1984_Transistor_and_Diode_Designers_Handbook 1984 Transistor And Diode Designers Handbook

User Manual: 1984_Transistor_and_Diode_Designers_Handbook

Open the PDF directly: View PDF PDF.
Page Count: 342

Download1984_Transistor_and_Diode_Designers_Handbook 1984 Transistor And Diode Designers Handbook
Open PDF In BrowserView PDF
For Complete .
Application &Sales
.
'.
Information ' ,.'
•

Call

'

Joseph Masarich
Sales Representative

HEWLETT PACKARD

..

NEELY

"Sales Region
3003 scon BLVD.
SANTA CLARA, CA 95050
(408) 988-7234

Microwave Semiconductor
Diode and Transistor
Designers Catalog
1984-85
(/

Intensive research and development of
advanced manufacturing techniques has
enabled Hewlett-Packard to become a
high volume supplier of quality, competitively priced RF / Microwave Diodes and
Transistors.
In addition to our broad product line,
Hewlett-Packard also offers the following
services: Applications support, special
testing for customer requirements and a
one year guarantee on all of our products.
Each product accepted for commercial
sale has been tested for reliability during
the development phase and is subject to
quality assurance procedures throughout
the manufacturing process.

This package of products and services has
enabled Hewlett-Packard to become a
recognized leader in the Semiconductor
Industry.

o

Table of Contents
Ordering Information
Alphanumeric Index
High Reliability

.............................
.............................

Vll
Vlll

................................... 1

Quality and Reliability ............................. 15
Silicon Bipolar Transistors .......................... 23

c

113

Schottky Barrier Diodes

PIN and High Conductance Diodes ................. 213
Step Recovery Diodes ........................... . 301
Integrated Products .............................. 305
Appendix

.......... .. ..................... . ... .
'

,

309

Package Outlines ............................. 310
Stocking Distributors ......................... 315
Sales and Service Offices ................ . . . . .. 318

o

Identifies newly introduced products or capabilities
~ New products are also indicated by boldface listings in the Numeric Index.
iii

A Brief Sketch
Hewlett-Packard is one of the world's
leading designers and manufacturers of
electronic, medical, analytical, and
computing instruments and systems,
diodes, transistors, integrated products,
and optoelectronic products. Since its
founding in Palo Alto, California, in
1939, HP has done its best to offer only
products that represent significant
technological advancements.

Colorado, Washington, Oregon, Idaho,
Massachusetts, New Jersey and
Pennsylvania and at overseas plants
located in the German Federal Republic,
England, Scotland, France, Japan, Singapore, Malaysia, Brazil, Mexico and
Puerto Rico.
However, for the customer, HewlettPackard is no further away than the
nearest telephone. Hewlett-Packard
currently has sales and service offices
located around the world. (Pg. 318).

To maintain its leadership in instrument
and component technology, HewlettPackard invests heavily in new product
development. Research and development
expenditures traditionally average about
10 percent of sales revenue. This level of
commitment enables the company to
employ the latest technologies in
developing innovative products that can
be reliably produced, delivered, and
supported on a continuing basis.

These field offices are staffed by trained
engineers, each of whom has the primary
responsibility of providing technical
assistance and data to customers.
A vast communications network has been
established to link each field office with
the factories and with corporate offices.
No matter what the product or the
request, a customer can be
accommodated by a single contact with
the company.

HP produces more than 3,500 products at
our domestic divisions in California,

iv

RF and Microwave
Semiconductors

(,

"\

Hewlett-Packard's manufacturing plant
located in San Jose, California, houses
such modern equipment as projection
mask aligning and automation handling
systems. Ion implantation, new evaporation and wet processing systems, and
scanning electron microscopy provide the
basis for quality and dependability for the
entire product line.
When quality represents a competitive
edge, or when reputation and dependability of your products is on the line, you
can count on Hewlett-Packard RF and
Microwave Semiconductor Devices for
excellent product consistency.

v

About This Catalog
This Microwave Semiconductor Devices
Designer's Catalog contains detailed and
up-to-date specifications of our complete
line of RF and microwave products. This
catalog is divided into 4 product sections:
Silicon Bipolar Transistors, Schottky Barrier Diodes, PIN and High Conductance
Diodes, and Step Recovery Diodes. At
the end of each section, a complete index
of application notes and bulletins pertaining to the use of those products is
included.

How To Use This Catalog
Three methods are incorporated for
locating components:
• A table of contents that allows you to
locate devices by their general
description.
• An alphanumeric index that lists all
devices by part number plus generic
chip part numbers.
• Selection guides at the beginning of
each product section generally grouping products by major specification,
frequency, etc.

Also included in each section where possible are the equivalent circuits of each
product. These will be of use in the
computer-aided design circuits.

Although product information and
illustrations in this catalog were current at
the time it was approved for printing,
Hewlett-Packard, in a continuing effort to
offer excellent products at a fair value,
reserves the right to change specifications,
designs, and models without notice.

In the transistor product data sheets, the
Absolute Maximum Ratings table indicates the limits of the device. Operation in
excess of any of these conditions may
result in permanent damage to the device.
Information concerning the MTTF design
goals for the devices is included in "Reliability Performance of Bipolar
Transistors", page 108, as well as on the
product data sheets.

vi

(j

Ordering Information,
After Sales Services
How To Order

Certification

All Hewlett-Packard components may be
ordered through any of the Sales and
Service offices listed on page 318. In
addition, for immediate off-the-shelf
delivery of Hewlett-Packard RF and
Microwave Semiconductor devices,
contact any of the worldwide stocking
distributors and representatives listed on
page 315.

Some customers are especially interested
in the test and quality assurance programs
that HP applies to its products. These
Hewlett-Packard programs are documented in a Certificate of Conformance
which is available upon request at the
time of purchase. This certification states:
We certify that the Microwave Semiconductor Division devices were duly tested
and inspected prior to shipment and that
they met all of the published specifications
for these devices.

Warranty
As an expression of confidence in our
products to continue meeting the high
standards of reliability and performance
that customers have come to expect,
Hewlett-Packard Microwave Semiconductor Products carry the following
warranty.

c

Hewlett-Packard's calibration measurements are traceable to the National
Bureau of Standards to the extent allowed
by the Bureau's calibration facilities.
The Hewlett-Packard Quality Program
satisfies the requirements of MIL-Q9858A, MIL-I-45208A, MIL-S-19500,
MIL-C-45662A, and NASA 5300.4 (I.e.)

HP's Components are warranted against
defects in material and workmanship for a
period of one year from the date of shipment. HP will repair or, at its option,
replace components that prove to be
defective in material or workmanship
under proper use during the warranty
period. This warranty extends only to HP
customers.

Service
We firmly believe that our obligation to
you as a customer goes much beyond just
the delivery of your new HP product.
This philosophy is implemented by
Hewlett-Packard in two basic ways: (1) by
designing and building excellent products
with good serviceability, and (2) by backing up those products with a customer
service program which can respond to
your needs with speed and completeness.

NO OTHER WARRANTIES ARE
EXPRESSED OR IMPLIED. HP SPECIFICALL Y DISCLAIMS THE
IMPLIED WARRANTIES OF MERCHANT ABILITY AND FITNESS FOR
A PARTICULAR PURPOSE.

The HP customer service program is one
of the most important facets of our
worldwide operations, providing a local
service capability in many of our field
offices (listed on page 318). Indeed, this
customer service program is one of the
major factors in Hewlett-Packard's
reputation for integrity and responsibility
towards its customers.

EXCLUSIVE REMEDIES
THE REMEDIES PROVIDED
HEREIN ARE BUYER'S SOLE AND
EXCLUSIVE REMEDIES. HP SHALL
NOT BE LIABLE FOR ANY DIRECT,
INDIRECT, SPECIAL, INCIDENTAL,
OR CONSEQUENTIAL DAMAGES,
WHETHER BASED ON CONTRACT
TORT OR ANY OTHER LEGAL
THEORY.

vii

ALPHANUMERIC INDEX
.GENERIC
CHIP

PAGE
NO.

MODEL NO.

DESCRIPTION

HPND-4001
HPND-4005
HPND-4050
HPND-4165
HPND-4166

Beam Lead PIN Diode •••...••.•••...•.•...•..........••..•....••.....••.•.••••••...•••• 222
Beam Lead PIN Diode .......••.....•........•••••••••••.•..•••..••••......•.•...•.•.... 224
Beam Lead PIN Diode •......•••••..••...•...••••••••....•..••..•••.•.....••............ 222
RF PIN Diode ••••.•...••••.......••...•.••.......... 5082'{)()12 .•....••....••.••...••. 229
RF PIN Diode .••.........••......••..•.•.••....•.... 5082-{)012 •.....•••...••....••••. 229

HSCH-oS12
HSCH-oS13
HSCH-oS14

Hi Rei Zero Bias Schottky (HSCH-3486) .••.•••.........•.........•....••.•....•.......••. 192
Matched Pair HSCH-{)814 (5082-2401) .•...•....•••.............•...••......••...•.•••.... 176
Hi Rei Schottky Barrier Diode
(5082-2400) .........•.•.....•......•......••..................•••.....•••...•••••...•.. 176
Matched Pair HSCH-{)816 (5082-2306) ........••...................•......•..•..••••...... 176
Hi Rei Schottky Barrier Diode
(5082-2301) .....••.•..•......••....••..•...............•......•••....•••.....••.•.•.... 176

HSCH-oS15
HSCH-oS16

HSCH-1001
HSCH-1111
HSCH-3206
HSCH-3207
HSCH-3486

General Purpose Schottky Diode (1 N6263) ................................................
Hi Rei Schottky Chip •••.....•......•........•.••..............•.......••......•.•••....
Zero Bias Detector Schottky Diode ................... 5082-{)013 ........................
Zero Bias Detector Schottky Diode ................... 5082-0013 ........................
Zero Bias Detector Schottky Diode ................... HSCH-5017 ......................

141
170
161
161
161

HSCH-5310
HSCH-5311
HSCH-5312
HSCH-5313
HSCH-5314

Medium VF Schottky Beam Lead ..•.....•..•...................•••......•......•....••••
Batch Matched HSCH-5310 .....•...•.•..•......•.•..•.•••.•.••..••.•...................
Medium VF Schottky Beam Lead ....................................................... .
Batch Matched HSCH-5312 ..•....•.•....•..••••........................••...•••.•...•..
Ku Band Medium VF Schottky Beam Lead ............................................... .

127
127
127
127
127

HSCH-5315
HSCH-5316
HSCH-5317
HSCH-5318
HSCH-5319

Batch Matched HSCH-5314 ...•......•.....••.........•.........••......••..••......••..
Medium VF Schottky Beam Lead ..•.........•....•.....•...•.•...•........•.......•..•..
Batch Matched HSCH-5316 ............................................................ .
X-Band Medium VF Schottky Beam Lead ................................................ .
Batch Matched HSCH-5318 •..•.•.•...•.........•••.••.....•......•.•............•......

127
127
127
127
127

HSCH-5330
HSCH-5331
HSCH-5332
HSCH-5333
HSCH-5334

Low VF Schottky Beam Lead ..•.....••.........•......................•.......••.....••.
Batch Matched HSCH-5330 ..•..............••.•...................•..•...•.....•.••..•..
Low VF Schottky Beam Lead ..........•.•..•..........••.•.....•..............•.....•...
Batch Matched HSCH-5332 .......•........•....•..•.....•.......••.•...................
Ku Band Low VF Schottky Beam Lead .................................................. .

127
127
127
127
127

HSCH-5335
HSCH-5336
HSCH-5337
HSCH-5338
HSCH-5339

Batch Matched HSCH-5334 ...•.......•....•.......................••..............••... 127
Low VF Schottky Beam Lead ...................••..•...............••.....•............. 127
Batch Matched HSCH-5336 ............................................................ . 127
X-Band Low VF Schottky Beam Lead ................................................... . 127
Batch Matched HSCH-5338 ....•......••.................••.........................•.•. 127

HSCH-5510
HSCH-5511
HSCH-5530
HSCH-5531
HXTR-2001

Ku Band Med VF Schottky Beam Lead Pair .............................................. .
Med VF Schottky Beam Lead Pair ....................................................... .
Ku Band Low VF Schottky Beam Lead Pair .............................................. .
Low VF Schottky Beam Lead Pair ..•...................•••.•....•.....•...•..••..........
General Purpose Transistor Chip ......•.......•.•.................•••......•............

·HXTR-2101
HXTR-2102
HXTR-3001
HXTR-3002
HXTR-3101

General Purpose Transistor I2N6679) ............... .. HXTR-2001 ..................... .. 50
General Purpose Transistor ..•........•...........•.. HXTR-2001 ..•..•.•..•............ 52
General Purpose Transistor Chip .........•.......•......•...............................
34
Linear Power Transistor Chip ....••...•..................•................•............. .36
Low Cost General Purpose Transistor .......•......... HXTR-3001 ..••.•................
54

HXTR-3102

Low Cost General Purpose Transistor
Linear Power .; .....................................
General Purpose Transistor (2N6838) • • • . . . . . • . . . . . . ..
Linear Power Transistor (2N6839) ......•.••...•.•.....
Low Cost Low Noise Transistor .•.•..................
Low Cost High Performance Transistor .......•..•....

HXTR-3103
HXTR-3104
H~TR-3615

HXTR-3645

viii

HXTR-3002
HXTR-3001
HXTR-3002
HXTR-7011
HXTR-7011

133
133
133
133
32

56
58
61
63
66

/

\

(

(

GENERIC
CHIP

PAGE
NO.

MODEL NO.

DESCRIPTION

HXTR-3675
HXTR-4101
HXTR-5001
HXTR-5002
HXTR-5101

Low Cost High Performance Transistor ............... HXTR-7011
General Purpose Oscillator Transistor ................. HXTR-2001 .......................
Linear Power Transistor Chip ...........................................................
Linear Power Transistor Chip ...........................................................
Linear Power Transistor 12N67011 ..................... HXTR-5001 .......................

69
72
38
41
74

HXTR-5102
HXTR-5103
HXTR-5104
HXTR-6001
HXTR-6101

Linear Power Transistor ............................. HXTR-5002 .......................
Linear Power Transistor 12N6741 1 ..................... HXTR-5001 .......................
Linear Power Transistor ............................. HXTR-5002 .......................
Low Noise Transistor Chip ..............................................................
Low Noise Transistor 12N66171 ....................... HXTR-6001 .......................

77
80
83
44
86

HXTR-6102
HXTR-6103
HXTR-6104
HXTR-6105
HXTR-6106

Low Noise Transistor 12N67421
Low Noise Transistor (2N6618) ...................... .
Low Noise Transistor (2N6743) ...................... .
General Purpose Transistor ......................... .
General Purpose Transistor ......................... .

HXTR-7011
HXTR-7111
JAN 1N5711
JAN 1N5712
JAN 1N5719

Low Noise Transistor Chip ..............................................................
Low Noise High Performance Transistor .............. HXTR-7011 ......................
MIL-S-19500/444 Schottky Diode ..................... 5082-0024 .......................
MIL-S-19500/445 Schottky Diode ..................... 5082-0087 .......................
MIL-S-19500/443 PIN Diode .......................... 5082-0012 .......................

46
104
178
182
256

JANTX 1 N5711
JANTX 1N5712
JANTX 1N5719
JANTXV 1 N5711
JANTXV 1 N5712

MIL-S-19500/444
MIL-S-19500/445
MIL-S-19500/443
MIL-S-19500/444
MIL-S-19500/445

178
182
256
178
182

TXVB-2810
TXVB-2811
TXVB-2835
TXVB-3001
TXVB-3002

Hi-Rei 5082-2810
Hi-Rei 5082-2811
Hi-Rei 5082-2835
Hi-Rei 5082-3001
Hi-Rei 5082-3002

186
186
189
260
260

TXVB-3039
TXVB-3042
TXVB-3043
TXVB-3077
TXVB-3080

Hi-Rei 5082-3039
Hi-Rei 5082-3042
Hi-Rei 5082-3043
Hi-Rei 5082-3077
Hi-Rei 5082-3080

260
263
263
260
266

TXVB-3141
TXVB-3168
TXVB-3188
TXVB-4001
TXVB-4005

Hi-Rei 5082-3141
Hi-Rei 5082-3168
Hi-Rei 5082-3188
Hi-Rei 5082-4001
Hi-Rei 5082-4005

272
269
269
252
254

TXVB-4050
TXVW-5300 Series
TXVW-5500 Series
1 N5165
1N5166

Hi-Rei 5082-4050
Hi-Rei HSCH-5300 Beam Leads
Hi-Rei HSCH-5500 Beam Leads
Schottky Diode ISee 5082-2301 1
Schottky Diode ISee 5082-23021 .........................................................

252
172
174
141
141

1N5167
1N5711
1N5712
1N5719
1N5767

Schottky Diode ISee 5082-23031 .........................................................
H V General Purpose Schottky Diode 15082-28001 ...... 5082-0024 .......................
General Purpose Schottky Diode 15082-28101 .......... 5082-0087 .......................
PIN Diode 15082-30391 ............................... 5082-0012 .......................
PIN Diode 15082-30801 ............................... 5082-0025 .......................

141
141
141
229
229

1N6263
2N6617
2N6618
2N6679
2N6701

General Purpose Schottky Diode IHSCH-10011 ............................................
Low Noise Transistor IHXTR-61 011 .................... HXTR-6001 .......................
Low Noise Transistor IHXTR-61 031 .................... HXTR-6001 .......................
General Purpose Transistor IHXTR-21 01 1 .............. HXTR-2001 .......................
Linear Power Transistor IHXTR-51011 ................. HXTR-5001 .......................

141
86
92
50
74

Schottky Diode .....................
Schottky Diode .....................
PIN Diode ..........................
Schottky Diode .....................
Schottky Diode .....................

ix

HXTR-6001
HXTR-6001
HXTR-6001
HXTR-2001
HXTR-2001

.......................

5082-0024
5082-0087
5082-0012
5082-0024
5082-0087

89
92
95
98
101

GENERIC
CHIP

PAGE
NO.

MODEL NO.

DESCRIPTION

2N6741
2N6742
2N6743
2N6838
2N6839

Low Noise Transistor •.•.•.•.••.•..•....•..•.••.••...
Low Noise Transistor •......•....••......•••...•••..•
Low Noise Transistor ...•...••.•...•.•...•...........
General Purpose Transistor (HXTR-3103) ....•...••.•..
Linear Power Transistor (HXTR-3104) •..••••.••••.•••.

5082-0001
5082-0008
5082-0009
5082-0012
5082-0013

High Speed Switch PIN Chip .•.......•...............•......••.....•........•.....••.•.•
Step Recovery Diode Chip .•......••....•...••.••.•..............••.....•.•.............
X-Band Schottky Detector Chip •.•.•.•..........•.......•..••.•....•......•••••...•..•..
PIN Switching Diode Chip ...••......•..........•....•.....••••...••.•....••............
Low VF Mixer/Zero Bias Detector Schottky Chip ....•.........•..••...••......•.••...••...

220
292
125
220
125

5082-0015
5082-0017
5082-0018
5082-0020
5082-0021

Step
Step
Step
Step
Step

•.......•..•.•••........••.•••.....•..•..•...•...•..•••••..•..
•......•..••.....................••••....••........•••.••..•••
........•.......•••........•.•.•.....••...••••........•...•...
•...•......•...............•......•.•.•..•••......•.•••.•.....
...............•••.....••...•...••...........•.•..............

292
292
292
292
292

5082-0023
5082-0024
5082-0025
5082-0029
5082-0030

X-Band Schottky Mixer Chip .....••........•.............•........•...•.••..............
High Voltage Switching Schottky Chip .....•.•....••....•••.•..........•..•..............
AGC PIN Chip .'........................................................................
Ku-Band Schottky Mixer Chip ..................•..................•.......••..........••
PIN Switching Diode Chip ...............................................................

125
125
220
125
220

5082-0031
5082-0032
5082-0034
5082-0039
5082-0041

General Purpose Schottky Chip ......................................................... 125
Step Recovery Diode Chip ••......•...••.•••.....•..........••.....•......••............ 292
VHF/UHF Switching PIN Chip ..••...•.•.••.....................••....•......•..•...••..• 220
AGC PIN Chip .....•..•........•....••.......................•....•.•......•.•....••..• 220
X-Band Schottky Mixer Chip ............................................................ 125

5082-0047
5082-0049
5082-0057
5082-0058
5082-0087

PIN Switching Diode Chip .••.•..••...•.•.....•..•..•.•.••.•...•.•...•.........•...•....
Medium Power Switch PIN Chip ..........................................................
General Purpose Schottky Diode Chip ...................................................
General Purpose Schottky Diode Chip ...................................................
General Purpose Schottky Chip ......•.......•••........•.••. '. . . . . . . . . • • . • • . . . . . . . . . . . ..

220
220
125
125
125

5082-0090
5082-0094
5082-0097
5082-0112
5082-0113

Step Recovery Diode Chip ..............................................................
General Purpose Schottky Diode Chip ...................................................
General Purpose Schottky Chip .......•.......•.•.......•••............•................
Step Recovery Diode ................................ 5082-0015 ..•.............. ; ......
Step Recovery Diode .••.....••.....•.......................•......•....................

292
125
125
294
294

5082-0114
5082-0132
5082-0151
5082-0153
5082-0180

Step
Step
Step
Step
Step

Recovery
Recovery
Recovery
Recovery
Recovery

Diode
Diode
Diode
Diode
Diode

............................................................. ; ....•
................................ 5082-0015 ........................
· .. . . . . . . . . . . . . . . . . .. .. . . . . . . ... 5082-0018 ........................
.. . .. . . . .. . . . .. • . . . . . .. .. . .. .... 5082-0018 ........................
· . . . . . . . . . . . . .. . .. . .. . . . . . . . . ... 5082-0032 ........................

294
297
294
294
294

5082-0241
5082-0243
5082-0253
5082-0300
5082-0310

Step
Step
Step
Step
Step

Recovery
Recovery
Recovery
Recovery
Recovery

Diode
Diode
Diode
Diode
Diode

· . . . • . . . . . . . . . . . . . • . . . . . . . . . . . .. 5082-0032 ...•...•...•......•.....
....................................................................
· . . . . . . . . • . . . . . • . • . . . . . . . • • . . . •. 5082-0018 ..•.......•.............
· .....•.....••.................. 5082-0017 •.• ; .......•............
· . . • . . . . . . . . . . • . . . . • . • . • • • • • . . .• 5082-0021 .•....• . • . • . . . . • . . . . . . ..

297
297
297
297
297

5082-0320
5082-0335
5082-0800
5082-0803
5082-0805

Step
Step
Step
Step
Step

Recovery
Recovery
Recovery
Recovery
Recovery

Diode
Diode
Diode
Diode
Diode

· • • . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5082-0020 ....••.•...•••.••••.••.. 297
· • . . . . . . . . . . . . . . . . . • . • . . . . . . . . •• 5082-0008 ..............••...•..•. 297
................................................................... 297
.................................................................... 294
297

5082-0810
5082-0815
5082-0820
5082-0821
5082-0825

Step Recovery
Step Recovery
Step Recovery
Step Recovery
Step Recovery

Diode
Diode
Diode
Diode
Diode

...................................................................
...................................................................
· . . . . • • • . • . • • . • . • . • . . . . . . . . . . . .• 5082-0090 .....•.•.........•••••.•
· . . . . • • • . . . • • . . . . • . • . . . . . . . . . . .• 5082-0090 •....•........•..•••.•••
· • . • • . . . • • . . . . . . .. . . . . . . • . . . • • .. 5082-0090 ..•••....•.•............

Recovery
Recovery
Recovery
Recovery
Recovery

Diode
Diode
Diode
Diode
Diode

Chip
Chip
Chip
Chip
Chip

x

HXTR-5103
HXTR-e102
HXTR-e104
HXTR-3001
HXTR-3002

.••......•.•...••••••••
.........•.............
.•••.•....•..••.......
..••......••..•.•••..•
••......•••...........

(

80
89
95
58
61

297
294
297
297
294

\.

(~/

MODEL NO.

DESCRIPTION

GENERIC
CHIP

5082-0830
5082-0833
5082-0835
5082-0840
5082-0885

Step Recovery Diode
Step Recovery Diode
Step Recovery Diode
Step Recovery Diode
Step Recovery Diode

5082-0020
5082-0020
5082-0008
5082-0008
5082-0008

5082-1001
5082-1002
5082-1006
5082-2080
5082-2200

High Conductance Diode (1 N4456) ...... . . . .. .. .. . . . .. .. .. . . . . . . . . . . . . . . . . .. .. . . . .. . . . •.
High Conductance Diode ................................... :...........................
High Conductance Diode ........................................................•....•.
Batch Matched 5082-2835 Schottky ................... 5082-0031 ........................
Hermetic Stripline Schottky Diode .................... HSCH-5316 .......................

248
248·
248
141
146

5082-2201
5082-2202
5082-2203
5082-2207
5082-2208

Batch Matched 5082-2200 ....................... . . ..
Hermetic Stripline Schottky Diode ....................
Batch Matched 5082-2202 ...........................
Stripline Schottky Diode .............................
Batch Matched 5082-2207 ...........................

HSCH-5317
HSCH-5316
HSCH-5317
HSCH-5316
HSCH-5317

146
146
146
146
146

5082-2209
5082-2210
5082-2231
5082-2233
5082-2263

Stripline Schottky Diode .............................
Batch Matched 5082-2209 ...........................
Low VF Hermetic Stripline Schottky Quad .............
Low VF Hermetic Stripline Schottky Quad .............
Hermetic Stripline Schottky Ring Quad ................

HSCH-5316 ......................
HSCH-5317 ......................
5082-9397 .......................
5082-9397 .......................
5082-9396 .......................

146
146
151
151
151

5082-2271
5082-2272
5082-2273
5082-2274
5082-2277

Low VF Stripline Schottky Diode Quad ................
Low VF Stripline Schottky Diode Quad ................
Ku-Band Schottky Mixer Diode .......................
Matched pair of 5082-2273 ...........................
C-Band Stripline Schottky Ring Quad .................

5082-9395
5082-9395
5082-0029
5082-0029
5082-9394

.......................
.......................
.......................
.......................
.......................

151
151
154
154
151

5082-2279
5082-2280
5082-2291
5082-2292
5082-2294

Low VF Broadband Stripline Schottky Quad ...........
Low VF Broadband Stripline Schottky Quad ...........
Stripline Schottky Ring Quad ........................
Stripline Schottky Ring Quad ........................
Stripline Schottky Ring Quad ........................

5082-9397
5082-9399
5082-9696
5082-9696
5082-9698

.......................
.......................
.......................
.......................
.......................

151
151
151
151
151

5082-2295
5082-2296
5082-2297
5082-2298
5082-2301

X-Band Low VF Schottky Diode ...................... 5082-9013 ....................... 154
Matched pair of 5082-2295 ........................... 5082-0013 ....................... 154
X-Band Low VF Schottky Diode ...................... 5082-0013 ....................... 154
Matched pair of 5082-2297 ........................... 5082-0013 ....................... 154
Schottky Barrier Diode ................................................................. 14 t

5082-2302
5082-2303
5082-2305
5082-2306
5082-2308

Schottky Barrier Diode .................................................................
Schottky Barrier Diode .................................................................
Schottky Barrier Diode .................................................................
Matched pai r of 5082-2301 ..............................................................
Matched pair of 5082-2303 ..............................................................

5082-2350
5082-2351
5082-2356
5082-2370
5082-2396

Schottky Barrier Diode ............................................... .'................. 154
Matched pair of 5082-2350 .............................................................. 154
Matched Encapsulated Bridge Quad ..................................................... 141
Matched Quad of 5082-2303 Unconnected ............................................... 141
Matched Encapsulated Ring Quad....................................................... 141

5082-2400
5082-2401
5082-2520
5082-2521
5082-2565

Schottky Barrier Diode .................................................................
Matched pair of 5082-2400 ..............................................................
Schottky Barrier Diode .................................................................
Matched pair of 5082-2520 ..............................................................
Schottky Barrier Diode .................................................................

154
154
154
154
154

5082-2566
5082-2701
5082-2702
5082-2706
5082-2707

Matched pair of 5082-2565 ..............................................................
X-Band Schottky Mixer Diode ........................ 5082-0023 .......................
X-Band Schottky Mixer Diode ........................ 5082-0023 .......................
Matched pair of 5082-2701 ........................... 5082-0023 .......................
Matched pair of 5082-2702 ........................... 5082-0023 .......................

154
154
154
154
154

xi

PAGE
NO.
........................
........................
........................
........................
........................

......•............•...
......................
......................
......................
......................

297
294
297
294
297

141
141
141
141
141

GENERIC
CHIP

PAGE
NO.

MODEL NO.

DESCRIPTION

5082-2711
5082-2712
5082-2713
5082-2714
5082-2723

X-Band Schottky Mixer Diode ........................
Matched pair of 5082-2711 ...........................
X-Band Schottky Mixer Diode ........................
Matched pair of 5082-2713 ...........................
Ku-Band Schottky Mixer Diode .......................

.......................
.......................
.......................
.......................
.......................

154
154
154
154
154

5082-2724
5082-2750
5082-2751
5082-2755
5082-2765

Matched pair of 5082-2723 ........................... 5082-0029 .......................
Schottky Detector Diode ............................. 5082-0009 .......................
Schottky Detector Diode ............................. 5082-0009 .......................
Schottky Detector Diode ...............................................................
Low VF Hermetic Stripline Schottky ................... HSCH-5336 ......................

154
165
165
165
146

5082-2766
5082-2774
5082-2775
5082-2785
5082-2786

Batch Matched 5082-2765 ...........................
Low VF Stripline Schottky Diode ......................
Batch Matched 5082-2774 ...........................
Low VF Hermetic Stripline Schottky ...................
Batch Matched 5082-2785 ... . . . . . . . . .. . . . . . . . . . . . . ..

146
146
146
146
146

5082-2787
5082-2794
5082-2795
5082-2800
5082-2804

Schottky Detector Diode ............................................................... 165
Low VF Stripline Schottky Diode ...................... HSCH-5336 ...................... 146
Batch Matched Pair of 5082-2794 ..................... HSCH-5337 ...................... 146
H V General Purpose Schottky Barrier Diode (1 N5711) ... 5082-0024 ....................... 141
Matched Pair of 5082-2800 Unconnected .............. 5082-0024 ....................... 141

5082-2805
5082-2810
5082-2811
5082-2813
5082-2814

Matched Quad 5082-2800 Unconnected ...............
General Purpose Schottky Diode (1 N5712) .............
General Purpose Schottky Diode .....................
Matched Bridge Quad 5082-2811 Encapsulated ........
Matched Ring Quad 5082-2811 Encapsulated ..........

5082-0024 .......................
5082-0087 .......................
5082-0097
5082-0097 .......................
5082-0097 .......................

141
141
141
141
141

5082-2815
5082-2817
5082-2818
5082-2824
5082-2826

Matched Quad 5082-2811 Unconnected ...............
Schottky Barrier Diode ............................ ,.
Matched Pair of 5082-2817 ...........................
Schottky Barrier Diode ..............................
Batch Matched Diode 5082-2811 .....................

5082-0097
5082-0097
5082-0097
5082-0097
5082-0097

.......................

141
154
154
165
141

5082-2830
5082-2831
5082-2835
5082-2836
5082-2837

Monolithic Matched Schottky Diode Ring Quad ........ 5082-9696
Low VF Monolithic Matched Schottky Quad ........... 5082-9697
Low Offset Schottky Diode ........................... 5082-0031
Batch Matched Diode 5082-2800 ..................... 5082-0024
Schottky Diode Beam Lead ............................................................•

151
151
141
141
131

5082-2900
5082-2912
5082-2970
5082-2997
5082-3001

Schottky Barrier Diode .................................................................
Matched pair of 5082-2900 Unconnected .................................................
Matched Quad 5082-2900 Unconnected ..................................................
Matched Bridge Quad 5082-2900 Encapsulated ...........................................
RF PIN Diode ....•.................................. 5082-0012 ........................

141
141
141
141
229

5082-3002
5082-3039
5082-3040
5082-3041
5082-3042

RF PIN Diode .......................................
RF PIN Diode .......................................
Stripline PIN Diode ..................................
Stripline PIN Diode ..................................
RF PIN Diode .......................................

5082-0012
5082-0012
5082-0012
5082-0001
5082-0001

229
229
235
235
229

5082-3043
5082-3046
5082-3071
5082-3077
5082-3080

RF PIN Diode .......................................
Stripline PIN Diode ..................................
Microwave Limiter PIN Diode ........................
VHF/UHF PIN Switching Diode .......................
HFNHF/UHF Current Controlled Resistor (1 N5767) ....

5082-0001
5082-0049
5082-0001
5082-0012
5082-0025

229
235
233
229
229

5082-3081

HFNHF/UHF Current Controlled Resistor ............
RF Pin Diode
RF Pin Diode
Hermetic Stripline PIN Diode ....................•....
Hermetic Stripline PIN Diode ........................ .

5082-0039
5082-0012
5082-0012
5082-0012
5082-0001

229
246
246
240
240

5082-3101
5082-3102
5082-3140
5082-3141

xii

5082-0023
5082-0023
5082-0023
5082-0023
5082-0029

HSCH-5337
HSCH-5336
HSCH-5337
HSCH-5336
HSCH-5337

......................
......................
......................
......................
......................

.......................

o

MODEL NO.

DESCRIPTION

GENERIC
CHIP

PAGE
NO.

5082-3168
5082-3170
5082-3188
5082-3201
5082-3202

VHF/UHF Switching PIN Diode ..•.........••.........
Hermetic Stripline PIN Diode ....•.•......••.•.....•..
VHF/UHF Switching PIN Diode .••....................
RF PIN Diode ••..........••........•••.....•........
RF PIN Diode

5082-0034
5082-0030
5082-0034
5082-0012
5082-0012

229
240
229
246
246

5082-3303
5082-3304
5082-3305
5082-3306
5082-3340

RF PIN Diode
RF PIN Diode ........•.........•...........•......••
High Speed Switch PIN Diode ......•.................
High Speed Switch PIN Diode ..............•.....•...
Stripline PIN Diode ................................. .

5082-0030
5082-0030
5082-0001
5082-0001
5082-0030

246
246
244
244
235

5082-3379
5082-3900
5082-9394
5082-9395
5082-9396

VHF/UHF Attenuator PIN Diode ...........•....•.......•.................•..............
PIN Diode Beam Lead ........•...........•....•••..........• '.' ..................•......
Beam Lead Quad ....•.•.•...........•.....•.•.....•••................•.......•...•....
Beam Lead Quad ...•..•.............•.............•.........•............•..•...•.....
Beam Lead QUad ................•.......•...••.......•...•............................

229
226
137
137
137

5082-9397
5082-9398
5082-9399
5082-9696
5082-9697

Beam
Beam
Beam
Beam
Beam

137
137
137
137
137

5082-9891

X-Band Schottky Detector Chip .........................................................

Lead
Lead
Lead
Lead
Lead

Quad
Quad
Quad
Quad
Quad

................................................... : ................. .

o

xiii

125

c

HIGH RELIABILITY
Introduction
For over 15 years, MSD has been extensively
ihvolved in many military and space oriented
High Reliability (Hi-Rell Test programs. The
inherent reliability and proven performance of .
our products has provided a vehicle with which
to build a strong record of performance in the
demanding requirements of space programs.
By having a large group of Marketing and
Product Assurance personnel dedicated to the
service of Hi-Rei customers, HP has been
frequently called upon to provide the high
performance, highly reliable components
demanded by many military and commercial
space probe and satellite programs. Among the
many space programs using HP Microwave
Semiconductor Division products are Apollo,
Viking, Intelsat, Space Shuttle,.lndiasat, G-Star,
and Westar.

of devices to operate successfully under the
specified test conditions. A sample test plan
specifies the acceptance level required before
the lot is considered qualified. This test plan
depends on the level of reliability required, and
is mathematically derived.
If a lot does not successfully pass a particular
test during Group A sampling, that lot is 100%
retested for that particular parameter. This
100% testing will remove any non-conforming
devices thereby ensuring that the remaining lot
is reliable.
Sample tests are usually divided into Group A,
Group B, and Group C tests.
Group A tests are electrical tests used to
demonstrate that the parts meet the functional
requirements of the particular specification to
which they are purchased.

This section of the catalog describes the use of
Hi-Rei testing, to demonstrate the quality and
reliability of semiconductor devices.

Group B tests are environmental and life tests.
They are used to demonstrate the ability of the
lot sample to survive test conditions.

Reliability Testing

Group C tests are also environmental and life
tests. They are used to demonstrate the ability
of the generiC device to meet the requirements
of each test. These tests are run infrequently,
hence, they are often referred to as periodic
tests.

Reliability testing is designed to demonstrate
the ability of a device to meet electrical
requirements over its specified life to a
designated confidence level. To achieve this
confidence, Hi-Rei devices are either 100%
tested or qualified by testing a random sample
of devices from the lot.

Group Band C life tests verify the length of the
useful life period under specified bias
conditions (see Figure 1), Some of the Group B
and Group C tests render devices
unserviceable. These tests are called
destructive tests. MIL-S-19500 defines the
following tests as destructive:

The purpose of 100% testing is to verify the
stability of the devices in the completed lot, and
verify that devices are in the useful life period
(see Figure 1), These tests may be environmental
tests or functional tests (i.e. electricall and are
normally referred to as preconditioning and
screening tests, respectively.

Solderability
Soldering Heat
Moisture Resistance

Sample testing is used to statistically
demonstrate the capability of the completed lot

w'
~

a:

o

EARLY
FAILURES RANDOM FAILURES AT LOW. CONSTANT FAILURE RATE
USEFUL LIFE PERIOD

- - - OPERATING LIFE

Figure 1.

2

- - - - - -----------------_.

Terminal Strength
Salt Atmosphere
Salt Spray

.~ ..

Role of Military Specifications
There are numerous specifications associated
with electronic devices. MIL-S-19500 and MILSTD-750 are most frequently used to specify
test programs, methods and conditions for
discrete semiconductors.

reliability. MIL-STD-750 defines the actual tests
and screening methods, conditions and
pass/fail criteria as required by MIL-S-19500.
These tests are divided into three categories:
a. Environmental Tests (1000 Series)
b. Mechanical Tests (2000 Series)
c. Electrical Tests (3000 and 4000 Series)

MIL-S-19500 is the general specification for
discrete semiconductor components. It defines
test sequences to achieve different levels ot

Environmental Tests
MIL-STO-7S0
Method

(

Test Type

Purpose of Test/Simulated Operation

Frequency of Testing

1001

Barometric Pressure

Simulates non-pressurized portion of aircraft at
high altitude. (Required for products with VBR > 200 V
only.!

Group C (periodic)

1021

Moisture Resistance

Simulates tropical environment of high heat
and humidity.

Group C (periodic)

1022

Resistance to Solvents

Simulates cleaning of boards after device installation.
Verifies marking permanency.

Group B

1026

Steady State Life (A)

Simulates accelerated electrical operation. t = 1000 hours.

Group C (periodic)

1027

Steady State Life
(LTPD)

Simulates accelerated electrical operation. t = 340 hours.

Group B

1031

Hi-Temp. Non-Op.
Life (A)

Simulates accelerated shelf life. t

1032

Hi-Temp. Non-Op.
Life (LTPD)

Simulates accelerated shelf life and effect of exposure to
temperture. t = 24 hours for screen, t = 340 hours for
Group B.

100% screen and
Group B.

1038
Diodes

Hi-Temp. Reverse Bias
and Burn-in

Simulates time and stress of actual life use on devices.
Verifies that devices are in the useful life period.

100% Screen.

1039
Transistors

Hi-Temp. Reverse Bias
and Burn-in

Simulates time and stress of actual life use on devices.
Verifies that devices are in the useful life period.

100% Screen.

1041

Salt Atmosphere

Simulates accelerated exposure to sea coast
environment.

Group C (periodic)

1051

Thermal Shock
(Temperature Cycling)

Simulates transfer of parts between extreme
environmental conditions. _

100% Screen.

1056

Thermal Shock
(Glass Strain)

Ensures mechanical integrity by subjecting devices
to sudden changes in temperature.

Group C (periodic)

1071

Fine Leak/Gross Leak

Verifies that packaging is hermetically sealed.

100% screen.

3

= 1000 hours.

Group C (periodic)

Mechanical Tests
MIL-STO-7S0
Method

Test Type

Purpose of Test/Simulated Operation

Frequency of Testing

2006

Constant Acceleration

Ensures die attach and wire bond integrity.

100% screen.

2016

Mechanical Shock

Verifies devices resistance to mechanical stresses.

Group C (periodic)

2017

Die Shear Test

Verifies integrity of die to package bond.

In process/Group B

2026

Solderability

Confirms that the leads are able to take an even
coating of solder with minimum voids.

Group B

2031

Soldering Heat

Determines the devices resistance to the high
temperature encountered during soldering.

Guaranteed by
design.

Terminal Strength

Simulates the leads ability to withstand specified
tension, torq ue, and fatigue.

Group C

2036
A, D,E,F
2037

Bond Strength

Verifies integrity of chip to package interconnection

In process/Group B

2052

PIND (Particallmpact
Noise Detection Test)

Detects loose particles in the package cavity.

100% screen

2056

Vibration Variable
Frequency

Simulates mechanical performance of the device when
subjected to vibration within the specified frequency
range.

Group C (periodic)

2066

Physical Dimensions

Verifies that dimensions meet the design and
specification criteria.

Group C (periodic)

2071

Visual and Mechanical

Ensures that marking and packaging meet specified
requirements.

Group A

2072

Internal Visual (pre-cap)

Ensures high visual quality of end product.

100% screen

2073

Die Visual

Ensures high quality, defect-free semiconductor die
for assembly use.

100% screen

2074

I nternal Visual
(through glass)

Ensures high visual quality of end product.

100% screen

2075

Decap Design
Verification

Verifies that design and construction meet
specifications.

Group B

2076

X-Ray

Non-destructive test performed after final seal that
verifies seal integrity, bond integrity, and
particle-free cavity.

100% screen

2077

Scanning Electron
Microscope (SEM)

Verifies quality and acceptability of metallization on
semiconductor dice.

Samples from each
wafer or lot

Electrical Tests
Class 3000 and 4000 tests define the acceptable testing methods for semiconductor products.

4

Standard HI-Rei Programs
Since the advantages of products tested to
well established reliability standards can be of
significant value to reliabililty oriented
customers, HP makes available a number of
products that have been tested to the same
reliability level as the JAN type devices, but
have HP part numbers and meet HP
designated electrical specifications. These are
our "TX" products. Typical screening
programs are set forth in the Hi-Rei data
sheets.
Hewlett-Packard provides standard Hi-Rei
programs which are patterned after MIL-S19500. These programs are designed to:
1. Eliminate the costly requirements of
generating Hi-Rei specifications.

Hi-Rei Screened Products
Hewlett-Packard provides two types of Hi-Rei
products: DESC qualified (JAN) and Standard
Hi-ReI.

DEse Qualified Products (JAN)
Since a great number of reliability tested
devices are used in military programs, the
JAN (Joint Army-Navy) system has been
established by the U.S. government to provide
standardized levels of reliability at minimum
cost to all users. There are two major
advantages to the JAN type products. First,
the specification, and thus the reliability level
of the device, is pre-specified for the buyer,
eliminating costly creation of special
procurement documents. Second, JAN
devices can be manufactured in large
quantities with subsequent cost reductions.

2. Offer improved delivery for these Hi-Rei
devices.
3. Provide assistance in writing Hi-Rei
specifications.

Three levels of JAN devices are offered by
Hewlett-Packard:
1. JANShipment lots have had Group B tests
performed successfully on a sample basis.

Products available from HP may be classified
into four categories:
a. Dice
b. Beam lead devices
c. Glass packaged devices
d. Ceramic packaged devices

2. JAN TXThe shipment lots have been subjected to
100% screening tests. Individual devices
have been serialized, and drift data has
been recorded. Group B sample data is
then done after screening.

(

Hi-Rei screening requirements vary slightly
due to the unique properties of each category.
The tables that follow list these screening
programs along with the qualification and
quality conformance testing performed for
each category. Screening programs for each
category have been designed to verify the
reliability of the end product.

3. JAN TXV....,..
These are the same level as JAN TX with
the additional requirement of a pre-closure
visual inspection.

5

Diode Test and Screening Options (Typical)*
(All Methods (M) are per MIL-STD-750, Unless Otherwise. Specified)

,--_ST_A_N_D_A_R_D_P_R_O_D_U_C_T_-",II

Internal V,sual
H.P. Standard V,sual Spec
AQL= 1.0%

LOT QUALIFIED PRODUCT II'--__T_X_,_T_XV_P_R_O_D_U_C_T_----'

Internal Visual
H.P. Standard Visual Spec.
AQL= 1.0%

Internal Visual M2072/2074
ITXV Products Only)

CUSTOM PROCESSED
PRODUCT

Lot Qualified Product
PLUS
Additional Customer
Spec. Requirements

TX or TXV Screened Product
PLUS
Additional Customer
Requirements, such as
SEM, PIND, X-Ray, Special
Electrical Specs. etc.

Fine Leak, M1071 H
Gross Leak, M1071 C or E
AQL= 1.0%

Fine Leak. M1071 H
Gross Leak, M1071C or E
AQL = 1.0%

./

D.C. Electrical Tests

TA

= 25°C

Quality Conformance Inspection
Groups A, Band C

6

Diode Test and Screening Options (Typical)* (con't)

(

(All Methods (M) are per MIL-STD-750, Unless Otherwise Specified)
QUALITY CONFORMANCE INSPECTION

:~~~~~~~G~R~O~U~P~A~~~~~~~I ~I_______G_R_o_u_p_B______~I :I~~~~~~~G~R~O~U~P~C~~~~~~~
Subgroup 1, LTPD = 5

I

Subgroup 1, LTPD-15
Solderability, M2026
Resistance to Solvents, M1022

Subgroup 2, LTPD

IIII

= 15

Subgroup 1, LTPD

!

= 10

= 10

Subgroup 2, LTPD

Thermal ShoCk, M1051
(Temperature Cyclingl
Fine Leak, M1071 H
Gross Leak, Ml071C or E

J

Physical Dimensions, M2066

Thermal Shock Glass Strain,

M1056A
Terminal Strength, M2036A
Fine Leak, M1071 H
Gross Leak, M1 071 Cor E

Electrical Tests

(Read and Recordl

Moisture Resistance, M1 021

External Visual, M2071
Electrical Tests

(Read and Recordl
Subgroup 3, LTPD
Dynamic Electrical Tests

TA = 25'C

=5

!

Steady State Operating Life,
M1027, t = 340 hours
Electrical Tests

Subgroup 3, L TPD

lRead, Record and Deltal

= 10

Mechanical Shock, M2016
Vibration Variable Frequency,

M2056
Constant Acceleration, M2006
20 KG, XI, VI, Z1
Electrical Tests
(Read and Recordl

Subgroup 4, L TPD - 20
Decap Design Verification
1 Device 0 Failures
Bond Strength, M2037
(LTPD Applied to M20371

* This represents a typical
screening program for glass or
ceramic packaged diodes.

Subgroup 5, LTPD

= 10

J

= 15

I

Subgroup 4, LTPD

I

Salt Atmosphere, M1041

!

Subgroup 5, A - 10

High Temperature Non-Op
Life, M1032, t = 340 hours

Operating Life, M1027
t = 1000 hrs.

Electrical Tests
(Read, Record and Delta)

Electrical Tests
(Read, Record and Delta)

7

I

Hi-Rei Beam Lead Diode Test/Screen Program (Typical)

(

(All Methods (M) are per MIL-STD-750, Unless Otherwise Specified)
(

100% SCREEN

J

'---~

High Temp. Storage
(Stabilization Bake)
t = 24 hrs.

\
[

SAMPLE TESTS FOR WAFER LOT ACCEPTANCE

'----------'

•

Lead Pull Test
M2011 H/883 4 gms.
LTPD = 20

Assemble Packages
in Suitable Carriers

+
Electrical Tests
(Go- No Go)
Electrical Tests
(Die Probe)

+
Thermal Shock, M1051
(Temp. Cycling)

+
Visual Inspection
HPA-5956-0112-72

)

Electrical Tests
(Read and Record)

r-

+
High Temp. Non-Op Life
M1032, t = 340 hrs.

+
High Temp. Reverse Bias
M1038, t = 340 hrs .

LTPD=10 -

•

Electrical Tests
(Read, Record, Delta)

--

+
Operating Life, M1038
t = 340 hrs.

LTPD=10 -

+
Electrical Tests
(Read, Record, Delta)

-

8

Hi-Rei Chip Diode Test/Screen Program (Typical)
(All Methods (M) are per MIL-STO-750, Unless Otherwise Specified)

(
(

100% SCREEN

J

SAMPLE TESTS FOR WAFER LOT ACCEPTANCE
(
'------------'

]

'----_----J

~
Bond Strength
M2037, LTPD = 20

Electrical Tests
(Die Probe)

~

Assemble Samples
in Suitable Package

~
Electrical Tests
(Go- No Go)
Visual Inspection
M2073

-

Die Shear
M2017, LTPD = 20

+
Thermal Shock, M1051
(Temp. Cycling)

+
Constant Acceleration
M2006, 20 kg, Y1

~
Electrical Tests
(Read and Record)

r-

+
High Temp. Non-Op Life
t= 340 hrs.

LTPD=10-

+
Electric.al Tests
(Read, Record, Delta)
L...

r-

.~
Operating Life, M1038
t = 340 hrs.

J

LTPD= 10-

Electrical Tests
(Read, Record, Delta)
L...

9

I
1

iI

Transistor Test and Screening Options (Typical)
(All Methods (M) are per MIL-STD-750, Unless Otherwise Specified)

,-_S_TA_N_D_A_R_D_P_R_O_D_U_C_T_~II

LOT QUALIFIED PRODUCT

IIL.....__T_X_,_TX_V_P_R_O_D_U_C_T_---J

CUSTOM PROCESSED
PRODUCT

Lot Qualified Product
PLUS
Additional Customer
Spec. Requirements

TX or TXV Screened Product
PLUS
Additional Customer
Requirements, such as
SEM. PIND. X-Ray, Special
Electrical Specs. etc.

Fine Leak M1071H
Gross Leak M1071C or E
AQL 1.0%

Fine Leak M1071H
Gross Leak MlO7)C or E
AQL = 1.0%

D.C. Electrical Tests

TA=25°C

Quality Conformance Inspection
Groups A. Band C

10

\.

(

Transistor Test and Screening Options (Typical) (con't)
(All Methods (M) are per MIL-STO-750, Unless Otherwise Specified)

I

QUAUTY CONFORMANCE INSPECTION
...-----G-R-O-U-P-A-----,"

Subgroup 1, LTPD

~

5

I

GROUP B

Subgroup 1, LTPD - 15

rl----G-R-O-U-P-C-----.

I I

Solderability M2026
Resistance to Solvents M 1022

Subgroup 1, LTPD -15
Physical Dimensions

~

M~066

J

Subgroup 2, LTPD = 10

Subgroup 2, L TPD = 10

Thermal Shock M1051
ITem perature Cycling)
Fine Leak M1071H
Gross Leak M1071C or E
Electrical Tests
(Read and Record)

Thermal Shock (Glass Strain)

M1056A
Terminal Strength, M2036A

Fine Leak, M1071H
Gross Leak, M1071C or E
Moisture Resistance, M1021

External Visual, M2071
Electrical Tests
(Read and Record)

~

Subgroup 3, LTPD - 5

~

Steady State Operating Life

M1027, t = 340 hrs.
Electrical Tests

Dynamic Electrical Tests
TA = 25°C

Subgroup 3, LTPD = 10

(Read, Record and Delta)

Mechanical Shock, M2016

!

Vibration Variable Frequency,
M2056
Constant Acceleration, M2006
20 kg, X1, Y1, Z1

Subgroup 4, L TPD - 20

Electrical Tests
(Read and Record)

Oecap Design Verification
1 Device 0 Failures
Bond Strength M2037
IL TPD Applies to M20371

1. Not applicable to Micro-Plus
packaged devices.

I

!

!

Subgroup 4, LTPD

Subgroup 5. LTPD - 15
Thermal Resistance Tests
(Optional)

I

= 15

Sale Atmosphere M1041

~

Subgroup 5, A - 10

1

Subgroup 6, L TPD

=7

High Temp. Non-Op Ufe,

Mto32, t

= 340

hrs.

Electrical Tests
(Read, Record and Delta)

11

Operating Life M1027
t = toOO hrs.
Electrical Tests
(Read, Record and Delta)

I

Marking, Packaging, Shipping and Handling
Device and container marking is dependent on
the type of device as shown below:
Device

Device Marking

Dice

None

Beam Lead

None

Glass Package
JAN
JIN
ABCDI1j
AQIMI2j
Ceramic Package

DESC
JAN TX
JXIN
ABCDI1j
AQIMI2j

Typical Container/Marking

JAN TXV
JVIN
ABCDI1j
AQIMI2j

HP, Hi-Rei
ABC
DEFI1j
XXXI3j

None on small packages. Marking varies on larger packages.

Noles:

100 dice per waffle pack. Label
on waffle pack.
25 beamleads per gel pack. Label
on gel pack.
Bulk or corregated insert (10
each), packaged in antistatic bag.
Label on bag.
Tape and Reel
Individual or multiple packaging.
Label on packaging container.

Label Marking:

1. Part Number.

Hewlett-Packard
Part Number
Date Code

2. Manufacturers 10.
3. Data Code.

All devices are electrostatic sensitive.
Packaging used is antistatic and impregnated
with conductive material to provide adequate
protection from electrostatic discharge damage.
At a receiving station, the parts should be

Lot Number
Country of Origin
Quantity

treated as ESD sensitive material and
appropriate handling procedures must be used
to avoid degradation due to electrostatic
discharge.

12

o

o

c

15

QUALITY ASSURANCE
CONCEPTS AND METHODOLOGY
Quality Philosophy

definitive working knowledge of reliability
performance, whereby the resulting information is
used to predict long-term device reliability for the
intended application.

Recognizing the increasing importance of
microwave component reliability for the
consumer, industrial, and military markets, the
Microwave Semiconductor Division (MSD) of
Hewlett-Packard has committed itself to achieve
error free performance at all levels of
manufacturing and to deliver the highest level of
product quality and reliability performance. Three
basic ingredients are integrated into the
manufacture of reliable microwave components:

In-process Control and Reliability Testing
The reliability performance of microwave
components can be affected by numerous
operations associated with device manufacturing;
among these being:
• Wafer fabrication process/technology

• The device must be designed with a technical
understanding of the user's applications and
quality requirements.

• Device design and layout
• Packaging design
• The manufacturing processes
- Wafer fabrication
- Package materials
- Assembly materials and procedures

• The device must be manufactured with the
optimum state-of-the-art technology for the
application.
• Controls must be established in the
manufacture of the device.

• In-process controls
• Final electrical test procedures

As a major manufacturer of microwave products,
MSD produces a broad family of many devices.
Since it is not practical, technically necessary, nor
cost effective to qualify each of these products via
life and environmental testing, the logical
approach has been to differentiate
assembly/package related failure mechanisms
from failure modes associated with the wafer
fabrication process. This "die process" and
"package product" approach to reliability has been
a consideration in the new military standards for
microelectronic testing/reliability and is used at
MSD with the following definitions:

• Quality Assurance inspection procedures
• Post-assembly reliability screening
One of the most important aspects of insuring
quality and reliability is through adequate inprocess controls of these operations. Wafer
fabrication controls provide the assembly
operation with a high quality and reliable chip,
while the process controls associated with the
assembly operation assure the optimum in
package integrity. The main areas of Quality
Assurance process controls may be summarized
according to the fabrication and assembly
operations:

• Die Process Family consists of devices which
have identical wafer processing. This premise
recognizes that component geometry and
layout of a product will have little impact on
reliability because established deSign rules
apply to all products fabricated by the same
process.

Quality Assurance Process Controls

• Package/Assembly Family are those of like
construction and are assembled with identical
materials, manufacturing controls and
operations.
Component reliability estimation can therefore be
achieved with a high confidence level from
environmental and life testing data derived from
various product families. Accelerated stress testing
techniques are continuously employed to obtain

Wafer Fabrication

Assembly

Particle count, room and hood
ambient

Die visual

Temperature/Humidity control

Die shear test

Capacitance vs. Voltage plots

Wire bond pull

Furnace tube cleaning

Pre-seal visual

Deionized water checks

Hermeticity

Metal thickness monitor

Electrical test

Metal SEM monitor
Inspection of starting material
16

The Failure Rate Equation relates to the
population of units failed under life testing and the
duration of the test. It is defined by the
relationship

Life and Environmental Stress Tests
To ensure the highest quality product
commensurate with the intended use of the
device, numerous life and environmental tests
have been designed to assess device
performance. The majority of these tests are
designed to simulate more extreme operating
conditions than would actually be encountered in
most practical applications. This ensures the
reliability performance of the device relative to its
intended application. Typical device testing at
MSD generally comprises the following
environmental and life tests:

'11.=
where
A = assessed failure rate
NF = quantity of failures occuring in a time interval
t
No = quantity of acceptable devices at zero hours
t = time interval or duration of test

Life Tests
Generally it is more meaningful to discuss failure
rates in terms of the Mean Time To Failures or
MTTF, which is the reciprocal of the failure rate
and expressed as MTTF = 1/'11.. It is important to
recognize that both A and MTTF are statistical
averages and apply only to the useful life of the
product.

High Temperature Reverse Bias (HTRB)
Operating Life
High Temperature Operating Life (HTOL)
High Temperature Storage Life (HTSL)

Environmental Tests

The Probability of Survival is the likelihood that a
particular device will survive for a given period of
operating time and may be expressed as:

Moisture Resistance Hermeticity
Solderability

(

Mechanical Shock

Thermal Shock

Lead Fatigue

Temperature
Cycling

Vibration Variable Frequency
Vibration Fatigue

where

Power Cycling

Constant Acceleration

t = operating time of the device

Terminal Strength

Salt Atmosphere

A = failure rate = 1/MTTF

Ps = e-At = e-tl(MTTF)

Specific methods and conditions of these tests are
in compliance with MIL-STD-202, MIL-STD-750,
and MIL-STD-883 test specifications, depending
upon the nature of the device being tested and its
functional classification. For more information on
these testing programs please refer to the High
Reliability section of this catalog.

The third mathematical relationship of importance
to reliability is a form of the Arrhenius Equation,
which relates the rate of a thermally accelerated
process to temperature. Expressed in terms of the
failure rate A and the Activation Energy (Ea) for the
process takes the form:
Ea=

Reliability Assessment and Prediction
Numerous concepts and mathematical models
have been proposed to assess the reliability
performance of semiconductor components. Of
these, essentially three fundamental equations are
widely used in the industry for reliability
assessment and prediction of failure rate:

where
Ea = Activation Energy
k = Boltzmann's Constant (8.63 x 10-5 eV/o K)
Ti = Absolute temperatures at which the failure
rates Ai were measured

• The failure rate equation, A

Ai = Failure rate at temperature Ti
From this relationship, the failure rate at some
temperature other than the test temperature can
be determined provided the activation energy of

• The probability of survival, Ps
• The Arrhenius equation for determining the
activation energy of thermal processes, Ea

17

ARRHENIUS PLOT

the failure mode is known. More important, the
activation energy can be determined for various
thermally activated processes. This allows the
reliability analysts to fingerprint specific failure
mechanisms and hence predict the reliability
performance of a product as a function of time
and temperature. In practice, the failure
mechanism of a device is not clearly understood
or the activation energy of the processes are not
known. Hence the derating of failure rates from
accelerated temperature stress testing is usually
accomplished by the use of the non-integrated
Arrhenius equation:

\

.
,

In'

EXTRAPOLATED·LlNE

/ F O R DERATING A

,,
,

\
\

In A = - Ea
kT

+

lIT

In A

Extrapolation of this line to the junction
temperature (TJ) of the device or ambient
temperature (TA) allows the analytical extraction of
the failure rate at the temperature of interest. This
procedure of derating A assumes that the failure
rate is a linear function of time at a fixed level of
stress.

where A is a constant.
A plot of In A vs. T-1 will yield a straight line as
illustrated, with a slope equal to -Eak-1.

18

Reliability Product Monitor Program
The accompanying program matrix has been
constructed by the Reliability Group to provide an
active monitor on the reliability performance of
our products; the intent of the program being:

Fabrication and assembly variables were
considered in the construction of the matrix to
assure that these products would best represent
all product families and their associated
processes.

• To provide a periodic on-going evaluation of
our product reliability.

In addition to the following listed products, all new
products must pass an extensive reliability test
program prior to introduction. This ensures that
the tradition of high quality is upheld in all new
devices.

• Maintain a pulse on fabrication and assembly
operations.
• Identify, via long-term stress testing, the
limitations of our products and thereby
provide future direction to engineering
design, development, and manufacturing
improvements.

Life and Environmental Test Matrix[1]
Life/Environmental Stress

Stress Condition

Minimum Stress Duration

MIL-STD-750
Method 1026.3

TJ/TcH:::; 200° C

1000 hours

High Temperature Storage

MIL-STD-883
Method 1008

Test Condition D
TA= 200°C

2000 hours

MIL-STD-750
Method 1038/1039

Test Condition A
TA= 200°C

1000 hours

Temperature Cycling

MIL-STD-883
Method 1010

Test Condition D
-65° to 200° C

100 cycles

Power Cycling

MIL-STD-750
Method 1036.3

ATc = 100°C

5000 cycles

Thermal Shock

MIL-STD-883
Method 1011

Test Condition D
-65° to 200° C

100 cycles

Solderability

MIL-STD-202
Method 208

T PbSn at 230° C

5 second dwell

Hermeticity

MIL-STD-883
Method 1014

Kr-85/dry N2
Penetrant dye

N/A

Moisture Resistance

MIL-STD-202
Method 106

65° C/98% R.H.

10 day

Vibration Variable Frequency

MIL-STD-750
Method 2056

100 to 2,000 Hz

4 cycles at Sweep Rate
< 4 minutes

Mechanical Shock

MIL-STD-883
Method 2002

Acceleration at
1,500 G's

0.5 msec. pulse
duration

Terminal Strength

MIL-STD-750
Method 2036.3

TBA
(Package Related)

HTRB

(/

Test Method

Operating Life

30 second duration

Note:
1. The intent of the monitor program is to maintain a pulse on the reliability performance of products.

19

--~~--=~-------~~~~.

Reliability Product Monitor Program
Product Line
RF Schottky

Microwave
Schottky
PIN/SRD

Bipolar
Transistors

Part Number

Quantity

Period of Testing

5082-2800

100

Biannual

HSCH-1001

100

Biannual

5082-2835

100

Biannual

5082-2831

100

Biannual

5082-2200/2202

100

Biannual

5082-2301/2302

100

Biannual

5082-3001

100

Biannual

5082-3080

100

Biannual

HPND-4001/4050

100

Biannual

5082-0180

100

Biannual

5082-3188

100

Biannual

HXTR-5103

60
30[21

Biannual

HXTR-61 03/61 04

60
30[2]

Biannual

HXTR-3101/3102

90

Biannual

Life/Environmental Tests
Operating Life
HTRB[1]
High Temperature
Storage[1]
Temperature Cycling
Thermal Shock
Hermeticity[1]
Solderability[1]
Moisture Resistance
Vibration Fatigue
Mechanical Shock
Terminal Strengthl 1]
Power Cyclingl 1]
Moisture Resistance
Pressure Pot[1]
Lead Fatigue[1]
Salt Atmosphere
Solvent Resistance

Noles:
1. Where applicable.
2. May be electrical rejects.

DIODES
HERMETICITY

(100 UNITS)

I
I

25 UNITS

I

I

25 UNITS

25 UNITS

I

25 UNITS

1

20

o

BIPOLAR TRANSISTORS
(Method of Sequential Testing)
HERMETICITY
150 UNITS)

I

I

25 UNITS

"

I

25 UNITS

o

21

23

----------~----

SILICON BIPOLAR TRANSISTORS
CHARACTERISTICS AND APPLICATIONS
The Silicon Bipolar transistor is a semiconductor device, with amplification due to current
gain. The advantages silicon bipolar transistors
have over other transistor types are mature
technology (both in the understanding of the
device physics and the device design), low cost,
and proven reliability. Therefore, silicon bipolar
transistors offer designers a familiar, reliable,
cost effective solution to many of their design
needs.

measured with the emitter connected to the
guard of a four-terminal pair capacitance meter.
F(50 0) (50 n Noise Figure) - The noise figure
of a transistor with a 50 n source impedance.

fo (Gamma Optimum) - The source reflection
coefficient that yields the lowest possible noise
figure of a transistor (FMIN).
IP3(Third Order Intercept Point) - The
intersections of the straight line extensions of
the fundamental output and third order
intermodulation products of a transistor.

The Hewlett-Packard silicon bipolar transistors
are each characterized using standard D.C. and
R.F. specifications. The typical D.C. specifications include pertinent junction parameters
(such as junction breakdown voltages and leakage currents) and Beta (hFE). The R.F. and D.C.
parameters include the following:

P1dB (Power Output at 1 dB Gain Compression)
- When the input power increases until the
small signal tuned gain 'Compresses by 1 dB,
the resultant output power is called P1dB.

S-parameters are four measurable normalized vector quantities that relate to
reflection coefficients and gains. The four Sparameters are described as follows; Sl1, the
input reflection coefficient; S21, the forward
transmission coefficient (gain); S12, the reverse
transmission coefficient (isolation), S22, the
output reflection coefficient.

S-Parameters -

(Minimum Noise Figure) - The lowest
possible noise figure of the transistor when
properly biased and matched for low noise
operation.
FMIN

ft (Transition frequency, "Gain Bandwidth
Product") - ft is the theoretical frequency at
which the common emitter gain IhIe I is unity
(O·dB)' .
MAG (Maximum Available Gain) -

BVCBO (Collector Base Breakdown Voltage with

MAG is

Open Emitter) - DC breakdown voltage,
collector to base, with the emitter open circuited (IE = 0). This is the highest breakdown
voltage of the collector-base junction. BVCBO is
the highest voltage at which the transistor can
be operated without damage in Common Base
circuits.

theoretically the highest transducer power gain
that the transistor can deliver at a given
frequency. It is important to recognize that
MAG can only be deftned when the Stability
Factor, K, is greater than 1.0.
Ga (Noise Figure Gain) - Noise Figure Gain is .
the transducer gain meas.ured with the same
source impedance as that for obtaining the
Minimum Noise Figure, FMIN. Ga is usually
lower than MAG since the optimum source
impedance for FMIN is usually different than for
MAG.

