1-833
1-62
1-210

25D384
250385
25D386
25D387
25D388
25D389
25D390
25D393
250394
25D395

2N6301
2N6301
MJE13004
MJE13004
MJ4247
TIP31A
TIP31A
MJ13091
MJ13091
MJ13091

1-232
1-232
1-881
1-881
1-457
1-957
1-957
1-689
1-689
1-689

25D494
25D495
250496
250497
25D498
25D499
250500
250501
25D502
250503

2N5978
2N5979
MJE6043
MJE6044
MJE6045
MJE3055
MJE3055
2N5991
2N6055
2N6056

1-210
1-210
1-221
1-221
1-221
1-833
1-833
2-213
1-232
1-232

250396
250401
25D402
250404
250414
250415
25D416
25D417
25D418
25D422

2N6547
TIP47
TIP47
TIP120
MJE341
MJE341
MJ12005
2N6306
MJ12005
MJE13004

1-319
1-971
1-971
1-982
1-813
1-813
1.-657
1-274
1-657
1-881

250504
250505
250506
250517
250518
250519
250522
250523
250524
250525

2N6057
2N6058
2N6059
MJ12003
MJE13004
MJ13015
2N5632
2N6055
2N6056
TIP41C

1-228
1-228
1-228
1-649
1-881
1-671
1-178
1-232
1-232
1-967

'Consult factory if a direct replacement is necessary.
"To be introduced. Contact factory for Data 5heet.

1-16

INDEX CROSS-REFERENCE (Continued)
Induslry
Pari Numbar

Molorola
Dlract
Raplacamenl

Molorola
Similar
Raplacemanl

Paga 1/

Induslry
Part Numbar

Molorola
Dlract
Raplacamanl

Motorola
Similar
Raplacamanl

Page 1/

250526
250531
250533
250538
250539
250544
250552
250553
250554
250555

TIP41B
TIP41C
MJ423
MJ13091
MJ13015
TIP41C
2N6250
TIP41B
2N3584
MJ13015

1-967
1-967
1-445
1-689
1-671
1-967
1-257
1-967
1-76
1-671

250687
250689
250690
250691
250692
250693
250694
250695
250696
250702

MJE800T
TIP112
2N5428
2N6301
2N6056
MJ10012
MJ10015
MJ10015
MJ10015
MJ10015

1-823
1-979
1-170
1-232
1-232
1-527
1-537
1-537
1-537
1-537

250558
250570
250572
250573
250574
250577
250589
250597
250598
250600

MP5U07
2N6123
MJ10013
MJ10014
MJ11016
MJ12004
MJ12005
2N5758
2N5759
2N4923

1-931
1-241
1-531
1-531
1-636
1-651
1-657
1-189
1-189
1-138

250703
250705
250706
250707
250708
250709
250710
250716
250717
250718

MJ10016
MJ10012
MJ10013
MJ10013
MJ10013
MJ3041
MJ 10004
TIP41C
044H10
MJE15028

1-537
1-527
1-531
1-531
1-531
1-455
1-507
1-967
1-430
1-909

250604
250605
250606
250608
250610
250612
250613
250622
250626
250627

MJ3041
MJ3042
MJ10014
TIP47
TIP47
MJE520
TIP41C
MJE13005
MJ10012
MJ12004

1-455
1-455
1-531
1-971
1-971
1-821
1-967
1-881
1-527
1-651

250721
250722
250723
250724
250725
250726
250727
250728
250729
250731

2N6045
2N6045
TIP31C
MJE13004
MJ12005
TIP31C
2N4347
2N5760
2N6284
2N6306

1-221
1-221
1-957
1-881
1-657
1-957
1-71
1-189
1-265
1-274

250628
250629
250630
250631
250632
250633
250634
250635
250640
250642

2N6059
2N6059
2N5302
2N5302
2N5840
TIP122
TIP121
TIP120
2N6545
MJ10016

1-228
1-228
1-154
1-154
1-193
1-982
1-982
1-982
1-315
1-537

250732
250733
250748
250749
250751
250752
250753
250757
250758
250759

2N6306
MJ15001
2N5838
2N6543
MJ423
MJ15001
2N6249
MJE3440
MJE3440
TIP47

1-274
1-717
1-193
1-309
1-445
1-717
1-257
1-837
1-837
1-971

250643
250644
250645
250646
250649
250650
250663
250665
250668
250669

MJ10015
MJ10016
MJ10016
MJ10016
MJ12004
MJ3042
MJ3042
2N6249
MJE344
MJE344

1-537
1-537
1-537
1-537
1-651
1-455
1-455
1-257
1-813
1-813

250760
250761
250762
250764
250765
250766
250768
250793
250794
250797

TIP47
TIP47
TIP31A
MJ12002
MJ12003
2N3739
2N6045
MJE180
MJE182
MJE802

1-971
1-971
1-957
1-644
1-649
1-93
1-221
1-797
1-797
1-823

250670
250672
250673
250674
250675
250676
250677
250678
250679
250686

2N6578
2N5840
2N5759
2N5759
2N5760
2N5760
2N6543
TIP110
TlP111
TIP122

1-340
1-193
1-189
1-189
1-189
1-189
1-309
1-979
1-979
1-982

250800
250801
250802
250803
250805
250811
250823
250836
250837
250839

2N5840
2N6545
2N6545
2N6059
MJ10016
MJ12010
MJE15030
TIP110
TIP120
MJE800T

1-193
1-315
1-315
1-228
1-537
1-659
1-909
1-979
1-982
1-823

*Consult factory if a direct replacement is necessary.
**To be inlroduced. Contact factory for Oata 5heet.

1-17

III

INDEX CROSS-REFERENCE (Continued)

l1li

Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

250840
250843
250844
250867
250872
250873
250877
250878
250880
250882

MJE802T
MJE15028
2N6290
2N5633
2N6499
2N3773
2N3441
2N3055
TIP31A
MJE180

1-823
1-909
1-238
1-178
1-305
1-108
1-69
1-62
1-957
1-797

40875
40876
40885
40886
40887
40910
40911
40912
40913
41012

TIP41C
TIP41A
MP5U10
MP5U10
2N6559
2N4231A
2N4233A
2N5050
2N5051
2N5038

1-967
1-967
1-933
1-933
1-333
1-120
1-120
1-144
1-144
1-142

250903
250950
250951
250952
250953
40250
40251
40310
40312
40313

MJ12005
MJ12004
MJ12004
MJ12004
MJ12005
2N4231A
2N6569
2N4231A
2N4232A
2N4240

1-657
1-651
1-651
1-651
1-657
1-120
1-336
1-120
1-120
1-76

41013
41500
41501
41504
41505
41506
43104
BU105
BU108
BU126

2N6339
TIP29
TIP30
TIP31
MP5U10
2N6543
2N5631

1-282
1-955
1-955
1-957
1-933
1-309
1-174
1-388
1-393
1-453

40316
40318
40322
40324
40325
40328
40363
40364
40369
40372

2N4231A
2N4240
2N4240
2N4231A
2N6569
2N4240
2N5877
2N4233A
2N5877
2N3054

1-120
1-76
1-76
1-120
1-336
1-76
1-196
1-120
1-196
1-58

BU180
BU180A
BU204
BU205
BU207
BU208
BU208D
BU406
BU407
BU806

40373
40374
40375
40411
40513
40514
40542
40543
40613
40618

2N3441
2N3583
2N5428
MJ802
MJE3055T
MJE3055T
2N5978
2N5978
TIP31
TIP31

1-69
1-76
1-170
1-447
1-833
1-833
1-210
1-210
1-957
1-957

BU807
BUX80
BUX81
BUX82
BUX83
BUX84
BUX85
BUX86
BUX87
040C1

40621
40622
40624
40627
40629
40630
40631
40632
40636
40829

TIP31
TIP31
TIP41A
TIP41A
TIP31
TIP31
TIP31A
TIP41A
2N5878
2N6316

1-957
1-957
1-967
1-967
1-957
1-957
1-957
1-967
1-196
1-278

040C2
040C4
040C5
04001
04002
04003
04004
04005
04007
04008

040C2
040C4
040C5
04001
04002

40830
40831
40850
40852
40853
40854
40871
40872
40873
40874

2N6315
2N6315
2N4240
2N6543
2N6546
2N6546
TIP41C
TIP42C
TIP41B
TIP41B

1-278
1-278
1-76
1-309
1-319
1-319
1-967
1-967
1-967
1-967

040010
040011
040013
040014
040E1
040E5
040E7
040K1
040K2
040K3

*Consult lactory il a direct replacement is necessary.
**To be introduced. Contact factory for Oata 5heet.

1 -18

BU205
BU208
MJ3030
MJE5741
MJE5742
BU204
BU205
BU207
BU208
BU2080
BU406
BU407
BU806
BU807

1-851
1-851
1-388
1-388
1-393
1-393
1-398
1-400
1-400
1-402

2N6547
MJ13335
2N6545
2N6545
MJE13005
MJE13005
MJE13003
MJE13003

1-402
1-319
1-707
1-315
1-315
1-881
1-881
1-875
1-875
1-404

04002
04004
04005
04007
04008

1-404
1-404
1-404
1-407
1-407
1-407
1-407
1-407
1-407
1-407

040010
040011
040013
040014
040E1
040E5
040E7
040K1
040K2
040K3

1-407
1-407
1-407
1-407
1-411
1-411
1-411
1-415
1-415
1-415

040C1

INDEX CROSS-REFERENCE (Continued)
Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement
2N6044
2N6386
2N6387
2N6388

Page #
1-221
1-428
1-428
1-428
1-430
1-430
1-430
1-430
1-430
1-430

D40K4
D40N1
D40N2
D40N3
D40N4
D40P1
D40P3
D40P5
D41D1
D41D2

D40K4
D40N1
D40N2
D40N3
D40N4
D40P1
D40P3
D40P5
D41D1
D41D2

1-415
1-419
1-419
1-419
1-419
1-422
1-422
1-422
1-407
1-407

D44D6
D44E1
D44E2
D44E3
D44H1
D44H2
D44H4
D44H5
D44H7
D44H8

D41D4
D41D5
D41D7
D41D8
D41D10
D41D11
D41D13
D41D14
D41E1
D41E5

D41D4
D41D5
D41D7
D41D8
D41D10
D41D11
D41D13
D41D14
D41E1
D41E5

1-407
1-407
1-407
1-407
1-407
1-407
1-407
1-407
1-411
1-411

D44H10
D44H11
D44R1
D44R2
D44R3
D44R4
D44R5
D44R6
D44TD3
D44TD4

D41E7
D41K1
D41K2
D41K3
D41K4
D42C1
D42C2
D42C3
D42C4
D42C5

D41E7
D41K1
D41K2
D41K3
D41K4
MDS26
MDS26
MDS26
MDS27
MDS27

1-411
1-415
1-415
1-415
1-415
1-437
1-437
1-437
1-437
1-437

D44TD5
D44TE3
D44TE4
D44TE5
D44VH1
D44VH4
D44VH7
D44VH10
D45C1
D45C2

D44VH1
D44VH4
D44VH7
D44VH10
D45C1
D45C2

1-903
1-903
1-903
1-903
1-432
1-432
1-432
1-432
1-426
1-426

D42C6
D42C7
D42C8
D42C9
D43C1
D43C2
D43C3
D43C4
D43C5
D43C6

MDS27
MDS27
MDS27
MDS27
MDS76
MDS76
MDS76
MDS77
MDS77
MDS77

1-437
1-437
1-437
1-437
1-437
1-437
1-437
1-437
1-437
1-437

D45C3
D45C4
D45C5
D45C6
D45C7
D45C8
D45C9
D45C10
D45C11
D45C12

D45C3
D45C4
D45C5
D45C6
D45C7
D45C8
D45C9
D45C10
D45C11
D45C12

1-426
1-426
1-426
1-426
1-426
1-426
1-426
1-426
1-426
1-426

D43C7
D43C8
D43C9
D44C1
D44C2
D44C3
D44C4
D44C5
D44C6
D44C7

MDS77
MDS77
MDS77

1-437
1-437
1-437
1-426
1-426
1-426
1-426
1-426
1-426
1-426

D45E1
D45E2
D45E3
D45H1
D45H2
D45H4
D45H5
D45H7
D45H8
D45H9

1-426
1-426
1-426
1-426
1-426
1-293
1-293
1-221
1-221
1-221

D45H10
D45H11
D45H12
D45VH1
D45VH4
D45VH7
D45VH10
D56W1
D56W2
D5&W3

D44C8
D44C9
D44C10
D44C11
D44C12
D44D1
D44D2
D44D3
D44D4
D44D5

D44C1
D44C2
D44C3
D44C4
D44C5
D44C6
D44C7
D44C8
D44C9
D44C10
D44C11
D44C12
2N6386
2N6386
2N6043
2N6043
2N6044

*Consult factory if a direct replacement is necessary.
**To be introduced. Contact factory for Data Sheet

1 -19

D44H1
D44H2
D44H4
D44H5
D44H7
D44H8
D44H10
D44H11
TlP47
TlP47
TlP48
TlP48
TIP47
TIP48
MJE13070
MJE13070
MJE13070
MJE13070
MJE13070
MJE13070

TIP125
TIP125
TIP126
D45H1
D45H2
D45H4
D45H5
D45H7
D45H8
D45H9
D45H10
D45H11
D45H12
D45VH1
D45VH4
D45VH7
D45VH10
BU208
BU208
BU207

1-430
1-430
1-971
1-971
1-971
1-971
1-971
1-971
1-903
1-903

1-428
1-428
1-428
1-430
1-430
1-430
1-430
1-430
1-430
1-47
1-430
1-430
1-430
1-432
1-432
1-432
1-432
1-393
1-393 .
1-393

INDEX CROSS-REFERENCE (Continued)
Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement __

Page #

Industry
Part Number

D56W4
D64VE3
D64VE4
D64VE5
D54VP3
D64VP4
D64VP5
D64VS3
D64VS4
D64VS5

BU207
MJ13080
MJ13080
MJ13080
MJ13090
MJ13090
MJ13090
MJ13100
MJ13100
MJ13100

1-393
H83
1-683
1-683
1-689
1-689
1-689
1-695
1-695
1-695

FT49
FT50
FT317
FT317 A
FT317B
FT401
FT402
FT410
FT411
FT413

DTS310
DTS311
DTS401
DTS402
DTS403
DTS409
DTS410
DTS411
DTS413
DTS423

2N6306
2N6306
2N3902
2N3902
2N6308
2N6308
MJ410
MJ411
MJ413
MJ423

1-274
1-274
1-116
1-116
1-174
1-274
1-443
1-443
1-445
1-445

FT417
FT417A
FT417B
FT423
FT430
FT431
FT2955
FT3055
GE5060
GE5061

DTS424
DTS425
DTS430
DTS431
DTS515
DTS516
DTS517
DTS518
DTS519
DTS660

2N6308
2N6545
2N6307
MJ431
2N6306
2N6306
2N6306
2N6307
2N6308
2N6233

1-274
1-315
1-274
1-445
1-274
1-274
1-274
1-274
1-274
1-254

DTS663
DTS665
DTS701
DTS702
DTS712
DTS714
DTS801
DTS802
DTS804
DTS812

2N6235
2N6235
BU204
BU205
BU207
BU208
BU205
BU207
BU208
BU207

DTS814
DTS1010
DTS1020
DTS4010
DTS4025
DTS4026
DTS4039
DTS4040
DTS4041
DTS4045
DTS4059
DTS4060
DTS4061
DTS4065
DTS4066
DTS4067
DTS4074
DTS4075
FT47
FT48

Motorola
Direct
Replacement

Motorola
Similar
Replacement

2N3902
2N3902
MJ410
MJ411
MJ413

1-971
1-971
l.909
1-46
1-46
1-116
1-116
1-443
1-443
1-445

MJ423
2N6307
MJ431
MJE2955T
MJE3055T
MJ10000
MJ10000

1-46
1-46
1-46
1-445
1-274
1-445
1-833
1-833
1-495
1-495

GE5062
GE6060
GE6061
GE6062
GE6251
GE6252
GE6253
IR401
IR402
IR403

MJ10001
MJ10015
MJ10015
MJ10015
MJ10004
MJ10004
MJ10005
2N3902
2N3902
2N6308

1-495
1-537
1-537
1-537
1-507
1-507
1-507
1-116
1-116
1-274

1-254
1-254
1-388
1-388
1-393
1-393
1-388
1-393
1-393
1-393

IR409
IR410
IR411
IR413
IR423
IR424
IR425
IR430
IR431
IR515

2N6308
MJ410
MJ411
MJ413
MJ423
2N6308
2N6545
2N6307
MJ431
2N6250

1-274
1-443
1-443
1-445
1-445
1-274
1-315
1-274
1-445
1-257

BU208
2N6056
MJ3001
MJ3041
MJ3041
MJ1OO12
MJ10000
MJ10000
MJ10000
MJ10000

1-393
1-232
1-451
1-455
1-455
1-527
1-495
1-495
1-495
1-495

IR516
IR517
IR518
IR519
IR640
IR641
IR642
IR645
IR646
IR647

2N6250
2N6251
2N6546
2N6547
MJ3000
MJ3001
2N6578
MJ2500
MJ2501
2N6052

1-257
1-257
1-319
1-319
1-451
1-451
1-340
1-451
1-451
1-228

MJ10000
MJ1OOO1
MJ10000
MJ10001
MJ10000
MJ10000
MJ10OO4
MJ10004
TIP47
TIP48

1-495
1-495
1-495
1-495
1-495
1-495
1-507
1-507
1-971
1-971

IR660
IR663
IR665
IR701
IR801
IR802
IR900
IR901
IR1000
IR1001

MJ410
MJ423
MJ12003
BU204
BU205
MJ802
MJ900
MJ901
MJ1000
MJ1OO1

1-443
1-445
1-649
1-388
1-388
1-447
1-449
1-449
1-449
1-449

'Consult factory if a direct replacement is necessary.
"To be introduced. Contact factory for Data Sheet.

1-20

FT317
FT317 A
FT317B

TIP49
TIP50
MJE15028

Page #

FT417
FT417A
FT417B

INDEX CROSS-REFERENCE (Continued)
Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

Industry
Part Number

IR10l0
IR1020
IR2500
IR2501
IR3000
IR3001
IR3771
IR3772
IR3773
IR4039

2N6056
MJ3001
MJ2500
MJ2501
MJ3000
MJ3001
2N3771
2N3772
2N3773
MJ 10000

1-232
1-451
1-451
1-451
1-451
1-451
1-104
1-104
1-108
1-495

MDS1678
MJ105
MJ205
MJ400
MJ410
MJ411
MJ413
MJ423
MJ424
MJ425

IR4040
IR4041
IR4045
IR4050
IR4055
IR4059
IR4060
IR4061
IR4065
IR4502

MJ10000
MJ 10000
MJ10000
MJ10000
MJ10000
MJ10000
MJ1000l
MJ10000
MJ1000l
MJ4502

1-495
1-495
1-495
1-495
1-495
1-495
1-495
1-495
1-495
1-463

MJ431
MJ450
MJ480
MJ481
MJ490
MJ491
MJ701
MJ702
MJ704
MJ721

IR5000
IR5001
IR5002
IR5060
IR5061
IR5062
IR5252
IR5261
IR6000
IR6001

MJ10000
MJ10000
MJ1000l
MJ10000
MJ10000
MJ1000l
MJ10003
MJ10002
MJ10004
MJ10004

1-495
1-495
1-495
1-495
1-495
1-495
1-501
1-501
1-507
1-507

MJ723
MJ802
MJ804
MJ900
MJ901
MJ920
MJ921
MJ1000
MJ100l
MJ1200

IR6002
IR6060
IR6061
IR6062
IR6251
IR6252
IR6302
KDT410
KDT411
KDT413

MJ10005
MJ10004
MJ10004
MJ10005
MJ10006
MJ10007
2N5630
MJ410
MJ411
MJ413

1-507
1-507
1-507
1-507
1-513
1-513
1-174
1-443
1-443
1-445

MJ1201
MJ2249
MJ2250
MJ2251
MJ2252
MJ2253
MJ2254
MJ2267
MJ2268
MJ2300

KDT423
KDT430
KDT431
KDT515
KDT516
KDT517
KDT518
KDT519
KP3946
KP3948

MJ423
2N6307
MJ431
2N6306
2N6306
2N6306
2N6307
2N6308
2N6274
2N6274

1-445
1-274
1-445
1-274
1-274
1-274
1-274
1-274
1-261
1-261

MJ2305
MJ2500
MJ2501
MJ2801
MJ2802
MJ2840
MJ2841
MJ2901
MJ2940
MJ2955

1-434
1-434
1-437
1-437
1-439
1-437
1-797
1-807
1-437
1-437

MJ2955A
MJ3000
MJ3001
MJ3029
MJ3030
MJ3040
MJ3041
MJ3042
MJ3055
MJ3055A

MDS20
MDS21
MDS26
MDS27
MDS60
MDS73
MDS74
MDS75
MDS76
MDS77

MDS20
MDS21
MDS26
MDS27
MDS60
MDS77
MJEl72
MJE253
MDS76
MDS77

*Consult factory if a direct replacement is necessary.
'*To be introduced. Contact factory for Data Sheet.

1-21

Motorola
Direct
Replacement

Motorola
Similar
Replacement
MDS27

BU205
BU205
MJ400
MJ410
MJ411
MJ413
MJ423
MJ424
MJ425

Page #

2N6308
2N6545

1-441
1-388
1-388
1-93
1-443
1-443
1-445
1-445
1-274
1-315

2N4398
2N3713
2N3713
2N3789
2N3789
MJ12002
MJ12002
MJ12002
MJ12002

1-445
1-124
1-82
1-82
1-112
1-112
1-644
1-644
1-644
1-644

2N3739

MJ431

(2) 2N6300

1-644
1-447
1-651
1-449
1-449
1-232
1-232
1-449
1-449
1-232

(2) 2N6301
2N3766
2N3767
2N373S*
2N3739*
2N3740*
2N3741*
2N6594
MJ2955
MJE270

1-232
1-100
1-100
1-93
1-93
1-97
1-97
1-347
1-62
1-42

MJE271

MJ2955

1-42
1-451
1-451
1-336
1-199
1-196
1-196
1-347
1-196
1-62

MJ2955A
MJ3000
MJ3001
MJ3029
MJ3030
MJ3040
MJ3041
MJ3042
2N3055
2N3055A

1-65
1-451
1-451
1-453
1-453
1-455
1-455
1-455
1-62
1-65

MJ12002
MJ802
MJ12004
MJ900
MJ901
(2) 2N6298
(2) 2N6299
MJ1000
MJ100l

MJ2250

MJ2500
MJ2501
MJ2801

2N6569
2N5881*
2N5S77
2N58.78
2N6594*
2N5875

ID

INDEX CROSS-REFERENCE (Continued)

III

Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

MJ3237
MJ3238
MJ3247
MJ3248
MJ4030
MJ4031
MJ4032
MJ4033
MJ4034
MJ4035

MJ3237
MJ3238
MJ3247
MJ3248
MJ4030
MJ4031
MJ4032
MJ4033
MJ4034
MJ4035

1-457
1-457
1-457
1-457
1-461
1-461
1-461
1-461
1-461
1-461

MJ10047
MJ10048
MJ10050
MJ10051
MJ10052
MJ10100
MJ10101
MJ10102
MJ10200
MJ10201

MJ10047
MJ10048
MJ10050
MJ10051
MJ10052
MJ10100
MJ10101
MJ10102
MJ10200
MJ10201

1-560
1-574
1-588
1-596
1-596
1-604
1-612
1-612
1-620
1-628

MJ4237
MJ4238
MJ4247
MJ4248
MJ4360
MJ4361
MJ4380
MJ4381
MJ4400
MJ4401

MJ4237
MJ4238
MJ4247
MJ4248

1-457
1-457
1-457
1-457
1-875
1-875
1-881
1-881
1-881
1-881

MJ10202
MJ11011
MJ11012
MJ11013
MJ11014
MJ11015
MJ11016
MJ11017
MJ11018
MJ11019

MJ10202
MJ11011
MJ11012
MJ11013
MJ11014
MJ11015
MJ11016
MJ11017
MJ11018
MJ11019

1-628
1-636
1-636
1-636
1-636
1-636
1-636
1-638
1-638
1-638

MJ4502
MJ4645
MJ4646
MJ4647
MJ6502
MJ6503
MJ6700
MJ8100
MJ8500
MJ8501

MJ4502
MJ4645
MJ4646
MJ4647
MJ6502
MJ6503
MJ6700
MJ8100
MJ8500
MJ8501

1-463
1-465
1-465
1-465
1-467
1-467
1-473
1-475
1-477
1-477

MJ11020
MJ11021
MJ11022
MJ11028
MJ11029
MJ11030
MJ11031
MJ11032
MJ11033
MJ12002

MJ11020
MJ11021
MJ11022
MJ11028
MJ11029
MJ11030
MJ11031
MJ11032
MJ11033
MJ12002

1-638
1-638
1-638
1-642
1-642
1-642
1-642
1-642
1-642
1-644

MJ8502
MJ8503
MJ8504
MJ8505
MJ10000
MJ10001
MJ10002
MJ10003
MJ10004
MJ10005

MJ8502
MJ8503
MJ8504
MJ8505
MJ10000
MJ10001
MJ10002
MJ10003
MJ10004
MJ10005

1-483
1-483
1-489
1-489
1-495
1-495
1-501
1-501
1-507
1-507

MJ12003
MJ12004
MJ12005
MJ12010
MJ12020
MJ12021
MJ12022
MJ13010
MJ13014
MJ13015

MJ12003
MJ12004
MJ12005
MJ12010
MJ12020
MJ12021
MJ12022

1-649
1-651
1-657
1-659
1-661
1-661
1-661
1-319
1-671
1-671

MJ10006
MJ10007
MJ10008
MJ10009
MJ10011
MJ10012
MJ10013
MJ10014
MJ10015
MJ10016

MJ10006
MJ10007
MJ10008
MJ10009
MJ10011
MJ10012
MJ10013
MJ10014
MJ10015
MJ10016

1-513
1-513
1-519
1-519
1-525
1-527
1-531
1-531
1-537
1-537

MJ13018
MJ13019
MJ13070
MJ13071
MJ13080
MJ13081
MJ13090
MJ13091
MJ13100
MJ13101

MJ13070
MJ13071
MJ13080
MJ13081
MJ13090
MJ13091
MJ13100
MJ13101

1-701
1-701
1-677
1-677
1-683
1-683
1-689
1-689
1-695
1-695

MJ10020
MJ10021
MJ10022
MJ10023
MJ10024
MJ10025
MJ10041
MJ10042
MJ10044
MJ10045

MJ10020
MJ10021
MJ10022
MJ10023
MJ 10024
MJ 10025
MJ10041
MJ10042
MJ10044
MJ10045

1-542
1-542
1-548
1-548
1-554
1-554
1-560
1-574
1-560
1-574

MJ13330
MJ13331
MJ13332
MJ13333
MJ13334
MJ13335
MJ14000
MJ14001
MJ14002
MJ14003

MJ13330
MJ13331
MJ13332
MJ13333
MJ13334
MJ13335
MJ14000
MJ14001
MJ14002
MJ14003

1-701
1-701
1-707
1-707
1-707
1-707
1-713
1-713
1-713
1-713

MJE13002
MJE13003
MJE13004
MJE13005
MJE13004
MJE13005

'Consult factory if a direct replacement is necessary.
"To be introduced. Contact factory for Data Sheet.

1 -22

2N6547
MJ13014
MJ13015
MJ13330
MJ13331

INDEX CROSS-REFERENCE (Continued)
Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

TIP49
2N6497
2N6497
2N6498
2N6498
2N6499
2N6499
2N5974
2N5975
2N5976

1-971
1-305
1-305
1-305
1-305
1-305
1-305
1-207
1-207
1-207

2N5976

1-207
1-795
1-967
1-797
1-797
1-797
1-797
1-797
1-797
1-801

MJ15001
MJ15002
MJ15003
MJ15004
MJ15011
MJ15012
MJ15015
MJ15016
MJ15022
MJ15023

MJ15001
MJ15002
MJ15003
MJ15004
MJ15011
MJ15012
MJ15015
MJ15016
MJ15022
MJ15023

1-717
1-717
1-720
1-720
1-723
1-723
1-65
1-65
1-725
1-728

MJE49
MJE51
MJE51T
MJE52
MJE52T
MJE53
MJE53T
MJE101
MJE102
MJE103

MJ15024
MJ15025
MJ15026
MJ15027
MJ16002
MJ16002A
MJ16004
MJ16006
MJ16006A
MJ16008

MJ15024
MJ15025
MJ15026
MJ15027
MJ16002
MJ16002A
MJ16004
MJ16006
MJ16006A
MJ16008

1-725
1-728
1-731
1-731
1-735
1-743
1-735
1-750
1-758
1-750

MJE104
MJE105
MJE105K
MJE170
MJE171
MJE172
MJE180
MJE181
MJE182
MJE200

MJ16010
MJ16010A
MJ16012
MJ16014
MJ16016
MJ16018
MJE29
MJE29A
MJE29S
MJE29C

MJ16010
MJ16010A
MJ16012
MJ16014
MJ16016
MJ16018
TIP29*
TIP29A*
TIP29S*
TIP29C*

1-765
1-773
1-765
1-781
1-781
1-789
1-955
1-955
1-955
1-955

MJE201
MJE202
MJE203
MJE204
MJE205
MJE205K
MJE210
MJE220
MJE221
MJE222

MJE30
MJE30A
MJE30S
MJE30C
MJE31
MJE31A
MJE31B
MJE31C
MJE32
MJE32A

TIP30*
TIP30A*
TIP30S*
TIP30C*
TIP31*
TIP31A*
TIP31 B*
TIP31C*
TIP32*
TIP32A*

1-955
1-955
1-955
1-955
1-957
1-957
1-957
1-957
1-957
1-957

MJE223
MJE224
MJE225
MJE230
MJE231
MJE232
MJE233
MJE234
MJE235
MJE240

MJE240

1-797
1-797
1-797
1-797
1-797
1-797
1-797
1-797
1-797
1-807

MJE32B
MJE32C
MJE33
MJE33A
MJE33B
MJE33C
MJE34
MJE34A
MJE34B
MJE34C

TIP32B*
TIP32C*
TIP41
TIP41A
TIP41B
TIP41C
TIP42
TlP42A
TIP42B
TIP42C

1-957
1-957
1-967
1-967
1-967
1-967
1-967
1-967
1-967
1-967

MJE241
MJE242
MJE243
MJE244
MJE250
MJE251
MJE252
MJE253
MJE254
MJE270

MJE241
MJE242
MJE243
MJE244
MJE250
MJE251
MJE252
MJE253
MJE254
MJE270

1-807
1-807
1-807
1-807
1-807
1-807
1-807
1-807
1-807
1-42

MJE41
MJE41A
MJE41 B
MJE41C
MJE42
MJE42A
MJE42B
MJE42C
MJE47
MJE48

TIP41
TIP41A
TIP41B
TlP41C
TIP42
TIP42A
TIP42B
TIP42C
TlP47
TIP48

1-967
1-967
1-967
1-967
1-967
1-967
1-967
1-967
1-971
1-971

MJE271
MJE340
MJE340K
MJE341
MJE341K
MJE344
MJE344K
MJE345
MJE350
MJE370

MJE271
MJE340

1-42
1-811
1-971
1-813
1-971
1-813
1-971
1-837
1-815
1-817

*Consult factory if a direct replacement is necessary.
**To be introduced. Contact factory for Data Sheet.

1-23

MJE105
TIP42A
MJE170
MJE171
MJE172
MJE180
MJE181
MJE182
MJE200
2N5977
2N5978
2N5978
2N5979
MJE205
TIP41A
MJE210
MJE181*
MJE181*
MJE181*
MJE182*
MJE182*
MJE182*
MJE171*
MJE171*
MJE171*
MJE172*
MJE172*
MJE172*

TIP48
MJE341
TIP47
MJE344
TIP47
MJE3439
MJE350
MJE370

1-210
1-210
1-210
1-210
1-805
1-967
1-801
1-797
1-797
1-797

INDEX CROSS-REFERENCE (Continued)

l1li

Industry
Part Number
MJE370K
MJE371
MJE371K
MJE482
MJE483
MJE484
MJE488
MJE492
MJE493
MJE494

Motorola
Direct
Replacement

Motorola
Similar
Replacement
TIP32

MJE371
TIP32
2N5190
2N5191
2N5192
2N5191
2N5193
2N5194
2N5195

1-957
1-819
1-957
1-146
1-146
1-146
1-146
1-150
1-150
1-150

MJE2102
MJE2103
MJE2150
MJE2160
MJE2360
MJE2360T
MJE2361
MJE236H
MJE2370
MJE2371
MJE2480
MJE2481
MJE2482
MJE2483
MJE2490
MJE2491
MJE2520
MJE2521
MJE2522
MJE2523

MJE520
MJE520K
MJE521
MJE521K
MJE700
MJE700T
MJE701
MJE70H
MJE702
MJE702T

MJE700
MJE700T
MJE701
MJE70H
MJE702
MJE702T

1-821
1-957
1-42
1-957
1-823
1-823
1-823
1-823
1-823
1-823

MJE703
MJE703T
MJE710
MJE711
MJE712
MJE720
MJE721
MJE722
MJE800
MJE800T

MJE703
MJE703T
MJE710
MJE711
MJE712
MJE720
MJE721
MJE722
MJE800
MJE800T

1-823
1-823
1-42
1-42
1-42
1-42
1-42
1-42
1-823
1-823

MJE2801
MJE2801K
MJE280H
MJE2901
MJE2901 K
MJE290H
MJE2955
MJE2955K
MJE2955T
MJE3055

MJE801
MJE80H
MJE802
MJE802T
MJE803
MJE803T
MJE1090
MJE1091
MJE1092
MJE1093

MJE801
MJE80H
MJE802
MJE802T
MJE803
MJE803T
MJE1090
MJE1091
MJE1092
MJE1093

1-823
1-823
1-823
1-823
1-823
1-823
1-43
1-43
1-43
1-43

MJE3055K
MJE3055T
MJE3300
MJE3301
MJE3302
MJE3310
MJE3311
MJE3312
MJE3370
MJE3371

MJE1100
MJE1101
MJE1102
MJE1103
MJE1290
MJE1291
MJE1660
MJE1661
MJE2010
MJE2011

MJE1100
MJE1101
MJE1102
MJE1103
MJE1290
MJE1291
MJE1660
MJE1661

1-43
1-43
1-43
1-43
1-827
1-827
1-827
1-827
1-967
·1-967

MJE3439
MJE3440
MJE3520
MJE3521
MJE3738
MJE3739
MJE4340
MJE4341
MJE4342
MJE4343

1-967
1-967
1-801
1-833
1-982
1-982
1-982
1-982
1-982
1,982

MJE4350
MJE4351
MJE4352
MJE4353
MJE4918
MJE4919
MJE4920
MJE4921
MJE4922
MJE4923

MJE2020
MJE2021
MJE2050
MJE2055
MJE2090
MJE2091
MJE2092
MJE2093
MJE2100
MJE2101

MJE520

Page #

Industry
Part Number

TIP31
MJE521
TIP31

TIP42
TIP42A
TIP41
TIP41A
MJE200
MJE3055
TIP125
TIP125
TIP126
TIP126
TIP120
TIP120

'Consult factory if a direct replacement is necessary.
"To be introduced. Contact factory for Data Sheet.

1-24

Motorola
Direct
Replacement

Motorola
Similar
Replacement
TIP121
TIP121
MJE210
TIP48
MJE2360T

Page #

TIP32
TIP32A

1-982
1-982
1-801
1-971
1-829
1-829
1-829
1-829
1-957
1-957

TlP31
TlP31A
2N6121
2N6122
TIP32
TIP32A
TIP31
TIP31A
TIP31
TIP31A

1-957
1-957
1-957
1-241
1-241
1-957
1-957
1-957
1-957
1-957

MJE2360T
MJE236H
MJE236H

MJE2801
MJE280H
MJE280H
MJE2901
MJE290H
MJE290H
MJE2955
MJE2955T
MJE2955T
MJE3055
MJE3055T
MJE3055T
MJE3300
MJE3301
MJE3302
MJE3310
MJE3311
MJE3312
MJE370
2N5193
MJE3439
MJE3440
MJE520
2N5190
TIP47
TIP48
MJE4340
MJE4341
MJE4342
MJE4343
MJE4350
MJE4351
MJE4352
MJE4353
TIP30
TIP30A
TIP30B
TIP29
TIP29A
TIP29B

1-831
1-831
1-831
1-831
1-831
1-831
1-833
1-833
1-833
1-833
1-833
1-833
1-835
1-835
1-835
1-835
1-835
1-835
1-817
1-150
1-837
1-837
1-821
1-146
1-971
1-971
1-839
1-839
1-839
1-839
1-839
1-839
1-839
1-839
1-955
1-955
1-955
1-955
1-955
1-955

INDEX CROSS-REFERENCE (Continued)
Industry
Part Number
MJE5170
MJE5171
MJE5172
MJE5180
MJE5181
MJE5182
MJE5190
MJE5191
MJE5192
MJE5193
MJE5194
MJE5195
MJE5655
MJE5656
MJE5657
MJE5730
MJE5731
MJE5732
MJE5740
MJE5741
MJE5742
MJE5850
MJE5851
MJE5852
MJE5960
MJE5974
MJE5975
MJE5976
MJE5977
MJE5978

Motorola
Direct
Replacement

Motorola
Similar
Replacement

MJE5170
MJE5171
MJE5172
MJE5180
MJE5181
MJE5182
2N6121
2N6122
2N6123
2N6124
2N6125
2N6126
TIP47
TIP48
TIP49
MJE5730
MJE5731
MJE5732
MJE5740
MJE5741
MJE5742
MJE5850
MJE5851
MJE5852
2N6489
TIP42
TIP42A
TIP42B
TIP41
TIP41A

Motorola
Direct
Replacement

Page #
1-843
1-843
1-843
1-843
1-843
1-843
1-241
1-241
1-241
1-241

MJE15029
MJE15030
MJE15031
MJE16002
MJE16004
MJH6282
MJH6283
MJH6284
MJH6285
MJH6286

MJE15029
MJE15030
MJE15031
MJE16002
MJE16004
MJH6282""
MJH6283""
MJH6284""
MJH6285""
MJH6286""

1-909
1-909
1-909
1-913
1-913
1-45
1-45
1-45
1-45
1-45

1-241
1-241
1-971
1-971
1-971
1-847
1-847
1-847
1-851
1-851

MJH6287
MJH11017
MJH11018
MJH11019
MJH11020
MJH11021
MJH11022
MJH12004
MJH13090
MJH13091

MJH6287*"
MJH11017*"
MJH11018""
MJH11019""
MJH11020""
MJH11021""
MJH11022""
MJH12004
MJH13090
MJH13091

1-45
1-45
1-45
1-45
1-45
1-45
1-45
1-651
1-689
1-689

1-851
1-855
1-855
1-855
1-301
1-967
1-967
1-967
1-967
1-967

MJH16002
MJH16002A
MJH16004
MJH16006
MJH16006A
MJH16008
MJH16010
MJH16010A
MJH16012
MJH16018

MJH16002
MJH16002A
MJH16004
MJH16006
MJH16006A
MJH16008
MJH16010
MJH16010A
MJH16012
MJH16018

1-913
1-743
1-913
1-750
1-758
1-750
1-765
1-773
1-765
1-789

MPC900

MPSU01
MPSU01A
MPSU02
MPSU03
MPSU04
MPSU05

MPSU01
MPSU01A
MPSU02
MPSU03
MPSU04
MPSU05

MC1563 &
2N6050
MC1726 &
2N6077

MJE5979
MJE5980
MJE5981
MJE5982
MJE5983
MJE5984
MJE5985
MJE6040
MJE6041
MJE6042

MJE6040
MJE6041
MJE6042

1-967
1-301
1-301
1-301
1-301
1-301
1-301
1-221
1-221
1-221

MJE6043
MJE6044
MJE6045
MJE8500
MJE8501
MJE8502
MJE8503
MJE10011
MJE12007
MJE13002

MJE6043
MJE6044
MJE6045
MJE8500
MJE8501
MJE8502
MJE8503
MJE10011
MJE12007
MJE13002

1-221
1-221
1-221
1-861
1-861
1-867
1-867
1-51
1-873
1-875

MPSU06
MPSU07
MPSU10
MPSU11
MPSU12
MPSU31
MPSU45
MPSU47
MPSU51
MPSU51A

MPSU06
MPSU07
MPSU10

MJE13003
MJE13004
MJE13005
MJE13006
MJE13007
MJE13008
MJE13009
MJE13070
MJE13071
MJE15028

MJE13003
MJE13004
MJE13005
MJE13006
MJE13007
MJE13008
MJE13009
MJE13070
MJE13071
MJE15028

1-875
1-881
1-881
1-887
1-887
1-895
1-895
1-903
1-903
1-909

MPSU52
MPSU55
MPSU56
MPSU57
MPSU60
MPSU95
NSD102
NSD103
NSD104
NSD105

MPSU52
MPSU55
MPSU56
MPSU57
MPSU60
MPSU95

TIP41B
2N6489
2N6490
2N6491
2N6486
2N6487
2N6488

Motorola
Similar
Replacement

Industry
Part Number

MPC1000

"Consult factory If a direct replacement IS necessary.
""To be introduced. Contact factory for Data Sheet.

1-25

MPSU10
MPSU45
MPSU31
MPSU45
MPSU31
MPSU51
MPSU51A

2N6551
2N6551
2N6552
2N6552

Page #

1-228
1-236
1-921
1-921
1-923
1-925
1-925
1-929
1-929
1-931
1-933
1-933
1-939
1-936
1-939
1-936
1-942
1-942
1-944
1-946
1-946
1-948
1-950
1-952
1-326
1-326
1-326
1-326

III

INDEX CROSS-REFERENCE (Continued)

III

Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

NSD106
NSD131
NSD132
NSD133
NSD134
NSD135
NSD151
NSD152
NSD202
NSD203

2N6553
2N6557
2N6557
2N6558
2N6558
2N6559
2N6549
2N6548
2N6554
2N6554

1-326
1-333
1-333
1-333
1-333
1-333
1-323
1-323
1-330
1-330

NSP597
NSP598
NSP599
NSP600
NSP695
NSP695A
NSP696
NSP696A
NSP697
NSP697A

TlP31A
TIP32A
TIP31B
TIP32B
TIP120
TIP100
TIP125
TlPl05
TIP120
TIP100

1-957
1-957
1-957
1-957
1-982
1-975
1-982
1-975
1-982
1-975

NSD204
NSD205
NSD206
NSD3439
NSD3440
NSDUOI
NSDUOIA
NSDU05
NSDU06
NSDU07

2N6555
2N6555
2N6556
MJE3439
MJE3440
MPSU01
MPSUOIA
MPSU05
MPSU06
MPSU07

1-330
1-330
1-330
1-837
1-837
1-921
1-921
1-929
1-929
1-931

NSP698
NSP698A
NSP699
NSP699A
NSP700
NSP700A
NSP701
NSP702
NSP2010
NSP2011

TIP125
TIP105
TIP121
TIP101
TIP126
TIP106
TIP122
TIP127
TIP42
TIP42A

1-982
1-975
1-982
1-975
1-982
1-975
1-982
1-982
1-967
1-967

NSDU45
NSDU51
NSDU51A
NSDU55
NSDU56
NSDU57
NSE170
NSE171
NSE180
NSE181

MPSU45
MPSU51
MPSU51A
MPSU55
MPSU56
MPSU57
MJE170
MJE171
MJE180
MJE181

1-939
1-942
1-942
1-946
1-946
1-948
1-797
1-797
1-797
1-797

NSP2021
NSP2090
NSP2091
NSP2092
NSP2093
NSP2100
NSP2101
NSP2102
NSP2103
NSP2370

TIP41A
TIP125
TIP125
TIP126
TIP126
TIP120
TIP120
TIP121
TIP121
TIP32

1-967
1-982
1-982
1-982
1-982
1-982
1-982
1-982
1-982
1-957

NSP41
NSP41A
NSP41B
NSP41C
NSP42
NSP42A
NSP42B
NSP42C
NSP105
NSP205

TIP41
TIP41A
TIP41B
TIP41C
TIP42
TIP42A
TIP42B
TIP42C
TIP42A
TIP41A

1-967
1-967
1-967
1-967
1-967
1-967
1-967
1-967
1-967
1-967

NSP2480
NSP2481
NSP2490
NSP2491
NSP2520
NSP2955
NSP3054
NSP3055
NSP4918
NSP4919

TIP31
TIP31A
TIP32
TIP32A
TIP31
MJE2955T
TIP31A
MJE3055T
TIP30
TIP30A

1-957
1-957
1-957
1-957
1-957
1-833
1-957
1-833
1-955
1-955

NSP370
NSP371
NSP520
NSP521
NSP575
NSP576
NSP577
NSP578
NSP579
NSP580

TIP32
TIP32
TIP31
TIP31
TIP29A
TIP30A
TIP29A
TIP30A
TlP29B
TIP30B

1-957
1-957
1-957
1-957
1-955
1-955
1-955
1-955
1-955
1-955

NSP4920
NSP4921
NSP4922
NSP4923
NSP5190
NSP5191
NSP5192
NSP5193
NSP5194
NSP5195

TIP30B
TIP29
TIP29A
TIP29B
2N6121
2N6122
2N6123
2N6124
2N6125
2N6126

1-955
1-955
1-955
1-955
1-241
1-241
1-241
1-241
1-241
1-241

NSP581
NSP582
NSP585
NSP586
NSP587
NSP588
NSP589
NSP590
NSP595
NSP596

TIP29C
TIP30C
TIP29A
TlP30A
TIP29A
TIP30A
TIP29B
TlP30B
TIP31A
TIP32A

1-955
1-955
1-955
1-955
1-955
1-955
1-955
1-955
1-957
1-957

NSP5974
NSP5975
NSP5976
NSP5977
NSP5978
NSP5979
NSP5980
NSP5981
NSP5982
NSP5983

TIP42
TIP42A
TIP42B
TIP41
TIP41A
TIP41B
2N6489
2N6490
2N6491
2N6486

1-967
1-967
1-967
1-967
1-967
1-967
1-301
1-301
1-301
1-301

'Consult factory if a direct replacement is necessary.
"To be introduced. Contact factory for Data Sheet.

1-26

INDEX CROSS-REFERENCE (Continued)
Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

NSP5984
NSP5985
PM26K380
PM27K380
PMD10K-40
PMD10K-60
PMD10K-80
PMD10K-l00
PMDllK-40
PMDllK-60

2N6487
2N6488
MJ13015
2N6543
2N6057
2N6057
2N6058
2N6059
2N6050
2N6050

1-301
1-301
1-671
1-309
1-228
1-228
1-228
1-228
1-228
1-228

RCA29A
RCA29B
RCA29C
RCA30
RCA30A
RCA30B
RCA30C
RCA31
RCA31A
RCA31B

TIP29A
TIP29B
TIP29C
TIP30
TIP30A
TIP30B
TIP30C
TIP31
TIP31A
TIP31B

1-955
1-955
1-955
1-955
1-955
1-955
1-955
1-957
1-957
1-957

PMDllK-80
PMDllK-l00
PMD12K-40
PMD12K-60
PMD12K-80
PMD12K-l00
PMD13K-40
PMD13K-60
PMD13K-80
PMD13K-l00

2N6051
2N6052
MJ1000
MJ1000
MJ100l
2N6059
MJ900
MJ900
MJ901
2N6052

1-228
1-228
1-449
1-449
1-449
1-228
1-449
1-449
1-449
1-228

RCA31C
RCA32
RCA32A
RCA32B
RCA32C
RCA41
RCA41A
RCA41B
RCA41C
RCA42

TIP31C
TIP32
TIP32A
TIP32B
TIP32C
TIP41
TIP41A
TIP41B
TIP41C
TIP42

1-957
1-957
1-957
1-957
1-957.
1-967
1-967
1-967
1-967
1-967

PMD16K-40
PMD16K-60
PMD16K-80
PMD16K-l00
PMD17K-40
PMD17K-60
PMD17K-80
PMD17K-l00
PMD20K-120
PMD25K-120

2N6282
2N6282
2N6283
2N6284
2N6285
2N6284
2N6286
2N6287
2N6578
2N6578

1-265
1-265
1-265
1-265
1-265
1-265
1-265
1-265
1-340
1-340

RCA42A
RCA42B
RCA42C
RCA120
RCA121
RCA122
RCA125
RCA126
RCA410
RCA411

TIP42A
TIP42B
TIP42C
TIP120
TIP121
TIP122
TIP125
TIP126
MJ410
MJ411

1-967
1-967
1-967
1-982
1-982
1-982
1-982
1-982
1-443
1-443

PMD1600K
PMD1601K
PMD1602K
PMD1603K
PM01700K
PMD1701K
PMD1702K
PMD1703K
RCA1BOl
RCA1B04

2N6282
2N6282
2N6283
2N6284
2N6285
2N6285
2N6286
2N6287
2N5878
MJ15022

1-265
1-265
1-265
1-265
1-265
1-265
1-265
1-265
1-196
1-725

RCA413
RCA423
RCA431
RCA1000
RCA100l
RCA3054
RCA3055
RCA3441
RCA6263
RCA8203

MJ413
MJ423
MJ431
MJ1000
MJ100l
2N6122
2N6487
MJE15030
MJE15030
2N6666

1-445
1-445
1-445
1-449
1-449
1-241
1-301
1-909
1-909
1-351

RCA1B05
RCA1B06
RCA1B09
RCA1C03
RCA1C04
RCA1C05
RCA1C06
RCA1C07
RCA1C08
RCA1C09

MJ15024
MJ15003
MJ15024
MJE15028
MJE15029
2N6130
2N6133
MJE3055T
MJE2955T
MJE3055T

1-725
1-720
1-725
1-909
1-909
1-47
1-47
1-833
1-833
1-833

RCA8203A
RCA8203B
RCA8350
RCA8350A
RCA8350B
RCA8766
RCA8766A
RCA8766B
RCA8766C
RCA8766D

2N6667
2N6668
2N6648
2N6649
2N6650
MJ10002
MJ10002
MJ10003
MJ10003
MJ10003

1-351
1-351
1-289
1-289
1-289
1-501
1-501
1-501
1-501
1-501

RCA1Cl0
RCA1Cll
RCA1C12
RCA1C13
RCA1C14
RCA1C15
RCA1C16
RCA1E02
RCA1E03
RCA29

2N6292
2N6107
MJE15028
MJE15029
2N6290
2N6388
2N6668
2N3583
2N6420
TIP29

1-238
1-238
1-909
1-909
1-238
1-293
1-351
1-76
1-76
1-955

RCA8766E
RCA8767
RCA8767A
RCA8767B
RCA9113
RCA9113A
RCA9113B
RCPlllA
RCPlllB
RCPllle

MJ10003
2N6546
2N6547
2N6547
2N6546
2N6547
2N6547
2N6557
2N6557
2N6558

1-501
1-319
1-319
1-319
1-319
1-319
1-319
1-333
1-333
1-333

'Consult factory If a direct replacement IS necessary.
"To be introduced. Contact factory for Data Sheet.

1-27

l1li

INDEX CROSS-REFERENCE (Continued)

l1li

Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

RCPlllD
RCPl13A
RCPl13B
RCPl13C
RCPl13D
RCPl15
RCPl15B
RCPl17
RCPl17B
RCP131A

2N6559
2N6557
2N6557
2N6558
2N6559
2N6591
2N6557
2N6591
2N6557
2N6592

1-333
1-333
1-333
1-333
1-333
1-343
1-333
1-343
1-333
1-343

SDN6253
SDT7AOl
SDT7A02
SDT7A03
SDT7A08
SDT7A09
SDT401
SDT402
SDT410
SDT411

MJ10003
2N5428
2N5428
2N5428
2N5427
2N5427
2N6543
2N6543
MJ410
MJ411

1-501
1-170
1-170
1-170
1-170
1-170
)-309
1"309
1-443
1-443

RCP131 B
RCP131C
RCP131 D
RCP133A
RCP133B
RCP133C
RCP133D
RCP135
RCP135B
RCP137

2N6593
2N6558
2N6559
2N6592
2N6593
2N6558
2N6559
2N6553
2N6557
2N6553

1-343
1-333
1-333
1-343
1-343
1-333
1-333
1-326
1-333
1-326

SDT413
SDT423
SDT424
SDT425
SDT430
SDT431
SDT520
SDT521
SDT522
SDT525

MJ413
MJ423
2N6308
2N6545
2N6307
MJ431
2N6306
2N6306
2N6306
2N6306

1-445
1-445
1-274
1-315
1-274
1-445
1-274
1-274
1-274
1-274

RCP137B
RCS579
RCS617
RCS618
SDM6000
SDM6001
SDM6002
SDM6003
SDM20301
SDM20302

2N6557
2N6306
2N5882
2N5880
MJ10012
MJ10012
MJ10012
MJ10012
MJ4033
MJ4033

1-333
1-274
1-199
1-199
1-527
1-527
1-527
1-527
1-461
1-461

SDT526
SDT527
SOT530
SDT531
SDT532
SDT535
SDT536
SDT537
SDT540
SOT541

2N6306
2N6306
2N6306
2N6306
2N6306
2N6306
2N6307
2N6307
2N6307
2N6307

1-274
1-274
1-274
1-274
1-274
1-274
1-274
1-274
1-274
1-274

SDM20303
SDM20304
SDM20311
SOM20312
SDM20313
SOM20314
SDM20321
SDM20322
SOM20323
SDM20324

MJ4034
MJ4035
MJ4033
MJ4033
MJ4034
MJ4035
MJ4033
MJ4033
MJ4034
MJ4035

1-461
1-461
1-461
1-461
1-461
1-461
1-461
1-461
1-461
1-461

SOT542
SDT545
SOT546
SDT547
SDT550
SOT551
SDT552
SDT707
SOT1050
SDT1051

2N6307
2N6308
2N6308
2N6308
2N6308
2N6308
2N6308
2N5427
2N5838
2N5840

1-274
1-274
1-274
1-274·
1-274
1-274
1-274
1-170
1-193
1-193

SOM21301
SDM21302
SOM21303
SDM21304
SOM21311
SDM21312
SDM21313
SOM21314
SDN1010
SON1020

MJ4030
MJ4030
MJ4031
MJ4032
MJ4030
MJ4030
MJ4031
MJ4032
2N6056
MJ3001

1-461
1-461
1-461
1-461
1-461
1-461
1-461
1-461
1-232
1-451

SDT1052
SDT1053
SDT1054
SOT1055
SDT1056
SOT1057
SDT1058
SDT1059
SDT1060
SOT1061

2N6543
2N6543
2N6543
2N5838
2N3902
2N6545
2N6545
2N6545
2N5838
2N3902

1-309
1-309
1-309
1-193
1-116
1-315
1-315
1-315
1-193
1-116

SDN4040
SDN4045
SDN6000
SON6001
SDN6002
SON6060
SDN6061
SON6062
SON6251
SON6552

MJ10000
MJ10000
MJ10000
MJ10000
MJ10001
MJ10000
MJ10000
MJ10000
MJ10002
MJ10002

1-495
1-495
1-495
1-495
1-495
1-495
1-495
1-495
1-501
1-501

SOT1062
SDT1063
SDT1064
SDT1301
SOT1302
SOT1303
SDT1304
SDT3125
SDT3126
SDT3321

2N6545
2N6545
2N6545
2N6235
2N6235
2N6235
2N6235
2N6186
2N6186
MJ8100

1-315
1-315
1-315
1-254
1-254
1-254
1-254
1-245
1-245
1-475

*Consult factory if a direct replacement is necessary.
**To be introduced. Contact factory for Data Sheet.

1 -28

INDEX CROSS-REFERENCE (Continued)
Industry
Part Number

Motorola
Direct
Replacement

Moforola
Similar
Replacement

Page II

Industry
Part Number

Motorola
Dlract
Replacement

Motorola
Similar
Replacement

Page II

50T3322
50T3323
50T3324
50T3325
50T3326
50T3327
50T3328
50T3401
5DT3402
50T3403

MJ8100
2N6190
2N6192
MJ8100
MJ8100
2N6190
2N6192
2N5347
2N5347
2N5347

1-475
1-248
1-248
1-475
1-475
1-248
1-248
1-166
1-166
1-166

50T5509
50T5511
50T5512
50T5513
50T5514
50T5901
50T5902
50T5903
50T5904
50T5905

2N5338
2N5337
2N5337
2N5337
2N5339
2N3766
2N3766
2N3767
2N5050
2N5050

1-100
HOO
HOO
1-144
1-144

50T3404
50T3405
50T3406
50T3407
50T3408
50T3421
50T3422
50T3423
50T3424
50T3425

2N5349
2N5347
2N5347
2N5347
2N5349
2N5337
2N5337
2N5336
2N5338
2N5337

1-166
1-166
1-166
1-166
1-166
1-158
1-158
1-158
1-158
1-158

50T5906
50T5907
50T5908
50T5909
50T5910
50T5911
50T5912
50T5913
, 50T5914
50T5951

2N3766
2N3766
2N3767
2N5050
2N5050
2N5427
2N5427
2N5427
2N5429
2N5051

HOO
1-100
HOD
1-144
1-144
1-170
1-170
1-170
1-170
1-144

50T3426
50T3427
50T3428
50T3501
50T3502
50T3503
50T3504
50T3505
50T3506
50T3507

2N5337
2N5336
2N5338
2N3719
2N3720
2N6303
2N6192
2N3867
2N3868
2N6303

1-158
1-158
1-158
1-88
1-88
1-88
1-248
1-88
1-88
1-88

50T5952
50T5953
50T5954
50T5955
50T5956
50T6308
50T6309
50T6310
5DT6311
50T6312

2N3583
2N5052
2N5051
2N3583
2N5347
2N5347
2N5347
2N5347
2N5347

1-76
1-144
1-144
1-76
1-144
1-166
1-166
1-166
1-166
1-166

50T3508
50T3775
50T3776
50T3777
50T3778
50T4451
50T4452
50T4453
50T4454
50T4455

2N6193
2N3867
2N3868
2N6303
2N3867
2N5337
2N5336
2N5337
2N5336
2N5337

1-248
1-88
1-88
1-88
1-88
1-158
1-158
1-158
1-158
1-158

50T6313
50T6314
50T6315
50T6316
50T6408
50T6409
50T6410
50T6411
50T6412
50T6413

2N5347
2N5347
2N5347
2N5347
2N5347
2N5347
2N5347
2N5347
2N5347
2N5347

1-166
1-166
1-166
1-166
1-166
H66
1-166
1-166
1-166
1-166

50T4456
50T4483
50T4901
50T4902
50T4903
50T4904
50T4905
50T5101
50T5102
50T5103

2N5337
2N5337
2N3583
2N6233
2N6234
2N3585
2N3585
TIP41A
TIP41A
TIP41A

1-158
1-158
1-76
1-254
1-254
1-76
1-76
1-967
1-967
1-967

50T6414
50T6415
50T6416
50T6901
50T6902
50T6903
50T6904
50T7201
50T7202
50T7203

2N5347
2N5347
2N5347
2N5050
2N5051
2N5052
2N5052
2N6306
2N6306
2N6306

1-166
1-166
1-166
1-144
1-144
1-144
1-144
1-274
1-274
1-274

50T5111
50T5112
50T5113
50T5501
50T5502
50T5503
50T5504
50T5506
50T5507
::OT5508

TIP42A
TIP42A
TIP42A
2N5337
2N5337
2N5337
2N5539
2N5337·
2N5337
2N5336

1-967
1-967
1-967
1-158
1-158
1-158
1-285
1-158
1-158
1-158

50T7204
50T7205
50T7206
50T7207
50T7208
50T7209
50T7603
50T7604
50T7605
50T7609

2N6307
2N6308
2N6341
2N6306
2N6306
2N6307
2N6338
2N6339
2N6341
2N6338

1-274
1-274
1-282
1-274
1-274
1-274
1-282
1-282
1-282
1-282

'Consult factory if a direct replacement is necessary.
**To be introduced. Contact factory for Oata 5heet.

1-29

2N505~

1-158
1-158
1-158
1-158

J;:158

ID

INDEX CROSS-REFERENCE (Continued)
Industry
Part Number

Motorola
Direct
Replacement

Industry
Part Number

Page #

2N6339
2N6341
2N6249
2N5881
2N5881
2N5882
2N5629
2N5630
2N5631
2N6569

1-282
1-282
1-257
1-199
1-199
1-199
1-174
1-174
1-174
1-336

5E9331
SE9400
5E9401
5E9402
SE9403
5E9404
SE9406
5E9407
5E9408
5V7056

50T9202
50T9203
. 50T9204
50T9205
50T9206
50T9207
50T9208
50T9209
50T9210
50T9301

2N5878
2N5632
2N5633
2N6569
2N3055
2N5878
2N5632
2N5633
2N6569
2N4231A

1-196
1-178
1-178
1-336
1-62
1-196
1-178
1-178
1-336
1-120

50T9302
50T9303
50T9304
50T9305
50T9306
50T9307
50T9308
50T9309
50T9701
50T9702

2N4232A
2N4233A
2N4231A
2N4232A
2N4233A
2N3713
2N3715
2N3716
2N5303
2N5629

50T9703
50T9704
50T9705
50T9706
50T9707
50T12301
50T12302
50T12303
50T12305
SOT12306

Motorola
Direct
Replacement

Motorola
Similar
Replacement

MJ900
MJ901
MJ4030
MJ4031
MJ4032
2N6558

5VT100-5C
SVT200-5C
5VT200-10
SVT200-10C
5VT250-3C
SVT250-5
5VT250-5C
5VT250-10
5VT250-10C
SVT300-3C

2N5632
2N6306
2N6306
MJ15022
2N5838
2N5838
2N6306
2N6306
MJ15024
2N6307

1-178
1-274
1-274
1-725
1-193
1-193
1-274
1-274
1-725
1-274

1-120
1-120
1-120
1-120
1-120
1-82
1-82
1-82
1-154
1-174

5VT300-5
5VT300-5C
5VT300-10
5VT300-10C
5VT350-3
SVT350-3C
5VT350-5
5VT350-5C
5VT350-12
5VT400-3

2N6542
2N6307
2N6307
MJ13090
2N6545
2N6308
2N5840
MJ13080
2N6547
2N6545

1-309
1-274
1-274
1-689
1-315
1-274
1-193
1-683
1-319
1-315

2N5630
2N5882
2N5629
2N5630
2N3055
2N5039
2N5347
2N5347
2N5347
2N5347

1-174
1-199
1-174
1-174
1-62
1-142
1-166
1-166
1-166
1-166

SVT400-3C
5VT400-5
SVT400-5C
5VT400-12
5VT450-3
5VT450-3C
SVT450-5
5VT450-5C
5VT6000
5VT6001

2N6543
2N6543
2N6545
MJ13090
2N6545
MJ13334
2N6543
MJ13080
MJ10004
MJ10004

1-309
1-309
1-315
1-689
1-315
1-707
1-309
1-683
1-507
1-507

50T12307
50T13301
50T13302
50T13303
SOT13304
SOT13305
SOTB01
SOTB02
SOTB03
SOTB05

2N5347
2N6546
2N6547
2N6547
MJ13091
MJ13091
2N5346
2N5346
2N5348
2N5346

1-166
1-319
1-319
1-319
1-689
1-689
1-166
1-166
1-166
1-166

SVT6002
5VT6060
5VT6061
5VT6062
SVT6251
SVT6252
SVT6253
SVT6546
SVT6547
SVT7520

MJ10005
MJ10004
MJ10004
MJ10005
MJ10006
MJ10006
MJ10007
MJ13090
MJ13090
2N6543

1-507
1-507
1-507
1-507
1-513
1-513
1-513
1-689
1-689
.1-309

50TB06
SOTB07
SE9300
SE9301
SE9302
5E9303
5E9304
5E9306
5E9307
SE9308

2N5346
2N5346

1-166
1-166
1-47
1-47
1-47
1-449
1-449
. 1-461
1-461
1-461

SVT7521
SVT7522
SVT7523
SVT7524
SVT7525
SVT7530
SVT7531
SVT7532
5VT7533
5VT7534

2N6543
MJ13335
2N6308
2N6543
MJ13334
MJ13081
MJ13080
MJ16004
MJ13080
MJ13080

1-309
1-707
-1-274
1-309
1-707
1-683
1-683
1-735
1-683
1-683

SE9300
SE9301
SE9302
MJ1000
MJ1001
MJ4032
MJ4034
MJ4035

*Consult factory if a direct replacement is necessary
**To be introduced. Contact factory for Data 5heet.

1 -30

2N3739

Page #
1-93
1-47
1-47
1-47
1-449
1-449
1-461
1-461
1-461
1-333

50T7610
50T7611
50T7612
50T7731
50T7732
5DT7733
50T7734
50T7735
5DT7736
50T9201

.

Motorola
Similar
Replacement

5E9400
SE9401
5E9402

INDEX CROSS-REFERENCE (Continued)
Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #
1-963
1-963
1-963
-

SVT7535
SVT7540
SVT7541
SVT7542
SVT7543
SVT7544
SVT7545
SVT7550
SVT7551
SVT7552

MJ16004
MJ16008
MJ16008
MJ16008
MJ13080
MJ13080
MJ16008
MJ13091
MJ16010
MJ16010

1-735
1-750
1-750
1-750
1-683
1-683
1-750
1-689
1-765
1-765

TIP35A
TIP35B
TIP35C
TIP35D
TIP35E
TIP35F
TIP36
TIP36A
TIP36B
TIP36C

SVT7553
SVT7554
SVT7555
SVT7560
SVT7561
SVT7563
SVT7564
SVT7565
SVT7570
SVT7571

MJ13090
MJ13091
MJ16010
MJ13091
MJ16012
MJ13090
MJ13090
MJ13090
MJ13091
MJ16012

1-689
1-689
1-765
1-689
1-765
1-689
1-689
1-689
1-689
1-765

TIP36D
TIP36E
TIP36F
TIP41
TIP41A
TIP41B
TIP41C
TIP41D
TIP41E
TIP41F

TIP41
TIP41A
TIP41B
TIP41C
TIP41D
T1P41E
TIP41F

1-967
1-967
1-967
1-967
1-47
1-47
1-47

SVT7573
SVT7574
SVT7575
TIP29
TIP29A
TIP29B
T1P29C
TIP29D
T1P29E
TIP29F

MJ13090
MJ13090
MJ16012
TIP29
TIP29A
TIP29B
TIP29C
TIP29D
TIP29E
TIP29F

1-689
1-689
1-765
1-955
1-955
1-955
1-955
1-46
1-46
1-46

TIP42
TIP42A
TIP42B
TIP42C
TIP42D
TIP42E
TIP42F
TIP47
TIP48
TIP49

TIP42
TIP42A
TIP42B
TIP42C
TIP42D
TIP42E
TIP42F
TIP47
TIP48
TIP49

1-967
1-967
1-967
1-967
1-47
1-47
1-47
1-971
1-971
1-971

T1P30
TIP30A
TIP30B
TIP30C
TIP30D
TIP30E
TIP30F
TIP31
T1P31A
TIP31B

TIP30
TIP30A
TIP30B
TIP30C
TIP30D
TIP30E
TIP30F
TIP31
TIP31A
TIP31B

1-955
1-955
1-955
1-955
1-46
1-46
1-46
1-957
1-957
1-957

TIP50
TIP61
TIP61A
TIP61B
TIP61C
TIP62
TIP62A
TIP62B
TIP62C
TIP63

TIP50
TIP61
T1P61A
TIP61B
TIP61C
TIP62
TIP62A
TIP62B
TIP62C
TIP47

1-46
1-46
1-46
1-46
1-46
1-46
1-46
1-46
1-46
1-971

TIP31C
TIP31D
T1P31E
TIP31F
TIP32
TIP32A
TIP32B
TIP32C
TIP32D
T1P32E

TIP31C
TIP31D
TIP31E
TIP31F
TIP32
TIP32A
TIP32B
TIP32C
TIP32D
TIP32E

1-957
1-46
1-46
1-46
1-957
1-957
1-957
1-957
1-46
1-46

TIP64
TIP73
TIP73A
TIP73B
TIP74
TIP74A
T1P74B
TIP75
TIP75A
T1P75B

TIP48

TIP32F
TIP33
TIP33A
TIP33B
TIP33C
TIP34
TIP34A
TIP34B
TIP34C
TIP35

TIP32F
TIP33
TIP33A
TIP33B
TIP33C
TIP34
TIP34A
TIP34B
T1P34C
TIP35

1-46
1-961
1-961
1-961
1-961
1-961
1-961
1-961
1-961
1-963'

TIP75C
TIP100
TIP101
TIP102
TIP105
TIP106
TIP107
TIP110
TIP111
TIP112

·Consult factory if a direct replacement is necessary,
·*To be introduced, Contact factory for Data Sheet.

1-31

TIP35A
TIP35B
TIP35C

··
·

1-963
1-963
1-963
1-963

TIP36
TIP36A
TIP36B
TIP36C

··
·

-

-

2N6486
2N6487
2N6488
2N6489
2N6490
2N6491
MJE13005
MJE13004
MJE13004
MJE13005
T1P100
TIP101
TIP102
TIP105
TIP106
TIP107
TIP110
TIP111
TIP112

1-971
1-301
1-301
1-301
1-301
1-301
1-301
1-881
1-881
1-881
1-881
1-975
1-975
1-975
1-975
1-975
1-975
1-979
1-979
1-979

INDEX CROSS-REFERENCE (Cohtinued)
Industry
Part Number

Matarala
Direct
Replacement

Matarala
Similar
Replacement

Page #

Industry
Part Number

Matarala
Direct
Replacement

Matorala
Similar
Replacement

Page #

TIP115
TIPl16
TIPl17
TIP120
TIP121
TIP122
TIP125
TIP126
TIP127
TIP140

T1P115
TIPl16
TIPl17
TIP120
TIP121
TIP122
TIP125
TIP126
TIP127
TIP140

1-979
1-979
1-979
1-982
1-982
1-982
1-982
1-982
1-982
1-986

TIP565
TIP575
T1P575A
TIP575B
TIP575C
TIP600
TIP601
TIP602
TIP605
TIP606

MJ10009
MJ13080
MJ13080
MJ13080
MJ13080
TIP100
TIP101
TIP102
TIP105
TIP106

1-519
1-683
1-683
1-683
1-683
1-975
1-975
1-975
1-975
1-975

TIP140T
TIP141
TIP141T
TIP142
TIP142T
TlP145
T1P145T
TIP146
T1P146T
TIP147

TIP140T
TIP141
TIP141T
TIP142
TIP142T
TIP145
TIP145T
TIP146
TIP146T
TIP147

1-47
1-986
1-47
1-986
1-47
1-986
1-47
1-986
1-47
1-986

TIP607
TIP620
TIP621
TIP622
TIP625
TIP626
TIP627
TIP640
TIP641
TIP645

TIP107
TIP120
TIP121
TIP122
TIP125
TIP126
TIP127
2N6384
2N6385
2N6649

1-975
1-982
1-982
1-982
1-982
1-982
1-982
1-289
1-289
1-289

TlP147T
TIP150
TlP151
TIP152
TIP160
TiP161
TIP162
TIP510
TIP511
TIP512

TIP147T
MJE13006
MJE13007
MJE13007
MJE5740
MJE5741
MJE5742
MJ4248
MJ4247
MJ4248

1-47
1-887
1-887
1-887
1-851
1-851
1-851
1-457
1-457
1-457

TIP646
TIP660
TIP661
TIP662
TIP663
TIP664
TIP665
TIP666
TIP667
TIP668

2N6650
MJ10002
MJ10002
MJ10003
MJ10001
MJ10008
MJ10009
MJ10002
MJ10003
MJ10013

1-289
1-501
1-501
1-501
1-495
1-519
1-519
1-501
1-501
1-531

T1P513
TIP514
TIP517
TIP518
TIP519
TIP520
TIP521
TIP522
TIP523
TIP524

MJ15012
MJ3238
2N6339
2N6341
MJ4238
MJ4238
2N6211
2N6211
MJ15012
2N6497

1-723
1-457
1-282
1-282
1-457
1-457
1-251
1-251
1-723
1-305

TIP701
TIP702
TIP2955
TIP3055
TIPL751
TIPL751A
TIPL752
TIPL752A
TIPL753
TIPL753A

MJ13080
MJ13081
MJE2955T
MJE3055T
MJ13070
MJ13071
MJ13080
MJ13080
MJ13080
MJ13080

1-683
1-683
1-990
1-990
1-677
1-677
1-683
1-683
1-683
1-683

T1P525
TIP526
TIP527
TIP528
TIP536
TIP545
TIP546
TIP550
TIP551
TIP552

MJ15011
MJ15011
MJ15012
MJ15012
MJ16006
2N6227
2N6228
MJ12002
MJ12003
MJ12004

1-723
1-723
1-723
1-723
1-750
1-189
1-189
1-644
1-649
1-651

TIPL755
TIPL755A
TIPL757
TIPL757A
TIPL760
TIPL760A
TIPL774
TIPL775
TIPL775A
UMT1008

MJ13090
MJ13091
MJ13100
MJ13101
MJE13070
MJE13071
MJ10009
MJ11018
MJ11020
MJ13014

1-689
1-689
1-695
1-695
1-903
1-903
1-519
1-638
1-638
1-671

TIP553
TIP554
T1P555
TIP556
TIP558
TIP559
TIP560
TIP562
TIP563
TIP564

MJ12004
MJ13080
MJ13080
MJ13080
MJ16006
MJ16006
MJ16006
MJ16012
MJ16012
MJll018

1-651
1-683
1-683
1-683
1-750
1-750
1-750
1-765
1-765
1-638

UMT1009
UMT1203
UMT1204
WT5100
WT5200

MJ13015
MJE13004
MJE13005
MJ13015
2N6547

1-671
1-881
1-881
1-671
1-319

}

'Consult factory if a direct replacement is necessary.
"To be introduced. Conta\200 Volts) ....... 1-54

1-33

II

I

I'

I

SELECTION BY PACKAGE
Motorola power transistors are available in a wide variety of metal and
plastic packages to match thermal, electrical and cost requirements. The
following table compares the basic packages from the standpoint of
current, voltage and power capabilities. The devices available in the
various packages are tabulated on the succeeding pages.
IcRange
(Amps)

VCE Range
(Volts)

Po
(Wattl)

Page

TO-204AA
gO-3)
ase 1
Case 11

2.5-60

40-1500

36-300

35

TO-204AE
Cale 197

2.5-60

40-1500

36-300

·35

TO-205M
(TO-5)
Case 31

3.0

40-800

6.0

38

TO-205AD
(TO-39)
Case 79

0.5-5.0

40-400

5-10

39

TO-210AA
(TO-59)
Case 160

7.0-10

60-100

60

40

~

TO-213AA
(TO-66)
Case 80

1-10

40-325·

20-90

41

~

TO-225M
(TO-126)
Case 77

0.3-5.0

25-400

12.5-40

42

5-15

40-100

65-100

43

0.5-2.0

30-300

10

43

TO-202AC
Cas. 306

0.1-3.0

30-350

6.25-12.5

44

TO-218AC
Cal. 340

5.0-25

40-800

80-150

45

Package

.~

~
'~

~
J!ff-~

~
~
~

~

TO-225AB
Case 90

Case 152

~

TO-220AB
Cas.221A

0.5-15

30-800

15-125

46

~

MO-040AA
CASE 346

50-200

200-850

500

48

~

CASE 353

25-100

250-850

250

48

SELECTION BY FUNCTION
Page

Military Qualified Power Transistors ........................................
Power Darlingtons, for applications requiring high gain ......................
Low-Voltage Power Switching Transistors (>200 Volts) ......................
Switch mode Power Transistors «200 Volts) ................................

1-34

49
51
53
54

TO-204AA (Formerly TO-3)/TO-204AE (Type)

CASE 11-01, 11-3 - 40 mil pins
CASE 1-04, 1-05 - 40 mil pins
MODIFIED TO-3
STYLE 1.
PIN 1
2
CASE

"
(D
o

BASE
EMITTER
COLLECTOR

0

'0

CASE 197-01 -

60 mil pins

Resistr've Switchmg

,I

IcConl

VCEOlsusl

Amps Max

Volls Min

2.5

700
800
1300'
1400'
1500'

3

3.5
4
5

250
275
350
325
1500'
120
200
250
300
325
400
450

500
700
800
850'
1300'
1500'

6

7.0

100
120
140
250
300
350

DeVIce Type
NPN
MJ8500
MJ8501
BU204
MJ205
BU205
MJ12002
2N5838
2N5839
2N5840
2N3902
MJ12003
2N4347
MJ410
MJ3029
MJ411
2N6542
MJ3030
2N6543
MJ13070
MJ13071
MJ16002
MJ16004
2N6834
MJ16002A
MJ8502
MJ8503
MJ12020
BU207
BU208
BU208Dt
MJ12004
2N5758
2N5759
2N5760
MJ15011
MJ3041
MJ3042

PNP

@ Ic

MHz

Po (Case)
Watts

Min

@25OC

IT

@ Ic

MiniMax

Amp

Max

Max

Amp

7.5 min
7.5 min
2 min

05
0.5
2

4
4

2
2
075 Iyp
1
075 Iyp
1
04 tVD
0.4 tYD
041Yp
0.1 typ
1

1
1
2
2
2
2
3
3
3
1
3

1

3

as

3
3
3
3
3
3
3
3
30
25
2.5
30
4.5
45
45
45
3
3
3

2 min

1.11 min

2N6226
2N6227
2N6228
MJ15012

If
!,s

hFE

Is
!,s

S/40
10/50
10/50
30/90
25 min
15/60
30/90
30 min
30/90
7/35
375 min
7/35
8 min
8 min
5 min
7 min
10/30
5.0 mIn
7.5 mIn
75 min
5 a min
225 min
2.25 min
225 min
2.5 min
25/100
20/S0
15/60
20/100
250 min
250 min

2
2
3
2
2
1
3
2
1
0.4
1
3
3
3
3
3
5
5
3
50
1
1
50
4.5
45
-4.5
4.5
3
3
3
2
2.5
25

1 tVD
1 tVD
1 tVD
1.2 typ

4 IIIP
4 typ
4 typ
5
5
5
2S

25

4

1
4
1.5
1.5
3
27
27
30
4
4

07 typ
07 typ
0.7 typ

as
05
0.5
0.3
0.35
035
03
2
2
013 tVD
06 tYD
06 typ
06 typ
1
0.5 typ
0.5 typ
05 typ

25.
6
6

15

15
4 tVD
4 typ
4 typ
4
1
1
1

125
125
36
110
36
75
100
100
100
100
100
100
100
125
100
100
125
100
125
125
125
125
125
125
150
150
125
60
60
60
100
150
150
150
200
175
175
(continued)

# Ihfel @ 1 MHz
'V(BRICEX or VIBRICES

tD SuffIx on thIS deVIce sIgnifies Internal C-E DIode

1-35

TO-204AA (FORMERLY TO-3)/TO-204AE (Type) (continued)
Resistive Switching
IcCont

VCEOlsusl

Amps Max

Volts Min

7.5

60
60

8

60
80
120
150
250
300
350

400

Device Type
NPN
2N3445
2N3447
2N3446
2N3448
MJ1000
2N6055
MJ100l
2N6056
MJ4247
MJ4248
2N6306

10

500
850·
1400·
1500·
40
60

80

100
120
140
250
325

350

400

450
500
550

600
700
800

12

15

·V(BRICEX

850·
40
60
80
100
60

@Ic

MHz

Po (Case)
Wails

IT

@Ic

I'S

Min/Max

Amp

Max

Max

Amp

Min

@25OC

0.35
0.35
0.35
0.35

5
5
5
5

10
10
10
10

MJ6502

15 min

5
5
5
5
3
4
3
4
3
3
3
2
3
5
3
5
2
5
5
6
6
5
6.0
8.0
4
5
5
3
3
4
5
5
3
3
4
5
5
5
5
5
4
2
0.5
1
2.5
5
5
5
5
5
6
5
5
5
10
10
1.5
1.5
5.0
5
4'
6
6

2
2
2
2

MJ900
2N6053
MJ901
2N6054
MJ4237
MJ4238

20/60
401120
20/60
401120
lk min
750/16k
lk min
750/16k
40 min
40 min

115
115
115
115
90
100
90
100
90
90
125
125
125
125
125
125
125
150
150
150
150
150
150
150
60
100
100
150
150
150
100
150
150
150
150
100
150
150
150
150
117
200
125
125
125
150
150
150
150
150
175
150
125"
125"
175
175
175
175
150
100
100
150
150
150
115
115
120
160

PNP

15175

2N6307
2N6544
2N6308·
2N6545
MJ13080
MJl3081
MJl6006
MJ16008
2N6835
MJl6006A
MJl2021
MJ100ll
MJl2005
2N6383
2N3713
2N3715
2N5877
2N6384
MJ3000
2N3714
2N3716
2N5878
2N6385
MJ3001
2N5632
2N6633
2N5634
2N3442
MJ15011
MJ413
MJ423
MJ431
MJ13014
MJ10002
MJ10006
MJ10003
MJ10007
MJ10012
MJl3015
SDT13304
SDT13305
MJ10013
MJ10014
MJ8504
MJ8505
MJl6018
MJl2010
2N6569
2N6057
2N6056
2N6059
2N3055
2N3055A
2N6576
2N5861

tl
I'S

hFE

15175

MJ6503
450

ts

7/35
12/60
7/35
15 min
8 min

8 min

2N6648
2N3789
2N3791
2N5875
2N6649
MJ2500
2N3790
2N3792
2N5876
2N6650
MJ2501
2N6229
2N6230
.21116231
MJ15012

2N6594
2N6050
2N6051
2N6052
MJ2955
MJ2955A
2N5879

5 min
7 min
10/30
5.0 min
5.0 min
20 min
5 min
lk/20k
15 min
30 min
20/100
lk/20k
lk min
15 min
30 min
20/100
lk/20k
lk min
25/100
20/80
15/60
20/70
20/100
20/80
30/90
15/35
6/20
3/300
30/300
30/300
30/300
100/2k
6/20
10/40
10/40
10/250
10/250
7.5 min
7.5 min
7.0 min
4 ..2 min
15/200
750/16k
750/16k
750/16k
20170
20170

2k/20k
20/100

6
4
4
4
6

1.5 typ

1.5 typ

4

4#

1.5 typ
0.4 typ
0.4 typ
1.6
2
1.6
4
1.6
4
2
1.5
1.5
2.5
2.2
2.5
3.0

1.5 typ
0.16 typ
0.16 typ
0.4
0.5
0.4
1
0.4
1
0.5
0.5
0.5
0.25
0.25
0.25
0.4
0.1 typ
1
1

4
5
5
3
4
3
5
5
5
4
5
5
5
5
5
5.0
5.0
4
5

4#
20
20
5

0.3 typ
0.3 typ
1

0.4 typ
0.4 typ
0.8

5
5
4

20#
4
4
4
20#

0.3 typ
0.3 typ
1

0.4 typ
0.4 typ
0.8

5
5
4

4
4
4
20#

0.9 typ
0.9 typ
0.9 typ

0.9 typ
0.9 typ
0.9 typ

5
5
5

5

6
5
6

10

1
1

1

2.5
2.5
2.5
2
2.5
1.5
2.5
1.5
15
2
1.6 typ
1.6\yp
2.5
2.5
4
4
2.0 typ
5
1.6 typ
1.6 typ
1,6 typ
0.7 typ

0.5
1
0.5
1
0.5
15
0.5
0.35 t}lP_
0.35 t}IP_
0.6
0.8
2
2
0.9 typ
1
1.5
1.5 tvp
1.5 typ
1.5 typ
0.3 typ

5
5
5
5
5
6
5
5
5
10
10
5
5
5.0
5
2
6
6
6
4

2
1

7
0.8

10
6

10#
10#
10#
10#

151>'1"'15~

.5 to 15
4#
4#
4#
2.5
0.8
10-200#
4

(continued)

# Ihlel @ 1 MHz

1-36

TO-204AA (FORMERLY TO-3)/TO-204AE (Type) (continued)
Resistive SWitching

Is
I eGonl

VCEOlsusl

Amps Max

Volls Min

15

80
90
120
140
150
200
250
275
300
350
400

450

16

500
850'
60
80
100
120
140
200

20

250
40
60
75
80

90
100
140
200
250
350

400

450

500
750
850

'V,BRICEX

DeVice Type

NPN
2N5882
2N6577
MJ15015
2N6578
MJ15001
MJ11018
2N6249
MJ11020
MJ11022
2N6250
2N6546
2N6676

PNP
2N58811
MJ15016

@ Ie

MiniMax

Amp

20/100

6

2k/20k

4
4

20170
2k/20k

MJ15002
MJ11017
MJ11019
MJ11021

2N62~1

2N6677
2N6547
2N6678
MJ13090
MJ13091
MJ16010
MJ16012
2N6836
MJ16010A
MJ12022
MJ4033
MJ4034
2N5629
MJ4035
2N5630
2N3773
2N5631
MJ15022
MJ15026
MJ15024
2N6257
2N3772
2N6282
2N5039
2N5303
2N6283
2N5038
2N6284
MJ15003
MJ13330
MJ13331
MJ10000
MJ 10004
MJ13332
MJ10001
MJ10005
MJ13100
MJ13333
MJ10008
MJ13101
MJ13334
MJ16014
MJ16016
2N6837
MJ10009
MJ13335
MJ10024
MJ10025

hFE

25/150
100 min

10/50
100 min
100 min
8/50
6/30
B min
6/50
8 mm
6/30
8 min
8 min

8 min
5 min
7

MJ4030
MJ4031
2N6029
MJ4032
2N6030
2N6609
2N6031
MJ15023
MJ15027
MJ15025

2N6285
2N5745
2N6286
2N6287
MJ15004

mm

10/30
50 mm
50 min
lkl
lkl
25/100
1 kl
20/80
15/60
15/60
15/60
6 mm
15/60
15/75
15/60
750/18k
201100
15/60
750/18k
201100
750/18K
25/150
8/40
8/40
40/400
40/400
10/60
40/400
40/400
8 min
10/60
30/300
8 mm

10/60
5 min
7 min
10/30
30/300
10/60

50/600
50/600

# I h lei @ 1 MHz

4
4
15
10
15
15
10
10
15
10
15
10
15
10
10
15
15
10
15
15
10
10
8
10
8
8
8
8
16
8
8
10
10
10
10
10
12
10
5
10
10
10
10
5
10
10
15
5
10
15
5
20
20
15

10
5
20
20

fT

Po (Case)

II
"s

@Ie

MHz

Walts

Max

Max

Amp

Min

@25OC

1
2

08
7

6
10

4
10-200#

160
120

2

7

10

35

1

10

1

10
10
15
10
15
10
15
10

1
10-200#
2
3#
2.5
3#
3#
2.5
61024
3
25
3
61024

180
120
200
175
175
175
175
175
175
175
175
175
175
175
175
175
175
175
175
175
175

".

3.5
4
25
3.5
2.5
4
2.5
2.5
25
12 Iyp
091yp
30
30

0.7
05
1
05
07
05

0.5
05
021yp
015 typ

035
04
0.1 typ

3

10
10
10
10
10
10

10

150
150
1.2 typ

1.2 typ

8

1

200

121yp
11 typ
1.21yp

1.21yp
15 typ
12 typ

8
8
8

1
4
1
5
15
5
2

200

251yp
1.5
2
25 Iyp
15
25 Iyp

251yp
05
1
251yp
05
251yp

10
10
10
10
12
10

35
35
3
15

07
07
18
05
07
18
05
05

10
10
10
10
10
10
10
15
10
10
15
10
20
20
15
10
10
10
10

4#
60
2
4#
60
4#
2
51040
5 to 40

150

~

4
~

15
35
4
2
35

4
27
2.2
2.5
2
4
5
5

0.7
06
05
07

035
0.25
025
06
07
18
18

10#
10#
10#
10#
8#

15
8#

150
200
250
250
250
150

150
160

140
200
160
140
160

250
175
175
175
175
175
175
175
175
175
175
175
175
250

250
250
175
175
250
250
(continued)

1-37

TO-204AA (FORMERLY TO-3)/TO-204AE (Type) (continued)
Resistive Switching
VCEOtsusl

Amps Max

Volts Moo

25

60
80

2N5885
2N5886

100

2N6338

120

2N6339

140
150
40

2N6340
2N6341
2N3771
2N5301
2N5302
MJll012
2N6326
2N6327
MJll014
2N6328
MJ802
MJll016
MJ10022.
MJ10023.
2N5685.
MJ11028.
2N5686.

NPN

PNP

2N5883
2N5884
2N6436
2N6437
2N6438

30

60

80
90
100

40
50

120
350
400
60
80

.90
100
120

60

140
150
400
500
60
80
200
250

2N4398
2N4399
MJll0ll
2N6329
2N6330
MJ11013
2N6331
MJ4502
MJ11015

2N5683.
MJll029.
2N5684.
2N6377.
MJll031
2N6378.
2N6379.
MJll033.

MJll030
2N6274.
2N6275.
MJll032.
2N6276.
2N6277.
MJ10015.
MJ10016.
MJ14000.
MJ14002.
MJ10020.
MJ10021.

MJ14001.
MJ14003.

@ Ie

I'S

I'S

@Ie

MHz

Po (Case)
Watts

Min/Max

Amp

Max

Max

Amp

Moo

@250C

20/100
20/100
30/120
30/120
30/120
30/120
30/120
30/120
30/120
15/60
15/60
15/60

10
10
10
10
10
10
10
10
10
15
15
15
20
30
30
20
30
75
20
10
10
25
50
25
20
50
20
20
50
20
20.
40
40
50
50
15
15

1
1
1
1
1
1
1
1
1

0.8
0.8
025
0.25
025
0.25
0.25
0.25
025

10
10
10
10
10
10
10
10
10

2
2

1
1

10
10

4
4
40
40
40
40
40
40
40
2
2
2

200
200
200
200
200
200
200
200
200
150
200
200
200
200
200
200
200
200
200
250
250
300
300
300
250
300
250
250
300
250
250
250
250
300
300
250
250

1k min

6/30
6/30
1k min

6/30
25/100
1k min
50/600
50/600
15/60
400 moo
15/60
30/120
400 moo
30/120
30/120
400 mm
30/120
30/120
10 min
10 min
15/100
15/100

75 min
75 min

# Ihf.1

• MOdified TO-3, 60 mil pins

IT

hFE

Device Type

leGonl

Is

tf

4#
3
3
4#
3
2
4#
25
25
05 typ

09
09
03 typ

20
20
25

2

05 typ
08

03 typ
0.25

25
20

2
30

0.8
08

025
025

20
20

30
30

08
0.8
25
25

025
025
10
10

20
20
20
20

30
30

35
35

as

30
30

05

@ lMHz

TO-205AA (TO-5) Package

U
2

1

0

0

ST~~~~
3

2.

3.

EMITTER
BASE
COLLECTOR

Resistive SWitching
IcConl
Amps

VCEOlsus)

Max

Min

3

40

Volts

60
80

ps

If
ps

Amp

Max

Max

1
15
1
15
15

0404040404-

ts

Device Type

NPN

PNP

2N3719
2N3867
2N3720
2N3868
2N6303

hFE

@ Ie

Moo/Max
25/180
40/200
25/180
30/150
30/150

1-38

.

toff

fT

@ Ic

MHz

Po (Case)
Watts

Amp

Min

@ 25°C

1
15
1
15
15

60
60
60
60
60

6
6
6
6
6

TO-205AD (TO-39) Package
. CASE 79-02

2
STYLE 1·
PIN 1

EMITTER
BASE
COLLECTOR
(Pin 3 connected to case)

2

l~~)
ResIstive SWitching

IcCont
Amps Max

0.5

4
5

VCEOlsusl
Volts Min

200
300
400
60
60
80
100

Device Type
NPN

PNP

MJ4645
MJ4646
MJ4647
2N4877
2N5336
2N5337
2N5338
2N5339

MJ8100
2N6190
2N6191
2N6192
2N6193

MiniMax

Amp

Max

20 min
20 min

0.5
05
05
4
2
2
2
2
2

0.72"
0.72·
072"
15
1
2
2
2
2

1-39

Po (Case)
Watts

Max

Amp

Min

@2SoC

40
40
30

05
015
02
02
02
02

005
0.05
005
4
2
2
2
2
2

5
5
5
10
10

!IS

@ Ie

tou

IT
MHz

tf

~s

hFE

20 min
20/100
25/180
30/120
60/240
30/120
60/240

@Ie

t.

4
30
30
30
30
30

6
6
10

6

TO-210AA (TO-59) Package
CASE 160-03

STYLE 1:
PIN 1

2.
3.

EMITTER
BASE
COLLECTOR

Resistive Switching
IC Con !
Amps Max

VCEOlsusl
Volts Min

7

60
80
100

10

80
100

Device Type
NPN

PNP
MJ6700

2N5346'
2N5347
2N5348
2N5349·
2N6186
2N6187
2N6188
2N6189

hFE
MinIMax

@ Ie
Amp

25/180
30/120
60/240
30/120
60/240
30/120
60/240
30/120
60/240

2
2
2
2
2
2
2
2
2

1-40

ts

tf

~s

~s

Max
1
2
2
2
2
2
2
2
2

Max
0.15
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2

MHz
Min

Po (Case)
Watts
@25OC

30
30
30
30
30
30
30
30
30

60
60
60
60
60
60
60
60
60

IT
@Ie
Amp
2
2
2
2
·2
2
2
2
2

T0213AA (TO-66) Package
CASE 80-02

(D
o

0

STYLE 1.
PIN 1

2
CASE

'

'0

0

BASE
EMITTER
COLLECTOR
Resistive SWitching

IcConl

VCEO(susl

Amps Max

Volls Min

1

40
60
80
175
225
250
300

2

125
150
200
225
250
300

DeVIce Type
NPN

2N4912
2N3583
2N3738
2N3739
2N5050
2N5051
2N5052
2N3584
2N3585
2N4240

3
4

350
140
60

80

7

40
60
80
225
275
325
60
80
100

8

10

250
275
60
80
120
150
80

2N6211
2N6421
2N6212
2N6422
2N6423
2N6213

2N3441
2N3054,A
2N3766
2N6294

5

PNP

2N4898
2N4899
2N4900
2N6420
2N6424
2N5344
2N6425
2N5345

2N3767
2N6295
2N4231A
2N4232A
2N4233A
2N6233
2N6234
2N6235
2N6315
2N5427
2N5428
2N6316
2N5429
2N5430
2N6078
2N6077
2N6300
2N6301
MJ3247
MJ3248
2N6495

2N3740,A
2N6049
2N6296
2N3741,A
2N6297
2N6312
2N6313
2N6314

2N6317
2N6318

2N6298
2N6299
MJ3237
MJ3238

Is

tt

~s

~s

@ Ie

MHz

Po (Case)
Watts

IT

hFE

@ Ie

MiniMax

Amp

Max

Max

Amp

Min

@25OC

20/100
20/100
20/100
40/200
40/200
25/100
40/200
25/100
25/100
25/100
25/100
10/100
25/100
10/100
25/100
30/150
10/100
25/100
30/100
25/100
40/160
750/18k
30/100
40/160
750/18k
25/100
25/100
25/100
25/125
25/125
25/125
20/100
30/120
60/240
20/100
30/120
60/240
12/70
12170
750/18k
750/18k
40 min

05
0.5
05
0.5
01
05
0.1
0.5
0.75
0.75
0.75
1
1
1
1
075
1
05
025
05
0.5
2
0.25
0.5
2
1.5
1.5
1.5
1
1
1
2.5
2
2
25
2
2
1.2
12
4
4
3
3
10

061vo
0.61YO
061yO
21yO
3 lyO
0.6
31yp
0.6
3.5
35
35
25
4
25
4
6
25

0.31YO
031yo
031yO
0231yO
031yO
0.1
031yp
01
1.2
1.2
1.2
0.6
3
06
3
3
0.6

0.5
0.5
05
0.5
01
0.5
01
05
0.75
0.75
0.75
1
1
1
1
0.75
1

1.31yp
1 Iyp
091yp
0.91YO
131yp
0.91yp
0.91YO
051yO
0.51yO
0.51yO
35
3.5
35
1
2
2
1
2
2
2.8
2.8
1.5 typo
1.51YO
041yO
0.41YO
0.151yp

0271yp
031yp
0.091yp
0.71yO
0.271YO
0091yp
0.71yO
0.21yO
0.21YO
0.21YO
0.5
0.5
05'
08
02
02
0.8
0.2
0.2
0.3
03.
1.5Iyp.
1.5 tyfl.
0181yO
0.181yO
0.051yp

0.25
0.5
0.5
2
0.25
05
2
1.5
15
15
1
1
1
2.5
2
2
2.5
2
2
12
1.2
4
4
5
5
10

3
3
3
10
10
60
10
60
10
10
10
20
10
20
10
15
20
0.2
4
3
10
4#
4
10
4
4
4
4
20
20
20
4
3D

25
25
25
35
20
40
20
40
40
40
40
35
35
35
35
35
35
25
25
75
20
50
25
20
50
75
75
75
50
50
50

40 min
10/60

# Ih,el @ 1MHz

1-41

30
4
30
30
1
1

4#
4#
20
20
25

90
40
40
90
40
40
45
45
7S
75
75
75
70

TO-22SAA Package (Formerly TO-126)
CASE 77-04
PLASTIC

STYLE
PIN 1.
2.
3.
STYLE
PIN 1.
2.
3.

3
BASE
COLLECTOR
EMITTER

1
EMITTER
COLLECTOR
BASE
Resistive SWltchmg

leCant

VeEO(susi

Amps Max

Volts Min

0.3

250
350
150
200
250
300

0.5

1

1.5

2
3

4

350
40
60
80
40
60
80
300
400
100
30
40
60
80
40

60

80.

5

100
25·

• Case 77 (Style 3)

Device Type

PNP

NPN
MJE3440
MJE3439
MJE341
MJE344
2N5655
MJE340
2N5656
2N5657
2N4921
2N4922
2N4923
MJE720
MJE721
MJE722

MJE350

2N4918
2N4919
2N4920
MJE710
MJE711
MJE712

MJE1300~

MJEl3003e
MJE270
MJE520
MJE180
MJE181
MJE182
MJE3300e
2N5190
MJE521
2N6037
MJE3301.
2N5191
MJE800
MJE801
2N6038
MJE3302.
2N5192
MJE802
MJE803
2N6039
MJE243
MJE200

MJE271
MJE370
MJE170
MJEl71
MJE172
MJE3310e
2N5193
MJE371
2N6034
MJE3311.
2N5194
MJE700
MJE701
2N6035
MJE331~

2N5195
MJE702
MJE703
2N6036
MJE253
MJE210

ts

t,

@Ie

~s

~s

@Ie

IT
MHz

Po (Case)
Watts

MiniMax

Amp

Max

Max

Amp

Min

@25OC

40/160
40/160
25/200
30/300
30/250
30/240
30/250
30/250
20/100
20/100
20/100

002
0.02
005
005
01
005
01
0.1
05
05
05
1
1
1
1
1
012
1
01
01
01
1
15
1
2
1
15
15
2
2
1
15
15
2
2
02
2

15
15
208
20.8
20
208

hFE

8 min
8 min
8 min
5/25
5/25
1.Sk min

25

min

50/250
50/250
50/250
1k min
25/100
40 min
750/18k
1 k min
25/100
750 min
750 min
750/18k
1k min
25/100
750 min
750 min
750/18k
40/120
45/180

# Ih'el @ 1 MHz

1-42

35 typ

024 typ

01

15
15
15
15
10

35 tyO
351yp
06 typ
06 typ
06 typ

0.24 tyO
0.24 typ
03 typ
03 typ
03 typ

01
01
05
05
0.5

10
10
3
3
3

4
4

07
07

1
1

5
5
6

06 tyO
06 tyO
06 tyO

012 tyO
012 tyO
012 tyO

01
0.1
01

04 typ

04 typ

15

50
50
50
20
2

17 tyO

12 typ

2

04 typ

04 typ

15

17 typ

12 typ

2

04 Iyp

04 typ

15

17 tyO
12 tyO
07 tyO 008 typ
013 typ 0035 typ

2
02
2

25
20#
2
1#
1#
25
20#
2
1#
1#
25
40
65

2D
20
30
3D
3D
20
20
20
40
40
15
25
125
125
125
15
40
40
40
15
40
40
40
40
15
40
40
40
40
15
15

TO-225AB Package (Formerly TO-127)

P,4fJ
CASE 90-05

STYLE 2:
PIN 1.

2.
3.

EMITTER
COLLECTOR
BASE

ResIstIve SWltchmg

IcConl
Amps Max

VCEOlsusl
Volls Min
40
50

5

60
80

10

60
80
100
60

12

40

8

60
80
15

# Ihfel

40
60

DeVice Type

hFE

@ Ie

NPN

PNP

MiniMax

Amp

2N5977
MJE205
MJE1100
MJE1101
2N5978
MJE1102
MJE1103
2N5979
MJE6043
MJE6044
MJE6045
MJE2801
MJE3055
2N5989
2N5990
2N5991
MJE1660
MJE1661

2N5974
MJE105
MJE1090
MJE1091
2N5975
MJE1092
MJE1093
2N5976
MJE6040
MJE6041
MJE6042
MJE2901
MJE2955
2N5986
2N5987
2N5988
MJE1290
MJE1291

20/120
25/100
750 min
750 min
25/100
750 min
750 min
20/120
1k/20k
1k/20k
1k/20k
25/100
20170
20/120
20/120
20/120
20/100
20/100

25
2
3A
4A
25
3A
4A
25
4
4
4
3
4
6
6
6
5
5

IT

Is
ps

If
ps

@ Ie

MHz

Po (Case)
Watts

Max

Max

Amp

Min

@ 25°C

045 tyl'. 018 tyPo

25

2

055 Iyp 018 Iyp

25

2

045 Iyp 018 lyO
151yO 15 tyP_
151YO 151yp
151yO 151yp

25
4
4
4

2

75
65
70
70
75
70
70
75
75
75
75
90
90
100
100
100
90
90

1
1
1
1
4#
4#
4#

2
051yO
05 lyO
05 lyO

025 lyO
025 lyO
025 lyO

6
6
6

2

2
2
3
3

@ 1 MHz

CASE 152
1

~

~

ST~~~ ~
2.
3

EMITTER
BASE
COLLECTOR

(COLLECTOR CONNECTED TO TAB)
Resistive SWitching
IcConl
Amps Max
0.5
0.8
1

2

VCEOlsusl
Volts Min
65
300
40
120
180

30
40
60
80
100

hFE

@Ie

Is
ps

MiniMax

Amp

Max

10 min
30 min
30 min
40 min
40 min
50 min
50 min

0.1
0.030
0.5
0.010
0.010
1
1
1
0.25
0.25
0.25

DeVice Type
NPN
MPS-U31
MPS-U10
MPS-U02
MPS-U03
MPS-U04
MPS-U01
MPS-U01A
MPS-U45
MPS-U05
MPS-U06
MPS-U07

PNP
MPS-U60
MPS-U52

MPS-U51
MPS-U51A
MPS-U95
MPS-U55
MPS-U56
MPS-U57

4k

min

60 min
60 min
30 min

1-43

If
ps

@ Ie

MHz

Po (Case)
Watts

Max

Amp

Min

@ 25°C

60
150
100
100
50
50
100
50
50
50

10
10
10
10
10
10
10
10
10
10
10

IT

TO·202AC Package

.,

CASE 306-04

23

STYLE 1:
PIN 1.
2.
3.
4.

STYLE 3:
PIN 1.
2.
3.
4.

BASE
COLLECTOR
EMITTER
COLLECTOR

EMITTER
BASE.
COLLECTOR
COLLECTOR
Reslslive SWllching

IcConl
Amps Max

VCEOCsus)
Volts Min

0.1

250
300

0.5

30
40
120
150
180
200
225
250
300

Device Type
NPN

PNP

040Nl
040N2
040N3
04ON4
D40Cl
040C2
040C4
040C5
040Pl
2N6591
040P3
2N6592
040P5
2N6557
MOS20
2N6593
2N6558
MOS60

1

350
30
45
60
75

80

2

100
30
40
50

3

t

60
80
.40
80

MOS21
2N6559
04001
04002
04004
04005
2N6551
04007
04008
040010
040011
040013
040014
2N6552
2N6553
D40El
040Kl
04OK3
2N6548
2N6549
D40K2
0"OK4
D40E5
040E7
MOS26t
MOS27t

04101
04102
04104
04105
2N6554
04107
04108
041010
041011
041013
041014
2N6555
2N6556
041El
041Kl
041K3
041K2
041K4
041E5
041E7
MOS76t
MOS77t

hFE
MiniMax

@ Ie

Is
).= 0.2

'00<12<500",
t3 < 15 os

--

IT @VCC - 30 Vdc
~

IT @Vec - 10 Vdc

-.

o. 1

r--

Id@VSEloff) = 0

OUTY CYCLE ~ 2.0%
APPROX 9.0 V
12

0.05

I---

0.03

TURN-OFF PULSE

0.04 0.06

0_'

0.2

0.4

0.6

1.0

IC, COLLECTOR CURRENT lAMP)

1-59

2.0

4.0

2N3054,A

FIGURE 4 - THERMAL RESPONSE
1.0
~

0.1 ~D=0.5
O.5

Cii

z

-

~w O. 31--0 12

...

'"

~~ 0.2

~~
~~

~ ~ ;;::::F-

0.1

o. 1l==0.05

P(pk)
BJC(t) = r(t) BJC
D CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME AT 11

ffi~ 0.07 F=--0.2

!:::! ffi 0.05
-'",

~ ... 0.03
~

0.02

,I--""

0.0 1
0.01

'" r--

r"-O.OI

II

~rrmrE

0.02 0.03

0.05

TJ(pk) - TC' P(pk) BJC(I)

0.2

0.1

0.3

0.5

1.0

11111
10

2.0 3.0
5.0
t. TIME or PULSE WIDTH

20

fJUl
1:r-j
12

30

50

II II

100

DUTY
CYCLE.
0 = 11/12

200 300

500

1000

(m~

FIGURE 5 - ACTIVE-REGION SAFE OPERATING AREA

~

~

~_

0
.0
.0

5.0!"s~ ~1.0 ms"s;.0.5;'
2N3054A

,

TJ - 200°C

.0
2. 0

.....

13
:3

I'

1-0
t; o. 7

~

sistor that must be observed for reliable operation; i.e., the transistor
must not be subiected to greater dissipation than the curves indicate.

1\ \

The data of Figure 5 is based on T J(pk) = 2000 C; TC is variable
depending on conditions. Second breakdown pulse limits are valid
for duty cycles to 10% provided T J(pk) < 200°C. T J(pk) may be
calculated from the data in Figure 4. At high case temperatures,
thermal limitations will reduce the power that can be handled to
values less than the limitations imposed by second breakdown.

Curves Apply Below Rated VCEa

:: o. 5

8

There are two limitations on the power handling ability of a
transistor. average junction temperature and second breakdown.
Safe operating area curves indicate Ie - VeE limits of the tran·

2N3054

3

d~~

SECONO BREAKDOWN LIMITED
o.Hf- - - - - BONOINGWIRE LIMITED
o. 21-- - - - - - THERMAL L1MITATION@ TC - 250C
O. 1
2.0

1 1

5.0

3.0

7.0

1

10

1
20

30

40 50 60

VCE. eOLLECTOR·EMITIER VOLTAGE (VOLTS)

FIGURE 6 - TURN-OFF TIME
3.0
2.0

i=

0.2

'"

200

~
w
'"z
«

@VCC=30Vdc

O. sFO.3

Icils = 10
ITJ=250C

-:J r-.

I,

1.0

w

FIGURE 7 - CAPACITANCE
300

I lSI = IS2

If

,/

...
U

r-....

\

~

If@Vce= 10 Vdc

100

T~ = ~50b

--

~

r-

I'
Cib

0

U

O. 1

"""-

0

Cob
0.05
0.03
0.04

0.06

0.1

0.2

0.4

0.6

1.0

2.0

30
0.1

4.0

IC. COLLECTOR CURRENT (AMP)

0.2 0.3

0.5

1.0

2.0 3.0 5.0

10

20

VR. REVERSE VOLTAGE (VOLTS)

1-60

50

100

2N3054,A

FIGURE 9 - COLLECTOR SATURATION REGION

FIGURE 8 - DC CURRENT GAIN
_ 1.0

300

IJ

ffi

-

70

~ 50

1'l
'-'

'"

~

30

I--"""'

10
0.004

0.01

0.02

0.04

~

"'

0.1

"

1.0

\
\

~....
8

1"\

2.0

~

0.4

a:

'"

I"'

r-....
0.4

0.6

~

l"\'

.........
0.2

0.2

\

-t-

\.

:;;

1.0

5.0

2.0

10

~

ffi

+1.0

~

+0. 5

~

...

-0. 5

I-~

-2.0

~

-2. 5
0.004

>

0.01

0.02

0.04

'"
«
~ 0.4
>0.2

0.2

o
1.0

0.4

-

VCE(sa'I@IC/IS= 10

III

0.1

V

>

-55 '0 150°C

1111

I

w

IJ..J.I)-/

mft.°R~

V
V

~ 0.6

V

III

~ -1. 5

1000

~BE(sa'll@ IJ/I~ = 10 r-

~

III./'"

=>
~ -1.0

500

200

I

II

0.8

1trD250C- f--

8

IITJ=25 0C

III

'0 l~ooh

25°C

100

FIGURE 11 - "ON" VOLTAGES

III
'eVC FO R VCE(sa'l

.§ +1.5

50

20

lB. SASE CURRENT (mAl

1.0

'APPLIES FOR IC/IB:5 hFE/2

Ul

0

4.0

FIGURE 10 - TEMPERATURE COEFFICIENTS

~ +2.0
>

TJ = 25°C

W

Ic. COLLECTOR CURRENT (AMPI

+2. 5

3.0A

::

f",.

~
I

III

I
1.0 A

500mA

;'"

'I'-

25°C

20

III

I
Ic=100mA

'">
~ 0.8

..........

I

~ 100

to

~

VCE = 4.0 Vdc-

TJ = 150°C
200

2.0

0.004

4.0

0.01

0.02

IC. COLLECTOR CURRENT (AMPI

0.1

0.04

0.2

/'
1.0

0.4

I

2.0

4.0

IC. COLLECTOR CURRENT (AMPI

FIGURE 12 - COLLECTOR CUT-OFF REGION

FIGURE 13 - EFFECTS OF BASE-EMITTER RESISTANCE

10 3

tii 107

~

/

-VCE 30 V

w

~ 106

- T J = 150°C
1I'

===

~

~

=

-VCE =30Vdc

IC= 10ICES-

........
l""-,

.........

5

FORWARD=

=

:;; 104

~

'" , L

-0.1

+0.1

+0.2

IC ~ICES

"""

IC = 21CES

-

."{ .........

==TYPICAL ICES
_VALUES OBTAINED
=FROM FIGURE 12

~

.......

.......

........
........

........

ICES
-0.2

""'-

10

=250C

-0.3

.......

::

f=1000C

1 =""REVERSE

10-3
-0.4

.....

9

/

2

+0.3

+0.4

~

+0.5 +0.6

a:

102

0

20

40

60

BO

1110

120

140

TJ. JUNCTION TEMPERATURE (OCI

VBE. BASE·EMITTER VOLTAGE (VOLTSI

1-61

160

180

200

PHP

"PH

®

MJ2955

2H3055

COMPLEMENTARY SILICON POWER TRANSISTORS

15 AMPERE
POWER TRANSISTORS
COMPLUIIENTARY SILICON

· .. designed for general-purpose switching and amplifier applications.
•

MOTOROLA

60 VOLTS
115 WATTS

OCCurrent Gain -hFE= 20-70@IC=4Adc

• Collector-Emitter Saturation Voltage VCE(sat) = 1.1 Vdc (Max) @ IC = 4 Adc
•

Excellent Safe Operating Area

MAXIMUM RATINGS
Rating

Symbol

Value

Unit

Collector-Emitter Voltage

VeEO

60

Vdc

Collector-Emitter Voltage

VeER

70

Vdc

Collector-Base Voltage

Ves

100

Vdc

Emitter-Base Voltage

VES

7

Vdc

Collector Current - Continuous

Ie

15

Adc

Base Current

IS

7

Adc

Total Power Dissipation

@

Po

TC "" 2SoC

Derate above 25°C
Operating and Storage Junction
Temperature Range

115
0.657

·TJ. T stg

65 to +200

Watts
w/oe
°e

Lr~
r~K
ESEATIN(~

I

PLANE

THERMAL CHARACTERISTICS
Characteristic

Thermal Resistance, Junction to Case

NOTE:
1. DIM "0" IS OIA.

FIGURE 1 -POWER DERATING

STYLE 1:
PIN 1. BASE
2. EMITTER
CASE: COLLECTOR

160

-

DIM

i'-..

A
B

~

C
0
E

~

-...........
0

f'....

F
G

.......

0

H

J'.."

J

~

0
25

50

75

100

125

150

175

200

TC. CASE TEMPERATURE lOCI

K
Q

R

MILLIMETERS
MAX
MIN

-

39.37
21.08
7.62 0.250
1.09 0.039
3.43
29.90 30.40 1.177
10.67 11.18 0.420
5.59 0.210
5.33
16.64 17.15 0.655
11.18 12.19 0.440
4.09 0.151
3.84
26.67
Collector connected I, case.
CASE 11·01
6.35
0.99

(TO·31

1-62

INCHES
MIN
MAX

1.550
0.830
0.300
0.043
0.135
1.197
0.440
0.220
0.675
0.480
0.161
1.050

2N3055 NPN/MJ2955 PNP

ELECTRICAL CHARACTERISTICS

I

1Tc ~ 2SoC unless othe,wi.e noted)

Symbol

Min

Max

Unit

VCEO(sus)

60

-

Vde

VCER(sus)

70

-

Vde

Collector Cutoff Current
(VCE = 30 Vde, IS = 0)

)CEO

-

0.7

mAde

Collector Cutoff Current

ICEX

-

1.0
5.0

-

5.0

20
5.0

70

-

1.1
3.0

-

1.5

2.5

-

15

120

10

-

Characteristic

·OFF CHARACTERISTICS

Collector-Emitter Sustaming Voltage III
(lc

~

200 mAde, IS

= 0)

Collector-Emitter Sustaining Voltage (1)
(lC = 200 mAde, RSE = 100 Ohm.)

(VCE
(VCE

= 100 Vde, VSE(off) = 1.5 Vde)
= 100 Vde, VSE(off) = 1.5 Vdc, TC = 150°C)

Emitter Cutoff Current
(VSE

= 7.0

IESO

mAde

mAde

Vde, IC = 0)

·ON CHARACTERISTICS (1)
DC CUrrent Gain
(lC = 4.0 Ade, VCE = 4.0 Vde)
(lC = 10 Ade, VCE = 4.0 Vdcl

Collector-Emitter Saturation Voltage
(lC = 4.0 Adc, IS = 400 mAde)
(lC = 10 Ade, IS = 3.3 Adc)

VCE(s.t)

Base-Emitter On Voltage

VSE(on)

(lC

= 4.0 Adc,

VCE

= 4.0

-

hFE

Vdc

Vdc

Vdc)

SECOND BREAKDOWN

Second Breakdown Collector Current with Base Forward Biased
(VeE = 40 Vdc, t::: 1.05; Nonrepet,tive)
DYNAMIC CHARACTERISTICS
Current Gam - Bandwidth Product

(lC

= 0.5 Ade,

VCE

·Small-Signal Current Gain
(lC

= 1.0 Ade,

VCE

= 4.0

it

= 4.0

Vde, IC

= 1.0

-

hfe
Vdc, f

= 1.0 kHz)

*Small-Signal Current Gain Cutoff Frequency

(VCE

MHz

fT

= 10 Vdc, f = 1.0 MHz)

Ade, f

fhfe

kHz

= 1.0 kHz)

Indicates Wlth,n JEOEC Registration. (2N3055)

(1) Pulse Test: Pulse Width'; 3001", Duty Cycle'; 2.0%.

FIGURE 2 -

ACTIVE REGION SAFE OPERATING AREA

2N3065, MJ2955

20

-I'-.

10

"'-"-.! 00"S~50"s\SO'"

There are two limitations on the povver handling ability of a
transIstor. average junction temperature and second breakdown.
Safe operating area curves indicate Ie-VeE limits of the transistor
that must be observed for reliable operation; i.e., the transistor must
not be subjected to greater dissipation than the curves indicate .
The data of Figure 2 is based on TC = 25°C; TJ(pk) is variable

dc- r-- 1ms

0::

- --" "."-'"

~
I-

!a

......

'. l"
"'-

'"c

B

~

0.6

~

0.4

t:"- - =
- r---- --

-

C--

i

I I

depending on power level. Second' breakdown pulse limits are
valid for duty cycles to 10% but must be derated for temperature
according to Figure 1.

== ~

Bonding Wire Limit
.
Thermally Limited@Tc=250C(SmglePulsel- e---

S""ond B'j"kdown ,imit

I

I -e---

10
20
40
VCE, COLLECTOR·EMITIER VOLTAGE (VOL TSI

60

1-63

2N3055 NPN/MJ2955 PNP

PNP

NPN
2N3055

MJ2955
FIGURE 3 - DC CURRENT GAIN

500

-

200

VCEz4.oV

300 I---- TJ =150°C
200

J

;;:

z

25 C

'"....

100
10 ~ ~ -55°C
50

~...,

::>

...,

t--

z

~

....
'"

""'1

Q

:#

~

20
10
1.0
5.0
0.1

0.2

0.3

0.5 0.1

2.0

1.0

3.0

I
Q

30

:#

20

...,

5.0 1.0

J.

100 t-- _~-;:c r-

;;: 10

30

--!-+..

r-." I
TJ

I

II
= 150°C

I---- _-55°C

50

........

r-.

10
01

10

VCe=4.0 V

0.2

0.3

0.5 0.1

IC. COLLECTOR CURRENT lAMP)

1.0

2.0

,,~

3.0

5.0 1.0 10

IC. COLLECTOR CURRENT lAMP)

FIGURE 4 - COLLECTOR SATURATION REGION

~ 2. 0
2:

If II

1.6

w

~

4.0 A

IC· 1.0 A

~ 2.0

~.15~

11111

Q

> 1. 2

t. 2

~

'"w

::
i

\

O. S

~

\

o

E
~ o. 4
8

0
5.0

\

o

_ 0.4

I-

~

50

20

100

200

500

1000

2000

0

5.0

5000

I-

\

8
>

10

r-o. S

g

~

1\
"-

......,

:>

TJ = 25°C

S.O A

~
o

o

l:::E

4.0A

1.6

w

'"

S.OA

11111

IC·1.0A

2:

~

ffi

II

o

50

20

10

lB. BASE CURRENT (mA)

100

200

500

1000

2000

5000

IS. BASE CURRENT (mA)

FIGURE 5 - "ON" VOL TAGES

1.4
1. 2

I

2.0

I

1.6

I
I

~1. 0

i,...-

VBElsa,,1I! lellB = 10

~ 0.8

::;;;.

2

t-- t---

w

'"~

D.6

o
f-- I->
>' O.4

VSj II!VfE

I I

01

i 4·r r

VBElsatl.lellB =10
I

I

I _I

II

i--~

VCE(sat)II!ICIIB' 10

V

r111

0.3

0.5 0.1

1.0

2.0

3.0

~ J.-

II

0.4

VeElsat) Ii> lellB =10
5.0 7.0

0.1

10

IC. COLLECTOR CURRENT IAMPERES)

V

J...I.-

o
0.2

V

I I

VBE @ VCF : 14~ VI

8

o
0.1

TJ= 25°C

TJ - 250 e

0.2

0.3

0.5

1.0

2.0

3.0

IC. COLLECTOR CURRENT lAMP)

1-64

5.0

10

®

NPN
2N3055A · IJ15015
PNP
MJ2955A . IJ15016

MOTOROLA

COMPLEMENTARY SILICON
HIGH-POWER TRANSISTORS

15 AMPERE

COMPLEMENTARY SILICON
POWER TRANSISTORS

· .. PowerBase complementary transistors designed for high power
audio, stepping motor and other linear applications. These devices
can also be used in power switching circuits such as relay or solenoid
drivers, dc-to-dc converters, inverters, or for inductive loads requiring
higher safe operating area than the 2N3055 and MJ2955.
•

Current-Gain - Bandwidth-Product
fT = 0.8 MHz (Min) - NPN
= 2.2 MHz (Min) - PNP

•

Safe Operating Area - Rated to 60 Vand
120 V, Respectively

@

60,120 VOLTS
115,180 WATTS

IC = 1.0 Adc

*MAXIMUM RATINGS
Symbol

2N3055A
MJ2955A

MJ15015
MJ15016

Unit

Collector-Emitter Voltage

VCEO

60

120

Vdc

Collector-Base Voltage

VCBO

100

200

Vdc

Collector-Emitter Voltage Base
Reversed Biased

VCEV

100

200

Vdc

Emitter-Base Voltage

Rating

VEBO

7.0

Vdc

Collector Current - Continuous

IC

15

Adc

Base Current
Total Device Dissipation@ TC "" 2SoC
Derate above 2SoC
Operating and Storage Junction

IB

7.0

Adc

Po

115
0.65

Watts

180
1.03

W/oC

-65 to +200

TJ, T stg

t.

SEATING PLANE

°c

Q

Temperature Range

THERMAL CHARACTERISTICS

I

Characteristic
Thermal Resistance, Junction to Case

Symbol

I

Max

I

I

Max

1.52

eJC

0.98

Unit
°CIW

STYLE 1:
PIN 1. BASE
2. EMITTER

"Indicates JEDEC Registered Data 12N3055A)

CASE COLLECTOR
NOTES
1. ALL RULES AND NOTES ASSOCIATED WITH
REFERENCED TO-204AA OUTLINE SHALL APPLY.
2. 001 02 OBSOLETE, NEW STANDARD 011·01 •
3. ooHI1 OBSOLETE, NEW STANDARD 001-03.
4. DIAMETER V AND SURFACEWARE DATUMS.
5. POSI
FOR HOLE Q:

FIGURE 1 - POWER DERATING
_ 2PO
~

z

'"
;::

::
~

150

---- "-

Q

'"~

~
w

~

100

I'--..

'"
g

>
«

•

"-

"-

.............. I'-..

2N3055A ......
MJ2955A

50

:>

I

:!
c

MJ15015
MJ1501S

"-

............

"-

............ ~

.......

"-

0
0

25

75
100
50
125
TC, CASE TEMPERATURE IOC)

150

~

175

1-65

200

CASE 1-04
TO-204AA

..

NPN 2N3055A, MJ15015
PNP MJ2955A, MJ15016

OJ
ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted).

I

Characteristic

Symbol

Min

Max

Unit
Vdc

OFF CHARACTERISTICS (1)

*Collector-Emitter Sustaining Voltage
(lC = 200 mAde, IB = 0)

2N3055A, MJ2955A
MJ15015, MJ15016

Collector Cutoff Current

60

-

120

-

-

0.7
0.1

-

5.0
1.0

mAde

30
6.0

mAde

-

5.0
0.2

'mAde

mAde

ICEO

(VCE = 30 Vdc, VBE(off) = 0 Vdc)
(VCE = 60 Vdc, VBE(off) = 0 Vdc)

*Collec1or Cutoff Current
(VCEV = Rated Vafue, VBE(off)
(VCEV = Rated Value, VBE(off)
TC = 150oC)

2N3055A, MJ2955A
MJ15015, MJ15016
2N3055A, MJ2955A
MJ15015, MJ15016

ICEV

= 1.5 Vde)

2N3055A, MJ2955A
MJ15015, MJ15016

ICEV

= 1.5 Vdc,

2N3055A, MJ2955A
MJ15015, MJ15016

lEBO

Collector Cutoff Current

*Emitter Cutoff Current
(VEB

VCEO(sus)

= 7.0 Vdc, IC = 0)

-

'SECOND BREAKDOWN

Second Breakdown Collector Current with Base Forward Biased
(t

=0.5 s non-repetitive)
(VCE = 60 Vdc)

2N3055A, MJ2955A
MJ15015, MJ15016

'ON CHARACTERISTICS (1)

DC Current Gain
(iC
(lc
(lc

Collector-Emitter Saturation Voltage
(lc
(lc
(lC

10
20
5.0

70
70

-

Vdc

VCE(sat)

= 4.0 Adc, IB =400 mAde)
= 10 Adc, IB =3.3 Ade)
= 15 Adc, IS = 7.0 Ade)

Base-Emitter On Voltage
(lC

-

hFE

= 4.0 Adc, VCE = 2.0 Vdc)
= 4.0 Ade, VCE = 4.0 Vdc)
= 10 Ade, VCE = 4.0 Vdc)

-

1.1
3.0
5.0

VSE(on)

0.7

1.8

Vdc

fT

0.8
2.2

6.0
18

MHz

Cob

60

600

pF

td

0.5

IlS

4.0

IlS

ts

-

3.0

IlS

tf

-

6.0

IlS

= 4.0 Ade, VCE = 4.0 Vdc)

"DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(lC = 1.0 Adc, VCE = 4.0 Vde, f

= 1.0 MHz)

2N3055A, MJ15015
MJ2955A, MJ15016

Output Capacitance
(VCS

= 10 Vdc, IE = 0, f = 1.0 MHz)

'SWITCHING CHARACTERISTICS (2N3055A only)
RESISTIVE LOAD

Delay Time
Rise Time
Storage Time

(VCC = 30 Vdc, IC = 4.0 Adc,
IS 1 = IS2 = 0.4 Adc,
tp = 25 IlS Duty Cycle'; 2%)

tr

Fall Time
(1) Pulse Test: Pulse Width = 300 IlS, Duty Cycle'; 2%.
"Indicates JEDEC Registered Data (2N3055A)

1-66

NPN 2N3055A, MJ15015
PNP MJ2955A, MJ15016

--r-.

100
70
z
< 50

z

30

"''"
'"
13

ZO

'"'c

10

j

..........

......
f'

'"

1.6

~

\

't;"
c

TTT
TJ = 260

j
'"W'
>'"'

10

0.5 0.7

IC'I A

15

I......

.......

0
0.005 0.01

0.02

"'

2

~
~

"

I I
t-- TC' 25°C

2. 5

..,.....

J

5.0

f

.j

b
~

~

1. 6

I
0.5

o

0.2

V
VBEI..t) "leila '10

VC~I..t/@lI~/I~ ~ Ih
0.3

0.5

...... 1--'"

0.5

2.0

'i'

z

~

<
~

co

VBElo.) @I VCE' 4 V ~

1.0

"

-

MJ2955A

%

,,:

0.2

10

t;

g

~

~g

0.1

FIGURE 5 - CURRENT-GAIN-BANDWIDTH PRODUCT

FIGURE 4 - "ON" VOLTAGES

~c

0.05

lB. BASE CURRENT lAMP)

IC. COLLECTOR CURRENT lAMP)

3. 5

.... -

\
\.

b

8A

4A

1.2
O.B

c 0.4

"\'
0.3

2

>

7

2
0.2

"'co
~
c
1="'

VCE·4.0V

2.8

~ 2.4

25°!:'
~50C

co

0-

~c

TJ -150°C

I-..

III

FIGURE 3 - COLLECTOR SATURATION REGION

FIGURE 2 - DC CURRENT GAIN
ZOO

I---

JI50

t

--

2N3055A
MJI5015

13

0.7

10

20

0.1

0.2
0.3
0.5
IC. COLLECTOR CURRENT lAMPS)

IC. COLLECTOR CURRENT lAMP)

1.0

2.0

FIGURE 7 - TURN-ON TIME

FIGURE 6 - SWITCHING TIMES TEST CIRCUIT
(Circuit shown is for NPN)

0

Vee

7~VCC'30V

+30V

5 r=lella • 10
f- TJ - 25°C
3

7.5

n
Scope

j

"'

:E

;::

~

2
t~

I

l- t-

" O. 7
O. 5
O.3

10 ns
Duty Cycle = 1.0%

t r • tf or;;:

O.2
td

-5 V

o. I

1-67

0.2

0.3

0.5 0.7
I
IC. j:OLLECTOR CURRENT (AMP)

10

16

NPN 2N3055A, MJ15015
PNP MJ2955A, MJ15016

1111

FIGURE 9 - CAPACITANCES

FIGURE 8 - TURN-oFF TIMES
400

10
7
&

,..,..,

Is

2

-f-' MJ2955A
MJI5016

.....

~

100

U

::
;3

7;:::Vec=30

..;

o.&~lclIB=18
~IB1'IB2

o.3 r TJ'250C
O.2
O. 1
0.2 0.3

Cib

'z"'

:> ~

TJ = 25 0 C
2N3055A
MJI5015

-I-

JII

w

tl

1 ......

~

.,;

11

III

~.

1'. r--~~
200
t- r-~

50

........

I

10

0.5 0.7
Ic. COLLECTOR CURRENT (AMPS)

Cob

30
20

15

1.0

2.0

5.0

COLLECTOR CUT-OFF REGION

NPN

500

50
100 200
10
20
VR. REVERSE VOLTA.GE IVOLTS)

1000

PNP
FIGURE 11 - MJ2955A, MJ15016

FIGURE 10 - 2N3065A. MJ15015
Vee-3D V

1...

..'"
z

...'":::>

'"
~...
c...

~

1000

...

iii

100

~

10
1.0
0.1

-

~

l000C

--

0.01
+0.2

TJ -1500C

10

aa: 1.0

'- TJ -IS00C

~ 100 0 e

8 0.1 == REVERSE.... fii'"'~FORWARO
!J
0.01 = 1= 25 C
~

IC = ICES
REVERSE_

r-- =

FORWARO

IC=ICES

0

-r 25OC
+0.1

-0.2

-0.3

0.001
-0.2

-0.5

-0.4

-0.1

I

I-

...

~

-.~ ~.'I;:

~."" ~

1',

10

.....

....

'":::>

...'"
'"

' ...

........

21- _ _ _ Bonding Wire limit

p

1

Ilmitationa on the _

a'"

I

+0.5

"

~-+----II--+-+=""-"~r--t--t-H1.0 ma

. . . . t--.,

2.0~-+----I1--+--t--t---'~""':t-t-t----j

c

~ 1.o~~~~~~~~~~~~~~~~lo~~m~.
t=r- - .--~

de

• - - - - Thermal limit • TC• 250 C (Single Pulse)
Second Brukdown Limit
I I
60
10
20
VCE. COLLECTOR·El!ITTER VOLTAGE (VOLTS)

There .,. _

5.0

~

lms-

..... I
'l-r II
['

+0.4

li:lO~~~
~
5

-,100m,

C.......

,

+0.3

I-o....
~,,::'":.-"'
_,--+~""1----+-il:,~.-+-t--t-'0.11111

~ 3or'
100",

5

~
8

...

+0.2

FIGURE 13 - FORWARO BIAS SAFE OPERATING AREA
MJ15015. MJ15016

FIGURE 12 - FORWARO BIAS SAFE OPERATING AREA
2N306&A. MJ29&5A

20

+0.1

VBE. BASE·EMITTER VOLTAGE IVOLTS)

VeE. BASE·EMITIER VOLTAGE IVOLTS)

0.5

Bonding Wire Limit

Thermal LimH IP Te - 250 C ISingl. Pulse)

r- - - 1 - - See~nd Breakdown Limit

0.215

100

20

3D

de _

.,,',

60

100 120

VCE. COLLECTOR·EMITTER VOLTAGE (VOLTS)

handling IIbIlIty of • tr...iator:

--.elunclion temp8rlllUte IIIId _ _ • Sal. ()periling.,..
__ i_.Ic,vCE Omila 01 the trln_ thlll mU81 be obeetved for
rellHI. ~lIIian; i.... the tr_iator mU81 nOl be subjected to II'H*

diloiplllion then the curws indicllle.
The data of Figu,.. 12 and 13 is baaed on Te = 25'C; TJ/pt) is variable
,,-ndlngon power 1evoI. Secondbrel,",-,pul.olimila ... volidforduty
cycl.. to 10% but mU81 be derated for temperlllute _ n g 10 Figure 1.

'·68

®

2N3441
MOTOROLA

III
3 AMPERES

NPN SILICON POWER TRANSISTOR

NPN SILICON
POWER TRANSISTOR

· .. 2N3441 transistor is designed for use in general·purpose switching
and linear amplifier applications requiring high breakdown voltages.
It is characterized for use as:

140 VOLTS
25 WATTS

•

Driver for High Power Outputs

•

Series and Shunt Regulators

•

Audio and Servo Amplifiers

•

Solenoid and Relay Drivers

•

Power Switching Circuits

r

MAXIMUM RATINGS

~

Rating

Symbol

Value

Unit

Collector-Emitter Voltage

VCEO

Collector-Base Voltage

VCBO

140
160

Vdc

Emitter-Base Voltage

VEBO

7

Vdc

IC

3
2
25
0.142
-65 to +200

Adc

Collector Current - Continuous

Base Current - Continuous

Total Power Dissipation@Tc
Derate above 2SoC

IB

= 2SoC

Po

Operating and Storage Junction
Temperature Range

TJ. T stg

Vdc

Characteristic

-------

If
E

SEATING PLANE

---F--

Adc

Watts

w/oe

°e
S

THERMAL CHARACTERISTICS
Thermal Resistance, Junction to Case

\=:=

I

Symbol
ROJC

I

Max
7

I

STYLE 1:
PIN 1. BASE
2. EMITTER
CASE: COLLECTOR

Unit

°elW

MILLIMETERS
MIN
X
11.94 12.70
C 6.
8.64
0
0.71 O.BB
E 1.7 1.91
f 24.33 24.43
G 4.93 5.33.
H 2.41 2.67
J 14.48 14.99
K 9.14
- 1.7
Q
3.61
3.86
8.89
S
T
- 3.68
15.75
U

DIM
B

INCHES
MI
MAX
0.470 0.500
0.2 0 0.340
0.D21 0.034
LO.QliO 0.075
0.958 0.962
0.180 .210
0.095 0.105
0.570 0.580
0.360 - 0.050
0.142 .1 2
0.350
0.145
0.620

-

All JEOEC O i _....d lAd Not. Apply.
CASE80-D2

TO. .

1-69

2N3441

III

ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)
Max

Symbol

Min

VCEO(sus)

140

Collector Cutoff Current
(VCE = 140 Ade, 18 = 0)

ICEO

-

100

Collector Cutoff Current

ICEX

-

5.0
6.0

Characteristic

Unit

OFF CHARACTERISTICS

Collector·Emitter Sustaining Voltage (1)
(lC = 100 mAde, 18 = 0)

(VCE
(VCE

= 140 Vde, V8E(off) = 1.5 V)
= 140 Vde, V8E(off) = 1.5 V@ 150°C)

mA
mA

-

Emitter Cutoff Current
(V8E = 7.0 Vde, IC = 0)

Vde

1.0

lEBO

mA

ON CHARACTERISTICS

DC Current Gain (1)

hFE

=0.5 Ade, VCE = 4.0 V)
(lc = 2.7 Ade, VCE = 4.0 V)
IIC

25
5.0

100

-

Coliector·Emitter Saturation Voltage (1)
(IC = 2.7 Ade, IB = 0.9 Adc)

VCE(,.t)

6.0

Vde

Base-Emitter On Voltage (1)
(lC = 2,7 Adc, V CE = 4.0 Vde)

VBE(on)

6.7'

Vde

DYNAMIC CHARACTERISTICS

Small-Signal Current Gain

IIc

hie

15

Ihfe l

5.0

75

=0.5 Ade, VCE = 4.0 Vde, f test = 1 kHz)

Small-Signal Current Gain
IIc = 0.5 Ade, VCE = 4.0 Vde, f test = 0.4 MHz)

FIGURE 1 - ACTIVE·REGION SAFE OPERATING AREA

O~~~~~
R
, ~ 'Qq"".r~O~
.t:±
<.-;}::"~t: $00'- ""':r'---,.r!---='O~O-?).r

~U

~

iCmax(Pulnd)- '.,

3.0 Ie max (Continuous)

...

-9J

~

,~

1I""s

1'IIrI

'Qq'-HO",-

~

There are two limitations -on the power-handling ability
of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate IC-VCE limits of the
transistor that must be observed for reliable operation, i.e.,
the transistor must not be subject~d to greater dissipation
than the curves indicate.
The data of Figure 1 is based on T J(pk) = 2000 C; T C is
vanable depending on conditions. At high case temperatures,
thermal limitations will reduce the power that can be handled
to values less than the limitations imposed by second breakdown.

"

11.0·~~~III~~:!o.~""~~~""'~-·~~~~bll""~m

§!'!:

...

~

O.5~

t--

Second Breakdown Limit - - -

0.2 t-- BondingWire limit
- •t- Thermal Limit Ii' TC=25°C - - I
I I I I III
I I
0.1 2.
20

03.0 ,5.0 7.0 10

~.

+--l--l-+""'H-r~~It--i

+-+-+++I+i--f,+

30 50 70 100 140

200

VCE, COLLECTOR·EMITTERVOLTAGE (VOLTS)

1·70

®

2N3442
2N4347

MOTOROLA

II.
5.0 AND 10 AMPERE

POWER TRANSISTORS
NPN SILICON

HIGH·POWER INDUSTRIAL TRANSISTORS

120, 140 VOLTS
100,117 WATTS

NPN silicon power transistors designed for applications in
industrial and commercial equipment including high fidelity audio
amplifiers, serres and shunt regulators and power SWitches.
•

Low Collector·Emltter Saturation Voltage -.
VCE(sat) = 1.0 Vdc (Max) @ Ie = 2.0 Adc - 2N4347

•

Collector·Emltter Sustaining Voltage VCEO(sus) = 120 Vdc (Mini - 2N4347
140 Vdc (Mini - 2N3442

•

Excellent Second·Breakdown Capability

L~'~1i
r~K

'MAXIMUM RATINGS
Rating

Symbol

2N4347

2N3442

Unit

120

140

Vdc

Collector-Base Voltage

Vceo
VCR

160

Vdc

Emitter-Base Voltage

VFR

Collector-Emitter Voltage

Collector Current - Continuous

140

Ie

5.0
10

10
15"

Adc

Base Current - ContInuous
Peak

16

3.0
8.0

7.0

Adc

Total Power DISSipation @TC - 25°C

PD

100
0.57

117
0.67

Derate above 25°C
Operating and Storage Junction

-

-65 to +200

TJ. T stg

PLANE

Vdc

7.0

Peak

E SEATINi-L

Watts
wloe
STYLE I:
PIN 1. BASE
2. EMITTER
CASE: COLLECTOR

°e

Temperature Range

DIM
A
B

THERMAL CHARACTERISTICS
Characteristic
Thermal ReSistance, Junction to Case

Svmbol

2N4347

2N3442

Unit

ReJC

1.75

1.5

°elw

"'Indicates JEDEC Registered Data.

C
D
E
F

G
H
J
K

""This data guranteed In addition to JEDEC registered data.

Q

R

MILLIMETERS
MIN MAX

-

-

39.37
21.08
7.62 0.250
l.D9 0.039
3.43
29.90
30.40 1.177
10.67
11.18 0.420
5.33
5.59 0.210
16.64 17.15 0.655
11.18 12.19 0.440
3.84
4.09 0.151
26.67
Collector connected to case
CASE 11·01
6.35
0.99

(TO·3)

1-71

INCHES
MIN
MAX
1.550
0.830
0.3DO
0.043
0.135
1.197
0.440
0.220
0.675
0.480
0.161
1.050

I

2N3442, 2N4347

ELECTRICAL CHARACTERISTICS

(TC

c

25°C unle.. otherwise noted)

Symbol

Characteristic

Min

Max

120
140

-

-

200
200

-

2.0
5.0
10
30

-

5.0

15
10
20
7.5

60

-

-

1.0
2.0
5.0

-

2.0
3.0
5.7

200
80

-

40
12

-

Unit

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage

2N4347
2N3442

Collector Cutoff Current
(VCE = 100 Vdc, IB = 0)
(VCE = 140 Vdc, 18 = 0)

Collector Cutoff CUrrent
(VCE = 125 Vdc, VBE(off)
(VCE = 140 Vde, VBE(off)
(VCE = 120 Vde, VBE(off)
(VCE = 140 Vde, VBE(off)

Vde

VCEO(sus)

(lc = 200 mAde, 18 = 0)

mAde

ICEO
2N4327
2N3422

mAde

ICEX

= 1.5 Vde)

2N4347
2N3442
2N4347
2N3442

= 1.5 Vdc)
= 1.5 Vdc, TC = 150°C)
= 1.5 Vde, TC = 150°C)

Emitter Cutoff Current
(V8E = 7.0 Vde, IC = 0)

-

mAde

lEBO
2N4347,2N3442

ON CHARACTERISTICS (1)
DC Current Gam

(lC
(lC
(lc
(lC

-

hFE

= 2.0 Adc, VCE = 4.0 Vde)
= 5.0 Adc, VCE = 4.0 Vdc)
= 3.0 Adc, VCE = 4.0 Vde)
= 10 Adc, VCE = 4.0 Vdc)

2N4347
2N4347
2N3442
2N3442

Collector-Emitter Saturation Voltage
(lC = 2.0 Ade, IB = 200 mAde)
(lC = 5.0 Adc, I.e = 0.63 Ade)
(lC = 10 Adc, 18 = 2.0 Ade)

70

Vdc

VCE(sat)
2N4347
2N4347
2N3442

Base-Emitter On Voltage

Vdc

VBE(on)

(lC = 2.0 Ade; VCE = 4.0 Vde)
(lC = 5.0 Ade, VCE = 4.0 Vdc)
(lc = 10 Ade, VCE = 4.0 Vdc)

2N4347
2N4347
2N3442

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(lC = 0.5 Ade, VCE = 4.0 Vde,
(lC = 2.0 Ade, VCE = 4.0 Vdc,

(2)
f test '= 50 kHz)
f test = 40 kHz)

kHz

fT
2N4347
2N3442

Small-Signal Current Gain
(lC = 0.5 Adc, VCE = 4.0 Vde, f = 1.0 kHz)
(lC = 2.0 Adc, VCE = 4.0 Vde, f = 1.0 kHz)

-

hfe
2N4347
2N3442

"'Indicates JEDEC Registered Data

NOTES: 1. Pulse Test: Pulse Width = 300 "S, Outy Cycle';; 2.0%.
2. fT = Ihfel • f test

FIGURE 1 - POWER DERATING

§

1.0

1""'-

N

:::;

i1

~

"-

0.8

i!;

.........

z

""

o

~ 0.6

1ii
Ci

1:1:

~

0.4

t'-..

""

~

~ 0.2

~'"

If! 0

o

- " 1---

ZS

.........

so

7S
100
lZS
TC. CASE TEMPERATURE (OC)

1-72

i"--

ISO

"17S

""

ZOO

72

2N3442, 2N4347

ID

ACTIVE REGION SAFE OPERATING AREA INFORMATION

FIGURE 2 - 2N3442
20

;;:

10

"

70
50

5

0-

z

50jJ$
de

w

'"'"
B
'"0

3.0

8·

~

07

o?

05

20
10

f=

-

--

--

CURRENT LIMIT

There are two limitations on the power-handling ability

03
50 70
50 70 10
20
3ll
VCE, COLLECTOR·EMITTER VOLTAGE IVOLTS}

100

of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate Ie-VeE limits of the

200

transistor that must be observed for reliable operation, i.e.,

the transistor must not be subjected to greater diSSipatIon
than the curves indicate.
The data of Figures 2 and 3 is based on TJ(pk) = 200 0 C; TC
IS

FIGURE 3 - 2N4347
10
70

30,j..!$
50#

1-73

0
2.0

1111
5.0

10

, 20
50
100
200
IB, lASE CURRENT ImA}

500

1.0k

2.0 k

2N3445
thru
2N3448

®

OJ

MOTOROLA

HIGH-SPEED SILICON ANNULAR
NPN POWER TRANSISTORS

7.5 AMPERE

· .. for switching and amplifier applications

POWER TRANSISTORS
SILICON NPN

FEATURES

• Fast Switching: Total Switching Time = 1.21J.s (Typ) @ 5.0 A
• High Gain: HFE =40 to 120@ 5.0 Amps (2N3447·48)
• Guaranteed DC Safe Area: 1.5 Amps (Min) @ VCE = 40 Vdc
• Low VeE (sat)' 1.0 Volt (Typ). 1.5 Volts (Max) @ 5.0 Amps
• Excellent Beta Linearity

60-80 VOLTS
115 WATTS

APPLICATIONS

• Specified safe area of this series allows reliable design for inverters.
converters. hammer. and servo drivers.
• Fast response makes it ideal for series regulators; high switching
speeds enhance its use in switching regulators.
• Wide bandwidth and flat beta hold·up result in exceptional ampli·
fier characteristics.

MAXIMUM RATING
Rating
Collector-Emitter Voltage

Symbol

2N3445
2N3447

2N3446
2N3448

Unit

80

Vdc

VCEO

60

Collector-Base Voltage

Vce

80

100

Vdc

Emitter·Base Voltage

VEe

6.0

10

Vdc

Collector Current-Continuous

IC

7.5

Base Current - Continuous

IB

4.0

Adc

Total Device Dissipation
Operating Junction Temperature

Po

Figure 1.2 Figure 1.3

Watts

TJ

-65 to +200

°c

Adc

Range

FIGURE 1 - POWER DERATING CURVE

Ii :~f"'r~Ni+t8
o

25

50

75
100
125
Te. CASE TEMPERATURE (OC)

150

175

200

STYLE 1:
PIN 1. BASE
2.EMITIER
CASE: COLLECTOR

DIM
A

8
C
0
E

MILLIMETERS
MIN MAX

6.35
0.99

F 129.90
G 10.67
H 5.33
J 16.64
K 1.18

These transistor. are also subject to 8afe ar•• curves as Indicated by Figures 2.
3. Both limits are applicable and must be observed.

n

R

NOTE:
1. DIM "U"IS OIA.

39.37
21.08
7.62
1.09
3.43

INCHES
MIN
MAX

-

-

0.250
0.039

-

30.40

1.177
11.8 0.420
5.59 0.210
17.15 0.655
12.19 0.440
3.84 . 4.09 0.151
26.67

-

Collector connected to case.
CASE 11·01

(TO-3)

1-74

1.550
0.830
0.300
0.043
0.135
1.197
0.440
0.220
0.675
0.480

O.lSl
1.050

2N3445 thru 2N3448

ELECTRICAL CHARACTERISTICS (TC ~ 25°C unle.. otherwise notedl

(VEB = 6 Vdel
(VEB = 10 Vdel
Collector-Emitter Cutoff
(VCE = 60 Vde, VeE
(VCE = 60 Vde, VeE
(VCE = 80 Vde, VBE
(VCE = 80 Vde, VBE

Min

Symbol

Characteristic

Emitter-Base Cutoff Current
2N3445,2N3447
2N3446,2N3448
Current
= -1 Vdel
= -1 Vde, TC - 1500 CI
= -1 Vdel
= -1 Vde, TC = 1500 CI

Typ

-

-

0.25
0.25

-

-

0.1
1.0
0.1
1.0

-

-

1.0
1.0

80
100

-

-

60
80

-

-

-

20
40
20
40

45
85
40
75

60
120

-

0.6
0.8

1.5
1.5

-

1.0
1.0

1.5
1.5

-

1.0
1.0

1.5
1.4

20
40
1.0

-

100
200

1.6

-

-

260

400

-

ICEX
2N3445, 2N3447
2N3445,2N3447
2N3446,2N3448
2N3446, 2N3448

Collector-Emitter Cutoff Current

Max

mAde

mAde

ICEO
2N3445,2N3447
2N3446, 2N3448

(VCE = 40 Vde, Ie = 01
(VCE = 60 Vde, Ie = 01

Collector-Base Breakdown Voltage
(lC·l mAde, IE =01

Vde

eVCBO
2N3445,2N3447
2N3446, 2N3448

Collector-Emitter Sustaining Voltage

Vde

VCEO(susl

(lC = 100 mAde, Ie = 01

2N3445,2N3447
2N3446,2N3448

DC Current Gain

hFE
2N3445,2N3446
2N3447,2N3448
2N3445, 2N3446
2N3447,2N3448

(lc = 0.5 Ade, VCE = 5 Vdel
(lc = 3 Ade, VCE = 5 Vdel
(lC = 5 Ade, VCE = 5 Vdel

Collector-Emitter Saturation Voltage
2N3445, 2N3446
2N3447,2N3348

Base-Emitter Saturation Voltage

Vde

VeE(s.tI

(lC = 3 Ade, Ie = 0.3 Adel
(lc = 5 Ade, Ie = 0.5 Adel

2N3445,2N3446
2N3447,2N3338

Base-Emitter Voltage

Vde

VBE
2N3445,2N3446
2N3447,2N3448

(lC = 3 Ade, VCE = 5 Vdel
(lC = 5 Ade, VCE = 5 Vdel

Small Signal Current Gain

-

hie

(VCE = 10 Vde, IC = 0.5 Ade, f = 1 KHzl

2N3445, 2N3446
2N3447,2N3448
All Type.

(VCE = 10 Vde, IC = 0.5 Adc, f = 10 MHzl

Common Base Output Capacitance

pf

Cob
All Type,

(VCB = 10 Vdc, f = 0.1 MHzl

Switching Times
(VCC = 25 Vdc, RL = 5 ohm., IC = 5 A,lel = le2 = 0.5 AI
Delay Time plus Rise Time

-

Vde

VCE(s.tl

(lC = 3 Ade, 18 = 0.3 Adel
(lC = 5 Ade, 18 = 0.5 Adel

Unit
mAde

lEBO

1"

-

'd + t,

Storage Time

0.15
0.9
0.15

-

t,
tf

Fall Time

0.35
2.0
0.35

SAFE OPERATING AREAS
FIGURE 2 - 2N3445, 2N3447

FIGURE 3 - 2N3446, 2N3448

10
7.0
5.0

,

.......

3.0
2.0

....

OC ......

...........

5m,,, ---

1.0
0.7
0.5

~

\

\

'"

t-- r-- DC /

,

"'-

:'11sec>

~ __JA l\

Imsec

Imsec

0.3
0.2

- - 250

0.1
TJ~ - 175°C
0.07
25°C
J
0.05
0.01 1...._ ....._ _....._ ....._ _....._ ....._ .....1

to
""---T

o

10

20

30

....

0.5 msec

;;ec",

_

(~250~

E TT
1=---

J
J

, 175°C
25°C

I

I

I

50

60

70

of

40
50
60
o 10 20 30
VeE, COLLECTOR·EMITTER VOLTAGE (VOLTS)

1-75

40

(
80

The Safe Operating Area
Curves indicate IC - VCE
limits below which the device will not go into secon·
dary breakdown. Collector
load lines for specific cir·
cuits must fall within the
applicable Safe Area to
avoid causing a collectoremitter short. (Duty cycle
of the excursions make no
significant change in these
safe areas.) To insure operation below the maximum
T J the power-temperature
deiating curve must be observed for both steady state
and pulse power conditions.

2N3583 thru 2N3585, 2N4240
2N6420 thru 2N6423 PNP

NPN

®

MOTOROLA

1.0 AND 2.0 AMPERE
COMPLEMENTARY MEDIUM-POWER HIGH VOLTAGE
POWER TRANSISTORS

POWER TRANSISTORS
COMPLEMENTARY SILICON
250-500 VOL TS
35 WATTS

· .. designed for high-speed switching and linear amplifier applications for high-voltage operational amplifiers, switching regulators,
converters, inverters, deflection stages and high fidelity amplifiers.

•

Collector-Emitter Sustaining Voltage VCEO(sus) = 175 to 300 Vdc @ IC = 200 mAdc

•

Second Breakdown Collector Current Islb = 350 mAdc @ VCE = 100 Vdc - NPN
= 150 mAdc @ VCE = 100 Vdc - PNP

•

Usable DC Current Gain to 2.0 Adc

P

Symbol

Rating
Cotlector-Emitter Voltage

VCEO

Collector-Base Voltage

VCB

Emitter-Base Voltage

VEB

Collector Current Continuous

IC

Peak (1)

Base Current

IB

Total Power Dissipation

Po

@TC=250C,
Derate above 25°C

Operating and Storage Junetion Temperature Range

1=:=

4- -------

*MAXIMUM RATINGS

TJ,Tstg

2N3583 2N3584
2N6420 2N6421
175

.

250

1.0
5.0

.

2N3585
2N6422

2N4240
2N6423

Unit

300

300

Vdc

500

Vdc

250
375

-.

500

--

6.0
2.0
5.0

-.

1.0

-...

-..

35
0.2
-65 to +200

Vdc
Adc

Characteristic

I

Symbol

1

R8JC

1

1

Max
5.0

I

I

*lndicatesJEDEC Registered Data

(1) Pulse Test: Pulse Width = 5.0 mo, Duty Cycle .. 10%.

E

I SEATING PLANE
ST~~NEi.'BASE

0

---F--

2. EMITTER
CASE: COLLECTOR

a

Adc
Watts

L
H

W/oC
°c

THERMAL CHARACTERISTICS
Thermal Resistance, Junction to Case

t !

Unit

°C/W

s
MILLIMETERS
DIM MIN MAX
B 11.94 12.70
6.35 8.64
C
D
0.71
0.86
1.27
1.91
E
F 24.33 24.43
4.83
5.33
G
2.67
H 2.41
J 14.48 14.99
K
9.14
P
1.27
3.61
3.86
0
8.89
S
3.68
T
U
- 15.75

-

INCHES
MIN MAX
0.470 0.500
0.250 0.340
0.028 0.034
0.050 0.075
0.958 0.962
0.190 0.210
0.095 0.105
0.570 0.590
0.360
0.050
0.142 0.152
0.350
- 0.145
- 0.620

All JEDEC Dimensions and and Notes Apply.
CASE 80-02
TO·66

1-76

'c

2N3583 thru 2N3585. 2N4240 - NPN
2N6420 thru 2N6423 - PNP

ELECTRICAL CHARACTERISTICS ITC" 25°C unless otherw"e noted.I

Characteristic
'OFF CHARACTERISTICS III
Collector-Emitter Sustamlng Voltage

IIC
IIc

= 200 mAde, 18 = 01 NPN
= 50 mAde, 18 = 01 PNP

2N3583 2N6420 VCEOlsusi
2N3584 2N6421
2N3585 2N6422
2N4240 2N6423

Collector Cutoff Current

= 01

IVCE" 150 Vde, 18

'IVCE" 225 Vde, VSEloffl" 1.5 Vde, TC" 150uCI
IVCE" 300 Vde, VSEloffl" 1.5 Vde, TC" 1500 CI

--

-

175
250
300
300

-

-

10
5.0
5.0
5.0

2N6420
2N6421
2N6422
2N6423
2N6420
2N6421
2N6422
2N6423

-

-

10
5,0
5,0
5.0
mAde

ICE X
2N3583
2N3584
2N3585
2N4240
2N3583
2N3584
2N3585
2N4240

-

1.0
1.0
1,0
2.0
3.0
3.0
3,0
5,0

-

-

5,0
0.5
0.5
0.5

-

5.0
0.5
0.5
0.5

40

-

40

-

40
10
30
S.O
8.0
10
25
25

200
100
150
80
80

40
10
30
8.0
8.0
10
25
25

200
100
150
80
80

-

1.0
5.0
0.75
0.75

-

1.0
5.0
0.75
0,75

-

-

-

1.0
1.0
1.0
2.0
3,0
3,0
3,0
5,0
mAde

IESO
2N3583
2N3584
2N3585
2N4240

2N6420
2N6421
2N6422
2N6423

Vde

-

mAde

-

2N6420
2N6421
2N6422
2N6423

Emitter Cutoff Current

IVSE " 6.0 Vde, IC " 01

-

ICEO
2N3583
2N3584
2N3585
2N4240

Collector Cutoff Current

IVCE" 225 Vde, VSEloffi " 1.5 Vdel
IVCE" 340 Vde, V8Eloffl" 1,5 Vdel
IVCE" 450 Vde, VSEloffi "1.5 Vdel

175
250
300
300

-

ON CHARACTERISTICS III
DC Current Gain

All

All

*IIC" 0.5 Ade, VCE" 10 Vdel
*lIc "0.75 Ade, VCE "2.0 Vdel
IIc "0.75 Ade, VCE " 10 Vdel
*IIC" 1.0 Ade, VCE" 2.0 Vdel
IIC" 1.0 Ade, VCE" 10 We)

2N3583
2N4240
2N4240
2N3584
2N3585
2N3583*
2N3584
2N3585

2N6420
2N6423
2N6423
2N6421
2N6422
2N6420
2N6421
2N6422

2N4240
2N3583
2N3584
2N3585

2N6423
2N6420
2N6421
2N6422

*Collector-Emltter Saturation Voltage

IIC" 0.75 Ade, IS" 75 mAdei
IIC" 1.0 Ade, IS = 125 mAdel

*Base-Emitter Saturation Voltage
IIC" 0.75 Ade, IS = 75 mAdel
IIc = 1.0 Ade, IS = 100 mAdei
Base-Emitter On Voltage

Ilc

= 1.0 Ade,

VCE

-

hFE

IIC" 0.1 Ade, VCE" 10 Vdel

100
100

100
100
Vde

VCEls.tl

-

-

Vde

VSElsat)
2N4240
2N35S4
2N3585

2N6423
2N6421
2N6422

All

All

= 10 Vdel

*Indicates JEDEC Registered Data.
= 300 I'S, Duty Cycle .. 2%,

11 I Pulse Test: Pulse Width

1-77

VSElonl

-

-

I,S
1.4
1.4

-

I.S
1.4
1.4

-

1.4

-

1.4

Vde

2N3583 thru 2N3585. 2N4240 - NPN
2N6420 thru 2N6423 - PNP

ELECTRICAL CHARACTERISTICS ITc

III

=

25 0 C unless otherwISe noted.)

Characteristic
DYNAMIC CHARACTERISTICS
*eurrent Gain - Bandwidth Product

(lC

= 200 mAde, VCE = 10 Vde,

Output Capacitance
IVCB = 10 Vde, IE

f test

=5.0 MHz)

2N6420
2N6421
2N6422
2N6423

10

-

10

-

15

-

15

pF

Cob

= 0, f = 1.0 MHz)

All

*Small·Signal Current Gain

(lC

MHz

fT
2N3583
2N3584
2N3585
2N4240

= 100 mAde, VCE = 30 Vde, f = 1.0 kHz)

-

120

-

120

25

350

25

350

-

3.0

.-

3.0

-

0.5

-

0.5

-

4.0

-

4.0

-

6.0

-

6.0

-

3.0

-

3.0

-

3.0

-

3.0

-

hfe
2N3583

2N6420

2N3584
2N3585
2N4240

2N6421
2N6422
2N6423

2N3584
2N3585
2N4240

2N6421
2N6422
2N6423

2N3584
2N3585
2N4240

2N6421
2N6422
2N6423

'SWITCHING CHARACTERISTICS
Rise Time

IVCC = 200 Vde, IC
IBl = 100 mAde)
IVCC = 200 Vde, IC
IBl = 75 mAde)

= 1.0 Ade,
= 0.75

RL

= 200 Ohms,

Ade, RL

= 267 Ohms,

Ir

Storage Time

IVCC = 200 Vde, IC = 1.0 Ade,
IBl = IB2 = 100 mAdel
IVCC = 200 Vde, IC = 0.75 Ade,
IBl = IB2 = 75 mAde)
Fall Time
IVCC = 200 Vde, IC = 1.0 Ade,
IBl = IB2 = 100 mAde)
. (VCC = 200 Vde, IC = 0.75 Ade,
IB 1 = IB2 = 75 mAde)

Is

~s

~s

tf

~s

Second Breakdown Collector Current

IVCE = 100 Vde)

* Indicates JEDEC Registered Data
111fT = Ihf.leftest.

FIGURE 1 - SWITCHING TIME TEST CIRCUIT

Vee

RS

51

01

tr,tf~10ns

DUTY CYCLE = 1.0%
-4V
RB and RC VARIED TO OSTAIN DESIRED CURRENT LEVELS
01 MUST BE FAST RECOVERY TYPE, '9:
MB05300 USED ABOVE IS ~ 100 rnA
MSD6100 USED BELOW IS ~ 100 rnA
FOR Id and 'r, OilS DISCONNECTED AND V2 = O.
FOR PNP TEST CIRCUIT, REVERSE DIODE AND VOLTAGE POLARITIES.
"

,

1-78

2N3583 thru 2N3585. 2N4240 - NPN
2N6420 thru 2N6423 - PNP

NPN
2N3583 thru 2N3585,2N4240

PNP
2N6420 thru 2N6423
FIGURE 2 - TURN-{)N TIME

1.0

I.

057~1'
,,['...

0.3

!

r-....

,,~

0.2

!w

VCC - 200 V
ICliB 50
IC/IB 10
TJ = 25°C

r'

o7

r---

0.3

......

0.07 f=ld@
.; 0.05 ~VBE(olf) = 0

......

003

50

70

100

200

300

500 700

10k

VTTiO,

0,01

2.0 k

20

r---

1/

td@

30

IC, COLLECTOR CURRENT (mAl

'"

50

70

"

"

0.02

'30

t:::

0.03 ' - -

........

~

I,

~

O. 1
>':0,0)
- 0.05

i'..

.......

~

t--

r0-

vcc - 200 V
-lcliB =50
ICliB = 10
TJ '" 25 0C

........

r--

0.2

"-

0.02
0.0 1
20

t7
/

I,

0.5

~ f=

\7r-.

O. 1

O~

~ f=

100

100

300

500 7001 Ok

IC, COLLECTOR CURRENT (mAl

--

2.0 k

FIGURE 3 - TURN-OFF TIME

0

10
7.0
5.0

-

3.0
2.0

VCC 200 V
IcliB = 5.0
Ic/lB = 10
TJ 25°C

I,

I'..

......
.......

0.3

0
2. 0

"'"

I,

;:;:; 1. 0

!

-

0.3

:::,..,tf

.... ,

o. 7

-' O. 5

I-

;--.-..,

........

"[

01
O. I
20

-

5. 0

i"'-o-

7
0.5

VCC 200 V
Ic/IB-50=
Ic/IB=IOTJ = 250C-

7. 0

0.2

-

II

O. 1
30

50

70

100

200

300

500 700 1.0 k

20

2.0k

30

50

70

FIGURE 4 -

100

200

300

500 700 1.0 k

2.0 k

IC, COLLECTOR CURRENT(mAI

IC, COLLECTOR CURRENT (mAl

CURRENT,GAIN - BANDWIDTH PRODUCT

FIGURE 5 -

CAPACITANCE

1000
1000

-

700
~ 500

;; 300

~

>U

200

,

TJ = 25°C

r-_
.....

'" r-- r-

Cob

~ 100

~. 70

50

-'

NPN
30 _ - I N ,
20
0.1
0.2

05

10

2.0

50

10

VR, REVERSE VOLTAGE (VOLTSI

IC, COLLECTOR CURRENT (mAl

1-79

10

50

100

2N3583 thru 2N3585. 2N4240 - NPN
2N6420 thru 2N6423 - PNP

FIGURE 6 w
u

THERMAL RESPONSE

1. 0

~

O.71=0'0.5

o.5
o. 3
o. 2

~
~

;

~§

t;;;;

0.2

V

::::! o. I

0.1

!:!! ~ 0.071=

0.05

z'"'

'fln

~!'

....... ~

L

-C J

~

"0

~!; ~.D5

II

f-

0.02

0.03

::
>

'o:it'""
0.02f:=

i

.

P(pk)

"""
~

ReJclt)'rlt)
ReJC
ReJC • 5.0aCIW
0 CURVES APPLY FOR POWER' PULSE TRAIN SHOWN

=

=
=

READ TIME ATII
TJ(pk)." TC' P(pk) ReJc(t)

12

DUTY CYCLE, 0 -11/12

A

Y

0.0 Ii-"'"
0.01

~

I I 11111

SINGLE PULSE

0.02

0.1

0.05

1.0

0.5

0.2

2.0

I I

10

5.0

20

50

200

100

500

1000

t, TIME(m~

ACTIVE-REGION SAFE OPERATING AREA
FIGURE 8 - 2N6420 thru 2N6423

FIGURE 7 - 2N3583 thru 2N3686, 2N4240
0

~

2.0

~

1.

0

8 o.

5

2N3583 LIMIT

t==+=t=+ TC' 25aC
-----

.. 0.2

~

O. 1 ~E!='

80.0

=1=

5

J-

1.~s'" P"-j)...

~

5.0 IrIS
BONDING WIRE LIMIT
THERMAL LIMIT (SINGLE PULSE)
SECOND 8REAKDOWN LIMIT . I
CURVES APPLY 8ELOW
'
RATED VCEO

.00",

.....

.
o

u

!:!

10

20

30

50

70

O.

5~TC-25ac

5.0m.

de
- BONDING WIRE L1MITF-'" I
2 - - - THERMAL LIMIT (SINGLE PULSE)
- - - SECOND BREAKDOWN LIMIT

3.0

11'1
5.0 7.0

10

"
1'\.\

BELOW

0.05

0.0 1
200 300

100

k-::

1.0

0.02

II II

II

500",

1.0m;~ I"'--to-.

2N64Z11 LIMIT

~ :: '~ ~ EECU=~~~Jc~~

~

2N3583
2N3584
2N3585&2N4240

5.0 7.0

~ 2.0

~

""

......

0::

B

de

100", 200';:::

5.0

200!"_

!:!
0.02
0.0 I
3.0

0

100",~

.....

5.0

2N6420
2N6421
fNf4f2..~3

I
20

"

30

50

70

100

200 300

VCE, COLLECTDR·EMITTER VOLTAGE (VOLTS)

VCE, COLLECTOR·EMITTER VOLTAGE (VOLTS)

FIGURE 9 - POWER DERATING

100

"'"

0

~

~
...........

...........
...........

'"

~

"-

'60

'"z

a

.."~

SECJNDL
BREAKDOWN DERATING

r--

.....;

r--

"-

THERMAL "DERATING

40

""'"

20

.........

o

o

20

40

60

80

100

120

TC, CASE TEMPERATURE (aC)

140

160

""

lBO

200

There are two limitations on the power handling ability of a

transistor: average junction temperature and second breakdown.
Safe operating area curves indicate Ie-VeE limits of the transistor
that must be observed for reliable operation; i.e., the transistor must
not be subjected to greater dissipation than the curves indicate.
The data of Figures 7 and 8 is based on T C = 25°C; TJ(pk)
is variable depending on power level. Second breakdown pulse
limits are valid for duty cycles to 10% but must be derated for
temperature acoording to Figure 9.
TJ(pk) may be calculated from the data in Figure 6. At high
case temperatures, thermal limitations will reduce the power that
can be handled to values less than the limitations imposed by
second breakdown. Second breakdown limitations do not derate
the same as thermal limitations. Allowable current at the Voltages
shown on Figures 7 and 8 may be found at any case temperature
by using the appropriate curve on Figure 9.

1-80

2N3583 thru 2N3585 • 2N4240 - NPN
2N6420 thru 2N6423 - PNP

300

~ 70
50
30

g

20

FIGU/lE 10 - DC CURRENT GAIN
300
TJ" IS0'C
200
2S'C

t--.

,

C

'"

'"

1.

50

30

70 100
200 300
SOO 700 1.0 k
IC, COLLECTOR CURRENT (mAl

~ -~

I

o

20

SO

30

200 300
SOD 700 1.0 k
70 100
IC, COLLECTOR CURRENT (mAl

FIGURE 11 - COLLECTOR SATURATION REGION
1.0
in
T]

12~JJ

II I
\

o.B

3.0

2.0 k

'"
'"

~

0.8

<{

D. 6

.\
0.4

g_ o.

\
-lnOolmi

ri

N-Wl

0

>

7S0
mA

SOD mA

2

1.0

2.0

S.O

dill10

1000 mA

SO

100

200

\

'"
o

r-.. . . . rr- I-

r-

7S0 mA

~ 0.4

~

20

0.6

'"
~

2S0mA \

8

~

1000 mA

~

~

SOO mA

1.0

J1 L
II I

TJ" 25'C

O.B

VBE(satl @ICIIB " 5.0

0.2

8
o

SOO 1000

100
Ifll1

0.5

1.0

II II"-.

t ... r
2.0

S.O

0.6

VBE@VCE"2.0V

_....

FIGURE 12 - "ON" VOLTAGES
1.0

/. V

O.B

1

ICIIB"

0.4

-

>'

O. 2

VCE(satl

o
20

30

50

70 100

200

-,..,

300

LI 1
II I

TJ = 25°C

,/

~

i5

I

o

>

10

20

So

-

100,

200

SOO

IB, BASE CURRENT (mAl

i---

?

'"~

--

\
...... 1= ~I-

250mA

IB, BASE CU RRENT (mAl

~o

2.0 k

}2S'~

+J

o

o

~
r:i:

10

~

<{

'~"

," ,"

30

7.0
S,O

o

w

20

= Iss'c

0

"- ~

7.0
50
3.0
20

?

B
'-'

W
~ 10

t;;

'"

~

~

~

100
1=
70
SO

z
;;0

I-- -55
~ r-

- - VCE "2.0V
VCE" 10 V

-VCE"20V
-VCE" lOV

25°C

F=

z 100

~

PNP
2N6420 thru 2N6423

r- TJ "1150~

200

§

NPN
2N3583 thru 2N3585,2N4240

VBE(satl @ICIIB" 5.0

0.6

VBE@VCE"2,OV

?

Jt

--

...-:

w

IOL
I5':,1

~

~ 0.4

ICIIB = 10

o

>

/2t-

:>

,.,.

0.2
I-VCE(satl

500 700 1.0 k

o

2.0 k

20

IC, COLLECTOR CURRENT (mAl

30

50

70

100

200

300

1-81

A

IJ

500 700 1.0 k

IC, CDLLECTDR CURRENT (mAl

NOTE, DC CURRENT LIMIT FOR 21\13583, 2N6420 is 1.0 Amp ..

5.0

p-

.f'f'2.0
2.0 k

2N3713 thru 2N3716

NPN

MOTOROLA

SILICON NPN POWER TRANSISTORS

10 AMPERE

· .. designed for medium·speed switching and amplifier applications.
These devices feature:

POWER TRANSISTORS
SILICON NPN

• Total Switching Time at 3 A typically 1.15 fJ.s

6Q.BOVOLTS
150 WATTS

• Gain Ranges Specified at 1 A and 3 A
•

Low VCE(sat)' typically O.5V at IC

•

Excellent Safe Operating Areas

~

5A and 18

~

O.5A

• Complement to 2N3789·92

MAXIMUM RATINGS
Rating
Coliector·Base Voltage

Collector·Emltter Voltage
Emitter·Base Voltage

Collector Current

Symbol

2N3713
2N3715

2N3714
2N3716

Unit

VCB

80

100

Volts
Volts

VCEO

60

80

VEB

7.0

7.0

Volts

IC

10

10

Amps

Base Current

IB

4.0

4.0

Amps

Power Dissipation

Po

150

150

Watts

9JC
TJ and
Tstg

1.17

1.17

°C/W

Thermal Resistance
Operating Junction and
Storage Temperature Range

-65 to +200

lr~
r~-K
ESEATIN!~
PLANE

°c

I

FIGURE 1 - POWER·TEMPERATURE DERATING CURVE
STYLE 1:
PIN 1. BASE
2. EMITTER
CASE: COLLECTOR

160
140

~

..................

120

............

~ 100

...............

52

::

~

B5

~

.e

DIM

80

...............

60

...............

40

...............

20

...............

0
0

25

50

75

100

125

150

175

200

Tc. CASE TEMPERATURE I'CI
Safe Area Limits are indicated by Fiaures 12. 13. Both limits are applicable and must be observed.

MILLIMETERS
MIN MAX

NOTE:
1. OIM "0" IS DIA.

INCHES
MIN
MAX

-

39.37
1.550
21.08
0.830
6.35
7.62 0.250 0.300
0.99
1.09 0.039 0.043
3.43
0.135
29.90
30.40 1.177 1.191
10.61
11.18 0.420 0.440
5.33
5.59 0.210 0.220
16.64 11.15 0.655 0.615
11.18 12.19 0.440 0.480
Q
4.09 0.151 0.161
3.84
R
26.61
1.050
ColI.ctor connected to c....

A
8
C
D
E
F
G
H
J
K

CASE 11·01
(TO·3)

1-82

2N3713 thru 2N3716 NPN

ELECTRICAL CHARACTERISTICS ITC = 25°C unless otherwise noted)

Characteristic
Enhtter-Base Cutoff Current
(VEB " 7 Vdc)

All Types

Collector-Emitter Cutoff Current
(V CE = 80 Vde, VEE = -1:5 Vde)
(VCE " 100 Vdc, VBE:" -1.5 Vde)
(VCE = 60 Vde, VEE" -1.5 Vde, TC = 150 0 C)
(VCE =80 Vde, VBE " -1.5 Vde, TC = 150°C)

2N3713, 2N3715
2N3714, 2N3716
2N3713,2N3715
2N3714, 2N3716

Collector-Emitter Sustaining Voltage.
IIc = 200 mAde, IB " 0)

.

DC Current Gain
IIc = 1 Adt'. VCE
IIc = 3 Ade, VCE

=2

Symbol

Min

Max

lEBO

-

5

-

1
1
10
10

60
80

-

I CEX

VCEO(sus)'

2N3713, 2N3715
2N3714, 2N3716

mAde
mAde

Vde

-

hFE '
Vdc)

= 2 Vde)

Collector-Emitter Saturation Voltage
IIC" 5 Ade, IE " 0.5 Ade)

2N3713,
2N3715,
2N3713,
2N3715,

.

25
50
15
30

2N3714
2N3716
2N3714
2N3716
VCEls.t) •

2N3713, 2N3714
2N3715, 2N3716

Base-Emitter Saturation Voltage '"
(Ic = '5 Ade, IE = 0.5 Adc)

VBE( ••t)

2N3713, 2N3714
2N3715,2N3716

Base-Emitter Voltage '"
(IC = 3 Adc, VCE = 2 Vdc)

AU Types

Small Signal Current Gain
(VCE = 10 Vdc, IC = 0.5 Adc, f = 1 MHz)

All Types

VEE

*

.

hfe

90
150

-

-

Vde

-

1.0
O.B

-

2.0
1.5

-

1.5

4

-

Vde

Vdc

-

Typ

Switching Times (Figure 2)

IIlii.: i~!Bl " IB2

Unit

= 0.5 Adc)

0.45
0.3
0.4

tr
t.

Storage Time
Fall Time

IlS

If

·Use sweep test to prevent overheating

FIGURE 2 - TYPICAL SWITCHING TIMES
1.5

TEST CIRCUIT

---.I

.."
f(l

>!

I

,-

~-

30

"

s

Ie = 5A, I" = I" = 0.5A
f~ 150 cps DUTYCYCLE=2%

WAVESHAPE
AT POINT A

07

3-

I&... 1

::Lrl
j
1.-, -..1.-4.8

+11.5;;'1

t,

1.0

.......

.",
.........

0.5

~

'i;-

0.3

-9V

r--..

'--

.....

f:::: r-- ~I~

0 ..

_1.7rns·

rns

10011
lW

A

0.2

1

0

0.2

:~

2011
IW

90011

III jl82

0.1

01

+30V

0.3

05

0.7

1.0

2.0

3.0

5.0

":'"-9V

Ie, COLLECTOR CURRENT (AMPSI

1-83

10011

2N3713 thru 2N3716 NPN

-

FIGURE 3 - COLLECTOR CURRENT versus BASE CURRENT

10
7.0
5.0

10
7.0
5.0 ; - 2113713,2113714
/

3.0
2.0

i

I

I
Jl

A~

1.0
0.7
0.5

i1!

J ~ 175°C'

,I

0.1
0.07
0.05

~

I

VCE=2V
SEE NOTES 1,2

25°C

i

0.3

:§

0.1
0.07
0.05

4Q°C
/.

0.03
0.02

~
~

~

i

~

0.5 1.0 2.0

5.0 10

I,

VCE - 2V
SEE NOTES 2

25°C
40°C

20

50 100 200

0.01

500 1000

i1

0.1 0.2

0.5 1.0

2.0

5.0

10

20

50 100 200

500 1000

I" BASE CURRENT (mAl

I" BASE CURREtfT (mAl

FIGURE 4 - BASE CURRENT·VOLTAGE VARIATIONS

FIGURE 5 - COLLECTOR CURRENT·VOLTAGE VARIATIONS

10

-;,r

f

-

..F/

V

VCE = 2V
SEE NOTE 2

/. 'l

V

100
70
50
I

30

V
rJ= 175°, 25°C 1//-400c

TJ = IWCI

~

"

II

U

I

2sJ. '-40°C

10
7.0
5.0

Jl

I

II

o

I
0.4

0.8

1.2

1.6

2.0

0.1

V,& BASE·EMITTER VOLTAGE (VOLTS)

I iI

I II

I

0.2

I

2.0

VCE =2V
SEE NOTE 2

0.7
0.5
0.3

3.0

IJ

I

i

~

20

1.0

V"V

TJ~ Ir~~~/

0.02

1000
700
500
300
200

d~

0.03

1/
0.1 0.2

V

0.2

I

0.01

2M3715,2N3716

1.0
0.7
0.5

ii:
!is

J

0.3
0.2

I--

3.0
2.0

o

I I
0.4

0.8

1.2

VIE, BASE·EMITTER VOLTAGE (VOLTS)

NOTE 1. Dotted line indicates metered base current plus the lOBO of the transistor at 17S·C •
NOlE 2. Pulso teat: pulse width """ 200 J&&eC, duty cycle """ 1.5%

1-84

1.6

2.0

2N3713 thru 2N3716 NPN

FIGURE 6 - COLLECTOR-EMITTER SATURATION VOLTAGE VARIATIONS

1.4

I

II

1.0

~

~
8

I
\

0.6

,'-

....

........

0.2

-;

:ff

, t----.

~

,

\

-

I

l- tle~

I

'"

0.4

----

'i.,.

\ I
\

,

2S"C40"C---17S"C
SEE NOTE 2

'\.

\

I

I

\

I
I

\
I

1\

0.8

~
~

I

t-

,

1,,-

,

1.2

o

10

-

20

"t'-

1.._

"-

"-

\

---- -

"";:, r--

so

30

.......

--

-- -

-70

r---

I)
I r Ie

3A

IA

Ie

100

5A

:---

300

200

SOO

700

2000

1000

I,. BASE CURRENT (mAl
FIGURE 7 - BASE-EMITTER SATURATION VOLTAGE VARIATIONS

1.4

@
~

~

1.0

;

0.8

ffi

0.6

~

0.4

iii

-

1.2

--

-

!=
~
-;

!

-

- - -- - --- - r= F-" - r---1 - rr
I~ Ie

- I--

-

-1- !--t-

r---

- - -- - --- -- - It
III

r--

3A

T,
2S"C- 40"C--17S"C-

lA

II

1-

Ie" SA

SEE NOTE 2 r----

-

0.2

o
20

10

30

70

SO

100

200

300

SOO

700

2000

1000

I" BASE CURRENT (mAl
FIGURE 8 - COLLECTOR CURRENT versus
BASE-EMITTER VOLTAGE

FIGURE 9 - COLLECTOR CURRENT versus
BASE-EMITTER RESISTANCE

100

10
7,0
5.0

L

I

3.0

~

I

I
.2

2.0

I

VeE ~ Vao -20V

SEEIIOlE12
1.0
0,7

TJ ~1175'C

0.5

~

/

5,0

iii

2,0

~

.2

D.3

0.1

-0.&

3,0

TJ-lOO'C
REVERS~-

==

TJ -17S'C

0,3

./

VeE

0.2

r-+-FORWMD

-0,4

I

1,0
0,5

0.2

v

10

I
l!5

./

50
30
20

O. I

D.4

T:

lOO'C
Iill.

10

100

1000

111~imm
10,000
100,000

R... EXTERNAL BASE-EMITTER RESISTANCE (OHMSI

VIE. BASE.£IIITlER VOlTAGE (VOlTS)

1-85

VCEO 20V

II.

2N3713 thru 2N3716 NPN

FIGURE 10 - CURRENT GAIN VARIATIONS

IE

125

TJ~IWCI

r-2N3713.2N3714

--

~

~~

75

§
a
j

,.....

.--

100

-

V

~

h _Ie-Icoo
FE-'e + leBO

~

25'C

-~

-I-

50

t--.r..........

""" ""........

r----........

4O'C

25

VeE

2V

.""

~

----

.........

r--o

.01

.02

.03

.05

.07

0.2

0.1

0.3

0.5

0.7

1.0

2.0

i""::

3.0

5.0

7.0

10

Ie, COLLECTOR CURRENT lAMPS)

1-2N3~15. ~N37161

200

~

~

a
j

...-V

100

SO

o

-

.01

TJ

-,...---

150

-

.02

r--

-

I--

.05

.03

~175'C

,-

h _Ie-leBO

FEi'B+lcBO

..... :--

25'~
r-

-J,c
.07

0.1

0.2

0.3

r-

r----I'--

-

0.5

0.7

VeE~

...........
I'--

r-......

2V

--

f-... ~
r-~ ~ ;:::"
2.0

1.0

3.0

5.0

7.0

10

Ie, COLLECTOR CURRENT lAMPS)

FIGURE 11 - CURRENT GAIN - BANDWIDTH PRODUCT versus COLLECTOR CURRENT

--

l - t-

----- -r--.....
~

~

VeE ~ 6V

o

0.1

0.2

0.3

0.5

0.7

1.0

Ie, COLLECTOR CURRENT IAMP.S)

1-86

2.0

3.0

...........

5.0

2N3713 thru 2N3716 NPN

SAFE OPERATING AREAS
FIGURE 13 - 2N3714. 2N3716

FIGURE 12 - 2N3713. 2N3715

III

10
\.0 r-;-

DC to 5m,

i"'..'\ '\ \
~\

15
~

1.0

f1l

0.7

~

.9

-

500,<, -

<'50 ,
V,
I'

OCto 5m,

"-

...-

" '\.

'\.

-'\."

'\.

\

\

~l\1\ \

lms

~

"\

-

\ j50,<, -

\ \\

'\.

\,

0.5

250,<,

\\ \'

'" 0

1m'

s

~

-

2501"

\

"" K\\I\

,.

~

5001"

\ \'
,\,,\

\'

'\.\,\

0.3

~

0.2

0.1

o

10

20

30

40

50

60

70

10

20

30

40

50

60

70

80

90

VeE, COLLECTOR-EMITTER VOLTAGE (VOLTS)

The Safe Operating Area Curves indicate Ie - VCE limits
below which the device will not go into secondary breakdown. Collector load lines for specific circuits must fall
within the applicable Safe Area to avoid causing a collectoremitter short. (Duty cycle of the excursions make no signifi-

cant change in these safe areas.) To insure operation below
the maximum T." the power-temperature derating curve
must be observed for both steady state and pulse power
conditions.

1-87

2N3719,2N3720
2N3867,2N3868
2N6303

®

MOTOROLA

SILICON PNP POWER TRANSISTORS
· .. designed for high·speed, medium-i:urrent switching and high·
frequency amplifier applications.
•

•

Collector·Emitter Sustaining Voltage VCEO(sus) = 40 Vdc (Min) - 2N3719,2N3867
= 60 Vdc (Min) - 2N3720,2N3868
= 80 Vdc (Min) - 2N6303
DC Current Gain hFE = 25·180@ IC = 1.0 Adc
= 40·200 @ IC = 1.5 Adc
= 30·150 @ IC = 1.5 Adc

3 AMPERE
POWER TRANSISTORS
PNPSILICON
40,60,80 VOLTS
6 WATTS

- 2N3719,2N3720
- 2N3867
- 2N3868,2N6303

•

Low Collector·Emitter Saturation Voltage VCE(sat) = 0.75 Vdc @ IC = 1.0 Adc - 2N3719,2N3720
= 0.75 Vdc@ IC = 1.5 Adc
- 2N3867,2N3868,
2N6303

•

High Current·Gain - Bandwidth Product fT = 90 MHz (Typ)

•

2N3867 JAN and 2N3868 JAN also Available

·MAXIMUM RATINGS
Symbol

Rating

Collector-Emtter Voltage
Collector-Base Voltage

Vce

Emltter·Base Voltage

VEe

Collector Current

2N3719
2N3867

2N3720
2N3868

40
40

60

VCEO

Continuous
Peak

Vde
Vde
Vde
Ade
Ade

0.5
6.0
34.3
1.0
5.71

Ie

Po
Po
Operating and Storage Junction
Temperature Range

Unit

80
80

60
4.0
3.0
10

IC

Base Current

2N6303

TJ,Tstg

Watts
mW/oC

Watt

mW/oC

--65to+200 - - -

THERMAL CHARACTERISTICS
Characteristic

Max

°c

SEATING
PLAN
STYLE 1:
PIN 1. EMITTER
2. BASE
3. COLLECTOR

29

Thermal Resistance, Junction to Case
Thermal Resistance, Junction to Ambient

175

T

*Indlcates JEOEC Registered Data

FIGURE 1 - POWER DERATING

B. 0

§
G

6.0

z

~

A
B

7.0

5.

0

C

~

o
E

~ 4. 0

C

ffi

3. 0

~

2. 0

~

F
G

..........
..........

H

r-....

........

1"-....

l"-....

1.0

0
25

50

75

100

125

150

~

175

200

M
N
P
R

0.007
All JEDEC dimBnsionsand notes apply.
CASE 31·03

TO·5

TC. CASE TEMPERATURE (OC)

1-88

2N3719,2N3720,2N3867,2N3868,2N6303

*ELECTRICAL CHARACTERISTICS (TC = 25 0 C unless otherwise noted)
~1__________________~Ch=.=r=K=bW~~=·~________________~I~~~~m=~~__L-__~M=i=n__~__~Me==x~__L-__=u=ni~t__~I~
OFF CHARACTERISTICS

..:.

COllector-Emitter Sustaining Voltage. (1)
IIc = 20 mAde. 18 = 0)

Vde

VCEO(sus)
40
60
80

-

40
60
80

-

4.0

-

-

1.0

-

150

2N3867
2N3868.2N6303

50
35

-

(lC = 1.5 Ade. VCE = 2.0 Vde)

2N3867
2N3868.2N6303

40
30

200
150

(lC = 2.5 Ade. VCE = 3.0 Vde)

2N3867
2N3868.2N6303

25

2N3867
2N3868.2N6303

20

-

2N3867
2N3868
2N6303

COllector-Base Breakdown Voltage
(lc = 100 "Ade. IE = 0)

Emitter·Base Breakdown Voltage
(IE = 100 "Ade. IC = 0)

BVEBO

Collector Cutoff Current
(VCE = Rated VCB. VBE(off)

ICEX

Collector Cutoff Current
(VC8 = Rated VCB. IE

Vde

BVC80
2N3867
2N3868
2N6303

= 2.0 Vde)
ICBO

= O. TC = 150°C)

-

Vde
"Ade
"Ade

ON CHARACTERISTICS (1)
OC Current Gain
(lC = 500 mAde. VCE

-

hFE

= 1.0 Vde)

(lC = 3.0 Ade. VCE = 5.0 Vde)

20

COllector-Emitter Saturation Voltage
(lC = 500 mAde. IB = 50 mAde)
(lC = 1.5 Ade. IB = 150 mAde)
(lC = 2.5 Ade. IB = 250 mAde)

VCE(satl

Base-Emitter Saturation Voltage
(lC = 500 mAde. IB = 50 mAde)
(lC = 1.5 Ade. IB = 150 mAde)
(lC = 2.5 Ade. IB = 250 mAde)

VBE(satl

Vde

-

-

0.5
0.75
1.3
Vde

0.9
-

1.0
1.4
2.0

60

-

DYNAMIC CHARACTERISTICS
Current-Gain - Bandwidth Product (2)
(lC = 100 mAde. VCE = 5.0 Vde. f test = 20 MHz)
Output Capacitance
(VC8 = 10 Vde. IE = O. f = 0.1 MHz)

Cob

Input Capacitance
(VEB = 3.0 Vde. IC = O. f = 0.1 MHz)

Cib

SWITCHING CHARACTERISTICS
Oelay Time

Rise Time
Storege Time
Fall Time

pF

-

120

-

1000

-

35

n.

65

n.

325

n.

75

ns

pF

-

(VCC = 30 Vde. VBE(off) = O.
IC = 1.5 Ade. IBI = 150 mAde)

ld

(VCC = 30 Vde. IC = 1.5 Ade.
IBI = IB2 = 150 mAde)

Is

tr

tf

·'ndicates JEDEC Registered Data
(1) Pulse Test: Pulse Width ~ 300 I's. Duty Cycle ~ 2.6,%.

(2) fT

MHz

fT

= Ihfe I- ftest-

1-89

2N3719,2N3720,2N3867,2N3868,2N6303

*ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)

I

I

Characteristic

Symbol

Min

Max

40
60

-

-

10
10

/LAde

1.0
1.0

mAde

-

10
10

-

1.0

20
25
15

180
-

-

0.75
1.5

Unit

OFF CHARACTERISTICS

III

Collector-Emitter Sustaining Voltage (1)
(lC = 20 mAde, IB = 0)

Vde

VCEO(sus)
2N3719
2N3720

Collector Cutoff Current
(VCE = 40 Vde, VBE(oll) = 2.0 Vde)
(VCE = 60 Vde, VBE(oll) = 2.0 Vde)

ICEX
2N3719
2N3720

-

2N3719
2N3720

(VCE = 40 Vde, VBE(off) = 2.0Vde, TC= 150°C)
(VCE = 60Vde, VBE(off) = 2.0Vde, TC= 150°C)
Collector Cutoff Current
(VCB = 40 Vde, IE = 0)
(VCB = 60Vde,IE = 0)

/LAde

ICBO
2N3719
2N3720

Emitter Cutoff Current
IVBE = 4.0 Vde, IC = 0)

mAde

lEBO

ON CHARACTERISTICS II)
DC Current Gain
(lC = 500 mAde,VCE = 1.5 Vde)
(lC = 1.0Ade, VCE = 1.5 Vde)
(lc = 1.0 Ade, VCE = 1.5 Vde, TC = -40°C)

-

hFE

Collector-Emitter Saturation Voltage
(lC= 1.0Ade,IB= 100 mAde, TC=-400Cto +1000C)
(lC = 3.0 Ade, IB = 300 mAde, TC = -40°C to +1000 C)

VCElsat)

B....Emitter Saturation Voltage
(lc = 1.0Ade,IB = 100 "'lAde, TC = -4QDc to +1000 C)
(lC = 3.0 Ade, IB = 300 mAde, TC = -40°C to +IOOoC)

VBE(sat)

Vde

-

Vde

-

-

1.5
2.3

60

-

-

120

-

1000

-

100

-

400

DYNAMIC CHARACTERISTICS
Current-Gain - Bandwidth Product (2)
(lC = 500 mAde, VCE = 10 Vde, I test = 30 MHz)

IT

Output Capacitance
(VCB = 10 Vde, IE = 0, 1= 0.1 MHz)

Cob

Input Capacitance
(VEB = 0.5 Vde, IC = 0, I = 0.1 MHz)

Cib

MHz
pF
pF

SWITCHING CHARACTERISTICS
Turn-On Time
(VCC= 12Vde, VBEloff)=O,IC= 1.0Ade,IBl =0.1 Ade)

ton

Turn-Off Time
(VCC= 12Vde,IC= 1.0Ade,IBl = IB2= 100 mAde)

toff

-I ndicates JE DEC Registered Data
(1) Pulse Test: Pulse Width";; 300 /L5, Duty Cycle = 2.0%.

ns
ns

(2) fT = Ihfe I- f test·

FIGURE 2 - SWITCHING TIMES TEST CIRCUIT

FIGURE 3 - TURN-ON TIME
1000
700
500

VCC

.,@VCC=30V

Iclla-l0Tr25'C-

300

~ 200

"-

w

~ 100

.... 1,< IOns
DUTY CYCLE = I.I1'J1

-=
Vuu

NOTE:
For information OR Figures 3 and 6, HS and

He YNe

varied to obtain desired test conditions.

For ttl and tr spacifications. remove diode and
",VI'O.

-=
VCC
RC
RU
V,
V2
VUU

2N371.
2N3720
-12V
1211
10011
+8.0 V
-11 V
=3.0V

70
50

2N38&7
2N3B8&
2.8303
-3OV
1911
10011
13.6 V
-16.4 V
==3.0 V

f-

30

0
10

0.03

r-....: i'....

td @VaElolf) = 4.0

1111

I

t-...

III
0.05 0.07 0.1

0.2

0.3

0.5 0.7

IC, COLLECTOR CURRENT lAMP)

1-90

1.0

2.0

3.0

2N3719,2N3720,2N3867,2N3868,2N6303

FIGURE 4 - THERMAL RESISTANCE
1.0
0.7 r-D = 0.5
0.5
-'0
~ ~

- -- --

0.3 r--b.2

[!i ~ 0.2

ffi ~ o. 1
~ ~ 0.07
~ 0.05

f-:8 F'

:;;;:.. I""'"

0.1
0.05

"'"

t-",
t-o

6JClti - rltl 6JC
OJC = 29 0CIW Max
D CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READTIMEATI1
TJ(pkl- TC = Plpkl 6JClti

.....,-::::--

'i::" ~

Plpkl

.....L

0.01
SINGLE PULSE

0.03

111

0.5

0.7

_

-

DUTY CYCLE. D = I1/t2

I I
0.3

.-

-t2

0.02
0.01
0.2

-

==
~{yl-1
=

g

~~

'=
-

1.0

2.0

3.0

5.0

7.0

10

20

30

50

70

200

100

300

500

2000

700 1000

t. TIME (m,1

FIGURE 5 - ACTIVE REGION SAFE OPERATING AREA
10

5Pl"

5.0
0:

~

I-

1.0

'"
a::
:::>

0.5

~

''''d~ f-

2.0

df'

5.0m,,:

50",

~500"'~
.......

...

....

TJ = 200°C
- - - - - BONDING WI RE LIMITED
------THERMALLY LlMITED@TC=250C
t;
O.
(SINGLE PULSE)
j 1 Eo
SECONO BREAKDOWN LIMITED
0
0.05
'-'
CURVES APPLY BELOW
~
2N3719.2N3862RATED VCEO
0.02
2N W~6~~33868
1
0.01
20
30
1.0
2.0 3.0
5.0 7.0 10
'-'
a::
0

There are two limitations on the power hand Ii n9 ability of a
transistor: average junction temperature and second breakdown.
Safe operating area curves indicate Ie - VeE limits of the
transistor that must be observed for reliable operation; i.e., the
transistor must not be subjected to greater dissipation than the
curves indicate .

I\.

0.2

The data of Figure 5 is based on T J{pk) = 2000 C; T C is
variable depending on conditions. Second breakdown pulse
limits are valid for duty cycles to 10% provided T J{pk)< 200u C.
T J(pk) may be calculated from the data in Figure 4. At high case
temperatures, thermal limitations will reduce the power that can
be handled to values less than the limitations imposed by second

breakdown.
50

70

100

VCE. COLLECTOR·EMITTER VOLTAGE (VOLTS)

FIGURE 6 - TURN-OFF TIME

FIGURE 7 - CAPACITANCE
1000

1000
700
300

700
500

ICIIB = 10
IBI IB2
TJ = 25°C

SOO

......

200

ts'= ;:::=c

-

'"
,J 70
50

30

tf@VCC=30V

20
10
0.03

0.05 0.07 0.1

J II I

0.2

300

~
u

200

1"'--"

0.3

0.5 0.7

1.0

;:0

U

~
u
u'

100
70
50

Cob

0

'"""2.0

Cib

r- r-

z

~

~ 100

~

TJ =:i50C

20
10
0.1

3.0

IC. COLLECTOR CURRENT (AMP)

0.2

0.5

1.0

2.0

5.0

10

20

VR. REVERSE VOLTAGE (VOLTS)

1-91

50

100

2N3719,2N3720,2N3867,2N3868,2N6303

FIGURE 8 - DC CURRENT GAIN
100
70

z

~

.

...

TJ' +15O"C

50

~ ~
B30 -b-

...

;;..- I-

...

- _lssJc

w

.......

- ...----~

-_

FIGURE 9 - COLLECTOR SATURATION REGION

'

.

.. 2.0
~
o
~ 1.6

~

~

'.

I"\i.

'

0.2

0.3

\IC = 0.5 A

0.4

N

'"W
>'" a
0.5 0.7

2.0

1.0

3.0

10

I
20

"

1.0 A

30

.
~

0

~

..

w
to

u

3;

lJ = 250 CI

II
I II

1.0

............

;;; +1.5
I-

ffi

;:;

/
./

a

0.03

0.05 0.07 0.1

0.3

ill

+1. a

.3-

~ -0.5

V

.,...... V

~ -1.0

1.0

2.0

-2.0

·2.5
0.03

3.0

II
0.05 0.07 0.1

.
::>

-TJ=150 0C
.
== -,

/

0.5 0.7

1.0

2.0

3.0

;{

/

1000C

.3-

~

L

a:
a:

VCE 30V-

.......

10 1

\

100

::>

'"
~ 10- 1

o

~
....
o

0.3

FIGURE 13 - BASE CUT·OFF REGION

~IOOoC

'"

0.2

IC. COLLECTOR CURRENT lAMP)

V

~ 10 I

/

OV8 for VBE

~ -1.5

i

0.5 0.7

~.

./

l-

TJ -150 0 C

I-

/

J'

'"
w

FIGURE 12' - COLLECTOR CUT·OFF REGION

;{ 102

500 700 1000

.J.

Jol c for lCEI"I)

IC. COLLECTOR CURRENT lAMP}

VCE=30"

300

!;;:

I0.2

-

o

0

VCEI..!)@ICIIB= 10

200

lOa

'lcIIB" hFEI2
T = -550C10 +1500c

H:w. +0.5

I

VBE@VCE = 2.0.V
~ 0.6 ~
>
>' 0.4

II II

+2.0

e

V/
V V

0.8 e- VBIEI~t) @ICIIB-IO

0.2

50 70

FIGURE 11 - TEMPERATURE COEFFICIENTS
+2.5

II
e-

2.5 A

-

N:(iA

18. BASE CURRENT ImA)

FIGURE 10 - "ON" VOLTAGES

1.2

..,..

,

L

IC. COLLECTOR CURRENT lAMP)

1.4

1,\

\

g

- - - VCE=2.0V
- - - - - VCE=5.0V
0.05 0.07 0.1

\
1\

\

~ ,0.8
o

\

~

10
0.03

~

w

:::i

t-\,.

~ 20 :::;..

TJ' 25bC

\

o
;; 1.2

--- .~

.......

11

\
.\

~

100

~

...':;10' If-REVERSE

FORWARO

10- 2

-0.1

-0.2

25 0C

~REVERSE

-'

~250C

+0.1

~

/

-0.3

-0.4

VBE. BASE·EMITTER VOLTAGE IVOLTS)

10. 3
+0.1

FORWARO
-0.1

-0.2

VBE. BASE·EMITTER VOLTAGE IVOLTS)

1"-92

-0.3

·0.4

2N3738, 2N3739 NPN
2N6424, 2N6425 P'NP

®

MOTOROLA

III
HIGH VOLTAGE COMPLEMENTARY SI LICON
POWER TRANSISTORS

1.0 AMPERE

POWER TRANSISTORS
COMPLEMENTARY SILICON

· .• designed for high·speed switching, linear amplifier applications,
high·voltage operational amplifiers, switching regulators, converters,
inverters, deflection stages and high fidelity amplifiers.
•

Coliector·Emitter Sustaining Voltage VCEO(sus) = 225 Vdc@ IC = 5.0 mAdc (2N3738, 2N6424)
= 300 Vdc @ IC = 5.0 mAdc (2N3739, 2N6425)

•

DC Current Gain hFE=40·200@IC=100mAdc

•

Current-Gain - Bandwidth Product fT = 10 MHz (Min) @ IC = 100 mAdc

•

ISlb Rated to 2.0 Amperes

225, 300 VOLTS
20 WATTS

"MAXIMUM RATINGS
Svmbol

Rating

Collector-Emitter Voltage

2N3738 2N3739
2N6424 2N6425

Unit

VeEO

225

300

Vdc

Collector-Base Voltage

VeB

250

325

Vdc

Emitter-8ase Voltage

VEe

6.0

Vdc

Ie

1:6J
2.0

Adc

18

0.50
1.0

Adc

Collector Current - Continuous
- Peak

Base Current - Continuous
- Peak

Total Device Dissipation @ TC ::: 25°C
Derate above 25°C

20
0.133

Po

Operating and Storage Junction
Temperature Range

Watts
w/oe

-65 to+200

TJ,Tstg

°c

LL~:~
.

Tf
E

SEATING PLANE

---F--

THERMAL CHARACTERISTICS
Characteristic

Thermal Resistance, Junction to Case

* Indicates JEDEC Registered Data

STYLE 1:
PIN 1. BASE
2. EMITTER
CASE: COLLECTOR

FIGURE 1 - POWER DERATING
100

['-,.
i'-..

0

"'-

0

o

o

""'"
25

50

15

""
100

MIlliMETERS
DIM MIN MAX
B 11.94 12.10
C
6.35 8.B4
D
0.11 0.86
E
1.21 1.91
F 24.33 24.43
G 4.83 5.33
H 2.41
2.67
J
14.4B 14.99
K
9.14
P
1.21
Q
3.61
3.B6
S
B.89
T
3.6B
15.16
U

-

""'" "

125

TC. CASE TEMPERATURE tOC)

~

150

115

"

200

1-93

-

s

INCHES
I
MAX
0.410 0.500
0.250 0.340
0.02B 0.034
0.050 0.015
0.958 0.962
0.190 0.210
0.095 0.105
0.510 0.590
0.360
0.060
0.142 0.152
O. 50
0.145
O. 20

-

All JEDEC Dimensionsand and Notes ApplyCASEBO'()2

TO·66

2N3738, 2N3739 NPN/2N6424,2N6425 PNP

I

ELECTRICAL CHARACTERISTICS (Tc = 25 0 C unless otherwise noted.)

I

Characteristic

Symbol

Min

Max

Unit

·OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage (1)
(lC = 5.0 mAde, IB = 0)

Vde

VCEO(sus)
2N3738, 2N6424
2N3739, 2N6425

Collector-Emitter Cutoff Current
(VCE = 125 Vde, IB = 0)
(VCE = 200 Vde,lB = 0)

225
300

mAde

ICEO

-

2N3738,2N6424
2N3739,2N6425

Collector-Base Cutoff Current
(VCB = 250 Vde, IE = 0)
(VCB = 325 Vde, IE = 0)

-

0.25
0.25
mAde

ICBO

-

2N3738, 2N6424
2N3739, 2N6425

Collector Cutoff Current
(VCE = 250 Vde, VEB(off) = 1.5 Vde)
(VCE = 300 Vde, VEB(off) = 1.5 Vde)
(VCE = 125 Vde, VEB(off) = 1.5 Vde, TC = 100oC)
(VCE = 200Vde, VEB(off) = 1.5 Vde, TC= 100oC)

-

mAde

ICEV

-

2N3738, 2N6424
2N3739,2N6425
2N3738, 2N6424
2N3739, 2N6425

Emitter-Base Cutoff Current

0.1
0.1

-

0.5
0.5
1.0
1.0

-

0.1

mAde

lEBO

(VEB = 6.0 Vde)
"ON CHARACTERISTICS
DC Current Gain (1)
(lC = 50 mAde, VCE = 10 Vde)
(lC = 100 mAde, VCE = 10 Vde)
(lC = 250 mAde, VCE = 10 Vde)

-

hFE

Collector-Emitter Saturation Voltage (1)
(lC = 250 mAde, IB = 25 mAde)

VCE(s.t)

Base-Emitter "ON" Voltage (1)
(lC = 100 mAde, VCE = 10 Vde)

VBE(on)

-

30
40
25

200

-

2.5

-

1.0

10

-

-

20

35

-

Vdc
Vde

SMALL SIGNAL CHARACTERISTICS
Current-Gain - Bandwidth Product (2)
(lC = 100 mAde, VCE = 10 Vde, f = 10 MHz)

MHz

fT

• Output Capacitance

pF

Cob

(VCB = 100 Vde, IE = 0, f = 100 kHz)

·Small-Signal Current Gain

-

hfe

(lC = 100 mAde, VCE = 20 Vde, I = 1.0 kHz)
"Indicates JEDEC Registered Oat.
(1) Pulse Test: Pulse Width ";300 I'S, Duty Cycle"; 2%.
(2) fT = I hIe I- frequency

FIGURE 2 - SWITCHING TIMES TEST CIRCUIT
01 Must Be Fast Recovery Type, e.g.

Vee

MBD530a Used Above IS = 100 rnA
MSD6100 Used Below I B = 100 rnA

+150 V

Re
j251"r-

VI

V2

'?b
9.0V

Scope

RB

51

01

~10 ns
t r , tf
Duty Cycle::i: 1.0%

-::-4.0 V

RS and RC Varied to Obtain Desired Current Levels
For td and t r , 01 is disconnected and V2 = 0
For PNP test circuit, reverse diode and voltage polarities.

1-94

2N3738, 2N3739 NPN/2N6424/, 2N6425 PNP

III

FIGURE 3 - THERMAL RESPONSE
1. 0

O. 7

~

r--D-O.

o. 5

~::i 0.3

-....

0.2

z<

~~ O. 2

~

20

~~

t-~ O. 1
Wz
~~ 0.07e-- 0.05
~ ffi 0.05

~ 0.02

r== ~

,.-

0.0 1
0.01

ROJCIt) = ,It) ROJC

o CURVES APPLY FOR POWER

PULSE TRAIN SHOWN

"tj2J

./~

READ TIME AT t1

DUTY CYCLE 0" q/12

SINGLE PULSE

I

0.05

0.02

ROJC" 7.5 0CfW

I

....

~'"

;~ 0.03e-- 0.02

-r-fLn
P{pk)

~~

-.::E

I::!:! "

./ ?

0.1

01

01

0.5

10

20

50

10

I

I

TJlpk) = TC = Plpk) ROJClt)

I 111111

20

I

100

50

I

I

I I I

200

500

1000

t, TIME (ms)

ACTIVE-REGION SAFE OPERATING AREA
FIGURE 4 - 2N3738. 2N3739
2.0

r, SOb;;" HOOps
, ,
, ,1>100~'
~.>

J"" ....
5.0m;

1.0
0.7

~
::!: 0.5

FIGURE I; - 2N6424. 2N642&

'",.5

1.0ms-

>-

de

I-

ffi

0.3

13

0.2

~

0

..,
j

I-

8
!}

,\.

I

r--

a:

0.1

TC = 250C
- - - - BONDING WIRE LIMITED
THERMALLY LlMITEO
(SINGLE PULSE)
SECONO BREAKOOWN LIMITED
CURVES APPLY BELOW RAT EO VCEO

F= ---

0.0 7~
0.05

f=

0.03
0.02
3.0

""

5.0 7.0

10

I
20

"

III
30

2. 0

50

70

100

"\
~

"

.:\\

200

300

......

1.0
O. 7

O. 5

~a:

O. 3

=>
~

0.2

...

\

... ...

200j'

It\.

.>..\ \ \
\
~ ~ \\

500~,

TC = 250C
jm
1 =~--- BONDING WIRE LIMITED
5.0 m,
o. =----THElIMALLY LlMITEO
de
(SING LE PU LSE)
8 0.07 SECOND BREAKDOWN LIMITED
!} 0.05
CURVES APPLY BELOW RATEO VCEO
0.0 3
0.0 2
20
3D
50 70 100
0.3
0.5 0.7 10
o

~

-f-

=._--

II "

II

VCE. COLLECTOR·EMITTER VOLTAGE (VOLTS)

VCE. COLLECTOR·EMITTER VOLTAGE (VOLTS)

There are two limitations on the power handling ability of a
transistor: average junction temperature and second breakdown.
Safe operating area curves indicate Ie - VeE limits of the transistor
that must be observed for reliable operation; i.e., the transistor must
not be subjected to greater dissipation than the curves indicate.
The data of IFigures 4 and 5 is based on T C = 25°C; T J(pk) is
variable depending on power level. Second breakdown pulse limits
are valid for duty cycles to 10% provided TJ (pkl ..;; 175°C. T J(pk)
may be calculated from the data in Figure 3. At high case temperatures, thermal limitations will reduce the power that can be
handled to values less than the limitations imposed by second
breakdown. Second breakdown limitations do not derate the same
as thermal limitations. Allowabte current at the voltages shown
on Figures 4 and 5 may be found at any case temperature by
using the appropriate curve on Figure 1.

1-95

\50~,_

\ ~100jJS

'-,'I~
200

300

2N3738, 2N3739 NPN/2N6424,2N6425 PNP

NPN

PNP

2N3738.2N3739

2N6424. 2N6425
FIGURE 6- DC CURRENT GAIN

300

""TJ~ 15~C

200

z

;;:

...coz
..,~

0

w

30

-

20

o

~

.....

....

'" 100
~ 70 - -55°C
!Z 50

w

~

~

25°C

..= f=250C

0

TJ = 150°C

200

---VCE=10V

N-...

100

300

..!.........!.. JCE 1= 1.0~

'"'"

~

~

10

0- 'r~

~

"'I',"' ['...
"' I\.
.....

0

..,a
co

~ .-~~

!::

-55°C
10-

0

r--::.'

I0

7.0
5. 0

7. 0
5. 0=='

3. 0
10

3.

20

30

50

70

100

200

300

500 700 1000

VCE 2.0V

o- - - - I VCE = 10V
20

10

30

IC. COLLECTOR CURRENT (rnA)

50

70

200

100

300

500 700 1000

IC, COLLECTOR CURRENT (mAl

FIGURE 7 -COLLECTOR SATURATION REGION
-

~

1.0

--

co

~
~ 0.8

~

11111
'I~=

lOrnA
SOmA

20 rnA

III
I 11

LU

100 rnA

250 rnA

~
o

TJ = 25°C

~

0.4

\

\

\
\

\

0.2

~

I

0.2

0.5

1.0

..,w

5.0

10

20

50

>

100

\

1\

\
......

to-

8

2.0

TJ = 25°C

f---1 i50~A

r\

~

\

j o.2

a
0.1

\

t;

......

W

\
0.4

'"co

t\.

\

\

'"
~

o

..,

\ II

> 0.6

~

>

III

~6ImA_ ;--" 10~~~

IC
rnA

co

~ 0.6

-~
o..,

I I

=1~ 2b~A

>
~ 0.8
co

o

~

1.0

-"
t-

O
0.1

0.2

0.5

1.0

IB, BASE CURRENT (rnA)

5.0

2.0

10

20

50

100

lB. BASE CURRENT (rnA)

FIGURE 8 - "ON" VOLTAGE
1.0
TJ = 25°C
0.8
V8E(sat)@ ICI18 = 10

~

~ i--

:..-

1.0

-

TJ = 25°C

o.8

~ 0.6 ===V8E@VeE = 10 V

_f-"I--'
V8E(sat) @ICI18

=

I--

10

f--

",.

~

6 =-V8E @VCE = 10 V

w

to

~

o

>
>'

I I

0.4

0.2

JM20

f--- VCE(sat)

o

10

20

30

50

1I11
70 100

V
I-

1/

/r

200

I

300

I

4

J I

1/

j

o. 2
500 700 1000

IC. COLLECTOR CURRENT (rnA)

0
10

20

IL

IcI18=~

=VCE(sat)
30

50

70

100

200

~
300

IC. COLLECTOR CURRENT (rnA)

1-96

1-'5.0

500 700 1000

®

21 3740,A
21 3741,A

MOTOROLA

III
POWER TRANSISTORS
MEDIUM·POWER PNP TRANSISTORS

PNPSILICON

6D-8OVOLTS
25 WATTS

· .• ideal for use as drivers, switches and medium-power amplifier
applications. These devices feature:
•

Low Saturation Voltage - 0.6 VCE(sat) @ IC = 1.0 Amp

•

High Gain Characteristics - hFE@ IC = 250 mA: 30-100

•

Excellent Safe Area Limits (See Figure 2)

•

Low Collector Cutoff Current 100 nA (Max) 2N3740A, 2N3741A

•

Complementary to NPN 2N3766 (2N3740) and 2N3767 (2N3741)

*MAXIMUM RATINGS
Symbol

Rating

Collector·Emitter Voltage
Emitter-Base Voltage
Collector· Sa.. Voltage

VCEO
VEB
VCB
IC

Collector Current - Continuous
- Peak (Note 11

2N3740
2N3740A

2N3741
2N3741A

60

SO
7.0

7.0
60

Vdc
Vdc
Vdc

80
4.0
10

IB

2.0

Adc

25
0.143

Watts

TJ,Tstg

-65 to +200

Derate above 2SoC

SEATING PLANE
---F--

Adc

Po

Base Current
. Total Device Dissipation @TC =250 C

Operating and Storage Junction
Temperature Range

Unit

L-H3---1i'-~~T-+

wf'c
°c

G

STYLE 1:
PIN 1. BASE
2. EMITTER
CASE: CO LLECTO R

Note 1: See Figure 2

FIGURE 1 - POWER·TEMPERATURE DERATING CURVE

25

~ .....

!;o

S 20

~

z

!2 15

f
~

•

.............

...............

10

.............

'"~
~

e

5.0

0

0

25

MILLIMETERS
MIN MAX
11.94 12.70
C
6.35 8.64
D
0.71 0.88
E
1.27 1.91
F 24.33 24.43
G 4.83 5.33
H 2.41 2.67
J 14.48 14.99 .
K
9.14
p
- 1.27
n 3.61 3.88
S
- 8.89
T
3.68
U
1 .75

DIM

...........

50

75

100

125

r-......

~ ...............

150

175

TC'TEMPERATURE (OCI

200

~

5

INCHES
MIN MAX
0.470 0.500
0.250 0.340
0.028 0.034
0.050 0.075
0.958 0.962
0.190 .210
0.095 0.105
0.570 0.590
0.360
0.050
0.142 .15
- 0.350
- 0.145

-

All JEOEC Oimlf1sionsand and Notes Apply.

S8f. Ar•• Curves ar. indicated by Figura 2.
Both limits are applicable and mult be observed.

CASE 80-02
(T0-66)

'Indicat.. JEOEC Registered Data.

1-97

2N3740, A, 2N3741, A
*ELECTRICAL CHARACTERISTICS (TC; 25°C unless otherwise noted)
Cheqcteristic

Symbol

Min

MIIx

60

-

Unit

OFF CHARACTERISTICS
Collector·Emitter Sustaining Voltage
(lC = 100 mAde, 'B = 0)

IIJ

 10 MHz)

10

Common-Base Output Capacitance
(VCR

=

10 Vdc,

Ie = 0

Ade, 1

=

100 kHz)

Small-Signal Current Gain

ht.

(Ie = loa mAde, VeE::: 10 Vdc, f "" 1.0 kHz)
(11

40

Pulse Test: Pulse Width !S3001lS, Duty Cycle !:2. 0%.

FIGURE 2 - ACTIVE REGION SAFE AREAS

2.0

1-+-I--4"..--I-+-P-d

The Safe Operating Area Curves indicate
!c,VeE limits below which the device will not
go into secondary breakdown. Collector
load lines for specific circuits must fall
within the applicable Safe Area to avoid
causing a collector·emitter short. (Case
temperature and duty cycle of the excur·
sions make no significant change in these
safe areas.) The load line may exceed the
BVcEo voltage limit only if the collector cur·
rent has been reduced to 20 mA or less be·
fore or at the BVc" limit; then and only then
may the load line be extended to the abso·
lute maximum voltage rating of BVclO• To
insure operation below the maximum T J ,
the power·temperature derating curve must
be observed for both steady state and pulse
power conditions.

~ t---t----t--t--t-+-+-t--t-=""'I.:--i---t-~~~~!~!~f~@~~~~~~~~~~l~

§'"

1.0
0.6
'" 0.4

~

~
8

t----j--+-+-t---I'--t-_t_

2 0.2
0.1
0.06
0,04

10

20

30

40

50

60

Ve ., COLLECTOR EMInER VOLTAGE (VOLTS)

1-101

70

80

II.

2N3766,2N3767

CUT-OFF CHARACTERISTICS

LARGE SIGNAL CHARACTERISTICS

FIGURE 4 - TRANSCONDUCTANCE

FIGURE 3 - TRANSCONOUCTANCE

1000
700

SOD

,,
r-

/

Ve.~SV

I

~
.!J

200

I
T) +lObOC

-

!

I--- r-

100

TJ I

0.10

f- ::::: TJ
r-

~

+2~oC

-

-

+100°C

/

FORWARD BIAS

REVERSE BIAS

LL.l

0.6

1.0

0.8

0.4
VIE, BASE·EMITTER VOLTAGE (VOLTS)

1.2

0.6

20

I

-

"

I

1/ II

10

0.4
0.2
VIE, BASE-EMITTER VOLTAGE (VOlTS)
0.2

0.4

0.6

10

//

~

Ve• ='40 V

/ I II

Ve.~SV

I

II

FIGURE 6 - EFFECT OF BASE·EMITTER RESISTANCE

FIGURE 5 - INPUT ADMITTANCE

30

~

~

0.001
0.2

II

I

7.0

I

/
II
TJ=+lWC

1.0

S.O

TJ ~ +l7S·C

I I

3.0

II

-

~

I I
I I ...rf..V

_

1.0

I--I---

TJ

+2SoC

t---J

I

0.3

I

,

/

~

B

/ I I

TJ=+lOO·C

./

I

..... {
I

2.0

O.S

7

0.01

TJ ~ -SSoC -

10

0.7

I

./

.9

SO

20

~

1/

TJ ~ +l7S·C

rt

~

70

~

/ II

~

I~r--..

!

f

1.0

II
I I

-

30

1

I

Ve.~40V

[J

1//
TJ~+lWC

!e

I

I-- -

I

II

I

300

1

I

10
I

e 0.10

TJ = +IOO·C

T

I

~.9
I....

N

TJ = -SSoC

0.01

0.2

II

0.1
0.2

II TJ

II

0.6
0.4
0.8
V... BASE·EMITTER VOLTAGE (VOlTS)

7+2~OCI I

0.001
1.0

1.2

IIl2

1-102

103
104
10&
RIE, BASE.£MITTER RESISTAllCE(OIIMS)

~

106

2N3766,2N3767
FIGURE 7 - CURRENT GAIN

300

I
I
TJ ~ +17SoC

200

I
I
--VCE ~ 5V

f+ 100°C

TJ
100

z:

~

~

r-_

r'

.....
r- :::-,:,-

'-

I-

:~

~

SO

i

2V

VCE

Il-

+2SoC

TJ

~

-...
··r

TJ~

'I

SSoC

\.

30

" -'"
I\,
)

\.

20

,

\.

\

10
10

20

30

100

70

50

500

300

200

700

1000

+25°C

r- f-

Ic. COlLECTOR CURRENT (IlIA)

FIGURE 8 - COLLECTOR SATURATION REGION
2.0

'\.

~

"'~

"'.......

Ic ~500mA

Ic ~ lOOmA

1.S

Ic~I'A

"-

~

~
e'"
ill

i!i

'\.

1.0

,'-

ro....

:::l

8

;A

- --

.....

O.S

O.S

0.7

2.0

1.0

3.0

S.O

7.0
I~

10

r-

I

8.0

I I I

TJ ~ +2SoC
6.0

;
~

I-- I-

v"''''' @ Ie/I, ~ 10
I

0.6

....

~

V,,@Vco

2V

It

t

......

P

;:
.5

~

0.4

II

0.2

VCOI ... ,@'c/I,-IO
~
II
I I II V

II
20

30

50

100

2.0

-0.2

j..f"'"

I I
I I

i

1

,or

TJ ~ +25°C to +l75"C

300

500

1000

Ie. COLlECTOR CllflRENT /1lIA)

/

I j...

!JvC,,,,VCE/ut,
.I I
to- T'I I
I!Jv,for v"

TJ~

1/
I-'"

~

SSOClo+25°C

-

TJ'= +2SOC 10 +l7SOC -

....

TJ - --{;soc to +2SOC

~

I I I I I I

-

I I
100

200

300

400

500

500

700

Ie. COLlECTOR CURRENT fmA)

1-103

I

.... ~

-4.0

200

100

70

To compute saturation ,oltages
fslMt' @ operatincTJ ~V"Mtl
+25°C + !Jv.loperating TJ - 25°C)
Use appropriate Ov for voltage of interest. I .1 I.
Uje arrale e :",),ral"'e{anfe intL"jl

4.0

i

1
10

50

FIGURE 10 - TEMPERATURE COEFFICIENTS

1.0
0.8

30

20

BASE CURRENT (IlIA)

FIGURE 9 - "ON" VOLTAGES
1.2

TJ

800' 900 1000

2N3771 2N3772
2N6257

®

20 and 30 AMPERE

HIGH POWER NPN SILICON POWER TRANSISTORS
... designed for linear
switching applications.
•

~mplifiers,

MOTOROLA

POWER TRANSISTORS
NPN SILICON

series pass regulators, and inductive

40 and 60 VOLTS
150 WATTS

Forward Biased Second Breakdown Current Capability
ISlb = 3.75 Adc@VCE = 40 Vdc - 2N3771
= 2.5 Adc @ VCE = 60 Vdc - 2N3772
= 3.75 Adc@VCE = 40 Vdc - 2N6257

*MAXIMUM RATINGS
Symbol

2N3771

2N3772

2N6257

Unit

Collector-Emitter Voltage

Rating

VeEO

40

60

40

Vdc

Collector-Emitter Voltage

VeEX

50

80

50

Vdc

Collector-Base Voltage

Ves

50

100

50

Vdc

Emitter-Base Voltage

VES

5.0

7.0

5.0

Vdc

Collector Current - Continuous

Ie

20
30

20
30

Adc

Peak
Base Current - Continuous

30
30

IS

7:5
15

5.0
15

5.0
15

Adc

Peak

Total Device Dissipation @ T C

= 2S D C

Po

150
0.855

wloe

TJ. Tstg

-65 to +200

°e

Derate above 2SoC

Operating and Storage Junction
Temperature Range

Watts

r~
r~,
Es~1
PLANE

THERMAL CHARACTERISTICS
Characteristic

2N3771, 2N3772, 2N6257

Thermal Resistance, Junction to Case

1.17

• Indicates JEDEC Registered Data
STYlE 1:

PIN I. BASE
2. EMITTER
CASE; COllECTOR

MILLIMETERS

DIM MIN

FIGURE 1 - POWER DERATING

A
B

200
175
150
125

D
E

...........

75

"-

0.250
0.039

-

75

100

125

I'--.
150

1.550
0.830
0.3
0.043
0.135

1.177 1.191
11.18 0.420 0.440
Q
5.
.220
11.15 0.655 0.675
12.19 0.440
.480
4.09 0.151 0.1 1
R
1.050
- 2lI.67 Cotlectorconnectedtocase.

CASE l1.Ql

...........
50

30.40

INCHES
MIN MAX

.3
J 16.64
K 11.18
Q
3.84

........ ~

0

25

-

MAX
39.37
21.08
7.62
1.09
3.43

H

25

o
o

6.35
0.99

F
.90
G 1.7

"

100

-

175

200

TC. CASE TEMPERATURE (DC)

1-104

I.

2N3771,2N3772,2N6257

ELECTRICAL CHARACTERISTicS

ITC ~ 25°C unless otherwise noted I
Symbol

Min

Max

Unit

2N3771
2N3772
2N6257

VCEOlsusl

40
60
40

Vdc

2N3771
2N3772
2N6257

VCEXlsusl

50
80
50

2N3771
2N3772
2N6257

VCERlsusl

45
70
45

-

Characteristic
OFF CHARACTERISTICS

·Collector-Emitter Sustaining Voltage (1)
IIc ~ 0.2 Adc, IB ~ 01
Collector-Emitter Sustaining Voltage

IIc = 0.2

Adc, VEBloffi

= 1.5 Vdc, RSE = 100 Ohmsl

Collector-Emitter Sustaining Voltage

IIc = 0.2

Adc, RBE ~ 100 Ohmsl

• Collector Cutoff Current

IVCE = 30 Vdc, IB
IVCE ~,50 Vdc, 'S
IVCE = 25 Vdc, IB

ICEO

= 01

= 01
= 01

·Collector Cutoff Current
IVCE = 50 Vdc, VEBloffi = 1.5 Vdcl
IVCE = 100 Vdc, VEBloffi ~ 1.5 Vdc)
IVCE = 45 Vdc, VEBloff) = 1.5 Vdcl
IVCE

= 30 Vdc, VEBloffi = 1.5 Vdc, TC = 1500 CI

IVCE

= 45 Vdc, VESloffi = 1.5 Vdc, TC = 150°C)

• Collector Cutoff Current
IVCB = 50 Vdc, IE = 01
!VCB

= 100 Vdc,

IE

= 7.0 Vdc,

IC

2N3771
2N3772
2N6257

-

2.0
5.0
4.0

2N3771
2N3772
2N6527

-

-

10
10
20

-

2.0
4.0
5.0

-

5.0
10
5.0

2N3771
2N3172
2N6257

15
15
15

60
60
75

2N3771
2N3172
2N6257

5.0
5.0
5.0

-

-

2.0
1.4
1.5

mAde

ICEV

mAde

ICBO

= 01

• Emitter Cutoff Current
IVSE = 5.0 Vdc, IC ~ 01

IV BE

-

10
10
10

2N3771
2N6257
2N3772
'EBO
2N3171
2N6257
2N3172

= 01

Vdc

mAde

-

2N3771
2N3772
2N6527

Vdc

mAde

"ON CHARACTERISTICS
DC Current Gain (1)

Collector-Emitter Saturation Voltage

2N3171
2N3772
2N6257

= 30 Adc,
IIc = 20 Adc,

2N3771
2N3772
2N6257

IS
IS

Vdc

VCElsatl

IIc = 15 Adc,IB = 1.5 Adcl
IIc = 10 Adc, IS = 1.0 Adcl
IIc = B.O Adc, IB = 0.8 Adcl
IIC

-

hFE

= '15 Adc, VCE = 4.0 Vdcl
= 10 Adc, VCE = 4.0 Vdcl
=B.O Adc, VCE = 4.0 Vdcl
IIc = 30 Adc, VCE = 4.0 Vdcl
IIc = 20 Adc, VCE = 4.0 Vdcl
IIC
IIC
IIC

= 6.0 Adc)
= 4.0 Adcl

Base-Emitter On Voltage
IIc = 15 Adc, VCE = 4.0 Vdcl
IIc = 10 Adc, VCE = 4.0 Vdcl
IIc = 8.0 Adc, VCE = 4.0 Vdc)

-

4.0
4.0
4.0

-

2.7
2.2
2.2

fT

0.2

-

MHz

hfe

40

-

-

-

Vdc

VSElonl
2N3771
2N3772
2N6257

"DVNAMIC CHARACTERISTICS

Current-Gain-Bandwidth Product
IIC = 1.0 Adc, VCE = 4.0 Vdc, f test
Small-Signal Current Gain
IIc = 1.0 Adc, VCE = 4.0 Vdc, f

= 50 kHzl

= 1.0 kHzl

SECOND BREAKDOWN
Second Breakdown Energy with Base Forward Biased,
t = 1.0 s (non-repetitive)

IVCE = 40 Vdcl
IVCE = 60 Vdc)

Adc

ISlb
2N3771
2N6257
2N3772

*lndlcat8s JEDEC Registered Data
111 Pulse Test: 300 I'S, Rep. Rate 60 cps.

1-105

3.75
3.75
2.5

-

..

2N3771,2N3772,2N6257

FIGURE 2 - THERMAL RESPONSE - 2N3771 , 2N3772, 2N6257

,.0

IIJ

oJ

:

«~ffi

.... N

o.
o.~r-ro.3

tz ~ o.2

~~

0=0.5

I-O.

~ po

r---: r--~.'

~~ 0.I~r«~~o.o 7P~

-.

.05
.02

pfJUl

~ ~O.B5

l:i3~
u. ffiO.O3 -

"t=:2~

0.01

.....

:!;«

~

-

DUTY CYCLE. 0 - .,1'2

I- r-:: f:::;;;F'"

8JCI.1 =r!~,8JC
8JC -0.B7SoC/W Max 2~.
o CURVES APPLY FOR POWE~=
PULSE TRAIN SHOWN
I
- f- READ TIME AT"
- TJlpltl- TC = PlpkI8JCI.I- f-

iIINGL~ PUlSE

0.02
0.0 I
0.02

0.05

II
0.1

IIIII

III
0.2

1.0

0.5

2.0

5.0

20

10

50

100

500

200

1000

2000

'. TIME lonsl

FIGURE 3 - ACTIVE-REGION SAFE OPERATING AREA - 2N3771 , 2N3772, 2N6257
40
0
0::

~ 20

....
~
«

~ 10

'"~

1.0

[:il
~

.

5.0

8

- 3.0

L1 LJ

,, , "
,

i'

11
i l II
- 2r 37

2N3772.2N62S7Idcl

-'I'

dc'

I
~.....

~"

Hii

-..::~~

II II

1.Orn.

indicate.
Figure 3 is based upon JEOEC registered Data. Second breakdown pulse limits are valid for duty cycles to 10% provided
T J(pkl
2IKf>C. T J(pk) may ba calculated from the data of
Figure 2. Using data of Figure 2 and the pulse power limits of
Figure 3, TJ(pkl will be found to be le.,thanTJ(max) for pulse

100ml

<

-,1\
,~

+= f-~

2N3771. 2N62S~
I 2N3772
10
20 30

PULSE CURVES APPLY
FOR ALL DEVICES
5.0 7.0
2.0 3.0

There are two limitations on the power handling abilitv of 8

transistor: average junction temperature and second breakdown.
Safe operating area curves indicate Ie - VeE limits of the tran·
sistor that must be observed for reliable operation; i.e .• the transistor must not be subjected to greater dissipation than the curves

I

TC' 25°C
BONDING WIRE LIMITED
- - - - - THERMAllY LIMITED
(SINGLE PULSE)
SECOND BREAKDOWN LIMITED
CURVES APPLY BELOW RATED VCEO

I I I

ii

"

50

70 100

widths of 1 ms and less. When using Motorola transistors, it is
permissible to increase the pulse power limits until limited by
TJ(max)·

VCE, COLLECTOR·EMITIER VOLTAGE (VOLTS)

FIGURE 4 - SWITCHING TIME TEST CIRCUIT

FIGURE 5 - TURN-QN TIME

VCC
+30 V

10

5.0

I 25"'1

~~
--

EI~R~:~V
TJ" 25°C

VSEI.III" 5.0· V

2.0

+~] --1--1

!.

1.0
0.5

;::

-9.0 V

5'

DUT~ri:~~L~:~.o%

SCOPE

RB

-=

-- 0.2

0,

-

r--

-

'r- f- I--

O. I
-4V

'd:::

0.05

RB AND RC ARE VARIED TQOBTAIN DESIRED CURRENT LEVELS

0, MUST BE FAST RECOVERY TYPE ••g

0.0 1
0.3

MBDS300 USED ABOVE IB ~IOO rnA
MSD6100 USED BELOW IB ~IOD mA

0.5 0.7 1.0

2.0

3.0

5.0 7.0

Ie. COLLECTOR CURRENT IAMPI

1-106

F~

0.02
10

20

30

2N3771,2N3772,2N6257

FIGURE 7 - CAPACITANCE

FIGURE 6 - TURN-oFF TIME
100

2000

5D

VCC = 3DV
ICIIB = lD
IBI = IB2
TJ = 25 0 C

2D

.
...

1--"

--'-

J

I.D
D.5

f;;o:

If

1.D

2.D

"

Cob

.....

~ 500

,,'

.....
D.5

C,b

;t

D.2
D.l
D.3

I

~1000 r.....

z
~ 700
i3

5.D

;:: 2.D

TJ = 25°C

...

lD
]

r--

3.D

30D

.....
S.D

7.0

lD

20

200 01

30

0.2

0.5

IC. COLLECTOR CURRENTJAMP)

SOD
3DD

.
'"
i"

200

i

20

T~C

l-

"'"

VCE=4.0V

lDD
7D
50
3D

-

-5SoC

......

...

,--.....;

ffi
::

~

.......

1.6

0.8

~_

0.4

8

ul

1.0

2.0

3.0

5.0 7.0

2D

50

lDO

10

20

II

"

3D

IC. COLLECTOR CURRENT (AMP)

TJ=2SOC

IDA

S.OA

20A

1.2

!
>

0.5 0.7

II III
IC=2.0A

"

,

o

......

10
7.0
5.0
0.3

?'"

'"
~
o

I""'-

2.0

!:;
UJ

250 C ......

lD

FIGURE 9 - COLLECTOR SATURATION REGION
c;;

z

5.0

2.0

VR. REVERSE VOLTAGE (VOLTS)

FIGURE 8 - DC CURRENT GAIN

-

1.0

t

~

0
0.01

0.02

0.05

0.1

0.2

0.5

1.0

IC. COLLECTOR CURRENT (AMP)

1-107

2.0

5.0

10

NPN

PNP

®

2N3773 2N6609

MOTOROLA

16 AMPERE
COMPLEMENTARY
POWER TRANSISTORS

COMPLEMENTARY SILICON POWER TRANSISTORS

The 2N3773 and 2N6609 are ,PowerBase power transistors designed for high power audio, disk head positioners and other linear
applications.' These devices can also be used in power switching circuits such as relay or solenoid drivers, dc to dc converters or inverters.

•

140 VOLTS
150 WATTS

High Safe Operating Area (100% Tested)
150W@100V

•

Completely Characterized for Linear Operation

•

High DC Current Gain and Low Saturation Voltage
hfe = 15 (Min) @8A, 4 V'
VCE(sat) = 1.4 V (Max) @IC= 8 A, IB = 0.8 A

•

For Low Distortion Complementary Designs

lr~
r III
E

SEATlNt-~

0

K

i

PLANE

I---FI---J-

"MAXIMUM RATINGS
Ratina
Collector Emitter Voltage
Collector-Emitter Voltage
Coliector·Ba.. Voltage
Emltter-Ba.. Voltage
Collector Current - Continuous
-Peek (1)

Symbol

Unit
Vdc
Vdc
Vdc
Vdc
Adc

V.lul
140
160
160
7
16

VCEO
VCEX
VCBO
VEBO
IC

30

Blse Cu"ent - Continuous

IB

-Peak (1)
Total Power Dillipation @ TC = 25 0 C
Derate above 25 0 C
Operating and Storage Junction

Po
TJ. Tst9

Watts
wf'c
°c

Temperature Range

THERMAL CHARACTERISTICS
Ch.recteristic
Thermal Resistance, Junction to Case

STYLE 1:
PIN 1. 8ASE
2. EMITTER
CASE: COLLECTOR

Adc

4
15
150
0.855
-65 to +200

DIM
A
8

I

Symbol
RUC

"Indicate. JEDEC Registerad Data
(I) Pulse Test: Pulse Width = 5ms. Duty Cvcle < 10%.

I

Max
1.17

I

Unit

°CIW

0
E

F
H
J
K
Q

R

MILLIMETERS
MIN MAX

INCHES
MIN
MAX

-

-

39.37
1.550
21.08
- 0.830
7.62 0.250 0.300
1.09 0.039 0.043
0.135
- 3.43
29.90 30.40 1.177 1.197
O.
11.18 0.420 0.440
5,33
5.bS 0.210 0.220
16.64 17.15 0.655 0.875
11.18 12.19 0.440 0.480
3.84
4.09 0.151 0.161
- 28.87 - 1.050
Collector connected to case.
CASE 11·01
6.3
0.99

(TO·3)
..

2N3773 NPN/2N6609 PNP

ELECTRICAL CHARACTERIST.ICS (TC = 25 0 C unl... otherwi .. noted.)
Characteristic
OFF CHARACTERISTICS (I)
·Coliector·Eminer Breakdown Voltage
(lC = 0.2 Adc. IB = 0)
'CoIlector-Eminar Sustaining Voltage
(lc = 0.1 Adc. VBE(off) = 1.5 Vdc. RBE = 100 Ohms)

I

Collector-Emitter Sustaining Voltage

(lC

=0.2 Adc. RBE •

Symbol

Min

Max

Unit

VCEO(.us)

140

-

Vdc

VCEX(sus)

160

-

Vdc

VCER(sus)

150

-

100 Ohms)

·Collector Cutoff Current
(VCE = 120 Vdc. IB = 0)

ICEO

·Collector Cutoff Current
(VCE = 140 Vdc. VBE(off) = 1.5 Vdc)
(VCE = 140 Vdc. VBE(off) = 1.5 Vdc. TC -150 oC)

ICEX

-

10

-

2
10
2

mAdc

5

mAdc

mAdc

-

Collector Cutoff Current
(VCB = 140 Vdc.IE = 0)

ICBO

-emitter Cutoff CUrrent

-

lEBO

(VBE - 7 Vdc. IC = 0)
ON CHARACTERISTICS (1)
DC Current Gain
'(lC - 8 Adc. VCE = 4 Vdc)
(lc = 16 Adc. VCE = 4 Vdc)

hFE
15
5

Collector-Emlner Saturation Voltage
'(lC - 8 Adc. IB = 800 mAde)
(lC = 16 Adc. IS = 3.2 Adc)
'Sase-Emitter On Voltage
(lC = 8 Adc. VCE = 4 Vdc)
DYNAMIC CHARACTERISTICS

VCE(..d

-

60

Vdc

VBE(on)

-

1.4
4
2.2

Ihfe l

4

-

-

hfe

40

-

-

-

Magnitude of Common·Emitter

Vdc
mAdc

Vdc

Small-Signal. Short-CIrcuit. Forward Current Transfer Ratio
(lC = 1 A. f • 50 kHz)
'Small-Signal Current Gain
(lC = 1 Adc. VCE = 4 Vdc. f = 1 kHz)
SECOND SREAKDOWN-CHAI!ACTERISTICS
Second Breakdown Collector Current with Ba.. Forward Slased
t = 1 • (non-repetitive). VCE = 100 V. Sae Figure 12
11) Pul .. Test: Pulse Width = 300 ,..•• Duty Cycle .. 2%.
'Indicates JEDEC Registered Data

1-109

2N3773 NPN/2N6609 PNP

NPN

PNP

FIGURE 1 - DC CURRENT GAIN

300
20

o 250C r--+-

,;;.;.--r -I

z

;;: 10

'"...

o

i

70

1l

0

'"
Q

:#

-

150°C

_~S50C

50

FIGURE 2 - DC CURRENT GAIN

300
150°C

200

.........

r--'250C

z

r-: r--.

~ 100

VCE = 4 V

~

20

j

~~

~

30

'"

20

~

10

-55°C

~

VCE =4 V

10

7. 0
7.0
5.0
0.2

5.0
0.2

0.3

0.5

0.7

2.0

1.0

3.0

5.0 7.0

10

20

IC. COLLECTOR CURRENT (AMPS)

0.3

0.5 0.7

1.0

2.0

3.0

5.0 7.0

10

20

IC. COLLECTOR CURRENT (AMPS)

FIGURE 4 - COLLECTOR SATURATION REGION

FIGURE 3 - COLLECTOR SATURATION REGION

g 2.0
~

I III

0

+.++

6

'"~"'

2

~

II \1

l ll...

Ie =4A

~ 1.6 HI-+IC 4 A+--+--1+-+-+++-l-t-lH--II-+--t--1

~

I II

HHI~I~II-+~+++H~-r~~

1.2 HI-+++++-+-+l-I-+-H-+-If+I'l~
,\+-+-+--1
IC"SA
I "

\

S

~8

4

0.4

0.2

0.3

0.5

0.7

2.0

1.0

IC=BA

r-

0.2

lB. BASE CURRENT (AMPS)

FIGURE 5 - "ON" VOLTAGE

g
'"~
"'
'"

.

'">>"

O.B

lJ

2.0

/J 1/

1.6

IC/IB= 10

'f'
VBEI.')

J
'II

.....-:t::::

25°C
~

IS00C

'/

I-

~
'"~
'""'
:;
'"
'">

1.2

o

0.2

VCE(sat)

0.5 0.7

1.0

2.0

3.0

2.0

1.0

3.0

5.0

I I10

5.0 7.0

r--

150°C

0.4

0.2

20

IC. COLLECTOR CURRENT (AMPS)

/I
I
I
I

VBE(sa.)

O.S r--

>"

~250C

1
0.3

0.7

IcllB = 10

25°C

150°C
0.4

0.5

FIGURE 6 - "ON" VOLTAGE

1.2

:;

0.3

lB. BASE CURRENT lAMPS)

2.0

1.6

r--_

~

-

Te = 25°C
0
0.05 0.07 0.1

3.0

!"-

\

~

~ 0.BHM-++++_+-+~\t--+-H-hICH="tl_6_A+-t-_ _+i--""'1

I~ L111::-"

0.3

-...-----

~

~
1500C

J.1

k:::: ~I

0.5 0.7

1.0

2.0

3.0

11- -

j5

VCE(sat)

II

5.0 7.0

10

IC. COLLECTOR CURRENT (AMPS)

1-110

I

II

20

2N3773 NPN/2N6609 PNP

III
FIGURE 7 - FORWARD BIAS SAFE OPERATING AREA

30
20

...
......

~

10

a::;:
~

I-

zw

1.0

a::

0.5

Q

I-

u

w

....I
....I
Q

...

....

I.....

......

5.0
3.0
2.0

a::
a::

=>
u

1"'.... F....

.....

....

~

10!'S40 ItS

100"s=
200/LS=
..... 1.0ms100 ms

de

I'

~"
1\..'-

500 ms
0.3
0.2

BONDING WIRE LIMIT
r- THERMAL LIMIT
@TCASE = 25 DC, SINGLE PULSE
SECOND BREAKDOWN II IT

-,

0.1
c.l
- 0.05

u

0.03

5.0

3.0

7.0

10

20

30

50

70

200

100

300

VCE, COLLECTOR·EMITTER VOLTAGE (VOLTS)

There are two limitations on the powerhandling abilitv of a
transistor: average junction temperature and second breakdown.
Safe operating area curves indicate Ie - VeE limits of the transistor that must be observed for reliable operation: I.e., the tran-

sistor must not be subjected to greater dissipation than the curves
indicate.

The data of Figure 7 i. based on TJ(pk)
for duty cycle. to 10% provided T J(pk)

~ 80

'"
~
~

I"""

"

60

~
c

:--...

"-

40

"'

'"

'"
~

20

40

At high case

be handled to values less than the limitations imposed by second
breakdown.

~
THERMAL
DERATING

'"z

< 2000 C.

temperatures, thermal limitations will reduce the power that can

FIGURE 8 - POWER DERATING

100

=2000 C;TC is variable

depending on conditions. Second breakdown pulse limits are valid

80

120

"

"" ""

TC. CASE TEMPERATURE (DC)

1-111

160

"

200

2N3789 thru 2N3792
MOTOROLA

SILICON PNP POWER TRANSISTORS

10 AMPERE

· .. designed for medium-speed switching and amplifier applications.
These devices feature:

POWER TRANSISTORS
PNPSILICON
60-80 VOLTS
150 WATTS

•

Total Switching Time@3 A'" 1 /JS (typ)

•

Two Gain Ranges:
hFE (min) = 15 and 30 @ 3 A (2N3789, 2N3790)
25 and 50 @ 1 A (2N3791, 2N3792)

=0.5 V (typ) @ IC =4.0 A,IS =0.4 A

•

Low VCE(sat)

•

Excellent Safe Area Limits

•

Complementary NPN types available - 2N3713 thru 2N3716

MAXIMUM RATINGS

Collector-B... Voltage
Collector-Emitter Voltage
Emltter·Base Voltage
Collector Current IContinuous)

VCB
VCEO
VEe
Ie
IB

Base Current (Continuous)

Po

Power Dissipation
Thermal Resitance

2N3790
2N3792
80
80
7.0
10
4.0
150
1.17

2N3789
2N3791
60
60
7.0
10
4.Q
150
1.17

Symbol

Characteristic

8JC

Unit
Volts
Volts
Volts
Amps

Amps
Watts
oem

Junction Operating and

Storage Temperature Range

-65 to +200

TJ, T stg

°e

NOTES:
I. OIMENSIONS Q AND V ARE DATUMS.
2.
IS SEATING PLANE AND DATUM.
3. POSITIONAL TOLERANCE FOR
MOUNTING HOLE 0:

m

FIGURE 1 - POWER·TEMPERATURE DERATING CURVE
160

@
~
~

!
ffi

~

.e

I

140

t

1.·13(O.005)@ IT Iv@1

FOR LEADS:

It \,.1310.D05)@T \ vel o@\

............. f....

120

............

100

4. DIMENSIONS AND TOLERANCES PER
ANSI YI4.5, 1973.

.............

80

...............

60

'-.......

40
20

DIM
A
S

'-....

C

..............
25

50

75

100

125

150

175

200

Te. CASE TEMPERATURE 1°C)

D
E
F
G
H
J

K

Safe Area Limits are indicated by Figures 15, 16. Both limits are applicable and
must be observed.

Q

R
U
V

MIN

MAX
39.37
21.08
6.35
7.62
0.97
1.09
1.4
1.78
30.15 SSC
10.92 SSC
5.46 SSC
16.S9 BSC
11.18 12.19
3.81
4.19
26.67
4.83
5.33
3.81
4.19
CASE '·05

1-112

2N3789 thru 2N3792

ELECTRICAL CHARACTERISTICS

(Tc

III

=25"C unless otherwise noted)
Symbol

Characteristic
Collector-Emitter Sustaining Voltage*

Min

Max

60
60

-

2N3789,2N3791
2N3790,2N3792

(lC = 200 mAde, la = 0)
COllector-Emmiter Cutoff Current

ICEX
2N3789,2N3791
2N3790, 2N3792
2N3789, 2N3791
2N3790, 2N3792

(VCE = 60 Vde, V8E = -1.5 Vde)
(VCE = 60 Vde, VaE = -1.5 Vde)
(VCE = 60 Vde, VaE = -1.5 Vde, TC'~ 15O'\::)
(VCE = 80 Vde, VaE = -1.5 Vde, TC = 150'\::)
Emitter-Base Cutoff Current

mAde

-

I
I
5
5

-

5

mAde

IEaO
All Types

(VE8 = 7 Vde)
DC Current Gain*

-

hFE'
2N3 789, 2N3790
2N3791,2N3792
2N3789,2N3790
2N3791,2N3792

(lC = lAde, VCE = 2 Vde)
(lC = 3 Ade, VCE = 2 Vdc)
Collector-Emitter Saturation Voltage-

25
50
15
30

90
180

Vde

VCE(satl'

(lC = 4 Adc, la = 0.4 Ade)
(lc = 5 Ade, la = 0.5 Adc)

2N3789, 2N3790
2N3791,2N3792

Base-Emitter On Voltage*

-

-

1.0
1.0

-

2.0
1.8
4.0

4

-

Vde

VaE(on)'
2N3789,2N3790
2N3791,2N3792
All Types

(lC = 5 A, VCE = 2 Vdc)
(lc = 10 Ade, VCE = 4 Vde)
Current Gain - Bandwidth Product

·Sweep Test: 1/2 sine wave cvcle

@

o_

MHz

IT
All Types

(VeE = 10 Vde, IC = 0.5 Ade, 1=1 MHz)

Unit
Vde

VCEO(sus)'

60 cps.

, FIGURE 2 - TYPICAL SWITCHING TIMES AND TEST CIRCUIT

1.

VALUES SHOWN FOR

r\\.
O. 7

5

O.3

le-5.\,1,,- -1,,-0.5A
f - 150 cps. DUTY CYCLE - 2%

...........

r--

'\

-3D V

"r-...~

"'

'\ ~,

lr i

'r-.

~~!!I~~/I1

6!l

t.

4W

r"\

~

..........

--;;---. .....

25

O.2
0.1

0.2

0.3

0.5

0.7

1.0

2.0

\

\.

~

"""-3.0

5.0

Ie. COUECTOR CURRENT IAMPSl

1-113

)

2N3789 thru 2N3792

FIGURE 3 - CURRENT GAIN VARIATIONS

200

z

1'iI

2113789. 2N3790

100 ~ TJ

+IWC

TJ

+2So C

70

5
~

so ~~-40°C

'1

30

Ve£~2V
I

II IIII

FE

I. + ICBO

h

-

I

C

CIO

.::--..,
~ t::....

r--:::: ~

g

"~

20

TJ~

+2SoC

~~

~~,

10
0.01

0.02

003

0.05

0.07

0.2

0.1

0.3

0.5

0.7

1.0

2.0

3.0

5.0

7.0

10

Ie. COlLECTOR CURRENT lAMPS)
FIGURE 4 - CURRENT GAIN VARIATIONS

---- ----

so0 _2N3791. 2N3792
300

TJ

+lWC

200

TJ

+2S OC

.......

V~£~2t
hFE

~

,

=

1,+ leBO

l""'-

TJ - -40°C

I I

)0....

0
0

I

Ie - ICBO

::.....

0

.........;:

TJ

+2SOC

TJ

+1J50C

b>"-r\-

~~

0

~~

0
I0

0.01

0.02

0.03

0.05

0.07

0.1

0.2
0.3
0.5
Ie. COLLECTOR CURRENT lAMPS)

r--r--r---

=i

ALL.TYPES

TJ~+2SOC

.

II
II

+4.0

r--- _

...- io"""

0.1

..d ~
fl'

0.3

10

~5~2~~p!r~~ro;!;t~~~T~ _250C)

~~ !p~~~~i:::t~~~:!~i~~:rature range of interest. --''''I----:~~-!
TJI+ 100°C to + 17S0C)r""'~:....l::s:3"'f--t--1

~fl,~IO

10 ~

V

-~

VeE!wt)

0.2

7.0

Use appropriate 9v for voltage of interest.

0.4

o

5.0

To compute saturation voltages

Ve£~2;:l

_,VBEIM't),

3.0

+S.O,.--~--r-~-_--'--,----..--,----,----,

fl' '" le/l,lfORCED GAIN)

r--r--- -"V"

2.0

1.0

FIGURE 6 - TEMPERATURE COEFFICIENTS

FIGURE 5 - SATURATION VOLTAGES

2.4

0.7

0.5 0.7

1.0

2.0

3.0

5.0 7.0

10

Ie. COLLECTOR CURRENT lAMPS)

-3.0~0--f;;---::':--t;:--+:'--;';;---,~~\;--t8.0;:--;;9~.0---710'
Ie. COLLECTOR CURRENT lAMPS)

1-114

2N3789 thru 2N3792

SAFE OPERATING AREAS

FIGURE 7 - 2N3789.2N3791

FIGURE 8 -

II.

2N3790.2N3792

10

..... nDC to 5 m,

i"'\.\ \

'\. \\
~

1m,

"

'ffi"

~

1.0

~

07

8

0.5

::::

.2

500 fl'

-

250 fl'

-

\ \ < 150
\,"-

,
fl

DC to 5 m,

¥--

-"-.
" "'\. '"'\.

\

\

!

\ 750fl'

\

-

'" K\~\1\\

k\\I\
~ ~\

~

\'

\

Ims>

'\,

'\

'\.
'\

1",\\

03
#0.

02

0.1

500;;:s=
-2~

o

20

10

30

40

50

70

60

20

10

~

~

30

40

50

60

70

80

90

VeE, COLLECTOR·EMITIER VOLTAGE (VOLTS)

(Duty cycle of the excursions make no significant change in
these safe areas.) To insure operation below the maximum T"
the power·temperature derating curve must be observed for
both steady state and pulse power conditions,

The Safe Operating Area Curves indicate Ie - VeE limits
below which the device will not go into secondary breakdown,
Collector load lines for specific circuits must fall within the ap'
plicable Safe Area to avoid causing a collector·emitter short,

FIGURE 10 - COLLECTOR CUT·OFF CURRENT versus
BASE·EMITTER RESISTANCE

FIGURE 9 -CUT.()FF REGION TRANSCONDUCTANCE
10 0

20

0

10

0

l

~

a
~

VeE

5.0

VCEO 20V

~ 2.0

0

~

!

5

o. 1

8 o. 1

:,.....-

TJ~+1WC

0.0 I
+0.6

1.0

I

/

TJ~+1WC/

0.5
0.2

TJ~+100°C/

J1 O. 1

00 5
001

.....-

VeE = VCEO -20 V

0.05
TJ - + IOO°C

REVERSE
+0.4

'"

+01

0.02

FORWARD
-0.1

-0.4

V", BASE·EMITIER VOLTAGE IVOLTS)

1-115

0.0 1
1.0

10
100
10K
lK
ROE, EXTERNAL BASE·EMITTER RESISTANCE IOHMS)

lOOK

/

2N'39,02 NPN

®

MOTOROLA

3.5 AMPERE
HIGH VOLTAGE NPN SILICON TRANSISTORS

POWER TRANSISTORS
NPN SILICON

• .• designed for use in high-voltage inverters, converters, switching
regulators and line operated amplifiers_

400 VOLTS
100 WATTS

•

High Collector-Emitter Voltage - VCEX = 700 Vdc

•

Excellent DC Current Gain hFE
10 (Min) @ IC 2.5 Adc

•

Low Collector-Emitter Saturation Voltage VCE(sat) = 0.8 Vdc (Max).@ IC = 1.0 Adc

=

=

"MAXIMUM RATINGS
Symbol

2N39C)2

Unit

Collector-Emitter Voltage

Rating

VeEO

400

Vdc

Collector-Emitter Voltage

VeEX

700

Vdc

VEa

5.0
3_5

Vdc

Emitter-Base Voltage
Collector ~urrent - Conti~uous

Ie

Adc

Sase Current

la

2.0

Adc

Total Device Dissipation @I T C = 75°C
Derate above 75°C

Po

100
1.33

Watts
w/oe

TJ

-65 to +150

°e

Tstg

-65 to +200

°e

Operating Junction Temperature Range
Storage Temperature Range

JE"~'

t.~i
r-----

F-

LJ~

Q~~/v 1
H
:lf~IR
+

~HERMAL CHARACTERISTICS
Symbol

I

Max

Unit

Thermal Resistance, Junction to Case

8Je

I

0.75

°e/w

·1 ndicates JE DEC Registered Data

100

~

80

z

60

~
0

"'"I'.

1.·13(0.005)e IT Ive I
FOR LEADS:

.~

."

~

2i 40

'"~

~

DIM
A
B
C
D
E
F

~
I'.

~ 20

~

80

NOTES:
1. DIMENSIONS 0 AND V ARE DATUMS.
2. [JJ IS SEATING PLANE AND DATUM.
3. POSITIONAL TOLERANCE FOR
MOUNTING HOLE 0:

I t 1.·13(0.005)e T I vel Del
4. DIMENSIONS AND TOLERANCES PER
ANSI YI4.5, 1973.

iii

0
60

lGJ

u

It

FIGURE I_POwER DERATING

'"

~-/

!

Characteristic

100

120

"~
140

G
H

J
K
Q

160

R
U

Te, eASETEMPERATURE (OC)

v

MILLIMETERS
MIN MAX
39.37
21.0B
6.35 7,62
0.97 1.09
1.4
1.7B
30.15 Bse
10.92 BSC
5.46 Bse
16.89 Bse
11.18 12.19
3.81 4.19
26.67
4.83 5.33
3.81
4.19
CASE '·05

1-116

INCHES
MIN MAX
1.550
0.830
0,250 0,300
0.038 0,043
0,055 0.070
1.187 Bse
0.430 SSC
0.215 Bse
0.665 BSC
0.440 0.480
0.150 0.165
1050
0.190 0.210
0.150 0.165

2N3902

l1li

*ELECTRICAL CHARACTERISTICS (TC = 26°C unle•• otherwi.e noted)
Symbol

Characteristic

Min

Max

325

-

0.25

-

-

2.5
0.5

-

5.0

30
10

90

-

0.8

Unit

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage

(lC

= 100 mAde, IS =0)

Collector Cutoff Current

(VCE

= 5.0 Vdc,

IC

mAde

ICEX

= 700 Vdc, VES(off) = 1.5 Vdc)
= 400 Vdc, VEB(off) = 1.5 Vdc, TC = 125°C)

Emitter Cutoff Current

(VBE

mAde

ICEO

= 400 Vde, IS =0)

Collector Cutoff Current

(VCE
(VCE

Vde

VCEO(sus)

(See Figure 12)

mAde

IESO

=0)

ON CHARACTERISTICS (1)
DC Current Gain

(lc
(lC

-

hFE

= 1.0 Ade, V CE = 5.0 Vdc)
= 2.5 Adc, V CE = 5.0 Vdc)

Collector-Emitter Saturation Voltage

Vdc

VCE(sat)

(lc = 1.0 Ade, IS = 0.1 Ade)
(lC = 2.5 Ade, IB - 0.5 Ade)

-

Base-Emitter Saturation Voltage

2.5
Vde

VBE(sat)

(lC = 1.0 Ade, IS - 0.1 Ade)
(lC 2.5 Adc, IS 0.5 Ade)

-

1.5
2.0

-

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(lC = 0.2 Ade, VCE = 10 Vdc)
*Indicates JEDEC Registered Data
(1) Pulse Test: Pulse Width .. 3001's, Duty Cycle .. 2.0%.

FIGURE 2 - SWITCHING TIMES TEST CIRCUIT

FIGURE 3 - TURN-ON TIME
2. 0

:r@ltCcl • b5 JdC
I

Ic/1B'10
TJ' 25°C

""-

1.01"-

- -

O. 7

:!
w

O. 5

"-

...; 0.3

L

,.

>=
Rl 50
RB
12

6.0 V

i'.

.......

-I'dl@lIVfBIOff) • 5.0 Vdc

Rl
115

0.2

VCC=12SV
VBS"

lill

O. 1

0.05
5.0% Duty Cvcle
tr'" lOOns

II II

0.1

I'..

I

0.2

I

I

0.3

I'-- .....
0.5

1.0

IC,COLLECTOR CURRENT lAMP)

1-117

2.0

3.0

5.0

/

I

2N3902

FIGURE 4 - THERMAL RESPONSE

.
~

0.7

iii

0.5

~ ~

0.3
0.2

1.0

~

> z

...E~.,
:t

~ 0.1
~ ;;, 0.01

"

i~

t-

~ ~ 0.05
~~

g; Iz

lIa

~0=0.5

..'\,.

0.03

"'

0.02

BJC(I) = ,(I) BJC
BJC = 0.75"CIW Max
o CURVES APPLY FOR powfRf:::
PULSE TRAIN SHOWN
tREAOTIMEATtl

==r:

0.2
0.1
0.05
0.02
0.01
SINGLE PULSE

I

0.01
0.02 0.03

0.05

0.1

0.2

0.3

pEfUl

r:

TJ(pk) - TC = P(pk) BJC(t)
I I I I I II111

0.5

1.0

2.0

IIIII
3.0

5.0

10

t'~j

f:::
I

t-

DUTY CYCLE, D = I11t2

I
20

30

100

50

I
200

300

500

1000

2000

t, TIME (m,)

FIGURE 5 -ACTIVE-REGION SAFE-OPERATING AREA
10
I=TJ -150 oe

- -

5.0

-~<
~

2.0

~

0:

:=
~

~

-- - -

~ 0.5

,

Second Jreakdown limitl

1.0 _

.'Z5 m, f--

"'-

~.Oms

There are two limitations on the power handling ability of a
transistor: junction temperature and secondary breakdown. Safe

operating area curves indicate Ie-VeE limits of the transistor that

Bonding Wire Limit

______ Thermal Limit@Tc=750 C
Curves Apply Below Rated BVCEO

0.2

must be observed for reliable operation; i.e., the transistor must not

~~ "'-

be subjected to greater dissipation than the curves indicate.
The data of Figure S is based on TJ(pk) = lS00C; TC is variable

ms

depending on conditions. Pulse curves are valid for duty cycles of
10% provided T Jlpk) S 15o"C. At high case temperatures, thermal
limitations will reduce the power that can be handled to values
less than the limitations imposed by secondary breakdown.

de""

O. 1

8~0.05
0.02
0.0 1
5.0

20

10

50

100

500

200

VeE, COLLECTOR·EMITIER VOLTAGE (VOLTS)

FIGURE 6 - TURN-OFF TIME
5.0

Tr

--

-

2.0
1.0

"i
;;:; 0.5

'".,

;::

FIGURE 7 - CAPACITANCE

IC/IBI 10ICIIB = 2.0- - -

250 C

ts

-

~

1000

'"z

~ 300

~200

tf@lVCC=125~

II

-

r--

r--

-

~

iJ=12JO~

C1b

""'"

r--

"'-'00

'l"-

--=Ob

i.--

o. I
0.05
0.05

2000

u:~ 500

~

0.2

3000

50
0.1

0.2

0.5

1.0

2.0

30
1.0

5.0

2.0

3.0

5.0

10

20

30

VR, REVERSE VOLTAGE (VOLTS)

IC,COLLECTOR CURRENT (AMP)

1-118

50

100

2N3902

FIGURE 9 - "ON" VOLTAGES

FIGURE 8 - DC CURRENT GAIN

2. 0

100

IITI

Tr 150°C

0
0

"

........ ~ VCE ' 5.0 Vdc

V .....

0

~

..... 25°C

0

V

0

k- ~

~

..........

~

I"~

VBE(sat) @lcIIB' 10

~

O.S

0.4

0.3

0.5

2.0

1.0

3.0

0.2

0.1

IC. COLLECTOR CURRENT (AMP)

~

'"

~

8
;!

to 0

10

==

~125~C

3.0

5.0

..§ +1.5
~
~

I

i

-

+1.0

TJ' -650C to 1500C

<3

+D.

5

r--750C

I-

~ -1. 0

l=,.- ~25~C

1.0
-0.4

REVERSE

~

FORWARD

-0.2

+0.2

i---

~ -2.0

-2.5
0.005

+D.6

+0.4

-1. 5

I-

VCE - 200 Vdc-

II J..W..-P'
II
...... V

8V FOR VCE(sat)
eAPPUESFOR IC/IS

5.0

1

l- F"

>

TJ.1500C"",1\'I

I

rr
......

1........ 1

to

-55°C

7.0

JCEI(sa~ lUIIB' 1~

1. 2

w

~

1

II

I II

Tp250C
1. 6

I"

0.01

0.02

0.05

0.1

-

0.2

8V FiR V1B\

0.5

1.0

2.0

I5.0

IC. COLLECTOR CURRENT (AMP)

VBE. BASE EMITTER VOLTAGE (VOLTS)

FIGURE 12 - COLLECTOR-EMITTER SUSTAINING VOLTAGE TEST CIRCUITS AND LOAD LINES
TESHI

50 0

;; 400

.g
I-

~

30 0

~

'"c

~

8

~

20

0

""'\

>-- , -

VCEO(sus) IS ACCEPTABLE WHEN
VCE;>RATEO V LT GE Ic'100mA

J\IB~IIIII-'-_'" ---'~--o
1.0

100
I

y

I
I

0
100

200

300

400

500

VBB

VCE. COLLECTOR·EMITTERVOLTAGE (VOLTS)

1-119

J

2N4231A thru 2N4233A NPN
2N6312 thru 2N6314 PNP

®

COMPLEMENTARY SILICON
MEDIUM-POWER TRANSISTORS

5.0 AMPERE
COMPLEMENTARY SILICON
POWER TRANSISTORS

designed for general-purpose power amplifier and switching
applications_
•

MOTOROLA

40-60-80 VOLTS
75 WATTS

Low Collector-Emitter Saturation VoltageVCE(sat) = 0.7 Vdc (Max) @ IC = 1.5 Adc

•

Low Leakage Current - ICEX = 0.1 mAdc (Max)

•

Excellent DC Current Gain - hFE = 25-100@ IC = 1.5 Adc

•

High Current Gain - Bandwidth Producttr = 4.0 MHz @ IC = 0.25 Adc

*MAXIMUM RATINGS
Rating

Symbol

2N4231A
2N6312

2N4232A
2N6313

2N4233A
2N6314

Unit

Collector-Emitter Voltage

VCEO

40 .

60

80

Vdc

Collector-Base Voltage

VCB

40

60

80

Vdc

Emitter-~ase

VEB

Voltage

Collector Current Continuous
Peak

IC

Base Current

IB

_5.0_

.

Vdc
Adc

.

~5.0~

Total Device Dissipation @
TC = 25°C

--u--

2.0_

- Adc

.

..

-PO

75
_0.43_
_ _ _ -65 to +200 _____

Derate above 25°C
Operating and Storage
Junction Temperature

10

.

TJ.Tstg

Watts
W/oC
°c

Range

---F--

STYLE 1:
PIN 1. BASE
2. EMITTER

• THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case
-Indicates JEDEC registered data. (All 'Values meet or exceed JEOEC registered data).

FIGURE 1 - POWER DERATING

s

80

~

r-- r-....
70

i

60

<>

50

ill
c

40

z

::>=
'"3:

~

J?

"

......

" "'""" ""'"

30
20
10

o
o

25

50

75

100

125

TC. CASE TEMPERATURE IOC)

" "'"

150

175

200

1-120

MILLIMETERS
INCHES
DIM MIN MAX MIN MAX
B 11.94 12.70 0.470 0.500
C
6.35 8.64 0.250 0.340
D
0.71 0.86 0.028 0.034
E
1.27 1.91 0.050 0.Q15
F 24.33 24.43
0.958 0.962
G 4.83 5.33 0.190 0.210
H 2.41
2.67 0.095 0.105
J 14.48 14.99 0.570 0.590
K 9.14
0.360
P
1.27
0.050
Q
3.61
3.86 0.142 0.152
S
8.89
- 0.350
T
3.68
- 0.145
U
15.75
0.620
All JEDEC D,menSlons and and Notes Apply.
.~

CASE 80-02
TO-68

2N4231A thru 2N4233A NPN, 2N6312 thru 2N6314 PNP

-

ELECTRICAL CHARACTERISTICS ITC '" 2SoC unless otherwISe noted)

I

Characteristic

Min

Symbol

'OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage (1)

(Ie'" 100 mAde, IS

VCEO(sus)

Collector Cutoff Current

mAde

ICEO

10
1.0

Collector Cutoff Current

mAde

ICEX

VeE/off) = 1.5 Vdc)
VeEloff) = 1 5 Vdc)
VeEtoffl = 1 5 Vdc,

2N4231A,2N6312
2N4232A,2N6313
2N4233A.2N6314
2N4231A.2N6312

0.1
0.1
0.1
1.0

VSEloff) = 1.5 Vdc,

2N4232A. 2N6313

1.0

VSE/off) = 1.5 Vdc,

2N4233A.2N6314

1.0

VSEloff) = 1.5 Vdcl

Collector Cutoff Current
(Vce '" 40 Vdc, Ie ~ 0)
(VeB ~ 60 Vdc, Ie '" 01
(Vce ~ 80 Vdc, Ie '" 0)

III

1.0

2N4231A.2N6312
2N4232A. 2N6313
2N4233A.2N6314

(VeE'" 30 Vdc, Ie = OJ
(VeE = 50 Vdc. Ie = 0)
(VeE = 70 Vdc, 18 = 0)
(VeE = 40 Vdc,
(VeE = 60 Vdc,
(VeE'" 80 Vdc.
(VeE'" 40 Vdc,
TC = 1S0oC)
(VeE = 60 Vdc.
TC'" 150°C)
(VeE = 80 Vdc,
TC ~ 150°C)

Vde

40
60
80

2N4231A,2N6312
2N4232A,2N6313
2N4~33A, 2N6314

= 0)

Unit

mAde

ICBO

0.05
0.05
0.05

2N4231A,2N6312
2N4232A,2N6313
2N4233A,2N6314

Emitter Cutoff Current
(VeE'" 5.0 Vdc, IC ~ 0)

mAOC

E80
05

ON CHARACTERISTICS
DC Current Gam (1)
"(lc ~ 05Adc, VCE
"(lc'" 1 5 Adc, VCE
"tic'" 3 0 Adc, VeE
(lc'" 5.0 Adc, VCE

hFE
40
25
10

'" 20VdcJ
"" 2.0 Vdc)
~ 2 0 Vdc)
= 4 a Vdc)

100

4.0

·Collector·Emltter Saturation Voltage (1)
(Ie'" 1.5 Adc, 18 '" 0.15 AdcJ
(Ie = 3.0 Adc, IS = 0.3 AdcJ
(lc"" 5.0 Adc, 18 "" 1.25 Adc)

VCEtsad

"Base·Emltter· On Voltage (1)
(Ie'" 1 5 Adc, VCE = 2 0 VdcJ

VBElon)

Vdc
0.7
2.0
4.0

Vdc
1.4

'DYNAMIC CHARACTERISTICS
Current-Gam - Sandwldth Product
(lC '" 0.5 Adc, VCE '" 10 Vdc, f test "" 1.0 MHz)

MH,

fT
4.0

Output Capacitance
(VCB'" 10 Vdc, Ie = 0, f = 0.1 MHz)

Cob

Small·Slgnal Current Gain
(Ie"" 0 5 Adc, VCE '" 10 Vdc, f'" 1.0 kHz)

hf.

300
20

"I ndtcates JEDEe registered data.
(1) Pulse Test Pulse Width ~ 3001-'5, Duty Cycle

:EO:;;

2.0%.

FIGURE 2 - SWITCHING TIME TEST CIRCUIT
APPROXnTURN.ON
PULSE
+11 V ,
'

2.0

.,

---;
I

TJ'25"C I
IlelIB"O

1.0
RS

II

Vin

FIGURE 3 - TURN "ON" TIME

VCCo-_\I\o--,

0.7
o. 5

Cjd« C,b

o ,I
II

'r@VCC'IOV=

30V

-

]. 0.3

-4.0 V

APPRO X
+11 V

'r@VCC

~

., <15n,
100 <12 <500.,
13< 15 n,

-

0.2

>=
O. I
0.07
0.05

OUTY CYCLE ~ 2.0%
FOR td and tr, 01

IS OISCONNECTED
12
FOR PNPTEST CIRCUIT.
TURN·OFF PULSE
REVERSE ALL POLARITIES AND 01
FOR CURVES OF FIGURES 3 AND 6. RS AND RC
ARE VARIED TO OBTAIN DESIRED CURRENT LEVELS

0.0 3

-

0.0 2
0.05 0.07 0.1

:;:;~

-"=.......-:

Id@VBE(off)'O

2N4231A Ihru 2N4233A (NPN)
2N63121hru 2N6314 (PNP)
0.2

0.3

0.5

0.7

1.0

2.0

3.0

5.0

IC. COLLECTOR CURRENT (AMPERES)

01 MUST SEFAST RECOVERY TYPE. eg
MBD5300 USED ABOVE IS ~ 100 rnA
MS06100 USED SELOW IS ~ 100 rnA

1-121-

I

2N4231A thru 2N4233A NPN,'2N6312 thru 2N6314 PNP

FIGURE 4 - THERMAL RESPONSE
1.0

c

O. 7 '--0=0.5

~ O. 5

~~
w:E

0.2

Wz
~~

o. 1=0.05

:~

......

--

O. 3-0~2

~~

f.:::;: ~;;.

0.1

:Ziii 0.01 =---0.02

tt:~ 0.05

W-,

¥:i\! 0.03 i-"""

,... r"'o.

0:

~ 0.02

P(pk)
OJC(I) = r(t) OJC
8JC = 2.32oCIW MAX
o CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME AT q
--t~

...... 0.01

......... .... ) I

rrmr

....

0.0 1
0.01

,,-

0.02 0.03

0.05

fJUl
j

TJ(pk) - TC = P(pk) OJC(I)
E

1111

I
0.2

0.1

0.3

0.5

2.0

1.0

3.0

5.0

20

10

DUTY
CYCLE,
0 =q/12

12

30

50

II II100

200 300

500

1000

I, TIME (ms)

FIGURE 5 - ACTIVE REGION SAFE OPERATING AREA
10
~

'".....5
~

7. 0
5. 0

...

0.1

...

3. 0

'\.
'\.
de

2.0

(.J

1.0

~ ~:

'\.

'I.

0:

=>

m:-

There are two limitations on the power h,andling ability of a
transistor; average junction temperature and second breakdown .
Safe operating area curves indicate Ie - VeE ·Iimits of the
transistor that must be observed for reliable operation; i.e .• the

"\
05ms

'I

== TJ=2000C

transistor must not be subjected to greater dissipation than the
curws indicate~
The data 01 Figure 5 is based on T J(pk) ~ 200°C; TC is variable

io~,

'\. I\.

7 -;;:':;:'SECONO BREAKDOWN LIMITED
5

depending on conditions. Second breakdown pulse limits are valid

:::-:~~~~~~GL~:~~T~~llci~~TC = 250C

8 o. 3 - _
~
o. 2
O. 1
5.0

,"\..

(SINGLE PULSE)

1'1

2N~231A,12N6312

I II

2N4232A,2N6313
2N4233A,2N6314

I
7.0

10

20

<

lor duty cycles to 10% provided T J(pk)
200°C. T J(pk) may be
calculated from the data in Figure 4. At high case temperatures,
thermal limitations will reduce the power than can be handled to
values less than the limitations imposed by second breakdown.

.J..!..

N°r'
I

50

30

70

100

VCE, COLLECTOR·EMITTER VOLTAGE (VOLTS)

FIGURE 6 - TURN "OFF" TIME
5.0

300
TJ = 25 0C- - IcilB=10 _ - IBI = IB2

3.0
2.0

-I-.

1.0
O.7
~. o.5

II@VCC=30V

':. o.3

:>"0

]

O. 1
0.07
0.0 5
0.05 0.07 0.1

.

0.3

.....

0.5 0.7

Ie, COLLECTQR CURRENT

"':......."
Cob

Z

;!:

'.

f"'...
~~ ~;~

~2N4J31Allhru
2~4233A (NPN)
2N6312 Ihru 2N6314 (PNP)
0.2

II IIII

-. -.

W

Is

1.0

100

Cibl (A1Ll Np'~~)

~~

U

~

T~ = ~5oh

I 1111111

-. t-

Q.

:=

- -

-

~

II@VCC=10V

o.2

200

FIGURE 7 - CAPACITANCE

.......

70

'

\
2.0

3.0

50

..... .....

.