BVCEO (Collector Emitter Breakdown Voltage
with Open Base) - DC breakdown voltage,
collector to emitter, with the base open
circuited (lB= 0), BVCEO is usually lower (as
much as 50%) than BVCBO.

BVCES(Coliector Emitter Breakdown Voltage
with Base Shorted) - DC breakdown voltage,
collector to emitter, with the base short circuited to the emitter (VBE = 0).

GT (Tuned Gain) - Tuned Gain is transducer
power gain measured with the transistor's input
and output impedances matched (tuned),
G1dB (Associated 1 dB Compressed Gain) Gain associated with P1dB. G1dB is 1 dB less
than the transistor small signal gain when it is
matched for maximum output power.

The forward
transmission gain of a transistor with a 50
source and load.

BVEBO (Emitter Base Breakdown Voltage) -DC

breakdown voltage, emitter to base reverse
biased, with open circuited collector (Ie = 0).
(Common Emitter Current Gain, Beta) Common emitter DC current gain, the ratio of
the total DC collector current to the total DC
base current.

hFE

IS21EI2 (Transducer Gain) -

n

C12E (Reverse Transfer CapaCitance) - The
collector-base capacitance of a transistor

24

C)

lEBO (Emitter Base Leakage Current) - DC
leakage current, reverse biased emitter base,
with collector open (Ie = 0).

2001, the transistor chip, is also available for
hybrid applications. All of the HXTR-2000
series devices are characterized from 100 MHz
to 6.5 GHz

ICBO (Collector Base Leakage Current) - DC
leakage current, reverse biased collector to
base, with emitter open circuited (IE = OL

The HXTR-3000 Series
The HXTR-3000 series devices are designed for
high volume, low cost applications in the UHF
range. The HXTR-3000 series consists of two
basic chips; the HXTR-3001 and the HXTR3002. The HXTR-3001 has high gain (typically
16 dB at 2 GHz), and low noise figure (typically
2.2 dB at 2 GHz). The HXTR-3001 is offered in
the HPAC-100X (a low cost, rugged metal/ceramic package) as the HXTR-3101 and the
HXTR-3103. The HXTR-3002 has high linear
output power (typically 21 dBm at 1000 MHz)
and high associated 1 dB compressed gain
(typically 11.5 dB at 1000 MHz). The
HXTR-3002 is also offered in the HPAC-100X,
as the HXTR-3102 and the HXTR-3104. Both
chip products, the HXTR-3001and the HXTR3102 are available for hybrid applications. All of
the HXTR-3000 series devices are characterized
from 100 MHz to 6 GHz.

ICEO (Common Emitter Leakage Current with

Base Open) - DC leakage current, collector to
emitter, with base open circuited (lB = OL
ICES (Collector Emitter Leakage Current with
Base Shorted) - DC leakage current, reversed
biased collector to emitter, with base shorted to
emitter (VEB = 0).
Ie (MAX) (Absolute Maximum Collector Current)
- Ie (MAX) is the maximum collector current
that the transistor can safely withstand for an
extended period.

PT (MAX) (Maximum Power Dissipation) - PT
is the maximum total DC and microwave
power dissipation the transistor can safely
withstand.

(MAX)

TJ (MAX) (Maximum Junction Temperature)The maximum junction temperature at which
the reverse biased collector base junction can
be maintained without irreversibly damaging
the transistor.

('

The HXTR-4101
The HXTR-4101 is designed and characterized
for common-base oscillator transistor applications. The device uses the HXTR-2001 chip
packaged in the HPAC-100. The HXTR-4101
has typical output power (oscillator power) of
20 dBm at 4.3 GHz. This device is characterized
from 1 GHz to 12 GHz.

Included in the data sheets are the "Absolute
Maximum Ratings" which are those conditions
that, when exceeded, will cause permanent
damage to the device. These are the standard
maximum ratings used for derating purposes.

The HXTR-5000 Series

The Hewlett-Packard Silicon Bipolar product
line has six basic transistor types; the HXTR2000 series, the HXTR-3000 series, the
HXTR-41 01, the HXTR-5000 series, the HXTR6000 serios and the new HXTR-7000 series.

The HXTR-5000 series devices are designed for
those applications where high linear output is
required. The HXTR-5000 series consists of two
basic transistor chips, the HXTR-5001 and the
HXTR-5002. Both transistor chips have 2 J.Lm
emitter widths and Ta2N ballast resistors. The
HXTR-5001 has a total device dissipation of 700
mW, while the HXTR-5002 has a device
dissipation of 2.7 W. The HXTR-5001 has higher
linear output power than the HXTR-2000 series
(P1dB typically 23 dBm at 2 GHz), and high
associated 1 dB compressed gain (typically 13.5
dB of 2 GHz). The HXTR-5001 is offered in the
HPAC-100 and the HPAC-200. The HXTR-5101
is in the HPAC-100, and the HXTR-5103 is in
the HPAC-200. The HXTR-5002 has the highest
linear output power of the transistor product
line (typically 29 dBm at 2 GHz) and high
associated 1 dB compressed gain (typically 12.5

The HXTR-2000 Series
The HXTR-2000 series is designed for general
gain amplifier stage requirements. The HXTR2000 series devices have 2J.Lm emitter widths,
and 450 mW of total device dissipation. These
transistors have high maximum available gain
(typically 17.5 dB at 2 GHz), high linear output
power (P1dB typically 20 dBm at 2 GHz) with a
small degradation in noise figure (typically 2.2
dB at 2 GHz). The HXTR-2000 series is offered
in two rugged hermetic packages, the HPAC100 and the HPAC-70GT. The HXTR-2101 is
packaged in the HPAC-100, and the HXTR-2102
is packaged in the HPAC-70GT. The HXTR25

dB gain at 2 GHz). The HXTR-5002 devices are
offered in the hermetic packages HPAC-200
GB/GT and the HPAC-200. The HXTR-5102 is
packaged in the HPAC-200 GB/GT, and the
HXTR-5104 is packaged in the HPAC-200. Both
chip transistors, the HXTR-5001 and HXTR5002, are available for hybrid applications. All
the HXTR-5000 series devices are characterized
from 100 MHz to 6 GHz.
The HXTR-6000 Series

The HXTR-6000 series devices are designed for
those applications where low noise performance is a premium. These devices stem from
two basic transistor chips, the HXTR-6001 and
the HXTR-2001. The transistors using the
HXTR-6001 have the lowest noise figure and
the highest associated gain. The HXTR-6001
transistor has a 1 ILm emitter width, a typical
noise figure of 1.7 dB (at 2 GHz) with 13 dB of
associated gain, and 150 mW of total device
dissipation. The HXTR-6001 transistors are
offered in the HPAC-70GT and the HPAC-100.
The HXTR-6101 and the HXTR-6102 (low noise
selection of the HXTR-6101) are offered in the
HPAC-70GT. The HXTR-6103 and the HXTR-

e

6104 (low noise selection of the HXTR-6103)
are in the HPAC-100. The chip, the HXTR-6001,
is available for hybrid applications. The HXTR6105 and the HXTR-6106 use the HXTR-2001
chip. The HXTR-6105 is packaged in the HPAC100, and the HXTR-6106 is packaged in the
HPAC-70GT. The HXTR-6105 and the HXTR6106 are low noise selections of the HXTR-2101
and the HXTR-2102 respectively. These devices
are all characterized from 100 MHz to 6 GHz, or
higher.
The HXTR-7000 Series

The HXTR-7000 series devices are designed for
those applications where low noise and high
linear power output performances are required.
The chip, the HXTR c 7011, has 0.6 ILm emitter
widths, a typical noise figure of 1.7 dB with an
associated gain 13 dB at 2 GHz and 600 mW
total device power dissipation. The HXTR-7011
is offered in two rugged hermetic packages: the
high volume low cost HPAC-100X (HXTR-3615,
HXTR-3645, HXTR-3675) and the HPAC-100
(HXTR-71111. All the HXTR-7000 series devices
are characterized from 100 MHz to 6000 MHz.

26

SILICON BIPOLAR TRANSISTOR
PACKAGE SELECTION GUIDE
High Performance
Low
Noise
4 GHz
2 GHz
(HXTR-) (HXTR-)

Low Cost
Linear
Power

General
Purpose

Low
Noise

General
Purpose

Linear
Power

4 GHz
(HXTR-)

2 GHz
(HXTR-)

4 GHz
(HXTR-)

2 GHz
(HXTR-)

1 GHz
(HXTR-)

1 GHz
(HXTR-)

1 GHz
(HXTR-)

5001
5002

3002
5001
5002

7011

3001
7011

3002
7011

3104

3615
3645

3101
3615

3102
3104
3615

~

6001
7011

6001
7011

2001

2001
3001

=t

3675

3645

3675

3103
3645

0

6101

6102

2102

2102
6106

7111

6103
6104

2101
6105

2101

CHiP

HPAC-l00X

DV~
0
HPAC-70GT

+
+

5101

5101

5103

5103
5104

5102

5102

CJ

HPAC-l00

HPAC-200

0

10

0 0)
0

HPAC-200GB/GT

27

---------- ---------------

BIPOLAR TRANSISTOR SELECTION GUIDE
TYPICAL NOISE FIGURE VS. FREQUENCY
(PACKAGED TRANSISTOR)

4.0,-,--,--,-,--,-----,---,-----,--,,,

3.0

in

"~
2

~.

""
ilj

2.0

~

i5
z

1.0

FREQUENCY (GHz)

TYPICAL NOISE FIGURE VS. FREQUENCY
(CHIP TRANSISTORS)
4. 0

3.0

VV

HXTR-2001~

HXTR-300' ............

y/ . /
Ix
",./'

0

1.0

"
V

~
-- ~ ~ ~HXTR-7011
""",~
~

-- -- :~ F--''''
-- ---

-

~.",.

"I'HXTR-f 1.1 eV). For operation above this
condition, refer to page 108. "Reliability Performance of
Bipolar Transistors".

Thermocompression Wire Bond at a stage temperature of
310 ± 10°C, using a tip force of 30 ± 5 grams with 0.7 or 1.0
mil gold wire. A one mil minimum wire clearance at the passivation edge is recommended. (Ultrasonic bonding is not
recommended.!

32

(

Electrical Specifications at TA =25°C
MIL-5TD-TSO
Test Method
30111'

Pa,~meters

Symbol
BVCES

and Test Conditions
Colleetc,-Emitte, Breakdown Voltage at

je-100~A

VCE~15V

V

ICEO

Colleclof-Emltter Leakage Current at

3041.1"

nA

ieeo

Collector Cutoff Current at Vce=15V

3036.1"

nA

hFE

Forward Current Transfer Ratio at VCE-15V. Ic=15mA

3076.1 '

MAG

Maximum Available Gain

Pide

Vee = 15V, Ie = 25 rnA
Power Output at ldB Gain Compression

FMIN

Minimum Noise Figure

VeE

1-2GHz
4GHz

~
w

'"
'0
z

«
'"«

36
32
28
24
20
16

.......

I I
I I

""'-

I

I

MAG

"''"

"-

i-"'"
J
VeE -3V_
/'
If ~
/ ......... VeE -W'::
~
V/.. ......
""":'1

-

11
10

W

l'\.
I\,

1//

,,/

V

~FI'N
0.2

I

-

12

'"

0,1

3.8

Veel = lQ - ,15V-

13

"

1

11.5
20.0
18,5

J

15
14

1

12

17,5

dB

16

I

r-- S
r-- I 21.I'

220

HMeasured under low ambient light conditions

1

~

120

2,3

3246.1

46Hz

"300ps wide pulse measurement <2°/0 duty cY'cie.

100
50

dBm

f=2.0GHz

Max.
500

dB

4GHz

15V, Ie = 25 rnA

=

Typ.

Min.
30

-

f=2GHz

VeE = 15V, Ie = 15 mA

VeE '1V\

1

3

0.4 0,6

o

FREQUENCY IGHz)

(

Units

I

!
10

15

25

20

30

COLLECTOR CURRENT (mA)

Figure 1. Typical MAG, IS21E12, and
Noise Figure (FMIN) vs. Frequency at VeE
= 15 V, Ic = 25 mAo

Figure 2. TypicallS21EI2 vs. Current at 2
GHz,

Typical S-parameterS*VCE = 15V. Ic = 25mA
$11

Freq. (MHz)
100
200
300
400
500
600
700
800
900
1000
1500
2000
2500
3000
3500
4000
4500
5000
5500
6000

Mag.
0.57
0.68
0.72
0.74
0.75
0,76
0,76
0.76
0.76
0.76
0.77
0.77
0,77
0.77
0.77
0.76

0.76
0.76
0.76
0,76

(dB)
33,3

·172

14.5
12.0
10,1
8.6
7.2
6.0
5,1

-175
·176
-177
-178
.179
-179
-179
-180
-180

30.2
276
2!>.4

23.7
22.2
20.8
19.9
18,8

18.0

4.1
3.5
2,9

$22

$12

$21

Ang.
-88
-124
-141
-150
-156
-160
-163
·165
-167
-168

Mag.

Ang.

(dB)

Mag.

46,2
32,5

144
123
113
106
102

-42
-39

0,008
0,011
0.013
0.014
0,014
0,015
0.015
0,016
0,015
0.017
0,021
0.025
0.029
0,034
0,038
0,043
0,048
0052
0.057

23.9
18,7
15.3
12.9
11.0
9.8

99

2,0
1.6
1,6
1.5
1.4

-37
-37

·36

97

-36

95

77

-36
-36
-35
-34
-32
-31

73

-29

69
66
63
59
56
53

-28

93
91
85
81

8,7
7,9
5.3
4.0
3.2
2.7
2.3

-38

-27
-26
-26
-25
-24

0.062

Ang.
58

43
37
35
35
36
37

38
40
42

49

See page 49.

33

0.44

Ang.
-20

-26
-26
-24

-22
-21
-20
·19
-18
·18
·18

54

0.43
0.43

58

0.43

-23

0.43
0.44
0.44
0.45
0,45
0.46
0.47

-26

60
61

62
62
62
62
61

*Values do not include any parasitic bonding inductances and were generated by use of a computer model.

RF Equivalent Circuit

Mag.
0,85
0.67
0,56
0.51
0.48
0.46
0,45
0.44
0.44

-20
·29

-32
-35
-38
-41
-44

Flin-

GENERAL PURPOSE
TRANSISTOR CHIP

HEWLETT
~aI PACKARD

HXTR-300l

Features
HIGH GAIN
16 dB Typical at 2 GHz

1--------

305

(o.ol~)

PAD

HIGH OUTPUT POWER
21.0 dBm P1dB Typical at 1 GHz
LOW NOISE FIGURE
1.5 dB Typical FMIN al1000 MHz
WIDE DYNAMIC RANGE

305 {O.012}

LARGE GOLD BONDING PADS

Description/Applications
The HXTR-3001 is an NPN silicon bipolar transistor chip
designed for use in hybrid applications requiring superior
noise figure and associated gain performance at VHF, UHF,
and microwave frequencies. Use of ion implantation and
self alignment techniques in its fabrication produce superior
device uniformities and performance.

BASE

The HXTR-3001 features a metallization system that provides consistent and reliable performance at rated
dissipation under high temperature operation. The HXTR3001 also is provided with a dielectric scratch protection
over its active area and large gold bonding pads for ease of
use in most hybrid applications.

Chip Outline
DimenSions In Micrometers (Inches) - 25 (O.001)

Gold Bonding Pad Typical Dimensions
Base:
50 10.002! x 50 '0.002:
Emitter:
75,0.0031 x 38 )0.0015'
89 10.00351 Typical
Chip Thickness:
Collector Back Contact:
Silicon-Gold Eutectic

Absolute Maximum Ratings"
(TA =

25°C)

Symbol

Parameter

Collector to Base Voltage
Collector to Emilter Voltage
Emitter to Base Voltage
DC Collector Current
Total Device Dissipation
Junction Temperature
Storage Temperature

VCBO
VCEO
VE80

Ie
Pr
TJ
TSTa

Limit

30V
20V
1.SV

70 mA
900 mW
30Q"C
-65 0 C to
300°C

~Operation in excess of anyone of these conditions may result
permanent damage to this device.

Recommended Die Attach
and Bonding Procedures

In

Eutectic Die Attach at a stage temperature of 410 ± 1Qoe
under an N2 ambient. Chip should be lightly scrubbed using
a tweezer and eutectic should flow within five seconds.

Notes:
1. Power dissipation derating should include a C)JB (Junctionto-Back contact thermal resistance) of 125° C/W.
Total

(~)JA

(Junction-ta-Ambient) will be dependent upon the

heat sinking provided in the individual application.
2. A MTTF of 1.0 x 107 hours will be met or exceeded when the

Thermocompression Wire Bond at a stage temperature of
310 ± 10° C, using a tip force of 30 ± 5 grams with 0.7 or 1.0
mil gold wire. A one mil minimum wire clearance at the passivation edge is recommended. (Ultrasonic bonding is not
recommended.)

junction temperature is maintained under TJ = 200 0 C (based
on an activation energy of 1.1 eV). For operation above this

condition, refer to page 108. "Reliability Performance of
Bipolar Transistors".

34

(

/ Electrical Specifications at TA = 25°C
MIL-8TD-150
Teat MethOd

Symbol

Parameters and Test Conditions

BVCES

Collector-Emitter Breakdown Voltage at Ie = 1oo"A

ICEO

Collector-Emiller Leakage Current at Vce = 15V

ICBO

Collector Cutolf Current at VCIl

= 15V

hFE

Forward Current Transler Ratio at VeE

MAG

Maximum Available Ga,n

= 15V. Ie ~ 15mA

Min.

Units

3011.1'

V

Mall.

Typ.

30

3041.1"

nA

500

3036.1"

nA

100

-

3076.1'

50

1= 2000 MHz

dB

f =1000 MHz
2000 MHz

dBm

120

220

16.0

Vc.=15V, Ic=15 rnA

P'dS

Power Output at 1 dB Gain Compress1on

FMIN

VCF15V. IC=25 rnA
M,,'I;mum Noise Figure

I'"

500 MHz
1000 MHz

3246.1

21,0

19.0

1.2
1,5

dB

2000 MHz

Vee=10V, le=7 rnA

2.2

'300!,s Wide pulse measurement <2% duty cycle.
"Measured under low ambient light conditions.

2.
22

- V~E Jsv i

.:s
lil

24

~

~

i..

'\'!

W

~

€.

12

10

"""I

0

I

fI

~ "
12

N

16

N

~~

16

I I

\Ie£'2V

..eC:::-

18

20 - -

I

15V- -

20

0;

I,

'\

vCE""'f\ - e -

/

!

(

0.1

00

10

15
~

FREQUENCY (GHz)

Figure 1. Typical MAG. IS21 E!2,
Maximum Stable Gain IMSGI, and
Noise Figure IFMINI vs. Frequency.

20

25

30

ImAI

Figure 2. TypicallS21 EI2
of 500 GHz.

VS.

Current

Typical 5- Parameters· VeE = 15V. Ie = 15 mA
511

521

~

512

Freq. (MHz)

Mag.

Ang.

(dB)

Mag.

Ang.

(dB)

Mag.

Ang.

Mag.

100
200
300
400

0.651
0714
0.7410,754
0.761
0765
0.767
0.768
0.769
0.770
0770
0,769
0.766
0.163
0760

-74
-113

30.6
27.8

146
125

25.3
23,2

14.46

21.S

11.84
10.00
8.63
7.59
6.77
6.11
4.10
3.06

-37.2
-33.9
-32.9
-32,3
-32.0
-31.7
-31.5
-31,2
-31.0
-30.7
-29.3
-28,0
-26.8
-25.7

0.014
0,020
0.023
0.024
0.025
0.026
0.027
0.028
0.028

59
43

-132

34.04
24.66
18.41

0.851
0.659
0.539
0.471
0.429
OA05
0,389
0.377
0,370
0.365

500
600
700
800

900
1000
1500
2000

2500
3000
3500
4000

0.756

-143

-lSI
-155
-159
-162
·164
-166
-171
-174

-176
-177

-178
-179

20.0
18.7
17.6
16,6

157
12.2
9.8
7.8
6.2
4.9
3.7

2.46
2.05
1.75
1.53

114
107
102

98
95
93
91
89

81
74

69
63
58

53

-24.7
-23.S

See page 49.

35

33
31
32
32
33
34

0.Q29

35

0.034
0.040
0.046
0,052
0.058
0.064

41
44
47
48

'Values do not include any parasitic bonding inductances and were generated by use of a computer mOdel.

RF Equivalent Circuit

36

48
48

0.358
0.364

0.375
0.389
0.405
0.423

Ang.
-2:3

-33

·36
-36
-35

-34
-34
-34

-34
·34
-38

-43
-49
-55

·tn

--66

LINEAR POWER
TRANSISTOR CHIP

r/i~ HEWLETT

a!e.

PACKARD

HXTR-3002

Features
HIGH OUTPUT POWER
22 dBm Typical P1dB at 1 GHz
HIGH PldB GAIN
18.0 dB Typical GldB at 1 GHz
HIGH IS21EI2 GAIN
16.5 dB Typical at 500 MHz
LARGE GOLD BONDING PADS

Description/Applications
The HXTR-3002 is an NPN silicon bipolar lransislor chip
designed for use in hybrid applications requiring superior
noise figure and associated gain performance at VHF, UHF,
and microwave frequencies. Use of ion implantation and
self alignment techniques in its fabrication produce superior
device uniformities and performance.

BASE

HXTR-3002 features a' metallization system that provides
consistent and reliable performance at rated dissipation
under high temperature operation. The HXTR-3002 also is
provided with a dielectric scratch proteciton over its active
area and large gold bonding pads for ease of use in most
hybrid applications.

Chip Outline
Dimensions in Micrometers (Inches) .!: 25 (O.o01)

Gold Bonding Pad Typical Dimensions
Base:
50 (O.002i x 5010.002;
Emitter:
75,0.0031 x 38 ,0.0015i
Chip Thickness:
89 10.0035i Typical
Collector Back Contact:
Silicon-Gold Eutectic

Absolute Maximum Ratings*
ITA = 25°CI
Symbol
Vcao
VCEO
V"eo
Ic
PT
TJ
Tsr(J

Parameter
Collector to Base Voltage
Collector to Em ilter Voltage
Emitter to Base Voltage
DC collector Current
Total Device Dissipation
Junction Temperature
Storage Temperature

Umit
45V
27V
4.0V
100 rnA
1AW
300°C
-65'C to
300'C

Recommended Die Attach
and Bonding Procedures

"Operation in excess of anyone of these conditions may result In
permanent damage to this device.

Eutectic Die Attach at a stage temperature of 410 ± 10'C
under an N2 ambient Chip should be lightly scrubbed using
a tweezer and eutectic should flow within five seconds.

Notes:
1. Power dissipation derating should include a (-)JS (Junctionto-Sack contact thermal resistance) of 125°C/W.

Total

(')JA

(Junction-to-Ambient! will be dependent upon the

heat sinking provided in the individual application.

Thermocompression Wire Bond at a stage temperature of
310 ± 10° C, using a tip force of 30 ± 5 grams with 0.7 or 1.0
mil gold wire. A one mil minimum wire clearance at the passivation edge is recommended. (Ultrasonic bonding is not
recommended.!

2. A MTTF of 3.5 x 106 hours will be met or exceeded when the
junction temperature is maintained under TJ = 125°C (based
on an activation energy of 1.1 eVl. For operation above this

condition, refer to page 108. "Reliability Performance of
Bipolar Transistors".

36

(

Electrical Specifications at TA = 25°C
Symbol
BVcEO

Parameters and Test Condltlons
Collector· Base Breakdown Voltage at Ie ~ 3 rnA
Coliector·Emitter Breakdown Voltage at Ie ~ 15 rnA

BVEBO

Emitter·8ase Breakdown Voltage at IB

BVCBO

~

~

Test
MIL-STO-750
3001.1'

30 pA

2V

lEBO

Emitter·Base Leakage Current at YES

ICES
ICBO

Collector·Emitter Leakage Current at VeE

~

32 V

Units
V

Min.
40

Typ.

3011.1'

V

24

30261'

V

$.3

30611'

pA

2

30411"

nA

200

30361"

nA

hFE

Coliector·Base Leakage Current at VeB ~ 20 V
Forward Current Transfer Ratio at VeE ~ 18 V. Ie

PldS

Power Output at 1 dB Gain CompressIon

f

1000 MHz

dBm

22.0

GldB

AssOCiated 1 dB Compressed Gain
VCE= 18V.lc=30 rnA

f = fOOO MHz

dB

180

\S21E1 2

Transducer Gain
VCE'c 18 V, Ic ~ 30 mA

f = 500 MHz
1000 MHz

d8

16.5

~

30 mA

100

30761'

~

Max.

15

40

75

13.6

'300 /-Is wide pulse measurement at ::;2% duty cycle.
"Measured under low ambient light conditions

E
~

28

20

26
24

18

~

'"Cl

22

16

20

14

18

"'-''"

16

"

12

~

14

W

0)

W

12

10

;E

10

~
c5

"'"
0

(

0.1

0.2 0.3

10

0.5

Figure 1. Typical MAG.IS21E\2.
Maximum Stable Gain IMSGI and Power
Output at 1 dB Gain Compression IPldSI
VS. Frequency. VCE ~ 18 V, Ie = 30 rnA.

Typical S-Paranleters* VCE =
100

200
300
400
500
600
700
800
900
1000

1500
2000
2500

3000
3500
4000

Mag.
0.658
0656
0.652
0,648
0.644
0641
0.637
0.634
0632
0629
0.623
0618
0614
0.611
0608
0604

50

Figure 2. TypicallS21 EI2 vs. Current at

500 MHz.

5 21
An9·
-17

(dB)

·32

185
183

-47
-60

178
17.3

·72

16.7
161
154
14.8
14.2
136

-82
·91
-99
·105
-111
·131

·143
·151
·156
-160
·163

10.9
8.8
7.0
5.6
4.3
3.3

S ..

5,2

Mag.
844
8.18
7.79
7.33
6.85
637
5.91
549
5.11
4,76
350
2.74
2.24
1.90
1.65
1.46

Ang.

(dB)

170
161
153
145
138
132

-35.9
-30.1
·27.0

·250
-23.7
·22.7

126

-220

121
117
113
98
88
79
72

·21.5
-210
·20.7
·19.7

65
59

-19.2
·18,8
·18.4
-18.1
·17.7

Mag.
0,016
0031
0.045
0.056
0066
0073
0080
0.085

Ang,

Mag,

82
75

0.991

0089
0.092
0.103
0.110
0,115
0.120
0.125
0130

'Values do not Include any paraSitic bonding Inductances and were generated by use of a computer model.

RF Equivalent Circuit

40

18V. Ic = 30 mA

S"
Freq. (MHz)

30

20
Ic(JnA)

FREQUENCY (GHz)

See page 49.

37

68
62
56

52
48
45
42
39
32
29
28
27
27
27

0965
0.926
0881
0.833
0.787
0.744

0.706
0.671
0641
0.541
0492
0.469
0,461
0.460
0.465

Ang.
-7
-14

·20
·25
·29
-33
-36

·39
·41
-43
·50
-54
·58
-62
-66

-70

Flio-

LINEAR POWER
TRANSISTOR CHIP

HEWLETT

~~ PACKARD

HXTR-5001

Features
HIGH OUTPUT POWER
23 dBm Typical PldB at 2 GHz
22 dBm Typical PldB at 4 GHz

'I

HIGH PldB GAIN
13.5 dB Typical GldB at 2 GHz
8.0 dB Typical G ldB at 4 GHz

-r

I

HIGH POWER-ADDED EFFICIENCY

1

I

I

'"l'"

Description IApplications
The HXTR-500l is an NPN silicon bipolar transistor chip
designed for use in hybrid applications requiring superior
noise figure and associated gain performance at VHF, UHF,
and microwave frequencies. Use of ion implantation and
self alignment techniques in its fabrication produce superior
device uniformities and performance.

I
I

_...L

BASE

The HXTR-5001 features a metallization system that provides consistent and reliable performance at rated
dissipation under high temperature operation. The
HXTR-5001 also is provided with a dielectric scratch protection over its active area.

Chip Oulline
Dimensions in Micrometers (Inches)

~

25 (0.001)

Gold Bonding Pad Dimensions: 25 :0.001· x 25 '0.001,
TYPical
891.0.0035, Typical
Silicon-Gold Eutectic

Absolute Maximum Ratings *

Chip Thickness:
Collector Back Contact:

ITA = 25°C)
Symbol
VCBO
VCEO
V.BO
Ie

Pr
TJ
TSTG

Parameter
Collector to Sase Voltage
Collector to Emitter Voltage
Emitter to Base Voltage
DC Collector Current
Total Device Dissipation
Junction Temperature
Storage Temperature

Limit
45V
27V
4.0V
lOOmA
lAW
300°C
-65'C to
300'C

Recommended Die Attach
and Bonding Procedures

*Operation in excess of anyone of these conditions may result in permanent
damage to this device.

Notes:

Eutectic Die Attach at a stage temperature of410 ± 10°C
under an N2 ambient. Chip should be lightly scrubbed using
a tweezer and eutectic should flow within five seconds.

1. Power disSipation derating should include a (..)JB (Junction-

to-Sack contact thermal resistance) of 125°C/W.
Total ElJA (Junction-to-Ambient) will be dependent upon the
heat sinking provided in the individual application.

Thermocompression Wire Bond at a stage temperature of
310 ± 10° C, using a tip force of 30 ± 5 grams with 0.7 or 1.0
mil gold wire. A one mil minimum wire clearance at the passivation edge is recommended. (Ultrasonic bonding is not
recommended.!

2. A MTTF of 3.5 x 106 hours will be met or exceeded when the
junction temperature is maintained under TJ ::::: 125 0 C (based
on an activation energy of 1.1 eV). For operation above this

condition, refer to page 108. "Reliability Performance of
Bipolar Transistors".

38

( / Electrical Specifications at TA=25°C
Test
MIL-$TO-750

Symbol

Parametel'$ and Te$\ Condlllon$

BVCBO

Collector-Base Breakdown Voltage at 'e

BVCEO

::I mA
Collector-Emitter Breakdown Vollage at Ie = 15 mA

BVEBO

Emitter-Base Breakdown Voltage al'e = 30

~

lEBO

Emitter-Base Leakage Current at VEe = 2 V

ICES

Collector-Emitter Leakage Current

Units

Min.

V

40

3001.1'

~A

3011,1'

V

24

3026.1'

V

3.3

30611

at VeE = 32 V

ICBO

Collector-Base Leakage Current al Ves = 20 V

I1FE

Forward Current Transfer Ratio al VCE = 1 V, Ic = 30 mA

P1dB

Power 0 utput at 1 dB Gain Compression

e

3041.1"

/'A
nA

3036.1"

nA

f = 2 GHz
4GHz

dB

PSAT

Saturated Power Output ,8 dB Gain'
13 dB Gain,

f= 2GHz
4 GHz

dBm

Power-Added Efficiency at 1 dB Compl'llssion

f = 28Hz
4GHz

%

Thlfd Order Intercept Point
VeE ~ 18 V. Ie 30 mA

f

4 GHz

dBm

IPJ

100

75

40

23.0
22.0

dBm

ASSOciated 1 dB Compressed Gam

"

2

15

GldB

Max.

200

3076.1"

f= 2 GHz
4GHz

Typ.

13.5
8.0
25.5
25.0

35
25

32

*300 }.ls wide pulse measurement at ~2% duty cycle.
"Measured under low ambient light conditions

30

E
~

'"

25

i'--

~

0:

..
Q

(

20

!H

"

I

I
10

:;;

..

<5

:;;

0,1

0.2 0.3

0.5

iii

:!!

\

~

".
E
Q

20

~r-:1BV

~P'"

Z

r- -

j2V

~

MAG

4

Pl~B

'"

i i

!'\

[;1'

o

I

"" \"

15

N

~

:-

30
P1dB

IS21EI~

Z

iii

:!!

Jool

,

'"

0-

10

o

6 8

18V
TV ~ -

GldB

o

10

20

30

40

50

FREQUENCY IGHz)

COLLECTOR CURRENT (mA)

Figure 1. Typical MAG. Maximum Stable
Gain IMSG}.IS21EI2 and PldB Linear
Power vs. Frequency at VCE = 18 V.
Ic = 30 mA.

Figure 2. Typical PldB Linear Power and
Associated 1 dB Compressed Gain vs.
Current at VeE = 12 V and 18 V at 4 GHz.

39

(

Typical S-parameters· VCE = 18V, Ic = 30 rnA
~1I

822

812

Mag.

Ang.

4B

Mag.

Ang.

dB

Mag.

Ang,

Mag,

Ang.

0,100
0,200
03Q0

0.74
0.73
0.72
0.71
0.70
0.69
0,67
067
0.66
0.65
0,63
0.62
0.61
0.61
0.61
0,60
060
0.60
0.59
0.59

-15
·30
·44
-57
-68
-78
·67
·94
-101
-107"
·128
-140
·148
-154
·158
-161
-164
-166
-168
-169

20.2

10,2
9,88
9.42
8.87
8.28
7.71
7.16
6.65
6.19
5.78
4.25
3.33
2.73
2.32
2.02
1.79
1.61
1.47
1.35
1.25

171
162
154
146
140

-S8
-33
·30
·28
-26
-25
·25
-24
-24
-23
-22
-22
·21
-21
-20
-20
-19
-19
-19
-18

0.01
0.02
0.03
0.04
005
0.08
0,08
0.06
0.07
0.07
0,08
0.08
0,09
009
0.10
0.10
0,11
0.11
0.12
0.12

8S
75
69
63
58
54

0.99
0,97
0.93
0.89
0.85
0,80
076
0.73
0.70
0.67
0.58
0.53
0.51
0.50
0.49
0.49
0.49
0.49
0.49
0,49

-5
-10
·15
-19

0,400

,

9:11

Freq. (GHz)

0.500
0.600
0.700
0,800
0.900
1.000
1',500

2 000
2.500

3.000
3,SOO
4.0'00
4S00
5.900
5.S00
6.000

19.9
19.5
19,0
18.4
17.7 .
17.1
16.5
15.8
15.2
12.6
10.5
8.7
7.3
6.1
5.8
4.1

3.3
2.6
2.0

134
129
124
120
117
103

94
87
81
76

71
66
62
58
55

50
47
44

42
37
35
35
35
36
37
38
39
40
40

-22
-24
·26
-28
-29
·30
·32
·$2
·33
-35
·36

·38
-40
-43
·45

·47

'Values do not Include any parasitic bonding Inductances and were generated by use of a computer model.

RF Equivalent Circuit

See page 49.

(

40

Flio-

LINEAR POWER
TRANSISTOR CHIP

HEWLETT

~~ PACKARD

Features

HXTR-5002

t-------(o~SI-------I

HIGH OUTPUT POWER
29 dBm Typical PldB at 2 GHz
27.5 dBm Typical PldB at4 GHz
HIGH PldB GAIN
12.5 dB Typical GldB at 2 GHz
7.5 dB Typical GldB at 4 GHz
HIGH POWER-ADDED EFFICIENCY

Description IApplications
The HXTR-5002 is an NPN silicon bipolar transistor chip
designed for use in hybrid applications requiring superior
noise figure and associated gain performance at VHF, UHF,
and microwave frequencies. Use of ion implantation and
self alignment techniques in its fabrication produce superior
device uniformities and performance.
The HXTR-5002 features a metallization system that provides consistent and reliable performance at rated
dissipation under high temperature operation. The
HXTR-5002 also is provided with a dielectric scratch protection over its active area.
Gold Bonding t>ad Dimensions: - 38 (O.0015) x 20 (0.008) Typlca)
Chip Thlckne • ., 90 (0.0035! Typical
Coliector Sack Contact: Silicon-Gold Eutectic

( .

Absolute Maximum Ratings'
(TA = 25°CI
Symbol
VCBO
VCEO
VEBO
Ie

p,TJ
TSTG

Parameter
Collector to Base Voltage
Collector to Emitter Voltage
Emitter to Base Voltage
DC Collector Current
Total Device Dissipation
Junction Temperature
Storage Temperature

Limtt
45V
27V
4V
250 rnA

4W
300·C
-65'C to

Recommended Die Attach
and Bonding Procedures

3oo·C
·Operation in excess of anyone of these conditions may resut.tln permanent
damage to this device.

Eutectic Die Attach at a stage temperature of 410 ± 10°C
under an N2 ambient. Chip should be lightly scrubbed using
a tweezer and eutectic should flow within five seconds.

Notes:
1. Power dissipation derating should include a (·)JB (Junctionto-Back contact thermal resistancel of 125 0 C/W.
Total (")JA (Junction-to-Ambientl will be dependent upon the
heat sinking provided in the individual application.
2. A MTTF of 3.5 x 106 hours will be met or exceeded when the
junction temperature is maintained under TJ = 125 0 C (based
on an activation energy of 1.1 eVI. For operation above this

Thermocompression Wire Bond at a stage temperature of
310 ± 10° C, using a tip force of 30 ± 5 grams with 0.7 or 1.0
mil gold wire. A one mil minimum wire clearance at the passivation edge is recommended. (Ultrasonic bonding is not
recommended.!

condition, refer to page 108. "Reliability Performance of
Bipolar Transistors",

41

Electrical Specifications at TA=25°C
Test
MIL·STD·750

Symbol

Paramalets and Test Condliion.

BVcBo

Collector-Base Breakdown Voltage at

SVCEO

Collector-Emitter Breakdown Voltage at Ic=50mA

BVEBO

Emitter-Base Breakdown Voltage at

Ic~10mA

3001.1'

IB=100~A

Units

Min.

V

40

3011.1'

V

24

3026.1'

V

3.3

Typ.

Max.

IE80

Emitter-Base Leakage Current at VEB=2V

3061.1

~A

5

ICE$

Collector-Emitter Leakage Current at VCE=32V

3041.1"

nA

200

ICBO

Collector-Base Leakage Current at Vcs=20V

3036.1"

nA

hrE

Forward Current Transfer Ratio at Vce=18V. Ic=110mA

3076.1'

P'dB

Power Output at ldB Gain Compression

GldB

Associated fdS Compressed Gain

f= 2GHz
4GHz

dSm

f = 2GHz

4GHz
Saturated Power Output 18dB Gainl
(3dB Gain!

f

II

Power-Added Efficiency at IdB Compression

j

IP3

Third Order Intercept POint

PSAT

= 2GHz

4GHz

= 2GHz

VCE=18V,

f

= 4GHz

40

75

29.0
27.5

dB

12.5
7.5

dBm

31.0
29.5

(I/o

4GHz

100
15

38

23

dBm

37

Ic~110mA

*300 J.1sec wide pulse measurement at:5 2% duty cycle.
*"'Measured under lOW ambient light conditions.

30

25

.

~

"
.

0
2

«
E
~

20

15

10

'"
FREQUENCY (GHz)

COLLECTOR CURRENT (mAl

Figure 1. Typical/S21E/ 2 MAG and P, dB
Linear Power vs. Frequency at

Figure 2. Typical P1dB Linear Power and
Associated 1 dB Compressed Gain vs.

VCE = 18 V, Ic = 110 mAo

Current at VCE = 12 and 18 V at 4 GHz.

42

(

Typical S-Parameters* VeE =

18V, Ie = 110mA

811
Freq, (GHz)

Mag.

Ang.

(dB)

821
Mag.

0.100
0.200
0.300
0.400
0,500
0.600
0,700
0.800
0.900
1,000
1,500
2.000
2,500
3,000
3,500
4.000
4.500
5,000
5,500
6.000

0.55
0.65
0,72
0.76
0,79
0.80
0.81
0,81
0.82
0.82
0.83
0.83
0,83
0.83
0,83
0.83
0,83
0.83
0.83
0.83

-61

25.4
24.2
22.3
20.6
19,1
17.8
1M
15.5
14,S
13.7
10,3

19.7
16.2
13.1
10,7
9.01
7.73
6.74
5.97
5,35
4.84
3.29

7.9

2.49
2,00

-98
-119
-132
-141
-147
-151
-155
-158
-160
-167
-170
-173
-174
-175
-176
·177
-177
-178
-178

6.0
4,5
3,2

2,1
1,1
0,3
-0,5
-1,2

1,68
1.44
1.27
1,13
1.03
0,94
0.87

Ang.

(dB)

156
133
125
117
111
106
102
99
97
94
86
80
74
69
64
60

-31.S
-27.3
-25.6
-24.8
-24.4
-24.1
-24.0
-23,8
-2$,7
-23,7
-23.4
-23.3
-23.1
-22,9
-22.6
-22.4
-22.1
·21,9
-21,6
-21.4

55
51
47
43

812
Mag.

0.03

0.04
0,05
0.06
0,06
0.06
0.06
0,06
0,06
0.06
0.07
0,07
0.Q7
0.07
0,07
O.OB
0.08
0.08
0.08
0.08

*(Values do not include any parasitic bonding inductances and were generated by use of a computer modeL)

RF Equivalent Circuit

See page 49.

(

43

822

Ang.

Mag.

Ang,

68
50
39

0,93

-26
-46
-60
-71
-78
-84

32
27

24
22
20
19
18
16
16
17
18
19
20
21
21

22
22

0.76
0.63
0.53
0.45
DAD
0.36
0.33
0.31
0,30
0.25
0,24
0.24
0.25
0.27
0.28
0.30
0,32
0,34
0,35

·89
-93
-96
-99
-100
-114
-117
-118
-119
.120
-121
-121
-122
·123

/

Fh=- HEWLETT
~~

LOW NOISE
TRANSISTOR CHIP

PACKARD

I

."

HXTR-6001

Features
LOW NOISE FIGURE
1.7 dB Typical FMIN at 2 GHz
2.7 dB Typical FMIN at 4 GHz

1

1------- 305 ( 0 . 0 1 2 ) - - - - - 1
I

HIGH ASSOCIATED GAIN.
13.0 dB Typical G a at 2 GHz
9.0 dB Typical Ga at 4 GHz

/-::-

i

j
sa

Description/Applications

~~-~-~~~~

305
(0.012)

The HXTR-6001 is an NPN silicon bipolar transistor chip
designed for use in hybrid applicattons requiring superior
noise figure and associated gain performance at VHF, UHF,
and microwave frequencies. Use of ion implantation and
self alignment techniques in its fabrication produce superior
device uniformities and performance.
The HXTR-6001 features a metallization system that provides consistent and reliable performance at rated
dissipation under high temperature operation. The
HXTR-6001 also is provided with a dielectric scratch protection over its active area.

Chip Outline

Dimensions hI Micrometers (Inches) ± 25 (0.001)

Absolute Maximum Ratings *

Gold Bonding Pad Dimensions: 25 (0.001) x 25 (0.001)
Typical
89 (0.0035) Typical
Chip Thickness:
Silicon-Gold Eutectic
Collector Back Contact:

(TA = 25°C)

Parameter

Symbol
Vceo
VCEO
VEBO
Ic
PT
TJ
TSTG

Collector to Base Voltage
Co"ector to Emitter Voltage
Em Itter to Base Valtege
DC Collector Current
Total Device Dissipation
Junction Temperature
Storage Temperature

Lim"
35V
20V
1.5V
20mA
300mW
300°C
-6S·C to

3oo·C

Recommended Die Attach
and Bonding Procedures

~Operation in excess of anyone of these conditions may result in
permanent damage to this device.

Notes:

Eulectlc Die Attach at a stage temperature of 410 ± 10' C
under an N2 ambient. Chip should be lightly scrubbed using
a tweezer and eutectic should flow within five seconds.

1. Power dissipation derating should include a 0JB (Junction-

to-Back contact thermal resistance) of 125'C/W.
Total 0JA (Junction-to-Amblent) will be dependent upon the
heat sinking provided in the individual application.
2. A MTTF of 1.0 x 107 hours will be met or exceeded when the
junction temperature is maintained under TJ = 200°C (based
on an activation energy of 1.1 eVl. For operation above this
condition, refer to page 108. "Reliability Performance of

Thermocompression Wire Bond at a stage temperature of
310 ± 10°C, using a tip force of 30 ± 5 grams with 0.7 or 1.0
mil gold wire. A one mil minimum wire clearance at the passivation edge is recommended. (Ultrasonic bonding is not
recommended,)

Bipolar Transistors",

44

'

..
\

(

Electrical Specifications at TA = 25°C
Symbol
8VCES
ICEO
ICBO
hFE
FMIN

Ga

MIL-STD-750
Test Method
301U'
3041.1"

Parameters and Test Conditions
Collector-Emitter Breakdown Voltage at Ic=100!,A
Collector-Emitter Leakage Current at Vce=10V
Collector Cutoff Current at VC8=10V
Forward Current Transfer Ratio at Vce=10V, Ic~4mA
Minimum Noise Figure

1-2 GHz

Associated Gain

~
1=2 GHz

3036,1"
3076.1'

Units
V
nA
nA

-

Min.
30

Typ.

Malt.

150

500
100
250

50

1,7

3246.1

2.7
13.0

d8

90

4GHz
VCE=10V, le=4mA
*300ILS wide pulse measurement ::;2% duty cycle.
*'Measured under low ambient light conditions.

21
18
15

~
to

r--.- .........

12

r--

.,

-

0

1----.

i

'""

f------.

I

z

"'"

M~G

'"Ga"""'"

'"",,

r-...

.....

l'-..

i
_FM~

1.0

2.0

3.0

4.0 5_0 6.0

FREQUENCY (GHz)

COLLECTOR CURRENT (mA)

Figure 1, Typical MAG. Noise Figure

Figure 2. TypicaIIS21EI2,
4 GHz.

(FMJN), and Associated Gain vs.

(

Frequency at VCE

=

10 V, Ie

=

10V. Ic = 4mA

$11

100
200
300

400
500
600
700
800
900
1000
1500
2QOO
2500
3000
3500
4000
4500
5000
5500
6000
7000

Mag.
0.87
0.85
0.82
0.79
0.76
0.73
0.70
0.68
0,66
0.65
0.60
0.58
0.57
0.56
0.56

0.55
0.55
0.55
0,55
0.54
054

Ang.
-16

·30
-44
-57

·68
·78

(dB)

22.0
21.7
21,1
20.5
19,8
19.1

·86

18.5

·94
-100

17.6
17.0
16.3
13.5
11.3
9.5
8.1
6.8
5,7
4.8

-106
-126
-139
·146
-152
-156
-159
-162
-164
-165
-167
-169

3,9

3.2
2,5

1.4

S21
Mag.
12.60
12.10
11.40

$12

10,60
9,77

900
837
7,62
7.05
6.54
4.73
3.67
2,99
2.53
2,19
1.93
1,73
1.57
1.44
1.34
1.17

Ang.
170
160
151
144
137
131
126
121
118
114
102

(dB)

Mag.

-46
-40
-36
-35

0.005
0010
0015

93

-29
-28
-27
-26
-26
·25
-24
·24
-23
-22

87
82
77
72

68
65
61
57
51

·34
-32
-32
-31
-31
·31

-29

oms

0.021
0.024
0.025
0.027
0.028
0.029
0.034
0,037
0.041
0.045
0.049

M53
0.057
0.062

See page 49.

45

S22

Ang.
82

75

68
63
58
55
52
50
48
47
45
45
47
49
51
52
53
54

0,~8

55

0.071
0.080

55
56

*Values do not include any parasitic bonding inductances and were generated by use of a computer model.

RF Equivalent Circuit

Current at

4 mAo

Typical S- Parameters" VCE =
Freq. (MHz)

VS.

Mag.
0.99
0,98
0.95
0,93
0,91
0.89
0.87
0.85
0.84
0.82
0.79
0.78
0.77
0,77
0.76
0.76
0.78
0.76
0.71'1
0.76
0,77

Ang.
-3
-5
·7
·9
-10

-to

-11

-11

-11
-11·
-12
-13

-14
-15
-16
-18

-19

-21
-23
-24
-28

Flio-

LOW NOISE
TRANSISTOR
CHIP

HEWLETT

~~ PACKARD

HXTR-7011

Features
LOW NOISE FIGURE
2.8 dB Typical FMIN at 4 GHz

1----- 3OS(0Il12)

HIGH ASSOCIATED GAIN
8 dB Typical Ga at 4 GHz

------"I

1

HIGH OUTPUT POWER
18.0 dBm Typical G1dB at 4 GHz
WIDE DYNAMIC RANGE
LARGE GOLD BONDING PADS

30S

:1

Description
The HXTR-7011 is an NPN silico.n bipolar transistor chip
designed for use in hybrid applications requiring superior
noise figure and associated gain performance at VHF, UHF,
and microwave frequencies. Use of ion implantation and
self alignment techniques in its fabrication produce superior
device uniformities and periormance.
The HXTR-7011 features a metallization system that provides consistent and reliable performance at rated
dissipation under high temperature operation. The HXTR7011 also is provided with a dielectric scratch protection
over its active area and large gC'id bonding pads for ease of
use in most hybrid application~.

ChlpOulflne
Dimensions in Micrometers (Inches) .t 25 (0.001)

Gold Bonding Pad
Dimensions (Typicall:
Chip Thickness (Typical',:
Collector Back Contacl:

Absolute Maximum Ratings*
(TA= 25°CI
Symbol
Vcao
Vceo
VellO'

Ie

Pr
TJ
TSTa

Limit

Parameter
Collector to Base Voltage
Collector to Emitter Voltage
Emitter to Base Voltage
DC Collector Current
Tota! Device Dissipation
Junction Temperature
.Storage Temperature

40 (0.0016) X 48 (0.0019'
89 (0.0035)
Silicon-Gold Eutectic

30V
11lV
1.5 V
65mA
600mW
300°0
-65°C to
300°0

Recommended Die Attach
and Bonding Procedures

·Operation in excess of anyone of these conditions may result in
permanent damage to this device.

Notes:
1. Power dissipation derating should include a ~)JB (Junctionto-Back contact thermer resistancel of 125° C/W.
Total HJA (Junction-to-Ambient) will be dependent upon the
heat sinking provided in the individual application.

Eutectic, Die Attach at a stage temperature of 410 ± 10°C
under an N2 ambient. Chip should be lightly scrubbed using
a tweezer and eutectic should flow within five seconds.
Thermocompression Wire Bond at a stage temperature of
310 ± 10° C, using a tip force of 30 ± 5 grams with 0.7 or 1.0
mil gold wire. A one mil minimum wire clearance at the passivation edge is recommended. (Ultrasonic bonding is not
recommended.J

2. A MTTF of 1 x lor hours will be met or exceeded when the
junction temperature is maintained under TJ = 200·C (based
on an activation energy of 1.1 eV). For operation above this
condition, refer to page 108. "Reliability Performance of
Bipolar Transistors".

46

(

Electrical specifications at TeAsE
MIL·STD·750
Test Method

Symbol

Parameters and Test Conditions

BVCBO

Coilector·Base Breakdown Voltage at Ie - 100

~A

BVCEO

Collector-Emitter Breakdown Voltage at Ie

15 mA

ICBO

Coliector·Base Cutoff Current at VCE

ICEO

Collector-Emilter Leakage al VeE - 15 V

hFE

Forward Current Transfer Ratio al VCE = 10 V,

FMIN

Minimum Noise Figure
VeE = 10 V, Ie = 10 mA

~

c

15 V
Ic~10mA

f = 1000 MHz
f~ 2000 MHz
f =4000 MHz

t

P'dB

Power Output at 1 dB Gain
Compression, VCE = 15 V. Ie = 18 mA,

GloB

Associated 1 dB Compressed Gain.
VCE=15V,lc=18mA

Min.

V

30
18

3011.1"

V

3036.1"

nA

3041.1

nA

Typ,

50

175

dB

U

32461

1.7

2.8

m 1000 MHz
f = 2QOO MHz
f = 4000 MHz

dB

18.0
13,0

1= 4000 MHz

dBm

18.0

f = 4000 MHz

dB

6.5

32461

8,2

*300 f.1s wide pulse measurement::s 2% duty cycle.
uMeasured under low ambient light conditions.

10

./

G~

/
r

~
w

(.

0:
::J

'u:"
w

1

"

0,

'"o

-

/

----

-

FMIN

I
3

I J
4 5

LI
10

l
20

30

COLLECTOR CURRENT (rnA)

FREQUENCY (GHz)

Figure 1. Typical FMIN, Ga , IS21 EI2 and
MSG VS. Frequency at VCE ~ 10 V, Ie ~
10 mA.

Figure 2. Typical FMIN and Associated
Gain vs. Ie at 4 GHz lor VCE ~ 10 V.

COLLECTOR CURRENT (rnA)

Figure 3. Typical IS21 EI2
2000 GHz.

47

VS.

Current at

Max,

50

55

3076.1

Associated Gain
VeE = 10V, le= lOrnA

Ga

Unlla

3001.1"

Typical S-Parameters

(VeE = 10 V, Ie = 10 mAl

$11
Freq.(MHz)

Mag.

Ang.

(dB)

100
200
300
400

0.68
0.66
0,63
0,62

27.7
26.1
24,5

500
600
700
800
900
1000
1500
2000
2500
3000
3500
4000
4500
5000
5500
6000

0,62

-41
-74
-99
-Ill
-107
-135
-143
-149
-154
-159

0.61
0.60
0.59
0,59
0.59
0.59
0,57
0.61
0.64

-176
172
163
156

0.70
0.71
0,78
0,83
0,88
0.93

149
144
138
137
133
134

Typical S-Parameters

23.0
21,5
20.2
19,0
18,0
17,1
16.2
12,9
10,5
8.7
7,2
5,9
4.7
3.6
2,8

2.1
1,1

(VeE

= 15 V,

$11
Freq. (MHz)

Mag.

Ang.

(dS)

100
200
300
400
500
600
700
800

0,63
0,62
0,81

-53
-90
-112
-127
-130
-146
-152
-153
-162

29,5
27,5
25,5

900
1000
1500
2000
2500
3000
3500
4000
4500
5000
5500
6000

0.61
0,60
0,60
0,59
0.59
0,59
0,59
0,59
0.58
0,62

0,64
0,70
0,72
0.79
0.85
0.88
0.94

-166
180
163
160
158
147
143
136
136

23.6
22.8
20,6
19,3
18.3
17,3
16,5
13.1
10.6
8,8
7.8
6.0
4,8

132

3,7
2,9
2,1

133

1.2

RF Equivalent Circuit

$12

$21
Mag.
24.27
20.18
16.79
14,13
11.89
10.23
8.91
7.94
7.16
6.46
4.42
3,35
2.72
2.29
1.97
1.72
1.51

1.38
1,27
1,14

Ie

Ang.

(dB)

Mag.

Ang.

Mag.

158
140
126
119
112
107
103
99
97
95
84
77
70
64
58
53
48
42
38
33

-36.6
-33.9
-32.1
-30.9
-29,3
-29,2

0.02
0.02
0,03
0,03
0.03
0.04
0.03
0.04
0,04
0.04

66
73

0,93
0,83

55
54

0.73
0.67
0,62
0,58
0,57
0.55
0.53
0,52

-29.4
-29.1
-28,6
-27,6
-26.6
-24,9
-233
-21.6
-20,0
-18,7
-17.1
-16.3

0.05
0.06
0.Q7

48
51
53
52
55
55
64
75

0.48
0,50

100

0.46
0.46
0.43
0.43
0040
0.36
0.36
0,33

Mag.

Ang.

Mag.

-41.1
-36,3
-34,8
-32.6

0,01
0,02
0,02
0,02

71

-33,1

0.02
0.03
0,03

0.91
0.79
0,70
0,64
0.60
0.59
0,57
0,56
0,55

0.08
0.10
0,12

·15.0
-14,6

0,14
0,15
0,18
0,19

Ang.

(dB)

151
133
121
111
108
103
100
96
94
91
82
75

83
69
94
95
99
99
98

$22
Ang.
-12
-19
-23
-23

-24
-22
·21
-20
-19
-18
-16

-IS
-17
-20
-21
-28
-27

-41
-49
-67

= 18 mAl
$12

$21
Mag.
29.85
23,71
18,84
15,14
13,80
10,72
9,23
8.22
7,83
16,66
4,52
3.39
2,75

69
63
57

2.32
2,00
1,74
1,53
140
1.27
1.15

See page 49.

48

-31,6
-31,2
-30.5
-30.2
-29.4
-27.7
-25.6
-24,0

0.03
0.03
0,03
0,04

0.05
0,06

-16.6

0.08
0.09
0,11
0,14
0,15

-15,2
-14,8

0.17
0.18

-21.9
-20.5

52

-19,0

46
41
36
31

-17.4

60

50
56
46
49
53
55
61
62
59
81
89
94
97
99
102
101
101
103

$22
Ang.
-13
-19
-21
-20
-20
-lS

-17
-16

0.54
0,52

-14
·14
-14

0,53

-12

0.49
0.50
0.47
0,47
0.44
0.39
0,39
0,35

-14

-17
-17

-24
-24

-37
-44
-61

SILICON BIPOLAR TRANSISTOR CHIP
EQUIVALENT CIRCUITS[1]

(

EMITTER

BASE

"1.-------'
RBA

01,

1

RBC

RBI

RB'

CBP

CBA

NOTE 1:
This equivalent circuit is for the transistor chip only. It does not include
parasitic bonding reactances. For additional information, please refer to
"Low-Noise Microwave Bipolar Transistor with Sub-Half-Micrometer
Emitter Width" by Tzu-Hwa Hsu and Craig P. Snapp, I EEE Transactions

Rc

on Electron Devices, Vol. ED-25, No.6, June 1978.

COLLECTOR

Current Dependent Current Source
"0

o

0'0

~

- - - exp (-j 2 n I rl
1 + j I/Ib

=---

1+ hFE
00

Re " ~ - - - - lcos (2n Irl -I
1 + (1/lbI 2

sin

fb

(2n hi]

-00

1m

0

~

----

1

lsin 2n ITI +1

fb

+ (1/lbI 2

sin

(2n ITI]

Bipolar Chip Equivalent Circuit Elements
Device

CSP
(pFI

C EP
(pF)

Cal
(pF)

CSE
(pF)

(pF)

CSA

CTE
(pF)

REC

(0)

RSI & Rec RSE
(ll)
(Il)

ReA
(ll)

fle
(n)

Re
(!I)

,,0

tb
GHz

psec.
108

,T

HXTR-2001, 15V,25rnA

0,066

0,06

0,07

0,056

D,032

4,8

02

0,2

35

4.4

5

1.0

0,990

22,7

HXTR-2001, 15 V, 15 mA

0,066

0,06

0,7

0,056

0,032

4.3

0,2

0.2

3.5

4.4

5

1,7

0,990

22.7

10,6

HXTR-3001, 15 V, 15 rnA

0,117

0,15

007

0,056

0,032

4,$

0.2

02

3.5

4,4

5

1.7

0,990

22.7

10.6

HXTR-3002, 18 V, 30 mA

0,117

0.19

0,07

0,053

1.03'

5.1

7.2

0,2

5.6

4.7

5

0,86

0,976

227

108

HXTR-5001, 18 V, 30 mA

0065

0.06

0.07

0053

1,034

51

7,2

0,2

5.6

4.7

5

0,66

0,976

22.7

10.8

HXTR-S002, 18 V, 110 rnA

0.105

0.15

0,22

0,18

0,11

17,3

3,1

0,2

1.7

1.4

3

0.24

0,976

227

10,9

HXTR-6001, 10 V, 4 rnA

0,053

0.05

0.01:1

0,016

0.0055

1,03

0.7

04

78

61

7

8,6

0990

22.7

12,1

HXTR-7011, 10 V. 10 mA

0,113

0,11

0,07

0,03'

0,017

3.65

0,22

0,13

0,9

2.0

6

2.6

0,990

16,4

156

49

Fliff4

GENERAL PURPOSE
TRANSISTOR

HEWLETT

~~ PACKARD

2N6679
(HXTR -2101)

Features
HIGH GAIN

-I

10.5 dB Typical at 4 GHz

1--

0•1 fO.04) TYP

ED

HERMETIC PACKAGE

I

_S.310.130)l

r-"":_~

Description

MIN.

+
c:z-t

C

The 2N6679 (HXTR-2101) is an NPN bipolar transistor
designed for high gain and output power at 4 GHz. The
device is manufactured using ion implantation and self
alignment techniques. The chip is provided with a dielectric
scratch protection over its active area.

0.51 10.02)
TYP.

The 2N6679 is supplied in the HPAC-100, a rugged
metal/ceramic hermetic package, and is capable of meeting
the environmental requirements of MIL-S-19500 and the
test requirements of MIL-STD-750/883.

__ 2.5 ;!; 0.26.......
(D.10, 0.011

Absolute Maximum Ratings*
Symbol
VCBO
VCEO
VE60
Ie
Pr
TJ
TSTG

-

Parameter
Collector to Base Voltage
Collector to Emitter Voltage
Emitter to Base Voltage
DC Collector Current
Total Device Dissipation
Junction Temperature
Storage Temperature
Lead Temperature
(Soldering 10 seconds each lead)

•

limit
30V
20V
1.5V

1.07:1:0.3

I

I

DIMENSIONS IN MILLIMETERS IINCHES).

+250'C

·Operation in excess of anyone of these conditions may result
permanent damage to this device.

In

Notes:
1. A tlJC maximum of 210'C/W should be used for derating
and junction temperature calculations (TJ = PD x (1JC

+

Outline HPAC-l00

TCASE).

2. A MTTF of 1.0 x 107 hours will be met or exceeded when the
junction temperature is maintained under TJ = 200 0 C (based
on an activation energy of 1.1 eVl. For operation above this

condition, refer to page 108. "Reliability Performance of
Bipolar Transistors".

50

J

t

70mA
900mW
300'C
-65'C to
200'C

01 i~~04)

n=IIIIJ1
_
=====~J;;;;;;;;;;;J~====::=J'.....L

L
10.042it 0.0;;,;1:1

(

Electrical Specifications at TCASE=25°C
Symbol

Parameters end Test Conditions

eVees

Collector·Emltter Breakdown Voltage le.. tOOJ,tA
CollelrtOr·Emitter Leakage Cummt at Vce"15V
Collector Cutoff Current at Vcs=15V
Forward Current Transfer Ratio VCS-16V,lc"'5mA
T\Jt\ed Gain Vee" 15V, Ic" 25 mAo
Frequencv .. 4 GHz

!ceo
leeo
hFe

GT
"

MIL..sTD·760
Test Method
,3011.1·

nA

3036.1
3076.1"

nA

Mal(.

Typ.

30

V

3041.1

Power Output at 1 dB Compres$ion

P1da

Min.

Units

500

100

-

50

120

dB

9.0

10.5

dBrn

220

18.5

'Vce"15V, Ic"'25mA, Frequency .. 4 GHz
*300,.s wIde pulse measurement <;2% duty cycle.

~
~

'"

~
iii

I.
I.
I.
I.

2' _
22

I. !~
I.,.
~

;.-

I. Ii
..•

•

~

F/

••

5

=

--

10

Vc;li-SV

-f': ,.-

\~.2V

)

15

20

1
25

30

Figure 3. Typical IS21EI2

Figure 2, Typical Power Output at
1 dB Compression and Small

VS.

4 GHz.

Signal Gain VS, Collector at 4 GHz
for VeE = 15 V.

Tvpical S-parameters VCE = 15V, Ic = 25 rnA
at,

811
Freq. (Utu)
100
500
1000
1500
2000
2500

3000
3500

4000
4500
5000

5500
5000
6500

Mag.

Ang.

(dB)

Mag.

Ang.

0.59
0.58
0.59
0.59
0.60
0.61
0.62
0.63
0.62
0.61
0.60
0.62
0.62
0.62

-66

3O.S

34.S

146

-150
-175

22.1

12.7
6.86

96

173
162
158
146
139
131
123
116
109
103
93

13.3

16.7
11.0
8.9
7.3
5,9
4.8
3.5
2.6

78
64
53
43

4.61
3.53
2.79
2.32

33
22
11

1.96
1.73
1.50
1.35

1

-9

1.8

1.23

-19

0.9
0.0

1.11
1.02

-28
-37

51

35

40

lel mA)

Ie (mA)

Figure 1, Typical MAG. 1521 EI2 and
Tuned Gain vs, Frequency at VeE
15 V, Ie 25 mA.

Vel *-'leV

~ 1.-.....

!II

FREQUENCY IGHz)

=

!

8

12

2

I

,

z

20

12

j

{

j

(d8)
·40.0 '
-33.2

-30.5
-28.0

-25.7
-24.2
-22.6
-21.2
.19.7
-18.6
-17.0
-15.9
-15.6
-13.7

812
Mag.
0,01

0.02
0.03

M4
0.05
0.06
0.07
0.09
0.10
0.12
0.14
0.16
0.17
0.20

St.
Ang.

Mag.

Ang.

69
44
51
55
35
55

0.S6
0.51
0.44
0.45
0.44
0.47
0.48
0.52
0.55
0.59
0.65
0.66
0.66
0.87

-18

56
53

50
48

44

36
32
28

·27
-32

-39
-49
-60
-67
-79
-84

-93
-102
-113
-123
-131

Bias at

Fli;W

HEWLETT

a:~ PACKARD

GENERAL PURPOSE
TRANSISTOR

HXTR -2102

Features
HIGH GAIN
11 dB Typical at 4 GHz
HERMETIC PACKAGE

L

BASE

tl

r

Q.508 (o.n~'D

Description
The HXTR-2102 is an NPN bipolar transistor designed for
high gain and wide dynamic range up to 6 GHz. The device
is manufactured using ion implantation and self alignment
techniques. The chip is provided with a dielectric scratch
protection over its active area.

EMITTEJ
_5.oe(O.~1

,

TYP.

The HXTR-2102 is supplied in the HPAC-70GT, a rugged
metal/ceramic hermetic package, and is capable of
meeting the environmental requirements of MIL-S-19500
and the test requirements of MIL-STO-750/883.
1.00 (0Jl391
MAX.

I

Absolute Maximum Ratings"
(TeASE = 25°C)
Symbol
Vello
VCEO

VellO
Ie

PT
TJ
TSTO

-

Parameter
Collector to aase Voltage
Collettor to Emitter Voltage
Emitter to aase Voltage
DC Collector Current
Total Device OiS$ipatlon
Junction Temperature
Storage Temperature
Lead Temperature
,Soldering 10 seconds each lead'

Limit
SOV
2()V
1.5V
70mA
900mW
3OO"C
-&\'C to

DIMENSIONS IN MILLIMETERS AlIID (INCHES).

2oo'C
+250'0

Out/lne HPAC·70 OT

·Operation in excess of anyone of these conditions may result In
permanent damage to this device.

Notes:
1. A BJC maximum of 185°C/W should be used for derating
and junction temperature calculations ITJ ~ Po x BJC +
TCASEI.
2. A MTTF of 1.0 x 107 hours will be met or exceeded when the
junction temperature Is maintained under TJ '" 200"C I based
on an activation energy of 1.1 eVI. For operation above this
condition, refer to page 108. "Reliability Performance of
Bipolar Transistors".

52

(

Electrical Specifications at TCASE=2SoC
MIL·STD·1SO
.' Symbol

T..tMelhod

Parema.ar. and T..t CondItione'
CoileotoH;mit~r Br.. kdown vilitige at I¢ ~ 100"A .

BVCES

. ICEO

CoUector.Elnit\&r Leekage Current ~t VCE ".1&V
Collector Cutoff Current $t Vce '" 15V
Forward Current TreMofer RatiO at VCE" 15V. Ie" 15mA
j=2G~
Tuned Gain
4 GHz
VCE '" i5V, 10 '" 25mA
Power Output at 1 dB Co.mpre&sltm
1=2 GHa
V06='15V.lo" 25mA
4 GHz

lOBO
hFE

ar
1'1da:

Unlta

,,.In.

fVD.

500

nA
nA'

-

307M'

dB

Max.

30·

V

S011.1'
3041.1'
3036.1

:100

50
13.0

120
15.0.
1.1.0.

220

:<0.0

dBm

18.5

'300!,s wide pulse measurement S2% duty cycle.

,.,.,.

- ,.
i

30

m 22
3

20

20
16

8

; . 18

i

~

f

16~-+~~~~~r+~

~ ::~-+~~

i 10f--++++
°O·'":.'--;O~.'-'-;O:':.'-';O!-:!.• U.':'::.O:---f.'.O,..u.-,l'.O:l.=".O:u,~lO.O
FREQUENCV tOHz)

COLLECTOR CURRENT (mA)

COLLECTOR CURRENT (mAl

Figure 1. Typical MAG, and Is" EI2 vs.
Frequency at VCE = 15 V, Ic = 25 mAo

Figure 2. Typical Power Output at 1
dB Compression and Small Signal
Gain VS. Current for VCE = 15 V.

Figure 3. TypicallS21EI2 vs. Current
at 2 GHz.

TypicalS-parameters
I'req. (MHz)
100
200
. 300
400
SOO
600
700
800
900
1000
1500
2000
2500
3000

3500
4000
4500

SOOO
5500

SOOO
6500

Mag.
0,63
0.63
0,84
0.64
0.84
0.64
0.64
0.64
0.84
0.64
0,66
0.65
0.67
0.64
0.12
0.69
0.70
0.72
0.70
0.75
0,70

VCE = 15V, Ic = 25mA

S11
. Ang.
-56

·99
-122
-136
-146
·153
·158
-182
-166
-170
179
172
165
161
156
149
141
136
128
122
119

(dB)

SO,S
28.4
26.1
24.2
22.6
21.2
19.9
18,6
17.8
16.9
13.5
11.1
9,'
7.6
6.4
5.3
4.4
33

2.5
1,7
0.8

521
Mag.
33,4
26,2
20,3
16.2
13.4
11.5
9.9
6.8
7.6
7.0
4.7
3.6
2.9
2.4
2.1
1.8
1.7
1.5
1.3
1.2
1.1

Ang.
149
128
115
107
101

96
92
88
85
83
70
60
50
40

32
22
14
6
-3
-11
-20

53

1d8)
·39.2
-35.9
-34.9
-33.6
-32,6
-32.4
-32.0
-31.7
·31.4
-SO.8
-29.1
-27.1
-25.7
-24.3
-23.3
-22.6
-21.8
-21.3
·20.7
-20.1
-19.6

S12
Mag.
0.011
0.G16
0.018
0,021
0,023
0,024
0.025
0.026
0.027
0.029
0,035
0.044
0,052
0.061
0.066
0.074
0.081
0.085
0.092
0.098
0.105

Sa2
Ang.

62
49
45
42
42
43
43
45
44

46
49
53
55
57
53
48
44
39
34
30
26

Mag.
0,88
0.72
0.61
0.54
0,50
0,48
0.47
0.47
0,48
0.47
0.44
0.46
0.47
0.52
0,51
0.56
0.55
0.58
0.62
0.63
0.70

Ang•
·16

·25
-28
·29
-31
-32
-33
-34
·34
-35

·40

-so
-59
-66
-79

-as

·92
-101
-109
-118

-127

LOW COST
GENERAL PURPOSE
TRANSISTOR

Flin-

HEWLETT
~~ PACKARD

HXTR-31Dl

Features
HIGH GAIN
19.5 dB Typical at 1 GHz
LOW NOISE FIGURE
1.8 dB Typical FMIN at 1 GHz
LOW COST HERMETIC PACKAGE

Description
The HXTR-3101 is a low cost NPN bipolar transistor
designed for high gain and wide dynamic range up to 4000
MHz. To achieve excellent uniformity and reliability, the
manufacturing process utilizes self-alignment and ion
implantation techniques. The chip is provided with a dielectric scratch protection over its active area.
The HXTR-3101 is supplied in the HPAC-100X, a rugged
metal/ceramic package, and is capable of meeting the
environmental requirements of MIL-S-19500 and the
electrical test conditions of MIL-STO-750.

C·----0.55

aUI

TYP.

Absolute Maximum Ratings •
(TeASE

Paramaler

VCBa
VCEO
VEao
Ie
PT
TJ

Collector to Base Voltage
Collector to Emitter Voltage
Emitter to Base Voltage
DC Collector Current
Total Device Dissipation
Junction Temperature
Storage Temperature

TSTG

~O=.,===:!;;~~=

= 25' C)

Symbol

IL

Value

1•OO41
TYP.

:JOV
l8V
1.5V

SOmA

DIMENSIONS fN Mll..LlMeTERS UNCHES!

600mW
300'C
--6S'Cto150'C

'Operation In excess of anyone of these conditions may result
permanent damage to this device

Outline HPAC-100X

In

Notes:
1. A ~)JC maximum of 180' C/W should be used for derating
and junction temperature calculations (TJ = Po x t)JC +
TCASEI.
2. A MTTF of 1 x 107 hours will be met or exceeded when the
junction temperature is maintained under TJ = 200 0 C (based
on an activation energy of 1.1 eV). For operation above this

condition, refer to page 108. "Reliability Performance of
Bipolar Transistors"

54

Electrical Specifications at TCASE = 25°C

(.
./

MIL..s1'tl-761l

Tett MtIIiod .
3001.1"

PaI'8l'Mlera ami Tett CondUIoIIII
Collector-Sase Breakdown Voltage at Ie"" 100 ,.A

Symbol
BVoso

lceo

CoIlector-Base CutQIf Current at Voa -15 V

3036., ••

hFE

Forward Current Transfer Ratio at Voe" 10 V, Ie" 10 mA.

3076,,'

IT

Gain Bandwidth ProduQt at Voe" 10 V, Ie "151T1A

1821e1 2

Trafl1!Ma••

Typ,

50

75
15

3076.1'

Ie" 30 mA

Min.

75

GHz

' 4:0

s.s

dB

10.5

12.5

dem

19.0

21.0

dB

14.0

16.0

Vee"15V.le=3OmA
Associated 1 de Compressed Gain at 1000 MHz
Vee'" 15 V. Ic '" SO mA
Reverse Transfer Capacitance
Ie = 0 m'A; VeE'" 10V, f .. 1 MHz

G'dB

em,

!
'2
iii

'i

"to

~

V

,"

."

-"w

$

II
o
o

500
1500

2000
3000
4000

Mag.

Ang.

0.76
0.69
0.62
0.55
0,54
0.52
0.51
0.53
0.54

-19
·52

-79

·110
·126
-155 .
-177

(dS)
18.9
17.7
16.1
13.8

12.7
9.9
7.9

156

5.1
3.0

132

Typical S-Parameters
100

300
500

800
1000
1500

2000
3000
4000

Mag.

0.1]
0.69
0.60
0.53
0,53
0.51
0.50
0.53
0.54

I

\J

\

\

1\

l~c.i.v._
lJ '11

10

3V\

1r+
2

40

20

50

O!:-o3-.L4-!.5,-L.L.J..u..--,~--!-,-L....L.J
FREaUENCY (GHz)

Ang.
·21
·57
-85
·116

·131

·159
·180
·153
130

vs. Current

Figure 3. Typical Power Output at
1 dB Gain Compression vs.
Frequency.

8 21
Mag.
a.Sl

7.67
6.38
4.89
4.31
3.14
2.41
1.79
1.41

Allg.

(dB)

8 12
Mag.

165
143
126
109
95
74
57
30

-36.0
-27.0
·24,0
'22,2
-21.0
-20.2
·19.1
·17.8
-15.6

0.016
0.045
0.063
0.076
0.089
0.OS8
0.10S
0.129
0,166

4

~2
Ang.

Mag.

Ang.

72
60
50
41
34
30

0,96

-10
·25
·35
-40

0.52

-45
-55

29

0,48
0,49
052

-85
·lOS

31
29

0.89
0,78
0,65
0,59

-63

rVcE=15V,lc=30mAI

8 11
Freq. (MHz)

\

,VCE=15V, ic=20mA'

$11

800
1000

'\

Figure 2. Typical IS21 EI2
at 1000 MHz.

Typical S-Parameters
800

l"'-.
'\. 5V

\1

\ J

OV

lclmAJ

Figure 1. Typical IS21E12. MAG, and
Maximum Stable Gain IMSGI vs.
Frequency.

100

-

~

I 1\ i

0.36

Vel!,'" 5-20V

i'

, i

FREQUENCY (GHzJ

Freq.(MH~

1

I

I

.....

~

~

I

.~ ~

OJ

:s
~

pF

8 21
Mag.

4.29

Ang.
164
139
122
105
92

9.8

$,08

72

7.7
4.8
2.7

2.41

55

1,74

28

1.38

3

(dB)

19.7

18.3
16,4
13,9
12.7

9.66
8.22
6.60
4.95

62

(dS)

035.9
-27.1
-24.4
-22.7
-21.4
-20.4

'19.8
-17.8
-15,5

8 12
Mag.
0.016
0.044
0.060
0.Q73
0.085
0.095
0.102
0,129
0.167

8 2

Ang.
71
58
48
40
34
32
31
33
29

Mag.
0.91)
0.87
0,75

0.63
0.58
0.51

Ang.
·10
·27
-36
·40
-44

-53

0.48

·62

0.50
0.52

-10e

-84

\

(

LOW COST,
LOW NOISE
TRANSISTOR

Flin-

HEWLETT
a!~ PACKARD

HXTR-3615

Features
:. "

LOW NOISE FIGURE
1A dB Typical FMIN at 1 GHz
HIGH ASSOCIATED GAIN
16.6 dB Typical Ga at 1 GHz
WIDE DYNAMIC RANGE
LOW COST HERMETIC PACKAGE

Description
The HXTR-3615 is a low cost NPN silicon bipolar transistor. Designed to provide low noise, high gain, and wide
dynamic range performance for VHF, UHF, and microwave
applications. This device is manufactured using ion
implantation and self alignment techniques and the transistor chip has a dielectric scratch protection over its
active area.
The HXTR-3615 is supplied in the HPAC-100X, a rugged
metal/ceramic package, capable of meeting the
environmental requirements of MIL-S-19500 and the
electrical test conditions of MIL-STD-750.

Absolute Maximum Ratings·
(TeASE = 25° C)
SymbQI

P«ramld be used for derating
and junction temperature calculations (TJ = Po x eJC +
TCASE),
2. A MTTF of 1 x 7 hours will be met or exceeded when the
junction temperature is maintained under TJ = 200'C (based
on an activation energy of 1.1 eV). For operation above this
condition, refer to page 108. "Reliability Performance of
Bipolar Transistors':.

63

~

~~---~~

----------

Electrical specifications at TeAsE = 25°C

~

MIL-$TO-7SO
Symbol

Paramelens $lei Teet CondItIone

BVello

Collector-BaM Breakdown VOltage at 10

Te$tMelhod

=100 pA

Unitt

3001;1'

II

Min.
'25

V

16

aVeEo

Collector-Emlttlilr Breakdown VOltalllil at 10 '" 15 rnA

lcao

COllector-Base Cutoff Current at VOB - 15 V

3011.t'
3036,1'"

10EO

CoUeclor-Emlt!$t Leakage Currem at VOE '" 15 V

3041.1

hFE

Forward OUrrem Transf\lr RatIO at Voe = 10 V, Ie *10 rnA

3076.1'

fT

Gain Bandwidth Product at Vee" 10 V.1o '" 10 rnA

FMIIII

Minimum Noise Figure at
VeE 10 V, Ie "'10 rnA

100

nA

100

180

50
GHz

f= SOOMHz
f=1000MHz
f =2000 MHz
MHz
500 MHz
f= 1000 MHz
f= 2000 MHz
1=4000 MHz

=

3246.1

5
1,3

dB

1.4
2.0

'=4000

Go

,=

A$S()Clatad Gain
VCE'" 10V, ie-lOrnA

3.5

Power Output at 1 dB Gain Compression
VCE=15V.lc=1SrnA

GldS

Associated 1 dB Compresslild Gain at 1000 MHz
Vce=15 V,IO'" 18 rnA

C12E

Reverse TranSfer Capscitance
Voa=10V.lo=0 rnA

f=

dB

21.S

dBm

16.6
12.0
7.0
19.0

dB

19.0

pF

0.3

$246.1

at 1000 MHz

PldS

Mn

1 MHz

"300 pS wide pulse measurement S 2% duty cycle.
uMeasured under low ambient light conditions.

w

a:

::>

/

"u:

IIIOISE FIGURE

w

IFMIIII

'"(5z

~~.5-L-L-L~1.0~------~2,0~--~3.~0~4.~

%~.I~~0.~2~0.~3-L~LLU1~.0~~2f.0~~4.0

FREQUENCY (GH,)

FREQUENCY (MH,)

Figure'1. Typical FMIN and Associated
Gain vs. Frequency at VeE = 10 V,
Ie = 10 rnA.

Figure 2. Typical IS21 EI2 and Maximum
Stable Gain (MSG) vs. Frequency at
VeE = 10 V and Ie = lOrnA.

Typical Noise Parameters

18

VCE = 10 V. Ic = 10 rnA

16

FtlNIlIen1IY
(M~)

SOO
1000
2000
4000

"MIN
(dB)

~lWi

Mllg.

1.3

1.3

(50 ('l)

1.4
2.0

1,6

0.20

135

2.4

0.39

-177

4,7

3.S

4.4

0.54

-116

18.1

fo

Rn
Ang.

)ov

16V

14

(Ohms)

0

2

15.4
0
8

,
~

-

V

1/

~5V

(V~2V-

'r\.

\

IV

6
4

10

15

20

25

30

COLLECTOR CURRENT {mAl

Figure 3. TypicallS21EI2 vs. Current at
1000 MHz.

64

(

Typical S-Parameters

(VeE

= 10 V,

$11

Freq. (MHz)
joo
200
300
400
500
500
100
600
900
1000
1500
2000
2500
3000
3500
4000
5000
5000

Ang.

-43
·16
-103

O.SS

·119
-132
-141
·149
-156
-162

0,52

-168

0.53
0.50
0.54
0.55
0.60
0.61
0.72
0.81

172
155
142

0.53

130
117
108
90
76

(dS)
21.6
25.9

24.1

22.4
20.9
19,6

18A

100
200
300

(

0.59
0.57

400
500
600

0.55
0.64
0.54

700
800
9oo
1000
1500
2000
2500
3000

O,SS

3500
4000
5000
6000

0,63
0.52
0.52
0,52
0.51
0,54
0.56
0.61
0,62
0,74
0,63

$12

Mag.
23.92
19.63
15.94
13.22
11.11
9.52
8,$0

17.4
16.4
15.6
12,2

5.4

4.3

(dS)
-35.9
-33.2

Mag.

Ang.

0.02

sa

0.02

121

-31A

70
53

112
105

-30.2
-28,6

99

-26.4
-26,4

0.03
0.03
0.04
0.04
0.04

6.00

86
63

4.09

67

3,11

54

2.53
2,14
1,87

43
32
20
10

2.6

1.63
1,35

-10

1.2

1.15

·29

(VeE

= 15 V,

Ie

-28.0
-27,3

·2M
-24.7
-22,7
-20.8
-19.0
-17.4
-16.0
-13,4
-11.2

-56
-,93
-116
·131,·
-143
-152
·158
-165
-170

-175
187
152
139
127
115
106
89
75

0.04
0,04
0,05

52
46
49
50
49
51
SO

0.06

55

0.Q7
0,09

58

0.11
0,14
0,16
0.21
0,27

59

56
56
52
43
32

Mag,
0.92
0.81
0.70
0.64
0,59

Ang,
-14

0.5S
0.55
0,53

-32

-23
·28
·30
-32
·32
-32
-32

0.52
0.50
0,47
O.SO
0.47

-34
-41
-45

'0

-55
-64

OA9
0,47

-71

-as

0.49
0.44
0.44

-105
-134

= 18 rnA)
512

821

. Ang.

822

Ang.
155
136

94
89

7.37
6,61

9.8
8.1
6,6

$'1
Mag.
0.62

= 10 rnA)

$21

Mag.
0.S7
0.63
0.59
0.57
0.57
0.55
0,54

Typical S-Parameters
Freq. (MHz)

Ie

(dB)
29,3

Mag.
29.17

27.1
24.9
23,0
21.3
20,0
18.7
17,6
16.6
15.8
12.4
10,0

22.60
17,66
14.14
11.65
9.96
8.57
7.57
6.78
6.18
4.16
3.16

8.2

2.57

6,7
5.5
4.4
2,7

2,17
1.89
1.66
1.36

1.3

1.16

Ang.
148
129
115

(dB)
-40.0

107
100
95
91
66
83
79
65

53
42
30
19
8
·12
-31

65

622
Ang.

-35,4

Mag.
0.01
0,02

-34,0

0.02

50

-31.7
-32,0
-30,8
-30,0
-29,1

0.03
0.03
0.03
0,03
0.04
0.04
0,04
0.05
0.07
0,09
0.11
0,13
0.15
0.21
0,27

55

-28.6
-27.7
-25,5
-23.2
·21.3

-19.3
-17.8
-16.3
-13.6
-11.4

69
66

47

48

51
52
57
57
59
63

64
62
59

55
45
34

Mag.
0.90
0.77
0,67
0.62
0.58
0,66
0.55

a.54
0.53
0.52
0.50
0.52
0.50
0.52
0.50
0.52
0.47
0,46

Ang.
-16
·23
·26
·28
·28
·27

-28
-29
-28
·29
-37

·42
·51
-61

-68
-80
-102
-130

Fli;'

HEWLETT
~~ PACKARD

LOW COST,
HIGH PERFORMANCE
TRANSISTOR

/

HXTR-3645

Features
GUARANTEED NOISE FIGURE
2.2 dB Maximum FMIN at 2 GHz
GUARANTEED ASSOCIATED GAIN
12.2 dB Minimum Ga at 2 GHz
HIGH OUTPUT POWER
19.0 dBm Typical PldB at 2 GHz
HIGH PldB GAIN
13.5 dB Typical GldB at 2 GHz
HIGH GAIN BANDWIDTH PRODUCT
6.0 GHz Typical IT
LOW COST HERMETIC PACKAGE

Description
The HXTR-3645 is an NPN silicon bipolar transistor
designed for use in low noise wide band amplifier or
medium power oscillation applications requiring superior
VHF, UHF, or microwave performance. Excellent device
uniformities, performance, and reliability are produced by
the ion implantation and self alignment techniques Used in
the fabrication of these devices. The transistor chip has a
dielectric scratch protection over its active area.
The HXTR-3645 is supplied in the HPAC-l00X, a rugged
hermetic metal-ceramic package, capable of meeting the
environmental requirements of MIL-S-19500 and the test
requirements of MIL-STD-750/883.
DIMENSIONS IN MILLIMeTERS (INCHES)

Absolute Maximum Ratings*
(TeASE = 25' C)

Synlbol

Parjlllleter

Vcso
VCEO

Collector to Base Voltage
COllector to Emiuer Voltage
Emitter to Base Voltage
DC COllector Current
Total Oevlce Dissipation
Junction Temperature
Storage Temperature

VEBO

Ie

Pr
TJ
TSTG
·Operatlon

In

O\rtline HPAC-100X

Value

sov
18 V
1.5V
85mA
600mW
3OO'C
-65'C 1015O'C

excess of anyone of these conditions may result in

permanent damage to this device.

Notes:
1. A ~)JC maximum of 170' C/W should be used for derating
and junction temperature calculations (TJ = Po x 8JC +
TCASE).
2. A MTTF of 1 x 107 hours will be met or exceeded when the
junction temperature is maintained under T J = 200' C (based
on an activation energy of 1.1 eV), For operation above this
condition, refer to page 108. "Reliability Performance of
Bipolar Transistors".

66

(

Electrical specifications at TCASE
MIL·STO·7S0
Tett Method

Symbol

Parameters and Test Conditions

eVeso
BVeeo

Collector-Base Breakdown VOltage at Ie '" 100 I'A
Collector-Emitter Breakdown Voltage allo '" 15 mA

leBO

Colleotor-Base Cutoff Current at Vee'" 15 V

leEO

Oollector-Emitter Leakage Ourrent at VeE'" 15 V

ilfE

Forward Ourrent Transfer Ratio at VeE -10 V. Ie -10 mA

fr

Gain BandWidth Product at VeE'" 10 V. Ie '" 10 rnA
Minimum Noise Figure
VeE"" 10 V. Ie'" 10 mA

fMIN

ASSOciated Gain
Vee = 10 V, Ie "" 10 mA

G.

3001.1'
3011.1'
3036.1"
3041.1
3076,1

GlOB

Min.

V
V
nA

30
18

TVp.

50
175

55
GHz

6.0

3246.1

dB

1.2
1,2
1.4
1.7

f= 500 MHz

3246,1

dB

22.S

dBm

17,5
14,6
13.0
19,0

de

13.5

f'" 1000 MHz
f= 1500 MHz
f=2000MHz

12.2

VCE=15V.tc~16mA

Reverse Transfer Oapacitance
Voa=10V,le-'OmA

C'2E

'300}J.s wide pulse measurement::; 2% duty cycle.

f=

pF

1 MHz

0,27

"Measured under low ambient light conditions.

10~--------+---~--------~

~
w

a:

"u:"

(

w

NOISE FIGURE 1
oL--L~~~~_______~(PM~IN~)_~O
0.5

1.0

2.0

a"'z

~",'---0'-.2-0-'.3-'-:"0'::.5-'--='0.""7'-'-",'00- - - : :2'0.0--='3.0

3.0

FREQUENCY (GHz)

FREQUENCY (GHz)

Figure 1. Typical Noise Figure and
Associated Gain vs. Frequency at
VCE~ 10V, Ic~ 10 mA,

Figure 2, Typical\S2'E\2, and Maximum
Stable Gain IMSGI VS, Frequency at
VCE~ 10Vand Ic~10 mA.

10

10V

5V

~

~

z
;r

w

a:

3V

~

"~
u
"

""u:

"-

I-

w

'"a

'"

0

z

'"'"
"
°0~-~--7'0~-7.'5~-2~0~--~25~~30
COLLECTOR CURRENT (rnA)

COLLECTOR CURRENT (rnA)

Figure 3, Typical FMIN and Associated
Gain (Gal VS, Collector Current at

Figure 4. Typical \S2' E\2 vs. Current at
2000 MHz.

VCE~10V,

67

Max.

50

nA

f= 500 MHz
f~ 1000 MHz
f = 1500 MHz
f = 2000 MHz

Power Output at 1 dB Gain at 2000 MHz
Compression. VeE'" 15 V, Ie" 18 mA
ASSOCiated 1 dB Compressed Gain at 2000 MHz

Pldll

Unit.

1,9

Typical Noise Parameters

~r--------r-------------~

1IcI\'15V
1e·18mA

VeE = 10 V, Ie = 10 rnA
Frequency

ro

(111Hz)

FMIII
(dB)

Fsoo
(dB)

Mllg.

500

1.2

1.2

(Sam

1000

1.2

1.3

0.20

135

7.3

2000

1.7

2.0

0.39

-177

2,2

Ang.

-

25~-------+-------------4

Rn
(ohm$)
0

10~-------+-------------4

~~.5~~O.7~70.791~.O~------2~.O~--~3.0
FREQUENCY (GHz)

Figure 5. Typical Power Output at I dB
Compression Gain vs. Frequency.

Typical S-P arameters

(VeE = 10 V. Ie = 10 rnA)

8'1
Freq.(MHz)

Mag.

Ang.

(dB)

100
200
300
400

0.67
0.63
0.59
0.57
0.57
0.55
0.54
0.53
0.53
0.52
0.53
0.50

-43
-78
-103
-119
-132
-141
-149
-158
-162
-166
172
155
142
130
116
106

27.6
25.9
24.1
22.4
20.9
19.6
18.4

500
600
700
800

900
1000
1500
2000

2500
3000
3500

4000

0.54
0.55
0.60
0.61

17.4
16.4
15.6
12.2
9.8
8.1
6.6
5.4
4.3

~
Mag.

$22

$12

23.92
19.63
15.94
13.22
11.11
9.52

Ang.

(dB)

155
136
121

-35.9

112
105
99

8.30

94

7.37
6.61

86

89
83
67
54
43

6.00
4.09
3.11
2.53
2.14
1.87
1.63

32
20
10

-33.2
-31.4
-30.2
·28.6
-28.4
-28.4
-28.0
-27.3
-26.4
-24.1
-22.7

Mag.
0.02
0.02
0.03
0.03
0.04
0.04
0.04
0.04
0.()4

-19.0
-17.4
-16,0

0.05
0.05
0.07
0.09
0.11
0.14
0.16

(dS)

812
Mag.

-2O.S

Ang.

aa
70
53

52

46
49
50
49
51
50
55

58
59

Mag.

Ang.

0.92
0.81
0.70

-23

0.64
0.59
0.56
0.55
0.53
0.52
0.50
0.47
0.50

56
52

0.47
0.49
0.47
0,49

Ang.

Mag.

0.01
0.02
0.02

69

0.03
0.03

55

0.90
0.77
0.87
0.52

58

.14

-26
·30

-32
-32

-32
-32
-32

-34
-41

-45
-55
-64
-71
-83

Typical S-Parameters (VeE = 15 V, Ie = 18 mAl
i21

811

Freq. (MHz)
100
200
300
400
500
600
700
800
900
1000
1500

2000
2500
3000
3500

4000

Mag.
0.82
0.59
0.57
0.55

0.54
0.54
0.53
0.53
0.52
0.52
0.52
0.51
0.64
0.56
0.61
0.62

Ang.
-58

-93
-116
-131
-143
-1$2

-158
-165
-170
-175
167
152
139
127
115
106

(dB)

Mag.

29.3
27.1
24.9
23.0
21.3
20.0
lB.7

29.17
22.60
17.66

11.6
16.6
15.8

12.4
10.0

8.2
6.7

5.5
4.4

Ang.
148
129
115
101
100

14.14
11.65
9.96
8.57
7.57
6.78
6.16
4.16
3.16
2.57
2.17
1.69
1.66

95
91
86

-35.4
-34.0
-31.7
-32.0
-30.8
-3(W
-29.1

0.03
0.03
0.04
0.04
0.04

63

-28.6

79

-27.7

65
53
42

-25.5
-23.2
-21.3
-19.3
-17.8

0.05

-16.3

0.15

30
19
8

68

-40.0

0.07
0.09
0.11
0.13

66
50
47
48
51
52
57
57
59
63
64
52

59
55

0.58
0.56
0.55
0.64
0.53

0.52

o.sO
0.52
0.50
0.52
0.50
0.52

822
Ang.

·18

-23
-26

-26
-2S
':;'7
':;'8
-29

-28
-29
-37
-42
-51
-81
-88

-80

(

(

Flio-

HEWLETT
~~ PACKARD

LOW COST,
HIGH PERFORMANCE
TRANSISTOR

HXTR-3675

Features
GUARANTEED NOISE FIGURE
3.4 dB Maximum FMIN at 4 GHz
GUARANTEED ASSOCIATED GAIN
7.7 dB Minimum Ga at 4 GHz
HIGH OUTPUT POWER
17.5 dBm Typical PldB at 4 GHz
HIGH PldB GAIN
8.4 dB Typical GldB at 4 GHz
HIGH GAIN BANDWIDTH PRODUCT
6.0 GHz Typical IT
LOW COST HERMETIC PACKAGE

Description
The HXTR-3675 is an NPN silicon bipolar transistor
designed for use in low noise wide band amplifier or
medium power oscillation applications requiring superior
VHF, UHF, or microwave performance. Excellent device
uniformities, performance, and reliability are produced by
the ion implantation and self alignment techniques used in
the fabrication of these devices. The chip is provided with
scratch protection over its active area.

(

0.55

The HXTR-3675 is supplied in the HPAC-l00X, a rugged
hermetic metal-ceramic package capable of meeting the
environmental requirements of MIL-S-19500 and the test
requirements of MIL-STD-750/883.

1-i.~::'~~8j*r DIAl
.t,1:± 0.1
{.OS).± ,01)41

__~

1.0221
I,
[
i ---;-T_VP_._ _ _ _

f

to.,

tic.
'::::Y=I=T=:!i

1.071)

J l

MAX.

L

t(04)

TYP.

Absolute Maximum Ratings*
(TeASE

= 25° C)
DIMENSIONS IN MILLIMETERS {lNCHESI

Symbol

Parameter

Vcao
Vcw
Veso

Collector to Base Vollage
Collector to Emitter Voltage
Emitter to Base Voltage
DC Collector Current
Total Device Dissipation
Junction Temperature
Storage Temperatore

Ic
PT
TJ
TSTG

Value
30V
18V
1.5V
60mA
600mW
300°0
-65"C to
+150°C

Outline HPAC-l00X

·Operation in excess of anyone of these conditions may result in
permanent damage to this device.

Notes:
1. A 0JC maximum of 170°C/W should be used for derating
and junction temperature calculations (T J = Po x 8JC

+

TCASEI.
2. A MTTF of 1.0 x 107 hours will be met or exceeded when the
junction temperature is maintained under TJ = 200 0 C Ibased
on an activation energy of 1.1 eVI. For operation above this
condition, refer to page 108. "Reliability Performance of
Bipolar Transistors",

69

1.8

f

Electrical Specifications at TeAsE
MIL-STD-7liO
T ••• Method

Symbol

Para.mele'" alld T••t Condltlons

8Veeo

Collector-'Base Breakdown Volt~ge at Ie

Unlll

8VOEO

=100 MA
Colle¢tor~Emltter i3reakdown Voltage at Ie =15 mA

leBo

.CoHector-8ase Cutoff Current at Vee'" 15 V

3036,1'-

nA

ICED

Collector-Emitter Leakage Current at VeE'" '5 V

3041.1

nA

hFa
IT

ForWard Current TransterRatio at Vee" 10 V, Ie'" 10 mA

3078,'

. Gain Bandwidth PrQductat VOo '" 10 V. Ic=10 mA
Minimum Noise Figure
. VeE'" 10 V. Ie = 10 rnA

I"MIN

3001,"
3011."

V

18

Mall.

50
·50
175

56
6.0

dB

1.2

f .. 1000 MHz

Associated Gain
Vea=10V,lc"'10mA

3246.1

1,;

2:8

t'" 1000 MHz

PldB

Power Output at 1 dB Compression at 4000 MHz
Compression, Vel' = 15 V, Ie'" 18 rnA

GldB

Associated 1 dB Compressed Gain at 4000 MH.
VCE= 15 V, Ie = 18 rnA

C12E

Reverse Transfer Capacitance
Ves= 10 V, Ic=O mA

t=

M

di3

17.7
13.0
8.3

3246.1

1=2000 MHz
f=4000MHz

"300 J-ls wide pulse measurement S 2% auty cyCle.

30

GH~

I'" 2000 MHz
1=4000 MHz
G.

Typ.

Min.

V

7.7

1 MHz

dBrn

\7,5

di3

8A

pF

0.29

··Measured under low ambient light conditions.

25

r---....

20
iii

:l!

~

z
0

COllECTOR CURRENT (rnA)

COLLECTOR CURRENT (rnA)

Figure 4. TypicallS21EI2
4000 MHz.

Figure 3. Typical FMIN and Associated
Gain IGal vs. Collector Current at
VCE = 10 V.

70

VS.

Current at

Typical Noise Parameters

(

VeE= 10V, le= 10 rnA

Frequen/IY
(MHll

FMIN
(d&)

"sou
(d&)

GMIN
(dB)

1000

1.2

2000
4000

1.8

1.3
2.0

13.0

Mag.
0.2
0.4

2.8

4.1

8.3

0.6

17.7

ro

Ang.

An

(ohms)

-117

6.5
2.9

-117

21,5

135

FREQUENCY (OHzl

Figure 5. Typical Power Output at
1 dB Compression Gain vs.
Frequency.

Typical S-Parameters

(VeE = 10 V, Ie = 10 rnA)

$11
Fnl+- '.3MIN,

CHARACTERIZED FOR OSCILLATOR
APPLICATIONS UP TO 10 GHz

,....",..~-i

e

0.51 (0.021
TYP.

COMMON BASE CONFIGURATION

Description
The HXTR-4101 is an NPN bipolar transistor designed for
consistent high oscillator output. Each device is tested for
specified oscillator performance at 4.3 GHz. The device
utilizes ion implantation and self alignment techniques' in its
manufacture. The chip is provided with dielectric scratch
protection over its active area.
The HXTR-4101 is supplied in the HPAC-100, a rugged
metal/ceramic hermetic package, and is capable of meeting
the environmental requirements of MIL·S-19500 and the
test requirements of MIL-STD-750/883.

Absolute Maximum Ratings *

Ie

Pr
TJ

Tsm

-

Parameler
Collector to 8ase Voltage
Collector to Emitter Voltage
Emitter to Sase Voltage
DC Collector Current
Total Device Dissipation
Junction Temperature
Storage Temperature
Lead Temperature
(Soldering 10 seconds each lead)

~

c:::::7't

HERMETIC PACKAGE

Symbol
Vcao
VCEO
V€.so

I

TYP.

DIM.NSIONS IN MILLIMOTERS (INCHES).

limit
30V
20V
I.SV
70mA
900mW
300·C
-

50

Max.

dBc/Hz

2.

::>

-

Typ.

wide pulse measurement ~2% duty cycle.

22

E
~

V
nA
nA

f = 3 GHz

4,3GHz
6 GHz
BGHz
N/C

Min.
30

Units

'"

!g

12

,.

ill

1i

z

FREQUENCY (GHz)

(

Figure 1. Typical Tuned Power
Output vs. Frequency at VOB = 15 V,
Ie = 30 mA.

COLLECTOR CURRENT (rnA)

FREQUENCY FROM CARRIER (KHz)

Figure 2. Typical Oscillator Power
VS. Current for VeB = 15 V at

Figure 3. Typical Phase Noise to
Carrier Ration (N/CI vs. Frequency
from Carrier at 4.3 GHz, VeB = 15 V,
Ie = 30 mA.

4.3 GHz.

Typical 5 - Parameters

VeB = 15 V, Ie'" 30 rnA

$'1

521

$12

$22

Freq. (MHz)

Mag.

Ang.

Mag.

Ang.

Mag.

Ang.

Mag.

Ang.

1000
1500
2000
2500
3000
3500
4000
4500
5000
6000
7000
8000
9000
10000
11000
12000

0.93
0,94
0.96
0,98
0.99
1.01
1,02
1.Q1
0.98
0.91
0.85
0,78
0.76
0.72
0.70
0,64'

161
153
144
134
123
115
106
96
88
74
61
49
44
27
6
-24

1,93
1,92
1.95
1.97
1.96
1.95
1.87
1.79
1.65
1,32
1.06
0.87
0.76
0.72
0,68
0.67

-29
-44
-59
-76
-94
-114
-133
-155
-174
144
109
74
60
29
5
-25

0.Q11
0,023
0.039
0,061
0.086
0.117
0.154
0.186
0.217
0.245
0.267
0.298
0.238
0,288
0,302
0.320

127
126
120
113
105
93
84
70
58
35
17
1
-10
-24
-38
-58

1,01
1.04
1,06
1.10
1,12
1.16
1,19
1.20
1.21
1.10
0.99
0.89
0.93
0,89
0.84
0,82

-15
-31
-45
-59
-74
-91
-108
-127
-143
-176
157
135
131
113
102
92

73

rh~

~~

LINEAR POWER
TRANSISTOR

HEWLETT
PACKARD

2N6701
(HXTR -5101)

Features
HIGH OUTPUT POWER
23 dBm Typical P1dB at 2 GHz
22 dBm Typical P1dB at 4 GHz
HIGH PldB GAIN
13 dB Typical GldB at 2 GHz
7.5 dB Typical GldB at 4 GHz
HIGH POWER-ADDED EFFICIENCY
HERMETIC PACKAGE

Description IApplications

ll.6' (0.02)

TVP.

The 2N6701 (HXTR-5101) is an NPN bipolar transistor designed for high output power and gain up to 5 GHz. To
achieve excellent uniformity and reliability, the manufacturing process utilizes ion implantation and self alignment
techniques. The chip has a dielectric scratch protection over
its active area and TII.2N ballast resistors for ruggedness.
The superior gain, power, and distortion performance of the
2N6701 commend it for applications in radar, ECM, space,
and commercial and military telecommunications. The
2N6701 features both guaranteed power output and
associated gain at 1 dB gain compression.
The 2N6701 is supplied in the HPAC-100, a metal/ceramic
hermetic package, and is capable of meeting the
environmental requirements of MIL-S-19500 and the test
requirements of MIL-STO-750/883.

0.110.0041

I I
i'
t~I======~~~"~====~lt

tJ.£\ frloi

Absolute Maximum Ratings *

DIMENSIONS IN MILLIMI!TERS (INCHES},

(TeASE = 25°C)

Symbol
VCBO
VCEO
VEBO
Ie
Pr
TJ
T5TG

-

Parameter
Collector to Base Voltage
Collector to Emitter Voltage
Emitter to Sase Voltage
DC Collector Current
Total Device Dissipation
Junction Temperature
Storage Temperature

Limit
45V

27V
4V

Outline HPAC-l00

100 rnA
1.1 W
aoo·C
-es"C to

200'C

Lead Temperature
(Soldering 10 seconds each lead)

+25O"C

·Operatlon In eAcess of anyone 01 these conclltlons may result in
permanent damage to this device.

Notes:
1. A 9JC maximum of 210°C/W should be used for derating
and junction temperature calculations IT J = Po x (-)JC +
TCASEI.
2. A MTTF of 3.5 x 106 hours will be met or exceeded when the
junction temperature is maintained under TJ = 1250 C Ibased
on an activation energy of 1.1 eVI. For operation above this
condition, refer to page 108. "Reliability Performance of
Bipolar Transistors".

74

/

(

Electrical Specifications at TeAsE =25°C
Test
MIL·STD-1S0

Unite

Typ.

MIn.

Symbol

Parameter. and Test Conditione

eVCBO

COllector-ease Breakdown Voltage at Ie '" SmA

3001.1'

V

eVCiO

Collector-Smitter Breakdown Voltage at Ie '" 15mA

3011.1'

V

24

SViSO

Smitter-ease Breakdown Voltage at Ie'" 30llA

3026.1'

V

3.3

Malt.

40

2

lEBO

Emitter-ease leakage Current at Vea=2V

3061.1

ICES

Collector-Emitter Leakage Current at VCE"32V

3041, 1

/l-A
nA

200

leao

Collector-ease Leakage Current at VCB=20V

3036.1

nA

100

hFE

Forward Current Transfer Ratio at Vce=lSV.
Ie'" SOmA

3076."

P1de

Power Output at ldB Gain Compression

G1ae

Associated 1dS Compressed Gain

15

40

21.0

23.0
22.0

6.5

13
7.5

dBm

f=2GHz
4GHz
2GHz
4GHz

de

15

PSAr

Saturated Power Output (SdS Gain)
(SdS Gain)

20Hz
4GHz

dBm

25.5
25.0

'I

Power-Added Efficiency
at 1dS Compression

2GHz
4GHz

%

35
24

IP3

Third Order Intercept Point
Vce=18V. Ic=30mA

40Hz

dBm

31

300,us Wide pulse measurement at ::5:2% duty cycle.
0

~E

I

•.

]
c

!----

z

"E
"~.

I

0

I

30

iii

'"

P1dB

Z

;;

i'

1$2t~ 12

~

"-

I\. I\M~G

10

"cz
"
~
:;;'"

~

~

r\1'

20

10

>~

1=
~

o.1

~
z

;;

"cz

"
'"'"

E
~
w

~
>-

0

I
.2

.4

.6.8 1

4

6

0

810

FREQUENCY (GHzj

COLLECTOR CURRENT (mA)

Figure 1. Typical MAG. Maximum Slable
Gain IMSGI. and IS21EI2. vs. Frequency at
VeE = 18 V. Ie = 30 rnA.

Figure 2. TypicallS21 EI2 vs. Curren1 a12
and 4 GHz.

25

15

t

24

I

23
22
21
20

v::
-- .---!~.
h

19

18

Vte

-

~

r-....

G,,,,
I
20

~

'z"
>-

'\.

.....

-30

!

ISV

,-

,.

L

~

COLLECTOR CURRENT {rnA}

Figure 4. Typical PldB Linear Power and
Associated 1 dB Compressed Gain vs.
Curren1 at VeE = 12 and 18 V at 4 GHz.

~
~

8 10

FREQUENCY (GHz)

Figure 5. Typical Noise Figure IFMINI and
Associated Gain (G a) when tuned for
Minimum Noise vs. Frequency at VeE ==
18 V. Ie = 10 rnA. Typical Noise Figure
(Fp) when tuned for Max P1 dB at
VeE = 18 V. Ie = 30 rnA.

75

~

-20

~

-40

:r>-

/
/

-30

VPIMQ

/

-50
-60
-10

/

/

0

0

I

6

~

-10

"'~

~

50

10

"'V

.,...,.

20

J:

:=

~ F-

40

10

'P,

30

w

G,

0

10

//
~

5
10

'\.
.'\.

S

Figure 3. Typical PldB Linear Power and
Associated 1 dB Compressed Gain vs.
Frequency at VeE = 18 V. Ie = 30 rnA.
40

~

~

0

12V

I'

6
FREQUENCY (GHz)

'\.

l8V

'/

17

:=

to;

.5

/
-5

10

15

20

25

30

INPUT POWER OF EACH TONE (dBm)

Figure 6. Typical Two Tone 3rd Order
I ntermodulation Distortion at 2 GHz for a
frequency separation of 5 MHz at
VeE = 18 V. Ie = 30 rnA.

'180

Figure 7. Typical I'MS, I'ML, (calculated
from the average S-parameters) in the 2 to
6GHz frequency range, at VCE = lBV, Ic =

30mA.

Typical S-Parameters

VeE = 18V, Ie = 30mA
$21
Mag,

S'1
Freq. (MHz)

Mag.

Ang.

(dB)

100
200

0.80
0.78
0,75
0,72
0,6B
0.66
0.64
062
0,61
0,60
0,56
0,55
0.56
0,55
0,56
0,54
0,54
0.52
0.54
0.54

-19
-37
-53
-68
-81
-92
-102
-111
-119
-126
-151
-169
179
168
158
148
137
128
115
108

20.6
20.1
19.5
lB.7
17.9
17,0
16.2
15,5
14,8
14.1
11,2

300

400
500
600
700
800
900
1000
1500
2000
2500
3000
3500
4000
4500
5000
5500
6000

TypicalS-parameters

10.7
10.2
9.44

B,63
7,87
7,15
6,52
5.96
5.49
5.08
3,64
2,80
2.29
1.93
1.69
1,50
1,33
1,21
1,12
1.01

B.9
7.2
5,7
4.5
3,5
2,5
1.6
1,0
0.0

VeE

= 15V,

Ie

Freq. (MHz)

Mag.

Ang.

(dB)

100
200
300
400
500
600
700
800
900
1000
1500
2000
2500
3000
3500
4000
4500
5000
5500
6000

0,80
0.78
0,76
0,73
0,69
0.67
0,64
0,62
0.60
0.60
0,57
0.55
0.56
0.56

-18
-35
-50
·64
-77
-88
-97
-107
-115
-122
-148
-166
-178
171
160
151
141
130
118
110

19,4
19.1
18.5
17.8
17.1
16,3
15.5
14.11
14,2
13,5
10.8
8,6
6,9
5.1
4,$
3.3
2.3
1,5
0,8
0.0

9,35
9,07
8.44
7,79
7,16
6.56
6,02
5.54
5.13
4,76
3.47
2.69
2,21
1.80
1.65
1,47
1,30
1.18
1.10
0,99

0.56
0,53
0,53
0,50
0,52
0,53

(dB)

165
154
143
133
124
117
110
104
99
94
75
59
45
33
21
10
0
-11

-37
-31
-28
·27
-26
-25
-24
-24

S'2
Mag.

Ang.

Mag.

$22
Ang.

77
67
60
53
47
42
39
33
31
25
22
21
21
20
19
18
16
14
11

0,98
0.94
0.88
0.83
0.78
0.73
0,69
0,66
0.64
0.61
0.55
0.52
0.53
0,52
0.55
0,58
0,58
0.62
0,60
0.64

-8
-15
-21
·26
-30
-33
-36
-38
-41
-43
-51
-61
-72
-79
-89
-96
-106
-113
-122
-132

S22
Ang_

-22
-21
-21
-20
-19
·19
-18
-17
-17

0.01
0.03
0,04
0.05
0,05
0,06
0.06
0.07
0.07
0,07
0.06
008
0,09
0,09
0.10
0,11
0.11
0.13
0.14
0,15

Ang.

(dB)

812
Mag.

Ang,

Mag.

168
155
145
135
127
119
113
107
101

-37
-31
-28
-26
-25
-24
-23

0,01
0,02
0.03
0.04
0,05
0,06
0,06

78
69
61
55
49
44
40

·23

0.06

0,98
0.95
0,91
0,86
0,81
0,76
0.72
0,69
0.66
0.63
0.57
0,54
0,55
0.50
0,56
0.59
0,59
0,62
0.61
0,64

-23
-32

-23
-23
-23

36

= 15mA

821
Mag.

$"

Ang.

96
76
60
46
36
21
10
0
-10
-22
-31

76

-23
·23
-22
-21
-21
-20
-20
-19
-19
-18
-17
-16

37

0,07

34

0,07

32

0.08
0,08
0,09
0,09
0.10
0.11
0,11
0.12
0,14
0,15

24
21
19
21
18
18
17
15
13
11

-7
-14
-20
·25
-29
-32
-35

-38
-40
-43
-53
·63
·75
-85
-91
-99
-108
-116
·124
-135

(

Flio-

LINEAR POWER
TRANSISTOR

HEWLETT

~~ PACKARD

HXTR-5102

Features
HIGH OUTPUT POWER
29 dBm Typical P1dB at 2 GHz
27.5 dBm Typical P1dB at 4 GHz
HIGH P1dB GAIN
11.5 dB Typical G1dB at 2 GHz
7 dB Typical G1dB at 4 GHz
HIGH POWER-ADDED EFFICIENCY
HERMETIC FLANGE PACKAGE

DescriptionlApplications

(

The HXTR-5102 is an NPN bipolar transistor designed for
high output power and gain up to 5 GHz. To achieve
excellent uniformity and reliability, the manufacturing
process utilizes ion implantation and self-alignment techniques. The chip has a dielectric scratch protection over its
active area and T82N ballast resistors for ruggedness. A silicone conformal coating protects the chip and matching
network.

PIMElIIISIONS IN

Ouiline

MllllMETE~S

HNCH£Sl

HPAC-200 GB/GT

Absolute Maximum Ratings *

The superior power, gain and distortion performance of
the HXTR-5102 commend it for use in broad and
narrowband commercial and military telecommunications, radar and ECM applications. Additionally, its
partial internal matching makes it ideal for broad
bandwidth designs in the 2 to 5 GHz frequency range with
minimal sacrifice of output power and gain.

(TeASE = 25° C)
Symbol
Vcse
VCEe
VESO

Ie
Pr
TJ
TSTG

The HXTR-5102 is supplied in the HPAC-200GB/GT, a
metal/ceramic hermetic package with a BeO heat
conductor, and is capable of meeting the environmental
requirements of MIL-S-19500 and the test requirements of
MIL-STD-750/883.

-

Umll

Parameter
Collector to Base VOltage
Collector to Emitter Voltage
Emlner to 8ase Voltage
DC Collector Curren!
Total Oevlce Olsslpatlon
Junction Temperature
Storage Temperature
Lead Temperature


-30

1:

-40

il

..L-

. j-

1--- I-1--.- 1---

lPo

30

c

'''''
i
40

50
40

~

F

./

c--f

4
• 10

60

".z
lo"C:

,

'"

G,

"-

AIfol

30

,

I
50

40

VS,

-

......

GH.

~

."-

,16V

I I

r--

10

2

60

'''"r- ....

I. I-1. --

30

Figure 2, Typical IS21 EI2
1 and 2 GHz,

",,;.~v

_f"""

I
I
I

......... Old. _

15

J J

....

20

15

1

COLLECTOR CURRENT {mAl

Figure 1. Typical Galm~xl' Maximum Stable
Gain IGm,l, and IS21EI VS, Frequency at
VeE = 18 V, Ie = 30 rnA,
~

l"- _

f-_.-

P'J.dS -

20

oTt- -f

.J
10

r'-l-

25

.,i.. -~r

12V.ff=

f"
0~1--~,2~~4~6~.~1--~~~4~6~."0

tt

30

... -

-50
-50
-10

i

"" ... ~

~ •• f.-"
~

--

, ./
;""'Y

! 'V
1 V

I

Y

-5

".,

10

15

20

INPUT POWER OF EACH TONE (dBm)

Figure 6, Typical Two Tone 3rd Order
Intermodulation Distortion at 2 GHz for a
frequency separation of 5 MHz at
VeE = 18 V, Ie = 30 rnA,

90

~90

Figure 7. Typical rMS, rML (Calculated from the
Average S-Parameters) in the 2 to 4GHz Frequency
Range for VCE = 18V, Ic = 30mA.

Typical 5- Parameters

VCE = 18V, Ic = 30mA

$11
Freq. (MHz)
100
200
300
400
500
600
700
800
900
1000
1500
2000
2500
3000
3500
4000
4500
5000
5500
6000

Mag.
0.74
0.71

o.se

0.66
0.62
0.60
Cl.5S
0.55
0,54
0.52
0.49

0.47
0.47
0.45
0,45.
0.42
0.41
0.39
0.39
0.37

Ang.
-20
-40
-57
-72
·86
·97
·108
·116
-124
-131
-159
-179
165
151
138
123
110
89

(dB)

74

1.4
0.7

55

Typical 5- Parameters

20.7
20.3

1M
18.7
17.8

16.9
16.2
15.4

14.6
13.8
11.0
8.8
7.1
5.S
4.7
3.7
3.2

2.2

VCE

100
200
300
400
500
600
700
800
900
1000
1500
2000
2500
3000
3500
4000
4500
5000
5500
6000

Mag.
0.74
0.70
0.67
0.63
0.60
0,58
0.57
0.55
0.54
0,52
0.48
0.46
0.46
0.45
0.44
0.43
0.41
0.38
0.39
0.37

Ang.
-19
-37
-54
-69

-83
-95
-105
-113
-121
-128
-156
-171
167
153
140
126
112
93
74
56

Ang.
165
152
140
130
121
113
106
100
94
88
66
46
32
17
2
-11

3.53
2.77
2.27
1,95
1.71
1.54
1.44
1.29
1.16
1.09

-24
-38
-53
-64

(dS)

·31
-32
-29
-27
·26
-25
·25

·24
-24
-23
-22
-21
-20
·19
·18
-17
-16
·15
-14
-13

$,2
Mag.
0.Q1

$22

Mag.

0.03

Ang.
79
68

0.04
0,04
0.05
0.06
0.06
0.06
0.07
0.07
0.08

S2
55
49
44
41
38
35
33
25

0.09

22

0,10
0,11
0,12
0.14
0.16
0.17
0.19
0.22

16
15
10
4
1
-6
-12
-17

0.69
0.84
0.79
0.75
0.71
0.68
0.65
0.63
0,58
0.56
0.56
0.59
0.59
0.64
0.65
0.69
0.69
0.69

Ang.

-9

0.98
0.94

-17
-23
-28
-33

·37
·40
·42
.44
-46
-59
-67
-81
-90
-103
-111
·121
-131
-139
-148

= 15V,lc = 115mA

S11

Freq. (MHz)

$21
Mag.
10.90
10.30
9.49
8.65
7.77
7.01
6.43
5.87
5.38
4.91

(dS)
191
16.S
16.2
17.5
16.S
16.0
15.2
14.5
13.8
13.0
10.2
8.0
6.3
5.0
3.8
2.S
1.9
1.0
O.S
-0.3

S21
Mag.

822

$12

Aug.
164
152
141
130
121
113
107
101
95
89
66

9.05
8.76
8.16
7.52
6,90
6.32
5.78
5.29
4.88
4.48

3.23
2,51
2.00
1.76
1.56
1.38
1.24
1.12
1.09
0.96

46
31

16
0
-13
-26
-40
·55
-67

82

(dB)

-37
-31
-26
-27
-26
-25
-24
-24
·23
-23
·22
-21

-20
·19
-18
-17
·16
-15
-14
-13

Mag.
0.01
0.Q3
0.04
0.05
0.05
0.06
0.06
0.07
0.07
0.07
0.08
0.09
0,10
0.11
0,12

0.14
0,15
0.17
0.20
0.23

Ang.

81
68
60
53
48
43
40
37

34
31
25
21
16

16
12
8
4
-1
-6
-12

Mag.
0.98
0.94
0.90
0,85
0.80
0.76

0.73
0.70
0.67
0.65
0.60
0.56
0.57
0.59
0.60
0.64
0.64
0.68
0.70
0.69

Allg.
-8
-15

-21
-26
-31
-35
-38
-40
-43
-45
-55
-65

-77
-86
-98
-106
-114
-123
-130
-139

(

Flin-

LINEAR POWER
TRANSISTOR

HEWLETT

~e.. PACKARD

HXTR-51O~

Features
HIGH OUTPUT POWER
29 dBm Typical PldB at 2 GHz
HIGH P1dB GAIN
9 dB Typical GldB at 2 GHz
3.25 (O.128) DlA.
TYP,

LOW DISTORTION
HIGH POWER-ADDED EFFICIENCY

'Je=::=J.-l

HERMETIC PACKAGE

BI

.762
1.030)

Description/Applications

TYP

The HXTR-5014 is an NPN bipolar transistor designed for
high gain and linear output power up to 4 GHz. To achieve
excellent uniformity and reliability, the manufacturing process utilizes ion implantation and self-alignment techniques.
The chip has a dielectric scratch protection over its active
area and Tll2N ballast resistors for ruggedness.

E

J L

1.62
(0.060)
TYP.

The superior power, gain and distortion performance of
the HXTR-5104 commend it for use in RF and IF
applications in radar, ECM, space, and other commercial
and military communications.

(

1.27

0.102

(0.0501

10.004)
TYP,

TYP.

The HXTR-5104 utilizes the HPAC-20D, a metal/ceramic
hermetic package with a BeD heat conductor, and is
capable of meeting the environmental requirements of
MIL-S-1950D and the test requirements of MIL-STD750/883.

Absolute Maximum Ratings*
IT CASE

= 25° C)

Symbol
VCBO
VeEo
Veso

Ie
PT
TJ
TSTG

-

ALL DIMENSIONS ARE IN MILLIMETERS IINCHES).

Parameter
Collector to Base Voltage
Collector to Emitter Voltage
Emitter to Base Voltage
DC Collector Current
Total Device Dissipation
Junction Temperature
Storage Temperature
Lead Temperature
(SOldering 10 seconds each lead)

Limit
45V
27V
4V
250 mA

Outline HPAC·200

4W
300°C
435°C to
200°C
+250°C

'Operation in excess of anyone of these conditions may result in
permanent damage to this device.

Notes:
1. A elJC maximum of 55 0 C/W should be used for derating and
junction temperature calculations (TJ = PD X 0JC + TeAsEl.
2. A MTTF of 3.5 x 106 hours will be met or exceeded when the
junction temperature is maintained under TJ = 125 0 C (based
on an activation energy of 1.1 eVi. For operation above this
condition, refer to page 108. "Reliability Performance of
Bipolar Transistors".

83

Electrical Specifications at TCASE=25°C
Tut
MIL·$TD-7SO

Symbol Par.mete... and Tut Conditions
BVCBO

COllector-Base Sreakdown Voltage at 1c=10mA

3001.1'

Units

Min.

V

40

Mal(.

Typ.

BVCEO

Collector-Emitter Breakdown Voltage at Ic"'50mA

3011.1'

V

24

BVEBO

Emitter-Base Breakdown Voltage at IS"'100p.A

3026.1'

V

3.3

IE60

Emitter-Base Leakage Current at VEB=2V

3061.1

p.A

iCES

Collector-Emitter Leakage Current at VCE=32V

3041.1

nA

10
200

3036.1

nA

100

IceO

Collector-Base Leakage Current at VCB"'20V

hFe

Forward Current Transfer Ratio at Vce=18V,
lo-110mA

PldB

Power Output at ldB Gain Compression

15

40

dBm

28.0

29.0

2GHz

dB

8.0

9.0

2GHz

dBm

31.0

2GHz

%

35

2GHz

dBm

37

3016.1*

f'"
2GHz

G'dB

Associated ldB Compressed Gain

PSAT

Saturated Power Output (Gain=5dB)

'1

Power-Added Efficiency
,at ldB Compression
Third Order Intercept Point
Vce=18V. ic"'11OmA

IP$

75

300l's Wide pulse measurement at ,;2% duty cycle,
12

,

~
w

~

, ves-'

I[-..01

10

-I'-o!'oo,

~

~~ pv

1- .... i"" 1---

_t:0

f-' ' - lav

"-

'"~.

t'!!..

,

iii

:s

~

~

;g

I"""

i'l
f-~. r~5V

'"
~

f-ri

1 -

r'

I I '

I

i

00

"""
0;;;;

1c;H,T'" r-...:

f-;;'r

",'

/

I

50

100

150

FREQUENCV (GHz)

COLLECTOR CURRENT (mAl

FREQUENCV (GHz)

Figure 1, Typical MAG, Maximum Stable
Gain IMSGI and IS21EI 2 VS, Frequency at
VCE = 18 V, Ic = 110 rnA.

Figur~ 2, Typical IS21EI 2 vs, Current
at 1 and 2 GHz,

Figure 3, Typical P, dB Linear Power and
Associated 1 dB Compressed Gain vs,
Frequency at VCE = 18 V, Ic = 110 mA.

15

30
29
28
27

2.
25

24

,/

V

/

1/

......

I~I

VCE,"lIW

, II), Go
lid\.
i i·1 \.

12.5
12V

.......

V "dB

10

ILl

,..'so

100

18V

F

, 'I

;:: 150

COLLECTOR CURRENT (rnA)

Figure 4, Typical P'dB Linear
Power and Associated 1 dB
Compressed Gain vs. Current at

VCE

\.

~" ~

~,

ll,dO

~+ W-

;

75

V'

r-- i-

II II
L ' It

= 12 and 18 V at 2 GHz,

~
I !I

25
0

j

.L

, 11,1

.-

/'.1 I

........ i ""IN
\. /' I

...x: .

I

"

I

I

I
'~

J
. i

,5

~
W

g
~

j'l
6

8 10

50 )---

-

40 1-:30 f-f20
10

~

I-f-

....

i

-10

~

-20

5

-30

f-

-40
-60_ 5

-

,-- .. f--

- r--

. r-

';::p ... :

!

'f-

It•

7rI-,--

- 'r,y- ITt

-

-so

-.IJ-' ;...~~~
I,,..r-

o

~

'I

.1

~

60

V

V

A
1
10

15

20

25

FREQUENCY (GHzj

INPUT POWER OF EACH TONE (dBm)

Figure 5, Typical Noise Figure IFminl and
Associated Gain IGal VS, Frequency when
tuned for Minimum Noise at VCE = 18 V,
Ic = 25 rnA. Typical Noise Figure IFpl when
tuned for Max P'dB at VCE = 1.8 V, Ie = 110 mA,

Figure 6, Typical Two Tone 3rd
Order Intermodulalion Distortion al
2 GHz for a frequency separation of
5 MHz at VCE = 18 V, Ic = 110 mA,

84

(

90'

±180"

-90'

Figure 7. Typical rMS, rML (calculated from the average
S-parameters) in the 1.5 to 3.5GHz frequency range,
at VCE = 18V, Ic = 110mA.

Typical S-Parameters

VCE

= 18V,

$11

(

Freq. (MHZ)
100
200
300
400
500
600
700
800
900
1000
1500
2000
2500
3000
3500
4000
4500
5000
5500
6000

Mag.
0,48
0,54

0.59
0.61
0.63
0.64
0.65
0.65
0.65
0.64
0.65
0.65
0.66
0.65
0.64
0.63.
0.61
0.59
0.58
0.5S

Ic

= 110mA

$21
Ang.
-68
-109
-132
-146
-155
-162
-168
-172
-176
179
169
151
139
128
115
103

87
72
53
38

(dB)

24.8
22.6

20.4
18.5
16.9
15.5
14.3
13.3
12.4
11.5
8.2
6.0
4.3
2.9
1.8
0.9
0.2
-0.7
-1.6
-2.3

$12
Ang.
140
127
112
102
94
68
83
78
73
69
50
33
17
2
-13

Mag.
17.30
13,50
10.50
8,43
7.02
5.98
5.21
4.62
4.15
3.70
2.57
1.99
1.64
1,40
1.23
1.11
1.03
0.93
0.84
0.77

-27
-41

-54

-67
-79

85

$22

Mag.
0.03
0.04
0.05
0.06
0.06
0.06
0.07

Ang.
62

-23

om

33

-23
-22
-20
-19
-17

0.Q7

33

0.08
0.10
0.11
0.14
0.16
0.19
0.22
0.26
0.29
0.34
0.37

32
31
30

(dB)

-31
-27
-26
-25
-24
-24
-24

-16
-15
-13
-12
-11
-10
-9

48
40
36
34
33
33

25
20
14
5
-2
-12
-22
-31

Mag.
0.88
0.69
0.55
0.47
0.41
0.38
0.35
0.34
0.32
0.32
0.32
0.33
0.39
0.42
0,46

0.51
0.53
0.57
0.57
0.60

Ang.
-27
-46
-58
-66
-71
-76
-80
-84
-87
-90
-104
-118
-130
-140
-152
-161
-172
179
167
155

Flio-

LOW NOISE
TRANSISTOR

HEWLETT
~~ PACKARD

2N6617
(HXTR-61 01)

Features
LOW NOISE FIGURE
2.8 dB Typical FMIN at 4 GHz

0.762 (0.0301
TYP.

HIGH ASSOCIATED GAIN
9.0 dB Typical Ga at 4 GHz

1

HERMETIC PACKAGE

O.5Q8

BASE\

to.OZOID

TYP.

I

Description

~EMITTER

The 2N6617 (HXTR-6101) is an NPN bipolar transistor
designed for minimum noise figure. The device utlizies ion
implantation techniques in its manufacture and the chip is
also provided with scratch protection over its active area.
The device is supplied in the HPAC-70GT, a rugged
metal/ceramic hermetic package, and is capable of meeting the environmental requirements of MIL-S-19500 and
the test requirements of MIL-STO-750/883.

r---S.08 (0.201--:
TVP.

1.00 (O.039)

Mh==d1I.=J
L==+
~.

0.838 (0,033)

Absolute Maximum Ratings *
(TeASE
Veso
VCEO
VeBO

Ie
PT
TJ
TSTG(MAX)

-

TVP.

= 25° C)

Symbol

Parameter
Collector 10 Base Voltage
Collector to E.mltter Voltage
Emitter to 8ase Voltage
OC Collector Current
Total Device Dissipation
Junction Temperature
Storage Temperature
Lead Temperature
(Soldering 10 seconds each lead)

limit
35V
20V
1.5V
20mA
300mW
30QoC
-65°C to
200'C
+250'C

'Operatlon In excess of anyone of these conditions may result
permanent damage to this device

o:533liJ.02Tj

0.102 (0.0041

DIMENSIONS IN MILLIMETERS AND (INCHES).

OUtlioe HPAC-70GT

In

Notes:
1. A 8JC maximum of 245° C/W should be used for derating
and junction temperature calculations (T J = Po x 0JC +
TCASEI.
2. A MTTF of 1.0 x 107 hours will be met or exceeded when the
junction temperature is maintained under TJ = 200 0 C (based
on an activation energy of 1.1 eV). For operation above this

condition, refer to page 108. "Reliability Performance of
Bipolar Transistors".

86

(

Electrical specifications at TeAsE =25°C
Test
MIL-STD·7S0

Unlt$

Min.

Typ.

Max.

Symbol

Parameters And Test Conditions

BVcEs

Collector-Emitter Breakdown Voltage at Ic"'100pA

3001.1'

V

leEO

Collector-Emitter Leakage Current at VCE=10V

3041.1

nA

500
100

lello

Collector Cutoff Current at VC6"'10V

3036.1

nA

hFE

Forward Current Transfer Ratio at VCEl'='10V. Ic"'4mA

3076.1*

-

F~llN

Minimum Noise Figure
f= 4 GHz
2 GHz

30

50

dB

150

250

1.6
2.8

3.0

3246.1

Ga

Associated Gain

f=

4 GHz
2 GHz

dB
dB

Bias Conditions for Above: VeE = 10V. Ie

~

8.0

9.0
13.5

4mA

-

300/-<5 wide pulse measurement at :5.2% duty cycle

18
16

12

"- .... r-,.

14

~

" '"

A~~I~T.d"o."
(G~J

....

....

iii

':E"
z

J

/'

//

fil"
~

~
"
"z
z

'--

""=- .

l

(

2.0

3.0

4.0

5.0

-NOISE FIGU~f

-

~

~

L i.fI

-

o
o

FREQUENCY {GHz)

COLLECTOR CURRENT (rnA)

'N«"V

~10V

...... ~

I
'C<
./

1,5

2.0

3.0

4.0

I ASSOClATED GAIN
I

5.0

!

i
1---.

,

1

6.0

(Gq. (MHz)

(Mag'/Ang.)

1000
1500
2000
3000
4000
5000
6000

.480/23"
.450/61 '

.410/88'
.4251121'
.475/166'
.5301-164'
.520/-131'

RN

FMIN (dB)

23.31
15.57
15.73
10.72
3.50
2.81
7.23

1.45
1.58
1.72
2.18
2.75
3.67
4.78

(Ohms)

Low power Bias Per formance
Bias
VeE
V

Ie
mA

FMIN
dB

G.

RN

dB

Ohms

3
3
3

0.25
0.50
1.00

2.25
1.87
1.55

8.5
12.7
15.7

605

25.5
13.9

f.
fL
Mag.lAng. Mag'/Ang.