I - - f-- - - - 2N4231A Ihru 2N4233A (NPN)
5.0

(AMPE~ES)

30
0.1

I I II
0.2

0.5

mt
1.0

2

i Tri7 III

IhrUI2N 3
2.0

5.0

10

VR, REVERSE VOLTAGE (VOLTS)

1-122

20

50

100

2N4231A thru 2N4233A NPN, 2N6312 thru 2N6314 PNP

I

NPN
2N4231A thru 2N4233A

PNP
2N6312 thru 2N6314

FIGURE 8 - DC CURRENT GAIN
300

I

200

-L
I'-- ~

~ 100

~~~ =2,0 ~

I

200

TJ =+150 DC

VCE 2.0 V

TJ +,50"1

'"
~

300

J
I I

It-

z

~ 100

I-

I-

70

fl'"

.~25"~

;:'i 70

C-

'-'

~

30

-

I-

20

10
0.05 0.07 0.1

fl

0.2

0.3

0.5 0.7

~

'".....,,,~

r--

1.0

50

2.0

3.0

t-

·55"C

'"CJ

f'.[',

wJ

CJ

+2S;C

~

.'>
i"""-.. .........

50

~

..... ~

30
20

,~

10
0.05 0.07 0.1

5.0

0,2

IC, CO.LLECTOR CURRENT (AMPERES)

0,3

0,5 0.7

1.0

"~

2,0

3,0

5.0

IC, COLLECTOR CORRECT (AMPERES)

FIGURE 9 - COLLECTOR SATURATION REGION
c;;l.0

II III

~

'">
~ O.8
'"
«
~
'"> O. 6

IC = 100 mA

II

500mA

iii 1.0

I

1.0 A

'"
«

'"
ffi

f5
t::

'"
~

\

"-

'"'"

~

>

0
1.0

2.0

5.0

10

l't-t-

20

U;l

'"

100

1.0A

3.0 A

0.6

~j

II I

200

500

0.4

0.2

'"'"

TJ = 25 DC

50

500 mA

II

11

;e
1

::::: o. 2

IC = 100 mA

II

11

1=

I\..

O.4

11

o. 8

~

l-

~

II

~

'"2:-w

3.0A

~

>
1000

0
1.0

,

r-t-

2.0

1\

.........
5.0

10

TJ = 25 DC

50

20

1J

100

200

500

1000

IB, BASE CURRENT (mA)

IB, BASE CURRENT (mA)

FIGURE 10 - "ON" VOL TAGES
1.4

1.4
TJ = 25"C

1. 2

~
~

'I

I
I

1. 0

o. 8

"..-

VBE (sal)@ICIlB

t:::;::::::

10

VBE al VCE

w

'"~

o. 6

'":>>

O.4

o. 2

VCE(sal) @leliB

0.2

0.3

0.5 0,7

~

V

in
~

1.0

......::~

6

1
I

1. 0

~ o. 8

2.0 V

-

=10

o
0.05 0.07 0.1

..1
TJ = 25"C

1. 2

1

~t::::"

w

~

VBE @VCE = 2,0 V

'"~ o.6
'"> .4

/

V

r-

VBE (sa!) @Ic/lB - 10

>'

.2
VCE(sa!)@ Ic/lB
2.0

3.0

5.0

IC, COLLECTOR CURRENT (AMPERES)

0
0.05 0.07 0.1

0.2

~

10
0,3

0.5

0.7

1.0

~

2,0

3.0

5,0

IC; COLLECTOR CURRENT (AMPERES)

.
j
,:

1-1'23

214398
214399
215745

®

MOTOROLA

PNP SILICON HIGH-POWER TRANSISTORS
20,30 AMPERE
POWER TRANSISTORS

___ designed for use in power amplifier and switching circuits.

PNP SILICON
•

Low Collector-Emitter Saturation Voltage VCE(sat) ~ 1_0 Vdc (Max) @ IC ~ 15 Adc (2N4398. 2N4399)

•

DC Current Gain Specified - 1_0 to 30 Adc

•

Complements to NPN 2N5301. 2N5302. 2N5303

40-60-1SO VOLTS
200 WATTS

*MAXIMUM RATINGS
Ratina
Co"ector-.Emitter Voltage
Co"ector-Base Voltage
Emitter-Base Voltage
Collector Current - Continuous

Svmbol

2N4398

2N4399

40

60

N5745
SO'

Unit

VCFO
VCB
VFR

40

60

SO

Vdc

IC

30
50

20
50

Adc

Vdc

5.0

Peak

Vdc

30
50

IB

7.5
15

Adc

Total Device Dissipation@TA = 250 C H
Derate above 250 C

Po

5.0
28.6

Watts
mWfDC

Total Device Dissipation@Tc= 25°C
Derate above 2SoC

Po

200
1.15

Watts
wfDc

Continuous

8ase Current

Peak

Operating and Storage Junction
Tary.perature Range

°c

TJ.Tstg 1 - - - 6 5 to + 2 0 0 -

THERMAL CHARACTERISTICS
Symbol

Max

Unit

Thermal Resistance, Junction to Case

Characteristic

8JC

0.875

°C/W

Thermal Resistance.Junction to Ambient

8JA

35

°C/W

-Indicates JEDEC Registered Data
• -Motorola guarantees this data in addition to JEOEC Registered Data.

.FIGURE 1 - POWER-TEMPERATURE DERATING CURVE

~
~

TA

Te

10
9.0

200
180

8.0

160

7.0

140

I'-.
"-

;::: :::
z

i5 4.0

80

3.0

60

2.0

40

'"
~

a

~ 1.0

"'-

"'-TC,

............
TA"' r--.....

MILLIMETERS
DIM MIN MAX
A

-.......

20

'"

r-.......

.......... r-.... .....
~

o

o

2&

&0

7&

100

-

B

.....

12&

150

17&

200

T. TEMPERATURE C.DC)

39.37
21.08
7.62
1.09
3.43

C
D
E

6.3&
0.99

F

29.90

30.40

G 10.67
H 5.33
J 16.64
K 1.18
0 3.84

11.18
5.&9
17.15
12.19
4.09
26.67

R

-

INCHES
MAX
MIN

-

-

0.250
0.039
1.177
0.420
0.210
0.655
0.440
0.151

CASE 11-01

Safe Area Curves are indicated by Figure 13. All

(TO·3)

limits are applicable and must be observed.

1-124

1.5&0
0.830
0.300
0.043
0.13&
1.197
0.440
0.220
0.675
0.480
0.161
1.050

2N4398, 2N4399, 2N5745
ELECTRICAL CHARACTERISTICS (Tc,; '" 25°C unless otherwise noted)

I

Charactel'inic

~mbol

Mo.

Moo.

Unit

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage(1)
ilC = 200 mAde, Ie" 01

Vdo

VCEOlws)

t,;ollector Cutoff Current
(VeE = 40 Vdc, la = 0)

2N4398

(VeE" 60 Vdc,la = 0)

2N4399

60
80
mAde

leEO

(VeE'" 80 Vdc, 18 '" 0)

50
5.0
50

2NS745

Collector Cutoff Current
tVeE = 40 Vdc, VSE(off) " 1 5 Vdcl

2N4398

tVeE = 60 Vdc, VSE(off) " 1.5 Vdcl

2N4399

mAde

ICEX

(VeE'" 80 Vdc, VSE (off) = 1 5 Vdc)

50
5.0

2N5745

(VeE = 30 Vdc, VSE(offl '" 1.5 Vdc, TC = lSOoC)

2N4398, 2N4399

(VeE = 80 Vdc, VeE off = 1 5 Vdc, TC = lS00CI

2N514S

Collector Cutoff Current
(Vea '" 40 Vdc, Ie = 0)

2N4398

(Vea = 60 Vdc, Ie '" 01

2N4399

(Vea = 80 Vdc, IE " 01

2NS745

I,.

40

2N4398
2N4399
2N5745

5.0
10
10
mAde

ICBO

1.0
10
1.0

Emitter Cutoff Current
(VES '" 5 0 Vdc, Ie'" O)

50

lEBO

mAde

ON CHARACTERISTICS
DC Current Galn!1)
IIc'" 1 0 Adc. VCE = 2 0 Vdc)

h'E

40
15
15
5.0
50

All Types

tie'" 10 Adc. VCE ,.. 2 0 Vdcl

2N5745

fie = 15 Adc. VeE'" 2 0 WeI

2N4398. 2N4399

lie" 20 Adc. VeE'" 2 0 Vdc)

2N5745

(Ie = 30 Ad(;:. VCE '" 4.0 vdcl

2N4398. 2N4399

Coliector·Emltter Saturation Voltage(1)
(lC = 10 Adc. Ie"' 1 OAde!

60
60

Vdo

VCEtsad
2N4398. 2N4399
2N5745

075
10

IIc'" 15 Adc. Ie'" 15Adcl

2N4398. 2N4399
2N5745

(lc '" 20 Adc.Ie ,. 20Adel

2N4398, 2N4399

1.0
1.5
20
2.0
40

(lC = 20 Adc, Ie '" 40 Adcl

2N5745

lie" 30 Adc, Ie '" 6.0 Ade)

2N4398. 2N4399

ease-Emitter Saturation Voltaget 11
IIC"' 10 Adc.Ie '" 1.0 Adcl··

Vdo

VSElsad
2N4398. 2N4399
2N5745

I.
17

IIc'" 15 Adc, Ie '" 1.5Adcl

2N4398. 2N4399
2N5745

1.85

(lc '" 20 Adc, 'e = 2.0 Adcl ....

2N4398. 2N4399

25
2.5

(lc '" 20 Adc, Ie '" 40Ade!

20

2N5745

Base·Emmer On Voltaget 11
IIC = lDAde, VCE '" 2 0 Vdc)

Vdo

VBEtonl

15
17

2N5745

lie = 15 Ade, VeE'" 2 0 Vdcl

2N4398, 2N4399

lie'" 20 Adc, VeE'" 4.0 Vdcl

2N5745

(Ie = 30 Adc. VeE" 4.0 WeI

2N439B, 2N4399

25
3.0

DYNAMIC CHARACTERISTICS

.,.

Current·Gam-Bandwidth Produetl21
IIC"" D Ade, VeE '" 10Vdc,f= 1 OMHzI

MH,

40
2.0

2N4398, 2N4399
2N5745

Small,Slgnal Current Gain
flC" 1.0Ade, VCE '" 10 Vdc, f = 1,0 kHz)

40

hto

.'
.'
.'

SWITCHING CHARACTERISTICS Is.. Figures 2 and 3)
Rise Time
Storage Time

2N4398, 2N4399
2N5746

tVee" 30 Vdc.
IC" ,OAde,
'Sl=IB2=1.0Adel

2N4398, 2N4399
2N5745

Fall Time

2N4398, 2N4399
2N5745

"
'.

0.4
1.0

If

O.S

1.5
2.0
1.0

"'Indicates JEOEC Registered Data.
(1)Pulse Test: Pulse Width ~300 Ils, Duty Cycle~ 2.0% .
• "'Motorola Guarantees this Data in Addition to JEOEC Registered Data. (2)fT is defined as the frequency at which Ihfe l extrapolates to unity.

SWITCHING TIME EQUIVALENT TEST CIRCUITS
FIGURE 2 - TURN-ON TIME

:=G:
10

",-1 '-

20ns

I

-I
DUTY CYCLE

I

-l1.0V

FIGURE 3 - TURN-OFF TIME

Vee

-30V

RL

3.0

>-10101001"

2.0 %

-30V

RL

3.0

10

10

TO SCOPE
~'" 20ns

TO SCOPE

R,

~"'20ns

I

R,

-II.OV 1

_I

1

I

I
~-

Vee

-I
DUTY CYCLE

1-125

I
:-t,~20ns

1-10101001"
~

2.0 %

V"

+4.0 V

2N4398,2N4399,2N5745

TYPICAL "ON" REGION CHARACTERISTICS

FIGURE 4 - DC CURRENT GAIN

3.0

~
N

--

~

"<;z

1.0

f-

I
u

"
~

05

TJ

-

~ r---

--

,..-1-

;;: 0.7

"'>-

-

--

20

:::;

«

-r-

--

-- t:::- -- - ' ,
r-- f-::::

IWC

-

25°C

..

-- -

!--

- -..

-

WC·

- - - VCE=IJVdc l_
- - VCE' 2.0 Vdc

--- -r-----

_I03

t-.. " ,

~ ..... ~

........
.........

02

---

0.1
003

005

0.1

007

02

03

05

07

20

10

30

50

70

".....

~ ~.

I""" ~
10

10

30

Ie. COLLECTOR CURRENT lAMP)
FIGURE 5 - COLLECTOR SATURATION REGION

2.0

~
~

~

eo

III
III

16

Ie

~

1.0A

I
I
lOA

50A

1.2

!:;:

'"

~

"

002

001

25°C

---

\

1\\

~ 0.4

~

20A

1\

~ 0.8
~

TJ

003

01

00500701

0.5

03

20

10

07

30

50

7.0

10

I,. BASE CURRENT lAMP)
FIGURE 7 - TEMPERATURE COEFFICIENTS

FIGURE 6 - "ON" VOLTAGES

2.0

25
1III

1.8

I

11;~~~506

1.6

'I

1.4

~ll

1.2

'/

1.0
VBE(sd)

0:8

@ le/18 = 10

1 1.1.

II

/

0.6

0.1

0.2 0.3 0.5

10

lell, < h,,/2

10

~

05

'"~

0.0

~

-0.5

8

*fJvcfor VCE(s~tl

/

...-

J II

-2.5
10

--

fJvBforVBE

-2.0
2.0 3.0 5.0

V

V

-1.0

~ -15

i'iT) W1H+-

0.030.05

'AppLlis IFO~

1.5

~

~

) II ~ I ~i 1~II0

0.2

P

=<

V,,@Ve,-20V
0.4

1111

20

I

003 0 05

20 30

Ie. COLLECTOR CURRENT lAMP)

01

0 2 03 05

10

20 30 50

Ie. COLLECTOR CURRENT IAMP(

1-126

10

20 30

2N4398,2N4399,2N5745

RATINGS AND THERMAL DATA
FIGURE 8 - ACTIVE REGION SAFE OPERATING AREA
100
.

50

~

100~s

1.0 ms

-

r-f-

20

5.0ms

........

-

There are two limitations on the power handling ability of a
transistor: average junction temperature and second breakdown.

......

>~ 10 ~.2N5745
2N4398. :N4399
~ 5.0

Safe operating area curves indicate Ie-VeE limits of the transistor
that must be observed for reliable operation; i.e., the transistor must

de

not be subjected to greater dissipation than the gurves indicate.
The data of Figure 8 is based on T J(pk) = 200°C; TC is variable
depending on conditions. Second breakdown pulse limits are valid

~ ~~c~n2d~~:CBreakdown Limited

"'
~

20

j

10

r-- - -_ Bondtng Wire Limited
§--- Thermal Limitations

F

o

~ 0.5

for duty cycles to 10% provided TJ(pkl,.;2000C. TJ(pki may be

TC=25 0 C

Pulse Duty Cycle';;;; 10%

calculated from the data in Figure 9:. At high case temperatures,
thermal limitations will reduce the power that can be handled to
values less than the limitations imposed by second breakdown.

1~

H:J-=

02
01
1.0

2.0

5.0

3.0

2N4398
2N4399
2N5745
20

10

30

50

100

VCE, COLLECTOR·EMITTER VOLTAGE (VOLTS)

FIGURE 9 - THERMAL RESPONSE
u

~
gj
~

~
g

10
07
05

0

05

03
02

02
01

~

01

t;

005

f-

005

~ 007

~ 003
~ 002
'"~ 001 V
001

---.---

--

V

--

....--=

>::;::::
STEADY STATE VALUES

i-:::;::: ::::::

HJcl~1

V

0

0 BWCIW

HJCltl '" r(t) HJC{<>oJ

001

Ii

11SIINGlE Ul E)

002

005

02

01

05

10

50

20

10

20

50

100

200

500

1000

t. TIME OR PULSE WIDTH 1m,)

DESIGN NOTE: USE OF TRANSIENT THERMAL RESISTANCE DATA

I~IP-I

------In "
-I

nL---"

)

)

1'1--

I )

I

I----

Ilf - - _ I

DUTY CYCLE 0

I,

t;

I, f

PEAK PULSE POWER

Pp

A tram of periodical power pulses can be represented by the
model as shown In FlgureA. Using Ihe model and Ihe device
thermal reponse, the normalized effective transient thermal
reslslance of Figure 9 was calculaled for vanous duly cycles.

To find BJc(I), muiliply Ihe valueoblalned from Flgure9 by Ihe
sleady slale value BJc( 00)
Example:
The 2N4398 is dlssipallng 100 watts under Ihe follOWing
condilions: 1, ~ 1.0 ms, Ip =5.0 ms. (0 =0.21
USing Figure 9, al a pulsewldlhof 1.0 msand 0~0.2, Ihe reading
of r (I) IS 0 28.
The peak rise In Junction temperature IS therefore
T ~ r(l) X Pp X BJc( 00) ~ 0.28 X 1 ()() X 0.875 ~ 24.5°C

1-127

2N4898 thru 2N4900

®

MOTOROLA

lIB
MEDIUM-POWER PNP SILICON TRANSISTORS

4 AMPERE

· .. designed for driver circuits, switching, and amplifier applications.
These high-performance devices feature:

GENERAL PURPOSE
POWER TRANSISTORS

=0.6 V max @ IC = 1.0 Amp

•

Low Saturation Voltage - VCE(sat)

•

Excellent Safe Operating Area

•

Gain Specified to IC = 1.0 Ampere

•

2N4900 Complementary to NPN 2N4912

40-80 VOLTS
25 WATTS

MAXIMUM RATINGS
Rating

Svmbol

Collector-Emitter Voltage

VCEO

Collector-Base Voltage

VCB

EmItter-Base Voltage

VEB

Collector Current

Continuous*

IC'

Base Current

IS

Total Device Dissipation TC

= 2SoC

PD

Derate above 250 C
Operating & Storage JUnction
Temperature 'Range

TJ. T stg

2N4898 2N4899 2N4900
40
60
80
40
60
80
5.0
1.0
4_0

.....
...

......
..

.

1.0
25
_0.143_
_--e5,o+200_

Unit
Vdc
Vdc
Vdc

I-

Adc
Adc

Watts
WloC

°c

i~
II

····-1

E
SEATING PLANE

Characteristic
Thermal'Reistance. Junction to Case

Ie value is

Max

7.0

I

20

"'" "'-.""'----

~

z

0

~

15

r---- f--

~

0.
~

~
:;'
~

~ r"-...
~

lD

"-

"
o

o

20

40

j

-J-

1~
H \::

FIGUR_E 1 - POWER-TEMPERATURE DERATING CURVE

20

K

---F--

based upon JEDEC current gain requirements.

(see Figure 5).

~

D

STYLE I.
PIN 1. BASE
2. EMITTER
CASE, COLLECTOR

The 4.0 Amp maximum value is based upon actual current-handling capability of the device

in

-

-'-t- -------

THERMAL CHARACTERISTICS

*The 1.0 Amp maximum

U

60

80
100
120
140
Te. CASE TEMPERATURE I'CI

160

"'" "'180

200

v: ~ ~I
2

I

1

lJ\

.

Y-T

~

MILLIMETERS
DIM MIN MAX
8 11.94 12.10
C
6.35 8.64
0
0.71 0.86
E
1.27
1.91
F 24.33 24.43
G
4.83
5.33
H
2.41
2.67
J
14.48 14.99
K
9.14
p
1.27
Q
3.61
3.86
S
8.89
T
3.68
U
15.75

INCHES
MIN
MAX
0.470 0.500
0.250 0.340
0.028 0.034
0.050 0.075
0.958 0.962
0.190 0.210
0.095 0.105
0.570 0.590
0.360
0.050
0.142 0.152
0.350
0.145
0.620

-

All JEOEC Dimensions and and Notes Apply.
CASE 80-02

Safe Area Curves are mdlcated by Figure 5. All limits are applicable and must be observed.

1-128

~

TD-66

2N4898 thru 2N4900
ELECTRICAL CHARACTERISTICS

(T, = 25'C ""'''' oth".os, oo',d)

Symbol

Characteristic

Min

Max

40
60
80

0.5
0.5

Unit

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage'
2N4898
(IC = O. 1 Ade, IB = 0)
2N4899
2N4900

BV CEO(sus)

,

Collector Cutoff Current
(V CE = 20 Vde, IB = 0)
(V CE = 30 Vde, IB = 0)

2N4898
2N4899

-

= 40 Vde,

2N4900

-

0.5

-

0.1

-

1.0

-

0.1

-

1.0

40

-

(V CE

= 0)

IB

Collector Cutoff Current
(V CE = Rated VCEO' V BE (off)

(V CE

= Rated VCEO '

VBE(Off)

Collector Cutoff Current
(V CB = Rated VCB' IE

Z

= 1. 5 Vdc)
= 1.5 Vdc,

I CEO

mAde

I CEX
TC

mAdc

= 150°C)

mAdc

ICBO

0)

Emitter Cutoff Current
(V BE = 5.0 Vdc, IC = 0)

Vde

lEBO

mAdc

ON CHARACTERISTICS
DC Current Gain*
(IC = 50 mAdc, VCE

(IC

= 500

(IC

=1. 0 Adc,

mAdc,

h FE '

= 1. 0 Vdc)
VCE = 1. 0 Vdc)

VCE

I

20

=1. 0 Vdc)

Collector-Emitter Saturation Voltage*
(IC =1. 0 Ade, IB =0.1 Adc)

VCE(sat)

Base-Emitter Saturation Voltage"
(IC =1. 0 Adc, IB = 0.1 Adc)

VBE(sat)

Base-Emitter On Voltage'
(IC = 1. 0 Adc, VCE =1. 0 Vdc)

VBE(on)

•

-

100

10

-

-

0.6

-

1.3

-

1.3

3.0

-

-

100

25

-

Vdc

,

•

Vdc
Vdc

SMALL SIGNAL CHARACTERISTICS
Current-Gain-Bandwidth Product
(IC - 250 mAdc, VCE = 10 Vdc, f
Output Capacitance
(VCB = 10 Vdc, IE

iT

=1. 0 MHz)

Small-SlgnaI Current Gain
(IC =250 mAdc, VCE =10 Vdc, i

pF

Cob

= 0, f = 100 kHz)

hfe

=1. 0 kHz)

MHz

-

" Pulse Test: PW ~300 /1S, Duty Cycle = 2.0%
FIGURE 3 - TURN·ON TIME

FIGURE 2 - SWITCHING TIME EQUIVALENT CIRCUIT

50
TURN·ON PULSE

Vee

V:,.'IOII)tJ

0----'1/'''''''"---,

30
10

0-- - - -

'"

-II V'
---'
I

1.0 Vee' 30 V
~tl

t,

I
v· - ~ - ,n

I

'">=

<--

,

I

-1I

+r -

tt <

0.3
0.1

+ 4.0 V

I

15ns

~

r-.

0 Vee..,.,.

60 V,

"":l

I

1-129

-

-

10, UNLESS NOTED

--

TJ

=

+25°C

TJ

~

+150°C

:-1,
t,

0.1 Vee· 3dV-0.07 VBE(off} --- 0
0.05
20
30
10

100 < t, < 500 I'"
APPROX ' i t , < 15 ns
-11 V
OUTYGYClE:::20%
I

...... ......

]. 0.7
0.5

APPROX 9 0 V

--.

30V
lell, 10

Vee

f .......

~

APPROX I

lel l,

""-.....

VBE!off)

Vee .- 60 V

10V

.....
50 70 100
100 300
Ie, COl LECTOR CURRENT (mAl

500 700 1000

III

2N4898 thru 2N4900

FIGURE 4 - THERMAL RESPONSE

OJ

_.

~ 1.0
:::; 0.7

I

0

as

03

0

0.2

t;;

02

0-

0.1-

~

ill

I

0

0.05

E5 0.0 7
~ 00 5

0

am

~

J..-

I-"

SINGLE PULSE

r(t}fJJC

"Je

)O°C/WMax

"Je

58'C/WTyp

oCURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME At I)

ffiSL
tt:--J

---

!Z
~ 0.03
~ 0.02

€

"Jcll)

-.....

0.5

cJ

TJ(pk}

Te ~ Plpk) OJc(tl

DUTY CYCLE. D Idl,

0.0 I
0.01

0.02 0.03

005

01

02

II II

as

03

1.0

20

30
50
t. TIME (m,)

IIIII

10

20

30

50

I I I

100

200

300

500

1000

FIGURE 5 - ACTIVE-REGION SAFE OPERATING AREA

10
)0

,.a:

i

The safe operating area curves IndIcate Ie-VeE
limIts of the tranSistor which must be observed tor
reliable operatIOn Collector load lines for speCific

100 ItS

50

~ 10
::.3 07 C=
8 05

:::I

~

0.2

==

-

O. I

10

de

CircUIts must fall below the limits indicated by the
applicable curve

50ms

"

10

...Y 03

lOms

"

'" 3.0

The data of Figure 5

'\.

r

50

70

lell,

""'*-±-

FIGURE 7 - FALL TIME

2.0
,--- r- lel l,

:g
>=

I

10

r-;::

5.0

TJ +25 0 C L
TJ - +150°C
I"
I"

20 -

... -

=

100

FIGURE 6 - STORAGE TIME

30

TJ(pk)

Vided TJ(pk) '.::: 200°C TJ!pkl may be calculated
from the data In Figure 4 At high case tempera·
tures, thermal itmltatlons Will reduce the power
which can be handled to values less than the Ilmlta·
tlOns Imposed by secondary breakdown

50 ) a 10
10
30
30
VeE. COLLECTOR·EMITTER VOLTAGE IVOLTSI

50

based upon

Pulse curves are valid for duty cycles to 10% pro-

TJ 200°C
SECONDARY BREAKDOWN LIMITATION
THERMAL LIMITATION -'-11,1_
LIMIT FOR
(BASHMITTER DISSIPATION IS SIGNIFICANT ABOVE Ie ~ ~.F 2N4898
1N4899
PUILSEIOUITY C;eLE'IIO%
1N4900
20

IS

20QoC, T CIS vanable dependmg upon condItions

j\.

"

3.0

""L....

le/ l,-20

2. a

--

It
'1 La le!l;-I~

....

1.0

TJ ~ +15°C
TJ~ +150°C
Vee ~ 30V

181 = 192

:;:; O. )

a.)

~ 0.5

05
t,.

:: OJ

I,

:::I

~

ihtf

.s

0.2

O. 2

I

I

)

0.0 7
0.0 5
10

20

30

200
50 )0 100
Ie. COLLECTOR CURRENT (mA)

300

500 )00

laoo

1-130

-.

o. 3

20

30

200
50 70 100
Ie. COLLECTOR CURRENT (mAl

300

500 )00 1000

2N4912

®

MOTOROLA

III
NPN SI LICON TRANSISTOR

1 AMPERE

· .. designed for driver circuits, switching, and amplifier applications.
This high-performance device features:

NPN SILICON
POWER TRANSISTOR

•

Low Saturation Voltage - VeE(sat) = 0.6 V max

•

Excellent Safe Operating Area

•

Gain Specified to Ie = 1.0 Amp

•

Complement to PNP 2N4900

Ie = 1_0 Amp

@

80 VOLTS
25 WATTS

MAXIMUM RATINGS
Rating

Symbol

Value

Unit

VeEO

80

Vdc

Collector-Base Voltage

Vee

80

Vdc

Emitter-Base Voltage

VEe

5.0

Vdc

Ie'

1.0

Adc

Base Current - Continuous

IS

Total Device Dissipation TC - 25°C
Derate above 2SoC

Po

1.0
25
0.143

Watts

mW/oC

T J, T stg

-65 to +200

°c

Collector-Emitter Voltage

Col/ector Current - Continuous*

Operating & Storage Junction
Temperature Range

Adc

I

Symbol

I

Thermal Resistance, Junction to Case

ReJC

I

I

I

Max

I

7.0

P

C

Ir

THERMAL CHARACTERISTICS
Characteristic

~I=_-BU'
4--- ------- 1

Unit

I

E

0

--,--

°CIW

-J-

*the 1.0 Amp maximum Ie value is based upon JEDEC current gain requirements.

FIGURE 1 - POWER-TEMPERATURE DERATING CURVE
25

~
I-

"-f".-..

20

«

0

;::

;t

15

MILLIMETERS
DIM MIN
MAX
S 11.94 1270
C
63' S ..
0
071 086

r"-.
.........

gj
0

"'~

~

10

.:

~

STYlE 1
PIN 1 BASE
2 EMlnER
CASE COLLECTOR

.........

~
z

"

60

80

100

120

140

J

14.48 1499
914

S
T
U

160

1.91
24.43

483

533

241

2.67

P

.........

127

361

386
889
368
15.75

INCHES
MIN
MAX
0470
0250
0.028
0050
0.958
0190
0.095
0570
0.360

0500

0340
0034
0075
0962
0.210
0105
0590

0050
0.142 0152
0350
0145
0620

All JEOEC DImenSIons and and Notes Apply

-...........
40

127

24.33

K

.........
20

E

F
G
H

Q

5.0

K
I

SEATING PLANE

180

200

TC, CASE TEMPERATURE lOCI
Safe Area Curves are indicated by Figure 5. All limits are applicable and must be observed .

. 1-131

CASE 80-02
TO-66

2N4912

..

ELECTRICAL CHARACTERISTICS (TC' 25°C unless othe,wi.e noted)
Symbol

Min

Max

Unit

BVCEO(sus)

80

-

Vde

ICEO

-

0.5

mAde

-

0.1
1.0

Characteristic
OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage '1)

(lC ~ 0.1 Adc, IB

=0)

Collector Cutoff Current

(VCE

= 40 Vde, IB =0)

Collector Cutoff Current

(V CE
(VCE

ICBO

-

0.1

mAde

lEBO

-

1.0

mAde

40
20
10

100

VCE(sat)

-

0.6

Vde

VBE(sat)

-

1.3

Vde

VSE(on)

-

1.3

Vde

IT

3.0

-

MH.

Cob

-

100

pF

hie

25

-

Collector Cutoff Current

(VCB

mAde

ICEX

= Rated V CEO, V EB(off) = 1.5 Vde)
= Rated VCEO, VEB(off) = 1.5 Vde, TC = 150°C)
= Rated VCB,

IE

= 0)

Emitter Cutoff Current

=0)

(VEB = 5.0 Vde, IC

ON CHARACTERISTICS (1)
DC Current Gain·

-

hFE

(lC = 50 mAde, VCE = 1.0 Vde)
(lC = 500 mAde, VCE = 1.0 Vde)
(lC = 1.0 Ade, VCE = 1.0 Vde)
Collector-Emitter Saturation Voltage

-

(lC = 1.0 Ade,IB = 0.1 Ade)
B8se~Emitter

Saturation Voltage

(lC= 1.0Ade, IB·=O.l Ade)

Base-Emitter On Voltage
(lC = 1.0 Ade, VCE ·1.0 Vde)
SMALL SIGNAL CHARACTERISTICS
Current-Gain - Bandwidth Product

(lC = 250 mAde, VCE = 10 Vde, I = 1.0 MH.)

Output Capacitance
(VCB = 10 Vde, IE

=0, I = 100 kHz)

Small-Signal Current Gain

(lC = 250 mAde, VCE = 10 Vde, I = 1.0 kHz)
(1) Puis. Test: Pulse Width

=300 I'S, Duty Cycle = 2.0%.

FIGURE 2 - SWITCHING TIME EQUIVALENT CIRCUIT

FIGURE 3 - TURN·ON TIME

50
APPRORX
I TURN ON PULSE
+11 V I

v..

-

II

Veeo-~"","-",

20

t,

1-

-------

I

VaElofl)

APPROX
+l1V

30

Rl

I

"

- 4.0 V

t 1 :S 15 ns
100 < t, '" 500 I"
t):=;: 15 ns
DUTY CYCLE", 1 0%

t,
TURN-Off PULSE

~

LO

o7

~

01

30 V

I

~ s::.;

TJ

=

+250C

_ TJ

~

+150'C

I

t,

_

Vee GOV
~ V"I,")
20V

"' .....

J Vee - 30 V
00 7 VeE1 ",,} .. a
00 5
10
10
30

1-132

le/l~ ~11O.1 UN~ESSI NdTE~ t

Vee ~ 30 V
lell, ~ 20
Vee ~ 60 V

,

><

~

O. 5. Vee

03

,,;:;;

.....
50 70 100
200 300
Ie. COLLECTOR CURRENT (mAl

500 700 1000

2N4912

FIGURE 4 - THERMAL RESPONSE
~ 1.0

~ 0.7

D 0.5

~ 0.5

~ 0.3

D 0.2

~ 0.2

D 0.1

ill

0.05

'"' 0.1

~ 0.07

D 0.01

;: 0.05

8Jell)

-

SINGLE
PULSE

15

~ 0.03

:=

0.02

= 0.3

<--

12

]

,.'"

Cjd« Ceb

APPROX 9.0 V
I
I
I
I
Vin - ~ - - -1I
I
I

........

~

....,

Iclls - 10. UNLESS NOTEO
TJ = 25°C
r-----TJ=1500C

Jc~ =136 V -

,........

APPROX I

--.

..........
......

~

Ic/lS = 20

~

t--.

V~c - 60 V

I,

Vcc

60V

VSEloff) - 2.0 V

"...

VC~

=;v-.
0.1
0.07 VSEloffi a
0.05
20
10
30

RS and HC
varied to
obtain desired
current levels

50

70

100

200

300

Ie, COLLECTOR CURRENT ImA)

1-135

500 700 1000

II.

2N4918 thru 2N4920

FIGURE 4 - THERMAL RESPONSE
~~

1.0
0.7

z
~

5.0

~

0.3

~~

0.2

0=0.5
0.2

",-,

~~
1- ..

ffi~O.07
;;; 0.05
z
~ 0.03

'2 0.02

-

~

0.1

r-0.1

0.01

0.0 1
0.01

o CURVES APPL Y FOR POWER
PULSE TRAIN SHOWN
READ TIME AT 11

P"'"

I--"

0.05

-

BJC(I) = r(t) BJC
BJC = 4.1S"C/W Max

~

RLrL

TC - P(pk) BJCh)

TJ(pk)

~Il-.-l
12

SINGLE PULSE

DUTY CYCLE. 0 = \1/12

I I I I

Illil
0.02 0.03

0.05

0.1

0.2

0.3

0.5

1.0

2.0

I I III

3.0

10

5.0

_

20

30

50

200

300

500

1000

I. TIME (m,)

FIGURE 5 -

ACTIVE-REGION SAFE OPERATING AREA

10
~

1.0m,- ~ r"'<; 100.,

5. 0

'"
5'" 2.0
a'"
a:

o

\

SECOND BR EAKOOWN
LIMITED
BONDING WIRE LIMITED
- THERMALLY lIMITED@TC = 25°C

TC is variable depending on conditions. Second breakdown
pulse limits are valid for duty cycles to 10% provided

~j

TT"i

1.0

- -- --

0.5

8

~

O.

de

PULSE CURVES APPLY BELOW

o.

2.0

\\

\..

The data of Figure 5

5.0

3.0

is based on TJ(pk) = 150°C;

TJ(pk)::S 150°C. At high case temperature., thermallimita-

II

tions will reduce the power' that can be handled to values less
than the limitations imposed by second breakdown.

II II

:-RATrT
1.0

There are two limitations on the power handling ability of

a transistor: average junction temperature and second breakdown. Safe operating area curves indicate Ie - VeE operation
i.e., the transistor must not be subjected to greater dissi'pation
than the curves indicate.

"
,5.0ms",,

50

7.0 10

20

50

30

70 100

VCE. COLLECTOR-EMITTER VOLTAGE (VOLTS)

FIGURE 6 - STORAGE TIME
5.0
~

3.0

]

Ic/1B=20

2.0

-

w

r-

....

IcllB = 10

-

3.0

]

1.0

~

o.7
o.5

j

~ ~.3

""L....

2.O~

....

~::::::

'" 1. 0
;::
w O.7
to
;:i O.5

S

-

FIGURE 7 - FALL TIME
5.0

TJ 25°C L
TJ = 150°C
IBI = IB2

--

ICIIB·20

Ii.:'-

......

Ic/l~ - Iii'

-..

~ 0.3

1,'"Is-lIBlt

TJ = 25°C
TJ = 150°C
VCC=30V
IBI = 182

1'""-

O.2

O. 2

o. 1

O. 1

0.0 7
0.0 5
10

0.07
0.05
10

20

30

50

70 100

200

300

500 7001000

20

30

50

70

100

200

IC. COLLECTOR CURRENT (rnA)

IC. COLLECTOR CURRENT (rnA)

1-136

300

500 700 1000

2N4918 thru 2N4920

TYPICAL DC CHARACTERISTICS
FIGURE 8 - CURRENT GAIN

FIGURE 9 - COLLECTOR SATURATION REGION

1000
700
SO 0

~ 1.0
VCE=1.0V=

~ 300

"'>-

TJ

200

~

i--'

~ 100
'"'

70

~

50

"

"

0
0.2 0.3 0.5

1.0

IC. COLLECTOR CURRENT ImAI

2.0 30

S.O

10

20 30

50

100

200

lB. BASE CURRENT ImAI

FIGURE 10 - EFFECTS OF BASE-EMITTER RESISTANCE

FIGURE 11 - "ON" VOLTAGE

10B

loS

........ -......

10 7

........

"-

f""'....

"-l

"
"'~ O. 6
">



2
1/

II

VCE=30V
8
4

2SoC
REVERSE~

-0.1

IiiFFORWARO
+0.1

+0.2

+0.3

+0.4

ili
I-

2
I

+0.5

VBE. BASE·EMITTER VOLTAGE IVOLTSI

I: I II

TJ - 100°C to 150°C
'eVc FOR VCElsatl
TJ = -55°C TO +100 oC

0
9VB FOR VBE

-2. 0

-2. 5

2.0 3.0 5.0

10

II I

20 30

-I50

100

200 300 500

IC. COLLECTOR CURRENT (mAl

1-137

J

L

c..-l.5

10 4

11 11

I

"'"'~ -0. S

/

IC = Ices

II

~ +1. 5

1/

0
1

1000 2000

'APPLIES FOR ICIIB
u
a:

I'

,

!'" 5.0ms ..... ,

TJ = ISOoC

2.0

There are two limitations on the power handling ability of

a transistor: average junction temperature and second breakdown. Safe operating area curves indicate Ie . v CE operation
i.e., the transistor must not be subjected to greater dissipation

'\

Ide \. \

1

1.0

r-'" 100.,

than the curves indicate.
The data of Figure 5

SECOND BREAKDOWN
LIMITED
:: 0.5 - - - - - BONDING WIRE LIMITED
THERMALLY
LlMITED@TC=25 0 C
8 3
~ O.
PULSE CURVES APPLY BELOW
0.2
o

~ o. 7

O.

l~rTVT
1.0

2.0

3.0

II

I

I II

I

5.0 7.0

10

20

30

is based on T Jlpk) = 150°C;

TC is variable depending on conditions. Second breakdown

pulse limits are valid for duty cycles to 10% provided
T Jlpk) ~ 150°C. At high case, temperatures. thermal limitations will reduce the power that can be handled to values less
than the limitations imposed by second breakdown.

50

70 100

VCE, CDLLECTDR·EMITTER VOLTAGE IVOLTS)

FIGURE 6 - STORAGE TIME

5.0
3.0
2.0

~.!£II' _10

--

...~

3.0

-

lell,

;;

20

1\

I""",:

~ 1.0

!iii
~
::1:

0.3
0:2
0.1
0.07
0.05

~

I"
~:~~~j~~fI; -lSO'C
t, W. t,
20

30

50 70 100
200 300
Ie, COLLECTOR CURRENT lmAI

500 700 1000

1-140

20

r-.. or-, '.1

0.7
0.5 ~.Ie/l,

10

-

0.3

0.1

181

10

-~

0.2

~TJ=25'C

...
.... 1" ......
lell,

2.0

-"""-

1.0 ~ le/l. 20
i!!'! 0.7
0.5

I

FIGURE 7 - FALL TIME

5.0

0.0 7
0.05
10

TJ -25'C
- - - TJ =150'C
Vee 30V
1,,= I..
20

30

50 70 100
200 300
Ie, COLLECTOR, CURRENT ImAI

500 700 1000

2N4921 thru 2N4923

FIGURE 8 - CURRENT GAIN

100a
700
50a

FIGURE 9 - COLLECTOR SATURATION REGION

1.0

VCE

~ 30a

~

~ 0.8

1.0 V

~

I I

111111
Ic~O.lA

~

7a

~

r-..

TJ -150'C

~ 10a

0.6

~

0.4

~

0.2

~

~

I I
10

20 30

50

100

TJ ~ 25'C

!:::

55'C

1a
2.0 3.0 5.0

200 300 500

I'-.

o

1000 2000

0.2 0.3 0.5

FIGURE 10 - EFFECTS OF BASE-EMITTER RESISTANCE

1.0

30Y-

VCE

......... Ic-l0'lcES

Ic~2'lcES

...

10•

~

~ 10

........

IC"""'CES

,

........

i 4==
-

Gl 10

_!OH VALUES
_ OBTAINED FROM

.........

~

~

r.......
........

......

~

........

I

o

30

'/
0.9

~

"'

'" "'

60
90
TJ• JUNCTION TEMPERATURE ('C)

VCE I"'I@ IclI, ~ 10
2.0 3.0 5.0

150

20 30

50

100

200 300 500

L
<3

"APPLIES FOR Icll.$hFE/2

+2. 0

I I II

~+1. 5

rs 10,

~+l.0

/

00'b-

g§

1000 2000

FIGURE 13 - TEMPERATURE COEFFICIENTS

+2. 5

150'C

~

TJ =

~ +0. 5

25'C
10 1

~

10

Ic. COLLECTOR CURRENT (mAl

./

TJ

/

o

FIGURE 12 - COLLECTOR CUTOFF REGION

,
10

1

2.0V

0.3

...........
120

V,,@VCE

I-::

~

VBEf,atJ@lc/IB 10

~ 0.6

r.......

104

8

200

TJ ~ 25'C

~

......

_ FIGURE 12

,

10

100

lUi
1.2

10

~

50

1.5

7

~

2.0 3.0 5.0
10
20 30
I•• BASE CURRENT (mA)

FIGURE 11 - "ON" VOLTAGE

10'

~

\

1\

Ic. COLLECTOR CURRENT (mAl

i

1.0 A

ffi

25'C

a
a
a

1/

LL

0.5A

0.25 A

;'"

c 20a

~

II

I 11111

I III
1000C 150 0C
to

... (Jvc FOR VeE (,at)

8

55'C TO

+100'C -

~

~

-lc-ldES

~

8 10 0

1/

~-1. 0

..Y

/.

VCE

~-1. 5

30V_ -

1

8

,~

4
2
I

10~0.2

-0. 5

REYfRSE
-0.1

~ORWArD

+0.1
+0.2
+0.3
V". BASE-EMlnER VOLTAGE (VOLTS)

+0.4

+0.5

1-141

Ov, FOR V"

-2. 0
5
-2. 2.0 3.0 5.0

:J

~I-

I I
10

20 30 50
100 200 300 500
Ic. COLLECTOR CURRENT (mA)

1000

2000

2N5038
2N5039

®

-

MOTOROLA

20 AMPERE

NPN SILICON TRANSISTORS
NPN SILICON
POWER TRANSISTORS

· .. fast switching speeds and high current capacity ideally suit these
parts for use in switching regulators, inverters, wide·band amplifiers
and power oscillators in industrial and commercial applications.
•

High Speed - tf = 0.5 J.ls (Max)

•

High Current - IC(max) = 30 Amps

•

Low Saturation - VCE(sat) = 2.5 V (Max)

@

75 and 90 VOLTS
140 WATTS

IC = 20 Amps

*MAXIMUM RATINGS

I
I
I

Rating
Collector-Base Voltage

Symbol

2N5038

VCBO

150

Collector-Emitter Voltage

VCEV

150

Emitter-Base Voltage

VEBO

7

Vdc

.IC
ICM

20
30

Adc

Collector Current - Continuous
Peak (1)

Base Current - Continuous
@ TC

Total Device Dissipation
Derate above 25°C

= 2SoC

Operating ~nd Storage Junction

2N5039

Unit

120

Vdc

120

Vdc

IB

5

Adc

Po

140
0.8

Watts
W/oC

TJ,T.tg

-65 to +200

°c

Temperature Range

THERMAL CHARACTERISTICS
Characteristic

JE-'·~tr

.~i
-F-

Thermal Resistance, Junction to Case

/

*lndicates JEDEC Registered Data.

Q~
H \f

(1) Pulse Test: Pulse Width .. 10 ms, Duty Cycle .. 50%.
FIGURE 1 ..., SWITCHING TIME TEST CIRCUIT

I

+30 V

Re
2.5

10.n

PW= 20jJs
Duty Cycle:: 1 %

lN4933

2N5038

Ie"" 12 Amps
'S1"" IS2
1.2 Amps

=

-5 V

l

~.

~ 1

'I

,)\

yy

U

Vee

r-J-

I)Z-T

lG

r

"-S

STYLE 1
MILLIMETERS
INCHES
PIN 1. BASE
DTM MIN MAX . MIN MAX
2. EMITTER
A
9
1
CASE COLLECTOR 8
21.08
0.830
C 6.35
7.62 0.250 0.300
0
0.97
1.09 0.038 0.043
1.78 0.055 0.070
E 1.40
F 29.90 30.40 1.177 1.197
G 10.67 11.18 0.420 0.440
H
5.33
5.59 0.210 0.220
J 16.64 17.15 0.655 0.675
K 11.18 12.19 0.440 0.480
n 3.81 4.19 0.150 0.165
R
26.67
1.050
U 2.54
3.05 0.100 0.120

-

2N5039

le= 10 Amps
IB1 :: 182 = 1.0 Amps

CASE 1-04
NOTES:
1. ALL RULES AND NOTES ASSOCIATED WITH
REFERENCED TO·3 OUTLINE SHALL APPLY.

1-142

2NS038, 2NS039

*ELECTRICAL CHARACTERISTICS (TC = 25 0 C unless otherwise noted).
Characteristic

Symbol

Min

Max

90
75

-

-

50
50
10
10

Unit

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage (1)

(lC

= 200 mAde,

IS

2N5038
2N5039

Collector Cutoff Current

(VCE
(VCE
(VCE
(VC'E

2N5038
2N5039
2N5038
2N5039

-

Emitter Cutoff Current

= 5 Vdc,

IC

= 0)

(VEB

= 7 Voe,

IC

= 0)

mAde

'CEX

= 140 Vde, VBE(off) = 1.5 V)
= 110 Vdc, VSE(off) = 1.5 V)
= 100 Vdc, VBE(off) = 1.5 Vdc, TC = 150o C)
= 85 Vdc, VBE(off) = 1.5 Vdc, TC = 150o C)

(VEB

Vde

VCEO(sus)

= 0)

mAde

'EBO

-

2N5038
2N5039
Both

-

5
15
50

20
20

100
100

VCE(sat)

-

2.5

Vdc

VBE(sat)

-

3:3

Vdc

-

ON CHARACTERISTICS (1)

DC Current Gain
(lc
(lc

2N5038
2N5039

Collector-Emitter Saturation Voltage
(lc

= 20 Adc,

'B

= 5 Ade)

Base-Emitter Saturafion Voltage
(lC

= 20

-

hFE

= 12 Adc, VCE = 5 Vdc)
= 10 Ade, VCE = 5 Vdc)

Ade, 'B

= 5 Adc)

DYNAMIC CHARACTERISTICS
Magnitude of Common-Emitter Smail-Signal Short-Circuit

Forward Current Transfer Ratio
(IC

= 2 Adc,

VCE

= 10 Vde, f = 5 MHz)

SWITCHING CHARACTERISTICS
RESISTIVE LOAD
I (VCC = 30 Vdc)
IIc = 12 Ade, 'Bl
I

Rise Time

Storage TIme

Fall Time
IIc = 10 Adc, IBl
I
"'Indicates JEDEC Registered Data.
~s,

(1) Pulse Test: Pulse Width .. 300

= 'B2 = 1.2 Adc)
= IB2 = 1 Adc)

I
2N5038l

t,

I

ts

J

2N5039I

tf

I

-

-

I

0.5

I

I

1.5

I

0.5

~
~

,tS
,tS
,tS

Duty Cycle .. 2%.

FIGURE 2 - FORWARD BIAS SAFE OPERATING AREA

100
50
There are two limitations on the power handling ability of

i

'"
....
~

0

$

....

0

a transistor: average junction temperature and second breakdown.
Safe operating area curves indicate Ie - VeE limits of the transistor that must be observed for reliable operation; i.e., the transistor
must not be subjected to greater dissipation than the curves
indicate.
Second breakdown pulse limits are valid for duty cycles to
10%. At high case temperatures, thermal limitations may reduce
the power that can be handled to values less than the limitations
imposed by second breakdown.

de

13
~

"

~

1

~

8 o. 5 ~
~

o.
o.

f-

-

Bondmg W,re limit

- - --Thermal limit
Second Breakdown limit

:F=t==t=

TC = 25°C

2N5039=
2N5038 =

20 30
50
10
VCE, COLLECTOR·EMITIER VOLTAGE (VOLTS)

70

100

1-143

2N5050
215051
2N5052

®

MOTOROLA

MEDIUM-POWER NPN SILICON TRANSISTORS
2 AMPERE
POWER TRANSISTORS
NPN SILICON

_ _ _ designed for untuned amplifier and switching applications_

125-200 VOLTS
40 WATTS

• High Voltage RatingsVCEO = 125, 150 and 200 Vdc
• Low Collector-Emitter Saturation Voltage VCE(sat) =1.0 Vdc (Max) @ IC =0_75 Adc
• Packaged in the Compact, High Efficiency TO-66 Case

*MAXIMUM RATINGS
Svmbol

2N5050

2N5051

2N5052

Unit

VCEO

125

150

200

Vdc

Collector-Base Voltage

VCR

125

150

200

Vdc

Emitter-Base Voltage

VFR

6.0

Vdc

II"

2.0

Adc
Adc
Wetts

Rating
Collector-Emitter Voltage

Collector Current - Continuous
Base Current

Total Device Dissipation @TC
Derate above 25°C

= 250 C

ODeratinG Junction TemDBt'ature Ranae
Storage Temperature Range

IR

1.0

Po

40
0.266

T

-65 to +175

°c

Tstg

-65 to +200

°c

wfOc

*THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance. Junction to Case

* Indicates JEDEC

If

Registered Data.

-~

E
SEATING PLANE

FIGURE 1 - ACTIVE-REGION SAFE OPERATING AREA

F-STYlE 1:

PIN I. BASE
2. EMITTER
CASE: COLLECTO'R

M1LLlMETERS
DIM MIN MAX
I
11.94 12.70
C
6.36 8.64
D
0.71 0.88
1.21 1.91
E
F 24.33 24.4
G 4.83
5.33
H
2.41
2.67
J 14.48 14.99
VeE. COLLECTOR-EMITTER VOLTAGE {VOLTS)

The Safe Operating Area Curves indicate IC-VCE limits below
which the device will not enter secondary breakdown. Collector

load lines for specific circuits must fall within the applicable Safe
Area to avoid causing a catastrophic failure. To insure operation
below the maximum TJ. power-temperature derating must be observed for both steady state and pulse power conditions.

1-144

K

9.14

P
0

3.61

S

T
U

-

-

1.27
3.86
8.89
3.68
15.75

INCHES

0.470
0.250
OD28
D50

0.500
O.
0.034
0.75
0~68 0.962
.190 0.210
0.095 0.105
0~70 0.590
0.360
- 0.050
0.142 0.152
- 0.350
0.145
- 0.620

All JEDEC Oimansionsand and Notes Apply.
CASE 80-02
TO-66

2N5050,2N5051,2N5052

=25°C unless otherwise noted)

ELECTRICAL CHARACTERISTICS (TC

I

I

Characteristic

Min

Symbol

Max

Unit

·OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage (Note 1)
(lC = 200 mAde, IB = 0)

Vde

VCEO(susl
2N5050
2N5051
2N5052

-

125
150
200

Collector-Emitter Cutoff Current

mAde

ICEO

(VCE = 62.5 Vde, IB = 0)

2N5050

-

0.1

(VCE = 75 Vde, IB = 01

2N5051
2N5052

-

0.1

(VCE = 100Vde,IB=01

-

0.5

25

100

(lC = 1.0 Ade, VCE = 5.0 Vdel

25

-

(I C = 2.0 Ade, V CE = 5.0 Vdel

5.0

-

1.0
5.0

VBE(on)

-

1.2

Vdc

IT

10

-

MHz

Small-Signal Current Gain
(lC = 250 mAde, VCE = 10 Vde, f = 1.0 kHz)

hie

25

-

-

Common Base Output Capacitance
(VCB = 10 Vde, IE = 0, f = 100 kHz)

Cob

-

250

pF

tr

-

300

ns

to

-

3.5

1'5

tf

-

1.2

I'S

Collector-Emitter Cutoff Current
(VCE = Rated VCEO, VEB(offl = 1.5 Vdc)
(VCE = Rated VCEO, VEB(off) = 1.5 Vdc, TC = 1500CI
Emitter-Base Cutoff Current
(VBE = 6.0 Vde, IC = 01

0.1
mAde

ICEX

lEBO

5.0
0.1

mAde

'ON CHARACTERISTICS
DC Current Gain (Note 11
(lC = 0.75 Ade, VCE = 5.0 Vdel

Collector-Emitter Saturation Voltage (Note 11
(lc = 0.75 Ade, IB = 0.1 Ade)
(lc

-

hFE

Vde

VCE(satl

= 2.0 Ade, IB = 0.4 Adel

Base-Emitter On Voltage (Note 11
(lc = 0.75 Ade, VCE = 5,0 Vdcl
·DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(lc = 250 mAde, VCE = 10 Vdc, f

= 5.0 MHz)

·SWITCHING CHARACTERISTICS

Rise Time

(VCC = 120 Vde, IC
RL = 150 Ohms,

Storage Time

IBI

.

Fall Time

= 750 mAde,

= IB2 = 100 mAdel

Indicates JEOEC Registered Data.

Note 1: Pulse Test: Pulse Width :S;300 Il$, Duty Cycle S2.0%.

FIGURE 2 - THERMAL RESPONSE
1.0
~

Wz

~

0-0.5

0.5

~.l

:: 0.3

~~

~ ~ 0.2

~ ~ 0.1
:::;W

«:r
,,0-

ct: I-

0.05

2-- .-frrmr

~

0.0 5

-I

Iq...

12
DUTY CYCLE, D =11/12 -

~
~·91,

..--

...............

0.0 1
0.01

0.02

0.05

0.1

o
:: ==
=

PIPW::

H""

.....-.

BJClt) = rlt) 8JC
8JC = l.76·CIW Max

~

0.02

OZ
zw
~~ 0.03 -

:= 0.0

I-f-

0.1

W ....

0«

-

--::::; ;;;;;0- ~

0.2

0.5

1.0

2.0

I, TIME 1m,)

1-145

II III

5.0

10

--

20

I 111111

CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME AT 11

TJ\Pk)I-IT~~~lrkIBJC(t

50

IIII

100

200

500

1000

2N519,O thru 2N:5192
®.MOTOROLA

SILICON NPN POWER TRANSISTORS
... for use in power amplifier and switching circuits, - excellent safe
area limits. Complement to PNP 2N5193, 2N5194, 2N5195

4AMPERE
POWER TRANSISTORS
SILICON NPN
40-80 VOLTS
40 WATTS

"MAXIMUM RATINGS
Rating

Symbol

Collector-Emitter Voltage

lN5190JlN519.1J lN519l

Collector-Base Voltage
EmItter-Base Voltage
Collector Current
Base Current

l

40
40

VCEO
Vce
Vee
Ie

60
60
50
40
10

18

Total Power Dissipation @TC"250C
Derate above 2SoC
Operatmg and Storage Junction
Temperature Range

I

Vd,

80

Vd,
Vd,
Ad,
Ad,

40
320

Po

TJ,T stg

--~65

Unit

80

Watts
mWjOC

to +150--

°c

THERMAL CHARACTERISTICS
Characteristic
Thermal ReSistance, JunctIon to Case

*ELECTRICAl CHARACTERISTICS(TC '" 25°C unless otherwise noted)

I

Charact.,.istlc

Symbol

I

Moo

Max

Unit

OFF CHARACTERISTICS
Collector-EmltterSustalntng Voltage (1)

(lC=O.1Adc,IS"'OI

Collector Cutoff Current
(VeE =40 Vdc,'8 = 0)
(VeE = 60 Vdc, IS =0)
(VCE =80 Vdc, IS =0)

Collector Cutoff Current
(VCE=4tlVdc, VEB(off)=15Vdcl
(VCE=60Vdc,VEB(off)=15Vdc)
(VCE ""80 Vdc, VEB{off) = 1.5 Vdcl
(VCE=40 Vdc, VEBfoff) '" 1.5 Vdc,
T C = 12S0C)
(Vce=60Vdc,VEBfoff):t15Vdc,
TC" 125°C)
(Vce "'BO Vdc, VeBfoff) = 1.5 Vdc,
TC= 12SoC)
Collector Cutoff Current
(VCS =40 Vdc, Ie "" 01
(Vca '" 60 Vdc,l e =0)
(Vca =80 Vdc, Ie =01

Vd,

VCeO(sus)

2N5190
2NS191
2N5192

40
60
80
mAde

'CEO
2N5190
2NS191
2NS192

1.0

'0

10
mAdc

'CEX
2NS190
2N5191
2N5192
2NS190

0.'
0.1
O. ,
2.0

2N5191

2.0

2N5192

(lC=4.0 Adc, VCE "2.0 Vdc)

0 ..1

3.8ASE

o. ,

mAdc

leaD

1.0
hFe
2N5190
2N5191
2N5192

25
25.
20

2N5190
2N5191
2N5192

'0
,0
7.0

Collector·Em Itter Saturation Voltage(1)
tic = 1.5 Adc. IS =0.15 Adcl
flC =4.0 Adc, IS'" 1 ,0 Adcl

VCEtsat)

Base-EmltterOn Voltagefl)
(Ie'" 1.5 Adc, VCE =2.0 Vdc)

VBE(on)

100
100
80

Vdc

0.6
1.4
Vd,

1.2

DYNAMIC CHARACTERISTICS
Current-Galn-Bandwidth Product
(lc "1.0 Adc, VCE" 10 Vdc, f= 1.0 MHz)

STYlE I
PIN I. EMITIER
2. COLLECTOR

mAdc

O. ,

2N5190
2NS191
2N5192

ON CHARACTERISTICS
DC Current Galn(1)
(' C= 1.5 ~dc. VeE'" 2.0 Vdc)

K

2.0
'CSO

Emitter Cutoff Curtent
(VSE =5.0 Vdc, IC=O)

~H

MH,

'T
2.0

(1)Pulse Test: Pulse Width <.300 III, Duty Cycle<2.0%.
-Indicatel JEOEC Registered Olrta

1-146

MILLIMETERS
DIM MIN
MAX
A 10.80 11.05
7.49
7.75
8
2.41
C
2.67
0
0.51
0.66
2.92
3.1
F
2.46
2.31
G
1.27
2.41
H·
0.64
J
0.38
K 15.11 16.64
30 TYP
M
Q
4.01
3.76
R
1.14
1.40
S
0.64
0.89
3.68
3.94
U
V
1.02

INCHES
MIN MAX
0.425 0.435
0.295 0.305
0.095 0.105
0.020 0.026
0.115 0.125

•
0.148
0.045
0.025
0.145
0.040

CASE 77-04
TO·126

095
025
655

0.158
0.055
0.035
0.155

2N5190 thru 2N5192

FIGURE l-DCCURRENTGAIN

...
::;
...

0
N

..

10
7.0
5.0
3.0

0:

<> 2.0

;;
z

TJ'151JOC

-

;;: 1.0
co

-,..

-

~

- -

-1- 1-1--' --r

\

-- -

-

VCe-2.0 V f - VCE-l0V f - -

i""

~

r-

....
z

0.7
w
0: 0.5
0:

'"'-'

'-'

= 25°C

-55°C

--......;

0.3

<>

~ 0.2

0.1
0.004

0.007

0.01

0.02

0.03

0.05

0.1

0.2

0.3

0.5

1.0

2.0

3.0

4.0

IC, COllECTOR CURRENT (AMP)

FIGURE 2 - COLLECTOR SATURATION REGION

~<>

2.0

~

..

w 1.6

1\

TJ = 25°C

to

~
<>

Ic=10mA

100mA

1.0A

> 1.2
0:

l::E

"i 0.8

1

1\

\

\

0:

....<>

~

3.0 A

\

1\

0.4

r-.

8

...... 1--1-

\

........

W
'-'

>

0.05 0.07

0.1

0.1

0.3

0.5

0.7

1.0

2.0

5.0 7.0 10
3.0
IB, BASE CURRENT (mA)

FIGURE 3 - "ON" VOLTAGES
2.0

II

+2.0

f5

+1.0

~

1/

1.2

~

!:i

VSE(sat)@ Ic/lS 11101

0.8

III
IVCE(oat) IlIlellB = 10

0.005

0.01

0.02 0.03 0.05
0.1
0.2 0.3 0.5
1.0
IC, COllECTOR CURRENT (AMP)

'Uv fo, VCE(sat)

... +0.5

200

300

500

/

V

8

~

II

0.4

100

TJ=-650Cto+1500C

~

w

§

....

VBE @VCE = 2.0 V

>

70

UppLJsIF~~ Ilc/IBI.;; ~FU

+1.5

<3

~

<>

50

+2.5

,..s
~

TJ=250C

...

30

FIGURE 4 - TEMPERATURE COEFFICIENTS

1.6

~<>

20

-0.6

~ -1.0
~
~

,,""

....

i

2.0 3.04.0

1-147

'1 Ti'lW
I II I

-1.5

-2.0
-2.5
0.005

0.01

V

0.020.030.05 0.1
0.2 0.3 0.5
1.0
IC. COllECTOR CURRENT (AMP)

2.0 3.04.0

2N5190 thru 2N5192

FIGURE 5 - COLLECTOR CUT-OFF REGION

FIGURE 6 - EFFECTS OF BASE-EMITTER RESISTANCE

i:z:

107
~

S!

r-veE' 30 V

"-

~TJ'150~e

...........

......

I

VCE" 30 V
IC'10x ICES

"I ..........

IC~ICES

f::::== ,=:Ioooe

I:!=

r- !--

I'-..

.......

FORWARD= ~

=REVERSE

r--..

(TYPICAL ICES VALUES
OBTAINEO FROM FIGURE 5)
ICES

10-3
-0.4

-0.2

-0.3

-0.1

+0.1

+0.2

+0.3

+0.4

+0.5 +0.6

100
60
80
120
TJ. JUNCTION TEMPERATURE (DC)

40

VBE. BASE·EMITTER VOLTAGE (VOLTS)

FIGURE 7 - SWITCHING TIME EQUIVALENT CIRCUIT

~

TJ=+25 0 C

200

--II--

Vin

o-.......NV-.....- I

11

RB
131-

APPROX
+11 V
Vin -

- - -

1 1

eid« Cab
11 .. 7.0 ns

I

I

t 100<12<500jlS

I

I

I

t

t

1 ___ 1_ -'- _

--I

12 fTURN.OFF PULSE

-4.0 V
ABend AC variad
to obtain desired
cu'rent levals
DUTY CYCLE ~ 2.0%
APPROX -9.0 V

13 <15 ns

3O~~~~~~~~~~~~1
0.1

0.2 0.3

I~IIBI= lb= =

II
S;

0.3

~ 0.2
;::

TJ = 25~C

1,@VCC=30V

=

"'"N--

j

I,@VCC = 10, V

10

20 3040

2.0

--f..I.

1.0

I

M- ~i

0.7
0.5

II@VCC-30V

0.3

-'I
II@VCC'10V

w

IS1=IS~t r--

ICIIS= 10
li=ls 1/81i=
TJ = 25°C

f=
F= f=
"-

.. 0.2
;::

o. 1

O. I

td@ VEB(oll) - 2.0 V

0.07
0.05
0.03
0.02
0.05 0.07

0.5
1.0
2.0 3.0 5.0
VR. REVERSE VOLTAGE IVOLTS)

FIGURE 10 - TURN-OFF TIME

FIGURE 9 - TURN-ON TIME
2.0
1.0

r-

t"~

I

VEB(oll)

160

FIGURE 8 - CAPACITANCE

-r-

APPRO
A X Vee
~IV
Vin 0 1- -

140

300~~"'-""OT'-~TT'-""OT'-~I't"t-'

TURN·ON PULSE

j

......

IC = 2 x ICES

F= =25 0 e

0.7
0.5

....... "-

0.07
0.0 5

""'tt--.
0.1

0.5 0.7

1.0

0.2
0.3
IC. COLLECTOR CURRENT (AMP)

2.0

3.0 4.0

1-148

0.03
0.02
0.05 0.07

0.1

0.2 0.3
0.5 0.7 1.0
IC. COLLECTOR CURRENT (AMP)

2.0

3.0 4.0

2N5190 thru 2N5192

FIGURE 11 RATING AND THERMAL DATA
ACTIVE·REGION SAFE OPERATING AREA
0

...'"

"

!!.

~
ox

1. 0

~

O. 5

...

that must be observed forreliable operation; I.e., the tranSistor must
not be subjected to greater disSipation than the curves indicate.

i\

Secondary breaJdown limit \

Thermal limit atTe:z 250 C
Bonding wire limit

-

-

0

de

The data of Figure 11 is based on TJ(pk} = 1500 C; TC is

r----Curves apply below rated VCEO

0

to

~

" ....... I\,

I "

TJ = 150°C

2. 0

aox

There are two limitations on the power handling ability of a
transistor; average junction temperature and second breakdown.
Safe operating area curves Indicate Ie - VeE limits of the transistor

5.0m", -1.0m,\ 100",

ii: 5. 0

2N5190 - ~

O. 2

1\

2N5191
2N5192

O. 1
1.0

5.0

2.0

10

100

50

20

variable depending on conditions. Second breakdown pulse limits
are valid for duty cycles to 10% provided TJ(pkl ~ 1500 C. At high
case temperatures. thermal limitations will reduce the power that
can be handled to values less than the limitations imposed by second
breakdown.

VCE. COLLECTOR·EMITTER VOLTAGE IVOLTSI

FIGURE 12 - THERMAL RESPONSE
1.0

@ 0.7 f:=D = 0.5
N

... :::;

O.5

ffi~ 0.3

~ =0' 2

... '"

r-- -0.1

~ ~ 0.07

-==

0;; ox
~ ~ 0.2
ox-

."to

::: ~ 0.1

:t ~ 0.05
.,,~

~

:g;lox 0.03 ---:;:;;.
...~ 0.02
0.01
0.01

-~

- ....

~

-:::

0.05

0JClmax) " 3120 C/W - 2N5190·92
QJClmaxl" 2 080 C/W - MJE5190·92

0.02

....t:::=

"'\I
-Single Pulse

0.01

II

I
0.02 0.03

0.05

0.1

0.2

0.3

0.5

1.0

10
2.0 3.0
5.0
I. TIME OR PULSE WIDTH Im'l

20

50

100

200

500

1000

DESIGN NOTE: USE OF TRANSIENT THERMAL RESISTANCE DATA

~~:~

A tram of periodical power pulses can be represented by the model
shown In Figure A. Using the model and the device thermal re·
sponse, the normalized effective transient thermal resistance of

n' .n"

--------~,

---:

t1

I

1

I--

:

I
1
t---1I1---1

Figure 12 was calculatad for various duty cycles.
To find @JC(t}, multiply the value obtained from Figure 12 by
the steady state value @JC.
Example:

The 2N5190 is dissipating 50 watts under the following condl'
tions: tl = 0.1 ms. tp =0.5 ms. 10 =0.21.
Using Figure 12, at a pulse width of 0.1 ms and 0 = 0.2, the
reading of rltl. 01 is 0.27.

L-_______

11

The peak rise in junction temperature is therefore:

OUTY CYCLE 0 =1]·1 = ij;

AT = rltI X Pp X@JC=0.27 X 50 X3.12 = 42.2 0 C

PEAK PULSE POWER = Pp

1-149

2N5193 thru 2N5195
MOTOROLA

SILICON PNP POWER TRANSISTORS

4 AMPERE
POWER TRANSISTORS
SILICON PNP

... for use in power amplifier and switching circuits, - excellent safe·
area limits. Complement to NPN 2N5190, 2N5191, 2N5192

4()'80VOlTS
40 WATTS

'MAXIMUM RATINGS
Rating

Symbol

2N519312N519412N5195

VCEO

40

I

60

I

80

COllector-Base Voltage

VCB

40

I

60

I

80

Emitter-Base Voltage

VEB

4---5.0

Collector Current

Ie

"--4.0

Base C:'Jrrent

IB

~1.0~

Collector·Emltter Voltage

Total Power Dlsslpatlon@Tc
Derate above 2S D C

250 e

Po

Vdc

.

.
..

_40

~320---"

Operating and Storage Junction
Temperature Range

TJ, T stg

-4--

Umt

-65 to + 150 _________

Vdc
Vdc
Adc
Adc

Watts
mW/oC

I~I

°elW

THERMAL CHARACTERISTICS
Character·istic
Thermal Resistance, Junction to Case
*ELECTRICAL CHARACTERISTICS ITc =

2SoC

unless otherWise notedl

DI,rac::teristec

Symbol

Min

Mu

Unit

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage (1)
lie'" 0.1 Adc.le = 0)

Collector Cutoff Current
(VeE = 40 Vdc, 18 '" 0)
(VeE = 60 Vdc, la = OJ
(VCE = 8OVde,la"" 0)

Collector Cutoff Current
(VCE = 40 Vde, VSE(off)
(VCE =60Vde, VeE(off)
(Vce = 80 Vde, VSEloffl
(VCE = 40 Vde, VSE(offl
TC'" 1250 Cl
(Vce - 60 Vde, VaEloff)
TC = 125°C)
(Vce = 80 Vde, VSEloff)
TC'" 125°C)

Vd,

VCEO(sus)

40
60
80

2N5193
2N5194
2N5195

mAde

ICEO
2N5193
2N5194
2N5195

'0
'0
10
mAde

Icex
= 1.5 Vdc) 2N5193
= 1.5Vdc) 2N5194
= 1.5 Vde) 2N5195

= 1.5 Vde, 2N5193

0'
0'
0'
20

1.5Vde, 2N5194

20

= 1.5Vtic, 2N5195

2.0

=

Collector Cutoff Current
(Vce = 40 Vdc, Ie = 01
(Vce = 60 Vdc, Ie = 0)
(Vce .. 80 Vde, Ie • 0)

mAde

Icao
2N5193
2N5194
2N5195

Emitter Cutoff Current
(VeE = 5.0 Vde, IC '" 0)

DC Current Gain (1 I
Oc = 1.5 Adc, VCE '" 2.0 Vdc)

IIc .. 4.0 Ade, VCE - 2.0 Vdc)

0'
0'
0'
IEeO

ON CHARACTERISTICS
2N5193
2N6194
2N6196
2N5193
2N5194
2NS196

STYLE 1
PIN 1. EMITTER
2. COLLECTOR
3. BASE

h,.

Collector-Emitter Saturation Voltage (1)
(lc" 1.6 Adc, Ie = 0.15 Adcl
(lc ·'4.0 Ade, IS - 1.0 Adc)

VCE(sat)

ease-Emitter On Voltage (1)
(Ie = 1.6 Adc, VCE .. 2..0 Vdcl

VaElon)

,a

25
25
20
10
'0
7.0

mAde

DIM

A
B
C

o

100
100
80

F

G
H

J
Vd,

K
M

Vdc

R
S

0.6

Q

1.4
1.2

DYNAMIC CHARACTERISTICS

U

V

MILLIMETERS
MIN
MAX
10.BO 11.05
7.49
7.75
1.41
1.67
0.51
0.66
1.91
3.18
1.31
1.46
1.17
1.41
0.38
0.64
15.11 16.64
30 TYP
3.76
4.01
1.14
1.40
0.64
0.89
3.68
3.94
1.02

INCHES

MIN
MAX
0.415 0.435
0.195 0.305
0.095 0.105
0.010 0.016
0.115 0125
0.091 0.097
0.050 0.095
0.015 0.025
0.595 0.655
3 TYP
0.148 0.158
0.045 0.055
0.015 0.035
0.145 0.155
0.040

CASE 77-04

Current-G.in,SlIndwldth Product
lic· '.DAde, VCe--10Vdc,f- 1.0MHz)

To.126

"'ndlclltHJEDEC R-ollter~ Data
(1 J Pul.. T..t: Pul.. Wldttl$ 300 "'.. Duty Cycla'S2.0,..

1-150

2N5193 thru 2N5195

FIGURE 1 - DC CURRENT GAIN

10

0: 7.0

~

TJ·1S0a C

~ 5.0
::i

-

~ 3.0

'"

~ 2.0

z

~

-'-

-

-

\I

1.0

§ 0.7

'-

V

2Sa C

VCE' 2.0 V
VCE·l0V-

r-

-r-- I--

-

r-

~ ~ 1-

-SSaC

--

-......

'" O.S
:::>

~ 0.3
c

~ 0.2

0.1
0.004

0.007

0.01

0.03

0.02

O.OS

0,3

0.2

0.1

O.S

2.0

1.0

3.0

4.0

IC. COLLECTOR CURRENT (AMP)

FIGURE 2 - COLLECTOR SATURATION REGION
~ 2.0
c

C
w

~
c

1.6

~ 1.2

'c·l0mA

100mA

~

~

g-,

8

..,w

>

1.0A

1\

0.8

TJ' 2S a C

\

0.4

0
O.OS 0.07 0.1

0.2

0.3

0.5

0.7

1.0

2.0

3.0
S.O 7.0 10
IS. SASE CURRENT (rnA)

FIGURE 3 - "ON"'VOL TAGE

2.0

1.6

~c

I I

~
>

20

0.4

0.005 0.01

50

70

100

200

II 1111111

+2.0

300

500

I I II

'APPLIES FOR IC/IS

30

.s +1.5

1.2

0.8

r-

FIGURE 4 - TEMPERATURE COEFFICIENTS

TJ' 25a C

w

'""
c-'

'-.....
I'..

+2.5

C

I-

3,OA

VSE(satl @ICIIS' 10

~
VSE @VCE - 2.0 V

II

0.02 0.03 0.05
0.1
0.2 0.3 0.5
IC. COLLECTOR CURRENT (AMP)

w
~ -0.5

I-

~

~
1.0

""

~ -1.0

~

~~~(..tl @lclIs-l0

""

I-""

8

eVS for VSE

-1.5

l-

i

2.0 3.0 4.0

-2.0
-2.5
0.005

I--

I II II
0.01

0.020,03 0.05

0.1

0.2 0.3

0.5

IC. COLLECTOR CURRENT (AMP)

1-151

'"

1.0

2.0 3.04.0

2N5193 thru 2N5195

FIGURE 5 - COLLECTOR CUT-OFF REGION

FIGURE 6 - EFFECTS OF BASE-EMITTER RESISTANCE

11)3

en 107

-

r- VCE' 3D Vd,

-

r-TJ'15DoC

:E
%

e

2

~

1

-

:-.... ........

~ 106

iiia:

f

f-1DDoC

a:

....... .L
105

~

..........

r-....

.......

FORWARO= ~

:!
a:

~
~ 102
~
20

ICES
10- 3
+lI.4

+0.3

+lI.2

-0.1

+0.1

-0.2

-0.3

-0.4

-0.5 -0.6

100
120
60
80
TJ. JUNCTION TEMPERATURE (DC)

40

a:

VBE. BASE·EMITTER VOLTAGE (VOLTS)

FIGURE 7 - SWITCHING TIME EQUIVALENT CIRCUIT
TURN·ON PULSE

I
APPROX-l1V I

ViR

...

0--'1,""'-.--1

--II11
I
-I

12

j...

Vin _ _ I __ ~

I

!

APPROX
+9.0V Cjd«Ceb

~-

I I

APPROX

i"

131TURN·OFF PULSE

11.;7.0 ns
100 <12 < 600 IlS
13< l~ns
DUTY CYCLE'" 2.0%

0

RS AND RC VARIED
TO OSTAIN DESIRED
CURRENT LEVELS

0
0.1

I
0.2 0.3

IICIIBI.'h

0.7
0.5

TJ' 250 C

..,

;:::

0.1

=

=

i"".... ttOVCC'30V

........

-

f"'-o.L.

.......... .,.......

1,Il'VCC',0V-

0.07
0.05
Id@VBEloff) = 2.0 V
0.03
0.02
0.2
0.05 0.07 0.1

--

0.3

0.5 0.7

1.0

2.0

1.0

l-

IB1. IB2
IcllB = 100
Is·to 1/81,=
TJ-25 0 C

tS

0.7
O. 5

1

0.3

~

o. 2

;:::

.......

-

II@VCC=30V

II@VCC=10V

O. 1
0.07
0.05
0.03
0.0 2
0.05 0.07

3.0 4.0

0.1

0.2

0.3

0.5 0.7

1.0

IC. COLLECTOR CURRENT (AMP)

IC. COLLECTOR CURRENT (AMP)

1-152

30 40

±

FIGURE 10 - TURN·OFF TIME
2.0

1.0

0.2

20

0.5
2.0 3.0 5.0
10
1.0
VR. REVERSE VOLTAGE (VOLTS)

FIGURE 9 - TURN-ON TIME
2.0

!lil

"

Cob

100

C,b

I

-11 V

i'

~

+4.0 V

-

I'-

200

'"
z

I-

2~ot

I'---

U

I

I

T)=

~

-

300

SCOPE

RS

160

FIGURE 8 - CAPACITANCE

RC

VCC

140

500

VBE(Ofl)t}
Vin
0
---

1 0.3

........

(TYPICAL ICES VALUES
OBTAINEO FROM FIGURE 5)

. ~ 103
z

250 C

10- 2

r--.. .......

IC ",ICES

:l:

/

r--..

r-IC = 2 x ICES

iii! 104

1 = FREVERSE

VCE·30V

IC= lOx ICES

2.0

=

-

>-::

3.04.0

2N5193 thru 2N5195

FIGURE 11
RATING AND THERMAL DATA
ACTIVE·REGION SAFE OPERATING AREA

0

Note 1:

~

, .... ,

TJ=150C

§ 2.0
a'"

Stcondary

'" 1.0

1.0ms

"

I
br8a~down limit \

Thermal limit @I TC =25Q C
Bonding wire limit

- -

o

~

There are two limitations on the power handlmg ability of a

5.0 mi"--;;:

0:- 5. 0

100",

'.

transistor; average junction temperature and second breakdown.
Safe operating area curves indicate Ie' VeE limits of the transistor
that must be observed for reliable operation; i.e., the transistor must
not be subjected to greater dissipation than the curves Indicate.

\

de

The data of Figure 11 is based on TJ(pk)

o. 5 _Curves apply below rated VCEO

8

~

I II

0.2

I II

o. 1

10

5.0

2.0

1.0

2N5193 - ~
2N5194
2N5i95

'\

temperatures. thermal limitations will reduce the power that can
be handled to values less than the limitations imposed by second
breakdown.

50

20

= 1500 C. TC is variable

depending on conditions. Second breakdown pulse limits are valid
for duty cycles to 10% provided TJ(pkJ 'Si 150°C. At high-case

100

VCE. COLLECTOR·EMITTER VOLTAGE (VOLTS)

FIGURE 12 - THERMAL RESPONSE
1.0

ffi

0.7 =0-0.5

N

O•5

.... :J

~~
w~~

0.01

~ ..

0.03

'" 0.02

~

-= ."

oJC(maxl- 312°C/W

-:;;;-

..-:: 1'0-'

?! ~ o.1 -1-0.05

:± ~ 0.05

-"'"

-

~: O. 3=- 1-0.2
;;;'"
~~ 0.2
",- /-0.1
.... w

1-0.0
...t:::::

~

-

j-

0.0 1
0.01

1-0.01

r-Single Pulse

I

I I II

0.02 0.03

0.05

0.1

0.2

0.3

0.5

1.0
I.

10
2.0 3.0
5.0
TIME OR PULSE WIOTH (m,)

20

3D

50

100

200

300

500

1000

DESIGN NOTE: USE OF TRANSIENT THERMAL RESISTANCE DATA

~~R~

n' n'

----I
---:

11

I

I

~

:

I
I
f---l/f----l

A train of periodical power pulses can be represented by the model
shown in Figure A. Using the model and the device thermal response, the normalized effective transient thermal resistance of
Figure 12 was calculated for various duty cycles.

L -_ __

11
DUTY CYCLE O' Iii" ip
PEAK PULSE POWER' Pp

To find 8JC(t). multiply the value obtained from Figure 12 by
the steady state value 8 JC.
Example:
Tha 2N5193 is dissipating 50 watts under the following condi·
tions: t1 =0.1 ms. tp = 0.5 ms. (0 =0.2).
Using Figure 12. at a pulse width of 0.1 ms and 0 = 0.2. the
reading of r(t,. 0) is 0.27.
The peak rise in junction tamperatura is therefore:
"T = rId X Pp X 8 JC • 0.27 X 50 X 3.12 = 42.2oC

1-153

215301
215302
215303

®

MOTOROLA

III]
HIGH-POWER NPN SILICON TRANSISTORS
20 AND 30 AMPERE
POWER TRANSISTORS

· .. for use in power amplifier and switching circuits applications.

NPN SILICON
•

High Collector-Emitter Sustaining Voltage BVCEO(sus) = 80 Vdc (Min) @ IC = 200 ()"lAdc (2N5303)

•

Low Collector-Emitter Saturation Voltage VCE(sat) = 0.75 Vdc (Max) @ IC = 10 Adc (2N5301, 2N5302)
1.0 Vdc (Max) @ IC = 10 Adc (2N5303)

•

Excellent Safe Operating Area 200 Watt dc Power Rating to 30 Vdc (2N5303)

•

Complements to PNP 2N4398, 2N4399 and 2N5745

40-60-80 VOLTS
200 WATTS

-MAXIMUM RATINGS
Rating

Svmbol

2N5301

2N5302

2N5303

Unit

VCEO

40

60

80

Vde

VCB

40

60

80

Vde

IC
IB

30
30
20
-7.5---

Ade

Po

---200-1.14-

Watts
wf'c

Collector-Emitter Voltage
Collector-Ba.. Voltaga
Collector Current - Continuous

Base Current

Total Davie. Dissipation@TC=250C
Derate above 25°C
Operating and Storage Junction
Temperature Range

TJ,Tstg

..

-65 to +200--

-

Ade

°c

THERMAL CHARACTERISTICS
Characteristic

Symbol

Max

Unit

Thermal Resistance, Junction to Case

DJC

0.875

°C/W

Thermal Resistance, Case to Ambient

DCA

34

°C/W

lr~
r~K
ESEATIN!~
PLANE

!

., ndic8tes JE DE C R eglsterad Data.

FIGURE 1 - POWER TEMPERATURE DERATING CURVE
TA TC
8.0 200

.

@
~ 6.0150

"o
~

iii

"
""

STYLE 1:
PIN 1. BASE
1. EMITIER
CASE: COLLECTOR
MILLIMETERS
DIM MIN
MAX

4.0 100

-

....

is
~

\!!

Tl

~}

A

I'-

C
0
E

TA

........

~ 2.050
~

B

.... 1'-

r--t'-

F

r--

f't--

·G

"

.... ....

o0
20

40

60

80

100

120

140

160

H

~~"
180

200

TEMPERATURE I'CI

J
K
Q

R

INCHES
MIN
MAX

-

-

39.37
11.08
7.61 0.150
1.09 0.039
3.43
19.90
30.40 1.177
10.67
11.18 0.410
5.33
5.59 0.110
16.64 17.15 0.655
11.18 11.19 0.440
3.84
4.09 0.151
16.67
Collector connected to case.
CASE "·01
6.35
0.99

-

(TO·3)

1-154

NOTE:
1. DIM "Q"IS OIA.

1.550
0.830
0.300
0.043
0.135
1.197
0.440
0.110
0.675
0.480
0.161
1.050

ELECTRICAL CHARACTERISTICS (TC = 250 unless otherwise noted 1

VCEO(1U11
2N5301
2N5302
2N5303

lie" 200 mAde, 'S '" 0)

Collector Cutoff Cumrnt
(VeE'"' 40 Vdc. 'a - 0)
(Vee" 60 Vdc.IB = 01

2N5301

(VeE" 80 Vdc.IB" 01

2N5303

Itt

2N5302

-

-

mAde

10
10
10
mAde

ICBO

-

1.0
1.0
1.0

-

5.0

lEBO

ON CHARACTERISTICS
UL; (.;Urrent (jam {Note

I,.

mAde

-

2N5301
2N5302
2N5303

(Ves = 80 Vdc, Ie = 01

Vde

mAde

2N5303

Emitter Cutoff Current
(VSE '" 5.0 Vdc, Ie .. 01

mAd.

hFE
2.0Vdcl

40
15
15
5.0
5.0

ALL TYPES

2N5303
2N5301.2N5302
2N5303
2N5301.2N5302

-lie'" 10 Adc, VeE" 2.0 Vdc)
"Ue'" 15 Adc. VeE" 2.0 Vdcl
(Ie"" 20 Adc. VeE = 4.0 Vdc)
(Ie" 30 Adc. VeE'" 4.0 Vdc)
"Collector-Emitter Saturation VOltage (Notal)
(Ie'" 10 Adc. IS = 1.0 Adcl

eo
eo
Vd.

VCElsati
2N5301,2N5302

(Ie = 10 Adc. Is

= 1.0 Adcl
lie'" 15Adc. IS = 1.5AdcI
lie = 20 Adc. 's = 2.0 Adc)

2N5303
2N5303

(Ie'" 20 Adc, 's .. 4.0 Adcl

2N5303
2N5301.2N5302

0.75
1.0
1.5
2.0
2.0
3.0

2N5301.2N5302

Ue=30Adc.ls=6.0Adc)
*Sase-Eminer Saturation Voltage (Note 11

Vd.

VSElsatl

IIC' 10Adc.la-l.0Adcl
IIC·'5Adc.la"I·5Adcl

ALL TYPES
2N5301.2N5302

Ue'"' 15 Adc. IS '" 1.5 Adcl

2N5303

2.0 Adcl

1.7
1.8
2.0
2.5
2.5

2N5301.2N5302

2N5303

(Ie" 20 Adc. 'S c 4.0 Adcl
*Sase-Emitter On Yoltage (Note 11
IIC' 10 Adc. VCE = 2.0 Vdcl
lie" 15 Adc. Yee

1.0
1.0
1.0

IceX

IVCB • 40 Vdc. IE • 01

=

-

2N5301

(Vea .. 60 Vdc. Ie "" 01

20 Ado. la

5.0
5.0
5.0

-

Collector Cutoff Current

=

-

ICEX

IVCE • 40 Vde. VEalofli • 1.5 Vd•• TC - 150CCI
(VeE =60Vdc. VEstoff) oc1.5Vdc. TC· 1500CI
IVCE' eo Vdc. VEalalll.- 1.5 Vd•• Tc' lsOCCI

IIC

-

2N5301
2N5302
2N5303

Collector Cutoff Current

=

40

IceO

80 Vdc. VEBfoff) "" 1.6 Vdc)

·(lC= 1.0 Adc. VeE

eo
eo

2N5302

Collector Cutoff Currant
(VeE"" 40 Vdc, VEstaff)" 1.6 Vdcl
(Vee" 60 Vdc, VES/off) = 1.6 Vdc)
(VeE

Unit

Min

Symbol
·OFF CHARACTSRISTICS
Collector-Emitter Sustaining Voltage fNote ,)

= 2.0 Vdc)

Vd.

VBElon)

2N5303
2N5301.2N5302

.

lie .. 20 Adc, VeE" 4.0 Vdc)
IIc .. 30 Adc, VCE = 4.0 Vdcl

1.5
1.7
2.5
3.0

2N5303

2N5301.2N5302

-DVNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Produ,ct
(lC"1.0Adc. Vee =10Vdc.f= 1.0 MHz)

IT

2.0

Small-Signal Current Gain
(Ie'" 1.0Ade. VCE -10Vdc,f"1.0kHzI

hie

40

MHz

-SWITCHING CHARACTERISTICS

1.0
(VCC=30Vdc. 'C·,0Adc, IS1 = '82= 1.0Adc)

• Indica. . JEDEC R-el ....rect Oate.
Note1: Pulse Test: Pul. Width ~ 300 1'8. Outy Cvel. S

2.o".

SWITCHING TIME EQUIVALENT TEST CIRCUITS
FIGURE 2 - TURN-ON TIME

FIGURE 3 - TURN-OFF TIME

VCC

INPUT PULSE

t,<2Dns
PW-lUto lUU.,

+3UV

tr.c;20 ns
PW= 10to lUU",

v

DUTY CYCLE' 2.U%

DUTY CYCLE' 2.0%

''''--p

VCC

INPUT PULSE
+3U

""[1

3.U

TO
SCOPE

lU

TO
SCOPE

10

U --------

tr~20ns

-2.0 V

3.U

tr<20ns

-9.U V - - - - - 0: COLLECTOR·BASE OlOOE
OF 2N3252.

'::'

1-155

'::'

Vaa= 7.0 V

2N5301, 2N5302, 2N5303

lIB

FIGURE 4 - THERMAL RESPONSE
1.0
0.1

ffi
US

~~

. ..,

0.5

w

0.3

> z

0.2

~~.,

"\

Iriiiii

~

tt;

Si
~

0.1
~ 0.07

I
~~



0.3

;::

0.2

TJ - 25°C Ilo/lr=1 01-

1.0

!

.... VCC·JOV

0.5

IIOVcc-30V

0.3

IIIIIVCC-l0V

"'IIVOB'2.0V

0.1

0.2 0.3 0.5

1.0

2.0 3.0 5,0

10

0.1
0.03 0,06

20 30

Ie, COLLECTOR. CURRENT IAMPI

IB1-IB2
lelIB"0
..·....-1/811

'

K

J

0.07
0.05
0,03 0,05

50

0,1

II

0,3 0.6

r- "1.0

3.0 5.0

IC, COLLECTOR CURRENT IAMPI

1-156

l-

0.7

.... VCC·,0V
0.1

..
K

"""'i--

I"
j

"

30

nT~C

3.0

1.0
'0.7
0.5

20

10

FIGURE 8 - TURN-OFF TIME

FIGURE 7 - TURN'()N TIME

j

5.0 7.0

VR, REVERSE VOLTAGE IVOLTSI

5.0

2,0

- -

200

2N5301
2N5302
2N5303

0.1

- -

Cib

c::;

~

TC = 250 C

0.2
1.0

~

Secondary Breakdown limited

- Bonding Wire Limited
oj 1.0 ~--- Thermal Limitations
o
~
Pulse Duty Cyel• .;; 10%
~ 0.5

TJI'25~C

~ 1000
de

-t- TJ-200oC

=:

2000

....

10 ~~N5303

5.0

3000

""
10

30

2N5301, 2N5302, 2N5303

FIGURE 10 - COLLECTOR SATURATION REGION'

FIGURE 9 - DC CURRENT GAIN
300
TJ = 1750 C

200

~

z

;;: 100

'"

~i'l

70

co

30

1--

-...;

250 C

-

50

~t'

w

'"~

U.l

0.3 0.5

1.0

3.0 5.0

1.6

IC=2.0A

>

...'"~

J

T)= J5 CI

lOA

5.0 A

20A

1.2

.

I\,

~ 0.8

I

co

~

i
0.4

~

>

3D

10

II

II

co

'" ~,

20

10
0.03 0.05

~

.~'\..

-55 0 C

I r 1111
II 1111

c

VCE-2.oV-

- .,

;;;;>~

u

:#

_LI

g 2.0

!.2L VCPloV I

~

0.D1

0.02

0.05

IC, COLLECTOR CURRENT (AMP)

0.1

0.5

0.2

1.0

2.0

5.0

10

IB, BASE CURRENT (AMP)

FIGURE 12 - "ON" VOLTAGES

FIGURE 11 - EFFECTS OF BASE-EMITTER RESISTANCE
VCE-30V-+-

2.0
1.8

IC - 2 x ICES=!===
IC =10 x ICES t - -

1.6

IT~12~50C

gc 1.4
~
w

'"':i'"

1.2

7

1.0

I

VBE(..,)@ICIIB= 10

co O.S

>

.,; 0.6

I----

Typical ICES V,lues Obtainad
103 ~ From Fi.gure 13

1--j
1/

/

VBE(on)@VCE=2 .OV
III"III.~
VCE(..,)@ICIIB=10

0.4
0.2

II
J

102
20

40

60

SO

100

120

140

160

180

0.03 0.05

200

0.1

TJ,JUNCTION TEMPERATURE (DC)

102

S +2.5

f-- VCE =30 V- t-7" f- TJ = 1750C

'"c

!

100

ffi

;:;

===

F

g;

-0.5

0:

-1.0

~

r=

~~

Forward

i

10-3
-0.2

-0.1

~

'/

II

"BVC for VCE(.')

w

10-2

-0.3

-

8

IC=ICES

~ f= Revena

-0.4

"AppliesfDr ICIIB < hFEl2

+1.0

$ +0.5

250C - t - -

10-1

u

~

1000C

101

30

III

:rJ = -550C'0 + 1750 C

...

.;!.

ii'l

1111

~ +2.0
E

;;; +1.5

...

10

FIGURE 14 - TEMPERATURE COEFFICIENTS

FIGURE 13 - COLLECTOR CUT-OFF REGION
103
;(

0.3 0.5
1.0
3.0 5.0
IC, COLLECTOR CURRENT (AMP)

0.1

0.2

0.3

0.4

0.5

0.6

-1.5
-2.0
-2.5
0.03 0.05

WVB for VSEb.,)

]]
0.1

I
0.3 0.5

/

1.0

3.0 5.0

IC, CO LLECTO R CU RRENT (AMP)

VSE, BASE·EMITTER VOLTAGE (VOLTS)

1-157

10

30

2NS336

®

thru

2NS339

MOTOROLA

BJr-----------.
MEDIUM-POWER NPN SILICON TRANSISTORS

5 AMPERE

· .. designed for switching and wide band amplifier applications.
•
•

POWER TRANSISTORS
NPN SILICON

Low Coliector·Emitter Saturation Voltage VCE(sat) =1.2 Vdc (Max) @ IC =5.0 Amp
DC Current Gain Specified to 5 Amperes

80-100 VOLTS
6 WATTS

• Excellent Safe Operating Area
• Packaged in the Compact TO-39 Case for Critical Space· Limited
Applications
• Complement to 2N6190 thru 2N6193

MAXIMUM RATINGS
Symbol

2N5336
2N5337

2N5338
2N5339

Unit

VCEO

80

100

Vdc

Collector-Sase Voltage

VCS

80

100

Vdc

Emitter·Base Voltage
Collector Current - Continuous
Base Currant
Total Device Dissipation@Tc= 25°C
Derate above 25°C
Operating and Storage Junction
Temperature Range

VES
IC

6.0
5.0

Vdc

IS

1.0

Po

6.0

34.3

Adc
Watts
mW/oC

T J. Tstg

-65 to +200

°c

Rating
Collector-Emitter Voltage

Adc

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case

FIGURE 1 - POWER-TEMPERATURE DERATING CURVE
6.0

~

r

~

~

O

~ 4.0

~~

~

3.0

~

C
~

~ 2.0

I

l<

.P

I

1.0

a

a

20

40

60

80

100

~

140

120

r-.....

.......

160

~

180

200

Te, CASE TEMPERATURE (OCI

Safe Area CUNes are indicated by Figure 5. All limits are

~pplicable

MILLIMETERS
MIN MAX
8.89 9.40
8.00 8.51
6.10 6.60
0406 0533
0.229 3.18
F
0.406 0.483
G
4.83 5.33
H
0.711 0.864
J
0.737 1.02
K
12.70
L
6.35
45 0 NOM
M
p
1.27
Q
900 NOM
R
2.54

DIM
A
S
C
D
E

~

and must be observed.

INCHES
MIN
MAX
0.350 0.370'
0315 0.335
0.240 0.260
0.016 0.021
0.009 0.125
0.016 0.019
0190 0.210
0.028 0.034
0.029 0.040
0.500
0250
45 0 NOM
0.050
900 NOM
0.100

-

AllJEDECdlmenslonsand notes apply.

CASE 79-02
(TO-39)

1-158

2N5336 thru 2N5339

ELECTRICAL CHARACTERISTICS (TC = 26°C, unle.. otherwise noted)

I

I

Characteristic

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage

(lC

.

= 50 mAde, IB = 0)

Fig. No.

Symbol

-

BVCEO(sus)

-

= 75 Vdc, IB = 0)
= 90 Vde, IB = 0)
= 1.5 Vde)
= 1.5 Vde)
= 1.5 Vde,

2N5336, 2N5337
2N5338, 2N5339
2N5336,2N5337

= 1.5 Vde,

2N5338,2N5339

IC

(lC

= 2.0 Ade, VCE = 2.0 Vde)

(lc

= 5.0 Ade, VCE = 2.0 Vde)

Collector-Emitter Saturation Voltage

(lc
(lC

= 2.0 Ade, IB =0.2 Adc)
=5.0 Ade, IB =0.5 Ade)

Base-Emitter Saturation Voltage

= 2.0 Ade,
(I" = 5.0 Ade,
(lC

IB
IR

hFE

9,11,13

.

-

1.0

-

1.0

-

10
10

-

100

30
60
30
60
20
40

-

mAde

I'Ade

.

2N5336,2N5338
2N5337,2N5339
2N5336,2N5338
2N5337,2N5339
2N5336, 2N5338
2N5337,2N5339

.

-

10
10

lEBO

8

= 500 mAde, VCE = 2.0 Vde)

-

I'Ade

ICBO

-

=0)

ON CHARACTERISTICS
DC Current Gain *
(lC

100
100
I'Ade

2N5336, 2N5337
2N5338, 2N5339

Emitter Cutoff Current

11,13

= 0.2 Ade)
= 0.5 Ade)

III

I'Ade

-

ICEX

-

= 80 Vde, IE = 0)
= 100 Vde, IE =0)

Unit

-

-

Collector Cutoff Current

= 6.0 Vde,

-

ICED

12

(VCE = 75 Vde, VEB(off)
(VCE = 90 Vde, VEB(off)
(VCE = 75 Vdc, VEB(off)
TC = 150°C)
(VCE = 90 Vde, VEB(off)
TC = 150°C)

(VBE

80
100

2N5336, 2N5337
2N5338,2N5339

Collector Cutoff Current

(VCB
(VCB

Max

Vde

2N5336, 2N5337
2N5338,2N5339

Collector Cutoff Current

(VCE
(VCE

.

Min

-

VCE(se!)

.

VBE(s.!)

.

120
240

Vde

-

0.7
1.2

-

Vde

-

1.2
1.8

30

-

-

250

-

1,000

-

100

ns

100

ns

2.0

1"

200

ns

DYNAMIC CHARACTERISTICS

-

Current-Gain-Bandwidth Product

(lC

= 0.5 Adc, VCE = 10 Vde, I = 10 MHzl

Output Capacitance

(VCB

7

(VBE

pF

Cob

= 10 Vdc, IE =0, I = 100 kHzl
7

Input Capacitance

MHz

IT

pF

Cib

= 2.0 Vdc, IC = 0, I = 100 kHzl

SWITCHING CHARACTERISTICS

=3.0 Vde,
= 2.0 Ade, IBI = 0.2 Ade)
(VCC =40 Vdc, IC = 2.0 Ade,
IBI = IB2 = 0.2 Ade)

Delay Time

(VCC - 40 Vde, VEB(olf)

Rise Time

2,3

td

(lC

Storage Time

.

Fall Time

t,
2,6

Is
tl

Pulse Test: Pulse Width .. 300!'S, Duty Cycle .. 2.0%.
FIGURE 2 - SWITCHING TIME TEST CIRCUIT
-11.6V

+40 V

1i---+37V

-.J

~10I's--1

tr tf';;;; 10 ns
O:C. = 1.0%

T

Lov

INPUTPUL.SE

51

FIGURE 3 - TURN-ON TIME
10

VCC

62

5.0
2.0

20

82

j

0.5

";:::

0.2

w

t,@VCC-20V
0.1

lN914

0.05

====

TJ=25 0 C

td@VES(off)-6.0V

"'01

1.0

ICIIS = 10

tl~VCC [SOt

"-

""

td @VEB(off) = 4.0 V

"""
.......

0.02

-3.3 V

0.0 1
0.01

0.02

0.05

0.1

0.2

0.5

1.0

IC, COLLECTOR CURRENT (AMPS)

1-159

2.0

5.0

10

2N5336 thru 2N5339

..

FIGURE 4 - THERMAL RESPONSE

>~

1.0
0.7
0.5

0' 0.5

a: w

"

0,3

0.2

wZ
:: ~
t;~

0.2

~

o. 1

~

>-",
wu>

tt:

w~

0.1

cw,",
< 0.07
!:::!
a: 0.05
~w

..... -

0.03

Z

0.02

'"

0.01
0.01

+:

-=-

i"""

0.05

-

....

i·~

o

-

~

I-

SINGLE
PULSE

.02

'nIl
l

SINGLE PULSE

TJ(pk) - TC - P(pk) 8JC(I)

DUTY CYCLE. 0' 11/12

IIIII
0.2

0.05 0.07 0.1

'0 CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME ATll

k)

~-J

0.01

I
0.02 0.03

8JC(I) - ,(t) 8JC .
8JC' 29.20C/W~a~

0.3

0.5 0.7 1.0

2.0

3.0

I I III

5.0 7.0 10

20

30

50

I I I I I II

70 100

200 300

500 700 1000

I. TIME OR PULSE WIOTH (m,)

FIGURE 5 - ACTIVE-REGION SAFE OPERATING AREA
10

.

5.0

1.Oms

S 2.0
>-

0.5

'">-0

0.2

~

~

1.0 I==TJ' 2000 C

~

G

that must be observed for reliable operation;

~.

i.e., the transistor must not be subjected to
greater dissipation than the curves indicate.
The data of Figure 5 is based on TJ(pk) =
20o"C; T C is variable depending on conditlons_
Pulsecurvesare valid for duty cyclasof 10% pro~
videdT J(pk) ,; 20o"C. T J(pk) mav be calculated

5.0ms

de

f--

0.1 ~ ......:. _ _

0

(.) 0.05
~
0.02

There are two limitations on the power handling abilityof a transistor: junctiontemperature
and secondary breakdown. Safe operating area
curves indicate Ie-VeE limits of the transistor

100jlS

ie

_ _

f= - - - - -

0.01
2.0

1.0

3.0

Secondary Breakdown limited
Bonding Wire limited
Thermal limitations Te - 25°C
Pulse Dutv Cycle .0:::: 10%
Applicable for Rated BVCEO
2N5336.37
2N533B.39
5_0 7.0 10
20
30
50 70 100

from the data in Figure 4. At high case temperatures, thermal limitations will reduce the

power that can be handled to values less than
the limitations imposed by secondary breakdown.

VCE. COLLECTOR-EMITTER VOLTAGE (VOLTS)

FIGURE 6 - TURN-OFF TIME
10
7.0
5.0
3.0
2.0

'0;

""'";:::
w

1.0
0.7
0.5
0.3
0.2
0.1
0.07
0.05
0.03
0.02

FIGURE 7 - CAPACITANCE vorsus VOLTAGE
1000
IBl

Is

r-........

70 0
500

TJ' 25 0 C

~ 300

If@VCC=BOV

~ 200

) - - - rlf@VcC·20V

c;

§

r-....

-

r-

Cib

r-r-.

100

-

T] =i5.lc

-..... r--.

70

0.01

0.01

-

IB2

IcllB -10

0.02

Cob

50
0.05

0.1

0.2

0.5'

1.0

2.0

5.0

10

1.0

2.0

3.0

5.0 7.0

10

20

30

VR. REVERSE VOLTAGE (VOLTS)

IC. COLLECTOR CURRENT (AMPS)

1-160

50

70

100

2N5336 thru 2N5339

FIGURE 9 - COLLECTOR SATURATION REGION

FIGURE B - DC CURRENT GAIN

-

1000
70 0
SOO

z 30 0

'"

~

=>

0
0

"

~

-

~

F- ~

~

100

u
u

-

...

-

1.6

~

1.4

"~

1.2

iilg;
~R

0

_

-

0

m1 1 11
1111 I

1.8

~

IC= 100 rnA

0.020.03 O.OS

0.1

-

-

III

-

3.0 A

1.0 A

TJ=2Soc-

O.B
0.6
0.4

~ O. 2

>

10
0.0070.01

R=R-

lffi--

~ 1.0

-SSoC

~

2.0

C

VCE=IOV
-

TJ '" 1~50C

200

~

-'-t~

---

;;:

-

0.2 0.3

O.S

2.0 3.0 5.07.0

1.0

t'-...

r;;...:

0
O.S

1.0

2.0 3.0

5.0

10

20 30

50

100

200 300

sao

IB, BASE CURRENT (rnA)

IC, COLLECTOR CURRENT (AMPS)

FIGURE 10 - EFFECTS OF BASE·EMITTER
FIGURE 11 - ON VOLTAGES

RESISTANCE
108

1.0

-

0.9

VCE 30V-

r-..

O.S

IC - 10 X ICES

~

6

C
c=IC 2 X ICES

........

j----

0.5 f--0.4

r-..

VSE(sat)@ IC/IS = 10

TJ = 2SoC
I

0.3

0.1

f--

a
20

40

60

80

100

120

140

160

180

200

0.01

0.02

0.05

~

+5.0

VCE 30 V -

+4.0

-

~

+3.0

-

I-

~ 10-6

~

0.4

10

0.6

I

2.0 '3.0 5.0

10·

1/

I

~II

)

V

I I II I

-2.0

l-

i
0.2

S.O

~ -3.0

FORWARO

~250C
-0.2

2.0 3.0

0V8 for VSE(sat)

~ -1.0

IC = ICES

10-9
-0.4

'III

,lsi I f I vi
I ~C °IICWtll:

w

-

1.0

~o'lill I
TJ = -550~ U1+17~Ocl

8

I------' lDooe

~ 10-8 t;::-'REV~RSE

0.5

IClis=

U
~ +1.0

.--

B

~

~

~ +2.0

S -TJ = 17SoC

lO-

7
10'

0.2

FIGURE 13 - TEMPERATURE COEFFICIENTS

FIGURE 12 - COLLECTOR CUT·OFF REGION

l(! 10-4

0.1

IC, COLLECTOR CURRENT (AMPS)

10'3

l-

~

.-

VCE("t)@ IC/IS = 10

TJ,JUNCTION TEMPERATURE (OC)

i

~

.L.H-t+lfr::
Js~ ~ )C~ ~ I}L

0.2

Obtained From Fig. 12)

102

o

0.6

"~

">

.......

(Typical ICES Values

F=

f--

0.7

w

'"
IC -ICES

I 1111111

O.B

1.0

-4.0

-5.0
0.01

0.02 0.03 0.05

0.1

0.2 0.3 0.5

1.0

IC. COLLECTOR CURRENT (AMPS)

VSE, SASE·EMITTER VOLTAGE (VOLTS)

1-161

2N5344
2N5345

®

MOTOROLA

OJ
HIGH VOLTAGE POWER PNP SILICON TRANSISTORS

1 AMPERE

designed for high-voltage switching and amplifier applications.

POWER TRANSISTORS
PNP SILICON

• High Voltage Ratings - VCEO = 250 and 300 Vdc
• Fast Switching Times - Typically Less Than 550 ns
Total @ VCC = 100 Vdc

250-300 VOLTS
40 WATTS

• High Current-Gain-Bandwidth Product fT = 60 MHz (Min) @ IC = 100 mAdc
• Packaged in the Compact, High-Efficiency TO-66 Case
MAXIMUM RATINGS

Rating

Symbol

2N5344

2N5345

Unit

VCEO

250

300

Vdc

Collector-Base Voltage

VCB

250

300

Vdc

Emitter-Base Voltage

YEB

5.0

Vdc

IC

1.0

Adc

IB

0.5

Adc

PD

40

Watts

228

mW,C

-65 to +200

·C

Collector-Emitter Voltage

Collector Current - Continuous
Base Current - Continuous
Total Device Dissipation @TC

= 25° C

Derate above 25 0 C
Operating and Storage Junction
Temperature Range

T J , T stg

;

-U-i
\- 8 - -

P

l-t- ------II
-E

THERMAL CHARACTERISTICS

SEATING PLANE

Characteristic

Max

Thermal Resistance, Junction to Case

STYLE 1:
PIN 1. 8ASE
2. EMITTER
--- F- CASE: COLLECTOR

4.38

FIGURE 1 - POWER-TEMPERATURE DERATING CURVE
50

I

45

~

40

...........

~ 35

r-....

~

~ 30

.........

I'-...

;::

::
ill

25

.........

r--.....

C 20

l!'"
~

15

~

10

a

H

"~

I'-..

~

5.0

~

0
0

20

40

60

80

100

120

140

160

TC, CASE TEMPERATURE lOCI

~
180

200

MILLIMETERS
DIM MIN MAX
B 11.94 12.70
C
6.35 8.64
0
0.71 0.86
1.27
1.91
E
F 24.33 24.43
G 4.83 5.33
H 2.41
2.67
J
14.48 14.99
K
9.14
P
1.27
Q
3.61
3.86
S
8.89
T
3.68
15.75
U

-

INCHES
MIN MAX
0.470 0.500
0.250 0.340
0.028 0.034
0.050 0.075
0.958 0.962
0.190 0.210
0.095 0.105
0.570 0.590
0.360
0.050
0.1·42 0.152
0.350
0.145
0.620

-

-

All JEDEC Dimensions and and Notes Apply.

Safe Area Curves Are Indicated Bv Figure 5.

CASE 80-02

All Limits Are Applicable And Must Be Observed

TO-66

1-162

2N5344, 2N5345

ELECTRICAL CHARACTERISTICS ITA = 25°C unless otherwise noted)
Characteristic

OFF CHARACTERISTICS
Collector-Emiller Sustaining Voltage (1)
(IC = 10 mAde, 'B = 0)
Collector Cutoff Current
(VCE = 225 Vde, VBE(off)
(VCE = 270 Vde, VBE(off)
(VCE = 225 Vde, VBE(off)
TC= 150°C)
(VCE = 270 Vde, VBE(off)
TC=150°C)

5

-

250
300
10,12

= 1 5 Vde)
= 1 5 Vde)
= 1.5 Vdc,

Vdc

VCEO(sus)

2N5344
2N5345

/'Ade

'CEX

-

2N5344
2N5345

100
100

-

2N5344

-

10

2N5345

-

10

-

0.1

-

01

25
7.0

150

-

30

-

1.5

60

-

mAde

= 1.5 Vde,

-

Collector Cutoff Current
(VCB = Rated Vcs, 'E = 0)

-

Emitter Cutoff Current
(VBE = 5 0 Vde, IC = 0)

mAde

ICBO

mAde

'EBO

-

ON CHARACTERISTICS
DC Current Gain (1)
(lC = 500 mAde, VCE = 5.0 Vde)
(IC = 1 0 Ade, VCE = 5.0 Vdc)

8

9,11,13

Collector-Emitter Saturation Voltage

-

hFE

Vde

(IC = 1 0 Ade, IS = 0 2 Ade)
11. 13

Base-Emitter Saturation Voltage

-

VCE(sat)

Vde

VSE(sat)

(IC = 1.0 Ade, IS = 0 2 Ade)
DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(IC = 100 mAde, VCE = 20 Vde, f = 10 MHz)

MHz

fT

7

Output Capaclta nee
(VCB = 10 Vde, 'E = 0)

pF

Cob

-

200

SWITCHING CHARACTERISTICS
Turn-On

(Vee = 100 Vde, Ie = 500 mAde,

2,3

ton

-

200

ns

2,6

toft

-

700

ns

'Bl = IS2 = 50 mAde)
Turn-Off

(Vee = 100 Vde, Ie = 500 mAde,

ISl = 'B2 = 50 mAde)
j1) Pulse Test Pulse WIdth = 300

FIGURE

2-

p.S,

Duty Cycle = 2 0%

SWITCHING TIME TEST CIRCUIT

FIGURE

3-

TURN-ON TIME

1000
VBB

I

10V

+18,2 V

1

~ __ -20V

5,0 IlF

INPUTPULSE

tr, tf:s5.0 ns
PU LSE WI DTH = 1.0 Il'
DUTY CYCLE = 2.0%

70

200

VCC
-100 V

700

500

200

300
200

200

SCOPE

!Ii!
;::

IC/IB = 10
Tr 25 0 C

.......

tr @lVCC=100V

......

100

tr@lVCC=30V

--........c

r- :::::--.......

~

-

70

50
lN916

td@lVOB=O,85V

30
20

II

10
0.05

0.07

0.1

I
0.2

0.3

IC. COLLECTOR CURRENT (AMP)

1-163

0.5

0.7

1.0

2N5344, 2N5345
FIGURE 4 - THERMAL RESPONSE
1.0

-

0.7

~
v;
~

0.3

UJ

z 0.2

0=0.5

0.5

~~

~~
fdc;;
tt ~

..",

I I
0.2
0.\

0.1

~ iO.07

:i ~O.05
:EIg;z 0.03
0.02
0.01

0.02

-.......-

nn

i"""

l-

SINGLE
PULSE

,

8JC(t) = r(t) 8JC
8JC = 4.38D CIW Max

o CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME ATtl

i.272-1
DUTY CYCLE, 0 = 11/12

TJ(pk)- TC = P(pk)8JCh)

~iOI

~

~

i,....--: ?

,.,.,.

-T'

...-n

II-

...- ..... 1- ~

-

I--

0.05

w-'

:g

-I-

Single Pulse

II

til II

0.01

0.02 0.03

0.05

0.2

0.1

0.3

0.5

2.0

1.0

3.0
I,

5.0

10

20

30

50

100

200 300

500

1000

TIME (m.)

FIGURE 5 - ACTIVE-REGION SAFE OPERATING AREA
1.0
0.7
0.5
0:

"'

0.3

:E

:'!:
I-

"\

0.2

~

0.1

~

0.07

'" 5.0ms~~.om.\

i'-

~

sistor that must be observed for reliable operation; i.e., the tran·
sistor must not be subjected to greater dissipation than the curves
indicate.
The data of Figure 5 is based on T J(pk) = 200 o C; T C is variable depending on conditions. Pulse curves are valid for du!V
cycles of 10% provided TJ(pk) :s; 200"C. TJ(pk) may be calculated from the data in Figure 4. At high case temperatures,
thermal limitations will reduce the power that can be handled to
values less than the limitations imposed by secondary breekdown.

de

j 0.05

8

There are two limitations on the power handling ability of a
transistor:
junction temperature and secondary breakdown.
Safe operating area curves indicate IC-VCE limits of the tran-

100~.

\

to

g;
<.>
to

\

\

1'\

~

"-

0.03

r--

0.02

rH

-

0.01

'\.

,TJ = 200 DC
SECONDARY 8REAKDOWN LIMITATION
PULSE DUTY CYCLE :510%
2N5344 ~ ["
~urv8S apply below
2N5345, ratod VCEO.

20

30

40

50

'.
70'

'\ 1\

""

II

100

k

300

200

400

VCE, COLLECTOR·EMITTER VOLTAGE (VOLTS)

FIGURE 7 - CAPACITANCES

FIGURE 6 - TURN-OFF TIME
1000

1000

700

300

...

200

w

100

--

70

;::

500

r-....

-.;:"""

..... ' .....

.E'
:E

TJ = 25DC

IS

SOD

TJ·25D C
'l;, 200

........
........

~f@VCC=100V

w
<.>

..... ~

i"'--I'-o

Z

~

100

~

50

U

If@VCC-30V

50

~ib

300

..;

30

Cob

30
181 = iS2
Ic/18 = 10

20

20

"'=I.-1/8If
10

10

0.05

0.D7

0.1

0.2

0.3

0.5

0.7

1.0

IC, COLLECTOR CURRENT (AMP)

O. I

0.2 0.3 0.5

1.0

2.0 3.0

5.0

10

V R, REVERSE VOLTAGE (VOLTS)

1-164

20 30

50

100

2N5344, 2N5345

TYPICAL DC CHARACTERISTICS
FIGURE 8 - DC CURRENT GAIN
300

r-

TJ = 1750C

-

200

..
'"

100

......
c

30

r-

z

....z
w
'"
'"

FIGURE 9 - COLLECTOR SATURATION REGION
1.0

2SoC

~
w

0

>

~

0.6

~

~

20

---

VCE = 10 V
VCE= 1.0V

--

10

Ic=10mA

~
a:0

0.4

j
0
'"

0.2

\

1.0

2.0 3.0

5.0

10

20 30

SO

100

0.1

0.2 0.3 O.S

1.0

~

~

VCE=30V -

r

..............

10 6

""-

105

i---

1 -'---

-'
«
z

~

102

+J ~ ~so~I

-

I--IV~E!sa,) @, ICIIB = S.O '010

~

00

IT

i 1'1111 1

-

......

I',

0.2

-

~

rn

100

MO

1~

100

WO

1.0

FIGURE 12 - COLLECTOR CUT-OFF REGION

~

I

/

~

10-4

oS

r-- TJ = 1750C

L

/

~
~

10-5

10-6

c
....

~ 10-7
:j
0

'"

!J

10-B
10-9

+l.S ' - -

2.0 3.0 S.O

VCE- 30 V

=

0.3

0.2

fE

I TI

J-slsdcl

200 300 SOD 1000

,

rJillll

III IIII

+0.5

'eVC for VCE(,.,)

w

8

w

~

-1.5

i

-2.0

eVB for VBE(sa')

II II

-2.5
0.1

100

Ilgsoi

0.2

-

~ -1.0

250C
0.1

SO

~

:;: FORWARD
REVERSE
-I
)--)
I/,

-+

20 30

~ -0.5

:;::: ICFS

=

=

10

~

-

VCE(..,)@ ICIIB = 10

II I

+1.0

<3

~ ~1000C_

r-:::

'APPLIES FOR IcllB ~ hFE/2

~ +2.0

J

a:

...
a:

'"

FIGURE 13 - TEMPERATURE COEFFICIENTS
+2.S

/

::>

100

IC, COLLECTOR CURRENT (rnA)

10-3

,.

SO

VBE@VCE= 1.0 ~

TJ,JUNCTION TEMPERATURE (DC)

~

1. .....

~p

I I ICIIB = S.O -r

.........

w

20 30

k
f'

....... .......

xw

a:

0.6

~

IC-ICES"""
103

10

§;. 0.4

;li 104

ffi
....

~o
'"«

IC = 2.0 ICES

lil

S.O

"ON"VOLTAGES

O.B

~
w

10 ICES

IC

2.03.0

FIGURE 11 -

lOB

~

1.0

IB, BASE CURRENT (rnA)

FIGURE 10 - EFFECTS OF BASE-EMITTER RESISTANCE

"'"' "'

500 rnA

o

200 300 500 1000

IC, COLLECTOR CURRENT (rnA)

107

\

I""--r-.

~

>

3.0

'"
'"
~

150 rnA

\

t;

S.O

,.:z:'"
2
...wz

III

TJ = 25 0C
O.B

'"«~

-

r- '- -5SoC
50

III

~

0

0.3

0.4

0.5

0.6

0.7

VBE, BASE·EMITTERVOLTAGE (VOLTS)

1.0

2.0 3.0 5.0

f-

IIII
10

20 30

SO

100

IC, COLLECTOR CURRENT (rnA)

1-165

200 300 500 1000

2N5346
thru
2N5349

®

MOTOROLA

7 AMPERE

MEDIUM-POWER NPN SILICON TRANSISTORS
POWER TRANSISTORS
NPN SILICON

· .. designed for switching and wide-band amplifier applications.
•

Low COllector-Emitter Saturation Voltage - VCE(sat) ~ 1.2 Vdc
(Max) @ IC ~ 7.0 Adc

•

DC Current Gain Specified to 5 Amperes

80-100 VOLTS
60 WATTS

• Excellent Safe Operating Area
• Packaged in the Compact, High Dissipation TO-59 Case
• Isolated Collector Configuration
• Complementary to 2N6186 thru 2N6189

.MAV'U"M

RATINGS
Symbol

2N5346
2N5347

2N5348
2N5349

Unit

VCEO

80

100

Vdc

Collector-Base Voltage

VCS

BO

100

Vdc

Emitter-Ba.e Voltage

VES
IC

6.0

Vdc

7.0

Adc

Base Current

Is

1.0

Adc

Total Device Dissipation @TC: 25°C
Derate above 25°C

Po

60

343

Watt.
mW/oC

-65 to +200

°c

Rating
Collector-Emitter Voltage

Collector Current - Continuous

Operating and Storage Junction

TJ, T.tg

STYLE I:
PIN 1. EMITTER
2. BASE
3. COLLECTOR

Temperature Range

THERMAL CHARACTERISTICS

I

Characteristic
Thermal Resistance, Junction to Case

Symbol

I

I

Max

I

8JC

I

2.91

Unit

°C/W

*Indlcates JEOEC Regiltefed Data.

10·32 UNF·2A
COATEO

60

.........

@ 60
~
~

~

30

=

20

!J!
is

~

~

~

'"

........... .........
......

""............ r-....

10
0

0

20

8
C

I'.....

4ll

4ll

60

80

100'

120

1411

MILLIMETERS
INCHES
MIN
MAX
MIN
MAX
10.77 11.10 0.424 0.437
8.13 11.89 0.320 0.468
E
2.29 3.81 0.090 0.150
G
4.70 5.46 0.185 0.215
H
1.98
0.078
J
10.16 11.56 0.400 0.455
K 14.48 19.38 0.570 0.763
2.79 0.090 0.110
L
2.29
N
6.35
0.250
P
4.14 4.80 0.163 . 0.189
n 1.02 1.65 0.040 0.065
R
8.08 9.65 0.318 0.380
4.212 4.310 0.1658 0.1697
S
9.65 11.10 0.380 0.437
T
All JEDEC dimenSIOns and notes apply
Collector isolated from case.

DIM

FIGURE 1 - POWER·TEMPERATURE DERATING CURVE

......

160

TC. CASE TEMPERATURE (DCI

~

160

200

CASE 160-03

Sate Area Curves are IncifCIted by Figure 5. All limits . . applicable and must be observed.

TO-59

1·166

2N5346 thru 2N5349

*ELECTRICAL CHARACTERISTICS (TC· 2SoC, unless otherwise noted)

I

I

Min

Max

80
100

-

-

100
100

2N5346,2NS347
2N5348,2NS349

-

-

10
10

2NS346,2N5347

-

1.0

-

1.0

-

10

-

100

30
60
30
60
20
40

-

Characteristic

Fig. No.

Symbol

-

VCEO(sus)

Unit

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage (1)
(lC· SO mAde, IS • 0)

-

Collector Cutoff Current
(VCE· 7S Vde, IS· 0)
(VCE • 90 Vde, IS· 0)

I'Ade

ICEO

2NS346,2NS347
2NS348,2N5349
12

Collector Cutoff Current

(VCE· 75 Vde,
(VCE· 90 Vde,
(VCE· 75 Vde,
TC·1S00C)
(VCE· 90 Vde,
TC·1S0oC)

Vde

2NS346,2NS347
2NS348,2N5349

VES(off) • 1.S Vdc)
VE8(off) • 1.S Vde)
VEB(off) • I.S Vde,

I'Ade

ICEX

mAde

VEB(oll) • 1.5 Vde,
2NS348,2NS349

-

Collector Cutoff Current
(VC8 • Rated VCS, IE • 0)
Emitter Cutoff Current
(VES· 6.0 Vde,IC· 0)

I'Ade

IC80

I'Ade

lEBO

ON CHARACTERISTICS (1)
DC Current Gain
(lC· SOO mAde, VCE • 2.0 Vde)

8

-

hFE

2NS346,2N5348
2N5347,2NS349
2N5346, 2NS348
2NS34 7, 2NS349
2NS346,2N5348
2N5347,2NS349

(lC· 2.0 Ade, VCE • 2.0 Vde)
(lC· 5.0 Ade, VCE • 2.0 Vde)
Collector-Emitter Saturation Voltage
(lC • 2.0 Ade, 18 • 0.2 Ade)
(lC· 7.0 Ade, IB • 0.7 Ade)

9,11,13

120
240

Vde

VCE(s.t)

-

0.7
1.2

11,13

Base-Emitter Saturation Voltage
(lC· 2.0 Ade, lB· 0.2 Ade)
(lC· 7.0 Ade, IS • 0.7 Ade)

Vde

VSE(sati

-

-

1.2
2.0

30

-

-

2S0

-

1,000

-

100
100

ns
ns

2.0
200

I'S
ns

DYNAMIC CHARACTERISTICS
-

Current-Gain-Bandwidth Product

(lC· SOOmAde, VCE ·10 Vde, I ·10 MHz)
Output Capacitance
(VCS· 10 Vde,IE· 0, 1·100 kHz)
Input Capacitance
(VSE • 2.0 Vde, IC • 0, I • 100 kHz)

MHz

IT

7

pF

Cob

7

pF

Cib

SWITCHING CHARACTERISTICS
Delay Time

Storage Time

(VCC 40 Vdc, VES(off)· 3.0 Vde,
(lC· 2.0 Ade; lSI· 200 mAde)
(VCC ·40 Vdc, IC· 2.0 Ade,

Fall Time

lSI· IS2· 200 mAde)

Rise Time

2,3

'r
2,6

* Indicates JEOEC Registered Data. (1) Pulse Test: Pulse Width

~

Vee
+40

's
tl

300 #5, Duty Cycle

5.0

v

20

'"i=

~10

ns

t\~vee

........

tr@VCC=20V

0.05

D,C,;; 1.(Y'b

Ielis = 10
TJ = 250 C

0.5
0.2

.........

.....

O. 1
lN914

ISO IV

td@VEB(oH) - 6.0 V

I.....

1.0

:gw
Ir. If

2.0%.

10

2.0
62

1'::1

-

FIGURE 3 - TURN·ON TIME

FIGURE 2 - SWITCHING TIME TEST CIRCUIT
·11.6 V

td

F=

td @VEB(oH) = 4.0 V

0.02
0.0 1
0.D1

·2.3 V

0.02

0.05

0.1

0.2

0.5

1.0

Ie, COLLECTOR CURRENT (AMPS)

1-167

2.0

5.0

10

2N5346 thru 2N5349

FIGURE 4 - THERMAL RESPONSE
I.0

~

§

o.~f-D=0.5
O.

O.
3f-D.2
>2:
t;~ O.2

I-W
W..,

~D.I

fflJ1

~~ o. I~D.D5
~~o.o7f-D.02

~~

~~ 0.05

~I-O.03

o

~ 0.0

"

2~

0.0 I
0.01

12

I>C
r-P'q.D1
SINGLE PULSE

I

0.02 0.03

SINGLE
PULSE

8Jc(ll- rltl 8JC
8JC = 2.91°CNI Max
o CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME ATII
TJ(pkl- TC = P(pkI8JC(tI

OUTY CYCLE. O' 11112

0.05

0.1

0.2

0.3

0.5

1.0

II

2.0

3.0
5.0
t. TIME (m.1

10

I

I I I III

20

30

50

100

I

I

I

200 300

500

1000

FIGURE 5 - ACTIVE'REGION SAFE OPERATING AREA

There are two limitations on the power han·
dling ability of a transistor: junction temperature and secondary breakdown. Safe operating
area curves indicate Ie - VeE limits of the
transistor that must be observed for reliable

operation; i.e., the transistor must not be

su~

jeeted to greater dissipation than the curves

indicate.
The data of Figure 5 is basad or, T J(pkl =
200°C; TC is variable depending on conditions.
Pulse curves are valid for duty cycles of 10%
provided TJ(pkl,,200oC. TJ(pkl may be calculated from the data in Figure 4. At high case

temperatures, thermal limitations will reduce
the power that dan be handled to values >'Iess
than the limitations imposed by secondarybreakdown.

VCE. COLLECTOR·EMITTER VOLTAGE (VOLTSI

FIGURE 6 - TURN-OFF TIME

FIGURE 7 - CAPACITANCE

I.

1w
~.:

1.0
0.7
0.5
0.3
0.2
0.1
0.07
0.D5
0.03
0.D2

.ersus VOLTAGE

1000

7.0
5.0
3.0
2.0

- I,

IBI = IB2
IcllB -10
Tr250 C.

700
oS

It@VCC-80V

~

300

~

200

~

r-- r- If@VCC-20V

-

TJozsl>C
Cib

.. ,

.;

"r-.

.........

1110

r--~

0

D.OI
0.01

I--a

... 5110

0.02

0.05

0.1

0.2

0.5

1.0

2.0

5.0

5C!1.0

10

Cob
2.0

3.0

5.0 7.0

10

20

30

VR. REVERSE VOLTAGE (VOLTS'

IC. COLLECTOR CURRENT (AMPSI

1-168

50 70 1110

2N5346 thru 2N5349

FIGURE 8 - DC CURRENT GAIN

FIGURE 9 - COLLECTOR SATURATION REGION

1000
700
500
z

VCE - 2.0 V
VCE-IOV

-

300

~ 200

....

~ 100

"'-

-

25 0 C

70
50

"-

-550 C

g

...

-

TJ -l75 oC

1i':

a

2.0

U)

o~ 1.8

Illl

~
w

1.6

1111

~

1.4

co

~

1.0

1ici;l

0.8

~

0.6

8

0.4

~

o. 2

>

10

0.1

0.2 0.3 0.5

0

2.0 3.0 5.0 7.0

1.0

0.5

III

1.0A

3.0A
TJ=250 C -

1.0

2.0 3.0

5.0

0.9

VCE z 3OV-

0.8 -

IC = 10 X ICES
_

0.7

~

0.6

o

~

~ o. 5 -

F=IC-2XICES

_

"'-

20 30

Li

40

60

80

.......

r-..

~

TJ' 25 0 C

0.2

120

140

160

180

200

0.01

0.020.030.05

0.1

TJ,JUNCTION TEMPERATURE lOCI

i-'

....

VCElsati @IC/18 = 10
0.2 0.3 0.5

1.0

2.0 3.0 5.0

10

IC, COLLECTOR CURRENT IAMPSI .

FIGURE 12 - COLLECTOR CUT·OFF REGION

FIGURE 13 - TEMPERATURE COEFFICIENTS

10-3

>5.0
G

VCE 30 V f--TJ= 175°C 11

-

1000 C

~_REV~RSE

:::t

-0,4

~

I 1111111

Hi} ,J.

-

IC" ICE

0

~

I

ICIIB =
1I.
I
TJ = -550 Cto +1750 C

~ +2.0
U
~ +1.0

,IBVc 10; V~E(

~ -1.0

i

...
...8

7

250 C

!'".... :.~. r-

'1(1-

1

I

iu

t

II

)

I

~"8 10: V~~(~)

i-"

S
-2.0
~
!....

FORWARD

i

1_
U

M

~

1.0

VBE, BASE·EMITTER VOLTAGE (VOLTSI

-3.0
-4.0
-5.0
0.01

0.020.030.05

0.1

0,2 0.3 0.5

1.0

IC. COLLECTOR CURRENT (AMPS)

1-169

!I
i:

I

.u.t+±ttt:::
JB~ ~ vlc~ ~IJ.~ V

0.4

O. 1 -

100

200 300 500

o

(TvpicallCES Values
Obtained From Fig. 12)

20

100

111111

V~~(~t) ~ "I I/~ 1:1'0
II I II Ii II

o
o

50

II

> 0.3

102

10-9

.......

FIGURE 11 - "ON" VOLTAGES
1.0

108

f--

10

!

18, BASE CURRENT (mA)

FIGURE 10 - EFFECTS OF BASE EMITTER
RESISTANCE

1==

-

......

IC, COLLECTOR CURRENT IAMPSI

IC = ICES

~

III

1111

~ 1.2

0
0.02 0.03 0.05

IIII

I

Ic=100mA

o

0

0.0070.01

I

2.0 3.0 6.0

10

2N5427
thru
2N5430

®

MOTOROLA

lIB
7 AMPERE

MEDIUM-POWER NPN SILICON TRANSISTORS

POWER TRANSISTORS
NPN SILICON
· .. designed for switching and wide-band amplifier applications.
•

Low Collector-Emitter Saturation Voltage 'VCE(sat) =1.2 Vdc (Max) @ IC =7.0 Adc

•

DC Current Gain Specified to 7 Amperes

•

Excellent Safe Operating Area

•

Packaged in the Compact TO-66 Case

BO-100 VOLTS
40 WATTS

*MAXIMUM RATINGS
Rating

Symbol

Collector-Emitter Voltage
Collector-Sase Vol_
Emitter-Sase Voltaga

VCEO
VCS
VES
IC
IS

Collector Current - Continuous

Base Current

Total Device DisSipation
Derate above 250 C

@

"'N ....,."
2N5430

80
80

100
100

228

-65 to +200

°c

6.0
7.0
1.0
40

TJ. Totg

Temperature Range
THERMAL CHARACTERISTICS
Charactaristic

Symbol

Thermal Resistance, Junction to Case

8JC

Unit

Vdc
Vdc
Vdc
Adc
Adc
Watts
mWfOC

Po

TC = 25D C

Operating and Storage Junction

it

2N5427
2N5428

1=:=

4------t I
P

E

SEATING PLANE

I

Unit
10C/W

Max

I

4.37

---F--

Indicates JEDEC Registered Data

FIGURE 1 - POWER-TEMPERATURE DERATING CURVE

STYLE 1:
S
PIN 1. BASE
2. EMITTER

.........

I'-......
...... 1'-......
...... 1'-......

0

i'.....

0

r-.....

0

20

40

MILLIMETERS
MAX
12.70
.35 8.64
0.71 0.86
D
E
1.27 1.91
F 24.33 4.43
G
4.83 5.33
H 2.41
2.67
J 14.48 14.99
K
9.14
1.27
3.
0 3.61
S
8.89
3.68
T
15.7

DIM MIN
B 11.94

..........

60

80

100

120

140

t---.....
180

["'......
180

TC. CASE TEMPERATURE (GCI

200

.142

All JEDEC DimonoioM and and Nota Apply.
CASE 80-02
T0-66

1-170

2N5427 thru 2N5430

*ELECTRICAL CHARACTERISTICS fTc

I

= 25°C, unless otherwise noted)

I

Min

Max

80
100

-

-

100
100

2N5427, 2N5428
2N5429.2N5430

-

10
10

2N5427,2N5428

-

1.0

-

1.0

-

10

-

100

30
60
30
60
20
40

-

Characteristic

Fig. No.

Symbol

-

BVCEO(sus)*

Unit

OFf CHARACTERISTICS
Collector·Emitter Susteining Voltage (1)
(lC = 50 mAde, IB = 0)

-

Collector Cutoff Current

(VCE
(VCE

= 75 Vde, IB = 0)
=90 Vd., IB =0)

12

= 75 Vd., VEB(off) = 1.5 Vd.)
= 90 Vd., VES(olf) = 1.5 Vd.)
= 75 Vd., VES(olf) = 1.5 Vde,
= 150°C)
=90 Vde, VEB(off) = 1.5 Vde,
= 150°C)

-

=6.0 Vde,

IC

-

=0)

mAde

/tAde

IC80

= Rated VCB, IE = 0)

Emitter Cutoff Current

(VSE

/tAde

ICE X

2N5429,2N5430

Collector Cutoff Current

(VCB

/tAde

ICEO

2N5427, 2N5428
2N5429.2N5430

Collector Cutoff Current

(VCE
(VCE
(VCE
TC
(VCE
TC

Vde

2N5427, 2N5428
2N5429,2N5430

/tAde

lEBO

ON CHARACTERISTICS (1)
DC Current Gain

8

(lC

= 500 mAde, VCE = 2.0 Vde)

(lC

= 2.0 Ade, VCE = 2.0 Vde)

(lc

= 5.0 Ade, VCE = 2.0 Vde)

Collector-Emitter Saturation Voltage

(lc
(lc

9,11,13

120
240

Vde

VCE(satl*

= 2.0 Ade, IB =0.2 Ade)
= 7.0 Ade, IB =0.7 Ade)

-

11,13

Base-Emitter Saturation Voltage

(lC
(lC

-

hFE*

2N5427,2N5429
2N5428. 2N5430
2N5427. 2N5429
2N5428, 2N5430
2N5427,2N5429
2N5428, 2N5430

0.7
1.2
Vde

VBE(satl*

= 2.0 Ade, IB =0.2 Ade)
= 7.0Ade,IB =0.7 Ade)

-

-

1.2
2.0

30

-

-

250

-

1.000

-

100

DYNAMIC CHARACTERISTICS

-

Current-Gain-Bandwidth Product

(lC

= 500 mAde, VCE = 10 Vde, I = 10 MHz)

Output Capacitance
(VCB = 10 Vde,IE

7

(VSE

7

= 2.0 Vde,

IC

pF

Cob

= 0, f = 100 kHz)

Input Capacitance

MHz

IT

pF

Cib

= 0, f = 100 kHz)

SWITCHING CHARACTERISTICS
Delay Time
Rise Time

Storage Time
Fall Time

= 40 Vdc, VEB(off) =3.0 Vde,
=2.0 Ade, lSI = 200 mAde)
(VCC =40 Vde, IC = 2.0 Ade,
lSI = IB2 = 200 mAde)
(VCC

2,3

td

(lC

tr
2,6

ts
tf

ns

100

ns

2.0

ItS

200

ns

* Indicates JEDEC RegIStered Data. (1 )Pulse Test: Pulse Width'" 300 Its. Duty Cycle" 2.0%.
FIGURE 3 - TURN-ON TIME

FIGURE 2 - SWITCHING TIME TEST CIRCUIT

11----1
L
l-10I'S~

·11.6V

+40 V

+37V

5.0
2.0

62

OV

20

""-

1.0

INPUT PULSE
tr. tf ::;10 ns

10

Vee

1

0.5

'";::

0.2

"

tl@veeiBOIV

"'iii

.....

td @VEBloHl= 6.0 V

tr@VCe=20V
0.1

lN914

D.C. =1.0%

0.05

0.01
0.01

1-171

"'"

""'"

td@ VE8(oII) - 4.0 V

0.02

·3.3 V

le/18" 10
TJ = 25 0 C

0.02

0.05

1.0
2.0
0.5
0.1
0.2
IC, COLLECTOR CURRENT (AMPS)

5.0

10

2N5427 thru 2N5430

FIGURE 4 - THERMAL RESPONSE

III]

1.0
O. 7
o.5

0-0.5

1.&.1

O.3

0.2

cC

O. 2

0.1

~

in

z

<

...ccwz.,
>

~~

~ffl
1.1.

a:

w~

' 0 c{
W,",

~

ffi

<"
~
c

I-

D. 1
0.07
0.05

0.03
0.02

Z

-E

I--"

PULSE

.02
0.01

0.02 0.03

._-

I I

0.05 0.07 0.1

0.2

0.3

0.5 0.7

1

o CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME AT'1

k)

I 1IIIIt1

l.n

2.0
I.

1'l

~ 4'~1'N

-=

TJ(Pk) - TC - P(pk) OJC(t)

'2
DUTY CYCLE. O' tt/'2

SINGLE PULSE

II

0.0 1
0.01

-

""",-r&
t

~

0.05

-

OJC(') - ,(t) OJ~:~

3.0

5.0 7.0 10

TIME DR PULSE WIDTH

20

30

II
50

I I I I I II

70 100

200 300

500 700 1000

(m.}

FIGURE 5 - ACTIVE-REGION SAFE OPERATING AREA
0

le

5.0

~

2.a

~

a

There are two limitations on the power ha"",

t--"'

dlingabilityof a transistor: junction temperature
and secondary breakdown. Safe operating area
curves indicate Ie-VeE limits of the transistor
that must be observed for reliable operation;
i.e., the transistor must not be subjected to
greater dissipation than the curves indicate.

I-100#.

.....

5.0 ms

~

1.
5 f- TJ - 200°C
O.

~

O. 2

8

0.0 5

~

~~

Secondary Breakdown limited

_ .. - - -Bon~ing Wire Limited

_ ..... - - Tllermal Limitations

.....
I-- P'-

Te '" 250 C

loOms

'Pulse Outy Cycles 10%

o. 1

The data of Figure 5 is based on TJ(pk) =

It-F"

200°C; T C is variable depending on conditions.
Pulse curves are valid for duty cycles of 10% pro-

dC~

Applicable For Rated BVCEO

~

videdTJ(pk) S200"C. TJ(pk) mavbecalcutated

from the data in Figure 4. At high case temperatures, thermal limitations will reduce the
power that can be handled to values less than
the limitations imposed by secondary break~
down.

2N5427.28
2N5429.30

0.02
0.0 1
1.0

2.0

3.0

5.0 7.0

10

20

30

50

70 100

VCE. COLLECTOR·EMITTER VOLTAGE (VOLTS}

FIGURE 6 - TURN-OFF TIME

a
a
a
2.a

1
7.
5.0
3.

t-

1.0
7

! ~:s
~

i=

'f@VCC'80V

O.3
O.2 _
'0. 1

-

Is

FIGURE 7 - CAPACITANCE versus VOLTAGE
1000

181- IS2
Ic/lS 10
TJ-250C

700

w

., 30

TJ = 250~Cib

0 __

~

<:;

< 200

-tf@VCC-20V

5u

I'.

0.07
0.05
0.03

r- I"-

100

0.02
0.0 1
0.01

t-

~ 500
oS

0
0.02

O,OS

0.1'

02

0.5

1.0,

2.0

5.0

10

IC. COLLECTOR CURRENT (AMPS)

50
1,0

Cob
2.0

3.0

5.0 7.0

10

20

30

VR. REVERSE VOLTAGE (VOLTS)

1-172

50 70 100

2N5427 thru 2N5430

FIGURE 8 - DC CURRENT GA!N
1000
700
500

--

<
'"

I-

~
a
u

c

~

-

TJ = 175°C

200

..

--

-

3{)0
z

FIGURE 9 - COLLECTOR SATURATION REGION
;;; 2.0

100

'~
-

25°C

70
50

fC-

-55°C

!::;

VCE 2.0 V
-VCE=IOV

...a'"

''""
al

0.8

'"

0.6

t:l
>

J
1.0

III
III

1.0A

3.0A
TJ = 25°C

'"

20
0.2 0.3 0.5

IC" 100mA

IIII
IIII

I-

~
8

0.1

fl.I~ -

I
I

'"

~~

'"

0.020.03 0.05

1.6

[]I

!::; 1.4
> 1.2
~ 1.0

30

10
0.0070.01

1.8

2.0 3.0 5.07.0

0.4

"

.....

0.2
0
0.5

1.0

2.0 3.0

5.0

10

FIGURE 10 - EFFECTS OF BASE-EMITTER
RESISTANCE

.......

,-"""

r-..

,./
IC = ICES

r-----

(Typical ICES Values -

F==

~
o
a

-:"t- -- ---

::--",.,

-

---.

-k .....
.....

1-'

0.7

o. 5 -

'"
~

0,4

:>

'"

0.3

1 J.l.++±tt
JB~ ~ vIC~ ~12~~ V
TJ = 26°C

O. 2

.Obtained From Fig, 12)

O. 1 -

o
20

40

60

BO

100

120

140

160

180

200

0.01

0.02

0.05

+5.0
u

!'" :.:. -

Vce=30V t--

I-

~ 10-5

f5

t-TJ = 175°C

j
8

10-1

!}

10-8

+2.0

I II IIII
~II

10-9
-0.4

25°C
~

...
g; -1.0
S
-2.0
~

L

REVERSE

0

IC- ICE

ill

FORWARO

U

10

~

I
V

Wa

f

V

fo~ vii~, J

,;

-3.0

l-

i
~

2.0 3.0 5.0

1vi
I ~C 0; F~{r'

8

-

1.0

Ul..1. I

~ +1.0

:>

100°C

0.5

lelia = 10:
TJ' -550C 10 +1750C
•
III
I

U

~ 10-6
'"t;

0.2

FIGURE 13 - TEMPERATURE COEFFICIENTS

FIGURE 12 - COLLECTOR CUT-OFF REGION

10-4

0.1

IC. COLLECTOR CURRENT {AMPSI

10-3

I-

",

IC
VCE(sall@iB=10

TJ.JUNCTION TEMPERATURE (OCI

ie
~

~

Iil I II Ii II
!

0.6

~

102

o

V~i( I I~ III/~ I ~1'0

0.8 -

- - -IC - 10 X ICES

""'"

200 300 500

I II IIII

0.9

VCE-30V-

C::::=: IC - 2 X ICES

100

FIGURE 11-"ON"VOLTAGES
1.0

- --

Lr-...

50

lB. BASE CURRENT (mAl

IC. COLLECTOR CURRENT (AMPSI

108

20 30

M

1.0

VBE. BASE·EMITTER VOLTAGE (VOLTSI

-4.0
-5.0
0.01

0.020.030.05

Q.l

0.2 0.3 0.5

1.0

IC, COLLECTOR CURRENT (AMPS)

1-173

2.0 3.0 5.0

10

2N5629,2N5630,2N5631
2N6029,2N6030,2N6031

-

NPN

®

PNP

MOTOROLA

HIGH-VOLTAGE - HIGH POWER TRANSISTORS
16 AMPERE
. designed for use in high power audio amplifier applications and
high voltage switching regulator circuits.

•

POWER TRANSISTORS
COMPLEMENTARY SILICON

High Collector-Emitter Sustaining Voltage VCEO(sus) = 100 Vdc - 2N5629, 2N6029
= 120 Vdc - 2N5630, 2N6030
= 140 Vdc - 2N5631, 2N6031

•

High DC Current Gain - @ IC = B.O Adc
hFE = 25 (Min) - 2N5629, 2N6029
= 20 (Min) - 2N5630, 2N6030
= 15 (Min) - 2N5631, 2N6031

•

Low Collector-Emitter Saturation Voltage VCE(sat) = 1.0 Vdc (Max) @ IC = 10 Adc

100-120-140 VOLTS
200 WATTS

·MAXIMUM RATINGS
Svmbol

Rating
Collector-Emitter Voltage
Emitter-Base Voltage

-16-

Adc

IB

-20-5.0-

Adc

PD

-200~

Peak

Base Current -- Continuous

Total Device DisSipation
Derate above 25°C

@

TC

=

25°C

100

Unit

Vdc

VEB
IC

Collector Current - Continuous

2N5631
2N6031

120
140
120
140
100
-7.0_

VCEO
VCB

Collector-Base Voltage

2N5629 2N5630
2N6029 2N6030

Vdc
Vdc

_1.14_

Operating and Storage Junction
Temperature Range

-65 to +200

TJ.T stg

lr~
t~.
ES:?-t;:
PLANE

I

·THERMAL CHARACTERISTICS
Characteristic
Thermal ReSistance, Junction to Case
Indicates JEDEC Registered Data

FIGURE 1 - POWER DERATING
200

fi>-

~

.......
150

"- .....",

z

0

~

!jj

STYLE I:
PIN 1. BASE
2. EM lITER
CASE: COLLECTOR

.......

DIM

r.......

~

~

0

I'-.

3!
~

A
B
C

"-

100

C

50

o

o

20

40

60
TC.

80

100

120

140

-

-

6.35
0.99

'"

160

f""-..

180 200

All Limits are appll~able and must be observed.

1-174

39.37
21.08
7.62
1.09
3.43

INCHES
MIN
MAX

0.250
0.039

-

E
29.90 30.40 1.177
11.18 0.420
G 10.67
H 5.33
5.59 0.210
J 16.64 17.15 0.655
K 11.18 12.19 0.440
Q
4.09 0.151
3.84
26.67
R
Cotlectorconnected to case.
CASE 11·01
(TO·3)

F

TEMPERATURE (OCI

Safe Area Curves are Indicated bV Figure 5

MILLIMETERS
MIN MAX

NOTE:
1. DIM "0" IS DIA.

-

1.550
0.830
0.300
0.043
0.135
1.197
0.440
0.220
0.675
0.480
0.161
1.050

2N5629, 2N5630, 2N5631 NPN
2N6029, 2N6030, 2N6031 PNP
*ELECTRICAL CHARACTERISTICS (TC = 25 0 C unless otherwise noted I
Characteristic

Symbol

Min

Max

100
120
140

-

Unit

OFF CHARACTERISTICS
Collector-E mitter Sustaining Voltage (1)
(IC = 200 mAde. Ie = 0)

VCEOlsus)

2N5629.2N6029
2N5630.2N6030
2N5631.2N6031

Collector-Emitter Cutoff Current
(VCE = 50 Vde. Ie = a)
(VCE = 60 Vde. Ie = a)
(VCE = 70 Vde. Ie = a)

ICEO

2N5629. 2N6029
2N5630, 2N6030
2N 5631 , 2N6031

mAde

-

1.0
1.0
1.0

-

Coliector~Emitter Cutoff Current

mAde

ICEX

-

(VCE = Rated Vce, VEe (off) = 1.5 Vde)
(VCE = Rated Vce, VEe(aff) = 1.5 Vde, TC = 150a C)

Collector-Base Cutoff Current

Vde

Iceo

-

lEBO

1.0
5.0
1.0

mAde

-

10

mAde

25
20
15
4.0

100
80
60

-

1.0
2.0

(VCS = Rated Vce. IE = a)

Emitter-Base Cutoff Current
(VSE = 7.0 Vde, IC = a)
ON CHARACTERISTICS (1)
DC Current Gain
Ilc = 8.0 Ade, VCE

IIc

= 16 Ade. VCE

= 2.0 Vdc)

Collector-Emitter Saturation Voltage

VCElsat)

IIc = 10 Ade, IS = 1.0 Ade)
IIc = 16 Ade, 18 = 4.0 Ade)

All Types

Base-Emitter Saturation Voltage

VSElsat)

-

Base-E mitter On Voltage

= 8.0 Ade, VCE = 2.0 Vde)

VSE(an)

-

Vdc

1.8

Vde

-

1.5

Vdc

IT

1.0

-

MHz

Cob

-

500
1000

pF

hIe

15

-

-

IIc = 10 Ade, IS = 1.0 Ade)

IIc

-

hFE

2N5629,2N6029
2N5630, 2N6030
2N5631.2N6031
All Types

= 2.0 Vde)

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product (2)
IIc = 1.0 Ade, VCE = 20 Vde, f test = 0.5 MHz)

Output Capacitance
(Vce

= 10 Vde.IE = O. f

2N5629, 30, 31
= 0.1 MHz)

2N6029. 30, 31

Small-Signal Current Gain
IIC = 4.0 Ade. VCE

= 10 Vde, f

= 1.0 kHz)

Indicates JEDEC Registered Data.
(1) Pulse Test' Pulse Width ~ 300 J.1.S, Duty Cycle ~ 2.0%.
(2) fT = Ihfej • f test

FIGURE 2 - SWITCHING TIMES TEST CIRCUIT

FIGURE 3 - TURN·ON TIME

Vee

3.0

+30 V

2.0

I I

1.0
"

.0;

I,

0.5

tr,tf:::o:10ns
DUTY CYCLE" 1.0%

........ !';;;:

50.2

01

O. 1
-4V

RBaod RC VARIED TO OBTAIN DESIRED CURRENT LEVELS

0.03
0.2

For PNP test circuit, reverse all polarities and 01.

1-175

,....

-

-to""

Id @"VBE(O/fj;o V

0.07
0.0
51=

2N5629,30,31
2N6029, 30, 31

I-

01 MUST BE FAST RECOVERY TYPE. eg
MBD5300 USED ABOVE 'B ~100 rnA
MS06100 USED BEL~W 'B ~100 rnA

,.... -

L--

~ 0.3

51

L.

0.7

SCOPE

RB

I

Tp 25°C
ICIIB=lOl
VCE 30 V

0.3

0.5

0.7,1.0
2.0
3.0
5.0 7.0
IC, COLLECTOR CURRENT (AMP)

10

20

2N5629,2N5630,2N5631 NPN
2N6029,2N6030,2N6031 PNP

fiGURE 4 - THERMAL RESPONSE
0

-

5

f- D 0.5

IJJC1tJ

=

2

-

~

~F
5

2

P~

0.02

,

11-+---1

......

11'lirl(
1 GLEIPUiSE

V

IIIIII

II

0.1

0.05

SINGLE
PULSE

f-----t2-~

III

0.0 1
0.02

-

-IJlfL

I- ~ E:;I::'

0.05

0.2

1.0

0.5

'_

PULSE TRAIN SHOWN
ff- f-REAOTIMEATq
~ f-TJI'kl Te = Plpkj IjJC1tj- ~

DUTY CYCLE, 0 =q!t2

__ 0.1

1

rltl IjJC

o CURVES APPLY FOR POWE~_

I-:::: IiiII

0.2

=

~JC'08750CWM" I~

2.0

5.0

10

20

100

50

200

500

1000

2000

I, TIME (m.)

fiGURE 5 - ACTIVE-REGION SAFE OPERATING AREA
20

I
ffi

~

B

10

- - -

l
,I

'\J
5.0ms

1~
O.5ms

~o

I II

7.0
5.0

transistor: average junction temperature and second breakdown.
Safe operating area curves indicate le·VeE limits of the transistor
that must be observed for reliable operation; i.e., the transistor

TJ' 200·C

must not be subjected to greater dissipation than the curves indicate.
The data of Figure 5 is based on T J(pk) = 200°C; TC is variable
depending on conditions. Second breakdown pulse limits are valid
for dutv cVcles to 10% provided TJ(pk}';;; 200o C. TJ(pk) may be
calculated from the data in Figure 4. At high case temperatures,
thermal limitations will reduce the power that can be handled to
values less than the limitations imposed by second breakdown.

3.0 I---'--SECONO BREAKDOWN L1MITE~'l ~
2. 01-- ---BONDING WIRE LIMITED

r

I - - - - -THERMALLY L1MITEO@Tr 2 C
o
1 i
"
~ 1. 0I==FCURVESAPPLY BELOW
o. 71==~ RATEO VCEO

...'"

I I I I III

=

S
E

There are two limitations on the power handling ability of a

P'

d.

0.5
0.3
O. 2
2.0

2N5629,2N6029
2N5630,2N6030
2N5631,2N6031

I1III
3.0

5.0 7.0 10
20
30
50 70 100
VCE, COLLECTOR·EMITTER VOLTAGE (VOLTS)

200

NPN

PNP

I

2N5629. 2N5630. 2N5631

2N6029. 2N6030. 2N6031

fiGURE 6 - TURN-Off TIME
'0t--

3.0

TJ' 25°C
ICIIB'IO IB1' IB2
VCE,30V-

I
"" Is

I'-...

.0

.0

.0

I
T"

.....

.7

o.5
0.2

0.3

If

"-

+--

3. 0

+-

2.0

~
i=

V

~f--

O.6

I"

TJ'250C_
IBI'IB2
Ic/IB'1O V E'30V-

1'1\

1.0

'\.

'"

O. 4

I--

III.L

-..,

O. 3

I"'-r-.

If

"

V

O.2
0.5

0.7 1.0
2.0 3.0
5.0
IC, COLLECTOR CURRENT (AMP)

7.0

10

0.2

20

1-176

0.3

0.5 0.7 1.0
2.0 3.0
5.0 7.0
IC, COLLECTOR CURRENT (AMP)

10

20

2N5629, 2N5630, 2N5631 NPN
2N6029, 2N6030, 2N6031 PNP

NPN

PNP

I

2N5629, 2N5630, 2N5631

2N6029, 2N6030, 2N6031

III

FIGURE 7 - CAPACITANCE

1000
70

2000~rrrnr----'--'-TTTTITr--'-r-r""""III"""""'IIII---'

o-

r-

+J 1.'}5h~

TJ =.25 0 C

r-.....

~;0 100°E=E~tU~s§~E~Wtt==EE~ml3
t---Hi-+I++~-+~""''od-I-+1+1+--+-++H1+H---l

I"'-..: ~b
1',

700

u

'"~

r-....

Cob

500 1--+-l-Hft+H--+-+-l~~~-+-+-1+I+l-H-----j

~ib,
II

u'

.......

300

0.2

10 20

100

05

2.0
5.0
VR. REVERSE VOLTAGE IVOL TSI

1.0

i'.

Cob

2000·'::.2-..J.-'-:0':'.5u.J.'":.0"--:2:':.0-..J.~5'=".Oul""""0-_2:l.0-..J...J1-:5r~0U>l.l:!1O"'0""""'200

100 200

50

"

1-1-+++++1+--+-++++1t+tt1-+-~1-J-H+H-l--1
VR •. REVERSE VOLTAGE IVOLTSI

FIGURE 8 - DC CURRENT GAIN

500 f--

500
TJ'" 150 0C

Or-- r-: ...±:I10 0

'--

30

f-o .-

~

1=

VCE· 2 0 V
- - - - VCE • 10 V

"-

30

200

f-

t-.;t:--

f-- f - -55°C

.....

0
7.0

2.0

50

0.7 10
30
IC. COLLECTOR CURRENT IAMPI

10

.....

~

0

10

05

~ ~....

0

70
50

0.3

-

E~~

OF-550C
0
0

~

02

VCE· 2.0 V- I- - VCE·1O V - ! -

oI--TJ=+150
_ 0C

~

'-.;

5.0

0.2

20

0.3

0.5 0.7 1.0
2.0 3.0
5.0 7.0
IC. COLLECTOR CURRENT IAMPI

10

20

FIGURE 9 - COLLECTOR SATURATION REGION

~

0
2

~

~I 6

~
~

II
II

I II
I II

IICU~A

~ BU

~
o

o. B

~

04

0

III

0

~
w

'"

'"
c:o

1,16 A

>

~

1. 6

\
. k.o 1

Id .14.10'A

i"

,

I'-

r-...

0
0.05 0.07 O. I

al

"'

1\

~

t'l

>
0.2

0.3
0.5 0.7 I 0
'B. BASE CURRENT IAMPI

20

30

5.0

1-177

i-

B

1\

0

8

TJ=250C

1'6~

-1\
1. 2

lI-

\

\

1\

w

~

t'l

~

= 25°C

1. 2

~

>

TJ

I'\.

o.4

I'-0
0.05

om

0.1

0.2

0.3
0.5 0.7 1.0
'B. BASE CURRENT lAMP)

2.0

3.0

5.0

2N5632,2N5633,2N5&34
2N6229,2N6230,2N6231

NPN

®

PNP

MOTOROLA

III]
10 AMPERE

HIGH VOL TAGE-HIGH-POWER
SI LICON TRANSISTORS

COMPLEMENTARY SILICON
POWER TRANSISTORS

· .. designed for use in high power audio amplifier applications and
high-voltage switching regulator circuits.
•

High Collector·Emitter Sustaining
VCEO(susl = 100 Vdc (MinI ,
= 120 Vdc (MinI = 140 Vdc (MinI -

Voltage 2N5632. 2N6229
2N5633. 2N6230
2N5634. 2N6231

•

High DC Current Gain @ IC = 5.0 Adc hFE =25 (MinI - 2N5632. 2N6229
= 20 (MinI - 2N5633. 2N6230
= 15 (MinI - 2N5634.2N6231

•

Low Collector·Emitter Saturation Voltage VCE(satl = 1.0 Vdc (MaxI @ IC = 7.5 Adc

100-120-140 VOLTS
150 WATTS

*MAXIMUM RATINGS
VeEO

2N5632
2N6229
100

Coliactor·Base Voltage

VCB

100

Emitter·Base Voltoge

VEB

Rating

Svmbol

Coliactor·Emitter Voltage

Collector Current - Continuous

IC

Peak
ease Current

Continuous

IB

Totol Device Dissipation '@Te
Oorote ebove 25°C

= 25°C

Po

Operating and Storage Junction

TJ.Tstg

--

2N5633 2N5634
2N6230 2N6231
140
120
120
7.0
10
15

140

Vdc
Vdc
Vdc

-

---

Adc

5.0

Adc

150
0.B57
-65 to +200

wloe

--_

Unit

STYLE 1:
PIN 1. BASE
2.EMITIER
CASE: COLLECTOR
NOTE:
1. DIM "0" IS DIA.

Watts
°e

Temperature Range

*THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case
·1 "dlc.tes JE DEC Registered Data.

FIGURE 1 - POWER DERATING
160

~

........

0

MILLIME ERS
DIM MIN MAX

.........

0

.........
0

A

" ""'"

0
0
0
25

50

75

100

125

TC. CASE TEMPERATURE CDCI

B

C
D
E

""

150

F

~
175

20

Safe .r.,. limits .r. Indicated by F Igur. 5.
Both limits ar. applicable and must be obl8l'Yed.

6.35
0.99

-

29.90
G 10.67
5.33
J 16.
K 11.18
3.B4

38.37
21.08
7. 2
1.09
3.43
30.40
11.1

INCHES
MIN MAX

0.038

-

1.177
0.420
0. 10
0.855
0.440
0.151

0.043
0.135
1.197
~

lIMO
7.16
0.675
12.19
0.480
4.09
0.161
28.67
R
1.050
Collector connected to c...

-

CASE 11'()!
TO·3

1-178

1.550
0.830
_O~

2N5632,2N5633,2N5634 NPN
2N6229,2N6230,2N6231 PNP
-ELECTRICAL CHARACTERISTICS (Te = 25°C unless otherwise noted)
Symbol

Min

Max

100
120
140

-

Unit

OFF CHARACTERISTICS
Coliector~Emitter

Sustaining Voltage

Collector~Emitt.r

Vde

VCEO(susl

2N5632, 2N6229
2N5633,2N6230
2N5634,2N6231

(lC = 200 mAde, IB = 01

Cutoff Currant

ICEO

(VCE = 50 Vdc, IB = 01
(VCE = 60 Vdc, IB = 01
(VCE = 70 Vdc, IB =01

-

2N5632, 2N6229
2N5633, 2N6230
2N5634,2N6231

Collector-Emitter Cutoff Current
(VCE = Rated VCB, VEB(off! = 1.5 Vdel
(VCE = Rated VCB, VEB(off! = 1.5 Vde, TC

-

mAde
1.0
1.0
1.0
mAde

ICEX

-

= 150DcI

Collector Base Cutoff Current
(VCB = Rated VCB, IE = 01

ICBO

-

Emitter-Base Cutoff Current

lEBO

(VBE = 7.0 Vdc, IC

-

1.0
5.0
1.0

mAde

-

1.0

mAde

25
20
15
5.0

100
SO
60

-

1.0
2.0

VBE(satl

-

2.0

Vdc

VSE(onl

-

1.5

Vdc

fy

1.0

-

MHz

Cob

-

300
600

pF

hfe

15

-

-

= 01

ON CHARACTERISTICS

DC Current Gain
(lC

= 5.0 Ade, VCE = 2.0 Vdel

(lC

= 10 Ade, VCE = 2.0 Vdel

Collector-Emitter Saturation Voltage
(lC
(lC

Vde

VCE(..tl

=7.5 Ade. IB = 0.75 Adel
= 10 Ade, IB = 2.0 Adel

Base-Emitter Saturation Voltage
(lC

-

hFE
2N5632, 2N6229
2N5633, 2N6230
2N5634, 2N6231
All Types
I

=7.5 Ade, IB =0.75 Adel

Base-Emitter On Voltage
(lc = 5.0 Ade, VCE = 2.0 Vdel
DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product (2)
(lC = 1.0 Ade, VCE = 20 Vde, f. es• = 0.5 MHzl

Output Capacitance
(VCB

= 10 Vdc,lE = 0, f =0.1

Small Signal Current Gain
(VCE = 10 Vdc,lC = 2.0 Ade, f

2N5632, 2N5633, 2N5634
2N6229, 2N6230, 21'j6231

MHzl

= 1.0 kHzl

-Indicates JEOEC Registered Data.
(1) Put. Test: Pul .. Wldth:S: 300 "', Duty CycleS 2.0%.
(2) fy = I hlel • f. es•

FIGURE 2 - SWITCHING TIME TEST
CIRCUIT
VCC
+30 V

H

RC

+10V~
0-

SCOPE

RS

----

-10V---_

t r .tt:5.10 ni
CYCLE = 1.0%

~UTY

-4.0 V

RS and RC VARIED TO OBTAIN DESIRED CURRENT LEVELS
01 MUST BE FAST RECOVERY TYPE, 09:
MBD5300 USED ABOVE IB =100 rnA
MS06100 USED BELOW IB =100 rnA

For PNP test. reverse all polarltie. end 01.

1-179

2N5632,2N5633,2N5634 NPN
2N6229,2N6230,2N6231 PNP
NPN
2N5632.2N5633.2N5634

PNP
2N6229. 2N6230. 2N6231

I
FIGURE 3 - TURN·ON TIME

2.a

1.0

TJ=25OC_VCE=]OV
IC/IB = 10
VBE(off) ~·5.0 v

1.0

0.5

tr

tr

O.5

.........

......

:----.. .......

2

TJ =25 OC
VCC = 30 V
ICIIB = 10

td

1

VBE(off)~

o. 1

5.0 V

0.05

td

0.05

0.02

0.02
0.1

a.]

0.2

0.5

1.0

2.0

3.0

5.0

0.01
0.1

10

0.2

0.3

IC. COLLECTOR CURRENT (AMPt

0.5

1.0

2.0.

3.0

5.0

10

IC. COLLECTOR CURRE'NT (AMP)

FIGURE 4 - THERMAL RESPONSE
1.0

O. 7 f=:D - 0.5.

ffi o.5

N

!2~ o. 3r--0.~

~

W,"

;;;'"
zo 0.2
~~
.... w

~ ;::;:

0.1

~~

O. 1~0.05
t; t)'O.O 7~0.~
~~ 0.05

~'"
w~

-

0,01
0.01

;::::;...

SINGLE
PULSE

1

0.01

:g ~ 0.03 V
ffi 0.02
"....

pHUl

""""

SINGLE PULSE

0.02 0.03

0.1

0.2

0.3.

0.5

1.0

2.0

I 1111111

3.0

5.0

10

I I

20

30

=

OJC= 1.17 0 CIWMAX t

D CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME Attl o! ,,In!},1
TJ(pki - TC' = P(pk) 9JC(t)

'DUTY CYCLE. D = 11/t2

I

II I

0.05

f--I

,I.I
50

100

200

300

500

1000

t. TIME (ms)

FIGURE 5 - ACTIVE·REGION SAFE OPERATING AREA
20

~

0

....

1.0
5.0

~

3.01---

~

'"

5.0ms-+

5ns

I.Oms4

0.1 ms

There are two limitations on the power handling ability of a

transistor: average junction temperature and second breakdown.

de

Safe operating area curves indicate Ie - VeE limits of the transistor
that must be observed for reliable operation; i.e., the transistor
must not be subjected to greater dissipation than the curves indicate.

- TJ = 200°C

2.0

- - - - BONDING WIRE LIMITED .'1.
- - - - THERMALLY LIMITED
tHC = 25°C
7 _ _ _ SECOND BREAKDOWN LIMITED

~ ~:D

\r\:

The data·of Figure 5 is based on TJ(pk) = 200; TC is variable
depending on conditions. Second breakdown pulse limits are valid
for duty cycles to 10% provided TJ(pk)~ 200"C. TJlpk) maybe
calculated from the data in Figure 4. At high case temperatures,
thermal limitations will reduce the power that can be handled to
values less than the limitations imposed by second breakdown.

r\.

~ 0.5 '--CURVES APPL ~ BelOW RATED Vr.EO
LIMIT FOR 2N5632,2N62.29
2N5633.2N823O
2N5634,2N8231

O.3
O. 2
10

20

30

50

70

100

200

VCE. CDLLECTOR·EMITIER VOLTAGE (VOLTS)

1-180

2N5632,2N5633,2N5634 NPN
2N6229,2N6230,2N6231 PNP
NPN
2N5632.2N5633.2N5634

PNP
2N6229.2N6230.2N6231
FIGURE 6 - TURN·OFF TIME

0

TJ'250~f

5.0

r--....'. ......

2.0

TJ - 25°C

ICIIB -10
IBI IB2
VCC '3D V

~

5.0

...

r-......

>=

""'-....

"

>= 1.0

'I

w

VCC - 30 V
lells ~ 101
I IBI = IB2

~"

~ 2.0

.........
1.0

~

III

10

0.5

0.5

0.2

0.2

'f

O. 1
0.1

o. 1
0.2

0.3.

0.5

2.0

1.0

3.0

10

5.0

0.2

0.1

0.3

2.0

1.0

0.5

IC. COLLECTOR CURRENT (AMP)

3.0

10

5.0

IC, COLLECTOR CUR RENT (AMP)

FIGURE 7 - CAPACITANCE
1000

1000
TJ'250C -

700
500

...
z
...""

,,'

.....

...

.!>

Cib

..........
100

,

TJ = 25°C

Cob

";::z 200

200

§

"""...... ~

u: 400

.......

300

.!>

600

.......

r-

Cib

.....

13

~ 100

r-..
Cob

y~

70
50
30
0.2

60
0.5

1.0

2.0

5.0

10

50

20

100

40
0.2

200

0.5

1.0

VR, REVERSE VOLTAGE (VOLTS)

2.0

5.0

10

20

50

100

VR. REVERSE VOLTAGE (VOLTS)

FIGURE B - DC CURRENT GAIN
400

1000
500 r-- I-- r- TJ

-.::..

z

~

...z

200

a"'"'
"'"
~

100

1500C
200

r-

I
I-

25°C

II

=

...'"~

I

03

100

"' B
a o-

......

~

r-....
0.5

1.0

2.0

r--~

-c- ~

-55°C

.......

"c

I
0.2

25°C

VeE"2.0V

;;:

~I'-.

-55°C

20

:=TJ" I~Oe

z

0-

50

10
0.1

300

VeE - 2.0 V

3.0

40

.....
.....

30
5.0

20
0.1

10

IC. COLLECTOR CURRENT (AMPI

0.2

0.3

0.5

1.0

2.0

3.0

Ie. COLLECTOR CURRENT (AMP)

1-181

5.0

10

®
PLASTIC NPN SILICON HIGH-VOLTAGE
POWER TRANSISTOR

MOTOROLA

0.5 AMPERE

• .. designed for use in line·operated equipment such as audio output
amplifiers; low'current, high-voltage converters; and AC line relays

POWER TRANSISTORS
NPN SILICON

• Excellent DC Current Gain - hFE = 30-250 @ IC = 100 mAdc
• Current·Gain - Bandwidth Product tr = 10 MHz (Min) @ IC = 50 mAdc
• Packaged in Thermopad Case for Low Cost

250-300-360 VOLTS
20 WATTS

*MAXIMUM RATINGS
Rating

Svmbol 12N5656 2N5656

'2N5657

VCEO

250

300

350

Vdc

Coliector·Ba.. Voltage

VCB

275

325

375

Vdc

Emitter-Base Voltage

VEB

_6.0_

Vdc

IC

-0.5-1.0-

Adc

lB.

_0.25_

Adc

Po

20
0.16

Watts

Collector-Emitter Voltage

Collector Current - Continuous
Peak

Base Current
·Total Power Dissipation@Tc = 2SoC
Derate above 25°C
Operating and Storage Junction
Temperature Range

wflc
°c

-65 to +150

TJ. Tstg

Unit

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case

6.25

-Indicates JEDEC Registered Data

~H

K

FIGURE 1 - POWER DERATING
40

g
!z

311

0

~

iii
c

20

or

~
~

-..

r-

r-.....

10

~

STYLE 1
PIN 1. EMITTER
2. COLLECTOR
3. BASE

-

..........

~.

0
25

50

15

........... ~

100

126

150

TC. CASE TEMPERATURE (OCI
FIGURE 2 - SUSTAINING VOLTA\3E TEST CIRCUIT

so ..

~

;JITO.'

.

y
TO SCOPE

~

y

,oo "

.

sovT

MILLIMETERS
INCHES
DIM MIN MAX
MIN
MAX
A 10.BO 11.05 0.425 0.435
1.49
B
7.15
I 0.305
C
2.41
2.67
I 0.105
0.51
0
0.66
1 0.026
2.92
F
3.18
2.31
2.46
G
1 0.097
H
1.27
2.41
1 0.095
J
0.3B
0.64
1 0.025
K 15.11 16.64
~
30 TYP
M
P
Q
3.16
4.01 0.148 0.158
R
1.14
1.40 0.045 0.055
S
0.64
0.89 0.025 0.035
U
3.68
3.94 0.145 0.155
V
1.02
0.040

r4ill-

CASE 77·04

TO-l28

"

s • • Ar.. Limits ar. indicated by Flgu.... 3 and 4. Both limits are applicable and mult be obearved.

1-182

2N5655,2N5656,2N5657
·ELECTRICAL CHARACTERISTICS (TC = 250C unless otherwise noted)
Characteristic

Symbol

Min

Ma.

250
300
350

-

250
300
350

-

-

0.1

Unit

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage
(Ie == 100 mAde (inductivel. L '" 50 mHI

Vde

VCEOlsus)
2N5655
2N5656
2N5657

Collector-Emitter Breakdown Voltage
(Ie'" 1.0 mAde, 'e '" 0)

Collector Cutoff Current
IVCE = 150 Vde, Ie = 0)

2N5655

IVCE = 200 Vde, Ie = 0)

2N5656

IVCE = 250 Vde, Ie = 0)

2N5657

mAde

ICEO

Collector Cutoff Current

0.1
0.1
mAde

ICEX

IVCE = 250 Vde, VESloffi = 1.5 Yde)

2N5655

IVCE = 300 Vde, VESloff) = 1.5 Yde)

2N5656

IVCE = 350 Vde, VESloll) = 1.5 Vde)

2N5657

IVCE = 150 Vdc, VESloff) = 1.5 Vde, T C = 100"C)

2N5655

IVCE = 200 Vde, VESloffi = 1.5 Vde, TC = 100 0 C)

2N5656

IVce = 250 Vdc, VeSlofl) = 1.5 Vde, TC = l00 o C)

2N5657

Collector Cutoff Current
IVcs = 275 Vde, Ie = 0)

2N5655

IVCS = 325 Vde, Ie = 0)

2N5656

IVce = 375 Vde, Ie = 0)

2N5657

-

0.1
01
01
1.0
1.0
1.0
IlAdc

Iceo

-

Emitter Cutoff Current
IVes = 6.0 Vde, IC = 0)

1111

Vde

eVCEO
2N5655
2N5656
2N5657

10
10
10
10

lEBO

JolAde

ON CHARACTERISTICS
DC Current Gain (1)

hFE

(Ie = 50 mAde, VeE

==

10 Vdc)

(Ie = 100 mAde, VeE::: 10 Vdcl

25
30

(Ie = 250 mAde, VeE::: 10 Vdc)

15

(Ie = 500 mAde, VeE = 10 Vdc)

5.0

Collector-Emitter Saturation Voltage (1)

= 100 mAde,

250

Vde

VCElsat)

'8 = 10 mAde)

1.0

(Ie = 250 mAde, IS = 25 mAde)

2.5
10

(Ie

!Ie

500 mAde, IS '" lOa mAde!

=

Base-Emitter Voltage (1)

10

Vse

Vde

(Ie = 100 mAde, VCE '" 10 Vdcl

DYNAMIC CHARACTERISTICS
Current-Gam-Bandwldth Product (2)
(lc ~ 50 mAde, VCE = 10 Vdc, f '" 10 MHz)

IT

Output Capacitance
IVes = 10 Vde, Ie = 0, I = 100 kHz)

Cob

Small-Signal Current Garn
lie = 100 mAde, VeE = 10 Vdc, f = 1.0 kHz)

hI.

MHz

10
25

pF

20

• IndIcates JEDEC RegIstered Data for 2N5655 Series
(1) Pulse Test. Pulse Width"!! 300 /-IS, Duty Cycle'5 2 0%.
(2) fT IS defined as the frequency at which !hfe! extrapolates to unity

FIGURE 3 -

ACTlVE·REGION SAFE OPERATING AREA

1.0

~

10",0.5

...

S

....
~

0.2

a'"

0,

o

t;

j

1

'\

~

TJ=150oc

r-f

r\.

Second Breakdown limit
-Thermal Limil@Tc 25°C
0,05 - - - - Bonding Wire Limit

8
:}

r-

r----:.

CUi aT bj'"j

0.01
20

'rei

30

40

60

'\..

!'\

100

1.0ms

- -

1"

~

200

300

'rJ(pk) =

150°C; T C is

variable depending on conditions. Second breakdown pulse limits
are valid for duty cycles to 10% provided T J(pk)S150 0 C. At high
case temperatures, thermal limitations will reduce the power that
can be handled to values Ie. than the limitations impoled by second
breakdown.

~dC

~

There are two limitations on the power handling ability of a
transistor: average junction temperature and second breakdown.
Safe operating are. curves indicate Ie - VeE limits of the transistor
that must be observed for reliable operation; i:e., the transistor must
not be subjected to greater dissipation than the curve, indicate.

The data of Figure 3 is based on

[\

=

ICED
2N5655
2N56562N5657

II

0.02

' \ 500 ••

-

400

600

VCE, COLLECTOR EMITTER VOLTAGE (VOLTS)

1-183

2N5655,2N5656,2N5657

III

FIGURE 4 - CURRENT GAIN
300
200

TJJ5(JO~

I
z

~

ffi
a
a:
a:

100

--- --

+1000C

--! -

0

50

Q

--

+250 C

~

'"

~

W

~

r=:. r--- -

..1---

30

20 f - - - -550

..J-- I-

I

I--

r--

-~ ~

t\

2.0

5.0

3.0

7.0

211

10

50

30

lC. COLLECTOR OURRENT

~

I

~. ..I"'''''''' hi

0.6

/

!:;

/

0.4

I0.2

VCE(..t) IC/IB = 10

-

.--

IC/IB = 5.0

10

20

t"1'

100

'"
«
0z

70

;:;
~

50

",'

30

~

,

t-

100

200

300

500

0.2

0.5

5.0

10

50

20

100

FIGURE 8 - TURN'()FF TIME

+=

-

t,-

"
~t- td

"

IC/IB'10
-' _ VCC = 300 V. VBElolf)- 2.0 V
(2N5656. 2N5657. only, 1=
-VCC clOD V. VaE(oll) = 0 V

0.2
0.1

...
w

0.02
0.01
1.0

2.0

5.0

10

20

50

100

200

" [\.,

I',

1.0

>=

-

0.05

I, _

r-...

I'.

j

.. . ..

2;

t-

IC/IB= 10

,

5.0

2.0

0.5

w

.

2.0

10

5.0

>=

1.0

VR. REVERSE VOLTAGE (VOLTS)

FIGURE 7 - TURN'()N TIME

j

,..

I'
0.1

10

2.0

Cob

20

t-

lC. COLLECTOR CURRENT (mA)

1.0

TJ =+250 C

10

50

30

500

w

I I 1

o

~ ~'

t-..
0!!-

~

V 1./
V
TJ = +25 0 C
I I I

1-"-10-

300

200

~ibl

200

~

/

VBE@VCE=IOV

w
to

0

'r1

liD..--

«

>
.,;

I\, ""

300

II

IVB~("~)~ I~ABI= 10

~

•

.........

FIGURE 6 - CAPACITANCE

" II

Q

-

~

(mA)

FIGURE 5 - "ON" VOLTAGES
1.0

0.8

100

70

~
~

~~
~

10
1.0

~

- VCE"2.0V

L:--,

~ 1-'-

~

-- VCE-l0V

0.5

If

N VCC=,100V
Tt~

VCC-300V
I ~
(Typo 2N5656. 2N5657. onlY~ll

0.2

O. 1
500

1.0

2.0

5.0

10

20

50

IC. COLLECTOR CURRENT

IC. COLLECTOR CURRENT (mA)

1-184

(mA)

100

200

,I>
500

®

2N5683, 2N5684 PNP
2N5685,2N5686 NPN

MOTOROI.A

50 AMPERE
COMPLEMENTARY SILICON
POWER TRANSISTORS

HIGH-CURRENT COMPLEMENTARY
SILICON POWER TRANSISTORS
. designed for use in high-power amplifier and switching circuit
applications.
•

High Current Capability - IC Continuous = 50 Amperes.

•

DC Current Gain hFE = 15-60@IC=25Adc

•

Low Collector-Emitter Saturation Voltage VCE(sat) = 1.0 Vdc (Max) @ IC = 25 Adc

60-80 VOLTS
300 WATTS

-MAXIMUM RATINGS
2N5683
2N5685

2N5684
2N5686

Unit

VeEO

60

80

Vdc

Collector-Base Voltage

VeB

60

80

Emitter-Base Voltage

VEB

5.0

Rating

Symbol

Collector-Emitter Voltage

Vdc
Vdc

Collector Current - Continuous

Ie

50

Adc

Base Current

IB

15

Adc

Total Device Dissipation@Tc == 25°C
Derate above 25°C

PD

300
1.715

Watts
WIDe

TJ.T stg

-65 to +200

De

Operating and Storage Junction
Temperature Range

C

--~~-+--J...

-THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case
·lndicatesJEOEC Registered Data.

FIGURE 1 - POWER DERATING
30a

a

"""- "~

a
a

STYLE 1:
PIN 1. BASE
2. EMITTER
CASE. COLLECTOR

"- "-

DIM
A

'"

a

1"""- "-

..... ~

B
C
D
E
F
G
H
J
K
Q

W

~

~

00

~

lW

~

1~

~

WO

TEMPERATURE (DC)

R

MILLIMETERS
MIN
MAX

38.35
19.30
6.35
1.45

39.37
21.08
7.62

29.90
10.67
5.21
16.64
11.18
3.84
24.89

30.~

1.~

INCHES
MIN
MAX

1.510
0.760
0.250
0.057

3.43
11.18
5.72
17.15
12.19
4.09
26.67

1.177
0.420
O.W5

0.655
O.~

0.151
0.980

1.550
0.830
0.3OU

0.063
0.135
1.197
O.~

0.225
0.67
0.480
0.161
1.050

CASE 197·01

Safe Area Curves are indicated by Figure 5. All limits are applicable and must be observed.

1-185

TO·3 Except Pin Diameter

2N5683, 2N5684 PNP, 2N5685, 2N5686 NPN

*ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)
Characteristic

" Svmbol

Min

Ma.

60
80

-

-

1.0
1.0

-

2.0
2.0
10
10

-

2.0
2.0

-

5.0

15
5.0

60

-

Unit

OFF CHARACTERISTICS
Collector~Emitter

Sustaining Voltage (Note 1)

Collector Cutoff Current

Collector Cutoff Current

= 60 Vdc,
= 80 Vdc,
= 60 Vdc,
= 80 Vdc,

mAde

ICEO
2N5683,2N5685
2N5684,2N5686

(VCE = 30 Vdc, IB = 0)
(VCE = 40 Vdc, IB = 0)
(VCE
(VCE
(VCE
(VCE

Vdc

VCEO(sus)

2N 5683, 2N 5685
2N5684,2N5686

(IC = 0.2 Adc, 18 = 0)

mAde

ICEX

VEBloff) = 1.5 Vdc)
VEB(off) = 1.5 Vdc)
VEB(off) = 1.5 Vdc, TC = 150o C)
VEB(off) = 1.5 Vdc, TC = lWOC)

2N5683, 2N5685
2N5684,2N5686
2N5683,2N5685
2N5684,2N5686

Collector Cutoff Current

mAde

ICBO
2N5683,2N5685
2N5684,2N5686

(VCB = 60 Vdc, IE = 0)
(VCB = 80 Vdc, IE = 0)
Emitter Cutoff Current

lEBO

mAde

(VBE = 5.0 Vdc, IC = 0)
ON CHARACTERISTICS
DC Current Gain (Note 1)

-

hFE

(lC = 25 Adc, VCE = 2.0 Vdc)
(lc = 50 Adc, VCE = 5.0 Vdc)
Coliector·Emitter Saturation Voltage (Note 11

-

Vdc

VCE( ..,)

(lC = 25 Adc, 18 = 2.5 Adc)
(lC = 50 Adc, 18 = 10 Adc)

-

1.0
5.0

BaseMEmitter Saturation Voltage (Note 1)
(lC = 25 Adc, IB = 2.5 Adc)

VBE(..,)

-

2.0

Vdc

Base-Emitter On Voltage (Note 1)

VBE(on)

-

2.0

Vdc

for

2.0

-

MHz

Cob

-

2000
1200

pF

hfe

15

-

(lC = 25 Adc, VCE

=2.0 Vdc)

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(lC = 5.0 Adc, VCE = 10 Vdc, f = 1.0 MHz)

Output Capacitance
(VCB = 10 Vdc, IE = 0, f = 0.1 MHz)

2N 5683, 2N 5684
2N5685, 2N5686

Small-Signal Current Gain

(lc = 10 Adc, VCE = 5.0 Vdc, f = 1.0 kHz)
·'ndicates JEOEC Registered Data
Note 1: Pulse Test: Pulse Width :s:; 300 ,",s. Duty Cycle:s:; 2.0%.

FIGURE 2 - SWITCHING TIME TEST CIRCUIT
VCC
+2.0 V

-30 V
FIGURE 3 - TURN'()N TIME

I

1.0

o=!'l

TO SCOPE
tr"20 ns

Re

0.7
O.5

Ir .. J W I 2 v

20ns

I

I

'-IOloIOO~s

-I

0.2

DUTY CYCLE ~ 2.0%
VCC

o-------C~IO
-~

-30 V

w

'"

S

-

.....

O. 1
0,0 1

r...:: ~

i-I-

- - 2NS683, 2NS684 (PNP)
- - - 2NS6eS,2NS686(NPN)

0.05

--...

V>--.J'W'-..-f-t

~

-12V I
-,

Ir

O. 3

:--tr<:2Dns
1-1010 IDO~s

0.0 2

TJ =25"C
Ielle = 10
VCC = 30V

0.0 I

III

0.0 3

Re
Vea

DUTY CYCLE ~ 2.0%

0.5 0.1

FOR CURVES OF FIGURES 3 & 6, Re & RL ARE VARIED.
INPUT LEVELSARE APPROXIMATELY AS SHOWN.
FOR NPN CIRCUITS, REVERSE ALL POLARITIES.

1.0

2.0

3.0

5.0 1.0

10

Ie, COLLECTOR CURRENT (AMP)

1-186

'- ~
20

30

50

2N5683, 2N5684 PNP, 2N5685, 2N5686 NPN

FIGURE 4 - THERMAL RESPONSE
1.0
O.

o.\-5

....

«

L

r-D

0.5

~~ O. 3

.... N

0.2

~~

0.1

~~ O. 2
~ ~ O. I

-

0.05

"'~~O.O 7 - " - ,---0.02
>'"
t~O.O5
~ faD.03

~'"
w
0.02

"'2

.......

0.0 I
0.02

~~

- ::;;:P'
-:;::.

~UTY

TJ1Jl

-

q~2~

II

Jl

0.1

-

CYCLE. 0 q/t2

Pi:'

0.01
f'INGLEI PUiSE

0.05

9JC!t) - r(tI.OJC
OJC - 0.584 oCIW Max I I
I
o CURVES APPL Y FOR POWE~=
PULSE TRAIN SHOWN
I--READTIMEATq
- fI- TJ(pk) - TC = P(pk) 9JC!t)- f -

....:::;;; ljiiiiil"'"

I--""

0.2

0.5

1.0

2.0

5.0

11111

10

20

50

100

500

200

1000

2000

t. TIME (m,)

FIGURE 5 - ACTIVE·REGION SAFE OPERATING AREA

100
SO~!,,

0

, ....

1i:"

'"
....
~

0

~

g;
<..)

de ......

0

5.0

There are two limitations on the power handling ability of a
transistor: average junction temperature and second breakdown.
Safe operating area curves indicate Ie - VeE limits of the transistor
that must be observed for reliable operation; i.e., the transistor
must not be subjected to greater dissipation than the curves indicate.
The data of Figure 5 is based on T J(pkl = 200°C; TC is variable

1\ 1.om~

5.0

TJ -200°C
SECOND BREAKDOWN LlMITEO
- - - BONDING WIRE LlMITEO
1. 01=='---- THERMALLY LlMITED@TC=250C
(SINGLE PULSE)
o. Sf::
CURVES APPLY BELOW
RATED VCEO
2N5683, 2N5685 ~
o.2
2N5684, 2N56B6
O. 1
1.0
2.0 3.0
5.0 7.0 10
20
30
50 70

depending on conditions. Second breakdown pulse limits are valid

\ 1\

2.

8
:2

1-.

~:--

' .....

g. . or-.--'"

I DO!"

for duty cycles to 10% provided T J(pkl ';;;2000C. T J(pkl may be

F

II II

ealculated from the data in Figure 4. At high case temperatures,

thermal limitations will reduce the power that can be handled to

values less than the limitations imposed by second breakdown.

I

100

VCE, COLLECTOR·EMITIER VOLTAGE (VOLTS)

FIGURE 6 - TURN.QFF TIME

4.0
- - 2N5683, 2N5684 (PNPI
- - - 2N5685, 2N5686 (NPNI

3.0
2.0

... -:~
Is

FIGURE 7 - CAPACITANCE

TJI=250~- rId"~:\~2 - I-VCE =30V -

~ 1.0

'"

;::

-'

3000

I-~

~

w

~

<..)

'"....
«

w

T~ =12JO~

......"

1---1

t,....

..... :::::..

5000

2000

--

f"'o""
...........

' .....

...........

G

0.8

~

0.6
tf

f"oo,

0.4

-

...... ::::..:::.-

0.3
0.2
0.5 0.7

1.0

«

. . . . r,

...........

2.0·

3.0

5.0 7.0

10

<..)
<..).

""- 1'0.. r....
.-,30

~.~b

"

1000

700 - . - - - 2N5683, 2N5684 (PNPI
- - 1 - ' 1 fNfWi 5686 (~PN\
500
0.1
0.2
0.5
1.0
2.0

Cib

~
,

rr

i'<"
20

~

50

IC. COLLECTOR CURRENT (AMP)

I'
5.0

10

VR, REVERSE VOLTAGE (VOLTSI

1-187

C~b
20

50

100

2N5683, 2N5684 PNP, 2N5685, 2N5686 NPN

PNP
2N5683. 2N5684

NPN
2N5685. 2N5686

I

FIGURE 8 - DC CURRENT GAIN

500

TJ = +150 0C

300
200

z

~

...~

.
:::>

'"'
'"'c

~

100
10
50

~
w

to

.

>

200

+ 25°C

100
10
50

- - VCe=2.0V_1- - - VCE=10V

...

- - ....
-.....;

::'1:::

--

-55°C

('\

0.1

1.0

2.0 3.0
5.0 1.0 10
IC. COLLECTOR CURRENT (AMP)

20

10
1.0
5.0
0.5

50

30

0.1

1.0

2.0 3.0
5.0 1.0 10
IC. COLLECTOR CURRENT (AMP)

FIGURE 9 - COLLECTOR SATURATION REGION
_ 2.0

2.0

\

Tj =

i

1.6
IC= lOA
1.2

25 A

\
\

0.8

1\

0.4

w

to

0.2

r--

IcLoA

I'~

1'-["'1

20

30

50

Jo!

T1J =1 2

~

o

~

r--:--

:iii
~

I"-

g

-

_

o

'"'~
1.0
2.0
0.5
la. BASE CURRENT (AMP)

3.0

1.2

~

>

0
0.1

1.6

.......

I
~5A- I-- 40~

~

c

C

\40 A

\

\

~5~cl

'"

r-..... ... ~ ~

30

w
.li- 20

~ 1......

o

'"'~

'"''"'c

~ t-..

20

o

~_

r-TJ=+1500C
::1"-

;;:

...~
:::>

~
~

'z

~~~

to

o

300

-55°C

;:j
>

---....- ...

3D

10
1.0
5.0
0.5

~

H+J:.:"
+25 0C

500

-

- - VCE=2.0V_
- - - VCE=10V

5.0

10

0.8

\
\
\

0.4

0
0.1

r-

r---

-

0.2

0.3

-

0.5
1.0
2.0
lB. BASE CURRENT (AMP)

3.0

5.0

10

FIGURE 10 - "ON" VOLTAGES

2.5

2.0

tl=12~OC

VI

2.0

~

c

C

./.V

. . .V

w

to

;:j
0

~ ;:...-'

1.0

>
>'

VBE( ..t)@IC/IB= 10
0.5

o

VBE@VCE = 2.0 V
III
I I
VCE( ..t)@ICIIB= 10

0.5 0.1

1.0

l,...-

'"

s

J

~

II

w

~

c5 o.B Vr~(~tl @IC1B ~

>
>'

V
20

//

1.2

to

/

VBE @VCE = 2,0 V

--

30

50

1-188

/

-

//

:,...-

'I

/

VV

f-

O.4

/'

2.0 3.0
5.0 1.0 10
IC. COLLECTOR CURRENT (AMP)

1.

1. 6

III

1.5

))~50C

J

,/

V

VU(U)@IC)IB='IO
0
2.0 3.0
5.0
0.5 0.1 1.0
10
IC. COLLECTOR CURRENT (AMP)

20

30

50

®

2N5758, 2N5759, 2N5760
2N6226, 2N6227, 2N6228

MOTOROLA

NPN
PNP

III
HIGH-VOLTAGE HIGH-POWER
SILICON TRANSISTORS

6 AMPERE
POWER TRANSISTORS
COMPLEMENTARY SILICON

· .' . designed f~r use in high power audio amplifier applications and
high voltage sWitching regulator circuits.
•

High Collector-Emitter Sustaining Voltage VCEO(sus) = 100 Vdc (Min) - 2N5758, 2N6226
= 120 Vdc (Min) - 2N5759, 2N6227
= 140 Vdc (Min) - 2N5760, 2N6228

•

DC Current Gain @ IC = 3.0 AdchFE = 25 (Min) - 2N5758, 2N6226
= 20 (Min) - 2N5759, 2N6227
= 15 (Min) - 2N5760, 2N6228

•

Low Collector-Emitter Saturation Voltage VCE(sat) = 1.0 Vdc (Max) @ IC = 3.0 Adc

100-120-140 VOLTS
150 WATTS

'MAXIMUM RATINGS
Rating

Symbol

Collector-Emitter Voltage

2N5758
2N6226
100
100

VCEO

Collector-Base Voltage

VC8

Emitter-Sase Voltage

VE8

Collector Current - Continuous
Peak

IC

Base Current

18

Total Device D,sslpat,on@TC-25OC
Derate above 25°C

Po

Operating and Storage Junction,

2N5759
2N6227

-

2N5760
2N6228

Vdc

6.0---10_

Adc

4.0_

150_0.857_

TJ. T stg _

Unit

120
140
120
140
7.0-

Vdc
Vdc

Adc

THERMAL CHARACTERISTICS
Characteristic

+

I

Symbol

1

Max

1

()JC

I

PLANE

wf'c

Temperature Range

Thermal ReSistance, Junction to Case

STYLE I.
PIN 1 BASE
2. EMITTER
CASE' COLLECTOR
NOTE'
1. DIM "Q" IS OIA

Unit

DC/W

1.17

I---F-

I--J-

Indicates JEDEC Registered Data

140

I - - r-.,.

:;;;
~

z
0

;::

:i:

Bi
0

~

~

~

H

120

"'-

100
80
60

"" ""-

40
20
0
0

25

50

~'t7

t

......... r-.,.

>-

~
1
+-,!~~

0IA¥i'1

FIGURE 1 - POWER DERATING
160

I

E SEATING

Watts
DC

-65 to +200 -

Lr~
r~,

75

100

DIM
A

MILLIMETERS
MAX
MIN

-

B

""

125

C

~

150

":::::

175

200

TC. CASE TEMPERATURE IUCI

D
E
F
G
H
J
K

6.35
0.99

29.90
10.67
5.3
16.64
1118
Q
3.84
A

39.37
21.08
762
1.09
3.43
3tJ.40
11.18
5.59
17.15
12.19
409
26.67

INCHES
MIN
MAX

0250
0039
1.177
0420
0.210
0.655
0.440
0151

-

Collectorcollnected to case

Safe area limits are IndIC.ated by Figure 5

CASE 11·01
TO-3

80th limits ar. applicable and must be observed.

1-189

1

1550
0.830
0.300
0.043
0.135
1197
0.440
0220
0675
0.480
0161
1.050

I

2N5758,2N5759,2N5760 NPN
2N6226,2N6227,2N6228 PNP

'ELECTRICAL CHARACTERISTICS (TC = 2S o C unless otherwise noted)

I

I

Characteristic

Symbol

Min

Max

100
120
140

-

Unit

OFF CHARACTER ISTICS
Collector-Emitter Sustaining Voltage (1)

2N5758,2N6226
2N5759,2N6227
2N5760,2N6228

IIC ~ 200 mAde, IS ~ 0)

VCEO(sus)

Collector Cutoff Current
(VCE ~ Rated VCS, VSE(olfi ~ 1.5 Vdel
(VeE = Rated Ves. VBE(off) = 1.5 Vdc, TC

-

1.0
5.0

-

1.0

-

1.0

25
20
15
5.0

100
80
60

mAde

= 150°C)

mAde

ICSO

Rated VCS, IE ~ 01

7.0 Vde, IC

1.0
1.0
1.0

-

Emitter Cutoff Current
~

-

ICEX

Collector Cutoff Current

(VSE

mAde

2N5758, 2N6226
2N5759,2N6227
2N5760,2N6228

(VeE = 50 Vdc, '8 = 0)
(VCE ~ 60 Vde, IS ~ 01
(VCE ~ 70 Vde, IS ~ OJ

=

-

ICED

Collector Cutoff Current

(VCS

Vde

-

mAde

IESO
~

01

ON CHARACTERISTICS (11

DC Current Gal n'
(lC ~ 3.0 Ade, VCE ~ 2.0 Vdel

ile

hFE
2N5758,2N6226
2N5759,2N6227
2N5760,2N6228
All Tvpes

~ 6.0 Ade, VCE ~ 2.0 Vdel

Coliector·Emltter Saturation Voltage
(IC ~ 3.0 Ade, IS ~ 0.3 Adel
(IC ~ 6.0 Ade, IS ~ 1.2 Adel

Vde

VCE(satl
1.0
2.0

Base-Emitter On Voltage

Vde

. VBE(onl
1.5

(IC ~ 3.0 Ade. VCE ~ 2.0 VdcJ
DYNAMIC CHARACTERISTICS
Current-Galn - BandWidth Product
(Ie = 0.5 Adc, VeE == 20 Vdc, f test::: 0.5 MHz)

MH,

iT
1.0

Output Capacitance
(Ves = 10 Vdc, 'E == 0, f::: 0.1 MHz)

Cob

Smail-Signal Current Gain

hie

pF
300
15

(Ie = 2.0 Adc, VeE = 10 Vdc, f '" 1.0 kHz)
·Indlcates JEDEC Registered Data
(1) Pulse Test
(2) fT

'=

lhfe

Pulse Width

Ie

<;

300 f./.s, Duty Cycle ~2 0%

f test

FIGURE 2 - SWITCHING TIME TEST
CIRCUIT
VCC
+30 V

SCOPE

RB

51

01

l r• If:::10 115

-40 V

DUTY CYCLE'" 1 0%

RB and RC VARIED TO OBTAIN DESIRED CURRENT LEVELS
0, MUST BE FAST RECOVERY TYPE. eg
MB05300 USED ABOVE IB
MS06100 USEO BELOW IB

*For PNP test circuit, reverse all polarities and 01.

1-190

~100
~IOO

rnA
rnA

2N5758,2N5759,2N5760 NPN
2N6226,2N6227,2N6228 PNP
NPN
2N5758, 2N5759, 2N5760

PNP
2N6226, 2N6227, 2N6228

I

FIGURE 3 - TURN·ON TIME
0

10

7

"""-

o. 5

:g

O. 3

.......

O. 2

"

>=

r-

..........

~

.....

Tr250 C ICIIB'10
VCC'30V

I,

VSE(off)"t' 5.0 V

f;:::p

I'-.

~ 0.2

VCC' 30 V
ICIIB'10
VBEloff)' 5.0 V TJ = 25°C
-

.......

~

k.: -- I--

05

I,

I"-

0.1

Id

005
Id

1

0.02

00 7
00 5
006

01

04

02

06

1.0

20

4.0

0.0 1
0.06

60

0.4

0.2

0.1

1.0

06

4.0

20

6.0

IC, COLLECTOR CURRENT (AMP)

IC, COLLECTOR CURRENT lAMP)

FIGURE 4 - THERMAL RESPONSE
0
_ O.

~ O.

>-"

~~ O.

~=O

05

--=

3-0~

P"'

~ ~ O. 2



u

'"
0

~

~

5.0 ms

....

,,\

__ ~

B~NOINGWIRE

\

===t:=LlMITEO
O. 5 ----THERMALLy LIMITED
O.3
O. 1

"

There are two limitations on the power handling ability of a

1.Oms

2. 0
1. o

005ms
01ms--

05ms

- T J 2000 C

=+

"

---t-iE~~~~5:~EAKOOWN LIMITE

O. 1
10,

CU RVES APPLY BE LOW ,( ,j,
RATED VCEO 1N5760,1N6118
1N5759,1N6117
1N5758 1N6116
30
50
70
20

I IT

transistor: average junction temperature and second breakdown.
Safe operating area curves indicate Ie - V CE limits of the transistor
that must be observed for reliable operation; i.e., the transistor
must not be subjected to greater dissipation than the curves indicate.;
The data of Figure 5 is based on T J(pk) = 200; TC is variable
depending on conditions. Second breakdown pulse limits are valid
for duty cycles to 10% provided TJ(pkl~ 2000 C. TJ(pkl may be
calculated from the data in Figure 4. At high case temperatures,
thermal limitations wIll reduce the power that can be handled to
values less than the limitations imposed by second breakdown.

I"
f-I+100

200

300

VCE, COLLECTOR·EMITTER VOLTAGE (VOLTS)

1-191

2N5758,2N5759,2N5760 NPN
2N6226,2N6227,2N6228 PNP
NPN
2N5758, 2N5759, 2N5760

PNP
2N6226, 2N6227, 2N6228

I

FIGURE 6 - TURN·OFF TIME
6.0

10

-- r-

4.0
3. 0

VCC~30V

2. 0

1. 0
If

o.6

r--. Is

"

w

TJ - 25°C
VCC ~ 30 VIclis ~ 10' lSI ~ IS2-

20

ro-.'s

""3

";:::

0

lSI ~ IS2
Ie/Is ~ 10
TJ = 25°C

r--

05
If

0.2
0.4
O. 3
0.06

0.2

0.1

04

0.6

10

4.0

2.0

0.1
0.06

6.0

0.4

0.2

01

Ie, COLLECTOR CURRENT (AMP)

06

1.0

2.0

4.0

6.0

IC. COLLECTOR CURRENT (AMP)

FIGURE 7 - CAPACITANCE

700

40 0

or--

30

~

TJ

f-.,.

~

25'C
50

I--

or- t=:::'

Tp25'C

~

20 0

f"--.

r--

~ t--

0

C,b

Cib
C,b
0

""

0
0

.....

.....

0

~.

III

40
0.1

02

0.5

1.0

2.0

5.0

10

20

50

I'

10 0
70
0.1

100

02

05

VR. REVERSE VOLTAGE (VOLTS)

1.0

2.0

50

10

20

50

100

VR. REVERSE VOLTAGE (VOLTS)

FIGURE 8 - OC CURRENT GAIN

500

200

--r-TJ

200

~

IS0'C

VCE

:--r--

~

2.0 V

z 100

.,

'"
I-

'"

l-

I
'"
~
0

50

r--

-55'C
20

0.1

0.2

0.4

0.6

1.0

TJ ~ 150'C

............

25'C

r- t--

-55'C

r--

VCE

........
2.0

70

~_

50

'"o

30

......

G

~

10
5.0
0.06

r-

~

2.0 V

=<

:--....

-t-

25'C

=< 100

--

~

*

"

...

10
o.06

6.0

IC. COLLECTOR CURRENT (AMP)

0.1

0.2

0.4

0.6

10

Ie. COLLECTOR CURRENT (AMP)

1-192

""~

......

20

r-4.0

~

20

""
"

40

6.0

®

2N5838
2N5839
2N5840

MOTOROLA

3 AMPERE

NPN SILICON
POWER TRANSISTORS

HIGH VOLTAGE NPN SILICON POWER TRANSISTORS

250-350 VOLTS
100 WATTS

· .. designed for high voltage inverters, switching regulators, and line·
operated amplifier applications. Especially well suited for switching
power supply applications.
•

High Coliector·Emitter Sustaining Voltage VCEO(sus) = 250 Vdc (Min) = 275 Vdc (Min) = 350 Vdc (Min) -

•

Excellent DC Current Gain hFE = 10-50@ IC = 2.0 Adc - 2N5839, 2N5840
= 8-40 @ IC = 3.0 Adc - 2N5838

*MAXIMUM RATINGS
Rating

Symbol

Collector-Emitter Voltage

VCEOlsusl
VCER

Collector-Emitter Voltage
IRSE = 50 nl

2N5838

2N5839

2N5840

250

275

350

Vdc

275

300

375

Vdc

Unit

VCEV

275

300

375

Vdc

Collector-Base Voltage

VCS

275

300

375

Vdc

Emitter-Base Voltage

VES

6

Vdc

IC

3
5

Adc

Collector-EmItter Voltage

Collector Current - Continuous
Peak
Base Current
Total Device Dissipation
Derate above 25°C

@

TC:= 25°C

Operating and Storage Junction
Temperature Range

IS

1.5

Adc

Po

100
0.56

Watts
W/oC

-65 to +200

°c

TJ, T stg

-

Characteristic

3. POSITIONAl TOLERANCE FOR
MOUNTING HOLE O.
STYLE 1
PIN 1 BASE
t EMmER
CASE COLLECTOR

I•

I t.1310.00'1 e I T Ivel

FOR LEADS:

I .II.l310.00'le T I ve I uel
4. OIMENSIONS AND TOLERANCES PER
ANSI Y14.5, 1973.

THERMAL CHARACTERISTICS
Thermal Resistance. Junction to Case

NOTES
1. DIMENSIONS Q AND V ARE QATUMS
2. ITJ IS SEATING PLANE AND DATUM.

Symbol

ROJC

L
I

Max
1.75

*Indicates JEDEC Registered Data.

L

I

Unit

°CIW

DIM
A
8
C
D
E
F
G
H
J

k
D
R
U
V

MILLIMETERS
INCHES
MIN
MAX
MIN MAX
- 39.37 - 1550
- 21.08 - 0830
6.35
7.62 0.250 0.300
0.97
1.09 0.038 0.043
0.055 0.070
1.40
1.1
30.15 BSC
1.187BSC
0.430BSC
10.92 Bse
5.46 Bse
0.21'Bse
16.89 Bse
0.66'Bse
11.18 12.19 0.440 0.480
3.81
4.19 0.160 0.165
26.67
1.050
4.83
5.33 0190 0.210
3.81
4.19 0.150 0.16'
CASE 1-05

1-193

2N5838,2N5839,2N5840

III

ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)

I

Characteristic

Svmbol

Min

Max

Unit

2N5838
2N5839
2N5840

VCEO(sus)

250
275
350

Vde

2N5838
2N5839
2N5840

VCEX(sus)

275
300
375

2N5838
2N5839
2N5840

VCER(sus)

275
300
375

VEBO

6

-

IEaO

-

1

mAde

OFF CHARACTERISTICS

Collector-Emitter Sustaining Voltage
(lC

= 200 mA,

IB

= 0)

Collector-Emitter Sustaining Voltage
(lC

= 100 mA, VBE(off) = 1.5 V, L = 10 mH)

Collector-Emitter Sustaining Voltage

(lC

= 200 mAde, RBE = 50 Ohms)

Emitter-Base Breakdown Voltage
(IE

= 20 mAde, IC = 0)

Emitter Cutoff Current
(VCE = 6 Vdc, IC = 0)
Collector Cutoff Current
(VCE = 200 Vde, IB = 0)
(VCE = 250 Vdc, la = 0)
(VCE = 250 Vdc, la = 0)

ICEO

Vde

Vde

Vde

mAde

-

2
2
2

-

5
2
2

-

8
5
5

20
10
8

50
40

-

1.0
1.5
1.5

-

2
2
2

Ihie I

5

-

MHz

Cob

-

150

pF

Second Breakdown Collector Current with Base Forward Biased
t = 1.0 s (non-repetitive) (VeE = 40 Vdc)

ISlb

2.5

-

Ade

Second Breakdown Energy with Base Reverse Biased

ES/b

0.45

Svmbol

2N5838(2)

2N5839

2N5840

Unit

tr

1.5

1.5

1.75

~s

ts

3.0

3.75

3.0

"s

tf

1.5

1.5

1.5

"s

2N5838
2N5839
2N5840

Collector Cutoff Current

mAde

ICEV

(VCEV "265 Vdc, VaE(oll)
(VCEV = 290 Vde, VaE(oll)
(VCEV = 360 Vde, VaE(off)

= 1.5 Vde)
= 1.5 Vde)
= 1.5 Vde)

2N5838
2N5839
2N5840

Collector Cutoff Current

(VCEV
(VCEV
(VCEV

-

ICEV

= 265 Vde, VBE(oll) = 1.5 Vde, TC = 100°C)
= 290 Vde, VBE(oll) = 1.5 Vde, TC = 100°C)
= 360 Vde, VaE(off) = 1.5 Vde, TC = 100°C)

2N5838
2N5839
2N5840

mAde

-

ON CHARACTERISTICS (1)

DC Current Gain
(lc = 0.5 Ade, VCE = 5 Vde)
(IC = 2 Ade, VCE = 3 Vde)
(lC = 3 Ade, VCE = 2 Vde)

hFE
ALL TYPES
2N5839,40
2N5838

Collector-Emitter Saturation Voltage
(lC
(lC
(lC

= 3 Ade,
= 2 Ade,
= 2 Ade,

18
IB
IB

= 0.375 Add
= 0.2 Ade)
= 0.2 Ade)

Base-Emitter Saturation Voltage
(lC
(lC
(lC

= 3 Ade,
= 2 Ade,
= 2 Ade,

18
IB
IB

= 0.375 Ade)
= 0.2 Ade)
= 0.2 Ade)

Vde

VCE(s.t)
2N5838
2N5839
2N5840

Vde

VBE(sat)
2N5838
2N5839
2N5840

-

DYNAMIC CHARACTERISTICS
Current-GaIn-BandwIdth Product

(lC

= 200 mAde, VCE = 10 Vde, IteS! = 1 Mhz)

Output Capacitance
(Vca

= 10 Vde,

IE

= 0, f test = 1 MHz)

SECOND BREAKDOWN

(lC

= 3.0, VBE(off) = 4.0 Vde, L = 100 ~H)

mJ

SWITCHING CHARACTERISTICS MAXIMUM LIMITS

Resistive Load
Rise Time
Storage Time
Fall Time

"

I

J
I

(VCC - 200 Vde, IC = 2 Ade,
IBI ~ IB2 = 0.2 Ade,
tp = 100 "', Duty Cycle" 2%)

= 100 "s, Dutv Cycle = 2%.
For 2N5838, IC = 3 Ade, IBI = 182 =0.375 Ade

(I) Pulse Test: Pulse Width

(2)

1-194

2N5838,2N5839,2N5840

FIGURE 1 - THERMAL RESPONSE
I
7 f::O' 0.5
5

.-

3~ 0:2
2

I-

I-- 01

f- t;;; ....

11==.0.05

-

I-'""

pErUl

.-

tt--J

7~0.Q2
5

0.02

-

.-K

~UTY

001

SINGLE PULSE

0.0 1
0.01

I II
0.02 0.03

II :11
0 05

0.1

0.2

0.3

~ms

>-- 1,0

i

:::>

'"c:>

TC-25 0 C ::::::: E=:

0.5

<>

0.2

I-

t:::

~ S
0,1

80.05

2
0,02

-=

- - - -

~

~lms I--

_de

Bonding Wire limIted
Thermal Limitation

I"

(Smgle Pulse)
- - - Second Breakdown limited
Curves Apply Below

Rated VCEO

"
2N5838
2N5839 1-

l~5B40

0.01
5.0

Sync
Out

lOOp'

1'\1

2,0

7.0

10
50 70 100
20
30
200
VCE, COLLECTOR·EMITTER VOLTAGE IVOLTS)

300

FIGURE 3 - SWITCHING TIMES
TEST CIRCUIT

30

50

100

200

300

500

1000

There are two limitations on the power handling
ability of a transistor: average junction temperature and
second breakdown. Safe operating area curves indicate
IC- VCE operation; i.e., the transistor must not be sub·
jected to greater dissipation than the curves indicate.
The data of Figure 2 is based on TC = 25 0 C; T J(pk)
is variable depending on power level. Second breakdown
pulse limits are valid for duty cycles to 10% but must be
derated when TC;;' 250 C. Second b'reakdown limitations
do not derate the same as thermal limitations. Allowable
current at the voltages shown on Figure 2 may be found
at any case temperature by using the appropriate curve
on Figure 4.
TJ(pk) may be calculated from the data in Figure 1.
At high case temperatures, thermal limitations will reduce
the power that can be handled to values less than the
limitations imposed by second breakdown.

5.0

5

20

TIME (ms)

FIGURE 2 - SAFE OPERATING AREA

,.

II

10

0.5
t,

&?

ReJCld =ride JC
ReJc::: 1.75 0 C,w Max .
o CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
REAO TIME A, '1
TJlpkl- TC =Plpk) ReJCI')

CYCLE, 0 -1]/'2

+Vcc
FIGURE 4 - POWER DERATING
100

~

Ie
Monitor

~

::.....
.............

0

........

""'" "'""'" ~

c:>

t;
:;: 60
~

~_

40

'"w
~

20

THERMAL
OERATING

i'-..

SECONO BREAKDOWN
DERATlNG-

i'---

........

r--...
...............

i'-,.

c:>

a

·'81 and 182 measured with Tektronix current
probe P6019 or equivalent.

"
o

40

80

120

TC, CASE TEMPERATURE IOC)

1-195

160

"""

"""

200

2N5875, 2N5876 PN P
2N5877, 2N5878 NPN

III)

®

COMPLEMENTARY SILICON
HIGH-POWER TRANSISTORS
· .. designed for general-purpose power amplifier and switching applications.
•

Low Collector· Emitter Saturation Voltage VCE(sat) = 1.0 Wc (Max) @ IC = 5.0 Adc

•

Low Leakage Current ICEX = 0.5 mAdc (Max)

•

@

MOTOROLA

10 AMPERE
COMPLEMENTARY SILICON
POWER TRANSISTORS

60-80 VOLTS
150 WATTS

Rated Voltage

Excellent DC Current Gain hFE = 20 (Min) @ IC = 4.0 Adc

• High Current Gain - Bandwidth Product fT = 4.0 MHz (Min) @ IC = 0.5 A

*MAXIMUM RATINGS
Svmbol

2N5875
2N5877

2N5876
2N5878

Unit

VeEO

60

80

Vdc

Collector-Base Voltage

VeB

60

80

Vdc

Emitter-Base Voltage

VEB

5.0

Vdc

Collector Current - Continuous
Peak

Ie

10

Adc

Base Current

18

4.0

Adc

Total Device Dissipation@Tc = 2SoC

Po

150
0.857

Watts

Rating
Collector-Emitter Voltage

20

Derate above 2SoC
Operating and Storage Junction

~65

T J. T stg

WIDe
De

tD +200

c

Temperature Range

THERMAL CHARACTERISTICS

Max

Characteristic

1.17

Thermal Resistance. Junction to Case

STYLE 1:
PIN 1 BASE
2. EMITTER
I--JCASE: COLLECTOR

r--F-

Q~Vz ~ II
.L..~~y+-~~
.1i:'~/:'i7~~l-c;~jR

FIGURE 1 - POWER DERATING
160

r-- "-

",,-

m;--'l

.......

0

~

MILLIMETERS
DIM MIN
MAX

""

0

0

"" ""

0

25

50

15

100

125

150

A
B
C
D

~

CASE "·01
TO-3

~

115

200

TC. CASE TEMPERATURE (OCI

1-19.6

39.37
21.08

6.35
0.99

f 29.90
G 10.67
H
5.33
J 16.64
K 11.18
Q
3.84
R

NOTE.
1. DIM "0"15 OIA.

INCHES
MIN
MAX

7.62
1.09
3.43
30.40
11.18
5.59
17.15
12.19
4.09
26.67

0.250
0.039
1.177
0.420
0.210
0.655
0.440
0.151

1.550
0.830
0.300
0.043
0.135
1.197
0.440
0.220
0.675
0.480
0.161
1.050

Collector connected to case.

2N5875, 2N5876 PNP, 2N5877, 2N5878 NPN
*ELECTRICAL CHARACTERISTICS (TC ~ 25°C unless otherwise noted)

I

Characteristic

Symbol

Min

Max

60
80

-

-

1.0
1.0

-

0.5
0.5
5.0
5.0

-

0.5
0.5

-

1.0

35

-

20

100

Unit

OFF CHARACTERISTICS

Collector-Emitter Sustaining Voltage (1)
(lC

2N5875, 2N5877
2N5876, 2N5878

Collector Cutoff Current
(VCE = 30 Vde, IB = 0)
(VCE = 40 Vde, 18 = 0)

= 1.5 Vde)

2N5875, 2N5877
= 1.5 Vdc)
2N5876,2N5878
= 1.5 Vde, TC = 150°C) 2N5875, 2N5877
= 1.5 Vde, T C = lS00C) 2N5876, 2N5878

-

mAde

ICBO

=60 Vde, IE =0)
= 80 Vde, IE = 0)

2N5875, 2N5877
2N5876, 2N5878

Emitter Cutoff Current
(VEB = 5.0 Vde, IE

mAde

ICEX

V8E(off)
VBE(off)
VBE(off)
VBE(off)

Collector Cutoff Current
(VCB
(VCB

mAde

ICED
2N5875, 2N5877
2N5876, 2N5878

Collector Cutoff Current
(VCE = 60 Vde,
(VCE = 80 Vdc,
(VCE = 60 Vdc,
(VCE = 80 Vdc,

Vdc

VCEO(sus)

= 200 mAde, 18 = 0)

lEBO

= 0)

mAde

ON CHARACTERISTICS

DC Current Gam (1)

-

hFE

(lC= 1.0 Ade, VCE = 4.0Vdc)
(lc = 4.0 Adc, VCE = 4.0 Vde)
(lc = 10 Ade, VCE = 4.0 Vde)

Collector-Emitter Saturation Voltage (11

4.0

1.0
3.0

VBE(sat)

-

2.5

Vde

VBE(on)

-

1.5

Vdc

fT

4.0

-

MHz

Cob

-

Vde

VCE(s.t)

(lC = 5.0 Ade, IB = 0.5 Ade)
(lC = 10 Adc, IB = 2.5 Adc)

Base-Emitter Saturation Voltage (1)
(lC = 10 Adc, IB

= 2.5 Adc)

Base-E mitter On Voltage (11

(lC = 4.0 Adc, VCE = 4.0 Vdc)
DYNAMIC CHARACTERISTICS
Current-Gain - Bandwidth Product (21

(lc

= 0.5 Ade, VCE = 10 Vde, f test = 1.0 MHz)

Output Capacitance
(VCB

= 10 Vdc,

IE = 0, f= 1.0 MHz)

2N5875,2N5876
2N5877,2N5878

Small-Signal Current Gain
(lC = 1.0 Ade, VCE = 4.0 Vdc, f = 1.0 kHz)

hfe

pF

-

500
300

20

-

-

SWITCHING CHARACTERISTICS

Rise Time
Storage Time
Fall Time

0.7
(VCC = 30 Vdc, IC
See Figure 2)

= 4.0 Adc, IBl = IB2 = 0.4 Ade,

ts

1.0

tf

0.8

I'S

~Indicates

JEOEC Registered Dat8.
(11 Pulse Test: Pulse Width ~ 300 jJ.S. Duty Cycle < 2.0%.
(2) fT = Ihfe!- f tast
-

FIGURE 3 - TURN'()N TIME

FIGURE 2 - SWITCHING TIME TEST CIRCUIT

Vee
-30 v

1.0

O. 7
0.5

7.5U

+9.0V--rJ
0-0--l1V--~

Re

0.3
SCOPE

RB

~

25U
51

~

01

25/1S
t r• t1::=:10 AS
DUTY CYCLE =1.0%

For NPN test circuit,
reverse all polarities.

.:"...

0.2

Vee = 30 V
lellB -10
TJ=250 C

-

~

....;~

tr

I~

~

O. 1

S 0.07

td @VBE(off) = 5.0 V

........

0.05
+7.0 V

FOR CURVES OF FIGURES 3 and 6,
RB and RC ARE VARIED TO OBTAIN
OESIRED CURRENT LEVELS
01 MUST BE FAST RECOVERY TYPE, e.g.
MB05300 USED ABOVE IB~100 mA
MS06100 USED 8ELOW 18~I00mA

~

0.03
0.02
0.0 1
0.1

-1-1--1
0.2

n

2N5875, 2N5876 (PNP)
N)
2N5
2ii7j

0.3

0.5 0.7

lY
1.0

2.0

3.0

IC, COLLECTOR CURRENT (AMPERES)

1-197

5.0

7.0

10

2N5875, 2N5876 PNP, 2N5877, 2N5878 NPN

FIGURE 4 - THERMAL RESPONSE
1.0

:i.

~_

wC

:w
~~

ffi~
;;;a:

o. 7 f=D - O.S
o. S

o. 31==
o. 2
r-

ZC

«Z

0.2

-

~ ~ 0.0 7::::: 0.Q2
~~o.oS
~ ~

tti ~ 0.03
~ 0.02 -

_... --

f-

0.1

:=::; o. '1==.o.OS
... on

-

i"""

pHUl

t~-J

om

8JC(I) = ,h) 8JC
8JC = 1.17 °C/W Max
D CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
REAO TIME AlII
TJ(pk) - TC = P(pk) 9JC(t)

DUTY CYCLE, D = 11/12

SINGLE PULSE

'"

0.0 1
0.01

0.02 0.03

O.OS

II II

0.1

0.2

0.3

O.S

1.0

2.0

3.0

S.O

10

20

30

50

100

200

300

SOO

1000

I, TIME (m,)

FIGURE 5 - ACTIVE REGION SAFE OPERATING AREA
20

iii
,.~
5

J-

~

:::>

<>

g;

~

8

!2

..............

......

I I II

1"-

..........

........

10
7.0
S.O r- ~TJ=200oC

0.1

i'

There are two limitations on the power handling ability of a

transistor: average junction temperature and second breakdown.
Safe operating area curves indicate Ie - VeE limits of the transistor that must be observed for reliable operation. i.e., the
transistor must not be subjected to greater dissipation than the
curves indicate.

1.Oms

de

"

3.0
2.0

5.0 ms

- - - - SECONO SREAKOOWN LIMITED
1.0
SDNDING WIRE LIMITED
0.7 - - - - - THERMAL LlMITATION@TC-2SoC
(SINGLE PULSE)
o.S

-

\ O.Sm,

\

The data of Figure 5 is based on T J(pk) = 200o C; T C is variable
depending on conditions. Second breakdown pulse limits are
valid for duty cycles to 10% provided T J(pk)
2000C. T J(pk)
may be calculated from the data in Figure 4. At high case

--

temperatures, thermal limitations will reduce the power that can
be handled to values less than the limitations imposed by second
breakdown.

0.3 I-Cu,vesApply Below Rated VCEO- 2NSB75, 2NS8772Nr87~, 2NS8j8
0.2
5.0
7.0
10
50
20
30
VCE, COLLECTOR·EMITTER VOLTAGE (VOLTS)

<

70

100

FIGURE 7 - CAPACITANCE

FIGURE 6 - TURN'()FF TIME
10
7.0
S.O
3.0

700

.....

-

2.0

!

:E

r-

--

1.0

t= 0.1

-

VCC - 30 V
IC/IB -10
lSI = IB2
TJ = 25°C

....

~
w

<>

-

,....

0.1

-

2.0

3.0

5.0

... r....

£

j
<.i

.....

100

7.0

10

IC, COLLECTOR CURRENT (AMPERES)

70
O.S

~ I"--.
~

<3 200

2NS87S, 2N587S (PNP)
- 2NS877, 2NS878 (NPN)
O.S 0.7 1.0
0.2 0.3

."" ~

«
J-

1-----

O. 1

300

Z

If

O. 3

b

Is

O.S

0.2

I
TJ=2SoC

SOO

-

Cib

poe

"<

- - - - 2NS87S,2NJStp)
- - 2NS877, 2N587S (NPN)

1.0

2.0

3.0

I>--..

Cob,~

5.0

~10

VR, REVERSE VOLTAGE (VOLTS)

1-198

r-.... .........

-- "
20

30

50

®

2N5879,2N5880, PNP
2N5881,2N5882 NPN

MOTOROLA

COMPLEMENTARY SILICON
HIGH-POWER TRANSISTORS

15 AMPERE
COMPLEMENTARY SILICON
POWER TRANSISTORS

· .. designed for general·purpose power amplifier and switching
applications.

60-80 VOLTS
160 WATTS

• Collector-Emitter Sustaining Voltage VCEO(sus) = 60 Vdc (Min) - 2N5879. 2N5881
= 80 Vdc (Min) - 2N5880. 2N5882
• DC Current Gain hFE = 20 (Min) @ IC = 6.0 Adc
• Low Collector - Emitter Saturation Voltage VCE(sat) = 1.0 Vdc (Max) @ IC = 7.0 Adc
• High Current - Gain-Bandwidth Product fT = 4.0 MHz (Min) @ IC = 1.0 Adc
• Recommended for New Circuit Designs

*MAXIMUM RATINGS
Symbol

2N5879
2N5881

2N5880
2N5882

Unit

VCEO

60

80

Vdc

Collector-Base Voltage

VCB

60

80

Vdc

Emitter-Base Voltage

VEB

5.0

Vdc

IC

15

Adc

Base Current

IB

5.0

Adc

Total Device Dissipation @TC== 25°C

Po

160
0.915

Watts
W/DC

TJ.Tstg

-65 tD +200

DC

Rating

Collector-Emitter Voltage

Collector Current - Continuous

30

Peak

Derate above 25°C
Operating and Storage Junction
Temperature Range

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case

I

Symbol

I

8JC

..

I

Max

I

I

Unit

1.1

I

°C/W

• 'ndlcates JEDEC registered data. Limits and conditions differ on some parameters and reregistration reflecting these changes has bean requested. AU above values maet or exceed
present JEDEC registered data.

I"-

0

~ATlNG/~~D
PLANE

STYLE 1:
PIN 1. BASE
2. EMITTER
(--JCASE: COLLECTOR

-F-

Q;'-x: / ' I
. ,t
H "

t

~
......

'"

CASE

.........

0

~

11·01

25

50

75

100

125

TC. CASE TEMPERATURE (OCI

A
B
C
D
E
F

G
H
J
K

.............

0

o

1

t\

t.;

./

TO-3

""-

o

~

Lc,I

MILLIMETERS
DIM MIN MAX

r-......
0

rC

1I

2

FIGURE 1 - POWER DERATING

160

B,

IFA~
.L
1

150

"'"

175

n

200

1-199

NOTE:
1. OIM "n"ls OIA.

R

6.35
0.99
29.90
10.67
5.33
16.64
11.18
3.84

39.37
21.08
7.62
1.09
3.43
30.40
11.18
5.59
17.15
12.19
4.09
26.67

INCHES
MIN
MAX

0.250
0.039

-

1.177
0.420
0.210
0.655
0.440
0.151

1.550
0.830
0.300
0.043
0.135
1.197
0.440
0.220
0.675
0.480
0.161
1.050

Collector connected to case.

2N5879, 2N5880 PNP, 2N5881, 2N5882 NPN

*ELECTRICAL CHARACTERISTICS (TC = 25°C unless Qtherwise noted)
Characteristic

Symbol

Min

Max

60
80

-

-

1.0

-

1.0

-

0.5

Unit

OFF CHARACTERISTICS

Collector-Emitter SUstaining Voltage (11

Vde

VCEO(sus)

(lc' 200 mAde,lB = 0)

2N5B79, 2N5881
2N5880, 2N5882

, Collector Cutoff Current

ICEO

= 0)
IB = 0)

(VCE • 30 Vde, 18

2N5879, 2N5881

(VCE' 40 Vdc,

2N5880, 2N5882

Collector Cutoff Current

ICEX

mAde

mAde

(VCE = 60 Vdc, VBE(oll) = 1.5 Vde)

2N5879, 2N5881

(VCE

=80 Vde, VaE(off) • 1.5 Vdc)
=60 Vde, VaE(off) '1.5 Vde, TC = 150°C)
(VCE = 80 Vdc, VaE(oll) = 1.5 Vde, TC = 1500 CI

2N5880, 2N5882

-

0.5

(VCE

2N5879, 2N5881

-

5.0

2N5880, 2N5882

-

5.0

-

0.5

35

-

Collector Cutoff Current

ICBO

=60 Vde, IE = 0)
(Vca = 80 Vde, IE = 01
(Vca

2N5879, 2N5881
2N5880, 2N5882

Emitter Cutoff Current
(VEa = 5.0 Vde, IC = 0)

IEaO

mAde

0.5
mAde

1.0

ON CHARACTERISTICS
DC Current Gain (11
(lC = 2.0 Ade, VCE = 4.0 Vdel

-

hFE

(lC = 6.0 Adc, VCE = 4.0 Vdcl

20

100

(lc = 15 Adc, VCE = 4.0 Vdc)

4.0

-

Collector·Emitter Saturation Voltage (11

VCE(sal)

= 15 Adc,la =

1.0

-

4.0

VaE(sall

-

2.5

Vdc

VaE(on)

-

1.5

Vdc

IT

4.0

-

MHz

-

600
400

20

-

-

.J5
.J5

3.75 Adc)

Base-Emitter Saturation Voltage (1)
(lC = 15 Adc, la

= 3.75 Adc)

Base-Emitter On Voltage (1)
(lC =6.0 Adc,VCE

= 4.0 Vdcl

Vdc

-

(lC = 7.0 Adc, la = 0.7 Adc)
(lC

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product (21
IIC= 1.0 Adc, VCE = 10 Vdc,l'esl

= 1.0MHzl

Output Capacitance

pF

Cob

(VCB = 10 Vdc, IE = 0, I = 100 kHzl

2N5879, 2N5880
2N5881,2N5882

Small-Signal Current Gain
(lC = 2.0 Adc, VCE = 4.0 Vdc, I = 1.0 kHz)

hIe

SWITCHING CHARACTERISTICS

Rise Time

(VCC = 30 Vdc, IC = 6.0 Ade,

Storage Time

lal = la2 = 0.6 Adc See Figure 2)

Fall Time

'r

0.7

IS

1.0

tt

0.8

"s

·Indicates JEDEC Registered Data.
(1) Pulse Test: Pulse Width'S 300 jjS, Duty Cycle ~ 2.0%
(21 tT = ,hte,- f tes•

FIGURE 2 - SWITCHING TIMES TEST CIRCUIT

FIGURE 3 - TURN-ON TIME
2.0

VCC

-30V

1.0

VCC=30V
ICIIS -10

0.7

TJ - 25°C

0.5
SCOPE

RB

15
51

0.3

~

o. 2

;::
01

......

....

"""

o. 1

+7.0 V

t r• tf:=:l0 ns'
DUTY CYCLE = 1.0%

ForNPN testCtrcUlt,
reverse all polaritIes.

~

0.0 3

0,

0.02
0.2

-

-

-

1 J
0.3

_r-

2N5879,2N5880(PNP)
-2N5881, 2N5882 (NPN)

lJUU
0.7 1.0

0.5

2.0

@ VSE(off) ~

5.0 V

~

3.0

5.0

IC, COLLECTOR CURRENT (AMP)

1-200

t=

t,

td

0.07
0.05

FO R CURVES OF FIGURES 3 "d B,
RB and Re ARE VARIED TO OBTAIN
DESIRED CURRErH LEVELS
MUST BE FAST RECOVERY TYPE, ,g.
MBOSlOO USED ABOVE IB ~100 mA
MSOB100 USED BELOW 'B ~100 mA

-

1=

7.0

10

20

2N5879, 2N5880 PNP, 2N5881;2N5882 NPN

FIGURE 4 - THERMAL RESPONSE

1. 0

o. 7=0
__ o. 5
"w
~

~~ O. 3== 0.2
O. 2
in'"
0.1
ZC

-

z«
UJ:i:

~: o. 1=0.05
~ ~ 0.0 7=0.02
~ ~ 0.0 5
~'"

~ 0.03

-

--

..-

I - ::;~

= O.7
.:
O. 3

~ 1000

200

.....
I-?"

If

----- 2N5~79, 2N58~

Cob
100

"WNPi

2~f8181, 2N1588211NPN\

0.3

0.5

0.7

1.0

2.0

3.0

5.0

7.0

10

20

IC, COLLECTOR CURRENT (AMPI

60
0.1

0.2

0.5

1.0

2.0

~

I

2N5879,2N5880 IPNPI
2N5881,2N5882 (NPNI
5.0

10

VR, REVERSE VOLTAGE IVOLTSI

1-201

-'t::::

20

50

100

2N5879, 2N5880 PNP, 2N5881, 2N5882 NPN

NPN
2N5881.2N5882

PNP
2N5879.2N5880
FIGURE 8 - DC CURRENT GAIN

IDJ

1000
700
500
~

'300

....

200

a'"

100

<
to

~
u

c

~

70
50

VCE = 4.0 V

t-- I -

TJ = 151J1lC
25 DC

"-

1000mlm§l~m
700
500

-55 DC

'" 70_m

......
~

20

25DC

~

-55DC

2.0

1.0

3.0

5.0 7.0

10

f--+-+-I+H++-+-+--+--+F'-+=~H-1-~~H
~-::l:,-.-L.,,l,-.J.~-!,l;,---l---='=-~J.....,IL,-.L,~L+-"""~-:!
0,3
0.5 0.7 1.0
2.0 3.0
5.0 7.0 10
20

10

0.5 0.7

[ " : : -

5:
20

-...-.

0.3

f--I--+-+-+-L!c4--l""''=--+-+--I---I--I-I--w...-~

200

a 100
g

30

0.2

VCP4.0V-/--

z
~ 300F~;:;;!:±±~!T,J=+150DC

~

-r--....

~

i=--I--

=

10
0.2

20

IC, COLLECTOR CURRENT lAMP)

IC, COLLECTOR CURRENT lAMP)

en

FIGURE 9 - COLLECTOR SATURATION REGION
2,0
TJ = 25 DC

2.0

!::;

I

II I
IC=3.0A

o

~
~ 1.6

to

:::,.

~

TJ= 25 DC

o

~ 1.2

1!j
a:

0.8

_

0.4

o

0

0.05 0.07

0.2

0.1

0.3

0.5

0.7

2.0

1.0

3.0

0.03

0.05 0.07

0.1

I

3,0

TJ=25DC

2

IVIEm~~
iSIEj(,CE

IIJI.I

)
yv

j

r- hVCIEI~t)~
0.5 0.7

1.0

2.0

~

II

k:1::'

~

1. 2

k

w
to

«

V

f5.0

~~I='

!::;
o
O.Sf- V1BElsatl@IC/IS= 10
>
>'
~
~BE ~ VfE ~ ~.Ol ~
o.4

~

3.0

~

in

!::;

/

3.0

2,0

0.7 1.0

1. 6

I

0
0.2

0.5

/I

TJ = 25 DC

o.4

0.3

FIGURE 10 - "ON" VOLTAGES
2.0

1.6

S

0.2

IB, BASE CURRENT ImAdel

IB, BASE CURRENT lAMP)

2.0

f-.

\

\

:3

0.03

-

1\

o

g

\

0.4

~

:::

\

o

>

II
1ZA

6.0 A

!::;

- -

1.2

~ 0.8

8~

IC = 3.0 A
1.S

«

o

ffi

~

w

~

III

~o

12A

6.0 A

7.0

10

20

IC, COLLECTOR CURRENTIAMP)

0
0,2

tiL) ~

0,3

ILlBI= 110

0,5 0.7

1.0

/
J..
-~
2.0

3.0

5.0 0.7

IC, COLLECTOR CURRENT lAMP)

1-202

10

20

®

2N5883, 2N5884 PNP
2N5885, 2N5886 NPN

MOTOROLA
COMPLEMENTARY SILICON
HIGH-POWER TRANSISTORS

25 AMPERE

· .. designed for general·purpose power amplifier and switching
applications.
•

Low Collector-Emitter Saturation Voltage VCE(sat) ~ 1.0 Vdc. (max) at IC = 15 Adc

•

Low Leakage Current
ICEX = 1.0 mAdc (max) at Rated Voltage

•

Excellent DC Current Gain hFE = 20 (min) at IC = 10 Adc

•

High Current Gain Bandwidth ProductfT ~ 4.0 MHz (min) at IC = 1.0 Adc

COMPLEMENTARY SILICON
POWER TRANSISTORS
60-80 VOLTS
200 WATTS

'MAXIMUM RATINGS
Rating
Coliector~Emitter

Voltage

Symbol

2N5883
2N5885

2N5884
2N5886

Unit

80

Vdc

BO

Vdc

VCEO

60

Collector-Base Voltage

VCB

60

Emitter-Base Voltage

VEB

5.0

Vdc

IC

25
50

Adc

Collector Current - Continuous

Peak
IB

7.5

Adc

PD

200
1.15

Watts
W/oC

TJ.Tstg

-65 to +200

°c

Base Current
Total Device Dissipation @TC

= 25°C

Derate above 2SoC
Operating and Storage Junction

.L~"~'

Temperature Range

~

THERMAL CHARACTERISTICS

Limits and conditions differ on some parameters and re-

registration reflecting these changes has been requested.
present JEDEC registered data.

All above values meet or exceed
Q

;'x/2M
H

FIGURE 1 - POWER DERATING

i
z

o

~

~

17 5
150
115

"'"

5

~

0

~

B

~

C
D

"-

5
25

50

I

j

~
A

E
F

.........

0

,,+

~

75

100

125

TC. CASE TEMPERATURE lOCI

150

G
H

"'" "'"
175

200

1-203

J
K
Q

R
NOTE:

t\

t;

/'

MILLIMETERS
DIM MIN
MAX

'"

100

'"w;0:

t

~

Q

I

0

STYLE 1:
r---- F - PIN 1. BASE
2. EMITTER
t--J- CASE: COLLECTOR

Thermal Resistance, Junction to Case
·'ndicates JEDEC registered data.

100

K

SEATING
PLANE

Characteristic

1

~r

INCHES
MAX
MIN

39.37
- 1.550
21.08
0.830
7.62 0.250 0.300
1.09 0.039 0.043
3.43
0.135
29.90 30.40 1.177 1.197
10.67
11.18 0.420 0.4411
5.33
5.59 0.210 0.220
16.64 17.15 0.655 0.675
11.18 12.19 0.440 0.480
3.84
4.09 0.151 0.161
28.67
1.050
Collector connected to case.

-

6.35
0.99

1. DIM "0'· IS DlA.

-

CASE 11·01
TO·3

2N5883, 2N5884 PNP, 2N5885, 2N5886 NPN
:-ELECTRICAL..CHARACTERISTICS (TC = 25°C unless otherwise noted)
Min

Max

60
BO

-

-

2.0
2.0

2N5883, 2N5885

-

1.0

2N58B4, 2N5886

-

1.0

2N5BB3, 2N5885

-

10

-

1.0
1.0

Symbol

Unit

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage (1)

lie - 200 mAde, IS

2N5BB3, 2N58B5
2N5884, 2N5BB6

Collector Cutoff Current

2N5BB3, 2N5885
2N5884, 2N5886

Collector Cutoff Current

=60 Vde, VSE(offl = 1.5 Vdel
(VCE = 80 Vde, VSE(offl = 1.5 Vdel
(VeE = 60 Vde, VSE(offl = 1.5 Vde, TC = 1500 el
(VeE

= 80 Vde,

VSE(offl

= 1.5 Vde,

Te

= 1500 CI

2N5884, 2N5886

10
mAde

ICSO

=60 Vde, IE = 01

2N5883, 2N5885

= 01

2N5884, 2N5886

(VC8 = 80 Vde, IE

mAde

leEX

Collector Cutoff Current

(Ves

mAde

leEO

=30 Vde,IS =01
(VeE =40 Vde, IS =01
(VeE

(VCE

Vde

VeEO(susl

=01

-

Emitter Cutoff Current

1.0

leso

mAde

(Ves = 5.0 Vde, Ie = 0
ON CHARACTERISTICS
DC Current Gain (1)

lie = 3.0 Ade, Vee
(Ie = 10 Adc, Vee

-

hFe

= 4.0 Vdel
= 4.0 Vdel

20
4.0

100

-

1.0
4.0

V8E(satl

-

2.5

Vde

VSElonl

-

1.S

Vde

fT

4.0

-

MHz

(lC = 25 Ade, VCE = 4.0 Vdel
Collector-Emitter Saturation Voltage (11

Vde

(Ie = 25 Ade, IS = 6.25 Adel
Base-Emitter Saturation Voltage (11

= 25 Ade, 18 = 6.25 Adel

Base--Emitter On Voltage (11

(Ie

-

VCE(sat)

(lC = 15 Ade, 18 = 1.5 Adel

(lC

-

35

= 10 Ade,

VeE

= 4.0 Vdel

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product (2)

(lc

= 1.0 Ade,

Vce

Output Capacitance
(Ves = 10 Vde, Ie

= 10 Vde, f test = 1.0 MHzl
1000
SOO

2NS883, 2NS884
2NS88S, 2N5886

Small-Signal Current Gain

(Ie = 3.0 Ade, VeE

pF

Cob

= 0, f = 1.0 MHz I

-

20

hfe

= 4.0 Vde, f test =

-

1.0 kHzl

SWITCHING CHARACTERISTICS
Rise Time

07

t,

(Vec = 30 Vde, Ie = 10 Ade,

Storage Time'

1.0

ts

lSI = 182 = 1.0 Adel

Fall Time

0.8

-Indicates JEOEC Registered Data.
(1) Pulse Test' Pulse Wldth~ 300 ,",5, Duw cvc1e'5. 2.0%.

FIGURE 2.- SWITCI:IING TIME EQUIVALENT TEST CIRCUITS
TURN.

~

5.0

a:

2.0 I--

S

0.5 ~

~

-

--- -- -

, ...

5iS~

There are two limitations on the power handling ability of a

.....

...

transistor:

.de

r==

TJ' 200JC
--SECOND BREAKDOWN LIMITED
---BONDING WIRE LIMITED
----THERMAL LIMITATION @TC - 25 DC
SINGLE PULSE
Curves Apply BolDw Rated VCEO

1.0

"-

2.0

I "10

3.0

5.0 7.0

for duty cycles to 10% provided T J(pk) .;;; 200°C. T J(pkl may be

30

20

depending on conditions. Second breakdown pulse limits are valid
calculated from the data in Figure 4. At high case temperatures.
thermal limitations will reduce the power that can be handled to
values 1t;!SS than the limitations Imposed bV second breakdown.

2N5883, 2N5885
2N5884, 2N5886

0.2

average junction temperature and second breakdown .

Safe operating area curves indicate le·VeE limits of the transistor
that must be observed for reliable operation; i.e., the transistor
must not be subjected to greater dissipation than the curves indicate.
The data of Figure 5 is based on T J(pk) = 200°C; T C is variable

FF

1.0

O. I

.5001J!'''t::

2-

~~ms

i"'

t50

70

100

VCE, COLLECTOR·EMITTER VOLTAGE (VOLTS)

FIGURE 6 - TURN-OFF TIME

FIGURE 7 - CAPACITANCE

a
7.0 =
5.0 3.0 -

r--

2.a
~

S

Is
1.0

O.7
O.5

- ...

Is

TJ=25 DC =
VCC -30
Iclla- IO IB1=IB2 -

V=

200a

......

~

.........

~

Q.

W

~ 1000

I

;;;;;:;~

.......

..,~~ Cib

.......

.

~I

II

O.2

'- --

'

./

...

'\.

0.7

1.0

2.0

3.0

5.0

7.0

10

20

~

f--30

~il

'"

NI

..; 50 a

\
0.5

"' ...

..,

300
0.1

0.2

-

0.5

(PN;:;~

2N5883, 2N5884
2N5885, 2N5886 (NPNI
1.0

2.0

5.0

1-205

" "- r-..

.,..CDb

........

10

VR, REVERSE VOLTAGE (VOLTSI

IC, COLLECTOR CURRENT (AMPERES)

2~dcl

'r-.

~

~ 700

+J!

'C~b

<:;

0.3

O. I
0.3

300a

2N5883, 2N5884 (PNPI
2N5885, 2N5886 (NPN)

20

50

100

2N5883, 2N5884 PNP, 2N5885, 2N5886 NPN

PNP DEVICES
2N5883 and 2N5884

NPN DEVICES
2N5885 and 2N5886
FIGURE 8 - DC CURRENT GAIN

II]

1000
100
500 r- TJ'1500C

z

300

«
'",...
~
'"i3

SOO

z5rc'

r---..

r--550C

r--

200
100

'-'
0

~

1000
100

f=

VCE =4.0 V

z

300

~

......

~

100

~

o

70
50

~

30

~

"r--.. """- .......

30
20

2.0

-~~oc

3.0

5.0 1.0

10

20

r-......

-""";i"..

-r-.

....... ~

r--..

10
0.3

30

.......

-55°C

0

i"'1.0

"1't-.

~

........; ~

10
50

0.5 0.1

= !;:::""TJ'1500C

200

:::>

10
0.3

VCE= 4.0 V ~

0.5 0.1

2.0

1.0

3.0

5.0 1.0

20

10

30

IC. COLLELTOR CURRENT (AMPERES)

IC. COLLECTOR CURRENT (AMPERES)

FIGURE 9 - COLLECTOR SATURATION REGION
-

~

o

2.0

I

~
'"
~o

i
1. 6r- Ic • 2.b

;;

1.2

III

(7;

I

TJ' 25°C

1~!oA- I \o~

1

~

g
_

~

0.8

0.4

0

w

'"
~
o

ffi

~

\

8
>

~

20 A

~

"'o

0.01

'0.05

0.1

0.2

II III

0.5

1.0

IC'2.0A

1.6

II

TJ' 25°C

IDA

5.0 A

20 A

1.2

::

-

0.02

2.0

~

o

1l'"l

0.8

g

0.4

o

_

1"-

~

2.0

>
5.0

10

:'

\
\

8

0
0.01

0.02

IB, BASE CURRENT (AMPERES)

0.05

0.1

0.5

0.2

1.0

2.0

5.0

10

IC, COLLECTOR CURRENT (AMPERES)

FIGURE 10 - "ON" VOLTAGES
2.0

2.0

II
TJ - 25°C

1.6

g 1.2

h

0

/'"

~
w

'"
>-

V

/

i'"
5.0 7.0

10

20

30

IC, COLLECTOR CURRENT (AMPERES)

VBE@VCE-4V
0.4

o

0.3

)cE(~tl JIUBI.
0.5 0.1

1.0

V

V

10

2.0

3.0

5.0

1.0

10

Ie, COLLECTOR CURRENT (AMPERES)

1-206

V

;:::.

0

Vf~VfE, ',\V,

0.5 0.7

'I

0

0

>
:>

A

TJ' 25°C
1.6

20

30

2N5974,2N5975,2N5976

®

MOTOROLA

PNP SILICON PLASTIC POWER TRANSISTORS

5 AMPERE
POWER TRANSISTORS

designed for use in general purpose amplifier and switching
applications.

PNP SILICON
40-60-80 VOLTS
75 WATTS

•

DC Current Gain Specified to 5 Amperes
hFE = 20·120@IC= 2.5Adc
= 7.0 (Min) @ IC = 5.0 Adc

•

Coliector·E'mitter Sustaining Voltage VCEO(sus) = 40 Vdc (Min) - 2N5974
= 60 Vdc (Min) - 2N5975
= 80 Vdc (Min) - 2N5976

•

High Current Gain - Bandwidth Product fT = 2.0 MHz (Min) @ Ie = 500 mAde

•

Complements to NPN Transistors 2N5977. 2N5978. 2N5979

'MAXIMUM RATINGS
2N5975

2N5976

Unit

VeEO

40

60

80

Vdc

Collector-Base Voltage

VeB

60

80

100

Vdc

Emitter-Base Voltage

VEB

5.0

Vdc

Ie

5.0
10

Adc

Base Current

18

2.0

Total Power Dissipation

PD

Rating

Symbol

Collector-Emitter Voltage

Collector Current

Continuous

2N5974

Peak

@Te= 25°C

Derate above 2SoC
Operating and Storage Junctior
Temperature Range

Adc

STYLE 2:
PIN 1. EMITTER
2. COLLECTOR
3. BASE

Watts
75
0.60

-

TJ.Tstg

-65 to +150

w/oe

-

°e

NOTES:
1. DIM "0" UNCONTROLLED IN ZONE "H"
2. DIM "F" OIA THRU
3. HEAT SINK CONTACT AREA (BOTTOM)
4. LEADS WITHIN 0.005" RAD OFTRUE
POSITION ITP) AT MAXIMUM MATERIAL
CONDITION .

THERMAL CHARACTERISTICS
Characteristic
Thermal ReSistance, Junction to Case
• Indicates JEDEC Registered Data for 2N5974 Series.

FIGURE 1 - POWER DERATING

DIM

0
~

~

A
B
C

"- ........

0

"'-

0

0

o
o

20

40

60

80

"" ""
100

0
F
G
H
J
K
M
Q

'"

120

R
U

V

"I'..
140

160

MILLIMETERS
MAX
MIN

INCHES
MAX
MIN

16.13 16.38
12.57 12.83
3.18
3.43
1.09 1.24
3.76
3.51
4.22 BSe
2.92
2.67
0.813 0.B64
15.11 16.38
90 TYP
4.70 4.95
1.91
2.16
6.48
6.22
2.03

0.635 0.645
0.495 0.505
0.125 0.135
0.043 0.049
0.138 0.148
0.166 BSe
0.105 0.115
0.032 0.034
0.595 0.645
9' TYP
0.185 0.195
0.075 0.085
0.245 0.255
0.080

CASE 90·05
TO-127

TC. CASE TEMPERATURE I'C)

1-207

2N5974, 2N5975, 2N5976

*ELECTRICAL CHARACTERISTICS (T C = 250 C unless otherwise noted)

I

Min

Max

40
60
80

-

--'

1.0
1.0
1.0

2N5974
2N5975
2N5976
2N5974

-

100
100
100
1.0

2N5975

-

1.0

2N5976

-

1.0

-

1.0

40
20
7.0

120

-

0.6
1.7

-

2.5

-

1.4

2.0

-

-

300

20

-

Characteristic

-

SVmbol

Unit

OFF CHARACTERISTICS
Collector·Emitter Sustaining Voltage (1)
(lC = 100 mAde, IB = 0)

Vde

VCEO(sus)
2N5974
2N5975
2N5976

Collector Cutoff Current
(VCE = 20 Vde, IB = 0)
(VCE = 30 Vde,IB = 0)
(VCE = 40 Vde, IB = 0)

mAde

ICEO
2N5974
2N5975
2N5976

Collector Cutoff Current
(VeE = 60 Vde, VEB(off) = 1.5 Vde)
(VCE = 80 Vde, VEB(off) = 1.5 Vde)
(VCE = 100 Vde, VEB(off) = 1.5 Vde)
IVCE = 40 Vde, VEB(off) = 1.5 Vde,
TC = 1250 C)
IVCE = 60 Vde, VEB(ofl) = 1.5 Vde,
TC = 125°C)
IVCE = 80 Vde, VEBloff) = 1.5 Vde,
TC= 125°C)

ICEX

Emitter Cutoff Current
IVBE = 5.0 Vde, IC = 0)

"Ade

mAde

mAde

lEBO

ON CHARACTERISTICS
DC Current Gain
IIc = 0.5 Ade, VCE = 2.0 Vde)
IIc = 2.5 Ade, VCE = 2.0 Vde)
IIc = 5.0 Ade, VCE = 2.0 Vde)

-

hFE

Collector·Emitter Saturation Voltage
IIc = 2.5 Ade, IB = 250 mAde)
IIc = 5.0 Ade, IB = 750 mAde)

VCElsatl

Base-Emitter Saturation Voltage

VBE{sat)

Vde

Vde

(lC = 5.0 Ade, IB = 750 mAde)
Base·Emitter On Voltage
IIc = 2.5 Ade, VCE = 2.0 Vde)

-

Vde

VBE{on)

DYNAMIC CHARACTERISTICS
Current·Gain - Bandwidth Product 12)
(lc = 500 mAde, VCE = 10 Vde, f tast = 1.0 MHz)

IT

Output Capacitance
(VCB = 10 Vde, IE = 0, I = 0.1 MHz)

Cob

Small,Signal Current Gain
(lC = 0.5 Ade, VCE = 4.0 Vde, f = 1.0 kHz)

hIe

MHz

pI'

-

·'ndicates JEDEC Registered Oata
(1) Pulse Test: Pulse WidthS-300 IJs. Duty CycleS2.0%.
(2) fT

= I hfe

I- f te.,

FIGURE 2 - SWITCHING TIME TEST CIRCUIT

FIGURE 3 - TURN-ON TIME

vcc

2.0
TJ=250 e ~
Vee-30V
IcJlB -10 1=

·30V

1.0

O.7
O.5

SCOPE

RB

,....

! o. 3
w

'"' 02
;::

51

I'.

.;-40 V

RS and RC VARIED TO OBTAIN DESIRED CURRENT lEVElS
01 MUST BE FAST RECOVERY TYPE. eg.
MB05300 USeD ABOVE 18"'" 100 mA
MSD6100 useD BElOW 18 ... 100 mA

td 4!1 VBE(off) ~ 5.0 V

0.07
0.05
0.03
0.02
0.05

_I---'

~

O. 1

tr.tf~IOns

DUTY CYCLE'" 1.0%

-d:
11 II

0.1

0.2

0.3

0.5

1.0

Ie. COLLECTOR CURRENT (AMP)

1-208

2.0

3.0

5.0

2N5974,2N5975,2N5976

II.

FIGURE 4 - THERMAL RESPONSE
1.0

S
N

... :::;
ffi~
in'"

-"""

o. 31== (:::0.2

~~ O. 2
I--- 1-0.1
... w

",-

w'-'

== ~

t:::'"

I--::

o. 1l::= 1::0.05

8~ 0.0 7r==

0.02

~o.o 5

tt

- fJ1Jl

O. ~ f=O -0.5
O.

9JC(max): 1.67 oCM

o CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME AT.,

tl~

~~

TJ(pk)- TC: P(pk)9JCh)

DUTY- CYCLE, D : .,/12

~"
-= ~ 0.03~
I--- +--0.01

t--Single PuiS.

~ 0.0 2

I-

I

0.0 1
0.01

11111

I

0.02 0.03

0.05

0.1

0.2

0.3

1.0

0.5

I

10
2.0 3.0
5.0
I. TIME OR PULSE WIDTH (ms)

I II

I 111111

so

30

20

I

100

I I I
200 300

I I III
500

1000

FIGURE 5 - ACTIVE·REGION SAfE OPERATING AREA
0

,. 15O"C. TJ(pk) may be
calculated from the data In Figure 4. At high case temperatures,
thermal limitations Will reduce the power that can be handled to
values less than the limitations imposed by second breakdown.

o. 51-t-- Curves Apply Below Rated VCEO
o. 2

average junction temperature and second breakdown.

Safe operating area curves indicate le·VeE limits of the transistor
that must be observed for reliable operation; i.e .. the transistor
must not be subjected to greater dissipation than the curves indicate.

\I I

100

veE. COLLECTOR EMITTER VOLTAGE (VOLTS)

FIGURE 6 - TURN·OFF TIME
5.0
3.

o

2.0

I"1.0
~
w

O. 7
0.5

i=

0.3

,.

r- :::::

300

Is

.."

~ 200

~

;:;
If

0.2

O. 1
0.07
0.05
0.05

FIGURE 7 - CAPACITANCE
500

TJ: 25°C tVCC:30LCIC/18 =10
181:182 -~

~

r- r-

"

ti

..; 100

------

TJ = 25°C

-r-r--..
........

r.....r--.

Cib

~

t:.....t--..

70
0.1

0.2

0.3

0.5

1.0

2.0

3.0

5.0

IC, COLLECTOR CURRENT (AMP)

50
O.S

1.0

2.0

3.0

5.0

10

VR, REVERSE VOLTAGE (VOPS)

1-209

20

30

50

2N5977,2N5978,2N5979
MOTOROLA

NPN SILICON PLASTIC POWER TRANSISTORS

5AMPERE
POWER TRANSISTORS

designed for use' in general purpose amplifier and switching
applications.

NPN SILICON
•

DC Current Gain Specified to 5 Amperes
hFE = 20·120@ IC = 2.5 Adc
= 7.0 (Min) @ IC = 5.0 Adc

40-60·80 VOLTS
75 WATTS

• Coliector·Emitter Sustaining Voltage VCEO{sus) = 40 Vdc (Min) - 2N5977
= 60 Vdc (Min) - 2N5978
= 80 Vdc (Min) - 2N5979
•

High Current Gain - Bandwidth Product
=2.0 MHz (Min) @ IC =500 mAdc

tr

• Complement to PNP Transistors 2N5974,2N5975,2N5976

*MAXIMUM RATINGS
2N5977

2N5978

2N5979

VCEO

40

60

60

Vdc

Collector· Base Voltage

VCB

60

80

100

'Vdc

Emitter·Base Voltage

VEB

5,0

Vdc

IC

5.0
10

Adc

Base Current

iB

2.0

Total Power Dissipation

Po

Rating

Symbol

Collector-Emitter Voltage

Collector Current - Con.tinuous
Peak

Adc

Watts

@TC=250C

76
0.60

Derate above 25°C
Operating and Storage Junction TJ,T stg

°c

-65 to +150

Characteristic
Thermal Resistance, Junction to Case
·'ndlcates JEDEC Registered Data

FIGURE 1 - POWER DERATING

"""'-

0

~

DIM
A
B
C

"

0
F

"'-

0

G
H

"I"

J
K
M

n

40

60

80

100

TC. CASE TEMPERATURE (DC)

R

~

0

20

r::-:::-=

11:
c'

=='T'

STYLE 2:
PIN 1. EMITTER
2. COLLECTOR
3. BASE

NOTES:
1. DIM "0" UNCONTROLLED IN ZONE "H"
2. DIM "F" OIA THRU
3. HEAT SINK CONTACT AREA (BOTTOM)
4. LEADS WITHIN 0.005" RAO OF TRUE
POSITION (TP) AT MAXIMUM MATERIAL
CONDITION.

THERMAL CHARACTERISTICS

-

,

W/oC

Temperature Range

0

Unit

120

U
V

'"

140

1-210

160

MILLIMETERS
MAX
MIN

INCHES
MIN
MAX

16.13 16.38
12.57 1.2.83
3.18
3.43
1.09 1.24
3.51
3.76
4.22 BSC
2.67
2.92
0.813 0.864
15.11 16.38
90 TYP
4.70 4.95
1.91
2.16
6.48
6.22
2.03

0.635 0.645
0.495 0.505
0.125 0.135
0.043 0.049
0.138 0.148
0.166BSC
0.105 0.115
0.032 0.034
0.595 0.645
90 TYP
0.185 0.195
0.075 0.085
0.245 0.255
0.080

CASE 90·05
TO-127

2N5977,2N5978,2N5979

*ELECTRICAL CHARACTERISTICS (Tc = 25°C unle.. otherwi.. noted)
Characteristic

Svmbol

Min

Mox

4D
SO
SO

-

Unit

OFF CHARACTERISTICS
Collector-EmitterSustaining Voltage (1)
(lC = l00mAde.IB = D)

Collector Cutoff Current
(VCE = 2D Vde.IB =D)
(VCE = 3D Vde.IS = D)
(VCE = 4D Vde.IS = D)

Vde

VCEO(sus)
2N5977
2N5978
2N5979

mAde

ICEO
2N5977
2N5978
2N5979

Collector Cutoff Currant
(VCE = SO Vde. VEB(off) = 1.5 Vde)
(VCE = SO Vde. VEB(ol!) = 1.5 Vde)

-

1.0
1.0
1.0

-

ICEX

(VCE = 100 Vde. VEB(off) = 1.5 Vdel
(VCE = 4D Vde. VEB(off) = 1.5 Vde.
TC = 125°C)
(VCE =60 Vde. VES(off) = 1.5 Vde.
TC = 125°C)
(VCE = 80 Vdc. VEB(offi = 1.5 Vde.
TC = 1250 CI

-

2N5977
2N5978
2N5979
2N5977

-

100
100
100
1.0

2N5978

-

1.0

2N5979

-

1.0

-

1.0

40
20
7.0

120

-

0.6
1.7

-

2.5

-

1.4

2.0

-

-

200

2D

-

-

Emitter Cutoff Current

"Ade

mAde

mAde

lEBO

(VSE = 5.0 Vde. IC = 01

ON CHARACTERISTICS
DC Current Gain
(lc = 0.5 Adc. VCE = 2.0 Vdcl
(lc = 2.5 Adc. VCE = 2.0 Vdcl
(lc = 5.0 Ade. VCE = 2.0 Vdel

-

hFE

Collector-Emitter Saturation Voltage

Base-Emitter Saturation Voltage

Vde

VSE(so"

(lC = 5.0 Adc. IS = 750 mAdei

Base-Emitter On Voltage

Vde

VCE( .."

(lC = 2.5 Adc. IS = 250 mAdei
(lC = 5.0 Ade. IB = 750 mAdei

-

Vde

VBE(oni

(lc = 2.5 Adc. VCE = 2.0 Vdel

DYNAMIC CHARACTERISTICS
Current Gain - Bandwidth Product (2)
(Ie = 500 mAde. VCE = 10 Vdc. 'test = 1.0 MHzI

IT

Output Capacitance

Cob

(VCS = 10 Vdc. Ie =

D.'

MHz
pF

= 0.1 MHz)

Small-8ignal Current Gain

-

hie

(Ie = 0.5 Ade. VCE = 4.0 Vde.' = 1.0 kHz)

-Indicates JEDEC Registered Data
(1) Pulse Test: Pulse WidthS-300 ,",S, Duty Cycle$2.0%.
(2) fT

= Ihfe I- f ta• t

FIGURE 2 - SWITCHING TIME TEST CIRCUIT

FIGURE 3 - TURN·ON TIME
2.0

VCC

250~

T] =
VCC - 30 V
ICliB= 10

+30 V
1. 0

A
+~]

0.7

RC

--1--,

0.5
SCOPE

-9.0 V

~r

0.2

........

>=
51

=

::--,.

~ 0.3
~

::::

r-

~

.......

0.1

td@VBE(olf)"5.0V

0.07

tr,tf~tOns

DUTY CYCLE = 1.0%

-4V

0.05

RB and RC VARIED TO OBTAIN DESIRED CURRENT LEVELS
01 MUST BE FAST RECOVERY TYPE. ego
MBD5300 USED ABOVE IB ~IOO rnA
MSD6100 USED BELOW IB ~IOO rnA

::::

0.03
0.02
0.05

0.1

0.2

0.3

0.5

1.0

IC. COLLECTOR CURRENT (AMPI

1-211

2.0

3.0

5.0

2N5977,2N5978,2N5979

FIGURE 4 - THERMAL RESPONSE
1.0

ffi
N

0.7 f==0=0.5
O.5

t-:;

ffi~ 0.3

u;'"

~~ 0.2
",-

t- W

--

:= 1=01.2
-

~

~O.I

~ ~Io'"

w'"'
~:i o.1 =1=0.05
~ ~ 0.07

~ ~ 0.05

w ...

==

~nn
1

iI""

tl~

rO.02

TJ(pk) - TC = P(pk)9JC(I)

~Singl. Pulse

~O.02

II

I

0.0 I
0.01

PULSE TRAIN SHOWN
READ TIME AT II

DUTY CYCLE. 0 = 11/12

:g! 0.03 f---;;;.. rO.OI
t-

9JC(max) = I.B70CIW

oCURVES APPLY FOR POWER

0.02 0.03

0.05

II II II 11111

11111
0.1

0.2

0.3

0.5

1.0

2.0 3.0' 5.0
10
1. TIME OR PULSE WIDTH (m.)

30

20

50

II II II 1111

100

200

300

500

I 000

FIGURE 5 - ACTIVE-REGION SAFE OPERATING AREA
10

....

ii: 5. 0

There are two limitations on the power handling ability of a
.transistor: average junction temperature and second breakdown.
Safe operating area curves indicate Ie-VeE limits of the transistor
that must be observed for reliable operation; i.e., the transistor
must not be subjected to greater dissipf;ltion than the curves indicate.
The data of Figure 5 is based-on TJ(pk) ~ 150°C; TC is variable
depending on conditions. Second breakdown pulse limits are valid
for duty cycles t!' 10% provided T J(pk)E;; 1500C. T J(pk) may be
calculated from the data in Figure 4. At high case temperatures,
thermal limitations will reduce the power that can be handled to
values less than the limitations imposed by second breakdown.

.....

'"

5 3. 0'--- TJ=1500e
t-

O.5ms

SECOND BREAKDOWN LIMITED ~dC
~ 2. o
'"a :-~::: ~~~~~NAGL~II~~T~~II~~~TC = 250e\ ' \
I. 0
'"

\

1.0 ms

\'\

5.0ms

0

~
8

~

o. 5 o. 3
o. 2
O. 1
5.0

r--

Curves Apply BelDw Rated VCEO

7.0

2N59i7
2N5978
2N5979
20

10

+t
30

I

50

70

100

VCE. COLLECTOR EMITTER VOLTAGE (VOLTS)

FIGURE 7 - CAPACITANCE

FIGURE 6 - TURN·OFF TIME
5.0
Vee = 3D V

2.0
.

~

ts

T1

200

TJ 250le -

leliB = 10
IBI = IB2

I-

-

r- t-

1.0

j

O.7
~ O.5

;::

~

l

I-

-TJ' 25°C

3.0

300

0

"

o.3

"

r-......

.li

O.2

....

Cob

0.1

1.0
0.5
0.2 0.3
Ie. COLLECTOR CURRENT (AMP)

2.0

3.0

5.0

1-212

30
0.5

-

i-

0

O. I

0.07
0.05
0.05

r-t..
'"'-j...

0

1.0

I-f-

2.0 3.0
5.0
10
VR. REVERSE VOLTAGE (VOLTS)

t=
20

30

50

®

2N5986,2N5987,2N5988 PNP
2N5989,2N5990,2N5991 NPN

MOTOROLA

12 AMPERE

HIGH POWER PLASTIC
COMPLEMENTARY SILICON POWER TRANSISTORS

POWER TRANSISTORS
COMPLEMENTARY SILICON

· .. designed for use in general·purpose amplifier and switching circuits.

40, 50, 80 VOLTS
100 WATTS

• Collector-Base Voltage - VCBO = 60 Vdc - 2N59B6, 2N5989
= 80 Vdc - 2N5987, 2N5990
= 100 Vdc - 2N5988, 2N5991
• Collector-Emitter Voltage - VCEO = 40 Vdc - 2N5986, 2N5989
= 60 Vdc - 2N5987, 2N5990
= 80 Vdc - 2N5988, 2N5991
• DC Current Gain hFE = 20-120@IC=6.OAdc
= 7.0 (Min) @ IC = 12 Ade
• Collector-Emitter Saturation Voltage VCE(sat) = 0.7 Vdc (Max) @ IC = 6.0 Adc

'MAXIMUM RATINGS
Rating

Collector-Base Voltage
Collector-Emitter Voltage
Emitter-Base Voltage
Collector Current - Continuous

Symbol

2N5986
2N5989

2N5987
2N5990

2N5988
2N5991

Unit

Vea

60

aD

100

Vdc

VeEO

40

60

SO

Vdc

VES

5.0

Vdc

Ie

12
20

Adc

Peak

Base Current
Total Power Dissipation
Derate above 25°C

@

T C ::: 25°C

Operating and Storage Junction
Temperature Range

la

4.0

Adc

Po

100

Watts

O.S

wloe

TJ. T5t9

-65 to +150

°e

STYLE 2:
PIN 1. EMITTER
2. COLLECTOR
3. BASE
NOTES:
1. DIM "0" UNCONTROLLED IN ZONE "W'
2. DIM "F" DlA THRU
3. HEAT SINK CONTACT AREA (BOTTOM)
4. LEADS WITHIN 0.005" RAD OF TRUE
POSITION (TP) AT MAXIMUM MATERIAL
CONDITION.

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case
·'ndicates JEOeC Registered Data

FIGURE 1 - POWER DERATING

DIM
100

'"

A
B
C

i'.

"

0

'" "-"-

0
F

G
H

J
K

:'"

M
Q

0

~

0

20

60

80

100

120

R
U

!'...

140

V

MILLIMETERS
MAX
MIN

INCHES
MIN
MAX

16.13 16.38
12.57 12.83
3.43
3.18
1.09
1.24
3.51
3.76
4.22 BSC
2.67
2.92
0.813 0.864
15.11 16.38
90 TYP
4.70 4.95
1.91
2.16
6.22
6.48
2.03

0.635 0.645
0.495 0.505
0.125 0.135
0.043 0.049
0.138 0.148
0.166 BSC
0.105 0.115
0.032 0.034
0.595 0.645
90 TYP
0.185 0.195
0.075 0.OB5
0.245 0.255
O.OBO

160

CASE 90-05
TO-127

Te. CASE TEMPERATURE (OCI

1-213

2N5986, 2N5987, 2N5988 PNP / 2N5989, 2N5990, 2N5991 NPN

*ELECTRICAL CHARACTERISTICS ITC = 25°C unl... otherwise notedl
Characteristic

Symbol

Min

Max

40

60

-

80

-

-

2.0
2.0
2.0

Unit

OFF CHARACTERISTICS
Co"ector~Emitter

lic

Sustaining Voltage

Vdc

SVCEOlsu,1

=0.2 Adc, 18 = 01

2N5986, 2N5989
2N5987, 2N5990
2N59B8, 2N5991

Collector Cutoff Current

mAde

ICEO

IVCE = 20 Vdc, la = 01
IVCE = 30 Vdc, IS = 01
IVCE = 40 Vdc, IS = 01

2N5986,2N5989
2N5987, 2N5990
2N59B8, 2N5991

Collector Cutoff Current
IVCE = 60 Vdc, VaEloffl = 1.5 Vdcl
IVCE = 80 Vdc, VaE loffl = 1.5 Vdcl
IVCE = 100 Vdc, VaEloffl = 1.5 Vdcl
IVCE = 40 Vdc, VaEloll1 = 1.5 Vdc, TC = 1250 CI
IVCE = 60 Vdc, VBElo!fl = 1.5 Vdc, TC = 1250 CI
IVCE = SO Vdc, VaEloffl =·1.5 Vdc, TC = 1250 CI

-

-

"Adc

ICEX

-

2N 5986, 2N5989
2N5987,2N5990
2N5988,2N5991
2N5986,2N5989
2N5987,2N5990
2N5988,2N5991'

-

200
200
200
2.0
2.0
2.0

-

1.0

40
20
7.0

120

-

0.6
1.1

-

2.5

-

1.4

2.0

-

-

-

500
300

20

-

-

Emitter Cutoff Current
IVaE = 5.0 Vdc, IC = 01

mAde

mAde

IESO

ON CHARACTERISTICS
DC Current Gain

-

hFE

lic = 1.5 Adc, VCE = 2.0 Vdcl
lic = 6.0 Adc, VCE = 2.0 Vdcl
lic = 12 Adc, VCE = 2.0 Vdcl
Collector-Emitter Saturation Voltage

Vdc

VCElsatl

lic = 6.0 Adc, 18 = 0.6 Adcl
lic = 12 Adc, 18 = 1.8 Adcl

Base--Emitter Saturation Voltage

Vdc

VBElsatl

lic = 12 Adc, IB = 1.8 Adcl

Base-Emitter On Voltage

Vdc

VBElonl

lic = 6.0 Adc, VCE = 2.0 Vdcl

DYNAMIC CHARACTERISTICS
Current-Gain - Bandwidth Product

MHz

'T

lic = 0.5 Adc, VCE = 10 Vdc, I test = 1.0 MHzl

Output Capacitance
IVca = 10 Vdc, IE = 0, I = 1.0 MHzl

pF

Cob
2N5986 thru 2N5988
2N5989 thru 2N5991

Small..signal Current Gain
lic = 2.0 Adc, VCE = 4.0 Vdc, I = 1.0 kHz)

-

hie

• Indicates JEDEC Registered Data.
(1) fT=lhfel.ftest

FIGURE 2 - SWITCHING TIMES TEST CIRCUIT

FIGURE 3 - TURN-ON TIME

2.0

VCC
+30 V

J)jJJ

1.0

= =

IC=IOI~=

0.5

SCOPE

RB

:!
w
51

0,

.,
::E

0.2

r-...

.......

.>

0.1

tr.tf~lOns

DUTY CYCLE' 1.0%
RS and

Re

-4 V
VARIED TO OBTAIN DESIRED CURRENT LEVElS

tr

--

::-:::~

td I! VBElo!ll ~ 5.0 V

0.05
2N598612N5988

0, MUST BE FAST RECOVERY TYPE. eg.
MBD5300 USED ABOVE IB ",,100 mA
MS06100 USEO BELOW lB ~100 mA

0.Q2

f-

0.2

For PNP test circuit reverse diode and voltage polarities.

-1- i i 2~"/W991
0_5

1.0

...
2.0

5.0

IC, COLLECTOR CURRENT lAMP)

1-214

=

TJ-250 C - -

10

20

2N5986, 2N5987, 2N5988 PNP / 2N5989, 2N5990, 2N5991 NPN

FIGURE 4 - THERMAL RESPONSE
1.0
w

~
fa
'"~~
~~

...wOil!

i

0.7

0=0.5

0.5

0.3

---

0.2

0.2

-

> <; 0.05 0.02

r- i>'

.,....,.., ~

0.02

'!'Ilfl
1 .

t.:j

.01
I I

rnWii

"'2
0.0 1
0.01

~~

-:: ;::::: ~~

0.1
O. 1
0.05
0.07

0.03

~

r-.............

0.02

0.05

9Jc(tl = ,(.1 9JC
9JC = 1.250CIW Max
D CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME AT'1
TJ(pki - TC = P(pkl 9JC(.I

DUTY CYCLE. 0 = '1/12
I
20

L I 11J L

0.1

0.2

0.5

2.0

1.0

5.0

10

I

I

I I I III
50
100

L

. L 1 .1 I I

200

500

1000

'. TIME (msl

FIGURE 5 - ACTIVE·REGION SAFE OPERATING AREA
0
 ~l

. . l'"

500,...

\

1111

SECOND BREAKDOWN LIMITED
:: 1.0
- BONDING WIRE LIMITED
f-8
- - - - - - - THERMAL LlMITATlDN@TC=250C

5.0ms

\\

}} 0.5

2N5986.2N5989
2N5987.2N5990

I I I 2N5988.2N5991

O. 2
1.0

2.0

5.0

10

-l.

20

50

Safe operating area curves indicate Ie - VeE limits of the tranSistor
that must be observed for reliable operation; Le., the transistor must
not be subjected to greater dissipation than the curves mdicate.
The data of Figure 5 is based on T J(pkl = 150°C; T C is variable
depending on conditions. Second breakdown pulse limits are valid
for duty cycles to 10% provided T J(pkl '" 1500C T J(pkl may be
calculated from the data in Figure 4. At high case temperatures,
thermal limitations will reduce the power that can be handled to
values less than the limitations imposed by seoond breakdown.

100

VCE. COLLECTOR·EMITTER VOLTAGE (VOLTSI

FIGURE 6 - TURN·OFF TIME

FIGURE 7 - CAPACITANCE

5.0

1000
VCC=JOV IB1=182 IC = 10 18 TJ = 25°C

"

2.0

~

--

-I-"

~~

1.0

~

w

""-=...

TJ=250C700

G: 500

.!!

..,zw

~ JOO
U

0.5

-t.
1-

0.2
0.1

-

1::---1=

0.05
0.2

--

-

..,~

1.0

2.0

.......

Cib

...::::: i:::- t:--~

..... .....

.....

t"-,t

...........

..; 200

Cob

- - - - 2N598612N5988
- - - - - 2N5989/2N5991

2N598612N5988
-----2N5989/2N5991
0.5

"
....

5.0

10

20

100
0.5

lJJJI

1.0

Tr

2.0

5.0

10

VR. REVERSE VOLTAGE (VOLTSI

IC. COLLECTOR CURRENT (AMPI

1-215

,.;>-.

.......

~

....
20

50

2N5986, 2N5987, 2N5988 PNP / 2NS989, 2N5990, 2N5991 NPN

NPN

I

PNP
2N5986 thru 2N5988

2N5989 thru 2N5991

FIGURE 8 - DC CURRENT GAIN
300

1000

III

200
z 150

II

I"-r--

;;:

II

SOD

II

TJ~'5(JOC

VCE=2.0V

z

~100
~

~ 10

~50C

.., 50
c

~

H-

r--r-.

-55°C
3D

......
....... ~

200

i:j
'"=>

100

......

1.0

2.0

3.0

25~ ~

0

5.0

-r-.

0

,

0.5

2.0

0.5

0.2

2

w

'"
~
o

6.0 A

12A

IC =3.0 A

....

0.4

-

r-

0
30

::>

1.2

~

0.8

~
ii

g

-

W

_

..,o

\

W
'-'

>
50

100

200

300

500

1000

0
3D

2000 3000

50 70

100

300

500

2000 3000

1000

FIGURE 10 - "ON" VOLTAGES
2.0
TJ = 25°C
TJ = 25°C

I~

1.6

~

1.6

~01.2

II

o
21.2

~V

w

VBElsa!)@llefIB-l0
0.8

~

~I---

1/

w

~

~

g

IJc~lsa!)~c~

I
0.3

0.5

1.0

2.0

3.0

F

~BEiO~)I@I~CE' 2;0 VI

0.4

!'

I I'"
VICflsat) @ Ic/IB~

I II

"'"
5.0

~;;;-

VBElsat) Ii!Ilc/IB = 10

0.8

,;

VBElon)@VCp2.0V
0.4

~

2

::!=I=F-

,;

0.2

200

lB. BASE CURRENT ImA)

2.0

o

--

\

0.4

lB. BASE CURRENT ImA)

g

TJ = 25°C

~

2

'"~

12A

6.0 A

1.6

o

'-

~ O.B
.:
o

'-'

2

'"

~

>

20

10

"T

III I

~
o

TJ = 25°C

w

~ t.2

~_

5.0

IC. COLLECTOR CURRENT lAMP)

I

IC =3.0 A

1.6

2.0

1.0

FIGURE 9 - COLLECTOR SATURATION REGION
_ 2.0

III

~

o

~

......

10

20

10

IC. COLLECTOR CURRENT lAMP)

_

VCe-2.0V

-55°C

~
~

0.3

TJ 150°f

..,

20
15
0.2

~

...z

..,=>

~

300

10

20

IC. COLLECTOR CURRENT lAMP)

o

0.2

0.3

0.5

1.0

2.0

3.0

5.0

IC. COLLECTOR CURRENT lAMP)

1-216

10

20

®

2N6034, 2N6035, 2N6036 PNP
2N6037, 2N6038, 2N6039 NPN

MOTOROLA

l1li

PLASTIC DARLINGTON COMPLEMENTARY
SILICON POWER TRANSISTORS

DARLINGTON
4-AMPERE

· .. designed for general·purpose amplifier and low·speed switching
applications.
•

High DC Current Gain hFE = 2000 (Typ) @ IC = 2.0 Adc

•

Collector· Emitter Sustaining Voltage - @ 100 mAdc
VCEO(sus) = 40 Vdc (Min) - 2N6034, 2N6037
= 60 Vdc (Min) - 2N6035, 2N6038
= 80 Vdc (Min) - 2N6036, 2N6039

•

Forward Biased Second Breakdown Current Capability
ISlb = 1.5 Adc @25 Vdc

•

Monolithic Construction with Built·ln Base·Emitter
Resistors to Limit Leakage Multiplication

•

Space·Saving High Performance·to·Cost Ratio
TO·126 Plastic Package

COMPLEMENTARY SILICON
POWER TRANSISTORS
40, 60, 80 VOLTS
40 WATTS

*MAXIMUM RATINGS
Rating

Symbol

Collector-Emitter Voltage

40

VCEO

Collector-Base Voltage

VCB

Emitter-Base Voltage

VEB
IC

Collector Current

2N6034 2N6035 2N6036
2N6037 2N6036 2N6039

Continuous

.

40

.
.
.

Peak

Base Current

18

4.0-

Ade

8.0100-

TA - 25°C

Po

1.5-0.012-

TJ,T stg

-

Vde
Vde
Vde

40-0.32-

Operating and Storage Junction

Unit

60
80
.5.0_

Po

Derate above 25°C
@

80

2SoC

Total Power Dissipation @TC

Total Power Dissipation
Derate above 25°C

60

-65 to + 1 5 0 -

mAde
Watts
wf'c
Watts
wf'c

K

°c

Temperature Range
THERMAL CHARACTERISTICS
Characteristic

STYLE 1
PIN 1. EMITIER
2. COLLECTOR
3.8ASE

Thermal Resistance, Junction to Case
Thermal Resistance, Junction to Ambient

NOTE'
1. LEADS, TRUE POSITIONED
WITHIN 0.25 mm 10.0101 OIA.
TO OIM. "A" & "8" AT
MAXIMUM MATERIAL
CONOITION.

·Indicates JEDEC Registered Data.
FIGURE 1 - POWER DERATING

TA TC

4.0 40

"'"

0

MIlliMETERS

~

l'.

.......

0

-.... r--

0

0

20

40

60

-.;:

MIN

MAX

INCHES
MIN
MAX

A
8
C

10.80
7.49
2.41
0.51
2.92
2.31
1.27
0.38
15.11

11.05
7.75
2.67
0.66
3.18
2.46
2.41
0.64
16.64

0.425
0.295
0.095
0.020
0.115
0.091
0.050
0.015
0.595

D

i'-!C

F
G

"" '" i'..

~

80

DIM

100,

H
J
K

""" r-:: ~
120

140

M
Q

R
160

S
U
V

30 TYP

3.76
1.14
0.64
3.68
1.02

4.01
1.40
0.89
3.94

30 TYP

0.148
0.045
0.025
0.145
0.040

CASE 77.()4
T()'126

T. TEMPERATURE (DC)

1-217

0.435
0.305
0.105
0.026
0.125
0.097
0.095
0.025
0.655
0.158
0.055
0.035
0.155

2N6034,2N6035, 2N6036 PNP
2N6037, 2N6038, 2N6039 NPN

-

*E LECTRICAL CHARACTER ISTICS IT c = 25 0 C unless otherw"e noted)

I

Characteristic

Symbol

Min

Max

40
60
SO

-

-

100
100
100

Unit

OFF CHARACTERISTICS

Collector-Emitter Sustaining Voltage
(lC

= 100 mAde,

IS

= 01

COllector-Cutoff Current
(VCE
(VCE
(VCE

= 40 Vde, IB = 01
= 60 Vdc,lB = 01
= 80 Vde, IS = 01

Collector Cutoff Current
(VCE = 40 Vde, VSE(off) = 1.5 Vdel
(VCE = 60 Vde, VSE(olll = 1,5 Vde)
(VeE = SO Vde, VSEloll) = 1,5 Vde)
(VCE = 40 Vde, VSE(olll = 1.5 Vde
TC= 125°C)
(VCE = 60 Vde, VSE(olll = 1,5 Vde
TC = 1250 CI
(VCE = SO Vde, VSE(off) = 1.5 Vde
TC = 125°C)

Vde

VCEOlsus)
2N6034, 2N6037
2N6035, 2N6038
2N6036, 2N6039
ICED
2N6034, 2N6037
2N6035, 2N603S
2N6036, 2N6039

ICEX

"A

2N6034, 2N6037
2N6035, 2N6038
2N6036, 2N6039

-

-

100
100
100

2N6034, 2N6037

-

500

2N6035, 2N603S

-

500

-

500

-

0.5
0.5
0.5

-

2N6036, 2N6039

Collector Cutoff Current

ICSO

(VCS = 40 Vde, IE = 0)
(VCS =60 Vde,IE = 0}
(VCS = 80 Vde,IE = 01

mAde

2N6034, 2N6037
2N6035, 2N6038
2N6036, 2N6039

Emitter Cutoff Current
(VSE = 5.0 Vde,lc = 01
ON CHARACTERISTICS

lEBO

DC Current Gain

2.0

hFE

Collector-Emitter Saturation Voltage

Base-Emitter On Voltage

-

-

2.0
3.0

VSE(satJ

-

4.0

Vde

VSE(on)

-

2.S

Vde

\hle \

25

-

-

200

-

1~

(lc = 2.0 Ade, IS = S.O mAdel
(lC = 4.0 Ade, IS = 40 mAde)

=4.0 Ade,IS = 40 mAde)

-

15,000
Vde

VeE(sa,1

Base-Emitter Saturation Voltage

mAde

-

500
750
100

(Ie = 0.5 Ade, VCE = 3.0 Vde)
(IC = 2.0 Ade, VCE = 3.0 Vdel
(lc = 4.0 Ade, VCE = 3.0 Vdel

(lc

"A

-

(lC = 2.0 Ade, VCE = 3.0 Vde)
OYNAMIC CHARACTERISTICS

, Small-Signal Current-Gain

-

(lC = 0.75 Ade, VCE = 10 Vde, I = 1.0 MHz)

Output Capacitance

pF

Cob

(VCS = 10 Vde, 'E =0, f = 0.1 MHz) 2N6034, 2N6035, 2N6036
2N6037, 2N6038, 2N6039

*Indlcates JEDEC Registered Data,
FIGURE

FIGURE 2 - SWITCHING TIMES TEST CIRCUIT

3 - SWITCHING TIMES

4.0,.

Vee

Vcc=30V
IC/IB =250 IBI = IB2
TJ = 25 0 C

-30V
R8 & Re VARIED TO OBTAIN DESIRED CURRENT LEVElS
D1. MUST BE FAST RECOVERY TYPES, e.g.,
MBD5300 USED ABOVE IS "" 100 rnA.
MSD6100 USED BELOWIS "" 100 rnA

RC

·~f;O~--1

I

tr.tf<10ns
DUTY CYCLE = 1.0%

~ ~ I\..

.3
w 1.0

'";:::-- O.8

O.6

2...

for td and t r• 01 is disconnected
and V2 '" 0, AB and AC are varied
to obtain desired test cUrrlNltS.

O.

For NPNtestcircuit,reversediode,
polarities and input pulses.

f..>- r-

"

...

1- ~

.PPro,--[J----.0: __________
v,

2, 0

SCOPE

tl~

I\.

--

......

......--

..........

41?

0, 2
0.04

---PNP
---NPN
0.06

0.1

...........
0.2

~

.:?'

.......

tr

!--

.... ,

........ k
0.4

....
0.6

"
r--

r-

7'

r@J:r=t
1.0

IC, COLLECTOR CURRENT (AMP)

1-218

f:::: r-- L......

l't

......

,-

;-

2.0

4.0

2N6034, 2N6035, 2N6036 PNP
2N6037, 2N6038, 2N6039 NPN

FIGURE 4 - THERMAL RESPONSE

1.0

~

50

~

0.3

~~

02

~

0-05

07

«

02

-

"'~

~~ 0.1

r'"

*

~~O.01

z

~

r

-.......--

-

0.1
0.05
0.01

..0.03 ........
0.05

uJCII)" ,II) (lJC
uJC " 3.12 oCIW Max

-;:::P

o CURVES APPL Y FOR POWER
PULSE TRAIN SHOWN
READ TIME AT!j

1fLSL
~:~~

SINGLE PULSE

TC - Plpkl OJCltI

TJlpk)

DUTY CYCLE. 0 !Jil2

0.0 2
0.0 1
0.01

II II
0.02 003

005

I

111111

0.1

0.2

0.3

05

2.0

10

3.0

5.0

10

20

30

100

50

200

300

500

1000

I. TIME 1m,)
ACTIVE·REGION SAFE·OPERATING AREA
FIGURE 6 - 2N6037 2N6038.2N6039

FIGURE 5 - 2N6034. 2N6035. 2N6036
1.0

10

7.0
"- 5.0

~

t-

z

.........

3.0

de

~ 2.0

i3

~

t;

u

.....

....

........

.....

" ......
" '\.

~
TJ"150oC
1.0
- - - BONDING WIRE LIMITED
0 7 - - - THERMALLY LIMITED
@TC" 25°C (SINGLE PULSE)
5
- - - SECOND BREAKDOWN LIMITED
\
o.3
2N6036
o.2
2NS035-+ i--"

o. 1

5.0

7.0
5.0

~
t-

3.0

ffi
~

2.0

i3

~

=

0.7
0.5

8

100",·-

"

...... 5.0~~ ~1.0-;;:'"

d~"", .....

2N6034-'
20
30
50
10
VCE. COLLECTOR·EMITTER VOLTAGE (VOLTS)

1'\

70

O. 1
5.0

100

.... .....

,

~
TJ" 150°C
- - - BONDING WIRE LIMITED
- - - THERMALLY LIMITED
@TC"250C(SINGLEPULSE)
- - SECOND BREAKDOWN LIMITED \

0.2

I,

......

I

E 0.3

\

7.0

1.0

a::

,

j 0:

8

1L

lOOps::.. .....

5.0ms""- ;;-;;;-1.0ms"

1"'\

,
1'\

I'\.

",'

!"'

2NS039
2NS038
I"2N6037 ~
30
50
70
10
20
VCE. COLLECTOR·EMITTER VOLTAGE (VOLTS)

\

7.0

1'\
100

FIGURE 7 - CAPACITANCE
200

There are two limitations on the power handling ability of a

transistor: average junction temperature and second breakdown.
Safe operating area curves indicate Ie - VeE limits of the transistor that must be observed for rei iable operation; i.e., the transistor
must not be subjected to greater dissipation than the curves indicate.
The data of Figures 5 and 6 is based on TJ(pk) ~ 150°C; TC is
variable depending on conditions. Second breakdown pulse limits
are valid for duty cycles to 10% provided TJ(pk) <150°C. TJ(pk)
may be calculated from the data in Figure 4. At high case temperatures. thermal limitations will reduce the power that can be handled
to values less than the limitations imposed by second breakdown.

I IIII

TC = ~J&c
~ 100

~
z 70

«
t-

<3 50

~
u

u'

30

r-...

-

- ~'"Cob

L-

... . .

-~;t

20
---PNP
-1111-NrN
10
0.04 0.06 0.1
0.2

0.4 O.S

1.0

2.0

4.0 6.0

VR. REVERSE VOLTAGE (VOLTS)

1-219

10

20

40

2N6034, 2N6035, 2N6036 PNP
2N6037, 2N6038, 2N6039 NPN

IDJ

PNP
2N6034.2N6035.2N6036

NPN
2N6037.2N603B.2N6039

I

FIGURE 8 - DC CURRENT GAIN

6.0k

6.0k

4.0 k
3.0k

z

V

;;;:
:: 2.0 k
z
w

~

~

~
150 c

4.Ok

r-...'

./

r--,..
"'.,'f""

'\ r\

"\ '\

'"
'"i:l1.0k L

}1

800

-550 C

~

,\

W
~600

~

/
0.06

0.1

250 C/'"

"

~

. . .v

~

~\

/

400
300

4.0

2.0

0.2
0.4 0.6
1.0
IC. COLLECTOR CURRENT (AMP)

~

~

VCE = 3.0 V

.... ~

~

2.0 k

600

300
0.04

/

3.0k

...c

400 1/

"-

z

800

::: 1.0k
c

/

V

II

:::>

TJ = 125 0 C

VCE=3.0V-

TC-l25 oC

0.04 0.06

0.1

0.2
0.4 0.6
1.0
IC. COLLECTOR CURRENT (AMP)

4.0

2.0

FIGURE 9 - COLLECTOR SATURATION REGION
c;; 3. 4
~

3. 0

I
I
I

II
II
II

:; 2. 6

IC0.5A

1.0 A

'"
~
w

~

'">

g 3.4

II
II
2.0A

TJ = 25 0 C

'"w
'"~
'">

~

4.0 A

~ 2.2

ffi
I:

....
~ 1.8
'"
'" 4
....
frl1.
::::
'"
~1.0

..,

3.0

l J
I I
I I

II
II

IC =
0.5 A

1.0 A

2.6

2.0 A

TJ' 250 C

4.0 A

2.2

aa:

1.8

~

1.4

8

1.0

........

W

> O.6
0.1

0.2

0.5

1.0

2.0

5.0

10

20

50

~ 0.6
0.1

100

0.2

0.5

1.0

2.0
5.0
10
lB. BASE CURRENT (mAl

la. aASE CURRENT {mAl

20

50

100

FIGURE 10 - "ON" VOLTAGES

2.2

1.8

.....

TJ = 25 0 C

/'" ,.,

I II

~
'"
~

II II
........

VaE{sai) @llcila = 250
1.4

I

w

'"

~

'" 1.0
>
>'

I II

-

JC~{~t) @lIChB; 250

0.6
O.2
0.04

0.06

0.1

',/

2.2

--- /

~

VaE @I VCE = 3.0 V

-

0.2
0.4 0.6
1.0
IC. COLLECTOR CURRENT (AMP)

J 11 L

2.

V~E\":1 ~llc/lB - 250

VBE@lVCE=3.0V

I

w

~

,.,/

....... , /

IIII

1.4 f -

~ 1. 0

>

:>

IIII

/

TJ = 250 C
1.8

",/

r-V~E!":) ~IICilB ~ 25J

/

~

O.6

2.0

4.0

1-220

O.2
0.04 0.06

0.1

0.2
0.4 0.6
1.0
IC. COLLECTOR CURRENT (AMP)

2.0

4.0

®

2N6040 thru 2N6042 PNP
2N6043 thru 2N6045 NPN
MJE6040 thru MJE6042 PNP
MJE6043 thru MJE6045 NPN

MOTOROLA

PLASTIC MEDIUM-POWER
COMPLEMENTARY SILICON TRANSISTORS

DARLINGTON
8 AMPERE

... designed for general· purpose amplifier and low·speed switching
applications.
• High DC Current Gain hFE = 2500 (Typ) @ IC = 4.0 Adc

COMPLEMENTARY SILICON
POWER TRANSISTORS
60-80-100 VO L TS
75 WATTS

•

Collector· Emitter Sustaining Voltage - @ 100 mAdc 11 J
VCEO(sus) = 60 Vdc (Min) - 2N6040. 2N6043
= 80 Vdc (Min) - 2N6041. 2N6044
= 100 Vdc (Min) - 2N6042. 2N6045

•

Low Collector-Emitter Saturation Voltage - 111
VCE(sat) = 2.0 Vdc (Max) @ IC = 4.0 Adc - 2N6040.41.2N6043,44
= 2.0 Vdc (Max) @ IC = 3.0 Adc - 2N6042. 2N6045

•

2N6040
thru

2N6045

Monolithic Construction with Built-In Base·Emitter
Shunt Resistors
(1) Applies to corresponding in-house part numbers also.

"MAXIMUM RATINGS
2N6040
2N6043
MJE6040
Symbol MJE6043

Rating

2N6041
2N6044
MJE6041
MJE6044

2N6042
2N6045
MJE6042
MJE6045

Unit

VCEO

60

80

100

Vdc

Collector-Base Voltage

VCB

60

80

100

Vdc

Emitter-Base Voltage

VEB

Collector-EmItter Voltage

Collector Current

Continuous
Peak

•
•

...

5.0

IC

.

IB

-120

8.0
16

.

..

Base Current
Total Power Dlsslpatlon@Tc
Derate above 25°C

25°C

PD

75
-0.60

Total Power DISSIpation @TA

25°C

PD

2.2
•
-0.0175~.

Derate above 2SoC
Operating and Storage Junction,
Temperature Range

~

T J. Tst9

-65 to + 150 ------.

Vdc
Adc

DIM

••
C

STYlET
PIN 1 BASE

D
F
G
H

2comCTDR
3 fMCITfR
4 COllECTOR

J

•

W/oC
Watts

y

Watts

W/oC
°c

Nons

l

••
•,•

mAde

, IllMENSIONIIAPPUESTOAlllEAOS
2 DIMENSION L APPlI£STO LEAOSI
"'<01
J DlMENSION2CEfINESA2DNEWIIER£
ALL BDOV "NO lEAOIRREGUlAlliTIES
"RE"llDWED
-4 DlMENSIONING AND TOUAANCING P£R

u

ANSIY145M.1982

5 CONTAOLlINGOIME'l"

C,b\

0

I I I ~IN

f-- ____ PNP
_ _ -NPN

2.0

5.0

10

20

50

100

200

30
0,1

500 1000

f, FREQUENCY (kHzl

0.2

0.5

1.0

2.0

5.0

10

VR, REVERSE VOLTAGE (VOLTSI

1-223

20

50

100

2N6040 thru 2N6042 PNP
2N6043 thru 2N6045 NPN
MJE6040 thru MJE6042 PNP
MJE6043 thru MJE6045 NPN

PNP
2N6040, 2N6041 , 2N6042
MJE6040, MJE6041, MJE6042
20,000

I

NPN
2N6043, 2N6044, 2N6045
MJE6043,MJE6044,MJE6045

FIGURE 8 - DC CURRENT GAIN
20,000

V~E! 410 ~

I I II
VCE-4.0V

10,000

10,000
7000

z 5000

;;:

TJ.I500C..........

~ 3000

~200
0
a:

a:
=>

...-

..",.....-

..........

25°C

r--

.A'

~ 1000

-

5000
3000

=>

u

~

y

/'

200
0.3

0.5

0.7

1.0

2.0

3.0

5.0

7.0 10

'"

......-

-::;;z. '- -55°C

300
0.2

~

25°C/"

500

oV
0.1

A-""

1000

o

~ 700
- 500 ~1-55c...
300

,

2000

u

~

...-

TJ=1500C.,.......

~

,,~

o

20

~

'"~

0.1

02

0.3

0.5

0.7

1.0

2.0

3.0

5.0

7.0

10

IG. COLLECTOR CURRENT (AMP)

IC, COLLECTOR CURRENT (AMP)

FIGURE 9 - COLLECTOR SATURATION REGION
Cii' 3.0

I III

~

o

~

2.6

IC-2.0A

~
o

ffi

II
II

I III

~

4.0A

~
~

ffi

~

a::

f'.

o

~

8 1.4

8

~.
> 1.0

1\

\

2.2

\

1.8

I\..

1.4

t'l

0.5

0.7

1.0

2.0

3.0

5.0

7.0

10

20

30

r-..

0.3

0.5

0.7

1.0

la, aASE CURRENT (mA)

TJ = 25°C

V

2.0

w

>

1.5

VaE@VCE=4.0V

- ,',

0.5
0.1

I 1
VCE(sat) @Ie/la = 250
0.3

--

~

V

/"

7.0

10

20

30

0.5 0.7

1.0

J

//

2.0

V-"

w

'"«

V

o~
>
>'

V

VV

VaE( ..t) @Ic/la = 250

0.2

~

V

~

)

1.0

5.0

T)25 01C

~

>'

3.0

2. 5

2. 5

~

2.0

la, aASE CURRENT (mA)

FIGURE 10 - "ON" VOLTAGES
3.0

3.0

'"
~
o

S.OA

2.6

> 1.0

0.3

TJ = 25°C
4.0A

lI-

\

g

III

le=2.0A

~
o

\

1.B

3.0

~
o

S.OA

2.2

::
a:o~

en

TJ = 25°C

1.5 VaE(jt)

i

b::::: ~

Ic/la = 250

,/
VaE@VcE=4.0V

.......... V

1.0

-I-'"

VCE(sat)@ leila = 250

O. 5
2.0

3.0

5.0

7.0

10

0.1

IC, COLLECTOR CURRENT (AMP)

0.2

0.3

0.5

0.7

1.0

2.0

Ie, COLLECTOR CURRENT (AMP)

1-224

3.0

5.0

7.0

10

®

2N6049
MOTOROLA

MEDIUM·POWER PNP SILICON TRANSISTOR

..

4 AMPERE

· .. designed for general-purpose switching and amplifier applications

POWER TRANSISTOR
PNP SILICON

• Excellent Safe Operating Area
• DC Current Gain Specified to 4.0 Amperes
• Complement to NPN Type 2N3054A

55 VOLTS
75 WATTS

"MAXIMUM RATINGS
Rating
Collector-Emitter Voltage

Collector-Emitter Voltage
IRBE

Symbol

Value

Unit

VCEO

55

Vdc

VCER

60

Vdc

= 100111

Collector-Base Voltage

VCB

90

Vdc

Emitter-Base Voltage

VEB

7.0

Vdc

IC

4.0

Adc

Collector Current

~

Continuous

Peak

10

Base Current
Total Device DissipatIon @TC

= 25°C

IB

2.0

Adc

Po

75

Watts

0.43

W/oC

Tj. T stg

-65 to +200

°c

Derate above 25°
Operating and Storage Junction,
Temperature Range
·Indlcates JEOEC Registered Data

THERMAL CHARACTERISTICS
Characteristic

Thermal Resistance,
Junction to Case

Symbol

Max

Unit

DjC

2.33

°C/W

ilK~=-'
I EI
ZT j
f y'y
lG

·'ndicates JEDEC Registered Data

FIGURE 1 - POWER DERATING

U

160
140

~

120

~

100

~

0

I--- r--...

"'"t'--.

~

ill;:;

::;

...15c
...

""'I--..

.........
.........

"-

0
0
0
50

Ts

~

-

0

25

--

MILLIMETERS
INCHES
STYLE I
PIN 1. BASE
DIM MIN MAX
MIN MAX
2. EMITTER
A
9, 7
lJi5lL
CASE COLLECTOR
B
21.08
0.830
C
6.35
7.62 o.l~O 0.300
0
0.97
1.09 0.038 0.043
1.18 0.055 0.010
1.40
E
F 29.90 30.40 1.1-77 1.197
G 10.67 11.18 0.420 0.440
H
5.33
5.59 0.210 0.220
J 16.64 17.15 0.655 0.675
K 11.18 12.19 0.440 0.480
Q
3.81
4.19 0.150 0.165
R
26.67
1.050
U
2.54
3.05 0.100 0.120

75

100

125

TC, TEMPERATURE (DC)

"'"

150

I"'"

175

'·228

I

CASE1-04

20
NOTES:
1. ALL RULES AND NOTES ASSOCIATEO WITH
REFERENCED TD·3 OUTLINE SHALL APPLY.

2N6050 thru 2N6052 PNP/2N6057 thru 2N6059 NPN

*ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)

I

I

Characteristic

Symbol

Min

Max

60
80

-

Unit

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage (1)
(IC = 100 mAde, IS = 0)

Collector Cutoff Current
(VCE = 30 Vde, IS = 0)
(VCE = 40 Vde, IB = 0)
(VCE = SO Vde, IS = 0)

1(JO

mAde

ICED

-

2N60S0, 2N6057
2N6051,2N6058
2N6052, 2N6059

Collector Cutoff Current
(VCE = Rated VCEO, VSE(off)
(VCE = Rated VCEO, VBE(oll)

1.0
1.0
1.0

-

mAde

ICEX

= I.S Vde)
= 1.5 Vde, TC

-

O.S
5.0

-

2.0

750
IOD

18,000

-

= IS00C)

Emitter Cutoff Current
(VSE = 5.0 Vde, IC = 0)

III

Vde

VCEO(sus)
2N6050, 2N6057
2N60S1,2N60S8
2N6052, 2N6059

IESO

mAde

ON CHARACTERISTICS (1)
DC Current Gain

-

hFE

(IC = 6.0 Adc, VCE = 3.0 Vdc)
(lc = 12 Ade, VCE = 3.0 Vdcl

-

Collector-Emitter Saturation Volatage
(lC = 6.0 Ade, IS = 24 mAde)
(IC = 12 Ade, IS = 120 mAde)

VCE(satl

-

2.0
3.0

Base-Emitter Saturation Voltage

VSE(satl

-

4.0

Vde

VSE(on)

-

2.8

Vde

Ihfel

4.0

-

MHz

Cob

-

50D
300

pF

hie

30D

(lc

= 12 Adc,

IS = 120 mAde)

Base-Emitter On Voltage
(lc

= 6.0 Ade,

Vdc

VCE

= 3.0 Vde)

DYNAMIC CHARACTERISTICS
Magnitude of Common Emitter Small-Signal Short Circuit Forward
Current Transfer Ratio
(lC = S.O Ade, VCE = 3.0 Vde, I = 1.0 MHz)

Output Capacitance
(VCS = 10 Vde, IE

= 0, I

2N60S0/2N60S2
2N60S7/2N60S9

= 0.1 MHz)

Small-Signal Current Gain
(lc = S.O Ade, VCE = 3.0 Vde, I

= 1.0 kHz)

*lndlcatesJEDEC Registered Data

(1)Pulse test: Pulse Width

=

300 #is, Duty Cycle == 2.0%.

FIGURE 2 - SWITCHING TIMES TEST CIRCUIT

FIGURE 3 - SWITCHING TIMES

10
2N6050/2N6052
2N6057/2N6059

Vee
-30 V
RS & RC VARIED TO OBTAIN DESIRED CURRENT LEVELS
01, MUST BE FAST RECOVERY TYPES, e 9 ,
MBDS300 USED ABOVE IB"'" 100 rnA
MSD6100 USED BELOW IB '" 100 rnA

SCOPE

2.0

.3-

r-['...,

i"" r-...
~ 1.0 t-K'
f-

51

I

I

tr,tf":lOns

25~s

If

I--

-

-

0.5

V1
approx __

-12V

-

Is

Re

V1

:;P~:---d~~~---__ ]~

5.0

r-I,

~d VBE(OI~) =0@

Fortdand tr,Dllsdlsconnected
and V2'" 0

0.2

,..."

~

DUTY CYCLE'" 1 0%

O. I
0.2

For NPN test circuit reverse diode and voltage polarities.

0.5

1.0

3.0

5.0

IC, COLLECTOR CURRENT (AMP)

1-229

VCC =30 V
IC/IB = 250.
IBI = IB2
TJ = 25 0 C

.u

10

J.
20

2N6050 thru 2N6052 PNP/2N6057 thru 2N6059 NPN

FIGURE 4 - THERMAL RESPONSE
1.0

;;i,

0, 7 =0 -0.5

o. 5

~_
wC

:oW

:: ~ o. 3==

0.2

ffi~ 0.2
<;;0:
zc
«
..

0.1

~:

-- -

~ ~ 0.07 ~O.02
~ ~ 0.05

:E

0.02

-

I--

i"""

-10-'

o. 1=:0.05

t:t~'"~ 0.03

-

ROJc'ltI- rltl ROJC
ROJC 1.17 °C/w Max
o CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME At IJ
TJlpkl - TC = Plpkl8JCltI

PHlJL

....tC

0.01

tt;--J

SINGLE PU LSE

I II

0.01
0.01

DUTY CYCLE, 0 = I1/t2

0.02 0.03

0.05

0.1

0.2

0.3

0.5

1.0

2.0

3.0

5.0

10

20

30

50

100

200

300

500

1000

I,TIME Im'l

ACTIVE-REGION SAFE OPERATING AREA

c::
:;;

20

~

10

-

I-

~
~

5.0

'"

2.0

=>
0:

C

~

,

,
"

50

I,

Of

\

\ \
1.0 ~~TJ=2000C
==
B=B
0.5
_ _ SECOND
BREAKDOWN
LIMITED
----lIONDING

0

'"

'[f~I\EO
-------THE~MAl

lIMJTATlON

0.1

IlJITc-250c

- f--

Ii

20

30

~

10

0.5 ms

,'n r..~

13

0:
0:

'tli

0:

0

.Oms

5.0
2.0

0.1 ms

"

"

_______ THERMAL

~i'-

U

0.2

UMITED

70 100

----IONDING

WORE

LIMITED
·------THERMAl

de

LIMITATION

0.1

~ ~~~~.~"~"~5'~Cg~~~~~

I-ll-'

5.0m'

~

0.05~3§~~~~!ijl

0.1
0.05~
10
20
30
50 70 100
VCE, COLLECTOR EMITTER VOLTAGE (VOLTSI

VCE, COLLECTOR·EMITTER VOLTAGE IVOLTSI

1.0 ms

0.5 t:-:~:~~OWN -

de

LIMITATION

Ef.~~I

1.0 TJ = 200 0C

8

Ne

50

20

I-

ISI~GlEPUI.SEI

0.05
10

c::
:;;

.'"

-

~ 0.2

FIGURE 7 - 2N6052, 2N6059

FIGURE 6 - 2N6051, 2N6058

FIGURE 5 - 2N6050, 2N6057
50

tiT

~Z5"C

10
20
30
50 70 100
VCE, COLLECTOR·EMITTER VOLTAGE (VOLTS)

There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating
area curves indicate IC - VCE limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to
greater dissipation than the curves indicate.
The data of Figures 5,6 and 7 is based on TJ(Rk) = 2000 C; TC is variable depending on conditions. Second breakdown pulse limits are
valid for duty cycles to 10% provided TJ(pkl .;;; 2000 C TJ(pk) may be calculated from the data in Figure 4. At high case temperatures, thermal

limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown.
FIGURE 8 - SMALL·SIGNAL CURRENT GAIN

FIGURE 9 - CAPACITANCE

3000

z

"'"
I-

50 0

1000

-

r--

r-

~

0:

..'"

500

~

100

=>

TC = 25 0C
VCE = 3.0 V
IC = 5.0 A

2000

''-"

'"-'
z

-.
Cib

~

'-.

f== f=

300

50
0.1

)-..

C~(

2N6050/2N6052
I I I I I I IW6057/2~60~9
0.2

0.5

1.0

2.0

5.0

10

VR, REVERSE VOLTAGE (VOLTS)

1-230

20

50

100

2N6050 thru 2N6052 PNP/2N6057 thru 2N6059 NPN

NPN
2N6057.2N6058.2N6059

PNP
2N6050.2N6051.2N6052
FIGURE 10 - DC CURRENT GAIN
20.000

40.000

III
VCE 3.0 V

10.000

"-

L"

z 10.000
;;0

'"....

./

i-'"

t- 25 dC

al

'"=>'-''"

"./

g

1000

V

'-'
0

-55°C

~

500
300
200
0.2

0.3

0.5

2.0

1.0

3.0

5.0

10

VCE" 3.0 V

TJ • 150°C ........

20.000

Tr 150°C

6.000

'\

25°C

4.000

./

2.000

,,/

1.000

-55°C

600
400
0.2

20

0.3

1.0

0.5

IC. COLLECTOR CURRENT (AMP)

2.0

3.0

10

5.0

20

IC. COLLECTOR CURRENT (AMP)

FIGURE 11 - COLLECTOR SATURATION REGION
0;

3.0

?

'"«'"

I 11

2.6

?

w

9.0 A

S.OA

IC·3.0A

~

~o

I I I
1 I

ITJ.25 0C

~
0

0

'"~

1\12A

,,~

1\

> 2.2

1\
1---

~

~

\

1.4

r-.

1.4

~

~

> 1.0
1.0

0.5

2.0

3.0

5.0

20

10

30

50

1.0

0.5

2.0

TJ' 25°C

/

2.5

2.0

w

~

1.5

>
>-

0.5
0.2

ill-0.5

1.0

'"to

3.0

5.0

I:::==F"

10

20

IC. COLLECTOR CURRENT (AMP)

0.5
0.2

"
,,-

VSE@VCE·3.0V

1.0

-I2.0

I

fj

~ 15. r- VSE(sa')I@ICI1S - 250
§;
:>

VCE(sa!) @IC/IS • 250
0.3

50

~
~ 2.0

,,-

VSIE@IVTEI-rr(

1.0

30

0;

~

I--- VBE(sa,)@ICI1S'250

r--

20

10

2.5

,

§
0

5.0

FIGURE 12 - "ON" VOL TAGES
3.0
TJ·250C

3.0

'"'"

3.0

lB. BASE CURRENT (mA)

IS. BASE CURRENT (mA)

?

"

ri: 1.8
o

> 1.0

0

12A

9.0 A

~
I.S

0

~

2.6

II

II

I
6.0 A

~ 2.2

....

8

II TJ '250C
IC' 3.0A

o

....ffi

~
'"

3.0

j I 11_1-1--'
j VCE(",) @IC/IS - 250
0.3

0.5

1.0

2.0

3.0

IC. COLLECTOR CURRENT (AMP)

1-231

5.0

10

20

.~

2N6053, 2N6054, 2N6298, 2N6299 PNP
2N6055,2N6056,2N6300,2N6301NPN

®

MOTOROLA

DARLINGTON COMPLEMENTARY
SILICON POWER TRANSISTORS

DARLINGTON
8 AMPERE

... designed for general·purpose amplifier and low frequency switching
applications.
• High DC Current Gain hFE = 3000 (Typ) @ IC = 4.0 Adc
• Collector-Emitter Sustaining Voltage -@ 100 mA
VCEO(sus) = 60 Vdc (Min) - 2N611.53, 2N6055, 2N629S, 2N6300
= SO Vdc (Min) - 2N6054, 2N6056, 2N6299, 2N6301
• Low Collector-Emitter Saturation Voltage VCE(sat) = 2.0 Vdc (Max) @ IC = 4.0 Adc
= 3.0 Vdc (Max) @ IC = s.o Adc
• Monolithic Construction with Built-In Base·Emitter
Shunt Resistors

COMPLEMENTARY SILICON
POWER TRANSISTORS
60-80 VOLTS
75,100 WATTS

2N6053
2'0054
ZN60!i5

2N6056

*MAXIMUM RATINGS
2N6053
2N6055
2N6298
Symbol 2N6300

Rating
Coliector~Emitter

Voltage

2N6054
2N6056
2N6299
2N6301

Unit

VCEO

60

80

Vdc

Collector-Base Voltage

VCB

60

80

Vdc

Emitter-Base Voltage

VEB

5.0

Vdc

IC

8.0
16

Adc

IB

120

mAde

Collector Current - Continuous
Peak

Base Current

Po

Total Device Dissipation @TC= 2SoC
Derate above 25°C

Operating and Storage Junction Temperature

2N6053
2N6054
2N6055
2N6056

2N6298
2N6299
2N6300
2N6301

100
0.571

75
0.428

-65 to +200

TJ,T stg

NOTE
1. DIM ''Q'' ISOlA
01.

MILUM TERS
M"

INCHES
MIN

MI.

·,•
,
H

,
•
"
J

Watts
wflc

MA'

"n 6" 2'"'62 .,,,
'" '"
34' ""
1177

C
0

I-'l!!

''''
""
''''
1197

...
... ..
"50

''''
''''
, "'"
,
''15
", ''''
66'
"'"
1219 ,
0161 "
11.18

184

'"~
2667

0161

-

ColllctorcoDlI8I:lld\lltiJl!

CASE nOI
(11).3,

°c

Range

THERMAL CHARACTERISTICS

2N6298

2N6053
2N6054
2N6055
Symbol 2N6056

Characteristic

Thermal Resistance, Junction to Case

2N63DD
lN83Dl

Unit

2.33

°CIW

1.75

ReJC

""'"

2N6298
2N6299
2N6300
2N6301

·1 ndicates JEOEC Registered Data.
STYLE!

"N;:~~TER

~

FIGURE 1 - POWER DERATING

Q

100

"""

H

Of--,

...... ~

•

S

... .,.

""" 2N6D53 .hru 2N6056

2N630~

DIM

12.10

""" -=-::s

100

125

150

2
0.021

H

.

J

I44B

1•. 99

S

--

'15

0

0
75

,

"
• ""
,
,11 ,.. "
, , .., ,OS, ,."
• '41 63' , ""
,,. - ,
""- ,...,
,,.
• '61
C

2'
24.33

........... C'....

0

NCHES

MILLI EERS

1'-..
"1.."

2N6298 thru

50

T

"'.........

25

CAS' COLLECTOR'

J-

•

~

175

200

·
T

0015

43

1

28'

'68

0105

0.510 0.590

-

0145

AlIJEOEC OlilltllSlOnsaodlll6 NolasApply

TC, TEMPERATURE (DC)

CASE 81).02
TO-=
.;

1.0

~
r".

r-

0.7
0.5
0.3

.........

'I. ....
~

....... ~

-

P"" I'-' ~

-......

'I

--

"
....

0.2 I-VCC = 3 0 : - f'
f-IC/IB = 250
IB1=1~2
, @V
-0 ~
BE(oll)O. 11=TJ - 25 C - d
2N60S3, 2N60S4, 2N6298, 2N6299(PNP)
0.07
2N60SS, 2N60S6, 2N6300, 2N6301 (NPN)
0.05
2.0 3.0
0.5 0.7 1.0
0.2
0.3
0.1

fortd and tr. D) is disconnected
andV2"'0

For NPN test circuit reverse diode, polarities and input pulses.

IC, COLLECTOR CURRENT (AMP!

1-233

I5.0 7.0

10

III

2N6053, 2N6054, 2N6298, 2N6299 PNP,
2N6055, 2N6056, 2N6300, 2N6301 NPN

FIGURE 4 - THERMAL RESPONSE

OJ

-' 0-

1.0
O. 7 = D-O.S
O.S

-

~~

O.3 - - 1 0.2
~~ 0.2
0-",
0-0

~ i-"""

r---- -0.1

I--

ffi~

O. lE::: =O.OS
~ z 0.07
~ 0.0Sr--0.02

en ~

--=---

pfnIl

I:;:

t:J

r_

:=-;itii

;:-~O.03

0.0

I"'""

~

2~

"SINGLE PULSE

I

I

I I I

2N60S3I2N60S6
R'JC - ~:~~~~: 2N6298/2N6301
o CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME AT q
TJ(pk) - TC' P(pk) OJCIt)

DUTY CYCLE. 0 ' q/t2

0.D1

I

0.0 I
0.1

I
I
R'JC (t) = r(t) R'JC

0.2

1111

I
O.S

0.3

0.7

1.0

2.0

3.0

S.O

7.0

I I

10

I I I

20

30

70

SO

100

200

300

700 100

SOO

t, TIME (m,)

ACTIVE-REGION SAFE OPERATING AREA
FIGURE 5 - 2N6053 thru 2N6056

FIGURE 6 - 2N6298 thru 2N6301
0

ms
ms
!15 :"t---;~-i;ii~iiir-i-i-iiiij~-~i-i:il_iii-~il-iii~o:;'limis
5.0

~

TJ-200oC

d

J

~

~~ E - - =
8

@TC'2SoC (SINGLE PULSE)

2.0

1.01=

O.S~

____

0_
0-

f.5 5.01==

.....

2N60~4,

r-----2N60S3,
2N6298, 2N6299(PNP)
- - 2N60SS, 2N6056, 2N6300, 2N6301 (NPN)
0.2
O.S
1.0
2.0
S.O
10
20

30
0.1

SOO 1000

t, FREQUENCY (kHz)

VR, REVERSE VOLTAGE (VOLTS)

1-234

SO

100

2N6053, 2N6054, 2N6298, 2N6299 PNP,
2N6055, 2N6056, 2N6300, 2N6301 NPN

NPN

PNP

I

2N6053,2N6054,2N6298,2N6299

2N6055, 2N6056,2N6300, 2N6301

FIGURE 9 - DC CURRENT GAIN
20,000

20,000

V~E ~ 3 0 ~

I

1

7000
z 5000

~

TJ= 1500 C_
<1
~ 3DO0
~ 200 0

8'"

u

,........f-"

i--"

:.f

1000

c
~ 700

-

.......

25°C

-

~V

30
20

0.1

u

~

0.5

0.7

1.0

2.0

5.0

3.0

bZ

500
300
100

7.0 10

~

'\.'r-,.
V

25 0 C /

1000

c

0.3

150°C,....

.A1

V

=>

.Y
0.2

TJ

u

500==1- 55°;"-

~

5000

'"

~ 3000
~ 2000

f-"i'.:

I

VCE" 3.0 V

10,000

10,00 0

-55°C

Y

l

V
0.1

0.1

0.3

0.5 0.7

1.0

2.0

3.0

5.0 7.0

I

10

IC, COLLECTOR CURRENT (AMP)

IC, COLLECTOR CURRENT (AMP)

I

~

FIGURE 10 - COLLECTOR SATURATION REGION
~ 3.0

I III

'"~

I III

~ 2.6

'"
ffi

2.2

2~

~

>

'"

~
~ 2.6

'"~
l="'

\

1.8

f'.

1.8

~

1.4

W

u

1.0

0.5 0.7

1.0

1.0

3.0

5.0

TJ = 25°C
4.0 A

7.0

10

20

30

> 1.0
0.3

\
\

\

i
\..
r-,.
0.5

0.7

1.0

IB, BASE CURRENT (rnA)

3.0

"'S'"

V

~

I

/

7.0

10

VBE1@VCE 3.0V

'"
S

V

V

VBE( ..t)@IC/IB=250

11

'"
>
>

,/

1.5 -

....-

VBE@VCE=3.0V
VBE(sat)@ IC/IB 125~

1.0

20

30

0.5 0.7' 1.0

i.,...oo" ~

~

,,- V

V

I--

VCE(sat) @IC/IB = 250

VCE("t) @IC/lB=250
0.3

2.0

"'
'"

..",. ~

I-"'

0.2

5.0

1.5

/

0.5
0.1

3.0

FIGURE 11 - "ON" VOLTAGES
3.0
TJ = 25°C

2. 5

1 'I

2.0

IB, BASE CURRENT (rnA)

TJ = 15°C

1.0

II

6.0A

2.2

15~
8

1.4

0.3

III
I = 2.0A

~

1\

\

3.0

S

6.0 A

4.0A

l=

15ti:
'"

TJ = 25°C

I

IC=2.0A

'"

S

V,j

I

0.5
2.0

3.0

5.0

7.0

10

IC, COLLECTOR CURRENT (AMP)

0.1

0.2

0.3

0.5 0.7

1.0

2.0

3.0

IC, COLLECTOR CURRENT (AMP)

1-235

5.0 7.0

10

2N6077
2N6078

®

MOTOROL.A

HIGH VOLTAGE NPN SILICON TRANSISTORS

7 AMPERES

~ the 2N6077 and 2N6078 transistors are designed for highvoltage, high-speed switching applications. They are characterized
for operating directly off the rectified 110 Volt power lines in
circuits such as:

NPN SILICON
POWER TRANSISTORS
275-300 VOLTS
45 WATTS

• Switching Regulators
• Solenoid and Relay Drivers
• Motor Controls
•

Inverters

~!b~
*MAXIMUM RATINGS
Rating
Collector-Emitter Voltage

Collector-Base Voltage
Emitter-Base Voltage
Collector Current - Continuous
-Peak
Base Current - Continuous
Total Power Dissipation
@TC=250 C
Derate above 25°C
Operating and Storage Junction
Temperature Range

Symbol

2N6077

2N6078

Unit

VCEX
VCBO
VEBO
IC
ICM
IS
Po

300
300

275
275

Vdc
Vdc
Vdc
Adc

TJ, Tstg

6
7
10

Adc

45

Watts
wfJC
°c

0.257
-65 to +200

Maximum Lead Temperature for Soldering

Symbol
RSJC
TL

E
:SEATING PLANE

~-D

~i

K

I

-~-F~~

-J~

4

THERMAL CHARACTERISTICS
Characteristic
Thermal Aesistance. Junction to Case

--1
'~'
'r

4- -------

Max
3.9
275

Purposes: l/S" from Cose for 5 Seconds

Unit
°C/W
°c

V': ~

1°.:6 ~ J;------<
H
I "

~

~T II
G

STYLE I.
PIN I. BASE
2. EMITTER
CASE' CO lLECTOR

DIM
B
C

*lndiCBtes JEOEC Reglltered Data

l-

D
E
F

G
H

J
K
P
Q

S
T
U

MILLIMETERS
MAX
MIN
11.94 12.70
6.35 B.64
0.71
0.86
1.91
1.21
24.33 24.43
4.83
5.33
2.41
2.61
14.48 14.99
9.14
1.21
3.86
3.61
8.89
3.68
15.15

-

INCHES
MIN
MAX
0.470 0.500
0.250 0.340
0028 0.034
0.050 0.015
0.958 0.962
0.190 0.210
0.095 0.105
0.510 0.590
0.360
0.050
0.142 0.152
- 0.350
0.145
0.620

All JEOEC Dimensions and and Notes Apply.
CASE 8D'()2

TO·66

1-236

2N6077, 2N6078

*ELECTRICAL CHARACTERISTICS (TC ~ 25 0 C unless otherwise noted.)

I

I

Characteristic

Symbol

Min

Max

275
250

-

-

1.0

-

5.0
0.05
8.0
0.2

-

2.0

12

70

-

0.5

Unit

OFF CHARACTERISTICS
Coliector·Emitter Sustaining Voltage (Table 1)
2N6077
2N6078

Emitter Cutoff Currant
(VBE ~ 6 Vde, IC ~ 0)

lEBO

Collector Cutoff Current
(VCEV ~ 250 Vde, VBE(off) ~ 1.5 Vde)
(VeEV ~ 250 Vde, VSE(off)

Vdc

VCEO(sus)

(lC~2oomA,IB~0)

ICEV

= 1.5 Vde, TC ~ 1250 C)

2N6077
2N6078
2N6077
2N6078
ICED

(VCE ~ 250 Vde, VBE(off) ~ 1.5 Vde)

mAde

-

Collector Cutoff Current
2N6077

mAdc

mA

ON CHARACTERISTICS
DC Current Gain
(lC = 1.2 Ade, VCE = 1 Vde)

-

hFE

Collector-Emitter Saturation Voltage

VCE(sati

(Ie = 1.2 Ade, 18 ~ 0.2 Adc)

2N6077
2N6078
2N6077
2NS078

(Ie = 3 Ade, IB ~ O.S Ade)
(Ie = 5 Adc, 18 ~ 1 Ade)

-

Base-Emitter Saturation Voltage

VBE(sati

(Ie = 1.2 Ade, 18 = 0.2 Adc)

2N6077
2N6078
2N6077
2NS078

(lC = 3 Ade, IB = 0.6 Ade)
(lC = 5 Ade, 18 = 1 Ade)

Vdc

1.0

-

3.0

-

1.6

Vdc

-

1.9

-

2.0

-

0.75

DYNAMIC CHARACTERISTICS
Current-Gain - Bandwidth Product
(Ie

=200 mAde, VCE =10 Vdc, f

es ~ 1.0 MHz)

SWITCHING CHARACTERISTICS
Resistive Load (Table 1)

I

Rise Time

Storage Time
Fall Time

-'I

(VCC ~ 250 Vde, IC = 1.2 Ade.
181

~

tr

182 = 200 mAde = 100 p.s,

t.

DutY Cycle'; 2.0%)

tf

-

p..

5.0

p.s

0.75

p..

* Indicates JEDEC Registered Data

FIGURE 1 - ACTIVE-REGION SAFE OPERATING AREA

1L

'"

10
7
5
3

50,1.18

100J,ls
" 200ps

::!.

~
a
_

'"

~

1
O. 7
5
o.
O.3

~

0.2 SECOND BREAKDOWN LIMITED

30b~.
1

1,\

m.

BONDING WIRE L1MITED-- - - 1,\
O. 1 THERMALLY LIMITED@TC"250 C---- 1,\
101
8 0.07
u· o.o5
- 0.0 3
100 ms
0.02
2N6078
d~t
2N6071
0.0 1
20 30 50 70 100
200 300 5007001000
5 7 10
1

~

m.

There are two limitations on the power handling ability of a
transistor: average junction temperature and second breakdown.
Safe Operating area curves indicate IC~V CE limits of the transistor
that must be observed for reliable operation; ;.e., the transistor
must not be subjected to greater dissipation than the curves
indicate.
The data of Figure. 12 and 13 is basad on T C = 250 C; T J(pk)

is variable depending on power level. Second breakdown pulse
limits are valid for dutY cycles to 10% but must be derated for

temperature"according to Figure 1.

fill

VCE. COLLECTOR·EMITTER VOLTAGE (VOLTS)

1-237

III

PNP

NPN

2N6107 2N6288
2N6109 2N6290
2N6i1112N6292

III

®

COMPLEMENTARY SILICON PLASTIC
POWER TRANSISTORS

7 AMPERE
POWER TRANSISTORS
COMPLEMENTARY SILICON

designed for use in general-purpose amplifier and switching
applications.
• DC Current Gain Specified to 7.0 Amperes
hFE = 30-150 @ IC = 3.0 Adc - 2N6111, 2N6288
= 2.3 (Min) @ IC = 7.0 Adc - All Devices
•

Collector-Emitter Sustaining Voltage VCEO(sus) = 30 Vdc (Min) -2N6111, 2N6288
= 50 Vdc (Min) - 2N6109, 2N6290
= 70 Vdc (Min) - 2N6107, 2N6292

•

High Current Gain - Bandwidth Product
fT =4.0 MHz (Min) @ Ie =500 mAdc - 2N6288, 90, 92
= 10 MHz (Min) @ Ie" 500 mAdc - 2N6107, 09,11

•

TO-220AB Compact Package'

•

TO-66 Leadform Also Available

MOTOROLA

30-50-70 VOLTS
40 WATTS

,

*MAXIMUM RATINGS
Rating

Symbol

2N6111
2N6288

2N6109
2N6290

VCEO
Vca
VEa

30
40

50
60

Collector·Emitter Voltage
Collector-Base Voltage
Emitter-Base Voltage
Collector Current Continuous
Peak
Base Current

...

IC

.
..

la
Po

Total Power Dissipation
@TC=250C
Derste above 25°C
Operating and Storage Junction
Temperature Range

2N6107
2N6292
70
ao

5.0
7.0
10

..

3.0

•

...

40
0.32

_ - 6 5 to + 1 5 0 -

TJ, T stg

THERMAL CHARACTERISTICS
Characteristic

Unit
Vdc
Vdc
Vdc
Adc
Adc
Watts
wl"c
°c

=1r

J
STYLE 1:

'"
20

frn

L-1
j'Lft
o-ll-

-l-il-J
i!- R

L

G

~

N
~~~~~~,

TERS

A~

1"-.

40

WiT

BASE
2. COLLECTOR
3. EMITIER
4. COLLECTOR

!'....

..... ~

60

80

""

100

B

9.

C

4

D
F
G
H
J
K
L
I

~

o
o

C

PIN 1.

FIGURE 1 - POWER DERATING

0

S

t-tfl~ ';~ '-t

Thermal Resistance, Junction to Case
'Indicates JEDEC Registered Data

0

r Bl.-l

f
Ir~

Q

R

!'...

120

S

T
U

t'...

140

V
160

Z

0
3
2
279
036
1270
114
483
254
2.04
1.14
5.97
0.00
1.14

IICHES

MAX

MIN

MAX

1575
10.29
482
0.89
373
267
393
056
1427
139
533
3.04
2.79
1.39
8.48
1.27

0575
0.380
0160
0025
0142
0095
0110
0014
0500
0045
0190
0100
0080
0045
0.235
0.000
0.045

0.620
0405
0190
0035
0147
0105
0155
0022
0562
0055
0.210
0120
0.110
0.055
0255
0.050

2.03
CASE 221A'()2
TQ-220AB

Te. CASE TEMPERATURE lOCI

1-238

0.080

2N6107, 2N6109, 2N6111 PNP, 2N6288, 2N6290, 2N6292 NPN

-ELECTRICAL CHARACTERISTICS

(TC - 26°C unle.. otherwise noted)
Min

MI.

30
50
70

-

-

1.0
1.0

-

100
100
100
2.0
2.0
2.0

30
30
30
2.3

150
150
150

VCE(s.,)

-

3.5

Vdc

VBE(on)

-

3.0

Vdc

Unit

OFFi:HARACTERISTICS
Coliector·Emltter Sustlining Voltlgo (1)
(lC ~ 100 mAde, IS - 0)

Collector Cutoff Current
(VCE - 20 Vde, IS = 0)
(VCE - 40 Vde, IS = 0)
(VCE - 60 Vde, IS = 0)

mAde

ICED
2N6111,2N6288
2N6109,2N6290
2N6107,2N6292

Collector Cutoff Current
(VCE = 40 Vde, VES(off)
(VCE =60 Vde, V ES(off)
(VCE = SO Vde, VES(off)
(VCE = 30 Vde, VES(off)
(VCE = 50 Vde, VES(off)
(VCE = 70 Vdc, VES (off)

r.o

ICEX

2N6111,2N628S
= 1.5 Vdc)
2N6109,2N6290
= 1.5 Vde)
2N6107,2N6292
= 1.5 Vde)
= 1.5 Vdc, TC = 150°C) 2N6111, 2N6288
= 1.5 Vdc, TC = 150°C) 2N6109, 2N6290
= 1.5 Vdc, TC = 150°C) 2N6107, 2N6292

Emitter Cutoff Current
(V SE

Vde

VCEO(sus)
2N6111,2N6288
2N6109,2N6290
2N6107,2N6292

lEBO

= 5.0 Vdc, IC = 0)

"Adc

1.0

I

\

mAde

j

mAde

ON CHARACTERISTICS (1)

DC Current Gain
(lC
(lc
(lc
(lC

2N6107,2N6292
2N6109,2N6290
2N6111,2N6288
All Devices

Collector-Emitter Saturation Voltage
(lC

= 7.0 Adc, IS = 3.0 Adc)

Base-Emitter On Voltage
(lc

-

hFE

=,2.0 Adc, VCE =4.0Vdc)
= 2.5 Adc, VCE = 4.0 Vdc)
= 3.0 Adc, VCE = 4.0 Vde)
= 7.0 Adc, VCE = 4.0 Vde)

-

I

il

Ij

II

= 7.0 Adc, V CE = 4.0 Vdc)

',1

OYNAMIC CHARACTERISTICS

Current Gain - Bandwidth Product (2)

MHz

fT

(IC = 500 mAdc, VCE = 4.0 Vdc, f test = 1.0 MHz)
2N6288, 90, 92
2N6107,09,11

Output Capacitance

4.0
10

-

Cob

-

250

pF

hfe

20

-

-

(VCB = 10 Vdc, IE = 0, f = 1.0 MHz)

Small-Signal Current Gain
(lC = 0.5 Adc, VCE = 4.0 Vdc, f = 50 kHz)
·Ind,cates JEDEC ReglStired Dati.
(, )Pul.e Test: Pulse Width .. 300 I'S, Duty Cycle .. 2.0%.
(2)fT = I hie Ie f test

FIGURE 3 - TURN·ON TIME

FIGURE 2 - SWITCHING TIME TEST CIRCUIT
2.0
VCC
+30 V

0.7
0.5

RC
RB

TJ - 250 C
VCC=30V
ICIIB = 10

1.0

SCOPf

~ 0.3
~

0.2

t=
.,
51

·4V
RB and RC VARIED TO OBTAIN DES1REO CURRENT LEVELS
01 MUST BE FAST RECOVERY TYPE, ,g'
MBD5300 USED ABOVE IB =100 mA
MSD6100 USEO BELOW IB =100 mA

"-

O. 1

tr. tf!S10 ns
OUTY CYCLE = 1.0%

........

....... r-.....
........

-

If

I--'"'

Id@ VBE(oft) ~ 5.0 V

0.07
0.05
0.03
0.02
0.07

1-239

0.1

0.2

0.3
0.5
1.0
2.0
IC, COLLECTOR CURRENT (AMP)

3.0

5.0 7.0

2N6107, 2N6109, 2N6111 PNP, 2N6288, 2N6290, 2N6292NPN

FIGURE 4 - THERMAL RESPONSE

c
~

i
w
u

10
1
5

o ~ 05

,

3
0.2

o. 2

~

i

t;

0.1
1
~ 001 - 005
0.05
002
~ 00 3
a:i 0.02 .-.::
v;
z
l ........
~ 0.0 001
0.02

~
'"

-

:;00-

=+- ~"""

~

w:::
n

I- :::;..

......

,

,

SliG\Emi,
01

005

01

iii
, II [

Plpk)

i

tJUl
-r~~

!

"!Jelt) ~ ,It) ROJe
ROJe ~ 3.125° erw Max
o CURVES APPLY fOR POWER
PULSE TRAIN SHOWN
REAO TIME AT tl
TJ(pk) - Te ~ Plpk) ZOJe(t)

DUTY CYCLE, 0" 11112

10

05

,

r-

~~

r-

20
I,

liill .Ll .1 .1.1 J.lill _Ll .l.l..l..ill
to
100
20
50
200
500
10k

50
TIME (ms)

FIGURE 5 - ACTIVE·REGION SAFE OPERATING AREA
10
1.0
0. 5.0

~
0:
0:

1.0
~ O.1
~ 0.5

a:

LIMITED

t-

-~ BONDING WIRE LIMITED
THERMAL LIMITATION
AT TC' 25°C
(SINGLE PULSE)

g

\.

.......
~dc

are two limitations on the power handling ability of a

transistor: average junction temperature and second breakdown.
Safe operating area curves indicate le·VeE limits of the transistor

i\1.U

1\

that must be observed for reliable operation; i.e., the transistor

must not be subjected to greater dissipation than the curves indicate.
The data 01 Figure 5 is based on T J(pk) • lSo"C; TC is variable

11

depending on conditions. Second breakdown pulse lim1ts are valid

0.5 ms

lor duty cycles to 10% provided T J(pk) ..;; lSo"C. T J(pk) may be
calculated from the data in Figure 4. At high·case temperatures,

2N6! 11. 2N~2882N6109.2N6290
2N6101.2N6292

~ 0.3

O. 1
5.0

Tnere

- ...