.805/31"
.713/38'
.571/39'

.788/25'
.779/29'
.774129'

Figure 4. NOise Parameters at 1 GHz.

Frequency
BIA5

1000 MHz

1500 MHz

2000 MHz

G,
dB

F M•N

G.

FMIN

mA

FMIN
dB

dB

dB

dB

0.25
050
10

2.25
1.87
1.55

8.5
127
15.7

267
206
1.73

50
9.9
11.7

2.83

VeE

Ie

V

3
3
3

223
179

3000MHz

G.
dB

FM.N

4.7
79
10.2

388

G,
dB

dB
2.93

4.1
6.4

2.38

8.1

Figure 5. Noise Performance vs. Frequency and Bias.

(

Typical S-Parameters

VCE = 3V. Ic = 0.25mA

5 11
Freq. (MHz)

500
1000
1500
2000
3000

Mag.

Ang.

.988
.956
.929
.910
.888

(dB)

5 21
Mag.

Ang.

(dB)

5a
Mag.

5:u
Ang.

Mag.

Ang

6

,993
.975
.956
.945
.938

-12
-22
-33
-42
·59

-22
-42
-65
-81
-112

-6.9
-7.2
-7.5
-7,7
-8.1

.451
.438
.423
.412
.394

152
127
106
89
56

-28.2
-23.1
-20.6
-19,7
-19.3

.039
.070
.093
.104
.10B

5 21
Mag.

Ang.

(dB)

5'2
Mag.

Ang.

Mag.

Ang.

-3.3

.991
.863
.792
.747
.688

152
128
107
91
60

-28.4
-23.6
-21.4
-20.6
-20.1

.038
.066
.085
.093
.099

70
52
35
24
7

.986
.955
920
906
.889

-13
-24
-34
-43
-60

52,
Mag.

Ang.

(d8)

Mag.

Ang,

Mag.

Ang.

1.67
1.54
1.36
1.25
1.09

149
125
104
88
59

-28.6
-24.3
-23.1
-22.6
-22.1

.037
.061
.070
.074
,079

66
47
31
23
10

.972
.919
.873
.854
.842

-14
-25
-36
·43
-59

72
55
38
27

K

.220
.464
.586
.679
.821

VCE = 3V, Ic = O.50mA
511
Freq. (MHz)

Mag.

Ang.

(dB)

500

.976
.929
.887
.858
.818

-24
-47
-72
-89
-121

-O.B

1000
1500
2000
3000

-1.3
-2.0

-2.5

5 22

K
.220
.423
.583
.682
,818

VCE = 3V, Ic = 1.0mA
5 11
Freq, (MHz)

Mag.

Ang.

(dB)

500
1000
1500
2000
3000

.952
.884
.821
.775
.738

-25
-54
-82
-102
-133

4.4
3.7
2.7
1.9

.77

$22

$'2

91

K
.328
.492
.664
.793
.908

Fli;'

LOW NOISE
TRANSISTOR

HEWLETT

~~ PACKARD

2N6618
(HXTR- 6103)

Features
GUARANTEED LOW NOISE FIGURE
2.2 dB Maximum FMIN at 2 GHz
HIGH ASSOCIATED GAIN
12.0 dB Typical Ga at 2 GHz

l

3.3 (o.I30l
1I
MIN •

HERMETIC PACKAGE

. ...",..-.!'-

C

z::=:::7
t

Description

1.

0.51 (0.02)

TYP.

The 2N6618 (HXTR-6103) is an NPN bipolar transistor
designed for minimum noise figure at 2 GHz. The device
utilizes ion implantation and self alignment techniques in its
manufacture. The chip is provided with scratch protection
over its active area.
These devices are supplied in the HPAC-l00, a rugged
metal/ceramic hermetic package •. and are capable of
meeting the environmental requirements of MIL-S-19500
and the test requirements of MIL-STD-750/883.

Absolute Maximum Ratings *

I

CTcAse= 25· C)
Symbol
VCBO
VeEo
VESO
Ie

PT
TJ
T6m

-

Parameler
Collector to Sase Voltage
Collector to Emitter Voltage
Emitter to Base Voltage
DC Collector Current
Tolal Dev1ce Dlssipatlon
Junotion Temperature
Stontga Temperature
Lead Temperature
(SolderingtO seconds each lead)

I

O.t (0.004)

TYP.

1.Il7fo.3
+
1O.04t.
-LL
0.0..':'=====;"!;;;;;;;;J~====::J.
n;;;:;:rw

t

UmIt
35V
20V
1.5V
20mA
300mW
3000C

DIMeNSIONS IN 1\"~LlMETERS (/I'iCHES).

-65°010
2OO·C

+250·C

*Operation in excess of anyone of these conditions may result in
permanent damage to this device.

OuIDne HPAC-100

Notes:
1. A 6JC maximum of 245' C/W should be used for derating
and junction temperature calculations (TJ = Po x 6JC +
TCASEL
2. A MTTF of 1.0 x 107 hours will be met or exceeded when the
junction temperature is maintained under TJ = 200' C (based
on an activation energy of 1.1 eV). For operation above this
condition, refer to page 108. "Reliability Performance of
Bipolar Transistors".

92

(

Electrical Specifications at TCASE =25°C
Symbol

Parameters And Test Conditions

BVCES

Collector Emitter Breakdown Voltage at Ie '" 1OO"A

Test
MIL-STD-7S0

Unitt

Min.

3011."

V

30

= 10V

ICEO

Collector Emitter Leakage Current at VCE

3041.1

nA

leBo

Collector Cut Off Current at Ves '" 10V

3036.1

nA

hFE

Forward Current Transfer Ratio at VCE=10V, ic=3mA

3076."

-

FMIN

Minimum Noise Figure at 2 GHz
3246.1

dB

G.

Associated Gain at 2 GHz

Typ,

Max,

500
100

50

dB

11.0

150

250

1.8

2.2

12.0

= 3 mA

Bias for above: VeE'" lOY, Ie
'300 p.s wide pulse measurement at ,; 2% duty cycle.

14

'"

IG.1

~
w

1

~

-

a:

"ii:
C,'l

=-

w

'"oz

r--...

JG

"

z

~~'
r--

....-K'

12

;;
0

V
./

C,'l

~

@
~

<3
0

11

1.5

2.0

~

-

z

«

NOI$E fiGURE IFMINI

o

o

4.0

3.0

(G.I

0

z

1.0

........ -

«

'"

,l
o

./

(j
0

z

«
C,'l
«

NOISE fiGURE IFM•NI

1

13

~

-1

o

FREQUENCY (GHz)

COLLECTOR CURRENT (mAl

Figure 1. Typical MAG, FMIN and
Associated Gain vs. Frequency at VeE

Figure 2. Typical FMIN and Associated
Gain VS. Collector Current at 2 GHz for
VeE = 10 V ITuned for FMINI.

=

10V,le=3mA.

16

I

14

~

12

~

,.....

10

"'-

/

I!!:

1/

.g
1---'

-

V- ........ t-...

VeE = UiV
VeE -jOV
VeE =6V

-

~

f'..
Vee

'\

-av

VeE :II1V

1

COLLECTOR CURRENT (mAl

Figure 3. TypieallS21 EI2 vs. Bias at
2 GHz.

93

Typical Noise Parameters

j

VCE=10V,lc=3mA

r.

RN

FMIN

(Ohma)

(dB)

1.65

1.60

1000

(tilagJAng.)
.465/36'

1500

.369/67"

25.1
22.5

2000

.323194"

23.3

Freq. (MHz)

1.55

Typical S- Parameters VCE = 10V, Ie = 3 mA
$21

$11

Freq. (MHz)

100
200
300
400
500
600
700

800
900

1000
1500
2000
2500
3000
3500
4000
5000
6000

Mag.

0.93
0.89
0.86
0.83
0.79
0.75
0.71
. 0.68
0.65
0.62
0.52
0.50
0.50
0.49

0.54
0.52
0,53
0.48

S22

812

Ang.

(d8)

Mllg.

Ang.

(d8)

Mag.

Ang.

Mag.

Ang.

-11.5
-23.0
-34.0
-44.0
-54.0
-65.0
-73.0
-81.0
-91.0
-97.0
-129.0
-151.0
-169.0
175.0
165.0
156.0
140.0
120.0

16.2
17.1
16.4
15.9
15.6
15.4
15.0
14.4
14.0
13.5
11.4
9.3
7.8
6.5
5.4
4.5
2.6
0.9

6.46
7.13
6.58
6.26
6.02
5.91
5.62
5.25
4.99
4.72
3.71
2.93
2.45
2.12
1.87
1.67
1.35
1.11

168.0
158.0
149.0
142.0
135.0
128.0
121.0
116.0
111.0
106,0
64.0
69.0
55.0
42.0
29.0
19.0
-3.0
-22.0

-42.0
-37.0
-34.0
-32.0
-30.0
-29.0
-29.0
-28.0
·28.0
-27.0
-27.0
-26.0
-26.0
-26.0
-25.0
-24.0
-23.0
-21.0

0.01
0.01
0.02
0.03
0.03
0.04
0.04
0.04
0.04
0.04
0.05
0.05
0.05
0.06
0.06
0.06
0.08
0.09

77.0
77.0
66.0
60.0
55.0
51.0
48.0
45.0
43.0
41.0
32.0
31.0
31.0
33.0
35.0
37.0
35.0
34.0

0.99
0.97
0.94
0.92
0.89
0.87
0.85
0.64
0.83
0.81
0.74
0.72
0.69
0.68
0.65
0.61S
0.71
0.73

-4.0
-8.0
-12.0
-16.0
-19.0
-21.0
-24.0
-25.0
-27.0
-28.0
-35.0
-43.0
-51.0
-57.0
-68.0
-76.0
-96.0
-112.0

(

94

(

Flidl

LOW NOISE
TRANSISTOR

HEWLETT

~~ PACKARD

2N6743
(HXTR-61 04)

Features
GUARANTEED LOW NOISE FIGURE
1.6 dB Maximum FMIN at 1.5 GHz
HIGH ASSOCIATED GAIN
14.0 dB Typical Ga at 1.5 GHz
HERMETIC PACKAGE

Description
The 2N6743 (HXTR-6104) is an NPN bipolar transistor
designed for minimum noise figure at 1.5 GHz. The device
utilizes ion implantation techniques and self alignment techniques in its manufacture. The chip is provided with scratch
protection over its active area.
.....2.51; O.ze..,..,..
10.10 ± 0.01)

The 2N6743 (HXTR-6104) is supplied in the HPAC-100, a
rugged metal/ceramic hermetic package, and is capable of
meeting the environmental requirements of MIL-S-19500
and the test requirements of MIL-STO-750/883.

c

Absolute Maximum Ratings *
Symbol

Veso l11
VCEOP,
VEBOlll

Ie 111
Pr 11 ;

TJ
TSTG

-

Parameter

Collector to Base Voltage
Collector to Emitter Voltage
Emitter to Base Voltage
DC Collector Current
Total Device Dissipation
Junction Temperature
Storage Temperature
Lead Temperature
Soldering 10 seconds each lead,

Limit

35V
20V

1.5V
20 mA
300 mW
300'C
-65'C to
200'C
+250'C

~Operation in excess of anyone of these conditions may resUlt in
permanent damage to this device.

DIMENSIONS IN MIL"METERS fiNCHES).

-Outline HPAC-100

Notes:
1. A 0)JC maximum of 245' C/W should be used for derating
and junction temperature calculations (T J = Po X 0)JC +
TCASEI.
2. A MTTF of 1.0 x 107 hours will be met or exceeded when the
junction temperature is maintained under TJ = 200 0 C (based
on an activation energy of 1.1 eV). For operation above this

condition, refer to page 108. "Reliability Performance of
Bipolar Transistors"

95

Electrical Specifications at TCASE=25°C
Symbol

Parameters And Test Conditions

BVCEs

Collector Emitter Breakdown Voltage at Ie

ICEO

Collector Emitter Leakage Current at VCE '" 10V

leBo

Collector Cut Off Current at Vca

Iln

Forward CurrentTransfer Ratio at VCE=10V,lc=3mA

FMIN

Minimum Noise Figure
f= 1.5 GHz
Associated Gain
f= 1.5 GHz
Bias for above: VeE'" 10V. Ie

G.

= 100!,A

= 10V

.

Test
MIL·STD·750

Units

Min.

3011.1'

V

30

30411

nA

3036.1

nA

3076.1'

-

3246.1

Typ.

Max.

500
100
50

150

250

1.4

1;6

dB
13.0

dB

14.0

= 3 mA

"300 p,s wide pulse measurement at.::; 2% duty cycle.

5

I

...............

4

ASSOCIAT~

_GAIN
(G"

~

'"

MiG -

.............

cc

::J
w

-

'"i5
z

1

V

1

"'"~

w

"u:

1

3
2

Y

~

~

3

- NOr

i-""NoISE FIGURE (FMI.I
2

1.5

2.0

G2IN-

'"'" 1

1

1.0

IG,I

/

1

o

o

.."... -;:;lCIATko

3.0

F r R rM1N( -

-

0

4.0

FREQUENCY (GH,I

COLLECTOR CURRENT (rnA)

Figure 2. Typical Noise Figure and

Figure 1. Typical MAG. FMIN and Associated Gain vs. Frequency at VeE = 10 V,
Ie = 3 mA.

Associated Gain vs. Ie at 1.5 GHz
for VeE = 10V (Tuned for FMINI.

16

Vc• '15V "VeE'" 10V

14

VeE -6V
12

~

~ I"-

10

"-w

~

-

o

"

-l
f' -

-

Typical Noise parameters

.....

~:

VeE= 10V Ic=3 rnA

ro

RI'I

FMII'I

.- r---

Freq. (MHz)

(Mag.! Ang.)

(Ohms)

(dB)

1000

.465/36"

25.09

1.20

1500

.369/67'

22.47

1.40

2000

.323/94'

23.31

1.50

, VC.=1V

o
COLLECTOR CURRENT (mAl

Figure 3. TypicallS21EI2 vs. Bias at
1.5 GHz.

96

(

Typical S-Parameters VCE = 10V, lc = 3 mA
821

8"

812

Freq. (MHz)

Mag.

Ang.

(dB)

Mag.

Ang.

100
200
300
400
500
600
700
800
900
1000
1500
2000
2500
3000
3500
4000
5000
6000

0.93
0.89
0.86
0.83
0.79
0.75
0.71
0.6s
0.65
0.62
0.52
0.50
0.50
0,49
0.54
0.52
0.53
OAS

-11,l>
-23.0
-34.0
-44.0
-54.0
-65.0
-73.0
-Sl.0
-91.0
-97.0
-129.0
-151.0
-169.0
175.0
165.0
156.0
140.0
120.0

16.2
17.1
16.4
15.9
15.6
15.4
15.0
14.4
14.0
13.5
11.4
9.3
7.8
6.5
5.4
4.5
2.6
0.9

6.46
7.13
6.58
6.26
6.02
5.91
5.62
5.25
4.99
4.72
3.71
293

168.0
158.0
149,0
142.0
135.0
128.0
121.0
116.0
111.0
106.0
84.0
69.0
55.0
42.0
29.0
19.0
-30
-22.0

2045

2.12
1.87
1.67
1.35
1.11

(

97

(dB)
-42.0
-370
-34.0
-32.0
-30.0
-29.0
-29.0
-28.0
-28.0
-27.0
-27.0
-26.0
-26.0
-26.0
-25.0
-24.0
-23.0
-210

822

Mag.

Ang.

Mag.

Ang.

0.01
0.Q1
0.02
0.03
0.03
0.04
0.04
0.04
0.04
0.04
0.05
0.05
0.05
0.06
0.06
0.06
0.08
0.09

77.0
77.0
66.0
60.0
55.0
51.0
48.0
45.0
43.0
41.0
32.0
31.0
31.0
33.0
35.0
37.0
35.0
34.0

0.99
0.97
0.94
0.92
0.89
0.87
0.85
0.S4
0.83
0.81
0.74
0.72
0.69
0.68
0.65
0.6S
0.71
0.73

-4.0
·8.0
-12.0
-16.0
-19.0
-21:0
-24.0
-25.0
-27.0
-28.0
-35.0
-43.0
-51.0
-57.0
-68.0
-76.0
-960
-112.0

FliO'l

a:e.

GENERAL PURPOSE
TRANSISTOR

HEWLETT
PACKARD

HXTR-6105

Features
LOW NOISE FIGURE
4.2 dB Maximum FMIN at 4 GHz
HIGH ASSOCIATED GAIN
9 dB Typical Ga at 4 GHz
WIDE DYNAMIC RANGE
ho-

I

HERMETIC PACKAGE

.-?-<-"'I

3.3 (0.13f
MIN,

c

_I

-,

c:z-•

0.5110.021

Description

TVP.

The HXTR-6105 is an NPN bipolar transistor designed for high
gain up to 4 GHz with high output dynamic range. This
transistor also features high output power and high gain at
the NF bias and tuning conditions.
The device utilizes ion implantation techniques and self
alignment techniques in its manufacture. The chip is provided with a dielectric scratch protection over its active area.
The HXTR-6105 is supplied in the HPAC-100, a rugged
metal/ceramic hermetic package, and is capable of meeting
the environmental requirements of MIL-S-19500 and the
test requirements of MIL-STD-750/883.

0.1 (0.0041

I
I
(.042, O.O..ll=====~!;;;;;;;;;;J-.;;!====:::I
1.07.tI 0.3

t i"

Absolute Maximum Ratings *

~

DIMENSIONS IN MILUMETERS (INCHES),

(TeASE = 25° C)
Symbol
VCSO
VCEO
VEBO
Ie
Pr
TJ
TSTG

Parameter
Collector to Sase Voltage
Collector to Emitter Voltage
Emitter to Base Voltage
DC Collector Current
Total Device Dissipation
Junction Temperature
Storage Temperature

-

Lead Temperature \Soldenng
10 seconds each lead'

LImit
30V
20V
1.5V
70 mA
90DmW
3DO·C
-6S·C to
20DoC

Oulline HPAC-100

+2SO"C

*Operallon In excess of anyone of these conditions may result in
permanent damage to this device.

Notes:
1. A 0JC maximum of210·C/W should be used for derating and
junction temperature calculations (TJ = PD X 0JC + TCASEI.
2. A MTTF of 1.0 x 107 hours will be met or exceeded when the
junction temperature is maintained under TJ = 200·C (based
on an activation energy of 1.1 eV). For operation above this
condition, refer to page 108. "Reliability Performance of Bipolar Transistors".

98

TYP.

+

t

(

Electrical Specifications at TCA SE =25°C
Symbol

Mll-STD·750
Test Method

Parametersaod T est Conditions

*

Units

Min.

V

30

BVCES

Collector-Emitter Breakdown Voltage le=100pA

3011.1

ICEO

Collector-Emitter Leakage Current atVeE=15V

3041.1

nA

leBO

Collector Cut Off Current at VeB = 15V

3036.1

nA

hFE

Forward Current Transfer Ratio at VCE=15V, le=15mA

3076.1'

-

FMIN

Minimum Noise Figure

Ga

P'dS

300 J.ls Wide pulse measurement at

100
50

3246.1
dB
8.0

120

220

2.2
3.8

4.2

15.0
9.0
14

dBm

- 2% duty cycle,

Max.

500

dB

f = 1.5 GHz
=4GHz
Associated Gain
f=1.5GHz VeE = 15V, Ie = 15mA
= 4 GHz
Power Output at ldB Compression at 4 GHz
VeE = 15V, Ie'" 15mA

Typ.

~

20
_ _ _ _ ASSOCIATED GAIN

18

115V, 15 mAl

/
I
I
f--~d- ASSOCIATED GAIN

";;

(lOV.5 mAf

:£
2

12

'"@
f-

"aU
'"'"
"

(.
~~.O---------2~.0----3~.0---4~.0--5~.0--6~.04
FREQUENCY (GHz)

COLLECTOR CURRENT (rnA)

Figure 1. Typical FMIN and
Associated Gain vs. Frequency

Figure 2. Typical FMIN and
Associated Gain vs. Ic at 4 GHz for
VCE=15V (Tuned for FMINI.

I

!. -

VeE'" 15V

~

VeE'" 10V

~ ,/

V~

if;
/,

VI
A
I

.....

Typical Noise Parameters
VeE= 15V, le= 15 mA

"""

Freq. (MHz)

VeE" 2V

1

10

15

.'\.

I'

20

25

30

COLLECTOR CURRENT 1m A)

Figure 3. Typical IS21EI2 VS. Current
at 4 GHz.

99

FM1N

(dB)

6.81

1.80
2.15
3.01

2000

3000

,5411-158'

533
5.04
6.54

4000
5000

.6281-135'
.624/-107'

15.54

3.81

60.14

4.75

1500

H-h.

RN
(Ohms)

.238/123'
3851142'
.429/173'

1000

/.

I' 0
(Mag./Ang.)

2-25

Typical S-Parameters

1It1

$,1
Freq. (MHz)

100
500
1000
1500
2000
2500

3000
3500

Mag.
0,66
0.59
0,59
0.59
0.61

0.60
0.62

4500
6000

0.62
0.82
0.60
0.60

6000

0,62

4000

5500

O.Sl

(

VCE = 15V, Ic = 15mA

(dS)

,Mag.

Ang.

-52

29.0
22.0
16.5
13.1
10.8
8.8
7,2

28.3
12.5
6.71
4.54
3.48
:t75
2.28
1.93
1.70
1,50
1.35
1,23
1,11

152
101

-139
-169

177
165
159
148
141

132
126
118
112
104

5.7
4.6
3.5
2.6
1.8
0.9

IdB)
-39.2

32

-37.7
-29.6
-27.5
-25.5
-24.0
-22.7

21

-21.4

10
0,0
-9

-20,0
-19.0

-20

-16.8
-16.1

eo

65
53

43

-29

-17.2

Mag.
0,01
0.03
0.03
0.04
0.05
0.05
0.07
0,09
0.10
0.11
0.14
0.14
0.16

\

S~2

$12

Ang.

Ang.

69
41
45
49
50
51
52
49
47
45
42
35
31

Mag.

0.90
0,5/5
0.47
0.47
0.47 .
0.49
0,50
0.54
0.57

O.eo

0.65
0.66
0,67

Ang.
-16
-33
-37
-41
-50
-61

·68

-eo

-85
-94

-102
-112
-122

(

100

(

Fli;'

GENERAL PURPOSE
TRANSISTOR

HEWLETT

a:~ PACKARD

HXTR -6106

Features
GUARANTEED LOW NOISE FIGURE
2.7 dB Maximum FMIN at 2 GHz
HIGH ASSOCIATED GAIN
11.5 dB Typical G a at 2 GHz
WIDE DYNAMIC RANGE
HERMETIC PACKAGE

J

eASE

4·508tO:OOo'iD
tyP.

Description

I

The HXTR-6106 is an NPN bipolar transistor designed for
low noise up to 6 GHz with wide dynamic range. This
transistor also features high output power and high gain at
the NF bias and tuning conditions.
The device utilizes ion implantation and self alignment
techniques in its manufacture and the chip is provided with
a dielectric scratch protection over its active area.
The HXTR-6106 is supplied in the HPAC-70GT, a rugged
metal/ceramic hermetic package, and is capable of
meeting the environmental requirements of MIL-S-19500
and the test requirements of MIL-STD-750/883.

Absolute Maximum Ratings *
(T CASE = 25° C)

Symbol
VCBO

Vceo
VEW

10
PT
TJ
TSTG

-

Parameter
C¢lIector to Base Voltage
C¢lIector to Emitter Voltage
Emltta r to Sase Voltage
DC C¢lIector Current
Total Device Dissipation
Junction Temperature
Storage Tem perature
Lead Temperature I Soldering
10 seconds each lead,

Limit

DIMENSiONS ~N MILLIMETERS !lNCHESI.

SOV
20V
1.5V
70mA
900mW

Outline HPAC-70GT

3OO·C
-65·C 10
200·C
+250·C

'Operatlon In excess of anyone of these conditions may result
permanent damage to this device.

In

Notes:
1. A BJC maximum of 185· C/W should be used for derating
and junction temperature calculations (T J = Po X BJC +
TCASEL
2. A MTTF of 1.0 x 107 hours will be met or exceeded when the
junction temperature is maintained under TJ = 200°C (based
on an activation energy of 1.1 eV!. For operation above this
condition, refer to page 108. "Reliability Performance of
Bipolar Transistors".

101

Electrical Specifications at TCASE =25°C
Symbol
BVen

Iceo
Iceo
hFE

FMIt<
G.
Plde

M/L-STO·750
Parameter. and Test Condlllons
Test Method
3011 ".
Col/ector-Emitter Breakdown Voltage at Ie 100"A
3041.1
Collector-Emitter Leakage Current at Vet! '" 15V
Collector Cutoff Currant at Vee; 15V
3036.1
Forward Current Transfer Ratio at VeE 15V. Ie ISmA
3076.1'
Minimum Noise Figure
f"'2 GHz
4 GHz
3246.1
Associated Gain
~
Vee; 15V.lc ~ 10 rnA
4 GHz
f~2 GHl
Associated Output Power at 1dB Gain Compression
Vee ~ 15V, Ie = lOrnA

=

=

Units

Min.

V
nA
nA

30
500
100

-

=

Max.

Typ.

50

dB

10.0

120

220

2.5
3.8

2.7

11.5
9.0

dBm

15

·300,us wide pulse measurement :52% duty cycle.

~
~

""8
f-



0

w

"'i3z

~

COLLECTOR, CURRENT (rnA)

COLLECTOR CURRENT (rnA)

Figure 3. Typical FMIN and Associated
Gain IGal vs. Collector Current at
VCE=10V.

Figure 4. Typical IS21 E/2 vs. Current at
4000 MHz.

105

-

20

15

~

'" ~

j
~

10

~
i5

Typical Noise Parameters

~

VCE= 10 V, Ic= 10 mA

-"-

~
"

Frequency
(MH.)

FMIN

GMIN

(dB)

(dB)

Mag.

l'0

Rn
Ang.

(ohms)

1000

1.2

18.5

0.22

141

2.6

2000

1.7

13.8

0.43

174

3"3

4000

2.8

8.7

0.57

-138

11.6

Vee"" 15 V
ic'" l8mA

o

1.0

u

2.0

3"0

4.0

FREQUENCY (GHzj

Figure 5" Typical Power Output at 1 dB
Compression Gain vs. Frequency.

Typical S-Parameters (VCE = 10 V, Ic = 10 mAl
$11

$21

$12

522

Freq. (MHz)

Mag.

Ang.

(dB)

Mag.

Ang.

Mag,

Ang.

Mag.

Ang.

100
200
300
400
500
600
700
800
900
1000
1500
2000
2500
3000
3500
4000
4500
5000
5500
6000
6500

0.68
0"64
0"65
0.63

-46
-78
-105
-120
·131
-140
-148
·154
·160
·164
-178
171
164
156
149
141
132
123
112
103
93

27"8
26.1

246
20.2
16.5
13.6
11.4
9.7
8.5
7.5

154
135
121
113
106
100
95
90
86
83
68
57
45

0"02
002

63
5A
47
43
39
43

0"93
0"80
0.70
0.63
0.58

-32

43

0.52
0"50

0.62

0.61
0.61
0.60
0.61
0.61
0.61
0.61
0.62
0.63
0.63
0.62
0.61

0.60
0.61
0"62
0.62

Typical S-Parameters

24.4

22.7
2U
19"7
18.6
17"5
16"6
157
12.4
101
8.2
6B
5"5
4.5
3.5
V
2.0
1.2
0.5

6B
6",

42
3.2
2.6
2.2
L9
L7
1.5
1.4
1.3
1.2

0"03
0.03
0.Q3
0.04
0.04
0.04
0.04
0.05
0"06

43
43
43
49
56
60
61
61
59
57
53
48
43
36

0.Q7

24
14
5
-4
-14
·22
-31

0.09
0.11
0.13
0.15
0.18
0.21
0.23
0.26

34

U

0"03

-15
-26
-34
-35
-36
-36
-37
-40
-41
·50
·57
-68
·75
·85
-93
-102
-110
-118
-131
-140

0.54

0.48

0.47
0.46

0,47
0,49
0.52
0.54

Og
0.57
0"62
0"63

067
0.71

(VCE = 15 V, Ic = 18 mAl
$21

S11

$12

$22

Freq, (MHl)

Mag.

Ang.

(dS)

Mag.

Ang.

Mag.

Ang.

Mag.

Ang.

100
200
300
400
500
600
700
800
900
1000
1500
2000
2500
3000
3500
4000
4500
5000
5500
6000
6500

0.63
0.61
0.62
062
0.61
0.60
0.60
0.60
060
0.60
0.61
0.61

-59
-95
-119

29.7

30.6
23.5
18.3
14.7
12"1
102

149
129
115
107
101
95
91
87
83
81
67
55
44
33
23
13
4
-6
·16
-24
·33

0.Q1

64
46
48
43

0.90
075
0"65
0"60
0"56

-18
-26

M2
0"63
063
0"62
0.62
060
0.62

0.63
0.63

·133
·143
·151
-157
-162
·167
·170
177
168
161
153
147

139
130
121
110
102
91

27.4

25.3
23.4
21.7
20.2
19.0
17.8
16.9
16.0
12.7
lOA

8.3
6.9
5.6
4.6
3.5
2.9
2"3
U
0.8

8"9

7.8
7.0
6.3
4.3
3.3
2.6
2.2
1.9
1.7
1.5
1.4
1.3
1.2
1.1

106

0.02
0.02
0"02
0.03
0.03
0.03
0.03
0.03
0"03
0.04
0.06
0.07
OD9

0.11
0",3
0.15
0",8
0.21
023
0.26

48

44
49
49
51
51
60
65
67
68

ee

64
60

56
52
46
40

053
0.52

OBO
049
0.48
048
0"50
0"52
0.54
056
0.60
0"60
0.65
0.65
0.70
0.74

-3~

-31
-31
·32
·32
·32
·35
-35
-46
-53
-64
-72
-83
-89
-100
·106
·116
·128
-137

c

107

Flin-

HEWLETT

~~ PACKARD

RELIABILITY
PERFORMANCE
BIPOLAR TRANSISTORS

HXTR-2000
HXTR-3000
HXTR-5000
HXTR-6000
HXTR-7000
PRODUCT SERIES

Description
For applications requiring component reliability estimation, Hewlett-Packard provides reliability information for all
families of devices.
These bipolar transistor products utilize a common manufacturing process, to include similar metallization systems,
ion implantation, and self-alignment techniques, maintaining in this fashion a high degree of uniform quality and
reliability.
The reliability performance of this bipolar transistor family is
governed primarily by a thermally activated process. Hence,
the junction temperature Tj of the device dictates the performance achieved under various applications.

Applications
This information represents the capabilities of the generic
device. Performance criteria and Mean Time To Failure
(MTTF) values presented here are achieved with MIL-S19500 level sampling.

Life and Environmental Test Performance
Life/Environment
Stress
Operating
Life
High
Temperature
Storage
HTRB

Temperature
Cycling
Thermal
Shock
Solderability
Hermeticity
Moisture
Resistance
Vibration
Variable
Frequency
Mechanical
Shock
Terminal
Strength

Minimum
Stress Duration
1000 Hours

Typical Performance
Criteria, LTPD
orA
5

Test Method
M1L-STD-750
Method 1026.3
MIL-8TO-883
Method 1008

Stress Condition
TJiTcH ~ ZOO°C
Tes! Condition D,
TA=200°C

1000 Hours

7

MIL-STD·750
Method 10381
1039
MIL-STD-883
Method 1010
MIL-STD-883
Method 1011
MIL-STD-202
Method 208
MIL-STD-883
Method 1014
MIL-STD-202
Method 106
MIL-STD-750
Method 2056

Test Condition A.
TA ~ 200°C

1000 Hours

7

Test Condition D,
--135 0 C to 200 0 C
Test Condition D,
--135° C to 200 Q C

100 cycles

15

100 cycles

15

TPbSn @230°C

5 sec. dwell

15

KR-85/Dry N2
Penetrant Dye
65° C/98% R.H.

N/A

15

10 days

15

100 to 2,000 Hz

4 Cycles @ Sweep
Rate <4 min.

15

Acceleration @
1500G'5
TBA
(PaCkage Related)

0.5 msec. Pulse Duration

15

30 sec. duration

15

MIL-STO-883
Method 2002
MIL-STO-750
Method 2036.3

108

./

(

400
350
300

i'"
250

1',

~ ...

200

~I"

r--...~

;;
w'

a:

::>

150

""

lutc

(J

..

c

2$'C

a:
;:
a:

(J

~

O'c

z

-50"C

>

f!

C
I

...
I

Q

a:
1L-~LU~L_~LWJllL_~LLUlW

1.0

1.2

0.01

0.1

VF - FORWARD VOLTAGE IVOLTS)

1.0

10

IF - FORWARD CURRENT (rnA)

Figure 2. Typical Dynamic Resistance IRD) vs. Forward
Current IIF)

Figure 1. Typical Forward Characteristics

2.0

I
-~~

.
1
...

i:L 1.5
.!!
w

a:
a:

:i

~

(J

i

I

r :\J
I 1-

a

I

o

w

'"ffi

I

~

0' 0.5

a:
I

!:

20

v. -

30

40

10

50

REVERSE VOLTAGE IVOLTS)

VR

-

20

I
30

40

50

REVERSE VOLTAGE IV)

Figure 4. Typical Capacitance ICT) vs. Reverse Voltage IVR)

Figure 3. Typical Variation of Reverse Current IIR) vs. Reverse
Voltage IVR) at Various Temperatures

132

(

BEAM LEAD SCHOTTKY
DIODE PAIRS FOR
MIXERS AND DETECTORS

r/ifl'l

HEWLETT
~~ PACKARD

HSCH-5510
HSCH-5511
HSCH-5530
HSCH-5531

Features
MONOLITHIC PAIR
Closely Matched Electrical Parameters
LOW CAPACITANCE
0.10 pF Max. at 0 Volts

I-------~:~:------
u
c
a:

a:

:::>
u

c

a:

~

~

f2

f2

0.20

0.40

0.60

0.80

°0~----0~.~20~--~O.L40~--~O.~60~--O~.~80~--1~.OO

1.00

FORWARD VOLTAGE (VI

FORWARD VOLTAGE (VI

Figure 2. Typical Forward Characteristics at TA = 25 0 C

Figure 3. Typical Forward Characteristics at TA = 25 0 C

139

~---

.. - - - . - - - -

BONDING AND HANDLING PROCEDURES
FOR BEAM LEAD DIODES
1. Storage
Under normal circumstances, storage of beam lead diodes
in HP supplied waffle/gel packs is sufficient. In particularly
dusty or chemically hazardous environments, storage in
an inert atmosphere desicator is advised.

Thermocompression: See Application Note 979 "The Handling and Bonding of Beam Lead Devices Made Easy". This
method is good for hard substrates only.
Wobble: This method picks up the device, places it on the
substrate and forms a thermocompression bond all in one
operation. This is. described in MIL-STD-883B Method
2017 and is intended for hard substrates only. Equipment
specifically designed for beam lead wobble bonding is
available from KULICKE and SOFFA in Hursham PA.

2. Handling
In order to avoid damage to beam lead devices, particular
care must be exercised during inspection, testing, and
assembly. Although the beam lead diode is designed to
have exceptional lead strength, its small size and delicate
nature requires that special handling techniques be
observed so that the devices will not be mechanically or
electrically damaged. A vacuum pickup is recommended
for picking up beam lead devices, particularly larger ones,
e.g., quads. Care must be exercised to assure that the
vacuum opening of the needle is sufficiently small to avoid
passage of the device through the opening. A #27 tip is
recommended for picking up single beam lead devices. A
20X magnification is needed for precise positioning of the
tip on the device. Where a vacuum pickup is not used, a
sharpened wooden Q-tip dipped in isopropyl alcohol is
very commonly used to handle beam lead devices.

Ultrasonic: Not recommended.
Resistance Welding or Parallel-GAP Welding: To make
welding quads easier, attach one electrode of the welder
to the substrate and use the second electrode for welding
in lieu of the parallel gap electrode. To make welding on
soft substrates easier, a low pressure welding head is
recommended. Suitable equipment is available from
HUGHES, Industrial Products Division in Carlsbad, CA.
For more information, see Application Note 993, "Beam
Lead Diode Bonding to Soft Substrates".

3. Cleaning
For organic contamination use a warm rinse of trichorethane followed by a cold rinse in acetone and methanol.
Dry under unfrared heat lamp for 5-10 mintues on clean
filter paper. Freon degreaser may replace trichloroethane
for light organic contamination.
•

Ultrasonic cleaning is not recommended

•

Acid solvents should not be used

Epoxy: With solvent free, low resistivity epoxies (available
from ABLESTIK in Gardenia, CA, MICON in Lexington,
MA., and many others) and improvements in dispensing
equipment, the quality of epoxy bonds is sufficient for
many applications. Equipment is available from
ADVANCED SEMICONDUCTOR MATERIALS AMERICA,
INC. Assembly Products' Group in Chandler AZ (Automatic), and West Bond in Orange, CA (Manual!.

4. Bonding
See Application Note 992, "Beam Lead Attachment
Methods", for a general description of the various methods
for attaching beam lead diodes to both hard and soft
substrates.

Rellow: By preparing the substrate with tin or solder plating, reflow soldering can be suitably preformed using a
modified wire bonder. The probe is used as a soldering tip.
WEST BOND or UNITEK bonders make suitable bonds.

140

/

(

Flin-

HEWLETT

~~ PACKARD

SCHOTTKY BARRIER
DIODES FOR
GENERAL PURPOSE
APPLICATIONS

1N5711'
lN5712'
5082-2301
5082-2302
5082-2303
5082-2305
5082-2800/10/11/35'
5082-2900'
HSCH-lOO1 (1 N6263J'

Features
LOW TURN-ON VOLTAGE: AS LOW AS
0_34VAT 1mA
PI CO-SECOND SWITCHING SPEED
HIGH BREAKDOWN VOLTAGE: UP TO 70V
MATCHED CHARACTERISTICS AVAILABLE

Description IApplications
The 1N5711, 1 N5712, 5082-2800/10/11 are passivated
Schottky barrier diodes which use a patented "guard
ring" design to achieve a high breakdown voltage.
Packaged in a low cost glass package, they are well suited
for high level detecting, mixing, switching, gating, log or
A-D converting, video detecting, frequency discriminating,
sampling and wave shaping.
The 5082-2835 is a passivated Schottky diode in a low cost
glass package. It is optimized for low turn-on voltage. The
5082-2835 is particularly well suited for the UHF mixing
needs of the CATV marketplace.

DIME1\I:SIOM IN
MllUMfTEAS
AND tlNCHf.SJ.

The 5082-2300 and 2900 Series devices are unpassivated
Schottky diodes in a glass package. These diodes have
extremely low l/f noise and are ideal for low noise mixing,
and high sensitivity detecting. They are particularly well
suited for use in Doppler or narrow band video receivers.

(

OUTLINE 15

The HSCH-l00l is a Hybrid Schottky diode sealed in a
rugged double stud Outline 12 glass package suitable for
automatic insertion. The low turn-on voltage, fast
switching speed, and low cost of these diodes make them
ideal for general purpose switching.

Package Characteristics

Application Bulletins 13, 14, 15, and 16 describe
applications in which these diodes are used for speed up
of a transistor, clipping, clamping, and sampling,
respectively. Other digital and RF applications are described in Application Bulletins 26, 27, 28, 30, 31 and 36.

Lead Material:
Lead Finish:

Maximum Soldering
Temperature:
Minimum Lead
Strength:
Typical Package
Inductance:

Maximum Ratings
Junction Operating and Storage Temperature Range
5082-2305, 2301, 2302, 2303, 2900 .... -60° C to +100° C
1 N5711, 1 N5712, 5082-2800/10/11,
HSCH-l00l .. _. . . . . . . . . . . . . . . . . . .. -65° C to +200° C
5082-2835 ......................... -60° C to +150° C
Operation of these devices within the above temperature ratings will assure a device Median Time To
Faifure (MTTF) of approximately 1 x 107 hours.
DC Power Dissipation (Measured in an infinite heat sink at

T CASE

Typical Package
Capacitance:

Outline 15
Dumet
lN5711, lN5712: Tin
2800 Series: Ti n
2300,2900 Series: Gold

Dumet
Tin

230' C for 5 sec.

260'C
for 10 sec.

41b. Pull

10 lb. Pull

1N5711, 1N5712: 2.0 nH
2800 Series: 2.0 nH
2300,2900
Series: 3.0 nH

1.8 nH

0.25 pF
1N5711, 1N5712: 0.2 pF
2800 Series: 0.2 pF
2300,2900
Series: 0.07 pF
The leads on the Outline 15 package should
be restricted so that the
bend starts at least 1/16 inch
from the g lass body .
• Also available in Tape and Reel. Please contact
local HP Sales Office for further information.

= 25° C)

Derate linearly to zero at maximum rated temperature
5082-2305, 2301, 2302, 2303, 2900 .• ,....... 100 mW
1 N5711, 1N5712, 5082-2800/10/11 ....•... _.. , 250 mW
5082-2835 ...... _.................. _....... 150 mW
HSCH-l00l ..•• _•.........••.....• _...•... 400 mW
Peak Inverse Voltage

OUTLINE 12

.................... _..... _ VBR

141

Electrical Specifications at TA=25°C
Maximum
Reverse Leakage
Current

Package
Outline

Minimum
Breakdown
Voltage
VSR {V}

Maximum
Forward
Voltage
VF {mVI

VF",1V Max
at Forward
Current
IF {mAl

fR (nA)

2800

15

70

410

15

200

50

2.0

lN5711

15

10

410

15

200

50

2.0

2305

15

30

400

75

300

15

1.0

2301

15

30

400

50

300

15

1,0

2302

15

30

400

35

300

15

1.0

2303

15

20

400

35

500

15

1.0
1.2

Part
Number
5082·

at

VR (VI

Maximum
Capacitance
Cr (pFI

2810

15

20

410

35

100

15

lN5712

15

20

550

35

150

16

1.2

2811

15

15

410

20

100

8

1.2

2900

15

10

400

20

100

5

1.2

2835

15

8'

340

lOt

100

1

1.0

HSCH·1001
(lN62S31

12

60

410

15

200

50

2.2

IR '" 10pA
*'R " 100 pA

IF" 1 rnA

Test
Conditions

tVF

= .45V

VR =0 V
f = 1.0 MHz

Note:
Effective Carrier Lifetime IT) for all these diodes is 100 ps maximum measured with Krakauer method at 20 mA except for HSCH-1001
I1N6263), 1N5711, and 1N5712 which are measured at5 mAo

Matched Pairs and Quads
Basic
Part
Number
5082·

Matched
Pair
Unconnected

Matched
Quad
Unconnected

2301

5082·2306
AVF"'20mV
ACo '" 0.2 pF

2303

5082·2308
AVF '" 20 mV
AGo '" 0.2 pF

5082·2370
IlVF = 20 mV
IlCo '" 0.2 pF

2900

5082-2912
AVF = 30 mV

5082-2970
IlVF" 30 mV

2800

5082·2804
IlVF = 20 mV

5082·2805
LlVF" 20mV

2811

Matched
Ring Quad
Encapsulated
G·10utline

Matched
Bridge Quad
Encapsulated
G·2 Outline

Batch
Matched

Test Conditions
IlVF at IF =0.75,20 rnA
IlCo atf = 1.0 MHz

5082·2815
IlVF" 20 mV
IlCo = 0.20 pF

5082·2396
AVF '" 20 mV
IlCo '" 0.2 pF

5082·2814
IlVF; 20 mV
ACo" 0.20 pF

2835

142

5082·2356
IlVF = 20 mV
IlCo = 0.2 pF

IlVF at IF =0,75, 20 mA
IlCoat f" 1.0 MHz

5082-2997
IlV F " 30 mV

IlVF at IF '" 1.0, 10 mA

5082·2813
IlVF "20 mV
IlCo " 0.20 pF

5082-2836'
IlVF '" 20 mV
IlCo '" 0.1 pF

AVF at IF" 0.5, 5 rnA
'IF = 10 mA
IlCo at f " 1.0 MHz

5082·2826
IlVF = 10 mV
IlCo " 0.1 pF

IlVF at IF ; 10 rnA
IlCo at f " 1.0 MHz

5082·2080
LlVF = 10 mV
IlCo = 0.1 pF

AVF at IF" 10mA
IlCo at f '" 1.0 MHz

{

Outline G·;!

Outline G·l

5.Q.8L20}

MAX

i

.. "'I

5.08 C201
8.13 (,321

MAX,

MAX.

t,EAO lENGTH 19.05(0.71;) MIN.

LEAO LENGTH 1905 [0.76, MIN

~----:",3

LEAD FINISH -GOLO
All OIMENSIONS IN- MILLIMETERS (INCHES).

Typical Parameters
1000

TEMPE.RATURE
COEFFICIENT

s
w

U

~
~

100

u

""
z

~
I

o
or

10~------~------~1~0------~'5

10
0.1

(

VF - FORWARD VOLTAGE (V)

Figure 1. I-V Curve Showing
Typical Temperature Variation for
5082-2300 and 5082-2900 Series
Schottky Diodes.

10
IF - FORWARD CURRENT (mAl

V BR (VI

Figure 2. 5082-2300 Series Typical
Reverse Current VS. Reverse
Voltage at Various Temperatures.

Figure 3. 5082-2300 Series and
5082-2900 Series Typical Dynamic
Resistance (RD) vs. Forward Current (IF).

50

<'

.s

~

I-

w

:0

"U

"u

"

":;>"

:;;

U
Z

I-

~

;t

U

a:

I

<'>
0.2

-"
1.2
V R - REVERSE VOLTAGE (V)

Figure 4. 5082-2300 and 50822900 Series Typical Capacitance
vs. Reverse Voltage.

VF - FORWARD VOL TAGE (V)

Figure 5. I-V Curve Showing Typical Temperature Variation for
5082-2800 or 1 N5711 Schottky
Diodes.

143

V R - REVERSE VOLTAGE (V)

Figure 6. 15082-2800 or 1 N5711)
Typical Variation of Reverse Current IIRi vs. Reverse Voltage IVRi at
Various Temperatures.

100

2.0

~

1.5

w

:i"

~
",

1.0

:t

I; 0.5

\

10

20

30

40

1.0

50

VR

Figure 8. I-V Curve Showing Typical Temperature Variation for the
5082-2810 or 1 N5712 Schottky
Diode.

Figure 7. 15082-2800 or 1N57111
Typical Capacitance ICTI vs.
Reverse Voltage IVRI.

25

1.2

v, - FORWARD VOLTAGE IVI

V R - REVERSE VOLTAGE (VI

-

30

REVERSE VOLTAGE IVI

Figure 9. 15082-2810 or 1 N57121
Typical Variation of Reverse
Current IIAI vs. Reverse Voltage
IVAI at Various Temperatures.

~

IX
IX

G
w

U)

IX

w

~

,

IX

.iF

1.0

1.2

25

vR

VF - FORWARD VOLTAGE (VI

Figure 10. I-V Curve Showing Typical. Temperature Variation for the
5082-2811 Schottky Diode:

-

30

REVERSE VOLTAGE IVI

.2

.4

.6

.8

1.0

V, - FORWAAD VOLTAGE IVI
Figure 12. I-V Curve Showing Typical Temperature Variations for
5082-2835 Schottky Diode.

Figure 11. 15082-2811 I Typical
Variation of Reverse Current IIRI
vs. Reverse Voltage IVRI at Various
Temperatures.

1.4
1.2

iw
"~

!Zw
a:

IX

G

I-

~

1:1
w

il,

IX

I;

IX

~

,

-'"

1.0
.8
.6
.4

~
.~ """,,-5082'2al~8Jl.ll\15'12 _
5082"1i3$

.2

10

VA - REVERSE VOLTAGE IVI
Figure 13. 15082-28351 Typical
Variation.of Reverse Current IIRI
vs. Reverse Voltage IVRI at Various
Temperatures.

VR - REVERSE VOLTAGE IVI
Figure 14. Typical Capacitance ICTI
vs. Reverse Voltage IVRI.

144

" - FOAWAAD CUAAENT ImAI
Figure 15. Typical Dynamic Resistance IRDI vs. Forward Current
IIFI.

1.2

./

(
1
I-

(5
a:
a:

::J

"'a:"
~
a:
V>

I

!:
10~--~1~0----2~0----3~0----4~0--~5~0~~60

1.0

VR - REVERSE VOLTAGE IVI

VF - FORWARD VOLTAGE (V)

Figure 16. Typical Variation of Forward Current (IF) vs.
Forward Voltage (VF) at Various Temperatures for the
HSCH-1001.

Figure 17. Typical Variation of Reverse Current (IR) vs.
Reverse Voltage (VR) at Various Temperatures for the
HSCH-1001.

2. 5

1000

S
u
"'z

2. 0

~

""'z

"U
g;
""

"
l-

V>

1.

Bia:

I-

u

51'"
1. 0

I

liE

"z

r--

>

"I

0"

Q

5

(

0

a:

10

20

30

40

10

50

1

10

100

IF - FORWARD CURRENT (mA)

VR - REVERSE VOLTAGE (V)

Figure 18. Typical Capacitance ICTi vs. Reverse Voltage
IVR) for the HSCH-1001.

Figure 19. Typical Dynamic Resistance (RD) vs. Forward
Current (IF) at TA = 25°C for the HSCH-1001.

145

FliD'l

HEWLETT

~~ PACKARD

SCHOTTKY BARRIER
DIODES FOR STRIPLlNE,
MICROSTRIP MIXERS
AND DETECTORS

5082-2200/01/02/03
5082-2207/08/09/10
5082-2765/66
5082-2774/75
5082-2785/86
5082-2794/95

Features
ANGLE

cur

30,50 0
ALTERNATe 0,13 (005/
DIA HolE 1,5 (0,06-)
FROM fND

SMALL SIZE
LOW NOISE FIGURE
6 dB Typical at 9 GHz
RUGGED DESIGN
HIGH UNIFORMITY
HIGH BURNOUT RATING
1 W RF Pulse Power Incident

0.10
W.Q04)

BOTH MEDIUM AND LOW BARRIER
AVAILABLE

TY'

=~
OutllneC-2
C p '" 0.055 pF

Description IApplications
This family consists of medium barrier and low barrier
beam lead diodes mounted in easily handled carrier packages. Low barrier diodes provide optimum noise figure at
low local oscillator drive levels. Medium barrier diodes
provide a wider dynamic range for lower distortion mixer
designs. Application Note 976 presents impedance matching techniques for an X-Band mixer.

CATHOOE

b

Maximum Ratings
Operating and Storage Temperature Range
C-2 Packaged Diodes ............... -65° C to +125° C
H-2 Packaged Diodes ............... -65° C to +200° C

Outline H-2
Cp = 0.175 pF

Operation of these devices within the above temperature ratings will assure a device Median Time To
Failure (MTTF) of approximately 1 x 107 hours.
Pulse Power I ncident at TCASE = 25° C
Ill's pulse, Du = 0.001)

OIMENSIONS IN MillIMETERS ANO

............ 1 W

Package Characteristics

CW Power Dissipation at TeAsE = 25° C
(Mounted in infinite Heat Sink) .............. 125 mW
(Derate linearly to Zero at Maximum Operating
Temperature)

These diodes are designed for microstrip and stripline use.
The kovar leads provide good continuity of transmission
line impedance to the diode. Outline C2 is a plastic on
ceramic package. Outline H2 has a metal ceramic hermetic seal. The ceramic is alumina. Metal parts are gold
plated kovar.

Diode Mounting Temperature in Packages
C-2 ........................
H-2 ........................

HNCti~Sl.

235°C for 10 sec max.
260°C for 10 sec max.

The hermetic package, outline H2, is capable of passing
many of the environmental tests of MIL-STD-750. The
applicable solderability test is reference 2031.1: 260° C, 10
seconds.

Peak Inverse Voltage ............................. 4 V
These diodes are ESD sensitive. Handle with care to avoid
static discharge through the diode.

146

(

RF Electrical Specifications at TA = 25° C
Part
Number
5082-

Batch
Matched
5082.

Barrier

Maximum
Nolte
Figure
NF (dB)

2200

2201

Medium

6.0

2202

2203

Medium

6.5

2,0:1

Hermetic

2765

2766

Low

6,0

1.5:1

H-2

2765

2186

Low

6,5

2.0:1

2207

2205

Medium

6.0

1.5:1

2209

2210

Medium

6.5

2.0:1

Broadband

2774

2775

Low

6.0

1.5:1

C-2

2794

2795

Low

6.5

Test
Conditions

..lNF:50,3 dB

Test Freq.
(GHz)

9,375

IF
Impedance
ZIF (1l)

Min.

Max.

Maximum
SWR

Package

Typical
Capacitance
CT (pF)

1,$:1
200

400

200

400

0.3

2.0:1

0.22

DC Load Resistance'" 0 II
L..O. Power'" 1 mW
IF'" 30 MHz. 1.5 dB NF

.lZIF:>25 !l

V"'O

Typical Detector Characteristics at TA = 25° C
MEDIUM BARRIER AND LOW BARRIER (DC BIAS)
Symbol

Typlcal Value

Unlls

Teal Conditions

TSS

·54

d8m

20Jl,A Bias

Voltage Sensitivity

'Y

e.e

mVIJI,W

Video Resistance

Rv

1400

n

Symbol

Typlcal Valul>

Unlls

TSS

·44

d8m

Parameter
Tangential Sensitivity

Video Bandwidth" 2 MHz
f=10GHa

LOW BARRIER (ZERO BIAS)
Parameter

(

Tangential Sensitivity

Te.t Condition.
Zero Bias

Voltage Sensitivity

l'

10

mVlJl,W

Video Resistance

Rv

1.8

Ma

Video Bandwidth ~ 2 MHz
f

=10 GHz

Typical Parameters
LOW BARRIER

MEDIUM BARRIER
100 ",,---,.._ _.,--_...,-_ _.,--_-,

«g

«g

10

t-

t-

iE

iE

a:
a:
u 1.0
a:

a:
a:
u

5:

5:

"
";::a:
"a:

"

";::
"a:

0.1

I

0.1

.!!"

.!!"

0.01 '-_.L..1-.....L_.lL..._-'-_ _' - - _ - '
0.2

0.4

0.6

0.8

0.8

1.0
VF - FORWARD VOLTAGE (VI

VF - FORWARD VOLTAGE (V)

Figure 2. Typical Forward Characteristics

Figure 1. Typical Forward Characteristics

147

Figure 3. Typical Admittance Characteristics,
5082-2200 and 5082-2765 with self bias.

Figure 4. Typical Admittance Characteristics,
5082-2200 and 5082-2765 with external bias.

Figure 5. Typical Admittance Characteristics,
5082-2202 and 5082-2785 with self bias.

Figure 6. Typical Admittance Characteristics,
5082-2202 and 5082-2785 with external bias.

148

(

(

Figure 7. Typical Admittance Characteristics,
5082-2207 and 5082-2774 with self bias.

Figure 8. Typical Admittance Characteristics,
5082-2207 and 5082-2774 with external bias.

Figure 9. Typical Admittance Characteristics,
5082-2209 and 5082-2794 with self bias.

Figure 10. Typical Admittance Characteristics,
5082-2209 and 5082-2794 with external bias.

\

149

7.5

500 PPD STRIPLINE
1/8 INCH GROUND PLANE SPACING

v

7.0

iii

:s

'u:"
to

6.5

/

w
(;
Z

'"

DEVICE UNDER TEST

1/

w

a:

CATHODE GROUNDED

"A"

~~~pp~o~~~~ ~
-.-L
I TL_~~:::::::J'
__

AIR

6.0

GROUND

4.1
10.161

PAC~AGE

(>2

1+2

5.5 ,

11

13

15

DiMENSION
'4A"

1.91 ± 0.06
(0.075 • 0.0021
2HJ:t 0.05

[0.106.0.0021

DIMENSIONS IN MILLIMETERS (INCHES)

FREQUENCY (GHzl

Figure 12. Admittance Test Circuit.

Figure 11. Typical Noise Figure VS. Frequency for

5082-2209,2794.

MODEL FOR H2 DIODES
14.Sf2

47.S!1:
0.775 (0,0;305)
€EFF. = 6.37

46.00
0.320 (0.0126)
fEFf.

=

6.37

0.085 pF

DIMENSIONS IN MILLIMETERS (INCHES)

1 rnA Reet. Current

20 /lA Ext. Bias

Symbol

5082-2200, 5082-2766

5082·2200. 6082·2765

Units

Junction Resistance

RJ

258

545

Ohms

Junction Capacitance

CJ

0.255

0.302

pF

Parameter

/

MODEL FOR C-2 DIODES
14.S'u

67.0.11
0.318 (0.0125)

lEFF.

=

6.37

0.065 pF
DIMENSIONS IN MILLIMETERS (INCHES)

Parameter

Symbol

1 rnA Reet. Current

20 "A Ext. Bias

5082-2207, 5082-2774

5082·2207, 5082-2774

Units

Junction Resistance

RJ

338

421

Ohms

Junction Capacitance

CJ

0.189

0.195

pF

150

(

Fli;'

HEWLETT

~J:. PACKARD

SCHOTTKY BARRIER DIODE
QUADS FOR DOUBLE
BALANCED MIXERS

Features

5082-2231
5082-2233
5082-2263
5082-2271172
5082-2277
5082-2279/80
5082-2291/92
5082-2294
5082-2830/31

18.
<0,1501
MIN.

SMALL SIZE
Eases Broad Band Designs

1

1~'D.OI81

Lm:6ffi

TIGHT MATCH
Improves Mixer Balance

i

IMPROVED BALANCE OVER TEMPERATURE
RUGGED DESIGN
BOTH MEDIUM AND LOW BARRIER
DIODES AVAILABLE

OuWneC-4
Cp • 0.06 pF 6"fIOnal
Cp ~ 0.01 pI' adj.",m

Description / Applications

~~~:~
1-----,.....L

These matched diode quads use a monolithic array of
Schottky diodes interconnected in ring configuration. The
relative proximity of the diode junction on the wafer assures
uniform electrical characteristics and temperature tracking.

(

\

These diodes are designed for lise in double balanced mixers,
phase detectors, AM modulators, and pulse modulators
requiring wideband operation and small size. The low barrier
diodes allow for optimum mixer noise figure at lower than
conventional local oscillator levels. The wider dynamic range
of the medium barrier diodes allows for better distortion
performance.

1.21 !O.O!H MAX.

!

i

O"!O~§l

C"j
T

0.64 ~.{J251 MAX

-L
T

Q.Oi ,0.-003)
O",line E-1
Cp = 6.07 pF diagonal
Cp = O.o!l pF a6j.oem

Maximum Ratings
Junction Operating and Stora\le Temperature Range:
H-4 Packaged Diodes .............. -65°C to+150 oC
E-1 and C-4 Packaged Diodes ....... -65°C to+125°C
Operation of these devices within the above
temperature ratings will assure a device
Median Time To Failure (MTTF) of approximately 1 x 10 7 hours.
DC Power Dissipation .............. 75 mW per Junction
Derate linearly to zero at maximum rated temperatures
(measured in infinite heat sink at TCASE = 25 0 C)
Soldering Temperature ........... H-4 260· C for 10 sec.
C-4 235 0 C for 10 sec.
E-1 220· C for 10 sec.
These diodes are ESD sensitive. Handle with care to avoid
static discharge through the diode.

Outli""H-4
Cp = 0,16 pF diagonal
Cp • 0.20 pF adjacent
OtMIENSION$. IN MlUIMETERS AND (INCHest.

151

Selection Guide

~
Package'

Barrier

To 20Hz

2·40Hz

4-8 GHz

8·12 GHz

5082·2271

5082·2277
5082·2263

12·18 GHz

Outline

E·'

Medium

5082-2830

low Cost

Low

5082·2831

H·4

Medium

6082-2263

6082-2263

Hermetic

Low

5082·2231

5082·2231

5082-2233

C·4

Medium

5082-2291

5082·2291

5082-2292

6082-2294

5082-2294

Broadband

Low

5082·2271

6082·2271

6082·2272

5082·2279

5082·2280

Typical
Parameters

Electrical Characteristics at TA=25°C
Part
Number

5082-

Package

Barrier

Maximum
Maximum
Maximum CapaCitance
CT (pF)
Capacitance
VF
Difference Difference
,;"VF 

'-'
a:


::>

Cl

Cl

a:

u:

t.-

I

a:

u:

.,w
az

7.0

az

V

I

6.0

\

/

I

.,w

~

:/

1

r"-

I

121r

-4

(
12

o

10

LOCAL OSCILLATOR POWER IdBm)

12

14

16

18

FREOUENCY IGHz)

Figure 25. Typical Noise Figure vs. Frequency. IF ~ 30 MHz,
NFIF ~ 1.5 dB, PLO ~ 1 mW. Diode tuned at each frequency
15082-2200, -2700 seriesl.

Figure 24. Typical Noise Figure and IF Impedance vs. Local
Oscillator Power. 5082-2295 through -2298. Diode unmatched
in 50 n line ..

.30

500

t· 9.37~ Glit
I

I

.25

400

-w

..
C.l

z

iii

~

w

..
~
.

:!!
w

300

z

::>

I-

Cl

u:

.,
w

200

az

C.l

J:
C.l

100

0
-12

.20

C.l

a:

~
~

"0-

.15

~

.10

X·BAND DEVICES
KU'r ND DfVIOES!

.05

-8

-4

o

o

12

LOCAL OSCILLATOR POWER (dBm)

0.5

1.0

1.5

2.0

2.5

3.0

REVERSE VOLTAGE IV)

Figure 26. Typical Noise Figure and IF Impedance vs. Local Oscillator Power. Diode tuned at each local oscillator power level
15082-22951.

Figure 27. Typical Chip Capacitance vs. Reverse Voltage,
-2700 Series.

160

(

rli~ HEWLETT
a!~ PACKARD

ZERO BIAS SCHOTTKY
-3206/07
DIODES FOR MIXERS HSCH
HSCH-3486
AND DETECTORS

Features
HIGH VOLTAGE SENSITIVITY
NO BIAS REQUIRED
CHOICE OF HIGH OR LOW VIDEO IMPEDANCE

Description/Applications
The high zero bias voltage sensitivity of these Schottky
Barrier diodes makes them ideally suitabie for narrow
bandwidth video detectors, ECM receivers, and measurement equipment. These diodes also make excellent mixers
for use with low power LO.

Maximum Ratings
Operating and Storage
Temperature Range ................. -65° C to +150° C
Operation of these devices within the above
temperature ratings will assure a device
Median Time To Failure (MTTF) of approximately 1 x 107 hours.

(

Outline 49

Outline 15

CW Power Dissipation at TA = 25° C
HSCH-3206, -3207 .......................... 200 mW
HSCH-3486 ....... . . . . . . . . . . . . . . . . . . . . . . . .. 300 mW
Derate Linearly to 0 W at 150° C
Pulse Power Dissipation at T A = 25° C.
Peak power incident.
1 1'5 pulse, Du = 0.001 .......................... 1 W

Outline 44
DIMEnSIONS IN

These diodes are ESD sensitive. Handle with care to avoid
static discharge through the diode.

Mlt.ll~ETeRS AND

{lNCHESI.

package Characteristics
The HP Outline 15 package has a glass hermetic seal with
gold plated Dumet leads which should be restricted 50 that the
bend starts at least 1/16" (1.6 mm) from the glass body. With
this restriction, it will meet MIL-STD-750, Method 2036,

The HP Outline 49 package has a metal-ceramic hermetic seal.
The anode and cathode studs are gold-plated Kovar. The
maximum soldering temperature is 230°C for 5 seconds.
Stud-stud T IR is 0.010" max.

Conditions A and E (4Ib. [1.8 kg] tension for30 minutes). The
maximum soldering temperature is 230° C for 5 seconds.
Marking is by digital coding with a cathode band.

The HP Outline 44 package is a hermetically sealed ceramic
package. The anode and cathode are gold-plated Kovar. The
maximum soldering temperature is 230° C for 5 seconds.

161

Electrical Specifications at TA=25°C
Video
Resistance
Rv (KO)
Min.
Max.

Package
Outline

Maximum
Tangential
Sensitivity
TSS (dSm)

HSCH-3207

44

-42

8

80

300

0,30

HSCH-3206

49

-42

10

100

300

0.30

HSCH-3486

15

-54

7.5

2

8

Pari
Number

Video
Bandwidth
=2MHz
Ites! = 10 GH;z:

Test Conditions

Note:
For HSCH-3207. -3206. IR

= 10 MA Imax) at VR =

3 V at TA

Minimum
Voltage
Sensitivity
')' (mVlI'W)

Power in "" -40 dBm
ftest = 10 GHz

= 25° C,

Typical
Total Capacitance
Cr (pF)

0,30
VR "'OV
f = 1 MHz

For reverse characteristics of HSCH-3486 see Figure 3,

Typical Characteristics

~

E

?

10

I-

I-

iii

,1

::>

a:
a:

0
w

::>

"!::i'"

""a:

,01

0

~

>

a:

f2

.001

,0001 ' - - ' - - ' - - ' - - ' - - ' - - ' - - - '
-40
-20
20
POWER IN (dBm)

FORWARD VOLTAGE IV)

Figure 2, Typical Forward Characteristics at T A = 25° C.

Figure 1. Typical Dynamic Transfer Characteristics.

50

~

,;

~

E

E

40

>I-

I-

iiia:

;;

::>

0;

a:

i=

"
lii
a:

30

~w

w

'""~

i;;
a:

20

0

>

REVERSE VOLTAGE IV)

FREQUENCY (GHz)

Figure 3, Typical Reverse Characteristics at TA = 25° C,

Figure 4. Typical Voltage Sensitivity vs, Frequency.

162

('

60

E
0>
~

....>:;

58

I

i=

iii

ilico

-

.......

I I -

HSCH,3486

i'.

RL -lMEGOHM

"'-

56

-'

"z
"iii
i=
"ili
"....

54

-'

52

Z

"

--

r-

HSCH·3206
HSCH·3Z07

-

"'-

j-.....
........

50

10
FREQUENCY (GH,I

BIAS CURRENT ("AI

Figure 5. Typical Tangential Sensitivity vs. Frequency.

Figure 6. Typical Voltage Sensitivity vs. Bias Current.

50
45

3:

40

>

35

--"!c

..s
....>:;

30

i=

iii

25

co
w

ili

20

""':;
0

>

10

-75

VS.

1-"

1"'---1'.

----

~H' '\

Rl = 1 MEGOHM

-25

"

~

\
FREQUENCY 10

55

I.......

25

~
z
o

~

-'

:::l
Cl

o

:;

....~
~

~
o
a:

o

Cl

a:

....J:
u-

n
z
o
i=

"~
a:

L.a. POWER (dBml

Figure 9. Mixer Performance.

163

i=

iii

z

~

i

125

Figure 8. Effect of Temperature on HSCH-3486.

Bias Current.

E
~
....>:;

-'

"ili
i=

"I'. N

75

50

45

TEMPERATURE rCI

BIAS CURRENT ("AI

Figure 7. TYPical Tangential Sensitivity

- -.....

15

o

c

/'

60

!

i

40

35

175

"z

"....

Figure 11. Typical Admittance Characteristics, HSCH-3207.

Figure 10. Typical Admittance Characteristics, HSCH-3206.

Figure 12. Typical Admittance Characteristics, HSCH-3486.

164

(

FliflW

5082 -2750/51
5082-2755
5082-2787
5082-2824

SCHOTTKY
BARRIER DIODES
FOR DETECTORS

HEWLETT

~e..II PACKARD

Features

- ~i:Slr-

IMPROVED DETECTION SENSITIVITY
TSS OF -55 dBm at 10 GHz

CATH01YE END
INDICA-rED BY
COlORDOT\

,.a~
m.

LOW 1/1 NOISE
Typical Noise-Temperature
Ratio = 4 dB at 1 kHz

-L

,\r
--r

~~

li

I

:,33-UlOl

HIGH PEAK POWER DISSIPATION
4.5 W RF Peak Pulse Power

.•• ITI\ii

II
CA.jHOOE

Description / Applications
The low 1 If noise and high voltage sensitivity make these
Schottky barrier diodes ideally suitable for narrow
bandwidth video detectors, and Doppler mixers as required in
Doppler radar equipment, ECM receivers, and measurement
equipment.

Outline 15

(

Maximum Ratings

p-tMfN$tONS tN
MU.. lIMElEAS ANt:;) UNCH!:'St

Junction Operating and Storage Temperature Range
5082-2824 ............... , ....... -65°Cto+200oC
All Others ...... , ... , ...... , ...... -60 D C to+150°C

Operation of these devices within the above temperature
ratings will assure a device Median Time To Failure
(MTTF) of approximately 1 x 10 7 hours.

package Characteristics
The HP Outline 15 package has a glass hermetic seal with
plated Dumet leads which should be restricted so that the
bend starts at least 1 .16" (1.6 mm) from the glass body. With
this restriction, it will meet MIL-STD-750, Method 2036,
Conditions A and E (4 lb. [1 .8 kg] tension for 30 minutes). The
maximum soldering temperature is 230°C for 5 seconds.
Marking is by digital coding with a cathode band.

DC Power Dissipation - Power Absorbed by Diode
Derate linearly to zero at Maximum Temperature
5082-2824 .,." ........ , ... ,.......... 250 mW
All Others
................ ,", .... 100mW
Solderi ng Temperature , ...... , .... ,.,' 230°C for 5 sec.
RF Peak Pulse Power at TeAsE = 25° C (Pulse Width =
1 MS, Du = 0.001)
5082-2824 (Power Absorbed by Diode) .....
All Others(Power Incident) ... , ..... ,......
Maximum Peak Inverse Voltage (PIV) " " " " " " ' "

Outline 44

The HP Outline 49 package has a metal-ceramic hermetic
seal. The anode and cathode studs are gold-plated Kovar, The
maximum soldering temperature is 230° C for 5 seconds.
Stud-stud TIR is 0.010" max.

4.5 W
2.0 W
V SR

The HP Outline 44 package is a hermetically sealed ceramic
package. The anode and cathode are gold-plated Kovar. The
maximum soldering temperature is 230°C for 5 seconds.

Note: The 2700 series diodes are ESD sensitive. Handle with
care to avoid static discharge through the diode.

165

Electrical specifications at TA=25°C
Part
Number Package

5082.

Outline

y(mV/I'W)

-56

6.0

-52

3.5

2824

2787'
2755
2751
2750

Voltage

M.ximum
Tangential
SaneltMty
TSS (dBm)

15

Sensitivltv
Minimum

·55

49

Typical Parameters

Video
Resistance
Rv(kfi)
Min. M.".

Minimum
Breakdown

Voltage
VSR(Vl

1.5
1.2

Junction
Capacitance
CJO(pF)

15

2 8t20 kHz
8at 1 kHz

4

6.0 at 20 kHz
15.0at 1 kHz

.1

Rv=50fi

V=O

1.0

~

.12

1.6

5

Noise
Temperature
Ratio atf
(dB)

44

Test
Condrtlons

Video Bandwidth ~ 2 MHz
fRF 2 GHz for 6082-2824,
10 GHz for all others
ISlAS 20 ~A; Video Amp.
Eq. Noise, RA = SOOn.

=
=

Same as for TSS at RF
Signal Power Level of
-40 dBm. Load Resis·

IR "'10I'A

tanoo : l00kn

°RF Parameters for the 5082·2787 are sample tested only.

30

iii

:!1.
Q

..
..

20

I-

a:
w

a:

:>

I-

a:
w

~

I-

w

'"isz

6082-2824

I
-10
10'

10 3

10'

10'

FREQUENCY (Hz)

POWER INPUT (dBm)

Figure 2. Typical Dynamic Transfer Characteristic.
(5082-2750 Series).

Figure 1. Typical Flicker (1/f) Noise vs. Frequency.

60

E


DC BIAS = 20 "A
RA =-500H
Rl '" 10.0 K~l

-i -_.__.__.'

I-

;;
i=
iii

I

54

:'i

..'"
..
:'i
..
-'

ri

52

z

to
iii
-'

56 .

1-----

50

i=

to

z

f : 2 GHl; 5082·2824
f = 10 GHz; 5082·2750 SERIES
BW", 2 MHz

48

I-

52L-~--------~~------~~---'

2

10
3

12

14
4

16

18

46

20 5082-2750/51/55
5082·2824

I

.-. --

5

10

100
DC BIAS CURRENT ("A)

SIGNAL FREOUENCYIGH,)

Figure 4. Typical TSS vs. Bias.

Figure 3. Typical TSS vs. Frequency.

166

500

(
:i

EIZ
W

0::
0::

:::>

"g

"

0::

i...

"

FORWARD DC VOLTAGE (VI

Figure 5. Typical Forward Characteristics at TA = 25°C.

Figure 6. Typical Admittance Characteristics, 5082-2824
with external bias.

Figure 7. Typical Admittance Characteristics. 5082-2755
with external bias.

Figure 8. Typical Admittance Characteristics, 5082-2755
with self bias.

(

167

Figure 9. Typical Admittance Characteristics, 5082-2751
with self bias.

Figure 10. Typical Admittance Characteristics, 5082-2751
with external bias.

Figure 11. Typical Admittance Characteristics, 5082-2750
with self bias.

Figure 12. Typical Admittance Characteristics, 5082-2750
with external bias.

168

c

169

HIGH RELIABILITY
SCHOTTKY CHIP FOR
MEDICAL APPLICATIONS

r/£~ HEWLETT
~~ PACKARD

HSCH-llll

(Generic 5082-0024)

Features
JAN-TXV EQUIVALENT
HIGH BREAKDOWN VOLTAGE
PICO-SECOND SWITCHING SPEED
LOW TURN-ON
QUALITY PERFORMANCE TESTED
Test Program Patterned after MIL-S-19500

L -. 0.38----.J
1-"
(5)-1

ALL DIMENSIONS IN
mrt! AND (111000 inchl

Program Description
Medical life support equipment requires highly reliable
components. To meet that requirement, Hewlett-Packard's
policy is to supply only components which have been tested
in the equivalent of a JAN-TXV program.
The components and documentation supplied conform to
the present requirements imposed by the Food and Drug
Administration regulations concerning medical devices. It
will be standard practice for all orders of life support application components to: (1) be shipped with a statement
confirming release to ship by the Product Assurance
Department, (2) be provided with traceability of the testing
done, and (3) be packaged so they can go into customer
stock with minimum handling.

Oulllne Drawing

Maximum Ratings
Operating and Storage Temperature
Range ............................. -65° C to 200° C
When assembled in hermetic packages, operation of these devices within the recommended
temperature limits will assure a device Mean
Time to Failure (MTTF) of approximately 1 x 107
hours.
Reverse Voltage IWorkingl ................ 50 V Ipeak)

The reliability tests possible for components supplied in
chip form are inadequate to condition and screen them thoroughly. The customer must rely on the screening tests he
performs on his finished device in order to eliminate chips
that are subject to early life failure. To provide the highest
confidence that the screening tests on the finished device
will be successful, HP will conduct JAN-TXV type qualification tests on packaged samples from the lot of chips and
ship only from accepted lots. Qualification data are available upon request.

Power Dissipation at TeAsE = 25°C .......... 250 mW
IDerate Linearly at 1.43mW/o C to Zero at 200° C)

TABLE I. ELECTRICAL SPECIFICATIONS AT TA = 25°C (Similar to 5082-0024)
Symbol

Min.

Max.

Units

Breakdown Voltage

VeR

70

-

V

IR'" 10 I'A

Forward Voltage

W,

-

.41

V

IFI = 1 mA

Forward Voltage

VF2

-

1.0

V

IF2= 15 mA

IR

-

50

nA

VR =50 V

1.7

pF

VR =

Specification

Reverse Leakage Current
Capacitance

CJIO)

-

170

Test Condition

a V and f = 1 MHz

\,

(

TABLE II. 100% INSPECTION FOR HSCH-1111 SCHOTTKY CHIPS

Inepectlon

MIL-$TD-750
fftthod

Condl1lons

-

Per Table I.

1, Electrical Test (Die Probe),VBA, VF1, IR, CHo}

2073

2. Visual In,pectlon

TABLE III. WAFER LOT ACCEPTANCE TEST FOR HSCH-1111

MIWTD-750 Method
(elt~ as noted)

Teat/lnepectlon

Condition A.
n=11.r"1
n;11.r=1

MII.-STO-B83
Method 2019

2. Ole Shear Strength,
(48 hrs. bake at 200' C prior to thie teat).

-

3. Assembly'ln Suitable Carriers

1051

5. Thermal Shock (Temperature Cyoling)
6. Constant Acceleration

20
20

-

-

4. Electrical Test (Go/No Go)

LTPD

Condillone

MII.-STD-88S
Method 2011, Condo 0

1. Bond Strength

?006

20 KG atYl
Per Table I

7. Interim Electrical Test (VF, VaR, IR, OJ)

1032

S. High Temperature !.ife (Non-Operating)

t "" 340 Hours at 200' C

-

9. Interim Electrioal Test

1038

10. Operating Ufe

12. Electrical Stability Verifloatlon

10

Condition B. 10"" 33 mA,
VRM '" 50 V, f=60 H..,
TA'" 25'0. t '" 340 hrs.

-

11. Final Eleotrical Test

10

Per Table I

Per Table I
.;\VFS41 mVat1 mA
,;\VBR S 5 Vat 10 p.A
.J.IR S; 50 nA al 50 V

Typical Parameters
:_-l_4-_t--1'50
126

1

-L._-I--l--:--1'OO

~

~

1000

r-i:::::.i:::=I=--t-'T751---j

a

w

'"w
~

~
I

!:

Tp.('Cl

40
VF - FORWARD VOLTAGE (VOLTS)

IF - FORWARD CURRENT (mA)

171

50

VR - REVERSE VOLTAGE (VOLTS)

Flin-

HIGH RELIABILITY
BEAM LEAD SCHOTTKY
DIODES FOR MIXERS
AND DETECTORS

HEWLETT

~~ PACKARD

TXVW-5300
SERIES

Features
PLATINUM TRI-METAL SYSTEM
Higher Temperature
NITRIDE PASSIVATION
Stable, Reliable Performance
LOW NOISE FIGURE
6 dB Typical at 9 GHz
HIGH UNIFORMITY
Tightly Controlled Process Insures Uniform RF
Characteristics
RUGGED CONSTRUCTION
4 Grams Minimum Lead Pull
lii.$)

QUALITY PERFORMANCE TESTED
Test Program Patterned after MIL-S-19500

~

SILICON

7101l!j1

8rJf
I I

Description/Applications

I~

GLASS

670 (26)

,

f:9.+111
40 l1~

DIMENSIONS I;J pm 1111000 inch)

This family consists of medium and low barrier microwave
Schottky diodes available as hybrid beam leads or mounted
in easily handled carrier packages. Hewlett-Packard has
developed a cost effective standard test program designed
to screen these microwave Schottky diodes for applications requiring high-reliability performance.

Oulllne07

/

TABLE I. ELECTRICAL SPECIFICATIONS FOR RF TESTED DIODES AT TA = 25° C
Part
Number
HSCH-

Barrier

5318
5314

IF
Impedance
ztF (n)
Max.
Min.

Maximum
SWR

Minimum
Breakdown
Voltage
VaR (V)

6.2al
Medium

5,138

5334

Maximum
Noise
Figure
NF(dB)
9.375 GHz
7.2 at
16GHz

200

400

1.5.1

4

200

400

1.5.1

4

6.2 at

Low

9.375 GHz
7.2 al

Maximum
Dynamlc
R_lstance
RD(!l)

Maximum
Total

capacitance

12

(CT(PF)
0.25

18

0.15

12

0.25

18

0.15

Maximum
Leakage
Current
IR(nA)

Voltage
VF(mv)

500

450

500

300

VR = tV

IF= 1 mA

Typical

Forward

16GHz

Teal

Conditions

DC Load Realslance = 0 n

IR=10;5

IF = 5 mA Krakauer MethOd
INote II

IF2 = 15mA

= SOV
=OV and f ,. 1 MHz

(

JAN 1 N5711: Samples of each lot are subjected to Group A inspection for parameters listed in Table I. and to Group B and Group
C tests listed below. All tests are to the conditions and limits specified by MIL-S-19500/444.
JANTX lN5711: Devices undergo 100% screening tests as listed below to the conditions and limits specified by MIL-S-19500/
444***. A sample of the JANTX lot is then subjected to Group A, Group S, and Group C tests as for the JAN 1 N5711 above.
JANTXV lN5711:
to TX screening.

Devices are subject to 100% visual inspection in accordance with M1L-S-19500/444 prior to being subjected

*** JANTX and JANTXV devices have gold plated leads.

TABLE II. 100% SCREENING PROGRAM
MIL-$TD-750 Method

Screening TesVlnspection

Conditions/Comments
48 hours, TA ~ 200° C

1032

t

2. Thermal Shock (Temperature Cycling)

1051

Condition F, 10 Cycles

3. Centrifuge (Constant Acceleration)

2006

20 KG. Yl axis.

4.Hermeticity Tests

1071

Condition H.
Condition E

1.High Temperature Storage
(Stabilization Bake)

Fine Leak
Gross Leak

See Table I

5.1nterim Electrical Tests IIR. VFI

10 "" 33 mA. VR = 50 V (peak)
TA ~ 25°C, f = 60 Hz. T ~ 96 hours.

1038

6. Burn-In
7.Final Electrical Tests and Drift Evaluation
10% PDA
ilR, VBR)

.lIR 5. 50 nA or 100% whichever is greater
..lVF ~ ±41 mV de.

L--.-.

TABLE III. GROUP A INSPECTION
MIL-STD-750
Melh')d

Test/Inspection
Subgroup 1
Visual and Mechanical

LTPD

2071

Subgroup 2
Electncal Tests at 25° C

(

Conditions/Comments

5
VSR, VF1. VF2, IR1, Cra and
per Table I.

~

Subgroup 3
High Temperature Operation ITA = 1500 C)
Reverse Currrent ilR2!

-

T

2

5
Per Table I

--'--.

TABLE IV. GROUP B INSPECTION
Test/Inspection
Subgroup 1
Physical Dimensions
Subgroup 2
Solderability
Thermal Shock (Temperature Cycling)
Thermal Shock IGlass Strain)
Terminal Strength ITension)
Hermetic Seal
Moisture Resistance
End Points:
Breakdown Voltage iVSRi
Forward Voltage iVF)
Reverse Current iIR1'._ _ _ _ _ _ _ __

MIL-STD-750
Method

Conditions/Comments

--

15

2066

2026
1051
1056
2036

1071
1021
4021
4011
4011

179

LTPD

I

Immerse to within 0.1 inch
of body.
Condition C, 10 Cycles
Condition A
Condition A. 15 secs.,
2lbs.
Condition E
Omit initial conditioning

Per Table I
Per Table I
Per Table I

10

TABLE IV. GROUP B INSPECTION (Cont.)
MIL·STD-750
Method

Test/Inspection
Subgroup 3
Shock

2016

Vibration Variable Frequency
Constant Acceleration

2056

2006

Conditions/Comments
Non-operating; 1500 G;
t'" 0.5 ms. 5 blows in each

LTPD
10

orientation X,. Y1. YZ
Non-operating
Non-operating; 20 KG; X"

Y1. Y2
End Points: (same

as Subgroup 2)

Subgroup 4
Terminal Strength; Lead Fatigue

2036

Condition E with lead
restriction.

1031

TA=200'C.111

4021

63 V min. at 10 pA
1.05 V max. at 15 rnA
300 nA max. at 50 V

10

SubgroupS
High Temperature Life (Non-Operating)
End Points:
Breakdown Voltage (VaR)
ForWard Voltage (VFI
Reverse Current (tAl

4011
4016

'\=3

Subgroup 6
Steady State Operating Life
End Points: (same as Subgroup 5)

1026

10 = 33 mA lavgJ; VR = 50 V
(peak) f = 60 Hz.
TA = 25'C,1 11

,\=3

Conditions/Comments

LTPD

1. t = 1000 hours every 6 months to qualify product. t = 340 hours on eacn lot tnerealter.

TABLE V. GROUP C INSPECTION
Test/Inspection

MIL-STD-750
Method

Subgroup 1
Salt Atmosphere (Corrosion)

Subgroup 2
Resistance to Solvents
Subgroup 3
Thermal Shock (Temperature CYCling)

End Points:
Breakdown Voltage (VaR)
Forward Voltage (VF21
Reverse Current OR1 I

1041

20

MIL-STO-202
Methoo 215

10

1061

Condition C. 25 cycles; time
at temperature extremes =
15 minutes min. total test
time =72 hours max,

4021
4011

Per Table 1
Per Table I
Per Table I

4016

Subgroup 4
Low Temperature Operation (-65 0 CJ
Forward Voltage (VF1)
Forward Voltage (Vf21
Breakdown Voltage (VBR)

10

20
0.55 Vat 1 mA
1.0 V all 5 mA
70V at 10pA

180

(

Typical Parameters

s

;{

E

w

!ii

IZ

w
a:
a:
:>
u

a

a:
;:
a:

'a"

~

150'0
100'0
5O'e
25'0
0'0

iiia:
u

lii

:il>

..sollie

a

u.
I
J!-

I

c

a:

1,0

1,2

VF - FORWARD VOLTAGE (VOLTS)

IF - FORWARD CURRENT (mA)

~

__4---r--1--1100
75

VR - REVERSE VOLTAGE (VOLTS)

181

F/iOW

HEWLETT

~~ PACKARD

SCHOTTKY SWITCHING DIODE
JAN 1N5712
MILITARY APPROVED JANTX 1N5712
MIL-S-19500/445 JANTXV 1N5712

Features
PICO-SECOND SWITCHING SPEED

 2
DC Electncal Tests at 25 C

(

Subgroup 3
High Temperature Operation ITA
Reverse Currrent IIR2)

I

Conditions/Comments

---

5

2071
~

LTPO

VSR, VF1, VF2, IRl, CTO, l'
per Table I.

2

per Table I.

2

150°C)
4016

TABLE IV. GROUP B INSPECTION

Test/Inspection

MIL-S';'O-7S0
Method

Subgroup 1
Physical Dim8nslons

2066

Subgroup 2
Solderability

2026

Conditions/Comments

15

Thermal Shock (Temperature Cycling)
Thermal Shock (Glass Strain)
Terminal Strength (Tension)

1051
1056
2036

Hermetic Seal
Moisture Resistance
End Points:
Breakdown Voltage IVSR)
Forward Voltage IVF2)
Reverse Current IIR11

1071
1021

Immerse to within 0.1 inch of
body.
Condition C, 10 Cycles
Condition A
Condition A, 15 secs.,
2lbs.
Condition E
Omit initial conditioning

4021
4011
4011

Per Table I
Per Table I
Per Table I

183

LTPD

10

TABLE IV. GROUP B INSPECTION (Cont.)
Te$l/ln$pection

MIL-STD-750
Method

Conditions/Comments

LTPD

Subgroup 3
Non-operating; 1500 G;
t '" 0.5 ms, 5 blows in each
orientation Xl, Yl, Y2
Non-operating
Non-operating; 20 KG; Xl,
Yl, Y2

10

2036

Test Condition E with lead
restriction.

10

1031

TA=200'C,J11

4021
4011
4016

18 V min. at 10 }AA
1.05 V max. at 35 mA
200 nA max. al16 V

1026

10 = 33 mA; VR = 50 V
(peak) f = 60 Hz.
TA '" 25' C,lll

Shock

2016

Vibration Variable Frequency
Constant Acceleration

2056
2006

End Points; (same as Subgroup 2)

Subgroup 4
Terminal Strength; Lead Fatigue

SubgroupS
High Temperature life (Non-Operating)
End Points;
Breakdown Voltage (VBR)
Forward Voltage (VF2)
Reverse Current OR1}
Subgroup 6
Steady State Operating Life
End Points; (same as Subgroup 5l

A=3

A=3

1. t = 1000 hours every 6 months to qualify product, t = 340 hours on each lot thereafter.

TABLE V. GROUP C INSPECTION
Test/Inspection
Subgroup 1
Salt Atmosphere (Corrosion)
Subgroup 2
Rosistance to Solvents
$ubgroup3
Thermal Shock 
o

~.10~----f_-f_4----_4----_+----d

I

I

~c

.01 '--....,0:-'::.2:-L-........,0::l.4:---:-'0.6:--:"0.:"S·_-.J1.0

v, -

10
IF - FORWARD CURRENT (rnA)

FORWARD VOLTAGE (VOLTS)

(
~~5-L_-:2~5-0~2~5~5~0-:7~5~,~0:"01~2~5~,5.,..0-L-L-L-L~
TA -

AMBIENT TEMPERATURE (OC)

185

10

Flin-

HIGH RELIABILITY
GENERAL PURPOSE
SCHOTTKY BARRIER DIODES

HEWLETT

~~ PACKARD

TX-2810
TX-2811
TX8-2810 TX8-2811
TXV-2810 TXV-2811
TXVB-2810 TXVB-2811

(Generic 5082-2810 and -2811)

Features
MEDIUM TURN-ON VOLTAGE
PICO-SECOND SWITCHING SPEED
0.41 (.o16)

,

L-.....-

O- r

[3ljf.014l----: 1 - -

HERMETIC PACKAGE
QUALITY PERFORMANCE TESTED
Test Program Patterned after MIL-S-19500

2M \"00)
MIN.

r-I

~

Description/Applications

4.321.170)
3.811.150)

I

The 5082-2810 and -2811 are passivated Schottky diodes
which use a patented "guard ring" design to achieve a high
breakdown voltage. They are packaged in a hermetically
sealed glass package. They are well suited for high level
detecting. mixing, switching, gating, log or A-D converting,
video detecting, frequency discriminating, sampling, and
wave shaping.

-t

25~1~:OO)

O___ 1

Maximum Ratings

DIMENSIONS IN MILLIMETERS AND (INCHES)

Operating and Storage Temperature
Range .............................. 1>5 0 C to +200 0 C
Peak Inverse Voltage ............................. VSR
Power Dissipation at TeASE = 25 0 C ............ 250 mW
Derate linearly at 1.43 mW/o C to zero at 200 0 C
Maximum Solder Temperature ..... 230 0 C for 5 seconds

Oulline 15

TABLE I. ELECTRICAL SPECIFICATIONS AT TA = 25 0 C (UNLESS OTHERWISE SPECIFIED)
Similar to 5082-2810 and 5082-2811

Part
Number
5082-

Minimum
Breakdown
Voltage
VSR (V)

2810

20

2811

15

Test
Conditions

IR=10jJ.A

Maximum
Forward
Voltage
VF (mV)
410
IF~l

VF=l V Max.
at Forward
Current
IF (mA)

Maximum
Reverse
Leakage
Current
IR (nA) at VR (V)

Maximum
Reverse
Leakage
Current at 1250 C
IR (pA) at VR (V)

35

100

15

150

15

20

100

8

100

8

mA

Maximum
Capacitance
~(pF)

1.2

VR=OV
f= 1.0 MHz

186

()

High Reliability Programs

TABLE II. PART NUMBER SYSTEM FOR ORDER
AND RFQ INFORMATION

Three basic levels of High-Rei testing are offered.
1. The TX prefix indicates a part that is preconditioned
and screened to the program shown in Table III and IV.
2. The TXB prefix identifies a part that is preconditioned
and screened to TX level with a Group B quality conformance test as shown in Table V.
3. The TXV and TXVB prefix indicates that an internal visual inspection per MIL-STD-750 Method 2074 is
included as part of the preconditioning and screening.

Screening Level

Part Number

Commercial

5082-2810
5082-2811

100% Screen (per Tables III
and IV)

TX-2810
TX-2811

From these three basic levels, four combinations are available. Please refer to Table II as a guide.

TXB-2810
TXB-2811

100% Scraen and Group B (per
Tables Ill, IV and V)

TXV-2810
TXV-2811

100% Screen and visual (per
Tables III and IV)

TXVB-2810
TXVB-2811

100% Screen and Group B (per
Tables Ill, IV and V) with visual

TABLE III. 100% SCREENING PROGRAM
MIL-5TD·750
Method

Screening Test/Inspection
1. Internal Visual ITXV only}

Conditions/Comments

2074

2. High Temperature Storage (Stabilization Bake)

1032

t= 48 hours, TA = 200"C

3. Thermal Shock (Temperatura Cycling)
4. Constant Acceleration

1051

Condition C. 10 Cycles

5. Hermeticity Tests

Fine Leak
Gross Leak

2006

20 KG, y, axis

1071

Condition H
Condition C

1038

Condition B, t = 96 hours, T A = 25" C,
VR = 80% VSR, f=60 Hz, 10=20 mA DC
(5082-2811),33 mA DC (5082-2810)

Per Table I

6. Interim Electrical Tests (VF, IRli
7. Power Burn-I n

:J.YF = ±55 mV, :J.IRl = ±20 nA or 100%
whichever is greater (5082-2811 i,
.lIRl'= ±30 nA or 100% whiChever is
greater (5082·2810i

8. Final Electrical Tests (See Table Il and Stability
Verification

TABLE IV. GROUP A ACCEPTANCE TEST
Test/Inspection
Subgroup 1
Visual and Mechanical

Subgroup 2
DC Electrical Tests at 25°C
Subgroup 3
Reverse leakage OR) at TA = 125° C

MIL·STD·750
Method

Conditions/Comments

2071

LTPD

5

-

187

See Table I for Tests and
Conditions (Read and Record)

5

See Table I for Tests and
Conditions (Read and Recordl

5

TABLE V.

GROUP B ACCEPTANCE TEST
MIL.·STO·750
Method

Te$tII nspeclion
Subgroup 1
Physical Dimension

Subgroup 2
Solderability
Resistance to Solvents
Electrical Test at 25"C OR1,

Subgroup 4
Mechanical Shock
Vibration, Variable Frequency
Constant Acceleration
Electrical Test at 25° C

Subgroup 5
Terminal Strength
SubgroupS
High Temperature Life
INon-operating)
Electrical Test at 25" C 1IR1, Vpl
Electrical Stability Verification

Subgroup 7
Steady State Operating Life

LTPD

2066

15

2026
1022

15
See Table I

VF)

Subgroup 3
Temperature CycHng
Thermal Shock
Terminal Strength
Hermetic Seal
Fine Leak
Gross Leak
Moisture Resistance
Visual and Mechanical
Electrical Test at 25°COR1, Vp)

Conditions/Comments

1051

Condition C, 10 Cycles
Condition A
Condition A

1056
2036

10

1071
Condition H
Condition C

1021
2071
See Table I
2016
2056
2006

10
See Table I

2036

Condition E

15

1032

t = 340 hOurs, TA = 200· C

5

See Table I

.:.VF '" :t55 mV, ':'IR '" ±20 nA or
100% Whichever is greater (5082-28111
AIR = ±30 nA or 100%
whichever is greater 15082-281 Q)
t=340 hours, TA"'2S"C, 1:60 Hz,
VR 80% VSR, 10 = 20 mA DC
(5082-2811 )
10 = 33 nA DC (5082-2810)
See Table I
::'VF = ±55 mV, ':'IR = ±20 nA or
100% whichever is greater (5082-2811 I
AIR = ±30 nA or 100%
whichever is greater15082-28101

1027

Electrical Test at 25°C OR1, VF)
Electrical Stability Verification

188

S

(

Flin-

HIGH RELIABILITY
SCHOTTKY
SWITCHING DIODES

HEWLETT

~~ PACKARD

TX-2835
TXV-2835
TXB-2835
TXVB-2835

(Generic S082-283S)
Features
SUITABLE FOR SPACE APPLICATIONS
0.41 (0.016)---1

LOW TURN-ON VOLTAGE
FAST SWITCHING

~J:.

PLANAR PASSIVATED
LOW TEMPERATURE COEFFICIENT
UNIFORM FORWARD TRACKING
QUALITY PERFORMANCE TESTED
Test Program Patterned after MIL-S-19500

Description/Applications
CATHODE

The TX-2835 is an epitaxial, planar passivated diode
whose construction utilizes a metal-to-silicon junction.
This results in extremely low forward voltage drops and
ultra high speed switching, for applications that require
high reliability screening.

(

f---

II

o:aw.ml

4
f

""11_-

The low forward voltage drop, combined with fast switching and high temperature capability, makes these devices
attractive as replacements for germanium and silicon PIN
junction diodes in such applications as low level switching, clamping, sampling, reference circuits, and low noise
UHF mixers.

~!~

~~

The uniformity of forward characteristics with current over
the temperature range also makes these units suitable for
circuitry requiring tight matching of characteristics.

DIMENSIONS IN MI~UMETEI\S HNCtIES).

Maximum Ratings
Oulline 15

Power Dissipation at T CASE = 25° C ........... 150 mW
Derate linearly at 1.20 mW/o C to zero at 150° C
Operating Temperature Range ....... -60°C to +150°C
Storage Temperature Range ......... -60°C to +150°C

TABLE I. ELECTRICAL SPECIFICATIONS AT TA = 25°C
CharacleriStlc$
Breakdown Voltage
Reverse Current

Symbol

MIn.

VBR

8

Mo.
100

IR1

Unite

Test CondItions

lIofts
nA

lA '" 100 p,A
VA=1 V
VR = 1 V.I = 125G C

Reverse Current

IA2

100

p.A

Forward Voltage

VFl

0.34

volts

IF"'"

Forward Voltage

VF2

0.45

volts

IF=10mA

Cap"citance

Cro

1,0

pF

T

100

psec

Effective Minority
Carrier Lifetime

189

mA

VA '" 0, t = 1 MHz
IF=20 mA

PART NUMBER SYSTEM FOR ORDER AND RFQ
INFORMATION
TX-2835

(

Devices undergo 100% screening as specified in Table II and Table III (excluding step 1).

TXV-2835

Devices undergo 100% screening per Table I! and Table II!.

TXB-2835

FOllowing 100% screen per Table II (delete step 1). samples of lot are subjected to Group A
(Table lIll. and Group B (Table IV).

TXVB-2835

Complete screen and lot qualification per Tables II-!V.

TABLE II. 100% SCREENING PROGRAM

Screening Tesl/lnspectlon

MIL·STD-750 Method
(Except as Noted)

Conditions

1. Internal Visual

2074

2. High Temperature Storage

1032

48 Hours minimum at 150"C

3. Temperature Cycling

1051

Condition F - 20 cycles, 10 minutes at
extremes HiQ" C to ±150° C)

4. Constant Acceleration

5. Hermetic Seal

Fine Leak
Gross Leak

6. Interim Electrical Test
lAt. YeA, CTO, VF1, VF2
7. Burn-In

a.

Final Electrical Test

2006

20 KG. Yl axis

1071

Condition H. 5 X 10-8 cc/sec max.
Conjition E

-

Read and Record
Condition B. PFM = 150 rnW pk .• VAM = 5 V pk.,
f= tlO Hz. t = 168 hr. min .. TA = 25°C

1038

-

Same as Step 7

9. Electrical Stability Verification

.llAl $ 50 nA or 100% of initial value.
whichever is greater
..lVFl $10% of initial value

10. Percent Detective Allowable (PDA)

10% of devicE'S submitted to burn-in.

/

TABLE III. GROUP A ACCEPTANCE TEST
Test/Inspection
Subgroup 1
External Visual Inspection

MIL-STD-750
Method

Conditions

2071

LTPD

5

Subgroup 2
Electrical Test
IR1. YeA. Cro, WI, VF2 at TA = 25°C
Subgroup 3
Electrical Test at TA= 25°C
Carrier Lifetime IT)

See Table I
(Read and Record)

3

See Table I
(Read and Record)

3

See Table I
(Read al1d Record)

7

Subgroup 4
Electrical Test
Reverse Leakage (IR) at T A = 125° C

190

"

(

TABLE IV. GROUP B PROGRAM
MIL·STD-150

TesVlnspection
Subgroup 1
Solderability
Resistance to solvents
Subgroup 2
Thermal Shock (Temperature CYCling)
Hermetic Seal
Fine Leak
Gross Leak
DC Electrical Tests OF! and VF)
Subgroup 3
Steady State Operating Life
DC Electrical Tests (lR and VFl
Subgroup 4
Decap Internal Visual
(Design Verification)
Bond Strength

SubgroupS
High Temperature Life
(Non-Operating)
DC Electrical Tests (lR and VF)

Method

Conditions/Comments

2026
1022

LTPD

15

Condition F1 (25 cycles!

1051
1071

10

Condition H
Condition C or E
See Table I.
1027

t "'340 hours, TA = 25·C,
PFM "" 200 mW. f""60 Hl. VRM '" 56 V
See Table I.

5

2075

2037

20

1032

t = 340 hours, TA '" 150°C
See Table L

191

7

rh~

~~

HIGH RELIABILITY
ZERO BIAS SCHOTTKY
DETECTOR DIODE

HEWLETT
PACKARD

(

HSCH-OB12

\

(Generic HSCH-3486)
Features
HIGH TANGENTIAL SENSITIVITY
NO BIAS REQUIRED
HERMETIC GLASS PACKAGE
QUALITY PERFORMANCE TESTED
Test Program Patterned after MIL-S-19500

Description/Applications
The high tangential sensitivity of these Schottky Barrier
diodes makes them ideally suitable for narrow bandwidth
video detectors, ECM receivers, and measurement equipment. These diodes also make excellent mixers for use
with low power La.

Maximum Ratings
Operating and Storage Temperature
Range ............................ -£5°Cto+150°C
Operation of these devices within the above
temperature ratings will assure a device
Median Time To Failure (MTTF) of approximately 1 x 107 hours.
CW Power Dissipation at TCASE = 25° C ....... 300 mW
Derate linearly at 2.40 mW/oC to zero at 150°C
Pulse Power Dissipation
Peak Power absorbed by the diode at T A = 25° C
1 JLs pulse, Du = 0.001 .......................... 1 W

DIM~N$lONS IN

MILl.IMIlTSRS AND /INCHES)

Outllrw 1S

These diodes are ESD sensitive. Handle with care to avoid
static discharge through the diode.

TABLE I. ELECTRICAL SPECIFICATIONS AT TA = 25°C

Part

Number

Maxfmwn

MinImum

Video

Maximum

Tangential

Voltage

ReeIstance

Forward

Typical

Senelllvlty
TSS(dBm)

SensItiVIty

Viktage

'l'(mV/p.w)

Min.

Max.

VF(mV}

Total Capacitance
Cr(pF)

-54

7$

2

8

400

0.30

Rv (Kfl)

HSCt+0812

(Screerwd
HSCH-3486)

Test
Conditions

Video
BandWidth = 2 MHz
ttes! = 10 GHz

Power In .. -40 dBm
ttes! = 10 GHz

192

IF=1 rnA

VFI""OV
f=1 MHz

,/

High Reliability conditioning and Acceptance Testing
(All methods are per MIL-STD-750 unless otherwise specified)

100% SCREENING PROGRAM
Screening Testllnspection

MIL-STD-1S0 Method

1, Internal Visual Inspection

-

Conditions/Comments

Per H.P. Method A-5956-0562-72

2. High Temperature Storage
(Stabilization Bake)

1032

t

3. Thermal Shock (Temperature Cycling)

1051

-65"C to +150"C, 10 cycles, 30 minutes
per cycle

4. Constant Acceleration

2006

200 KG. Yl axis.

1071

Condition G or H.
Condition A or C. Step 1 only.

Fine Leak
Gross Leak

5. Hermeticity Tests

6. Interim Electrical Tests (VF)

Per Table I. TA '" 25° C,

1038

7. Burn-in

P"" 10 mW, TA = 25" C, t"" 168 hours
Per Table I. TA=25"C

8. Final Electrical Tests (VFf
9. Drift Eval uation

48 hours" TA= 150"C

PDA=15111

J,VF =±5 mV

10. Electrical Tests. RF Parameters

Nole:
1. If rejects are greater than 15% but less than 30%, one more burn-in may be performed with a new 10% POA.

GROUP A ACCEPTANCE TEST
Test/Inspection
Subgroup 1
Visual and Mechanical

(\

MIL-STO-750
Method

Conditions/Comments

2071

Subgroup 2
DC Electrical Tests at 25 0 C

15
Per Table I

193

LTPO

5

194

(

RELIABILITY DATA
PASSIVATED GENERAL PURPOSE
SCHOTTKY DIODES

r/i~ HEWLETT

~~ PACKARD

Description
For applications requiring component reliability estimation, Hewlett-Packard provides reliability data for all
families of devices. Data is compiled from reliability tests
run to demonstrate that a product meets the design criteria. Periodically, additional tests are run. The data on this
sheet represents the latest review of accumulated test
results. All data recorded here is for passivated Schottky
diodes mounted in hermetically sealed glass packages.

Applications
This information represents the capabilities of the generic
device. Failure rate and MTTF values presented here are
achievable with normal MIL-19500 test screening. Reliability can be guaranteed only under specified conditions by
testing specific lots, under specified conditions and LTPD
levels.

Applicable Part Numbers
1N5711
1 N5712
1N6263
5082-0024
5082-0031
5082-0057
5082-0058
5082-0087
5082-0094

(

5082-0097
5082-2080
5082-2800
5082-2804
5082-2805
5082-2810
5082-2811
5082-2813
5082-2814

5082-2815
5082-2817
5082-2818
5082-2824
5082-2826
5082-2835
5082-2836
HSCH-1001

400
350

E

300

I-

.0'
w'

a;
:::>

250

...... r-.

I-

"~
1:l
I-

"i=0
;;""

EA"* 1.2eV
200

.............
!"."

r-..... r---!"."

r-.... ....

150

100
10 3

104

105

106
MTTF (HOURS)

Mean Time to Failure vs. Junction Temperature

195

107

lOS

Burn-In and storage
Te$\ Condilions(1)

Test

LTPD per 1000 Hours

High Temperature Ufe

Storage at: 200· C

2.0

Steady State Operating Life

PFM""250 mW
VRM = 800k of VeR
TA=25·C f= 60 Hz

2.0

High Temperature Reverse Bias

VR '" 80% of VBR
TA=200·C

2.0

Note:
1. 1000 hours minimum on all life tests.

Environmental
Test
Temperature Cycling

MIL-STD-750
1051C

Test Condillon
10 cycles from'-65·C to 200°C, 5 Mrs. al extremes,
5 mi n. transfer

LTPD
10

Thermal Shock

1056

10 cycles from O· C to 100· C, 3 sec. transfer

10

Mechanical Shock

2016

5 blows each at Xl, X2, Y, 1500G, 0.5 msec. pulse

10

20G min., 60 Hz

10

4,4 min, cycles each X, Y, Z at 20G min., 100 to
2000 Hz

10

Vibration Fatigue
Vibration Variable Frequency
Constant Accelerati on

2046.1
2056

20KG,1 minute per axis

5

Moisture ReSistance

1021.1

240 hours, 9().98% relative humidity

10

Salt Atmosphere

1041.1

35· C fog for 24 hours

5

Sn 60, Pb 40, 230·C

10

Solderability

2006

2026

196

(

RELIABILITY OAT A
TRI METAL BEAM LEAD
SCHOTTKY DIODES

r/i~ HEWLETT

':1:.

PACKARD

Description
For applications requiring component reliability estimation, Hewlett-Packard provides reliability data for all
families of devices. Data is compiled from reliability tests
run to demonstrate that a product meets the design criteria. Periodically, additional tests are run. The data on this
sheet represents the latest review of accumulated test
results. All data recorded here is for tri metal beam lead
Schottky diodes mounted in hermetically sealed H
packages.

Applications
This information represents the capabilities of the generic
device. Failure rate and MTTF values presented here are
achievable with normal MIL-19500 test screening. Reliability can be guaranteed only under specified conditions by
testing specific lots, under specified conditions and LTPD
levels.

Applicable Part Numbers
HSCH-5300 Series
HSCH-5500 Series
5082-2200
5082-2201
5082-2202
5082-2203
5082-2207

(

5082-2208
5082-2209
5082-2210
5082-2765
5082-2766
5082-2774

5082-2775
5082-2785
5082-2786
5082-2794
5082-2795
5082-2837

400
.....

350

:::::r-.

300

. . . . . r-.

,:!
w' 250

..............

a:

::J

!

I-

~"
~

IZ

r"-i"o

i'-..~" toEA = 1.2.v

100

....

""

0

;::
u
z

'l

50
103

104

106

10·
MTTF (HOURS)

Mean Time to Failure vs. Junction Temperature

201

.... ""
...........

107

.... ....
10S

Burn-In and storage
Test

Test Condltions£l]

LTPO per 1000 Hours

High Temperature Life

Storage at 125" C

2,0

Steady State Operating Life

PFM"'50 mW
TA'" 25°C f = 60 Hz

2,0

Note:
1, 1000 hours minimum on all life tests,

Environmental
Test

Temperature Cycling

Te$t Condition

MIL·STO·750

1051C

LTPO

10 cycles from -{i5"C to 125"C, 5 hrs, at extremes,
5 min, transfer

10

Thermal Shock

1056

10 cycles from 0° C to 1000 C, 3 sec, transfer

10

Mechanical Shock

2016

5 blows each at Xl, X2, y, 1500G, 0,5 msec, pulse

10

Vibration Variable Frequency

2056

4,4 min, cycles each X, Y, Z at 20G min" 100 to
2000 Hz

10

Moisture Resistance

1021.1

240 hours, 90-98% relative humidity

10

Salt Atmosphere

1041,1

35° C fog for 24 hours

10

Sn60, Pb4D, 230"C

10

SOlderability

2026

202

(

Flin-

RELIABILITY DATA
MESH SCHOTTKY DIODES

HEWLETT

~~ PACKARD

Description
For applications requiring component reliability estimation, Hewlett-Packard provides reliability data for all
families of devices. Data is compiled from reliability tests
run to demonstrate that a product meets the design criteria. Periodically, additional tests are run. The data on this
sheet represents the latest review of accumulated test
results. All data recorded here is for mesh Schottky diodes
mounted in hermetically sealed glass packages.

Applications
This information represents the capabilities of the generic
device. Failure rate and MTTF values presented here are
achievable with normal MIL-19500 test screening. Reliability can be guaranteed only under specified conditions by
lesting specific lots, under specified conditions and LTPD
levels.

Applicable Part Numbers
5082-2301
5082-2302
5082-2303
5082-2305
5082-2306
5082-2308
5082-2350
5082-2351

(

5082-2356
5082-2370
5082-2396
5082-2400
5082-2401
5082-2520
5082-2521
5082-2565

5082-2566
5082-2755
5082-2787
5082-2900
5082-2912
5082-2970
5082-2997
HSCH-3486

200

r--...

_150

",:'

............

'-

r--...

w'

a:

"!;;

fA = 1.2.V I'--r-.

....... 1'--

~

:;; 100

w

-I'--

IZ

a

~

z

;;

50
102

103

104

1(J5

10·
MTTF (HOURS)

Mean Time to Failure vs. Junction Temperature

203

107

lOS

1()9

Burn-In and storage
Test

Test Condltionsl 1J

LTPD per 1000 Hours

High Temperature Ufe

Storage at 1~O" C

2.0

Steady State Operating life

PFM= 125 mW
VRM = 80% of VeR
TA 2S"C 1=60 Hz

2.0

High Temperature Reverse Bias

VR = 80% of VBFI
TA=100'C

3.0

Note:
1. 1000 hours minimum on all life tests.

Environmental
Test
Temperature Cycling

Test Condition

MIL·STD-750
1051C

LTPO

10 cycles from -.t>S" C to 100· C, 5 hrs. at extremes,
5 min. transfer

10
10

Thermal Shock

1056

10 cycles from 0° C to 100· C, 3 sec. transfer

Mechanical Shock

2016

5 blows each at Xl, X2, y, 1500(3,0.5 msec. pulse

10

Vibration Variable Frequency

2Q56

4,4 min. cycles each X, Y, Z at 20G min., 100 to
2000 Hz

10

Moisture Resistance

1021,1

240 hours, 90-98% relative humidity

10

Terminal Strength

2036.1

Condition A

10

Sn60, Pb40, 230"C

10

SOlderability

2026

204

(

FliOW

RELIABILITY DATA
PASSIVATED
N-TYPE MICROWAVE
SCHOTTKY DIODES

HEWLETT

~~ PACKARD

Description
For applications requiring component reliability estimation, Hewlett-Packard provides reliability data for all
families of devices. Data is compiled from reliability tests
run to demonstrate that a product meets the design criteria. Periodically, additional tests are run. The data on this
sheet represents the latest review of accumulated test
results. All data recorded here is for N-type passivated
microwave Schottky diodes mounted in non-hermetic
unsealed 44 packages.

Applications
This information represents the capabilities of the generic
device. Failure rate and MTTF values presented here are
achievable with normal MIL-19500 test screening. Reliability can be guaranteed only under specified conditions by
testing specific lots, under specified conditions and LTPD
levels.

Applicable Part Numbers
5082-0013
5082-0023
5082-0029
5082-0041
5082-2273
5082-2274
5082-2295
5082-2296

5082-2297
5082-2298
5082-2701
5082-2702
5082-2706
5082-2707
5082-2711

5082-2712
5082-2713
5082-2714
5082-2723
5082-2724
HSCH-3206
HSCH-3207

200
..........

t'--"
~

........

150

.........

to'
w'

a:
::>
>-

..

. . . . . . . r-... . . .

~

1.i

>-

..... 1-.

fA

~ 1,2.V ~

100

" r-.... . .

"i=
0

z
;;"

i"

50
103

10'

105

106

MTTF (HOURSI

Mean Time to Failure vs. Junction Temperature

205

10'

108

Burn-In and Storage
Test Conditionsl:1J

Test

LTPD per 1000 Hours

High Temperature Life

Storage at 1250 C

3.0

Steady State Operating Life

PfM =75 mW
VRM = 80% of VeR
TA = 25°C f'" 60 Hz

4.0

Note:
1. 1000 hours minimum on all life tests.

Environmental
Test
Temperature Cycling

MIL-STO-7S0
1051C

Test Condition

LTPD

10 cycles from ~5° C to 125 0 C, 5 hrs. at extremes,
5 min. transfer

10

Thermal Shock

1056

10 cycles from O'C to 1000 e, 3 sec. transfer

10

Mechanical Shock

2016

5 blows each at X1, X2, Y, 1500G, 0.5 msec. pulse

10

Vibration Fatigue

2046,1

Vibration Variable Frequency

20G min" 60 Hz

10

2056

4,4 min, cycles each X, Y, Z at 20G min" 100 to
2000 Hz

10

2006

20KG, 1 minute per axis

10

Moisture Resistance

1021.1

240 hours, 90-98% relative humidity

10

Salt Atmosphere

1041.1

35' e fog for 24 hou rs

12

Constant Acceleration

206

(

Flin-

RELIABILITY DATA
PASSIVATED
P-TYPE MICROWAVE
SCHOTTKY DIODES

HEWLETT

~~ PACKARD

Description
For applications requiring component reliability estimation, Hewlett-Packard provides reliability data for all
families of devices. Data is compiled from reliability tests
run to demonstrate that a product meets the design criteria. Periodically, additional tests are run. The data on this
sheet represents the latest review of accumulated test
results. All data recorded here is for P-type passivated
microwave Schottky diodes mounted in non-hermetic
unsealed 44 packages.

Applications
This information represents the capabilities of the generic
device. Failure rate and MTTF values presented here are
achievable with normal MIL-19500 test screening. Reliability can be guaranteed only under specified conditions by
testing specific lots, under specified conditions and LTPD
levels.

Applicable Part Numbers
5082-0009
5082-2750
5082-2751
5082-9891

200

..........
10.", ....
150

.......
.......

E
t='
ui
::J

t-

«

EA '" 1.2eV

ffi

~t-

........
..............

0:

........ ........

100

........... ......

";::0

r....1'

u

z

i'

;;

50
103

I
104

105

106
MTTF IHOURSI

Mean Time to Failure vs. Junction Temperature

207

107

10'

Burn-In and Storage
Test Conditiona(1)

Test

LTPD per 1000 Hour.

High Temperature Lffe

Storage at 125" C

4.0

Steady State Operatlng Life

PFM= 100mW
VRM '" 80".1. of VeA
TA=25°C f:60 Hz

3.0

Note:
1. 1000 hours minimum on all lite tests.

Environmental
Test
Temperature Cycling

MIL-STO-750
10510

Test ConditiOn
10 cycles from -65·C to 2OO·C, 5 hra. 'at extremes,
5 min. transfer

Thermal Shock

1056

10 cycles from O· C to 100" C, 3 sec. transfer

Mechanical ShOck

2016

5 blows each at Xl,

Vibration Fatigue

2046.1

Vibration Variable Frequency

2056

X2, Y, 15OOG, 0.5 msec. pulse

LTPO
10
10
10

20G min" 60 Hz

10

4,4 min. cycles each X, Y, Z at 20<3 min" 100 to

10

2000 Hz
Moisture Resistance

1021.1

240 hours, 90-98% relative humidity

10

Salt Atmosphere

1041.1

35· C fog for 24 hours

12

208

\

ABSTRACTS OF
APPLICATION NOTES AND BULLETINS

(

The Microwave Semiconductor Division field sales force is supported by a division applications staff. These technical specialists
investigate circuit applications of most interest to the users of these semiconductor devices. The results of these investigations
are reported in application notes or brief application bulletins. A complete list with brief abstracts is presented here.
Below is a brief summary of Application Notes for diodes and transistors. All of the Application Notes are available from your
local HP Sales Office or nearest Components Authorized Distributor or Representative.

Schottky Diode Applications
923

large signal type, also known as linear or peak detectors.
Techniques for raising the compression level are presented.
An example is given illustrating the effect of bias current
level on an HP 5082-2751 detector.

Hot Carrier Diode Video Detectors

Describes the characteristics of HP Schottky barrier diodes
intended for use in video detector or video receiver circuits,
and discusses some design features of such circuits.

956-6 Temperature Dependence of Schottky
Detector Voltage Sensitivity

Though less sensitive then the heterodyne receiver, the
many advantages of the video receiver make it extremely
useful. The Schottky diode can be used to advantage in
applications such as beacon, missile-guidance, fuseactivating, and counter-measure receivers, and as powerleveling and signal-monitoring detectors.

A discussion of the effects that temperature changes have
on Schottky barrier diodes. Performance improves at lower
temperatures in a predictable manner. Data presented were
obtained using HP 5082-2750 detector diodes.

963 Impedance Matching Techniques for
Mixers and Detectors

Among the subjects discussed are the performance characteristics of video detector diodes - tangential sensitivity,
video resistance, voltage sensitivity and figure of merit; how
these characteristics affect the bandwidth of a video detector, video detector design considerations; considerations
that affect dynamic range; and considerations that vary the
level at which burnout can occur.

c

Presents a methodical technique for matching complex
loads, such as Schottky diodes, to a transmission line. Direct
application to broadband mixers and detectors is illustrated.

969 An Optimum Zero Bias Schottky
Detector Diode

942 Schottky Diodes for High Volume
Low-Cost Applications

Descri bes the use of HSCH-3486 zero bias detector
diodes. Their forward voltage characteristics are detailed,
as well as discussion of voltage sensitivity including
effects of junction capacitance, load resistance and reflection loss on sensitivity. Temperature characteristic curves
for both devices are also included.

Discusses switching, sampling, mixing, and other applications where the substitution of Schottky diodes will provide
significant improvement over PN junction devices.

956-1 The Criterion for the Tangential Sensitivity Measurement

976 Broadband Microstrip Mixer Design,
The Butterfly Mixer

Discusses the meaning of Tangential Sensitivity and a
recommended measurement technique.

956-3

A microstrip mixer on RT/duroid substrate is designed for
the frequency range 8 GHz to 12 GHz. Hewlett-Packard
Schottky barrier diode model 5082-2207 is used. Low impedance shunt transmission lines are difficult to realize and
present a problem in this type of circuit. Radial line stubs are
used to avoid this problem.

Flicker Noise in Schottky Diodes

Treats the subject of flicker (1/f) noise in Schottky diodes,
comparing 4 different types.

956-4

Schottky Diode Voltage Doubler

986

Explains how Schottky detectors can be combined to
achieve higher output voltages than would be produced by a
Single diode.

956-5 Dynamic Range Extension of
Schottky Detectors

Square Law and Linear Detection

Frequency, diode capacitance, breakdown voltage, and load
resistance all have an effect on the slope of a microwave
detector. At high input levels the linearity may be controlled
by proper tuning.

9987

Discusses operation of two types of detectors: the small
signal type, also known as square-law detectors; and the

Is Bias Current Necessary?

Bias current is often necessary to reduce the impedance of
detector diodes to a reasonable level. However, when the
209

signal level is high, rectified current may reduce the impedance without the need for bias current Measurements with
the 5082-2755 diode are used to illustrate this effect.

988 All Schottky Diodes are Zero
Bias Detectors

recommended thermocompression bonding. Described in
this application note is a new method of resistive spot welding or modified gap welding, which uses a single electrode
to weld the beam while the conductor is contacted separately. This method allows tight pressure to be used on the
weld probe, resulting in an effective bond without damaging
the beam lead device.

Diodes which are normally biased make excellent detectors
when the bias is eliminated. It is necessary to use a load with
an impedance comparable to the diode impedance. This is
shown with a 5082-2755 diode used with a 3469B,multimeter
as the load.

Schottky Diodes
AB 5

Hybrid Integrated Circuits
Applications
974 Die Attach and Bonding Techniques for
Diodes and Transistors

AB 7

Several package styles are available for use with hybrid
integrated circuits. This application note gives detailed
instructions for attaching and bonding these devices. A brief
description of an impedance matching technique for mixer
diodes is also included.

Mixer Distortion Measurements

Describes the measurement of distortion in a balanced
mixer by the two tone method.

AB 13 Transistor Speed Up Using Schottky
Diodes

979 The Handling and Bonding of Beam Lead
Devices Made Easy

Significant reduction in transistor switching delay time can
be achieved by adding a Schottky diode and a PIN diode to
the transistor switching circuit. This improvement in switchi ng performance also extends the oscillator capability of the
transistor to higher frequencies.

Beam Lead devices are particularly attractive for hybrid circuits because of their low parasitics and small size. The
availability of equipment and techniques specifically designed for their small size has facilitated the handling and
bonding of these devices. This application note describes
some of this equipment and techniques, and outlines suggestions forthe proper handling and bonding of Beam Lead
devices.

AB 14 WaveformClipping with Schottky
Diodes
Consideration is given in this application bulletin to the
design requirements of clipping circuits which are used to
limit the transmission of Signals above or below specified
levels. The characteristics of Schottky diodes needed to
achieve the required performance in these circuits are discussed and recommendations made.

991 Harmonic Mixing with the HSCH-5530
Series Dual Diode
The dual diode on coplanar waveguide forms an antiparallel pair. This arrangement is excellent for mixers with
subharmonic local oscillators. A mixer for 34 GHz was
designed and built. Conversion loss was measured as a
function of frequency and local oscillator power level.

8992

Current Source for Diode Testing

This application bulletin describes a constant current source
designed primarily for the ease of use in laboratory measurements. Easily programmable by thumb wheel switching
in 10 p.A steps from 10 p.A to 700 mA, its accuracy exceeds
most commercially available current sources.

AB 15 Waveform Clamping with Schottky
Diodes
Discussed in this application bulletin are the circuit design
and diode performance requirements for a clamping circuit,
which is used as a DC restorer or level shifter. Schottky
diodes having the required characteristics for this type of
circuit are recommended.

Beam Lead Attachment Methods

This application bulletin gives a general description of various methods of attaching beam lead components to both
hard and soft substrates. A table summarizes the most
common attachment methods with advantages, disadvantages, and equipment costs.

AB 16 Waveform Sampling with Schottky
Diodes
This application bulletin discusses the design considerations for a sampling circuit used to sample high frequency
repetitive signals and reproduce them at lower frequencies
for ease of monitoring. Schottky diode performance
requirements important in the realization of a sampling circuit are considered.

0993 Beam Lead Diode Bonding to Soft
Substrate

o

The hard gold surface on standard pc boards with soft substrate material makes it almost impossible to successfully
bond beam lead diodes onto the boards with normally

210

o

AB 31 Using the HSCH-1001 Schottky Diode
in a Data Terminal Memory

AB 26 Using the HSCH-1001 Schottky Diode
for Interfacing in Microprocessor Controlled AID
Conversion Circuits
The use of custom codec (coder/decoder) IC chips simplifies the analog to digital circuitry in microprocessor
controlled digital switching circuits. This application bulletin
describes the use of the HSCH-1001 Schottky diode to
achieve the required compatible interface between the
codec chip and the rest of the circuit in order to realize
optimum circuit performance.

The simplicity in a read only memory (ROM) circuit allows
the circuit to be large in terms of storage capacity. A large
capacity requires a large matrix of active devices. Theuse of
HSCH-1001 Schottky diodes in a ROM circuit can ease the
power drain because of their low forward voltage. The use of
discrete circuit elements offers ease of repair and modification. These and other important considerations are
discussed in this application bulletin.

AB 27 Using the HSCH-1001 Schottky Diode
in an AGC Detector Circuit

AB 36 Using the HSCH-1001 Schottky Diode
in a Digital Logic Gate

A detector circuit such as one used for AGC or video detection simply realized with the use of the HSCH-1001 Schottky
diode is described in this application bulletin.

Simple "and" and "or" gates consisting of diodes and resistors can be combined into circuits which will perform
increasingly complex functions. The achievement of low
loss when the diode is biased on and of high isolation when
the diode is biased off are the principal characteristics of
these types of logic gates. This application bulletin describes how the HSCH-1001 Schottky diode is particularly
suited for this type of application because of its low forward
voltage and other inherent characteristics.

AB 28 Optocoupler Speedup using the
HSCH-1001 Schottky Diode
An optocoupler typically contains a transistor in the output
circuit. When the optocoupler is turned on, the transistor is
usually in the saturated state, which means the turn-off time
will be unnecessarily long. This application bulletin describeshow the HSCH-1001 Schottky diode can be used to
alleviate the saturation effects on the transistor and thus
improve switching time.

AB 30 Using the 5082-2835 Schottky Diode for
Protecting and Improving the Performance of an
Operational Amplifier

o

High level voltage spikes degrade the performance of an
operational amplifier, and, in extreme cases, destroy the
amplifier permanently. This application bulletin describes
how the 5082-2835 Schottky diode can be used to protect an
operational amplifier against high level voltage overload,
and also to improve output response.

211

c'

213

CHARACTERISTICS OF PIN DIODES

The most important feature of the PIN diode is
its basic property of being an almost pure
resistor at RF frequencies, whose resistance
value can be varied from approximately 10,000
ohms to less than 1 ohm by the control current
flowing through it. Most diodes exhibit this
characteristic to some degree, but the PIN
diode is optimized in design to achieve a
relatively wide resistance range, good
linearity, low distortion, and low current drive.
The characteristics of the PIN diode make it
suitable for use in switches, attenuators,
modulators, limiters, phase shifters, and other
signal control circuits.

current, the geometry of the I-layer and the
properties of the carriers. For a given type of
PIN diode with uniform characteristics,
resistance is inversely proportional to the
forward bias current. Whereas, only high off
resistance and low on resistance are important
in switching applications, the resistance
characteristics in the entire dynamic range are
of concern in attenuator applications. Linearity
of resistance with bias makes the PIN diode
useful for attenuator applications.
Carrier Lifetime

An important parameter of the PIN diode is the
carrier lif.etime, T, which is useful for defining
the low frequency limit, fo = 2!T ' for linear
performance of the diode. For RF signal
frequencies below fo, the PIN diode rectifies the
signal much like an ordinary PN junction diode,
and considerable output distortion results. (See
Application Note 957-3 for additional discussion
on rectification causes and effects). At
frequencies above fo, less rectification occurs
with increasing frequency, allowing the PIN
diode to appear more linear, approaching a
pure resistor.

Device Characteristics
The principal parameters of a PIN diode which
play major roles in determining the
performance of a circuit include the following:
RF Resistance

The PIN diode structure consists of an I
(Intri nsic) layer of very high resistivity material
sandwiched between regions of highly doped P
(positively charged) material and N (negatively
charged) material. With reverse or zero bias, the
I-layer is depleted of charges and the PIN diode
exhibits very high resistance. When forward
bias is applied across the PIN diode, positive
charge from the P region and negative charge
from the N region are injected into the I-layer,
therefore increasing its conductivity and
lowering its resistance. The high off resistance
and low on resistance make the PIN diode
attractive for switching applications.

For applications requiring good linearity and
low distortion the minimum signal frequency
should be.ten times fo, i.e., fmin = 210 , = 1&.. This
restriction is not important in switching T
applications, where the diode is normally
biased either completely off or on. In those
states, since most of the power is either
reflected or transmitted, the effect of RF current
on the total charge is small and distortion is not
a problem.

At RF frequencies, the PIN diode with forward
bias behaves essentially as a pure resistor. The
resistance of the PIN diode is related to the bias

214

[-

("-->

Capacitance
Diode capacitance limits switch and attenuator
performance at high frequencies in the form of
isolation rolloff and increased insertion loss.
Optimum performance can be achieved by one
of several alternatives available. Using a low
capacitance diode would be one solution. Since
the junction capacitance of a PIN diode is
related to the geometry and electrical properties
of the I-layer similar to the case of RF
resistance, an R-C trade-off may be feasible.
Special techniques can be employed to
minimize capacitive (and other parasitic)
effects, and in some cases even to take
advantage of them. (Some of the techniques for
improving high frequency performance are
discussed in Application Notes 922 and 957-2.)

reverse bias applied. With forward bias current,
charge is stored in the I-layer. When a reverse
pulse is applied, reverse current will flow for a
short period of time, known as delay time, td.
When a sufficient number of carriers have been
removed, the current begins to decrease. The
time required for the reverse current to
decrease from 90% to 10% is called the transition time, tt. The sum, td + tt, is the reverse
recovery time, which is a measure of the time it
takes to switch the diode from on to off.

Reverse Breakdown Voltage
The reverse breakdown voltage defines the
recommended maximum signal level for safe
operation of the diode. Operation at signal levels above the reverse breakdown voltage may
result in degradation of diode characteristics or
in permanent damage to the diode.

Reverse Recovery Time
Reverse recovery time is a measure of switching
time, and is dependent on the forward and

215

APPLICATIONS OF PIN DIODES
Isolation
Isolation is the measure of RF leakage between
the input and output when the switch is off. For
high isolation (low transmission) low
capacitance is required in a series switch
especially at high frequencies (Figure 3), Low
resistance is required in a shunt switch (Figure 4),

PIN diodes are used principally for the control
of RF and microwave signals. Applications
include switching, attenuating, modulating,
limiting and phase shifting. Certain diode
requirements are common to all these control
functions, while others are more important in a
particular type of usage.

Switching Speed
In many applications, switching time is very
important. Reverse recovery time is a measure
of the switching time of a PIN diode, the time
required to switch the diode from ON to OFF.
The time needed to switch the diode from OFF
to ON is shorter. (See Application Note 929 for
details).

SWitching Applications
The performance of a PIN diode circuit is
directly related to the basic characteristics of
the diode. As an illustrative example, the
performance of a PIN diode switch can be
simply approximated by treating the PIN diode
essentially as a resistor in the forward biased
state and a capacitor in the reverse biased state.
Switch performance can then be analyzed as
follows:

Power Handling Capability
The RF power (CW or pulse) that can be
handled safely by a diode switch is limited by
two factors - the breakdown voltage of the
diode, and thermal considerations, which
involve the maximum junction temperature and
the thermal resistance of the diode and
packaging. Other factors affecting power
handling capability are ambient temperatures,
frequency, attenuation level (which is related to
diode resistance), pulse width and duty cycle.
(See Application Note 922 for details).

Insertion Loss
The loss of signal attributed to the diode when
the switch is on (transmission state) is insertion
loss. For low insertion loss, low resistance is
needed in a series switch (Figure 1). Low
capacitance (particularly at high frequencies) is
needed in a shunt switch (Figure 2) .

.8

150

1

~

I

-

/

c=J50
.6

-

V

.4

~3900-

HPND-4005-

//
.2

V.

/

r--

V

~I(pND-4001

I.L. = 10 LOG

~+ 1~0)

HP~D-405~
5082-0~01.

0012

5082-0034
2
DIODE RESISTANCE - R (OHMS)

FREQUENCY (GHz)

Figure 1. Typical Insertion Loss of Series Diode Switch.

Figure 2. Typical Insertion Loss of Shunt Diode Switch.

216

(

70r--------------,--------------~

50
f--------OJ50

60r-------------~--------------~

n

n-----i

40r---~'"------~--------------~

20~------------~----~~------~

10r--------------+------~~~~~

DIODE RESISTANCE - R en)

FREQUENCY IGH,)

Figure 3. Typical Isolation of Series Diode Switch.

Figure 4. Typical Isolation of Shunt Diode Switch.

Attenuators

(

Whereas a switch is used only in its maxium
ON or OFF state, an attenuator is operated
throughout its dynamic range (or resistance
range in the case of a diode attenuatorL
Although a single diode series or shunt switch
can be used as an attenuator, it cannot offer in
its entire dynamic range constant input and
output impedance, which is required for
optimum source and load matching in most
attenuator applications. By using a multiple
diode circuit such as a rr, T, or bridged-T
attenuator, constant input and output
impedance can be achieved throughout the
attenuation range.