.....
SECONO BREAKDOWN

5 2.0
~

5.0 ms

TJ'I50oC

3.0

thermal limitations will reduce the power

1,\

that

can be handled to

values less than the limitations imposed bV second breakdown

1 1
1.0

10

20

30

50

70

100

VCE. COLLECTOR·EMITTER VOLTAGE (VOLTS)

FIGURE 6 - TURN-OFF TIME

. FIGURE 7 - CAPACITANCE

5.0

300
TJ =25°C
VCC·30V
Iclls'lO
IB1' IS2

3.0
2.0

u:

ts

1.0
:; O. 7
~ 0.5

oS
w
u

z

'"
~
u
>-

;::

..; 0.3

o.2

100

r- t- r-:;...

u

r---...

tl

~

0

t:
-I'--

0

o.1
0.07
0.05
0.07 0.1

1

TJ~25JC - r-t-

200

r-

30

0.2 0.3
0.5
1.0
2.0
IC. COLLECTOR CURRENT (AMP)

3.0

5.0

7.0

0.5

1.0

2.0

3.0

5.0

10

VR. REVERSE VOLTAGE (VOLTS)

1-240

20

30

50

®

NPN
PNP
2N6121 2N6124
2N6122 2N6125
2N6123 2N6126

MOTOROL.A

III
COMPLEMENTARY SILICON PLASTIC
POWER TRANSISTORS
4 AMPERE

... designed for use in power amplifier and switching circuits, packaged in the compact TO·220AB outline. TO-66 lead form also
available.
"MAXIMUM RATINGS

veE a

2N6121
2N6124
45

Collector-Base Voltage

VCB

45

Emitter-Base Voltage

VEB

Rating

Symbol

Collector-Emitter Voltage

Collector Current

Ie

Base Current

'B
PD

Total Power DlsslpatlOn@Tc=250C

Derate above 25°C
Operating and Storage Junction
Temperature Range

TJ, T stg

I
l

45-80 VOLTS
40 WATTS
2N6122
2N612S

12N6123

I

60

60

2N6126
BO

BO

Unit

Vdc
Vdc

5.0
4.0
1.0

Vdc
Adc
Adc

40

1-------

POWER TRANSISTORS
COMPLEMENTARY SILICON

Watts
mW/oC

320

°e

;65 to +150

THERMAL CHARACTERISTICS
Characteristic

Max

Thermal Resistance, Junction to Case

3.12

*ELECTRICAL CHARACTERISTICS (TC '" 2SoC unless otherWise noted)
Characteristic

Symbol

Min

Max

Unit

OFF CHARACTERISTICS
Collector-Emitter Sustalnmg Voltage (1)
(Ie'" 0.1 Adc,IS ",,0)

Vdc
2N6121,2N6124

2N6122.2N612S
2N6123.2N612B

Collector Cutoff Current

mAde

Collector Cutoff Current
(VeE = 45 Vdc, VEBloff)
(VeE = 60 Vdc, VEBJoffl

2N6122.2N6125
2N6123,2N6126

mAde
=

1.5 Vdcl

= 1.5 Vdcl

(VeE = 80 Vdc, VEB(off) '" 1.5 vdcl
(VeE = 45 Vdc, VESloffl = 1.5 Vdc,

TC

1.0
10
1.0

2N6121,2N6124

(VeE'" 45 Vdc, IS '" 0)
(VeE = 60 Vdc, IS '" 0)
(VeE = 80 Vdc, 's = O)

125°C)
(VeE = 60 Vdc, VESloff) '" 1 5 Vdc,
TC'" 125°C)

0.1
0.1

2N6121,2N6124
2N6122.2N6125
2N6123.2N6126
2N6121,2N6124

0.1
2.0

2N6122,2N6125

2.0

=

(VeE = 80 Vdc, VEBloff) = 1.5 Vdc,
Tc'" 125°C)

Collector Cutoff Current
(Vea = 45 Vdc, Ie = 0)
(Vea = 60 Vdc, Ie '" 0)
(Vea = 80Vdc, Ie '" 0)

(Ie = 4.0 Adc, VeE = 2.0 Vdc)

mAde

leBO

2N6121.2N6124

0.1

2N6122. 2N6125
2N6123.2N6126

0.1

Emitter Cutoff Current
IVSE = 5.0 Vdc, Ie = 0)

ON CHARACTERISTICS
DC Current Gain (1)
(Ie = 1 5 Adc, VeE = 2 0 Vdcl

2.0

2N6123, 2N6126

0.1
1.0

'Eao

mAde

STYLE 1:
PIN 1.
2.
3.
4.

BASE
COLLECTOR
EMITTER
COLLECTOR

-....

IETERS

DIM -':

T

2N6126,2N6124'
2N6122,2N6125
2N6123,2N6126

B

C
D

2N6121.2N6124
2N6122,2N6125
2N6123.2N6126

F
G
H

J

Collector-Emitter Saturation Voltaga 11l
lie = 1.5 Adc. IS"' 0.15 Adcl
(Ie = 4.0 Adc, la = 1.0 Adcl
Base-Emitter On Voltage (1)
fie = 1.5 Adc, VeE'" 2.0 Vdcl
DYNAMIC CHARACTERISTICS
Small-Signal Current Gain
lie = 0.1 Adc, VCE = 2.0 Vdc, f = 1.0 kHzl
Current-Gain-8andwidth Product
lIC = 1.0 Adc, VeE'" 4.0 Vdc, f = 1.0 MHz)

K
L

•
Q

R

S
T
U

V

Z

241
279
0.36
1270
1.14
4.B3
2.54
204
1.14
5.97
0.00
1.14

INCHES

MAl

MIN

MAX

15.75
10.29
4.82
0 B9
373
267
3.93
0.56
14.27
1.39
533
304
2.79
1.39
6.48
1.27

0575
03BO
01BO
0 025
0142
0095
0110
0014
0.500
0.045
0190
0.100
0.080
0.045
0.235
0.000
0.045

0.620
0.405
0.190
0.035
0147
0105
0.155
0.022
0.562
0055
0210
0120
0.110
0.055
0.255
0.050

2.03
CASE 221A-lI2

(1 lpulse Test: Pulse Width ~300 1'5, Duty Cycle <':2.0%.
• Indicates JEDEC Registered DaUi.

TO-220AB

1-241

O.OBO

'2N6121,2N6122,2N6123,NPN,
2N6124,2N6125, 2N6126, PNP

FIGURE 1 - DC CURRENT GAIN
10
TJ = 1500 C

ffi ~:~
::;

i

3.0

-

~ 2.0

z
~ 1.0

!;;
~

- - '-

-- t-_ - -

N

1-1

-

-

It

VCE - 2,0 V I - ,VCE 10V I - -

r- ~:::::

~

0,)

0.5

g"

0.3

:

0.2

- 25 0 C

0,1
0,004

0.007

0.01

0,02

0.03

--

r--..

·-550 C

0,05

0,1

0,2

0,3

0,5

2,0

1.0

~

3.0

4.0

IC. COLLECTOR CURRENT (AMP)

FIGURE 2 - COLLECTOR SATURATION REGION

~ 2.0
Q

>
;:;; 1.6

1\

TJ = 250 C

~

~ 1.2

~
~

0.8

::l

0.4

"'~

IC = 10 mA

1DOmA

1.0A

3,0 A

\

II
II

r-..

8

\

\

\
\

...... r-

i'-.

~

>

0,05 0,07

0,1

0,1

0,3

0,5

0')

1.0

2.0

5,0 7,0
10
3,0
lB. BASE CURRENT (mA)

I I

1.2

''"~"

0.8

o
>

VBE(sat) @ICIIB,l)O

~

300

500

III

VCE(sat)@IC/IB= 10
0,02 0,030,05
0.1
0.2 0,3 0,5
1.0
IC. COLLECTOR CURRENT (AMP)

+1.0

w
~

IL

'OV for VCE(sat)

t(I,5

V

-0.5

I-

~1-l.0

III
0,01

200

,/

<3

VB @VCE-2.0V

0,4

0.005

i

/

w

100

TJ = -65 0 Cto +1500 C

.§. +1.5
~

c5

70

11ppLJslFb~ II C/IBI.;; lF~I~

~ +2.0
:;;
~

~

50

+2.5

TJ = 250 C

1,6

30

FIGURE 4 - TEMPERATURE COEFFICIENTS

FIGURE 3 - "ON" VOLTAGES
2.0

20

~

....... 1-"

ITiWL
I II II

-1.5

1-.

i

2,0 3.04,0

1-242

-2.0
-2,5
0.005

0.01

V

0,02 0.03 0.05 0.1
0,2 0.3 0.5
1.0
IC. COLLECTOR CURRENT (AMP)

2,0 3,04.0

2N6121,2N6122,2N6123,NPN,
2N6124,2N6125,2N6126,PNP

FIGURE 5 - COLLECTOR CUT·OFF REGION

FIGURE 6 - EFFECTS OF BASE·EMITTER RESISTANCE

103

~ 107
2'"

f--VCE =30 V

......

, ......

r--TJ - 1500C
lr-','

1== Fl00 0C

- -

~ FREVERSE

10-3
-0.4

-0.2

FORWARD=

'CES
+0.1 +0.2

-0.1

=

+0.3

.;j).4

+0.5

+0.6

300

TURN·ON PULSE
Vcc

~

+11 V

13r-

: i:
I

I

----i

-...;::

~

r-..

r--..

140

160

"-

"

<.>

z

~

U

~

C,b

;3 70
·4.0 V

V i n - i - - - ) - T - t3<15ns

I

......

TJU50~ f-

« 100

Cid«C,b

11.;7.0 ns
100<12<5001'S

........

FIGURE 8 - CAPACITANCE

w

RB

APPROX

......

......

~
~

Vm o--'lM-....- I

VEB(Offl--lI--Il

...

200

I

t- - - - -

I r.......

60
80
100
120
TJ. JUNCTION TEMPERATURE (DC)

40

FIGURE 7 - SWITCHING TIME EQUIVALENT CIRCUIT

Vm 0

IC=10xICES

(TYPICAL ICES VALUES
OBTAINED FROM FIGURE 5)

VBE. BASE·EMITTERVOLTAGE (VOLTSI

APPRO
AX
~IV

VCE = 30 V

......

IC=2x ICES

!==25 0C

-0.3

r.......

IC~ICES

f

1==

r--..

50
Ccb

I
12

I-

DUTY CYCLE ~ 2.0%
APPROX -S.O V

TURN·OFF PULSE

30
0.1

I
0.2 0.3

RB AND RC VARIED TO OBTAIN DESIRED CURRENT lEVELS

2.0 3.0 5.0
0.5
1.0
VR. REVERSE VOLTAGE (VOLTSI

20 3040

10

Ii

Reverse all polarities and diode
for PNP transistors.
FIGURE 10 - TURN·OFF TIME

FIGURE 9 - TURN·ON TIME
2.0

2.0

1.0

0.7
0.5

1~IIBI_lb= 1=

II

P-

]: 0.3

~ 0.2

TJ= 250C

I,@VCC- 30 V

1=

"1i-

w
::E

;::
-"

0.1
Id@ VEB(offl- 2.0 V

0.07
0.05

0.3

0.5 0.7

1.0

IB"'B~t l -

ICIIB = 10
1;-1, llBli= ~
Tr 25 0C
~

i=

.11
t,@VCC=10V

0.2

O. 1
0.07
0.05

rt+-0.2

r- :,

1,@VCC-30V

]: 0.3

tr@VCC=10V

0.1

II

0.7
0.5

;::

0.03
0.02
0.05 0.07

H-b-.

1.0

2.0

3.0 4.0

IC. COLLECTOR CURRENT (AMPI

1-243

0.03
0.02
0.05

om

0.1

0.2
0.3
0.5 0.7 1.0
IC. COLLECTOR CURRENT (AMP)

2.0

3.0 4.0

2N6121,2N6122,2N6123,NPN,
2N6124,2N6125,2N6126,PNP

RATING AND THERMAL DATA

FIGURE 11 - ACTIVE REGION SAFE OPERATING AREA
0
100/-ls

6:' 5. 0

">-

S

~

i

'"~

~

~
8

'"0
~

'" ,

~lJIs

......

TJ" 150·C

1,\

There are two limitations ,on the power handling ability of a
transistor: peak junction temperature and second breakdown.

1 ms

\

Safe operating area curves indicate I.C~VCE li,mits of the transistor
that must be observed for reliable operation; i.e., the transistor'
must not be subjected to greater dissipation.than the curves indicate.
The data of Figure 11 is based on TJ(pkl = 1500 C; TC is variable

Bonding wire limit

depending on conditions. Second breakdown pulse limits are valid

o.5 t------- Curves apply below rated VCEO

"

for duty cycles to 10% provided T J(pkl"'1S00C. T J(pkl may be
calculated from the data in Figure 12. At high case temperatures,
thermal limitations will reduce the power that can be handled to
values less than the limitations imposed .by second breakdown .

2. 0

I

J

1.0

-

-

Secondary breakdown !tmlt \

Thermal hmlt at TC:= 25°C

JI

I I

.2

I I

o.1

2N6123.2N6126
10
20

5.0

2.0

1.0

J2N6121.2N6124

111~N6122.2N6125

tt- r1'~
100

50

VCE. COLLECTOR·EMITTER VOLTAGE (VOLTSI

FIGURE 12 - THERMAL RESPONSE

ffiN

1. 0

~ o. 7
..iiio o. 5

~

0-0.5

O.3

-

-::

0.2

~ O.2

f-'"':
-~
~

0.1
O. I
0.01 - 0.05
0.05
- 0.02
%
.... 0.03
>ffi 0.02 .......

~

Plpkl

t.Jl.JL

~

ffi

!

~

0.0 1""'>0.01

~~~

V

n

l-

I

b"

READ TIME AT q

TJ(pkl - TC" P(pkl ZOJC(II

DUTY CYCLE. 0" ,,/12

SljGtE rlLn j

0.02

z"JCIII " rill ROJC
ROJC " 3.12uC/W Max
o CURVES APPLY FOR POWER
PULSE TRAIN SHOWN

0.05

I

G.l

0.2

05

11111
10

2.0

5.0

10

I

I
2G

I I 111111
5G

100

I

J
200

l

I I I II
500

1.0 k

t, TIME (ms)

DESIGN NOTE: USE OF TRANSIENT THERMAL RESISTANCE DATA

~~R~

n' n'

------II

---1

I

II

I

I

~

i

'-----

I

1---1/1 ---'----l

11
DUTY CYCLE D' 11·I"tp
PEAK PULSE POWER' Pp

A train of periodical power pulses can be r'epresented by the model
shown in Figure A. Using the model and the device thermal respo~se, the normalized effective transient thermal resistance of
Figure 12 was calculated for various duty cycles.
To find 6JCltl. mulliply ,he value obtained Irom Figure 12 by
the steady state value 8 JC.
Example:
The 2N6121 is dissipating 50 watts under the following conditions: t1 ~ 0.1 ms. tp = 0.5 ms. (D = 0.21.
Using Figure 12. at a pulse width of 0.1 m$ and D = 0.2. the
reading ofr(t1. DI is 0.27.
The peak rise in junction temperature is therefore:
"T = rltl X Pp X 6JC = 0.27 X 50 X 3.12 = 42.20C

1-244

®

2N6186
thru
2N6189

MOTOROLA

10 AMPERE

MEDIUM-POWER PNP SILICON TRANSISTORS

POWER TRANSISTORS
• PNP SILICON

· .. designed for switching and wide·band amplifier applications.
•

Low Collector-Emitter Saturation Voltage VCE(sat) ~ 1.2 Vdc (Max) @ IC ~ 10 Adc
• DC Current Gain Specified to 5 Amperes
• Excellent Safe Operating Area
• Packaged in the Compact, High Dissipation TO-59 Case

SO-100VOLTS
60 WATTS

• Isolated Collector Configuration
• Complement to NPN 2N5346 thru 2N5349

-MAXIMUM RATINGS
Collector~Emitter

Rating

Symbol

Voltage

VCEO
Vce
VEe
IC
Ie

Collector-ease Voltage
Emltter-ea.e Voltage
Collector Current - Continuous
Base Current

Total Device Dissipation@ TC ~ 250 C

Po

Derate above 2SoC
Operating and Storage Junction
Temperature Range

TJ, T,tg

2N6186
2N6187

2N6188
2N6189

80
SO

100
100

Unit
Vdc
Vdc
Vdc
Adc
Adc
Watts
mWf'C
°c

6.0
10
2.0
60
343
-65 to +200

STYLE I:
PIN 1. EMITTER
2. BASE
3. COLLECTOR

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case

I Symbol I
I 8JC I

I
I

Max
2.91

Unit
°elW

*lndTcate. JEDEC Registered Data.

FIGURE 1 - POWER-TEMPERATURE DERATING CURVE

60

;n
l-

i

"'"i"-... ~

50

z

40

~
....
en

30

0

'"C
a:
w

3:

20

....0

....ci

10

20

40

DIM

"

........

.....

""

140
60
100
120
80
TC, CASE TEMPERATURE (OC)

B
C
E
G
H
J

11
L

N
p

........

Q

.......

160

~

180

200

R
S

T

MILLIMETERS
MIN
MAX

10.77
8.13
.2.29
4.70
10.16
14.48
2.29

4.14
1.02
8.08
4.212
9.65

11.10
11.89
3.81
5.46
1.98
11.56
19.38
2.79
6.35
4.80
1.65
9.65
4.310
11.10

INCHES
MIN
MAX
0.424 0.437
0.320 0.468
0.090 0.150
0.185 0.2 5
0.078
D.400 0.455
0.570 0.763
0.090 0.110
0.250
0.163 0.189
0.040 0.065
0.318 0.380
0.1658 0.1697
0.380 0.437

All JEDEC dimenSIons and notes apply

Collector isolated from cast.

CASE 160-03
TO-59

1-245

2N6186 thru 2N6189

*ELECTRICAL CHARACTERISTICS (TC = 25 0 C, unless otherwise noted)

I

I

Min

Max

80
100

-

-

100
100

2NS18S,87
2NS188,89

-

10
10

2NS18S,87

-

1.0

-

1.0

-

10

-

100

30
60
30
60
20
40

120
240

-

0.7
1.2

-

1.2
2.0

30

-

-

300

-

1250

-

100

Characteristic

Symbol

Unit

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage (1)
(lC = 50 mAdc, IS = 0)
Collector Cutoff Current
(VCE = 75 Vdc, IS = 0)
(VCE = 90 Vdc, IS = 0)
Collector CUfoff Current
(VCE = 75 Vdc, VE8(off)
(VCE = 90 Vdc, VES(off)
(VCE = 75 Vde, VEB(off)
TC = 150°C)
(VCE = 90 Vdc, VBE(off)
TC= 150°C)

Vdc

VCEO(sus)
2NS18S,S7
2NS188,89
ICEO

"Adc

2NS186,87
2NS188,89

"Adc

ICEX
= 1.5 Vdc)
= 1.5 Vdc)
= 1.5 Vdc,

mAdc

= 1.5 Vdc,
2NS188,89

Collector Cutoff Current

"Adc

ICBO

(VCB = Rated VCB,IE = 0)
Emitter Cutoff Current
(VBE = S.O Vde, IC = 0)

"Adc

lEBO

ON CHARACTERISTICS (1)
DC Current Gain

-

hFE
2NSI86,88
2NS187,89
2N6186,88
2N6187,89
2N6186,8B
2N61B7,89

(lC = 0.5 Adc, VCE = 2.0 Vdc)
(lc = 2.0 Adc, VCE = 2.0 Vdc)
(lc = 5.0 Adc, VCE = 2.0 Vdc)

Collector-Emitter Saturation Voltage

-

Vdc

VCE(sal)

(lc = 2.0 Adc, IB = 0.2 Adc)
(lC = 7.0 Ade, IB = 0.7 Adc)

Base-Emitter Saturation Voltage

Vde

VBE(sal)

(lC = 2.0 Ade, IB = 0.2 Ade)
(lC = 10 Adc,lS = 1.0 Adc) ,

DYNAMIC CHARACTERISTICS
Current-Gain-Sandwidth Product (2)
(lC = 500 mAdc, VCE = 10 Vdc, ITest = 10 MHz)

MHz

IT

Output Capacitance

pF

Cob

(VCB = 10 Vdc, IE = 0, I = 100 kHz)

Input Capacitance

pF

Cib

(VBE = 2.0 Vde, IC = 0, f = 100 kHz)

SWITCHING CHARACTERISTICS
Delay Time

(VCC = 40 Vdc, VEB(off! = 3.0 Vde,

td

Rise Time

(lC = 2.0 Ade, IBI = 200 mAde!

tr

Storage Time

(VCC - 40 Vde, IC - 2.0 Adc,

ts

Fall Time

lSI = IB2 = 200 mAde!

If

ns

100

ns

2.0

ItS

200

ns

* Indicates JEOEC Registered Data.
(1) Pulse Tesl: Pulse Width ~ 300 !,S, Duty Cycle ~ 2.0%.
(2) IT = Ihlel. 'Test
FIGURE 3 - TURN-ON TIME

FIGURE 2 - SWITCHING TIME TEST CIRCUIT
2000

+11.6 V

--,

10~
INPUT

r

H---37V

...

,.
>=
--

w

...
B2

tr.tf-

:5

0;

z

<
c::

L.lJ

>-u

wZ
> <:

i=t;;

1.0
0.7
0.5

D - 0.5

0,3

0.2

0.2

SINGLE'fiJL
PULSE Plpkl

j

0.02

w"

<'"

I-

1l!>- 0.03

'"

,....f- ~

0.05

~ o. 1
w~
0< 0.07
N " , 0.05
::Ow

0.02
0.01
0.01

~~

0.01

......

SINGLE PULSE

......

II II

0.1

0.05

0.2

o CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME AT 11
TJlpki - TC - Plpkl OJClti

DUTY CYCLE. D -,,/12

I
0.02 0.03

l1li

+-

OJCIII - rill OJC
8JC - 2.91° CIW Max
l
L

:;0..

?

0.1

~U;

tt:

z

0.3

0.5

1.0

2.0

3.0

5.0

! I

10

20

II i
30

50

I I I I I II
100

200 300

500

1000

t. TIME OR PULSE WIDTH Im,I

FIGURE 5 - ACTIVE·REGION SAFE OPERATING AREA
0

I! "

a

,.

ii: 5.0

>-

~

a'"
'"
0

~
S

1.0m,+

de

5

2.0 r---j-t-H-t-t-f-5.0

m,""

F=**i=~J-2000C I , 1'1

1.0

o. 5

:'1 i I

':"-"

~UlSE D1UTY I~CLIE" 10~

I

transistor must not be subjected to greater dissipation than the
curves indicate.

The data of Figure 5 is based on T Jlpk)

"

T J(pk) may be calculated from the data in Figure 4. At high

100 .

FIGURE 7 - CAPACITANCE ••rsus VOLTAGE

FIGURE 6 - TURN-OFF TIME

200a

'~-IB~ !

J,

1000 -

'c/'a - 10
TJ 25°C

1000

........
20a

........

No.
20 V

......

i'-......

100

0.2

0.3

-

700

z
<

500

w

......

Ij@VCC-BOV

>-

u

~

.........

1.0
2.0
3.0
0.5
'C. COLLECTOR CURR~NT IAMPI

LI

r-. ......

TJ ': 25°C

Cib

u

r-

r-

300

U

....

50

20
0.1

2000

i

50a

~

case temperatures, thermal limitations will reduce the power that
can be handled to values less than the limitations imposed by
second breakdown.

2N61aa. a9

I

2.0 3.0
5.0
20
30
50
10
VCE. COLLECTOR·EMITTER VOLTAGE IVOLTSI

TC is

are valid for duty cycles to 10% provided TJlpk) <200°C.

VCEO.
BEL:~W
2N61a6. a7
~~III!I~III~CURVESRATEDAPPLY

0.02
1.0

= 200°C;

variable depending on conditions. Second breakdown pulse limits

t,--1c--',~d-H.I

O. 1

~ 0.05

;::

sistor that must be observed for reliable operation; i.e., the

LlMIT~E:'o~~'~!I~

- - - - SECOND BREAKDOWN
- - - BONDING WIRE LIMITED
- - - - - THERMALLY LlMITED@TC- 250C

0.2

There are two limitations on the power handling-ability of a
transistor: average junction temperature and second breakdown.
Safe operating area curves indicate Ie - VeE limits of the tran·

1'-1

200

5.0

10

1-247

100
1.0

.......

....... ~b
2.0

3.0

5.0
10
20
30
VR. REVERSE VOLTAGE (VOLTSI

50

100

2N6190

®

thru

2N6193

-

MOTOROLA

5 AMPERE

MEDIUM-POWER PNP SILICON TRANSISTORS

POWER TRANSISTORS

· .. designed for switching and wide band amplifier applications.
Low Coliector·Emitter Saturation Voltage VCE(sat) = 1.2 Vdc (Max) @ IC = 5.0 Amp

PNP SILICON

•

DC Current Gain Specified to 5 Amperes

•

Excellent Safe Operating Area

8().100 VOLTS
10 WATTS

•

Packaged in the Compact TO·39 Case for Critical Space Limited
Applications

•

• Complement to NPN 2N5336 thru 2N5339
*MAXIMUM RATINGS
Symbol

2N6190
2N6191

2N6192
2N6193

VCEO

80

100

Vdc

Coliector·Base Voltage

VCB

80

100

Vdc

Emitter-Base Voltage

VEB

6.0

Vdc

IC

5.0

Adc

Base Current

IB

1.0

Adc

Total Device Dissipation@TC =25°C

Po

10

Watts

57.1

mWI"C

TJ. Tstg

-65 to +200

°c

Rating

Collector-Emitter Voltage

Collector Current - Continuous

Derate above 25°C

Operating and Storage Junction
Temperature Range

Unit

THERMAL CHARACTERISTICS
Characteristic

Max

Thermal Resistance, Junction to Case

17.5

*Indicates JEOEC Registered Data.

FIGURE 1 - POWER-TEMPERATURE DERATING

10

i

8.0

z

o 6.0

~

" '"

STYLE 1
PI N 1. EMITTER

r"-..

2 BASE
3 COLLECTOR

i'..

i:i
~

w
3t

DIM

~

A
B

"

4. 0

C
0

......

...o

~ 2.0

E
F
G
H

"

J
K

..........
............

40

80

120

160

200

L
M
P
Q

R

MilliMETERS
MI. MAX
8.89 9.40
'.00 8.51

6.10

INCHES
MAX

MI.

~
~
~
~

660

0.406 0.533
0.229 3.18
0.483
0.'
. . 3 5,33
0.711 0.864
D.77 1.02
12.10
635

~
~
~

~

-

460 NOM

1.21
90° NOM

2."

-

0'
0.100

i;
-

AIIJEDEC dimensions.nd notes apply.

Te. CASE TEMPERATURE (DC)

CASE 79·02

Safe Area Curves are indicated by Figure 5. All limits are applicable and must be observed.

1-248

10-39

2N6190 thru 2N6193

• ELECTRICAL CHARACTERISTICS ITC = 250C unre.. othe,w;,. noted I
Characteristic

Symbol

Max

Min

Unit

OFF CHARACTERISTICS
Collector-EmltterSust8lnlng Voltage (1)
(Ie = 50mAdc,Ie '" 0)

VCEO(sus}
2N6190,2N6191
2N6192,2N6193

Collector Cutoff Current
(VeE" 75 Vdc, 'e .. 01
(VeE = 90 Vdc. 18 = OJ

80
tOO
/-lAde

'CEO
2N6190,2N6191
2N6192,2N6193

Collector Cutoff Current
(VeE'" 75 Vdc, VSEloffl = 1.5 Vdc)

100
100
/JAde

'CEX

(VeE = 90 Vdc, VSE(offJ '" 1 5 Vdc)

(VeE = 15 Vdc, VSE(offl = 1 5 Vdc,
TC"" 15QOCI
(VeE = 90 Vdc. VSEloffl = 1 5 Vdc,

2N6190.2NG191
2N6192.2N6193
2N6190, 2N6191

1.0

2N6192,2N6193

1.0

2N6190,2N6191
2N6192. 2N6193

10

10
10
mAde

TC = tSOOC)
Collector Cutoff Current
(Ves = 80 Vdc, Ie = 0)

/JAde

(VCB = 100 Vdc,le '" 0)

10

Emitter Cutoff Current
(VeE = 6.0 Vdc, Ie = 01

/JAde

100

!i

ON CHARACTERISTICS (1)
DC Currant Gain
(Ie = 500 mAde, VeE = 2.0 Vdc)

I'

2N6190, 2N6192
2N6191,2N6193
2N6190, 2N6192
2N6191.2N6193
2N6190,2N6192
2N6t9t,2N6193

(Ie = 2.0 Adc. VCE = 2.0 Vdc)
(lC = 5.0 Adc. VeE = 2.0 Vdc)

Ii

120
240

Collector-Emitter Saturation Voltage
(lC '" 2.0 Adc, 's = 0.2 Add
(lC = 5.0 Adc, '8 = 0,5 Adcl

0.7
1.2

Base-Emitter Saturation Voltage
HC a. 2.0 Adc, Ie = 0.2 Adc)
(lc = 5.0 Adc, IS = 0.5 Adc)

1.2
1.8

"'I
I:
Vdc

I

Vdc

I

I

DYNAMIC CHARACTERISTICS

Current-Gain·8andwidth Product <:ft.'
tiC = 0.5 Adc, VCE = 10 Vdc, trest = 10 MHd

MH,

Output Capacitance
(Vce'" 10 Vdc, IE '" 0, f = 100 kHz)

300

Input Capacitance
(Vse '" 2.0 Vdc, Ie = 0, f .. 100 kHz)

1250

II
II
I

SWITCHING CHARACTERISTICS

Delay Time
Rise Time

(Vee

40 Vdc, VSEloff) '" 3.0 Vdc,

Storage Time
Fait Time

1Vee '" 40 Vdc,

100

'e =- 2.0 Adc, ISl '" 0.2 Adc)

'Indlcates JEDEC Registered Data.
(1) Pulse Teu: PulseWidth!'E300 jJ.s, Duty
12) fT = I hfe"

.'

"'"
2.0

IC 2.0 Adc,
ISl = IS2 = 0.2 Adc)

~u

fTest

FIGURE 3 - TURN ON TIME
2000

+11.6 V

VCC

I

1000

-40 V

I

1--

62

37V

••

.

tr. tf<: 10ns
D.C. =1.0%

r

20

]:

.

, ,,

t;@IVCC-20V

......

w 200

......~

;::

S2

IC/IS = 10
TJ=25 0C

II

tr@VCC="80V

500

-U=0V

...

I

Cycle~2.0%

FIGURE 2 - SWITCHING TIME TEST CIRCUIT

10",
INPUT
PULSE

I

100
0

IN914

lJjV.IT(Off)1 3."(

20
0.G5

+2.3 V

II II

0.1

I
0.2

0.3

0.5

1.0

IC. COLLECTOR CURRENT (AMP)

1-249

2.0

3.0

5.0

2N6190 thru 2N6193

FIGURE 4 - THERMAL RESPONSE
1.0

~

'="

z
«

LoW
o-u

>~

o.7
o. 5

0-0.5

0, 3

0.2

o. 2

5~
tt: ~

0, 1

0«

0.07

0.1

~

~

ffi

0.0 5
0.03

I-

~

0,02

SINGLE
PULSE

0.02

w~

«'"

::;0,

0.05

w~

W:e

+:

....-

-

SINGLE PULSE

0.05

0.1

TJ(pk)

0.3

0.5

2.0

1.0

3.0

5.0

II i

I I

II II

0.2

o CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
REAO TIME AT.,
TC - P(pk) 9JC(I)

OUTY CYCLE. 0 - .,/12

I
0.02 0.03

k)

t~

0.01

-E
0.0 1
0.01

'JlJl

l

9JCII) - ,II) 9JC
6JC == 17.5 0 eM Max

10

20

30

50

I I I I I II I
100

200 300

500

1000

t, TIME OR PULSE WIDTH (ms)

FIGURE 5 - ACTlVE·REGION SAFE OPERATING AREA
0

100
1.Oms

5. 0

'"'"5

i:

...

lA"'~

2.01--- I- del
0

5.0

m;;

....

'I. . . r--

"-

TJ - 20lJOC
SECONO BREAKOOWN LlMITEO
BONOING WIRE LlMITEO
THERMALLY LlMITEO@TC'250 C
PULSE OUTY CYCLE';IO%

5

-

2 ___ -

If;! o..1

There are two limitations on the power handling ability of 8
transistor: average junction temperature and second breakdown.

Safe operating area curves indicate Ie - VeE limits of the transistor that must be observed for reliable ooeration; i.e., the
transistor must not be subjected to greater dissipation than the
curves indicate.

The data of Figure 5 is based on. TJ(pk) ~ 200"C; TC is
. variable depending on conditions. Second breakdown pulse limits
are valid for duty cycles to 10% provided TJ(pk) < 200"C.
TJ(pk) may be calculated from the data in Figure 4. At high

r--

CURVES APPL Y BE~~

_ 0.05

.I

0.0 2

1

0.0 1
1.0

2.0

3.0

10

5.0

::~;~.~;6El~

case temperatures, thermallimitations w:iII reduce the power that
can be handled to values less than the limitaitons imposed by

1
2N6192.2N6193
20

second breakdown.
100

50

30

VCE. COLLECTOR·EMIITER VOLTAGE IVOLTS)

FIGURE 7 - CAPACITANCE versus VOLTAGE

FIGURE 6 - TURN-OFF TIME
2000
0::;
1000

IB1- IB2
IC IB-l0
TJ"250 C

r--

~

~.

ro .'

~

100

ts

500

!

2000

700

.......
i"-

200

20V

~@VCC

r---r-.

100

BOV

.r-.

500

1'-...

I

-

TI'2JOC

Jib

rt-...

300
200

t--.

0
20
0.05

0.1

0.2

0.3

0.5

1.0

2.0

3.0

100
1.0

5.0

2.0

3.0

5.0

10

2

rt::
30

VR. REVERSE VOLTAGE IVOLTS)

IC. COLLECTOR CURRENT (AMP)

1-250

50

100

®

2N6211
2N6212
2N6213

MOTOROLA

2 AMPERE
MEDIUM-POWER HIGH-VOLTAGE
PNP POWER TRANSISTORS

POWER TRANSISTORS
PNPSILICON

· .. designed for high·speed switching and linear amplifier applications
for high·voltage operational amplifiers, switching regulators, convert·
ers, inverters, deflection stages and high fidelity amplifiers.

225-350 VOLTS
35 WATTS

• Collector· Emitter Sustaining Voltage VCEO(sus) = 225 to 350 Vdc @ IC = 200 mAdc
• Second Breakdown Collector Current Islb = B75 mAdc@ VCE = 40 Vdc
•

tf = 0.6 /.LS Resistive Fall Time

•

Usable DC Current Gain to 2.0 Adc

- u -I- 8 - -

P

4- ------t I

*MAXIMUM RATINGS
Symbol

Rating
Collector-Emitter Voltage

VCEO

Collector-Base Voltage

VCB

Emitter-Base Voltage

VEB

Collector Current

Continuous
Peak

Base Current

IB

Total Power Dissipation @ TC := 25°C
Derate above 25°C
Operating and Storage JUnction
Temperature Range

Po

Unit

225

I

300

350

Vdc

275

I

350

400

Vdc

.
..

IC

E

I 2N6212 12N6213

2N6211

I
I

6
2
5

1

.

35
0.2

..
...

-65 to +200

TJ, T stg

Vdc

Characteristic

I
Adc

°c

Symbol

I

Max

I

Unit

9JC

I

5.0

I

°CIW

FIGURE 1 - FORWARD BIAS SAFE OPERATING AREA

10
5.0

:'5

j
13

'"
0

~

2.0
1.0
0.5
0.2

"'l-

....

10ms
de
),J

- Bondmg Wire Limit
_ _ _ _ Thermal Limit

2oo",s
I ms.......

~.

"
'"
'" '" "

0.1
(Smgle Pulse)
80.05 _ _ _ _ Second Breakdown Limit
E
2N6211
0.02
2N6212
2N6213
0.01
20
100
10
50

a

H

Watts
W/oC

Indicates JEDEC Registered Data.

~

STYLE 1:
PIN 1. BASE
2. EMITTER
CASE' COLLECTOR

Adc

THERMAL CHARACTERISTICS
Thermal Resistance, Junction to Case

SEATING PLANE

INCHES
MILLIMETERS
DIM MIN MAX MIN MAX
8 11.94 12.70 0.470 0.500
6.35 8.64 0.250 0.340
C
D
0.71
0.B6 0.028 0.0 4
E
1.27
1.91 0.050 0.075
F 24.33 '4.43 0.958 0.962
4.83 5.33 0.190 0.210
G
H
2.41
2.67 0.095 0.105
J 14.48 14.99 0.570 0.590
K 9.14
0.360
P
1.27
0.050
Q
3.61
3.86 0.142 0.1 2
S
8.89
0.350
T
3.6B
0.145
U
15.75
0.620
All JEOEC Dimensions and and Notes. AppiV.
CASE 80-02
TO·66

There are two limitations on the powerhandling ability of
a transistor: average junction temperature and second breakdown.
Safe operating arBa curves indicate Ie-VeE limits of the transistor
that must be observed for reliable operation; i.e., the transistor
must not be subjected to greater dissipation than the curves indicate.
The data of Figure 1 is based on T J(pkl

200

500

1000

= 200; TC

is variable

depending on conditions. At high case temperatures. thermal
limitations will reduce the power that can be handled to values
less than the limitations imposed by second breakdown. (See
Figure 81.

VCE. COLLECTOR·EMITTER VOLTAGE {VOLTSI

1-251

2N6211,2N6212,2N6213

..

I

ELECTRICAL CHARACTERISTICS (TC = 25°C unle.. otherwi.. noted)
Characteristic

I

Symbol

Min

Max

225

-

Unit

OFF CHARACTERISTICS
"Collector-Emitter Sustaining Voltage (1)
(lC = 200 mAde, IB = 0)

Vdc

VCEO(sus)
2N6211
2N6212
2N6213

·Collector-Emitter Sustaining Voltage
(lC = 200 mA, VBE = -1.5 V, L = 10 mH)

350

-

275
350
400

-

250
325
375

-

6.0
6.0

-

300

Vde

VCEX(sus)
2N6211
2N6212
2N6213

'Collector-Emitter Sustaining Voltage (1)
(lC = 200 mA, IB =0, RBE = 50 n)

Vde

VCER(sus)
2N6211
2N6212
2N6213

"Emitter-B... Braekdown Voltage 11)
(IE = 0.5 mAde, IC ·0)
(IE = 1.0 mAde,lC =0)

Vde

VEBO

2N6212/13
2N6211

·Collector Cutoff Current

ICEV

(VCE = 250 Yde, VBE(off) = 1.5 Vde, TC
(TC
(VCE = 315 Vde, VBE(off) = 1.5 Vde, TC
(TC
(VCE = 350 Vde, VBE(off) = 1.5 Vde, TC
(TC

= 25°C)
= 100°C)
= 25°C)
= 100°C)
= 25°C)
= 100°C)

Collector Cutoff CUrrent
(VCE = 150 Vde,IB =0)

All Types

·Emitter Cutoff Current
(VEB = 6.0 Vde, IC = 0)

ICEO
lEBO

2N6211
2N6212
2N6213

--

-

mAde

-

0.5
5.0
0.5
5.0
0.5
5.0

-

5.0

-

-

1.0
0.5
0.5

10
10
10

100
100
100

-

-

1.4
1.6
2.0

-

1.4

mAde

mAde

"ON CHARACTER ISTICS (1)
DC Current Gain
(lC = 1.0 Ade, VCE = 2.S Vde)
(lC = 1.0 Ade, VCE = 3.2 Vde)
(lC = 1.0 Ade, VCE = 4'.0 Vde)

-

hFE
2N6211
2N6212
2N6213

Collectof·Emitter Saturation Voltage
(lC = 1.0 Ade, IB = 125 mAde)

VCE(sat)
2N6211
2N6212
2N6213

Base-Emitter Saturation Voltage

All Type.

VBE(sat)

Vde

Vde

(lC = 1.0 Ade, IB - 125 mAde)
DYNAMIC CHARACTERISTICS
·Current Gain-Bandwidth Product (2)
(lC = 200 mAde, VCE = 10 Vdc, f test = 5.0 MHz)

Output Capacitance (Ves = 10 Vde, IE = 0, f = 1.0 MHz) .
",SECOND BREAKDOWN

(VCC = 200 Vde, IC = 1.0 Ade,
IBI = IS2

=0.125 Adc)

*Indicates JEDEC Registered Data.
(1) Pulse Test: Pulse Width" 300 jJ.S, Duty Cycle" 2.0%
FIGURE 2 -SWITCHING TIME TEST CIRCUIT

Output to Oscilloscope
(Tektronix Model No. 543A.

VSS=+6V
Input: Hawlen-Packard

rJiodel No. 214A.

or equlvaient

ijl"-+-+-w,,'----,
-= 100 jJ.F

Input from Pulse Ganerator
(Pulse Duration'" 20 loll.
Rep. Rate .. 200 Hz)

-Adjust RB for IB2 and RC for Ie,
.181 and IB2 measured with Tektronix Current
Probe P6019 and Type 134 Amplifier, or equivalent

1-252

2N6211,2N6212,2N6213

FIGURE 3 - DC CURRENT GAIN
300
200

z

:c

co

...

~
a
u

-

TJ = 160·C
26·C

FIGURE 4 - COLLECTOR SATURATION REGION

-

-'-

VCE" 2.0 V
-Vcp 10V

~~

30
20

-~

~

~'-

0.4

70 100
200 300
600 100 1.0 k
IC. COLLECTOR CURRENT (mA)

~8=

Ii 1100 j '

I If

°0.5

~ +2.0

/

Q

~'02

-

8

20

f

~

26°C

+0.2

+0.1

FORWARD

VCE" 200 V-=-

./

i550~ to\25jC\

-0.4

Ii'" -1.6 evB tor VBE
~
i -2.o ~
2.0

-0.5

30

-,550~1O r~c

I

60

100
,=200v==l

~

!...
~
a

"""

0

'"

~

200 300
5110 100 Uk
10 100
IC. COLLECTOR CURRENT (mA)

:--.. ....
r"-..

"'

60

co

z

~

w

~

,

'"
~
-0.1
-0.2
-0.3
VBE. BASE·EMITTER VOLTAGE (VOLTS)

2.0k

SEC~ND_h

BREAKDOWN DERATING

.........

"'"

TH~;::;ING

40

-0.4

........

.........
20

40

BO

BO

100

120

TC. CASE TEMPERATURE (OC)

1-253

....

.....

20

o
o

-0.6

.... r--..

~

Q

10 1

+0.1

~

\

FIGURE 8':" POWER DERATING

FIGURE 7 - BASE CUTOFF REGION

100
+0.2

-

250C 10 1160C

~ -1.0

w

-2.5

-0.1
-0.2
-0.3
VBE. BASE-EMITTER VOLTAGE (VOLTS)

-"

250C to i150C

+0.5 "evc tor VCE(IIU

~ -0.6

laD -

5110

200

"APPLIES FOR IC/IB" hFEl4

8

REVERSE

100

60

~+1.5

llJOOC

!J 10 I::!!!::

~

10

i'i: +1.0

: 103

'"

5.0

FIGURE 6 - TEMPERATURE COEFFICIENTS

jl04

'"u

I""'

l-

\

2.0

1.0

lB. BASE CURRENT (mAl

+2.6

.;'

\

...... t-

IIII ......

0.2

FIGURE 5 - COLLECTOR CUTOFF REGION

Ii;

600mA
260mA

~

2.0k

106

TJ'16ooC

\

'"

...

50

30

llIOOmA
160mA

~

.\.

~ I~

10
1.0
6.0

0.6

'"

~

....

3.0
20

~J "250\:

Q

;. 0.8

Q

~

~

~

100
r-- _:-560C
10
60

1.0

140

tBO

"'

110

200

2N6233
2N6234
2N6235

®

MOTOROLA

5 AMPERE

HIGH VOLTAGE NPN SILICON TRANSISTORS

POWER TRANSISTORS
NPN SILICON

. useful for high-voltage medium power applications such as
switching regulators.

225.275.325 VOLTS
50 WATTS

•

High Collector-Emitter Sustaining Voltage VCEO(sus) = 225 Vdc - 2N6233
275 Vdc - 2N6234
325 Vdc - 2N6235

•

DC Current Gain - hFE = 25 to 125 - IC = 1.0 Adc

•

Low Collector-Emitter Saturation Voltage
VCE(sat) = 0.5 Vdc (Max) @ IC = 1.0 Adc

•

High Frequency Response - fT = 20 MHz (Min)

•

Fast Switching Times @ 1.0 Adc tr = 0.5 J.ts (Max)
ts = 3.5 J.tS (Max)
tt = 0.5 J.ts (Max)

*MAXIMUM RATINGS
Rating

Symbol

2N623:3 2N6234 2N6235

Unit

VeEO

225

275

325

Vdc

Collector-Base Voltage

Vee

250

300

350

Vdc

Emitter·Base Voltage

VEe

Collector-Emitter Voltage

Collector Current - Continuous

Ie

Peak

Base Current
Total Device Dissipation
Derate above 2SoC

@

TC = 2SoC

-

6.0-

Vdc

_5.0_
_ 1 0 ___

Adc

Ie

-2.0_

Adc

PD

-50-0.286-

Watts

~AU-i

LX ~~_~=11----+--+

II

..

E
SEATING PLANE

K

I
STYLE 1
PIN I. BASE

wloe

--- F- -

Operating and Storage Junction

Temperature Range

-65, to +200

TJ. Tstg

1. EMITTER
CASE COLLECTOR

°e

THERMAL CHARACTERISTICS
Characteristic

Thermal Resistance. Junction to Case
* Indicates JEDEC Registered Data.

FIGURE 1 - POWER TEMPERATURE DERATING

MILLIMETERS
MIN MAX
11.94 12.70
6.35 8.64
C
D
0.71
0.86
1.27
1.91
E
F 14.33 14.43
5.33
G
4.83
2.67
H 2.41
J 14.48 14.99
9.14
K
127
P
a 3.61 3.86
8.89
S
3.68
T
15.75
U

50

0

0

DIM

"""

""

B

f'...
f'-.

1'-..
!'....

0

'"

0

o
o

4{}

80

120

TC. CASE TEMPERATURE lOCI

160

"'"

""

INCHES
MIN MAX
0.470 0.500
0.250 0.340
0.D28 0.034
0.050 0.075
0.958 0.961
0.190 0.110
0.095 0.105
0.570 0.590
0.360
0.050
0.142 0.151
0.350
0.145
0.610

All JEDEC Dlmenslonsand aAd Notes Apply.

200

1-254

CASE 80-02

TO-66

2N6233,2N6234,2N6235

"ELECTRICAL CHARACTERISTICS ITC" 25°C un'e" othe'>

o.4

...'"

-:

0.5 01

0.3

1.0

0.5

...-

l-

t..-

/

II

5.0 1.0

'"~

-0.5

"

-1.0

~

l-

i

5.0 1.0

10

20

-1,5

J

/

d
l-I-

2Ho 10 c

·OVC for VCE(sat)

*
£!i

-3.0

3.0

III
III

w

·2.0

20

1.0

~++11r+r1~:EI3

~ 1.5
~ 1.0
G
0.5

8

I I 11111
o. 2 '-~CEI~t)~ 1~I:sl"151
0
0.2

G 2.5
'1. 20

g

Z

"aw

0.3

FIGURE 7 - TEMPERATURE COEFFICIENTS

-Tp 250C

iii 1.0
~

-

t-lB. BASE CURRENT lAMP)

,-

I I
I I

-

>

20

FIGURE 6 - "ON" VOLTAGE

1.2

I
I~A

\

\

IC. COLLECTOR CURRENT lAMP)

1.4

10A- -

;OA-

O.B

~

........
5.0

r--

/

-S50C to 25°C

h
J.....+'"

250lC10 1150 C

I--

-2.0
-2.5
0.2

OVB for VBE

I-

II
0.3

0.5 0.1

IC. COLLECTOR CURRENT lAMP)

-'

-550C to 250C

I I II
2.0

1.0

3.0

5.0 7.0

10

20

IC. COLLECTOR CURRENT lAMP)

RESISTIVE SWITCHING PERFORMANCE
FIGURE 8 - TURN·ON TIME

3.0k
2.0k

.,.

VCC" 200 V.
ICIIS" 5.0
TJ"250C I - -

r--

tr

~

1.Ok

FIGURE 9 - TURN·OFF TIME

3.0k

700
500

"-

200 V
5.0
IS2
25°C

I\.

"-

~
;:; 1.0 k

,.;::

-

>= 200

30
0.02

Vce
Iclla IBI
TJ"

I,

2.0 k

;:;300
,.

100
10
50

10k
7.0k
5.0k

Id@VaElolI)" 5.0 V

-

700
500

If

"-

300
200
0.5

0.1

0.2

0.5

1.0

2.0

5.0

10

100
0.02

20

IC. COLLECTOR CURRENT lAMP)

0.05

0.1

0.2

t-..

V
0.5

1.0

2.0

IC. COLLECTOR CURRENT lAMP)

1-260

5.0

10

20

®

2N6274
thru
2N6277

MOTOROLA

HIGH-POWER NPN SILICON TRANSISTORS
designed for use in industrial-military power amplifer and
switching circuit applications.
•

High Collector Emitter Sustaining
VCEO(susl = 100 Vdc (Mini = 120 Vdc (Minl= 140 Vdc (Mini = 150 Vdc (Mini -

50 AMPERE
POWER TRANSISTORS
NPN SILICON

Voltage 2N6274
2N6275
2N6276
2N6277

100, 120, 140, 150 VOLTS
250 WATTS

•

High DC Current Gain hFE = 30-120@ IC = 20 Adc
= 10 (Mini @ IC = 50 Adc

•

Low Collector· Emitter Saturation Voltage VCE(satl = 1.0 Vdc (Maxi @ IC = 20 Adc

•

Fast Switching Times @ IC = 20 Adc
tr = 0.35 /lS (Maxi
ts = 0.8 /lS (Max
tf = 0.25 /lS (Maxi

•

Complement to 2N6377-79

'MAXIMUM RATINGS
Rating

Symbol

Cottector·Base Voltage

V
V

Collector-Emitter Voltage

Emltter·Base Voltage

ZN6Z74 ZN6Z75 ZN6Z76 ZN6Z77

140

160

180

Vdc

100

120

140

150

Vdc

V

Collector Current - Continuous
Peak

Unit

120

Ie

6.0

Vdc

50
100

Adc

Base Current

18

20

Adc

Total Device Dlsslpation@Tc==2SoC
Derate above 25°C

Po

250
1.43

Watts
wloe

TJ,T,tg

- - 6 5 to +200---

°e

Operating and Storage Junction
Temperature Range

THERMAL CHARACTERISTICS
O1aracteristic

Thermal Resistance, Junction to Case
• Indicates JEDEC Registered Data.

FIGURE 1 - POWER DERATING
250

~

~z

I"

200

~ 150

~
ill

STYLE 1:
PIN 1. BASE

2. EMITTER

""'"

~ 100

~

E

......

"

50

o
o

" ""-

25

50

I'..

75
100
125
150
TC,CASE TEMPERATURE (OCI

'"
175

"

CASE. COLLECTOR
INCHES
MILLIMETERS
DIM MIN MAX
MIN
MAX
A 38.35 39.37 1.510 1.550
B 19.30 21.08 0.760 0.830
7.62 0.250 0.300
C
6.35
0
1.45
1.60 0.057 0.063
3.43
0.135
E
F
29.90 30.40 1.177 1.197
G 10.67 11.18 0.420 0.440
5.21
5.72 0.205 HI:!20
H
166
17.15 o.m 0.67!
J
K 11.18 12.19 0.440 0.480
Q
3.84 4.09 0.151 0.161
R 24.89 26.67 0.980 1.050

200

1-261

CASE 197·0'

2N6274 thru 2N6277
*ELECTRICAL CHARACTERISTICS

ITC = 25 0 C unless otherwISe noted 1

Characteristic

I

Symbol

Min

Max

100
120
140
150

-

Unit

OFF CHARACTERISTICS

Collector·Emltter Sustaining Voltage \1,

IIc = 50 mAde, IS

Vde

VCEOlsusl
2N6274
2N6275
2N6276
2N6277

= 01

Collector Cuteff Current

-

~Ade

ICED

IVCE = 50 Vde, IS = 01

2N6274

-

IVCE = 60 Vde, IS = 01

2N6275

-

50

IVCE = 70 Vde, IS = 01

2N6276

-

50

IVCE

= 75 Vde,

IB = 01

2N6277

Collector Cutoff Current

50

50

ICEX

-

IVCE = Rated VCB, VEBloffi = 1 5 Vdel
IVCE = Rated VCB, VEBloffl = 1.5 Vde, TC = 1500 CI

Emitter Cutoff Current

lEBO

10

~Ade

1.0

mAde

100

~Ade

IV BE = 60 Vde, IC = 01
ON CHARACTERISTICS (1)
DC Current Gain

-

hFE

IIc = 10 Ade, VCE = 4 0 Vdel
IIc = 20 Ade, VCE = 4.0 Vdel
IIc = 50 Ade, VCE = 4.0 Vdcl
Collector-Emitter Saturation Voltage

IIC

= 20 Ade, 18 = 2.0 Adel

IIc

= 50 Adc, IB = 10 Adcl

VCElsatl

Base-Emitter Saturation Voltage

IIc
IIc

=

50

-

30

120

10

Vdc

-

1.0
3.0
Vdc

VBElsatl

20 Ade, IB = 2.0 Adcl

18

-

3.5

VBElonl

-

1.8

Vde

IT

30

-

MHz

Cob

-

600

pF

tr

-

035

~s

ts

-

080

~s

tf

-

025

~s

= 50 Adc, IB = 10 Adel

Base-Emmer On Voltage

-

lie = 20 Ade, VCE = 4.0 Vdel
DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product (2)

lie

= 1 0 Adc, VCE

= 10 Vdc, f test = 10 MHz!

Output Capacitance
IVCB

= 10 Vde, IE = 0, f = 0 1 MHzl

SWITCHING CHARACTERISTICS
RIse Time
IVCC = 80 Vdc, IC = 20 Adc, IBl

= 2 0 Adc, VBEloffl = 5.0 Vdcl

Storage Time
IVec = 80 Vdc, IC = 20 Adc, IBl = IB2 =. 2 0 Adcl
Fall Time
(Vec = 80 Vdc,IC = 20 Adc, IBl = fB2 = 20 Adcl
Indicates JEDEC Registered Data
(1) Pulse Test
12) fT

~

Pulse Width ~ 300 J,JS, Duty Cycle ::::;;;;2.0%.

Ihfel.fte5t-

FIGURE 2 - SWITCHING TIME TEST CIRCUIT

FIGURE 3 - TURN-ON TIME

2.0
VCC
+tiD V

3O"s~

+2:~~r=l_
-18. 5V

=r--[

Icllk =110 .=

1.0
0.7
0.5

Tr250~

/ ' td@ VSE(offi

RS
10 Ohms

]: 0.3

lN3879

O. 1

tr, tf" 10 ns
Duty Cycle = 0.5%

L

L

;;::....

~ 0.2

>=

:::=:: =::=

5.0V

L
i'..

t r @VCC=80V

.......""",

~

0,07
0.05

-4.0 V

0.03

Note: For informatIOn on Figures 3 and 6, RS and RC were
varied to obtain desired test conditions.

0.02
0.5

1·262

0.7

1.0

5.0 7.0 10
2.0
3.0
IC, COLLECTOR CURRENT (AMP)

20

30

50

2N6274 thru 2N6277

FIGURE 4 - THERMAL RESPONSE
1. 0

O.71--' - 0=0.5
O.5

....
;!
0:_

~ffi

I-N

o. 3

0.2

!2 ~ o. 2

"''''
~~

0.1

. . 0:

~~o.o 7~

~ ~O.O 5
~~

u.. ~O.03

:t cc 0.02

"'"

-~

0.05
0.02

O. 1

0: -

=-

..V

---

1--

~ iiiii

........ II1II

Tnn

p

P(pkl

L'

1tt=:2~

0.01

~IINGLEI PU~SE

II

0.0 1
0.02

0.05

I I I II

II

0.1

0.2

-

DUTY CYCLE, 0 -11/12

:;;:~

8Jc(ll- r(11 8JC
8JC=0.7·oCIWMox III
1_
o CURVES APPLY FOR POWE~_
PULSE TRAIN SHOWN
f- READ TIME AT 11
- fTJ(pkl- TC = p(pkI 8JC(II- f-

0.5

1.0

2.0

5.0
I, TIME Im'l

10

20

50

100

200

1000

500

2000

FIGURE S - ACTIVE REGION SAFE OPERATING AREA
100
0

~

0:: 20

dc~1

TJ - 200 0C

~1 0
~ 5.0

5.0

10

m;,

I-

There are two limitations on the power handling ability of a

1.0 :,-

transistor:

that must be observed for reliable operation; i.e .• the transistor

0: 2. 0
Second Breakdown Limited
:>
~~
'"
1. 0 - - - Bonding Wire Limited
0:
- - -- Thermally limited
5f==F @TC=250C(S,"glePuISflI~
. . . . O.
Curves Apply Below Rated BVCEO

~

must not be subjected to greater dissipation than the curves indicate.
The data of FigureS is based on T J(pkl = 200°C; TC is variable
depending on conditions. Second breakdown pulse limits are valid
for dutv cvcles to 10% provided T J(pkl .;; 200°C. T J(pkl may be
calculated from the data in Figure 4. At high case temperatures,
thermal limitations will reduce the power that can be handled to
values less than the limitations imposed by second breakdown.

r==

J==t:::

o.
8 o. 1
.:lo.o5

0.0 2
0.0 1
2.0

average junction temperature and second breakdown.

Safe operating area curves indicate Ie· VeE limits of the transistor

~
2N6274
2N6275
2N6276
2N6277

3.0

5.0 7.0 10
20
30
50 70 100
VCE, COLLECTOR·EMIITER VOLTAGE (VOLTSI

200

FIGURE 7 - CAPACITANCE

FIGURE 6 - TURN·OFF TIME
10.00 0
7000
5000

5.0
3.0

r---1",1

2.0

-

1.0
]

0.1

IBI = IB2
IcllB = 10
TJ = 25 0C

Cib

3000

r-

~200 0 t - -

'"
'"z

~ 0.5

~

>=

r--...

0.2

......

r- ....

O. 1

100 0
70 0
;3 50 0

~

,....

Ij@VCC=80V

.: 0.3

./

0.7

1.0

5.0 7.0 10
3.0
IC. COLLECTOR CURRENT (AMPI
2.0

20

'-

U 30 0

V

200

0.07
0.05
0.5

J 25°C

30

50

1-263

100
0.1

0.2

0.5

10
20
5.0
1.0
2.0
VR. REVERSE VOLTAGE (VOLTSI

~
50

100

2N6274 thru 2N6277

FIGURE 9 - COLLECTOR SATURATION REGION

FIGURE 8 - DC CURRENT GAIN
1000
700

~CI

VCE -4.0~= ~ ~
---VCE=10V- r-- t-

SOO

G
w

2300

;;:
~ 20O
w

0::
0::

B

....CI

~

'"
~

-

TJ - +ISOoC

0
0

1:'- ...

+2SoC

-

100

SoC

'\ ~

0

O.S

0.7

1.0

2.0 3.0
S.O 7.0 10
IC. COLLECTOR CURRENT(AMP)

20

30

3.2

I I

- L.o'
C

2.4

~

2.0

~

1.6

_

1.2
0.8

III

CI

~

>

>~

3;

......:::

1.2

O.4

II

0
O.S

0.7

2.0
3.0
S.O 7.0 10
IC. COLLECTOR CURRENT (AMP)

1.0

20

II

ISOO~

-'

~
::>

IC = ICES

/J

30

./
/ . ./

~ +2.0

'OVC for VCE(sat)

iiit-

~VB f~r viE

~
50

-2.0
0.5 0.7

1.0

/
/ / ~'
/./

,

,/

....

1-'

2.0 3.0
5.0 7.0 10
IC. COLLECTOR CURRENT (AMP)

20

30

50

FIGURE 13 - BASE CUT-OFF REGION

Tr 150 0 C
10 I

lO~oC

/

./
2SoC

J

'(f

+4.0

!;;:

1000C . /

/.

10

1/

VCE = 100V-

./

I I

- - - - -55°C to +25 0C
- - - +2SOCto+150oC

FIGURE 12 - COLLECTOR CUT-OFF REGION

TJ=

5.0

2.0

8

,

I

0.1
0.2
0.5
1.0
lB. BASE CURRENT (AMP)

G

~CE(..t) r-- ./~IC/:B.=lOl- I

VBE@VCE = 4.0 V

0.05

§ +6.0

/

I

V-

~B(E(.. t) @ IcllB = 10

o.8

+10

'"ffi +8.0

II

§

A

CI

0.02

.5

,J

w

......

"-

'Applies for ICIIB < hFE/41
1 il
1 I'
'1- I

8

/

~ 2.0

!3

+12

I
V

2! 1. 6

\

FIGURE 11 - TEMPERATURE COEFFICIENTS

TJ = 2SoC

2.4

~JUs!J

III
JJ~

IDA

.........

FIGURE 10 - "ON" VOLTAGES
2.8

J.ol ~

\

~ 0.4
....
>
0
0.01

50

A

2.8

o

'\

10

3.6

ffi

'~"

.~

30

4.0

0

-

VCE=IOOV_

./
I

./

250C
10-2

I

~Reirs.

10-2
-0.1

FOIWl'd........

o

+0.1
+0.2
+0.3
VBE. BASE·EMITTER VOLTAGE (VOLTS)

::;::R,verse
+0.4

1-264

10-3
-0.1

Forward

o

+0.1
+0.2
+0.3
VBE. BASE·EMITTER VOLTAGE (VOLTS)

+0.4

®

2N6282 thru 2N6284 NPN
2N6285 thru 2N6287 PN P

MOTOROLA
DARLINGTON COMPLEMENTARY
SILICON POWER TRANSISTORS

. designed for general·purpose amplifier and low·frequency switching
applications.

1111

DARLINGTON
20 AMPERE
COMPLEMENTARY SILICON
POWER TRANSISTORS
60,80, 100 VOLTS
160 WATTS

•

High DC Current Gain @ IC = 10 AdchFE = 2400 (Typ) - 2N6282, 2N6283, 2N6284
= 4000 (Typ) - 2N6285, 2N6286, 2N6287

•

Collector· Emitter Sustaining VoltageVCEO(sus) = 60 Vdc (Min) - 2N6282, 2N6285
= 80 Vdc (Min) - 2N6283, 2N6286
= 100 Vdc (Min) - 2N6284, 2N6287

•

Monolithic Construction with Built·ln Base-Emitter Shunt
Resistors

*MAXIMUM RATINGS
Rating

Symbol

2N6282
2N6285

2N6283
2N6286

2N6284
2N6287

Unit

VeEO

60

80

100

Vdc

Collector-Base Voltage

VeB

60

80

100

Vdc

Emitter-Base Voltage

VEB

5.0

Vdc

Ie

20
40

Adc

Collector·Emitter Voltage

Collector Current - Continuous

Peak
Base Current

IB

0.5

Adc

Total Device Dissipation @TC= 25°C

Po

160
0.915

Watts

WIDe

TJ,Tstg

-65 to +200

°e

Derate above 25°C
Operating and Storage Junction
Temperature Range

O~/
~~
I
'I

Thermal Resistance, Junction to Case

1:::+ ,
fyV

FIGURE 1 -POWER DERATING

1
z

120

0

100

::

80

...

40

;::

iii
i5
'"~
0

e

rs:

'" "

'1'..

"'

20
25

50

75

U

1

1

100

"""

125

TC, CASE TEMPERATURE 1°C)

150

""
175

r

C5(T

lG

\.S

MILLIMETERS
INCHES
STYLE 1
DIM MIN MAX
MIN MAX
PIN 1. BASE
A
•7
2. EMITTER
21.08
CASE COLLECTOR 8
0.830
C 6.35
7.62 0. 50 0.300
0
0.97
1.09 0.038 0.04~
1.40
1.78 10.055 0.070
E
F 29.90 30.40 1.1n 1.197
G 10.67 11.18 0.420 0.440
H 5.33
5.59 0.210 0.220
J 16.64 17.15 0.855 0.675
K 11.18 12.19 0.440 0.480
Q
3.81
4.19 0.1
0.165
R
26.67
1.050
U 2.54
3.05 0.100 0.120

-

-

60

o
o

ll\

H

* Indicates JEOEC Registered Data.

140

F ~J-

Otaracteristic

E

E~l
r-------

*THERMAL CHARACTERISTICS

160

JE"~=r

-

I

CASE1-04

200

1-265

i

:

NOTES:
1. ALL RULES AND NOTES ASSOCIATED WITH
REFERENCED TO·3 OUTLINE SHALL APPLY.

I

2N6282, 2N6283, 2N6284 NPN,
2N6285, 2N6286, 2N6287 PNP

*ELECTRICAL CHARACTERISTICS

(TC = 25 0 C unless otherwise noted)

O1aracteristic

Symbol

Min

Max

60

-

80
100

-

Unit

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage

Vde

VCEO(sus)

(lC=O.l Ade,le=O).

2N6282, 2N6285
2N6283, 2N6286
2N6284, 2N6287

Colieetor Cutoll Current

·mAde

ICED

(VCE = 30 Vde, Ie = 0)

2N6282, 2N6285

-

1.0

(VCE = 40 Vde, Ie = 0)

2N6283, 2N6286

-

1.0

(VCE = 50 Vde, Ie = 0)

2N6284, 2N6287

-

1.0

-

0.5

-

2.0

Collector Cutoff Current

mAde

ICEX

(VCE = Rated Vce, V8E(off) = 1.5 Vde)
(VCE = Rated Vce, VeE (off) = 1.5 Vde, TC = 1500 C)
Emitter Cutoff Current

IE80

5.0
mAde

(V8E = 5.0 Vde, IC = 0)
ON CHARACTERISTICS (1)
DC Current Gain

-

hFE

(lC = 10 Ade, VCE = 3.0 Vde)
IIc = 20 Ade, VCE = 3.0 Vde)

Collector-Emitter Saturation Voltage

750

18,000

100

-

-

2.0

Vde

VCE(sat)

IIc = 10 Ade, 18 = 40 mAde)

-

3.0

VeE(on)

-

2.8

Vde

VeE(sat)

-

4.0

Vde

Ihle l

4.0

-

MHz

-

400

-

600

300

-

IIc = 20 Ade, Ie = 200 mAde)

Base-Emitter On Voltage
IIc = 10 Ade, VCE = 3.0 Vde)

Base-Emitter Saturation Voltage
IIc = 20 Ade, IS = 200 mAde)
DYNAMIC CHARACTERISTICS
Magnitude of Common Emitter Small-Signal Short-Circuit

Forward Current Transfer Ratio
(lC = 10 Ade, VCE = 3.0 Vde, f = 1.0 MHz)

Output Capacitance

pF

Cob

(VCS = 10 Vde, IE = 0, I = 0.1 MHz)

2N6282, 83, 84
2N6285, 86, 87

Small-Signal Current Gam

hie

-

(IC = 10 Ade, VCE = 3.0 Vde, f = 1.0 kHz)
* Indicates JE DEC Registered Data.
(1) Pulse test: Pulse Width

= 300 JJ.S,

DutV Cycle

= 2%

FIGURE 2 - SWITCHING TIMES TEST CIRCUIT

FIGURE 3 - SWITCHING TIMES
10
7.0
5.0

Vee

-30 V

=ts

2N6282/84INPN)
2N6285/87 IPNP)

-

RB & RC VARIEO TO OBTAIN DESIRED CURRENT lEVELS
01, MUST BE FAST RECOVERY TYPES, e.g:
MBQ5300 USED ABOVE 18 "" 100 rnA
MSD6100 USED BElOW IB "" 100 mA

_

V2

~~P~:~d~~---~ 1~
V,
APPROX

-12V

--I

,

lr,t,O;;:10ns

3.0

RC
SCOPE

2.0

]

:E
i=

51

~.

""- r--

--> ~

1.0
0.7

.... ""

0.5
+4.0V

25"

for ld and tr. 01
and V2 =0

IS

0.3 VCC = 30 Vdc
0.2 ICliB = 250
IBI = IB2
TJ = 25 0 C

disconnected

DUTY CYCLE = 1.0%

O. 1

0.2

For NPN test circuit reverse diode and voltage polarities.

1-266

0.3

0.5

.........

I- ' -

......... .......

ti~ C - t,

,...

'

-

.... ~

I- r-

..........Id@VBE(off)=OV
0.7 1.0
2.0
3.0
5.0
IC. COLLECTOR CURRENT (AMP)

7.0

i:= ~
10

20

2N6282. 2N6283. 2N6284 NPN.
2N6285, 2N6286, 2N6287 PNP

FIGURE 4 - THERMAL RESPONSE
1.0
~
O. 7~D =0.5
~_ O.5

--

wO

:z;w

:: ~ o.3~

0.2

'"'"
< ."..

lo~E_'.0
f= - 5.0mS~~!1111
~~c

1.0ms

5.0 I---

5.0ms

5o~~~~~I=m:m
!=--~ 0.1 ms

5.0 m:c

5.0

2'°I=t=!=tMi==t=~utW

2.0

l.o~.

2.0R=H:@l==t=HruW

0.5SS

1.0 _ _
0.5

0.58$

J "..;,;:oor"c'---4-H--I\t+l-H
0.21-+-H-iTh

0.2 f--+-H,T,-,J..,:"

':r.'r--.c'-----+--H+t+1tI

- _ SECOND BREAKDOWN LIMITED

0.1

_ _ SECOND IIREAKDOWN LIMITED

::-_-=~~~~~NAGL~::~T~~~~~TC~2!iOC ~

==t=t=t=

0.05
2.0

0.1

5.0

10

20

50

:-::::: ~~~~~~Gl ~:~~T~~~~~TC' 250C

0.05 §::EE8s§IN~GLJE~PU~LS~E:E::E3::HH§

SINGLE PULSE

100

2.0

VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS)

5.0

10

20

50

100

VCE, COLLECTOR·EMITTER VOLTAGE IVOLTS)

I=t+t=++tl+==+=+fftff.ll

'.0~.
TJ't".,:;20;:.'".:.C_+-++-I+HJI
0.21-+-H-H
I- - - SECOND BREAKDOWN LIMITED
0.1
:-:_-_-:::~~~~~NAGl~:~~T~~I~~~TC 25°C

E.-

0.05 F=t=f=F:t-~I!IlGlE PULSE
2.0
5.0
10
20
50
100
VCE. COLLECTOR·EMITTER VOLTAGE IVOL TS)

There are two limitations on the power handling abilIty of a transIstor. average JunctIon temperature and second breakdown. Safe
operatIng ar~a curves Indicate IC - VCE limIts of the transIstor that must be observed for rel,able operatIon, I.e. the tranSistor must not
be subjected to greater dissipation than the curves indIcate.
The data of Figures 5, Sand 7 is based on T J{n..k ) = 200°C; T C is variable depending on conditIons. Second breakdown pulse limits are valid
for duty cycles to 10% provided T Jlpk)
200vC. T Jlpk) may be calculated from the data in Figure 4. At high case temperatures, thermal
limitations Will reduce the power that can be handled to values less than the limItatIons Imposed by second breakdown.

<

FIGURE 8 - SMALL-SIGNAL CURRENT GAIN
TJ 25'C
VCE=3.0V
IC ~ 10 A

z

5000

'"

~

2000

'-'

500

~
w

200

:l'

;;:

'":::>

--'
«

'"'"
~«

iii

1

1000

FIGURE 9 - CAPACITANCE

100 a

10,000

I-

-

-,

700
500

'-'

....

300

-- '--

::::::::: r-

U

«

100

5 200

50

<$

20
10
1.0

-

2.0

-

-

5.0

20

--.....
....

~\
"'-....

>,

"

r--. ~

"

- - - 2N62821841NPN)

2N6282184(NPN)
2N6285187 (PNP)
10

TJ~25'C

50

100

200

500

1000

f. FREUUENCY 1kHz)

100
0.1

111,mwl8JlP~p)
as 1.0 2.0

0.2

5.0

10

VR, REVERSE VOLTAGE IVOLTS)

1-267

20 Iso

100

2N6282, 2N6283, 2N6284 NPN,
2N6285, 2N6286, 2N6287 PNP

I

NPN
2N6282.2N6283.2N6284

PNP
2N6285. 2N6286. 2N6287

FIGURE 10 - DC CURRENT GAIN
20,000
10,000
7000 f=TJ = 1500C
z 5000
to
./
to 3000

TJ = 1500C
10,000
7000
~ 5000
z
25 0C
~ 3000 -

r-

..

w
a:
a:

2000

~

..

,,

~

i"'"

'-25~

'"
'"
c

~

z

Z

:::>

-

30,000
I
20,000 VCE =3.dv·

I-VCE" 3.0 V

1000
700 ~-550C
500
......-J
300
200
0.2 0.3
0.5 0.7

:::>

2000

'"
c
'"

~

2.0

3.0

5.0 7.0

10

.\

~

. / -55°1J.,.

I"\,

,/
1000
700
500

'\,
1.0

r-

~

.....1

300
0.2

20

~
'\

0.3

0.5 0.7

IC,COLLECTOR CURRENT (AMP)

1.0

2.0

3.0

5.0 7.0

10

20

IC, COLLECTOR CURRENT (AMP)

,

FIGURE 11 - COLLECTOR SATURATION REGION

~o

~
w
to

~
o
ffi
::::
~
.c

'"
~....
8

3.0

I
I

2.6
IC = 5.0 A

~

w

to

15A

lOA

3.0

II
It

2.6

Tj=25 0C
15 A

IC=5.0A

~o

\.

\

1.S

-

~
a1
.c.

1.S

g
..

1.4

1\

o

\

1.4

1.0
0.5

o

\
0.7

2.0

1.0

3.0

5.0

7.0

20

10

30

50

> 1.0
0.5 0.7

I
V

..

1

2.0

1.0

3.0

5.0 7.0

10

20

30

2.0

'"

«
!:;
1.5 VSE(satl@ IcllB = 250
0
>
I I .L.J-..H>-

~

1.0

II

0.5 0.7

V

0

~
w

J

'"~
0

>
>-

...I....

L..

II
0.3

.....

1--1'-"

VaE@VCE=3.0V
1.0

2.0

50

VCE(sat)@lcli a=250_

11111111
5.0 7.0 10

3.0

V

J

Tj=25 0C
2.5

~

V II

w

0.5
0.2

.....

FIGURE 12 - "ON" VOL TAGES
3.0
Tj=25 0C

'"
~

r-r-.

la, SASE CURRENT (mAl

3.0

~

\

'-'
W
'-'

la, BASE CURRENT (rnA)

2.5

\

lOA

;;; 2.2

2.2

~

>

~o

TJ = 25 0C

2.0

l0.5
0.2

VaE@VCE=3.0V

I I
0.3

II

0.5 0.7

-

,... ....

II
1.0

2.0

3.0

1-268

V

.........
VCE(..,) @leila = 250

II II10

5.0 7.0

IC, COLLECTOR CURRENT(AMP)

IC, COLLECTOR CURRENT (AMP)

/

/

;

1,:::::::::'"

1. 5 V~E(r') @Iclla - 50
1.0

20

/

20

2N6282, 2N6283, 2N6284 NPN,
2N6285, 2N6286, 2N6287 PNP

I

NPN
2N6282,2N6283,2N6284

PNP
2N6285,2N6286,2N6287

FIGURE 13 - TEMPERATURE COEFFICIENTS

+!i.0

+!i.0

G
>

III

E +3.0
f!'

15

+2.0

~

+1.0

U

2w
'":::>
!;;:

~

III
2S oC to 1S0 0C

/

-1iS oC to +2S oC

-1.0

III
.1-1"

'eVC for VCE(sat)

-2.0

2S oC to +1S0 0C....

11] -3.0
>-

i

~

'APPLIES FOR ICIIS'; hFE/2S0

!<.. +4.0

/
~><

0.3

I II

1.0

2.0

3.0

E5

J

U

/

o

+2.0

w

a:

~ii'

:

-I-

-1.0 'evC for VCE(sat)
-2.0

>-

i

2S oC to +1S0 0C

II

evs for VSE
-4.0
-S. 0

20

10

/

-Ssoc to +2S OC

11] -3.0

II

/

2S OC to lS00C

~ +1.0

u

t>-

S.O 7.0

A
'/

f!'

-550C to +25 0 C

O.S 0.7

'APPLIES FOR Ic/ls'; hFE/2S0

.§. +3.0

/
-,,/r

......

eVS for VSE
-4.0
-S.O
0.2

/

/

+4.0

0.2

0.3

O.S 0.7

IC. COLLECTOR CURRENT (AMP)

-l-

II

1.0

2.0

I--"

't/'

I-

./

- I--"

:,/

....~

.....

3.0

-SSoC to +2S oC

I II10

20

S.O 7.0

IC. COLLECTOR CURRENT (AMP)

FIGURE 14 - COLLECTOR CUTOFF REGION

lOS

«
.3-

104

~
a:

10 3

103

-

/

VCE-30V

I--VCE-30V

/

~TJ lS00C

>-

a:
0

102

~

tOl

>-

0

L

1/

1

r--TJ -lS00C

:::>

u

/
/

-

/

100 0C

f-- r-100 0C

u

~REVERSE

~

~REVERSE

. iORWARO

100

10-2

r---t- 2S oC
10-1
-0.6

-0.4

-0.2

+0.2

+0.4

+0.6

+0.8

+1.0

+1.2

+1.4

FORWARD

~2S0C

10-3
+0.6

+0.4

+0.2

VSE. SASE·EMITTERVOLTAGE (VOLTS)

-0.2

-0.4

-0.6

FIGURE 15 - DARLINGTON SCHEMATIC

Collector

NPN
2N6282
2N6283
2N6284

r----- -I
I

Collector

PNP
2N628S
2N6286
2N6287

---.,

.--_ _~~

I

I
I
I
I
I

I
Base
I

I

I
I

IL _ _ _ _ _ _ _

-0.8

VSE. SASE·EMITTERVOLTAGE (VOLTS)

---.,
...----+-.., f

I
I
I
I

Sase

I

I

I

I

I
I

I

IL

__ .J

Emitter

______ _

Emitter

1-269

I
I

__ .J

-1.0

-1.2

-1.4

2N6294, 2N6295 NPN
2N629,6, 2N6297 PH P

®

-....------DARLINGTON COMPLEMENTARY
SILICON POWER TRANSISTORS

... designed for general·purpose amplifier, low·frequency switching
and hammer driver applications.

MOTOROLA

4 AMPERES
DARLINGTON
COMPLEMENTARY SILICON
POWER TRANSISTORS
60,80 VOLTS
50 WATTS

• High DC Current Gain hF E = 3000 (Typ) @ IC = 2.0 Adc
• Low Coliector·Emitter Saturation Voltage VCE(sat) = 2.0 Vdc (Max) @ IC = 2.0 Adc
• Collector· Emitter Sustaining Voltage
VCEO(sus) = 60 Vdc (Min) - 2N6294, 2N6296
= 80 Vdc (Min) - 2N6295, 2N6297
• Monolithic Construction with Built·1 n Base·Emitter
Shunt Resistors

*MAXIMUM RATINGS
Symbol

2N6294
2N6296

2N6295
2N6297

Unit

VCEO

60

80

Vde

Coliector·Base Voltage

VCB

60

80

Vde

E mitter·8ase Voltage

VEB

5.0

Vde

IC

4.0
8.0

Ade

Base Current

IB

80

mAde

4C

TotaIOevieeOissipation@TC=250C
Derate above 2SOC

Po

50

Watts

0.286
TJ, T stg

-65 to +200

wf'c
°c

E
SEATING PLANE

Rating
Collector·Emitter Voltage

Collector Current - Continuous

Peak

Operating and Storage Junction,

P

I

'I

--u-B--

A
______
_

STYLE I:
PIN I. BASE
2. EMITTER

Temperature Range

THERMAL CHARACTERISTICS

I

Characteristic

Thermal Resistance, Junction to Case

R

·tndlcates JEOEC Registered Data

j

FIGURE 1 - POWER DERATING
50

S

........,
~

DIM

I"'"
0

~

-

.......

"BO

11.94 12.70 0.470 0.500
6.35 B.64 0.250 0.340
0.71 0.86 0.028 0.034
1.27 1.91 0.050 0.075
F 24.33 24.43 0.958 0.962
G 4.83 5.33 0.190 0.210
2.41
2.67 0.095 0.105
H
J 14.48 14.99 0.570 0.590
0.360
K 9.14
P
1.27
0.050
Q
3.61
3.86 0.142 0.152
8.89
0.350
S
3.68
0.145
T
U
15.75
0.620
All JEDEC Dimensionsand and Notes Apply.
C
D
E

"" "
40

INCHES
MIN
MAX

B

0

o
o

MILLIMETERS
MAX
MIN

120

160

~
200

TC. CASE TEMPERATURE (OC)

-

CASESO'()2
TO-66

1-270

2N6294, 2N6295 NPN/2N6296, 2N6297 PNP

*ELECTRICAL CHARACTERISTICS (TC = 250 C unless otherwise noted)

I

I

Characteristic

Symbol

Min

Max

60
80

-

-

0.5
0.5

Unit

OFF CHARACTERISTICS
Colieetor-Emitter Sustaining Voltage
(lC = 50 mAde. IB = 0)
Coliector Cutoff Current
(VCE = 30 Vde, IB = 0)
(VCE = 40 Vde, IB = 0)

Vde

VCEO(sus)
2N6294. 2N6296
2N6295,2N6297

mAde

ICED
2N6294, 2N6296
2N6295,2N6297

Coliector Cutoff Current
(VCE = Rated VCB,VEB(off)
(VCE = Rated VCB, VBE(off)
(VCE = Rated VCB, VEB(off)
TC = 150o C) .
(VCE = Rated VCB, VBE(off)
TC = 15oDC)

-

mAde

ICEX

= 1.5 Vde)
= 1.5 Vde)
= 1.5 Vde,

2N6294,2N6295
2N6296, 2N6297
2N6294.2N6295

-

0.5
0.5
5.0

= 1.5 Vde.

2N6296. 2N6297

-

5.0

-

2.0

750
100

18000

-

2.0
3.0

-

4.0

-

2.8

4.0

-

-

120
200

300

-

Emitter Cutoff Current
(VBE = 5.0 Vde, IC = 0)

lEBO

mAde

ON CHARACTERISTICS
DC Current Gain
(lC = 2.0 Ade. VCE
(lC = 4.0 Ade, VCE
Coliector~E mitter

(lC
(lc

(lC

Saturation Voltage

Saturation Voltage

= 4.0 Ade,

IB

Vde

VCE(sat)

= 2.0 Ade, IB = 8.0 mAde)
= 4.0 Ade, IB = 40 mAde)

Base~Emitter

-

hFE

= 3.0 Vde)
= 3.0 Vde)

VBE(sat)

= 40 mAde)

Base-Emitter On Voltage
(lC = 2.0 Ade. VCE = 3.0 Vde)

Vde
Vde

VBE(on)

DYNAMIC CHARACTERISTICS
Magnitude of Common Emitter Small-Signal
(IC

= 1.5 Ade,

VCE

= 3.0

Vde, f

= 1.0 MHz)

Output Capacitance
(VCB

= 10 Vde, IE = 0, f = 0.1

-

Ihfel

Short-Circuit Forward Current Transfer Ratio

pF

Cob
MHz)

Small-5ignal Current Gai n
(lC = 1.5 Ade, VCE = 3.0 Vdc, f

2N6294. 2N6295
2N6296. 2N6297
hfe

= 1.0 kHz)

-

*Indicates JEDEC Registered Data

FIGURE 2 - SWITCHING TIMES TEST
CIRCUIT

FIGURE 3 - SWITCHING TIMES

5.0
RB & RC VARIED TO OBTAIN DESIRED CURRENT LEVELS

VCC
-lOV

3.0
2.0

I,

I~R~:~~oV -

Ir

Re

IBI = IB2 Tr250 C-

Is

~

1.0

9:

V2

'!::~:--[J~~~-~__ 1~
VI
IpproX __

-12V

I

I

25.,

i

0.7
0.5

~~ o. 3

51

..... ~::--.

If

O. 2

O.

for ld and tr, D1 is disconnected

1;::: ---2~

0.0 7f=
0.0 5

and V2"'O

t,-, If C;;; 10ns
DUTY CYCLE' 1.0%

0.04 O.OS

For NPN test circuit, reverse all polarities.

1-271

....

---

~E(Off)I-OI- ~

94.2N6295 (NPN)
2NS296,2N6297 (PNP)
0.1

0.2
0.4 O.S
1.0
IC. COLLECTOR CURRENT (AMP)

2.0

4.0

2N6294, 2N6295 NPN/2N6296, 2N6297 PNP

FIGURE 4 - THERMAL RESPONSE

...

ili

"'~~
... N

!Z~

w,"

1.0
0.7 =0=0.5
o.5

O.3 - f-0.2
O.2 - ~.!.-

200

CZ

",-

:1)

>20

-

fi~ 0.05
3~m 0.0

t:;'"

~

0.05
0.02

O. 1

:~ 0.07

:=.

INGLE
PULSE

0 CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
REAoTIMEAT'1

~

o.oi

t'2j

TJ(pk)-Tc=P(pkIReJclt)

DUTY CYCLE, D = '1/12

0.0 2

0.0 1
0.01

ReJc(') = ,(dOJC

t~eJC -3.SDCIWMax

0;'"

II II
0.02

0.05

0.1

0.2

1.0

0.5

2.0
I,TIME

10

5.0

II III
20

50

100

200

500

1000

(m~

FIGURE 5 - ACTIVE REGION SAFE OPERATING AREA

10
5.0

10o!'S

,

~

~

L'\~~m
de "'

,. 2.0
~

Si

1.0

'"
:::>

0.5

~

~

'f..

iJS

There are two limitations on the power handling ability of a
transistor: average junction temperature and second breakdown.
Safe operating area curves indicate IC - VCE limits of the transistor
that must be ObseNSd for reliable operation; i.e., the transistor

~s

TJ=200DC
BONDING WIRE LIMITED
!--'" 0.2 (------THERMALLy L1MITED@TC=25 DC
(SINGLE PULSE)
j o. 1~,
SECOND BREAKDDWN LIMITED
CURVES APPLY BELOW
80.05
RATED BVCEO
~
2N6294, 2N6296
0.02
2N6295, 2N6297
0.0 1
1.0
2.0 3.0
5.0 7.0 10
20
3D
50
VCE, COLLECTOR·EMITTER VOLTAGE (VOLTS)

must not be subjected to greater dissipation than the curves indicate.
The data of Figure 5 is based on T J(pk) = 200; T C is variable

'"

~

depending on conditions. Second breakdown pulse limits are valid
for duty cycles to 10% provided TJ(pk)"; 200. TJ(pk) may be

I

calculated from the data in Figure 4. At high case temperatures,
thermal limitations will reduce the power that can be handled to
values less than the limitations imposed by second breakdown.

I II

70

100

FIGURE 6 - SMALL-SIGNAL CURRENT GAIN

FIGURE 7 - CAPACITANCE

4000
2000
:!el000

'"...'"z

300
I TJ=~5Dcl
VCE = 3.0 V
IC = 1.5 A

200

I""

~

w

SOD

'"20

j:! 100

U

'":::>

;t
200

~

\

100

20

....

40 SO 100 200 400 600 1000 2000
f, FREIlUENCY (kHz)

--~

......

50

- - - 2N6294, 2NS295 (NPN)
2N629S, 2N6297 .IPNP)
10

70

",'

\
60
40
4.0 S.O

- -

u.

::!400

i'"

TJ = 25 DC

....

- --2NS294,2N6295 (NPN)

r.....
Cib

--

~qb

i2y2jS'I21Ntlii71PNPl
4000

1-272

3D
0.1

1

0.2

0.5

5.0
10
20
1.0
2.0
VR, REVERSE VOLTAGE (VOLTS)

50

III

100

2N6294, 2N6295 NPN/2N6296, 2N6297 PNP

NPN

PNP

2N6294. 2N6295

2N6296. 2N6297
FIGURE 8 - DC CURRENT GAIN

20.000

10.000

r-

.....

VCE =IJiOI V

10.000

f=

7000
5000

~

«

5000

TJ -150 0

z 3000

z

'"

a:

25

TJ

...... ~

y

..........

~

-55°C

300

l../I

200

V
0.1

'"

500

c

V

200
0.04 0.06

25°C ...... V

u

-550 C

V

~

~ 1000

........'\

.....

::>
u

~ 700

500

150 0 C

VI

ill

V

1000

300

-

'"
2000
f-

'\

~ 2000

~

_VCE-3.0V

;j'

~ JOOO

::>
u
~

....... ......

0.2

0.4 0.6
1.0
IC. CO~LECTOR CURRENT lAMP)

2.0

I I

~
100
0.04 0.06

4.0

0.1

2.0

0.2
0.4 0.6
1.0
IC. COLLECTOR CURRENT lAMP)

4.0

FIGURE 9 - COLLECTOR SATURATION REGION

in 3.0
!::;
c

I I II

?

~

;

'"
~

IC= LOA 2.0 A
2.5

\

~ 3.0

TJ = 25°C

?

\

;'"

w

\

2.0

i

I\,

'"

2.0

~

1.5

'"
g

1.0

_

1. 0

I'..

u

TJ=250C

\ 3.0 A

\
\

i

~ 1. 5

~
;5

\

2.0 A

IC = 1.0 A

2.5

'"ffi
::

\

::

J II II

c

3.0 A

~

\..

'-

'"uul

ul
u

u

> 0.5

0.2

0.3

0.5 0.7

1.0

2.0

3.0

5.0 7.0

10

20

> 0.5
0.2

0.3

0.5 0.7

lB. BASE CURRENT (rnA)

2.0 3.0
5.0
1.0
lB. BASE CURRENT ImA)

7.0

10

20

FIGURE 10 - "ON" VOLTAGES

2.0
1.8

~

1111

r-

/,

TJ = 25°C

'"~

VaEI,,') @Ic/la = 250
1.2

/

I

)CEII"~) ~II~/IB = 250

0.6
0.04 0.06

I
0.1

./'

V

?

!::;

/

'"
;:-

1.0
0.8

2.0

/

1J JlL
~ IC~IB = 250

i"'"

-

w

4.0

1-273

/

VBE@VCE=3.0V

/
,/

I IILL
I 11111

I

V~EI~,I) JIC~IB = 250

I IIII1
0.6
0.04 0.06
0.1

I
0.4 0.6
1.0
0.2
Ic. COllECTOR CURRENT lAMP)

)

III

1,4 VBEI;.,I)

~ 1.2

/

'"
>
VaE @VCE = 3.0 V
>- 1.0
I 1-1-11
0.8

~o

--== ===='

I

11111

1.6

,

~ 1.4

I

1.8 -r--1Tj =12 5;C
1

//

1.6

w

2.0

/1

,.....

V

>--

I
0.4
0.6
1.0
0.2
IC. COLLECTOR CURRENT lAMP)

2.0

4.0

2N6306,2N6307,2N6308

®

MOTOROLA

HIGH VOLTAGE NPN SILICON POWER
TRANSISTORS
8 AMPERE
POWER TRANSISTORS

· .. designed for high voltage inverters, switching regulators and lineoperated amplifier applications. Especially well suited for switching
power supply applications in associated consumer products.
•

High Collector-Base VoltageVCB = 500 Vdc - 2N6306
= 600 Vdc - 2N6307
= 700 Vdc - 2N63OB

•

Excellent DC Current Gain @ IC = 3.0 Adc
hFE = 15 - 75 - 2N6306, 2N6307
= 12 -60 - 2N63OB

•

Low Collector-Emitter Saturation Voltage @ IC = 3.0 Adc
VCE(sat) = 0.8 Vdc (Max) - 2N6306
= 1.0 Vdc (Max) - 2N6307
= 1.5 Vdc (Max) - 2N63OB

•

Current Gam
. Ban d WI'd t h Pro ductiT = 5.0 MHz (Min) @ IC = 0.3 Adc

NPN SILICON
250-300-350 VOLTS
125 WATTS

*MAXIMUM RATINGS
Rating

Symbol

2N6306

2N6307

2N6308

Unit

Collector-Basa Voltage

VCB

500

600

700

Vdc

Collector-Emitter Voltage

VCEO

350

VEB

.

Vdc

Emitter-Base Voltage

.

300

8.0
16

•

Adc

4.0

•

250

IC

..

Base Current

IB

Total Device Dissipation @ T C = 2SoC
Derate above 25°C

•

Po

Collector Current

Continuous

8.0

Peak

Operating and Storage Junction

.

TJ,Tstg

125
0.714

-

Adc
Watts

WloC

_ _ -65 to +200 _

°c

Characteristic

I

Symbol

I

Max

Unit

I

8JC

I

1.4

°C/W

"'Indicates JEOEC Registered Data.

1=

100

"-

""-

"

!.
z
0

>=
;t

~

~

75

" r-.... r-...
"'-

25

0

PIN
:~~iTER
CASE COLLECTOR

Q~~LV
H

1\-----49-

1 ~'/
+

:

I

1
R

loJ

40

NOTES,
1. DIMENSIONS 0 ANO V ARE DATUMS.
2. [JJ IS SEATING PLANE AND OATUM.
3. POSITIONAL TOLERANCE FOR
MOUNTING HOLE U,

I .1'·131O.005)@T I V@I U@I
4. DIMENSIONS AND TOLERANCES PER
ANSI Y14.5. 1973.

50

0

J -

80

MILLIMETERS
MIN MAX
39.37
B
21.08
e 6.35 7.62
D
0.97
1.09
E
1.40
1.78
F
30.15 SSC
G
10.92 SSC
H
5.46 SSC
J
16.89 BSC
K 11.18 12.19
Q
3.81
4.19
R
26.67
U
4.83
5.33
V
3.81
4.19

DIM
A

'"~

~

i

F -

L

1·1··1310.005)@ITIV@1
FOR LEADS:

FIGURE 1 - POWER DERATING

;;;

r---

u

Thermal Resistance, Junction to Case

125

r;~!

Vdc

Temperature Range

I

LIF'"~-f

120

TC, CASE TEMPERATURE lOCI

160

""-

""

200

1-274

CASE 1·05

INCHES
MIN MAX
1.550
0.830
0.250 0.300
0.038 0.043
0.055 0.070
1.187 SSC
0.430 SSC
0.215 sse
0.665 SSC
0.440 0.480
0.150 0.165
1.050
0.190 0.210
0.150 0.165

2N6306,2N6307,2N6308
"ELECTRICAL CHARACTERISTICS ITe = 25°C un'''' otherw,.. noted)

I

I

Ch........istic

Symbol

Min

M...

250
300
350

-

Unit

OFF CHARACTERISTICS
CoUector·Emitt.r Sustaining Voltage (1 I

Collector Cutoff Current
IVCE = Rated VCEO. 'S

2N6306
2N6307
2N630S
'CEO

=0)

Collector Cutoff Current
IVCE::: 500 Vdc, VEBloff) = 1.5
IVCE = 600 Vde. VEBlofl) = 1.5
IVCE = 700 Vde. VEBlofl) = 1.5
(VeE = 450 Vdc, VEBloff) ::: 1.5
Te = 150°C)
IVeE = 550 Vde. VEBloff) = 1.5
TC = 150°C)
(Vee::: 650 Vdc, VEBloff)::: 1.5
Te = 150°C)

Vdc

VCEO(susl

lie'" 100 mAde, '8'" 0)

'CEX

mAde

-

0.5
mAde

Vdc)
Vde)
Vdc)
Vdc,

2N6306
2N6307
2N6308
2N6306

-

0.5
0.5
0.5
2.5

Vde.

2N6307

-

2.5

Vdc,

2N6308

-

2.5

-

1.0

15
12
40
3.0

75
60

Emitter Cutoff Current
IVSE = 8.0 Vde.
= 0)

'ESO

'e

mAde

ON CHARACTERISTICS
DC Current Gam (1)
(Ie::: 3 0 Adc, VeE = 5.0 Vdc)

2N6306. 2N6307
2N6308
2N6306. 2N6307
2N6308

lie '" 8 0 Adc. V CE ::: 5.0 Vdc)
Collector-Emitter Saturation Voltage t 1)
(Ie::: 3.0 Adc, '8'" 0.6 Add

Vde

veE (satl
2N6306
2N6307
2N6308
2N6306. 2N6307
2N6308

(Ie'" 8 0 Adc, '8 '" 2.0 Adc)
(Ie::: 8.0 Adc, '8 = 2 67 Add

Base-Emitter Saturation Voltage (1)
(Ie'" 8.0 Adc. '8'" 2.0 Add
lie::: 8.0 Adc, '8 '" 2 67 Adc)

0.8
1.0
1.5
5.0
5.0
Vde

VaEIsat)
2N6306. 2N6307
2N630B

Base-Emitter On Voltage (11
(Ie =' 3.0 Adc, V CE '" 5.0 Vdc)

2.3
2.5

Vde

VaE(on)

2N6306.2N6307
2N630B

Second Breakdown Energy IFlgure 2)
(iC(PK) '" 3.0 Adc, L = 40 mH, ABE'" 3 k.U, VSB2 '" 1 5 Vdc)

1.3
1.5
mJ

Es/b
180

DYNAMIC CHARACTERISTICS
Current Gam - BandWidth Product (2)
(lC '" 0 3 Adc, VeE =- 10 Vdc, f test '" 1 0 MHz)

fT
5.0

Output Capacitance
(Ves =' 10 Vdc, IE '" 0, f '" 0 1 MHz)

OF

Cob

250

SWITCHING CHARACTERISTICS
Rise Time

t,

(Vce = 125 Vdc, le:- 30Adc,IS

=

~s

06AdcJ

0.6

Storage Time (3)
(Vee'" 125 Vdc. 'e = 30 Adc, 'B1 '" 06 Adc, 182'" 1 5 Adcl
Pulse Width'" 25 J.l.S

ts

~s

16
08

Pulse Width'" 5 0 jJS

Fall Time

tf

(Vee'" 125 Vdc, Ie
(t)

~s

0.4

= 3 0 Adc, IS1 = 0.6 Adc, 'B2 '" 1 5 Add

Pulse Test Pulse Width ~300 jJS, Duty Cycle'" 2 0%

(2) fT'=

I hfe I • f test

(3) "On" time IS 25 lots ts decreases With shorter pulse Widths, being approximately 50% of the values shown at a 5 0 jJs pulse Width
"ndlcates JEDEC Registered Data

FIGURE 2 - SECOND BREAKDOWN ENERGY TEST CIRCUIT AND WAVEFORMS

-I

r

tw =40ms

,

r--I I
VOlTAGE_LJ
L--.l

INPUT 0 ' 1

-5.0V-~100ms---t

50

Vce

~ 20 V ~ ~C MONITOR

RS

Note A : Input pulse Width IS II1creased untlllC(PKl = 3

~

[J'

BVCEX-:-_II--

1-275

----1--1 ,_

I

I

COLLECTOR I
VOLTAGE
I

I

20 V

I

VCE(satJ-

aA

!

I
I
INo" AI
I
I
ICIPKI"30A~1------T---COLLECTOR
I
I
I
I
CURRENT 0
I ,
I I

I

2N6306,2N6307,2N6308

FIGURE 3 - THERMAL RESPONSE
1.0
0.7
0.5

,
-.-'"

0.3
0.2

9JC(t)= ,(t)6JC
n~
6JC = 1.4oCIW Max
o CURVES APPLY FOR POWER_
PULSE TRAIN SHOWN
READ TIME ATll

-

all
0=0.5

0.1
0.07
0.05

, .,
,

0.03
0.02

pf0LSL -=

rr 0.2
0.1
0.05
0.02
0.01
SINGLE PULSE

0.05

01

0.2

0.3

0.5

-

=
-

-t~j

-

pUITY fYfL~, 0' !J/t2

0.01
0.02 0.03

-

TJ(pk) - TC' P(pk) 9JCh)

10

2.0

3.0

5.0.

10

t, TIME

20

30

100

50

200

300

500

1000

2000

1m.)

FIGURE 4 - ACTIVE-REGION SAFE OPERATING AREA

"-

::E
~
IZ

1.0m.

1.0

w
a:
a:

0.5

'"
:5

0.2

::>

....

20
10
5. 0

There are two limitations on the power handling ability of a
transistor: average junction temperature and second breakdown.
Safe operating area curves indicate le·VeE limits of the transistor
that must be observed for reliable operation; Le., the transistor
must not be subjected to greater dissipation than the curves indicate.
The data of Figure 4 is based on TJ(pk) ;::: 2000 C;TC is variable
depending on conditions. Second breakdown pulse limits are valid
for duty cycles to 10% provided T J(pk) ~200oC. T J(pk) may be
calculated from the data in Figure 3. At high case temperatures,
thermal limitations will reduce the power that can be handled to
values less than the limitations imposed by second breakdown.

1.0

-~

0.1 =§
_ . _ BONDING WIRE LIMITED
g 0.05=
_____ THERMALLYLIMITED@TC=250C
-

0.01
0.005
0.002
5.0 7.0

2N6306
2N6307
2N6308.

Cu,ves Apply Below
Rated VCEO
10

20

30

50

70

100

200

300

500

VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS)

FIGURE 5 - SWITCHING TIMES TEST CIRCUIT

FIGURE 6 - TURN-ON AI\ID TURN-OFF TIMES
5.0

VCC 125 V
RC

41

+8.2 V

1.0

V~1:...!.5~s

C,'+

TJ , 25 0

3.0
2.0

:g

0.7

:11

0.5

-

;::

.: 0.3

-17 V

51

VCC,125 V
ICIIB1' 5.0
ts

t,

J-.

O. 2

-....: r-- ...

DUTY CYCLE 1%
10 ns
01 -IN3879
COLLECTOR-8ASE JUNCTION

I"

t,,,

0.0 7
0.0 5

FOR DATA IN FIGURE 6,
RB & RC ARE VARIED TO OBTAIN
DESIRED TEST CONDITIONS. 01
OMITTED AND V2 REDUCED TO
5.0 V FOR Id and t, MEASUREMENTS

0.1

-

~

V2

=::::::::

o. 1

ICIIBP 2.0

Id@VBE(off)'5.0V
0.2

0.3

0.5 0.7

1.0

2.0

IC, COLLECTOR CURRENT lAMP)

1-276

t,

3.0

5.0

7.0

10

2N6306,2N6307,2N6308

FIGURE 7 - DC CURRENT GAIN

FIGURE 8 - COLLECTOR SATURATION REGION

100

-

~

VCE = 5.0 V
70
50

~

I

;;:

r--- t-

J5 0C

'"
~

I-

'"
..,..,
::>

30

~

~

o

;

1\ I\.

-

::::

\.

~

1\ "1\

~

0.5 0.7

1.0

2.0

3.0

5.0 7.0

10

\

1.0

\

0
9.05 0.07 0.1

TJ = 25 0e

G

1.6
0

r-:::. e

leliB = 2.0

'"
«

':;
0
> 0.8
>-

..... ¢

VBE(sat!

~

0.1

0.2

0.3

1.000=

ttr

05 0.7

1.0

2.0

~

+2.0

8

/

~

II II

I
VCE(,..)

+2.5

+0.5

-

w

r- 'OVC for VCE(,..)
..-

~ -0.5
~

IC/IB=5.0

5.0 7.0

-1.0

-2.0
0.1

0.2

~

'"
13

'"

~
j
8
!2

....r::::",.

11

1

0.7 1.0

2.0

I

0.3

0.5

'°1
3.0

-I

5.0 7.0

10

FIGURE 12 - CAPACITANCE

1000
700
~ 500

1./

100

-

III

TJ = 25°C

II
Cib

w

~ 300

S 200
~..,

' - - - -75°C

0

U

5.0
2.0 - -25~C

REVERSE

FORWARD

....... Cob

100
70

50
VCE = 200 Vdc-

20
-0.2

+0.2

+0.4

.....

0

1.0
-0.4

.......

«

0f::= =1000e
20

...... VI--

IC. COLLECTOR CURRENT (AMP)

500~TJ-1500C

1=125~C

I 1 j

1111~+250C

I-

10

~;~oc

+250C 10 +150 JC

i- l .5 r- 0IVB for VBE

2000

I

5.0

V'

.... ""

~

~

l,I

IC/IIB=i°fttff
3.0

y

+25 0 C to +150 o

FIGURE 11 - COLLECTOR-CUTOFF REGION

20 o

3.0

/

'"::>

100 0

~

2.0

/

IC. COLLECTOR CURRENT (AMP)

I-

1.0

'Applies for ICIIB <; hFE/5

~ +1.0

,,",V

VBE @VCE = 5.0 V

3;

~ +1.5
U

A't-

J

0.4

0.5 0.7

0.3

I-

IC/IB = 5.0

':;

""-

......

0.2

\

--

'\..

FIGURE 10 - TEMPERATURE COEFFICIENTS
+3.0

2: 1.2
w

\

lB. BASE CURRENT (AMP)

FIGURE 9 - "ON" VOLTAGES

00

\

"-

Ie. COLLECTOR CURRENT (AMP)

2.0

\ 7.0A

1\
\

8

~

0.3

2.0

o

_

\

5.0A

\

:;;

>

0.2

3.0

1\
i\

3.0 A

Ie =2.0 A\

w

7.0
5.0
0.1

4.0

':;

f-

p

10

TJ = 25°C

[\
\

\

«

\.

-

-55°C

c

\

2:

~

20

1\

o

r- TJ -150::'

z

5.0

0.5

+0.6

1.0

2.0

5.0

10

20

50

VR. REVERSE VOLTAGE (VOLTS)

VBE. BASE EMITTER VOLTAGE (VOLTS)

1-277

100

200

500

IPI

®

216315 216316

PIP

MOTOROLA

216317 216318
COMPLEMENTARY SILICON
MEDIUM·POWER TRANSISTORS
7.0 AMPERE
___ designed for general-purpose power amplifier and switching
applications_

•
•
•
•

COMPLEMENTARY SILICON
POWER TRANSISTORS
6O-BOVOLTS
90 WATTS

Low Collector-Emitter Saturation Voltage VCE(sat) = 1.0 Vdc (Max) @ IC =4_0 Adc
Low Leakage Current - ICEX = 0_25 mAdc (Max)
Excellent DC Current Gain - hFE = 20 (Min) @ IC = 2_5 Adc
High Current Gain - Bandwidth Product fT = 4_0 MHz @ IC = 0_25 Adc

-MAXIMUM RATINGS
Rating

Symbol

2N6315
2N6317

2N6316
2N6318

Unit

Collector-Emitter Voltage

VCEO

60

SO

Vdc

Collector-Sase Voltage

VCB

60

SO

Vdc

Emitter-Sase Voltage

VEB

5_0

Vdc

IC

71J
15

Adc

Base Current

IB

21J

Adc

E

Total Devica Dissipation - T C = 25°C
Derate above 26°C

Po

90
0_615

Watts

SEATING PLANE

-65 to +200

°c

Collector Current - Continuous
Peak

Operating and Storage Junction
Temperature Range

TJ. Tstg

W/oC

--uP

-8--

C

4t I =:::!!~;:::::::::~4
---F--

THERMAL CHARACTERISTICS
Characteristic
Thermal Resiltance, Junction to Case

*Indicates JEDEC registered data. Limits and conditions differ on some parameters and reregistration reflecting these changes has been requested. All above values meet or exceed

FIGURE 1 - POWER DERATING

140

g 120
"z

~ 100
0

;::
~

80

;

SO

'"~

40

.P

20

0

I - - ...........

'-.....

........

l"'--.......
-.............

~

o
o

. . . . 1'--.
25

50

75

100

125

s
STYLE 1:
PIN 1. BASE
2. EMITTER
CASE: COLLECTOR

present JEDEC ragistered data_

150

175

200

MILLIMETERS
DIM Mill! MAX
B 11.94 12.70
.35 8.64
C
D
0.71 0.8S
1.27 1.91
E
F 24.33 24.43
5.33
G 4.83
H
2.41
2.S7
J 14.48 14.99
K 9.14
1.27
P
n. 3.S1 3.86
8_89
S
3.S8
T
15.75
U

-

I CHES
MIN MAX
0.470 D.500
0.250 0.340
0.028 0.034
0.050 0.075
0.958 0.962
0.190 0_210
0.095 0.105
0.570 0.590
0.360
- 0.050
0.142 0.152
- 0.350
0.145
0.S20

All JEOEC Dimensions and and Notes Apply.

TC. CASE TEMPERATURE lOCI

CASE 80-02

Sate Ar.. Limits are Indicated by Figure 13.

TO-66

1-278

NPN 2N6315, 2N6316
PNP 2N6317, 2N6318

-ELECTRICAL CHARACTERISTICS (TC = 2S o C unless otherwise noted)
Characteristic

Svmbol

Min

Max

60
BO

-

-

0.5

-

0.25

Unit

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage (1)

(lC = 100 mAde, la = 0)
Collector Cutoff Current
(VCE = 30 Vde, la = 0)

(VCE

= 40 Vdc, la = 0)

2N6315,2N6317
2N6316,2N6318
2N6315,2N6317
2N6316,2N631B

(VCE = 60 VdCVaE(oll) =1.5 Vdc,TC =150o C)

2N6315,2N6317
2N6316,2N6318

Collector Cutoff Current

(Vca = 80 Vde, IE = 0)

mAde

0.5
mAde

ICEX

(VCE = 60 Vde, VaE(olf) = 1.5 Vde)
(VCE = BO Vde, VaE(oll) = 1.5 Vde)

(VCB = 60 Vde, IE = 0)

-

ICEO

Collector Cutoff Current

(VCE = BO Vdc,VaE(oll) =1.5 Vdc,TC =1500C)

Vdc

VCEO(sus)
2N6315,2N6317
2N6316,2N631a

0.25
2.0
2.0
mAde

ICBO
2N6315,2N6317
2N6316,2N6318

Emitter Cutoff Current
(VEB = 5.0 Vde, IC = 0)

lEBO

-

0.25

-

1.0

35

-

0.25
mAde

ON CHARACTERISTICS
DC Current Gain (11

-

hFE

(lC = 0.5 Ade, VCE = 4.0 Vde)
IIc = 2.5 Ade, VCE = 4.0 Vde)

20

IIc = 7.0 Ade, VCE = 4.0 Vde)

4.0

-

-

1.0
2.0

VaE(satl

-

2.5

Vde

VaE(on)

-

1.5

Vde

IT

4.0

-

MHz

-

300

hIe

20

-

t,

-

0.7

j.lS

Is

1.0

1'5

'I

--

O.B

1'5

Collector-Emitter Saturation Voltage 11)

VCE( ..t)

IIc = 4.0 Ade, IB = 0.4 Ade)
IIc= 7.0Ade,IB = 1.75 Ade)

Base-Emitter Saturation Voltage (1)

100
Vde

IIc = 7.0 Ade,la = 1.75 Ade)

Base-Emitter On Voltage (1)
(lC = 2.5 Ade, VCE = 4.0 Vde)
DYNAMIC CHARACTERISTICS
Current-Gam - Bandwidth Product (2)

(lC = 0.25 Ade, VCE = 10 Vdc, I test = 1.0 MHz)
Output Capacitance

pF

Cob

(VCB = 10 Vde, IE = 0, I = 1.0 MHz)

2N6317,2N6318
2N6315,2N6316

Small-Signal Current Gain

200

-

IIc = 0.5 Ade, VCE = 4.0 Vde, I = 1.0 kHz)
SWITCHING CHARACTERISTICS
Rise Time
Storage Time

Fall Time

(VCC = 30 Vdc, IC = 2.5 Ade,
lal = IB2 = 0.25 Ade)

-Indicates JEDEC Registered Data.
(1' Pulse Test: Pulse WidthS' 300 ItS. Duty Cycle ~ 20%.

(2) IT

m

Ihlel ef te..

1-279

NPN 2N6315, 2N6316
PNP 2N6317, 2N6318

NPN

PNP

2N6315 and 2N6316

2N6317 and 2N631 B

FIGURE 2 - DC CURRENT GAIN

500

500
VCe-4.0V

300
200

300

TJ=15;C-

VCp4.0V

TJ= 1500C

200

z

z

~

100

.=.

-

S
'"
""'"
"'"

~ 100

25'C

-

0
0
-55'C

~ 20

0.2

~"

I--..

10
5.0
0.07 0.1

S
~

0.3

0.5 0.7

......

~c

~

2.0

3.0

=-55'C

50

.......

30

i

........

20

I"-

1.0

25'C

~

r-...'
.......

10
5.0
0.07 0.1

5.0 7.0

0.2

IC. COLLECTOR CURRENT (AMPERES)

0.3

0.5 0.7

2.0

1.0

3.0

5.0 7.0

IC. COLLECTOR CURRENT (AMPERES)

FIGURE 3 - COLLECTOR SATURATION REGION

6 2.0
~
w

'"~

s:

III
III

1.6

~

1.2

TJ·25'C

5.0A

1.2

~
0.8

~

i\~

0.8

c

g

_ 0.4

0.4

8

...

~

2.5A

!:;

g
..J

I

II

IC= LOA

1.6

w

!:::E

8

I

!i!

5.0A

ffi

~

2.0

!:;

~

2.5 A

IC'I.0A

en

TJ=25'C

l!l

>

0
10

20

30

50

70

200

100

300

500 700 1000

0
10

20

50

30

70

100

200

300

500 700 1000

lB. BASE CURRENT (rnA)

lB. BASE CURRENT (rnA)

FIGURE 4 - "ON" VOLTAGES
2.0

2.0

TJ=25'C

TJ·25'C
1.6

1.6

~

~ 1.2
w

co

~g

O.8

r- VBE(..,)@IC/IB = 10

>'

VBE@VeE"4.0V
O.4

--

IlcJl~ =1 '0 r-

JcEI(sa!) @
0
0.07 0.1

0.2

0.3

0.5 0.7 1.0

~F'"

"

~

!i!

VBE(atllP IcliB = 10
p.....-

0.4

L.--

r-3.0

5.0 7.0

0
0.07 0.1

VBIE ~ V~E'

0.3

I
I)

.! I

t.o ~

V~E++CJIB~ 1~
0.2

~

p-

0.5 0.7

1/
-"
~

1.0

2.0

IC. COLLECTOR CURRENT (AMPERES)

IC. COLLECTOR CURRENT (AMPERES)

1-280

If

~

w

!::; 0.8
co
>
,,;

V

P'

!::;
c 1.2

~

V
2.0

~

iii

3.0

5.0 7.0

NPN 2N6315, 2N6316
PNP 2N6317, 2N6318

II.

FIGURE 5 - ACTIVE-REGION SAFE OPERATING AREA

20

13
0:

~

.

10
7.0

..

::;; 5.0

5

!z

3.0

~

2.0

w

.

....

~

.

. ...

d~

TJ = 200 0

'i ...D.1 ms
0.5 ms:

=

1.0rm~1r

I--.-SECONO BREAKDOWNLIMITEO ~
~
---BONOING WIRE lIMITEO
5.0ms
\.
0C
25
--THER(~rN~i~~1m~N @TC
~ O. 7
Curves Apply Below Rated VCEO
~ O. 5
u
2N6315,17 __ ~
1
~ O. 3
2N6316,18
0.2
5.0
7.0
10
20
30
50
70
VCE, COLLECTOR·EMITTERVOLTAGE (VOLTS)
::J

U

~

...

1.0

F- -

-'"

There are two limitations on the power handling ability of a
transistor: average junction temperature and second breakdown.
Safe operating area curves indicate Ie - VeE limits of the transistor that must be observed for reliable ooeration; i.e., the

100

The data of Figure 5 is based on T J(pk) = 200°C; TC is
variable depending on conditions. Second breakdown pulse limits

<

are valid for duty cycles to 10% provided T Jlpk)
200°C.
T J(pk) may be calculated from the data in Figure 6. At high

transistor must not be subjected to greater dissipation than the

case temperatures, thermal limitations will reduce the power that
can be handled to values less than the limitations Imposed by
second breakdown.

curves indicate.

FIGURE 6 - THERMAL RESPONSE

1.0
0.5

~~

....
~~

ffi i
I--T

11r
lG

\.S

INCHES
MILLIMETERS
STYLE 1
MIN MAX
DIM MIN MAX
PIN 1. OASE
39.3
1
A
2 EMITTER
0.830
21.08
CASE COLLECTOR 0
C
7.62 0.250 0.300
6.35
1.09 O. 38 0.043
D
.97
1.78 0.055 0.070
1.40
E
F 29.90 30.40 1.177 1.191
G 10.67 11.18 0.420 0.440
H
5.33
5.59 0.210 0.220
J 16.64 17.15 0.655 0.675
K 11.18 12.19 0.440 D.480
Q
4.19 0.150 0.165
3.81
1.050
26.61
R
U 2.54
3.05 0.100 0.120

-

.""

175

200

1-282

CASE 1-04
NOTES:
1. ALL RULES AND NOTES ASSDCIATED WITH
REFERENCED TO·3 OUTLINE SHALL APPLY.

2N6338 thru 2N6341

·ELECTRICAL CHARACTERISTICS fTC'" 2SoC unles$otherwlse noted)

I

Symbol

OIl11'acteristic

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage

Max

Min

Unit

Vdc

VCEO(sus)

2N6338
2N6339

(Ie'" 50 mAde, IS '" 0)

100
120
140
150

2N634Q

2N6341
Collector Cutoff Current

/.lAde

'CED

(VeE ~ 50 Vdc, IS'" OJ

2N633B

50

(VeE'" 60 Vdc, 18 '" 0)

2N6339

50

(VeE = 70 Vdc, IS = 0)

2N6340

50

(VeE = 75 Vdc, 'e '" 01

2N6341

50

Collector Cutoff Current

'CEX

(VeE'" Rated VCEO. VEBloff) "" 1.5 Vdcl
(VeE = Rated Vceo. VEBloff) = 1.5 Vdc, TC = 1S00e)

10

,!.lAde

10

mAde

Collector Cutoff Current
(Ves = Rated Ves. Ie = 0)

leBO

10

#lAde

Emitter Cutoff Current
IVse = 60 Vdc, Ie = 0)

leso

100

,uAde

ON CHARACTERISTICS 11)
DC Current Gatn
(Ie" 0.5 Adc, VeE = 2.0Vdd

hFE

50

lie = 10Ade, VeE'" 2.0Vdcl
(Ie'" 26 Adc, VeE = 2.0 vdcl

120

30
12

Collector-Emitter Saturation Voltage
(le= 10 Adc, Ie'" 1 DAdc)

Vdc

VCE(sat)

10

I..

(Ie'" 25 Adc, Ie = 2.5 Adcl
'Base-Emitter SaturatIOn Voltage
(Ie = 10 Adc, IS'" 1.D Adcl

VSEhat)

Vdc

,.

I.

(lc s 25 Adc, 18" 2.5 Adc)

2.5

Base-Emitter On Voltage
(Ie'" 10 Adc, VCE = 2.0 Vde)

VSEfon)

Vdc

DYNAMIC CHARACTERISTICS

Current-Gain BandWidth Product (2)
(Ie = 1.0 Adc, VeE = 10 Vdc. f test '" 10 MHz)

40

Output Capacitance
lVCB'" 10 Vdc, Ie '" 0, f '" 0 1 MHz)
SWITCHING CHARACTERISTICS

0.3

Rise Time
IVee:::::: 80 Vdc, Ie = lDAdc, 181

=

1.0 Adc, VSE(off) = 6 D Vdc)

Storage Time

10

IVee~80Vdc, IC= 1DAdc,I81 = '82= 1 DAde)

FaUT,me

025

'f

IVCC~80Vdc,

le= 1DAdc,I81 ""82= 1 DAde)

Indicates JEDEC Registered Data
(1) Pulse Test
(2) fT '"

Pulse Width':;;;; 300 /oJS, Duty Cycle';;; 20%

~tel.ftest

FIGURE 3 - TURN-ON TIME

FIGURE 2 - SWITCHING TIME TEST CIRCUIT
100{)
700
500

VCC
+SOV

300

~ :c-Id @ VBE off) = 6.0 V

200 t'--

RC
S.O Ohms

'+-!

VCC = SO V

..--J/---' SCOPE

10 1t

~ 100
;::: 70

+:1_~D-_
-9.0VJ--C

50

tr, t1'" 10 ns
Duly Cycle = 1.0%

30

ICIIB = 1~';:
TJ 25 0 C

r-

"1-.

........
.......

I,

==

==
/

/

,

20

-5.0V

10
0.3

Note: For information on Figures 3 and 6, RB and RC were
varied to obtain desired test cor1ltitions_

0.5 0.7

1.0

2.0

3.0

5.0 7.0

IC. COLLECTOR CURRENT (AMP)

1-283

10

20

3D

2N6338 thru 2N6341

FIGURE 4 - THERMAL RESPONSE
1.a
~
~_
we:>

O. 7f=O - 0.5
O. 5

"w

:: ~ o. 3~
~~ O.2

0.2

r--

in'"
ze:>



-

<.>
<.>

c

~

30

~

~ l....... 1...

. I-I

-55°C

"""'

20

~o

~ 2.4

I-...

~
..

~

:.---

lOA
1.6

o

Si

.......

I""'-

3.0

5.0 7.0

10

20

~II

<.>

o

0.02

0.1

0.05

"

~c

~

w

'"~
c
>

+3.0
G

b

i}.25 0

~
.5 +2.0

j

2.0

~
z
w
<3

1fT
'/

1.6
,~

1.2
V~E( ..t) @ IC/IB = 10

,,; 0.8
VBE @VCE = 4.0

0.5 0.7

1.0

2.0

3.0

$

5.0 7.0

II

~

*

w

oJ

.

::>

Co>

0

....

;

lctJt)

II

0:

1/ 17
V

~

~ -1.0

....

~
30

-2.0
0.5

50

I:C'"

OVB for VBE

~

20

1.

VI.- r!

1.::;:::'10-

::>

·r
0.7

1.0

T
2.0

3.0

5.0 7.0

10

20

30

50

IC. COLLECTOR CURRENT (AMP)

FIGURE 13 - BASE CUTOFF REGION

100

200
100
20
10
5.0

for

::

50

~

II
I

I-

/

10

+1.0

FIGURE 12 - COLLECTOR CUT -OFF REGION

50

10

5.0

to

<.>

1000

~
l:i

2.0

- - - -550C +25 0C
- - +2~oC:o f,'5~oC

IC. COLLECTOR CURRENT (AMP)

-

1.0

Llp~L\Js FOJ IC/IBJhjE/4

0

/

VCE(sat)@IC/IB=10

o

h

~

J

0.4

0.5

FIGURE 11 - TEMPERATURE COEFFICIENTS

FIGURE 10 - "ON" VOLTAGES

2.4

0.2

IS. BASE CURRENT (AMP)

IC. COLLECTOR CURRENT (AMP)

2.8

\.

ITt--

IC =2.0 A'

0.01

50

30

1'-..

5.0 A

~ 0.8

r"""

77"~ YCE= ',0 V
2.0

1.0

30A

~

"-

VCE =4.0 V
10
0.5 0.7

T
Tp 250C

3.2

W

F

!

TJ = 150°C

1== 1==

I-

~
0:

a

l000 C

2.0
0
<.>
1.0
25 0 C
~ 0.5
FORWARD
0.2 ~:REVERSE
0.1
+0.2
+0.1
-0.1
-0.2
-11.3
VBE. BASE·EMITTER VOLTAGE (VOLTS)

w

~

!P

-0.5

1-288

1==

20
10
5.0 t===== i=

1000 C

2.0

25~C

1.0

"

0.5
0.2 F,REVERSE

-0.4

Vce=4D v

f-- I-TJ = 150 0 C

0.1
+0.2

+0.1

_tORWARD
-0.2
-0.3
-0.1
VBE. BASE·EMITTER VOLTAGE (VOLTS)

-0.4

-0.5

NPH

®

PMP

2N6383 2N6648
2N6384 2N6649
2N6385 2N6650

MOTOROLA

15 AMPERE PEAK

COMPLEMENTARY SILICON POWER
DARLINGTON TRANSISTORS

COMPLEMENTARY
SILICON POWER
DARLINGTON TRANSISTORS

· .. monolithic complementary silicon Darlington transistors designed
for low and medium frequency power applications such as power
switching, audio amplifiers, hammer drivers, and shunt and series
regulators.

40-60-80 VOLTS
100 WATTS

• High Gain Darlington Performance
• True Complementary Specifications
*MAXIMUM RATINGS
Symbol

2N6383
2N6648

2N6384
2N6649

2N6385
2N6650

Unit

Collector-EmItter Voltage

VCEOlsus)

40

60

80

Vdc

Collector-EmItter Voltage

VCEX

40

60

80

Vdc

Collector-EmItter Voltage

VCBO

40

60

80

Vdc

Emitter Base Voltage

VEBO

5.0

Vdc

Contmuous

IC

10

Adc

Peak 11)"

ICM

15

'B
Po

0.25

Adc

100
0.571

Watts
W/oC

- - 6 5 to + 2 0 0 _

°c

Rating

Collector Current
Base Current

Continuous

Total Power DIssipation
@

TC = 25°C 12)
Derate above 2SoC

Operatmg and Storage Junction

TJ. Tstg

Lr~
r~KESEATlN(~

I

PLANE

Temperature Range (2)

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case
Maximum Lead Temperature for Soldering

Symbol

Max

Unit

R()JC

1.75

°C/W

TL

235

°c

Purposes: 1/32" from Case for 5 Seconds

* IndIcates JEDEC RegIstered Data.
* *Not JEOEC Registered.
11) Pulse W,dth = 50 ms, Outy Cycle", 10%.

STYLE t,
PIN 1. BASE

2 EMITTER
CASE· COLLECTOR

12) Exceeds JEOEC Registration for 2N6648, 2N6649, 2N6650.
JEOEC Registration gives Po = 70 W, T J = 150°C.
DIM

MILLIMETERS
MIN MAX

A
B

Base

Collector

Collector

1

1

l ~b
~4k

C

~50

Emitter

--ill
:::.<4k

~50

b

Emitter

1-289

635
099

39.37
21.0B
762
1.09
3.43

INCHES
MIN
MAX

0.250
0.039

0
E
F 29.90
30.40 1.177
I1.1B 0.420
G 10.67
H 533
.9 0.210
11t5 0.655
J t6.64
0.440
K 11.18 1219
Q
4.09 0.t5t
3.8'
R
2667
Colleclorconlllltted to case
CASE 11-01
(TO·3)

1.550
0.831J
0.300
0.043
0.135
1197
0.440
0220
0.675
0.480
0.t6t
1.050

2N6383,2N6384,2N6385,NPN,2N6648,2N6649,2N6650,PNP

ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwISe noted)
Characteristic

Symbol

Min

Max

40
60
80

-

-

1.0

-

-

0.3
3.0

-

10

40
60
80

-

40
60
80

-

1000
100

20,000

-

2.0
3.0

-

Unit

OFF CHARACTERISTICS
·Collector-Emltter Sustaining 'Voltage (1)
(lC = 200 mAde, IB = 0)

Vde

VCEO(sus)
2N6383, 2N6648
2N6384, 2N6649
2N6385, 2N6650

Collector Cutoff CUrrent

mAde

ICEO

(VCE = Rated Value)

·Collector Cutoff Current
(VCE = Rated VCEO(sus) Value, VBE(off)
(VCE = Rated VCEO(sus) Value, VBE(off)

mAde

ICE V

= 1.5 Vde)
= 1.5 Vde, TC

= 150°C)

* Emitter Cutoff Current

lEBO

mAde

(VES = 5.0 Vde, IC = 0)
Collector-Emitter Sustaining Voltage (1)

(RBE = l00!!. IC

Vde

VCER(sus)

= 200 rnA)

2N6383,2N6648
2N6384,2N6649
2N6385, 2N6650

Collector-Emitter Sustaining Voltage (1)

Vde

VCEV(sus)

(VSE(olf) = 1.5 V. IC = 200 rnA)

2N6383,2N6648
2N6384, 2N6649
2N6385, 2N6650

ON CHARACTERISTICS (1)
*DC Current Gain
·(lC = 5.0 Ade, VCE = 3.0 Vde)
(IC = 10 Ade, VCE = 3.0 Vde)

*Collector-Emitter Saturation Voltage
(lC
(IC

= 5.0 Ade, IS = 0.01 Ade)
= 10 Ade, IB = 0.1 Add

= 5.0 Ade, VCE =
= 10 Ade, VCE =

Vde

Vde

VSElon)
3.0 Vde)
3.0 Vde)

DIOde Forward Voltage
(IF

-

VCE(sat)

*Base-Emltter On Voltage
(lC
(lC

-

hFE

-

2.8
4.5

VF

-

4.0

Vde

Cob

-

200

pF

Ihle l

20

-

-

hIe

1000

-

-

= 10 Ade)

'OYNAMIC CHARACTERISTICS

Output Capacitance
IVCB = 10 Vde,IE

=

0, I test

= 1.0 MHz)

*Magnitude of Common-Emitter Small-Signal Short-Circuit
Current Transfer RatiO
IIC

= 1.0 Ade, VCE = 5.0 Vde,

1= 1.0 MHz)

Common Emitter Smail-Signal Short-CircUit Forwar~

Current Transfer RatiO
(lC

= 1.0 Ade,

VCE

= 5.0 Vde, f = 1.0 kHz)

SECOND BREAKDOWN

Second Breakdown Collector Current with Base-Forward Biased
Second Breakdown Energy With Base Reverse-Biased
(L
11)

= 12 mH, RSE = lOOn, VBE(oft) = 1.5 Vde,

IC

= 4.5 Ade)

Pul.e Test: Pulse W,dth = 300 ~s, Duty Cycle';; 2%.

* Indicates JEOEC Registered Data.

1-290

2N6383,2N6384,2N6385,NPN,2N6648,2N6649,2N6650,PNP

FIGURE 2 - COLLECTOa SATURATION REGION

FIGURE 1 - DC CURRENT GAIN
20 K

- - ......

10 K

1\

\

z

;;:

J.. . . .

~

;

1\

~+150oC "

....
'"

~

1K

1L-~25'.V

\
3A

IC" 1 A\

V
/'

IDA

\ 5A

1\

t"--~-300C

200
01

1 1

o
05
'C, COLLECTOR CURRENT IAMPI

01

10

05

10

50

100

lB. BASE CURRENT ImAI

FIGURE 3 - COLLECTOR·EMITTER SATURATION VOLTAGE

FIGURE 4 - BASE·EMITTER VOLTAGE

~ 15
1

o

2:
w

'"~'"
o

~

1

2.0

1.5

:::

--- -

--'C/'B" 100
---IC/IB" 500

!

10 f-. 30 C

~

0.5

V~

l

...,,-:::

o

8

~

>

+25 0C'+150o C

--VBEI"'I

r-- ___ VSE/on)

~

1

~ V'

-- --===

1

....- , / '

i-'~

:::;1'

-30°C

C-=~50C V

r- +liO OC

0
0.1

0.5
IC, COLLEC10R CURRENT IAMPI

10

0.1

FIGURE 5 - SWITCHING TIME TEST CIRCUIT
(Shown for NPN)
Vee

RS

= 200)(

lSI

= IS2 = le/500

=

0.5

1

10

IC, COLLECTOR CURRENT IAMPI

FIGURE 6 - SWITCHING TIMES
10

20 Vdc

-

RL

'f

r---

-r-_

"

's

5

-r--.'d
0.1
10

1

f"" 200 Hz

IC, COLLECTOR CURRENT IAMPI

1-291

2N6383,2N6384, 2N6385, NPN,2N6648,2N6649,2N6650,PNP

FIGURE 7 - THERMAL RESPONSE
1~

.... 6

O.7f:=: D·0.5
O.5

-- ......

,HID.3 - _10.2
......
~~ o.2
......
'--- -0.1

;....,::::;

pfJUl

~

:;;;;;

.... 0

~~ o. 'r====== ==0.05

~Ii'"

~~o.o7

0.0 I
0.1

D CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME AT II
TJ(pk) - TC =P(pk) 8JCIt)

t~

:: ~ 0.05 f-0.02

,.....
:0
";::'~O.03
::;::Si
0.02

8JCIt) - r(tl8JC
8JC -1.750CIW

t:Z
"SING LE PULSE

DUTY CYCLE. 0

=

II/t2

0.01

I

I

I

0.2

0.3

0.5

0.7

1.0

2.0

3.0

5.0

IIII

7.0

I I I

I I

10

20

50

30

70

100

200

300

SOD

700 1000

t.TIME(m~

There are two limitations on the power handling ability of
a transistor: average junction temperature and second breakdown. Safe operating area curves Indicate Ie-VeE limits of
the transistor that must be observed for reliable operation;
i.e., the transistor must not be subjected to greater dissipation
than the curves indicate.
The data of Figure 8 is based on TC "" 2SoC; T J(pk) is
variable depending on power level. Second breakdown pulse
limits are valid for duty cycles to 10% but must be derated

for temperature.
T J(pk) may be calculated from the data in Figure 7. At
high case temperatures, see Figure 9, thermal limitations will
reduce the current that can be handled to values less than
the limitations imposed by second breakdown. Second breakdown hmitations do derate the same as thermal limitations.
Allowable current at the voltages shown on Figure 8 may be
found at any case temperature by derating linearly to 200o C.

FORWARD BIASEO SAFE OPERATING AREA
FIGURE 8 - TC = 2SoC

, ,

IS

,

10

,

Ie
,.

~

....

.. --1''"l
~~M,;6~~G
~

---

'"

0

~

'"'-'

- -

.....

10,us
-50,us

SECOND BREAKDDWN

-

'\f\.

"

,

de'

FIGURE 9 - TC = 100°C

WIRE LIMITED-I m,
THERMAL LIMITATION
5 m,
_50 ms
AT TC = 250C

"

-

... ...

...

...

...

"

20

50

80

VCE. CDLLECTOR·TO·EMITTER VDLTAGE (VOLTS)

FIGURE 10 - CE DIODE CHARACTERISTICS

w

.

~

3

i;'

2. 5
./

2

~

~ 1.5
w
I-c
0

;:;

u.

>

....-

.,/ V

V

-----

-~

'F== ~OC
O. 5

i--- -t1150DC

o

0.1

0.2

\:

"-

...
,'\.. '\.
...-;;

'\.

1m'
5m,
SECOND BREAKDOWN
LIMITED
2N6383. 2N6648
~
- BDNDING WIRE LIMITED~
- - - - - THERMAL LIMITATION
2N6384.2N6649- j-'I\
AT TC = 1000C
---1-2N6385 2N6650 I0.2
50ms
'
D.15
10
20
50
VCE. COLLECTOR·TO·EMITTER VOLTAGE (VOLTS)

3. 5

'"
~
'">

... ...
10}Js
50,us

2N6~85. 2N66~0

10

......

de

~

2N6383.2N6648
2N6384,2N6649
0.2
0.15

'

10

\ '\

0.5

E

,

~ i.-

'\

"'"

15

0.5
IF. DIODE FORWARD CURRENT (AMPS)

10

r'\.

~

~~
80

®

2N6386
2N6387
2N6388

MOTOROLA

PLASTIC MEDIUM-POWER
SILICON TRANSISTORS

DARLINGTON

· .. designed for general·purpose amplifier and low·speed switching
applications.

8 AND 10 AMPERE

High DC Current Gain hFE = 2500 (Typ) @ IC = 4.0 Adc
Coliector·Emitter Sustaining Voltage - @ 100 mAdc
VCEO(sus) = 40 Vdc (Min) - 2N6386
= 60 Vdc (Min) - 2N6387
= 80 Vdc (Min) - 2N6388
Low Coliector·Emitter Saturation Voltage VCE(sat) = 2.0 Vdc (Max) @ IC = 3.0 Adc - 2N6386
= 2.0 Vdc (Max) @ IC = 5.0 Adc - 2N6387, 2N6388

•
•

•

•

NPNSILICON
POWER TRANSISTORS
40-60-60 VOLTS
65 WATTS

Monolithic Construction with Built·ln Base·Emitter
Shunt Resistors

• TO·220AB Compact Package
• TO·66 Leadform Also Available
*MAXIMUM RATINGS
Rating

Collector-Emitter Voltage

Symbol

2N6386

2N6387

2N6388

Unit

VCEO

40

60

80

Vdc

40

60

80

Vdc

Collector-Base Voltage

Vca

Emitter-Base Voltage
Collector Current - Continuous

VEa

.
..
...

8.0
15

IC

Peak

Base Current
Total Power Dissipation @ T c:::: 25°C
Derate above 2SoC

la
Po

Total Power Dissipation @ T A 25°C
Po
Derate above 2SoC
Operating and Storage Junction,
TJ, Tstg
Temperature Range

.
..
...

5.0
10
15

10
15

250
65
0.52
2.0
0.Q16

Vdc
Adc
mAde

Watts
WJOC

Watts
WJOC

-4------65 to +150 -

°c

THERMAL CHARACTERISTICS
Characteristics

Thermal Resistance, Junction to Case
Thermal Resistance, Junction to Ambient

~

Unit

1.92

°C/W

ROJA

62.5

°C/W

lO

«
~ 2.0 40
l:l

.....................

0

.P

DIM

MAX

A

6.48
1.27

0.620
0405
0190
0035
0147
0105
0155
0.022
0.582
0.055
0.210
0120
0110
0.055
0.255
0.050

2.03

0.080

G

~

~

'" ""

o

......................

T
U
V

-.......:::: ~

o

20

AN03

H

0~

1.0 20

o

NOTES
1 DIMENSION H APPLIES TO ALL lEADS
2 DIMENSION L APPUES TO LEADS'

C
D

"'"

z
0
;::

STYL£l
PIN 1 BASE
2 COLLECTOR
3 EMITT£R
4COLLfCTOR

ES

.......

~ 3.0 80

~

Max

ROJC

FIGURE 1 - POWER DERATING

TA TC
4.0 80

'"
~

Symbol

40

100
80
80
T,TEMPERATURE lOCI

120

140

180

1-293

1427
139
533
3.04
2.79
1.39

CASE 221A.Q2
TO·220AB

2N6386 2N6387 2N6388 NPN

·ELECTRICAL CHARACTERISTICS (TC = 260 C unless otherwise noted)

III]

I

I

Char_istic

Max

Min

Svmbol

Unit

OFF CHARACTERISTICS
Collector-Emitter Sustolning Voltage (I)
lIC = 200 mAde, IS = 0)

Collector Cutoff Curront
(VCE = 40 Vdc, IS = 0)
(VCE = 60 Vdc, 18 =0)
(VeE = 80 Vdc, IS - 0)

VCEO{sus)
2N6386
2N6387
2N6388
ICED

Collector Cutoff Current
2N6386
(VCE = 40 Vde, VES(off) = 1.5 Vdc)
2N6387
(VCE = 80 Vdc, VES(off) - 1.5 Vdc)
2N6388
(VCE ·80 Vde, VE8{offl - 1.5 Vde)
(VCE =40 Vde, VES{off) = 1.5 Vde, TC = 125°C) 2N6386
(VCE = 60 Vde, VES(off) = 1.5 Vdc, TC = 1250 C) 2N6387
(VCE = 80 Vde, VES{off) = 1.6 Vde, TC = 126oC) 2N6388
Emitter Cutoff Current
(VSE = 6.0 Vdc, IC = 0)

-

mAde

-

2N6386
2N6387
2N6388
ICEX

IESO

Vdc

-

40
60
80

1.0
1.0
1.0
"Ade
300
300
300
3.0
3.0
3.0

mAde

-

5.0

1000
1000
100
100

20000
20000

-

2.0
2.0
3.0
3.0

mAde

ON CHARACTERISTICS (1)
DC Curront Gain
lIC - 3.0 Adc, VCE =3.0 Vdc)
lIc = 5.0 Adc, VCE =3.0 Vde)
lIc = 8.0 Ado, VCE = 3.0 Vde)
lIc = 10 Ade, VCE =3.0 Vde)
Collector-Emitter Saturation Voltage
lIc - 3.0 Adc, 18 = 0.006 Adc)
lIc • 5.0 Adc, IS = 0.01 Adc)
lIc = 8.0 Ade, IS = 0.08 Ade)
lIc = 10 Ade,lS = 0.1 Ade)
Basa-Emlttar On Voltage
lIC = 3.0 Adc, V CE =3.0 Vde)
(lc = 5.0 Adc, VCE =3.0 Vdc)
lIc = 8.0 Adc, VCE =3.0 VdcJ
lIc = 10 Ade, VCE =3.0 Vde)

-

hFE
2N6386
2N6387, 2N6388
2N6386
2N6387, 2N6388

Vdc

VCE(satl
2N6386
2N6387, 2N6388
2N6386
2N6387, 2N6388

-

VSE(on)

Vdc

-

2N6386
2N6387, 2N6388
2N6386
2N6387, 2N6388

-

2.8
2.8
4.5
4.5

Ihfe l

20

-

Cob

-

200

pF

hfe

1000

-

-

DYNAMIC CHARACTERISTICS
Small-5ignal Currant Gain
lIC = 1.0 Adc, VCE = 5.0 Vdc, f t ••t = 1.0 MHz)
Output Capacitance.
(VC8 = 10 Vdc, IE =0, f =1.0 MHz)
Small-Signal Curront Gain
(lC ~ 1.0 Adc, VCE = 5.0 Vdc, f = 1.0 kHz)
• Indicates JEDEC Registered Data
(1) Pulsa Tast: Pulse Width .. 300 "s, Duty Cycl... 2.0'16.

FIGURE 3 - SWITCHING TIMES

FIGURE 2 - SWITCHING TIMES TEST CIRCUIT
7.0
5.0

Vee

+30 V
Ra & Rc VARIED TO OBTAIN DESIRED CURRENT lEVELS
01. MUST BE FAST RECOVERY TYPES, e.g.,
M8D&lIIO USED ABOVE 18 "" 100 rnA
MSD61DD USED BELOW 18'" 100 rnA

3.0

:'-~l~lJ: .
~~X __

I

I

2&~s

ts

Re

~ 1.0

........

t!...-

~
t-

_. 0.7
0.3
0.2

fort(!andtr,D,isdisconnamd
andV2=D

tr.tf

0.1

0.2

0

0.3

0.5 0.7

1.0

2.0

3.0

5.0 7.0

I\..

1.4

ti

1.0

0.3

10

r-0.5

0.7

1.0

2.0

3.0

5.0

7.0

10

+5.0

~ +4.0
>
.! +3.0

rJL5 0lC
2.5

Q +2. 0

II

0

~

~

i-':

W

to

1.5 VBEljt)@lICi1 S ' 250

:>

VBE @lVCE • 4.0 V
1.0
VCEI,,!)@ IC/IB' 250
0.5
0.1

0.2

0.3

0.5

07

-

1.0

'"
!:)

!;(

./

-550 C to
-1.0

~ -3.0

i

7.0

10

0.1

V-

250 C to 150yi-"'

-4. 0

-5.0
5.0

~

0.2

0.3

""

0.5 0.7

1.0

2.0

-550 C to 25 0 C

3.0

IC. COLLECTOR CURRENT lAMP)

IC. COLLECTOR CURRENT lAMP)

FIGURE 13 - DARLINGTON SCHEMATIC

FIGURE 12 - COLLECTOR CUT-oFF REGION
105
F=REVERSE~ ~FORWARO

COLLECTOR

5

'"
Q

103
102

~

10 1

~

100

8

---,

.-----4-..

r==VCE" 30V

r- TJ - 1500 C
I----

10-1
-O.B

I
I
-_
l -.JI
I '-'''''',.....J\AfV-......
1..
________

1000 C

EMITTER
-0.4

I
)
)
)
)
)

BASE

-0.2

+0.2

+0.4

+0.6

+0.8

+ 1.0

+1.2

+1.4

VBE. BASE EMITTER VOLTAGE IVOLTS)

1-296

II
ii

V

~

-Hi"

OVB for VBE

1-'

3.0

L

~I"

25 0 C

~ t:7

*8VC for VeE sat

~ -2. 0

. /V

2.0

2SOC to 150"C

+1. 0

S
w

V

::::::: ?""

'Ic/IB .;; hFE/3

!;;

J

S 2.0

",...
iB

30

'FIGURE 11 - TEMPERATURE COEFFICIENTS

FIGURE 10 - "ON" VOLTAGES

104

20

lB. BASE CURRENT ImA)

3.0

"

B.OA

o

I~

IC. COLLECTOR CURRENT lAMP)

!:;
0
>

,

4.0 A

I ·2.0A

~

,....

TJ'15O"C/

ffi

"
~

~
~ 2.6

~ 5000

B

3.0

!:;

VCE' 4.0V

10.000

3000
~ 2000

en

I ! II

"

5.0 7.0

10

®

2N6436
2N'6437
2N6438

MOTOROLA

HIGH-POWER PNP SI LICON TRANSISTORS
25 AMPERE
POWER TRANSISTORS
PNPSILICON

· .. designed for use in industrial·military power amplifier and
switching circuit applications.
•

High Collector· Emitter Sustaining Voltage VCEO(sus) = 80 Vdc (Min) - 2N6436
= 100 Vdc (Min) - 2N6437
= 120 Vdc (Min) - 2N6438

•

High DC Current Gain hFE = 20-80@ IC = 10 Adc
= 12 (Min) @ IC = 25 Adc

•

Low Coliector·Emitter Saturation Voltage VCE(sat) = 1.0 Vdc (Max) @ IC = 10 Adc

•

Fast Switching Times
tr = 0.3 j.lS (Max)
ts = 1.0 j.ls (Max)
tf = 0.25 j.lS (Max)

•

Complement to NPN 2N6338 thru 2N6341

80,100,120 VOLTS
200 WATTS

~

IC = 10 Adc

@

"MAXIMUM RATINGS
Rating

Symbol

2N6436

2N6437

2N6438

Unit

Collector-Base Voltage

Ves

100

120

140

Vdc

Collector-EmItter Voltage

VeEO

80

100

120

Vdc

Emltter·Base Voltage

VES

6.0

Vdc

Ie

25
50

Adc

Base Current

IS

10

Adc

Total DeVIce Dlsslpatlon@Tc-2SoC

Po

200
1.14

WIDe

-65 to +200

De

Collector Current

ContinUOUS

Peak

Derate above 2SoC
OperatIng and Storage Junction

TJ,T stg

JF"=3tr

~:~!
r---

Watts

Temperature Range

0li

30

\
\

\

O. 8

r-

;;:; 1.0

~ 0.8

0.4

r-~BEr~CfjW

V

00.3

tl~ I~!J = 10

- 0.5

0.7

1.0

~ +t.O

/

'"'"w

/

*OVs.FOR VCE(..!)

1

~ -1.0

1

I-

r.5

i

20

-2.0

l

-2.5
0.3

30

0.5 OJ

ILk

1-1

1.0

2.0

V

+25o'C TO +150clc

/

./

J..

-55'C Tri +2~.d

I I 5.0TI 7.0

3.0

10

20

30

IC. COllECTOR CURRENT (AMP)

FIGURE 13 - BASE CUT·OFF REGION
10 1

/

Vce=4DV=
Tr +IS0oC

+lo0oC

~ 100

-

OVB FOR VBE

-1.5

l-

2.0 3.0
5.0 7.0 10
IC. COllECTOR CURRENT (AMP)

/

0

-o.S

~

Y

~

2.0

1.0

+2STOT 1S

$ +{l.S

TJ=+1500

I-

0.5 0.7

fj.. V./' lJ
-r::: -tr
-S5 C TO +2;OC

~

FIGURE 12 - COLLECTOR CUT·OFF REGION

10 1

0.3

/

13

~

0.2 r--)CE(I..

0.2

'APPLIES FOR IcIIB" hFEI2

.s +1.S

1/

-...-:~

VBE( ..t)@ IcllB = 10

to

~ 0.6
>'

~ +2.0

/ V

~

1.2

O.OS 0.07 0.1

+2.S

I/,"

1.6

~

"

I'

0
0.02 0.03

FIGURE 11 - TEMPERATURE COEFFICIENTS

TJ = 25°C

1.4

I'..

'\

FIGURE 10 - "ON" VOLTAGE

in

20A

lB. BASE CURRENT (AMP)

2.0
1.8

TJ = 2S OC

\ IDA

1.4

'"
td o.6
c:.... o. 4
'"~ o. 2

'\

2.0 3.0
5.0 7.0
1.0
IC. COLLECTOR CURRENT (AMP)

S.oA

~ 1.0

i" ....

VCE = 4.0 V

\

1
IC=2.0A

ffi 1.2

"" '
K" ,~

r.;;

II I

10
0.3

2.0

'"
? 1.8

"""I-:::

IZ

w 50

FIGURE 9 - COLLECTOR SATURATION REGION

\

i---+100oC
1

tIC

::>

)/

'"

~

1

VCE-4oV

2

10+2SoC

810-2 ioa=REVERSE

/

i---+2Soc
FORWARD

~

t:-==l= REVERSE

Y
10- 3
+0.2

+0.1

0
-0.1
-0.2
-0.3
VBE. BASE·EMITTER VOLTAGE (VOLTS)

-0.4

-0.5

1-300

10-4
+0.16

FORWARD

\
+0.08

0
-0.08
-0.16
V8E. 8ASE·EMITIER VOLTAGE (VOLTS)

-0.24

®

2N6486 2N6487 2N6488 NPN
2N6489 2N6490 2N6491 PNP

MOTOROLA

COMPLEMENTARY SILICON PLASTIC
POWER TRANSISTORS

15 AMPERE

designed for use in general-purpose amplifier and switching
applications.
• DC Current Gain Specified to 15 Amperes
hFE = 20-150@ IC= 5.0 Adc
= 5.0 (Min) @ IC = 15 Adc
•

Collector-Emitter Sustaining Voltage VCEO (sus) = 40 Vdc (Min) - 2N6486. 2N6489
= 60 Vdc (Min) - 2N6487. 2N6490
= 80 Vdc (Min) - 2N6488. 2N6491

•

High Current Gain - Bandwidth Product
fT = 5.0 MHz (Min) @ IC = 1.0 Adc

•

TO'220AB Compact Package

•

TO-66 Leadform Also Available

COMPLEMENTARY SILICON
POWER TRANSISTORS
40-60-80 VOLTS
75 WATTS

*MAXIMUM RATINGS
Rating

Collector-Emitter Voltage

Svmbol

2N6486
2N6489

2N6487
2N6490

2N6488
2N6491

Unit

VCEO

40

60

80

Vdc

VCB

50

70

90

Vdc

Collector-Base Voltage
Emitter-Base Voltage
Collector Current Continuous

..
.
..

VEB
IC

Base Current
Total Power Dissipation

IB
Po

@TC=250C

Derate above 2SoC
Total Power Dissipation
Derate above 2SoC
Operating and Storage Junction
Temperature Range

T J. T stg

15

.

5.0
75
0.6

...

Po

@TA=250C

..

5.0

1.8

Adc

....

W/oC

.

Watts

..

0.014

Vdc
Adc

.....---65 to +150 ----...

Watts

wfOc
°c

THERMAL CHARACTERISTICS
Symbol

Characteristic
Thermal Resistance, Junction to Case

Unit

Max

1.67

Thermal Resistance, Junction to Ambient

70

R6JA

°C/W

*Indicates JEDEC Registered Data

4.0

!_<
z
o

2.0

TC
40 ~=::j:::;:=__t_T._t----1"'=__+_-_t--+_-_1
_TA

1.0

"" "-"-

.......

r--..... ...............
;::-+-.....:''-J--+---l

20 I---+--I--+-~

...........

"

40

60

80

100

120

140

C
D
F
G

H
J
K

L
N

n
R
S
T
U
V

-.......:::: ~

20

~n
B

60 I--+_-~"'..-+--i---i--~i----II----I

~

~
.p

-"'""'t-.-.

3.0

~
~

FIGURE 1 - POWER DERATING
80,--,-----r--,--,---,---,--,----,

STYLE 1
NOTES
PIN 1. BASE
1 DIMENSION H APPLIES TO ALL LEADS
2 COlLECTOR
2 DIMENSION L APPLIES TO LEADS I
3 EMITTER
AND 3
4 COLLECTOR

160

Z

985
406
064
361
241
279
036
1270
114
483
254
204
1.14
5.97
0.00
1.14

1

0
3
2
3
056
1427
139
533
3.04
279
139
648
1.27

INCHES
MIN MAX
0575
0.380
0160
0025
0142
0095
0110
0014
0500
0045
0190
0.100
0.080
0.045
0.235
0.000
0.045

- - CASE2.03
221A-02
TO-220AB

TC. CASE TEMPERATURE lOCI

1-301

0620
0405
0190
0035
0147
0105
0155
0022
0562
0055
0210
0120
0110
0.055
0.255
0.050

-

0.080

2N6486 2N6487 2N6488 NPN
2N6489 2N6490 2N6491 PNP

·ELECTRICAL CHARACTERISTICS (TC = 250 C unle•• otherwise noted.)

I

I

Characteristic

Symbol

Min

Max

40
60

-

Unit

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage (1)
(lC = 200 mAde, IB = 01

Collector-Emitter Sustaining Voltage (11
(lC = 200 mAde, VBE = 1.5 Vdel

50
70
90

-

-

1.0
1.0
1.0

-

500
500
500
5.0
5.0
5.0

mAde

ICEO
2N6486, 2N6489
2N6487, 2N6490
2N6488,2N6491

=85 Vdc, VEB(offl
= 40 Vde, VEB(offl
=60 Vdc, VEB(offl
=80 Vdc, VEB(offl

-

/JAde

ICEX

2N6486,2N6489
2N6487, 2N6490
2N6488, 2N6491
= 1.5 Vdcl
= 1.5 Vdc, TC = 150oCI2N6486, 2N6489
o
= 1.5 Vdc, TC = 150 C12N6487, 2N6490
= 1.5 Vdc, TC = 150oC12N6488, 2N6491

Emitter Cutoff Current

-

lEBO

(VBE = 5.0 Vdc, IC = 01
ON CHARACTERISTICS
DC Current Gain

mAde

1.0

mAde

-

hFE

=5.0 Adc, VCE = 4.0 Vdcl
= 15 Adc, VCE = 4.0 Vdcl

Collector-Emitter Saturation Voltage

(lC
(lC

-

Vde

2N6486,2N6489
2N6487, 2N6490
2N648B, 2N6491

Collector Cutoff Current
(VCE = 45 Vde, VEB(offl = 1.5 Vdcl
(VCE = 65 Vde, VEB(offl = 1.5 Vdcl

(lC
(lc

-

80
VCEX

Collector Cutoff Current
(VCE = 20 Vde,IB = 01
(VCE = 30 Vdc, IB = 01
(VCE = 40 Vdc,IB = 01

(VCE
(VeE
(VCE
(VCE

Vdc

VCEO(susl
2N6486, 2N6489
2N6487, 2N6490
2N6488: 2N6491

20
5:0

150

-

-

1.3
3.5

-

1.3
3.5

Vdc

VCE(••tl

=5.0 Adc, 18 =0.5 Adcl
= 15 Adc, IB = 5.0 Adcl

Base·Emitter On Voltage
(lC = 5.0 Adc, VCE = 4.0 Vdcl
(lc = 15 Adc, VCE = 4.0 Vdcl

Vdc

VBE(onl

DYNAMIC CHARACTERISTICS
Current Gain - Bandwidth Product (21
(lc = 1.0 Adc, VCE = 4.0 Vdc, f test = 1.0 MHzl

fT

5.0

-

MHz

Small-Signa. Current Gain
(lC = 1.0 Adc, VCE = 4.0 Vdc, f

hfe

25

-

-

= 1.0 kHzl

'Ind,cates JEDEC RegIStered Data.
(lIPul.e Test: Pulse Width .. 3001'" Duty Cycle .. 2.0%.
(21fT = Ihfel. fteS!.
FIGURE 3 - TURN·ON TIME

FIGURE 2 - SWITCHING TIME TEST CIRCUIT

vee
+30

1000

v
SOD

C"-..

Re
Scope

Ir

,..-

.....

.....

0

O!""---.
51

D1

0

NPN
--PNP
TC=2SoC
VCC = 30 V
ICIlB = 10

t r• tf " 10 ns

Duty Cycle = 1.0%

-4 V

0

RB and RC varied to obtain desired current levals.
For PNP reverse all polarities.

0

01 must be fast recovery type, e.g.;
MB05300 used above IS ~ 100 mA
MSDS100 used below IS

~

100 mA

1-302

0.2

O.S

--

'd@VBE (off)

=

~ 5.0 V

-1-

5.0
2.0
1.0
IC, COLLECTOR CURRENT (AMP)

10

20

2N6486 2N6487 2N6488 NPN
2N6489 2N6490 2N6491 PNP

FIGURE 4 - THERMAL RESPONSE

ZoJCII) , ,II) ROJC
R'JC' 1.S7° CIW Ma.
o CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME AT 11
TJlpk) - Tc' Plpk) 4>JCII)

t,

TIME (msl

FIGURE 5 - ACTIVE-REGION SAFE OPERATING AREA
0

There are two limitations on the power handling ability of a

100",-

""-

transistor. average junction temperature and second breakdown.
Safe operating _area curves mdlcate Ie-VeE limits of the transistor
that must be observed for reliable operation; i.e., the transistor

500 w=

'"~

=
'"'-'.!d?

TJ-150 oC
-SECOND BREAKOOWN LlMITEO "---BONOING WIRE LIMITED
---THERMALLY LlMITED@TC'250C
1.0
CURVES APPLY BELOW RATEO VCEO
0.5
2N648S.2NS489
2NS487,2NS490-

0.2

0.1
2.0

loOms-

must not be subjected to greater dissipation than the curves indicate.

5.0ms=

depending on conditions. Second breakdown pulse limits are valid
for duty cyclesto 10% provided TJ(pk)":; 150°C. T J(pk) may be
calculated from the data in Figure 4. At high case temperatures,

The data of F .gure 5

-

10
20
40
SO
VCE, COLLECTOR·EMITTER VOLTAGE (VOLTS)

based on T J(pk I = 1SO"C; T C is variable

thermal limitations will reduce the power that can be handled to

dc-

values less than the limitations imposed by second breakdown

2NS488,2N6491
4.0

IS

80

FIGURE 6 - TURN-OFF TIME

FIGURE 7 - CAPACITANCES

5000

1000
700

t-

~s

~ 500

;::

--NPN
200 >-- - - PNP
VCC'30V
IcIIB' 10
100
:::: IB1- IB2
;:: TJ'250C
50
0.5
0.2

-

-

~ ;;;;;; ~

1-

c-

"'~

c:

300

;'!
I~ 200

100

==

h:: ~

-- ....

~;:;:

Cob

r--- r-

j

~

Cob

"

~

1000

- - NPN
PNP
25°C

-l-

r"--,

..... .....

t-- r--

Tr

70
1.0

2.0

5.0

10

20

IC, COLLECTOR CURRENT (AMP)

1-303

50
0.5

1.0

2.0
5.0
10
VR, REVERSE VOLTAGE (VOLTS)

20

50

2N6486 2N6487 2N6488 NPN
2N6489 2N6490 2N6491 PNP

NPN

PNP

2N6486,2N6487,2N6488

2N6489,2N6490,2N6491

~=1500C

25°C

r-.,.

-55°C

'"

t-

~ 50

~

~

:>

r-...

:>

;

""c

20

;

l'.

~

VCE=2.oV
10
5.0
0.2

0.5

r-

200
z

""-

IT'-

~ 100

'"
"~

--

500

'-

200

I

FIGURE 8 - DC CURRENT GAIN

-

500

1.0
2.0
5.0
IC. COLLECTOR CURRENT lAMP)

10

100 -

=

~

25°C

-55°C

0

.......
20

~

VCE=2.0V

10
5.0
0.2

20

TJ'150oC

1.0

0.5

2.0

5.0

10

20

IC. COLLECTOR CURRENT lAMP)

FIGURE 9 - COLLECTOR SATURATION REGION
~ 2.0

w

~

'">

en
~

2~OC

TJ =

~ 1.8

~
w

1.4

~ 1.4

~

~

\

~

IC -1.0 A

c

~

II

,II

1.2

0.4

c

6

10

500
50
100 200
Ie. 8ASE CURRENT ImA)

20

1000

2000

-

I\,

4

[\.

~ 0.2
~ 0

0

8.0 A

0.8

c

~ 0.2

4.0A

IC-l.OA

1.0

g_ o.o.

8.0 A

4.0A

~ 0.6

5.0

TJ=25OC

1.6

c

1.2

~ 0.8

>

III

1.8

1.6

~;0' 1.0
~

2.0

5000

5.0

10

500
50
100
200
Ie. 8ASE CURRENT ImA)

20

1000 2000

5000

FIGURE 10 - "ON" VOLTAGES
2.8

2.8

I I

2.4 I-- I- TJ = 25°C

~

o

ii
>

:>

S
2.0 c

2.0

>

;o

/.
:I"

1.6
1.2

V8Elaat) =IC/18 - 10
0.8
VBE@VCE·2.0V
0.4

t--- r- V'CEI,,!) fillclle = 10
o
0.2

0.5

I I

2.4

---

..-:

~
w

1.6

;'"o

1.2

I
I
I
~V8E @VCE=2.0V

,...

0.4

o
10

20

-

0.2

VCEI"t) @ Ic/le = 10
0.5

1.0

2.0

5.0

IC. COLLECTOR CURRENT lAMP)

1-304

/

~V

VeElsat)@IC/le= 10

:> O.8

..,.

1.0
2.0
5.0
IC. COLLECTOR CURRENT lAMP)

//

I

>

/

h

TJ = 25°C

10

20

®

2N6497
2N6498
2N6499

MOTOROLA

5 AMPERE
POWER TRANSISTORS
NPNSILICON

HIGH VOLTAGE NPN SILICON POWER TRANSISTORS

250,3OO,360VOLTS
80 WATTS

· .. designed for high voltage inverters, switching regulators and lineoperated amplifier applications. Especially well suited for switching
power supply applications.
•

High Collector· Emitter Sustaining
VCEO(susl = 250 Vdc (MinI = 300 Vdc (MinI = 350 Vdc (MinI -

Voltage 2N6497
2N6498
2N6499

•

Excellent DC Current Gain hFE = 10- 75 @ IC = 2.5 Adc

•

Low Coliector·Emitter Saturation Voltage
VCE(satl = 1.0 Vdc (Max) - 2N6497
= 1.25 Vdc (MaxI - 2N6498
= 1.5 Vdc (MaxI - 2N6499

@

IC = 2.5 Adc-

d'lftl-L

··MAXIMUM RATINGS
Rating
Collector-Emitter Voltage

Symbol 2N6497
VCEO

Collector-Base Voltage

VCS

Emitter-Base Voltage

VES

Collector Current - Continuous

250

IC
IS

Total Power Dissipation @TC - 25°C

PD

300

350

Vdc

450

Vdc

6.0

Vdc

5.0
10

Adc

2.0

Adc

Watts
W/oC

4---65'0+150 _ _

TJ,Tstg

°c

THERMAL CHARACTERISTICS
ChII,.ct.iltic

Thermal Resistance. Junction to Case

I

Symbol

I

Max

I

Unit

I

ReJC

I

1.56

I

°C/W

-Indicates JEDEC Registered Data.

0-11-

Unit

400

80
_0.64

Derate above 2SoC
Operating and Storage Junction
Temperature Range

2N6499

-- --

---350

- Peak

Sase Current

2N6498

N

STYLE 1
PIN 1 BASE

2
3
4

DIM
A
8
C
D
F

G
H

l
I
Q

R
S

u
y

COLLECTOR
EMITTER
COLLECTOR

MILLIMETERS
MIN MAX
14.60 15.75
9.65 1029
4.06
482
064 089
361
3.73
241
2.67
279 3.93
036 0.56
12.10 1427
114
1.39
4.83
5.33
2.54 3.04
2.04 2.79
I 14 1.39
5.97
8.48
0.00
1.27
1.14
2.03

IICHES
Mil
MAX
0.575 0.620
0.380 0.405
0.160 0190
0025 0.035
0142 0.141
0.095 0105
0110 0.155
0.014 0.022
0.500 0.562
0045 0.055
0.190 0.210
0.100 0.120
0.080 0.110
0.045 0.055
0.235 0.255
0.000 0.050
0.045
0.080

CASE 221A-02

TO·220AB

1-305

G

2N6497.2N6498.2N6499

I

'ELECTRICAL CHARACTERISTICS (TC' 25°C unlessolherwise nOled.)

I

Char....ri.tic
OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage 11)
(lC' 25 mAde, la • 0)

2N6497
2N6498
2N6499

Symbol

VCEO(sus)

Collector Cutoff Current

..I

Min

Typ

Ma.

250
300
350

-

-

-

Vde

mAde

Icex

(VCE " 350 Vde, VaE(offi • 1.5 Vde)
(VCE • 400 Vde, VSE(olf) " 1.5 Vde)
(VCE • 450 Vde, VSE(olfi • 1.5 Vde)

2N6497
2N6498
2N6499

-

(VCE' 175 Vde, VSE(off) " 1.5 Vde, TC" 1000C)
(VCE" 200 Vde, VSE(offi = 1.5 Vde, T C = 1000C)
(VCE = 225 Vde, VSE(off) = 1.5 Vde, Te = 1000 e)

2N6497
2N6498
2N6499

-

Emitter Cutoff Current

Unit

-

1.0
1.0
1.0
10
10
10
mAde

1.0

leso

(VaE • 6.0 Vde, IC' 0)
ON CHARACTERISTlCS."

DC Current Gain
(lC
(lc

-

hFE

=2.5 Ade, VCE = 10 Vde)
=5.0 Ade, VCE = 10 Vde)

Collector-Emitter Saturation Voltage
(lC = 2.5 Ade, la = 500 mAde)

VCE(sa,)
2N6497
2N6498
2N6499
All Devices

(lC = 5.0 Ade, IS = 2.0 Ade)

Ba.-Emitter Saturation Voltage

-

75

-

-

-

-

1.0
1.25
1.5
5.0

Vde

-

-

-

VaE(sa,)

(lC = 2.5 Ade, la = 500 mAde)
(lC" 5.0 Ade, la = 2.0 Ade)

10
3.0

-

Vde

-

-

-

-

1.5
2.5

5.0

-

-

MHz

150

pF

DYNAMIC CHARACTERISTICS

Current-Gain-Bandwidth Product
(lC = 250 mAde, VCE = 10 Vdc, I = 1.0 MHz)

IT

Output Capacitance
(VCS = 10 Vdc,IE = 0, f = 100 kHz)

Cob

SWITCHING CHARACTERISTICS

Rise Time

'r

0.4

1.0

I.IS

I,

1.4

2,5

1.1'

'I

0.45

1.0

1.1'

(Vec = 125 Vde,lc = 2.5 Ade, lSI = 0.5 Ade)

Storage Time
(VCC = 125Ydc, IC" 2.5 Ade, VaE = 5.0 Vde, lal • la2" 0.5 Adc)

Fall Time
{VCC" 125Vde,lc" 2.5 Ade, lSI "IS2" 0.5 Adc}

-'ndu;ates JEDEC Registered Data.
{I} Pulse Test: Pulse Width <;3001.1" Du,y Cycle <;2.0%.
FIGURE 2 - TURN·ON TIME

FIGURE 1 - SWITCHING TIME TEST CIRCUIT

vcc

1.0

+125 V

O. 7

VCC"mv
IC/IB" 5.0
TJ" 25°C

5
3

]

O. 2

...~

O. I

........

.......

........

./

I,

L

_'0.0 7
0.0 5

l,. tf!::lOns
DUTY CYCLE" 1.0%
- 5.0V
AB and AC VAAIED TO OBTAIN DESIRED CUARENT LEVELS

0.03
0.02

01 MUST OE FAST RECOVERY TYPE, eq
MBD5300 USED ABOVE 10 =100 mA
MSD6100 USED BELOW 10 =100 mA

0.0 I
0.05 0.07 0.1

1-306

Id@VBElolt}" 5.0V

II II
0.2
0.3
0.5 0.7 1.0
IC. COLLECTOR CURRENT lAMP}

V

-

r-

2.0

3.0

5.0

2N6497, 2N6498, 2N6499

FIGURE 3 - THERMAL RESPONSE
1.0
O. : =0-0.5
O.

- linn

~
... ::;
as:f o.3== f:::O.2
in'"

:i ~

......

0.2

",-

-

E~o.o 7 =

~

I--

1- 0.1

~ .....

~ ~ o.1 = 0:;0.05

tl~

0.0

:::: ~O.05

...

~

-'II
:g ~ 0.03 - :;;. 1-0.01
~O.02
...
0.0 1
0.01

SINGLE
PULSE

RBJClmlxt:: 1.56oCM'

o CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME ATtl
TJlpkl- TC: Plpkl R BJCItI

DUTY CYCLE, 0 :11/12

-Single Pulse

I

I III

0.02 0.03

0.05

IIIII
0.1

0.2

0.3

0.5

1.0

10
2.0 3.0
5.0
I. TIME OR PULSE WIDTH Imsl

I I II I IIIIII
20

30

50

100

I I II IIIII
200

300

500

1000

FIGURE 4 - ACTIVE-REGION SAFE OPERATING AREA
0
There are two limitations on the power handling ability of a

0

transistor: average junction temperature and second breakdown.

~ 5. 0
5

Safe operating area curves indicate Ie - VeE limits of the transistor
that must be observed for reliable operation; i.e., the transistor
must not be subjected to greater dissipation than the curves
indicate.
The data of Figure 4 is baEd on TC ::: 2SoC; TJCpkl is
variable depending on povver level. Second breakdown pulse limits
are valid for duty cycles to 10% provided TJ(pk) ~15aoC. TJ(pk)
may be calculated from the data in Figure 3. At high case temperatures, thermal limitations will reduce the power that can be
handled to values less than the limitations imposed by second
breakdown. Second breakdown limitations do not derate the same
as thermal limitations. Allowable current at the voltages shown
on Figure 4 may be found at any case temperature by using the
appropriate curve on Figure 6.

,

i ~: -

r:

de

Te '" 25°C

i';;

SOms

I

~om'

~OO"'

_ Bonding Wire Limit

- - - - Thermal limit (Single Pulse)

Second Breakdown limit
Curws applv below rated VCEO

- 01
~
0.05
002
5.0 7.0

.'1.

"

'\\

2N6497
2N649S
2N6499

r-I=

10
20
30
50 70 100
200
VCE. COLLECTOR·EMITTER VOLTAGE IVOLTSI

300

500

FIGURE 5 - TURN-OFF TIME

FIGURE 6 - POWER OERATING
100

10
70
5.0
3.0

501
0.5

.....

0.1
0.05 0.07 0.1

If

"" "'-'"'" '-...,

Second Brllkdown Derating

~ 60

"

-

~
;::

~

Th,rm,1
40

2.0

30

5.0

1-307

I'..
Deratm~

"'-...

"-

'"~

It

20

0
0.2 03
0.5 07 1.0
IC. COLLECTOR CURRENT IAMPI

~

'"ot

~ 1.0

0.2

~80

r--..

2.0

0.3

~

VCC"'T25V

ICIIS: 5.0
TJ=' 25°C

I,

20

40

I"-...

" "-

60
SO
100
120
TC. CASE TEMPERATURE I'CI

i'
t'-..

140

160

2N6497,2N6498,2N6499

FIGURE 7 - DC CURRENT GAIN

F"GURE 8 - COLLECTOR SATURATION REGION

~

100

a
50
z

~

i

0

a

TJ -150°C

VCE~ 10V

-~Jo~

-

~ 2. 4

'\ [\

~1 6

~
2

0.8

~

o

50A

i
!'i

.........

.,..

1
002

005

01

02

05

CURR~NT

10

20

50

10

(AMP)

FIGURE 10 - TEMPERATURE COEFFICIENTS
+4. a

a

V

1.2
Tp 2SOC

S 1.0

VBE(••J" Ic/lB 0 5.0

-

V

"-+-1""
..H-I"'

0.8

~

VBE@VCE-IOV

~ 0.6

~ +3.0

/'

1/

,g

5+2.0

V

~ +1.0
w

'"=>
....

II

~

./V

III

o

0.05 0.07 0.'

0.2
0.3
0.5 0.7 1.0
IC. COLLECTOR CURRENT (AMP)

-3.0

3.0

-;'n t

..1"

JTI1Jr

-.Wl 1

FIGURE l1 - COLLECTOR CUTOFF REGION

1

15o~

8vafor VB~

0.05 0.07 0.1

5.0

L.--"

25~~~

VCE(••J

-550C to 250C

~

0.2 03
05 07 10
IC. COLLECTOR CURRENT (AMPJ

IL

L

"
20

30

50

FIGURE 12 - CAPACITANCE

104

'000
700
500

VCE" 200 v

21=

1

-1.0

~

I

2.0

0

'" -2.0

VCE( ••) I' Ic/lB • 5.0
V
~ ..... IC/IB 0 2.5
I I

0.2

;~Pflts tOiICII,,, hFE/3

Jl1

U

I

0.4

I

\

\

lB. BASE

FIGURE 9 - "ON" VOLTAGES

g
->

20~30A\

IC 010 A

001

50

1.4

"~

\

;;;

I~

30

11
TJo 25°C

~

['-..,l\

20

i

~

~

70
G.2 03
0.5 0.7 10
IC. COLLECTOR CURRENT (AMPJ

\
\

>

10

5.0
005 0.07 0 I

0

~ 3. 2

~

t-

u

"~

-

......

25°C

~

4.

C,b

~300

Tp 150°C

~

20a

~

..

lOOOC

ul00

~

TJ = 250C

t-

70

~ 50
~-

30
I

FOIWI,d
2 - -Reve,.
-0.4
-0.2
a
+0.2
+0.4
VBE. BASE·EMITTER VOLTAGE (VOLTSJ

10-

0

25°C

I0

+0.6

0.4 0.6 1.0

1-308

2.0

4.0 6.0 10
20
40 60
VR. REVERSE VOLTAGE (VOLTS)

100

200

400

®

2N6542
2N6543

MOTOROLA

5 AMPERE

NPN SILICON
POWER TRANSISTORS
300 and 400 VOLTS
1011 WATTS

SWITCHMODE SERIES
NPN SILICON POWER TRANSISTORS
These devices are designed for high-voltage, high-speed, power switching inductive circuits wIlere fall time is critical. They are particularly
suited for 115 and 220 volt line operated SWITCHMODE applications such as:

Designer's Data for
"Worst Case" Conditions
The Designers Data Sheet permits the design of most circuits
entirely from the information presented. Limit data - representing
device characteristics boundaries are given to facil itate "worst case"
design.

• Switching Regulators
• PWM Inverters and Motor Controls
• Solenoid and Relay Drivers
• Deflection Circuits
Specification Features High Temperature Performance Specified for:
Reversed Biased SOA with Inductive Loads
Switching Times with Inductive Loads
Saturation Voltages
Leakage Currents

'MAXIMUM RATINGS

2N6542
2N6543

---

Rating
Coilector·Emltter Voltage

Symbol

2N6542

2N6543

Unit

VCEOlsus)

300

400

Vdc

Coliector·Em'tter Voltage

VCEXlsus)

350

450

Vdc

VCEV

650

850

Vdc

COllector-Emitter Voltage

Emitter Base Voltage

VEB

B.O

Vdc

Collector Current - Continuous
-Pe.kll)

IC
ICM

5.0
10

Adc

Base Current - Continuous

IB
IBM

5.0
10

Adc

Ie
IEM

10
20

Adc

Po

100
57.2
0.57

Watts

-Pe.k 111
Emitter Current - Continuous

-Peak 11)

Total Power Dissipation @TC = 2SoC
@TC=I00"C

Derate above 2SoC
Operating and Storage Junction
Temperature Range

NOTES:
1. DIMENSIONS a ANO v ARE DATUMS
2.
IS SEATING PLANE AND DATUM.

ITJ

3. POSITIONAL TOLERANCE FOR
MOUNTING HOLE Q'

I tll."lo.ODs}@ITlv@1
FOR LEADS

I tl '."loo"}@Tlv@1 a@1
4 DIMENSIONS AND TOLERANCES PER

ANSI Y14.5,197l.

W/oC

-65 to +200

T J,T 519

STYLE 1
PIN 1. BASE
2 EMITTER
CASE COLI.ECTOR

°c

DIM

•
B
C

o

E

F

•

THERMAL CHARACTERISTICS

H

Ct.ractaristic
Thermal ReSistance, Junction to Case
MaXimum Lead Temperature for Soldering
Purposes: 1/S" from Case for 5 Seconds

Symbol

Mox

Unit

R8JC

1.75

TL.

275

°C/W
uc

J

•n
R

u
V

., ndicetes JEOeC Registered Data

CASE 1-05
TO-204AA

11) Pulse Test: Pulse Width = 5 ms, Duty Cycle .. 10%.

1-309

2N6542,2N6543

*ELECTRICALCHARACTERISTICS ITC ~ 25°C unle.. otherwise noted.)
Min
OFF CHARACTERISTICS (1)
CoIlector·Emitter Sustaining Voltage (Table 2)
(lC· lOOmA, lB· Q)
Collector-Emitter Sustaining Voltage (Table 2, Figura 12)
IIc - 2.6 A, Velamp = Rated VCEX, TC = l000c)
IIc

= 5.0 Ade, Velamp '

Rated VCEO -100 V,

TC = l00 o C)

Vde

VCEOlsu.).
MJ4400
MJ4401

300
400

-

350
450
200
300

-

Vde

VCEXlsu.)
MJ4400
MJ4401
MJ4400
MJ4401

Unit

Collector Cutoff Currenl
IVCEV = Rated Valu., VBEloff) = 1.5 Vd.)
IVCEV = Rated Value, VBEloff) = 1.5 Vde, TC = 100°C)

ICEV

Collector Cutoff Current
IVCE = Raled VCEV, RSE = 50 II, TC = 100°C)

ICER

-

Emittar Cutoff Currant
IVEB - 8.0 Vde, IC = 0)

lEBO

-

-

mAde

-

0.5
3.0
3.0

mAde

1.0

mAde

SECOND BREAKDOWN
Second Breakdown Collector Current With base forward biased
1= 1.0.lnon-repel",ve) IVCE = l00Vdcl

ISlb

Clamped Inductive SOA with base raverse biased

Adc

0.2.1
ISe. Figure 11)
IS •• Figura 12)

RBSOA

ON CHARACTERISTICS 111
DC Current Gam
IIc = 1.5 Ade. VCE
IIc = 3.0 Adc. VCE

-

hFE

= 2.0 Vdc)
= 2.0 Vdc)

Coliector·Emitter Saturation Voltage
(lC = 3.0 Ade. IS = 0.6 Adc)
IIc = 5.0 Ade, IB = 1.0 Ade)
IIc = 3.0 Ade. IS = 0.6 Ade. Tc = looOC)
Base·Emitter Saturation Voltage
IIc = 3.0 Ade, IB = 0.6 Ade)
IIc = 3.0 Ade, IS = 0.6 Ade. TC = looOC)

12
7.0

60
35

-

1.0
5.0
2.0

-

1.4
1.4

f,-

6.0

2S

MHz

Cob

50

200

pF

-

1"

Unit
jjS

VCElsal1

VSElsal1

Vdc

Vde

DYNAMIC CHARACTERISTICS
Current-Gain .- Bandwidth Product
IIc = 200 mAde. VCE = 10Vde. f,est = 1.0MHzl
Output Capacitance
IVCB = 10 Vde, IE = 0, f,e .. = 1.0 MHz)
SWITCHING CHARACTERISTICS
ReSistive Load ITabl.2)
Delay Time

Rise Time
Storage Time

(lC
IBI

Storage Time

Crossover Time
Fall Tima

=3.0 Alpkl, Velamp = Raled VCEX.
=0.6 A. VSEloff) = 5.0 Vdc , T C = l000C)

(lC - 3.0 Alpkl. Vclamp - Raled VCEX.
IBI = 0.6 A. VBEloff) = 5.0 Vd<, TC

...

-

4.0

Ie

0.6

-

jj'

tfl
tsv

-

0.8

jjS

0.8

-

I.

I nduelive Load, Clamped ITabi. 2)
Storage Time

Typ

Ir

Fall Time

Crossover Time
Fall Tim.

I
Symbol

0.05
0.7
4.0
0.8
MIX

'd

IVCC - 250 Vdc, IC - 3.0 A.
IBI = IS2 = 0.6 A.lp = 1001".
Duty Cycle" 2.0%)

= 250 CI

te
tli

-IndICates JEDEC Registered Data.
111 Pulse Test: Pulse Widlh = 300 jj', DUlY Cycle .. 2%.

1 ~310

-

0,3
0.2

-

jj'
jj'
jj'

jj'
jjS

jjS

2N6542.2N6543

DC CHARACTERISTICS
FIGURE 2 - COLLECTOR SATURATION REGION

FIGURE 1 - DC CURRENT GAIN
100

- -

50

\.

z

:;;

to

30

I-

~

a<->

20

~

10

"w

~

"~w

1. 6

-

to

VCE < 20V
VeE - loV

7.0
0.2

0.3

0.5

0.7

1.0

"~
::

~

I." ~"
\~ \

F-""'" ~

2.0

~~I! 25°C

\

;

'.

......

~ t't-

25°C

5.0
0.05 0.07 0.1

2.0

~

TJ< 150°C

10

en

2

08

~
8

4

1.5 A- -

0.3 A

Ie" 0.05A

~

"'"

~~

3.0

I.

f--

3.0A

I

~

>

\

\

"-

-'-

0

5.0

2.0

5.0

10

20

50

100

200

500

1.0 k 2.0 k

IS. SASE CURRENT (mA)

IC. COLLECTOR CURRENT (AMP)

jII·.'
I,

FIGURE 3 - "ON" VOLTAGE

I III

1.2

Tj" 250C

10

"~

0.8

III!
1111

~
w

6

1.4

en

.....-:::

VSE( ..,,@ lells - 5.0

to

«
!:i 0.6

FIGURE 4 - TEMPERATURE COEFFICIENTS

-

I
II

. r~EIOt) @VfE<1 2.o V

">"> 0.4

I I

1111

-t~E:~t)@ 1~lIsl<5_0

02

.-;:::. p-

~

/1/
.....

0.05 0.07 0.1

0.2

0.3

os

07

10

20

30

..J.-.I--

I

-550CtO+~

~ -0 B

~~

-1

H-

-14
005 007 01

50

....
....

live FOR VeE

6

01

lC. COLLECTOR CURRENT (AMP)

FIGURE 5 - COLLECTOR CUTOFF REGION

2.0

3.0

5.0

1/

/

~

F=1z50C

TJ~25Je

Cib

700
500

~ 300
~ 200
G

,==~1000e

11:::= 750C

;;:

;:3

r-

r.i

./

1:::= 25°C
D_REVERSE

-04

0.7

)

a

1000

/

10- 1

1

05

~

'/
~tO+1500CrI
I
1.0

FIGURE 6 - CAPACITANCE
2000

VCE"250V

,/

03

-

IC. COLLECTOR CURRENT (AMP)

104

TJ - 150°C

:/

-550C to +2Soc-

?

le/ls < 2.0

o

IIIJ I I
'ove FORVCElsat)

~

I

1~OCto~ ~ -

llJ

8

t?

II

"Applies for le/ls';;; hFE/2.0

1

-0.2

70

50

FORWARD

30
10
05

)

+02

r-- r--.~

100

+04

+06

10

2.0

50

10

20

50

VR. REVERSE VOLTAGE (VOLTS)

VSE. SASE·EMITTER VOLTAGE IVOL TS)

1-311

-

Cob-

100

100

500

i
II

2N6542.2N6543

lIB

FIGURE 7 - INDUCTIVE SWITCHING MEASUREMENTS
IC~

,

..... .....

-

"

'rvlfl~'fi-I-"i-

_I.,

I-I,~

h

V
VCE
la-

-

-

In resistive switching circuits, rise, fall, and storage
times have been defined and apply to both current and
voltage waveforms since they are in phase. However,
for inductive loads which are common to SWITCHMODE
power supplies and hammer drivers, current and voltage
waveforms are not in phase. Therefore, separate measurements must be made on each waveform to determine
the total switching time. For this reason, the following
new terms have been defined.
tsv =Voltage Storage Time, 90% 'Bl to 10% Vcl amp
trY = Voltage Rise Time, 10-90% Vcl amp
tfi = Current Fall Time, 90-10% IC
tti =Current Tail, 10-2% IC
tc = Crossover Time, 10% Vcl amp to 10% IC
An enlarged portion of the inductive switching waveforms
is shown in Figure 7 to aid in the visual identity of these
terms.
For the designer, there is minimal switching loss
during storage time and the predominant switching
power losses occur during the crossover interval and
can be obtained using the standard equation from AN-222:
PSWT = 1/2 VcClcltcl f
In general, trY + tfi '" tc' However, at lower test currents
this relationship may not be valid.
As. is common with most switching transistors, resistive
switching is specified at 25 0 C and has become a benchmark for designers. However, for designers of high
frequency converter circuits, the user oriented specifications which make this a "SWITCH MODE" transistor are
the inductive switching speeds Itc and tsvl which are
guaranteed at 1000C.

r----

9O%VClampJ ~90'l11C

./
IC .......

Vd ..p_

SWITCHING TIMES NOTE

"-

10'l1 ......
IC pK -

10%Vclamp

90%Ial

-

---

r-;~

-- -- -- -

,

--\- -"'-

TIME

TABLE 1 - INDUCTIVE SWITCHING
PERFORMANCE
IC
(AI

!g

tsv

trY

tti

lAS

lAS

lAS

1.0

25
100
25
100
25
100

0.70
1.20
1.10
1.60
1.10
1.7.0

0.22
0.37
0.09
0.42
0.16
0.45

0.21
0.19
0.12
0.19
0.19
0.37

3.0
5.0

to:

ttl

".
0.23

lAS

0.66
0.95
0.29
1.01
0.46
1.08

0.39
0.08
0.40
0.11
0.26

Note: All Data Recorded in the Inductive Switching
Circuit Shown in Table 2.

RESISTIVE SWITCHING PERFORMANCE
FIGURE 8 - TURN'()N TIME
2.0 k

-..:

1.0 k
700
SO0

~

I,

==

:! 2.0 k
~

.200

100
0

!

.L

"I'.
IdOVBE(off) ·S.ov .

w

/

r-...

0.01

~II

t.o

..........
0.02

O.OS

0.1

0.2

O.S

1.0

..,

......

"""

200

I"-r-.
2.0

100
0.01

5.0

IC. COLLECTOR CURRENT (AMP)

0.02

0.05

0.1

0.2

O.S

1.0

IC. COLLECTOR CURRENT (mA)

1-312

1'1: ~\~c

"-

300

30

VCC - 2So V
Ic/la = 5.0

i""'-

700
SOD

so
20

-

I,

3.0 k

!300

':

FIGURE 9 - TURN'()FF TIME
10 k
7.0 k
S.O k

VCC=2SoV _
Iclla = S.O
D=2S 0 C.

2.0

S.O

10

2N6542.2N6543

TABLE 2 - TEST CONDITIONS FOR DYNAMIC PERFORMANCE
veEOI ...)

RESISTIVE
SWITCHING

VCEX("". AND INDUCTIVE SWITCHING

:SJs~

+ in

O,ive Circuit
+4V

o...rL

... -11 V

Set +Vin to Obtain 8 Forced
hFE = 5 and Adjult PW to
Attain Specified Puk 'ePW Vaned to Attam
Ie = 100mA

Lcoll " 80 mH Vee'" 10 V
ACOII:' 07 11
Vel amp (Undampedl

'r'"

01 2NUOS Q3 2N5815
Q22N6408 04 2N5877

DutY Cvcle .;;; 3%

f", kHz

Diodes 1 N4933

Leoi! = 1ao,uH
Reoil '" 0.05 n
Vee· 20V

2
0----0

'C"'3A
pw ... 100115
Sns
If'" SOns
Duty Cvcle " 2%
VCC· 250V

Vclamp = Rated VCEX V.lue

RL·830
01 so 1N5820or Equlv,
RS 20 n

=

INDUCTIVE TEST CIRCUIT

RESISTIVE TEST CIRCUIT

OUTPUT WAVEFORMS

t,

Adjusted to

Obta,n

Ie

-5V
Test Equlpm.nt
Scope,TektronlCS
475

or Equ lValenl

FIGURE 10 - THERMAL RESPONSE
0
7 =0-05
5

3=
2

-

02

f-

01

I - ""'~

1=~05

-

7~002
5

....-:

-

...
PfJUl

-L'~-t--I

A< 001

ROJCItI - rltl ROJC
ROJe - 1.75 oCIW Max
CURVES APPLY fOR POWER
PULSE TRAIN SHOWN
READ TIME Al t 1
TJlpkl - TC - Plpkl ROJCltl

°

DUTY CYCLE, 0 :. IJ/t2

0.02 ) - - SINGLE PULSE
00 1
001

I II
002 003

II II
005

01

01

03

05

10

10

30

t, TIME hns)

1-313

50

10

II
10

30

50

100

100

300

500

1000

2N6542,2N6543

The Safe Operating Area figures shown in Figures 11 and 12 are
specified ratings for these devices under the test conditions shown.

SAFE OPERATING AREA INFORMATION
FIGURE 11 - FORWARD BIAS SAFE OPERATING AREA
10

100~NpS
}.IS

t=

50

FORWARD BIAS
There are two limitations on the power handling ability
of a transistor: average junction temperature and second
breakdown. Safe operating area curves indicate IC-VCE
limits of the transistor that must be observed for reliable
operation; i.e .. the transistor must not be subjected to
greater dissipation than the curves indicate.
The data of Figure 11 is based on T C = 25 0 C; TJ( pk)
is variable depending on power level. Second breakdown
pulse limits are valid for duty cycles to 10% but must be
derated when TC ;;. 25 0 C. Second breakdown limitations
do not derate the same as thermal limitations. Allowable
current at the voltages shown on Figure 11 may be found
at any case temperature by using the appropriate curve
on Figure 13.
T J(pk) may be calculated from the data in Figure 10.
At high case temperatures, thermal limitations will reduce
the power that can be handled to values less than the
limitations Imposed by second breakdown.

0:

~ 2.0

r

"- P\

C

o

5001-15
250

:; 0.5
'"

~

o

u

9

C" 25°C

02

f\. \.. /

THERMAL LIMIT (SINGLE PULSEI
SECONO BREAKDOWN LIMIT
10m ,

00 5
0.02

jJS

5.0 ms

- ~ - BONDING WIRE LIMIT

-

0I

f--

~~~~~SV~~OL

0.0 I
50 70

I

10

10

50

30

70

100

"-

"-

2N6542,Pl

I I 2N6543,Pl'

BElOW

)

200

300

500

VCE,COLLECTOR EMITTER VOLTAGE (VOLTSI

FIGURE 12 - REVERSE BIAS SAFE
OPERATING AREA
50
VCEX{sus)

-

-+--

r - ~g~~g:m~~ M~~43,PI

REVERSE BIAS
For Inductive loads, high voltage and" high current
must be sustained Simultaneously during turn-off, In
most cases, With the base to emitter junction reverse
biased. Under these conditions the collector voltage
must be held to a safe level at or below a specific value of
collector current. This can be accomplished by several
means such as active clamping, RC snubbing, load line
shaping, etc. The safe level for these devices IS specified

FOR 2N6542,Pl, VCEO ANa
VCEX ARE 100 VOLTS LESS
26 A

I
VCEO(sus)

I

VBE(olll 5V
TC' IIOOOC

VCEX(sus)

I

100

200

400

300

500

VeE. COLLECTOR EMITTER VOLTAGE (VOLTS)

FIGURE 13 - POWER DERATING
100

~

I

t--..

"""- I'-"""-

0

THERMAL
DERATING

0

as Reverse Bias Safe Operating Area and represents the
voltage-current condition allowable during reverse biased
turn-off_ This rating is verified under clamped conditions
so that the device is never subjected to an avalanche
mode, Figure 12 gives the complete R BSOA characteristics,

SECOND BREAKDOWN
DERATiNG-

f'...

I"---.

I'--

1'-..

...... 1'--..

'"

I'-......

0

0

40

80

120

160

"'" """-

200

TC, CASE TEMPERATURE (OCI

1-314

®

2N6544
2N6545

MOTOROLA

Designers Data Sheet

8 AMPERE
NPN SILICON
POWER TRANSISTORS
300 and 400 VOLTS
125 WATTS

SWITCHMODE SERIES
NPN SILICON POWER TRANSISTORS
The 2N6544 and 2N6545 transistors are designed for high·voltage,
high·speed, power switching in inductive circuits where fall time is
critical. They are particularly suited for 115 and 220 volt line op·
erated switch·mode applications such as:

Designer's Data for
"Worst Case" Conditions
The Designers Data Sheet per·
mits the design of most circuits
entirely from the information pre·
sented. Limit data - representing
device characteristics boundaries are given to facilitate "worst case"
design.

• Switching Regulators
• PWM Inverters and Motor Controls
• Solenoid and Relay Drivers
•

Deflection Circuits

Specification Features High Temperature Performance Specified for:
Reversed Biased SOA with Inductive Loads
Switching Times with Inductive Loads
Saturation Voltages
Leakage Currents

'MAXIMUM RATINGS
Rating
Collector-E mltter Voltage

Collector-Emitter Voltage
Collector-EmItter Voltage

Emitter Base Voltage
Collector Current Continuous

-Peak (1)
Base Current - Continuous

-Peak (1)
Emitter Current

Continuous
(1)

- Peak
Total Power Dissipation

@

TC - 2SoC

Symbol
VCEO(susl
VCEX(sus)
VCEV
VES
II'

IC-M
IS
ISM
IE
'EM
Po

@TC=1000C
Derate above 2SoC
Operating and Storage Junction
Temperature Range

T J,T stg

2N6544 2N6545

300
350
650

400
450
850
9.0

8.0
16
8.0
16
16
32
125
71.5
0.714
-65 to +200

Unit

Vdc
Vdc
Vdc
Vdc
Adc
Adc
Adc
Watts

W/oC

Characteristic
Maximum Lead Temperature for Soldering

Symbol

Max

Unit

ROJC
TL

1.4
275

°C/W
°c

Purposes; 1/8" from Case for 5 Seconds

Q

u
NOTES
1 DIMENSIONS Q AND V ARE DATUMS
2 [0 IS SEATING PLANE ANO DATUM
3 POSITIONAL TOLERANCE FOR
MOUNTiNG HOLE D

I _11"1000"19 IT Ive I
FOR LEADS
I _11''I0005le TI vel ael
4 DIMENSIONS AND TOLERANCES PER
ANSI Y145, 1913

°c

THERMAL CHARACTERISTICS
Thermal Resistance, Junction to Case

STYLE 1
PIN 1 BASE
2 EMlnER
CASE COLLECTOR

DIM
A
8
C

o
E
F
G
H

J
K

*Indicates JEDEC Registered Data

D

(1) Pulse Test: Pulse Width = 5 ms, Duty Cycle .. 10%.

R
U

MILLIMETERS
MIN MAX
3937
2108
635
762
097
109
140
178
3015BSC
IQ92BSe
5468SC
1689ase
1118 1219
381
419
2667
483
533
381
419

CASE 1-05
TO·204AA

1-315

2N6544, 2N6545

*ELECTRICAL CHARACTERISTICS ITC = 25°C unless otherwISe noted.!

I

I

Characteristic

Max

Min

Svmbol

Unit

OFF CHARACTERISTICS 11)
COllector-Emitter Sustaining Voltage

Vdc

VCEOlsus)
2N6544
2N6545

IIc=100mA,IB=0)

COllector-Emitter Sustaining Voltage
IIc = 4.5 A, Vclamp = Rated VCEX, TC = 100°C)
IIc = B.O A, Vcl amp = Rated VCEO -100 V,
TC = 100°C)

300
400

-

350
450
200
300

-

-

0.5
2.5

Vdc

VCEXlsus)
2N6544
2N6545
2N6544
2N6545

Collector Cutoff Current

mAde

ICEV

IVCEV = Rated Value, VBEloff) = 1.5 Vdc)
IVCEV = Rated Value, VBEloff) = 1.5 Vdc, TC = 100°C)
Collector Cutoff Current

IVCE = Rated VCEV, RBE = 50

n, TC =

ICER

-

lEBO

3.0

mAdc

-

1.0

mAde

12
7.0

60
35

-

1.5
5.0
2.5

-

1.6
1.6

100°C)

Emitter Cutoff Current
IVEB • 9.0 Vdc, IC = 0)

. SECOND BREAKDOWN
Second Breakdown Collector Current with base forward biased

t = 1.0 sinon-repetitive) IVCE = looVdc)
ON CHARACTERISTICS 11)
DC Current Gain

-

hFE

IIC = 2.S Adc, VCE = 3.0 Vdc)
II C = 5.0 Adc, V CE = 3.0 Vdc)
COllector-Emitter Saturation Voltage

Vdc

VCElsat)

IIc = 5.0 Adc, IB = 1.0 Adc)
IIc = 8.0 Adc, IB = 2.0 Adc)
IIc = 5.0 Adc, IB = 1.0 Adc, TC = 100°C)
Base-Emitter Saturation Voltage

Vdc

VBElsat)

(lC = S.O Adc, IB = 1.0 Adc)
(lc = 5.0 Adc, IB = 1.0 Adc, TC = l000C)
DYNAMIC CHARACTERISTICS
Current-Gain - Bandwidth Product

IIC· 300mAdc, VCE = 10Vdc,f'est= 1.0MHz)
Output Capacitance
IVCB = 10 Vdc, IE = 0, f test = 1.0 MHz)

MHz

IT

6.0

28

Cob

75

300

pF

lei

-

0.05

jlS

1.0

jlS

4.0

jlS

1.0

jlS

SWITCHING CHARACTERISTICS
Resistive Load

Delay Time

IV CC = 250 Vdc, IC = 5.0 A,
IBI = IB2 = 1.0 A, tp = 100 jlS,
Duty Cycle" 2.0%)

Rise Time

Storage Time

tr
's
tf

Fall Time

-

Inductive Load. Clamped

Storage Time
Fall Time

I

IIc = 5.0 Alpk), Vclamp = Rated VCEX,
IBI = 1.0 A, VBEloff) = 5.0 Vdc, TC = 100°C)

I

ts

I

tf

I

-

,
I

4.0

I

jlS

I

0.9

I

jlS

TVpical

Storage Time
Fall Time

(lC = 5.0 Alpk), Vcl amp = Rated VCEX,
IBI = 1.0 A, VBEloff) = 5.0 Vdc, TC = 2SoC)

·'ndicates JEDEC Registered Data.
11) Pulse Test: Pulse Width = 300

jlS,

1.2

ts

I

Duty Cycle .. 2%.

1-316

tf

I

0.18

jlS

I

jlS

2N6544, 2N6545

DC CHARACTERISTICS
FIGURE 1 - OCCURRENT GAIN

FIGURE 2 - COLLECTOR SATURATION REGION

§

10 0
VCE - 3.0 V

70

-

TJ

0

-55'C

C

~

-P

10

~

1.6

~

1.2

;c

\.

H-

TJ o 250C

2:-

I

0 - r-l5'C

u

c

150':;"

0.....-

2.0

..-

'\ r\.
1\1"1\,

--

::

IC=0.25A

a:~

0.3

~_

l"'- t-

0.4

1.0

2.0

3.0

5.0 7.0

>

10

\.

0
0.005

~

0.02

0.01

0.05

FIGURE 3 - "ON" VOLTAGE

-Tp25'C

G

e...

I I
I I

S
c

w

'"'"~

0.6 -VBE(.n)@ VCE ~ 3.~ V

c

>

>~

V
V

V

r-

IC/IB

./

0.1

0.2

1. 5

ffi

1. 0

8

0

§

-0, 5

:

1.0

700
500

2.0

"" ~ "

-1. 0

3.0

5.0

7.0

2. 5
0.1

10

0.2

0.01

0.3

0.5 0.7

=

2.0k

~ 1.0 k

/

" r-....
0.2

3.0

5.0 7.0

VCC = 250 V
Ielis = 5.0

......,

~tf

I~~: ~~~C

I'...

700
500

...... ......
0,1

2.0

-

t,

0.5

1.0

2,0

....

......

300

0.05

-:sr.C to 250C

1.0

3.0 k

0-

0.02

-- - .....-r

FIGURE 6- TURN·oFF TIME

10 k
7.0k
S.Ok

0

3D

20

V

IC, COLLECTOR CURRENT (AMP)

VCC 250V _
IC/IB = 5.0
TJ=25'C

td@VSE.III=5.0V

L/
.J-

I I III
I II .'

i- 2.a

I'..

100
0
0

~

....

!

0

I

-55°C to 25°C

FIGURE 5 - TURN·ON TIME

1.0 k

2~'C to 1150.IC ~

*OVC for VCE{sat)

IC, COLLECTOR CURRENT (AMP)

2.0 k

5.0

I
I

*Apphes for le/ls.s;;;; hFE/3

~
5 _ °VBlorVBE
~ -1.

I

0.5 0.7

2.0

250 C to 1500C

0

J
0.3

1.0

2. 0

~ a, 5

IT

o

2. 5

!~
<:;

5.0
"w20
I'
~

-JCE(~t)

0.2

0.5

w

1 J

0.4

V

,/

VBE(sat)@ICIIB o 5.0
I '1 .l~

z:.

_
0.8

0.2

FIGURE 4- TEMPERATURE COEFFICIENTS

1.2

v; 1.0

0.1

IB, BASE CURRENT (AMP)

IC, COLLECTOR CURRENT (AMP)

1.4

5.0A

\

8

0.5 0.7

V· 5

0.8

tl

0.2

1

LOA

c

7.0
5.0
0.1

\

200

5,0

100
0.01

Ie, COLLECTOR CURRENT (AMP)

0.02

0.05

0.1

0.2

0.5

1.0

IC, COLLECTOR CURRENT (rnA)

1-317

/

2.0

5.0

10

10

2N6544, 2N6545

FIGURE 7 - FORWARD BIAS SAFE OPERATING AREA

FIGURE 8 - REVERSE BIAS SAFE
OPERATING AREA

20
10

10

I
I

ct 5.0

"

cc

a~

1.0ms

de

~ 2.0
~ 1.0

0.5~~

is,a
~

5.0 ms

....
15

0.5

~

0.2

g 0.05~
0.005
0.002
5.0

a

TC 25°C
- BONDING WIRE LIMIT
THERMAL LIMIT
(SINGLE PULSEI
SECOND BREAKDOWN LIMIT

~ O.l~_

TURN OFF LOAD L11'1E
80UNDARY FOR 2N6545.
FOR 2N6544. VCEO AND
VCEX ARE 100 VOLTS LESS.

6.0

'"o~ 4.0

I

j

o

u
~2.0

2N6544
2N6545

r- VBE(off)" 5.0 V

VCEO(susl

TC" 100°C

VCEX(susl

CURVES APPLY BELOW RATED VCEO
7.0

10

20

50

30

70

100

200

300

500

o
o

VCE. COLLECTOR·EMITTER VOLTAGE (VOLTSI

VCEX(susl

4.5A

200

100

1

400

300

500

VCE. COLLECTOR·EMITTER VOLTAGE (VOLTS)

FIGURE 9 - POWER DERATING
100

~

'"

0

THERMAL
DERATING

t-0

...........

I"

There are two limitations on the power handling ability
of a transistor: average junction temperature and second
breakdown. Safe operating area curves indicate IC-VCE
limits of the transistor that must be observed for reliable
operation; i.e .• the transistor must not be subjected to
greater dissipation than the curves indicate.
The data of Figure 7 is based on TC = 250 C; TJ(pk)
is variable depending on power level. Second breakdown
pulse limits are valid for duty cycles to 10% but must be
derated when TC ;;. 250 C. Second breakdown limitations
do not derate the same as thermal limitations. Allowable
current at the voltages shown on IFigure 7. may be found
at any case temperature by using the appropriate curve on
Figure 9.
TJ(pk) may be calculated from the data in Figure 10.
At high case temperatures, thermal limitations will reduce
the power that can be handled to values less than the limi·
tations imposed by second breakdown. The reverse biased
safe operating area (Figure 8) is the boundary the load line
may tra:verse ·During turn-off.

.,

t-.....

r--....

SECONO BREAKDOWN_
t-DERATING

f'...

i'-.
~

J"...

.........

r--..,

"-

,'"

.....
.......

0

0
40

80

120

160

200

TC. CASE TEMPERATURE (OCI

FIGURE 10 - THERMAL RESPONSE
10
07
05

==

BOJc(tl- r(tl ROJC
ROJC 'l.4°CIW Max - -

o CURVES APPLY FOR POWER-

\.

03
02

"

007
005

I\.

002

--rrn ==

02
01
005
0.02
001
SINGLE PULSE

005

01

02

0.3

O.~

==

P(okl
...

.-C-

-,-

t:~J

f=
= r-

DUTY CYCLE. D = II/t2 -

llllillill

001
0.02 003

-

TJ(pkl-TC = ;(pkl ROJC(tl

O=O~

01

0.03

=
-

PULSE TRAIN SHOWN
REAO TIME AT q

iiiiI

.\.

10

20

30

~

0

10

t, TIME (ms)

1-318

20

30

50

100

200

300

~OO

1000

2000

®

2N6546
2N6547

MOTOROLA

Designers Data Sheet

15 AMPERE
NPN SILICON
POWER TRANSISTORS

SWITCHMODE SERIES
NPN SILICON POWER TRANSISTORS

300 and 400 VOLTS
175 WATTS

The 2N6546 and 2N6547 transistors are designed for high-voltage,
high-speed, power switching in inductive circuits where fall time is
critical. They are particularly suited for 115 and 220 volt line operated switch-mode applications such as:

Designer's Data for
"Worst Case" Conditions

•

Switching Regulators

•

PWM Inverters and Motor Controls

•

Solenoid and Relay Drivers

•

Deflection Circuits

The DeSigners Data Sheet permits the deSign of most CirCUits
entirely from the information presented, Limit data - representing
device charactenstics boundaries are given to faci! itate "worst case"

Specification Features High Temperature Performance Specified for:

design.

Reversed Biased SOA with Inductive Loads
Switching Times with Inductive Loads
Saturation Voltages
Leakage Currents

STYLE 1
PIN 1. lASE

'MAXIMUM RATINGS
Rating
Collector"Emltter Voltage
Collector·Emltter Voltage

Collector-Emitter Voltage
Emitter Base Voltage

Collector Current

Continuous

-Peak (1)
Base Current - Continuous

- Peak (1)
Emitter Current - Continuous

- Peak (1)
Total Power Dissipation @ T C = 25°C

Symbol
VeeO(sus)
VeEX(susl
VeEV
VeB
Ie
leM
IS
IBM
Ie
IEM
PD

@Te= 1000 e
Derate above 25°C
Operating and Storage Junction

TJ,T stg

2N6546 2N6547
300
400
450
350
650
850
9.0
15
30
10
20
25
50
175
100
1.0
-65 to +200

Unit

Vdc
Vdc
Vdc
Vdc
Adc
Adc
Adc

MaxImum Lead Temperature for Soldenng

Q

NOTES
, DIMENSIONS a AND v ARE DATUMS
2
IS SEATING PLANE AND DATUM
3. POSITIONAL TOLERANCE FOR
MOUNTING HOLE Q

CD

FOR LEADS

I • 11.13100O>I@T I v@1 a@1

wloe

4 DIMENSIONS AND TOLERANCES PER
ANSI YI4S, 1973

°e
MILliMETERS
INCHES
MI •
MAX
MIN
MAX
3937
1550
2108
080
C
6.35
'62 0250 0300
097 109 0038 0043
E
140 178 0055 070
f
3015Bse
1187 se
G
1092BSC
04308se
H
546 Bse
021S8se
J
1689Bse
0665Bse
K 1118 1219 0440 0480
a 381 419 0150 0165
A
2667
1050
U
483 5.33 0190 0210
V
381 419 0150 0165

• ,M
A

THERMAL CHARACTERISTICS
Characteristic

2. EMlnER

CASE comcroA

I • II"IOOO>I@ I T Iv@1
Watts

Temperature Range

Thermal Resistance, Junction to Case

,

Symbol
ReJC

TL

Max
1.0
275

Purposes: 1/8" from Case for 5 Seconds
*Indicates JEDEC Registered Data
(1) Pulse Test: Pulse Width =- 5.0 ms, Duty Cycle <; 10%.

Unit

°e/W

°c

•
•

CASE 1-05
TO-204AA

1-319

2N6546,2N6547

*ELECTRICAL CHARACTERISTICS ITc = 25°C unless otherwise noted.!

I

I

Characteristic

Symbol

Min

Max

300
400

-

Unit

OFF CHARACTERISTICS III

Collector-Emitter Sustaining Voltage

Vde

VCEOlsusi
2N6546
2N6547

IIc = loomA, IS = 01

COllector-EmItter Sustaining Voltage

Vde

VCEXlsusi

IIc = 8.0 A, Vclamp = Rated VCEX, TC = 1000 CI

2N6546
2N6547

·350
450

-

IIc = 15 A, Vel amp = Rated VCEO - 100 V,
TC = 1000CI

2N6546
2N6547

200
300

-

Collector Cutoff Current

mAde

ICEV

-

IVCEV = Rated Value, V8Eloffi = 1.5 Vdel
IVCEV = Rated Value, VBEloffi = 1.5 Vde, TC = 1000 CI
Collector Cutoff Current

IVCE = Rated VCEV, RBE = 50

n, TC

ICER

-

IESO

1.0
4.0
5.0

mAde

-

10

mAde

12
6.0

·60
30

-

1.5
5.0
2.5

-

-

1.6
1.6

tr

6.0

28

MHz

<':ob

,.5

500

P

t<:t

-

0.05

~s
~s

ts

1.0
4.0

tf

0.7

~s

5.0

~s

1.5

~s

= 1000CI

Emitter Cutoff Current
(VEB = 9.0 Vde, IC = 01

SECOND BREAKDOWN
Second Breakdown Collector Current with base forward biased
t = 1.0 s (non·repet,t,vel IVCE = 100 Vdel

ON CHARACTERISTICS (11

DC Current Gain

-

hFE

(IC = 5.0 Ade, VCE = 2.0 Vdel
IIC = 10 Ade, VCE = 2.0 Vdel
Collector-Emitter Saturation Voltage
IIC = 10 Ade, IB = 2.0 Adel
IIc = 15 Ade, IS = 3.0 Adel
IIc = 10 Ade, Ie = 2.0 Ade, Tc = 1000 CI

VCElsati

Base-Emitter SaturatIon Voltage

VeElsatl

Vde

-

Vde

IIC= lOAde, IB=2.0Adei
IIc = 10 Ade, IS = 2.0 Adc, TC = l000C
DYNAMIC CHARACTERISTICS
Current-Gain - Bandwidth Product
IIC = 500 mAde, VCE = 10 Vde, f test = 1.0 MHz I

Output Capacitance
(VCB

= 10Vde,IE =

0, f test = 1.0MHzI

SWITCHING CHARACTERISTICS
Resistive Load

Oelav Time
RiseT.me
Storage Time

IVCC = 250 V, IC = 10 A,

tr

IBl = IB2=2.0A,tp= 100~s,
Duty Cycle .. 2.0%1

Fall T,me
I nductlve Load, Clamped

Storage Time

I

Fall Time

I

Storage Time
Fall Time

IIc = 10 A(pkl, Vclamp = Rated VCEX,lSl = 2.0 A,
VBE(offi = 5.0 Vdc, TC = looo CI
IIC= 10Alpkl, Vclamp= RatedVCEx,lSl =2.0A,
VSEloffJ = 5.0 Vdc, T C = 25 0 CJ

-

ts

I

tf

I

tf

I

ts

·'ndicates JEOeC Registered Data.
11 J Puse Test: Pulse Width = 300 ~s, Duty Cycle = 2%.

1-320

I

~s

Typical
2.0

~s

0.09

~s

2N6546, 2N6547

TYPICAL ELECTRICAL CHARACTERISTICS
FIGURE 1 - DC CURRENT GAIN

FIGURE 2 - COLLECTOR SATURATION REGION

100
TJ=1500e

0

z
<1

0

~

0

3

'"
i:l

20

'"

2~Oe

I

J

c

-55 0e

),0

5,0
0,2

'",-""

0,3

IIII
1.0

0,5

~

,

.....

I-

~

~

~

.....

i

::
~

L__

VeE" 2,OV
I velE - 10 lV
2,0 3,0

1. 6

c

-"

-

10

iJ=~50~_

~

..,...."

u

~

~ 2.0
c

c

\\
,

5,0 ),0

10

~_

le=2,OA

1. 2

-

0,4

~

\.
0,2

0,0) 0,1

c

~

-

,I

1

VaElsat)@lella=5,0

0,8

w

~

c

h

'l

'" 1.5

-TJ=250C

~ 1.0

~VaElon)@ VeE" 2,OV

0.6

-

-:

:g

~ o. 5
8

I--

0,3

0,5

1.0

ffi

-1.0

!

-1.5r--

<

10

2~OC io 1~.le

-2,5
0,2

20

V

Tr1

/

/

1'5~C
~

Ova for VaE

l- t-"

0,3

II

0,5 0,)

2,0

1.0

i-""'"

-550e to 250C
3,0

I I [I

5,0 ),0

10

20

FIGURE 6 - TURN-OFF TIME

10 k

-

),0

-

k

Vce - 250 V
Iclla = 5,0
lal -182
TJ = 250C

t,

5,0 k
3,0 kl'..
2,0 k

...
~ 300
'" 200

"

!1.0k

)00
'..."- 500
~

~

100

III
I II

IC. COLLECTOR CURRENT lAMP)

Vee· 250 V
Iclla·5,0
TJ = 25°C

t'-...

5,0) ,0

250lCto

FIGURE 5 - TURN-ON TIME

1.0k
)00
500

3,0

::J-l-

i' -2.0

5,0 ),0

tr

-

-550C to 250C

Ie. COLLECTOR CURRENT lAMP)

3,Ok
2,0 k

~ ~~E/3

"OVC for VCEI"t)

-0. 5

-I-3,0

2,0

1,0

II

i=
~

2,0

f1r Ifllr

w

or

o
0,2

pp

c::; 1.0

/

~eEI~t) ~ 1~/lal=151

- "i "l'

ffi

....

>
>- 0,4
0,2 -

0,5 0,)

FIGURE 4 - TEMPERATURE COEFFICIENTS

~ 2, 5
2,0

~

I I
I I

0,3

IC. COLLECTOR CURRENT lAMP)

FIGURE 3 - "ON" VOLTAGE

1.2

f-

l-

....

0

20

I
I~A

\

\

8
>

lOA- f-

\

o. a

Ie. eOLLECTOR CURRENT lAMP)

1.4

5,OA-

I"td@VaElolf)= 5,0 V

If

300

)0

....

200

.A

50
30
0,02

0,5

0,1

0,2

0,5

1.0

2,0

5,0

10

20

100
0,02

0,05

0,1

0.2

0.5

1.0

2,0

IC, COLLECTOR CURRENT lAMP)

IC. COLLECTOR CURRENT lAMP)

1-321

5.0

10

20

2N6546, 2N6547

MAXIMUM RATED SAFE OPERATING AREAS
FIGURE 8 - REVERSE BIAS SAFE
OPERATING AREA

FIGURE 7 - FORWARD BIAS SAFE OPERATING AREA
50

5.0 ms

10
5.0

~

~

>~ 2.0
-

20

10ns

20

~~~~g:~yL~~~ i~~~41.1
C~~i~~5:~O~WL ~~~ES~

1.0 ms
100",$

13

de

I

1.0

~

g

0.5

-

c

0.2
O. 1

VCEXlsus)-

TC.- 25°~
BONDING WIRE LIMIT
THERMAL LIMIT
(SINGLE PULSEI
SECDND BREAKDDWN LIMIT

8 0.05
!;} 0.02

.1

T

VBE(olt)" 5 V
-TC"lDOoC- f- VCTOISUS)
)

~~~:m~ ~

0.0 1 CURVES APPLY BELOW RATED VCEO ~
0.005
20
30
50 10 100
5.0 1.0 10

200

a

300 400

a

100

~ ::-.....

..............

"'" "'" I'-...

80

.

THERMAL
DERATING

~ 60
z

~
:li
c

SECOND BREAKDOWN
OERATING-

..........

"-

iUl

r---..

...... r-......
..............

~

'"~

"

~ 20

o
o

80

40

120

160

TC, CASE TEMPERATURE laC)

~
::::l

ic

~~
...l

~
'">-

o. 5

0.1

O. 1

--

0.03

f--

......

~ 0.0 1 .....
0.01

f-'1
0.02

f-'

t~
-r~~

I

01

ZeJC(t)" ,It) ROJC
RaJC "1.00 erw Max
o CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME AT 11
TJI,k)- TC" P(,k) ZeJClt)

DUTY CYCLE, 0 "11/t2

SliG\ErW~1
0.05

i

PI,k)

......

0.02

500

~

0.01f-- 0.05
0.05

400

THERMAL RESPONSE

-;;;;;.--

0.2

0, 2

~

~

200

D "0.5

5 0.02 r - ~.I-

""

FIGURE 10 1.0
O. 1

~ o.3
~

"'"

300

200

There are two limitations on the power handling ability
of a transistor: average junction temperature and second
breakdown. Safe operating area curves indicate IC-VCE
limits of the transistor that must be observed for reliable
operation; i.e., the transistor must not be subjected to
greater dissipation than the curves indicate.
The data of Figure 7 is based on TC = 2So C; TJ(pk)
is variable depending on power level. Second breakdown
pulse limits are valid for duty cycles to 10% but must be
derated when TC .,. 2So C. Second breakdown limitations
do not derate the same as thermal limitations. Allowable
current at the voltages shown on Figure 7 may be found
at any case temperature by using the appropriate curve on
Figure 9.
T J(pk) may be calculated from the data in Figure 10.
At high case temperatures, thermal limitations will reduce
the power that can be handled to values less than the
limitations imposed by second breakdown.

FIGURE 9 - POWER DERATING

~
t:;

VCr(SU')

VCE, COLLECTOR·EMITTER VOLTAGE /VOLTS)

VCE, COLLECTOR·EMITTER VOLTAGE (VOLTSI

100

)

III1I
0.2

as

1.0

2.0

5a

t, TIME (ms)

1 c322

10

I

I
20

I I II1111
50

100

I I
200

I

I I III
500

10k

®

2N6548
2N6549

MOTOROLA

DUOWATT
NPN SILICON DARLINGTON
AMPLIFIER TRANSISTORS

NPN SILICON
DARLINGTON AMPLIFIER
TRANSISTORS

.. designed for amplifier and driver applications where high gain is
an essential requirement, low power lamp and relay drivers and
power drivers for high·current applications such as voltage regulators.
•

High DC Current Gain hFE = 25,000 (Min) @ Ie = 200 mAdc - 2N6548
= 15,000 (Min) @ IC = 500 mAdc - 2N6548

•

Coliector·Emitter Breakdown Voltage BVCES= 40 Vdc (Min) @IC= 100llAdc

•

Low Collector· Emitter Saturation Voltage VCE(sat) = 1.5 Vdc (Max) @ IC = 1.0 Adc

•

Duowatt Package 2 Watts Free Air Dissipation @ T A = 25 0 C

MAXIMUM RATINGS
Symbol

Value

Unit

·Collector·Emitter Voltage

VCEO

40

Vdc

Coliector·Emitter Voltage

Rating

VCES

40

Vdc

"Collector-Base Voltage

VC80

50

Vdc

·Emitter-Base Voltage

VE80
IC

12
2.0

Adc

18

100

mAde

Po

2.0
16

mW/oC

·Collector Current
.. Base Current

Continuous

Continuous

·Total Power Dissipation
Derate above 2SoC

@

T A - 25°C

Po

Total Power Dissipation@TC= 2SoC
Derate above 25°C
·Operating and Storage Junction
Temperature Range

• Solder Temperature, 1/16" from Case for

Vdc

Watts
mW/oC

T J,T stg

-

260

°c

°c

10 Seconds

THERMAL CHARACTERISTICS

I
I

Symbol
AeJA

I

Thermal Resistance, Junction to Case

I

AeJC

I

Characteristic

Max
62.5
12.5

o

Watts

10
80
-55 to +150

Thermal Resistance, Junction to Ambient

STYLE 1
PIN 1 EMITTER
2 BASE
3. COllECTOR
4 COllECTOR

I
I

·Indicates JEDEC Registered Data.

I

Unit
°CIW
°CIW

MilLIMETERS
INCHES
DIM MIN MAX
MIN MAX
0.B60
O.BBO
21.84
22.35
A
B
9.91 1041 0390 0410
4.19
4.44 0.165 0.175
C
0.61
D
0.11 0.024 0.02B
3.68
3.94 0.145 0.155
F
2.41
2.61 0.095 0.105
G
1.96 0.061 0.011
H
1.10
0.48
0.66 0.019 0.026
J
K 12.10
- 0.500
2.03 0.010 0.080
1.18
L
9.91
10.16 0.390 0.400
N
Q
3.81 0.140 0.150
3.56
2.41
2.61 0.095 0.105
R
T 13.21 13.91 0.520 0.550

-

CASE 306.()4
TO·202AC

1-323

2N6548, 2N6549

lIB

"ELECTRICAL CHARACTERISTICS (TA = 25 0 C unless otherwise noted.1

I.

I

Max

Symbol

Min

BVCES

40

-

Vde

Collector-Base Breakdown Voltage
(lC = 100 ~Ade, IE = 01

BVCBO

50

-

Vde

Emitter-Base Breakdown Voltage

BVEBO

12

Characteristic

Unit

OFF CHARACTERISTICS

Collector-Emitter Breakdown Voltage(1)
(IC

(IE

= 100 ~Ade, VeE = 01

= 10 ~Ade,

IC

Colfector Cutoff Current
(VCS

Iceo

100

nAdc

IEeO

100

nAdc

=30 Vde, IE '" 01

Emitter Cutoff Current

(VES

Vde

= 01

= 10 Vde, IC = 01

ON CHARACTERISTICS (11

DC Current Gain

-

hFE

= 5.0.Vdel

2N6548
2N6549

25,000
15,000

150,000
150,000

(lC

= 500 mAde, VCE = 5.0 Vdel

2N6548
2N6549

15,000
10,000

-

(IC

= 1.0 Ade, VCE = 5.0 Vdel

2N6548
2N6549

5,000
3,000

-

-

1.5
2.0

(lC = 200 mAde, VCE

Collector-Emitter Saturation Voltage
(lC = 1.0 Ade, Ie
(lc = 2.0 Ade, IS

VCE(satl

= 2.0 mAdel
= 4.0 mAdel

Base-Emitter Saturation Voltage
(lC

= 1.0 Adc,

Vde

VSE(,atl

-

VBE(onl

2.0

Vde

-

2.0

Vde

Ihle l

1.0

-

-

Cob

-

7.n

pF

20,000
15,000

-

IB = 2.0 mAdel

Base-Emitter On Voltage
(I~

-

= 1.0 Ade, VCE = 5.0 Vdel

DYNAMIC CHARACTERISTICS
High Frequency Current Gain
(It = 200 mAde, VCE = 5.0 Vde, I

= 100 MHzl

Output Capacitance
(VCB

= 10 Vde,

IE

=0, 1= 1.0 MHzl

Small-Signal Current Gain

-

hIe

(lC = 50 mAde, VCE = 5.0 Vde, I

= 1.0 kHzl

2N65>18
2N6549

-

* Indicates JEDEC Registered Data
111 Pulse Test: Pulse Width .. 300

~s,

Outy Cycle .. 2.0%

TYPICAL CHARACTERISTICS
FIGURE 1 - ACTlVE·REGION SAFE-OPERATING AREA

4.0

-a

"
~
a

!>

2.0 I-H+*iol'~

0-

'"
0

~
8

~

I .InlJ\.

'+-+-+-d-+C-+1'&1.-11.0 In'",
TC = 25'C

0

"OOM'

r-

'\

:'\..

\

O.6
O.4

\

02

O. 1
0.06
0.04
0.4

TJ=150'C'"
- - - BONDING WIRE LIMIT
- - - THERMAL LIMIT, SINGLE PULSE, TC = 25'C
SECOND BREAKDOWN LIMIT
0.6

1.0
2.0
4.0 6.0
10
20
VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS)

I~
40

1-324

There are two limitations on the power handling ability of a
transistor: average junction temperature and second breakdown.
Safe operating area curves indicate IC-VCE limits of the transistor
that must be observed for reliable operation; i.e., the transistor
must not be subjected to greater dissipation than the curVes indicate.
The data 01 Figure 1 is based on T J(pkl = 1500 C; Te i. variable
depending on conditions. Second breakdown pulse limits are valid
for duty evele. to 10% provided T J(pkl ... 150o C. T J(pkl mav be
calculated from the data in Figure 6. At high case temperatures,
thermal limitations will reduce the power that can be handled to
values less than the limitations imposed by second breakdown.

2N6548, 2N6549

TYPICAL CHARACTERISTICS

(continued)

FIGURE 2 - DC CURRENT GAIN

FIGURE 3 - "ON" VOLTAGES

300 k

2.0

VCP 50V

200 k

T}' 2~O~

r----

L

1.8
100 k

z

V

TJ'= 125°C

:;:( 70k

'"....

VaElsaU Olcila

50 k

~

25°C

..J...l..t+I'" ~
VaElon) 0 VC~ = 5~0 V
LLUJ

~ 30 k
~ 20k

I'"

-55°C

"'i

~

10k
70k
50k

VCE(sau@llc/la' 500

0.8

3.0 k
20

50

30

70

100

200 300
500 700 1.0 k
IC. COLLECTOR CURRENT ImAI

0.6
20

2.0 k

50

30

IIIII
70

--

V

100
200 300
500 7110 1.0 k
IC. COLLECTOR CURRENT (rnA)

+0.5
TJ = 25°C

o
>

I j II
II II

.5 -0.5

~ -0.10

;o

t::

~ -0.15

"

200 rnA

~ 1.2

~j Q.8

500 rnA

8

LOA

w

t--

t;:

IIIII
25°C to 125OC~

~ -0,35

IC

£; 0.4

II III

uJ

0.5

50mA

1.0 2.0

5.0

20

50

100 100

-0.45
20

JL 1-[ I

500 1.0 k 2.0 k 5.0 k

30

50

II

70

lB. BASE CURRENT I"AI

.....

kJ::;!:::Rif"

OVB for VBe

i- O•40 I="""
10

>-- ~~1250C -

-0.20

~ -0.30 (---

/:

1lJ.H:::/....

~ -0.25

1\

8

25°C to 1250C

*(NC for VCElsatl

"

2.0A

IIIII

*Apptles for le/tB" hFE/2

G

3;

~ 2.0

ffi 1.6

2.0k

FIGURE 5 - TEMPERATURE COEFFICIENT

FIGURE 4 - COLLECTOR SATURATION REGION

~ 24

./

.....
.....

=!!--

-55°C to 25 0 C

IIIII

IIIII

100
200 300
500 700 1.0 k
IC. COLLECTOR CURRENT ImAI

20k

FIGURE 6 - THERMAL RESPONSE
1.0
O.
7 0 = 0.5
0.5
~c

~~ 0.3
0.2

w-l

~~
!Z~

~~

~~

-

:i;::;

o. 1

...

::;;iiiii'

0.1

007

SlIlgte Pulse

:=_~ 0.05

-

-

0.05

ffiJl --

Single Pulse

-t\;-j

.1'"

I
0.01

0.02

Duty Cycle, D '= t1/t2

0.05

0.1

0.2

0.5

1.0

2.0

5.0

10

20
I. TIME Im~

1-325

50

1110

2110

500

1.0 k

ZOJAItI =rltl ROJA

ROJA =6~.50C/W Max
o CURVES APPLY FOR POWER

Plpk)

~~ 0.03 ...... 0.02
0.01
0.02
0.01

ZaJCItI - rlU ROJC
R8JC::: 12.50C/W Max

2.0 k

PULSE TRAIN SHOWN
READ TIME AT II
TJlpki - TC =PlpkIROJCII)
5.ok 10k

20k

50k lOOk

2N6551
2N6552
2N6553

®

MOTOROl.A

lIB
DUOWATT

NPN SILICON ANNULAR
AMPLIFIER TRANSISTORS

NPN SILICON
AMPLIFIER TRANSISTORS
... designed for general-purpose, medium-voltage, medium power
amplifier and driver applications; series, shunt and switching regu.
lators, and low and high frequency inverters and converters.

•

High Collector-Emitter Breakdown Voltage BVCEO = 100 Vdc (Min) @ IC = 1.0 mAde ~ 2N6553

•
•

Duowatt Package - 2 Watts Free Air Dissipation @TA=25 0 C
Complements to PNP 2N6554/5/6

MAXIMUM RATINGS
Rating
"Collector-Emitter Voltage
·Collector-Base Voltage
.. Emitter-Base Voltage
"Collector Current Continuous

Peak III
"Base Current
·Total Power Dissipation @ T A - 2SoC
Derate above 25°C
Total Power Dissipation @TC = 2SoC
Derate above 25°C
·Operating and Storage Junction
Temperature Range

·Solder Temperature. 1/16" from Case
for 10 Seconds

Symbol

ZN65511 ZN655ZIzN6553
80 I 100
60 I
60 I
80 I 100
5.0
1.02.0100
18
2.0
Po
16
10
Po
80
TJ,Tstg ------55 to + 1 5 0 VCEO
VCBO
VEBO
IC

-

.

.

260-

Unit
Vdc
Vdc
Vdc
Adc
mAde

Watts

mW/oC
Watts
mW/oC
°c
°c

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance. Junction to Ambient
Thermal Resistance, Junction to Case

Symbol

MIX

Unit

R8JA
R8JC

62.5
12.5

°C/W
°C/W

-Indicates JEDEC Registered Data.
III ';;10 ms,';; 50% Duty Cycle

STYLE 1
P1N 1. EMITTER
1 BASE
3. COLLECTOR
4 COLLECTOR
MILLIMETERS
DIM MIN MAX
A 11.84 11.35
B
9.91 10.41
C
4.39
4.65
D
0.58 0.14
F
3.56 4.06
G
1.41
1.61
H
1.10
1.96
J
0.48 0.66
K 11.19 11.95
L
1.65
1.03
9.91 10.16
N
Q
3.56
3.81
1.01
1.15
R
1.81 9.14
T

INCHES
MIN MAX
0.860 0.880
0.390 0.410
0.173 0.183
0.013 '0.029
0.140 0.160
0.095 0.105
0.001 0.01.1
0.019 0.016
0.480 0.510
0.065 0.080
0.390 0,400
0.140 0.150
0.041 O.~
0.310. .0.360

CASE 306-04
TO-2D2AC

1-326

2N6551,2N6552,2N6553

·ELECTRICAL CHARACTERISTICS (TA 25°C unless otherwise noted.)
Z

I

I

CINI,lICtwistic

Max

Min

Symbol

Unit

OFF CHARACTERISTICS
COllector-Emitter Breakdown Voltage

(lC

1.0mAde,IB

z

100 /lAde, IC

Z

Vde

-

60
80
100

2N6551
2N6552
2N6553

= 0)

-

5.0

BVEBO

Collector Cutoff Current

(Vce
IVCB
IVCB

-

BVCBO

= 100/lAde, I.E = 0)

Emitter-Base Breakdown Voltage

liE

-

60
80
100

2N6551
2N6552
2N6553

CQllpctor-Sase Breakdown Voltage

(lC

Vde

BVCEO

=0)

Vde
nAdc

ICBO

= 40 Vde, IE = 0)
=60 Vde, IE = 0)
=SO Vdc, IE = 0)

-

2N6551
2N6552
2N6553

100
100
100

-

Emitter Cutoff Current
IVEe = 4.0 Vde, IC = 0)

100

lEBO

nAdc

ON CHARACTERISTICS 11)

-

DC Current Gain
(lC = 10 mAde, VCE = 1.0 Vde)
(lC = 50 mAde, VCE 1.0 Vde)
(lC = 250 mAde, V CE = 1.0 Vdcl
(lC = 500 mAde, VCE = 1.0 Vde)

hFE

Collector-Emitter Saturation Voltage

VCE(s.t)

Z

(lC
IIc

300

-

Vde

-

= 250 mAde, IS = 10 mAde)
1.0 Adc, IB = 100 mAde)

0.5
1.0

-

Z

Base-Emitter On Voltage

IIc

-

60
80
60
25

VBElon)

1.2

Vdc

375

MHz

18

pF

= 250 mAde, VCE = 5.0 Vdc)

OYNAMIC CHARACTERISTICS
Current-Gain - Bandwidth Product

IIc

100 mAde, VCE

Z

Z

5.0 Vde, f

Collector-Base Capacitance

IVCB

75

IT

=20 MHz)
Ccb

= 20 Vde, IE = 0, f = 1.0 MHz)

* Indicates JEDEC Registered Data
11) Pulse Test: Puis. Width .. 300 /l<, Duty Cycle .. 2.0%

TYPICAL CHARACTERISTICS

~ ~~GURE 1 - CURRENT -GAIN - BANDWIDTH PRODUCT
~

,

VCP 5.0V

t;

~. 200

TJ =25 DC

f

I---'

x
>co

V

z~ 100

V

200
TJ

100

"-

;a
I
Z

:;(

~

ffi

FIGURE 2 - CAPACITANCES

0

'E.. 50

"

"'~
~
U
;t

70

~

u'

50

~

i:l
,f

30
5.0

7.0

10

20

30

50

70

100

200

300

~ 2~D~

70

500

IC, COLLECTOR CURRENT (mAl

Cib

30
20

r-- r-I-

.....

10

7.0
5.0

3.0
2.0
0.1

0.2

0.5

1.0

2.0

5.0

10

VR, REVERSE VOLTAGE (VOLTS)

1-327

20

~:
I1
50

100

2N6551,2N6552,2N6553

TYPICAL CHARACTERISTICS (continued)

FIGURE 4 - "ON" VOLTAGE

FIGURE 3 - DC CURRENT GAIN

400

z 200

:;;:

'"o

60

~

=

~
~

~

O. 2

VCE(sat)@lIC/IS= 10
20

1.0

5.0

2.0

10
20
50
100
IC. COLLECTOR CURRENT (rnA)

500

200

o

1.0

1.0 k

~ 1.0

1.0

T~ 125~J

o

~
£

O.8

~

!9~JlJ.l~CE("tl

~

-0.5

'"
~

-1.0

o

:>

\

~

~iI

::: o. 2
8

iU.=ir(

>'"

IIITH- ~

w

0
0.06 0.1 0.2

0.5

rrUIlI

~

0-_

Y[
~

50 100 200

-2.5
1.0

500

1400
~

~ 300

A. ~

:>

'="

....-

L-- ~

-

I~ ~ I.- l- I~ ~ l- I -

.0-

~V

:;!

V

I I III

10
20
50
100 200
IC. COLLECTOR CURRENT (rnA)

500

1.0 k

7

I--VCP50V

1

104

~

1031==TJ= 1500C

=
'-'

:::0

=
102
o
t;

j

:ru
fl""
°v

E

~REVERSE

FORWARD:::::

100

~

F250 C
10-1

IC = 200.A
4.0
6.0
S.O
10
12
VCE. COLLECTOR·EMITTER VOLTAGE (VOLTS)

1-'--1000C

10 1

'"'-'

.;
- 10

2.0

5.0

!i;

200

oIL

I I IITI
2.0

2

105

I-' l- t-'

zmI

IS •
.AIS\.p
I-TJ= 25 0C

+25 c

FIGURE 8 - COLLECTOR CUTOFF REGION

FIGURE 7 - COLLECTOR CHARACTERISTICS
500

i r1 rf

9Va for VaE
-2.0

~

TIn

1.0 2.0
5.0 10 20
IS. 8ASE CURRENT (mA)

I I II
-550~ to ~2~0~

~ -1.5

~~

~I.

.

!<

1.0A

I I III

-550C to +250 C

u:

0.4

500 1.0 k

+25~C tOI+112ll

~

•

=

10
20
50
100 200
IC. COLLECTOR CU RRENT (rnA)

TT _:~1~Pli"fO; Ic/IS';; hFE/2

0.5

0-

=
~

8

5.0

;:;

> O. 6

~

2.0

FIGURE 6 - TEMPERATURE COEFFICIENTS

FIGURE 5 - COLLECTOR SATURATION REGION

~o

1.....1....

4

01--"

~

::::;::;-

ttL

6_

~

J~~ = i.o v

V

rlll~J= 25/'C I
I.JIII
I 11
IVSE(satl@lIC/IS =

O.S

~150J

i--'

~ 100

80

~~

1-"1--'"

'"E
~

1.0

~;~ 1250C

-0.4
14

1-328

-0.2

+0.2
+0.4
VSE. SASE·EMITTER VOLTAGE (VOLTS)

+0.6

2N6551,2N6552,2N6553

TYPICAL CHARACTERISTICS (continued)

III

FIGURE 9 - THERMAL RESPONSE
10
01
OS

o ~ OS

:is

-

~~ 03 I-

~~

02

ffi~

01

-

~
0.1

-

II"'"

::oiii~

-

I- IQ.Os

ZOJCItI

~

'ItI ROJC

ROJC '" 12 soe/W Max

;;;'"

~~ 007

SlI'IglePulse

e:.~ 0.05

~~ 003
0.02

'"

Smgle Pulse

-

PEJUl

O. 2
001

I

0.01
001

Duty Cycle. 0'" Itltz

002

005

0.1

10

05

02

20

50

10
t,

20
TIME (msl

,... ,\1 OOJ.[s

2.0 k

,1.0ms

1.0 k

~

100
500

~

300

B

ZOO

ill

'"

~

8
!2

100
0

TC ~ 25°C

....
TA ~ 25°C

I

l'\c

.

II

del'
\

de .... ,

2NBSSI ;

TJ-ISOoC
- BDNDING WIRE LIMIT
THERMAL LIMIT. SINGLE PULSE
- - - SECOND BREAKDOWN LIMIT
(Applies Below Rated VCEOI

of:-

0
20
1.0

2.0

3.0

5.0 1.0

10

20

2N6552
2N6553
3D
50

10

50

100

200

500

10k

100

VCE. COLLECTOR·EMITIER VOLTAGE (VOLTS)

FIGURE 11 - POWER DERATING

1. 0

~

" r-...

'"g
~

'"z

"'"
---

r-

o.8

~

~
ffi o. 4

'"
!ii:

r-

r-...

""I",

c

~

Second Breakdown Derating

Thermal Deratmg " -

o. 6

o.2
0

20

4D

60

2.0k

PULSE TRAIN SHOWN
READ TIME AT Ii
TJlpkl . TC ~ P(pkl ROJc(tl
5.0 k 10 k

20 k

50 k 100 k

There are two limitations on the power handling ability
of a transistor: average junction temperature and second
breakdown. Safe operating area curves indicate IC-VCE
limits of the transistor that must be observed for reliable
operation; i.e., the transistor must not be subjected to
greater dissipation than the curves indicate.
The data of Figure 10 is based on TC = 250 C; TJ(pk)
is variable depending on power level. Second breakdown
pulse limits are valid for duty cycles to 10% but must be
derated when TC ;;;. 250 C. Second breakdown limitations
do not derate the same as thermal limitations. Allowable
current at the voltages shown on Figure 10 may be found
at any case temperature by using the appropriate curve on
Figure 11.
T J(pk) may be calculated from the data in Figure 9.
At high case temperatures, thermal limitations will reduce
the power that can be handled to values less than the
limitations imposed by second breakdown.

FIGURE 10 - ACTIVE·REGION SAFE-OPERATING AREA

I-

o CURVES APPLY FOR POWER

-t~J

1'"

- ZOJA(I) " rlt) ROJA
ROJA ,.. 62.5 0 CIW Max

80

100

TC, CASE TEMPERATURE (OC)

1-329

IZO

"

r-...

140

160

2N6554
2N6555
2N6556

®

MOTOROLA

DUOWATT

PNP SILICON ANNULAR
AMPLIFIER TRANSISTORS

PNP SILICON
AMPLIFIER TRANSISTORS

... designed for general-purpose, medium-voltage, medium power
amplifier and driver applications; series, shunt and switching regulators, and low and high frequency inverters and converters.

•

High Collector-Emitter Breakdown Voltage BVCEO = 100 Vdc (Min) @ IC = 1.0 mAdc - 2N6556

•
•

Duowatt Package - 2 Watts Free Air Dissipation @ T A = 25 0 C
Complements to NPN 2N6551/2/3

MAXIMUM RATINGS
Symbol

Rating
·Collector-Emitter Voltage
·Collector-Base Voltage
"Emitter-Base Voltage

·Collector Current
II

Continuous
Peak

Base Current

IITotal Power Dissipation @ T A

::I

2SoC

Derate above 25°C
Total Power Dissipation @TC :::: 25°C
Derate above 2SoC

·Operating and Storage Junction
Temperature Range

2N65541 2N65551 2N6556

J

I

100
80
VCBO
I 80 I 100
5.0
VEBO
1.0
IC
2.0100
IB
2.0
Po
16
10
Po
80
TJ,Tstg - 5 5 t o + 1 5 0 VCEO

60
60

260-

·Solder Temperature, 1/16" from Case
for 10 Seconds

Unit
Vdc
Vdc
Vdc
Adc

G
mAde
Watts
mW/oC

Watts
mW/oC

°c
°c

THERMAL CHARACTERISTICS
Svmbol

Max

Unit

Thermal Resistance, Junction to Ambient

ROJA

Thermal Resistance. Junction to Case

ROJC

62.5
12.5

°CIW
°CIW

Characteristic

·Indicates JEDEC Registered Data.

STYLE 1

PIN 1. EMmER
2 BASE
3 COLLECTOR
4 COLLECTOR

MILLIMETERS
DIM MIN MAX
A 2184 22.35
991 1041
B
4.19
444
C
0.61
071
0
394
F
36B
2.41
G
267
H
1.70
1.96
048
0.66
J
K 1270
178
203
L
N
9.91 10.16
Q
356
3.81
241
2.67
R
T 1321 13.97

INCHES
MIN MAX
0.860 0.880
0390 0410
0.165 0.175
0.024 0028
0.145 0155
0.095 0.105
0.067 0.077
0019 0.026
0.500
0070 ooao
0.390 0,400
0.140 0.150
0.095 0.105
0.520 0.550

CASE 306.04
TO-202AC

1-330

2N6554,2N6555,2N6556

·ELECTRICAL CHARACTERISTICS

I

(T A: 25°C unless otherwise noted.)'

I

Charactwistic

Symbol

Min

Max

Unit

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage
(lC : 1.0 mAde, Ie : 0)

Vde

BVCEO
2N6554
2N6555
2N6556

Collector-Base Breakdown Voltage

60
80
100

-

60
80
100

-

Vde

BVCBO

(lC = l00/lAde, IE : 0)

2N6554
2N6555
2N6556

Emitter-Base Breakdown Voltage

BVEBO

5.0

Vde

(IE: 100 /lAde, IC = 0)
Collector Cutoff Current
(VCB: 40 Vde, IE : 0)
(VCS = 60 Vde, IE = 0)
(VCS: 80 Vde,IE: 0)

ICBO
2N6554
2N6555
2N6556

nAdc

-

Emitter Cutoff Current
(VES = 4.0 Vde, IC: 0)

100
100
100
100

lEBO

nAdc

ON CHARACTERISTICS 11)

DC Current Gain
(lC =
(lC:
(lC.:
IIC =

-

hFE
60
80
60
25

10 mAde, VCE = 1.0 Vde)
50 mAde, VCE = 1.0 Vde)
250 mAde, V CE : 1.0 Vde)
500 mAde, VCE : 1.0 Vde)

Collector-Emitter Saturation Voltage

300

-

Vde

VCE(sat)

-

(lC: 250 mAde,IB: 10 mAde)
(lC: 1.0 Ade, IB : 100 mAde)

Base-Emitter On Voltage

VBE(on)

0.5
1.0
1.2

Vde

375

MHz

18

pF

(lC = 250 mAde, VCE = 5.0 Vde)
DYNAMIC CHARACTERISTICS

Current-Gain - BandWidth Product

IT

75

(lC: 100 mAde, VCE : 5.0 Vde, I : 20 MHz)

Collector-Base Capacitance

Ceb

(VCS: 20 Vde, IE : 0, f : 1.0 MHz)

* Indicates JEDEC Registered Data.
(1) Pulse Test: Pulse Width <: 300 /lS, Duty Cycle <: 2.0%.

Ii'I
~

TYPICAL CHARACTERISTICS

Ii
FIGURE 1 - ACTlVE·REGION SAFE'()PERATING AREA

5.0
2.0

"

60

~

1. 0

;

O.

_

O. 2

~

~

de

o. 1
5

Trl

C

J

"l'\..

.....

,,~

~ TJ :.150'CBONDING WIRE LIMIT

for duty cycles to 10% providedTJ(pk)';; 150°C. TJ(pk) may be

THERMAL LIMIT, SINGLE PULSE, TC· 25'C
- - - - SECOND BREAKDOWN LIMIT
2N6554(Applies Below Aated VCEO'jr
0.0 1
2N6555
2N6556
0.005
1.0
2.0 3.0
5.0 7.0 10
20
30
50

.9 0.02

There are two limitations on the power handling ability of a

transistor: average junction temperature and second breakdown.
Safe operating area curves indicate le-VCE limits of the transistor
that must be observed for reliable operation; i.e., the transistor
must not be subjected to greater dissipation than the curves indicate.
The data of Figure 1 is based on TJ(pk)::: 150°C; TC is variable
depending on conditions. Second breakdown pulse limits are valid

~~ = 250C~'O ms

5

0.0

'"

lOOps

TT

calculated from the data In Figure 6. At high case temperatures,
thermal limitations will reduce the power that can be handled to
values less than the limitations imposed by second breakdown.

I

70

100

VeE, COLLECTOR·EMITIER VOLTAGE (VOLTS)

1-331

~

I
I

2N6554,2N6555,2N6556

II]
TYPICAL CHARACTERISTICS (continued)
FIGURE 2 - DC CURRENT GAIN
Joo

.

200

z

'"
....
~

100

u

c

10

~

50

a'"

FIGURE 3 - "ON" VOLTAGE
1.0

TJ·125 oC

-

--,,\

I--"'

~

2.0

10

50

20

100

200

~ 0.4

>
>'

0.2

500 1000

5.0

2.0

1."

1. 0

~

!

0,8

IC = 10 mA

SOmA

250 mA 500 mA

i

LOA

~ 0.4

~

~

I II

0

02

0.05 0.1

0.2

0.·

1.0

2.0

5.0

10

20

100

200

500 10k

50 100

200

II
"Applies for le/18

w

-1.0 0

'"~
~

-1.5 0

~

-1.7 5

500

-55°C to 250C

0;;;;

hFE/ 2

-0.7 5
-1.25

11mlto~~

0VB for VBE

~ -2.0 0

r--

o

50

25°C to 125 0 C

"Ove for VeE(sat)

-0.25

t:; -0.5 0

ffi
t:

20

FIGURE 5 - TEMPERATURE COEFFICIENT
_ +0.25

TJ = 250 C

0.6

10

~

IC. COLLECTOR CURRENT ImA)

FIGURE 4 - COLLECTOR SATURATION REGION

>

Ir

VCE (sat)@ Ic/lB = 10

IC. COLLECTOR CURRENT ImAI

~
2.
~
)~

-

~
....

r5.0

.........
1=---

VBElon)@VCE= 5.0

w

VCE=I.oV
3D
1.0

1111

VBE lsat)@ IC/IB = 10

~ 0.6

-

-55 0 C

cll

II Illl

0.8

............
25lc

TJ=25 0

-2.25
1.0

I II
I
2.0

lB. BASE CURRENT ImAI

-550 C to 25 bC
5.0

10

JUl100 200
:1
50

10

500 1.0 k

IC. COLLECTOR CURRENT ImAI

FIGURE 6 - THERMAL RESPONSE
1.0
O.
: 0 = 0.5

;;:0

~~ 0.3

~~ 0.2

ffi~
;nw

-

-d::;

I
:i~ 0.0 I~
~_~ 0.0 5~

-

0.1

0.05

~

-

Jill"

::Oiilii

Single Pulse

illJ1 -o
-t\;-J

SmglePulse

0.01

0.0 1
0.01

1""

I
0.01

ZOJAltl = rit) ROJA
ReJA = 62.5 0 CIW Max

Plpkl

~EO.03 ....... !ill
0.02

Duty Cvcle, D == tl/t2

0.05

0.1

0.2

0.5

1.0

1.0

z"JCltl - rltl ROJC
R8JC'" 12.5DCIW Max

5.0

10

10
t. TIME Im.1

1-332

50

100

200

500

1.0k

1.0k

CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME AT tt
TJlpkl·-TC = Plpkl ROJCltl
5.0k 10k

20k

SDk lOOk

®

2N6557
216558
2N6559

MOTOROLA

NPN SILICON ANNULAR
HIGH VOLTAGE AMPLIFIER TRANSISTORS

DUOWATT
NPN SILICON
AMPLIFIER TRANSISTORS

· .. designed for high·voltage TV video and chroma output circuits,
high·voltage linear amplifiers, and high·voltage transistor regulators.

•

High Collector· Emitter Breakdown Voltage BVCEO = 350 Vdc (Min) @ IC = 1.0 mAdc - 2N6559

•

Low Collector·Emitter Saturation Voltage VCE(sat) = 0.6 Vdc (Max) @ IC = 30 mAdc

•

Low Collector·Base Capacitance Ccb = 3.0 pF (Max) @VCB = 20 Vdc

•

Duowatt Package 2 Watts Free Air Dissipation @ T A = 25°C

Q

MAXIMUM RATINGS
Rating

VCEO
VCBO

2N65571 2N655SI 2N6559
250 I 300 I 350
250 I 300 I 350

VEBO
IC

~O.5-

Symbol

*Coll'ector-Emitter Voltage

·Collector-Base Voltage

* Emitter-Base Voltage
·Collector Current - Continuous
Peak

*Base Current

IB

*Total Power Dissipation @ T A

=2SoC

Po

Derate above 2SoC
Total Power Dissipation@Tc=2SoC

Po

Derate above 2SoC
·Operating and Storage Junction
Temperature Range

·Solder Temperature, 1/16" from Case
for 1a Saeonds

TJ,Tstg

.

.
·.
·.
·
.

6.0-

0.72502.0161080.....-- -55 to +150-----.
260-

Unit

Vde
Ade

Characteristic
Thermal Aesistance, Junction to Case

o

Lgnc
G

mAde

r

°c
DIM

Max

Unit

ReJA
ReJC

62.5
12.5

°C/W
°C/W

*Indicates JEDEC Registered Data.

-=t.J

STYLE 1
PIN 1. EMITTER
2. BASE
3. COLLECTOR
4 COLLECTOR

°c

Symbol

-.l

R

Watts
mWf'C
Watts
mW/oC

THERMAL CHARACTERISTICS
Thermal Resistance. Junction to Ambient

'GJ

Vde
Vde

A
B

C
D
F

G
H
J

K

L
N
Q

R
T

MILLIMETERS
MIN MAX
21.84 22.35
9.91 10.41
4.19
4.44
0.61
0.71
3.68
3.94
2.41
2.67
1.70
1.96
0.48
0.66
12.70
1.78
2.03
9.91 10.16
3.58
3.81
2.41
2.67
13.21 13.97

-

INCHES
MIN MAX
0.860 0.880
0.390 0.410
0.165 0.115
0.024 0.028
0.145 0.155
0.095 0.105
0.0 7 0.077
0.019 0.026
0.500
0.070 0.080
0.390 0.400
0.140 0.150
0.095 .105
0.520 0.550

CASE 306.(J4

TO·202AC

1-333

2N6557,2N6558,2N6559

..
I

'ELECTRICAL CHARACTERISTICS (TA ' 250 C unless otherwise noted'!

I

I

Charactoristic

Symbol

Min

Max

Unit

OFF CHARACTERISTICS

Collector-Emitter Breakdown Voltage

Vde

eVCEO

2N6557
2N6558
2N6559

(lc = 1.0mAde,le' 0)

250
300
350

Collector-Base Breakdown Voltage

-

Vde

eVCBO

2N6557
2N6558
2N6559

(lC' 100 JLAde. IE ' 0)

250
300
350

Emitter-Base Breakdown Voltage

eVEBO

6.0

-

-

Vde

(IE' 100 /LAde, IC' 0)

Collector Cutoff Current

Iceo
2N6557
2N6558
2N6559

(Vce' 150 Vde, IE ' 0)
(Vce ' 200 Vde, IE' 0)
(Vce ' 250 Vde, IE = 0)

Emitter Cutoff Current

IEeO

-

/LAde

-

0.2
0.2
0.2

-

0.1

25
40

180

/LAde

(VeE = 5.0 Vde. IC ' 0)
ON CHARACTERISTICS(1)

DC Current Gain
(lC' 1.0 mAde, VCE = 10 Vde)
(lC = 30 mAde, VCE = 10 Vde)

-

hFE

Collector-Emitter Saturation Voltage

Vde

VCE(satl

-

(lC = 30 mAde, IB = 3.0 mAdel
(lC = 50 mAde, Ie ~ 5.0 mAde)

Base-Emitter On Voltage

-

0.6
1.5

VBElon)

-

0.85

Vde

fT

45

200

MHz

3.0

pF

(lC' 30 mAde, VCE ' 10 Vdel
DYNAMIC CHARACTERISTICS

Current-Gain - Bandwidth Product
(lC ' 10 mAde, VCE ' 20 Vde, f, 20 MHzl

Collector-Base Capacitance
(VCB

= 20 Vde,

IE

= 0, f ,

Ceb
1.0 MHz)

.. Indicates JEOEC Registered Data.
(1) Pulse Test: Pulse Width .. 300 JLS, Duty Cycle .. 2.0%.

TYPICAL CHARACTERISTICS
FIGURE 1 - ACTIVE·REGION SAFE OPERATING AREA
1.0

0.50

~

0.20

::i
i3

0.05

'"c

0.02

.,.

~oo"S

de
de
"""-TC - 25'C
TA=25'C

E 0.1 0

There are two limitations on the power handling ability of

1.0ms

5.0ms

g '="==

.....
0.0 c----~ TJ = IOu",
1
BONUING WIRELIMIT
80.005 - - - THERMAL LIMIT. SINGLE PULSE. TC - 25'C
- - - SECOND BREAKDOWN LIMIT
~
2N6557--1"'
0.002
0.00 I

1.0

~~:~~;-'-t-

2.0

5.0

10

20

50

100

200

8

transistor: average junction temperature and second breakdown.
Safe operating area curves indicate IC-VCE limits of the transistor
that must be observed for reliable operation; I.e., the transistor
must not be subjected to greater dissipation than the curves Indicate,
The data of Figure 1 is based on TJ(pkl =·1500 C;Tcisvariable
depending on conditions, Second breakdown pulse limits are valid
for duty cycles to 10% provided TJ(pk)';;; 1500 C. TJ(pk) may be
calculated from the data in Figure 6. At high case temperatures.
thermal limitations will reduce the power that can be handled to
values less than the limitations imposed by second brea kdown.

500 l.Ok

VCE. COLLECTOR·EMITIER VOLTAGE (VOLTSI

1-334

2N6557,2N6558,2N6559

TYPICAL CHARACTERISTICS

(contim~ed)

FIGURE 2 - DC CURRENT GAIN
3D0

FIGURE 3 - "ON" VOL TAGES
1.4

TJ; 12ioci

2110

TJ 0 250C

r-....

~ '25 0c

100

~

1.0

0
0

-

-5S UC

... ~

0
0

::::

~

I~.

~t',.

O. 6
O. 4

05

1.0

2.0 30 5.0

LIlL

1111
.1.VCE(sat)

o. 2
o

3. 0
0.3

10

20 30

50

100

I

VSE(on!@VCE 010 V

">>'

VCE 2.oV

70
5. 0

mli,,!@ICIIS - 10

~

",'

t:::'1

O. B

~
w
to

I"~

L ~CE oolOV

0

~_

0.30.5

200 300

10

203.050

10

20 30

u

2.0

~

1.0

U
1. 2

*

~-1.0
=>

I II Nli N.I

I 1t10.05

o

0.01 0.02

0.1

!;(

N 'tl

lJ

LllJ[

200300

.Il

-'OV~lorV(CE(~11

25°C to 125°C

8

o. B
o.4

100

f-- *Appl/es for le!la:s;;: hFE/2

">

E.

6

SOmA

~;o

50

3.0

TJ = 25°C

30
mA

J

FIGURE 5 - TEMPERATURE COEFFICIENTS

FIGURE 4 - COLLECTOR SATURATION REGION
2.0

lOrnA

I

IC, COLLECTOR CURRENT (mAl

IC, COLLECTOR CURRENT (mAl

Ie-lOrnA 3.0mA

L

IC/lS·~

100 rnA

~ -20

ili-J I

~ -3.0

-550f to 25;C

J

-

25°C to 125°C

Ovis lor SE

-55°C to 25°C

"

II

i

H-.'ffi" IHf
10 20

50 100

0.5 1.0 20
5.0
0.2
IB, SASE CU RR~NT (mA!

-4.0
10

2.0

3.0

5.0 7.0

10

20

30

50

70 100

IC, COLLECTOR CURRENT (mAl

FIGURE 6 - THERMAL RESPONSE
1.0

0.7
0.5

0-0.5

<0
ii~

0.3

~~

-~

0.2

5~
o;w

0.1

O. 1 -

ii.05

~~ 0,07

-

....

SmglePulse

:=_~ 0.05

....

-

:::i!iiliii

ZOJC(I!- r(l! ROJC
ROJC::: 12 5DeIW Max

pEfUl

Smgle Pulse

~~ 0.03 "'" 0.Q2
0.01
0.02

-t~J

,1"

I

0.01
0.01

0.02

Duty Cycle, 0 "'" l1ft2
0.05

0.1

0.2

0.5

1.0

2.0

5.0

10

20
I, TIME (m.!

1-335

50

100

200

500

1.0 k

2.0 k

-

-

ZOJA(I! • r(11 ROJA

ROJA '" 62 SDelW Max

o CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME AT"
TJ(pk! -TC P(pkl ROJC(I!
0

5.0k 10k

20k

SDk lOOk

2M&5&9

®

MOTOROLA

IIJ
12 AMPERE

POWER TRANSISTOR
NPN SILICON

NPN SILICON POWER TRANSISTOR
The 2N6569 is a general-purpose, EPIBASE power t~ansistor
designed for low voltage amplifier and power switching applications.

40 VOLTS
100 WATTS

Low Cost
••. Safe
Operating Area -

•
•
•

Full Power Rating to 40 V
EPIBASE Performance in Gain and Speed
Metal Can Reliability - TO-3 Package
All-Purpose Replacement for Industry Standard 2N3055

-MAXIMUM RATINGS
Rating

Collector-Emitter Voltage
Collector-Ba.. Voltage
Emitter-Ba •• Voltage
Collector Current

Continuous

Symbol
VCEOlsus)
VCBO
VEBO
IC

-Peak
Base Current

Continuous

-Peak
Emitter Current

Continuous

- Peak
Total Power Dissipation !iii T C = 25°C
Derate above 25°C
Operating and Storage Junction

'B
'E
Po
TJ,T.tg

Volue
40
45
5.0
12
24
5.0
10

Unit
Vdc
Vdc
Vdc
Adc

17
34
100
0.572
-65 to +200

Adc

Adc

L~=r
le

f-,-

Q0;Vll

! "1(f

Characteristic

°c
DIM

Maximum Lead Temperature for Soldering

Symbol

Max

R8JC
TL

1.75
265

Purpo...: 1/16" from Co.. fo lOs.

Unit
uCIW
C

A
B

C
0
E
F

G
H
J
K
Q

R

1-336

I

J-

~

t-fr'1

1
lo

1

i

NOTE:
1. OIM "0" IS OIA.
STYLE 1:
PIN 1. BASE
2. EMITIER
CASE: COLLECTOR

Watt.
Wt"C

Temperature Range

Thermal Resistance, Junction to Case

I

",-1/

t

THERMAL CHARACTERISTICS

K

SEATING
0
PLANE
t---F-

MILLIMETERS
MIN MAX

INCHES
MIN
MAX

39.37
U50
21.08
0.830
6.35
7.62 0.250 0.300
1.09 0.039 0.043
0.99
0.135
3.43
29.90 30.40 1.177 1.197
10.67
11.18 0.420 0.440
5.3
5.59 0.210 0.220
16.64 17.15 0.655 0.675
11.18 12.19 0.440 0.480
4.09 0.151 0.161
3.84
26.67
1.050
Collector connected to case.
CASE 11·01
ITO-3)

-

-

2N6569

-ELECTRICAL CHARACTERISTICS (TC = 25"C unle.. otherwise noted.)

I

Characteristic

Symbol

Min

Max

Unit

OFF CHARACTERISTICS

Collector-Emitter Sustaining Voltage
(lC = 200 mAde, 18 = 0)

VCEO(sus)

Collector Cutoff Current

-

1.0
10

Vde

-

5.0

15
5.0

200
100

-

1.5
4.0

VBE(sat)

.-

2.0

Vdc

fT

1.6

15

MHz

Cob

75

750

pF

IlS

'EBO

(VEB = 5.0 Vde, IC = 0)

-

mAde

'CEV

(VCEV = 45 Vdc, VBE(off) = 1.5 Vde)
(VCEV = 45 Vdc, VBE(off) = 1.5 Vdc, TC = lOOOC)
Emitter Cutoff Current

40

mAde

SECONO BREAKDOWN
Second Breakdown Collector Current with Base Forward Biased

(VCE = 40 Vdc, t = 1.0. (non-repetitive))
ON CHARACTERISTICS
DC Current Gain

-

hFE

(lC = 4.0 Ade, 'VCE = 3.0 Vdc)
(lC = 12 Ade, VCE = 4.0 Vdc)
Collector-Emitter Saturation Voltage

Vdc

VCE(sat)

(lC = 4.0 Adc, 'B = 0.4 Adc)
(lC= 12Adc,IB= 2.4Adc)

Base-Emitter Saturation Voltage
(lC = 4.0 Adc, 'B = 0.4 Adc)
DYNAMIC CHARACTERISTICS
Current-Gain - Bandwidth Product

(lC = 1.0 Adc, VCE = 4.0 Vdc, f teot = 0.5 MHz)
Output Capacitance
(VCB = 10 Vdc, 'E = 0, f test = 1.0 MHz)
SWITCHING CHARACTERISTICS
RESISTIVE LOAD
Delav Time

Rise Time
Storage Time
Fall Time

(VCC = 30 Vde, IC = 2.0 Ade,lBl = 0.2 Ade,
tp = 25 IlS, Duty Cycle" 1.0%)
(VCC = 30 Vde, IC = 2.0 Ade, 'Bl = 'B2
tp = 251l', Duty Cycle" 1.0%)

0.2 Ade,

tcr

0.4

'r

1.5

IlS

"
tf

5.0

1'0

1.5

IlS

·'ndicates JEDEC Registered Data.

FIGURE 1 - SWITCHING TIMES TEST CIRCUIT

Vee

t-T25Ils~+30:e

+1~ ~O__

RS

Scope

-9.~-;D
01

tr.tf '" 10 ns
Duty Cycle"" 1.0%

-4.0 V

-=

,

RS lind Fie Varied to Obtain Desired Current Levels

o 1 mus~ be fast recovery tv pe.

1-337

2N6569

FIGURE 2 - THERMAL RESPONSE

ffi

N

1.0

iii ~ ~

-

~ O. I~D-o.5
~ O.5

..."

~

O. 3-0~2

~ O. 2

I<:::;

_0.1

~
ffi o. 1 0 .05

III"""

'"~ 0.011-0.02
ffi 0.05
i:
I-

ffi

0;

0.03

-

I-

R9Jc{d = rId RSJC
RSJC • 1.75"CIW MIX
D CURVES APPLY FDR POWER
PULSE TRAIN SHOWN
READ TIME AT 11
TJ{pk) - TC' P{pk) R9JCh)

f-Dr

P'>. P,0.01
~sl,,'e P,.'"

0.02 r--

DUTY CYCLE. 0 = 1111Z

z

~ 0.01

I-

0.01

0.02

0.1

0.05

0.2

1.0

0.5

2.0

5.0

20

10

50

" I 200I I I 500I I II 1000
100

I. TIME (m~

FIGURE 3 - SAFE OPERATING AREA
30

.

....

f-.
20

.~j. ....
1.0"" .....

0:
~
I-

~

10

G

1.0

"'"

5.0

.... .....

r-' ._.

Safe operating area curves indicate IC-VCE limits of the
transistor being observed for reliable opjlration; i.e .• the
transistor must not be subjected to greater dissipation than
the curves indicate. This transistor is thermally limited over
its entire operation area. Figure 4 may be used to derate
the curves shown or an effective ROJC(t) may be computed
from Figure 2 for pulsed operation.

5.0ms

-

2.0
1.5
4.0

-, ..... ...

.....

de

~
8 3.0 r-- _. _.
E

.... ,O.5ms
.....

-

I
5.0

-

.....

.......

.....

Currant limited
Thermally Limited

I I I I I

......

-,

I

7.0
10
20
30
50
VCE. COLLECTOR·EMITTER VOLTAGE (VOLTS)

70 80

FIGURE 4 - POWER DERATING
1.0

.........

""'- I'..

0.8

'"
~ o. 6
:E
'"z

"'-

~ 0.4

"-

...'"

.......

.....

"

-.......
0.2

o

........

.........
o

20

40

60
80
100
120
TC. TEMPERATURE (DC)

1-338

140

160

180

200

2N6569

FIGURE 6 - COLLECTOR SATURATION REGIDN

FIGURE 5 - DC CURRENT GAIN
IIlO11

~ 2.0

500

TJ~

~
...

VCE =4.DV

15IJOC

~

z

"a'i

fo...

.. 200 f--- r- 2SDC
....
:

..,
:::0

r- t'- ~

~~

-55DC

1.2

!

0.8

l!l

0.2

0.3
D.S 0.7 1.0
2.0 3.0
IC. COLLECTOR CURRENT (AMPERES)

S.O 7.0

10

10

"

2~DC

8.0 A

4.0 A

20

SO
100 200
SOO
Is. BASE CURRENT (mA)

1000

2000

SIlOII

103
TJ'2SDC

1.2

I--- vCE-30V-

I
L

g 1.0

0.2

100

~

i I

VBj 'VfE 4'j

I
I

'"

I.

l.-- /

w

- -

"....

102

.:.

VBE(sat)@lIC/IB= 10

~ 0.8

~ 0.6

TJ =

FIGURE 8 - COLLECTOR CUT'()FF REGION

FIGURE 7 - "ON" VOLTAGES

>
,; 0.4

II

0
S.O

1.4

.
.

III

j
:3 o.4
>

10
0.1

III

III

~

"

20

III
IC·1.0A

~

~

~

100

\.6

I II
I II

8
E

,/

VCE(sat)IIIC/lB' 10

ht

TJ -175°C 7

100 DC

101

F=

==

/

25DC -

-

IC=ICES

10-1
10-2

~ ::: Rev....

Forward

-I--"
10-3

0.1

0.2

0.3

O.S 0.7

1.0

2.0

3.0

5.0 7.0

10

-0.4

-0.3

-0.2

-0.1

0.1

0.2

0.3

VBE. BASE·EMITIER VOLTAGE (VOLTS)

IC. COLLECTOR CURRENT (AMPERES)

1-339

0.4

O.S

0.6

2N6576
2N6577
2N6578

®

MOTOROLA

15 AMPERE
POWER TRANSISTORS

NPN SILICON POWER DARLINGTON TRANSISTORS
General-purpose EpiBase power darlington transistors, suitable
for linear and switch ing applications_

NPNSILICON
DARLINGTON
60, 90, 120 VOLTS
120 WATTS

• Replacement for 2N3055 and Driver
• High Gain Darlington Performance
• Built-In Diode Protection for Reverse Polarity Protection
• Can Be Driven from Low- Level Logic
• Popular Voltage Range
• Operating Range - -65 to +200o C

*MAXIMUM RATINGS
Rating
Collector-Emitter Voltage
Collector-Base Voltage
Emitter-Base Voltage

Collector Current

Symbol
VCEO(sus)
Vca
VFR

Continuous
Peak

IC

Base Current - Continuous

la

- Peak
Emitter Current - Continuous
- Peak
Total Power Dissipation @ T C
Derate above 2SoC

2SoC

Operating and Storage Junction

.
..

Unit

.

.

IE
==

2N6576 \ 2N6577\ 2N6578
60
\ 90 ~ 120
60
\ 90 1 120
7.015
~
30
_0.25_0.5015.25_30.5_

Po
TJ,T stg

Vdc
Vdc
Vdc
Adc
Adc
Adc

.

1 2 0 - Watts
_ 0 . 6 8 5 _ W/oC
_ - 6 5 to + 2 0 0 _
°c

Temperature Range

THERMAL CHARACTERISTICS
Characteristic

Thermal Resistance. Junction to Case
Maximum Lead Temperature for Soldering

Symbol

Max

Unit

ROJC

1.46
265

°CIW

TL

°c

Purposes: 1/16" from Case for 1Os.
*Indicates JEDEC Registered Data

DIM
A
I
C

0
E
F
G
H

DARLINGTON SCHEMATIC

j

K

n

Collector

R

INCHES

MILLIMETERS

MIN

--

6.35
0.97

-

29.90
10.87
5.21
16.84
11.11
3.84

-

MAX

MIN

39.37
22.23
11.4.1
1.09
3.43
30.40
11.11
5.72
17.15
12.19
4.119
26.87

-

-

0.250
0.038

-

1.177
0.420
0.Z05
0.655
0.440
0.151

-

CASE II-OJ
TOol

Emitter

1-340

MAX
1~

0.175
0.450
0.043
0.135
1197
0.440
0.225
0.875
0.480
.11
1.050

2N6576, 2N6577, 2N6578

-ELECTRICAL CHARACTERISTICS

I

(Te

= 25°C unless otherwise noted.)

ChI_isti.

I

Symbol

Min

MIX

Unit

OFF CHARACTERISTICS

Coliector·Emitter Sustaining Voltage( 1)
(Ie

= 200 mAde, IB = 0)

= Rated

ICED

-

1.0

leER

-

5.0

mAde

ICEV

-

5.0

mAde

IceD

-

0.5

mAde

90

mAde

Value)

Collector Cutoff Current
(VeER = Rated VeEO(sus) Value, RBE

= 10 kil, TC = 150°C)

Collector Cutoff Current
VCEX = Rated VCEO(sus) Value, VBE(olf)

= 1.5 Vde)

Collector Cutoff Current
(VCB

120

-

60

Collector Cutoff Current
(VeE

Vde

VeEO(sus)
2N6576
2N6577
2N6578

= Rated Value)

ON CHARACTERISTICS

DC Current Gain
(lC
(lC
(Ie
(lC

hFE

= 15 Ade, VCE = 4.0 Vde)
= 10 Ade, VCE = 3.0 Vdel
= 4.0 Ade, VCE = 3.0 Vde)
= 0.4 Ade, VCE = 3.0 Vde)

100
500
2000
200

Collector-Emitter Saturation Voltage
(lc
(lC

= 15 Ade, 18 = O.lS'Adc)
= tOAde,le = 0.1 Ade)
= 15 Adc,
= 10 Ade,

Ie
18

Vde

-

4.0
2.8

-

4.S
3,5

-

VeE(satl

= 0.15 Adc)
= 0.1 Adc)

COllector-Emitter Diode Voltage Drop
(lEC = 15 Adc)

VF

-

-

VCE(satl

Base-Emitter Saturation Voltage
(lC
(lC

5,000
20,000

Vde

-

4.5

Vde

DYNAMIC CHARACTERISTICS

Magnitude of Commo,n-Emitter Small-Signal Short-Circuit Current Transfer Ratio
(IC

= 3.0 Ade, VCE = 3.0 Vde, f = 1.0 MHz)

SWITCHING CHARACTERISTICS
RESISTIVE LOAD (Figure 2)

Delay Time

Rise Time
Storage Time
Fall Time

(VCC = 30 Vde, IC = 10 Ade, 181
tp = 3001", Duty Cycle .. 2.0%)

= 0.1

Adc,

(VCC - 30 Vdc,IC = 10 Ade,lel - IB2 - 0.1 Ade,
tp = 300 I'S, Duty Cycle .. 2.0%)

-

0.15

I'S

tr

1.0

I'S

t.

-

2.0

I'S

7.0

1"

td

tf

·lndicatesJEDEC Registered Data
(1) Pul,e test: Pulse Width .. 300 I'S, Duty Cycle .. 2.0%.

FIGURE 1 - RATED FORWARD BIASED
SAFE·OPERATING AREA

40
20
ii:

~

~

.- t-,

....

10
5.

0

,

"

a 2.0
:5

TJ:ZOOoC
1.0 _. - Bondmg Wire Limit
~ - Thermal limit, SmgJe Pulse, TC = 25°C
5 - - Second Breakdown Limit

~

O.

~

O. 2
O. 1

0.0 5
2.0

I

100.'=0=

de

2N6576
2N6577
ZN6578

,"

-

1.0m~-t-

J.om.=:
1\

100
5.0
20
40
60
10
VCE, COLLECTOR-EMITTER VOLTAGE IVOLTSI

150

1-341

There are two limitations on the power handling ability of
a transistor: average junction temperflture and second breakdown.
Safe operating area curves indicate IC-VeE limits of the transistor that must be observed for reliable operation; i.e., the transistor
must not be subjected to greater dissipation than the curves
indicate.
The data of Figure 1 is based on TC = 250 C; TJ(pk) is variable
depending on power level. Second breakdown pulse limits are
valid for duty cycles to 10%.
TJ(pk) may be calculated from the data in Figure 6. At high
case temperatures thermal limitations will reduce the power that
can be handled to values less than the limitations imposed by
second breakdown.

2N6576,2N6577,2N6578

FIGURE 2 - DC CURRENT GAIN

z

5k

;;:

.v
~ 2k r- i25 0 C "r ......

./

'"

~

V

lk

<.>

1\

I\.

VCE = 3 Vdc

'\

1\

SOD ~ 30°C

I

200

\
2.0
0.5
1.0
5.0
IC. COLLECTOR CURRENT lAMPS)

0.2

10

\H'
\H

mtt

'\
\

\

./

III
III

\

+IS0oC

....
"'

'"
B

1\

i""'-.

~

1

10 k

FIGURE 3 - COLLECTOR-SATURATION REGION

15

SA

1

1A

5

ill

,II

0.0001

0.001 0.002
0.005 0.01
lB. BASE CURRENT lAMPS)

0.0003

0.02

0.05

0.1

FIGURE 5 - BASE-EMITTER VOLTAGE

FIGURE 4 - COLLECTOR SATURATION VOL TAGE

11 Jl
-r-

.1.

1 1

ICIIB = 100

- - VBElsat) @ICIIB = 100
I-- r- - - - VBElon)@VCE=3V.2SoC

++-+++-++-+-+++-1-+1+-1

~

{J

w

,

~

IJ

"'

~>

-30°C

/

2

>- 1.5

-

l
la"

,UoJc

~

+250C

~

/ -lOoC

--- V

-r -

-::~

0.5
0.2

0.2

10 15

0.5
IC. COLLECTOR CURRENT lAMPS)

10

0.5

15

IC. COLLECTOR CURRENT lAMPS)

FIGURE 6 - THERMAL RESPONSE
O. 1

~C

o. 7 =
o.5

- --= pfJUl

0-0.5

~~ o.3 - _1 0.2
~~

.... '"

....
'"
zz
~

~

-0.1

ii

O. It::===:=: ;::::::0.05
~z(].o 7
~ 0.0Sf-0.02

:=
-:u;

-':-~O.03

0.0

......

2~

0.0 1
0.1

" SING LE PULSE

DUTY CYCLE. 0 = tl/t2

J
I

0.01
0.3

IIII
O.S

D CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME AT 11
TJlpk) - TC = Plpk) 6JClt)

t:J

~

0.2

6Jclt) = ,It) 6JC
6JC = I.4B

~~
i"'"

o.2

0.7

1.0

2.0

3.0

5.0

7.0

10

t.TIME(ms)

1-342

I I

I

20

30

1

1

50

70

100

200

300

SOD

700 1000

®

2N6591
2N6592
2M6593

MOTOROLA

NPN SILICON ANNULAR
HIGH VOLTAGE AMPLIFIER TRANSISTORS

DUOWATT
NPN SILICON
AMPLIFIER TRANSISTORS

. . . designed for horizontal drive applications, high·voltage linear
amplifiers, and high·voltage transistor regulators.

•

High Collector· Emitter Breakdown Voltage BVCEO = 250 Vdc (Min) @ IC = 1.0 mAdc - 2N6593

•

Low Coliector·Emitter Saturation Voltage VCE(sat) = 1.5 Vdc (Maxi @ IC = 200 mAdc

•

Duowatt Package 2 Watts Free Air Dissipation @TA = 25 0 C

MAXIMUM RATINGS
Rating

Symbol

"Collector-Emitter Voltage

Vceo

"Collector-Base Voltage

Vceo

·Emltter-Base Voltage

Veeo

"Collector Current - Continuous

2N6591I 2N65921 2N6593
150 I 200 I 250
150 I 200 I 250
5.0-0.51.01002.0---....
161080_ _ -55.to + 1 5 0 -

Ie

Peak (11

.. Base Current

Ie

"Total Power DiSSipation

@

T A - 25°C

Derate above 25°C
Total Power DisslpatlOn@Tc-25OC
Derate above 25°C
·Operatlng and Storage Junction
Temperature Range

Po
Po
T J.T st9

Vdc

.

Vdc

·.
·.
·

Adc

.

·Solder Temperature, 1/16" from Case
for 10 Seconds

Unit

260-

Vdc

mAde

Watts
mW/oC

Watts
mW/oC
°c
uc

THERMAL CHARACTERISTICS

Thermal Resistance, Junction to Case

ROJA

I
I

ROJC

I

Symbol

Characteristic
Thermal Resistance, Junction to Ambient

I

Max

62.5
12.5

I
I

°C/W

I

°C/W

·Indicates JEDEC Registered Data.
11) Pull. Test: Pulse Widt"''' 1.0 ml, Duty Cycle" 50%.

Unit

STYLE l'
PIN 1. EMITTER
2. BASE
3. COllECTOR
4, COllECTOR

MILLIMETERS
DIM MIN MAX
A 21.84 22.35
B
9.91 10.41
C
4.39
4.65
o 0.58 0.74
F
3.56 4.06
G
2.41
2.67
H
1.70 1.96
J
0.48 0.66
K
12.19 12.95
L
1.65 2.03
N
9.91 10.16
Q
3.56
3.81
R
1.07
1. 5
T
7.87 9.14

INCHES
MIN MAX
0.860 0880
0.390 0.410
0.173 0.lB3
0.023 0.029
0.140 0.160
0.095 0.105
0.007 0.077
0.019 0.026
0.480 0.510
0.065 0.080
0.390 D.400
0.140 0.150
0.042 0.069
0.310 0.360

CASE 306-04
TO·202AC

1-343

,!

2N6591,2N6592,2N6593

-ELECTRICAL CHARACTERISTICS

ITA' 25°C unless otherwise noted.l

SVrribol

ChlrllCta'iltic

Min

MIX

Unit

OFF CHARACTERISTICS
Collector~Emitter

Breakdown Voltage
IIC • 1.0 mAde, IB = 01

-

Vde

BVCBO

= 100~Ade,IE =0)

2N6591
2N6592
2N6693

Vde

5.0

BVEBO

Collector Cutoff Current
IVCB = 100 Vde, IE =0)
IVCB = 150 Vde, IE = 0)
IV,.,R = 200 Vde, IE =0)

-

150
200
250

Emitter-Base Breakdown Voltage
liE = 100 ~Ade, IC = 0)

Emitter Cutoff Current
(VEB = 5.0 Vde, IC

-

150
200
250

Collector-Base Breakdown Voltage

IIc

Vde

BVCEO
2NG591
2N6692
2N6693

~Ade

ICBO
2N6691
2N6592
2N6593
lEBO

=0)

-

0.2
0.2
0.2
0.1

/JAde

ON CHARACTERISTICS(I)

DC Current Gain

-

hFE

IIc = 10 mAde, VCE = 10 Vde)

2N6591
2N6592
2N6593

40
30
30

250
250
250

IIc = 100 mAde, VCE = 10 Vde)

2N6591
2N6592
2N6593

40
40
30

200
200
200

VCE(s.t)

-

0.8

Vde

VBElon)

-

1.0

Vde

fT

35

300

MHz

Ceb

-

12

pF

Collector-Emitter Saturation Voltage

IIc = 200 mAde, IB = 20 mAde)
Base-Emitter On Voltage

IIc = ~OO mAde, VCE = 10 Vde)
DYNAMIC CHARACTERISTICS
Current-Gain - Bandwidth Product
IIc = 50 mAde, VCE = 20 Vde, f

= 20 MHz)

Collector-Base Capacitance
IVCB = 10 Vde, IE

= 0, f = 1.0 MHz)

* Indicates JEDEC Registered Data.
11) Pulse Test: Pulse Width.; 300

~s,

Duty Cycle ';2.0%.

TYPICAL CHARACTERISTICS
FIGURE 1 - CURRENT·GAIN - BANDWIDTH PRODUCT
"N

300

I

...~~'" 200
::;'"

~ 100

i

z

i::

70

.t:

30

a

70
50

VCP 20V
TJ' 2S DC

CI
CI

g:

FIGURE 2 - CAPACITANCE
100

-

.....--

30

~ 20

t'-- r-....

-

... I~ 10
f 7,0

C.b

TJ' 2S DC

r-

w

0-.,

~ 5.0

\

&0

Ccb

..; 3.0
2,0

10

60
IC, COLLECTOR CURRENT (mAl
20

30

70

100

1.0
0.3

-

I
0.6 OJ 1.0

2,0 3.0 5,07,0 10

20 30

VR, REVERSE VOLTAGE IVOLTS)

1-344

f-

50 70 100

200300

2N6591,2N6592,2N6593

TYPICAL CHARACTERISTICS (Continued'

FIGURE 3 - DC CURRENT GAIN

FIGURE 4 - "ON" VOLTAGE

500

1.0

--

z

~
~

..

g

30

1']

II III

O. &

-

25'C

..:"'"

100
70
50

-

TJ = 1500C

200

....

~

-

~

VSEI,_! @VCE

w

~ o.4
o

t\...""'~" ,
,\::,

I 1111111

10
7.0
5.0
0.5

I

>

>'

VV

o.2

2.0

5.0
10
20
50
IC. COLLECTOR CURRENT ImA)

100

200

0.5

500

FIGURE 5 - COLLECTOR SATURATION REGION
1.0

TJ -15'C

w

.5 0.&

OB

~

.

IC - 25 rnA 50 mA

0

> 06

>>-

.~

04

~
8

0.1

>

~

200 mA

\
\

0

~

100 mA

1\

w

50 70100

O

./'

a

h

~V

~ ......

~~

~

.1

I

\.0"'''

. . . . ~J-';r~,.

--

r-r

1 111

0.5

1.0

2.0

5.0

10

20

50

100

200

IC. COLLECTOR CURRENT (mAl

FIGURE 8 - COLLECTOR CUTOFF REGION

- -~

r0-

10 2

I-- VCE = 150 V

I r-- TJ = 150'C

L

600 "A

I

r-- -

O~
V

20~"A

2~

I
30

l---:"

-55°& to +25°&

I

20

-H-t:r

ova for VeE

f-2.4
0.2

400 "A

10

J
V

+250 C to +125°&

a//.. ;,..--

0

/
V

+25 0 Cto +125 OC

I III

FIGURE 7 - COLLECTOR CHARACTERISTICS

_I~

1111

-550C 10 +25 0C

....

'B.

20a TA=25~C
PULSE WIDTH = 300"sOUTY CYCLE" 2.0%

11

~ -1.6

r20 30

500

I I 11

Jill

~

\

0.2 0.3 0.5 0.7 1.0
2.0 3.0 5.07.0 10
SASE CURRENT ImA!

1111

~ -0.8

i

0
0.1

11

i

\
......

200

'OVC FOR VCElsa!)

u

\
\

10

.. Applies for leIla "RFEf2

u

e..
>

'":;'"

1.0

5.0
50
10
10
50
100
IC. r.OLLECTOR CURRENT ImAI

FIGURE 6 - TEMPERATURE COEFFICIENTS
1.6

0

~

~

VCElsaI!@IC/IS-1O

a
1.0

=10 V

'"

~

--VCE=2.0V
- - VCE = 10 V

V

I-

-H-tf

o. 6

........ t:::::

-

VSElsa!)@lc/la = 10

=-55'C _

~ 20

~

II 111

TJ=25'C

300

10-3 -

40

50

VCE. COLLECTOR·EMITIeR VOLTAGE IVOLTS)

1-345

-0.4

100'C

REVERSE

_

FORWARO

25'C

a
+0.2
+0.4
-ll.2
VSE. SASE-EMITIER VOLTAGE (VOLTS)

+0.&

2N6591,2N6592,2N6593

TYPICAL CHARACTERISTICS «Continued)
FIGURE 9 - THERMAL RESPONSE
1.0

O.

o.~

-

0-0.5

~a
~~ 0.3 1- 0.2

~~

0.2

5~
in ...

O. 1

0.1

t;:;: 'D.05

~~ 0.0 7

Slogle Pulse

~_~ 0,05

~~ 0.03 6.
0.02
0.0 1
0.01

...

I:oiiiijiil

-

-

Single Pulse

PEf1J1

0.02
0.01

I

Duty Cycle, 0 =It/12
0.05

0.1

0.2

0.5

1.0

2.0

5.0

10

20

50

100

200

500

loOk

-

ZOJAltl " rill ROJA

ROJA

=62.5 0 CIW Max

o CURVES APPLY FOR POWER

-0\;-J

1"
0.02

ZeJCIII - rill ROJC
ROJC = 12 50 CIW Max

2.0k

PULSE TRAIN SHOWN
READ TIME AT 11
TJlpkl-TC" PlpklROJCll1
5.0 k 10 k

20 k

60 k 100 k

I. TIME Im.1

There are two limitations on the power handling ability
of a transistor: average junction temperature and second
breakdown. Safe operating area curves indicate IC-VCE
limits of the transistor that must be observed for reliable
operation; i.e., the transistor must not be subjected to
greater dissipation than the curves indicate.
The data of Figure 10 is based on TC = 250 C; TJ(pk)
is variable depending on power level. Second breakdown
pulse limits are valid for duty cycles to 10% but must be
derated when TC;;' 250 C. Second breakdown limitations
do not derate the same as thermal limitations. Allowable
current at the voltages shown on Figure 10 may be found
at any case temperature by using the appropriate curve on
Figure 11.
T J(pk) may be calculated from the data in Figure 9.
At high case temperatures, thermal limitations will reduce
the power that can be handled to values less than the
limitations imposed by second breakdown.

"

200

300

VCE. COLLECTOR·EMITTER VOLTAGE (VOLTSI

FIGURE 11 - POWER DERATING
1.0

"""'" """-..

lO.8

"'
~

"'

o

~

'"z

Therma~

0.6

Derating

~

J

I

Second Breakdown
Derating

"""-..
~

~ 0.4

~

"""-..

1'-..

-""" ~"

"'~

~ 0.2

20

40

60

80

100

TC, CASE TEMPERATURE (OCI

1-346

120

"'-

140

160

®

2N6594
MOTOROLA

12 AMPERE

POWER TRANSISTOR
PNP SILICON

PNP SILICON POWER TRANSISTOR

40 VOLTS
100 WATTS

The 2N6594 is a general-purpose, EPI-BASE power transistor
designed for low voltage amplifier and power switching applications.
It is a complement to the NPN 2N6569.
• Safe Operating Area - Full Power Rating to 40 V
• EPI-BASE Performance in Gain and Speed
•

lower Voltage, Economical Complement to the 2N3055

Lr~
r~K

"MAXIMUM RATINGS
Rating

E

Collector-Base Voltage

VCBO

Value
40
45

Emitter-Sase Voltage

VeBO

5

Vdc

Collector Current - Continuous
- Peak

IC

12
24

Adc

Base Current - Continuous

IB

5

Adc

Collector-Emitter Voltage

Symbol
VCEO(sus)

Operating and Storage Junction

Vdc

17
34

Adc

Po

100
0.572

Watts

T J,Tstg

-65 to +200

wfOc
°c

Symbol

Max

Unit

R8JC

1.75

°C/W

TL

265

°c

THERMAL CHARACTERISTICS
Thermal Resistance, Junction to Case
MaXimum Lead Temperature for Soldering
Purposes: 1/16" from Case for 10 seconds

i

Vdc

Ie

Temperature Range

Characteristic

PLANE

10

' - Peak

Emitter Current - Continuous
- Peak
Total Power Dissipation @ T C == 2SoC
Derate above 25°C

~AnN~

Unit

STYLE 1:
PIN I. BASE
2. EMITIER
CASE: COLLECTOR

DIM

A
B

C
D

E
F
G

H

J
K
Q

R

NOTE:
1. DIM "0" IS DIA.

MILLIMETERS
MAX
MIN

-

-

39.37
21.08
7.62 0.250
1.09 0.039
3.43
29.90 30.40 1.177
10.67 11.18 0.420
5.33
5.59 0.210
16.64 17.15 0.655
11.18 12.19 0.440
3.84
4.09 0.151
26.67
Collector connected to case.
CASE 11·01
6.35
0.99

-

(TO·3)

1-347

INCHES
MAX
MIN

1.550
0.830
0.300
0.043
0.135
1.197
0.440
0.220
0.675
0.480
0.161
1.050

2N6594

*ELECTRICAL CHARACTERISTICS (TC ~ 2s"C unless otherwise noted.l

I

I

Choractwistic

Min

Symbol

Max

Unit

OFF CHARACTERISTICS
Collector-Emitter Sustelnlng Voltege (1)
IIc = 200 mAde,lB = 0)
Collector Cutoff Current
(VCEV ~ 45 Vde, VBEloff) ~ 1.5 Vdc)
(VCEV ~ 45 Vde, VBE'(oll) ~ 1.5 Vde, TC ~ l000C)

VCEO(susl

(VEB = 6 Vde, IC· 0)

-

-

1
10

Vde
mAde

ICEV

Emitter Cutoff Current

40

lEBO

-

5

mAde

ISlb

2.5

-

Ade

15
5

200
100

-

1.5
4

SECOND BREAKDOWN
Second Breakdown Collector Current with Base Forward Biased
(VeE ~ 40 Vde, t · 1 • (non-repetltlve))
ON CHARACTERISTICS
DC Current Gain
(lC • 4 Ade, VCE = 3 Vdc)
(lc = 12 _ , VCE - 4 Vde)

-

hFE

Collector-Emitter Saturation Voltage
(lC - 4 Ade, IB = 0,4 Adc)
(lC = 12 _ , lB· 2,4 Adc)

VCE(sati

Base-Emitter Saturation Voltage
(lC = 4 _ , 'B = 0.4 Adc)

VBE(s.tI

Vdc

2

Vdc

DYNAMIC CHARACTERISTICS
fT

2.5

25

MHz

Cob

100

1000

pF

-

0.4

"s

1.5

"s

5
1.6

"s

Currant-Gain - Bandwidth Product
(lC·l Adc, VCE = 4 Vdc, ftest = O,S MHz)
Output Capacitance
(VCB ~ 10 Vdc, IE

~

0, f lest = 1 MHz)

SWITCHING CHARACTERISTICS
RESISTIVE LOAD
Delay Time
Rise Time
Storage Time
Fall Time

(VCC· 30 Vdc, IC = 2 Adc, 'Bl = 0.2 Adc,
tp· 26 JJS, DulY Cycl... 1%)

td
t,

(VCC· 30 Vdc, IC = 2 _ , 'Bl = 'B2· 0'.2 Ade,
tp - 25 JJS, DulY Cycle .. 1%)

ts

-

If

-Indicates JEDEC Registered Data.
(1) Pulse Test, PW = 300 JJS, DulY Cycle .. 2%.

FIGURE 1 - SWITCHING TIMES TEST CIRCUIT

Vee
-30 V

-1~

r-r25"s~e
"-0__
RB

Scope

+9.~~-D

01

tr.tf'" 10 ns
Duty Cycle'" 1.0%

-4.0 V

-=

RS and RC Varied to Obtain Desired Current Levels
01 must be fast recovery tYpe.

1-348

"s

2N6594

~ 11.0
~ 0.1 1=0.0.s

~

0.5

~

0.3 r-0~2

w

~ 0.2

~

III

FIGURE 2 - THERMAL RESPONSE

-

ReJCI.) • ,1.1 ROJC
ROJC' 1.1S oC/W Max
o CURVES APPLY fOR POWER
PULSE TRAIN SHOWN
READ TIME AT'l

IP""

~ ;iii

r- 0.1

TJlpk) - TC =Plpk) ROJCI.1

~

O. 1 'li:os
~ 0.07 )--0.02
0.05

f&

ffi

~ 0.03 ~ ~0.01

I-

ffi

u;
z

0.0 21-- ~Sing'ePu'se

DUTY CYCLE. 0

II

~ 0.0 1

0.01

I-

..,

.:;

0.02

0.1

o.os

0.2

o.s

SO .

20

10

2
'. TIME (msJ

100

='1/'2

I I I I 1111
200

SOO

100

FIGURE 3 - SAFE OPERATING AREA
30

20

1-'

. t ...

f-.

._.

.-.d.,
,

',O.5ms

1ml"

I'

, ....

" "

Safe operating area curves indicate IC·VCE limits of the
transistor being observed for reliable operation; i.e .• the
transistor must not be subjected to greater diSsipation than
the curves indicate. Figure 4 may be used to derate the
curves shown or an effective RO JClt} may. be computed
from Figure 2 for pulsed operation.

Sm.
de

,"-,

I- _. _.
-

-

-

Current limited
Tharmally Limited

-.L-.L~LLU
I.

....

......

,

......
"

J.

s
10

20

30

so

70 80

VCE. CoLLECTOR·EMITTER VOLTAGE (VOLTS)

FIGURE 4 - POWER DERATING

""0.8

'"0

t; 0.6
~

'"z
;::

ill

" " "-

,

r--...
r-...

0.4

0

........
0.2

~

o

o

20

40

60

80

100

120

TC. TEMPERATURE (DC)

1-349

140

160

~

180

200

2N6594

IIJ
200

.--

z 100

FIGURE 5 - DC CURRENT GAIN

70

"

50

g

30

~

20

"'"

VCE = 4 V

25°C

lli
=>

.~
~.

III

r- I- ::t}

;;:
~

FIGURE 6 - COLLECTOR SATURATION REGION

T~ .!I~A~I

l- t---

-55°C

.".......:

......

~

1.6

ffi

11

r--.. I""l\..

~

\

~8

_ 0.4

0.5 OJ

0.3

7

>

10

0
5

10

20

1

VSE(on)@VCE'4V

w

~ I--'"

.8

//

100

10

'"~

5000

V

0.5 0.7

10

IC. COLLECTOR CURRENT (AMPERESI

r-

100°C

.L
Ie -ICES

O.

lfo=

0.0 I
0.3

2000

r- TJ = 150°C

~

..L
VCE(satl@ ICIIB = I~_

~

~

II

0.2

1000

1000

a"
"

I>'"

,.:

0
0.1

l...

1/
i",

>

.4

500

VCE =lOV

~~E: I ) @I~/IB! 10

~ 1.2

200

10,000

I ill

·Ini

100

FIGURE 8 - COLLECTOR CUT-OFF REGION

I ill
~

50

IB, BASE CURRENT (mAl

FIGURE 7 - "ON" VOLTAGES

I.6

....

\

~

0.2

TJ '" 26°C

SA

-

0.8

IC. COLLECTOR CURRENT (AMPERES)

.~

llJl
4A

!::

I0

0.1

U
IC = I A

REVERSE_ toF= F=FORWARO

r-- r--r 25°C

to.2

to.1

-0.1

-0.2

-0.3

VSE. BASE·EMITTER VOLTAGE (VOLTS)

1-350

-0.4

-0.5

®

2N6666
2N6667
2N6668

MOTOROLA

PLASTIC MEDIUM-POWER SILICON TRANSISTORS

DARLINGTON
8 AND 10 AMPERE

· .. designed for general-purpose amplifier and low speed switching
applications.

PNP SILICON
POWER TRANSISTORS

• High DC Current Gain hFE = 3500 (Typ) @ IC = 4.0 Adc
•

Collector-Emitter Sustaining Voltage - @ 200 mAdc
VCEO(sus) = 40 Vdc (Min) - 2N6666
= 60 Vdc (Min) - 2N6667
= 80 Vdc (Min) - 2N6668

40-60-80 VOLTS
85 WATTS

• Low Collector-Emitter Saturation Voltage VCE(sat)
2.0 Vde (Max) @ IC 3.0 Adc - 2N6666
VCE(sat) = 2.0 Vdc (Max) @ IC = 5.0 Adc - 2N6667. 2N6668

=

•

=

Monolithic Construction with Built-In Base-Emitter
Shunt Resistors

• TO-220AB Compact Package
• Complementary to 2N6386. 2N6387. 2N6388

·MAXIMUM RATINGS
Symbol 2N6666

Rating
Collector~Emitter

Voltage

Collector-Base Voltage

VCB

Emitter-Base Voltage

VEB

Collector Current - Continuous
Peak

IC

Base Current

la

Total Device Dissipation @ TC = 25°C
Derate above 25°C

Po

Total Device Dissipation @ TA - 25°C

Po

2N6667

2N6668

Unit

60

80

Vdc

60

80

Vdc

•
10

Adc

40

VCEO

..
.
...
...

40

5.0
10
15

a.o

15

Derate above 25°C
Operating and Storage Junction,
Temperature Range

15

•
••
••

250
65
0.52
2.0
0.016

_-6510+150_

TJ. Tstg

Vdc

mAdc
Watts
W/'C
Watts
W/'C

d'LTt

'C

o-ll-

THERMAL CHARACTERISTICS
Symbol

Max

Unit

Thermal Resistance, Junction to Case

Characteristics

R6JC

1.92

'C/W

Thermal Resistance. Junction to Ambient

R6JA

62.5

'C/W

~

!i

"-

3.0 60

l<
Z
Q

~

!a

2.0 40

~

. . . . r---.......

Q



'-'

"9'"
:::l

8

·de ~ J.Om~

TJ = 150°C
- - - Bonding Wire limit
_ _ _ Thermal limit @TC=25°C

....

There are two limitations on the power handling ability of a
transistor: average junction temperature and second breakdown. Safe operating area curves indicate Ie - VeE limits of the
transistor that must be observed for reliable operation; i.B., the
transistor must not be subjected to greater dissipation than the
curves indicate.

~
~~,
.f~

i""

Second Breakdown limit
Curve. Apply Below Rated VCEO
2N6666
2N6667
2N6668

0.5
0.3
02

The data of Figure 5 is based on TJ(pk) = 150°C; TC is variable
depending on conditions. Second breakdown pulse limits are

valid for duty cycles to 10% provided TJ(pk) < 150°C. TJ(pk) may
be calculated from the data in Figure 4. At high case temper-

01

E005
003
0.02

1.0

2.0 3.0
5.0 7.0 10
20 30
VCE. COLLECTOR-EMITTER VOLTAGE (VoLTSI

50

70 100

atures, thermal limitations will reduce the power that can be
handled to values less than the limitations imposed by second
breakdown.

FIGURE 7 - CAPACITANCE

FIGURE 6 - SMALL·SIGNAL CURRENT GAIN
10.000

300

I I I

z 5000

... 2000

:c

~

::!

~

t~ 100

TC - 25°C
VCE = 4.0 VOLTS
Ie = 3.0 AMPS

~ 200

~

~
Ci'b-

'-'
z

500

= 25°C

::

1000

~

~

TJ

200

:::::

C~b

~

5

..s

100

70
50

50
20
10
1.0

2.03.0 5.07.010

20 30

5070100

200300500 1000

f. FREQUENCY (kHzI

1-353

30
0.1

0.2

0.5

1.0
2.0
5.0
TO
20
VA. REVERSE VOLTAGE, (WLTSI

50

TOO

2N6666,2N6667,2N6668

OJ
FIGURE 8 - DC CURRENT GAIN

FIGURE 9 - COLLECtOR SATURATION REGION

20.000

26

IC ' 2.0 A

'"
!::;
'"

...~ 3000 ........ .v
1 1
:::>
'"

2:

i

g

....,

Ii! 2000

.

~

40A

\6

aA

TJ' 25°C

1\
\

14

.............

t;

700
500

18

'"
~

TJ'25°Y

1000

\ iI

I JI

VCE,30V

10.000
7000
z 5000 TJ'11500C

>-

300
200 ~
0.1

7'

~

TJ - -55°C

10

~

> 0.6

0.2

0.3

0.5 0.7 1.0
2.0 3.0
IC. COLLECTOR CURRENT (AMPS)

5.0 7 0

a3

10

a5

07

1a
2 a 3.0
50 7 a 10
Is. BASE CURRENT (mA)

20

30

FIGURE 11 - TEMPERATURE COEFFICIENTS

FIGURE 10 - "ON" VOLTAGES
3.0

+50
~ +4.0

TJ; 25°C

>

.!

2.5

....
~

"ICIIB '" hFEI3

+3.0
+2.0

25.C I. 150.C

t

E

t7

+1.0

;"
VBE(sat) @ IC/IB ' 250

§'" -1.0
\(

!.... -3.0
t . 4.0

,/

IJJ..U-- ~

0.5
0.1

VCE( ..I) @ IC/IB ; 250
0.2

0.3

*OVc tor VeE sad

1

ffi w2.0

'VBE @ VCE ; 3.0 V

1.0

- 550C to 250C

8

k:::::: :;.--

-5.0

0.5 0.7 1.0
2.0 3 a
Ic. COLLECTOR CURRENT (AMPS)

'5.0 7.0

10

II II
0.1

0.2

VCE

~

~

1.0

2.0

3.0

COLLECTOR

--..,

,---+-,

30V

I

I
I
I
I

BASE
_TJ=1500C

I

-100"C

I
I
IL ......
N'o.
......
__
_
_""""r-'+-'
_ _ _ _ _ .JI

:: 10 1
~ 100

0.5 0.7

-550C to 25 0 C

-

2S·C

EMITTER

10- 1
+0.6

+0.4

+0.2

-0.2

-0.4

-0.6

-0.8

I
S.D. 7.0 10

FIGURE 13 - DARLINGTON SCHEMATIC

'"o 102

8

0.3

V

.....

-+-tt

OVB f.r VBE

_ 104 =.REVERSE =:!! =FORWARO
103 =

.I

25°C I. 150<>.;.....--

.3

;a

.I

V

lC. COLLECTOR CURRENT lAMP)

FIGURE 12 - COLLECTOR CUT'()FF REGION

'"

~f/

~

-1.0

-1.2

-1. 4

VBE. BASE·EM1TTER VOLTAGE IVOLTS)

1-~54

®

2N6676
2N6677
2N6678

MOTOROLA

III
15 AMPERE

NPN SILICON
POWER TRANSISTORS
NPN SILICON POWER TRANSISTORS

300,350,400 VOLTS
176 WATTS

The 2N6676, 2N6677 and 2N6678 transi~tors are designed for
high voltage switching applications such as:
•

Off-Line Power Supplies

•

Converter Circuits

• Pulse Width Modulated Regulators
Specification Features High Voltage Capability
Fast Switching Speeds
Low Saturation Voltages
High SOA Ratings

FMAXIMUM RATINGS
Rating

Symbol

2N6676

2N6677

2N6678

VCEV

450

550

650

Vdc

Collector Emitter Voltage

VCEX

350

400

450

Vdc

Collector Emitter Voltage

VCEO

300

350

400

Vdc

Emitter 8ase Voltage

VESO

S

Vdc

IC
ICM

15
20

Adc

Collector Emitter Voltage

Collector Current - cont

- peak'

Unit

Base Current - cont

IS

5

Adc

Power Dissipation TC = 25°C
Derate above 25°C

Pr

175
1

Watts

W/oC

Operating and Storage
Junction

TJ;
Tstg

-65 to 200

°C

Thermal Resistance Junction
to Case

R8JC

1.0

°C/W

235

°C

Maximum Lead Temperature
At Distance> 1/16 in.
(1.58 mm) from seating
plane for lOs max.

STYlE 1
PIN 1. BASE
2. EMITTER
CASE COLLECTOR

OIM
A
B
C

o

E

F
G
H

MILLIMETERS
MIN· MAX
39.37
21.08
7.62
1.09
1.18

BS

J
K
Q

R

v
CASE 1-06

1-355

2N6676,2N6677,2N6678

ELECTRICAL CHARACTERISTICS (TC' 25·C unless otherwise noted.)
Symbol

Characteristic

Min

Max

Unit

OFF CHARACTERISTICS
Collector Cutoff Current

-

Emitter Cutoff Current
(VEB • B.O Vdc. IC • 0)

lEBO

Collector-Emitter Sustaining Voltage
(IC' 200 mA. IB • 0)

-

0.1
1.0

-

2.0

300
350
400

-

350
400
450

-

Vdc

VCEX(sus)
·2N6676
2N6677
2N667B

mA
Vdc

VCEO(sus)
2N6676
2N6677
2N667B

Collector-Emitter Sustaining Voltage
(IC' 15 A. Vclamp ' Rated VCEX)

mA

ICEV

(VCE' Rated VCEV. VBE(oll)' -1.5 Vdc)
(VCE' Rated VCEV. VBE(oll). TC' l00·C)

SECOND BREAKDOWN
Second Breakdown Collector Current with Base Forward Biased

See Figure 1

Clamped Inductive SOA with Base Reverse Biased

See Figure 2

ON CHARACTERISTICS
hFE

B.O

-

-

Base Emitter Saturation Voltage
(IC' 16 A. lB' 3.0A)

VBE(sat)

-

1.5

Vdc

Collector-Emitter. Saturation Voltage
(IC' 15 A.IB' 3.0 A)
(lC' 15 A.IB' 3.0 A. TC' l00·C)

VCE(sat)

-

1.5
2.0

Ihlel

3.0

10

MHz

Cob

150

500

pF

td

-

01

!,s

tr
t.
If
Id
Ir
ts
tf

-

0.6
2.5
0.5
0.4
1.0
4.0
1.0

DC Current Gain
(lC' 15A. VCE' 3.0V)

Vdc

DYNAMIC CHARACTERISTICS
Current Gain

(lC' 1.0 A. VCE' 10 Vdc. I ' 5.0 MHz)
OulpUl Capacitance
(lC' 1.0 A. VCB' 10 Vdc. I· 0.1 MHz)

SWITCHING CHARACTERISTICS
Resistive Load
Delay Time
Rise Time
StoraQ8 Ti me
Fall Time
Delay Time'
Rise Time
Storage Time
Fall Time

VCC = 200 V. IC' 15 A.
IBI • IB2 • 3.0 A. tp' 20 !'s.
Duty cycle';;; 2.0%
VBB~ 6.0V. RL ~ 13.5 n
(See Figure 3)

TC' 25·C

TC' lOO·C

L' 50!,H
Vclamp ' Rated VCEX
(See Figure 3)

1-356

-

-

2N6676.2N6677.2N6678

FIGURE 1 - MAXIMUM RATED FORWARD BIAS
SAFE OPERATING AREA
20

~
:;

5-

10
7.0
5.0
3.0
2.0

~

a:i
~

a

..

16

.1.1:~ClOI4S1.0 m.
Tc; 25°C §

de
TC; 100°C

:3

Bonding Wire limit

g'-' 0.10
00 7

Thermal limit

0.30
G 0.20

Second Breakdown limit
2N6676
2N6677
2N6678

S? 0.0 5

0.0 3,
0.024.050 7 0

10
20 30
50 70 100
VCE. COLLECTOR·EMITTER VOLTAGE (VOLTSI

_. -

2 •
TC';; 100°C

i

de
TC - 25°C

, ,

14

~
5-

TC - 25°C

1.0
0.7 0
0.5 0

III

FIGURE 2 - MAXIMUM RATED REVERSE BIAS
SAFE OPERATING AREA

t-- V8E(onl = 1.0 to 6.0 volts
10

o.

=>

'"

~

8. 0

~::l

6.0

2N6676

8

4.0

2N6677

2. 0

2N6678 ..

S?

0
200 300 400

I

I

I

I

J 1

100
200
300
400
VCE. COLLECTOR TO EMITTER VOLTAGE (VOLTSI

500

SAFE OPERATING AREA INFORMATION
FORWARD BIAS

REVERSE BIAS

There are two limitations on the power handling ability
of a transistor: average junction temperature and second
breakdown. Safe operating area curves indicate IC-VCE
limits of the transistor that must be observed for reliable
operation; Le., the transistor must not be subjected to
greater dissipation than the curves indicate.
The data of Figure 1 is based on TC = 25°C; TJ(pk)
is variable depending on power level. Second breakdown
pulse limits are valid for duty cycles to 10% but must be
derated when TC:;;' 25°C. Second breakdown limitations.
At high case temperatures, thermal limitations will reduce
the power that can be handled to values less than the
limitations imposed by second breakdown.

For inductive loads, high voltage and high current
must be sustained simultaneously during turn-off, in most
cases, with the base-to-emitter junction reverse biased.
Under these conditions the collector voltage must be held
to a safe level at or below a specific valu, of collector
current. This can be accomplished by several means such
as active clamping, RC snubbing, load line shaping, etc.
The safe level for these devices is specified as Reverse Bias
Safe Operating Area and represents the voltage-current
condition allowable during reverse biased turn-off. This
rating is verified under clamped conditions so that the
device is never subjected to an avalanche mode. Figure 2
gives the RBSOA characteristics.

1-357

2N6676,2.N6677,2N6678

lIB

FIGURE 3 - SWITCHING TIME MEASUREMENTS
FOR 2N8878. 2N8877. AND 2N8878
NC

Ad) For IBI
VBl

Ion

RL = 13.5 nl30 W
NON INO

NONINO
2.0W

SWI

02540M

lN4933
0.001 "F

47

180

10

Vcc As
SpecifIed

lN914

IN3891

3.3 K

+

2.2

VClamp
= VCEX

.--=- VB(Clamp)
t-

24
100

+
VB2
Ad) For IB2
01. 02
03
04. 05. 06. 07
NOTE:

=
=

2N6350
2N3762
= CA3725 Ouad Translslor Array

Battery symbols VCC. VB1. V82. VB(clamp)
indicate rigorously filtered voltage sources
at the circuit terminals to accommodate the

X

fast rise and fall times and high currents present in the circuit.

NOTE:

-=

o

SWI closed for Ir. Is. If. SWI open for Ie·

10%

I
I

:

Id = A-B
Tr = B-C
Is =X-V
If =V-Z
ttransistion = X-W
NOTE:

90%

W

IB2 - __ L ____________ I--_ _- J

:
I

IC

TRANSITION TIME FROM 90%
IBI 10 90% IB2 MUST BE LESS
THAN 0.5 "s

1·358

I

I
)

90%

)

I

I
I

B

V

+

-=..._

®

2N6833
2N6834

MOTOROLA

Designer's Data Sheet

ID

5,0 AMPERE

NPN SILICON
POWER TRANSISTORS

SWITCH MODE III SERIES
NPN SILICON POWER TRANSISTORS

460 VOLTS
80 8nd 126 WATTS

These transistors are designed for high-voltage, high-speed,
power switching in inductive circuits where fall time is critical. They
are particularly suited for line-operated switchmode applications.
Typical Applications:
2N6833

• Switching Regulators
• Inverters
• Solenoid and Relay Drivers
• Motor Controls
• Deflection Circuits
• Fast Turn-Off Times
50 ns Inductive Fall Time - 75°C (Typ)
70 ns Inductive Crossover Time - 75°C (Typ)
500 ns Inductive Storage Time - 75°C (Typ)

STYlE 1
PIN 1 BASE
2 COllECTOR
3 EMITTER
4 COLlECTOR

• Operating Temperature Range -65 to +150°C
• 100°C Performance Specified for:
Reverse-Biased SOA with Inductive Loads
Switching Times with Inductive Loads
Saturation Voltages
Leakage Currents

MAXIMUM RATINGS
Rating

Symbol

2N6833

2N6834

Unit

Collector· Emitter Voltage"

VCEOlsus)

450

Vdc

Collector-Emitter Voltage"

Vdc

VCEV

850

Emitter Base Voltage*

VEB

6.0

Vdc

Collector Current - Continuous·
- Peak (1)

IC
ICM

5.0
10

Adc

Base Current - Continuous·
-Peak(l)

IB
IBM

4.0
8.0

Adc

Total Power Dissipation@TC=25°C"
@TC= 100°C"
Derate above 25°C*

Po

Operating and Storage Junction
Temperature Range*

CASE 221A-02
TO-220AB

J~E.

c

2N6B34

80
32
0.64

125
71.5
0.714

TJ, Tstg

-65 to
+150

-65 to
+200

Symbol

2N6833

R8JC

1.56

t.

.

D

•

j

r=~F.

Watts

---r

W/oC

Q

°c

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case*
Maximum Lead Temperature for Soldering
Purposes: 118" from Case for 5 Seconds"

TL

I 2N6834
J 1.40

275

Unit

°C/W
°c

(1) Pulse Test: Pulse Width = 5.0 ms, Duty Cycle .. 10%.
*Indicate JEDEC Registered Data

De.igner'. Data for "Worst Ca.... Condition.
The Designer's Data Sheet permits the design of most circuits entirely from the information presented. Limit data - representing device characteristics boundaries - are
given to facilitate "worst case" design.

1-359

CASE 1-06
TO-204AA (Forme.ly TO-3)

2N6833,2N6834

IIJ

ELECTRICAL CHARACTERISTICS (TC = 2S·C unless otherwise noted)

IL ______~__________~C_h_a_ra_~__e_ri_.a~·C------------~------IL--s~Y~m-b_o_I__~__M_i_n__

T~yp~__L-__M_a_x__-L___u_n_i_t__--l1'

i -___

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage (Table 2)
(IC = 100 mA, IB = 0)

VCEO(sus)

450'

-

-

-

0.25'
1.5'
2.5

mAde

1.0'

mAde

Collector Cutoff Cur~ent
(VCEV = 850 Vdc, VBE(off) = 1.5 Vdc)
(VCEV = 850 Vdc, VBE(off) = 1.5 Vdc, TC = loo·C)

ICEV

Collector Cutoff Current
(VCE = 850 Vdc, RBE = 50 n, TC = l00·C)

ICER

-

-

Emitter Cutoff Current
(VEB = 6.0 Vdc, IC = 0)

lEBO

-

-

Vdc
mAde

SECOND BREAKDOWN
Second Breakdown Collector Current with Base Forward Biased

See Figures 15' and 16'
See Figure 1 7

Clamped Inductive SOA with Base Reverse Biased
ON CHARACTERISTICS (1)
Collector-Emitter Saturation Voltage
(lC = 1.5 Adc, IB = 0.15 Adc)
(lc = 3.0 Adc, IB = 0.4 Adc)
(lC = 3.0 Adc, IB = 0.4 Adc. TC = l00·C)

VCE(sat)

Base-Emitter Saturation Voltage
(lC = 3.0 Adc, IB = 0.4 Adc)
(lc = 3.0 Adc, IB = 0.4 Adc, TC = lOO·e)

VBE(sat)

OC Current Gain
(lc =. 3.0 Adc, VCE = 5.0 Vdc)
(IC = 5.0 Adc, VCE = 5.0 Vde)

Vdc

-

-

1.0
2.5'
2.5'

-

-

1.5'
1.5

7.5'
5.0

-

30'

'r

15'

-

75'

MHz

Cob

20'

-

200'

pF

30
100
1000
60
400
130

100'
300'
3000'
300'

ns

500
100
120

1600'
200'
250'

Vdc

-

hFE

-

DYNAMIC CHARACTERISTICS (2)
Current Gain - Bandwidth Product
(VCE = 10Vdc,IC= 0.25 Adc, f test = 10 MHz)
Output Capacitance
(VCB = 10 Vdc, IE = 0, ftest = 1.0 kHz)
SWITCHING CHARACTERISTICS
Re.istive Load (Table 1)
Delay Time
Rise Tirne
Storage Time
Fall Time
Storage Time
Fall Time
Indu~ive

(IC = 3.0 Adc,
VCC: 250 Vdc,
IBl = 0.4 Adc,

(IB2 = 0.8 Adc,
RB2: 8.0 n)

PW=30~s,

Outy Cycle "';2.0%)

(VBE(off): 5.0 Vdc)

td
tr
ts
tf
ts
tf

-

-

Load (Table 2)

Storage Time
Fall Time
Crossover Time
Storage Time
Fall Time
Crossover Time

(IC : 3.0 Ade,
IBl : 0.4 Adc,
VBE(off) : 5.0 Vdc,
VCE(pk) = 400 Vdc)

tsv
tfi
tc
tsv
tfi
tc

(TC: l00·C)

(TC = lS0·C)

(1) Pulse Test: PW - 300 P.s, Dutv Cvcle "E;;2%.

(21,,..1 h,.1 'te.t
-lndicatesJEOEC Registered Limit

'.360

-

-

-

600
120
160

-

ns

2N6833,2N6834

l1li
TYPICAL STATIC CHARACTERISTICS
FIGURE 2 - COLLECTOR SATURATION REGION

FIGURE 1 - DC CURRENT GAIN
60

2.0

50

z

II

t--

30
20

c
'"

10

Ia
?

!:;

~
~

N

:;;:

....
'"

'"co

I

TJ-l00°C

'"""
!:;
~

-55°C

'"

~

~

0.5

...
~

0.1
003

50 70 10

~

3.0
2.0

~

co

«

/

~ 1.0

~

~

0.50

~

./.

./

1.5

10
070

'\.

{;'

I I
05

02

1.0
2.0
I.e. COLLECTOR CURRENT (AMPS)

50

10

0.5

2.0
1.0
IC. COLLECTOR CURRENT (AMPS)

02

/
TJ·'50OC

/

Cib

~

:::

z

~

1== C=)50C
REVERSE

10-1

T~ ~'25°C

""1-

~

I

IOQOC

100

~ 1O00

/

F= i=,25Oc

~

~

10

FIGURE 6 - CAPACITANCE

L

101

5.0

10000

103
....~
102

-

Ill' 10
TJ,IOOoC

...

TJ ' 25°C

FIGURE 5 - COLLECTOR CUTOFF REGION

~
8

2.0 3.0

Ill' 5
TJ' 25°C

~
I-"
~ 0.50

- III - 5

r-

0.10

0.05
0.1

/

V

"

0.20

~
~
i!i

TJ - 100°C

r-- III - 10
I--I--- TJ ' 25°C

104

ia

"-

20

~

III - 10

>

!~

'"

0.5 0.7 10
02 0.3
Ia. BASE CURRENT (AMPS)

~

~

""
1=

"-

"

IIIII

DDS 007 0.1

t-....

....... "-

3D

5.0

'"co

'\.

FIGURE 4 - BASE-EMITTER VOLTAGE

FIGURE 3 - COUECTOR-EMITTER SATURATION VOLTAGE

!:;

SA

\

;;l
8 02 f- TJ' 25°C

05 07 10
20 3D
IC. COLLECTOR CURRENT (AMPS)

\4A

,

1\

co 0.3
t;

5.0 I--- -VCE,50V

03

\3A

10

!