A PIN diode limiter is essentially an attenuator
that uses self bias rather than externally applied
bias. As the RF input increases, the rectified
current generated by the PIN diode (in some
limiter circuits by an auxiliary Schottky diode)
biases the diode to a low resistance state. Most
of the input power is then attenuated, allowing
very little to be transmitted. The sensitive
equipment that follows is thus protected.
For a limiter circuit to be efficient, it is essential
that the PIN diode has fast switching time.
Without an auxiliary diode, a PIN diode with
good rectification efficiency is needed to
achieve low resistance. Another diode
requirement is good heat transfer
characteristics (low thermal resistance).

An additional requirement in most attenuator
applications is low distortion. Distortion can be
kept at a minimum, if the carrier lifetime of the
PIN diode used is greater than the inverse of
the signal frequency, preferrably T >
where
T is the carrier lifetime and f is the signal
frequency.

Phase Shifters

\6,

The high speed switching capabilities and low
ON and high OFF resistance states of the PIN
diode make it also very useful for many types of
high speed, current controlled phase shifter
applications. Another important requirement for
these applications is the uniformity of diode
characteristics such as capacitance and
resistance particularly in systems where a large
number of elements are involved.

Limiters
Sensitive amplifiers, mixers, and detectors in
microwave systems can be protected against
damage by high level signals with the use of a
PIN diode limiter shunting the transmission line.

217

PIN DIODE SELECTION GUIDE
Hewlett-Packard PIN diodes are available in
chip form and several types of packages, which
lend themselves more suitable for particular
applications, Packaged devices containing the
generic chips are listed in the Selection Guide
in the order of increasing junction capacitance.
For switching, attenuating, and other general
purpose applications particularly in the
VHF/UHF range, the low cost glass package
(Outline 15) is suitable. Due to their low
parasitics, ceramic packages (Outlines 31 and
38) are suited for broadband circuits up to 1

GHz and for resonated narrowband circuits up
to 8 GHz. In addition, they have medium power
handling capability.
Stripline packages (Outlines 60 and 61),
containing built-in low pass matching circuits,
can be used in broadband designs up to 18
GHz. Because of good heat sinking, they can
handle high power in switching, attenuating
and limiting applications. The beam lead
packages with low parasitics are designed for
use in stripline or microstrip circuits using welding or thermo-compression bonding techniques.

(Devices listed in the order of increasing junction capacitance)
All part numbers, 5082- (except HPND- as noted)

Maximum
Junction
Capacitance
(pF)
( ote 1)
0.02'"

eftR

0.025 ....

Packaged Devices Containing Similar Chips
(Package Outline)

Typical

RF
Resistance
R. (n)
(Note 3)
4.7ft

Chip

0.08'

6.0t
1.8ttt

0.12

0.8

0012

0.12

0.8

0030

0.15
0.15"

0.6
1.3ttt

0047

0.16"

0.8ft

0001

0.20

1.5

0025

0.20
0.20
1.2"

2.0
0.6
OAttt

0039
0049
0034

Package
Capacitance
(pF)
Pages

Beam
Lead
HPND4005
3900
HPND4001

Glass
(15)

3001
3002
3039
3077
i N5719
HPND4165
HPND4166

Ceramic
(31)
(38)

3201
3202

3101
3102

3303
3304

(60)

Stripline
(61)

3140

3040

3170

3340

3141

3041
3071

HPND4050
3042
3043
3080
3379
1 N5767
3081

3306

3305

3046
3168
3188
(Note 2)

.13

.2

.2

.03

Notes:
1. All capacitance measured with VR = 50 volts, except:
'VR = 30 volts
'''VR = 10 volts
"VR = 20 volts
.... VR = 0 volt

3. RF resistance measured with IF = 100 mA, except:

t1F=50 mA

ttlF = 20 mA
tttlF = 10 mA

2. Capacitance of beam lead devices includes package
capacitance.

218

.03

PIN DIODE ALPHANUMERIC INDEX

(./
Page Number

Commercial
Data Sheet

Standard
Hi-Rei
Data Sheet

Part No.

Description

HPND-4001
HPND-4005
HPND-4050
HPND-4165
HPND-4166

Beam Lead PIN Diode
Beam Lead PIN Diode
Beam Lead PIN Diode
RF PIN Diode
RF PIN Diode

JAN 1N5719
JANTX 1 N5719
TXVB-3001
TXVB-3002
TXVB-3039

MIL-S-19500/443 PIN Diode
MIL-S-19500/443 PIN Diode
Hi-Rei 5082-3001
Hi-Rei 5082-3002
Hi-Rei 5082-3039

256
256
260
260
260

TXVB-3042
TXVB-3043
TXVB-3077
TXVB-3080
TXVB-3141

Hi-Rei 5082-3042
Hi-Rei 5082-3043
Hi-Rei 5082-3077
Hi-Rei 5082-3080
Hi-Rei 5082-3141

263
263
260
266
272

TXVB-3168
TXVB-3188
TXVB-4001
TXVB-4005
TXVB-4050

Hi-Rei 5082-3168
Hi-Rei 5082-3188
Hi-Rei 5082-4001
Hi-Rei 5082-4005
Hi-Rei 5082-4050

269
269
252
254
252

1N5719
1N5767
5082-0001
5082-0012
5082-0025

PIN Diode 15082-3039)
PIN Diode 15082-3080>
High Speed Switch PIN Chip
PIN Switching Diode Chip
AGC PIN Chip

229
229
220
220
220

5082-0030
5082-0034
5082-0039
5082-0047
5082-0049

PIN Switching Diode Chip
VHF/UHF Switching PIN Chip
AGC PIN Chip
PIN Switching Diode Chip
Medium Power Switch PIN Chip

220
220
220
220
220

5082-1001
5082-1002
5082-1006
5082-3001
5082-3002

High Conductance Diode 11 N4456)
High Conductance Diode
High Conductance Diode
RF PIN Diode
RF PIN Diode

248
248
248
229
229

5082-3039
5082-3040
5082-3041
5082-3042
5082-3043

RF PIN Diode
Stripline PIN Diode
Stripline PIN Diode
RF PIN Diode
RF PIN Diode

229
235
235
229
229

5082-3046
5082-3071
5082-3077
5082-3080
5082-3081

Stripline PIN Diode
Microwave Limiter PIN Diode
VHF/UHF PIN Switching Diode
HFIVHF/UHF Current Controlled Resistor
HFIVHF/UHF Current Controlled Resistor

235
233
229
229
229

5082-3101
5082-3102
5082-3140
5082-3141
5082-3168

RF Pin Diode
RF Pin Diode
Hermetic Stripline PIN Diode
Hermetic Stripline PIN Diode
VHF/UHF Switching PIN Diode

2413
246
240
240
229

5082-3170
5082-3188
5082-3201
5082-3202
5082-3303

Hermetic Stripline PIN Diode
VHF/UHF Switching PIN Diode
RF PIN Diode
RF PIN Diode
RF PIN Diode

240
229
246
246
246

5082-3304
5082-3305
5082-3306
5082-3340
5082-3379

RF PIN Diode
High Speed Switch PIN Diode
High Speed Switch PIN Diode
Stripline PIN Diode
VHF/UHF Attenuator PIN Diode

246
244
244
235
229

5082-3900

PI N Diode Beam Lead

226

222
224
222
229
229

219

252
254
252

Reliability
Data Sheet

276
276,278
276
282
282

282
280

260
260

282
282

260

282

263
263

260
266

282
280

272
269

280

269

280

r/i~ HEWLETT
~~ PACKARD

5082-0001
5082-0012
5082-0025
5082-0030
5082-0034
5082-0039
5082-0047
5082-0049

PIN DIODE CHIPS
FOR HYBRID MIC
SWITCHES/ATTENUATORS

Features
WIDE RANGE OF CAPACITANCE
0_12 pF to 1_2 pF Maximum

All OTHER CHIPS

I-tJ II

LOW SERIES RESISTANCE
0.4 n Typical

I~x-I

OXIDE PASSIVATED

l

r--~=------'I v

WIDE RANGE OF BREAKDOWN VOLTAGE
35 V to 300 V Minimum

f
Outline 01

Description
These PIN diode chips are silicon dioxide passivated of mesa
(5082-0001 I, pitted planar (5082-0012, -00301, and planar
(5082-0047, -0034, -0025, -0039, -00491 construction. The fabrication processes are optimized for long term reliability and
tightly controlled for uniformity in electrical performance.

HP Part Humber 5081·

I

0011
(}imenstfm

0047

0

0030
0.13

X

0.38

0034

0015
023

0.51
(201

(151

0.13

009

15)

13.5)
Top
Contact

ca~~~(ie

-Bottom
Contact

Au,
Ano-de

0.15

Au.

Anode

Ag.
Anode

Au.
Calhode

(6)

0049

0.24
(9.51

(9)

(5)

y

0039

023
(9

I

0001
0.06
12"
0.38
( 15)

008
1321

0.11

;4.51

ca~~~de

Au.
Anode-

Au.
Anode.

Cathode

Au.

Dimensions in millimeters (1/1000 inch)

Maximum Ratings
Junction Operating and Storage
Temperature Range ................

Applications

-65'C to +150'C

These general purpose PIN diodes are intended for low
power switching applications such,as duplexers, antenna
switching matrices, digital phase shifters, time multiplex
filters, TR switches, pulse and amplitude modulators,
limiters; leveling circuits, and attenuators.

Soldering Temperature
5082-0012, -0025, -0030, -0034, -0039,
-0047, -0049 ......... +425' C for one minute maximum
5092-0001 .......... +300' C for one minute maximum

The 5082-0034 is ideally suited for hybrid VHF/UHF
bandswitching.

Operation of these devices within the above temperature ratings will assure a device Median Time To
Failure (MTTF) of approximately 1 x 107 hours.

The 5082-0001 is optimized for applications requiring fast
switching.

220

(

Electrical Specifications
at TA = 25°C
Chip
Part

Nearest
Equivalent
Packaged

Typical
Series
Resistance
Rs(n)

Lifetime

Typical
Rent..
Recovery
Time, lrr

r(n$)

(n$)

5082·

Part No.
5082.

VBR(V)

Maximum
Junction
Capacitance
Ci(pF)

0012

3001

150

0,12

0.8

400

100

0030

3301

150

0-12

0.8

400

100
100

Number

Minimum
Breakdown
Voltage

Typical Parameters
Typl,:al

0047

3001

150

0,15

0.6

400

0001'

3041

70

0.16'

O.S'

15

5

0025

3080

100

0.20

1.5

1300

1000

0039

3081

100

0.20

2,0

2000

0049

3046

300

0.20

0.6

1000

0034

3168

35

1,2'

0.4*'

40

12

VR "'VBR
Measure
IR :510 "A

VR=50V
'VR "" 20V
f 1 MHz
13]

IF=100mA
'IF= 20 rnA
''If=10mA
f= 100 MHz

IF= 50 rnA
IR""250 rnA

If ",,'20 rnA
VR'" 10V

[1'.2]

1000
"

200

Notes:
1. Use standard thermocompression bonding techniques. Ultrasonic bonding is not recommended.
2. Either ultrasonic or thermocompression bonding techniques can be employed.
3. Total capacitance CT = Cj + C p , where Cj is the junction capacitance under reverse bias and C p is the package parasitic capacitance.

221

Flin-

LOW LOSS
BEAM LEAD
PIN DIODES

HEWLETT

~~ PACKARD

HPND -4001
HPND -4050

Features
LOW SERIES RESISTANCE
1.3!l Typical
LOW CAPACITANCE
0.07 pF Typical
FAST SWITCHING
2 ns Typical
RUGGED CONSTRUCTION.
4 Grams Minimum Lead Pull

WH

====~~~~=====~\'-_____1
T

-

Description

6012.4)

DIMENSIONS IN ,..1111000 ,",hi

The HPND-4001 and -4050 are beam lead PIN diodes designed
specifically for low capacitance, low series resistance and rugged
construction. The new H P mesa process allows the fabrication of
beam lead PINs with a very low RC product. A nitride
passivation layer provides immunity from contaminants which
would otherwise lead to IR drift. A deposited glass layer
(glassivated) provides scratch protection.

mm

OuUine 07

Applications
The HPND-4001 and -4050 beam lead PIN diodes are designed
for use in stripline or microstrip circuits. Applications include
switching, attenuating, phase shifting and modulating at
microwave frequencies. The low capacitance and low series
resistance at low current make these devices ideal for
applications in the shunt configuration.

Maximum Ratings
Operating Temperature...............
Storage Temperature ................

·-----T

-65°C to +175°C
-65°C to +200°C

Operation of these devices within the above
temperature ratings will assure a device
Median Time To Failure (MTTF) of approximately 1 x 107 hours.
Power Dissipation at TeASE = 25°C ............ 250 mW
(Derate linearly to zero at 175°CI
Minimum Lead Strength ....... 4 grams pull on either lead

Bonding and Handling
Procedures
See page 228.

222

I

\

(

Electrical Specifications at TA=25°C
Breakdown
Voltage
V BFI (V)

Part
Number

Series
Resistance
Re (11)

Capacitance
CT (pF)

Minority Carrier
Lifetime
T (ns)

Reverse Recovery
Time
Irr (ns)

Min.

Typ.

Typ.

Max.

Typ.

Max.

Typ.

Typ.

HPND-4001

50

80

1.8

2.2

0.01'

0.08'

30

HPNO-4050

30

40

1.3

17

012

015

25

3
2

IF"" 10 rnA
IR = 6 rnA

IF = 10 mA
VR = 10V

Test

IF = 10 rnA
f= 100 MHz

VR "" VSR
Measure
IR $10 IlA

Conditions

VR = 10 V
'VR 30V
f = 1 MHz

Typical Parameters
100

-

ffi

a:
a:

u

"«in

:::l

u

"«a:

10

i:ia:

;:

~

a:

a:

ir

1.0
0.1
FORWARD VOLTAGE (VOLTS)

(

1.0

10

100

FORWARD BIAS CURRENT (rnA)

Figure 2. Typical RF Resistance vs. Forward

Figure 1. Typical Forward Characteristics.

Bias Current.

0.30

w

:;;

i=

~ 0.20
w

u

z

«
....
13

;;:
;3

0,10

20

>-

~

8'i

>
o

~
a:
~

HPND-4050

'-..

10

8'i

HPND-4001

~
a:

10

20

10

30

REVERSE VOLTAGE (V)

20

30

FORWARD CURRENT (mA)

Figure 3. Typical Capacitance vs. Reverse Voltage.

Figure 4. Typical Reverse Recovery Time vs. Forward
Current (Shunt Configuration)

223

BEAM LEAD
PIN DIODE

rli~ HEWLETT
~~ PACKARD

HPND- 4005

Features
HIGH BREAKDOWN VOLTAGE
120V Typical
LOW CAPACITANCE
0.017 pF Typical
LOW RESISTANCE
4.70 Typical
RUGGED CONSTRUCTION
4 Grams Minimum Lead Pull

(1) 1J!LII'------~:g(*ID

NITRIDE PASSIVATED

'-LWo(~:l)
OIMEN$JON$ iN ~m (1/1000 inch)

Description
Outline 21

The HPND-4005 planar beam lead PIN diode is constructed
to offer exceptional lead strength while achieving excellent
electrical performance at high frequencies. High beam
strength offers users superior assembly yield, while extremely low capacitance allows high isolation to be realized.
Nitride passivation and polyimide glassivation provide reliable device protection.

Applications
The HPND-4005 beam lead PIN diode is designed for use in
stripline or microstrip circuits. Applications include switching, attenuating. phase shifting, limiting and modulating at
microwave frequencies. The extremely low capacitance of
the HPND-4005 makes it ideal for circuits requiring high
isolation in a series diode configuration.

Maximum Ratings
Operating Temperature .................. - 6S·C to + 17S·C
Storage Temperature .................... - 6S·C to + 200·C
Operation of these devices within the above
temperature ratings will .assure a device
Median Time To Failure (MTTF) of approximately 1 x 107 hours.
Power Dissipation at TeAsE

= 25°C ............ 250 mW

Bonding and Handling
Procedures

(Derate linearly to zero at 175° C)
Minimum Lead Strength ........... 4 grams pull on either lead
Diode Mounting Temperature ........... 220·C for 10 seconds
maximum

See page 228.

224

(

Electrical Specifications at TA = 25°C
Parameter

Symbol

Min.

Typ.

Max.

Units

Breakdown Voltage

V BR

100

120

-

V

Series Resistance

Rs

-

4.7

6.5

Ohm

Capacitance

CT

-

.017

.02

pF

Minority Carrier lifetime

r

-

100

150

ns

Reverse Recovery Time

Irr

-

20

35

ns

Conditions

IR= 10 ~A
IF =20 rnA,
1=100 MHz

VR =10V,
f=10GHz
IF=10mA
fR~6 rnA
IF= 20 rnA
VR ", 10 V
90% Recovery

"Total capacitance calculated from measured isolation value in a series configuration.

'TYpical Parameters

§:
w
<..l

Z

~ 100

\=-----+- .->..;c--'----I-----"

iii

w
a:
u.
a:

.0' '--_ _

~_L

.25

(

_ _ _ _ _ _..L_ __ '

.50

.75

1.00

'OL,-~~ill.,c-~L4WL,~~~~,OC-~~~,00

1.25

FORWARD VOLTAGE (V)

FORWARD BIAS CURRENT (rnA)

Figure 1. Typical Forward Conduction Characteristics.

Figure 2. Typical RF Resistance vs. Forward Bias Current.

40

0.10

ISOLATION AT:

.,

-30V

-10V~,

'" "

~30

ov.....

z

5

~ 20

~

=

ffi

........ ~ '(I);;

5

~

0.04

~

20mA

1\

"-----

50 rnA

10
10

1

o

0.0 2
10

18

FREQUENCY (GHz)

20

30

REVERSE VOLTAGE (VOLTS)

Figure 3. Typical Isolation and Insertion Loss in the Series

Figure 4. Typical Capacitance at 1 MHz vs. Reverse Bias.

Configuration (Zo ~ 50n>.

225

Flio-

BEAM LEAD
PIN DIODE

HEWLETT

~~ PACKARD

Features

5082-3900

Outline Drawing

HIGH BREAKDOWN VOLTAGE
200 V Minimum

I.

·c
)

LOW CAPACITANCE
0.02 pF Typical
RUGGED CONSTRUCTION
2 grams Minimum Lead Pull
NITRIDE PASSIVATED

730(~1

680 (26-.8)

;?Q!i(l'L4'-t-2S.Q(11.01:t~6§(10~)-+
200 (79-j
1_190 (14)
200 {7,9}

: ] [ : --------+--~=r-----.~
i~:

CATHODE

;C;;:==='i\}~_-=;;;:====-----1
'-----' _ _ _ _ _
~~
t

Description

1-j

~

The 5082-3900 planar beam lead PIN diode offers low capacitance to allow high isolation at RF and Microwave frequencies.
Nitride passivation and rugged construction insures reliable
performance and assembly yields.

255(10.0)
165 (6.5'

65 {2EI

4d{1:s}
DIMi!:NSloNS IN pm (1/1000 inch'

Outline 06

Maximum Ratings

Applications

Operating Temperature

The HP 5082-3900 Beam Lead PIN diode is designed for use in
stripline or microstrip circuits using welding, thermocompression or ultrasonic bonding techniques. PIN applications
include switching, attenuating, phase shifting, limiting and
modulating at microwave frequencies.

Storage Temperature

..............

-60°C to + 150°C

................. -60°C to +150°C

~ 25°C ............. 250 mW
(Derate linearly to zero at 150°C)
Minimum Lead Strength ....... 2 grams pull on either lead

Power Dissipation at TeAsE

Diode Mounting Temperature ..... 220°C for 10 sec. max.

Bonding and Handling
Procedures

Operation of these devices within the above temperature ratings will assure a device Median Time to Failure
(MTTF) of approximately 1 x 107 hours.

See page 228.

226

( __/ Electrical specifications at TA = 25° C
Symbol

Min.

Typ.

Max.

Units

Conditions

VeR

150

200

I r =10"A

Series Resistance

Rs

-

-

V

6

8

ohm

Capacitance

Co

-

0.02

0.025

pF

v=o V, f'" 3 GHz

ns

If"" 50 rnA, Ir - 250 MHz

Parameter
Breakdown Voltage

150

Minority Carner Lifetime

If=50 rnA. f=' 100 MHz

Typical Parameters
100

:::

"in

.5

:;'

iiia:

I

"

~

a:

I

,

u

I

I

,

5082·3039.
HPNO·4165i66

5082· 3042/43

IN5719

I

S082- 3001 102
0
FORWARD BIA~ CURRENT (rnA)

Figure 5. Typical RF Resistance

VS.

0

10

20

I1

I

30

40

70

REVERSE VOLTAGE (V)

Forward Bias Current.

Figure 6. Typical Capacitance vs. Reverse Voltage.

231

Typical parameters (Continued)
2.5

2.0
u.

..sw

z
tt:

I
r- S082-3168

10

20

W

>

15

~tt:
W

S082.:\'88

10

'"ffi
~

"- r---

00

25

.s

tt:

5Il8MOSOi81
[1082-331t1
20

30

40

50

60

0

70

0

Figure 7. Typical Capacitance

VB.

Reverse Voltage.

Figure 8. Typical Reverse Recovery Time vs. Forward Current for
Various Reverse Driving Voltages, 5082-3042, 3043.

lQdB eRIOG!'.~. TEl' ATTEIllUATOR

.• 1>032· 3001
3002
3OJ9

40dB mV OUTI'I.IT LEVELS
ONE INI'I./T FREOUEIIICY FIXED 100 MHz

3077

"

:s

;:

>
i;l

~

tt:

w

>

0

40

tt:
0

ffi
0

20

iii

INS119

w

'\

t;;

100

tt:

ii:

tt:

60

;:

W

~ t-....

9w

'"ffi

III

~

0

10

20

o

Figure 9. Typical Reverse Recovery Time vs. Forward Current
for Various Reverse Driving Voltages.

PIN DIODE cROSS MODULATION
10 dB BRIDQED Tn ATTEIllUATOR
UNMOOUljTEO
Mfh-

rEQrlllCl'°O

-

iii
a:
0

40

t;;

a:

ii:

~-'

w

\\
\ "- ......

100% MODULATION 15 kHz
40 dB mV OUTPUT LEVELS

w

Q

a:

50

60

CD

70
800

20

30

40

60

60

M

80

Figure 10. Typical Second Order Intermodulation Distortion.

10

30

10

FREQUENCY (MHz)

FORWARD CURRENT (mAl

:s

Ffrr2j'

100

30

20

5082-3IlOO

-...: r-.

eo

tt:

10

30

FORWARO CURRENT (mA)

1000

:;

20

10

'REVERSE VOLTAGE IV)

\

, r--..

i\
"'10

20

30

1-r-"I

5032-3050
S082-$379

5llS2>i'

40

50

60

70

80

MODULATED FREQUENCY (MHz)

Figure ". Typical Cross Modulation Distortion.

232

/

Flin-

PIN DIODE
LIMITER

HEWLETT

~e.tII PACKARD

5082-3071

Features
HIGH POWER HANDLING CAPABILITY
50 W Peak Pulse Power
LOW INTERMODULATION PRODUCTS
Typical 0.2 W Threshold Assures Wide Dynamic
Linear Range
BROAD BANDWIDTH
500 MHz to 10 GHz
LOW INSERTION LOSS
Less than 1 dB in X-band
EASY TO USE
Package Compatible with Stripline and Microstrip

0.38 MIN. I,OU»

(4pt,.ACESJ

NEGLIGIBLE SPIKE LEAKAGE
Outline 51

Maximum Ratings

(

Junction Operating and Storage
Temperature Range ................... -65°C to+125°C
Power Dissipationl 1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.0 W
Peak Incident Pulse Powerl 2] •••••••••••••••••.•••• 50 W
Peak Inverse Voltage ............................. 50 V
Soldering Temperature ................. 230°C for 5 sec

Description/Applications
The HP 5082-3071 passive limiter chip is functionally
integrated into a 50 ohm transmission line to provide a
broadband, linear, low insertion loss transfer characteristic
for small signal levels. At higher signal levels selfrectification reduces the diode resistance to provide limiting
as shown in Figure 2. Limiter performance is practically
independent of temperature over the rated temperature
range.

Operation of these devices within the above
temperature ratings will assure a device
Median Time To Failure (MTTF) of approximate/y 1 x 107 hours.
Notes:

1. Device properly mounted in sufficient heak sink at TA = 25° C,

The 5082-3071 limiter module isdesignedfor applications in
telecommunication equipment, ECM receivers, distance
measuring equipment, radar receivers, telemetry equipment, and transponders operating anywhere in the
frequency range from 500 MHz through 10 GHz. An external
dc return is required for self bias operation. This dc return is
often present in the existing circuit, i.e. inductively coupled
antennas, or it can be provided by a A/4 resonant shunt
transmission line. Selection of a high characteristic
impedance for the shunttransmission line affords broadband
operation. Another easy to realize dc return consists of a
small diameter wire connected at a right angle tothe electric
field in a microstrip or stripline circuit. A 10 mA forward
current will actuate the PIN diode as a shunt switch providing
approximately 20 d8 of isolation.

derate linearly to zero at maximum operating temperature.

2. tp = 1 I'S, f = 10 GHz, Du = O.OOt, Zo = 50 n, TA = 25°C.

Mechanical specifications
The cover channel supplied with each diode should be used
in balanced stripline circuits in order to provide good
electrical continuity from the upper to the lower ground plane
through the package base metal. Higher order modes will be
excited if this cover is left off or if poor electrical contact is
made to the ground plane.
The package transmission channel is filled with epoxy resin
which combines a low expansion coefficient with high
chemical stability.

233

Electrical Specifications at TA = 25°C
Part Number

5082·

Package
Outline

Heat
Sink

3071

61

Cathode

1.2

2.0

Test
Conditions

-

-

Pin ~ OdBm
f = 9.4GHz

Pin OdBm
f=9.4GHz

Maximum Insertion
Loss (dB)

Maximum
SWR

Maximum RF Leakage
Power (WI

1.0
P,n=50W

Typical Recovery
Time (os)
100
Pin; 50W

INPUT POWER (mW)

Figure 1. Heat Sink Polarity

Figure 2. Typical Pulse Limiting
Characteristics

234

Figure 3. Suggested Stripline Assembly

Flin-

HEWLETT

~~ PACKARD

5082-3040
5082-3041
5082-3046
5082-3340

STRIPLINE PIN
DIODE SWITCHES/
ATTENUATORS

Features
LOW COST TO USE
Designed for Easy Mounting
BROADBAND OPERATION
HF through X-band
LOW INSERTION LOSS
Less than 0.5 dB to 10 GHz (5082-3040, -3340)
HIGH ISOLATION
Greater than 20 dB to 10 GHz
FAST SWITCHING/MODULATING
5 ns Typical (5082-3041)
LOW DRIVE CURRENT REQUIRED
Less than 20 mA for 20 dB Isolation (5082-3041)

Description/Applications
These diodes are designed for applications in microwave and
HF-UHF systems using stripline or microstrip transmission
line techniques.
Typical circuit functions performed consist of switching.
duplexing, multiplexing, leveling, modulating, limiting, or
gain control functions as required in TR switches, pulse
modulators, phase shifters, and amplitude modulators
operating in the frequency range from HF through Ku-Band.

(

DIMENSIONS IN MILLIMETERS AND (INCHES)

Outline 61

These diodes provide nearly ideal transmission characteristics from HF through Ku-Band.

Maximum Ratings

The 5082-3340 is a reverse polarity device with characteristics similar to the 5082-3040. The 5082-3041 is
recommended for applications requiring fast switching or
high frequency modulation of microwave signals, or where
the lowest bias current for the maximum attenuation is
required.

Part No. 5082Junction Operating and
Storage Temperature
Range

The 5082-3046 has been developed for high peak pulse
power handling as required in TR switches for distance
measurement and TACAN equipment. The long effective
minority carrier lifetime provides for low intermodulation
products down to 10 MHz.
More information is available in HP AN 922 (Applications of
PIN Diodes) and 929 (Fast Switching PIN Diodes).

-3040
-3340
-65°C to
125°C

-3041

-3046

-65°C to

125°C

Power Dissipation[1]

2.5W

1.0W

4.0W

Peak Incident Pulse
Powerl 2]

225 W

50W

2000W

Peak Inverse Voltage

150V

70 V

300V

Soldering Temperature

230 0 C for 5 sec.

Notes:
1. Device properly mounted in sufficient heat sink at 25° C, de-

Mechanical specifications

rate linearly to zero at maximum operating temperature.

The cover channel supplied with each diode should be used
in balanced stripline circuits in order to provide good
electrical continuity from the upper to the lower ground plane
through the package base metal. Higher order modes will be
excited if this cover is left off or if poor electrical contact is
made to the ground plane.

2. t p =ll's,f=10GHz,Du=O.001,Zo=50(l,T A =25°C.
Operation of these devices within the above

temperature ratings will assure a device
Median Time To Failure (MTTF) of approximately 1 x 107 hours.

The package transmission channel is filled with epoxy resin
which combines a low expansion coefficient with high
chemical stability.

235

Electrical Specifications at TA =25°C

Part
Number

Minimum
Isolation

Maximum
Insertion
Loss

(dB)

(dBI

Maximum
SWR

Typical
CWPowar
Switching
Capability

Maximum
Reverse
Recovery
Time
t,r
(ns)

Typical Carrier
Lifetime

r

PA

(nsl

(WI
30

5082·

Package
Outline

3040

61

Anode

20

0.5

1.5

-

400

3041

61

Cathode

20

1.0

1.5

10

15

13

3046

61

Anode

20

1.0

1.5

..

1000

50

3340

61

Cathode

400

30

..

..

Test
Conditions
(Note 3)

Heat
Sink

20

0.5

IF ",1 OOmA
(Except
3041;
IF=20mA)

..

1.5

IF'" 0
Pin'" tmW

..

IF'" SOmA
IR" 2SOmA

IF'" 20mA

IF'" 0
Pin" tmW

VR" 10V
Recovery
to 90%

Note 3:Test Frequencies: 8 GHz 5082-3041. -3046; 10 GHz 5082-3040. and -3340.

Typical Parameters

12
FORWARD VOLTAGE (V)

FORWARD VOLTAGE (V)

FORWARD VOLTAGE (V)

Figure 1. Typical Forward Characteristics.

34

1.8

1.4
1.2

1.6

/

1.0
0.8

~
~'~~¢-

0.6

0.4
0.2

o

V

~ i-""'"
2

:/V
10

12

~

"/

~

1.4

~-

A~LDIO/

---

14

16

FREQUENCY {GHz}

Figure 2. Typical Insertion Loss vs.
Frequency.

1.2

18

f1

V

L

V

32

/

N

30
28

.....
26

........

~,)'O~l

1'-..)'a,,6'

........,

,,~

24

,

........,

r--

22

-........

-

20

10

12

14

16

18

FREQUENCY (GHz)

Figure 3. Typical SWR vs. Frequency.

236

18
2

10

12

14

16

18

FREQUENCY {GHz}

Figure 4. Typical Isolation vs. Frequency.

(

100
BIAS CURRENT (rnA)

FigureS. Typical Attenuation Above Zero
Bias Insertion Loss vs. Bias Current
at f = 8 GHz.

HEAT SINK POLARITY

Equivalent Circuits
Forward Bias(lsolation State)

Zo=50n

Rp

Lp

Zero Bias (I nsertion Loss State)

Zo=50n

Lp

Rp

Lp

Rp

€r = 1

Er'" 1

R,

Lp

Zo"'50.n
Er= 1

R,

--£2--

c,

Typical Equivalent Circuit Parameters -Forward Bias
Part Number

5082·

Lp

Rp

Rs

Ll

£1

£2

(pHI

(m

(m

(pH)

(mm)

(mm)

3040,3340

200

0.25

1.0

20

2.4

5.0

3041

220

0.25

1.0

20

2.4

5.0

3046

220

0.25

0.6

17

2.4

5.0

Typical Equivalent Circuit Parameters - Zero Bias
Lp
(pHI

Rp

Rl

L2

H2

CT

£1

6082·

(11)

(KI1)

(pH)

(Km

(pFI

(mml

£2
(mm)

3040,3340

200

0.25

()O

0

5.0

0.10

2.4

5.0

3041

220

0.25

00

0

1.5

0.15

2.4

5.0

3046

220

0.25

DO

0

1.5

0.15

2.4

5.0

Part Number

237

Typical Switching Parameters

REVERSE RECOVERY TIME
Shown below is reverse recovery time, (trr) vs. forward
current, (IF) for various reverse pulse voltages VR. The circuit
used to measure trr is shown in Figure 7.

RF SWITCHING SPEED
HP 5082-3041
The RF switching speed of the HP 5082-3041 may be considered in terms of the change in RF isolation at 2 GHz. This
switching speed is dependent upon the forward bias current,
reverse bias drive pulse, and characteristics of the pulse
source. The RF switching speed for the shunt-mounted stripline diode in a 50 n system is considered for two cases: one
driving the diode from the forward bias state to the reverse
bias state (isolation to insertion loss), second, driving the
diode from the reverse bias state to the forward bias state
(insertion loss to isolation).

D.U.T.

'"

~"I-~-"""~.0"k-ni.)tl--'>---<-=-r-50-n""

TO SCOPE

Figure 7. Basic Irr Test Selup.

The total time it takes to switch the shunt diode from the
isolation state (forward bias) to the insertion loss state
(reverse bias) is shown in Figure 6. These curves are for
three forward bias conditions with the diode driven in each
case with three different reverse voltage pulses (VPR). The
total switching time for each case includes the delay time
(pulse initiation to 20 dB isolation) and transition time(20dB
isolation to 0.9 dB isolation). Slightly faster switching times
may be realized by spiking the leading edge of the pulse or
using a lower impedance pulse driver.

3or-----r---~r----~

]
~

,.>=

25
20

ffi

>

0

15

~
w

il

10

~

l-POWER It: O-dSm lFQ",2G:~
I I .

8

24

I,

r;

'10mAI I L

IF ""SOmA

If *20mA

o

I

I i
I
Ii

6
2

1°V

8

11
~W

V

4

0

o

a:

~

°0~-~-~,0~--~-~2~0-~-~30
FORWARD CURRENT (rnA)

II

Figure 8. Typical Reverse Recovery Time vs. Forward Current for
Various Reverse Driving Vollages, 5082-3041.

I

1\: I, l

~lt~1.+~~

H"

2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
TIME (ns)

Figure 6. Isolalion vs. Time (Turn-on) for HP 5082-3041.
FrequencY,2 GHz.

The ti me it takes to switch the diode from zero or reverse bias
to a given isolation is less than the time from isolation to the
insertion loss case. For all cases of forward bias generated by
the pulse generator (positive pulse), the RF switching time
from the insertion loss state to the isolation state was less
than 2 nanoseconds. A more detailed treatise on switching
speed is published in AN929; Fast Switching PIN Diodes.

10 01----"---:,~O---'---:::---~--:30
FORWARD CURRENT {rnA}

Figure 9. Typical Reverse Recovery Time vs. Forward Currenl for
Various Reverse Driving Vollages, 5082-3340.

238

(

'OO~--~--~'O~--~--~2~O---L--~30
FORWARD CURRENT (mA)

Figure 10. Typical Reverse Recovery Time vs. Forward Current
lor Various Reverse Driving Voltages, 5082-3040.

Figure 11. Suggested Strlpllne Assembly.

239

Fli;'

HEWLETT
a:~ PACKARD

HERMETIC PIN DIODES FOR
STRIPLINE/MICROSTRIP
SWITCHES/ATTENUATORS

5082-3140
5082-3141
5082-3170

Features
BROADBAND OPERATION
HF through X-band
LOW INSERTION LOSS
Less than 0.5 dB to 10 GHz (5082-3140, -3170)
HIGH ISOLATION
Greater than 20 dB to 10 GHz (5082-3140, -3170)
FAST SWITCHING/MODULATING
5 ns Typical (5082-3141)
LOW DRIVE CURRENT REQUIRED
Less than 20 mA for 20 dB Isolation (5082-3141)

OIMENSIONS IN MILLIMETEflSAlIItl (INCHES}

Qutline60

Description/Applications
The HP 5082-3140 and -31.70 are passivated planar devices
and the 5082-3141 is a passivated mesa device. All are in a
shunt configuration in hermetic stripline packages which are
suitable for Hi-Rei applications. These diodes are optimized
for good continuity of characteristic impedance which allows
a continuous transition when used in 50 ohm microstrip or
stripline circuits.

Maximum Ratings
Part No. 5062-

Junction Operating and
Storage Temperature
Range
Power Disslpationi 11

These diodes are designed for applications in microwave and
HF-UHF systems using stripline or microstrip transmission
line techniques.
Typical circuit functions performed consist of switching,
duplexing, multiplexing, leveling, modulating, limiting, or gain
control functions as required in TR switches, pulse modulators, phase shifters, and amplitude modulators operating in
the frequimcy range from HF through Ku-Band. These diodes
provide nearly ideal transmission characteristics from HF
through Ku-Band.

-3140
-3170

-3141

-65 9 C to 150·C -65°C to 150"C

l.loW

O.75W

Peak Incident Pulse
Powerl 21

225W

50W

Peak Inverse Voltage

1!)OV

70V

Soldering Tempf,lrature

230" C for 5 sec.

Notes:
1. Device properly mounted in sufficient heat sink at 25° C, derate linearly to zero at maximum operating temperature.
2. tp ~ II's, f ~ 10 GHz, Du ~ 0.001, Zo ~ 50 n, TA ~ 25°C.

The 5082-3170 is a reverse polarity device with characteristics similar to the 5082-3140.
The 5082-3141 is recommended for applications requiring
fast switching or high frequency modulation of microwave
signals, or where the lowest bias current for maximum attenuation is required.

Mechanical specifications
Package Outline 60 is hermetically sealed and capable of
meeting the stringent requirements of space level high reliability testing. Both the package and lead materials are gold
plated Kovar.

More information is available in HP Application Note 922
(Applications of PIN Diodes) and 929 (Fast Switching PIN
Diodes!.

240

(

Electrical Specifications at TA=25°C

Part

Maximum

Typical
CWPower

Minimum

Maximum
Insertion

Isolation
(dB)

loss
IdB)

Maximum

SWR

Reverse
R_very
Time
trr
Ins!

Typical Carrier
Lifetime

Swltohing
Capability
PA

Number
5082·

Outline

3140

60

Anode

20

0.5

1.5

-

Ins)
400

3141

60

Cathode

20

1.0

1.5

10

15

13

3170

60

Cathode

20

0.5

1.5

400

30

Test
Conditions
(Note 3)

-

-

-

Heat
Sink

Package

1j::=100mA IF =0

IF .. 0

(Except

PIt\=lmW

Pjn= 1mW

l'

IF =2OmA

3141;
fF=20mA)

VR =10V
Recovery
to 90%

(W)

30

-

1j::=5OmA

IR = 250mA

Note 3: Test Frequencies: 8 GHz 5082-3141.10 GHz 5082-3140, -3170.

Typical Parameters
1.4
1.2

/'

1.0

,.' / /

0.8

,;."

06
0.4

02

(

1.2

FORWARD VOLTAGE (V)

FORWARD VOLTAGE (V)

~

1.4

At.lDIO~
1.2

V

V
1/

V

30

........ .....

24

14

16

18

FREQUENCY IGHz)

Figure 3. Typical SWR vs. Frequency.

10

12

14

16

18

,

" r--- ~1

26

J, r-.... .......
~~ f ' r-....

,

20
12

2

100,----,---,----,----,---,

22

10

o

32

28

V

~~

Figure 2. Typical Insertion Loss vs.
Frequency.

34

1.6

41~

,/o;,f!>' r-- -

FREQUENCY IGHz)

Figure 1. Typical Forward Characteristics.

1.8

,/

7

18
2

10

12

FREQUENCY (GHz)

14

........

'"

16

Figure 4. Typical Isolation vs. Frequency.

241

100

18

BIAS CURREN1 (mAl

Figure 5. Typical Attenuation Above Zero
Bias Insertion Loss vs. Bias Current
at I = 8 GHz.

Equivalent Circuits
Forward Bias(lsolation State)

Zo"'50n

Rp

Lp

Zero Bias (J nsertioo Loss State)

Lp

€r'" 1

R,

--£,--

--£1-

Typical Equivalent Circuit Parameters -Forward Bias
Part Number
5082·

Lp
(pH)

Rp

Rs

£2

(m

L,
(pH)

Q,

(m

(mm)

(mm)

3140,3170
3141

150

0.0

0.95

30

3.8

3.8

150

0.0

0.8

20

3.8

3.8

Typical Equivalent Circuit Parameters - Zero Bias
Part Number
5082·

Lp
(pH)

Rp

R1

CT

£,

£2

{Km

L2
(pH)

R2

{m

(Km

(pF)

(mm)

{mml

1.2

16

0.0

0.20

5.3

5.3

""

0

0.4

0.14

4.4

4.4

3140,3170

30

0.0

3141

200

0.0

Typical Switching Parameters
RF SWITCHING SPEED
HP 5082·3141
The RF switching speed of the HP 5082·3141 may be considered in terms of the change I in RF isolation at 2 GHz. This
switching speed is dependent upon the forward bias current.
reverse bias drive pulse. and characteristics of the pulse
source. The RF switching speed for the shunt-mounted stripline diode in a 50 II system is considered for two cases, one
driving the diode from the forward bias state to the reverse
bias state (isolation to insertion loss), second driving the
diode from the reverse bias state to the forward bias state
(insertion loss to isolation).

TIME (ns)

Figure 6. Isolation vs. Time (Turn-on) for HP 5082-3141
Frequency,2 GHz.

The total time it takes to switch the shunt diode from the
isolation state (forward bias) to the insertion loss state
(reverse bias) is shown in Figure 6. These curves are for
three forward bias conditions with the diode driven in each
case with three different reverse voltage pulses (VPR). The
total switching time for each case includes the delay time
(pulse initiation to 20 dB isolation) and transition time (20 dB
isolation to 0.9 dB isolation). Slightly faster switching times
may be realized by spiking the leading edge of the pulse or
using a lower impedance pulse driver.

The time it takes to switch the diode from zero or reverse bias
to a given isolation is less than the time from isolation to the
insertion loss case. For all cases of forward bias generated by
the pulse generator (positive pulse), the RF switching time
from the insertion loss state to the isolation state was less
than 2 nanoseconds. A more detailed treatise on switching
speed is published in AN929; Fast Switching PIN Diodes.

242

(

REVERSE RECOVERY TIME

30

Shown below is reverse recovery time, (trr) vs. forward
current, (IF) for various reverse pulse voltages VR' The circuit
used to measure trr is shown in Figure 7.

!
~

;::

. r;::I-:-.. ,. .

ffi
>

C.U.T.

0

1rl
a:

-l:>I-.....-"1-=-....50-n.. TO SCOPE
kn

iJj

ffi

25

20

'5

,.

G;
a:

••

'0

2.

30

FORWARD CURRENT (rnA)

Figure 7. Basic trr Test Setup.

Figure 8. Typical Reverse Recovery Time vs. Forward Current for
Various Reverse Driving Voltages, 5082-3141.

FORWARD CURRENT (mA)

FORWARD CURRENT (rnA)

(

Figure 9. Typical Reverse Recovery Time VS. Forward Current for
Various Reverse Driving Voltages, 5082-3140.

Figure 10. Typical Reverse Recovery Time vs. Forward Current
for Various Reverse Driving Voltages, 5082-3170.

243

r/i~ HEWLETT
~~ PACKARD

PIN DIODES FOR
FAST SWITCHING
AND ATTENUATING

5082-3305
5082-3306

Features
NANOSECOND SWITCHING TIME
Typically Less than 5 ns
LOW RESIDUAL SERIES RESISTANCE
Less than 1 n
LOW DRIVE CURRENT REQUIRED
Less than 20 mA for 1 n Rs
HIGH POWER LIMITING CAPABILITY
50 W Peak Pulse Power

Outline 38 (50824305)

CATHODE HEAT SINK

Description IApplications
The HP 5082-3305 and 5082-3306 are passivated silicon
PIN diodes of mesa construction. Precisely controlled
processing provides an exceptional combination of fast RF
switching and low residual series resistance.
These HP PIN diodes provide unique benefits in the high
isolation to insertion loss ratio afforded by the low residual
resistance at low bias currents and the ultra-fast recovery
realized through lower stored charge. Where low drive power
is desired these diodes provide excellent performance at very
low bias currents.

t+_:L.i:;_~ _;~---i----~.

HEAT SfNK

2,H {,Olt'l}

:--1TsWa"1

The HP 5082-3305 and 5082-3306 ceramic package PIN
diodes are intended for controlling and processing
microwave signals up to Ku band. Typical applications
include single and multi-throw switches, pulse modulators,
amplitude modulators, phase shifters, duplexers, diplexers
and TR switches.

Oulline 31 (5082-3306)
PIMENStON-S IN MILL1METERS AND I ~NCHES),

Mechanical Specifications

Maximum Ratings

The HP Package Outline 31 has a metal ceramic hermetic
seal. The heat sink stud is gold-plated copper. The opposite
stud is gold-plated kovar. Typical package inductance is 1.0
nH and typical package capacitance is 0.2 pF.

Junction Operating and Storage Temperature Range
..................................... -65°Cto+150°C

Operation of these devices within the above
temperature ratings will assure a device Median
Time To Failure (MTTF) of approximately 1 x 107
hours.

The HP Package Outline 38 also has a metal ceramic
hermetic seal. The heat sink contact is gold plated copper.
The opposite contact is gold-plated kovar. Typical package
inductance is 0.4 nH and typical package capacitance is 0.2
pF.

DC Power Dissipation at TeASE = 25' C
(Derate linearly to zero at 150°C)
HP 5082-3305 ........................... .. 0.7W
HP 5082-3306 ........................... . 1.25W

The maximum soldering temperature for diodes in either
package is 230'C for 5 seconds.

244

(

FAST SWITCHING/ATTENUATING
Electrical specifications at TA = 25°C
Maximum
Part
Number
5082·

Package
Outline

3305

38

3306

31

Minimum
Breakdown
Voltage
\faR (VI

Heat

Sink

cathode

Test
Conditions

Maximum

Maximum

Total

Seriel
Resistance

Capacitance
CT (pFI

Reverse
Recovery
Time

Rs(nl

trr (ns)

70

0.4

1.0

10.0

70

0.45

1.0

10.0

If'" 20mA
VR = 10V

VR = VBR, rneas.

f .. 1 MHz

t= 100 MHz

IR";;10/lA

VR '" 20V

IF =2OmA

90% Reooverv

Typical Parameters
0.2

30

c

"Co

""'z
c:

w

>

8
"'c:
"''"c:
"'>
"'c:

"z
0

;::

I

";;z

(

25

"':;;

I

10

I

20

15

10
Va = 2V
V~

#

SV

Va = lOY

a

30

a

10

30

FORWARD CURRENT (mA)

REVERSE VOLTAGE (V)

Figure 2. Typical Reverse Recovery Time vs. Forward Current

Figure 1. Typical Junction Capacitance vs. Reverse Voltage.

for Various Reverse Driving Voltages.

.

1.2
FORWARD VOLTAGE (V)

FORWARD BIAS CURRENT (mA)

Figure 4. Typical Forward Current vs. Forward Voltage.

Figure 3. Typical RF Resistance vs. Forward Bias Current.

245

Flin-

HEWLETT

~e. PACKARD

5082-3101
5082-3102
5082-3201
5082-3202
5082-3303
5082-3304

PIN DIODES
FOR RF POWER
SWITCHING/
ATTENUATION

Features
HIGH ISOLATION
Greater Than 25 dB
LOW INSERTION LOSS
HIGH CONTROL SIGNAL DYNAMIC RANGE
10,000: 1 RF Resistance Change
LOW HARMONIC DISTORTION LIFETIME
Greater Than 100 ns

Outline 38

BOTH ANODE AND CATHODE HEAT SINK
MODELS AVAILABLE

Description IApplications

1 I
-~'W{1
SOOnlS}

HP 5082-3101/02,5082-3201/02,5082-3303/04 PIN
diodes are silicon devices manufactured using modern processing techniques to provide optimum characteristics for RF
switching, signal conditioning and control. These devices are
of planar passivated design. Both anode and cathode heat
sink models are available.

16;'0641
152[060;

t63L)64J

f.52t'66"Gl

t-

PIN diodes provide a variable RF resistance with DC bias
current. The main advantages of a PIN diode over PN
switching diodes are the low forward resistance and the low
device capacitance.

~

1

2,a9to94~

l.OOt,03Zl-

O,64/,{t25}

L
& 91,!.2:j}

These HP PIN Diodes are intended for use in RF switching,
multiplexing, modulating, phase shifting, and attenuating
applications from approximately 10 MHz to frequencies well
into the microwave region. Due to their low parasitic
capacitance and inductance, both HPPackage Outline 31 and
38 are well suited for broadband circuits up to 1 GHz and for
resonated circuits up to 8 GHz.

5.1

'I""')

MAK

-

HE ATS1NI(

f+-~t~~~;Outline 31

These devices are especially useful where the lowest
residual series resistance and junction capacitance are
required for high on-to-off switching ratios. At constant bias
the RF resistance is relatively Insensitive to temperature,
increasing only 20% for a temperature change from +25°C to
+1000C.

DIMENSIONS IN MILLIMETERS AIliD (INCHES}

Mechanical Specifications

Maximum Ratings

The HP Package Outline 31 has a metal ceramic hermetic
seal. The heat sink stud is gold-plated copper. The opposite
stud is gold-plated kovar. Typical package Inductance is 1.0
nH and typical package capacitance is 0.2 pF.

Junction Operating and Storage
Temperature Range .................. -65°C to +150°C

Operation of these devices within the above
temperature ratings will assure a device Median
Time To Failure (MTTF) of approximately 1 x 107
hours.

The HP Package Outline 38 also has a metal ceramic
hermetic seal. The heat sink contact is gold plated copper.
The opposite contact is gold-plated kovar. Typical package
inductance is 0.4 nH and typical package capacitance is 0.2
pF.

DC Power Dissipation at 25' C. (Derate linearly to zero at
150'C)
HP5082-3101,3102 .. .............
1.0W
HP 5082-3201,3202,3303,3304 ............ 3.0W

The maximum soldering temperature for diodes in either
package is 230°C for 5 seconds.
246

(

RF POWER SWITCHING/ATTENUATING
Electrical Specifications at TA=25°C
Part
Number
5082-

Package
Outline

Minimum
Breakdown
Voltage
VSR (V)

Heat
Sink

Maximum
Residual
Series
Resistance
RS(U)

Maximum
Total
Capacitance
Cr (pF)

Typical
Reverse
Recovery
Time
trr (os)

Minimum
Carrier
Lifetime
r (ns)

TypicalCW

Power
Handling
Capability
PA (WI

3101

38

200

0.32

1.2

100

100

40

3102

38

300

0.30

0.8

100

100

60

3201

31

3202

31

3303

31

3304

31

Anode

Cathode

Test
Conditions

200

0.35

1.2

100

100

120

300

0.32

0.8

100

100

180

200

0.40

1.2

100

100

120

300

0.32

0.8

100

100

180

VR =VSR, meas.
IR '" 10llA

VR=50V,f=lMHz

IF=100mA IF = SOmA
IF =20mA, VR"'10V Series' Switch
f=100MHz IR = 250mA 90% Recovery
in 50£! System

""Divide by four for a shunt switch.

Typical Parameters

(
'O'='O,J.l.lliJlOL,...L.l.LllJJl-Llllilll-L.Llli""",L.
O ..LJ.J.WjjJ,oo

FORWARD BIAS CURRENT (mA)

Figure 1. Typical RF Resistance vs. Forward
Bias Current

FORWARD BIAS CURRENT (rnA)

Figure 2. Typical RF Resistance
Bias Current.

VS.

FORWARD VOLTAGE (V)

Forward

Figure 3 Typical Forward Characteristics.

o.3,-------,-------,

--i"'1MHt

Lp

- - - f > lOG MHl

Rs

cj
c p " Package Capacitance

4> " Package

Inductance

Rs" Residual Series Resistance

oJ\

Rj

Cp

--~-"----I-----I

RI" I-Layer Resistance
C I '" I·Layer Capacitance

TYPICAL VALUES FOR Cp AND Lp ARE GIVEN UNDER "MECHANICAL
SPECIFICATIONS". WITH REVERSE BIAS, RI ~ lor, n. TOTAL
CAPACITANCE IS CT AND IS GIVEN IN "ELECTR ICAl SPECifiCATIONS".
WITH FORWARD BIAS CI IS NO LONGER PRESENT. RI DECREASES
WITH INCREASING FORWARD BIAS TO APPROXIMATELY ZERO AT
100 rnA.

°0~-----~,LO------~20
REVERSE VOLTAGE (V)

Figure 4. Typical Chip Capacitance vs.
Reverse Voltage

Figure 5. Device Equivalent Circuit.

247

Flio-

HIGH

HEWLETT

5082·1001
5082·1002
5082·1006

CONDUCT ANCE
DIODES

~~ PACKARD

Features

!+----I-

--.--t--

FAST SWITCHING
LOW CAPACITANCE
HIGH CURRENT CAPABILITY

25,4 (1.00)

MIN,

o

Description / Applications

ml~
CATHooe

The 5082-1000 series of diodes feature planar silicon
epitaxial construction to provide high conductance, low
capacitance, and nanosecond turn-on and turn-off,
Turn-on time and voltage overshoot are minimized in
these diodes of low conductivity modulation,
These diodes are ideally suited for applications such as
core drivers, pulse generators, input gates or wherever
high conductance without loss of speed is required,

0

25.4 (1,00)

MIN.

...--t..-*_

Maximum Ratings

11!!&!l.~

-I I- OM (0.018)

WIV - Working Inverse Voltage
1006 ,., ............. " .................... 40 Volts
1001/1 002 ................................. 30 Volts
IF (Surge) - Forward Current Surge,
1,0 Second Duration ..................... 0,75 Amp
IF (Surge) - Forward Current Surge,
1.0 Microsecond Duration ................ 7,50 Amp

DIMENSIONS IN MILLIMETERS AND {INCHES)

Outline 11

Mechanical specifications

Power Dissipationl 1 1 @TeASE=25°C ......... 500 mW
Operating Temperature Range .. , .... -£5° C to +175° C
Storage Temperature Range ... , .. , .. -£5° C to +200° C

The HP Outline 11 package has a glass hermetic seal with
dumet leads. The package will meet MIL-STD-750, Method
2036, Condition A (2 Ibs, tension for 15 sec.) and E, The
maximum soldering temperature is 230°C for 5 seconds,
Outline 11 package capacitance and inductance are
typically 0,15 pF and 4 nH respectively,

Operation of these devices within the above
temperature ratings will assure

a

device Median

Time To Failure (MTTF) of approximately 1 x 107

hours,

Electrical specifications at TA =25°C
Part
Number

5082·

Minimum
Breakdown
Voltage
VeR{V)

Minimum
Forward
Current
IF (mA)

Minimum
Forward
Current
IF (rnA)

Maximum
Reverse
Leakage
Current
IR (nA)

Maximum
Reverse
Leakage
Current
IR(/lAJ

Maximum
Total
Capacitance
Co (pF)

Maximum
Reverse
Recovery
Time
fft (ns)

Maximum
Turn-On
Time
ton (ns)

1001

35

150

500

200

200

2.5

35

300

800

200

200

1.5
3,0

1,5

1002

2,0

2,5

1006

50

150

500

200

200

1.1

1,5

Test
Conditions

IR=10MA

VF=l,OV

VF=lAV

\2J

\21

J3J

1500 0 3 !

VR=OV,
1=1.0 MHz

iFigure 9:

,Figure 10\

4. Inductance measured at the edge of the glass package seal is
NOTES: I. Mounted on a printed circuit board in still air,
typically 4,0 nH for all devices,
2, Measured at a repetition rate not to exceed the power
5, Rectification Efficiency is typically 65% for all devices
dissipation.
(Figure 8),
3, VR=35V for 1006; VR=30V for 1001, 1002,

248

(

1000

:<

100

~

10

Cl

1.0

a:
a:
OJ
u
a:

r--

;;II

t,
f(

V

~

.01

o

.2

0

a:
a:
OJ
u

U

If

Cl

a:
;,
a:

"

r

~

V

.6

1.0

.8

,vi
/
/
i

s

~

7i

.4

/~

100

f-

/

/1

";,a:

:<

Vi ~

r--i6V /

"1

1000

io"""

VI

V

S
f-

/

V

1.2

I--,q

[,,0/ v
~1

-1 ~7

J..'C

::

1.0

I

/

.1

.01

1.4

-

10

o

I
.2

.6

.4

FORWARD VOL TAGE IVI

.8

Figure 1. Typical Forward Conduction Characteristics.
5082-1001 and 1006.

10,000
4000

100

S

\

>-

"a:w
a:

10

OJ

u
Cl
a:

1>\

1.0

~

~

.1

.01
0.5

(

1.0

1.5

2.0

400

u
w

200

G:;
a:

\

2.5

1.4

V
/

L ./

1000

"a:a:w
'"ffi

/

2000

OJ

'""'?-

"
a:

;,

1.2

Figure 2. Typical Forward Conduction Characteristics.
5082-1002.

1000

:<

1.0

FORWARD VOLTAGE (VI

~

II' <><>""-

-.,.'V"'-;:; ,,:'9
:2 I,li;!V

-

/'
/

100
40

I
I

i

75

100

20
3.0

3.5

10

4.0

o

25

TEMPERATURE COEFFICIENT ImvrCI

50

125

150

175

AMBIENT TEMPERATURE I'CI

Figure 3. Typical Forward Current Temperature
Coefficient.

Figure 4. Typical Reverse Current at Specified VR vs.
Increasing Temperature.

1000

0.6

400
0.5

1
f-

200

",{)S7..·~ . . . . . r

100

~

a:
a:
OJ
u
w

'"ffi
G:;
a:

40

0.4

,.......t;:::. V

.......... r-

10

~

'\'

I\.

0.3

~.-

20

1\

l

"\

0.2

i-""'<;:

2.0

e:;
:l;:

1,5

w

r-"

i'-........

5081·1002

l-

<>:

u

I

u

1.0

I!

~

5082·100L.

6082~1006

I'-0.5

I

10

15

20

25

30

35

VR - REVERSE VOLTAGE (VOLTSI

Figure 7. Typical Capacitance vs. Reverse Voltage

Characteristics.

TEST FIXTURE
SIGNAL
GENERATOR

r--

POWER
AMPLIFIER

r---:-

HP 6lllIC

ATTENUATOR
WEINSCHEL

r--

10db
lOW

r---

I--

r--

50 U

t+

VTVM
HP411A
COAXIAL
F£ED.THRU
PROSE

I\

5.0K

VTVM

20pf

~IODE UNDER
nST

Figure 8. Test Circuit for Measuring the Rectification Efficiency. Signal source is adjusted to 100 MHz and 2V RMS as read
on the 411A. The rectification efficiency calculated from the DC output voltage by RE = Vocl2.83 is typically 65% for all
devices.

Gr
50n

~:

O.U.T.

1.0~F

1--.---0---1)1---<>--..---0 TO SCOPE
1.0kn

~~

't
I,

Figure 9. Test Circuit for Measuring Reverse Recovery Time. IF is set at 20 mA and VR at 2V.

'
'-r
L
9I

r

ATTENUATOR
PULSE
GENERATOR

I

~

20 dB

TRIGGER

O.U.T.

J

'I

$AMPUNG

$C01'S

f

Figure 10. Test Circuit for Measuring Turn-On Time. IF is adjusted for 10 mA after applying the step voltage. tON is measured
as the time required to reach 0,9 IF from initial application of the step voltage. For high excitation levels the tON value is
significantly lower than the value specified, i.e., at 100 mA tON is typically less than 1.0 ns.

250

c

c

251

_ _ _ _ _•

_ _ _ • • _ _ _ _ •••• H _ _ . . . . . . . " • •

,~,

...

_.,

-

•••••

-.~.-

••• , - . -

,.--'"

-

•

- --- ..•.- . . - _ . .-

_...--....... .... _¥. '._"
~

FliOW

HIGH RELIABILITY
BEAM LEAD
PIN DIODES

HEWLETT

~~ PACKARD

TXVP-4001
TXVP-40S0

(Generic HPND-4001/-4050)

Features
QUALITY PERFORMANCE TESTED
Test Program Patterned After MIL-S-19500
LOW SERIES RESISTANCE
1.3 n Typical
LOW CAPACITANCE
0.07 pF Typical
1:t~g:3

====:::;=.,........==;:===
___
1 _L.
\ ___--'7
--t

FAST SWITCHING
2 ns Typical

-----t-

RUGGED CONSTRUCTION
4 Grams Minimum Lead Pull

60 (2AI
4O"(l:m

DIMENSIONS IN ... nl1000 "'''',

OutUne21

Description/Applications

Maximum Ratings

The TXVP-4001 and -4050 are beam lead PIN diodes
designed specifically for low capacitance, low series resistance and rugged construction. The new HP mesa
process allows the fabrication of beam lead PINs with a
very low RC product. A nitride passivation layer provides
immunity from contaminants which would otherwise lead
to IR drift. A deposited layer provides scratch protection.

Operating Temperature .............. -65°C to +175°C
Storage Temperature ................ -65°C to +200°C
Power Dissipation at 25°C ..................... 250 mW
(Derate linearly to zero at 175°C)
Minimum Lead Strength ...... 4 grams pull on either lead

The TXVP-4001 and -4050 beam lead PIN diodes are
designed for use in stripline or microstrip circuits. Applications include switching, attenuating, phase shifting and
modulating at microwave frequencies. The low capacitance and low series resistance at low current make these
devices ideal for applications in the shunt configuration.

Bonding Techniques
Thermocompression bonding is recommended but welding, thermosonic bonding or conductive epoxy can also be
used. For additional information, see Application Note 974,
"Die Attach and Bonding Techniques for Diodes and
Transistors," or Application Note 979, "The Handling and
Bonding of Beam Lead Devices Made Easy".

After completion of the 100% inspection program per
Table II, lot samples are subjected to the tests of Table III.

TABLE I. ELECTRICAL SPECIFICATIONS AT TA = 25°C
Pat!
Number

Breakdown
Voltage
V8R(V)

Minority Canter

Re_ "'-"ery

Capacitance

Lifetime

Or(PF)

T(M)

Time
,"(M)

Ser1e8

R.....nce
Rs(O)
Typ.
Max.

Rewrse
Current

Forward

",(nA)

Voltage
VF(V)

Min.
50

Typ.

Typ.

Max.

TyPo

Typ.

Max.

Max.

TXVP-4001

80

1.8

2.2

0.07'

O,OS'

30

3

100"

0.97

TXVP-4050

30

40

1.3

1.7

0.12

0.15

25

2

100

0.98

IF=10mA
iR=8mA

IF"'10mA
VA=10V

. VR=10V
"H2samples
only

IF=50mA

Test

,COnditions

VR= VBR
Measure

iRS 10 ItA

IF=10mA
ft 100 MHt

VR-20V

'VR=3OV
f=lMHz

'Total capaCitance calculated from measured isolation value in a series configuration.

252

;'

"

,~,

"'-

,/

(

TABLE II. 100% INSPECTION PROGRAM
Tesl/lnspeetion

Method

1. High Temperature Storage
(Stabilization Bake)
2. Electrical Test t (Read,
Record I

10 cycles from -65" C to +200° C,
15 minutes at extremes

-

-

65

=150°C

10

..lIR < ±50 nA or 100% whichever is
greater, ..l VF < 10%

-

and Record i)

9. Operating Lite

-

-

1038

-

340 hours, 1=60 Hz, Tc = 125°C
VR = 80% of rated VSR, PFM 50 mW, n "" 65

=

10

o:llR < ±50 nA or 100%, whichever is
greater.
(J"VF<10%

Note 1: Per MIL-STO-883.

(
Typical Parameters
,OO.----,.-----r-------,

40

ISOLATION AT:

-JOV,
-10V"

30

ov ...... ,

20

"'\,

.... .................
" '\,

.... '0:::;

INSSRTION LOSS AT:

....

lOrnA

~k
~

"'rnA
,OJ!;-5---f.:-L--.""'5:----:'-:::.00:---:;-!,1.25
FORWARD VOLTAGE (V)

'O~,~~~~~~~~~'O~~~,OO
FORWARD BIAS CURRENT (mAl

10,

I

SOmA

'0
FREQUENCY (GHz)

Figure 1. Typical Forward Conduction

Figure 2. Typical RF Resistance vs.

Figure 3. Typical Isolation and

Characteristics.

Forward Bias Current.

Insertion Loss in the Series

Configuration 1Zo

255

,

= 50 llI.

18

0

rhn.~ HEWLETT
~~ PACKARD

PIN SWITCHING DIODE
MILITARY APPROVED
Mll-S-19500/443

JAN 1N571 9
JANTX 1N571 9

Features
QUALITY PERFORMANCE TESTED
Proven Reliability
0.41

!:.ol6)

I 1---L

0.36('014)~.

LARGE DYNAMIC RANGE
LOW HARMONIC DISTORTION
HIGH SERIES ISOLATION

O-'-T

25.4 (1.00)

Description / Applications
The JAN Series 1N5719 is a planar passivated silicon PIN
diode designed for use in RF switching circuits. These
devices are well suited for variable attenuator, AGC,
modulator, limiter, and phase shifter applications that
require the high reliability of a JAN/JANTX device.

4.321.170)

CATHODE"

~r
25.4 0.001

Maximum Ratings at TCA SE =25°C

o_~~

Operating and Storage Temperature

Range ................

9
"'-_..

. ...... ·65°Cto+150°C

Operation of these devices within the
recommended temperature limits will assure a device Mean Time to Failure (MTTF)
of approximately 1 x 107 hours.

DIMENSIONS IN MILLIMETERS AND (INCHESI

Oulline 15

Reverse Voltage (Working) at 25°C.
. . . . . . . . . . 100 V de
Reverse Voltage (non-rep)
. . . . . . . . . . . . . .. 150 V pk
Power Dissipation [At 25°C] ... ..........
250 mW
Derate at 2.0 mWrC above TeAsE = 25°C;
assumes an infinite heat sink

TABLE I. ELECTRICAL SPECIFICATIONS AT TA = 25° C
(Per Table I, Group A Testing of MIL·S·19500/443)

Part Number
1N5719

Minimum
Breakdown
Voltage!1]
VeR (V)

Maximum
Forward
Voltage
VF (V)

Maximum
Reverse
Current
IRl (nA)

150

1.0

250

Test
Conditions

fR=10,uA

IF= 100 mA

VR

= 100V

Maximum
Reverse
Current
IR2 (MA)

Maximum
Capacitance
CVR (pF)

Maximum
Series
Resistance
Rs (n)

Minimum
Effective
Carrier
Lifetime
T (ns)

15

0.30

1.25

100

VR = 100V
TA'" 150·C

VR 100V
f= 1 MHz

IF= 100 mA
f=100MHz

IF =50 mA
iR=250 rnA

Note 1:
Tested per MIL-STD·750. Method 4021.