7.0

02

2A

co 0.7
>

25~
~f

3.0
01

II II

I I II \
[\ IC' 1 A

  • 7.0 \ /lf~4 J \ \ 6.0 1_c- TJEO;IOOoC _ I-- II: co 5.0 t; ~ co 4.0 ..... ~ t g 1\ \ 3.0 2.0 I - - ~ VBE(olf)' 0 V / I" 1.0 oo 100 /1 1 t 200 500 700 ~ :f co r- I'-. I" ~~ Second B,••kdown -... ~O"'lml -... r-- ...... 0.6 z Thor.... a....ring 0.4 "- - ~~ " r---.. 0 I......... Thlrm.~ i'-.. 100 120 80 TC. CASETEMPERATURE fOCI ....... ~ ~ ............ " 0 "60 - .............. "- "'" ..... Ii? 0.2 Second STeak.down _ Deu11ng .......1'-.. Olrltlng ~ '"~ 020 1000 FIGURE 19 - POWER DERATING (2N8834) I(JO i'-.. 0.8 850 PEAK COLLECTOR·EMITTER VOLTAGE (VOLTS) FIGURE 1S - POWER DERATING (2N8833) ~ I'-. 1 \ "'<.. I VCE(pk~ VBE(off) • 1.0 TO 5.0 V I - - i'-.. '40 o o '60 40 80 120 160 " ......... 200 TC CASE TEMPE HATU HE lOCI +Vdc ~ " TABLE 1 - RESISTIVE LOAD SWITCHING td and tr Vdc ts and tf OV ~-35lf A 50 '2.\1 ~ In OV ~ VCC=250Vdc RL = 83 n le= 3.0Adc 18 = 0.4 Adc -v J[J; v OV -5 V "IB t r s;,;;15ns ·Tektronix P-6042 or Equivalent Vee' 250 RL' 83 Ie' 3.0 Adc n 33 IB1 = 0.4 Adc RBI = n IB2 = 0.8 Adc R82 = 8.0 n For VBE(off) = 5.0 V R82 = 0 II "Note Adlust -V to obta.n desired VBE(off) at POint A. 1-364 2N6833,2N6834 TABLE 2 - INDUCTIVE LOAD SWITCHING 20 o lO~F <-35lf A fF 50 • I---......- - - L 500 ~IC(Pk) -V IC~ T,-I I--.V OV~ -~ "-- VCE(Pk)-"h VCE~ T, ~ Leo,1 (lCpkl L- 50 VCC T, adjusted to obta," IC(pkl V(BRICEO L = '0 mH RB2 = x VCC = 20 Volts Inductive Switching ·TektroOlx P-6042 or Scope - Tektrontx 7403 or Equivalent EquIValent L=200~H RB2 =0 VCC = 20 Volts RS 1 selected for desired 181 RBSOA L: 200"H RB2 = 0 VCC: 20 Volts RB 1 selected for desired IB 1 t o. 7 ~ O.3 ~ O.2 ; 0=0.5 0.5 0.2 0.1 0.1 ~ 0.071-- 0.05 ~ 0.05 I-- 0.02 % :: 0.03 ffi 0.02f- ..... ~ u; !.- 0.0 1 ...... 0.01 ""1 =--- t;iio'l""'" ! t Plpk) 4J:!1-,......,. . . . . . . . . ..... 11 Duty Cycle, 0 = 1,/12 S'iG~E i~Lr~ I 005 01 Road Timo @ I, TJlpk) - TC = Plpk) R9JCII) 12 I I"'" 0.02 R9JCII) = rll) R9JC R9JC = , 56°C/W Max I ...LUll. 02 05 10 2 I. TIME (ms) "" I 20 I I I I I 50 t.il 11 -.l 1.l..lJl 100 500 200 1 k FIGURE 21 - 2N6834 10 07 05 ~ ~ ::is %'" ~~ ,. 0.01 ~= 005 Si; ...... :tat; D~es Applyfo'i p~ 0.3 02 ... ~~ :~ .-'" R9JCII) = rill R9JC • ~.'= ReJC = '.4 °CIW Max - t-.: Pulso Train Shown Road Time @I, TJlpk) - TC = Plpk) R8JCII) IiiII 0=05 02 01 005 002 001 SINGLE PULSE 0.1 0.03 0.02 005 01 02 03 0I r= t- r- ·'-fUl ~ F:l== Plpk) ::: ... . - t- - t- IDuly Cyclo, 0 = 1,/12 - t- ~~j -- =1= ~lJJ.ililll 0.01 0.02 003 f= 1= r- 10 20 30 10 10 I, TIME fIns} 1-366 20 30 50 100 200 300 500 1000 2000 2N6835 ® MOTOROLA III D(>sig-ner's Data Sheet 8 AMPERE NPN SILICON POWER TRANSISTORS SWITCH MODE III SERIES ULTRA-FAST NPN SILICON POWER TRANSISTORS 450 VOLTS 150 WATTS These tra nsistors are designed for high-voltage, high-speed, power switching in inductive circuits where fall time is critical. They are particularly suited for line-operated switch mode applications. Designer's Data for "Worst Case" Conditions • Switching Regulators The Designers Data Sheetpermits • Inverters the design of most circuits entirelvfrom the information presented. Limit data - representing device characteristics boundaries - are given to facilitate "worst case" design. • Motor Controls • Deflection Circuits • Fast Turn-Off Times 90 ns Inductive Fall Time - 75°C (Typ) 90 ns Inductive Crossover Time - 75°C (Typ) 450 ns Inductive Storage Time - 75°C (Typ) • Operating Temperature Range -65 to +200oC • 100°C Performance Specified for: Reverse-Biased SOA with Inductive Loads Switching Times with Inductive Loads Saturation Voltages Leakage Currents Rating STYLE 1 Symbol Max Unit Collector-Emitter Voltage VeEO(sus) 450 Vdc Collector-Emitter Voltage VeEV 850 Vdc Emitter Base Voltage VEB 6.0 Vdc Ie ICM 8.0 16 Adc IB IBM 6.0 12 Adc Po 150 B5.5 0.86 Watts w/oe TJ. Tstg -65 to +200 °e Symbol Max Unit R8JC 1.17 °e/w TL 275 °e - Peak(1) Base Current - Continuous - Peak (1) Total Power Dissipation @ TC = 25°C @Te=1000e Derate above 25°C Operating and Storage Junction NOTES 1 DIMENSIONS 0 AHD V ARE DATUMS 2 IS SEATING PLANE ANO DATUM. 3 POSITIONAL TOLERANCE fOR MOUNTING HOLE 0 m 1.11""""'0ITlv01 fOR LEADS, 1.1 ~""."",eT 1v01 Q01 4 DIMENSIONS AND TOLERANtES PER ANSIYI4S, 1973 Temperature Range 'THERMAL CHARACTERISTICS Characteristic Thermal Resists nee, Junction to Case Maximum Lead Temperature for Soldering ..J. PIN 1. BASE 2 EMITTER CASE COLLECTOR Q Collector Current - Continuous t9/2 4' - 'MAXIMUM RATINGS Purposes: 1IS" from Case for 5.0 Seconds (1) Pulse Test: Pulse Width::: 5.0 ms. Duty Cycle ~ 10%. CASE 1-05 TO-204AA Type (TO-3Typel "Indicate JEDEC Registered Data 1-367 2N6835 IIJ I ELECTRICAL CHARACTERISTICS (TC= 25°C unless otherwise noted) , I Characteristic Typ Max Unit 450' - - Vde - 0.25' 1.5' - 2,5 mAde - 1.0' mAde Symbol OFF CHARACTERISTICS (1) Collector-Emiller Sustaining Voltage (Tabl& 2) (lC= loomA,IB=O) VCEO(sus) Collector Cutoff Current (VCEV = B50 Vdc, VBE(off) = 1.5 Vde) (VCEV = 850 Vde, VBE(off) = 1.5 Vdc, TC = 100°C) ICEV Collector Cutoff Current (VCE = 850 Vdc, RBE(off) = 50 n, TC = l000C) ICER - Emitter Cutoff Current (VEB = 6.0 Vdc, IC = 0) lEBO - mAde SECOND BREAKDOWN Second Breakdown Collector Current with Base Forward Biased See Figure 15' Clamped Inductive SOA with' ease Reverse Biased See Figure 16 ON CHARACTERISTICS (1) Collsetor-Emitter Saturation Voltage (lC = 3.0 Ade, IB = 0,40 Ade) (lC = 5.0 Ade, Ie = 0.66 Ade) (lc = 5.0 Ade, IB = 0,66 Ade, TC = l000C) VCE(sat) Base-Emiuer Saturation Voltage (IC = 5.0 Ade, Ie = 0,66 Ade) (Ic = 5,0 Ade, IB = 0.66 Ade, TC = l000C) VBE(sat) - 1,2 2,5' 3.0' - - 1.5' 1.5 7,5' 4,0' - 30' fy 10' - 75' MHz Cob 50' - 350' pF lei t - 20 85 50' 250' 2500' 250' ns - - DC Current Gain (lC= 5,0 Ade, VCE= 5,0 Vde) (IC = 8.0 Ade, VCE = 5,0 Vdc) Vde - - Vde - - hFE - DYNAMIC CHARACTERISTICS (2) Current Gain - Bandwidth Product (VCE = 10 Vde, IC = 0,25 Ade, f test = 10 MHz) Output Capacitance (VCB = 10 Vde, IE = 0, ftest = 1.0 kHz) SWITCHING CHARACTERISTICS Resistive Load (Table 1) Delay Time Rise Time Storage Time Fall Time Storage Time Fall Time (lC= 5.0 Ade, VCC = 250 Vde, leI = 0,66 Ade, PW= 3OI'S, Duty Cycle ';;2.0%) (lB2 = 1,3 Ade, RS2 = 4.0 n) '- 1000 If Is If - 70 500 100 tsv tfi Ie tsv tfi - t~ (VSE(off) = 5.0 Vde) - - Inductive Load (Table 2) Storage Time Fall Time Crossover Time Storage lime Fall Time Crossover Time (lC= 5,0 Ade, lSI = 0,66 Ade, V8E(off) = 5.0 Vde, VCE(pk) = 400 Vde) (TC = l000C) (TC= 150°C) Ie (1) Pulse Test: PVV - 300 ~., Duty Cycle .. 2%, (2) t,. = I she I 'test ·Indicates JEOEC Registered limit 1-368 - 700 80 150 800 80 200 1800' 200' 250' - ns 2N6835 ID TYPICAL STATIC CHARACTERISTICS FIGURE 1 - DC CURRENT GAIN FIGURE 2 - COLLECTOR SATURATION REGION 100 50 z i ~ 2.0 V ~ '\ -~ :::0 FIGURE 10 - COLLECTOR CURRENT FALL TIME VBElolf) • 0 V t- r---~ VBE(olf) • 2.0 V. .1 :==111'5 70 I - - TJ' 75°C _ ;I: 50 I - - VCE(pk) = 400 V 40 1.0 I " r-.... VaE(oII) • 5.0 V I 2.0 3.0 5.0 7.0 10 Ie COLLECTOR CURRENT (AMPS) Ie COLLECTOR CURRENT lAMPS) FIGURE 11 - CROSSOVER TIME , 500 200 "- I'-....... I--....... ......... i , ,"' .i - - VBE(olf) ;100 ==111=5 -I' _ TJ.75°C VCE(pk) = 400 V 70 - 1.0 I I 1 2.0 3.0 fa I I J .'. lIaE(olf) • 5.0 V ~ I\. ~ sO FIGURE 12 - CROSSOVER TIME 500 ....... ........... ............ .! ~ 10 400 r---,---,----.---,---,----r---.---.---r, "'100 _ 300 7.0 5.0 I'--.. 5~ t\ :f 1 1 3.0 IC. COLLECTOR CURRENT lAMPS) FIGURE 9 - COLLECTOR CURRENT FALL TIME I ....... VaElolf) = 2.0 V 400 , 2.0 Ie COLLECTOR CURRENT lAMPS) 400 --... r--- VaElolf) = 0 V ,..- J. o1--/11.5 50 I---- TJ • 75°C TJ.75°C VCElpk) = 400 V - ! .1 _ VaEloII) • 2.0 V ~~ STORAGE TIME FIGURE. 8 3000 ~ ....... I l ~ 1/ ~ .......... ~ ; VaEloff) = 0 V .1 100 ~_ ;---111=10 VaE(oII) = 2.0 V 1 5.0 70 1 7.0 10 Ie COlLECTOR CURRENT (AMPS) 50 VaElolf) = 2.0 V ~tl'-;~/ IE , 1 200 I ). V 300 ~ TJ = 75°C r-- VCElpk) • 400 V " , 1.0 2.0 - ..... VaEloII)' 5.0 V 1 3.0 J. 5.0 Ie COllECTOR CURRENT lAMPS) 1-370 r-- '" ....... ....... ....... 7.0 10 2N6835 FIGURE 13 - INDUCTIVE SWITCHING MEASUREMENTS IC,:!--- . / i"""'" I ." ~EIPkl / VCE 10001;VCElpkl 90%181 - -- --\- -- -- " """'" I" 10% ....... IC pk isg§ a IBI = 1.0 A ....---- r- 4.0 ~ U) ~ ~~ III ffi ~ 2.0 .; - - -- ~ ;;; ~ :$. 6.0 'NfI~",- 1-',,---} '-"-\ I - I- r--'sv 'a- r- r---- 90% VCElpkl A1\9II'lIIC(Pkl /' IC/ FIGURE 14 - PEAK REVERSE BASE CURRENT B.O V/ v ....-- ~IBI ---- =0.5A ........... IC=5.0A._ TJ = 25°C V o o 2.0 4.0 r---- 8.0 6.0 V8E(olfl' REVERSE BASE VOLTAGE (VOLTSI TIME GUARANTEED SAFE OPERATING AREA LIMITS FIGURE 16 - MAXIMUM REVERSE BIAS SAFE OPERATING AREA FIGURE 15 - MAXIMUM FORWARD BIAS SAFE OPERATING AREA 16 16 10 U) ~ 5.0 .... 2.0 :$. ~ g§ a 0: CI .... ..... g§ ... m. :::> 1.0 0.1 III;;' 4.0 TJ';;1000C - - 0: 0.5 0.05 12 ~ _"\. 1.0 Tc= 25°C: ~ 0.2 CI ~ ~ :$. t; ... \ \ \ U) 10 II' §o- - 0.02 5.0 - =~ CI t; 8.0 ~ d. . 8 ~ BONDING WIRE LIMIT - - THERMAL LIMIT SECOND BREAKDOWN LIMIT 10 20 50 ~ g 100 200 300 450 VCE. COLLECTOR-EMmER VOLTAGE (VOLTSI VBE(oHI = 1.0 TO 5.0 V 4.0 ~ 1\ .i. L \ ~ r-- r- VBE(oHl = 0 V / o o i I I r--- I ....,..., 400 800850 200 600 VCE(pkl' PEAK COLLECTOR-EMITTER VOLTAGE (VOLTSI 1000 SAFE OPERATING AREA INFORMATION the power that can be liandled to values' less than the limitations imposed by second breakdown. FORWARD BIAS There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate IC-VCE limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. The data of Figure 15 is based on TC = 25"C; TJ(pk) is variable depending on power level. Second breakdown pulse limits are valid lor duty cycles to 10% but must be derated whenTc;;. 25°C. Second breakdown limitations do not derate the same as thermal limitations. Allowable current at the voltages shown on Figure 15 may be found at any case temperature by using the appropriate curve on Figure 18. TJ(pk) may be calculated from the data in Figure 17. At high case temperatures, thermal limitations will" reduce REVERSE BIAS For inductive loads, high voltage and high current must be sustained simultaneously during turn-off, in most cases, with the base-to-emitter junction reverse biased. Under these conditions the collector voltage must be held to a safe level at or below a specific value of collector current. This can be accomplished by several means such as active clamping, RC snubbing, load line shaping, etc. The safe level for these devices is specified as Reverse Bias Safe Operating Area and represents the voltage-current lI:ondition allowable during reverse biased turn-off. This rating is verified under clamped conditions so that the device is never subjected to an avalanche mode_ Figure 16 gives the RBSOA characteristics. 1-371 2N6835 FIGURE 17 - THERMAL RESPONSE 1 ~ c- ",0 ",,,, ... ~~ ~ o.11=0' 0.5 o.5 o.3~ 02 ffi~ O.2 ;;;11: ZO I-- R.JC(I) - ,II) R.JC R8JC(l) " I 11 oelW 01 I- ,....."", cz =: .0 .1F==,o.oS ~~o.o 11=== 0.02 ~ ~ 0.05 PmJl :fen ~~o.o3 - '2 ""11 o CURVES APPLY FOR POWER PULSE TRAIN SHOWN READ TIME AlII TJlpk) c TC' Plpkl ""JCUI :;0.. ....+c:: 0.01 --l I II I 0.0 1 0.01 0.02 0.03 ..J f- 11 1--12 0.021-- SINGLE PULSE DUTY CYCLE. 0.05 01 02 0.3 10 OS 20 30 50 100 200 o· 11'12 300 SOD 1000 t. TIME Imsl FIGURE 18 100 "'Ii::: :-.... ~ f'-.. l80 a: o I" t; POWER DERATING ...... r-... Thermal'Demmg :tOO '"z ~ f""... r-... o a: w - Derallng t'-.. ::;40 ~ Second Breakdown " ...... t---.. f""... ........ 0 o o 40 120 80 TC. CASE TEMPE R'ATU RE iOC) 160 '"" ,"-.,. 200 +Vde = 11 Vde TABLE 1 - RESISTIVE LOAD SWITCHING td and tr t. and tf OV =-35lf P A '02"F 50 500 1 O"F . -v .Vee; 250 Vde Rl; ~ Yin . OV IIV ~ son Ie; 5.0Ade IS; 0.5 Ade ~ v OV -5 V . J T.U T. t r -:S;;lSns .~ -Tektronix P-6042 or Equivalent Vee; 250Vdc RV SOil Ie; 5.0 Ade. r:EL ~ 1 lRL J Vee - lSI ; 0.5 Ade RBI; 2011 IB2; 1.0 Ade RB2 ; 4.0 Il For VBE(off) ; 5.0 V RB2 ; 0 Il ONate: Adjust -v to obtain deSired VBE(off) at POint A. 1-372 2N6835 III TABLE 2 - INDUCTIVE LOAD SWITCHING 002 "F 20 o 10 "F ~-351f A 50 -V ~Ie(pk) le~ '-- ~Pk) A T1 = Lcoo! (lepk) Vee VeE~ (e>I----if&t--f 50 T1 adjusted to obtain lC(pk) V(BR)CEO L = 10 mH RS2 = x Vee = 20 Volts L= 200"H RS2 = 0 Vee = 20 Volts RBSOA L=200"H RS2 = 0 Vee = 20 Volts RSl selected for desired IS1 Re 1 selected for deSired '81 *Tektronlx Scope - Tektronix Inductive Switching P-6042 or 7403 or EQUivalent Equivalent Note: Adjust -V to obtaon deSired VBE(off) at Pomt A. TYPICAL INDUCTIVE SWITCHING WAVEFORMS lC(pk) = 5.0 Amps IB1 = 0.5 Amp VBE(off) = 5.0 Volts VeE(pk) = 400 Volts Te= 25 0 e Time Base;::; 100 nslem lC(pk) = 5.0 Amps IB1 =0.5Amp VBE(off) = 5.0 Volts VCE(pk) = 400 Volts Te = 25°e Time Base = 20 nslem 1-373 L- 2N6836 ® OJ MOTOROLA Designer's Data Sheet 15AMPERE NPN SILICON POWER TRANSISTORS SWITCHMODE III SERIES ULTRA-FAST NPN SILICON POWER TRANSISTORS 4&0 VOLTS 17& WATTS These transistors are designed for high-voltage, high-speed, power switching in inductive circuits where fall time iscritical. Thev are particularlv suited for line-operated switchmode applications. Designer'. Dote for "Worst Case" Condition. • Switching Regulators The DeSigners Data Sheet permits the design of most circuits entirelyfrom the information presented. Limit data - representing device characteristics boundaries - are given to facilitate "worst case" design. • Inverters • Motor Controls • Deflection Circuits • Fast Turn-Off Times 30 ns Inductive Fall Time - 75°C (TVp) 50 ns Inductive Crossover Time - 75°C (TVp) 600 ns Inductive Storage Time - 75°C (Tvp) • Operating Temperature Range -65 to +200oC • lOQ°C Performance Specified for: Reverse-Biased SOA with Inductive Loads Switching Times with Inductive Loads Saturation Voltages Leakage Currents ~ • ~ "MAXIMUM RATINGS STYLE 1 PIN 1. BASE 2. EMITTER CASE COLLECTOR . c D • ---~ Symbol Max Unit Collector-Emitter Voltage VCEO(susl 450 Vdc Collector-Emitter Voltage VCEV S50 Vdc Emitter Base Voltage VEB 6.0 Vdc Collector Current - Continuous -Peak(1) IC ICM 15 20 Adc Base Current - Continuous -Peak(1) IB IBM 10 15 Adc Total Power Dissipation @ TC = 25°C @TC=·1000C Darate abow 25°C Po 175 100 1.0 Wails 1*11."IO.1I0510I,lv01 W/oC I * I 1"tM'510' I v01 Q01 TJ, Tstg -65 to +200 °c Symbol Max Unit R8JC 1.0 ·C/W TL 275 °c Rating Operating arid Storage Junction Temperature Range Q NOTES I DIMENSIONS Q AND V ARE OATUMS 2 IS SEATING PLANE AND DATUM 3 POSITIONAL TOLERANCE FOil MOUNTING HOLE Q rn FOR LEADS 4 DIMENSIONS ANO TOLERANCESPEfI ANSI Y145. 1973 "THERMAL CHARACTERISTICS Characteristic Thermal Resista.nce. Junction to Case Maximum Lead Temperature for Soldering Purposes: 1 IS" fro';;.Case for 5.0 Seconds (1) Pulse Test: Pulse Width = 5.0 ms, Duty Cycle :s;;; 10%. '-05 *Indicate JEDEO Registered Data TO-204AA Type (TO-3Typel 1-374 2N6836 I ELEctRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted) I Characteristic Symbol Min Typ Max Unit VCEO(sus) 450' - - Vdc - 0.25' 1.5' - OFF CHARACTERISTICS (1) Collector-Emitter Sustaining Voltage (Table 2) (IC= l00mA-IB=O) Collector Cutoff Clment (VCEV = B50 Vde, VBE(off) = 1.5 Vde) (VCEV= B50 Vdc, VBE(off) = 1.5 Vde, TC = lCOOC) ICEV Collector Cutoff Current (VCE = B50 Vde, RBE = 50 0, TC = 1COOC) ICER - Emitter Cutoff Current (VEB = 6.0 Vde, IC = 0) lEBO - mAd~ - 2.5 mAde 1.0' mAde SECOND BREAKDOWN Second Breakdown Collector Current with Base Forward Biased See Figure 15* Clamped Inductive SOA with Base Reverse Biased See Figure 16 ON CHARACTERISTICS (1) Collector-Emitter Saturation Voltage (IC = 5.0 Ade, IB = 0.7 Ade) (lc = 10 Ade, IB = 1.3 Ade) (IC = 10 Ade, IB = 1.3 Ade, TC = 100°C) VCE(sat) Base-Emitter Saturation Voltage VBE(sat) - 1.2 2.5' 3.0' - - 1.5' 1.5 7.5' 5.0' - 30' fT 10' - 75' MHz Cob 50' - 400' pF td t, - 20 200 1200 200 650 80 100' 500' 3000' 350' ns - 800 50 90 1050 1800' 200' 250' ns (IC = 10 Ade. IB = 1.3 Ade) (lC= 10Ade,IB= 1.3 Ade, TC= 1 COO C) DC Current Gain (lC = 10 Ade, VCE = 5.0 Vde) (lc = 15 Ade. VCE = 5.0 Vde) Vdc - Vdc - hFE - DYNAMIC CHARACTERISTICS (2) Current Gain - Bandwidth Product (VCE= 10Vdc,IC=0.25Ade,ftest= 10MHz) Output Capacitance (VCB = 10 Vdc, IE = 0, f test = 1.0 kHz) SWITCHING CHARACTERISTICS Reoistiw Loed (Table 1) Delay Time Rise Time Storage Time Fall Time Storage Time Fall Time (IC= 10 Ade, VCC = 250 Vde, IBI = 1.3 Ade, PW= 30 !is, Duty Cycle ';;2.0%) (lB2 = 2.6 Ade. RB2 = 1.60) (VBE(off) = 5.0 Vde) ts tf ts tf Inductiw Loed (Table 2) Storage Time Fall Time Crossover Time Storage Time Fall ime Crossover Time (lC= 10Ade, IBI = 1.3 Ade, VBE(off) = 5.0 Vdc, VCE(pk) = 400 Vde) tsv tfi te tsv tfi (TC = lCOOC) (TC= 1500C) Ie (1) Pulse Test: PW - 300 ~•• Dutv Cycl. ';;2%. (2) IT =I she I 'test • Indicates JEDEC Registered Umit 1-375 - 70 120 2N6836 TYPICAL STATIC CHARACTERISTICS FIGURE 2 - COLLECTOR SATURAT10N REGION FIGURE 1 - DC CURRENT GAIN 2.0 50 ... '" I .... is '" '" 20 u 10 B c r--I'- : I'-," ~ ~ 10 ~ ::- 0.7 ~ 05 ~ 0.3 !;i 10 20 50 IC. COLLECTOR CURRENT lAMPS) 05 10 in c a 1.0 ~ ffi 0.10 111= 10 Tc = 25°C "- 010 ~O:07 0.05 0.15 0.2 0.3 ---- - a5 - - '";;; a 50 ~ ;>" 1--'""....... V :"- 10 1.0 2a 3a 5 a 7 a 10 Ie. COLLECTOR CURRENT (AMPS) 15 I - TC - 25°C 75°C I-"" !0- f.- f- ..... 100°C 040 >l ~ 030 , .;' 5.0 070 ~ 111= 10 TC = 100°C - 0.50 ~ 0.20 u 10 ~ :::l c ill = 10 ~ :E ~ 0.30 c f I /I FIGURE 4 "'- BASE-EMITTER VOLTAGE 2.0 !:: TC = 25°C II 0.1 0.2 0.5 1.0 2.0 lB. BASE CURRENT (AMPS) 15 3.0 ;! "r-.. 0.05 0.02 20 5.0 ~ ~ III I'..... II I 0.1 FIGURE 3 - COLLECTOR-EMITTER SATURATIiON VOLTAGE ~ SA I ~ ::- I 10 A 0.2 8 " VCE-50V 30 1\ IC = 1 A ~ 50 1\ \ ~ ~25°C 02 \ '"co~ HTC~ lJOJC ;Ii 111= 5 TC= 25°C 07 1 a 2.0 3 a 5 a 7.0 IC. COLLECTOR CURRENT lAMPS) == = 10 ~ 020 015 a 15 a 20 a 30 a 50 a 70 15 FIGURE 6 - COLLECTOR CUTOFF REGION FIGURE 6 - CAPACITANCE 10000 .~ / ~ 103 a 102 - -TJ"ISO·C ~ 10 lOO·C 1 .?100 1/ ~ ......5 ::l z I .,/ 7S·C - -REVERSE ;:l u FORWARD -0.2 1000 500 300 200 C.b 100 TC - 25°C 50 'VCE"2S0V= 2S·C 10" 1 -0.4 1= Cib 5COO 3000 2000 I I 12S·C '"c ....c .;' , / 20 +0.2 +0.4 _ 10 +0.6 0.1 VBE. BASE·EMITTER VOLTAGE (VOLTSI 1-376 1.0 10 100 VR. REVERSE VOLTAGE (VOLTS) 850 2N6836 III TYPICAL DYNAMIC CHARACTERISTICS -- FIGURE 7 - STORAGE TIME 5000 f- VB£(oII) =0 Vohs 3000 2000 f- VaE(o") =2.0 Voh. , !Iooo ~ VaE(oII) =5.0 VoIlI ~ i :: ~ ::E >= ~ ~ ;l! Q _to 200 100 0.07 0.05 I FIGURE 8 - STORAGE TIME SOOO PI =5 TC =75°C VCC =20 Voh.~ - 300 J 200 2.0 3.0 5.0 7.0 Ie. COLLECTOR CURRENT (AMPS) 1.5 1-1" ~ 200 Ii S 1:..;;;;--" 'k VaE(olfl =2.0 Vol.s 2.0 300 :t 200 ::; a'" '" !ii::; Q \. I 15 SoO ~ 3.0 5.0 7.0 IC. COlLECTOR CURRENT (AMPS) 10 IS 100 --- ./1 ........ JaE(o~) =1 2.0 Vohs SO f- VB£(oII) = 0 Vohs~ - ! ~ ~ ~ iii "- VaE(olfl = 5.0 Vohs e; '"'" r--"'\. Q '5 50 f:::=PI = 5 r--TC= 75°C r - - VCC = 20 Vo~s 20 15 3.0 5.0 7.0 1.6 2.0 IC. COLLECTOR CURRENT (AMPS) IS I 1000 VaE(oII) = 2.0 Voh~- === FIGURE 12 - CROSSOVER TIME ... Q ... LXI ....... 1500 I '" '" 5 IS "I. :'1--.., -Pf=IO VaE(o") = S.O Vohs S _TC = 7SoC 20 ;£= -Vcc = 20 VollS I' 1 1 111 10 1.5 2.0 3.0 S.O 7.0 10 IC. COLLECTOR CURRENT (AMPS) I I '-.-. ............ FIGURE 11 - CROSSOVER TIME 1500 1000 ~ i= 300 iii 200 e; 100 10 VaE(o") = 0 Vo~ ~ '" f - - . iJl =5 f - - TC =75°C 20 f - - VCC =20 VollS 10 ! ~ "- 50 500 3D 5.0 7.0 IC. COLLECTOR CURRENT (AMPS) FIGURE 10 - COLLECTOR CURRENT FALL TIME 1'-.. "VaE(oII) =5.0 Voh. Ii 100 a s 20 1000 VaE(o") =0 Voh. '" PI = 10 TC = 7SOC VCC = 20 VolI~-=-==== 100 15 10 500 t; -- =- VaE(o") = 5.0 VollI 0.05 ~ l300 Q ~ 2.0 Vo~. 700 500 f--- FIGURE 9 - COLLECTOR CURRENT FALL TIME :i VaE(o") 1000 I;; 1000 ! VaE(o") ~ 0 VOl••)' 3000 f--- 2000 I---- 500 300 200 100 - .......... VB£(o") = 0 Volts A ", r-- r--... I .1 VaE(oII) = 2.0 Volts SO ~PI=10 -TC _75°C VaE(olfl = 5.0 Voh.-VCC = 20 Volls 20 IS 3.0 S.B 7.0 10 IS I.S 2.0 IC. COLLECTOR CURRENT (AMPS) I 10 15 1-377 2N6836 III FIGURE 13 -INDUCTIVE SWITCHING MEASUREMENTS 'C~ / ' V- ./ trv~tU·~_th- I- f--'", 'C .......... "'::'CEIPk) l'-j 90% VCElpk) I1\ 90% 'Clpk) I I---J r'c-' V VeE 10% VCElpk) 'e- - - 90% 'el --\- -"- - -- - iE :;; !!, ... -',,- "- ia f-IBI ; 2,0 Amps .,/ ~ -- /'" :i ~ 10"', ...... hlC IC pk -- -- -- - -- FIGURE 14 - PEAK REVERSE BASE CURRENT 10 /' ffi ~ ~ - ...... 1---"" /" V - ~ .......... I--'""' ....- ..-- IBI ; 1.0 Amps IC; 10 Amps _ TC; 25°C f-- I o o 1.0 2,0 3,0 4,0 VBElolf). REVERSE BASE VOLTAGE IVOLTS) 5.0 TIME GUARANTEED SAFE OPERATING AREA LIMITS FIGURE 16 - MAXIMUM FORWARD BIAS SAFE OPERATING AREA 20 1... a; 2,0 '-' 0,50 i I ms de 1,0 g§ == ~:- 005 BONDING WIRE LIMIT - THERMAL LIMIT SECONO BREAKDOWN LIMIT \ '" !;j 1\ S '" ::5 . " " 10 f--fll;;> 4 f - - TC" 100°C VBElolf); 0 V 6,0 I ~ § 2,0 0,02 5,0 10 \ 0 ::l :l 0,10 l~ 14 ::::> 0 .!d> 18 '-' ETC; 25°C '"t; S 20 !!, 50 ::::> iE :E 10 "s 10 in FIGURE 16 - MAXIMUM REVERSE BIAS SAFE OPERATING AREA 20 30 50 70 100 200 300 VCE. COLLECTOR-EMITTER VOLTAGE IVOLTS) 450 100 " I 1\ \ \ \ \ VBElolf) ; I to 5 V I "\. ....... 150 200 250 350 450 600 700 850 VCElpk). PEAK COLLECTOA-EMITTER VOLTAGE IVOLTS) SAFE OPERATING AREA INFORMATION FORWARD BIAS the power that can be handled to values less than the limitations imposed by second breakdown. There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate IC-VCE limits of the transistor that must be observed for reliable operation; I.e .. the transistor must not be subjected to greater dissipation than the curves indicate, The data of Figure 15 is based on TC = 25°C; TJ(pk) is variable depending on power level. Second breakdown pulse limits are valid for duty cycles to 10% but must be derated when TC;;' 25°C. Second breakdown limitations do not derate the same as thermal limitations. Allowable current at the voltages shown on Figure 15 may be found at any case temperature by using the appropriate curve on Figure 18. TJ(pk) may be calculated from the data in Figure 17. At high case temperatures. thermal limitations will reduce REVERSE BIAS For inductive loads. high voltage and high current must be sustained simultaneously during turn-off, in most cases, with the base-to-emitter junction reverse biased. Under these conditions the collector voltage must be held to a safe level at or below a specific value of collector current. This can be accomplished by several means such as active clamping, RC snubbing, load line shaping, etc. The safe level for these devices is specified as Reverse Bias Safe Operating Area and represents the voltage-current condition allowable during reverse biased turn-off. This rating is verified under clamped conditions so that the device is never subjected to an avalanche mode. Figure 16 gives the R8S0A characteristics. 1-378 2N6836 FIGURE 17 - THERMAL RESPONSE 1.0 R9JCItI- rill R9JC R9JC - 1.IJOC,w TJlpkl" TC - PlpklR9JCIII II. ..... ~ ....1""0.1 1.0 IK 100 10.0 I, TIME Ims) FIGURE 18 - POWER DERATING 100 ~ t:--... "" ........... ........ Therma~ Dera11ng --tI o o 40 "-...II ""- Second Breakdown _ Der.1mg ,- r--.... r-... ...... r-......, f"-., " "' 120 80 TC.CASE TEMPERATURE I'CI 160 '" " 200 TA8LE 1 - RESISTIVE LOAD SWITCHING lei and tr OV =-35J.J A 50 Vee = 250 Vde RL = 2511 le= IOAde IB= 1.0Ade OV~+V_ - ~V l"'~ 1 ~ r 'Ie RL Vee ·Tektronix P-6042 or Equivalent Vee = 250 RL =2511 le=10Ade -=- IB1=1.0Ade RB1=1011 182 = 2.0 Ade RB2 = 1.6 n For VBEloff) = 5.0 V RB2 = 0 n -Note: Adjust -V to obtain desired VRF'tnff\ at POint A 1-379 2N6836 TABLE 2 - INDUCTIVE LOAD SWITCHING 20 o IO~F =-35lf A 50 -V ~1C(pk) IC~ '--- ~k) A VCE~ (0lf--fiH---[ ~ VCE(pk)' VCE(clamp) T 1 = LcOlI (lCpk) VCC 50 T 1 adJusted to obtaon IC(pk) V(BR)CEO Inductive Switching L'10mH L'200~H L'200~H RB2'~ VCC' 20 Volts RB2' 0 VCC' 20 Volts RB 1 selected for desored IB 1 RB2' 0 VCC' 20 Volts RB1 selected for desored IB1 *Tektronix P-6042 or Equivalent Scope· Tektronix 7403 or EqUivalent Note: AdJust -V to obtain desored VBE(off) at Point A. RBSOA TYPICAL INDUCTIVE SWITCHING WAVEFORMS Ifi. Ie IC(pk) , 10 Amps IB1 ' 1.0 Amp VBE(off) , 5.0 Volts VCE(pk) , 400 Volts TC' 25°C Time Base = 100 nslcm lC(pk) , 10 Amps IB1 , 1.0 Amp VBE(off) , 5.0 Volts VCE(pk) , 400 Volts TC' 25°C Time Base;:: 20 nslcm 1-380 ® 2N6837 MOTOROLA l1li Designer's Data Sheet 20 AMPERE NPN SILICON POWER TRANSISTORS SWITCH MODE III SERIES ULTRA-FAST NPN SILICON POWER TRANSISTORS 450 VOLTS 250WATIS This transistor is designed for high-voltage, high-speed, power switching in inductive circuits where fall time is critical. They are particularly suited for line-operated switch mode applications. !Ieolgn.". DetIIlor Typical Applications: "w_ Ca.... Conditions • Switching Regulators The Designers Data Sheet permits the design of most circuits entirely from the information presented. Limit data - representing device characteristics boundaries - are given to facil~ ;tate "worst case" design. • Inverters • Motor Controls • Deflection Circuits • Fast Turn-Off Times 30 ns Inductive Fall Time - 75·C (Typ) 40 ns Inductive Crossover Time - 75·C (Typ) 800 ns Inductive Storage Time - 75·C (Typ) • Operating Temperature Range -65 to +200·C • 1000c Performance Specified for: Reverse-Biased SOA with Inductive Loads Switching TImes with Inductive Loads Saturation Voltages Leakage Currents !FA 1- B=l fC ----t L~ K SEATING PLANE Symbol Max Unit Collector-Emitter Voltage' VCEOlsus) 450 Vdc Collector-Emitter Voltage' VCEV 850 Vdc Emitter Sase Voltage' VEB 6.0 Vdc Collector Current - IC ICM 20 30 Adc IS IBM 15 20 Adc Po 250 143 1.43 Watts TJ, Tstg -65 to +200 ·C Symbol Max G H J K .Rating Continuous' Peak (1) Continuous' Peak (1) Total Power Dissipation @ TC @TC Derate above 250C = = 25·C· 100·C Operating and Storage Junction' Temperature Range wrc "THERMAL CHARACTERISTICS Chancterlstlc Thermal Resistance, Junction to Case' Maximum Lead Temperature for Soldering' Purposes: 'Ia" from Case for 5 Seconds (1) Pulse Test: Pulse Width = 5.0 -Indicate JEDEC Registered Data i 1:E MAXIMUM RATINGS Base Current - I R8JC 0.7 Unit .C/W TL 275 ·C r--- F-- -J- Q~ H ~ I DIM A 8 C 0 E F Q R mI. Duty Cycle '" 10%. ! 0 V, ~ , ~i /' MILLIMETERS MIN MAX 38.35 19.30 6.35 1.45 - 29.90 10.61 5.21 16.64 11.18 3.84 24.89 39.31 21.08 1.62 1.60 3.43 30.40 11.18. 5.12 11.15 12.19 4.09 26.61 ~ t lG INCHES MIN MAX 1.510 0.160 0.250 0.051 - 1.117 0.420 0.205 0.655 0.440 0.151 0.980 1.550 0.830 0.300 0.063 0.135 1.191 0.440 0.225 0.615 0.480 0.161 1.050 CASE 197-01 TO-204AE (Type) Modified TO-3 1-381 1 R '/ I 2N6837 111 ELECTRICAL CHARACTERISTICS ITC = 25"<: unl!'ss otherwise noted). I Chal'llCterlstic Symbol Min Typ .Max Unit VCEOlsus) 450" - - Vde - - OFF CHARACTERISTICS Collector-Emitter Sustaining Voltage ITable 2) IIc = 100 mA. IB = 0) Collector Cutoff Current IVCEV = B50 Vde, VBEloff) IVCEV = B50 Vde, VBEloff) Collector Cutoff Current IVCE = 850 Vde, RBE ICEV = 1.5-Yde) = 1.5 Vde, TC = l00'C) = 50 0, TC = l00'C) Emitter Cutoff Current IVEB = 6.0 Vde, IC = 0) ICER - lEBO - mAde 0.25" 1.5" 2.5 mAde 1.0" mAde SECOND BREAKDOWN Second Breakdown Collector Current with Base Forward Biased See Figure 15' Clamped Inductive SOA with Base Reverse Biased See Figure 16 ON CHARACTERISTICS 111 Collector-Emitter Saturation Voltage IIc = 10 Ade, IB = 1.2 Ade) IIc = 15 Ade, IB = 2.0 Ade) IIc = 15 Ade, IB = 2.0 Ade, Tc = l00'C) VCElsat) Base-Emitter Saturation Voltage IIc = 15 Ade, IB = 2.0 Ade) IIc = 16 Ade, IB = 2.0 Ade, Tc VSElsat) = l00'C) DC Current Gain IIc IIc - - 1.5 3.0" 3.0" - 1.5" 1.5 - 30" Vde - hFE = 15 Ade, VCE = 5.0 Vde) = 20 Ade, VCE = 5.0 Vde) Vde - 7.5" 5.0 - tr 10" - 75" MHz Cob 100" - 500" pF ns - DYNAMIC CHARACTERISTICS 121 Current Gain - Bandwidth Product IVCE = 10 Vde, IC = 0.25 Ade, ftest Output Capacitance IVCB = 10 Vde, IE = 10 MHzl = 0, ftest = 1.0 kHzl SWITCHING CHARACTERISTICS .....stIve Load (Table 11 Delay TIme Rise TIme Storage Time Fall TIme Storage TIme td (lC = 15 Ade, VCC = 250 Vde, IBI = 2.0 Ade, PW = 30 p.S, Duty Cycle .. 2.0%1 (lB2 RB2 = 4.0 Ade, = 1.60) tr ts tf IVBEloff) = 5.0 Vde) Fall Time ts tf· - 20 100" 200 500" 1200 2700" 200 350" BO - BOO 2700" 50 200' 90 250" 650 Inductive Load (Table 21 Storage TIme Fall TIme Crossover TIme Storage TIme Fall TIme tsv IIC = 15 Ade, IBI = 2.0 Ade, VBEloff) = 5.0 Vde, VCE(pk) = 400 Vde) ITC = 100'C) tfi Ie tov (rC = 150'C) tfi Crossover Time Ie (1) Pul.. Teat: PW - 300 psJ, Duty Cycle'" 2.0%. (2) = IhlEl!test . "Indicates JEDEC Registered Limit tr 1-382 - 1050 70 120 - ns 2N6837 TYPICAL STATIC CHARACTERISTICS FIGURE 1 - DC CURRENT GAIN FIGURE 2 - COLLECTOR SATURATION REGION 3.0 IIII Ol--f- z ;;; '" :l§ au TJ = 25°C 0 I-" I-f-- ~ ~J~rlhooc -UIJs5oC ~ - --- , 10 ' ; 7.0 30 03 5 10 2.0 3.0 5.0 7.0 10 IC. COLLECTOR CURRENT lAMPS) 20 ~ 30 ~ J1 L'-. \ li- 0.5 0.7 "- I 1.0 2.0 .0 5.0 7.0 Is. BASE CURRENT lAMPS) FIGURE 4 - BASE-EMITTER VOLTAGE .0 2 " 3. 0 .1 .0 h VI 1.0 .7 .7 .2f---~1 = 10 I==- TJ = 1000C ;;.. .....-.:~ .1.1 ..I- TJ = 250C V '1l1 = 5.0 .11==111= 10 ~o.o 7 0.0 0.2 0.3 0.5 0.7 1.0 2.0 3.0 5.0 70 Ie. COLLECTOR CURRENT lAMPS) - ,.... TJ = 25°C ./ .3 - .9 .8 ~ i IC= 20A IC - 10 0.3 ~ ~ 2.0 ~~ \ IC-l~A\ \ 3 IC=5.0A\ FIGURE 3 - COLLECTOR-EMITTER SATURATION REGION ~ \ 9 I 05 07 TJ = 25°C .1 VCE = 5.0 V 5.0 I II 7 .5=-TJ = 1000C .4 1 I I I ~i"" "" ~~ TJ = 75'C 11,= 10 .3 o.2 20 10 0.2 0.3 FIGURE 5 - COLLECTOR CUTOFF REGION 0.5 0.7 1.0 2.0 3.0 5.0 7.0 10 IC. COLLECTOR CURRENT lAMPS) 20 FIGURE 6 - CAPACITANCE 104 / , / 3 TJ" 150·e 2 125 QC .... ./ -" .s, ..,z ~ 1000 I ~ 75·C I---- r-REVERSE FORWARD ' VCE "250V= 10- I -02 ·04 ·02 VBE. BASE EMITTER VOLTAGE IVDLTSI Cob u 1. 25·C -u ti~ 10K , / loo·e I ./ 1 ·06 1-383 TJ = 25°C 190 0.1 1.0 10 100 VR. REVERSE VOLTAGE IVOLTS) 1000 2N6837 TYPICAL DYNAMIC CHARACTERISTICS FIGURE 7 - STORAGE TIME 7. 0 FIGURE 8 - STORAGE TIME - VBE(off)~lts 5. 0 --l I I 0 I VBE;ott) = 2.0 Vokl 0 -r VBE(ott) = 5.0 Vokl I-c-~ Pf= 5 TJ .. 75°C 0.5 0 10 20 5. 0 0 IL 1.0 FIGURE 9 - COLLECTOR CURRENT FALL TIME ~ ~E(ott) J ""'"\ 01--VBE(ott) = 0 Volts ~ 110 B 70 ~ 50 Pf= 5 301- TJ = 75°C !( I- Vee = 20 Volts :st; 8 1 ! = 5.0 Vokl ,20 3.0 2.0 ii 30 ." VBE(off) ; 2.0 Vok"""-:::: ~Iott) ; 5.0 Volts o~ !o: l!! -'I o~ ;:: 20 .so "\ -- 50 o t; :; 30 lif= 10 20 TJ = 75°C Vee = 20 Volts 8 I 1o 2.0 20 3.0 5.0 7.0 10 IC. COLLECTOR CURRENT lAMPS) .1 1000 70 0 VBElolf) = 5.0 Volts VBE(off) :! 50 = 2.0 Voks "\. :IE 30o VBE(ott); 2.0 Voks .1 :;;; 20Ot--.. ~ '\. "\. I "\. ::--.. ~ \ ~ ~ 10 O,=-VBEloff) 5 70 70 01= lif= 5 TJ =. 75°C Ol-VCC = 20 Voks 20 15 2.0 3.0 4.0 5.0 7.08.0 10 Ie COLLECTOR CURRENT (AMPS) 15 FIGURE 12 - CROSSOVER TIME 1500 ...... / 7 a: a: 110 5 ~ 100I=VBE(ott); ~ 5.0 7.0 10 Ie. COLLECTOR CURRENT (AMPS) ' , -' .!.' 30 o 20 :t ."- VBElott) = 0 VoI..__ 20 50 ~ FIGURE" - CROSSOVER TIME 1500 1000 70 'i 500 _LUl 30 5.0 7.0 10 Ie. COLLECTOR CURRENT lAMPS) 1000 70 0 I 2.0 VBElott); 5.0 Vok.= ~ FIGURE 10 - COLLECTOR CURRENT FALL TIME 700 VBE(ott) = 2.0 VokS- - 2.0 Volts 7 20 30 VBEI~tt) ; f---- Pf = 10 Sf---- TJ = 75°C 1000 ! V F=- 0 3.0 5.0 7.0 10 Ie. COLLECTOR CURRENT (AMPS) 150 0 ~ VBE(ott) = 0 Vo~ 0 - I 0 I 7. 0 .so 50 ! 1-384 VBE(ott) ; 5.0 Voks ....... -"- r-.... I'. L L ~ I--'" iii; 10 TJ; 75°C Vee; 20 ,VOkl ,0 20 ~ .1 .0 3.0 5.0 7.0 10 .Ie COLLECTOR CURRENT lAMPS) 15 20 2N6837 FIGURE 14 - REVERSE BASE CURRENT FIGURE 13 - INDUCTlVE SWITCHING MEASUREMENTS ~CEIPkl r-- IC!--, /' VI ./" ....... ~ VCE :" 'Ia- III',"...... 10IIi VCElpkl - ICPk _Ial V .0 V'" r-;:~ V - f.-- '.0 V - I I...-- ~=1.5IA""" 'j I o 1.0 VBElo"~ TIME 2.0 1 I IC = 15 AIIIjII TJ = 25°C ' - .0 0 I I 1 ./ 'V ....... ~ -- --\-, -- -- ..--- - "'-- . / ~81 =3.0~1IIjII .0 '", Iflflt '10 -1-',.1-1 f-"--' r- V L...-+- .0 .0 -VCEIPkIJ 1\-IClpll r-- r--'" IC/ 0 3.0 I 4.0 I 5.0 REVERSE BASE EMITTER VOLTAGE IVOLTSI GUARANTEED SAFE OPERATING AREA UMITS FIGURE 1& - MAXIMUM RATED REVERSE BIAS SAFE OPERATING AREA FIGURE 15 - MAXIMUM FORWARD BIAS SAFE OPERATING AREA 3 20 , 10 p. 3 0 f"' :E 7.0 3 ~ 5.0 0- ~ 0 Te = 25°e de 0 '"co .7.5 fij .. -Bonding Wire limit ::l .3 8 2 .. -- - Thermal limit 1--Second Breakdown limit Jil 0 0.0 7 0.0 5 0.0 3 5.0 7.0 10 20 50 70 1.0 .,;;-. 25 TJ <;; 100°C "- B 20-~;;'4.0 \ \\ \~ I 100 200 ~- 10 ........ VsFO- 450 200 VVsEloIfl = 1.0 10 5.0 V l ' <' --t--~, \ 400 600 800 1000 VCE. COUECTOR-EMITTER VOLTAGE IVOLTSI VCE. COLLECTOR·EMITTER VOLTAGE IVOLTS} SAFE OPERATING AREA INFORMATION FORWARD BIAS There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate IC - VCE limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. The data of Figure 15 is based on TC = 25°C; TJ(pk) is variable depending on power leve}. Second breakdown pulse limits are valid for duty cycles to 100/0 but must be derated when TC;;.25°C. Second breakdown limitations do not derate the same as thermal limitations. Allowable current at the voltages shown on Figure 15 may be found at any case temperature by using the appropriate curve on Figure 18TJ(pk) may be calculated from the data in Figure 17. At high case temperatures, thermal limitations will re- 1-385 duce the power that can be handled to values less than the limitations imposed by second breakdown. REVERSE BIAS For inductive loads, high voltage and high current must be sustained simultaneously during turn-off, in most cases, with the base-to-emitter junction reverse biased. Under these conditions the collector voltage must be held to a safe level at or below a specific value of collector current. This can be accomplished by several means such as active clamping, RC snubbing, load line shaping, etc. The safe level for these devices is specified as Reverse Bias Safe Operating Area and represents the voltage-current condition allowable during reverse biased turn-off. This rating is verified under clamped conditions so that the device is never subjected to an avalanche mode. Figure 16 gives the RBSOA characteristics. 2N6837 FIGURE 17 - THERMAL RESPONSE 1.0 1== j::: 0 - G.5 L t-- t1 0 'D.2 r-- I- 0 ~'O.I -- 0.01 :,... RUChl- rl'I RBJC RBJC • D.1.C/W Max o CURVES APPLY FOR POWER PULSE TRAIN SHOWN READ TIME A, 'I TJlpki - TC =Plpkl RBJCI'I Plpkl (;... tJUl Singl.PuIIl i-"" 0.1 IIII r IIII I -r~~ DUTY CYCLE. 0 =11/'2 1000 100 10 1.0 10000 ,. TIME IMSI FIGURE 18 - POWER DERATING 100 ~ t-.... .......... "" "" llO '"t; Q Second a,l.kdown ...... ~ ~htrm.~ . :tOO Oer'1Ing~ I'.. z ;: c ::; 40 Q '"~ f Derating f ' ...... t-...... "- r--- r---.. ....... 20 0 40 120 80 TC. CASE TEMPERATURE ,oCI 160 """ '" 200 TABLE 1 - RESISTIVE LOAD SWITCHING tctand t, OV-, +Vdc - 11 Vdc r --35VU + RBI A 50 -v Vee = 260Vdc ~ Yin OV IIV ~ RL = 160· = 15Adc Ie IB = 2.0Adc tr<16na vee .:. 'Tektronix P-6042 or Equivalent Vee = 250 RL = 160 Ie = 15 Adc IBI = 2.0 Adc IB2 = 4.0Adc For VBE(off) = 5.0 v r RBI = 7.50 RB2=1.60 RB2 = on "Note: Adjust - V to obtain desired VBE(off) at Point A. 1-386 2N6837 I TABLE 2 - ~ INDucnVE LOAD SWITCHING I 0.02",F + o =-35lf A 50 l~: + ....- -.......- - 0 ( 500 ~ IC(pk) -V IC~ ~ At 01--HH---£ Tl _Leoil (Cpk) VCC T1 adjusted to obtain IC(pk) V(BRICEO L = 10 mH RB2 = "" VCC = 20 Volts "Tektronix P-6042 or Equivalent 50 Inductive Switching L=200",H RB2 = 0 VCC = 20 Volts RBl selected for desired IB1 RBSOA L = 2OO,.H RB2 = 0 Vee = 20 Volts RBl selected for desired IBl Scope - Tektronix 7403 or Equivalent Note: Adjust - V to obtain desired VBE(off) at Point A. TYPICAL INDUCTIVE SWITCHING WAVEFORMS IC(pk) = 15 A IBl = 2.0A VBE(off) = 5.0 Volts VCE(pk) = 400 Volts TC = 25"<: TIme Base = 200 nstem IC(pkl = 15 A IBl = 2.0 A VBE(offl = 5.0 Volts VCE(pk) = 400 Volts TC = 25"<: TIme Base = 200 "stem 1-387 IU204 IU205 ® MOTOROLA 2.5 AMPERE NPNSILICON POWER TRANSISTORS HORIZONTAL DEFLECTIONTRANSISTOR 1300 AND 1600 VOLTS 36 WATTS · .. specifically designed for use in large screen color deflection circuits. Design..'s Om for "Worst Case" Conditions • Collector-Emitter Voltage -- VCEX = 1300 Vdc -- BU204 1500 Vdc -- BU205 The Designers Data Sheet per· mits the design of most circuits entirely from the information presented. Limit data -- representing device characteristics boundaries -are given to facil itate "worst case" design. • Glassivated Base-Collector Junction • Switching Times with Inductive Loads -tf = 0.65 /.IS (Typ) @ IC = 2A ~ L~rt=BC to MAXIMUM RATINGS Rating Collector-Emitter Voltage Collector-Emitter Voltage Emitter Ba.. Voltage Collector Current - Continuous -Peak (1) Be.. Current - Peak (1) Total Po_r DllSlpation Iii> TC • 25°C Iii>TC m 900C Derate above 250 C Operetlng and Storage Junction Temperature Range Symbol BU204 VCEOlsuI) VCEX VEB IC ICM IBM Po 600 1300 I BU206 I 700 I Unit Vd. Vd. Vd. Adc 1500 5.0 2.5 Thermal Resistanco, Junction to ea.. -+ K . I BASE EMITTER ,....,I--",""-+-==,_:COLLECTOR Q 3 Ad. Wattl 2.5 36 10 OA wl"c °c -65 to +,115 TJ, Tstg NOTES 1 DIMENSIONS a AND v ARE DATUMS 2 IS SEATING PLANE AND DATUM. 3. POSITIONAL TOLERANCE FOR MOUNTING HOLE O. C:fJ I • 11,13(0005)@) I T Iv@) I THERMAL CHARACTERISTICS Charecterlo1lc D .. FOR LEADS I Symbol I Max I R8JC I 2.5 (1) Pul.. Test: Pul .. Width = 5 ms, Duty Cyclo< 10%. 1-388 I Unit I °C/W I • 11,1310,OO~I,@)T I v@) I.@)I 4. DIMENSIONS AND TOLERANCES PER ANSIY14.5,1973 BU204, BU205 ELECTRICAL CHARACTERISTICS ITC = 250 unle.. otherwise noted.) OFF CHARACTERISTICS II) Collector-Emitter Sustaining Voltage (lC = l00mAdc.IB =0) Collector Cutoff Current . IVCE = 1300Vdc, VBE =0) IVCE = 1500 Vdc, VBE = 0) Emitter Base Voltage (IE = 10 mA,lc = 0) BU204 BU205 Min Typ MIIx Unit 600 700 - - Vdc - - 1.0 1.0 VEBO 5.0 - - Vdc VCElsad - - 5.0 Vdc VBElsad - - 1.5 Vdc VCEOlsus) ICES BU204 BU205 mAdc - ON CHARACTERISTICS II) Collector-Emitter Saturation Voltage (lC = 2.0 Adc,lB = 1.0 Adc) Basa Emitter Sat_ion Voltage (lc - 2.0 Adc,IB = 1.0 Ade) Sacond Braekdown Collector Current with Base Forward Biased See Figure 14 IS/B DYNAMIC CHARACTERISTICS Current-Gain - Bandwidth Product (1) (lC =0.1 Adc, VCE = 5.0 Vdc, ftest = 1.0 MHz) Output Capacitanca IVCB = 10 Vdc,lE = 0, f = j.o MHzl 'T - 4.0 - MHz Cob - 50 - pF SWITCHING CHARACTERISTICS Fall Time (lC = 2.0 Adc, 1111 = 1.0 Adc, LII = 25 "H) ISee Figure 1) 11) Pulse Test: Pulse Width ..; 300 Ill, Duty Cycle - 2". FIGURE I - TEST CIRCUIT +80V Common 2500 5.0W 5.0kCO.... 5WIBAdj. Capacitor v.lu_ in "F , ..istors are" watt 200 0.1/100 V 5.0W .47 , 2.2 k I I L I I MR91B (1500 V Selec...U 101150 V WIdth Adi + -= 10 5.0W IC 0.15 A 1.5 2.0 I.B k DRIVER TRANSFORMER IT1) Motorola part number 26D68782A-O~1/4" IlII'I1ln.,. "E" iron core. Primary Inducunce- 39 mHo Secondary Inductenca- 22 mH, Leak.... I nduetance with prfmery Ihortad - 2.0 "H. Primary 260 turns #28 AWG anMMtI wire. Secondary 17 turns, #22 AWG enamel wire. 1-389 L 4.25mH 2.18mH 1.6mH C .000"F .000"F .ooa"F Common +126 V BU204, BU205 BASE DRIVE: The Key to Performance 111 By now, the concept of controlling the shape of the turn-off base current is widely' accepted and applied in horizontal deflection design. The problem stems from the fact that good saturation of the output device, prior to turn-off, must be assured. This is accomplished by providing more than enough IB1 to satisfy the lowest gain output device h FEat the end of scan ICM. Worst case component variations and maximum high voltage loading must also be taken into account. If the base of the output transistor is driven by a very low impedance source, the turn-off base current will reverse very quickly" shown in Figure 2. This results in rapid, but only partial, collector turn·off, because excess carriers become trapped in the high resistivity collector and the transistor is still conductive. This is a high dissipa· tion mode, since the collector voltage is rising very rapidly. The problem is overcome by I!dding inductance to the base circuit to slow the base current reversal as shown in Figure 3, thus allowing excess carrier recombination in the collector to occur while the base current is still flowing. Choosing the right LB is usually done empirically, since the equivalent circuit is complex, and since there are several important variables (lCM, IB1, and hFE at 'CM). One method is to plot fall time as a function of LB, at the desired conditions, for several devices within the h F E specification. A more informative method is to plot power dissipation versus IB1 for a range of values of LB as shown in Figures 4 and 5. This shows the pardmeter that really matters, dissipation, whether caused by switching or by saturation. The negative slope of these curves at the left (low IB1) is caused by saturation losses. The positive slope portion at higher 'Bl. and low values of LB is due to switching losses as described above. Note that for very low LB a very narrow optimum is obtained. This occurs when IBI hFE = ICM, and therefore wO!lld be acceptable only for the "typical" device with constant 'CM. As LB is in· creased, the curves become broader and flatter above the IBI hFE = ICM point as the turn-off "tails" are brought under control. EventuallY, if LB is raised too far, the dissipation all across the curve will rise, due to poor initiation of switching rather than tailing. Plotting this type of curve family for devices of different hFE, essentially moves the curves to the left or right according to the relation 'Bl hFE = constant. It then becomes obvious that, for a specified 'CM, an LB can be chosen which will give low dissipation over a range of hFE andlor 'Bl. The only remaining decision is to pick IB1 high enough to accommodate the lowest hFE part specified. Figure B gives values recommended for LB and 'Bl for this device over a wide range of 'CM. These values were chosen from a large number of curves like Figure 4 and Figure 5. Neither LB nor IBlare absolutely critical, as can be seen from the examples shown, and values of Figure B are provided for guidance only. TEST CIRCUIT WAVEFORMS FIGURE 2 FIGURE 3 18 Ie (tlmo) (tlmo) TEST CIRCUIT OPTIMIZATION Once the required transistor operating current Is determined, fixed circuit valu.s maY be selected from the table. Factory tftt· ing Is performed by reading the current meter only. since the input power i. proportlone' to current. No adiustment of the test apparatus Is required. The test circuit may be used to evaluate devlc•• 'n the conventional manner. I.•.• to me••ur. fall time, Itorage time, and Hturetlon voltage. However, thl' circuit wa. designed to evaluate devices by • • Imple criterion, power supply Input. Excel.lve power Input can be caused by • v8rl81:Y of problems, but It I, the dllllpation In the transistor that " of fundamental Importance. 1-390 BU204, BU205 FIGURE 5 - OPTIMIZING DRIVE @ IC 1.5 A FIGURE 4 - OPTIMIZING DRIVE @ IC = 0.75 A 5.5 4.0 \ 1\\ \ \\. ""'\ r"-. ~ ~ 3.5 i \ ~ ~ 3.0 - ,,~ ... ~ """""II !; ~ 2.5 2.0 LBpH 4 ............. V ~ '20"" 02 IBI. BASE CURRENT (AMP) 0.1 FIGURE 6 - OPTIMIZING ORIVE 'r-.. ""''" r' "O '" ~ ...~ 7.0 !; ~ 6.0 5.0 0.4 --- '" ~ @ D.3 0.2 0.4 ./ o.a 1.0 FIGURE 7 - SWITCHING BEHAVIOR versus TEMPERATURE 10 2.0 ......... ......... r-.... r--- - ~ t'-..... " r-- '"-t-.... 0.6 ICM w '"~ Z 1.0 1.0 ..,,- V :t 4 0.5 ....- o o 12 -:-- ..... 20 ......~ ./" 40 ..,...,.V oV 1.0 ~ . /V 'I ~~ &0 BO 100 1211 6.0 1&0 140 FIGURE 9 - SWITCHING BEHAVIOR versus ICM 2.0 sj 1.5 w ../" ..,"" 23 ,.,..... 1 ......... 9.D TC. CASE TEMPERATURE (oCl 20 0 .- '!.- / ~ 20 0.8 lal. aASE CURRENT (AMP) = 1.75 A.IB = 0.85 A.la = 13jd1 1.5 LBpH ............. 1-.. 0.5 ...... 0.& 0.4 IC = 2.0 A 5 5 ./ i'-.. '" t:>< 4 V lUI. aASE CURRENT IAIII'I FIGURE 8 - OPTIMUM DRIVE CONDITIONS 2.0 ...... ~ ............. \ ~ -7 3.5 o 9.0 LBpH .,..- K 1.5 2.0 ICM. COLLECTOR CURRENT (AMP) t3~ "-...,'0g ~ 1.0 V .,i~- '-5!l o Is ./ , If 1-391 L-4 o 0.5 8 "'" // 0.5 2.5 1 1.0 1.5 2.0 ICM. COLLECTOR CURRENT (AMP) 2.0 2.5 j BU204, BU205 FIGURE 10 - THERMAL RESPONSE I.0 :i. ~_ wO %w ... ~!:::! ~ o. 7 f::D - 0.5 o.5 O.3f:= 0.2 ~~ 01 iO" \ 1.5A .. t- ~ cc \ \ "- ....... '-' 0 - 0.2 "" "- 0.6 0.7 0.8 0.91.0 0.05 10 5.0 1.6 ~ I ~ 1. 2 c:~ > VBE(1It)0 IcJlB • 2.0 O. B ,; 25°C l00"C .~ 0.4 VCE(1It)0 IcJlB • 2.0 ~ L ~ o.Z5 0.3 0.4 1.0 0.5 0.7 IC. COLLECTOR CURRENT (AMPI 2.0 0.1 0.2 0.5 1.0 IC. COLLECTOR CURRENT (AMP) ~ 0.1 8 0.05 RTe" /,......,. / m, 8 0.01 "';0.005 f-2.0 3.0 ~ Z.o "" 1.0 ~ 0.5 g 0.2 100°C 25°C o 7 ~ FIGURE 14·MAXIMUM FORWARD BIAS SAFE OPERATING AREA FIGURE 13 - "ON" VOLTAGES w ~Io... 5.0 2.0 1.6 0.03 2.0 co ...... 3.0 \.. . . . . r--~ 0.5 0.3 0.4 18. BASE CURRENT (AMP) ID ~ 1\ \. VC~'5~OV -.. '-' \ \. O.S 0 0.1 _25°C => 7.0 \ \ 1.5 1.0 :;( 1 co \2.0A \ \ - z 1\ \ 3.5 I I TJ-l000C 20 TJ' 25°C 4.0 '¥ . ~ 3D 4.5 ~ :E FIGURE 12 - DC CURRENT GAIN 5.0 2.5 1-392 O.ooZ 0.001 Z.O . BU205 5.0 10 20 50 100 200 500 VCE. COLLECTOR·EMITTER VOLTAGE (VOLTSI 1000 2000 ® BU207 BU208 MOTOROLA De~ig'lleI'S III Data Sheet 5 AMPERE NPN SILICON POWER TRANSISTORS 1300 AND 1500 VOLTS HORIZONTAL DEFLECTION TRANSISTOR · .. specifically designed for use in large screen color deflection circuits. Designer's Data for "Worst Case" Conditions The Designers Data Sheet per· mits the design of most circuits entirely from the information pre· sented. Limit data - representing device characteristics boundaries are given to facil itate "worst case" design. • Coliector·Emitter Voltage VCEX = 1300 Vdc - BU207 1500 Vdc - BU208 • Collector-Emitter Sustaining Voltage VCEO(sus) = 600 Vdc - BU207 700 Vdc - BU208 • Switching Times with Inductive Loads, tf = 0.4 Ils (Typ) @ IC=4.5A • Optimum Drive Condition Curves • Glass Base-Collector Junction *MAXIMUM RATINGS Rating Collector-Emitter Voltage Collector-Emitter Voltage Emitter Base Voltage Collector Current - Continuous Peak Ba.. Current - Peak (1) (1) Total Power Dissipation@Tc "" 95°C Derate above 95°C Operating and Storage Junction Temperature Range Symbol VCEOlsus) VCEX VEB IC ICM IBM Po TJ, Tstg BU207 [ BU20B Unit I Vdc Vdc Vdc Adc 600 1300 I 700 1500 5 5 7.5 4 Adc 12.5 0.625 -65 to +115 Watts W/oC OC Maximum Lead Temperature for Soldering Purposes: 1/8" from Ca.. for 5 Saconds Q NOTES. 1. DIMENSIONS QANO V ARE DATUMS. 2. IS SEATING PLANE AND DATUM. 3. POSITIONAL TOLERANCE FOR MOUNTING HOLE O' OJ .1113fO.OO5)e I TIve I I • t 1.13f....'eT I vel Del t FOR LEADS THERMAL CHARACTERISTICS Characteristic Thermal Resistance, Junction to Case BASE EMiTtER --+~~-+-=-=--;CO LLECTO R Symbol ROJC TL Max Unit 1.6 275 OC/W 4. DIMENSIONS AND TOLERANCES PER ANSI V14.5,1973 INCHES MIN MAX 1.550 0.83 0.300 0.043 OC (1) Pulse Test: Pulse Width - 5 ms, Duty Cycle <: 10%. O. 5 7 1.187 SC 0.430BSC 0.2158SC 0.665BSC 0.440 0.480 0150 .165 1 0.210 0.165 CASEHtS 1-393 BU207, BU208 ELECTRICAL CHARACTERISTICS (TC = 25 0 unl... otherwise noted.) I Characteristic OJ Min Symbol Typ Max - - Unit OFF CHARACTERISTICS (1) Collector-Emitter Sustaining Voltage (lc VCEO(sus) SU207 SU208 = 100 mAde, IS = 0) Collector Cutoff Current (VCE = 1300 Vde, VSE = 0) (VCE = 1500 Vde, VSE = 0) 600 700 ICES Emitter Sase Voltage (IE = 10 mA, IC = 0) ON CHARACTERISTICS (1) DC Current Gain (lC = 4.5 Ade, VCE = 5 Vde) VESO 5.0 hFE 2.26 - Collector-Emitter Saturation Voltage (lC = 4.5 Ade, IS = 2 Ade) VCE(sat) Sase Emitter Saturation Voltage VSE(sat) (lC = 4.5 Ade, IS = 2 Adc) Second Breakdown Collector Current with Base - - - SU207 SU208 ISlb Vde mAde 1.0 1.0 - Vde - - - - 5 Vde - 1.5 Vde Sao Figure 14 Forward· Biased DYNAMIC CHARACTERISTICS Current~Gain - Bandwidth Product (lC = 0.1 Ade, VCE = 5.0 Vde, 'test = 1 MHz) Output Capacitance (VCS = 10 Vde, IE =0,' =0.1 'T - 4.0 - MHz Cob - 125 - pF MHz) (lC = 4.5 Ade, IS = 1.8 Ade, LS = 10 /lH, see Figure 1) (1) Pulse Test: Pulse Width = 300 "s, Duty Cvele" 2%. FIGURE 1 - SWITCHING TIMES TEST CIRCUIT Com 2 k/5W +60V 820 5W 100 IC I. MR918 (Selected ·'OJ.'F + 25 V 3 C 1500 VI 10 "F 150 V 5W Pul .. Width Ad) + 60% Duty Cycle ~ 10 Sl 5W Com +125 V DRIVER TRANSFORMER (T1) IC I. A mH 3.5 0.87 0.013 4.5 0.67 0.017 Motorola part number 25068782A-05·1/4" laminata "e" iron ear•. Prlmarv Inductance - 39 mHo Secondary Inductance - 0.22 mH, Leakage Inductance With primary ,horted - 2.0 ",H. Primary 260 turns, #28 AWG enamel wir •. Secondary 17 turns, #22 AWG enamel wlr •. 1-394 BU207, BU208 BASE DRIVE: The Key to Performance Sy now, the concept of controlling the shape of the turn-off base current is widely accepted and applied in horizontal deflection design. The problem stems from the fact that good saturation of the output device, prior to turn-off, must be assured. This is accomplished by providing more than enough IS1 to satisfy the lowest gain output device hFE at the end of scan ICM- Worst-case component variations and maximum high voltage loading must also be taken into account. If the base of the output transistor is driven by a very low impedance source, the turn-off base current will reverse very quickly as shown in Figure 2. This results in rapid, but only partial, collector turn-off, because excess carriers become trapped in the high resistivity collector and the transistor is still conductive. This is a high dissipation mode, since the collector voltage is rising very rapidly. The problem is overcome by adding inductance to the base circuit to slow the base current reversal as shown in Figure 3, thus allowing excess carrier recombination in the collector to occur while the base current is still flowing. Choosing the right LS is usually done empirically, since the equivalent circuit is complex, and since there are several important variables 0CM, IS1' and hFE at ICM)' One method is to plot fall time as a function of LS' at the desired conditions, for several devices within the hFE specification. A more informative method is to plot power dissipation versus IS 1 for a range of values of LS as shown in Figures 4 and 5. This shows the parameter that really matters, dissipation, whether caused by switching or by saturation. The negative slope of these curves at the left (low IS 1 ) is caused by saturation losses. The positive slope portion at higher IS1' and low values of LS is due to switching losses as described above. Note that for very low LS a very narrow optimum is obtained. This occurs when IS1 hFE = ICM' and therefore would be acceptable only for the "typical" device with constant ICM' As LS is increased, the curves become broader and flatter above the IS1 hFE = ICM point as the turn-off "tails" are brought under control. Eventually, if LS is raised too far, the dissipation all across the curve will rise, due to poor initiation of switching rather than tailing. Plotting this type of curve family for devices of different hFE' essentially moves the curves to the left or right according to the relation IS1 hFE = constant. It then becomes obvious that, for a specified ICM' an LS can be chosen which will give low dissipation over a range of hFE and/or 'S1' The only remaining decision is to pick 'B1 high enough to accommodate the lowest hFE ·part specified. Figure S gives values recommended for LS and IS 1 for this device over a wide range of 'CM' These values were chosen from a large number of curves like Figure 4 and Figure 5. Neither LS nor IS1 are absolutely critical, as can be seen from the examples shown, and values of Figure S are provided for guidance only. TEST CIRCUIT WAVEFORMS FIGURE 2 FIGURE 3 (time) (time) TEST CIRCUIT OPTIMIZATION Once the required transistor operating current Is determined, The test circuit may be used to evaluate devices in the conventional manner, I.e., to measur. fall time, storage time, and saturation voltage. However. this circuit was designed to evaluate devices by a simple criterion, power supplV input. Excessive power input can be caused by 8 variew of problems, but It Is the dissipation In the transistor that is of fundamental Imponanca. fixed circuit value. may be selected from the table. Factory testing Is performed by reading the currant meter onlY. since the input power Is proportlona' to current. No adjustment of the test apparatus Is required. 1-395 III BU207, BU208 OJ FIGURE 4 - OPTIMIZING DRIVE@ IC ~ 3.5 A FIGURE 5 - OPTIMIZING DRIVE. IC - 4.5 A 16 3 ,\ l\ \\ ,\\\ 1 .\\\ ~ 16 0 9 LBpH . \\~~-........ ;z' 4~ o 0.5 /' l~ - / r\. \'\' ;-... -.. ~) /" LBpH 12 '\ 2-- .L ~'" -.../ :..-- 4 - 12 1.5 o 0.5 1.5 IBI. BASE CURRENT (AMP) IBI. BASE CURRENT (AMP) FIGURE 6 - SWITCHING BEHAVIOR versus TEMPERATURE ICM ~ 3.5 A.IB· 1.5 A. LB = 14 I'H FIGURE 7 - SWITCHING BEHAVIOR venus TEMPERATURE ICM = 4.5A.IB= 1.75A. LB- 81tH 1 .",- 1.5 9.5 ]: IS / 1 0.5 Z o o ./ /' >= ~ ~ 1 100 80 60 120 140 L /"" 7 If / o.5 ./ 8 40 /' ,.. If V 7.5 :t 0 8 20 Iy 5 ~ / V I. 6 160 20 40 TC. CASE TEMPERATURE (DC) 60 80 100 120 140 FIG~RE 8 - OPTIMUM DRIVE CONDITIONS FIGURE 9 - SWITCHING BEHAVIOR ve,sus ICM . 1 20 i ~ ... III a: a: ::> '" - ,.-- 'I;,'" 5'~K 1. I'-... 1 ! ~ NOMINAL 15 1 I-:-.. ttOlt/lttA,/:"--- o. 5 o 3 3.5 '- LB ............. 4 160 TC. CASE TEMPERATURE (DC) -... 4.5 rF iz c c: ' 1.5 ...'" '>="' .3 ~ ~ 9 ............ ............. ~Olt/lttA,£_ 7 Is ~ ........ 1 r-----..l'-o. ~ :t,.. ~ o. 5 ~ --- 8 NOMINAL If 6 ~5 4 3 o . 5 0 3.5 4.5 ICM. COLLECTOR CURRENT lAMP) ICM. COLLECTOR CURRENT (AMP) 1-396 2 .. BU207, BU208 FIGURE 10 - THERMAL RESPONSE I;::~IIIIII'IIIIIIIII~-III·I-I ~:::~ ~ ~ UUl W~ !.l- n III - i= 0.21=1;:+~;j:Umt=~=1dO~.05:u;~-:q~:a~~mt=tt P(pkl n ..... -~ ~ V -j.!l..\2--1 ffi "~rvrl. u, '. ... J;.~2 .01 02 ~.~~~:O-tll~2 ~:~ APPROPRIATE 0 CURVEI II II, FOR~8JC,ltI,VALVE " ••--+-11-+++ 111 ++1 I O.lm IIIII R8JC -1.6 DCIW Max 0 CURVES APPLY FOR POWER PULSE TRAIN SHOWN REAO TIME Attl TJ(pkl- TC'PlpkI Z8JC(tll I I 111111 I IITT p in n. ~ n, l1li .1 0. 0.2 2 5 10 20 50 100 200 500 100 t, TIME (mSI , FIGURE 11 - COLLECTOR SATURATION REGION ~ 2.B o ~ \ FIGURE 12 - OC CURRENT GAIN 20 ... 2.4 VCE' 5 V TJ"IOODC I w ~ s: 2 ffi 1.6 - -\IC'2A - ! 1.2 t:: ,;, r- 1\ 0.8 8 0.4 ij 0 ... 4.5 A 3.5A 4A 3A \ _\ o ~ '" _\ -~ \ "- \. ~ 0.5 "" ~ 3 2,0 0.05 007 0.1 0.7 0.2 0.3 05 0.7 I IC. COLLECTOR CURRENT IAMPI FIGURE 14-MAXIMUM FORWARD BIAS SAFE OPERATING AREA FIGURE 13 - "ON" VOLTAGES 1.4 I I I 1.2 1 0.8 o 0.6 ; > -- VSEI ..tl @IClis • 2 1--1--- ...- 0.4 0.2 ::;; ~ f-lOODC 'I .7 / 25'C I 0.2 0.3 '""S t~ - 0.5 0.7 ~ .'- 20'= 1~~-= 200- TC<950 C BONDING WIRE LIMIT .1 '" THERMAL LIMIT SECOND BREAKDOWN LIMIT 500 .~~ DUTY CYCLE'" 1% 3 0.02 ~~~ ~O.01 de BU2D1 0.005 IC. COLLECTOR CURRENT IAMPI 10 ..... 05 ~ 0.2 ~ Vf1Iii'@ IC;IS '12 0.1 f- r.t.'-II!I~A~; 1 leM (MAX)) ffi 100.t o 0.05 0 5 TJ'25',:/ o \. \. \. lB. BASE CURRENT IAMPI ~ w ..... 7 \ 0.3 ~ ~ 25 DC \ \!U~08 0.002 0.001 I 10 20 50 100 200 500 VeE. COLLECTOR·EMITTER VOLTAGE (VOLTS) 1-397 1000 2000 BU208D ® MOTOROLA IIJ.--_ _ _-. ,. . . . , 5 AMPERES NPN SILICON HORIZONTAL DEFLECTION TRANSISTOR WITH INTEGRATED DAMPER DIODE NPN $ILlCON POWER TRANSISTORS ... specifically designed for use in large screen color deflection circuits 1500 VOLTS 60 WATTS • VCES= 1500 V; VCEO(sus) = 700 V (min) • Low saturation: VeE(sat) = 1.0 V (max) @ Ie = 4.5 Adc MAXIMUM RATINGS Symbol Value Unit Collector-Emitter Voltage VCEO 700 Vdc Collector-Emitter Voltage (RBE = 0) VCES 1500 Vdc Emitter Base Voltage VEB 5.0 Vdc Collector Current - IC ICM 5.0 7.5 Adc Base Current - Peak IB 3.5 Adc Total Device Dissipation TC = 25°C Derate above 25°C Po 60 0.666 Watts W/oC TJ. Tstg -6510 115 °C Rating Continuous - Peak Operating and Storage Junction Temperature Range THERMAL CHARACTERISTICS Characteristic Thermal Resistance, Junction to Case NOTES: 1. DIMENSIONS 0 AND V ARE DATUMS. 2. IS SEATING PLANE AND DATUM. FIGURE 1 - POWER DERATING .0 f\ 8 3. POSITIONAL TOLERANCE FOR MOUNTING HOLE Q: CASE COLLEtrO. I .11.1310.0051@) I T Iv@) I FOR LEADS: \ 1 • 11.1310.005l@)T I v@) I 0@)1 4. DIMENSIONS AND TOLERANCES PER ANSIY14.5,1913. \ 1\ .6 m STYLE 1 PIN 1. BASE 2. EMITTER DIM A \ • C .4 o \. E F G H \ 2 J I\. a 25 50 75 100 \. 125 150 175 200 Tc. CASE TEMPERATURE (OC) CASE 1-05 TO-204AA (Type) (Formerly TO-3) 1-398 BU208D ElECTRICAL CHARACTERISTICS (TC" 25°C unless otherwise noted) I Characteristic I Symbol Min Max Unit VCEO(sus) 700 - Vdc ICES - 1.0 mAde IESO - 300 mAde VF - 2.0 Vdc VCE(sat) - 1.0 Vdc VBE(sat) - 1.5 Vdc OFF CHARACTERISTICS Collector-Emitter Sustaining Voltage (1) (IC" 100 mAde, IS" 0, L" 25 mH, Vcl amp " BOO V) Collector Cutoff Current (VCE = 1500 Vdc, VSE = 0) Emitter Cutoff Current (VES = 5.0 Vdc, IC = 0) ON CHARACTERISTICS (1) Diode Forward Voltage (IF" 4.0 AI Collector-Emitter Saturation Voltage (IC = 4.5 Adc, IS = 2.0 Adc) Base-Emitter Saturation Voltage (IC" 4.5 Adc, IS " 2.0 Adc) SWITCHING CHARACTERISTICS (Inductive Load) (IC (end) = 4.5 Adc, VCC" 140 Vdc, IS (end) = I.B A, LC = 0.9 mH, LS = 10 I'H) (1) Pulse Test. PW = 300 IJ-S. Duty Cycle ~ 3%. 1-399 BU40I ® 1U407 MOTOROLA 7.0 AMPERE NPNSIUCON POWER TRANSISTORS 60 WATTS 150 and 200 VOLTS NPN POWER TRANSISTORS These devices are high voltage, high speed transistors for horizontal deflection output stages of TV's and CRT's. • High Voltage: VCEV = 330 or 400 V • Fast Switching Speed: tf = 750 ns (maxi • Low Saturation Voltage: VCE(satl = 1.0 V (maxi @ 5.0 A • Packaged in Compact JEDEC TO-220AB r-o -'I- MAXIMUM RATINGS Rating Symbol BU406 Unit Collector-Emitter Voltage VCEO 200 150 Vdc Collector-Emitter Voltage VCEV 400 330 Vdc Collector-Base Voltage VCBO 400 330 Vdc Emitter Base Voltage VEBO 6.0 Vdc IC 7.0 10 15 Adc Base Current IB 4.0 Adc Total Device Dissipation, TC = 25"<: Derate above TC = 25"<: Po 60 0.48 Watts W/"C TJ,TStg -65 to 150 "<: Collector Current - Continuous Peak Repetitive Peak (10 msl Operating and Storage Junction Temperature Range THERMAL CHARACTERISTICS Symbol Max. Unit Thermal Resistance, Junction to Case RIlJC 2.08 OC/W Thermal Resistance, Junction to Ambient RIlJA 70 OC/W TL 275 "<: Characterlltlc L88d Temperature for Soldering Purposes: 118" from Case for 5.0 Seconds A . ,I tu lUI J~r I i K BU ! l00"'C - 25'C 0: ~ !z "- I '"""""'- Vee = 5.0V 30 ~ ,,~ ~ ~ g ~ 20 de 1,0 <..> 0.1 .Y - ----TC Banding Wire limit Thermal Limit Second Breakdown Umit 25'C ~U~, ;::::::;:;; BU 10 0.1 0.2 0.3 0.5 0.7 1.0 2.0 10 5.0 7.0 10.0 Ie COIllCTOR CURRENT lAMPS) 1-401 2.0 3.0 5.0 7.0 10 20 30 50 70 VCE, COIllCTOR - EMlmR VOLTAGE IVOLTS) 100 = 200 BU806 BU807 ® MOTOROLA 8.0 AMPERE DARLINGTON NPN POWER TRANSISTORS NPN DARLINGTON POWER TRANSISTORS 60 WATTS 150 and 200 VOLTS These Darlington transistors are high voltage, high speed devices for horizontal deflection circuits in TV's and CRT's. • High Voltage: VCEV = 330 or 400 V • Fast Switching Speed: tc = 1.0 p's (max) • Low Saturation Voltage: VCE(sat) = 1.5 V (max) • Packaged in JEDEC TO-220AB • ----.,I I I I I I I I I Damper Diode VF is specified. VF = 2.0 V (max) ____ JI MAXIMUM RATINGS Symbol BUB06 BUB07 Unit Collector-Emitter Voltage VCEO 200 150 Vdc Collector-Emitter Voltage VCEV 400 330 Vdc Collector-Base Voltage VCBO 400 330 Vdc Emitter-Base Voltage VEBO 6.0 Vdc IC 8.0 15 Adc Adc Rating Collector Current - Continuous -Peak Emitter-Collector Diode Current IF 10 Base Current 18 2.0 Adc Po 60 0.48 Watts W/oC -65 to 150 °c Total Device Dissipation, TC = 25°C Derate above TC = 25°C Operating and Storage Junction Temperature Range TJ, Tstg ANSIY145M,1982 5 CONTftOlLlNGDIMENSION INCH r-- ~ A B C THERMAL CHARACTERISTICS Symbol Max Unit Thermal Resistance. Junction to Case R9JC 2.08 °C/W Thermal Resistance, Junction to Ambient R9JA 70 °C/W lead Temperature for Soldering Purposes, TL 275 °c Characteristic NOTES I DIMENSIDNHAPPLIESTOAULEADS 2 DIMENSION L APPUES TO LEADS 1 AND 3 3 DIMENSION Z DEFINES A ZONE WHERE ALL 8DDYAND LEAD IRREGULARITIES ARE ALLOWED 4 OIMENSIOMNG AND TOLERANCING PER 1/8" from Case for 5.0 Seconds 0 F G H J K L N Q R S T U V Z ~ fW ~ MAX ~ 0190 ~ 965 406 064 361 2.41 279 0.36 1270 114 483 254 2.04 1.14 5.97 0.00 1.14 10.29 4.82 089 373 267 393 0.56 1427 139 5.33 304 2.79 1.39 6.48 1.27 - 2.03 - 0620 ~~ . 0147 0095 0110 0014 0500 0045 0.190 0100 0.080 0.045 0.235 0.000 0.045 0105 0155 0022 0562 0.055 0.210 0.120 0.110 0.055 0.255 0.050 - O.OBO CASE 221A-02 TO-2Z0AB 1-402 - BU806,BU807 III =25°C unless otherwise noted) ELECTRICAL CHARACTERISTICS (TC Characteristic OFF CHARACTERISTICS ICES - - ICEV - - 100 I'Ade lEBO - - 3.0 mAde Collector-Emitter Saturation Voltage (IC =5 0 Ade. 'B =50 mAde) VCE(sat) - - 15 Vde Base-Emitter Saturation Voltage (IC =5.0 Ade. 'B =50 mAde) VBE(sat) - - 24 Vde VF - - 2.0 Vde ton - 035 - I'S ts - 0.55 - I'S tf - 0.20 - I's te - 0.40 1.0 I's BU806 BU807 Collector-Emitter Sustaining Voltage (1) (lc = 100 mAde. IB =0) Collector Cutoff Current (VCE =Rated VCBO. VBE =0) Collector Cutoff Current (VCE =Rated VCEV. VBE(off) 200 150 VCEO(sus) =6.0 Vde) Emitter Cutoff Current (VEB =6.0 Vde. IC =0) - Vde 100 I'Ade ON CHARACTERISTICS (1) Emitter-Collector Diode Forward Voltage (IF =4.0 Ade) SWITCHING CHARACTERISTICS Turn-On Time (Resistive Load. VCC = 100 Vde. IC =5.0 Ade. 'Bl =50 mAde. IB2 =500 mAde) Storage Time Fall Time Crossover Time (IC =5.0 Ade. IBI =50 mAde. VBE(off) =4.0 Vde. Velamp =200 Vde. L =500 I'H) (1) Pulse Test Pulse Width ~ 300 1J,S, Duty Cvcle ~ 1% FIGURE 2 - SAFE OPERATING AREA (FBSOA) FIGURE 1 - DC CURRENT GAIN 20 600 40 z 300 <1 0 i '" .Oms 1.0ms ,r ~OI'S /' 20 de V B g 10 0 - ----r- /V ~ ~ is0 Banding Wire Limit Thermal Limit I" Second Breakdown limit ..... 0 0 0 "-, 10 non-repetitive =5 0 V or- VCE TJ =25°C -)- 0.2 0.3 0.5 0.7 1.0 2.0 30 50 70 10 TC 10 Ie. COLLECTOR CURRENT (AMPS) BUBO) 25"C 60 100 veE. COLLECTOR·EMITTER VOLTAGE (VOLTS) 1-403 - 50 ms BUB06 200 300 - D40Cl D40C2 D40C4 D40C5 MOTOROLA DUOWATT NPN SILICON DARLINGTON AMPLIFIER TRANSISTORS NPN SILICON DARLINGTON AMPLIFIER TRANSISTORS · .. designed for amplifier and driver applications where high gain is an essential requirement, low power lamp and relay drivers and power drivers for high-current applications such as voltage regulators. • High DC Current Gain hFE =40,000 (Min) @ IC =200 mAdc - D40C2, 5 • Collector· Emitter Breakdown Voltage BVCEO = 40 Vdc (Min) @ IC = 10 mAdc - D40C4, 5 • Low Collector-Emitter Saturation Voltage VCE(sat) = 1.5 Vdc (Max) @ IC = 500 mAdc Tab forming and TO-ES 'aad forming available on special requal't. • Duowatt Package 2 Watts Free Air Dissipation @ TA = 250 C a MAXIMUM RATINGS Symbol D40Cl.2 I D40C4,5 Unit Collector-Emitter Voltage VCEO 30 I 40 Vdc Collector-Emitter Voltage VCES 30 I 40 Vdc Emitter-Base Voltage VEBO 13 Vdc IC 0.5 1.0 Adc Rating Collector Current - Continuous Peak (I) Base Current - Continuous IB 100 mAde Total Power Dissipation @TA = 2SoC Derate above 25°C (2) Po 1.67 13.3 Watts mW/oC Total Power Dissipation@Tc=2SoC Derate above 25°C Operating and Storage Junction Temperature Ranee Solder Temperature, 1/16" from Case Po 6.25 50 Watts mW/oC TJ. Tstg -55 to +150 °c - 260 °c for 10 Seconds THERMAL CHARACTERISTICS Characteristic Symbol Thermal Resistance, Junction to Ambient Thermal Resistance, Junction to Case R6JA I R6JC I I I Max Unit 75 °CIW 20 I CIW (1) Pulse Width" 25 ms, Duty Cycle" 50%. (2) The actual power dissipation capability of Duowatt transistors are 2 W @TA = 2SoC. STYLE 1: PIN 1. EMITTER 2. BASE 3. CO LLECTO R 4. COLLECTOR o MILLIMETERS DIM MIN MAX A 21.84 22.35 8 9.91 10.41 C 4.39 4.65 D 0.58 0.74 F 3.56 4.06 G 2.41 2.67 H 1.70 1.96 J 0.48 0.66 K 12.19 12.95 L 1.65 2.03 N 9.91 10.16 Q 3.56 3.81 R 1.0 1.7 T 7.87 9.14 TO-202AC CAse 306-04 1-404 0.3611 D40C1,D40C2,D40C4,D40C5 l1li ELECTRICAL CHARACTERISTICS ITA: 2S o C unles. otherwise noted.! I I Charocteriotic Symbol Min Max 30 40 - Unit OFF CHARACTERISTICS Collector-Emitter Breakdown Voltage (I) (lC: 10 mAde, VBE : 0) Vde BVCEO D40Cl,2 D40C4,S Collector Cutoff Current (VCB = RatedVCES, IE: 0, TJ: IS0 0 C) ICBO - 20 I'Ade Collector Cutoff Current ICES - 0.5 I'Ade lEBO - 100 nAde 10,000 40,000 60,000 - (VCE s Rated VCES, VBE : 0) Emitter Cutoff Current NEB: 13 Vde, IC = 0) ON CHARACTERISTICS (1) Current Gain tiC = 200 mAde, VCE - hFE =5.0 Vde) D40Cl, 4 D40C2,5 Collector-Emitter Saturation Voltage tiC = 500 mAde, IB = 0.5 mAde) VCE(sat) - 1.5 Vde Base-Emitter Saturation Voltage tiC = 500 mAde, IB = 0.5 mAde) VBE(.at) - 2.0 Vde Ccb - 10 pF hie 1.0 - - DYNAMIC CHARACTERISTICS Collector Capacitance (VCB = 10 Vde,lE = 0, f : 1.0 MHz) High Frequency Current Gain tiC = 20 mA, VCE = 5 Vde, I = 100 MHz) Input Impedance tiC =20 mA, VCE : hie 50 - Ohms 5 Vdc, I = 1 kHz) (1 I Pulse Test: Pulse Width.; 300 "', Duty Cycle'; 2.0%. TYPICAL CHARACTERISTICS FIGURE 1 - ACTIVE-REGION SAFE-OPERATING AREA i ~~ \OO~s 1 O.5 '"o 0.2 .. o. 1 - 0.05 0,02 0.5 transistor: average junction temperatura and second breakdown. Safe operating area curves indicate Ie-VeE limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curvet indicate. The data of Figure 1 is based on T J(pkl = 150OC; TC is variable depending on conditions. Second breakdown pulse limits are valid lor duty cycles to 10% provided T J(pkl",1500 C. T J(pk) may be calculated from the data in Figure 6. At high case temperatures, thermal limitations will reduce the power that can be handled to values less man the Iimitations imposed by second braa kdown. de ~ 8~ There are two limitations on the power handling ability of a 1m. de TA' 250 e I 11111 Te,' 25 0 e '\. il ... .J TJ = lSOoe Bonding Wire Limit Thonnol Limit,Single Pulse, Te' 250 e Second Brnkdown Limit I I I 111111 I\: I 10 20 VCE, COLLECTOR·EMITTER VOLTAGE (VOLTSI 50 1-405 D40C1,D40C2,D40C4,D40C5 TYPICAL CHARACTERISTICS (continued) FIGURE 2 - DC CURRENT GAIN FIGURE 3 - "ON" VOLTAGES 300 k Vce=5.0V 200 k - TJ = 2~a~ I ~'. 6 ;;: 70 k 50 k ~1.4 25aC ~3O k 10 k 7.Ok 5.0k VCE(mt) Olclla = 500 o.a 3.ok 20 30 50 70 100 200 300 500 700 1.0 k IC. COLLECTOR CURRENT (mA) 20 III I II ... ~ ~ 1.6 200 rnA ~1. 2 500 rnA , g 0.8 ~ 11111 S-0.30 r... -0.3540 ...... ~ ~ 5.0 500 1.0 k 2.0 k 5.0 k -0.45 20 ~. BVB for VaE -65aC to 25aC 110 i-O· 10 20 50 100 200 lB. BASE CURRENT "'A) - U g; -0.25 i'- ~125aC 25 aC to 125aC w II III 1.0 2.0 I JJ.I.l .... 8-0.20 1.0 A Ic=50mA > 0.4 0.5 25aC 10 125aC 'BVC for VCE(saU 13 ~E'-O.15 ~ 2.0k Hili 'Appli" for Iclla" hFE/2 ~ -0.5 ffi -0.10 ~2.0 8 +0.5 3- > :;; 100 200 300 500 700 1.0 k IC. COLLECTOR CURRENT (mA) 70 FIGURE 5 - TEMPERATURE COEFFICIENT u TJ = 25 ac o 50 30 FIGURE 4 - COLLECTOR SATURATION REGION Ui 2. 4 ~ i-'" IIIII 0.6 2.0 k .... ~ VaE(an)" VC~ "5~ V ~1. 2 o > >1.0 -55aC o ~ ~ I ~ZO k u .... ralE(r110Ictl~ "~ o !'" ~ I.a TJ = 125aC 100 k z 2.0 I 30 50 70 11111 IIIII I 100 200 300 500 700 1.0 k IC.COLLECTOR CURRENT (mA) 2.Qk FIGURE 6 - THERMAL RESPONSE 1.0 0.7 0·0.5 0.5 ~~ 0.3 ~~ 0.2 ... '" 5~ 0.1 -0:05 Single Pulse ~~ 0.05 0.02 0.01 - - b;;jjiii ~ 0.1 !~ 0.01 ~50.D3 .... :~ - - z,JCIt!= rh) R,JC RBJC = 20aCNI Max illJl -- Singl,Pul. z,JA(t1" rlt! R'JA RBJA = 75.CNI Ma. P(pk) ~O. I 0.01 0.02 oCURVES APPLY FDRPOWER -t~j 0.01 .1'" Duty Cycfe, 0 = 11112 0.05 0.1 0.2 0.5 1.0 2.0 5.0 10 20 50 I,TIME(ms) 1-406 100 200 500 1.0 k 2.Q k PUlSE TRAIN SHOWN READ TIME AT II TJ(pk) -TC" p(PkI R,JC,tI 5.Ok 10k 20k 10k 1• • NPN ® 0400 PNP MOTOROI.A 0410 DUOWATT COMPLEMENTARY SILICON ANNULAR AMPLIFIER TRANSISTORS COMPLEMENTARY SILICON AMPLIFIER TRANSISTORS . . . designed for general·purpose, medium·voltage, medium power amplifier and driver applications; series, shunt and switching regu· lators, and low and high frequency inverters and converters. • Duowatt Package - 2 Watts Free Air Dissipation @ T A = 25 0 C Tab forming and TO-5 lead forming available on special request. c;:;$-' MAXIMUM RATINGS Rating Symbol 0 0 0 ~ ~ ~ ~ a:· ~:- ~~. VCEO 30 45 Collector-Emitter Voltage VCES 45 60 Emitter-Base Voltage VEBO Collector-Emitter Voltage Collector Current Continuous Operating and Storage Junction Temperature Range Solder Temperature, 1/16" from Case for 10 Seconds ~g Unit 75 Vdc 90 Vdc . 5.0 Vdc 1.0 Adc 2.01 0 0 _ mAde IC Peak (11 Base Current Total Power Dissipation @TA = 25°C Derate above 25°C (2) Total Power Dissipation @ T C - 2SoC Derate above 2SoC ;0"".-~ -~ o~ 60 75 'B Po 1.67 13.3 Watts mW/oC Po 6.25 50 mW/oC TJ, T stg ~ Watts -55 to +150 ---... °c °c 260 THERMAL CHARACTERISTICS Symbol Max Unit Thermal Resistance, Junction to Ambient ReJA 75 Thermal Resistance, Junction to Case ReJC 20 °CIW °C/W Characteristic (11 Pulse Test: Pulse Width .. 300 ~s. (21 The actual power disSipation capability of Duowatt tranSIstors are 2 W @ T A -= 25°C. STYLE \. '" ,,,,m. 2. BASE 3. COLLECTOR 4. COLLECTOR 0:l'-iji jK oj~~~G L RrN-td Lr--:f...l 1~-=t'J MILLIMETERS DIM MIN MAX A 21.84 22.35 8 9.91 10.41 439 4.65 C 0 0.&11 074 4.06 3.56 F 241 2.67 G H 1.70 196 0.48 0.66 J K 1219 1295 L 165 2.03 N 9.91 10.16 n 3.56 3.81 .0 .75 R .8 9;14 T INCHES MIN MAX 0.860 O.BBO 0.390 0410 0.173 0.183 0023 0.029 0140 0.160 0.095 0105 0.067 0.077 0.019 0.026 0.480 0.510 0.065 0.080 0390 0.400 0140 0.150 0.042 0.069 0.310 0.360 TO-202AC CASE 306·04 1-407 1 a~ :t D40D,NPN,D41D,PNP ELECTRICAL CHARACTERISTICS (TA ~ 250 C unless otherwise noted.) I I Unit Min Max 30 45 60 75 - ICES - 100 nAdc lEBO - 100 nAdc 0400/0410-1.4,7,10,13 0400/0410-2,5,8,11,14 50 120 150 360 04001.4,5,7,8,10,11 04101.4.5,7,8,10,11 0400/0410-2 10 10 20 - - 0.5 1.0 1.0 - 1.5 Vde 75 375 MHz - 12 18 Charactaristic Symbol OFF CHARACTERISTICS Collector-Emitter Breakdown Voltage (lc ~ 10 mAde, IB ~ Vde BVCEO 0) 04001,2/04101,2 .0400/0410-4,5 0400/0410-7.a 0400/0410-10,11,13,14 Collector Cutoff Current (VCE ~ Rated VCES) Emitter Cutoff Current (VEB ~ 5.0 Vdel ON CHARACTERISTICS (1) DC Current Gain (lc ~ 1.0 Ade, VCE = 2.0 Vde) Collector-Emitter Saturation Voltage 500 mAde,lB ~ Vde 0400/0410-1,2.4,5 040'0;7,8,10,11,13,14 04107,8,10,11,13,14 Base-Emitter Saturation Voltage ~ - VCE(s.tl (lC ~ 500 mAde,lB ~ 50 mAde) (lC - hFE (lC ~ 100 mAde, VCE ~ 2.0 Vde) VBE(s." 50 mAde) DYNAMIC CHARACTERISTICS Current Gain - Bandwidth Product (lC ~ 20 mA, VCE~ 10 Vde, I ~ 20 MHz) IT Collector-Base Capacitance pF Ceb (VCB ~ 20 Vdc, IE ~ 0, I ~ 1 MHz) (1) Pulse Test: Pulse Width'; 300 ~s, 0400 series 0410 series Outy Cycle'; 2.0%. TYPICAL CHARACTERISTICS FIGURE 2 - CAPACITANCES FIGURE 1 - CURRENT·GAIN-BANDWIDTH PRODUCT 00 vJJ 00 00 TJ =25°C ~ .,.,. 200 ~Jo~lse" ;;;.;.. ...J ..... I-"' V -lUL 1---"1-"' ~\J,Ues --"0410 saries --D40Dseries 10o~- ............ f"-. 0 0 '" ~ 0 0_ 10 3 10 20 30 50 10 100 200 300 500 2 0.1 - -.. 0 1 5- - 50 TJ - 25°C C.b 0.2 ..... ~ _~Cb, ~ - Applies for Rated VeRO I I 1111 0.5 10 VR, REVERSE VOLTAGE (VOLTS) IC' COLLECTOR CURRENT (mA) 1-408 20 50 100 D40D,NPN,D41D,PNP TYPICAL CHARACTERISTICS (continued) 400 200 z ~ '" ~ ....... z ~ c ~ 60 Z. ~ 100 a v~~ ° 110 V ....... V 40 '"-r--.," zslc :c '"0- K 80 u III TJ,12S0C zoo ~l50J §~ 100 _ 300 ~} ~ moc ;;: 0410 series FIGURE 3 - DC CURRENT GAIN 0400 series ~ 70 ~ 50 I--"" - -55°C 1.-0-- VCEol.0V 20 1.0 50 20 50 100 10 20 IC, COLLECTOR CURRENT ImAI 500 200 30 1.0 10k 5.0 2.0 10 50 20 100 200 500 1000 Ic, COLLECTOR CURRENT ImAI FIGURE 4 - "ON" VOLTAGE 1. 0 1.0 l I II TJ o 2socll!"" IIII'TJ ° 25 C Ijlll IVBE!"ti@ IC/IB:.! o. 8 ~ ].....V -111 w ~ 2:. O.6 '"~ >- :> c5 '" o. 4 > > VCEI"tl@IC/IB' 10 1.0 20 5.0 O. 4 o. 2 - o. 2 ~ I- .... 1-' VBE!onl@VCE ° 1.0 V w '"~ o VBElsati@"ICIIB! " °" 10 in J.I+-VBE!onl@VCE ° 1.0 V ~ o. 61-- j....1-' o.8 ~ o 10 20 50 100 200 IC, COLLECTOR CURRENT !mAI 500 10 1.0 k 5.0 2.0 I-- ..... t - VCEI..ti@IC/IB' 10 10 20 50 tOO IC, COLLECTOR CURRENT ImAI zoo 500 1.0 k FIGURE 5 - COLLECTOR SATURATION REGION ~ 0 JLPc o . 2: w ~ .. ~ o.8 ~ o 1.0 O. B '" !:; ~ O.6 ~ O.6 ~ ~ ~ ;;; 8 :!l > o. z Ic·l0mA SOmA 250 rnA 500 rnA LOA ~ O.4 ~ O. 4 o ~_ TJ '" 25°C '~" LOA ~·tn- N:nf IttI-H+Il 0 1111 0.05 0.1 0_2 0.5 ~~ ~ j 1Tii 1.0 2.0 5.0 10 20 IB, BASE CURRENT !mA) 50 100 200 o.Z 8 :!l > 500 0 0.05 0.1 ,... 0_2 0.5 1.0 Z.O 5.0 10 ZO IB, BASE CURRENT !mAI 1-409 50 100 200 500 D40D, NPN, D41D,PNP TYPICAL CHARACTERISTICS (continued) lIB FIGURE 6 - THERMAL RESPONSE 10 O. 7 D" 0 5 05 ~~ ~~ ~~ w~ iOw ..... l .... ~ 0.3 I- ~:i 0.2 ..... ~jji ~~ 007 Single Pulse ~.~ 0,05 ~~ 0,03 1\ 002 - - 01 F 0.05 01 ffiJ1 --0bJ SmglePulse 1 001 ZOJAIII" rIll ROJA ReJA' 750CIW Max Plpkl 0.02 0.01 ,1'" 001 ZOJe(l1 • r(ll ROJC ReJC' 200CIW Max Duly Cycle, 0 002 005 01 05 02 10 50 20 10 20 50 100 200 500 = 10k DCURVESAPPLY FOR POWER PULSE TRAIN SHOWN READ TIME AT 11 TJlpkl . TC " Plpki ROJCIII q/t2 20k 5.0k 10k 20k SDk lOOk t, TIME (ms) FIGURE 7 - ACTIVE·REGION SAFE·OPERATING AREA 040D series 0410 series 2.0k 1 i t- '" o ~ S ~ k 1-, 0: k :5. 700 '" 700 500 .... 300 TC t- ~ 25°C TA'250C de .... 200 II 100 70 501=- ~8 1\ TJ-150oC - BONDING WIRElIMIT THERMAL LIMIT, SINGLE PULSE SECOND BREAKDOWN LIMIT 3.0 5.0 7.0 10 20 30 50 VCE, COLLECTOR·EMITTER VOLTAGE (VOLTS) 70 I ' ... TC-250C ... "500~ \.. ''4. II O~..I=_Bonding Wire limit 0 0 2,0 de de TA'25OC 10O F F TJ f----- (Appltes Below Rated VCEol 30 o 2 1.0 " 300 200 '" o " 10Li- 1.01'Qs 500 :: I...... de .... , :". lOOps \.10ms 1.0 k - Second Breakdown Limit (Applies Below Rated VCEO~ 20 1.0 100 -Thermal limit. Single Putse. T C - 25 0 C 2.0 3.0 5.0 7.0 10 20 30 50 70 100 VCE, COLLECTOR·EMITTERVOLTAGE (VOLTS) There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate Ie-VeE limits_of the transistor The data of Figure 7 is based on T J( k) = 150°C; TC is variable depending on conditions. Second breardown pulse limits are valid that must be observed for reliable operation; i.e., the transistor calculated from the data in Figure 6. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown. for duty cvcles to 10% provided TJ(pklo;;; ISOoC. TJ(pk) must not be subjected to greater dissipation than the curves Indicate. --" FIGURE 8 - POWER DERATING 1.0 ~ "- ~ O.B '"to : ~ r---...... Thermal Deratmg " ' O. 6 '"z "" "'" ~ 0.4 c ~ --I'-- r- t'... ~ '"~ Second Bre~kdown Derating 0.2 o o "-,. r--... 20 40 60 BO 100 TC, CASE TEMPERATURE (OCI 1-410 120 140 160 mav be NPN ® PNP 040El 041El 040E5 041E5 040E7 041E7 MOTOROLA DUOWATT COMPLEMENTARY SILICON ANNULAR AMPLIFIER TRANSISTORS COMPLEMENTARY SILICON AMPLIFIER TRANSISTORS ... designed for general·purpose, medium·voltage, medium power amplifier and driver applications; series, shunt and switching regu· lators, and low and high frequency inverters and converters . • Duowatt Package - 2 Watts Free Air Dissipation @ T A = 25 0 C Tab forming and TO-5 lead forming available on special raquest. a-tr' MAXIMUM RATINGS Rating Collector-Emitter Voltage Collector-Emitter Voltage Emitter-Base Voltage Collector Current Continuous Peak (1) Base Current Total Power Dissipation @ TA = 2SoC Derate above 2SoC (21 Total Power Dissipation @TC - 2SoC Derate above 2SoC Operating and Storage Junction Temperature Range Symbol D4OI41E1ID40141E51D40/41E7 Unit Vdc 80 30 60 VCEO Vdc 40 70 VCES L 90 Vdc 5.0VE80 2 Adc IC 3 0.5 mAde 18 Watts 1.67Po 1 3 . 3 - mW/oC Watts 8 Po mW/oC 64 TJ,Tstg .......- 55to+150°c I I I - . Solder Temperature, 1/16" from Case for 10 Seconds 260- °c THERMAL CHARACTERISTICS Characteristic Thermal Resistance, Junction to Ambient Thermal Aesistance. Junction to Case NOTES I Symbol I Max I Unit I I ROJA ROJC I I 75 I I °CIW °C/VI 15.6 1. Pulse Test: Pulse Width" 300 1'5. 2. The actual power dissipation capability of Duowatt transistors are 2 W@ TA = 25°C. 1 ~'"'" ", ," tin II iI 2 BASE 3 COllECTOR 4 COllECTOR K D- - L f-.-G R r-N::t........:l ~~-=t~ MIlliMETERS DIM MIN MAX A 21.84 22.35 9.91 10.41 B 439 4.65 C 0.74 0.58 D 4.06 F 3.56 2.41 2.67 G H 1.70 1.96 0.48 0.66 J K 12.19 12.95 l 1.65 2.03 9.91 10.16 N Q 3.81 3.56 1.75 1.07 R 7.87 9.14 T INCHES MIN MAX 0.860 0.880 0.390 0.410 0.173. 0.183 0.023 0.029 0.140 0.160 0.095 0.105 0.067 0.0)) 0.019 0.026 0.480 0.510 0.065 0.080 0.390 0.400 0.140 0.150 0.042 0.069 0.310 0.360 TO-202AC CASE 306.04 1-411 NPN D40E1, D40E5, D40E7 PNP D41E1, D41E5, D41E7 lIB ELECTRICAL CHARACTERISTICS ITA = 25°C unl... otherwise noted.} I I Characteristic Symbol Min Max 30 60 80 - Unit OFF CHARACTERISTICS Collector-Emitter Breakdown Voltage IIc = Vde BVCEO D40El/D41El D40E5/D41 E5 D40E7/D41E7 10 mAde; IB = 0) Emitter Cutoff CUrrent (VEB = 5.0 Vde, IC = 0) IE80 - 100 nAdc Collector Cutoff Current IVCE = Rated VCES) ON CHARACTERISTICS (1) ICES - 100 nAde DC Current Gain hFE 50 10 - VCElsat) - 1.0 Vde vBElsat) - 1.3 Vde 75 375 MHz - 12 18 pF - IIc = 100 mAde, V CE ~ 2.0 Vde) IIc = 1.0 Ade, VCE = 2.0 Vde) Collector-Emitter Saturation Voltage IIc = 1.0 Ade,lB = 100 mAde) Base-Emitter Saturation Voltage IIc = 1.0 Ade, IB = 100 mAde) DYNAMIC CHARACTERISTICS Current Gain -Bandwidth Product lic = 20 mA, VCE = 10 Vde, I IT ~ 20 MHz) Collector-Base Capacitance D40E series D41E series IVCB = 20Vdc,IE = 0, 1=1 MHz) Ccb - II) Pulse Test: Pulse Width .. 300 I'S, Duty Cycle .. 2.0%. TYPICAL CHARACTERISTICS FIGURE 2 - CAPACITANCES FIGURE 1 - CURRENT GAIN-BANDWIDTH PRODUCT ~lo~'..ries v)J TJ"25 QC ...... 0 V V 200 1--'"'1--' ..... -Ill IJ!!i" 04i ........ r---.. I'-. ~ ~ "' u Z ""t: ~ 0 u' 0 0 10 20 30 50 70 100 200 300 - _ .. 041E series I 100 - - SOD IC. COLLECTOR CURRENT ImA) 1-412 0 0 CeD 0 20 _ 0 7 53 2 0.1 0.2 TJ -.250 C ~ - - - 04DEserin -1 dell T, - Applies for Rated VCBO II IIII 0.5 I 10 20 VR. REVERSE VOLTAGE IVoLTS) SO 100 NPN D40E1, D40E5, D40E7 PNP D41E1, D41E5, D41E7 III TYPICAL CHARACTERISTICS (continued) D41E series D40E series FIGURE 3 - DC CURRENT GAIN 400 200 z ~~ V iii I <> :# po.. TJ = 125°C .........., 200 z ~lsoJ ..... 100 _ 80 u 300 ~J~ 125°C 2slc C ~ ~ i ~ 100 V~~. rov ""'" ",. 40 u ~ ... 70 - -55°C ::> 60 -... r-.' co ~ t..-- ~ 50 VCE=l.oV 20 10 5.0 20 10 20 50 100 500 200 30 1.0 10k 5.0 2.0 10 SO 20 100 200 500 1000 IC. COLLECTOR CURRENT ImA) IC. COLLECTOR CURRENT ImA) FIGURE 4 - "ON" VOLTAGE 0 1111~J=25bc ~ w co 1.0 ~ II [lITI I 1.1. VBEI .. l)@ICIlB = 10 8 ~ 06 II T :;..... s V~E J] V r-- o.8 > >' I .... 1=--- VBElsat)@ICIlB = 10 VBEI.n)@VCE = 5.0 w ~<> IIIIIII TI1lIT ~ O.6 VBElon) @ o~ 0.4 > >' O. 4 - o. 2 0.2 -- o TJ=25oC 10 - VCE{sat)@ICIIB= 10 2.0 SO 10 VCEI ..t)@ ICIIB = 10 o 20 50 100 200 IC. COLLECTOR CURRENT ImA) 500 1.0 1.0 k 2.0 5.0 10 20 50 100 IC. COLtECToR CURRENT {mAl 200 500 1.0 k FIGURE 5 - COLLECTOR SATURATION REGION _ 10 1 .J !:c S c T\ 2sl > ~ ~ 0.8 '"~ co ~ c ~ > 0.6 "'~ O.8 o.6 ffi ~ 0.4 \ c 0.2 8 w ~ TJ=2S·C Ic=10mA SOmA 25DmA 500mA 1.oA :::: ! 'i ~_ 1. 0 0 ~=lri' ~~ 1111t+ W 0.05 0.1 0.2 0.5 ~~ ~ 1m 5.0 10 20 50 1.0 2.0 lB. BASE CURRENT (mA) 1.0 A 0.4 = ~ 0.2 8 ~ 100 200 500 0 0.05 0.1 0.2 0.5 1.0 2.0 5.0 10 20 18. BASE CURRENT (mAl 1-413 50 100 200 500 NPN D40E 1, D40E5, D40E7 PNP D41E1, D41E5, D41E7 TYPICAL CHARACTERISTICS (continued) FIGURE 6 - THERMAL RESPONSE I.D D.1 O-D.5 0.5 .- ~! 0.3 -0.2 0.2 o-:E 0.1 :;:; 0.115 ~~ &U~ O. I Si..tePul. ~~ 0.05 "i:'~ -~ ~ !~O.ol <>;;; "'" ,:::::;1' ~~ z,JC(t) - ,(t) RUC R6JC' 15.60CNI Max pErUl Singl.Pulse 0.03 '" 0.02 0.02 Z,JA(tl • ,(t) R.JA R8JA'" 750 CIW Max D Curves Apply for Power Pulse Train Shown Read Tim. at t1 TJ(pkl-TC' Pipki IIfJc(tl Duty Cyele, D = 11/12 -t~j 0.01 .1" I 0.0 I - - 0.01 0.02 0.05 0.1 0.5 0.2 1.0 2.0 5.0 10 20 50 t. TIME (m~ 100 200 500 1.Ok 2.Dk 5.ok lDk 20k 50k lOOk FIGURE 7 - ACTIVE-REGION SAFE-OPERATING AREA D40E series !ffi 1m. ~ ..,!DOI4 ... 0.5 .... a: D. 1 ~ 0.05 ~o.D t= 2~ D.D 1~ - I o ----Thermal Limit,SinglaPulse 0.0 1~ 10 ~ a: o "- r- !I! for duty cycles to 10% provided TJ(pk)';; 150°C. TJ(pkl may be Second Breakdown Derating r-.... I'... O.4 FIGURE 8 - POWER DERATING I" "- D.2 "- 0 20 40 6D 80 100 calculated from the data in Figure 6. At high case temperatures, thermal limitations Wilt reduce the power that can be handled to values less than the limItations imposed by second breakdown. Thermal Derating ' " O.6 10 The data of Figure 7 is based on T J(pk) = 150 0 C; TC is variable depending on conditions. Second breakdown pulse limits are valid - --"- 0: 2 Tr 250C Bonding Wire Limit Thermal Limit, Singte Pulse ---Seeond Breakdown limit (Applies Below Rated VCEO) 10 20 50 VCE. COLLECTOR-EMITTER VOLTAGE (VOLTS There are two limitations on the power handling ability of a ~ I--. l"> - - - - 100 transistor: average junction temperature and second breakdown. Safe operating area curves indicate Ie-VeE limits of the transistor that must be observed for reliable operation; Le., the transistor must not be subjected to greater dissipation than the curves i~dicate. ~ ffi o ~ ~O.O 2~ 10 20 50 VCE. COLLECTOR-EMITTER VOLTAGE (VOLTS) '"z 0.5 :5 O. 1 t; j 0.05 ---Second Breakdown limit (Appli .. Balow Rated VCEO) ~~ de det- t:-r- TC" 25°C TA-250C B 0.2 TJ =25°C Bonding Wire Limit lo.8 1 ~ 1"- ... 1.0 1m. ts:,100 ... ~ ic =25°C de TA =25°C 'j 1 I ::> ~ .... de a: D.3 a: o D41E series lDO 120 TC. CASE TEMPERATURE (OCI 1-414 " 140 160 NPN ® 040K PNP MOTOROLA 041K DUOWATT COMPLEMENTARY SILICON DARLINGTON AMPLIFIER TRANSISTORS · .. designed for amplifier and driver applications where high gain is an essential requirement, low power lamp and relav drivers and power drivers for high·current applications such as voltage regulators. • Low Collector-Emitter Saturation Voltage VCE(sat) = 1.5 Vdc (Max) @ IC = 1.5 Adc for D40,41Kl,2 • Duowatt Package 2 Watts Free Air Dissipation @ T A = 250 C COMPLEMENTARY SILICON DARLINGTON AMPLIFIER TRANSISTORS Tab forming and on specla' request. TO~5 lead forming available MAXIMUM RATINGS Rating Collector·Emitter Voltage Collector-Emitter Voltage Emitter-Base Voltage Collector Current - Continuous Peak (1) Base Current - Continuous Total Power Dissipation @ TA - 2SoC Symbol VCEO VCES VESO IC D40/41K 1,3 D40/41K 2,4 30 30 50 50 ·S PD Adc STYLE •. PIN 1 EMITTER 2. BASE 3. COLLECTOR 4. COLLECTOR 04 ~L --l I--G mAde rNhl Watts mW/oC Watts mW/oC TJ, T stg 10 80 -55 to +150 - 260 °c PD Derate above 2SoC Operating and Storage Junction Vdc Vdc Vdc 13 2.0 3.0 100 1.67 13.3 Derate above 25°C 12) Total Power Dissipation @TC== 2SoC Unit l~..J f t:::::::J-=tJ °c Temperature Range Solder Temperature, 1/16" from Case for 10 Seconds THERMAL CHARACTERISTICS Characteristic Thermal Resistance, Junction to Ambient Thermal Resistance, Junction to Case I I I Symbol R8JA I I I Max 75 12.5 I I I Unit °CIW °CIW R8JC 1. Pulse Width" 25 ms, Duty Cycle" 50%. 2. The actual power dissipation capability of Duowatt transistors are 2 W @ T A:: 25°C. DIM A B C D F G H J K L N Q R T MIlliMETERS MIN MAX 21.B4 9.91 4.39 0.58 3.56 2.41 1.70 0.48 12.19 1.65 9.91 3.56 1.07 7.87 22.35 10.4. 4.65 D.74 4.06 2.67 1.96 0.66 12.95 2.03 10.16 3.81 1.7 9.14 INCHES MIN MAX 0.860 0.390 0.173 0.023 0.'40 0.095 0.067 0.019 0.480 0.065 0.390 0.140 0.042 0.310 0.880 0.410 0.183 0.029 0.160 0.105 0.077 0.026 0.510 0.080 0.400 0.150 0.069 0.360 TD-202AC CASE 3oe-04 1-415 NPN D40K, PNP D41K ELECTRICAL CHARACTERISTICS (TA ~ 25 0 C unless otherwise noted.) Ch_iotlc Symbol OFF CHARACTERISTICS Min Max Unit Coliector·Emitter Breakdown Voitege (1) (lC= 10mAdc) 30 50 - Vdc I'Ade I I Collector Cutoff Current (VCB = Rated VCES, Ie = 0, TJ Collector Cutoff Current (VCE = Rated VCES, VBE = 0) Emitter Cutoff Current (VEB = 13 Vdc, IC = 0) ON CHARACTERISTICS (1) D40,41Kl,3 D40,41K2,4 = 150o C) DC Current Gain (lC = 200 mAde, VCE = 5.0 Vde) (lC = 1.5 Ade, VCE = 5.0Vde) (lC = 1.0 Adc, VCE = 5.0 Vde) ICBO - 20 ICES - 0.5 I'Ade lEBO - 100 nAde - hFE All Devices D40,41Kl,2 D40,41K3.4 Base-Emitter Saturation Voltage (lC = 1.5 Ade, IB = 3.0 mAde) (lC = 1.0 Ade, IB = 2.0 mAde) 040,41 Kl,2 D40,41K3,4 - 10,000 1,000 1,000 - - 1.5 1.5 - 2.5 2.5 Ceb - 10 25 pF Ihfe l 1.0 - - D40,41Kl,2 D40,41K3,4 Collector-Emitter Saturation Voltage (lC = 1.5 Adc, IB = 3.0 mAde) (lC = 1.0 Ade, IB = 2.0 mAl Vde VCE(satl Vde VBE(sat) DVNAMIC CHARACTERISTICS Collactor Capacitance (Vca· 10 Vdc, IE = 0, f = I,D MHz) High Frequency Current Gain (lC = 20 rnA, VCE = 5 Vde, f BVCEO D40K series D41K series = 100 MHz) 1. Pulse Test: Pulse Width.;; 300 I'S, Duty Cycle';; 2.0%. TVPICAL.CHARACTERISTICS FIGURE 1 - DC SAFE OPERATING AREA 3.0 ~ 1.0 ~ 0.7 ~ 0.5 0.2 8 0.1 ~ '"" '" "- 1.6 ~ Te - 250 e de " :: T0 ~ 1.2 ..... TA =250 e 0.3 '"~ ~ 2.0 10 II I I HI. 2.0 0:: FIGURE 2 - POWER DERATING TA TC ~ 008 ffi . ~. ~ i' 0.07 ,pO.4 TC • '\: "-,, i"-.."'- 4 2 0.. "": 0.05 0.03 0.40.5 0.7 1.0 2.0 3.0 5.0 7.0 10 30 40 veE. COLLECTOR·EMITIER VOLTAGE (VOLTSI 1-416 o o 20 40 60 80 100 T. TEMPERATURE (OCI " 120 ~ 140 160 NPN 040K, PNP 041 K TYPICAL CHARACTERISTICS (continued) DC CURRENT GAIN FIGURE 3 - (D40K se,i••1 300 k I 200 k k z 1110 ~ 70k < 70 k ~ 50 k ~ 30 k ~ 20 k ~ ~ k ~ 20 k TJ = lZS0C 50 _ 30 k 25°C '-' Q JC~~s v t-- 2110 k TJ= 125°C 100 k z FIGURE 4 - (D41K sa,iasl 300 k VCE-5.0V -550 C 25°C '" 10 10 k 70 k 50 k ~ r-.. r-... -55°C Q k ~ 7.0 k 5.0 k 30 k 20 50 30 70 100 200 300 500 700 1.0 k IC. COLLECTOR CURRENT ImAI 3.0 k 20 20k 30 50 70 100 200 3110 500 700 IC' COLLECTOR CURRENT (mAl Z.Ok 1.0 k "ON" VOLTAGES FIGURE 5 - (D40K sa,iasl 2.0 t-- . Ti -2~0~ I 1.8 8 ~1. FIGURE 6 - (D41K sa,iasl 2.0 V 6 ~1. 4 ..J...I..+tt: :.b:--t':: '"< w ~ .L !:i I I Ll 20 50 30 70 i,..o-" /' - >-- I- ~ .J......-1'" --r VSE @I VCE = 5.0 V / V >" 1.0 I- ~ O.S VCE(sat)@IClIs=SIIO II II o6 1.2 '"> ~ VCElsatl@IC/IB - 500 8 I I- TJ = 25°C 1.6 Q > >"1.0 !S ~ 1.4 V8Elo;i@ VC~ - 5.0 V ~1. 2 - VSE(sa'l @lICIlS = 5110 ./ ..... ..... VSE(satl@ Ic/lS =~ I 200 300 500 700 1.0 k 100 IC, COLLECTOR CURRENT ImAI O. 6 20 20k 50 30 70 100 200 300 500 700 IC, COLLECTOR CURRENT (mAl 1.0 k 2.0 k FIGURE 7 - THERMAL RESPONSE 0 O. ~~ ~~ .... tzg; ,. w~ ~ 0 = 0.5 0, 3f- 02 !l- - "'" :::iii f.:;:l 0.1 D.05 Q. 1 - !~ 0.07 ~ SlIlglePulse :=.~ 0.0 5 - - - - Zs)C(Il. = rill R.JC ReJC = 12.SoC/W MIX ffiJl -- SmglaPulse P(pkl ---01-J ~~o.o 3 ...... 0.Q2 0.01 0.02 ,1' 0.0 1 0.01 DCURVESAPPLYFDRPOWER PULSE TRAIN SHOWN READ TIME AT'l TJ(pk) -TC =p(pldReJCIIl Duty Cycle, D = 'l1lZ 500 1.0 k z.o k 5.ok 10k 10k SOk lOOk '1 I 0.02 0.05 0.1 0.2 0.5 1.0 2.0 5.0 10 20 t, TIME 50 (m~ 1-417 100 200 Z'JA(t)· rill R'JA ReJA = 7S oC/W Max 12 III NPN 040K, PNP 041 K TYPICAL CHARACTERISTICS (continued) OJ CAPACITANCE FIGURE 9 - (041 K se,iesl FIGURE 8 - (D40K ..,iesl 40 20 TJ= 250, 30 - .. ~ 10 u z ~7. 0 ;:; ~ ;5 5.0 ~ r--. III IIII r--- 20 C,b rm w u z Ceb « .... r:- Y Ccb <3 ~ ;3 ~ Tr 250C Ccb I--t- 10 ,,; 7.0 3.0 5.0 2.0 0.05 _0.1 0.5 0.2 1.0 2.0 5.0 10 20 50 0.05 0.1 0.2 VR, REVERSE VOLTAGE (VOLTSI 0.5 1.0 2.0 5.0 10 VR, REVERSE VOLTAGE (VOLTSI 20 50 HIGH FREQUENCY CURRENT GAIN FIGURE 11 - (041K se,iosl FIGURE 10 - (D40K ..,iesl ..... z '" ~ ~ 10 10 5.0 2.0 - - ~ ::0 ~.... ;: '"'" i. .... VCP5.0Vd;' TJ' 25~C f·l00MHz t 1.0 f==VCE - 5.0 Vdc f - - Tr25 0C f-lOoMHz z ~ 5.0 ~ ~ a I'r-. 2.0 t ~ ~ '"'" 0.5 1.0 0.5 ;: ;;, 0.2 0.2 '" o. 1 0.D1 0.02 0.03 0.05 0.1 0.2 0.3 0.5 1.0 IC. COLLECTOR CURRENT (AMPI O. 1 0.01 0.02 0.05 0.1 0.2 IC. COLLECTOR CURRENT (AMPI 1-418 0.5 1.0 ® D40N3 D40N4 D40Nl D40N2 MOTOROLA 'II NPN SILICON ANNULAR HIGH VOLTAGE AMPLIFIER TRANSISTORS DUOWATT NPN SILICON AMPLIFIER TRANSISTORS · .. designed for high·voltage TV video and chroma output circuits, high·voltage linear amplifiers, and high·voltage tranSIStor regulators. • High Collector· Emitter Breakdown Voltage BVCE R = 300 Vdc (Min) @ IC = 1.0 mAdc - D40N3, 4 • Low Coliector·Base Capacitance Ccb = 3.0 pF (Max) @ VCB = 20 Vdc • Duowatt Package 2 Watts Free Air Dissipation @ T A = 250 C Tab forming and TO-5 leed forming available on special request. Q MAXIMUM RATINGS Symbol Rating Collector~Emitter Voltage (1, 2) Collector-Base Voltage Emitter-Base Voltage Collector Current - Continuous - Peak D40Nl,2 D40N3.4 Unit VeER 250 I 300 Vdc VeBO 250 I 300 Vde VEBO 5.0 Vde Ie 0.1 0.7 Ade Base Current 'B 250 mAde Total Power Dissipation @TA - 25°C Derate above 25°C Po 1.67 (31 13.3 Watts mWfOe Total Power Dissipation @TC = 2SoC Derate above 2SoC Po 6.25 50 Watts mW/oe TJ, T stg -55 to +150 °e - 260 °e Operating and Storage Junction Temperature Range Solder Temperature. 1116" from Case for 10 Seconds THERMAL CHARACTERISTICS Symbol Max Unit Thermal Resistance, Junction to Ambient ROJA 75 °C/W Thermal Resistance, Junction to Case ROJC 20 °C/W Characteristic (II Ie ~ 1.0 mAde, RBE ~ 10 kn. ~ 300 MS, Duty Cycle ~ 2%. (3) The actual power dissipation capabIlity of Duowatt transIstors are 2 W @ T A (21 Pulse Test: Pulse Width = 25°C. STYLE 1 PIN 1 EMITTER 2 BASE 3 COLLECTOR 4 COLLECTOR MILLIMETERS MAX DIM MIN A 2184 22 35 9.91 1041 B C 439 4.65 074 058 0 406 F 356 241 2.67 G H 1.70 196 048 066 J K 1219 1295 165 203 L 9.91 10.16 N Q 3.81 356 1.01 1.15 R 1.81 9.14 T INCHES MIN MAX 0.860 0880 0390 0.410 0173 0183 0023 0019 0140 0160 0095 0105 0.067 0077 0019 0016 0.480 0510 0065 0080 0390 0.400 0.140 0.150 0.042 0.069 0.310 0.360 TO-202AC CASE 306..Q4 1-419 D40N1, D40N2, D40N3, D40N4 OJ ELECTRICAL CHARACTERISTICS (TA I = 25 0 C unle.. otherwise noted.! I Characteristic Min Max 250 300 - - 10 10 20 30 30 60 20 30 90 180 fT 50 - MHz Ceb - 3.0 pF Symbol Unit OFF CHARACTERISTICS COllector-Emitter Breakdown Voltage (1) IIC = 1.0 mAde, IB 0, RBE 10 kO) = D40Nl,2 D40N3,4 Collector Cutoff Current (VCB = 250 Vde, IE = 0) (VCB· 300 Vde, IE = 0) "Ade ICBO D40Nl,2 D40N3,4 Emitter Cutoff Current (VBE = 5.0 Vde, IC = 0) ON CHARACTERISTICS (11 DC Currant Gain lie =4.0 mAde, VCE Vde BVCER = lEBO 10 - hFE = 10 Vde) D40Nl,3 D40N2,4 D40Nl,3 D40N2,4 D40Nl,3 D40N2,4 IIc • 20 mAde, VCE = 10 Vde) IIC· 40 mAde, VCE • 10 Vdc) "Adc - - DYNAMIC CHARACTERISTICS Currant-Gain - Bandwidth Product IIc = 20 mAde, VCE = 10 Vde, f - 20 MHz) Collector-Base ClIPacltance (VCB· 20 Vde,le = 0, f· 1.0 MHz) (1) Pulse Te.t: Pulse Width .. 300 "S, Duty Cycle .. 2.0%. TYPICAL CHARACTER ISTICS FIGURE 1 - ACTIVE-REGION SAFE OPERATING AREA 0 - 050 ie i,lOOps ~ 0.2 0 ! 01 0 de ~ 0.05 ~ ~ " de TA~250C .JC 10ms 25 0C--'->o,-c- "N. 2 -r-- TJ ~ 150 ~0.0 lr--=f- BONOING WIRE LIMIT THERMAL LIMIT. SINGLE PULSE. TC ~ 250C 80005 SECONO BREAKOOWN LIMIT ~ O'ON1.2 0.002 = There are two limitations on the power handling ability of a tranSistor average Junction temperature and second breakdown. Safe operating area curves indicate Ie-VeE limIts of the tranSistor that must be observed for reliable operation; I.e., the transistor ~o~s must not be subjected to greater diSSipation than the curves Indicate. The data of Figure' IS based on T J(pkl :: 150°C; TC isvanable depending on conditions. Second breakdQ¥.ln pulse limits are valid 00 000 1 1.0 - for dutv CVcles to 10% prOVIded TJ(pkl';; 150°C. TJ(pkJ mav be calculated from the data In Figure 6 At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations Imposed by second breakdown. ·m~3.4 2.0 5.0 10 20 50 100 200 500 10k VCE. COLLECTOR-EMITTER VOLTAGE (Val TSI 1-420 D40Nl,D40N2,D40N3,D40N4 TYPICAL CHARACTERISTICS (continued) FIGURE 2 - DC CURRENT GAIN 3110 TJ 200 l- i _ TJ = 2SoC 1.2 r-.... 1.0 70 0 ~ I 0 ~_ - ,... -Ssuc 0 20 '"'c i 1.4 ~ I2Jocl "...- 1'2soc 100 .,~ l1li FIGURE 3 - "ON" VOLTAGES ~ '- ~~ V8Elool@ VCE = 10 V '">.> 0.4 1.0 2.0 3.0 5.0 10 20 30 50 100 I ~~~i\~t) L "'?<, IC/lS=~ ~.o 2.0 o 0.3 O.S 200 300 I 11111 0.2 3.0 0.3 0.5 J 0.6 C!J ~ ~CE-IOV . m\it' @ Ic/lS = 10 w '5, VCE -2.0 V 7.0 5. 0 ~ O. 8 Z 1.0 2.0 3.0 5.0 10 20 30 50 100 200300 IC. COLLECTOR CURRENT ImA) IC. COLLECTOR CURRENT (mAl FIGURE 4 - COLLECTOR SATURATION REGION 2.0 FIGURE 5 - TEMPERATURE COEFFICIENTS 3.0 TJ=2S oC -*Apphesfor le/ls -SSOf to 2S OC I '"' ~-1. 0 o.8 le= o.4 1.0mA 3.0mA I II mil N.I o I "ItO.OS.w.u:0.1 0.01 0.02 InOmA "'~" -2.0 N '-ll !rN.1 ..... -3. 0 3D rnA l[1mA 50 rnA -evlsforJ SE -55 DC to 25 DC ·1- ·-1 I ~ i H-rtt ffi 10 20 ..Lr 25°C to 125 DC so os 1.0 2.0 5.0 0.2 lB. BASE CURRENT (mAl I -4.0 100 1.0 20 3.0 50 7.0 10 20 30 SO 70 100 IC. COLLECTOR CURRENT ImA) FIGURE 6 - THERMAL RESPONSE 1.0 0.7 0-0.5 0.5 :~ 0.3 ffi~ 0.2 ~~ E~ o. I u;w f- '"" I::;;ilii - 0.1 :::;: o.oS ~fi 0,07 SmglePulse ~_~ 0.05 ~~ ~ I-- 0.2 -~ ZeJC(tl = rlt! RUC Rf:f~C:: 12.5 0CJW Max pEfUl StnglePulse 0.03 "" 0.02 0.01 0.02 I 0.01 0.01 0.02 Duty Cycle, 0 '" I1h2 0.05 0.1 0.2 0.5 1.0 20 5.0 10 20 t, TIME (ms) 1-421 50 100 200 500 1.0k - ZeJAlt) = rlt) ReJA ReJA '" 62.50 CtW Max o CURVES APPLY FOR POWER -t~J .1'" - 2.0k PULSE TRAIN SHOWN REAO TIME AT tl TJlpkl- TC =Plpkl ReJc(t! S.Ok 10k 20k SDk lOOk 040Pl 040P3 040P5 ® MOTOROLA NPN SILICON ANNULAR HIGH VOLTAGE AMPLIFIER TRANSISTORS DUOWATT NPN SILICON AMPLIFIER TRANSISTORS . designed for horizontal drive applications, high-voltage linear amplifiers, and high-voltage transistor regulators. • High Collector-Emitter Breakdown Voltage BV CEO = 225 Vdc (Min) @ IC = 1.0 mAdc - D40P5 • Low Collector· Emitter Saturation Voltage VCE(sat) = 1.0 Vdc (Max)@ IC = 100 mAdc • Duowatt Pa·ckage 2 Watts Free Air Dissipation @ TA = 250 C Tab forming and TO·5 lead forming available on spacial request. l Q Rating Collector-Emitter Voltage Symbol VCEO Collector-Base Voltage VCBO Emitter-Base Voltage Collector Current - Continuous Peak (11 VEBO IC Base Current Total Power Dissipation Derate above 2SoC @ T A = 2So C Total Power Dissipation@Tc=250C IB Po Po Derate above 2SoC Operating and Storage Junction Temperature Range Solder Temperature, 1/16" from Case for 10 Seconds I I Unit I I Vdc D40Pl D40P3 D40PS 120 225 180 200 I 250 I 300 ....--7.0---.. -0.51.0100-1.67(21-13.3- .. "-6.25~ ........-50~ TJ.T"g - . Vdc Vdc Adc mAde ~ '~'~,!_ JK oj~ -G l Watts mW/oC Watts mW/oC -55 to +150----.. °c 260- °c THERMAL CHARACTERISTICS Charac'taristic STYLE 1 PIN im:::OR 4. COllECTOR Symbol Max Unit Thermal Resistance. Junction to Ambient ROJA 75 Thermal Resistance. Junction to Case ROJC 20 °CIW °C/W (11 Pulse Test: Pulse Width .. 1.0 ms, Duty Cycle" 50%. (2) The actual power dissipation capability of Duowatt transistors are 2 W @ T A = 25Q C. MILLIMETERS DIM MIN MAX A 2184 2235 991 1041 B 439 C 465 074 058 0 406 F 356 241 267 G H 170 196 048 J 066 1219 1295 K L 165 203 N 991 1016 Q 356 381 1.07 1. R 7.S7 9.14 T INCHES MIN MAX 0860 0880 0390 0410 0173 0183 0023 0029 0140 0160 0095 0105 0067 0017 0019 0026 0480 0510 0065 0080 0390 0400 0140 0150 0.06 0.04 0310 0.360 TO'202AC CASE 306·04 1-422 A Li MAXIMUM RATINGS D40P1, D40P3, D40P5 I ELECTRICAL CHARACTERISTICS ITA ID =25 0 C unle.. otherwise noted.) I Character Symbol Min Max 120 180 225 - Unit OFF CHARACTERISTICS Collector· Emitter Breakdown Voltage (1) (lC = 1.0 mAde, IB = 0) Collector Cutoff Current (VCB = 200 Vde, IE = 0) (VCB = 250 Wde, IE = 0) (VCB = 300 Vde, IE = 0) Emitter Cutoff Current (VEB = 7.0 Vde, IC = 0) ON CHARACTERISTICS (1) .- 040Pl D40P3 D40P5 - - 10 10 10 - 10 40 20 - VCE(satl - 1.0 Vde VBE(satl - 1.5 Vde fT 50 - MHz Ceb - 6.0 pF lEBO = 100 mAde, IB = 10 mAl 'I'Ade - hFE = 80 mAde, VCE = 10 We) = 2.0 mAde, VeE = 10 Vde) Collector-Emitter saturation Voltage (lC = 100 mAde, IB = 10 mAde) Base-Emitter Saturation Voltage (lc I'Ade ICBO DC Current Gain (lC (Ie Vde BVCEO 040Pl 040P3 040P5 DYNAMIC CHARACTERISTICS Current-Gain - Bandwidth Product (Ie = 80 mAde, VeE = 10 Vde, f = 20 MHz) Collector-Base Capacitance (VCB = 10 Vde, IE = 0, f = 1.0 MHz) SWITCHING CHARACTERISTICS Storage Time (lC(on) = 80 mA, IB(on) =8.0 mA, IB(off) =8.0 mAl (1) Pulse Test: Pulse Width .. 300 I'S, Duty Cyela" 2.0%. TYPICAL CHARACTERISTICS FIGURE 1 - CURRENT ·GAIN - BANDWIDTH PRODUCT "" 300 '"~ ... g ~ ...'"c ~ 100 z :; z ~ ~ I VCE~ 200 c 70 FIGURE 2 - CAPACITANCE 100 --- 70 10V 50 TJ -15°C !-- 30 ~ I--- ....... Cob I-- w u :i ... 10 ~ 7.0 ~ 5.0 \ ,:. 50 t--. t.; 3.0 Ccb - 1.0 a J:: ~ 20 30 10 30 50 10 Ie, COLLECTOR CURRENT (mAl 70 100 1-423 1.0 0.3 ~ F"; 0.50.7 1.0 1.0 3.0 5.07.0 10 10 30 50 70 100 VR, REVERSE VOLTAGE IVOLTS) 100 300 D40P1, D40P3, D40P5 OJ TYPICAL CHARACTERISTICS (Continued) FIGURE 3 - DC CURRENT GAIN FIGURE 4 - "ON" VOLTAGE 500 1.0 . i - TJ=150oC -- 200 z ;;: - - 25°C 100 =-550C _ 70 50 u c 30 ~ 20 - o. a - VaEI"tl@lc/la = 10 ~ - .. VaElonl @VCE = 10V w 2.0 ~ 100 ZOO 500 TJ =25°C .s ~ 0.4 \ 0.1 o ~ > 0 0.1 ;:; \ \ 1'- ---- 0.2 0.3 0.50.71.0 2.0 3.0 5.070 10 la. aASE CURRENT ImAI .s /1-'" I- ~a 120 ~ V I..--' ~~ ~ ~ '" ~ 8 }j ,--I~= I.Z~A 0 f/. V 40 W/ -- 10 ZO ~ 50 70 100 >---I"- -;r"~ / I I II -0.8 1 III +250 C to +1250 C c- ...j.,...H'! ova fOT VSE L V~ -550C to +25 0 C -2.4 1.0 0.5 0.2 FIGURE -- 2.0 5.0 10 20 50 100 200 I-- a- COLLECTOR CUTOFF REGION VCE = 150 V 102 1 r-- TJ = 150dC 600_A 0 I 400_A I V Ie. COLLECTOR CURRENT ImAI -r 30 500 -550C to +250C g I--- 100DC 1 20~_A V o o \.Q"'~ +250 Clo +1250C ~ -1.6 FIGURE 7 - COLLECTOR CHARACTERISTICS zoo TA = Z50C PULSE WIOTH = 300_,;;: DUTY CYCLE" Z.O% 160 ~ : 20 30 zoo I I II I III i \ \ '- u ::; ZOOmA 1\ \ c ~_ 0.8 ~ 100 rnA Z.O II 1111 II 1111 'OVC FOR VCElsatl I- \IC = Z5mA,pOmA 1.0 5.0 50 10 ZO 50 100 IC. COLLECTOR CURRENT ImAI "Applies for IC/18 ~hFE/2 G '!. 0.8 0.6 ~ VCEI"tl @Iclla = 10 FIGURE 6 - TEMPERATURE COEFFICIENTS 1.6 > ~ f- I 0 0.5 c ~ :/ VII' o.Z FIGURE 5 - COLLECTOR SATURATION REGION 1.0 - > >. ,,~ 5.0 10 ZO 50 IC. COLLECTOR CURRENT ImAI ./ V D.4 c "'~ I I 111111 10 ~ i'-.'-' ,, --VCe= 2.0 V --VCE = 10V 1.0 U-Httt O.6 o ~ ~ 7.0 5.0 0.5 ~ ~ I I illl II III TJ = 25DC 300 2~ 40 50 10-3 b = -04 REVERSE = FORWARD 25°C -0.2 +0.2 +0.4 VaE. aASE·EMITTER VOLTAGE IVOLTSI VCE. COLLECTOR·EMITTER VOLTAGE IVOLTSI 1-424 +0.6 D40Pl, D40P3, D40P5 TYPICAL CHARACTERISTICS (Continued) FIGURE 9 - THERMAL RESPONSE 1.0 o.~ 0" 0.& 0.3 -oj O. :~ ~~ 0.2 0-'" E~ u;w o. 1 ...... """ I:::iiiiii ~~O.O1 Single Pulse ~~ 0.05 - - 0.1 ::; 0.0& pEfUl -t\;-J SmglePulse :g~ 0.03 '" 0.02 0.01 0.02 '1"" I 0.0 1 0.01 0.02 Duty Cycle. 0 :::: 11/t2 0.0& 0.1 0.& 0.2 1.0 2.0 &.0 10 20 t, FIGURE 10 - ACTIVE REGION SAFE'()PERATING AREA ,= 100 100 •. 1000mEmBmm &00 ;( ~ ~ 300 f-+""hd--l+f-I--.... .;:......t.--+-+-++H-f+'" ;-50_C+"-=-..d- dCf-H-++t-+'-'.-:·,1",'0f-m_'-H--I 200 f---+--+-H"I-:I-tT-=C_"_2t- " ~~ " \ ~ =~~~~~~~~~d~C~~~~~~~~~~~§ r-:-'::-__ 8 ~ 30 r-- f-- TA - 2 5 0 C ' BONDING W"'I-R=-E-'-Ll"'Mc:IT::-'---'-'....:-+f-f-f---+~t+-j - - - THERMAL LIMIT. SINGLE PULSE -t:=J:+$t:;;+~:I=~ - - - SECOND BREAKDOWN LIMIT -l (Applies Below Rated VCEO) 1 3.0 " &.0 1.0 10 20 50 10 100 30 VCE. COLLECTOR·EMITTER VOLTAGE (VOLTS) 200 300 50 -~ ~ 0.8 ~ "'- ............. '"o0z '" w ~ 0.2 o o 20 40 I DeratrrlQ i'-.. 0.4 ""- '" f".... " " ""- 60 80 100 120 TC. CASE TEMPERATURE (OC) ........ " 140 500 1.0 k 2.0 k - Z8JA(I) " r(t) R8JA R8JA " I&OC/W Max o CURVES APPLY FOR POWER PULSE TRAIN SHOWN READ TIME AT 11 TJ(pk) -TC "P(pk)R8JC(I) 5.0k 10k 20k &Ok lOOk There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate IC-VCE limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. The data of Figure 10 is based on TC = 250 C; TJ(pk) is variable depending on power level. Second breakdown pulse limits are valid for duty cycles to 10% but must be derated when TC;;' 250 C. Second breakdown limitations do not derate the same as thermal limitations. Allowable current at the voltages shown on Figure 10 may be found at any case temperature by using the appropriate curve on Figure 11. TJ(pk) may be calculated from the data in Figure 9. At high case temperatures. thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown. Second Breakdown ............ Therm~ Derating ~ ~ O.6 ~ ffi o I 200 - TIME (ms) FIGURE 11 - POWER DERATING 1.0 100 ZeJCIO • r(t) RUC R8JC " 20oC/W Max 160 1-425 NPN D44C Series PNP D45C Series - ® MOTOROLA COMPLEMENTARY SILICON POWER TRANSISTORS 4.0 AMPERE · .. for general purpose driver or medium power output stages in CW . or switching applications. COMPLEMENTARY SILICON POWER TRANSISTORS 30-S0VOLTS • Low Collector-Emitter Saturation Voltage - 0.5 V (Max) • High ft for Good Frequencv Response • Low Leakage Current MAXIMUM RATINGS D44CorD46C Rating Symbol 1.2. 3 4.6. 7.S. 6 9 10.11. Unit 12 Collector-Emitter Voltage VCEO 30 45 60 SO Vdc Collector-Emitter Voltage VCES 40 55 70 90 Vdc Emitter Base Voltage VES 5.0 Vdc Collector Current - Continuous Peak(l) IC 4.0 6.0 Adc Total Power Dissipation Po @TC=25°C @TA=25°C Operating and Storage Junction Temperature Range TJ. Tstg 30 1.67 W/oC -55 to 150 °c rrf 11.J~u I ~I U -JJ_~ Symbol Max Unit R8JC 4.2 °C/W Thermal Resistance. Junction to Ambient R8JA 75 °C/W TL 275 Maximum Lead Temperature for Soldering Purposes: 1 IS" from Case for 5 Seconds °C (11 Pulse Width';; 6.0 ml, Duty Cycle';; 50%. ELECTRICAL CHARACTERISTICS (TJ = 25°C unless otherwise noted) Characteristic DC Current Gain (VCE = 1.0 Vdc, IC = 0.2 Adc) (VCE = 1.0 Vdc, IC = 1.0 Adc) (VCE = 1.0 Vdc, IC = 2.0 Adc) Symbol Min Max Unit - hFE 044C3,6,9,12 045C3,6.9,12 045C2,5,8,11 40 044C2,5,S,11 100 220 044Cl.4.7.10 045Cl.4,7.10 25 - 044C3,6,9,12 045C3,6,9.12 044C2,5.S,11 20 - 045C2,5,S,11 20 - 044Cl.4,7,10 045Cl.4,7.10 10 - 120 SECT A·A n L-1 Dj~N' LL~ j NOTES' 1. O1MENSION H APPUES TO ALL LEAOS 2. DIMENSION L APPUES TO LEADS 1 AND 3. 3. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE AUOWED. 4 DIMENSIONING AND TDLERANCING PER ANSI Y1UM, 1982. 5 CONTROLLING DIMENSION INCH -IN W DIM A l B C o F G H J K L N Q R S ~ V Z 1-426 J ~f I 1"";1r,--~ F-' lDC-- =l=J K I THERMAL CHARACTERISTICS Characteristic wl~ A Watts Thermal Resistance, Junction to Case rB-" ~I-S MAl 1575 1029 482 089 373 267 279 393 0.36 0.56 12.70 1427 1.14 1.39 4.83 5.33 2.54 3.04 2.04 2.79 1.14 1.39 MIN 0575 0380 0160 0025 0142 0.095 0110 0014 0.500 0.045 0.190 0.100 0.080 0.045 I 0.105 0.155 0.022 0562 0055 0210 0.120 0.110 0.055 ~:~~ ~:~~ ~:~~~ ~:m 1.14 - 2.03 0.045 - 0.080 STYLE 1 PIN 1 BASE 2 COLLECTOR 3 EMITTER 4 COLLECTOR CASE 221A-02 (TO-220AB) D44C Series NPN, D45C Series PNP I ELECTRICAL CHARACTERISTICS (TJ = 25°C unless otherwise noted) I Characteristic Symbol Min Typ Max Unit ICES - - 10 "A lEBO - - 100 "A - - - 0.5 0.5 - 1.3 OFF CHARACTERISTICS Collector Cutoff Current (VCE Rated VCES, VBE = =0) Emitter Cutoff Current (VEB 5.0 Vde) = ON CHARACTERISTICS Collector-Emitter Saturation Voltage (lc = 1 0 Ade, IB = 50 mAde) (lc = 1.0 Ade, IB = 100 mAde) Vde VCE(sat) D44C/D45C2,3,5,6, 8,9,11,12 D44C/D45Cl,4,7,10 Base-Emitter Saturation Voltage (IC = 1.0 Ade, IB = 100 mAde) VBE(sat) Vde DYNAMIC CHARACTERISTICS Collector Capacitance (VSB= 10Vde, 1= 1.0MHz) Gain Bandwidth Product (IC = 20 mA, VCE = 4.0 Vde, I pF Ceb D44C Series D45C Senes - 100 125 - - 50 40 - - 100 50 - - 500 500 - 75 50 - IT = 20 MHz) D44C Senes D45C Series MHz - SWITCHING TIMES td + tr Delay and Rise Times (IC = 1 0 Ade, IBI = 0.1 Ade) Storage Time (lc = 1.0 Ade, IBI = IB2 = 0.1 Ade) - '" a'" c 40 '" ffi '-' i 30 ns II - D44C Series D45C Series - FIGURE 2 - MAXIMUM RATED FORWARD BIAS SAFE OPERATING AREA 200 ;;: ns D44C Series D45C Series FIGURE 1 - DC CURRENT GAIN 100 90 80 70 60 50 - ts Fall Time (IC = 1 0 Ade, IBI = IB2 = 0.1 Ade) z ns D44C Senes D45C Senes 10 50 '" 3.0 0.. 2.0 VCE =1.0 Vde TJ = 25°C ~ .... - ~ a'"a:: --........ ..... ... - - 045C2,3,5,6,8,9, 11,12 - --044C2,3,5,6,8 I I II I I I I 20 0.040.050.07 0.1 0.2 0.3 0.40 5 0.7 1 0 IC, COLLECTOR CURRENT (AMPS) 2.0 "... r- . ~ w ~ -=' 3.0 4.0 1-427 ~ de 1.0 O. 5 _ 0.3 0.2 - 1= 1.0 "s 10 "s , / 0.1 ms 115.. 1.0 ms ~ ,,~ TC';; 70°C f- Duty Cycle';; 50% O. 1 0.0 5 0 Q3 0.0 2 0.0 1 1.0 044C/45Cl,2,3 044C/45C4,5,6 044C/45C7,8,9 . ~~4f~45Cl~,lliI2 2.0 3.0 5.0 7.0 10 20 30 VCE, COLLECTOR·EMITTER VOLTAGE (VOLTS) 50 70 100 NPN ® D44E Series PNP MOTOROLA D45E Series COMPLEMENTARY SILICON POWER DARLINGTON TRANSISTORS DARLINGTON 10 AMPERE · .. for general purpose power amplification and switching such as output or driver stages in applications such as switching regulators, converters and power amplifiers. COMPLEMENTARY SILICON POWER TRANSISTORS 40-S0VOLTS 50 WATTS • Low Collector-Emitter Saturation Voltage VCE(sat) = 2.0 V (Max) @ 10 A • High DC Current Gain - • Complementary Pairs Simplifies Designs' 1000 (Min) @ 5.0 Adc MAXIMUM RATINGS Rating Symbol Collector-Emitter Voltage VCEO Emitter Base Voltage Collector Current - Continuous Peak(l) D44E or D45E 1 I I 2 40l Unit 3 I SO 60 7.0 Vdc Ie 10 20 Adc Po Total Power Dissipation @TC=25°C @TA=25°C Vdc VEB Watts 50 1.67 Operating and Storage Junction Temperature Range -55 to 150 TJ, Tst9 °C THERMAL CHARACTERISTICS Characteristic Symbol Max Thermal Resistance, Junction to Case R8JC 2.5 . °C/W Thermal Resistance. Junction to Ambient R8JA 75 °C/W TL 275 °c Maximum Lead Temperature for Soldering Purposes: 1 IS" from Case for 5 Seconds Unit (1) Pulse Width =s;;; 6.0 ms, Dutv C;:vc1e ~ 50%. NOTES 1. OIM~NS10N H APPUESTO ALL LEADS. 2 DIMENSION L APPLIES TO LEADS 1 AND 3 ONLY. 3. OIMENSION Z OEFINESA ZONE WHERE ALL 8QDYAND LEAD IRREGULARITIES ARE ALLOWED. 4. OIMENSIONING AND TOLERANCING PER ANSI Y14.51973. FIGURE 1 - TYPICAL DC CURRENT GAIN 5. CONTROLLING DIMENSION INCH. lOOk VCE - 2.0 Vd. ! ~ = ~ TJ = 150°C (All) 10 k STYlE 1 PIN 1. 2 3. 4 III i3 ....c i loOk TJ = 25°C (All) -40°C IPNP) _40°C INPN) 100 0.002 lUI 0.010.02 0.050.1 0.20.30.5 1.0 2.03.05.0 IC, COLLECTOR CURRENT (AMPS) 10 20 1-428 CASE 221A-02 ITO-220AB) BASE COllECTOR EMITTER COllECTOR 044E Series NPN. 045 Series PNP ELECTRICAL CHARACTERISTICS (TC =25°C unless otherwise noted) Characteristic OFF CHARACTERISTICS Collector Cutoff Current (VCE Rated VCEO. VBE = 'CES - - 10 p.A lEBO - - 1.0 p.A - - - - 1.5 2.0 VBE(sat) - 2.5 Vde td + t, - 0.6 - p's ts - 2.0 - p's tf - 0.5 - p.s =0) Emitter Cutoff Current (VEB 7.0 Vde) = ON CHARACTERISTICS (1) DC Current Gain (lc 5.0 Ade. VCE = Coliector~Emltter (lC (IC hFE =5.0 Vde) Saturation Voltage Vde VCE(sat) =5.0 Ade. 'B =10 mAde) =10 Ade. 'B =20 mAde) Base-Emitter Saturation Voltage (lc 5.0 Ade. 'B 10 mAde) = 1000 = DYNAMIC CHARACTERISTICS Collector Capacitance (VCB = 10 Vde. f test = 1.0 MHz) D44E Series D45E Series SWITCHING CHARACTERISTICS Delay and Rise Times (lC =10 Ade. 'Bl 20 mAde) = Storage Time (IC 10 Ade. 'B 1 ='B2 =20 mAde) Fall TIme (IC 10 Ade. 'Bl ='B2 =20 mAde) = = SAFE OPERATING AREA INFORMATION FIGURE 2 - MAXIMUM RATED FORWARD BIAS SAFE OPERATING AREA (NPN) ~ FIGURE 3 - MAXIMUM RATED FORWARD BIAS SAFE OPERATING AREA (PNP) 100 100 70 50 3.0 in 30 ~ 20 ~ 2.0 ~:g t,.) 3.0 ::0 ---- ."Bonding Wire limit ~ 2.0 -de - - - - - Thermal limit ~ 1.0 Second Breakdown Limit c5 0.7 ;::- 10 ! 5.0 10 ms a 3.0 ~ 2.0 ~ 1.0 S 0.7 ~~:~ '-' 05 -- ~ - Bonding Wire limit - Thermal Limit 100 1-429 O. 1 1.0 de~ lE 045El 045E2 045E3 0.2 70 IV VI' Second Breakdown Limn EO:3 50 0.1 m;- - 1.0 ms a:i 7.0 '/ I' 044El TC = 25°C 044E2 0.2 Singl. Pulse 044E3 O. 1 2.0 3.0 5.0 7.0 10 20 30 1.0 VCE. COLLECTOR·EMITIER VOLTAGE (VOLTS) ....... '" 0.1 ms 1.0 ms 10 ms .... 10 i 25°C Single Pulse TC 2.0 3.0 5.0 7.0 10 20 30 VCE. COLLECTOR·EMITTER VOLTAGE (VOLTS) 50 70 100 NPN D44H Series PNP D45H Series ® MOTOROLA IIJ COMPLEMENTARY SILICON POWER TRANSISTORS 10 AMPERE COMPLEMENTARY SILICON POWER TRANSISTORS · .. for general purpose power amplification and switching such as output or driver stages in applications such as switching regulators, converters and power amplifiers. • 30-S0VOLTS Low Collector-Emitter Saturation Voltage VCE(sat) = 1.0 V (Max) @ 8.0 A • Fast Switching Speeds • Complementary Pairs Simplifies Oesigns MAXIMUM RATINGS Rating Symbol Collector-Emitter Voltage D44Hor D46H I I 1,2 VCEO 30 I 7,81 10,11 I 60 1 SO 4,6 45 Unit Vdc VES 5.0 Vdc Collector Current - Continuous Peak(l) IC 10 20 Adc Total Power Dissipation Po 50 1.67 Watts -55 to 150 °c Emitter Base Voltage @TC:25°C @TA=25°C Operating and Storage Junction Temperature Range TJ, Tstg THERMAL CHARACTERISTICS Characteristic Symbol Thermal Resistance. Junction to Case R9JC Thermal Resistance, Junction to Ambient Maximum Lead Temperature for Soldering Purposes: liS" from Case for 5 Seconds ' Max Unit 2.5 °C/W R9JA 75 °C/W TL 275 °c 11) Pulse Width';; 6.0 ms, Duty Cycl.';; 50%. ELECTRICAL CHARACTERISTICS (TJ = 25°C unless otherwise noted) Characteristic DC Current Gain IVCE = 1.0 Vdc, IC = 2.0 Adc) IVeE = 1.0 Vdc. IC = 4.0 Adc) Symbol Min Max hFE 044H1.4,7,10 045Hl,4,7,10 35 - 044H2.5,S,11 045H2,5,S,11 60 - NOTES: 1 DIMENSION H APPLIES TO ALL LEADS 2. DIMENSION L APPLIES TO LEADS 1 AND 3. 3. DIMENSION Z DEFINES A ZONE WHERE All BODY AND LEAD IRREGULARITIES ARE ALLOWED. 4. DIMENSIONING AND TDLERANCING PER ANSI YI4.5M. 19B2 ...-_.,..;5",Ci-fD..-;NTROLLING DIMENSION INCH Unit DIM - A X 8 C D f G 0095 0110 0014 0.500 0045 0.190 0.100 O.OBO 0.045 0.235 0.000 0.045 H J 044Hl.4.7.10 045Hl,4.7.10 20 - 044H2.5.S.11 045H2.5.S.11 40 - K l •a R S T U V Z 1-430 2.03 0.620 0405 0190 0.035 STYlE 1. PIN I. BASE 0147 2. COLLECTOR 0105 3. EMITTER 0155 COLLECTOR 0022 0562 0055 0210 CASE 221A-02 0.120 (TO-220ABI 0.110 0.055 0.255 0.050 .. 0.080 D44H Series NPN. D45H Series PNP III ELECTRICAL CHARACTERISTICS (TC = 25°C unless olherwise noled) Characteristic OFF CHARACTERISTICS Collector Cutoff Current (VCE Raled VCEO. VBE = =0) Emitter Cutoff Current (VEB 5.0 Vdcl = ICES - - 10 "A lEBO - - 100 "A - - - - 1.0 1.0 - 1.5 ON CHARACTERISTICS Collector-Emitter Saturation Voltage (IC 8.0 Adc. IB 0.4 Adc) (IC 8.0 Adc. IB 0.8 Adc) = = = = Base-Emitter Saturation Voltage (lc 8.0 Adc. IB 0.8 Adc) = Vdc VCE(sal) D44H/D45H2.5.8.11 D44H/D45Hl.4. 7.10 V8E(sal) = Vdc DYNAMIC CHARACTERISTICS Collector Capacitance (VCB =10 Vdc. f test Gain Bandwidth Product (IC 0.5 Adc. VCE 10 Vdc. f = = pF Ccb =1.0 MHz) - 50 40 - - - 300 135 - - 500 500 - - 140 100 - - tr =20 MHz) 130 230 - D44H Series D45H Series MHz - D44H Series D45H Series SWITCHING TIMES Delay and Rise Times (IC 5.0 Adc. IBI 0.5 Adc) = Storage Time (lc 5.0 Adc. IBI = D44H Series D45H Senes =182 =0.5 Adc) D44H Series D45H Series =5.0 Adc. IBI =IB2 =0.5 Adc) D44H Series D45H Senes FIGURE 1 I. 5 ffi 14 ~ 3 LLilli o ~ z i '-' c ~ D44H Senes 1 ~ 10 05 FIGURE 2 - MAXIMUM RATED FORWARD BIAS SAFE OPERATING AREA 100 50 30 1"\ ~ 20 1"'-:'\ V :i! ~ ......- de 1.0 m, ~ 10 '\ 08 7 06 - NORMALIZED DC CURRENT GAIN LI IIII os If 045H Senes ~ 12 ns Is Fall Time (IC ns td +tr = ~ 5.0 ~ 3.0 e ~ foo ", 2.0 _ TC';; 70°C f-- Duty Cycle';; 50% (D',,; t'.O·,,·, ~ ~ 10 B0.5 TJ = 25°C VCE = 1 0 Vde hFE @ 4.0 A was used tor normahzlng. 044H/45H1.2 D44H/45H4.5 D44H/45H7.8 D44H/45Hl0.11 E O.3 0.2 O. 1 0.01 , 0.1 1.0 Ie. COLLECTOR CURRENT (AMPS) 10 1-431 1.0 2.0 3.0 5.0 7.0 10 20 30 VCE. COLLECTOR·EMITTER VOLTAGE (VOLTS) 50 70 100 NPN D44VH Series PNP D4SVH Series ® MOTOROLA 15 AMPERE COMPLEMENTARY SILICON POWER TRANSISTORS COMPLEMENTARY SILICON POWER TRANSISTORS These complementary silicon power transistors are designed for high-speed switching applications. such as switching regulators and high frequency inverters. The devices are also well-suited for drivers for high power switching circuits. 30. 45. 60 and SO VOLTS 83 WATTS • Fast Switching - tf = 90 ns (Max) • Key Parameters Specified @ lOO·C • Low Collector-Emitter Saturation Voltage VCE(sat) = 1.0 V (Max) @ 8.0 A • Complementary Pairs Simplify Circuit Designs MAXIMUM RATINGS Rating Symbol D44VH or D45VH 4 7 10 60 80 Vdc 80 100 Vdc Collector-Emitter Voltage VCEO 30 45 Collector-Emitter Voltage VCEV 50 70 Emitter Base Voltage VEB 7.0 Vdc Collector Current - Continuous Peak (1) IC ICM 15 20 Adc Total Power Dissipation @TC=25OC Derete above 25°C Po Operating and Storage Junction Temperature Range Watts TJ. Totg 83 1.67 W/oC -55 to 150 °C THERMAL CHARACTERISTICS •Characteristic i o Unit 1 NOTES ~itfL Symbol Max Unit R8JC 1.5 °C/W Thermal Resistance. Junction to Ambient R8JA 62.5 °C/W DIM A TL 275 °C B ES MAX 0620 0405 ~lC~=t~~~~~~0~'9~0 0 0.035 STYLE 1. f 01 0147 PI. 1. BASE G 2 0.095 0105 2. COLLECTOR EMITTER H 279 0110 0155 COLLECTOR J 0.36 0014 0022 K 1270 0500 0.562 L 114 0045 0.055 Hl.c+-;4H·8~3+~H-l0H·l~90HO~2~1*,0 CASE 221 A-02 P.~C+""~H.~~:+HlH-l~H.~~~~H~~.~f.l~*-I~ (TO-220AB) S 1.14 0.045 0.055 T 5.97 0.235 0.255 U 0.00 0.000 0.050 V 1.14 0.045 Z 2.03 0.080 D (1) Pulse Width .. 6.0 mo. Duty Cycle .. 50%. Note 1: All polarities are shown for NPN transistors. For PNP transistors. reverse polarities. Note 2: See MJE5220/5230 Series data sheet for characteristic curves. 1-432 L Dj':- G I':""J 1 DIMENSION H APPLIES TO ALL LEADS 2 DIMENSION L APPLIES TO LEADS 1 AND 3 3 DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED 4 DIMENSIONING AND TOlERANCING PER ANSI Y14 SM. 1982 S CONTROlliNG DIMENSION INCH Thermal Resistance. Junction to Case Maximum Lead Temperature for Soldering Purposes: 1is" from Case for 5 Seconds tL 1~R !: D44VH Series NPN. D45VH Series PNP elECTRICAL CHARACTERISTICS ITc I III =25°C unless otherwise noted) I Characteristic Symbol Min Typ Max 30 45 60 80 - - Unit OFF CHARACTERISTICS Colleetor-Emitter Sustaining Voltage 11) IIC = 25 mAde, IB = 0) Vde VCEOlsus) 044VH1,045VHl 044VH4, 045VH4 044VH7, 045VH7 D44VH10,045VH10 Collector-Emitter Cutoff Current - !lAde ICEV IVCE = Rated VCEV, VBEloff) = 4.0 Vde) IVCE = Rated VCEV, VBEloff) = 4.0 Vde, TC = 100°C) Emitter Base Cutoff Current IVEB = 7.0 Vde, IC = 0) lEBO - - 10 100 - 10 35 20 - - - - 0.4 1.0 0.8 1.5 - - 1.2 1.0 1.1 1.5 - 50 - - 120 275 - - !lAde ON CHARACTERISTICS 11) DC Current Gain (lc = 2.0 Ade, VCE = 1.0 Vde) IIC = 4.0 A 1.2 ~ 0.8 '" g '" § 10 20 50 IC. COLLECTOR CURRENT (mAl 1.0 100 200 300 FIGURE 5 - TEMPERATURE COEFFICIENTS 3.0 100 rnA c ? VCE(,,~,-+-t-r-Hiit_ICI'B ~A-ttm-/-=-5.0".c-1-'2"l'0 0.2 FIGURE 4 - COLLECTOR SATURATION REGION 2.0 .. - i '~PPli~ t. Ic'lla ~ hF'E,i . I "~C f~r VCE:sati 2S·C t. 12S·C r-. -550C to 250C 25·C to 12S·C ~ -1.0 !;t o _ 0.4 '\ o u ~ > \ ~ ,. -2.0 _'VBf.rVBE 1\ ~ -3.0 i 0 0.01 0.02 0.05 0.1 0.2 0.5 1.0 2.0 5.0 10 20 SO 100 -55 to 25°& I -4.0 1.0 I I Lj 5.0 10 3.0 IC. COLLECTOR CURRENT (rnA) 'B. BASE CURRENT (mAl 30 100 SO FIGURE 6 - THERMAL RESPONSE 1.0 0.7 0.5 ~~ ~~ .... .... '" 0 ffi~ 0.3 0.2 D·D.s r- .... ~ 0.1 ....b;;;jj 0.2 ~ , po I 0.1 10,05 I I - -t - I inw :i ~ 0,07 Single ulse ~~~ 0.05 :g~ 0.03 ~ 0.02 Duty Cycle, D '" tl/12 0.05 0.1 0.2 0.5 1.0 2.0 I ZOJA{t)' r{t! R'JA R.JA • 62.!i.·C/W Max P{pkl .0.01 0.02 ! :Ef1Jl ---t\;-J SmglePulse 0.2 0.01 ''1'" 0.01 I z"JC{t! - r{tl R~JC R'JC • 12.S.C/W Max 5.0 10 20 t. TIME 50 {m~ 1-436 100 200 500 1.0 k 2.0 k o CURVES APPLY FOR POWER PULSE TRAIN SHOWN REAO TIME AT 1i TJ{pk) -TC • P{pkl R'Jc{tl 5.0 k 10 k 20 k 50 k 100 k ® MOTOROLA NPN PNP MDS26 MDS27 MDS76 MDS77 DUOWATT 3.0 AMPERE COMPLEMENTARY PLASTIC SILICON POWER TRANSISTORS COMPLEMENTARY SILICON POWER TRANSISTORS • designed for low power audio amplifier and low current, high speed switching applications. • Coliector·Emitter Sustaining Voltage VCEO(sus) = 40 Vdc - MDS26, MDS76 =60 Vdc - MDS27, MDSn • DC Current Gain hFE =40 (Min) @ Ie =0.2 Adc =30 (Min) @ IC = 1.0 Adc • Current·Gain - Bandwidth Product fT =50 MHz (Min) @ IC = 100 mAdc • Annular Construction for Low Leakages ICBO = 100 nA (Max) @ Rated VCB 40,60 VOLTS 10 WATTS Tab forming and TO-5 lead forming available on special raqua.t. tfo' MAXIMUM RATINGS MOS26 MOS76 MOS27 MOS77 Unit VCB 60 80 Vdc VCEO 40 60 Vdc Svmbol Rating Collector· Base Voltage Collector-Emitter Voltage Emitter-Base Voltage Collector Current - Continuous VEB -7.0- Vdc IC -3.0-5.0- Adc IB 1.0- Po 2.0-0.016_12.5_ -100-65 to +150_ _ Peak Base Current Total Device Dissipation @ T A Derate above 2SoC 25°C Total Device Dissipation @ T C = 25°C Po Derate above 25°C Operating and Storage Junction TJ,Tstg mW/DC °c THERMAL CHARACTERISTICS Svmbol Max Unit Thermal Resistance, Junction to Case 9JC 10 °C/W Thermal Resistance, Junction to 9JA 62.6 °C/W Ambient D~ ~STYLE3' -I Adc Temperature Range Characteristic ~ 11 f Watts W/oC Watts r 0.-/ --G N l r PIN 1. 8ASE 2. COLLECTOR 3. EMITTER 4. COLLECTOR g 1 ~ -.J -=tJ MILLIMETERS DIM MIN MAX A 21.84 22.35 B 9.91 10.41 4.39 4.65 C 0.74 0.58 0 4.06 F 3.56 2.41 2.67 G H 1.70 1.96 0.48 0.66 J K 12.19 12.95 L 1.65 2.03 N 9.91 10.16 Q 3.56 3.81 1.07 1.75 R 7.87 9.14 T INCHES MIN MAX 0.860 0.880 0.390 0.410 0.173 0183 0.023 0.029 0.140 0160 0.095 0.105 0.067 0.077 0.019 0.026 0.480 0.510 0.065 0.080 0.390 0.400 0.140 0.150 0.042 0.069 0.310 0.360 CASE 306·04 TD·202AC 1-437 .. MDS26, MDS27NPN/MDS76, MDS77PNP ELECTRICAL CHARACTERISTICS (Tc = 25°C unle.. otherwise noted) Symbol Characteristic Min Max 40 60 - Unit OFF CHARACTERISTICS Collector-Emitter Sustaining Voltage (1) (lC = 10 mAde, IB = 0) Vde VCEO(sus) MDS26,MDS76 MDS27,MDS77 Collector Cutoff Current ICBO I'Ade (VCB (VCB = 60 Vde, =80 Vde, = 0) = 0) MDS26,MDS76 MElS27,MDS77 - 0.1 0.1 (VCB (VCB =60 Vde,lE =0, TC = 125°C) = 80 Vde, IE =0, TC = 125°C) MDS26,MDS76 MDS27,MDS77 - - 0.1 0.1 - 0.1 40 200 30 - - 0.3 0.6 1.7 IE IE mAde Emitter Cutoff Current (VSE = 7.0 Vde, IC lEBO = 0) I'Ade ON CHARACTERISTICS (1) DC Current Gain (lC (lc Collector-E mitter Saturation Voltage VCE(sat) (lc = 200 mAde, IB = 20 mAde) (lC = 1.0 Ade, 18 = 100 mAde) (lC - 3.0 Ado, IB = 600 mAde) Base-Emitter Saturation Voltage VCE Vde - Base-Emitter On Voltage = 500 mAde, Vde VBE(satl (lC = 2.0 Ade,IS = 200 mAde) (lC - hFE = 200 mAde, VCE = 1.0 Vde) = 1.0 Ade, VCE - 1.0 Vde) VSE(on) = 1.0 Vde) 1.8 Vde - 1.5 50 - - 50 70 DYNAMIC CHARACTERISTICS Current-Gain - Bandwidth Product (2) (lC = 100 mAde, VCE = 10 Vde, I test Output Capacitance (VCB = 10 Vde, IE = 0, I = 0.1 Cob MHz) MDS26, MDS27 MDS76, MDS77 pF - (1) Pul.e Test: Pul.e Width <; 300 1'5, Duty Cycle <; 2.0% (2) IT MHz IT = 10 MHz) = Ihie I. I test 1-438 MDS60 ® MOTOROLA l1li PNP SILICON ANNULAR TRANSISTOR DUOWATT . designed for general-purpose applications requiring high breakdown voltages, low saturation voltages and low capacitance. • PNP SILICON HIGH VOLTAGE TRANSISTOR Complement to NPN Type 2N6558 MAXIMUM RATINGS Symbol V .... Unit Vceo 300 Vdc Collector-Base Voltage Vca Vdc Emitter-Base Voltage VEa 300 5.0 Collector Current - Continuous IC 500 mAde Total POlN8r DISSipation 0 T A - 2SoC Derate aboVtl 25°C Po mWfOC Po 2.0 16 10 BO Watts mWf'C TJ,Tstg -55 to+1SO "C Rating Collector-Emitter Voltage Total Power Diuipation" TC - 2SoC Derete above 2SoC Operating and Storage Junction Temperature Range Vdc Won THERMAL CHARACTERISTICS Ch.r.teristic L Thermal Reslstence, Junction to Case I Thermal Resistance, Junction to Ambient Symbol L 8JC 8JA I Ma. 12.5 62.5 1 Unit I °C/W a C/W I ELECTRICAL CHARACTERISTICS (T A" 25°C unless otherwise noted) Ch.'~ristic Sy..... Min Mo. Unit OFF CHARACTERISTICS Collector Emitter Breakdown VOltage(1) 300 Coliector·Base Breakdown Voltage (Ie = 100 "Adc, Ie = 01 BVCBO Emltter·Base Breakdown Voltage (Ie = 10 "Ade. Ie '" 01 Collector Cutoff Current (Vca = 200 Vde, IE '" 0) BVEBO Emitter Cutoff Current IVSE = 3.0 Vde, IC = 0) Vdc 8VCEO lie'" 1 o mAde, Is =01 Vde 300 Vde 5.0 ,.Ade ICBO 0.2 "Ade IESO 0.1 ON CHARACTERISTICS DC Current Gam tiC s 1.0 mAde, VCE '" 10 Vdel IIC s 10 mAde, VCE = 10Vdcl -FE 25 30 30 (lC "'30 mAde, VCE '" 10Vdel Collector·EmltterSaturatlon Voltage IIC = 30 mAde, IS '"' 3.0 mAde) Base-Emitter Saturation Voltage lie = 30 mAde, IB = 3.0 mAde) Vde VCE{sad 0.75 o. VBEtsad Vde STYLE l' PIN 1. EMITTER 2. BASE 3. COLLECTOR 4. COLLECTOR INCHES MILLIMETERS MIN DIM MIN MAX MAX A 2184 22 35 0860 0880 991 10 41 8 I~ 439 0183 C 4.65 074 0023 0029 0 058 406 0140 0160 ~241 267 G ~ ~~ 0077 170 196- 0067 ~ J 04s 0.66 0019' 0026 K 1219 i29'S 0480 -~ 165 L 203 0065 0080 N 991 1016 0390 0400 Q 3.56 3.81 0.140 0.150 1.07 1.75 0.042 0.069 R 7.S7 9.14 0.310 0.360 T }~ + DYNAMIC CHARACTERISTICS Current-Galn-Bandwidth Product (Ie = 10 mAde, VeE = 20 Vde, f:. 10 MHzl f,- Collector·Base Capacitance {Vea =20Vde,IE =0, f = 1.0 MHz) Ceb MHz 45 pF 8.0 (1) Pulse Test: Pulse Width" 300 ,,5, Duty Cycle" 2%. CASE 306-04 TO·202 AC 1-439 MOS60 OJ FIGURE 1 - DC CURRENT GAIN 150 V~E' \0 vIc TJ '" +125 0C I 100 ~+250C 0 ~ 0 _ - 5 5 0C ....... ....... ~ 1'\ 0 ~~ '\.: "' '\ 20 15 1.0 2.0 5.0 3.0 10 7.0 20 50 30 80 "' 100 IC, COLLECTOR CURRENT (mAl FIGURE 2 -CAPACITANCES FIGURE 3 -CURRENT·GAIN-BANDWIDTH PRODUCT 0 100 TJ'250C -VCE' 20 Vdc "\ 0 C,b - 0 0 0 / :\ /' ......... 0/ 0 0 i 2. 0 r- 1. 0 01 0.2 05 1.0 2.0 50 10 20 50 Crb l 100 200 0 10 500 1000 50 20 FIGURE 5 - DC SAFE OPERATING AREA FIGURE 4 - "ON" VOL TAGES 8 ~o ~ 500 II II - -- V8~ @J CE (, 10 ~ - O. 6 '" ~> >. 1 -- ~ ; 0 1.0 II II 2.0 5.0 10 !2 =10 '-""" 20 ..... ..... 200 I~ 100 l'o... 13 '"o VCE(;'!I@IC/18 Jli0 t- O. 4 2 100 50 20 IC, COLLECTOR CU~RENT (mAl VR, REVERSE VOLTAGE (VOLTSI 0 10 50 100 0 TJ'IS00C - - - SECOND 8REAKOOWN LIMITED 0 - BONDING WIRE LIMITED - - - THERMALLYlIMITEO@TC'250C 0 0 50 20 30 50 70 100 200 VCE, COLLECTOR·EMITTER VOLTAGE (VOL TSI IC, COLLECTOR CURRENT (mAl 1-440 300 400 ® M051678 MOTOROLA r--------,III NPN SILICON ANNULAR RF TRANSISTOR DUOWATT 4W-27MHz · .. designed for use in Citizen-band and other high-frequency communications equipment operating to 30 MHz. Higher breakdown voltages allow a high percentage of up-modulation in AM circuits. RF POWER OUTPUT TRANSISTOR NPN SILICON • Output Power = 4 W (Min) @ VCC = 12 Vdc • Power Gain • High Collector-Emitter Breakdown Voltage - BVCER ;;;. 65 Vdc = 10 dB (Min) MAXIMUM RATINGS Symbol Value Unit Collector-Base Voltage VCBO 65 Vdc Collector-Emitter Voltage VCER 65 Vdc Emitter-Base Voltage VEBO IC 4 Vdc 3 Adc Po 2 16 Watt mW/oC Po 10 80 mW/oC -55 to +150 °c Rating Collector Current - Continuous Total Power DIssipation @ T A - 2SoC Derate above 2SoC Total Power Dissipation @ T C - 2SoC Derate above 2SoC Operatmg and Storage Junction TJ. T stg Temperature Range Thermal Relstance, Junction to Case Thermal Resistance, Junction to Ambient I Symbol I I eJC I I eJA I a1~b$'j Watt THERMAL CHARACTERISTICS Characteristic Tab-forming and TO-S lead-forming available on special request. Max 12.5 62.5 I I I Unit °C/W °C/W ! .,~,'_ b] b; iI 2 COLLECTOR 3 EMITTER K 4 COLLECTOR Djl-~_G L R IN-hl L~..J r~-=tJ FIGURE 1 - POWER GAIN 10 ........ --- -- DIM A 8 C D ~G H J K I--- L N CIRCUIT TUNED @P,,"0.15W VCC" 11 Vdc f"y MHz I Q R T 1 0.1 0.1 0.3 0.5 MILLIMETERS MIN MAX 11.84 1135 991 1041 4.39 4.65 074 0.58 4.06 356 141 1.67 170 196 066 048 11.19 1195 165 1.03 9.91 10.16 3.56 3.81 1.07 1.75 7.87 9.14 INCHES MIN MAX 0.860 0880 0390 0410 0173 0.183 0.013 0019 0140 0160 0095 0.105 0.067 0077 0.019 0.016 0480 0510 0.065 0080 0390 0.400 0140 0.150 0.041 0.069 0.310 0.360 0.7 CASE 308-04 Pin. INPUT POWER IWATTS) TO-202AC 1-441 MDS1678 ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted) Symbol Min Typ Max Unit Collector-Emitter Breakdown Voltage (1) (lC = 10mAdc, RBE = IOn) BVCER 65 - - Vde Emitter-Base Breakdown Voltage BVEBO 4 ICBO - - 0.01 15 10 - - Characteristic III OFF CHARACTERISTICS Vdc (IE = 1 mAde, IC = 0) Collector Cutoff Current mAde (VCB = 30 Vdc, IE = 0) ON CHARACTERISTICS DC Current Gain (2) (lC = 500 mAde, VCE = 5 Vdc) (lC = 1.5 Adc, VCE = 5 Vdc) hFE - VCE(satl - - Cob - - fT 100 Common-Emitter Amplifier Power Gain (Pout = 4 W, VCC = 12 Vdc, I = 27 MHz) GpE 10 - - dB Output Power Pout 4 - - Watts ~ - 70 - % Collector-Emitter Saturation Voltage 1 Vdc 45 pF (lC = 500 mAde, IB = 50 mAde) DYNAMIC CHARACTERISTICS Output Capacitance (VCB = 12 Vde, IE = 0, f = 1 MHz) Current-Gain Bandwidth Product (lC = 100 mAde, VCE = 5 Vdc, 1= 20 MHz) MHz FUNCTIONAL TEST (FIgure 1) (Pin = 400 mW, VCC = 12 Vde, f = 27 MHz) Collector Efficiency (3) (Pout = 4 W, VCC = 12 Vdc, f = 27 MHz) Percentage Up-Modulation (4) (I = 27 MHz) 85 % (1) Pulsed through a 25 mH Inductor. (2) Pulse Test: Pulse Width';; 300 I'S, Duty Cycle';; 2.0%. (3)~= RFPout .100 (VCC)(lC) (4) Percentage Up-Modulation is measured in the test circuit (Figure 3) by setting the Carrier Power (Pel to 4 Watts with Vee = 12 Vdc and noting t~e power input. Then the Peak Envelope Power (PEP) is noted after doubling the origmal power input to simulate driver modulation (at a 25% dUty cycle for thermal considerations) and raising the Vee to 24 Vdc (to simulate the modulating voltage). Percentage UpModulation is then determined by the relation: Percentage Up·Modulation C1. C2 - 9.0-180 pF ARCO 463 or equivalent C3. C4 - 4.0-80 pF ARCa 462 or equivalent C5 - 0.02 J.LF ceramic disc C6 - 0.1 ,uF ceramic disc RFC1 - 4 turns #30 enameled wire wound on ferroxcube bead tYpe 56-590-65/38 RFC2 - 26 Turns #22 enameled wire (2 layers-13 turns each layer) 1/4" inner diameter L 1 - 0.22 ,uH molded choke L2 - 0.68,uH molded choke FIGURE 2 - OUTPUT POWER WITH Vee VARIATIONS 30 ~ .... DUTY CYCLE = 25% f= 27 MHz < ~ '"~ ~ >=> p,::±- I- ~IRCUIT TlINED@VCC = 24 V. Pon = 0.2 W 20 /' 10 ./ ./ I!: => // <:> ~ v ,.~ .".., .P :::::; ~ ~ [(Pp~P) 1/2 -1] .100 or --::7.".. FIGURE 3 - 27 MHz TEST CIRCUIT 0.2W- ...Input 3 10 14 18 22 26 Vec, COLLECTOR SUPPLY VOLTAGE (VOLlS) 1-442 C1 ® MJ410 MJ411 MOTOROLA II. HIGH VOLTAGE NPN SILICON TRANSISTORS . designed for medium to high voltage inverters, converters, regulators and switching circuits. • High Collector· Emitter Voltage VCEO = 200 Volts - MJ410 300 Volts - MJ411 POWER TRANSISTORS NPN SILICON 200-300 VOLTS 100 WATTS 1.0 and 2.5 Adc • DC Current Gain Specified • Low Collector-Emitter Saturation Voltage VCE(sat) = 0.8 Vdc @ IC = 1.0 Adc @ 5 AMPERE MAXIMUM RATINGS Rating I I Symbol MJ410 VCEO 200 Collector-Base Voltage VCB 200 Emitter-Base Voltage VEB 50 Vdc IC 5.0 10 Adc 2.0 Adc Collector-Emitter Voltage Collector Current - Continuous Peak Base Current 'B Total Device Dlssipation@Tc==7SoC Derate above 75°C Unit 300 Vdc 300 Vdc 100 133 -65 to +150 Operating Junction Temperature Range Storage Temperature Range I MJ411 Lr~ r~K -65 to +200 T stg THERMAL CHARACTERISTICS Characteristic Max Thermal Resistance, Junction to Case ESEATlN!~ 0.75 I PLANE ELECTRICAL CHARACTERISTICS (TC "" 2SoC unless otherWise noted) I I Symbol I Min I Characteristic Max Unit OFF CHARACTERISTICS !collector-Emitter Sustaining Voltage (Ie'" 100 mAde, [s '" 01 Vdc VCEO(sus) 200 300 MJ410 MJ411 mAdc Collector Cutoff Current (VCE = 200 Vdc, 'S = 0) MJ410 0.25 (VeE = 300 Vdc, 'B '" 0) MJ411 0.25 'CEO Follector Cutoff Current (VCE = 200 Vdc, VEB(off) = 1.5 Vdc, TC'" 125°C) MJ410 0.5 (VCE =300 Vdc, VEB{off} -1.5 Vdc, MJ411 05 TC = mAdc 'CEX STYlE 1. PIN 1 BASE 2.EMITIER CASE. COLLECTOR 125°C) Emitter Cutoff Current (VEB '" 5.0 Vdc, IC '" 0) 5.0 'EBO ON CHARACTERISTICS MILLIMETERS MIN MAX A B C 6.35 D 0.99 E F 29.90 G 10.67 H 5.33 J 16.64 K 11.18 Q 3.B4 R - 30 10 HC = 2.5 Adc, VCE = 5.0 Vdc) "a" IS DlA. mAdc DIM DC Current Gam (lc'" 1.0 Adc, VCE = 5.0 Vdc) NOTE: 1. DIM 90 - Collector-Emitter Saturation Voltage (lc'" 1.0 Adc, Ie '" 0.1 Adc) VCE{sat) 0.8 Vdc Base-Emitter Saturation Voltage (Ie = 1.0 Adc:, Ie = 0.1 Adc) VSE(sat) 1.2 Vdc - DYNAMIC CHARACTERISTICS Current-Gain-Bandwidth Product (lC = 200 mAdc, VCE = 10 Vdc, f= 1.0MHz) 39.37 21.08 7.62 109 3.43 30.40 11.18 5.59 17.15 12.19 '.OS 26.67 INCHES MIN MAX 0.250 0.039 1.177 0.420 0.210 0.655 0.440 0.151 - CASE 11-01 TO-3 1-443 1.560 0.830 0.300 0.043 0.135 1.197 0.440 0.220 0.675 0.480 0.161 1.050 MJ410, MJ411 FIGURE 1 -ACTIVE REGION SAFE OPERATING AREA 10 0 ,. :;; 2. 0 I- 1. 0 ii: ~ There are two limitations on the power handling ability of a transistor' junction temperature and secondary breakdown. Safe operating area curves indicate Ie-VeE limits of the transistor that must be observed for reliable operation, i.e., the transistor must not be subjected to greater dissipation than the curves indicate. The data of Figure 5 is based on T J(pk) = 150°C; T C IS vanable depending on conditions. Pulse curves are valid for duty cycles of 10% provided TJ{pk)~ 150°C. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than th~ limitations Imposed by secondary breakdown. de O. 5 => u ~ O. 2 0 ~ H-----Secondary Breakdown LImited r-_ _ _ _ Wire Limited ~onding - - - - - - Thermal limitatIon at TC 15 0C Curves Apply Below Rated VCEO 0:: O. 1 80.0 5 ~ rt==Fq-H MJ410_ 0.02H+t+-t---t---i-t-t-H-t 0.01.~-1-L..U,.-_-::'::_-1..-...J...-::'::-1-L..L-':-:'::,.-_-±,----'--,-::::! 5.0 10 20 50 100 200 500 VCE. COLLECTOR·EMITTER VOLTAGE (VOLTS) FIGURE 2 - DC CURRENT GAIN FIGURE 3 - "ON" VOLTAGES 20 100 0 TJ 50 I" ..... 25°C ./ "' ........ V I-"" 0 16 ~ VCE " ....- I--' l--- ~ 0 ~ 2: I '" ~ o ~ VBE(sa,)@ICIIB= 10 O. B +-- I 04 IL r--/ > .,; TJ = 1500C",~ 7.0 biJIlB = 110 ~I 12 w '" f"1\ i-"" -550C JcEI("I, 0; = 5.0 Vde I ill TJ = 25°C I 0 III 150°C j,?-r~ If 1 1 L o 0.2 0.1 03 10 0.5 2.0 30 0.05 50 0.1 02 03 0.5 1.0 20 FIGURE 4-SUSTAINING VOLTAGE TEST LOAD LINE FIGURE 5 -SUSTAINING VOLTAGE TEST CIRCUIT 500 50 mH 400 I- ~ ~ ".~l 300 13 ~ 0 ~ 8 200 - VCEO(sus) IS ACCEPTABLE WHEN VCE > RATED VCEO. AT IC = 100 mA ~ 100 o o MJ4\0MJ411 100 200 ""'" \ -=- S.O V , \ 300 !2 300 30 IC. COLLECTOR CURRENT (AMP) IC. COLLECTOR CURRENT (AMP) .§. II VCE(",)@ICIIB=5 50 0.05 :< V II 400 500 VCE. COLLECTOR·EMITTER VOLTAGE (VOLTS) 1-444 1.0 !2 5.0 ® MJ413 MJ423 MJ431 MOTOROLA HIGH-VOLTAGE NPN SILICON TRANSISTORS 10 AMPERE POWER TRANSISTORS NPN SILICON . . . designed for medium-to-high voltage inverters, converters, regulators and switching circuits. • High Voltage - V CEX = 400 Vdc 400 VOLTS 125 WATTS • Gain Specified to 3.5 Amp • High Frequency Response to 2.5 MHz MAXIMUM RATINGS Symbol Rating I,.;OJ.1ector-D&8e Vottage CB VES Emitter-Baae Voltage Col ector CUrrent Ml413 VCEX Collector-Emitter Voltage Continuous Base Current T~:~~~~r.~on U TC = 25 C Operattoo Junction Temperature Rance Storage Temperature Range M1423 Ml431 Unit - ... ... Vde Ade: 400 400 400 4.., 4.., Vdc vae •• D IC 'D 'D 'D 's 2.0 2.0 2.0 Ade PD ;~~ ;i~ TJ -65 to +150 -6. to ·C .2.., T._ -C THERMAL CHARACTERISTICS Characteristic Max 1.0 Thermal Resistance. Junction to CUe ELECTRICAL CHARACTERISTICS (Tc=2S"Cunll •• GthtlIWlUnoted) Characteristic Symbol Min Max Unit OFF CHARACTERISTICS Collector-Emitter SUstaining Voltage, 1) Oc = 100 mAde, = 01 BVCEO(8ua) 's Collector Cutoff Current (YCE " 400 Vde, VEB(ofl)" 1. 5 Vckt (VCEo 400 Vde, VEB(ofl)' 1.5 Vdc, TC"" 125·C) Emitter Cutoff Current (YBE" •. 0 Vdc, IC' 01 MJ... 13, MJ423 MJ431 MJ413, MJ423 MJ431 MJ413. MJQ3 - 3.5 mAde --- D••• 2.5 0.5 5.0 ':sao -- 5.0 2.0 hFE 20 eo CElt M.J431 Vde Lr~ r~K ESEATIN/~ PLANE IDAde mAde ON CHARACTERlmCS DC Current Gain 11) 0C· 0.5Adc, VeE' 5.0 Vdel MJ413 OC" 1.0 Adc, VCB " 5.0 Vdcl - 15 = 1.0 Adc, VCE =5.0 Vdcl (Ie"" 2.5 Adc, VCE "" 5.0 Vdc) Oe M.J423 30 10 90 0c' 2.5 Adc, VeE =5.0 Vdcl Oc = 3 •• Adc, VeE = 5.0 Vdcl MJ431 I. 35 CoUector-EmJtter Saturation Voltage 111 0.5 Adc, 0.05 Adcl Oe • Oc " 1.0 Adc, Oe - 1.5 Adc, 's • 's' o. 10 Adcl 's - O. 5 Adcl Bue-Emltter SaturaUOIl Voltlge't'l 0.5 Adc, 0.05 ~I 1. 0 Ade, O. 1 Adcl 1.5 Adc, o. 5 Adcl Oe' Oe Oe - 's 's 's' p- - MJ413 MJ423 MJ431 MJ413 MJ423 M.J431 VBE(sat) - - I . Oe - I1IPW .. 300 ~', - 0.6 A 8 C D E F 0.7 G 10. Vdc 0.8 Vdc 1.25 1.15 I .• J K n R 6.3 0.99 - 9.90 .3 6.84 1.18 3.14 - 39.31 21.08 1.6 1.09 3.43 31UO 11.18 5. 11.15 12.19 4.09 2181 I I u Dutr C,.,lo .. 1.0'1. 1-445 INCHES MIN X - O. 0.039 - 1.117 0·420 1 0.855 0.440 0.151 CASE 11·01 TO.:! DYNAMIC CHARACTERlmCS CU......-GaIn - 200 mAde, VCB • 10Vdc, I- 1.0 IOIaI STYlE I, PIN I. BASE 2.EMlnER CASE, COLLECTOR MILLIME ERS DIM MIN MAX - 10 VCE(sat) - 1.550 0.830 0.043 0.135 1.191 0.44CJ 0.2 0.815 0.480 0.181 1.050 I MJ413, MJ423, MJ431 FIGURE 1- ACTIVE·REGIDN SAFE-GPERATING AHQ FIGURE 2 - POWER·TEMPERATURE DERATING CURVE 10 125 "\. loo~ '\;: TJ-=15lrC ~:-SfCCIfIlARYIII£.AKI)OWWlIMITATION - - THERMAL LIMITATtON AT Tc = 25"<: 1.0ms '\ I"\. 5 CBASl.£MITTEROISSIPATlON IS PlRtlPTI8U"""" Ie - 5 AIIPI. The SIte Opel'ltJna Are. Curws Indl- de tlttlc-ValllllHsbe\olJliwhlctlthedftlct "\ I\, wilinolefllersecondlrytlre.kdownCol· 1:: ;::O;i:n I:,:~=~: s~~~Zen::! WOIdCMISIIII.Qtasb'ophK:flllul'e To Insurt opmtlon below tile II1II1liliiii TJ, "\ o .. 25 power-Iemper,ture deutlnr must be "\. obsmed 101' both stelidy state lflii pulse powercondltlOftS 0.0 I 1.0 o o U. 2.0 4.0 6.0 10 20 40 60 100 200 400 1000 20 ro 40 ro ~ ~ " ~ Te. CASE TEMPERATURE ('C) Ve •• COLLECTOR·EMITIER VOlTAGE (VOLTS) ~ ~ m FIGURE 4 - SUSTAINING VOLTAGE TEST CIRCUIT FIGURE 3 - SUSTAINING VOLTAGE TEST LOAD LINE 500 50 mHy ....... IS ACe PTABL£ WHEN r- r- VelOl.n) Ve• ;,. 32S VAT Ie - 100 mA \ f\ , \ I l 200 100 LOR 300R 300 400 500 Veo. COllECTOR·EMmER VOLTAGE !VOlTS) FIGURE 6- TRANSCONDUCTANCE FIGURE 5- CURRENT GAIN 100 70 50 i IS ~ VeE" 5.0 V ..... 30 ~ ~ 3.0 I " 20 IS ~ "" TJ-loo'C" ~5'C 10 S.O 3.0 .Ji O.3 2.0 O.2 1.~.1 0.2 0.3 0.5 0.7 1.0 2.0 3.0 5.0 7.0 10 Ie. COlLECTOR CURt!£NT lAMP) ~. 2.0 I.0 ~ O.7 ~ O.S :5 7.0 i 10 7.0 S.0 I Ve.- IOY 2S'C TJ "" 100'C .I II O.S 1.0 I.S V.. BASEa!1TTER VOlTAGE MIlTS) 1-446 2.0 2.5 MJ802 ® MOTOROLA 30 AMPERE POWER TRANSISTOR HIGH-POWER NPN SILICON TRANSISTOR NPN SILICON 100 VOLTS 200 WATTS · .. for use as an output device in complementary audio amplifiers to 1DO-Watts music power per channel. • High DC Current Gain - hFE = 25-100@ IC = 7.5 A • Excellent Safe Operating Area • Complement to the PNP MJ4502 MAXIMUM RATINGS Rating Coliector~Emitter Voltage Collector·Ba.. Voltage Collector-Emitter Voltage Emitter-Base Voltage Collector Current Base Current Symbol Value Unit VeER VeB VeEO VEe Ie Ie 100 100 90 4.0 30 7.5 200 1.14 Vdc Vdc Vdc Vdc Adc Adc Watts wIDe De Po Total Device Dissipation@Tc== 25°C Derate above 2So C Operating and Storage Junction TJ. T stg -65 to +200 Lr~ r~, ES:::t: PLANE i Temperature Range THERMAL CHARACTERISTICS Characteristic Thermal Resistance, Junction to Case DIM FIGURE 1 - POWER·TEMPERATURE DERATING eURVE 200 i .......... 150 A ~ ........ .......... z <:> ~ ill 100 i5 ...~;:'" e ~ .............. I'-...... o 20 40 60 80 100 120 TC. CASE TEMPERATURE (OC) 140 - - 6.35 0.99 29.90 10.67 5.33 16.64 11.18 Q 3.84 R " '~ 50 o 8 C D E F G H J K MILLIMETERS MIN MAX 160 1-447 ~200 180 39.37 21.08 7.62 1.09 3.43 30.40 11.18 5.59 17.15 12.19 4.09 26.67 NOTE: 1. DIM "O"IS OIA. INCHES MIN MAX 0.250 0.039 .. 1.177 0.420 0.210 0.655 0.440 0.151 - 1.550 0.830 0.300 0.043 0.135 1.197 0.440 0.220 0.675 0.480 0.161 1.050 CASE 11·01 TO·3 MJ802 ELECTRICAL CHARACTERISTICS (TC 2SOC unless otherwise noted) & Characteristic Symbol Min Max Unit 100 - Vde 90 - Vde - 1.0 5.0 OFF CHARACTERISTICS COllector-Emitter Breakdown Voltage (1) SVCER IIc = 200 mAde, RSE = 100 Ohms) Collector-Emitter Sustaining Voltage' 1) II C = 200 mAde) VCEO(sus) Collector-Base Cutoff Current (VCS = 100 Vde, IE = D) (VCS = 100 Vde, IE = 0, TC = 150°C) ICSO Emitter-Base Cutoff Current IESO - 1.0 DC Current Gain CU (lC = 7.5 Ade, VCE = 2.0 Vde) hFE 25 100 Base-Emitter "On" Voltage IIc = 7.5 Ade, VCE = 2.0 Vde) VSE(on) 1.3 Vde Collector-Emitter Saturation Voltage IIc = 7.5 Ade, IR = 0.75 Adel VCE(sat) 0.8 Vde Base-Emitter Saturation Voltage IIC = 7.5 Ade, IS = 0.75 Ade) VSE(sat) 1.3 Vde mAde mAde (VSE = 4.0 Vde, IC = 0) ON CHARACTERISTICS (1) DYNAMIC CHARACTERISTICS Current Gain - Bandwidth Product IIc = 1.0 Ade, VCE = 10 Vde, f 111 Pulse Test: Pulse Width~ = 1.0 MHz) 300 IJs, Out.... Cycle ~ 2.0%. FIGURE 3 - "ON" VOLTAGES FIGURE 2 - DC CURRENT GAIN 2.0 I 1.8 T)2JoJ 1.6 ~0 1.4 2- 1.2 '/ w '"~ 0 > if' ; - 0.2 HH-#f# 1.0 VaE(sat)@lclla= 10 0.8 Ifii 0.6 Data shown is obtained from pulse tests+-1+H-I+--l~~~ cn IIII 0.2 II I VCE(sat)@lc/la- 10 o 0.1 ':::::-';;";;;!U..!.!:,:--'-::'::'::'::-'-::';.LJ...L7':--'-:'::-'-:!-::-"-:,::'-'-''-':'=---1..-:!::-~ 0.03 0.05 0.1 0.2 0.3 0.5 1.0 2.0 3.0 5.0 10 20 30 IC, COLLECTOR CURRENT (AMP) - VaE @VCE = 2.0 V 0.4 ant ajiUiid tt IUIIi;~ iffeCl t' i I 0.03 0.05 0.1 - - II ~ 0.2 0.3 0.5 1.0 2.0 3.0 5.0 IC, COLLECTOR CURRENT (AMP) ~ / 10 20 30 FIGURE 4 - ACTIVE REGION SAFE OPERATING AREA 100 , 50 a: ::;; !! 20 .... ffi '" '":::> '"'" 0 ~.... 10 5.0 f-- TJ = 2000C 1.0 E--- Secondary Breakdown Limited 0.5 - - ......... 100 pi 1.0ms ...... r-.. 5.0 2.0 0 '" ~ -to ~ =-_:.-: ~~~:~':I ~~~:~i~:~C f==: S Pulse Duty Cycle m. " The Safe Op8f8ting Am Curves indicate Ie - VeE limits below which the device will not enter secondary breakdown. Collector Ioed lines for speclfh: circuits must fEl11 within the applicable Safe Area to avoid causing iii catastrophic failure. To insure operation below the maximum T J. power-temperature derating must ba ob.1Ved for both steady state and puis. power conditions. =250C 10% 0.2 0.1 1.0 2.0 3.0 5.0 10 20 30 VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS) 1-448 50 100 ® MJ900, MJ901 PNP MJ1000, MJ100l NPN MOTOROLA 8,0 AMPERE DARLINGTON POWER TRANSISTORS COMPLEMENTARY SILICON MEDIUM-POWER COMPLEMENTARY SILICON TRANSISTORS ___ for use as output devices in complementary general purpose amplifier applications_ • High DC Current Gain - hFE = 6000 (Typ) • Monolithic Construction with Built-I n Base-Emitter Shunt Resistors @ 60-80 VOLTS 90 WATTS IC = 3.0 Adc MAXIMUM RATINGS Rating Symbol Collector-Emitter Voltage MJ900 MJ901 MJ1000 MJ100t Unit VeEO 60 80 Vdc Collector-Base Voltage Vee 60 80 Vdc Emitter-Base Voltage VEe 5.0 Vdc Ie 80 0.1 Adc Collector Current Sase Current Ie Total Device Dissipation @TC = 2SoC PD 90 0.515 Watts TJ,Tstg -55 to +200 °e Derate above 2SoC Operating and Storage Junction Adc Lr~ r~K wloe Temperature Range ESEATlN!-~ THERMAL CHARACTERISTICS I PLANE Characteristic Thermal Resistance, Junction to Case FIGURE 1- DARLINGTON CIRCUIT SCHEMATIC PNP MJ900 MJ901 Collector ---, r---~f---, I I I I I I I Base NPN MJIOOO MJIOOI STYLE I: PIN I. BASE 2. EMITTER CASE: COLLECTOR Collector ---, ,-----+--, Base I I I I I I I I I __ ...J __ ...J Emitter Emitter 1-449 MILLIMETERS DIM MIN MAX - NOTE: I. DIM "Q" IS DIA. INCHES MIN MAX - 39.37 21.08 7.62 0.250 1.09 0.039 3.43 29.90 30.40 1.177 10.ti7 11.18 0.420 5.33 5.59 0.210 16.64 17.15 0.655 11.18 12.19 0.440 Q 3.84 4.09 0.151 26.67 R Collector connected to case. CASE 11-01 (TO-3) A B C D E F G H J K - 6.35 0.99 - - 1.550 0.830 0.300 0.043 0.135 1.197 0.440 0.220 0.675 0.480 0.161 1.050 .. MJ900, MJ901 PNP/MJ1000, MJ1001 NPN ELECTRICAL CHARACTERISTICS fTc I =25 0 C unless otherwise noted) I Characteristic Ma. Min Symbot Unit OFF CHARACTERISTICS Collector-Emitter Breakdown Voltage i1) lIB Vdc BVCEO (Ie" 100 mAde, 'e '" 0) 60 80 MJ900, MJ1000 MJ901.MJ100l Collector Emitter Leakage Current mAde leER (Ves = 60 Vdc, RBE = 1 Ok ohm) 10 10 5.0 50 20 MJ900, MJ1QOO (Vea "-80Vde, ABe = 1.0k ohm) MJ901, MJ10D1 (Ves = 60 Vdc, ABe = LOk ohm, TC = 150oC) MJ900, MJ1000 (Vea = BOVdc, Rae = 1.0k ohm, TC '" 1500 Cl MJ901, MJ1Q01 Emitter Cutoff Current (VSE = 5.0 Vdc. Ie'" 0) Collector-Emitter Leakage Current (VeE = 30 Vdc, '8:; 0) mAde j.LAdc 500 500 MJ900. MJ 1000 MJ901. MJ1001 (VeE = 40 Vdc, '8 '" 0) ON CHARACTERISTICS DC Current Galn(1) (Ie = 3.0 Adc, VeE = 3.0 Vdcl (Ie = 4.0 Adc, VeE = 3.0 Vdc) Collector·Emltter Saturation Voltage(1) Vdc '8 '" 12 mAde) 20 (Ie = 8.0 Ade, IB = 40 mAde) 4.0 Base-Emitter Voltage(1) (Ie = 3.0 Adc, VeE = 3 0 Vdc) 2.5 lie'" 3 a Adc, Vdc (1)Putse Test. Pulse Width 5300 ,",s, Dutv CvcleS 2.0%. FIGURE 2 - DC CURRENT GAIN FIGURE 3 -SMALL-SIGNAL CURRENT GAIN 3000 50.000 200 0 20.000 z ::;: TJ=150 oC 10.000 ~ 1000 z ffi ;;:'5000 ~ 500 to .... ::> ~ 2000 ""to ~ a: ~ u o ~ Z 1000 500 -~5~C ./ 200 100 50 0.01 TC - 250 C u -' 300 25 0 C ~ VCE = 3.0 Volts ./ 50 0.05 0.1 0.2 0.5 1.0 2.0 5.0 30 103 10 105 f. FREQUENCY (Hz) FIGURE 4 - "ON" VOLTAGES 3.5 I I 3.0 TJ !3o ? w 2.5 :> 1.0 ~ ~ I a: 0.02 0.05 0.1 I 0.2 I II 0.5 TJ = 2000 C 3.0 2.0 i \\ \' ~ 1.0 g o. r=:"- SECONDARY BREAKOOWN LIMITATION THERMAL LlMITATION@TC= 250 C BONDING WIRE LIMITATION o 7C _ 0.5 ./ 8 !2 1111 1.0 = ::> VCEisat)I@IICr'11121510 o = :E ~BEI@ I~EI=ru;:? 0.5 0.01 7.0 ~ 5.0 250)C I I VB~(sat! @lcliB = 25~ 2.0 1.5 > i FIGURE 5 - DC SAFE OPERATING AREA 10 I I I ~o \ 100 IC. COLLECTOR CURRENT (AMP) _ [\ VCE = 3.0 Vdc IC = 3.0 Adc 200 2.0. 5.0 10 0.3 JJ90~. Ml,~o 0.2 MJ901. MJ100l O. 1 . 1.0 I 2.0 3.0 5.0 7.0 10 I 20 I I 30 50 70 100 VCE. COLLECTOR·EMITTER VOLTAGE (VOLTS) IC. COLLECTOR CURRENT(AMP) There are two limitations on the power handling ability of a transistor: average junction temperature and secondary breakdown. Safe operctting area curves indicate IC-VCE limits of the transistor that must be observed for reliable operation; e.g., the transistor must not be subjected to greater dissipation than the curves indicate. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations im~ posed by secondary breakdown. 1-450 ® MJ2S00, MJ2S01 PNP MJ3000, MJ3001 NPN MOTOROLA 10AMPERE DARLINGTON POWER TRANSISTORS COMPLEMENTARY SILICON MEDI UM-POWER COMPLEMENTARY SILICON TRANSISTORS 60-80 VOLTS _ . . for use as output devices in complementary general purpose amplifier applications . • High DC Current Gain - hFE = 4000 (Typ) • Monolithic Construction with Built-In Base-Emitter Shunt Resistors @ 150 WATTS IC = 5.0 Adc MAXIMUM RATINGS Rating Coliector~Emitter Symbol Voltage VCEO MJ2500 MJ2501 MJ3000 IMJ"OOl 60 80 Unit Vdc Collector· Base Voltage VCB Eminer-Sase Voltage VEB 5.0 Vdc Collector Current IC 10 Adc Base Current IB 0.2 Adc Total Device Dissipation@Tc=2SoC Derate above 2SoC Po Operating and Storage Junction 60 80 JE"~l::r Vdc 150 Watts 0.857 W/oC TJ,Tstg -55 to +200 °c Symbol Max Unit eJC 1.17 °C/W "[!~i -F~ r-- J - Temperature R Bngs Q0<;/ ~-l THERMAL CHARACTERISTICS Characteristic Thermal Resistance. Junction to Case I H\f' ! ,)\ ~V ---, r---+. I I I I I I I I I I I __ ...l I I B... ---, .-----ffi ~ 500 ./ 200 0 a'" ;;! 300 25°C...... z 1000 to 200 ~ 100 .. ~ '-' '" 500 ~ 200 -55°C j VCE - 3.0 Volts 0.01 0.02 0.05 0.1 0.5 0.2 1.0 2.0 5.0 30 103 10 f. FREQUENCY (Hz) FIGURE 5 - DC SAFE OPERATING AREA FIGURE 4 - "ON" VOLTAGES 10 I 3.0 ~ . '"''"::i '">>' 2 ~ 2. 5 z>~ 2. 0 JBE(~tl @lc/IB = 250 1. 5 ~ c ~ 0.02 0.05 0.1 0.2 0.5 1.0 2.0 5.0 r1\ - - Secondary Breakdown Limited 2.0 ~ Thermally Limited at TC:: 25 0 C - - _ . Bonding Wire Limited 1. 0 ~.r-. o. 7 O. 1 1.0 10 IC. COLLECTOR CURRENT (AMP) There are two limitations on the power handling ability of a transistor: 3.0 8!2 o. 3 o. 2 I I 11111 o . . ::l o. 5 Vn(i'lI~IICIJB =~50 I- O. 5 0.01 ::> !.::::I VBiiW[lt::~ 1. 0 . . . 7.0 'Ii:' 5.0 TJ 2scic g c \ 105 IC. COLLECTOR CURRENT (AMP) 3. 5 " TC = 25°C VCE = 3.0 Vdc IC = 5.0 Adc \ 50 100 50 2000 junction temperature and secondary breakdown. Safe operating area curves indicate IC-VCE limits of the transistor that must be observed for reliable operation; e.g., the transistor must MJ2500. MJ3000 - j.. MJ2501. rJ300i i-j\ TJj 2000le 2.0 3.0 5.0 7.0 10 20 30 50 1\ 70 100 VCE. COLLECTOR·EMITTER VOLTAGE (VOLTS) not be subjected to greater dissipation than the curves indicate. At high case temperatures, thermal limitations will reduce the pOwer that can be handled to values less than the limitations imposed by secondary breakdown. 1 ~452 ® MJ3029 MJ3030 MOTOROLA III NPN SILICON HIGH·VOL TAGE TRANSISTORS 5 AMPERE POWER TRANSISTORS NPN SILICON . designed for TV horizontal and vertical deflection amplifier circuits. • High Collector·Emitter Sustaining Voltage VCEO(sus) = 250 Vdc (Min) MJ3029 325 Vdc (Min) MJ3030 • Fast Fall Time in Horizontal Deflection tf = 1.0 lIS (Max) @VCC = 80 Vdc - MJ3030 • Excellent Gain Linearity for Vertical Deflectio'1 hfe@0.4Adc,hfe@0.3Adc=0.95 (Min) - MJ3029 250-325 VOLTS 125 WATTS MAXIMUM RATINGS Symbol MJ3029 MJ3030 Unit Collector-Emitter Voltage VeEO 250 325 Vdc Collector-Emitter Voltage VeER 500 Collector-Emitter Voltage VeEX - Rating Vdc 700 Vdc VEe 5.0 Vdc Ie 5.0 Adc Base Current Ie 1.0 Adc Total Device Dissipation @TC :::: 2SoC Po 125 1.0 Watts Wloe TJ,Tstg -65 to +150 °e Emitter-Base Voltage Collector Current Continuous Derate above 25°C Operating and Storage Junction Temperature Range F THERMAL CHARACTERISTICS Characteristic Thermal Resistance, Junction to Case I Symbol I Max I T I 8Je 1.0 I Unit °elW NOTES: 1. DIMENSIONS Q AND V ARE DATUMS. 2. W IS SEATING PLANE AND DATUM. 3. POSITIONAL TOLERANCE FOR MOUNTING HOLE Q: I t 1.·1310.005)e IT Ive I FOR LEADS: FIGURE 1 - POWER·TEMPERATURE DERATING eURVE 125 '\. I'\. "\ 5 STYLE I PIN 1 BASE 2 EMITTER CASE COLLECTOR I'\. E F I'\. 5 o G H J K """ I'\.'\. o 25 50 75 aiM A B C D "\ 0 100 125 150 Q R U 175 I ve I De I 1•. I t 13 I0005)eT 4. OIMENSIONS AND TOLERANCES PER ANSI YI4.5. 1973. I'\. 200 V MILLIMETERS MIN MAX 39.37 21.08 7.62 6.35 0.97 1.09 1.40 1.78 30.15 SSC 10.92 sse 5.46 SSC 16.89 SSC 11.18 12.19 4.19 3.81 26.67 4.83 5.33 3.81 4.19 - CASE 1·05 TC, CASE TEMPERATURE lOCI 1-453 INCHES MIN MAX 1.550 0.830 0.250 0.300 0.038 0.043 0.055 0.070 1.187 SSC 0.430 SSC 0.215 BSC 0.6658Se 0.440 0.480 0.150 0.165 1.050 0.190 0.210 0.150 0.165 - MJ3029, MJ3030 ELECTRICAL CHARACTERISTICS (Te· 25 0 C unless otherwise noted) Characteristic Min Max Unit OFF CHARACTERISTICS Collector-Emitter Sustaining Voltage( 1) HC=O.l Adc, IS "'01 Vdc 250 325 Collector Cutoff Current mAde (VeE = 500 Vdc, Rae = 1.5 k Ohms) 10 Collector Cutoff Current (VeE = 700 Vdc, VES{off) '" 1.5 Vdc) 2.0 mAde ON CHARACTERISTICS DC Current Gain (Ie = 0.3 Adc, VeE = 5 0 Vdc)(11 25 (Ie = 0.4 Adc, VeE = 5.0 Vdc) (1) 30 Gain Linearity 0.95 Collector-Emitter Saturation Voltage (Ie'" 3.0 Adc, Ie = 0.8 Adc) Vdc 2.0 SWITCHING CHARACTERISTICS Fall Time (VCC=80 Vdc, Ie =3.DAde,ISl = a.BAde) Flgure3 (1)Pulse Test: Pulse Width :f:3QO}.ls, Duty Cycle S2.0". FIGURE 3 - TEST FOR FALL TIME FIGURE 2 - DC CURRENT GAIN 100 70 50 ;;: '" to .... 20 '" 10 '"w '":::> c.J c.J c ~ VCEt 2.0 V 30 " TJ.lOO~" 1'\ 25ic· 7.0 5.0 50 OUTPUT WAVEFORM ON SCOPE 2.0 1.0 0.1 0.2 0.5 0.7 0.3 1.0 2.0 3.0 -= 8~1C0%t.90% 1'- 3.0 5.0 7.0 10 *HP 212A: Set for 10 I1swide pulses at 2000 pulses per sec. (500"" intervals). Adjust for 181·0.8 A. ~~aspu~~~~:ridr'~~: °M~~io~~~~~°No~~~t~~j1;~ijl. IC, COLLECTOR CURRENT (AMP) FIGURE 4 - ACTIVE REGION SAFE OPERATING AREA 10 5.0 ;;: 3.0 2.0 '".... 1.0 '"c.J'":::> '" ....c 0.5 0.3 0.2 S ill ~ c c.J ~ .-- - .'I.. TJ·'50·C de 100 '\. 1.0m~ There are two limitations on the power handling ability of a - - - Secondary Breakdown llmifed"\., - Bonding Wire Limited Limllauon at Te .. 25 0C 0.05 Curves Apply Below Raled VCEO 0.03 MJ3029 _I' 0.02 MJ3030 0.01 10 50 70 100 20 30 200 325 transistor: average junction temperature and second breakdown. Safe operating area curves indicate 1C - VCE limits of the transistor that must be observed for reliable operation; Le., the transistor mus~ not be subjected to greater dissipation than the curves indicate. The data of Figure 4 is based on TJ(pk) • 1S00C; TC is variable depending on conditions. Second breakdown pulse limits are valid for duty cycles to 10% provided TJ(rk),;t; 1S00C. At high case temperatures, thermal limitations wi! reduce the power that can be handled to values less than the limitations imposed by second breakdown. 0.1 ~ ~hermal I I II -+-' 500 700 1000 VCE, COLLECTOR-EMITIER VOLTAGE (VOLTS) 1-454 ® MJ3040 MJ3041 MJ3042 MOTOROLA II. DARLINGTON 10 AMPERE POWER TRANSISTORS NPN SILICON HIGH VOLTAGE SILICON POWER DARLINGTONS . developed for line operated amplifier, series pass and switching regulator applications. • Collector· Emitter Sustaining Voltage VCEO(sus) = 300 Vdc IMin) - MJ3040, MJ3041 = 350 Vdc (Min) - MJ3042 • High DC Current Gain hFE = 100 (Min) @ IC = 250 (Min) @ IC = 2.5 Adc = 2.5 Adc 300,350 VOLTS 175 WATTS - MJ3040 - MJ3041, MJ3042 • Low Coliector·Emitter Saturation Voltage VCElsat) = 2.2 Vdc (Max) @ IC = 2.5 Adc • Monolithic Construction with Bullt·ln Base·Emltter Shunt Resistors MAXIMUM RATINGS Rating Symbol MJ3040 MJ3041 MJ3042 Unit VCB 400 400 500 Vdc VCEO 300 300 350 Vdc Collector-Base Voltage Collector-Emmer Voltage Emitter-Base Voltage Collector Current VEB Continuous Peak (1) IC Total Device DlsslpatlOn@Tc - 25°C Derate above 2SoC Operating and Storage Junction Po TJ, T stg .· 80 10 15 · · --175 1.0 _-65to+200 Temperature Range .· .· -· THERMAL CHARACTERISTICS Vdc Adc Watts W/oC °c JE'"~~' "d:~ i -F~ -J- Q~ ~ + Characteristic H f Thermal Resistance, Junction to Case ~v COLLECTOR --, I I I BASE R 1 lG MILLIMETERS INCHES STYLE 1 MIN MAX DIM MIN MAX PIN 1. BASE A .37 2. EMITTER 21.08 0.830 CASE COLLECTOR 8 C 6.35 7.62 0.250 0.300 D 0.97 1.09 0.038 0.043 1.78 0.055 0.070 1.40 E F 29.90 30.40 1.177 1.197 G 10.67 -11.18 0.420 0.440 H 5.33 5.59 0.210 0.220 J 16.64 17.15 0.655 0.675 K 11.18 12.19 0.440 0.480 n 3.81 4.19 0.150 0.165 R 26.67 1.050 3.05 0.100 0.120 U 2.54 DARLINGTON SCHEMATIC r------- lr ;'\ r:>'-T ~S U (1) Pulse Width = 5.0 ms, Duty Cycle';; 10%. I I I ,)\ I I - I I I - CASE1-04 ----' NOTES: 1. ALL RULES AND NOTES ASSOCIATED WITH REFERENCED TO·3 OUTLINE SHALL APPLY. EMITTER 1-455 MJ3040, MJ3041, MJ3042 ELECTRICAL CHARACTERISTICS IDJ (T C ' 25°C unless otherwise noted.) Characteristic Symbol Min Max 300 350 - - 1.0 1.0 5.0 5.0 - 40 100 250 25 - Unit OFF CHARACTERISTICS Coliector·Emitter Sustaining Voltage Vde VCEO(susl MJ3040, MJ3041 MJ3042 (lC' 100 mAde, IS' 01 Collector Cutoff Current (VCB • 400 Vde, IE '01 (VCB" 500 Vde,IE '01 (VCB' 400 Vde, IE '0, TC ,'1000CI (VCB' 500Vde,IE' 0, TC' 100°C I mAde ICBO MJ3040, MJ3041 MJ3042 MJ3040, MJ3041 MJ3042 - Emitter Cutoff Current (VBE ' 5.0 Vde, IC ' 01 mAde lEBO ON CHARACTERISTICS DC Current Gain (lC ' 2.5 Ade, VCE '5.0 Vdel - hFE MJ3040 MJ3041, MJ3042 MJ3040 MJ3041, MJ3042 (lC ' 5.0 Ade, VCE ' 5.0 Vdel - 50 Coliector·Emltter Saturation Voltage (IC ' 2.5 Ade, IB ' 50 mAdel Vde VCE(satl (lC '5.0 Ade, IB '400 mAdel Base-Emitter Saturation Voltage 2.2 - 2.5 - 3.0 - 2.5 Vde VBE(satl (lC' 5.0 Ade, IB' 400 mAde I Base-Emitter On Voltage - Vde VBE(onl (lC ' 2.5 Ade, V CE ' 5.0 Vdel FIGURE 2 - DC CURRENT GAIN FIGURE 1 - FORWARD SIASSAFE OPERATING AREA 2000 20 IITJ~I500C 1000 10 ~ :5 ... 0 ~8 700 ~ 500 10ms-r- '"'"u " '" z 50 ms ~ 1 O. 2 !::f0.0 1 0.00 5 5 30 200 " 50 70 100 .,. 11.".,- /' ./ 10 0 ., "" I-' 0 200 300 500 VCE. COLLECTOR·EMITTER VOL TAGE (VOLTS) - - II VCE~3Vde - - - - - VCE ~5Vde /' o~- 01 I 02 03 05 III 07 IC. COLLECTOR CURRENT (AMPI There are two limitations on the power handling abilitv of a tranSistor - average junction temperature and second breakdown. Safe operatmg area curves indicate Ie - VeE limits of the tran- sistor that must be observed for reliable operation; I.e., the transistor must not be subjected to greater diSSipation than the curves indicate. The data of Figure 1 is based on T J(pkl = 15o"C; T C is variable depending on conditions. At high case temperatures, thermallimitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown. 1-456 1"\ 1'30oC 70 50 BONDING WIRE LIMIT - - - - THERMAL LIMIT (SINGLE PULSEI SECOND BREAKOOWN LIMIT 20 '"a: 25°C &r .".,- u TC " 25°C 10 300 ~ de 01 ...z 10 NPN PNP MJ3247 MJ3248 MJ4247 MJ4248 MOTOROLA TO-66 TO-3 MJ3237 MJ3238 MJ4237 MJ4238 .--------,111 COMPLEMENTARY SILICON POWER TRANSISTORS 8 AMPERE COMPLEMENTARY SILICON POWER TRANSISTORS ... designed for use as high·frequency drivers in audio amplifiers. • DC Current Gain Specified to 4.0 Amperes hFE = 40 (MinI @ IC 120-150 VOLTS 75 WATTS - TO·66 90 WATTS - TO·3 = 3.0 Adc = 20 (MinI @ IC = 4.0 Adc • Coliector·Emitter Sustaining Voltage· VCEO( 1= 120 Vdc (MinI sus = 150 Vdc (MinI fT = 20 MHz (MinI @ IC RATING Collector-Emitter Voltage Collector. Base Voltage Emitter-Base Voltage Collector Current - Continuous = 500 mAde Symbol MJ4247 MJ4237 MJ3247 MJ3237 MJ4248 MJ4238 MJ3248 MJ3238 Unit V CEO 120 150 Vdc V CB 120 150 Vdc Peak Base Current - Continuous Operating and Storage Junction Temperature Range V EB 5.0 Vdc 'C 8.0 16 Adc Ie . 2.0 Adc -65 to +150 T J• T stg 1 TO·3 Total Power Dissipation Derate above 25°C @ ~ MJ4247 MJ4248 • High Current Gain - Bandwidth Product T C = 25°C lr~'~A' ~tH " 'J r E SEATING Watts woc 75 0.43 ~ 0 G PLANE MILLIMETERS INCHES DIM M,N MAX MIN A - -- C 63 39" 2108 78' 109 • • X '0'''' 83D D250 "39 - "" '" -~ , ," ,,,. 53' '" "" '675 '40' DO" 1-+ ;84 • '" " 099 D E F G H J TO-66 90 0.51 Po °c MJ4237 MJ4238 1118 1664 1118 1111 1191 0420 0210 D220 1711j 1219 0151 0161 1050 2667 STYLE I PIN I BASE 2 EMInER CASE COLLECTOR NOTE 1 DlM"Q".SD1A CGlle(IOrtOJllll(;lIdIOCISl! CASE 11-01 (TO 3) THERMAL CHARACTERISTICS I Characteristic I Symbol Thermal Resistance, Junction to Case I TO·3 TO-66 I 2.33 1.94 ReJC Unit °CIW MJ3247 MJ3248 MJ3237 MJ3238 FIGURE 1 - POWER DERATING 100 ~ 0 ;:: ~ iii c '" ~ r--... 80 '" z -~ ~ ......... ......... ...... 60 TO·66"'--., TO·3 .......... .......... ........... 40 • C " ..6 20 o 25 50 75 100 125 TC. CASE TEMPERATURE (OC) M'. D F G H J ~ ~ 150 '" 175 200 K P M.X 1194 1210 64 011 0 .. 127 2433 2443 533 241 267 1448 1499 91' 127 , '" .......... ~ w o DI. MILLIMETERS '" '" - ...'" .. MAX 0410 0500 O1SO 0340 0028 0034 o.SO 0015 0958 0962 0 10 0095 0105 0510 0590 O3SO 0050 0142 0152 S 0350 T 0145 1515 U 0620 AU JEOEC Olmenslon5 and and Not. Apply • '"- 38' CASE 80·02 rO-66 1-457 ~ S INCHES STYLE 1 PIN 1 BASE 2 EMITTER CASE COllECTOR NPN MJ3247, MJ3248, MJ4247, MJ4248 PNP MJ3237, MJ3238, MJ4247, MJ4238 ELECTRICAL CHARACTERISTICS (TC = 250 C unless otherwise noted) Symbol Characteristic Min I Max Unit OFF CHARACTERISTICS Collector-Emitter Sustaining Voltage (1) (Ie = 10 mAde, IB = 0) MJ4237, MJ4247, MJ3237, MJ3247 MJ4238, MJ4248, MJ3238, MJ3248 Vde VCeO(sus) Collector Cutoff Current (V ce = 120 Vde, IB = 0) MJ4237, MJ4247, MJ3237, MJ3247 (V CE = 150 Vdc, I B = 0) MJ4238, MJ4248, MJ3238, MJ3248 IceD Collector Cutoff Current (V CB = 120Vde, Ie = 0) MJ4237, MJ4247, MJ3237, MJ3247 (VCB = 150 Vde, Ie = 0) MJ4238, MJ4248, MJ3238, MJ3248 ICBO Emitter Cutoff Current (V BE = 5.0 Vde, IC = 0) lEBO 120 150 - - 0.1 0.1 - 10 10 mAde !lAde 10 I'Ade ON CHARACTERISTICS (1) DC Current Gain (lC = 0.1 Ade, (lC = 2.0 Ade, (lC = 3.0 Ade, (lC = 4.0 Adc, = 2.0 Vde) = 2.0 Vde) = 2.0 Vde) = 2.0 Vdc) - 40 40 40 20 DC Current Gain Linearity (V CE From 2.0V to 20V, IC From 0.1 A to 3A) (NPN TO PNP) VCE(sat) Base-Emitter On Voltage VBE(on) = 1.0 Adc, Vce = 2.0 Vdc) Typ 2 3 hFE Collector-Emitter Saturation Voltage (lC = 1.0 Ade, IB = 0.1 Adc) (lC - h Fe Vce VCE V CE V ce - 0.5 Vde 1.0 Vdc DYNAMIC CHARACTERISTICS Current Gain - Bandwidth Product (2) (lC = 500 mAde, Vce = 10 Vde, f test = 10 MHz) (1 )Pulse Test: Pulse Width';; 300 I'S, Duty Cycle';; 2.0%. (21fT = I h fe I • f test FIGURE 3 - CURRENT GAIN BANDWIDTH PRODUCT FIGURE 2 - CAPACITANCES a 100 0 NPN Cib 50 a -- 0:-:- -- a a PNP TJ - 250 C C,b 0-- ........ r--... ., ,// 0/ Cob t...... NPN and PNP r--- r'\. PNP \ ,~ 1\ a Ci b 0 NP;- 0 II 1.0 2.0 5.0 10 20 VR, REVERSE VOLTAGE (VOLTSI 50 100 1-458 a0.1 0.2 0.5 1.0 2.0 IC, COLLECTOR CURRENT IAMPI 5.0 I NPN MJ3247, MJ3248, MJ4247, MJ4248 PNP MJ3237, MJ3238, MJ4247, MJ4238 III FIGURE 4 - THERMAL RESPONSE (T0-66) 1.0 .- -',",,'" ~ ~ I-0.5 0-0.5 I-- t- 0.3 0.2 -- ~;i 0.2 p=- t- 0.1 ... '" ..... t"- zo !:!::! ~ O. lj;;2 ~w z,-, '""z 0.05 I- f- 0.01 'JlJl r kl p( ;;;- r: ~ ~ D. 5~ po 1-0 (SINGLE PULSEI .. ' ...:~ ~UTY '? fa 0.0 3 ", 0JC(t)· r(.1 8JC .: 8JC ·1.94oCiWMax 0 CURVES APPLY FOR POWER PULSE TRAIN SHOWN READ TIME AT 11 '2---j CYCLE, 0 '11/'2 TC' P(pkl eJc(.I TJ(pki 0.02 I 111111 0.0 1 0.01 0.02 0.03 0.2 0.05 0.07 0.1 0.3 0.5 0.1 1.0 20 3.0 I I I I I 5.0 7.0 10 20 30 I I II I 60 70 100 200 300 II 500 700 1000 t,TIME(ms) FIGURE 5 - THERMAL RESPONSE (TO·3) 1.0 o. 71=0 - 0.5 ;;t ~_ O.5 w'" ",w I-!:::! O. 3~ 0.2 o. 2 0.1 ~~ ffi~ I- r- ,""Z f--"' ~: o. 1t=:0.05 ~~O.O 7~O.D2 g~o.o 5 ~~ tt:i ~ 0.03 L.-0.02 r- 0.0 I 0.01 ..-IC ...... .PmJl t~.J 0.01 eJc('I • r(.1 OJC BJC = 1 17 °C/W Mal( o CURVES APPLY FOR POWER PULSE TRAIN SHOWN READ TIME A"I TJ(pki - TC • P(pkl 8Jc(.1 DUTY CYCLE, 0 '111t2 SINGLE PULSE II II III 0.02 0.03 0.05 01 02 0.3 0.5 10 20 30 50 II 10 20 30 50 100 200 300 500 1000 t, TIME (ms) FORWARO BIAS SAFE OPERATING AREA FIGURE 6 - MJ3237. 381MJ3247. 48 FIGURE 7 - MJ4237. 38/MJ4247. 48 0 0 .... I" DE ~ '= .1 0 - - TC 25°C ~ - - 20 50 3.0 5.0 10 VCE, COLLECTOR - EMITTER VOLTAGE (VOLTSI I ~ ~;~m~ MJ3237 MJ3247 0.0 1 1.5 F BONDING WIRE LTD THERMAL LTD - - - SECOND BREAKDOWN LTD .I-" BONDING WIRE LTD THERMAL LTO SECOND BREAKDOWN LTD TC' 25°C ~ MJ4237 MJ4247 r-- MJ4238 MJ4248 ~ 100 - - 150 There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate Ie - v CE limits of the transis¥ tor that must be obseNed for reliable operation; i.e., the transistor mJst not be subjected to greater dissipation than the curves indicate. 1-459 0.0 I ~ n- 1.5 2.0 5.0 10 20 50 VCE, COLLECTOR - EMITTER VOLTAGE IVOL TSI 100 ISO Second breakdown pulse limits are valid for duty cycles to 10%. At high case temperatures, thermal limitations may reduce the power that can be handled to values less than the limitations imposed by second breakdown. NPN MJ3247, MJ3248, MJ4247, MJ4248 PNP MJ3237, MJ3238, MJ4247, MJ4238 FIGURE 8 - DC CURRENT GAIN PNP NPN 1000 1000 700 ~oo z 300 ~ +l~OoC ill 2~oC B ~~oC .... VCE" 2 V '" ~ ~ ~ 100 70 ;( r" -55°C 100 '"' c .# " 50 I" ~ 30 "" 10 ~~~ 200 G '"'c .# TJ "2~oC VCE" 2 V +1500C z TJ" 2~oC 0.1 0.2 1.0 o.~ 2.0 IC. COLLECTOR CURRENT lAMPS) 20 10 ~.O 10 0.2 0.1 o.~ 1.0 2.0 IC. COLLECTOR CURRENT lAMPS) 10 5.0 FIGURE 9 - "ON" VOLTAGE PNP NPN 2.0 1 I 2.0 ' - ' II TJ" 25°C TJ" 25°C 1.6 g c ~ '" '" ~0 1.2 I I I I ~ VSElon)@VCE"2V 0.8 ,; 0.4 o0.1 -II I I I 0.3 ~ 1.2 r-- ~ 0 > >' V 2.0 1.0 IC. COLLECTOR CURRENT IAMPSI (j 0 / 'T 11111 I I J I. III VCEI,,!)@ Ic/la" 10 V § '"'" VaEI"I) @ Ic/la " 10 j > l:::?' ~ 1.6 ~ VSElonl @ VCE " 20 V 0.8 I-- VSEI"I)@IC/ls "10 I-- VCElsal)@IC/IS - 10 5.0 I o0.1 10 ~ - I, I. II o.~ 1.0 2.0 IC. COLLECTOR CURRENT lAMP) 0.2 V V ,/ 1'1 'I I I 0.4 --P" ~.O 10 FIGURE 10 - SWITCHING TIMES PNP NPN 1. 0 10 5.0 o. 5 -r--.. ::--.. I- VCC - JOV ~ ICIIS"10 0.5 ~ IS1"IS2 fo, "OFF" CON01TJONS I-TJ"250C I"-- 1.0 j '" '.:"' 0.2 ;:: O. I-I'-... "'... ~ IiI, ;:: ~ " , .....,., Is I· I'-... ,/ '~ I, 0.0 ~ 0.05 -.... , Nld 0.0 1 0.1 o. 1 '" " ...... O.~ 1.0 2.0 IC. COLLECTOR CURRENT lAMPS) ~.O 10 1-460 VCC" 30V 0.0 2 Ic/IS" 10 I"-IS1-IS2 fo, "OFF" CONDITIONS TJ" 25°C 0.0 1 0.1 O.~ 1.0 2.0 0.2 IC. COLLECTOR CURRENT lAmp) Id I ~.O 10 ® MJ4030, MJ4031, MJ4032 PNP MJ4033, MJ4034, MJ4035 NPN MOTOROLA 16 AMPERE DARLINGTON POWER TRANSISTORS COMPLEMENTARY SILICON MEDIUM-POWER COMPLEMENTARY SILICON TRANSISTORS GO-100VOLTS 150 WATTS . . . for use as output devices in complementary general purpose amplifier applications. • High DC Current Gain - hFE = 3500 (Typ) @ IC = 10 Adc • Monolithic Construction with Built-In Base·Emitter Shunt Resistor MAXIMUM RATINGS Svmbol MJ4030 MJ4033 MJ4031 MJ4034 MJ4032 MJ4035 Unit VCEO 60 80 100 Vdc Collector-Base Voltage VC8 60 80 100 Vdc Emitter-Base Voltage VE8 5.0 Vdc IC 16 Adc Rating Collector-Emitter Voltage Collector Current Base Current 18 0.5 Adc Total Device Dissipation@TC::::2SoC Po 150 0.857 Watts W/oC TJ,Tstg -55 to +'200 °c Derate above 25°C Operating and Storage Junction JE"4=tr "~1 t--- Temperature Range Characteristic Thermal Resistance. Junction to Case Svmbol I e I C Max 1.17 I Unit °C/W H-ryr t FIGURE I-DARLINGTON CIRCUIT SCHEMATIC Collector ---, ,..----+..., I I I I I Ba.. Collector NPN MJ4033 MJ4034 MJ4035 ---, ,..----+-, Ba.. I I I I I I I I I __ .JI __ .JI Emitter Emitter 1-461 ·W\ y"V U PNP ~ Q~Vn ~~ THERMAL CHARACTERISTICS MJ4030 MJ4031 MJ4032 F r--J- XT 11 lG i \.S MILLIMETERS STYLE 1 DIM MIN MAX PIN 1. BASE 2. EMITIER 1.08 CASE COLLECTOR B C 6.35 7.62 0 0.97 1.0 1.78 E 1.40 F 29.90 30.40 G 10.67 11.18 H 5.33 5.59 J 16.94 17.15 K 11.18 12.19 Q 3.81 4.19 R 26.67 3.05 U 2.54 INCHES MIN MAX .550 o.B30 0.250 0.300 0.03 0.043 0.055 D.l170 1.177 1.197 0.420 0.440 0.210 0.220 0.655 0.675 0.440 0.480 0.150 0.165 1.050 0.100 0.120 CASEI-04 NOTES: 1. ALL RULES AND NOTES ASSOCIATED WITH REFERENCED TO·3 OUTLINE SHALL APPLY. MJ.4030,MJ4031, MJ4032 PNP/MJ4033, MJ4034, MJ4035 NPN ELECTRICAL CHARACTERISTICS ITc '" 2SoC unless otherwise noted) I I Characteristic M.. Symbol M.. Unit OFF CHARACTERISTICS Collector-Emitter Breakdown Voltage(1) (Ie = 100 mAde, '8 = 0) Vdo BVCEO 60 80 100 MJ403Q, MJ4033 MJ4031, MJ4034 MJ4032, MJ4Q35 Collector Emitter l-eakage Current mAde leER (Vea"'60 Vdc, RBe = 1.0kohmJ (Vea =80 Vdc, RBe = 1.0kohmJ MJ4030. MJ4033 , 0 MJ4031, MJ4Q34 (Vea'" 100Vdc, RBe '" 1.0kohmJ (Vea =60Vdc, RBe = 1.0kohm, TC = 1S0oC) MJ4032, MJ4035 MJ4030, MJ4033 (Vee .. aOVdc, RBe = 1 Okohm, TC '" 150°C) MJ4031, MJ4034 (Vee .. 1OQVdc, RaE = 1 Okohm, TC = 150°C) MJ4032. MJ4035 '.0 '.0 50 50 50 Emitter Cutoff Current (VSE = 5.0 Vdc, Ie = 0) lEBO Collector-Emitter Leakage Current (VCE '" 30 Vde, 18 = 0) 'CEO 50 mAde 30 30 30 MJ4030, MJ4033 MJ4031, MJ4Q34 (VeE'" 40 Vdc, '8 '" OJ (VeE = 50 Vdc, IS = OJ mAde MJ4032, MJ4035 ON CHARACTERISTICS(1) Collector-Emitter Saturation Voltage (lC'" 10 Adc, 18 '" 40 mAde) He = 16 Ade, 18 = 80 mAde) do VeElsat) 25 40 8ase-E mitter Voltage HC = 10 Ade, VeE = 3.0 Vde) (l)Pulse Te$t '000 hFE DC Current Gain HC '" 10 Adc, VCE = 3,0 Vde) 30 VBE Pulse Width '5: 300 jJS, Duty Cycle s:2 0% FIGURE 3 - SMALL-SIGNAL CURRENT GAIN FIGURE 2 - DC CURRENT GAIN 300 0 50,00 0 200 0 20,000 z ~ 1000 TJ = 150°C 10,000 z :;: 5000 i to I- 1'\' ~ 2000 ag 500 ~ 200 25°C 1\, ./ 1000 VeE 0.05 0.1 0.5 0.2 300 to 20 0 ~ -550C == 1.0 :1 5.0 10 0 104 20 105 t, FREUUENCY 1Hz! Ir., COLLECTOR CURRENT IAMPI FIGURE 5 -DC SAFE OPERATING AREA FIGURE 4 - "ON" VOL TAGES 3.5 50 3.0 TJ = 25°C ~ ,. ~ 2. 5 to ....,,1::::: VBEI,,1)@ICIIB=250 l. 5 - o > >. 1.0 VBE@VCE o 11111 0.05 0.1 0.5 1.0 ' ... ~ 2.0 ~ 1.0 I 5.0 10 = 0.0 5 2.0 20 IC, COLLECTOR CURRENT lAMP! MJ4030, MJ403; MJ4031, MJ403~ _ "" 1,\ ~ MJ4032, MJ4035 TJ = 200°C 5 SECONDARY BREAKDOWN LIMITATION ~ O. 2 - - - THERMAL LIMITATION @TC = 25°C - . - BONDING WIRE LIMITATION O. 1 ~ VCEI..,!@ICIIB=250 O.5 - - ~ 3.0 VollS 11111 20 16 1-10 ~ 5.0 / w 0.02 5 I' 2 2.0 ~ '\ TC = 25°C VCP 3.0 Vdc IC=10Adc 0 '" ~ 10 3.0 Volts 2.0 500 111 VCEO{sus) 200 mAde) COllector-Base Cutoff Current mAde ICSO (VCS' 100 Vdc, 'E • 0) (VCS' 100 Vde, 'E • 0, TC' 150°C) Emitter-Base Cutoff Current (VSE • 4.0 Vde, Ie' 0) ON CHARACTERISTICS 111 DC Current Gain (lC' 7.5 Adc, VCE • 2.0 Vdc) Base-Emitter "On" Voltage (lC' 7.5 Adc, VCE' 2.0 Vdc) Collector-Em;tter Saturation Voltage (lC' 7.5 Adc,IR • 0.75 Adc) Base-Emitter Saturation Voltage (lC' 7.5 Ade,IS' 0.75 Adc) DYNAMIC CHARACTERISTICS Current Gain - Bandwidth Product (lC' 1.0 Ade, VCE • 10 Vde, f · 1.0 MHz) (1. Pulse Test: Pulse Width::S; 300 J,l.s, Duty Cycle :5:2.0%. FIGURE 2 - DC CURRENT GAIN ~ FIGURE 3 - "ON" VOLTAGES 2.0 H+H+I+-++-=..l....:':+.::!-H-H--++-IH-+-+++-I-H--++H H-+++ttI-:::;j=--r-l'TJ'I";'7;50"'tC-++I:~t-+-+++~~~ ~I ~.O t250C 1""--1'- ~ t g I ~~~II~~f~~il~a~~~il§!!~ ~550C 0.7 w 1.0 ~ 0.5 ~ . 0.31-1--'++++H+-+-hH-+l+ttt~+H+-H~+f!l.-1 ,+-+-H i O.2I-H+I++1f-o+.ta-.+h-lown+i-l.-obl-ta+in+.tld+fr-om-+pu-1I.. H-tasts-l-+-I+H+~d~lkI+1 aijU~d TJLJ.J 1.4 1.2 CO 1.0 0 0.8 ~ t- I 1.6 ~ w ~~~~~~~~+tH~~-+~~-H~~-+~~ i z 0 2.0 1.8 > VBE(sat)@IC/lB= 10 Illil·1 - k O.B 1" VBE@VCE = 2.0 V 0,4 il t' I I 1111 0.2 anr ti jU,"I, oct lcn ++Htl+-iN?t-I 0.1.':='::,!;;,~-f-:-~'::';;'~;!-;,-"-'f';;-"--:::"::';:-'-;!;:1.J~:--'-+'-,,! 0.03 0.05 0.1 0.2 0.3 0.5 1.0 2.0 3.0 5.0 10 20 3D IC, COLLECTOR CURRENT (AMP) VCE(..t) @IcllB = 10 o 0.D3 0.05 0.1 - ..... ~ t2 lL --l +- 0.2 0.3 0.5 1.0 2.0 3.0 5.0 IC, COLLECTOR CURRENT (AMP) 10 20 3D FIGURE 4 - ACTIVE REGION SAFE OPERATING AREA 100 - 50 0: ~"'" dc ~ 20 !;; 10 w ~100 ... I.Orns "- i' . II: :; 5.0 5.0 ms II: " ~ 2.0 -TJ=2DOoC ~ 1.0 ~ - Secondary Breakdown Limitad = -- --80nding Wi" Limitad .... 0.5 - - Thormal LimitationsTc =250 C ....I o ~ 0.2 - == O. 1 1.0 The Safe Oper-,"ing Area Curves indicate Ie - Vee IimiU befow which ttle clev\ce will not enter sec:ondIIry breakdown. Collector IOld lines for specific circuits mult fall within the applicable Saf. Ar.. to lI'IOili causing a cetesb'OPhk: f,lIure. To insure oparation below the maximum T J. power-temperature deming must be oboIBMId f« bOth steady state and pulse power conditions. Pul" Duty Cycle S 10% 2.0 3.0 5.0 10 20 3D VCE, COLLECTOR·EMITTERVOLTAGE (VOLTS) 1-464 50 100 ® MJ4645 thru MOTOROLA MJ4647 1.0 AMPERE POWER TRANSISTORS PNPSILICON 200-300-400 VOLTS 5 WATTS PNP SILICON POWER TRANSISTORS designed for high-voltage amplifier and saturated switching applications at collector currents to one Ampere. Ideally suited for applications of dc-to-dc converters, relay and hammer drivers, motor controls, and servo and pulse amplifiers. High-voltage ratings permit direct-line operation. • Low Collector-Emitter Saturation Voltage VCE(sat) = 1.5 Vdc (Max) @ IC = 500 mAde • High Collector-Emitter Breakdown Voltage BVCEO = 200, 300, and 400 Vdc (Min) • DC Current Gain Specified - 10 mAdc to 500 mAde < ffI MAXIMUM RATINGS Rating Collector-Emitter Voltage Symbol MJ464S MJ4646 MJ4647 Unit VeEO 200 300 400 Vdc VeB 200 300 400 Vdc Collector· Base Voltage Emltter·Base Voltage Collector Current Continuous VEB 50 Vdc Ie 0.5 10 Adc PD 5.0 Watts 28.6 mwf'e Peak Total DeVice DISSipation TC - 25°C @ Derate above 2SoC Operating and Storage Junction Temperature Range -- T J.TSlg FIGURE 1 - POWER DERATING 0 "'" :"'" a '" r-... " 0 40 60 °e 80 lao 120 P L ~K -=----.l ~ G ( N 140 Tc, CASE TEMPERATURE (OCI 160 "" "'" 180 200 1-465 STYLE 1 PIN 1. EMITTER 2. BASE N 3. COLLECTOR v1¥J MILLIMETERS MIN MAX 8.89 9.40 8.00 8.51 6.10 6.60 0.406 0.533 0.229 3.18 0.406 0.483 .G 4.83 5.33 0.711 0.864 H J 0.737 1.02 K 12.70 6.35 L 0 45 NOM M P - 1.27 Q 900 NOM 2.54 R DIM A B C D E F r--.... a 20 -- SE~T!~~ ---H-D ~ Character.stlc "" ----- k I Thermal ReSistance, Junction to Case a B Q -65 to +200 - - THERMAL CHARACTERISTICS .0 ~ R INCHES MIN MAX 0.350 0.370 0.315 0.335 0.240 0.260 0,016 0.021 0.009 0.125 0,016 0,019 0.190 0.210 0.028 0.034 0.029 0.040 0.500 0.250 45 0 NOM 0.050 900 NOM 0.100 All JEOEC dimensions and notes apply. CASE 79-02 TO-39 MJ4645 thru MJ4647 ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted) I I Characteristic Symbol Min Typ Max 200 - 300 - - Unit OFF CHARACTERISTICS Collector-Emitter Breakdown Voltage (1) (Ie = 10 mAde, IB = 0) Collector-Base Breakdown Voltage Ilc = 100 "Adc, IE = 0) 400 , Vdc BVCBO 200 300 400 - - BVEBO 5.0 - - Vdc ICEX - - 10 "Ade 20 - - MJ4645 MJ4646 MJ4647 Emitter-Base Breakdown Voltage (IE = 100"Adc,IC = 0) Collector Cutoff Current IVCE = 200 Vde, VBE(olli Vdc BVCEO MJ4645 MJ4646 MJ4647 - = 0.5 Vdei ON CHARACTERISTICS DC Current Gain (lC = 10 mAde, VCE .. hFE = 10 Vde) (lC = 100 mAde, VCE = 10 Vde) (1) (lC = 500 mAde, VCE = 10 Vde)(l) Collector-Emitter Saturation Voltage (lc = 500 mAde, IB = 100 mAde) 25 - - 20 . - - 0.5 0.6 0.75 1.0 1.2 1.5 40 - 30 - - - 80 60 td - - 100 ns tr .. - 100 ns toft - - 720 ns Vde VCE(satl MJ4645 MJ4646 . MJ4647 DYNAMIC CHARACTERISTICS Current-Gain-Bandwidth Product (lC = 70 mAde, VeE = 20 Vde, I MJ4645, MJ4646 MJ4647, Output Capacitance = 20 Vde, (VeB IE MHz IT = 20 MHz) . pF Cab = 0, I = 100 kHz) MJ4645 MJ4646, MJ4647 SWITCHING CHARACTERISTICS = 500 mAde, = 50 mAde, VBE(oll) = 5.0 Vde) (VCC = 100 Vde, IC = 500 mAde, IBI = IB2= 50 mAde, Pulse Width = 1.0"s) Delay Time (VCC = 100 Vde, IC Rise Time IBI Turn-Off Time (1) Pulse Test: Pulse Width .s; 300 IJS, Duty Cycle ~ 2.0%. FIGURE 2 - ACTIVE-REGION SAFE OPERATING AREA 1.0 100", 0.7 0.5 1.0ms 5.0m TJ' 200'C de ~. --1-l ", There are two limitations on the power handling ability of a \ SE ONOARY I T T BREAKOOWN LlMITEO BON01NG WIRE t-,LI~I,T,Ep, transistor: average junction temperature and second breakdown. Safe operating area curves indicate Ie - VeE limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. \ 1\ The data 01 Figure 2 is based on T J(pk) = 2000C; T C is , - - - - THERMALLY LIMITEO@ 'IC' 25'C (SINGLE PULSEI variable depending on conditions. Second breakdown pulse limits are valid lor duty cveles to 10% provided T J(pk) .;;; 2000C. At , I CURVES APPLY ~iit'r4645RATEO BVCEO MJ4646_ 0.0 1 1.0 II 11I1I"j 2.0 3.0 5.0 7.0 10 20 30 ~IJ~~~7 50 70 100 high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limit~tions imposed r--') 200 300 500 bV second breakdown. 1000 VCE, COLLECTOR·EMITTER VOLTAGE (VOLTS) 1-466 ® MJ6502 MJ6503 MOTOROLA III 8 AMPERE PNP SILICON POWER TRANSISTORS SWITCHMODE SERIES PNP SILICON POWER TRANSISTORS 250 AND 400 VOLTS 125 WATTS The MJ6502 and MJ6503 transistors are designed for high·voltage, high·speed, power switching in inductive circuits where fall time is critical. They are particularly suited for line operated switch mode applications such as; • DeSIgner's Data for Switching Regulators • Inverters • Solenoid and Relay Drivers • Motor Controls • Deflection Circuits ·'Worst Case" Conditions The Designers Data Sheet per· m Its the design of most circuits entirely from the tnformatlon presented Limit data - representing device charactenstics boundanes are given to facIlitate "worst case" Fast Turn·Off Times 100 ns Inductive Fall Time @ 250 C (Typ) 125 ns Inductive Crossover Time @ 250 C (Typ) design a peratlng T em perature Range -65 to +200 oC J lOOoC Performance Specified for; Reversed Biased SOA with Inductive Loads Switching Times with Inductive Loads Saturation Voltages Leakage Currents ... I.... ~~~r~. - r---F-- i MAXIMUM RATINGS 0 J - o~V ~ -""~.~IV 1 1 ~ 0/-- -Qr~/ lor R Rating Symbol MJ6502 MJ6503 cor lector-Emitter Voltage VCEO(susi 250 400 Collector-Emitter Voltage VCEV 300 450 ~~ Vdc Vdc Emitter Base Voltage VEB 6.0 Vdc Collector Current - Contmuous Peak (1 I IC ICM 8.0 16 Adc 16 4.0 8.0 Adc 125 71.5 0.714 Watts -65 to +200 °c Base Current - Continuous Peak (11 IBM Total Power DIssipation @TC - 25 0 C @TC Po = lOOoC Derate above 2SoC Operating and Storage Junction Temperature Range TJ. T stg THERMAL CHARACTERISTICS Characteristic Thermal Resistance, Junction to Case Maximum Lead Temperature for Soldering Purposes: 1/8" from Case for 5 Seconds (1) Pulse Test. Pulse Width - 5 ms, Duty Cycle" 10%. u NOTES. 1. DIMENSIONS Q AND V ARE DATUMS. 2. [jJ IS SEATING PLANE AND DATUM. 3. POSITIONAL TOLERANCE FOR MOUNTING HOLE Q: I +11.1310.0051@ IT Iv@1 W/oC FOR LEADS: I +11.1310.oo51@T I v@ I Q®I 4. DIMENSIONS AND TOLERANCES PER ANSI Y14.5. 1973. • 'M A I C • • • E F Symbol Max Unit ROJC 1.4 °CIW TL 275 °c H J Q R U V MILLIMETERS MI. MAX - 39.31 21.08 0.91 1. 30158 10.921SC 5.46 Ise 16.89BSe - 4.83 3.81 12.19 PIN! 0.666 0.440 0.150 4.19 0.190 0.150 61 5.33 - .,,' 2 EMITTER CASE COLLECTOR 1.187 0.430 0.215 4.19 CASE 1.(15 1-467 STYLE' - 1.62 0.250 1.09 0.038 11 0.055 6.35 11.18 3.81 ,. MI • I MJ6502, MJ6503 ELECTRICAL CHARACTERISTICS ITC = 25°C unless otherwise noted) I Characteristic Symbol Min Typ Max Unit VCEOlsus) 250' 400 - - Vde OFF CHARACTERISTICS Collector-Emitter Sustaining Voltage (Table 1) IIc = 10 rnA, I B = 0) MJ6502 MJ6503 Collector Cutoff Current IVCEV IVCEV = Rated VCEV, RBE = 50 n, TC = 100°C) Emitter Cutoff Current IV EB = 6.0 Vde, mAde ICE V =Rated Value, VBEloff) = 1.5 Vde) =Rated Value, VBEloff) = 1.5 Vde, TC = 150°C) Collector Cutoff Current IVCE -- IC = 0) - 0.5 2.5 ICER - - 3.0 mAde lEBO - - 1.0 mAde SECOND BREAKDOIIVN Second Breakdown Collector Current with base forward biased See Figure 12 Clamped Inductive SOA with Base Reverse Biased See Figure 13 ON CHARACTERISTICS 11) DC Current Gam IIc = 2.0 Ade, VCE hFE = 5 Vde) Collector-Emitter Saturation Voltage IIC = 4 Ade, IB = 1.0 Ade) IIc = 8 Ade, IS = 3.0 Ade) IIc = 4 Ade, IS = 1.0 Ade, Tc VCElsat) = 100°C) Base·Emltter Saturation Voltage 15 - - - - 1.5 - - 5.0 2.5 - - 1.5 15 - 0.025 0.1 ps 0.100 0.5 ps 0.60 2.0 ps 0_11 0.5 ps Vde Vde VSElsatl IIc = 4 Ade, IS = 1.0 Ade) IIc = 4 Ade, IS = 1.0 Ade, Tc = 100°C) -- DYNAMIC CHARACTERISTICS Output Capacitance IVCS = 10 Vde, IE =0, f test = 1.0 kHzl SIIVITCHING CHARACTERISTICS Resistive Load (Table 1 ) Delay Time Rise Time Storage Time Fall Time IVec = ·250 Vde, IC'~ 4.0 A, IBI = 1.0 A, tp = 50 JJS, Duty Cycle .;;; 2%) td IVCC = 250 Vde, IC = 4.0 A, lSI = 1.0 A, VSEloff) = 5 Vde, tp = 50 jJ.S, Duty Cycle .;;; 2%) ts t, tf Inductive Load, Clamped (Table 1) Storage Time Crossover Time Fall Time Storage Time Crossover Time Fall Time III Pulse Test: PW IIC =4 A(pk), VCElpk) = 250 Vde,lSl = 1.0 A, VBE(off) = 5 Vde, TC = 100°C) IIC = 4 Alpk), VCElpk) = 250 Vde, 181 VBEloff) = 5 Vde, TC = 25°C) tsv te tfi = 1.0 A, tsv "'tfl 300 IlS, Duty Cycle';;; 2% 1-468 - 0.8 3.0 ps 0.4 1.5 ~s 0.1 ps 0.125 -- 0.1 - JJS 0.5 ps ps MJ6502, MJ6503 III DC CHARACTERISTICS FIGURE 2 - COLLECTOR SATURATION REGION FIGURE 1 - DC CURR ENT GAIN _ 2.0 Or-- z ~ .... ~ ~ TJ"lS0oC-1- 100 '"~ w to 0 0'-- TJ = 2SoC '"::> " t'...: 30 0 '" 1:l ~ ~ .r r-, VCPSV 10 ~ 7. 0 S.0 1.2 ~_ TJ= 2SoC \ 0.4 > 0.2 0.1 S.O O.S 0.7 1.0 2.0 3.0 IC. COLLECTOR CURRENT (AMPS) 0.3 7.0 10 o0.01 0.02 2.0 1. 6 IC/IB =4 1. 2 V ~ 1.2 to '"> TJ= lS00C :/ 8j 0.4 --- 8 a 0.1 0.2 0.3 y >- y 0.4 TJ=l5OoC O.S 0.7 1.0 2.0 3.0 IC. COLLECTOR CURRENT (AMPS) S.O 7.0 10 a 0.2 0.1 ci s} 10 5.0 3.0 70 10 I TJ = 25~C C,b ./ a ~ 103 u 2.0 200a 100 a Tp lS00C 2 10 FIGURE 6 - CAPACITANCE / 10 0.5 07 300O - t - 4 ~ 0.3 IC. COLLECTOR CURRENT (AMPS) FIGURE 5 - COLLECTOR CUTOFF REGION 1:l ..-/ TJ - 2SoC 10S 1.... 10 I- ~ '"~ 0.8 -TJ-25OC 0.8 I? -- w '"'" '"'" ~ 10 S.O 2.0 ~ ;E ~ 1.0 :; IC/IB =4 ~ > 0.50 I I 1.6 ~ 1.1:1 0.20 0.10 FIGURE 4 - BASE-EMITTER VOLTAGE :; '"~ 0.05 lB. BAse CURRENT (AMPS) t;; 2.0 to - ;;.;: FIGURE 3 - COLLECTOR-EMITTER SATURATION VOLTAGE w "\ \ \ 8 ~ 5.0A 1\ 0.8 '" 3.0 '"~ 2.5 A '" ~ 2.0 1.6 ~ IIII IIII I " IC=0.2SAI 1.0"A r-- 100°C 1 ~REVERSE OH25 0C 10 +0.2 +0.1 t--!:0b a VCE -2OGV ~ I 100 FORWARD a 1/ -0.1 -0.2 -0.3 Vilf. BASE·EMITTER VOLTAGE (VOLTS) i t'-- -0.4 a 0.1 -0.5 0.2 0.5 1.0 S.O 10 20 50 100 VR. REVERSE VOLTAGE (VOLTS) 1-469 200 500 1000 MJ6502, MJ6503 TABLE 1 - TEST CONDITIONS FOR DVNAMIC PERFORMANCE RBSDA AND INDUCTIVE SWITCHING VCEO(susl RESISTIVE SWITCHING +v TURN ON TIME Input I B 1 ad lusted to obtain the forced hFE deSired TURN OFF TIME PW Vaned to Attain Use inductive sWitching O.1,uF le-IOOmA L---------.--~~o~: -v -v adjusted to obtain desired IS1 1 driver as the Input to the reSistive test CirCUit +V adjusted to obtain desired VSE(off) leol' LeOl1 -so rnH Vee -10 v Aeoll R co •1 DO 7 H Vee V clamp 180,uH = 250 AL RS adjusted to attain I B 1 OUTPUT WAVEFORMS INDUCTIVE TEST CIRCUIT I- I, Adjusted to ObHlln 'e : Read I :5 u u '" Iiiw = 62 n Pulse Width'" 1 0 ~s RESISTIVE TEST CIRCUIT ., ~ Vee"" 250 V V 0 05 It 10 'v LCO,I(ICpk) I I ' , ' -vee -- : Leoil I _J See above for Detailed Conditions 12 '" Leod (lCpk I Vclamp Te,t EqUipment Scope TektroniX 475 or Equivalent FIGURE 8 - INDUCTIVE SWITCHING TIMES FIGURE 7 - INDUCTIVE SWITCHING MEASUREMENTS --- - - r-- / 'is' -r-- L __ ",-~= __ --- --- "'" ........... ~-~ 9~%!.B.\v~~7~kl ; = '"'i VCE "" -'sr Ie ......... ==-- !-- 'i;fpkJ~ ~~ 8l0%~ 'rv- Vf.. ttl~ I 1'V ............... -............ ...... 1.0 i~l~kl : / \ -""" ....:....rc(pkl '- VCElpkl TIME 3.0 '\I. 27 tcl000~\. O.B a w 1\ 1""xsvl000C "i= 0_6 'h. "'w ~ ~sv250e--""'" ~ 0.4 4A _ lc/lB ~ 4 r--." " '- "l'--...... -"""""1--. r-- r02 -~ r-I o o 1 " ......... r--- Ie ~ TJ ~ 250C- 2.4 - 2.1 ;! 1 ~ 1.5 <: o ~ --< ~ ". I-- -- 1.2 09 ~ --< ~ 0.6 [ 0.3 B VBEloffl, BASE-EMITTER VOL TAGE IVOl TSI 1-470 f - o MJ6502, MJ6503 SWITCHING TIMES NOTE In resistive switching circuits, rise, fall, and storage times have been defined and apply to both current and voltage waveforms since they are in phase. However, for inductive loads which are common to SWITCHMODE power supplies and hammer drivers, current and voltage waveforms are not in phase. Therefore, separate measure· ments must be made on each waveform to determine the total switching time. For this reason, the following new terms have been defi ned. tsv = Voltage Storage Time, 90% ISl to 10% VCE(pk) trv = Voltage Rise Time, 10-90% VCE(pk) tfi = Current Fall Time, 90-10% IC tti = Current Tall, 10-2% IC te = Crossover Time, 10% VCE(pkl to 10% IC An enlarged portion of the inductive sWitching waveforms is shown in Figure 7 to aid In the visual identity of these terms. For the designer, there IS minimal switching loss during storage time and the predominant switching power losses occur during the crossover Interval and can be obtained using the standard equation from AN-222: PSWT = 1/2 VCCIC(tclf In general, trv + tfl = tc' However, at lower test currents thIS relationship may not be valid. As 15 common With most switching transistors, resistive switching is specified at 25 0 C and has become a bench· mark for designers. However, for designers of high frequency converter CircuIts, the user ortented specifications which make thIS a "SWITCHMODE" tranSIStor are the inductive sWitching speeds (tc and tsvl which are guaranteed at 1000C. FIGURE 9 - TURN-ON SWITCHING TIMES FIGURE 10 - TURN.()FF SWITCHING TIMES 1.0 0 0.1 0 0.5 0 0.30 VCC"250V Iclls - 4 TJ = 25°C "' 0.20 2, ~_ 007 0.05 \ ....... 04 0 t, "" ~ 0.10 0.7 0t--. ~030 w \ 1\ -- fs VCC"250V IcIIB" 4 VSEloltl "5 V TJ " 25°C '" ;:: --0.2 0 "" " 0.03 td 002 0.01 01 - 02 05 0.3 07 1.0 2.0 5.0 3.0 010 70 10.0 03 01 'c, IC, COLLECTOR CURRENT IAMPSI :--. If 05 0.7 10 20 COLLECTOR CURRENT IAMPSI 7.0 40 10 FIGURE 11 - THERMAL RESPONSE 1 -- 7-0"05 5 3 = 02 2 - I- 01 f-- ':;;: 1=.005 - ... ..... R"JClfl " ,If I RI!JC(l) 0.02 - 0.0 I 001 ~ p£fUl 001 ---L'~~-I SINGLE PULSE Ul 002 003 t o CURVES APPLY FOR POWER PULSE TRAIN SHOWN READ TIME AI 11 ,~Jlpkl TC P(pkl AI/Jell) 7=-002 5 ...K ~,,;t-t 1 40 CJW Max. DUTY CYCLE, 0 '" 11/12 005 01 02 03 as 10 t, TIME (ms) 1-471 20 30 50 100 200 300 SOD IUUU MJ6502, MJ6503 The Sate Operating Area figures shown in Figures 12 and 13 are SAFE OPERATING AREA INFORMATION specified for these devices under the test conditions shown. FORWARD BIAS FIGUllE 12 - FORWARD BIAS SAFE OPERATING AREA - 20 . f 10 ... - ~~s 5 3.0 t- ~ ~ 1.0 :5 050 g. . c ~ 100 liS TC - 25°C a: --- ,,1 ps t- ~ - 0.1 O BONDING WIRE LIMIT - THERMAL LIMIT (SINGLE PULSE) SECOND BREAKDOWN LIMIT 0.0 5 0.0 2 4.0 10 7.0 20 30 50 70 de 100 200 " 250 400 VCE. COLLECTOR·EMITTER VOLTAGE (VOLTS) FIGURE 13 - RBSOA, REVERSE BIAS SWITCHING SAFE OPERATING AREA 8.0 .... 5 \ 7.0 IC/IB;;' 4 6.0 I - - - VBE(off) = 2 V to 8 V TJ ~ a: 5.0 a: B 4.0 ...c 3.0 a: ; 8 2.0 f} 1.0 _ Turn-off load line _ boundary for MJ6503. The locus for MJ6502 o _ REVERSE BIAS \ \ =100°C - - 1\ \ - \ I i'YOVli o The data of Figure 12 IS based on TC = 250 C. TJlpk) va"able depending on power level. Second breakdown pulse limits are valid for duty cycles 10 10% but must be derated when TC ;;. 250 C Second breakdown limitations do not derate the same as thermal limitatIOns Allowable current at the voltages shown on Figure 12 may be found at any case temperature by uSing the appropriate curve on Figure 15. T Jlpk) may be calculated from the data In Figure 11. At high case temperatures. thermal limitations will reduce the power that can be handled to values less than the limitations Imposed by second breakdown IS 0.20 f There are two limitations on the power handling ability of a transistor' average Junction temperature and second breakdown. Safe operating area curves indicate IC-VCE limits of the tranSIStor that must be observed for reliable operation, I.e .. the tranSistor must not be sublected 10 greater diSSipation than the curves indIcate. 500 400 300 200 100 VCE ' COLLECTOR·EMITTER VOLTAGE (VOLTS) For inductive loads, high voltage and high current must be sustained simultaneously during turn-off, in most cases, with the base to emitter junction reverse biased. Under these conditions the collector voltage must be held to a safe level at or below a specific value of collector current. This can be accomplished by several means such as active clamping, RC snubbing, load line shaping, etc. The safe level for these devices is specified as Reverse Bias Safe Operating Area and represents the voltage-current condition allowable dUring reverse biased turn-off. This rating is verified under clamped conditions so that the device is never subjected to an avalanche mode. Figure 13 gives the R BSOA characteristics. FIGURE 14 PEAK REVERSE BASE CURRENT 3.5 3.0 ~ - Ie = 4 A -IBI = 1 A TJ = 250 e L :5 V V 1.0 100 L "" .......... .~ DERATING sEeo~~~~i~~oOWN _ ..... -......., r---- THERMA~ ./ .......... "- /' " ....... ........... .......... ......... 0 /' o ~ :--. /' 25 / /' FIGURE 16 POWER DERATING o o 4 VBE(olt). BASE·EMITTER VOLTAGE (VOLTS) 1-472 40 80 120 TC. CASE TEMPERATURE I'CI 160 """ ............ 200 MJ6700 ® MOTOROLA 7 AMPERE POWER TRANSISTORS PNPSILICON MEDIUM-POWER PNP SILICON TRANSISTORS · .. designed for switching and wide-band amplifier applications. • Low Coliector·Emitter Saturation Voltage - VCE(sat) (Max) @ IC = 7.0 Adc = 60 VOLTS 60 WATTS 1.2 Vdc • DC Current Gain Specified to 5 Amperes • Excellent Safe Operating Area • Packaged in the Compact, High Dissipation TO·59 Case • Isolated Collector Configuration - 700 V Breakdown MAXIMUM RATINGS Rating Symbol MJ6700 Unit COllector-Emitter Voltage VCEO 60 Vdc Collector-S. . Voltage VCB 60 Vdc Emitter·Base Valtage VEB 5.0 Vdc IC 7.0 Adc Base Current IB 1.0 Adc Total Device Dissipation til TC = 25°C PD 60 343 Watts Collector Current - Continuous Derate above 25"C Operating and Storage Junction Temperature Range ~5 TJ, Tstg mW/"C °c to +200 THERMAL CHARACTERISTICS Characteristic Thermal Resistance. Junction to Case FIGURE 1 - POWER-TEMPERATURE DERATING CURVE DIM 60 .............. Cii' 50 S ~ 40 ~ 30 ill "- ~ ~ ............ c I'-........... = ~ 20 ~ ~1 0 0 B C E G H J K L N P ~ n R ............ '~ 20 40 60 80 100 120 140 160 180 TC. CASE TEMPERATURE I'C) Safe Area Curves are indicated by Figure 2. All limits are applicable and must be observed. 1-473 200 S T MILLIMETERS MIN MAX 10.77 11.10 8.13 11.89 2.29 3.81 4.70 5.46 1.98 10.16 11.56 14.48 19.38 2.29 2.79 6.35 4.14 4.80 1.02 1.65 8.08 9.65 4.212 4.310 9.65 11.10 INCHES MIN MAX 0.424 0.320 0.090 0.185 Q.400 0.570 0.090 0.437 0.468 0.150 0.215 0.078 0.455 0.763 0.110 0.250 0.163 0.189 0.040 0.065 0.318 0.380 0.1658 0.1697 0.380 0.437 All JEOEC dimenSions and notes apply Collector isolated from case. CASE 160·03 (TO·59) III MJ6700 ELECTRICAL CHARACTERISTICS (TC; 25°C unless otherwise noted) Characteristic Symbol Min Max 60 - - 100 Unit OFF CHARACTERISTICS Collector-Emitter Sustaining Voltage (1) (lC; 50 mAde, IB VCEO(sus) = 0) Collector Cutoff Current (VCE = 55 Vde,IB = 0) ICEO Collector Cutoff Current (VCE = 55 Vde, VBE(off) (VCE Vde ICEX = 1.5 Vde) = 55 Vde, VBE(off) = 1.5 Vde, TC = 1500C) Collector Cutoff Current (VCB = 60Vde,IE ; 0) ICBO Emitter Cutoff Current lEBO (VEB = 5.0 Vdc, IC = 0) "Ado - 10 "Ade - 1.0 mAde - 10 - 100 25 25 15 - /lAde "Ade ON CHARACTERISTICS 111 DC Current Gain (lC = 500 mAde, VCE = 2.0 Vde) (lC = 2.0 Ado, VCE = 2.0 Vdc) (lC = 5.0 Ade, VCE = 2.0 Vde) hFE Collector-Emitter Saturation Voltage VCE(satl 180 Vde - - 0.7 1.2 - 1.2 2.0 30 - - 300 - 1250 100 to - tf - (lC = 2.0 Ade, IB = 0.2 Ado) (lC = 7.0 Ade,IB = 0.7 Adc) Base-Emitter Saturation Voltage (lC = 2.0 Adc, I B = 0.2 Adc) (lC = 7.0 Adc,IB = 0.7 Adc) Vdc VBE(sat) DYNAMIC CHARACTERISTICS Current-Gain-Bandwidth Product MHz fT (lC = 500 mAdc, VCE = 10 Vdc, f = 10 MHz) Output Capacitance (VCB = 10 Vdo, IE = 0, f = 100 kHz) Cob Input Capacitance Cib (VBE = 2.0 Vde, IC = 0, f = 100 kHz) pF pF SWITCHING CHARACTERISTICS Delay Time (VCC = 40 Vdc, VBE(off) = 4.0 Vdc, Rise Time td IC = 2.0 Ado, IBl = 200 mAdc) Storage Time tr (VCC = 40 Vdc, IC = 2.0 Adc, Fall Time IBl = IB2= 2oomAdc) ns 100 ns 1.0 ,",S 150 'ns IU Pulse Test: Pulse Width = 300 Ils, Du'tY Cycle = 2.0% FIGURE 2 - ACTIVE-REGION SAFE OPERATING AREA FIGURE 3 - SWITCHING TIME TEST CIRCUIT 0 50 ~ 2. 0 ...z The Safe Operating Area Curves indicate Ie-VeE limits below l00~s it' 10ms vvhich the device will not enter 0 B O., ~ secondary breakdown. Collector load lines for specific circuits do r--TJ '" 2000 e ~=SECONOARY BREAKDOWN LIMITED - must fal: within the applicable 2 t-- ~ Safe Area to avoid causing a catastrophic failure. To insure operation below the maximum T J. power-temperature derating MJ670C!" must be observed for both steady 1 SO ms E:"'--BONOtNG WIRE L1MITEO ~:~RVES APPLY BELOW RATEO VeE a 00 2 0.0 1 10 state and pulse power conditions. 20 3.0 5.010 10 20 30 50 10 100 VCE. COLLECTOR-EMITTER VOL lAGE (VOL IS) 1-474 INPUT PULSE 1---+-1011S -37:~LS +11.6V Vcc -40 V 20 25 ~F ~ 1 51 tr.tf~10~S D.C. - 2.0% -= +3.3 V -= ® MJ8100 MOTOROLA l1li 5 AMPERE POWER TRANSISTORS MEDIUM-POWER PNP SILICON TRANSISTORS . designed for switching and wide band amplifier applications. PNP SILICON • Low Coliector·Emitter Saturation Voltage VCE(sat) = 1.2 Vdc (Max) @ IC = 5.0 Amp 60 VOLTS 10 WATTS • DC Current Gain Specified to 5 Amperes • Excellent Safe Operating Area • Packaged in the Compact TO-39 Case for Critical Space-Limited Applications. MAXIMUM RATINGS Rating Symbol Value Vdc Vdc Unit VCEO 60 Collector-Base Voltage Ilea 60 Emitter-Base Voltage VES 5.0 Vdc IC 5.0 Adc Collector-Emitter Voltage Collector Current - Continuous Base Current Total Device DiSSipation @TC Derate above 2SoC = IS 1.0 Adc Po 10 57.2 Watts mW/oC TJ,Tstg -65 to +200 °c 2SoC Operating and Storage Junction Temperature Range SEATING PLANE I --II~D THERMAL CHARACTERISTICS Characteristic STYLE 1 PIN 1. EMITTER 2. BASE 3. COLLECTOR Thermal Resistance, Junction to Case FIGURE 1- POWER-TEMPERATURE DERATING CURVE 0 "- 0 DIM '" " A B C D E F G H i'-, ~ b" J K ~ 0 L "- 0 20 40 ~ 60 80 100 120 140 160 180 200 TC, CASE TEMPERATURE (OCI Safe Area Curves are indicated by Figure 2. All limits ate applicable and must be observed. 1-475 M P 0 R MILLIMETERS MIN MAX 889 9.40 851 8.00 6.10 6.60 0.406 0.533 0.229 3.18 0.406 0.483 4.83 5.33 0.711 0.864 0.737 1.02 12.70 6.35 45 0 NOM 1.27 900 NOM 2.54 INCHES MIN MAX 0350 0.370 0.315 0.335 0.240 0260 0016 0.021 0.009 0.125 0016 0.Q19 0.190 0.210 0028 0.034 0.029 0.040 0.500 0.250 45 0 NOM 0.050 900 NOM 0.100 All JEOEC dImenSIOns and notes apply. CASE 79·02 TO·39 MJ81 00 ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted) Symbol Characteristic Min Max 60 - - 100 - 10 - 1.0 - 10 - 100 25 25 15 - Unit OFF CHARACTERISTICS Coliector·Emitter Sustaining Voltage 111 (lC = 50 mAde,IB = 0) Vdc VCEO(sus) Collector Cutoff Current /lAdc ICEO (VCE = 55 Vdc, IB = 0) Collector Cutoff Current (VCE = 55 Vdc, VBE(off) = 1.5 Vdc) ICEX (VCE = 55 Vdc, VBE(off) = 1.5 Vdc, TC = 1500C) Collector Cutoff Current (VCB=60V,IE=0), ICBO Emitter Cutoff Current (VBE = 5.0 Vdc, IC = 0) lEBO /lAdc mAdc /lAdc /lAdc ON CHARACTERISTICS III - DC Current Gain (lC = 500 mAdc, VCE = 2.0 Vdc) (IC = 2.0 Adc, VCE = 2.0 Vdc) (lc = 5.0 Adc, VCE = 2.0 Vdc) hFE Coliector·Emitter Saturation Voltage (lc = 2.0 Adc, IB = 0.2 Adc) (lc = 5.0 Ade, IB = 0.5 Ade) VCE(satl Base-Emitter Saturation Voltage (lc = 2.0 Adc, IB = 0.2 Adc) (lc = 5.0 Adc, IB = 0.5 Adc) VBE(sat) 180 Vdc - 0.7 1.2 - 1.2 1.8 30 - - 300 - 1250 - 100 - 100 ns 1.0 /lS 150 ns Vdc OYNAMIC CHARACTERISTICS Current-Gain - Bandwidth Product (lC = 0.5 Adc, VCE = 10 Vdc, f = 10 MHz) MHz fT Output Capacitance (VCB = 10 Vdc, IE = 0, f = 100 kHz) Cob Input Capacitance Cib (VBE = 2.0 Vdc, IC = 0, f = 100 kHz) pF pF SWITCHING CHARACTERISTICS Delay Time (VCC = 40 Vdc, VBE (off) =.oI!.O Vdc, td Rise Time IC = 2.0 Adc, IB 1 = 0.2 Adc) tr Storage Time (VCC = 40 Vdc, IC - 2.0 Adc, to Fall Time IBI = IB2= 0.2Adc) tf II) Pulse T ••t: Pulse Width os: 3001'5, Duty Cycle';; 2.0% FIGURE 2 - ACTIVE·REGION SAFE OPERATING AREA FIGURE 3 - SWITCHING TIME TEST CIRCUIT o ~ 100", '.0 The Safe Operating Area Curves ~.~ms $. 2.D indicate IC-VCE limits below which the device will not enter .... :::~ ~.: r- TJ =200"C : :o:~ 0.2 r' 1--. § ---- Secondary Breakdowliiimited Bonding Wire limited T_~erm~1 Limitations Y 0.0' 1== Ie..'" 25 0 C E lAP~licable ,For -"ated BVCE 0.02 ---r-tI1 Pulse Duty Cycle" 10% .... 0.1 secondary breakdown. Collector load lines for specific circuits must fall within the applicable 1.Dms de Safe Area to avoid causing a catastrophic failure. To insure operation below the maximum T J. power-temperature derating t must be observed for both steady state and pulse power conditions. 0.01 1.0 2.0 3.0 5.0 10 20 30 50 ns 100 VeE. COLLECTOR-EMITTER VOLTAGE tVOLTS) 1-476 INPUT PULSE 1--+10".. +11.6 V OV. r -37V---L-J 251'F ~ 1 51 tr,tf~10~S D.C. - 2.0% -= +3.3 V ® MJ8500 MJ8501 MOTOROLA III Desiglle .. ~ Data Sheet 2.5 AMPERE NPN SILICON POWER TRANSISTORS SWITCHMODE SERIES NPN SILICON POWER TRANSISTORS 700 and 800 VOLTS The MJ8500 and MJ8501 transistors are designed for highvoltage, high-speed, power switching in inductive circuits where fall time is critical. They are particularly suited for line operated switchmode applications such as: 125WATIS Designer's Data for "Worst Case" Conditions • Switching Regulators • Inverters • Solenoid and Relay Drivers The Designers' Data Sheet permits the design of most circuits entirely from the information pre· sented. Limit data - representing device characterIStics boundaries are given to facilitate "worst case" design. • Motor Controls • Deflection Circuits Fast Turn-Off Times 300 ns Inductive Fall Time - 250 C (Typ) 500 ns Inductive Crossover Time - 250 C (Typ) 900 ns Inductive Storage Time - 25°C (Typ) Operating Temperature Range -65 to +2000 C 100°C Performance Specified for: Reversed Biased SOA with Inductive Loads Switching Times with Inductive Loads Saturation Voltages Leakage Currents MAXIMUM RATINGS Rating Symbol Collector-Emitter Voltage VCEO(susl Collector-Emitter Voltage VCEV Emitter Base Voltage VEe Collector Current - Continuous IC iCM Peak (1) Base Current - Continuous Peak (1) Ie IRM Total Power Dissipation PD @ TC "" 2SoC @TC= 100°C Derate above 2SoC Operating and Storage Junction TJ, T stg MJ8500 MJB501 Unit BOO Vdc 1400 8.0 2.5 2.5 5.0 5.0 2.0 2.0 4.0 4.0 125 125 71 71 0.71 0.71 -65 to +200 Vdc 700 1200 8_0 Vdc Adc NOTES 1 OIMENSIONS Q AND v ARE OATUMS 2. JSSEATING PLANE AND DATUM 3. POSITIONAL TOLERANCE fOR MOUNTING HO LE Q m Adc 1*11.1310005113 1,Ivei FOR LEADS I tlll3lO005le'lv®l nel Watts W/oC °c Temperature Range STYLe 1 PIN I BASE THERMAL CHARACTERISTICS Characteristic Thermal Resistance, Junction to Case Maximum Lead Temperature for Soldering Symbol Max Unit ReJC 1.4 °CiW TL 275 °c Purposes: 1/8" from Case for 5 Seconds (1) Pulse Test: Pulse Width = 5 ms, Duty Cycle'; 10%. 1-477 2 EMITIfR CASE COLLECTOR MJ8500, MJ8501 II] ELECTRICAL CHARACTERISTICS ITC = 25°C unless otherwise noted I I I Characteristic Symbol Min TVp Max Unit VCEOlsusl 700 SOO - - Vdc - 0,25 50 5.0 mAde La mAde OFF CHARACTERISTICS Collector-Emitter Sustaining Voltage (Table 1) IIC = 100mA,IB =01 MJS500 MJS501 Collector Cutoff Current ICER - - lEBO - - - Collector Cutoff Current IVCE = Rated VCEV, RBE = 50 mAde ICEV IVCEV = Rated'Value, VSEloffi = 1,5 Vdcl IVCEV = Rated Value, VBEloffi = 1,5 Vdc, TC = 1500 CI n, TC = 100°C I Emitter Cutoff Current IV EB = 7.0 Vdc, IC = 01 SECOND BREAKDOWN Second Breakdown Collector Current with base forward biased See Figure 12 Clamped Inductive SOA with Base Reverse Biased See Figure 13 ON CHARACTERISTICS 111 DC Current Gain IIc = 0,5 Collector-Emitter Saturation Voltage IIc = 1.0 Adc, IB = 0.33 Adcl IIc = 2.5 Adc, IB = 1.0 Adcl IIc = 1.0 Adc, IB = 0.33 Adc, TC = - - - - 2.0 5,0 3,0 - 1.0 Adc, IB = 0.33 Adcl IB = 0,33 Adc, TC = 1.0 Adc, - - 1.5 1.5 td - 0,045 0.20 "s tr - 0,2 2,0 "s ts - 1,0 4,0 "s 0,5 2,0 "s Vdc VCElsatl = 100°C) Base-Emitter Saturation Voltage IIc IIc 7,5 hFE Adc, V CE ' 5,0 Vdcl Vdc VBElsatl = l000 CI DYNAMIC CHARACTERISTICS Output Capacitance IVCB = 10 Vdc, IE = 0, f test = 1.0 kHz) SWITCHING CHARACTERISTICS Resistive Load (Table 1) Delay Time Rise Time Storage Time IVCC = 500 Vdc, IC = 1.0 A, IBI = 0,33 A, VBEloffi = 5,0 Vdc, tp = 50"s, Duty Cycle ... 2.0%1 Fall Time tf Inductive Load, Clamped (Table 1) Storage Time IIC = 1.0 Alpkl, V clamp = 500 Vdc, IBI = 0,33 A, tSY - 1,3 4.0 "s Crossover Time VBEloffi = 5 Vdc, TC = 1000 CI tc 0,6 2.0 "s O,g tc - "s tfi - 0.3 - Storage Time Crossover Time Fall Time IIC = 1.0 Alpkl, V clamp = 500 Vdc, IBI = 0,33 A, VBEloff) = 5 Vdc, TC = 25 0 CI 111 Pulse Test: PW - 300 ~s, Duty Cycle ... 2%, 1-478 tSY 0.5 "S "s MJ8500, MJ8501 l1li FIGURE 2 - COLLECTOR SATURATION REGION FIGURE 1 - DC CURRENT GAIN en 20 ...- r- ,.....- 100 0 C 2.2 ~ VCE = 5 V o ~ 1.8 w f:::r- 25 0 C to 1\ LOA ~o ~ I"- '\.r-.. r\' 0 0.05 0.07 0.1 0.3 0.5 0.7 1.0 IC. COLLECTOR CURRENT (AMPS) ~_ 0.6 3.0 > 0.2 0.15 ; r--. I"--- " 0.7 0.4 0.3 lB. BASE CURRENT (AMPS) 0.2 1.0 -- 1.5 ~ W to ~ 1.2 IC/IB = 3 ~ ~ w 1000 C ./ ./ 0 0.25 0.30 0.4 0.5 0.6 0.7 0.80.91.0 1.5 2.0 25 0 C ~ -:::: ~ - 8 1.a '" / 0.8 ICIIB =3 0 > I ~ 0.4 = ~ \ t'-... ~ .... o > ......... \ 0 1.6 1= ! \ FIGURE 4 - BASE-EMITTER VOLTAGE o ~ o \ 1.5 2.0 ~ w \ \ \ \ \ \. FIGURE 3 - COLLECTOR·EMITTER SATURATION VOLTAGE g \ ~ 2.0 \ \ 8 \ 2.01 0.03 1.0 \ \ \ o ~ 3,0 ~ \ 2.5 2.0 \ \ \ ~ 1.4 0 ~ 1.5A .l.-1000 C :i: > 0.5 0.25 2.5 0.3 ICE. COLLECTOR CURRENT (AMPS) - i--I- 0.4 0.5 O.B 0.7 O.B 0.91.0 IC. COLLECTOR CURRENT (AMPS) --- -1.5 2.0 2.5 FIGURE 6 - CAPACITANCE FIGURE 5 - COLLECTOR CUTOFF REGION 10000 / TJ - 25 0 C / 5000 3000 / - ., -TJ-;'50 0 C / 1250 C - 75 0 C - ~100 0 / ~ e- :~ FORWARD r-REVERSE 500 ~ 30 0 o; I ./ 100 0 C 1 C,b / /VCE=250V::::: 10 0 Cob U 0 25 0 C 10- 1 -0.4 -0.2 0 +0.2 +0.4 +0.6 VUE. BASE·EMITTER VOLTAGE (VOLTS) 1-479 10 o1 0.20.3 0.71 0 2.03.0 7.0 10 20 30 70 100 200 VR. REVERSE VOLTAGE (VOLTS) 500 1000 MJ8500, MJ8501 SWITCHING TIMES NOTE In resistive switching circuits, rise, fall, and storage times have been defined and apply to both current and voltage waveforms since they are in phase. However, for inductive loads which are common to SWITCHMODE power supplies and hammer drivers, current and voltage waveforms are not in phase. Therefore, separate measure· ments must. be made on each waveform to determine the total switching time. For this reason, the following new terms have been defined. tsv = Voltage Storage Time, 90% IB1 to 10% VCE (pk) trv = Voltage Rise Time, 10-90% VCE (pk) tfi = Current Fall Time, 90-10% IC tti = Current Tail, 10-2% IC tc = Crossover Time, 10% VCE (pk) to 10% IC An enlarged portion of the inductive switching waveforms is shown in Figure 7 to aid in the visual identity of these terms. For the designer, there is minimal switching loss during storage time and the predominant switching power losses occur during the crossover interval and can be obtained using the standard equation from AN-222: PSWT = 1/2 VCCIC(tc)f In general, trv + tfi "" tc' However, at lower test currents this relationship may not be valid. As is common with most switching transistors, resistive switching is specified at 2.5 0 C and has become a bench· mark for designers. However, for designers of high frequency converter circuits, the user oriented specifications which make this a "SWITCHMODE" transistor are the inductive switching speeds (tc and tsv) which are guaranteed at 1000 C. FIGURE 7 - INDUCTIVE SWITCHING MEASUREMENTS IC!!-- . /V /'" 90% VCE(pk) r-- 'I. :\ 90% IC Irvfi:.J.;:II, ...... ~II'- I- f---Isv IC""""" VCE(pk) I"1 1 ----j '--1,---'1i / 10% VCE(pk) VCE - "- 10% ..... IC pk I B - I- 90% 181 ~rc- -- --\-, -- --- -- - - - ~ ~ TIME FIGURE 8 - PEAK REVERSE BASE CURRENT 2. 5 f - - l l c • LOlA 181 • 0.33 A ie ~ .... ffi a: 2.0 . /V a: ..,=> w ! -I-- ~ 1. 5 1.0 .............. / ~ ~o .5 0 2.0 4.0 6.0 VBE (Off). BASE EMITTER VOLTAGE (VOLTS) 8.0 RESISTIVE SWITCHING PERfORMANCE FIGURE 9 - TURN· ON SWITCHING TIMES FIGURE 10 - TURN - OFF SWITCHING TIMES 0.60a 2.0 0.50a VCC' 500V Ic/ISl' 3 TJ • 25°C ........... 0.300 j 0.20a 1.0 / r- w '_"" 0.100 ;:: / "'-... Ir V "'-..,. 0.700 ~ 0.500 ;:: I""- 0.05a 0.2 0.3 rVCC' 500V ICIIBI' 3 TJ • 25°C 0.200 r-- 0.030 0.15 -If 0.300 Id 0.070 r--Is j 0.5 0.7 1.0 IC, COLLECTOR CURRENT (AMPS) 2.0 3.0 1-480 0.100 0.15 I I III 0.2 0.3 0.5 0.7 1.0 IC, COLLECTOR CURRENT (AMPS) 2.0 3.0 MJ8500, MJ8501 III TABLE 1 - TEST CONOITIONS FOR DYNAMIC PERFORMANCE RBSOA AND INDUCTIVE SWITCHING VCEOI.u.1 RESISTIVE SWITCHING r-~-----~-~---~--O+15 n 47 RI TURN ON TIME +10V>~Ol 20 !il o-IL ---r f-O ::1- Go!: ZQ -z 8 R2J2 'S1 adjusted to obtain the forced hFE du,red 50 n TURN OFF TIME PW Vaned to Attain IC=100mA Use inductive sWitching driver as the Input to the r.Slstive test circuit. All Diodes - 1 N4934 All NPN - MJE200 All PNP - MJE210 l250 Adjust R 1 to obtain I B 1 For sWltchmg and ABSOA. R2 = "F Adjust to obtain VBEloff) = -5.0 V a For BVCEO(sus), A2 = co Leoll = 80 mH Reoll = 0 7 n Vee'" 10 V Vcc= Leoil = 180 ",H Reoll = oosn Vel amp "" 500 V Vee"" 20 V INDUCTIVE TeST CIRCUIT 500 V RL=500n Pulse Width = 50,"" OUTPUT WAVEFORMS RESISTIVE TEST CIRCUIT' t1 Adjusted to Obtain Ie MR816 t, "" Lcoll (lCpk) vee t2'" lcoll !lCPkl VCEt vel:: vclamp LCmp Tom. Test EqUipment Scope - TektroniX 475 or EqUivalent 1-',-1 FIGURE 11 - THERMAL RESPONSE 1.0 w '"Z ~ 0.7 0.5 R6JClt) - r(tl R6JC R6JC- 1.4°CIW Max. TJlpk) - TC - Plpk) R6JC(tI 0.3 ~ 0' 0.2 ~~ w-' ~~ o. 1 ffi ~ 0.0 7 ~ - 0,05 ~ >- 0.03 ~ 0.02 0.0 1 0.01 - ...... ...... I-"""" 0.10 1.0 10 t. TIME Im.1 1-481 100 1000 MJ8500, MJ8501 III SAFE OPERATING AREA INFORMATION FIGURE 12 - MAXIMUM FORWARD BIAS SAFE OPERATING AREA FORWARD BIAS There are two limitations on the power handling ability of a transistor '" ~ 1 :!. 1.0 ffi g§ => ~ 501" m, operation, I.e., the transistor must not be subjected to greater diSSipation than the curves mdlcate. d.c. The data of Figure 12 IS based on T C = 250 C, T J( pk I variable depending on power level. Second breakdown pulse limits are valid for duty cycles to 10% but must be derated when TC ;;. 250 C Second breakdown limitations do not derate Ihe same as thermal limllatlons. Allowable curren I at the voltages shown on Figure 12 may be found at any case temperature by uSing the appropriate curve on Figure 14. TJ(pkl may be calculated from the data In Figure 11. At high case temperalures, thermal limitations will reduce the power thai can be handled 10 values less than Ihe limitatIOns Imposed by second breakdown TC - 25°C 0.10 IS _ - Bonding Wire limit - - - - Thermal Limit Second Breakdown Limit tl ~E 0.01 MJ850~~ MJ8501.-=F 0.001 8.0 10 20 40 60 80100 200 400 600 800 VCE. COLLECTOR·EMITTER VOLTAGE (VOLTSI FIGURE 13 - RBSOA, REVERSE BIAS SWITCHING SAFE OPERATING AREA , 5 \ 0 TJ"lOOoC IC/tB>2.5 .51-- I - .01-- ( , REVERSE BIAS ( V8Elotf) ~ 2 to 7 V - , For inductive loads, high voltage and high current must be sustained simultaneously during turn-off, in most cases, with the base to emitter junction reverse biased. Under these conditions the collector voltage must be held to a safe level at or below a specific value of collector current. This can be accomplished by several means such as active clamping, RC snubbing, load line shaping, etc. The safe level for these devices is specified as Reverse Bias Safe Operating Area and represents the voltage-current condition allowable during reverse biased turn-off. This rating is verified under clamped conditions so that the device is never subjected to an avalanche mode. Figure 13 gives the complete RBSOA characteristics. J\ \ 1\ FOR MJB500 RBSOA LIMIT IS 200 VO LTS LESS "\ .5 0 average Junction temperature and second breakdown. Safe operating area curves indicate IC-VCE I,m,ls of the tranSIStor that must be observed for reliable I....... t- r- 200 1400 400 600 800 1000 1200 vCE. COLLECTOR·EMITTER VOLTAGE IVOLTS) FIGURE 14 - POWER DERATING 100 ~ t-... " ~ BO '"o G '! 60 ........... .......... Therm.~ Derating --ti '"z ;:: Second Breakdown _ Derating ~ ['-. ....... ""o ,- ........ r-..... t'-.. ~ 40 '"~ I"'-- ....... ~ 20 ~ o o .......... 40 120 80 TC. CASE TEMPERATURE 10C) 1-482 160 200 ® MJ8502 MJ8503 MOTOROLA DesigllPl's Data Sheet 5.0 AMPERE NPN SILICON POWER TRANSISTORS SWITCHMODE SERIES NPN SILICON POWER TRANSISTORS 700 and 800 VOLTS 150 WATTS The MJ8502 and MJ8503 transistors are designed for high-voltage, high-speed, power switching in inductive circuits where fall time is critical. They are particularly suited for line operated switchmode applications such as: Designer's Data for ·'Worst Case" Conditions • Switching Regulators The Designers· Data Sheet per· mlts the design of most circuits entirely from the information pre· sented. Limit data - representing device charactenstics boundaries are given to facilitate ··worst case·' design • Inverters • Solenoid and Relay Drivers • Motor Controls • Deflection Circuits Fast Turn-Off Times 150 ns Inductive Fall Time-25 0 C (Typ) 400 ns Inductive Crossover Time-25 0 C (Typ) 1200 ns Inductive Storage Time-25 0 C (Typ) Operating Temperature Range -65 to + 2000 C 1000 C Performance Specified for: Reverse-Biased SOA with Inductive Loads Switching Times with Inductive Loads Saturation Voltages Leakage Currents ~. t. D MAXIMUM RATINGS r----- Rating Collector-Emitter Voltage Collector-Emitter Voltage Symbol MJ8502 MJ8503 Unit VCEOlsusl 700 1200 800 1400 Vde 8.0 8.0 Vde "CEV VEB Emitter Base Voltage Vde Collector Current - Continuous Peak 111 IC ICM 5.0 10 5.0 10 Ade Base Current - Continuous IB IBM 4.0 8.0 4.0 8.0 Ade Po 150 86 0.85 Peak 111 Total Power Dissipation @ @ TC TC == ~ 2SoC 1000C Derate above 25°C Operating and Storage Junction Temperature Range TJ. Tstg 150 86 0.85 -65 to +200 Watts W/oC °c Characteristic Thermal Resistance, Junction to Case Maximum Lead Temperature for Soldering Purposes: 1/8" from Case for 5 Seconds (1) Pulse Test: Pulse Width 5 ms. Duty Cycle" 10%. Symbol Max ReJC 1.16 TL 275 Unit °C/W °c F- L_J~ IV V:d[ r-v./ or u NOTES 1 DIMENSIONS Q AND V ARE DATUMS , 2 WISSEATING PLANE AND DATUM 3 POSITIONAL TOLERANCE FOR MOUNTING HalE 0 ItillltDOO"@iTiv@i FOR lEADS i til'3Io."'I@Ti v@i n@i 4 DIMENSIONS AND TOLERANCES PER -'~. =i= ~ -4- --¥-, F • • • H J Q 635 0.97 - 3D15BSC 10928SC 5468SC 1689BSC 11.18 1219 3.81 419 2667 U 483 533 V 3.81 4.19 1181 0430 0.215 0665 0440 0150 0190 0150 CASE 1·05 TO·3 1-483 1 • 'i'x:. '~---(~ Q STYLE 1 PIN I BASE 2. EMITTER CASE COLLECTOR THERMAL CHARACTERISTICS • ~ MJ8502, MJ8503 II] ELECTRICAL CHARACTERISTICS (TC: 25°C unless otherwise noted I Characteristic OFF CHARACTERISTICS Collector-Emitter Sustaining Voltage (Table 1) MJBS02 MJB503 (lC: 100mA,IB :01 VCEO(susi 700 BOO - - - - 0.25 5.0 Vdc Collector Cutoff Current (VCEV : Rated Value, VBE(offi : 1.5 Vdcl (VCEV : Rated Value, VBE(offi : 1.5 Vdc, TC : 1500 CI ICEV Collector Cutoff Current (VCE: Rated VCEV, RBE: 50 ICER - - 5.0 mAde lEBO - - 1.0 mAde n, TC: mAde 1000 el Emitter Cutoff Current (V EB : 7.0 Vdc, Ie : 01 SECOND BREAKDOWN Second Breakdown Collector Current with base forward biased See Figure 12 Clamped Inductive SOA with Base Reverse Biased See F .gure 13 ON CHARACTERISTICS (1 I DC Current Gain hFE 7.5 - - - - - - 2.0 5.0 3.0 - - 1.5 1.5 - 0.040 0.20 ~s 0.125 2.0 ~s 1.2 4.0 ~s 0.65 2.0 ~s - (lC : 1,0 Adc, VeE: 5.0 Vdc) COllector-Emitter Saturation Voltage Base-Emitter Saturation Voltage (Ie (lc Vdc VCE(sati (lC: 2.5 Adc,IB: 1.0 Adcl (lC: 5.0 Adc, IB: 2.0 Adcl (lC: 2,5 Adc,IB: 1.0 Adc, Te: 1000 el Vdc VBE(sati = 2.5 Adc,IB = 1.0 Adc) = 2.5 Adc, IB = 1.0 Adc, Te = 100°C) DYNAMIC CHARACTERISTICS Output Capacitance (VCB: 10 Vdc, IE: 0, f test : 1.0 kHzI SWITCHING CHARACTERISTICS ReSistive Load (Table 1) Delay Time Rise Time Storage Time (VCC = 500 Vdc, IC = 2.5A, IBl = 1.0 A, VBE(off) = 5.0 Vdc, tp Duty Cycle" 2.0%1 td = 50 ~s, tr ts Fall Time tf Inductive Load, Clamped (Table 11 Storage Time Crossover Time Storage Time Crossover Time Fall Time (Ie = 2.5 A(pk), Vcl amp = 500 Vdc, IBl VBE(offi = 5 Vdc, TC = 100°C) (Ie = 1.0 A, tc = 2.5 A(pk), Vcl amp = SOO Vdc,lBl = 1.0 A, VSE(offl: 5 Vdc, Te = 250 tsv tsv tc el tfl (1 I Pulse Test: PW . 300 ~s, Duty Cycle';; 2%. 1-484 - 1.6 5.0 ~s 0.60 2.0 ~s 1.2 - ~s 0.4 - ~s. 0.15 - ~s MJ8502, MJ8503 III I i"" z < .... '" ~ VCE" S V o ~ I 2.8 24 '""' ~ o ~ 25°C Ii 1\ > ffi 7.0 1.6 - ~ I' ..,:> g g Tj" 100°C 10 5.0 ~ I\. ~ 8 12 2 1 ....'" O. 6 '- t-..... ......: ~ O.8 '"~ 06 VBElsat)@IC/IB' 2.5 :> 10 2 > >' O. 4 ,.. V"~d- 2 0.1 02 0.3 05 07 IC' COLLECTOR CURRENT lAMP) 00.05 J....-"": ~OC ,.. -- 01 / / 1000 C u: 0.7 Cib , FORWARD -REVERSE 1000 Tj'25OC~ oS I " ISoC ~ 500 ~U 200 ;t / LVCE'2S0V= Cob ~ 10 0 U 50 2SoC -0.2 0.5 I / / 0 10 1 03 FIGURE 6 - CAPACITANCE 10000 1000 / ,/ 12SoC '" 02 200 0 Tj'IS00C 10- 1 -0.4 d-;;;: T}'250 IC. COLLECTOR CURRENT lAMP) / - - r-- ":-- I / 10 3 \. --- -- I- FIGURE 5 - COLLECTOR CUTOFF REGION < .3 .... \. I o VICf\sa,)@:CIIBI " 2.S \ \ \ 07 lB. BASE CURRENT (AMPI 1 lOOOS7i:7 104 ~ .., \ ~ 04 4.S A FIGURE 4 - BASE-EMITTER VOLTAGE 4 o oOS 0 1\ O.S 0.3 4 01 ~ .., \ \ 0 02 0.3 0 S 07 1 IC. COllECTOR CURRENT lAMP) :; 0 8 o 1 1-\ 3.SA\4 A 1\ \ 0.4 FIGURE 3 - COLLECTOR -EMITTER SATURATION REGION > >' ~3A \ 1\ \ ~ o. 8 i! '"~« - - 1.2 > 20 OOS 007 01 ~:lc'2A o ~ 3.0 ~ o , FIGURE 2 - COLLECTOR SATURATION REGION FIGURE 1 - DC CURRENT GAIN 20 0 0 +0.2 +0.4 0 1 0.1 +0.6 VBE. BASE,EMITTER VOLTAGE IVOLTS) 1-485 0.3 0.7 1.0 3.0 7.010 30 10 100 VR. REVERSE VOLTAGE (VOLTS) 300 100 1000 MJ8502, MJ8503 - SWITCHING TIMES NOTE FIGURE 7 - INDUCTIVE SWITCHING MEASUREMENTS IC~ ..,/ V "\ 90% VCElpkl J1\ 90% IC /" - IC"""'- VCElpkl I trv~~tfl- ~ltIf---, '---Ic~ f--Isv r- I'\. 1/ - I-- 90%IBI --\- -- -- - 10%' IC pk 10% VCElpkl VCE IB- f--- 1%IC -- -- -- ---- ............ TIME In resistive switching circuits, rise, fall, and storage times have been defined and apply to both current and voltage waveforms since they are in phase. However, for inductive loads whic.h are common to SWITCH MODE power supplies and hammer drivers, current and voltage waveforms are not in phase. Therefore, separate measurements must be made on each waveform to determine the total switching time. For this reason, the following new terms have been defined. tsv = Voltage Storage Time, 90% IS1 to 10% VCE(pk) trv = Voltage Rise Time, 10-90% VCE(pk) tfi = Current Fall Time, 90-10% IC tti = Current Tail, 10-2% IC tc =. Crossover Time, 10% VCE(pk) to 10% IC An enlarged portion of the inductive switching waveforms is shown in Figure 7 to aid in the visual identity of these terms. FIGURE 8 - PEAK REVERSE BASE CURRENT 5. 0 0 ./ 0 V /" --- - IC=1.5A IBI =1.0 A / 0 ./ ~ 1. 0 1.0 4.0 6.0 VBEloltl. BASE EMITTER VOLTAGE IVOLTS) 8.0 For the designer, there is minimal switching loss during storage time and the predominant switching power losses occur during the crossover interval and can be obtained using the standard equation from AN-222: PSWT = 1/2 VCCIC(tc)f In general, trv + tfi "" tc. However, at lower test currents this relationship may not be valid. As is common with most switching transistors, resistive switching is specified at 25 0 C and has become a benchmark for designers. However, for designers of high frequency converter circuits, the user oriented specifications which make this·a "SWITCHMODE" transistor. are the inductive .switching spe·eds (tc and t sv ) which are guaranteed at 1000C. RESISTIVE SWITCHING PERFORMANCE FIGURE 10 - TURN-OFF SWITCHING TIMES FIGURE 9 - TURN-ON SWITCHING TIMES 1.00a 1. 0 0.700 0.50 0 0.300 .., 0.100 .:I ~ 0.10 ~ r-... ..... 1'. r-... Id a tr-.... 1,1 .. 0.0 ./ ~ 0.60a ;:: °v 0.40 t- 0.1 0.3 V / II 0.5 0.1 1.0 1.0 3.0 IC, COLLECTOR CURRENT IAMPSI 0.100 0.1 5.0 1-486 r-- t- VCC = 500 Ic/lB =1.5 VBElo!I). ; 5.0 V TJ =15 0 C 0.300 1 10.1 1.00a ~ -;; 0.80 0 0.0 7 0.05 0.03r- VCC = 500 V 0.01f- IC/IBI = 2.5 r- Tr 15 C ;.. I,..- V 0.1 0.3 0.4 0.7 1.0 Ie. COLLECTOR CURRENT IAMPSI s.o MJ8502, MJ8503 TABLE 1 - TEST CONDITIONS FOR DYNAMIC PERFORMANCE RBSOA AND INDUCTIVE SWITCHING VCEO(sull RESISTIVE SWITCHING r-.-----------~--~------_1---O+1S 47 Jl o n Rl 15V - )-<~--~rl~rlf__~-_+__! TURN ON TIME "'10V>~1 20 oJl.... II> Z R2l2 1-0 :::l- ... !:: I B 1 adjusted to obtam the forced ZQ -z 8 "FE desIred PIN V.ri~ son to Ana,n TURN OFF TIME Use Inductl"e sWitching Ie = 100 mA drive, a' the fnput to the resIStive 1"1 Circuit. All Diodes - 1 N4934 All NPN - MJE200 All PNP - MJE210 I~ 250 JAF ~djUst obtain Adjust R 1 to obtam I B 1 For sWitching and RBSOA' R2 = 0 For BVCEO(sus). R2 "" DO VSE(offl- -5.0 V Vcc: SOOV L COI' = 80 mH RCDII = Q.7 n Vee LCOII = 180 j.lH = 10 V Rcoll = 0 05 n Vclamp"" 500 V RL: 200 Vee = 20 V INDUCTIVE TEST CIRCUIT n . Pulse Width"" 50 Ils OUTPUT WAVEFORMS RESISTIVE TEST CIRCUIT t1 Adjusted to Obt•• n 'e MA8lS ., .. LcOII(lCpk' Vee 12 "" LcOll(lCpk' Vclamp Test EqUipment Scope - TektroniX 47501' Equlv.lent FIGURE 11 - THERMAL RESPONSE ~ N 1.0 ::i ~ 0.7 ~ 0.5 ~ ... '-' 0.3 ~ 0.2 iii a: .... '" ~ 3.0 ~ \ :3 3.0 ~ > 2.5 0.1 \ 1.0 0.2 0.3 0.5 0.7 1.0 2.0 3.0 IC. COLLECTOR CURRENT (AMPS) 5.0 7.0 10 0.3 ..... 0.1 0.07 0.1 0.2 7.0 2.0 ~ ~ 'CI'B - 2.5 w > ~ w 1.0 ! 0.1 w _ 3.0 5.0 7.0 IC/IB" 2.5 1.6 ~ 1.2 '~" .8 - - 25°C .4 - - 100°C 100°C ~ ........ ~ ~ ~ 25°f 0.2 2.0 3.0 0.5 0.7 1.0 0.3 IC. COLLECTOR CURRENT (AMPS) 5.0 7.0 o 10 0.1 I-:::;:::: ~ I > > 0.1 0.1 _r- w ..,.,...""y 0.3 0.2 ~ - '" ~ 0.5 ! 2.0 co 0 '"1= 0.3 0.5 0.7 1.0 lB. BASE CURRENT (AMPS) 2.0 2. 5.0 ' - - - o r-- ........ "- FIGURE 4 - BASE EMITTER VOLTAGE 10 3.0 1\ \ 0.2 FIGURE 3 - COLLECTOR·EMITTER SATURATION REGION C!J \ lOA 0.7 ,0 c 0.5 .t 5.0 ~ SA ~ '"c o 2.5A IC"l A 2.0 0.2 0.3 0.5 0.7 1.0 2.0 3.0 5.0 7.0 10 IC. COLLECTOR CURRENT (AMPS) FIGURE 5 - COLLECTOR CUTOFF REGION FIGURE 6 - CAPACITANCE 10000 /' 5000 /' / 3 - - T J " 150°C 125°C ,.,. /' ./ /' / -REVERSE 1000 z « .... 500 ;t ;'\ 200 U FORWARD -0.2 Cob r-- 100 50 / VCE "250 V== 25°C 10' 1 -0.4 TJ" 25°C -w ;:; 75°C - C,b 2000 u L 100°C 1 L 20 +0.2 +0.4 10 01 +0.6 02 a5 I0 2.0 5.0 10 20 50 VR. REVERSE VOLTAGE (VOLTS) VBE. BASE·EMITTER VOLTAGE (VOLTS) 1-491 100 200 500 1000 MJ8504, MJ8505 IIJ SWITCHING TIMES NOTE In resistive switching circuits, rise, fall, and storage times have been defined and apply to both current and voltage waveforms since they are in phase. However, for inductive loads which are common to SWITCHMODE power supplies and hammer drivers, current and voltage waveforms are not in phase. Therefore, separate measurements must be made on each waveform to determine the total switching time. For this reason, the following new terms have been defined. tsv = Voltage Storage Time, 90% IS1 to 10% VCE(pkl trv = Voltage Rise Time, 10-90% VCE(pkl tfi = Current Fall Time, 90 -10% IC tti = Current Tail, 10-2% IC tc = Crossover Time, 10% VCE(pkl to 10% IC An enlarged portion of the inductive switching waveforms is shown in Figure 7 to aid in the visual identity of these terms. For the designer, there is minimal switching loss during storage time and the predominant switching power losses occur during the crossover interval and can be obtained using the standard equation from AN-222A: PSWT = 1/2 VCCIC(tclf In general, trv + tfi = tc' However, at lower test currents this relationship may not be valid. As is common with most switching transistors, resistive switching is specified at 2S o C and has become a benchmark for designers. However, for designers of high frequency converter circuits, the user oriented specifications which make this a "SWITCHMODE" transistor are the inductive switching speeds (tc and tsvl which are guaranteed at 100oC. FIGURE 7 - INDUCTIVE SWITCHING MEASUREMENTS IC~ ..... --I ./ - IC ........ ~E(Pk)_ f - - - 1""1 90% VCE(pk) A1\ 90% Ie trvfl~tt.- -tsv '-t,-, H / VCE - - --- -- - - - f...-- """" r- 10% ...... "2%IC IC pk 90%IBI --\- -- r--",- "- 10% VCE(pk) IB- - TIME FIGURE 8 - PEAK REVERSE BASE CURRENT B.O ./ V V o o - v V IC ~ 5 A IBI ~ 2.0 A 4.0 2.0 6.0 8.0 10 VBE (off). BASE·EMITTERVOLTAGE (VOLTS) RESISTIVE SWITCHING PERFORMANCE FIGURE 9 - TURN-ON SWITCHING TIMES FIGURE 10 - TURN-Off SWITCHING TIMES 5.0 20 1l. w ";:: 0.30 0.20 0.10 3.0 VCC~500V 1.0 IC/IB - 2.5 TJ - 25'C 0.70 0.50 " "" ~ " TJ ~ 25'C " "-- ,.- 0.70 " 0.50 ;:: w I ......... ~ 0.30 'f 020 0.07 0.05 0.1 0 0.03 0.02 -1.0 Vee ~ 500 V 20 -lc/lB ~2.5 -VBE (,ff) ~ 5 V 1.0 0.2 0.3 0.5 0.7 1.0 2.0 3.0 5.0 7.0 10 0.07 005 -1.0 0.2 0.3 0.5 0.7 1.0 2.0 3.0 IC. COLLECTOR CURRENT (AMPS) IC, COLLECTOR CURRENT (AMPS) 1-492 5.0 7.0 10 MJ8504, MJ8505 III TABLE 1 - TEST CONOITIONS FOR OVNAMIC PERFORMANCE RESISTIVE SWITCHING RBSOA AND INDUCTIVE SWITCHING VCEO(susl r-~----------~---,------~~-o+15 47 n Rl TURN ON TIME +10V>~01 20 oJ""L '"Z 1-0 ::1- '--r ... !: ZQ -z 8 IS1 adjusted to obte,n me forced 50 n TURN OFF TIME PW V."ed to AttBin IC=100mA Use Induct'".. sWltch,"g driver 8' the ,nput to the reSIStllle test ClfCUlt All Diodes - 1 N4934 All NPN - MJE200 All PNP - MJE210 I~ 250 jlF to obtain Adjust R 1 to obtain I B 1 VSE(off) = -5.0 V For switching and RBSOA. R2 '" 0 For BVCEO(sus). R2 "" 00 Lead = 80 mH Vee Vee - Leoll'" 180,uH Reoll = 0 05 n Vcc=20V = 10 V RCO!J"'07n 500 V RL-l00 n Pulse Width'" 50 1'5 Vel amp "" 600 V RESISTIVE TEST CIRCUIT OUTPUT WAVEFORMS INDUCTIVE TEST CIRCUIT 11 Adjusted to '1rfY1 MRB16 1--" "~'.mped "j- Ie -----vee-L. COI I(1C p k) 11 .... 12 "" LCD" (lCpk) veEf Vc-::: Vclemp ~mp T,me Obte,n Test EqUIPment Scope - TektroniX 475 or Equlllelenr 1-'2~ FIGURE 11 - THERMAL RESPONSE 1.0 .,w ROJC(t) = r(t) ROJC ROJC • 1.0·CM TJ(pk)' TC = P(pk)ROJC(tl i= ....... ~~ a:: !:::! 0.10 f"'" """~ ..... .. = w .... :z:< ZO ~~ ~ ...= ~ ....... 0.01 0.01 ...0.1 1.0 10.0 t, TIME (ms) 1-493 100 MJ8504, MJ8505 SAFE OPERATING AREA INFORMATION FIGURE 12 - FORWARD BIAS SAFE OPERATING AREA 5014 ie '" .... 10 S ~ a:: Zl 1 1.0 '"o ~ j :3 m, de D.l ~ _ _ BONOINGWIRE LIMIT F:~ - - - ~ THERMAL LIMIT SECONO BREAKDOWN LIMIT MJBS04 MJBSOS 0.01 O.ODS I.D 10 100 VCE, COLLECTOR EMITTER VOLTAGE (VOLTS) 1000 FIGURE 13 - RBSOA, REVERSE BIAS SWITCHING SAFE OPERATING AREA REVERSE BIAS lD if s'".... S.O ::> <..> 6.0 ~ '" .... 0 ~ .'" 0 \ - - - VBE I.ff) =2ID 7 V ICilB,!1.0 \ 1\ \ TJ~100oC 1\ 4.D \ <..> I!::' ~ ~ !: FORWARD BIAS There are two limitations on the power handling ability of a transistor: average Junction temperature and ,second breakdown. Safe operating area curves ,nd,cate IC-VCE limlls of the tranSistor that must be observed for reliable operation; I.e., the tranSIStor must not be subjected to greater dissipation than the curves Indicate. The data of Figure 12 IS based on Te = 2So C; TJ(pk) is variable depending on power level. Second breakdown pulse limits are valid for duty cycles to 10% but must be derated when TC ;;, 2So e. Second breakdown limitatIOns do not derate the same as thermal limitations. Allowable current a1 the voltages shown on Figure 12 may be found at any case temperature by uSing the appropriate curve on Figure 14. TJ(pk) may be calculated from the data In Figure 11. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown. "- 2.D FOR MJS504 RBSOA LlTIT I~ 200 IVOL LE~S is 200 400 SOO 600 "' :-- 100D 1200 1400 VCE, COLLECTOR·EMITTER VOLTAGE (VOLTS) For inductive loads, high voltage and high current must be sustained simultaneously during turn-off, in most cases, with the base to emitter junction reverse biased. Under these conditions the collector voltage must be held to a safe level at or below a specific value of collector current. This can be accomplished by several means such as active clamping, RC snubbing, load line shaping, etc. The safe level for these devices is specified as Reverse Bias Safe Operating Area and represents the voltage-current condition allowable during reverse biased turn-off. This rating is verified under clamped conditions so that the device is never subjected to an avalanche mode. Figure 13 gives the complete RBSOA characteristics. FIGURE 14 - POWER DERATING 100 ~ 80 ....'"o ~ :--... "-..: r--..... ..... f",.. r-.... Therma~ u ! 60 DeratLng -11 ~ ;: .. ~ Second Breakdown Derating ........... ..... r-.., r-.... ........... "- 40 '" ~ - ,- ....... 0 0 40 120 80 TC. CASE TEMPERATURE I'CI 1-494 160 " "" 200 I MJI0000 MJI0001 MOTOROLA Designer's Data Sheet 20 AMPERE NPN SILICON POWER DARLINGTON TRANSISTORS SWITCHMODE SERIES NPN SILICON POWER DARLINGTON TRANSISTORS 350 and 400 VOLTS 175 WATTS The MJ10000 and MJ1000l darlington transistors are designed for high-voltage, high-speed, power switching in inductive circuits where fall time is critical_ They are particularly suited for line operated switch-mode applications such as: Designer's Data for "Worst Case" Conditions • Switching Regulators • Inverters • Solenoid and Relay Drivers • Motor Controls • Deflection Circuits The Designer's Data Sheet permits the design of most circuits entirely from the information presented. Limit curves - representing boundaries on device characteristics - are given to facilitate "worst case" design. 1000 C Performance Specified for: Reversed Biased SOA with Inductive Loads Switching Times With Inductive Loads210 ns Inductive Fall Time (Typ) Saturation Voltages Leakage Currents MAXIMUM RATINGS Symbol MJ10000 MJloo0l Unit Collector-Emitter Voltage VCEO(sus) 350 400 Vdc Collector-Emitter Voltage VCEX(sus) 400 Vdc Collector-Emitter Voltage VCEV 450 450 500 Rating Emitter Base Voltage Collector Current Continuous - Peak (1) Base Current - Continuous - Peak (1) Total Power Dissipation @ T C = 25u C @TC= 100°C Derate above 25°C Operating and Storage Junction Temperature Range Vdc 8 Vdc 20 30 Adc 2.5 5 Adc Po 175 100 1 Watts W/oC TJ,T stg -65 to +200 °c VEB IC ICM IB IBM F - STYLE 1 PIN 1 BASE 2 EMITTER CASE COLLECTOR THERMAL CHARACTERISTICS Characteristic Thermal Resistance, Junction to Case Symbol Max Unit R8JC 1 °C/W TL 275 °c Maximum Lead Temperature for Soldering Purposes; 1/8" from Case for 5 Seconds (1) Pulse Test: Pulse Width = 5 ms, Duty Cycle .. 10%. CASE 1-05 TO-204AA 1-495 I I I I I I ~ MJ10000, MJ10001 ELECTRICAL CHARACTERISTICS (Tc = 25°C unless othe"';ise noted). I I Characteristic Symbol Min Typ Max 350 400 - - 400 450 275 325 - - - 0.25 5 5 mAde 150 mAde 'Unit OFF CHARACTERISTICS {21 Collector-Emitter Sustaining Voltage (Table 1) {lc = 250 mA, IB = 0, ~ clamp = Rated VCEol Collector-Emitter Sustaining Voltage (Table 1, Figure 12) IC MJ10oo0 MJ1000l IC = 10 A, Vel emp = Rated VCEX, TC = 100°C MJ10000 MJ1000l {VCEV ICEV ICER - leBO - - = Rated Value, VREloffl = 1.5 Vdc, Tc = 1500 cI = Rated VCEV, RBE = 50 n, TC = 1000 CI Emitter Cutoff Current {VEB mAde - = 1.5 Vdcl Collector Cutoff Current IVCE Vde VCEX{susl = 2 A, Velamp = Rated VCEX, TC = 100°C Collector Cutoff Current {Vcev = Rated Valu~, VBElo!fl Vdc VCEO{susl MJ10000 MJ1000l =8 Vde, IC =01 SECOND BREAKDOWN See Figure 11 Second Breakdown Collector Current with base forward biased ON CHARACTERISTICS {21 DC Current Gain Collector-Emitter Saturation Voltage {lC = 10 Ade, IB {lC = 20 Ade, IB Or. = 10 Ade, IR VCEI.atl = 400 mAdel = 1 Adel = 400 mAde, Tr. = 1000CI Base-Emitter Saturation Voltage IIC = 10 Ade, IB =400 mAdel 1Ir. = 10 Adc,IR = 400 mAde, Tr. Diode Forward Voltage {II IIF = 10 Adel - hFE {lc = 5 Adc, VCE = 5 Vdel {lc = 10 Ade Vr.~ = 5 Vdel 50 40 - 600 400 - - - 1.9 3 2 - 2.5 2.5 3 5 Vdc - VBElsatl Vde Vde Vf - Ihfel 10 - - Cob 100 325 pF Id - 0.12 0.20 1.5 1.1 0.2 0.6 3.5 2A~ !'. !'. !'. . !'. 3.5 1.5 5.5 3.7 !,s !,s 1.0 0.7 - !,s us = 1000 CI DYNAMIC CHARACTERISTICS Small-Signal Current Gain 1Ir. =1.0 Ade, Vr~ = 10 Vde, fxest = 1 MHzl Output Capacitance {VCIl = 10 Vde,le = 0, ftest = 100 kHzl SWITCHING CHARACTERISTICS RRsilti ... Lnad ITabl. I} Delay Time Rise Time Storage Time {VCC = 250 Vde, IC = 10 A, IBI =400 mA, VBE{offl = 5 Vdc, tp = 50 !'s, Duty Cycle .. 2%1. Fall Time Inductive Load Cla",,,,,dl1:able 11 Storage Time Crossover Time Storage Time Crossover Time tr ts t (lC = 10 A{pkl, Vel amp = Rated VCEX, IBI VBEloffl = 5 Vde, TC = looo CI =400 mA, tsv te IIC ~ 10 A{pkl, Velamp = Rated VCEX, IBI VBE{offl = 6 Vdc, TC = 25 0 CI =400 mA, Isv tc - - (1) The internal Coliector·to·Emitter diode can eliminate the need for an external diode to clamp inductive loads. Tests have shown that the Forward Recovery Voltage (V f) of this diode is comparable to that of tYpical fast recovery rectifiers. {21 Pul.e Te.t: Pulse Width = 300 !,S, Duty Cycle .. 2%. 1-496 MJ10000, MJ10001 II. DC CHARACTERISTICS FIGURE 1 - DC CURRENT GAIN 500 -- 300 200 z 5 0.03 II = / 25 0.050.07 0.1 J - O. 8 r- 0.4 0.2 0.3 = 2: -~..25°C ",," '"« :> "' o I- ~ ~ 1 - 1. 2 10 20 O. 8 0.2 1/ 13 l/-'/ ...-:-:1-":: 0.3 2~~ ........ V '1'5\;c T 10 0.5 0.7 IC, COLLECTOR CURRENT (AMP) 20 FIGURE 6 - OUTPUT CAPACITANCE 100 0 ~VCr250V TJ = 25°C 70 0 1,/ 0 r-- TJ -125°C ~ 102 -:::-:::- - > 0.5 0.7 /, 25°C :;1 6 o ..- -lfo°c 103 ~ 0.7 T~=h- i-- 2 w FIGURE 5 - COLLECTOR CUTOFF REGION j 0.5 I in IC, COLLECTOR CURRENT (AMP) 104 0.3 2. 41--- '-- - - VBE(on) @ Cr ~ V o V -55°C II II :; VA TJ 0.2 -VBE(sat)@~"B=25 IV 6 2 \. \ FIGURE 4 - BASE-EMITTER VOL TAGE 2.8 I II ICIIB 20A \ 15A IB, BASE CURRENT (AMP) FIGURE 3 - COLLECTOR EMMITTER SATURATION VOLTAGES j TJ = 25°C \ r--.. IC, COllECTOR CURRENT (AMP) 2.4 1\ \ ;,; ~ 1.8 V E= 5~ /' 10 lOA 2. 2 t= I ./ ~ 20 IC =5A ~ -55°C 30 2.6 « :; "'- I.-- I ~: \ \ \ o I ./ f-- r--750C 10 I " ....... 0 0t==: t==250C 10- 1 -02 t-- 0 / 10 t-..... 0 - f - - I-l00oC '" Cob 0 +0.2 +0.4 to.6 +0.8 50 0.4 0.6 1 4 6 10 20 40 60 VR, REVERSE VOLTAGE (VOLTS) VBE, BASE·EMITTER VOLTAGE (VOLTS) 1-497 100 t: 200 400 MJ10000, MJ10001 TABLE 1 - TEST CONDITIONS FOR DYNAMIC PERFORMANCE RESISTIVE VCEOlsus) VCExtsus) AND INOUCTIVE SWITCHING SWITCHING 01 2N2907 02 2N2222 Pulse Width adjusted to obtain specifiad Ie (R_,istlv. Switching. 03 2N3762 Puis. Width = 50 J&I) PW Varied to Attain 'C- 250 mA a. as MJE210 01 1N914 02 lN914 03 ...... -w :>:> u ... !!' .. u> Leod = 180 iJH Lcon-10mH vee" 10V Reoll '"' 0.7 n Vclamp • VCeollllu.) MJE200 Rcoil : 0.05 n Vcc "" 250 V RL = 25 n Pulse Width'" 50 PI Vclamp = Rated VCEX Value Vee =20V INDUCTIVE TEST CIRCUIT RESISTIVE TEST CIRCUIT OUTPUT WAVEFORMS tf Clamped lN914 11 Adjusted to Obtain Ie Ie ~ :; u a: U E I- SII8 Above For DetaIled Conditions 0.1 n Test Equipment Scope-Tektronix Time . 475 or Equivalent SWITCHING TIMES NOTE FIGURE 7 - INDUCTIVE SWITCHING MEASUREMENTS +--C Vclamp IIVO% Ie T Ie 90% Vclamp ~ -I,. Irv ffll-\-lfI-'" _tti_ I--irtc..), f-I'\. ,/ Vclamp 1 8 - f- 90% 181 -- --\-\ -- c - - 1--- .......... 10% Vclamp - --- -:--- -- 10%" le- '2%:: Ie In resistive switching circuits, rise, fall, and storage times have been defined and apply to both current and voltage waveforms since they are in phase. However, for inductive loads which are common to SWITCHMODE power supplies and hammer drivers, current and voltage wave· forms are not in phase. Therefore, separate measurements must be made on each waveform to determine the total switching time. For this reason, the following new terms have been defined. tsv = Voltage Storage Time, 90% IBI to 10% Vclamp trY = Voltage Rise Time, 10-90% Vcl amp tfi = Current Fall Time, 90-10% IC tti = Current Tail, 10-2% IC tc = .Crossover Time, 10% Vciamp to 10% IC An enlarged portion of the turn·off waveforms is shown in Figure 7 to aid in the visual identity of these terms. TIME 1-498 MJ10000, MJ10001 II. SWITCHING TIMES NOTE (continued) For the designer. there is minimal switching loss during storage time and the predominant switching power losses occur during the crossover interval and can be obtained using the standard equation from AN'222: PSWT = 1/2 VCCIC(tc! f In general. trv + tfi "" t c ' However, at lower test currents this relationship may not be valid. As is common with most switching transistors. resistive switching is specified at 2!PC and has become a benchmark for designers. However. for designers of high frequency converter circuits. the user oriented specifications which make this a "SWITCHMODE" transistor are the inductive switching speeds (t c and tsv) which are guaranteed at 1000 C. RESISTIVE SWITCHING PERFORMANCE FIGURE 8 - TURN-ON TIME 2 FIGURE 9 - TURN-OFF TIME -V~E(Olf) ~ 5 V Vee= 250 V 1 - lellB = 25 TJ - 25 0 C O. 7 ~ ,.;::"' ~ ........... ~ 1 O. 7~ "" .5 O. 5 ,- 2 ] ,."' ;:: ~d ~ 0.3 "-': o. 2 ~ Y -...;::: ./ -' 10 L O. 5V ./ 0.3 O. 20 /'f L /' 0.2 r-- O. 1 - V VBF(off)' 5 V VCC = 250 V IcllB = 2~_--=TJ=25 0 C ~ 1V I 10 20 IC. COLLECTOR CURRENT (AMP) lC. COLLECTOR CURRENT (AMP) FIGURE 10 - THERMAL RESPONSE I ) '""'':i 5 l;; 0= 05 ~~IC O. 2 ~ ~ 01 ~I~ ~! ffi ! " .... - O. 3 0.2 01 0.0) - ~ P(,kl ~ tJUl 0.05 ~ 00 5 r- 002 3 0.0 0.02f-' 0.0 1 ...... 0.01 fo.ot:::: f-1 0.02 -r~~ V I- 01 ZIJJCI.) = ,(.) ROJC ReJC = l oCIW Max o CURVES APl'l Y FOR POWER PULSE TRAIN SHOWN READ TIME AT., TJ(,k) - TC = P(,k) Z'JC(.) DUTY CYCLE. D = .,/'2 SI~G\ErW~ 005 ~ ...-:- ...... I I III 02 10 05 t, TIME (ms) 1-499 I I 20 I I I I I I II 50 100 I I 200 I I I I II 500 10k MJ10000, MJ10001 SAFE OPERATING AREA INFORMATION Th. Safe Operating Arta figur•• shown in Figures 11 and 12 art specified ratings for these devices under the test conditions shown. FORWAFlD BIAS' There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate IC-VCE limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. The data of Figure 11 is based on TC = 250 C; TJ(pk) is variable depending on power level. Second breakdown pulse limits are valid for duty cycles to 10% but must be derated when TC;;;' 250 C. Second breakdown limitations do not derate the same as thermal limitations. Allowable current at the voltages shown on Figure 11 may be found at any case temperature by using the appropriate curve on Figure 13. TJ(pk) may be calculated from the data in Figure 10. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown. FIGURE 11 - FORWARD BIAS SAFE OPERATING AREA 50 10Jl.s 20 100"~ ii: 10 :E 5 5 1m. l- I "' 0 ~ 0 u 5m, 2 I 0.5 - 1--. 0.2~ 0.1 ",. 0,05 TC = 250C - BONOING WIRE LlMITEO THERMALLY LIMITED . SECOND BREAKDOWN LIMITED CURVES APPLY BELOW RATED VCEO I=:dc !J 0.02 0.01 0.005 4 = MJIOOOO MJIOOOI; ~ 6 10 20 40 100 . 60 200 350 400 VCE. COLLECTOR·EMITTER VOLTAGE (VOLTS) FIGURE 12 - REVERSE BIAS SWITCHING SAFE OPERATING AREA REVERSE BIAS For inductive loads, high voltage and high current must be sustained simultaneously during turn-off, in most cases, with ~he base to emitter junction reverse biased. Under these conditions the collector voltage must be held to a safe level at or below a specific value of collector current. This can be accomplished by several means such as active clamping, RC snubbing, load line shaping, etc. The safe level for these devices is specified as VCEX(sus) at a given collector current and represents a voltage·current condition that can be sustained during reverse biased turn-off. This rating is verified under clamped conditions so that the device is never subjected to an avalanche mode. Figure 12 gives the complete reverse bias safe operating area characteristics. 20 TURN OFF LOAD LINE BOUNDARY FOR MJIOOOI THE LOCUS FOR MJlOOOO ii: :E 16 IS 50 V LESj 5 L I- z ~ "' '""' :> 1\ 12 i\\.- ,\\ - TJ ~ V 30 ,/ 10 I j...- 2.SA \ lOA SA 2.2 ff- -SSoC /1-"'" => '" 20 ~ \ ~ 1. B ~ 1.4 "'" \ o VCr 3 0.1 '-' S, V ~ :> 0.2 0.3 O.S 0.7 10 0.6 10 20 30 SO 2,B 4 ~ IC/I~",IO ."' 2S0~ -r I II ,// F"='= ~ TJ -12SoC ... 1.6 ";li ~ ~ > I-- O,B 0,1 10 2S~ 1=== 1k 0,2 0,3 O,S - ./ l/ 1/ I;- ~ 250C ,., 7 / ./ I- / ' - 1.2 IS00C II 0,7 1 10 3 IC. COLLECTOR CURRENT (AMP) FIGURE 6 - OUTPUT CAPACITANCE 40 0",- TJ" 2SoC i'-- 2 ~ 200 100°C 1 SOO 700 ... v It w /v 0.3 O,S 0,7 2 IC. COLLECTOR CURRENT (AMP) VCE"2S0V 300 .,- TJ"-SSoc FIGURE 5 - COLLECTOR CUT-OFF REGION 10 3 VBE(on)@VCE=5V ff- ;;; ~ I 0.4 - "'w v ....-- - > TJ " -ss05..--- 0.2 - 0 V 2 200 ~ V~E(~tll@ I,C~'~ ~ 10 2,4 ~ / 0.1 _ 0 ~ w 6 100 FIGURE 4 - BASE-EMITTER VOLTAGE FIGURE 3 - COLLECTOR-EMITTER SATURATION VOL TAGE 2 - l - I- 70 lB. BASE CURRENT (rnA) IC. COLLECTOR CURRENT (AMP) ~ U ~ 75°C Cob ~ 10 0 ~REVERSE ~ FORWARD o S 2SoC 10- 1 -0,2 +0.2 +0.4 +0.0 +0.8 VBE. BASE·EMITTER VOLTAGE (VOLTS) 80 0 40 0,1 0,2 rO,S 1 10 20 SO 100 VR. REVERSE VOLTAGE (VOLTS) 1-503 200 SOO 1000 MJ10002, MJ10003 TABLE 1 - TEST CONDITIONS FOR DYNAMIC PERFORMANCE ~ESlSTNE VCEO(sus) VCEXlsusl AND INDUCTIVE SWITCHING SWITCHING ~1 20 '"0 o ---.f""""""L Z 1- 01 2N2907 02 2N2222 ~E Pulse Width zo -z 03 2N3762 adjusted to obtain specified Ie (ReSistive 8 Swltchmg. Pulse Width = 50 ,",51 PW Varied to Attain Ie" 260mA LcO/I = 180 j.lH ~~~': ~8~ f2 INDUCTIVE TEST CIRCUIT MJE210 MJE.200 Dl lN914 D2 lN914 D3 lN914 VCC=250V AL = 50 n Pulse Width = 50 1-'1 Vclamp = Rated VCEX Value OUTPUT WAVEFORMS RESISTIVE TEST CIRCUIT t1 Adjusted to Obtain Ie tfClamped 'C 04 as <'" tf Unclamped "'" t2 t 1 '"' LCO~~~CDk) ~"'---+-'-c->"'- ! Leol! t2 "" Leol • (lCpk l See Above For Detailed Conditions Vcl amp VCE Test EqUipment Seope-Tektronlx 01<1 415 or Equivalent SWITCHING TIMES NOTE FIGURE 7 - INDUCTIVE SWITCHING MEASUREMENTS ~ Ie I 90% V'lamp f-- f---Isv V'laIP--J b r"""""' .../ I'\. 10% ........ Vclamp -- --\- -- ---- 18- AI\.90% Ie IIV ifll-\;'h-- 1-',,_ 10% Vclamp - 90% 181 .............. -- ~ TIME le- ~!:::: Ie In resistive switching circuits, rise, fall, and storage times have been defined and apply to both current and voltage waveforms since they are in phase. However, for inductive loads which are common to SWITCHMODE power supplies and hammer drivers, curreht and voltage waveforms are not in phase. Therefore, separate measurements must be made on each waveform to determine the total switching time. For this reason, the following new terms have been defined. tsv = Voltage Storage Time, 90% IBI to 10% Vclamp trv = Voltage Rise Time, 10-90% Vcl amp tfi = Current Fall Time, 90-10% IC tti = Current Tail, 10-2% IC tc = Crossove"r Time, 10% Vclamp to 10% IC An enlarged portion of the turn-off waveforms is shown in Figure 7 to aid in the visual identity of these terms. 1-504 MJ10002, MJ10003 SWITCHING TIME NOTES (continued) For the designer, there is minimal switching loss during storage time and the predominant switching power losses occur during the crossover interval and can be obtained using the standard equation from AN·222: PSWT = 1/2 Vcclc(td f In general, trv + tfi "" tc. However, at lower test currents this relationship may not be valid. As is common with most switching transistors, resistive switching is specified at 2!PC and has become a benchmark for designers. However, for designers of high frequency converter circuits, the user oriented specifications which make this a "SWITCHMODE" transistor are the inductive switching speeds (tc and tsv) which are guaranteed at lOOoC. RESISTIVE SWITCHING PERFORMANCE FIGURE 9 - TURN·OFF TIME FIGURE 8 - TURN·ON TIME a 1 O. 7 r- 3- vCC" 2S0 v 'Bl - 250mA TJ ,,25°C IB1 -250mA 2 ] w Ir/' 1 ">= "~_ 0.07 00 5 0.0 3 ~ 0.0 2 0.0 1 0.1 0.2 I- _F Id O. 7 O. S O.3 I'- O. 2 03 O.S 07 O. 1 0.1 10 1 TJ - 2SoC - I-Is .3 w VB~~r :ls~l 7 H-- 0.2 03 -- It O.S 10 0.7 IC, COLLECTOR CURRENT (AMP) IC, COLLECTOR CURRENT (AMP) FIGURE 10 - THERMAL RESPONSE 1 7=0"OS S -- 3 = 02 2 - f- 01 f---- f-~ I=OOS ROJC(I)" r(l) ROJC ROJC(t) == 1 17 °C/W MdX ..- o CURVES APPL Y FOR POWER PULSE TRAIN SHOWN READ TIME At tl TJ(pk) TC" P(pk) RoJC(11 pmsl 7~:=p02 S - .-k'" 001 -t., ~-J 002 f - - SINGLE PULSE 0.0 1 001 -12 I II a 02 a 03 ~UTY 005 01 0.2 03 10 O.S t, TIME (ms) 1-505 20 30 so 100 CYCLE, 0 ".,/12 200 300 sao 1000 MJ10002, MJ10003 OJ The Safe Operating Area figures shown in Figures 11 and 12 are specified ratings for these devices under the test conditions shown. SAFE OPERATING AREA INFORMATION FORWARD BIAS There are two limitations on the power handling ability of a transistor: junction temperature and second breakdown. Safe operating area curves indicate IC-VCE limits of the transistor that must be observed for reliable operation, I.e., the transistor must not be subjected to greater diSSipation than the curves indicate. The data of Figure 11 is based on TC ~ 250 C, TJ(pk) IS vanable depending on power level. Second breakdown pulse limits are valid for duty cycles to 10% but must be derated when TC ;;, 250 C. Second breakdown limitations do not derate the same as thermal limitations. Allowable current at the voltages shown on Figure 11 may be found at any case temperature by uSing the appropriate curve on Figure 13. TJ(pk) may be calculated from the data," Figure 10. At high case temperatures, thermal limitations will reduce the power that can be handled to valups less than the limitations imposed by second breakdown. FIGURE 11 - ACTIVE-REGION SAFE OPERATING AREA 0 . ~ 5 100",- '" 0 ~ 8 E TC-25 0 C 2 1 o. 5 1 ms 5 m, 5 t- ia 10" 0 r---- de ," - - BONDING WIRE LIMIT THERMAL LIMIT ISINGLE PULSEI ---SECOND BREAKDOWN LIMIT '\. 2 " .1 0.0 5 MJ10002 ~ MJ10003 == 0.02 1/ 10 20 40 60 100 200 VCE, COLLECTOR·EMITTER VOLTAGE IVOLTSI 350 400 FIGURE 12 - REVERSE BIASED SWITCHING SAFE OPERATING AREA , 0 TURN OFF LOAD LINE BOUNDARY FOR MJ10003 THE LOCUS FOR MJ10002 B IS 50 V LESS I I REVERSE BIAS For inductive loads, high voltage and high current must be sustained simultaneously during turn-off, in most cases, with the base to emitter junction reverse biased. Under these conditions the collector voltage must be held to a safe level at or below a specific value of collector current. This can be accomplished by several means such as active clamping. RC snubbing, load line shaping, etc. The safe level for these devices is specified as VCEX (sus) at a given collector current and represents a voltage-current condition that can be sustained during reverse biased turn'off, This rating is verified under clamped conditions so that the device is never subjected to an avalanche mode. Figure 12 gives the complete reverse bias safe operating area characteristics. l\ 6 I\\.-+-- VBEloff) TJ';; 1000C \~ +-- VBEloff! 4 Ib _VBEloff) \ 2 \ 0 100 200 300 ,"" 1""-. "" 400 ~ 5V ~ 2V ~ OV 500 VCE, COLLECTOR·EMITTER VOLTAGE IVOLTSI FIGURE 13 - POWER DERATING 100 ~ 80 g; t:; ~ 60 z '"i= ~ ~ :-.... ............ """ '" " THERMA\".OEPATING ........, SECO~~~~i~~OOWN _ ............ "- 40 ................ '" ~_ " 20 o o ["'-.. "'- ...... 40 120 80 TC, CASE TEMPERATURE lOCI 1-506 160 ~ ~ 200 ® MJI0004 MJI0005 MOTOROLA ID Designers Data Sheet 20 AMPERE NPN SILICON SWITCHMODE SERIES NPN SILICON POWER DARLINGTON TRANSISTORS WITH BASE-EMITTER SPEEDUP DIODE POWER DARLINGTON TRANSISTORS The MJ10004 and MJ10005 darlington transistors are designed for high·voltage, high·speed, power switching in inductive circuits where fall time IS critical. They are particularly suited for line oper· ated switchmode applications such as: • Switching Regulators • Inverters • Solenoid and Relay Drivers • Motor Controls • Deflection Circuits Fast Turn·Off Times 40 ns Inductive Fall Time - 25 0 C (Typi 650 ns Inductive Storage Time - 25 0 C (Typi 350 and 400 VOL TS 175 WATTS Designer's Data for "Worst Case" Conditions The Designers Data Sheet per· mlts the design 'of most cirCUits entirely from the information pre- sented. Limit data - .representing device, characteristics boundaries are given to facilitate "worst case" Operating Temperature Range -65 to +200 0 C lOOoC Performance Specified for: Reversed Biased SOA with Inductive Loads Switching Times with Inductive Loads Saturation Voltages Leakage Currents design. F ~ -, MAXIMUM RATINGS Symbol MJ10004 MJ10005 Unit Collector-Emitter Voltage VCEOlsusl 350 400 Vdc Collector-Emitter Voltage Collector-Emitter Voltage VCEXlsusl 400 450 450 500 Vdc Rating VCEV Vdc Emitter Base Voltage VEB 8.0 Vdc Collector Current - Continuous -Peak 111 IC ICM 20 30 Adc Base Current - Continuous -Peak 111 IB IBM 2.5 5.0 Adc Total Power Dissipation@Tc - 2S o C Po 175 100 1.0 Watts -65 to +200 °c @TC= 1000C Derate above 2SoC Operating and Storage Junction TJ,T stg W/oC Temperature Range STYLE 1 PIN 1 BASE 2. EMITIER CASE COllECTOR NOTES 1. DIMENSIONS QAND VARE DATUMS. 2. ISSEATING PLANE AND DATUM 3. POSITIONAL TOLERANCE FOR MOUNTING HOLE Q. m It 1113(0005l@ IT Iv@1 FOR LEADS It 11.13(o.o'''@Tlv@1 G@I 4 DIMENSIONS ANO TOLERANCES PER ANSIY145,1913 THERMAL CHARACTERISTICS Characteristic Thermal Resistance. Junction to Case Maximum Lead Temperature for Soldering Purposes· 1/8" from Case for 5 Seconds Symbol Ma. Unit R8JC 1.0 °C/W TL 275 °c (1) Pulse Test: Pulse Width.; 5.0 ms, Duty Cvcle" 10%. CASE 1-05 TO-204AA 1-507 MJ10004, MJ10005 III ELECTRICAL CHARACTERISTICS ITC - 25°C unless.otherwlSe noted) I Characteristic Symbol Min Typ Max 350 400 - - 400 450 275 325 - - - Unit OFF CHARACTERISTICS COllector-Emitter Sustaining Voltage !Table 1) MJ 10004 MJ 10005 Collector-Emitter Sustaining Voltage (Table 1. Figure 12) (lC = 2.0 A. Vel amp = Rated VCEX. TC = 1000 C) (lC = 10 A. Vclamp = Rated VCEX. TC = 100°C) MJ 10004 MJ10005 MJ 10004 MJ10005 IC - mAde - ICER 0.25 5.0 5.0 mAde 175 mAde = 50 n. TC = 100°C) Emitter Cutoff Current = 2.0 Vde. Vde ICEV (VCEV " Rated Value. VBE(off) " 1.5 Vde) (VCEV "Rated Value. VBEloff)" 1.5 Vdc. TC" 150°C) IVEB - VCEX(sus) Collector Cutoff Current Collector Cutoff Current IVCE " Rated VCEV. RBE Vde VCEO(sus) I1C " 250 mAo IB "0. Vclamp " Rated VCEO) - lEBO = 0) SECOND BREAKDOWN See Figure 11 Second Breakdown Collector Current with base forward biased ON CHARACTERISTICS (2) DC Current Gain I1C = 5.0 Ade. VCE = 5.0 IIde) I1c = 10 Ade. VCE = 5.0 Vde) COllector-Emitter Saturation Voltage I1C " 10 Ade. IB "400 mAde) IIc = 20 Ade. 18 = 2.0 Ade) I1c" 10 Adc. IB = 400 mAde. TC VCElsatl = 10 Ade. = 10 Adc. 18 18 50 40 - - - - 600 400 Vde - - - 1.9 3.0 2.0 - - - 2.5 2.5 Vf - 3.0 5.0 Ihfe l 10 - - Cob 100 td - - = 100°C) Base-Emitter Saturation Voltage IIc IIc - hFE Vde V8EIsatl = 400 mAdcJ = 400 mAde. TC = 100°C) Diode Forward Voltage II) I1F = 10 Ade) Vdc DYNAMIC CHARACTERISTICS Small-Signal Current Gain IIc = 1.0 Ade. VCE = 10 Vde. f test = 1.0 MHz) Output Capacitance (VCB = 10 Vde. IE = O. f test 325 pF 0.12 0.2 I'S 0.2 0.6 I'S 0.6 0.15 1.5 0.5 I'S 1.0 2.5 1.5 lAS = 100 kHz) SWITCHING CHARACTERISTICS Resistive Load (Table 1) Delay Time Rise Time Storage Time (VCC = 250 Vde. IC = 10 A. IBI = 400 mAo VBE(off) = 5.0 Vde, tp Duty Cycle"; 2%), = 50 !lS, Fall Time tr ts - tf - I sv - I'S Inducti ... Load, Clamped (Table 1) Storage Time Crossover Time· Storage Time Crossover Time (lC = 10 A(pk). Vel amp = Rated VCEX, IBI 0 C) VBE(ott) = 5.0 Vde, TC = = 400 rnA, (lC = 10 A(pkl, Vel amp = Rated VCEX, lSI VBE(off) = 5.0 Vde, TC = 250 C) = 400 rnA, loo 0.4 Ie tsv Ie - - lAS 0.2 - I'S (1) The internal Collector-to-Emitter diode can eliminate the need for an external diode to clamp inductive loads. Tests have shown that the Forward Recovery VolJage (Vfl of this diode is comparable to that of typical fast recovery rectifiers. (2) Pulse Test: PW = 300 I'S, Duty Cycle"; 2%. 1-508 lAS 0.65 MJ10004. MJ10005 III TYPICAL CHARACTERISTICS FIGURE 1 - DC CURRENT GAIN 500 TJ 200 ;;: :...- :: 100 I o 10 7 5 V~E ~ 5\ ./ 02 8 r-- I /' 10 20 1 002 005007 FIGURE 3 - COLLECTOR-EMITTER SATURATION VOLTAGE I II 1Jl / lell B·lO J /1/ - B 04 02 I- V -55°C ~I25°C I--- 02 II II 4f--- 03 05 07 10 20 0,8 0.1 V V ~ TJ 1• -Jsoc -+- I - ~ ~';;C -- -I '/ >-- ~ 0,3 I 0,5 0,7 10 20 IC, COLLECTOR CURRENT (AMP' IC, COLLECTOR CURRENT lAMP) FIGURE 6 - OUTPUT CAPACITANCE FIGURE 5 - COLLECTOR CUTOFF REGION 1000 =VCE ~ 250)V ~ ~ / ~f-':: 25°C 6 1, 2 I VBE(sat) @leliB ~ 10 --- VBE(Dn) @VC,E • ~ v - I- K500C 05 OJ 03 !\ 01 2 V",1 ~ 1\ 20A FIGURE 4 - BASE-EMITTER VOL TAGE 8 TJ 25 uC '8, 8ASE CURRENT lAMP) 'C, COLLECTOR CURRENT lAMP) 24 ~ i'.. \ 003 TJ \ 15A \ \ \ \ 4 05 07 03 \ lOA Ie:: SA -SSoC ~ 20 II \ \ 2 10 30 \ 6 '\. b--- ~ 50 u ISOoC 25°C z ~ ~ ...,., ...- 300 FIGURE 2 - COLLECTOR SATURATION REGION 3 TJ' 25°C 70 0 / 10 3 0 0- a~ 102 - -100DC - -75 De _TJ~ '" ~ 10 1 ,/ 125°C / ...- ....... 0 I 0 " I o u !J ~REVERSE 100 FORWARD / , Cob f===t=25 DC 10- 1 -02 ...... 0 0 = S0 +02 +04 +06 -08 VBE, BASE EMITTER VOLTAGE IVOLTS) 1-509 04 0,6 1 4 6 10 10 40 60 VR, REVERSE VOLTAGE IVOLTS) 100 200 400 MJ10004, MJ10005 TABLE 1 - TEST CONDITIONS FOR DYNAMIC PERFORMANCE VCEOlsus) RESISTIVE ITCHING VCEX(susl AND INDUCTIVE SWITCHING Pulse :/1V 0' 2N2907 02 2N2222 Width ... Pulse Width adjusted to 03 2N3762 obtai" specified Ie (Resistive PW Vaned to Attain Ie" 250 rnA MJE210 05 MJE200 SWltchmg, PulseW.dth = 50 J.!s) 0' lN914 02 lN914 03 lN914 Leoil- 10mH vee =< 10 V Reon'" 0.1 n Vclamp" VCEOfsus) Leoll = 180 J.lH Reoll = 005 S1 Vee = 20V INDUCTIVE TEST'CIRCUIT Vclamp " Rated Vee = 250 V AL" 25 n veE X Value PulseWtdth = 50,"" RESISTIVE TEST CIRCUIT OUTPUT WAVEFORMS Ie '"S l- t 1 Adjusted to t, Clamped Obtain Ie u a: U 5 I- I Leal! t2 See Above For Detailed Conditions 61# Lcoll (ICpk' VClamp Test Equipment Scope Tektronix D,n 475 or Equivalent SWITCHING TIMES NOTE FIGURE 7 - INDUCTIVE SWITCHING MEASUREMENTS r-: Ie 90% Vcl.mp'l~!90% Ie I- f - - I . , - ~r-I .. ffjloo\-It, - Vcl. mp - I _1,,_ r---; r--Ic~ I - l/ Vc:tamp 10% Vclamp - ' 8 - I- 90% 181 -- --\-\ -- --- -.............. .- --- TIME "- 10%""-l e - r-;;~ Ie In resistive switching circuits, rise, fall, and storage times have been defined and apply to both current and voltage waveforms since they are in phase. However, for inductive loads which are common to SWITCHMODE power supplies and hammer drivers, current and voltage wave· forms are not in phase. Therefore, separate measurements must be made on each waveform to determine the total SWitching time. For this reason, the following new terms have been defined. tsv = Voltage Storage Time, 90% 181 to 10% Vcl amp trv = Voltage Rise Time, 10-90% Vcl amp tfi = Current Fall Time, 90-10% IC tti = Current Tail, 10-2% IC tc = Crossover-Time, 10% Vclamp to 10% IC An enlarged portion of the turn-off waveforms is shown in Figure 7 to aid in the visual identity of these terms. 1-510 MJ10004. MJ10005 III TYPICAL CHARACTERISTICS SWITCHING TIME NOTES (continued) For the designer, there is minimal switching loss during storage time and the predominant switching power losses occur during the crossover interval and can be obtained using the standard equation from AN-222: PSWT; 1/2 Vcclc(tcl f In general, trv + tfi ,., t c - However, at lower test currents this relationship may not be valid_ As is common with most switching transistors, resistive switching is specified at 2!PC and has become a benchmark for designers. However, for designers of high frequency converter circuits, the user oriented specifications which make this a "SWITCHMODE" transistor are the inductive switching speeds (t c and t sv ) which are guaranteed at lOOoC. RESISTIVE SWITCHING PERFORMANCE FIGURE 8 - TURN-ON TIME FIGURE 9 - TURN'()FF TIME 3 1 VSE(offJ ° 5 V Vce ° 250 v .7 IC/IS ° 25 O. 5 TJ ° 25 0 C 2 If----- VCco250V Icils ° 25 TJ ° 25 0 C 7 ~ ~ 05 w '"-" ;= ~ ~Id ""'~ o. 3 '" ~ O. 2 / l""::: }' / If 0.0 7 10 20 IC. COLLECTOR CURRENT (AMPJ FIGURE 10 - THERMAL RESPONSE I 0- 05 3 2 / 0.0 5 10 7 V ../ IC, COLLECTOR CURRENT (AMPJ 5 .L lL .1 1-- 1 ./ o. 2 V Y Is V o. 3 w ! ....-:1'" 02 01 1-511 20 MJ10004, MJ1 0005 SAFE OPERATING AREA INFORMATION The Safe Operating Area figures shown in Figures 11 and 12 are specified ratings for these devices under the test conditions shown. FORWARD BIAS There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate IC-VCE limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. The data of Figure 11 is based on TC = 250 C; TJ(pk) is variable depending on power level. Second breakdown pulse limits are val,d for duty cycles to 10% but must be derated when TC ;;;, 250 C. Second breakdown limitations do not derate the same as thermal limitations. Allowable current at the voltages shown on Figure 11 may be found at any case temperature by using the appropriate curve on Figure 13, TJ(pk) may be calculated from the data in Figure 10. At high case temperatures, thermal limitations will reduce the DOwer that can be handled to values less than the limitations imposed by second breakdown. FIGURE 11 - FORWARD BIAS SAFE OPERATING AREA 50 10,1.15 100,l.l~ 20 ~ 10 <$ 5 1m, l- ia a: 5m, 2 1 0.5 o c- o 0.1~ '" 0 05 ~ MJ10004 F~ MJ10005 ~!;!' 002 0.01 0.005 4 10 20 40 60 100 200 350 VCE, COLLECTOR·EMITTER VOLTAGE (VOL TSI I~ r 400 FIGURE 12 - REVERSE BIAS SWITCHING SAFE OPERATING AREA REVERSE BIAS For inductive loads, high voltage and high current must be sustained simultaneously during turn-off, in most cases, with the base to emitter junction reverse biased. Under these conditions the collector voltage must be held to a safe level at or below a specific value of collector current, This can be accomplished by several means such as active clamping, RC snubbing, load line shaping, etc. The safe level for these devices is specified as VCEX(sus) at a given collector current and represents a voltage-current condition that can be sustained during reverse biased turn-off. This rating is verified under clamped conditions so that the device is never subjected to an avalanche mode. Figure 12 gives the complete reverse bias safe operating area characteristics. 20 TURN OFF LOAO LINE BOUNDARY FOR MJ10,005t--t--t-+--+--+-+--i ii: THE LOCUS FOR MJ1O,OO4 ~ 16 IS 50 V LESS I I t--t--ti-f-----jf-----j----i--i 15 ~ 12~-t--~-~~~~-~~~-4--+--+-_4 i:l t-_-t-_T-tJ_"_'_00;O_C_+_+_-+I\\-\,\-."'f-=VBEIOffl = 5V ~ B.O t---t---t--+-+-+-~I\"",\k-'i<~r-- VBElolf) = 0V ~ 8 ~~-VBE(Off)" 2V t--+--+--+-+-+-~\~,~~-i----i ~ 4.0 I---+---t----+-)--+---t---\-\~~~I',...--+---t VCE, COLLECTOR·EMITTER VOLTAGE (VOLTSI FIGURE 13 - POWER DERATING 100 ~~ ""1"'-r'--- 0 ......... THERMA~ DERATING B~EAKD~WN_ SEdoNO DERATING ......... r'--- "- r-... r--..... "- I'--- ......... 0 o o ......... "40 80 120 Tc. CASE TEMPERATURE (OCI 1-512 160 ............ 200 ® IJI0006 IJI08,07 MOTOROLA Designpl's Data ~heet 10 AMPERE SWITCHMODE SERIES NPN SILICON POWER DARLINGTON TRANSISTORS WITH BASE-EMITTER SPEEDUP DIODE The MJ10006 and MJ10007 darlington transistors are designed for high-voltage, high-speed, power switching in inductive circuits where fall time is critical. They are particularly suited for line operated switchmode applications such as: • Switching Regulators • Inverters • Solenoid and Relay Drivers • Motor Controls • Deflection Circuits Fast Turn-Off Times 30 ns Inductive Fall Time - 25 0 C (Typ) 500 ns Inductive Storage Time - 25 0 C (Typ) ) Operating Temperature Range -65 to +2000 C lOOoC Performance Specified for: Reversed Biased SOA with Inductive Loads Switching Times with Inductive Loads Saturation Voltages Leakage Currents NPN SILICON POWER DARLINGTON TRANSISTORS 350 AND 400 VOLTS 150 WATTS Designer's Data for "Worst Case" Conditions The Designers Data Sheet permits the deSign of most circuits entirely from the information pre· sented. Limit data - representing device characterIStics boundaries are given to facilitate "worst case" deSign. MAXIMUM RATINGS Symbol Rating Collector-Emitter Voltage Collector· Emitter Voltage Collector-Emitter Voltage Emitter Base Voltage Collector Current Continuous - Peak (11 Base Current Continuous - Peak (1) Total Power Dissipation @ MJ10006 MJ10007 350 400 400 450 450 500 8.0 10 VCEOlsus) VCEX(sus) VCEV VEB 'C leM '6 @TC = 100°C Derate above 25 DC Operating and Storage Junction TJ,Tstg STYlE 1 PIN 1 BASE 2. EMITTER CASE COLLECTOR 20 2.5 5,0 150 100 0,86 -65 to +200 'BM Po T C = 25°C Unit Vdc Vdc Vdc Vdc Adc Adc Watts W/oC °c Temperature Range NOTES 1. DIMENSIONS a AND v ARE DATUMS 2. [JJ IS SEATING PLANE AND DATUM. l POSITIONAL TOLERANCE FOR MOUNTING HOLE O. 1t 111310.'05,01 T Iv0 I FOR LEADS. I t 11.131O.oo5l0 T Iv0 10 01 4 DIMENSIONS AND TOLERANCES PER ANSIV14.5,1973 THERMAL CHARACTERISTICS Characteristic Thermal Resistance. Junction to Case Maximum Lead Temperature for Soldering Purposes' 1/8" from Case for 5 Seconds (1) Pulse Test: Pulse Width Symbol Max Unit R8JC TL 1.17 °CIW 275 °c = 5,0 ms, Duty Cycle .. 10%. CASE 1-05 TO·204AA 1-513 l1li MJ10006, MJ10007 IIJ ELECTRICAL CHARACTERISTICS ITe I ~ 25 0 e unl ... otherwISe notedl. I Characteristic Symbol I' I' "'ix:' Min Typ 350 400 - - Unit OFF CHARACTERISTICS Collector-Emitter Sustaining Voltage (Table 1) = 250 mA, lie IS = 0, Vcl amp = Rated VeEol Vdc VeEOIsu,1 MJ10006 MJ10007 Collector-Emitter Sustainll'lg Voltage (Table 1. Figure 12) Vde VeEX(susl (lC = 1 A, Vcl amp = Rated VCEX' TC = 100°C) MJ10006 MJ10007 400 - - 4~0 - (lC =5 A, Vclamp = Rated VCEX, TC = 100°C) MJ10006 . MJ1DOO7 275 325 - - - 0.25 5.0 5.0 mAde 175 mAde Collector Cutoff Current IVCEV IVCEV ICEV = Rated VCEV, RSE - IESO - - =50 n, Te = 1000CI Emitter Cutoff Current (VES ICER - Collector Cutoff Current IVCE mAde - = Rated Value, VSEloffl = 1.5 Vdcl = Rated Value, VSEloffi = 1.5 Vdc, TC = 1500 CI - = 2 Vdc, IC = 0) SECOND SREAKDOWN See Figure 11 Second Breakdown Collector Current with base forward biased ON CHARACTERISTICS (2) = 2.5 Adc, VCE = 5.0 Vde) = 5.0 Adc, VCE = 5.0 Vde) (lC (lC Collector-Emitter Saturation Voltage (lC (lC (lC VCElsat) = 5.0 Ade, IS = 250 mAde) = 10 Ade, IS = 1.0 Ade) = 5.0 Ade, IS = 250 mAde, TC = 5.0 Adc, IS ~ 250 mAde, TC - 500 300 - - 1.9 2.9 2.0 - 2.5 2.5 Vde - Vde VeEI,at) Vf - 3.0 5 Ihle l 10 - - - Cob 60 - 275 pF td - 0.05 0.25 0.2 "s 0.5 1.5 0.5 - O.S 0.6 2.0 1.5 "s 0,5 0.3 - "s "s = 100°C) Diode Forward Voltage (1) (IF 40 30 - = 100°C) Base-Emitter Saturation Voltage (lC = 5.0 Ade, Ie = 250 mAde) (lc - hFE DC Current Gain = 5.0 Adc) Vde DYNAMIC CHARACTERISTICS Smail-Signal Current Gain (lC = 1.0 Ade, VCE = 10 Vde, f test = 1.0 MHz) Output Capacitance (Vce = 10 Vdc,IE =0, f test = 100 kHz) SWITCHING CHARACTERISTICS ReSistive Load nable 11 Delay Time. Rise Time Storage Time (V CC = 250 Vde, IC = 5.0 A, ISl = 250 mA, VeE(off) = 5.0 Vde, tp = 50 "s" Duty Cycle .. 2.0%1. Fall Time tr t, tf 0.06 0.6 "s ", "s Inductive Load, Clamped (Table 11 Storage Time Crossover Time Storage Time Crossover Time (lC = 5.0 A(pk), Vel amp = Rated VCEX, IS1 = 250 mA, VSE(off) = 5.0 Vde, TC = 100OC) tsv (lC = 5.0 A(pk), Vel amp = Rated VCEX,lel = 250 mA, VSE(off) = 5.0 Vde, T C = 25°C) tsv te te - (1) The internal CDllector-to-Em'tter diode can eliminate the need for an e)(ternal diode to clamp inductive loads. Tests have shown that the Forward Recovery Voltage (V,) of this diode is comparable to that of typieal fnt recovery rectifiers. (2) Puis. Tost: pw. 300 "s, Duty Cycle .. 2%. 1-514 - "s MJ10006, MJ10007 TYPICAL CHARACTERISTICS FIGURE 1 - DC CURRENT GAIN 300 FIGURE 2 - COLLECTOR SATURATION REGION ~ 3.4 TJ'ISOoC 200 ~ 0 2S~C '"~ o > I..'" !:: -SSOC VCE' S V 0.3 IC·0.3A- 2.SA I' 1.4 8 1 tl 10 O.S 0.7 \ "- o. 6 10 20 30 50 70 100 200 300 lB. BASE CURRENT (mA) IC. COLLECTOR CURRENT (AMP) FIGURE 3 - COLLECTOR·EMITTER SATURATION VOLTAGE ~ ~ ~ - a I- ~ IC/I~' io o ~ V i~1.6 ~w 0:," TJ' -S50C oC ~ ~ ~1. 2 j:> 250 n o U i w u :> V o. 8 t ~ V III ~ 11 2SoC ~ - Il.,1-/ ~ 1.2 I--- I-- r0.8 0.2 0.1 FIGURE 5 - COLLECTOR CUTOFF REGION 0.3 v.: L 2~ ~ 1. 6 10 ~ i.--" ~ i-""" Tp -SS'C W ~ V L' lS00C II 10 0.5 0.7 IC. COLLECTOR CURRENT (AMP) FIGURE 6 - OUTPUT CAPACITANCE 400 ~~VCp250 ,u· = 1k V~E(~tll@lIIC\I~ ~ 10 VSE(,n}@VCE'SV 0: > O.S 0.7 0.3 IC. COLLECTOR CURRENT (AMP) 0.2 - :> L' V- .1 0.1 - o ~ 0.4 - w IL .,Vv f- ~ 2.4 '"~ 0:0; wOO-"" SOD 700 FIGURE 4 - BASE·EMITTER VOL TAGE 2.B 2.4 0: \ IDA SA 1. B ~ > 0.2 2. 6 o I j...- 7 S 3 0.1 I ffi 2.2 ....... V 0/ TJ·250C ~ w 0 0 °v 0 I c ........ '""!-- TJ'2S'C i=TJ' "'- ~ 200 z ~ U ~ 101 100 ~ ~~ 10·1 -0.2 +1.2 +0.4 100 ::0 80 j 60 ~ FORi (ARI c +0.6 Cob 0- +0.8 VBE. BASE·EMITTER VOLTAGE (VOLTS) l"- 40 0.1 0.2 0.5 1 10 20 SO t---- 100 200 VR. REVERSE VOLTAGE (VOLTS) 1-515 SOO 1000 MJ10006, MJ10007 III TABLE 1 - TEST CONDITIONS FOR DYNAMIC PERFORMANCE RESISTIVE VCEX(IUII AND INDUCTIVE SWITCHING SWITCH_ ~, ,J :>;: ..!!~8 20 0' 2N2907 Q2 2N2222 0..JL Pull. Width adjusted to ~_2 03 2N3762 04 MJE210 obte.n spec,hael Ie (R.,stlve Switch'"9. OS MJE200 0' 02 PulHWldth PW Vened to Ana,n Ie" 250mA '" 50 ",s) lN914 lN914 03 lN914 ..... -:>:>.. u ... !!: .. u> Leoll- 10mH Vee" LeOlJ'" 180 ",H AeOiI '" 0 05 n Vee = 20, V fa It 500 kHz lOV Aeoil-O.70 Velemp" VCEOI,us) INDUCTIVE rEST CIRCUIT. Vee'" 250 V Vclamp '" Rated VCEX Value RL = 50 n Pulse Width 0: 50101' RESISTIVE TEST CIRCUIT OUTPUT WAVEFORMS q Adjusted to Obtain Ie tf Clamped ;!! <" 5 ~ u 5 ~ t', '" LCO~~~CPk") ~~-f-L-;---'-- See Above For Oet8,led Conditions Test Equipment Scope-T ek tron ix o,ll 475 or Equipment FIGURE 7 - INDUCTIVE SWITCHING MEASUREMENTS ,-- Ie V,"mp- -I 1-_1,. fI~lfo- 1-',,--- 90% v cl.mp 11\.90% Ie ..... -1.. - !-J -1,--\ :-- '\. :/ Vcllmp ' 10% ...... Vclamp~ l e 10% -----\-\ -- --- -"""" 'B- 'tf Unc!amped ... '2 90% 'Bl ."... -- TIME -- '2%= Ie SWITCHING TIMES NOTE In resistive switching circuits, rise, fall, and storage times have been defined and apply to both current and voltage waveforms since they are in phase. However, for inductive loads which are ,common to SWITCHMODE power supplies and hammer drivers, current and voltage waveforms are not in.phase. Therefore, separate measurements must be made on each waveform to determine the total sWitching time, For this reason, the following new terms have been defIned. tsv = Voltage Storage Time, 90% IB1 to 10% Vel amp trv = Voltage Rise Time, 10-90% Vel amp tfi = Current Fall Time, 90-10% IC tti = Current Tail, 10-2% IC te = Crossover Time, 10% Vcl amp to 10% IC An enlarged portion of the turn·off waveforms is shown in Figure 7 to aid in the visual identity of these terms. 1-516 MJ10006, MJ10007 SWITCHING TIME NOTES (continued) For the designer, there is minimal switching loss during storage time and the predominant switching power losses occur during the crossover interval and can be obtained using the standard equation from AN·222: PSWT = 1/2 VCCICltcl f In general, trv + tfi "" tc' However, at lower test currents this relationship may not be valid. As is common with most switching transistors, resistive switching is specified at 2SOC and has become a benchmark for designers. However, for designers of high frequency converter circuits, the user oriented specifications which make this a "SWITCHMODE" transistor are the inductive sWItching speeds (t c and tsv) which are guaranteed at IOOoC. RESISTIVE SWITCHING PERFORMANCE FIGURE 8 - TURN·ON TIME 1 O. 1 0.5 FIGURE 9 - TURN·OFF TIME 5 ~ rI- 0.3 t--- 3 VCC = 250 V IBI = 250 mA TJ=250C 2 O. 2 ~. ...... 1,1/ o. 1 ] T" "' O. 5 ~. O. 3 0.0 3 0.02 0.0 1 0.1 - I---'P 0.2 0.3 0.5 0.1 r tf 1"'-... D.2 '" c-. J"., O. 1 1 5V 250 V 250 mA 25°C D. 1 " 0.0 1 0.05 I-- vBEloll) = VCC = IBI = TJ = ts 1 j ~ b D.O 1 DO 5 D.l 10 0.2 0.3 0.5 0.1 10 IC, COLLECTOR CURRENT lAMP) lC, COLLECTOR CURRENT lAMP) FIGURE 10 - THERMAL RESPONSE 1 :« ~_ ",0 %"' o. I~O=05 o.5 ~~ ........ O. 3~ 0.2 ZO f-- ~i o. 2 «Z --"" 0.1 ~: o. 11==0.05 ~ ~ 0.0 1~0.02 g~o.o5 ~~ - :t ~ 0.03 '2 0.02 r-0.0 I 0.01 R,JClt) - ,It) ROJC ROJCIt) = I 17 0C/W Max o CURVES APPLY FOR POWER PULSE TRAIN SHOWN READ TIME At tl TJlpk) - TC =PlpkJ IIoJCltJ - ~ ..... PEJlJL .k'" 0.01 t~-l SINGLE PULSE I II 0.02 0.03 DUTY CYCLE, 0 = tl/t2 0.05 01 02 0.3 10 0.5 I, TIME (ms) 1-517 20 30 50 100 200 3DO 500 1000 MJ 10006, MJ 10007 OJ SAFE OPERATING AREA INFORMATION The Safe Operating Area figures shown in Figures 11 and 12 are specified ratings for these devices under the test conditions shown .. FORWARD BIAS There are two limitations on the power handling ability of a tranSIStor: average junction temperature and second breakdown. Safe operating area curves indicate IC-VCE limits of the tranSIStor that must be observed for reliable operation, I.e., the tranSIStor must not be subjected to greater dISSipation than the curves Indicate . The data of Figure 11 IS based on TC = 250 C; TJ(pk), IS variable depending on power level. Second breakdown) pulse limits are valid for duty cycles to 10% but must b,,( derated when TC ;;. 250 C. Second breakdown Ilmltatlon~ do not derate the same as thermal limitations, Allowable current at the voltages shown on Figure 11 may be found at any case temperature by uSing the appropriate curve on Figure 13. T J(pk) may be calculated from the data In Figure 10. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the "mltatlons Imposed by second breakdown. FIGURE 11 - FORWARO BIAS SAFE OPERATING AREA 20 - 100",- 10. 10 ~ ... TC'250C ~ 2.0 ~ 1.0 E - g'". . - E- - 0.5 1.0 5.0 ms 5.0 r--- - InS I'\. de BONDING WIRE LIMIT THERMAL LIMIT (SINGLE PULSE) SECONO BREAKDOWN LIMIT '\. O. 2 ...... 8 1 EO. 0.05 I'\. =~~~~~~~ 0.02 4.0 6.0 I 10 20 40 60 100 200' VCE, COLLECTOR·EMITTER.VOLTAGE (VOLTS) 350 400 FIGURE 12 - REVERSE BIAS SWITCHING SAFE OPERATING AREA 10 ii: ...'~" 1 ~ a , TURN OFF LOAD LINE BOUNDARY FOR MJIOOOJ THE LOCUS FOR MJIOO06 IS 50 V LESS I \\- VBE(.11I • 5 V • 2V l\\ r- - VBE(.ff) VBE(.11I • 0 V TJ" 100'C ...'" 0 ; \\ \ 8 i! \ o o REVERSE BIAS For inductive loads, high voltage and high current must be sustained simultaneously during turn-off, in most cases, with the base to emitter junction rever.e biased. Under these conditions the collector voltage must be held to a safe level at or below a specific value of collector current. This can be accompl ished by several means such as active clamping, RC snubbing, load line shaping, etc. The safe level for these devices is specified as VCEX(sus) at a given collector current and represents a voltage-current condition that can be sustained during reverse biased turn-off. This rating is verified under clamped conditions so that the device is never subjected to an avalanche mode. Figure 12 gives the complete reverse bias safe operating area characteristics. ,,,- "- ~ 300 400 200 100 VCE, COLLECTOR·EMITTER VOLTAGE (VOLTSI 500 FIGURE 13 - POWER DERATING 100 ~~ "'-..., "- ~ 80 ........... '"ot; THERMA~ ~ 60 DERATING '"z>= ~ o ....... SECO~~:~~~N~DOWN _ t---.... I'---- i'.. ~ ............. r-..... ...., 40 '"~ lr ....... " 0 o o 40 120 80 TC. CASE TEMPERATURE ('CI 1-518 160 "" "r-..... 200 ® MJI0008 MJI0009 MOTOROLA l1li Designer's Data Sheet 20 AMPERE I NPN SILICON SWITCHMODE SERIES NPN SILICON POWER DARLINGTON TRANSISTORS WITH BASE-EMITTER SPEEDUP DIODE POWER DARLINGTON TRANSISTORS 460 and 500 VO L TS 175 WATTS The MJ1000a and MJ10009'Oarlington transistors are designed for high·voltage, high-speed, power switching in inductive circuits where fall time is critical. They are particularly suited for line oper· ated switch mode applications such as: • Switching Regulators • Inverters • Solenoid and Relay Drivers • Motor Controls • Deflection Circuits Fast Turn·Off Times "'100 1.6!1s (max) Inductive Crossover Time -10 A, 1000 C 3.5 J%S (max) Inductive Storage Time - lOA, 1000 C Operating Temperature Range -65 to +200 0 C 1000 C Performance Specified for: Reversed Biased SOA with Inductive Loads Switching Times with Inductive Loads Saturation Voltages Leakage Currents Designer's Data for "Worst Case" Conditions The Designer's Data Sheet permits the design of most circuits entirely from the information presented. Umit curves - representing boundaries on deVice characteristics - are given to facilitate "worst case" design. MAXIMUM RATINGS Rating Collector-Emitter Voltage Collector-Emitter Voltage Collector-Emitter Voltage Emitter Base Voltage Collector Current - Continuous Symbol MJ10008 MJ10009 VCEO(sus) 450 500 VCEX(sus) 450 VCEV 650 500 700 - Peak (1) Base Current Continuous -Peak (1) Total Power Dissipation @ TC - 25°C @TC= 100°C Derate above 25°C Operating and Storage Junction Temperature Range Unit Vdc Vdc Vdc 8 Vdc 20 30 Adc 2.5 5 Adc Po 175 100 Watts 1 W/oC TJ,T stll -65 to +200 °c VES IC ICM IS IBM STYlE 1 PIN 1. BASE 2. EMITIER CASE COLLECTOR THERMAL CHARACTERISTICS Characteristic Thermal Resistance. Junction to Case Maximum Lead Temperature for Soldering Symbol Max Unit R8JC 1 °C/W TL 275 °c Purposes: l/S" from Case for 5 Seconds (1) Pulse Test: Pulse Width = 5 ms, Duty Cycle .. 10%. CASE 1-05 TO-204AA 1-519 MJ10008. MJ10009 ELECTRICAL CHARACTERISTICS 1TC = 25°C unless otherwise noted!. I I Characteristic Symbol Min Typ Max 450 500 - - 450 500 325 375 - - - - 0.25 5 Unit OFF CHARACTERISTICS Collector-Emitter Sustaining Voltage (Table 1) (lC = 100 rnA, IS = 0, Velamp MJlooOB MJ 10009 COllector-Emitter Sustaining Voltage (Table 1, Figure 12) (Ie = 2 A, Velamp = Rated VeEX, Te = 100°C, VBEloff) = 5 V) (Ie = 10 A, Vel amp = Rated VeEX, Te = 100°C, VBEloff) = 5 V) MJl000S MJloo09 MJ1000S MJloo09 = Rated Value, VBEloff) = 1.5 Vde} = Rated Value, VBEloifl = 1.5 Vde, Te = 150°C} mAde leER - IESO - ,0 mAde 175 mAde = Rated VCEV. RSE = 50 n, Te = 100°C} Emitter Cutoft Current IVES Vde leEV Collector Cutoff Current 1VeE - VeEXlsus} Collector Cutoff Current IVCEV 1VeEV Vde VCEOlsus} = Rated VCEO) =2 Vde, Ie = 0) SECOND BREAKDOWN See Figure 11 Second Breakd'own Collector Current with base forward biased ON CHARACTERISTICS (2) DC Current Gam (lC = 5 Ade, VCE lie - hFE = 5 Vde) = 10 Ade, VeE = 5 Vde) Collector·Em'itter Saturation Voltage 40 30 - 400 300 - - - - 2 3.5 2.5 - - - 2.5 2.5 VI - 3 5 I hie I S - - - Cob 100 325 pF 'd - 0.12 0.25 - 0.5 O.B 0.2 1.5 2.0 0.6 1.5 0.36, 3.5 1.6 O.S 0.18 - Vde VCElsat) (Ie = 10 Ade,IS = 500 mAde) lie = 20 Ade, IB = 2 Ade) lie = 10 Ade.IS = 500 mAde, TC = 100°C) Base-Emitter Saturation Voltage VSElsatl lie = 10 Ade, IB = 500 mAde} (Ie = 10 Ade,IS = 500 mAde, Te = 100°C) Diode Forward Voltage (1) IIF = 10 Ade} Vde Vde DYNAMIC CHARACTERISTICS Small·Signal Current Gain (Ie = 1 Ade, VeE = 10 Vdc, f test = 1 MHz) Output Capacitance IVCS = 10 Vde,IE = 0, 'test = 100 kHzl SWITCHING CHARACTERISTICS ReSistive Load {Table 1} Delay Time Rise Time Storage Time IVCC = 250 Vde, IC = 10 A, lSI = 500 rnA, VBEloff) ~ 5 Vde, tp Duty Cycle'; 2%1. = 25 /oIS tr ts tl Fall Time Inductive Load. Clamped ITable 1) Storage Time Crossover Time Storage Time Crossover Time IIC = 10 Alpk). Velamp = 250 V, IBI VSEloff) = 5 Vde, Te = 100°C) =500 rnA, IIC = 10 Alpkl, Vel amp VSEloff) = 5 Vde) = 500 rnA, ~ 250 V, 'Bl tsv te tsv te - (1) The internal Collec~or-to-Emitter diode can eliminate the need for an external diode to clamp inductive loads. Tests have shown that the Forward Recovery Voltage (Vf) of this diode is comparable to that of typical fast recovery reetifittrs. (2) Puis. Test: PW = 300 "s, DutY Cycle'; 2%. 1-520 ,.. "s /oIS "s . , "s "S "s MJ10008, MJ10009 III TYPICAL CHARACTERISTICS FIGURE 1 - DC CURRENT GAIN FIGURE 2 - COLLECTOR SATURATION REGION 400 ~ "2:w TJ~OC z ~ 200 .... I 3 /~ 2.6 '" '" 2SJC II I II I ~ "~ 100 2.2 60 g" \ /' ~ VCE' S V O.S 24 ~2:. 1 5 IC. COLLECTOR CURRENT lAMP) _ '\ 10 1.4 ~ -I- 1 0.03 > 20 j, II - '/ 03 II II -+-- '" '" 21°C 20 O.B 0.2 05 0.3 ~VCE ~ 210 lV 1,/ ~ t-..... 0 f= 100°C I I - - f-71oC 0 r-.. I........ ~ ~ 10 20 10 TJ '" 25°C 0> '-' 3 0 10 2f== 10 1 2 -~ 70 0 ./ / f-- TJ - moc 0> <.> w 1 ,/ 100 0 10 3 ~ 0.7 -I FIGURE 6 - OUTPUT CAPACITANCE FIGURE 5 - COLLECTOR CUTOFF REGION w '/ ..-.--= Ie. COLLECTOR CURRENT (AMP) IC. COLLECTOR CURRENT (AMPI 104 ~ -- ~ 1~;;; 1. 2 10 VV W ~:~I~a~1 ~ (F~~B:1~ -I I TJ 1• -JIOC ">>- OS 07 I = ::; 1.6 e- 25°C ",V e- -Isooc r-- 04 02 0.2 0.1 lB. BASE CURRENT lAMP) 2 /,A 8 B 4f-- f - ') IC/IB'10 _...:.:-t::~ 0.1 0.05 FIGURE 4 - BASE-EMITTER VOLTAGE I II I II 16 TJ' 2Soc ......... 8 2. TJ" -55°C ... 1\.. \ FIGURE 3 - COLLECTOR-EMITTER SATURATION VOLTAGE ~ \ ~ 1.8 20 0.2 ~ \'20A \ \ ;0 40 '-' \ '10A ~ <.> ;" ....3'z" 1\ Ie' S A ~REVERSE FORWARD I 0 Cob of===!==25 0 C 10- 1 -02 0 -+02 +04 +06 +08 I0 04 0.6 1 4 6 10 20 40 60 VR. REVERSE VOLTAGE (VOLTSI VBE. BASUMITTER VOLTAGE (VOLTSI 1-521 100 != 200 400 MJ10008. MJ10009 IIJ TABLE 1 - TEST CONDITIONS FOR DYNAMIC PERFORMANCE VCEO(sus) RESISTIVE SWITCHING VCEX(susl AND INDUCTIVE SWITCHING TUAN·ON TIME DRIVER SCHEMATIC ~1 20 co For.nducllveloadspulsewrdth IS adjusted 10 obtam speclhed Ie oJL Z .. S? , ~~ ZO -z HP214 8 PG lNnl0PF '81 adjusted to obtain ,the forced hFE desired -380-.] PW Varied to Attain TURN-OFF TIME 50 ~o 05pF IC=10DmA Use inductive switching driver as the input to the resistive test. circuit 20",F I---+------+--------,-='-coil" 180 ~H 1000 ,L Rcoil '" 0.05 n Leon- 10 mH Vee'" 10 V Rcoil '" 0.7 0 Vclamp - V ceo(sus) Vee MTM14N05 =20V INDUCTIVE TEST CIRCUIT Pulse Width = 25/.1s OUTPUT WAVEFORMS tf Clamped l!! VCC,..250V RL'" 25.n -Voff Onve Vclamp = Rated VCEX Value RESISTIVE TEST CIRCUIT q Adjusted to Obtain Ie 1C 5 "U 0: .ffi t2 ... Lead (lCpk J Vcl amp Test Equipment Scope - Tektronix 475 or EqUIValent 01n "Adjust -V such that VSE(off) "" 5 V except as required for RS SOA (Figure 12). SWITCHING TIMES NOTE FIGURE 7 - INDUCTIVE SWITCHING MEASUREMENTS Ic ... _ / ,.., vCEM I 90% VCEM A1\90% ICM .,/ IC"""" - 1,\ Vclamp 1"ffl~1t'_i-11'- r--Isv I~ rtc-l. r- V vCE 10% vCEM 1 8 - i- 90% '81 -- --\- -'-' -- I'\. 10", ...... leM -- -- - - ~ r-2'IIIC In resistive switching circuits, rise, fall, and storage times have been defined and apply to both current and voltage waveforms since theY are in phase. However, for inductive loads which a~common to SWITCHMODE power supplies and hammer drivers, current and voltage wave· forms are not in phase. Therefore, separate measurements must be made on each ";aveform to determine the total switching time. For this reason, the following new terms have been defined. tsv = Voltage Storage Time, 90% IB1 to 10% Vclamp trv = Voltage Rise Time, 10-90% Vclamp tfi = Current Fall Time, 90-10% Ie tti = Current Tail, 10-2% Ie tc = Crossover Time, 10% Vcl amp to 10% Ie TIME - continued - 1 ~522 MJ10008. MJ10009 TYPICAL CHARACTERISTICS SWITCHING TIMES NOTE (continued) For the designer, there is minimal switching loss during storage time and the predominant switching power losses occur during the crossover interval and can be obtained using the standard equation from AN-222: PSWT = 1/2 VCCIC(tc! f Typical inductive switching waveforms are shown in Figure 7_ In general, trv + tfi = t c - However, at lower test currents this relationship may not be valid. As is common with most switching transistors, resistive switching is specified at TC = 25°C and has become a benchmark for designers. However, for designers of high frequency converter circuits, the user oriented specifications which make this a "SWITCHMODE" transistor are the inductive switching speeds (tc and t sv ) which are guaranteed at TC = lOOoC. RESISTIVE SWITCHING PERFORMANCE FIGURE 8 - TURN-ON TIME I".. "" ........ ]; 0.5 ~ ;:: ~ Ip 25 ""I OUIV ICVCI~'; ~% / I I " .......... 0.2 FIGURE 9 - TURN-OFF TIME VCC = 250 V le/lB = 20 TJ=250e ~ ' r-- r-- ] ~ 0.2 /' ;:: ~ 5 ....'d 10 ..... / 1.0' / ./' ./ >1 V tp::: 25 IJS, Duty Cycle..;;;; 2% / If .... ......... ", O. 1 ...... 0.1 1 ~VCC-250V r--lc/lB = 20 VBE(off)- 5 v 0.5 r--TJ = 250C I, " ......1'-- ........ J 0.05 20 5 10 'e. COLLECTOR CURRENT (AMP) 1 20 IC. COLLECTOR CURRENT (AMP) FIGURE 10 - THERMAL RESPONSE ..r;;;...- - I- ~ Plpk) tSUl ~~~ ZIIJC(!) ~ r(t) RIIJC ROJC"" l°CiW Max o CURVES APPLY FOR POWER PULSE TRAIN SHOWN READ TIME AT 11 TJlpk) - TC· Plpk) Z"Clt) DUTY CYCLE, 0 '" qlt2 I, TIME 1-523 (ms) 1111I I I 10 10 I I IIIIII 50 100 I I I I I I II 200 500 lk MJ10008. MJ10009 SAFE OPERATING AREA INFORMATION The Safe Operating Area figures shown in Figures 11 and 12 are specified ratings for these devices under the test conditions shown. FIGURE 11 - FORWARD BIAS SAFE OPERATING AREA 50 -- 20 10 5 0:: ~ 5 I- 10,u5 100,us 2 ill '"i3'" 1m. 1 '" 0.2 -' 0.1~ 0 ~ - 8 0.05 .. Bonding Wire limit de Thermal Limit@Tc-25OC (Singl. Pulsel Second Breakdown limit ~0.02 MJ1000:~ 0.01 0.005 6 10 50 20 MJ10009 200 100 450 600 500 VCE. COLLECTOR·EMITTER VOLTAGE (VOLTSI FORWARD BIAS There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate IC-VCE limits of the transistor that must be observed for reliable operation; i.e .• the transistor must not be subjected to greater dissipation than the curves indicate. The data of Figure 11 is based on TC : 250 C; TJ(pk) is variable depending on power level. Second breakdown pulse limits are valid for duty cycles to 10% but must be derated when TC;;' 250 C. Second breakdown limitations do not derate the same as thermal limitations. Allowable current at the voltages shown on Figure 11 may be found at any case temperature by using the appropriate curve on Figure 13. TJ(pk) may be calculated from the data in Figure 10. At high case temperatures. thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown. FIGURE 12 - REVERSE BIAS SWITCHING SAFE OPERATING AREA (MJ10009) 20 I 18 , 0:: 16 '" r--- 5 14 I- I '" 0 ~ 0 '~ "' \ TC=1000C ICIISl ;;'20 12 ~ 10 For MJ10008, the turn-off 8 r-Ioad line limits art 50 V less. 6 VSE(off) = 5 V =2V =OV- 4 2 0 0 \\\ \' l\.. ~ "' \. 400 200 100 300 VCE. COLLECTOR·EMITTER VOLTAGE (VOL TSI 500 REVERSE BIAS For inductive loads. high voltage and high current must be sustained simultaneously during turn-off, in most cases, with the base to emitter junction reverse biased. Under these conditions the collector voltage must be held to a safe level at or below a specific value of collector current. This can be accomplished by several means such as active clamping, RC snubbing, load line shaping, etc. The safe level for these devices is specified as VCEX(sus) at a given collector current and represents a voltage·current condi· tion that can be sustained during reverse biased turn-off. This rating is verified under clamped conditions so that the device is never subjected to an avalanche mode. Figure 12 gives the complete reverse bias safe operating area characteristics. See Table 1 for circuit conditions. FIGURE 14 - REVERSE BASE CURRENT versus VBE(off) WITH NO EXTERNAL BASE RESISTANCE' FIGURE 13 - POWER DERATING 100 i! 0 ~ t--. '-.. "'" ""'- 80 '"ot; ........ .........., Therma~ ~ 60 Derating (.0 z ;:: ~40 ,/' Forward Bias --til Second Breakdown - "- r--.. ...... :--...., "'-. ..... '"~ 2_ o ............ 40 120 80 TC. CASE TEMPERATURE (OCI 160 ..,/ ,./ V IC· lOA See Table 1 for conditions, Figure 7 forwaveshape . ......... o ,/' 5 ,. ....... ~ 20 ,/' ,- Derating r--........ 200 0 VBE(off). REVERSE BASE CURRENT (VOLTSI 1-524 /"" MJI0011 ® MOTOROLA III DARLINGTON HORIZONTAL DEFLECTION TRANSISTOR 8.0 AMPERE NPN SILICON DARLINGTON POWER TRANSISTOR · .. specifically designed for use in deflection circuits. • VCE(sat) = 3.0 Volts (Max)@IC=4.0Am ps,IB=200m .... A=--_+-, • Built·ln Damper Diode • VCEX = 1400 Volts 1400 VOLTS BOWATTS • Glassivated Base·Coliector Junction • Safe Operating Area @ 50 JJs = 25 A, 200 V MAXIMUM RATINGS Symbol Value Unit VCEX 1400 Vdc Emitter Base Voltage VEB 5.0 Vdc Collector Current - Continuous IC ICM 8.0 16 Adc IB IBM 2.0 4.0 Adc IE IEM 10 20 Adc Po 80 0.6 Watts TJ. Tstg -65 to +150 °c Symbol Max Unit R8JC 1.56 °CIW TL 275 °c Rating Collector-Emitter Voltage Peak (1) Base Current - Continuous Peak (1) Emitter Current - Continuous Peak (1) Total Power Dissipation@:Tc= 25 u C Derate above 2SoC Operating and Storage Junction Temperature Range Thermal Resistance, Junction 10 Case t. .. W/oC .0 - K ----.---~ a THERMAL CHARACTERISTICS Characteristic Jf.]tJlr Maximum Lead Temperature for U ST,(LE 1 PIN 1. IMSE 2. EMITTER Soldering Purposes: 1.S" from Case for 5 Seconds (1) Pulse Test: Pulse Width "" 1.0ms, Duty Cycle CASE COLLECTOR < 10%. NOTES 1. DIMENSIONS Q AND V ARE DATUMS 2 IS SEATING PLANE AND DATUM 3. POSITIONAL TOLERANCE FOR MOUNTING HOLE O. CO fiGURE 1 - fORWARD BIAS SAfE OPERATING AREA 1*11.13lo.oo'I@lrlv@1 FOR LEADS I *11.1310.00'I@T I v@1 G@I 20 ,. "6: 10 $ 5.0 4 DIMENSIONS AND TOLERANCES PER ANSI Y14.S,1973 1.0 ms I ::~ f- '"'" 0.5 ~ 0.2 - TC - 25°C 0.1 BONDING WIRE LIMIT THERMAL LIMIT ISINGLE PULSE) SECOND BREAKDOWN LIMIT 20.05 ~O.02 0.01 0.005 7.0 de 10 20 30 50 70 100 200 300 VCE. COLLECTOR EMITTER VOLTAGE (VOLTS) 500 700 1-525 CASE 1-(15 TO·204AA MJ10011 III ELECTRICAL CHARACTERISTICS (TC = 25 0 unless otherwise noted) Characteristic Symbol Min Typ Max Unit VCEO(sus) 700 - - Vde ICES - - 0.25 mAde 50 mAde OFF CHARACTERISTICS (1) Collector-Emitter Sustaining Voltage (lC = 100 mAde, IS = 0) Collector Cutoff Current (VCE = 1400 Vde, VSE = 0) Emitter Cutoff Current (VBE = 4.0 Vde, IC IESO = 0) ON CHARACTERISTICS (1) Collector-Emitter Saturation Voltage (lC (lC = 3.5 Ade, = 4.0 Ade, IS IS Base Emitter Saturation Voltage (lC (lC IS - - - 3.0 3.0 - - 2.0 2.0 1.2 2.0 Vde - = 0.2 Ade) Forward Diode Voltage (IF VSE(sati = 3.5 Ade,ls = 0.15 Adc) = 4.0 Ade, Vde VCE(sat) = 0.15 Ade) = 0.2 Ade) Vf = 4.0 Ade) Second Breakdown Collector Current with Base Forward Biased See Figure 1 ISlb SWITCHING CHARACTERISTICS Fa" Time (See Figure 2) (lC = 4.0 Ade, IS1 = 0.2 Ade) = 2%. (1) Pulse Test: Pulse Width';; 300 IlS, Duty Cycle FIGURE 2 - FALL TIME TEST CIRCUIT Dnver Supply +24 V c 680 0014j.1F O.OlSjJ.F Freq Ad, 5 k 22k 12 k 0.0075/ Width AdJ, 1k 1 8 ~ CapaCitor valu," In 10 /-IF. resistors 114 watt unless 5W otherWise noted +125 V FIGURE 3 - OC CURRENT GAIN 200 V~E! 5.~ ~ Te: 25°C i- z 100 ;;' "' ~ 50 => '-' 1\ '-' " ~ 20 10 0.1 0.2 0.5 1.0 2.0 'e, COLLECTOR CURRENT (AMP) 1-526 5.0 10 Vde ® MJ10012 MOTOROLA NPN SILICON POWER DARLINGTON TRANSISTOR 10 AMPERE The MJ10012 is a high-voltage, high-current darlington transistor designed for automotive ignition, switching regulator and motor control applications_ • Collector-Emitter Sustaining Voltage VCEO(sus) = 400 Vdc (Min) • 175 Watts Capability at 50 Volts • Automotive Functional Tests POWER TRANSISTOR DARLINGTON NPN SILICON 400 VOLTS 175 WATTS Collector Base Emitter ~}E 1=1' MAXIMUM RATINGS Symbol Value Unit Collector·Emitter Voltage VCEO(SUS) 400 Vdc Collector·Emitter Voltage VCER 550 Vdc Collector-Base Voltage VCBO 600 Vdc Emitter-Base Voltage VEBO B_O Vdc IC 10 15 Adc Rating ,- STYlE 1 PIN 1. BASE 2. (RBE • 27 n) Collector Current - Continuous -Peak (1) Base Current Total Power Dissipation @TC == 25°C IB 2.0 Adc Po 175 Watts 100 1.0 Watts W/oC -65 to +200 °c @TC' 100°C Derate above 25°C Operating and Storage Junction Temperature Range TJ, Tstg NOTES 1 DIMENSIONS Q AND V ARE DATUMS 2 IS SEATING PLANE AND DATUM 3 POSITIONAL TOLERANCE FOR MOUNTING HOLE Q OJ I tll.13 10.0051@ IT Iv@1 FOR LEADS I tll13100051@Tlv@1 o@1 4 DIMENSIONS AND TOLERANCES PER ANSI Y145,1973 THERMAL CHARACTERISTICS Characteristic Thermal Resistance, Junction to Case Symbol Max Unit R9JC 1.0 DC/W TL 275 DC Maximum Lead Temperature for Soldering Purposes: 1/8" from Case for 5 Seconds MILLIMETERS DIM MIN MAX A • C D E F (1) Pulse Test: Pulse Width"" 5.0 ms, Duty Cycle <; 10% .. G H J K a R U V 39.37 2108 7,62 0.97 109 140 1.78 30,158&C 109298C 63' 5.46BSC !B8SBSC 11.18 1219 381 4.19 26.67 5'33 4.83 381 419 INCHES MIN MAX 1550 0.830 0.250 0300 0.038 0.043 0055 0070 1187 sc 0.43088e 02158&C a.B65BSC 0.440 0480 0150 0165 1.050 0190 0210 0150 0165 CASE 1-05 TO-2D4AA 1-527 EMITIER CASE COLLECTOR MJ10012 ELECTRICAL CHARACTERISTICS (TC = 25 0 C unless otherwise noted) I Characteristic I Min Typ Max Unit VCEO(sus) 400 - - Vde VCER(sus) 425 - - Vde ICER - - 1.0 mAde ICBO - - 1.0 mAde lEBO - - 40 mAde hFE 300 100 20 550 350 150 - - 2000 - - - - 1.5 2.0 2.5 - 2.5 3.0 VSElon) - - 2.8 Vde Vf - 2.0 3.5 Vde Symbol OFF CHARACTERISTICS (1) Collector-Emitter Sustaining Voltage (Figure 1) (lC = 200 mAde, IB = 0, Vclamp =Rated VCEO) Collector-Emitter Sustaining Voltage (Figure 1l (lC = 200 mAde, R BE = 27 Ohms, Velamp = Rated VCER) Collector Cutoff Current = 27 Ohm,) (Rated VCE R, RBE Collector Cutoff Current (Rated VCSO, IE = 0) Emitter Cutoff Current =0) (VES = 6.0 Vde, IC ON CHARACTERISTICS (1) DC Current Gain (lC = 3.0 Ade, VCE = 6.0 Vde) (lc = 6.0 Ade, VCE = 6.0 Vde) (lc = 10 Ade, VCE = 6.0 Vde) Collector-Emitter Saturation Voltage Vde (lC = 3.0 Ade, IS = 0.6 Ade) (lC = 6.0 Ade, IS = 0.6 Ade) (lC = 10 Adc, IS = 2.0 Ade) - Base-Emitter Saturation Voltage Vde VBE(sat) (lC = 6.0 Ade, IB ~ 0.6 Ade) (lC = 10 Ade, IS = 2.0 Ade) Base-Emitter On Voltage (lC = 10 Ade, VCE - VCE(sed =6.0 Vde) Diode Forward Voltage (IF = 10 Ade) DYNAMIC CHARACTERISTICS Output Capacitance (VCS = 10 Vde, IE =0, fte,t = 100 kHz) (VCC = 12 Vde, 'IC = 6.0 Ade, ISl = IS2 = 0.3 Ade) Figure 2 FUNCTIONAL TESTS Second Breakdown Collector Current with Base-F orward 8 iased Pulsed Energy Test (See Figure 12) - See Figure 10 IS/B' - IC2L -2- I - J 180 mJ (1) Pulse Test: Pulse Width = 300 IlS, Duty Cycle = 2%. FIGURE 2 - SWITCHING TIMES TEST CIRCUIT FIGURE 1 - SUSTAINING VOLTAGE TEST CIRCUIT Vee"" 20 Vdc 10V.sLSL oV I : Vee"" 14 V L'" 10 mH '. --jtl:-- o 100 fo5ms-l 220 Vcl • Adjust t1 such that Ie reaches 200 mA at VeE = Vclamp - amp ~5~~ Adjust UntIl ~25~+=12V 2!l L--.J En 51 27 Vcl amp VCEO(sus) = 400 Vdc VCER(sus) '" 425 Vdc 1-528 .l=12V , ~-=- .....- - - " ' V v , , - -...-H IN3947 Ie = 6 ~ Eo .---+---\--( A MJ10012 FIGURE 4 - COLLECTOR·SATURATION REGION FIGURE 3 - DC CURRENT GAIN 2000 z 100 -- ;;' 500 I u Cl ~ 25'C / 300 200 V > .\ ~ 02 1\ ~ VeE 0 3 Vdc 0.3 2: 1.8 S 1.4 ~ I - ~ 0.6 I- o m - 2.4 - - - VBElsatl@ICIlB 05 ------ VBEI,nl@VCE 06 V 0, 2 0.1 8' 0.2 > 0.3 ~ -15bc 1.6 -30'C 25 0 C_ 1.1 0.8 0.5 0.1 1 2 IC, COLLECTOR CURRENT IAMPI -- 0.2 V " ~ -' o. I o. 5 o. 3 o. 2 150'C VCE 0 250 Vdc TJ = 150'C .... / / IC OICIES TJ - 25'C IcllB -20 VCE 012 Vdc 1. f--15'C I F=251,C !:;REVERSE O. 1 0.2 10 FIGURE 8 - COLLECTOR CUTOFF REGION tt 1 i.(.~. 0.3 0.5 0.1 1 2 3 , Ie, COLLECTOR CURRENT IAMPI t, w ............ _-i'" f-- 0.1 FIGURE 7 - TURN·OFF SWITCHING TIME ~ 2.5 II . . . . . V V 100 30 ~ II TJ 0 150'C 1000 '" 3 0; 0.3 0.5 0.1 IC. COLLECTOR CURRENT IAMPI 10 20 10- 1 -0.2 FORWARD o +0.2 +0.4 VBE, BASE·EMITTER VOLTAGE IVOLTSI 1-529 +0.6 +0.8 MJ10012 '" FIGURE 9 - THERMAL RESPONSE W N 1 7 I'" ~: w D' 05 5 O. 3 ~ 0.2 ~ o. 2 !!l ffi'" 1-:05 o. ~ :J: eo E 0.0 7 - 0.02 0.05 _ 0.01 ~w 11 0.03....t""'..- ~ 0.0 2~G~EPU~SE I I ~ ::: 0.0 1 '" -- """'0.1 0.01 0.02 - t2 PULSE TRAIN SHOWN READ TIME AT q DUTY CYCLE, 0 '" t1M. TJ(pkl- TC' P(pkl ROJC(tl I 0.1 0.05 0.2 0.5 10 t, ROJC(tl' '(tl ROJC R8JC - 1.0' crw Max o CURVES APPLY FOR POWER IIIIII I III II 20 50 100 200 500 1.000 2.000 TIME (msl FIGURE 10 - FORWARD BIAS SAFE OPERATING AREA 0 Q , 0 100 ,;;-= 5.0ms 5 1 10ms- f- 1 1 de 1 0.0 1 0.00 5 5 TC' 25 0 C -- "" "" BONDING WIRE LIMIT - THERMAL LIMIT (SINGLE PULSE) SECONO BREAKDOWN LIMIT 10 10 30 50 70 100 100 300 500 VCE. CDLLECTDR·EMITTER VOLTAGE (VOLTS) There are two limitations on the power handling ability of. a transistor: average junction temperature and second breakdown. Safe operating area curves indicate Ie-VeE limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. The data of Figure 10 is based onTe = 25 0 e;TJ(pk) is variable depending on power level. Second breakdown pulse limits are valid for duty cycles to 10% but must be derated when Te;;' 250 e. Second breakdown limitations do not derate the same 'as thermal limitations. Allowable current at the voltages shown on Figure 10 may be found at any case temperature by using the appropriate curve on Figure 11. T J(pk) may be calculated from the data in Figure 11. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown. FIGURE 12 - USAGE TEST CIRCUIT FIGURE 11 - POWER DERATING 100 0 0 10mH ~~ "" Stancore "'.......... THERMAL DERATING C2688 1.5 VCC· 12 Vdco---<"'~WIr--...fY"V'V"'---. SECOND BREAKDOWN DERATING- .......... ~ "'- Vz· 400 V 10 Vdc f::::: o~ t--... ~ ............ ~ I 20 I 220 )--"V\/\,--!2N3713 """ 0 0 40 80 120 TC. CASE TEMPERATURE ('C) "" 160 1N4933 27 0.3 I'F 200 t1 to be selected such that Ie reaches 6 Adc before switch·off. NOTE' "Usage Test," Figure 12 specifies energy handling capabilities in an automotive Ignition circuit. 1-530 ® MJI0013 MJI0014 MOTOROLA l1li 10 AMPERE NPN SILICON SWITCHMODE SERIES NPN SILICON POWER DARLINGTON TRANSISTORS POWER DARLINGTON TRANSISTORS The MJ10013 and MJ10014 Darlington transistors are designed for high-voltage, high-speed, power switching in inductive circuits where fall time is critical. They are particularly suited for lineoperated switchmode applications such as: • • • • • 550 AND 600 VOLTS 175 WATTS y Switching Regulators Inverters Solenoid and Relay Drivers Motor Control, Deflection Circuits ~, • Fast Turn-Off Times 1t1100 250 ns Inductive FAil Time-25°C (Typ) 500 ns Inductive Crossover Time-25°C (Typ) l.4l1s Inductive Storage Time-25°C (Typ) • • Operating Temperature Range: -65 to +2000 C Designers Data for "Worst-Case" Conditions The Designers Data Sheet permits the design of most circuits entirely from the information presented_ Limit datarepresenting device characteristic boundaries-are given to facilitate "worst-case" design_ ~151 100°C Performance Specified for: Reversed Biased SOA With Inductive Loads Switching Times With Inductive Loads Saturation Voltages Leakage Currents MAXIMUM RATINGS Symbol MJ10013 Collector-Emitter Voltage VCEOI.u.) 550 Collector-Emitter Voltage VCEV 650 Ratina I MJ10014 1 600 I 700 Unit Vdc Vdc Emitter Base Voltage VEe e Vdc Collector Current - Continuous - Peak (1) IC ICM 10 15 7 10 Adc Po 175 100 1 Watt. w/oe TJ,T.tg -65 to +200 °e Base Current la Continuous - Peak (1) IRM Total Power Dissipation@Tc '" 25°C @TC· 100°C Derate above 2SoC Operating and Storage Junction Adc NOTES 1 DIMENSIONS Q AND V ARE DATUMS 2 IS SEATING PLANE AND DATUM. 3 POSITIONAL TOLERANCE FOR MOUNTING HOLE 0 W 1_1113(Ooo'I@ITlv@1 FOR LEADS I *1113(OO05I@T Iv@1 Q@I Temperature Range 4 DIMENSIONS AND TOLERANCES PER THERMAL CHARACTERISTICS Char.cteristic Thermal Resistaoce, Junction to Case ANSIY145,1973 Mo. Unit RSJC 1 °C/W TL 275 °e Symbol Maximum Lead Temperature for Soldering Purposes: 1/8" from Case for 5 Seconds (1) Pul.e Test: Pulse Width = 5 m., Duty Cycle'; STYLE 1 DIM PIN 1 BASE Z. EMITTER A B CASE CDLLECTDR C o • F G 10% " J K Q R U 1-531 . MJ100'13, MJ10014 111 ELECTRICAL CHARACTERISTICS ITC 1 = 2SoC unle" QiherwlS""noted)·: Chl,.oteri.tic·· ". 1 Symbol .1 Min" f ~, ';ryp .1 MIX ., Unit OFF CHARACTERISTICS Collector-Emitter Sustaining Voltage (Table 1) IIC = 100 mA, 18 = 0) Collector Cutoff Current IVCEV = Raled Value. VBEloff) IVCEV = Raled Value, VBEloff) ICEV = 1.5 Vdc) = 1.5 Vdc, TC = 150°C) COllector Cutoff Current IVCE 550 600 - - - mAde 0.3 5 .- ICER 5 mAde lEBO 175 mAde = Raled VCEV, RBE = 50 n, TC = 100°C) Emitter Cutoff Current IVEB Vdc VCEOlsu.) MJ10013 MJ10014 = 2 Vdc, IC = 0) SECOND BREAKDOWN Second Breakdown Collector Current with base forward biased See Figure 12 Clamped Inductive SOA with Base Reverse Biased. See Figur~ 13 DN CHARACTERISTICS (2) DC Current Gam IIC IIc hFE = 5 Adc, VCE = 5 Vdc) = 10 Adc, VCE = 5 Vdc) 20 10 Collector-Emitter Saturation Voltage IIc IIc = 10 Adc, = 10 Adc, IB IB VCE!.al) =2 Adc) = 2 Adc, TC = 100°C) Base-Emitter Sat":lration Voltage IIc IIc = 10 Adc, IB = 10 Adc, IB = 10 500 250' - - 2.5 2.6 3 '3 - Vdc - Vdc VBEI.at) = 2 Adc) .- - - Vf - 3 5 I hfe I 10 - - - Cob 100 350 pF Id - 0.02 0.2 0.9 2 us us 0.95 0.2.2 4 1 U' - tc - 2.3 1 6 3 us u' ts .t c - - 1.4 0.5 - U' tfi - 0.25 - ".us = 2 Adc, Tc = 100°C) Diode Forward Voltage (1) IIF - - Vdc Adc) DYNAMIC CHARACTERISTICS Smail-Signal Current Gain IIc = 1 Adc, VCE = I!) Vdc, f test = 1 MHz) Output Capacitance IVCB = 10 Vdc,IE = 0, fle~1 = 100 kHz) SWITCHING CHARACTERISTICS Resistive Load (Table 1) Delay Time Rise Time Storage Time IVCC = 250 Vdc, IC = 10 A, IBI =400 rnA, VBEloff) = 5 Vdc, Ip Duly Cycle .. 2%1. = 50 U', Ir I. Fall Time If U' Induclive Load, Clamped ITable 1) Storage Time Crossover Time Storage Time Crossover Time (lC ~ 10 Alpk), Vclamp = 250 Vdc,IB'1 VBE{off) ~ 5 Vdc, TC = 100°C) = 1 A, (lC = 10 Alpk), Vcl amp = 250 Vdc, IBI VBEloff) = 5 Vdc, TC = 25°C) = 1 A, Fall Time Is (1) The inter!"al Collector-ta-Emitter diode can eliminate the need for an external diode to clamp inductive loads. Tests have' shown thal the Forward Recovery Voltage IV,) of this diode is comparable to that of tvpical fast recovery rectifiers. (2) Pul.e Test: 'PW =300 1", Duty Cycle .. 2%. 1-532 - MJ10013, MJ10014 TYPICAL CHARACTERISTICS FIGURE 1 - DC CURRENT GAIN 40O' - 200 z l,..; ~ 100 Ia c ~ lS00~ ~> 2.S '" !'" V '" ~8 VCE = S V ~ > 0.2 0.3 O.S 0.7 IC. COLLECTOR CURRENT (AMP) 10 ID , 2.2 \ 0 V 4 O.lS 3.4 '"w ./ 10 ~ w '"'" 2SoC 20 " TJ" 2SOC 0 "- 60 40 u ; TJ! FIGURE 2 - COLLECTOR SATURATION REGION ~.~ IC=2.SA \ SA 1.6 N III-+- U. f\ 1 0.01 0.02 0.03 0.OSO.070.1 0.20.3 O.SO.7 1 lB. BASE CU RRENT (AMP) FIGURE 3 - COLLECTOR-EMITTER SATURATION VOLTAGE 2 3 S 7 10 FIGURE 4 - BASE-EMITTER VOLTAGE 2.S 2.41-4--1--+--14-+ . _ - vBE(",) @IclIB = 10 l"'=H+1+O ~0 ~ w 1-4--1--+--14-+- --VSE(oo)@3V=VCE+-H-J.41+l l.S ICIIB -10 '"'" !:; 0 > :> -t~V -- TJ = 2SoC , I )CIIB-~ V ./ TJ=lS0oC O.S o 0.1 0.2 0.3 1.2 - O.S L..-.J.......L-...::I:::= ....::L.l.J....L.LL--Li_..l...'-L-LJ...l..LLU 0.1 0.2 0.3 O.S 0.7 I 10 IC. COLLECTOR CURRENT (AMP) 10 FIGURE 6 - OUTPUT CAPACITANCE FIGURE 5 - COLLECTOR CUTOFF REGION 1000 700 ~ 500 104 /' -VCE-2S0V / - / Tr moc 2 /' ~300 / S f=R ...... t--Fjrward 10- 1 -0.2 ...... i'-r-., ~ 70 :='" '" ". J / 2SoC TJ = 2SoC ~100 -' 1 ...... ~ 200 100°C 7SoC V f--+-+-+-+-+--+--l-olH""""-::==-TJ = l'SODC+-+-I-+-+-I--I-l O.S 0.7 IC. COLLECTOR CURRENT (AMP) 3 ---- 50 30 Crb 0 10 +0.2 +0.4 +0.6 +O.S VBE. BASE-EMITTER VOLTAGE (VOLTS) 1-533 0.4 0.6 4 6 10 20 40 60 VR. REVERSE VOLTAGE (VOLTS) 100 200 400 MJ10013, MJ10014 TABLE 1 - TEST CONDITIONS FOR DYNAMIC PERFORMANCE VCEOlsusl III RESISTIVE RBSOA AND INDUCTIVE SWITCHING ~1 . 20 oJ'L S~ ~Q 01 adlusted to -2 obtlun specified 8 Ie IRes.ltlve SWitching, Pulse Width PW Varied to Ana,n Ie" 250 mA ..... -·w "" U> U~ !!: .. 2N2907 02 2N2222 Pulse Width '= SO 'IS) LeOd - 10 mH Vee"' 10 V R eol , " 0 7 n Vcl amp " VCeO(~sJ 03 .,. MJE210 2N3762 D. MJE200 01 1NS14 02 lNS14 03 lN914 LCDII = 180 /oIH Vee = 250 V RcOII=OOSH Vee = 20 v Pul~e Width = 50~. AL" 25 OUTPUT WAVEFORMS INDUCTIVE TEST CIRCUIT n RESISTIVE TeST CIRCUIT t1 Adjusted to ....:; Obtain Ie t1 ... L.COll(ICpkl u Vee a: U t2 "" Lco,I(lCpk l ...E Vclamp Test EqUipment Scope - TektroniX 475 or EqUivalent SWITCH.ING TIME NOTE In resistive switching circuits, rise, fall, ;mdsto~age times have been defined and apply to both current and voltage waveforms since they are in phase. However, for inductive loads which are common to SWITCHMODE power supplies and hammer drivers, current and vol~age wave· forms are not in phase. Therefore, separate measurements must be made on each waveform to determine the total switching time. For this reason, the following new terms have been defined. t sv ; Voltage Storage Time, 90% IS1 to 10% Vcl amp trY ~ Voltage Rise Time, 10-90% Vcl amp tfi ; Current Fall Time, 90-10% IC tti ; Current Tail, 10-2% IC te ; Crossover Time, 10% Vel amp to 10% IC An enlarged portion of the turn·off waveforms is shown in Figure 7 to aid in the visual identity of these terms. - continued - FIGURE 7 - INDUCTIVE SWITCHING MEASUREMENTS '~ ./ "., I Vclamp _ 1"\ 'IV~ ~fi- r-',i- V VCE 1(1% Vclamp ~ t- - J ..:... -Isv 1---1 f-'c~ IS- - J IC -10 A 'S1-1 A 90%Vclamp ~90%1C ./ ,C.,.;' FIGURE 8 - PEAK REVERSE CURRENT 8. 0 90% lSI - --\- -- --... -- -.......... ~ -'\. 5.0 ./ -- ./' 10%·...... ICPK- 2%IC - 2. 0 /' V V ./ V- ./ 1.0 1.0 TIME 1-534 2.0 5.0 VSE(ott). BASE·EMITIER VOLTAGE (VOLTS) 8.0 MJ10013, MJ10014 TYPICAL CHARACTERISTICS I ... SWITCHING TIMES NOTE (continued) For the designer, there is minimal switching loss during storage time and the predominant switching power losses occur during' the crossover interval and can be obtained using the standard equation from AN-222: PSWT = 1/2 Vcclc(td f In general, trv + tfi '" tc. However, at lower test currents this relationship may not be valid. As is common with most switching transistors, resistive switching is specified at 2!PC and has become a benchmark for designers. However, for designers of high frequency converter circuits, the user oriented specifications which make this a "SWITCHMODE" transistor are the inductive switching speeds (tc and t sv ) which are guaranteed at 1000 C. RESISTIVE SWITCHING PERFORMANCE FIGURE 9 - TURN-ON TIME FIGURE 10 - TURN-OFF TIME 1.0 1 -- O. 7t=Tr250C O. 51= ICIIB" 10 O. 7 I-Vcc-250V O. 3 "V ./ 0.2 .] ~ ] "\.. o. 1 ~ 03 0.05 0.03 0.0 2 ...- -- I"'\.. ~ VBElolt)" 5 v VCC" 250 V ICIIB" 10 TJj50C O. 1 t- 'd - 4. r-- ;:: - ;;',0.0 7 r-- O. 5 1 0.0 1 1 1.5 15 10 10 Ie. COLLECTOR CURRENT lAMP) IC. COLLECTOR CURRENT lAMP) FIGURE 11 - THERMAL RESPONSE '-' z ~ ~ '5 ....I 5 400 500 200 300 600 VCE. COLLECTOR·EMITTER VOLTAGE (VOLTS) 700 FIGURE 14 - POWER DERATING 100 . ~ 80 0 t; :l: 60 '" ~ :--. i'--. """I"'" ""'- z ;:: g ........ ~ SecDnd Breakdown Derating ............ . . . . t--... i'.. Thermal Deratmg 40 ............... "- 0 '"~ ~ ........ 20 o o .......... 40 80 120 TC. CASE TEMPERATURE (OCI 1-536 160 "'" 200 ® MJI0015 MJI0016 MOTOROLA 'II 50 AMPERE SWITCHMODE SERIES NPN SILICON POWER DARLINGTON TRANSISTORS WITH BASE-EMITTER SPEEDUP DIODE NPN SILICON POWER DARLINGTON TRANSISTORS 400 and 500 VOL TS 250 WATTS The MJ10015 and MJ10016 Darlington transistors are designed for high-voltage, high-speed, power switching in inductive circuits where fall time is critical. They are particularly suited for lineoperated switch mode applications such as: • Switching Regulators • Motor Controls • Inverters • Solenoid and Relay Drivers • Fast Turn-Off Times 1.01ls (max) Inductive Crossover Time - 20 Amps 2.51ls (max) Inductive Storage Time - 20 Amps • Operating Temperature Range -65 to +200 o C • Performance Specified for Reversed Biased SOA with Inductive Loads Switching Times with Inductive Loads Saturation Voltages Leakage Currents B L t MAXIMUM RATINGS ~--+ K SEATING PLANE Symbol MJ10015 Collector·Emltter Voltage VCEOlsusl 400 Collector-Emitter Voltage VCEV 600 Rating I MJ10016 I 500 I 700 B.O Vdc IC ICM 50 75 Adc IB IBM 10 15 Adc Po 250 143 1.43 Watts W/oC -6510 +200 °c -Peak 111 = 2SoC @TC: 100°C Derate above 25°C Operating and Storage Junction Temperature Range T J, Tstg J- Vdc VEB -Peak 111 -F Vdc Emitter Base Voltage Base Current - Continous STYLE 1, PIN 1. BASE 2. EMlnER CASE. COLLECTOR DIM • 8 THERMAL CHARACTERISTICS Characteristic Thermal Resistance. Junction to Case Maximum Lead Temperature for Soldering Purposes: 118" from Case for 5 Seconds Symbol Max Unit A6JC 0.7 °C/W TL r 0 Unit Collector Current - Continuous Total Power Dissipation@Tc 'E C . 275 °c C D E F G H J K 0 R (1) Pulse Test: Pulse Width: 5 ms, Duty Cycle'; 10% MILLIMETERS MIN MAX INCHES MI. MAX 39.37 21.08 7.62 1.60 3.43 29.90 36.40 10.67 11.18 5.21 5.72 16.64 17.15 11.18 12.19 3.84 4.09 24.89 2&.67 1.510 0.760 0.250 0.057 38.35 19.30 6.35 1.45 - 1.550 0.830 6.3110 0.063 6.135 - 1.177 1.197 0.420 0.205 65 0.440 0.151 0.980 0.440 0.225 0.410 ~1&1 CASE 197·01 MODIFIED TO-3 1-537 1.050 MJ10015, MJ10016 lIB ELECTRICAL CHARACTERISTICS ITC a 2SoC unl ... otherwise noted) Characteristic Symbol Min Typ Max 400 500 - 0.25 mAde 350 mAde Unit OFF CHARACTERISTICS (11 COllector-Emitter Sustaining Voltage (Table 1) (lc = 100 rnA, IB = 0, VCl amp = Rated VCEOI Collector Cutoff Current (VCEV = Rated Value, VBE(offl VCEO(,u,1 = 1.5 Vdcl Emitter Cutoff Current (V EB ICE V - - lEBO - - MJloo15 MJ10016 = 2.0 Vdc, IC =01 Vdc - SECOND BREAKDOWN Second Breakdown Collector Current with Base Forward Biased See Figure 7 Clamped Inductive SOA with Base Reverse Biased See Figure 8 ON CHARACTERISTICS (11 DC Current Gain (lC = 20 Ado, VCE (lC =40 Ade, VCE Collector-Emitter Saturation Voltage (lC (lC - - 25 10 - - - - VBE(,atl - 2.2 5.0 - 2.75 Vde Vf - 2.5 5.0 Vde Vdc VCE(,.tl = 20 Ade, IB = 1.0 Adc) =50Adc,IB = IOAdel Base-Emitter Saturation Voltage (lc = 20 Adc, IB = 1.0 Adc) Diode Forward Voltage (2) (IF - hFE =5.0 Vdcl =5.0 Vdcl = 20 Adc) DYNAMIC CHARACTERISTIC Output Capacitance (VCB = 10 Vdc, IE =0, f test = 100 kHz) SWITCHING CHARACTERISTICS Resistive L.oad (Table 1) Delay Time (V CC = 250 Vdc, IC = 20 A, IB1 = 1.0 Adc, VBE(off) = 5 Vdc, tp Rise Time Storage Time - td t, =25 ps t, Duty Cycle" 2%). Fall Time tf 0.14 0.3 0.3 1.0 p' p, 0.8 2.5 ps 0.3 1.0 lIS 1.0 2.5 0.36 1.0 Inductive Load, Clamped (Table 1) Storage Time Crossover Time I I (lC = 20 Alpk), Vcl amp -250 V,ISI VSE(off) = 5.0 Vdcl = 1.0 A, I tSY I I tc I - lIS I (1) Pulse Test: Pulse W,dth = 300 ps, Duty Cycle .. 2%. (2) The internal Collector-ta-Emitter diode cer, eliminate the need for an external diode to clamp inductive loads. Tests have shown that the Forward Recovery Voltage (Vt) of this diode is comparable to that of typical fast recovery rectifiers. 1-538 lIS MJ10015, MJ10016 TYPICAL CHARACTERISTICS 100 z 2.4 50 "'" Ig 20 1 II. FIGURE 2 - COLLECTOR·EMITTER SATURATION VOL TAGE FIGURE 1 - OC CURRENT GAIN "- ./ l"- ~c I'\. \ TC ' 15°C VCE' 5.0 V !I J 1/ 1.0 ICIIS' 10 1.6 ~ w \ VV > >' 1\ 0 Ih « '" S 1.2 c A If V" ITJ '150C ..l.----j-- r- O.S ..J...-:I--' 5.0 0.5 1.0 10 1.0 5.0 IC, COLLECTOR CURRENT lAMPS) 10 0.4 0.5 50 FIGURE 3 - BASE·EMITTER SATURATION VOLTAGE c IC/ls'IO > 2,0 ./ 1.6 :> 1.2 O,S 0,5 10 TJ' 25°C --- I- >- ~~ V V V r---- TJ " 1150e 101 '" c ~ I-'" 10 I c u i--" ~1O 0 I 2.0 5,0 10 20 :/ ~1O 3 I-:i--"" TJ'150oC i 1.0 V V ...- r---- t--750C .- ~REVERSE FORWARO EE150C 10- I -01 50 +02 +04 VBE. BASE EMITTER VOLTAGE {VOLTS) FIGURE 5 - OUTPUT CAP'!\CITANCE I 10001'--.. r--. TJ ~ 25°C w <.> z ~ 500 <3 It ........ ~ !; 300 r--... ~ c 200 100 0.4 L L ISO0 j 50 t--- t- loo oe IC' COLLECTOR CURRENT lAMP) ~ 20 FIGURE 4 - COLLECTOR CUTOFF REGION ./17 ~ c « '" S 5,0 ~VCE'150IV 2.4 w iLU 2,0 10 IC, COLLECTOR CURRENT lAMP) 1,S ~ TJ ,150°C I-- ...... r--- 1.0 4.0 10 40 VR, REVERSE VOLTAGE IVOLTS) 1-539 100 400 +06 ·08 MJ10015, MJ10016 TABLE 1 - TEST CONDITIONS FOR DYNAMIC PERFORMANCE RESISTIVE SWITCHING VCEX AND INDUCTIVE SWITCHING TURN·ON TIME .. z ... 0 ,,;: Puis. Width to -z 181 adjusted to obtain the forced adjusted to obtain specified 8 "FE d.sired Ie (Res,.tlve TURN-OFF TIME SWitching, Pulse Width = 25 pil PW Varied to Attain 'C"'OOmA -v, a, a2 a3 ao Leoll = 180 ~H Reali ='0 05 n VCC=20V INOUCTIVE TEST CIRCUIT 2N2907 a5 MJE200 2N2222 2N3762 MJE210 D' D2 D3 lN914 lN914 lN914 Use inductive ,wltching circuit" t".lnput to the r.,/stive tltStcircult. Vee = 250 V RL= 125n Pulse Width = 25,us RESISTIVE TEST CIRCUIT OUTPUT WAVEFORMS t1 Adjusted to Obtain Ie t1 ... L.C011(ICpk) Vee t2'" LC011{ICpk) Vc lamp Test Equip..,...el'lt Scope - Tektronix 475 or Equn/slant -Adjust -V such that VBE(offl "" 6 V except as required for RS SOA (Figure 8). FIGURE 6 - INDUCTIVE SWITCHING MEASUREMENTS I~ ......- ......- I ~clamp_ - 90% Vclamp A1\ 90% Ie .,/ le"""'- !, I, trvffl ~tf;- ;--tH- i --tsv 1--1 f-Ic~ V VeE IB- -- 10%Vclamp r- 90% IBI --\- -- tsv trv tfi tti tc - "- 10% ....... lepK- '"i%Tc" --- - -- - = Current Fall Time, 90 -10% IC = Current Tail, 10-2% IC = Crossover Time, 10% Vcl amp to 10% IC For the designer, there is minimal switching loss during time and the predominant switching power losses occur during the crossover interval and can be obtained using the standard equation from AN-222: - s~orage f...-- '- = Voltage Storage Time, 90% 181 to 10% Vcl amp = Voltage Rise Time, 10-90% Vclamp . TIME SWITCHING TIMES NOTE PSWT In resistive switching circuits, rise, fall, and storage times have been defined and apply to both current and voltage waveforms since they are in phase. However, for inductive loads which are common to SWITCHMODE power supplies and hammer drivers, current and voltage waveforms are not in phase. Therefore, separate measure· ments must be made on each waveform to determine the total switching time. For this reason, the following new terms have been defined. = 1/2 VCCIC(tc!f In general, try + tfi '" tc. However, at lower test currents this relationship may not be valid. As is common with most switching transistors, resistive switching is specified and has become a benchmark for designers. However, for designers of high frequency converter circuits, the user oriented specifications which make this a "SWITCH MODE" transistor are the inductive switching speeds (tc and t sv ) which are guaranteed. 1-540 MJ10015, MJ10016 Th. Safe Operating Area figures shown in Figures 7 and 8 are specified ratings for these devices under the tast conditions shown. SAFE OPERATING AREA INFORMATION FORWARD BIAS FIGURE 7 - FORWARD BIAS SAFE OPERATING AREA o ~ 10 ,.55.0 de I- ~ 2.0 MJ10015 ~ 1,0 ~ 0.5 j MJ10016 TC - 25°C ~ 0.2 BONDING WIRE LIMIT THERMAL LIMIT ISINGLE PULSEI SECOND BREAKDOWN LIMIT 0.1~, 80.05 ~0.02 0.01 0.005 1.0 20 5.0 10 20 50 100 200 500 1000 There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown, Safe operating area curves indicate IC- VCE limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. The data of Figure 7 is based on TC = 25 0 C; TJ(pk) is variable depending on power level. Second breakdown pulse limits are valid for duty cycles to 10% but must be derated when TC;;;' 25 0 C. Second breakdown limitations do not derate the same as thermal limitations. Allowable current at the voltages shown on Figure 7 may be found at any case temperature by using the appropriate curve on Figure 9. VCE, COLLECTOR·EMITTER VOLTAGE IVOLTSI REVERSE BIAS FIGURE 8 - REVERSE BIAS SWITCHING SAFE OPERATING AREA For inductive loads, high voltage and high current must be sustained simultaneously during turn-off, in most cases, with the base to emitter junction reverse biased. Under these conditions the collector voltage must be held to a safe level at or below a specific value of collector current. This can be accomplished by several means such as active clamping, RC snubbing, load line shaping, etc. The safe level for these devices is specified as Reverse Bias Safe Operating Area and represents the voltage-current condition allowable during reverse biased turn·off. This rating is verified under clamped conditions so that the device is never subjected to an avalanche mode. Figure 8 gives the complete RBSOA characteristics. 50 \ \ 0 \ Turn off Load Lme - Boundary for MJ10016 \ _ The locus for MJl0Q15 IS 100 V less \ \ -~>10 Bl '\. i'... VBEloffl ~ 5.0 V - o o TC~250C 100 200 300 400 VCE, COLLECTOR-EMITTER VOLTAGE IVOLTSI 500 FIGURE 10 - TYPICAL REVERSE BASE CURRENT versus VBEloff) WITH NO EXTERNAL BASE RESISTANCE FIGURE 9 - POWER DERATING 100 0 0 ~t--... 0 '" I"--. i"'.. ....... Derating --til Forward 818S Second Breakdown - t-..... Therma~ r-..... I'.. I'-. 0 " 0 " "'- 0 40 aD 120 Te, CASE TEMPERATURE lOCI a ,- Deratmg I'-- 160 ,/ 9 7 V 6 4 V V 5 r--...... V V IC ~ 20 A V 3 2 ~ Sea Table 1 for conditions, Figure 6 tor waveshape. 1 '" 0 200 4 6 VaEloff). REVERSE BASE VOLTAGE IVOLTSI 1-541 III MJI0020 MJI0021 III D~~si~'n(,I's ® MOTOROLA Data Sheet 60 AMPERE NPN SILICON POWER DARLINGTON TRANSISTORS . SWITCHMODE SERIES NPN SILICON POWER DARLINGTON TRANSISTORS WITH BASE-EMITTER SPEEDUP DIODE 200 and 250 VOLTS 250 WATTS The MJ10020 and MJ10021 Darlington transistors are designed for high-voltage, high-speed, power switching in inductive circuits where fall time is critical. They are particularly suited for lineoperated switchmode applications such as: Designer"s Data for ''Worst Case" Conditions • AC and DC Motor Controls • Switching Regulators • Inverters • Solenoid and Relay Drivers The Designers Data Sheet permits the design of most circuits entirely from the information presented. Limit data - representing device characteristics boundaries - are given to facilitate "worst case" design. • Fast Turn-Off Times 150 ns Inductive Fall Time at 25 0 C (Typ) 750 ns Inductive Storage Time at 250 C (Typ) • Operating Temperature Range -65 to +200 0 C • lOOoC Performance Specified for: Reversed Biased SOA with Inductive Loads Switching Times with Inductive Loads Saturation Voltages Leakage Currents MAXIMUM RATINGS Rating Symbol CollectorwEmitter Voltage VCEO(susl Collector-Emitter Voltage VCEV MJ10020 IMJ10021. 200 300 J I Vdc 350 Vdc Eminer Sase Voltage VEB 8.0 Vdc Collector Current - Continuous IC ICM 60 100 Adc Base Current - Continuous - Peak (1) IB IBM 20 30 Adc Total Power Dissipation @ T C = 250 C @TC= 1000 C Po 250 143 1.43 Watts TJ, T stg -65 to +200 °c -Peak (11 Derate above 250 C Operating and Storage Junction lJ~F'B Unit 250 C Ie SEATING -t ! 0 PLANE STYLE 1: PIN 1. BASE 2. EMITTER ~~~_+- __-.CASE. COLLECTDR a W/oC Temperature Range MILLIMETERS THERMAL CHARACTERISTICS Characteristic Thermal Resistance, Junction to Case Maximum Lead Temperature for Sbldering Purposes: 118" from Case for 5 Seconds Symbol Max Unit R8Jc.. 0.7 oCIW TL 275 °c (1) Pulse Test: Pulse Width = 5 ms, Duty Cycle'; 10% DIM MIN A 38.36 8 19.30 C 6.35 1.46 0 E F 29.9D G 10.67 H 5.21 1 .64 K 11.18 Q 3.84 R 24.89 - MAX 39.37 21.08 7.62 1.60 3.43 30.40 11.18 5.72 17.1 12.19 4.119 26.87 INCHES MIN T.510 0.760 0.250 0.057 - 1.177 0.420 0.206 55 0.440 0.151 0.980 CASE 197-01 MODIFIED TO-3 1-542 MAX 1.550 0.830 0.300 0.063 0.135 .19 0.440 0.225 0.4lIO 0.161 1.050 MJ10020, MJ10021 ELECTRICAL CHARACTERISTICS (TC = 250 C unle.. otherwise noted) I Characteristic Symbol Min TVp Max Unit VCEO(sus) 200 250 - - - Vde - - 0.25 5.0 OFF CHARACTERISTICS Collector· Emitter Sustaining Voltage (Table 1 ) (lC = 100 mA, IB = 0) MJ10020 MJ10021 Collector Cutoff Current (VCEV (VCEV ICEV = Rated Value, VBE(off) = 1.5 Vde) = Rated Value, VBE(off) = 1.5 Vde, TC = 1500C) Collector Cutoff Current (VCE = Rated VCEV, RBE = 50 n, TC = 1000 C) Emitter Cutoff Current (VEB = 2.0 V, IC =0) mAde - ICER - - 5.0 mAde lEBO - - 175 mAde SECOND BREAKDOWN Second Breakdown Collector Current with base forward biased See Figure 13 Clamped Inductive SOA with Base Reverse Biased See Figure 14 ON CHARACTERISTICS (1) DC Current Gain (lC hFE = 15 Ade, VCE = 5.0 V) Collector-Emitter Saturation Voltage (lC (lC (lc =30 Ade, = 60 Ade, =30 Ade, IB IB IB 1000 - - 2.2 4.0 2.4 V8E(sat) =30 Ade, 18 = 1.2 Ade) =30 Ade, I B = 1.2 Ade, T C = lOOOC) - Vde - - 3.0 3.5 Vf - 2.5 5.0 Vde t(! - 0.02 0.2 p.. 0.30 1.0 p.s 1.0 3.5 p.s 0.07 0.5 p.s p.s - =30 Ade) Vde - Diode Forward Voltage (IF - VCE(sat) = 1.2 Ade) = 4.0 Ade) = 1.2 Ade, T C = l00 0C) Base-Emitter Saturation Voltage (lC (lC 75 DYNAMIC CHARACTERISTICS Output CapaCitance (VCB = 10 Vde, IE = 0, f test = 1.0 kHz) SWITCHING CHARACTERISTICS Resistive Load (Table 1) Delay Time Rise Time Storage Time Fall Time = 175 Vde, IC =30 A, = 1.2 Ade, VBE(off) = 5.0 V, tp = 25 p.. !VCC IBI Duty Cycle .. 2.0%1. t, ts tf Inductive Load, Clamped (Table 1) Storage Time Crossover Time Storage Time Crossover Time Fall Time ICM = 30 A(pk), VCEM = 200 V, IBI -1.2 A, VBE(off) = 5 V, TC = 1000 C) = 30 A(pk), VCEM = 200 V, VBE(off) = 5 V, TC = 250 C) (lCM IBI = 1.2 A, (1) Pulse Test: PW = 300 "s, Duty Cycle .. 2% 1-543 1.2 3.5 0.45 2.0 p.s t.v - 0.75 p.. te - 0.25 - tti - 0.15 tov te p.. p.. MJ10020, MJ10021 TYPICAL ELECTRICAL CHARACTERISTICS FIGURE 2 - COLLECTOR SATURATION REGION FIGURE 1 - DC CURRENT GAIN 1000 700 500 ...... .,' ..... ~ z ;;: 200 co ,... ii'i ::; B ..., c ... w ~ TJ=25"C ...... ...... '" 4.0 g "" ~ ~ \ 2.5 2.0 1'=30 A 1.5 -IDA ~ 1.0 0.5 ICjlr VCE = 5.0V IIII 10 3.0 5.0 7.0 10 50 20 30 IC. COLLECTOR CURRENT (AMPS) 70. 0.01 100 FIGURE 3 - COLLECTOR-EMITTER SATURATION VOLTAGE 2.4 t: 2.1 '"> 1.8 ~ 1.5 "" ;0 ! '" ~ ..., '" ~ ~c IC/IB = 25 2.4 co 2.1 :; TJ = 2S'C .....:; ~ 0.9 ~ 1.8 '"> "" ~ '" 1.5 1.2 ~ ~ Tr 100'C O.S TJ = 25'C -;:,;. il ." ." ~ --t'=100'C I'"'-" 0.9 ~ 0.6 > 0.3 0.3 0.1 0.2 0.4 S.O B.O 10 40 20 IC. COLLECTOR CURRENT (AMPS) SO 80100 =VCE-2S0V 100 500 ./ B r-- f-l00'C 102 ~100 70 100 FIGURE 6 - OUTPUT CAPACITANCE ./ ./ § r- TJ=125'C 1 SO 3.0 S.O 7.0 10 20 30 IC. COLLECTOR CURRENT (AMPS) 1000 liD3 '"c 2.0 1.0 FIGURE 5 - COLLECTOR CUTOFF REGION 10 ..... ..... < 104 ~ ,. 2.7 ~ w IC/IB = 25 1.2 > 2.0.3.0 5.07.0 10 3.0 gc 2.7 co 0.020.030.050.070.1 0.2 0.3 0.5 0.7 1.0 'B. BASE CURRENT (AMPS) FIGURE 4 - BASE-EMITTER VOLTAGE 3.0 ~ w =SOA \ 8 30 \ \ 3.0 g; 2.0 , ~ 3.5 ~I 1.0 TJ = 25'C co 70 50 20 i\ !:i 4.5 '" ;- ./ 100 5.0 ;;; TJ =100'C TJ-25'C ......... - I - - r-7S'C r-.. I 0 I ............ ..... I - - r - 2S ' C +0.2 ......... 0 I 10- 1 -0.2 r-... +0.4 +0.6 +0.8 VBE. BASE·EMITTER VOLTAGE (VOLTS) 1-544 100 3.0 S.O 7.0 10 20 30 50 70 100 VR. REVERSE VOLTAGE (VOLTS) f"""o t-- 200 300 MJ10020, MJ10021 TABLE 1 - TEST CONOITIONS FOR OYNAMIC PERFORMANCE VCEOllus! "ESIITIVE RBSOA AND INDUCTIVE SWITCHING SWITCH IN TURN ON TIME 20 n . :.:n..... ~1 2 ~E 20 I a 1 adjUIt4td to obtain the forced hFE d",red PulseW,dth .d/uned to obta,n specified ~2 -~ U Ie lR.",.y. TURN·OFF TIME SWitch.";, pw V,ned to Att,in 'C'''' 100mA t:~ "" u~ !!'C U> Pull,Wldth U .. inductlv, swltchi .... : 25 ""I circuit .. the mput to "tiv. tett circuit. th.,.. L eo,'- 10 mH Vee" 10 V Reoll - 0 1 n L.eod = 180 ~H Rcoil ~ 005 n VCC=20V Vel.mp " VCEO(sull INDUCTIVE TEST CIRCUIT 0' 02 03 2N2907 2N2222 2N3762 Q4 MJE15029 as MJE15028 0' 02 03 lN914 Vee" 175 V lN914 lN914 RL· 6.6 n Pulse Width" 25~. RESISTIVE TEST CIRCUIT OUTPUT WAVEFORMS t1 AdJulUd 10 Obte,n Leod OeM) ' 2 'Vcl -amp -- --.Vclamp Test ECjlllpment Scopa - T.ktronll( 475 or EqUivalent ---1- , = 5 V except.; required for RBSOA 'Adjust - V such that VSE(off) (Figure 14l. FIGURE 8 - TYPICAL PEAK REVERSE BASE CURRENT FIGURE 7 - INDUCTIVE SWITCHING MEASUREMENTS 10 IC~ /" ..... 1 ,/" ~CEM ~ 9.0 Vclamp B.O J 90% VCEM 1\90% ICM f--- f---Isv IC/ I" ~ 7.0 "....~ ffli-Jt 111- 1-- 1,,_ f--, f-Ie --\ t-- 1/ VCE IS- - 10%"'" lCM -- --\- -- -"-'"" -- -- - .- 1--"- 5.0 w 4.0 ~ 2% IC :;; 3.0 g 2.0 - .,.., 6.0 ~ "'"'-' 1"- 10% VCEM 90% lSI 2.S .,. 2.4 IC =30 A ISp1.2A ". ~ 2.0 "~ 1.6 ~ , ~ > ~ 1.2 ~ 0.8 o 1.0 4.0 3.0 2.0 5.0 6.0 VSE(ofl). SASE-EMITTER VOLTAGE (VOLTS) o o 2.1 IC/ls= 25 - .... I """'"' r-t---. .... "" 1.0 2.4 ICM=~OA 100... tc@25~ I'---.. 0.4 - ~;~~~:C=200 V _ FIGURE 9 - TYPICAL INDUCTIVE SWITCHING TIMES f'... ..". V' 1.0 o 3.2 ..",. ,... V ",. 10-""" TIME '" Ie - I.S :.: o I ~ '- r-- .... ~ 1.5 ~ Isv@\OOOC _ 1.2 ~ g L 0.9 ~ tsv@25 0 C .... 0.6 ~ le@ 1000 C 5.0 2.0 3.0 4.0 6.0 VSE{off). BASE-EMITTER VOLTAGE (VOLTS) 0.3 [ 7.0 B.O 7.0 B.O MJ10020, MJ10021 SWITCHING TIMES NOTE In resistive switching circuits, rise, fall, and storage For the design/lr, there is minimal switching loss times have been defined and apply to both current and during storage time and the predominant switching voltage waveforms since they are in phase. However,. power losses occur during the crossover interval and can for inductive loads which are common to SWITCHMODE be obtained using the standard equation from AN-222A: power supplies and hammer drivers, current and voltage PSWT = 1/2 Vcclc(tclf waveforms are not in phase. Therefore, separate measureIn general, trY + tfi ~ te. However, at lower test currents this relationship may not be valid. ments must be made on each waveform to determine the total switching time. For this reason, the following As is common with most switching transistors, resistive new terms have been defined. switching is specified at 25 0 C and has become a bench.tsv = Voltage Storage Time, 90% ISlto 10% VCEM mark for designers. However, for designers of high fretrv = Voltage Rise Time, 10 - 90% VCEM quency converter circu its, the user oriented specifications tfi = Current Fall Time, 90 - 10% ICM which make this a "SWITCHMODE" transistor are the tti = Current Tail, 10 - 2% ICM inductive switching speeds (tc and tsvl which are guarantc = Crossover Time, 10% VCEM to 10% ICM teed at lOOoC. An enlarged portion of the inductive switching waveforms is shown in Figure 7 to aid in the visual identity of these terms. RESISTIVE SWITCHING FIGURE 10 - TYPICAL TURN-ON SWITCHING TIMES 10 7.0 5. 0 3.0 2.0 FIGURE 11 - TYPICAL TURN-QFF SWITCHIN.G TIMES 2. 0 VCC-175 V IC/ls =25 TJ =25'C VCC-175 V IC/ls - 25 VSE(OFF) - 5 V TJ-25'C 1. 0 O. 7 o. 5 1.0 O. 7 ] O.5 w 0.3 '" O. 2 ;:: ., o.1 0.0 7 0.05 in ..... .3 ./ I, Is o. 3 1/ o. 2 ~ ~ o. 1 1'... If 0.0 7 0.05 td 0.03 0.0 2 0.03 0.0 1 0.6 0.81.0 r-- 0.0 2 2.0 3.0 5.0 7.0 10 20 40 60 0.6 0.81.0 2.0 3.0 5.0 7.0 10 20 40 60 IC, COLLECTOR CURRENT (AMPS) IC. COLLECTOR CURRENT (AMPS) FIGURE 12 - THERMAL RESPONSE 1.0 ROJC(t) - ROJC ROJC(t) =OJ'CIW Max .... i-""'" .... 1 ....... i--" 0.0 1 0.1 Determine t2 for power pulse and read r(t). TJ(pk) =TC + P(pk) ROJC(tl SINGLE PULSE UL ioo"" ltl~ 1.0 10 100 t, TIME (MS) 1-546 1000 10000 MJ10020, MJ10021 The Safe Operating Area figures shown in Figures 13 and' 14 are specified for these devices under the test conditions sbown. SAFE OPERATING AREA INF;ORMATION FORWARD BIAS FIGURE 13 - MAXIMUM FORWARD BIAS SAFE OPERATING AREA There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate IC-VCE limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. The data of Figure 13 is based on TC = 25 0 C; TJ(pk) is variable depending on power level. Second breakdown pulse Iim its are valid for duty cycles to 10% but must be derated when TC;;' 25 0 C. Second breakdown limitations do not derate the same as thermal limitations. Allowable current at the voltages shown on Figure 13 may be found at any case temperature by using the appropriate curve on Figure 15. TJ(pk) may be calculated from the data in Figure 12. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown. ;;:- "::; ~ a'"cc 10 de 1.0 iii;;: 1m, " ~ 1---- SONOING WIRE LIMIT 0.1 ~ ___ THERMAL LIMIT (SINGLE PULSE) ~ SECOND BREAKDOWN LIMIT 8 :2 MJ10020 0.01 1.0 2.0 5.0 10 20 50 100. 2001300 VCE. COLLECTOR EMITTER VOLTAGE IVOLTS) 250 FIGURE 14 - MAXIMUM RBSOA, REVERSE BIAS SAFE OPERATING AREA 100 I ~ 90 " ~ a ::; I- "'" ~ 8 '"~ I I REVERSE BIAS I ICIIB ;'25 I SO For inductive loads, high voltage and high current must be sustained simultaneously during turn·off, in most cases, with the base to emitter junction reverse biased. Under these conditions the collector voltage must be held to a safe level at or below a specific value of collector current. This can be accomplished by several means such as active clamping, RC snubbing, load line shaping, etc. The safe level for these devices is specified as Reverse Bias Safe Operating Area and represents the voltage-current condition allowable during reverse biased turn-off. This rating is verified under clamped conditions so that the device is never subjected to an avalanche mode. Figure 14 gives the R BSOA characteristics. 250C .. TJ .. 100°C 70 I I 60 50 TUR~-OFF I I I I LlN~ L6AD 40 r--BOUNDARY FOR MJ10021 30 r-- THE LOCUS FOR MJ10020 IS 50V LESS 20 :i ;> 10 o o I I 50 I I 100 VBElofl): 5 V \\- VSElofl) - 2 V loy I I 150 '\( 200 VSE(ofl): 0 V <, 250 300 VCEM" COLLECTOR-EMITTER VOLTAGE IVOLTS) FIGURE 15 - POWER DERATING 10O. .""i'--- ~ 80 "'" ~ 60 ~ 40 ~ :--.... """ I- THERMA~ OERATING ~ ;:: "'" ...... SECo~~~:i~~DOWN _ i'-... i'... "r-.... 3 ~ 20 o o 40 " 120 80 TC. CASE TEMPERATURE I"CI 1-547 ................... i"'-........ 160 """ """ 200 III MJI0022 MJI0023 - ® Desig'ue"s Data ~hect 40 AMPERE NPN SILICON P,OWER DARLINGTON TRANSISTORS SWITCH MODE SERIES NPN SILICON POWER DARLINGTON TRANSISTORS WITH BASE-EMITTER SPEEDUP DIODE 360 and 400 VOLTS 260 WATTS The MJ10022 ~nd MJ10023 Darlington transistors are designed for high-voltage, high-speed, power switching in inductive circuits where fall time is critical. They are particularly suited for line-operated switch mode appli.cations such as: Designer"s Dat8 for "Worst C~se" Con~itions • AC and DC Motor Controls • Switching Regulators • Inverters • MOTOROLA The Designers Data Sheet permits the design of most circuits entirely from the information presented. Limit data - representing device characteristics boundaries - are given to faCilitate "worst case" design. Solenoid and Relay Drivers • Fast Turn-Off Times 150 ns Inductive Fall Time @ 25°C (Typ) 300 ns Inductive Storage Time @ 25°C (Typ) • Operating Temperature Range -65 to +200o C • 100°C Performance Specified for: Reversed Biased SOA with Inductive Loads Switching Times with Inductive Loads Saturation Voltages Leakage Currents MAXIMUM RATINGS c Rating Symbol MJ10022 MJ10023 Uni.t Collector-Emitter Voltage VCEO(sus) 350 400 Vdc Collector-Emitter Voltage VCEV 450 600 Vdc Emitter Base Voltage VES 8.0 Vdc Collector Current - IC ICM 40 80 Adc Base Current - Continuous - Peak (1) IS ISM ·20 40 Adc Total Power Dissipation @ TC = 25°C @TC=100°C Po 250 143 1.43 Watts TJ, Tstg -65 to +200 °c Continuous Peak (1) Derate above 25°C Operating and Storage Junction Temperature Range Characteristic Maximum Lead Temperature for Soldering Purposes: 1/8" from Case for 5 Seconds K "_____-'-1 STYLE 1: PIN 1. BASE 2. EMITTER CASE. COLLECTOR .-t-~-+-----.Q W/oC THERMAL CHARACTERISTICS Thermal Resistance. Junction to Case ~~~-+ Symbol Max Unit R8JC 0.7 °C/W TL 275 °C DIM A B C 0 E F G J K Q (1) Pulse Test: Pulse Width = 5 ms, Duty Cycle .;; 10%. R MILLIMETERS MIN MAX INCHES MAX MIN 39.37 1.510 21.0B 0.760 7.62 0.250 1.80 0.057 3.43 29.90 30.40 1.171 10.67 I1.1B 0.420 5.21 72 0.25 17.15 .55 1 lUB 12.19 0.440 3.B4 4.09 0.151 24.89 26.67 0.9BO 38.35 19.30 6.35 1.45 CASE 197-01 MODIFIED TO-3 1-548 1.550 0.B30 0.300 0.063 0.135 t.t 0.440 0.225 0 0.480 0.161 1.050 MJ 10022, MJ 10023 III I ELECTRICAL CHARACTERISTICS (TC; 25°C unless otherwise noted) I Characteristic Symbol Min Typ Max Unit VCEO(sus) 350 400 - - Vdc - 0.25 5.0 5.0 mAde - 175 mAde - OFF CHARACTERISTICS Collector-Emitter Sustaining Voltage (Table 1) (IC; 100 mA, IB; 0) MJl0022 MJloo23 Collector Cutoff Current (VCEV; Rated Value, VSE(off); 1.5 Vde) (VCEV; Rated Value, VSE(off); 1.5 Vdc, TC; 150°C) ICEV Collector Cutoff Current (VCE; Rated VCEV, RSE; 50 n, TC; 100°C) ICER - mAde Emitter Cutoff Current (VEB ; 2.0 V, IC; 0) IESO - SECOND BREAKDOWN Second Breakdown Collector Current with Base Forward Biased See Figure 13 Clamped Inductive SOA with Base Reverse Biased See Figure 14 ON CHARACTERISTICS (1) DC Current Gain (IC; 10 Adc, VCE; 5.0 V) hFE Collector-Emitter Saturation Voltage (IC ; 20 Adc, IB ; 1.0 Adc) Ie ; 40 Ade, IB ; 5.0 Adc) (lc ; 20 Ado, IS ; 1.0 Adc, TC; lOO°C) VCE(sat) Base-Emitter Saturation Voltage (lC = 20 Adc, 18 = 1.2 Adcl (lC = 20 Adc, IB = 1.2 Adc, TC VSE(sat) 50 - 600 - - 2.2 5.0 2.5 Vdc - = Vdc - 2.5 2.5 Vf - 2.5 5.0 Id - 0.03 0.2 lOS - 0.4 0.9 0.3 1.2 2.5 0.9 .. s !'s !,s 1.9 0.6 4.4 2.0 !'s !'s 0.3 - =lOOoCI Diode Forward Voltage (IF 20 Adc) - Vdc DYNAMIC CHARACTERISTICS Output Capacitance (VCS; 10 Vdc, IE = 0, f lesl ; 1.0 kHz) SWITCHING CHARACTERISTICS Resislive Load (Table 1) Delay Time R.se Time 5toraae Time Fall Time (Vee; 250 Vdc, IC; 20 A, IB 1 ; 1.0 Adc, VSE(off) ; 5.0 V, Ip ; 50 !'s, DUly Cycle .. 2.0%) I Is If· Induclive Load, Clamped (Table 1) Slorage Time Crossover Time Fall Time Slor"lJe Time Crossover Ti me Fall Time Isv (lCM = 20 A. VeEM; 250 V, ISl ; 1.0 A, VBE(off) ; 5 V, Te; 100°C) Ie Ifi I sv t,. Ifi (lCM; 20 A. VeEM = 250 V, ISl ; 1.0 A, VBE(off) ; 5 V, TC; 25°C) (1) Pulse Tesl: PW; 300 !'s, Duty Cycle'; 2% 1-549 - - 1.0 0.3 0.15 - - !'S !'s .. s !'s MJ10022, MJ10023 - TYPICAL ELECTRICAL CHARACTERISTICS FIGURE 1 - ./ 200 FIGURE 2 - COLLECTOR SATURATION REGION DC CURRENT GAIN 300 :.---~ Joolc 1\ TJ = 2S0C,/ :.--- 4.0 1-+-f-H+1-l+fl-++\-+-H-H+t+---+-'~+-H-+-H+l ~ 3.S 1-+-f-H-J.-jI+l-fl-++4-1-H-H+t+-+.l1\H+++-H+l ~ 1\ ,\ \.\ 30 2.0 S.O 10 IC. COltECTOR CURRENT lAMPS) d: 2.0 ti 1.S 1-+-f-H-J.-j-lt-fl-+-I-J,I...lC~=J.j2L,!.0~A-I-+-+~#1+Il f-W-+-l-l--l-I-l~+-I---1---1--Pl-l..Y+-~-+_+~-+-l-l-++I+I 1.0 f-++-+lf ~ O.S \ VCFSV 1.0 3.0 I-+-f-H-J.-j-'+fl-++-~H-H+t+-+~.-I-H-+-H+l ~ 1I 0.4 g §ffi 2.S f-W----+-I-I-H+I+--++~I\+ \f+++++--++I~C\.-J=L4h!0+A.f.!.j ./ so = TJ /v / S.O r-"--'----'-rT'TTTr'-r,..-"rn'"TTIr-'--'---'----'-rTTTn _ TJ=100oc ~ 4.S I-+-f-H-t\l-l+fl-+-I+-+-H-H+t+--i\-\+--i--t-t-ffi+l 20 0.01 40 Ic/'a = 10 = '" C> 2.0 S.O ~ 1.8 ~ 1.S 1\l 12 0.9 :l 8 06 . VCE @2Soc VCE @ 100°C ~ 0.3 1.0 Ic/'a = 10 2.4 2.4 ~ 2.1 ,,- -- / '" ~ / 2.1 ~ 1.8 V 12Ioc aE~ '"~ 1.5 ;:: 1.2 10 ...... 0.3 20 0.4 40 FIGURE 5 - COLLECTOR CUTOFF REGION f=VCE - 250 V ./ z ...... 40 200 400 i'-- ~ ~ 102 10 20 ~ ~200 I- '" 2.0 5.0 10 IC. COLLECTOR CURRENT lAMPS) i'r-., 1/ 103 1.0 FIGURE 6 - Cob. OUTPUT CAPACITANCE 400 r-- 1-I00oC ::'" I r-- r--150C W ~ 0.9 :> 0.6 2.0 5.0 10 IC. COLLECTOR CURRENT lAMPS) f-- TJ -125°C .-~ rh' -~C . ~ 104 ~ 0.1 0.2 0.5 1.0 Is. aASE CURRENT lAMP) 2.7 §" 2.7 ~ O.OS 3.0 3.0 j 0.02 FIGURE 4 - BASE-EMITTER SATURATION VOLTAGE FIGURE 3 - COLLECTOR-EMITTER SATURATION VOLTAGE ~ iii ~-N-+--H--I-++l-l+---+--t==t='I"'l-+++tl 111111 5~ I I 1'-1-- "- 5100 <.i 8 ~ 100 I-- 1--250C 50 10- I -0.2 40 +0.2 +0.4 +0.6 4.5 +0.8 VBE. BASE·EMITTER VOLTAGE (VOLTSI 1-550 10 20 50 100 VR. REVERSE VOLTAGE (VOLTS) MJ10022, MJ10023 TABLE 1 - TEST CONDITIONS FOR DYNAMIC PERFORMANCE III RESISTIVE RBSOA AND INDUCTIVE SWITCHING VCEOlsUlI MIT HING TURN ON TIME Put .. -.n:v .J Width] ,~ --'-'--r-'-""J [ ........ Pul,.W,dth adlusted to obtell'l.pec,fled ZO -Z B 181 .,ju ...d to Obtain the forcMt hFE d ..lred Ie (R","tVII TURN-OFF TIME SWltch,ng. PW Varied to Anain Pull. Width le·,OOmA = 25 U.. induc:'tIve lW.tetllnl c:ircu It . . the input 10 the r••I,tive tNt circuit. ~,I -v· Leell'- 10 mH Vee· 10 V Leon '" Reo,," 0 7 n 180~H Reoll" 0 05 VClemp'" VCEOI,u.1 01 0, OJ 04 n VCC=20V INDUCTIVE TEST CIRCUIT 2N2907 2N2222 2N3762 MJE15029 MJE15028 lN914 lN914 lN914 O. 01 0' OJ Vee" 250 V RL" 12.5 n Pul .. Width = 251J.. OUTPUT WAVEFORMS RESISTIVE TEST CIRCUIT t, AdJu.~d to Obtain Ie leM __ leLEZk= 't ~Iamped Ve,! ~" v~ ~ "t- __ L co,' (lCM) 1,~--­ -,- Vc:I.",p Ve lamp Test EQ'Hpment ~, Scope - TektronIX 475 or EqunllI'ent 1-'2-1 "Adjust - V such that VBE(off) = 5 V except as required for RBSOA (Figur. 14). FIGURE 8 - TYPICAL PEAK REVERSE BASE CURRENT FIGURE 7 - INDUCTIVE SWITCHING MEASUREMENTS 10 ICIoI_ IC/ - 911% VCEM ~ 8.0 I1\911% ICM :; i--l I-t,~ r- / -----\- -- --- -- 111%VCEM 90%181 "--"'" --TIME 200 1.75 9.0 Vclamp t"ffl~tfl-I-t,,- -tsv VCE 18 - _ ~ ......- ".... I / VCEM :'\. 10%·...... ICM ~ 7.0 ffi~ a 6.0 50 ~ 40 t3.0 N .!P -- ;;;1.25 .=, 25 o Ic = 20 A 2.0 3.0 4.0 50 6.0 VSEloHI. REVERSE BASE VOLTAGE (VOLTS) FIGURE 9 - TYPICjl.L INDUCTIVE SWITCHING TIMES rrIO~OC ~ J ~IC@l~ ICM=20A lSI = I A VCEM = 250 V t-- lsv @ 25°C '\~ '" "" ....... ~ o - - IB1 = I A Vcl amp = 250 V TJ = 25°C ".... 1.0 ;= 50 / 1.0 :g 1.00 .75 ./ 2.0 $V 1.50 V ~ ~2% IC .....- ........... ~ 1.0 tc@2~ l - I 2.0 3.0 4.0 5.0 6.0 VBEloH). BASE-EMITIER VOLTAGE (VOLTS) 1-551 7.0 8.0 70 8.0 MJ 10022, MJ 10023 .. SWITCHING TIMES NOTE In resistive switching circuits, rise, fall, and storage times have been defined and apply to both current and voltage waveforms since they are in phase. However, for inductive loads which are common to SWITCH MODE power supplies and hammer drivers, current and voltage waveforms are not in phase. Therefore, separate measurements must be made on each waveform to determine the total switching time. For this reason, the following new terms have been defined. tsv = Voltage Storage Time, 90% IB1 to 10% VCEM trv = Voltage Rise Time, 10-90% VCEM tfi = Current Fall Time, 90-10% ICM tti = Current Tail. 10-2% ICM tc = Crossover Time, 10% VCEM to 10% ICM An enlarged portion of the inductive switching waveform is shown in Figure 7 to aid on the visual identity of these terms. For the designer, there is minimal switching loss during storage time and the predominant switching power losses occur during the crossover interval and can be obtained using the standard equation from AN-222A: PSWT = 112 Vcclc(tdf In general, trv + tfi "" tc. However, at lower test currents this relationship may not be valid. As is common with most switching transistors, resistive switching is specified at 25°C and has become a benchmark for designers. However, for designers of high frequency converter circuits, the user orinented specifications which make this a "SWITCHMODE" transistor are the inductive switching speeds (tc and ts v ) which are guaranteed at 100°C. FIGURE 10 - TYPICAL TURN-ON SWITCHING TIMES 2.0 FIGURE 11 - TYPICAL TURN-oFF SWITCHING TIMES 2.0 _ VCC=250V c ICIIBI = 20 ~ TJ = 25°C 1.0 1.0 0.5 0.5 i= f:: r- I VCC = 250 V lellBl - 20 VBE(oll) = 5 V Is ./ V ~Ir ./ ~ .......... ['. O. 1 ~ 0.1 Id~ -- 0.05 1.0 ......11- ~ 10.2 2.0 5.0 10 IC. COLLECTOR CURRENT (AMPS) 0.05 0.02 40 20 0.4 1.0 2.0 5.0 10 Ie. COLLECTOR CURRENT (AMPS) 40 20 FIGURE 12 - THERMAL RESPONSE 1. 0 .5 f= ~ 5 ..... 1--'" - R8JCCtI- r(tl R8JC R8JC - 0.7 0 C/w Max o CURVES APPLY FOR POWER PULSE TRAIN SHOWN REAO TIME Atll TJ(pk)- TC = P(pk) R6JC(t) - r;::: p- - 0=.1 1 0.1 ~ 0=.2 2 0.0 1 0=.5 '-:: P(pkl tJ1.Sl Single Pulse 1:~~ II OUTY CYCLE, 0 = tl/t2 11 1.0 100 10 t. TIME (MSI 1-552 1000 10000 MJ10022, MJ10023 SAFE OPERATING AREA INFORMATION The Safe Operating Area figures shown in Figures 13 and 14 are specified for these devices under the test conditions shown. FORWARD BIAS FIGURE 13 - MAXIMUM FORWARO BIAS SAFE OPERATING AREA There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate IC-VCE limits of the transistor that must be observed for reliable operation; i.e .. the transistor must not be subjected to greater dissipation than the curves indicate. The data of Figure 13 is based on TC = 25°C; TJ(pk) is variable depending on power level. Second breakdown pulse limits are valid for duty cycles to 10% but must be derated when TC;;' 25°C. Second breakdown limitations do not derate the same as thermal limitations. Allowable current at the voltages shown on Figure 13 may be found at any case temperature by using the appropriate curve on Figure 15. TJ(pk) may be calculated from the data in Figure 12. At high case temperatures. thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second br~akdown. 100 SO ;;; 20 ~ 10 S. S.O 2.0 '" => <> 1.0 0 '" O.S !;i 0.2 ::l 0 <> 0.1 -="O.OS 0.02 10/" , (TURN·ON SWITCHING) ~ f= __: __ ~~~~:A~ ~~E LTO ~ - de SECOND BREAKDOWN LTD TC - 2S0C 1.0 2.0 MJ10022 MJ10023S.O 10 20 SO 100 200 400 VCE. COLLECTOR EMITTER VOLTAGE (VOLTS) FIGURE 14 - MAXIMUM RBSOA. REVERSE BIAS SAFE OPERATING AREA REVERSE BIAS For inductive loads. high voltage and high current must be sustained simultaneously during turn-off. in most cases. with the base to emitter junction reverse biased. Under these conditions the collector voltage must be held to a safe level at or below a specific value of collector current. This can be accomplished by several means such as active clamping. RC snubbing. load line shaping. etc. The safe level for these devices is specified as Reverse Bias Safe Operating Area and represents the voltage-current condition allowable during reverse biased turn-oft. This rating is verified under clamped conditions so that the device is never subjected to an avalanche mode. Figure 14 gives the RBSOA characteristics . ~ ~ 80 70 \ >- i13 \ IC/IB;;' 20 60 2SoC,;;; TJ';;; 100°C \ '" o SO TURN-OFF LOAD \ t; 40 LINE FOR MJl 0023 ~ 8 ~ 30 THE LOCUS FOR MJ10022 IS SO V LESS 20 ~ 10 o o \ ~ 1--2 V .;;; VBE(off)';;; 8 V ......... RBE = 24 n 100 200 300 400 SOD 600 700 VCEM • PEAK COLLECTOR-EMITTER VOLTAGE (VOLTS) FIGURE 15 - POWER DERATING 100 ~ b-.. "'" !! so '"t; 0 "" ....... THERMA~ ~ 60 z OERATING '";::: ~ .......... 40 '"~ SECO~~~~~~~DOWN _ I"'-.... "'- .......... ....... r--..., " ~ 20 o o 40 120 80 TC. CASE TEMPERATU RE (DC) 1-553 .............. ........ " 160 ........... 200 III MJI0024 MJI0025 Dl ® MOTOROLA Designer's Data Sheet 20 AMPERE NPN SILICON POWER DARLINGTON TRANSISTORS SWITCH MODE SERIES NPN SILICON POWER DARLINGTON TRANSISTORS WITH BASE-EMITTER SPEEDUP DIODE 750 and 850 VOLTS 250 WATTS The MJ10024'and MJ10025 Darlington transistors are designed for high-voltage, high-speed, power switching in inductive circuits where fall time is critical. They are particularly suited for line-operated switch mode applications such as: Qe.igner's Data for "Worst Cas." Conditions • AC and DC Motor Controls • Switching Regulators The DeSigner's Data Sheet permits the design of most circuits entirely from the informatio,n presented. Limit data - representing device characteristics boundaries - are given to facilitate "worst .case" design. • Inverters Solenoid and Relay Drivers • • Operating Temperature Range -65 to +200~C • 1DOoC Performance Specified for: Reversed Biased SOA with Inductive Loads Switching Times with Inductive Loads Saturation Voltages Leakage Currents ~ "t: ~ 100 15 ~ 6 J~E·· =f t. 0 .. MAXIMUM RATINGS Rating 2 CAS' Symbol MJ10024 MJ10025 Unit Collector-Emitter Voltage VCEO(sus) 760 850 Vdc Collector-Emitter Voltage VCEV 1000 1200 Vdc Emitter Base Voltage VEB 8.0 Vdc Collector Current - Continuous IC ICM 20 40 Adc IB IBM 10 20 Adc Po 250 143 1.43 Watts W/oC -65 to +200 °c -Peak(1) Base Current - K _ _ _.-1 STYLE 1 PIN 1. Continuous -Peak(1) Total Power Dissipation @TC= 25°C @TC=100oC Derate above 25°C Operating and Storage Junction Temperature Range Thermal Resistance. Junction to Case Maximum Lead Temperature for Sqldering Purposes: 1/8- from Case for 5 Seconds m 1.11.13",,,,e ITlvel FOR LEAOS TJ, Tstg 1.1113""",e Tlvelael 4 DIMENSIONS AND TOLERANCES PER ANSI Y145, 1973 DIM A • C THERMAL CHARACTERISTICS Characteristic NOTES I DIMENSIONS Q AND V ARE DATUMS 2 IS SEATING PLANE AND DATUM 3 POSITIONAL TOLERANCE FOR MOUNTING HOLE Q a E F Symbol Max Unit R8JC 0.7 °C/W H J TL 275 °c n G K R u V (1) Pulse Test: Pulse Width = 5 ms, Duty Cycle .;; 10%. CASE 1-05 1-554 MJ 10024, MJ 1 0025 ~ ELECTRICAL CHARACTERISTICS (TC ~ 25°C unless otherwise noted) Characteristic 'I OFF CHARACTERISTICS Collector-Emitter Sustaining Voltage (Table I) (lC= l00mA,IB=O) MJ10024 MJ10025 VCEO(sus) Collector Cutoff Current 750 850 - - mAde ICEV - - ICER - - lEBO - hFE (VCEV = Rated Value, VBE(off) = 1.5 Vde) (VCEV= Rated Value, V8E(off)= 1.5 Vde, TC = 150°C) Collector Cutoff Current (VeE = Rated VCEV, RBE = 50 n, TC = 100°C) Emitter Cutoff Current Vde 0.:i5 5.0 5.0 mAde - 175 mAde 50 - 600 - - - - 2.2 5.0 2.5 - - (VEB = 2.0 V, IC = 0) SECOND BREAKDOWN Second Breakdown Collector Current with base forward biased Clamped Inductive SOA with base reverse biased ON CHARACTERISTICS (1) DC Current Gain (IC = 5.0 Ade, VCE = 5.0 V) Collector-Emitter Saturation Voltage Vde VCE(sat) (IC = 10 Ade, IB = 1.0 Ade) IC = 20 Ade, IB = 5.0 Ade) (lC = 10 Adc,IB = 1.0 Ade, TC = 100°C) Base-Emitter Saturation Voltage VBE(sat) (IC = 10 Ade, IB = 1.0 Ade) (IC = 10 Ade,IB = 1.0 Ade, TC = 100°C) Diode Forward Voltage - Vde - 2.5 2.5 Vf - 1.25 4.0 Vde Id - - 0.03 0.6 0.3 1.8 I'S tr (IF= lOAde) DYNAMIC CHARACTERISTICS Output Capacitance (VCB = 10 Vde, IE = 0, f test = 1.0 kHz) SWITCHING CHARACTERISTICS Resistive Load (Table I) Delay Time Rise Time Storage Time Fall Time (VCC = 250 Vdc, IC = 10 A, IBI = 1.0 Ade, VBE(off) = 5.0 V, tp = 50 I's, Duty Cycle'; 2.0%) ts tf 2.0 5.0 0.6 1.8 2.9 7.0 1.0 3.3 Inductive Load, Clamped (Table I) Storage Time Crossover Time Storage Ti me Crossover Ti me Storage Time Crossover Time - (lCM = 10 A, VCEM = 250 V, IBI = 1.0 A, VBE(off) = 5 V, TC = 100°C) tsv te (ICM = 10 A, VCEM = 250 V, IBI = 1.0 A, RBE = 24 n, TC = l000 C tsv te - 21 9.0 50 25 I's (lCM = lOA. VCEM = 250 V, VBE(off) = 5.0 V, IBI Baker Clamped [1 Ampere Soureel, TC= 100°C) tsv te - 2.2 0.5 - I's (1) Pulse Test: PW = 300 I'S, Duty Cycle'; 2% 1-555 - I's ! I Ii il MJ10024. MJ10025 FIGURE 1 - DC CURRENT GAIN 300 /' 1..- r, 200 z ;;: -.... ~ \\ / TJ - 100°C TJ; 25°C 1.0 . 2.0 5.0 IC. COLLECTOR CURRENT (AMPS! 10 . \ ~ ~ ~1.0f--~T~J-;~25~0~CH+HP-+~~~~f=~-i-rtTtffi 'l\r~ -I I 0.5 11 ~2.0f--H-+~~tIt--++~~,Hi~-t+~~~Hiffi 1\\ 0.2 ~ 3.0 '";::. 2.4 I-- w 3.0 '" ~ 1/ 1.2 0.9 '"~ 0.3 ~ '" 0.6 ~ 0.9 r- 1.0 2.0 5.0 Ie COLLECTOR CURRENT (AMPS! 10 20 0.2 ... I=VC(-25DV a '"'" .... ; 102 10 1 I--- -100°C I - - -75°C 8 ~100 1.0 2.0 6.0 Ie COLLECTOR CURRENT (AMPS! 10 20 200 400 I'r-- 1/ 10 3 0.6 FIGURE 6 - Cob. OUTPUT CAPACITANCE 400 f-- Tr 125°C TJ; 100°C .... 0.3 FIGURE 5 - COLLECTOR CUTOFF REGION ~ ........... f--':I--'" t-:::- I-r- $' 104 .... ~ 2ho~ ~ gu 0.6 II 0.6 TJ ~ 1.2 TJ; 100°C 0.2 L v I :E I-- TJ - 25°C ". j t-11 J ~ 1.8 a: 1=1.5 r- A 15 ti 16/1~; 15.b 2.4 r- ~ 2.1 2.1 §; 1.8 ffi 10 II ~ 2.7 '"~ !:: ~ 6.0 FIGURE 4 - BASE-EMITTER SATURATION VOLTAGE ~.J Ici/lal; 0;1 0.5 1.0 la. BASE CURRENT (AMPS! . II 2.7 I 0.05 0.01 20 FIGURE 3 - COLLECTOR SATURATION VOLTAGE ~ II Ic~M r- ~ g 50 1/ 20 Jill ICI)l~ll ~ 3.0 f--H-+-t-1l\tttlt--++1-Hl:ttit-'HH-rtTtffi VCE;10Y V 1111 ~ 40 t-:H--t-t-t\:~~'~.oL z ~ 13 '----'--""""-"T"TT'I'TTIIII.-rITrrJ'T"'l"'lUrrrr-"1"1'T"-rr1 11'TTTTl 5.0 ~ I::;::: I-- :-- 1'. I'\~ r'\YCE-50Y/ V :: 100 FIGURE 2 - COLLECTOR SATURATION REGION J"., ~200 / w f'... '"z 5 :. - :"- ;'l100 ... .... ~ I I--- _25°C 10- 1 -0.2 o +0.2 +0.4 +0.6 VBE. BASE·EMITTERVOLTAGE IVOLTS) 50 40 +D.B 1-556 4.5 10 20 60 100 VR. REVERSE YOLTAGE (VOLTS! MJ 10024, MJ 1 0025 TABLE 1 - TEST CONDITIONS FOR DYNAMIC PERFORMANCE RESISTIVE RBSOA AND INDUCTIVE SWITCHING SWITCH IN TUfIIN ON TIME I.@r: Pull. Width aeliullild to t B 1 ed,YIMeI to obUIn me fon:ed obl"n,p.(:lfl~ hFE de.,red 'e (R""I,ve SWitching. Pull.W,dth = 2& ~.I PW Vaned 10 Attain Ie = 100mA TURN·OFF TIME U,. Incluct,l/e IWltch,". circuit .. the ,nput to therhlSt.ve"ltc,rc:ull 01 02 03 04 Leo,. '" 100 pH Reo,." 0 05 n VCC=20V INDUCTIVE TEST CIRCUIT 2N2907 2N2222 2N3762 MJE16029 OS 01 02 03 MJE1602S 1N914 lN91. Vcc~ 250V RL oc 25 n pul.. Width = 25 lN91. J,l. RESISTIVE TEST CIRCUIT OUTPUT WAVEFORMS t 1 Adlulted to Obte,n Ie Leo.IOeMI '2'"'---Vel.mD -,Vel,mp -i-"...j Test Eqo.llpment ~, Scope - T.ktronuc 475 or EqUivalent 'Adjust - V such that VBE(off) = 5 V except a. required for RBSOA (Figure 14). FIGURE 8 - TYPICAL PEAK REVERSE BASE CURRENT FIGURE 7 - INDUCTIVE SWITCHING MEASUREMENTS 16 IC~ /"V / ,C""""" - '\ 90% VCEM Vclamp ---j f-'c / 10% VCEM I 90% 181 ----' 12 So ~ "- .........- 10 ./"" a: a w ICM 8.0 '" ::li 6.0 :i< ~4.0 10%....... ~f- 2% IC -- --\- -- -- -- -- "-'"" 14 ...:;;in A~90%1CM l"ifl~lfl- f-- ',,- r-Isv VCE '8- - VCEM "'I. V 2.0 1P .........- TIME 8.0 IBI = 1.0 A VeEM = 250 V - . i 5.0 : 4.0 3.0 2.0 1.0 - 16 ./' 14 - ~ "'- i---- "" "'- ~25oc "'-l- / ...., ~ P"'" :g 10 V V r/ ~ 80 / V 6.0 .=, - r-- Isv@ 100 0 C 4.0 le@ 100°C_ 2.0 Ie @ 25°e 1.0 2.0 3.0 4.0 5.0 6.0 VBE(olf). AEVERSE BASE VOLTAGE (VOLTS) 18 .. 12 ~ il 20 IC~= 10~ \ .\ I ..... .........- 2.0 3.0 4.0 5.0 60 VBE(olfl. BASE·EMITTER VOLTAGE (VOLTSI 7.0 7.0 8.0 FIGURE 10 - TYPICAL INDUCTIVE SWITCHING TIMES 9.0 7.0 V il 1.0 FIGURE 9 - TYPICAL INDUCTIVE SWITCHING TIMES .. 6.0 I I ------ 10 ..... .......- 8.0 ~ I-""'" ....J.---lisv @ 100°C I / I @1~°S--r t,,;:;:..- ........... I-""""" t e @ 1000 e Ie @ 25°e lCM=10A IBI = 1.0 A 25 VeEr = V- 1 10 20 30 40 RBE. BASE·EMITTER RESISTANCE 10HMS) 1-557 50 MJ10024, MJ10025 III) SWITCHING TIMES NOTE In resistive switching circuits, rise, fall, and storage times have been defined and apply to both current and voltage waveforms since they are in phase. However, for inductive loads which are common to SWITCH MODE power supplies and hammer drivers, current and voltage waveforms are not in phase. Therefore, separate measurements must be made on each waveform to determine the total switching time. For this .reason, the following new terms have been defined. tsv = Voltage Storage Time, 90% IS 1 to 10% VCEM trv = Voltage Rise Time, 10-90% VCEM tfi = Current Fall Time, 90-1O% ICM tti = Current Tail, 10-2% ICM tc = Crossover Time, 10% VCEM to 10% ICM An enlarged portion of the inductive switching waveform is shown in Figure 7 to aid on the visual identity of these terms. For the designer. there is minimal switching loss during storage time and the predominant switching power losses occur during the crossover interval and can be obtained using the standard equation from AN-222A: PSWT = 112 Vcclc(tclf In general, trv + tfi "" tc. However, at lower test currents this relationship may not be valid. As is common with most switching transistors, resistive switching is specified at 25°C and has become a benchmark for designers. However, for designers of high frequency converter circuits, the user orinented specifications which make this a "SWITCH MODE" transistor are the inductive switching speeds (tc and ts v ) which are guaranteed at 100°C. FIGURE 11 - TYPICAL TURN-ON SWITCHING TIMES 2.0 = VCC=250V 1.0 IC/ISI = 5.0 ~ = TJ = 25°C I liS 1 = 10 FIGURE 12 - TYPICAL TURN-OFF SWITCHING TIMES 5.0 -I 2.0 0.5 _f-' ............. "t'-. 1 ~ - - IS .-I'""" r-k If Ir IV .1 0.2 0.05 ...... Id IT 0.02 0.2 0.5 1.0 2.0 5.0 IC. COUECTOR CURRENT (AMPSI le/lsl = 5.0 I- Vec = 250 V ICIIS; = 0.1 VSE(.lfl - 5.0 V TJ = 25°C 0.05 0.2 0.5 1.0 2.0 5.0 Ie. COLLECTOR CURRENT (AMPSI - 10 20 r- '10' .!-!- 1= f:: 10 20 FIGURE 13 - THERMAL RESPONSE 1.0 f= 1=0 .5 L. f-- t;::: ;:;;--- 0=.2 2 0=.1 1 ~~ ..... -: 01 tJl..Il Smgle Pulse ~;-~ Lli III 0.01 R.JCltl- rlt) R.JC R.JC = 0.7 oCIW Max o CURVES APPLY FOR POWER PULSE TRAIN SHOWN READ TIME At 11 TJlpk} - TC = Plpk} R.JCII} Plpk} 1.0 ~UTY I 10 100 t. TIME IMS} 1-558 CYCLE, 0 = 11/12 1000 10000 MJ 10024, MJ 10025 SAFE OPERATING AREA INFORMATION The Safe Operating Area figures shown in Figures 1 4 and 1 5 are specified for these devices under the test conditions ahown. FORWARD BIAS FIGURE 14 - MAXIMUM FORWARD BIAS SAFE OPERATING AREA There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate IC-VCE limits of the transistor that must be observed for reliable operation; i.e .• the transistor must not be subjected to greater dissipation than the curves indicate. The data of Figure 14 is based on TC = 25°C; TJ(pk) is variable depending on power level. Second breakdown pulse limits are valid for duty cycles to 10% but must be derated when TC;;' 25°C. Second breakdown limitations do not derate the same as thermal limitations. Allowable current at the voltages shown on Figure 14 may be found at any case temperature by using the appropriate curve on Figure 16. TJ(pk) may be calculated from the data in Figure 13. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown. 40 20 ~ 10 (TURN.O~°sWITCHING) :;; ...5-z ~ 1.0 a a: 0 t; de ~ 0.1 8 f= .!d' 0.01 1.0 TC = 25°C 2.0 MJ10024 MJ10025 5.0 10 20 50 100 200 VCE. COLLECTOR· EMITTER VOLTAGE (VOLTS) 500 850 FIGURE 15 - MAXIMUM RBSOA. REVERSE BIAS SAFE OPERATING AREA REVERSE BIAS For inductive loads, high voltage and high current must be sustained simultaneously during turn-off. in most cases. with the base to emitter junction reverse biased. Under these conditions the collector voltage must be held to a safe level at or below a specific value of collector current. This can be accomplished by several means such as active clamping, RC snubbing, load line shaping. etc . The safe level for these devices, is specified as Reverse Bias Safe Operating Area and represents the voltagecurrent condition allowable during reverse biasedturn-off. This rating is verified under clamped conditions so that the device is never subjected to an avalanche mode. Figure 15 gives the RBSOA characteristics. 40 ~ 35 '"~ 30 a: ..,a:=> a: tl ..,,.~ 0 RBE = 24!l 25 20 15 ~ 10 Q. 1i 5.0 00 VBE(olf) = 5.0 V \, I 25°C ~ TJ ~ 100°C C/'B;;' 5.0 \ 1\ N 1400 200 400 600 800 1000 1200 VCEM, PEAK COLLECTOR·EMITTER VOLTAGE (VOLTS) FIGURE 16 - POWER DERATING 10 0 ~ t-..... '":"" ~ 80 '"t;o aERATING '"z ;: w o ......... THERMA~ ~ 60 ~ i'-.. SEC aNa B~EAKObwN_ aERATING ......... !"-- "i'-.. 40 '"~ o 40 " 120 80 TC, CASE TEMPERATURE lOCI 1-559 r--.... ............... ;: 20 o ......... ........ 160 " "" 200 MJ10041 ® MJI0044 MJl0047 Designer's Data Sheet MOTOROLA 25, 50, and 100 AMPERE NPN SILICON POWER DARLINGTON TRANSISTOR 25 kVA ENERGY MANAGEMENT SERIES SWITCHMODE DARUNGTON TRANSISTORS 25,50 and 100 Ampere Operating Current 250, 450 and 850 VOLTS 250 WATTS These Darlington transistors are designed for industrial service under practical operating environments requiring fast switching speed for highly efficient systems operating at high frequency such as inverters, PWM controllers and other high frequency systems operating from 120,230 and 460 V lines. Designer'. Data for "Worst-Case" Conditions The Designer's Data Sheet permits the design of most circuits entirely from the information presented. limit data - representing device characteristics boundaries - are given to facil~ itate "worst-case" design. COLLECTOR ~N STYLE 1: v PIN 1. BASE 2. EMmER 3 COLLECTOR 1rD • ·"""'Ol~l1c9=t1f I [±] "Emitter-Collector Diode is a fast recovery high power diode. Note: The 8 ohm resistor is not included in the MJ10044 and MJ10047. MAXIMUM RATINGS Mechanical Ratings Rating Value Unit Mounting Torque (To heat sink with 6-32 Screw) (Note 1) 8.0 in.-Ib Lead Torque (Lead to bus with 5 mm Screw) (Note 2) 20 in.-Ib Per Unit Weight 41 grams 0.5 ·CIW THERMAL CHARACTERISTICS _: Thermal Resistance, Junction to Case, R//JC Mica Insulators available 8S separate items. 0.003" thick. Motorola Part Numbor 14CSBI2387BOO3. 1. A Bollovilio washer of 0.281" 0.0" 0.138" 1.0" 0.013" thick and 43 pounds flat is recommended. 2. The maximum penetration of the screw should be limited to 0.50". 3. To adapt the collector and emitter terminals to quick connect terminals. AMP 250 Series Faston tab PIN 61499-1 is suggested. 4. The mounting holes of this package are compatible with T0-204 (formerly TO-3) mounting holes. j '. '.- • NOTES: 1. DIMENSIONS A AND B ARE DATUMS AND T IS BOTH A DATUM SURFACE AND SEATING PLANE. 2. POSITIONAL TOLERANCE FOR MOUNTING HOLES: !t!.0'0.251O.010J@!T!AG!BGI 3. DIMENSIONING AND TOLERANCING PER ANSI V14.5. 19B2. 4. CONTROLLING DIMENSION: INCH EXCEPT FOR METRICALLYTHREAOEO INSERTS. MILLIMETERS INCHES DIM MIN MAX MIN MAX A 39.11 40.13 1.540 1.5BO B 33.93 34.95 1.336 1.376 20.32 C 0.800 0.B3 0.021 0.033 D 0.68 E B.30 B.Bl 0.321 0.341 F 4.44 0.115 G 29.61 BSC 1.16B BSC H 5.0B BSC 0.200 BSC J 0.93 1.09 0.031 0.043 K 25.40 1.000 L 2.92 3.30 0.115 0.130 N 11.14 11.39 0.615 0.6B5 Q 3.13 3.88 0.141 0.153 R 10.41 10.19 0.410 0.425 5.84 6.35 0.230 0.250 S M5 .8 (METRIC TH RDJ U 1.52 0.050 0.6 V 1.21 W 46 4 I 1 30.15 BSC 1.181 BSC X CASE 353-01 1-560 MJ10041,MJ10044,MJ10047 MAXIMUM RATINGS (Continued) (TC = 25'C unless otherwise noted) Symbol MJ10041 MJ10044 MJ10047 Unit Collector-Emitter Voltage (lB = 0) VCEO 850 450 250 Vdc Collector-Emitter Voltage (RBE = 10 Ohms) VCER 900 500 300 Vdc Collector-Base Voltage VCB 900 500 300 Emitter-Base Voltage VEB Rating Collector Current - Collector Current Base Current - Operating (TC = 115'C) (TC = 85'C) fTC = 85'C) Continuous Peak Repetitive Peak Nonrepetitive IC(op) IC Continuous Peak Nonrepetitive Total Device Dissipation Derate above T C = 25'C 8.0 - - 100' 37.5 75 125 75 150 250 100 300 500 50 ELECTRICAL CHARACTERISTICS (TC A A 'B 25 50 A Po 250 2.0 333 Watts WI'C Watts TJ, Tstg -55 to + 150 -55 to 200 'c For I-minute overload Operating Junction and Storage Temperature Range For I-minute overload - - 25 Vdc Vdc = 25'C unless otherwise noted.) Characteristic Symbol Min Max Unit OFF CHARACTERISTICS Collector-Emitter Sustaining Voltage (1) (lC = 125 mAde) VCEO(sus) MJ10041 MJ 10044 MJ10047 850 450 250 Collector Cutoff Current (VCE = Rated VCB, VBE(off) = 1.5 Vdc) (VCE = Rated VCB, VBE(off) = 1.5 Vdc, TC = 150'C) 'CEV Collector Cutoff Current (VCE = Rated VCER, RBE = 10 n, TC = 100'C) ICER Emitter Cutoff Current (VEB = 4.0 Vdc, IC = 0) lEBO MJl0041 MJ10044MJ10047 - - - Vdc - mA 2.0 10 10 mA mA 500 2.5 SAFE OPERATING AREA Second Breakdown Collector Current with Base Forward-Biased FBSOA Clamped Inductive SOA with Base Reverse-Biased RBSOA Overload Safe Operating Area OlSOA See Figures 32, 34 & 36 Sea Figures 33, 35 & 37 . See Figures 38, 39, 40, 41, 42 & 43 DYNAMIC CHARACTERISTICS Output Capacitance (VCB = 10 Vdc, 'E = 0, ftest = 1.0 kHz) (1) Pulse Test. Pulse width of 300 p.s, duty cycle ..... 2.0%. *This rating is with a 50% duty cycle, and is limited by power dissipation. Higher operating currents are allowable at lower duty cycles. MJ10041, MJ10044, MJ10047 ELECTRICAL C,",ARACTt:RISTICS (Continued) (TC = 25·C unless otherwise noted.) I Characteristic Symbol Min Max 25 - Unit ON CHARACTERIST1CS (1) MJ10041 DC Current Gain (lc (lC hFE = 25 Ade, VCE = 5.0 Vde) = 25 Ade, VCE = 10 Vde) 40 Collector-Erriitter Saturation Voltage (lC = 25 Ade, 18 = 2.0 Adel (lC = 37.5 Ade, IB = 7.5 Ade) (lc = 25 Ade, IB = 2.0 Ade, TC = 100·C) VCE(sat) Base-Emitter Saturation Voltage (lc = 25 Ade, IB = 2.0 Ade) (lC = 25 Ade,IB = 2.0 Ade, TC VBE(sat) = l00·C) - - Vde 2.0 5.0 2.5 Vde 3.0 3.0 MJ10044 DC Current Gain (lc (lC hFE = 50 Ade, VCE = = 50 Ade, VeE = 50 60. 5.0 Vde) 10 Vdc) Collector-Emitter Saturation Voltage (Ie = 50 Ade, IB = 1.67 Ade) (lc = 75 Ade, IB = 6.0 Adc) (lc = 50 Ade, IB = 1.67 Adc, TC = 100·C) VCElsat) Base-Emitter Saturation Voltage (lC = 50 Adc,IB = 1.67 Adc) (lC = 50 Ade, IB = 1.67 Ade, TC VBE(sat) = - Vdc 2.0 3.3 2.5 Vde - - 100·C) - - 3.0 3.0 MJl0047 DC Current Gain (Ie (lc = = hFE 100 Ade, VCE 100 Ade, VCE = 5.0 Vdc) = 10 Vde) Collector-Emitter Saturation Voltage (lc = 100 Ade, IB = 2.75 Ade) (lC = 100 Ade, IB = 2.75 Ade, TC Base-Emitter Saturation Voltage (Ie = 100 Ade, IB = 2.75 Ade) (Ie = 100 Ade, IB = 2.75 Ade, TC 75 90 VCE(sat) = - 3.5 3.5 Min Typ Max Unit td - 0.03 0.25, IJ.$ tr - 1.2 5.0 ts - 3.3 10·' tf - 1.5 5.0 10o-C) oS; Vde - - 100·C) (1) Pulse Teat: Pulse width of 300 JLs, duty cvcle - 2.0 2.5 VBE(sat) = - Vde 2.0%. ELECTRICAL CHARACTERISTICS (Continued) (TC = 25·C unless otherwise noted.) I .Symbol I Characteristic· SWITCHING CHARACTERISTlCS MJ10041 Resistive Load Delay Time Rise Time Storage Time (VCC = 300 Vde, IC = 25 A, IBI VBE(OFF) = 5.0 V, tp = 50 IJ.$, Duty Cycle .. 2.0%) = 2.5 A, Fall Time Inductive Load, Clamped Storage Time Crossover Time Storage Time Crossover Time (lCM = 25 A, VCEM = 300 V, VBE(OFF) = 5.0 V, IBI = 2.5 A) TJ = 100·C tsv Ie TJ = 25·C tsv te 1-562 - 5.0 15 3.0 10 3.5 10 1.5 5.0 IJ.$ MJ10041, MJ10044, MJ10047 .. ELECTRICAL CHARACTERISTICS (Continued) (TC = 25·C unless otherwise noted.) I Characteristic Symbol I Min Typ Max Unit td - 0.03 0.25 iJ.$ tr - 0.9 3.0 - 1.5 3.8 0.4 1.3 SWITCHING CHARACTERISTICS MJ10044 Resistive Load Delay Time Rise Time Storage Time (VCC = 250 Vdc, IC = 50 A, IBl VBE(OFF) = 5.0 V, tp = 50 iJ.$, Duty Cycle .. 2.0%) = 1.67 A, ts Fall Time tf Inductive Load, Clamped Storage Time Crossover Time Storage Time Crossover Time TJ (lCM = 50 A, VCEM = 250 V, VBE(OFF) = 5.0 V, IBl = 1.67 A) = tsv 100·C tc TJ tsv = 2S·C tc - 2.5 7.5 0.8 3.0 1.5 3.8 0.5 1.5 0.035 0.25 1.2 4.0 1.4 4.0 0.25 1.0 iJ.$ MJ10047 Resistive Load Delay Time Rise Time Storage Time td (VCC = 150 Vdc, IC = 100 A, IBl VBE(OFF) = 5.0 V, tp = 50 iJ.$, Duty Cycle" 2.0%) = 2.75 A, tr ts Fall Time tf - iJ.$ Inductive Load, Clamped Storage Time Crossover Time Storage Time Crossover Time TJ (lCM = 100 A, VCEM = 150 V, VBE(OFF) = 5.0 V, IBl = 2.75 A) = tsv 100·C tc TJ tsv = 25·C Ie - 2.8 8.0 1.4 4.0 iJ.$ 2.2 6.5 1.0 3.0 - - 125 W 250 Apk - 2.7 1.7 2.5 5.0 5.0 5.0 0.2 0.4 0.4 1.0 1.0 1.0 3.5 10 25 12.5 25 50 0.1 0.1 0.4 1.0 0.5 1.0- C-E DIODE CHARACTERISTICS Power Dissipation (lB = 0) Po Single Cycle Surge Current (60 Hz) IFSM Forward Voltage (1) (IF = 25 Adc) (IF = 50 Adc) (IF = 100 Adc) MJ10041 MJ 10044 MJ10047 Reverse Recovery Time (IF = 25 Adc, di/dt = 25 A/iJ.$) (IF = 50 Adc, di/dt = 50 A/iJ.$) (IF = 100 Adc, di/dt = 100 A/iJ.$) MJ10041 MJ 10044 MJ 10047 Reverse Recovery Current (IF = 25 A, di/dt = 25 A/iJ.$) (IF = 50 A, di/dt = 50 A/iJ.$) (IF = 100 A, dildt = 100 A/iJ.$) MJ10041 MJ10044 MJ10047 Forward Turn-On Time (Compliance Voltage (IF = 25 Adc) (IF = 50 Adc) (IF = 100 Adc) lIdc VF - trr IRM(rec) = 250 V) ton MJ10041 MJ10044 MJ10047 (11 Pul.e Test: Pul.e width of 300 JLS, duty cycle", 2.0%. 1-563 -- iJ.$ A . iJ.$ MJ10041,MJ10044,MJ10047 III' TYPICAL ELECTRICAL CHARACTERISTICS' MJ10041 - FIGURE 1 - DC CURRENT GAIN 400 TJ = 1000~V z ;;;: 200 / !E ~ 100 V / ./ '" i\ TJ = 25°C' 200 II ,i'... ~ /V >- '"~ '" 13 100 v VCE = 2.0 1\.1\ 13 '-' Q '-' Q i ..- r...... 1\ VCE = 1.0 V ,~. V to FIGURE 2 - DC CURRENT GAIN 400 r--, ,...-: f-- ~ / 50 / .; 50 / VCE = 5 0 V II I / 20 0,5 1.0 5.0 2.5 10 15 TJ = 25°C I I I / .25 20 0.5 50 Ie. COLLECTOR CURRENT IAMPSI 1.0 2.5 5.0 10 15 IC, COLLECTOR CURRENT IAMPSI 25 50 MJ10044 FIGURE 3 - DC CURRENT GAIN 500 I - t- II L~ l~o~i / Ii! ~ FIGURE 4 - DC CURRENT GAIN 500 I' /TJ = 25°C § TJ 1= I II }5O~ \ 100 h- i' - l'\. '\ VeE = 2 0 v Ii! B ~C~~ll0V ....-:: ~ 200 // 100 '-' Q Q ; 50 I z ~ 200 ,I ...... V z ~ v VCE = 50 / .JO 1.0 2.0 3.0 .t v 5.0 20 3D 10 IC, COLLECTOR CURRENT IAMPSI SO \ 50 '/ 30 10 75 100 \ 2.0 30 5.0 20 30 10 IC' COLLECTOR CURRENT IAMPSI 50 75 100 MJ10047 FIGURE 5 - DC CURRENT GAIN FIGURE 6 - DC CURRENT GAIN 800 800 500 iJ ~ 11~OOC V ~ !z ~ '" 13 ;' 200 ~ i /' 500 V v r..... .......... r..... 1-""1- VrJ = 25°C ~ k:::f- /'fP' ~ 200 v: '" 13 '-' Q VV VCE=10V t'Ni ~. ~ VCE = 2.0 V \ ~ 100 VCE - 5.0 V I I I 50 I 2.0 - TJ = 25°C !E' 100 40 / 1.0 - to 3,0 5.0 50 I 10 25 IC' COLLECTOR CURRENT IAMPSI 50 100 1-564 40 V 1.0 2.0 3,0 5.0 10 25 IC. COLLECTOR CURRENT IAMPSI 50 100 MJ10041.MJ10044.MJ10047 TYPICAL ELECTRICAL CHARACTERISTICS (continued) MJ10041 FIGURE 7 - DC CURRENT GAIN 500 . ...,'" .., ~ .... FIGURE B - COLLECTOR SATURATION VOLTAGE ...... ~ .'" '\ TJ = 25°C 200 ~ ~ ,.'"i:3 \ 100 . ~ ~ '" 50 ... Q VCE = 600 V_ 1t 20 5.0 1.25 2.5 5.0 10 15 25 [ 1.S 14 12 -- 1.0 I-- _TJ = 25°C 0.8 TJ = 100°C ~P' l.J 04 02 o 0.5 125 [ Iclla = 10 ::j 8 ~ 50 18 8 os t"" - - I II 10 20 1.0 5.0 2.5 10 IC. COLLECTOR CURRENT (AMPS) IC. COLLECTOR CURRENT (AMPS) 25 50 MJ10044 FIGURE 9 - DC CURRENT GAIN 500 .ffi.. 200 a .., 50 ~ 20 FIGURE 10 - COLLECTOR SATURATION REGION 20 ..........,.. ....... ....... ~~ = 25~C ~ '" \. . .~ z IC'/18 = 1S ~ 14 100 ~ Jj 18 ~ 12 '" t: a: ,;, ~ VCE = 300 V c \ 10 50 2.5 5.0 10 20 30 50 IC. COLLECTOR CURRENT (AMPS) 100 8 ,.~ 250 10 I-- TJ = 25°C 08 I-- II 06 I-- 04 02 If - / " ....... TJ = 100°C 'I I II II o 1.0 .... v ~O 2.0 3.0 5.0 10 20 30 IC. COLLECTOR CURRENT lAMPS, 50 75 100 MJ10047 FIGURE 11 - DC CURRENT GAIN FIGURE 12 - COLLECTOR SATURATION REGION 1000 g '"~ 500 z :ii 200 .............. /TJ =25°C r... ~ .'",. ~ ~ ~ '"t; 50 8~ VCE=150V 20 10 5.0 IC/I~ = ~5 !:l ..,a ... 1t 1.8 I.S « 1.4 ~ 100 c 20 ,.~ 10 25 50 100 IC. COLLECTOR CURRENT (AMPS) 250 500 1-565 12 1.0 I-- TJ = 25°C I-- TJ=100oC 0.8 0.6 0.4 1.0 IL II 0.2 o ---" ~ II 2.0 3.0 5.0 10 25 IC. COLLECTOR CURRENT (AMPS) 50 100 MJ10041, MJ10044, MJ10047 TYPICAL ELECTRICAL CHARACTERISTICS (continued) MJ10041 FIGURE 13 - BASE·EMITTER SATURATION VOLTAGE FIGURE 14 - PEAK REVERSE BASE CURRENT 2.4 6 g t!j 4 .1 I. IC/IB: 10 t-- ~ 2.0 TJ : 25°C ,,; - ~ ~ 1.6 ~ i :: 1.2 ...- f-' TJ VI--' ~ 0 . /"" 0 TJ = 1DOoC- o~ ~ V ........- f-"'" f-"'" ....- ,/" 0 f -- ... 0.8 Ie = 25A = 2.5 A = 25"C 2r---- I-IBI 2.0 0.4 0.5 2.0 3.0 5.0 10 IC. COLLECTOR CURRENT lAMPS) 1.0 25 1.0 50 2.0 3.0 4.0 5.0 6.0 7.0 8.0 VBEloH). BASE.£MmER VOLTAGE IVOLTS) MJ10044 ___________________________________ FIGURE 16 - BASE·EMITTER SATURATION VOLTAGE 3.0 FIGURE 16 - PEAK REVERSE BASE CURRENT 16 IIII I-- I- 14 IJ/I~ 1iol I/- Ie = SOA IBI = 1.67 A TJ = 25"e f-- /V 2 .,/ V 'l 8 lL TJ = 25°C ........ i--'j; ,,- V l -I-" ~ 41- v b:::::: V TJ=100oC I-- 0 I 1. 0 1.0 2.0 3.0 5.0 10 25 IC. COLLEcrOR CURRENT lAMPS) 50 2.0 1.0 75 100 3.0 4.0 5.0 6.0 7.0 8.0 VBEloff) BASE·EMlmRVOLTAGE (VOLTS) MJ10047 FIGURE 17 - BASE·EMITTER SATURATION VOLTAGE 3.0 in !:i 2.6 0 - I- FIGURE 18 - PEAK REVERSE BASE CURRENT 16 I I II I~/I~! J5' 14 i ~ J ~ '"c 2.2 ~ 1.8 ! 1.4 !:i 0 > ~ ~ 1.0 -- 1.0 f-' ,..... - 15 'l i 1--1- 3.0 5.0 10 25 IC. COLLECTOR CURRENT lAMPS) 10 ~ 6.0 =!. i--r--' ....-V = l00A = 2.75 TJ = 25"C Ie riB a~ 8.0 ~4.0 TJ = 100°C 2.0 - 0- /,V TJ = 25°C 12 ,./'" L ~ V / 2.0 50 100 '·566 1.0 2.0 3.0 4.0 5.0 6.0 VBElolf). BASE·EMlmRVOLTAGE (VOLTS) 7.0 8.0 MJ10041,MJ10044,MJ10047 TYPICAL ELECTRICAL CHARACTERISTICS MJ1~1 (continued) ----------------------------------FIGURE 20 - TYPICAL TURN·ON SWITCHING TIMES FIGURE 19 - TYPICAL INDUCTIVE SWITCHING TIMES 3.0 5 Ile=50 1A IBI = 5 0 A VeEM = 250 V 2f\:C@ll000e ~\ "- ... 0.5 3 ~ ~ 1.0 ! oJ ~ :--- "' 0 Vee = 300 V IC/IS = 10 RSE=10n TJ 25°C 1.0 .O~ .0 I 2.0 "' --- I,.@ oooe I.v @ !SOe --=-- ~ 0.1 Ic @2S;c r .0 .0 .0 5.0 .0 7.0 VSE(oH). SASE-EMlmR VOLTAGE (VOLTS) 0.2 005 ....... ...... 1/ / '""" Id 0.03 0.5 8.0 I, 1.0 2.0 3.0 5.0 25 10 50 IC. COLLECTOR CURRENT (AMPS) MJ1mM4 ---------------------------------FIGURE 22 - TYPICAL TURN·ON SWITCHING TIMES FIGURE 21 - TYPICAL INDUCTIVE SWITCHING TIMES 20 5.0 ~ 4.0 \'" \. ~ "'" "' o o 05 ............ " 1.0 VCC = 250 V ICIIB 10 RBE 10 n TJ 25°C 1.0 1.0 -r-- --- ~ ~ ............ 3 Is.@ 100°C !:i ;::: oJ Is.@ 25°C .:::::- I --..;c le@25°C d- 02 ......... 01 - r-... 005 @100 o 1 2.03.040506.07.080 VBE(oH). BASE-EMITTER VOLTAGE (VOLTS) / - I,? Id 002 1.0 2.0 3.0 ;,...; ./ 20 30 5.0 10 IC. COLLECTOR CURRENT lAMPS) 50 75 100 MJ1~7----------------------------------- FIGURE 24 - TYPICAL TURN·ON SWITCHING TIMES FIGURE 23 - TYPICAL INDUCTIVE SWITCHING TIMES 0 r\" d .1 I IC = 200 A _ IBI = 2.5 A VCEM=100V- 100° .0 \ .0 ~ ~sv@2 ·C • .0 ~@ f"....: ~ t--- 0 0 le@25 0 1.0 2.0 0 5 - '" '" r-- 100°C 0 0 I-- VCC=150V -ICIIS =25 RBE =10 II TJ 25°C " I, 3 I'-.... 2 I"-- 3. 8.0 7.0 B.O 4.0 5.0 IS2. REVERSE BASE CURRENT lAMPS) 1 t-- 003 1.0 l' 1-567 -- I-" Id 005 1.0 I'--. 2.0 3.0 10 5.0 25 IC. COLLECTOR CURRENT lAMPS) 50 100 MJ10041,MJ10044,MJ10047 III] TYPICAL ELECTRICAL CHARACTERISTICS RGURE 25 - TYPICAL TURN-OFF SWITCHING TIMES MJ10041 (conlinued) FIGURE 26 - EMITTER-COLLECTOR DIODE FORWARD VOLTAGE 5.0 0 r--- Vce = 300 V .of=: VaEloH) = 5.0 V r--- Ic/1a=10 TJ = 25°C 2.0 r-- ~ V- I-- TJ ~ 25'C MJ1DD47 ~ 4.0 w I, 1/ ~ ~ 3.0 'f- V / > c ~ ~ 2.0 .5 815 1.0 o. 2 :!f o.1 0.5 5.0 10 2.5 IC. COLLECTOR CURRENT IA) 1.0 25 50 -- 5.0 ~ 80 ..- ;;; 2.0 , ~ 60 ::;40 "" o '"~ 220 0.2 2.5 5.0 10 25 IC. COLLECTOR CURRENT lAMPS) 50 100 RGURE 29 - TYPICAL TURN-OFF SWITCHING TIMES MJ10047 3.0 Df::::= ~ 5f=: o. 2 ........ I == = - I I II I V~cl= \~oIJ I! VaEloH) = 5.0 V Iclla = 40 >< --- f- ...... ./ If 0.0 5 0.0 3 1.0 2.5 5.0 10 25 IC, COLLECTOR CURRENT IA) 50 100 1-568 ........ " Thermal Derating '" z ;:: If .......... "" ""'- G 0.3 I. ~ '"o ~ O. 1 1.0 II II 100 FIGURE 28 - POWER DERATING 100 0.5 I"-- MJ10D41 10 1.0 10 1.0 l- IF. FORWARD CURRENT lAMP) 30 ~ - MJ1DD44 .- W ,./ (.--- RGURE %1 - TYPICAL TURN-OFF SWITCHING TIMES MJ10044 .;!, . . . v. o o 40 Second Breakdown I'.... Derating - r----.. i',. ........ '" .......... ...... 80 120 TC. CASE TEMPERATURE (OCI ........ 160 '" " 200 MJ10041,MJ10044,MJ10047 TABLE 1 - TEST CONDmONS FOR DYNAMIC PERFORMANCE _ vaOl••• 200 DRIVER SCHEMATIC ~, ...z 500~ II I, ,dlustod '0 obtain ..o.,fied Ie '000 ~2 'O,.F 1J -SOV PW varied to Attain 125mA 50 {I ~. ~~ 500 i; Vee +30V "'! J - y AdjuatR1 R' to obtain "" "" 2N3762 I t ~ ~ La.ll Vdamp = VCEO(sua) Vee"" 20V s 6.0 .... . TURN-OFI'TlME , r r , TUT e Input SeeAbowfor Detailed Co~~lon. 2 1N4937 : 0' Equivalent I 1 i·':,'P "::" le~£Zk= 1 j l 1-., 'ff-o ~ffi:- : Reail t I Leo" v e EVCEM L:f Vee __ RS == 0.1 • Adjust - bt ~ Vee n Time .......Vclamp -L-. 1-'2-J = 150 to 300 V Pulse Width '"" 50 ".. Adjust RL for leM REIIIS1IIIE TEST CIRCUIT OUTPUT WAVEFORMS t,Adju.tedto Obtain Ie ~ I ~ 20 2.0 0.5 125 1.0 5.0 2.5 10 IC.. COLLECTOR CURRENT (AMPS) IC. COLLECTOR CURRENT (AMPS) 25 50 --------------------______________ MJ10045 __________________________________ FIGURE 9 - DC CURRENT GAIN FIGURE 10 - COLLECTOR SATURATION REGION 20 50 0 ...-;:~ = 25~C 200 ~ 100 g§ 50 15 a'-' g " '\ /"" \ \ ~ 1S '" 1.2 0 ~ 1.0 "" 0 t; O.S Vep 150 v I I 20 IClls = 25 1.S ~ 0.8 ~ 0.4 ./ TJ = 25°& f-- TJ=loooe 25 50 100 IC. COLLECTOR CURRENT (AMPS) 250 500 1-579 o 1.0 V i-"',.... II II ~ 0.2 10 -- t-- 8 :> 10 5.0 1. 0 2.0 3.0 5.0 10 25 IC. COllECTOR CURRENT (AMPS) 50 100 MJ10042,MJ10045,MJ10048 TYPICAL ELECTRICAL CHARACTERISTICS (continued) --------------------------------MJ10042-------------------------------FIGURE 14 - TYPICAL PEAK REVERSE BASE CURRENT FIGURE 13 - BASE-EMITTER SATURATION VOLTAGE 5.0 2.4 ,-- H~/IB; '10 - :; ~ TJ ; 25°C ..... r- r-- r- ....... V -~;100OC' IZ 30 ~ a'" ~ ;i!i ~ 1\ 2.0 \ \ ~ ~ 0.4 0.5 2.0 3.0 5.0 10 IC. COLLECTOR CURRENT (AMPS) 1.0 I I IC; 25 A IBI ; 2.0 A VCEM; 300 TJ ; 25°C ~ 4.0 25 1.0 - \ " o o 50 ~ v - 10 2.0 3.0 40 5.0 6.0 70 8.0 9.0 10 VBE. BASE·EMITTER RESISTANCE (OHMS) ---------------------------------MJ10045---------------------------------FIGURE 15 - BASE-EMITTER SATURATION VOLTAGE 30 - '- FIGURE 16 - TYPICAL PEAK REVERSE BASE CURRENT 5.0 II I I~/I~ ~ L' v.: /.V 2 --- 1.0 2.0 3.0 .,'" 2.0 . ~ ........Vv 'K I. 5.0 10 25 IC. COLLECTOR CURRENT (AMPS) 1\ \ \ ffi 1.0 4 1 0 00 C 10 ~ 3.0 50 o o 75 100 - -- I- TJ = 25°C 4_ -- ~ '/ 8 I I Ic = 50 A IB = 1.67 A VCEM; 250 V TJ = 25°C '"~ 4.0 \ I, 10 20 30 40 50 6.0 7.0 80 VSE. SASE· EMITTER RESISTANCE (OHMS) 90 10 MJ10048 ---------------------------------FIGURE 17 - BASE-EMITTER SATURATION VOLTAGE 3.0 '";;:. !:i 2.6 c .'" r-- I- 5.0 II I I~/I~! J51 :; :l: '" ~ ~ 1.4 -- - 1.0 1.0 TJ = 25°C 2.0 3.0 '/ ,-1--' I-- i-f-'" TJ= 100°C 5.0 10 25 IC. COLLECTOR CURRENT (AMPS) 50 '" ;i!i \ \ 2.0 \ j 1.0 i ..I: c > ~ '" A 2.2 '" I!:! I::: 1.8 I I -IC=100A lSI; 2.75 A _ VCEM = 150V TJ = 25°C ~ 4.0 w !:i FIGURE 18 - TYPICAL PEAK REVERSE BASE CURRENT 100 1-580 - -- 3.0 \ o o '-..1'-4.0 20 60 80 RSE. SASE· EMITTER RESISTANCE (OHMS) 10 MJ10042,MJ10045,MJ10048 TYPICAL ELECTRICAL CHARACTERISTICS (continued) ---------------------------------MJ10042---------------------------------FIGURE 19 - TYPICAL INDUCTIVE SWITCHING TIMES FIGURE 20 - TYPICAL TURN-ON SWITCHING TIMES 50 3.0 II 40 f - f~ II 1111111 ~ ;:: .0 ~@25OC 1/ 20 V 01 ~ -' 0.1 I I 0.05 I 0.2 05 I0 2.0 5.0 10 20 RBE. BASE·EMITTER RESISTANCE (OHMS) 50 " 0.2 le@'25°e 10 o 0.5 w I I 'e@IOOoe V ./ .1 ~ ~ LL I, .... / Id 0.03 0.5 100 I Vee = 300 V leliB = 10 RBE=IOn TJ - 25°C 1.0 ~ V 30 I I 2.0 v 1111111 Isv @ 100°C / Ie = 25 A VeEM = 250 V IBI = 2.0 A 1.0 2.0 3.0 5.0 25 10 50 Ie. COLLECTOR CURRENT (AMPS) ---------------------------------MJ10045---------------------------------FIGURE 21 - TYPICALINDUCllVE SWITCHING TIMES 20 1111 18 FIGURE 22 - TYPICAL TURN-ON SWITCHING TIMES 2. 0 Vee = 250 V V leliB - 10 1. 0 RBE-IOn TJ 25°C O. 5 I Illll J 16 f 14 f ~ ~ 111111 I Isv @ 100°C Ie = 50 A VeEM = 250 V IBI = 1.67 A r--1 12 I,V Is;@25oe 10 V ;:: 8.0 V 6.0 2, ..... 1--1" j..-- I; ....... ~ lo~oe O. I 4.0 o oI 02 0.5 I0 20 50 10 I 1-I-"" l'- 0.0 5 I 2.0 V Id Ie @ 25°C c--::-" '1 III 20 50 100 V 0.0 2 1.0 2.0 RBE. BASE-EMITTER RESISTANCE (OHMS) 3_0 5.0 10 20 30 Ie. COLLECTOR CURRENT (AMPS) 50 75 100 ---------------------------------MJ10048---------------------------------- - FIGURE 23 - TYPICALINDUCllVE SWITCHING TIMES 0 II I Isv @ 100°C' II J-HtT le=100A OfVeEM = 150V f- IBI = 2.75 A /' 0 / 0 v V v J... - FIGURE 24 - TYPICAL TURN-ON SWITCHING TIMES 30 20 Isv @ 25°C 10 0.5 .1 01 If @ 25°C o II 01 02 05 10 20 50 10 20 RBE. BASE-EMITTER RESISTANCE (OHMS, 50 I, t:--" 0_2 .0 20 " 0'3 ~ ;:: Ie @ 100°C VCC=150V ICIIB = 25 RBE=101l TJ - 25°C I'-, t'- 0.03 1.0 1-581 ,..- Id 0.05 100 - 2.0 3.0 10 5.0 25 IC. COLLECTOR CURRENT (AMPS I 50 100 MJ10042,MJ10045,MJ10048 TYPICAL ELECTRICAL CHARACTERISTICS (continued) FIGURE 26 - TYPICAL TURN-OFF SWITCHING TIMES MJ10042 FIGURE 26 - EMITTER-COLLECTOR DIODE FORWARD VOLTAGE 50 1.5 20 . 10 ;! 50 :..- ...v g 0 ;;:. ts lLl I 3 ~ r- T~ J2~Jcl w '";:3 0 > ~ II 03 tt 2.0 V 0.5 0.5 1.0 2.0 3.0 25 10 5.0 a: 0.9 ~ Vee = 300 V IC/IB = 10 RBE=lon TJ = 25°C :!l 0 is 07 I-l -I-" off 50 0.5 10 2.0 3.0 IC. COLLECTOR CURRENT lAMPS) 5.0 FIGURE 28 - 0 Vts "'-....... 8 " 6 0 ~ VCC = 250 V IC/IB = 10 RBE=lon TJ = 25°C O. 5 O. 2 1.0 1'1111 2.0 3.0 5.0 10 20 30 50 != 1= 1= r- 03 0 V 10 v ,/ tt 02 1.0 2.0 3.0 5.0 10 V VCC=150Vle/lB 25 RBE= Ion TJ = 25°C 1'111 I 50 100 == 0.5 25 'I' 'r:::", ~ .... t-~ 20 40 60 80 100 TC. CASE TEMPERATURE 1°C) ts 20 '" Second Breakdown Derating "- r- 75 100 10 2, ......... 2 FIGURE 29 - TYPICAL TURN-OFf SWITCHING TIMES MJ10048 20 >= 100 POWER DERATING Thermal Derating 4 IC. COLLECTOR CURRENT lAMPS) 50 50 ~ 5. 0 I. 0 25 10 IF. FORWARD CURRENT lAMPS) FIGURE 27 - TYPICAL TURN-OFF SWITCHING TIMES MJ10046 0 0 IL ..... ~ V 1.0 :g - 0 >- L IC. COLLECTOR CURRENT lAMPS) 1-582 120 " 1'- 14D 160 MJ10042, MJ10045, MJ10048 TABLE 1 - TEST CONDITIONS FOR DYNAMIC PERFORMANCE "CEO!susl RBSOA AND INDUCTIVE SWITCHING TURN ON TIME 'On DRIVER SCHEMATIC j ~, Fo.,ndUClIVllloadspulsew,dlh IS adlu51ed IOOblil'.n speCified IC +30V 200n ~ lOOU lO!'F Usov~ + 50H ~~ SOU - PW varied to Anam 0003 AdlustRl ,F! 01,,* 181 _dIU.ted to abl.", the fo,ced "'FE deI!".cjI .... 2N3762 TUAN-OFF TIME 10011 L---t---<> 'C=125mA 1_ ' Ion LCD"" 10..,H Vee" 10 V Vec" 150t0300V Pulse WIdth = 50 liS Leo.1 '" 5 0 ~H Vee'" 20 V "'cool .. 0 7 n VCllmp" "eeOhusl Use inductive _,tch,ng CI'CIHt •• the ,"pul to me r....t' .... teltc.rcl.llt Adjust RL lor INDUCTIVE TEST CIRCUIT 'eM , l il RESISTIVE TEST CIRCUIT OUTPUT WAVEFORMS tl Adluued to 11 Obte", Ie Input S •• Above for r lN4931 I I 1 ) Rcoll o. I I L col ' D'I"ledcond~tlon' V, _ c~p_ -_ 2 l Lco'IIICMl l J EqUIvalent '2'--Vc1emp v CC Ten EqUipment ~ RS'" 5q)pe - Tektrontx 475 or Equn,.lent 01n "Adjust - V such that VSE(off):: 50 V except as reqUired for ABSOA SWITCHING TIMES NOTE In reSistive sWitching Circuits, (lse, fall, and storage tImes have been defIned and apply to both current and voltage waveforms since they are In phase. However, for ,nduct,ve loads whIch are common to SWITCH MODE power suppl/es and motor controls, current and voltage waveforms are not in phase Therefore, separate measurements must be made on each waveform to determine the total SWItching tIme. For thIs reason, the follOWing new terms have been defined. IS shown In Figure 3010 aId on the VIsual Idenllty of these terms. For the deSIgner, there IS mInImal sw,tch,ng loss dUring storage time and the predomInant SWItching power losses occur dUring the crossover interval and can be obtaIned uSing the standard equatIon from AN-222A. PSWT = 112 VCCICltclf In general, trv + tfl = tc. However, at lower test currents this relationshIp may not be valId. As IS common with most switching transistors, resistive SWItching is speCIfied at 25°C and has become a benchmark for designers. However, for deSIgners of hIgh frequency converter CirCUits, the user-oriented speCificatIons whIch make this a "SWITCHMODE" transistor are the inductIve SWItching speeds Itc and t sv ) whIch are guaranteed at 100°C. tsv = Voltage Storage Time, 90% IBI to 10 % VCEM trv = Voltage RIse TIme, 10-90% VCEM tfl = Current Fall Time, 90-10% ICM ttl = Current Tall. 10-2% ICM tc = Crossover Time, 10% VCEM to 10% ICM An enlarged portIon of the Inductive SWItchIng waveform FIGURE 30 - INDUCTIVE SWITCHING MEASUREMENTS IC~ .....-1/ /"" - 'e/" VCEM '"J 90% YCEM ..... / 10% YCEM .- Plpkl 90% 'CM ---, '-lc~ I- VeE 'S- Vclamp I"fj~lf'-r-l,,- t--tsv 90% 'SI -- --\- -- -- -- -........... - ~ FIGURE 31 - THERMAL RESPONSE 0=05 I' 1Q% ......... ICM - ; u o. 1 0 0.1 0- 0 03 Single Pulse ;a' ~~ '" .... ~ 0.0 I§:' isu; ~ ~ 1-583 Duty Cycle, 0 - IJ 112 R6JCIII rill R6JC R6JC - 0.5 °C/W Max D Curves Apply for Power Pulse Tram Shown z TIME E T::[}Jl ~t"" 0.01 Read Time @ 11 TJlpkl - TC = Plpk) R6JCIII 0.1 1.0 10 t TIME Im.1 100 1000 MJ10042, MJ10045, MJ10048 SAFE OPERATING AREA INFORMATION ----------------------------------MJ10042---------------------------------FIGURE 33 - MAXIMUM RATED REVERSE-BIAS SAFE OPERATING AREA (RBSOA) FIGURE 32 - MAXIMUM RATED FORWARD-BIAS SAFE OPERATING AREA (FBSOA) 75 lOI'S .~ Turn-On SWitching) - ...:;; in 5- ... '" 0 -z Ii! a: :::> de '" :5 60 IB 45 T} 1€i 10JOC f--RBE=1011_ f--- a: o t; 1.0 ~ S .9 ~ ~ 0 ...~ 15 s O.l~. Current limit .. E--- -Thermal Limit @ TC = 25°C . (Single Pulse) Second Breakdown Limit 10 100 0.01 1.0 1000 \.. o 10.000 o 100 VCE. COLLECTOR·EMITIER VOLTAGE (VOLTS) :-- "'900 1000 500 VCE. PEAK COLLECTOR·EMmER VOLTAGE (VOLTS) ----------------------------------MJ10045---------------------------------FIGURE 36 - MAXIMUM RATED REVERSE-BIAS SAFE OPERATING AREA (RBSOA) FIGURE 34 - MAXIMUM RATED FORWARD-BIAS SAFE OPERATING AREA (FBSOA) 150 lOl's (Turn·On Switching! ie I I '"~ 5- ~ 100 I 125 TJ';; 100°C -- i '" ~ de a: o t; ~ ~ S E 1.01:-- S ~ (Smgle Pulse) 0.1 1.0 ~ Second Breakdown limit 2.0 5.0 10 t 75 1 0 "" Current limit ~-- - Thermal Limit @ TC - 25°C 50 20 300 500 1 JU \ 5 o o 100 f--- ~ f--- ~ \ :::> B RBE=1011 \ 15 lli 100 VCE. COLLECTOR·EMITTER VOLTAGE (VOLTS) 100 200 - \ 400 300 500 600 VCE. PEAK COLLECTOR·EMITIER VOLTAGE (VOLTS) ----------------------------------MJ10048~i---------------------------------FIGURE 36 - MAXIMUM RATED FORWARD-BIAS SAFE OPERATING AREA (FBSOA) ie :;; FIGURE 37 - MAXIMUM RATED REVERSE-BIAS SAFE OPERATING AREA (RBSOA) 300 lOl's Turn-On Switchin ) 100 ~ 5- 5- !iii: g§ 0 a: o B ~ 1.0 ~ .."" §-- Current limit S f:: ~ ~-- -Th ..mal Limit@Tc=25°C (Single Pulse) .1~Second Braalrdown Limit 0.0 0.1 1.0 ~ 10 \ 200 \ B ~ 150 de 100 1000 VCE. COLLECrDR-EMITTER VOLTAGE (VOLTS) \ \ 100 \ l'\. 0 o o I I ~ 10~OC- '-TJ RBE= 1011_ r-- \ !iii: iii B E :::::I 250 ......... 100 200 VCE. PEAK COLLECTOR·EMITIER VOLTAGE (VOLTS) 1-584 300 MJ10042,MJ10045,MJ10048 III OVERLOAD CHARACTERISTICS ----------------------------------MJ10042--------------------------------FIGURE 38 - OVERLOAD SAFE OPERATING AREA TYPE I (OlSOA) 125 ~ :;; r- T~ = 25!C 100 ~ i ~ 8 50 '" 5. 0 1\\\ \\\ \\' ~ ! ~ a V ~ 75 FIGURE 39 - OVERLOAD SAFE OPERATING AREA TYPE II (OlSOA) I- \\ \\\ I/'P = 501" \\'( 'P - 10 1" \'\ / 1d> 25 o o 200 3.0 2.0 '" ;Ii 'p =20 1"_ ~ /1 ~ T~ = 251C _ r-- 40 1 ~ So r-- / r--'P = 20 1" I I o 850 500 'p = 5.0 1" 1.0 o 1000 VCE. COLLECTOR-EMITIER VOLTAGE )VOLTS) I I 1 - ~ ::,.... 200 500 850 1000 Vcr. COLLECTOR-EMIlTfII VOLTAGE )VOLTS) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - MJ10045---------------------------------FIGURE 41 - OVERLOAD SAFE OPERATING AREA FIGURE 40 - OVERLOAD SAFE OPERATING AREA TYPE II (OlSOA) TYPE I (OlSOA) 250 ~ :;; 5.0 - 200 TC=~5OC ~ ~ I '" 00 ~ 8 4.0 r-- Jc=125oC :;; ~ ~ 150 ~ ia \. i-' 'P = 5.0 1"1 ~ 100 '\'~ tp :::: 10 ~ ....... ~ 1d> 50 o o 100 200 ~ pS 2.0 ;Ii 'p= 2O I " _ 1 1 400 450 ~ 300 3.0 So 'P = 5.0 1" 1\ 1.0 'p = 20 ') 100 500 VCE. COLLECTOR-EMITTER VOLTAGE )VOLTS) I 1',--- \'<.. ) 200 "' ~ 300 400 450 500 VCE. COLLECTOR-EMITIER VOLTAGE (VOLTS) --------------------------------MJ10048-------------------------------FIGURE 42 - OVERLOAD SAFE OPERATING AREA TYPE I (OlSOA) FIGURE 43 - OVERLOAD SAFE OPERATING AREA TYPE II (OlSOA) 5.0 500 250C ~ 400 r-- TC = 1 ! 5 300 ~ ~ a ~ , in ::l ~ 'p = 50!" ) 1d> 100 ~ 3.0 i 2.0 ~ ...-'p -101" .I_ I~ "'p- 20 1 " _ ~ K"'I 1 8 100 TC =125oC 200 V'p =5.0I"- - ;Ii So 1.0 'p= 2O I " - o o o o r-- ~ \~ V '\ ~ 200 4.0 250 VCE. COLLECTOR·EMITTER VOLTAGE )VOLTS) '1 1 100 ~ ~ 200 VCE. COLLECTOR-EMITTER VOLTAGE (VOLTS) 1-585 250 MJ10042, MJ10045, MJ10048 III SAFE OPERATING AREA INFORMATION FORWARD BIAS There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate IC-VCE limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. The data of Figures 32, 34 and 36 are based on TC = 25°C; TJ(pk) isvariabledepending on power level. Second breakdown pulse limits are valid fordutycycles to 10% but must be derated when TC ;;. 25°C. Second breakdown limitations do not derate the same as thermal limitations. Allowable current atthe voltages shown on these figures may be found at a ny case temperature by using the appropriate curve on Figure 28. TJ(pk) may be calculated from the data in Figure 31. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown. REVERSE BIAS For inductive loads, high voltage and high current mustbe sustained simultaneously during turn-off, in most cases, with the base to emitter junction reverse-biased. Under these conditions the collector voltage must be held to a safe level at or below a specific value of collector current. This can be accomplished by several means such as active clamping, RC snubbing, load line shaping, etc. The safe level for these devices is specified as Reverse-Bias Safe Operating Area and represents the voltage-current condition allowable during reverse-biased turn-off. This rating is verified under clamped conditions so that the device is never subjected to an avalanche mode. Figures 33, 35 and 37 give the RBSOA characteristics. OVERLOAD SAFE OPERATING AREA The forward-bias safe operating area (FBSOA)specification given in these figures adequately describes transistor capabilityfor normal repetitive operation. When shortcircuit or fa ult conditions occu r, these tra nsistor specifications are not always adequate. A specification called overload safe operating area (0 LSOA) has been developed to describe the transistor's ability to survive under fault conditions. OLSOA is specified under two types of conditions. TYPE I OLSOA -Type I OLSOAapplieswhen maximum collector current is limited and known. Agood example isa circuit where an inductor is inserted between the transistor and the bus, which limits the rate of rise of collectorcurrentto a known value. If the transistor is then turned off within a specified amount of time, the magnitude of collector current is also known. Figures 38, 40 and 42 depict the Type I OLSOA rating for these devices. Maximum allowable collector- emitter voltage versus collector current is plotted for several pulse widths. (Pulse width is defined as the time lag between the fault condition and the removal of base drive.) Storage time of the transistor has been factored into the curve. Therefore, with bus voltage and maximum collector current known, these figures define the maximum time which can be allowed for fault detection and shutdown of base drive. Type I OLSOA is measured in a common-base circuit (Figure 44) which allows precise definition of collectoremitter voltage and collector current. This is the same circuitthat is used to measure forward-bias safe operating area. TYPE II OLSOA Type II OLSOAapplies when maximum collector current is not limited by circuit design, but is limited only by the gain of the transistor. Therefore, collector current does not appear on the Type II OlSOA curve. This curve defines a safe region of operation from the information that is usually available to the designer. This information is normally base drive, bus voltage and time. In termsofthe OlSOAcurve, bus voltage is assumed to be worst-case collector-emitter voltage, and time is defined to be the same pulse width that was described for Type I OlSOA. USing these variables, maximum collectoremitter voltage versus base drive is plotted for several values of pulse width. A safe region of operation is thus determined by the circuit parameters. Type II OLSOA, as shown in Figures 39, 41 and 43 are measured in the circuit shown in Figure 45, and measurement is made as follows: Base current is applied while the collector is open, allowing a highly overdriven saturated condition. Next, a stiff voltage source is applied to the collector. The rising voltage at the collector of the transistor triggers a delay function. At the end of this delay, base drive is removed. The delay time is the variable on the Type II OlSOAcurve. The storage time of the transistor is thereby factored into the rating. There are several additional aspects to be considered regarding OlSOA. The first consideration is that OlSOA is strictly a NON-REPETITIVE rating. It is intended to describe the survivabilityofthe transistor during an accidental overload and is not intended to describe a stress level which can be sustained indefinitely. The number of nonrepetitive faults for which OlSOA isdefined for these devices is 100 occurrences. Another factor is the form of turn-off bias. For these devices, turn-off bias has relatively little effect on its OlSOA capability. This observation is valid from IB2 = 0 (soft) to VBE(off) = 5 V (stiff). OlSOA is subject to the sa me derating with temperature as normal FBSOA. The second breakdown derating curve is applied tothe allowable cur~ent at any given voltage, using the same procedure that is followed with pulsed FBSOA. 1-586 MJI00S0 ® MOTOROLA Designer's Data Sheet 50 AMPERE NPN SILICON POWER DARLINGTON TRANSISTOR 50 KVA SWITCH MODE TRANSISTOFt 50-Ampere Operating Current 850 VOLTS 500 WATTS The MJ10050 Darlington transistor is designed for industrial service under practical operating environments found in switching high power inductive loads off 460-Volt lines. Designer"s Data for "Worst-Case" Conditions The Designer's Data Sheet permits the design of most circuits entirely from the information presented. Limit datarepresenting device characteristics boundaries-are given to facilitate "worst-case" deSign. w ..,t Number 14ASB123B7B001. 0.006" thick. Motorola Part Number 14ASB12387B002. Notes: 1. A BelleVille washer of 0 472"0.0 .• 0.205"1.0,0 024"thlckand 150poundsflatls recommended. 2. The lead torque should be limitedto20 In.-Ib, unsupported to prevent rotation of the terminal mthe package. Thetorque may be Increasedto50 In -Ib If support IS used to prevent rotation The maximum penetration of the screw should be limIted to 0 7S H 1-588 t t=:=:f-! , MILLIMETERS OIM MIN MAX A 53.09 53.84 B 55.37 56.39 26. 7 C 0 6.10 6.60 7.11 E 6.60 F 0.71 0.81 G 43.31 BSe H 12.57 12.82 J 1.52 1.62 K 9.50 9.75 L 10.21 10,46 M 18.92 19.18 N 23.67 23.93 5.21 P 5.08 0 3.53 3.78 R 6.76 7.26 S 14.73 15.24 V 5.33 5.84 W 6.40 6.65 X 7.37 7.87 INCHES MIN MAX 2.090 2.120 2.180 2.220 1.050 If 0.280 0.032 BSe I 0.505 I 0.064 I 0.384 I 0.412 I 0.755 I 0.942 ~:~~~ 0.139 I 0.266 0.286 0.580 0.600 0.210 0.230 0.252 0.262 0.290 0.310 CASE 346-01 MJ10050 ID MAXIMUM RATINGS (Continued) Electrical Ratings Rating Symbol Value Unit VCEO 850 Vdc VCER 900 Vdc Collector-Base Voltage VCB 900 Vdc Emitter-Base Voltage VEB 8.0 Vdc IC 50 75 150 250 A IB 50 100 A PD 500 4.0 667 Watts W/oC Watts TJ, Tstg -55 to +150 -55 to 200 °c Collector-Emitter Voltage Collector-Emitter Voltage (RBE Collector Current Base Current - =10 Ohms) = Operating, TC 125°C Continuous. TC = 25°C Peak Repetitive, TC 25°C Peak Nonrepetitive, TC 25°C = = Continuous Peak Nonrepetitive Total Device Dissipation @ TC - 25°C Derate above 25°C For '-minute overload Operating Junction and Storage Temperature Range For l-minute overload ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted) Characteristic OFF CHARACTERISTICS Collector-Emitter Sustaining Voltage (1) (IC 250 mAde, IB 0) = VCEO(sus) = Collector Cutoff Current (VCE 900 Vdc, VBE(off) (VCE 900 Vdc, VBE(off) = = Collector Cutoff Current (VCE 900 Vdc, RBE 10 n, TC = ICEV =1.5 Vdc) =1.5 Vdc, TC =150°C) = =100°C) Emitter Cutoff Current (VEB 4.0 Vde, IC 0) = = 850 - - - - Vdc mAde - ICER - 2.0 10 - 10 mAde lEBO - - 650 mAde SAFE OPERATING AREA Second Breakdown Collector Current with Base Forward-Biased FBSOA See Figure 13 Clamped Inductive SOA with Base Reverse-Biased RBSOA See Figure 14 Overload SOA OLSOA See Figures 16 and 17 ON CHARACTERISTICS (1) DC Current Gain (IC 50 Adc, VCE 5.0 Vdc) (IC - 50 A, VCE- 10V) = hFE = Collector-Emitter Saturation Voltage (IC 50 A, IB 4.0 A) (lc 75 Ade, IB - 15 A) (IC 50 Ade, IB - 4.0 A, TC - 100°C) VCE(sat) Base-Emitter Saturation Voltage (IC - 50 Adc, IB - 4.0 Ade) (IC - 50 Ade, IB - 4.0 Adc, TC - 100°C) YaE(sat) = = = = ./ DYNAMIC CHARACTERISTICS Output Capacitance (VCB 10 Vdc, IE 0, 'test = = =1.0 kHz) (1) Pulse Test. Pulse width of 300 !-,s, duty cycle E;;;2.0%. 1-589 35 40 - - - - - 2.0 5.0 2.5 - - 3.0 3.0 Vde Vde - - MJ10050 ELECTRICAL CHARACTERISTICS (Continued) (TC: 25°C unless otherwise noted) OJ Characteristic SWITCHING CHARACTERISTICS Resistive Load Delay Time Rise Time Storage Time FaU Time (VCC: 300 Vdc. IC: 50 A. IBl : 4.0 A. RBE : 10 n. tp: 50 p.S. Duty Cycle';; 2.0%) td tr ts tf - tsv tc t,v tc - - - 0.03 1.2 35 8.5 0.25 5.0 100 35 P.s 50 20 35 10 150 60 100 35 P.s P.s P.s P.s - 250 W 1.0 1.2 1.5 2.0 V V 4.0 12 P.s 0.3 1.2 p'S - 500 A p.S P.s p'S Inductive Load, Clamped Storage Time Crossover Time Storage Time Crossover Time (lCM: 50A. VCEM: 300 V. RBE: 10 n. IBl :4.0A) TJ: 100°C TJ.: 25°C C-E DIODE CHARACTERISTICS Power Dissipation (lB: 0) Po Forward Voltage (1) (IF: 50 A) (IF: looA) VF Reverse Recovery Time (di/dt: 25 AI p.s. IF: 50 A) Forward Turn-On Time (Compliance Voltage: 50 V. IF: 50 A) trr ton Single Cycle Surge Current (60 Hz) - IFSM (1) Pulse Test. Pulse width of 300 f.ls, duty cycle ~2 0%. TYPICAL ELECTRICAL CHARACTERISTICS FIGURE 1 - DC CURRENT GAIN V TJ: 1000~V z FIGURE 2 - DC CURRENT GAIN I-- -... t-... 400 200 400 ./ -N ....'" / iii 100 "' / ~ V 2! '" 1\ TJ: 25°C 200 i13 V c w .J? 50 VCE: 5.0 V I 20 1.0 2.0 5.0 10 I / TJ: 25°C / I 20 50 20 1.0 100 i FIGURE 3 - DC CURRENT GAIN z 100 in ~ 25~C 20 50 10C V 20 !::i 1.8 c "\ ~ I I IC/IB: 10 1.6 ~ 14 \ c ;:; 12 ~ ::i 50 ~ ; 10 FIGURE 4 - COLLECTOR SATURATION VOLTAGE ..l--" TJ 5.0 IC. COLLECTOR CURRENT lAMPS) 500 200 I I 20 IC. COLLECTOR CURRENT lAMPS) I13 1\ !I\ 100 c V 50 V ;;;C VCE: 2.0 V '-' '-' ....'" ~ ;;;C "' 13 ; H t'-.... VCE: lOV / ;;;C f-- VCE: 600 V_ 20 l -I - 0.8 !rl 0.6 8 0.4 w ~ 5.0 10 20 50 100 250 IC. COLLECTOR CURRENT (AMPS) I---: -;:::. J-- _.TJ: 25°C :::l 10 5.0 2.5 1.0 ~ TJ: 100°C 0.2 o 1.0 2.0 5.0 10 20 IC. COLLECTOR CURRENT (AMPS) 1-590 iJ 50 100 MJ10050 TYPICAL ELECTRICAL CHARACTERISTICS (continued) fiGURE 6 - EMITTER-COLLECTOR DIODE fORWARD VOLTAGE fiGURE 5 - BASE-EMITTER SATURATION VOLTAGE 2.4 1.5 .1. - ~ 1_ ICIIB= 10 0 ~ w V . . . "" TJ = 25O~ '" ~ 1.3 ~ 0.9 ~ C 0.7 :!if 0.4 1.0 2.0 5.0 10 20 IC. COLLECTOR CURRENT (AMPS) 50 - -- 0.5 20 100 - -- 1.1 '" ~ 0 II I r- T~ J2~lcl 50 /' L 100 10 20 50 If. fORWARD CURRENT lAMPS) 200 TYPICAL SWITCHING CHARACTERISTICS fiGURE 7 - INDUCTIVE SWITCHING MEASUREMENTS 50 IC",_ ......- VI ........... - ,C/ VCEM 90% VCEM i ~ ..:0 1--1 r-Ie~ t- VCE - 40 r - 1\90% ICM Irv~~tfl- 1- 1 , _ f---I", 100VCEM 90% lSI :ri;:: I'\. --- 10% ...... ICM """"" 1 0.5 01 0.1 ...... .......... 0.05 0.03 1.0 I I le@ 100°C Ie @ 25°C II 0.5 1 0 2.0 50 10 20 RBE. SASE-EMITTER RESISTANCE 10HMS) 02 50 100 FIGURE 10 - TYPICAL TURN-OFf SWITCHING TIMES 50 ..v- 20 10 It ........ ..:0 ~ 5.0 V ;:: IIV / - Is ./ 2.0 :/ 10 Id 2.0 V V II TIME ~ ;:: 0.2 oJ 20 o Vec = 300 V ICIIB - 10 RBP 10 n TJ - 25°C 1.0 .fII V ~sv @25°C 30 10 II 2.0 V Isv @ 100°C / ./ V fiGURE 9 - TYPICAL TURN-ON SWITCHING TIMES 3.0 IC· 50 A VCEM = 250 V IBI = 4.0 A ~~ --- -- -- - - --\- -- II IIII II IIII II II Vclamp '" i'4 V 'S- FIGURE 8 - TYPICAL INDUCTIVE SWITCHING TIMES 5.0 10 20 IC. COLLECTOR CURRENT lAMPS) 50 100 1-591 0.5 1.0 20. VCC = 300 V IC/IS = 10 RSE= Ion TJ = 25°C 5.0 10 20 Ic. COLLECTOR CURRENT lAMPS) 50 100 MJ10060 TABLE 1 - TEST CONDITIONS FOR DYNAMIC PERFORMANCE velOI_1 >on 1 DRIVER SCHEMATIC . ::TL ~, i!-§ For Inductive loed, pul.. WIdth TURN ON TIME :fr 4~ ~2N378: I 'oon 1I -sov M V.rl..:! to Analn 'e·,00mA 50n ,g.O'f' Y ....,'" '.' ~ $; u> , Leoll" 5.0l'H -:- Vee· 20 V Vclamp • VCEOCtu,J INDUCTIVE TEST CIRCUIT ...5 ..".. ~. u U I I I IN''937 Input See Above for Detailed ConditIons 2 or Equ"iv.en1 VclamP. * b~s·} 0.1 . Acotl I I LCOlt S "L '~ ~ ~Vee ~ Leolll'eM) ____ ---1-, ~b~ T.ma AL=80n '2---Vcl.mP ~ "CEM n AdJust- V such that VBE(offl '-cOlltlCM) "---vee- "t- vCE Vee Vee" 300 V RESISTIVE TEST CIRCUIT __ 11 ~Iamped 'eM TURN-OFF TIME Use uiductlVe SWitching CircUit as the Input to the resistive test CirCUit Pulle Wldch: 26,.,. '1 Adju.Mdto Obtain Ie 'CL0= 1--,,- L J y 3 r OUTPUT WAVEFORMS i r 1 181 adjusted to obtain the forced hFE deSired MTM1224 I- ,on '-cOil· 10 mli Vee. 10 v "COi'. 0 7 n I.~: .30Y AdJust AI toobt• .n I ~OOO5 - -:- r ~ ~ 'OOn 0003 ., 200n o,,~ .......... 'o..,,,' ..,,··... 'c ~' .... aiS RESISTIVE SWITCHING RBSOA AND INDUCTIVE SWITCHING Test EqUipment Scope - TektronIx 475 or EqUIvalent "clamp l-12-t 5 V except as requIred for RBSOA (FIgure 141 • SWITCHING TIMES NOTE is shown in Figure 7 to aid on the visual identity of these terms. For the designer. there is minimal switching loss during storage time and the predominant switching power losses occur during the crossover interval and can be obtained using the standard equation from AN-222A: PSWT = 112 Vcclc(tclf In general. trv + tfi "" tc. However. at lower test currents this relationship may not be valid. As is common with most switching transistors. resistive switching is specified at 25°C and has become a benchmark for designers. However. for designers of high frequency converter circuits. the user-oriented specifications which make this a "SWITCH MODE" transistor are the inductive switching speeds (tc and ts v ) which are guaranteed at 100°C. In resistive switching circuits. rise. fall. and storage times have been defined and apply to both current and voltage waveforms since they are in phase. However. for inductive loads which are common to SWITCH MODE power supplies and hammer drivers. current and voltage waveforms are not in phase. Therefore. separate measurements must be made on each waveform to determine the total switching time. For this reason. the following new terms have been defined. ts v = Voltage Storage Time. 90% IBI to 10 % VCEM trv = Voltage Rise Time. 10-90% VCEM tfi = Current Fall Time. 90-10% ICM tti = Current Tail. 10-2% ICM tc = Crossover Time. 10% VCEM to 10% ICM An enlarged portion of the inductive switching waveform FIGURE 12 - THERMAL RESPONSE FIGURE 11 - TYPICAL PEAK REVERSE BASE CURRENT 1.0 10 9.0 IC!50A 1 _ lSI =4.0 A VCEM = 300 VTJ = 25°C ~ 8.0 I Ia i i !p 7.0 0.2 -- 6.0 1\ \ 4.0 0.5 - 5.0 3.0 2.0 1.0 o o , .~ "' 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 VSE. BASE·EMITTER RESISTANCE (OHMSI 9.0 10 1-592 D = 0.5 D= 0.2 MJ10050 The Safe Operating Area figures shown in Figures 13 and 14 are specified for these devices under the test conditions shown. SAFE OPERATING AREA INFORMATION FORWARD BIAS There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate IC-VCE limits of the transistor that must be observed for reliable operation; i.e .• the transistor must not be subjected to greater dissipation than the curves indicate. The data of Figure 13 is based on TC ; 25°C; TJ(pk) is variable depending on power level. Second breakdown pulse limits are valid for duty cycles to 10% but must be derated when TC;;' 25°C. Second breakdown limitations do not derate the same as thermallimitati.ons. Allowable current at the voltages shown on Figure 13 may be found at any case temperature by using the appropriate curve on Figure 15. TJ(pk) may be calculated from the data in Figure 12. At high case temperatures. thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown. FIGURE 13 - MAXIMUM FORWARD-BIAS SAFE OPERATING AREA (FBSOA) ~ ::;; ~ 100 50 10SWltchmgj '"' (Turn-On 20 10 ~ 5.0 de ll§ S 2.0 :s 1.0 f;j 0.5 B 02 ~ ~ r .!i> 0 1 ~ Current limit -----Thermallimlt@,Tc-250C ISingl. Pulsel 0.05 ~ Second Breakdown LllllIt 0.02 0.01~.0 5.0 2.0 20 10 50 100 200 500 850 VCE. COLLECTOR·EMITIER VOLTAGE IVOLTSI REVERSE BIAS For inductive loads. high voltage and high current must be sustained simultaneously during turn-off. in most cases. with the base to emitter junction reverse-biased. Under these conditions the collector voltage must be held to a safe level at or below a specific value of collector current. This ca~ be accomplished by several means such as active clamping. RC snubbing. load line shaping. etc. The safe level for these devices is specified as Reverse-Bias Safe Operating Area and represents the voltage-current condition allowable during reverse-biased turn-off. This rating is verified under clamped conditions so that the device is never subjected to an avalanche mode. Figure 14 gives the RBSOA characteristics. FIGURE 14 - MAXIMUM REVERSE-BIAS SAFE OPERATING AREA (RBSOA) 150 in ~ ... ~ 120 '" f;j ~=> 90 :::l 60 '" ""~ 30 I,;: - T 10JOC J" RBE;10n _ '"0 0 ::i; .!=' o o "100 OVERLOAD SAFE OPERATING AREA I"-- 500 900 1000 VeE. PEAK COLLECTOR·EMITTER VOLTAGE IVOLTSI FIGURE 15 100 0 0 POWER DERATING ~ t-.... r----.. "" '" ....... Thermal~ Derating t--.. Second Breakdown DeratlRg f'-... f'... 0 "' 0 0 40 80 120 Te. CASE TEMPERATU RE lOCI TYPE I OlSOA - . . . . 1'---. r--..... 1'-. '" 160 " The forward-bias safe operating area (FBSOA) specification given in Figure 13 adequately describes transistor capability for normal repetitive operation. When short circuit or fault conditions occur. these transistor specifications are not always adequate. A specification called overload safe operating area (OLSOA) has been developed to describe the transistor's ability to survive under fault conditions. OLSOA is specified under two types of conditions. "'" 200 Type I OLSOA applies when maximum collector current is limited and known. Agood example is a circuit where an inductor is inserted between the transistor and the buS. which limits the rate of rise of collector current to a known value. lithe transistor is then turned off within a specified amount oftime:the magnitude of collector current is also known. Figure 16 depicts the Type I OLSOA rating for the MJ 10050. Maximum allowable collector-emitter voltage versus collector current is plotted for several pulse widths. (Pulse width is defined as the time lag between the fault condition and the removal of base drive.) Storage time of the transistor has been factored into the curve. Therefore. with bus voltage and maximum collector current known. (continued on back page) 1-593 III MJ10050 III OVERLOAD CHARACTERISTICS FIGURE 16 - OVERLOAD SAFE OPERATING AREA TYPE I IOLSOA) 250 r- T~ = 25 lC c;;- "- 200 ::IE :!. .... 10 \\\ 9.0 ! \\\ \\, c;;"- ....z~ \\ 15 0: 150 \\\ 0: a \\\ 0: 13 FIGURE 17 - OVERLOAD SAFE OPERATING AREA TYPE IIIOLSOA) 100 \W :!c ... \~ ~ 50 !!1 /'p=5.0 ll' a ~ tp = 10 II' o 200 500 850 VCE. COLLECTOR·EMITTER VOLTAGE IVOLTS) FIGURE 18 - OVERLOAD SOA TEST TYPE I 7.0 6.0 5.0 4.0 '" 3.0 ::Ii / tp=20 IIs_ &.. / i I $ tp = 5.0 liS 2.0 "I 1 - ~ ~-L 1.0 _tp=20 liS ~~ o T~=25JC- ~ 8.0 o o 1000 I I 200 500 850 veE. COLLECTOR·EMITTER VOLTAGE IVOLTS) 1000 ~IRCUIT Not.s: • VCE = Vcc + VBE FIGURE 19 - OVEflLOAD SOA TEST CIRCUIT TYPE II • Adjust pulsed current source for desired IC. tp rMM~~Y~~v---------l I IL N.O. I N.C. ______ JI Vcc Notes: +6V • Rep Rate .. 10 Hz • Adjust Rl for desired 18 • Pulse delay time at the 3.9 50 generator determines pulse width at the device under test 15 1-S14 I MJ10050 SAFE OPERATING AREA INFORMATION (continued) TYPE I OLSOA (continued) Figure 16 defines the maximum time which can be allowed for fault detection and shutdown of base drive. Type I OlSOA is measured in a common-base circuit (Figure 18) which allows precise definition of collectoremitter voltage and collector current. This is the same circuit that is used to measure forward-bias safe operating area. TYPE II OLSOA Type II OlSOAapplies when maximum collector current is not limited by circuit design, but is limited only by the gain ofthetransistor. Therefore, collector current does not appear on the Type II OlSOA curve. This curve defines a safe region of operation from the information that is usually available to the deSigner. This information is normally base drive, bus voltage and time. In terms ofthe OlSOAcurve. bus voltage is assumed to be worst-case collector-emitter voltage, and time is defined to be the same pulse width that was described for Type I OlSOA. Using these variables, maximum collectoremitter voltage versus base drive is plotted for several values of pulse width. A safe region of operation is thus determined by the circuit parameters. Type II OlSOA. as 1-595 shown in Figure 17, is measured in the circuit shown in Figure 19, and measurement is made as follows: Base current is applied while the collector is open, allowing a highlyoverdriven saturated condition. Next, a stiff voltage source is applied tothe collector. The rising voltage at the collector of the transistor triggers a delay function. At the end of this delay, base drive is removed. The delay time is the variable on the Type II OlSOAcurve. The storage time of the transistor is thereby factored into the rating. There are several additional aspects to be considered regarding OlSOA. The first consideration is that OlSOA is strictly a NON REPETITIVE rating. It is intended to describe the survivability of the transistor during an accidental overload and is not intended to describe a stress level which can be sustained indefinitely. The number of nonrepetitive faults for which OlSOA is defined for the MJ10050 is 100 occurrences. Another factor is the form of turn-off bias. For the MJ10050, turn-off bias has relatively little effect on its OlSOA capability. This observation is valid from IB2 0 (soft) to VBE(off) 5 V (stiff). OlSOA is subject to the same derating with temperature as normal'FBSOA. The second breakdown derating curve is applied to the allowable current at any given voltage, using the same procedure that is followed with pulsed FBSOA. = = MJIOOSI MJIOOS2 ® MOTOROLA Designer's Data Sheet 50 AMPERE 50 KVA HIGH SPEED SWITCH MODE TRANSISTOR 50-Ampere Operating Current NPNSILICON POWER DARLINGTON TRANSISTOR The MJ10051 Qarlington transistor is designed for industrial service under practical operating er)yironments requiring fast switching speed for highly efficient systems operating at high frequency such as inverters, PWM controllers a nd other high frequency system operating from 460 V lines. 750 .nd a60 VOLTS 500 WATTS Designer', Data for "Worst C..... Conditions The Designer's Data Sheet permits the design of most circuits entirely from the informa,ion presented. Limit curves - representing boundaries on device characteristics - are given to facilitate "worst case" design: ~ ., V~A 1/4-2DUNC28 t F i J ~::::=-l m ~_---'---~ s • =25=4.00 *Emitter-Collector Diode is a fast recovery. high power diode. MAXIMUM RATINGS STYLE 1: PIN 1. BASE 2. EMITTER 3. EMITTER 4. CO LLECTO R 5. COLLECTOR NOTES: 1. DIMENSION A AND B ARE DATUMS. 2. [I]IS SEATING PLANE. 3. POSITIONAL TOLERANCE FOR MOUNTING HOLES: 1"'1.0.36 (0.0141@ITiA@IB@1 4. DIMENSIONING AND TOLERANCING PER ANSI Y14.5, 1973. MECHANICAL RATINGS Rating Mounting Torque (To heat sink with 10·32 Screw) (Note 1) Value Unit 20 in.-Ib DIM A Lead Torque (Lead to bus with 1/4-20 Screw) (Note 2) 20 Per Unit Weight in.-Ib 120 1 0.25 1 B C D grams E F G °C/W H THERMAL CHARACTERISTICS Thermal Resista nce, Junction to Case,ROJC f J K Mica Insulators available as separate items. 0.003" thick. Motorola Part Number 8123878001. 0.006" thick. Motorola Part Number 8123878002. Notes: 1. A Belleville washer of 0.472" 0.0., 0.205" 1.0 .. 0.024" thick and 150 pounds flat IS recommended such as PIN AM125206 available from National Disc Spring Div .• 385 Hillside Ave .. Hillside N.J. 07205. 2. The lead torque should be limited to 20 in.-Ib, unsupported to prevent rotation of the terminal in the package. The torque may be Increased to 50 in.-Ib if support is used to prevent rotation. The maximum penetration of the screw should be limited to 0.75". 1-596 L M N P Q R S V W X MILLIMETERS MIN MAX Sl.09 Sl.84 55.37 56.39 2!i.67 6.10 6.60 7.11 6.60 0.71 0.81 43.31 BSC 12.57 12.82 1.52 1.62 9.50 9.75 10.21 10.46 18.92 19.18 23.67 23.93 5.08 5.21 3.53 3.78 7.26 6.76 14.73 15.24 5.33 5.84 6.40 6.65 7.37 7.87 - INCHES MIN MAX 2.090 2.120 2.180 2.220 1.050 • 0.2BO 0.032 BSC ~ ~ ~ ~ ~ ~ O. 139 0.266 0.580 0.210 0.252 0.290 CASE 346-01 -t.m0.286 0.600 0.230 0.262 0.310 MJ1 0051, MJ10052 MAXIMUM RATINGS (Continued) ELECTRICAL RATINGS Rating Symbol Value Unit VCEO 850 750 Vdc Collector-Emitter Voltage (RBE = 10 Ohms) VCER 900 Vdc Collector-Base Voltage VCB 900 Vdc Emitter-Base Voltage VEB 8.0 Vdc IC 50 75 150 250 A IB 50 100 A Po 500 4.0 667 Watts W/oC Watts TJ, Tst9 -55 to +150 -55 to +200 °C Collector-Emitter Voltage Collector Current Base Current - MJ10051 MJ10052 Operating, TC = 125°C Continuous, TC = 25°C Peak Repetitive, TC = 25°C Peak Nonrepetitive, TC = 25°C Continuous Peak Nonrepetitive Total Device Dissipation @ TC:: 25°C Oerate abo"," 25°C For 1 ~minute overload Operating Junction and Storage Temperature Range For 1·minute overload I ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted) I Symbol Characteristic Min Typ Max Unit 850 750 - - Vde - 2.0 10 OFF CHARACTERISTICS Collector-Emitter Sustaining Voltage (1) (lC = 250 mAde, IB = 0) MJ10051 MJ10052 VCEO(sus) Collector Cutoff Current (VCE = 900 Vdc, VBE(off) = 1.5 Vde) (VCE = 900 Vdc, VBE(off) = 1.5 Vde, TC = 150°C) ICEV Emitter Cutoff Current (VEB = 4.0 Vdc, IC = 0) lEBO - - mAde - 950 mAde SAFE OPERATING AREA Second Breakdown Collector Current with Base Forward-Biased 'FBSOA - Clamped Inductive SOA with Base Reverse-Biased RBSOA Overload SOA OlSOA - ON CHARACTERISTICS (1) DC Current Gain (lc = 50 Adc, VCE = 5.0 Vdc) (lc= 50 A, VCE = 10V) hFE Collector-Emitter Saturation Voltage (IC = 50 Ade, IB = 5.0 A) (IC = 75 Ade, IB = 15 A) (IC = 50 Ade, IB = 5.0 A, TC = l000C) VCE(sat) Base-Emitter Saturation Voltage (lc = 50 Adc, IB = 5.0 Ade) (lC = 50 Ade, IB = 5.0 Adc, TC = l000C) VBE(sat) DYNAMIC CHARACTERISTICS Output Capacitance (VCB = 10 Vdc, IE = 0, ftest = 1.0 kHz) (1) Pulse Test. Pulse width of 300 ",S, duty cycle "'2.0%. 1-597 25 40 - - - - - Vde - - 2.0 5.0 2.5 - - 3.0 3.0 Vde MJ10051, MJ10052 ELECTRICAL CHARACTERISTICS (Continued) (TC = 25°C unless otherwise noted) IIIJ' I I Min Typ Max Unit td tr ts tl - 0.03 1.2 3.3 1.5 0.25 5.0 10 5.0 I's I's I'S I'S tsv tc tsv tc - 5.0 3.0 3.5 1.5 15 10 10 5.0 I's I'S I'S I'S Power Oissipation (lB = 0) Po 250 W VF 2.7 5.0 V Reverse Recovery Time* (di/dt = 50 AIl's, IF = 50 A, VBE(olf) trr - - Forward Voltage (1) (IF = 50 A) 0.2 1.0 I'S ton - 0.1 1.0 I's IFSM - - 500 A 7.0 25 A Characteristic Symbol SWITCHII\lG CHARACTERISTICS Resistive Load Delay Time Rise Time Storage Time Fall Time (VCC = 300 Vdc, IC = 50 A, lSI = 5.0 A, VSE(off) = 5.0 V, tp = SOl'S, Duty Cycle';; 2.0%) Inductive Load, Clamped Storage Time Crossover Time Storage Time Crossover Time TJ = 100°C (lCM = 50 A, VCEM = 300 V, VBE(off) = 5.0 V, IBI = 5.0 A) TJ = 25°C C-E DIODE CHARACTERISTICS =5.0 V) Forward Turn-On Time (Compliance Voltage =50 V, IF = 50 A) Single Cycle Surge Current (60 Hz) Reverse Recovery Current (IF = 50 A, d,ldt = 50 AIl's) IRM(REC) (1) Pulse Test. Pulse wIdth ~ 300 ,us, duty cycle ~2.0% * Requires negative base-emItter voltage for fast recovery performance. TYPICAL ELECTRICAL CHARACTERISTICS -..--- FIGURE 2 - FIGURE 1 - DC CURRENT GAIN 400 TJ = 1000C..... ~ '"ffi :l§ 200 f- N ~ / / 100 ~ ..... TJ = 25°C ./ , '" ~ 100 .\ \ '-' c ; 50 20 1.0 / 50 VCE = 5.0 V I 2.0 I 10 50 20 IC, COLLECTOR CURRENT lAMPS) 20 10 100 50 ....... ~ ~ \ TJ = 25°C 200 ,/ ~ ~ 50 \ '-' "' VCE .It 20 =600 V_ - r-- II II 10 Til 20 FIGURE 4 2.0 10 20 50 IC, COLLECTOR CURRENT lAMPS) 50 100 COLLECTOR SATURATION VOLTAGE 1.8 I I 16 Ic/la = 10 ~ !::i 1.4 \ 100 c TJ = 25°t / I FIGURE 3 - DC CURRENT GAIN 500 '" '":::> '-' "'- VCE = 2 0 V II VCE= 10V '-' lL ~ V -" :::> :::> ...ill'" 200 ;;;: '" '-' '-' c ~ DC CURRENT GAIN 400 r--r-.., ~ ~ ::: B 12 10 0.8 - 0.6 r-TJ = 25°C TJ = 1000t -- F:==~ II 0.4 "' ~ 0.2 5.0 2.5 5.0 10 20 50 IC, COLLECTOR CURRENT lAMPS) 100 250 1-598 o 10 2.0 5.0 10 20 IC, COLLECTOR CURRENT lAMPS) 50 100 MJ10051, MJ10052 III TYPICAL ELECTRICAL CHARACTERISTICS (continued) FIGURE 6 - EMITTER-COLLECTOR DIODE FORWARD VOLTAGE FIGURE 5 - BASE-EMITTER SATURATION VOLTAGE 4. 8 2.4 ~ e a '"'" 2.0 I - ,_ Ic/le = 10 TJ = 25°C ~ 1.6 > ~ ~ 12 ;a -- V ... " ...- '" i 2. 4 ~ c 1. e is ~1. 2 _ .... O.B .If 2.0 10 50 20 50 ,.... 100 ...... V .... O. 6 2.0 0.4 10 / ~ 3. b ~ 3.0 c ~=lOOOC f-- I ~ 4. 2_TJ= 25°C ~ 10 20 50 IF, FORWARD CURRENT lAMPS) 5.0 IC, COLLECTOR CURRENT lAMPS) 100 200 TYPICAL SWITCHING CHARACTERISTICS FIGURE 7 - INDUCTIVE SWITCHING MEASUREMENTS FIGURE 8 - INDUCTIVE SWITCHING TIMES 5 IC"'_ ./" V I ..........- 90% VCEM ~ 1-- ' ", ,C/" I" - i, IVO%ICM Ifl~ I" , .. 9. O~ \ -I- ,,,- :-- / "- 10% VCEM 90%181 '-""" .., 6. 0"'- IIJ"........ leM -- ~ ~ ! "- ~~ ~ ~ -~ 3. 0 -- --\- -- --- - - -- .- IC = 5J A IBI = 5.0 A VCEM = 300 V Vclamp 2[\:e @'100°C I~ ric --\ VCE '8- VCEM '\j 0 :-- I sv @ Oooc --- - 2.0 Is.@ 0(;" le@ 25°C ,. 3.0 7.0 ti.U 8.0 VBEloff), BASE-EMITTER VOLTAGE IVOLTS) TIME FIGURE 9 - TYPICAL TURN-ON SWITCHING TIMES 3.0 1 2.0 . FIGURE 10 - TURN-OFF SWITCHING TIMES 0 1.0 0.5 - VCC = 300 V 5. 0== VBEloff) = 5.0 V - IC/IB 10 - TJ = 25°C 2. 0 VCC = 300 V Ic/le = 10 RBE=lon TJ 25°C ~ ~ ~.., 0.2 "- 1"'- 0.1 0.05 0.03 1.0 It ..... - >- 0 / - s V ..... f 5 / O. 2 Id 2,0 5.0 10 20 IC, COLLECTOR CURRENT lAMPS) o.1 50 100 1.0 2.0 5.0 10 20 IC, COLLECTOR CURRENT IA) 1-599 50 100 MJ10051. MJ10052 TABLE 1 - RBSOA AND INDUCTIVE SWITCHING DRIVER SCHEMATIC RESlsnVE SWITCHING TURN ON TIME RBSOA AND INDUCTIVE SWITCHING DRIVER SCHEMATIC on Z ... 0 iE Zo PG -zo (J • 181 adjusted 10 obtain the forced hFE deSIred INntO~F HP214 -380-J TURN-OFF TIME PW Varied to Attam ":" Leoti = 10 mH Rcol l=07n Use inductive sWltchmg ~005"F 20",F 50 le= 250 rnA CirculI as the Input to the resIstive lesl CIrcuit • 11000 Vee = 10 V Leol ' = 50j,(H 20V Vee = 300 V MTM14N05 -YoU Vee'" Vclamp = VCEO(sus) RL = OUTPUT WAVEFORMS INDUCTIVE TEST CIRCUIT eou Pulse Width.: 25 ",5 Drtve RESISTIVE TEST CIRCUIT I, Adjusted 10 Obts,n Ie t,---veeLcOll(lCM' 1,- --,-Vclamp -1-, LeOII (lCMJ Vcl amp Test EqUipment Scope - TektrOniX 475 or EqUivalent 'Adjust - V such that VBEloff) = 5 V except., required for RBSOA IFigure 141. SWITCHING TIMES NOTE In resistive switching circuits, rise, fall, and storage times have been defined and apply to both current and voltage waveforms since they are in phase. However, for inductive loads which are common to SWITCHMODE power supplies and motor controls, current and voltage waveforms are not in phase. Therefore, separate measurements must be made on each waveform to determine the total switching time. For this reason, the following new terms have been defined. t sv = Voltage Storage Time, 90% IBI to 10 % VCEM trv = Voltage Rise Time, 10-90% VCEM tfi = Current Fall Time, 90-10% ICM tti = Current Tail, 10-2% ICM tc = Crossover Time, 10% VCEM to 10% ICM An enlarged portion of the inductive switching waveform FIGURE 11 - PEAK REVERSE BASE CURRENT 30 .,/'" V 8 2 l FIGURE 12 - REVERSE RECDVERY WAVEFORM ./ t-IC=JOA lSI = 5.0 A t-TJ = 2SoC ~. is shown in Fig ure 7 to aid on the visual identity of these terms. For the designer, there is minimal switching loss during storage time and the predominant switching power losses occur during the crossover interval and can be obtained using the standard equation from AN-222A: PSWT = 112 Vcclcltc)f In general, trv + tfi "" tc. However, at lower test currents this relationship may not be valid. As is common with most switching transistors, resistive switching is specified at 25°C and has become a benchmark for designers. However, for designers of high frequency converter Circuits, the user-oriented specifications which make this a "SWITCH MODE" transistor are the inductive switching speeds Itc and tsv) which are guaranteed at 100°C. '/ ./ ...... ./ ./ !P 6. 0 0 0 0.5 "./Oiy .0 .0 .0 5.0 6.0 .0 6.0 VaE(off) BASE·EMITTER VOLTAGE (VOLTS) .1-600 MJ1 0051, MJ10052 SAFE OPERATING AREA INFORMATION The S.f. Oper.ting Are. figure••hown in Figur•• 13 .nd 14 era specified for the.. device. under the te.t condition. shown. FORWARD BIAS There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate IC-VCE limits of the transistor that must be observed for reliable operation; Le .. the transistor muSI not be subjected to greater dissipation than the curves indicate. The data of Figure 13 is based on TC = 25°C; TJ(pk) is variable depending on power level. Second breakdown pulse limits are valid for duty cycles to 10% but must be derated when TC;;' 25°C. Second breakdown limitations do not derate the same as thermal limitations. Allowable current at the voltages shown on Figure 13 may be found at any case temperature by using the appropriate curve on Figure 15. TJ(pk) may be calculated from the data in Figure 20. At high case temperatures. thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown. FIGURE 13 - MAXIMUM FORWARO-BIAS SAFE OPERATING AREA (FBSOA) ~ ! 5 100 50 10 Il' (Turn·On Switching) 20 10 5.0 dc ~ MJ100520;;'" MJ10051 B 2.0 '" t3 ~ B ""1= 1.0 05 ~ Current limIt 02f- -----Thermalllmit@Tc-250C §; ~ 0.1 ISingle Pul.e) Second Breakdown limit 0.05 ~ 0.02 0.01510 2.0 50 10 20 50 100 200 500 850 VCE. COLLECTOR·EMITTER VOLTAGE IVOLTSI REVERSE BIAS FIGURE 14 - MAXIMUM REVERSE-BIAS SAFE OPERATING AREA (RBSOA) For inductive loads. high voltage and high current must be sustained simultaneously during turn-off, in most cases, with the base to emitter junction reverse-biased. Under these conditions the collector voltage must be held to a safe level at or below a specific value of collector current. This can be accomplished by several means such as active clamping, RC snubbing, load line shaping, etc. The safe level for these devices is specified as Reverse-Bias Safe Operating Area and represents the voltage-current condition allowable during reverse-biased turn-off. This rating is verified under clamped conditions so that the device is never subjected to an avalanche mode. Figure 14 gives the RBSOA characteristics. 150 TJ';; 100°C IC/IB;;' 10 VBE(otll; 5.0 V 0 0 0 \ 0 "'- .......... 100 300 500 700 900 OVERLOAD SAFE OPERATING AREA VCE. PEAK COLLECTOR·EMITTER VOLTAGE (VOLTSI The forward-bias safe operating area (FBSOA) specification given in Figure 13 adequately describes transistor capability for normal repetitive operation. When short circuit or fault conditions occu r, these tra nsistor specifications are not always adequate. A specification called overload safe operating area (OlSOA) has been developed to describe the transistor's ability to survive under fault conditions. OlSOA is specified under two types of conditions. FIGURE 16 - POWER DERATING 100 i! 80 '" ~ ~~ " "'- r--...... ...... r-... Therm.l~ :f 60 '"z ~ ffi '" Dereting Sacond Breekdown Derating r---.. t'.... '" 40 i .. 20 o o 40 80 120 TC. CASE TEMPERATURE (OCI - TYPE I OlSOA ...... r--... " 160 r-.... " "'- 200 Type I OlSOAapplies when maximum collector current is limited and known. A good example isa circuit where an inductor is inserted between the transistor and the bus, which limits the rate of rise of collector currentto a known val ue. Ifthe tra nsistor is then turned off within a specified amount oftime, the magnitude of collector current is also known. Figure 16 depicts the Type I OlSOA rat'ing for the devices. Maximum allowable collector-emitter voltage versus collector current is plotted for severa I pulse widths. (Pulse width is defined as the time lag between the fault (continued on back page) 1-601 MJ10051, MJ10052 OVERLOAD CHARACTERISTICS FIGURE 18 - OVERLOAD SAFE OPERATING AREA TYPE I (OlSOA) 250 ~ 200 _ ::E T~ = 25lC ~ ~ 150 '" l'l '" ~ 10 m 9.0 .\\\ W \' Ii; in !i ....z~ ~\ ~\\ 100 \~ 8 Ji> 50 o w tp - 10 ~s / ~ tp=20~s_ ~ 1/1 ~~ o ~ i'l l/_tp = 5.0 ~s \\'( :j FIGURE 17- OVERLOAD SAFE OPERATING AREA TYPE II (OlSOA) I ~ r-- T~=25JC- t-- 8.0 7,0 6.0 5.0 4.0 3.0 tp = 5.0 2.0 1.0 r--tp= 20 ~s '1 1- ~ I 200 850 500 VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS) o o 1000 / I ~s I ~ 200 500 850 VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS) 1000 FIGURE 18 - OVERLOAD SOA TEST CIRCUIT TYPE I Not..: • VCE=VCC+VSE • FIGURE 19 - OVERLOAD SOA TEST CIRCUIT TYPE II Adjust pulsed current source for desired IC, tp p';;erc.flyReTay---------, I I L N.O. N.C. I ______ JI J:::' 1 VCC Not•• : +6V • Rep Rate';; 10 Hz • Adjust Rl for desired IS • Pulse· delay time at the 39 50 generator determines pulse width at the device under test 15 1-602 MJ10051, MJ10052 SAFE OPERATING AREA INFORMATION (continued) TYPE I OLSOA (continued) condition and the removal of base drive.) Storage time of the transistor has been factored into the curve. Therefore. with bus voltage and maximum collector current known. Figure 16definesthe maximum time which can be allowed for fault detection and shutdown of base drive. Type I OlSOA is measured in a common-base circuit (Figure IS) which allows precise definition of collectoremitter voltage and collector current. This is the same circuit that is used to measure·forward-bias safe operating area. TYPE II OlSOA Type II OlSOAapplies when maximum collector current is not limited by circuit design. but is limited only by the gain olthe transistor. Therefore. collector current does not appear on the Type" OlSOA curve. This curve defines a safe region of operation from the information that is usually available to the designer. This information is normally base drive. bus voltage and time. In terms olthe OlSOA curve. bus voltage is assu med to be worst-case collector-emitter voltage. and time is defined to be the same pulse width that was described for Type I OlSOA. Using these variables. maximum collectoremitter voltage versus base drive is plotted for several values of pulse width. A safe region of operation is thus determined by the circuit parameters. Type" OlSOA. as shown in Figure 17. is measured in the circuit shown in Figure 19. and measurement is made as follows: Base current is applied while the collector is open. allowing a highly overdriven saturated condition. Next. a stiff voltage sou rce is applied to the collector. The rising voltage at the collector of the transistor triggers a delay function. At the end of this delay. base drive is removed. The delay time is the variable on the Type II OlSOA curve. The storage time of the transistor is thereby factored into the rating. There are several additional aspects to be considered regarding OlSOA. The first consideration is that OlSOA is strictly a NONREPETITIVE rating. It is intended to describe the survivabilityolthetransistor during an accidental overload and is not intended to describe a stress level which can be sustained indefinitely. The number of nonrepetitive faults for which OlSOA is defined for the devices are 100 occurrences. Another factor is the form of turn-off bias. For the devices. turn-off bias has relatively little effect on its OlSOAcapability. This observation is valid from 'S2 = 0 (soft) to VSE(off) = 5 V (stiff). OlSOA is subjectto the same derating with temperature as normal FBSOA. The second breakdown derating curve is applied to the allowable current at any given voltage. using the same procedure that is followed with pulsed FBSOA. FIGURE 20 - THERMAL RESPONSE ~ 10 ~ 05 ." 0= 0 5 R8JC'i';i~ rlt) Rue"" ~ '-' z 02 ~ 01 fii ;;i RUC = 025 °C/W Ma, o CURVES APPLY FOR POWER PULSE TRAIN SHOWN READ TIME At tl TJlpk) - TC = Pip.) Ruclt) Pip.) 0=02 1111 0=01 ~ tILJL ffi 0 05 ;!: s;; ill 002 :i ::~oo 1 '2 001 S)'~~:~ PIU:S~ ~11f-~ f- t2 OUTY CYCLE. 0 = I1/t2 1111111 llllllllU L 01 10 10 t. TIME (ms) 1-603 100 1000 10000 III MJI0I00 ® MOTOROLA Designer's Data Sheet 100 AMPERE NPN SILICON POWER DARLINGTON TRANSISTOR 50 KVA SWITCHMODE TRANSISTOR 1 OO·Ampere Operating Current 450 VOLTS 600 WATTS The MJ10l00 Darlington transistor is designed for industrial service under practical operating environments found in switching high power inductive loads off 230-Volt lines. Designer's Data for "Worst-Cass" Conditions The Designer's Data Sheet permits the design of most circuits entirely from the information presented. Limit datarepresenting device characteristics boundaries-are given to facilitate "worst-case" design. I i-K Lr- >---- A B i _._.1 ~1 1/4-20 UNC2B - R .1 J L:! ~ *Emitter-Collector Diode is a high power diode. MAXIMUM RATINGS Value Unit 20 in.-Ib Lead Torque (Lead to bus with 1/4-20 Screw) (Note 2) 20 in.-Ib Per Unit Weight 120 grams Rating I 0.25 I °C/W Mica Insulators available as separate items. 0.003" thick. Motorola Part Number 14ASB123B7B001. 0.006" thick. Motorola Part Number 14ASB 12387B002. Notes: 1. A Bellev.llewasherof0.472"O.D .• 0.205"I.D . 0.024"th.ck and 150poundsflat •• recommended. 2. The lead torque should be limited to 20 in -Ib, unsupported to prevent rotation of the terminal In the package. The torque may be Increased to 5010 -Ib if support IS used to prevent rotation. The maximum penetration of the screw should be lImited to O. 75 H 1-604 I , THERMAL CHARACTERISTICS Thermal Resistance, Junction to Case,R9JC -. STYLE 1 PIN 1 BASE 2 EMITTER C 3 EMITTER I 4 COLLECTOR 5 COLLECTOR NOTES: I. DIMENSION A AND BARE DATUMS. 2. WIS SEATING PLANE. 3. POSITIONAL TOLERANCE FOR MOUNTING HOLES: 1"'1* 0.36 (o.014)@ITIA@i B@I Mechanical Ratings Mounting Torque (To heat sink with 10-32 Screw) (Note 1) S ..J MILLIMETERS INCHES DIM MIN MAX MIN MAX A 53.09 53.84 2.090 2.120 B 55.37 56.39 2.180 2.220 C 26.67 1.050 D 6.10 6.60 ~ 6.60 7.11 E ~ 0.71 0.81 F ~ 43.31 BSC G H 12.57 12.82 1.52 J 1.62 0.060 0.064 K 9.50 9.75 0.374 0.384 L 10.21 10.46 0.402 0.412 M 18.92 19.18 0.745 0.755 N 23.67 23.93 0.932 0.942 P 5.21 0.200 0.205 5.08 Q 3.53 3.78 0.139 0.149 R 6.76 7.26 0.266 0.286 S 14.73 15.24 0.580 0.600 V 5.33 5.84 0.210 0.230 W 6.40 6.65 0.252 0.262 X 7.37 7.87 0.290 0.310 CASE 348-01 MO-040AA ~ MJ10100 III MAXIMUM RATINGS (Continued) Electrical Ratings Rating Symbol Value Unit Collector-Emitter Voltage VCEO 450 Vdc Collector-Emitter Voltage (RBE' 10 Ohms) VCER 500 Vdc Collector-Base Voltage VCB 500 Vdc Emitter-Base Voltage VEB 8.0 Vdc Collector Current - Operating, TC' 87.5°C - Continuous. Te;; 25°C - Peak Repetitive, TC' 25°C - Peak Nonrepetitive, Te::: 25°C IC 100 150 300 500 A Base Current - 18 50 100 A Po 500 4.0 667 Continuous Peak Nonrepetitive Total Device Dissipation @ Te' 25°C Derate above 25°C For 1 -minute overload Operating Junction and Storage Temperature Range For 1-minute overload Watts W/OC Watts -55 to+150 -55 to +200 TJ, Tstg °c ELECTRICAL CHARACTERISTICS (Tc' 25°e unless otherwise noted) I Characteristic Symbol Min Typ Max Unit VCEO(sus) 450 - - Vdc - 2.0 10 10 mAde - 650 mAdc OFF CHARACTERISTICS Collector-Emitter Sustaining Voltage (1) (IC' 250 mAde, IB ' 0) mAde Collector Cutoff Current (VCE' 500 Vdc, VBE(olf)' 1.5 Vdc) (VCE' 500 Vdc, VBE(off)' 1.5 Vdc, TC ' 150°C) ICEV Collector Cutoff Current (VCE' 500 Vdc, RBE' lOn, TC' 100°C) ICER - Emitter Cutoff Current lEBO - (VEB' 4.0 Vdc, Ie' 0) SAFE OPERATING AREA Second Breakdown Collector Current with Base Forward-Biased FBSOA Clamped Inductive SOA with Base Reverse-Biased RBSOA See Figure 13 See Figure 14 Overload SOA OlSOA See Figures 16 and 17 ON CHARACTERISTICS (t) DC Current Gain (lC' 100 Adc, VCE' 5.0 Vdc) (lC' 100A, VCE' 10V) Collector-Emitter Saturation Voltage hFE VCE(sat) (lC' 100 Adc, IB' 3.3 A) IC' 150Adc,IB' 12A) (lC' 100 Adc, IB' 3.3 A, TC' 100°C) Base-Emitter Saturation Voltage (lC' 100 Adc, IB ' 3.3 Adc) (lC' 100 Adc, IB' 3.3 Adc, TC' 100°C) 50 60 - - - - 2.0 3.3 2.5 - - 3.0 3.0 Vdc - VBE(sat) Vdc - DYNAMIC CHARACTERISTICS Output Capacitance (YCB' 10 Vdc, IE' 0, I test ' 1.0 kHz) (1) Pulse Test. Pulse width of 300 loiS, duty cycle :E;;.2.0%. 1-605 MJ10100 ELECTRICAL CHARACTERISTICS (Continuad) (TC = 25°C unlass otherwise noted) OJ Characteristic SWITCHING CHARACTERISTICS Resistive Load td tr ts tf - tsv tc tsv tc - Powar DIssipation (IB = 0) Po 250 W VF - - Forward Voltage (1 )(IF = 100 A) (iF=200A) 1.1 1.4 1.5 2.0 V V Reverse Recovery Ti me (di/dt = 25 AI ~s. IF = 100 A) Forward Turn-On Time (Compliance Voltage = 250 V. IF = 100 A) trr - 3.3 10 ~s 0.3 1.0 ~s - 500 A Delay Time Rise Time Storage Time Fall Tima (VCC = 250 Vdc. IC = 100 A. IBI = 3.3 A. RBE = 10 n. tp = 50~s. Outy Cycle';; 2.0%) 0.03 0.9 0.25 3.0 ~s 10 25 10 ~s 3.0 ~s ~s Inductive Load. Clamped Storage Time Crossover Ti me Storage Time Crossover Time TJ = 100°C (ICM= l00A. VCEM= 250V. RBE= Ion. IBI = 3.3 A) TJ = 25°C 15 50 15 25 10 4.0 10 2.7 ~s ~s ~s ~s C-E DIODE CHARACTERISTICS ton Single Cycle Surge Current (60 Hz) - IFSM (1) Pulse Test. Pulse wIdth of 300 P.s, duty cycle ~2.0%. TYPICAL ELECTRICAL CHARACTERISTICS FIGURE 1 500 I I III I-- r-- iJ - "" V ~ 1~O~~ 500 - ......" V - / TJ 1= ..,? ;..;- I ~ ...c 100 30 2.0 5.0 10 20 100 - FIGURE 3 - 30 2.0 200 z ~ ia ...c \ 1\ 5.0 10 FIGURE 4 - '\ \ ~ ~ ....- - ~100oC .J..-" 1--"" - 10 20 09 -i' I 50 50 100 I- II I T~ J2UCI / ....- - I-- I-- 05 2.0 200 ./ - 11 ~ w c c is 07 I- 10 20 - <> '" V TJ = 25°C 1.3 w '""' // 'l '" ~ <> 5.0 10 IC. COLLECTOR CURRENT (AMPS) 20 50 100 200 If. fORWARD CURRENT (AMPS) TYPICAL SWITCHING CHARACTERISTICS FIGURE 7 - INDUCTIVE SWITCHING MEASUREMENTS FIGURE B 20 'C",_ _ ..;" ~EM ' '\4 911% VCEM 1111911% 'CM V ./ 'c/" I- f--Isv trv / 'B- - 90% 'Bl -- -- --\- -- '--'" -- - 14 "- ~ ~ - 10 -' 8.0 Is.l@ 25°C V r-.2%...... Ie lOboc I 20 Ie @ 25°C r I II I o 0.1 0.2 0.5 1.0 2.0 5.0 10 20 50 100 RaE. aASE·EMITTER RESISTANCE (OHMS) VeC = 250 V leila = 10 RaE=10n TJ 25°C 0.5 FIGURE 10 - TURN-OFF SWITCHING TIMES / } I, ;" " - i'. 0.05 0.02 2.0 /' ;::: .., f-"" /' 20 If '" 1.0 VCC = 250 V Ic/la = 10 RaE=10n TJ = 25°C 05 Id 10 Is ~ 2.0 ........ 5.0 / 10 5.0 ~ 0.1 J 20 1.0 .., I; f-"'" 4.0 - -t1 T V V 6.0 FIGURE 9 - TURN-ON SWITCHING TIMES ;::: --1" ;::: 2.0 0.2 Is.@ lOO°C 12 ~ TIME i I 1111 I I 1111 I Ie = 100 A VCEM = 250 V lal = 3.3 A 16 - 10% ....... ICM II1%VCEM II I 18 fI~ttJ-- 1-',,- --J r'c ---\ VCE _ Vclamp INDUCTIVE SWITCHING TIMES 50 100 200 IC. COLLECTOR CURRENT (AMPS) 0.2 2.0 11111 5.0 10 20 50 IC. COLLECTOR CURRENT (AMPS) 1-607 100 t==== F= f= f- I-200 MJ10100 TABLE 1 - TEST CONDITIONS FOR DYNAMIC PERFORMANCE VCEOlSUl' 1 DRIVER SCHEMATIC 70n .. . ~ s~ ~, U For Inductive loads pulse wIdth ".d,",Io"o "",,,",,,,,,,,,,, 'e U lIsov PW V.ri~ 10 Au.in 'C"210mA .... • ~ -~2N3762 0003 lOOn "" ~ - ~3 -" u> Vee· ~ MTM1224 Leoil" 50,uH Vee - 20 V INDUCTIVE TEST CIRCUIT obtam the forced hFE desired f-< TURN-OFF TIME , Use mductlve SWltchmg CIrCUit as the mput 10 r 10 V Vel.""o· VCEOlius) IS1 adjusted 10 ~ ~ TOn Lc:oil- 10mH R eo,,- 0 7 n ,.@r: .30 V AdJustRl to obtaIn ''f gO"¥6V d..".d '., ~OOO5 ~ J 50n ~~ 50U ., 20011 o T ~F 10J'F ~ SWITCHIPIIG TURN·ON TIME loon -----~r -~ RESISTIVE RBSOA AND INDUCTIVE SWITCHING the reSIStive testctrCl.llt Vee" 250 V RL - 2.5 n Pul. Wfdth - 26 ". "" RESISTIVE TEST CIRCUIT OUTPUT WAVEFORMS t, Adjultltd to ObUt" Ie ~ ~, r U II: .. U Input ~ See Above for 2 V cl.mp i" II ~'amped I I I 1N4937 or Equjvalant Detailed Cf')nd~110ns 'eM __ 'eLE21= 1 I I RcOl1 , 3 L j -i- Yee V'CEM T,me "Adjust - V such that VBE(off) Leo.1 (leM) V'clamp T est Equ~pment Scope - TektronIX 475 or EqUIValent ~~2~ = 5 V except as required for RBSOA "L '2---VCI.mp VCElJ:b~ ___ -L, ~ 6~s·} 0.1 n 1.'~ -= =Yee L col' CleM) t1""-VCC- 1--,,- "t- I L cDI , (Figur. 14). SWITCHING TIMES NOTE In resistive switching circuits, rise, fall, and storage times have been defined and apply to both current and voltage waveforms since they are in phase. However, for inductive loads which are common to SWITCHMODE power supplies and motor controls, current and voltage waveforms are not in phase. Therefore, separate measurements must be made on each waveform to determine the total switching time. For this reason, the following new terms have been defined. is shown in Figure 7 to aid on the visual identity of these terms. For the designer, there is minimal switching loss during storage time and the predominant switching power losses occur during the crossover interval and can be obtained using the standard equation from AN-222A: PSWT = 112 Vcclc(tdf In general, trv + tfi = tc. However, at lower test currents this relationship may not be valid. As is common with most switching transistors, resistive switching is specified at 25°C and has become a benchmark for designers. However, for designers of high frequency converter circuits, the user-oriented specifications which make this a "SWITCH MODE" transistor are the inductive switching speeds (tc and tsvl which are guaranteed at 100°C. tsv = Voltage 'Storage Time, 90% IS1 to 10 % VCEM trv = Voltage Rise Time, 10-90% VCEM tfi = Current Fall Time, 90-10% ICM 'ti = Current Tail, 10-2% ICM tc = Crossover Time, 10% VCEM to 10% ICM An enlarged portion of the inductive switching waveform FIGURE 11 - PEAK REVERSE BASE CURRENT FIGURE 12 - THERMAL RESPONSE C N 10 9.0 100~ - ::Ii :$. 7.0 >- 15 6.0 '" El 5.0 ~ 4.0 '" ~ =!: g ~ -- IC! IB=3.3A VCEM = 250 V TJ = 25°C -~ ~ 8.0 \ \ \ 3.0 o o 0=0.5 ReJ~'Ni~rlt) ReJbuH ReJC = 0.25 °C/W Max o CURVES APPLY FOR POWEll PULSE TRAIN SHOWN READ TIME At t1 TJ(pkl- TC = P(pkl ReJC(t) P(pkl II lUI 0.5 ~ '-' ~ 0.2 ..~'" O. 1 0=0.2 I 0=0.1 >- i5 I'. 1.0 ~ PIU:S~ tJUL 11111111111 DUTY CYCLE, 0 = tl/t2 ~ 0.05 \ 2.0 10 ~ 0.0 2 g ~O.O 1 1.0 2.0 3.0 4.0 5.0 6.0 7.0 B.O 9.0 10 'E- VBE. BASE-EMITTER RESISTANCE IOHMS) 0.D1 I~i~I~:~ ~~~ 11111 0.1 1.0 10 1. TIME Ims) 1-608 100 1000 10000 MJ10100 The Safe Operating Araa figures shown in Figures 13 and 14 SAFE OPERATING AREA INFORMATION are specified for these devices under the test conditions shown. FORWARD BIAS FIGURE 13 - MAXIMUM RATED FORWARD BIAS, SAFE OPERATING AREA (FBSOA) 300 150 100 ~ 10". . ~I= ITurn·On Switching) =~ 50 ~ dc ~ 1.0 - ::i 8 Current limit - - - - - Thermal limit @ TC - 25°C ISingle Pulse) ~ ~. 0.1 0.03 0.5 Second Breakdown limit 1.0 2.0 5.0 10 20 50 100 200 450 VCE, COLLECTOR EMITIER VOLTAGE IVOLTS) There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate IC-VCE limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. The data of Figure 13 is based on TC ~ 25°C; TJ(pk) is variable depending on power level. Second breakdown pulse limits are valid for duty cycles to 10% but must be derated when TC;;' 25°C. Second breakdown limitations do not derate the same as thermal limitations. Allowable current at the voltages shown on Figure 13 may be found at any case temperature by using the appropriate curve on Figure 15. TJ(pk) may be calculated from the data in Figure 12. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown. REVERSE BIAS For inductive loads, high voltage and high current must be sustained simultaneously during turn-off, in most cases, with the base to emitter junction reverse biased. Underthese conditions the collector voltage must be held to a safe level at or below a specific value of collector current. This can be accomplished by several means such as active clamping, RC snubbing, load line shaping, etc. The safe level forthese devices is specified as Reverse-Bias Safe Operating Area and represents the voltage-current condition allowable during reverse-biased turn-off. This rating is verified under clamped conditions so that the device is never subjected to an avalanche mode. Figure 14 gives the RBSOA characteristics. FIGURE 14 - MAXIMUM RATED REVERSE-BIAS SAFE OPERATING AREA (RBSOA) 300 I 0;- !l1 250 5. .... z \ \ \ ~ 200 ~ e 2~OC ~ TJ ",llOoolC - RBE~10n - i 150 \ ~ 8100 ~ ~ \ 50 o o 100 200 '\ OVERLOAD SAFE OPERATING AREA ........... 300 400 500 600 VCE, PEAK COLLECTOR·EMITIER VOLTAGE (VOLTS) FIGURE 15 - POWER DERATING 100 ~ 80 '"t; :;: '"z 0 60 ~~ TYPE I OlSOA t'--- '" """ ....... ~ Thermal Derating g '" 40 Second Breakdown Derating ~ ............ l'..... ........ '"~ - I'..... ............ "'- ...... 0 " ""- ~ 20 o o 40 The forward-bias safe operating area (FBSOA) specification given in Figure 13 adequately describes transistor capability for normal repetitive operation. When short circuit or fault conditions occur, these transistor specifications are not always adequate. A specification called overload safe operating area (OLSOA) has been developed to describe the transistor's ability to survive under fault conditions. OLSOA is specified under two types of conditions. 80 120 Te. CASE TEMPERATURE ('CI 160 """ 200 Type (OLSOA applies when maximum collector current is limited and known. Agood example is a circuit where an inductor is inserted between the transistor and the bus, which limits the rate of rise of collector current to a known value. (f the transistor is then turned off within a specified amount of time, the magnitude of collector current is also known. Figure 16 depicts the Type I OLSOA rating for the MJ 101 00. Maximum allowable collector-emitter voltage versus collector current is plotted for several pulse widths. (Pulse width is·defin·ed as the time lag between the fault condition and the removal of base drive.) Storage time of the transistor has been factored into the curve. Therefore, with bus voltage and maximum collector current known, (continued on back page) 1-609 III MJ10100 III SAFE OPERATING AREA INFORMATION (continued I TYPE I OlSOA (continuedl shown in Figure 1 J., is measured in the circuit shown in Figure 1 9, and measurement is made as follows: Base current is applied while the collector is open, allowing a highly overdriven saturated condition. Next, a stiff voltage source is applied to the collector. The rising voltage at the collector of the transistor triggers a delay function. At the end of this delay, base drive is removed. The delay time is the variable on the Type II OLSOA curve. The storage time of the transistor is thereby factored into the rating. There are several additional aspects to be considered regardi ng OLSOA. The first consideration is that OLSOA is strictly a NON REPETITIVE rating. It is intended to describe the survivabilityofthe transistor during an accidental overload and is not intended to describe a stress level which can be sustained indefinitely. The number of nonrepetitive faults for which OLSOA is defined for the MJ10l00 is 100 occurrences. Another factor is the form of turn-off bias. For the MJ10l00, turn-off bias has relatively little effect on its OLSOA capability. This observation is valid from IB2 0 (soft) to VBE(off) 5 V (stiff). OLSOA is subject to the same derating with temperature as normal FBSOA. The second breakdown derating curve is applied tothe allowable current at any given voltage, using the same procedure that is followed with pulsed FBSOA. Figure 16definesthe maximum time which can be allowed for fault detection and shutdown of base drive. Type I OLSOA is measured in a common-base circuit (Figure 18) which allows precise definition of collectoremitter voltage and collector current. This is the same circuit that is used to measure forward-bias safe operating area. TYPE" OlSOA Type II OLSOA applies when maximum collector current is not limited by circuit design, but is limited only by the gain ofthe transistor. Therefore, collector current does not appear on the Type II OLSOA curve. This curve defines a safe region oi'operation from the information that is usually available to the designer. This information is normally base drive, bus voltage and time. In terms ofthe OLSOAcurve, bus voltage is assumed to be worst-case collector-emitter voltage, and time is defined to be the same pulse width that was described for Type I o LSOA. Using these variables, maximum collectoremitter voltage versus base drive is plotted for several values of pulse width. A safe region of operation is thus determined by the circuit parameters. Type II OLSOA, as = 1-611 = MJ1010l MJ10102 ® MOTOROLA Designer's Data Sheet 100 AMPERE NPN SILICON. POWER DARLINGTON TRANSISTOR 50 KVA HIGH SPEED SWITCH MODE TRANSISTOR 100-Ampere Operating Curr~mt 360 and 460 VOLTS 600 WATTS The MJ1 01 01 Darlington tran~istor is designed for industrial service under practical operating environments requiring fast switching speed for highly efficient systems operating at high frequency such as inverters, PWM controllers and other high frequency systems operating.from 230 V line". Designer's Data for "Worst-Case" Conditions The Designer's Data Sheet permits the design of most circuits entirely from the information presented. Limit datarepresentlllg device characteristiCS boundaries-are given to facifitate "worst-case" design. w • L v A 1/4-28 UNC28 i'?'4:: 'C ='" ~ .. s ' :t E " 25 *Emitter-Collector Diode is a fast recovery, high power diode. MAXIMUM RATINGS Mechanical Ratings Rating Value Unit Mounting Torque (To heat sink with 10·32 Screwl (Note t) 20 in.·lb Lead Torque (Lead to bus with 1/4·20 Screw) (Note 2) 20 in.·lb Per Unit Weight 120 grams THERMAL CHARACTERISTICS Thermal Resistance. Junction to Case,R6JC 1 0.25 1 °C/W 0.003'" thick. Motorola Part Number 8123878001. 0.006'" thick. Motorola Pan Number 8123878002. Notes: 1. A Belleville washer of 0.472" 0.0 .• 0.205"1.0., 0.024" thick and 150 pounds flat is recommended such as PIN AM 125206 available from National Disc Spring Div., 385 Hillside Ave .. Hillside N.J. 07205. 2. The lead torque should be limited to 20 in.·lb. unsupported to prevent rotation of the terminal in the package. The torque may be increased to 60 in.-Ib if support IS used to prevent rotation. The maximum penetration of the screw should be limited to 0.76". 4. OIMENSIONING AND TOLERANCING PER ANSI Y14.5, 1973. DIM A B C D E F G H K L M N P n R S V W X MIlliMETERS MIN MAX 53.09 53.84 55.37 56.39 26.67 6.10 6.60 6.60 7.11 0.71 0.81 43.31 BSC 12.57 12.82 1.52 1.62 9.50 9.75 10.21 10.46 18.92 19.18 23.67 23.93 5.08 5.21 3.53 3.78 B.76 7.2B 14.73 15.24 5.33 5.84 6.40 B.BS 7.37 7.87 CASE 346·{11 1-612 BASE EMITTER EMITTER COLLECTOR COLLECTOR NOTES: 1. DIMENSION A AND B ARE DATUMS. 2. OJIS SEATING PLANE. 3. POSITIONAL TOLERANCE FOR MOUNTING HOLES: Itlu.3B (0.014)91 TIA@IB91 J Mica Insulators available as separate items. PIN 1. 2. 3. 4. 5. MJ10101, MJ10102 III MAXIMUM RATINGS (Continued) Electrical Ratings Rating Symbol Value Unit VCEO 450 350 Vdc Collector-Emitter Voltage (RBE = 10 Ohms) VCER 500 Vdc Collector-Base Voltage VCB 500 Vdc Emitter-Base Voltage VEB 8.0 Vdc Collector Current - Operating, TC = 87.5°C - Continuous, TC = 25°C - Peak Repetitive, TC = 25°C - Peak Nonrepetitive, TC = 25°C IC 100 150 300 500 A Base Current - IB 50 100 A Po 500 4.0 667 Watts W/oC Watts -55 to+150 °c Collector-Emitter Voltage MJ10101 MJ10102 Continuous Peak Nonrepetitive Total Device Dissipation @ Te::; 25°C Derate above 25°C For l-minute overload Operating Junction and Storage Temperature Range For l-minute overload TJ, Tstg -55 to +200 ELECTRICAL CHARACTERISTICS (TC = 2SOC unless otherwise noted) Characteristic OFF CHARACTERISTICS Collector-Emitter Sustaining Voltage (1) (IC = 250 mAde, IB = 0) MJ10l0l MJ10l02 VCEO(sus) Collector Cutoff Current (VCE = 500 Vde, VBE(off) = '.5 Vdc) (VCE = 500 Vde, VBE(off) = 1 5 Vde, Te = lS0°C) ICEV Emitter Cutoff Current (VEB = 4.0 Vdc, IC = 0) lEBO 4S0 350 - - - 2.0 10 Vde mAde - - 5.0 mAde SAFE OPERATING AREA Second Breakdown Collector Current with Base Forward-Brased FBSOA See Figure 13 Clamped Inductive SOA with Base Reverse-BIBsed RBSOA See Figure 14 Overload SOA OLSOA See Figures 16 and 17 ON CHARACTERISTICS (1) DC Current Gam hFE (lC = 100 Ade, VCE = 5.0 Vde) (IC= 100 A. VeE= 10V) Collector-Emitter Saturation Voltage (lC = 100 Adc, IB = 3.3 AI Ie = 150 Ade,IB = 12 A) (IC = 100 Adc, 18 = 3.3 A, TC = 100°C) VCE(sat) Base-Emitter Saturation Voltage (lC = 100 Ade, IB = 3.3 Adc) . (lc = 100 Ade, IB = 3.3 Ade, TC = lOOOC) VBE(sat) Output Capacitance (VCB = 10 Vdc, IE = 0, f test = 1.0 kHz) ~s. - - - - - - - - - 2.0 3.3 2.5 - - 3.0 3.0 Vde Vde - DYNAMIC CHARACTERISTICS (11 Pulse Test. Pulse width of 300 50 60 duty cycle ~2.0%. 1-613 MJ10101, MJ10102 ELECTRICAL CHARACTERISTICS (Continued) (TC = 25°C unless otherwise noted) Symbol Min Typ Max Unit td tr ts tf - 0.03 0.9 0.4 0.25 3.0 .5 1.25 !'s !'s !,S !,S t.v tc tsv tc - 2.5 0.8 1.5 0.5 7.5 3.0 3.75 1.5 !'s !'s !,S !,S Power Dissipation (lB = 0) Po Forward Voltage (1) (IF = 100 A) VF - Characteristic SWITCHING CHARACTERISTICS Resistive Load OeleyTime (VCC = 250 Vdc. IC = 100 A. IBl = 3.3 A. VBE(off) = 5.0 V. tp = 50 !,S Duty Cycle';; 2.0%) Rise Time Storage Time Fall Time .0 Inductive Load, Clamped Storage Time Crossover Time Storage Ti me Crossover Time (lCM = 100 A. VBE(off) = 5.0 V. VCEM = 250 V IBl = 3.3 A) TJ= l000C TJ= 25°C C-E DIODE CHARACTERISTICS I (IF= 100 A. Idi/dt = 100 AI!,s) Reverse Recovery Current Reverse Recovery Time - 250 W 1.7 5.0 V - 20 0.4 50 1.0 A !,s ton - 0.1 0.5 !'s IFSM - - 500 A IRMfrec\ trr Forward Turn-On Time (Compliance Voltage = 250 V, IF = 100 A) Single Cycle Surge Current (60 Hz) (1) Pulse Test. Pulse width of 300 IJs, duty cycle:;;;;2.0%. TYPICAL ELECTRICAL CHARACTERISTICS FIGURE 1 - DC CURRENT GAIN 500 ",..- - - +J ~ l~o~d z ~ 200 V IE ~ 13 '-' CI V ,,- FIGURE 2 500 r-.. - I' r- r-- "'r-. TJ 1= V- ~ 200 ~ V- .... VTJ = 25°C ia ~ ... '\ 100 ~ 50 VCE = 5.0 V / 30 2.0 5.0 / !\ 10 20 50 100 200 5.0 IC. COLLECTOR CURRENT (AMPS) - FIGURE 3 500 z ~ :::. « '" !:; \. \ ~ 100 200 20 12 '" ~ 10 r-- '" 0.6 1\ 10 !;j oj 8 ~ > 100 200 500 / 0.4 ----- TJ = 25°C I f-- 0.2 o 20 IC. COLLECTOR CURRENT (AMPS) I 14 > 0 U IC~18 = ~O 16 ~ 08 VCE = 300 V 50 1.8 0 50 20 50 FIGURE 4 - COLLECTOR SATURATION REGION 0 10 20 20 100 5.0 5.0 10 Ic. COLLECTOR CURRENT (AMPS) DC CURRENT GAIN ~~ = 25~C 200 1 I\. CI 50 :c I'VCE = 2.0 V '-' .It '"!5 ..,IE::> IIII ~C~ ~ll0 V r- 215O~ z /V 100 DC CURRENT GAIN LL TJ = 100°C -I III I 5.0 10 20 50 IC. COLLECTOR CURRENT (AMPS) 1-614 100 200 MJ10101, MJ10102 III TYPICAL ELECTRICAL CHARACTERISTICS (continued) FIGURE 6 --- EMITTER-COLLECTOR DIODE FORWARD VOLTAGE FIGURE 5 --- BASE-EMITTER SATURATION VOLTAGE 2.6 ~ f--f---- 2.6 I~II~ l iol+--+--+--+-+-++++f+--+h--- / f--+-++++++f---+-+-+---+---b+-+-t+h.44-1 ~ ~ 2.2 ;;; 'l ... ~ .6 .. ~ > V J TJ = 25°C 2.0 / 1.8 1.6 ~ 1.4 c ~ 1.2 c r 14 II !::l ~ 2.2 ~ ~. 18L-.----f--_++++++~_+ TJ=2~~ :: II in 2.4 j...-- ....... ~ 1.0 t- I"- ~ 0.8 I 1.0 2.0 50 10 0.6 50 20 V 100 5.0 2.0 200 10 20 50 100 200 IF. FORWARD CURRENT (AMPS) IC. COLLECTOR CURRENT (AMPS) TYPICAL SWITCHING CHARACTERISTICS FIGURE 8 --- INDUCTIVE SWITCHING TIMES FIGURE 7 --- INDUCTIVE SWITCHING MEASUREMENTS ./ 'c ......... -- 5.0 'C~ i--"'" I ~CEM 1'\ V VCE \ -- --\- -- --- -- -.- --- ......... \. "- ~ '" 10"0...... 1--ICM 2%lc 10% VCEM 90%"81 ~ ~ 4.0 Ir\l~1 ~ttl- f-.',,- f-- f---I sli I---. f--1c ---\ 'S- f- Vclamp 90% VCEM A1\90% 'CM 1.0 - ............ ....... r-1""'- ~ r-i'..... I'--..... -....... ..::::- f..- Isv @ 100°C ~ Isv ie @ 100 0 Ie @ 25°C o o 1.0 ~ 25°C d- 1 6.0 2.0 3.0 4.0 5.0 VBE(oit). BASE·EMITTER VOLTAGE (VOLTS) 7.080 TIME FIGURE 10 --- TURN-OFF SWITCHING TIMES FIGURE 9 --- TURN-ON SWITCHING TIMES 2. 0 0 VCC = 250 V iC/iB = 10 RBE=10n TJ = 25°C 1. 0 O. 5 ]7 5. 0 3. 0 ~ ;;; 2.0 .=, IrV ~ 2", 1 t- r-...... 0.0 5 0.02 2.0 - o. 5 10 20 If O. 3 Id 5.0 .:... 1. 0 .; ~ O. 2 V t50 100 O. 1 200 20 Ie. COLLECTOR CURRENT (AMPS) 1-615 5.0 10 20 50 IC. COLLECTOR CURRENT (AMPS) 100 200 MJ10101, MJ10102 TABLE 1 - RBSOA AND INDUCTIVE SWITCHING DRIVER SCHEMATIC r-~r-------r------i/ OJ RESISTIVE RBSOA AND INDUCTIVE SWITCHING VCEOlou.} $WITCHING TURN ON TIME DRIVER SCHEMATIC . Z .... 0 ~~ 8 HP214 IC=250mA ~ 181 adJusted to 1OIolF IN -3s"0..F 50 __+-____________ ______-, PW Vaned to Attain ~ n + PG -z obtsin the forced hFE deSIred TURN-OFF TIME Use inductIve sWitching p0051lF LcoU=10mHVCC=10V CirCUli 8S the Input to 20jJF + 1- ~ the reSIstive test CirCUlI 1000 MTM14N05 Reoll = 0.7 n -Voff Dnve Vcl amp :: VCEO(sus) INDUCTIVE TEST CIRCUIT OUTPUT WAVEFORMS Vee= 250 V Rl=26fl Pulse WIdth:: 25 IJs RESISTIVE TEST CIRCUIT 'I Adjusted to Obtain Ie Lcoll(ICM) '1- Vee Leoll (ICMI '1"" Vclamp Test EqUipment Scope - TektroniX 475 or EqUivalent "Adjust - V such that VBEloff) = 5 V except as nlquired for RBSOA IFigure 14}. SWITCHING TIMES NOTE In resistive switching circuits, rise, fall, and storage times have been defined and apply to both current and voltage waveforms since they are in phase. However, for inductive loads which are common to SWITCH MODE power supplies and motor controls, current and voltage waveforms are not in phase. Therefore, separate measure· ments must be made on each waveform to determine the total switching ti~e. For this reason~ the following new terms have been defined. An enlarged portion of the inductive switching waveform is shown in Figure 7 to aid on the visual identity of these terms. For the designer, there is minimal switching loss during storage time and the predominant switching power losses occur during the crossover interval and can be obtained using the standard equation from AN-222A: PSWT = 112 VCClc(tclf In general, trv + tfi = tc. However, at lower test currents this relationship may not be valid. As is common with most switching transistors, resistive switching is specified at 25°C and has become a benchmark for designers. However, for designers of high frequency converter circuits, the user-oriented specifications which make this a "SWITCHMODE" transistor are the inductive switching speeds (tc and tsv) which are guaranteed at 100°C. FIGURE 11 - PEAK REVERSE BASE CURRENT FIGURE 12 - REVERSE RECOVERY WAVEFORM tsv~ Voltage Storage Time, 90% 181 to 10 % VCEM trv ~ Voltage Rise Time, 10-90% VCEM tfi ~ Current Fall Time, 90-10% ICM tti ~ Current Tail, 10-2% ICM te = Crossover Time, 10% VCEM to 10% ICM 30 27 ...:;; ,./ in 24 ~ . t- z ~ :::> <.> ~ ~ '"t ...- ...- 21 18 /'" 15 12 9.0 .... V ./ /" ';6.0 V lC=100A IBI = 3.3 A TJ = 25°C - - 3.0 o o 1.0 2.0 3.0 4.0 5.0 6.0 VBEloff), BASE·EMITTER VOLTAGE (VOLTSI 7.0 8.0 1-616 MJ10101, MJ10102 The Safe Operating Area figures shown in Figures 13 and 14 are spacified torthese devices under the test conditions shown. SAFE OPERATING AREA INFORMATION FORWARD BIAS There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate IC-VCE limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. The data of Figure 13 is based on TC = 25°C; TJ(pk) is variable depending on power level. Second breakdown pulse limits are valid for duty cycles to 10% but must be derated when TC;;' 25°C. Second breakdown limitations do not derate the same as thermal limitations. Allowable current at the voltages shown on Figure 13 may be found at any case temperature by using the appropriate curve on Figure 15. TJ(pk) may be calculated from the data in Figure 20. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown. FIGURE 13 - MAXIMUM RATED FORWARD BIAS, SAFE OPERATING AREA 300 150 10!,s W, (Tum·On Switching, m=f S. Ia 5.0 13'" 1.0 de MJ10l02 MJ10l0l 1D ~ ~ = = 8 - -Current limit --Thermal limit @TC- 25°C -(Single Pulse, 0.1 ~ 0.03 1.0 Second Breakdown limit 2.0 5.0 10 20 50 100 200 450 VCE, COLLECTOR·EMITTER VOLTAGE (VOLTS, REVERSE BIAS For inductive loads, high voltage and high current" must be sustained simultaneously during turn-off, in most cases, with the base to emitter junction reverse biased. Under these conditions the collector voltage must be held to a safe level at or below a specific value of collector current. Thiscan be accomplished by several means such as active clamping, RC s~ubbing, load line shaping, eic. The safe level for these devices is specified as Reverse-Bias Safe Operating Area and represents the voltage-current condition allowable during reverse-biased turn-off. This rating is verified under clamped conditions so that the device is never subjected to an avalanche mode. Figure 14 gives the RBSOA characteristics. FIGURE 14 - MAXIMUM REVERSE-BIAS SAFE OPERATING AREA (RBSOAI 300 ~ :... !-RBE -10 n :IE 250 ...1!iS. ~ 200 ::> <.> VBE(off, : 5.0 V - - 25°C.-;;TJ<:; 100°C 0 '" t; 150 ~ 0 <.> ...::!i'" ~ 100 \ 50 o o '-.1\. ~ OVERLOAD SAFE OPERATING AREA b 100 400 200 300 500 VCE, PEAK COLLECTOR·EMITTER VOLTAGE (VOLTS, The forward-bias safe operating area (FBSOA) specification given in Figure 13 adequately describes transistor capability for normal repetitive operation. When short circuit or fault conditions occur, these transistor specifications are not always adequate. A specification called overload safe operating area (OlSOA) has been developed to describe the transistor's ability to survive under fault conditions. OlSOA is specified under two types of conditions. 600 FIGURE 15 - POWER DERATING 100 ~~ " TYPE IOLSOA !'--. I"'" Second Breakdown Derating .............. "- Thermal Derating ............ '" ...... r-...., ....... f""... ...... " o o 40 - 80 120 TC, CASE TEMPERATURE 1°C) 160 " "'" 200 Type I OlSOA applies when maximum collector current is limited and known. Agood example is a circuit where an inductor is inserted between the transistor and the bus, which limits the rate of rise of collector currentto a known value. If the transistor is then turned off within a specified amount oltime, the magnitude of collector current is also known. Figure 16 depicts the Type I OlSOA rating for the MJ1 01 01. Maximum allowable collector-emitter voltage versus collector current is plotted for several pulse widths. (Pulse width is defined as the time lag between the fault condition and the removal of base drive.) Storage time of the transistor has been factored into the curve. Therefore, with bus voltage and maximum collector current known, (continued on back pagel 1-617 MJ10101. MJ10102 OVERLOAD CHARACTERISTICS FIGURE 17 - OVERLOAD SAFE OPERATING AREA TYPE II (OLSOAI FIGURE 16 - OVERLOAD SAFE OPERATING AREA TYPE I (OLSOAI 10 500 ~ 1\ \ 400 S- 1300 TC = 25°C a '" ti 200 ~ 8 1\ \ \-0\ -201" \ :--- 101" \\ .\ \\ r-- ~ :;; ~ ...S- Ia \ \ \ ~ ~, o o 5.0 ::1i .!!> ~ .!d> 100 TC = 25°C tp = 101" ~ 1DO 200 300 400 VCE. COLLECTOR·EMITIER VOLTAGE (VOLTSI \\. 1.0 ~ o o 500 ~I:oo. 100 200 300 400 VCE. COLLECTOR-EMmER VOLTAGE (VOLTSI 500 FIGURE 18- OVERLOAD SOA TEST CIRCUIT TYPE I N_s: • VCE=VCC+VSE • FIGURE 19 - OVERLOAD SOA TEST CIRCUIT TYPE II Adjust pulsed current source for desired IC. tp rM~;~YRcl~---------l I IL Notes: +6V • Rep Rate"; 10 Hz • Adjust Rl for desired IS • Pulse delay time at the generator determines pulse width at the device under test 680pF 39 50 15 1-618 N.O. ~ I ______ JI N.C t:' 1 VCC MJ10101, MJ10102 SAFE OPERATING AREA INFORMATION (continued) TYPE I OLSOA (continued) shown in Figure 17, is measured in the circuit shown in Figure 19, and measurement is made as follows: Base current is applied while the collector is open, allowing a highly overdriven saturated condition. Next, a stiff voltage source is applied to the collector. The rising voltage at the collector of the transistor triggers a delay function. At the end of this delay, base drive is removed. The delay time is the variable on the Type II OlSOAcurve. The storage time of the transistor is thereby factored into the rating. There are several additional aspects to be considered regarding OlSOA. The first consideration is that OlSOA is strictly a NONREPETITIVE rating. It is intended to describe the survivability of the transistor during an accidental overload and is not intended to deScribe a stress level which can be sustained indefinitely. The number..,f nonrepetitive faults for which OlSOA is defined for the MJ10l0l is 100 occurrences. Another factor is the form of turn-off bias. For the MJl 01 01, turn-off bias has relatively linle effect on its OlSOA capability. This observation is valid from 'B2 = 0 (soft} to VBE(off} = 5 V (stiff}. OLSOA is subject to the !!Sme derating with temperature as normal FBSOA. The second breakdown derating curve is applied to the allowable current atany given voltage, using the same procedure that is followed with pulsed FBSOA. Figure 16 defines the maximum time which can be allowed for fault detection and shutdown of base drive. Type I OlSOA is measured in a common-base circuit (Figure 18} which allows precise definition of collectoremitter voltage and collector current. This is the same circuit that is used to measure forward-bias safe operating area. TYPE 11 OLSOA Type II OLSOA applies when maximum collector current is not limited by circuit design, but is limited only by the gain ofthe transistor. Therefore, collector current does not appear on the Type II OlSOA curve. This curve defines a safe region of operation from the information that is usually available to the designer. This information is normally base drive, bus voltage and time. In terms of the OlSOAcurve, bus voltage is assumed to be worst-case collector-emitter voltage, and time is defined to be the same pulse width that was described for Type I OLSOA. Using these variables, maximum collectoremitter voltage versus base drive is plotted for several values of pulse width. A safe region of operation is thus determined by the circuit parameters. Type II OlSOA, as FIGURE 20 - THERMAL RESPONSE ~ 10 ~ ~ o 05 0=0.5 ReJCIII- rIll ReJC ReJC • 0.25 °C/W Max o CURVES APPLY FOR POWER PULSE TRAIN SHOWN REAO TIME AIl\ TJlpkl - TC = Plpkl ReJCll1 ~ w u ~ 02 0=02 ~O.II.I 0=01 12 0 "\. '" ~ 100 ~ 50 VCE=150V 20 20 50 100 200 500 1.0 0.6 t5: 0.2 1000 Ie. COLLECTOR CURRENT (AMPS I - TJ = 25°C r-- TJ = 100°C 0.4 o 2.0 V ../ - "'-1-- 08 B ~ :> 10 10 50 20 '-' c 20 Ic. COLLECTOR CURRENT (AMPS) 500 200 r\ 1/ 5.0 V 1000 ~ VCE=~ ~ I' 1/ IC. COLLECTOR CURRENT (AMPS) FIGURE 3 - ~ ,/ ~ 100 I I I I I I 5.0 VCE=10V_ .-::: 200 '-' c VCE 0/ 40 2.0 r-- r- -IJ =1 25oC z /V c '" 15 DC CURRENT GAIN 800 II II 5.0 10 20 50 IC. COLLECTOR CURRENT lAMPS) 1-622 100 200 MJ10200 TYPICAL ELECTRICAL CHARACTERISTICS Icontinued) FIGURE 6 - EMITTER-COLLECTOR DIODE FORWARD VOLTAGE FIGURE 5 - BASE-EMITTER SATURATION VOLTAGE 3.0 ~ 15 II 0 ;::. 2.6 ~ I ~ 0 "'- '" ~> ~ i!5 a: 0 A 2.2 1.8 ~ 1.4 8 '" 'l TJ; 25°C I-- I-- _r- _f_r- 5.0 ~ 09 0 0 a !i ~ 1.0 2.0 1.1 ~ TJ; 100°C 10 20 50 IC. COLLECTOR CURRENT lAMPS) 100 1 3 r--- ' - ...'"g > ~ /,V t; II I in - r- I~/I~ l J51 V V - ~ I-I-- I- 0.7 0.5 2.0 200 T~ ~ 2~Jcl 5.0 10 20 50 100 200 IF. FORWARD CURRENT lAMPS) TYPICAL SWITCHING CHARACTERISTICS FIGURE 7 - INDUCTIVE SWITCHING MEASUREMENTS . / i-""" ./ f- Ie"""'" VCEM ,,\ I II :J Vctamp - 1,,1f[~lf'-I-II'- 3 ---J rIc --\ ~ VCE 'B- - 90% 'Bl , --- - --\- -- -- - -....- ;:: ~ HI% ..... 'CM 100VCEM 60 4.0 le@ 100°C le@ 25°C I o 01 02 0.5 ~ 0.2 o. 1 ...... ...... 50 10 10 20 50 100 10 IS 5.0 3 :g ~ V 20 ;:: 10 ,./ ./ V VCC;150V= lC/lS - 25 RSE; 10 n _ TJ; 25°C - = If 0.5 Id 5.0 20 FIGURE 10 - TURN-OFF SWITCHING TIMES I, --- 0.05 0.03 2.0 20 20 0.5 ""- 10 RSE. SASE-EMITTER RESISTANCE (OHMS) "- 0.3 i-' 20 - - FIGURE 9 - TYPICAL TURN-ON SWITCHING TIMES 3.0 VCC; 150V 2.0 IC/ls; 25 RSE;10n 1.0 TJ; 25°C :e ..- ~Tc TIME ! Isv @ 25°C V' V- :g "- :/ J.+ttr IC; 200 A VCEM; 150 V lSI; 5 5 A 80 - A[\90% ICM 90% VCEM 1-- 1" - FIGURE 8 - TYPICAL INDUCTIVE SWITCHING TIMES 10 Isv @ 100oc'II j.. ICI\1_ _ 50 100 200 Ic. COLLECTOR CURRENT lAMPS) 50 10 20 50 IC. COLLECTOR CURRENT (AMPS) 1-623 100 200 MJ10200 - TABLE 1 - TEST CONDITIONS FOR DYNAMIC PERFORMANCE veEOI",,' "IIliTIVE RBSOA AND INDUCTIVE SWITCHING ,on IWITCH_ TURN ON TIME OAIVERSCHEMATIC ., 200n ~, ForinduCIIYIIlo8dspulsewldth to s~ :~ IS adJusted too!:llsInspee,',edIe 01~,± ~ loon to ~' -~ U 10pF lIoo~' ~~ PW V.,Htd to Attain 0003 go.~.v de",.. '., R!0OO5 ~ - ""'2N3762 ~ "II ~ !; U> 'lice'" 10 V LeoH = 3.0pH VCC"'20V ReOd '" 0 7 n Vdamp· VCIEOhu.' INDUCTIVE TEST CIRCUIT ~. :; r I I I 1 U lN4937 !IE u Input S. . Above for , or Equiv.tent V clamp _~_ Detailed CondItion. .,;. l 'CM __ 'CLE2l= ,RcOII II I VCE JVCC r VCC· ,5OV RL'" .750 RESISTIVE TEST CIRCUIT ~Iilmped Ie 'r-1] " "L L eol' (leM) u:-n ~ vcc 'l Leod OeM' '2~--- "Clwnp ___ -L... ',m. Adju.~to t, "'---vee- -.Vel amp VCEM _'tchln, ...tclrcuit. Pul. Width .. 26 II' Obtilin 1--,,- "t- I Leoil L J ,"duetl~ CIrcuit .. the input to th.rft"tl~ OUTPUT WAVEFORMS b~S') Q.1 n "Adjust - V such that VBEloff) u .. " I, .. ...... .. TURN·OFF TIME , Ion Lcoi'- 10 mH hFE dellNd MTM1224 Ie· 210 mA ....a'!l la, _jus" to ottUm m. forced ~ t- lOOn ,.@r: +30 V AdlustRl loobta," Test EqUipment Scope - TektronIx 475 or EqUIvalent 1-',-/ = 5 V ••copt as required for RBSOA IFigure 14). SWITCHING TIMES NOTE is shown in Figure 7 to aid on the visual identity of these terms. For the designer, there is minimal switching loss during storage time and the predominant switching power losses occur during the crossover interval and can be obtained using the standard equation from AN-222A: PSWT = 112 Vcclc(tclf In general, trv + tfi = tc· However, at lower test currents this relationship may not be valid. As is common with most switching transistors, resistive switching is specified at 25°C and has become a benchmark for design.ers. However, for designers of high frequency converter circuits, the user-oriented specifications which make this a "SWITCH MODE" transistor are the inductive switching speeds (tc and ts v) which are guaranteed at 100°C. In resistive switching Circuits, rise, fall, and storage times have been defined and apply to both current and voltage waveforms since they are in phase. However, for inductive loads which are common to SWITCH MODE power supplies and motor controls, current and voltage waveforms are not in phase. Therefore, separate measure. ments must be made on each waveform to determine the total switching time. For this reason, the following new terms have been defined. tsv = Voltage Storage Time, 90% IS1 to 10 % VCEM trv = Voltage Rise Time, 10-90% VCEM tfi = Current Fall Time, 90-10% ICM tti = Current Tail, 10-2% ICM tc = Crossover Time, 10% VCEM to 10% ICM An enlarged portion of the inductive switching waveform FIGURE 12 - THERMAL RESPONSE FIGURE 11 - TYPICAL PEAK REVERSE BASE CURRENT 10 IC~200,.' - IBI = 5.5 A VCEM=150V- - ~ 8.0 ::e ....~ i!i 6.0 ffi 1.0 '" ~ 0.5 '='i 1\ ~ a ~ '" 4.0 ;§ ~ .; 2.0 o o TJ = 25°C \ \ I 0-0.5 RUCItl- rlt! ReJC RUC • 0.25 °C/W Max D CURVES APPLY FDR POWER PULSE TRAIN SHOWN READ TIME AI " TJlpk)- TC' Plpk) ReJCII) Plpkl :!5. ~ ~ 0.2 -- 11l ~ - ~ \~ 400 u=> ~ tp= 20 r:::s: K~I 200 o o 6.0 g§ ..... tp = 10~, ~ r-.. o ~ TC =125oC tiS ,-' tp=5.0~S '\ ~ ~ - 8.0 :; '"'"5> ~,_ I 100 200 VCE. COLLECTOR·EMITTER VOLTAGE (VOLTS) 4.0 ~ 2.0 tp=20~'- o '1 1 o 250 .. / tp =5.0I"- f-- ~ ~ 100 200 250 VCE. COLLECTOR·EMITTER VOLTAGE (VOLTS) FIGURE 18 - OVERLOAD SOA TEST CIRCUIT TYPE I Notes: • VeE = Vee + VeE FIGURE 19 - OVERLOAD SOA TEST CIRCUIT TYPE II • Adjust pulsed current source for desired Ie. tp rM;r~';YReTav---------l I IL NO. I N.e ______ JI Vee Notes: +6V • Rep Rate';:; 10 Hz • Adjust R1 for desired Ie • Pulse delay time at the 39 50 generator determines pulse width at the device under test n 10V/10~s Out 50 +-.......H MJE15028 1k 15 2N2322 1-626 I MJ10200 SAFE OPERATING AREA INFORMATION (continued) TYPE I OlSOA (continued) shown in Figure 17, is measured in the circuit shown in Figure 19, and measurement is made as follows: Base current is applied while the collector is open, allowing a highly overdriven saturated condition. Next, a stiff voltage source is applied to the collector. The risi ng voltage althe collector of the transistor triggers a delay function. At the end of this delay, base drive is removed. The delay time is the variable on the Type II OLSOA curve. The storage time of the transistor is thereby factored into the rating. There are several additional aspects to be considered regarding OLSOA. The first consideration is that OLSOA is strictly a NONREPETITIVE rating. It is intended to describe the survivability ofthetransistor during an accidental overload and. is not intended to describe a stress level which can be sustained indefinitely. The number of nonrepetitive faults for which OLSOA is defined for the MJ10200 is 100 occurrences. Another factor is the form of turn-off bias. For the MJ10200, turn-off bias has relatively little effect on its OLSOA capability. This observation is valid from IB2 = 0 (soft) to VBE(off) = 5 V (stiff). OLSOA is subject to the same derating with temperature as normal FBSOA. The second breakdown derating curve is applied to the allowable current at any given voltage, using the same procedure that is followed with pulsed FBSOA. Figure 16 defines the maximum time which can be allowed for fault detection and shutdown of base drive. Type I OLSOA is measured in a common-base circuit (Figure 18) which a.llows precise definition of collectoremitter voltage and collector current. This is the same circuitthat is used to measure forward-bias safe operating area. TYPE" OlSOA Type II OLSOAapplies when maximum collector current is not limited by circuit design, but is limited only by the gain ofthe transistor. Therefore, collector current does not appear on the Type II OLSOA curve. This curve defines a safe region of operation from the information that is usually available to the designer. This information is normally base drive, bus voltage and time. In terms ofthe OLSOAcurve, bus voltage is assumed to be worst-case collector-emitter voltage, and time is defined to bethe same pulse width that was described for Type I OLSOA. Using these variables, maximum collectoremitter voltage versus base drive is plotted for several values of pulse width. A safe region of operation is thus determined by the circuit parameters. Type II OLSOA, as 1-627 MJI0201 MJI0202 ® MOTOROLA Desig-ner's Data Sheet 200 AMPERE NPN SILICON POWER DARLINGTON TRANSISTOR 50 KVA HIGH SPEED SvVlTCHMODE TRANSISTOR 200-Ampere operating Current 200 and 250 VOLTS 500 WATTS The MJ10201 Darlington transistor is designed for industrial service under practical operating environments requiring fast switching speed for highly efficient systems operating at high frequency such as inverters, PWM contro'llers a nd other high frequency system operating from 120 V lines or batteries. Designer". Data .for ..Worst-C ..... Condition. The Designer's Data Sheet permits , the design of most circuits entirely from . the information presented. Limit datarepresenting device characteristics boundaries-are given to facHitate "worst-case" design . .'W ,1" (p hL~ ~r '" '"~ " >- '"' B ~ '" '" ~ 8 VCE=150V 20 18 IC/l~ = ~5 16 14 ./ 12 10 - TJ = 25°C r-- TJ 20 50 100 200 500 1000 IC. COLLECTOR CURRENT (AMPS) - 08 06 200 V .-' 04 II o 20 II 50 10 20 50 IC. COLLECTOR CURRENT (AMPS) 1-630 :/ 100°C w 02 ~ 10 10 100 20 500 200 50 FIGURE 4 - COLLECTOR SATURATION REGION 1000 ~ 20 IC. COLLECTOR CURRENT (AMPS) 100 200 MJ10201, MJ10202 TYPICAL ELECTRICAL CHARACTERISTICS (continued) FIGURE 6 - EMITTER-COLLECTOR DIODE FORWARD VOLTAGE FIGURE 5 - BASE-EMITTER SATURATION VOLTAGE 3,0 ;;; ~ 2.6 r - r- 2. B 4 II I I~/I~ l J51 0 ~ ~ ~ 2.2 '" ~~ ..,. A - ~ ~ 1.4 ~ 1.0 2,0 4 ,....,..- ...-f- ~ ".' 2 /r-" 0 TJ= 1000C I--' 8,..6 5a 10 20 100 50 " 6 'l TJ = 25°C V 8 /X 1.8 I TJ = 25°C 2 10 20 50 IF. FORWARD CURRENT (AMPS) 5.0 200 IC. COLLECTOR CURRENT lAMPS) 200 100 TYPICAL SWITCHING CHARACTERISTICS FIGURE 7 - INDUCTIVE SWITCHING MEASUREMENTS IC~_ I , , / f-"'" L ,C/ , 's- - a VCEM ~v~100J Vclamp 1 90% 'CM I" /1 ~I"_f-II'- B, 90% VCEM I- r--- 1sv ---. "-Ic~ - ---\- -- -- -- ~ 11.% ...... 'eM r-~ 10% VCEM 90% lSI oJ -- - - o \ 4, 2, '" I'-.. le@26 0 - O~ @IOOoC a 1.0 2,0 FIGURE 9 - TYPICAL TURN-ON SWITCHING TIMES 1.0 1. 0== .=, :iii 03 0.2 0,1 "'- r--. 20 B,O ).0 8,0 g,O 10 I v~cl-\W I! VBE( off) = 5,0 V .IC/IS = 40 - I- ", I-' 10 5,0 0, 2 , ,I Id 50 4,0 - IIIII I, - ~ 0,05 0.03 2,0 ~ c:::: =~ 5== ... 0,5 : 3,0 -- FIGURE 10 - TURN-OFF SWITCHING TIMES 3, a VCC= 150V lells = 25 RSE= 10!l TJ - 25°C "- - IS2. REVERSE BASE CURRENT (AMPS) TIME 30 2,0 °C f'-..: ""'-.. ~~ ~ ~ IC~2001 _ lSI = 5.0 A VCEM = 100 V- ]: a. O~ ~1.v@2 "- / VCE FIGURE 8 - INDUCTIVE SWITCHING TIMES Dr< / If 0,0 5 50 lao 0,0 3 2,0 200 IC. COLLECTOR CURRENT (AMPS) 1-631 5,0 2 10 IC. COLLECTOR CURRENT (A) lao 20 MJ10201, MJ10202 TABLE 1 - RBSOA AND INDUCTIVE SWITCHING DRIVER SCHEMATIC VCEOlsusl lIB RESISTIVE RBSOA AND INDUCTIVE SWITCHING SWITCHING TURN ON TIME DRIVER SCHEMATIC PG IB~: • Ie 1 adjusted to obtain the forced hFE deSired INJilO jJ F HP214 -380...J TURN-OFF TIME 50 p005"F PW Vaned to Attain 'C=250mA Use inductive sWlIchrng ClfcUitas Ihe Input to 20/olF -=L COII = 10mHVCC'" loV Leoll'" 3 O,..H Reoll = 071! VCC"'20V the reSistive lest CirculI • ,1000 MTM14N05 -Voff DTive Vclamp = VCEOlsus) Pulse Width = 25 OUTPUT WAVEFORMS INDUCTIVE TEST CIRCUIT Vee'" 150V RL =07Sn ,..& RESISTIVE TEST CIRCUIT " Adjusted to Obtam Ie Lcoll(JCMJ " " ' ----veeLeod (leM) " -".- Vclamp Test EQUipment Scope - TektroniX 475 or EqUivalent "Adjust - V such that VBE(off) = 5 V except as required for RBSOA (Figure 141- SWITCHING TIMES NOTE IS shown 10 Figure 7 to aid on the visual Identity of these terms. For the deSigner. there IS minimal sWitching loss dUring storage time and the predominant switching power losses occur during the crossover tnterval and can be obtained uStng the standard equation from AN-222A: PSWT = 1/2 Vcclc{tdf In general. trv + tfr = tc. However, at lower test currents thiS relationship may not be valid. As IS common With most switchmg tranSistors, resistive switching IS speCIfied at 25°C and has become a benchmark for designers. However. for designers of high frequency converter circuits. the user-oriented specifications which make thiS a "SWITCHMODE" transistor are the tnductive sWltchtng speeds ftc and tsvl which are guaranteed at 100°C. In resistive sWitching CirCUitS. rise. fall. and storage umes have been defined and apply to both current and voltage waveforms since they are In phase. However. for Inductive (oads which are common to SWITCHMODE power supplies and motor controls. current and voltage waveforms are not In phase. Therefore. separate measurements must be made on each waveform to determine the total switching time. For thiS reason. the followtng new lerms have been deftned. tsv = Voltage Storage Time. 90% IS1 to 10 % VCEM trv = Voltage Rise Time. 10-90%'VCEM tfi = Current Fall Time. 90-10% ICM ttl = Current Tail. 10-2% ICM tc = Crossover Time. 10% VCEM to 10% ICM An enlarged portion of the tnductrve sWitching waveform FIGURE 11 - PEAK REVERSE BASE CURRENT 0 7 t rr @ if = 200 A @ VBE / 4 [....../ 1 8 ,/" 5 /"" V .;..V 2 0 FIGURE 12 - REVERSE RECOVERY WAVEFORM ./ Ie = 200 A_ IBI = 5.5 A TJ = 25°e - 0 3. 0 00 1.0 .0 3.0 4.0 5.0 6.0 7.0 8.0 VBE(offl BASE·EMITTER VOLTAGE (VOLTSI 1-632 0.5/Ls/Ojy = -5.0 V MJ10201, MJ10202 SAFE OPERATING AREA INFORMATION The Safe Operating Area figures shown in Figures 13 and 14 are.specified for these devices under the test conditions shown. FORWARD BIAS FIGURE 13 - MAXIMUM RATED FORWARD-BIAS SAFE OPERATING AREA (FBSOA) 10 ~s " (Turn·On SWitching):::: 300
  • = ffi c i'-- Second Breakdown Derating ........... t'--. '"~ t--.... "' """- ~ 20 o o ...... "- ...... 40 40 Theforward-bias safe operating area (FBSOA) specification given in Figure 13 adequately describes transistor capability for normal repetitive operation. When short circuit or fault conditions occur, these transistor specifications are not always adequate. A specification called overload safe operating area (OlSOA) has been developed to describe the transistor's ability to survive under fault conditions. OlSOA is specified under two types of conditions. 80 120 TC. CASE TEMPERATURE lOCI 160 - ............. ........... 200 Type I OlSOAapplieswhen maximum collector current is limited and known. Agood example isa circuitwherean inductor is inserted between the transistor and the bus, which limits the rate of rise of collector current to a known value. lithe transistor is then turned off within a specified amount oftime, the magnitude of collector current is also known. Figure 16 depicts the Type I OlSOA rating for the devices. Maximum allowable collector-emitter voltage versus collector current is plotted for several pulse widths. (Pulse width is defined as the time lag between the fault condition and the removal of base drive.) Storage time of the transistor has been factored into the curve. Therefore, with bus voltage a nd maxi m um collector cu rre nt known, (continued on back page) 1-633 ID MJ10201, MJ10202 SAFE OPERATING AREA INFORMATION (continued) TYPE I OlSOA (continued) shown in Figure 17, is measured in the circuit shown In Figure 19, and measurement IS made as follows: Base current is applied while the collector is open, allowing a highly overdriven saturated condition. Next, a stiff voltage source is applied to the collector. The rising voltage at the collector of the transistor triggers a delay function. At the end of this delay, base drive is removed. The delay time IS the variable on the Type II OlSOA curve. The storage time of the transistor is thereby factored into the rating. There are several additional aspects to be considered regarding OlSOA. The first consideration is that OlSOA is strictly a NONREPETITIVE rating. It is intended to describe the survivabilityofthe transistor during an accidental overload and is not intended to describe a stress level which can be sustained indefinitely. The number of nonrepetitive faults for which OlSOA is defined for the devices are 100 occurrences. Another factor is the form of turn-off bias. For the devices, turn-off bias has relatively little effect on its OlSOA capability. This observation is valid from IB2 =0 (soft) to VBE(off) = 5 V (stiff). OlSOA is subjectto the same derating with temperature as normal FBSOA. The second breakdown derating curve is applied to the allowable current at any given voltage, using the same procedure that is followed with pulsed FBSOA. Figure 16 defines the maximum time whIch can be allowed for fault detection and shutdown of base drive. Type I OlSOA is measured in a common-base circuit (Figure 18) which allows precise definition of collectoremitter voltage and collector current. This IS the same circuit that is used to measure forward-bias safe operating area. TYPE II OlSOA Type II OlSOA applies when maximum collector current is not limited by circuit design, but is limited only by the gain of the transistor. Therefore, collector current does not appear on the Type II OlSOA curve. This curve defines a safe region of operation from the information that is usually available to the designer. This information is normally base drive, bus voltage and time. In terms of the OlSOA curve, bus voltage is assumed to be worst-case collector-emitter voltage, and time is defined to be the same pulse width that was described for Type I OlSOA. Using these variables, maximum collectoremitter voltage versus base drive is plotted for several values of pulse width. A safe region of operation is thus determined by the circuit parameters. Type II OlSOA. as FIGURE 20 - THERMAL RESPONSE §" ~ 1.0 D = 0.5 ~ 0.5 .~.) c ~ t:j z ~ ~ 0.2 0=0.2 'alllllmi 0=0.1 0.1 iO.05~ 9JC R9JC =0.25 °C/W Ma, o CURVES APPLY FOR POWER PULSE TRAIN SHOWN REAO TIME A. '1 TJlpk)- Te = Plpk) RBJCI.) Pf.JlJL :;; ~002 ~~-1 ~ ~UTY CYCLE, 0 ='1/12 ~ 0 01'-.0.L1L.LWlJIILl-'-'..LLLW1.':.Ol..L..LJJ."'":10"""--:':10:-:0--:-:1O:-:O:-O..::....-I::O~OOO I, TIME (m.) 1-635 PNP MJII011, MJII013, MJI1015 ® MOTOROLA NPN lIB MJII012, MJII014, MJI1016 HIGH-CURRENT COMPLEMENTARY SILICON TRANSISTORS 30 AMPERE · .. for use as output devices in complementary general purpose amplifier applications. DARLINGTON POWER TRANSISTORS COMPLEMENTARY SILICON = 1000 (Min) @ IC = 20 Adc • High DC Current Gain - hFE • Monolithic Construction with Built-In Base-Emitter Shunt Resistor • Junction Temperature to +200 o C 60-120 VOLTS 200 WATTS MAXIMUM RATINGS Rating Symbol Collector-Emitter Voltage VCEO MJll0ll MJll013 MJll015 MJll012 MJll014 MJll016 60 t20 90 Unit Vdc Collector-Base Voltage Vce Emitter-Base Voltage VEe 5 Vdc Collector Current Ie 30 Adc Base Current Ie Total Device Dlsslpation@TC=2SoC Derate above 25°C @ T C = 1DoDe PD 1 200 1.15 Watts WloC TJ,Tstg -551o +200 °c Operating and Storage Junction 60 120 90 Vdc Adc Temperature Range THERMAL CHARACTERISTICS Characteristic Thermal Resistance, Junction to Case Svmbol ROJC Maximum Lead Temperature for Soldering Purposes for ~ Unit °C/W °c Max 0.87 275 TL 10 Seconds. FIGURE 1 -DARLINGTON CIRCUIT SCHEMATIC Collector PNP NPN rC o---r ---, r------I MJ11014 MJll015 :.-( MJll016 Base I I I I I I o---t- i~8~ L _______ I __ .JI MJlI012 Base - Collector MJ11011 MJll013 r - - - - - - - ---, I : I I I I 1 I 1 1;[ i = S.Ok =40 __ .JI L _______ 0 EmItter Emitter 1-636 STYLE 1 MILLIMETERS INCHES PIN 1. BASE DIM MIN MAX MIN MAX 2. EMITTER A CASE COLLECTOR B 21.08 0.830 C 6.35 7.62 0.250 0.300 0 0.97 109 0.038 0.043 1.78 0.055 0.070 E 1.40 F 29.90 30.40 1.177 1.197 G 10.67 11.18 0.420 0.440 H 5.33 5.59 0.210 0220 J 16.64 17.15 0.655 0.675 K 11.18 12.19 0.440 0.4BO Q 3.81 4.19 0.150 16 R 26.67 1.050 3.05 0.100 0.120 U 2.54 - CASE.l-04 NOTES: 1. ALL RULES AND NOTES ASSOCIATED WITH REFERENCED TO·3 OUTLINE SHALL APPLY. MJ11011, MJ11013, MJ11015PNP/MJ11012, MJ11014, MJ11016NPN .. ELECTRICAL CHARACTERISTICS (Te '" 2SoC unless otherwise noted) I Characteristic M •• Min Symbol Unit OFF CHARACTERISTICS Collector-Emitter BreakdOVl/n Voltage( 1) (Ie" 100 mAde, Ie = 01 MJl lOll ,MJIIQ12 MJI1013,MJI1014 MJI1015,MJI1016 60 90 120 Collector Emitter Leakage Curfent (VeE = (VeE'" (VeE '"'(VeE = Vd, BVCEO mAde leER 60 Vdc, AaE '" 1 k ohm) 90 Vdc, RaE'" 1 k ohm) 120 Vdc, RBE " 1 k ohm) 60 Vdc, AaE " 1 k ohm. MJ110t l,MJI1012 MJI1013,MJI1Q14 MJI1015,MJI1016 MJI101',MJI1012 TC -" IS0oC) (VeE =. 90 Vdc, AaE· 1 k ohm, TC = 1S0oC) MJI1013,MJll014 (VeE'" 120 Vdc, AaE" 1 k ohm, MJI1Q15,MJI1Q16 TC = IS00C) Emitter Cutoff Current (VSE"" 5 Vdc, Ie '" OJ Collector·Emilter Leakage Current (VeE = 50 Vdc, 18 '" OJ ON CHARACTERISTlCS(11 DC Current Gam (Ie = 20 Adc, VeE'" 5 Vdc) (Ie" 30 Adc, VeE ~ 5 Vdc) Collector-EmItter Saturation Voltage lie ~ 20 Adc, 18 '" 200 mAdcl IIc '" 30 Adc, 18 = 300 mAdcJ B- I 5. V ~ 1111 a'" /" '" VCE(sali o 0,1 0.2 0,5 "/ !2 10 50 70 100 200 300 500 700 1.0 k 20 FIGURE 5 - ACTIVE REGION DC SAFE OPERATING AREA 0 0 0 5 2 1 - o. 5 - BONDING WIRE LIMITATION - THERMAL LIMITATION @TC-150C SECOND BREAKDOWN LIMITATION ~ ~: 8 VBE(sat) I 30 f, FREOUENCY (kHz) FIGURE 4 - "ON" VOLTAGES (1) --- 10 mAde T2~OC 50 100 2 I 0.05 MJIIOll,MJllOI1 MJ11013, MJll014 MJllOI5, MJIIOl6 0.01 0.0 I 10 20 30 50 70 100 100 VCE, COLLECTOR EMlnER VOLTAGE (VOLTS) IC, COLLECTOR CURRENT (AMP) There are two lImItations on the power handling ability of a tranSistor' average junction temperature and secondary breakdown Safe operating area curves indicate Ie-VeE limits of the transistor that must be observed for reliable operation. e.g; the transistor 1-637 must not be subjected to greater dissipation than the curves indicate At high case temperatures, thermal limitations Will reduce the power that can be handled to values less than the limitations im· posed by secondary breakdown PNP NPN MJ11017 MJ11018 MJ11019 MJ11020 MJ11021 MJ11022 ® MOTOROLA III 16 AMPERE DARLINGTON POWER TRANSISTORS COMPLEMENTARY SILICON COMPLEMENTARY DARLINGTON SILICON POWER TRANSISTORS · .. designed for use as general purpose amplifiers. low frequency switching and motor control applications. 160.200.260 VOLTS 176 WATTS • High dc Current Gain @ 10 Adc - hFE = 400 Min (All Types) • Collector-Emitter Sustaining Voltage VCEO(sus) = 150 Vdc (Min) - MJll 018. 17 = 200 Vdc (Min) - MJll 020 .. 19 = 250 Vdc (Min) - MJll 022.21 •. Low Collector-Emitter Saturation VCE(sat) = 1.0 V (Typ) @ IC = 5.0 A = 1.8 V (Typ)@ IC = lOA • Monolithic Construction =44 V. IC =4.0 A. t =250 ms. • 100% SOA Tested @ VCE MAXIMUM RATINGS Svmbol MJll01S MJll017 MJll020 MJll019 MJll022 MJll021 Unit VeEO ISO 200 250 Vdc Collector·Bese Voltage Vee ISO 200 250 Vdc Emitter-Base Voltage VEe 5.0 Vdc Ie IS 30 Adc Rating Collector-Emitter Voltage Collector Current Continuous Peak 8ase Current Ie 0.5 Adc Total Device Dissipation @ TC - 25°C Po 175 1.16 W/oC -65 to +175 -65 to +200 ·e ·e Derate Above 26°C Operating and Storage Junction Temperature Range TJ T. ,a Watts THERMAL CHARACTERISTICS Characteristic Thermal Resistance, Junction to Case (1) Pulse Test: Pulse Width 5.0 ms, Duty Cycle ~ 10% STYLE 1 PIN 1. BASE 2. EMITIER CASE COllECTOR FIGURE 1 - POWER DERATING ~200 I-2'150 ~ ill ~ 100 DIM A • ~ '" ~ 50 ......... ~ 25 50 75 100 125 i'-... 150 175 - C 6.35 0 .97 1.40 E F 29.90 G 10.67 H 5.33 J 16.64 K 11.18 Q 3.81 R U 2.54 ~ i'-. C MilLIMETERS MIN MAX 21. 7.62 1.09 1.8 30.40 11.18 5.9 17.15 12.19 4.19 26.67 3.05 INCHES MIN MAX [20 O. .05 1.177 [420 0.210 0.655 0.440 .15 - 0.100 0.830 .300 1.l!I3 0.070 1.197 [440 [22D 0.675 [480 0.165 1.050 0.120 CASE 1-04 200 TC. CASE TEMPERATURE (OCI 1-638 NOTES, 1. ALL RULES AND NOTES ASSOCIATED WITH REFERENCED TD·3 OUTLINE SHAll APPLY. MJ11017, MJ11019, MJ11021 PNP, MJ11018, MJ11020, MJ11022 NPN ELECTRICAL CHARACTERISTICS (TC: 25°C Unless Otherwise Noted) I Characteristics Symbol Min Max Unit 150 200 250 - Vdc OFF CHARACTERISTICS Coliector·Emitter Sustaining Voltage (1) MJll017, MJll01B (IC=O.l Adc, le:O) MJ11019, MJll020 MJll021, MJll022 Collector Cutoff Current (VCE: 75, Ie: 0) (VCE = 100, Ie: 0) (VCE: 125, le:O) VCEO(sus) mAde ICEO - 1.0 1.0 1.0 - 0.5 5.0 400 15,000 MJll017, MJll01B MJll 019, MJll 020 MJll021, MJll022 Collector Cutoff Current mAde ICEV (VCE: Rated Vce, VBE(oll): 1.5 Vdc) (VCE: Rated Vce, VeE(olf): 1.5 Vdc, TJ: 150°C) Emitter Cutoff Current (VeE: 5.0 Vdc, IC : 0) IEeO 2.0 mAde ON CHARACTERISTICS (1) DC Current. Gain (Ie = 10 Adc, VCE = 5.0 Vdc) (lc = 15 Adc, VCE = 5.0 Vdc) - hFE 100 - - 2.0 3.4 Collector-Emitter Saturation Voltage (IC = 10 Adc, Ie = 100 rnA) (IC = 15 Adc, IB : 150 mAl VCE(sat) Base-Emitter On Voltage IC: 10 A, VCE: 5.0Vdc) VSE(on) - Base-Emitter Saturation Voltage (IC = 15 Adc, IS: 150 mAl VSE(sat) Magnitude of Common Emitter Small Signal Short Circuit Forward Current Transfer Ratio (lC: 10 Adc, VCE : 3.0 Vdc, f: 1.0 MHz) [hIe] Output Capacitance (VCS: 10Vdc, IE:O,f:O.l MHz) MJll01B, MJll020, MJll022 MJll017, MJll019, MJll021 Cob Small·Signal Current Gain (lC: 10 Adc, VCE: 3.0 Vdc, I: 1.0 kHz hIe Vdc 2.B Vdc - 3.8 Vdc 3.0 - .- DYNAMIC CHARACTERISTICS pF - 400 600 100 - - SWITCHING CHARACTERlS'nCS Typical Characteristics Symbol NPN PNP Unit td tr ts tf 150 1,2 4.4 75 0.5 2.7 2.5 ns !,S !,s !,s Oel~Tlme Rise TIme Storage Time Fall Time {1 jPulsed Test Pulse WIdth (Vce = 100 V, Ie: 10 A, Ie = 100 mA VSE(offl = 5.0 VI (See Figure 2.1 = 300 iJ,S, Duty Cycle ~ IU.U 2% FIGURE 2 - SWITCHING TIMES TEST CIRCUIT Vee RS & RC VARIED TO OBTAIN DESIRED CURR£NT LEVELS 01, MUST BE FAST RECQVERYTYPES, eg MB053DO USED A.BOVE IS '" 100 rnA MS06100 ust:o BElOWIB" !DOmA l00V RC SCOPE V2 A~if:X~d~~~-~__ 1~ " VI APPROX -60V--f-+ Ir,lf",lOlls +40V 251.1s fortdalldtr,Ollsdlscollllecled V2" 0 ~Ild DUTY CYCLE" I 0% For NPN test cirCUit reverse diode and voltage polarities. 1-639 MJ11017, MJ11019, MJ11021 PNP, MJ11018, MJ11020, MJ11022 NPN FIGURE 3 - THERMAL RESPONSE 7~D-0.5 5 .-0 ;0,. 3~ 0.2 !-- f - - 0.1 ~ 1~0.05 7~0.02 5 i.-- ~ ~ i-" PtrUl ~--J R9JClt) , rll) R9JC R9JC' 0.86°C/W Max o CURVES APPLY FOR POWER ,t DUTY CYCLE, D" ttit2 0.01 ~~~SDE ~~~I~ISI~O~N 0.02 I-- SINGLE PULSE I II 0.0 1 0.01 0.02 0.03 I 0.05 0.1 0.2 0.3 0.5 20 1.0 t, 3.0 I I II II 50 10 20 II I 30 50 ) I 100 200 300 500 TIME (msl FIGURE 4 - MAXIMUM RATED FORWARD BIAS SAFE OPERATING AREA (FBSOAI ~ I- I a ~ f;j FORWARD BIAS , in 30.0 !lE 20.0 10.0 1.0 m. !oc 5.0 :::l 1. 0 o. 5 0.1';.- t--.5ms~ l<- t--- .0 ms 3.0 2.0 B ..... ... 1"'• ... , d~ TJ = 175°C ----Second Breakdown limit ---oBondmgW.rellmJt ...-----Thermal LlmltatlOn@Te=25°C SlOglePulse .!dJ O. 3 0.2 o 3.0 MJll017. MJll018->,,; MJll019. MJll020 MJll021. MJ11022- I-5.0 7.0 10.0 20.0 30.0 50.070.0 100 150200 VCE. COLLECTOR - EMITTER VOLTAGE IVOLTS) '" There are two limitations on the power ha ndling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves Indicate Ie VeE limits of the transistor that must be observed for rehable operation; Le., the tranSistor must not be subjected to greater dIssipation than the curves indicate. The data of Figure 4 is based on TJ(pk)~ 175°C; TC is vanable depending on condItions. Second breakdown pulse limits are valId for duty cycles to'l 0% provldedTJ(pkJ ~ 175°C. TJ(pk) maybe calculated from the data In Figure 3. At high case temperatures, thermal limitations will reduce the powerthatcan be handled to values less than the limitations imposed by second breakdown. FIGURE 6 - MAXIMUM RBSOA. REVERSE BIAS SAFE OPERATING AREA 30 L,'200'I'H ' IC/IBI ;. 50 TC' 25°C VBEtoll) 0-5.0 V RBE' 47 n Duty Cvcle ' 10% - - o o 20 to. I\\. t\ REVERSE BIAS \,\ :\. f-MJll017.18= MJll019.20 I- MJ11021. 22 For inductive loads, high voltage and high current must be " ...... "- -... sustained simultaneously during tum-off, in most eases, with the base to emitter junction reverse biased. Under these con- - ditions the cotlector voltage must be held to a safe level at or below a specific value of collector current. This can be accomplished by several means such as active clamping. RC snubbing, load line shaping, etc. The safe level for these devices is specified as Reverse Bias Safe Operating Area and represents the voltage-current conditions during reverse biased turn-off. This rating is verified under clamped conditions so that the device is never .ubjected to an avalanche mode. Figure 5 gives RBSOA characteristics. '== 60 100 140 180 220 VCE. COLLECTOR·EMITTER VOLT AGE IVOLTS) 260 1-640 r I TJlpkl - TC" Plpkl ROJCIII 1000 MJ11017, MJ11019, MJ11021 PNP, MJ11018, MJ11020, MJ11022 NPN III FIGURE 6 - DC CURRENT GAIN NPN PNP 10.000 30,000 7000 5000 TJ z 3000 ~ 2000 ~ ~ u 1000 700 g 500 => .1 50 Vde VCE 150°C TJ - 25°C ~ 7000 ~ 5000 z ~ 3000 .~ 13 TJ g -55°C 200 ./ V TJ ~ 25';,S- TJ ~ " 55°C \ ./ 700 500 100 o2 50 Vde - 2000 .1 1000 300 II II VCE ........... TJ -150°C 10,000 ..........- V - I II 20,000 03 0 5 0 7 1.0 2.0 3 0 5 0 70 Ie, COLLECTOR CURRENT (AI 10 300 0.2 15 20 03 0.5 07 1 0 2.0 3.0 Ie. COLLECTOR CURRENT (AI 50 7 0 10 15 20 FIGURE 7 - COLLECTOR SATURATION REGION PNP 40 '"~ 35 ~ 30 ~ 25 2:. ~ ~ ~ 1111 Ie ~ 10 A Ie 20 ~ 15 ~ 10 ~ 50 A \ " 05 o5 0 7 1 0 NPN IVc ~ 15 A TJ ~ 25°C \ ., I t:l ~ 3.5 ~ 3.0 ~ 2.5 t:l -" 4.0 Ie ~ Ie ~ ai 2.0 '~" 1.5 ~ 1111 10 A llC ~ 15 A TJ ; 25 bc 1\ 5.0 A \ ::::t c I'.. ~ 1.0 > 0.5 2 0 3 0 5 0 7 0 10 20 30 50 70100 IS, SASE CURRENT (mAl 200300 500 0.5 0 7 1 0 2.0 3.0 5 0 7 010 20 30 50 70 100 IS, SASE CURRENT (mAl 200 300 500 FIGURE 8 - "ON" VOLTAGES PNP NPN 40 40 35 35 TJ =25°C TJ 30 en 2 5 5> ;;:; 2 0 « '" t:l §; 1 5 25°C ~. VSE(satl @ IC/IS ~ ~ VSE @ VCE ) VSE(satl @ IC/IS = 1!- 50V 10 05 o1 ~ 3.0 III .-i'"'"VCE(satl @ IC/IS 0 2 0 3 0 5 0 7 I 0 2 0 3 0 5 0 7 0 10 COLLECTOR CURRENT (AMPSI ~ 20 10 100 -- 0.5 roI 30 50 70 1-641 VSE @ VCE T::: ~ j ~15 olv ..J...-t"'VCE(satl @ IC/IS 0 2 0 3 0.5 0.71 0 2.0 30 5.0 7 0 10 COLLECTOR CURRENT (AMPSI ~ 100 20 30 50 NPN PNP MJII028 MJII029 MJI1030 MJII031 MJII032 MJII033 ® MOTOROLA 50 AMPERE COMPLEMENTARY SILICON DARLINGTON POWER TRANSISTOR HIGH-CURRENT COMPLEMENTARY SILICON TRANSISTORS · .. for use as output devices in complementary general purpose amplifier applications. • 60-120 VOLTS 300 WATTS High DC Current Gain - hFE = 1000 (Min) @ IC = 25 Adc hFE = 400 (Min) @ IC = 50 Adc • Curves to 100 A (Pulsed) • Diode Protection to Rated IC Monolithic Construction with Built-In Base-Emitter Shunt Resistor • JU(.lction Temperature to +200oC • MAXIMUM RATINGS MJll028 MJ11030 MJll032 Symbol MJ11029 MJ11031 MJll033 Rating Collector-Emitter Voltage Unit VCEO 60 90 120 Vdc Co!lector-Base Voltage VCB 60 90 120 Vdc Emitter-Base Voltage Collector Current-Continuous VEB 5 Vdc IC ICM 50 100 Adc Peak Base Current-Continuous 18 2 Adc Total Power Dissipation @ T C - 2SoC Derate above 2SoC @ T C "" 1DOoe Operating and Storage Junction Temperature Range Po 300 1.71 Watts W/oC TJ. T stg -55 to +200 °c LIF~B C le SEATING PLANE K 0 , THERMAL CHARACTERISTICS Characteristic Symbol Max Unit Maximum Lead Temperature for Soldering Purposes for ~ 10 seconds TL 275 °c ReJC 0.584 °c Thermal Resistance Junction to Case STYLE I: PIN I. BASE 2. EMITrER CASE. COLLECTOR FIGURE 1 - DARLINGTON CIRCUIT SCHEMATIC . Collector Collector PNP MJll029 NPN --, .----+--, Base I I I I I I I __ ...JI Emitter MILLIMETERS --, MJll028 MJll030 MJll032 r---~h I I I I I I Base I I I I I I '--------- __ ...JI Emitter INCHES DIM MIN MAX MAX MIN 38.35 39.31 1.510 1.550 B 19.30 21.08 0.180 0.830 &.35 7.62 0.250 O. C 1.45 1.80 0.D57 0.0&3 D ~135 3.43 E 211.90 30.40 1.177 I. f G 10.&7 11.18 D.420 ~44O 72 0.205 O. 5. I I K' 11.18 12.19 0.440 ltol8ll 161 4.D9 151 0 3. R 4.8 28.87 D.980 1.060 • - CASE 197-01 CTO-3 Except Pin Diameter) '-642 MJ11028, MJ11030, MJ11032 NPNI MJ11029, MJ11031, MJ11033PNP ELECTRICAL CHARACTERISTICS lTC = 2S o C unless otherwise noted.) Characteristic Symbol Min Max 60 - Unit OFF CHARACTERISTICS Collector·Emitter Breakdown Voltage (11 IIC = 100 mAde, IS = 01 Vde SVCEO MJll028 MJll029 MJll030 MJll031 MJll032 MJll033 COllector·Emitter Leakage Current (VCE = 60 Vde, RSE = 1 k ohm 1 (VCE = 90 Vde, RSE = 1 k ohm) (VCE = 120 Vde, RSE = 1 k ohm) (VCE' 60 Vde, RSE = 1 k ohm, TC= 150°C) (VCE • 90 Vde, RSE = 1 k ohm, TC = IS00CI (VCE = 120Vde, RSE = 1 k ohm, TC=IS0 0 CI 90" 120 mAde ICER MJll028 MJll030 MJll032 MJll028 MJll030 MJll032 - MJll029 MJll031 MJll033 MJll029 MJll031 MJll033 2 2 2 10 10 10 - - Emitter Cutoff Current lEBO - (VSE = 5 Vde, IC = 01 Collector-Emitter Leakage Current (VCE = 50 Vde, IS = 0) ICED 5 mAde - 2 mAde 1k 400 18 k ON CHARACTERISTICS (1) DC Current Gain IIc = 25 Ade, VCE = 5 Vde) IIC = 50 Ade, VCE = 5 Vde) - hFE Collector-Emitter Saturation Voltage IIC = 25 Adc, IS • 250 mAde) IIC = 50 Ade, IS = 500 mAde) Base-Emmer Saturation Voltage IIc = 25 Ade, IS = 200 mAde) IIc = 50 Ade, IS • 300 mAde) Ii ,~ I - VCE(s.t) - I Vde I Vde I. 2.5 3.5 VSEls•• ) - I 3.0 4.5 - i 11) Pulse Test: Pulse Width.; 300 ps, Duty Cycle'; 2.0%. FIGURE 2 - DC SAFE OPERATING AREA 100 50 There are two limitations on the power-handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate IC-VCE limits of the tr~iIOsistor that must be observed for reliable operation, i.e., the transistor must not be subjected to greater dissipation than the curves indicate. The data of Figure 2 is based on TJlpk) = lO0o C; TC is variable depending on conditions. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second break· down. 0: " ~ ", 20 I- ."- 10 - Bondmg Wire Limited - Thermally Limited @TC = 25 DC - - - Second Breakdown Limited G '"co ~ co ~ MJll02S,29 MJll030, 31 'MJ11032: 33 0.5 ~ 0.2 0.1 0.2 0.5 10 20 50 VCE, COLLECTOR·EMITTER VOLTAGE (VOLTS) 100 200 FIGURE 3 - OC CURRENT GAIN FIGURE 4 - "ON" VOL TAGE 100 k I 50 k VCE' 5 V TJ 25°C z 10 k ~ 10 k Iz 5k ~ -- r- 2k ~ 500 co Ik - I /' VSElsati ~ == T) 25JC IC/IS'100 MJ1I029, MJ11031, MJ11033 PNP - MJ1102S, MJ11030, MJ11032 NPN - 1-, BOps 200 IPulsed) 100 1 - ........ "., '-' II " MJ11029, MJ11031, MJ11033 PNP- MJll01B, MJll030, MJI1032 NPN 10 20 IC, COLLECTOR CURRENT lAMP) 50 - -- 0:::2 ,./ -- '" ,..... " ..... /1 ~ ~ ~ SO", IPulsed) VCElsati 100 1-643 '-t 10 20 IC, COLLECTOR CURRENT (AMP) 50 100 1112002 - ® ))P!-;igT1PI'!-; MOTOROLA Data Sheet HORIZONTAL DEFLECTION TRANSISTOR 2.5 AMPERE NPNSILICON POWER TRANSISTOR specifically designed for use in large screen color deflection circuits. 1500 VOLTS 75 WATTS • Coliector·Emitter Voltage VCEX = 1500 Volts Design..'s Data for ''Worst Case" Conditions • Glassivated Base-Collector Junction • Forward Bias Safe Operating Area @ 50 /.IS = 15 A, 300 V The Designers Data Sheet per· mits the design of most circuits entirely from the information presented. Limit data - representing device characteristics boundaries are given to facilitate "worst case" design. • Switching Times with Inductive Loads tf = 0.65 ps (Typ) @ IC = 2.0 A MAXIMUM RATINGS Rating Collector-Emitter Voltage Collector-Emitter Voltage Emitter·B ... Voltage Symbol VCEo(susl VCEX VEBO IC Collector Current - Continuous Value Unit 750 1500 5.0 2.5 Vdc Vdc Vdc Adc Base Current - Continuou$ IB 2.0 Adc Emitter Current - Continuous IE 4.5 Adc Po 75 30 0.6 -65 to +150 Watts Watts 250 C Total Power Dissipation @ TC = @TC=loooC Darate above 250 C Operating and Storage Junction Temperature Range THERMAL CHARACTERISTICS Characteristic Thermal Resistance, Junction to Case Maximum Lead Temperature for Soldering TJ, Tstg Q wf'c DC NOTES , DIMENSIONS Q AND V ARE DATUMS 2 IS SEATING PLANE AND DATUM W 3 POSITIONAL TOLERANCE FOR MOUNTING HOLE 0. Svmbol Max Unit R9JC TL 1.67 275 °CIW DC I + I 1.'3IO.005IG1 I T IvGlI FOR LEADS. It 1'·13loo05IG1T I vGlI UGII 4 DIMENSIONS ANO TOLERANCES PER ANSIY14.5,1913. Purposes: ,1/8" from Case for 5 Seconds STYLE 1 2 CASE 1-644 BASE EMITTER COLLECTOR MJ12002 ELECTRICAL CHARACTERISTICS ITc = 250 C unless otherwise noted) I Charactoristic OFF CHARACTERISTICS 11) Symbol I Min TVp Max Unit VCEOIsus) 750 - - Vde IIc = 50 mAde, IB = 0) Collector Cutoff Current IVCE = 1500 Vde, VBE = 0) ICES - - 1.0 mAde Emitter Cutoff Current lEBO - - 0.1 mAde Collector-Emitter Saturation Voltage IIC = 2.0 Ade,'lB = 1.8 Ade) VCElsatl - 5.0 Vde Base-Emitter Saturation Voltage IIc = 2.0 Ado, IB = I.B Ade) VBElsatl - - 1.5 Vde Collector-Emitter Sustaining Voltage IVBE = 5.0 Vde, IC = 0) ON CHARACTERISTICS 11) Second Breakdown Collector Current with - See Figure 14 IS/B Base--Forward Biased DYNAMIC CHARACTERISTICS Output Capacitance IVca = 10 Vde, IE = 0, f = 0.1 MHz) Current Gain - Bandwidth Product 11) IIC = 0.1 Ade, VCE = 5.0 Vde, ftest = 1.0 MHz) SWITCHING CHARACTERISTICS Fall Time IIC = 2.0 Ade, IBI = 1.0 Ade, LB = 12 I'H, See Figure 1) Cob - 50 - pF t-r - 4.0 - MHz 11) Pulse Test: Pulse Width .. 300 I'S, Duty Cycle = 2%. FIGURE 1 - TEST CIRCUIT +80 V Common 2500 5.0W 5.0 k Coarse 5WIBAdj. 0.11100 V Capacitor values In JLF reslston .re 200 5.0W ~ watt 47 I I 2.2 k IL c I I MR918 (1500 V Solactedl 10lt60 V Width Adj + -= 1.8 k =- IC 0.75 A 1.5 2.0 DRIVER TRANSFORMER ITI) Motorola pan number 25D68782A-05-1/4" 'aminate "e" iron core. Primary Inductance- 39 mHo Secondary Inductance- 22 mHo Leakage Inductance with primary shorted - 2.0 jJH, PrImary 260 turns #28 AWG enamel wire, Secondary 17 turns, #22 AWG enamel wire. 1-645 L 4.25mH 2.18mH 1.6mH C .0031'F .0001'F .00BI'F 10 5.0W Common +125 V ID MJ12002 BASE DRIVE: The Key to Performance III ay now, the concept of controlling the shape of the turn-off base current is widely accepted and applied in horizontal deflection design_ The problem stems from the fact that good saturation of the output device, prior to turn-off, must be assured_ This is accomplished by providing more than enough Ia 1 to satisfy the lowest gain output device hFE at the end of scan ICM- Worst case component variations and maximum high voltage loading must also, be taken into account. If the base of the output transistor is driven by a very low impedance source, the turn-off base current will reverse very quickly as shown in Figure '2. This results in rapid, but only partial, collector turn-off, because excess carriers become trapped in the high resistivity collector and the transistor is still conductive. This is a high dissipation mode, sincethe collector voltage is rising very rapidly. The problem is overcome by adding inductance to the base circ",it to slow the base current reversal as shown in Figure'3,thus allowing excess carrier recombination in the collector to ,occur while the base current is still flowing. Choosing the right La is usually done empirically, since the equivalent circuit is complex, and since there are several important variables (lCM, lal, and hFE at ICM). One method is to plot fall time as a function of LS, at the desired conditions, for several devices within the h F E specification. A more informative method is to plot power dissipation versus Ia 1 for a range of values of LS as shown in Figures 4 and 5. This shows the parameter that really matters, dissipation, whether causal by switching or by saturation. The negative slope of these curves at the left (low IS1) is caused by saturation losses_ The positive slope portion at higher lal, and low values of La is due to switching losses as described above. Note that for very low LS a very narrow optimum is obtained. This occurs when ISl hFE = ICM, and therefore would be acceptable only for the "typical" device with constant ICM. As La is increased, the curves become broader and_flatter above the lal hFE = ICM point as the turn-off "tails" are brought under control. Eventually, if La is raised too far, the dissipation all across the curve will rise, due to poor initiation of switching rather than tailing. Plotting this type of curve family for devices of different hFE, essentially moves the curves to the left or right according to the relation lal hFE = constant. It thlln becomes obvious that, for a specified ICM, an LS can be chosen which will give low dissipatipn over a range of hFE and/or lSI. The only remaining decision is to pick lSI high enough to accommodate the lowest hFE part specified. Figure 8 gives values recommended for LS and Ia 1 for this device over a wide rang~ of ICM. These values were chosen from a large number of curves like Figure 4 and Figure 5. Neither La nor ISl are absolutely critical, as can be seen from the examples shown, and values of Figure 8 are provided for guidance only. TEST CIRCUIT WAVEFORMS FIGURE 2 FIGURE 3 Ie Ie (time) (tIme) TEST CIRCUIT OPTIMIZATION The test circuit mav be used to evaluate device. in the conventional mann,r, I.e., to measure fall time, storage tima, and saturation voltage. However, this circuit was designed to evaluate devices bv a limpls criterion, power supplv input. Excessive power lnpu~ can be caused bV 8 variety of problems, but it Is the dissipation In the transistor that is of fundamental Importance. Once the required transistor operating current Is determined, fixed circuit values may be selected from the table. Factory testIng Is performed by reading the current meter only I since the Input power Is proportional to current. No adjustment of the test apparatus is required. 1-646 MJ12002 FIGURE 4 - OPTIMIZING DRIVE @ FIGURE 5 - OPTIMIZING DRIVE IC ':' 0.75 A 5.5 4.0 ~ 3.5 i \. '"w ~ 3.0 - ~~ I- ~ ~ ~ ~ 2.5 2.0 o 0.1 La.H 4/ ~ ------- iD"' 0.2 0.3 \ N "'" 0 3.5 0.2 0.4 ~ a.o ~ '" ~ "'-"' '\.. 7.0 ~ ~ " ~ 6.0 0.4 0.6 1 2.0 .......... ~ t'-... ICM' 1.75 A. la' 0.85 A. La' 13 pH ......... . . . r-- --- -- - ......... '-..... 1.5 La.H ./'" ~ 20 :-....... ./""" / . /V rZ4 0.6 -r--.. . . ,. 0.8 - 0.5 1.0 1.2 - If f.--- _t-" ~ 9.0 ~ -- ~ >= o 20 40 .- ............... 1.0 ~ 0.5 ...---- V /" ./ sj , / V 1.5 120 . ~ 6.0 160 140 K 2.0 10 IS 1.5 /'" ./ / 1'--.,1 2.5 a.o ~ I---- V V ~ 4.0 1.0 1.5 2.0 ICM. COLLECTOR CURRENT (AMP) 1-647 ~ ~ If o 0.5 >= 6.D~ - ICM. COLLECTOR CURRENT lAMP) w :E ........... / o 1.0 100 ~ 1.0 2.0 1 ......... u w 80 ~ FIGURE 9 - SWITCHING BEHAVIOR .ersus ICM ....... ~ I- 60 8.0 ~ TC. CASE TEMPERATURE 1°C) 2 5 0.5 .... - 0: 1.5 o 1.0 0.8 t-.... FIGURE 8 - OPTIMUM DRIVE CONDITIONS ; ../' FIGURE 7 - SWITCHING BEHAVIOR versus TEMPERATURE =2.0 A IBI. BASE CURRENT lAMP) ~ => ./ ><'" o 5.0 0.4 2.0 ......... '-..... ,/ lal. aASE CURRENT (AMP) FIGURE 6 - OPTIMIZING DRIVE @ IC ......... / ............... r-., 2 4 lal. BASE CURRENT lAMP) 9.0 IC = 1.5 A LB.H V / \ i\\ \ \\ "\ "- ~ @ 2.0 2.5 ~ MJ12002 FIGURE 10 - THERMAL RESPONSE 7~D 9.5 5 ~ r-- 0:2 ~ 0.1 ~ I !==O.os - ~ PmJl tt-J 7::::0.02 ....Ie 1I1 DUTY CYCLE. 0 = IIh2 0.02 I-- .SINGLE.PULSE 0.0 I 0.01 IIIII I II I 0.02 om 0J15 0.1 0.2 u.s D.l 2.0 III 3.0 10 5.0 II I 3D 50 20 IIsJC(t) = .(t) RUC IIsJC=1.&70CfWMu oCURVES APPLY FOR POWER PULSE TRAIN SHOWN READ TIME AI II TJ(pkl- TC'PlpkIIlsJC(t) 100 2DO 3DO 500 IDOD I. TIMElmsl FIGURE 11 - COLLECTOR SATURATION REGION - 5.0 o 4.5 ~ ~ w '"~ o ;:; ~ ~ ~ \ IC·0.75 2.5 2.0 _ 1.5 1.0 8 w O.S ~ 1\ \ 1\ 311 . TJ = 25°C 411 1\ 3.5 FIGURE 12 - DC CURRENT GAIN 3D \ 1.5A _\ \ , ~ \ \ '\ \ ....... 1---. 0.1 0.2 '-' I- 0.3 0.4 0.5 lB. BASE CURRENT lAMp) ;::::., 7.0 "' 5.0 "- ~ \ ~ o ....... 10 '-' 0 I\. r- I- f--.25oC :< '".... ~ '"'" ::> \2.0A VC~=5~V T;'~C 20 ~ 3.0 .. "- ~ 2.0 1.5 0.6 0.7 D.8 0.9111 ~.OS 0.03 0.1 0.2 0.5 IC. COLLECTOR CURRENT lAMP) 1.Q 2.0 3.0 FIGURE 14·MAXIMUM FORWARO BIAS SAFE OPERATING AREA FIGURE 13 - "ON" VOLTAGES 2.0 so .. 10 I.8 ~ 0 ~ 1.oms 1.2 w '" ~0 > >' VBElsatlOlc/IB = 2.0 0. 8 100°C 0.4 VCElsat)@ Iclla- 2.0 o 0.25 - 25°C 0.3 0.4 ------- 0.5 0.7 1.0 IC. COLLECTOR CURRENT lAMP) .L ~ de I-lH- SINGLE --"'0 PULSE 7 100°C / / ~ . /~ 0.01 BONDING WIRELIMIT THERMAL LIMIT ISINGLE PULSEI SECOND BREAKDOWN LIMIT O.OOS 25°C 0.002 2.0 2.5 B.O 10 20 3D SO 100 200 300 SOD BOD VCE. COLLECTOR·EMITTER VOLTAGE IVOLTSI NOTE: There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate Ie - VeE limits afthe transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. The 50 /JS sa curve is beyond the thermal limits of this part. However, the parts will survive a transient that remains within these sa limits without failing. 1-648 MJ12003 ® MOTOROLA 4 AMPERE HORIZONTAL DEFLECTION TRANSISTOR NPN SILICON POWER TRANSISTOR ... specifically designed for use in CRT deflection circuits. • Collector· Emitter Voltage - VCEX = 1500 Volts • Glassivated Base·Coliector Junction 50 liS • Forward BiasSafe Operating Area • Switching Times with Inductive Loads tf = 0.5 liS (Typl @ IC = 3.0 A @ = ·1SOOVOLTS 100 WATTS 20 A, 300 V MAXIMUM RATINGS Symbol Value Unit Collector-Emitter Voltage VCEO(sus) 750 Vdc Collector-Emitter Voltage VCEX 1500 Vdc Emitter-Base Voltage VESO 5.0 Vdc Adc Rating Collector-Current - Continuous Ie 4.0 Base Current - Continuous IS 3.0 Adc Emitter Current - Continuous IE 7.0 Adc Total Power DISSipation @TC = 2SoC Te = 1000 e PD 100 40 0.8 Watts Watts TJ, T stg -65 to + 150 °e Derate above 25°C Operating and Storage Junction Temperature Range L~rEB w/oe 1; Characteristic Thermal Resistance, Junction to Case Ma)(!mum Lead Temperature for Soldering Purposes Symbol Max Unit ROJC 1 25 °C/W TL 275 °c -+ o .. THERMAL CHARACTERISTICS C K j STYLE 1: PIN 1. BASE 2. EMITTER CASE-COLLECTOR 1/8" from Case for 5 Seconds NOTES FIGURE 1 - TEST CIRCUIT Com 2kJ!5W 820 100 V 5W 15,750 Hz 1. DIMENSIONS Q AND V ARE DATUMS 2. IS SEATiNG PLANE AND DATUM. 3. POSITIONAL TOLERANCE FOR m FIGURE 1 - SWITCHING TIMES TEST CIRCUIT MOUNTING HOLE Q: I .11.131O.00£Ie I r i v e I FOR LEADS: I .It.131D.DOSle r I ve I ael .-_+..::F!.:jl'*l AdJ 4. DIMENSIONS AND TOLERANCES PER ANSI Y14.5, 1973. MAS'8 (Sllec:ttld 1500\11 10"F 1fiO V PuIMWldthAdj 1ft Du'lYC.,cli '00 'W DRIVER TRANSFORMER (Ttl Com H2S V =-""N"'CH"'E:;;S--' MIN MAX 1.S50 0.830 0.250 0.3DO 0.038 0.043 0.055 0.070 1187 sse 0.430BSC 0.215 sse D,BB5 sse 0.440 0.150 Motorola ~rt numlar :atlD&8782A-oS·1/4" Ilmlnlttl "e" iron c:orl. Prlmlry Induc:tlnn - 39 mH, SlICondlry inductancl - 0.22 mH, LIlli: .... IndUc:tlnctI with primarv 8horted - 2.0 "H. "Imlry 280 turM, _28 AWG IIIlmll wirl, 8acondar.,. 17 turM, #22 AWO CASE l'D~ 1-649 0.480 0.165 10S0 0.210 0.165 MJ12003 II] I ELECTRICAL CHARACTERISTICS ITc = 25°C unle.. otherwise noted I I Characteristic Symbol Min Typ Max Unit VCEOlsusl 750 - - Vdc ICES - - 1.0 mAde 1.0 mAde 5.0 Vde 1.5 Vdc OFF CHARACTERISTICS 111 Collector-Emitter Sustaining Voltage IIC = 50 mAde. IS = 01 Collector Cutoff Current IVCE = 1500 Vde. VSE = 0) Emitter Cutoff Current IVSE = 5.0 Vde. IC = 01 IESO ON CHARACTERISTICS III Collector-Emitter Saturation Voltage IIC = 3.0 Adc. IS Base-Emitter Saturation Voltage - - VCEls,d = 1.2 Adcl VBEls't) IIC = 3.0 Adc, IB = 1.2 Ade) Second Breakdown Collector Current with Base Forward Biased - See Figure 5 ISlb OYNAMIC CHARACTERISTICS Current-Gain - Bandwidth Product IIC = 0.1 Ade, VCE = 5.0 Vde, f te51 Output Capacitance IVCS = 10 Vde. IE = 0, f = 0.1 fT - 4 - MHz Cob - 90 - pF = 1.0 MHz) MHz) SWITCHING CHARACTERISTICS Fall Time IIC = 3.0 Adc, IB1 = 1.2 Adc, LS = 8.0 !,H, See Figure 1) (1) Pulse Test: Pulse Width.;; 300 !,S, Duty Cvele = 2%. FIGURE 3 - COLLECTOR SATURATION REGION FIGURE 2 - OC CURRENT GAIN 20 ~).lt~O'C 15 12l.lel 10 2.8 ~ VeE" 5V r- r--. o ~ 2.2 '"~ 1.8 r- o ~ 1.4 1.0 \ ~ 0.8 \ 3. 0 2. 0 0.05 ! §_ 0.' "- S 0.1 0.2 0.3 0.5 2.0 1.0 50 ~ 0.1 > 0.0' 0.06 0., Ie. COLLECTOR CURRENT (AMP) 1.0 ~ 0.6 g >- 0.04 0.116 ,. T=2~ ,- V 0.2 0.4 ~ E == 01 1.0 Ie. COLLECTOR CURRENT (AMP) 2.0 0.0 1 10 4.0 ~ Smgle Pulse Te:: 25°C ----§--- de Bonding Wire Limit Thermal limit (Smgle Pulse) SacondBreakdown limit """;:I,e 0.6 1.0ms 10 c r 1.0ms ... ~ ~ :> ~ ~oo'e 0.1 " /" VeE ..,) • 'ella • 2.0 4.0 50~s 10 >z -;r.;~ r- VBE(sat)@IC/IB..:!'O 0.4 0.2 2.0 0: 1.2 O.a 0.2 0.3 0.5 1.0 IC. COLLECTOR CURRENT lAMP) 100 1.4 ~ -'- "- FIGURE 5 - MAXIMUM FORWARD BIAS SAFE OPERATING AREA FIGURE 4 - "ON" VOLTAGES ~ 2 A 2.5 A 3A \ \ \ ~ ""~ 5.0 ·1.5A IC=0.75A > 2.0 5.0 10 20 50 100 ~200 500 11)00 "CE. COLLECTOR·EMITTER VOLTAGE (VOLTS) NOTE. There are two limitations on the power handling ability of a transistor: average junction tamperature and second breakdown. Safe operating Ifea curvlS indicate Ie - VCE hmits of the transistor th,.t must be observed for reliable operation; i.e., the tranSIStor must not be subjected togtesler diSSipation than the curves mdicate. The 50 lIS and 1 ms curves are beyond the thermal hmits of thiS part. However, the parts will SUrvive a transient that remllnS Within these SB limits Without fall mg. 1-650 ® MJ12004 MJH12004 MOTOROLA Designers Data Sheet 5.0AMPERE HORIZONTAL DEFLECTION TRANSISTOR NPN SILICON POWER TRANSISTORS · .. specifically designed for use in large screen color deflection 1500 VOLTS 100 WATTS circuits. • Collector· Emitter Voltage - V CEX = 1500 Vdc MJ12004 • Glassivated Base·Coliector Junction • Safe Operati ng Area @ 50 iJ.S = 20 A, 400 V • Switching Times with Inductive Loads tf = 0.4 iJ.S (Typi @ IC = 4.5 A PIN 1 BASE 2 EM1TTER CASE COLLECTOR NOTE~ MAXIMUM RATINGS Rating Symbol MJ12004 MJH12004 Unit Collector-Emitter Voltage VCEO(sus) 750 Vdc Collector-Emitter Voltage VCEX 1500 Vdc Emitter Base Voltage VEB 5.0 Vdc Collector Current - Continuous IC 5.0 Adc Base Current - Continuous IB 4.0 Adc Emitter Current - Continuous IE 9.0 Adc Po 100 Watts Operating and Storage Junction Temperature Range B C o E F G tt J K 0: R U Total Power Dissipation @Te=2SoC @TC= 1000C Derate above 2SoC 1 DIMENSIONS Q AND v ARE DATUMS 2 OJ ISSEATtNG PLANE AND DATUM J POSITIONAL TOLERANCE FOR MOUNTING HOLE 11 MILLIMETERS DIM MIN MAX A 3937 V [_III3I000"e Illvel FOR LEADS [_III3I000"e , I vel ael 211)8 Ii 35 1)91 162 109 140 18 301fiBSC 1092BSC 546BSC 168SBSC 1118 1219 J81 419 2667 483 533 381 419 ~ DIMENSIONS AND TOLERANCES PER ANSIY145,1913 CASE 1-05 TO-204AA (Formerly TO·3) MJH12004 40 O.B wf'>c TJ, T stg -65 to +150 °c Symbol Max Unit ReJC 1.25 °C/W TL 275 °c THERMAL CHARACTERISTICS Characteristic Thermal Resistance, Junction to Case Maximum Lead Temperature for Soldering K 1 Purposes: 1/8" from Case for 5 Seconds . ... .,. a,. ,. MILLIMETERS •• Designer's Data for "Worst Case" Conditions C 0 E The Designer's Data Sheet permits the design of most circuits entirely from the Information presented. Limit data - representing devICe characteristics boundaries - are given to facihtate "worst case" design. 1-651 2032 1549 .19 102 135 fi- rillJ 241 038 t+ r*r~ ·• 1588 1219 40' 2108 1590 '08 10' 10' 572 320 064 ~~9 1651 1210 422 INCHES M.X 0830 0610 0626 0165 0100 0040 ,053 0065 0205 0125 0095 0015 0025 0500 0610 0625 0650 0480 05110 0159 0166 , 1 BASE 2 COLLECTOR 3 EMITTER 4 COLLECTOR 08110 "65 om CASE 340·01 TO-218AC MJ12004.MJH12004 ELECTRICAL CHARACTERISTICS ITC' 25 0 unle.. otherwise noted.} I Symbol Min Typ Max Unit VCEOlsus} 750 - - Vde ICES - - 1.0 mAde IESO - - 1.0 mAde - - 5.0 5.0 - - 1.5 1.5 Characteristic OFF CHARACTERISTICS Il} Coliector·Emitter Sustaining Voltage IIC = 50 mAde, IS • 0) Collector Cutoff CUrrent IVCE = 1500 Vde, VSE • 0) Emitter Cutoff Current IVSE =5.0 Vde, IC = 0) ON CHARACTERISTICS 11) Coliector·Emitter Saturation Voltage IIC = 4.5 Ade, IS = 1.8 Ade) IIC = 3.5 Ade, IS = 1.6 Ade) VCElsatl Base Emitter Saturation Voltage VSE(satl (lC = 4.5 Ade, IS = 1.8 Ade) (lC' 3.5 Ade,ls' 1.5 Ade) Vde Vde - Second Breakdown Collector Current with Base Forward Biased See Figure 14 ISlb DYNAMIC CHARACTERISTICS Current-Gain - Bandwidth Product IT - 4 - MHz Cob - 125 - pF (lC' 0.1 Ade, VCE = 5.0 Vde, I t85 t • 1 MHz) Output Gapacitance IVCS = 10 Vde, IE = 0, 1= 0.1 MHz) SWITCHING CHARACTERISTICS Fall Time (lC = 4.5 Adc, lSI' 1.8 Ade, Ls = B.O jlH, See Figure 1) 11) Pulse Test: Pulse Width .. 300 jlS, Duty Cycle =2%. +60V Com FIGURE 1 - SWITCHING TIMES TEST CIRCUIT 2 k/5 W 100/5W 820 5W 15.750 Hz . -_ _--+_F"rc=.;eq Ad; 100 Ie L MR918 •10 J.lF 25V (Selected + 3 5W Pulse Width Adj C 1600 VI 10jlF 150 V 10" Duty Cvcle 10n 6W Com +125 V -= L e A mH jlF 3.5 0.87 0.013 4.6 0.67 0.017 Ie DRIVER TRANSFORMER ITl) Motorola part number 25068782A-QS·1/4" laminate "e" Iron cor•. Primary Inductance ~ 39 mHo Secondary Inductance - 0.22 mHo Leakage Inductance with primary shorted - 2.0 jlH. Primary 260 turns. #28 AWG enaMel wire. Secondary 17 turns, #22 AWG enamel wire. 1-652 MJ12004,MJH12004 II. BASE DRIVE: The Key to Performance By now. the concept of controlling the shape of the turn·off base current is widely accepted and applied in horizontal deflection design. The problem stems from the fact that good saturation of the output device. prior to turn·off. must be assured. This is accomplished by providing more than enough IBl to satisfy the lowest gain output device hFE at the end of scan ICM' Worst·case component variations and maximum high voltage loading must also be taken into account. If the base of the output transistor is driven by a very low impedance source. the turn·off base current will re· verse very quickly as shown in Figure 2. This results in rapid. but only partial. collector turn·off. because excess carriers become trapped in the high resistivity collector and the transistor is still conductive. This is a high dissipa' tion mode. since the collector voltage is rising very rapidly. The problem is overcome by adding inductance to the base circuit to slow the base current reversal as shown in Figure 3. thus allowing excess carrier recombination in the collector to occur while the base current is still flowing. Choosing the right LB is usually done empirically. since the equivalent circuit is complex. and since there are several important variables 0CM. IB1. and hFE at ICM)' One method is to plot fall time as a function of LB. at the desired conditions. for several devices within the hFE specification. A more informative method is to plot power dissipation versus IBl for a range of values of LB as shown in Figures 4 and 5. This shows the parameter that really matters. dissipation. whether caused by switching or by saturation. The negative slope of these curves at the left (low IB 1) is caused by saturation losses. The positive slope portion at higher IB1 • and low values of LB is due to switching losses as described above. Note that for very low LB a very narrow optimum is obtained. This occurs when IBl hFE ~ ICM. and therefore would be acceptable only for the "typical" device with cOnstant ICM' A. LB is increased. the curves become broader and flatter above the IBl hFE = ICM point as the turn·off "tails" are brought under control. Eventually. if LB is raised too far. the dissipation all across the curve will rise, due to poor initiation of switching rather than tailing. Plotting this type of curve family for devices of different hFE' essentially moves the curves to the left or right according to the relation IBl hFE = constant. It then becomes obvious that. for a specified ICM. an LB can be chosen which will give low dissipation over a range of hFE and/or IB1' The only remaining decision is to pick IBl high enough to accommodate the lowest hFE part specified. Figure 8 gives values recommended for LB and IBl for this device over a wide range of ICM' These values were chosen from a large number of curves like Figure 4 and Figure 5. Neither LB nor IBl ~re absolutely critical, as can t:>e seen from the examples shown, and values of Figure 8 are provided for guidance only. TEST CIRCUIT WAVEFORMS FIGURE 2 FIGURE 3 (time) (time) TEST CIRCUIT OPTIMIZATION Once the required transistor operating current I, determined. fixed circuit values maV be selected from the table. Factory test· jng Is performed by reading the current meter only. since the input power is proportlona, to current. No adiustment of the test apparatus Is required. The test circuit may be used to evaluate devices in the conventional manner, i.e., to measure fall time, storage time, and saturation voltage. However. this circuit was designed to evaluate davlces by • simple criterion, power supply input. Excessive power input can ba caused by 8 variety of problems, but It Is the diSSipation In the transistor that is of fundamental Importance. 1-653 MJ12004,MJH12004 FIGURE 4 - OPTIMIZING DRIVE@ 3.5 A FIGURE 5 - OPTIMIZING DRIVE @4.5 A 13 6 .\ \\ l\\\ 1\\\ $... I 16 \'\' ~" ~ o / 4 \~ I~ \. 3 ~ roo 12 0.5 1.5 o 0.5 1. 5 1 ... ~ :: o.5 ./ ./ /' ,.;: w V - 'f -- j ~ 1 80 40 80 100 120 /' f- / roo o o 140150 20 40 20 L 1 --<~ "-.... 1 5 . . . r---.... ............... .,- ~Oolt'N...(·. .~ Is , ....... D 4.5 -- r-.... 1 I l 3.5 6 140150 1 NOMINAL 4'Oolt,4'...L""-- 3 120 2 ......... f-- -; .La 100 80 I- FIGURE 9 - SWITCHING BEHAVIOR va,suIICM FIGURE 8:- OPTIMUM DRIVE CONDITIONS ~ 60 -- 1 TC. CASE TEMPERATURE (DC) 2 t'-.. .' 1 ~ TC. CASE TEMPERATURE (DC) 5 /" / ./ 0.5 8 20 'Y 1.5 1 '7 o o /"" / .. / l! .... FIGURE 7 - SWITCHING BEHAVIOR v...US TEMPERATURE ICM = 4.5 A.IB ~ 1.75 A. LB ~ 81lH /'" .lI 1.5 lSI. BASE CURRENT (AMP) 2 1 _""'5': L 4 FIGURE 6 - SWITCHING BEHAVIOR v... us TEMPERATURE ICM· 3.5·A.IB ·'.5 A. LB ~ 141lH ....... -- 12 \ ",--, ~ 2 - /' LBOH \::j...j la 1. aASE CURRENT (AMP) ... - ;-... I'-.. 4 9 - / LaoH 5 ,\ \\ ............ NOMINAL If 5 o o 3 5 3.6 4.5 IC. COLLECTOR CURRENT lAMP) IC • COLLECTOR CURRENT (AMP) 1-654 5 2 MJ12004,MJH12004 TYPICAL ELECTRICAL CHARACTERISTICS SAFE OPERATING AREA INFORMATION FIGURE 11 - MAXIMUM RATED FORWARD BIAS SAFE OPERATING AREA FIGURE 10 - DC CURRENT GAIN 10 I~ I- I '2 < '" 50 ~s Sing'l, Pulse VCE' 5 V TJ·1DOoC 10 .......... 250C 10 1.0 ms= IZ ~ 7 I' 13 '\ " c I'\. ~ 3 10 005007 01 1.0 , de TC = 25°C f-- 0.1 ~ _ Bonding Wile limit ~ =-~::~:'i::~down limit 01 03 05 0.7 I IC. COLLECTOR CURRENT lAMP) 10 100 VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS) FIGURE 12 - COLLECTOR SATURATION REGION ~ c ~ w I.B 1.4 NOTE: There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate IC-VCE limits of the transistor must be observed for reliable operation;' i.e .. the transistor must not be subjected to greater dissipation than the curves indicate. The 50 I's S8 curve is beyond the thermal limits of this part. However, the parts will survive a transient that remains within these S8 limits without failing. to :; " \ 0 > '"w lI- ~ '"0 ~ 8 1.6 f- -\:IC: 1 A - - ~3A \ 1-\3.5A\4A 4.5 A 1.2 O.B 0.4 ~ 1\ \ \ , \. '\ ...... ....... > 0.3 0.5 0.7 I IB' BASE tURRENT lAMP) FIGURE 13- "ON" VOLTAGES 1.4 1.2 ~ TJ~150~ :,......-:~ 1 o ~ w '" g~ 0.8 VSEI",)@ Ic/IS: 1 :f-" 0.6 --- >VfEI"t)@ICIlS = "iTi -I t 0.1 - ~ 15 0C I 0 0.05 I lOOOf7$ 0.4 o. 2 "'1oooc 0.5 0.7 0.1 0.3 IC, COLLECTOR CURRENT lAMP) '·655 r-- lK MJ12004,MJH12004 III] THERMAL RESPONSE FIGURE 14 - MJ12004 1.0 0.7 0.5 0-50% ~iS 0.3 ~~ 20~ 0.2 ~~ 0.1 "'~ i!=1 ..... i~ ~~ ~; R8JCIII - rill R8JC R8JC = 1.25 °CIW Max ..... 10% 0.03 0.02 ptnn DulV Cvcle. 0 = '1/'2 SinglePulse= ~ 5% 0.07 0.05 TJlpkl - TC = Plpkl R8JCIII Plpkl : 1'~2-J f..-'" I 111111 0.01 0.01 o Curves Apply tor Power Pulse Tram Shown Read Time @tl 0.02 0.05 0.1 0.2 0.5 1.0 2.0 10 50 I 50 20 100 200 2K IK 500 I. TIMElmsl FIGURE 15 - MJH12004 1.0 .... ;i "'- O.s - - WCI :l:W ~I - .... w - !~ o. I ~~ §~O.OS ... ::1 :g~'" 0.02 - ..... ...-::::; IiIII O.~ .... N ~~ 0.2 D' 0.5 --0.1 0.02 ~\ngl. ~UI'~ II 0.05 0.1 III 0.2 ::::: ::::: 0.5 1.0 2.0 5.0 t. TIME 1...1 1-656 10 I I 20 o Curves Apply for Power Pulse Tram Shown Read TIme @tt TJ(pkl - TC Plpkl =Plpkl R8JCIII ,- 11~2-J 0.01 0.0 I - '1/'2 pr 0.02 " ., R8JCIII rill R8JC R8JC =I 25 °C/W Max -Inn DulV Cvcle. 0 I- ~ :;::1=" -li.OS ;;:;;;;; !!:: l1li" f:: rrrrt=:: 1= rr- II II 100 200 500 1000 2000 MJ12005 ® MOTOROLA 8 AMPERE NPN SILICON POWER TRANSISTOR HORIZONTAL DEFLECTION TRANSISTOR · .. specifically deSigned for use in deflection circuits. 1500 VOLTS 100 WATTS • VCEX=15DDV • GlasSivated Base·Collector Junction • Safe Operating Area @ 50 f.1s = 20 A, 400 V MAXIMUM RATINGS Rating Collector-Emitter Voltage Em Itter-Base Voltage Unit Symbol Value VCEX 1500 Vdc VE8 5.0 Vdc Collector Current - Continuous IC 8.0 Adc Base Current - Continuous IS 4.0 Adc Emitter Current - Continuous IE 12 Adc Total Power OlSSlpatlon @ T C - 2SoC PD 100 0.8 Watts TJ, T stg -65 to + 150 °c Svmbol Max Unit ReJC 1.25 °C/W TL 275 uc Derate above 25°C Operating and Storage Junction W/oC Temperature Range THERMAL CHARACTERISTICS Characteristic Thermal Resistance, Junction to Case MaXimum Lead Temperature for Soldering Purposes 1/8" from u Case for 5 Seconds NOTES 1. OIMENSIONS Q AND V ARE OATUMS. 1. IS SEATING PLANE AND OATUM. 3. POSITIONAL TOLERANCE FOR MOUNTING HOLE Q OJ FIGURE 1 - MAXIMUM FORWARO BIAS SAFE OPERATING AREA I *1.13(O.005Ie IT Ive I 50 FOR LEADS: 50,us ~ 10 1*1 ,.13(O.005IeT I vel Qel SINGLE PULSE "5 4. DIMENSIONS ANO TOLERANCES PER ANSI Y14.5, 1973. 1 ms ~ ~ 10 OJ u ~ ....u" STYlE 1 PiN I 8ASE de w ~ 2 EMITIER CASE COLLECTOR 01 8 ~ f= - BONDING WIRE LIMIT -THERMALLY LIMITE 0 @TC"25 0 C SECONO BREAKOOWN L1MIT r::: 001 "=' 0.005 10 DIM A B C D E F G H J K 20 30 40 50 100 500 1000 VCE, COLLECTOR EMITTER VOLTAGE IVOLTSI n R U V MILLIMETERS MIN MAX 39.37 21.08 6.35 7.62 0.97 1.09 1.40 1.78 30.15 BSC 10.92 BSC 5.46 BSC 16.89 BSC 11.18 12.19 4.19 3.81 26.67 4.83 5.33 3.Bl 4.19 - CASE 1·05 1-657 INCHES MIN MAX 1.550 - 0.830 0.25U 0.300 0.038 0.043 0.055 0.070 1.187 BSC 0.430 BSC 0.215 BSC 0.665 BSC 0.440 0.480 0.150 0.165 1.050 0.190 0.110 0.150 0.165 - MJ.12005 ELECTRICAL CHARACTERISTICS (TC = 25°C unless oth.,w;se not.d) Symbol Min Typ Max Unit VCEOsus) 750 - - Vde Collector Cutoff Current 'CES - - 0.25 mAde (VCE = 1500 Vde, VBE = 0) Em Itter Cutoff Current (VBE = 5.0 Vde, IC = 0) 'EBO - - 0.1 mAde Collector-Emitter Saturation Voltage VCE(s.t) - - 5.0 Vdc (lC = 5.0 Ade, 'B = 1.0 Ade) Base Emitter Saturation Voltage (lC = 5.0 Ade, 'B = 1.0 Ade) Second Breakdown Collector Current with Base Forward Biased VBE(s.t) - - 1.5 Vde 'Slb - - Characteristic OFF CHARACTERISTICS Collector-Emitter Sustaining Voltage (VC = 50 mAde, 'B = 0) ON CHARACTERISTICS (1) See Figure 1 SWITCHING CHARACTERISTICS Fall Time (lc = 5.0 Ade, 'B 1 = 1.0 Ade, LB = 8.0 j.lH 1 (1) Pulse Test: Pulse Width" 300 ps, Duty Cycle = 2%. FIGURE 2 - DC CURRENT GAIN - 20 -r z :;;: - TJ - 250C 2.0 01 03 '" 10 I- r- V~E=5civ "", ~ ~ U .# Q 5.0 3.0 0.5 10 2.0 50 10 IC. COLLECTOR CURRENT (AMPS +60V Com FIGURE 3 - SWITCHING TIMES TEST CIRCUIT 2 k/5 W 10j.lF 100 V 820 5W 15,750 Hz 100 . -_ _-+....;.F.:,;'.,q Adj 'C 5W L MR918 •10 tJF 0.1 25V (Selected + 3 5W Pulse Width Adj 50% Duty Cvcle 220 1.8 k 2 10"F '50 V 5W DRIVER TRANSFORMER (Tl) L c V) ,on 470 pF IC 1500 C A mH "F 5.0 0.575 0.018 Com +125 V Motorola part number 25068782A-QS·1/4" laminate "e" iron cor•. Primary Inductance - 39 mHo Secondary Inductance - 0.22 mHo Le.kage Inductance with primary shorted - 2.0 J,lH. Primary 260 turns, #28 AWG enamel wire, Secondary 17 turns, #22 AWG enamel wire. 1-658 MJ12010 ® MOTOROLA 10 AMPERE HORIZONTAL DEFLECTION TRANSISTOR NPN SILICON POWER TRANSISTOR ... specifically designed for use in CRT deflection circuits. • Coliector·Emitter Voltage - VCEX ; 950 Volts • Glassivated Base·Coliector Junction • Forward Bias Safe Operating Area • Switching Times with Inductive Loads tf = 0.5jls (Typ) @ IC = 5.0 A @ 950 VOLTS 100 WATTS 50 jlS ; 30 A. 300 V MAXIMUM RATINGS Symbol Value Unit VCEO(sus) 400 Vdc VCEX 950 Vdc VEBO 5.0 Vdc Collector-Current - Continuous IC 10 Adc Base Current - Continuous Emitter Current - Continuous IB 5.0 Adc IE 15 Adc Total Power Dissipation @ T C = 2SoC TC = 100°C Po 100 40 0.8 Watts Watts W/oC TJ. T stg -65 to +150 °c Symbol Max Unit ROJC 1.25 °CIW TL 275 °c Rating Coliector·Emltter Voltage Collector-Emitter Voltage Emitter-Base Voltage Derate above 2SoC Operating and Storage Junction Temperature Range THERMAL CHARACTERISTICS Characteristic Thermal Resistance. Junction to Case Maximum Lead Temperature for Soldering Purposes: 1/8" from Case for 5 Seconds STYLE " PIN 1. BASE 2. EMITTER CASE·COLLECTOR Q u FIGURE 1 - TEST CIRCUIT NOTES 1. DIMENSIONS a AND v ARE DATUMS. 2. IS SEATING PLANE AND DATUM. 3 POSITIONAL TOLERANCE FOR MOUNTING HOLE O. m Com 2k16W 82. 5W I t 11.13(0005)(31 T Ive I FOR LEADS; I t I 1.13 (0.005IeT I Ve I nel 4. DIMENSIONS ANO TOLERANCES PER ANSI YI4.5, 1973. MRS1B ISelected 1500111 INCHES MIN 10llF SOV Pul.. WktthAdj &enl Duty C:ycle MAX 1.550 0.830 ,.n 0.250 0.300 0.038 0.043 0.055 0.070 1.187 BSC 0.430 BSC 0.215 BSe 0.665 BSe 0.440 0.480 0.150 0.165 5W DRIVER TRANSFORMER ITn "rt Motoro1, numblll' 2tiD68782A..QII·1/4" .'mln," "£" Iron co.... Prlm,ry Inductllnc, - 39 mH, Secondlory 'nducunc, - 0.22 mH, LMk.,. 'nduCUlnc. with prlrMry .noruel' - 2.0 pH Prlrfta"y 210 turnt, # . AWG en'mel wire, Second." 17 turn., #22 AWG 1.050 4.83 3.81 4.19 CASE 1·05 1-659 0.190 0.150 0.210 0.165 MJ12010 ELECTRICAL CHARACTERISTICS I (TC = 25°C unle.. otherwise notod) I Charactaristic Symbol Min Typ Max Unit VCEO(su,) 400 - - Vd. ICES - - I,D mAde lEBO - - 1.0 mAde VCEI,at) - - 5.0 Vd. VBEI,at) - - 1.5 Vd. OFF CHARACTERISTICS (1) Collector-Emitter Sustaining Voltage (lC = 50 mAde, la = 0) Collector Cutoff Current (VCE = 950 Vde, VaE = 0) Emitter Cutoff'Current (V BE = 5.0 Vde, IC = 0) ON CHARACTERISTICS (1) Collector-Emitter Saturation Voltage (lC = 5.0 Ade, la = 1.2 Ade) Base-Emitter Saturation Voltage (lC = 5.0 Ade, la = 1.2 Adc) Second Breakdown Collector Current with Base Forward Biased Current-Gain - Bandwidth Product (lC = 0.1 Ade, VCE = 5.0 Vde, fto,t = 1.0 MHz) Output Capacitance (Vca = 10 Vde,IE =0, f = 0.1 - See Figure 5 ISlb DVNAMIC CHARACTERISTICS fT - 6.0 - MHz Cob - 150 - pF MHz) SWITCHING CHARACTERISTICS Fall Time (lC = 5.0 Ade, IBI = 1.2 Ad., LB = B.O I'H, See Figure = 2%. 1) (1) Pul,e Te't: Pulse Width .. 300 1", Duty Cycle FIG.URE 2 - DC CURRENT GAIN FIGURE 3 - COLLECTOR SATURATION REGION 40 ....- ~ 25 0 CI 10 II II TJ'I000 C VCEI. ~ Uv - ,4 "\' Ie'" I A ,0 \1\ l' 8 04 6.0 , 001 0.1 0.2 0.3, 0.5 0.1 1.0 2.0 IC, COLLECTOR CURRENT (AMPI 5.0 3.0 1,0 4 c;; ~ ~ o > ;:.- 1.0 Q. loooc 0.4 0.04 0.06 30 20 - .-' VCE(.." IlIIC/ls • 3.0 0.1 0.2 0.4 0.6 1.0 0.05 01 02 05 10 2,0 7i V ,/ k"25tc 1.0 ms ~ 10 $ 5.0 .... ~ . B o. 6 0.2 001 50 100 ~V f.,....., VaE(sa'l IlIIC/I~3.0 a ~ 'e- BASE CURRENT (AMP) L T'2Y f- !:; o ~ 1\ I' FIGURE 5 - MAXIMUM FORWARD alAS SAFE OPERATING AREA I I I I " \ I- 10 FIGURE 4 - "ON" VOLTAGES 1. 2 \ \ o 4.0 3. 4 A 5A S 7A SA \ 2.0 1.0 0,5 0 ~ 0 '"i! 0.2 0.1 0.0 de t= TC=250 C Bonding Wire Limit Thermal Limit (Single Pulse) Second Breakdown Limit J 2.0 4.0 1.0 IC, COLLECTOR CURRENT (AMP) Single Pulse 2.0 4.0 6.0 10 20 40 60 100 200 VCE, COLLECTDR·EMITIER VOLTAGE (VOLTS) 400 700 NOTE. Thert art two limitations on the power handling ability of a translnor: average junction temptrtture and second breakdown. Safe operating area CUNIS mdlC8tf! Ie - VeE limits of the transistor that must be observed for reliable operation, 1.1., the transistor must not be subjected to greater d.Dlpatlon than the curves mdteate. The 50 14 and 1 ms curves Ire beyond the thermal limits of this part. However, the parts will .. MYfI a transient that remains Wlthm th. . S8 hmlts Without failing. 1-660 ® , MJ12020 MJ12021 MJ12022 MOTOROLA III . '. Desig-nt'r's Data Sheet 5.0,8.0 and 15 AMPERE NPN SILICON DEFLECTION POWER TRANSISTORS HIGH PERFORMANCE NPN DEFLECTION TRANSISTORS 850 VOLTS 126,160and176 WATTS These transistors are designed for high resolution video systems, such as, high density graphic displays, data terminals, video scanners ... wherever high frequency deflection is required. Designer's Dat8 for "Worst Case" Conditions • Fast Turn-Off Times • Maximum Storage and Fall Times Specified at 100°C • Operating Junction Temperature Range -65°C to +200oC • High f,- of 15 MHz The Designers Data Sheet permits the design of most circuits entirelv from the information presented. Limit data - representing device characteristics boundaries - are given to facilitate "worst case" design. MAXIMUM RATINGS Rating Svmbol MJ12020 MJ12021 MJ12022 Unit Collector-Emitter Voltage VCEO(sus) 450 Vdc Collector-Emitter Voltage VCEV 850 Vdc 6.0 VE8 Collector Current - Ie ICM 5.0 10 8.0 16 15 20 Adc IS ISM 4.0 8.0 6.0 12 10 15 Adc -Peak(l) Base Current - Continuous -Peak(l) Total Power Dissipation @TC;25 oe @TC;lOOoC Watts Po 125 71.5 0.714 Derate above 25°C Operating and Storage Junction Temperature Range 150 85.5 0.86 175 100 1.0 -6510 +200 TJ, Ts1g , CASE Vdc Emitter Base Voltage Continuous F - STYLE 1 PIN 1. W/oC °c NOTES 1. DIMENSIONS Q AND V ARE DATUMS 2. IS SEATING PLANE AND DATUM. 3. POSITIONAL TOLERANCE fOR MOUNTING HOLE Q. CD 1*1~13ID.OO5)e ITlvel FOR LEADS' I *1'·13co.o05)e TI vel·el 4. DIMENSIONS AND TOLERANCES PER ANSIYl4.5,1913 THERMAL CHARACTERISTICS Thermal Resistance, Junction to Case R8JC Maximum Lead Temperature for Soldering Purposes: TL 1.4 I 1.17 275 I 1.0 °C/W °e 1IS" from Case for 5 Seconds (1) Pulse Test: Pulse Width =5 ms, Duty Cycle E;;; 10%. CAS!: 1-06 TO-204AA (TO-3) 1-661 MJ12020,i\f'IJ12021, Ill·' . M~12022 . ELECTRICAL CHARACTERISTICS (TC =25°C unless otherwise noted) Symbol Min VCEO(sus) 450 - - - - 0.25 1.5 2.5 mAdc - 1.0 mAde Characteristic Typ Max Unit OFF .CHARACTERISTICS (1) Collector-Emitter Sustaining Voltage (Table 1) (lC~ 100 mA, IB = 0) Coliector'Cutoff Current (VCEV = 850 Vdc, VBE(off) = 1 ..5 Vdc) (VCEV 850 Vdc, VBE(off) 1.5 Vdc, TC = 100°C) 'CEV Collector Cutoff Current -(VCE • 850 Vdc, RBE = 50 n, TC ;, 100°Cl ICER E~itter Cutoff Current 'EBO = (V€B = =6.0 'Vdc, IC =0) Vdc mAdc ~ - SECOND BREAKDOWN Second Breakdown Collector Current ,with Base Forward Biased See Figures 19,21 or 23 Turn-Ofl SOA with Base Reverse Biased See Figures 20, 22 or 24 ON CHARACTERISTICS ,I) Collector-EmItter Saturation Voltage = (IC: 3.0 Adc, 'B 0.6 Ade) (lc 5.0 Adc, Ie: 1.0 Adc) (lc 10 Adc, IB 2.0 Adc) = = = Base Emiller SalUration Voltage . (lc = 3.0 Adc, is 0.6 Adc) (lc ~ 5.0 Adc, Ie 1.0 Ade) (IC 10 Adc, Ie: 2.0 Adc) = = = DC Current Gain (IC", 5.0 Adc, VCE 5.0 Vde) (Ie: 8.0 Adc, .vCE:. 5.0.vdc) . (IC: 15 Adc, VCE: 5.0 Vde) = VCE(sat) MJ12020 MJ1·2021 MJ12022 Vde - - - - - - - - 5.0 5.0 5.0 - - 15 15 15 - - - - - - Vde VBE(sat) MJ12020 MJ12021 MJ12022 1.2 1.2 1.2 1.5 1.5 1.5 - hFE MJ12020 MJ12021 MJ12022 - DYNAMIC CHARACTERISTICS Cu'rrent Gain Bandwidth Product . ,14C : 0.3 Adc, VCE' 1·0 Vdc, I: 1.0 MHz) ~IC = 1.0 Adc, VCE '10 Vde, I = 1.0 MHz) . (IC = '1.3 Adc, VCE : 10 Vdc, I = 1.0 MHz) = 0l:ltput Capacitance. (Vee =10 Vdc, IE ='0, 1= I.? kHz) MHz IT MJ12020 MJ12021 MJ12022 ~ pF . Cob MJ12020 MJ12021 MJ12022 11) Pulse T~st: Pulse ~idth ~ 300 ,.,.5,' Duty Cycle ~2%. 1-662 - 200 350 400 MJ12020,MJ12021,MJ12022 II. ELECTRICAL CHARACTERISTICS (Te; 25°C unless otherwise noted) Symbol Characteristic Min Typ Max Unit ts tf ts tf - 440 1200 ns - 130 550 - 200 300 1500 500 tf - 175 ts tf ts - 550 1200 100 750 300 1600 tf - lS0 500 tf - 300 ts - S20 lS00 100 1100 130 300 2500 400 350 - SWITCHING CHARACTERISTICS MJ12020 Inductive Switching, Clamped Drive Storage Time (Ie; 3.0 Adc. la ; 0.6 Adc, Fall Time Vec; 40 Vdc, VaE(off) ; 4.0 Vdc, Pulse Width; S.O P.s, Duty Cycle';; 2%) See Table 1 Storage Time Fall Time TJ; 25°C TJ; 100°C Inductive Switching. Series Base Inductance Fall Time (Ie; 3.0 Adc, la; 0.6 Adc, LS; 24 p.H) See Table 2 - ns MJ12021 Inductive Switching. Clamped Drive Storage Time Fall Time (Ie ; 5.0 Adc, la ; 1.0 Adc, Storage Time Vee; 60 Vdc, VaE(off) ; 4.0 Vdc, Pulse Width; S.O P.s, Fall Time Duty Cycle';; 2%) See Table 1 TJ; 25°C TJ; 100°C ns Inductive Switching. Series Base Inductance Fall Time (Ie; 5.0 Adc, la; 1.0·Adc, LS; 24 p.H) See Table 2 - ns MJ12022 Inductive Switching, Clamped Driva Storage Time Fall Time (Ie; 10 Adc, la ; 2.0 Adc, Storage Time Vee; 120 Vdc. VaE(off) ; 4.0 Vdc, Pulse Width; S.O p.s. Fall Time Duty Cycle';; 2%) See Table 1 TJ; 25°C TJ; 100°C tf ts tf ns Inductive Switching. Series Base Inductance Fall Time (Ie; 10 Adc. 18; 2.0 Adc, LS; 24 p.H) See Table 2 tf 1-663 - ns MJ12020. MJ12021. MJ12022 lIB TYPICAL ELECTRICAL CHARACTERISTICS ------------------------------MJ12020------------------------------FIGURE 1 - 60 50 - 30 III ~ N ~ 55°C 30 0.1 - 2.0 II II , '" ~ 0.5 \ 2.0 3.0 5.0 7.0 [ 1111 0.1 0.03 10 0.05 0.07 0.1 IC. COLLECTOR CURRENT lAMPS) "- \ ........ "- " TJ = 25°C ..:. 02 I-- 1.0 5A \ \ 0.3 ~S 0.5 0.7 4A \3A 0:': 0.7 ~ 0.3 2A > VCE = 5.0 V 0.2 II II 1\ IC = 1 A 1.0 w I f-- . ."' .~ g I TJ = 100°C 2~ 5.0 FIGURE 2 - COLLECTOR SATURATION REGION DC CURRENT GAIN .......... 0.2 -- 0.3 05 07 i'-.. r- 1.0 20 3.0 lB. BASE CURRENT lAMPS) ------------------------------MJ12021 FIGURE 4 - COLLECTOR SATURATION REGION FIGURE 3 - DC CURRENT GAIN 100 10 50 TJ = 100°C z CI "' l- i13 '"'... CI 20 25°C 10 - ~ ~ w . "'0:': r-.... r--- 05 > .... '" ~ iii -55°C ~:::j 1.0 0.2 05 1.0 2.0 5.0 ~8.0A ,\ 0.2 ... ~ 10 0.1 20 0.1 0.2 IC = 2 0 A m 05 It;. COLLECTOR CURRENT lAMPS) .......... ~OA - 4.0 A "- S VCE = 5.0 V 2.0 \ \ d= 5.0 ~ \ \ r-.... TJ = 25°C II 2.0 10 5.0 10 lB. BASE CURRENT lAMPS) ---------------------------- MJ12022 ---------------------------FIGURE 6 - COLLECTOR SATURATION REGION FIGURE 6 - DC CURRENT GAIN 50 r-- ;z 20 '"'. 10 I- ~ 13 ~ TJ 1= 1100~~ 25°C <1 "' . 20 \ ~ 1\ ~ 1.0 r.... r--. r-- ""~ > \ II H 07 ffi as lOA ~ i!i '" 03 13 ~ ; 50 02 0.5 10 20 50 IC. COLLECTOR CURRENT lAMPS) 10 IC = 1 A 5A I II ... ~ .J; VCE - 5 0 V 30 0.2 S 20 1-664 I 0.1 0.02 005 II i'... TJ = 25°C I I II 01 02 05 10 20 lB. BASE CURRENT lAMPS) 50 10 MJ12020, MJ12021, MJ12022 l1li TYPICAL ELECTRICAL CHARACTERISTICS -------------------------------MJ12020 FIGURE 7 - COLLECTOR·EMITTER SATURATION VOLTAGE FIGURE B - g ~ w 30 ~ 20 '" ~,. ~w / 10 ...,.. 070 ~ ""', Ill: 5 Ill: 5 TJ : 25°C ~ ~ ! /' f-- 010 15 ~ /. V 'I 020 '" 131 10 f- TJ - 100°C 050 f - - Ill: 10 f-f-- TJ : 25°C a, 20 ~ L 1.0 ~ 2i t; BASE·EMITTER VOLTAGE 3.0 50 ;i\ 050 1,\ r-- Il,: 10 w TJ = 25°C TJ .g' ~ 005 01 05 02 10 2.0 50 03 0 01 10 05 02 10 =100°C 1120 50 10 IC. COLLECTOR CURRENT (AMPS) IC. COLLECTOR CURRENT (AMPS) MJ12021 FIGURE 9 - COLLECTOR·EMITTER SATURATION VOLTAGE ~ 0 ~ FIGURE 10 - BASE·EMITTER VOLTAGE 10 0 50 5 JJ 131: 5 TJ: 25°C ~ ,.~ 2.0 '" 1.0 0 ~ !a, 0.5 ~ 0.2 ~ 1/ Ill: 10 0 t; 131: 5 TJ: 25°C 131- 10 TJ: 100°C HE:: P5::V 0.2 10 TJ: 100°C /. P'" I--"" III 0.1 01 -" l'IlI: 5 TJ - 25°C 0.5 1.0 2.0 IC. COLLECTOR CURRENT (AMPS) 5.0 0.2 01 10 02 1.0 2.0 05 IC. COLLECTOR CURRENT (AMPS) 5.0 10 MJ12022 -----------------------------FIGURE 11 - COLLECTOR· EMITTER SATURATION VOLTAGE FIGURE 12 - BASE·EMITTER VOLTAGE 50 15 ~ 3.0 ~ 20 ~ 10 ~ ~ '" <[ ,.El ffi 0.70 !:: '"~ 050 030 ~I ,I Ill-lo TJ - 25°C o ..- ..-""" I'- ~007 03 05 ~ :;; 070 r- r-r- 75°C TJ - 25°C ,- -+-100°C ---- = 040 :z 030 , Ill: 25°C 5 TJ: 07 10 20 30 5070 IC. COLLECTOR CURRENT (AMPS) I 10 ~ 050 t>"" '-""'" 010 005 01502 131: 10 TJ: 100°C I--" . . . . . . . y ... ~ 020 u ill = 10 iii 10 I~ ~ ~ 020 15 1-665 015 o 15 020 030 050 070 1 0 20 30 50 7 0 IC. COlLECTOR CURRENT (AMPS) 10 15 MJ12020, MJ12021, MJ12022 lIB TYPICAL DYNAMIC CHARACTERISTICS MJ12020 FIGURE 14 - FALL TIME FIGURE 13 - STORAGE TIME 1000 500 300 700 ....... p ..... V -- . . v--- to- =25°C ill = 5,0 VaEloll) = 3.0 to 5.0 Vdc ,TJ V TJ =25°C ill = 5.0 VaE(olf) = 3.0 to 5.0 Vdc ~ ~ 100 _ 70 50 100 0.5 0.7 30 10 2.0 IC. COLLECTOR CURRENT lAMPS) 0.5 50 07 1.0 30 20 IC. COLLECTOR CURRENT (AMPS) 50 MJ12021 FIGURE 16 - FALL TIME FIGURE 15 - STORAGE TIME 1000 150 800 :[ !iii i= w <.0 ./ 300 ~ 80 ....... ~ L--- ,.....- !iii i= ~ 200 -"' 50 ::j TJ = 25°C ill = 5.0 VaElolf) =3.0 to 5.0 Vdc 0 -- 100 ./ ./ 500 :;: = 25°C ill = 5.0 VaE(ott) = 3.0 to 5.0 Vdc TJ "" 30 20 100 1.0 2.0 30 5.0 IC. COLLECTOR CURRENT lAMPS) 8.0 15 10 10 8.0 20 30 5.0 IC. COLLECTOR CURRENT (AMPS) 10 MJ12022 FIGURE 17 - STORAGE TIME FIGURE 18 - FALL TIME 1500 300 1000 ........... .... 200 TJ =25°C ill = 5.0 VaElolf) = 3.0 to 5.0 Vdc 150 - ......,/ ./ ,/ 200 V 100 1.5 V 2.0 TJ = 25°C ill = 5.0 VaE(olf) = 3.0 to 5.0 Vdc 3.0 50 8.0 IC. COLLECTOR CURRENT (AMPS) - 10 50 15 1-666 -- 30 1.5 2.0 V / ./ ....- V 3.0 5.0 8.0 IC. COLLECTOR CURRENT lAMPS) 10 15 MJ12020, MJ12021, MJ12022 SAFE OPERATING AREA INFORMATION MJ12020 FIGURE 19 - MAXIMUM RATED FORWARD BIAS SAFE OPERATING AREA 10 10 ~s 5.0 " 10 050 TC ~ ~ 010 BONDING WIRE LIMIT - - - - - THERMAL LIMIT SECOND BREAKDOWN LIMIT 0.02 00 I 5.0 7.0 10 20 50 70 1ii 70 '"~ - E 80 '"'" t;j ::: 8 de t:; 005 ~ ~ I ms 25°C 020 '" '-' \ \ ~ 90 I" ~ ~ 10 ~ :; ~ :; 20 ! FIGURE 20 - MAXIMUM RATED TURN-OFF SAFE OPERATING AREA :;- g 100 200 TJ';; 100°C _ I--- 60 50 \ 40 30 \ 2.0 \ 10 o o 300 450 P'~4 I _ r--- \ VCE. COLLECTOR·EMITIER VOLTAGE (VOLTS} 100 200 V8E(offj = 3 0 TO 50 V I /1 f-- I K 500 700 850 1000 11 MJ12021 1.1 FIGURE 21 - MAXIMUM RATED FORWARD BIAS SAFE OPERATING AREA i~ FIGURE 22 - MAX'MUM RATED TURN-OFF SAFE OPERATING AREA 16 \ \ \ o o 0.02 ~-,-,..u._-L--'-----1.---'--1.....LLJ..JLL--'---'L-....L~ 5.0 10 20 50 100 200 300 450 VCE. COLLECTOR·EMIITER VOLTAGE (VOLTS} " fl,;;> 4.0 TJ';; 100oC- f-- \ \ VBE(off} = 3.0 TO 5.0 V I--- I .A ~.l I ., 200 400 600 BOO 850 VCE(pkj. PEAK COLLECTOR·EMIITER VOLTAGE (VOLTSj 1DOD MJ12022 FIGURE 24 - MAXIMUM RATED TURN-OFF SAFE OPERATING AREA FIGURE 23 - MAXIMUM RATED FORWARD BIAS SAFE OPERATING AREA 20 ~ 10 ~s 10 ~ :; ~ 50 ... :; ~ ~ 1:5 IE 13 ~ 20 050 ~ 8 E 010 0.05 I ms I '" '" 'OTC - 25°C == - BONDING WIRE LIMIT - - - THERMAL LIMIT SECOND BREAKDOWN LIMIT " 20 18 \\ ~ de I 0 ~ 8 '" ~ 1'- 14 1\ 10 I--- fl,;;> 4 I--- TJ';; 100°C § l VBE(offj = 3.0 TO 5.0 V \ I\. 6.0 ~ ...... 2.0 I 002 50 10 '.1 ,i VCE(pkj. PEAK COLLECTOR·EMIITER VOLTAGE (VOLTSj 20 30 50 70 100 200 300 VCE. COLLECTOR·EMITIER VOLTAGE (VOLTS} 450 1-667 100 150 200 250 350 450 600 700 85D VCE(pkj. PEAK COLLECTOR·EMITIER VOLTAGE (VOLTSj MJ12020, MJ12021, MJ12022 SAFE OPERATING AREA INFORMATION FORWARD BIAS There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate IC-VCE limits of the transistor that must be observed for reliable operation; i.e .. the transistor must not be subjected to greater dissipation than the curves indicate. The data of Figures 19. 21 and 23 are based on TC = 25°C; TJ(pk) is variable depending on power level. Second breakdown pulse limits are valid tor duty cycles to 10% but must be derated when TC ;;. 25°C. Second breakdown limitations do not derate the same as thermal limitations. Allowable current at the voltages shown on Figures 19. 21 and 23 may be found at any case temperature by using the appropriate curve on Figure 28. TJ(pk) may be calculated from the data in Figures 29. 30 or 31. At high case temperatures. thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown. TURN-OFF In deflection circuits. high voltage and high current normally do not occur simultaneously during turn-off with the base-emitter reverse biased. The safe level of operating these devices is specified as the Turn-Off Safe Operating Area. and represents the area the lead line may traverse during reverse biased turn off. For reliable operation. all abnormal operating conditions should be checked for operation within this area. FIGURE 25.- CAPACITANCE VARIATION MJ12020 FIGURE 26 - CAPACITANCE VARIATION MJ12021 10000 10000 ~ 1000 ~'OOO u g ~ Cib TJ = 25°C No ~ - ~~ TJ = 25°C Cib z 5Ol': Cob 5.; 100 1.0 10 100 Cob 100 10 0.1 850 1.0 VR. REVERSE VOLTAGE (VOLTS) FIGURE 27 - CAPACITANCE VARIATION MJ12022 100 850 FIGURE 28 - POWER DERATING 100 ~ t--... "" "" ............ ~ 80 "o t; .. . ~ Defatmg --II ~ 40 o " ~ 300500850 1-668 Second Breakdown ...... ~ Therma~ 60 '"z ;: 5 0 10 20 3D 50 100 0.3 0 5 I 0 20 VR. REVERSE VOLTAGE (VOLTS) 10 VR. REVERSE VOLTAGE (VOLTS) Derating ........... "- .......... r-.... ............ " 0 o o 40 - 80 120 Te CASE TEMPERATURE lOCI ........ 160 '" "'" 200 MJ12020. MJ12021. MJ12022 THERMAL RESPONSE FIGURE 29 - MJ12020 10 01 = "\. 03 02 t- IiiiII ~ ~rc:O >' 2.0 3.0 5.07.010 II II --- ICIIB' 5 o 02 0.3 0.50.7 1.0 FIGURE 4 - BASE,EMITTER VOLTAGE 2.0 1. 6 ..:; 0.1 'B. BASE CURRENT (AMP) 0 o 5A 0 10 FIGURE 3 - COLLECTOR,EMITTER SATURATION VOLTAGE 2:. 2.5 A \ 4 > 02 1A 'C'O.25A o 7. 0 5. 0 0.1 TJ' 25°C J T)25 0 ~ O. S O.S 0 > >' ~ 4 150°C o 0.1 02 0.3 05 07 1.0 2.0 30 ~~50C j 0.4 I- ~ ~ ...... TJ' 25°C 5.0 7.0 I r::: ~- ~500C 11 ij o 10 0.1 0.2 0.5 0.3 'C· COLLECTOR CURRENT lAMP) 07 10 2.0 30 5.0 7.0 10 !1 !l IC. COLLECTOR CURRENT lAMP) 1'1 :'1. " FIGURE 5 - COLLECTOR CUTOFF REGION FIGURE 6 - CAPACITANCE 2000 104 L ~ 10 3 ~ 102 .... B f-- t--TJ'150oC .,.,. L .L .L I -_'I;, IL / 125°C w '-' 1. o ~ 8 E 10 100°C 1 100 f .- 75°C r-- !--REVERSE ~ :; " I 0 500 300 c::; ~ ~ U 200 FORWARO i'j TJ '" 25°C 10 Z >! ~ !- 10~0 r--.. ~r-. 100 0 0 .LVCE'250V= 25°C 10' I -0.4 -0.2 +0.2 +0.4 0 20 0.1 +0.6 VBE. BASE·EMITTER VOLTAGE (VOLTS) 0.2 0.5 1.0 2.0 5.0 10 2030 5070100 200 VR. REVERSE VOLTAGE IVOLTS) 1-673 ,I J1 5001000 MJ13014, MJ13015 TABLE 1 - TEST CONDITIONS FOR DYNAMIC PERFORMANCE RBSOA AND INDUCTIVE SWITCHING VCEO(sus) RESISTIVE SWITCHING r-~----------~---'-------'~-O+15 RI 470. TURN ON TIME 2. +10V>~1 ~ .~ 1-0 ~~ -z 8 ~_2 R212 I B 1 adjusted to obtllin the forced hFE desired son TURN OFF TIME PW Varied to Attain Use inductive sWitching driver as the ,"put to the r.sistive tfttcircuit. le= 1DOmA All Diodes - 1 N4934 All NPN - MJE2QO All PNP - MJE21 0 t------~---~--o -5.2 J: Adjust R1 to obtain 'S1 For switching and RBSOA. R2 <:: 250 /.IF 0 For BVCEO(sus). R2 == co Lead =80mH Rcoil = 0.7 n Vee= LeOlt '" laO ~H Reails 005 n VCC"20V 10 V Vee RL.'" V clamp" 250 V RS adjusted to attain desired 'Sl OUTPUT WAVEFORMS INDUCTIVE TEST CIRCUIT ~ 250 V son Pulse Width = 10 lAs RESISTIVE TEST CIRCUIT t, Adjusted to Obtilln " Ie ... LCOllOCpkl Vee t2'" LC01IIICpk) S . . Above for Oetalled Conditions -=- O--H"'W'_~-' Vclamp Vee Test EqUIPment Scope - Tektronix 475 or EqUivalent FIGURE 8 - PEAK REVERSE CURRENT FIGURE 7 - INDUCTIVE SWITCHING MEASUREMENTS ,..,. .......- ,.., I~ "'clamp_ I~ "- f--- II 90% Vclamp ~ 90% IC e---- - 'IV fflf-Jr ' f i - 1--',,- I- - r " , IC""""- 8.0 V 10%V clamp IB- - f- 90% IBl --\- ii? '" :5 ~ I'\. 10%"""'- ~~ ICPK- 2%IC V ~ L.-- I.----" ---- ~ -- 2.0 -- --- -- -- - 1.0 ~ """" ~ 5.0 1-1 f-"~ l VCE '- IC" 5A IB1"lA 1.0 TIME 1-674 5.0 2.0 VBE(off). BASE-EMITTER VOLTAGE (VOLTS) 8.0 MJ13014, MJ13015 SWITCHING TIMES NOTE In resistive switching circuits, rise, fall, and storage times have been defined and apply to both current and voltage waveforms since they are in phase, However, for inductive loads which are common to SWITCHMOOE power supplies and hammer drivers, current and voltage waveforms are not in phase. Therefore, separate measure· ments must be made on each waveform to determine the total switching time. For this reason, the following new terms have been defined. tsv = Voltage Storage Time, 90% IS1 to 10% Vcl amp trv = Voltage Rise Time, 10-90% Vcl amp tfi = Current Fall Time, 90-10% IC tti = Current Tail, 10-2% IC tc = Crossover Time, 10% Vclamp to 10% IC An enlarged portion of the inductive switching waveforms is shown in Figure 7 to aid in the visual identity of these terms. For the designer, there is minimal switching loss during storage time and the predominant switching power losses occur during the crossover interval and can be obtained using the standard equation from AN·222: PSWT = 1/2 VCCIC(tc)f In general, trv + tfi "" tc' However, at lower test currents this relationship may not be valid. As is common with most switching transistors, resistive switching is specified at 25 0 C and has become a bench· mark for designers. However, for designers of high frequency converter circuits, the user oriented specifica· tions which make this a "SWITCH MODE" transistor are the inductive switching speeds (tc and t sv ) which are guaranteed at 1000 C. RESISTIVE SWITCHING FIGURE 9 - TURN·ON SWITCHING TIMES FIGURE 10 - TURN·OFF TIME 10 \0 07 0.5 0.3 ~ 0.2 ~ O. I ~ ........ TJ ~ 25 C ......... ICIIS" \ VCE" 2\0 V VSElolt)" \ V 20 ICIIS"'~+ d r--...... TJ = 25°C 30 VCC - 25OV:= Is 10 If -" 0.07 ~ w ,. 0\ i= 03 07 .......... 0.05 02 0.03 ""'-.. ......... 0.02 '"1""-.. 0.01 0.2 01 0.\ 07 0.3 1.0 20 If 1 007 0.0\ 01 Id 50 30 70 10 02 03 IC. COllECTOR CURRENT lAMP) \ 0 20 30 05 07 10 'C, COLLECTOR CURRENT lAMP) 70 10 FIGURE 11 - THERMAL RESPONSE 1 -t-: 71:=0"0.\ 5 ROJClt) '" r(t) AIIJC 3 = 02 - ..... .....- -~ 01 '1==.00\ RI/Je(l)" \ 17 --= ;;,.. -- He W MJl( o CURVES APPLY FOR POWER PULSE TRAIN SHOWN REAO TIME AI It , ,~JI.k) T~ - P~pkl RI/Jelll 7~0.02 - ...- 002 PtrUl ..K -1 001 --l Ii f-I---- 12 I-- SINGLE PULSE DO 1 001 I II 002 003 ~UTY 00\ 01 02 0.3 10 0\ t, TIME (ms) 1-675 20 30 50 100 CYCLE. 