256

(

JAN 1 N5719: Samples of each lot are subjected to Group A inspection for parameters listed in Table I, and to Group Band
Group C tests listed below. All tests are to the conditions and limits specified by MIL-S-19500/443.
JANTX 1 N5719: Devices undergo 100% screening tests as listed below to the conditions and limits specified by MIL-S19500/443*. A sample of the JANTX lot is then subjected to Group A, Group B, and Group Ctests asfortheJAN 1 N5719 above.
* JANTX devices have gold plated leads.

Table II 100% SCREENING PROGRAM (TX)
MIL·STO-150 Method

Screening TeSVlnspectlon
1. High Temperature Storage (Stabilization Bakel

Conditions/Comments

1032

t=48 hours, TA= 150°C

2. Thermal Shock (Temperature Cyclingl

1051

10 Cycles, Condition F

3. Centrifuge (Constant Acceleration)

2006

20 Kg., Y1 axis

4. HermetiCity Tests
Fine Leak
Gross Leak

1071
Condition H
Condition C or E

5. Interim Electrical Tests (JR, W)

See Table I

6. Burn-in

=

10 ~ 70 mA (Averagel, VR 120V Weakl
TA "" 25" C, f ~ 60 Hz, t = 96 hrs

1038

7. Final Electrical Tests and Drift Evaluation
IIR, Wi

..iIR = ±250 nA or 100% whichever is
greater
.lVF = +100 mV

10%P DA

Table III GROUP A INSPECTION
Test/Inspection
Subgroup 1
Visual and Mechanical

MIL-STO·150
Method

Conditions/Comments

2071

5

Subgroup 2
DC Electrical Tests at 25° C

(

Subgroup 3
Dynamic Electrical Tests at 25° C
Subgroup 4
High Temperature Operation ITA"" 150°0
Reverse CurrenlllR2i

LTPO

-

VSR, W. IR1. CVR and Rs per Table I

2

r per Table

10

4016

J

10
Per Table I

257

Table IV GROUP B INSPECTION

Test/Inspection

MIL-STD·750
Method

Conditions/Comments

Subgroup 1
Physical Dimensions
Subgroup 2
Solderability
Thermal Shock (Temperature Cycling)
Thermal Shock (Glass Strain)
Terminal Strength (Tension)
Hermetic Seal
Moisture Resistance
End Points:
Forward Voltage (VF)
Reverse Current UR1)
Subgroup 3
Shock
Vibration Variable Frequency
Constant Acceleration
End Points:
Forward Voltage (VF)
Reverse Current (tAl I
Subgroup 4
Terminal Strength; Lead Fatigue

15
2066

10
2026
1051
1056
2036
1071
1021

Immerse to within 0.1 inch of body
Test Condition F
Test Condition A
Test Condition A, 15 secs., 4 Ibs.
Test Condition E
Omit initial conditioning

4011
4011

Per Table I
Per Table I

2016
2056
2006

Non-operating, 1500G; t'" 0.5 ms
5 blows in each orientation Xl, Yl, Y2
Non-operating
Non-operating: 20 kg; Xl, Y1, Y2

4011
4011

Per Table I
Per Table I

2036

Test Condition E with lead rastriction

1031

TA"" 150·C,Ill

4011
4016

Per Table I
Per Table I
..lIR '" +25% of initial value
or +50 nA whichever is greater

1026

10 e 70 rnA, VR '" 120 V
(Peak); f"' 60 Hz, ,11

4011
4016

Per Table I
Per Table I
..l.IFl e +25% of initial value
or +50 nA whichever is greater

10

10

SubgroupS
High Temperature Life (Non-Operating)
End POints:
Forward VOltage iVFI
Reverse Current (lA1)
Drift (..l.IA1)
Subgroup 6
Steady State 0 perating Life
End Points:
Forward Voltage (VF)
Reverse Current ((Rl)
Drift (';;IFlll

LTPD

A "'3

-

h"'3

-

1. t ~ 1000 hours every 6 months to qualify product, t ~ 340 hours on each lot thereafter.

258

(

Table V GROUP C INSPECTION
MIL-STD·150
Method

Testflnspection

Conditions/Comments

Subgroup 1
Barometric Pressure, Reduced
Measurements During Test:
Reverse Current

1001

Pressure: 15 mm Hg; t

4016

D,C, Method, VR '" 100 V de

Subgroup 2
Salt Atmosphere ICorrosion)

1041

= 1 min,

LTPO
20

20

Subgroup 3
Resistance to Solvents

20

-

Subgroup 4
Thermal Shock (Temperature CYCling)

Method 215 of MIL-STD·202
20

End Points:
Forward Voltage IVF)
Reverse Current (JRll

1051

Test Condition F-l; Time at
temperature extremes"" 15 minutes
minimum
total test time = 72 hours maximum,

4011
4016

Per Table I
PerTable I

SubgroupS

20

Low Temperature Operation (--65 0 CI
Forward Voltage (WI
Breakdown Voltage NSRI

4011
4021

<1,15Vatlf=100mA
Per Table t

Typical Parameters

(

w

U
Z

~

in

iii
~

:;0

1.2

100
FORWARD BIAS CURRENT (mA)

FORWARD VOLTAGE (V)

Typical RF Resistance vs. Forward Bias Current.

Typical Forward Current vs. Forward Voltage.

259

Flin-

HIGH RELIABILITY
PIN DIODES FOR
RF SWITCHING AND
A TTENUA TING

HEWLETT

~~ PACKARD

(Generic 5082-3001, -3002, -3039 and -3077)

rX-300112
TXB-300112
TXV-300112
TXVB-300112
TX-3039
TXB-3039

TXV-3039
TXVB-303!1
TX-3077
TXB-3077
TXV-3077
TXVB-3077

Features
QUALITY PERFORMANCE TESTED
Test Program Patterned After MIL-S-19500
LOW HARMONIC DISTORTION
LARGE DYNAMIC RANGE
LOW SERIES RESISTANCE
LOW CAPACITANCE
CATHODE",

"

LOW TEMPERATURE
COEFFICIENT
Typically Less Than 20%
Resistance Change from
25°C to 100°C

DIMENSIONS IN
MILLIMETERS ArjD (INCHES)

Outline 16

Description / Applications
These general purpose switching diodes are intended for
low power switching applications such as RF duplexers,
antenna switching matrices, digital phase shifters, and time
multiplex filters.

Maximum Ratings
Junction Operating and Storage
Temperature Range
............... -65°Cto+150°C

The RF resistance of a PIN diode is a function of the current
flowing in the diode. These current controlled resistors are
specified for use in control applications such as variable RF
attenuators, automatic gain control circuits, RF modulators, electrically tuned filters, analog phase shifters, and RF
limiters.

Operation of these devices within the above
temperature ratings will assure a device Median
Time To Failure (MTTF) of approximately 1 x 107
hours.

Power Dissipation at TCASE = 25° C .............. 250mW
(Derate linearly to zero at 150°C)
Peak Inverse Voltage (PIV) ...............
. ... IBR

TABLE I. ELECTRICAL SPECIFICATIONS AT TA = 25° C
Maximum
Residual
Series
Resistance
Rs (n)

Minimum
Effective
Carrier
Lifetime
T (ns)
100

100

100

100

1.0

100

100

100
100

1.0
1.0

100

IF=20 rnA
VA"" 10 V
90% Recovery

IF= 100 rnA

VA=100V

5082-3002

0.20

5082-3001

0.25

200

5082-3039
5082-3077

0.25
0.30

150
200

1.25
1.5

100

Test
Conditions

VR=50 V
f= 1 MHz

VR = VSA
Measure
IR= 10llA

IF= 100 mA
f= 100 MHz

IF ""50 mA
IF\= 250 rnA

Number

1.0
1.0

260

Typical
Reverse
Recovery Time

Maximum
Reverse
Leakage
Current
fR (nA)
100

Maximum
Forward
Voltage
VF(V)
1.0

Minimum
Breakdown
Voltage
VBIl (V)
300

Part

Maximum
Total
Capacitance
CT (pF)

trdns)

100

(

High Reliability Programs

TABLE II. PART NUMBER SYSTEM FOR ORDER
AND RFQ INFORMATION.

Three basic levels of High-Rei testing are offered.
1. The TX prefix indicates a part that is preconditioned
and screened to the program shown in Table III and IV.
2. The TXB prefix identifies a part that is preconditioned
and screened to TX level with a Group B quality conformance test as shown in Table V.
3. The TXV and TXVB prefix indicates that an internal visual inspection per MIL-STD-750 Method 2074 is
included as part of the preconditioning and screening.

PartNumbar
PreliJt

From these three basic levels, four combinations are available. Please refer to Table II as a guide.

Scraanlng l",el

5082-

Commercial

TX-

100% Screen (per Tables III arid

TXB-

100% Screen 'and Group
Tables III, IVandVl

TXV-

100% Screan and Visual (per
Tables Ill, and IV}

TXVB-

l00"k Screen and Group B (per
Tables III, IV and V) With visual

IV!

a (per

TABLE III. 100% SCREENING PROGRAM
Screening Test/Inspection

MIl-STD-750 Method

1. lnlernal Visual (As required by Table III

2074

2. High Temperature Strorage 

§
0:
W

'"ffi

ii;
0:

10L-__

o

~

__- L__
10

~

____

~

__- L_ _

20

~

30

FORWARD CURRENT (rnA)

Figure 3. Typical Reverse Recovery Time vs. Forward Current
for Various Reverse Driving Voltages.

262

(

FliOW

HIGH RELIABILITY
PIN DIODES

HEWLETT

a!~ PACKARD

(Generic 5082- 3042 and -3043)

TX-3042
TXB-3042
TXV-3042
TXVB-3042

TX-3043
TXB-3043
TXV-3043
TXVB-3043

Features
QUALITY PERFORMANCE TESTED
Test Program Patterned after MIL-S-19500
FAST SWITCHING
10 ns Maximum
LOW SERIES RESISTANCE
1_5!1 Maximum
LOW CAPACITANCE
0.4 pF Maximum
LOW DRIVE CURRENT REQUIRED
Less than 20 mA for 1!1 Rs

Description/Applications
The TX-3042 and -3043 are oxide passivated silicon PIN
diodes of mesa construction. Precisely controlled processing provides an exceptional combination of fast RF
switching and low residual series resistance.
These hermetically sealed. glass packaged PIN diodes are
intended for controlling and processing microwave signals
through Ku band. Typical applications include single and
multi-throw switches, pulse modulators, amplitude
modulators, phase shifters, TR switches and duplexers.

(

DIMENSIONS IN MILLIMETERS flNCHESt.

Maximum Ratings

Outline 15

Operating and Storage Temperature
Range ............................ _65° C to +150° C
Reverse Voltage (Working) .................. Rated VSR
Power Dissipation at TeAsE = 25° C ........... 250 mW
(Derate linearly to zero at 150°C)
Package 15 Maximum Solder Temperature ...... 230°C
for 5 seconds

TABLE I. ELECTRICAL SPECIFICATIONS AT TA = 25°C
Maximum
Reverse
Recovery
Time
trdns)

Maximum
Forward
Voltage
VF (V)

Maximum
Reverse
Leakage
Current
IR (ns)

15

5

1

100

15

10

1

100

IF=50 mA
iR =250 rnA

iF=20mA
VR = 10 V
90% Recovery

iF=100 rnA

VR=80%
Rated VSR

Minimum
Breakdown
Voltage
V eR (V)

Maximum
Total
Capacitance
CT-20 (pF)

Maximum
Residual
Series
ReSistance
Rs (n)

Typical
Effective
Carrier
Lifetime
.,. (ns)

5082-3042

70

0.4

1.0

5082-3043

50

0.4

1.5

Test
Conditions

VR=VSR
Measure
IR:;; 10 p.A.

VR=20 V
f= 1 MHz

IF= 20 rnA
f = 100 MHz

Part
Number

263

High Reliability Programs

TABLE II. PART NUMBER SYSTEM FOR ORDER
AND RFQ INFORMATION.

Three basic levels of High-Rei testing are offered.
1. The TX prefix indicates a part that is preconditioned
and screened to the program shown in Table III and IV.
2. The TXB prefix identifies a part that is precond itioned
and screened to TX level with a Group B quality conformance test as shown in Table V.
3. The TXV and TXVB prefix indicates that an internal visual inspection per MIL-STD-750 Method 2074 is
included as part of the preconditioning and screening.

Screening Level

Part Number

From these three basic levels, four combinations are available. Please refer to Table II as a guide.

5082-3042
5082-3043

Commercial

TX-3042
TX-3043

100% Screen fperTableslfl and IV)

TXB-3042
TXB-3043

100% Screen and Group B lper
Tables III, IV and V)

TXV-3042
TXV-3043

100'% Screen and Visuallper
Tables III and IV)

TXVEl-3042
TXVB-3043

100% Screen and Group B Iper
Tables III, IV and V) with visual

TABLE III. 100% SCREENING PROGRAM.

Screening Te&tllnspectlon

MIL·STD-7oo Method

1. Internal Visual (As required by Table III

2074

CondillOnslComments

2. High Temperature Storage IStab. Bakel

1032

t= 48 hours, TA =: 150"C

3. Thermal Shock (Temperature Cycflngl

1051

Condition F, 10 Cycles
20 Kg., Y1 axis

4. Constant Acceleration

2006

5. Hermeticlty (SealTestsl
Fine Leak
Gross!.eak

1071

6. HTRB

1038

ConditionH
Condition C or E

t'" 48 hours, TA '" 150· C,
VR = 80% of rated VeR
See Table I

7. Interim Electrical Tests (lR, VFl
8. Burn-In

1038

9. Final Electrical Tests {lR. Vp}

t= 168 hours, TA '" 25°C.
PFM = 200 mW. f '" 60 Hz.
VRM"" s0041 of rated VSR
.l1R S; ±50 nA or 100%. whichever
is greater.
.lVFS±10%.

TABLE IV. GROUP A PROGRAM.
Test/inspection
Subgroup 1
Visual and Mechanical

Subgroup 2
DC Electrical Tests at 25" C

Subgroup 3
Oynamic Electrical Tests at 25' C

MIL-$TD-750
Method

Conditions/Comments

2071

-

LTPD
5

See Table I for tests and conditions.

5

See Table I for tests and cond ilons.

S

264

TABLE V. GROUP B PROGRAM .

(

. j
Testllnspection
Subgroup 1
Solderability
Resistance to solvents

MIL-$TD-750
Method

CondltiQl1S/Comments·

2026
1022

LTPD
15

$ubgroup2
Thermal Shock (Temperature Cycling)
Hermetic Seal
Fine Leak
Gross Leak
DC Electrical Tests (IR and VF)
Subgroup 3
Steady State Operating Ufe

1051
1071

Subgroup 5
High Temperature Ufe
(Non-Operating)
DC Electrical Tests (lR and VF)

10

ConditionH
Condition C or E
See Table I.
1027

DC Electrical Tests (/R and VF)
Subgroup 4
Oecap Internal Visual
(Design Verification)
Die Shear

Condition F1 (25 cycles)

t =340 hours. TA '" 25°C,
PFM'" 200 mW. f '" 60 Hz, VAM '" 80%
of rated VBR
See Table I.

5

2075

2037
1032

20
t = 340 hours, TA = 150° C
See Table I.

('

265

7

Flin-

HIGH RELIABILITY
PIN ATTENUATOR
DIODES

HEWLETT

~~ PACKARD

TX-3080
TX8-3080
TXV-3080
TXV8-3080

(Generic 5082-3080>
Features
QUALITY PERFORMANCE TESTED
Test Program Patterned after MIL-S-19500

0.41 (0.016'----1

[36~

LOW DISTORTION

l---

II

~J:

HERMETICALLY SEALED GLASS PACKAGE
USEFUL DOWN TO 1 MHz

tl

TIGHT RESISTANCE TRACKING BETWEEN
UNITS
SPECIFIED RF RESISTANCE WITH BIAS

r

LOW TEMPERATURE COEFFICIENT

4.32 (0.110)

Description/Applications

f

CATHOOE

The TX-3080 passivated silicon planar diffused PIN diode
is specially tested as an RF current controlled resistor. The
long minority carrier lifetime assures usefulness at
operating frequencies down to 1 MHz, with very low
distortion. Tightly controlled fabrication process for RF
resistance variation with bias makes these diodes ideally
suited· for constant impedance AGC-circuits, leveling
circuits, electronically controlled RC and RL circuits, pi-,
T-, or bridged T- attenuators operating between 1 MHz to
1 GHz with very low distortion.

~~
DIMENSIONS IN MILLIMETERS (INCHES).

Maximum Ratings
Operating and Storage Temperature
Range ............................ -65° C to +150° C
Reverse Voltage (Working) ................ 100 V(peak)
Power Dissipation at TeASE = 25° C ........... 250 mW
(Derate linearly to zero at 150°C)
Package 15 Maximum Solder Temperature ...... 230° C
for 5 seconds

Outline 15

TABLE I. ELECTRICAL SPECIFICATIONS AT TA = 25°C

Part
Number

-3080
Test
Condition

Minimum
Maximum
Total
Breakdown
Voltage
Capacitance
VSfI (V)
Cr (pF)
100
0.4
VR"'VSR
Measure
iR$;10 !'A

VR"'50 V
f= 1 MHz

Typical
Effective
Minority
Carrier
Lifetime
T (ns)

Maximum
Residual
Series
Resistance
Rs (ll)

Minimum
High
Resistance
Limit
RM (Il)

Maximum
Low
Resistance
Limit
RL (n)

Maximum
Forward
Voltage
VF (V)

1300

2.5

1000

8

1

IF=50 rnA IF= 100 mA IF""O.Ol mA
IR "'250 mA f=l00MHz f=l00MHz

266

IF=20 mA iF =30 mA
f=100 MHz

Maximum
Reverse
Leakage
Current

IfI CnA)
100
VR=50 V

(
\

(

High Reliability programs

TABLE II. PART NUMBER SYSTEM FOR ORDER
AND RFQ INFORMATION.

Three basic levels of High-Rei testing are offered.
1. The TX prefix indicates a part that is preconditioned
and screened to the program shown in Tables III and
IV.

Part Number

2. The TXB prefix identifies a part that is preconditioned
and screened to TX level with a Group B quality
conformance test as shown in Table V.
3. The TXV and TXVB prefix indicates that an internal
visual inspection per MIL-STD-750 Method 2074 is
included as part of the preconditioning and screening.
From these three basic levels, four combinations are
available. Please reler to Table II as a guide.

Screening Level

5082-3080

CommerCial

TX-3080

100% SCfeen (per Tables III and IV)

TXB-3080

10()IR <; ±50 nA or 100%, Whichever
;,VF <; ±100/0.
is greater.

TABLE IV. GROUP A PROGRAM.
Tesl/lnspeclion
Subgroup 1
Visual and Mechanical

Subgroup 2
DC Electrical Tests at 25' C
Subgroup 3
Dynamic Electrical Tesls at 25°C

MIL-STO-750
Method

Conditions/Comments

2071

LTPD

5

-

See Table I for tests and conditions.

5

-

See Table I for tests and conditions.

5

270

(

TABLE V. GROUP B PROGRAM.
TesVlnspection
SUbgroup 1
SolderablUty
Resistance 10 solvents
Subgroup 2
Thermal Shock (Temperature Cycling)
Hermetic Seal
Fine Leak
Gross Leak
DC ElectrICal Tests (lR and VF)

MIL-$TD-750
Method
Conditions/COmments
2026
1022

15

Condition F1 (25 cycles)

1051
1071

10

CondilionH
Condition C or E
See Table I.

SubgroupS
Steady State Operating Life

LTPD

t =340 hours, TA "" 25°C,
PFM = 200 mW, 1""60 Hz, VRM '" 28 V
See Table I.

1027

DC Electrical Tests OR and VF)

5

Subgroup 4
Decap Internal Visual
(Design Verification)
Die Shear
SubgroupS
High Temperature life
(Non-Operating)
DC Electrical Tests (lR and VF)

2075
2037

20

1032

t= 340 hours, TA"" 150°C
See Table I.

271

7

HIGH RELIABILITY PIN DIODES
FOR STRIPLINE AND MICROSTRIP
SWITCHES, ATTENUA TORS, AND
LIMITERS

rli~ HEWLETT
~~ PACKARD

TX-3141
TXB-3141
TXV-3141
TXVB-3141

(Generic 5082-3141)

Features
QUALITY PERFORMANCE TESTED
Test Program Patterned after MIL-S-19500
BROADBAND OPERATION
HF through X-band
LOW INSERTION LOSS
Less than 1.0 dB to 8 GHz
HIGH ISOLATION
Greater than 20 dB to 8 GHz
FAST SWITCHING/MODULATING
5 ns Typical
LOW DRIVE CURRENT REQUIRED
Less than 20 mA for 20 dB Isolation

Outline 60

Maximum Ratings

Description/Applications

Operating and Storage Temperature
Range ............................... -65° C to 150° C
Operation of these devices within the recommended temperature limits will assure a
device Mean Time To Failure (MTTF) of
approximately 1 x 107 hours.

The 5082-3141 is a specially processed oxide passivated
mesa PIN diode in shunt configuration within a 50 D hermetic package (Outline 60), optimized for good continuity of characteristic impedance, which allows a continuous transition when used in 50 D stripline or microstrip
circuits. The stripline package overcomes the limitations in
insertion loss, isolation, and bandwidth that are imposed by
package parasitics of the other packages. The TX-3141 is
recommended for applications requiring fast switching or
high frequency signal modulation or where low bias current
for maximum attenuation is required.

Reverse Voltage (Working) ........................ 70 V
Power Dissipation at TeASE = 25° C ............ 250 mW
(Derate linearly to zero at 150°C)
Peak Incident Pulse Power ....................... 50 W
(tp = 1 I'S, f = 10 GHz, Du - 0.001, Zo = 50 1lI

TABLE I. ELECTRICAL SPECIFICATIONS AT TA = 25° C

Part
Number
5082-3141
Test
Conditions

Heat
Sink
Cathode

Minimum
Isolation (dB)

Maximum
Insertion
Loss (dB)

Maximum
SWR

Maximum
Reverse
Typical
Recovery
Carrier
Time (trr) (ns) Lifetime (ns)

Forward
Voltage
VF(V)

Reverse
Current
IR (nA)

20

1.0

1.5:1

10

15

1.0

100

IF =20 mA
f= 8 GHz

IF =0
PIN=l mW
1=8 GHz

IF=O
PIN =1 mW
f~8 GHz

IF 20mA
VR = 10 V
Recovery
to 90%

IF =50 mA
IR= 250 mA

IF=50 mA

VR =50V

272

(

High Reliability Programs

TABLE II. PART NUMBER SYSTEM FOR ORDER
AND RFQ INFORMATION

Three basic levels of High-Rei testing are offered.
1. The TX prefix indicates a part that is preconditioned
and screened to the program shown in Table III and IV.
2. The TXB prefix identifies a part that is preconditioned
and screened to TX level with a Group B quality conformance test as shown in Table V.
3. The TXV and TXVB prefix indicates that an internal visual inspection per MIL-STO-750 Method 2074 is
Included as part of the preconditioning and screening.

Part Number
5082-3141
TX-3141

From these three basIc levels, four combinations are available. Please refer to Table II as a guide.

Screening Level
Commercial
100% Screen (per Table III and IV)

TXB-3141

100% Screen and Group B Iper
Table III, IV. and V)

TXV-3141

100% Screen and Visual lper Table
Iii, and IV)

TXV8-3141

100% Screen and Group 8 (per
Table III, IV, and V) wilh Visual

TABLE III. 100% SCREENING PROGRAM
MIL·STD-750 Method

Screening Test/Inspection
1. Internal Visual (As required by Table III

2074

Conditions/Comments

2. High Temperature Storage (Stabilization Bake)

1032

t '" 48 hours, TA -150·C

3. Thermal Shock (Temperature Cycling)

1051

Condition F, 10 Cycles

4. Constant Acceleration

2006

20 Kg., Y, axis

5. Hermeticity Tests

1071
Condition H
Condition C or E

Fine Leak
Gross Leak
6. High Temperature Reverse Bias (HTRB)

1038

I'" 48 hours, TA '" 150°C, VR ~ 56 V

1038

t ~ 168 hours, TA'" 25· C,
PFM : 200 mW, VRM = 56 V

7. Inlerim Electrical Tests (IR, VF)

See Table I

B. Burn-In

.lIR s: ±50 nA or 100%, whichever
::.VF:; ±10%.
is greater.

9. Final Electrical Tests OR, VFI

(
TABLE IV. GROUP A PROGRAM
Test/Inspection
Subgroup 1
Visual and Mechanical
Subgroup 2
DC Electrical Tests at 25° C
Subgroup 3
Dynamic Electrical Tests at 25° C

MIL-STD-750
Method

Conditions/Comments

5

2071

-

LTPD

See Table I for lests and conditions.

5

See Table I tor tests and conditons.

5

273

TABLE V. GROUP B PROGRAM

Test/Inspection
SUbgroup 1
Solderability
Resistance to solvents

MIL-STD·750
Method

Condltlons/Commeots

2026

LTPD
15

1022

Subgroup 2
'Thermal Shock (Temperature Cycling)
Hermetic Seal
Fine Leak
Gross Leak
DC Electrical Tests OR and VF)
Subgroup 3
Steady State Operating Ufe

1051
1071

Condition Fl 125 cycles)

10

Condition H
Condition Cor E
See Table L
1027

t = 340 hours, T A = 25° C,
PFM = 200 mW, VRM '" 56 V
$eeTable L

DC Electrical Tests OR and VF)

5

Subgroup 4
Decap Internal Visual
(Design Verification)
DteShear

2075
2037

20

SubgroupS
High Temperature Life
INon-Operating)
DC Electrical Tests ItR and VF)

1032

t '" 340 hours, TA = 150·C
See Table I.

274

7

c

275

~------------

-

----

------

Fli;'

HEWLETT

a!~ PACKARD

RELIABILITY BULLETIN
BEAM LEAD DIODES

Conclusion
Hewlett-Packard's beam lead diodes have successfully
passed stringent environmental testing. Therefore, it is
recommended that Hewlett-Packard beam lead diodes be
used in military and space applications without the necessity
of hermetically sealed packaging.

General
For applications requiring component reliability estimation,
Hewlett-Packard provides reliability data for all families of
devices. Data is compiled from reliability tests run to demonstrate that a product meets the specified design criteria. All
Schottky and PIN beam lead families have fulfilled the standard requirements of reliabililty qualification, and the results of
these tests are available upon request from Hewlett-Packard.

SINGLE

Program Description
The purpose of this program is to qualify all beam lead
diodes for operation in extreme environmental conditions
which may be encountered during military and space
operations.
The following test sequence has been designed to assess the
endurance of beam lead diodes through relevant environmental stresses such as heat and humidity. To qualify a device as
hermetic, the conventional procedure is to perform. dyepenetrant and Radiflo tests. However, because of the absence
of an enclosed cavity in the unique design of the beam lead
diode, these tests are not directly applicable. Therefore, this
program utilizes reliability tests such as moisture resistance,
salt atmosphere, and immersion to verify that the passivation
layer on the beam lead acts as a seal to protect the active
area of the diode,

PAIR
Typical Beam Lead Outlines

Applicable Part Numbers
PIN Beam Leads

HPND-4001
HPND-4005
HPND-4050

To perform these tests, various Schottky and PIN diodes were
mounted in non-hermetic, open packages and tested as
exposed beam lead devices.

276

- - - - - --_._---

(

Test sequence
Test

Test Condltlons

MIL-STD-750

1021

98% R.H. -10· C to 65' C, 10 days

Temperature Cycling

1051

-65" C to 200· C, 100 cyc.

Constant Acceleration

2006

20 KG, 1 min. each axis

1041

35° fog, 24 hours

Moisture Resistance! 1,21

Salt Atmosphere!21
Salt Water Immel'$lonl2,

(MfL-sTD-883B,
M1oo2Sl

65· C saturated NaCI solution, 2 cycles

LTPD
7

10
10

Notes:
1. The sequence of moisture resistance and temperature cycling followed by constant acceleration assures a thorough evaluation of
the effect of exposure to high humidity and heat conditions. End pOints were taken after each test.
2. End pOints were: Visual at 100X magnification and D.C. testing to MIL-STD-19500.

Results
As demonstrated by these tests, Hewlett-Packard's beam lead

layer acts as a sealant and provides immunity from contaminants which could lead to IR drift. Conductive particle
protection is provided by a layer of polyimide, which also
functions as scratch protection. Therefore, it is recommended
that Hewlett-Packard beam lead diodes be used in military
and space applications without the necessity of hermetically
sealed packaging.

diodes exhibit superior performance when subjected to
severe environmental conditions. This proven reliability is
achieveable because of Hewlett-Packard's unique beam lead
design. These beam lead diodes are made of tri-metal (Tj-PtAu or NiCr-P!-Au), which extends both the operating and
storage temperature range. In addition, a nitride passivation

277

r/iOW

RELIABILITY DATA
BEAM LEAD
PIN DIODES

HEWLETT

~e.4I PACKARD

HPND·4005

Description
For applications requiring component reliability estimation,
Hewlett-Packard provides reliability data for all families of
devices. Data is initially compiled from reliability tests run
prior to market introduction to demonstrate that a product
meets design criteria. Additional tests are run periodically.
The data on this sheet represents the latest review of
accumulated test results.

Applications
This information represents the capabilities of the generic
device. Failure rates and MTTF values presented here are
achievable with normal MIL-S-19500 TX level screening.
Reliability can only be guaranteed by testing specified lots
of devices, under specified conditions, with specified L TPD
levels.
400

300

........ r--.
EA = 1.7

r-r-.
;>

'v

(BEAM lEAD FAMIL VI

r-r--.

200

........ 1"'-

w'

a:

::>

t-

t"---I"'-

"~
~

t2

I

0

>=
u
2

100

;;

50
102

103

105

104

la'

la'

108

MTTF (HRS.I

Mean Time 10 Failure vs. Junction Temperature

Burn-In and Storage
LTPDt1000 Hours

Test

Test Conditions

High Temperature Life

1,000 hrs. min. storage time @ 2000 C

2.0

Steady State Operating Life

1,000 hrs. min. operating time@IF=30mA, TA= 150°C

2.0

278

(

Environmental
//
Test
Temperature Cyc1ing

MIL-STD-750
Reference
1051.1
Cond, B

Thermal Shock

1056.1

Soldering Heat

2031

Shock
Vibration Fatigue.

2016.1
2046

Tellt Conditions
10 cycles from -65" C to +200° C. 30 min. at extremes, 5 min.
transfer

LTPD

4

10 cycles from 0' C 10 +100'C, 3 sec. transfer

6

10 seconds at 200·C

15

5 blows each at X" Y,. Y2, 1500 G, 0.5 msec pulse

5

32 ± 8 hrs. each at X. Y. Z. 96 hr. total, 60 Hz. 20 G min.

5

(~

279

Fli;'

1N5767
5082·3080
5082·3168
5082·3188

RELIABILITY DATA
PIN DIODES

HEWLETT

~~ PACKARD

Description
For applications requiring component reliability estimation,
Hewlett-Packard provides reliability data for all families of
devices. Data is initially compiled from reliability tests run
prior to market introduction to demonstrate that a product
meets design criteria. Additional tests are run periodically.
The data on this sheet represents the latest review of accumulated test results.

Applications
This information represents the capabilities of the generic
device. Failure rates and MTTF values presented here are
achievable with normaIMIL-S-19500 TX level screening.
Reliability can only be guaranteed by testing specified lots of
devices, under specified conditions, with specified LTPD
levels.

400
350
300

"' ....

250

"
w'

ec

200

::>

I-

"~
iii

...... .... 1'-

150

e,. =1.30\1

IZ

..... r--,

r.....

0

;:
z

"'l

100

I'-

50

25
10'

103

10'

105

10'

108

107

109

MTTF (HRS.)

Mean Time to Failure vs. Junction Temperature

Burn-In and storage
Test

Test Col'Iditlons

High Temperature Life

1,000 hrs. min. storage time@150"C

Steady State Operating Life

1,000 hrs. min operating time @ PFM = 250 mW, VRM
1=60 Hz, TA=25°C

280

LTPO/l000 Hours
2
~

20 V,

2

(

Environmental
Test
Solderability
Temperature Cycling

MIL-$TO-750
Reference

2026
1051.1
Condo B

Test Conditions

LTPO

Sn 60, Pb 40, solder at 230· C

6

10 cycles from -{)S" C to + 150" C, 0.5 hrs. at extremes,
5 min. transfer

7
6

Thermal Shock

1056.1

5 cycles from DoC to +100· C, 3 sec. transfer

Moisture Resistance

1021.1

10 days, 90-98% RH, -10 to +65' C, non operating

5

Shock

2016.1

5 blows each Xl, Yl, Y2, 1500 G. 0.5 msec pulse

6

Vibration Fatigue

2046

32 ± 8 hrs, each X, Y, Z, 96 hr. total, 60 HZ,20 G min.

5

Vibration Variable Frequency

2056

4,4 minute cycles each X, Y, Z, at 20 G min. 100 to 2000 Hz

5

2006

1 minute each Xl, Yi, Y2, a120,000 G

5

Miniature glass package, -3, 90' arcs, 2 leads, 8 oz.,
lead restriction

6

35° fog for 24 hours

7

Constant Acceleration
Terminal Strength

2037.1
Condo E

Salt Atmosphere

1041.1

(

281

1N5719

FliOW

5082·3001
5082·3002
5082·3039
5082·3077

RELIABILITY DATA
PIN DIODES

HEWLETT

a!~ PACKARD

HPNO·4165
HPNO·4166

Description
For applications requiring component reliability estimation,
Hewlett·Packard provides reliability data for all families of
devices. Data is initially compiled from reliability tests run
prior to market introduction to demonstrate that a product
meets design criteria. Additional tests are run periodically.
The data on this sheet represents the latest review of accum·
ulated test results.

Applications
This information represents the capabilities of the generic
device. Failure rates and MTTF values presented here are
achievable with normal MIL·S·19500 TX level screening.
Reliabilitycan only be guaranteed by testing specified lots of
devices, under specified conditions, with specified LTPD
levels.

400
350
300
250

"
~.

I"----r-,

200

r--.

:J

~

"~
~
>z

o
~
z

150

r--

,

........

EA"" 1.3eV

r--.
r-.....

10 0

I

:;

.......... r-,

I

0

5
102

104

105

108

106

109

MTTF (HRS.)

Mean Time to Failure vs. Junction Temperature

Burn-In and storage
Test

Test Conditions

High Temperature Life

1,000 hrs min. storage time @ 150" C

Steady State Operating Life

1,000 hrs. min. operating time @ PFM
f = 60 Hz, T A = 25" C

282

LTPO/1000 Hours
2

= 250 mW. VRM

~

150 V,

2

Environmental
Test

Solderability
Temperature Cycling

MIL-STD-750
Reference

2026
1051.1
Condo B

Test Conditions

LTPD

Sn 60, Pb 40, solder at 230 0 C

5

5 cycles from -65° C to +150° C, 0.5 hrs. at extremes,
5 min. transfer

5

Thermal Shock

1056.1

5 cycles from 0° C to +100°C, 3 sec. transfer

8

Moisture Resistance

1021.1

10 days, 90-98% RH, -10 to +65"C, non-operating

5

Shock

2016.1

5 blows each Xl, Y" Y2, 1500 G. 0.5 msec pulse

5

Vibration Variable Frequency

2056

4,4 minute cycles each X, Y, Z, at 20 G min. 100 to 2000 Hz

5

Constant Acceleration

2006

1 minute each X" Y" Y2, at 20,000 G

5

Miniature glass package -3,90' arcs, 2 leads, 8 OZ., lead
restriction

5

Kr-8S/dry N2 penetrant dye

2

Terminal Strength
Hermeticity

2037.1
Condo E
1014

(

283

ABSTRACTS OF
APPLICATION NOTES AND BULLETINS
The Microwave Semiconductor Division field sales force is supported by a division applications staff. These technical specialists
investigate circuit applications of most interest to the users of these semiconductor devices. The results of these investigations are
reported in application notes or in brief application bulletins.

A complete list with brief abstracts is presented here. Below is a brief summary of Application Notes for PIN diodes. All of the
Application Notes are available from your local HP Sales Office or nearest HP Components Authorized Distributor or
Representative.

918 Pulse and Waveform Generation with
Step Recovery Diodes

957-1 Broadbanding the Shunt PIN Diode
SPOT Switch

This note describes how the Step Recovery Diode can be
used in a variety of pulse shaping and waveform generating circuits. The pulse shaping Circuits involve reduction
of rise and/or fall time of an input pulse. Other applications include a square wave generator, pulse delay
generator, and FM discriminator.

Covers an impedance matching technique which improves
the bandwidth of shunt PIN diode switches.

957-2 Reducing the Insertion Loss of a Shunt
PIN Diode
Examines a simple filter design which includes the shunt PIN
diode capacitance into a low pass filter, thereby extending
the upper frequency limit.

922 Application of PIN Diodes
Discusses how the PIN diode can be applied to a variety of
RF control circuits. Such applications as attenuating, leveling, amplitude and pulse modulating, switching, and phase
shifting are discussed in detail. Also examines some of the
important properties of the PIN diode and how they affect its
application.

957-3 Rectlfcatlon Effects In
PIN Attenuators
Attenuation levels of PIN diodes are changed by high incident power. Variation in attenuation may be minimized by
proper choice of bias resistance. Performance of a PI N diode
is limited by both carrier level and frequency because of
rectification effects. This note presents the effects of frequency, power level, and bias supply for three types of HP
diodes: 5082-3170, 3140 and 3141.

929 Fast-Switching PIN Diodes
Discusses the switching speed of the PIN diodes and the
considerations which affect switching capability. For HP's
5082-3041/3042 fast-switching PIN diodes, AN 929 outlines
basic drive requirements and comments on a few practical
switching circuits. Considerations involved in the design of
the filters required for use with the diodes are also discussed.
For the 5082-3041, AN 929 provides two curves: 1) typical
isolation vs. forward bias and 2) switching time vs. forward
bias for peak reverse current as a parameter.

971 The Beam Lead Mesa PIN in Shunt
Applications
The low RC product, fast switching time, and other unique
features of the HPND-4050 beam lead PIN diode make it
well-suited for switching applications in the shunt configuration. Switching performance, practical circuits, handling,
and bonding instructions are included in this application
note.

932 Selection and Use of Microwave Diode
Switches and Limiters

974 Ole Attach and Bonding Techniques for
Diodes and Transistors

Helps the systems designer select the proper switching or
limiting component and assists him in integrating this component into the overall design of the system. This note is a
practical, user-oriented approach to problems encountered
with switching and limiting microwave signals.

Several package styles are avai lable for use with hybrid
integrated circuits. This application note gives detailed
instructions for attaching and bonding these devices. A brief
description of an impedance matching technique for mixer
diodes is also included.

936 High Performance PIN Attenuator for
Low-Cost AGe Applications

985 Achieve High Isolation in Series
Applications with the Low Capacitance
HPND-4005 Beam Lead PIN

PIN diodes offer an economical way of achieving excellent
performance in AGC circuits. Significant improvements in
crossmodulation and intermodulation distortion performance are obtained, compared to transistors. This note
discusses other advantages of PIN diodes, such as low frequency operation, constant impedance levels, and low
power consumption.

Low capacitance is required for a diode to achieve high
isolation in the series configuration. On the other hand, low
resistance is needed for low insertion loss. This combination
of characteristics in the HPND-4005 Beam Lead PIN diode

284

--------------------------------------------------------------------------------------------

o

this application note is a new method of resistive spot welding or modified gap welding, which uses a single electrode
to weld the beam while the conductor is contracted separately. This method allows light pressure to be used on the
weld probe, resulting in an effective bond without damaging
the beam lead device.

makes it well suited for series switching applications. The
performance of this diode in a SPST switch and a SPOT
switch is described in this application note. The equivalent
circuits derived in this note would be useful in the design of
circuits for switching and other signal control applications.

992

Beam Lead Attachment Methods

AB 5 Current Source for Diode Testing

This application bulletin gives a general discription of various methods of attaching beam lead components to both
hard and soft substrates. A table summarizes most common
attachment methods with advantages, disadvantages, and
equipment costs.

This application bulletin describes a constant current source
designed primarily for the ease of use in laboratory measurements. Easily programmable by thumb wheel switches
in 10,.,.A steps from 10,.,.A to 700 mA, its accuracy exceeds
most commercially available current sources.

993 Beam Lead Diode Bonding to
Soft Substrate (Restart)

AB 6 PIN Diode RF Resistance Measurement

The hard gold surface on standard PC boards with soft
substrate material makes it almost impossible to successfully bond beam lead diodes on to the boards with normally
recommended thermocompression bonding. Described in

The use of the HP 4815 Vector Impedance Meter in conjunction with a tunable test fixture provides an efficient and
reliable means for measuring the RF resistance of a PIN
diode.

o

285

---

c'

287

/

CHARACTERISTICS OF STEP RECOVERY DIODES
The Step Recovery diode is most graphically
. described as a charge-controlled switch. That is,
a forward bias stores charge, a reverse bias
dEipletes this stored charge, and when fully
depleted the SRD ceases to conduct current.
The action of turning off, or ceasing current
conduction, takes place so fast that the diode
can be used to produce an impulse. If this is done
cyclically, a train of impulses is produced. A
periodic series of impulses in the time domain
converts to a series of frequencies (all multiples
of the basic exciting frequency) in the frequency
domain. If these impulses are used to excite a
resonant circuit, much of the total power in the
spectrum can be concentrated into a single
frequency. Thus input power at one frequency
can be converted to output power at a higher
frequency.

The reverse voltage breakdown limit, VBR, limits
the pulse height and can limit the input power
before the thermal limit is reached.
The low frequency limit of the exciting signal is
set by minority carrier lifetime, T, and the ability
to form an effective impulse at the higher
frequencies is determined by the transition time,
tt. Under forward current flow, IF, charge is built
up in the SRD. Once reverse biased, reverse
current will flow for a short period of time. This is
called the delay time, td, as in the PIN diode.
When all of the carriers have been removed, the
current drops abruptly to zero. The time required
for the reverse current to go from 0.8 IR to 0.2 IR
is called transition time. Typical transition times
range from 360 psec. down to 60 psec. for Step
Recovery diodes.
The delay time td is related to minority carrier life
time T by

Two specifications that limit the total power
output in any given multiplier mode are
maximum junction temperature and thermal
resistance. Within this limit, the output for a
given input is determined by the efficiency of
conversion. Efficiency depends heavily on the
design of the multiplier, so Hewlett-Packard does
not specify it.

td
T

200°C- TA
0JC

TA = ambient temperature, 0 C
0JC = thermal resistance, ° C/W

2. Efficiency,
where

Po

"YJ

= Po+
- -Po
-

).

Minority carrier lifetime sets the lower input
frequency limit because as the frequency gets
lower and lower, more and more of the charge is
dissipated by recombination during a cycle
which reduces the energy in the impulse. The
input frequency should be larger than the inverse
of T to minimize this loss of energy.

1. Maximum Power Dissipation, Po (power
dissipated by the diode)

where

IR

Lifetime is measured by setting IF = 1.7 IR so that
to = T.

The above specifications are related as follows:

Po=

IF

= In (1 + -

The highest output frequency for reasonable
efficiency as a multiplier is limited by the width of
the impulse spike which is determined by the
transition time. Efficiency declines when the
output frequency exceeds the inverse of the
transition time.

,100%

Po = output power
Po = power dissipation

288

(

APPLICATIONS OF STEP RECOVERY DIODES
928 Ku-Band Step Recovery Multipliers

As brought out in the previous section, the Step
Recovery diode can be made to produce very
sharp and narrow pulses. These contain
harmonics of the exciting frequency.

Discusses the use of step-recovery diodes in a
times-eight single-stage frequency multiplier
which, at 16 GHz, has a typical maximum output
of 75 mW. The note also provides design
modifications, together with references, for
meeting other performance requirements.

A circuit which exploits the Step Recovery
diode's production of a multitude of frequency
components is called a Comb Generator. Comb
generators are used in measurement equipment
such as Spectrum Analyzers to produce locking
signals.

948 How to Get More Output Power from a
Comb Generator with the Right Bias
Resistance

Another type of circuit picks out a single
harmonic and optimizes the power output
around that harmonic. This circuit is called a
Multiplier. The end result of a multiplier is output
power at some multiple (2fj, 3fj, etc.) of the input
frequency. The efficiency of the conversion is
high enough to make this a very practical
scheme for multiplying up from a readily
available low frequency oscillator to get a higher
frequency signal. Multipliers are used as local
oscillators, low power transmitters, or transmitter
drivers in radar, telemetry, telecommunications,
and instrumentation.

(

Power output in a comb generator can be doubled
by using an appropriate bias resistor. With a half
watt input level near 1 GHz, the optimum
resistance is about 200 ohms. Higher values of
resistance would be needed for higher input
frequencies or lower input power.
989 Step Recovery Diode Multiplier

A straightforward technique for multiplier design
is presented. The input circuit is a low pass filter
which allows all of the input power to be absorbed
by the diode and reflects harmonic power back to
the diode. The output circuit is a bandpass filter
which offers a low loss path to the desired
frequency while reflecting all other harmonics
back to the diode. The technique is illustrated by a
doubler to 4 GHz using Hewlett-Packard 50820805 step recovery diode.

The Microwave Semiconductor Division Field
Sales Representative is supported by an
applications staff. These technical specialists
investigate circuit applications of most interest to
the users of these semiconductor devices. The
result of these investigations are reported in
application notes. Below is a brief summary of
Application Notes for Step Recovery Diodes. All
of these are available from your local HP Sales
Office or nearest HP Components Authorized
Distributor or Representative.

289

STEP RECOVERY DIODE SELECTION GUIDE
LEGEND

Part Number (5082Glass
Package
Chip

0017

-

0032

0180

-

0113,0114

0021
0015
-

-

0112
-

)
Ceramic
Package

0300

75

0241

50

-

35

0310

40

0132

35

0243

35

0151,0153

0253

25

-

0803

0800

75

-

0815

0805

60

0810

60

0018

-

-

0090

0825

0820,0821

45

0020

0833

0830,0320

30

0008

0840

0335,0830,
0885

25

page 292

page 294

t:====
::::::::J TYPICAL OUTPUT FREQUENCY
TYPICAL INPUT FREQUENCY

VBR
(V)

=--=-=====-=:J
c: ==.:-~-=-=::: =:::::J

C

C.:-..:-_-_--=-_-_-~.::J

C:.:-.:-.:-.:-_-":-':":-':_-==::J
C:'::::. .-=--_-..:-..:-":--=:l
[=::.::::.-:::::::::.. :::::J
C-:...-_-_--=--==-=-:.=:::J

c======-=-:: .:::=J
C=======::'-:'-=::::J
r

L.

[

page 297

FREQUENCY (GHz)

~rl-'I----~I~f'~'~I--~--~---'I------~Ir--------'1
25 50
100 1 2
12
18
26
BANDS

290

L

S

c

x

Ku

K

(

STEP RECOVERY DIODE ALPHANUMERIC INDEX
Page Number

(

Commercial
Data Sheet

Reliability
Data Sheet

Chip
Chip
Chip
Chip
Chip

292
292
292
292
292

301
301
301
301
301

Recovery
Recovery
Recovery
Recovery
Recovery

Diode Chip
Diode Chip
Diode Chip
Diode
Diode

292
292
292
294
294

301
301
301
301
301

Step
Step
Step
Step
Step

Recovery
Recovery
Recovery
Recovery
Recovery

Diode
Diode
Diode
Diode
Diode

294
297
294
294
294

301
301
301
301
301

5082-0241
5082-0243
5082-0253
5082-0300
5082-0310

Step
Step
Step
Step
Step

Recovery
Recovery
Recovery
Recovery
Recovery

Diode
Diode
Diode
Diode
Diode

5082-0032

297
297
297
297
297

301
301
301
301
301

5082-0320
5082-0335
5082-0800
5082-0803
5082-0805

Step
Step
Step
Step
Step

Recovery
Recovery
Recovery
Recovery
Recovery

Diode
Diode
Diode
Diode
Diode

5082-0020
5082-0008

297
297
297
294
297

301
301
301
301
301

5082-0810
5082-0815
5082-0820
5082-0821
5082-0825

Step
Step
Step
Step
Step

Recovery
Recovery
Recovery
Recovery
Recovery

Diode
Diode
Diode
Diode
Diode

5082-0090
5082-0090
5082-0090

297
297
297
297
294

301
301
301
301
301

5082-0830
5082-0833
5082-0835
5082-0840
5082-0885

Step
Step
Step
Step
Step

Recovery
Recovery
Recovery
Recovery
Recovery

Diode
Diode
Diode
Diode
Diode

5082-0020
5082-0020
5082-0008
5082-0008
5082-0008

297
294
297
294
297

301
301
301
301
301

Part No.

Description

Chip

5082-0008
5082-0015
5082-0017
5082-0018
5082-0020

Step
Step
Step
Step
Step

Recovery
Recovery
Recovery
Recovery
Recovery

Diode
Diode
Diode
Diode
Diode

5082-0021
5082-0032
5082-0090
5082-0112
5082-0113

Step
Step
Step
Step
Step

5082-0114
5082-0132
5082-0151
5082-0153
5082-0180

5082-0015

5082-0015
5082-0018
5082-0018
5082-0032

5082-0018
5082-0017
5082-0021

291

rli~ HEWLETT
~~ PACKARD

5082-0008
5082-0015
5082-0017

STEP RECOVERY
DIODE CHIPS

(

5082~0018

5082-0020
5082-0021
5082-0032
5082-0090

Features
OPTIMIZED FOR BOTH LOW AND HIGH ORDER
MULTIPLIER DESIGNS FROM UHF THROUGH
Ku BAND
PASSIVATED CHIP FOR MAXIMUM STABILITY
AND RELIABILITY
GOLD TOP CONTACT FOR LONG SHELF LIFE
AND BONDABILITY
OutlineD1

Description

!

5082.

These diodes are manufactured using modern epitaxial
growth techniques. The diodes are passivated with a thermal oxide for maximum stability. The result is a family of
devices offering highly repeatable, efficient and reliable performance. Both the anode and cathode contact
metalizations are gold aHowing long shelf life and repeatable bondability. These diodes are designed to meet the
general requirements of MIL-S-19500.

Of men..
sioo
0020

0008

001$

0017

0

0,13
15'

0.06
12.51

0,15
!6!

x

0.38

0.38

0.39
'16,S'
0.64

!1$j

,151

0.38
nS)

Y

0.11

0.11

0.11

(4,5)

14.51

{4,51

OIM~NSIONS

Maximum Ratings

IN

0018
0,05
'2)

0021
0.22

0032

0090

0.32

0.15

18.5·

'12,5)

.e,

0.38

125)

0-51

0.38

 15

PASSIVATED CHIP FOR MAXIMUM STABILITY
AND RELIABILITY
AVAILABLE IN A VARIETY OF PACKAGES

Description/Applications
These diodes are manufactured using modern epitaxial
growth techniques. The diodes are passivated with a thermal
oxide for maximum stability. The result is a family of devices
offering highly repeatable, efficient and reliable performance
which are designed to meet the general requirements of
MIL-S-19500.

25.4 (1.00f
MIN.

CATHOOE

These diodes are intended for medium and low power multipliers. Typical applications are in local oscillators, especially
where low phase noise is required, in terrestrial communications, satellite communications, TYRO, mobile communications and test equipment. Input frequencies extend down to
10 MHz with output frequencies reaching 26 GHz.

DIMeNSIONS IN
WlIU... IMIi:TERSAND
UNCHES),

2M 11.00)
MIN.

--'---*-

Maximum Ratings

0
II

-I

Outline 11

0.1;6 10.0221

1-0.46" io.61$f

Junction Operating and
Storage Temperature

. . . . . . . . . . . . . -65°C to 200°C
Operation of these devices within the above
temperature ratings will assure a device
Median Time To Failure (MTTF) of approximately 1 x 107 hours.
°
DC Power Dissipation at TeASE = 25' C . . .. 200 C - Tcase

Mechanical specifications
The HP outline 15 and 11 packages have glass hermetic seals
with dumet leads. The maximum soldering temperature is
230° C for 5 seconds, The leads on out I ine 15 should be
restricted so that any bend starts at least 1.6 mm (.063 in.1
from the glass body.

°jc
Soldering Temperature . ............... 230°C for 5 sec.

294

(

\ Electrical specifications at TA = 25 0 C

Part

Maximum
Junction
Capacitance
OJ

Number

(pF)

Minimum
Breakdown
Voltage
VaR
(V)

Minimum
Cutoff
Frequency
(GHz)

(psec)

Ie

Transition
Tlme[1]
Maximum
Charge

tt

Minimum
Lifetime

Lewl

T

(pc)

(nsec)

Package
Outline

5082-0803

6.0'

70

100

400

1600

200

16

5082-0113

4.65

35

260

1600

80

11

5082-0180

4.45

50

-

226

1500

100

5082-0816

4.0'

50

140

320

1500

100

11
'15

5082-0114

3.65

35

-

225

1500

80

11

5082-P825

2.0'

45

160

160

300

30

15

15

5082-0833

1.S'

25

175

90

300

10

5082-0112

1.55

35

175

1000

50

11

5082-0151

0.65

15

-

100

200

10

15

5082..Q840

0.60'

15

300

100

10

15

0.40

25

-

75

5082-0153

95

200

10

15

Test
Conditions

f= 1 MHz
VR=10V
'VR "'SV

IR""10p,A

fc'"

IF'" 10 mA
IR=6 rnA

1

211'Rs

Cj

Notes:
1. The transition times shown for the package 15 devices are limited by the package inductance to a minimum of 100 ps, The lower
transition times shown for the -0833. -0840, -0151, and -0153 are based on the performance of the chip,
2, Typical HJC for Outline 15 is 600"C/W and for Outline 11 is 300" C/W,

Figure 1. Test circuit for transition time. The pulse generator circuit is adjusted for a 0.5 A pulse when testing 5082-0151 and -9840. A

pulse of 1 ,OA is used for all other diodes, The bias current is adjusted for the specified stored charge leveL The transition time is read
between the 20% and the 80% points on the oscilloscope,

295

/

CURRENT
SOURCE

-

HP4815A
VECTOR IMP
METER

r--

D.U.T.

PO 2005
PRECISION
POWER SUPPLY

-

HP 3430A
D.V.M.

Figure 2. Test set-up for measurement of series resistance. The D.U.T. IS forward biased (IF) and the real part of the diode impedance
is measured at 100 MHz. The D.V.M. is set up to read the real part on the Vector voltmeter. The precision power supply is used to
offset the test circuit resistance. Rs is measured at IF ~ 100 mA except 5082-0803 where IF ~ 500 mAo

+v

r--- ---,I
I
:~
I

PULSE
GENERATOR
HP

8082A

:1
I -=-

1.OK

I

SAMPllNG
OSCillOSCOPE
HP

17226

I

I

11~iF
50~

I
I
I

D~r

I

L_'~':..._~~..J
son

""
Figure 3. The circuit for measurement of the effective minority carrier lifetime. The value of the reverse current {IR) is approximately
6 mA and the forward current (IF) is 10 mA. The lifetime (r) is measured across the 50% paints of the observed wave shape. The input
pulse is provided by a pulse generator having a rise time of less than one nanosecond. The output pulse is amplified and observed on
a sampling oscilloscope.

296

(

/

Flin-

a!a

HEWLETT
PACKARD

CERAMIC PACKAGED
STEP RECOVERY
DIODES

5082-0132
5082-0241
5082-0243
5082-0253
5082-0300
5082-0310
5082-0320
5082-0335

Features
UHF THROUGH Ku BAND DIODES
For Low Order and High Order Multipliers
RFTESTED
For Guaranteed Performance (5082-0300 Series)
HERMETIC PACKAGE
For Industrial/Military Environments

Description/Applications

Olllll1lt41

HP Step Recovery Diodes are constructed using modern epitaxial techniques. Oxide passivation insures maximum
stability and reliability. Devices are available in many package
styles.

(

These devices are intended for use as low and high order
harmonic generators requiring the ultimate in performance
and reliability. They excel as doublers as well as high order
multipliers, because the fast transition time design allows full
usage of the forward stored charge effect in improving nonlinearity and efficiency for frequency multiplication. These step
recovery diodes have the basic design capability to meet the
general reliability requirements of MIL-S-19500, in addition
to the special reliability requirements of man-rated space
systems.

-r

O.Kt.0251
MAX.

CATHODE
HEATSlNl(
(lp"o.2pF
Lp'" hH

Out\itle 11

Maximum Ratings
Junction Operating and
Storage Temperature .................. -65° C to 200° C
Operation of these devices within the above
temperature ratings will assure a device
Median Time To Failure (MTTF) of approximately 1 x 107 hours.
DC Power Dissipation at
2000 C _ T
TCASE = 25°C .........................
CASE
9jc
Oulllne40

Soldering Temperature .....•........... 230° C for 5 sec.

Mechanical Specifications
Hewlett-Packard's Step Recovery Diodes are available in a
variety of packages. The metal ceramic packages are hermetically sealed. The anode studs and flanges are gold-plated
Kovar. The cathode studs aie gold-plated copper. The maximum soldering temperature for metal-ceramic packages is
230· C for 5 seconds.

OIMENSIONS IN MILLIM~TERSANO flNCHESt

297

5082-0800
5082-0805
5082-0810
5082-0820
5082-0821
5082-0830
5082-0835
5082-0885

Electrical specifications at TA = 25° C

Part
Number
5082'()SOO

3.5

5.0

75

100

40

400

1500

5082-0241

-

4.6'

65

-

31

200

1500

5082-0805

2.5

3.5

60

140

31

320

5082.()81O

1.5

2.5

60

140

31

5082.()82Q

0.7

1.5

45

160

S082.()821

0.7

1.5

45

160

5082'()132

1.5'

35

5082-0243

-

1.2'

35

-

5082-0830

0.35

1.2

25

5082-0253

-

O.S'

25

5082-0835

0.1

0.5

15

5082-0885

0.1

0.5

Test
Conditions

f= 1 MHz

Minimum
Breakdown
Yoltage
YeR
(V)

Frequency

Transition
Time

Junction
Capacitance
CJ
(pF)
Min.
Max.

Minimum
Cutoff

Minimum
Maximum Charge Lifetime
Level
T
Package
It
(p$ec)
Oumne
(pC)
(nsec)

Typical
Thermal
Resistance

Typical

Output

°jc
(oC/W)

Power
Po
(W)

200

15

10

100

20

-

1500

100

20

6

260

1000

80

25

4

31

160

300

30

30

2.5

41

160

300

30

30

2.5

31

175

1000

50

40

31

200

600

40

50

-

200

31

100

300

10

45

1.0

-

31

100

200

10

75

-

350

31

75

100

10

60

0.3

15

350

56

75

100

10

60

iR=10",A

fe '"
1

fe
(GHz)

IF= 10 rnA
iR"'6mA

---

VR=6V
'VR = 10 V

0.3
Asa
doubler
at
midband.

2 "Rs Cj

RF Tested Diodes at TA = 25° C
ELECTRICAL SPECIFICATIONS

Part
Number
5082-

Minimum
Output

Output
Frequency,

Juncllon
Capacitance
at -10 V.

(;J)

Power,

poll]
{WI

Min.

Max.

Breakdown
VoHage
at IR= 10 IJ.A
VeR
(V)
Max.
Min.

Typical
Transition Time

Maximum
Thermal

Gharge

Typical
Lifetime

(ps)

Lewei
(pc)

(ns)

Resistance.
°jc
(·CfW)

Package
Outline

(GHz)

N
Order

0300

2

Xl0

2.0

3.2

4.7

75

100

14

40

300

2400

200

0310

6

X 10

0.4

1.6

2.7

40

60

30

41

160

1000

75

0320

10

X5

0.23

0.35

1.0

25

40

60

-11

75

300

25

0335

16

X8

0.03

0.25

0.5

20

30

75

31

80

100

15

fo

Note:
1. Guaranteed multiplier tested results. Input power is:
5082-0300
15 W
5062-0320
2W
5082-0310
4W
5062-0335 0.65 W

298

It

T

C:

10

I

~

~

~

~

I

.OO,~

~

POWER IN - W

POWER IN-W

Figure 1. Typical Output Powers vs.
Input Power at TA = 25' C. The 5082-0300
is measured in a x 10 multiplier with P,N
at 0.2 GHz and Po at 2.0 GHz: The
5082-0310 is measured in a x 10
multiplier with P,N at 0.6 GHz and Po at
6.0 GHz.

o

~

0

~

~

.01

~

0

0

w

~

.01 ~

~
~

0

~

I

I

~
~

~

~

•

~

~

•

.1

n

!

fa (GHtl

Figure 3. Predicted power output curves
for 03XX step recovery diodes in X3, X4,
and X5 multiplier applications. These
results were obtained using computer
optimization programs.

Figure 2. Typical Output Power vs. Input
Power at T A = 25' C. The 5082-0335 is
measured in a x 8 multiplier with P,N at
2 GHz and Po at 16 GHz. The 5082-0320
is measured in a x 5 multiplier with P,N at
2.0 GHz and Po at 10 GHz.

Figure 4. Test circuit for transition time. Tne pulse generator circuit IS adjusted for a 0.5 A pulse when testing 5082-0253, -0335, -0835, and
-0885. A pulse of 1.0 A is used for all other diodes. The bias current is adjusted for the specified stored charge level. The transition time is
read between the 20% and the 80% pOints on the oscilloscope.

CURRENT

SOURCE

-

D.U.T.

I--

HP 4815A
VECTOR IMP

METER

r--- ---,I

:F
PULSE
GENERATOR
HP
8082A

PRECISION
POWER SUPPLY

r--

50n

D.V.M.

:1
I -=I

I
l' O.F

I
I
I
1,OK

I
I

I

SAMPLING
OSCILLOSCOPE
HP
1722B

D~r I

L_'~~_~~-1
son

Figure 6. The circuit for measurement of the effective minOrity
carrier lifetime. The value of the reverse current URI is
approximately 6 mA and the forward current IIFI is 10 mAo The
lifetime ITI is measured across the 50% pOints of the observed
wave shape. The input pulse is provided by.a pulse generator
having a rise time of less than one nanosecond. The output pulse
is amplified and observed on a sampling oscilloscope.

Figure 5. Test set-up for measurement of series resistance. The
D.U.T. is forward biased (IF) and the real part of the diode
impedance is measured at 100 MHz. The D.V.M, is set up to read
the real part on the Vector Voltmeter. The precision power
supply is used to offset the test circuit resistance. Rs is measured
at IF = 100 mA except -0800 where IF = 500 mAo

299

300

(

Flio-

RELIABILITY DATA
STEP RECOVERY DIODES

HEWLETT

~~ PACKARD

Description
For applications requiring component reliability estimation,
Hewlett-Packard provides reliability data for all families of
devices. Data is initially compiled from reliability tests run
prior to market introduction to demonstrate that a product
meets design criteria. Additional tests are run periodically.
The data on this sheet represents the latest review of
accumulated test results.

o

Applications
This information represents the capabilities of the generic
device. Failure rates and MTTF values presented here are
achievable with normal MIL-S-19500 TX level screening.
Reliability can only be guaranteed by testing specified lots
of devices, under specified conditions, with specified LTPD
levels.

400
350

E

300

........
.........

w

a:

::J

250

f-

ffi"

(

~f-

......... r-,
200
EA -= 1.61;iV

Z
0

;::
u
z
~

r---. t--. ....
......

150

r-

r--...
100
102

10'

104

10'

10'

107

10'

109

MTTF (HRS.I

Mean Time To Failure vs. Junction Temperature

Burn-In and storage
Preconditioning and screening tests are recommended for devices terminating in high reliability equipments. The following
results were obtained with preconditioning and screening.
Telll

Test Conditions

L TPD/1000 Hours

High Temperature Life

1.000 hrs. min. storage time at 150" C

2

Steady State Operating Life

1,000 hrs. min. operating time at TA = 150°C, PFM = 175 mW.
VRM'" 12 V, f=
Hz, TA= 25·C

3

eo

301

Environmental
The following cumulative test results have been obtained from reliability testing performed at HP Components Division, in
accordance with the latest revisions of Military Semiconductor Specifications MIL-STD-19S00, MIL-STD-202 and MIL-STD-7S0,

Test
Temperature Cycling

MIL-STO-7S0
Reference
1051,1
Cond, B

Test Conditions

LTPO

5 cycles from -65"C to t150°C, ,S hours at
¢xtremes, 5 min, transfer

5

Thermal Shock

10S6,1

5 cycles from O°C to +100·C, 3 sec, transfer

S

Moisture Resistance

1021.1

10 days, 90-98% RH, -10 to +65' C,
non-operating

8

Shock

2016.1

5 blows each Xl, Y1, Y2, 1500 G, O,S msec pulse

10

Vibration Fatigue

2046

32:t 8 hrs, each X, Y, Z, 96 hr. total,
60 Hz, 20 G min,

10

Vibration Variable
Frequency

2056

4,4 minute cycles each X. Y, Z. at 20 G min.
100 to 2000 Hz

10

2006

1 minuteeachX1,Y1, Y2,at20,000G

10

2037,1
Cond.F

Pkg, 32 - 2 Ibs, for 3 sec, 120· apart

20

35' fog for 24 hours

20

Constant Acceleration
Terminal Strength
Salt Atmosphere

1041.1

302

o

o

c

c

305

FliOW

INTEGRATED
PRODUCTS

HEWLETT

~~ PACKARD

SWITCHES
MODULATORS
LIMITERS
MIXERS
COMB
GENERATORS

PIN DIODE SWITCHES

PIN ABSORPTIVE MODULATORS

• Broadband, .1-18 GHz
• 33130 Series Optimized
for Low I nsertion Loss

• son Match at all
Attenuation Levels
• Greater than Octave
Band Coverage

• 33140 Series Optimized
for Fast Swtichlng, 5 ns
• ~"edium and High Isolation
Units Available In Each Series

• SOns Switching (10ns
Available on Special
Request)

• Hermetic PIN Diode Modules

• Hermetic PIN Diode Modules

• Add-On Driver Available
for 33140 Series

PIN DIODE LIMITERS
• Broadband, .4-12 GHz

DOUBLE BALANCED MIXERS

• Low Limiting Threshold, 5mW Typical, 8-12 GHz

• Broadband
10534 Series: .05-150 MHz
10514 Series: .2-500 MHz

• Low Insertion Loss, 1.5dB Typical, 8-12 GHz
• Low Leakage, 20mW Typical, 8-12 GHz
• Hermetic PIN Diode Module
33701A - Module
33711 A - Module with SMA Connectors

• Low Conversion Loss
• Low 1/f Noise, Typically
Less than 100 nV per
Root Hz
• High Isolation Between
Ports

COMB GENERATORS
• 100,250,500 and 1000 MHz
Drive Frequencies (Drive
Frequencies in 50-1500 MHz Range
Available on Special Request)

• Wide Range of Package Styles
"A" Versions: BNC Jacks (Options Available)
"B" Versions: Pins for PC Mounting
"C" Versions: Miniature, Pins for PC Mounting

• Input Matched to

• Hermetically Sealed Schottky Diodes

son

• Self-biased, no External Bias Required
• Narrow Output Pulses:
130ps Pulse Width with 10V Amplitude

HMXR-5001 WIDEBAND DOUBLE BALANCED
MIXER

• Broadband Output Comb Up to 40 GHz Available

• Wideband - 2 to 12.4 GHz
Usable to 18 GHz

• Hermetic Step Recovery Diode Modules

• Wide IF Bandwidth
0.01 to 1.0 GHz

33150A MICROWAVE BIAS NETWORK
0.1-18 GHz
• Wideband
• Low Insertion Loss

•

• High RF to DC
Isolation

• Rugged Construction
• Hermetically Packaged Diodes
For a copy of the Microwave Integrated Products Catalog
(5952-98710) write: Inquiries Mgr., Hewlett-Packard, 1507 Page
Mill Road, Palo Alto, CA 94304.