0 ",,/12 200 300 500 lOUD MJ13014, MJ13015 SAFE OPERATING AREA INFORMATION The Safe Operating Area figures shown in Figures 12 and 13 are specified for th818 devices und. the test conditions shown. III FORWARD BIAS There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate IC- VCE limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. The data of Figure 12 is based on TC = 25 0 C; TJ(pk) is variable depending on power level. Second breakdown pulse limits are valid for duty cycles to 10% but must be derated when TC;;' 25 0 C. Second breakdown limitations do not derate the same as thermal limitations. Allowable current at the voltages shown on Figure 12 may be found at any case temperature by using the appropriate curve on Figure 14. TJ(pk) may be calculated from the data in Figure 11. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown. FIGURE 12 - FORWARD BIAS SAFE OPERATING AREA 0 if 100",- ~ 5.0 1.0 ms 5.0 m. >- ~ 10" 0 TC • 250 C t - - 2. 0 Do de "- a - BONDING WIRE LIMIT 1. o ~ - THERMAL LIMIT (SINGLE PULSE) ~ O. 5 ---SECOND BREAKDOWN LIMIT ~-,-, o ~ O. 2 ~ ~o .1 0.05 0.02 4.0 Do MJ13014~ MJ13015-= 6.0 10 40 20 60 100 200 350 VCE. i:OLLECTOR·EMITTER VOLTAGE IVOLTS) 400 FIGURE 13 - REVERSE BIAS SWITCHING SAFE OPERATING AREA 0 REVERSE BIAS It.. TURN OFF LOAD LINE Or-BOUNDARY FOR MJI3015 r - THE LOCUS FOR MJI3014 IS 50 V LESS 0r-ICilBI"5 r - TJ" 100 0 C For inductive loads, high voltage and high current must be sustained simultaneously during turn-off, in most cases, with the base to emitter junction reverse biased. Under these conditions the collector voltage must be held to a safe level at or below a specific value of collector current. This can be accomplished by several means such as active clamping, RC snubbing, load line shaping, etc. The safe level for these devices is specified as Reverse Bias Safe Operating Area and represents the voltage-current conditions during reverse biased turn-off. This rating is verified under clamped conditions so that the device is never subjected to an avalanche mode. Figure 13 gives RBSOA characteristics. l\\\ \\' .-VBElolf) • 5 V \ ~ 2V :\. " \~ C- 0V 0 ~ ~~ 0 0 100 200 300 400 500 VCE' COLLECTOR·EMITTER VOLTAGE IVOLTS) FIGURE 14 - POWER DERATING 100 0 ~ t::::", ~ I"'--- 1""- ......... THERMAt'-DERATING 0 B~EAKD6wN_ t"--.. "- 0 SEdoNO DERATING ~ ....... ........ ............. "- "'" 0 0 40 120 80 TC. CASE TEMPERATURE IOC) 1-676 160 "' 200 ""'" ® MJ13070 MJ13071 MOTOROLA III Designer's Data Sheet 5 AMPERE SWITCHMOOE II SERIES NPN SILICON POWER TRANSISTORS NPN SILICON POWER TRANSISTORS The MJ13070 and MJ13071 transistors are designed for highvoltage, high-speed, power switching in inductive circuits where fall time is critical. They are particularly suited for line-operated switchmode applications such as: 400 AND 450 VOLTS 125 WATTS • Switching Regulators • Inverters • Solenoid and Relay Drivers • Motor Controls • Deflection Circuits Designer's Data for "Worst Case" Conditions The Designer'S Data Sheet permits the design of most circuits entirely from the information presented. Limit data - representing device characteristics boundaries - are given to facilitate "worst case" deSign. Fast Turn-Off Times 100 ns Inductive Fall Time @ 25°C (Typ) 150 ns Inductive Crossover Time @ 25°C (Typ) 400 ns Inductive Storage Time @ 25°C (Typ) Operating Temperature Range -65 to +200°C 100°C Performance Specified for: Reverse-Biased SOA with Inductive Loads Switching Times with Inductive Loads Saturation Voltages Leakage Currents MAXIMUM RATINGS Rating Symbol MJ13070 MJ13071 Unit Collector-Emitter Voltage VCEO(sus) 400 450 Vdc Collector-Emitter Voltage VCEV 650 750 Vdc Emitter Base Voltage VEe 6.0 Vdc Collector Current - Continuous -Peak(l) IC ICM 5.0 8.0 Adc Base Current - Continuous - Peak (1) IB IBM 2.0 4.0 Adc Po 125 71.5 0.714 Watts W/oC -65 to +200 °C Total Power DISSIpation @ TC =25°C @TC; 100°C Derate above 25°C Operating and Storage Junction Temperature Range TJ, Tstg Characteristic Maximum Lead Temperature for Soldering Purposes: 1 IS'" from Case for 5 Seconds v H ~_. . ,.' , u . • NOTES 1 DlII1ENSIOMS 0 A,.O ARE OATIlMS 2 [iJISSiATI1f6PlANEANDOATUM 3 POSITIONAlTOLEAANCEF'OII MOUNTING HOLE II II !t!'13fOODSleIT!IISI fOlllEAOS 1+1.13(ODO&l@>T!V@>lo@>1 4 DIMENSIONSANDTOLEAANCESPEII .....SIY1.s.m3 Symbol Max Unit ReJC 1.4 °C/W TL 275 °C (1) Pulse Test: Pulse Width; 5 ms, Duty. Cycle .;; 10%. CASE 1·05 TO-3 TYPE 1-677 . .~_.F_;~=~ i THERMAL CHARACTERISTICS Thermal Resistance, Junction to Case ~·S5i~ MJ13070, MJ13071 .. ELECTRICAL CHARACTERISTICS (TC ~ 25°C unless otherwise noted) Characteristic OFF CHARACTERISTICS (1) Collector-Emitter Sustaining Voltage (Table 1) (IC ~ 100 mAo IS ~ 0) Collector Cutoff Current (VCEV ~ Rated Value. VSE(off) ~ 1 5 Vde) (VCEV ~ Rated Value. VSE(off) ~ 1.5 Vde. TC Collector Cutoff Current (VCE ~ Rated VCEV. RSE ~ 50 n. TC ~ Vde VCEO(sus) - - - - 05 2.5 ICER - - 30 mAde IESO - - 10 mAde 400 450 MJ13070 MJ13071 mAde ICEV ~ 100°C) 100°C) Emitter Cutoff Current (VES ~ 6.0 Vdc. IC ~ 0) SECOND BREAKDOWN Second Breakdown Collector Current wIth Base Forward BIBsed See Figure 12 Clamped Inductive SOA with Base Reverse Biased See Figure 13 ON CHARACTERISTICS (1) DC Current Gam (IC ~ 3.0 Ade. VCE - 80 - - - - 10 3.0 20 - - 15 15 td tr ts tl - 003 010 040 0175 005 040 150 050 ps tsv te tIl tsv te 070 028 015 040 0.15 010 ps 25°C) - 20 100°C) hFE ~ 5 0 Vde Collector-Emitter Saturation Voltage (IC ~ 3.0 Ade. IS ~ 0 6 Ade) (lC ~ 5.0 Ade. IS ~ 1.0 Ade) (IC = 3.0 Ade. IS ~ 0.6 Ade. TC ~ 100°C) VCE(sat) Base-Emitter Saturation Voltage (IC ~ 3.0 Ade. 18 ~ 0.6 Ade) (lC ~ 30 Ade.ls ~ 0 6 Ade. TC ~ 100°C) VBE(sat) Vde Vde DYNAMIC CHARACTERISTICS Output Capacitance (VCS ~ 10. Vdc. IE ~ O. f test ~ 10kHz) SWITCHING CHARACTERISTICS Resistive Load (Table 1) Delay Time Rise Time Storage TIme Fall Time (VCC ~ 250 Ade. IC ~ 3.0 Ade. ISl ~ 0.4 Ade. tp ~ 30 ps. Duty Cycle ,,;;2%. VSEloll) ~ 50 Vdel Inductive Load. Clamped (Table 1) Storage Time Crossover Time Fall Time Storage Time Crossover Time Fall Time (1) Pulse Test PW - 300 (lC(pk) ~ 3 0 A. IBl ~04Ade. VSE(off) ~ 5.0 Vde. VCE(pk) ~ 250 V) (TJ (TJ ~ C tIl IJ,S, Duty Cycle ~2% PI C.!.!;. 16 1-678 050 030 - MJ13070. MJ13071 TYPICAL ELECTRICAL CHARACTERISTICS FIGURE 1 - DC CURRENT GAIN 50 FIGURE 2 - COLLECTOR SATURATION REGION I r-2 00 c z « '" >- ia "" ~ r--- r---.. TJ = 25°C 20 c '" i "'" VCE=50V t 20 <=- 0 30 3.0 in !::i c \ '" 1 0 ~ ~ 05 ,'\ ~ ! '\1\ SOA- r Ie = IDA 25A "- 02 '" ~ 10 f'-... I 8 7.0 -- 03 f= ~TJ - 25°C ~o 05 :> 5.0.. 0.08 01 0.2 03 05 10 20 Ie- COLLECTOR CURRENT (AMPS) 30 5.0 003 002 80 003 FIGURE 3 - COLLECTOR-EMITTER SATURATION VOLTAGE 005 01 02 03 05 10- BASE CURRENT lAMPS) 10 20 FIGURE 4 - BASE-EMITTER VOLTAGE 20 0.50 g c ii 0.30 in 1 ~ ':; V :> VV / / I lif = 5 0 ~ 0.20 ~ 100°';/ ~0 ~ 0: t; 0.10 ~ lif = 5.0 '"<=- . ~ 10 ':; TJ '" 25°C ~ 100°C ~ 05 J = 25°C ..- I- ~ 07 / c '" 0 07 '" 005 ~ 02 0.05 01 10 0.2 03 05 IC_ COLLECTOR CURRENT (AMPS) 20 30 50 005 02 01 03 05 10 20 30 50 Ie- COLLECTOR CURRENT (AMPS) FIGURE 5 - COLLECTOR CUTOFF REGION FIGURE 6 - CAPACITANCE 10K ./ I ./ / - -TJ-150 oC m'c 100 0 C 1 .... ./ L C,b 'e 1000 C= L '";:0z I .- / TJ r-- <3 25°C ;;: ~. 15 0 C f - - r--REVERSE F- ~ f-- t - I FORWARD 100 Cob -'VCE=250V= 25 0 C 10 10- 1 -0.4 -0.2 +0.2 +0.4 10 +0.6 30 50 10 30 50 100 VR_ REVERSE VOLTAGE (VOLTS) VBE_ BASE·EMITTER VOLTAGE (VOLTS) 1-679 300 500 1000 MJ13070, MJ13071 TABLE 1 - TEST CONOITIONS FOR DYNAMIC PERFORMANCE RBSOA AND INDUCTIVE SWITCHING VCEOtsusl 1 H P 2141 or :~UlV '"Z t 0...JL --r .... 0 ::1- ... !: ZQ -Z 1 .J 10 #-IF RBI TURN ON TIME I.~: tjA fr 181 adjusted to obtain the foreed 10 ",F 50 ' 0 U - 500 PW Vaned to Attain IC.:l0DmA 2N6191 " ~ ~-35V 20 100 " 20 ~ j ' V ~llV 002_F , °lf -tl0V>~O' RESISTIVE SWITCHING .., hFE d."red 52N5337 l TURN OFF TIME Use Inductive switching driver a. ttle input to the reslstivil te.t Circuit . 6-v 100 AdJust R 1 to obtam I B 1 For sWitching and RBSOA. A2 "" 0 For BVCEO(sus), R2 '" .... '" -w ::1::1 U ... !!:< L eol' = BO mH vee 00 Leod . i80 j.lH = 10 V Vee ~ VCc~250V v clamp - 250 V Fie adjusted to atta." deSired ISl R coll - 005 n R col .'"01U 2Q V RL = a3B PulseW,dth= 10",s U> OUTPUT WAVEFORMS INDUCTIVE TEST CIRCUIT '":5.... , U ;:.39 If: Input ij .... '"....W r S•• Above for Equivalent Oeteiled Condltlonl 2 I I I lN4937 or vCl amp . 'e 1 I Reoll I I Leo •• "t l'f21t "~'.m"d. "rvc'~b Vee Vclamp ~ i,~sJ 0.1 n T,me ---1-.,-1 /" IC"""'" - VCE(pkl_ '\ 90% VCE(pkl -'" I---l '--I,~ 10% VCE(pkl - --\- -- --- -90% 181 \ '-'" - f-- At vee Vee Vclemp _. Test EqUipment Scope - Tektronlll 475 or Equlvelent - "- -- 10",'2"u Ie IC pk - - 7.0 ir :;; J,\ 90% IC(pkl V 18- ''~ J. ~ -=- I, VBE(olf) \ 400 500 600 1 700 750 VCE, COLLECTOR·EMITTER VOLTAGE (VOLTSI FIGURE 14 - POWER DERATING 100 l '" 0 G :t '";::z ~ 80 f--60 ........... I--.. SECON~ 8REAKOO~N_ - "'"I"'" i'-. I""-- THERMAL DERATING r--... t'-... g 40 I'... .. 0 " 20 o o 40 80 120 TC, CASE TEMPERATURE (OC) 1-682 ......... -..... ~ 1Z - DERATING "" "'" 160 200 ® MJ13080 MJ13081 MOTOROLA Designer's Data Sheet B AMPERE NPN SILICON POWER TRANSISTORS SWITCH MODE II SERIES NPN SILICON POWER TRANSISTORS 400 AND 450 VOLTS 150 WATTS The MJ13080 and MJ13081 transistors are designed for highvoltage, high-speed, power switching in inductive circuits where fall time is critical. They are particularly suited for line-operated switchmode applications such as: • Switching Regulators Designe,'s Dat8 for "Worst Case" Conditions • Inverters • Solenoid and Relay Drivers • Motor Controls • Deflection Circuits The Designer's Data Sheet permits the design of most circuits entirely from the Information presented. Limit data - representing device characteristics boundaries - are given to facilitate "worst case" deSign. Fast Turn-Off Times 100 ns Inductive Fall Time @ 25°C (Typ) 150 ns Inductive Crossover Time @ 25°C (Typ) 400 ns Inductive Storage Time @ 25°C (Typ) 10DoC Performance Specified for: Reverse-8iased SOA with Inductive Loads Switching Times with Inductive Loads Saturation Voltages Leakage Currents MAXIMUM RATINGS Symbol MJ13080 MJ13081 VCEO(sus) 400 450 Vdc Collector-Emitter Voltage VCEV 650 750 Vdc PINl VEB 6.0 IC ICM 8.0 12 Adc Base Current - Continuous -Peak(1) 'B 'BM 3.0 6.0 Adc Total Power DisSipation @ TC::;:. 25°C @ TC ~ 100C C Derate above 25°C Po 150 85.5 0.86 Watts -65 to +200 cc Collector Current - Continuous -Peak(1) Operating and Storage Junction Temperature Range • Q V • . . . . . . .- - . . • ~. H , u TJ, Tstg . R NOTES OlMEN510NSOANDVAREOATUMS 2 WISSEATINGPLANEANOOATUM 3POSITlO"'ALTOLERANCEfOR MQUNTiNGHQLEQ 1 w/oc 1.lt 1l(OOOSleITlv@! FOR LfAOS 1+II131000510Tlv®lael Characteristic Thermal Resistance, Junction to Case Maximum Lead Temperature for Soldering Purposes: 1ISH from Case for 5 Seconds ~ ~ - Vdc 40lMENSIOliSANOTQLERANCESPER ANSI Yt4 S. 1913 THERMAL CHARACTERISTICS (1) Pulse Test: Pulse Width ~.~l:'9·m" Unit Collector-Emitter Voltage Emitter Base Voltage I I \ Operating Temperature Range -65 to +200°C Rating .I Symbol Max Unit R6JC 1.17 cC/W TL 275 °C 5 ms, Outy Cycle .;; 10%. CASE 1-05 TO-3 TYPE 1-683 2 BASE EMITTER CASE COLLECTDR MJ130ao.· MJ13081 ELECTRICAL CHARACTERISTICS (TC: 25°C unless otherwise noted) Characteristic OFF CHARACTERISTICS (1) Collector-Emitter Sustaining Voltage (Table 1) (IC: 100 mAIB: 0) Vdc VCEO(sus) MJ130BO MJ130Bl - - - - 0.5 2.5 400 450 Collector Cutoff Current . (VCEV: Rated Value, VBE(off): 1.5 Vdc) (VCEV: Rated Value, VBE(off): 1.5 Vdc, TC: 100°C) ICEV Collector Cutoff Current (VCE : Rated VCEV, RBE : 50 ICER - - lEBO - - n, TC: mAdc 3.0 mAdc 1.0 mAdc 100°C) Emitter Cutoff Current (VEB : 6.0 Vde, IC : 0) SECOND BREAKDOWN Second Breakdown Collector Current with Base Forward Biased See Figure 12 Clamped Inductive SOA with Base Reverse Biased See Figure 13 ON CHARACTERISTICS (1) DC Current Gain (lC: 5.0 Ade, VCE : 3.0 Vde - hFE Collector-Emitter Saturation Voltage (lC: 5.0 Ade, IB: 1.0 Ade) (lC: B.O Ade, IB: 1.6 Ade) (lC: 5.0Ade,IB: 1.0 Adc, TC: 100°C) VCE(sat). Base-Emitter Saturation Voltage (lC: 5.0 Ade, IB : 1.0 Adc) (lC: 5.0 Ade, IB: 1.0 Ade, TC: 100°C) VBE(sat) B.O - - - - 1.0 3.0 2.0 - - Vde - - Vde - 1.5 1.5 0.025 0.10 0.50 0.15 0.05 0.50 1.50 0.50 I'S 0.75 0.22 0.175 0.40 0.15 0.10 2.20 0.40 0.35 I'S DYNAMIC CHARACTERISTICS Output Capacitance (VCB = 10 Vde, IE: 0, f test : 1.0 kHz) SWITCHING CHARACTERISTICS Resistive Load (Table 1) Delay Time Rise Time Storage Time Fall Time (VCC : 250 Vde, IC : 5.0 Ade, IBl : 0.7 Ade, tp: 30 I's, Duty Cycle ';;2%, VBE(off) = 5.0 Vde) td tr ts tl - tsv tc tfl tsv te tli - - Inductive Load. Clamped (Table 1 ) Storage Time Crossover Time Fall Time Storage Time Crossover Time Fall Time (lC(pk) : 5.0 A, IBl : 0.7 Ade, VBE(off) : 5.0 Vde, VCE(pk) : 250 V) ITJ: 100°C) (TJ: 25°C) (1, Pulse Test: PW - 300 P.s, Duty Cycle ~2%. ill:.!£. 18 1-684 - - - - MJ13080. MJ13081 III TYPICAL ELECTRICAL CHARACTERISTICS FIGURE 2 - COLLECTOR SATURATION REGION FIGURE 1 - DC CURRENT GAIN , 50 100°C ...!!1 30 ....III ... 20 0- ::::: II: = - 10 in 7.0 5.0 - co i "r\ ...... TJ = 25°C 2.5 A IDA S.O A ~ ~ 0.5 0.7 1.0 2.0 3.0 5.0 7.0 10 IC. COLLECTOR CURRENT (AMPS) - 0.3 0.2 B I~ t'J ,. 0.1 0.1 15 \ \ ! FIGURE 3 - COLLECTOR· EMITTER SATURATION VOLTAGE 0.2 0.3 ..,;;;- O.S 0.7 1.0 2.0 3.0 Is. BASE CURRENT (AMPS) 5.0 7.0 10 FIGURE 4 - BASE·EMITTER VOLTAGE iil 3.0 S. 0 ~ 3. 0 ... 2. 0 I. Ill= 5.0 in t::; 2.0 ...~ lil !:; g 1.0 ~ O. 7 ! o. Sf--- -JlI= S.O .. ~ !:; Q ;; 1.0 ~ O.3 :! o. 2 I 8 TJ = 2SoC ~ 7.SA 1.0 o. 7 ... O.S 7.0 0.3 , '\ ~ .!'." VCE = 5.0 V 3.0 ~ 2.0 $! 'r--...I\ .It 10 5.0 0.150.2 TJ = 2SoC ,.S o. I "'0.0 7 0.05 0.1 0.2 ..,. 0.3 -TJ=25°C ~ :.- !0.7 ~ ~ ;:Ii O.S ~P 100°C H i 0.5 0.7 1.0 2.0 3.0 Ie. COLLECTOR CURRENT (AMPS) 0.3 0.1 S.O 7.0 10 II 0.2 0.3 O.S 0.7 1.0 2.0 3.0 Ie. COLLECTOR CURRENT (AMPS) , TJ "I500C 1250C 1/ ./ t-- r-REVERSE 10 K ~ FORWARD f-'- Cib I , ./ IOOOC 75"C I / S.O 7.0 10 FIGURE 6 - CAPACITANCE FIGURE 5 - COLLECTOR CUTOFF REGION 104 --- 100°C , 'i TJ = 2SoC iiI 000 g ~ u .... 100 F F Cob '"'"" J'VCE"250V= 2SOC 10- I -0.4 -0.2 +0.2 10 1.0 +0.4 VIE. IASE·EMITTER VOLTAGE (VOLTS) 1-685 10 100 VfI. REVERSE VOLTAGE (VOLTS) lOGO MJ13080, MJ13081 TABLE 1 - TEST CONOITIONS FOR DYNAMIC PERFORMANCE 100 " 1 ~ or:b,v 20 + ~ 0 ..z =-351J +10V~Ol 2. • ...J""L ,OMF 18~: pr IB 1 10"F 50 + -Z 0 U -= Y - 500 PW Vafled to Att •• n IC'"'OOmA TURN ON TIME ~A 1 ~2 2N6191 RBI - r=-. 1-0 ...ZOt j+V=IIV O~~"F 1 H P 2141 ~- RESISTIVE SWITCHING RBSOA AND INDUCTIVE SWITCHING VCEOtsus) j I to TURN OFF TIME Us. tnd .... ct'v. sWitching 6-v 100 ~d,ust.d obtain the forced hFE deSired 2N5337 dr.ver .s the ,nput to the r.slSt,ve t.,tcircult. Adjust R 1 to obtain I B 1 For switching and RBSOA. R2 "" 0 = For BVCEO(sus). R2 00 1- .. -w ~~ U ... !< U> LcOII'" 180/olH LcOII = 80 mH Vee = 10 V Acon=07n v clamp" 250 V RS adjusted to attain deSIred '81 I- ~. :5 r rr: Input U S . . Abov. for Iii W lN4937 or' l ~J Equhl' ••nt O.tell" Conditions I- Vcl emp , -y T ~ 6~sJ 0.1 n 2 'e I J RC::OII I ~I I ~ J L eol' 1 U l'b?1\ 1--,,- Vee If ~'.m"d /'" r-- IC"""'" II~ VCE~b. ---- -, fll-lt ""-" f---- If, - r;; 7.0 ~ ~ l2 1- 1, , - ~ I'\. ~ 6.0 I. Ie = 5.0 A r- f3f =5.0 5.0 ,,/ I TJ =25°& L ~ 4.0 IO"'u........... r-.-...... IC pk 90% lSI -- --\- -- -- FIGURE 8 - PEAK REVERSE CURRENT '":::> 10% VCE(pkl - "'I. A1\ 90% IC(pk) / IS ........ Test EqUIPment Scope - TektroniX 475 or Equlv.lent f-',-I ---J '-Ic~ I--VCE Vee -0: Vclemp Vc,.",P VCElp') 90% VCElp') I" "L vee 8.0 '\ ,--Isv !'~ ~ I, ... LcoI,llCpkl 12 "" LeOl1 UCpk I T,me ICr:!.- .- I RESISTIVE TEST CIRCUIT I, Adjusted to Obteln Ie FIGURE 7 - INDUCTIVE SWITCHING MEASUREMENTS ./ RL = son Pulse Width'" 30 JlS OUTPUT WAVEFORMS INDUCTIVE TEST CIRCUIT .. Vee = 250V ReOl1 '" 0 05 n Vee'" 20Y 2" ul e t 3.O ~20 V 1.0 -- -- - - I---- ./ / 1.0 TIME 1-686 / 2.0 3.0 4.0 5.0 6.0 VBE(oft). BASE·EMITTER VOLTAGE (VOLTS) 7.0 80 MJ13080, MJ13081 SWITCHING TIMES NOTE In resistive switching circuits, rise, fall, and storage times have been defined and apply to both current and voltage waveforms since they are in phase. However, for inductive loads which are common to SWITCHMODE power supplies and hammer drivers, current and voltage waveforms are not in phase. Therefore, separate measure· ments must be made on each waveform to determine the total switching time. For this reason, the following new terms have been defined. tsv = Voltage Storage Time, 90% lSI to 10% Vcl amp trv = Voltage Rise Time, 10-90% Vcl amp tfi = Current Fall Time, 90-10% IC tti = Current Tail, 10-2% IC tc = Crossover Time, 10% Vclamp to 10% IC An enlarged portion of the inductive switching waveforms is shown in F'gure 7 to aid in the visual identity of these terms. For the designer, there is minimal switching loss during storage time and the predominant switching power losses occur during the crossover interval and can be obtained using the standard equation from AN·222: PSWT = 1/2 VCCIC(tclf In general, trv + tfi '" tc' However, at lower test currents this relationship may not be valid. As is common with most switching transistors, resistive switching is specified at 25 0 C and has become a benchmark for designers. However, for designers of high frequency converter circuits, the user oriented specifications which make this a "SWITCHMODE" transistor are the inductive switching speeds (tc and tsvl which are guaranteed at 1000 C. INDUCTIVE SWITCHING FIGURE 9 - STORAGE TIME 3. 0 V~EIOffl ; 1 0 ~ 0 I-"' ..,1. 5 ~ i- V~EIOffl ; 5.0 l 3 1. 0 FIGURE 10 - CROSSOVER AND FAll TIMES 0 - Ie -1.0 V O. ..... r-. t--:1.0 v .1 ~ w to 5::~ '" "....... r-..... 03 '"'" O. 7 J;O 5 1'" . . 2 /3f; 5.0 --Ie (--- ---If, TJ - 75°C O. 3 1.5 3.0 5.0 70 IC, COLLECTOR CURRENT (AMPS I 20 10 12 1 15 15 " V Ifi -1.0 V .- -~ ~ -5.0 V 1;; .... 7-/3f;50 - TJ; 75°C ...1.... r--.... Ie -5.0 V tf, -5.0 V -I- ..- 1 3.0 5.0 70 IC, COLLECTOR CURRENT lAMPS) 20 10 12 15 FIGURE 11 - THERMAL RESPONSE I ~ ~_ wO o. 7 =0'0.5 t- ~ D. %w ... ~ o. 5 3== ~~ o.2 ZO ~ 0.2 !- 0.1 f- r--~ .. z ~: o. 1=:0.05 ~~ 0.0 7~0.02 -- - RtJJC(d :: r(11 ROJC ROJCh):: 111°C W MilK o CURVES APPLY FOR POWER ~ PULSE TRA'N SHOWN READ TIME AI II TJlpkl - TC' Plpkl ""JCIII ~;o.o5 ~'" tt;~o.o3--~ PfJUl ..-It 0.01 --1 0.0 I 0.01 I II 0.02 0.03 0.05 --I I- II 1--12 DUTY CYCLE, 0 '1]/12 0.0H - SINGLE PULSE 0.1 0.2 0.3 10 0.5 I, TIME Im.1 1-687 20 30 SO 100 200 300 500 1000 MJ13080. MJ13081 SAFE OPERATING AREA INFORMATION Th. Sofe O,..,.tillfl Ar.. fitUra shown in FigurOi 12 and 13 Ira .-Ifled for t ..... d..i_ u.ndor tha tat condition. shown. FORWARD BIAS There are two 'imitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate IC-VCE limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. The data of Figure 12 is based on TC = 250 C;TJ(pk) is variable depending on power level. Second breakdown pulse limits are valid for duty cycles to 10% but must be derated when TC ;;. 250 C. Second breakdown limitations do not derate the same as thermal limitations. Allowable current at the voltages shown on Figure 12 may be found at any case temperature by using the appropriate curve on Figure 14. TJ(pk) may be calculated from the data in Figure 11. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown. FIGURE 12 - FORWARD BIAS SAFE OPERATING AREA l __ 12 10 ;;; 5.0 ~+ ~ i5 II: II: ::> 1-- .---!' .-h. 10!,.~ ... TC = 25·C 1.0 2.0 m. ~ MJ1308~'~ MJ13081,= de 1.0 ~ 0.5 ~ --- - BONDING WIRE UMiT - - THERMAL UMiT ISINGLE PULSE) 0.2~. :l SECOND BREAKDOWN UMIT c::> ~ 0.1 U -0.05 II: ~ _\. 0.02 5.0 10 100 20 50 200 VCE. COLLECTOR-EMITTER VOLTAGE IVOLTS) 450 FIGURE 13 - REVERSE BIAS SAFE OPERATING AREA 12 11 Ii ~ 10 \ ~ 9.0 \ \ !E B.O TJ';;; lOO·C i::> 7.0 ~ 8.0 ~ 5.0 4.0 ~ 3.0 ~ - 2.0 1.0 :l c::> I I 100 200 - \ VBElolI) = 0 I' 'I I I ---MJ130BO MJ130Bi- r-- \ \ Ill;' 4.0 REVERSE BIAS For inductive loads, high voltage and high current must be sustained simultaneously during turn-off, in most cases, with the base to emitter junction reverse biased. Under these conditions the collector voltage must be held to a safe level at or below a specific value of collector current. This can be accomplished by several means such as active clamping, RC snubbing, load line shaping, etc. The safe level for these devices is specified as Reverse Bias Safe Operating Area and represents the voltage-current conditions during reverse biased turn-off. This rating is verified under clamped conditions so that the device is never subjected to an avalanche mode. Figure 13 gives R BSOA characteristics. I I \. 1\\ r::: .•,l ~ ~ ~ ,tr-.~ VSElolI) = 1.0 to 5.0 V_ ,- -j ,., , I I 400 500 600 700 300 VCE. COLLECTOR·EMITTER VOLTAGE IVOLTS) BOO FIGURE 14 - POWER DERATING 100 ~ :--... '" ........... .......... ........ THERMAt'--. DERATING SECo~~:~i~~DOWN _ "- "'- I'-- '"..... 0 o o 40 80 120 TC. CASE TEMPERATURE (OC) '-688 ........ I"-.... " 160 '" ~ .......... 200 MJl3090 MJ13091 MJH13090 MJH13091 @ MOTOROLA Designer's Data Sheet 15 AMPERE NPN SILICON POWER TRANSISTORS SWITCH MODE SERIES NPN SILICON POWER TRANSISTORS These transistors are designed for high-voltage, high-speed, power switching in inductive circuits where fall time is critical. They are particularly suited for line operated switch-mode applications such as: 400 AND 4&0 VOLTS 12& and 17& WATTS J-B --f • Switching Regulators • Inverters • Solenoid and Relay Drivers :~~:~:~ l~j ~ • Motor Controls o@J'v • Deflection Circuits 100°C Performance Specified for: Reverse-Biased SOA with Inductive Loads Switching Times with Inductive Loads150 ns Inductive Fall Time (Typ) Saturation Voltages Leakage Currents ... z.. H , FI + ' , STYLE 1 PIN I. WE t EMITTER CASE COLLECTOR G U Nons· I. DIMENSIONS QANO YARE DATUMS. 2. IS SEATING PlANE AND DATUM. 3. POSITIONAL TOLERANCE FOR MOUNTING HOLE Q: OJ MAXIMUM RATINGS Rating Symbol M.J130S0 M.J130S1 M.JH130S0 M./H130S1 Collector-Emitter Voltage VCEO(sus) 400 450 Collector-Emitter Voltage VCEV 650 750 Emitter-Base Voltage 6.0 IC ICM 15 20 IS ISM 5.0 10 450 Vdc 650 750 Vdc 4. DIMENSIONS AND TOLERANCES PER ANSI YI4.S. 1973. Vdo Adc Collector Current - Continuous - VES I t 1~13"'''''@lrlv@1 FOR LEADS. I t I~'3I."')@T Iv@1 "@I Unit 400 Peak(l) CASE 1-0& TO-204AA IFormerly TO-3) Ado Base Current - Continous - Peak(l) Total Device Dissipation @TC=25 C @TC= loo·C a T.J,Tstg , WaItS PD Derate above 25°C Operating and Storage Junction Temperature Range MJH13090 MJH13091 175 100 1.0 125 50 1.0 W/oC -65 to 200 -55 to 150 ac THERMAL CHARACTERISTICS Symbol Ma. Unit Thermal Resistance, Junction to Case RS.JC 1.0 °C/W Lead Temperature for TL 275 ac Chaf.cleri.tic Soldering Purposes. 1/S" 1 2 3. 4 MILLIMETERS DIM MIl BASE COLLECTOR EMInER COLLECTOR INCffES M,. ... .... MAX •• 20.' ,'ID' , ...U. .. •, U, 10' ..... •• , am .... ..... •,• , • .... '.22 uao " MAX DJIIO 0.830 11.48 10%. .. 5.21 Oe.igner'. 08t8 for "Worst ease" Condition. The Designer's Data Sheet permits the design of most circuits entirely from the information presented. Limit curves - representing boundaries on device characteristicsare give~ to facilitate "worst case" design. 1-689 ... DJI 12.70 12.19 0.810 ~, 0..0 5.72 31• 1.200 0.0&5 •.00, . .... 1.225 0.121 OJ< 0.015 16049 16.51 0.825 12.70 as.. 0.18 UII D." 0.810 CASE 340-01 TO-218AC MJ13090,MJ13091,MJH13090,MJH13091 ELECTRICAL CHARACTERISTICS (TC = 25·C unless otherwise noted) Symbol Characteristic Min Typ Max 400 - 450 - - - Unit OFF CHARACTERISTICS (1) Collector-Emitter Sustaining Voltage (Table 1 ) MJ13090. MJH13090 (IC 100 mAo IB 0) MJ13091. MJH13091 = VCEO(sus) = Collector Cutoff Current (VCEV Rated Value. VBE(off) (VCEV Rated Value. VBE(off) = = Collector Cutoff Current (VCE Rated VCEV. RBE = ICEV =1.5 Vdc) =1.5 Vdc. TC =lOO·C) =50 n. TC =lOO·C) Emitter Cutoff Current (VEB =6.0 Vdc. IC =0) Vdc - mAdc - 0.5 2.5 ICER - - 3.0 mAdc lEBO - - 1.0 mAdc SECOND BREAKDOWN See Figures 12 and 13 Second Breakdown Collector Current with Base Forward Biased See Figure 14 Clamped Inductive SOA with Base Reverse Biased ON CHARACTERISTICS (1) DC Current Gain (lc 8.0 - - - - 1.0 3.0 2.0 - - 1.5 1.5 td tr Is If - 0.03 0.13 0.55 0.10 0.05 0.60 2.50 0.50 ILS tsv - 0.80 0.175 0.15 0.50 3.00 0.40 0.30 ILS hFE =10 Adc. VCE =3.0 Vdc Collector-Emitter Saturation Voltage (IC 10 Adc. IB 2.0 Adc) (IC 15 Adc. IB 3.0 Adc) (IC 10 Ade. IB 2.0 Ade. TC 100·C) VeE(sat) Base·Emitter Saturation Voltage VBE(sat) = = = (lC (lc = = = = =10 Ade. IS =2.0 Ade) =10 Ade. IS =2.0 Ade. TC =lOO O C) Vdc Vde DYNAMIC CHARACTERISTICS OulPUI Capacitance (VCS 10 Vdc. IE O. ftest = = =1.0 kHz) SWITCHING CHARACTERISTICS Rbiative Load (Table 1) Delay Time Rise Time Storage Time Fall Time = = (VCC = 250 We. IC 10 Ade. ISl 1.25 Ade. Ip 30 ILS. Duty Cycle <;;;2%. VBE(off) = 5.0 Vde) = Inductive Load. Clamped (Table 1) Storage Time Crossover Time Fall Time Storage Time Crossover Time Fall Time = (lC(pk) lOA. ISl 1.25 Ade. VSE(off) 5.0 Vdc. VCE(pk) 250 V) = = = (TJ =lOO·C) (TJ =25·C) 11) Pulse Test: PW = 300 pS. Duty Cycle .. 2% . •~,=!£. IS 1-690 Ie Ifi Isv Ie tfi - 0.15 - 0.10 - MJ13090,MJ13091,MJH13090,MJH13091 III DC CHARACTERISTICS FIGURE 2 - COLLECTOR SATURATION REGION FIGURE 1 - DC CURRENT GAIN 50 IIII 100°C 30 z :;;: r-. ~ ::0 IC;5.0A ffi 1.0 ~ VCE ; 5.0 V '"''"'co... 10 1,\ .5 A ~O 7 ~ 0.5 "- ~ 0.3 ~ 0.2 7.0 ~o. 1 5.0 0.5 0.7 1 0 2.0 3.0 5.0 7.0 IC. COLLECTOR CURRENT (AMPS) 10 2.0 3.0 5.0 FIGURE 4 - BASE-EMITTER SATURATION VOLTAGE 3.0 5.0 i 3.0 co 2.0 .. ..... t'- I-- 0.2 0.3 0.5 0.7 1.0 IS BASE CURRENT (AMPS) 0.05 0.07 0.1 20 FIGURE 3 - COLLECTOR-EMITTER SATURATION VOLTAGE 0;~ ~5A f-+- 1\ co .It 0.2 0.3 \ 10 A ~ 2.0 i' TJ; 25°C 1"\ 3.0 20 '" TJ; 25°C = '" c ~i' i 10 7.0 50 ~ I 2.0 ,6t; 5.0 ~ '"~ 1.0 TJ ~ 25~C co 0.7 ". ,61; 5.0 I--- ffi 0.5 ~ :; 0.3 g ,- ~ -- 01 ~O.07 $'0.05 0.2 0.3 - ... TJ; 100°C ~ 0.2 ./ ", TJ ; 25°C 0.5 0.7 1.0 2.0 3.0 5.0 7.0 Ie. COLLECTOR CURRENT (AMPS) 10 0.3 0.2 20 0.3 j f- I / 5 1=~TJ'I50DC ~ 100DC to 1 I ./ / 75DC Db TJ; 25°C 0 8 ~ I- Cib 0 125DC '"c 20 FIGURE 6 - CAPACITANCE t== VCE' 250 V 102 10 10K 103 a'" .-1" TJ; 100 0.5 0.7 1.0 2.0 3.0 5.0 7.0 Ie. COllECTOR CURRENT (AMPS) FIGURE 5 - COLLECTOR CUTOFF REGION 104 ~~ 100 ~ pREVERSE ~ ~_25DC 10- 1 -0.4 -0.2 FORWARD 10 +0.2 +0.4 +D.6 1.0 VBE. BASE·EMITTER VOLTAGE (VOLTS) 1-691 10 100 VfI. REVERSE VOLTAGE (VOLTS) 1000 MJ13090,MJ13091,MJH13090,MJH13091 TABLE 1 - TEST CONDITIONS FOR DYNAMIC PERFORMANCE 100 " 1 J..... 20 ~-:5lf ""0V>~O' 2• . '"z • -IL ~ 2NS191 10,uF TURN ON TIME Ra1 tjA _C\ t --,2 ZO -Z 0 U Y'V ~11 V 002.F / H P 214/ or :~UI\I 1-0 ::1~ RESISTIVE SWITCHING RBSOA AND INDUCTIVE SWITCHING VCEO(susl pr l . '8~: 'S1 .dJusted to 10,uF 50 P1N Verted to Atte,n le·,OOmA - V obtein the forced 2N5337 "FE deSIred :J 500 6-v 100 ':" TURN OFF TIME Us- Induet'",e switch,", driver 8S the Input to me 'eslSt,,,,. test CirCUit Connect Point A to base of TUT Adjust -V to obtain desired VSE(off) at Point A Adjust R1 to obtain IS1 For switching and RBSOA. R2 For BVCEO(sus) R2 00 z: 0 = 1-", -w ::1::1 U ... !c Leon" 80 mH Vee OUTPUT WAVEFORMS INDUCTIVE TEST CIRCUIT I- U a: U Ii; ~. Input s.. Abo". for I- 2 I 1N4937 or 'EQulv.'.nt D.t.iI.d CondItion. W r , . Vcl emp " 250 V AS,edJusted to eltl,n deSIred 'a1 Rcoll ': 005 U VCC""2DV U> '"'3 ~ V I e.."p ~ t 'e !b1\: 1 . I Reoil "~. I I I Leo,' l j Vee VCEI veE.O·-O _____ t J b,Rs:,b 0.1 n ie,!-- ..... f-"'" I ./ '" - 1 9D!1o VCE(PkI :\9D!IoICllIkl 'IV+H~'fi- -'.. ---, '-'C~ I:/ ~ I- f--' .. VeE 10% VCE(pkl 1 8 - I-- 90% 181 ""'" 10"1" ICPk -- --\-, -- -- -- -- - - Vee - -;t 24.~ -: ~ Vee "L t2 "" Leol,I'Cpk' Vcl• mp Vcl• mp VeE(pkl to t, "" LCOllilCpk' 1--.,- t.t- T,m, AdJult~ Obte,n Ie m ... I Pulse Width::: 30 p. RESISTIVE TEST CIRCUIT tt T.st EQulpm.nt Seop. -'T.ktron"c 475 or EqUlv••• nt 1-'2-l FIGURE 7 - INDUCTIVE SWITCHING MEASUREMENTS le/ VCc"2S0V RL" 250 l.eoll" t80"H = 10 V R coll =070 FIGURE 8 - PEAK REVERSE CURRENT 10 9.0 ;;; 8.0 _le=10A_ f- Tj= {Jf= 5.0 ~. ~ 7.0 Ii i 8.0 13 5.0 i ffi ~.O L ,/ /' ./ L 4.0 :&3.0 ~5oe ./"" ,/ 1.0 ~ 1.0 TIME 1-692 2.0 3.0 4.0 5.0 8.0 VSE(ollJ. BASE·EMmERVOlTAGE (VOLTS) 7.0 8.0 MJ13090,MJ13091,MJH13090,MJH13091 SWITCHING TIMES NOTE In resistive switching circuits, rise, fall, and storage times have been defined and apply to both current and voltage waveforms since they are in phase. However, for inductive loads which are common to SWITCHMOOE power supplies and hammer drivers, current and voltage waveforms are not in phase. Therefore, separate measurements must be made on each waveform to determine the total switching time. For this reason, the following new terms have been defined. tsv = Yoltage Storage Time, 90% ISl to 10 % Ycl amp trv = Yoltage Rise Time, 10-90% Yclamp tfi = Current Fall Time, 90-10% IC tti = Current Tail, 10-2% IC te = Crossover Time, 10% Yclamp to 10% IC An enlarged portion ofthe inductive switching waveforms is shown in Figure 7 to aid in the visual identity of these terms. For the designer, there is minimal switching loss during storage time and the predominant switching power losses occur during the crossover interval and can be obtained using the standard equation from AN-222: PSWT = 1/2 Ycclcftclf In general, trY + tfi "" te. However, at lower test currents this relationship may not be valid. As is common with most switching transistors, resistive switching is specified at 25°C and has become a benchmark for designers. However, for designers of high frequency convener circuits, the user-oriented specifications which make this a "SWITCH MODE" transistor are the inductive switching speeds ftc and tsv) which are guaranteed at 100°C. INDUCTIVE SWITCHING FIGURE 9 - STORAGE TIME 5.0 FIGURE 10- CROSSOVER AND FALL TIMES 1.0 _/112 5.0 TJ = 75°C ..; ~/If=5.0 r-- TJ =75°C 0.7 VBElo"l = 1.0 .......... 3.0 VSE(o"l ='1.0 V 12.0 ~ 1.0V I,. 0.5 ..; 0.3 ~ VSE(offl = 5.0 V t--- oJ Isv 5.0 V I I -'" -f=::.;: .... - 0.2 1' ...... ....... -Ie 2.0 3.0 5.0 7.0 10 Ie COllECTOR CURRENT (AMPSI 15 20 3.0 2.0 ""I-" Ie. V ,,' ,..- ~,r, IBE(Or 1.0 --Iii 0.1 / " ~~. f\1 I'.. ... 0.7 0.5 ~ ..-.;;.. 1-- ~ ~ t:! ~~ V15 5.0 7.0 10 COUECTOR CURRENT (AMPSI 20 FIGURE 11 - THERMAL RESPONSE s ~ c I. 0 o. 7 I o.5 C> ~ o.3 ~ ~ ~ ! i! 0.2 D.2 !ii ~ O' 0.5 ~~ - 0.05 0.03 t- 0.02 -r~~ !!". ~~ 0.02 I- fo"" .. 0.0 1 ....... .. 0.01 0.02 Plpk) tJUl 0.07 r-- 0.05 I~ ~ 0.1 o. 1 I DUTY CYCLE. D • 11/12 Sl7G~E r~~~! 0.05 0.1 11111 0.2 O.S 1.0 20 S.O I, TIME {msl 1-693 10 I I 20 iItIJc(11 = ~II iItIJC R6JC = 1.0 o C/W Max DC""," Apply Fot Power Pul.e Train Shown Raad Time@ll TJ(pkl- TC = P(pkl iItIJcll1 I I 111111 100 I I 200 I I I III SOD 1.0k MJ13090, MJ13091,MJH13090, MJH13091 III SAFE OPERATING AREA INFORMATION The Set. Operating Ar.. figures shown in Figures 12 and 13 are lIMCified for these devices under the test conditions shown. FORWARD BIAS There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate IC-VCE limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than t~ curves indicate. The data of Figures 12 and 13 are based on TC = 25°C; TJ(pk) is variable depending on power level. Second breakdown pulse limits are valid for duty cycles to 10% but must be derated when TC;;' 25°C. Second breakdown limitations do not derate the same as thermal limitations. Allowable current at the voltages shown on Figures 12 and 13 may be found at any case temperature by using the appropriate curve on Figure 15. TJ(pk) may be calculated from the data in Figure 11. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown. FIGURE 12- FORWARO BIAS SAFE OPERATING AREA MJ1 3090 and MJ13091 . 2D 15 ID ~ 5.0 ~ ~ 2.0 lD 1.D m. MJ13D90 MJ13D91 ~ TC; 25°C p~'" ~ 1.0 '" D.5 ti ~ - 0.2 8 9 D.1 ~ D.D5 Bonding Wire Limit -- - Thermal limit Second Breakdown Limit ...... D.D2 5.D lD 2D 5D lDD 2DD VCE. CDLLECTDR·EMITTER VDLTAGE (VDLTSI 450 REVERSE BIAS FIGURE 13- FORWARD BIAS SAFE OPERATING AREA MJH13090 and MJH1 3091 2D l'I,LDm.- lD 10 in !E 5.D For inductive loads. high voltage and high current must be sustained simultaneously during turn-off. in most cases, with the base to emitter junction reverse-biased. Under these conditions the collector voltage must be held to a safe level at or below a specific value of collector current. This can be accomplished by several means such as active clamping, RC snubbing, load line shaping, etc. The safe level for these devices is specified as Reverse Bias Safe Operating Area and represents the voltagecurrent conditions during reverse biased turn-off. This rating is verified under clamped conditions so that the device is never subjected to an avalanche mode. Figure 14 gives RBSOA characteristics. ~."'I- MJH13D9D MJH13091 ~ ~ 2.D TC; 25°C- ~ <-dc ~ ., 1.0 "- !5 D.5 !ilg 0.2 ~o. 1~ - - - - - - Bonding Wire Limit Thermal limit Second Breakdown Limit D.O 5 0.02 5.0 10 100 20 50 200 VCE. COLLECTOR·EMmER VOLTAGE (VOLTSI 500 FIGURE 14 - REVERSE BIAS SAFE OPERATING AREA 24 I I 22 in 2D - MJ13090. MJH13D90 MJ13091. MJH13091 - "::IE 18 ~ t- is '" GC 16 14 ~ 12 ~ 10 ~ 8.0 B 8.0 ~4.0 _ TJ<;;1000C /11;;' •. 0 I - 2.0 I 100 1\ \ .\ ,, 200 !E ~ ;::,.... ~~ GC ~'" 60 ~ 40 ~ '\. i'.... '\\('" " i - I ~"- I-r- 20 I 300 400 500 BOD 700 VCE. COLLECTOR·EMITTER VOLTAGE (VOLTSI o o 800 1-694 r-...... MJ13090 and MJ13D91 MJH13090 and MJH13D91 i'- r-.... r-....... ~ GC VB~(olfi 1= 1.01to 5 OV ~econd 'Sreakd!wn Da!ating r--..... """-"':: ....... 80 z V~(offi= 0 I'... .\I\\~ / ' I FIGURE 15 - POWER DERATING 100 I I I I I I '\ Thermal Denrting MJH13090 and MJHI3D91MJi3090 j"d MJ 13091I I ~ -'\. i'--.. ...... i'> " ........, '\ 4D 80 120 TC, CASE TEMPERATURE (OCI ............ 160 """ 200 ® MJ13100 MJ13101 MOTOROLA III Designer's Data Sheet 20 AMPERE SWITCH MODE II SERIES NPN SILICON POWER TRANSISTORS NPN SILICON POWER TRANSISTORS The MJ13100 and MJ13101 transistors are designed for highvoltage, high-speed, power switching in inductive circuits where fall time is critical. Theyare particularly suited for line-operated switchmode applications such as: 400 AND 450 VOLTS 175 WATTS • Switching Regulators Designer's Data for • Inverters "Worst Case" Conditions • Solenoid and Relay Drivers • Motor Controls • Deflection Circuits The Designer's Data Sheet permits the design of most circuits entirely from the information presented. Limit data - representing device characteristics boundaries - are given to facilitate "worst case" deSign. Fast Turn-Off Times 30 ns Inductive Fall Time @ 25°C (Typ) 50 ns Inductive Crossover Time @ 25°C (Typ) 900 ns Inductive Storage Time @ 25°C (Typ) Operating Temperature Range -65 to +200°C 100°C Performance Specified for: Reverse-Biased SOA with Inductive Loads Switching Times with Inductive Loads Saturation Voltages Leakage Currents MAXIMUM RATINGS Rating Symbol MJ13100 MJ13101 Collector-Emitter Voltage VCEO(sus) 400 Collector-Emitter Voltage VCEV 650 Vdc 750 Vdc F ---- Emitter Base Voltage VES 60 Vdc Collector Current - IC ICM 20 30 Adc IS 'BM 10 15 Adc Po 175 100 1.0 W/oC -65 to +200 °C Base Current - JFA°=:Lf_=r t.~K m/t~___ ~ Unit 450 Continuous Peak(l) Continuous Peak (1) Total Power Dissipation @ Te =; 25°C @TC=100oC Derate above 25°C Watts Hons 1 DtMENSIONSOANOVAAEDATUMS 2 [fJISSEATiHGPLANEANODATUM 3 PDSITIONALTOlERANCE FDR MOUNTING HDLE Q Operating and Storage Junction Temperature Range TJ, Tstg 1+lt131001l51@ITlv@[ FQRLEAOS STYLE 1 PIN 1 BASE 2. EMlnER CASE COLLECTOR 1+le131DIlO§I@)TjvejQ@! THERMAL CHARACTERISTICS Characteristic Thermal ReSistance, Junction to Case MaXimum Lead Temperature for Soldering Purposes: 1/8" from Case for 5 Seconds (1) Pulse Test: Pulse Width = .DIMENSloNSANOTOtEAAMCES'EA ANSIV14S.1913 Symbol Max Unit ROJC 1.0 °C/W TL 275 °c 5 ms, Duty Cycle ,,;; 10%. CASE 1-05 TO-3 TYPE 1-695 MJ13100, MJ13101 I ELECTRICAL CHARACTERISTICS (TC' 25°C unless otherwise noted) Characteristic Symbol Min Typ Max 400 450 - - - - 0.5 2.5 Unit OFF CHARACTERISTICS (1) Coilector-Emitter Sustaining Voltage (Table 1) (lc ' 100 mA. IS ' 0) Vdc VCEO(sus) MJ13100 MJ13101 Coilector Cutoff Current (VCEV' Rated Value. VSE(off)' 1.5 Vdc) (VCEV' Rated Value. VSE(off)' 1.5 Vdc. TC' 100°C) 'CEV Collector Cutoff Current ICER - - 3.0 mAde 'EBO - - 1.0 mAdc - mAdc (VCE' Rated VCEV. RSE' 50 n. TC' 100°C) Emitter Cutoff Current (VES ' 6.0 Vdc. IC ' 0) SECOND BREAKDOWN Second Breakdown Collector Current with Base Forward Biased See figure 12 'Slb RSSOA Clamped Inductive SOA with Base Reverse Biased See Figure 13 ON CHARACTERISTICS (1) DC Current Gain hFE S.O - 40 - - - - 1.0 3.0 2.0 - - 1.5 1.5 (IC' 15 Adc. VCE' 3.0 Vdc Coil ector-Emitter Saturation Voltage (IC' 15 Adc. 'B ' 3.0 Adc) (IC ' 20 Adc. IS ' 4.0 Adc) (IC ' 15 Adc. IS ' 3.0 Adc. TC ' 100°C) VCE(sat) Base-Emitter Saturation Voltage VBE(sat) (lc' 15 Adc. IS ' 3.0 Adc) (IC ' 15 Adc. IS ' 3.0 Adc. TC ' 100°C) Vdc Vdc DYNAMIC CHARACTERISTICS Output Capacitance (VCB' 10 Vdc. 'E' O. ftest ' 1.0 kHz) SWITCHING CHARACTERISTICS Resistive Loed (Table 1 ) Delay Time Rise Time Storage Time Fail Time td tr ts tf VCC' 250 Vdc. 'C' 15 Adc. IS1 ' 2.0 Adc. t p ' 30 1'5. Duty Cycle <;;2%. VSE(off)' 5.0 Vdc) - 0.02 0.13 0.90 0.10 0.05 0.50 3.5 0.50 I'S - 1.25 0.15 0.13 0.90 0.05 0.03 4.0 0.50 0.40 1'" InductIve Load. Clamped (Table 1) Storage Time Crossover Time Fall Time Storage Time Crossover Ti me Fall Time (lC(pk) , 15 A. IS1 ' 2.0 Adc. VSE(off) , 5.0 Vde. VCE(pk) , 250 V) (TJ,1000C) (TJ,25°C) (1) Pulse Test: PW - 300 ~s, Dutv Cvcle ~2% .~f' Ie 'B 1-696 tsv tc tfi tsv te tfi - - MJ13100. MJ13101 DC CHARACTERISTICS FIGURE 1 - DC CURRENT GAIN FIGURE 2 - COLLECTOR SATURATION REGION 0 ioooc- I--.. TJ = 0 1 0 ~ 0 ~ I I 0 40 03 05 I 10 50 ~ 'I ........ 10 IC - 5.0 A TJ = 25° ..u 20 $'0 1 0.1 30 0.2 0.3 0 ~ w 0 0 ~ 10 lif - V/ 50 TJ ~ f-.-- 01 0 =100°C ,-V 00 5 030 0500.70 1 >- ia 2.0 TJ 0 0 =25°C 5.0 70 10- ~ :;..- ~ I 0 0.3 030 2nO 0.5 0.7 30 50 7.0 10 20 30 10K I 5K ~ ~ moc 1000C 10 1 20 FIGURE 6 - CAPACITANCE f= f= TJ· lSOoC 101 I 10 20K I '" ~ IC. COLLECTOR CURRENT (AMPS) f:= VCE" 250 V o ~ 10 ~ J = 100°C FIGURE 5 - COLLECTOR CUTOFF REGION 103 J0 - 0 ~ IC. COLLECTOR CURRENT (AMPS) j 5.0 7.0 TJ - 25° ~ 03 0 t; 02 0 104 .0 I 0 ~ 05 0 :> 2.0 I lif = '" 8 tl 10 FIGURE 4 - BASE-EMITTER VOLTAGE 5. 0 « '" 0.5 0.7 I--.. lB. BASE CURRENT (AMPS) FIGURE 3 - COLLECTOR-EMITTER SATURATION VOLTAGE :> -- o. 2 8 IC. COLLECTOR CURRENT (AMPS) ~ \ - 15 A 10 A ~ o. 3 ........... 2.0 20A ffi 0 5 !:: a': ~ r--..... -55°C 1\ c( '~~ " I VCE = 5.0 1V \ '":>~1. 0 '" !:; 0 7 " \ \ !:; 25°C 0 . - 0 0;- z L ./ == Cib lK 5500 ~ 750 C 8 2K r-- ~ 200 r- Cob ; 100 0 ...... :=;REVERSE === 10- 1 -04 FORWARD 50 20 ::::--150 C -01 +0.2 +0.4 +0.6 FTJ 10 10- "J., 2.0 25°C 50 10 20 50 100 VR. REVERSE VOLTAGE (VOLTS) VBE. BASf.EMITTER VOLTAGE IVOLTS) 1-697 200 500 1000 MJ13100, MJ13101 TABLE I - TEST CONDITIONS FOR DYNAMIC PERFORMANCE RBSOA AND INDUCTIVE SWITCHING VCEO(susl 002 "F I " H P 2141 or :~UIV 100 I ~ J2N6191 ." z 10 pF .:s1f A 20 0.Jl... ZO -Z :jA 1 ~2 ed: TURN ON TIME RSI ro-.. .... 0 ::J- y+V '" 11 V "- 20 +10 V RESISTIVE SWITCHING fr l.@rA IS1 adjusted to 1 0 J.'F 50 0 U 500 PW Varied to Attain Ie'" lOOmA .". obtai" the forced I _~2N5337 100 "FE deSIred TURN OFF TIME Use ,nduct'''1! sWItching d."",. as the ,nput to the resIst.". lest CircUit b-v Adjust R1 to obtam IS1 For sWitching and RBSO A . R2 -= 0 For BVCEO(sus), R2 "" ....-w." ::J::J Lco'I" 80 mH Vee'" 10 V !< U> Rco,I" 0 7 J'l. U .... 0<> le011 ~ 180 ~H Rcol ' "" 0 05 VCC=2DV INDUCTIVE TEST CIRCUIT VCC=250V n VClamp '" 250 V RS adJusted 10 attain deSired '81 RESISTIVE TEST CIRCUIT OUTPUT WAVEFORMS t, ." .... :; ~, U II: A r~ iRcOi" U See Above for Iii EqUIvalent OeUII'ed CondItIons .... '" 2 FIGURE 7 - or V clamp -.:1. I Leol' 1- Vee L j ,., FIGURE 8 - V 10% VCE(pkJ 90%181 - - -- - f..-- '-'" PEAK REVERSE CURRENT VV r--- i VCE --\- -- Test EqUIPment Scope - Tektronuc 415 or EQUIvalent l--!2-j ",,/" 0 IIV +1~lel_~I!I- I- r--Isv 1---. -Ic~ - Vcl amp ___ -1...., 90% VCE(pkJ 1\90%IC(pkl ./ - Lcoll (l eM ) 0 VCE(pkJ - "- 10% ....... IC pk -- - ~ ~vee 2l ' 2 "Velamp --- lI:t}' T,me ~ I Leo.IOeM) --r VCEM 'r-1TI 'c I, . . -----vee r-- INDUCTIVE SWITCHING MEASUREMENTS ./' 18- VeE -4= b."sJ 0.1 n IC P: " - ' - IC/'" 'I ~Iamped 1--,,- 'I Adjusted to Obtain Ie leM __ leL0= I I I lN4937 Input RL = 166n PulseW,dth=30/loS /' .0 -2%IC .0 ,,,,,.v V V- 1-698 / IC = 15 A /3f = 5.0 TJ = 25°C 10 TIME ,/ 2.0 3.0 4.0 5.0 VBE(off). BASE·EMITTER VOLTAGE (VOLTSI 6.0 MJ13100, MJ13101 SWITCHING TIMES NOTE In resistive switching circuits, rise, fall, and storage times have been defined and apply to both current and voltage waveforms since they are in phase. However, for inductive loads which are common to SWITCHMODE power supplies and hammer drivers, current and voltage waveforms are not in phase. Therefore, separate measure· ments must be made on each waveform to determine the total switching time. For this reason, the following new terms have been defined. tsv ~ Voltage Storage Time, 90% lSI to 10% Vcl amp trv ~ Voltage Rise Time, 10-90% Vcl amp tfi ~ Current Fall Time, 90-10% IC tti ~ Current Tall, 10-2% IC tc ~ Crossover Time, 10% Vcl amp to 10% IC An enlarged portion of the inductive switching waveforms is shown in Figure 7 to aid In the vISual Identity of these terms. For the deSigner, there IS minimal sWitching loss during storage time and the predominant sWitching power losses occur dUring the crossover mterval and can be obtained uSing the standard equation from AN·222: PSWT ~ 1/2 VCClcltclf In general, try + tfl : : : .: te' However, at lower test currents this relationship may not be valid. As IS common with most switching transistors, resistive switching is specified at 25 0 C and has become a bench· mark for designers. However, for deSigners of high frequency converter circuits, the user oriented specifications which make this a "SWITCH MODE" transistor are the inductive sWitching speeds Ite and tsvl which are guaranteed at 1 aaoc. INDUCTIVE SWITCHING FIGURE 9 - .0 4. 0 STORAGE TIME -- - JIl 5.0 VBElofil - 1.0 V TJ - 75°C .0 FIGURE 10 - .5 _f- -v;;.lfl ---........ 5.0 V ..... ---- 1 TJ 3.0 5.0 7.0 10 15 20 = 75'oC 00 7 0.0 6 30 30 5.0 ~ ~ ,/ \\, / '-- - ; 70 10 IC. COLLECTOR CURRENT lAMPS I 1 " 20 30 o. 7 o ~ D's o. 5 02 rot 0.0 7 - 005 ~ 005 ;: 003 - I- 002 -'" z ~ )X '';/ ..... _"'\ - FIGURE 11 - THERMAL RESPONSE ~ ffi /' 0 ~ o. 3 :i D. 2 :;; ~ o. t in =1.0 V/ '\ Y te t\' IC' COLLECTOR CURRENT IAMPSI g VBElofl) III =50 O. 7 O. 5 I'- 3""'1', , ""r-2 ~ ~ =5 0 V ~- - VBEloffl "- -........ tsv CROSSOVER AND FALL TIMES ,...-- 6 5 00 1 ...... OOt ......, 0.02 Plpk) ~ ~ 01 o Curves Apply For Power Pulse Tram Shown Read Time At q -r~~ [ TJlpkl - TC = Plpkl ROJCltl DUTY CYCLE, D ~ "/r2 Slr~ErW~1 005 ROJcltl =rltl ROJC ROJC =1 O°C/W Max tJlSL ...,. 002 ~ l- I-' "-:;:;;;- IIIII 02 05 10 20 50 t TIME (ms) 1-699 to I I 20 1'1 I IIIII 50 100 I I 200 I I I III 500 1.0 k MJ13100, MJ131 01 SAFE OPERATING AREA INFORMATION The Safe Operating Area figures shown in figure 12 and 13 are specified for these devices under the test conditions shown -- FIGURE 12 - FORWARD BIAS SAFE OPERATING AREA 30 10l's ~ 20 ~ -" in ~ ~ .... ill a: '" '"'a: 0 ~ 0 '"'Ji'• 10 7.0 5.0 3.0 2. JI31 10ms TC = 5°C 1.0 0.7 0.5 0.3 0.2 - )O~ ...... Second Breakdown Umit 0.05 0.03 10 20 30 50 70 100 200 300 VCE. COLLECTOR·EMITTER VOLTAGE {VOLTS) 450 u; FIGURE 13 - REVERSE BIAS SAFE OPERATING AREA 30 28 1- MJ13101, _ MJI3100 24 ....~ 20 illa: '" a: '"' 0 G ~ There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate IC-VCE limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. The data of Figure 12 is based on TC = 25°C; TJ(pk) is variable depending on power level. Second breakdown pulse limits are valid for duty cycles to 10% but must be derated when TC;;' 25°C. Second breakdown limitations do not derate the same as thermal limitations. Allowable current at the voltages shown on Figure 12 may be found at any case temperature by using the appropriate curve on Figure 14 TJ(pk) may be calculated from the data," Figure " . At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown. de BondIng Wire Umit Thermallimil {Single Pulse) 0.1 5.( 7.0 ...::e FORWARD BIAS , ~ -- I \ l~ 16 , 8.0f- TJ';; 100°C f-1l1';;'j J I 4. 100 200 For inductive loads, high voltage and high current must be sustained simultaneously during turn-off, in most cases, with the base to emitter junction reverse biased. Under these conditions the collector voltage must be held to a safe level at or below a specific value of collector current. This can be accomplished by several means such as active clamping, RC snubbing, load line shaping, etc. The safe level for these devices is specified as Reverse Bias Safe Operating Area and represents the voltage-current condition allowable dUring reverse biased turn-off. This rating is verified under clamped conditions so that the device is never subjected to an avalanche mode. Figure 13 gives the RBSOA characteristics. 1 1 I\. 1\ \ 12 ~ t/ REVERSE BIAS VBE{off) = 0 V t7 VBE{off) = 1.0 V10 5.0 V t-- I '~ \ 1\ t-~ I T \ 500 600 700 300 400 VCE. COLLECTOR·EMITTER VOLTAGE {VOLTS) 800 FIGURE 14 - POWER DERATING 100 ~ o 0 ...z~ 60 ~ ::-...... "" "" t; THERMAL DERATING ;:: ~ o '" J _ r---.. 40 .............. "" "- SECOND BREAKDOWN OERATlNG- .............. r---.. '" ............ ...... 20 o o 40 BO 120 TC, CASE TEMPERATURE lOCI 1-700 " 160 ........ "" 200 ® MJ13330 MJ13331 MOTOROLA Designers Data Sheet 20 AMPERE NPN SILICON POWER TRANSISTORS SWITCHMODE SERIES NPN SILICON POWER TRANSISTORS 200 and 250 VOLTS The MJ 13330 and MJ 13331 transistors are designed for h ighvoltage, high-speed, power switching in inductive circuits where fall time is critical. They are particularly suited for line operated switchmode applications such as: • Switching Regulators • • Inverters Solenoid and Relay Drivers • • Motor Controls Deflection Circuits 175 WATTS Designer's Data for "Worst Case" Conditions The Designers Data Sheet permits the design of most circuits entirely from the information pre· sented. limit data - representing device characteristics boundaries are given to facilitate "worst case" design. Fast Turn-Off Time 75 ns Inductive Fall Time-25 0 C (Typ) 150 ns Inductive Crossover Time-250 C (Typ) 900 ns Inductive Storage Time-25 0 C (Typ) Operating Temperature Range -65 to +200 0 C ~ 1~1+H'-+ lOOoC Performance Specified for: Reversed Biased SOA with Inductive Loads Switching Times with Inductive Loads Saturation Voltages Leakage Currents t. D .. K j MAXIMUM RATINGS Rating Collector-Emitter Voltage Collector-Emitter Voltage Emitter Sase Voltage Collector Current - Continuous - Peak (1) Base Current - Continuous -Peak (1) = 2SoC @TC= 1000C Total Power Dissipation @TC MJ13330 200 400 Symbol VCEOlsus) VCEV VEB IC ICM IB laM Po Derate above 25°C Operating and Storage Junction Temperature Range I I I MJl3331 250 450 6 20 30 10 20 175 100 1 -65 to +200 TJ.Tstg Unit Vdc Vdc Vdc Adc NOTES 1. DIMENSIONS 0. AND V ARE DATUMS 2 (JJ I~SEATING PLANE AND DATUM 3. POSITIONAL TOLERANCE FOR MOUNTING HOLE 0. Adc I • 11.1310.00510 Ii]V"®J I • I1.13 10 00510 T Iv01 001 Watts FOR LEADS W/oC °c 4. DIMENSIONS AND TOLERANCES PER ANSI Y14.5, 1973. MILLIMETERS DIM MIN MAX A 3931 THERMAL CHARACTERISTICS Characteristic Thermal Resistance. Junction to Case Maximum Lead Temperature for Soldering Purposes: 1/8" from Case for 5 Seconds Symbol R8JC TL MIx 1 275 Unit °C/W °c B STYlE 1 f>INl :2 EMITTER CASE COLLECTOR 6.35 D E 0.97 un F 30.158SC G 762 1 D9 1.7 lO.928St H 546BSC J K IS.S9BSC 1118 12.19 381 4.19 26.67 4.83 5.33 n (1) Pulse Test: Pulse Width = 5 ms, Duty Cycle .. 10%. 21.D8 C R U v 3.81 4.19 CASE 1.415 Similar device types with higher VCEO ratings are: MJ13332 (350 V) thru MJ13335 1500 V). 1-701 MJ13330, MJ13331 111 ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted). -I Characteristic Symbol Min Typ Max 200 250 - - - - - 0.25 5 Unit OFF CHARACTERISTICS Collector-Emitter Sustaining Voltage (Table 11 (lC = 100 mAo IB MJ13330 MJ13331 Collector Cutoff Current (VCEV (VCEV = Rated = Rated = Rated = 150°C) VCEV, RBE =6 Vde, IC ICER 5 mAde lEBO 0.5 mAde = 50 n, TC = 100°C) Emitter Cutoff Current IVEB mAde ICEV Value, VBE(ofl) = 1.5 Vde) Value, VBElof!) = 1.5 Vde, TC Collector Cutoff Current IVCE Vde VCEO(sus) = 0) = 0) SECOND BREAKDOWN Second Breakdown Collector Current with base forward biased See Figure 12 Clamped Inductive SOA with base reverse biased See Figure 13 ON CHARACTERISTICS 11) DC Current Gam (Ie (lC Collector-Emitter Saturation Voltage (lC = 10 Ade, IB = 1.5 Adc) (lC = 20 Ade, IB = 5 Ade) (lC = 10 Ade, IB = 1.8 Ade, TC VCElsat) = 10 Ade, = 10 Ade, 18 IB 15 8.0 - 75 40 - - 1.5 3.5 2.5 Vde - - - - - - 1.8 1.8 fT 5 - 40 MHz Cob 100 400 pF td - 0.08 0.20 tr - 0.55 1.0 ts - 0.70 3.5 '" '" tf - 0.11 0.7 ~s tsv - 1.35 4.5 ~s 0.45 1.8 ~s = 100°C) Base-Emitter Saturation Voltage IIc IIc - hFE = 5 Ade, VCE = 5 Vde) = 10 Ade, VCE = 5 Vde) Vde V8Elsat) = 1.5 Ade) = 1.8 Ade, Tc = 100°C) DYNAMIC CHARACTERISTICS Current-Gain-Bandwidth Product IIc = 300 mAde, VCE = 10'Vde, f test = 1 MHz) Output Capacitance (VCB = 10 Vde, IE = 0, f test = 100 kHz) SWITCHING CHARACTERSITICS ReSistive Load (Table 1) Delay Time Rise Time Storage Time = 175 Vde, IC = 10 A, 181 = 1.5 Ade, VBElofl) = 5 Vde, tp = 50 ~s, Duty Cycle <; IVCC 2%) Fall Time ~s Inductive Load, Clamped !Table 1) Storage Time Crossover Time Storage Time Crossover Time = 10 A(pk), Vel amp - 200 Vde, = 5 Vde, TC = 100°C) IIC = 10 Alpk), Vclamp = 200 Vde, V8Eloff) = 5 Vde, TC = 25°C) IIC 181 -1.8 Ade, VBEloff) te 181 = 1.5 Ade, Fall Time 11) Pulse Test· PW = 300 ~s, Duty Cycle <; 2%. 1-702 0.90 tsv ~s te - 0.15 - ~s tf, - 0.075 - ~s MJ13330, MJ13331 DC CHARACTERISTICS TJ'1500e en :; - 0 Tr 150e 0 VeE' 5 V le'5A ~ IC" 10 A Ie' 15 A Ie" 20 A 1.8 « :; II o ~ ~ 0 ~ 1.4 i= ~ c:r: 10 ; \ \ \ 06 0.5 1.0 ~ 2.4 5.0 20 10 0.2 05 0.7 0.3 ~;1.2 "j> / 0.8 - o 0.2 2 w .... ~ 0.8 :i ~ -I 1 1 o 20 05 0.2 ~ .... a~ I I / f= =TJ'1500e lODDe 10 1 ~ ~ I / " U ~ 200 I ./ '"oj / 10-1 -04 F'REVERSE -0.2 ....... ;3 .... ir .... 75°C ~ t - - t::= 25°C "- z / o 100 20 "- u '-' ~ 400 w 125°C ~ ~ I / 10 3 o 10 BOO f== VeE -150 V 102 5.0 1.0 2.0 Ic, CO LLEeTO R cu RRENT lAMP) FIGURE 6 - OUTPUT CAPACITANCE FIGURE 5 - COLLECTOR CUTOFF REGION 10 4 >- V 04 b}:;toe > I 10 - ?' f..-p I--TJ" 25°C ~ / w- VBElsa')@ IcIIB" 5 ~ TJ' 25°C 5.0 1.0 2.0 Ie, COLLECTOR CURRENT lAMP) 0.5 16 w / / '-'0 > 2. "'« ~> I B 0.4 20 ~ f II le ll B·5 "'U;l~ 10 FIGURE 4 - BASE-EMITTER VOL TAGE T~ I, 150 0le ~ ..... 2.0 !::> 1.6 5.0 3.0 2.0 II II ~~ .... 0 2.0 1.0 IB' BASE CURRENT lAMP) .... '" S 1"0.. > 0.2 10 FIGURE 3 - COLLECTOR-EMITTER SATURATION VOL TAGE o 1\ \ ~ Ie, COLLECTOR CURRENT lAMP) 28 1\ \ 1\ o 5. 0 z Tf il TJ' 25°C o 0 0.1 2.2 ? ,~ 0 II. FIGURE 2 - COLLECTOR SATURATION REGION FIGURE 1 - DC CURRENT GAIN 100 '" l\ 100 FORWARD Cob +0.2 +0.4 60 0.4 -1-0.6 1.0 2.0 5.0 10 20 50 VR, REVERSE VOLTAGE IVOLTS) VBE, BASHMITTER VOLTAGE IVOLTS) 1-703 100 1=:=1:=200 400 MJ13330, MJ13331 SWITCHING TIMES NOTE FIGURE 7 - INDUCTIVE SWITCHING MEASUREMENTS le!:.!5-- .....- V I 90%V clamp ./ "'I. A 90%le '",fl~'foI---. '-'c~ l- f-- f--'sv le/ Vclamp_ \ V VeE le pK - I B - I-- 90% IBI -- --\- -- ---\ 1-12% Ie - - I-- ~ t-- _,,,_ 1"10% ...... 10%V clamp In reslst,ve switching circuits, rise, fall, and storage times have been defined and apply to both current and voltage waveforms since they are in phase. However, for inductive loads which are common to SWITCH MODE power supplies and hammer drivers, current and voltage waveforms are not in phase, Therefore, separate measurements must be made on each waveform to determine the total switching time. For this reason, the following new terms have been defined. tsv = Voltage Storage Time, 90% ISl to 10% Vcl amp trv = Voltage Rise Time, 10-90% Vcl amp tfi = Current Fall Time, 90-10% IC tti = Current Tail, 10-2% IC tc = Crossover Time, 10% Vclamp to 10% IC An enlarged portion of the inductive switching waveforms is shown in Figure 7 to aid in the visual identity of these terms. For the designer, there is minimal switching loss during storage time and the predominant switching power losses occur during the crossover interval and can be obtained using the standard equation from AN-222: PSWT= 1/2 VCCIC(tc)f In general, trv + tfi = tc' However, at lower test currents this relationship may not be valid . As is common with most switching transistors, resistive switching is specified at. 250 C and has become a benchmark for designers. However, for designers of high frequency converter circuits, the user oriented specifications which make this a "SWITCH MODE" transistor are the inductive switching speeds (tc and tsv) which are guaranteed at 1000 C. TIME FIGURE 8 - REVERSE BASE CURRENT versus BASE EMITTER VOLTAGE B.O Vcl amp ' 2bo V I-IBI = 1.5 A Ie '10 A 0r-TJ'250e 0 °v o o V ..... .....-' V .....V V 2.0 1.0 3.0 4.0 5.0 VBE(off}, BASE·EMITTER VOLTAGE (VOLTS) RESISTIVE SWITCHING FIGURE 9 - TURN-ON TIME FIGURE 10 - TURN-OFF TIME .0 0 's / O. 5 O. 5 V j,v j ; o. 2 ;:: 0.1 0 0.05 1.0 --2.0 " /' '" .3 o. 3 VBE(oll) = 5 V VCc= 175 V f---IcliB =5 TJ' 25°C r--- 10 I'- O. 1 20 Ic, COll.ECTOR CURRENT (AMP) 0.05 1.0 ) ....... .0 '~ ~ 5.0 ....... 't w .. o. 2 ;:: VBE(otl) - 5 V VCC=175V Ic/lB 5 TJ' 25°C 2.0 3.0 5.0 IC, COllECTOR CURRENT (AMP) 1-704 10 V 20 MJ13330, MJ13331 TABLE 1 - TEST CONDITIONS FOR DYNAMIC PERFORMANCE RESISTIVE SWITCHING RBSOA AND INDUCTIVE SWITCHING VCEO(sus) III r-~----------~--~-------'--~+15 47 n Rl TURN ON TIME R212 181 adjusted to obtain the forced hFE desired 50 n TURN OFF TIME Use inductIVe sWitching PW Vaned to Attain driver as the ,nput to the r.Slstlve testc,rcUlt le= lOOmA All Diodes - 1 N4934 All NPN - MJE200 All PNP - MJE21Q t-----~----+-----<> -5 2 Adjust Rl to obtain IS1 For sWitching and RBSOA, A2 '" For BVCEO(sus)' R2 L.coll = ACOII '" 0 00 LCOl' '" 180,u.H RCOII = 005 Vee'" 20 \J 80 mH Vee = 10 V 0 7 = n n Vclamp = ~OO Vee= 175\/ v AL = 17 5 Puis. Width'" 25,u.s RESISTIVE TEST CIRCUIT OUTPUT WAVEFORMS INDUCTIVE TEST CIRCUIT t1 Adjusted to Obtain Ie ~ :5 I.l 0:: U t2 "'" Lco,I(ICpkl lii Vclamp vcet Vc-:-::- ...'" ~mp 1-',-1 T,m. c ~ FIGURE 11 - THERMAL RESPONSE 10 :0 7 i 5 "" ;;; ~ o • 05 3 w u ~ 0 02 2 f01 01 "" 00 7 - DOS ~ 005 f-- 002 .... 00 3 .... as ~ Test EqUipment Scope - Tektronix 475 or Equ;valent 00 2f-' / g 001 001 ~ 002 - ... ODS tJUl ZOJC(t)"' r(t) ROJC ROJC = 1°CIW Max o CURVES APPLY FOR POWER PULSE TRAIN SHOWN READ TIME AT 11 TJlpkl - TC· Plpkl ZOJClll DUTY CYCLE, 0 "1]/12 I 01 Plpkl -r-~~ i SliGjE riLfj / ~ -- ~ IIIII 02 05 10 2a t, 50 TIME (ms) 1-705 10 I I 20 I I I II III 50 100 I I 200 I I II II 500 10k MJ13330, MJ13331 SAFE OPERATING AREA INFORMATION FIGURE 12 - FORWARD BIAS SAFE OPERATING AREA 100 0 OJ ,. 0: S i t- a ~ - 20 5. 0 0 ~ :: - - - - - There are two limitations on the power handling ability of a transistor: average Junction temperature and second breakdown. Safe operating area curves Indicate IC-VCE limits of the tranSIStor that must be observed for reliable operation. I.e .. the tranSistor must not be subjected to greater diSSipation than the curves indicate. 100p,= 1.0m,= 2. 0 I. 0 5 FORWARD BIAS ~ Bonding Wife lImIt Thermally lImited (Smgle Pulse) 10 ms ~ The data of Figure 12 IS based on TC = 2SoC; T J(pk) vanable depending on power level. Second breakdown pulse limits are valid for duty cycles to 10% but must be derated when T C ;;, 2SoC. Second breakdown limitations do not derate the same as thermal limitations. Allowable current at the voltages shown on Figure 12 May be found at any case temperature by uSing the appropriate curve on Figure 14. T J(pk) may be calculated from the data In Figure 11. At high case temperatures. thermal limitations will reduce the power that can be handled to values less than the limitations Imposed by second breakdown. IS Second Breakdown Limn 2 TC" 25°C 8 o. I il 00 5 0.0 2 0.0 1 3.0 MJ13330';: MJ13331= 50 10 20 50 100 ~F" 200 300 VCE. COLLECTOR·EMITTER VOLTAGE (VOLTSI FIGURE 13 - REVERSE BIAS SWITCHING SAFE OPERATING AREA 0 REVERSE BIAS MJ13331 limits Shown 1\ \\ 6 For inductive loads, high voltage and high current must be sustained simultaneously during turn-off, in most cases, with the base to emitter junction reverse biased. Under these conditions the collector voltage must be held to a safe level at or below a specific value of collector current. This can be accomplished by several means such as active clamping, R C snubbing, load line shaping, etc. The safe level for these devices is specified as Reverse Bias Safe Operating Area and represents the voltage-current condition allowable' during reverse biased turn-off. This rating is verified under clamped conditions so that the device is never subjected to an avalanche mode. Figure 13 gives the complete R BSOA characteristics. MJ13330 Limit 50 V less \\ 2 IC/IS" 5 r-TC" 100°C B \\ \1\ 1\ '\VSE(off)" 5 V 1\ VSE(offl" 2 v \ ~ ~ :fl a o 100 200 300 400 VCE. COLLECTOR·EMITTER VOLTAGE (VOLTSI 500 FIGURE 14 - POWER DERATING 100 0 '" t::-..... f"'.- "'" ~ f'... THERMAL DERATING 0 1"--- I'- SECONO SREAKDOWN DERATlNG- "i'. -.... 1"--- "- r---- "- 0 o o 40 SO 120 TC, CASE TEMPERATURE (OCI 1-706 160 "'" "'" 200 MJ13332 MJ13334 MJ13333 MJ13335 MOTOROLA ! I Designers Data Sheet 20 AMPERE NPN SILICON POWER TRANSISTORS SWITCHMODE SERIES NPN SILICON POWER TRANSISTORS 350-500 VOLTS 175 WATTS The MJ13332 through MJ13335 transistors are designed for high-voltage, high-speed, power switching in inductive circuits where fall time is critical. They are particularly suited for line operated switchmode applications such as: Designer's Data for "Worst Case" Conditions • Switching Regulators • Inverters The DeSigners Data Sheet permits the design of most circuits • Solenoid and Relay Drivers • Motor Controls entirely from the Information pre- • Deflection Circuits Fast Turn-Off Times 200 ns Inductive Fall Time-25 0 C (Typ) 1.8 f.lS Inductive Storage Time-25 0 C (Typ) sented Limit data - representing deVice characterIStics boundaries are given to facilitate "worst case" deSign. Operating Temperature Range -65 to +2000 C ~ 1000 C Performance Specified for: Reversed Biased SOA with Inductive Loads Switching Times with Inductive Loads Saturation Voltages Leakage Currents L~"'B l. --t C o -- . MAXIMUM RATINGS N '" 1:1 '"'" ~ ~ '"~'" i i i i Unit Collector-Emitter Voltage VCEOlsus) 350 400 450 500 Vdc Co"ector-Emltter Voltage V£EV 650 700 750 800 Vdc Emitter Base Voltage VEB 6.0 Vdc Collector Current - Continuous IC ICM 20 30 Adc IB IBM 10 15 Adc PD 175 100 1.0 Watts -65 to +200 °c Peak 11) Base Current - Continuous Peak 111 Total Power DISSipation @ T C - 2SoC @TC = 100°C Derate above 25°C Operating and Storage Junction TJ, T stg NOTES 1 DIMENSIONS Q AND V ARE DATUMS 2 IS SEATING PLANE AND DATUM 3 POSITIONAL TOLERANCE fOR MOUNTING HOLE {l W 1*1113101lll5)0I It 11131000510 T 1v01 001 ANSIY145,1973 DIM A B Thermal Resistance, Junction to Case Maximum Lead Temperature for Soldering STYLE 1 Symbol Max Unit R8JC 1.0 °C/W TL 275 °c Purposes: 1/8" from Case for 5 Seconds (1) Pulse Test' Pulse Width - 5 ms, Duty Cycle ~ 10%. BASE 2 EMmER CASE COLLECTOR PIN 1 c , D F 1-707 MIlliMETERS MIN MAX 3937 2108 ." ,.091 H J U V 76' 1.09 rffs1j~?YJ.x - Poifo- 0.250 0300 0.038 0043 1.18 0.055 O. 0 3015BSC 1187BSC 1092 BSG 0.430BSC 54iBSC 0215BSC 1&89BSC O.665BSC 1219 0440 0'3D 38' '19 0150 01&5 2661 10.. 533 0190 0.210 '83 381 '19 0150 01&5 CASE , . • •a ",8 R Similar deVice types available with lower VCEO ratings, see the MJ13330 (200 VI and MJ13331 1250 VI. l v01 4 DIMENSIONS AND TOLERANCES PER W/oC THERMAL CHARACTERISTICS T FOR LEADS Temperature Range Characteristic I III '"~'" Symbol Rating K ~ MJ13332, MJ13333, MJ13334, MJ13335 .. ELECTRICAL CHARACTERISTICS (TC ' 25°C unless otherwise noted) Characteristic OFF CHARACTERISTICS Collector-Emitter Sustaining Voltage (Table 1) (IC' 100 rnA, IB' 0) MJ13335 MJ13334 MJ13333 MJ13332 Collector Cutoff Current VCEO(sus) 500 450 400 350 - - - - 0.25 5.0 mAde ICEV (VCEV ' Rated Value, VBE(off) , 1.5 Vdc) (VCEV ' Rated Value, VBE(off) , 1.5 Vdc, TC ' 150°C) Vdc - Collector Cutoff Current (VCE' Rated VCEV, RBE' 50.n, TC' 100°C) ICER 5.0 mAde Emitter Cutoff Current lEBO 1.0 mAde (VEB ' 6.0 Vdc, IC' 0) SECOND BREAKDOWN Second Breakdown Collector Current with base forward biased See Figure 12 . Clamped Inductive SOA with Base Reverse Biased See F tgure 13 ON CHARACTERISTICS (1) DC Current Gain (lC ' 5.0 Adc, VCE ' 5.0 Vdc) hFE Collector-Emitter Saturation Voltage - 60 - - - - - - 1.8 5.0 2.4 - - 1.8 1.8 - 0.02 0.1 ~s 0.3 0.7 ~s 1.6 4.0 ~s O.~ 0.7 ~s Vdc VCE(sat} (lC ' 10 Adc, IB ' 2.0 Adc) (lC ' 20 Adc, IB ' 6.7 Adc) (lC' 10 Adc, IB' 2.0 Adc, TC' 100°C) Base-Emmer Saturation Voltage Vdc VBE(sat) (IC' 10 Adc,le' 2.0 Adc) (lC' 10 Adc, IB' 2.0 Adc, TC' 100°C) - 10 DYNAMIC CHARACTERISTICS Output Capacitance (Vce' 10 Vdc, IE ' 0, f test , 1.0 kHz) SWITCHING CHARACTERISTICS Resistive Load (Table 1) Delay Time Rise Time S~orage Time td (VCC ' 250 Vdc, IC ' 10 A, lel ' 2.0 A, veE (off) , 5.0 Vdc, t p ' 10 ps, Duty Cycle'; 2.0%) Fall Time tr ts - tf Inductive Load, Clamped (Table 1) Storage Time Crossover Time (lC - 10 A(pk), Vcl amp ' 250 Vdc, IBl - 2.0 A, VeE(off) , 5 Vdc, TC ' 100°C) Storage TIme Crossover Time Fall Time (lC' 10 A(pkl. Vclamp ' 250 Vdc, IBl ' 2.0 A, VBE(off) , 5 Vdc, TC ' 25°C) (1) Pulse Test: PW· 300 ~s, Duty Cycle'; 2%. 1-708 2.5 5.0 ps tc - 0.8 2.0 ps tsv - 1.8 - ps tsv tc 0.4 ps tfi 0.2 ps MJ13332, MJ13333, MJ13334, MJ13335 FIGURE 1 - DC CURRENT GAIN FIGURE 2 - COLLECTOR SATURATION REGION 100 ~ o 2: 150'C ......... a z ;j' ~ 25°C a => ~ 1.6 "I '".... u ~c "- ~ VCE' 5 V IA w :: 'I" C lOA > 1. 2 """'- ~, u ; 2.0 ~ SA - 0.8 '" g o 10 _ 04 8 5.0 0.2 as 1.0 2a 5.0 IC, COLLECTOR CURRENT (AMPS) i! a " 10 > 001 20 0.02 FIGURE 3 - COLLECTOR-EMITTER SATURATION REGION ~ 2 I.6 w 2.0 « 2 ~ Iclis = 5 V /I g§'" i! ;;;S f- II 8 8_ '/ o > 2 h :: ~ 04 25°C 0.2 0.5 I-- 150°C ...-:~ 150 0 C a 10 20 5.0 IC, COLLECTOR CURRENT (AMP) 10 Di ~ 20 a 0.2 0.5 > FIGURE 5 - COLLECTOR CUTOFF REGION / 10 2.0 5a IC, COLLECTOR CURRENT (AMP) ./ 10 20 I 2000 ~ C,b , I i 1000 ~TJ=150'C ~ 700 lL ./ 125'C ./ / u z ..... 100'C 1 , / -- _f-f-- FIGURE 6 - CAPACITANCE 3000 104 - 10 6 o > 5.0 FIGURE 4 - BASE-EMITTER VOLTAGE I J Ic/lS - 5 2: 0.1 0.2 0.5 10 IS, SASE CURRENT (AMP) a a o '" !.:; 0.05 75°C FORWARO f - - r-REVERSE 500 « .... ./ G C'b.......... <1: 200 , ;:\ r- ",- lOa /VCE'250V= 25'C 10- 1 -0.4 -0.2 50 a +0.2 +0.4 30 01 +0.6 VSE, SASE-EMITTER VOLTAGE (VOLTS) 1-709 0.5 10 5 a 10 50 lUO VR, REVERSE VOLTAGE (VOLTS) sou 1000 MJ13332, MJ13333, MJ13334, MJ13335 SWITCHING TIMES NOTE In reSistive switching circuits. rise. fall. and storage times have been defined and apply to both current and voltage waveforms since they are in phase. However. for inductive loads which are common to SWITCH MODE power supplies and hammer drivers. current and voltage waveforms are not in phase. Therefore. separate measurements must be made on each waveform to determine the total switching time. For this reason. the following new terms have been defined. tsv = Voltage Storage Time. 90% ISl to 10% Vclamp trv = Voltage Rise Time. 10-90% Vclamp tfi = Current Fall Time, 90-10% IC tti = Current Tail, 10-2% IC tc = Crossover Time, 10% Vcl amp to 10% IC An enlarged portion of the inductive switching waveforms is shown in Figure 7 to aid in the visual identity of these terms. For the designer, there is minimal switching loss during storage time and the predominant switching power losses occur during the crossover interval and can be obtained using the standard equation from AN-222: PSWT = 1/2 VCCIC(tc)f In general, trv + tfi "" tc' However, at lower test currents this relationship may not be valid . As is common with most switching transistors, resistive switching is specified at 25 0 C and has become a benchmark for designers. However, for designers of high frequency converter circuits, the user oriented specifications which make this a "SWITCH MODE" transistor are the inductive switching speeds (tc and t sv ) which are guaranteed at 1000 C. FIGURE 7 - INDUCTIVE SWITCHING MEASUREMENTS IIIJ IC~ .,/ 1\ 90% IC Ptlf,- t-II,I~ f- le---\ f-- 90% Vc,ampA / I- -Isv IC ........ "'::'elam p _ r------- 1'\ ~ I",ffj V VeE I' IB- - 90%IBI - --\- -- - - -- - - -~ ........... 1-+- 10%...... IC pK 2% Ie lO%Vclamp TIME FIGURE 8 - REVERSE BASE CURRENT versus VBE(off) WITH NO EXTERNAL BASE RESISTANCE 0 .,/ ~ " ~ I u V 0./ 5. 0 V ~ -~ °v 2. ./ ./ V Ie" 10 A t-IB1" 2 A Vcl amp = 250 V _ t-TJ" 25°C - V 5.0 2.0 VBE(off). REVERSE BASE VOLTAGE (VOLTS) 10 RESISTIVE SWITCHING PERFORMANCE FIGURE 9 - TURN-ON SWITCHING TIMES FIGURE 10 - TURN-OFF SWITCHING TIMES 2. 0 5. 0 1. 0 IS 2. 0 O. 5 ] :E O. 21'-. r...... >= -' o. 1 I,...;;; VCC-250V ICIIB" 5 '" r- 0.05 -...... .3 :E o. 5 >= Id 0.5 ....... I-- +- 1.0 ." ...... ....... ........ 0.0 2 0.2 ~ V r-- f-.2f-- If VCE" 250 V ICIlB" 5 VBE(otf)" 5 V :;:;;;; .1 i"""- 1.0 2.0 5.0 IC. COLLECTOR CURRENT (AMP) 10 20 0.0 5 1-710 0.2 0.5 5.0 1.0 2.0 IC. COLLECTOR CURRENT (AMP) 10 20 MJ13332, MJ13333, MJ13334, MJ13335 TABLE 1 - TEST CONOITIONS FOR OVNAMIC PERFORMANCE RBSOA AND INDUCTIVE SWITCHING VCEO(susl RESISTIVE SWITCHING r-.-----------~--~------_.--~+15 47 n A1 TURN ON TIME +10V~Ol 2• • JL II) Z 1-0 ::l- R2 a.!: J 2 'S1 adjusted to obtain the foreed ZC -z hFE desired 8 son Pw Vaned to Atta," 'e'" TURN·OFF TIME Use Inductive Swttcl'ung driver as the Input to the resistive test Circuit lOOmA All Diodes - 1N4934 All NPN - MJE2QO All PNP - MJE210 ~----*------*---o J 250 /IF - 5.2 AdjustR1 to obtain IS1 a For sWitching and RBSOA. R2 "" For BVCEO(sus), R2 LeoLI" 80 mH Reoll '" 0 7 n Vee = oa Lt:;I)I' = 180 ~H ReOl1 = 005 Vcc='20V = 10 V n Vee"" 250 V AL"" 50 n Vclamp"" 250 V AB adjusted to atta.n deSired IS1 Pulse Width = 10 IJ.s OUTPUT WAVEFORMS INDUCTIVE TEST CIRCUIT '1L±i1 1--" RESISTIVE TEST CIRCUIT t1 Adjusted to Obtain Ie 'f ~'.m.'d "t- t1 .... LCOll(1Cpkl Vee t2 .... LC01I(lCpk) vcet vc"[::" Vclamp ~mp Time Test EqUipment Scope - TektronIX 475 or EqUIvalent 1--12-1 FIGURE 11 - THERMAL RESPONSE 1 7-0-05 5 3::= 02 2 ,-- -- 01 1:==:005 7 5 t::::o 3- 02 - -- t..- "i;,JJi -r t tOO erw Max RIlJC{t) ~ 0 CURVES APPL Y FOR POWER PULSE TRAIN SHOWN ~ READ TIME AI11 I , :;;"'" ,~Jtpk) . T~ '" P(pk) At/Je tl ) Ptflil ....t<" 001 t~-J 0.0 2 - SINGLE PULSE 0.0 1 001 ROJCII) _ r('1 -I I II 002 003 DUTY CYCLE. 0 - ,,112 005 01 02 03 10 05 I, TIME (ms) 1-711 20 30 50 100 200 300 500 1 1000 MJ13332, MJ13333, MJ13334, MJ13335 SAFE OPERATING AREA INFORMATION FIGURE 12 - FORWARD BIAS SAFE OPERATING AREA FORWARD BIAS There are two limitations on the power handling ability of a tranSistor. average lunctlon temperature and second breakdown. Safe operating area curves indicate IC-VCE limits of the tranSistor that must be observed for reliable operation, Ie, the tranSIStor must not be sublected to 50 ,,; .... 10M' 20 10 5 a:: ,. 100M' I 1m, '" 02 8 005 ~ 0.1 ~ -- Thermal Llmlt@Tc '" 25°C ~~g;;3 Second Breakdown llimt 00 1 0.00 5 The data of Figure 12 IS based on TC = 250 C, TJ(pk) va"able depending on power level. Second breakdown pulse limits are valid for duty cycles to 1 0% but must be derated when TC ;;;. 250 C Second breakdown limitations do not derate the same as thermal limitatIOns. Allowable current at the voltages shown on Figure 12 may be found at any case temperature by usmg the appropriate curve on Figure 14. T J(pk) may be calculated from the data In Figure 11. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations Imposed by second breakdown. IS roc Bonding Wire Limit (SmgtePulse) 30.02 greater diSSipation than the curves Indrf;ate '" MJ13334 'MJI333S· 100 200 20 50 10 VCE. COLLECTOR EMITTER VOLTAGE IVOLTS) 350 450 600 400 500 FIGURE 13 - RBSOA, REVERSE BIAS SWITCHING SAFE OPERATING AREA a REVERSE 'BIAS ~ \\ . / /' 1\' k-:::: ~ \' ~ 2 5 r-- r'c/IB1:> VBEloffl = 5 V r-- r- TJ = 100°C a i 100 I \1\\ ~ r-.. ..."\ For inductive loads, high voltage and high 9urrent must be sustained simultaneously during turn-off, in most cases, with the base to emitter junction reverse biased. Under these conditions the collector voltage must be held to a safe level at or below a specific value of collector current. This can be accomplished by several means such as active clamping, RC snubbing, load line shaping, etc. The safe level for these devices is specified as Reverse Bias' Safe Operating Area and represents the voltage·current condition allowable during reverse biased turn-off. This rating is verified under clamped conditions so that the device is never subjected to an avalanche mode, Figure 13 gives the complete R BSOA characteristics. MJ13335 MJ13334 Mj13333 MJ13332 " "<" ~ I ~ "\ 1,,\i'-.. 400 500 200 300 600 VCE, COLLECTOR·EMITTER VOLTAGE IVJLTSI FIGURE 14 - POWER DERATING 10a ~~ "" l80 '" o G '" ~ 60 r---.... 1""'-.. Forward Bias ....... Therma~ Deratmg --- z ;:: r-... Second Breakdown - ....... r-..., r--... '" ............. "- ~ 40 '"~ "'" ~ 20 a a ,- Derating i'-... 40 120 80 Te. CASE TEMPERATURE 1°C) 1-712 160 "" ""'-.. 200 PNP NPN ® MJ14000 MJ14001 MJ14002 MJ14003 MOTOROLA III 60 AMPERES HIGH-CUR RENT COMPLEMENTARY SILICON POWER TRANSISTORS COMPLEMENTARY SILICON POWER TRANSITORS · .. designed for use in high·power amplifier and switching circuit applications. 60-80 VOLTS 300 WATTS = 60 Amperes • High Current Capability - IC Continuous • DC Current Gain - hFE = 15-100@ IC = 50 Adc • Low Collector-Emitter Saturation Voltage VCE(sat) = 2.5 Vdc (Max) @ IC = 50 Adc MAXIMUM RATINGS Rating Symbol MJI4000 MJ14001 MJ14002 MJ14003 60 60 80 80 Unit Collector-Emitter Voltage Vceo Collector-Base Voltage VeBO Emitter-Base Voltage VeBO 5 Vdc Ie 60 15 Adc Collector Current Base Current Continuous Continuous IB Emitter Current - Continuous Ie Total Power DisSipation @TC '" 2SoC Derate above 25°C Po Operating and Stor H J 90 K ~ 30 o o 40 80 120 160 "" TC. CASE TEMPERATURE ("CI D R " 38.35 3'1.31 19.30 21.08 8.35 1.82 U5 1.80 3.43 29.90 30.40 10.61 11.18 5.12 5.:1 17.1 18. 11.18 12.19 3.14 4.119 24.19 2B.81 INCHES MI. 1.510 0.160 0.250 0.1161 - 1.111 0.420 0.205 O. 0.440 0.151 0.910 CASE 19HI1 200 240 1-713 TO-204AE MAX 1.550 0.830 O. 0.1113 0.135 1.11 0.440 0.22 0 0.480 0.181 1.050 MJ14000, MJ14002 NPN, MJ14001, MJ14003 PNP IIJ ELECTRICAL CHARACTERISTICS (TC = 250 C unless otherwise noted) Symbol Characteristic Min Max 60 80 - - 1.0 1.0 - 1.0 1.0 - 1.0 1.0 - 1.0 30 15 5 100 - 1 2.5 3 - 2 3 4 Unit OFF CHARACTERISTICS Collector-Emitter Sustaining Voltage (1) (lC = 200 mAde, IS = 0) Collector Cutoff Current MJ14000, MJ14001 MJ14402, MJ14003 Collector Cutoff Current MJ14000, MJ14001 MJ14002, MJ14003 Collector Cutoff Current (VCB (VCB = 60 Vdc, =80 Vdc, IE IE mA ICSO =0) =0) MJ14000, MJ14001 MJ14002, MJ14003 Emitter Cutoff Current lEBO = 5 Vdc, IC = 0) (VBE mA ICEX =60 Vdc, VSE(off) = 1.5 V) =80 Vde, VSE(off) = 1.5 V) (VCE (VCE mA ICEO =30 Vdc, IS =0) = 40 Vdc, IS = 0) (VCE (VCE Vdc VCEO(sus) MJ14000, MJ14001 MJ14002, MJ14003 rnA ON CHARACTERISTICS DC Current Gain (1) (lC (lc (lc Collector-Emitter Saturation Voltage (1) (lC (lC IIc VCE(sat) = 26 Ado, IB = 2.5 Ade) = 50 Ado, IS = 5.0 Ade) =60 Ado, IS = 12 Ado) Base-Emitter Saturation Voltage (1) (lC IIc (lc - hFE = 25 Adc, VCE =3.0 V) = 50 Ade, VCE = 3.0 V) =60 Adc, VCE =3.0 V), Vdc Vdo VBE(sat) = 25 Ado, IB = 2.5 Adc) = 50 Adc, IB = 5.0 Adc) =60 Ade,IB = 12 Adc) - DYNAMIC CHARACTERISTICS Output Capacitance (VCS (1) = 10 Vdc,IE =0, I =0.1 MHz) Pulse Test: Pulse Width = 300 I'S, Duty Cvcle .. 2%. FIGURE 2 - MAXIMUM RATED FORWARD BIASED SAFE OPERATING AREA 100 70 50 iC 30 20 '"....5~ => <..> '"~ ~ ,,,:, 1.1 ,.,.1 0 ms 50 ms ... 10 70 50 30 f--2.0 I-- r--: There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown . Safe operating area curves Indicate IC - VCE limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. The data of Figure 2 is based on T Jlpk) = 200°C; T C 1$ vanable depending on conditions. Second breakdown pulse limits are valid lor dutV evcles to 10% provided T J(pk) .;; 20o"C. T J(pk) mav be calculated from the data In Figure13. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown. (See AN-415) ... de 25°C TC - WIre BOnd limIt I-- - - - - - Thermal Limit 10 ~ 8 0.7 0.5 ~ 03 0.2 01 10 Second Breakdown Umlt MJ14000, MJ14001 MJ14002, MJ14003120 3.0 50 70 10 20 30 50 70 100 VCE, COLLECTOR - EMITTER VOLTAGE (VOLTS) 1-714 MJ14000, MJ14002 NPN, MJ14001, MJ14003 PNP TYPICAL elECTRICAL CHARACTERISTICS PNP MJ14001. MJ14003 NPN MJ14000. MJ14002 FIGURE 3 - DC CURRENT GAIN FIGURE 4 - DC CURRENT GAIN 300 rrrr-,,--,-----r-,--.,----rrTTT-,--.,----,r-,--rrT 300 rrrr-r--r----y-r-T-rTTOT--r--,---r--r-r-r-, 200~~r--~~~;ttt~t=t=t=t=tt~ z 100 e- 70 50 ~ z 200 I+H-~I=_:;±_=_-t_-H__+++++-+__+-I--+__H__j w '"'" '"'-' VCE =3 0 V -+-+-+-H-+I+-~~-l----l'~____l+-l 30 g 20 ~ 10 _-_-_-_-_- ;~ :25~rc +-I~H-___j~+__+-'_'!t-..~o+t ---TJ=150°C 70 50 30 07 1 0 10 30 50 70 10 20 30 50 3~~7~1~0-~2~0,--3~0~~570~7~O~1~0-~~20~~3~0~~5~0~70 70 IC. COLLECTOR CURRENT (AMPS) IC. COLLECTOR CURRENT (AMPS) FIGURE 6 - COLLECTOR SATURATION REGION FIGURE 5 - COLLECTOR SATURATION REGION 18 in S 0 C 24 I-- I TJ =15°C w "'~ > :::'" ~ ~ 16 12 08 '" S ~ 24 - TJ=25°C I \ \ I\, '"w 16 ~ 12 ~ 08 f---\:IC=10 A .......... ~IC=10A 1'-. I ~ o 01 0 I-- -- ~ > 02030507102030507010 04 ;\ \ :'-.. o 01 ........ 02 03 28 24 24 I-- TJ=25°C 5070 2:.. 16 /,1 w ........... VBE(s.1) @ IC/IB -10 1 w "' V V ~ -> ! VBE(on) @ VCE 30 V I I IC/IB=10 ..... 1'1 III I ~ 2030507010 20 30 50 70 IC. COLLECTOR CURRENT (AMPS) I/V VBE(s.t) @ IC/IB = to 08 o ...... VBE(~VCE I-- VCE(s.t) 07 1 0 20 @ IC/IB=10 I 30 5 0 7 0 10 ......V V / / 3.0 V /' ..-t-" I 20 IC. COLLECTOR CURRENT (AMPS) 1-715 "/ V 12 04 I II V I I I E! I--- VCE(s.t) @ 10 I I I I Ui 20 07 10 30 I-- TJ =25°C en 20 S o 2:.. 16 I 20 FIGURE 8 - "ON" VOLTAGES FIGURE 7 - "ON" VOLTAGES 08 050710 lB. BASE CURRENT (AMPS) 2B ~ ~ 12 o > Ii I lB. BASE CURRENT (AMPS) o II 1\IC=25A ~ \ - > IC =25 A :1 IC=60 A "' « 20 S '-' 04 04 \ 0 > -> II I II I II w .\ IC=60 A 1 2e 0 I I \ ) 2B 30 50 70 MJ14000. MJ14002 NPN. MJ14001. MJ14003 PNP FIGURE 9 - TURN-ON SWITCHING TIMES FIGURE 10 - TURN-OFF SWITCHING TIMES 40 30 1.0 0.7 05 ;-"'. 0.3 02 , , - I, 20 10 07 "- .:!o "w :E ~~ = ~ 01 ;:: 007 -" 0 05 ;:: ----- ...... 003 - - - MJ14000, MJ14002 (NPN) - - - - - MJ14001, MJ14003 (PNP) 002 II 001 07 I 0 I I I 20 50 70 10 05 03 - - Is ::-- -!=:>, 11- t-- - - O. I 007 20 50 30 - 1"-.- I-- MJ14000, MJI4002 (NPN) MJ14001, MJ14003 (PNP) -- - 004 07 1 0 70 - -- l- 02 I I III il 30 ---- 2a IC, COLLECTOR CURRENT (AMPS) 30 50 70 10 20 30 50 70 IC, COLLECTOR CURRENT (AMPS) FIGURE 12 - SWITCHING TEST CIRCUIT VCC FIGURE 11 - CAPACITANCE VARIATION 10000 7000 5000 3000 : t;!; '"~ 2000 1000 +20 V r 04 --- - tr<-lW,2v f:::::: ".. 20ns t-- - - VCC r----- I-TJ~25°~C tr Q - 7 5'" ~ z ~ 6 VCE :10 V (lei' 11 51~HZ '? MJI5001(NPN) , >' 0.4 ~~ -, 1 -i :l :f, ~ 0.8 Q TJ :100DC I-'" VCEI..lI VBE@VCE:2Vdc w .-::: -? .-:::,. 1-1-"" > -+;> 0.4 i==-100DC o 2. 1.2 ~ VBE @VCE : 2 Vdc Q 5 J 5 I-- ~ o 0.2 20 'c, COLLECTOR CURRENT (AMP) ., TJ: lOODC 100DC V V ..... I-"'25DC vcJ(sal)l@ ,ICIIB : 10 10 k:::: I II 0.3 0.5 0.7 1 2 IC, COLLECTOR CUR RENT (AMP) 1-719 / ~ 7 10 20 MJ15003 NPN MJ15004 PNP ® MOTOROLA III COMPLEMENTARY SI LICON POWER TRANSISTORS 20 AMPERE POWER TRANSISTORS COMPLEMENTARY SILICON The MJ15003 and MJ15004 are PowerBase power transistors designed for high power audio, disk head positioners and other linear applications. • High Safe Operating Area (100% Tested) 250W@50V • For Low Distortion Complementary Designs • High DC Current Gain hFE = 25 (Min) @ IC 140 VOLTS 250 WATTS = 5 Adc Lr~ r~, Es~1 PLANE MAXIMUM RATINGS Rating Unit Symbol Value VCEO(sus) 140 Vdc Collector-Base Voltage VCBO 140 Vdc Emitter-Base Voltage Collector-Emitter Voltage VEBO 5 Vdc Collector Current - Continuous IC 20 Adc Base Current - Continuous IB 5 Adc Emitter Current - Continuous IE 25 Adc Po 250 1.43 Watts W/oC TJ,Tstg -65 to +200 °c Symbol Max Unit R9JC 0.70 °C/W TL 265 °c Total Power oissipation@ TC = 25°C Derate above 2SoC Operating and Storage Junction PIN 1. BASE 2. EMITTER CASE, COLLECTOR Temperature Range MILLIMETERS THERMAL CHARACTERISTICS Characteristic Thermal Resistance, Junction to Case Maximum Lead Temperature for Soldering Purposes: 1/16" from Case for <;10s. DIM MIN MAX 39.37 - 1.550 21.08 0.B30 7.62 0.250 0.300 1.09 0.039 0.043 3.43 - 0.135 30.40 1.1ll 1.197 I1.1B 0.420 0.440 5.59 0.210 0.20 17.15 0.655 0.675 12.19 0.440 0.480 4.09 0.151 0.161 R 1.050 - 26.67 Collactor connected to case. CASE 11·01 A 8 C 6.35 0 0.99 E F 29.90 G 10.67 H 5.3 J 16.64 K I1.1B II 3.84 TO-3 1-720 INCHES MIN MAX MJ15004 PNP MJ15003 NPN "ELECTRICAL CHARACTERISTICS ITC I = 25°C unless otherwISe noted.) I Characteristic Symbol Min Max Unit VCEO(Su,) 140 - Vdc - 100 2 /.lAde mAde ICEO .. 250 ,uAdc lEBO -- 100 "Adc hFE 25 150 OFF CHARACTERISTICS Collector· Emitter Sustaining Voltage (11 IIC 200 mAde, 18 0) Collector Cutoff Current IVCE I VCE = 140Vdc, VBEloff) = 1.5 Vdc) = 140 Vdc, VBEloff) = 1.5 Vdc, ICEX TC = 150°C) Collector Cutoff Current IVCE' 140 Vdc, IB • 0) Emitter Cutoff Current IVEB c 5 Vdc, IC = 0) SECOND BREAKDOWN Second Breakdown Collector Current with Base Forward Biased (VeE': 50 Vdc. t =- 1 s (non-repetitive) (VeE '- 100 Vdc, t "" 1 s (non-repetitive) ON CHARACTERISTICS DC Current Gam IIC = 5 Adc, VCE = 2 Vdc) Collector-Emitter Saturation Voltage IIc =5 Adc, Ie =0 VCEI,at) - 1 Vdc VeElon) - 2 Vdc 5 Adc) Base-Emitter On Voltage IIc = 5 Adc, VCE = 2 Vdc) DYNAMIC CHARACTERISTICS MHz Current-Gain - Bandwidth Product IIC .. 0.5 Adc, VCE Output Capacitance IVce = 10 Vdc, IE C 10 Vdc. f test • 0.5 MHz) 1000 = 0, (1) Pulse Test Pulse Width f test =: pF = 1 MHz) 300 ,us, Duty Cycle'" 2%. FIGURE 1 - ACTIVE·REGION SAFE OPERATING AREA '. " 0 5 ii: 0 ~ 7 5 '" ~ ~ 3 => u ~ 2 0 ~ I ~ o. 5 8 o. 7 ----- --- TC=25 0 C There are two limitations on the powerhandllng abilitY of a transistor: average junction temperature and second breakdown, Safe operating area curves mdicate Ie - v CE limits of the transistor that must be observed for reliable operation; I.e" the transistor must not be subjected to greater dissipation than the curves Indicate. The data of Figure 1 IS based on T J(pk) = 200°C; TC is vanable depending on conditions. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations Imposed by second breakdown, TJ = 200'C BONDING WIRE LIMITED THERMAL LIMITATION ISINGLE PULSE) SECOND BREAKDOWN llMITEO CURVES APPLY BELOW RATED VCEO o. 3 o. 2 I 10 20 30 50 70 100 150 200 VCE. COLLECTOR·EMITTERVOLTAGE IVOLTS) 1-721 MJ15003 NPN MJ15004 PNP .. TYPICAL CHARACTERISTICS FIGURE 3 - CURRENT GAIN - BANDWIDTH PRODUCT FIGURE 2 - CAPACITANCES 1000 1500 - 0 MJ150031NPN) MJ15004 IPNP) 1000 I. 9 8 700 - -- ~ 500 7- Cob ~ 300 Cob U 200 ~ TJ ~ 15 0CJ VeE'" 10 Vdc 'tes.t" 05MHl r-M~IPNlp) t'--, MJI5003INPN) ...... 6 r-. 5 ;'\ 4 c.i 100 70 ~ f=TJ ~ 15°C 50 1 30 10 0 3 , 1 1 10 1 10 50 30 70 oI 100 0.1 03 VR, REVERSE VOLTAGE (VOLTS) 10 05 07 'C, COLLECTOR CURRENT lAMP) FIGURE 4 - DC CURRENT GAIN MJ15003 200 TJ 100 z ~ >- z '"'" u'" u '" ~ 70 50 ~ 100°C MJ15004 VCE ~'1 Vdc_ :::-- r- 15 OC 100 I- - TJ ~ 100°C VeE" 2 Vdc 10 0 0 = 25°C 0 30 0 ..... 20 ~ 0 10 " I"': 0 7 5 1 01 0.3 0,50.7 3 1 01 10 10 03 0.5 0.7 IC. COLLECTOR CURRENT lAMP) 10 10 IC. COLLECTOR CURRENT lAMP) FIGURE 5 - "ON" VOL TAGE MJ15003 MJ15004 '/ ~ 1 VSE @ VCE ~ 1 Vdc 8 -TJ O. fl I, 1. 6 ~150C 4~rtrTI ::t::= F-" ~_IC1Iitll @ Iclis ~ 10 0 0,2 0.3 0,5 ..-::::i/ TJ~100oC / ~? /1 III V w '"'" :; '">,; 10 III1 V / 1.2 /1/ Ic. COLLECTOR CURRENT lAMP) 1-II I~I,I.II rlOoe.1 0,2 ~ 1-' I ° R o 20 VSE @VCE 8I-TJ;25 0)C 0,4 ~C "II 0.7 /J I 1,6 VrElsal)@ Ic/lS 2 Vdc ~". i-- .....TJ~100oC ~ 10 ~ 0.5 15°C 10 IC. COLLECTOR CURRENT lAMP) 1-722 II V 20 NPN ® PNP MJ15011 MJ15012 MOTOROLA III Advance InforIDation 10AMPERE COMPLEMENTARY SILICON POWER TRANSISTORS COMPLEMENTARY POWER TRANSISTORS The MJ15011 and MJ15012 are Power Base power transistors 250 VOLTS 200 WATTS designed for high·power audio, disk head positioners, and other linear applications. These devices can also be used in power switching circuits such as relay or solenoid drivers, dc·to·dc converters or inverters. • High Safe Operating Area (100% Tested) 1.2 A@ 100 V • Completely Characterized for Linear Operation • High DC Current Gain and Low Saturation Voltage hFE = 20 (Min) @ 2 A, 2 V VCE(sat) = 2.5 V (Max) @ IC = 4 A, IB = 0.4 A • For Low Distortion Complementary Designs lr~ r~. ES:?-t;: PLANE I MAXIMUM RATINGS Rating Collector~Emrtter Voltage Collector~Em Itter Voltage Emitter-Base Voltage Collector Current - Continuous -Peak III Base Current - Contmuous -Peak(l) Emitter Current - Continuous -Peak III Total Power DISSipation @ T C = 2SoC Symbol Value Unit VCEOlsus) VCEX VEB IC ICM IB IBM IE IEM PD 250 Vdc Vdc Vdc Adc Derate above 25°C Operatrng and Storage Junction TJ, T stg 250 5 10 15 2 5 Adc 12 20 Adc 200 1.14 -65 to +200 Watts W/oC Max 0.875 265 Unit °c STYLE 1: PIN 1. BASE 2. EMITTER CASE: COLLECTOR MILLIMETERS DIM MIN MAX Temperature Range THERMAL CHARACTERISTICS Characteristic Thermal ReSistance, JunctIon to Case Maximum Lead Temperature for (1) Symbol ROJC TL °C/W uc NOTE: 1. DIM "0" IS OIA. A B C 0 E F G Soldering Purposes H Pulse Test: Pulse Width = 5 ms, Duty Cycle'; 10%. J K 0 R - 39.31 1.5511 21.08 0.B3O 1.62 0.250 0.300 1.09 0.039 0.043 3.43 0.135 29.90 30.40 1.111 1.191 10.61 11.18 0.420 0.440 5.33 5.59 0.210 0.220 16.64 11.15 0.655 0.615 11.18 12.19 0.440 0.480 4.09 0.151 0.161 3.B4 26.61 1.050 Collector connected to case. CASE 11-01 6.35 0.99 - (TO·3) This 1$ advance mformatlon and specificatiOns are subject to change without notice. 1-723 INCHES MAX MIN MJ15011 NPN, MJ15012 PNP I ELECTRICAL CHARACTERISTICS (TC = 25 0 C unless othe,w"e noted) Symbol Min Max Unit VCEO(sus) 250 - Vdc 'CED - 1 mAde 'CEX - 500 ~Adc 'EBO - 500 ~Adc 20 5 100 - 0.8 2.5 - 2 Characteristic OFF CHARACTERISTICS Collector-Em Itter 8 rea kdown Voltage (1 ) (lC = 100 mAl Collector Cutoff Current (VCE = 200 Vdc) Collector Cutoff Current (VCE = 250 Vdc, VBE(off) = 1.5 Vdc) Emitter Cutoff Current (VBE = 5 Vdc) ON CHARACTERISTICS (1) DC Current Gain (lC = 2 Adc, VCE (lc = 4 Adc, VCE = 2 Vdc) Collector-Emitter Saturation Voltage (lC (lC = 2 Adc, =4 Ado, IB 'B Vdc VCE(sa') =0.2 Adc) =0.4 Adc) Base-Emitter On Voltage (lC - hFE = 2 Vdcl VBE(on) =4 Adc, VCE = 2 Vdc) Vdc DYNAMIC CHARACTERISTICS Output Capacitance (VCB = 10Vdc, f = 1 MHz) SECOND BREAKDOWN Second Breakdown Collector Current with Base Forward Biased (VCE =40. Vdc, t = 0.5 s) (VCE = 100 Vdc, t = 0.5 s) (1) Pulse Test: Pulse Width == 300 MS, Duty Cycle"; 2%. FIGURE 2 - ACTIVE REGION SAFE OPERATING AREA FIGURE 1 - DC CURRENT GAIN 200 - -- 10 VCE" 2 Vde ....... 100 ....... i"'.. z ;;: .... '" "- 0 ~ ,\1' B 20 r-MJI5011-- '"'c i r- MJ15012 - - de 1 \ 0 5 r- - - - 1 r- 5 1-. 2 0.1 0.2 0.5 1 10 'C, COLLECTOR CURRENT BONDING WIRE LIMIT THERMALLlMIT@TC"25'C (SINGLE PULSE) SECOND BREAKDOWN LIMIT '\. '\. 1 15 10 30 50 70 100 150 VCE, COLLECTOR·EMITTER VOLTAGE (VOLTS) 1-724 100 300 ® NPN MJ15022 MJ15024 MOTOROLA III 16 AMPERE SILICON POWER TRANSISTORS SILICON POWER TRANSISTORS The MJ 1 5022 and MJ 15024 are PowerBase power transistors designed for high power audio, disk head positioners and other linear applications . 200 and 250 VOLTS 250 WATTS • High Safe Operating Area (100% Tested) 2A@80V • High DC Current Gain hFE = 15 (Min) @ IC = 8 Adc lr~ r~K ESEATlN(~ PLANE MAXIMUM RATINGS Symbol MJ15022 I MJ15024 Unit Collector-Emitter Voltage VCEO 200 250 Vdc Collector-Base Voltage VCBO 350 400 Vdc Emitter-Base Voltage Collector-Emitter Voltage I I VEBO Rating Collector Current - Continuous VCEX IC Peak (11 5 400 Vdc 16 30 Adc Vdc Base Current - Continuous IB 5 Adc Total Power Dissipation@TC=250C PD 250 1.43 Watts -65 to +200 °c Derate above 2SoC Operating and Storage Junction TJ.Tstg W/oC SlYLE 1: . PIN 1. BASE 2. EMITTER CASE: COLLECTOR NOTE: 1. DIM "0" IS OIA. Temperature Range MILLIMETERS DIM MIN MAX THERMAL CHARACTERISTICS Characteristic Thermal Resistance, Junction to Case I I Symbol I Max ReJC I 0.70 I (1) Pulse Test: Pulse Width"" 5 ms, Duty Cycle" 10%. Unit uC/W A B C D E F G H J K Q R 1-725 INCHES MIN MAX - 39.37 21.08 7.62 0.250 1.09 0.039 3.43 29.90 30.40 1.177 10.67 11.18 0.420 5.33 5.59 0.210 16.64 17.15 0.655 11.18 12.19 0.440 4.09 0.151 3.84 26.67 Collector connected to case, CASE 1·04 (TQ·204AA) 6.35 0.99 - 1.&50 0.B3O 0.300 0.043 0.135 1.197 0.440 0.220 0.675 0.480 0.161 1.050 MJ15022, MJ15024 NPN - ELECTRICAL CHARACTERISTICS ITC = 25 0 C unle.. otherwise noted.) I I Cha,actaristie Symbol Min Max 200 250 - Unit OFF CHARACTERISTICS Collector-Emitter Sustaining Voltage (1) VCEOl,u,1 MJ15022 MJ15024 IIc = 100 mAde, 18 = 01 Collector Cutoff Current ICEX (VCE = 200 Vde, V8E(off) = 1.5 Vde) (VCE = 250 Vde, V8Eloff) = 1.5 Vde) MJ15022 MJ15024 Collector Cutoff Current (VCE = 150 Vde, 18 = 0) (V CE = 200 Vde, 18 = 0) (VCE = 5Vde, 18 250 250 - 500 500 - 500 15 5 60 - - 1.4 4.0 VBElon) - 2.2 Vde fT 4 - MHz Cob - 500 pF ICEO IE80 = 0) ~Ade - MJ15022 MJ15024 Emitter Cutoff Current - - /JAde IJAdc 80th SECOND BREAKDOWN Second Breakdown Collector Current with Base Forward Biased (VeE::: 50 Vdc, t "" 0.5 5 (non-repetitive)) (VeE::: 80 Vdc, t::: 0.5 5 (non-repetitive)) ON CHARACTERISTICS DC Current Gain IIc IIc Collector-Emitter Saturation Voltage IIC IIc - hFE = 8 Ade, VCE = 4 Vde) = 16 Ade, VCE = 4 Vde) Base·Emitter On Voltage IIc = 8 Ade, VCE Vde VCElsatl = 8 Ade, 18 =0.8 Ade) = 16 Ade, IB = 3.2 Ade) = 4 Vde) DYNAMIC CHARACTERISTICS Current-Gain - Bandwidth Product IIc = 1 Ade, VCE = 10 Vde, f test = 1 MHz) Output Capacitance IVC8 = 10 Vdc, IE = 0, fteS! 111 Pulse Test: Pulse Width = 1 MHzl = 300 "', Duty Cycle" 2%. There are two limitations on the powerhandling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate Ie - VeE limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. The data of Figure 1 is based on T J(pk);:: 2000 e;Te is variable depending on conditions. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown. VCE, COLLECTOR·EMITTER VOLTAGE (VOLTS) 1-726 MJ15022, MJ15024 NPN TYPICAL CHARACTERISTICS - FIGURE 2 - CAPACITANCES 400 0 3000 r- FIGURE 3 - CURRENT,GAIN-BANDWIDTH PRODUCT TJ" 25°C C,b 1 9 8 TJ 0 250C VCE 0 10 V ~lOO 0 7 fTesf w 6 u ~ 50 0 :::;J i"-- 5 t-. U t- u' 1 MHz ....... 4 Cob =: "- 3 100 1 40 03 0 05 50 10 30 50 100 03 300 05 FIGURE 4 - DC CURRENT GAIN 200 ~ 100 VCE 0 4 V "~ TJ "" 25°C 50 10 i 8 t-- ~ t- o o ~1 0 ~ / ~1 0 " l' u JLj, 1. 4 ? ~ O ':3 TJ o 150C- VBElco)@VeE 0 4 V o 08 > >' I I 1r- f--150C05 1.0 20 50 Ie. COLLECTOR CURRENT lAMPS) 10 0 01 10 -+- ;-- """ VCEls,,)@ lellB 010 ~~ I II r - f-- IOO OC 0 10 02 50 FIGURE 5 - "ON" VOLTAGE >- I 20 TJ'" lOooe z ~ 10 IC. COLLECTOR CURRENT lAMPS) VR, REVERSE VOLTAGE IVOLTS) 05 10 IC. COLLECTOR CURRENT lAMPS) FIGURE 6 - COLLECTOR SATURATION REGION '"c3>- 11 JJ l. 8 TJ ? w '"~ 1\ 14 == 25°C Ll o > ~ w :: 1 0 ill '~" o o. ~ > 1\ IC 1 0 0.03 \ \ 6 o u lODoe 1.0 0 16A 4J:' III I III 01 8A H-I+ - t'- 1 1 01 05 10 10 'B. BASE CURRENT lAMPS) 1-727 5.0 10 30 ~ 50 10 10 PNP MJ15023 MJ15025 ® MOTOROLA 16 AMPERE SILICON POWER TRANSISTORS SILICON POWER TRANSISTORS The MJ15023 and MJ15025 are PowerBase power transistors designed for high power audio, disk head positioners and other linear applications . 200 and 250 VOL TS 250 WATTS • High Safe Operating Area (100% Testedl 2A@80V • High DC Current Gain hFE = 15 (Mini @ IC = 8 Adc L~rE~:=iLc ~~ 1:E D K i SEATING PLANE MAXIMUM RATINGS Symbol MJ 15023 I MJI5025 Unit Corrector-Emitter Voltage VCEO 200 I 250 Vdc Collector-Base Voltage VCBO 350 I 400 Vdc EmItter-Base Voltage VEBO 5 Vdc Collector-Emitter Voltage VCEX 400 Vdc IC 16 30 Adc Rating Collector Current - ContInuous Peak (11 Base Current - Continuous IB 5 Adc Total Power DlsslpatlOn@Tc - 2SoC Derate above 2SoC PD 250 1.43 Watts -65 to +200 DC Operating and Storage Junctton TJ, T stg WiDC STYLE 1 PIN I. BASE 1 EMITTER CASE CO LLE CTO R NOTE 101M "Q" IS OIA Temperature Range INCHES MIN MAX 1.550 0.830 .3 0.043 0.055 0.070 1.187 sse 0.430 SSC 0.215 SSC 0.865 sse 0.440 0.480 THERMAL CHARACTERISTICS Characteristic Thermal Resistance, Junction to Case (1) Pulse Test: Pulse Width'" 5 ms, Duty Cycle Symbol ROJC <', J I Max Unit 0.70 DCiW 10%. F G H J K .150 Q U 2.54 V 81 0.100 0.1 CASE )·04 (TO·204AAI l-728 .1 5 1.050 0.120 0.1 MJ15023, MJ15025 III ELECTRICAL CHARACTERISTICS ITC = 250 C unless otherwise noted.I I I Characteristic Symbol Min MIX 200 250 - Unit OFF CHARACTERISTICS Collector-Emitter Sustaining Voltage (1) lic = 100 mAde, IS = 01 VCEOlsusi MJ15023 MJ15025 Collector Cutoff Current IVCE IVCE I CEX = 200 Vde, VSEloifi = 1.5 = 250 Vde. VSEloff) = 1.5 Vdel Vdc! = 150 Vde, = 200 Vde, 250 250 - 500 500 - 500 15 5 60 - - 1.4 4.0 VSElon) - 2.2 Vde fT 4 - MHz Cob - 600 pF ICED IS = 0) IS = 0) MJ15023 MJ15025 Emitter Cutoff Current IVCE = 5 Vde, IS - MJ15023 MJ15025 Collector Cutoff Current IVCE IVeE - IESO = 01 ,/JAde ,/JAde ~Ade Both SECOND BREAKDOWN Second Breakdown Collector Current with Base Forward Biased (VeE = 50 Vdc. t "" 0.5 s (non-repetitive)) (VeE'" 80 Vdc, t = o.s s (non-repetitive)) ON CHARACTERISTICS DC Current Gain - hFE lic = 8 Ade, VCE = 4 Vdc! lic = 16 Ade, VCE = 4 Vde) Collector-Emitter Saturation Voltage Vde VCEls.tl lic = 8 Ade, IS = 0.8 Adc! lic = 16 Ade, IS = 3.2 Ade) Base-Emitter On Voltage lic = 8 Ade, VCE = 4 Vdcl DYNAMIC CHARACTERISTICS Current-Gain - Bandwidth Product lic = 1 Adc, VCE = 10 Vdc, f test = 1 MHz) Output Capacitance (VCS = 10 Vdc, IE = 0, f test = 1 MHz) (1 I Pulse Test: Pulse Width = 300 "s, Duty Cycle';; 2%. FIGURE 1 - ACTlVE·REGION SAFE OPERATING AREA There are two limitations on the powerhandling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate IC - VCE limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. The data of Figure 1 IS based on T J(pk) = 200o C;TC is variable depending on conditions. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed bV second breakdown. 02 010~1~~of.2~LJ~LU_~~~~~~~~~-L~-L5~0~0~1~k VCE. COLLECTOR·EMITTER VOLTAGE IVO LTSI 1-729 MJ15023, MJ15025 III TYPICAL CHARACTERISTICS FIGURE 3 - CURRENT-GAIN-BANDWIDTH PRODUCT FIGURE 2 - CAPACITANCES ...... 4000 3000 C'b ....... ..:. IT/; : I '"~ II >- TJ; 15°C u i': i5~~ 8 VeE'" 10 V ~ 1000 'Test'" 1 MHz '" >- z Q g 500 " ........ ~ ;3 u' t'--... ~ Cob «~ ..... 1-- ........ 4 ........... 100 ... ~ ~ 2 I r--- ~ => u 0_3 0.5 5.0 10 30 50 VR, REVERSE VOLTAGE (VOLTS) 1.0 l"- z 100 300 .£- --- 01 03 z ~ i u Q ~ TJI; IJOOC 100 ll"1"I'--: 50 TJ; 15°C .'- I-- TJ; 15°C 1'\ 10 5.0 f-100oC 0.2 1.0 01 0.5 1.0 10 IC, CO LLECTO R CURR ENT 50 10 50 10 1.8 VCE;4.0V 20 10 FIGURE 5 - "ON" VOLTAGE FIGURE 4 - DC CURRENT GAIN 200 05 IC, COLLECTOR CURRENT (AMPS) 10 10 r---t01 Ik;~PS) 1-730 --- VBE(on)@VCE;4 0 V I II .......-r f-- 2;OC f- r-... ~ -'- ~ VCE(sat) '" Ie/Is"" 10 I-n"j' I L..J..",oool"" 1.0 2.0 0.5 IC, COLLECTOR CURRENT (AMPS) Ii" ~ 100°C 5.0 10 MJ15026 NPN MJ15027 PNP @ MOTOROLA 16 AMPERE SILICON POWER TRANSISTORS SILICON POWER TRANSISTORS The MJ15026 and MJ15027 are PowerBase transistors designed for high power audio, disk head positioners and other linear applications. 200 VOLTS NPNand PNP • High Gain, Complimentary Silicon Power Transistors for Audio and Other Power Amplifiers • High Safe Operating Area (100% Tested) 50V-5.0A BOV-2.0A • Excellent Frequency Response fT = 24 MHz (Typ) MAXIMUM RATINGS Rating Symbol Value Collector-Emitter Voltage VCEO 200 Vdc Collector-Base Voltage VCBO 200 Vdc VEB 5.0 Vdc IC 16 Adc Emitter-Base Voltage Collector Current - Continuous 32 -Peak(l) Base Current - Continuous Total Power Dissipation @ T c;: 25°C Derate above 25°C Operating and Storage Junction Temperature Range Unit IB 70 Po 250 Watts W/OC TJ, Tst9 200 °c DIM A THERMAL CHARACTERISTICS Characteristic Thermal Resistance, Junction to Case STYLE 1 PIN 1. BASE 2. EMITTER CASE COLLECTOR Adc Symbol Max Unit ReJC 0.7 °C/W (1, Pulse Test Pulse Width =5 0 ms. Dutv Cycle ~ 10%. MILLIMETERS MIN MAX 8 C 6.35 0.9i 1.40 E F 29.90 8 10.67 H 5 J 16.64 K 11.18 Q 3.81 R U 2.54 D - 21.08 7.62 1.09 1.78 30.40 11.18 5.59 17.15 12.19 4.19 26.67 3.05 INCHES MIN MAX 0.250 0.038 0.055 1.177 0.420 0.210 0.655 0.440 0.150 - 0.100 CASE '·04 1-731 0.830 0.300 0.1M3 0.D10 1.191 0.440 0.20 0.&75 D.48D 0.165 1.050 0.120 MJ1~026 OJ I NPN. MJ15027 PNP ELECTRICAL CHARACTERISTICS (TC; 25°C unless otherwise noted) I Characteristic Symbol Min VCEO(sus) 200 Max Unit OFF CHARACTERISTICS Collector-Eminer Sustaining Voltage (1) (lC; 20 rnA, IB; 0) Vdc Collector Cutoff Current (VCE; 200 Vdc, VBE(off); 1.5 Vdc) ICEX - 1.0 rnA Collector Cutoff Current (VCE = 120 Vdc, IB = 0) ICEO - 1.0 rnA Emitter Cutoff Current lEBO - 1.0 rnA ISlb - 5.0 2.0 (VCE = 5.0 V, IB = 0) SECOND BREAKDOWN Second Breakdown Collector Current with Base Forward-Biased (VCE = 50 Vdc, t = 0.5 s (non-repetitive)) (VCE = BO Vdc, t = 0.5 s (non-repetitive)) Adc I ·ON CHARACTERISTICS DC Current Gain (lC = 5.0 Adc, VCE = 5.0 V) (IC = 16 Adc, VCE = 5.0 V) - hFE Collector-Emitter Saturation Voltage 25 6.0 150 - 1.0 3.0 - 2.0 Vdc IT 15 - MHz Cob - 750 pF VCE(sat) (lC = 5.0 Adc, IB'= 0.5 Adc) IC = 16 Adc, IB = 4.0 Adc) Base-Eminer On Voltage (lC = 5.0 Adc, VCE = 5.0 Vdc) VBE(sat) Vdc DYNAMIC CHARACTERISTICS Current-Gain - Bandwidth Product (IC = 1.0 Adc, VCE = 10 Vdc, Itest = 1.0 MHz) Output Capacitance (VCB = 10 Vdc, IE = 0, Itest = 1.0 MHz) (1) Pulse Test: Pul•• Width =300 ",5, Dutv Cycle:s;;; 2% FIGURE 1 - ACTIVE-REGION SAFE OPERATING AREA ~ - - 30 , :0 !!. 10 ffi f;;:; '" ~ , There are lWO limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate IC-VCE limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. The data of Figure 1 is based on TJ(pk) ='200°C; TC is variable depending on conditions. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown. 1.0ms::: 0.1 ms , , de ~ B 3.0 t:;;: t; 100 ms 1.0 - :;;: Bonding Wire Limit ~ :;;: Thermal limitation. Second Breakdown Limited l== -= == 8 ~ 0.3 0.1 1.0 3.0 10 30 100 300 VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS) 1000 1-732 MJ15026 NPN, MJ15027 PNP - TYPICAL ELECTRICAL CHARACTERISTICS MJ15026 NPN MJ15027 PNP FIGURE 2 - DC CURRENT GAIN FIGURE 3 - DC CURRENT GAIN - - z ~ 100 20 0 , 100 to 50 '" I I VaE(on) VCE = 5.0 r- O. 6 - 1tt---t-t-t"tt" ~ il 0.02 0.05 ~ g 0.8 r-I- VaE(on) VCE = 5.0 ...-:::" --- 0.1 0.2 0.5 1.0 2.0 IC. COLLECTOR CURRENT (AMPS) '/ ~ 1.21--H-f.jf++++--+-+-I+t+f+l--+-+-l-h~rtII;/.J-..J, -- '" 0.4 He--I-Hil-++ +11 ttt+!,-----+ -t--+-!-!-'-t++!__-!-L.,...-+"~_++I_!__....j VCEls.t) Ic/la = 10 o. 2r- W1"~-+-H-++~+:-I 1/' _ = 100 o C·.+-_f--H-H-++l¥-l'"H w i . ~ 1.6 f-+-I-hf++H--+-+-I-++++++--+-+-H-++<~~,H VI I 1.0 ,, ,, "" "" T~ =1 2 I-+-+++++H-----+ TJ I TJ = 25°C TJ = 100°C I I ~ ~ 10 FIGURE 7 - "ON" VOLTAGE "ON" VOLTAGE 2. 0 Q r-. I 1-++++++1+---+_ w ~ 11-1'11'1 IC=8.0A IC =4.0 A - 0.1 0.2 0.5 1.0 la. BASE CURRENT lAMP) 20 2 " "'N-. L 10 ' \ IC=16A ll161~ IC = 4.0 A _ TJ = 25°C 11 I" Ic 1\ 6 I I III' \ 5.0 2.0 II 6 0.1 0.2 0.5 1.0 2.0 IC. COLLECTOR CURRENT (AMPS) FIGURE 5 - COLLECTOR SATURATION REGION FIGURE 4 - COLLECTOR SATURATION REGION 2. 0 .0.05 1-1- VCE(sat) Ic/la = 10 5.0 10 20 0.02 0.04 1-133 0.1 0.2 0.4 1 0 2.0 4_0 IC. COLLECTOR CURRENT (AMPS) " 10 20 MJ15026 NPN, MJ15027 PNP OJ TYPICAL ELECTRICAL CHARACTERISTICS (continued) MJ15026 NPN MJ15027 PNP FIGURE 8 - CURRENT GAIN·BANDWIDTH PRODUCT FIGURE 9 - CURRENT GAIN·BANDWIDTH PRODUCT ~ 100 ~ ~ ~ -- t; :::I o if i 10 ~ ~ I l- 30 Q g: ">- i'-. 0 ;: 10 0 z I-I-- VeE-l0V 'le.1 " 1.0 MHz I-- Jlllr I 1.0 0.02 ;i! Z <1 0.05 0.1 0.2 0.5 1.0 2.0 Ie. COLLECTOR CURRENT (AMPS! 5.0 I-- ~ 20 VCE" 10V 'lest" 1.0 MHz TJ "25°C I-- ii3 10 I- r- '" >- \ c i3 ~ ~ 0 r-.... 1.0 0.02 -t-+-IH-l-ttt--+-+-+++t+tt--l IIJlII 1 0.05 0.1 0.2 0.5 1.0 2.0 IC. COLLECTOR CURRENT (AMPS! 5.0 10 20 FIGURE 11 - CAPACITANCE VARIATION FIGURE 10 - CAPACITANCE VARIATION 10000 ~ 300 0 ~ Cib TJ "25°C Cib ~100 0 !:j ~ ~ z ~ ~ TJ - 25°C ~ ~ 300 ............ 100 -- <3 1ft 100 10 VR. REVERSE VOLTAGE (VOLTS! 1.0 1000 100 1.0 1000 r- 10 100 VR. REVERSE VOLTAGE (VOLTS! cr 1000 FIGURE 12 - TYPICAL THERMAL RESPONSE g ~ :0 a: o 0" 0.5 0.5 ~ . 0.2 I- ;! ~ o. 1 1-0.0 ...... Duty Cycle. D 11/12 6JC(11 - r(11 6JC 6JC - D.70 0 C/W Max P(Pkl J 1 J L o Curves apply for power ..-: 1. f-+l -+I 0.0 J1! V 15 ;;;.0.02 >- ~. it :.-- ~ "., 0.1 ~ 0.05 ffi i!: p- 0.2 ~ lil t2 I- Pulse Train shown Read at time t1 TJ(pk!- TC " P(pkI6JC(11 ,c Single Pul.e I I I I 0.01 til-- 1.0 0.2 0.5 1.0 20 t. TIME (msl 1-734 50 10 20 50 100 1000 ® MJ16002 MJ16004 MOTOROLA III Designers Data Sheet 5 AMPERE NPN SILICON POWER TRANSISTORS SWITCH MODE III SERIES NPN SILICON POWER TRANSISTORS 450 VOLTS 125 WATTS These transistors are designed for high-voltage, high-speed, power switching in inductive circuits where fall time is critical. They are particularly suited for line-operated switchmode applications, The MJ16004 is a selected high-gain version of the MJ16002 for applications where drive current is limited, Designer's Data for "Worst Case" Conditions Typical Applications: • Switching Regulators • Inverters The Designers Data Sheet permits the design of most circUits entirely from the mformation presented Limit data - representing de\(lce characteristics boundaries ~ are given to facilitate "worst case" design. • Solenoid and Relay Drivers • Motor Controls • Deflection Circuits • Fast Turn-Off Times 50 ns Inductive Fall Time - 75°C (Typ) 70 ns Inductive Crossover Time - 75°C (Typ) 500 ns Inductive Storage Time - 75°C (Typ) • Operating Temperature Range -65 to +200°C • 100°C Performance Specified for: Reverse-Biased SOA with Inductive Loads Switching Times with Inductive Loads Saturation Voltages Leakage Currents MAXIMUM RATINGS Rating Collector-Emitter Voltage Symbol Max Unit VCEOlsus) 450 Vdc VCEV 850 Vdc Emitter Base Voltage VEB 60 Vdc Collector Current - Continuous -Peak(1) Ie 5.0 10 Adc ICM Base Current - Continuous -Peak(1) IB IBM 4.0 8,0 Adc Po 125 715 0.714 Watts W/oC TJ, Tst9 65 to +200 °c Symbol Max Unit R8JC 1.4 °C/W TL 275 °c Collector-Emitter Voltage Total Power Dissipation @ Te == 25°C @TC= lOO°C Derate above 25°C Operating and Storage Junction Temperature Range STYlE 1 PIN 1. BASE 2 EMmER CASE COLLECTOR a ,0F~ -1·-· ------,,---,'r . NOTES 1 OIMENSIONS Q ANO V ARE OATUMS 2 IS SEATING PLANE ANO DATUM 3 POSITIONAL TOLERANCE FOR MOUNTING HOLED OJ 1·1·'3IUOD5I@ITlv@! FOR LEAOS I .1.'3I..U5I@T Iv@1 u@1 4 DIMENSIONS ANO TOLERANCES PER ANSIY145,1973 THERMAL CHARACTERISTICS Characteristic Thermal Resistance, Junction to Case Maximum Lead Temperature for Soldering Purposes: 1 IS" from Case for 5 Seconds C11 Pulse Test. Pulse W,dth =5 ms, Duty Cycle ~ 10% CASE 1-05 TO-3 TYPE 1-735 R I MJ16002. MJ16004 - MJ16002 I ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted) I Characteristic Symbol Min Typ Max Unit VCEClisus) 450 - - Vdc - - 0.25 1.5 - 2.5 mAde - 1.0 mAde OFF CHARACTERISnCS (1) Collector-Emitter Sustaining Voltage (Table 2) (lC = 100 mA.IB = 0) Collector Cutoff Current (VCEV = 850 Vdc. VBE(off) = 1.5 Vdc) (VCEV = 850 Vdc. VBE(off) = 1.5 Vdc. TC = 100°C) ICEV Collector Cutoff Current (VCE = S50 Vdc. RBE = 50 n. TC = 100°C) ICER - mAde Emitter Cutoff Current IESO - (VES = 6.0 Vdc. IC = 0) SECOND BREAKDOWN Second Breakdown Collector Current with Sase Forward aiased See Figure 15 Clamped Inductive SOA with Base Reverse Biased See Figure 16 ON CHARACTERISTICS (1) Collector-Emitter Saturation Voltage (IC = 1.5 Adc. la = 0.2 Adc) (IC = 3.0 Adc. la = 0.4 Adc) IIC = 3.0 Adc. la = 0.4 Adc. TC = 100°C) VCE(sat) Base-Emitter Saturation Voltage VSE(sat) IIc = 3.0 Adc. la = 0.4 Adc) IIc = 3.0 Adc. la = 0.4 Adc. TC = l000C) DC Current Gain (IC = 5.0 Adc. VCE = 5.0 Vde hFE Vdc - - 1.0 2.5 2.5 - - 1.5 1.5 Vdc 5.0 - - - DYNAMIC CHARACTERISTICS Output Capacitance (Vca = 10 Vde. IE = O. f test = 1.0 kHz) SWITCHING CHARACTERISTICS Resistive Load (Table 1) Delay Time Rise Time Storage Time Fall Time Storage Time Fall Time IIC= 3.0Ade. VCC = 250 Vde. IBI = 0.4 Ade. PW= 30 ~s. Duty Cycle ';;2.0%) (lB2 = O.S Ade. Ra2 = S.O ill (VBE(off) = 5.0 Vde) td tr ts tf ts tf - 30 100 1000 60 400 130 100 300 3000 300 500 100 120 600 120 160 1600 200 250 n. - - Inductive Load (Table 2) Storage Time Fall Time Crossover Ti me Storage Time Fall Time Crossover Time (IC = 3.0 Ade. lSI = 0.4 Adc. VaE(off) = 5.0 Vdc. VCE(pk) = 400 Vdc) tsv tfi te tsv tfi te (TJ = 100°C) (TJ = 150°C) (11 Pulse Test: PIN - 300 .s. Duty Cycle ';;2%. ·/If=~ IBI 1-736 - - - - ns MJ16002, MJ16004 III MJ16004 ELECTRICAL CHARACTERISTICS (TC; 25°C unless otherwIse noted) Characteristic OFF CHARACTERISTICS (1) Collector-Emitter Sustaining Voltage (Table 2) (lc; 100 mA, IS ; 0) VCEO(sus) Collector Cutoff Current ICEV (VCEV; S50 Vdc, VSE(off); 1.5 Vde) (VCEV; 850 Vdc, VSE(off) ; 1.5 Vdc, TC; 100°C) Collector Cutoff Current 450 - - - - 0.25 1.5 - 2.5 mAde - 1.0 mAdc Vdc mAde ICER - IESO - (VCE; 850 Vdc, RSE; 50 0, TC; 100°C) Emitter Cutoff Current (VES ; 6.0 Vde, IC ; 0) SECOND BREAKDOWN Second Breakdown Collector Current with Base Forward Biased See Figure 15 Clamped Inductive SOA with Base Reverse BIBsed See Figure 16 ON CHARACTERISTICS (1) Collector-Emitter Saturation Voltage Vde VCE(sat) - (lc ; 1 .5 Adc, IS; 0.15 Adc) (IC; 3.0 Ade, IS; 0.3 Adc) (lc; 3.0 Adc, IS; 0.3 Adc, TC; 100°C) Base-Emitter Saturation Voltage - 1.0 2.5 2.5 - - 1.5 1.5 7.0 - - - 30 130 BOO 80 250 60 100 300 2700 350 ns 400 80 90 450 100 110 1300 150 200 Vde VSE(sat) - (lC; 3.0 Ade, IS; 0.3 Adc) (lc; 3.0 Adc, IS; 0.3 Adc, TC; 100°C) DC Current Gain hFE (lc; 5.0 Adc, VCE; 5.0 Vde DYNAMIC CHARACTERISTICS Output Capacitance (VCS; 10 Vdc, IE; 0, f test ; 1.0 kHz) SWITCHING CHARACTERISTICS Resistive Load (Table 1 ) Delay Time Rise Time Storage Time Fall Time Storage Ti me Fall Time (IC; 3.0 Adc, VCC; 250 Vdc, IBI ; 0.3 Adc, PW; 30 I's, DUly Cycle ';2.0%) (IS2; 0.6 Adc, RS2; B.O 0) (VBE(off); 5.0 Vdc) Id Ir Is If ts tf - tSY IfI Ie ISY Ifi Ic - - - Inductive Load (Table 2) Storage Time Fall Time Crossover Time Storage Time Fall Time (IC; 3.0 Adc, lSI; 0.3 Ade, VSE(off); 5.0 Vde, VCE(pk); 400 Vde) (TJ; 100°C) (TJ; 150°C) Crossover Time (1) Pulse Test: p.W - 300 P.s, Duty Cycle ~2%. Ie 'Pf=iii1 1-737 - - ns MJ16002, MJ16004 TYPICAL STATIC CHARACTERISTICS FIGURE 2 - COLLECTOR SATURATION REGION FIGURE 1 - DC CURRENT GAIN 60 50 2.0 ..--r---.-rI'ITlI-'1rr--\r-"--'-""'(l'"'"'lI'llrTTIII--r-,.------, III 4A TJ -100°C 30 ~ 2~ ~ I 55°C 5.0 f - - -VCE o 30 01 0.3 ~ 50V I'-.....r-, o2 0 5 0 7 10 20 30 50 70 10 0.2 IC. COLLECTOR CURRENT (AMPS) ~ 3.0 20 ',.'"3 10 i='" 25 0.50 ti 0.20 0 - TJ '/ - '\.1 0.05 0.1 0.2 05 1.0 g 20 '" 1.5 ~ 10 ~ / /, ° 25°C ~ ~ 0.70 ./ ..... - Plo 5 "TJ ;i\ 0.50 25°C 2.0 ~ 10 5.0 Plo 5 TJ ° 25°C , - 0.30 0.1 (31 010 TJ ° 100°C I I 0.5 02 / ~:3 9 100 0 C I f-- 10- 1 -0.4 C,b L f .,.... L FORIYARO / L TJ ° 25°C r;- ~ 1000 / F== =750C REVERSE 100 i/ / r-- TJ" 150°C 102 F== =125 oC 101 10 10000 103 '" 5.0 20 FIGURE 6 - CAPACITANCE FIGURE 5 - COLLECTOR CUTOFF REGION 104 ~ 1.0 IC. COLLECTOR CURRENT (AMPS) IC. COLLECTOR CURRENT (AMPS) B 3.0 FIGURE 4 - BASE-EMITTER VOLTAGE ~ 10 TJ - 100°C Plo 10 ~w 0.10 1 .... 2.0 ? / PI .r 0 5 0.7 1 0 3.0 50 w 0.3 lB. BASE CURRENT (AMPS) FIGURE3 - COLLECTOR-EMITTER SATURATION VOLTAGE ~ 5A I Cob / ~250C VCP250Vdc-0.2 +0.2 +0.4 10 0.1 +0.6 VBE. BASE EMITTER VOLTAGE (VOLTSI 1-738 1.0 10 100 VR. REVERSE VOLTAGE (VOLTS) 850 MJ16002. MJ16004 III TYPICAL DYNAMIC CHARACTERISTICS FIGURE 7 - STORAGE TIME FIGURE 8 - STORAGE TIME 10000 10000 5000 5000 VaElolf); 0 V ~ 2000 IZOOO :E ~ ~ 1000 ~ VaElolf) ; 5.0 V 500 -?;. - i VaElolf1 ; 2.0 V -r-- f-- r- 200 c-- r- === Ill; 5 TJ ; 75°C r-- , - VCC;20V I 100 0.5 07 10 2.0 30 IC. COLLECTOR CURRENT lAMPS) t:; I :ii: ;::: = :::::t;; sao oc:::: ,--,-... ~ t--- r- Ill; 10 -50V- r--..... ...... .......... ffi ~ 100 '" 50 - 10 05 - ~ 500 ~ ~ -- "" "'-., r-... Ill; 5 TJ; 75°C VCC; 20 V ~ VaElo~) ; 0 V- 50 30 ' ffi '" a'" '" '" t; ~ ~ 8 ;# I I 10 Z.O 30 IC. COLLECTOR CURRENT lAMPS) -Z 0 V -~~ ~ ~ -5.0 V 200 100 vaElott) = 0 v \. VBElottl ; Z 0 V f-- l - Ill; 10 TJ; 75°C 20 f-- I f-- I - VCC = 20 V I 10 0.5 5.0 ............ -......,.. -.........:..: 50 07 FIGURE 11 - CROSSOVER TIME 1000 1.0 2.0 IC. COLLECTOR CURRENT lAMPS) >- VaElolf); -5.0 V I I I 0.7 07 FIGURE 10 - COLLECTOR CURRENT FALL TIME VBEloll1 - 2.0 V 8 20 ;f ~ 1 j I I 100 0.5 5.0 20 V >- '" t; VaElolf) ; 5 0 V I--- TJ; 75°C f-- I - VCC; 20 V 200 t--- r- 1000 ov § 200 VaElott) - 20 V 500 FIGURE 9 - COLLECTOR CURRENT FALL TIME 1000 vaElott); 0 v 1000 I P I VaElott) ; 5.0 V I I I 10 2.0 3.0 IC. COLLECTOR CURRENT lAMPS) ~ 5.0 FIGURE 12- CROSSOVER TIME 1000 f-- ~ 20V 500 500 ~ t;; 200 -50 V -2.0 V ........ ~ :ii: ;::: '" > '" 5'" ov ZOO 10~ " .......... ......... 100 ~ "- VaElott) ; 0 V _ :ii: ;::: ,...... ~.3., OIV ffi 100 > '" ..,'"'" VBElott) ; 0 V- ............... -I' ........... ~ p.L .).. ,../ U) U) U) U) .So ~~ 50 VBElott);Z.o,V -C~ r20 r-- rr-- r~ 10 0.5 0.7 Ill; 5 TJ ; 75°C VCC=20V .So VaElott) ; 5.0 V- t--- r- Ill; 10 r- TJ = 75°C f-- I - VCC=20V 20 t--- I I I 1.0 2.0 3.0 Ie. COLLECTOR CURRENT lAMPS) 50 5.0 1-739 10 0.5 lL L 0.7 - - . - VBElott) = 2.0 V "I I VBElott) = 5.0 V • I ~ I 2.0 3.0 1.0 Ie. COllECTOR CURRENT lAMPS) 5.0 MJ16002, MJ16004 FIGURE 13 - INDUCTIVE SWITCHING MEASUREMENTS - IC~ L ./ - Ie"""'" -Isv VCElpkl_ ~ 1 IB- - 10% VCElpkl ~ i'" -.'\. .'"' 101 ; 0.6 A ./ w ~~ -,..- -- -- - '" '" w '" ffi '" - 1.0 ~ ,....- ./ ....v ........ V V 2.0 ~ ......- I 4.0 30 :::0 10% ....... IC pk 90% IBI '"~ :!. l",fI~II,-_I,,- 1---. -Ie ---\ ---\- -- r-- 90% VCEIPkll ,911% IC(pkl / VCE 'FIGURE 14 - PEAK REVERSE BASE CURRENT 5.0 ~ 101; 0.3 A, :...--:IC;3.0A TJ; 25°C - J--- ,,/ /' V o o 1.0 2,0 3.0 4.0 5.0 6.0 7.0 8.0 VOE(off). REVERSE OASE VOLTAGE (VOLTS) TIME GUARANTEED SAFE OPERATING AREA LIMITS FIGURE 16 - MAXIMUM FORWARD BIAS SAFE OPERATING AREA FIGURE 18 - MAXIMUM REVERSE BIAS SAFE OPERATING AREA 10 i !Z 10 101" 5.0 ::;; 5. 8.0 2.0 "- 1.0 ~ 0.50 i:l is TC; 25°C ~ 0.02 1m. iB 6.0 '" l= 5.0 ~ de 0.20 g 0.10 80.05 \ 1 ~ 9.0 8 - It OONDING WIRE LIMIT - - - - - THERMAL LIMIT SECOND OREAKDOWN LIMIT 0.01 5.0 7.0 10 20 50 70 j 100 200 300 450 VCE. COLLECTOR-EMITTER VOLTAGE (VOLTS) 2.0 1.0 TJ';; 100°C _ \ 4.0 '" 3.0 Ilf~4 I _ \ 7.0 l- o o _ VOE(off) ; 0 V ,/ 100 I J 200 ,\ VOE(off) ; 1.0 TO 5.0 V \ A ( ( \ 1'<.. \ 500 700 850 ~ I-- I-- 1000 VCE(pk). PEAK COLLECTOR-EMITTER VOLTAGE (VOLTS) SAFE OPERATING AREA INFORMATION the power that can be handled to values less than the limitations imposed by second breakdown. FORWARD BIAS There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate IC-VCE limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate, The data of Figure 15 is based on TC: 25°C; TJ(pk) is variable depending on power level. Second breakdown pulse limits are valid for duty cycles to 10% but must be derated whenTc;;, 25°C. Second breakdown limitations do not derate the same as thermal limitations. Allowable current at the voltages shown on Figure 15 may be found at any case temperature by using the appropriate curve on Figure 18. TJ(pk) may be calculated from the data in Figure 17. At high case temperatures, thermal limitations will reduce REVERSE BIAS For inductive loads, high voltage and high current must be sustained simultaneously during turn-off, in most cases, with the base-to-emitter junction reverse biased. Under these conditions the collector voltage must be held to a safe level at or below a specific value of collector current. This can be accomplished by several means such as active clamping. RC snubbing, load line shaping, etc. The safe level for these devices is specified as Reverse Bias $afe Operating Area and represents the voltage-current condition allowable during reverse biased turn-off. This rating is verified under clamped conditions so that the device is never subjected to an avalanche mode. Figure 16 gives the RBSOA characteristics. 1-740 MJ16002, MJ16004 FIGURE 17 - THERMAL RESPONSE .=== 10 01 ReJcl.1 - rl.1 ReJC ReJC - 1.4°CIW Mix - o CURVES APPLY FOR POWER PULSE TRAIN SHOWN _ READ TIME AT'I _ = OS 0.3 '\ 0.2 'I. -.: ~ 0.1 ~~D~~S O-J1Jl == =-== 01 o.os P(tl O.OS 0.03 002 0.02 001 ~~ I I I 01 02 0.3 -- == DUTY CYCLE. 0 ~ '11'2 - - SINGLE PULSE 0 OS j '2 0.01 0.02 003 - TJlpkl-TC ~ Plpkl ReJcl.1 ., 02_ 0.01 0S 20 10 SO 3D 10 I, TIME SO 3D 20 100 200 300 1111111 SOD 1000 2000 (ms) FIGURE 18 - POWER DERATING 100 ~ t-... "" ..~ l8 0 . ~ 60 r-...... :"-.... Th.rma~ Derating --4iI z ;:: Second Breakdown Derillng - ..... r--.,.,. ...... ~ ...... '" .. ::; 40 o r--.... ...... ~ " ~ 20 o o ,- ........... r-...... ......... ............ 40 120 80 TC. CASE TEMPERATURE lOCI 160 200 TABLE 1 - RESISTIVE LOAD SWITCHING OV =-3S][ A so IIV OV ~ . Vin ~ Vee = 250Vde RL =B3 0 le= 3.0Ade I"B= 0.3 Ade v OV ~ -5 V l m 1" m· t r .. 15ns ~ ·Tektronlx P-6042 or Vee = 250 RL = 83 0 le= 3.0Ade Equivalent Vee .= J- IBI =0.3Ade RBI =330 IB2 = 0.6 Adc RB2 = 8.00 For VBE(off) = 5.0 V RB2 = 0 0 'Note: Adjust -V to obtain desired VSE(off) at POint A. 1-741 DI MJ16002, MJ16004 III TABLE 2 - INDUCTIVE LOAD SWITCHING o =-35lf A fF 50 + 1---......- - - - [ 500 T1--J OV~ ~IClpkJ -V le~ I---+V -u::-c - VeE(PkJ-··h VeE~ A T 1 = Leod (lepkJ "-- 50 Vee T1 adjusted to obtain IClpkJ BVCEO L~ 10 mH RB2 ~ x Vee~ 20 Volts Inductive Switching L~ 200MH RB2 ~ 0 Vee ~ 20 Volts RS 1 selected fo'r deSIred 181 "'TektronIx Scope ~ TektronIx P-6042 or 7403 or EqUivalent EqUivalent RBSOA L~ 200MH RB2 ~ 0 Vee ~ 20 Volts RS1 selected for deSired IS1 Note' Adjust -V to obtain deSired VBE(offJ at POint A TYPICAL INDUCTIVE SWITCHING WAVEFORMS tfi. te tov lC(pkJ ~ 3.0 Amps IB1 ~0.3 Amp VBE(offJ ~ 5.0 Volts VCE(pkJ ~ 300 Volts TC ~ 25°C Time Base = 20 n'/em le(pkJ ~ 3.0 Amps IB1 ~ 0.3 Amp VBE(offJ ~ 5.0 Volts VCE(pkJ ~ 300 Volts TC ~ 25°C Time Base 20 nslem , -742 == L- ® MJ16002A MJH16002A MOTOROLA .. Designer's Data Sheet 5.0 AMPERE SWITCHMODE III SERIES NPN SILICON POWER TRANSISTORS NPN SILICON POWER TRANSISTORS These transistors are designed for high-voltage, high-speed, power switching in inductive circuits where fall time is critical. They are particularly suited for line-operated switchmode applications. 1000 VOLTS 125 WATTS Typical Applications: • Switching Regulators • Solenoid and Relay Drivers • Motor Controls • Deflection Circuits MJ16002A LIF"=t-=fr • Inverters t.~K rn/+o ___ 1 Features: • Fast Turn-Off Times 100 ns Inductive Fall Time - 100°C (Typ) 120 ns Inductive Crossover Time - 100°C (Typ) 500 ns Inductive Storage Time - 100°C (Typ) • Operating Temperature Range -65 to +200 oC • 100°C Performance Specified for: Reverse-Biased SOA with Inductive Loads Switching Times with Inductive Loads Saturation Voltages Leakage Currents STYLE' PIN 1 BASE 2 EMITIER CASE COLLECTOR NOTES ! DIMENSIONS a AND v AfiE DATUMS 2 [IJ IS SEATING PLANE AND DATUM 3 POSiTiONAL TIlLERANCEFOR MOUNTING HOLE 0 1+1'''''005181,1'81 FOR LEADS 1+11131000518'1'81 0 81 ·4 DIMENSIONS AND TOLERANCES PER ANSIY145,1913 MAXIMUM RATINGS Symbol Max Unit Collector-Emitter Voltage VCEOlsuSI 500 Vdc Collector-Emitter Voltage Rating VCEV 1000 Vdc Emitter-Base Voltage VES 60 Vdc Collector Current - IC ICM 50 10 Adc 18 40 80 Adc '9M TJ, TsIg -6510 +200 Contmuous Base Current - Peak 111 Continuous -Peakl11 OperatIng and Storage Junction Temperature Range CASE 1-05 TO-204AA IFormerly TO-31 MJH16002A °c Total Power DISSipation @ TC = 25°C @Tc o 1 100°C Derate above 25°C STYLE 1 PIN! BASf 2 COLlECTOR 3 EMITHR 4 COLLECTOR THERMAL CHARACTERISTICS Characteristic Thermal ReSistance, Junction to Case Symbol := Unit 14 '25 °C/W TL 275 275 °C MaXimum Lead Temperature for Soldering Purposes 1/8" from Case for 5 Seconds (1} Pulse Test Pulse WIdth Max ROJC CASE 340-01 TO-218AC PLASTIC PACKAGE 5 ms, Duty Cycle ~ 10% Designer's Data for "Worst Case" Conditions The DeSigner's Data Sheet permits the deSign of most CirCUits entirely from the informatIon presented LimIt data - representing deVice characteristics boundaries - are given to faCIlitate "worst case" deSign 1-743 MJ 16002A, MJ H 16002A - ELECTRICAL CHARACTERISTICS ITC = 25°C unless otherwise noted) I Char.nteri.tic Symbol Min VCEOlsus) 500 Typ, Max Unit - - Vde - 0,25 1,5 - 2,5 mAde - 1,0 mAde OFF CHARACTERISTICS 11 ) Collector-Emitter Sustaining Voltage lTable 2) IIC= l00mA.IB=O) Collector Cutoff Current IVCEV = 1000 Vde. VBEloff) = 1,5 Vde) IVCEV = 1000 Vde. VBEloff) = 1,5 Vde. Te = lCOOC) ICEV Collector Cutoff Current IVCE = 850 Vde. RBE = 50 O. TC = 100°C) ICER - Emitter Cutoff Current lEBO - IVEB = 6,0 Vde. IC = 0) mAde SECOND BREAKDOWN Second Breakdown Collector Current with Base forward Biased See Figure 15 Clamped Inductive SOA with Base Reverse Biased See Figure 16 ON CHARACTERISTICS 11) Collector-Emitter Saturation Voltage VCElsat) IIc = 1,5 Ade. IB = 0,2 Ade) IIc = 3,0 Ade. IB = 0,4 Ade) IIc = 3,0 Adc. IB = 0,4 Ade. Tc = 100°C) Base-Emitter Saturation Voltage VBElsat) lie = 3,0 Ade. IB = 0,4 Ade) IIc =3,0 Ade. IB = 0,4 Ade. TC = 1COOC) Vdc - - 1,0 2,5 2,5 - - 1,5 1,5 5,0 - - - 30 100 1000 60 400 130 100 300 3000 300 ns 500 100 120 600 120 160 1600 200 250 Vde - DC Current Gain hFE IIC =5,0 Ade. VCE = 5,0 Vde - DYNAMIC CHARACTERISTICS Output Capacitance IVCB = 10 Vde. IE = 0. f test = 1 ,0 kHz) SWITCHING CHARACTERISTICS Resistive Load ITeble 1 ) Delay Time Rise ime Storage Time Fail Time Storage Time Fail Time IIc = 3,0 Ade. Vec = 250 Vdc. IBI = 0,4 Ade. PW= 30"s. Duty Cycle ';2,0%) IIS2 = 0,8 Ade. RB2 = 8,0 0) IVBEloff) = 5,0 Vde) td tr ts tf ts tf - tsv tfi te tsv tfi te - - - Inductive Load ITabie 2) Storage Time Fail Time Crossover Time Storage Time Fail Time Crossover Time lie = 3,0 Ade. IBI = 0,4 Ade. VBEloff) = 5,0 Vde. VCElpk) = 400 Vde) ITJ = 100°C) ITJ = 150°C) (1) Pulse Test PW - 300 "s. Duty Cycle <;2% 1-744 - - ns MJ16002A,MJH16002A TYPICAL STATIC CHARACTERISTICS FIGURE 2 - COLLECTOR SATURATION REGION FIGURE 1 - DC CURRENT GAIN 60 2.0 50 ~ '" ~ w '" ,.'"~ III TJ - 100°C z 30 ~ ~ ~ 20 2~ ill a '" '" ; ~ I 10 -55°C ;'" "- !'" ~ 8 '" !if 0.2 03 05 07 10 20 30 IC. COLLECTOR CURRENT (AMPS) 50 70 10 !t3 A ,4.0 A 5.0 A 0.5 1\ \ \ 0.3 +-'---l>~-+--+--.j~""".bI----'~~-l L-..l..-..L-r-....-L..:-::::b.L..L...l...l...I...~---! 0.2 0.3 0 5 0 7 10 20 30 1 I.J...LJ o 1 L...L....Li...L...L II o03 0.05 0.07 0.1 FIGURE 4 - BASE-EMITTER VOLTAGE 30 30 20 -- 10· /31 ./. III = 5.0· TJ = 25°C 10 ~ 070 / ""- /31 =5.0· f.-'" 8010 15 ; ./ V " ~ ~ ~ =100°C TJ - 25°C 020 20 ~ /31- 10• TJ g '"~ / 10 050 TJ = 25°C 02 _ Is. BASE CURRENT (AMPS) 50 '"~ ,.'" ~ I \3.0 0.7 FIGURE 3 - COLLECTOR-EMITTER SATURATION VOLTAGE ~ A 10 ~ r- VCE = 5 0 V 30 01 ~ i 2.0 t; 70 50 I ~ I I ~ fT I I II \ \ Ic = 1.0 A ;§ 050 TJ = 25°C "- r-- III =10· '" TJ = 100°C ~ '" I I !if 02 05 10 20 iC. COLLECTOR CURRENT (AMPS) 030 01 10 50 FIGURE 5 - COLLECTOR CUTOFF REGION 0.5 02 10 20 ie. COLLECTOR CURRENT (AMPS) 5.0 10 FIGURE 6 - CAPACITANCE 10000 If ....~ r-- z w ~ ~ => '-' 102 ~ ./ I Cib / 5~ ./ ./ 101 r-- "=75'e REVERSE FORV'fARO r-- 1--25OC -02 Cob ~ 100 <.$ / VCE" 250 Vd.- 10-1 -0.4 TJ "'25°C ::: ""N- ~ 1000 '"z 100'e 0 I / TJ" 150 0 C F= F12I'e ~ 9 100 / / 10 3 +0.2 +0.4 +0.6 VBE. BASE EMITTER VOLTAGE (VOLTSI 1-745 10 0.1 1.0 10 100 VR. REVERSE VOLTAGE (VOLTSI 850 MJ16002A,MJH16002A TYPICAL DYNAMIC CHARACTERISTICS . FIGURE 7 - STORAGE TIME FIGURE 8 - STORAGE TIME 10000 10000 5000 ! 2000 '"~ 1000 ~ 500 ::;; 5000 VSE(oH) - a v c J. - -20V r-- - 50 V =f::=:: I-- I-- /31 = 5.0' TJ = 75°C 200 I-- I-VCC = 20 V I-- I-- 100 05 I ~ 2000 '"~ ~ J. 20V 500 r--- I-- /31 = 10' TJ = 75°C VCC = 20 V 200 I-- I-- I-- I-- I I 0.7 VSE(olll = a v 1000 10 20 30 100 05 5.0 10 :[ 500 :g 2.0 \1- '" :'!. 200 ............ g§ 100 13 8 ;# 50 20 - -- '" .......... . VSE(oHI = 0 V- '"~ 200 i '"to =-50 I TJ = 75°C I-Vcc = 20 V 10 05 500 '" -20V I-- /31 = 5.0' I-- g :g ~ ........ ffi ~ '" ";;;' 1.0 20 30 ~ la~ ~ ......... ~ -50 v 20V TJ = 75°C VCC = 20 V 20 I-- I-- I-- I-- f= 1= b ~ '"~ 0 '" ..,'"IE -..... I I I 1.0 07 ........ f:= h 30 50 20V c ........ VSE(oH) = O.V_ :g '"'" ~ ~~ , / > 200 -50 V r~~ OIV '1' VSE(oHI = 0 v - - ................... .......... ~ 100 ;;rL ~V . 5l gJ 50 20V _I::~ I-- 20 20 FIGURE 12 - CROSSOVER TIME 500 ~ 10~ ......... 100 _u ~ IC. COLLECTOR CURRENT (AMPS I 20V I' a v 200 =56v 1000 500 ~ "7 I' I-- I-- /31 = 10' FIGURE 11 - CROSSOVER TIME I VSE(oHI - 0 v 50 IC. COLLECTOR CURRENT (AMPS I 1000 -......\ '-- 10 05 50 20V 100 ~ v I I I 07 50 FIGURE 10 - COLLECTOR CURRENT FALL TIME ....... 50V 0- '" 13 30 1000 v OV ::::I 20 IC. COLLECTOR CURRENT (AMPS I FIGURE 9 - COLLECTOR CURRENT FALL TIME f= f:=::t; - I I I 07 IC. COLLECTOR CURRENT (AMPS) 1000 i5.0 V /31 = 5.0' TJ.= 75°C VCC = 20 V r--- r--- - 10 0.5 j 0.7 =5.0V- :3 .;. 20 IJ 1.0 50 2.0 3.0 5.0 r--- fr--- fr--- f- 10 0.5 0.7 /31= 10' TJ = 75°C VCC=20V I I I 10 = 2.0 V ..... I I 2.0 IC. COLLECTOR CURRENT (AMPS) IC. COLLECTOR CURRENT (AMPSI 1-746 = 5.0 V ~ I 3.0 5.0 MJ16002A,MJH16002A FIGURE 14 - PEAK REVERSE BASE CURRENT FIGURE 13 -INDUCTIVE SWITCHING MEASUREMENTS 5.0 IC~ ......- f-""'" IC""""- .,/' I- f--t sv I JCEIPkl "\ 90%IBI -- --\- -- ----......,.... -- -- 30 '""" '" /' ......- .... ---- 20 ~ - -- V /" 15 10%" ~ ~ 2%IC Ie pk ]: ........- 10 ---- V lSI = 0.3 A ,/ '" '" 8 l- 10% VCElpkl lSI = 0.6 A ~ I'\. V VCE - ~ 4.0 ... ::; ffl~ Ifi-I-Ili- IIV I in 90% VCElpkl A1\9!1%IClpkl 1----] I---tc~ 'B- I---- Ic=3.0A TJ = 25°C - r-- ,/ o o 10 20 40 30 50 60 70 8.0 VSEloHI' REVERSE BASE VOLTAGE IVOLTSI TIME GUARANTEED SAFE OPERATING AREA LIMITS FIGURE 18 - MAXIMUM FORWARD BIAS SAFE OPERATING AREA FIGURE 18 - MAXIMUM REVERSE BIAS SAFE OPERATING AREA 10 ~ 5.0 ! 2.0 10 10 ~s ~ 9.0 de t;'" 1=5 ~ => 1.0ms 0.20 9 0.05 0.02 Te = 25°C - 10 20 50 70 100 200 300 VCE. COLLECTOR·EMITTER VOLTAGE (VOLTS) ~ 5. 0 4.0 ~ 3.0 iE-"- 2.0 ~1.0 SONDING WIRE LIMIT - - - - - THERMAL LIMIT - - - SECOND SREAKDOWN LIMIT 0.0 1 5.0 7.0 7.0 8 500 o o Ilf;;' 4.0· TJ';; 1000C- \ \ \ '-' 6.0 '" 8~ 0.10 \ ~ 80 !z I"'\. t 1\ I---- VBEloff) = 0 V /' "- ~) = liD 10 5., V _ "'-..l 1 100 200 500 700 VCElpk), PEAK COLLECTOR·EMITTER VOLTAGE (VOLTS) 1000 SAFE OPERATING AREA INFORMATION the power that can be handled to values less than the limitations imposed by second breakdown. FORWARD BIAS There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate IC-VCE limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. The data of Figure 15 is based on TC = 25°C; TJ(pk) is variable depending on power level. Second breakdown pulse limits are valid for duty cycles to 10% but must be derated when TC;;. 25°C. Second breakdown limitations do not derate the same as thermal limitations. Allowable current at the voltages shown on Figure 15 may be found at any case temperature by using the appropriate curve on Figure 18. TJ(pk) may be calculated from the data in Figure 17. At high case temperatures, thermal limitations will reduce REVERSE BIAS For inductive loads, high voltage and high current must be sustained simultaneously during turn-off, in most cases, with the base-to-emitter junction reverse biased. Under these conditions the collector voltage must be held to a safe level at or below a specific value of collector current. This can be accomplished by several means such as active damping, RC snubbing, load line shaping, etc. The safe level for these devices is specified as Reverse Bias Safe Operating Area and represents the voltage-current condition allowable during reverse biased turn-off. This rating is verified under clamped conditions so that the device is never subjected to an avalanche mode. Figure 16 gives the RBSOA characteristics. 1-747 MJ16002A,MJH16002A FIGURE 17 - THERMAL RESPONSE OJ 10 01 ,. == R9JCltl = r(tl R9JC R9JC - 1.4°e/W Max - - 05 -' 0< ... e "'- O.l \. ,. 0.1 .... ",,,, ~ .... ~-' zo< ... .,;", ze 0<,. ",~ ... ~~ ~~ u'" ... .,; ...... ::;'" .., o CURVES APPLY FOR POWERr- ~ ~~D=05 0.1 DOl DOl 0.01 001 i. ~~j 01 Ol 01 05 =~ I \I I I I I I II 0.01 0.05 -I=~ -I-l- DUTY CYCLE. D = 11/11 - I - SINGLE PULSE 0.01 DOl TJ(pkl-T C = P(pkl R8JClt) f- P(pk) 01 0.05 005 I- -r-rul ~ 02. 0.01 = PULSE T~A1N SHOWN READ TIME AT 11 10 10 lO 50 10 ·10 30 50 100 100 300 500 10DD 1000 I, TlMElmsl FIGURE 18 - POWER DERATING 100 ? ~~ ,~ 80 ~ .. . ., ......z 60 Der.tlng~ , >= ~ 40 '" ~ Second B"akdown 1"- ...... ........ 'l'" I~}rma~ '"~, Derating ........ if-.... ........ ..... , "- I"'-- .I l', ~ .......... --.j o o ...... 1--... ') , -MJ16002A 0 - ---MJHI6002A ~ 1 40 - ,- 110 80 TC CASE TEMPERATURE fOCI " 160 100 +Vde == 11 Vde TASLE 1 - RESISTIVE LOAD SWITCHING td and tr OV ==-35'lf A 50 Vee = 250Vde RL = 83!l Ie = 3.0 Ade Ie = 0.3 Ade l1V ~ O~ Vin tr~15 OV -5 V UT ns "Tektronix AM503 P8302 or Equivalent -v ;1 ~ v ~ lRL Vee ..:. ~ Vee = 250 lSI = 0.3 Adc, ReI = 33 n RL=83n Ic= 3.0Ade IS2 0.8 Ade, RS2 8.0 n For VSE(off) = 5 ..0 V RS2 = 0 = 1 ;::::t!l-. = J n Note: Adjust -V to obtain desired VSE(off) at Point A. 1-748 MJ16002A,MJH16002A .. TABLE 2 - INDUCTIVE LOAD SWITCHING o 02pF 20 o 10 pF -3slf A fP' 50 , ,..---1'---[ 500 ~1C(pk) -V IC~ I-,v OV~ -~ Tl--J '-- VCE(Pkl-··h VCE~ A (Or---HJ+---{ T1 ~ Leoll (lCpk) VCC T 1 adlusted to obtain lC(pkr BVCEO(susl L= 10 mH RB2 =~ VCC = 20 Volts IC(pk) = 100 mA Inductive Switching Lo 200 pH RB2 00 VCC = 20 Volts "Tektronix AM503 P6302 or Equivalent Scope - AS 1 selected for desired 161 RBSOA Lo200pH RB2 0 0 VCC = 20 Volts RSl selected for desired IS1 Tektronix 7403 or Equivalent Note: Adjust -V to obtain desired VBE(off) at Point A. TYPICAL INDUCTIVE SWITCHING WAVEFORMS IC(pk) = 3.0 Amps IBl =0.3 Amp VBE(off) = 5.0 Volts VCE(pk) = 300 Volts TC = 25°C Time Base = 20 ns/em lC(pkl = 3.0 Amps ISl = 0.3 Amp VSE(offl = 5.0 Volts VCE(pk) = 300 Volts TC = 25°C Time Base = 20 ns/em 1-749 '-- MJl6006 MJl6008 MJHl6006 MJHl6008 ® MOTOROLA Designers Data Sheet 8.0 AMPERE SWITCHMODE III SERIES NPN SIUCON POWER TRANSISTORS NPN SILICON POWER TRANSISTORS These transistors are designed for high-voltage, high-speed, power switching in inductive circuits where fali time is critical. They are particularly suited for line-operated switchmode applications. The MJ16008 and MJH16008 are selected high gain versions of the MJ16006 and MJH16006 for applications where drive current is limited. 450 VOLTS 125 AND 1SO WATTS Typical Applications: Features: • Switching Regulators • Inverters • Solenoids • Relay Drivers • Motor Controls • L Deflec:;~~ Circ~ ~ J,5t? 4' • Fast Turn-Off Times 70 ns Inductive Fall TIme -100"C (Typ) 100 ns Inductive Crossover Time -100'C (Typ) 500 ns Inductive Storage Time -100°C (Typ) • 100'C Performance Specified for: Reverse-Biased SOA with Inductive Load Switching Times with Inductive Loads Saturation Voltages Leakage Currents o~.~·. ~i ~m~ • H , • " CASE COllECTOR I , u MAXIMUM RATINGS Rating Symbol MJH16006 MJH16008 MJ16006 MJ16008 Unit Collector-Emitter Voltage VCEQ(sus) Collector-Emitter Voltage VCEV 450 Vdc 850 Vdc Emitter-Base Voltage VEB 6.0 Vdc Collector Current - Continuous - Peak (1) IC ICM 8.0 16 Base Current - Continuous -Peak (1) IB IBM 6.0 12 ill 1.1113IO,OO5I@I,lv@1 FOR LEADS I • 11.13IOO"'@' 1v@1 Q@I 40IMENSIONSANOTOLEAANCESP£A ANSlY145,1913 Adc CASE 1-05 Adc Total Device Dissipation @TC = 25'C @TC = l00'C Derate above 25'C PD Operating and Storage Junction Temperature Range TJ,Tstg Watts 150 85.5 0.86 125 50 1.0 wrc -65 to 200 -55to 150 'c THERMAL CHARACTERISTICS Characteristic RruC Lead Temperature for Soldering Purposes, 118" from Case for 5 Seconds. Unit Max SY!IIbol Thermal Resistance, Junction to Case (11 Pulse rest: Pulse NOTES 1 DIMENSIONS 0 AND V ARE DATUMS 2 IS SEATING PLANE AND DATUM. 3. POSITIONAL TOLERANCE FOR MOUNTING HOLED r-===;;-r-;;;;=-, 1.17 TL I 1.0 'c!w TO-204AA (Form....Y TO-3) MJH18008 MJH18008 , 1 BAS. 2 COllECTOR 3EMfTTER 'C 275 4 COllECTOR Width", 5.0 I'S, Duty eyel,e " 10%. CASE 340-01 DesIgner', DabI for "Wont c..... Conditions TO-218AC The Designer's Data Sheet permits the design of most circuits entirely from the information presented. Limit Curves - representing boundaries on device characteristics - are given to facilitate "worst cass" deSign. 1-750 MJ16006, MJ16008, MJH16006, MJH·16008 III MJ16006 MJH16006 ELECTRICAL CHARACTERISTICS ITC ~ 25°C unless otherwise noted) Characteristic OFF CHARACTERISTICS 11) Collector-Emitter Sustaining Voltage ITable 2) IIC~ 100 mA,ls~ 0) Collector Cutoff Current ~ S50 Vde, RSE ~ - - 0.25 1.5 ICER - 2.5 mAde IESO - - 1.0 mAde 100°C) Collector Cutoff Current ~ - ICEV IVCEV ~ S50 Vde, VSEloff) ~ 1.5 Vdc) IVCEV ~ S50 Vde, VSEloff) ~ 1.5 Vde, TC IVCE 450 VCEOlsus) Vde mAde 50 0, TC ~ 100°C) Emitter Cutoff Current IVES ~ 6.0 Vde, IC ~ 0) SECOND SREAKDOWN Second Breakdown Collector Current with Base Forward Biased See Figure 15 Clamped Inductive SOA with Base Reverse Biased See Figure 16 ON CHARACTERISTICS (1) Collector-Emitter Saturation Voltage IIc ~ 3.0 Ade, Ie IIC ~ 5.0 Ade, IS ~ ~ VCElsat) 0.4 Ade) 0.66 Ade) Ilc~ 5.0Ade,ls~0.66Ade, TC~ ~ ~ 0.66 Ade) 0.66 Ade, TC VSElsat) ~ 100°C) DC Current Gain IIc ~ - 2.5 3.0 3.0 - - 1.5 1.5 5.0 - - - 50 250 2500 250 ns - 20 S5 1000 70 500 100 - 700 80 150 1800 200 250 - BOO - 80 200 - 100°C) Base-Emitter Saturation Voltage IIc ~ 5.0 Ade, IS IIc ~ 5.0 Ade, IS Vde - hFE Vde B.O Ade, VCE ~ 5.0 Vde DYNAMIC CHARACTERISTICS Output Capacitance (VCS ~ 10 Vde, IE ~ 0, f test ~ 1.0 kHz) SWITCHING CHARACTERISTICS Resistive Load ITable 1 ) Delay Time Rise Time Storage Time Fall Time Storage Time Fall Time IIc~ 5.0 Ade, VCC ~ 250 Vde, lSI ~ 0.66 Ade, PW~ 30!,s, Duty Cycle <;;2.0%) IIS2 ~ 1.3 Ade, RB2 ~ 4.0 0) IVSEloff) ~ 5.0 Vde) td tr ts If ts If - - Inductive Load (Table 2) Storage Time Fall Time Crossover Time Slorage Time Fall Time IIc~ 5.0 Ade, lSI ~ 0.66 Ade, VSE(off) ~ 5.0 Vde, VCE(pk) ~ 400 Vde) (TJ~ 100°C) ITJ~ 150°C) tsv tfi te Isv Ifi Ie Crossover Time (1) Pulse Test: PW - 300 ~s. Duty Cycle ~2%. 1-751 - - ns MJ16006,MJ16008,MJH16006,MJH16008 II] MJ16008 MJH16008 I ELECTRICAL CHARACTERISTICS (TC = 25·C unless otherwise noted) I Characteristic Symbol Min Typ Max Unit VCEO(sus) 450 - - Vdc - 0.25 1.5 2.5 mAde - 1.0 mAde OFF CHARACTERISTICS Collector-Emitter Sustaining Voltage (Table 2) (IC =100 mA, IB = 0) Collector Cutoff Current (VCEV =850 Vdc, VSE(off) = 1.5 Vdc) (VCEV = 850 Vdc, VSE(off) = 1.5 Vdc, TC = l00·C) ICEV Collector Cutoff Current (VCE = 850 Vdc, RBE = 50 0, TC = l00·C) ICER - Emitter Cutoff Current lEBO - mAde (VEB = 6.0 Vdc, IC = 0) SECONO BREAKDOWN Second Breakdown Collector Current with Base Forward Biased See Figure 15 Clamped Inductive SOA with Base Reverse Biased ~ee Figure 16 ON CHARACTERISTICS (1) Collector-Emitter Saturation Voltage (IC = 3.0 Adc, IS = 0.3 Adc) (lc = 5.0 Adc, IB = 0.5 Adc) (lc = 5.0 Adc, IB = 0.5 Adc, TC = l000C) VCE(sat) Base-Emitter Saturation Voltage (IC = 5.0 Adc, IB = 0.5 Adc) (lC = 5.0 Adc, IS = 0.5 Adc, TC = l000C) VBE(sat) - - 2.5 3.0 3.0 - - 1.5 1.5 - DC Current Gain (lC = S.O Adc, VCE = 5.0 Vdc hFE Vdc - 7.0 - Vdc - - 20 100 900 70 400 50 50 250 2200 250 ns 500 70 100 1400 150 200 DYNAMIC CHARACTERISTICS Output Capacitance (VCB = 10 Vdc, IE = 0, f test = 1.0 kHz) SWITCHING CHARACTERISTICS Resistive Load (Table 1 ) Delay Time Rise Time Storage Time Fall Time Storage Ti me Fall Time (lC= 5.0Adc, VCC = 250 Vdc, IBl = 0.5 Adc, M=30"s, Duty Cycle ":2.0%) (lB2 = 1.0 Adc, RB2 =4.00) (VBE(off) = 5.0 Vdc) td tr ts tf tli tf - - - Inductive Lead (Table 2) Storage Time Fall Time Crossover Time Storage Time Fall Time Crossover Tjme (IC = 5.0 Adc, IBl = 0.6 Adc, VBE(off) = 5.0 Vdc, VCE(pk) = 400 Vdc) tBv tfi tc tsv tfi (TJ = l00·C) (TJ = 150·C) Ie (1. Pulse Test: PW - 300 P.s, Duty Cycle :e;;Z%. 1-752 - - 600 - - 100 150 - - ns MJ16006.MJ16008.MJH16006.MJH16008 TYPICAL STATIC CHARACTERISTICS FIGURE 1 - DC CURRENT GAIN FIGURE 2 - COLLECTOR SATURATION REGION 100 g 50 z ;;: '" 20 ia 10 '" 5.0 25°C 0.7 r---.-.... ... ~ '" > ~ 0.3 :::; "- 8 1.0 2.0 5.0 IC. COLLECTOR CURRENT (AMPS) 0.1 20 10 0.1 ~ :E ~ '" t; ~ 2.0 1.0 " 111'10 ~ TJ' 100°C ~ ~ 0.2 0.1 0.1 "" 15~ 0.5 h 0.5 1.0 2.0 IC. COLLECTOR CURRENT (AMPS) 5.0 0.2 01 10 ....z / / I 103 - w '"B 10 2 moc '"c ~ 10 ~ 100 lOooC 75 0 C 1 r-- t-- REVERSE 10K 5.0K L ./ / ..,. / I Z 5 SOO : 200 <.S 100 5 FORWARD Cib 'rr 25°C Cob r--- 20 10 10- 1 -0.2 10 50 I VeE - 25OV= 250 C -0.4 50 ~1.0K ./ ../ 10 111'10 TJ' 100 D C 0.5 2.0 1.0 IC. COLLECTOR CURRENT (AMPS) 0.2 u: 2.0K -TJ" 150°C 5.0 FIGURE 6 - CAPACITANCE FIGURE 6 - COLLECTOR CUTOFF REGION 104 / II ~ ~ 0.3 :Y ....- TJ' 25°C ........ f-' "" ..- lii ~ ;..;: lil_ I---" 0.2 11;)5.01 1 TJ ' 25 D C 1.0 ~ TJ ' 25°C 0.5 - 0.5 1.0 2.0 Ia. BASE CURRENT (AMPS) ~ 0.7 / III 10 8 j m ~ ~ 5.0 !'" IC' 2.0 A 2.0 Ill' 5.0 TJ - 25°C 4.0 A ........ FIGURE 4 - BASE-EMITTER VOLTAGE 10 "" ~ 0.2 I'-..... ~OA 1\ 0.2 FIGURE 3 - COLLECTOR-EMITTER SATURATION VOLTAGE ~ ~ 8.0 A \ \ :l:: ~ 0.5 \. \ "" VCE ' 5.0 V 1.0 0.2 \ 0.5 ~ 2.0 \ ~ -55°C '-' i :E TJ - 100°C 1.0 +0.2 +0.4 0.1 0.2 +0.6 VBE. BASE·EMITTER VOLTAGE (VOLTS) 1-753 0.5 1.0 2.0 5.0 10 20 SO 100 200 VR. REVERSE VOLTAGE (VOLTS) 500 850 MJ16006,MJ16008,MJH16006,MJH16008 IIJ TYPICAL INDUcnVE SWITCHING CHARACTERISTICS FIGURE 8 - STORAGE TIME FIGURE 7 - STORAGE TIME 3000 3000 2000 ~ !E 1= ~ 1000 ~ ~ I"-- vaE(olf); 0 V r---- P::::::-- - ! 2.0 V 5.0 V !Ji r- 300 1.0 500 2.0 3.0 5.0 Ie. COLLECTOR CURRENT (AMPS) -- 7.0 300 1.0 10 FIGURE 9 - COLLECTOR CURRENT FALL TIME 400 :! 300 i'.. !!E 0> 1= :::I 200 ;l! , I ="- I S~ ~ ~ 300 !Ii! 1= "'- -....; ::I 200 ;l! VaE(olf) = 0 V J 7.0 10 "- ~ 8 "- J# 2.0 3.0 5.0 IC. COLLECTOR CURRENT (AMPS) ~ \; ~ ~ / ~ 100 , 5.0 V ~~ i2 ::> 7.0 10 2.0 V "' ., 7 -fJ!=10' VaE(olf) = 0 V 70 - T J =75'C /" VCE(pk) = 400 V 1 50 40 1.0 2.0 5.0 3.0 IC. COLLECTOR CURRENT (AMPS) sy """ FIGURE 11 - CROSSOVER TIME 7.0 10 FIGURE 12 - CROSSOVER TIME 500 500 ~ !1.., 200 ........ i'-.. I ~ ......... "- '" ......... r-,. ==f3t=5.0· "- ......, I'-.. .J. 1 toL ~ ~ 200 ~~ Q ~ ).. r-- TJ = 75'C r-- VCElpk) = 400 V 2jOV 70 1 5.0 50 1.0 2.0 3.0 IC. COLLECTOR CURRENT (AMPS I 7.0 VaE(olf)=OV ........... ~ i ;ov li1 ~19',~ '; 100 f==f3t= 10' ,/ 1 300 ~ V I\. VaE(olf) = 0 V ~!J = 75'C 70 , - - VCE(pkl = 400 V 50 1.0 "- '- li1 '; 100 5.0 V 2.0 3.0 5.0 IC. COLLECTOR CURRENT lAMPS) ffi ~ r----.( _2.0V f--fJ! = 5.0' ; 70 r--TJ = 7S·C 8 r - - VCE(pk) = 400 V J# 50 ~ 2.0V FIGURE 10- COLLECTOR CURRENT FALL TIME 2.0 V ~ 100 300 r--. 400 ::> 40 1.0 -.... r---- - 700 400 400 ! ,I VaE(olf) = 0 V ~ 1000 ~ 700 r--fJ!= 5.0' r--TJ = 75"C 500 r - - VCE(pk) = 400 V fJ! = 10' TJ = 75'C VCE(pk) = 400 V ---- 2000 10 1-754 5.0 V 2.0 5.0 3.0 Ie. COLLECTOR CURRENT (AMPS) I........ ....... " 7.0 10 MJ16006,MJ16008,MJH16006,MJH16008 FIGURE 13 -INDUCTIVE SWITCHING MEASUREMENTS ..,,- ,..., ./ -- IC ......... VCE 18- - IC.!'!.--- ~E(Pk} I~ 1 90% VCE(pk} I - ~ ~ ric ---\ r- V I, 10% VCElpk} 10" .... IC pk 90%181 --- -- -- - ~ -- :E !!. 6.0 90% IC(pk} l",ffl~II'- _11'- -I", ---\- -- FIGURE 14 - PEAK REVERSE BASE CURRENT 8.0 i... lSI; 1.0 A ~ :> -l"'(C ---- 4.0 ~ ~ '" ~ ~ 2.0 ~ ~ --- /' :i V. . . . , / V a a f-'"'" ~ I-- f-'""'ISI ;05A IC; 5.0 A TJ ; 25°C - 2.0 4.0 - 6.0 8.0 VSEloffl' REVERSE BASE VOLTAGE IVOlTSI TIME +Vde = 11 Vde TABLE 1 - RESISTIVE LOAD SWITCHING ov =-35JJ A r::; 50 RB2 _ 500 ~ Vtn OV =I'V ~ Vee; 250Vdc RL; son Ie; 5.0 Adc IB; 0.5 Ade -V ':' v OV ~ -5 V tr~15ns l . -= -Tektronix AM503 P6302 or Equivalent Vee; 250 RL; 50n le= 5.0 Adc 1 lRl UT~ ~ Vee.=.. IB1 = 0.5 Adc, RB' = 20 n IB2 = 1.0 Adc, RB2 = 4.0 n For VBEloff) = 5.0 V RB2 = 0 Jn Note: Adjust -V to obtain destred VBE(offl at Potnt A. 1-755 MJ16006,MJ16008,MJH16006 i MJH16008 III TABLE 2 - INDUCTIVE LOAD SWITCHING 002 ~F 20 o 10 . =-35lf ~F A I~P' 50 + I---......- - - { 500 -V ~lelPkl le~ '-- ~kl A VeE~ (<>l>---fei--{ L- T 1 = Lcolillepki Vee T 1 adjusted to obtain IClpkl VIBRJCEOlsusl L = 10 mH RS2 = "" Vce = 20 Volts IC(pkl = 100 mA ·Tektronix AM503 P6302 or Equivalent RBSOA Indut;:tive Switching L~200~H L~200~H RB2 ~ 0 Vee ~ 20 Volts RB2 ~ 0 Vee ~ 20 Volts RSl selected for deSired IS1 AS1 se'ect~d for deSired 'Sl Scope - Tektronix 7403 or Note Adjust -V to obtain deSired VSEloffl at POint A EqUivalent SAFE OPERATING AREA INFORMATION FORWARD BIAS There are two limitations on the power handling abilduce the power that can be handled to values less than the limitations imposed by second breakdown. ity of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate IC - VCE limits of the transistor that must be observed REVERSE BIAS for reliable operation; i.e., the transistor must not be For inductive loads, high voltage and high current subjected to greater dissipation than the curves. indimust be sustained simultaneously during turn-off, in cate. . most cases, with the base-to-emitter junction reverse biased. Under these conditions the collector voltage The data of Figure 15 and 15A are based on TC = must be held to a safe level at or below a specific value 25°C; TJ(pk) is variable depending on power level. Second breakdqwn pulse limits are valid for duty cycles to of collector current. This can be accomplished by sev10% but must be derated when TC .. 25°C. Second eral means such as active clamping, RC snubbing, load breakdown limitations do not derate the same as therline shaping, etc. The safe level for these devices is mal limitations. Allowable current at the voltages specified as Reverse Bias Safe Operating Area and repshown on Figure 15 and 15A may be found at any case resents the voltage-current condition allowable during temperature by using the appropriate curve on Figure reverse biased turn-off. This rating is verified under clamped conditions so that the device is never subjected 17. TJ(pk) may be calculated from the data in Figure 18. to an avalanche mode. Figure 16 gives the RBSOA charAt high case temperatures, thermal limitations will reacteristics. 1-756 MJ16006,MJ16008,MJH16006,MJH16008 III GUARANTEED SAFE OPERATING AREA LIMITS FIGURE 15 - MAXIMUM FORWARD BIAS SAFE OPERATING AREA. MJ16006 " MJ16006 FIGURE 15A - SAFE OPERATING AREA. MJH16006 " MJH16008 16~~~~~~~~~~~~~ 1°11l1l!!1!~!!~1I~~~~!!10~~!'~1 I_ ~ S.O ~ !2 2.0 !z 1.0 ms aI 1.0~1"~~!'M"II~~!I~1 a I'"ti ~ '-~rTC' 25°C -f--r- de 0,5 10 !LS 5,0 3,0 2.0 0.50 - SECOND BREAKDOWN LIMIT 5.0 7.0 10 FIGURE 16 - MAXIMUM REVERSE BIAS SAFE OPERATING AREA TJ';; 100°C - \ , ~~ ~80 r-- ,,~ '" ~ ~ r-- f- VBEI.If) , I o o 0 V/ I I i r-- -r--o ~ SECOND BREAKDOWN DERATING K"'" ........ '~ ~ 50 THERMAL DERATING" , '" VBEI.If) , 1,0 TO 5,0 V 500 ~~ z !;i 1\ j I \ I--l 20 30 50 70 100 200 300 VCE. COLLECTOR - EMITTER VOLTAGE (VOLTS) FIGURE 17 - POWER DERATING 100 Ill;;' 4,0 BONDING WIRE LIMIT ~E- - - - THERMAL LIMIT 0.05 0.03 0.02 SECONO BREAKDOWN LIMIT \ \ ~ de ~ 0.20 o ~0.10 0,02 ~...I...Ju...L_-,--,-_~~.......~.u..L--'--L_~-=U 5,0 10 20 50 100 200 300 450 VCE, COLLECTOR·EMITTER VOLTAGE IVOLTS) 16 " tOms I" 1.0 t; 0.30 ~ 0,2 ~titt=:t=t=:t:::tt:tt~~=t=+==I=tj ~ 0,1 ~O'- _-__ ~~~~:.! ~=~ LIMIT 0,05 20 10 , 40 - - - MJHl6006. MJHl5008 20 1 - - - MJl5006. MJl500B .... ...... i"'--- "" , ........ ~ ,, o 1000 .......... !' I \l o 200 400 600 800 850 VCElpk). PEAK COLLECTOR· EMITTER VOLTAGE IVOLTS) . . . r--.. l N 80 120 Te. CASE TEMPERATURE lOCI 40 "'- 160 " 200 FIGURE 18 - THERMAL RESPONSE 1.0 ;. ~_ wO :w ~!::l! I-~ o. 1~O.05 O. 31== 0.2 ~i o. 2 ZO «z r-- ~ ~O.o - 01 ~: 0 IF=:005 ~ ~ 0.0 1~o.o2 §~ 0.05 ~'" 3~ AC ~ R'Je(11 • r(11 R'JC o. 5 R9JC(t) '" 1 17 aCfW MoIX -. -_.... .... o CURVES APPLY FOR POWER PULSE TRAIN SHOWN READ TIME AlII TJ(pkl - TC' P(pkl R9JCItI pBUl 0.01 t~..J 0.0 2e-- SINGLE PULSE 0.0 1 0.01 I II 0.02 0.03 DUTY CYCLE. 0·111'2 0.05 01 02 0.3 0.5 1.0 2.0 3.0 t. TIME (ms) 1-757 5.0 10 20 30 50 100 200 300 SOD 1000 MJl6006A MJHl6006A III ® MOTOROLA Designer's Data Sheet 8.0 AMPERE NPN SILICON POWER TRANSISTORS 1.0 kV SWITCHMODE III SERIES NPN SILICON POWER TRANSISTORS SOO VOLTS 125 and 150 WATTS These transistors are designed for high-voltage, high-speed, power switching in inductive circuits where fall time is critical. They are particularly suited for line-operated switchmode applications. MJ16006A Typical Applications: Features: • Switching Regulators • Collector-Emitter Voltage VCEX = 1000 Vdc • Fast Turn·Off Times 80 ns Inductive Fall Time - 100"C (Typl 120 ns Inductive Crossover Time-l00'C (Typ) 800 ns Inductive Storage Time -1 OO'C (Typ) • • • • Inverters Solenoids Relay Drivers Motor Controls • 100'C Performance Specified for: Reverse-Biased SOA with Inductive Load Switching Times with Inductive Loads Saturation Voltages Leakage currents • Deflection Circuits STYLE 1 PIN 1. BASE 2 EMITTER CASE COLLECTOR NOTES 1 QIMENSIDNSOANOVAREDATUMS 2 IS SEATING PLANE AND DATUM 3 I'OSITIONAL TOLERANCE FOR MOUNTING HOLEO OJ !+!'13(0005)eIT!v@1 FORLEAOS j+!'13(0005)@T!V@!O@! 4DIMENSIONSANOTOLERANCESPER ANSIYI45,lB73 MAXIMUM RATINGS Rating Symbol Collector-Emitter Voltage Collector-Emitter Voltage VCEO(sus) 500 Vdc VCEV 1000 Vdc Emitter-Base Voltage VEB 6.0 Vdc Collector Current - IC ICM 8.0 16 Adc IB IBM 6.0 12 Adc Base Current - Continuous Peak (1) Continuous Peak (1) Total Power Dissipation @ TC @TC Derate above TC = 25'C = 25'C = 100'C Operating and Storage Junction Temperature Range Po TJ,Tstg 150 85 0.86 125 50 1.0 Watts -65 to 200 -55to 150 'c Thermal Resistance, Junction to Case , j --lil--J HISymbol R6JC Lead TemperaturQ for Soldering Purposes: 1/8" from Case for 5 Seconds (1) Pulsa Tost: Pulsa Width MJH16006A WI'C THERMAL CHARACTERISTICS Characteristic CASE 1-05 TO-204M (Formerly TO-3) MJ16006A MJH16006A Unit = 5.0 ml, Duty Cycle'" Max 1.17 TL I Unit 1.0 275 'cm STYLE' PINl BASE 2 COLLECTOR 3 EMlmR 4 COllECTOR 'C to%. Deoigner'o o.ta for "Worot caM" Conditions The Designer'. Data Sheet permits the design of most circuits entirely from the information preaentad. Limit Curves - representing boundaries on device characteristics - are given to facilitate "worst ca.... daaign. 1-758 CASE 340-01 TO-21BAC MJ16006A,MJH16006A I ELECTRICAL CHARACTERISTICS (TC = 25"C unless otherwise noted) Characteristic Symbol Min Typ Max Unit VCEO(sus) 500 - - Vde - - 0.25 1.5 ICER - - 2.5 mAde lEBO - - 1.0 mAde OFF CHARACTERISTICS (1) Collector-Emitter Sustaining Voltage (Table 2) (lC = 100 mA. IS = 0) Collector Cutoff Current (VCEV = 1000 Vde, VSE(off) (VCEV = 1000 Vde, VSE(off) Collector Cutoff Current (VCE = 1000 Vde, RSE = = = ICEV 1.5 Vde) 1.5 Vde, TC 50 fl, TC = = 100'C) 100'C) Emitter Cutoff Current (VES = 6.0 Vde, IC = 0) mAde SECOND BREAKDOWN Second Sreakdown Collector Current with Base Forward Biased See Figures 14 or 15 Clamped Inductive SOA with Base Reverse Siased See Figure 16 ON CHARACTERISTICS (1) Collector-Emitter Saturation Voltage (lC = 3.0 Ade, IS = 0.6 Ade) (lC = 5.0 Ade, IB = 1.0 Ade) (lC = 5.0 Ade, IS = 1.0 Ade, TC = 100'C) VCE(sat) Sase-Emitter Saturation Voltage (lC = 5.0 Ade, IB = 1.0 Ade) (lC = 5.0 Ade, IS = 1.0 Ade, TC = 100'C) VSE(sat) DC Current Gain (lC = 8.0 Ade, VCE = 5.0 Vde) - - - - - Vde 1.0 1.5 1.5 Vde 1.5 1.5 - - 25 100 ns 400 700 hFE 5.0 Id - Ir - ts 1400 3000 175 400 ts - If - DYNAMIC CHARACTERISTICS Output Capacitance (VCB = 10 Vdc, IE = 0, ftesl = 1.0 kHz) SWITCHING CHARACTERISTICS Resistive Load (Table 1) MJ16oo6A Delay Time Rise Time Storage Time Fall Time Storage Time (lC = 5.0 Ade, VCC = 250 Vde, IBI = 0.66 Ade, PW = 30j.tS, Duty Cycle", 2.0%) (lB2 = 1.3 Ade, RS2 = 4.00) tf (VBE(off) = 5.0 Vde) Fall Time Inductive Load (Table 2) Crossover TIme Storage Time Fall Time - 800 2000 80 200 300 MJ16006A Storage Time Fall Time 100 475 If; - tsv (lC = 5.0 Adc, IBI = 0.66 Ade, VSE(off) = 5.0 Vde, VCE(pk) = 400 Vdc) (TJ = 100'C) (TJ = 150'C) Crossover Time 111 Pul •• Test: PW - 300 "'", Duty Cycl. '" 2.0%. 1-759 te - 120 Isv - 1000 tfi - 90 te - 150 - - ns MJ16006A,MJH16006A TYPICAL STATIC CHARACTERISTICS FIGURE 1 - DC CURRENT GAIN FIGURE 2 - COLLECTOR-EMITTER SATURAnoN VOLTAGE 10 100 g 50 iz Ie - 30 TJ = 100°C 20 '" ~!i . 25°C ~ 10 => u u ~ ~ 3.0 ~ 2.0 Idla - 10 TJ = 25·C ~ 1.0 / ~ 13 0.5 ~ 0.3 8 0.2 ~ ~ ::::,.. 5.0 ~ ~ CI 5.0 -55°C 3.0 i 2.0 1.0 . 0.2 0.3 0.5 1.0 2.0 3.0 5.0 IC. COLLECTOR CURRENT (AMPS) 10 5.0 0.1 0.1 20 FIGURE 4 - FIGURE 3 - COLLECTOR-EMITTER SATURATION VOLTAGE ~ ;;; \ ~ w 1\ 0.5 i\ ~ g 0.3 ~ 13 0.2 ~ "- 8 w $' 0.3 - 0.5 1.0 2.0 3.0 IC. COLLECTOR CURRENT (AMPS) 5.0 10 BASE-EMITTER SATURATION VOLTAGE 2.0 1.0 ~ 0.2 V O. 1 0.1 I 8.011\ r-. '" 5.0 A...... 1.5 1.0 ~ '\ 3.0 A 1.0~ ~ c:> ~ w .1 t--- =TJ t--- -Idla '" ~ I'-- ~ ~ 0.3 ~ I'- " ~ 0.5 10 '-Idla TJ - 100·C 0.2 0.2 0.3 0.5 1.0 2.0 3.0 la. aASE CURRENT (AMPS) 5.0 10 0.2 0.3 0.5 1.0 2.0 3.0 Ie. COLLECTOR CURRENT (AMPS) FIGURE 6 - FIGURE 5 - CAPACITANCE 5.0 10 PEAK REVERSE BASE CURRENT 8.0 10000 • Cib' ~ ":!...... :; TJ '25°C ~1000 6.0 lal = 1.0 A ......- ro-ro- lI! u ~ a w .. ~ : C, '" 4.0 ~ C5 100 <.i ~ 10 0.1 10 2S·C t--- c:> 1.0 10 100 Vft. REVERSE VOLTAGE (VOLTS) 850 2.0 .--- ~ // V ---0.5 A IC=5.0A,_ >--TJ = 25°C ,/ o o 2.0 4.0 6.0 VaE(ofl). REVERSE aASE VOLTAGE (VOLTS) 1-760 8.0 MJ16006A,MJH16006A TABLE 1 - III RESISTIVE LOAD SWITCHING leland t. OV =-35JI A 50 50 v OV ;Jt ~ -5 V _ll V Von o~ tr~15 n5 "Tektronix AM503 P6302 or Equivalent 250 V Vee 250 V Vee RL 50n RL 50 n Ie 5.0 A Ie 5.0 A IB 0.66 A IB1 0.66 A IB2 1.0 A RB1 20 n RB2 4.0n *Note: Adjust - V to obtain desired VSE(off) at Point A. For VBE(off) FIGURE 7 - INDUCTIVE SWITCHING MEASUREMENTS IC Pk. . - - ~ ../ I ./ le/ ~CEIPkl I---- 1\ 90% VCEIPkll 90% IC(pkl ,,,/1+,,- -',,- I - f--Isv 1---, -"-\ f- V Vel IS- - - 10% VCElpkl " 90% lSI --\- -- -- -- -- .- ~ ~ TIME 1-761 10'"0 ..... 1--12~u Ie IC pk ~ 5.0 V. RB2 ~ 0 MJ16006A,MJH16006A III TABLE 2 - INDUCTIVE LOAD SWITCHING o ~-351J ......---4~)A fP' 50 50 'r--......- - - L + 500 -v ~IC(pkl IC~ I--,v Ov~ -~ Tl--l A T, = '-- ~kl , VCE~ (ojl----fffi--r '., '-- leoil (lepk) Vee T, adjusted to obtain le(pk) RBSOA L=750",H RB2 = 0 Vee = 20 Volts RBI selected for desired IBI Inductive Switching 'L=750",H RB2 = 0 Vee = 20 Volts RBI selected for desired IBI BVCEO L = 10 mH RB2 = "" Vee = 20 Volts Note: Adjust ... V to obtain desired VBE(off) at Point A Scope - Tektronix 7403 or Equivalent *Tektronix AM503 P6302 or Equivalent TYPICAL INDUCTIVE SWITCHING CHARACTERISTICS IcJIB1 3000 2000 ! ~•• 1000 -- = 5.0, Te = 100'C, VCE(pk) = 400 V FIGURE 8 - FIGURE 9 - STORAGE TIME 2000 _ !Ill ~ 2,0 V 1000 ~ - 700 500 500 400 400 300 300 2,0 3,0 5,0 ),0 10 ,I 1.0 1 VBE(oH) = 0 V ........... ~-- - ~ 5,OV 700 STORAGE TIME 3000 - VBE(offl = 0 V F===:::: f:::- 1.0 = 10, TC = 100'C, VCE(pk) = 400 V icJIB1 - 2,0 V :--- I--5,0 V 1 2,0 3,0 IC, COLLECTOR CURRENT (AMPS) IC, COLLECTOR CURRENT (AMPS) 1-762 I"--- ........ 5,0 7,0 10 MJ16006A,MJH16006A III GUARANTEED SAFE OPERATING AREA UMrTS (Continued) RGURE 16 - MAXIMUM RATED REVERSE BIAS SAFE OPERATING AREA FIGURE 17 - POWER DERATING 20 100 ~ 16 .... z ~ 13 12 ~ 80 l§ ~ :;;:.., ie ::E '" ~ 13 ::: VBEloft) = 0 ..... II 80 ,.S < 1 ~ .\ r- i o 100 \ VBEloff) ~ 300 400 ~ "" ......... ~ I 200 500 60 '" '( 600 700 800 ~ - r- SECOND BREAKDOWN DERATING ."-''< r-..... "'v ~ ' .... THERMAL DERATING P" "' , f'.. z 5.0 v ~~ ~ 40 \ \ I. 40 -IC/IB"'4.0 _ TJ",l00"C § ~ 1\' ,~ "',, ---MJH1600SA 20 - - - MJl600SA .......... ", "1 f' I \i o 80 120 TC. CASE TEMPERATURE 1°C) 40 VCElpk). PEAK COLLECTOR· TO·EMlffiR VOLTAGE IVOLTS) .......... ~ , o 900 1000 1100 r--.... ........ 160 " "'" 200 SAFE OPERATING AREA INFORMATION FORWARD BIAS There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate IC - VCE limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. The data of Figures 14 and 15 are based on TC ~ 25°C; TJ(pk) is variable depending on power level. Second breakdown pulse limits are valid for duty cycles to 10% but must be derated when TC '" 25°C. Second breakdown limitations do not derate the same as thermal limitations. Allowable current at the voltages shown on Figures 14 and 15 may be found at any case temperature by using the appropriate curve on Figure duce the power that can be handled to values less than the limitations imposed by second breakdown. REVERSE BIAS For inductive loads, high voltage and high current must be sustained simultaneously during turn-off, in most cases, with the base-to-emitter junction reverse biased. Under these conditions the collector voltage must be held to a safe level at or below a specific value of collector current. This can be accomplished by several means such as active clamping, RC snubbing, load line shaping, etc. The safe level for these devices is specified as Reverse Bias Safe Operating Area and represents the voltage-current condition allowable putting reverse biased turn-off. This rating is verified under clamped conditions so that the device is never subjected to an avalanche mode. Figure 16 gives the RBSOA characteristics. 17. TJ(pk) may be calculated from the data in Figure 18. At high case temperatures, thermal limitations will re- FIGURE 18 - THERMAL RESPONSE MJ16006A 1.0 ;( =_ ~o :z:~ .... N .... ::; 0.7 ~D~05 05 03 ffi~ 02 .,0 «., in'" ~ 01 f-- 01 ~ ::: o. IF=.005 - ... ". Rruclt) rlt) RruC 1.17 or 1.O"CIW Max RruC oCurves apply for power Pulse train shown Read time at tl P(pk) R8Jctt) TJ(pk) Te - pBUl ~ ~oo 7~002 § ~ 0.05 ~'" ~ ~O.03 _ .-K t:;--J 001 0.02 r - SINGLE PULSE 0.0 1 001 I II 002 003 DUTY CYCLE. D ~ 1]/11 DOS 01 01 03 05 10 2.0 3.0 I, TIME (ms) 1 -763 50 10 20 30 50 100 200 300 SOO 1000 MJ16006A,MJH16006A TYPICAL INDUCTIVE SWITCHING CHARACTERISTICS (Continued) = 5.0. TC = 100'C. VCElpk) = 400 V lelIB1 -- FIGURE 10 - 400 :! 300 r---..- ~ >= ::j ~ 0> 200 I(:IIB1 RGURE 11 - COLLECTOR CURRENT FALL TIME 2.0 Y ............ ~ 300 ~ 100 :::: 200 YaEloH) ~ . . . . .l( 2.0 Y ~ B 1--fJ! 5.0' 70 r--TJ = 75"C r - - VCElpk) = 400 V if' 50 2.0 ~ ;::: "-- ~ :::> 40 1.0 COLLECTOR CURRENT FALL TIME 400 '--.. 5~ 0- !z !i§ = 10. TC = 10O'C. VCElpk) = 400 V ........ 5.0 Y 3.0 5.0 ~ :::::::-... ....... ~ =0 Y OY :::> ~ 100 ~:::: , 7.0 -fJ! 10' 70 - T J = 75'C ~ YaEloH) = 0 Y / VCElpk) = 400 V I :- 50 5y ..... . " ....... B 40 1.0 10 20 IC. COLLECTOR CURRENT lAMPS) RGURE 12 - ~ V ~~ ,~ !z !i§ 30 " 7.0 5.0 10 lC. COLLECTOR CURRENT lAMPS) CROSSOVER TIME FIGURE 13 - CROSSOVER TIME. 500 500 ......... ............... ............ r--.... ............ 1'-............ "- "- " , '"to YaE(oH) '" Y I 70 lot ~ i'-.. ~ r\. ~ 300 200 ffi ,/ c> ~ ~v f\. I YaE(oH) = 0 v "'D",~ lil ~ 100 yY ? / 2.0 Y 3.0 5.0 IC. COLLECTOR CURRENT (AMPS) 2.0 7.0 50 1.0 10 ............ ....... ....... 5.0 V 70 I 50 1.0 ~ ......... ~ i 2.0 3.0 " 5.0 10 7.0 IC. COLLECTOR CURRiNT (AMPS) GUARANTEED SAFE OPERATING AREA LIMITS MJH16OO6A MJ16006A FIGURE 14 20 16 10 en ~_ ia '" 0.5 ~ 0.3 0.2 ~ - RGURE 15 - r,TC = 25°C 10):;' EO ~: 1.0 ms I-- a 1.0 "- I~: ..... - ~ 5. 0 0 !z 0 g§ '\. 0.1 ~.-Bonding Wire Limit ~ 0.05 F---lbarmal Limit 0.03 eond I..... 0.02 5.0 10 20 30 50 100 200 300 500 VCE. COLLECTOR·EMITTER VOLTAGE IVOLTS) ~I) ))sr ... 0 1.0 ms de MAXIMUM RATED FORWARD BIAS SAFE OPERATING AREA 0 101LS~ '2.0 1.0 8 . . 5.0 3.0 _ ti MAXIMUM RATED FORWARD BIAS SAFE OPERATING AREA )Bra~downl 1·764 de 5 3 2 o. 1 0.05 f-TC 25'C ....... - Bonding Wi,. Limit - - - - - Thenmal Limit Second B,.akdown 0.03 2 0.0 7.0 10 20 30 50 70 100 200 VCE. COLLECTOR·EMITTER VOLTAGE (VOLTS) ....... 300 500 ® MJ16010 MJ16012 MJH16010 MJH16012 MOTOROLA l1li Designer's Data Sheet 15 AMPERE SWITCHMODE III SERIES NPN SILICON POWER TRANSISTORS NPN SILICON POWER TRANSISTORS These transistors are designed for high-voltage, high-speed, power switching in inductive circuits where fall time is critical. They are particularly suited for line-operated switch mode applications. The MJ16012 and MJH16012 are selected high gain versions of the MJ16010 and MJH16010 for applications where drive current is limited. Typical Applications: Features: • • Switching Regulators • Inverters • • Solenoids Relay Drivers • • Motor Controls Deflection Circuits :J• Fast Turn-Off Times - TC = lOooC 50 ns Inductive Fall Time (Typ) 90 ns Inductive Crossover Time (Typ) 800 ns Inductive Storage Time (Typ) lOooC Performance Spec.ified for: . Reverse-B,ased SOA w,th Inductive Loads Switching Times with Inductive Loads Saturation Voltages Leakage Currents 450 VOLTS 135 AND 175 WATTS J-~-f :~~:~~~ ~~ @ ' v O Q ~~,~ 0 • '. H,' • lASE t EMITTE' CASE COLLECTOR R , G u MAXIMUM RATINGS Rating Symbol Collector-Emitter Voltage Collector-Emitter Voltage MJ16010 MJ16012 MJH16010 MJH16012 NOTES, 1. DIMENSIONS QAND V ARE DATUMS. 2. IS SEATING PLANE AND DATUM. Unit VCEO(sus) 450 Vdc Vdc VCEV 850 Emitter-Base Voltage VEB 6.0 Vdc Collector Current - Continuous 'C 'CM 15 20 Adc 'B IBM 10 15 Adc - Peak (1) Base Current - Continuous - Peak (1) Total Device Dissipation Derate above 25°C Operating and Storage Junction Temperature Range TJ, Tstg 3. MOUNT/NG POSITIONALHOLE TOLERANCE FOR Q' Itll.",...,,,@lrlv@1 FOR LEADS I t 11."" ...,@r Iv9>1 Q@I 4. DIMENSIONS AND TOLERANCES PER AttISIYI4.5,1913. CASE 1-05 TO-204AA (Formerlv TO-3) Watts Po @TC" 25°C @TC" 100°C rn ~~~m~~~~ 175 100 1.0 135 53.8 1.11 W/oC -65 to 200 -55 to 150 °C 0.93 °C/W MJH16010 MJH16012 , THERMAL CHARACTERISTICS Symbol Characteristic Thermal Resistance, Junction to Case Lead Temperature for Soldering Purposes. 1/8" from Case for 5 Seconds (1) Pulse Test. Pu~se Width R8JC TL Max 1.0 Unit I , .... °c 275 .••,. e;; 5.0 ~s, Duty Cycle ~ 10% I Designer's Data for "Worst Case" Conditions The Designer's Data Sheet permits the design of most cirCUits entirely from the infor· mation presented. Limit curves - representing boundaries on device characteristics are given to facilitate "worst case" design. 1-765 , IIIWM . M'• 2032 "01 .100 IS .. 11810 0828 IS 0115 ..DO 0.085 '02 0053 52' 572 0205 0225 32 .84 0015 0025 210 1541 0500 0810 1851 825 1210 •• " •'" ". ,• '".31'" 15. • '"• C L ......" 2COlUCTOR 3 EMITTER 4C01.LECTOII 422 .... .08. ... "28 . ..... .... " "" CASE 340·01 TO·218AC MJ16010,MJ16012,MJH16010,MJH16012 IIJ MJ16010 MJH16010 I ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted) I Characteristic Symbol Min Typ VCEO(sus) 450 - - - 0.25 1.5 2.5 mAde 1.0 mAde Max Unit OFF CHARACTERISTICS Collector-Emitter Sustaining Voltage (Table 2) (lC= 100 mA, IB = 0) mAde Collector Cutoff Current (Vcev = 850 Vde, VBE(off) = 1.5 Vde) (VCEV = 850 Vde, VaE(off) = 1.5 Vde, TC = lOO°e) ICEV Collector Cutoff Current (Vce = 850 Vde, RaE = 50 ICER - - leaD - - n, TC = 100°C) Emitter Cutoff Current (Vea = 6.0 Vde, IC = 0) Vde SECOND BREAKDOWN Second Breakdown Collector Current with Sase Forward Biased See Figure 15 Clamped Inductive SOA with Base Reverse Biased See Figure 16 ON CHARACTERISTICS (1) Coliector~Emitter Saturation Voltage Vde VCE(sat) - - 2.5 3.0 3.0 - - 1.5 1.5 hFE 5.0 - - - td Ir ts tf ts tf - - ns (IC = 5.0 Ade, IB = 0.7 Ade) (IC = 10 Ade, la = 1.3 Ade) (lC = 10 Ade, la = 1.3 Ade, TC = lOO°C) - Base-Emitter Saturation Voltage (lC = 10 Ade, la = 1.3 Ade) (lC = 10 Ade, la = 1.3 Ade, TC = lOOOC) VaE(sat) DC Current Gain (lC = 15 Ade, VCE = 5.0 Vde) Vde - DYNAMIC CHARACTERISTICS Output Capacitance (VCB = 10 Vde, Ie = 0, f test = 1.0 kHz) SWITCHING CHARACTERISTICS Resistive Load (Table 1) Delay Time Rise Time Slorage Time Fall Time Storage Time Fall Time (IC = 10 Ade, VCC = 250 Vde, lal = 1.3 Ade, PW= 30 ~s, Duty Cycle .. 2.0%) (la2 = 2.6 Ade, Ra = 1.60) (VaE(off) = 5.0 Vde) - 20 200 1200 200 650 80 - 800 1800 l)U ZOO 90 1050 70 120 250 - - - - Inductive Load (Table 2) Storage Time Fall Time Crossover Time Storage Time Fall Time Crossover Time (IC= 10 Adc, lal = 1.3 Adc, VBE(off) = 5.0 Vdc, (TC= 100°C) tsv tfi te VCE(pk) = 400 Vde) ITC= 150°C) Isv tfl tc (11 Pulse Test: Pulse Width =300 ,us, Duty Cycle ~ 2 0% 1-766 - - - - ns MJ16010,MJ16012,MJH16010,MJH16012 III MJ16012 MJH16012 I ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted) Characteristic Symbol Min Typ Max Unit VCEO(sus) 450 - - Vde - 0.25 1.5 2.5 mAde - 1.0 mAde OFF CHARACTERISTICS Collector-Emitter Sustaining Voltage (Table 2) (IC = 100 mA, IB = 0) Collector Cutoff Current (VCEV = 850 Vde, V8E(ofl) = 1.5 Vde) (VCEV = 850 Vde, VBE(ofl) = 1.5 Vde, TC = 100°C) ICEV Collector Cutofl Currenl (VCE = 850 Vde, RBE = 50 fi, TC = l000 q ICER - Emitter Cutoff Current (VEB = 6.0 Vde, IC = 0) lEBO - mAde SECOND BREAKDOWN Second Breakdown Collector Current with Base Forward BIased See Figure 15 Clamped Inductive SOA with Base Reverse Biased See Figure 16 ON CHARACTERISTICS (1) Collector~Emitter Saturation Voltage VCE(sat) IIC = 5.0 Ade, IS = 0.5 Ade) IIC = 10 Ade, IS = 1.0 Ade) (IC = 10 Ade,ls = 1.0 Ade, TC = 100°C) Base~Emitter Saturation Voltage (IC = 10 Ade, IB = 1.0 Ade) (IC = 10 Ade, IS = 1.0 Ade, TC = 100°C) Vde - - 2.5 3.0 3.0 - - 1.5 1.5 - - - n. - Vde VSE(sal) DC Current Gain (IC = 15 Ade, VCE = 5 a Vdc) hFE 7.0 DYNAMIC CHARACTERISTICS Output Capacitance (VCB = 10 Vde, IE = 0, f test = 1.0 kHz) SWITCHING CHARACTERISTICS Resistive Load (Table 1 ) Delay Time Rise Time Storage Time Fall Time Storage Time Fall Time (IC = 10 Ade, Vee = 250 Vde, IBl = 1.0 Ade, PW= 30,,5, Duty Cycle ';;;2.0%) IIS2 = 2.0 Ade, RB = 1.6 fi) (VSE(off) = 5.0 Vde) td tr ts If Is tf - 20 200 900 150 500 40 tsv tfi Ie - 650 Inductive load (Table 21 Storage Time Fall Time Crossover Time Storage Time (Ie = 10 Ade, IBl = 1.0 Ade, Fall Time Crossover Time VeE(pkl = 400 Vdel (Te= 100°C) VBE(ofil = 5.0 Vde, (11 Pulse Test- Pulse Width 'sv If, (Te= 1500 CI 'e =300 pS, Duty Cycle ~ 2.0%. 1-767 30 50 850 3U 70 1500 150 200 n. MJ16010,MJ16012,MJH16010,MJH16012 TYPICAL STATIC CHARACTERISTICS FIGURE 1 - DC CURRENT GAIN FIGURE 2 - COLLECTOR SATURATION REGION 2.0 50 ~ 20 ~ 0.5 10 A ~ U u co 10 :!l '" 0.3 !;i It VCE 3.0 0.2 0.5 " =5.0 V 10 20 5.0 IC. COLLECTOR CURRENT (AMPS) 10 I 0.02 20 :IE ! C) ~ ill = 10 in ~ 10 c ~ ~ 1.0 ::; 0.30 0.05 15 3.0 2.0 0.50 ,~ tl ~ ;: 050 - ill TC ==10 25°C ~ Y :;; 1--"/'" 0.20 ~O.07 0.05 0.150.2 0.3 0.5 TC = 25°C i LU 0 1 0.2 0.5 1.0 2.0 Ie. BASE CURRENT (AMPS) 5.0 10 -- TC 10 15 I 25°C 75°C f-toooc - -- 0.40 ~ 030 _ V "'- 0.10 - 070 c ill -10 TC = 100°C II " FIGURE 4 - BASE-EMITTER VOLTAGE 5.0 ffi 0.70 II I 0.1 FIGURE 3 - COLLECTOR-EMITTER SATURATION VOLTAGE !: 5.0 A IC = 1.0 A ~ 0.2 5.0 ~g III ~ 0.7 '"::0 I 1 i5 I"'- ~ 1\ ii 1.0 r--." II 1\ g 25°C '"z .... \ ~ r--- TC ~ I~OJC ill-S.O TC - 25°C 0.7 1.0 2.0 30 5.070 IC. COLLECTOR CURRENT (AMPS) ~ 10 ~ ~020 015 0150.2 15 0.3 0.5 0.7 10 2.0 30 50 70 IC. COLLECTOR CURRENT (AMPSI FIGURE 6 - COLLECTOR CUTOFF REGION FIGURE 6 - CAPACITANCE 10000 I / t-- I-- TJ = 150°C 125°C V ./ t-- r- REVERSE ~ / ~ z 5 : / 100°C 75°C 1 / 5000 3000 2000 I 5 FORWARD I <.S +- 1000 500 300 200 ~ 100 Cob TC = 25°C 50 /VCE=250V= 25°C 10-1 -0.4 Cib 20 10 -0.2 +0.2 +0.4 +0.6 0.1 VBE. BASE·EMlmR VOLTAGE (VOLTS) 1-768 0.3 0.5 1.0 2 0 SO 10 20 30 50100 VR. REVERSE VOLTAGE (VOLTSI I 300 500 850 MJ16010,MJ16012,MJH16010,MJH16012 TYPICAL DYNAMIC CHARACTERISTICS FIGURE 7 - STORAGE TIME -- 5000 3000 2000 vaElolf)- 0 V 2.0 V ~1000 5.0 V ~ ~ 500 ~ 1000 :l: 700 500 '"'~ 300 j. 200 r--i9t--r L- veE(pk) = VeE(clamp) T1 _ L"oil (lepk) Vee 50 ~ 1 adjusted to obtain lC(pk) BVCEO L= 10mH RBZ=Vee = ZOV Its "Tektronix AM503 P6302 or Equivalent Inductive Switching L=200"H RB2=0 Vee=ZOV RBI selected for desired 'Bl Scope - RBSOA L=200"H RB2 =0 Vee = 20V RBI selected for desired 'B 1 Tektronix 7403 or Equivelent Note: Adjust -V to obtain desired VBE(off) at Point A. TYPICAL INDUCTIVE SWITCHING WAVEFORMS tlv lC(pk) = lOA 'Bl = 1.0A VBE(off) = 5.0 V VeE(pk) = 400 V Te= 25°e Time Base = 100 nslcm le(pk)= lOA 181 = 1.0A VBE(off) = 5.0 V VeE(pk) = 400 V Te = 25°e Time Base = 20ns/em 1-772 MJl6010A MJHl6010A @ MOTOROLA . Designer's Data Sheet III ' 15 AMPERE NPN SILICON POWER TRANSISTORS 1.0 kV SWITCHMODE III SERIES NPN SILICON POWER TRANSISTORS These transistors are designed for high-voltage, high-speed, power switching in inductive circuits where fall time is critical. They are particularly suited for line-operated switch mode applications. 500 VOLTS 125 and 175 WATTS MJ16010A Typical Applications: Features: • Switching • Collector-Emitter Voltage Regulators VCEX = 1000 Vdc • Fast Turn-Off Times • Inverters 50 ns Inductive Fall Time -100'C (Typ) • Solenoids 90 ns Inductive Crossover Time-l00'C (Typ) • Relay Drivers 900 ns Inductive Storage Time -1 OO'C (Typ) • Motor Controls • 100'C Performance Specified for: Reverse-Biased SOA with Inductive Load • Deflection Circuits Switching Times with Inductive Loads Saturation Voltages Leakage currents L 9tl ll' --t t. .. . D K I i~a'Vf ~. Q.0 STYLE I PIN 1. BASE 2. EMITTER CASE COLLECTOR - H , I· • R 0 , ·G U NOTES . - = = = : : : 0 - = = - - , 1 1 DIMENSIONS Q AND VARE DATUMS 2 IS SEATING PLANE AND DATUM 13 POSITIONAL TOLERANCE FOR MOUNTING HOLED i m ! 1.1113lOoo5)el,lvel FOR LEADS It 11'3(0.005)13' I vel uel 1 MAXIMUM RATINGS Rating Symbol VCEOlsus) 500 Vdc Collector-Emitter Voltage VCEV 1000 Vdc Emitter-Base Voltage VEe 6.0 Vdc Collector Current - Continuous - Peak (1) IC ICM 15 20 Adc Base Current - Continuous -Peak(l) IB IBM 10 15 Adc Total Power Dissipation @ TC = 25'C @TC = 100'C Derate above TC = 25'C Po Operating and Storage Junction Temperature Range 175 100 1.0 135 54 1.09 Watts WI'C 'c TJ,Tstg Characteristic Lead Temperature for Soldering Purposes: 1/8" from Case for 5 Seconds , MJH16010A "'." PIH' 8AS~ 2 COUECTOR 3 EMITTER 4 COUECTOR THERMAL CHARACTERISTICS Thermal Resistance, Junction to Case CASE 1-05 TO-2D4AA (Formerly TO-3t MJ16010A MJH16010A Unit Collector-Emitter Voltage 4 OIMENSIONS AND TOLERANces PER ANSIY145.1973 Symbol RruC Max 1.0 TL I Unit 0.92 275 'CIW 'c (1) Pul.e Test: Pulse Width = 5.0 mo, Duty Cycle" 10%. CASE 340-01 TO-21BAC Dooignor'. Data lor "Worst Cue" Conditions The Designer's Data Sheet permits the design of most circuits entirely from the information presented. Limit Curves - representing boundaries on device characteristics - are given to facilitate "worst case" design. 1-773 MJ16010A,MJH16010A I ELECTRICAL CHARACTERISTICS (TC = 25'C unless otherwise noted) Characteristic Symbol Min Typ Max Unit VCEO(sus) 500 - - Vde OFF CHARACTERISTICS (1, Collector-Emitter Sustaining Voltage (Table 2) (lC = 100 mA, IB = 0) Collector Cutoff Current (VCEV = 1000 Vde, VBE(off) (VCEV = 1000 Vde, VBE(off) Collector Cutoff Current (VCE = 1000 Vdc, RBE = = ICEV 1.5 Vde) 1.5 Vde, TC = 50 n, TC = = 100'C) ICER 100'C) Emitter Cutoff Current (VEB = 6.0 Vdc, IC = 0) lEBO - - mAde 0.25 1.5 2.5 mAde 1.0 mAdc SECOND BREAKDOWN Second Breakdown Collector Current with Base Forward Biased See Figures 14 or 15 Clamped Inductive SOA with Base Reverse Biased See Figure 16 ON CHARACTERISTICS (1, Collector-Emitter Saturation Voltage (lC = 5.0 Adc, IB = 1.0 Adc) (lC = 10 Adc, IB = 2.0 Adc) (lC = 10 Adc, IB = 2.0 Adc, TC = 100'C) VCE(sat) Base-Emitter Saturation Voltage (lC = 10 Adc, IB = 2.0 Adc) (lC = 10 Adc, IB = 2.0 Adc, TC VBE(sat) DC Current Gain (lC = 15 Adc, VCE = = - hFE - Vdc 1.0 1.5 1.5 Vdc - - 1.5 1.5 5.0 - - - - 25 100 ns 325 600 1300 3000 175 400 - 100'C) - 5.0 Vdc) DYNAMIC CHARACTERISTICS Output Capacitance (VCB = 10 Vdc, IE = 0, ftest = 1.0 kHz) SWITCHING CHARACTERISTICS Resistive Load (Table 1) Delay Time Rise Time Storage Time Fall Time Storage Time Id (lC = 10 Adc, VCC = 250 Vdc, IBI = 1.3 Adc, PW = 30 p.S, Duty Cycle'" 2.0%) (lB2 RB2 = 2.6 Adc, = 1.6 n) tr ts If (VBE(off) = 5.0 Vdc) Fall Time - tf - tsv tfi ts 80 - - 900 2000 - 50 250 90 300 700 Inductive Load (Table 2) Storage Time Fall Time Crossover Time Storage TIme Fall TIme (lC = 10 Adc, IBl = 1.3 Adc, VBE(off) = 5.0 Vdc, VCE(pk) = 400 Vdc) (TJ = 100'C) tc Isv (TJ = 150'C) Crossover Time tfi te (11 Pulle Test: PW - 3OO,.s, Duty Cycle" 2.0%. 1-774 - 1100 70 120 - ns MJ16010A,MJH16010A TYPICAL STAne CHARACTERISTICS FIGURE 1 50 30 ~ '" i!j '" B I- 20 '-' Q 10 DC CURRENT GAIN FIGURE 2 - COLLECTOR-EMITTER SATURATION VOLTAGE 5.0 - TJ = 100ae n-- ,... VeE = 5.0 V- t-- 1215~e ...... r--.. ,...... II t- ~515~e 1.0 10 Jells TJ - l00'C- 0.5 -- 0.3 0.2 ; 5.0 03 05 1.0 2.0 3.0 5.0 Ie. COllECTOR CURRENT (AMPS) 20 10 FIGURE 3 - COLLECTOR-EMITTER SATURATION VOLTAGE 10 , Idla - S.O -Idls 10 : TJ 2sae TJ 2S'C 0.0 5 0.150.2 0.3 J f= leila I-- I-Ie = 1.0 A 5.0 A 1111 III O. I 001 0.02 IIII "'0.05 f'-., III 0 I 0.2 0.5 1.0 Ie. SASE CURRENT lAMPS) t- TJ 1\ 15 A 2.0 5.0 t:l z ...5 '" '" '-' <.i 2 0.1 5 10 o15 0.2 0.3 10 05 1.0 2 0 3.0 5.0 Ie. COLLECTOR CURRENT (AMPS) 15 FIGURE 6 - PEAK REVERSE BASE CURRENT 10 ~ C,b -IBI =20 Amps /. Cob 100 ..-- .... -" Icna 10 TJ - l00·C 1000 500 300 200 15 3 10 A IIII FIGURE 5 - CAPACITANCE ~ 10 2S·C 5 IIII 10 II \ 10000 5000 3000 2000 0.5 1.0 2.0 3.0 5.0 IC. COLLECTOR CURRENT lAMPS) 1== FIGURE 4 - BASE-EMITTER SATURATION VOLTAGE I. 5 1\ I--" _i--'" O. 1 3.0 0.2 A ~ TC L =25 aC -/. ,...,V L 50 ...-- .......- , / ' ----- ------ ~ f-'""" :::::::::: r- 10 Amps IC = 10 Amps TC =25°C - r-- 20 10 0.1 03051020 5.0 10 203050100 VR. REVERSE VOLTAGE (VOLTS) 300500850 1-775 10 2.0 30 4.0 VaE(.!!). REVERSE BASE VOLTAGE (VOlTS I 5.0 MJ16010A,MJH16010A IIJ TABLE 1 - RESISTIVE LOAD SWITCHING to and tt tel and tr +Vdc OV-, I 11 Vdc 2N6191 + - -35VU ~ A 50 F -= 1.0 ~F 500 -= OV ~ ~ -V OV-~+~ 11V Yin -= - ~.OV A (0l~-4t~---c. t r "'15ns Vee.:. * "Tektronix AM503 P6302 or Equivalent Vee 250 V RL 500 Ie S.OA Vee IB1 0.66 A RL 500 IB2 1.0A Ie 5.0A RB1 200 IB 0.66 A RB2 4.00 ·Note: Adjust - V to obtain desired VBEloff) at PointA. For VBEloffl = 5.0 V. RB2 = 0 1-776 250 V MJ16010A,MJH16010A III TABLE 2 - INDUCTIVE LOAD SWITCHING +V~ 0.021'oF 20 + o 11 V lOI'oF ~-35JJ +----+<)A p:: 50 RB2 50 r--......- - o ( + 500 ~ le(pk) -V le~ '-- ~k) VeE~ A Tl ~ L- Leoil (lCpk) VCC T1 adjusted to obtain IC(pk) BVCEO L = 10 mH RB2 = '" Vce = 20 Volts 'Tektronix AM503 P6302 or Equivalent RBSOA Inductive Switching L= 200 I'oH RB2 = 0 Vee = 20 Volts RBl selected for desired IBl L = 200,.H RB2 = 0 Vee = 20 Volts RBl selected for desired IBl Scope - Tektronix 7403 or Equivalent Note: Adjust - V to obtain desired VBE(off) at Point A. FIGURE 7 - INDUCTIVE SWITCHING MEASUREMENTS IC!-- ..... j / /" IC ......... - f\ ..;:.cEIPkl 90% VCElpk11 1\ 90% ICIPkl -ISV I", ffI ~II'- f-',,- ---J f-I c - ' / VCE 10% VCElpkJ - --\- -- --- -- IS- 90%ISI "'-"" I-- -~ TIME 1-777 -'\. w ......... ~ ..... IC pk -- - 2'"'0 Ie MJ16010A,MJH16010A - TYPICAL INDUCTIVE SWITCHING CHARACTERISTICS leIIa1 = 5.0, TC = 10O"C, VCElpkl = 400 V FIGURE 8 - letla1 -- STORAGE TIME 5000 VBElolf) oVolts 2.0 Vo~s 3000 2000 !1000 5.0 Vo~s ~ ~ 300 J FIGURE 9 - 200 3000 2000 ~ VBE\off) 2.0 Volts 700 5DD 5.0 Volts ~ 300 J 200 lDD D D5 2.D 1.5 3.0 5.0 70 15 15 10 3D 2.0 FIGURE 10 - FIGURE 11 - COLLECTOR CURRENT FALL TIME 500 ~ 300 VBElolf II ~ 5D _ "N 2.0Volts~ 8::l \ 20 ::l 200 ~ >- ia 100 '"co 50 i= 20 ~ 8 15 COLLECTOR CURRENT FALL TIME 20 3.0 5.D 70 10 --- FIGURE 12 - I VBElolf) - 50D ~ 10 15 I I 30 5.0 7.0 IC. COLLECTOR CURRENT lAMPS) 20 FIGURE 13 - - "- ......~:OV~ltsl--;... 2~ 2.0 Volts i 15 I 0 VOlts~ I I i"-. CROSSOVER TIME lDDO .......,IY ....... ............... IC. COLLECTOR CURRENT lAMPS) 1500 2! >= '"co !$: ~ co 500 300 200 100 - VSElolf) 2D 20 15 1.5 15 1.5 3.0 5.0 7.0 10 15 ............ r-..... 15 2.0 Volts 5.0Vo~s I 2.0 3.0 5.0 7.0 Ie. COLLECTOR CURRENT lAMPS) 1-778 10 oVolts /' r-- '"u Ie. COLLECTOR CURRENT (AMPS) 15 I I 1000 :! 10 CROSSOVER TIME 15DO .i' 50 2.0 o Volts VaElolf) r-- 5 OVolts 10 15 10 500 c ~ >= 300 5.0Volts_ !2 100 oVolts ==; --r- ~ 200 ! 70 1000 1000 ! 50 IC. COLLECTOR CURRENT lAMPS I IC. COLLECTOR CURRENT lAMPS) ~ J = Volts 1000 i1§ 10D 0.07 0.05 S STORAGE TIME 5DDO lli Ci! lli 500 Ci! = 10, TC = 10O"C, VCElpkl = 400 V MJ16010A.MJH16010A III GUARANTEED OPERATING AREA INFORMATION FIGURE 14 - MAXIMUM RATED FORWARD BIAS SAFE OPERATING AREA - MJ16010A FIGURE 15 - MAXIMUM RATED FORWARD BIAS SAFE OPERATING AREA - MJH16010A 20 20 10/" 10 ~ ! 50 3.0 20 5.0 :;:; 3.0 2.0 :> 1.0 1.0 20 :5- >- 16 B ~ = '" 12 :::l 80 8 '" ~ ~ 40 11 o 500 100 \ .I. r--- ICIIB '" 4.0 r--- TJ-, '" l00'C 100 , \ " \ \ \ ,~ ~ Ei;:t '"z: 'V 60 ~ 40 VBE(offl = 5.0 V _ I--- _~ i 500 j '" ~ ---MJHl6010A ~ 20 1 - - - MJl6010A "i-.. Second Breakdown Derating ........ r--... " , "- ............ " Thermal Derating;- , ~ \. ~ ,"", K '" I\,. 300 ~~ ~ 80 ,\ 'I - FIGURE 17 - POWER DERATING \ - t;j '" ~ 0.20 o '-'. 0.10 ~ Bo nding Wire limit Th ermallimit -0.05 Second Breakdown 0.03 0.02 20 30 50 70 100 200 5.0 7.0 10 VCE, COLLECTOR·EMlmR VOLTAGE IVOLTSI MAXIMUM RATED REVERSE BIAS SAFE OPERATING AREA VUE(offl = 0 V\ ~ 0.50 .Y f=j '" 25'C t> 0.30 '" " 1 §---B~ndingIWir: Limit si> 005 ~---Thermal Limit 003 I I ISieond IBr.a~downl 0.02 50 10 20 30 50 100 200 300 VCE. COLLECTOR·EMITIER VOLTAGE (VOLTSI ":; TC dc u :5 de TC - 25°C FIGURE 16 - 10~"" 1.0ms I 1.0m'~ - 05 03 02 ... 10 '", ", ........ 1 , o !" I \i o 200 300 400 500 600 700 800 900 1000 1100 VCElpkl' PEAK COLLECTOR·EMITIER VOLTAGE (VOLTS) ............ I'-J 40 80 120 TC, CASE TEMPERATURE I'CI 160 '" "'" 200 FORWARD BIAS There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate IC - VCE limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. The data of Figures 14 and 15 are based on TC = 25'C; TJ(pk) is variable depending on power level. Second breakdown pulse limits are valid for duty cycles to 10% but must be derated when TC ;;. 25°C. Second breakdown limitations do not derate the same as thermal limitations. Allowable current at the voltages shown on Figures 14 and 15 may be found at any case temperature by using the appropriate curve on Figure 17. TJ(pk) may be calculated from the data in Figure 18. At high case temperatures, thermal limitations will re- duce the power that can be handled to values less than the limitations imposed by second breakdown. REVERSE BIAS For inductive loads, high voltage and high current must Le sustained simultaneously during turn-off, in most cases, with the base-to-emitter junction reverse biased. Under these conditions the collector voltage must be held to a safe level at or below a specific value of collector current. This can be accomplished by several means such as active clamping, RC snubbing, load line shaping, etc. The safe level for these devices is specified as Reverse Bias Safe Operating Area and represents the voltage-current condition allowable putting reverse biased turn-off. This rating is verified under clamped conditions so that the device is never subjected to an avalanche mode. Figure 16 gives the RBSOA characteristics. 1-779 MJ16010A,MJH16010A - FIGURE 18 - THERMAL RESPONSE 1.0 i~~ I-;;i ~~ Zz 0.7 :::0 - 0.5 0.5 03 0.2 13>5 ~ ffi :t 0:: :g 0.1 01 ~~ 0.07 !l;! z 0.05 - 02 - :;:...- 0.03 F= Jf 0.03 0.02 ~ R8JCItl rill R8JC R8JC 1.0 or ~ .92°CIW TJlpkl TC Plpkl·R8JClll ....-:::: ~ ~ y- VI ~ 1. 0 1. 1 t:i 1- 0 /, !::i !ii ~ 1'- II IC= 5.0 A\ ~ 5. 0 I:. IC= 20 A IC = 10 II ~ FIGURE 3 - COLLECTOR-EMITTER SATURATION REGION in \ IC=15A\ t; I 0.5 0.1 TJ = 25°C ~ 2. 1 -r-. -tUJsso c I II in 2. 7 --- , +/=II~OOC ,JI~ 10K L ./ ./ ./ / 0 100°C 7SOC I I - - r-REVERSE Cob t--. FORWARD TJ = 25°C VCE· 2S0V~ 10 0 2SoC 10- 1 -0.4 -t -02 -02 -04 0.1 -06 VBE. BASE EMITTER VOLTAGE IVOLTSI 1-784 1.0 10 100 VR. REVERSE VOLTAGE (VOLTS) 1000 MJ16014, MJ16016 l1li TYPICAL DYNAMIC CHARACTERISTICS FIGURE 7 - STORAGE TIME 7. 0 f-l .1 3. 0 ~ 2. 0 - VSEloffl~ts 5. 0 ! FIGURE 8 - STORAGE TIME I I 1 vSEloll) =2.01Volts f-'1 ~ I I- VSEloff) .ho Ot- =5.0 Volts I- I - - - III =5 TJ - 75°e f-. 0.5 0 10 20 7. 0 0 a j----- I ~ 30 0 ~ i13 :5 !;i ::l o '" '\. "'" "- I 1000 70 0 50 0 ~ 30 0 ~ 20 Ot- !z ~ 10 13 10 3.0 2.0 2.0 o'" --.... 5.0 7.0 10 IC, COLLECTOR CURRENT lAMPS) ~ 20 0 ~ 10 0 70 ~ '" ~ I t:; - VBEloH) .:-. '\. L .:::-:,.., I 2.0 3.0 7.0 10 5.0 IC, COLLECTOR CURRENT lAMPS) 15 20 FIGURE 12 - CROSSOVER TIME 1500 100 0 700 =2,0 Volts O~ III =5 TJ =75°e Ot- VCC =20 Volts 20 15 7,0 S,O 10 3.0 4.0 5,0 2.0 IC, COLLECTOR CURRENT lAMPS) I O~VSEIO~) =O~ 10 20 I I I I =0 Volt......... r-., 20 =2.0 Volt"""-': ~S:IOH; =5.0 Jolt; 0 III =10 TJ =75°C 0 VCC =20 Volts ~ =5.0 Volts VSEloff) li 70 0 8 VSEloH) I 3.0 5.0 7.0 10 IC, COLLECTOR CURRENT lAMPS I 1 vSEloHI FIGURE 11 - CROSSOVER TIME 150 0 100 0 70 0 "i 50 0 ;;; 30 0 ~ =5.0 Volts FIGURE 10 - COLLECTOR CURRENT FALL TIME =5.0 Volts III - 5 01- TJ = 75°e 01- VCC =20 Volts VSEloHI 1.0 -= =2.0 Volts .•. ~ o Volts VSEloff) VSElolfl 7 1----. III - 10 51----· TJ =75°C 20 ~Eloff) I 20 0 10 0 0 50 =2.0 Vo~s L ~ V 01--- 3.0 5.0 70 10 IC, COLLECTOR CURRENT lAMPS) VSEloff) I =0 Vo~ ::::::- FIGURE 9 - COLLECTOR CURRENT FALL TIME 100 0 70 0 50 0 I VSElolfl 0 "\. '\. I 1 50a :Ii! X'" ~ '\. "\ i 30 a VSEloH) 20 0 ' -........ o 10 =2.0 vOii;' I O::::VSEIOH)~ VSEloff) " '\. =5.0 Volts I' I'-.. V L ~~ 5 70 oS> 50 20 1-785 1l1- 10 01- TJ =75°C 201- Vce = 20 Volts I 15 2.0 3.0 -5.0 70 10 IC' COLLECTOR CURRENT lAMPS) 15 MJ16014, MJ16016 FIGURE 14 - REVERSE BASE CURRENT FIGURE 13 -INDUCTIVE SWITCHING MEASUREMENTS 0 IC.!--,.: ..",.. Ie.-"" VI ./ I- f--'sv "';:'CEIPkl ["\ 90% VCE(pk) ~ t--- i -',,- 18- - 90% 181 --\- ""'" --- /' 10", ...... !-~ 2,(e IC Ok -- --- - - -- - 5. 0 III 4. ii1 ""< 3. 0 p °v 0 ~ V -- V ..... 0 TIME t I I IC = 15 Amp._ TJ = 25°C 0 ~ = 3.0 Amp • I I -r 1 ~:-r: IB1 = 1.5 mp • ./ '" :i ffi -- - .............. 6. 0 w I'\. 10% VCE(ok) r- -" -IBl 7. 0 :::> u 1---. r--'c~ t-- 1/ T~ 9. 0 5- 8.0 1\ 90% I C(pk) trv~1 i-Jt'I,- VCE en e>. :e I I 1.0 2.0 3.0 4.0 VBElolfl' REVERSE BASE EMITTER VOLTAGE IVOLTSI 5.0 GUARANTEED SAFE OPERATING AREA LIMITS FIGURE 15 - MAXIMUM FORWARD BIAS SAFE OPERATING AREA 0 0 ~1 0 :e 7. 0 5. 5. 0 !z 3. 0 2. 0 i B 1.0 , FIGURE 16 - MAXIMUM RATED REVERSE BIAS SAFE OPERATING AREA 0 10 ", ~ :e 5.... i\'i 1.0 m}TC = 25°C '" '" 13 de ~ g5 7 ~ o. lr--Seeond Breakdown limit 0.0 7 0.0 5 0.0 3 5.0 7.0 ~ ""- 0 \ 5 TJ'; 100°C 0-~,;;'4.0 '"ct; ... -Bondmg Wire limIt :::I O. 3 8 o. 2 ----Thermal limit 5 \, 5 ~ 0 20 50 70 100 200 VCE. COLLECTOR-EMITTER VOLTAGE IVOLTSI 0 450 , VBE=O- ~, 5. 0 10 \\ \ .... VaElolfl = 1.0 to 5.0 V V --t -- -, 800200 400 600 VCE. COLLECTOR-EMI77ER VOLTAGE IVOlTSI 100 SAFE OPERATING AREA INFORMATION FORWARD BIAS the power that can be handled to values less than the limitations imposed by second breakdown. There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate IC-VCE limits of the transistor that must be observed for reliable operation; I.e., the transistor must not be subjected to greater dissipation than the curves indicate. The data of Figure 15 is based on TC = 25°C; TJ(pk) is variable depending on power level. Second breakdown pulse limits are valid for duty cycles to 10% but must be derated when TC;;' 25°C. Second breakdown limitations do not derate the same as thermal limitations. Allowable current at the voltages shown on Figure 15 may be found at any case temperature by using the appropriate curve on Figure 18. TJ(pk) may be calculated from the data in Figure 17. At high case temperatures, thermal limitations will reduce REVERSE BIAS For inductive loads, high voltage and' high current must be sustained simultaneously during turn-off, in most cases, with the base-to-emitter junction reverse biased. Under these conditions the collector voltage must be held to a safe level at or below a specific value of collector current. This can be accomplished by several means such as active clamping, RC snubbing, load line shaping, etc. The safe level for these devices is specified as Reverse Bias Safe Operating Area and represents the voltage-currant condition allowable during reverse biased turn-off. This rating is verified under clamped conditions so that the device is never subjected to an avalanche mode. Figure 16 gives the RBSOA characteristics. 1-786 MJ16014, MJ16016 FIGURE 17 - THERMAL RESPONSE 1. 0 5 :== ~ c D' 5 - 0-.2 2 0-.1 1 ...- .- ..... ROJeltl- rltl ROJC ROJC = O.7 oelW Max o CURVES APPLY FOR POWER PULSE TRAIN SHOWN READ TIME At'l TJlpki - TC' Plpkl R'Jel'I P(pkl ::;:::?" tJUl Smgle Pulse -r~~ TIT I III 0.01 0.1 ~UTY ! 10 1.0 CYCLE, 0 • '1/'2 1000 100 10000 .' TIME IMSI FIGURE 18 - POWER DERATING 100 ~~ a """ 0 r---..., Second Br.akdown DeratIng f".... ............. :--....... Thermal"Derating --til ""- 0 ........ ........... ~ "" 0 0 40 - 120 80 TC CASE TEMPERATURE (oel "'" " 160 200 TABLE 1 - RESISTIVE LOAD SWITCHING td and t, +Vde = 11 Vde t. and tf OV, I =-35VU A 50 -v vee = 250 Vdc IIV ~ Vrn OV ~. RL = 16 n le= IS A 'B= 1.5 A OV~+V_ - -IB t,';;15ns UT'~ ~ l .". *TektronlX vee = 250 RL =16 n P·6042 or Equivalent i ~V le= 15A RL Vee! IBI = 1.5 A RBI = 7.5 n 'B2 = 3.0 A RB2 = 1.6 n Fo, VBE(off) = 5.0 V RB2 = 0 n 'Note Adlust -Ii to obtarn deSired VBEloffi at POint A. 1-787 MJ16014, MJ16016 IIIJ TABLE 2 - INDUCTIVE LOAD SWITCHING o ~-351J A 50 p~;' .......---r + .~-=- 500 A (o;~-f*--r T1 = LeOiI (lCpkl VCC 50 T1 adjusted to obtain lC(pkl BVCEO L = 10 mH RB2 VCC ='" Vee = 20 Volts RBSOA L= 200pH RB2 =0 Vec = 20 Volts RS1 selected for desired IS1 RS1 selected for deSired IS1 Inductive Switching L= 200pH RB2 =20 Volts *Tektronlx P-6042 or EqUivalent =0 Scope - TektrOniX 7403 or EqUivalent Note Adjust -v to obtain deSired VSE(off) at POint A. TYPICAL INDUCTIVE SWITCHING WAVEFORMS IC(pkl = 15 A IBl = 1.5 A VBE(offl = 5.0 Volts VCE(pkl = 400 Volts TC = 25°e Time Base = 100 lC(pkl =15 A IBl =1.5 A VBE(offl = 5.0 Volts VeE(pkl =400 Volts TC =25°e Time Base = 10 ns/cm ns/cm 1-788 ® _ MJl6018 MJHl6018 MOTOROLA III De!oiiig'ncrs Data Sheet 10 AMPERE NPN SILICON POWER TRANSISTORS 1.5 kV SWITCHMODE III SERIES NPN SILICON POWER TRANSISTORS These transistors are designed for high-voltage, high-speed, power switching in inductive circuits where fall time is critical. They are particularly suited for line-operated switchmode applications. 800 VOLTS 150 AND 175 WATTS LIa.-f Typical Applications: Features: • Switching Regulators • Inverters • Solenoids • Relay Drivers • Motor Controls • Daflection O~~ • Collector-Emitter Voltage VCEX = 1500 Vdc • Fast Turn-Off Times 280 ns Inductive Fall Time-100"C (Typ) 470 ns Inductive Crossover Time-100·C (Typ) 2.6 p.s Inductive Storage TIme-100·C (Typ) • l00·C Performance Specified for: Reverse-Biased SOA with Inductive Load Switching TImes with Inductive Loads Saturation Voltages Leakage Currents @J MJ1801. t.~ ~ ~ J y a • ... 2..... H 1 III + STYLE 1 PlfII1. BASE 2. EMmER 0 I , CASE COLLECTOR G u NOTES, DIMENSIONS Q AND V ARE DATUMS. 2. IS SEATING PLANE AND DATUM 3. POSITIONAL TOLERANCE FDA m MAXIMUM RAnNGS lIMing MJ1801. Symbol Collector-Emitter Voltage Collector-Emitter Voltage MJH1801. Unit VCEOlsus} 800 Vdc VCEX 1500 Vdc VES 6.0 Vdc Emitter-Base Voltage Collector Current - Continuous - Peak(l} MOUNTING KOlE Q. .7 1A 10 15 Po Operating and Storage Junction Temperature Range TJ,Tstg ANSIVI4.Ii,1913. IS' I&.BSIC CASE 1.05 11 1 4.83 6.33 3.81 4.19 TO·204AA (To-3 TYPE) 8.0 12 IS IBM Total Davice Dissipation @TC = 26·C @TC = l000c Darate above 25·C 4. DIMENSIONS AND TOLERANCES PER 1 10' 11. ,. Adc Sase Current - Continuous - Peak (1) FOR LEADS' I + I I.13I•.•06,@T I v@lo@1 315 Adc IC ICM W§•.•06,@ITlv@1 MILLIMETERS IJtM MIN MAX A 39.37 21.08 6.3& 72 , MJH1801. Watts 175 100 1.0 150 50 1.0 Wf'C -66 to 200 -55 to 150 OC 1.0 Unit .C/W THERMAL CHARACTERISTICS Cher_lstlc Max Symbol Thermal Resistance, Junction to Case 1.0 R6JC Lead Temperature for Soldering Purposes, 118" from Case for 5 Second •. ·C 275 TL 11) Pul ... Test: Pulee Width" 6.0,... Duty Cycle I ~ ·,• '''' .., "M D 10%. •• , H DeoIg....... DellI for "Want CUeU Cand_ K The Dellgne(1 0l1li Shoat pormlts the deaign of most circuits entirely from the Informstlon presented. Limit Curves - repraeentlng boundari•• on device characteriatica - are given to fecilltalll uWOrll oa..u _Ign. 1-789 MILLIMETERS MIN M.X 2108 15.49 15.90 4.19 5.08 1.02 1.35 1.65 5.21 5.72 2.41 3.20 0.38 0.64 1270 15.49 15.88 16.51 12.19 12.70 4.22 L N 0 .... INCKES M,N MAX 08DO 0.830 0.610 0626 0165 D.2DD 0.040 0.065 0.065 0.225 0.095 0.128 0.015 0.500 0610 0.625 0.650 0.480 0.500 0.159 0.1116 STYLE 1 I. BASE 2 COLLECTOR 3. EMITTER 4. COLLECTOR ,." 02" 0'" CASE340-G1 TO-21IAC MJ16018,MJH16018 II] MJ16018 MJH16018 I ELECTRICAL CHARACTERISTICS (TC = 25'C unless otherwise noted) Characteristic Symbol Min Typ Max Unit VCEO(sus) BOO - - Vdc ICEV - - OFF CHARACTERISTICS Collector-Emitter Sustaining Voltage (Table 2) (lC = 100 mA, IB = 0) Collector Cutoff Current (VCEV = 1500 Vde, VBE(off) (VCEV = 1500 Vdc, VBE(off) Collector Cutoff Current (VCE = 1500 Vdc, RBE = = 1.5 Vde) 1.5 Vde, TC = 50 n, TC = = 100'C) ICER 100'C) Emitter Cutoff Current (VEB = 6.0 Vde, IC = 0) lEBO mAde - 0.25 1.5 - 2.5 mAde - 1.0 mAdc SECOND BREAKDOWN Second Breakdown Collector Current with Base Forward Biased See Figure 12 Clamped Inductive SOA with Base Reverse Biased See Figure 13 ON CHARACTERISTICS (1) Collector-Emitter Saturation Voltage (lC = 5.0 Adc, IB = 1.0 Adc) (lc = 10 Adc, IB = 4.0 Ade) (lC = 5.0 Adc, IB = 1.0 Ade, TC = 100'C) VCE(sat) Base-Emitter Saturation Voltage (lc = 5.0 Adc,IB = 1.0 Adc) (lC = 5.0 Adc, IB = 1.0 Adc, TC VBE(sat) DC Current Gain (lC = 5.0 Adc, VCE = l00'C) hFE = 5.0 Vdc) - 7.0 - Vde 1.5 1.5 2.0 Vde - - 1.5 1.5 - - ns DYNAMIC CHARACTERISTICS Output Capacitance (VCB = 10 Vdc, IE = 0, ftest = 1.0 kHz) SWITCHING CHARACTERISTICS .....sttv. Load (Table 11 Delay Time Rise TIme Storage Time Fall TIme Storage TIme tf - ts tf td (lC = 5.0 Adc, VCC = 250 Vdc, IBI = 1.0 Adc, PW = 30ps, Duty Cycle'" 2.0%) (lB2 RB2 = 2.0 Adc, = 3.00) (VBE(off) = tr ts 2.0 Vdc) Fall TIme 50 100 300 400 2000 3000 900 1200 - 1600 2400 - 500 650 2000 3000 200 400 Inductlv. Load (Table 21 Storage Time Fall TIme Crossover Time Storage Time Fall Time tsv (lC = 5.0 Adc, IBI = 1.0 Adc, VBE(off) = 2.0 Vdc, VCE(pk) = 400 Vdc) (TJ = 25'C) tfi tc tsv (TJ = l00'C) tfi Crossover Time tc III Pul... Test: PW - 300 /UJ, Duty Cycle", 2.0%. 1-790 - 350 500 2600 3600 280 460 470 620 ns MJ16018,MJH16018 III TYPICAL STATIC CHARACTERISTICS FIGURE 1 - DC CURRENT GAIN 70 50 z 30 I Td - g ~ . ~ -" .......... I I r-... I 25'C 10 -.....::: 0.3 a 1.0 '"~ 0.5 > ~ '"~ ~ u 10 '% il > - 0.1 0.2 0.3 ,...... V in 0.7 a - r-/3r~5.0 2.0 5.0 10 25'C TC I-- lOO'C . ~ 0.2 25'C ~ ,', , II - /3r ~ 10 I lil > 0.5 0.7 1.0 2.0 3.0 IC, COLLECTOR CURRENT (AMPS! 5.0 7.0 10 0.1 0.1 0.2 0.3 0.5 0.7 1.0 2.0 3.0 IC, COLLECTOR CURRENT (AMPS! 5.0 7.0 10 RGURE 6 - CAPACITANCE 10K / I / / 103 r-- -TJ 102 0.1 0.2 0.5 1.0 IB, BASE CURRENT (AMPS! -I- RGURE 5 - COLLECTOR CUTOFF REGION ~ 0.05 03 ~ 104 ~ t- -- [\. 0.02 0.5 ~'" ~ \ 25'C ~ ~ ~ w TC TC FIGURE 4 - BASE-EMITTER VOLTAGE 1.0 '/ / ,/ 0.05 0.10 lolA '\ 0.1 0.01 > 20 10 25'C 0.2 17101~\ \ ~ 0.3 t.:i ::::1 0.2 8 il 5.0V I /3r TC 1.0 ~ 0.5 0.7 1.0 2.0 3.0 5.0 7.0 IC, COLLECTOR CURRENT (AMPS! :e 0.3 'I' Illl 3~ol ~ 0.5 ~ FIGURE 3 - COLLECTOR-EMITTER SATURATION VOLTAGE 5.0 in /3r - 10 ~ a 3.0 TC ~ loo'C :-/ ~ w 2.0 '"~ ~ 1~01 ~ VCE 5.0 IIC §! 0.7 i7.0 3.0 0.2 I ~ II 11~-!: ~ 20 :::> u RGURE 2 - COLLECTOR SATURATION REGION 2.0 15O'C 125'C ..... 3.0K V ~ 1.0K / w l;;l 300 :::> '" u l00'C V 101 75'C I r-- -REVERSE _ _ f--. FORWARD ~ VCE 8 100 25'C .Y 10- 1 -0.4 -0.2 0 +0.2 +0.4 VBE, BASE,EMITIER VOLTAGE (VOLTS! ~ § I~i~ 1111 Cob 100 <.5 250V= TC 30 25'C 10 +0,6 1-791 0.1 1.0 10 100 VR, REVERSE VOLTAGE (VOLTS! 1.0K MJ16018,MJH16018 OJ TYPICAL INDUCTIVE SWITCHING CHARACTERISTICS FIGURE 7 - STORAGE TIME RGURE 8 - COLLECTOR CURRENT FALL TIME 10K 7.0K 2.0K -- !2.OK ~ 1.0K w ~ 700 ~ 1.OK OV- VBEloff) 5.DK 3.DK ~ 0- :z: ~ ! ~ ~ ,........ r-.......... :E !;l! 500 I~ 1'-.. ... .f} 100 50 1.0 l"-l 90% VCElpk) 11\ 90% IClpk) / VBEloff) - 5.0 V OV TC = 75"<: VCC = 20V 2.0 10 r--- trvfflPttfi-t-tti- I-t--tsv )---. t-Ic-l l- lL VCE r- t- ~ 10% VCElpk) 3.0 5.0 IC. COLLECTOR CURRENT lAMPS) 7.0 ~ 10 ~ !=:-.. ,~ f-, F::::-."-' .......... N .... ............ " ~ ~ r--.... .... ... 80 SECOND BREAKDOWN DERATING - .-{ r---- THERMAL:::: DERATING - - - l--- TIME RGURE 11 - POWER DERATING 100 " ........ , " J " ~ -MJl6018 -MJHl6018 I"--- i "- ,I 40 80 120 TC. CASE TEMPERATURE I"C) 1-792 160 ~ I" 10% ..... IC pk 9O%IBI IB- H -- --\- - - - - o o ~CElpk) VI / I ,9t' = 5.0 7.0 RGURE 10 - INDUCTIVE SwrrCHING MEASUREMENTS 2.0 v 0 0 I 2.0 3.0 5.0 IC. COLLECTOR CURRENT lAMPS) 1.0 ""'r--J 1= a: a: 200 10 L::" r-- -.;:: ,9t' 5.0 75"<: TC VCC = 20V 50 IC~ 1.0K U> U> 100 JE FIGURE 9 - CROSSOVER TIME 1'---- "- ~ ~~ 20 7.0 2.0 3.0 5.0 IC. COLLECTOR CURRENT lAMPS) - ~ ... ,9t' = 5.0 ITC = 75"<: Vee = lOV I- 200 2.0K O~ 300 Il! a: 200 ::> a: j300 5.0K 5.0 V ::::l 500 !jl500 100 1.0 ~VBEloff) - 2.0 V ~ ~ ~.O~ f"" I- ~ 200 - t-~ MJ16018.MJH16018 III GUARANTEED SAFE OPERATING AREA LIMITS FIGURE 13 - MAXIMUM REVERSE BIAS SAFE OPERA11NG AREA RGURE 12 - MAXIMUM FORWARD BIAS SAFE OPERA11NG AREA 100 if ie 50 30 20 !! 14 z>- ~ 10 ~ u t; 3.0 2.0 1.0 ~ a:: u a:: 10 I' >~ 5.0 l§ 16 ::E ::> 1.0ms ~ de 25°C c-TC g 0.5 =- ": 0.3 ~ 0.2 B.O 0 6.0 u '"~ -BONDING WIRE LIMIT THERMAl LIMIT SECOND BREAKOOWN LIMIT 10 u ~ ....... 4.0 ~ r-.. \ 12 \ 1\ .\ TC "'ll00°C r- VBE(off) = 0 V III = 5.0 - I J;;r 2.0 I~ ~ [\ 0.1 10 20 30 50 100 200 300 500 VCE, COLL£CTOR·EMlmR VOLTAGE (VOLTS) 1.OK 200 VBE(off) = 2.0 V h 400 600 800 1000 1200 1400 1600 1800 2000 V VCE(pk), PEAK COLLECTOR CURRENT IVOLTS) SAFE OPERATING AREA INFORMATION FORWARD BIAS There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate IC-VCE limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. The data of Figure 12 is based on TC = 25°C; TJ(pk) is variable depending on power level. Second breakdown pulse limits are valid for duty cycles to 10% but must be derated when TC ;;. 25°C. Second breakdown limitations do not derate the same as thermal limitations. Allowable current atthe voltages shown on Figure 12 may be found at any case temperature by using the appropriate curve on Figure 11. TJ(pk) may be calculated from the data in Figure 14. At high case temperatures, thermal limitations will re- duce the power that can be handled to values less than the limitations imposed by second breakdown. REVERSE BIAS For inductive loads, high voltage and high current must be sustained simultaneously during turn-off, in most cases, with the base-to-emitter junction· reverse biased. Under these conditions the collector voltage must be held to a safe level at or below a specific value of collector current_ This can be accomplished by several means such as active clamping, RC snubbing, load line shaping, etc. The safe level for these devices is specified as Reverse Bias Safe Operating Area and represents the voltage-current condition allowable during reverse biased turn-off. This rating is verified under clamped conditions so that the device is never subjected to an avalanche mode. Figure 13 gives the RBSOA characteristics. RGURE 14 - THERMAL RESPONSE 5 ~ a; O.1.07 ~ O. 0 5 0 0.5 - -- '" ~ ~ O.3 z ;'E O. 2 - 0.2 ~ O. O. 1 ~ 0.07 ==0.05 ffi 0.05 -0.02 ~ ~ 0.03 ~ 0,02-fut:; ~ 0.0 1.......t"1 ~ 0.01 0.02 >- ..... ""'" SI~G~Em~EI 0.05 0.1 0.2 0.5 1.0 ~ P(pkl tJUl ~;;-~ DUTY CYCLE, 0 = I I IIIII 2.0 5.0 10 20 t TIME Imsl 1-793 11~2 R8JC(I) = rttl ROJC R8JC = 1.O"CNI Max oCurves Apply For Power Pulse Train Shown Read Time @ '1 TJ(pkl- TC = P(pkl R8JC(I) I I I I IIII 50 100 I I 200 1 I I I II 500 1.0 k MJ16018,MJH16018 111 TABLE 1 - RESISTIVE LOAD SWITCHING OV~+V_ +Vdc = 1 1 Vdc - Usv OV ~-35]J. P A 02 P F 50 IBl = 1.0 Adc RBl = 10 n IB2 = 2.0 Adc RB2 = 3.0 n For VBE(off) = 2.0 V RB2 = 0 n Vee = 250 RL = 50 1 OpF n Ie = 5.0 Adc 500 -v * Note Adjust -V to obtam deSired VSE(off) at Pomt A TABLE 2 - INDUCTIVE LOAD SWITCHING +V = 11 V 002 pF 2N6191 20 10 pF A 50 500 ~k) VeE~ L VCE(pk)" VCE(clamp) r1 = Lcoll (Iepk) Vee r 1 adJusted to obtain le(pk) VIBRlCEOlsus) L = 10 mH RB2 : 00 Vee : 20 Volts Inductive Switching L" 200 pH RB2" a Vee" 20 Volts RSl selected for deSired 181 RBSOA L" 200 pH RB2" a Vec" 20 Volts RSl selected for deSired 181 "Tektronix Scope - Tektronix AM503 P6302 or 7403 or Equivalent EqUivalent Note Adjust -v to obtam deSired VBE(off) at Pomt A 1-794 MJEI05 ® MOTOROLA 5 AMPERE MEDIUM-POWER PNP SILICON TRANSISTOR POWER TRANSISTOR · .. for use as an output device in complementary audio amplifiers up to 20-Watts music power per channel. • PNP SILICON 50 VOLTS 65 WATTS High DC Current Gain - hFE = 25·100@ IC = 2.0 A • Thermopad • Complementary to NPN MJE205 High-Efficiency Compact Package MAXIMUM RATINGS Rating Svmbol Value VCEO 50 Vde Collector-Base Voltage Vca 50 Vde Emitter-Base Voltage Collector-Emitter Voltage Unit VEa 4.0 Vde Collector Current IC 5.0 Ade Base Current Ie 2.5 Ade POll) 65 0.522 Watts W/oC TJ, T stg -55 to +150 °c Total Power Dissipation Derate above" 25°C @ T C "" 2SoC Operating and Storage Junction Temperature Range THERMAL CHARACTERISTICS Characteristic Thermal Resistance, Junction to Case (1) Safe Area Curves are Indicated bV Figure 1. Both limits are applicable and must beobserved ELECTRICAL CHARACTERISTICS ITC = -'T 250 C unless otherWISe noted) Characteristic Symbol Min I Max Unit OFF CHARACTERISTICS Collector-Emitter Breakdown Voltage (2) Collector Cutoff Current 50 - - 0.1 2.0 - 1.0 mAde ICBO (Vca = 50 Vde, IE = 01 (Vce = 50 Vde, IE = 0, TC = 1500C) Emitter Cutoff Current Vde BVCEO IIc = 100 mAde, la = 0) mAde lEaD (VeE = 4.0 Vde, IC = 0) (lc = 2.0 Adc, VCE = 2.0 Vde) INCHES MIN MAX 16.13 16.38 12.57 12.83 3.18 3.43 1.09 1.24 3.51 3.76 4.22 SSC 2.67 2.92 0.813 0.864 15.11 16.38 0.635 0.645 0.495 0.505 0.125 0.135 0.043 0.049 0.138 0.148 0.166 SSC 0.105 0.115 0.032 0.034 0.595 0.645 So TYP 0.185 0.195 0.075 0.085 0.245 0.255 0.080 A B C D F G H J M n - hFE IIc =2.0 Ade, VCE = 2.0 Vde) Base-Emitter Voltage MILLIMETERS DIM MIN MAX K ON CHARACTERISTICS DC Current Gain STYLE 2: PIN 1. EMITTER ~::T C 2. COLLECTOR 3. BASE ~ 25 Vde - 1.2 (2) Pulse Test: Pulse Width ~300 ~s. Dutv Cycle ~2.0%. 1-795 U V 100 VeE R ~TYP 4.70 LSI 6.22 2.03 4.S5 2.16 6.48 CASE 90·05 TO·127 MJE105 FIGURE 1 - ACTIVE-REGION SAFE OPERATING AREA 0 0~TJ'15IJOC 0 There are two limitatIOns on the power handling ability of a transistor; average Junction temperature and second breakdown. Safe operating area curves indIcate Ie - VeE limits of the tranSistor 100", , ...... ..... 0 ". ~.Oms 0 that must be observed for reliable operation. I.e., the transIstor must not be subjected to greater diSSipation than the curves indIcate. 1.1 The data of F,gure 1 l.D 0p-----THERMAL LIMIT OTC' 25.C .1F= • BONDING WIRE LIMIT .5 SECOND BREAKDOWN LIMIT IS based on TJ(pkl = IS0oC; TC IS varoable dependmg on conditions. Second breakdown pulse limits are valid for duty cycles to 10% prOVIded T J(pkl ,;;IS00 C. At hIgh cas• temperatures, thermal limitations Will reduce the power that can be de .3 handled to values less than the limitations Imposed by second breakdown . 1\ .2 J o.1 1.0 2.0 3.0 5.0 1.0 10 20 50 30 VCE. CoLLECTOR·EMmER VOLTAGE (VoLTSI FIGURE 3 - DC CURRENT GAIN FIGURE 2 - "ON" VOLTAGES 2.0 III 1.8 ~ > ffi « 2.0 ~ VBE(a"OICIlB =10 I [I I 1 ~P'" t\. I " o 0.01 I ........ 55· ~ 0.1 ~ 0.5 i3 0.3 <.> I I VCE(a"O ICIIS' 10 L'I Q V L 11111 r-- 0.02 0.03 0.05 0.1 0.2 0.3 0.5 '.0 IC. COLLECTOR CURRENT (AMPSI ~ 0.2 o. 1 2.0 3.0 5.0 0.02 0.03 0.01 0.05 0.1 50 ~ "' ~ "- ~ "-....... "'""- ....... 25 0.2 0.3 0.5 0.1 1.0 IC. COLLECTOR CIJRRENT (AMPSI FIGURE 4 - POWER DERATING 5 "1"D. 0: 0: 0.4 t-- VBE 0 VCP 2.0 V 0.2 ~ =2.0 V- ~ ~~ ;: 1.0 1.2 ~ 0.8 o >0-6 25·C 0: VeE TJ .l.'501 ~ '"o 1.4 :; 1.0 3.0 N :::; TJ' 25·C 1.6 0 5.0 50 75 100 Te. CASE TEMPERATURE (oCI 1-796 125 150 175 2.0 3.0 4.0 ® IJE170 thru MJE172 PNP MJE180 thru IJE182 NPN MOTOROLA COMPLEMENTARY PLASTIC SILICON POWER TRANSISTORS 3 AMPERE . designed for low power audio amplifier and low current, high speed switch ing appl ications. • POWER TRANSISTORS COMPLEMENTARY SILICON Collector· Emitter Sustaining Voltage VCEO(sus) = 40 Vdc - MJE170, MJE 180 = 60 Vdc - MJE171, MJE181 = 80 Vdc - MJEl72, MJE182 • DC Current Gain hFE = 30 (Min) @ IC = 0.5 Adc = 12 (Min) @ IC = 1.5 Adc • Current-Gain - Bandwidth Product = 50 MHz (Min) @ IC = 100 mAdc • Annular Construction for Low LeakagesICBO= 100nA(Max)@RatedVCB 40-60-80 VOL TS 12.5 WATTS tr MAXIMUM RATINGS Collector~8ase MJE170 MJE171 MJE180 MJE181 Rating Symbol Voltage VCB 60 VCEO 40 Collector-Emitter Voltage Emitter-Base Voltage Collector Current - Continuous Unit 80 100 Vde 60 80 Vde VEB ----7.0- Vde IC ----3.0----6.0_ Ade Peak Base Current MJE172 MJE182 18 1.0- Ade T A == 25°C PD 1.5_ ---0.012_ Watts WIDC Total Power Dissipation @TC == 2SoC PD _12.5_ ----0.1_ Watts WIDC Total Power Dissipa_tion Derate above 25°C @ - Derate above 25°C Operating and Storage Junction TJ,Tstg _ -65 to + 1 5 0 _ ~H K DC Temperature Range THERMAL CHARACTERISTICS Characteristic Symbol Max Thermal Resistance. Ju nction to Case °JC 10 DCIW Thermal Resistance, Junction to °JA 83.4 DCIW Unit Ambient STYLE 1 PIN 1. EMITTER 2. COLLECTOR 3. BASE FIGURE 1 - POWER DERATING t.n 2.4 12 ........ ~ ~ 2.010 z o ~ 168.0 ~ ...... E 1.26.0 "'- "- ..... ~ "'- I, ...... ~ 0.84.0 ~ ,"'-:, '""'"-.J Y 0.4 2.0 o -"":C 40 60 80 MIN A B C D F 10.80 7.49 2.41 0.51 2.92 2.31 1.27 0.38 15.11 G H J "........ K M "" "'-r-.... ., 0 20 OIM 100 120 Q R " 140 S U 160 T. TEMPERATURE ('CI 1-797 V MAX 11.05 7.75 2.67 0.66 3.18 2.46 2.41 0.64 16.64 3 TVP 3.76 4.01 1.14 1.40 0.64 0.89 3.88 3.94 1.02 CASE 77·04 To-126 IVIJE170, MJE171, MJE172, PNP MJE180, MJE181, MJE182 NPN IIJ ELECTRICAL CHARACTERISTICS ITe = 2soe unless otherwise noted) I I Characteristic Symbol Min Max 40 60 80 - - - 0.1 0.1 0.1 0.1 0.1 0.1 - 0.1 SO 30 12 2S0 - - - 0.3 0.9 1.7 - 1.5 2.0 - 1.2 SO - - 60 40 Unit OFF CHARACTERISTICS Collector·Emitter Sustaining Voltage (lC = 10 mAde, IB = 0) Vde VCEOlsus) MJE170, MJE180 MJE171, MJE181 MJE 172, MJE 182 Collector Cutoff Current (VeB = 60 Vde, IE = 0) (VCB = 80 Vde, IE = 0) (VCB = 100 Vde, IE = 0) (VCB = 60 Vde, IE = 0, TC = lS0oC) (VCB = 80 Vde, IE = 0, TC = lS0oC) (VCB = 100 Vde, IE = 0, Te = lS0oC) "Ade IC80 MJE 170, MJE171, MJE172, MJE 170, MJE171, MJEl72, - MJE 180 MJE 181 MJE182 MJE 180 MJE181 MJE182 - - Emitter Cutoff Current (VBE = 7.0 Vde, IC = 0) lEBO mAde "Ade ON CHARACTERISTICS, - DC Current Gain IIC= 100 mAde, VCE = 1.0Vde) IIc = SOO mAde, VCE = 1.0 Vde) (IC= 1.SAde, VCE = 1.0Vde) hFE Collectof·Emitter Saturation Voltage IIC = SOO mAde, IB = SO mAde) IIC = 1.S Ade, IB = 150 mAde) IIC = 3.0 Ade, I B = 600 mAde) VCE(sat) Base-Emitter Saturation Voltage IIC = I.S Ade, IB = lS0 mAde) IIC = 3.0 Ade, IB = 600 mAde) VBE(sat) Base-Emitter On Voltage IIC = SOO mAde, VCE = 1.0 Vde) VBE(on) - Vde Vde Vde DYNAMIC CHARACTERISTICS Current·Gain - Bandwidth Product (tl IIC = 100 mAde, VCE = 10 Vde, f test Output Capacitance (VCB = 10 Vde, IE = 0, f (1) = 0.1 MHz fT = 10 MHz) Cob MHz) MJE170/MJEl72 MJE180/MJE182 pF fr = Ihfe I- ftest FIGURE 2 - SWITCHING TIME TEST CIRCUIT FIGURE 3 - TURN·ON TIME 300 VCC +30 V H 100 RC +~] --1--, -9.0 V tr,tf~l,Ons -= ~ VCC=30V _ '--Icila= 10 VaEloff)- 4.0 V :: TJ = 25 0 C- f::=; h" == SCOPE RS 51 I II 200 :g 50 w 30 '";::..: 01 ,1/ 20 ". -= 7.0 5.0 01 MUST SE FAST RECOVE RY TYPE, eg: MB05300 USED ABOVE IB =100 mA MSD6100 USED BELOW IB =100 mA 3.0 0.03 ....... ' ...... td 10 -4V DUTY CYCLE = 1.0% RS and RC VARIED TO OSTAIN DESIRED CURRENT LEVELS ""- r-..... f' PNP MJE170/MJE172 I I I I I I I NP~ MJ~IBO/MtEl~2 0.05 0.07 0.1 0.2 0.3 0.5 0.7 1.0 IC, COLLECTOR CURRENT (AMP) For PNP test circuit, reverse all polarities. 1-798 2.0 3.0 MJE170, MJE171, MJE172, PNP MJE180, MJE181, MJE182 NPN FIGURE 4 - THERMAL RESPONSE 1.0 0.7 -=-D=0.5 ....10 0•5 ~ 0.05 22 wC;;~ O. .....- - ~~O.O ~~ ;~ a~O.05 ~ ~'" 0.03 ~ BJC(I) = rmBJC BJC' 100 Cm Max P(~k)JUl 1= ==E CURJESA~L~F~R'POWER= = -= l ~~~ ,-r-- ~J(Pk)"I i ~JCI(tll I;::::: ~0.02 ~0.01 ~O (rIN~L~ p~LrE" I ;:::::;::::: I I III 0.05 0.1 0.2 0.5 I 2.0 1.0 I, I I - TC P(P,k) DUTY CYCLE, D =11/12 0.02 0.0 1 0.02 D PULSE TRAIN SHOWN 1- r- READ TIME ATtl I IIIII 5.0 10 I 20 I I I II 50 100 200 TIME (m.) ACTIVE-REGION SAFE OPERATING AREA FIGURE 6 - MJE180, MJE181, MJE182 FIGURE 5 - MJE170, MJE171, MJE172 10 .'" 10 5.0 S 2.0 ~ 1.0 15 :::::> ~ F= ' <> "'.0.05 r- :: 0.02 0.01 1.0 2.0 3.0 1'\ "' de - 0.2 r- - - - - - o. 1 E ~ 1/ 0.5 '" '" <> . 100 ~St .... ......... 500~s loo~~m 5. 0 2. 0 ~ 5.0ms ~ 1.0 a~ O.5 "-'" ..... de 500~s ~ TJ = 150°C BONDING WIRE LIMITED '" 2 - _____ THERMALLY LlMITED@ .... O. TC = 25°C (SINGLE PULSE) O. 1::=== SECOND BREAKDOWN LIMITED <> ~o.o CURVES APPLY, i~W RATED VCEO MiE180 0.0 2 TJ = 150°C 5.0 ms BONDING WIRE LIMITED THERMALLY LIMITED @ ~ TC = 25°C (SINGLE PULSE) SECOND BREAKDOWN LIMITED CURVES APPLY BELOW RATED VCED -MJE170 MJEl7l MJEI72 5.0 10 20 30 ~ -- - " SF II II 50 ~~::~ I I II 0.0 1 1.0 100 2.0 3.0 5.0 7.0 20 10 50 30 70 100 VCE, COLLECTOR·EMITTER VOLTAGE (VOLTS) VCE, COLLECTOR·EMITTER VOLTAGE (VOLTS) There are two limitations on the power handling ability of a variable depending on conditions. Second breakdown pulse limits transistor - average junction temperature and second breakdown. Safe operating area curves indicate Ie - VeE limits of the tran~ sistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. The data of Figures Sand6isbasedonTJ(pk) ~ IS00C;TC is are valid for duty cycles to 10% provided TJ(pk) < 1500C. TJ(pk) may be calculated from the data in Figure 4. At high case temperature, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown. - FIGURE 7 - TURN·OFF TIME 1000 700 500 100 Is 30o ...... 2001'-.. ]w 100 ~ 70 50 -= r-... i'. :" r- , 1"""--1-.., , VCC=30Y!CflB -10 IBI = IB2,.TJ = 25°C 70 ~ ~ '" z « r" ..... 50 w ~ ~ '" U - - - PNPMJE170/MJE172 C- I I I I I jPN MIJEljOlMJEi82 0.05 0.07 0.1 0.2 0.3 0.5 0.7 1.0 2.0 3.0 IC, COLLECTOR CURRENT (AMP) , :-.... ....... 20 1- r0- Or--0.03 TJ= 250C- r........ 30 0 10 FIGURE 8 - CAPACITANCE 10 0.5 0.7 1.0 2.0 ' .... PNP MJE170/MJE172 -NPN MJE1BO/MJE182 II Cib '" r-...... "- 3.0 Cob ..... 5.0 7.0 r- ..... 10 VR, REVERSE VOLTAGE (VOLTS) 1-799 r-- "- - 20 30 50 MJE170, MJE171, MJE172, PNP MJE180, MJE181, MJE182 NPN PNP NPN MJE170, MJE171, MJE172 MJE180, MJE181, MJE182 FIGURE 9 - DC CURRENT GAIN 200 TJ111500c z 100 rr-- 70 25'C ;;: '".... ill = = " ~ r'" .... -55'C t-- ~ 0.05 0.07 0.1 0.2 0.3 50 " 30 u 20 0.5 0.7 ~ ~ ~ 1.0 2.0 70 ia "~ -55'C ..... I'.... 20 10 0.03 3.0 VCE=1.0V - 25'C z 100 30 10 0.03 _TJ= l~o~C ;;: 50 a u - -... 200 VCE = 1.0 V 0.05 0.07 0.1 0.2 0.3 0.5 0.7 " "- ~ 1.0 " 2.0 3.0 IC. COLLECTOR CURRENT (AMP) IC. COLLECTOR CURRENT (AMP) FIGURE 10 - "ON" VOLTAGES 1.4 1.4 I- TJ = 25'C ~ 1.2 S 1.0 " ~ '" '" ~ ">>- 1. 2 - V~E(~t) ~ IC/l8' 10 o.B ./ ~ ~ ";;;> V 0.4 . / ./ V Ic/le=~ 0.2 I- o 0.03 VCE(sa.) I 0.05 0.07 0.1 0.2 0.3 0.5 0.7 1.0 2.0 ./ . 1/ o.4 VCE(sat)@ Ic/lB = 5.0 and 10 0 0.03 3.0 v o.6f- VSE @VCE=1.0V O.2 Ic/le = 5.0 / I VBE(sa')@ IC/IB - 10 ~ o.S / isdc IIJ o I 0.6 f- VBE @l VCE=1.0V I ~ 1. 0 / TJ I= 0.2 0.05 0.07 0.1 IC. COLLECTOR CURRENT (AMP) 0.3 ./ - 0.5 0.7 1.0 2.0 3.0 IC. COLLECTOR CURRENT (AMP) FIGURE 11 - T~MPERATURE COEFFICIENTS U +2.0 3- ~+1. 0 ~ ;:; II II 'APPLIES FOR Ic/le <: hFE/2 LL II II II 25 DC to 1500 C -r~toti'l 8 w II! ....Gi -2.0 i -3.0 0.03 25'C 8ve FOR VeE II I II I 0.05 0.07 0.1 ./ .... 0.2 0.3 to 150'C .... -55'C to 25'C 8 ./ / ~ II! II I II I .... 25'Cto~ r- ~ -2. 0 i 2.0 3.0 IC. COLLECTOR CURRENT (AMP) -3.0 0.03 Bye FOR VeE II II IIII 0.05 0.07 0.1 -550C.o 2~ot I I III 0.2 0.3 1111 0.5 0.7 IC. COLLECTOR CURRENT (AMP) 1-800 ./ f..--" V I III . / '" g;-1.0 -55 DCto +25 0 C V +ttT '8VC FOR VCE(sat) ~ / 250 C to 1500 C II II ili ;:; J..t V" 0.5 0.7 1.0 II II ;; +1.0 7- 11111 11111 'APPLIES FOR IC/IB <: hFE/2 3-E -ttr '8VC FOR VCE(sa') $ g;-1.0 ~ +2.0 u 1.0 2.0 3.0 ® IJE280 NPN IJE210 PNP MOTOROLA III COMPLEMENTARY SI LICON POWER PLASTIC TRANSISTORS 5AMPERE POWER TRANSISTORS COMPLEMENTARY SILICON . designed for low voltage, low·power, high-gain audio amplifier applications. • COllector-Emitter Sustaining Voltage VCEO(sus) = 25 Vdc (Min) @ IC = 10 mAde • High DC Current Gain - • Low Coliector·Emitter Saturation Voltage VCE(sat) = 0.3 Vdc (Max) @ IC = 500 mAde = 0.75 Vdc (Max) @ IC = 2.0 Ade • High Current-Gain - Bandwidth Product fT = 65 MHz (Min) @ IC = 100 mAde • Annular Construction for Low Leakage - ICBO =100 nAde@ Rated VCB 25 VOLTS 15 WATTS hFE = 70 (Min) @ IC = 500 mAde = 45 (Min) @ IC = 2.0 Ade = 10 (Min) @ IC = 5.0 Adc MAXIMUM RATINGS Rating CollectofMBase Voltage COllector-Emitter Voltage Emitter-Base Voltage Collector Current - Continuous Symbol Value Unit Vce 40 Vdc VCEO 25 Vdc VEe 8.0 Vdc IC 5.0 10 Adc Peak Base Current Ie 1.0 Adc = 25°C PD 15 0.12 Watts Total Power Dissipation @ T A = 25 0 C PD 1.5 0.012 Watts -65 to +150 °c Total Power Dissipation @TC Derate above 256 C Derate above 25°C Operating and Storage Junction Temperature Range TJ,Tstg W/oc -:-tH K W/oC THERMAL CHARACTERISTICS Symbol Max Unit Thermal Resistance, Junction to Case 8JC 8.34 °C/W Thermal Resistance, Junction to Ambient 8JA 83.4 °C/W Characteristic STYLE I PIN 1. EMITIER 2. COLLECTOR 3. BASE FIGURE 1 - POWER DERATING 6 1.6 h 2 ~ 1 f'... ~ 0 0 " I' 0 ~ o 20 0 ~ 40 60 100 120 80 T. TEMPERATURE I'CI 140 0 160 MILLIMETERS DIM MIN MAX A 10.80 11.05 B 7.49 7.75 C 2.41 2.67 0 0.51 0.66 2.92 F 3.18 G 2.31 2.46 1.27 H 2.41 0.S4 J 0.38 K 15.11 16.64 30 TVP M Q 4.01 3.76 R 1.14 1.40 S 0.S4 0.89 U 3.94 3.68 V 1.02 INCHES MIN MAX 0425 0.435 0.295 0.305 0.095 0.105 0.020 0.026 0.125 0.11 0.091 0.097 0.050 0.095 0.015 0.025 0.595 0.655 30 TYP 0.148 0.158 0.045 0.055 0.035 0.02 0.145 0.155 0.040 CASE 77-04 TO-l26 1-801 MJE200, NPN MJE210 PNP ELECTRICAL CHARACTERISTICS (TC = 250 C unless otherwise noted) I I Characteristic Svmbol Min Max Unit VCEO!sus) 25 - Vdc - 100 100 nAdc pAdc - 100 70 45 10 180 - 0.3 0.75 1.B OFF CHARACTERISTICS Collector-Emitter Sustaining Voltage (1) IIC= 10mAdc,la=0) Collector Cutoff Current (Vce = 40 Vdc, IE = 0) (Vca=40Vdc,IE=O, TJ= 1250 C) Icao Emitter Cutoff Current (VaE = 8,0 Vdc, IC = 0) IEaO nAdc ON CHARACTERISTICS DC Current Gain (1) IIC = 500 mAdc, VCE = 1.0 Vdc) IIC = 2.0 Adc, VCE = 1.0 Vdc) IIc = 5.0 Adc, VCE = 2.0 Vdc) - hFE Collector-Emitter Saturation Voltage (1) IIc = 500 mAde, la = 50 mAde) IIC = 2.0 Adc, I a = 200 mAde) (IC = 5.0 Ade, la = 1.0 Adc) VCE!sat) aase-Emitter Saturation Voltage (1) IIC = 5.0 Adc, la = 1.0 Adc) VaE(sati - aase-Emitter On Voltage (1) (lC = 2.0 Adc, VCE = 1.0 Vdc) VaE(on) fT Vdc - 2.5 Vdc - 1.6 Vdc 65 - MHz - 80 120 DYNAMIC CHARACTERISTICS Current-Gain - aandwidth Product (2) (lC = 100 mAde, VCE = 10 Vdc, f test = 10 MHz) Output Capacitance (Vca = 10 Vdc, IE = 0, f = 0.1 MHz) (1) Pulse test: Pulse Width (2) fT = hfel • ftest I = 300 jlS, pF Cob MJE200 MJE210 - Duty Cycle'" 2.0%. FIGURE 2 - SWITCHING TIME TEST CIRCUIT FIGURE 3 - TURN-ON TIME 300 +30 V VCC H +~] 200 RC --1--, SCOPE RB ~ .. -9.0 V 51 I r• It::::10 ns DUTY CYCLE = 1.0% 100 -= Dl -4 V >= ~ I~~~: ~~ V _ I'... TJ=25 0 C- t, 10 50 20 ..... ....... 30 " -jd l@m!Ofl)i ......... 5.0( ' -= 10 RB and RC VARIED TO OBTAIN OESIREO CURRENT LEVELS 1.0 01 MUST BE FAST RECOVERY TYPE, .g. MB05300 USEO ABOVE IB =100 mA MSD6100 USED BELOW IB =100 mA - --,...1-- ......... I--" MJE200 (NPN) MJE210 (PNP) 5.0 3.0 0.05 0.01 0.1 FOR PNPTEST CIRCUIT, REVERSE ALL POLARITIES 0.2 0.3 0.5 0.1 1.0 IC. COLLECTOR CURRENT (AMP) 1-802 2.0 3.0 5.0 MJE200, NPN MJE210 PNP FIGURE 4 - THERMAL RESPONSE 1.0 .,z w ~W_. o. 7~ o.5 0=0.5 0.3 f - - I-- 0.2 ~c O.2f-- f:-b.1 "w .. !:! ~:i o. I :: :5 0.07 ~~O.O 5 ;;; ,.-- 0.03 - : I- -' ~ ~ 0:-' ""'" -- 6001- "HlJl-f-~JC(t)-r(t)~JC k) -r-~JC-8.340C/WMax-1-- p( I P t .0 :S~.01 D(SiNGLE PULSE) I I I I II =0 CURVES APPLY FOR POWER= -PULSE TRAIN SHOWN READ TIME Attl ~ '2 - OUTY CYCLE. 0 = 11/12 TJ(t) I I TIC PIP!' tJC(t) - 0.02 "'2 I 0.0 I 0.02 I I 0.05 I 0.1 0.2 0.5 IIII 10 I 5.0 2.0 I. TIME (ms) 1.0 I I 20 50 IIIII 100 200 FIGURE S - ACTIVE REGION SAFE OPERATING AREA 0 500 lIS 7.0 §" ~ .... z ~ 5.0 ...... 3.0 de 2.0 .J 0: .,:::> a: o ~ _ 8 E "'-100;:: 1.0-;"1: +O~s . . , '" '- O. 1 1.0 average Junction temperature and second breakdown. Safe operating area curves Indicate le·VeE limits of the tranSistor that must be observed for reliable operation; I.e., the tranSistor must not be subjected to greater dissipation than the curves Indicate. The data of FigureS IS based on TJ(pk) = 150°C; TC IS v.".ble depending on conditions. Second breakdown pulse hmlt~ are valid for duty cycles to 10% provided T Jlpkl';;; IS00C. T J(pk) may be calculated from the data In Figure 4. At high case temperatures, thermal limitations Will reduce the power that can be handled to ir1\. . r'\. r\'" TJ = 150°C BONDING WIRE LIMITED - - THERMAllY LlMITED@TC=25 0C (SINGLE PULSE) ~--- SECOND BREAKDOWN LIMITED CURVES APPLY BELlOW 0.3 RATED VeED 0.2 E --- 1.0 7~ O. f0.5 There are two limitations on the power handling ability of a tranSistor 2.0 3.0 5.0 7.0 10 VCE. COLLECTOR·EMmER VOLTAGE (VOLTS) " 20 values less than the limitations imposed by second breakdown 30 FIGURE 7 - CAPACITANCE FIGURE 6 - TURN·OFF TIME 1000 700 500 300 200 -- t--.... I" :-... ~ 100 ;:: 0 ---- 10 II 0 0.05 0.07 0.1 I-t- Vec - 30 V' ICIIB-l0 181 = 182 _ TJ=250e _ Is t--. ... No .... I ...... t--.. If 0 0 = = 200 .... MJE200 (NPN) MJE210 (PNPI ""'" 1-1- t"~ .,w -'''' - z " 100 -. 0 -,.... I- <3 .,~ 0 Or- - - - MJE200 INPN) 1111MJrr) 0.5 0.7 1.0 0.2 0.3 IC. COLLECTOR CURRENT (AMP) 2.0 3.0 5.0 1-803 20 0.4 r--. 1"-1- u 1"'-1- ttc t'-i-,.... l"""- 0.6 1.0 - 2.0 4.0 6.0 10 VR. REVERSE VOLTAGE (VOLTS) Cob f.- r-;; t-~ 20 40 MJE200, NPN MJE210 PNP NPN PNP I MJE200 MJE210 FIGURE 8 - DC CURRENT GAIN 400 z « 200 ", I '" -55!C ::> 100 80 ~ 60 !.> '" ~ .... ~ 25!C IZ ~ a: 400 TJ = 150aC II 20 0.05 0.01 0.1 ~ 100 a: 80 " r-, -55aC B !.> 0 ; ~ 2.0 25JC '" \\ 0.2 0.3 0.5 0.1 1.0 IC. COLLECTOR CURRENT lAMP) 200 IZ ",' ~ ~~ --VCE=1.0V - - - VCE= 2.0 V I « .~ ul ~ 40 z II fJI'150AC 3.0 60 40 II I 20 0.05 0.01 0.1 5.0 ~"\. ,::-. ~. :"- ~~ \' - - VCE=I.0V - - - VCE = 2.0 V 0.2 0.3 0.5 0.1 1.0 IC. COLLECTOR CURRENT (AMP) 2.0 '"\ ......,~~ "" 3.0 5.0 FIGURE 9 - "ON" VOLTAGE 2.0 2.0 ITl! !5ac 1.6 S 1.2 ~ ~ 0 0.8 ,; 0.4 o ~ VaEI"I)@ Icila = 10 ~aF ~ VCE," I.~ V vlc~!sal) @ICilJ = 10 0.05 0.01 0.1 V ..... 0.2 0.3 0.5 0.1 1.0 IC. COLLECTOR CURRENT lAMP) c ~ ~ w > ~ ~~ 0 '" tl=12~ac ,1.6 1.2 w to « ~ c 0.8 > >' ....- . / 2.0 0.4 3.0 o 5.0 ::;:;- VaElsal)@IC/IB= 10 k:::: ?' VBE@VCE=1.0J I-'ll I I CW)@IC)IB=1 10 0.2 0.3 O.S 0.1 1.0 IC. COLLECTOR CURRENT lAMP) 2.0 ~ / /" ......... V" J O.OS 0.01 0.1 ~ / 3.0 S.O FIGURE 10 - TEMPERATURE COEFFICIENTS +2.5 G +2. 5 .IAWES FO~ Icil8" hlFE/31 ~ +2.0 5; +2.0 ~ +1.5 .5 ~ +1.0 U f5 :> ~ I- ~ +0.5 8 w rr ~a: il!! 2S aC 10 150 aC .-" -5~aW2~ac -0.5 25a C10 150 aC -1.5 BVB for VBE I II -2.5 0.05 0.07 0.1 -H111 II I ---- / I .lovc V I LV~EI"I) 8 z'socJsoJ II Z 11-1 1....- r"""" t.-' -n._ i--ssoc 10 2SOC ::> / ~ !~ 3.0 -1. 5 : -2. 0 '" -2. 5· 5.0 25°C to 150 0 C........... -1. 0 - BVB for VSE - ~ .,.- -55°C 10 2S a C I 0.05 0.01 0.1 0.2 0.3 0.5 0.7 1.0 2.0 IC. COLLECTOR CURRENT lAMP) 1-804 / . / ./ w -550C to 25°C 2.0 ~~P~~IES FJR I1II "t I I I I B I FE/3 a: -0.5 "./ / ' 0.2 0.3 0.5 0.7 1.0 Ic. COLLECTOR CURRENT (AMP) +1.0 $U +0.s / ./ -1.0 :> -2.0 '" ./7 BVC for VCEI..I) +1. 5 3.0 5.0 MJE205 ® MOTOROLA III MEDIUM-POWER NPN SILICON TRANSISTOR 5 AMPERE POWER TRANSISTOR NPN SILICON .. for use as an output device in complementary audio amplifiers up to 20-Watts music power per channel. 50 VOLTS 65 WATTS - High DC Current Gain - hF E = 25-100 @ I C = 2.0 A -Thermopad High-Efficiency Compact Package -Complementary to PNP MJE 105 MAXIMUM RATINGS Rating Collector·Emltter Voltage Symbol Value Unit Vceo 50 50 4.0 5.0 2.5 65 0.522 -55 to +150 Vde Collector-Sase Voltage VCS Emitter-Base Voltage Base Current Ves Ie IS Total Device Dlsslpatlon@TC=25 u C PDt Collector Current Derate above 25°C Operating and Storage Junction Temperature Range TJ, T stg Vde Vde Ade Ade Watts W/oC DC THERMAL CHARACTE RISTICS Characteristic Thermal Resistance, Junction to Case tSafe Area Curves are indicated by Figure 1. 80th limits are applicable and must be observed. STYLE 2: PIN 1. EMITTER 2. COLLECTOR 3. BASE ELECTRICAL CHARACTERISTICS ITe = 25 0 e unless otherwISe noted 1 Characteristic Symbol I Min I Max Unit OFF CHARACTERISTICS COllector-Emitter Breakdown Voltage:!: SVCEOt IIc = 100 mAde, IS = 01 Collector Cutoff Current (VCS (VCS (VSE = 4.0 Vde, IC = 01 - - mAde ICSO = 50 Vde, IE = 01 = 50 Vd~, Ie = 0, TC=1500CI Emitter Cutoff Current Vde 50 - 0.1 2.0 - 1.0 25 100 - 1.2 lEBO mAde ON CHARACTERISTICS DC Current Gain - hFE IIc = 2.0 Ade, VCE = 2.0 Vdel Base·Emitter Voltage INCHES MIN MAX 0.635 0.645 0.495 0.505 0.125 0.135 0.043 0.049 0.138 0,148 0.166 ase 0.105 0.115 0.032 0_034 0.595 0.645 90 TYP 0.185 0,195 0-075 0.085 0,245 0.255 0.080 Vde VSE IIc = 2.0 Ade, VCE = 2.0 Vdel MILLIMETERS DIM MIN MAX A 16.13 16.38 B 12.57 12.83 C 3.18 3_43 0 1.09 1.24 F 3.51 3.76 4_22 asc G 2.67 2.92 H 0.813 0.864 J 15.11 16.38 K 90 TYP M Q 4.70 4.95 R 1.91 2.16 U 6.22 6.48 V 2.03 CASE 90-05 TO·127 +Pulse Test: Pulse Wldth~300 tJs, Duty Cycle~2,O%, 1-805 MJE205 IIJ FIGURE 1 - ACTIVE REGION SAFE OPERATING AREA I0 -- t=:t= 7. O~TJ - 1500 C ~ 5. O~_ t--f-- - t- t- - ~ 3. 0 ~ , .... ~ 2. 0 '"B '"o ~ .3 ~ .2 There are two lImItatIons on the power handling abilIty of a ~ transistor; average Junction temperature and second breakdown Safe operating area curves Indicate Ie . VeE limits of the transIstor 'I\sOm, that must be observed for relIable operation, t.e . the tranSIstor must not be subjected to greater dISSIpation than the curves IndIcate U LD 1.0 p _____ THERMAL LIMIT @TC" 25 0 C 7~' BONOING WIRE LIMIT '5 SECONO BREAKOOWN LIMIT D. B Note 1: 100", , The data of Figure 11s based on TJ{pkl == 150°C; TC Isvanable depending on condItIons Second breakdown pulse limIts are valid for duty cycles to 10% prOVided T J(pk) :o;;1500 C At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations Imposed by second breakdown. de Ii -.l o1 1.0 2.0 5.0 3.0 70 10 20 50 30 VCE, COLLECTOR EMITTER VOLTAGE (VOLTS) FIGURE 2 - "ON" VOLTAGES 20 FIGURE 3 - DC CURRENT GAIN 5.0 I!II 18 ffi TJ' 25 0 C ~ 0 2 .. w to '"'o" ~ /, V; 1.0 ~ 08 0 > ~ 1.4 1.2 z VBE(,.,)@ICIIB" 10 0.4 0.2 '0 0.01 1= ~ II II b--'V II VCEI..!)@ IC Ie" 10 0.02 0.03 0.05 0.1 '"ffi I-r-:::: VeE@ VCE" 2.0 V :ttl1l 0.2 03 0.5 a lL 1.0 25 0 C I V ......... "",I--"'" 0.3 ~ ~ 50 o. 1 om 0.02 0.03 0.05 0.1 FIGURE 4 - POWER DERATING 60 .. 50 z 40 >= ;t ~ 30 ~ '" 20 ~ 10 ~ 0 ~ ~ ~ ......... "- "'" C ......... ......... 1e 0 25 i ........ 0.5 0.2 0.3 0.5 0.7 1.0 IC, COLLECTOR CURRENT (AMPS) I"'- ....... -55 0 C IC, COLLECTOR CURRENT lAMPS) 65 r-..... ..I. ~ 0.2 W 10 30 1.0 2.0 VCE"2.0V - TJ-150oC ...... ~ = f-- = =F= 1000 ] 100 r..... Z "'- If 0'- '--'MJE1401MJEl44 (NI'II) - - - MJE2501MJE254 (PNP) 10 0.04 0.06 0.1 0.1 0.4 , 0.6 ~ 0 ;3 u 0 ~ "- 7a 50 0 U 0 1.0 2.0 4.0 a 1.0 - - -- FIGURE 7 - CAPACITANCE I Cib -- Co~ "- r-- . . . H+_ - - -MJE240/MJE144INPNI --MJE250IMJE154IPNP) 2.0 3,0 T}= 251o C I r--~ 5.0 7.0 r"-I- " 10 10 VR. REVERSE VOLTAGE (VOLTS) IC, COLLECTOR CURRENT (AMPI 1-809 30 50 70 100 MJE240 thru MJE244, NPN, MJE250 thru MJE254, PNP NPN PNP I MJE240 thru MJE244 MJE250 thru MJE254 FIGURE 8 - DC CURRENT GAIN 500 200 300 - T -1500C -- 200 z c:J ~ ~ ~ 70 - ~ I'~ 100 -55°C 70 ~ I~ ~ 30 ~ 2a 10 7.0 5.0 0.04 0.06 ~ 0.1 0.2 0.4 0.6 1.0 2.0 - 50 VCE = 2.0 V - -55°C ~ ~~~ ...... ' a '"c ~ 10 , ~ ~'!o 7.0 5.0 3.a 2. a 4.0 0.04 0.06 0.1 0.2 IC, COLLECTOR CURRENT lAMP) 0.4 0.6 1.0 2.0 4.0 IC, COLLECTOR CURRENT lAMP) , FIGURE 9 - " N" VOL TAGES 1.4 I- tJ ~ ~Joc 1.2 ~ O.S VBElsa'i@ IC/IS = 10 1:::9" 0 6' 11 0.6 VBE@VCE=1.0V ~ ~ > >- 0.4 ~II 1-1- VCEI",) 0.04 0.06 U 0,2 0.1 0.4 0,6 Z- O.s '" '" '::; " ~510c I I II I II VBEI.. ')@ IC/IS - 10 VSE@VCE-1.0V O. 6 -- > >- 0,4 ~ I I o 4.0 0.04 0.06 / // h I 1J.d:P' 5.0 t--- ... ::::f't1 I I I 11111 I rVCElsati 2.0 ~ IA' ,...... f-" IC/l8-1O O.2 I I 1.0 .fJ l 0 _lhISI=~:; 0.2 ~ 1.a 0 .-,: 0 a '1. 2 V I II I II Z- "''"'::;" 1.4 // 1.0 - 25°C ~ :~ 50 JCE =11.0 V r- .) II TJ = 150°C 100 I5=:: 25°C ;;: ~~~-~:~~- 0.1 0.2 IC, COLLECTOR CURRENT lAMP) 0.4 0.6 1.0 2.0 4.0 Ic, COLLECTOR CURRENT lAMP) FIGURE 10 - TEMPERATURE COEFFICIENTS +2.5 +2.5 ~ +2.0 > .§ +1.5 ~ ffi +1.0 <:; ~ +0.5 'APPLIES FOR Ic/IS" hFE/3 / 250~ 'eVC FO R VCElsa') 8 '" ~ .... -55°C to 25°£ -0.5 ~ -1.0 ::! ifi .... i ~ -1.5 -2.0 W+Htr -2.5 0.04 0.06 0.1 0.2 0.4 0.6 ./ ........; / II J.k::::: ;....- P v 8 '"~ -0.5 ~ -1.0 ~ II 2.0 * i -55 DC to 25 0 C 1.0 .§. +1.5 ~ ~ +1.0 U +0.5 4.0 IC, COLLECTOR CURRENT lAMP) J 'APPLIES FOR Ic/IS"hFE 3 ~ +2.0 V I I 25 DCto 150°C """,.. , / 'eVC FOR VCElsa' -t1TT / ./ ~15uc to 25 U(; -1.5 I eysriRIW- -2.0 -2.5 0.04 0.06 - , / ........ V -55 DCto 250 C j'I}U I I II 0.1 / / -;::::. ;,- ri 250 '0 1500 0.2 0.4 0,6 1.0 IC. COLLECTOR CURRENT lAMP) 1-810 / 2.0 4.0 MJE340 @ MOTOROLA 0.5 AMPERE POWER TRANSISTOR PLASTIC MEDIUM POWER NPN SILICON TRANSISTOR NPN SILICON 300 VOLTS 20 WATTS ... useful for high·voltage general purpose applications . • Suitable for Transformerless, Line-Operated Equipment • Thermopad Construction Provides High Power Dissipation Rating for High Reliability MAXIMUM RATINGS Symbol Value Collector-Emitter Voltage VCEO 300 Vde Emitter-Base Voltage VEB 3.0 Vde IC 500 mAde Po 20 0.16 Watts W/oC -65 to +150 °c Rating Collector Current - Continuous Total Power Dissipation Derate above 25°C @ T C "" 25°C Operating and Storage Junction Temperature Range TJ. Tstg Unit K THERMAL CHARACTERISTICS Characteristic STYlE 1 Thermal Resistance, Junction to Case PIN 1. EMITTER 2. COLLECTOR 3. BASE ELECTRICAL CHARACTERISTICS (TC = 25 0 C unless otherwise noted) I Characteristic I Symbol I Min I Max I Unit OFF CHARACTERISTICS Collector-Emitter Sustaining Voltage VCEOtsus) 300 - Vde ICBO - 100 /JAde lEBO - IIC = 1.0 mAde, l!i = 0) Collector Cutoff Current tVr.R = 300 Vde, IF = 0) Emitter Cutoff Current tVEB = 3.0 Vde, IC ~ 0) 100 /tAde R S U V 30 TYP 3.76 1.14 0.64 3.68 1.01 4.01 140 0.89 3.94 30 TYP 0.148 0.045 0.015 0.145 0.040 CASE 77·04 TO-126 DC Current Gain = 50 mAde, VCE M n ON CHARACTERISTICS IIc INCHES MILLIMETERS MIN MAX MIN MAX 1080 11.05 0.415 0.435 749 775 0195 0.305 141 1.67 0.095 0105 o 0.51 066 0010 0.016 F 191 3.18 0.115 0.115 G 1.31 1.46 0.091 0.097 H 1.17 141 0.050 0.095 J 0.38 0.64 0.015 0.015 K 15.11 16.64 0.595 0.655 DIM A 8 C = 10 Vdc) 1-811 0.158 0.055 0.D35 0.155 MJ.E340 FIGURE 1 - POWER TEMPERATURE DERATING FIGURE 2 - "ON" VOLTAGES 32 i z !2 fa~ CI i I 1.0 28 l JJ 4 0 ........... 16 ~ '" L .L ~ 0 > :> ~ 4. 0 ............. 40 0.4 II VeE@VcPl0V to ........... MJE340~ 20 . II w '" 8.0 0 O.B 1--- ............ ...,. Illl! 2: ......... 2 0 II ~Bi (S~)'@ ~~I~ = 10 TJ = 25°C 0.8 V I-'" ICl'e=r :-.... 140 120 100 80 Tc. CASE TEMPERATURE (OC) 60 ~ L - Ic/'e = 10 VCE(sat) 0.2 160 30 20 10 200 100 50 300 500 IC. COLLECTOR CURRENT (mA) ACTIVE-REGION SAFE OPERATING AREA FIGURE 3 - MJE340 1.0 ~ o. 5 IE w 0.3 0: 0: ... 02 g.... o.1 ::J 0: 8 0.05 !:J 0.03 TJ = 150· . .. 10,..;-s; -'" 500,... l.h~ d~ ~ili ~ SECOND BREAKDOWN liMIT - 80NDlNG WIRE liMIT THERMAL liMIT @TC = 25°C (SINGLE PULSE) ---- K'" r- '\. 0.02 ~ I I I I I II 0.0 1 10 20 30 50 1'\ 100 200 300 VCE. COLLECTOR EMITTER VOLTAGE (VOLTS) There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate Ie-VeE limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. The data of Figure 3 is based on T Jlpk) = 1500 C; T C is variable depending on conditions. Second breakdown pulse limits are valid for duty cycles to 10% provided TJlpkl ~ ISo"C. At high case temperatures. thermal limitations will reduce the power that can be handled to values less than the limitations imposed bV second breakdown. FIGURE 4 - DC CURRENT GAIN 300 I 200 TJ ;;: '" ffi ~ 100 50 ~ 30 .- -~ ~~ - - - --- r- 0 20 1 +100 oC 70 ...a ...1 ...1 - - VCE=10V - ...J- to I- \500~ I f---- ~ i""" +25 0C ,..... -55°C ,==,: I -"", - 7= -:..::; .~ ~~ ·T~.-~-" ~~ ~ .". 10 1.0 2.0 3.0 5.0 7.0 10 20 30 IC. COLLECTOR CURRENT (mAde) 1-812 50 70 100 - - ", 1\........ - r-- VCE = 2.0 v ~ ,..... ~~ -- - - 200 ~~ ~ l~~ 1\ \ 1\" 300 500 ® MJE341 MJE344 MOTOROLA 0.5 AMPERE POWER TRANSISTORS NPN SILICON PLASTIC NPN SILICON MEDIUM-POWER TRANSISTORS 150-200 VOLTS 20 WATTS ... useful for medium voltage applications requiring high fT such as converters and extended range amplifiers. MAXIMUM RATINGS Symbol MJE341 MJE344 Unit VCEO 150 200 Vde Collector-Base Voltage VCS 175 200 Vde Emitter-Base Voltage VES 3.0 5.0 Rating Collector-Emitter Voltage Vde IC -500- mAde Base Current IS _250_ mAde Total Power Dissipation @TC=2SoC Derate above 2SoC Po 20 0.16 W/oC T J.T stg _ - 6 5 to +150_ °c Collector Current - Continuous Operating and Storage Junction Watts Temperatu re Range THERMAL CHARACTERISTICS Characteristic Thermal Resistance, Junction to Case Symbol Max Unit 6JC 6.25 °C/W K FIGURE 1 - ACTIVE·REGION SAFE OPERATING AREA I.0 5IIO .. 5 2 1 " TJ -1500C --- -- \'1.0"" 2D 6D 1.11) 1\ SECOND BREAKDIJIItj LIMIT BONDING WIRE LIMIT THERMAL lIMIT@TC'_ STYLE 1 PIN 1. EMITTER 2. COLLECTOR 3. BASE de [02 0.01 10 f- 1.11) 111\ " 2DD 3DD VCE. COLLECToR·EMITTER VOLTAGE IVOLTS) There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate Ie-VeE limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. The data of Figure 1 is based on TJ(pk) = 15o"C; TC is variable depending on conditions. Second breakdown pulse limits are valid for duty cycles to 10% provided TJ(pk) .;;; 150"<:. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown. 1-813 MILLIMETERS DIM MIN MAX A IO.BO 11.05 B 7.49 7.75 C 2.41 2.67 o 0.51 0.66 F 2.92 3.18 G 2.31 2.46 H 1.27 2.41 J 0.38 0.64 K 15.11 16.B4 M U R S U V INCHES MIN MAX 0.425 0.435 0.295 0.305 0.095 0.105 0.020 0.026 0.115 0.125 0.091 0.097 0.050 0.095 0.015 0.025 0.595 0.655 30 TYP 3.76 1.14 0.64 3.68 1.02 4.01 1.40 0.89 3.94 0.148 0.045 0.025 0.145 0.040 CASE 77·04 TCJ.126 0.158 0.055 0.035 0.155 MJE341, MJE344 - ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted) Symbol Characteristic Min Max 150 200 - - 1.0 - 1.0 - 0.3 Unit OFF CHARACTERISTICS Collector-Emitter Sustaining Voltage (lC MJE341 MJE344 Collector Cutoll Current (VCE = 150 Vde,IB = 0) (VCE = 200 Vde, IB = 0) = 200 Vde, mAde ICBO MJE341 MJE344 = 0) IE mAde ICEO MJE341 MJE344 Collector Cutoll Current (VCB = 175 Vde, IE = 0) (VCB Vde VCEO(sus) = 1.0 mAde, IB = 0) 0.1 mAde Emitter Cutoff Current (VEB = 3.0 Vde, IC = 0) MJE341 - 0.1 = 5.0 Vde, MJE344 - 0.1 20 - 25 30 200 300 20 - - 1.0 (VEB IC lEBO = 0) ON CHARACTERISTICS OC Current Gain (lC = 10 mAde, VCE - hFE = 10 Vde) = 10 Vde) (lc = 50 mAde, VCE (lC = 150 mAde, VCE = 10 Vde) MJE341 MJE341 MJE344 MJE341 Collector-Emitter Saturation Voltage Vde VCE(sat) = 50 mAde, IB = 5.0 mAde) (IC = 150 mAde, IB = 15 mAde) (lC MJE344 MJE341 Base-Emitter On Voltage (lC = 50 mAde, VCE = 10 Vde) - 2.3 VBE(on) - 1.0 Vde IT 15 - MHz Cob - 15 pF hie 25 - - DYNAMIC CHARACTERISTICS Current-Gain-Bandwidth Product (lC = 50 mAde, VCE = 25 Vde, I = 10 MHz) Output Capacitance (VCB = 20 Vde, IE = 0, I = 100 kHz) Small-Signal Current Gain (lC = 50 mAde, VCE = 10 Vde, f = 1.0 kHz) FIGURE 2 - DC CURRENT GAIN FIGURE 3 - "ON" VOLTAGES 300 1--1z ~ a :# 70 ~ . ' .,.- 30 1.,.001-"' - -550Ct""'" . I-"" 1.0 "\'''' 0,6 ~ 0.4 o 5.0 7.0' 10 20 30 50 70 100 @ VCE' 10V -.., II 1-.......... ~ r-- V / / .I ~ O. 2 VCE(satiICliS = 10 ,....Ic/l~ \ 2.0 3.0 VSE > t-- ). 1\ 20 10 ~ 1111 I o ~ w I II Vsti~~ O.S +250 C 50 .[1. .1 --- VCE = 10V TJ = +1500C - ~ 0 +25 0 C to +100 OC g -1.6 "- 300 300 I I I+100 Cto +150 C '"Applies tor Ic/lB < hFE/4 : JJ'OVCJI VCElsat) ffi u 50 70 100 200 VCE. COLLECTOR·EMITTERVOLTAGE (VOLTSI 200 FIGURE 4 - TEMPERATURE COEFFICIENTS +1. 2 ~ 'I.Om "- ~ VCEI"I) ...... "- II V 0 5.0 7.0 500 500~, 200 - ICIIS'IIO/f- 2 - r... 300 O. 4 > >' ~. FIGURE 3 - ACTIVE-REGION SAFE OPERATING AREA 1000 70 0 100", 500 - O. 6 '-'t\. 50 70 100 20 30 IC. COLLECTOR CURRENT (mAl VBE@VCE'IOV w f' ...... :::::I- ,-'" VBEI"tl@ICIIB' 10 V ..--- Vi--' -2. 8 5.0 r OVB for VBE I -15°C tol +25 C II I II 7.0 I 10 20 30 50 70 100 IC. COLLECTOR CURRENT 200 300 " 140 500 (mA) FIGURE 5 - POWER DERATING 0 There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. S.fe operating area curves indicate Ie - VeE limits of the transistor that must be observed for reliable operation; i.e .• the transistor must not be subjected to greater dissipation than the curves indicate. The data of Figure 3 is based on T J(pkl : 150°C; TC is variable depending on conditions. Second breakdown pulse I imits are valid for dutv cvcles to 10% provided TJlpk) "150°C. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown. ~ .... « a; '" 6 z c ;:: 2 El;:; 8. 0 "- "'" :t '" ~ ~ 4.0 "- "I'" "- l---0 1-816 '" 20 40 60 80 100 120 TC. CASE TEMPERATURE (OC) 1'-.. 160 ® MJE370 MOTOROLA l1li PLASTIC MEDIUM-POWER PNP SILICON TRANSISTOR 3 AMPERE POWER TRANSISTOR · .. designed for use in general-purpose amplifiers and switching circuits. Recommended for use in 5 to 10 Watt audio amplifiers utilizing complementary symmetry circuitry. • DC Current Gain - hFE = 25 (Mini • Complementary to NPN MJE520 @ PNP SILICON 30 VOLTS 25 WATTS IC = 1.0 Adc MAXIMUM RATINGS Symbol Value VCEO 30 Vde Collector-Base Voltage Vce 3p Vde Emitter-Base Voltage VEe 4.0 Vde IC 3.0 Ade Rating Collector-Emitter Voltage Collector Current - Continuous - Peak Unit 7.0 Base Current - Continuous Ie 2.0 Ade Total Power Dissipation@Tc = 2SoC Po 25 0.2 Watts W/oC TJ. T stg -65 to +150 Derate above 2SoC Operating and Storage Junction Temperature Range °c THERMAL CHARACTERISTICS Characteristic Thermal Aesistance, Junction to Case ELECTRICAL CHARACTERISTICS (TC Characteristic STYLE 1 PIN 1. EMITTER 2. COLLECTOR 3. BASE = 25 0 C unless otherwise notedl Symbol I Min Max Unit Collactor-Emittar Sustaining Voltage 11) VCEO(sus) IIc = 100 mAde. IB = 0) 30 - Vde Collector-Base Cutoff Current (VCB = 30 Vde. IE.= 0) ICBO - 100 pAde Emitter-Base Cutoff Current (VEB = 4.0 Vde, IC = 0) lEBO - 100 pAde OFF CHARACTERISTICS ON CHARACTERISTICS DC Current Gain (IC = 1.0 Ade, VCE = 1.0 Vdel MILLIMETERS DIM MIN MAX A 10.80 11.05 7.49 B 7.75 1.41 C 2.67 0.51 0.66 0 2.92 F 3.18 2.31 2.46 G 1.27 2.41 H 0.64 J 0.38 K 15.11 16.64 30 TYP M n 3.76 4.01 R 1.14 1.40 0.89 S 0.64 3.68 3.94 U V 1.02 INCHES MIN MAX 0.425 0.435 0.295 0.305 0.095 0.105 0.020 0.026 0.115 0.125 0.091 0.097 0.050 0.095 0.015 0.025 0.595 0.655 30 TYP 0.148 0.158 0.045 0.055 0.025 0.035 0.145 0.155 0.040 CASE 77-04 T0-126 (1) Puis. Test: Pulse Width ~300 ",I, Ou,tv Cycle ~2.0". 1-817 MJE370 FIGURE 1 - 0 - 1--E 5.0 t- 3,0 ~ 2. 0 ~ ACTIVE,REGION SAFE OPERATING AREA - - r- Ther. are two limitations on the power handling ability of a - 1--- 1.Oms 5.0ms ... dc' ... TJ=150oC 0: 13 'I 1. 0 0: o ~ o.5 8 !2 o. 3 - - 1 transistor: average junction temperature and second breakdown. Safe operating area curves indicate Ie . VeE limits of the transistor that must be observed for reliable operation; i.e .• the transistor must not be subjected to greater dissipation than the curves indicate. - The data of Figure 1 .......... I SECOND BREAKDDWN LIMITED BONDING WIRE LIMITED - based on TJ(pk) := 150°C; TC is variable depending on conditions. Second breakdown pulse limits are valid for duty cycles to 10% provided TJ)pk) ~ 150°C. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown. THEtLjY L1tITIEDnCIToc o. 2 I O. 1 2.0 1.0 3.0 III 10 5.0 30 20 VCE, COLLECTOR·EMITTER VOLTAGE IVOLTS) FIGURE 3 - "ON" VOLTAGE FIGURE 2 - DC CURRENT GAIN .5 1000 700 500 VeE 1.0V f-+- 1 L It Bll TJ 1. 2 ~ 300 !Z 200 ~ 25·C .I. II g§ TJ- +150·C G 100 g 0 0 9 :""'-t-- II 6 1 V.. @VCE ~ 2.dv 55·C 0 u o. 3 0 JL VeE 1,,'1 @Iell, - 10 I III 20 30 50 100 200 300 500 Ie, COLLECTOR CURRENT ImAl 10 ~ VBE!,.+)@lc/IB 10 +25·C 10 2.0 3.0 5.0 17 1000 0 2.0 30 5.0 2000 10 20 30 50 100 200 300 500 Ie, COLLECTOR CURRENT ImAI 1000 2000 FIGURE 4 - THERMAL RESPONSE _ 1.0 ~ ~ ~~ 0.5 0.2 2 lil~ o. 1 ~ 0.07 0.05 !Z ~ 0.03 ~ 0.02 ~ 0.01 - - 0.01 - 0.1 0.05 0.01 ~ ~t,~ f, SINGLE PULSE OUTY CYCLE, 0 I I III 0.02 0.03 0.05 0.1 f,/f, I 0.2 9JC(tI rltl9JC 9JC = 5.0 crw Max DCURVESAPPLY FOR POWER PULSE TRAIN SHOWN READ TIME AT" TJ(pkl TC=PlpkI 9JCltI 1:::;:11" -..... O. 3 ! o. ~ 0 o. 7 5. 0 0.3 0.5 1.0 2,0 3.0 5.0 f, TIMElmsl 1-818 I III 10 20 30 50 100 200 300 500 1000 ® MJE371 MOTOROLA III 4 AMPERE PLASTIC MEDIUM-POWER PNP SI LICON TRANSISTORS POWER TRANSISTORS PNPSILICON 40 VOLTS 40 WATTS . . . designed for use in general·purpose amplifier and switching circu its. Recommended for use in 5 to 20 Watt audio amplifiers uti· lizing complementary symmetry circuitry. • DC Current Gain - hFE =40 (Min) @ IC = 1.0 Adc • MJE371 'is Complementary to NPN MJE521 MAXIMUM RATINGS Symbol Value Unit VCEO 40 Vde Collector·Base Voltage VCB 40 Vde Emitter·Base Voltage VEB 4.0 Vde IC 4.0 Ade Rating Collector·Emitter Voltage Collector Current - Continuous K 8,0 -Peak Base Currant - Continuous Total Power OiSlipation Gil TC - 25°C Derate above 25°C 2.0 40 320 Ade Watts mWI"C -65 to +150 °c IB Po Operating and Storage Junction TJ. Tsts Temperature Range THERMAL CHARACTERISTICS STYLE 1 PIN 1. EMITTER 2. COLLECTOR Max Ch• ..-risti. 3.12 Thermal Resistance. Junction to Case 3. BASE ELECTRICAL CHARACTERISTICS (Tc = 25°C unl... otherwise noted 1 I Characteristic I Symbol I Min I Max I Unit B OFF CHARACTERISTICS C VCEO(susl 40 Collector-Base Cutoff Current (VCB = 40 Vde, IE = 01 ICBO - Emitter-Base Cutoff Current (VEB = 4.0 Vd., IC - 01 lEBO Collector·Emitter Sustaining Voltage (11 tiC = 100 mAde,IB = 01 DIM A - Vde 0 F 8 100 H "Ade J K - 100 "Ade Q R S U V ON CHARACTERISTICS DC Current Gain (11 IIc = 1.0 Ad., VCE = 1.0 Vdel MILLIMETERS Mil MAX 0.80 11.05 7,49 7.75 2.41 2.B7 0.51 .B6 Z.92 3.18 2.31 2.48 1. 7 2.41 0.38 D.B4 15.11 11.14 3 TYP 3.78 4.01 1.40 1.14 0. 3.B8 3.B4 1.02 INCHES MIll MAX 10.425 10.435 0.295 0.305 0.0IIS 0.105 O.OZO O.DZS 0.125 11 0.091 0.097 0.095 0.015 0.025 0.58 0.155 P 0.148 0.1MS 0.1 O. 0.145 0.04 0.155 CASEn-04 TO-126 (1) Pul. T ..t: Pul .. Width:S 300",. Duty CycleS 2.0,," 1-819 MJE371 m FIGURE 1 - ACTIVE·REGION SAFE OPERATING AREA 0 ~ 100", 1.Oms 5.0 " " 5.0 "" ~" ~ 3.0 ~ 2.0 a r' TJ-150 C '" 8 O ~: ~ 0.3 de"" \ hlth ee.. tamperatures, thermal limitations will reduce the power that cen be hendled to values I... than the limitations impoled by second br.akdown. 0.2 I 0.1 I I I I I I 2.0 4.0 S.O 8.0 10 20 8vara1J8 junction tamperatur. and second breakdown. Safe operating .,•• curve. indicate Ie • VeE limits of the tran,lstor that mUlt ba observed for rallabl. operation; i .•.• the tran,lltor mutt not b8subJacted to greater dlllipation than the curv.. Indicate. Tho dote of FIgure 1 1. baHd on TJlpk} • 160°C; TC I. varlabl. depending on condition,. Second br..kdown pul. limits ar. valid for duty cycl•• to 10% provided T J'(pk) ~ 1S00e. At --Bonding Wire limit ~. Second areakdown Limi. r-.-----Therm.1 Limi.@Tc=250C 0.5 Ther. ar. two limitation, on the power handling ability of 8 tranlilto,: 40 60 VCE. COLLECTOR·EMITTER VOLTAGE (VOLTS) FIGURE 2 - DC CURRENT GAIN FIGURE 3 - ··ON" VOLTAGE 10 ~ 2.0 7.0 5.0 1=1= 150°C ~ 3.0 i'" ;;: ~ 1.0 O.7 ~ 0.5 .a VCP 1.0 Vd, " ~ 1.2 ~ w co ~ ~ o.2 VaElo .. VCE ·'.OV III 0.4 I O. 1 0.01 0.02 0.03 0.05 0.1 0.2 0.3 O.S 1.0 IC. COLLECTOR CURRENT (AMP) 2.0 3.0 4.0 ~ VaE(oat} .,c!la -10 0.8 "> .. 0.3 ~ ~ r-- -550C TJ-250C 1.6 r-- 2.0 Z c:I 11 TJ - 26°C 0.006 0.01 ~~i(oat) .'c!'a = 10 t"'" 0.02 0.03 0.05 0.1 0.2 0.3 0.5 IC. COLLECTOR CURRENT lAMP} 1.0 r2.0 3.04.0 FIGURE 4 - THERMAL RESPONSE 1.0 -w" 0.7 ;::::0 -0.5 N O. 5 !iii:::; wi ~~ 0.3 '-- rO.2 0.2 - ",- .. w -~ rO.l L 1-:::;... ~~ o.1 =1=0.06 ~!ii 0.07 = 0.02 :t! ..... 0.05 ~i 0.03 '"~ 0.02 0.0 1 0.01 -o;Ot B SlnglePuI. DUTY CYCLE. 0 = tt/t2 I 0.02 0.03 8JC(t} = rl') 8JC 8JC=3.12oClWM.x p(Pk}fW o CURVES APPLY FOR POWER '1 . SINGLE PULSETRAIN SHOWN '2. . PULSE READ TIME ATII ~ "'{l - . I I II 0.05 TJ(pk} - TC'= P(pk} 8Je('} l i l l l l l U l 1 1il lllilll 111 0.1 0.2 0.3 0.5 1.0 2.0 3.0 5.0 '. TIME OR PULSE WIDTH (m.) 1-820 10 20 50 100 200 500 1000 ® MJE520 MOTOROI.A III 3 AMPERE PLASTIC MEDIUM-POWER NPN SILICON TRANSISTOR POWER TRANSISTOR NPN SILICON 30 VOLTS · .. designed for use in general'purpose amplifier and switching circuits. Recommended for use in 5 to 10 Watt audio amplifiers utilizing complementary symmetry circuitry. • DC Current Gain - hFE = 25 IMin) • Complementary to PNP MJE370 @ 25 WATTS IC = 1.0 Adc MAXIMUM RATINGS Symbol Value Unit VCEO 30 Vdc Collector-Base Voltage Vce 30 Vde Emitter-Base Voltage VEe 4.0 Vde IC 3.0 Ade Rating Collector-Emitter Voltage Collector Current - Continuous - Peak 7.0 Base Current - Continuous Ie Total Power Dissipation @ T C = 2So C Po TJ, Tstg Watts 25 0.2 1 Derate above 25°C Operating and Storage Junction Ade 2.0 WloC -65 to +150 °c Temperature Range THERMAL CHARACTERISTICS Characteristic STYLE 1 PIN 1. EMITTER 2. CO llECTO R 3. BASE Thermal Resistance, Junction to Case ELECTRICAL CHARACTERISTICS ITC" 25c C unless otherWIse noted) Characteristic Symbol Min Max VCEO(susl 30 - Vdc IceD - 100 ~Adc lEBO - 100 ~Adc Unit OFF CHARACTERISTICS Collector-Emitter Sustaining Voltage (1) (lC = 100 mAde, Ie = 0) Collector-Base Cutoff Current IVce "30 Vdc, fE = 0) Emitter-Base Cutoff Current IVEB = 4.0 Vdc, IC = 0) ON CHARACTERISTICS DC Current Gain (1) (lC = 1.0 Adc, VCE = 1.0 Vdc) MilliMETERS DIM MIN MAX A 10.80 11.05 7.49 7.75 8 2.41 2.67 C 0.51 0.66 D 2.92 F 3.18 2.31 2.46 G 1.27 2.41 H 0.64 J 0.38 K 15.11 16.64 3'TYP M 3.76 4.01 D R 1.14 1.40 0.64 0.89 S 3.68 3.94 U V 1.02 - I INCHES MIN MAX 0.425 0.435 0.295 0.305 0.095 0.105 0.020 0.026 0.115 0.125 0.091 0.097 0.050 0.095 0.D15 0.025 0.595 0.655 3' TYP 0.148 0.158 0.045 0.055 0.025 0.035 0.145 0.155 0.040 CASE 77·04 TO· 126 (1) Pulse Test: Pulse Width S 3001"5, Duty Cycle S2.0%. 1-821 MJE520 FIGURE 1 ACTlVE·REGION SAFE OPERATING AREA IIJ 10 - 0:: 5.0 t- ... - l- e- 1- -- 5 3.0 t- ~ 2.0 '"0t- 1.0 ::> <.> 0.5 8 0.3 ~ ~ ... de based on TJlpk) = 150o e; Te i. variable depending on conditions. Second breakdown pulse limits are valid for duty cycles to 10% provided (T Jpk) ~ 150°C. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown. There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate Ie . VeE limits of the transistor .... .... TJ il5rC ; The data of Figure 1 1.0ms-t5.0m;~· :E ........... SECOND BREAKDOWN LIMITED BONDING WIRE LIMITED - - THERMALLY LIMITED@TC= 25°C that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. 0.2 I 1/ I 0.1 1.0 2.0 3.0 5.0 10 20 30 V·CE. COLLECTOR·EMITTER VOLTAGE (VOLTS) FIGURe 2 - DC CURRENT GAIN 1000 700 500 HtVeE ~ 300 15 !§ <.> g 1 FIGURE 3 - "ON" VOLTAGE 1.5 1.2 1.0 V ~ 200 100 70 ~ r--. TJ -150°C TJ = 25°C ~ g 0.6 V,,@Ve , 55°C II II 0.3 0 I0 2.0 3.0 5.0 10 2.0V III III II V VeEI ••• ,@lell.=IO 1/ 20 30 >--::: V"I ... ,@lell,=IO 0 0 A 0.9 ~ 25°C /, V 50 100 200 300 500 o 1000 2000 2.0 3.0 5.0 10 Ie. COLLECTOR CURRENT (mAl 20 30 50 100 200 300 500 1000 2000 Ie. COLLECTOR CURRENT ImA) FIGURE 4 - THERMAL RESPONSE ffi N ::i !o 1.0 0.7 5.0 ~ 0.3 <.> ~ !ii ~ 0.2 o. I ~ 0.07 ~ 0.05 z t- 0.03 ill!£ 0.02 z D = 0.5 - -- ~ 0.01 - 0.05 0.01 ",. .6JCltt- ,It) 6JC 6JC = 5.0 0 CNI Max o CURVES APPLY FOR POWER PULSE TRAIN SHOWN READ TIME AT 11 TJlpk) TC = PlpkJ 6JCIt) .... YLJL ~It~ I, SINGLE PULSE DUTY CYCLE. D I,ll, I I III :i 0.0 I -r -.... 0.1 0.2 0.02 0.03 0.05 0.1 I I 1111 0.2 0.3 0.5 1.0 2.0 3.0 5.0 I. TIME (m.1 1-822 10 20 30 50 100 200 300 500 1000 PNP MJE700, T thru MJE703, T ® MOTOROLA NPN Tth~MJE803, MJESOO, T 4.0 AMPERE PLASTIC DARLINGTON COMPLEMENTARY SILICON POWER TRANSISTORS DARLINGTON POWER TRANSISTORS COMPLEMENTARY SILICON · .• designed for general·purpose amplifier and low·speed switching applications. • High DC Current Gain hFE = 2000 (Tvp) @ IC = 2.0 Adc • Monolithic Construction with Built·in Base·Emitter Resistors to Limit Leakage Muliplication • Choice of Packages T0126, MJE700 and MJEBOO series T0220AB, MJE700T and MJEBOOT series 40 WATT - TO-l26 50 WATT - T0-220AB ! A M K MAXIMUM RATINGS ~D S G~ Symbol MJE700,T MJE701,T MJEBOO,T MJEB01,T MJE702,T MJE703,T MJEB02,T MJEB03,T Unit VCEO 60 80 Vdc Collector-Base Voltage VCS 60 80 Vdc Emitter-Base Voltage VES 5.0 Vdc "00 7.49 IC 4.0 Adc 0" 2.92 IS 0.1 Adc 2.31 Rating Collector-Emitter Voltage Collector Current Base Cu rrent Po Total Power Dissipation @ T C = 2SoC Derate above 25°C Operating and Storage Junction Temperature Range TO·126 TO·220 40 0.32 50 0.40 TJ. Tstg r tL.JLJ ~-t DIM STYLE 1 PIN' EMITTER 2. COLLECTOR 3 BASE MILLIMETERS MIN MAX 24' NOTES 1. MT. MAIN TERMINAL 2. LEADS, TRUE POSITIONED WITHIN 0.25 mm (0.010) OIA. TO OIM. "A" & "8" AT MAXIMUM MATERIAL CONDITION. 1.27 0.38 15.111664 3 TYP Watts W/oC -55to +150 °c Max Unit MJE700-703 MJEBOO-B03 378 1.14 .64 3.68 1.0 4.01 1.40 0.9 3. - CASEn.Q4 0145 0,040 THERMAL CHARACTERISTICS Characteristic Thermal Resistance, Junction to Case TO·126 TO·220 Symbol C/W R9JC 3.13 2.50 FIGURE 1 - POWER DERATING O~ Of""... 0 "- "- .......... ~ ~ TO·220AB 0 0 25 •• •, ..... ~ ~ TO-12B ~ -......... ........... -......... ......... 50 75 100 -703T MJEBOOT-803T 01. STYli' PIN 1 BASE 2COLtECTOR C 0- •• •, •• •• • 3 £MlTT~R 4 COlLECTOR_ J ~ 125 1"'- TC. CASE TEMPERATURE (001 1-823 150 Nfms 1 OIMENSIOM II APPliES TO ALL LEAOS 1 2 OIMINSlONLAPPUESTO LEADS 1 ANOa T CASE 221A-02 U Z.O - O. PNP MJE700,T thru MJE703,T NPN MJESOO,Tthru MJES03,T ELECTRICAL CHARACTERISTICS (TC = 25°C unl.s. otherwise noted) I Characteristic Symbol Collector-Emitter Breakdown Voltage (1) (lC = 50 mAde, IB = 0) MJE700,T, MJE701, T, MJESOO,T, MJESOI ,T BVCEO Min Max 60 SO - - 100 100 - 100 500 Unit OFF CHARACTERISTICS IIIJ MJE702,T, MJE703,T, MJES02,T, MJES03,T Collector Cutoff Current (VCE = 60 Vde, IB = 0) (VCE = BO Vde, IB = 0) Vdc ,.Ade ICEO MJE700,T, MJE701,T, MJESOO,T, MJES01,T MJE702,T, MJE703,T, MJES02,T, MJES03,T Collector Cutoff Current jtAde ICBO (V CB = Rated BV CEO, IE = 0) (VCB = Rated BVCEO, IE = 0, TC = 100°C) Emitter Cutoff Current (VBE = 5.0 Vde, IC e 0) 2.0 lEBO mAde ON CHARACTERISTICS C~rr.nt Gain (1 ) (lC = 1.5 Ade, VCE (lC = 2.0 Ade, VCE (lC =4.0 Ade, VCE OC =3.0 Vde) =3.0 Vde) =3.0 Vde) hFE MJE700,T, MJE702,T, MJESOO,T, MJES02,T MJE701 ,T, MJE703,T, MJEB01,T, MJES03,T All devices Collector-Emitter Saturation Voltage (1) (lc = 1.5 Ade, IB = 30 mAde) (lC = 2.0 Ade, IB = 40 mAde) (lc = 4.0 Ade, IB = 40 mAde) - Vde VCE(sat) - MJE700,T, MJE702,T, MJEBOO,T, MJES02,T MJE701 ,T, MJE703,T, MJES01,T, MJEB03,T All Device - 2.5 2.S 3.0 - 2.5 2.5 3.0 - Base-Emitter On Voltage (1) (lC = 1.5 Ade, VCE = 3.0 Vde) (lC = 2.0 Ade, VCE = 3.0 Vde) (lc = 4.0 Ade, VCE = 3.0 Vde) - - 750 750 100 Vde VBE(on) MJE700,T, MJE702,T, MJESOO,T, MJES02,T MJE701,T, MJE703,T, MJEB01,T, MJES03,T All Devices DYNAMIC CHARACTERISTICS Small-5ignal Current Gain (lC = 1.5 Ade, VCE = 3.0 Vdc, f = 1.0 MHz) (1) Pulse Test: Puis. Width .. 300 jtS, DutY Cycle .. 2.0%. FIGURE 3 - SWITCHING TIMES FIGURE 2 - SWITCHING TIMES TEST CIRCUIT 4. 0 , . Vee VCC=30V IC/IB = 250 IBI = IB2 TJ = 25 DC 1 ·30V RO & AC VARIED TO OBTAIN DESIRED CURRENT LEVELS 01, MUST BE FAST RECOVERY TYPES, e.g., Re MBD5300 USED ABOVE 18" 100 mA MSD6100 USED BELOW 18" 100 rnA SCOPE ~~:~-~-~~-_-~[1~ ,. ",, __0-I 1251'S -12V tr,lf I./' ~ t\. 1---1--" .3 ~ 1.0 --- - >= 0.8 o. 6 r.... Fortdandtr,Ol"dlltonnKted andV2=O,RBandRcarev&fi.d to obtam dlllired test curr,nts O. f1IrNPN test CirCUit, reverstdlDdl, polarlttlSlndmputpulsts. O.2 0.114 ---PNP ---NPN 0.06 0.1 ...... E..; r- t.::", D-'f r" '" f= [""I" I"'- l' ~~ 0.2 ..... Ir -. -....... 41.:;:1-- r--- 0.4 0.6 [~@4JII)=°rl 1.0 2.0 4.0 IC, COLLECTOR CURRENT (AMP) ~ FIGURE 4 - THERMAL RESPONSE (MJE700T, BOOT sarias) 1. 0 ~ ~ O.·7 0=0.5 O. 5 ~ O. 3 O. 2 o z ~ i:i0: i 02 i"'":': 01 ~ 1 0.07 r - 0.05 ffi 0.05 0.01 :z: .... 0.03 r- - ~ ~ =" Plpk) tJUl 12~~ ......... E0.021--' fo.ot'::: I-" i.... 0: 0.0 1 ......... 0.01 10-"" 0.02 ZoJCIt) ~ rill ROJC ROJC' 2.50DC/W Max o CURVES APPLY FOR POWER PULSE TRAIN SHOWN REAO TIME AT t) TJlpk) - TC = P(pk) ZOJC(t) OUTY CYCLE. 0 = 11112 SlrlJJJi 005 01 IIIII 02 05 10 20 t, 50 TIME (ms) 1-824 10 I I 20 J J IIIIII 50 100 11 111J...l..l 200 500 T.Ok PNP MJE700,T thru MJE703,T NPN MJE800,T thru MJE803,T FIGURE 5 - THERMAL RESPONSE IMJE700, 800 •• ,ias) III 1.0 ~ D~05 0.1 ~ 5.0 02 ~ 0.3 ;i~ 02 ,.~ "'~ ~:i 0-", 01 - ~gO.O 1~ ~ 0.05 z ~ 003 ~ 0.02 - 01 005 - II JC := 3.12 oCIW Max SINGLE PULSE TJ(pkl TC' P(pk) 0JC(I) DUTY CYCLE. 0 -11/'2 II 111111 00 I 001 o CURVES APPLY FOR POWER PULSE TRAIN SHOWN READ TIME AT II NLrL ~:~~ " 0.01 f= uJC(t) = rlt) tiJC ,::? 002 003 005 01 02 03 05 10 20 30 11111 I I 10 20 50 30 100 50 300 ZOO 500 1000 t, TIME (ms) ACTlVE·REGION SAFE·OPERATING AREA FIGURE 7 - MJE800so,ios FIGURE 6 - MJE700 so'i.. 0 0 7.0 ~ ~ - .... ... 3.0 ffi '" 2.0 '" i:l de ... .... ... .... ~ _ ..,o E I O. I 5.0 II ..,=> I.0 5. 0 100",- .... ....5.0~~ r-l.0ms 3.0 .... ... d~""" ...... 2.0 " 1.0 ~ ~: ~~ r-' "- 10 50 20 30 VCE. CDLLECTDR·EMITIER VOLTAGE (VOLTS) ...... "- TJ = 150°C - - - BONOING WIRE lIMITEO 7 - - - THERMALLY LIMITED IiPTc = 250C ISINGLE PULSE) 5 - - - SECOND BREAKDOWN LIMITED ~ D,3 MJES02.S00 O.2 MJESOO,BOI a:. o \ L Ll 7.0 ~ :'\. " 1. 0 a: ~ ... r... .... TJ = 150°C - - - BONDING WIRE LIMITED 7 O. - - - THERMALLY LIMITED O.5 @TC = 25°C (SINGLE PULSE) - - SECOND BREAKDOWN LIMITED O. 3 MJE702.703 O.2 MJE700.701 ~ ~ 100,.. 5.0 ni."., F";;:-1.0 m'.... 5.0 1\ 70 5.0 7.0 1\ "- "- \ O. I 100 "- "- 10 20 30 50 VCE. CDLLECTOR·EMITTER VOLTAGE IVOL TS) i\. 70 There are two limitations on the power handling ability of The data of Figure, 6 and 7 a'e based on TJ(pk) = 150°C; a transistor: average junction temperature and second break- TC is variable depending on conditions. Second breakdown pulse down. Safe operating area curves indicate Ie - VeE limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. limits are valid for duty cycles to 10% provided TJ(pk) < 150°C. T J(pk) may be calculated from the data in Figure 4 or 5. At high case temperatures. thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown. FIGURE 8 - MJE700T so,i.. FIGURE 9 - MJEBOOT se'ies 0 £ 0 ~ 5 2.0 '" 1.0 ~ o. 5 100.,r:=t-. 100.'~ -.. .... 5.0 '"'" i:l ....... TJ-1500C ---BondingWire Limited ----Thermally Limited liP 250 C ISingl. Pulse) Second Breakdown Limited .... ~ ' ~ O. 1 5.0 10 20 ... - TJ= 1500 C o~- - - Bonding Wire Limited =---= ~ o. =_ 8 1. 5 MJE700T,701T 7.0 2.0 i:l :'\.5.0m. '" MJE702T,703T o.2 .... 5.0 5 '~:i- ... ,,-de ii:' 2 8 ~ 100 30 --"l -' - "'\ 50 ~1.0m' ~ "~e~om' @250C (Single Pulse) Second Breakdown limited '\ MJEB02T. SOOT 100 VCE, COLLECTOR·EMITIER VOLTAGE (VOLTS) O. 1 5.0 MJEBOOT. BOlT I 7.0 10 20 30 - --"l ~ \ 50 VCE, COLLECTDR·EMITIER VOLTAGE (VOLTS) 1-825 '\ Thermally limited O. 2 l"" 70 ~ "\ 70 100 PNP MJE700,T thru MJE703,T NPN MJESOO,T thru MJES03,T II] PNP MJE700,T ..ri.. NPN MJE800,T sari.. I FIGURE 10 - DC CURRENT GAIN 6.0 k 6.0k 3.0 k z V ;;: ~ 2.0 k ~ => ~ to k ~ 800 ~ 600 ~ V II TJ = 125°C VCP 3.0 V- TJ -125°C 4.0k 150C 4.0 k ......' [...- r---..... VI-'" 1'\ '\ / 3.0k [\~ z ~ f\\ ~ "\ i3 g 2.0 k 25°C . / .Y1 1.0 k / 800 / \ 300 0.04 0.06 2.0 0.2 0.4 0.6 1.0 IC. COLLECTOR CURRENT (AMP) 0.1 400 300 0.04 0.06 4.0 --. "" ~ r- i'. I~ ~ 1\ /1' -55°C W j- 600 400 VCE-3.0V / I 0.1 0.2 0.4 0.6 1.0 IC. COLLECTOR CURRENT (AMP) 2.0 4.0 FIGURE 11 - COLLECTOR SATURATION REGION S3.4 ~ 3.4 II II o ~ 3.0 ~ IC = 0.5A ~ 2.6 ~ 1.0 A TJ = 25°C II II 2.0 A o ~ w '"~ 4.0 A 1.0A 2. 6 2.0A T/= ~5~t 4.0 A ~ ~ 2. 2 ffi 2. 2 ~ 1.8 I::: I- ..~ 1.B ~ 4 '" ~ 1. o ~1. 0 8 1. 0 ~ m m II .B IC - 3.o 0.5 A o 1. I- 4 ,..... ~ " > O. 6 0.1 0.2 0.5 1.0 2.0 5.0 10 20 50 > O. 6 0.1 100 0.2 0.5 1.0 lB. BASE CURRENT (mA) 2.0 5.0 10 lB. 8ASE CURRENT (mA) 50 20 100 FIGURE 12 - "ON" VOL TAGES 2.2 2.2 I I III ./ .....-V J...- i-"'" TJ = 25°C s ~ 1.8 I II V8E(sat)@ Iclla • 250 1.4 w '" ~ ~ I II 1.0 >" f- I Jc~(~~) @IchB } 250 j.( TJ = 25°C 1.8 11 "..... 5~ 1.4 f- V8E I..:) ~IIC/IB = 250 VBE @VCE = 3.0 V ,/ V '"~ .....- ...- """ c5 to > >- 11 I--V~E sa:) ~IIC/IB ~ 25J j..,--' VBE@ VCE • 3.0 V w O. 6 0.2 0.04 0.06 II ./ ,,- ~ IL 0.6 0.1 0.2 0.4 0.6 1.0 IC. COLLECTOR CURRENT (AMP) 2.0 4.0 1-826 0.2 0.04 0.06 0.1 0.2 0.4 0.6 1.0 IC. COLLECTOR CURRENT (AMP) 2.0 4.0 MJE1290 MJE 1291 PNP MJE 1660 MJE 1661 NPN @ MOTOROLA 15 AMPERE COMPLEMENTARY SILICON POWER TRANSISTORS COMPLEMENTARY SILICON MEDIUM-POWER TRANSISTORS 40-60 VOLTS · .. designed for use in power amplifier and switching applications. • High Collector Current IC=15Adc • High DC Current Gain hFE = 10 (Min) @ IC = 15 Adc 90 WATTS MAXIMUM RATINGS MJE1291 MJE1661 VCEO MJE1290 MJE1660 40 60 Vdc Collector-Base Voltage VCS 40 60 Vdc Emitter-Base Voltage Symbol Rating Collector-Emitter Voltage Unit VES 5.0 Vdc Collector Current-Continuous IC 15 Adc Base Current IS 5.0 Adc PD 90 0.72 Watts WloC TJ, T stg -65 to +150 °c Total Power Dissipation Derate above 25°C @ T C = 25°C Operating and Storage Junction Temperature Range Characteristics S- F Max 1.39 V-Ul!v t t --1l--J H :u STYLE 2: PIN 1. EMITTER 2. COLLECTOR 3. BASE 'T A 0 "- 0 '" o "- 0 0 G H '"""- K M '" 0 DIM 25 50 75 100 n R " 125 u v "" 1 K ~::T C 80 ~ A ---4G!:= R FIGURE 1 - POWER TEMPERATURE DERATING CURVE M ~-4 ff;--Ji --1 +[£It .. '.,' H lJU-D THERMAL CHARACTERISTICS Thermal ResIstance, Junction to Case _r-:- -pr~ MILLIMETERS MIN MAX 16.13 16.38 12.57 12.83 3.1B 3.43 1.09 1.24 3.51 3.76 4.22 BSC 2.67 2.92 0.B13 O.B64 15.11 16.3B 9" TVP 4.70 4.95 1.91 2.16 6.22 6.48 2.03 INCHES MIN MAX 0.635 0.645 0.495 0.505 0.125 0.135 0.043 0.049 0.138 0.148 0.166 BSe 0.105 0.115 0.032 0.034 0.595 0.645 90 TYP 0.185 0.195 0.075 0.085 0.245 0.255 0.080 CASE 90-05 TO-127 150 175 When mounting the device. torque not to exceed 8.0 in.-Ib. TC, CASE TEMPERATURE (DC) If lead bending is required. use suitable clamps or other supports between transistor case and point of bend. 1-827 MJE1290, MJE1291 PNP/MJE1660, MJE1661 NPN ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted) I Characteristic Symbol Min Max 40 60 - - 1.0 - 0.7 0.7 Unit OFF CHARACTERISTICS Collector-Emitter Sustaining Voltage III (Ie MJE 1290, MJE 1660 MJE1291, MJE1661 Collector Cutoff Current IVCE = 30 Vde, 'B mAde ICED = 0) Collector Cutoff Current (VCE = 40 Vde, VBE = 0) (VeE = 60 Vde, VBE = 0) mAde Ices MJE 1290, MJE 1660 MJE1291, MJE1661 Collector Cutoff Current (VCB = 40 Vde, 'E = 0) (VCB = 60 Vde, 'E = 0) Emitter Cutoff Current (VBE = 5.0 Vde, Ie = Vde VCEO(sus) = 200 mAde, IB = 0) - mAde ICBO - MJE 1290, MJE 1660 MJE1291, MJE 1661 - 0.7 0.7 - 1.0 20 10 100 - 1.8 - 2.5 3.0 - 25 - mAde 'EBO PI ON CHARACTERISTICS DC Current Gain 11) (lc = 5.0 Ade, VCE = 4.0 Vde) (IC = 15 Ade, VeE = 4.0 Vde) Collector-Emitter Saturation Voltage (1) (lC = 15 Ade, 'B = 1.5 Ade) veE (sat) Base-Emitter on Voltage VBE(on) (Ie = 15 Ade, Vee - hFE (1) = 4.0 Vde) Vde Vde DYNAMIC CHARACTERISTICS Current-Gain-Bandwidth Product (Ie = 1.0 Ade, VCE = 10 Vde, I = 1.0 MHz) Small-Signal Current Gain (lC = 1.0 Ade, VeE = 10 Vde, I = 1.0 kHz) MHz IT - hie (11 Pulse Test: Pulse Width'S. 300 IJ,S. Duty Cycle'S 2.0%. FIGURE 2 - DC SAFE OPERATING AREA \ 100 0: 50 -1J 1500 C ~ 20 ~ 10 ...~ 5.0 --- '" 2.0 ~ = 1.0 8 ~ -- r- - - - - Secondary'Breakdown Limited - - - - - Therm~ly Limited, TC=25 0 C --- Bonding Wire Limited -MJE1291 ~ r--MJE1661 The Safe Operating Area Curves Indicate Ie-VeE limits below which the device will not enter secondary breakdown. Collector load lines for specific circuits must fall wlthm the applicable Safe Area to avoid causing a catastrophic failure. To' insure operation below the maximum T J. power-temperature derating must be observed for both steady state and.pulse power conditions. \ \ 0.5 MJE 1290, MJE 1660 O. 2 O. 1 1.0 2.0 3.0 1111 5.0 7.0 10 20 30 50 70 100 VCE, COLLECTOR·EMITTER VOLTAGE (VOLTS) 1-828 ® MJE2360T MJE2361T MOTOROLA l1li NPN SILICON HIGH-VOLTAGE TRANSISTOR 0_5 AMPERE POWER TRANSISTORS NPN SILICON · .. useful for general-purpose, high voltage applications requiring high fT. 350 VOLTS 30 WATTS • Collector-Emitter Sustaining Voltage vCEO(sus) = 350 Vdc (Min) @ IC = 2.5 mAde • DC Current Gain hFE = 40 (Min) @ IC = 100 mAde - MJE2361T • Current-Gain-Bandwidth Product fT = 10 MHz (Typ) @ IC =50 mAde MAXIMUM RATINGS Symbol Value Unit VCEO 350 Vdc Collector-Base Voltage VCB 375 Vdc Emitter-Base Voltage VEB 6.0 Vdc Collector Current - Continuous IC 0.5 Adc Sase Current IB 0.25 Adc Po 30 0.24 Watts W/oC T J.Tstg -65 to +150 DC Rating Collector-Emitter Voltage Total Power DISSipation @ TC Derate above 2SoC = 25°C Operating and Storage Junction ~~[B l r Temperature Range A I THERMAL CHARACTERISTICS Characteristic Thermal Resistance, Junction to Case Symbol Max Unit 8JC 4.167 °C/W LlI K PIN 1 BASE FIGURE 1 - POWER-TEMPERATURE DERATING CURVE 2 COlUCTOR 3 EMITTER 4COtlECTOR 40 ~ .... 35 '" 30 0 25 ~ z ;: ~ iii 20 '"~ 15 i5 ~ ~ "'" "'" 1213 j~N'~~ j L NOTES 1 DIMENSION H APPLIES TO AtL LEADS 2 DIMENSION l APPL1ES TO lEADS 1 AND 3 """t-" ........., 10 " I'.... ........., 5.0 o o -. D ;O-r: ,H"" 1t~ STYLE I F u i"-. 20 40 60 80 100 120 140 160 CASE 221A-G2 (TO·220 AB) TC. CASE TEMPERATURE 1°C) 1-829 MJE2360T , MJE2361T , OJ ~ ELECTRICAL CHARACTERISTICS (TC 25 0 C unless otherwise noted) Characteristic Max Svmbol Min Typ VCEO(sus) 350 - - Vde ICEO - - 0.2~ mAde ICEX - -- 0.5 mAde ICBO - -- 0.1 mAde lEBO - - 0.1 mAde - 200 250 Unit OFF CHARACTERISTICS Collector-Emitter Sustaining Voltage(1) (lC" 2.5 mAde, IB" 0) Collector Cutoff Current (VCE" 250 Vde, IB" 0) Collector Cutoff Current (VCE' 375 Vde, VEB(off) " 1.5 Vde) Collector Cutoff Current (VCB" 375 Vde, IE" 0) Emitter Cutoff Current (VBE " 5.0 Vde, IC " 0) ON CHARACTERISTICS (1) DC Current Gain - hFE (lC" 50 mAde, VCE " 10 Vde) (lC" 100 mAde, VCE' 10 Vde) MJE2360T MJE2361T 25 50 MJE2360T 15 40 MJE2361T Collector-Emitter Saturation Voltage - - VCE(s.,) 1.5 Vde 1.0 Vde (lC" 100 mAde, IB" 10 mAde) Base-Emitter On Voltage VBE(on) (lC" 100 mAde, VCE " 10 Vde) DYNAMIC CHARACTERISTICS Current-Gain -Bandwidth Product 10 IT MHz (lc " 50 mAde, VCE " 10 Vde, I" 1 0 MHz) Output Capacitance (VCB" 100 Vde, IE " 0, I" 100 kHz) (1)Pulse Test Cob _. 20 - pF Pulse Width $ 300 I-lS, Duty Cycle '5: 2.0% FIGURE 2 - OC SAFE OPERATING AREA 1.0 ii: ~ 0.5 0.3 I- ~ 0.2 B - - - Secondary Breakdown Limited _ .. B~nding Wire Limited O. 1 '" 1\ The Safe Operating Area Curves indicate IC~VCE limits below which the device will not enter secondary breakdown. Collector load lines for specific circuits must fall within the applicable Safe Area to avoid causing a catastrophic failure. To insure operation below the maximum T J, power-temperature derating must be observed for both steady state and pulse power conditions. o t; ~ 0.0 5 S 0.03~Tl~lJQ~ \\ ~O.O 2 0,0 1 1.0 II 2.0 5.0 10 20 50 100 200 500 1000 VCE, COLLECTOR·EMITTER VOLTAGE (VOLTS) 1-830 NPN MJE2801, MJE2801T ® PNP MOTOROLA MJE2901,MJE2901T 10 AMPERE COMPLEMENTARY SILICON PLASTIC POWER TRANSISTORS COMPLEMENTARY SILICON POWER TRANSISTORS · .. for use as an output device in complementary audio amplifiers up to 35,Watts music power per channel. 60 VOLTS 75,90WATTS • • I High DC Current Gain - h F E = 25·100 @ IC = 3.0 A Choice of Packages - MJE2801, 2901 - TO·225A8 (TO·127) MJE280lT, 290lT - TO·220AB MAXIMUM RATINGS Rating Symbol Value Unit VCEO 60 Vde Vde Collector-Emitter Voltage STnE 2 PIN I EMITTER 2 COLLECTOR 3 BASE Coliector·Base Voltage VCB 60 Emitter-Base Voltage VEB 4.0 Vde IC 10 Adc ". .'N IB 5.0 Adc ,• C Watts F G Collector Current Base Current Total Power Dissipation MJE2B01,2901 MJE2BOIT, 290IT Derate above 2SoC MJE2B01, 2901 MJE2BOIT,290IT @ Pot T C = 2SoC MllllMET£RS A MAX 1613 1251 JI 109 351 . J 1511 M W/oC U V -55 to +150 TJ, T stg '24 '"'92 MJE2801 MJE2901 °c 1638 DTYP Q Operating and Storage Junction Temperature Range 343 4228SC • '"" "64 '91 '91 ,,. • 41' 90 75 H 0.72 0.6 163B 1283 , 2 203 . , INCHES Mlr. MAX OaJS 064S 0495 0505 0125 013S .043 "49 0138 0148 DIBBaSC "00 o liS 0032 0034 0595 0645 goTYP 0185 "91 0075 0245 0255 'DB' L9J!!1LL CASE 90·05 TO·225AB (TO·127) THERMAL CHARACTERISTICS Characteristic Symbol Thermal Resistance, Junction to C.e OJC Ma. 1.39 1.61 tSafe Area Curves are mdicated by Figure 1 Both limits are applicable and must be observed. ELECTRICAL CHARACTERISTICS (Tc I Characteristic Unit °C/W MJE2B01,2901 MJE280IT.2901T I = 25°C unless otherw". notedl Symbol I Min I Max I 60 - - 0.1 - 1.0 25 100 Unit OFF CHARACTERISTICS Collector-Emitter Breakdown Voltage (1) Collector-Cutoff Cl.!.rrent mAde ICBO (Vce = 60 Vde, IE = 01 (VCB.= 60 Vde, IE = 0, TC = 1500CI Emitter Cutoff Current Vde BVCEO IIc = 200 mAde, Ie = 0) 2.0 mAde lEBO (VBE = 4.0 Vde, IC = 01 Base·Emltter Voltage Vde VSE IIc = 3.0 Ade, VCE = 2.0 Vdc) - 1.4 2 COLLECTOR 3 EMITTER 4 COLLECTOR F G H NOTES 1 IlIMfNSION II APPlIfS TO ALL LfAOS 2 DIMENSION LAPPLIES TO L{AOS1 AN03 30lMENSIONlOfflNESAlONEWHfRE All BODVANOLEAoIRRfGULARITIES ARE ALLOWED 4 DIMENSIONING AND TOL£RANClHG PER J - hFE IIc = 3.0 Ade. VCE = 2.0 Vdc) •• ,c •, ON CHARACTERISTICS DC Current Gam STYlfl PIN 1 BASE DIM •• •• • ANSIY14~M.1982 T U 5 CONTROLLING DIMENSION INCH Z CASE 221A·02 TO·220AB (1) Pulle Test: Pulse Width ~300 J'S, Duty Cvele E;;2.0%. 1-831 .... MJE2801/MJE2801T NPN, MJE2901/MJE2901T PNP FIGURE 1 - ACTIVE REGION SAFE OPERATING AREA I 10 1.0 5.0 .... 3.0 ~ Z.O ""B " 0 .. MJE2801 ,.JE2901 I =-- ~MJE2801T~ MJE2901T ,\. There are two limitations on the power handling ability of a tranSistor: average junction temperature and second breakdown Safe operatmg area curves Indicate Ie VeE 'Imlts of the tranSistor that must be observed for reliable operation; I.e., the transistor must ...~ # V,\ ~IR~ ~IM\TIE~ C> ~ 1.0 aONDING 0.1 =-----THERMALLy lIMIT@TC=25" SECONDARY aREAKDOWN L'II ITED 0.5 B 0.3 !:! O. 2 not be subjected to greater diSSipation than the curves indicate, The data of Figure 1 IS based on T Jlpk) = 150°C; T C IS vanable depending on conditions. Second breakdown puise limits are valid for duty cycles to 10% provided T Jlpk) ~ 150°C. At high case temperatures, thermal limitations Will reduce the power that can be handled to values less than the limitations Imposed bV second breakdown. 1\ O. I 1.0 2.0 3.0 5.0 1.0 10 20 30 50 60 VCE. COllECTOR-EMITTER VOLTAGE IVOLJS) FIGURE 2 - OC CURRENT GAIN fiGURE 3 - POWER DERATING 90 500 200 z ~ 100 .a ~o ~ III 300 VCE = 2 0 V Tp 150°C ...- I-"" ;;: Bi 0 ~ 0 ~O '"~ ...... ~ J? ........... MJE2BOI MJE2901 "'- MJE2801T...... MJE290lT Ci 40 -55°C <-> c "'-" ~ i5 ;:: 60 2~Oc >- ~ ~ 80 '" ~ 10 , 30 10 10 0 o 50 0.01 0.02 0.05 0.1 0.2 05 1.0 2.0 5.0 o ........... " "- l~ ~ " 50 15 100 11~ TC. CASE TEMPERATURE lOCI 1~ 10 150 m IC. COLLECTOR CURRENT IAMPSI FIGURE 4 - "ON" VOLTAGES MJE29011MJE2901T MJE2801/MJE2801 T 10 1.4 1.2 Tp 250C 1/ TJ ~ 15°C 16 .1 ..l _ 1.0 ~ I--- ::.--- VaEI .. ,) II> Iclla = 10 ~ 0.8 ....: 1 ~ :l !:; 0.6 Va Elsa') @ IC 'Ia = 1% ;::::::;::;- VaE II>VCE • 2.0 V C> a > "> 0.4 VaE@VCE" 0.2 - VCEISI,)@IC/1a=10 0.1 0.2 0.3 0.5 1.0 2.0 ~ 30~ 5.0 10 IC. COLLECTOR CURRENT lAMP) ! 10 o 01 ~ ..l -Iii 111 4 lCE)",,1 I" Ilcll! 30 01 03 05 10 .10 IC. COLLECTQR CURRENT IAMPI 1-832 ~ ;..' V 30 50 10 ® MJE2955, MJE2955T MJE3055, MJE3055T MOTOROLA PNP NPN 10 AMPERE COMPLEMENTARY SILICON PLASTIC POWER TRANSISTORS designed for use in general·purpose amplifier and switching applications. COMPLEMENTARY SILICON POWER TRANSISTORS 60 VOLTS 't 75,90WATTS • DC Current Gain Specified to 10 Amperes • High Current Gain - Bandwidth Product fT = 2.0 MHz (Min) @ IC = 500 mAdc • Choice of Packages - MJE3055, MJE2955 - TO·225AB (TO·127) MJE3055T, MJE2955T - TO·220AB JE2955 B ' - MJE3055 f~ ,- -3 i-rf'+- i Symbol Value Unit VCEO 60 Vdc Collector-Base Voltage VCS 70 Vdc Emltter·Base Voltage VES 5.0 Vdc IC 10 Adc 6.0 Adc Rating STYLE 2 PIN I EMITTER Collector-Emitter Voltage Collector Current Base Current 90 75 W/oC 0.72 0.6 w/oe -55 to +150 °c MJE3055, MJE2955 MJE3055T,MJE2955T HL --I-~I-- D GI-- ~ --JI--J ~'l'f A • • f G H J K M • Derate above 2SoC MJE3055, MJE2955 MJE3055T,MJE2955T Operating and Storage Junction Temperature Range • .,M Watts PDt = 2SoC I t t IS Total Power DISSipation @ T C 2 COLLECTOR 3 BASE j V MAXIMUM RATINGS T J, T stg R U V CASE 90·05 TO·225AB ITO·127l THERMAL CHARACTERISTICS Max Symbol Characteristic Thermal Resistance, Junction to Case Unit °CIW °JC 1.39 1.67 MJE3055, MJE2955 MJE3055T,MJE2955T tSafe Area Curves are Indicated bV Figure 1 Both limits are applIcable and must be observed FIGURE 1 - ACTlVE·REGION SAFE OPERATING AREA 0 10m~100",S 0 5 Oms ~/-- 0 MJE3055T MJE2955T 0 V t-::::: [7 0 MJEi055, MJE2955/ d, '" r::::-\''\ 0 ) , " [\ \' ~ 5 2 TJ • 150'C - - - SECOND BREAKDOWN LIMITED 1-[- 2COllfCTOA 3 EMITTER 4COll!:CTOR A 8 t • • /'jons f I--t-lJ STYLE 1 PINI8ASl' DIM - ' - - - BONDING WIRE LIMITED --.;; THERMALLY LIMITED 1 DIMENSION H APPlIES TO t.Ll LEADS 2 OIMtNSIONlAPPLlI'ST(}lEADS I AN03 3 DlMENSIONZOEFINESAZONEWliEAE ALL BOOY AND lEAO IRAEGULARITIES ARE ALLOWED H J • l • TC" 2S DC (0 "0 111 4 DIMfNSIOI'IING AND TDLERANCING PER ANSIV\4St.1 1982 5 CONTROlliNG DIMENSION INCH Q O. I 5.0 10 HI 20 JD VeE. COLLECTOR EMITTER VOLTAGE (VOLTSI 5060 R S MJE2955T T MJE3055T U There lire two l'm'lalloni On the powe, handling 3blhCV of II l.anSlupr ave.age )und.on lempe.at" •• and Mcond brea~down Sate ope.alln; area cu'v"s IndICate Ie VeE t'm.1S of Ihe tran$lstor lh.r mull be observed tor reliable operatIon, e Ihe trlln .. uo. muSI not be subjected to g,eat.r dOSSlp.llon than Ihe cu'veS,"d,c.,,!" Tha data of FIgure 1 IS based on TJ,pkl . 150°C TC IS "."abledapendmlloncond, I'D'" o&econd b •• aledo ..... " pulse 1'''''1$ are " .. loa fa. dUlY cyde, 10 10% p.ov,ded T J(pk I .5 150 C At h'lIh cas" temperatures, the. mal I,mltat,on ...... 11 reduce Ihe QD""e. Ihat can be handled 10 v .. lu•• less than the l,m.lallOn. ,mposed by U'cond l:I'eakdown (s. . AN 415A) 1-833 V Z CASE 221A·02 TO 220AB MJE2955,MJE2955T,PNP,MJE3055,MJE3055T,NPN OJ ELECTRICAL CHARACTERISTICS L (TC" 25°C unless otherwIse noted I I Min Ma. 60 - - 700 - 1.0 - 5.0 - 1.0 - 10 - 5.0 VCE = 4.0 Vdcl 20 100 (lc = 10Ade, VCE = 4.0 Vdel 5.0 - - II Ch.r.cteristic Svmbol Unit OFF CHARACTERISTICS Collector-Emitter Sustaining Voltage (11 (lC Vde VCeO(,u,1 =200 mAde, IS = 01 Collector Cutoff Current (VCE /lAde ICEO =30 Vde, IS =01 Collector Cutoff Current mAde ICEX =70 Vde, VES(olf} = 1.5 Vdel (VCE = 70 Vdc, VES(offl = 1.5 Vdc, TC = lSOoCI (VCE Collector Cutoff Current mAde ICSO (VCS = 70 Vde,IE = 01 (VCB = 70 Vde, IE = 0, TC = 150CCI Emitter Cutoff Current mAde IESO (VSE'" 5.0 Vde, I C = 01 ON CHARACTERISTICS DC Current Gam (1) (lC =4.0 Ade, hFE Collector-Emitter Saturation Voltage (11 Vde VCE(,.tl (lC = 4.0 Ade, IS = 0.4 Adcl (lC = 10 Adc, IS = 3.3 Adel 8ase·Emltter On Voltage (1) 80 Vde VSE(onl - (lC = 4.0 Ade, VCE = 4.0 Vdel 18 DYNAMIC CHARACTERISTICS Current-Gatn-Bandwldth Product (lC = 500 mAde, VCE = 10 Vdc, f =500 kHzl (1)Pul .. T.st. Pulse Width ~300 ,",S, Duty Cycle ~2.0%. FIGURE 3 - POWER DERATING FIGURE 2 - DC CURRENT GAIN 90 80 « ~ /0 r-- I" 0 ;:: 60 :i: Bi "' M\E30" .......... z " MJE1966 .......... '0 MJE3055T <5 40 JE29!1!iT ~ ~ .f! 1'-.." I'-.. """ I~ 30 '0 10 o oo~ 01 02 Of! 10 20 50 o , .......... "0 100 10 Te CASE TEMPERATURE (oCI Ie. COLLECTOR CURRENT lAMP) FIGURE 4 - "ON" VOLTAGES MJE2955, 2955T 20 r-= VBE. VfE ?O,V r-- VJE,L) ~ IC!IB ~ 10 02 0.3 D.' 1.0 - 20 ./ 30 '" ~ 0 -> O. • • VeEIsI".lc/1e = 10 0 10 0.1 Ie. COLLECTOR CURRENT (AMP) ,... 0.2 03 O.S 1.0 - 2.0 Ie, COLLECTOR CURRENT lAMP) 1-834 - I VBEflVce"20V O. 2 5.0 ..,.. VBElsall@llc/I B=10 ~08 ....,::::: VBElllt)ltIC/I,B '" 10 0.1 --- ~ 10 ~ o MJE3055 3055T TJ = 2SoC 1•2 • 0.' - " TJ' 2SoC .".30 10 ® MJE3300MJE3301 MJE3302 MJE3310 MJE3311 MJE3312 MOTOROLA PLASTIC DARLINGTON COMPLEMENTARY SILICON ANNULAR POWER TRANSISTORS · .. designed for general-purpose amplifier and high-speed switching appl ications. • High DC Current Gain hFE = 2000 (Typl @ IC • Collector-Emitter Sustaining Voltage - @ 10 mAdc VCEO(susl = 40 Vdc (Mini - MJE3310/MJE3300 = 60 Vdc (Mini - MJE3311/MJE3301 = 80 Vdc (Mini - MJE3312/MJE3302 • • • Reverse Voltage Protection Diode Pinout Compatible with TO-220 Package Monolithic Construction with Built-In Base-Emitter Output Resistor • Thermopad" Reliability COMPLEMENTARY SILICON POWER TRANSISTORS 40, 60, 80 VOL TS 15 WATTS Construction With Hard Solder for High MAXIMUM RATINGS Symbol MJE3310 MJE3311 MJE3312 MJE3300 MJE3301 MJE3302 Unit 40 60 VCB 40 Vdc Emitter-Base Voltage VEB IC 80 60 5.0_ 4.06.010015-0.121.5-0.012-..(l5to+150- Adc Collector-Emitter Voltage Collector Current Continuous Peak Base Current 18 Total Power Dissipation@TC = 2SoC Derate above 26°C Total Power Dissipation @ TA 2SoC Derate above 2SoC PD PD Operating and Storage Junction Temperature Range TJ.Tstg 80 Vdc VCEO Collector-Sase Voltage . Vdc mAde Watts wf'c Watts wfDc °c THERMAL CHARACTERISTICS Characteristic Thermal Resistance, Junction to Case Thermal Resistance, Junction to Ambient STYLE 3: PIN 1. BASE 2. CO LLECTO R 3. EMITTER FIGURE 1 - POWER DERATING 6 1 I..... i'... 2 1 :-....... "'- 0 I "" i'-.. i'.. 0 "'o 20 40 60 80 100 120 T. TEMPERATURE 1°C) ..... 1'-.., 140 0 160 MILLIMETERS MIN MAX 10.80 11.05 7.49 7.75 2.41 2.67 0.66 0.51 2.92 3.18 2.31 2.46 1.27 2.41 J 0.38 0.64 K 15.11 16.64 30 TYP M Q 3.76 4.01 R 1.14 1.40 S 0.64 0.89 U 3.68 3.94 V 1.02 DIM A B C 0 F G H INCHES MIN MAX 0.425 0.435 0.295 0.305 0.095 0.105 0.020 0.026 0.115 0.125 I 0.025 0.145 0.040 CASE 77-04 TO-126 1-835 PNP DARLINGTON 4-AMPERE = 1.0 Adc Rating NPN ~ ~ ~ ~ '-b-- ~ 0.055 0.035 0.155 - MJE3300, MJE3301 ~ IVIJE3302 NPN MJE3310,.MJE3311, MJE3312 PNP ELECTRICAL CHARACTERISTICS (TC I = 25°C unless otherwise noted.) I Characteristic Min Symbol Max Unit OFF CHARACTERISTICS OJ Coliector·Emitter Sustaining Voltage (1) = 10 mAde, = 0) Vde VCEO(sus) MJE3310,MJE3300 MJE3311,MJE3301 MJE3312,MJE3302 - 40 60 80 - - 100 100 100 - - 1,0 100 - 1.0 1000 750 - VCE(sat) - 1.5 Vde Base-Emitter Saturation Voltage (lC = 1.5 Ade, IB = 6.0 mAde) VBE(sat) - 2.5 Vde Base-Emitter On Voltage VBE(on) - 2.5 Vde VEC - (lC IB Collector-Cutoff Current (VCE (VCE (VCE = 20 Vde, IB = 0) = 30 Vde, IB = 0) = 40 Vde, IB = 0) = Rated = Rated MJE3310,MJE3300 MJE3311,MJE3301 MJE3312,MJE3302 = 5.0 Vde, IC I'Ade ICBO VCEO(sus), IE VCEO(sus),IE = 0) = 0, TC = lOOoC) Emitter Cutoff Current (V BE I'Ade ICEO Collector Cutoff Current (VCB (VeB - lEBO I'Ade = 0) ON CHARACTERISTICS DC Current Gain (lC (lC VCE VCE = 2.0 Vde) = 2.0 Vde) Collector-Emitter Saturation Voltage (lC (lC - hFE = 1.0 Ade, = 1.5 Ade, = 1,5 Adc, = 1.5 Ade, IB = 6,0 mAde) VCE = 2,0 Vde) Output Diode Voltage Drop (I EC = 2,0 Ade) 2,0 Vdc DYNAMIC CHARACTERISTICS Current-Gain - Bandwidth Product (lC= 1,0 Ade, VCE = 2,0 Vde) (1) Pulse Test: Pulse Width <; 300'l's, Duty Cycle <; 2,0%, FIGURE 2 - ACTlVE·REGION SAFE OPERATING AREA 0 FIGURE 3 - TYPICAL DC CURRENT GAIN 300 0 lOOps 500/..ls 5,0 0 1.Oms of.. I 5.0 ;{;' TJ 5 - - - ." .... r-. .......... .150'~f 200 0 :,....- ~ '"'" ... 1000 ffi ~ !-" - 5 ~ 700 BONDING WIRE LIMITED THERMALLY LIMITED @TC=25'C (SINGLE PULSE) SECOND BREAKDOWN LIMITED CURVES APPLY BELOW RATED VCEO ~ 500 ~ 400 ~ 300 ~!'\' I I I I I =~~~m:=~~~~~~ 2,0 3.0 5.0 7.0 10 20 Tr 251'C 1\ VCE-2,OV \\ 200 MJE331D,MJE3300 0,02 " r\. ~JE~0.3312 => 1 0,0 1 1.0 MJE33do.330~ :!!: 1500 <'.,:\ I==dC - 30 50 70 100 100 \' 0,2 0,5 0.3 VCE, COLLECTDR·EMITIER VOLTAGE (VOLTS) OJ 1.0 2,0 IC, COLLECTOR CURRENT (AMP) FIGURE 4 - DARLINGTON CIRCUIT SCHEMATIC Collector PNP MJE3310 Collector ---, thru r---- MJE3312 1 1 I I I I I I Base I I I IL ____ NPN MJE3300 thru MJE3302 Ba .. __ J Emitter r---- ---, I I I I I IL I I I I I I ____ __ J Emitter 1-836 3,0 ~ 4,0 5,0 ® MJE3439 MJE3440 MOTOROLA 0_3 AMPERE NPN SILICON HIGH-VOLTAGE POWER TRANSISTORS ... designed for use in line-operated equipment requiring high fro POWER TRANSISTORS NPN SILICON 250-350 VOLTS 15 WATTS • High DC Current Gain hFE = 40-160@ IC = 20 mAde • Current·Gain-Bandwidth Product fT = 15 MHz (Min) @ IC = 10 mAde • Low Output Capacitance Cob = 10 pF (Max) @ f = 1.0 MHz MAXIMUM RATINGS Rating Svmbol MJE3439 MJE3440 Unit VCEO 350 250 Vdc Collector-Base Voltage VC8 450 350 Vdc Emitter-Base Voltage VE8 Collector-Emitter Voltage Collector Current Continuous IC IBase Current - PD Derate above 25°C luperating and Storage Junction 0.3 -- Vdc Adc _150_ 18 Total Power Dissipation @TC - 2SoC -- 5.0 15 0.12 --- -65'0+150- TJ.Ts'g mAde Watts W/oC uc ~H K Temperature Range THERMAL CHARACTERISTICS Characteristic hermal Resistance, Junction to Case STYLE 1 PIN 1. EMITTER 2. COLLECTOR 3. BASE FIGURE 1 - POWER-TEMPERATURE DERATING CURVE 16 .... '" 14 ~ z 12 .... « r-- r-... b,. "- 0 r= ill 8.0 " 6.0 ~ 4.0 :t 0 ~ 10 " ~ ~ 2.0 o o 20 40 60 80 100 ~ 120 ..... r--.. 140 160 MILLIMETERS OIM MIN MAX A 10.80 11.05 7.49 7.75 8 C 2.41 2.67 0.51 0.66 0 F 2.92 3.18 2.46 G 2.31 1.27 2.41 H 0.64 J 0.38 K 15.11 16.64 30 TYP M Q 4.01 3.76 R 1.14 1.40 S 0.64 0.89 U 3.68 3.94 V 1.02 INCHES MIN MAX 0.425 0.435 0.295 0.095 0.020 0.115 0.091 0.050 0.015 0.595 30 T 0.148 .0.158 0.045 0.055 0.025 0.035 0.145 0.155 0.040 CASE 77-04 T()'I26 TC. CASE TEMPERATURE 1°C) 1-837 [[OC MJE3439, MJE3440 ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted) I Characteristic Symbol Min Max 350 - 250 - - 20 50 MJE3439 - 500 MJE3440 - 500 MJE3439 - 20 MJE3440 - 20 - 20 30 - Unit OFF CHARACTERISTICS Collector-Emitter Sustaining Voltage (lC = 5.0 mAde, IB = 0) (lC = 50 mAde, 18 = 0) MJE3440 Collector Cutoff Current (VCE = 300 Vde, IB = 0) MJE3439 = 200 Vde, MJE3440 (VCE IB (VCE = 300 Vde, VEB(off) = 35,0 Vde, (VCB = 250 Vde, jtAde ICEX = 1.5 Vde) = 1.5 Vde) Collector Cutoff Current (VCB jtAde ICEO = 0) Collector Cutoff Current (VCE = 450 Vde, VEB(off) Vde VCEO(sus) MJE3439 jtAde ICBO = 0) IE = 0) IE Emitter Cutoff Current (VBE = 5.0 Vde, IC = Ol lEBO jtAde ON CHARACTERISTICS DC Current Gain IIC = 2.0 mAde, VCE = 20 mAde, VCE - hFE = 10 Vde) = 10 Vde) 50 200 Collector-Emitter Saturation Voltage (I C = 50 mAde, I B = 4.0 mAde) VCE(satl - 0.5 Vde Base-Emitter Saturation Voltage VBE(sat) - 1.3 Vde VBE(on) - 0.8 Vde fT 15 - MHz Cob - 10 pF hfe 25 - - IIC (I C = 50 mAde, I B = 4.0 mAde) Base-Emitter On Voltage IIC= 50 mAde, VCE = 10 Vde) DYI\IAMIC CHARACTERISTICS Current-Gain-Bandwidth Product (lC = 10 mAde, VCE = 10 Vde, f = 5.0 MHz) Output Capacitance (VCB = 10 Vde, IE = 0, f = 1.0 MHz) Small-Signal Current Gain (lC = 5.0 mAde, VCE = 10 Vde, f = 1.0 kHz) FIGURE 2 - ACTIVE-REGION SAFE OPERATING AREA 1.0 0.7 0.5 ~ 0,3 :! 0.2 '" => '-' '" o ~ 0.07 0.05 >~ 0,1 The Safe Operating Area Curves indicate Ie-VeE limits below which the device will not enter secondary breakdown. Collector 0.03 001 8-<.3 0,007 0.005 - load lines for specific circuits must fall within the applicable Safe Area to avoid causing a catastrophic failure. To insure operation below the maximum T J. power-temperature derating must be observed for both steady state and pulse power conditions. "- 0,02 MJE3440 0.003 0.002 MJE3439 ........ 0.00 1 1.0 2.0 3.0 5.07.0 10 20 30 50 70 100 200 300500 1000 VCE, COLLECTOR·EMITIER VOLTAGE (VOLTSI 1-838 ® PNP MJE4350 MJE4351 MJE4352 MJE4353 NPN MJE4340 MJE4341 MJE4342 MJE4343 MOTOROLA l1li HIGH-VOLTAGE - HIGH POWER TRANSISTORS 16 AMPERE POWER TRANSISTORS COMPLEMENTARY SILICON . designed for use in high power audio amplifier applications and high voltage switching regulator circuits. • High Collector-Emitter Sustaining Voltage VCEO(sus) = 100 Vdc = 120 Vdc = 140 Vdc = 160 Vdc - NPN MJE4340 MJE4341 MJE4342 MJE4343 100-160 VOLTS PNP MJE4350 MJE4351 MJE4352 MJE4353 , • High DC Current Gain - @ IC = 8.0 Adc hFE = 35 (Typ) • Low Collector-Emitter Saturation Voltage VCE(sat) 2.0 Vdc (Max) @ IC 8.0 Adc = = MAXIMUM RATINGS Rating Symbol MJE4340 MJE4341 MJE4342 MJE4343 MJE4350 MJE4351 MJE4352 MJE4353 VCEO 100 Collector-Base Voltage VCB 100 Emitter-Base Voltage VEB Collector-Emitter Voltage Collector Current Continuous 'C Peak (11 Base Current Contlnous 'B Po Total Device DISSipation @TC=25°C Operating and Storage Junction Temperature Range ... Unit 120 140 160 Vde 120 140 160 ..• Vde 70 . . .. 16 20 • . 50 . 125 -65 to +150 TJ.Tstg Vde Ade Ade Watts °c THERMAL CHARACTERISTICS Characteristic Thermal Resistance. Junction to Case (1) Pulse Test Pulse Width ~ 5 0 IJS. Duty Cycle ~10% STYLE 1 1. BASE 2. COLLECTOR 3. EMITTER 4. COLLECTOR FIGURE 1 - POWER DERATING REFERENCE: AMBIENT TEMPERATURE 5 a MIlL1METERS INCHES DIM MIN MAX MIN MAX A 20.32 21.08 0.800 0.830 ~ r'-.. 5 a 5 ~ 05 "- B C 0 ""- ~ E G H J K "- L N ~ 25 50 n 75 100 125 150 TA. AMBIENT TEMPERATURE (OCI 15.49 4.19 1.02 1.35 5.21 2.41 0.38 12.70 15.88 12.19 4.04 15.90 5.08 1.65 1.65 5.72 3.20 0.64 15.49 16.51 12.70 4.22 0.610 0.165 0.040 0.053 0.205 0.095 0.015 0.500 0.625 0.480 0.159 CASE 340-01 TO-21 SAC 1-839 0.626 0.200 0.065 0.065 0.225 0.126 0.025 0.610 0.650 0.500 0.166 MJE4340 thru MJE4343NPN, MJE4350 thru MJE4353PNP 1111 I ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted) I Characteristic Svmbol Min Max 100 120 140 160 - - 750 750 750 750 - 1.0 5.0 Unit OFF CHARACTERISTICS Collector-Eminer Sustaining Voltage (1) (IC = 200 mAde, IS = 0) Collector-Emitter Cutoff Current (VCE = 50 Vde, IB = 0) (VCE = 60 Vde, IB = 0) I'ICE = 70 Vde, IB = 0) (VCE = BO Vdc, IB = 0) Vde VCEO(sus) MJE4340, MJE4341, MJE4342, MJE4343, MJE4350 MJE4351 MJE4362 MJE4353 MJE4340, MJE4341, MJE4342, MJE4343, MJE4350 MJE4351 MJE4352 MJE4353 ICEO I'Ade - Collector-Emitter Cutoff Current (VCE = Rated VCB, VEB(off) = 1.5 Vde) (VCE = Rated VCB, VEB(off) = 1.5 Vde, TC = 150°C) ICEX Collector-Base Cutoff Current (VCB = Rated VCB, IE = 0) ICSO - 750 I'Ade Emitter-Base Cutoff Current lEBO - 1.0 mAde 15 8.0 35 (TVp) 15 (Typ) 2.0 3.5 3.9 Vde mAde I'IBE = 7.0 Vde, IC = 0) ON CHARACTERISTICS (I) DC Current Gain (IC = B.O Ade, VCE = 2.0 Vdc) (lC = 16 Ade, VCE = 4.0 Vde) hFE - Collector-Emitter Saturation Voltage (IC = B.O Ade, IS = BOO mAl (IC = 16 Ade, IS = 2.0 Adc) VCE(Sat) Sase-Emitter Saturation Voltage (IC = 16 Adc, IS = 2.0 Adc) VBE(sat) - Vde Sase-Emitter On Voltage (lC = 16 Adc, VCE = 4.0 Vde) VBE(on) - 3.9 Vde fr 1.0 - MHz Cob - 800 pF DYNAMIC CHARACTERISTICS Current-Gain-Bandwidth Product (2) (lC = 1.0 Adc, VCE = 20 Vdc, Itest = 0.6 MHz) Output Capacitance (VCS = 10 Vde, IE = 0, 1=0.1 MHz) (tl Pul •• T••t: Pulse Width";; 300 ~., Duty Cycl...2.0%. (2Itr=lhtei • t 't•• FIGURE 3 - TYPICAL TURN-ON TIME FIGURE 2 - SWITCHING TIMES TEST CIRCUIT 3.0 VCC +30V I I 2.0 TJ =250 C lellB =10 I VCP30V 1.0 ./ O.1 RS "" 0.5 ,3. 51 t r• tf~10 ns Outy Cycle = 1.0% 0, ~ 0.3 ~~ O. 2 .... Ir -- O. 1 -4V 0.01 0.05 RS and RC varied to obtain desired current levels 01 must be fast recovery type, eg: 0.03 0.2 MBD5300 used above IS == 100 mA MSD6100 used below Ie == 100 mA Note: Reverse polarities to test PNP devices. 1-840 ~ -- fd" VBE(offl = 5.0 V 0.3 0.5 0.1 1.0 2.0 3.0 5.0 1.0 Ie, COLLECTOR CURRENT (AMPI 10 20 MJE4340 thru MJE4343NPN, MJE4350 thru MJE4353PNP TYPICAL CHARACTERISTICS FIGURE 4 - TURN·OFF TIME 5.0 r- '" TJ' 2S·C I-IC/lpl0 IB1=IB2 VCE'30V- I-- 1 I ........ t, 3.0 '-,. 2. 0 .3 :IE '" ;:: -' 1.0 ["'0" O.1 O. 5 0.2 0.3 FIGURE 5 - ON VOLTAGES 2.0 ~ / ~ . ~ 1.2 'r-.. '" ~ 5 V - tf -Tl.Js.~ 1.6 > :> rjBE fVfE,' 0.4 0.5 0.1 1.0 2.0 3.0 5.0 1.0 IC. COLLECTOR CURRENT lAMP, 10 0.2 ~ L ~.~ ~ JCEllt,ll~/iB I. \0 o 20 :::::~ ,BEi"t'@ ICII8' 1 0.8 ~ 2.0 3.0 5.0 1.0 10 0.5 0.1 1.0 'c. COLLECTOR CURRENT lAMP' 0.3 20 DC CURRENT GAIN FIGURE 6 - MJE4340 SERIES ,NPN) FIGURE 7 - MJE4350 SERIES (PNP) 1000 1000 Cf I --- - z '".... 100 i 0It::! ~ :::0 ... -r-.,. -- - 100 :::0 '" .... CI .J;t --- - --... z Cf '" ..... ....... '"CI U 50 VCE 1 20 10 t::±::!TJ II 02 05 =2 V - - 10 1 .... ='~~~~ ~ t:::±:I TJ = 1~~:~ -55°C I 2.0 II 10 10 5.0 20 02 10 05 FIGURE 8 - COLLECTOR SATURATION REGION c ~ ~ I.6 ~ c I II I II Icl.~t- r- T -25OC a,OA lSA > I.2 ~ :IE ~ O.a ~ 0.4 S ~ > - 55°C 1 2.0 50 IC. COLLECTOR CURRENT lAMPS) 'C. COLLECTOR CURRENT lAMPS) ~ 2.0 ,....., VCE = 2 V 1 I'- I'-. 0 0.05 0.01 O. I 0.2 0.3 0.5 0.1 1.0 'B. BASE CURRENT lAMP) 1-841 2.0 3.0 5.0 10 20 MJE4340 thru MJE4343NPN, MJE4350 thru MJE4353PNP FIGURE 9 - THERMAL RESPONSE .... c I'O.IIII~~ -= -, -n n O.51-- :E "'- WQ :s:w o-N t; ~ wa ";c ~~ c- C- BJC(I) r(l) BJC ~ BJC =1.0 o C/W Max _ o CURVES APPLY FOR POWER _ PULSE TRAIN SHOWN READ TIME AT 11 D =0.5 O. o.2 Duly Cycle. 0 - 11/12 .1 -'""" o.1 o-w ...... >2 .0 ~~o.o5 ..... "'0; ..... ::.'" 0.02 ...... ~i."gl. ~UIS~ II 0.05 0.1 0.2 TJ(pk) TC P(pk)BJC(I) llt=:2~ I TTTnT 1111 I I - ~ pr.J U L .01 L ~ 0.0 0.02 f.::;:. i:;;:P 0.5 1.0 2.0 5.0 I,TIMElm.1 10 20 50 100 200 1000 500 2000 FIGURE 10 - MAXIMUM F=ORWARD BIAS SAFE OPERATING AREA 100 ;;:- ~ 20 10 j 5.0 '"' ~ 2.0 ~ 1.0 B 0.5 :::> II: ~ There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate IC-VCE limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. The data of Figure 10 is based on TC = 25°C; TJ(pk) IS variable depending on power level. Second breakdown pulse limits are valid for duty cycles to 10% but must be derated when TC;;' 25°C. Second breakdown limitations do not derate the same as thermal limitations. Allowable current at the voltages shown on Figure 10 may be found 'at any case temperature by using the appropriate curve on Figure 9. . 0.2 0.1 VCE, COLLECTOR·EMITTER VOLTAGE (VOLTS) FIGURE 11 - MAXIMUM REVERSE BIAS SAFE OPERATING AREA REVERSE BIAS For inductive loads, high voltage and high current must be sustained simultaneously during turn-off, in most cases, with the base to emitter junction reverse biased. Under these conditions the collector voltage must be held to a safe level at or below a specific value of collector current. This can be accomplished by several means such as active clamping, RC snubbing, load line shaping,'etc. The safe level for these devices is specified as Reverse Bias Safe Operating Area and represents the voltagecurrent conditions during reverse biased turn-off. This rating is verified under clamped conditions so that the device is never subjected to an avalanche mode. Figure 11 gives RBSOA characteristics. 20 1 "\ 1\ \ 16 ~ ~ a '" ~ 12 '\. 80 t-..... MJE434U1 MJE43S0 I I MJE4341 t-MJE43S;' 4.0 20 1-842 - K1'-.. B ~ TJ=IOOoC ._ VSEloff)';;S V I\- - .1MJE4342 MJE4352 I ~ FlMJE4343 40 60 80 100 120 140 160 VCE, COLLECTOR·EMITTER VOLTAGE (VOLTS) MJE4353 180 PHP MPH ® MJE5180 MJE5170 MJE5181 MJE5171 MJE5182 MJE5172 MOTOROLA COMPLEMENTARY SILICON PLASTIC POWER TRANSISTOR 6.0 AMPERE POWER TRANSISTORS COMPLEMENTARY SILICON · .. designed for use in general purpose amplifier !lnd switching applications. • Collector-Emitter Saturation Voltage VCEO(sat) = 1.5 Vdc (Max) @ IC = 6.0 Adc 120. 140, 160 VOLTS 65 WATTS • Collector-Emitter Sustaining Voltage VCEO(sus) 120 Vdc (Min) - MJE5170, MJE5180 = 140 Vdc (Min) - MJE5171, MJE5181 = 160 Vdc (Min) - MJE5172, MJE5182 • Compact TO-220 AB Package • TO-66 Leadform Also Availability MAXIMUM RATINGS Reting Collector-Emitter Voltage 120 VCEO Collector-Base Voltage VCB Emitter-Base Voltage VEB Collector Current - MJE5180 MJE5181 MJE5182 MJE5170 MJE5171 MJE5172 Symbol Continuous Peak . ... ... 120 -- IC Base Current IB Total Power Dissipation @TC=25'C Derate above 25'C Po Total Power Dissipation @TA = 25'C Derate above 25'C Po Unclamped Inductive Load Energy (1) .... .. E Operating and Storage Junction Temperature Range 160 Vdc 140 160 Vdc • 5.0 •• 6 10 2.0 • 65 0.52 •• •• • 2.0 0.016 62.5 _ - 6 5 t o +150_ TJ,Tstg Unit 140 Vdc Adc Adc Watts wrc Watts wrc mJ 'c STYlE 1 PIN 1 BASE 2 COlLECTOR THERMAL CHARACTERISTICS 3 EMITTER 4 COLLECTOR Characteristic Thermal Resistance, Junction to Case Thermal Resistance, Junction to Ambient (1) Ie = 2.8 A, L TA 4.0 = 50 mHo P.R.F. = 10 Hz, Vee FIGURE 1 - Te 80 Symbol Max Unit R8JC 1.92 'CIW 62.5 'CIW R8JA = 10 V. RBE = 100 n. POWER DERATING NOTES 1 DIMENSION H APPLIES TD ALL LEADS 2 DIMENSION L APPLIES TO LEADS 1 AND 3 3 DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED 4 DIMENSIONING AND TDLERANCING PER ANSI Y14 5M, 1982 5 CONTROLLING DIMENSION INCH DIM g 3.0 ~ A 8 C " Ne 60 z: • 0 ~ ~ 2.0 ~ 40 r---..... ~ ~ ~ .e 1.0 20 o o F G H J K L t".... ~t-.. • " Q r--.... r-.......: t-.... S T U V Z ~~ 20 40 60 80 100 120 140 160 T. TEMPERATURE lOCI 1-843 i.03 0.080 CASE 221A-02 (TO·220AB) .. MJE170, MJE171, MJE172, MJE5180, MJE5181, MJE5182 I IIJ ElECTRICAL CHARACTERISTICS (TC = 25'C unless otherwise noted) Characteristic Symbol Min Max VCEO(sus) 120 140 160 - - 0.7 0.7 0.7 Unit OFF CHARACTERISTICS Collactor-Emitter Sustaining Voltage (1) (lC = 30 mAde, IB = 0) MJE5170, MJE5180 MJE5171, MJE5181 MJE5172, MJE5182 Collactor Cutoff Cu rrent (VCE = 60 Vde, IB = 0) (VCE = 70 Vde, IB = 0) (VCE = 80 Vde, IB = 0) Collactor Cutoff Current (VCE = 120 Vde, VEB (VCE = 140 Vde, VEB (VCE = 160 Vde, VEB mAde ICEO· MJE5170, MJE5180 MJE5171, MJE5181 MJE5172, MJE5182 - /'Ade ICES = 0) = 0) = 0) - MJE5170, MJE5180 MJE5171, MJE5181 MJE5172, MJE5182 Emitter Cutoff Current (VBE = 6.0 Vde, IC = 0) Vde lEBO - - 400 400 400 - 1.0 30 15 100 mAde ON CHARACTERISTICS (11 OC Current Gain (lC = 0.3 Ade, VCE = 4.0 Vde) (lC = 3.0 Ade, VCE = 4.0 Vde) hFE - Collector-Emitter Saturation Voltage (lC = 6.0 Ade, IB = 600 mAde) VCE(sat) - 1.5 Vde Base-Emitter On Voltage (lC = 6.0 Ade, VCE = 4.0 Vde) VBE(on) - 2.0 Vde tr 1.0 - MHz Ihlel 20 - - DYNAMIC CHARACTERISTICS Current Gain - Bandwidth Product (2) (lC = 500 mAde, VCE = 10 Vde, Itest = 1.0 MHz) Small-Signal Current Gain (lC = 0.5 Ade, VCE = 10 Vde, I = 1.0 kHz) 111 Pul•• T.st: Pulse Width" 300 '"", Duty Cycle" 2.0%. 121 tr = ih,.1 • 't••t 'FlGURE 2 - SWITCHING TIME TEST CIRCUIT FIGURE 3 - TURN-ON SWITCHING TIMES 5000 VCC +30V 3000 f- NPN PNP -_:2000 SCOPE Ra ....... 1000 ..... 1--'" g ~ 0, 51 Ir ~ 1= b-. r-..... Ir' II '" 10 ns DUTY CYCLE = 1.0% - 4.0 V Ra and RC VARIED TO OaTAIN DESIRED CURRENT LEVELS - .. '" Id (a VBEloffl = 5.0 V -I"TC 25'C VCC 30 V Iclla 10 50 0.2 0.3 0.5 O} 1.0 2.0 3.0 5.0 7.0 0.1 IC, COLLECTOR CURRENT lAMPS) - 100 0, MUST aE FAST RECOVERY TYPE, ego MaD5300 USED AaOVE la = 100 mA MSDS100 USED aELOW la = 100 mA 'FOR PNP'S REVERSE ALL POLARITIES FIGURE 5 - CAPACITANCE FIGURE 4 - TURN-OFF SWITCHING TIMES 300 10000 NPN PNP -- "'S: t'-.. - VCC = 30 V Iclla = 10 200 lal = la2 TJ = 25'C 100 0., 0.1 ~ 100 ~ 70 ~ .- - TJ r- ~ oS 0.5 1.0 2.0 3.0 4.0 IC, COLLECTOR CURRENT lAMPS) I 200 "- ..... If - r---. - Is 10 1-844 30 0.5 -~ -+-Cob 50 S.O 8.0 10 ~ 2~'C- t--f- 1.0 -.. 2.0 3.0 5.0 10 VR, REVERSE VOLTAGE IVOLTS) -20 30 50 MJE170, MJE171, MJE172, MJE5180, MJE5181, MJE5182 III TYPICAL ELECTRICAL CHARACTERISTICS NPN - MJE5180. MJE5181. MJE5182 PNP - FIGURE 10 - COLLECTOR SATURATION REGION 2.0 ; ~ ~ o ... IC = 1.0A 1.2 3.0 A 6.0 A 1\ 0.8 g 10 SOO 100 200 lB. BASE CURRENT (mA) 1000 FIGURE 12 - COLLECTOR-EMITTER SATURATION REGION ~ 0.2 ~ II I ~ 0.6 8 25'C~ " ./ ~ p- Iclla ~ 0.8 ~ ~ :0 0.6 150'C/ 0.4 25'C _____ ti 0.2 g -::::: 0.1 lelia 1.2 u 0.4 0.6 O.B 1.0 2.0 4.0 IC. COLLECTOR CURRENT (AMPSI 0.2 6.0 B.O 10 ~ ~ 0.4 0.6 0.8 1.0 2.0 IC. COLLECTOR CURRENT (AMPS) 4.0 6.0 B.O 10 FIGURE 15 - BASE-EMITTER VOLTAGE 1.4 I. //1 = 10 IdlB = 10 //, ~ /, CJ + 150'CL l 10.1 ~ 3.0A \ ~ ~ !!l 0.8 0.4 1.0A ~ 1.0 ~ IS = \ \ 0 0.4 u w 0.2 .J;: 0 in 1.0 :0 'I' IC f·8 so 20 ~ ~ 1.2 :0 ........ ~ 0.2 =- o ~ ~ \ \ 8 0.4 \ 1\ 1.6 ~ ~ ~ ~ :0 2.0 \ ~ ;:;; 1.6 ~ MJE5170. MJE5171. MJE5172 FIGURE 11 - COLLECTOR SATURATION REGION -55'C - - -...:r- - 0.4 0.1 25'C ~~ V/ ~ V -55'C / -I- V • 1~'C ~ ~ 0.2 0.4 0.6 O.B 1.0 2.0 IC. COLLECTOR CURRENT (AMPS) 25'C I-- V ,..- f-""" rtT I-r- +1U,C ./ ./ ./ J..I..W"'" 4.0 0.4 0.1 6.0 8.0 10 1-845 --l0.2 0.4 I II 0.6 O.B 1.0 2.0 4.0 IC. COLLECTOR CURRENT (AMPS) 6.0 8.0 10 MJE170, MJE171, MJE172, MJE5180, MJE5181, MJE5182 OJ FIGURE 6 - THERMAL RESPONSE C 1.0 ; _ 0.7 0.5 D 0.5 - o ~ 0.3 t'j ~ ,...... 0.2 0.2 ~ ~ 0.1 ~ 0.1 ;J, 0.07 ~ 0.05 :J: 0.05 - 0.02 --....- ~ ::: 0.03 z ~ 0.02 g Plpkl -r~~ ....- I- DUTY CYCLE, D = 111t2 IIII ""-SINGLE PULSE 0.01 '" ~ - tnn ? 0.01 0.02 0.05 0.1 0.5 0.2 1.0 2.0 5.0 I, TIMElmsl I J j II I 10 Z8JCIII = rill R8JC R8JC = 3.125'CIW Max D CURVES APPLY FOR POWER PULSE TRAIN SHOWN READ TIME AT 11 TJlpkl - TC = Plpkl Z8JClti 50 20 100 II 200 500 1.0 k RGURE 7 - ACTIVE-REGION SAFE OPERATING AREA 10 70 5 Oms 0:- 5 0 ! 30 ... r--r-~J~l~O~~ r', \I I\, ffi 2 a ~-- SECOND BREAKDOWN LIMIT ~ - - - BONDING WIRE LIMIT ::> ~ 10 F= --- THERMAL LIMITCci TC ISINGLE PULSEI := 07 ~ 1\ de 05 ~ CURVES APPLY BELOW RATED VCEO u 03 si o5ms '\. 25'C ~ o 10 ms 0.2 01 20 3 0 5 0 7 0 10 20 30 50 70 100 VCE. COLLECTOR-EMITTER VOLTAGE IVOLTS) 200 There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate IC-VCE limits of the transistor that must be observed for ,reliable operation; Le., the transistor must not be subjected to greater dissipation than the curves indicate. The data of Figure 7 is based on TJ(pk) = 150'C; TC is variable depending on conditions. Second breakdown pulse limits are valid for duty cycles to 10% provided TJ(pk) .;; 150'C. T J(pk) may be calculated from the data in Figure 6. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown. TYPICAL ELECTRICAL CHARACTERISTICS NPN - MJE5180, MJE5181, MJE5182 PNP - 500 400 300 200 :z 8 5'C = 55'C - t"-- TJ ~ 100 I- 15 :Ii :::> u 2l i 500 300 150'C - VCE = 4.0 V ~ '" ~ :::> I, ~ 1\ 0.1 0.03 TJ = 150'C 25'C r- ~ 100 10 10 7.0 5.0 0.1 r-- 200 70 50 30 MJE5170, MJE5171, MJE5172 FIGURE 9 - DC CURRENT GAIN FIGURE 8 - DC CURRENT GAIN 0.5 0.7 1.0 2.0 3.0 4.0 IC, COLLECTOR CURRENT IAMPSI I- 70 50 '-' '-' 30 '"i ~~ 6.0 B.O 10 1-846 ,........ ....... I" 20 10 B.O 6.0 5.0 0.1 r-..... -55°C 0.2 0.3 0.4 0.5 0.7 1.0 2.0 3.0 4.0 IC, COLLECTOR CURRENT lAMPS) 6.0 8.0 10 ® MJE5730 MJE5731 MJE5732 MOTOROLA HIGH VOLTAGE PNP SILICON POWER TRANSISTORS 1.0 AMPERE · .. designed for line operated audio output amplifier, SWITCHMODE power supply drivers and other switching applications. POWER TRANSISTORS PNP SILICON • 300 V to 400 V (Min) - VCEO(sus) • 1.0 A Rated Collector Current • Popular TO-220 Plastic Package 300-350-400 VOLTS 40 WATTS • TO-66 Leadform Available • PNP Complements to the TIP47 thru TIP50 Series ~I-S Symbol Rating Collector-Emitter Voltage VCB Emitter-Base Voltage VEB Continuous Peak IC Base Current IB Total Power Dissipation @TC = 2S"C Derate above 2S"C Po Total Power Dissipation @TA= 25"C Derate above 2S"C Po Unclamped Inducting Load Energy (See Figure 10) Operating and Storage Junction Temperature Range MJE5730 MJE5731 MJE5732 VCEO Collector-Base Voltage Collector Current r~B ! II L..l t A MAXIMUM RATINGS E TJ,Tstg .. .. ... .... Unh 300 350 400 Vdc 300 350 400 Vdc 5.0 1.0 3.0 • Vdc ~ Adc ~ Adc ~ Watts • 1.0 .. 40 0.32 2.0 0,016 20 wrc • • Watts wrc mJ _-65to+150_ ·C THERMAL CHARACTERISTICS Symbol Max Unh Thermal Resistance, Junction to Case RIIJC 3.125 OC/W Thermal Resistance, Junction to Ambient RIIJA 62.5 "C/W Characteristic F + ,"';J, u ~Dr!: i=1!i sm " Z K J -:Jt~ STYLE I PIN I BASE 2 COLLECTOR 3 EMITTER 4 COLLECTOR , j~N' 't~ j NOTES I DIMENSION H APPLIES TO ALL LEADS 2 DIMENSION L APPLIES TO LEADS I AND 3 3 DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED 4 DIMENSIONING AND TOLERANCING PER ANSI YI4 5M, 1982 5 CONTROLLING DIMENSION INCH DI. A B C D F G H J K l • • D S T U V Z CASE 221A-02 TO-22OAS 1-847 l---r MJE5730, MJE5731, MJE5732 I ELECTRICAL CHARACTERISTICS (TC = 25"<: unless otherwise noted) I Characteristic Min Symbol Max Unit OFF CHARACTERISTICS Collector-Emitter Sustaining Voltage (1) (lC = 30 mAde, Ie = 0) Collector Cutoff Current (VCE = 200 Vde, Ie = 0) (VCE = 250 Vde, Ie = 0) (VCE = 300 Vde, Ie = 0) Collector Cutoff Current (VCE = 300 Vdc, VeE (VCE = 350 Vde, VeE (VCE = 400 Vde, VeE Vde VCEO(sus) MJE5730 MJE5731 MJE5732 ICEO mAde - MJE5730 MJE5731 MJE5732 1.0 1.0 1.0 - ICES = 0) = 0) = 0) - 300 350 400 Emitter Cutoff Currl!nt (VeE = 5.0 Vde, IC = 0) mAde - MJE5730 MJE5731 MJE5732 IEeO 1.0 1.0 1.0 1.0 mAde ON CHARACTERISTICS '11 DC Current Gain (lC = 0.3 Ade, VCE (lC = 1.0 Ade, VCE - hFE = 10 Vde) = 10 Vde) 150 30 10 Collector-Emitter Saturation Voltage (lC = 1.0 Ade, Ie = 0.2 Ade) VCE(sat) Base-Emitter On Voltage (lC = 1.0 Ade, VCE = 10 Vde) VeE(on) - Current Gain - Bandwidth Product (lC = 0.2 Ade, VCE = 10 Vde, f = 2.0 MHz) for 10 Small-Signal Current Gain (lC = 0.2 Adc, VCE = 10 Vdc, f hfe 25 - 1.0 Vde 1.5 Vde DYNAMIC CHARACTERISTICS = 1.0 kHz) - MHz - 11) Pulse Tost: Pulsowidth .. 3OO,.s. Duty Cycle" 2.0%. FIGURE 1 - DC CURRENT GAIN FIGURE 2 - COLLECTOR-EMITTER SATURATION VOLTAGE 200 '00 =T} - ',solc .'" 50 =z g i 5.0 g 3.0 2.0 0.02 0.03 D.' 0.2 0.3 0.5 1.0 I 1 " 0.05 II I II il 1.0 ~ 0.8 ~ :l! 10 I I w '"~ 30 c-- r-. 55'C "" 1.4 ~ 1.2 P25'C !Z 20 ::> u in !:i VCE = 10V I TJ = 25'C ~I 06 . ~ 0.4 I cl ~O.2 JJII' 2.0 IC. COLLECTOR CURRENT ,AMPS) 1-848 o , 55 /j1-50~ - VCE!.,tl (jL 0.02 0.03 0.05 'd's 5.0 0.1 0.2 0.3 0.5 IC. COLLECTOR CURRENT (AMPS) 1.0 2.0 MJE5730,MJE5731,MJE5732 1.4 1.2 I I I I I I i!! 1.0 TJ = -55'C is f - VBElsal) @ IC/IB 5.0 ~0.8 ~ ~ ~ 0.6 i-- :> 0.4 -- 0.02 0.03 0.05 I 10 ~ "\. I'-..: 08 I25'C t'\. ~ '"z ~ '" 0.1 0.2 0.3 0.5 IC. COLLECTOR CURRENT lAMPS} THERMAL " \ DERATING 04 DERATING I--- !"\. " 02 ~ 2.0 1.0 SECO~O BREAK~OWN ~ "-I\- ""- f'..... '"'"t; 06 V ,/ 150'C 0.2 o .. FIGURE 4 - NORMALIZED POWER DERATING FIGURE 3 - BASE-EMITTER VOLTAGE 25 50 '" 100 125 150 75 TC. CASE TEMPERATURE I'C} 175 FIGURE 5 - FORWARD BIAS SAFE OPERATING AREA - 10.0 .. 5.0 1L ~ 2.0 e- z 1.0 I 0.5 a~ 25'C TC ::21 - ~0.05 --- - -- "100 I'-! de 1.0~ ~001'-!_ ",- BONDING WIRE LIMIT - - THERMAL LIMIT SECOND BREAKDOWN LIMIT -- MJE5730 MJE5731 MJE5732 10 20 30 50 100 200 VCE. COLLECTOR·EMITTER VOLTAGE IVOLTS) 0.02 0,01 5.0 ~ 300 500 There are two timitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate IC-VCE limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. " The data of Figure 5 is based on TJ(pk) = 150'C; TC is variable depending on conditions. Second breakdown pulse limits are valid for duty cycles to 10% provided TJ(pk)" 150'C. TJ(pk) may be calculated from the data in Figure 6. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown. FIGURE 6 - THERMAL RESPONSE 510 ~ 07 ~ 03 ~ 05 J-- 0- 0 5 ~ 02 '" ~ 01 ~ 007 ~ 005 i 003 g '" 0 02 ~ ~ 01 F= F F I--:: ~ ::;::; ..... 02 ~ .- Plpk} fJ1J1 J.--i-- ---~I=1 =005 ~ t ~P 12_ TJlpkl - TC DUTY CYCLE. 0 ~ IJ /12 D02..- O~V P' 001 002 = Plpk) R9JCII) I SINGLE PULSE 1111 I II 001 R9JCII) = rll) R9JC RruC = 3.1 25'CIW Max D CURVES APPLY FOR POWER PULSE TRAIN SHOWN READ TIME AT II 01 02 05 10 20 I. TIME Imsl 1-849 50 10 I I I 111111 20 50 100 I I I 200 I SOD lk MJE5730, MJE5731, MJE5732 FIGURE 7 - SWITCHING TIME EQUIVALENT CIRCUIT VCCo-------~~--------~ RC Scope RB Yin 0 - -.....--"""11/'.---._-1 11 '" 7.0 ns 100 '" t2 < 500 JJ.S 13 < 15 ns I I I I I I I I I I I 51 I I r---12--1 Cjd «Ceb 13 J---- Approx. + 9.0 V Duty Cycle ~ 2.0% ':' +4.0 V I I -I----t-----I I Turn-Off Pulse RGURE 8 - TURN"()N RESISTIVE SWITCHING TIMES FIGURE 9 - RESISTIVE TURN-OFF SWITCHING TIMES 1.0 5.0 0.2 j 0.1 ~ - -.. Id " ! 0.05 1.0 :1 '" :;; ;= - -' 0.03 0.02 0.0 1 0.Q2 0.03 3.0 2.0 TJ 25'C - VCC 200V- Idls ~ 5.0'- 0.5 ~ I, 0.3 0.05 0.1 0.2 0.3 - TJ 25'C - I VCC = 200 V- J--ICIIS = 5.0 - J--- - Is "~ 0.5 " 0.3 0.2 r--. I'--. 0.1 0.5 1.0 2.0 0.05 0.02 0.03 0.05 0.1 0.2 0.3 1.0 0.5 2.0 IC. COLLECTOR CURRENT (AMPS) IC. COLLECTOR CURRENT (AMPS) FIGURE 10 -INDUCTIVE LOAD SWITCHING Tost Circuit ovi Input Vcc - 20 V Input Ie Monitor i :~100 ms - - - - . I : I I I 1 I I I I I I cOllect~~63A~_:---1 --------1-- 1 - - Current oV I I I I I I VCEA--t--- I COllector: Voltage I I I 10 V I Note l: Input pulse width is increased until 'eM'" 0.63 A. 2: For PNP te.ting, all polarities ar. reversed. VCE(sat)-- 1-850 (S •• Note 1) r-----I I U U ,. I' -, Voltage -5 V __ 100mH Voltage end Current Waveforms I I tw:::;::: 3m. I '---------1-- _I : I I I I I -- ® MJE5740 MJE5741 MJE5742 MOTOROLA NPN SILICON POWER DARLINGTON TRANSISTORS The MJE5740, 41,42 darlington transistors are designed for high· voltage power switching in inductive circuits. They are particularly suited for operation in applications such as: • Small Engine Ignition SAMPERE NPN SILICON POWER DARLINGTON TRANSISTORS 300,350,400 VOLTS aoWATTS • S)Nitching Regulators • Inverters • Solenoid and Relay Drivers • Motor Controls MAXIMUM RATINGS Symbol Rating Collector-Emitter Voltage VcEOlsusl VCEV Coliector·Emitter Voltage Emitter Base Voltage '1; a MJE5740 MJE5741 MJE5742 300 350 400 700 SOO 600 S_ I Collector Current Unit Vdc Vdc Vdc Adc - Continuous •I IC ICM Peak (1) Base Current Continuous Peak (1) Total Power Dissipation @TA = 25DC Derate above 250C Total Power Dissipation @TC = 25°C Derate above 250C Operating and Storage Junction Temperature Range 18 I IBM PD I S162.55_ Adc 216- Watts mW/oC SO_ _640_ _ -66 to +150_ Watts mW/oC I I PD I TJ, Tstg °c THERMAL CHARACTERISTICS Ch.acteristic Thermal Resistance, Junction to Case Thermal Resistance, Junction to Ambient Symbol Max Unit R8JC R8JA 1.56 62.5 °C/W DC/W TL 275 DC Maximum Lead Temperature for Soldering Purposes: liS" from Case for 5 Seconds (1) Pulse Test: Pulse Width =5 ms, Duty Cycle";; 10%. ~ "" "t;'" ~ 60 """ '"z;:: ~ '"" Thermal 40 3 :r 20 20 40 ~ 1t~ STYLE 1 PIN 1. 2. 3. 4 Deratin~ '""""" K L N 0 R 60 80 100 120 Te. CASE TEMPERATURE (DC) """ ['- S T U V Z I'.. 140 160 1-851 1~;- ~ I Dj~N'~~ BASE COLLECTOR EMITTER COLLECTOR J ~ grt F ot!n~L-T 0 F G H Second Breakdown Derating ~~ u C ~~ ~ 80 r~ ll]t2 DIM A B FIGURE 1 - POWER DERATING 100 1~fS c MILLIMETERS MIN MAX 1460 1575 965 1029 406 482 064 089 373 361 241 267 279 393 036 056 1270 1427 114 139 483 533 254 304 204 279 114 139 648 5.97 000 127 114 2.03 - ::::j L INCHES MIN MAX 0575 0620 0380 0405 0160 0190 0025 0035 0142 0147 0095 0105 0110 0155 0014 0022 0500 0562 0045 0055 0190 0210 0100 0120 0080 0.110 0045 0.055 0235 0.255 0.000 0.050 0045 - 0.080 CASE 221A-02 TO-220AB MJE5740, MJE5741, MJE5742 ELECTRICAL CHARACTERISTICS (TC = 250C unless otherwise noted.1 Symbol Min Typ Max Unit VCEO(su,1 300 350 400 - - Vde - - 1 Characteristic OFF CHARACTERISTICS (1) MJE5740 Collector-Emitter Sustaining Voltage (lC = 50 mA, IS = 01 MJE5741 MJE5742 Collector Cutoff Current (VCEV (VCEV mAde ICEV = Rated Value, VSE(offl = 1.5 Vdel = Rated Value, VSE(offl = 1.5 Vde, TC = 1000CI Emitter Cutoff Current IESO 5 75 mAde (Ves = 8 Vde, IC = 01 SECOND SREAKDOWN Second Breakdown Collector Current with base forward biased See Figure 6 Clamped Inductive SOA with Base Reverse Biased See Figure 7 ON CHARACTERISTICS (11 DC Current Gain - hFE = 0.5 Ade, VCE = 5 Vdel (lc = 4 Ade, VCE = 5 Vdel (lC Collector-Emitter Saturation Voltage (lC = 4 Ade, IS = 0.2 Adel (lC = 8 Ade,IS = 0.4 Adel (lC = 4 Ade, IB = 0.2 Ade, TC Base-Emitter Saturation Voltage 100 400 - - - 2 3 2.2 - - - Vde VCE(satl = 1000CI - Vde VSE(satl (lC =4 Adc, IB = 0.2 Adcl (lC = 8 Adc, IS = 0.4 Adcl (lC = 4 Ade, IS = 0.2 Ade, TC Diode Forward Voltage (21 (IF 50 200 = 1000 CI Vf - td tr - - 2.5 3.5 2.4 2.5 Vdc 0.04 - , 0.5 - ~. 8.0 2.0 - IlS - Il' - = 5Adel SWITCHING CHARACTERISTICS Typical Resistive Load (Table 11 Delay Time (VCC = 250 Vde, IC(pkl =SA Rise Time lSI = IS2 = 0.25A, tp = 25 ~s, Storage Time Duty Cycle ';;1 %1 Fall Time IS tf .. Inductive Load, Clamped (Table 11 I I (lC(pkl = SA, VCE (pkl = 250 Vdc Crossover Time IBI = O.OS A, VBE(offi = 5 Vdc 1 (11 Pulse Test. Pulse WIdth - 300"s, Duty Cycle -- 2%. Voltage Storage Time - Isv I - I Ie I 4.0 2.0 I - IlS IlS I (2) The internal Collector-ta-Emitter diode can eliminate the need for an external diode to clamp inductive loads. Tests have shown that the Forward Recovery Voltage (Vf) of this diode is comparable to that of typical fast recovery rectifiers. FIGURE 2 - INDUCTIVE SWITCHING MEASUREMENTS IC(~ / ,/' IC/ V 1 :, 90% VCE(pkl I- I--'sv trY ~EIPkl_ r-- A1\ 90% IC 1-1 Pt'fl- 1-"1- ---J '-'c~ !- / VCE 1091 VCElpkl I B - I-- 90%IBI I"\, 10% ..... 1-1-2% IC IClpkl -- --\- -- -- -- -- - " ~ FIGURE 3 - DC CURRENT GAIN 2,000 II 1,000 ~VCE-5.0V - I 150'C +25 OC z ;j' '".... ~ "'a ./ -- -55'C V ./ 100 / ~ '-' c :# - / ~ 10 0.1 TIME 1-852 v v ./ 2.0 1.0 IC, COLLECTOR CURRENT IAMPSI 5.0 10 MJE5740, MJE5741, MJE5742 III TABLE 1 - TEST CONDITIONS FOR DYNAMIC PERFORMANCE RESISTIVE SWITCHING REVERSE BIAS SAFE OPERATING AREA AND INDUCTIVE SWITCHING IN4933 0.001 +Vcc 33 IN4933 ~F Fwl Vcl emp Duty Cycle <: 10% tf" 10 nl ·Selected for ;OJ 1 kV t,. -4.0 V NOTE PW and Vee Adjusted for Desired Rs Adjusted for O.,lred IS1 'e -VBE(offl Coil Data: Ferroxcube Core #6656 GAP for 200 jlH/20A Leo" - 200 ~H Full Bobbin (-16 Turns) #16 Vcc = 30 V Vec = 250 V VCE(pkl = 250 Vdc 01"" 1N5820 or Equiv. IC(pkl = 6A OUTPUT WAVEFORMS ~ t 1 AdJusted to ObtaIn Ie II: ...ow Test Equipment Scope - Tektronix 475 or Equivalent LcO,IIiCpk l '1'" VCC iIii < 10 n. Dutv Cvcl. "" 1 .0% LCO,IIiCpkl w t2 == I- t r . tf Vel amp RS and RC adjusted for de.ired I e and Ie TYPICAL CHARACTERISTICS FIGURE 5 - COLLECTOR SATURATION VOLTAGE FIGURE 4 - BASE·EMITTER VOLTAGE 2.4 '"~ 0 ~ w '"~ 0 > '" 1.0 '" ~ +2}OC 1.4 1.2 :i -550~ I.B I.S ~ O.B 0 hFE=20 2.0 I: ~ § 2.2 I-'" ~ w I--- '-"I.-' ~ 1.4 > 1.2 0 V- ......'" ~ w i,...... . / +150 o V ::::: 0 ...... 1- 0.4 2.0 5.0 0.5 1.0 IC. COLLECTOR CURRENT (AMPSI 1.0 O.B ~ 0.6 rl > 0.2 8 0.6 0.2 hFE=20 I.S to ........ ~ I---r 1.8 10 1-853 0.4 0.1 -55t + 25Cl C - ..... V~ [:....-: t::::: I--- I...- ~I- +150oC ,II II 0.2 2.0 0.5 1.0 IC. COLLECTOR CURRENT IAMPSI 5.0 10 MJE5740, MJE5741, MJE5742 OJ SAFE OPERATING AREA INFORMATION The Safe Operating Area figures shown in Figures 6 and 7 are specified ratings for these devices under the test conditions shown. FORWARD BIAS FIGURE 6 - FORWARD BIAS SAFE OPERATING AREA 16 10 8.0 ~ "...::> ~ a 100~=E 3.0 ..... ...... 1.0 0 ~ :3 10jJS .¥ 0.5 0.3 '" There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate IC- VCE limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate . The data of Figure 6 is based on TC = 25 0 C;TJ(pk) is variable depending on power level. Second breakdown pulse limits are valid' for duty cycles to 10% but must be derated when TC ;;. 25 0 C. Second breakdown Iimitations do not derate the same as thermal limitations. Allowable current at the voltages shown on Figure 6 may be found at any case temperature by using the appropriate curve on Figure 1 . ~ ...... 1 mS"",, 0- fd':-"" ~ 5mS- - - - Bonding Wire Limit ~~ - Thermal Limit (Single Pulse) 0.1 ~.-- Second Breakdown limit ~ 0.05 Curves apply below rated VCEO ....... = ~iE5742 MJE5741 .... MJE5740 0.02 5.0 10 r- 20 50 100 200 VCE. COLLECTOR-EMITTER VOLTAGE IVolts) 400 REVERSE BIAS For inductive loads, high voltage and high current must be sustained simultaneously during turn·off, in most cases, with the base to emitter junction reverse biased. Under these conditions the collector voltage must. be held to a safe level at or below a specific value of collector current. This can be accomplished by several means such as active clamping, RC snubbing, load line shaping, etc. The safe level for these devices is specified as Reverse Bias Safe Operating Area and represents the voltage-current condition allowable during reverse biased turn-off. This rating is verified under clamped conditions so that the device is never subjected to an avalanche mode. Figure 7 gives the complete R BSOA characteristics. FIGURE 7 - REVERSE BIAS SAFE OPERATING AREA S.O ~ 7.0 ~ a'" 60 ::> '" I"" ......... "- f- VSElofj) ,,5.0 V 5.0 TJ = 100 0 C 4.0 0 ~ MJE5740 3.0 :3 ~ ~ 2.0 ~ MJ~5741 V MJE5742 V -'" .-- ~ 1.0 o o 100 200 300 400 VCE. COLLECTOR·EMITTER VOLTAGE IVolts) 500 RESISTIVE SWITCHING PERFORMANCE 'FIGURE 8 - TURN·ON TIME FIGURE 9 - TURN·OFF TIME II 10 1.0 f - ~Ir 0.7 0.5 70 5.0 r= ~ . w 0.3 ,/ 0.2 VCC = 250 V ~ lSI = IS2 iC/f8=20 3.0 ~ ,. 0.1 :---. 0.03 0.02 0.2 0.5 '" 1.0 If 0.3 0.2 i 0.3 / 2.0 0.7 0.5 Id 0.07 0.05 VCC= 250V 181- 182 IC1I8=20 w l= l= Is 2.0 3.0 5.0 7.0 0.7 1.0 IC. COLLECTOR CURRENT lAmps) 0.2 10 0.3 0.5 0.7 10 2.0 3.0 5.0 IC. COLLECTOR CURRENT lAmps) 1-854 7.0 10 ® MJE5850 MJE5851 MJE5852 MOTOROLA Designprs Data Sheet III 8 AMPERE PNP SILICON POWER TRANSISTORS 300,350,400 VOLTS 80 WATTS SWITCHMODE SERIES PNP SILICON POWER TRANSISTORS The MJE5850, MJE5851 and the MJE5852 transistors are designed for high-voltage, hIgh-speed, power switching in inductive circuits where fall time is critical. They are particularly suited for line operated switch mode applications such as: • Switching Regulators • Inverters • Solenoid and Relay Drivers • Motor Controls • Delfection Circuits DeSIgner's Data for "Worst Case" Conditions The DeSIgners Data Sheet per· mlts the deSIgn of most cirCUIts entirely from the informatIon pre· sented. Limit data - representIng Fast Turn-Off Times 100 ns Inductive Fall Time @ 25°C (Typ) 125 ns Inductive Crossover TIme @ 25°C (Typ) deVice characteristIcs boundaries are gIven to facilItate "worst case" deSIgn. Operating Temperature Range -65 to +150°C 100°C Performance SpecifIed for: Reversed BIased SOA with InductIve Loads Switching Times wIth Inductive Loads Saturation Voltages Leakage Currents A MAXIMUM RATINGS Symbol MJE 5850 MJE 5851 MJE 5852 Unit Collector· Emitter Voltage VCEOlsus) 300 350 400 Vdc Collector-Emitter Voltage VCEV 350 400 450 Vdc Emitter Base Voltage VEB 6.0 Vdc Collector Current - -Continuous IC ICM 8.0 16 Adc 'B 'BM Po 40 8.0 Adc Peak 11) Base Current - Continuous Peak III Total Power Dissipation 80 Watts @TC=25°C 0.640 W/OC -6510150 °C Derate above 25°C Operating and Storage Junction Temperature Range TJ, Tslg THERMAL CHARACTERISTICS Characteristic Thermal Resistance, Junction to Case Maximum Lead Temperature for Soldering Purposes: l/SH from Case for 5 Seconds f ,]0 S = Rating ~~ I/'V F-,~It I =1r----.c rlU ~n L-T j"CT'" 1t~ DIM A B C 0 F G H J K L N Max Unit R8JC 1.25 °C/W Q TL 275 °C 5 T R U V Z 1-855 I ,"1t;"' ~ lu STYLE 1 PIN 1 BASE 2 COLLECTOR 3 EMITTER 4. COLLECTOR Symbol (1) Pulse Tesl: Pulse Widlh = 5 ms, DUly Cycle .. 10%. Q Dj~N'~~ j L NOTES lOlMEt/SiONHAPPLlESTQALLLtAOS 2 OlMENS10N l APPliES TO LEAOS 1 AND 3 MILLIA TERS MIN MAX INCHES MIN MAX 1160 1575 0575 965 10 29 0380 4 06 482 0160 064 089 0025 361 ' 373 0142 241 Z 67 0095 279 393 0110 036 056 0014 1270 1427 0500 114 139 0.045 483 533 0190 3.04 100 254 2 04 2.79 0.080 1.14 1.39 0.045 6.48 0.235 5.97 1.27 Q.QOO 0.00 0.045 1.14 2.03 CASE 221A·02 TO·220AB a 0620 0405 0190 0035 0147 0105 0155 0022 05&2 0055 0210 0.120 0110 0055 0.255 0.050 0.080 MJE5850, MJE5851, MJE5852 IIJ I ELECTRICAL CHARACTERISTICS ITc = 25°C unless otherwise noted) I Characteristic Typ Max 400 - - - 0.5 2.5 3.0 mAdc· - 1.0 mAde Symbol Min VCEO(sus) 300 350 Unit OFF CHARACTERISTICS Collector-Emitter Sustaining Voliage (lC= 10 mA.IB=O) MJE5850 MJE5851 MJE5852 Collector Cutoff Current (VCEV = Rated Value. VBE(off) = 1.5 Vde) (VCEV = Rated Value. VBE(off) = 1.5 Vdc. TC = 100°C) ICEV Collector Cutoff Current (VCE = Rated VCEV. RBE = 50 ICER - lEBO - n. TC = 100°C) Emitter Cutoff Current (VEB = 6.0 Vdc. IC = 0) Vdc mAdc SECOND BREAKDOWN Second Breakdown Collector Current with base forward biased Clamped Inductive SOA with base reverse biased See Figure 12 See Figure 13 'ON CHARACTERISTICS DC Current Gain (lc = 2.0 Adc. VCE = 5 Vdc) (IC = 5.0 Adc. VCE = 5 Vdc) - hFE Collector-Emitter Saturation Voltage (IC = 4.0 Adc. IB = 1.0 Adc) (lC = 8.0 Adc. IB = 3.0 Adc) (lC = 4.0 Adc. IB = 1.0 Ade. TC = 100°C) VCE(sat) Base-Emitter Saturation Voltage (IC = 4.0 Adc. IB = 1.0 Adc) (lC = 4.0 Adc. IB = 1.0 Adc. TC;' 100°C) VBE(sat) - 15 5 - - - - - 2.0 5.0 2.5 - - 1.5 1.5 0.025 0.1 I's 0.100 0.5 I's - Vdc Vdc - DYNAMIC CHARACTERISTICS Output Capacitance (VCB = 10 Vdc. IE = O. ftest = 1.0 kHz) SWITCHING CHARACTERISTICS Resistive Load (Table 1) Rise Time (VCC = 250 Vdc. IC = 4.0 A. IBI = 1.0 A. tp = 50 I's. Duty Cycle .. 2%) td tr Storage Time (VCC = 250 Vdc. IC = 4.0 A. IBI = 1.0 A. ts - 0.60 2.0 I'S Fall Time V BE(off) = 5 Vdc. tp = 50 I's. Duty Cycle .. 2%) tf - 0.11 0.5 "s tsv tc - 0.8 3.0 1.5 I's 0.4 tfi - 0.1 - I's 0.5 0.125 - I'S DelayTima Inductive Load. Clamped (Table I! Storage Time Crossover Time Fall Time Storage Time Crossover Time fall Time (lCM = 4A. VCEM = 250V.IBI = 1.0A. VBE(off)= 5 Vdc. TC = 100°C) tsv tc (ICM = 411.. VCEM= 250V.IBI = 1.0A. VBE(off) = 5 Vdc. TC = 25°C) tfi • Pulse Test: PW = 300 I's. Duty Cycle .. 2% 1-856 - - 0.1 I'S I's I'S MJE5850, MJE5851, MJE5852 III TYPICAL ELECTRICAL CHARACTERISTICS fiGURE 2 - COLLECTOR SATURATION REGION fiGURE 1 - DC CURRENT GAIN _ 2.0 200t-- ...... Z 70 50 I---- TJ - 25°C .... 30 ~ :li ~ 20 B g 10 tf! '">~ VCE '" :> 1.6 IC =0.25 A =5 V ~ 1\ '" g 1\ TJ= 25°C 0.8 1\ c 0.4 \ \ \ = :3 3.0 rl > 0.2 0.3 0.5 0.7 1.0 2.0 3.0 IC. COLLECTOR CURRENT (AMPS) 5.0 7.0 0 001 0.01 10 fiGURE 3 - COLLECTOR·EMITTER SATURATION VOLTAGE 2.0 '" ~ '" ~ 1.6 1.6 ~ 1.2 ~ '" TJ = 150°C Q g --- 0.4 8 rl 0 0.1 - .----- '" "" ~ 08 -TJ =25°C II ,,: 04 YTp 25°C 5.0 - > Y 0.3 0.5 0.7 1.0 2.0 3.0 IC. COLLECTOR CURRENT (AMPS) 0.2 5.0 7.0 o 10 ~ 7 f..--- TJ = 150°C 01 0.2 0.3 05 07 1.0 2.0 50 30 ~ 10 ~ ~ a '"'" ~ ... I 200 0 / 4 1--- TJ = 25°C C,b 100 0 TJ =150°C V 10 FIGURE 6 - CAPACITANCE 3000 _ 1 - ... 7.0 IC. COLLECTOR CURRENT (AMPSI fiGURE 5 - COLLECTOR CUTOff REGION / 10 / w U! 0.8 > 2.0 Ic/la =4 ~ 1.2 :i j o 10 0.20 050 I0 la. aASE CURRENT (AMPS) ~ Ic/la = 4 Q 0.05 I- FIGURE 4 - BASE·EMITTER VOLTAGE g 2.0 U.I 5.0A 1.2 '" ~ ~ 0.1 2.5A LOA w 7.0 5.0 2.0 1 1 ~ '" ~ 1IT 111 1 1 ~ TJ =150°C-I- 100 / ~ 500 103 z ;:!: 2 10 I- 100°C U VeE" 200 V-= 8 ~ 10 II=!!=·REVERSE of-+ 25°C 100 FORWARO 0 L/ 10 +0.2 t-.!:0b ~ 200 11 +0.1 -0.1 -0.2 -0.3 VaE. BASE-EMITIER VOLTAGE (VOLTS) -04 30 0.102 -0.5 0.5 10 5.0 10 20 50 100 VR. REVERSE VOLTAGE (VOLTS) 1-857 200 500 1000 MJE5850, MJE5851, MJE5852 TABLE 1 - TEST CONDITIONS FOR DYNAMIC PERFORMANCE RBSOA AND INDUCTIVE SWITCHING VCEOlsus) +V 50 RESISTIVE SWITCHING ~F +~ 0.1 jlF -=. TURN ON TIME -10V~' 500 n 20 III 2 zc +oVJL -2 0 tal ;adjusted 10 n Y2W 50n 2W 0 ~F Input ~2 a..!: 1t500 0.1 °LI ~O ;:)- %W PW Varied to Attain 0.2 Ie'" 100mA Obtain the forced "FE deSired TURN OFF TIME Use Induct'''. SWitching ~F O.1IJF dr.ver as the Input 10 L---------+--~~o~: Jl -v the reSI5t"". test CirCUit -v adjusted to obtain deSired 181 +V adjusted to obtain desired VSE(off) LeaH"" 1aO J.LH Lcoil""80mH Vee'" 10V Rcoil = 0.7 Rcoil n = VCC ~ 0.05 20 V V clamp n = 250 V RS adjusted to attain IS1 Pulse Width"" 10 I-LS OUTPUT WAVEFORMS INOUCTIVE TEST CIRCUIT RESISTIVE TEST CIRCUIT , I .... .... Lcoil(ICM) I o tl~~ I a: W Ie I Rcoll :; III Obtain I ~ U t 1 AdJuued to : Leoil I See above for Detailed Lcoll(lCM) ','--- _J Vclamp Conditions Test Equ,pme'H Scope - Tek tron,x 475 or Equivalent FIGURE 7 -INDUCTIVE SWITCHING MEASUREMENTS FIGURE 8 - INDUCTIVE SWITCHING TIMES , - - - -. ..",- ......... / Ija' - - / -IB1V~~~ 10 ...... 1'--.. -=-~ ...;;;;-,;,.". 90% VCE ---r-- 10% -- ~th r--Isr--! ~ IIVIC ......... ~ ........... I"--.. 90% ICM TIME :;;to" V~ ttl-l V 1\/ 1/\ r:--rCM 2% ~IC~ a w 1\ ;:: 0.6 ~ > ~ ~ 04 0.2 '- I\, "\!.svl000C "'k ~",25.C""""'" t'-.. 1'-...... r-~ I Vclamp VCEM o 2.7 tcl000~\. 0.8 . 3.0 \{ o I '" ....... ....... ........ --- < ~ 1.8 '"'"~ 1.5 r-...... .......... r-- IC' 4 A c - - 2.4 IC/IB' 4 TJ' 25·C- c - - 2.1 r-- t-- - 1-858 g >- 1.2 ~ 0.9 ~ 0.6 l 0.3 8 VBE{.H). BASE·EMITTER VOL TAGE (VOLTS) ~ o .... MJE5850,MJE5851,MJE5852 SWITCHING TIMES NOTE In resistive switching circuits, rise, fall, and storage times have been defined and apply to both current and voltage waveforms since they are in phase. However, for inductive loads which are common to SWITCHMODE power supplies and hammer drivers, current and voltage waveforms are not in phase. Therefore, separate measurements must be made on each waveform to determine the total switching time. For this reason, the following new terms have been defi ned. tsv = Voltage Storage Time, 90% IS1 to 10 % VCEM trv = Voltage Rise Time, 10-90% VCEM tfi = Current Fall Time, 90-10% ICM tti = Current Tail, 10-2% ICM tc = Crossover Time, 10% VCEM to 10% ICM An enlarged portion of the inductive switching waveform is shown in Figure 7 to aid on the visual identity of these terms. For the designer, there is minimal switching loss during storage time and the predominant switching power losses occur during tiie crossover interval and can be obtained using the standard equation from AN-222A: PSWT = 112 VcClcltclf In general, trv + tfi "" tc. However, at lower test currents this relationship may not be valid. As iscommon with most switching transistors, resistive switching is specified at 25°C and has become a benchmark for designers. However, for designers of high frequency converter circuits, the user orinented specifications which make this a "SWITCH MODE" transistor are the inductive switching speeds Itc and tsv) which are guaranteed at 100oC. 1.0 r-.... _020 3 0.7 O~ VCC" 2S0 V Ic/la "4 TJ" 2SoC 0.30 \ ...... \ 0.40 1\ I, 0.10 ];0.30 w 0.07 O.OS - VCC " 2S0 V Ic/la" 4 VaE(olf) "S V TJ" 2SoC r-... o2 01 03 O.S 0.7 20 10 3.0 01 0 0.1 S.O 70 10 0 ~ 1"- Id 0.02 Is 1\ '" ;:: .: 02 0 0.0 3 0.01 SWITCHING TIMES 0 0.70 oSO :tE ~ JURN~FF FIGURE 10 - FIGURE 9 - TURN-ON SWITCHING TIMES 0.3 IC. COLLECTOR CURRENT IAMPSI II 0 S 0.7 10 20 IC. COLLECTOR CURRENT (AMPSI 40 70 FIGURE 11 - TYPICAL THERMAL RESPONSE [ZSJc(tl] < illc 7 0" O.S 05 ~ o. 3 ~ 02 in ~ :i. ffi :i in z " ,.,. 01 00 S - 002 - lJUl ..- ;..~ 002 -r~~ V 005 01 I j Plpkl I ~SliGiEiWi I ....... f-"1 001 L ~ 0.02-"' ~ 00 1 >- 01 00 7 - 005 ;:: 003 >- - 02 ZoJCIII" ,III ROJC ROJC " 1.25 eIW Max o CURVES APPl Y FOR POWER PULSE TRAIN SHOWN READ TIME AT" TJlpkl - TC "Plpkl ZOJCltJ DUTY CYCLE, 0 '" 11/12 II III 02 05 10 2 t, TIME {msl 1-859 I I 20 I I I I 50 I III 100 I I 200 I I I I II 500 1 k 10 III MJE5850,MJE5851,MJE5852 The Safe Operating Area figures shown in Figures 12 and 13 are specified for thesa devices under the test conditions shown. SAFE OPERATING AREA INFORMATION '. FIGURE 12 - MAXIMUM FORWARD BIAS SAFE OPERATING AREA FORWARD BIAS There are ~wo limitations on the power h,andllng ability 20.0 ~ 5 I"' 10.0 100", '" 5.0 .... a ~ 1.0 0.5 ~ :: 0.2 - 8 o. I ~ " Tc-25 0C ~ 2.0 .0 5 .02 7.0 '" " '" Sm. t of a transistor Im~ :--r--- operation, Ie, the transistor must not be subJected to greater dlSSlpatl~n than the curves mdll.:ate' .' '<;. The data of Figure 12 IS based on TC = 250 C. TJ(pk) vaflab}e depending on power level. Second breakdown pulse limits are valid for duty cycles to 10% but must be derated when TC ;.. 2S o C. Second breakdown limitations do not derate the same as Ihermal limitations Allowable current at the voltages shown on Figure 12 may be found IS " 1'1. BONOING WIRE LIMIT ........ - THERMAL LIMIT (SINGLE PULSEI SECOND BREAKDOWN LIMIT MJE585Q MJE5851 MJE5852 at any case temperature by uSing the tipproprlate curve on 10 70 100 200 20 40 VeE. CoLLECTOR·EMITTER VOLTAGE (VOLTS) Figure 15. T J(pk) may be calculated from the data 300 400 500 so ~ ~ !i;: ! - '" 6.0 \ \\ \ 4.0 ~ MJE.8.o MJE.8.1_ MJE.S.2 _ 0 ~ 8 E For inductive loads, high voltage and high current must be sustained Simultaneously dunng turn-off, In most cases, with the base to emitter junction reverse biased. Under these conditions the collector voltage must be held to a safe level at or below a specific value of collector cur· rent. This clm be accomplished by several means such as active clamping, RC snubbing, load line shaping, etc. The safe level for these devices IS specified as Reverse Bias Safe Operating Area and represents the voltage·current condition allowable during reverse biased turn·off. This rating IS verified under clamped conditions so that the device is never subjected to an avalanche mode. Figure 13 gives the RBSOA characteristics. 1\ 5.0 3.0 2.0 ~ t\ \ 1\ \ '\ \ 1.0 200 100 300 400 VCE. COLLECTOR·EMITTER VOLTAGE (VOL TSI 500 I FIGURE 14 PEAK REVERSE BASE CURRENT FIGURE 15 - FORWARD BIAS POWER DERATING I 3& / 3.0 ~ 5 2. - =4 A ~ISI = IA TJ = 2. oC /'" IC /" ./ ~ 2.0 1. 1.0 ./" ./ ~ f--- V /' /' /" o.S s:- t--~ '" t; ·0 :l: Z ffi '"~ 0 20 VSE(offJ. SASE·EMITTER VOLTAGE (VOLTS) 1-860 - r- b 40 SECOND SREAKDOWN DERATING b r-.... THERMAL DERATING o. 4 ~ o. 2 o I. . . . . ""' o.6 to ;::: 0 . Figure 11. REVERSE BIAS l\ \ \ \ ~ 1\ ICIIS =4 VBE(offl =2 V to S V TJ =1000C In At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations Imposed by second breakdown FIGURE 13 - RBSOA, MAXIMUM REVERSE BIAS sAFE OPERATING AREA _ 7.0 average Junction temperature and second breakdown Safe ·operatlng area cuives indicate IC-VCE I,m'ls of the tranSistor that must be observed for reliable ...... r-.... - r- "' " , 60 SO 100 120 TC, CASE TEMPERATURE (OCI " 140 160 ® .. MJE8S00 MJE8S01 MOTOROLA DesignPI's Data Sheet 2.5 NPN SILICON POWER TRANSISTORS SWITCHMODE SERIES NPN SILICON POWER TRANSISTORS 700 and 800 VOLTS 65 WATTS The MJE8500 and MJE8501 transistors are designed for highvoltage, high-speed, power switching in inductive circuits where fall time is critical. They are particularly suited for line operated switchmode applications such as: • l1li AMPERE Designer's Data for "Worst Case" Conditions The DeSigners Data Sheet permIts the deSIgn of most cirCUits entorely from the information pre· sented. Limit data - representing deVice characterIStics boundaries are given to facilitate "worst case" deSign. Switching Regulators • Inverters • Solenoid and Relay Drivers • Motor Controls • Deflection Ci rcuits Fast Turn-Off Times 300 ns Inductive Fall Time - 250 C (Typ) 500 ns Inductive Crossover Time - 25 0 C (Typ) 900 ns Inductive Storage Time - 250 C (Typ) Operating Temperature Range -65 to +1250 C 1000 C Performance Specified for: Reversed Biased SOA with Inductive Loads Switching Times with Inductive Loads Saturation Voltages Leakage Currents MAXIMUM RATINGS Rating MJE8500 MJE8501 Unit Collector-Emitter Voltage VCEOlsus) "700 800 Vdc Collector-Emitter Voltage VCEvi 1200 1400 Vdc Emitter Base Voltage VES 8.0 8.0 Vdc Collector Current - Continuous IC ICM 2.5 5.0 2.5 5.0 Adc IS ISM 2.0 4.0 Adc PD 65 17 0.65 2.0 4.0 65 17 0.65 Symbol Peak 11) Base Current - Continuous Peak 11) Total Power Dissipation @ T C = 2SoC @TC = 100°C Derate above 25°C Operating and Storage Junction TJ, Tstg -65 to +125 Watts DIM A B WloC °c Temperature Range THERMAL CHARACTERISTICS Characteristic Thermal Resistance, Junction to Case MaXimum Lead Temperature for Soldering Purposes: 1/8" from Case for 5 Seconds 11) Pulse Test: Pulse W,dth = 5 ms, Symbol Max Unit ROJC 1.54 TL 275 °CfW DC Duty Cycle" 10%. N n R 4 6 064 361 241 279 036 1270 114 483 254 2.04 1.14 5.97 0.00 1.14 2.03 INCHES MIN MAX 0575 0620 0380 0405 0160 0190 0025 0035 0142 0147 0095 0105 0110 0155 0014 0022 0500 0562 0045 0055 0190 0210 0100 0120 0.080 0.11 0 0.045 0.055 0235 0.255 0.000 0050 0.045 0.080 CASE 221 A-02 1-861 STYLE 1 PIN I BASE 2 COllECTOR 3 EMITTER TO-220 .. COLLECTOR MJE8500, MJE8501 III ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted) Characteristic OFF CHARACTERISTICS Collector-Emitter Sustaining Voltage (Table 1) (lC = 100 mA, IB =0) MJE8500 MJE8501 VCEO(susl Collector Cutoff Current - - - - 0.25 5.0 - Collector Cutoff Current n, TC Vde mAde ICEV (VCEV = Rated Value, VBE(off) = 1.5 Vdc) (VCEV = Rated Value, VBE.(olf) = 1.5 Vde, TC = 100°C) (VCE = Rated VCEV, RBE = 50 700 800 ICER 5.0 mAde lEBO 1.0 mAde = lOOoC) Emitter Cutoff Current (VEB = 7.0 Vdc, IC = 0) SECONO BREAKOOWN Second Breakdown Collector Current with base forward biased See Figure 12 Clamped Inductive SOA with Base Reverse Biased See Figure 13 ON CHARACTERISTICS (1) DC Current Gain (lC = 0.5 Adc, V CE = 5.0 Vdc) hFE COllector-Emitter Saturation Voltage 7.5 - - VCE(sat) (lC = 1.0 Ade, IB = 0.33 Adc) (lC = 2.5 Adc, 18 = 1.0 Adc) (lC = 1.0 Adc, IB = 0.33 Ade, TC = 100°C) Base-Emitter Saturation Voltage - - - - - - - - - 1.5 1.5 - 0.045 0.20 0.2 2.0 ~s 1.0 4.0 !,S 0.5 2.0 ~s 2.0 5.0 3.0 Vdc VBE(sat) (lC = 1.0 Adc, 18 = 0.33 Adc) (lC = 1.0 Adc, IB a 0.33 Adc, TC = 100°C) Vdc DYNAMIC CHARACTERISTICS Output Capacitance (VCB = 10 Vdc, =0, 'test = 1.0 kHz) IE SWITCHING CHARACTERISTICS Resistive Load (Table 1) Delay Time < (VCC = 500 Vdc, IC = 1.0 A, ISl = 0.33 A)VBE(offl = 5.0 Vdc, Ip Duty Cycle" 2.0%) Rise Time Storage Time 'd 'r Is = 50!,s, ,Fall Time tf ~s Inductive Load, Clamped (Table 1) = 1.0 A(pkl. Storage Time (lC Crossover Time Storage Time VBE(off) = 5 Vdc, TC Crossover Time Fall Time (lC = 500 Vdc, = 100°C) Vclamp = 1.0 A(pk), Vclamp = 500 = 5 Vdc, TC = 25°C) 181 Vdc, ISl = 0.33 A, = 0.33 A, VSE(off) (1) Pulse Test: PW . 300 !,S, Duty Cycle" 2%. 1-862 1.3 4.0 ~s tc - 0,6 2.0 tsv 0.9 - te - "s !,S 0.5 - tfi - 0.3 tsv ~s !,S MJE8500, MJE8501 z U TJ~ - ...-i- ;;: Ci3' 2.2 100°C TA ~ 25°C '" 10 VeE ~ ~ o 5V a :5 ; IC - ~ w ~ 1.8 '" ~ o I- ~_ ~ 1.4 7.0 5. 0 ~a: r-... 1.0 .~ \ ~ 2.0 3.0 2.0 2.S \ \ \ \ ~ \ \. 0.2 0.15 \ \ \ 0.6 > 0.05 0.07 0.1 0.3 0.5 0.7 1.0 IC. COLLECTOR CURRENT (AMPSI \ o \ I.SA ry r\ \ g§ \ 3.0 ~1.DA ~ '\!'\ 2.0 I 0.03 IIJI FIGURE 2 - COLLECTOR SATURATION REGION FIGURE 1 - DC CURRENT GAIN 20 0.2 \ r--.... \ 1\ !'.. ...... r--. r-.. 0.7 0.4 0.3 lB. BASE CURRENT (AMPS) 1.0 --- I.S / FIGURE 4 - BASE-EMITTER VOLTAGE FIGURE 3 - COLLECTOR·EMITTER SATURATION VOLTAGE ~ 2.0 ~ 1.6 - I.S ~ -J ~ ~ g '"w 0 ~ w 1.2 VCE(satl @ '" ~ 0 Ic/la ~ 3 > 1= !,;, 0.8 - TJ ~ 100°C o ~ 0.4 = / ~ > 0 0.25 0.30 ~ 2.0 Tr 2SOC W / 1.5 0.4 0.5 0.6 0.7 0.80.91.0 ICE. COLLECTOR CURRENT (AMPSI i..-- I- 1 ~ ~ ~- 8 1.0 '"~ / VBE(sat) @ Ic/la ~ 3 O.S 0.2S 0.3 2.5 ~ I- 10ll"C :i: > 0.4 O.S 0.6 0.7 0.80.91.0 IC. COLLECTOR CURRENT (AMPS) 10000 " " , 3 - -TJ'~1500C 125°C ..... ..; I I 2.S 2SDC 3000 Cj::~100 0 .:> ~ 500 ::i I I- 300 U 7SDC I--- t--REVERSE TJ sooo I " " 100DC 2.0 FIGURE 6 - CAPACITANCE FIGURE 5 - COLLECTOR CUTOFF REGION 104 1.S FORWARD § 100 'VCE~2S0V= Cob U 0 2SoC 10- I -0.4 -0.2 +0.2 +0.4 +0.6 VBE. BASE·EMITTER VOLTAGE (VOLTS) 1-863 0 10.1 0.20.3 0.71.0 2.03.0 7.010 2030 10100 200 VR. REVERSE VOLTAGE (VOLTS) 500 1000 MJE8500. MJE8501 - SWITCHING TIMES NOTE FIGURE 7 - INDUCTIVE SWITCHING MEASUREMENTS IC'::-- . / VI ./ i"\ 90% VCE(pkl ~ A1\ 90% IC l",fI~lll- 1- ',,- I- f---Isv IC/ VCE(pkl "- I--. '-Ic-\ r- / VCE 10% VCE(pkl 1"- 10% ...... ICPk I B - t- 9O%IBl r;.~ -- --\-, -- --- -- -- - """' - ~ TIME FIGURE 8 - PEAK REVERSE BASE CURRENT 1. ~ .1 ,I, I--IC " 1.0 A IBI " 0.33 A 0 .~ . , /V .01/ ...- 1---1"'"" ~ ~ .~ 0 1.0 4.0 6.0 VBE (Offl, BASE EMITTER VOLTAGE (VOLTSI 8.0 In resistive switching circuits, rise, fall, and storage times have been defined and apply to both current and voltage waveforms since they are in phase. However, for inductive loads which are common to SWITCH MODE power supplies and hammer drivers, current and voltage waveforms are not in phase. Therefore, separate measurements must be made on each waveform to determine the total switching time. For this reason, the following new terms have been defined. tsv = Voltage Storage Time, 90% IS1 to 10% VCE (pkl trv = Voltage Rise Time, 10-90% VCE (pkl tfi = Current Fall Time, 90-10% IC tti = Current Tail, 10-2% IC tc = Crossover Time, iO% VCE (pkl to 10% IC An enlarged portion of the inductive switching waveforms is shown in Figure 7 to aid in the visual identity of these terms. For the designer, there is minimal switching loss during storage time and the predominant switching power losses occur during the crossover interval and can be obtained using the standard equation from AN-222: PSWT = 1/2 V CCIc(tclf In general, trv + tfi "" tc' However, at lower test currents this relationship may not be valid . As is common with most switching transistors, resistive switching is specified at 250 C and has become a benchmark for designers. However, for designers of high frequency converter circuits, the user oriented specifications which make this a "SWITCHMODE" transistor are the inductive switching speeds (tc and tsvl which are guaranteed at 1000 C. TYPICAL RESISTIVE SWITCHING PERFORMANCE FIGURE 9 - TURN· ON SWITCHING TIMES 0.600 0.500 0.300 ~.o.lo 0 1.0 ""'" .."' VCC" 500V IC/IB1" 3 TJ " 15°C 1 ........... r---.. ....... ~ ;:: .0 FIGURE 10 - TURN - OFF SWITCHING TIMES I, V 1.0 / ~ 0.01 0 0.050 0.1 0.3 r--- ;--'f 0.300 Id 0.1~ 0.500 ;:: 0.10 0 0.030 _I, ~o.lOo o.~ - 0.7 1.0 IC. COLLECTOR CURRENT (AMPSI Vee" 500V lellB1" 3 TJ " 15°C 0.100 VSE(offl" 5.0 v 1.0 3.0 1-864 0.100 0.15 0.1 I J JJ1 0.3 0.5 0.1 1.0 IC, COLLECTOR CURRENT (AMPSI 1.0 3.0 MJE8500, MJE8501 III TABLE 1 - TEST CONDITIONS FOR DYNAMIC PERFORMANCE RESISTIVE SWITCHING RBSDA AND INDUCTIVE SWITCHING VCEO(susl r-.-----------~--~------_.--_O+15 47 n R' TURN ON TIME +10V>~Ol 20 ::; 7.0 1.6 ~ ag 5.0 ~ '"'" " \.. ~ 8 03 0, 0) ~ 1 \. r--.... 2 0) 0.5 06 "- - 1 ~ I--- I-"'" -,.- 6 04 --t;;;'OC -- TJ0 1000C / / ~ 25 0CI"",:::: -....,- VCE(sat)@le /l a=25 7 I 01 02 05 0) 03 lC' COLLECTOR CURRENT lAMP! 01 TJ'IS0o e 10 2 12s oe '"'" f r-REVERSE "" ./ 10000 7000 / / 'VCE '2'0~ ~ 500 ~t3 200 § 100 ..; 0 2s·e TJ - 250e'~ Cob 0 to- 1 -0.2 0) Cib ~ 1000 FORWARD 100 ·0.4 05 2000 ./ 7soe ~ 03 FIGURE 6 - CAPACITANCE 100 0e 1 02 Ic. COLLECTOR CURRENT lAMP! , / 103 10 \. J.....-"': ".. VBE(s.HI @lle/la '" 2.5 08 / :3 ~ \. T}'250~-;;;;: FIGURE 5 - COLLECTOR CUTOFF REGION ~ \ 1 104 ~ , FIGURE 4 - BASE·EMITTER VOLTAGE 11 005 ~ \ lB. BASE eu RRENT lAMP) 14 " .... \ 1\ 0.3 14 01 ~ .3 4.5 A 0 FIGURE 3 - COLLECTOR ·EMITTER SATURATION REGION '">>' 3.SA\4 A \ Ie, COllECTOR CURRENT (AMP) ~ '"2: w '" ~3A \ 04 il 02 ~ - 1.2 > 20 00, 00) 0 1 ~:le'2A ~. 0.8 \ 3.0 - 1\ 1\ +0.2 +0.4 0 1 0.1 +0.6 VBE. BASE·EMITTER VOLTAGE (VOLTS) 1-869 0.3 0.71.0 30 7.010 30 70 100 VR. REVERSE VOLTAGE IVOLTS! 300 700 tOOO MJE8502, MJE8503 III SWITCHING TIMES NOTE FIGURE 7 - INDUCTIVE SWITCHING MEASUREMENTS IC~ -- ~ I ./ r--- i---'sv IC ........ VCE(pk) ....... "l 90% VCE(pk) !\ 90% IC Irv+l~lft- 1- ',,- --J f- Ic-4 / 10% VCE(pk) VCE 1 S - t- 90% lSI -- --\- -- e--- -- -- -- "'-" - " 10%"" l- I2%IC 'C pk ---- ~ TIME In reslst,ve switching circuits, rise, fall, and storage times have been defined and apply to both current and voltage waveforms since they are in phase. However, for inductive loads which are common to SWITCHMODE power supplies and hammer drivers, current and voltage waveforms are not in phase. Therefore, separate measure· ments must be made on each waveform to determine the total switching time. For this reason, the following new terms have been defined. tsv = Voltage Storage Time, 90% IS1 to 10% VCE(pk) trv = Voltage Rise Time, 10-90% VCE(pk) tfi = Current Fall Time, 90-10% IC tti = Current Tail, 10-2% IC tc = Crossover Time, 10% VCE(pk) to 10% IC An enlarged portion of the inductive switching waveforms is shown in Figure 7 to aid in the visual identity of these terms. For the designer, there is minimal switching loss during storage time and the predominant switching FIGURE 8 - PEAK REVERSE BASE CURRENT 5. 0 0 ",... 0 -- ./ i--'" J......- -~ power losses occur during the crossover interval and r-- can be obtained using the standard equation from AN·222: IC" 2.5A lSI "LOA / 1. 0 0 2.0 4.0 6.0 VSE(olf) .. BASE EMITTER VOLTAGE (VOLTS) B.O PSWT = 1/2 VCCIC(tc)f In general, trv + tfi '" tc' However, at lower test currents this relationship may not be valid . As is common with most switching transistors, resistive switching is specified at 25 0 C and has become a bench· mark for designers. However, for designers of high frequency converter circuits, the user oriented specifica· tions which make this a "SWITCH MODE" transistor are the inductive switching speeds (tc and tsv) which are guaranteed at 1000 C. TYPICAL RESISTIVE SWITCHING PERFORMANCE FIGURE 10 - TURN-OFF SWITCHING TIMES FIGURE 9 - TURN·ON SWITCHING TiMES 1. 0 0.700 2000 0.500 0.300 "" 0.200 .;; ~ 0.100 ~. ...... " t...... "" t--Id +-. 1,7 L/ . ~ 0.600 >= 0.40 °v 0.03f- VCC = 500 v 0.02f- IclISl "2.5 0.3 V ./ If 0.200 0.1 5.0 '-870 r-- t-. VCC = 500 IC/IB" 2.5 VSE(off) " 5.0 V TJ" 25°C 0.300 0.5 0.7 1.0 2.0 3.0 IC, COLLECTOR CURRENT (AMPS) f.- -- O.DO0 0.0 7 0.05 f- Ty 25,c 0.0 1 0.1 0.2 .>V l.- 1.000 0.2 0.3 0.4 0.7 1.0 IC, COLLECTOR CURRENT (AMPS) 5.0 MJE8502, MJE8503 TABLE 1 - TEST CONDITIONS FOR DYNAMIC PERFORMANCE RBSOA AND INDUCTIVE SWITCHING VCEO(sus) RESISTIVE SWITCHING r-,-----------~--~------_.--~+15 47n Rl TURN ON TIME +10V"'~Ol 20 en Z oJL ~o ::l- ... !: ISl "dIU$ted 10 -z hFE da,"ed ZQ 8 obi.," the foreed TURN OFF TIME PW Vaned to Attain Ie = 100 mA USIII .ndu<;e.ve 5w,tc:t"na driver a. the ,"put to the r.Sl&1I118 te$1 CirCUit All Diodes - 1N4934 All NPN - MJE200 All PNP - MJE210 I. Adjust R 1 to obtain I B 1 For SWitching and RBSO A • R2 '" 0 For BVCEO(sus). R2 '" 250 "F - ~djUst obtain VSE(offl ~ 5.0 V QQ VCC=500V Leoll =- 80 mH ReOl1 '" 0 7 Vee LeOd = 10 V ~ 180 ~H Vclamp Aeoll ~ OOSH Vee: 20 V n INDUCTIVE TEST CIRCUIT = 500 V RL=200n Pulse Width = 10 JJs RESISTIVE TEST CIRCUIT OUTPUT WAVEFORMS MRS16 'e 11 Adjusted to It?1 "~'.m"d Obtain ' ..U ] . ", i '"..~ Vcl amp ~rnp 1'" ~ Test EqUipment Scope - TektronIx 475 Of Equlve.ent I-Il~ Time , 12 "" LCOdllCPk I veet vc-r::- . "' ~ Vee 'tt- 1--" Ie I, "" LC01111Cpk I FIGURE 11 - THERMAL RESPONSE ~ 3 ~ II< o ~ Z :! 1.0 O. 7 D' 0.5 O. 5 O. J 0.2 0.2 ~II< O. 1 ~ 0.07f-- 0.05 ffi 0.05 r - 002 :z: .... 0.0J ~ 0.02 ~ .... 0.01 / 0.01 002 ~ .... ;;;.- - 0.1 i-'" fo.ot::::: ...... - :;;0- - tJUl .... 12~~ ZeJC(tl • rlt) R9JC R9JC >1.2S"C/W Max D CURVES APPLY FOR POWER PULSETRAIN SHOWN READ TIME AT 11 TJlpk) - TC' Plpk) Z8JCII) DUTY CYCLE, O' .,/12 SliGnnt DOS P(pk) 01 11111 02 10 05 t, TIME (msJ 1-871 I I 20 I I 111111 SO 100 I I 200 I I II II 500 1.0k MJE8502, MJE8503 SAFE OPERATING AREA INFORMATION FORWARD BIAS There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate IC-VCE limits of the transistor that must be observed for reliable operation: i.e .. the transistor must not be subjected to greater dissipation than the curves indicate. FIGURE 12 - FORWARD BIAS SAFE OPERATING AREA ~ ~ 5 1.0 a 1m. 0: 0: 0: := ; 0.1 BONOING WIRE LIMIT T.HERMAL LIMIT SECONO BREAKOOWN LIMIT E:'':' 8 MJES502 .=l0.01 MJES503'f=: 10 20 50 100 200 500 VCE, COLLECTOR·EMITTER VOLTAGE (VOLTSI 1000 FIGURE 13 - RBSOA, REVERSE BIAS SWITCHING SAFE OPE,RATING AREA REVERSE BIAS l\ \ VSE(olfl" 2 to 7 V 1\ \ TJ .. 100°C I- IC/IB;> 2.5 1\ 2 I \ 1"- rJES50~ FciR RBSOA liMIT IS 200 VOLTS LESS 0 ~ ~ The data of Figure 12 is b~sed on TC = 250 C: TJ(pkl is va"able depending on power )evel. Second breakdown pulse "mlts are valid lor duty cycles to 10% but must be derated when TC ;;. 250 C. Second breakdown limitations do not derate the same as thermal limitations. Allowable current at the voltages shown on Figure 12 may be found at any case temperature by usmg the appropriate curve on Figure 14, TJ(pk) may be calculated from the data in Figure 11. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown. ~ ~ I'- 1~ -l"- I--- = 1400 VCE, COLLECTOR,EMITTER VOLTAGE (VOLTS) For inductive loads, high voltage and high current must be sustained simultaneously during turn-off, in most cases, with the base to emitter junction reverse biased. Under these conditions the collector voltage must be held to a safe level at or below a specific value of collector current. This can be accomplished by several means such as active clamping, RC snubbing, load line shaping, etc. The safe level for these devices is specified as Reverse Bias Safe Operating Area and represents the voltage-current condition allowable during reverse biased turn·off. This rating is verified under clamped conditions so that the device is never subjected to an avalanche mode, Figure 13 gives the complete RBSOA characteristics. FIGURE 14 - POWER DERATING 100 ~ ;:-t-. so r- r-- 0: C 1 1 1 . / ~cond Breakdown Derating - -r- t; :1: 60 / ;;;"' Thermal c Derating z ~ 40 0: ~ ~ 20 l">.. o o 20 50 70 100 TC, CASE TEMPERATURE (oC) 1-872 120 140 ® IJE12007 MOTOROLA III 2.5 AMPERE HORIZONTAL DEFLECTION TRANSISTOR NPN SILICON POWER TRANSISTOR · .. specifically designed for use in small screen black and white deflection circuits. 1500 VOLTS 65 WATTS • Coliector·Emitter Voltage - VCEX = 1500 Volts • Glassivated Base·Coliector Junction • Switching Times with Inductive Loads tf = 0.65 /1S (Typ) @ IC = 2.0 A MAXIMUM RATINGS Symbol Value Unit Collector-Emitter Voltage VCEOlsusl Vdc Collector-Emitter Voltage Emitter-Base Voltage VCEX 750 1500 VEBO 5.0 Vdc Collector Current - Continuous IC 2.5 Adc Base Current - Continuous IB 2.0 Adc Emitter Current - Continuous IE 4.5 Adc Po 65 0.65 Watts WIDC Rating Total Power Dissipation Derate above 2SoC @ TC = 2SoC Operating and Storage Junction Temperature Range TJ. Tst9 -65 to Vdc DC +125 THERMAL CHARACTERISTICS I I Characteristic Thermal Resistance, Junction to Case Symbol ROJC I I Max 1.54 FIGURE 1 - TEST CIRCUIT Unit °C/W ,-1] A C ' tu ,I II -W-r: 1";13 j H L 2. COUECTOR 3 EMITTER 4 COLLECTOR 50kCo_ C.pac:'~Dr val" ... In "F , ....ton., .. 110 w.tt r- ~ A 0.11100 V B C 0 F G H J K L N Q R S T U V Z DRIVER TRANSFORMER ITll Motorola part "umba. 25D68782A-05-1I4" I..... n_ "e" 'ron co", P.lm.,y Induo;1anca- 39 mHo SlIConda'r InductMoca- 22 mtl, L"'qe 'ndlJeUllA ...Ith prlm.ry Iho~ - 2.0 Il .... Prlm.rv 260 .uml #28 AWG .........1 wi ... SOKOftd.ry 17 tu ..... #22 AWG ~ ~r- 9 4 0 3 2 279 036 1270 114 483 2.54 2.04 1.14 5.97 0.00 1.14 - 482 089 373 267 393 056 1417 139 533 304 2.79 1.39 6.48 1.27 - 2.03 ~ ~ 0147 0095 0110 0014 0500 0045 0190 0100 0080 0.045 0.235 0.000 0.045 - CASE 221A·02 T().220AB .n.m_ . .,.. 1-873 Ii ~ ~ 10.29 V ::J r i -x~". 'j~N' STYLE 1 PIN 1 BASE "'>0 sow 5wt8Adj J I =11-5 0105 0155 0021 0.561 0055 0.110 0.120 0.110 0.055 0.255 0.050 - O.OBO MJE12007 , ,. ! I ELECTRICAL CHARACTERISTICS ITC • 2S o C unle.. otherwise noted) Char__ Symbol OFF CHARACTERISTICS (1) CoIlactor~Emitter S,:,staining Voltage VCEO(sus) IIC = 50 mAde. IB •.0) Collector Cutoll Current ICES (VCE a 1500 Vde. VBE = 0) I I Min Typ Mox Unit 750 - - Vde - - 1.0 mAde lEBO - - 0.1 mAde VCElsad - - 5.0 Vde VBElsad - - 1.5 Vde DYNAMIC CHARACTERISTICS Output Capacitance (VCB = 10 Vde. IE • O. I = 0.1 MHz) Cob - 50 - pF Current Gain - 'Bandwidth Product (1) (lC = 0.1 Ade. VCE = 5.0 Vdc. I test • 1.0 MHz) IT - 4.0 - MH. Emitter Cutoff Current (V BE = 5.0 Vde. IC • 0) ON CHARACTERISTICS (1) Coliector·Emitter Saturation Voltage '1C = 2.0 Ade. IB - 1.B Ado) Base-Emitter Saturation Voltage IIC = 2.0 Ade. IB =·l.B Adc) SWITCHING CHARACTERISTICS Fall Time (lC' 2.0 Adc. IBI = 1.0 Adc. LB = 12 I'H) 11) Pulse Test: Pulse Width .. 3001's. Duty Cycle = 2%. FIGURE 2 - DC CURRENT GAIN 30 TJ1= 20 z < '" ~ a u c ~ FIGURE 3 - "ON" VOLTAGE I~OJC _.25 OC 10 2.0 VC~=5~OV ~ - 16 0;- f"o.~ '::; c ~ '" ~ '"> "- 5.0 "' ~ 3.0 2.0 15 0.03 1.2 w 70 0.05 VSE( ..t!@IC/IS = 2 0 0.1 0.2 0.5 1.0 IC. COLLECTOR CURRENT (AMP) looOe 0.4 2.0 VCE(sat!@ Iclls = 2.0 o 3.0 025 0.3 0.4 0.5 07 IC. COLLECTOR FIGURE 4 - SAFE OPERATING AREA 10 ~ ffi~ a 5. a 2. 5 - -- ..... 1.0ms 1.0 o. 5 '"'" ~ d. 2 _ f-TJ= 25°C B o. I Bonding Wire Limited E 0.05 0.02 0.0 1 10 ---- :.-- i===- f >' i'0 " de ""- Thermally Limited@Tc - 250 C (Single Pulse) Second Breakdown limited 20 100 500 50 200 VCE. COLLECTOR,EMITTER VOLTAGE (VOLTS) 1-874 750 1 k .L TJ =251'C O.S 1.0 ---- CU~RENT (AMP! 100°C ./ / ,.../ 25°C - 2.0 2.5 ® MJE13002 MJE13003 MOTOROLA De!'-ii~·ne .. !'-i Data Sheet 1.5 AMPERE NPN SILICON POWER TRANSISTORS SWITCHMODE SERIES NPN SILICON POWER TRANSISTORS 300 and 400 VOL TS 40 WATTS These devices are designed for high·voltage, high-speed power switch· ing inductive circuits where fall time is critical. They are particularly suited for 115 and 220 V SWITCH MODE applications such as Switching Regulators, Inverters, Motor Controls, Solenoid/Relay drivers and Deflection circuits. SPECIFICATION FEATURES: • Reverse Biased SOAwith Inductive Loads@Tc= lOOoC • Inductive Switching Matrix 0.5 to 1.5 Amp, 25 and lOOoC ... tc @ 1 A, lOOoC is 290 ns (TYPI. • 700 V Blocking Capability • SOA and Switching Applications Information. CASE 77·04 rO-126 MAXIMUM RATINGS Rilling Collector-Emitter Voltage Collector-Emitter Voltage Emitter ease Voltage Collector Current - Continuous - Peak (11 Base Current Continuous -Peak (11 Emitter Current Continuous -Peak (11 Total Powar Dissipation@TA=25 C Symbol VCEO(susl VCEV VEBO IC ICM IB IBM IE IEM Po Darate above 2SoC Total Powar Dissipation@TC= 25°C Derate abo... 25°C Operating and Storage Junction Temperature Range THERMAL CHARACTERISTICS Chancteristi. Thermal Resistance, Junction to Case Thermal Resistance. Junction to Ambient Maximum Lead Temperature for MJEl3003 400 700 MJE13OO2 300 Po TJ,Tstg 600 9 1.5 3 0.75 1.5 2.25 4.5 1.4 11.2 40 320 -66 to +150 Unit Vdc Vdc Vdo Ado Ad. Ado Watts mW/oC Watts mW/oC °c Symbol ROJC ROJA 3.12 89 Unit °C/W Oe/W TL 275 °c MIX Soldering Purposes: 1/8" from C... for 5 Seconds s 1---0 GJJ E9;:::-j-f M~ t STYLE 3 PIN 1. BASE 2. COLLECTOR 3. EMITTER DIM (11 Pulse Test: PulaeWidth = 5m" Dutv Cycle" 10%. Designer's Data for "Worst Case" Conditions The Designers Data Sheet permits the design of most circuits entirely from the information presented. Limit datA - representing device characteristics boundaries - are given to faCilitate "worst case" design. 1-875 MILLIMETERS MIN MAX A lo.BO 11.05 B C D F G H J K 749 241 0.51 2.92 2.31 1.27 038 1511 175095 2.67 0095 0.660,020 .180.11 246 0.091 2.41 0.0 0.640015 16.64 0.595 M n R S U \I 30 TYP 376 1.14 064 3.68 102 42 3 4.01 0148 1.40 0.045 0890.025 394 0.145 0.04 MJE13002,MJE13003 lIB ELECTRICAL CHARAC'rERISTICS (TC = 2SoC unl... otherwl.. noted" Symbol Min Typ MIX 300 - 400 - - - - - 1 5 - - 1 Unit OFF CHARACTERISTICS (1) Collector-Emitter Sustaining Voltage (lC = 10 mA,lB =0) VCEO(sus) MJEl3002 . MJEl3003 Collector Cutoff Current (VCEV = Rated Value, VBE(off} = 1.5 Vde} (VCEV Rated Value, VBE(off} = 1.5 Vde, TC = 100°C} ICEV Emitter Cutoff Current (VEB = 9 Vdc, IC = O) lEBO - Q Vdc mAde mAde SECOND BREAKDOWN Second Breakdown Collector Current with b... forward biased See Figure 11 Clamped Inductive SOA with base reve ... biased See Figure 12 ON CHARACTERISTICS (1) DC Current Gain (lC = 0.5 Ade, VCE = 2 Vdc) IIc = 1 Ade, VCE = 2 Vde} hFE 8 6 Collector-Emitter Saturation Voltage (lC = 0.6 Ade, IB = 0.1 Ade) (lC = 1 Ade, IB = 0.25 Adc) (lC = 1.5 Ade, IB = 0.5 Ade) (lC = 1 Adc,IB = 0.25 Adc, TC = 100oC) VCE(satl Base-Emitter Saturation Voltage (lc = 0.6 Adc, IB = 0,1 Ade) IIc = 1 Ade, IB = 0.26 Ade} (lc = 1 Ade, IB = 0.25 Ade, TC = 100°C) VBE(satl - - - 40 26 - 0.6 1 3 1 - - Vde - - - - - - 1 1.2 1.1 fT 4 10 - MHz Cob - 21 - pF - 0.06 . 0.1 /J. - 0.5 1 /J' 2 4 IJS 0.4 0.7 /J' Vdc DYNAMIC CHARACTERISTICS Current-Gain - Bandwidth Product (lC = 100 mAde, VCE = 10 Vde, f = 1 MHz) Output Capacitance (VCB =10 Vde, IE =0, f = 0.1 MHz) SWITCHING CHARACTERISTICS Resistive Load ITable 1} Delay Time (VCC = 125 Vde,. IC = 1 A, Id Rise Time IBl = IB2 =0.2 A,tp - 25 /J', tr Storage Time Dutv Cvele .. 1 %) t. Fall Time tf Inductive Load, Clamped (Table 1, Figure 13) Storage Time IIC = 1 A, Vclamp = 300 Vde, Crossover Time IBl = 0.2 A, VBE(off} = 5 Vdc, TC - 1.7 4 IJS te 0.29 0.75 Its tfi - 0.15 - /JS t s• = l000C) Fall Tima (1) Pulse Test: PW = 300 /J., Duty Cvele <; 2%. 1-876 MJE13002.MJE13003 FIGURE 1 - DC CURRENT GAIN FIGURE 2 - COLLECTOR SATURATION REGION 80 ~ 60 ";;: '" .... ~ 0: 0: 40 2~ 1"- .... 30 I 20 -SSoC '" ~ 10 8 r-- g - I 4 0.02 0.03 IIIII ~_ o.4 8 , ~ c 2: w c:>~ O.8 2SoC ,; O.6 -- - ~ IO.4 0.02 0.03 0.01 0.02 O.OS I=:-0.2- 0.1 O.S FIGURE 4 - COLLECTOR·EMITTER SATURATION REGION 0.30 --VBElon)@VCE' 2 V I I O.OOS 0.3S I I TJ--SSoC _ 0 0.002 I lB. BASE CURRENT lAMP) JBEI~t) @I~IIB I. 3 1 1 \ w >'" I 1.SA 1\ \ \ \ \ \ '" FIGURE 3 - BASE-EMITTER VOLTAGE 1. 2 lA- IC'O.lA- 0.3 A O.S A 0: 0.2 0.3 O.S 0.7 O.OS 0.07 0.1 IC. COLLECTOR CURRENT lAMP) 1.4 1.21- ~ O. B ~ VCE - 2 V VCE - S V r-- 1.6 '"~ '" ;; , ~ I G '" +~ ~12S0C '"2:w TJ 'lS0~C ~O.25 V ,.....1- I « '" V I--f- IcllS =3 '"~O.20 V ~-t--~,S0i- I--" Lll r-- - ~O.15 TJ' -SSoc '"> - >'0.10 lS00C O.OS I I a O.OS 0.07 0.1 0.2 0.3 O.S 0.7 IC. COLLECTOR CURRENT lAMP) / II 1/ 0.02 0.03 ,. 25°C ~ f-: --:::~ 150 0 C I O.OS 0.07 0.1 0.2 0.3 O.S 0.7 IC. COLLECTOR CURRENT lAMP) FIGURE 5 - COLLECTOR CUTOFF REGION FIGURE 6 - CAPACITANCE SOa 104 r=VCf' 2S0 jV I / I 300 I r--Tr lS00C - 12SOC I--- r-l00oC I--- 1--7SoC 1 I ./ 0 J_ I 0 0 I ./ I I 0 I - - r--SOOC 0 I:==" i==2S0C 0 7 S 0.1 FORWARO 10- l r - = FREVERSE -0.2 <11.4 <11.2 -0.4 V8E. BASE·EMITTER VOLTAGE IVOLTS) TJ' 2S oC ~ 200 <11.6 ...... 0.2 O.S 10 , 20 Cob SO 100 VR. REVERSE VOLTAGE IVOLTS) 1-877 200 SOO 1000 MJE13002,MJE13003 TABLE 1 - TEST CONDITIONS FDR DYNAMIC PERFORMANCE RESISTIVE SWITCHING REVERSE BIAS SAFE OPERATING AREA AND INDUCTIVE SWITCHING IN4933 R 33 IN4933 0.001 jJF 5V +125 V Duty Cycle .. 10% 1r • tf <; 10 "I TUT -4.0 V 51 NOTE PW end V CC AdJusted for Doalrod IC Ra AdJusted for D ••lred lal Coli -vaEloff) oao: VCC GAP for 30 mH/2A Ferroxcube Cor. #6656 Full Bobbin ( .... 200 Turn,) #20 z 20V Vcl amp '"' 300 Vdc Leoll"" 50 mH OUTPUT WAVEFORMS 1f Clamped IC t1 Adjusted to Obtain Ie Test Equipment I, '" VCE Leo" (lCpk) Scope-T ektron ie. VCC 475 or Equivalent VCC-'25 V RC z 125Sl. 01 "" 1 N5820 or Equiv. Ra - 47 Sl. ' ':9;- Leoit (lCpk) t2 t r.tt<10ns Duty Cycle"" 1.0% ~ Vclamp A Band RC adj ulted for de.ired I B and Ie FIGURE 7 - INDUCTIVE SWITCHING MEASUREMENTS IC~ . /V 90% VcJamp ./ IC"""" I Vcl,mp_ I" f-- t--Isv t--- IC AMP TC t.., °c ... tr. ... ...ttl ttl ... ...'c 0.5 25 100 1.3 1.6 0.23 0.26 0.30 0.30 0.35 0.40 0.30 0.36 1 25 100 1.5 1.7 0.10 0.13 0.14 0.26 0.05 0.06 0.16 0.29 1.5 25 'DO 1.8 3 0.07 0.08 0.10 0.22 0.05 0.08 0.16 0.28 90%IC Irvlf ~Ifi- I-',iI-l f-'c~ V c 11l%V lamp VCE 1 8 - i - 90%181 "'I. TABLE 2 - TYPICAL INDUCTIVE SWITCHING PERFORMANCE -"- 10% ...... ICPK- -+IC NOTE: All Data Recorded in the Inductive Switching Circuit in Table 1 2% -- --\-,--- -- -- - - - ~ "--'" TIME 1-878 MJE13002,MJE13003 SWITCHING TIMES NOTE is shown in Figure 1 to aid in the visual identity of these terms. For the designer, there is minimal switching loss during storage time and the predominant switching power losses occur during the crossover interval and can be obtained using the standard equation from AN·222: PSWT = 112 VCCIC(tclf In general, trv + tfi = tc' However, at lower test currents this relationship may not be valid. As is common with most switching transistors, resistive switchi ng is specified at 250 C and has become a bench· mark for designers. However, for designers of high frequency converter circuits, the user oriented specifica· tions which make this a "SWITCHMODE" transistor are the inductive switching speeds (tc and tsvl which are guaranteed at 1000 C. In resistive switching circuits, rise, fall, and storage times have been defined and apply to both current and voltage waveforms since they are in phase. However, for inductive loads which are common to SWITCHMODE power supplies and hammer drivers, current and voltage waveforms are not in phase. Therefore, separate measure· ments must be made on each waveform to determine the total switching time. For this reason, the following new terms have been defi ned. tsv = Voltage Storage Time, 90% lSI to 10% Vcl amp trv = Voltage Rise Time, 10-90% Vcl amp tfi = Current Fall Time, 90-10% IC tti = Current Tail, 10-2% IC tc = Crossover Time, 10% Vcl amp to 10% IC An enlarged portion of the inductive switching waveforms RESISTIVE SWITCHING PERFORMANCE FIGURE 8 - TURN-ON TIME FIGURE 9 - TURN-OFF TIME 2 10 VCC=12&V IC/IB= & TJ-2&OC I O. 7ii::: tr 0.& j ;:: = ........ -..;;:: ~ 0.2 -' o. r--; ~ 0.3 V~C-I25V= ICir~&oc I, 'd @ VBE(off) = & I ..... , 0.7 0.& 0.07 0.0& ...... 0.3 tf 0.2 0.03 0.02 0.02 0.03 0.0& 0.07 0.1 0.2 0.3 0.& 0.7 10 20 0.1 0.02 0.D3 0.1 0.05 0.07 0.1 0.3 0.& 0.7 IC. COLLECTOR CURRENT (AMPI IC, COLLECTOR CURRENT (AMPI FIGURE 10 - THERMAL RESPONSE 1==0 = 0.& ~ ~0.2 t--- r 11== 0.05 1== 0.02 ...-::: t--- ....- O.1 -'I 0.01 - t:::" ZOJChl - rhl ROJC ROJC = 3.12 oCIW Max o CURVES APPLY FOR POWER PULSE TRAIN SHOWN READ TIME AT 11 I-::: ~ TJ(pkl-TC = P(pkl ROJC(t1 f0lJl t:~-J f-Single Pulse DUTY CYCLE. 0 = q/t2 0.0 1 am 111111 1 1 0.02 0.03 0.05 0.1 0.2 0.3 0.& 10 t, TIME OR PULSE WIDTH 1-879 (m,1 20 &0 100 200 &00 1000 MJE13002,MJE13003 The Sa.. Operating Area figuNS shawn in FiguNS 11 and 12 ara specified ratings for th_ devices under the _ conditions shawn. SAFE OPERATING AREA INFORMATION FIGURE 11 - FORWARD BIAS SAFE OPERATION AREA 10 .... 5 Ii: S 2 a:i I '" i:l '" 0.5 '"0 0.2 ~ ...., ...... -- - 1-- ~= 5.Dms TC =2SoC ____ ~~~~~N'GL~I~mt~~I'~ d~ - - - SECOND BREAKDOWN LIMIT I CURVES APPLY BELOW RATED VCEO 0.1 lO"s 100", 1.0m.==: r- ..... ...... '" " r--.. "- 0 ~ 0.05 0.12 0.01 5 =m~8Il~~ ~ lQ 7 20 30 50 70 100 200 500 300 VCE, COLLECTOR·EMITTER VOLTAGE (VOLTS) FIGURE 12 - REVERSE BIAS SAFE OPERATING AREA FORWARD BIAS There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating 'area curves indicate IC-VCE limits. of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. The data of Figure 11 is based on TC = 250 C; TJ(pk) is variable depending on power level. Second breakdown pulse limits are valid for duty cycles to 10% but must be derated when TC ;;., 250 C. Second breakdown limitations do not derate the same as thermal limitations. Allowable current at the voltages shown on Figure 11 may be found at any case temperature by using the appropriate curve on Figure 13. TJ(pk) may be calculated from the data in Figure 10. At high case temperatures, thermal limitations will reduce .the power that can be handled to values less than the limitations imposed by second breakdown. 1.6 REVERSE BIAS For inductive loads, high voltage and high current must be sustained simultaneously during turn·off, in most cases, with the base to emitter junction reverse biased. Under these conditions the collector voltage must be held to a safe level at or below a specific value of collector current. This can be accomplished by several means such as active clamping, RC snubbing, load line shaping, etc. The safe level for these devices is specified as Reverse Bias Safe Operating Area and represents the voltage·current conditions during reverse biased turn·off. This rating is verified under clamped conditions so that the device is never subjected to an avalanche mode. Figure 12 gives R BSOA characteristics. Ii: ~ 1.2 ... ~ 0: B 0.8 0: 0 ~ 8 0.4 I-- TC ';;IOOoC ~ 0 0 IBI =1 A l\ \"\ \\ V8E(off) = 9 V r---- MJEI3002_ ~ ~MJEI3003-: f---- sv- ~ 3V 1.5 V 400 500 600 700 800 100 2 0 300 VCEV, COLLECTOR·EMITTER CLAMP VOLTAGE IVOLTS) FIGURE 13 - FORWARD BIAS POWER DERATING 1 0.8 ~ r- r- r--... i'. 0: :: ........ ~ 0.6 - -- THERMAL DERATING to z ;:: SECOND BREAKOOWN I-- I-DERATING "- ~ 0.4 ~ :g ...... i'. ffi ~ 0.2 o 20 -- r..... "40 60 80 100 TC, CASE TEMPERATURE (DC) 1-880 ~ 120 r--.... 140 160 ® MJE13004 MJE13005 MOTOROLA 4 AMPERE SWITCHMODE SERIES NPN SILICON POWER TRANSISTORS ID • NPN SILICON POWER TRANSISTORS I I i 300 and 400 VOLTS 75 WATTS These devices are designed for high-voltage, high-speed power switching inductive circuits where fall time is critical. They are particularly suited for 115 and 220 V SWITCHMODE applications such as Switching Regulator's, Inverters, Motor Controls, Solenoid / Relay drivers and Deflection circuits. SPECIFICATION FEATURES: • VCEO(sus) 400 V and 300 V • Reverse Bias SOA with Inductive Loads @ T C = 1000 e • Inductive Switching Matrix 2 to 4 Amp, 25 and 1000 e ... t c @3A, 1000 C is lBO ns (Typ) • 700 V Blocking Capability • Ii II 11 :~ SOA and Switching Applications Information. I! MAXIMUM RATINGS Symbol Rating Collector-Emitter Voltage Collector-Emitter Voltage Emitter Base Voltage Collector Current - Continuous -Peak(ll Base Current - Continuous -Peak (11 Emitter Current - Continuous -Peak (1) Total Power Dissipation@T A = 2SoC Operating and Storage Junction Vdc Vdc Vdc Adc 9 4 8 2 4 6 12 Adc Adc 2 Watts mW/oC Po 16 75 600 TJ,Tstg -65 to +150 °c Derate above 25°C Total Power Dissipation@Tc-25OC Derate above 2SoC Unit MJE13OO5 400 700 MJE13004 300 600 Vceo(sus) Vcev VEBO IC ICM IB IBM Ie IEM Po Temperature Range THERMAL CHARACTERISTICS Characteristic Thermal Resistance, Junction to Case Thermal Resistance. Junction to Ambient Symbol Max Unit ROJC ROJA 1.67 62.5 °C/W °C/W TL 275 °c Maximum Lead Temperature for MILLIMETERS INCHES DIM MIN MAX MIN MAX A 1460 1575 0575 0.620 B C 0 F G Soldering Purposes: 1/8" from Case H J K L for 5 Seconds (11 Pulse Test: Pulse Width STYLE 1: PIN 1 BASE 2 COLLECTOR 3 EMmER 4 COLLECTOR Watts mW/oC = 5 ms, Duty Cycle <;; N 10%. Q Designer's Data for "Worst Case" Conditions The Designers Data Sheet permits the design of most circuits entirely from the information presented. limit datA - representing device characteristics boundaries -are given to facilitate"worst case" design. R S T U V Z 965 406 064 361 241 279 036 1270 114 4B3 254 204 114 5.97 0.00 1.14 1029 482 089 373 267 393 056 1427 139 533 3.04 2.79 1.39 6.48 1.27 0380 0160 0025 0142 0095 0110 0014 0500 0045 0190 DIDO O.OBO 0045 0.235 0.000 0.045 2.03 0405 0190 0035 0147 0105 0155 0022 0562 0055 0210 0.120 0.110 0.055 0.255 0.050 0.080 CASE 221 A-02 TO-220AB [ 1-881 MJE13004, MJE13005 .. ELECTRICAL CHARACTERISTICS (TC =250 C unless otherwise noted.) Symbol ChariICteristic Min Typ M•• 300 400 - - - - 1 5 - 1 Unit 'OFF CHARACTERISTICS Collector-Emitter Sustaining Voltage IIc = 10 mA, IS =0) Collector Cutoff Current (VCEV (VCEV mAde ICE V = Rated Value, VSE(off) = 1.5 Vdel = Rated Value, VSE(off) = 1.5 Vde, TC = 100°C) Emitter Cutoff Current (VES Vde VCEO(sus) MJEI3004 MJEI3005 IESO - mAde =9 Vde, IC =0) SECOND BREAKDOWN Second Breakdown Collector Current with base forward biased See Figure 11 Clamped Inductive SOA with Base Reverse Biased See Figure 12 "ON CHARACTERISTICS DC Cu rrent Gai n (lc = 1 Ade, VCE (lc = 2 Ade, VCE 8 - 60 40 - - 10 Collector-Emitter Saturation Voltage (lc = 1 Ade,ls = 0.2 Adc) (lC = 2 Adc, Ie = 0.5 Adc) (lc = 4 Ade, Ie = 1 Adc) (lc = 2 Ade, Ie = 0.5 Adc, TC = 100°C) VCE(sat) Base-Emitter Saturation Voltage VeE(s.t) (lc (lc (lC - hFE = 5 Vde) = 5 Vde) Vde - - - - 0.5 0.6 1 1 - - 1.2 1.6 1.5 IT 4 - - MHz Cob - 65 - pF - Vdc - = 1 Adc, Ie = 0.2 Ade) = 2 Ade, Ie = 0.5 Adc) = 2 Ade, Ie = 0.5 Adc, TC = 100°C) DYNAMIC CHARACTERISTICS Current-Gain - Bandwidth Product (lC = 500 mAde, VCE = 10 Vdc, I = 1 MHz) Output Capacitance (Vce -10 Vdc, IE 0, I = 0.1 MHz) = SWITCHING CHARACTERISTICS Resistive Load (Table 2) Delay Time (VCC td - 0_025 0.1 ~s Rise Time leI Ir - 0.3 0.7 ~s Storage Time Duly Cycle';;; 1%) Is - 1.7 4 ~s II - 0.4 0.9 ~s Isv - 0.9 4 ~s 'e - 0.32 0.9 ~s 'Ii - 0.16 - ~s = 125 Vdc,IC = 2 A, = IS2 = 0.4 A, tp = 25 ~s, Fall Time Inductive Load, Clamped (Table 2, Figure 13) Voltage Storage,Tlme (lC Crossover Time leI = 2 A, Vcl amp = 300 Vdc, = 0.4 A, VSE(off) = 5 Vde, TC = 100°C) Fall Time ·Pulse Test: Pulse Width", 300 ~s. Dutv Cvcle '" 2%. 1-882 MJE13004, MJE13005 FIGURE 1 - DC CURRENT GAIN FIGURE 2 - COLLECTOR SATURATION REGION 100 TJ-12SoC 0 r-;. 0 isoc ~c - 2:- 1.6 w '" r-..... '" ~ c > 0 0 -55°C 0 S 0.04 0.06 ~ ...... .... ~ ~ r' ~ ci: c o.4 j t- ~ 0.2 0.4 1\ \ § > 0.1 1\ O.OS ~ 1. 1 w 1 ~ TJ }-ssdc > 0.9 '"w ~ ! :li ::l 2SOC 0.7 L O. S ~~ ~ 'L r- i-'L ~ .; L __~c_ -1IS00C 0.3 0.04 0.06 I 01 0.2 S '" 0.4S h t: g 0.35 "'ci:~ '(h ~- ~~ TJ - -SSoc WW 1 ~ "'0 2S0~ / . ~> f- 0.15 ~ B 0.05 0.4 0.6 0.04 0.06 !--VCE - 2S0 V '" i3 01 ~ 8 .2> 0.2 0.4 0.6 FIGURE 6 - CAPACITANCE / / I ~TJ-1S00C I - - i--,00oC F== F=1~OC I - - r--SOoc ..... 1/ - L L Cib k L 100 1== F=12S0C 10 IS00C 2k lk '"c ~ I - ~b::: IC. COLLECTOR CURRENT (AMP) FIGURE 5 - COLLECTOR CUTOFF REGION ~ ~ rL L V;:: V > 10 k ... 01 IC/IB -4 IC. COLLECTOR CURRENT (AMP) ~ O.S ~ ~ 0.25 I > 0.55 z c f- 0.3 FIGURE 4 - COLLECTOR-EMITTER SATURATION VOLTAGE I- 1 1 I 1 ~~E(sat) ~ IC~IB _ 41 - VeE(o") @l VCE - 2 V '"« 1\ lB. BASE CURRENT (AMP) FIGURE 3 - BASE-EMITTER VOLTAGE ~ 4A l\.. ,...... 02 0.1 IC. COLLECTOR CURRENT lAMP) 13 3A 1\ L! \ r- 0 0.03 0.6 TJ - 2SoC II 2A 2 8 II \ 1\ IC -I A ~ o.8 ~~ VCE - 2 V VCE - S V 1 ~R. II 1\ II 100 500 EW '"~ 300 ti 200 ;t / ~ / 2SoC FORWARD 0.1 F= i- REVERSE -0.4 -0.2 +0.2 +0.4 VBE. BASE·EMITTER VOLTAGE (VOLTS) "':'ob 100 0 0 0 20 0.3 +0.6 O.S 10 30 SO VR. REVERSE VOLTAGE (VOLTS) 1-883 r---I-300 100 MJE13004, MJE13005 IIJ FIGURE 7 - INDUCTIVE SWITCHING MEASUREMENTS I~ / 'V I:- t--Isv Irv fJ, ~II'- r- I,,- i--l '--Ic~ I-- V VCE I'\. 10%"- 10%Vclamp IC PK - I S - t- 90%181 -- --\- -- - -~-- I-- ~ - 90% IC 90% Vclamp / IC ........ ""::'Clam p _ I" 1 SWITCHING TIMES NOTE - -2%IC TIME TABLE 1 - TYPICAL INDUCTIVE SWITCHING PERFORMANCE IC AMP TC 2 ... trY tfi tti t• ns ns ns ns ns 25 100 600 900 70 110 100 240 80 130 180 320 3 25 100 650 950 60 100 140 330 60 100 200 350 4 25 100' 550 850 70 110 160 350 100 160 220 390 °c NOTE: All Data recorded in the Inductive Switching Circuit In Table 2. In resistive switching circuits, rise, fall, and storage times have been defined and apply to both current and voltage waveforms since they are in phase. However, for inductive loads which are common to SWITCH MODE power supplies and hammer drivers, current and voltage waveforms are not in phase. Therefore, separate measurements must be made on each waveform to determine the total switching time. For this reason, the following new terms have been defined. tsv = Voltage Storage Time, 90% IS1 to 10% Vclamp trv = Voltage Rise Time, 10-90% Vclamp tfi = Current Fall.Time, 90-10% IC tti = Current Tail, 10-2% IC tc = Crossover Time, 10% Vclamp to 10% IC An enlarged portion of the inductive switching waveforms is shown in Figure 7 to aid in the visual identity of these terms. For the designer, there is minimal switching loss during storage time and the predominant switching power losses occur during the crossover interval and can be obtained using the standard equation from AN-222: PSWT = 1/2 VCCIC(tc)f In general, trv + tfi = tc' However, at lower test currents this relationship may not be valid. As is common with most switching transistors. resistive switching is specified at 25 0 C and has beco",e a bench· mark for designers. However, for designers of high frequency converter circuits, the user oriented specifications which make this a "SWITCHMODE" transistor are the inductive switching speeds (tc and tsv) which are guaranteed at lOOoC. RESISTIVE SWITCHING PERFORMANCE FIGURE 8 - TURN'()N ·TlME "'~ 0.2 10 Vee -125 V= 1= Ic/l a=5 TJ =250e = ;? t2 0.5 ] FIGURE 9 - TURN'()FF TIME Is - 'r ........ r---. /' ..... ./ ......... ..... ] . "' ;:: 0.1 -,. 0.05 0.5 'd @VaElolf) - 5 V 0.0 I 0.04 If -r-I--l 0.02 O. 3 =: 0.2 0.1 0.2 O. I 0.04 0.4 IC' COLLECTOR CURRENT lAMP) 1-884 VCC-125V Iclla - 5 TJ - ~50C 0.1 0.2 0.5 IC, COLLECTOR CURRENT lAMP) MJE13004, MJE13005 TABLE 2 - TEST CONDITIONS FOR DYNAMIC PERFORMANCE RESISTIVE SWITCHING REVERSE BIAS SAFE OPERATING AREA AND INDUCTIVE SWITCHING IN4933 Vee .'25 v L 0.001 IlF MR82S· 33 IN4933 N Vclamp Dutv Cycle <; 10% t,.tf"'- 10ns • Selected for;;'" 1 k V -4.0 V NOTE PW and Vee Adjusted for Desired RS Adjusted for D •• lred IS1 Ie - VBE(offl Coil Data: Ferroxcube Core #6656 Full Bobbin (-16 Turns) #16 VCC=125V GAP for 200 ,u.H/20A Vee'" 20 V Leail '" 20D$LH Vcl Bmp " 300 Vdc Re' 62 n 01 :: 1 N5820 or Equlv RB' 22 n OUTPUT WAVEFORMS 'f Clamped IC en ::i! '1 Adjusted to ...ow Obtain II: Ie Test Equipment ~ ;: Scope - Tektronix Leoll (ICpkl '1 ~ Inw VCE ... '2 ~ 475 VCC or Equivalent Leoll (ICpkl Vel amp < 10 ns Duty Cycle'" 1 0% t r . tf RS and RC adjusted for desired'S and Ie FIGURE 10 - TYPICAL THERMAL RESPONSE [Z6JCltiJ 7 S o ~ o.s 3 2 02 I-" .... 01 1 ;;; 0.0 7 - DOS ~ S .... : 00 003 .... ~ 00 2~ in z 1"-":!: 0.0001 '" 002 ~ ,...... 002 - '"tJUL ~ -= Pl,kl 12~~ .",. nnt 01 PULSE TRAIN SHOWN READ TIME AT 11 TJlokl - TC ~ PIOkl ZnJCllI DUTY CYCLE. 0 ~ IJ ·12 Slj G ODS ZoJCIII ~ 1.2 ..'" l'- 0 ' " -1 ~C '"w ~ ,,1'\ 0 :i 8 6 ~ '" 0.2 0.3 ~8 0.4 00.050.07 0.1 :-- - 0.6 --:- 0.4 0.1 0.2 - !--JODC _t- 0.3 - 0.5 ~ w 0.4 ---- ~ 0.3 ~ ~DC'_ 0 r-- ".... f-"""" O.S 0.7 IC. COLLECTOR CURRENT (AMP) 9 Ih 150 DC /0' ../ .M Q ---:::;::. 0.3 25DC ~ -t-' 0.2 10 0.5 0.7 10 Ie. COLLECTOR CURRENT (AMP) FIGURE 10 - CAPACITANCE I / I = ,....,12S DC - -IOODC -7S"C - C--SODC ./ .. '"" I Cib w ~ I 500 t3 20 0 t. ~ 10 0 Cob 50 == r::=25 DC : 0 = rREVERSE FORWARD 0.1 -04 -02 0 +0.2 +04 VSE. SASE·EMITTER VOLTAGE (VOLTS) I---+. 2K ~ lK / ./ TJ·25 DC 5K I I -TJ=ISODC I TJ--S5 DC/ 10K =VC IE·2S0V 8 I lells = 3 I IK 10 0.7 > >" 0.2 FIGURE 9 - COLLECTOR CUTOFF REGION '" ~ O.S o 10K a 0.3 FIGURE 8 - COLLECTOR-EMITTER SATURATION VOLTAGE ~ TJ - -SSDC > >- 0.8 'z"" 0.2 IS. SASE CURRENT (AMP) IC/IS - 3 1.2 ~ 100 "-. ~ 0.6 1.4 1 - i'. 0.7 '"':; _ SA \ \ > 1.6 .. \ \ SA \\ 0.8 10 FIGURE 7 - BASE-EMITTER SATURATION VOLTAGE ~ w 3 A ~ I I 0.5 0.7 IC. COLLECTOR CURRENT (AMP) 1.8 ~ IC= I A 0 I--. TJ = 2SDC \ ~ VCE = SV 4 0.1 \ 0 I :!= 20 100.1 0.2 +06 0.5 10 20 50 VR. REVERSE VOLTAGE (VOLTS) 1-890 IOU 200 500 1000 MJE13006,MJE13007 TABLE 1 - TEST CONDITIONS FOR DYNAMIC PERFORMANCE RESISTIVE SWITCHING REVERSE BIAS SAFE OPERATING AREA AND INDUCTIVE SWITCHING III +125 V Vcl amp Duty Cycle :so;; 10% • Selected tor ~ 1 kV tr,tf< 10ns VCE -4.0 V 51 NOTE PW and V CC Adjusted for Desired Ie Rs Adjusted for Desired IS1 Coil Data: Ferroxcube Core #6656 Full Bobbin ( .... 16 Turns) #16 If Clamped GAP for 200 ~H/20A Vclamp = 300 V Leol!;; 200 J.lH OUTPUT WAVEFORMS :IE t1 Adjusted to ObtaI" Ie II: o LI. W i VCC'125 V RC • 25 fl 01 = 1 N5820 or Equlv RB'10n \e In Iiiw VCC' 20 V Lcod (leM) '1 ~ veE Vee Test Equipment Scope - Tektronix 475 or Equivalent Leo,\ 0CM I· '2 ~ I- Vctamp t r. tf < 10 ns Duty Cvcle "" , .0% AS and RC adjusted for desired I B and Ie APPLICATIONS INFORMATION FOR SWITCHMODE SPECIFICATIONS INTRODUCTION The primary considerations when selecting a power transistor for SWITCHMODE applications are voltage and current ratings, switching speed, and energy handling capability. In this section, these specifications will be discussed and related to the circuit examples illustrated in Table 2.(1) VOLTAGE REQUIREMENTS Both blocking voltage and sustaining voltage are important in SWITCHMODE applications. Circuits Band C in Table 2 illustrate applications that require high blocking voltage capability. In both circuits the switching transistor is subjectad to voltages substantially higher than VCC after the device is completely off (see load line diagrams at Ie = Ileakage "" 0 in Table 2). The blocking capability at this point depends on the base to emitter conditions and the device junction temperature. Since the highest device capability occurs when the base to emitter junction is reverse biased (VCEVI. this is the recommended and specified use (1) For detailed information on specific switching applications, see Motorola Application Notes AN·719,AN·737A.AN·767. and AN·752. 1-891 condition. Maximum ICEV at rated VCEV is specified at a relatively low reverse bias (1.5 Volts) both at 250 C and 1000 C. Increasing the reverse bias will give some improvement in device blocking capability. The sustaining or active region voltage requirements in switching applications occur during turn-on and turnoff. If the load contains a significant capacitive com ponent, high current and voltage can exist simultaneously during turn-on and the pulsed forward bias SOA curves (Figure 1) are the proper design limits. For inductive loads, high voltage and current must be sustained simultaneously during turn-off, in most cases, with the base to emitter junction reverse biased. Under these conditions the collector voltage must be ·held to a safe level at or below a specific value of collector current. This can be accomplished by several means such as active clamping, RC snubbing, load line shaping, etc. The safe level for these devices is specified as a Reverse Bias Safe Operating Area (Figure 2) which represents voltagecurrent conditions that can be sustained during reverse biased turn-off. This rating is verified under clamped conditions so that the device is never subjected to an avalanche mode. In the four application examples (Table 2) load lines are shown in relation to the pulsed forward and reverse biased SOA curves. MJE13006,MJE13007 handling capability and low saturation voltage. On this data sheet, these parameters have been specified at 5 amperes which represents typical design contlitions for these devices. The current drive requirements are usually dictated by the VCE(sat) specification because the maxi· mum saturation voltage is specified at a forced gain condition which must be duplicated or exceeded in the application to control the saturation voltage. VOLTAGE REQUIREMENTS (continued) DJ In circuits A and D, inductive reactance is clamped by the diodes shown. In circuits Band C the voltage is clamped by the output rectifiers, however, the voltage induced in the primary leakage inductance is not clamped by these diodes and could be large enough to destroy the device. A snubber network or an additional clamp may be required to keep the turn·off load line within the Reverse Bias SOA curve. Load lines that fall within the pulsed forward biased SOA curve during turn·on and within the reverse bias SOA curve during turn-off are considered safe, with the following assumptions: (1) The device thermal limitations are not exceeded. (2) The turn-on time does not exceed 10 fJS (see stan· darn oulsed forward SOA curves in Figure 1). (3) The base drive conditions are within the specified limits shown on the Reverse Bias SOA curve (Figure 2). SWITCHING REQUIREMENTS In many switching applications, a major portion of the transistor power dissipation occurs during the fall time (tfi)' For this reason considerable effort is usually devoted to reducing the fall time. The recommended way to accomplish this is to reverse bias the base-emitter junction during turn-off. The reverse biased switching characteristics for inductive loads are discussed in Figure 11 and Table 3 and resistive loads in Figures 13 and 14. Usually the inductive load component will be the dominant factor in SWITCHMODE applications and the inductive switching data will more closely represent the device performance in actual application. The inductive switching characteristics are derived from the same circuit used to specify the reverse biased SOA curves, (See Table 1) providing correlation between test procedures and actual use conditions. CURRENT REQUIREMENTS An efficient switching transistor must operate at the required current level with good fall time, high energy RESISTIVE SWITCHING PERFORMANCE FIGURE 12 - TURN-OFF TIME FIGURE 11 - TURN,ON TIME 70a 50a - K lK vCC ~ 125 V Ic/is - 5 TJ ~ 25'C ...... "- f'.- I'." K .L 70 a I\.. 0 f'- "I' a r-- I" td@ VSE(,ff) toa ~ ~ 50 a V I-- '" 300 I'\.. 1"- 5V 10a a a I"I' tf 0.2 0.3 t:: 0.5 0.7 10 a0.1 10 FIGURE 13 - INDUCTIVE SWITCHING MEASUREMENTS _r90% VCEM ~O% ICM Vclamp - IS- t- 10% VCEM 90% lSI -- -- -- --\-\ -- ---- -............ ~ 0.5 0.7 r- V 1 10 Ie ~ -'\. / 0.3 FIGURE 14 - TYPICAL INDUCTIVE SWITCHING WAVEFORMS (at 300 V and SA with IBI = 1.6A and VBE(offl = 5 VI !-- - t s v - _tev ~h"" _t,,_ - j -tc--\ Vclamp 0.1 IC, COLLECTOR CURRENT (AMP) IC. COLLECTOR CURRENT (AMP) IC r--. VCC - 125V Ic/lS ~ 5 TJ=25'C "- ;:: -' t, l- VeE ? > 0 c ~ ;; o "' w M "l 10% ....... ICM- r;:~ IC IZ w ~ :> u o a: a: I.J > Ie TIME TIME 1-892 20 ns/DIV MJE13006,MJE13007 TABLE 2 - APPLICATIONS EXAMPLES OF SWITCHING CIRCUITS CIRCUIT LOAD LINE DIAGRAMS SERIES SWITCHING REGULATOR 16A - - - - "\ TIME DIAGRAMS Turn-On IForword Bios) SOA Y"'" to" < 10". Duty Cvcle <: 10% Te-l00o~ PO~320OW® \ :: ~ " .. 300V SA--'-----("': u Turn-Off (Reve'. B1a.) SOA 1.5 V <: VSEloff) .;; 9.0 V Duty Cycle <; 10% A Time ,.......--1._--, VeE Vee 700 VG) Collector Voltage Notes: CD MJE130Q7 Voltage Ratings (VceO(sus' and VCEV) are Shown, MJE13006 Ratings are 100 V Lower. teL, Time ~ Sa. AN·669 for Puis. Power Derating Procedure. RINGING CHOKE INVERTER 16A----, /Turn-On (Forward Bias) SOA t on oli;10.u.s Duty Cycle <: 10% ~ \ ~ Te - 1000 e _ P O = 320OW@) ~ ~I a " SA v: 'I I B ~~~:)I--------ft CD Collector Voltage MJE13007 Voltage Ratings (VCEOCIUI) and Vcev) Are Shown. MJE 13006 Ratings Are 100 V Lower. ~ See AN-569 For Pulse Power Derating Procedure l6A - - - gJ o+--liii -,..r / PUSH-PULL INVERTER/CONVERTER Vo \ ~ Te ~ 1000e~,po = 3200W@) < a f Turn-Off (Reverse Bias) SOA SA _---'L-_ _-.: 1.5 V .;; VSEloffl .;; 9.0 V Dutv Cvcle :so;; 10% I -u! Vee vee Vee Collector VOltage Notes: G> MJE13001 Voltage Ratings (VCEO(sus) and VCEV} Are Shown, MJE13006 Ratings Are 100 V Lower. ~ See AN·569 for Pulse Power Derating Procedure. Turn-On (Forward Bias) SOA 15A----,......- 'on';; lO l's \ Dutv Cycle"': 1 0% Te~ 100o e - ' Po = 3200W@) j E Vee Solenoid ~ a " SA 300 V Turn-Off (Reverse Bias) SOA 1.5 V.;; VSEloffl .;; 9.0 V Duty Cycle'" 10% 700 V G) Notes: CD m VeE + SOLENOID DRIVER IT:J~ Turn-On (Forward Bias) SOA ton';; 10l's Duty Cycle" 10% Vee o __ t Leak age Sp Ike /' VeE Notes: c Ie I~ t~toff 300 V Collector Voltage MJE13007 Voltage Ratings (VCEO(sus) and VCEV) Are Shown, MJE1a006 Ratings Are 100 V Lower. ~ See AN·569 for Pulse Power Derating Procedure. 1-893 t MJE13006,MJE13007 TABLE 3 - TYPICAL INDUCTIVE SWITCHING PERFORMANCE IC AMP TC 3 toY ns trv ns tfl ns ttl ns te ns 25 100 730 1000 115 160 100 100 110 150 200 250 6 25 100 SOO 860 SO 84 23 60 4 10 86 136 8 26 100 650 880 26 52 2S 80 4 20 42 1S0 °c NOTE: All Data recorded in the Inductive Switching Circuit In Table 1. SWITCHING TIME NOTES In resistive switching circuits, rise, fall, and storage times have been defined and apply to both current and voltage waveforms since they are in phase. However, for inductive loads which are common to SWITCHMODE power supplies and hammer drivers, current and voltage wave' forms are not in phase. Therefore, separate measurements must be made on each waveform to determine the total switching time. For this reason, the following new terms have been defined. tsv = Voltage Storage Time, 90% lSI to 10% VCEM trY = Voltage Rise Time, 10-90% VCEM tfi = Current Fall Time, 90-10% ICM tti = Current Tail, 10-2% ICM tc = Crossover Time, 10% VCEM to 10% ICM An enlarged portion of the turn·off waveforms is shown in Figure 13 to aid in the visual identity of these terms. For the designer, there is minimal switching loss during storage time and the predominant switching power losses occur during the crossover interval and can be obtained using the standard equation from AN·222A: PSWT = 1/2 Vcele(tc! f Typical inductive switching waveforms are shown in Figure 14. In general, trv + tfi "" tc' However, at lower test currents this relationship may not be valid. As is common with most switching transistors, resistive switching is specified at 2SOe and has become a benchmark for designers. However, for designers of high frequency converter circuits, the user oriented specifications which make this a "SWITCHMODE" transistor are the inductive switching speeds (t c and t sv ) which are guaranteed at 1000 e. 1-894 ® MJE13008 MJE13009 MOTOROLA 12 AMPERE NPN SILICON POWER TRANSISTORS 300 and 400 VOLTS 100 WATTS SWITCHMODE SERIES NPN SILICON POWER TRANSISTORS The MJEI3008 and MJE13009 are designed for high-voltage, high-speed power switching inductive circuits where fall time is critical. They are particularly suited for 115 and 220 V switchmode applications such as Switching Regulators, Inverters, Motor Controls, Solenoid/Relay drivers and Deflectioncircuits. SPECIFICATION FEATURES: • Designer's Data for "Worst Case" Conditions VCEO(sus) 400 V and 300 V • Reverse Bias SOA with Inductive Loads • Inductive Switching Matrix 3 to 12 Amp, 25 and lOOoC ... tc @ 8 A, lOOoC is 120 ns (Typ). @ T C ; lOOoC • 700 V Blocking Capability • SOA and Switching Applications Information. The Designers Data Sheet per· mits the design of most circuits entirely from the information pre· sented. Limit data - representing device characteristics boundaries are given to facilitate "worst case" design. MAXIMUM RATINGS Rating Collector-Emitter Voltage Collector-Emitter Voltage Emitter Base Voltage Collector Current - Continuous - Peak (1) Base Current - Continuous -Peak(l) Emitter Current - Continuous -Peak (1) Total Power Dissipation@T A - 2SoC Symbol MJE13008 VCEO(sus) VCEV VEBO IC ICM IB IBM IE IEM Po 300 600 Derate above 25°C Total Power Dissipation@Tc=250C Derate above 25°C Operating and Storage Junction Po I MJE13009 I 400 700 1 9 12 24 Vdc Vdc Vdc Adc Adc 6 12 18 36 2 16 100 Adc Watts mW/oC Watts BOO TJ,T stg Unit -65 to +150 Thermal Resistance. Junction to Case Thermal Resistance, Junction to r'f'- °c B Soldering Purposes. 1/8" C D Symbol Max Unit F G H R8JC R9JA 1.25 62.5 °C/W °C/W K L TL 275 °c Ambient J N Maximum Lead Temperature for from Case D R S for 5 Seconds T U (1) Pulse Test: Pul.e Width ~ V Z 5 m•. Duty Cycle'; 10%. NOTES 1 OIMENSION H APPUESTO ALLLEAOS 2 DIMENSION LAPPUESTO LEAOS 1 ANOJ DIM r-~~ I 1575 mW/oC Temperature Range THERMAL CHARACTERISTICS Characteristic STYLE I PIN 1 BASE 2 COLLECTOR 3 EMITTER 4 COllECTOR 965 406 064 361 241 279 036 1210 114 483 2.54 2.04 1.14 5.91 O.DD 1.14 - INCHES MIN 0575 1029 0380 482 0160 089 0025 373 0142 267 0095 393 0110 056 0014 1421 0500 139 0.045 5.33 0190 3.04 0.100 279 0.08D 1.39 0.D45 6.46 0.235 1.21 D.DDD - D.D45 2.D3 - CASE 221A.lJ2 TO·220AB 1-895 MAX 0620 0405 0190 0.D35 0141 0105 0155 0.022 0562 0055 0210 0120 D.IIO D.055 D.255 D.D5D - D.DSD MJE13008,MJE13009 ELECTRICAL CHARACTERISTICS ITC· 25 0 C unless otherwise noted.) Symbol Characteristic Min Typ Max 300 400 - - - - 1 5 - 1 Unit 'OFF CHARACTERISTICS Coliector~Emitter Sustaining Voltage Collector Cutoff Current mAde ICEV IVCEV· Rated Value, VBElofl) • 1.5 Vde) IVCEV • Rated Value, VBEloffl = 1.5 Vde, TC • 100o C) Emitter Cutoff Current IVEB • 9 Vde, IC • Vde VCEOlsus) MJEI300B MJEI3009 IIc·'0mA,IB=0) lEBO mAde 0) SECOND BREAKDOWN Second Breakdown Collector Current with base forward biased See Figure 1 Clamped Inductive SOA with Base Reverse Biased See Figure 2 'ON CHARACTERISTICS hFE DC Current Gain IIC = 5 Ade, VCE • 5 Vde) IIc • 8 Adc, VCE = 5 Vdc) Collector·Emitter Sa~uration 40 30 8 6 Voltage Vde VCElsat) IIC = 5 Adc, IB = lAde) IIC· 8 Ade, IS = 1,6 Ade) IIc = 12 Ade, IB = 3 Adc) IIc =8 Adc, IS = 1.6 Adc, T C = 100°C) .. Base-Emitter Saturation Voltage - 1 .. .. .. 1.5 3 2 - - - 1.2 1.6 1.5 fT 4 - - MHz Cob - 180 - pF td - 0.06 0.1 ~s tr - 0,45 1 ~s ts - 1.3 3 ~s tf - 0.2 0.7 ~s Vdc VSEls.t) lie = 5 Adc, IS = 1 Adc) lie =8 Adc, IS = 1,6 Adc) lie =8 Adc, IB = 1,6 Adc, TC = 100°C) DYNAMIC CHARACTERISTICS Current-Gain - Bandwidth Product IIc = 500 mAde, VeE = 10 Vdc, f· 1 MHz) Output Capacitance IVcs' 10 Vde, IE· 0, f · 0 1 MHz) SWITCHING CHARACTERISTICS Resistive Load (Table 1) Delay Time 1Vec = 125 Vdc, IC Rise Time lSI Stordge Time Duty Cycle'" 1%) = IS2 = 1,6 A, =8 A, = 25 ~s, tp Fall Time Inductive Load, Clamped (Table 1, FIgure 13) Voltage Storage Time lie tsv - 0.92 2.3 ~s Cronover Time lSI te - 0.12 0.7 ~s 'Pulse Test. Pulse WIdth =8 A, Vclamp =300 Vdc, = 1.6 A, VSEloff)· 6 Vdc, Te = 100°C) -- 300 1'$, Duty Cycle -- 2%, 1-896 MJE13008,MJE13009 FIGURE 2 - REVERSE BIAS SWITCHING SAFE OPERATING AREA FIGURE 1 - FORWARO BIAS SAFE OPERATING AREA 4 10 0 0 - 0 ~ ~ ;a TC·25 0 C- 2 1 g; o. 5 ~ - - - 10 5 0 -THERMAL LIMIT - BONOING WIRE LIMIT SECONO BREAKOOWN LIMIT CURVES APPLY BELOW RATED VCEO o. 2 10 30 20 50 70 \. \ 6 \ 4 MJEI300B;;;;;; MJEI300S- J \ 0 Bf-- - r-- Te '" 100 e IB1=2.5A 8 o. 1 :2 0.05 0.0 2 0.0 1 5 2 100".~ ~"= 1m. rd, lOps 10 200 ~~ 300 2 ~JEI300B~ ~ """'"-I-. ~EI300~ ~ 5 V T"-t- 3 V- .5V 400 500 600 BOO 700 VCEV, COLLECTOR·EMITTER CLAMP VOLTAGE (VOLTSI 0 500 VBE(olfl· 9 V ~ 100 VCE. COLLECTOR - EMITTER VOLTAGE (VOLTSI 200 300 The Safe Operating Area figures shown in Figures 1 and 2 are specified ratings for these devices under the test conditions shown. There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate IC-VCE limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. The data of Figure 1 is based on TC = 25 0 C; TJ(pkl is variable depending on power level. Second breakdown pulse limits are valid for duty cycles to 10% but must be derated when TC ;;. 25 0 C. Second breakdown limitations do not derate the same as thermal limitations. Allowable current at the voltages shown on Figure 1 may be found at any case temperature by using the appropriate curve on Figure 3, TJ(pkl may be calculated from the data in Figure 4, At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown, Use of reverse biased safe operating area data (Figure 21 is discussed in the applications information section, FIGURE 3 - FORWARD BIAS POWER DERATING 1 '" O.B "'t; 0 ~ " r-. i'- r1"'- o. 6 '" ;:: ffi "'~ THERMAL OERATING o.4 f'.. f".. " o. 2 ~ r-... i'-. 0 20 40 ~ --r-. t'-... ;z c SECONO BREAKDOWN DERATING r-. 140 60 BO 100 120 Te, CASE TEMPERATURE (OCI 160 FIGURE 4 - TYPICAL THERMAL RESPONSE [ZeJclt)) 0 ) 5 o • 05 --" 3 2 02 01 1 ;£ 00 ) - 005 ~ 005 ~ r- 003 ~ 002f-' in z ~ 00 002 ~ Plpk) tJUl ~~~ V w-::::: I- 1 ,---- 1--'002 001 I-- I- -.1-' z"JCIt) • ,II) ROJC ROJC ·1.25"CIW Max o CURVES APPLY FOR POWER PULSE TRAIN SHOWN REAO TIME AT!J TJlpkl - TC· Plpk) ZOJCII) OUTY CYCLE. 0 ·!J1I2 SljG\E liLr] 005 01 IIIII 02 10 05 I, TIME 1-897 (ms) I I 20 I I I IIIII 50 100 I I I I I III 200 500 10k MJE13008, MJE13009 FIGURE 5 -DC CURRENT GAIN FIGURE 6 - COLLECTOR SATURATION REGION 0 2 ~o ~ ~IS00C 0 -r-- "' I.6 > 1. 2 '" ~ o 25 0 C r--." r--, ao 7 VCE S 0.2 0.3 O.S i SV ~ " 0 > >' rO. ~.2 0.3 17- II" I --,.- ~00. J.... - 2: • "'~ o. 3 :; /'f50 0C --55'C o > O. 2 >' .... e;::;- 0.5 5 3 7 1 0 0.2 20 0.3 O.S a FIGURE 10 - CAPACITANCE 8 ,; I I Cib 2K -TJ·'50·C r '" 10 IC. COLLECTOR CURRENT (AMPI 4K - moc - 2: L r - - rlOOoc = o r----- ./ -:-.15 C 80 0 600 ~ 400 200 ~Ob 1---50 0C 100 B0 60 t== ~2S0C F REVERSE -02 FORWARO +02 "'04 II T)2~0~ ...... U '"~ - IK ~ / O. I f = ·04 2S'C 0.7 lK ~ 100 L""'-! V o. I =VCE' 250 V ~ - Ic/la' 3 FIGURE 9 - COLLECTOR CUTOFF REGION ~ 1 o. 5 10K z 0.7 "- TJ"500 C-!r-- IC. COLLECTOR CURRENT (AMPI -i O.S o. 6 ~ O.6 0.3 :--- , FIGURE 8 - COLLECTOR·EMITTER SATURATION VOLTAGE o. 7 2S°S- O. a 0.2 \ \ lB. BASE CURRENT (AMPI TJ' -SSoc :; 0 0.05 0.07 0.1 > 20 \ r-.. o 10 Iclls' 3 ~ \ u II II 2: \ 8j 0.. FIGURE 1- BASE·EMITTER SATURATION VOLTAGE ~ \ 0.a o , \12 A \ BA SA \3A \ ~ IC. COLLECTOR CURRENT (AMPI 1.2 A >-- 0.7 1.4 1\ IC" "' >-- SSOC 0 '""'<: TJ' 2S oC 2: 0 0 0.1 0.2 '06 VBE. BASE EMITTER VOLTAGE IVOLTSI 1-898 O.S S 10 20 I 2 5 VR. REVERSE VOLTAGE (VOLTSI I 0 20 MJE13008,MJE13009 TABLE 1 - TEST CONDITIONS FOR DYNAMIC PERFORMANCE REVERSE BIAS SAFE OPERATING AREA AND INDUCTIVE SWITCHING RESISTIVE SWITCHING III IN4933 +125 V R 5V 0.001 ~F 33 IN4933 Duty Cycle <; 10% t r • tf OS; 10 ns -4.0 V NOTE PW and Vee Adjusted for Desired RS Adjusted for Desired le1 Ie Coil Data: Ferroxcube Core #6656 Full Bobbin (-16 Turns) #16 - VBE(off) GAP for 200 IJH/20A Leoil:: 200 ~H Vee = 20 v Vclamp '" 300 Vdc Vee = 125 v RC - 15 n 01 "" 1 N582D or Equiv RS"" 5.6 If Clamped n OUTPUT WAVEFORMS t1 Adjusted to ObtaLn Ie Test Equipment Leol! ('eM) '1 ~ Vee Scope - Tektronix 475 or Equivalent Leo" (ICM ) t2::O:: < 10 ns DutY Cvcle '" 1 0' t r . tf Vclamp RS and RC adjusted for deSired and 'e APPLICATIONS INFORMATION FOR SWITCHMODE Ie SPECIFICATIONS condition. Maximum ICEV at rated VCEV is specifIed at a relatively low reverse b,as (1.5 Volts) both at 25 0 C and lOOoC. Increasing the reverse bias will give some improvement in device blocking capability. The sustaining or active region voltage requirements in switching applications occur during turn-on and turnoff. If the load contains a significant capacitive component, high current and voltage can exist simultaneously during turn-on and the pulsed forward bias SOA c'urves (FIgure 1) are the proper design limits. For inductive loads, high voltage and current must be sustained simultaneously dUring turn-off, in most cases, with the base to emitter junction reverse biased. Under these conditions the collector voltage must be held to a safe level at or below a specific value of collector current. This can be accomplished by several means such as active clamping, RC snubbing, load line shaping, etc. The safe level for these devices is specified as a Reverse BIas Safe Operating Area (Figure 2) which represents voltagecurrent conditions that can be sustained during reverse biased turn-off. This rating IS verified under clamped conditions so that the device is never subjected to an avalanche mode. In the four application examples (Table 21 load lines are shown in relation to the pulsed forward and reverse biased SOA curves_ INTRODUCTION The primary considerations when selecting a power transistor for SWITCHMODE applications are voltage and current ratings, switching speed, and energy handling capability. In this section, these specifications will be discussed and related to the circuit examples illustrated in Table 2.(1) VOL TAGE REQUIREMENTS Both blocking voltage and sustaining voltage are important in SWITCHMODE applications. Circuits Band C in Table 2 illustrate applications that require high blocking voltage capability. In both circuits the switching transistor is subjected to voltages substantially higher than VCC after the device is completely off (see load line diagrams at IC = Ileakage '" 0 in Table 2). The blocking capability at this point depends on the base to emitter conditions and the device junction temperature. Since the highest device capability occurs when the base to emitter junction is reverse biased (VCEV), this is the recommended and specified use (1) For detailed information on specific switching applications, see Motorola Application Notes An-719, AN~737A. AN-752, AN-767_ 1-899 MJE13008,MJE13009 handling capability and low saturation voltage. On this data sheet, these parameters have been specified at 8 amperes which represents typical design conditions for these devices. The current drive requirements are usually dictated by the VCE(sat) specification because the maximum saturation voltage is specified at a forced gain condition which must be duplicated or exceeded in the application to control the saturation voltage. VOLTAGE REQUIREMENTS (continued) In circuits A and D, inductive reactance is clamped by the diodes shown. In circuits Band C the voltage is clamped by the output rEtCtifiers, however, the voltage induced in the primary leakage inductance is not clamped by these diodes and could be large enough to destroy the device. A snubber network or an additional clamp may be required to keep the turn-off load line within the Reverse Bias SOA curve. Load lines that fall within the pulsed forward biased SOA curve during turn-on and within the reverse bias SOA curve during turn-off are considered safe, with the following assumptions: The device thermal limitations are not exceeded. The turn-on time does not exceed 10 I1S (see standard pulsed forward SOA curves in Figure 1). The base drive conditions are within the specified limits shown on the Reverse Bias SOA curve (Figure 2). (1) (2) (3) CURRENT REQUIREMENTS An efficient switching transistor must operate at the required current level with good fall time, high energy SWITCHING REQUIREMENTS In many switching applications, a major portion of the transistor power dissipation occurs during the fall time (tfi)' For this reason considerable effort is usually devoted to reducing the fall time. The recommended way to accomplish this is to reverse bias the base-emitter junction during turn-off. The reverse biased switching character· istics for inductive loads are discussed in Fi'gure 11 and Table 3 and resistive loads in Figures 13 and 14. Usually the inductive load component will be the dominant factor in SWITCHMODE applications and the inductive switching data will more closely represent the device performance in actual application. The inductive switching characteristics are derived from the same circuit used to specify the reverse biased SOA curves, (See Table 1) providing correlation between test procedures and actual use conditions. RESISTIVE SWITCHING PERFORMANCE FIGURE 12 - TURN-OFF TIME FIGURE 11 - TURN-ON TIME lK 1K I- 700 50 VCC· 115 V lcllB 5 TJ -15°C o~ 700 t, ,. -- 300 W 50 0 ;:: V ':.200 ~ 10 0 vee 115V IcllB 5 TJ • 15°C ~ V- i'r"'- ~. 100 0 0.3 0.5 V- I' I .... td@ VBE(off) - 5V 0 5 0,2 - ts lK l" 300 - r-tf r- 0,7 10 100 0.1 10 IC, COLLECTOR CURRENT (AMP) FIGURE 13 - INDUCTIVE SWITCHING MEASUREMENTS 0,3 0.5 "1 - 0.7 IC. COLLECTOR CURRENT lAMP) 10 10 FIGURE 14 - TYPICAL INDUCTIVE SWITCHING WAVEFORMS (at 300 V and 12 A with IB1 = 2.4 A and VBE(offl = 5 VI Ie 90% VCEM l~90% IC Vclamp - T !- - 1 , , - I-trv Jl~tt. .... r-tt,- h 10% ......... 10% VeEM- leM- 90% IBI -- --\- -- --- VeE r-- oon w I"z%~ (!) « I- Ie -- ..J o > ........ ~ ""'"'" ~ :> I'\. / Vellimp I B - t- I-tc~ Ie TIME TIME 20 ns/DIV 1-900 MJE13008,MJE13009 TABLE 2 - APPLICATIONS EXAMPLES OF SWITCHING CIRCUITS TIME DIAGRAMS LOAD LINE DIAGRAMS CIRCUIT SERIES SWITCHING REGULATOR 24A - - •. - '\ III Turn-On (Forward Bias) SOA ..",. ton <; 10 Ils \ E'TC-1000C~ ~ J 12A , Duty Cycle" 1 0% IC PO=4000W@ '~350V Turn-Off (Reverse Bias) SOA 1 1.5 V .. VBE(off) .. 9.0 V Duty Cycle.so; 10% ll;lO:f Time ""'---'----. VCE 700 v(i) Collector VOltage Notes: CD MJE13009 Voltage Ratings (VceO(sus) and VCEV) are shown. MJE13008 Ratings are 100 V Lower. ~ See AN·S69 for Pulse Power Derating Procedure. tll Time RINGING CHOKE INVERTER IC Vee -lilt ~I N- ! ~o I~_t t~toff 12A l! ~ '0 u B --f\ ~~;:)CtE- - - - VCC Collector Voltage Notes: Leakage Spike (j) . t MJE13009 Voltage Ratings (VCEO(sus) and VCEV) are shown. MJE1300S Ratings are 100 V Lower. ~ See AN·569 For Pulse Power Derating Procedure . /Turn-On (Forward BiasI SOA t on '<; 10 llS PUSH-PULL INVERTER/CONVERTER 24A----,/ [lJ I \ ~TC: af V c ve<>e+---olill Dutv Cycle" 10% 1000 e-\,po=4000W@ \ '350 V Turn-Off (Reverse Bias) SOA ~.... 12A Turn-On 0 1.5 v oS; VSE(offl oS; 9.0 Duty Cycle <; 10% I I'i- - - - ' ' - - - , + @) MJE13009 Voltage Aatlngs (VCEO(sus) and veE V) are shown, MJE13008 Ratings are 100 V Lower. See AN-569 for Pulse Power Derating Procedure. \ -'---- m Duty Cycle" 10% TC"" 100°C _ , PO'" 4000 W Vce o VeE Turn-On (Forward Bias) SOA 24A--- - ..,\~ ton" 10jJ.s SOLENOID DRIVER ) ton vee Vce Collector Voltage Notes: G> I C [ J ; J tOff v ~ t <3 \, ® 350 V 'C Turn-Off (Reverse Siasl SOA 12A 1.5 V .. VBE(off) .. 9.0 V Duty Cycle OliO; 10% Solenoid CD Notes: (!) @ 700 V (i) Collector Voltage MJE13009 Voltage Ratings (VCEO(sus) and Vcev) are shown, MJE1300B Ratings are 100 V Lower. See AN-S69 for Pulse Power Derating Procedu .... 1-901 IAf t MJE13008,MJE13009 TABLE 3 - TYPICAL INDUCTIVE SWITCHING PERFORMANCE III to: IC AMP TC tsv tti no trY ns tfi "c ns ns ns 3 25 100 770 1000 100 230 160 160 200 200 240 320 5 25 100 630 820 72 100 26 65 10 30 100 180 8 25 100 720 920 65 70 27 50 2 8 77 120 12 25 100 640 800 20 32 17 24 2 4 41 64 NOTE: All Data recorded In the Inductive SWitching Circuit In Tabla 1. SWITCHING TIME NOTES In resistive switching circuits, rise, fall, and storage times have been defined and apply to both current and voltage waveforms since they are in phase. However, for inductive loads which are common to SWITCHMODE power supplies and hammer drivers, current and voltage waveforms are not in phase. Therefore, separate measurements must be made on each waveform to determine the total switching time. For this reason, the following new terms have been defined. tsv = Voltage Storage Time, 90% IS1 to 10% VCEM trY = Voltage Rise Time, 10-90% VCEM tfi = Current Fall Time, 90-10% ICM tti = Current Tail, 10-2% ICM tc = Crossover Time, 10% VCEM to 10% ICM An enlarged portion of the turn-off waveforms is shown in Figure 13 to aid in the visual identity of these terms. For the designer, there is minimal switching loss during storage time and the predominant switching power losses occur during the crossover interval and can be obtained using the standard equation from AN-222: PSWT = 1/2 VCCIC(tc! f Typical inductive switching waveforms are shown in Figure 14. In general, trv + tfi "" tc' However, at lower test currents this relationship may not be valid. As is common with most switching transistors, resistive switching is specified at 2!PC and has become a benchmark for designers. However, for designers of high frequency converter circuits, the user oriented specifications which make this a "SWITCH MODE" transistor are the inductive switching speeds (tc and t sv ) which are guaranteed at 1000 C. 1-902 ® MJE13070 MJE13071 MOTOROLA Designer's Data Sheet 5 AMPERE NPN SILICON POWER TRANSISTORS SWITCHMODE " SERIES NPN SILICON POWER TRANSISTORS 400 AND 460 VOLTS 80 WATTS The MJE13070 and MJE13071 transistors are designed for highvoltage, high-speed, power switching in inductive circuits where fall time is critical. They are particularly suited for line-operated switchmode applications such as: • S~itching Regulators • Inverters • Solenoid and Relay Drivers • Motor Controls • Deflection Circuits Designer's Data for "Worst Case" Conditions The DeSigner's Data Sheet permits the deSign of most Circuits entirely from the information presented. lImit data - representing deVice characteristics boundanes - are given to facilitate "worst case" deSign. Fast Turn-Off Times 100 ns Inductive Fall Time @ 25°C (Typ) 150 ns Inductive Crossover Time @ 25°C (Typ) 400 ns Inductive Storage Time @ 25°C (Typ) Operating Temperature Range -65 to +150 o C 100°C Performance Specified for: Reverse-Biased SOA with Inductive Loads Switching Times with Inductive Loads Saturation Voltages Leakage Currents MAXIMUM RATINGS Symbol Rating MJE13070 MJE13071 Unit Collector-Emmer Voltage VCEOlsus) 400 450 Vdc Collector-Emmer Voltage VCEV 650 750 Vdc Emitter Base Voltage VEB 60 Vdc Collector Current - IC ICM 5.0 8.0 Adc IB IBM 2.0 4.0 Adc 80 Watts DIM 0.64 W/oC A B -65 to+150 °C Base Current - Continuous Peak 11) Continuous Peak 11) Total Power DIssipation @ TC:: 25°C @TC=100°C Derate above 25°C Operating and Storage Junction Temperature Range Po 32 TJ, T5t9 C Thermal ReSistance, Junction to Case MaXimum Lead Temperature for Soldering Purposes' 1 IS"" from Case for 5 Seconds D F G H THERMAL CHARACTERISTICS Characteristic STYLE 1 NOTES PIN 1 BASE 1 OIMENSION H APPLIES TO ALL LEADS 2 COLLECTOR 2 DIMENSION L APPLIES TO LEADS 1 3 EMITTER AND 3 4 COLLECTOR J Symbol Max Unit ReJC 1.56 °C/W K L Tl 275 °C N Q R S T 11) Pulse Test. Pulse Width = 5 ms, Duty Cycle .;; 10%. U V Z MIlliMETERS '~':0 ~A7~ ~~ ~ 9.65 406 064 361 241 279 036 1270 114 483 254 204 1.14 5.97 000 1.14 1029 482 089 373 267 393 056 1427 139 533 304 2.79 1.39 6.48 1.27 0380 0160 0025 0142 0095 0110 0014 0500 0045 0190 0100 0080 0045 0.235 0.000 0.045 0405 0190 0.035 0147 0105 0155 0022 0562 0055 0210 0120 0110 0.055 0.255 0.050 - 2.03 - 0.080 - CASE 221A-02 TO-220AB 1-903 - MJE13070,MJE13071 ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted) I I Characteristic Symbol Min Typ Max 400 - - Unit OFF CHARACTERISTICS (1) Collector-Emitter Sustaining Voltage (Table 1) (Ie = 100 rnA. Is = 0) VCeO(sus) MJEI3070 MJE13071 - - - 0.5 2.5 ICER - 3.0 mAde lEBO - - 1.0 mAdc 450 Collector Cutoff Current (VCEV = Rated Value. VSE(off) = 1.5 Vdc) (VCEV = Rated Value.VSE(off) = 1.5 Vdc. TC = 100°C) ICEV Collector Cutoff Current (VCE = Rated VCEV. RSE = 50 n. TC = 100°C) Emitter Cutoff Cu·rrent Vdc mAdc (VEB = 6.0 Vdc. Ie = 0) SECOND BREAKDOWN Second Breakdown Collector Current with Base Forward Biased See Figure 12 Clamped Inductive SOA with Base Reverse Siased See Figure 13 ON CHARACTERISTICS (1) 8.0 - - - - - 1.0 3.0 2.0 - - 1.5 1.5 Id tr Is If - 0.03 0.10 0.40 0.175 0.05 0.40 1.50 0.50 ~s Isv Ic - 2.0 0.50 0.30 (TJ = 25°e) 'f, Isv Ie 0.70 0.28 0.15 0.40 0.15 0.10 ~s (TJ: 100°C) DC Current Gain hFE - (Ie = 3.0 Adc. VCE = 5.0 Vdc Collector-Emitter Saturation Voltage VCE(sat) (lC = 3.0 Adc. IB = 0.6 Adc) (lc = 5.0 Adc. la = 1.0 Adc) (Ie = 3.0 Adc. IB = 0.6 Adc. Te = 1DO°C) Base-Emitter Saturation Voltage VBE(sat) (IC = 3.0 Adc. IS = 0.6 Adc) (lc = 3.0 Adc. IB = 0.6 Adc. TC = 1DO°C) Vdc Vdc DYNAMIC CHARACTERISTICS Output Capacitance (Vca = 10 Vdc. Ie = O. f test = 1.0 kHz) SWITCHING CHARACTERISTICS Resistive Load (Table 1) Delay Time Rise Time Storage Time Fall Time (VCC = 250 Vdc. IC = 3.0 Ade. IBI = 0.4 Ade. Ip = 30 ~s. Duty Cycle ';2%. VBE(off) = 5.0 Vde) Inductive Load. Clamped (Table 1) Storage Time Crossover Time Fall Time Storage Time Crossover Time (lC(pk) = 3.0 A. lSI = 0.4 Ade. VSE(off) = 5.0 Vdc. VCE(pk) = 250 V) Fall Time 'f, (1) Pulse Test: PW - 300 p.S. Duty Cycle ~2% Pt:.!£. 18 1-904 - - MJE13070, MJE13071 TYPICAL ELECTRICAL CHARACTERISTICS FIGURE 1 - DC CURRENT GAIN 50 FIGURE 2 - COLLECTOR SATURATION REGION 30 I z ;;: '"f- i13 30 ....... TJ 20 r--- ........ =2S'C '-' c ~ VCE ~ '" """" =50 V \ Vi ~ 20 ~OO'C ~ 10 §.! 05 ~ .'\ ~ 10 t; 70 8 SOA- r- 03 OS 10 20 IC. COLLECTOR CURRENT (AMPSI 30 50 r= ~TJ 003 002 BO FIGURE 3 - COLLECTOR-EMITTER SATURATION VOLTAGE ~ 05 0 100'~ ~ g 10 2.0 BASE-EMITTER VOLTAGE ~ - ...... TJ - 2S'C c ~ 07 / ~ 100°C ~ 05 2S'C J I'lf = 5.0 ~ 10 ~0 = tl 01 0 '" ;;;; ~03 '-' 0.0 7 '" 01 02 03 O.S lB. BASE CURRENT (AMPSI ~ )jY Jf =S b '" ~ ~ 005 g c V ~ 02 0 003 - 25'C FIGURE 4 - I ~ r-- 20 > ~ 03 0 ....... f'-- 1 ~005 02 25A IC = lOA 02 ~ SO oOB 01 ....... 03 ~ r\l\ 1\ 0.0 S 0.05 02 01 02 03 05 10 20 30 50 005 01 02 03 05 10 IC. COLLECTOR CURRENT (AMPSI IC. COLLECTOR CURRENT (AMPSI FIGURE 5 - COLLECTOR CUTOFF REGION FIGURE 6 - 20 30 50 CAPACITANCE 10K / j >z I - - r--TJ 150DC 0 :i! ~ 125°C 10 2 '"o ~ 10 !OODC I 8 .i? I / C,b 103 t- ..,.. 1/ ./ ~100 O / '-' z g I / ~ II ~ 75°C I - - ~REVERSE TJ - 25°C ~ FORWARO 100 Cob VCE o250V= 100 25°C !O-I -0.4 0 -02 +02 +04 10 +06 30 50 10 30 50 100 VR. REVERSE VOLTAGE (VOLTSI VBE. BASE·EMITTER VOLTAGE (VOLTS) 1-905 300 500 1000 MJE13070,MJE13071 III] TABLE 1 - TEST CONOITIONS FOR OYNAMIC PERFORMANCE 100 /I ! J 0 ..z 10 ~-351J 2• • ...r-L ... l: ZO -z 2N6191 TURN ON TIME RBI tjA t p.r I lOJlF + - 50 0 U ,.~: 'e 1 adjusted to obtaIM the forced tiFf de,lred ~2N5337 TURN OF F TIME Use ,"ducI,,,. SWltclunD 500 PW Varied 10 AU.IM Ie'" ~F -= --r ~- " 20 + ""0V~1 y+V~l1V 002 "F 1 H P 2141 or :~UIV .... 0 RESISTIVE SWITCHING RBSOA AND INDUCTIVE SWITCHING VCEOIsus) lDOmA 100 -= dr,ve, ., 1he Input to b-v the reSlSllve testcircUI1 Adjust RS1 to obtain IS1 For SWitching and RBSOA. R2 "" 0 For BVCEO(sus). R2 '" ....-W '" ~~ U ... !c lCDl1 401' = IOmH vee" 10V z 00 180~H RCDtl;O 0 05 VCC=20V "cou=o.7n n VCC=2S0V RL = 83u Pulse Width = 10 J.lS Vclamp - 250 V FlS1 adjusted to attam deSired 'el U> INDUCTIVE TEST CIRCUIT '":;.... ~ II: u .... '"W .... r , U Input S . . Abo". for 2 or Equlval.nt OM;all . . ConditIons Vclamp , ...:t 'e jRcOil I I I lN4937 OUTPUT WAVEFORMS I l'0 "~,om J- Vee ~h') 0.1 n ve'~b ---- Vcl• mp T,me ,,/ IC"""'" I, 90% VCE(pk) {CEIPkl ~ J1\ 90% IC(pk) trv!t:! I:::~.'fo- -',,- I- r-'sv I~ r-'c--"", t- V VCE 10% VCElpk) -- --\-, -- -"'-- I" w'" ..... IC pk 1 8 - f- 90% 181 I, ." Leoti (lCpk J Vee ''~ 1. ~ =VCC "L J-12~ Vcl amp -, T.st Eql,upm.nt Scope - Tektronuc 475 or Eq..... val.nt FIGURE B - PEAK REVERSE CURRENT 80 IC.:!--.J 1 Ie '2'" Leol! "Cpk 1 FIGURE 7 - INDUCTIVE SWITCHING MEASUREMENTS ".". f-""" ... 1---.,- "t- Il.eoil L j RESISTIVE TEST CIRCUIT I, Adjusted to Obtain 70 in _ ~ 6.0 ~ !2i 5.0 a 40 gj I. Ie 0 3.0 A (31 0 50 ".". ~ 30 j2.0 -- -- - - ~ ,../ ~ w ~~ TJ 0 25°C ..,/" ".". 1.0 ~ 1.0 TIME 1-906 2.0 4.0 5.0 6.0 30 VSElolf)_ BASE-EMITTER VOLTAGE IVOLTS) 7.0 B.O MJE13070.MJE13071 SWITCHING TIMES NOTE In resistive switching circuits, rise, fall, and storage times have been defined and apply to both current and voltage waveforms since they are in phase. However, for inductive loads which are common to SWITCH MODE power supplies and hammer drivers, current and voltage waveforms are not in phase. Therefore, separate measure· ments must be made on each waveform to determine the total switching time. For this reason, the following new terms have been defined. t sv = Voltage Storage Time, 90% lSI to 10% Vcl amp trv = Voltage Rise Time, 10-90% Vel amp tfi = Current Fall Time, 90 -1 0% IC tti = Current Tall, 10-2% IC tc = Crossover Time, 10% Vclamp to 10% IC An enlarged portion of the inductIve switching waveforms is shown in Figure 7 to aid in the visual identity of these terms. For the designer, there is minimal switching loss during storage time and the predominant switching power losses occur during the crossover interval and can be obtained using the standard equation from AN·222: PSWT = 1/2 VCCIC(tc)f In general, try + tfi '" tc' However, at lower test currents this relationshIp mav not be valid. As is common with most switching transistors, resistive switching is specified at 25 0 C and has become a bench· mark for designers.· However, for designers of high frequency converter Circuits, the user oriented specifica· tions which make this a "SWITCHMODE" transistor are the Inductive switching speeds (tc and t sv ) which are guaranteed at lOOoC. INDUCTIVE SWITCHING FIGURE 9 - STORAGE TIME FIGURE 10 - CROSSOVER AND FALL TIMES 50 30 15 r- - I- TJ =75°C III =5 0 0;- .3 :1;:: 20 /' -- f-"'" V ~ ........ 07 '" V VBE(oftJ = i - 07 20 10 .... '- J- .......... -- ~ 'i 07 05 -- 'fi -50 V ~ ~~ I 015 50 'e- 1.OV i.>-. Ilf = 5 0 TJ=75°C 5OV -T --..:.: 'f/1.0 V 02 0V 30 -- ..... ........ 03 05 0.5 ----tfl - ~ VBE(oIfJ=IOV "--.. 07 --Ie 10 10 20 3.0 IC. COLLECTOR CURRENT (AMPSJ IC. COLLECTOR CURRENT (AMPSJ 5.0 FIGURE 11 - THERMAL RESPONSE 7 5 o . 05 3 '-' ~ 0 2 02 01 01 « 00 71-- 005 00 5 I-- 002 ~ 003 .- ;;;....- in ~ ! ~ 00 2~ in z ~ 00 l ....... 001 ,.... r- foot:::: n SliG,E Illl! 002 --- ~ 005 01 P(pk) tJU1. ~~~ DUTY CYCLE, 0 IIIII 02 05 10 2 I, TIME (ms) 1-907 ZOJC(o "rll) ROJe ROJe =- 1.56 0 erw Max o CURVES AWL Y FOR POWER PULSE TRAIN SHOWN READ TIME AT 11 TJ(pk) - Te" P(pk) lOJCft) =- I I 20 t1"t2 I I IIIIII 50 100 I I 200 I I I III 500 I k MJE13070,MJE13071 SAFE OPERATING AREA INFORMATION Th. Sat. O...... tillll Ar.. figuroolhown in Figuroo 12 and 13 ar. specified for th... devices under the test conditions shown. FORWARD BIAS FIGURE 12 - MAXIMUM FORWARD BIAS SAFE OPERATING AREA 10 5.0 '" !Ii ~ >- 1.0 '" c.> '" c '" 0.5 ~ "- "TC = 25°C 0.2 t; 10I's~~ 1.0 ms de 2.0 MJE13070 ~ MJE13071 ~ 0.1 c '"'.0.05 J? == ---Bonding Wire limit ----Thermal'limit r-.. Second Breakdown limit 0.02 0.01 5.0 7.0 10 20 30 50 70 100 200 300 450 VCE, COLLECTOR - EMITTER VOLTAGE IVOLTS) There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate IC-VCE Ifmits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. The data of Figure 12 is based on TC = 250 C; TJ(pk) is variable depending on power level. Second breakdown pulse limits are valid for duty cycles to 10% but must be derated when TC ;;. 250 C. Second breakdown limitations do not derate the same as thermal limitations. Allowable current at the voltages shown on Figure 12 may be found at any case temperature by using the appropriate curve on Figure 14. T J(pk) may be calculated from the data in Figure 11. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown. FIGURE 13 - MAXIMUM RATED REVERSE BIAS SAFE OPERATING AREA 80 u; !Ii ~ \ 1 7.0 6.0 ry >~ 5.0 '" 4.0 i:l '" TJ';; 100°C c '" !;i 13';;' 4.0 ::::l J? ;--::.=r--- MJ13070 -I r- MJ13071 1.0 - 100 VBEloH) =0 For inductive loads, high voltage and high current must be sustained simultaneously during turn-off, in most cases, with the base to emitter junction reverse biased. Under these conditions the collector voltage must be held to a safe level at or below a specific value of collector current. This can be accomplished by several means such as active clamping, RC snubbing, load .Iine shaping, etc. The safe level for these devices is specified as Reverse Bias Safe Operating Area and represents the voltage·current conditions during reverse biased turn-off. This rating is verified under clamped conditions so that the device is never subjected to an avalanche mode. Figure 13 gives R BSOA characteristics. \ \ 1 1 I 3.0 cc.> 2.0 REVERSE BIAS \ 1 M ~ VBEloH) = 1.0 to 5 0 V .~-.J. \ I \ \' -"::::-+ -, 200 300 400 500 600 VCE, COLLECTOR· EMITTER VOLTAGE IVOLTS) 1 700 750 FIGURE 14 - POWER DERATING 0.8 '"t; o ""r--:""-r- r" '!. 06 ~ ;::: THERMAL DERATING « ffi o - ~ 0.4 r- - -.. r-- r--.. ""- '"w ~ SECOND BREAKDOWN DERATING 0.2 "'" ....... r-...... 40 120 100 80 Tc, CASE TEMPERATURE lOCI 60 1-908 i'-... 140 160 NPN ® PNP MJE15028 MJE15029 MJE15030 MJE15031 MOTOROLA COMPLEMENTARY SILICON PLASTIC POWER TRANSISTORS 8 AMPERE · .. designed for use as high·frequency drivers in audio amplifiers. • DC Current Gain Specified to 4.0 Amperes hFE = 40(Min) @ IC = 3.0 Adc = 20(Min) @ IC = 4.0 Adc • Coliector·Emitter Sustaining Voltage VCEO(sus) = 120 Vdc (Min) - MJE15028. MJE15029 = 150 Vdc (Min) - MJE15030. MJE15031 • • High Current Gain - Bandwidth Product fT = 30 MHz (Min) @ IC = 500 mAdc TO·220AB Compact Package • TO·66 Leadform Also Available POWER TRANSISTORS COMPLEMENTARY SILICON 120-1SO VOLTS SO WATTS MAXIMUM RATINGS Rating Collector-Emitter Voltage Svmbol MJE1S028 MJE1S029 MJE1S030 MJE15031 Unit VCEO 120 150 Vdc Vce 120 150 Collector-Base Voltage Emitter-Base Voltage Collector Current Continuous Peak Base Current Total Power Dissipation .... VEa IC @TC=250C PD Derate above 25°C Operating and Storage Junction Temperature Range 2.0 SO 0.40 ... @TA=250C . .. . .. 16 . . 2.0 0.D16 TJ.Tstg .. . B.O .. Ie Po Derate above 2SoC Total Power Dissipation 5.0 -65 to +150---- _ Vdc Vdc Adc Adc Watts W/oC Watts wf'c °c THERMAL CHARACTERISTICS Characteristic Thermal Resistance. Junction to Case I Symbol I Max I Unit I R9JC 2.5 I °CIW Thermal Resistance. Junction to Ambient I I I 62.5 R9JA B TA TC C D F G u; 3.060 H ~ z J 0 ;::: t: ili ........... 2.040 ......... C '"~ ~ BASE COLLECTOR EMITTER COUECTOR DIM A FIGURE 1 - POWER DERATING ...... « °C/W STYLE 1. PIN 1. 2. 3 4. K r-..... L N 1"-...' Q 1.020 ~ Ir;:....:: ~ ........ ..0 00 o R S T ~ I 20 40 60 80 100 T. TEMPERATURE 1°C) I """ 120 140 1-909 U V Z MILLIMETERS MAX MIN 14.60 1575 9.65 10.29 406 482 064 089 373 361 2.41 267 393 2.79 0.36 056 1270 14.27 114 1.39 4.83 533 2.54 3.04 2.04 2.79 1.14 1.39 5.97 6.4B 0.00 1.27 1.14 2.03 - 'I MIN 0575 0380 0160 0025 0142 0095 0110 0.014 0500 0045 0.190 0.100 0.080 0.045 0.235 0.000 0.045 - CASE 221A'()2 160 TO-220AB . 0105 0155 0022 0562 0055 0.210 0120 0110 0.055 0.255 0.050 - D.DBO NPN MJE15028,MJE15030 PNP MJE15029,MJE15031 ELECTRICAL CHARACTERISTICS (TC Charact.ristic = 25°C unle •• otherwise noted) Svmbol I Min Max 120 150 - - 0.1 0.1 Unit OFF CHARACTERISTICS Collector-Emitter Sustaining Voltage (1) MJE15028, MJE15029 MJE15030, MJE15031 Collector Cutoff Current MJEI5028, MJEI5029 MJE15030, MJE15031 Collector Cutoff Current (VCB = 120 Vde,IE = 0) (VCB = 150 Vde, IE = 0) MJE15028, MJE15029 MJE15030, MJE15031 - = 5.0 Vde, IC I'Ade ICBO Emitter Cutoff Current (V BE mAde ICEO = 120 Vdc,lB = 0) = 150 Vdc,lB =0) (VCE (VCE Vde VCEO(sus) = 10 mAde, IB =0) IIc lEBO - - 10 10 - 10 40 40 40 20 - I'Ade = 0) ON CHARACTERISTICS (1) DC Current Gain IIc = 0.1 Adc, VCE = 2.0 (lc = 2.0 Ade, VCE = 2.0 IIc = 3.0 Adc, VCE = 2.0 (lc = 4.0 Adc, VCE = 2.0 - hFE Vde) Vde) Vdc) Vdc) DC Current Gain Linearity Typ 2 hFE (VCE From 2.0V to 20V,IC From O.IA to 3A) (NPN TO PNP) 3 Collector-Emitter Saturation Voltage (lC = 1.0 Adc,IB = 0.1 Base-Emitter On Voltage (lC VCElsati - 0.5 Vdc VSElonl -- 1.0 Vdc Adc) = 1.0 Adc, VCE = 2.0 Vdc) OYNAMIC CHARACTERISTICS Current Gain - BandwIdth Product (2) (Ie = 500 mAde, VCE = 10 Vdc, f'est = 10 MHz) (1 )Pulse Test' Pulse Width 121fT = I hfe ' • f test ~ 300 ,Us, Duty Cycle';;;; 2 0%. FIGURE 2 - THERMAL RESPONSE ~ :; z ' '"« ~ 1.0 Ic/1e" 10 0.5 0.2 2.0 1.0 5.0 10 H-~~(sat)J 0.1 0.5 0.2 FIGURE 10 - TURN,ON TIMES 2.0 ...... 0.1 ....... 5.0 3.0 td(NPN. PNP) ~ 2.0 t, (PNP) ""w 1.0 >=.: 0.5 .3 ,. 0.05 '1 0.02 .......... 1 0.2 0.01 - 0.1 0.1 0.2 2.0 5.0 0.5 1.0 IC. COLLECTOR CURRENT (AMP) - t-- t,lNPN) 0.03 10 5.0 10 FIGURE 11 - TURN·OFF TIMES vCC-eov Ie 118 - 10 TJ - 25 0e "1""- 2'-.. 0.2 .3 '>=.:"' 1.0 10 0.5 ~ IC l1e IC. COLLECTOR CURRENT (AMP) 1.0 w ..... V 1 IC)18 -20 IC. COLLECTOR CURRENT (AMP) .,. V V VCE(satl@ ICI18 = 20 04 ~ 1---" ....... .-"'. ~~ O.B ~ VeE(satl@ IC/18 = 10 > >' ~ VCE\sat) = Ic/1e - 20 o.2 0.1 w ...... I o.6 ~ 1.4 0 1.2 10 1-912 0.1 0.3 r-... ........ r-. ts(PNP) tf IPNP) tf(N~ ::'t--N. I 0.2 - VCC = BOV Ic/ 1e=1O.181"le2 ts INPN) TJ" 25 0C r- 0.5 2.0 IC. COLLECTOR CURRENT (AMP) - 5.0 10 ® MJEI6002 MJEI6004 MJHI6002 MJHI6004 MOTOROLA 5.0 AMPERE Designer's Data Sheet NPN SILICON POWER TRANSISTORS SWITCHMODE III SERIES NPN SILICON POWER TRANSISTORS 460 VOLTS SO and 100 WATTS These transistors are designed for high-voltage, high-speed switching of inductive circuits where fall time and RBSOA are critical. They are particularly well-suited for line-operated switchmode applications. The MJE16004 and MJH16004 are high-gain versions of the MJE16002 and MJH16002 for applications where drive current is limited. MJE1S002 MJE1S004 STYLE 1 , PIN 1 Typical Applications: .. 3. • Switching Regulators • High Resolution Deflection Circuits • Inverters i; • Motor Drives • Fast Switching Speeds 50 ns Inductive Fall Time @ 75°C (Typ) 70 ns Crossover Time @ 75°C (TVp) • 1ODoC Performance Specified for: Reverse-Biased SOA Inductive Switching Times Saturation Voltages Leakage Currents I: MAXIMUM RATINGS Rating CASE 221A-02 Symbol MJE1600~1 MJH1S002 MJH1S004 MJE1S004 TO-220AB Unit Collector-Emitter Voltage VCEO(sus) 450 Vdc Collector-Emitter Voltage VCEV 850 Vdc Emitter-Base Voltage VEB 6.0 Vdc Collector Current - Continuous IC ICM 5.0 10 Adc IB IBM 4.0 8.0 Adc -Peak(l) Base Current - Continuous -Peak(l) Total Power Dissipation@Tc= 25°C @TC=I000C Derate above TC = 25°C Operating and Storage Junction Po 80 32 0.64 I 100 40 0.8 MJH1S002 MJH1S004 Watts W/oC TJ, Tstg -65 to +150 °c Symbol Max Unit Temperature Range THERMAL CHARACTERISTICS Characteristic Thermal Resistance, Junction to Case lead Temperature for Soldering Purposes: liB' from Case for 5 Seconds (11 STYLE 1: 1. lASE R8JC TL 1.56 I 1.25 275 2. COLLECTOR 1 EMITTER 4. COLLECTOR °C/W Designer's Data for ··Worst Case·' Conditions given to facilitate "worst.case" design. 1-913 . ... • 10' H ... MILLIMETERS 'ICHES ..N MAX MIN IIAX 0.... 0... 15049 UtO 0'" 4.19 0.185 0201 U5 • .D40 E us us O.ll63 Pulse Test: Pulse Width = 5 ms. Duty Cycle';; 10%. The Designer's Data Sheet permits the design of most circuits entirely from the infor~ mation presented. Limit data - representing device characteristics boundaries - are DI. •• , , ,"... .... c °C CASE 340-01 TO-21 SAC .-.... .,,, .... 521 • ,., , ,..., • •• .... '.22 .... ., L ." 3.20 0" 0'" 0.121 0.015 0'" 12.70 0.500 0.&10 'UI 11.51 OJ .. 0... 12.19 12.10 0.500 0.111 . MJE16002,MJE16004,MJH16002,MJH16004 I ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted) I Characteristic Symbol Min Typ Max Unit VCEO(sus) 450 - - Vdc - 0.25 1.5 - OFF CHARACTERISTICS (I) Collector-Emitter Sustaining Voltage (Table 2) (lC= 100 mA, IS = 0) Collector Cutoff Current (VCEV = 850 Vdc, VSE(off) = 1.5 Vdc) (VCEV = 850 Vde, VSE(off) = 1.5 Vde, TC = 100°C) ICEV Collector Cutoff Current (VCE = 850 Vde, RSE = 50 0, TC = 100°C) ICER - Emitter Cutoff Current IESO - mAde - 2.5 mAde 1.0 mAde (VES = 6.0 Vde, IC = 0) SECOND SREAKDOWN See Figure 17 or 18 Second Breakdown Collector Current with Base Forward Biased See Figure 19 Clamped Inductive SOA with Sase Reverse Siased ON CHARACTERISTICS (I) Collector-Emitter Saturation Voltage (IC = 1.5 Ade, IS = 0.2 Ade) (IC = 1.5 Ade, IS = 0.15 Ade) (lC = 3.0 Ade, IS = 0.4 Ade) (IC = 3.0 Ade, IS = 0.3 Ade) (IC = 3.0 Adc, IS = 0.4 Ade, TC= 100°C) (IC = 3.0 Ade, IS = 0.3 Ade, TC= l000C) VCE(sat) - - 1.0 1.0 2.5 2.5 MJEI6002/MJHI6oo2 - - 2.5 - - 2.5 MJE16oo2/MJH16oo2 MJEI6004/MJHI6004 - - 1.5 1.5 MJEI6oo2/MJHI6002 - - 1.5 MJEI6004/MJHI6004 - - 1.5 5.0 7.0 - - MJEI6004/MJHI6004 Base-Emitter Saturation Voltage (IC = 3.0 Ade, IS = 0.4 Ade) (IC = 3.0 Ade, IS = 0.3 Ade) (IC = 3.0 Ade, IS = 0.4 Ade, TC = 100°C) (lC = 3.0 Ade, IS = 0.3 Ade, TC= 100°C) DC Current Gain (IC = 5.0 Ade, VCE = 5.0 Vde) Vde MJEI6002/MJHI6002 MJEI6004/MJHI6004 MJEI6oo2lMJHI6002 MJEI6004/MJHI6004 VSE(sat) - hFE MJE16oo2/MJH16oo2 MJEI6004/MJHI6004 - Vde - DYNAMIC CHARACTERISTICS Output Capacitance (VCS = 10 Vde, IE = 0, f test = 1.0 kHz) SWITCHING CHARACTERISTICS Resi.Iive Load (Table 1) Delay Time Rise Time Storage Time Fall Time Storage Time Fall Time Reli.Iive Load (Table 1) Delay Time Rise Time Storage Time Fall Time Storage Time Fall Time MJE16002/MJH16002 (lC = 3.0 Ade, VCC = 250 Vdc, lSI = 0.4 Adc, PW= 3OI'S, Duty Cycle .. 2.0%) (lS2 = O.S Ade, RS2 = 8.0 ill (VSE(off) = 5.0 Vdc) td Ir ts tf ts tf - 30 100 1000 60 100 300 3000 300 - 400 - Id - ns 130 MJE16004/MJH16004 (lc = 3.0 Adc, VCC = 250 Vdc, lSI = 0.3 Ade, PW= 3OI'S, Duty Cycle .. 2.0%) (IS2 = 0.6 Ado, RS2 =8.00) tr Is tf (VSE(off) = 5.0 Vdc) (1) Pulse Tost: PW - 300 1'5, DUIV Cycle ';;2%. Ie */If= 181 1-914 Is tf - - 100 30 130 300 800 80 2700 350 250 60 ns MJE16002,MJE16004,MJH16002,MJH16004 SWITCHING CHARACTERISTICS (conlinued) Characteristics Inductive Load (Table 2) Symbol Min Typ Max Unit lOY - 1600 200 250 'c - 500 100 120 600 120 160 no 'ii te lOY Iii lOY - 400 80 90 450 100 110 1300 150 200 MJE16002lMJH16002 Storage Time Fall Time Crossover Ti me (IC = 3.0 Ade, lSI =0.4 Adc, VSE(off) = 5.0 Vde, VCE(pk) = 400 Vde) Storage Time Fall Time (TJ = 100°C) (TJ= 150°C) Crossover Time Inductive load (Table 2) - - MJE16004/MJH16004 Storage Time =3.0 Adc, Fall Time (lc Crossover Time Storage Time IBI = 0.3 Ade, VBE(off) = 5.0 Vdc, VCE(pk)= 400 Vde) Fall Time - (TJ = 100°C) 'ii Ie lOY Ifi te (TJ= 150°C) Crossover Time - no - - (1) Pulse Test. PW - 300 pS, Duty Cycle ~2%. Ie ·Pf= 181 FIGURE 1 - DC CURRENT GAIN 60 50 FIGURE 2 - COLLECTOR SATURATION REGION 2.0 ~ a '" :1 30 ~ '"... ::::-..l 20 2~ is a'"'" '-' 0 I 10 S5°C r-- r- VCE = s.o V 3.0 01 1.0 ~ 0.1 ,. ~ ; " '" 0 os ~ 0 ... - 03 OS 01 1.0 2.0 3.0 SOlO 01 0.03 10 IIIII 0 OS 0.01 0.1 Ie. COLLECTOR CURRENT (AMPS) 3.0 ~ 2.0 ~ ~ 050 ~ ~ ~ ~ / 1.0 liE ........ I...... "- I- i'-... r-.... 0.2 0 3 05 0 1 1 0 Is. BASE CURRENT (AMPS) 20 30 = - III = 10 TJ = 2SoC Ilt= 10 TJ = 100°C O.OS 0.1 ;; ~ 0.2 O.S 10 ~ ./ V 0.10 III = 5 TJ = 25°C Q /,; 'I 0.20 20 ~ ~ 15 ~ Q ~ 30 S.O ..,. "1\ FIGURE 4 - BASE·EMITTER VOLTAGE FIGURE 3' - COLLECTOR· EMITTER SATURATION VOLTAGE ~ 0 a '" " TJ = 25°C II II 1\4A 5A \ \ t; '-' 02 1\3 A 1\ 03 $' 0.2 2A \ Ic = I A ~ Q ~ 10 SO 1 II \ Q TJ = 100°C ai / so 010 ~ I"i.., Ilf=S TJ = 2SoC 2.0 10 :i! 050 "'- r-- ~ 10 Ie. COLLECTOR CURRENT (AMPS) 030 01 - III = 10 TJ= lDUoC 02 os I I 10 2.0 IC, COLLECTOR CURRENT (AMPS) 1-915 5.0 10 MJE16002,MJE16004,MJH16002,MJH16004 TYPICAL STATIC CHARACTERISTICS (continued) FIGURE 6 - CAPACITANCE FIGURE & - COLLECTOR CUTOFF REGION 10000 , I' ~ ~ 1=12!i°C ./ llJOOC .." ~1000 J"'to ~ , .~ ./ 1~ ~750C .~J."'. . eib , ,, TJ" 15O"C I ~O~ ~ 100 REVERSE FORWARD r - t--Z50C VCpzsaVd.- 111-1 -oA -0.2 +G.Z +G.4 1.0 +G.B 10 100 VII- REVERSE VOLTAGE IVOLTS) VIE. BASE EMITTER VOLTAGE (VOLTSI 850 TYPICAL DYNAMIC CHARACTERISTICS FIGURE 8 - STORAGE TIME FIGURE 7 - STORAGE TIME 10000 10000 5000 5000 YaEIDH) = OV ! i' 2000 ~ ;; 2000 ~ VaEloH) = 2.0 V 1 1000 In VaEIDH) = 2.0 V ",. VaEloH) = S.O V 500 J VaEIDH) = 0 V ~ 1000 t== r- r- /I, = 5 TJ = 7soe 200 f0o- l-f0o- l-- Vee=20V I I I 100 O.S 0.7 1.0 E 500 J I-- t200 I-- t- I-- I-- 2.0 3.0 100 0.5 5.0 1500 ~ ! -S.OV ........ OV Ii il00 ~ ........ ........ 500 ~ ~ ........... -5.0 V 200 ~ .......... VaEIDH) = 0 V - -2.0 V ::b. ~ "'- -)~ ~ ......... ~ ~ ::: 100 a VaEloH) = 0 v ~\. a ~ VaEloH) = 2.0 V 150 it- S.O FIGURE 10 - COLLECTOR CURRENT FALL TIME 2.0V n200 3.0 1000 = =t; ! 2.0 1.0 Ie COLLECTOR CURRENT lAMPS) FIGURE 9 - COLLECTOR CURRENT FALL TIME 1000 ~ I I I 0.7 Ie. eOUECTOR CURRENT lAMPS) VBEloH) = 5.0 V j - - /1,= 10 TJ = 75°C Vee=20V - 20 - ~it- ~ VaEIDH) = -5.0 V TJ = 7soe Vee=20V ~ I 10 0.5 I /It = s 0.7 I I 1.0 2.0 3.0 Ie COLLECTOR CURRENT lAMPS) 5.0 1-916 50 VBE(oH) = 2.0 V r-- t-- /If = 10 TJ = 7soe 20 r-- t-- r-r-- 10 0.5 l' VBE(DH) = 5.0 V Vee=20V ~~~ 1.0 2.0 3.0 0.7 Ie. COLLECTOR CURRENT (AMPS) Z ~ .1 5.0 MJE16002,MJE16004,MJH16002,MJH16004 III TYPICAL DYNAMIC CHARACTERISTICS (continued) FIGURE 12 - CROSSOVER TIME FIGURE 11 - CROSSOVER TIME 1000 500 == b -Z.OV ~ I !200 ·50 VBEtoll) = Z.O,V ZO VBEtoll)=OV- " ~ -......... ffi 100 ~ = --... 10~ :---... OV I - 11,= 5 TJ = 75°C I - VCC=ZOV - I-- 10 0.5 I 0.7 ~ ,/ --:t ~ VBEtoll) = 5.0 V - I I I I 1.0 2.0 3.0 Ie. COUECTOR CURRENT tAMPS) 5.0 TYPICAL ELECTRICAL CHARACTERISTICS FIGURE 13 -INDUCT'VE SWITCHING MEASUREMENTS 'C~ ...... l / ./ - IC/ VCE(pk! ~ "" 90% VCE(pk! - I.. l .. - --\- -- fI~I"- r- / ~ 10% VCE(pk! 'S- '- ~ :e :!. t;; _,,,- 11l'I ....... 'CPk 90% lSI - j 1\ 90% lC(pkl I---l '-Ic~ VCE FIGURE 14 - PEAK REVERSE BASE CURRENT 5.0 4.0 lsI ....- lI! 3.0 ..,'":::> V III III r;.~ .; --- -- -- - - ~ 1.0 V lsI =D.3A :....- ....- /' '" ~ ~ ,/ ~ 2.0 ..-- I = 0.6 A IC=3.0A TJ = 25°C - / V o o 1.0 2.0 3.0 VBEtoll~ TIME 4.0 5.0 6.0 t-- 7.0 S.O REVERSE BASE VOLTAGE tVOlTS) FIGURE 15 - THERMAL RESPONSE (MJE16002 and MJE16004) s ::: ::; !o 1 D.7 o. 5 ~ O.3 ~ o.2 i ~ 0=0.5 0.1 o. I ~ 0.07 - . 0.05 0.05 e- 0.02 :z: ... 0.03 ! ... : 0.0 I ....... 'D.Ot:::: --1 .... -;; 0.01 0.02 ~ 0.02 I-- ~ .... - - 02 ....- ~I-~ II 12 I S'iG~E rlLrf I 0.05 0.1 t.JL.Jl P(pk) R9JC(11 = ~11 R9JC R9JC = I 56°CIW Max D Curve. Apply for Powlr Pulse Train Shown Read Time @ 'I TJ(pk) - TC = Ptpk) RtiJC(I) Duty Cycle. 0 = 11 lIZ 11111 0.2 0.5 10 2 t, TIME (msl 1-917 I I 20 I I 111111 50 100 I I 200 I I II II 5011 I k MJE16002,MJE16004,MJH16002,MJH16004 TYPICAL ELECTRICAL CHARACTERISTICS (continued) FIGURE 16 - THERMAL RESPONSE IMJH16002 and MJH16004) 10 D.? RfiJc(l) = r(1) RjjJC RjjJC = 1.25°CIW Max D Cu.... Apply for Power Pulse Train Shown Road Time @ 11 TJlpk) - TC = Plpk) RfiJCII) o.~ " 0.2 r-.:: ~ IiiII O.fi pi;;JlJl == ;::::~ -t~j r= ri. O.~ 0.03 = Duty Cycle. D= 11/12 - SINGLE PULSE 0.01 0.02 0.03 0.1 O.fi 02 0 3 - I- 002 0.01 0.02 r= rr- . .. ..,," == l:::::: D' O.~ 0.2 01 0.1 0.07 i= r- I- I II 1111111 20 10 O.~ 3.0 10 ~o 30 20 100 ~o 200 300 1000 500 2000 t. TIME Ims) SAFE OPERATING AREA INFORMATION FIGURE 17 - MAXIMUM RATED FORWARD BIAS SAFE OPERATING AREA (MJE16002 and MJE16004) 10 10"S" 5.0 i 2.0 IS FIGURE 18 - MAXIMUM RATED FORWARD BIAS SAFE OPERATING AREA (MJH16002 and MJH16004) ~ ~·:!!!I~~~!~~!!I!~!~I~O~P.~S! ! ~.Om. 1.0 E ~ 0.5 " de ~ 0.2 I ~ 0:5 - Bonding Wire Umil - - - - Thermal Umh ~ ~ 0.50 is t; 0.20'i::t:j~=++=t::j::::t::j~dC~~j::::j:=~~~ )- a " 0.0 1 5.0 7.0 10 2D 30 TC= 25°C Bonding Wire Limit g 0.05 O.I°M~~!!~~Eg'l Co) _____ Thermal limit ~ S.cond Breakdown Umil 0.02 2.0 ~ 1.0~11'~~~~~~'I~1.~0~mgs~!m~1 TC = 25°C 0.02t:t~;:;;=S~.~co~nd~B~r.~.~kdown~~L~im~hl-t-;t~::t:::j:=:j::::fj~ 50 70 100 0.01 '-:-'-:':c'-':':--'--=---'---'-:'::-'-:~=-=---1--::':-~-'::~ 5.0 7.0 10 20 50 70 100 200 300 450 200 300 450 VCE. COLLECTOR-EMmER VOLTAGE IVOLTS) VCE. COLLECTOR-EMmER VOLTAGE (VOLTS) FIGURE 19 - MAXIMUM RATED REVERSE BIAS SAFE OPERATING AREA 10 , \ \ \ 9.0 !$. 8.0 Ii! ac i 7.0 TJ<;;IOOoC _ I-t-- 3.0 -;... 2.0 0.8 '" ~ ~ r-- "," -..... '" .... 0.6 '"z ~1.0 o o )' I \ VaE(o") = 1.0 TO 5.0 Y A I I '"~ f S.cond Breakdown Derating 0.2 "" 1000 1-918 ~ - ...... ..... I 500 850 700 VCE(pIc~ PEAK COLLECTOR-EMmER VOLTAGE (VOLTS) 200 - \ .'<,. \ 100 Thermal Derating ~ 0.4 \ I-- _ VBl(off)=O V/ - -....... S 5.0 i3 4.0 a ,8f~4 I _ \ tl 8.0 FIGURE 20 - POWER DERATING 1.0 40 120 100 80 TC. CASE TEMPERATURE (OCI 60 " " 140 160 MJE16002,MJE16004,MJH16002,MJH16004 SAFE OPERATING AREA INFORMATION FORWARD BIAS reduce the power that can be handled to values less than the limitations imposed by second breakdown. There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate IC-VCE limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. The data of Figures 17 and 18 are based on TC = 25°C; TJ(pk) is variable depending on power level. Second breakdown pulse limits are valid for duty cycles to 10% but must be derated when TC;' 25°C. Second breakdown limitations do not derate the same as thermal limitations. Allowable current at the voltages shown on Figures 17 and 18 may be found at any case temperature by using the appropriate curve on Figure 20. TJ(pk) may be calculated from the data in Figures 15 or 16. At high case temperatures, thermal limitations will REVERSE BIAS For inductive loads, high voltage and high current must be sustained simultaneousl during turn-off, in most cases, with the base-to-emitter junction reverse biased. Under these conditions the collector voltage must be held to a safe level at or below a specific value of collector current. This can be accomplished by several means such as active clamping, RC snubbing, load line shaping, etc. The safe level for these devices is specified as Reverse Bias Safe Operating Area and represents the voltage-current condition allowable putting reverse biased turn-off. This rating is verified under clamped conditions so that the device is never subjected to an avalanche mode. Figure 19 gives the RBSOA characteristics. +Vde -11 Vde TABLE 1 - RESISTIVE LOAD SWITCHING td and tr ov =-351f P 1 A ·02 P F 50 1.01'F 500 ~ "V Von OV .:..........t Vee = 250 Vde RL = 83 0 le= 3.0Ade IB= 0.3 Ade v OV ~ -5V m ;::::t!:L T. 1,""5 ns -::- *TektroOlx P·6042 or Vee = 250 RL = 83 0 le= 3.0Ade Equivalent -V ~ 1 1 lRL Vee lSI = 0.3 Ade RSI = 33 0 RS2 = 8.00 IS2 = 0.6 Ade For VSE(off) = 5.0 V RS2 = 0 0 'Note: Adjust -V 10 obtain desired VSE(off) at Point A. 1-919 MJE16002,MJE16004,MJH16002,MJH16004 TABLE 2 - INDuctiVE LOAD SWITCHING 0.02 ~F o =-351f A fF 50 • I---.....- - - { 500 Tl-1 ~Ie(pk) -v le~ I--.v OV.-n - ""'- VeE(Pk)-~h -~ VeE~ T1 ~ Leoil (Iepk) vee L- 50 T1 adjusted to obtain lC(pk) BVCEO L: 10mH RB2:~ Vee: 20 Volts -Tektronix Inductive Switching RBSOA L: 200 ~H L: RB2: 0 Vee: 20 Volts RB 1 selected for desired IB 1 RI!~: 200~H 0 Vee: 20 Volts RBI selected for desired IBI Scope - Tektronix P-6042 or 7403 or Equivalent Equivalent Note: Adjust -V to obtain desired VBE(off) at Point A. TYPICAL INDUCTIVE SWITCHING WAVEFORMS lC(pk) : 3.0 Amps IB1: 0.3 Amp VBE(off) : 5.0 Volts VeE(pk) : 300 Volts Te: 25°C Time Base;; 20 nslem le(pk): 3.0 Amps IBI :0.3Amp VBE(off): 5.0 Volts VeE(pk) : 300 Volts Te: 25°C Time Base; 20 nslem ® MPs-nOI IPS-nOlA MOTOROL.A ID NPN SILICON ANNULAR TRANSISTORS NPN SILICON AUDIO TRANSISTORS designed for complementary symmetry audio circuits to 10 Watts output. • Low Coliector·Emitter Saturation Voltage VCE(sat) = 0.5 Vdc (Max) @ IC = 1.0 Adc • Complements to PNP MPS·U51 and MPS·U51A • Uniwatt Package for Excellent Thermal Properties 1.0 Watt @TA = 25 0 C A F MAXIMUM RATINGS Symbol MPS·U01 MPS-U01A Unit VCEO 30 40 Vdc Collector-Base Voltage VCB 40 50 Vdc Emitter-Base Voltage VEB 5.0 Collector Current - Continuous IC 2.0 Adc Total Power Dissipation @ T A = 25°C Derate above 2SoC Po 1.0 8.0 Watt mW/oC Total Power Dissipation @ T C = 2SoC Derate above 2SoC Po 10 80 Watts mWI"C TJ.Tstg -55 to +150 °c Rating Collector·Emitter Voltage Operating and Storage Junction Temperature Range Vdc L 1 2 JJ o 1--1 G i-- 1---4-N -H-J ST~I~E l\MITTER 2. BASE 3. COLLECTOR THERMAL CHARACTERISTICS Symbol Max Unit Thermal Resistance, Junction to Case RaJC 12.5 °C/W Thermal Resistance, Junction to Ambient RaJA(l) 125 °C/W Characteristic (1) R8JA is measured with the device soldered into a typical printed circuit board. Uniwatt packages can be To-S lead formed by addmg -5 to the device tlt'e and tab formed for flush mounting by addmg -1 to the device title. DIM A B C D F G H J K L N Q R MILLIMETERS MAX MIN INCHES MIN MAX 9.14 9.53 7.24 6.60 5.41 5.66 0.38 0.53 3.18 3.33 2.54 Bse 3.94 4.19 0.36 0.41 12.07 12.70 25.02 25.53 5.08 BSC 2.39 2.69 1.14 1.40 0.360 0.375 0.260 0.285 0.213 0.223 0.015 0.021 0.125 0.131 0.100 BSC 0.155 0.165 0.014 0.016 0.475 0.500 IS CASE 152·02 1-921 BSC 0.106 0.055 MPS-U01,MPS-U01A ELECTRICAL CHARACTERISTICS 25 0 C unless otherwise noted I (T A" Characteristic Symbol Min Ma. 30 40 - - 40 50 - 50 - - 0.1 - 0.1 - 0.1 ",Adc Unit OFF CHARACTERISTICS Collector-Emitter Breakdown Voltage (1) II] Vde BVCEO MPS-UOI MPS-UOIA {lc = 10 mAde. 'B = 01 Collector-Base Breakdown Voltage Vde BVCBO {lc = 100 ~Ade. 'E = 01 MPS-U01 MPS-UOIA Emitter-Base Breakdown Voltage (IE = 100 ~Ade. IC = 01 BVEBO Collector Cutoff Current IVCB = 30 Vde. 'E = 01 'CBO MPS-UOI MPS-UOIA IVCB = 40 Vde, 'E = 0) Emitter Cutoff Current 'EBO Vde ",Adc IVBE = 3 0 Vde, IC = 01 ON CHARACTERISTlCSlll DC Current Gain (Ie'" 10 mAde, VeE = 1 0 VdcJ IIC = 100 mAde, VCE {lc = 1 OAde, VCE ~ hFE 55 1.0 Vdel 60 = 1.0 Vdel 50 Collector-Emitter Saturation Voltage {lC = 1.0Ade, 'B = 0.1 Adel VCElsatl 05 Vde Base-Emitter On Voltage {lC = 1.0 Ade, VCE = 1.0 Vdel VBElonl 1.2 Vde DYNAMIC CHARACTERISTICS Current-Gain-Bandwidth Product (lc = 50 mAde, VCE = 10 Vde, I = 20 MHzl Output Capacitance IVCB = 10 Vde, IE = 0, I = 1.0 MHz) MHz 50 IT pF 20 Cob (1)Pulse Test. Pulse W,dth $300 JJ.s. Duty Cvcle~2 0% FIGURE 1 - DC CURRENT GAIN FIGURE 2 - "ON" VOLTAGES 500 1.0 z 300 >- 200 ~ ~ ......... VCE = 1.0 Vd, TJ = 25 DC - --r- r--.. => VaE@ VCE - 1.0 V " w to " '\ C; > " \ 100 0.4 :> 0.2 70 50 10 50 20 100 " --r:~ 2: 0.6 ~ c ~ VaElsatl@ Ic/la = 10 "'C; ...... u u $ I U _TJ~25lc 0.8 200 500 1000 VCEI..t)@lclla=10 I- o 10 20 IC, COLLECTOR CURRENT ImA) 30 50 100 200 300 500 1000 IC, COLLECTOR CURRENT ImA) FIGURE 3 - DC SAFE OPERATING AREA 2.0 ,. 0:: 5 >- ~ 13 '-1-. 10 0.7 I r-- 0.5 r= r~~, TJ 150DC BONOING WIRE LIMIT THERMAL L1MIT@TC=25 DC SECONO BREAKOOWN LIMIT Ir " ~ 8 There are two limitations on the power handling ability of a tran- '\. '\ 0.3 0.2 ~ sistor: junction temperature and secondary breakdown. Safe operating area curves indicate Ie-VeE limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. " MPS.UOI. ~ MPS'j01A - 0.1 2.0 4.0 6.0 10 20 The data of Figure 3 is based on TJ(pk) = 15o"C; TC is variable ~ 40 VeE, COLLECTOR·EMITTER VOLTAGE IVOLTS) 1-922 depending on conditions. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by secondary breakdown. MPS·002 ® MOTOROLA NPN SILICON ANNULAR AMPLIFIER TRANSISTOR designed for general-purpose, high-voltage amplifier and driver applications_ • High Power Dissipation - PD = 10 W@TC= 2So C • Complement to PNP MPS-US2 NPN SILICON AMPLIFIER TRANSISTOR MAXIMUM RATINGS SVmbol Value VCEO 40 Yde Collector-Base Voltage YCB 60 Yd, Emitter-Base Voltage VEB 5.0 Vdc IC 800 mAde Rating Collector~Emltter Voltage Collector Current - ContInuous Total Power Dissipation@ T A '= 2S"C PD Derate above 25 "c Total Power Dissipation@ TC - 2S C 1.0 Watt 8.0 mWj·C PD Q De rate above 25°C OperatIng and Storage Junction Temperature Range Unit 10 Watts 80 mW;oC ·C T J • T stg -55 to .. 150 Svmbol THERMAL CHARACTERISTICS Characteristic Thermal Resistance, Junction to Case Thermal Resistance, Junehan to Amblent ELECTRICAL CHARACTERISTICS (T ... Max Unit R8JC 12.5 ·C/W R8JA 125 ·C/W = 2S·C unless otherWise noted) Symbol Characteristic Min Max Unit D OFF CHARACTERISTICS Collector-Emltter Breakdown Voltage (IC = I. 0 mAde, IB = 0) BV CEO Colleclor-Base Breakdown Voltage (lc =UJO~Ade, IE = 0) BVCBO Collector Cuto{i Current (YCB = 40 Ydc, IE = 0) ICBO -H--J Yde 40 STYLE 1: PIN 1. EMITTER 2. BASE 3. COLLECTOR (COLLECTO R CONNECTED TO TA8) Vde 80 - nAde 100 MILLIMETERS ON CHARACTERISTICS DC Current Gain hFE 50 - (IC = 150 mAde, VCE = 10 Yde) 50 300 (lC = 500 mAde, VCE = 10 Vdc) 30 - (lC = 10 mAde, VCE = 10 Vde) Collector-Emitter Saturation Voltage (Ie = 150 mAde, IS = 15 mAde) YCE(sat) - 0.4 Base-Emitter Saturation Voltage (Ic = 150 mAde, IB = 15 mAde) YBE(sat) - 1.3 - Yde Vde 'E = 0, F G H J K l N == 100 MHz Output Capacitance (VCB = 10 Vde, A 8 e o DYNAMIC CHARACTERISTICS Current-Gain Bandwidth Produet (Ie '" 20 mAde, VCE : 20 Vdc, f DIM I = 100 kHz) IT Cob 100 - - MHz pF 20 1-923 Q R MIN MAX 9.14 9.53 6.60 7.24 5.41 5.66 0.38 0.53 3.18 3.33 2.54 BSe 3.94 4.19 0.36 0.41 12.07 12.70 25.02 25.53 5.08 sse 2.39 2.69 1.14 1.40 INCHES MIN 0.360 0.260 0.213 0.015 .1 CASE 152-02 MAX FIGURE 2 - COLLECTOR-EMITTER SATURATION VOLTAGE versus BASE CURRENT FIGURE 1 - NORMALIZED DC CURRENT GAIN ~.: - -- Ic': nl~A-t-iH+tttll 2.0 , - " ITTTTIrn-'---'rTTl"lTlT-,,,.-nm'-,,TTmTl I UIt-t-+1f-tttl*+-+-++l-HCHi ~ 0.81--I-Ft++I1ftt--H-+tfIIII~ mA t+t+tt1flH-+-t-++t~ ::i !:: ~ :E- 0.71--+-+H-tttt1I--++-I-HlfHf-+-ff 250 rnA \ o~ E 5 -'> 0.5 1--+-ttH-tttt1I--++-I-++\Hi-+-H-++I+I+-~~H++ICHi ~ ~ 0.6 500mA \V 8~O.4 ~ ~~ .!! ~ 0.31--+-+I+Ittt1I--++-I-++tf\I-+-H-N-l+l+--+-H++ICHi ~~ ~ > <'ii 0.2 I--+-+I+!~I--++-I-++f++f-''<-+ ,~-+++ttt1if"o-d-r--+++H+!l - - - VCE'lOV 0, 1 /-++t-t+1ftif'''',",,-d-+I-ttHtt-+-if'';-Hti~-j-+++ttffl 0.1 ~I--- 1--1-J...J...U..J.1J'-....L..J...1.U.J.JIIIIII.L-.-.J..II...J...L.l..IIIIL.J..U.L-IIIIII-=-= 0.1 1.0 10 100 1.0 A 0,1 FIGURE 4 - CAPACITANCE versus VOLTAGE 50 0.9 ./ 0.8 30 ~ w '"~ u: .e ./ 0.7 c:> w <.> I 20 z > « a: I- ~ U V 0.6 ~ :it « <.> W ~W . 100 IB, BASE CURRENT (rnA) FIGURE 3 - BASE-EMITTER VOLTAGE versus COLLECTOR CURRENT ~c:> 10 1.0 IC. COllECTOR CURRENT (rnA) U 0.5 - ............ " '\ ............ ..... 10 \ Cib .......... ),0 > 0.4 50~ It 5.0 0.1 10 ' 1.0 100 0,1 1.0 A 1.0 IC, COllECTOR CURRENT (mA) 10 100 REVERSE VOLTAGE (VOLTS) FIGURE 5 - CURRENT-GAIN-BANDWIDTH PRODUCT FIGURE 6- ACTIVE REGION DC SAFE OPERATING AREA versus COLLECTOR CURRENT 2,0 1000 '" :E ~ 700 :'\ ::> ;;: 1,0 ~ 500 .§ I- '"~ w a: a: c:> ~ ~ / 300 z '" 200 .t? 100 0,7 0,5 c:> t ~ <.> ~ "- 0,3 c:> I 1.0 '\. a: \ / !Zw ~ ~ V ;;: 1'l VCE' 20 V z ::> <.> 0.2 - 0,1 10 100 IC, COLLECTOR CURRENT (rnA) 1.0 A 1-924 1.0 _ '\, - - - Thermal Limitation - - Secondary Breakdown limitation I I 2.0 3.0 I I 11111 5,0 ).0 10 '\, I 20 VCE, COLLECTOR·EMITIER VOLTAGE (VlilTS) ~ 30 50 ® MPS-UOl MPS-U04 MOTOROLA l1li NPN SILICON ANNULAR HIGH VOLTAGE AMPLIFIER TRANSISTORS NPN SILICON AMPLIFIER TRANSISTORS · .. designed for horizontal drive applications, high·voltage linear amplifiers, and high·voltage transistor regulators. • High Collector· Emitter Breakdown Voltage BVCEO = 180 Vdc (Min) @ IC = 1 mAdc - MPS·U04 • Low Coliector·Emitter Saturation Voltage VCE(sat) = 0.5 Vdc (Max) @ IC = 200 mAdc • High Power Dissipation Po = lOW @ T C = 25 0 C p MAXIMUM RATINGS Symbol MPS·U03 MPS-U04 Unit VCEO 120 180 Collector-Base Voltage VCB 120 180 Vdc Vdc Emitter-Base Voltage VEB IC Po Rating Coliector·Emitter Voltage Collector Current Total Power Dissipation Derate Above 2SoC @ T A:: 2SoC Total Power Dissipation@TC::25OC 5 Vdc 1 Adc 1 8 Watts mW/oC Po 10 80 Watts mWI"C TJ, T stg -55 to +150 °c - 260 °c Derate Above 25°C Operating and Storage Junction Temperature Range Solder Temperature, 1116" From Case for 10 Seconds STYLE 1: PIN l.EMITIER 2. BASE 3. COLLECTOR (COLLECTOR CONNECTED TO TABI THERMAL CHARACTERISTICS Characteristic Symbol Max Unit Thermal Resistance, Junction to Ambient R8JA 125 Thermal Resistance, Junction to Case R8JC 12.5 °CIW uC/W MILLIMETERS DIM MIN I MAX A 8 C D F G H J K L 11 a. R 9.14 9.53 6.80 1.24 5.41 5.68 U1L .0.5, 18 2.54 8SC 3.84 4.19 0.36 12.07 25.02 5.118 2.39 1.14 1.40 INCHES MIN MA 0.360 0.315 0.260 0.285 0.213 0.223 1 0.12 0.131 0.100 BSC 0.166 0.185 0.014 0.016 "1.475 D.985 1.006 0.200 BSC 0.094 0.1116 0.045 0.055 CASE 162·02 1-925 MPS-U03, MPS-U04 - ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted) I I Characteristic Min Max 120 180 - 120 180 - 5.0 - - - 0.1 0.1 hFE 40 - - VCE(sat) - 0.5 Vde VBE(on) - 1.0 Vde - MHz 12 pF 110 pF Symbol Unit OFF CHARACTERISTICS Collector-Emitter Breakdown Voltage IIc = 1.0 mAde.IB Vde BVCEO =0) MPS-U03 MPS-U04 Collector-Base Breakdown Voltage IIc = 100 /lAde. IE = 0) Vde BVCBO MPS-U03 MPS-U04 Emitter-Base Breakdown Voltage liE = 100 /lAde. IC =0) BVEBO Collector Cutoff Current /lAde ICBO (VCB = 100 Vde, IE = 0) (VCB = 150 Vde. IE = 0) Vde MPS-U03 MPS-U04 ON CHARACTERISTICS (1) DC Current Gain IIc = 10 mAde, VCE = 10 Vde) Collector-Emitter Saturation Voltage IIc = 200 mAde, I B = 20 mAde) Base-Emitter On Voltage IIc = 200 mAde, VCE = 1.0 Vde) DVNAMIC CHARACTERISTICS Current-Gain-Bandwidth Product (lC = 50 mAde, V CE = 20 Vde, f = 20 MHz) Outpu, Capacitance (VCB = 10 Vde,IE =0. f Input Capacitance (VBE =0.5 Vde, IC 35 IT Cob = 100 kHz) - Cib =0, f = 100 kHz) (1) Pulse Test: Pulse W,dth .. 300 /ls. Duty Cycle .. 2.0%. TYPICAL CHARACTERISTICS FIGURE 2 - CAPACITANCE FIGURE 1 - CURRENT-GAIN - BANDWIDTH PRODUCT 100 70 50 ~ 300 ~ 0- ~ 200 '"f'" :; '" ~ 100 ~ z C ; ... ..r: 70 --- VCP ZOV TJ' 2SoC -r-.... 30 ~ .,w " - ~ 7.0 ~ 5.0 u· 3.0 2.0 10 ZO 30 50 IC, COLLECTOR CURRENT (mA) 70 Tp 2SoC ~ 10 II: II: :0 30 Cib z 1\ 50 20 100 1-926 1.0 0.3 0.5 OJ 1.0 Cob- e- Ii II 2.0 3.0 5.07.0 10 20 30 50 70 100 VR. REVERSE VOLTAGE (VOLTS) - 200 300 MPS-U03, MPS-U04 TYPICAL CHARACTERISTICS (Continued I FIGURE 3 - DC CURRENT GAIN 0 -- 2S·C r== -SS·C- _ ;;: '" 100 0 0 I- ~ u 0 i 20 Q - TJ ·lS0·C 200 z B 4 , ~""- , 1 ~ l'\~ 1 50 10 20 50 IC, COLLECTOR CURRENT ImAI 100 200 05 500 FIGURE 5 - COLLECTOR SATURATION REGION "> ~ 08 lllill ~ \ \ \ \ 04 '" o I- \ U ~ 02 o 200mA \ ~ ~ 100 rnA IC' 25 rnA 50 rnA u ..... i 1 ~ ii ~ H' r- 020305071.0 2030507010 18, BASE CUARENT ImAI 01 20 30 I- ~ 50 70 100 i 16a TA' 2S·C PULSE WIOTH • 300.,OUTY CYCLE" 2.0% I- ~ ./ ~'/ a '"o 12 a h ?-- o ~ ~ 0 B . '/ ~ offf/ u ...- - .1 \O",A ,. . .....;-;reA ...- ~ - I I II I I II +250 C to +1250 C ~ 10 20 L / V ~ -55°C to +25°C 0.5 10 5.0 20 20 10 IC, COLLECTOR CURRENT ImAl 50 100 200 2 f-- VCE '150V ~ 1 f-- TJ' IS0·C ~ 10 0:> ~ 100 o t; 400.A 0 J.-+11: oVo for VOE t-2.4 0.2 I--I-- I 20~.A I 30 V FIGURE 8 - COLLECTOR CUTOFF REGION 600.A ~ 10 .1 r--I~ +25 0 C to +125 0 C -0.8 FIGURE 7 - COLLECTOR CHARACTERISTICS 200 500 -550C to +25 0 C ~ -16 Iii a 200 ·ove fOR VCE(sart G I 1111 1111 II 1111 DB IZ o ~ 06 20 '"Applies for le/18 ..;hFEI2 G o '"~ 1.0 Ic/is - 5.0 50 10 20 50 100 lC. COLLECTOR CURRENT ImAI V~ FIGURE 6 - TEMPERATURE COEFFICIENTS 16 TJ '" 25°C !::; ~ VCElsa'I@ICIIB· 10 o 10 2: ~ VSf(onl @VeE '" 10 V IIIIIIII 20 ~ ~ 6 --VCE·2.0V - - VCE·l0V 10 ~ V VBElsa,1 @ICIIB • 10 f--- ~ a Ll iil O. 8 - - - 7.a 5a 0.5 iii II IIII TJ' 2S·C 300 l1li FIGURE 4 - "ON" VOLTAGE SO0 - r-- 100·C jtO- 1 8 ':)'0- 40 SO 2~ 10-l -0.4 REVERSE FORWARO 2S·C -02 +0.2 +0.4 VSE, BASE·EM1TTER VOLTAGE IVOLTSI VCE, COLLECTOR·EMITTER VOLTAGE IVOLTSI 1-927 +0.6 MPS-U03, MPS-U04 TYPICAL CHARACTERISTICS (Continued) FIGURE 9 - THERMAL RESPONSE I.0 O. o.~ 0·0.5 ~a ~; 0.3 1 f-- 0.1 ~~ tE~ w~ ..... iii" ~Iiiii o. ,f- ~ !~ 0.01 Single Pulse ~~O.O5 ~~O.O3"'" 0.02 0.01 0.01 ,1"" 0.01 :EfUl -- Single Pulse P{pk) Dutv Cycle, 0 0.05 0.01 0.1 0.5 0.2 1.0 10 5.0 1500 10 10 50 t,TIME(msl 100",- 1 ~~ ~ 8 0 Ims-p- TA' 25°C to0 SO E TC' 25°C ~. - -" '\ di' de _ Bonding Wire limit ---Thermal limit Single Pulse 0 20 5 '2 --Second Breakdown limit (Applies Below Rated VCEO) 10 20 30 50 10 200 100 100 200 SOD 1.0k VCE. COLLECToR·EMITTER VOLTAGE (VOLTS) FIGURE 11 - POWER DERATING 1.0 ~ ~ O.B '"o ~ ~ to ""'" ~ ~ ............ Derating r-.... Z ;:: . 0.4 ffi ;: ~ O.2 20 40 I I Second Breakdown '-.... Therm~ Derating O.6 :0 \1/l2 2.0k Z8JA{I)' r{l) R8JA R8JA' 125 0 CIWMax o CURVES APPLY FOR POWER PULSE TRAIN SHOWN READ TIME AT 11 TJ{pk) -TC • Plpk) R,JC{t) 5.0k 10k 10k 50k lOOk There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate IC-VCE limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. The data of Figure 10 is based on TC = 250 C; TJ(pk) is variable depending on power level. Second breakdown pulse limits are valid for duty cycles to 10% but must be derated when TC;;' 250 C. Second breakdown limitations do not derate the same as thermal limitations. Allowable current at the voltages shown on Figure 10 may be found at any case temperature by using the appropriate curve on Figure 11. TJ(pk) may be calculated from the data in Figure 9. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations Imposed by second breakdown. I tOO0 200 . -t\;-j FIGURE 10 - ACTIVE REGION SAFE·OPERATING AREA '"~ '" - - Z8JC{I) • rfl) R8JC RI1JC c 12 50CIW Max I 0.0 I ~ -~ - ~ 0.1 ~ "- I"'- f'..-. r-..... ...... " 60 BO 100 120 TC. CASE TEMPERATURE (DC) 1-928 ~ 140 160 MPS-UOS MPS-U06 @ MOTOROLA III NPN SILICON AMPLIFIER TRANSISTORS NPN SI LICON ANNULAR AMPLIFIER TRANSISTORS · .. designed for general-purpose, high-voltage amplifier and driver applications. • High Collector-Emitter Breakdown Voltage BVCEO = 60 Vdc (Min) @ IC = 1.0 mAdc - MPS-U05 80 Vdc (Min) @ IC = 1.0 mAdc - MPS-U06 • High Power Dissipation - PD = 10 W @ TC = 25 0 C • Complements to PNP MPS-U55 and MPS-U56 F MAXIMUM RATINGS Rating Coliector~Emitter Voltage Symbol MPs-uosl MPS-UD6 Unil I 80 Vdc 80 Vdc VCEO 60 Collector-Base Voltage VCB 60 Emitter-Base Voltage VEB I 4.0 2.0 Adc Vdc Collector Current - Continuous IC Total Power Dissipation@ TA = 2SoC Po 1.0 8.0 Watt mW/oC Po 10 80 mW/oC -55 to +150 °c Derate above 2SoC Total Povver Dissipation@TC= 250C Derate above 2SoC Operating and Storage Junction Temperature R aoge TJ,Tstg o Watts STYLE 1: PIN 1. EMITTER 2. BASE 3. COLLECTOR. THERMAL CHARACTERISTICS Characteristic Thermal Resistance. Junction to Case Thermal Resistance. Junction to Ambient Symbol Max Unit R8JC 12.5 °CIW 125 °C/W R8JA A c o G H K L N Q R CASE 152-02 1-929 MPS-U05, MPS-U06 ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted) I I Characteristic I Min Typ Max 60 - BO - 4.0 - - - - 100 100 80 60 - - 125 100 55 - 0.18 0.1 0.4 VBE(on) - 0.74 1.2 Vde fT 50 150 - MHz Cob - 6.0 12 pF Symbol Unit OFF CHARACTERISTICS Collector-Emitter Breakdown Voltage (lC = 1.0 mAde,lB = 0) Vde BVCEO MPS-U05 MPS-U06 Emitter·Base Breakdown Voltage (IE = 100 "Ade, IC = 0) BVEBO Collector Cutoff Current (VCB = 40 Vde, IE = 0) (VCB = 60 Vde, IE = 0) Vde nAde ICBO MPS-U05 MPS-U06 ON CHARACTERISTICS DC Current Gain (1) (lC = 50 mAde, VCE = 1.0 Vde) (lC = 250 mAde, VCE = 1.0 Vde) (I C = 500 mAde, V CE = 1.0 Vdel Collector-Emitter Saturation Voltage(1) (lC (lC - hFE Vde VCE(sat) = 250 mAde, IB = 10 mAdel = 250 mAde, IB = 25 mAde) Base·Emitter On Voltage (11 (I C = 250 mAde, V CE = 5.0 Vde) - SMALL·SIGNAL CHARACTERISTICS Current-Gain-Bandwidth Product (11 (lC = 250 mAde, VCE = 5.0 Vde, f = 100 MHz) Output Capacitance (VCB = 10 Vde, IE = 0, f = 100 kHz) (1 )Pulse Test: Pulse Width S'300 /Js, Duty Cycle ~2.0%. FIGURE 2 - "ON" VOLTAGES FIGURE 1 - DC CURRENT GAIN 300 20 0 100 0 -0!,'Tj=Z50C .'1O Vd, - f--t.J,,1 1111111 V:EIU~+~ 8 , ........ ~ ,/ VaE!on}@VCE:flOVdc 4 70 2 VCE(satJ@IC/la: 10 30 50 10 20 50 100 le,COLLECTOR CURRENT(mA) 200 0 10 500 FIGURE 3 - DC SAFE OPERATING AREA 20 50 1 ......... " 20 l\ MPSJ06 oD~. ~0---"'2L,0-L-L.150,..LL.ULllO"--"'20-.L..L,,"0L.LLJ,.!,oo ~ 100 ~ 10 operating area curves indicate Ie - VeE limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. \ 1/ ~ I ~ 0 VCE" !i.0 Vdc 3050 VeE, 'COlLECTOR.EMITTER VOLTAGE (VOLTS) There are two limitations on the power handling ability of a transistor: junction temperature and second breakdown. Safe 500 ~ /'" 0 MPSU05,~ 200 FIGURE 4 - CURRENT·GAIN-BANDWIDTH PRODUCT ~ 300 20 10 20 50 100 IC,COLLECTOR CURRENT(mA! Irrl"'C 10 100 20 50 IC, COLLECTOR CURRENT (rnA) 200 '00 The data of Figure 3 is based on T J(pkl = 1500 C; T C is variable depending on conditions. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second! breakdown. 1-930 ® MPS· U07 MOTOROLA NPN SILICON AMPLIFIER TRANSISTOR NPN SI LICON ANNULAR AMPLIFIER TRANSISTOR ... designed for general-purpose, high·voltage amplifier and driver applications. • High Collector-Emitter Breakdown Voltage BVCEO = 100 Vdc (Min) @ IC = 1.0 mAdc • High Power Dissipation - Po • Complement to PNP MPS-U57 = 10 W@ TC = 25 0 C MAXIMUM RATINGS Symbol Value Unit VCEO 100 Vdc Collector-Base Voltage VCB 100 Vdc Emitter-Base Voltage VEB 4.0 Vdc Collector Current - Continuous IC 2.0 Adc Total Power Dissipaten. @ T A = 2SoC PD 1.0 8.0 Watt mW/oC Total Power Dissipaton@TC=250 C PD 10 80 TJ,Tstg -55 to +150 Watts mWI"C DC Rating Collector-Emitter Voltage Derate above 25°C Derate above 2SoC Operating and Storage Junction Temperature Range STYLE 1: PIN 1. EMITTER 2. BASE 3. COLLECTOR DIM Symbol Max Thermal Resistance, Junction to Case R8JC 12.5 DC/W Thermal Resistance. Junction to Ambient R8JA 125 °C/W Unit MILLIMETERS MIN MAX A B 9.14 6.60 C 5.41 o THERMAL CHARACTERISTICS Characteristic N INCHES MIN M X 0.38 G H J K L N n R CASE 152-02 1-931 MPS-U07 ELECTRICAL CHARACTERISTICS (T A ~ 25°C unless otherwise noted) Symbol Min Typ Max Unit COllector-Emitter Breakdown Voltage (11 (lC = 1.0 mAde, IB = 0) BVCEO 100 - - Vdc Emitter-Base Breakdown Voltage (IE = 100 "Ade, IC = 0) BVEBO 4.0 - - Vde ICBO - - 100 nAde 60 30 - - 110 65 33 - 0.18 0.1 0.4 VBE(onl - 0.76 1.2 Vde f,- 50 150 - MHz Cob - 6.0 12 pF Characteristic OFF CHARACTERISTICS IIJ Collector Cutoff Current (VeB = 80 Vde, IE = 0) ON CHARACTERISTICS DC Current Gain (11 (lC = 50 mAde, VeE = 1.0 Vdel (lC = 250 mAde, VCE = 1.0 Vdel (lC = 500 mAde, VCE = 1.0 Vdel Collector-Emitter Saturation Voltage (11 (IC = 250 mAde, IB = 10 mAdel (lC = 250 mAde, IB = 25 mAdel Current-Gain-Bandwidth Product (11 (Ie = 250 mAde, VeE = 5.0 Vde, f = 100 MHzl Output Capacitance (1 )Pulse Test: Vde VCE(satl Base·Emitter On VOIt8j!e (11 (lC = 250 mAde, VCE = 5.0 Vdel SMALL-SIGNAL CHARACTERISTICS (VCB = 10 Vde, IE = 0, f - hFE = 100 kHzl - Pulse Width ~300 J,ls, Duty Cycle S 2.0%. FIGURE 1 - DC CURRENT GAIN 200 FIGURE 2 - "ON" VOLTAGES 10 '~CE~ 1.oJ" OS TJ=2S oC III III TJ" zsbc OB I I f-"' vSE(satl@le/le=10 07 0 VSE(on)@Vce.:50Vdc 06 0 "- 0 05 04 \ 03 1\ 02 30 O. 20 5.07.0 10 20 50 70 100 200 , 500 III 10 20 50 Ie. COLLECTOR CURRENT (rnA) 10 ~ 0 ./ 200 '""" if 5 20[1300500 \. \ x 0; ~ 2 r--TJ = 1500 C I 5 , 100 I--"" 0 , 50 FIGURE 4 - CURRENT·GAIN-BANDWIDTH PRODUCT 0 2 20 Ie. COLLECTOR CURRENT {mAl FIGURE 3 - DC SAFE OPERATING AREA 'L i' VCE($IItj@IC/IB=10 o - ~ Second Breakdown LImited BooomgWlraLlmrted Thermal Limltatlons@Te"'250C "'" AppflcabieToBVCEO J 2.0 I IIIIII 5.0 10 i I 20 50 .t' '00 VeE, COLLECTOR·EMITTER VOLTAGE (VOLTS) There are two limitations on the power handling ability of a transistor: junction temperature and second breakdown. Safe operating area curves indicate I C - VCE limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. 100 10 50 30 5.070 Vce=S.OVdc TJ"2SoC J I 10 I 20 50 10 100 200 500 Ie. COLLECTOR CURRENT (mAl The data of Figure 3 is besed on T J(pkl = 150 0 C; T C is variable depending on conditions. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second. breakdown • 1-932 ® MPS· UtO MOTOROLA NPN SILICON HIGH VOLTAGE AMPLIFIER TRANSISTOR NPN SILICON ANNULAR TRANSISTOR ! I · .. designed for high·voltage video and luminance output stages in TV receivers. • High Collector·Emitter Breakdown Voltage BVCEO; 300 Vdc (Min) @ IC; 1.0 mAdc • Low Coliector·Emitter Saturation Voltage VCE(sat) ; 0.75 Vdc (Max) @ IC ; 30 mAdc • Low Coliector·Base Capacitance Ccb; 3.0 pF (Max) @ VCB ; 20 Vdc II I ~, ,. MAXIMUM RATINGS o Rating Collector·Emitter Voltage Symbol Value Unit VCEO 300 Vdc Coliector·Base Voltage VCR 300 Vdc Emitter·Base Voltage VEB '6.0 Vdc Ie 0.5 Adc = 2SoC Po 1.0 8.0 Watt Total Power Dissipation @ T C :: 2SoC Po 10 80 mW/oC TJ,Tstg -55to+150 °c Collector Current - Continuous Total Power Dissipation Derate above 2SoC @T A Derate above 25°C Operating and Storage Junction Temperature Range mWI"C Watts -H- J DIM A B C 0 F THERMAL CHARACTERISTICS Characteristic G H Symbol Max Unit Thermal Resistance, Junction to Case ROJC 12.5 °C/W J K Thermal Resistance, Junction to Ambient ROJAll) 125 °CIW L N Q (1) ROJA is measured with the device soldered into a typical printed circuit board. R MILLIMETERS MIN MAX INCHES MIN MAX 9.14 9.53 6.60 7.24 5.41 5.68 0.38 0.53 3.18 3.33 2.54 BSe 3.94 4.19 0.36 0.41 12.07 12.70 25.02 25.53 5.08 BSC 2.69 2.39 1.14 1.40 n.360 0.375 0.260 0.285 0.213 0.223 0.015 0.021 0.125 0.131 0.100 BSe 0.155 0.165 0.D14 0.016 0.475 0.500 0.985 1.005 0.200 BSe 0.094 0.108 0.045 0,055 CASE 152·02 1-933 ' MPS-U10 ELECTRICAL CHARACTERISTICS (T A = 250 C unless otherwise notedl Symbol Min Max Unit Collector-Emitter Breakdown Voltage (11 (lC = 1_0 mAde, IB = 01 BVCEO 300 - Vde Collector-Base Breakdown Voltage (Ie = 100l'Ade, IE = 01 BVCBO 300 - Vde Emitter-Base Breakdown Voltage (Ie = 100 I'Ade, IC = 01 BVEBO 11.0 - Vde Collector Cutoff Current (VCB = 200 Vde, IE = 01 leBO - 0.2 I'Ade Emitter'Cutoff Current (VBE = 6.0 Vde, IC = 01 lEBO - 0.1 I'Ade 25 - (Ie = 10 mAde, VCE = 10 Vdcl 40 - (Ie = 30 mAde, Vce = 10 Vdel 40 - Characteristics OFF CHARACTERISTICS ON CHARACTERISTICS DC Current Gain (lC = 1.0 mAde, VCE = 10 Vdel - hFE Collector-Emitter Saturation Voltage (lC = 30 mAde,lB = 3.0 mAdel VCE(satl - 0.75 Vde Base-Emitter On Voltage (Ie = 30 mAde, Vce = 10 Vde! VBE(onl - 0.85 Vde Current-Gain-Bandwidth Product (11 (lC = 10 mAde, VCE = 20 Vde, f = 100 MHz! fT 415 - MHz Collector-Base Capacitance (VCB = 20 Vdc, Ie = 0, f = 1.0 MHz! Ccb - 3.0 pF DYNAMIC CHARACTERISTICS (1lPulse Test: Pulse Width ::5:300 J,ls, Duty CvcleS 2%. FIGURE 1 -DC SAFE OPERATING AREA 600 SOD 400 ;;: I' 300 I"'-.. 1', ..... ~ 200 .~ I' ffi II: II: 13 II: 100 ~ 70 8 50 o ~: - ~ i' ~~ "- \ Second Breakdown Limited Bonding Wire Limited. TC = 250C t-- ____ Thermal Limitations 30 15 " I ~ 20 30 50 70 100 The Safe Operating Area Curves indicate Ic-VeE limits below which the device will not enter second breQkdown. Collector 150 load lines for specific circuits must fall within the applicable Safe Area to avoid causing a catastrophic failure. To insure operation below the maximum T J. power-temperature derating must be observed for both steady state and pulse power conditions. '\ 1. . . . . . . 200 1\ r~ 300 VCE, COLLECTOR·EMITTERVOLTAGE (VOLTSI 1-934 MPS-U10 FIGURE 2 - DC CURRENT GAIN 200 VCE :z ;;: 100 <.0 I- ~ G u 50 0 ~ 30 I 110 Vdc T}+I~ --- 20 1.0 - .....- ---- ~ ~~ 25°C - I 1---I---5r C - ~ -.......... ~ I'....... l " '\. I - ..... \ \ I I 2.0 3.0 " 5.0 70 10 30 20 70 50 '" , 100 IC. COLLECTOR CURRENT (rnA) FIGURE 4 - CURRENT-GAIN-BANDWIDTH PRODUCT FIGURE 3 - CAPACITANCES ~10 0 100 5 80 t; 0 i5 o Ceb a t-... 0 '""" :r 1""'-1"-- V :; 40 ~ ot- 0/ ~ 3 .b ~ 0 V TJ = 25°C 20 "'T" I- 1.0 0.2 ~ '"u=> Ccb' j-..... 2. 0 '""0.5 1.0 2.0 5.0 10 20 50 100 £ 200 0 11.0 2.0 5.0 VR. REVERSE VOLTAGE (VOLTS) FIGURE 5 - "ON" VOLTAGES TJ = 25°C 0.8 ~ 20 0.6 VBE@VCPIOV I "''" '"':;o II 0.4 ) > :> j,.I 0.2 j..-- VCE(sat)@ IcllB - 10 I o 1.0 20 IC. COLLECTOR CURRENT (rnA) 1. 0 o 10 2.0 3.0 5.0 10 20 IC. COLLECTOR CURRENT (rnA) 1-935 30 50 100 50 100 MPS -U31 ® MOTOROLA NPN SILICON ANNULAR RF TRANSISTOR 3.5W -27 MHz · .. designed for use in Citizen· Band and other high·frequency com· rr.unications equipment operating to 30 MHz. Higher breakdown .voltages allow a high percentage of up-modulation in AM circuits. This device is designed to be used with the MPS8000 driver and the MPS8001 R F oscillator. RF POWER OUTPUT TRANSISTOR • Output Power = 3.6 W (Min) @ NPN SILICON VCC = 13.6 Vdc • Power Gain = 11.5 dB (Min) • High Collector·Emitter Breakdown VoltageBVCES~ 65 Vdc • DC Current Gain Linear to 500 mAdc ,.1 c MAXIMUM RATINGS Symbol Value Unit VeES 65 Vdc VE6 3.0 Vdc Ie 500 mAde T A = 2Soe PD 1.0 8.0 Watt mW/oe Total Power Dissipation @ T C ... 2SoC PD 10 60 Watt mW/oe TJ,Tstg -55 to +150 °e Rating Collector-Emitter Voltage Emitter-Base Voltage Collector Current - Continuous T 0 ..1 Power Dissipation @ Derate above 25°C Derate above 25°C Operating and Storage Junction D STYLE 1: PIN 1. EMITTER 2. BASE Temperature Range 3. COLLECTOR THERMAL CHARACTERISTICS Symbol Max Unit Thermal Resistance, Junction to Case ROJA 12.5 Thermal Resistance, Junction to Ambient R8JA!11 125 °eIW °eIW Characteristic (1) R8JA is measured with the device soldered into B typical printed circuit board. DIM MIN MAX A B 9. 4 6.60 5.41 0.38 9.53 7.24 5.6 0.53 1.14 1.40 e D F 3.18 3.3 G 2.54 BSe H 3.94 4.19 J 0.36 0.41 K 12.07 12.70 L 25.02 25.53 N 5.08 BSe Q .39 2.69 R CASE 152-02 1-936 MPS-U31 ELECTRICAL CHARACTERISTICS (TA = 25 0 C unless otherwise noted.) 1~____________________~C~h~.~r~~e~r~iR~ic~__________________~I~~sy~m~bO=I~~~M~in~-L___T~y~P~-L__~M~ax~-L___U~ni~t~1 _ _I OFF CHARACTERISTICS Collector-Emitter Breakdown Voltage (1) (lC = 150 mAde, VBE = 0) BVCES 65 - - Vde Emitter-Base Breakdown Voltage (IE = 1.0 mAde, IC = 0) BVEBO 3.0 - - Vdc ICBO - - 0.Q1 mAde Common-Emitter Amplifier Power Gain (Pout = 3.5 W, VCC = 13.6 Vdc, f = 27 MHz) GpE 11.5 - - dB Output Power (Pin = 250 mW, VCC Pout 3.5 - - Watts 11 - 70 - % - - 85 - % Collector Cutoff Current (Vce = 50 Vdc, IE = 0) ON CHARACTERISTICS DC Current Gain (2) (lc = 100 mAde, VCE = 10 Vdc) DYNAMIC CHARACTERISTICS Output Capacitance (Vce = 12 Vdc, IE = 0, f = 1.0 MHz) FUNCTIONAL TEST (Figure 1) = 13.6 Vdc, f = 27 Collector Efficiency (3) (Pout = 3.5 W, VCC = 13.6 Vdc, f MHz) = 27 MHz) Percentage Up-Modulation (4) (f = 27 MHz) (1) Pulsed tNru a 25 mH Inductor (4) Percentage Up-Modulation is measured in the test circuit(Figure 1) by setting the Carrier Power (Pc) to 3.5 Watts with VCC = 13.6 Vdc and noting the power input. Then the Peak (2) Pulse Test: Pulse Width ":;300 I'S, Duty Cycle ":;2.0%. Envelope Power (PEP) is noted after doubling the original power (3) 11 = RF Pout I IIjI!tC input to simulate driver modulation (at a 25% duty cycle for thermal considerations) and raising the Vee to 25 Vdc (to simulate the modulating voltage). Percentage Up-Modulation is then determined _ 100 (Vec) (lC) by the relation: Percentage Up-Modulation = EP [( PpC ) 112 -1 ] -100 FIGURE 1 - 27 MHz TEST CIRCUIT r-----.....------'""1r-----o~;~ Vdc CI. C2 9.0-180 pF ARCa 463 or Equivalent C3. C4 5.0·80 pF ARCa 462 or Equivalent C5 0.02.uF Ceramic lZ C4 RFC2 II C3 1-937 DISC C6 0.1 J.lF Ceramic DISC RFCl 4 Turns #30 Enameled Wire Wound on Ferroxcobe Bead Type 56·590·65/38 l2 26 Turns #22 Enameled Wire (2 Layers13 Turns Each layer~ 1,4" Inner Diameter 0.22.H Molded Choke 0.68.H Molded Choke MPS-U31 POWER OUTPUT FIGURE 3 - VCC = 13.6 Vdc FIGURE 2 - VCC = 12.5 Vdc 0 ~ ... ~ ~ II TC ~ 25 bC E 10 V "" VCC = 25 V @25% Duty Cycl. E 10 3.0 / ; 2.0 7' 1.0 0.05 ...3:.... := 0 Circuit Tuned@4.0W VCC = 12.5 V /" :::> I--TC~25 ./ 3.0 ............ J 2.0 /. '" ~~~~'~t~ Cycl • V V 0.3 0.2 Pin. INPUT POWER (WATTS) 0.1 0.5 0.7 1.0 0.05 1.0 0.07 0.1 0.2 0.3 Pin. INPUT POWER (WATTS) VCE= 10V TA-250C -- 30 0 200 ~~ 70 0 ~ ~ 50 TJ = 25°C 0 .... 0 Z 0 w'" /' ~ ....... 30 .t' 0 20 7. 0 5. 0 0.1 15 0.5 1.0 5.0 2.0 10 20 50 100 200 500 0.2 0.5 FIGURE 6 - DC CURRENT GAIN 200 70 ~ i""" - -55 0C 30 20 0.5 - 25°C 50 '-' CI 10 20 V .. VaE( ..!) ~ 0.6 111- w VaE@lVCE=IOV ~ !:; o 0.4 > >' --= J E Ic/la = 10 o.2 VCP 10V 1.0 2.0 50 100 TJ = 25°C 0.8 ~ '":::>'-' 5.0 FIGURE 7 - ON VOLTAGES d < 2.0 1.0 TJ = lk5 0 z 100 1.0 VR. REVERSE VOLTAGE (VOLTS) IC. COLLECTOR CURRENT (mA) '".... 1.0 Cib z "'''' a'" 0.7 FIGURE 5 - CAPACITANCE 100 z~ 0.5 500 200 ~ V P.E.P. ......VCC=25V @25% Duty Cycl. i' FIGURE 4 - CURRENT·GAIN - BANDWIDTH PRODUCT i= o .,l C 5.0 0 @100% Duty Cycl. II direuit Tuned@ 15 W VCC=25V @250C Duty Cycle :::> ~ ~CC= 12.5V 0.07 II 1. ~ 7.0 w P.E.P. 7. 0 5.0 o 20 5.0 10 20 50 100 200 500 IC. COLLECTOR CURRENT (mA) o 0.5 2.0 5.0 10 20 50 IC. COLLECTOR CURRENT (mA) 1-938 - t- VCE( ..!) @lIC/IS = 10 1.0 _I--" 100 200 500 ® IPS· U45 MOTOROLA ID NPN SILICON DARLINGTON TRANSISTOR NPN SILICON DARLINGTON AMPLIFIER TRANSISTOR · .. designed for amplifier and driver applications. • High DC Current Gain hFE = 25,000 (Min) @ IC = 200 mAdc 15,000 (Min) @ IC = 500 mAdc • Collector·Emitter Breakdown Voltage BVCES = 40 Vdc (Min) @ IC = 100 IlAdc • Low Coliector·Emitter Saturation Voltage VCE(sat) = 1.5 Vdc @ IC = 1.0 Adc • Monolithic Construction for High Reliability • Complement to PNP MPS·U95 t-F......... MAXIMUM RATINGS Rating Symbol Value Unit Collector-Emitter Voltage VCEOI1) 40 Vdc Collector-Emitter Voltage VCES 40 Vdc Collector-Base Voltage VCB 50 Vdc Emitter-Base Voltage VEB 12 Vdc Collector Current IC 2.0 Adc Total Power Dissipation @TA - 25°C Po 1.0 8.0 Watt mW/oC Po 10 80 Watts mW/oC TJ,T stg -55 to +150 °c Derate above 25°C Total Power Dissipation@TC:::: 25°C Derate above 2SoC Operating and Storage Junction Temperature Range t 1 1ft ~~'l JJ rrN A Max Unit Thermal Resistance, Junction to Ambient R8JA 125 °CIW Thermal Resistance, Junction 10 Case R8JC 12.5 °C/W (1) Due to the monolithic construction of this device, breakdown voltages of both transistor elements are identical. BVCES is tested in lieu of BVCEO in order to avoid errors caused by noise pickup. The voltage measured during the BVCES test is the BVCEO of the output transistor. 8 C D F G I H J K L N Q R 9.14 9.53 6.60 7.24 5.41 5.66 0.38 0.53 3.18 3.33 2.548SC 3.94 4.19 0.36 0.41 12.07 12.70 25.02 25.53 5.08 8SC 2.39 2.69 1.40 1.14 INCHES MIN MA 0.360 0.375 0.260 0.285 0.213 0.223 0.015 0.021 0.125 0.131 0.100 sse 0.155 0.165 0.014 0.016 0.475 0.500 0.985 1.005 0.200 asc 0.094 0.106 0.045 0.055 CASE 152·02 1-939 -1LJ STYLE 1: PIN 1. EMITIER 2. SASE 3. COLLECTOR MILLIMETERS DIM MIN MAX Symbol J D- r THERMAL CHARACTERISTICS Characteristic A- B- MPS-U45 III ELECTRICAL CHARACTERISTICS ITA I = 25 0 C unless otherwise noted) Characteristic I Svmbol Min BVCES 40 Collector-Base Breakdown Voltage IIc = 100 /lAde, IE = 0) BVCBO Emitter-Base Breakdown Voltage liE = 10 /lAde, IC = 0) Typ Max Unit - - Vde 50 - - Vde BVEBO 12 - - Vde Collector Cutoff Current IVCB = 30 Vde, IE = 0) ICBO - - 100 nAde Emitter Cutoff Current (VEB = 10 Vde, IC = 0) lEBO - - 100 nAde 25,000 15,000 4,000 65,000 35,000 12,000 150,000 - OFF CHARACTERISTICS Collector~Emitter IIc Breakdown Voltage = 100 /lAde, VSE = 0) ON CHARACTERISTlCS(1) DC Current Gain IIc = 200 mAde, VCE = 5.0 Vde) IIc = 500 mAde, VCE IIc = 1.0 Ade, VCE - hFE = 5.0 Vde) = 5.0 Vde) - Collector-Emitter Saturation Voltage IIc = 1.0 Ade, I B = 2.0 mAde) VCElsat) - 1.2 1.5 Vde Base-Emitter Saturation Voltage IIc = 1.0 Ade,IB = 2.0 mAde) VBE(sat) - 1.85 2.0 Vde Base-Emitter On Voltage IIc = 1.0 Ade, VCE = 5.0 Vde) VBE(on) - 1.7 2.0 Vde Ihfel 1.0 3.2 - - Ceb - 2.5 6.0 pF DYNAMIC CHARACTERISTICS Small-Signal Current Gain (1) (lC = 200 mAde, VCE = 5.0 Vde, f Collector Base Capacitance IVca = 10 Vde, IE = 0, f = 100 MHz) = 1.0 MHz) (1)Pulse Test: Pulse Width ~ 300 IlS, Duty Cycle S' 2.0%. Uniwatt darlington transistors can be used in any number of low power applications. such as relay drivers, motor control and as general purpose amplifiers. As an audio amplifier these devices, when used as a complementary pair, can drive 3.5 watts into a 3.2 ohm speaker using a 14 volt supply with less than one per cent distortion. Because of the high gain the base drive requirement is as low as 1 mA in this application. They are also useful as power drivers for high current application such as voltage regulators. 1-940 MPS-U45 FIGURE 1 - DC CURRENT GAIN 300 200 § ?$ z ;;: to r-- r--... Tj - 1250C I 100 FIGURE 2 - SMALL-5IGNAL CURRENT GAIN ~CIEI. 5.0 Vz I"'- ;;: to ~ '"i3 25°C >- ~ '"i3 ~ ~ 10 :::::::: ~ VCE' 5.0 Vdc...... Tj" 250C 1'100MHz 2.0 ~ 1.0 ~ 05 "" t 0.2 a 20 '-' c 5.0 >- 70 50 -55°C 30 0.02 0.1 005 0.5 0.2 1.0 " \\ O. 1 0.01 20 0.02 FIGURE 3 - "ON" VOLTAGES c 2:: o 1. 51- I f 1 1 ,I, L YSElrt )@ICIIS'500_ 0.2 0.3 1.0 0.5 t:-I- ,.- e.. > .s 1. 0 > 1 1 1 o 1 0.03 1.--1- OVB For VeE u: -3.0 ~ w 8 YI 0.2 01 0.3 0.5 1.0 2.0 -5.0 0.01 V V V -4.0 OO 1 1 0.05 V <3 1 1 - iCElt l@iCn -2.0 >~ ./ VSE@VCE·5.0V .,; O. Sf-- -1.0 '-' .,.-1- 1 to 0.02 0.1 FIGURE 4 - TEMPERATURE COEFFICIENT ~ w ""0 S 0.05 ~ .1250~ j g 0,03 IC, COLLECTOR CURRENT lAMP) IC, COLLECTOR CURRENT lAMP) 5 I- ", 1jj 7.0 50 2. III 10 I- r0.02 IC, COLLECTOR CURRENT lAMP) 0,03 0,05 0.1 0.2 0.3 0.5 1.0 IC, COLLECTOR CURRENT lAMP) FIGURE 5 - DC SAFE OPERATING AREA 2.0 ... r-- ii: ~ 1.0 I" '\ There are two limitations on the power handling abilitv of f transistor: junction temperature and second breakdown. Safe >- ~ '"~ '"o ~ o ~ O. 7 O. 5 0.3 operating area curves indicate Ie-VeE limits of the transistor that must be observed for reliable operation; i.e., the transistor must not ,'\ __ sroy I-- - Tj'150oC O. 2 1 - - - - SONDING WIRE LIMITATION THERMAL LlMITATIDN@TC=25 0C 'O. 1 2.0 be subjected to greater dissipation than the curves indicate. The data of Figure 5 is based on T Jlpk) = 150°C; TC is variable ~ I I 3,0 5.0 depending on conditions. At high case temperatures, thermal limi~ tations will reduce the power that can be handled to values less than the limitations imposed by second-breakdown. '\. SrArDiWIN ilMITATlr 7,0 10 20 30 40 VCE. COLLECTOR·EMITTERVDLTAGE IVOLTS) 1-941 MPS USI MPS USIA ® MOTOROLA III PNP SILICON ANNULAR TRANSISTORS PNP SILICON AUDIO TRANSISTORS · .. designed for complementary symmetry audio circuits to 5 Watts output. • Excellent Current Gain Linearity - 1.0 mAde to 1.0 Adc • Low Collector-Emitter Saturation Voltage VCE(sat) = 0.7 Vdc (Max) @ IC = 1.0 Adc • Complements to NPN MPS·UOI and MPS-UOIA • Uniwatt Package for Excellent Thermal Properties 1.0 Watt @ T A = 25 0 C F MAXIMUM RATINGS Rating Symbol MPS·U51 MPS-U51A Unit VCEO 30 40 Vdc Collector-Base Voltage VCB 40 50 Vdc Emitter-Base Voltage VEB 5.0 Vdc Collector Current - Continuous IC 2.0 Adc Total Power Dissipation @ TA= 2SoC Derate above 2SoC PD 1.0 8.0 mW/oC Total Power Dissipation @ T C - 2SoC Derate above 2SoC PD Collector-Emitter Voltage Operating and Storage Junction Temperature Range TJ.Tstg Watt 10 Watts 80 mW/oC -55 to +150 °c THERMAL CHARACTERISTICS Characteristic Symbol Max Unit Thermal Resistance, Junction to Case A8JC 12.5 °C/W Thermal Resistance, Junction to Ambient A8JA 125 °C/W o -H-J N STYLE 1: PIN 1. EMITTER 2. BASE 3. COLLECTOR MILLIMETERS DIM MIN MAX A B C 0 F G H J K L N Q R INCHES MIN MAX 9.14 9.53 0.360 0.315 6.60 1.24 0.260 ~2B5 5.41 5.66 0.213 0.223 0.38 0.53 0.015 0.02' 3.18 3.n JL125 0.131 2.54 BSC 0.100 BSe 3.94 4.19 0.155 0.165 0.36 0.41 I 0.016 12.01 12.10 I 0.500 25.02 25.53 ~ 5.08 8Se 2.38 2.69 I~ 0.106 1.14 1.40 0.055 i CASE 152-02 1-942 MPS-U51,MPS-U51A ELECTRICAL CHARACTERISTICS ITA' 25 0 C unless otherwIse noted 1 Characteristic Symbol Min Max 30 40 - 40 50 - 5.0 - - 0.1 - 0.1 - 0.1 jJ.Adc veE (sat) 0.7 Vde VSElon) 1.2 Vdc Unit OFF CHARACTERISTICS Collector-EmItter Breakdown Voltage Vdc BVCEO IIc'10mAdc,IB'01 MPS-U51 MPS-U51A Collector-Base Breakdown Voltage Vdc BVCBO lie' 100 "Adc, IE ' 01 MPS-U51 MPS-U51A Emitter-Base Breakdown Voltage BVEBO - Vdc liE' 100 "Adc, IC' 01 Collector Cutoff Current ICBO IVcs' 30 Vde, IE ' 01 MPS-U51 IVcs ' 40 Vde, IE ' 01 MPS-U51A Emitter Cutoff Current IESO ~Adc IVSE ' 30 Vde, IC' 01 ON CHARACTERISTICSII) DC Current Gam hFE IIC' 10 mAde, VCE ' 1 0 Vdel 55 (Ie'" 100 mAde, VeE ~ 1.0 Vdc) 60 etc' 1.0 Ade, VCE ' 1 0 Vde) 50 Collector-Emitter Saturation Voltage IIc' 1.0 Ade, IS' 0.1 Ade) Base-Emitter On Voltage IIC' 1.0 Ade, VCE ' 1.0 Vde) DVNAMIC CHARACTE RISTICS L;urrent-uain Bandwidth Product IT 50 Cob - MHz IIC' 50 mAde, VCE ' 10 Vde, I , 20 MHzl Output Capacitance pF 30 IVCS' 10 Vde, IE ' 0, f , 100 kHz) (1)Pulse Test Pulse Width ~300 IJ.S, Duty Cvc1e"f2 0% FIGURE 2 - "ON" VOLTAGES FIGURE 1 - DC CURRENT GAIN 500 z 300 ;;: 1.0 I I 'r-- J i ~ 200 0.6 ;:::;; ~E@VCE= 1.0 V to ,.- 13 ~ '" ~ ~- H" J-rt w u '" - VBE(satl@lc/IB=lO.- O.B to J.....r-r II II J C-TJL5 C 1~0 vJc CE = TJ=250C " ':; """'- ..... 100 0 0.4 > ,., -> 0.2 70 50 10 20 50 100 200 500 VCE(..,)@ICIIB = 10_~ +-H111 o 1000 10 20 IC, COLLECTOR CURRENT (rnA) 30 50 100 200 300 500 1000 IC, COLLECTOR CURRENT (rnA) FIGURE 3 - DC SAFE OPERATING AREA 2.0 1'. l"r-- 0:: '" ~ There are two limitations on the power handling ability of a tran· sistor: junction temperature and second breakdown. Safe operating area curves indicate Ie-VeE limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. 1.0 ~ 0.7 w "g;'" 0.5 "TJ = 150°C '"'o'" ,"-. H------ Secondary Breakdown limited ~ o. The data of Figure 3 is based on TJ(pk) ~ Te is variable depending on conditions. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown. 1500C; - _ ... _ - BondingWireLimited ~--- Thermal Limitations @ TC=250 C 8 o. n--- I oj O. 1 2.0 I I APt'iC'r" TO ~VfEp II 3.0 5.0 10 I MPS-U51 l- '\. MPS-~51A 20 30 40 VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS) 1-943 MPS·O'52 - ® MOTOROLA PNP SILICON ANNULAR TRANSISTOR ... designed for general·purpose ampl ifier and driver applications. PNPSILICON AMPLIFIER TRANSISTOR • Complement to NPN MPS·U02 MAXIMUM RATINGS Symbol Value VCEO 40 Vdc Cullector-Base Voltage VCB 60 Vdc Enulter-Base Voltage Vde Rating Culle(.'tor-Enutter Voltage Unit VEB 5.0 Colledor Current - ContUluoUS IC 1.5 Total Power Dissipation @ TA .. 25 ~C Po 1.0 Watt 8.0 IlIW/"C 10 80 mW;oC Derate above 2S- 0,4 \ -VCpI.OV ~7t7' VCPl l0 ~ 30 2,0 ,\ ~ ./ D,2 - ~ VCE( ..t) @IC/IB - 10 o2,0 1000 2000 5,0 10 20 50 100 200 500 1000 2000 IC. COLLECTOR CURRENT (rnA) FIGURE 3 - CDLLECTOR SATURATION REGION '" ~ - '" 1.0 ~ O.8 - VBE(sat @ICilB'10 !j g 0_ TJ' 25°C 1.2 - !.550b 0- g I - H- - FIGURE 2 - "ON" VOL TAGES 1.4 FIGURE 4 - DC SAFE OPERATING AREA 2,0 1.0 TJ = 25°C ..... 1"- 0.8 to ~ ~ 0.6 Ic=10mA SOmA 150 mA 5 rnA 2a 0.4 _ 0,2 g"''" Ii 8 ~ > 7 1000 rnA '\. '" ~ f- 0,05 0,1 0,2 0,5 1.0 2,0 5,0 10 20 50 100 200 0, 12,0 500 500 :r 11 LI to VCE = 20 V TJ·250C f· 100 MHz ~ _ 5 300 ~ '\ ;0 FIGURE 6 -CAPACITANCE t-- - 100 r......., ~ ./ TJ' 250C Cib 70 w '" c '"<1 100 , / 40 200 ~ i--'" :=c 200 ~ 50 I- ...... f.O u ~ 30 5 to 1"-, ";20 '" Z Cob ~ 70 ........ '"~ 50 I\. 4,0 6,0 8,0 10 20 VCE. COLLECTOR-EMITTER VOLTAGE (VOLTS) FIGURE 5 - CURRENT-GAIN BANDWIDTH PRODUCT .i "- I- 0 '" :i r-... r-- --- lB. BASE CURRENT (rnA) 'N '\. TJ • 150°C - - - SONDING WIRE LIMIT THERMAL L1MIT@TC·25 0C - - SECONO BREAKDOWN LIMIT 2,0 3,0 5,0 7,0 10 20 30 50 70 100 200 10 0,1 0.2 0,5 1.0 2.0 5.0 10 VR. REVERSE VOLTAGE (VOLTS) IC. COLLECTOR CURRENT (rnA) 1-945 I' t20 50 100 MPS· U55 MPS U56 ® PNP SILICON ANNULAR AMPLIFIER TRANSISTORS MOTOROLA PNPSILICON AMPLIFIER TRANSISTORS · .. designed for general·purpose. high-voltage amplifier and driver applications. .• High Collector-Emitter Breakdown Voltage BVCEO = 60 Vdc (Min) @ IC = 1.0 mAdc - MPS-U55 80 Vdc (Min) @ IC = 1.0 mAdc - MPS-U56 = lOW @ TC = 25 0 C • High Power Dissipation - PD • Complements to NPN MPS-U05 and MPS-U06 E B C MAXIMUM RATINGS Rating Collector-Emitter Voltage Collector-Base Voltage Symbol MPS-U55 I MPS-U56 Unit VCEO 60 I 80 Vdc VCR 60 80 Vdc 4.0 2.0 Vdc 1.0 8.0 Watt mW/oC 10 80 mW/oC -55 to +150 °c Emitter-Base Voltage Collector Current - Continuous IC Total Power Dissipation @ T A = 2SoC Derate above 25°C Total Power Dissipation @ TC "" 25°C Derate above 2SoC Operating and Storage Junction Temperature Range I Max Unit Thermal Resistance, Junction to Ambient ReJAll) 125 °C/W Thermal Resistance, Junction to case ReJC 12.5 °C/W 0-- l:!.±N PIN 1 EMITTER 2 BASE J COLLECTOR DIM A (1) R6JA is measured with the device soldered into a typical printed circuit board. J JJ Watts STYLE 1 Symbol :"~LI I ;r,~, j Adc . THERMAL CHARACTERISTICS Characteristic P___.r-;=:: MILLIMEtERS MIN MAX 9.14 6.60 5.41 0.38 9.53 8 7.24 C 5.66 D 53 F .18 3.33 G 2.54BSC H 3.94 4.19 J 0.36 0.41 K 12.07 12.70 l 25.02 25.53 N 5.08BSC o 2.39 2.S9 R 1.14 1.40 INCHES MIN MAX 0.3600.315 0.260 0.285 0.2130.223 0150.021 0.1250.11 o.l00B$C 0.1550.165 0.014 0.016 0.475 0.500 0.985 1.005 0.2008SC 0.094 0.1 0.045 0.055 Collector Connected to Tab CASE 152'()2 1-946 -II-J MPS-U55, MPS-U56 ELECTRICAL CHARACTERISTICS IT A = 25°C unless otherwise noted) I I Ch8l'llC1llriatic I Symbol Min Typ Max 60 80 - - 4.0 - - - - 100 100 80 50 - 160 130 80 - - 0.22 0.15 0.5 Unit OFF CHARACTE'RISTICS Collector-Emitter Breakdown Voltage 11) (lC = 1.0 mAde,lB = 0) Vde BVCEO MPS-U55 MPS-U56 Emittar-Base Breakdown Voltage (IE ~ l00I'Ade,lc = 0) BVEBO Collector Cutoff Currant (VCB = 40 Vde, IE ~ 0) (VCB = 60 Vde, IE = 0) Vde nAde ICBO MPS·U55 MPS·U56 ON CHARACTERISTICS DC Currant Gain (1) (lC = 50 mAde, VCE = 1.0 Vde) (IC ~ 250 mAde, VCE = 1.0 Vde) (lC = 500 mAde, VCE = 1.0 Vde) hFE - Coliector·Emltter Saturation Voltage( 1) (lC = 250 mAde, IB = 10 mAde) (lC = 250 mAde, IB = 25 mAde) VCE(satl Base-Emittar On Voltage (1) (lC = 250 mAde, VCE = 5.0 Vde) VBE(on) - 0.78 1.2 Vde IT 50 100 - MHz Cob - 10 15 pF Vde - SMALL-SIGNAL CHARACTERISTICS Currant·Galn-Bandwldth Product (1) (lC = 250 mAde, VCE = 5.0 Vde. f = 100 MHz) Output Capacitance (VCB = 10 Vde, IE = 0, f = (1)Pulse Test: Pulse Width 100 kHz) ~300 Iols, Duty Cycle S:2.0%. FIGURE 1 - DC CURRENT GAIN 300 20 0 FIGURE 2 - "ON" VOLTAGES 0 Jc~ ~ \ OV'o -+J 1\,i I 0 TJ=25 0C " r--. 0 IIIIIII VBE1~o~ ____ . / ....- • , VBE(on)@YCE=50Vdc 4 0 0 2 ....- VCE(sat)@IC"B"10 30 50 - 10 20 50 100 200 0 10 500 20 50 Ie. COLLECTOR CURRENT (rnA) FIGURE 3 - ACTIVE·REGION SAFE OPERATING AREA 10 20 50 100 200 500 Ie. COLLECTOR CURRENT (rnA) FIGURE 4 - CURRENT-GAIN-BANDWIDTH PRODUCT 0 200 Q o ::: ~ ~ "", 0 0 0 VCE=50Vdc 0 ~il"c 10 veE. COLLECTOR·EMITTER VOLTAGE NOL TSI Thare are two limitations on tha power handling ability of a transistor: junction tamperature and second breakdown. Safa operating area eurves indicata IC - VCE limits of the transistorthet must be observed for reliable operation; i.a., the transistor must not be subjected to greater dissipation than the curves indicate. 20 50 100 100 500 Ie. COLLECTOR CURRENT (rnA) Tha data of Figura 3 is based on T J(pkl = 1500 C; T C is variabla depanding on conditions. At high case temperatures, thermal limitations will reduca the power that can be handled to values 1_ than the limitations imposed bV secondlb....kdown. 1-947 II. MPS • 057 ® MOTOROLA IIJ AMPLIFIER TRANSISTOR PNP SI LICON ANNULAR AMPLIFIER TRANSISTOR PNPSILICON · .. designed for general·purpose, high-voltage amplifier and driver applications. • High Collector-Emitter Breakdown Voltage BVCEO = 100 Vdc (Min) @ IC = 1.0 mAdc • High Power Dissipation - Po • Complement to NPN MPS-U07 = 10 W @ TC = 250 C I MAXIMUM RATINGS Svmbol Value Unit VeEO 100 Vdc Collector-Base Voltage VeB 100 Vdc Emitter-Base Voltage VEB Ie 4.0 Vdc 2.0 1.0 8.0 Adc mW/oC Rating Collector-Emitter Voltage Collector Current Continuous lotal Power Dissipation @. T A - 25°C Derate above 2SoC Po Total Powar Dissipation '@TC = 250C Po 10 80 Watts mW/oe TJ, Tstg -55 to +150 °c Derate above 2SoC Operating and Storage,Junction Temperature Range Watt Svmbol Max Unit Thermal Resistance, Junction to Case R9JC 12.5 °C/W Thermal Resistance. Junction to Ambient R9JA 125 °C/W STYLE 1: PIN 1. EMITTER 2. BASE 3. COLLECTOR MILLIMETERS DIM MIN MAX INCHES MIN MAX 9.14 9.53 6.60 7.24 5.41 5.66 0.38 0.53 3.18 .3 2.54 BSC H 3.94 4.19 J 0.36 0.41 K 12.07 12.70 L 25.02 25.53 N 5.08 BSe Q 2.39 2.69 R 1.14 1.40 0.360 0.375 0.260 0.285 0.213 0.223 0.015 0.021 0.125 0.131 0.100 ase 0.155 0.165 0.014 0.016 0.475 0.500 0.985 1.005 0.2OO8SC 0.094 0.106 0.045 0.055 A a C 0 F G THERMAL CHARACTERISTICS Characteristic N CASE 152·02 1-948 MPS-U57 ELECTRICAL CHARACTERISTICS (T A = 250 C unless otherwise noted) I I Characteristic Symbol I Min Typ Max Unit OFF CHARACTERISTICS Coliector-Emitter Breakdown Voltage (1) IIC = 1.0 mAdc,lB = 0) BVCEO 100 - - Vdc Emitter·Base Breakdown Voltage BVEBO 4.0 - - Vdc ICBO - - 100 nAdc 60 30 140 65 30 (lC = 100/lAdc, IE = 0) Coliector Cutoff Current (VCB = 40 Vdc, IE = 0) ON CHARACTERISTICS (1) DC Current Gain - hFE IIc = 50 mAde, VCE = 1.0 Vdc) IIc = 250 mAde, VCE = 1.0 Vdc) IIc = 500 mAde, VCE = 1.0 Vde) - Collector-Emitter Saturation Voltage IIc = 250 mAde, IB = 10 mAde) IIc = 250 mAde, IS = 25 mAde) VCE(satl Base-Emitter On Voltage VSE(on) Vdc - 0.5 - 0.24 0.15 - 0.78 1.2 Vde fy 50 100 - MHz Cob - 10 - II C = 250 mAde, V CE = 5.0 Vdc) SMALL-5IGNAL CHARACTERISTICS Current-Gain-Bandwidth Product (1) (lC = 250 mAde, VCE = 5.0 Vde, f = 100 MHz) Output Capacitance (VCB = 10 Vdc, IE = 0, f = 100 kHz) 15 pF (1) Pulse Test: Pulse Width.;; 300/ls, Duty Cycle';; 2.0%. FIGURE 2 - "ON" VOLTAGES FIGURE 1 - DC CURRENT GAIN 200 z 100 ~ 7 ~ f'.., 1l •0 g ~ ~ 0 ~ 0 ;! is \ 1\ VeE: 1 OVdc TJ=250C 0 > :> 5.070 10 20 50 70 100 200 VBEton)@VeE " S.D Vdc D.4 o.3 o.2 0 1.0 VCEtsat)@lc/1a=10 '00 2.0 5.0 Ie. COLLECTOR CURRENT (mAl FIGURE 3 - DC SAFE OPERATING AREA ~ • O. 1 ~ 0.05 0.02 0.0 1 000. 1.0 100 200300500 C"-... "" TJ=15D oC - - decO~d ~r~k~Un llmltad BondlngWlraUmlted TliermallrmltatJolIS@Te '" 25DC 0 Applu:ableToBVCEO !J 50 FIGURE 4 - CURRENT-GAIN-BANDWIDTH PRODUCT iN.U 10 ~ o. B 0.2 ~ 20 0 20 '" 10 ~ Ie. COLLECTOR CURRENT (mAl '.0 ~ ~ f-"" I:t:tr o. 1 : III 20 11111 v.IE(~tJ @I"A. ~ 101. 7 ~ , 0 :,I-+J! 25~.c , • I 2.0 ILl) I) 1 so 10 0 VCE-S.DVdc 1 20 50 tilt' 100 VeE. CO LLECTOR·EMITTER VOLTAGE (VOLTS) 20 50 70 100 200 500 Ie. COLLECTOR CURRENT (mAl There are two limitations on the power handling ability of a transistor: junction temperature and second breakdown. Safe The data of Figure 3 is based on TJ(pk) = 150 0 C; TC is variable depending on conditions. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown. operating area curves indicatelc - VCE limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. 1-949 .. MPS· U60 ® MOTOROLA III PNP SILICON ANNULAR TRANSISTOR PNP SILICON HIGH VOLTAGE TRANSISTOR designed for general-purpose applications requiring high breakdown voltages, low saturation voltages and low capacitance. • Complement to NPN Type MPS-U 10 MAXIMUM RATINGS Svmbol Value Unit VCEO 300 Vdc Collector-BaH Voltage VeB 300 Vdc Emitter-Base Voltage Rating COllector-Emitter Voltage VEB 50 Vdc Collector Current - Continuous Ie 500 mAde Total Power DlssLpatlon@TA",2SoC Derate above 25°C Po 10 8.0 Watt mW/DC Po 10 80 mWfOc TJ,Tstg -55 to +150 °e Total Power Dlsslpatlon@Tc"'250C Derate above 2SoC Operating and Storage Junction Temperature Range Watts THERMAL CHARACTERISTICS F Thermal Aeslstance, Junctlon to Case Thermal Aeslstance, Junction to AmbLent ELECTRICAL CHARACTERISTICS IT A = I 250C unless otherwise noted) Symbol Characteristic Moo M.. Unit OFF CHARACTEAISTI~ Collector Emitter Breakdown Voltage (Ie: '" 1 o mAde, IR =01 t2) Vdc eVCEO 300 Collector-Base Breakdown Voltage (Ie =< 100 #lAde, 'E = 01 eVCBO Emitter-Base Breakdown Voltage liE'" 10l'Adc,Ic = 01 BVEBO Vdc 300 Vdc 50 Collector Cutoff Current /JAde ICBO (Vca = 200Vdc, IE =01 0.2 Emitter Cutoff Current IVSE = 3.0 Vdc. Ie = 0) j.lAde lEBO 01 ON CHARACTERISTICS DC Current Gain (2) hFE IIc = 1.0 mAde, VCE = 10 Vdel 25 (Ie = 10 mAde, VCE = 10 Vde) 30 30 flC = 30 mAde, VCE = 10Vde) Collector-EmitterSaturatlon Voltage Vdc VCEtsat) 0.75 lie" 20mAde,Ie = 2.0 mAde) Base-EmltterSaturation Voltage 0.9 veE (sat) Vdc (Ie = 20 mAde, IS = 2.0 mAde) DYNAMIC CHARACTERISTICS I Curtent-Galn-Sandwldth Product (2) (Ie = 10 mAde, VeE'" 20 Vde, f:: 100MHz) 'T Collector·Sase Capacitance Ccb I (VCS =20Vde, IE =0, f = 1 OMHz) MH, 60 pF 8.0 STYLE 1: PIN 1. EMITTER 2. BASE 3. COLLECTOR MILLIMETERS DIM MIN MAX 9.14 9.53 A 6.60 B 7.24 C 5.41 5.66 D 0.38 0.53 F .18 .3 G 2.54 SSC H 3.94 4.19 J 0.36 0.41 K 12.70 L 25.53 N SSC Q 2.39 2.69 R 1.14 1.40 1L360 0.260 0.213 0.015 (1) ROJA is measured with the device soldered into a typical printed circuit board. CASE 152-02 (21! Pulse Test: Pulse Width .. 300 1"', Duty Cycle .. 2.0%. 1-950 MPS-U60 FIGURE 1 - DC CURRENT GAIN 150 TJ=+125 DC V6E - \0 v1c 100 III ....... ~+25"C 0 ~ 0_-55"C ....... 0 ""'"I" N ~::-.. ""."" "- 20 15 1.0 2.0 30 70 5.0 10 20 30 50 BO 100 IC, COLLECTOR CURRENT ImAI FIGURE 2 - CAPACITANCES FIGURE 3 - CURRENT·GAIN-BANDWIDTH PRODUCT 100 T".";2SQe. 50 ~ w 20 r--- z " U f- r-. lO 100 80 r- Tr 25 0 C r- VCE = 20 Vdc ~ 60 '"af- 40 ;;: a ~ ;t ;:\ 5.0 oS 3D \ \ /' V I z ..... 1.0 0.1 - I"- 2.0 " '" f- Cfb[ 0.2 0.5 1.0 20 5.0 10 20 50 100 200 500 1000 ~ "'=> <..> .t- 20 10 1.0 50 20 VR, REVERSE VOLTAGE IVO LTSI 1.0 2 w 500 300 I O.B r-- r- ~ a --- VB~ @lJCE '= 10 ~ 0.6 :< .s -~ ..... ...... ..... 200 f- z w ~ 100 "''" 50 1' .. G '"~ '"> " f- ~ 0.4 >' 0.2 o 1.0 VCE(sa,)@lICIlB 2.0 5.0 LllL10 =10 20 100 50 20 FIGURE 5 -DC SAFE OPERATING AREA I TJ' 25" 10 IC, COLLECTOR CURRENT ImAI FIGURE 4 - "ON" VOLTAGES ;;; "- => Cob <..> i ~ - 50 8 ~ 100 ..... TJ = 150"C - - - SECONO BREAKOOWN LlMITEO 20 - BONDING WIRE LIMITED fHERMALLYLIMITEO@lTC=25 0 C 10 30 5.0 20 30 40 60 BO 100 200 VCE, COLLECTOR·EMITTER VOLTAGE (VOLTSI Ie, COLLECTOR CURRENT (rnA) 1-951 300 400 MPS· 095 ® MOTOROLA IIJ PNPSILICON DARLINGTON TRANSISTOR PNP SILICON DARLINGTON AMPLIFIER TRANSISTOR · .. designed for amplifier and driver applications. • High DC Current Gain hFE = 25,000 (Min) 15,000 (Min) @ @ IC = 200 mAdc IC = 500 mAdc • Collector· Emitter Breakdown Voltage BVCES = 40 Vdc (Min) @ IC = 100 !lAdc • Low Collector-Emitter Saturation Voltage VCE(sat) = 1.5 Vdc @ IC = 1.0 Adc • Monolithic Construction for High Reliability • Complement to NPN MPS-U45 MAXIMUM RATINGS Rating Symbol Value Unit : Collector-Emitter Voltage VCEO O1 40 Vdc Collector-E",:,itter Voltage VCES 40 Vdc Collector-Base Voltage VCS 50 Vdc Emitter-Sase Voltage VES 10 Vdc Collector Current ·Continuous IC 2.0 Adc Total Power Dissipation @ TA - 2SoC Po 1.0 8.0 mW/oC 10 80 mW/oC TJ,TsIg -5510 +150 °c Derate above 2SoC Total Power Dissipation @ T C = 25°C Po Derate above 2SoC Operating and Storage Junction , F Watt Watts Temperature Range o THERMAL CHARACTERISTICS Characteristic Thermal Resistance, Junction to Ambient hermal Resistance. Junction to Case Symbol Ma. Unit ROJA(2) 125 °C/W M9JC 12.5 °C/W (1) Due to the monolithic construction of this device, breakdown voltages of both transistor elements are identical. BVCES is tested in lieu of BVCEO in order to avoid errors caused by noise pickup. The voltage measured during the BVCES test is the BVCEO of the output transistor. (2) R8JA is measured with the device soldered into a typical printed circuit board. MILLIMETERS STYLE 1. PIN 1. EMITTER 2.8ASE 3. COLLECTOR DIM A 8 e 0 F G H K L N n R MIN MAX 9.14 9.53 1.24 6.60 5.41 5.66 0.36 0.53 3.1 .33 2.54BSe 3.94 4.19 0.41 0.36 12.01 12.10 26.02 25.53 5.08 BSe 2. 2.69 1.14 1.40 CASE 152·02 1-952 INCHES MIN M 0.360 gJI6 0.260 0.285 0.213 0.223 001 O. I 12 .131 0.100BSe 0.155 0.165 0.014 0.016 0.415 0.500 0.965 1.005 0.200BSe 0.094 0.1116 0.045 0.055 MPS-U95 ELECTRICAL CHARACTERISTICS IT A = 25°C unless otherwise noted 1 Characteristic Max Unit - - Vde 50 - - Vde BVEBO 10 - - Vde ICBO - - 100 nAdc lEBO - - 100 nAde IIc = 200 mAde, VCE = 5.0 Vde) 25,000 43,000 150,000 = 500 mAde, VCE = 5.0 Vde) = 1.0 Ade, VCE = 5.0 Vdcl 15,000 41,000 4,000 35,000 - Symbol Min BVCES 40 BVCBO Typ OFF CHARACTERISTICS Collector-Emitter Breakdown Voltage IIC = 100 "Ade, VBE = 01 COllector-Base Breakdown Voltage IIc = 100 "Ade, IE = 01 Emitter-Base Breakdown Voltage liE = 10 "Ade, IC = 01 Collector Cutoff Current IVCB = 30 Vde, IE = 01 Emitter Cutoff Current (VEB = 8.0 Vde, IC = 01 ON CHARACTERISTlCS(l) DC Current Gain IIc IIc - hFE Collector-Emitter Saturation Voltage IIc = 1.0 Ade, 18 = 2.0 mAde) VCE(sat) - 1.0 1.5 Vde Base-Emitter Saturation Voltage VSElsatl - 1.85 2.0 Vde VSElon) - 1.7 2.0 Vde lhfel 0.5 1.6 - - Ceb - 2.5 12 pF IIc = 1.0 Ade, 18 = 2.0 mAde) Base-Emitter On Voltage IIc = 1.0 Ade, VCE = 5.0 Vdel DYNAMIC CHARACTERISTICS Small-Slgnal Current Gain (1) IIc = 200 mAde, VCE = 5.0 Vde, f = 100 MHzl Collector Base Capacitance IVCS = 10 Vde, IE = 0, f = 1.0 MHzl (1)Pulse Test' Pulse Width ~300 J.Ls, Duty Cycle S 20%. Unlwatt darlington transistors can be used in any number of low power applications. such as relay drivers, motor control and as general purpose amplifiers. As an audio amplifier these devices, when used as a complementary pair, can drive 3.5 watts into a 3.2 ohm speaker using a 14 volt supply with less than one per cent distortion. Because of the high gain the base drive requirement IS as low as , mA in this application. They are also useful as power drivers for high current application such as voltage regulators. 1-953 MPS-U95 II] FIGURE 1 - DC CURRENT GAIN FIGURE 2 - SMALL-8IGNAL CURRENT GAIN 10 150 ===:VCE ' 5.0 Vdc z TJ'25 DC :;;: 5.0 f, 100 MHz '" Vrj-°V ~100 I-TJ 125 DC ~ z :;;: '"l-Z ... Q a'" "\. \. SO -ri = ~ '" ffi 70 13 30 f-rr - 20 15 0.02 ~ 1.0 \ '" \. :i. ill ~ 0.2 0.1 0.2 O. 1 0.01 2.0 1.0 0.5 0.5 !. \ """\ 0.05 2.0 -' ,\ I W ~ === I- 0.02 0.05 '"~... '"~" '">>- TJ,25DC G ~ G II VCE(sat)@ICIIB'500 0.5 II II0.1 o 0.05 ./ ~ -O.S $ -1.6 VBE @~C)E' 5.~ V 1.0 / ~ t::: 1.5 I- VBE(sotl@ICIIB-500 0.02 ---; +0.8 2.0 ~ 1.0 0.5 0.2 FIGURE 4 - TEMPERATURE COEFFICIENT FIGURE 3 - "ON" VOLTAGES 2.5 0.1 IC. COLLECTOR CURRENT (AMP) IC.COLLECTOR CURRENT (AMP) ~ -2.4 => ~ ffi ~I- -4.0 0.5 2.0 1.0 v -3.2 ~ 0.2 / ./ 8 ,/ - .... OVC FO R VCE!"t) -4.8 0.02 0.05 l.---'" ~VBFORVBE ) I I 0.1 0.2 0.5 1.0 2.0 IC. COLLECTOR CURRENT (AMP) IC. COLLECTOR CURRENT (AMP) FIGURE 5 - DC SAFE OPERATING AREA , 2.0 '\. ~ '\ r-- 1i: 1.0 There are two limitations on the power handling ability of a ~ 0.7 '" '"~ '"'" I~ 8 ~ transistor: junction temperature and second breakdown. Safe operating areB curvas indicate Ie-VeE limits of the transistor that must be observed for reliable operation; i.e., the transistor must not 0.5 0.3 ."\ be subjected to greater dissipation than the curves indicate. The data of Figure 5 is based on T J!pk) = 15o"C; T C is variable depending on conditions. At high case temperatures, thermal limi· tations will reduce the power that can be handled to values less than the limitations imposed by second breakdown. :~ r- I-- TJ'150DC 0.2 1 - - - - BONDING WIRE LIMITATION THERMAL L1MITATION@TC'25 DC "' ---- 1--- 0.1 2.0 I I 3.0 SiCOY TAiDfiN ilMITATIiN 5.0 7.0 10 20 30 40 VCE. COLLECTOR·EMITTER VOLTAGE (VOLTS) 1-954 ® MOTOROLA NPN PNP TIP29 TIP29A TIP29B TIP29C TIP30 TIP30A TIP30B TIP30C 1 AMPERE COMPLEMENTARY SILICON PLASTIC POWER TRANSISTORS POWER TRANSISTORS COMPLEMENTARY SILICON 40·60-80·100 VOLTS 30 WATTS ... designed for use in general purpose amplifier and switching applications. Compact TO·220 AB package. T0-66 leadform also available. MAXIMUM RATINGS Ratinll Collector-Emitter Voltage Symbol TlP29 TlP30 VCEO 40 Collector-Base Voltage Eminer-8Me Voltage Collector Current Continuous Peak Peak ease Current .. ... ... ..... VCS VES IC IS Po Total Power OISSlpatlon @TC=2SoC Derate above 2SoC Total Power DISSipation @TA=2S oc Derate above 2S0C Po Unclamped Inductive Load Energy (See Note 31 Operating and Storage Junction 40 I TlP29A TIP3DA 1 Temperature Range TIP29B TIP30B 80 60 so 1 I 1 TIP29C TIP30C '00 '00 5.0 1.0 3.0 0.4 ... . . .. .. 30 0.24 2.0 0.016 .. . 32 . TJ. Tstg I 60 -65 to +150 Unit Vd. Vd. Vd. Ado Ad. Watts WIDe Watts WIDe mJ °c THERMAL CHARACTERISTICS J;f Ch.racterlttic 1- Thermal Resistance, Junction to Case Thermal Resistance. Junction to Ambient ELECTRICAL CHARACTERISTICS J SECT A·A (Tc = 2SDC unleS$ otherwise noted) I Characteristic OFF CHARACTERISTICS Collector·Emltter Sustaining Voltage (1) IIC = 30 mAde, IS '" 01 Collector Cutoff Current (VCE ,. 30 Vde, IS '" OJ (Vce = 60 Vde, IS = 0) Collector Cutoff Current (VCE =40 Vde, VES =- 01 (VCE· 60 Vde, VES = 0) (VeE = 80 Vde. VEB = 01 (VCE" 100 Vrk. VEB = 01 Emitter Cutoff Current (Vse = 5.0 Vdc, Ie = 01 ON CHARACTERISTICS (11 TIP29, TIP30 TlP29A, TlP30A TIP29S, TlP30S TIP29C, TlP30C Min 40 60 80 100 Ma. DIM A J'Ade ICES 200 200 200 200 1.0 lEBO B C 0 mAde F G H J K l N hFE 40 '5 VCElsat> Q 15 0.1 Vdc R S T 1.3 VBE(on) Vdc U V Z Current Geln - Bandwidth Product (2) IIc" 200 mAde. VCE '" 10 Vdc, ftest " 1 MHzl Small·Signal Current Gain lie" 0.2 Adc, VCE = 10 Vdc, f = 1 kHz I ~ 300~, STYLE I PIN 1 BASE 2. COLLECTOR 3. EMITTER 4 COLLECTOR mAde 0.3 0.3 TIP29. TIP30 TlP29A, TIP30A TlP29S, TIP30B TlP29C, TIP30C Bale-Emitter On Voltage IIC" 1.0 Adc, VeE" 4.0 Vdc) DYNAMIC CHARACTERISTICS (3) This rating based on testing with Unit Vd. ICED TlP29, TlP29A, TlP30, TlP30A TlP29S. TlP29C. TlP30B, TIP30C DC Current Gain (Ie'" 0.2 Ade, VCE" 4.0 Vdcl (lc = 1.0 Adc. VCE =4.0 Vde) Collector-Emitter Saturation Voltage (Ie .. 1.0 Adc, IS .. 126 mAde) UI Pul.. Test: Pulse Width (2)fT .. lhf. l • 'telt Symbol VCEOlsusl fT 3.0 hf. 20 MH, Duty Cycle ~ 2.0%. Lc '" 20 mH, RBe" 100 n, Vee" 10 V ,Ie'" 1.8 A, P.A.F." 10 Hz. 1-955 MILLIMETERS INC MIN MIN MAX 1460 1575 0575 965 1019 0380 406 4.81 0.160 064 0.89 0025 361 373 0.142 141 2.67 0095 179 393 0110 0.36 056 0014 1170 1417 0500 114 139 0.045 483 533 0190 1.54 304 0.100 104 2.79 0.080 1.14 1.39 0.045 5.97 8.48 0.235 0.00 1.17 0.000 1.14 - 0.045 2.03 CASE 221A-02 T0-220AB WAX 610 405 190 035 147 105 155 1 0.055 0.255 0.050 - 0.080 TIP29, TIP29A, TIP29B, TIP29C, NPN, TIP30, TIP30A, TIP30B, TIP3OC, PNP FIGURE 1 - DC CURRENT GAIN FIGURE 2 - TURN-OFF TIME 3. 0 500 VCE~20V t--, ~t:::r= J 55°C ~ ;: " 0 "" 0 70 50 003 005 007 01 0.3 05 07 10 IC, COLLECTOR CURRENT (AMPI O. 7:5"".5 o. 3 VCC 0.03 0.03 3.0 11 RB --I +11 V 13 I I t1 ~7.0 ~ 03 ~ ;: ns 100~~~5~~1& 12 I- 3.0 I,@ VCC ~ 30 V 1'0;;; - ~ tr@VCC=10V o. 1 -4.0 V 0.0 7 0.0 5 I TURN·OFF PULSE 20 IcilB ~ 10 r--TJ ~ 25°C O. 7 05 Cjd «Ceb f- : :: Vrn-i---I-T- I --; 0.05 0.,Dl 0.1 0.2 0.3 0.5 07 1.0 IC, COLLECTOR CURRENT (AMP) FIGURE 4 - TURN-ON TIME I APPROX ~ 10 V 1. 0 VIn o--'lM~-1~-l = .1 RC t- - - - - 1_ _ 0.0 7 005 TURN· ON PULSE f..- -if ~IVCC 10 s -118 tf TJ - 25°C If@Vcc-30V 2. 0 A +11 VP P R o n VEB(Offl--l t s' = t o. 2 FIGURE 3 - SWITCHING TIME EQUIVALENT CIRCUIT VIn 0 Ic/IB~ -..!( 11 L1 1. 0 r-- 25°C 0 1~1~1~2 J I""t-fo.+. " ,0-- 3001- t-:iJI,Jolc 0.03 0.0 2 0.03 OUTY CYCLE ~ 2.0% APPROX -90 V RB and RC VARIEO TO OBTAIN OESIRED CURRENT LEVELS. Id@VEB(ofJi ~ 20V "1i--- I IIIIII 0.050.07 0.1 03 0.5 07 10 IC, COLLECTOR CURRENT (AMPI - 30 FIGURE 5 - ACTIVE REGION SAFE OPERATING AREA 0 = TJ ~ 150°C - -- " "j.J 0 There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate IC·VCE operation; i.e., the transistor must not be subjected to greater dissipation than the 1m. de ' \ 0 SECONO BREAKOOWN LIMITED ------ THERMALL Y LIMITEO @TC ~ 25°C =R: o. 1 - BONDING WIRE LIMIT . I IAPPLY I I BELOW III CURVES Sm. for duty cycles to 10% provided TJ(pk) .. 150°C. At high case temper~tures. thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown. :~TlP2930rTIP 29A 30A r-r-- TIP 29B: 30B TIP29C,30C 4.0 40 10 20 VCE' COLLECTOR EMITTER VOLTAGE, (VOLTS) RATIEO ,CEIO I I I II 1.0 cu rves indicate. The data of Figure 5 is based on TJ!pk) = 150°C; TC is variable depending on conditions. Second breakdown pulse limIts are valid 100 1-956 NPN ® TIP31 TIP31A TIP318 TIP31C MOTOROLA POWER TRANSISTORS COMPLEMENTARY SILICON designed for use in general purpose amplifier and switching applications. • • • • TIP32 TIP32A TIP328 TIP32C 3 AMPERE COMPLEMENTARY SILICON PLASTIC POWER TRANSISTORS • PNP 40-60-80·100 VOLTS 40 WATTS Collector· Emitter Saturation Voltage VCE(sat) = 1.2 Vdc (Max) @ IC = 3.0 Adc Collector· Emitter Sustaining Voltage VCEO(sus) = 40 Vdc (Min) - TIP31, TIP 32 = 60 Vdc (Min) - TIP31A, TlP32A = 80 Vdc (Min) - TIP31B, TIP32B = 100 Vdc (Min) - TIP31C, TlP32C High Current Gain - Bandwidth Product fT = 3.0 MHz (Min) @ IC = 500 mAdc Compact TO·220 AB Package TO·66 Leadform Also Available *MAXIMUM RATINGS Symbol TIP31 TIP32 TlP31A TlP32A TIP31B TIP32B TIP31C TIP32C Unit VCEO 40 60 80 100 Vdc Collector-Base Voltage Ve8 40 60 80 100 Vdc Emitter-Base Voltage VES Rating Collector-Emitter Voltage Collector Current - Continuous Ie Peak eass Current IS Total Power Dissipation @Te=250e Derate above 2SoC Po Total Power Dissipation @TA=250e Derate above 2SoC Po Unclamped Inductive E Load Energy (1) Operating and Storage Junction TJ,Tstg Temperature Range . . ., - 5.0 Vdc 3.0 5.0 Adc 1.0 Adc 40 0.32 Watts w/oe Watts wfOe mJ 2.0 0.D16 32 -65 to +150 - °e THERMAL CHARACTERISTICS ,I [l di~ -IR i-J o-li- STYLE 1: PIN 1. BASE 2. COLLECTOR 3 EMmER 4. ~!I!CTQR N DIM A Symbol Max Unit B Thermal Resistance, Junction to Case ReJC 3.125 °elw C 0 Thermal Resistance, Junction to Ambient ReJA 62.5 °elw Characteristic H (1) Ie = 1.8 A, L = 20 mH, P.R.F. - 10 Hz, Vee = 10 V, RBE = 100.n. F G H J K L N Q R S T U V Z 0 3. 2 279 0.36 1270 1.14 483 2.54 2.04 1.14 5.97 0.00 1.14 3 0 14 139 5.33 3.04 2.79 139 B.48 1.27 2.03 INCHES MIN MAX 0575 0.620 0380 0.405 0160 0190 0025 0035 0142 0147 0095 0105 0110 0155 0014 0022 0500 0562 0045 0055 0.190 0210 0.100 0120 0.080 0.110 0.045 0.055 0.235 0.255 0.000 0.050 0.045 O.OBo CASE 221A.Q2 Tc)'220AB 1-957 G III TlP31, TIP31A, TIP31B, TIP31C, NPN, TIP32, TIP32A, TIP32B, TIP32C, PNP ELECTRICAL CHARACTERISTICS ITC = 26°C unle.s otherwise noted) I OJ I Characteristic Symbol Min Max Unit 40 Vd. 80 100 - - 0.3 0.3 - 200 200 200 200 OFF CHARACTERISTICS TI P31, TI P32 TIP31A, TlP32A TIP31B, TIP32B TIP31C, TIP32C Colle.tor·Emitter Sustaining Voltage II) IIc = 30 mAd., 18 = 0) Collector Cutoff Current IVCE = 30 Vd., IB = 0) IVCE = 60 Vd., IB = 0) 60 mAd. ICEO TIP31, TIP31A, TIP32, TlP32A TIP31B, TIP31C, TIP32B, TIP32C Collector Cutoff Current IV CE = 40 Vd., VE8 = 0) IVCE = 60 Vd., VEB = 0) IVCE = 80 Vd., VEB = 0) IVCE 100 Vd., VEB = 0) Emitter Cutoff Current IV BE 5.0 Vde, IC 0) ON CHARACTERISTICS II) /lAd. ICES TIP31, TIP32 TlP31 A, TIP32A TlP318, TIP32B TlP31C, TIP32C = = VCEOlsus) - - 1.0 lEBO = DC Current Gain mAde - hFE IIC = 1.0 Ade, VCE = 4.0 Vde) IIc = 3.0 Ade, VCE = 4.0 Vde) 25 10 Collector-Emitter Saturation Voltage VCElsat) 50 1.2 Vde IIC = 3.0 Ade, IB = 375 mAde) Base-Emitter On Voltage VBElon) - 1.8 Vde IT 3.0 - MHz Ihlel 20 - - IIC = 3.0 Ade, VCE = 4.0 Vde) OYNAMIC CHARACTERISTICS Current Gain - Bandwidth Product (2) IIC = 500 mAde, VCE = 10 Vde, I test = 1 MHz) Small-Signal Current Gain IIc = 0.5 Ade, VCE = 10 Vde, I = 1 kHz) II) Pulse Test: Pulse Width";; 300 Ils, Duty Cycle";; 2.0%. (2) IT= Ihfel.ftest FIGURE 1 - POWER aERATING TC TA 40 4. 0 " ~ 30 3.0 .~TC ~ ~ ~ 20 2.0 ........ gj C ~ ....... " "'- ............ ...... oc '"~ "'- "- 10 1. 0 .................... ~. . o 0 o 20 40 BO 100 60 T, TEMPERATURE lOCI 120 FIGURE 2 - SWITCHING TIME EQUIVALENT CIRCUIT ............. ~ lBO 140 FIGURE 3- TURN·ON TIME 2.0 TURN·ON PULSE APPRO A X VCC +11 V I VIM 0 VEBloff)---1 t- - - - - I-- VIM Q--'lM-....--1 t1 I i Cjd «Ceb I "''"i= t1 <;7.0 ns : : : 100- 003 >- ffi 0.02 .-" ~ ~ 00 1""- >- -: 0.2 ~ ~ o. 1 :i 007 005 011 o ~ 0.5 5 001 ;;;...- -~ 0.1 foot-:::: n Plp'l tSUl -r-~~ V r- I ZeJCIII ~ ,III R'JC ROJC ~ 3.125' crw Max D CURVES APPLY FOR POWER PULSE TRAIN SHOWN READ TIME AT 11 TJlpkI- TC ~ Pip') ZOJCIt) DUTY CYCLE. 0 ~ !J112 SlrGi E IILlI! 002 005 11111 01 10 05 02 10 t, 50 I L 10 I I L I IIII 50 20 I I 100 I I I III 200 500 1.0 , TIME (ms) FIGURE 5 - ACTIVE REGION SAFE OPERATING AREA 0 0 . ~ ...... :l.ms ...... 0 1- r-- 1 Oms' 50 I\. "- TlP3IC, TIC32C 20 D1 10 transistor. average junction temperature and second breakdown . Safe operating area curves mdlcate Ie-VeE limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater diSSipation than the curves indicate . The data of FIgure 5 IS based on T J(pk) = 150°C; T C is variable dependmg on conditions. Second breakdown pulse limits are valid for duty cycles to 10% provided T J(pk) ..; 150°C. T Jlpk) may be calculated from the data in Figure 4. At high case temperatures. thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown. "- I\. I\.. .... "- SECONDARY BREAKOOWN LIMITED @TJ' 150'C Or-I=THERMAL L1MIT@TC ~ 25'C (SINGLE PULSEI--=-t--BONplNG WIRE LIMIT 1--!IP31, TIP32I- CURVES APPLY TIP31A, TlP32A 2f-- BELOW RATED VCEO TIP31B, TIB31B I ' I I I ~ sf;;; ~ There are two limitations on the power handling ability of a DO", 50 100 VCE, COLLECTOR·EMITTER VOLTAGE IVOL TS) FIGURE 6 - TURN-OFF TIME 3.0 2. Or1. °FS O. 7 o. 5 ~ w '" ;:: 0, 3 J I'"H-III IIIII FIGURE 7 - CAPACITANCE 1~1~1~2 ~ -If@Vce- 3OV Ic/1B~10 t s'''' t TJ 300 1_ _ 200 s -1I8tf ~~~ ~ w u z >- 100 G -If ~Ivcc- 10 V T)+J50~ I~::::: = 25°C " Ceb :: o. 2 ;5 70 o. I 50 0.07 0.05 0.03 0.03 r--... 0.05 0.07 0,1 0.2 0.3 0.5 0.7 1.0 IC, COLLECTOR CURRENT lAMP) 2.0 3,0 1-959 30 0.1 Ccb I 0.2 0,3 2.0 3.0 5,0 0.5 1.0 VR, REVERSE VOLTAGE (VOLTS) 10 20 3040 TIP31, TIP31A, TIP31B, TIP31C, NPN, TIP32, TIP32A, TlP32B, TIP32C, PNP FIGURE 9 - COLLECTOR SATURATION REGION FIGURE 8 - DC CURRENT GAIN III ~ 2. 0 500 30ot-- -VIJolc -r-- 15°C co 100 § 7~t~ ~ t-. z ;j' = 2 "~ VCP 1.0V TJ·250C 1. 6 ~ ":::t-- "> '" -55°C IC ·0.3A 2 3.0A \ 1= 5 ~ ~. \ ~ O. B = ~ lOb. 30 ~ 10 > 0.05 0.07 0.1 0.3 0.5 0.7 1.0 IC. COLLECTOR CURRENT (AMP) 0 1.0 30 ~ \ 0, 4 " ~. 7. 0 5.0 0.03 1.0A w 2.0 I' 5.0 10 - 20 50 100 500 200 1000 lB. CASE CURRENT (rnA) FIGURE 11 - TEMPERATURE COEFFICIENTS +2. 5 ~ 1.2 H+t+tt-t--I-H+l-tH'l---t-H-+1-t+It--t-1 .§. +1. 5 ~ ~ +1. 0 v ~ 1.0H+++H+--l--H-H-I+1I+--+--H-+1-++H-./_H ~ i P' ~ ~V~B~E~(~~t)~@~IC~I~IB~.~10::~~~~~~~~~===t:j --+--+-++++t+t---+--.I VBE @ VCE -1.0 V 0 1.0 7 2.0 3.0 ~- OVB FOR VBE ';.- -2. 0 -2. 5 II 0.003 0.005 0.01 ,/ - ~ -1. 5 <::::. 0.2 0.3 0.5 0.020.030.05 0.1 IC. COLLECTOR CURRENT (AMPS) 0.01 +0. 5 ~ -1. 0 i 0.0030.005 ffi 8 I- Jl LlIII I VCE(~t) @ICIIB· O+-+++H-++---+++++±I~./"'---+-I I 1/ § -0. 5 :> 0.4 H+t-H-I4--+-H+-I-H-fl---.f-H-+1+1-I+--++I o I 111111 / t tt w 0.& 0.2 II 'OVC FOR VCE(sat) <3 ;;; O.B H+t+tt-t--_I-I.H+l-tHf+---+-i...:--+='-'IsI'I'FI+---+-i ~> 'APPLIES FOR IcllB <;hFEI2 TJ' -650C TO +150 oC +2.0 I 0.2 0.3 0.5 0.02 0.05 0.1 IC. COLLECTOR CURRENT (AMP) 1.0 2.0 3.0 FIGURE 13 - EFFECTS OF BASE·EMITTER RESISTANCE FIGURE 12 - COLLECTOR CUT·OFF REGION ~ 10 7 103 ~VCE '" / -30V ...... 8 w 2 ~ 106 ~ '--TJ - 150°C 1>--" ~ ~ 01== o=100 oC 1~ I=REVERSE FORWARD= I===!: -0.1 +0.1 +0.2 VCE ....... -.;;;: ....... (TYPICAL IC~S VALUES OBTAINED FROM FIGURE 12) -' 30 V IC·l0xICES I--- IC=2xICES ~ '" >- ICES -0.2 - ~ 10 3 F= F250C -0.3 104 IC~ICES ! / 10-3 ·0.4 I ~= 105 / ...... ........ ...... ...... I ........ ~ +0.3 +0.4 +0.5 +0.& ~ VBE. BASE·EMITTER VOLTAGE (VOLTS) 1-960 102 20 40 60 100 120 80 TJ. JUNCTION TEMPERATURE (OC) 1.40 160 ® NPN TIP33 TIP33A TIP33B TIP33C MOTOROLA PNP TIP34 TIP34A TIP34B TIP34C III COMPLEMENTARY SILICON HIGH-POWER TRANSISTORS 10 AMPERE COMPLEMENTARY SILICON POWER TRANSISTORS · .. for general-purpose power amplifier a nd switching applications. • 40-100 VOLTS 80 WATTS lOA Collector Current • Low Leakage Current - ICED = 0.7 rnA @ 30 and 60 V hFE = 40 Typ @ 3.0 A • Excellent dc Gain - hfe = 3.0 min @ IC = • High Current Gain Bandwidth Product 0.5 A, f = 1.0 MHz MAXIMUM RATINGS Symbol TIP33 TIP34 TIP33A TIP34A T1P33B TIP34B TIP33C TIP34C VeEO 40V 60V 80V 100V Vdc Collector-Base Voltage Vee 40V 60V 80V l00V Vdc Emitter-Base Voltage VEe 5.0 Vdc Ie 10 15 Adc Rating Collector-Emitter Voltage Collector Current Continuous Peakll) Base Current Cont;nous Ie 3.0 Adc Po 80 Watts 0.64 W/oC TJ,Tstg -65 to +150 'e Total Power Dissipation @Te=25'e Derate above 25°C Operating and Storage Junction Temperature Range Unit THERMAL CHARACTERISTICS Ch.ract8ri.~C Thermal Resistance, Junction to Case K Junction-To-Free-Alr Thermal Resistance --~ --L:::J 1-0 (1) Pulse Test. Pulse Width = 10 ms, Duty Cycle :S;;;1 0%. G STYLE 1 1. BASE 2. COLLECTOR 3. EMITTER 4 COLLECTOR FIGURE 1 - DC CURRENT GAIN 500 z :;;: '" 100 ::> 50 i '-' - '-' co ... .It ::. 20 MilliMETERS DIM MIN MAX A 20.32 21.08 B 15.49 15.96 5.0B C 4.19 1.65 D 1.02 1.65 E 1.35 G 5.21 5.72 H 2.41 3.20 0.64 I 0.38 K 12.70 15.49 L 15.88 16.51 N 12.19 12.70 Q 4.04 4.22 VCE = 4.0 V TJ = 25'C 200 - r--. --NPN --PNP -.. 10 5.0 0.1 1.0 10 Ie. COLLECTOR CURRENT (AI 1-961 INCHES MIN MAX 0.800 0.830 0.610 0.626 0.165 0.200 0.040 0.065 0.053 0.065 0.205 0.225 0.095 0.126 0.015 0.025 0.500 0.610 0.625 0.650 0.4BO 0.500 0.159 0.166 CASE 340-01 TO-21BAC TIP33, TIP33A, TIP33B, TIP33C, TIP34, TIP34A, TIP34B, TIP34C III I ELECTRICAL CHARACTERISTICS (TC; 25°C unless otherwise noted) I Characteristic Svmbol Min Max Unit OFF CHARACTERISTICS Collector-Emitter Sustaining Voltage (1) (lc ; 30 mA. IB ; 0) Vdc BVCEO TIP33, TIP34 TIP33A. TIP34A TIP33B, TIP34B TIP33C, TIP34C - 40 60 80 100 Collector-Emitter Cutoff Current (VCE; 30 V, IB; 0) TIP33, TIP33A, TlP34, TlP34A (VCE; 60 V, IB; 0) TlP33B, TlP33C, TlP34B, TIP34C ICEO Collector-Emitter Cutoff Current (VCE; Rated VCEO, VEB; 0) ICES - Emitter-Base Cutoff Current (VEB ; 5.0 V, IC; 0) lEBO - mA - 0.7 0.7 0.4 mA - 1.0 mA 40 20 100 - 1.0 4.0 - - 1.6 3.0 ON CHARACTERISTICS (1) DC Current Gain (IC; 1.0 A, VCE; 4.0 V) (IC; 3.0 A, VCE; 4.0 V) hFE Collector-Emitter Saturation Voltage (IC; 3.0 A, IB; 0.3 A) (lC ; lOA, IB; 2.5 A) VCE(sat) Base-Emitter On Voltage (IC; 3.0 A, VCE; 4.0 V) (IC; 10 A, VCE; 4.0 V) VBE(on) Vdc Vdc DYNAMIC CHARACTERISTICS Small-Signal Current Gain (lC; 0.5 A, VCE; 10 V, I ; 1.0 kHz) hfe 20 - Current-Gain-Bandwidth Product (2) (IC; 0.5 A, VCE; 10 V, I ; 1.0 MHz) IT 3.0 - (1) Pulse Test. Pulse Width = 300 ~s, Duty Cycle MHz ~2.0%. (21fT = [hfel' f test FIGURE 2 - - . MAXIMUM RATED FORWARD BIAS SAFE OPERATING AREA FIGURE 3 - MAXIMUM RATED REVERSE BIAS SAFE OPERATING AREA , 20 L; 2'00 I'H' IC/IS;;' 5.0 VBE(otl) ; 0 to 5.0 V _ TC; 100°C - ;;;- ~ ~ !Z ~ 15 10 50 ~ 3.0 t3 2.0 Secondary Breakdown limit -- - Bonding Wire limit - ---Thermal Limit de - TIP33 TlP34 , 10 ms ~ TIP33A TlP34A TC; 25°C TIP33B ~O. 5=== TIP34B 0.2 TIP33C TIP34C O. 1 2.0 3.0 5.0 7.0 10 20 30 50 70 1.0 VCE, COLLECTOR-EMmER VOLTAGE (VOLTS) ~ 1.0 "- 3001" 1.0m~ TIP3~_ '" TIP~4 100 o o "'" TlP33~"""" TIP3jA TIP33~ ..... TIP33~ TlP3jS TIP3jC 60 80 20 40 VCE, COLLECTOR EMITTER VOLTAGE (VOLTS) _ 100 FORWARD BIAS REVERSE BIAS The Forward Bias Safe Operating Area represents the voltage and current conditions these devices can withstand during forward bias. The data is based on Te; 25°e; TJ(pk) is variable depending on power level. Second breakdown pulse limits are valid for duty cycles to 10%, and must be derated thermally for Te > 25°e. The Reverse Bias Safe Operating Area represents the voltage and currentcondilions these devices can withstand during reverse biased turn-off. This rating isverified under clamped conditions so the device is never subjected to an avalanche mode. 1-962 ® NPN TIP3S TIP3SA TIP3SB TIP3SC MOTOROLA PNP TIP36 TIP36A TIP36B TIP36C III COMPLEMENTARY SILICON HIGH-POWER TRANSISTORS 25 AMPERE COMPLEMENTARY SILICON POWER TRANSISTORS · .. for general-purpose power amplifier and switching applications. • 25 A Collector Current • Low Leakage Current - • Excellent dc Gain - • High Current Gain Bandwidth Product 1.0 A, f = 1.0 MHz 40-100 VOLTS 125 WATTS ICEO = 1.0 rnA @ 30 and 60 V hFE = 40 Typ @ 15 A (hfe = 3.0 min @ IC = MAXIMUM RATINGS Rating Symbol TIP35 TIP36 TIP35A TIP36A TIP35B TIP36B TIP35C TIP36C Unit 60V BOV lOOV Vdc 60V BOV l00V VCEO 40V Collector-Base Voltage Vea 40V Emitter-Base Voltage VEa 50 Vdc Ie 25 40 Adc Collector-Emitter Voltage Collector Current Base Current Continuous Peak (1) Contrnous Total Power DISSipation Vdc la 50 Adc PD 125 Watts 10 W/oC TJ,Tstg -65 to +150 °e ESB 90 mJ @Te=25 o e Derate above 25°C Operating and Storage Junction Temperature Range Unclamped Inductive Load THERMAL CHARACTERISTICS Characteristic I I Thermal ReSIstance. Junction to Case I Junctlon-To-Free-A.r Thermal ReSistance (1) Pulse Test Pulse Width = 10 ms, Dutv Cvcle ~1 Svmbol Ma. Unit RBJe 10 °C/W RBJA 357 °C/W 0% STYlE 1, 1.8ASE FIGURE 1 - POWER DERATING 125 f'.. ;;; 100 li ~ '" 0 ~ iii c '" ~ ~ .P 75 50 25 :"1""'- ~ ""'- ""'- -'" ""'- 1"'- a a 25 2. COLLECTOR 3. EMITTER 4. COLLECTOR 125 50 75 100 TC, CASE TEMPERATURE 1°C} ""'150 - MIlliMETERS DIM MIN MAX A 20.32 21.08 8 15.49 15.90 4.19 5.08 C 1.55 0 1.02 1.65 E 1.35 G 5.21 5.72 H 2.41 3.20 0.38 0.64 J K 12.70 15.49 l 15.88 15.51 N 12.19 12.70 Q 4.04 4.22 INCHES MIN MAX 0.800 0.830 0.510 0.525 0.155 0.200 0.040 0.055 0.053 0.055 0.205 0.225 0.095 0.125 0.015 0.025 0.500 0.510 0.525 0.650 0.480 0.500 0.159 0.166 175 CASE 340-01 TO-21BAC 1-963 TIP3f). TIP35A. TIP35B. TIP35C.NPN. TIP36. TIP36A. TIP36B. TIP36C.PNP III I ELECTRICAL CHARACTERISTICS (Te = 25°e unless otherwIse noted) I Characteristic Min Symbol Unit Max OFF CHARACTERISTICS Coliector~Emitter Sustaining Voltage (1) (Ie = 30 mA, IB = 0) Vdc BVeEO - 40 TIP35, TIP36 TIP35A, TIP36A TIP35B, TlP36B TIP35e, TlP36e 60 BO 100 Collector-Emitter Cutoff Current TIP35, TIP35A, TIP36, TIP36A (VeE = 30 V, IB = 0) TIP35B, TIP35e, TIP36B, TlP36e (VeE = 60 V, IB = 0) leEO Collector-Emitter Cutoff Current (VeE = Rated VeEO, VEB = 0) Emitter-Base Cutoff Current (VEB = 5.0 V, Ie = 0)· mA leES - 0.7 mA lEBO - 1.0 mA 25 15 - 10 1.0 ON CHARACTERISTICS (1) DC Current Gain lie = 1.5A, VeE=4.0V) lie = 15 A, VeE = 4.0 V) - hFE Collector-Emitter Saturation Voltage 75 Vdc VeE(sat) (Ie= 15A, IB= 1.5 A) (Ie = 25 A. IB = 5.0 A) Base-Emitter On Voltage (Ie = 15 A, VeE = 4.0 V) lie = 25 A, VeE = 4.0 V) - I.B - 4.0 - 2.0 4.0 Vdc VBE(on) DYNAMIC CHARACTERISTICS Small-Signal Current Gain lie = 1.0 A, VeE = 10 V, I = 1.0 kHz) hie 25 - eurrent-Gain-Bandwidth Product (2) (Ie = 1.0 A, Vee: 10 V, I = 1.0 MHz) IT 3.0 - MHz (1) Pulse Test: Pulse Width = 300 j..Is, Duty Cycle ~2.0% (2) fT = [hf.l· f test FIGURE 2 - SWITCHING TIME EQUIVALENT TEST CIRCUITS FIGURE 3 - TURN'()NTIME ':h I . Ir"-l 20115 RL 10 20 3.0 RS 07 0.5 I ~ 0.3 10 to 100,l.ls DUTY CYCLE,,;: 2 09'~ 1- TURN'()FF TIME w " ;: 0.2 VCC -30 V ".' - ... ~ I 30 td- 00 7 0.05 TO SCOPE Ir.;;;20 os 0.03 0.0 2 0.3 ./ ,-- (PNP) (NPN) r- 1-964 ~ == I"""+- I 0.5 07 1.0 2.0 3.0 I I II 50 7.0 Ie, COLLECTOR CURRENT (AMPERES) FOR CURVES OF FIGURES 3 & 4, RS & RLARE VARIED. INPUT LEVELS ARE APPROXIMATELY AS SHOWN. FOR NPN, REVERSE ALL POLARITIES. ,. TJ - 25 0 C Ic/'S -10 VCC -30 V VSE(off! • 2 V 1.0 TO SCOPE Ir ..;:20 os I -110 V I -I TURN-ON TIME VCC -30V 10 20 30 TIP35, TIP35A, TIP35B, TIP35C,NPN, TIP36, TIP36A, TIP36B, TIP36C,PNP FIGURE 4 -- TURN-OFF TIME --- 3.0 ,.;:: ts 1.0 O.7 O.5 :2 >- ..... i u u r-.!!. tf O.1 1.0 "- -1.0 3.0 VCE = 4.0 V TJ = 25°C ~, 5.0 7.0 10 - 20 .t 50 ,/ ,,- ... 10 50 10 " PNP -NPN --- 20 I\, 0.5 0.7 -- 200 ~ 100 r--.. ,~ 500 0 O.3 O. 1 0.3 TJ-15'C VCC,30V= IC/I O'10 101'101 - ts 1.0 !w 1000 = IPNP) INPN 7.Ot=1= 5.0'"--+- III FIGURE 5 -- DC CURRENT GAIN 10 10 01 30 02 05 IC. COLLECTOR CURRENT lAMPE RES) FORWARD BIAS There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves Indicate IC-VCE limits of the transistor that must be observed for reliable operation; i.e .• the transistor must not be subjected to greater dissipation than the curves indicate. The data of Figure 6 is based on TC = 25°C; TJ(pk) is variable depending on power level. Second breakdown pulse limits are valid for duty cycles to 10% but must be derated when TC;;' 25°C. Second breakdown limitations do not derate the same as thermal limitations. 100 100 50 30 0; 20 TC - 25°C r-- ~ 5- 10 1== 0== 300 1";:: ~ 1.0ms .... ~ >- iB 0 10 ms de '" 20 ; TIP35 & 36 10 Secondary Breakdown u o. 3 Thermal limit Bondmg Wire limit - -- o. 2 o For inductive loads. high voltage and high current must be sustained simultaneously dUring turn-off. In most cases. with the base to emitter junction reverse biased. Under these conditions the collector voltage must be held to a safe level at or below a specific value of collector current. This can be accomplished by several means such as active clamping. RC snubbing. load line shaping. etc. The safe level for these devices is speCified as Reverse Bias Safe Operating Area and represents the voltagecurrent conditions during reverse biased turn-off. This rating IS verified under clamped conditions so that the device IS never subjected to an avalanche mode. Figure 7 gives RBSOA characteristics. 50 FIGURE 6 -- MAXIMUM RATED FORWARD BIAS SAFE OPERATING AREA 8 o. 5 REVERSE BIAS 50 1.0 20 10 20 )C. COLLECTOR CURRENT (AMPS) 2.0 1.0 TIP 35A. 36A TIP35B. 36B TIP35C. 36C 50 30 5.0 7.0 10 20 30 VCE. COLLECTOR-EMITTER VOLTAGE (VOLTS) 70 100 FIGURE 7 -- MAXIMUM RATED REVERSE BIAS SAFE OPERATING AREA 40 30 '"~ 5- 25 >- ffi lE 20 B '" 0 !;j ::l 8 - 15 TlP35B TlP36B 10 .=; 5 0 ~:~~: 10 1-965 TlP35C : ; ; TIP36C TJ';;; 100°C - ~:~~::L 20 30 40 50 60 10 80 VCE. COLLECTOR EMITTER VOLTAGE (VOLTS) 90 100 TIP35, TIP35A, TIP35B, TIP35C,NPN, TIP36, TIP36A, TIP36B, TIP36C,PNP - FIGURE 8 - INDUCTIVE LOAD SWITCHING VCE Monitor Ll (See Note A) TUT Input L2 (See Note AI 50 VCC'lOV Ie MOnitor TEST CIRCUIT ~ I I 5.0V--) I tw=6.0ms (See Note B) Input Voltage 0 I I I I..--+- lOOms ------4 I Collector 0 Current I I I I I -3.0A- -1- - I - I 0- I I J I I t -lOV Collector Voltage V(BR)CER - .1 - - VOLTAGE AND CURRENT WAVEFORMS NOTES: A. L1 and L2 are 10 mH, 0.11 n, Chicago Standard Transformer Corporation C-2688, or equivalent B. Input pulse width IS Increased until leM -3.0 A C. For NPN, reverse all polarities = 1·966 NPN TIP41 TIP41A TIP41B TIP41C @ MOTOROLA designed for use in general purpose amplifier and switching appl ications. • • • • TIP42 TIP42A TIP42B TIP42C 6 AMPERE POWER TRANSISTORS COMPLEMENTARY SILICON COMPLEMENTARY SILICON PLASTIC POWER TRANSISTORS • PNP 40-6()"SO·100 VOLTS 65 WATTS Collector· Emitter Saturation Voltage VCE(sat) = 1.5 Vdc (Max) @ IC =6.0 Adc Collector· Emitter Sustaining Voltage VCEO(sus) = 40 Vdc (Min) - TIP41, TIP42 = 60 Vdc (Min) - TIP41A, TlP42A = 80 Vdc (Min) - TIP41 B, TIP42B = 100 Vdc (Min) - TlP41C, TlP42C High Current Gain - Bandwidth Product fT = 3.0 MHz (Min) @ IC = 500 mAdc Compact TO·220 'AB Package TO·66 Leadform Also Available *MAXIMUM RATINGS Symbol TlP41 TIP42 TIP41A TlP42A TIP41B TIP42B TIP41C TIP42C Unit VCEO 40 60 80 100 Vdc Collector-Base Voltage VCB 40 60 80 100 Vdc Emitter-Base Voltage VEB 5.0 Vdc A IC 6 10 Adc I I Base Cu rrent 18 2.0 Adc Total Power Dissipation Po 65 0.52 Watts W/oC 2.0 0.Q16 Watts W/oC 62.5 mJ Rating Collector-Emitter Voltage Collector Current Continuous Peak @TC = 25°C Derate above 25°C Total Power Dissipation Po @TA=250C Derate above 2SoC E Unclamped Inductive Load Energy (1) Operating and Storage Junction TJ.Tstg Temperature Range - - -65 to +150 °c Max Symbol Unit R6JC 1.92 °C/W Thermal Resistance. Junction to Ambient R6JA 62.5 °c/w Ie = 2.5 A.L = 20 mHo P.R.F. = 10 Hz. W tu rlU Vee = 10V. ABE = 100 o. ,"';13 Wr: -IR PIN 1 2 3 4 'if' ~J smEl -m J K L N Q R S T U V Z 965 406 064 361 241 279 036 1270 114 483 254 204 1.14 5.97 0.00 1.14 - XS 1575 1029 482 089 373 267 393 056 1427 139 533 304 279 1.39 6.48 1.27 - 2.03 INCHES MIN MAX 0575 0620 0380 0405 0160 0190 0025 0035 0142 0147 0095 0105 0110 0155 0014 0022 0500 0562 0045 0055 0190 0210 0100 0120 0.080 0110 0.045 0055 0.235 0.255 0.000 0.050 0.045 - 0.080 CASE 221A,Q2 T()'220AB 1-967 L Dd~tG BASE CoUECToR EMITTER COLLECTOR B C 0 F G H ::'.l L-T smAA J DIM Thermal Resistance, Junction to Case (1) S Tl THERMAL CHARACTERISTICS Characteristic =1rf c 1-+ III TIP41, TIP41A, TIP41B, TIP41C, NPN, TIP42, TIP42A, TIP42B, TIP42C, PNP ELECTRICAL CHARACTERISTICS ITC ~ 2SoC unla.. otharwise noted) Characteristic Symbol OFF CHARACTERISTICS Collector-Emlttar Sustaining Voltege 11) TIP41, TIP42 VCEOlsus) TIP41A, TIP42A IIc 30 mAde, lB· 0) TlP41 B, TIP42B TlP41C, TIP42C Collector Cutoff Currant ICEO TIP41 , TIP41A, TIP42, TlP42A IVCE ·30 Vdc, IB ~ 0) TIP41B, TIP41C, TIP42B, TIP42C IVCE - 60 Vde, IB ·0) Collector Cutoff Currant ICES TlP41 , TIP42 IVCE ·40 Vdc, VEe· 0) TIP41A, TlP42A IVeE· 60 Vde, VEe = 0) TlP41B, TIP42B IVCE =80 Vde, VEe = 0) TIP41C, TlP42C IVCE· 100 Vdc, VEB = 0) I III I Min Max Unit 40 60 80 100 - Vde - 0.7 0.7 Q Emitter Cutoff Current - - mAde - ~Adc - 400 400 400 400 1.0 - - lEBO IVBE - 5.0 Vdc,IC - 0) ON CHARACTERISTICS 11) DC Current Gain IIc = 0.3 Ade, VCE = 4.0 Vdc) IIc = 3.0 Ade, VCE = 4.0 Vdc) Collector-Emitter Saturation Voltage IIc = 6.0 Ade, IB = 600 mAde) hFE - - 30 15 Bas...Emitter On Voltage IIc = 6.0 Ade, VCE • 4.0 Vde) mAde VCElsat) - 75 1.5 VBElon) - 2.0 Vde fT 3.0 - MHz Ihf.1 20 - - DYNAMIC CHARACTERISTICS Currant Gain - Bandwidth Product (2) IIc = 500 mAde, VCE ~ 10 Vde, ftest =1 MHz) Small-Signal Current Gain IIc 0.5 Ade, VCE =10 Vde, f = 1 kHz) Vdc Q (1) Pulse Test: Pulsewidth';; 300 jlS, Duty Cyel... 2.0%. (2) fT = Ihfe1e f test TA TC FIGURE 1 - POWER DERATING 4.0 SO " 0 ~C ...... --.......... "" "'T~ ...... 0 "- ~ "- ~ 0 20 60 40 100 SO 120 ::..... 140 160 T. TEMPERATURE (OC) FIGURE 3 - TURN-ON TIME FIGURE 2 - SWITCHING TIME TEST CIRCUIT 2.0 VCC +30 V 0.7 0.5 RC RS SCOPE ~ . w ....... 0.3 0.2 ;:: ......... .: 51 -4 V CYCLE' 1.0% RS and RC VARIED TO OBTAIN DESIRED CURRENT LEVELS 0, MUST SE FAST RECOVERY TYPE, ego MS05300 USED ASoVE IS =100 mA MS06100 USED SELoW IB =100 mA r--....'r ...... 0.1 tr. t,:::.10 os ~UTY TJ'2JOC I VCC =30 V IC/IB= 10 1.0 'd@VBE(olf) = 5.0 0.07 0.05 0.03 0.02 0.116 0.1 0.2 0.4 0.6 1.0 IC. COLLECTOR CURRENT (AMP) 1-968 2.0 4.0 6.0 TIP41, TIP41A, TIP41B, TlP41C, NPN, TIP42, TIP42A, TIP42B, TIP42C, PNP FIGURE 4 - THERMAL RESPONSE ~ 10 io 05 :::; o. 7 ~ w 3 ~ 1 O. ~ 1 u 0-0.5 01 ~ ~ 00 71-- 005 00 5 I-- 001 % ... 0.03 ffi .... ffi 00 li-" ~ .... 0.0 in , ......... ::;;;0- ~- 01 III - Plpk} tJUl ,. 12~~ ~ SinEliLi1 ......, 001 001 005 ZoJCII} - ,III ReJC ReJC - 1.91' CM Max o CURVES APPLY FOR POWER PULSE TRAIN SHOWN REAOTIMEAT I I TJlpkl - TC - P(pkl ZeJC(11 DUTY CYCLE, 0 - .,/11 I I 11111 01 01 10 05 10 t, 50 10 I J IIIIJI 50 10 100 I J J I I III 200 500 1.Ok TIME (ms) FIGURE 5 - ACTIVE-REGION SAFE OPERATING AREA 0 ~ 5.0 ~ .... ~ 13 or ~ 0.5 ms ...... 3. 0 ....... 2.0 - 1 - TJ - 150'C " SECOND BR'EAKOOWN LTD 1.0 BONDING WIRE LTD THERMAL LIMITATION TC-15'C o. 5 --,--r-r-(SINGLE PULSEI - _ 8 E o. 3 o.1 "- There are two IImitatiol1~ on i.h~ power handling ability of a average junction temperature and second breakdown. "'l.° nl' transistor. Safe operating area curves indicate Ie-VeE limits of the transistor that must be observed for reliable operation; i.e .. the transistor must not be subjected to greater diSSipation than the curves indicate. ~l I" 1"-5.0 ms" The data of Figure 5 is based on TJ(pk) = 150°C; T C is variable depending on conditions. Second breakdown pulse limits are valid for duty cyeleSlo 10% provided TJ(pkl';; lSOoC. TJ(pkl may be calculated from the data in Figure 4. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown. CURVES APPLY BELOW RATED VCED t O. 1 5.0 t TIP41, TIP42.::t- t t 1'\ TIP41A, TIP42A TIP41B, TIP41B TIP41C, TlP41C 10 10 40 60 VCE, COLLECTOR·EMITTER VOLTAGE (VOLTSI BO 100 FIGURE 7 - CAPACITANCE FIGURE 6 - TURN-OFF TIME 300 5.0 TJ -15'C Vec' 30 V IClis - 10 IS1- ISl 3.0 1.0 ts l J TJ 15 C - I--~ 100 r- t-- ~ .5 1.0 w u 7 ~ 0.5 ~ 100 ~ U 0:; 0.3 r--.....tf 0.1 ..... ~ r"- -t- 70 C,b <5 -"""- 0 r0- O. 1 0.0 7 0.0 5 0.06 0.1 0.1 0,4 0,6 1.0 1.0 4.0 6.0 IC, COLLECTOR CURRENT (AMPI 3O 0.5 1.0 1.0 3.0 5.0 10 VR, REVERSE VOLTAGE (VOLTSI 1-969 10 30 50 TlP41, TIP41A,TIP41B, TIP41C, NPN, TIP42, TlP42A, TIP42B, TIP42C, PNP FIGURE 8 - DC CURRENT GAIN FIGURE 9 - COLLECTOR SATURATION REGION 2. 0 500 II] 300 '"~ .... i:l u c 6 IC 10 0 1-25 0C 70 ~ 50 a II II VCE~20V r-- TJ'1500C 200 30 LOA 2.5A 5.0A 1. 2 o.S ~ t-- t-- -.. -55 bC ~ 20 ~ Tj'~5lJ f"'- o.4 0 7.0 5. 0 0.06 0.1 0.2 0.3 0.4 0.6 10 4,0 2.0 0 10 6.0 20 30 50 100 200 IS, OASE CURRENT [mAl IC, COLLECTOR CURRENT (AMPI FIGURE 10 - "ON" VOLTAGES 2. 0 II G 3; TJ' 25°C 1. 6 ~If 2 S o.4 I VCE( ..tl @Ic/lO ~ 10 0 0,06 0.1 0.2 I ~ - 0.6 1.0 V 2.0 +1.0 ....~ JU +~50C lt15o~ OVS FOR VSE -2,0 -2.5 0.06 0.2 1.... ~ 10 0.3 11 II1.0 2.0 3.0 0.4 0.6 FIGURE 13 - EFFECTS OF BASE-EMITTER RESISTANCE VCE-30V: TJ~1500C 1 16' I" r... 100°C 1 10 , r.... k != IC~S r:::..:: IC =2, ICES l - t- 25°C ::> ~ 100 o ~ IC 'ICES k :j lO- 1 r--. IC 'ICES S 2~REVERS FORWARP k 10-3 -0.3 0.5 10 M f- VCE-30V 10 1-1- W -55°C to +250C II 0.1 ./ IC, COLLECTOR CURRENT (AMP I FIGURE 12 - COLLECTOR CUT·OFF REGION 2 It- U --±:::::I -1.0 IC, COLLECTOR CURRENT IAMPI 10 3 V +25 0 C to +150oC - [}'C to +25 0C -1.5 6.0 1/ V 'OVC FO R VCE(sati -0.5 ~ 3.0 4,0 hFE~4 +0.5 ::> '" .... ~ V 0,3 0.4 '"zt;; S w P' --== ~ yOE·@/CE[~4.0y +1.5 ~ .iJpLES FIOR IbIlS) +2.0 g 13 ~ 10 1000 500 FIGURE 11 - TEMPERATURE COEFFICIENTS +2.5 VSE(satl@IC/lo 300 -0.2 -0.1 +0.1 +0.2 +0,3 +0.4 +0.5 +0.6 +0.7 VBE, BASE·EMITTER VAOLTAGE (VOLTSI 1-970 f= (Typical ICES Values I ~ I obtaIned from Figure 121 0.1 k 20 40 " ....... 60 80 100 120 TJ, JUNCTION TEMPERATURE (OCI ..... 140 180 ® TIP47 TIP48 TIP49 TIP50 MOTOROLA 1.0 AMPERE HIGH VOLTAGE NPN SILICON POWER TRANSISTORS POWER TRANSISTORS NPN SILICON · .. designed for line operated audio output amplifier, Switchmode power supply drivers and other switching applications. • 250 V to 400 V (Min) - VCEO(sus) • 1 A Rated Collector Current 260·300·350·400 VOLTS 40 WATTS • Popular TO·220 Plastic Package • TO·66 Leadform Available MAXIMUM RATINGS Rating Symbol TIP47 I TIP48 I TIP49 TlP50 Unit VeEO 250 I 300 I 350 I 400 Vdc 350 I 400 I 450 I 500 Vdc Collector-Emitter Voltage Collector-Base VOltage VeB Emitter-Base Voltage VEB Collector Current Continuous --..... .. Ie Peak Base Current 18 Total Power Dissipation @Te= 25 0 e PD Total Power Dissipation . @TA=25 0 e Derate above 25° C E Unclamped I ndueting Load Energy (See Figure 8) Operating and Storage Junction Vdc .... 1.0 2.0 0.6 Adc Adc ... 40 0.32 ..... ... PD .... 5.0 ..... Derate above 25° C I Watts w/oe ... 2.0 0.016 Watts w/oe ... 20 mJ _ _ _ -65 to + 1 5 0 _ TJ.Tstg Temperature Range THERMAL CHARACTERISTICS "" ............ ~ B C D F 1'-. "'~ r---.... ........... G H J ""- TA K L N TC "" .'" Q R ---I'--- -............: 20 ,"';13 Vj r-I4 w-W-rj'lTt'L~ DIM A 0 0 tu ,I ~ ~ ~ roo L o-H- STYLE 1 PIN 1. BASE 2 COLLECTOR 3 EMITTER 4 COLLECTOR FIGURE 1 - POWER DERATING 0 1----1 A -lI-J Thermal Resistance, Junction to Ambient 0 r-fT C :S!GTAA Characteristic Thermal Resistance, Junction to Case 0 °e ~I-S 1m S T U V ~ 140 TC. CASE TEMPERATURE lOCI 1-971 Z 160 N MILLIMETERS MIN MAX 1460 965 406 064 361 241 279 036 1270 114 483 254 204 114 5.97 0.00 1.1' - 1575 1029 482 089 373 267 393 056 1427 139 533 304 279 139 6.4B 1.27 - 2.03 INCHES MIN MAX 0575 0380 0160 0025 0142 0095 0110 0014 0500 0045 0.190 0100 0080 0045 0.235 0.000 0.045 0620 0405 0190 0035 0147 0105 0155 0022 0562 0055 0210 0120 0110 0055 0.255 0.050 - O.OBO CASE 221A-02 TO-220AB - G TIP47, TIP48, TIP49, TIP50 NPN ELECTRICAL CHARACTERISTICS (TC = 25°C unle.. otherwise noted) I Characteristic Symbol Min Max Unit - Vde OFF CHARACTERISTICS Coliector-Emitte~Sustaining Voltage (1) (lC TIP47 TIP48 TIP49 TlP50 =30 mAde, ie = 0) Collector Cutoff Current (VCE = 150 Vde, Ie = (VCE = 200 Vde, Ie = (VCE = 250 Vde, IB = (VCE = 300 Vde, 18 = Collector Cutoff Current (VCE (VCE (VCE (VCE = = = = 350 400 450 500 Vde, Vde, Vde, Vde, 250 VCEO(sus) 300 350 400 - - 1.0 1.0 1.0 1.0 - 1.0 1.0 1.0 1.0 30 10 150 VCE(sat) - 1.0 Vde VBE(on) - 1.5 Vde IT 10 - MHz hfe 25 - - - mAde ICED 0) 0) 0) 0) TlP47 TlP48 TlP49 TlP50 = TIP47 TIP48 TIP49 TIP50 - mAde ICES VBE 0) VBE = 0) VBE = 0) VBE = 0) Emitter Cutoff Current lEBO 1.0 mAde (V BE = 5.0 Vde, IC = 0) ON CHARACTERISTICS (1) DC Current Gain - hFE (lC = 0.3 Ade, VCE = 10 Vde) (lc = 1.0 Ade, VCE = 10 Vde) Collector-Emitter Saturation Voltage - (lc = 1.0 Ade, IB = 0.2 Ade) Base--Emitter On Voltage (lc = 1.0 Ade, VCE = 10 Vde) DYNAMIC CHARACTERISTICS Current Gain - Bandwidth Product (lC = 0.2 Ade, VCE = 10 Vde, f = 2.0 MHz) Small-Signal Current Gain (lC = 0.2 Ade, VCE = 10 Vde, f = 1.0 kHz) (1) Pulse Test: Pulsewidth";;; 300 "s, Duty Cycle";;; 2.0%. ~IGURE 2 - SWITCHING TIME EQUIVALENT CIRCUIT FIGURE 3 - TURN'()N TIME 1.0 TURN·ON PULSE ,,:rt~AX Vin 0 .:.. I - - - 13 I : Vio- i - I ~ TURN·OFF PULSE l= f= L -' 0.05 -4.0 V - 0.02 I ---I -- ld o. 1 >= 11 .;7.0", : : 100<12<500", -,- T - t3<1508 " o. 2 ~ fI ........ O_""'''v-~,......-I 51 APPROX TJ' 25 0 C VCC' 200 V ICIIB - 5.0 o. 5 RC Vin VEB(Off)--t 1--,1 +11 V Vce OUTY CYCLE ~ 2.0% APPROX -9.0 V 0.0 1 0.02 0.05 0.1 0.2 0.5 IC, COLLECTOR CURRENT (AMPS) RB and RC VARIED TO OBTAIN DESIRED CURRENT LEVELS. 1-972 1.0 2.0 TIP47, TIP48, TIP49, TIPI50 NPN FIGURE 4 - THERMAL RESPONSE 0 7 0 5 05 0 3 t- t;;;.-I"" 01 1 4. ~ II- ffi J...- I-t;;; 02 2 00 7r-- 005 005 f-- 002 00 3 00210- ~ ;i 001 / I- PIOkl fd:::: f- z"JCIII rill ROJC ROJC 3.125' C/w Max o CURVES APPLY FOR POWER PULSE TRAIN SHOWN READ TIME ATtt tJLJl 0 0 ~:-~ V n 001 ::? i TJlokl- TC P{okl ZOJCItI 0 DUTY CYCLE. 0 '1112 0 TiEIILII! 002 005 IIIII 01 02 10 05 20 t, 50 10 I I I I IIIII I 50 20 100 I I I 200 I I III 500 1.0k TIME (ms) FIGURE 5 - ACTIVE REGION SAFE OPERATING AREA 5.0 ~ 2.0 5. to ~ 0.5 :0; I- [l ~ ~ i\. '\. ,""'t-IT~ ~125' C --SECONDARY BREAKDOWN LIMITED -----THERMALLY LlMITEO@25'C O. 1 - BONDING WIRE LIMITED 0.2 S 0.05 :J 0.02 There are two limitations on the power handling ability of a transistor. average Junction temperature and second breakdown. Safe operating area curves Indicate Ie-VeE limits of the transistor that must be observed for reliable operation; I.e., the transistor must not be subjected to greater dISSipation than the curves indicate. The data of Figure 5 IS based on T J(pk) :::: 150°C; T C IS variable depending on conditions. Second breakdown pulse limits are valid for duty cycles 1010% prOVIded TJ(pk)";;; 150°C. T J!pk) may be calculated from the data in Figure 4. At high case temperatures, thermal limitations will reduce the pow.er that can be handled to values less than the limitations Imposed by second breakdown. oL - ttRVES APPLY BELOW RATED VCEO 1111 5.0 I I ~ '\ :~'" .Oms TIP47 TIP48 - I II II tim 10 20 50 100 200 VCE. COLLECTOR·EMITTER VOLTAGE (VOLTSI 500 FIGURE 7 - TEMPERATURE COEFFICIENTS FIGURE 6 - TURN-OFF TIME +4. 5 5. 0 --.!!. 0- ....... 0 ~ o. 5 r-.. '" ;:: o. 2 TJ - 25° C ;:; VCC o200V IcllB = 5.0 e... ~ -./ 0.02. +0. H--BVC FOR VCE!satl => 0 -0. 5 ~ i 0.1 0.2 0.5 IC. COLLECTOR CURRENT (AMPSI 1.0 2.0 1-973 -1. I +~5'IC 'l'i'10~ -55 a C ta +25 0 C I I I 5I-B~B FbR ~B~ -2. 5 0.02 I / ~ ~ 0.05 I U ~ +1. 5 ~ 0.05 II II +2.5 :0; o. 1 T APPLIES FOR IcllB < hFEI5 E 8 r--- If +3. 5 I I 0.05 TTTT +25' C to +150' CLJ..I.1- .-.-- 1 -155~Clto+~~'c0.1 0.2 0.5 IC. COLLECTOR CURRENT (AMPS) 1.0 2.0 TIP47, TIP48, TlP49, TlP50 NPN FIGURE 8 - INDUCTIVE LOAD SWITCHING IIJ Voltage and Current Waveforms Test Circuit I :;':I~=g. 100mH Vee=20V Input tw~3ms I ovi i (See Note A) I r - - - lI---lI -5v--H :---+-100ms~ I O 3 I I .---------T- Current oV VeER I I I Voltage I I I --1--- Collector I I 10 V 'eM = 0.63 A. I I I :I II I I ~ .... i '-' c ; 60 I __ I FIGURE 10 - "ON" VOLTAGES 1.4 V~~~ Jov 1.2 lQO z I ' ________ -{ ___ I VCE(sat)-- FIGURE 9 - DC CURRENT GAIN 200 I I I I Note A: Input pulse width is increased until : I COllecto~6 A~_: ___ I --- Ie Monitor i==TJ' 150 0 C 40 20 ~ 25° C VSE(,,'I@ IC/IS' 5.0 ~ 0.8 I -550 [/ 1.0 C 10 ~ w '"~ 0.6 VSE(on)@VCE'4V F=" c > >~ ..- 2.0 0.02 0.2 0.2 0.4 0.6 0.04 0.06 0.1 IC. COLLECTOR CURRENT (AMPS) 1.0 o 2.0 0.02 1-974 7 7 TJ' 25 0 C 0.4 B.O 4.0 '7 7 ,/ VCE(sat)@lc/ls,1 5.0 V 0.04 0.06 0.1 0.2 0.4 0.6 Ic. COLLECTOR CURRENT (AMPS) 1.0 2.0 NPN ® TIPIOO TIPIOS TIPIOI TIPI06 TIPI02 TIPI07 MOTOROLA PLASTIC MEDIUM-POWER COMPLEMENTARY SILICON TRANSISTORS DARLINGTON 8 AMPERE COMPLEMENTARY SILICON POWER TRANSISTORS · .. designed for general-purpose amplifier and low-speed switching applications. • High DC Current Gain hFE = 2500 (Typ) @ IC = 4.0 Adc • Col lector· Emitter Sustaining Voltage - @30 mAdc VCEO(sus) = 60 Vdc (Min) - TIPtOO, TlPt05 = 80 Vdc (Min) - TIPtOt, TIPt06 = 100 Vdc (Min) - TIPt02, TIPt07 Low Collector-Emitter Saturation Voltage VCE(sat) = 2.0 Vdc (Max) @ IC=3.0 Adc = 2.5 Vdc (Max) @ IC = 8.0 Adc Monolithic Construction with Built-In Base-Emitter Shunt Resistors • • • • PNP 60-80-100 VOLTS 80 WATTS TO-220AB. Compact Package TO-66 Leadform Also Available *MAXIMUM RATINGS Symbol Rating Collector-Emitter Voltage VeEO VeB VEB Collector-Base Voltage Emitter-Base Voltage Collector Current Continuous Peak Ie IB Po Base Current Total Power Dissipation @ Te = 25°C Derate above 25°C E Unclamped Inductive Load Energy (1) Total Power Dissipation @ TA Derate above 25°C = 25°C Operating and Storage Junction Temperature Range Po TJ, T stg TIP100, TIP10l, TIP102, TIP105 TlPl06 TIP107 80 100 80 100 5.0 8.0 15 1.0 80 -0.64 30 2.0 -0.016--60 60 --65to+150- Characteristics Thermal Resistance, Junction to Ambient ROJA 11) Ie = 1.1 A, L = 50 mH, P.R.F. = 10 Hz, Vee = 20 V, RBE = 100 n. FIGURE 1 - POWER DERATING "-1"- z o ~~ 2040 .......... C = ~ r--... ~ 1.02 0 ~ o o 20 40 wf'le °e h:;Ll ~rt ]t u Y;;~A'A B C D F G H J ~TC "" ~ K " TA ....... L N Q '" "- R S T U ............. 60 80 100 T, TEMPERATURE (OCI ~~ 120 140 160 I~~ II LL JIn L' A DIM A TA TC 3060 Watts ~FfS c 111.~ V Z H Z t Dd'~N' 't~ STYLE I PIN L BASE 2 COLLECTOR 3 EMITTER 4 COLLECTOR Thermal Resistance, Junction to Case i Adc Adc Watts wf'le mJ -:Jt~ THERMAL CHARACTERISTICS 4.0 80 Unit Vdc Vdc Vdc MIlliMETERS MIN MAX 1460 1515 965 1019 406 481 064 089 361 373 141 167 179 393 036 056 1170 1417 I 14 139 483 533 254 304 204 279 114 139 597 648 0.00 127 1.14 103 INCHES MIN MAX 0575 0610 0380 0405 0160 0190 0015 0035 0141 0147 0095 0105 0110 0155 0014 0012 0500 0562 0045 0055 0190 0210 0100 0120 0080 0110 0045 0055 0235 0255 DODO 0050 0.045 0.080 CASE 221A-02 T0-220AB 1-975 ID TIP100, TIP101, TIP102 NPN/TIP105, TIP106, TIP107 PNP ELECTRICAL CHARACTERISTICS (TC ~ 250 C unless otherwise noted) Svmbol Characteristic Min Max 60 80 100 - Unit OFF CHARACTERISTICS Collector-Emitter Sustaining Voltage (1) (lC ~ 30 mAde, Ie ~ 0) Collector Cutoff Current (VCE ~ 30 Vde, Ie = 0) (VCE ~ 40 Vde, Ie ~ 0) (VCE ~ 50 Vde, Ie ~ 0) Collector Cuttoff Current (Vce = 60 Vde, IE = 0) (Vce = BO Vde, IE = 0) (Vce = 1.00 Vde, IE = 0) Emitter Cutoff Current (VeE = 5.0 Vde, IC ~ 0) Vde VCEO(5u5) TIP100, TIP105 TlPl01, TlPl06 TlPl02, TIP107 ICED I'Ade - TlPl00, TIP105 TIP10l, TIP106 TIP102, TIP107 IceD TIP100, TIP105 TIP10l, TIP106 TIP102, TIP107 50 50 50 I'Ade 50 50 50 B.O - IEeO mAde ON-<:HARACTERISTICS (1) DC Current Gain (lC = 3.0 Ade, V CE =4.0 Vde) (lc = B.O Ade, VCE = 4.0 Vde) Coliector·Emitter Saturation Voltage (lc = 3.0 Ade, Ie = 6.0 mAde) (lc ~ 8.0 Ade, Ie ~ 80 mAde) - hFE 20,000 - - 2.0 2.5 - 2.B 4.0 - Vde VCE(satl eaie-Emitter On Voltage (lC ~ 8.0 Ade, V CE =4.0 Vde) 1000 200 Vde VeE(on) DYNAMIC CHARACTERISTICS Small-Signal Current Gain (lC ~ 3.0 Ade, VCE ~ 4.0 Vde, f ~ 1.0 MHz) Output Capacitance (Vce ~ 10 Vde, IE ~ 0, f ~ 0.1 MHz) TIP105, TIP106, TIP107 TIPloo, TIP101, TlPl02 Ihfe I pF Cob - 300 200 - (1) Pulse Test: Pulse Width"; 3001'5, Dutv Cycle"; 2%. FIGURE 3 - SWITCHING TIMES FIGURE 2 - SWITCHING TIMES TEST CIRCUIT 5.0 3.0 Vee -30V ~~.~~~v::~~~g~Je~~$~~:i:';i~RENT LEVelS M8D5300 USED ABOVE '8" 100 mA MSD6100 USED BELOW 18 '"' 100 rnA 2.0 RC SCOPE ~ ::'o"~-~d~-~-~__ 1~ v, IPJrox __ -12v I I Ir.tt" IOns 2hs 1.0 O.7 :E O.5 V2 t= O. 51 ~ tl ..... - p.-- 'i"-. ....... 3 ......... O.2 -VCC; 30 V _lc/lS; 250 r--.. ..... tt '- td@VBE(ottl;O~ O. 't:::~~'_;2~%~ F ' PNP 0.07 NPN 0.05 0.5 0.7 1.0 0.2 0.3 0.1 for td and tr. D,lsdisconnected and V2'"O For NPN test ClfCUlt revel'Sl all polarities. DUTY CYCLE" 1 0% -1i"""" t-- r .... 2.0 3.0 IC. COLLECTOR CURRENT (AMP) 1-976 5.0 7.0 10 TIP100, TlP101, TlP102 NPN/TIP105, TIP106, TIP107 PNP FIGURE 4 - THERMAL RESPONSE ~ ;t 10 07 '"'"'" 0,05 5 ~ o. 3 :1 02 :;; ~ 0.2 ~ 00 7f-- ffi "........ 0.05 --::;::;;;;;;"'-1""" /!li 0.0 w:::: - , ..... 1--1 001 - Plpk} 002 SinE 005 .... ~~~ ~UTY r~LrT 01 ZeJCI'} , rl.} ReJC ReJC ' 1.56'C,w Max o CURVES APPLY FOR POWER PULSE TRAIN SHOWN READ TIME AT., tJUl 005 f-- 002 0.0 3 ~ 0.02 1-:= ~ .... ....- 01 1 11111 10 05 02 I I 10 20 50 I, TIME (ms) TJlpk} - TC' Plpk} ZeJC(.} CYCLE. 0, .,1'2 I I I I 111111 20 50 100 I I II II 200 500 10k FIGURE 5 - ACTIVE-REGION SAFE OPERATING AREA 20 ~~ <-, 10 ~ .... ~ 5.0 2.0 ~ 1.0 '"o 0.5 ~_ de I .... O. 1 '?>, 0.02 1.0 2.0 5,0 10 20 50 VCE, COLLECTOR·EMITTER VOLTAGE IVOLTS} average Junction temperature and second breakdown . The data of Figure 5 IS based on T J(pk) '" 150°C; T C IS vanable depending on conditions. Second breakdown pulse limits are valid for duty cycles to 10% prOVided TJ(pkl 1500 C. TJ(pk) may be calculated from the data m Figure 4. At high case temperatures. thermal limitations Will reduce the power that can be handled to values less than the I imitations imposed by second breakdown < TIPtoO, TIPI05 TlPl0l, TIP106 T1Pl02, TIPI07 0.05 10,000 tranSistor: Safe operating area curves mdlcate Ie - VeE limits of the transistor that must be observed for reliable operation, I.e., the tranSistor must not be subjected to greater diSSipation than the curves indicate. TJ"50'C -- BONDING WIRE LIMITED - - - THERMALLYLIMITED@TC<25'C - - - SECOND BREAKDOWN LIMITED CURVES APPLY BELOW RATED VCEO 0.2 S si There are two limitations on the power handling ability of a ",-~ 100 FIGURE 7 - CAPACITANCE FIGURE 6 - SMALL-SIGNAL CURRENT GAIN ._ -~ 300 f--- T~' 125~~ 20 0 :=:: f:. '- "- 0 - '-C,b ""- C,\ 0 >- 0 30 -----PNP - - -NPN 02 10 05 01 I, FREQUENCY 1kHz} 20 50 10 VR, REVERSE VOLTAGE IVOl TSI 1-977 20 50 100 TIP100, TIP101, TIP102 NPN/TIP105, TIP106, TIP107 PNP NPN TIP100. TIP101. TIP102 PNP TIP105.TIP106. TIP107 I FIGURE 8 - DC CURRENT GAIN 20.000 I I ~ 20.000 r---,-,-,-,--r-TTTT-,--,-,--r----r,--,--,-r-n I ~~~~--~~~+--+-+--+_V6E~4'0~ VCe: 4.0V 10.000 7000~ 10.000'iil~fiil " /1-" .... - .:-. '" ~ X 5000 .. lOaa 8'" 3000 YI ~ 2000 a.... " 21·C/ TJ.1SO"C./ / TJ .110.C.......... ~ - i-' ~ 300a \. ~200a ~ co 1000 ~ co ;;Z ~-II.C lOa 300 200 " ~/ 30 20 0.2 ./ 70a 100==,-I5.C ~ I 0.1 21°C ::> <-> <-> 100 a 0.3 0.1 0.7 1.0 2.0 3.0 1.0 7.0 10 .Y 0.1 0.2 0.3 0.1 IC. COLLECTOR CURRENT (AMPI 0.7 1.0 3.0 2.0 5.0 70 10 IC. COLLECTOR CURRENT (AMP) FIGURE 9 - COLLECTOR SATURATION REGION en :; 3.0 III '"2: ~ 2.6 2.2 :: ~ a: '"2: ~ 2.6 \ \ \ '" '" ~8 2.2 ~ J8 c: 1.4 \ 6.0A 1\ \ \ f'.. g'" f\... 1.4 40A ::;;; 1,8 TJ·25 0 C 1 II Ie" 2.0A ~ '"ffi II I III J Hl :; S.OA :; '"ffi c:? 3.0 TJ·21 oC 4.0A I ·2.0A <.> ~ ~ r-. > 1.0 0.3 > 0.5 0.1 1.0 2.0 3.0 5.0 7.0 20 10 1.0 30 0.3 0.5 0.7 1.0 lB. BASE CURRENT (mAl 2.0 3.0 5.0 7.0 10 20 30 lB. BASE CURRENT (mAl FIGURE 10 - "ON" VOLTAGES 3.0 3.0 l TJ" 25 0 C rJL5. c 2.5 ~2: 25 20 > 15 !:; /1/ '"2: ~.r w ~'" / Vi .::::; ~ VBE(~t) @ICIIB· 250 :> V VSE@ VCE • 4.0 V 1.0 1--1-"" VCEI ..t)@ IC·IB· 250 o5 0.1 '" ~ '"> 03 05 07 1.0 2.0 30 r10 5.0 7.0 10 IC. COLLECTOR CURRENT lAMP) 05 01 V V VBElsatl @le Il B·250 T'I ./ ....V VBE @VCE-40V I 15 >' ./" I 02 20 I L VeEI",)@le 18. 250 02 03 os 07 10 20 30 IC. COLLECTOR CURRENT (AMPI 1-978 SO 70 10 NPN ® PNP TIPII0 TIP115 TIPlll TIP116 TIP112 TIP117 MOTOROLA II. PLASTIC MEDIUM-POWER COMPLEMENTARY SILICON TRANSISTORS DARLINGTON 2 AMPERE · .. designed for general-purpose amplifier and low-speed switching appl ications. • • • • • • COMPLEMENTARY SILICON POWER TRANSISTORS High DC Current Gain hFE = 2500 (Typ) @ IC = 1.0 Adc Collector-Emitter Sustaining Voltage - @ 30 mAdc VCEO(sus) = 60 Vdc (Min) - TIPll0, TIPl15 = 80 Vdc (Min) - TIPlll, TIPl16 = 100 Vdc (Min) - TIPl12, TlPl17 Low Collector-Emitter Saturation Voltage VCE(sat) = 2.5 Vdc (Max) @ IC = 2.0 Adc Monolithic Construction with Built-In Base-Emitter Shunt Resistors TO-220AB Compact Package TO-66 Leadform Also Available 60-80-100 VOLTS 50 WATTS *MAXIMUM RATINGS Symbol TIPll0, TIP115 TIPlll, TIP116 TIP112, TIP117 Unit VCEO 60 80 100 Vdc Collector-Base Voltage VCS 60 80 100 Em itter-Base Voltage VEe Rating Collector-Emitter Voltage Collector Current Continuous IC Peak ..... 2.0 4_0 .. Base Current Ie _50 Total Power Dissipation@Tc - 2SoC PD 50 _0.4 PD - Derate above 2SoC Total Power Dissipation @ T A = 2SoC Derate above 2SoC E Unclamped Inductive Load Energy - Figure 13 TJ, T stg Operating and Storage Junction, .... Vdc .... mAde .... _5.0 .. .. .. Vde Ade Watts W/oC 2.0 _0.016_ Watts W/oC 25 mJ °c _ - 6 5 to +150 - THERMAL CHARACTERISTICS Symbol Max Unit Thermal Resistance, Junction to Case R8JC 2.5 °C/W The,rmal Aesistance, Junction to Ambient R8JA 62.5 °C/W Characteristics FIGURE 1 - POWER DERATING STYLE l' PIN 1. BASE 2 COLLECTOR 3 EMITTER 4 COLLECTOR DIM TA TC A B ~ '" C D 3.060 F G ~ ~ ............ >= :: Bi H J ........ ........... .................. 2.040 C '"~ .......... 'T;;......: N ~ 1.020 ~c 00 K L N ......... o 20 40 a R ~ 60 80 100 T. TEMPERATURE (DC) S T U V Z i ' ..... 120 140 160 MIlliMETERS MIN MAX 1460 1575 965 1029 406 482 064 089 361 373 241 267 279 393 036 056 1270 1427 114 139 483 533 254 304 204 279 1.14 139 597 648 0.00 127 1.14 2.03 INCHES MIN MAX 0575 0.620 0380 0405 0160 0190 0025 0035 0142 0147 0095 0105 0110 0155 0014 0022 0500 0562 0045 0055 0190 0210 0100 0120 0.080 0110 0045 0055 0235 0.255 0.000 0050 0.045 0.080 CASE 221A-02 TQ-220AB 1-979 TlPll0, TIPlll, TIPl12, NPN, TIPl15, TIPl16, TIPl17, PNP ELECTRICAL CHARACTERISTICS I (TC: 25 0 C unle .. otherwise noted) Characteristic Symbol Min Max 60 BO 100 - - 2.0 2.0 2.0 Unit OFF CHARACTERISTICS Collector·Emitter Sustaining Voltage (1) (lC =30 mAde, IB = 0) Collector Cutoff Current mAde ICEO (VCE = 30 Vde, IB = 0) (VCE : 40 Vde, 18 = 0) (VCE = 50 Vde, 18 = a) TIPll0, TIPl15 TIP111, TIPl16 TlP112, TlPl17 Collector Cutoff Current mAde ICBO (VCB = 60 Vde, IE = 0) (VCB =80 Vde, IE = 0) (VCB = 100 Vde, IE = 0) TIP110, TIPl15 TIP111, TIPl16 TIP112, TIPl17 - 1.0 1.0 1.0 2.0 1000 500 - - 2.5 - 2.8 25 - ~ Emitter Cutoff Current (V BE Vde VCEO(sus) TIPll0, TIPl15 TIPlll, TIPl16 TIPl12, TIPl17 lEBO = 5.0 Vde, IC = 0) mAde ON CHARACTERISTICS (1) DC Current Gain (lC = 1.0 Ade, VCE (lC = 2.0 Ado, VCE Collector-Emitter Saturation Voltage = 8.0 mAde) VCE(sat) Base-Emitter On Voltage (lC = 2.0 Ade, VCE = 4.0 Vde) VeE(on} (lC = 2.0 Ade, 18 DYNAMIC CHARACTERISTICS Small-5ignal Current Gain (lC = 0.75 Ade, VCE = 10 Vde, f = 10 Vde, IE =0, f = 0.1 Vde Vde Ihfe l = 1.0 MHz) Output Capacitance (VCB - hFE = 4.0 Vde) = 4.0 Vde) pF Cob MHz) - TIPl15, TlPl16, TIPl17 TIPll0, TIPll1, TIPl12 200 100 - (1) Pulse Test: Pulse Width .. 300 ,",S, Duty Cycle .. 2%. FIGURE 3 - SWITCHING TIMES FIGURE 2 - SWITCHING TIMES TEST CIRCUIT 4.0 1, . Vee VCC -30V Ic/18=250 - I18P I82 TJ = 25°C l,.-- -30V RS & RC VARIED TO OBTAIN DESIRED CURRENT lEVELS 01. MUST BE FAST RECOVERY TYPES, e g., MBD5JOO USED ABOVE 18 ". 100 mA MSOS100 USED BElOW'B" 100 mA :'\. 2.0 Re SCOPE ts~ ..- w 1.0 ;::: 0.8 O. 6 0.4 ...... ~ to obtam desrred test currents For NPN test tlrCUlt, re'ferse dIode, O. 2 0.04 polantlesand mput pulses -.? .... V .......... PNP ----NPN 0.06 0.1 ')tf - - I--. ............ 0.2 1'1..0.4 -- I- r--.. tr~ "" 7' r~@~:r=o, 0.6 1.0 IC. COLLECTOR CURRENT (AMP) 1-980 c:;;: ....... ~ ~ ~ ~I--" ]: for td and tr, O,lsdlSCORllected andV2=O, Rsand RC are vaned ~i"""' ~ 2.0 4.0 TIP110, TIP111, TIP112, NPN, TIP115, TIP116, TIP117, PNP FIGURE 4 - THERMAL RESPONSE c ~ :; III 10 « ~ 1 0' 05 5 ~ w u 3 o z -;;;..- - 02 2 « t; 01 ~ 1 ZnJC!tl = r(t) ROJC ROJC ' 2.5° CIW Max o CURVES AP1'L Y FOR POWER PULSE TRAIN SHOWN READ TIME AT 11 « 001·- 005 ~ 005 i!: .... 003 - 002 "" I 1--- ~_ 0 02~r,;-;;;0 01: -~~~j;tttt=t:t~=~::t+ttt=t:j::=~~ ~ . 001 ....... 001 f-'1 002 S'iG\E 00\ r~Lf\ TJlpkl- TC Plpkl ZOJCltl 0 DUTY CYCLE, 0 : 11'12 I I I II 01 02 05 10 20 I, 50 I 10 I I 20 I I I 1 111 50 100 1 1 1 1 1 1 11 200 500 10k TIME (ms) ACTIVE·REGION SAFE·OPERATING AREA FIGURE 5 - TIP115,116,117 FIGURE 6 - TIPll0, 111, 112 10 10 ~ 4.0 '\ ":! ~ '"~ '" 1m. 5m. 2.0 TJ =15OoC , , " de , , 1,\ ~ d 0.1 . 1.0 ~URVES APPLY BELOW RATED VCEO II t\ - f-. - BONDING WIRE LIMITED ----THERMALLy LIMITED @TC=250C(SINGLEPULSEI --SECONDARY BREAKDOWN LIMITED 1\ d~ TJ = 150°C 1.0 0 8 i> r\ -BONDING WIRE LIMITED - - --THERMALLY LIMITED __ TIP115 TIPI1S TlPI17 10 40 VCE' COLLECTOR EMITTER VOLTAGE (VOLTS) ~E~~~~5:~~!I~g~~:~~~~iED r ~ CURVES APPLY BELOW 1 RATED VCEO O. 1 1.0 SO Bo 100 TlP1l0 TlPlllTIP112 10 VCE' COLLECTOR EMITTER VOLTAGE (VOLTS) SO 80 100 FIGURE 7 - CAPACITANCE 200 I 1111 TC = i~6c There are two limitations on the power handling ability of a transistor. average Junction temperature and second breakdown Safe operating area curves Indicate Ie - VeE limits of the tranSistor that must be observed for reliable operatIon, I.e., the tranSistor must not be subjected to greater diSSipation than the curves indicate The data of Figures 5 and 6 is based on T J(pk) = 150DC; TC is variable depending on conditions. Second breakdown pulse limits are valid fordutv cycle. to 10% provided TJ(pk) <150o C. TJ(pk) may be calculated from the data in Figure 4. At high case tempera~ tures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown. ~ 100 w ~ 70 ;!: f'.. i3 50 ~c..i 30 - Cob - I"-- io:::L_,~:b..... 20 - ---PNP - - - N tN 10 0.040.OS 0.1 0.2 0.4 O.S 1.0 2.0 4.0 S.O VR. REVERSE VOLTAGE (VOLTS) 1-981 ~i' 10 20 40 NPN PNP TIP120 TIP125 TIP121 TIP126 TIP122 TIP127 ® MOTOROLA PLASTIC MEDIUM-POWER COMPLEMENTARY SILICON TRANSISTORS DARLINGTON 8 AMPERE · .. designed for general-purpose amplifier and low-speed switching appl ications. COMPLEMENTARY SILICON POWER TRANSISTORS • High DC Current Gain hFE = 2500 (Typ) @ IC = 4.0 Adc • Collector-Emitter Sustaining Voltage - @ 100 mAdc VCEO(sus) = 60 Vdc (Min) - TlP120, TIP125 = 80Vdc (Min) -TlP121, TlP126 , = 100 Vdc (Min) - TIP122, TIP127 • Low Collector-Emitter Saturation Voltage VCE(sat) = 2.0 Vdc (Max) @ IC=3.0 Adc = 4.0 Vdc (Max) @ IC = 5.0 Adc • Monolithic Construction with Built-In Base-Emitter Shunt Resistors • TO-220AB Compact Package • T0-66 Leadform Also Available 60-80-100 VOLTS 65 WATTS *MAXIMUM RATINGS Rating Collector-Emitter Voltage VeEO VeB VEB COllector-Base Voltage Emitter-Base Voltage Collector Current TIP120, TIP125 60 60 Symbol Continuous • • • Ie Peak Base Current Total Power Dissipation @Te - 25°C Derate above 25°C Total Power Dissipation @ TA = 25°C Deratl above 25°C • • • • · • E Operating and Storage Junction, Temperature Range • • • 120 65 0.52 _2.0 0.D16 Po Load Energy (11 TIP122, TIP127 100 100 • • IB Po Unclamped Inductive TIP121, TIP126 80 80 5.0 5.0 B.O • • 50 --65to+150- TJ, Tstg THERMAL CHARACTERISTICS Characteristics Thermal Resistance, Junction to Case = 10 Hz, Vee = 20 V, RSE = 100 n. Watts wfOe mJ S r-~ A . ,I A·A °e STYlEI-I~ DIM R S T U V 14 965 406 064 361 241 279 036 1270 1.14 483 254 204 1.14 5.97 000 114 Z - F "" 2.040 "" I"'-. C ~ ~ G H J ~c TA ............ ~ 1.02 0 K L N "- J'... Q "" J"... 1'-.-........;:: ~ 0 20 40 60 80 100 120 & 140 y ,'13 .:J. I r.;" -WT: fT ~ 3.060 z F lu 'uK B C 0 o ~~ mAde Watts wloe =1rf c Z L! l-H' H Dd~tG L r-~ETERS 4.0 80 i Ade 2. COLLECTOR 3 EMITTER 4 COLLECTOR FIGURE 1 - POWER DERATING TA TC Vde Vde Vde PIN 1. BASE Thermal Resistance, Junction to Ambient (llle = 1 A, L= 100 mH, P.R.F. Unit 160 T, TEMPERATURE (OC) 1-982 ...."X 1575 1029 482 089 373 267 393 056 1427 139 533 304 2.79 139 6.48 127 - 2.03 I ~AX 0620 0405 0190 0035 0147 0105 0155 0022 0562 0055 0.210 0120 0.110 0055 0.255 0.050 - 0.080 221A'()2 T()'220AB CASE lES 0 0 0 0 O. 0095 0110 0014 0500 0045 0190 0.100 0.080 0045 0235 0.000 0.045 - TIP120, TIP121, TIP122, NPN, TIP125, TIP126, TIP127, PNP ELECTRICAL CHARACTERISTICS I (TC = 25 0 C unle.. otherwise noted) I Characteristic Symbol Min Max 60 80 100 - - 0.5 0.5 0.5 - - 0.2 0.2 02 2.0 1000 1000 - - 2.0 4.0 - 2.5 4.0 - Unit OFF CHARACTERISTICS Coliector·Emltter Sustaining Voltage (1) (lC = 100 mAde, IB = 0) Collector Cutoff Current (VCE = 30 Vde, IB = 0) (VCE = 40 Vde, IB = 0) (VCE = 50 Vdc, IB = 0) Collector Cutoff Current (VCB = 60 Vde, IE = 0) (VCB' =80 Vde, IE = 0) (VCB c 100 Vde, IE = 0) Emitter Cutoff Current (VBE ·5.0 Vdc, IC = 0) VCEO(sus) TIPl20, TIP125 TIP121, TIP126 TIP122, TlP127 mAde ICEO TIP120, TIP125 TIP121, TIP126 TIP122, TIP127 - mAde ICBO TIP120, TIP125 TIP121, TIP126 TIP122, TIP127 - lEBO ON CHARACTERISTICS (1) DC Current Gain (lC = 0.5 Ade, VCE = 3.0 Vde) (lC = 3.0 Ade, VCE = 3.0 Vde) Coliector·Emitter Saturation Voltage (lC = 3.0 Ade, IB = 12 mAde) (lC = 5.0 Ade, IB = 20 mAde) Base·Emitter On Voltage (lC = 3.0 Ade, VCE = 3.0 Vde) Vde mAde - hFE VCE(sad Vde Vde VBE(on) DYNAMIC CHARACTERISTICS Small-5lgnal CUrrent Gain (lC = 3.0 Adc, VCE = 4.0 Vde, f = 1.0 MHz) Output Capacitance (VCB = 10 Vdc, IE = 0, f = 0.1 MHz) TlP125, TIP126. TlP127 TlP120, TlP121. TIP122 - Ihfel pF Cob - 300 200 - (1) Pulse Test: Pulse Width..; 300 "s. Duty Cvele ..; 2%. FIGURE 2 - SWITCHING TIMES TEST CIRCUIT FIGURE 3 - SWITCHING TIMES 5. 0 Vee v 3. ~30 RS & RC VARIED TO OBTAIN DESIRED CURRENT lEVELS 0,. MUST BE fAST RECOVERY TYPES, e g, MBD5300 USED ABOVE 18 '" 100 rnA MS06100 USED BELOW 18 '" 100 mA ::~~-~[J~-----:--]~ V, approx __ -12V I I tr.tt';;;;1(1 nl DUTY CYCLE = 1 0% 25~s Rc SCOPE ~ V2 o~ 1.0 ....- ...... , .l-- .- ....... 'f O.7 '" O. 5 ;:: 3 o. o.2 ~ VCC 51 ..- -+ 't,. 2. 0 _ r- 'r ....... 30 V -ICnS = 250 lSI =1~2 o. I;=TJ=25 c- , d @V SE(off)--OV'S- fortdandtr.OllSdrsconnectetl andV2=O ForNPNtesttlrCultrlverseal1palantles 0.07 0.0 5 0.1 < ..... PNP NPN 0.2 0.3 0.5 0.7 1.0 2.0 3.0 IC. COLLECTOR CURRENT (AMP) 1-983 5.0 7.0 10 TIP120, TIP121, TIP122, NPN, TlP125,TIP126, TIP127, PNP FIGURE 4 - THERMAL RESPONSE ~ N ::; ~ o = <.> Z ~ 10 07 0%05 5 O. 3 0.2 r- ~ r;;..... 01 ~ ~ I- 0.2 O. 1 .... ~ Plpkl tJUL 0.0 71---- DOS ...J ~ 0.05 I---- 0.02 :r .... 0.03 >~ 0.02 i--=' in ~ ....., z '"'">- 00 1 ...... 001 - 12~~ V ,... TJlpkl - TC %Plpkl ZOJC(II DUTY CYCLE, 0 %11112 SljGi E IiLii 11111 01 005 002 4JJCIII %rill ROJC ROJC % 1.92 0 C/w Max o CURVES APPLY FOR POWER PULSE TRAIN SHOWN REAO TIME AT " 02 10 05 20 t, 10 50 I I I I 111111 20 I 100 50 I I I I III 200 500 1.0k TIME (ms) FIGURE 5 - ACTIVE-REGION SAFE OPERATING AREA 20 10 10011' ~ '"' t >- ffi ~ G 2.0 1.0 There are two limitations on the power handling abilltv of a average junction temperature and second breakdown. Safe operating area curves indicate Ie - VeE limits of the transistor that must be observed for reliable operation; I.e., the transistor must not be subjected to greater dissipation than the curves indicate. 500", 5.0 :5 ~m:l' '" i transistor: de ....... Sm' ====== J %IS0 C 0 :5 o. 5 ~BONOING WIRE LIMITED g The data of Figure 5 is based on TJ(pk) = 150°C; T C is variable depending on conditions. Second breakdown pulse limits are valid ~THERMALLY L1MITEO@TC'25 0 C (SINGLE PULSEI 0,2 _ ---SECONO BREAKDOWN L1MITEO :3 ~ 0, 1 ====:CURVES APPLY BELOW RATED VCEO TIP110, TIPI2S, 0.05 TIP121, TlP126, TIPI21, TWI27 0.02 1.0 1.0 3.0 S.O 70 10 10 lO 50 for duty cycles to 10% prOVided TJ(pkl _ < 150°C. TJ(pkl may be calculated from the data in Figure 4. At high case temperatures, thermal limitations will reduce the power that can be handled to values Jess than the limitations imposed by second breakdown 70 100 VCE, COlLECTOR·EMITTER VOLTAGE (VOLTSI FIGURE 7 - CAPACITANCE FIGURE 6 - SMALL-SIGNAL CURRENT GAIN 10,000 5000 - ~ lOO0 ~ 2000 >- ~ G ~ lOO -- F - 1000 50 0 lOO ~ 200 ; 100 1!l '" 50 TC - 25 0 C 10 1.0 ( SO 10 20 "' >- r-r- Gob '-..! 50 I ~PLN -----PNP - - -NPN 02 OS 1.0 -1.0 '- G,b PNP ( - 0 VCE' 4.0Vde IC %l.O Ade r--- (-- J i~ T~ %~5h~ r- 100 SO 100 200 lO 01 500 1000 t, FREQUENCY 1kHz) 10 50 10 VR, REVERSE VOLTAGE IVOlTSI 1-984 20 50 100 TIP120, TIP121, TIP122, NPN, TlP125, TIP126, TIP127, PNP NPN TIP120, TIP121, TIP122 I FIGURE 8 - DC CURRENT GAIN 20,000 20,000 II i 10,000 '"!z: 10,00 Ol--=-=b7000 TJ 3000 2000 => u u c u:; z 5000 150'C........ y. V ;;;: ~ - V i V I 02 01 L 2000 ~ 1000 ~r- ,/ , 25'C r-- A L o ~ 700 - 500 f==,-55'C f7Z ~-55'C 500 TJ.150'C........ ~ 3000 l'\. 25'C/ 1000 300 200 III V~E; 410 ~ I VCE· 4.0 V ~ 5000 ~ PNP TIP125, TIP126, TIP127 0.3 0 5 07 300 200 0.1 Y' V I0 2.0 3.0 5.0 7.0 10 02 03 0.50710 IC, CO LLECTO R CU RRENT (AMP) 2.0 30 5.0 70 10 Ir COLLECTOR CURRENT (AMP) FIGURE 9 - COLLECTOR SATURATION REGION en 30 III >::; o ~ ~ IC· 2 OA 2.6 r:l:. '" >::; o , 22 ~ \ f- a;: ~ ~ 26 1\ \ '" ,. ~ ti > ~ 8 I\.. r- 1\ \ j o 1.4 TJ' 25'e .~ 22 ~ 18 1.8 11 11 6.0A 4.0 A :: o 8 J j II 1Ie'lJJ 2.0 A >::; o 6.0A >::; o ~ Cii 30 TJ·25'C 40A I' 1.4 ti 1.0 03 0.5 0.7 1.0 2.0 3.0 50 7.0 10 20 30 " 10 0.3 0.5 0.7 10 IB, BASE CURRENT (mA) 20 3.0 5.0 10 7.0 20 30 lA, BASE CURRENT ImAI FIGURE 10 - "ON" VOLTAGES 30 3. 0 rJL5,Ie 5 '"'" e: ,,'" f- VII v.v VBE @VCE· 4 o~-±-- o-++-tVCEls")@ IC 'lB' 250 o5 01 I 02 I 03 - .......... 07 10 V V 30 50 V L 0 7.0 10 01 .b::::V- VBElsatl@leliB - 250 L 1 L1 i VCEISdtl ~P Ie 18" 250 o5 20 V L V 5 V6E@VCE'40V /' ) 05 V 0 ,,;:::. ?' I 5 VBEli")@ lellB' 250 JL 5 II 0 TJ' 25'C 02 03 05 07 10 I ! 20 30 Ie. COllECTOR CURRENT lAMP) IC. COLLECTOR CURRENT IAMPI 1-985 I ! 50 I 70 I 10 NPN TIP140 TIP141 TIP142 PNP TIP145 TIP146 TIP147 ® MOTOROLA III 10 AMPERE DARLINGTON COMPLEMENTARY SILICON POWER TRANSISTORS DARLINGTON COMPLEMENTARY SILICON POWER TRANSISTORS . designed for general-purpose amplifier and low frequency switching applications. • 60-100 VOLTS 126 WATTS Min hFE = 1000 @ IC = 5 A. VCE = 4 V High DC Current Gain - • Collector-Emitter Sustaining Voltage - @ 30 mA VCEO(sus) = 60 Vdc (Min) - TIP140, TIP145 80 Vdc (Min) - TIP141, TIP146 100 Vdc (Min) - TIP142, TIP147 • Monolithic Construction with Built-In Base-Emitter Shunt Resistor MAXIMUM RATINGS Symbol TIP140 TIP146 TlP141 TIP146 TIP142 TIP147 Unit VCEO 60 SO 100 Vdc Collector-Base Voltage VCB 60 SO 100 Vdc Emitter-Base Voltage VEB 5.0 Vdc IC 10 15 Adc Rating Collector-Emitter Voltage Collector Current - Continuous Peak (1) Base Current - IB 0.5 Adc Po 125 Watts TJ,TsIg -6510 +150 °c Continuous Total DeVice Dissipation @TC=25°C Operating and Storage Junction Temperature Range THERMAL CHARACTERISTICS Symbol Max Unit Thermal ReSistance, Junction to Case R9JC 10 °C/W Thermal Resistance. Case to Ambient R8JA 357 °C/W Characteristic (1) 5 ms. ~10% Duty Cycle STYLE 1: . 1. BASE 2. COLLECTOR 3. EMITTER 4. COLLECTOR DARLINGTON SCHEMATICS COLLECTOR NPN TIPI40 TIP141 TIP142 r------I : ~ --,I I BASEo----r i PNP =s.J; L- _ _ _ _ _ _ _ I I I I I I __ ...J EMITTER COLLECTOR ., " 'lS; TIP145 TIP146 r------~ I --,I I I BASE o--t-< . j =S.Ok =40 IL- _ _ _ _ _ _ _ I I ~ I __ ...J EMITTER 1-986 I I I MILLIMETERS DIM MIN MAX A 20.32 21.08 8 15.49 15.90 5.08 C 4.19 0 1.02 1.65 1.65 E 1.35 G 5.21 5.12 H 2.41 3.20 J 0.38 0.64 K 12.70 15.49 L 15.88 16.51 12.19 12.70 N Q 3.94 4.19 INCHES MIN MAX 0.800 0.830 0.610 0.626 0.165 0.200 0.040 0.065 0.053 0.065 0.205 0.225 0.095 0.126 0,015 0.025 0.500 0.610 0.625 0.650 0.480 0.500 0.155 0.165 CASE 340-01 TO-21BAC TIP140, TIP141, TIP142 NPN, TIP145, TIP146, TIP147 PNP ELECTRICAL CHARACTERISTICS IT C = 25°C unless otherwise noted) Characteristic OFF CHARACTERISTICS Collector-Emitter Sustaining Voltage (1) Vdc VCEOlsus) (Ie = 30 rnA, 18 = 0) TIPI40, TIP145 TIPI41, TlP146 TIPI42, TIP147 - - - - - - 2.0 2.0 2.0 - - 1.0 1.0 1.0 60 80 100 Collector Cutoff Current rnA ICED (VCE = 30 Vdc. IB = 0) IVeE = 40 Vdc, IB = 0) IVCE = 50 Vdc, 18 = 0) TIP140, TlP145 TIPI41, TIP146 TIPI42, TIP147 Collector Cutoff Current mA ICBO TlP140, TlP145 TIPI41, TIP146 TIPI42, TIP147 IVCB = 60 V, IE = 0) IVCB = 80 V, IE = 0) IVCB = 100 V, IE = 0) Emitter Cutoff Current VSE = 5.0 V lEBO 2.0 mA ON CHARACTERISTICS 11) DC Current Gain - hFE 1000 500 Ilc = 5.0 A, VCE = 4.0 V) Ilc = lOA. VeE = 4.0 V) Collector-Emitter Saturation Voltage - 2.0 3.0 3.5 Vdc Vdc VCElsat) - VBElsat) - - VBElon) - - 3.0 Vdc td - 0.15 - ",s (lc = 5.0A, IB = 10 mAl (lc = lOA, IB = 40 mAl - Base-Emitter Saturation Voltage - IIC = lOA, IB = 40 mAl Base-Emitter On Voltage Ilc = lOA, VCE = 4.0 Vdc) SWITCHING CHARACTERISTICS Resistive Load (See Figure 1) Delay Time IVCC = 30 V, IC = 5.0 A, Rise Time tr IB = 20 mA. Duty Cycle';; 2 0%, Storage Time ts IBI = IB2, AC & AB Varied, TJ = 25°C) Fall Time tf 0.55 2.5 2.5 ",s ",s ~s (1) Pulse Test Pulse Width = 300 IJ,s, Duty Cycle -s;; 20% FIGURE 1 - SWITCHING TIMES TEST CIRCUIT FIGURE 2 - SWITCHING TIMES 0 t= PNP ~ NPN j - - f- Vee -30Y RS & RC VARIED TO OBTAIN DESIRED CURRENT lEVELS 01. MUST BE FAST RECOVERY TYPES, e.g., MBD5300 USED ABOVE 18 '" 100 rnA MS06100 USED BELOW 18 '" 100 mA 0 SCOPE 0 ....... V2 ~:;~-~-~~~-_-C1~ VI 0-- '~:~~--I I t,,1f<:10ns Is He ~ 10 ~ ;o.c;; If r-.. ;:: 51 - 0.5 -?- ~ b-t::; ~ r- I, I I ,_ N@ VBEloff)' 0 25" For 1d and tr, III and Vz "'0 IS 02 disconnected DUTY CYCLE" 1 0% o1 02 For NPN test circuit reverse diode and voltage polarities. ~ ~~ 05 10 3.0 50 Ie, COLLECTOR CURRENT (AMP) 1-987 VCC'30VIclIB 250 IBI 182 25°C 0 Tr 10 0 20 TIP140, TIP141, TIP142 NPN, TIP145, TIP146, TIP147 PNP IIIJ TYPICAL CHARACTERISTICS NPN PNP TIP140. TIP141. TIP142 TIP145. TIP146. TIP147 FIGURE 3 - DC CURRENT GAIN versus COLLECTOR CURRENT 20.000 TJ - 150°C 500 a ---- ~C/VI-" V :/ V 0 a vV' /' V ~ 10.000 f- ........ 100°C T"'- ~ i"' z ~ 7000 ! -55°C ./" TJ -150°C ~ 100°C 20°C >- V 5000 V V ..:. ~ 2000 V V 300 o g vV l"-55°C /'" V r- c:- ........ i"'t:- \-,1-"" 50 a VCE-40V 30 0 05 1.0 2.0 3.0 4 a 5.0 IC. COLLECTOR CURRENT lAMPS) 70 [\ VCE; 4.0 V 100o/v 0.5 07 10 10 20 3.0 40 50 IC. COLLECTOR CURRENT lAMPS) 7.0 10 FIGURE 4 - COLLECTOR-EMITTER SATURATION VOLTAGE .0 .0 0 0 0 IC; IDA. IS; 4.0 mA "- "I I-- IC; 50 A. IS; 10 mA I r-- 0 J0 0 ~ 10AjiS 7 5 1 r-- J -r-- r- o 8 ~ " 1M 18 TJ. JUNCTION TEMPERATURE 1°C) 1~ 5 1" d:::::t:: IC ; ~ 0 A. I~; 10 ~A IC IDA. IS ; 2.0 mA- I - - --....I. 7 _L -25 IC; 10 A.IS; 4.0 mA-: t-- I- 2.0 mA I - - '"'1-50 .... ::t~- r-- ~ I - 50 25 0 25 50 75 100 125 TJ. JUNCTION TEMPERATURE 1°C) 150 175 FIGURE 5 - BASE-EMITTER VOLTAGE 4.0 4.0 ;;; 3.6 !::; '" ~ ;;; 36 ~ VCE; 4.0 V 3.2 32 ~ 2.8 '" 24 '" '"> > '" ~ 2.4 ai 2.0 '"'" 1.6 ~ ~ 1.2 0.8 -75 -- --- -- -- -25 ~ 15 IC; 10 A -I- - "- - - 5~A- 20 ~
    Source Exif Data:
    File Type                       : PDF
    File Type Extension             : pdf
    MIME Type                       : application/pdf
    PDF Version                     : 1.3
    Linearized                      : No
    XMP Toolkit                     : Adobe XMP Core 4.2.1-c041 52.342996, 2008/05/07-21:37:19
    Create Date                     : 2017:06:16 09:17:29-08:00
    Modify Date                     : 2017:06:16 10:10:56-07:00
    Metadata Date                   : 2017:06:16 10:10:56-07:00
    Producer                        : Adobe Acrobat 9.0 Paper Capture Plug-in
    Format                          : application/pdf
    Document ID                     : uuid:291e94f0-92a2-8b4b-91b2-5e3fc5c06eec
    Instance ID                     : uuid:5fc8c10e-a567-5e44-8f76-2bf754282fd6
    Page Layout                     : SinglePage
    Page Mode                       : UseNone
    Page Count                      : 1000
    
    EXIF Metadata provided by EXIF.tools
  • Navigation menu