306

o

o

309

PACKAGE OUTLINES
All dimensions in millimeters (inches), except where noted.
For complete package specifications refer to individual product specification sheets.
Drawings are not to scale.

1-____ ~~,jl3~ 1~l----------l
-~ (~)-t-~ (!.!:Q}:t~ (~)-200 (7.9)
1_'90 (1.4)
200 (7.9) -

I

0.38

I

- - - (15) -------

06
01

'" See data sheet.

1------------- ~~~ l~~: -------------1

L

225 (9)

2OOl8l - , .

250 (1m

2OOl8I

--IL

225 (9)
175 (7)

225 (9)

'2OOl8i-

<~::][rr-------':l~
~
8 (0.32)

I

\
DIMENSIONS IN

",m

7________________1____~

(1/1000 inch)

60 (2.4)

07

03

rr------------~~----------~

L

/GOlDBEAM

t
" \
g~ """PLATINUM
8 (.3)

s\:

METALLIZATION

GLASS

;:r

DIMENSIONS IN J..lm (1/1000 INCH)

04

08

310

4OlT.6i

All dimensions in millimeters (inchesl, except where noted.
For complete package specifications refer to individual product specification sheets.
Drawings are not to scale.

(/
110 (4)

-WID)

1
0.86 (.034)

~

0.64 (.025)
MAX.

DIMENSIONS IN,u.m (1/1000 inch)

1

If.--,.98
~ (.086)
I 0.30 (.012)
(.078) --1 D.25 (.0101

10

38

31

~:f)
O~oo)

~
(0.073)
1.70 tu:067)

0.58 (.023)

l=-t

,~--._

I

--r

~

~

L
5.38 (.212)
4.70 (.185)

25.4 (1.001

MIN.

g:U=-o-~
11

(.,23)_1 D.ii (.014)
I-~
2.99(.118)
~

1.911.075)
1.42 (0.58)

4.06 (0.16)

0.28 (.011)

il.2i fiiiiii
3-48
UNC-2A
HEAT SINK

Q'

12
L.J
2 .•7 (.105)

----as4 (.100) ----

O-::J.OO)

1.93
(.076)
1.73 f.Oiil

40

-<~qMIN'
I
I

(

4.32 (.170)

-=r

1_

ir
0.58 (.023)

o.3•

25.411.00)
MIN.

g;~-[)--~

(.014)

3.12 (.,23)1
2.99 (.118)

I

1.S0 (.071)
1.37 (.054)

I

1.63 (.064)
1.52 (.060)

..!
ANODE-HEAT SINK

;-

(4'3)~"0
[~80
__
_dJ__
___
..,

--r

-+

3.43(.135)
2.90 (.114)

15

IL

I

1 .• 3 (.064)

~

f-~:~~ ::~~:~~

=+'_+

i
~(5.11
,0 4 3
1. 1

41

130(5.1)

110(4.3)

':+t
t

(0.4) 10

(0.31 T

720 (28.3)

LI'

'L !:i¥'

26 MIN (1)

680(26.8)

iilIII,

GLASS SILICON

220 IB.7)

180 l7.ii

~(·OS5) DIA.

H 1.30 (.051)

. -

320112.6)

, . 2 7 ; ' : ; 0 ' CATHODE
1.02 (.040)
~
Lp".3nh
Cp=.13pF

280 (11.0)

21

44

311

II--

!.,~t044)D ---1.I

I

110 (4)

90(3.5)

CB (.052)
1.24 (]j4§)

All dimensions in millimeters (inches:l, except where noted.
For complete package specifications refer to individual product specification sheets.
Drawings are not to scale.

I

1.57 (0.062)

ill (0.058)
2.16 (0.085)

1:65 (0.065)
~

).

~. ill~

'''. / / 'to.
~;>/~'.
~/

1.52 (0.060)

1 02 (0.040)

"-..,
0.38 MIN. (0.015)
(4 PLACES)

TYPICAL
CHIP
LOCATION

49

61
1.40 (.055) DIA.
1.30 (.051)

CATHODE

-j-----------lI

1:]--,
,

1.27 (.050)
1.02 (.040)

---'---*56

1.27 (0.050)
MAX.

0.36 (0.014)
MAX.

(O~c:a04)
TYP.

===j~I""'II-"=;===f
~

C2

3.81
(0.150)
MIN.

//1/

/3.18 (0.125)
2.95 (0.115)

//Je

0.10
(0.004)
TYP.

0.38 (0.015)
MAX.

60

.~=

t

~
C4

312

==t

All dimensions in millimeters (inches!, except where noted.
For complete package specifications refer to individual product specification sheets.
Drawings are not to scale.

(

LID DIAMETER

2.59 {QJW
2.06 (0.081)--

0.56 (0.022)
0.46 (O.Q1S)

2.79 (D.11e»

L-_ _ _-\ 229 (0.090)

t

1------, ~

2.69 (0.106)
2.34 (0.0921 ~

r----!

I-- 4.06 10.160)
3.56 (0.140)

J

SQUARE

T

1.27 (0.05) MAX

~I=~=fA-------'I===~
~:~~ i~:~~~: T

0.20 (O.OOS)
O.10l([OO4T

O.89~

~

0.64 (0.025)

'D-- =1

0.15 (0.006)

0.08 (Q1i03'j

=f====~===~==

0.64 {G.02S} ]
MAX

H4

E1

ct

'~l~

5'0Bl'20)
I...._.8.13 (.32)_~ MAX •
MAX.

0.79 (0.031)
TVP

LEAD LENGTH 19.05 (0.75) MIN.

tcJj-----r:

q

G1/G2

0.10 (0.004)
TYP.

J.84 (0.033)
0.53 (0.021)

HPAC-70GT

0.58 (0.023)

0:43 (0.017)

CATHODE

~

('..,

b

\,--~
I 2.64
~~

(O.'O~)

c::::J~
I

(0.092-4. 3,30 (0,130)

SQUARE

0.20 (0.008)
0.10 ~)
KOVAR LEADS.
Au PLATED"

t

J

MIN.

0.89 (0.035)

T

r = = = = f 6 4 (0.025) 0.'8 (0.007)

=

0.08 (0.003)

0.10 (0.004)

=-'--

L~T
r

T

1.3 (0.05) TYP.

H2

HPAC-100

313

All dimensions in millimeters (inches), except where noted.
For complete package specifications refer to individual product specification sheets.
Drawings are not to scale.

HPAC-100X

(~~8~) TYP.

~ (ci~~)

3.25 (0.128) orA.

/TVP.

2.0

(0.080}--·~

------'"".>--_.--1

0.64 (0.025)
0.38 (0:011))

+

t=:l

T

'"

+

TV":.II. __1.O
(0.040)
TYP.

0.102
(0.004)
TYP.

T~P.

It:

I

5.1 TVP

I
~

~~~.(~~~~ (6.~8) D-- (o~064) ~~ic~~~~s

1.27
(0.050)

rr-

I

~I
. '.-'1(0.20)
..'

0.79 RTYP.
(.031)
"".:

(0.03)
TYP.

L

r-

.'0

TVP. :

I 0.76

1.52
I
(0.060)----1
TYP.

~
3.05
.
.. (D.12) TYP.

TYP.

~

I

L--L5.46 (0.215)
4.96 (o:T95l

HPAC-200
HPAC-200 GB/GT

314

.

(

HP Components
Authorized Distributor
and Representative Directory
May 1984

United States
Alabama

California (COnt.I

Florida (Conl.i

Iowa

Hall-Mark Electronics
4900 Bradford Drive
Huntsville 35805
(205) 837-8700

Schweber Electronics
3110 Patrick Henry Drive
Santa Clara 95050
(408) 748-4700

Hall-Mark Electronics
15301 Roosevel t 81 vd.
Sui te 303
Clearwater 33520
(813) 530-4543

Schweber Electronics
5270 North Park place N.E.
Cedar Rapids 52402
(319) 373-1417

Hami 1 ton/Avnet

wyle Laboratories
Electronics-Marketing Group
124 Maryland Street
E1 Segundo 90245
(213) 322-8100

Hamilton/Avnet Electronics
6801 N.W. 15th Way
Ft. Lauderdale 33309
(305) 971-2900

4812 Commercial Drive
Huntsville 35805
(205) 837-7210
Schweber Electronics
2227 Drake Avenue, S.W.
Sui te 14
Huntsville 35805
(205) 882-2200

Arizona
Hamilton/Avnet
505 South Madison
Tempe 85281
(602) 231-5100
wyle Labora tor ies
Electronics Marketing Group
8155 North 24th Avenue

Phoenix 85021
(G02) 249-2232
in Tucson (602)

884-7082

Calilornia

(

Hall-Mark Electronics
1110 Ringwood Court
San Jose 95131
(40B) 946-0900

Hanti 1 ton/Avnet
4103 Northgate Blvd.
Sacramento 95834
(916) 925-2216

Hamilton/Avnet
4545 Viewridge Avenue
San Diego 92123
(619) 571-7510
Hami 1 ton/Avnet
1175 Bordeaux Drive
sunnyvale 94086
(408) 743-3355
Hamil ton Electro Sales
3170 Pullman Street
Costa Mesa 92626
(714) 641-4166
Hamil ton Electro Sales
10950 W. Washington Blvd.
Culver City 90230
(213) 558-2121
SchwebtH: Electronics
21139 Victory Boulevard
Canoga Park 91303
(213) 99q -4702

Wyle Laboratories
Electronics Marketing Group
17872 Cowan Avenue
Irvine 92714
(714) 863-1611
wyle Laboratories
Electronics Marketing Group
IllSl Sun Center Drive
Rancho Cordova 95670
(916) 638-5282
Wyla Laboratories
Electronics Marketing Group
9525 Chesapeake Drive
San Diego 92123
(619) 565-9171
wyle Laboratories
Electronics Marketing Group
3000 Bowers Avenue
santa Clara 95052
(408) 727-2500

Colorado
Hami 1 ton/Avnet
8765 East Orchard
Sui te 708
Englewood 80111
(303) 740-1000
Wy1e Laborator ies
Electronics Marketing Group
451 E. 124th Avenue
Thornton 80241
(303) 457-9953

Connecticut
Hami 1 ton/Avnet
Couunerce Dr i ve
Commerce Industrial Park
Danbury 06810
(203) 797-2800
Schweber Electronics
Finance Drive
Commerce Industrial Park
Danbury 06810
(203) 792-3500

Florida

Schweber Electronics
17822 Gillette Avenue
Irvine 92714
(714) 863-0200

Hall-Mark Electronics
16 71 W. McNab Road
Ft. Lauderdale 33309
(305) 971-9280

Schweber Electronics
1771 Tribute Road
Suite B
Sacramento 95815
(916) 929-9732

Hall-Mark Electronics
7648 southland Blvd.
Suite 100
Orlando 32809
(305) 855-4020

Hamilton/Avnet
3197 Tech Drive North
St. Petersburg 33702
(813) 576-3930
Hamilton/Avnet
6947 university Blvd.
Winter Park 32792
(305) 628-3888
Schweber Electronics
181 Whooping Loop
AltaMonte springs 32701
(305) 331-7555
Schweber Electronics
2830 N. 28th Terrace
Hollywood 33020
(305) 927-0511

Kansas
Hall-Mark Electronics
10815 Lakeview Dr ive
LenexCi 66219
(913) 888-4747
Hamilton/Avnet
9219 Quivlra Road
Overland Park 66215
(913) 888-8900

Maryland
Hall-Mark Electronics
6655 Amberton Drive
Baltimore 21227
(301) 796-9300

Georgia

Hamilton/Avnet
6822 Oak Hall Lane
Columbia 21045
(301) 995-3500

Hall-Mark Electronics
6410 Atlantic Boulevard
Suite 115
Norcross 30071
(404) 447-8000

Schweber Electronics
9330 Gaither Road
Gaithersburg 20760
(301) 840-5900

Hami 1 ton/Avnet
5825 D. Peachtree Corners East
Norcross 30092
(404) 447-7507

Massachusells

Schweber Electronics
303 Research Drive
Sui te 210
Norcross 30092
(404) 449-9170

Illinois
Hall-Mark Electronics
1177 Industrial Drive
Bensenville 60106
(312) 860-3800
Hami 1 ton/Avnet
1130 Thorndale Avenue
Bensenville 60106
(312) 860-7700
Schweber Electronics
904 Cambridge Drive
Elk Greve village 60007
(312) 364-3750

Hami 1 ton/Avnet
50 Tower Office Park
Woburn 01801
(617) 273-7500
Schweber Electronics
25 Wiggins Avenue
Bedford 01730
(617) 275-5100

Michigan
Hami 1 ton/Avnet
2215 29th Street S.E.
Grand Rapids 49508
(616) 243-8805
Hami 1 ton/Avnet
32487 Schoolcraft R"oad
Lh·onia 48150
(313) 522-4700

Indiana

pioneer-Standard
13485 Stamford
Livonia 48150
(313) 525-1800

Hami 1 ton/Avnet
485 Gradle Drive
Carmel 46032
(317) 844-9333

Schweber Electronics
12060 Hubbard Drive
Livonia 48150
(313) 525-8100

Pioneer-Standard
6408 Castleplace Drive
Indianapolis 46250
(317) 849-7300

315

Minnesota

New York Icont.)

Ohio Icont.!

Texas I conI.)

Hall-Mark Electronics
'1838 12th Avenue, So.
Bloomington 55420
(612) 854-3223

Hamil ton/Avnet
16 Corporate Circle
East Syracuse 13057'
(315) 4"37-2641

Hamllton/AVnet
3939 Ann Arbor
Houston 77063
(713) 780-1771

Hami 1 ton/Avnet

Schweber Electronics
7865 Paragon Road
Suite 210
D,ayton, 45459
(513) 439-1800

Hami 1 ton/Avnet
5 Hub Drive
Melville 11746
(516) 454-6060

Oklahoma

Schweber Electronics
7424 w. 78th Stl.'.eet
Edina 55435
(612) 941-5280

Hamil ton/Avnet
333 Metro Park Drive
Rochester 14623
(716) 475-9130

Hall-Mark Electronics
5460 South 103rd E. Avenue
Tuls'a 74145
(918) 665-3200

Missouri

Schweber Electronics
2 Townline Circle
Rochester 14623
(716) 424-2222

Schweber Electronics
4815 S. Sheridan
Sui te 109
Tulsa 74145
(918) 622-8000

10300 Bren Road E.

Minneapolis 55343
(612) 932-0600

.

Hall-Mark Electronics
2662 Metro Blvd.
Maryland Heights 63043
(314) 291-5350

Hamilton/Avnet
13743 Shoreline Court
Earth City 63045
(314) 344-1200

New Hampshire
Schweber Electronics
Bedford Farms; Bldg. 2
Kilton" South River Road
Manchester 03102
(603) 625-2250

New Jersey
Hall-Mark Electronics
spr ingdale Bus! ness Center
2091 springdale Road
Cherry Hill 08003
(609) 424-7300

Schweber Electronics
Jericho Turnpike
Westbury 11590
(516) 334-7474

Hall-Mark Electronics
5237 North Boulevard
Raleigh 27604
(919) 872-0712

Schweber Electronics
5285 North Boulevard
Raleigh 27604
(919) 876-0000

Hall-Mark Electronics
6130 Sunbury Road
Westerville 430U
(614) 891-4555

Schweber Electronics
18 Madison Road
Fairfield 07006
(201) 227-7880

New Mexico

Pennsylvania
Pioneer-Standard
259 Kappa DriVe
Pi ttsburg 15238
(412) 782-2300

Ohio

Hamilton/Avnet

Hami 1 ton/Avnet
10 Industrial Road
Fairfield 07006
(201) 575-3390

Wyle Laboratories
Electronics Marketing Group
5289 N.E. Elam Young parkway
Sui te E-I00
Hillsboro 97123
(503) 640-6000

Hamil ton/Avnet
3510 spring Forest Road
Raleigh 27604
(919) 878-0810

Hall-Mark Electronics
5821 Harper Road
Solon 44139
(216) 349-4632

Cherry Hill 08003
(609) 424-0100

Hamil ton/Avnet
6024 S.W. Jean Road
Bldg. C, Suite 10
Lake Oswego 97034
(503) 635-8831

North Carolina

Hall-Mark Electronics
116 Fairfield Road
Fairfield 07006
(201) 575-4415
1 Keystone Avenue

Oregon

Schweber Electronics
231 Gibraltar Road
Horsham 19044
(215) 441-0600
Schweber Electronics
1000 RIDe Place
Sui te 203
Pi ttsburg 15238
(412) 782-1600

Hami 1 ton/Avnet
4588 Emery Industrial Parkway
Cleveland 44128
(216) 831-3500
Hami 1 ton/Avnet
945 senate Drive
Dayton, Ohio 45459
(513) 433-0610

Schwe~er Electronics
6300 La Calma Drive
Suite 240
Austin 78752
(512) 458-8253

Schweber Electronics
4202 Beltway Drive
Dallas 75234
(214) 661-5010
Schweber Electronics
10625 Richmond Avenue
Sui te 100
Houston 77042
(713) 784-3600

Utah
Hamil ton/Avnet
1585 West 21st S.
Salt Lake City 84119
(801) 972-2800
Wyle Laboratories
Electronics Marketing Group
1959 S. 4130 west
Unit B
Salt Lake City 84104
(BOl) 974-9953

Washington
Hami 1 ton/Avnet
14212 N.E. 21st Street
Bellevue 98006
(206) 453-5844
Wyle Laborator ies
Electronics Marketing Group
1750 132nd Avenue, N.E.
Bellevue 98005
(206) 453-8300

Texas

Wisconsin

Hall-Mark Electronics
12211 Technology
Austin 78759
(512) 258-8848

Hall-Mark Electronics
9625 South 20th Street
Oakcreek 53154
(414) 761-3000

Hall-Mark Electronics
11333 Pagemill Drive
Dallas 75231
(214) 341-1147·

Pioneer-Standard
4800 East 131st S:treet
Cleveland 44105
(216) 587-3600

Hami 1 ton/Avnet
.2111 W. Walnut Hill Lane
. Irving 75062
(214) 659-4111

Hami 1 ton/Avnet
2975 Moorland Road
New Berlin 53151

(4H) 784-4510

Pioneer-Standard
4433 lnterpoint Boulevard
Dayton ,45404
(513) 236-9900

Hall-Mark Electronics
8000 Westglen
P.O. Box 42190
Houston 77042
(713) 781-6100

Schweber Electronics
23880 Commerce Park Road
Beachwood 44122
(216) 464-2970

Hamilton/Avnet
2401 Rutland
Austin 78758
(512) 837-8911

Australia

Australia Icon1.l

Australia Icon1.l

Australia Icont.!

STC-Cannon Components pty. Ltd.
Gabba Towers
4il V",lture Street
Woolloongabba, Qld. 4102
.(61) 07 393-0377
(61) 07 393-0595

STC-Cannon Components pty. Ltd.
605 Gardeners Road
Mascot, New South !1ales 2020
(61) 02 693 1666

STC-Cannon Components pty. Ltd.
396 Scarborough Beach Road
Osborne Park
Western Australia 6017
(Gl) 09 444 0211

VSI Electronics pty. Ltd.
11th Floor
United Dominion' Building
127 Creek Street
Brisbane, Queensland 4000
(61) 07 229 8827

Hami 1 ton/Avnet
2524 Baylor S. E.
Albuquerque 87106
(505) 765-1500

New York
Hall-Mark Electronics
1 Comac Loop
Ronkonkoma 11779
(516) 737-0600

Schweber Electronics
150 S. Sunnyslope
Suite 120
Brookfield 53005
(414) 784-9020

International

STC-Cannon Components pty. Ltd.
unit 2
66 Humphr ies Terrace
Kilkenny
South Australia 5009
(61) 08 268 70B8

STC-Cannon Components pty. Ltd.
248 Wickham Road
Moorabbin
Victor ia 3189
(61) 03 555 9566

316

VSl Electronics pty. Ltd.
Office 8
116 Melbourne "Street
North Adelaide
South Australia 5006
(61) 08 267 4848

VSI ElectrQnics pty. Ltd.
Sui te 3
118 Church Street
Hawthorn, Victorla 3122
(61) 03 819 5044

(

Australia (conti

Denmark

Israel

Singapore

VSI Electronics Pty. Ltd.

Interelko A.P.S.
SILOVEJ
26YO Karlslunde
(45) 3 140700

Motorola Israel Ltd.
Electronics and Engineering
16 Kremenetski Street
P.O. Box 25016
Tel Aviv 67899
(972) 3 338973

oynamar International Ltd.
suite 05-11
12, Lorong Bakar Batu
Kolam Ayer Industrial Estate
Singapore 1334
(65) 747-6188

Unit 1

25 Brisbane Street
East perth, W.A. 6000
(61) 09 328 8499
VSI Electronics Pty. Ltd.
16 Dickson Avenue
Artarmon, N.S.W. 20
(61) 02 439 8622

Finland
Field-OY
Veneentekljantie 18
00210 Helsinki 21
(358) 0 6922 577

Austria
Transistor V.m.h.H
Auhofstr. 41a
A-1l30 Wi en
(43) 222 829451
(43)

222 829404

Belgium
Diode Belgium
LuchtschipstI:aat/Rue De
L' Aeronef 2

1140 Brusselss
(32) 2 216 2100

Brazil

Aimex
Zone Industrielle d'Antony
4H, rue de l' Aubepine
92160 Antony
(33) 1 6662112

So. Africa
Advanced Semiconduc I:.or
Devices (Pty) Ltd.
P.O. Box 2944
Johannesburgh 2000, S.A.
(27) 11 802-58204

Eledra S.p.A.
Viale ElveZla 18
20154 Milano
(39) 2 349751

Spain

Japan

F. Feutrler
H, Benoit Malon
92150 Surensnes
(33) 1 7724646

Ryoyo Electric corporation
Meishin Building
1-20-19 Nishiki
Naka-Ku, Nagoya, 460
(81) 52 2030277

Feutr ier
Rue de Trois Glorievses
42270 St. priest En Jarez
(33) 77 7746733

F.

Ryoyo Electric Corporation
TalYo ShoJi Building
4-6 Nakanoshima
Klta-Ku, Osaka, 530
(81) 6 4481631

Datatronix Electronica LTDA
Av. Pacaembu, 746-Cl1
Sao Paulo
(55} 11 8260111

S.C.A. I .B.
80 rue d'Arcueil
Zone Silic
94150 Rungis
(33) 1 6872313

Canada

Germany

Ryoyo Electric Corporatlon
Konwa Su i ld i ng
12-22 Tsukiji, l-Chome
Chuo-Ku, Tokyo
(81) 3 543771

Hamilton/Avnet
Electronics Ltd.

Distron GmbH
Behaimstr. 3
0-1000 Berlin 10
(49) 30 3421041

Tokyo Electron Company, Ltd.
Sinjuku-Nomura Building
Tokyo 160
(81) 3 3434411

EBV Elektronik
Oberweg 6
0-8025 Unterhaching
(49) 89 611051

Korea

6845 Rexwood Drive
Units 3, 4 &: 5
Mississauga, Ontario L4V lR2
(416) 677-7432
Hami 1 ton/Avnet

Electronics Ltd.
2670 Sabourin Street
St. Laurent
Montreal, Quebec H4S 1M2

(514)

331-6443

Hami 1 ton/Avnet
Electronics Ltd.

(~

France

Italy
Celdis Italiana S.p.A.
Via F. LL Gracchi, 36
20092 Cinisello Balsamo
Milano
(39) 2 6120041

210 Colonnade Road
Nepean, Ontario K7E 7J5

(613)

226-1700

Zentronics, Ltd.
8 Tilbury Court
Brampton, Ontario L6T 3T4
(416) 451-9600
Zentronics, Ltd.
Bay il
3300 14th Avenue, N.E.
Calgary, Alberta T2A 6J4
(403) 272-1021
zentronics, Ltd.
155 Colonnade Road
Units 17 & 18
Nepean, Ontario K2E 7Kl
(613) 226-8840
Zentronics, Ltd.
505 Locke Street
St. Laurent
Montreal, Quebec H4T lX7
(514) 735-5361
zentronics, Ltd.
Unit 108
11400 Bridgeport Road
Richmond, B.C. V6X 1T2
(604) 273-5575
zentronics, Ltd.
546 Weber Street North
Uni t 10
Waterloo, Ontario N2L 5C6
(519) 884-5700
Zentronics, Ltd.
590 Berry Street
Winnipeg, Mani toba R3H 051
(204) 775-8661

Diode Espana
Avda. Brasil 5, 1st planta
Madr id 20
(34) 1 455 3&86

Sweden
AS
Box 103
123 22 E'arsta
(46) 8132160
TRACO

Switzerland
Saerlocher AG
Foerrlibuckstrasse 110
CH-8037 Zuerich
(41) 1 429900
Fabr imex Ag
Kirchenweg 5
Cli-8032 Zuerich
(41) 1 251-2929

United Kingdom
Samsung Electronics Co., Ltd.
Industrial Products Division
76-561 Yeoksam-Dong Kangnam-Ku
Seoul
(82) 2 555 7555

Ingenieurbuero Dreyer
Flensburger Strasse 3
0-2380 Schleswig
(49) 4621 23121
Jermyn GmbH
postfach 1180
0-6277 Camberg
(49) 6434 230

Netherlands
Koning en Hartman
E1ektrotechniek BV
Koperwerf 30
2544 EN Den Haag
(31) 70 210101

SASCO GmbH
0-8011 putzbrunn
Hermann-Oberth-StraBe 16
Munich
(49) 89 46111

New Zealand
Hong Kong

VSI Electronics pty. Ltd.
123 Manukau Road
Epsom, Auckland
(64) 97686042

CET LTD.
1402 Tung Wah Mansion
199-203 Hennessy Road
Wanchai
(852) 5 729376

VSI Electronics Pty. Ltd.
P.O. Box 11145
Wellington
(64) 4848922

India

VSI Electronics pty. Ltd.
295 Cashel Street
Christchurch
(64) 60928

Blue Star Ltd. (REP)
Sabri Complex II Floor
24 Residency Road
Bangalore 560 025
Tel: 55660

Norway

Blue Star Ltd. (REP)
Sahas
414/2 Vir Savarkar Marg
prabhadevi
Bombay 400 025
Tel: 422-6155

HEE'RO Teknisk A/S
P.O. BOX 6596, Rode>loekka
Oslo 5
(47) 2 380286

Blue star Ltd.
(REP)
Bhandari House,
7th/8th Floors
91 Nehru place
New Delhi 110 024
Tel~ 682547

317

Celdis Ltd.
37-39 Loverock Road
Reading, Berkshire
RG3 lED
(44) 734 585171
Jermyn-Mogul Distribution
vestry Estate
Otford Road
Sevenoaks, Kent
TN14 5EU
(44) 732 450144
Macro Marketing Ltd.
Burnham Lane
Slough, Berkshire
SLI 6LN
(44) 628 64422
Farnell Electronic
Components Ltd.
Canal Road
Leeds LS12 2TU
(44) 532-636311

Yugoslavia
Elektrotehna N. Sol. O.
Tozd Elzas N. Sol. O.
Titova 81
61001 LjublJana
(38) 61 347749
(38) 61 347841

SALES & SUPPORT OFFICES
Arranged alphabeticaHy by country
Product Line Sales/Support Key
Key Product Line
A Analyllcal
CM Componenls
C Compuler Syslems Sales only
CH Compuler Systems Hardware Sales and Services
CS Compuler Syslems Sollware Sal.s and Services
E Electronic Instruments &: Measurement Systems
M Medical Producls
MP Medical Producls Primary SRO
MS Medical Producls Secondary SRO
P Personal Computation Products
Sales only for specific product line
.. Supporl only for specific produciline

IMPORTANT: These symbols designale general produclline capabilily. They do nol
insure sales or support availability for all products within a line, at all locations.
Contact your local sales office for information regarding locations where HP support
is available for specific products.

HP dislflbutors are pr;nled in Italics.

HEADQUARTERS OFFICES
If there is no sales office listed for your area, contact one of these
headquarters offices.
NORTH/CENTRAL AFRICA
Hewlell·Packard SA
7, Rue du Bois·du·Lan
CH-1217 MEYRlN 2. Swilzerland
Tei: (022) 83 12 12
Telex: 27835 hpse
Cable: HEWPACKSA Geneve
ASIA
Hewlell-Packard Asia Lid.
61h Floor, Sun Hung Kai Cenlre
30 Harbour Rd.
G.P.O. Box 795
HONG KONG
Tel: 5·8323211
Aller Jan. I, 1984
47th Floor, China Resources Bldg.
26 Harbour Rd., Wanchai
HONG KONG
Telex: 66678 HEWPA HX
Cable: HEWPACK HONG KONG

CANADA
Hewlell·Packard (Canada) Lid.
6877 Gareway Drive
MISSISSAUGA, Ontario L4V 1M8
Tel: (416) 678-9430
Telex: 610-492-4246

EASTERN EUROPE
Hewlett-Packard Ges.m.b.h.
lieblgasse t
P.O.Box 72
A-1222 VIENNA, Austria
Tei: (222) 2365110
Telex: 1 34425 HEPA A
NORTHERN EUROPE
Hewlett·Packard SA
Uilenstede 475
P.O.8ox 999
NL-1180 AZ AMSTELVEEN
The Netherlands
Tel: 20 437771
SOUTH EAST EUROPE
Hewlett-Packard S.A.
7, Rue du Bois-du-Lan
CH-1217 MEYRIN 2, Swilzerland
Tel: (022) 83 12 12
Telex: 27835 hpse
Cable: HEWPACKSA Geneve

OTHER EUROPE
Hewlett-Packard SA
P.O. Box
150, Rte du Nant-D'Avrii
CH-1217 MEYRIN 2, Swilzerland
Tel: (022) 83 8111
Telex: 22486 hpsa
Cable: HEWPACKSA Geneve
MEDITERRANEAN AND
MIDDLE EAST
Hewlell-Packard SA
Mediterranean and Middle East
Operations

Atrina Centre
32 Kifissias Ave.
Paradissos-Amarousion, ATHENS
Greece
Tel: 682 88 11
Telex: 21-6588 HPAT GR
Cable: HEWPACKSA Alhens

EASTERN USA
Hewlett-Packard Co.
4 Choke Cherry Road
ROCKVILLE, MO 20850
Tel: (301) 258-2000

MIDWESTERN USA
Hewlett-Packard Co.
5201 Tollview Drive
ROLLING MEADOWS, IL 60008
Tel: (312) 255-9800
SOUTHERN USA
Hewlett-Packard Co.
2000 South Park Place
P.O. Box 105005
ATLANTA, GA 30348
Tel: (404) 955-1500

WESTERN USA
Hewlett-Packard Co.
3939 Lankershim Blvd.
P.O. Box 3919
LOS ANGELES, CA 91604
Tel: (213) 506-3700
OTHER INTERNATIONAL
AREAS
Hewlett-Packard Co.
Inlercontinental Headquarters
3495 Deer Creek Road
PALO ALTO, CA 94304
Tel: (415) 857-1501
Telex: 034-8300
Cable: HEWPACK

ANGOLA
Teleelra
Empresa Teenlea de Equipamenlos
R. Barbosa Rodrigues, 41-1 0 T.
Calxa Poslal6487
LUANDA
Te!.· 35515,35516
E,P

ARGENTINA
Hewlell-Packard Argentina SA
Avenida Santa Fe 2035
Martinez 1640 BUENOS AIRES
Tel: 798-5735, 792-1293
Telex: 17595 BIONAR
Cable: HEWPACKARG
A,E,CH,CS,P
BIolron S.A.C.I.M. e /.
Av Paseo Colon 221, PIso 9
1399 BUENOS AIRES
Tel: 30-4846, 30-1851
Telex: 17595 BIONAR
M

AUSTRALIA
Adelaide, South Australia
Office
Hewlett-Packard Australia Ltd.
153 Greenhill Road
PARKSIDE, SA 5063
Tel: 272-5911
Telex: 82536
Cable: HEWPARD Adelaide
A· ,CH,CM"E,MS,P
Brisbane, Queensland Office
Hewlett-Packard Australia Lid.
10 Payne Road
THE GAP, Queensland 4061
Tel: 30-4133
Telex: 42133
Cable: HEWPARD Brisbane
A,CH,CM,E,M,P
Canberra, Australia
Capital Territory
Office
Hewlett-Packard Australia Ltd.
121 Wollongong Street
FYSHWICK, A.C. T. 2609
Tel: 80 4244
Telex: 62650
Cable: HEWPARD Canberra
CH,CM,E,P
Melbourne, Victoria Office
Hewlelt.-Packard Australia Lid.
31-41 Joseph Street
BLACKBURN, Victoria 3130
Tel: 895-2895
Telex: 31-024
Cable: HEWPARD Melbourne
A,CH,CM,CS,E,MS,P
Perth, Western Australia
Office
Hewlell-Packard Australia Ltd.
261 Stirling Highway
CLAREMONT, W.A. 6010
Tel: 383·2188
Telex: 93859
Cable: HEWPARD Perth
A,CH,CM,E,MS,P

318

Sydney, New South Wales
Office
Hewlett-Packard Auslralia Ltd.
17-23 Talavera Road
P.O. Box 308
NORTH RYDE, N.S.W. 2113
Tel: 887-1611
Telex: 21561
Cable: HEWPARD Sydney
A,CH,CM,CS,E,MS,P
AUSTRIA
Hewlett-Packard Ges.m.b.h.
Grollenhoistrasse 94
A·8052 GRAZ
Tel: (0316) 291 566
Telex: 32375
CH,E
Hewlett-Packard Ges.m.b.h.
Lieblgasse 1
P.O. Box 72
A-1222 VIENNA
Tel: (0222) 23 65 11-0
Telex: 134425 HEPA A
A,CH,CM,CS,E,MS,P

BAHRAIN
Green Salon
PO. Box 557
Manama
BAHRAIN
Tel: 255503-255950
Telex: 84419
p

Wael Pharmacy
P.O. Box 648
BAHRAIN
Tel: 256123
Telex: 8550 WAEL BN
E,C.M

BELGIUM
Hewlett·Packard Belgium SAIN.v.
Blvd de la Woluwe, 100
Woluwedal
B-1200 BRUSSELS
Tel: (02) 762-32-00
Telex: 23-494 paloben bru
A,CH,CM,CS,E,MP,P

BRAZIL
Hewlett-Packard do Brasill.e.C. Ltda.
Alameda Rio Negro, 750
Alphaville
06400 BARUERI SP
Tel: (011) 421.1311
Telex: (011) 33872 HPBR-BR
Cable: HEWPACK Sao Paulo
A,CH,CM,CS,E,M,P
Hewlell-Packard do Brasill.e.C. Ltda.
Avenida Epilacio Pessoa, 4664
22471 RIO DE JANEIRO-RJ
Tel: (021) 286.0237
Telex: 021-21905 HPBR-BR
Cable: HEWPACK Rio de Janeiro
A,CH,CM,E,MS,P·
ANAMEO I.C.E.!. Ltda.
Rua Bage, 103
04012 SAO PAULO
Tel: (011) 570-5726
Telex: 021·21905 HPBR-BR
M

(

SALES & SUPPORT OFFICES
Arranged alphabetically by country
CANADA
Alberte
Hewlett-Packard (Canada) Ltd.
3030 3rd Avenue N.E.
CALGARY, Alberta T2A 6T7
Tel: (403) 235-3100
A,CH,CM,E',MS,P'
Hewlett-Packard (Canada) Ltd.
11120A-178th Street
EDMONTON, Alberta TSS lP2
Tel: (403) 486-8686
A,CH,CM,CS,E,MS,P
BrlUah Columbia
Hewlett-Packard (Canada) Ltd.
10691 Shellbrldge Way
RICHMOND,
British Columbia V6X 2W7
Tel: (604) 270-2277
Telex: 610-922-5059
A,CH,CM,CS,E' ,MS,P'
Manitoba
Hewlett-Packard (Canada) Ltd.
380-550 Century Street
WINNIPEG, Manitoba R3H OY 1
Tel: (204) 786-6701
A,CH,CM,E,MS,P'
Nova Scotia
Hewlett-Packard (Canada) Ltd.
P.O. Box 931
900 Windmill Road
DARTMOUTH, Nova Scotia B2Y 3Z6
Tel: (902).469-7820
CH,CM,CS,E' ,MS,P'
Ontario
Hewlett-Packard (Canada) Ltd.
3325 N. Service Rd., Unit 6
BURUNGTON, Ontario P3A 2A3
Tel: (416) 335-8644
CS,M'
Hewlett-Packard (Canada) Ltd.
552 Newbold Street
LONDON, Ontario NBE 2S5
Tel: (519) 686-9181
A,CH,CM,E' ,MS,P'
Hewlett-Packard (Canada) Ltd.
6877 Goreway Drive
MISSISSAUGA, Ontario L4V lM8
Tel: (416) 678-9430
A,CH,CM,CS,E,MP,P
Hewlell-Packard (Canada) Lid.
2670 Cueensview Dr.
OTTAWA, Ontario K2B 8K 1
Tel: (613) 820-6483
A,CH,CM,CS,E',MS,P'
Hewlell-Packard (Canada) Ltd.
220 Yorkland Blvd., Unit #11
WILLOWDALE, Ontario M2J 1R5
Tel: (416) 499-9333
CH
Quebec
Hewlell-Packard (Canada) Ltd.
17500 South Service Road
Trans-Canada Highway
KIRKLAND, Quebec H9J 2M5
Tel: (514) 697-4232
A,CH,CM,CS,E,MP,P'
Hewlell-Packard (Canada) Ltd.
Les Galeries du Vallon
2323 Du Versonl Nord
STE. FOY, Quebec GIN 4C2
Tel: (418) 687-4570
CH

DOMINICAN REPUBLIC
Mlcroprog S.A.
Juan Tomas Mejfa y Cotes No. 60
Arroyo Hondo
SANTO DOMINGO
Tel: 565-6268
Telex: 4510 ARENTA OR (RCA) P

CHILE
Jorge Calcagni y Cia. Ltda.
Av. IlaNa 634 Santiago
Casi/la 16475
SANTIAGO 9
Tel: 222-0222
Telex: Public Boolh 440001
A,C4/,E,M
Olympia (ChHe) Llda.
Av. Rodrigo de Araya 1045
Casi/la 256-V
SANTIAGO 21
Tel: (02) 22 55 044
Telex: 240-565 OL YMP CL
Cable: OtympiachHe SantlagochHe
CH,CS,P
CHINA, People's Republic of
China Hewlel/-Packard Rep. Office
P.O. Box 418
lA Lane 2, Luchang 51.
Beiwei Rd., Xuanwu DisITicl
BEIJING
Tel: 33-1947, 33-7426
Telex: 22601 CTSHP CN
Cable: 1920
A,CH,CM,CS,E,P
COLOMBIA
InsITumenlaci6n
H. A. Langebaek & Kier S.A.
Carrera 4A No. 52A-26
Aparlado Aereo 6287
BOGOTA I, D.E.
Tel: 212-1466
Telex: 44400 INST CO
Cable: AARIS Bogola
C4/,E,M
Casa HumboIdl Llda.
Carrera 14, No. 98-60
Apartado Aereo 51283
BOGOTA I, DE
Tel: 256-1686
Telex: 45403 CCAL CO.
A

ECUADOR
CYEDE Cia. Lida.
AvenirJa Eloy Affaro 1749
CasH/a 6423 Cet
QUITO
Tel: 450-975, 243-052
Telex: 2548 CYEDE ED
CM.E,P
Hasp/lalar S.A.
Robles 625
Casi/la 3590
QUITO
Tel: 545-250, 545-122
Telex: 2485 HOSPTL ED
Cable: HOSPITALAR-Ouilo
M
EGYPT
Inlernalional Engineering Assoclales
24 Hussetn l/eg8zi SITeel
Kasr-el-Aini
CAIRO
Tel: 23829,21641
Telex: lEA UN 93830
CH,CS,E,M
EGYPOR
P.O. Box 2558
42 fI Zahraa SITeel
CAIRO, Egypl
Tel: 650021
Telex: 93337
P
EL SALVADOR
IPESA de fI Salvador S.A.
29 Avenida Norte 1216
SAN SALVADOR
Tel: 26-6858, 26-6868
Telex: 20539IPESASAL
A,CH,CM,CS,E,P

COSTA RICA
CienUfica Coslarricense S.A.
AvenirJa 2, Cane 5
San Pedro de MonIes de aca
Aparlado .10159
SANJOSE
Tel: 24-38-20, 24-08-19
Telex: 2367 GALGUR CR
CM.E,M

FINLAND
Hewlett-Packard Oy
Revonlulenlie 7
PL 24
SF-02101 ESPOO 10
Tel: (90) 4550211
Telex: 121583 hewpa sf
CH,CM,CS,P
Hewlell-Packard Oy
(Olarinluoma 7)
PL 24
02101 ESPOO 10
Tel: (90) 4521022
A,E,MS
Hewlell-Packard Oy
Aatoksenkalv 10-C
SF-40720-72 JYYASKYLA
Tel: (941) 216318
CH
Hewlell-Packard Oy
Kainvunlie 1-C
SF-90140·140ULU
Tel: (981) 338785
CH

CYPRUS
Telerexa LId.
P.O. Box 4809
14C Slassinos Avenue
NICOSIA
Tel: 62698
Telex: 2894 LEV/DO CY
E,M,P
DENMARK
Hewlell-Packard AlS
Datavej 52
DK-3460 BIRKEROD
Tel: (02) 81-66-40
Telex: 37409 hpas dk
A,CH,CM,CS,E,MS,P
Hewlell-Packard AlS
Rolighedsvej 32
DK-8240 RISSKOV, Aarhus
Tel: (06) 17-60-00
Telex: 37409 hpas dk
CH,E

319

FRANCE
Hewlett-Packard France
Z.I. Mercure B
Rue Berthelot
F-13763 Les Milies Cedex
AtX-EN-PROVENC£
Tel: 16 (42) 59-41-02
Telex: 410770F
A,CH,E,MS,P'
Hewlett-Packard France
64, rue Marchand Saillant
F-610oo ALENCON
Tel: 16 (33) 29 04 42
Hewlett-Packard France
Boite Postale 503
F-25026 BESANCON
28 rue de la Republlque
F-2S000 BESANCON
Tel: 16 (81) 83-16-22
CH,M
Hewlett-Packard France
13, Place Napoleon III
F-290oo BREST
Tel: 16 (98) 03-38-35
Hewlett-Packard France
Chemin des Mouilles
Boile Poslale 162
F-69130 ECULLY Cedax (Lyon)
Tel: 16 (78) 833-81-25
Telex: 310617F
A,CH,CS,E,MP
Hewlett-Packard France
Tour Lorraine
Boulevard de France
F-91035 EYRY Cedex
Tel: 166077-96-60
Telex: 692315F
E
Hewlett-Packard France
Pare d' Activite du Bois Briard
Ave. du Lac
F-91040 EYRY Cedex
Tel: 166077-8383
Telex: 692315F
E
Hewlett-Packard France
5, avenue Raymond Chanas
F-38320 EYBENS (Grenoble)
Tel: 16 (76) 25-81-41
Telex: 980124 HP GRENOB EYBE
CH
Hewlett-Packard France
Centre d' Affaire Paris-Nord
BAliment Amp~re 5 ~tage
Rue de la Commune de Paris
Boite Postale 300
F-93153 LE BLANC MESNIL
Tel: 16 (1) 865-44-52
Telex: 211032F
CH,CS,E,MS
Hewlell-Packard France
Pare d'Actlvlt~s Cadera
Quartier Jean Marmoz
Avenue du Pr~sident JF Kennedy
F·33700 MERIGNAC (Bordfiaux)
Tel: 16 (56) 34-00-84
Telex: 550105F
CH,E,MS
Hewlell-Packard France
Immueble "Les 3 B"
Nouveau Chemin de la Garde
ZAC de Bois Briand
F-44085 NANTES Cedex
Tel: 16 (40) 50-32-22
CH"

SALES & SUPPORT OFFICES
Arranged alphabetically by country
FRANCE (Cont'd)
Hewlett-Packard Franca
125, rue du Faubourg Bannier
F-45000 OIILEANS
Tel: 16 (38) 6801 63
Hewlett-Packard France
Zone Industrielle de Courtaboeuf
Avenue des Tropiques
F-91947 Les Ulis Cedex ORIAY
Tel: (6) 907-78-25
Telex: 600048F
A,CH,CM,CS,E,MP,P
Hewlett-Packard Franca
Paris Porte-Maillot
15, Avenue de L'Amlral Brlllx
F-75782 PARIS CEOEX 16
Tel: 16 (I) 502-12-20
Telex: 613663F
CH,MS,P
Hewlett-Packard Franca
124, Boulevard Tourasse
F-64000 PAU
Tel: 16 (59) 80 38 02
Hewlett-Packard France
2 Allee de la Bourgonnette
F-35100 RENNES
Tel: 16 (99) 51-42-44
Telex: 7409.12F
CH,CM,E,MS,P'
Hewlett-Packard France
98 Avenue de Bretagne
F-76100 ROUEN
Tel: 16 (35) 63-57-66
CW',CS
Hewlett-Packard France
4 Rue Thomas Mann
Boite Postale 56
F-67033 STRASBOURG Cedex
Tel: 16 (88) 28-56-46
Telex: 89014 IF
CH,E,MS,P'
Hewlett-Packard France
Le Peripole
20, Chemin du Pigeonnier de la
Cepi~e

F-31063 TOULOUSE Cedex
Tel: 16(61)40-11-12
Telex: 531639F
A,CH,CS,E,P'
Hewlett-Packard Franca
9, rue Baudln
F-260oo VALENCE
Tel: 16 (75) 42 76 16
Hewlett-Packard France
Carolor
ZAC de Bois Briand
F-57640 VlGY (Metz)
Tel: 16 (8) 771 20 22
CH
Hewlett-Packard France
Immeuble Pericentre
F-59658 VILLENEUVE D'ASCQ Cedex
Tel: 16 (20) 91-41-25
Telex: 160124F
CH,E,MS,P'

GERMAN FEDERAL
REPUBLIC
Hewlett-Packard GmbH
Geschlftsstelle
Keithstrasse 2-4
0- 1000 BERLIN 30
Tel: (030) 24-90-86
Tetex: 01S 3405 hpbln d
A,CH,E,M,P

Hewlett-Packard GmbH
GeschKftsstene
Herrenberger Strass•. 130
0-7030 BOBLINGEN
Tel: (7031) 14-0
Telex:
A,CH,CM,CS,E,MP,P
Hewlett-Packard GmbH
GeschHftsstene
Emanuel-Leutze-Strasse I
0-4000 DUSSELOOIIF
Tel: (0211) 5971-1
Tetex: 085186 533 hpdd d
A,CH,CS,E,MS,P
Hewlett-Packard GmbH
Geschllftsstelle
Schleefstr. 28a
0-4600 DORTMUND-Aplerbeck
Tel: (0231) 45001
Hewlett-Packard GmbH
Vertriebszelitrale Frankfurt
Bemer Strasse I 17
Postfach 560 140
0-6000 FRANKFURT 56
Tel: (0611) 50-04-1
Tetex: 04 13249 hpffm d
A,CH,CM,CS,E,MP,P
Hewlett-Packard GmbH
GeschHftsstelle
Aussenstene Bad Homburg
Louisenstrasse 115
0-6380 BAD HOMBURG
Tel: (06172) 109-0
Hewlett-Packard GmbH
GeschKftsstene
Kapstadtring 5
0-2000 HAMBURG 60
Tel: (040) 63604- I
Telex: 021 63 032 hphh d
A,CH,CS,E,MS,P
Hewlett-Packard GmbH
GeschKftsstelle
Heidering 37-39
0-3000 HANNOVER 6 I
Tel: (051 I) 5706-0
Telex: 092 3259
A,CH,CM,E,MS,P
Hewlett-Packard GmbH
Geschllftsstelle
Rosslauer Weg 2-4
0-6600 MANNHEIM
Tel: (0621) 70050
Telex: 0462105
A,C,E
Hewlett-Packard GmbH
GeschKftsstelle
Messerschmittstrasse 7
0-7910 NEU ULM
Tel: 0731-7024 I
Telex: 0712816 HP ULM-O
A,C,E'
Hewlett-Packard GmbH
GeschHftsstelle
Ehhericherstr. 13
0-8500 NURNBERG 10
Tel: (091 I) 5205-0
Telex: 0623860
CH,CM,E,MS,P
Hewlett-Packard GmbH
Geschlflsstelle
Eschenstrasse 5
0-8028 TAUFKIRCHEN
Tet: (089)6117-1
Telex: 0524985
A,CH,CM,E,MS,P

GREAT BRITAIN
See United Kingdom
GREECE
Koslas Ksraynnis S.A.
8 Omirou Streel
ATHENS 133
Tel: 32 30 303, 32 37371
Telex: 215962 RKAR GR
A,CH,CM.CS,E,M,P
P/.AJS/O S.A.
G. Gerardos
24 Siournsra Sireel
ATHENS
Tel.' 36-11-160
Telex: 221871
P
GUATEMALA
IPESA
Avenida Reforms 3-48, Zona 9
QUA TEMALA CITY
Tel: 316627, 314786
Telex: 4192 TELTRO GU
A,CH,CM,CS,E,M,P

HONG KONG
Hewlett-Packard Hong Kong, Ltd.
G.P.O. Box 795
5th Floor, Sun Hung Kai Centre
30 Harbour Road
HONG KONG
Tel: 5-832321 I
Telex: 66678 HEWPA HX
Cable: HEWPACK HONG KONG
E,CH,CS,P
CET LId.
1402 T/HIg Wah MansIon
199-203 Hennessy Rd.
Wanchia, HONG KONG
Tel: 5-729376
Telex: 85148 efT HX
CM
Schmidt & Co. (Hong Kong) LId.
Wing on Centre, 28th Floor
Connaught Road, C.
HONGKONG
Tel: 5-455644
Telex: 74766 SCHMX HX
A,M
ICELAND
E/ding Trading Company Inc.
Hafnamvoli-Tryggvagolu
P.O. Box 895
IS-REYKJAVIK
Tel: 1-58-20, 1-63-03
M
INDIA
Computer products are sold through
Blue Star Ltd. All computer repairs and
maintenanca service is done IIlrough
Computer Maintenance Corp.
Blue Slar Ltd.
Sabri Complex HFloor
24 Residency Rd.
BANGALDRE 560 025
Tel: 55660
Telex: 0845-430
Cable: BLUESTAR
A,CH',CM,CS',E

320

Blue Slar Ltd.
Band Box House
Prabhadevl
BOMBA Y400 025
Tel: 422-310 1
Telex: 011-3751
Cable: BLUESTAR
A,M
Blue Slar LId.
Sahas
41412 VIr Savarksr Marg
Prabhadevl
BOMBA Y400 025
Tel: 422-6155
Telex: 011-4093
Cable: FROSTBLUE
A,CH',CM.CS',E.M
Blue Slar LId.
Katyan, 19 V/shwas Colony
Alkapuri, BORODA, 390 005
Tel: 65235
cable: BLUE STAR
A
Blue Slar LId.
7 Hare Streel
CALCUTTA 700 001
Tel: 12-01-31
Telex: 021-7655
cable: BLUESTAR
A,M
Blue Star LId.
133 Kodambakksm High Road
MADRAS 600 034
Tel: 82057
Telex: 041-379
cable: BLUESTAR
A,M
Blue Star LId.
Bhandsri House, 7tN81h Floors
91 Nehru Place
NEW DELHI 110 024
Tel: 682547
Telex: 031-2463
cable: BLUESTAR
A,CH',CM.CS',E,M
Blue Star LId.
15116:C Wellesley Rd.
PUNE411 011
Tel: 22775
cable: BLUE STAR
A
Blue Star LId.
2-2-4711108 Botarum Rd.
SECUNDERABAD 500 003
Tel.' 72057
Telex: 0155-459
cable: BLUEFROST
A,E
Blue Star Ltd.
T.C. 71603 Poornims
Maruthankuzhi
TRlVANDRUM 695013
Tel: 65799
Telex: 0884-259
cable: BLUESTAR
E
Computer Mainlenance Corporation
LId.
115, Sarojini Oevl Road
SECUNDERABAD 500 003
Tel: 310-184, 345-774
Telex: 031-2960
CH"

SALES & SUPPORT OFFICES

(

Arranged alphabetically by country
INDONESIA
BEReA Indonesia P. T.
P.O.Box 496/JkI.
JI. Abdul Muis 62
JAKARTA
Tel: 21-373009
Telex: 46748 BERSAL IA
Cable: BERSAL JAKARTA
P

BERCA Indonesia P. T.
P_O.Box 2497/Jkt
Antara Bldg., 17th Floor
.n_ Madan Mardeka Seiatan 17
JAKARTA-PIISAT
Tel: 21-344-181
Telex: BERSAL IA
A,CS,E,M

BEReA Indonesia P. T.
P. O. Box 174/SBY.
.n. Kutei No. 11
SURABAYA
Tel' 68172
Telex: 31146 BERSAL SB
Cable: BERSAL-SURABAYA
A',E.M.P

IRAQ
Hewlett-Packard Trading S.A.
Service Operalion
AI Mansoor Cily 9B/317
BAGHDAD
Tel: 551-49-73
Telex: 212-455 HEPAIRAQ IK
CH,CS

f

IRELAND
Hewletl-Packard Ireland Ltd.
82/63 Lower Leeson Streel
DUBLIN 2
Tel: OODI 608800
Telex: 30439
A,CH,CM,CS,E,M,P
Cardiac Services LId.
KHmoreRoad
Arlane
DUBLIN 5
Tel: (01) 351820
Telex: 30439
M

ISRAEL
Eldan EleclJonic InslJumenl LId.
P.O.Box 1270
JERUSALEM 91000
16, Ohanav SI.
JERUSALEM 94467
Tel: 533221, 553242
Telex: 25231 ABIPAKRD H.
A

Electronics Engineering Division
Molorola Israel LId.
16 Kremene/ski Street
P. O. Box 25016
TEL-A VlV 6T899
Tel: 3 88 388
Telex: 33569 MaUl H.
Gable: BAS TEL Tel-Aviv
CH,CM,CS,E,M,P

ITALY
Hewlett-Packard Italiana S.p.A
Traversa 99C
Via Giulio Petroni, 19
1-70124 BARI
Tel: (080) 41-07-44
M

Hewlett-Packard Italiana S.p.A.
Via Martin Luther King, 38/111
1·40132 BOLOGNA
Tel: (051) 402394
Telex: 511630
CH,E,MS
Hewlett-Packard Italiana S.p.A.
Via Principe Nicola 43G1C
1-95126 CATANIA
Tel: (095) 37-10-87
Telex: 970291
C,P
Hewlett-Packard Italiana S.pA
Via G. Oi Villorio 9
1-20063 CERNUSCO SUL NAVIGLIO
(Milano)
Tel: (02) 923691
Telex: 334632
A,CH,CM,CS,E,MP,P
Hewlell-Packard lIaliana S.p.A.
Via C. Colombo 49
1-20090 TREZZANO SUL NAVIGLIO
(Milano)
Tel: (02) 4459041
Telex: 322116
C,M
Hewlett-Packard lIaliana S.p.A.
Via Nuova San Rocco a
Capodimonle, 62/A
1-80131 NAPOLI
Tel: (081) 7413544
Telex: 710698
A,CH,E
Hewlett-Packard Iialiana S.p.A.
Viale G. Modugno 33
1-16156 GENOVA PEGLI
Tel: (010) 68-37-07
Telex: 215238
E,C
Hewlett-Packard Itallana S.p.A.
Via Pelizzo 15
1-35128PADOVA
Tel: (049) 664888
Telex: 430315
A,CH,E,MS
Hewlett-Packard Italiana S.p.A.
Viale C. Pavese 340
1-00144 ROMA EUR
Tel: (06) 54831
Telex: 610514
A,CH,CM,CS,E,MS,P·
Hewlell-Packard Italiana S.p.A.
Via di Casellina 571C
1-50018 SCANDICC~FIRENZE
Tel: (055) 753863
Hewlett-Packard Iialiana S.p.A.
Corso Svizzera, 185
1-10144 TORINO
Tel: (011) 74 4044
Telex: 221079
CH,E

JAPAN
Yokogawa-Hewlett-Packard Lid.
152-1,Onna
ATSUGI, Kanagawa, 243
Tel: (0462) 28-0451
CM,C·,E
Yokogawa-Helwett-Packard Ltd.
Meiji-Seimei Bldg. 6F
3-1 Hon Chiba-Cho
CHIBA,280
Tel: 472 25 7701
E,CH,CS

Yokogawa·Hewlett-Packard Ltd.
Yasuda-Seimei Hiroshima Bldg.
6-11, Hon·dori, Naka-ku
HIROSHIMA, 730
Tel: 82-241-0611
Yokogawa-Hewlett-Packard Ltd.
Towa Building
2-3, Kaigan-dori, 2 Chome Chuo-ku
KOBE,650
Tel: (078) 392-4791
C,E
Yokogawa-Hewlett-Packard Lid.
Kumagaya Asahl 82 Bldg
3-4 Tsukuba
KUMAGAYA, Sailama 360
Tel: (0485) 24-6563
CH,CM,E
Yokogawa-Hewlett-Pack81d Ltd.
Asahi Shinbun Oalichl Selmei Bldg .
4-7, Hanabala-cho
KUMAMOTO,860
Tel: (0963) 54-7311
CH,E
Yokogawa-Hewlett-Packard Ltd.
Shin-Kyolo Cenler Bldg.
614, Higashi-ShiokoJi-cho
Karasuma-Nishiiru
Shlokojl-dori, Shimogyo-ku
KYOTO, 600
Tel: 075-343-0921
CH,E
Yokogawa-Hewlett-Packard Ltd.
Milo Mitsui Bldg
4-73, Sanno-maru, 1 Chome
MITO, Ibaraki 310
Tel: (0292) 25-7470
CH,CM,E
Yokogawa-Hewlett-Packard Ltd.
Sumitomo Seime114-9 Bldg.
Meieki-Minami, 2 Chome
Nakamura-ku
NAGOYA,450
Tel: (052) 571-5171
CH,CM,CS,E,MS
Yokogawa-Hewlett-Packard Ltd.
Chua Bldg.,
4-20 Nishinakajima, 5 Chome
Yodogawa-ku
OSAKA,532
Tel: (08) 304-6021
Telex: YHPOSA 523-3624
A,CH,CM,CS,E,MP,P·
Yokogawa-Hewlett-Packard Ltd.
27-15, Yabe, 1 Chome
SAGAMIHARA Kanagawa, 229
Tel: 0427 59-1311
Yokogawa-Hewlell-Packard lid.
Oaiichi Seimei 8ldg.
7-1, Nishi Shinjuku, 2 ChOme
Shinjuku-ku,TOKYO 160
Tel: 03-348-4611
CH,E
Yokogawa-Hewlett-Packard Ltd.
29-21 Takaido-Higashi, 3 Chome
Suginami-ku TOKYO 168
Tel: (03) 331-611
Telex: 232-2024 YHPTOK
A,CH,CM,CS,E,MP,P·
Yokogawa-Hewlett-Packard Ltg.
Oaiichi Asano Building
2-8, Odori, 5 Chome
UTSUNOMIYA, Tochigi 320
Tel: (0286) 25-7155
CH,CS,E

321

Yokogawa·Hewlett-Pack81d Ltd.
Yasuda Seimei Nishiguchi Bldg.
30-4 Tsuruya-cho, 3 Chome
YOKOHAMA 221
Tel: (045) 312-1252
CH,CM,E

JORDAN
Mouasher coUsins Company
P.O. Box 1387 .
AMMAN
Tel: 24907, 39907
Telex: 21456 SABCO JO
CH,E,M,P

KENYA
ADCOM LId, Inc., Kenya
P.O.Box 30070
NAIROBI
Tel: 331955
Telex: 22639
E,M

KOREA
Samsung Electronics HP Division
12 Fl Klnam Bldg.
San 75-31, Yeoksam-Dong
Kangnam-Ku
Yeongdong P. O. Box 72
SEOUL
Tel: 555-7555, 555-5447
Telex: K27364 SAMSAN
A,CH,CM,CS,E,M,P

KUWAIT
AI-Khaldiya Trading & Contracling
P.O. Box 830 Safat
KUWAIT
Tel: 42-4910,41-1726
Telex: 22481 Areeg kt
CH.E,M

Photo & Cine Equipmenl
P.O. Box 270 Safat
KUWAtT
Tel: 42-2846, 42-3801
Telex: 22247 Malin kt
P

LEBANON
G.M. Oohnadjian
Achrafieh
P. O. Box 165. 167
BEIRIJT
Tel: 290293
!./P""

Computer Information Systems
P.O. Box 11-6274
BEIRUT
Tel: 8940 73
Telex: 22259
C

LUXEMBOURG
Hewlett-Packard Belgium S.A.lN.V.
Blvd de Ia Woluwe, 100
Woluwedal
B-1200 BRUSSELS
Tel: (02) 762-32-00
Telex: 23-494 paloben bru
A,CH,CM,CS,E,MP,P
MALAYSIA
Hewlett-Packard Sales (Malaysia)
Sdn. Bhd.
1S1 Floor, Bangunan British
American
Jalan Semantan, Oarnansara Heights
KUALA WMPUR 23-03
Tel: 943022
Telex: MA31011
A,CH,E,M,P·

SALES & SUPPORT OFFICES
Arranged alphabetically by country
MAYLAYSIA (Cont'd)
Protei Engineering
P.O.Box 7977
Lot 6624, SecUon 64
2314 Pending Road
Kuching, SARA WAK
Tel: 36299
Telex: M4 70904 PROMAL
Cable: PROTELENG
A,E,M

MALTA
Philip To/edo LId.
NoIBbIIe Rd.

MRlEHEL
Tel: 44747, 45566
Telex: Media MW 649
E,P

MEXICO
Hewlell-Packard Mexicana, B.A.
deC.V.
Av. Perllerico Sur No. 6501
Tepepan, Xochlmllco.
16020 MEXICO D,F,
Tel: 6-76-46-00
Telex: 17-74-507 HEWPACK MEX
A,CH,CS,E,MS,P
Hewlett-Packard Mexlcana, S.A.
de C,V.
Ave. Colonia del Valle 409
Col. del Valle
Municipio de Garza Garcia
MONTERREY, Nuevo Leon
Tel: 78 42 41
Telex: 038 410
CH
ECISA
Jose Vasconcelos No. 278
Col. Condesa Oe/eg. Cuauht6rnoc
MEXICOO,F. 06740
Tel: 553-1206
Telex: 17-72755 ECE ME
M

MOROCCO
Oo/beau
81 rue Karatch/
CASABLANCA
Tel: 3041-82, 3068-38
Telex: 23051,22822
E
Gerep
2 rue d'Agadir
Bo/Ie Pos/sle 156
CASABLANCA
Tel: 272093, 272095
Telex: 23 739
P

NETHERLANDS
Hewlett-Packard Nederland B.V.
Van Heuven Goedherliaan 121
NL 1181KK AMSTELVEEN
P,O. Box 667
NL 1180 AR AMSTELVEEN
Tel: (020) 47-20-21
Telex: 13 216 HEPA NL
A,CH,CM,CS,E,MP,P
Hewlett-Peckard Nederland B.V.
Bonll!lrd 2
NL 2906VK CAPELLE AID IJSSEL
P.O. Box 41
NL 2900AA CAPELLE AID IJSSEL
Tel: (10) 51-6444
Telex: 21261 HEPAC NL
A,CH,CS,E

Hewlell-Packard Nederland B.V.
Pastoor Petersstraat 134-136
NL 5612 LV EINDHOVEN
P.O. Box 2342
NL 5600 CH EINDHOVEN
Tel: (040) 326911
Telex: 51464 hepae nl
A,CW',E,M

NEW ZEALAND
Hewlell-Packard (N.Z.) LId.
5 Owens Road
P.O. Box 26-189
Epsom, AUCKLAND
Tel: 687-159
Cable: HEWPACK Auckland
CH,CM,E,P'
Hewlelt-Packard (N.Z.) LId.
4-12 Cruickshenk Street
Kilbirnie, WELLINGTON 3
P.O. Box 9443
Courtenay Place, WELLINGTON 3
Tel: 877-199
Cable: HEWPACK Wellington
CH,CM,E,P
Northrop Instruments & Systems LId.
369 Khyber Pass Road
P. O. Box 8602
AUCKLAND
Tel: 794-091
Telex: 60605

PAKISTAN
Mushko & Company LId.
1-8, S1Jeet43
Sector F-B/l
tSLAMABAD
Tel: 51071
Cable: FEMUS Rawalpindi
A,E,M

Mushko & Company Lid.
Oosman Chambers
AbduIl8h Haroon Road
KARACHI 0302
Tel: 524131, 524132
Telex: 2894 MUSKO PI<
Cable: COOPERA TOR Karachi
A,E,M,P'

PANAMA
Electr6nico 8alboa, S.A.
Calle Samuel Lewis, Ed. Alfa
Apartado 4929
PANAM4 5
Tel: 63-6613, 63-6748
Telex: 3463 ELECTRON PG
A,CM,E,M.P

PERU
cra Electro Medica S.A.
Los Flamencos 145, San Isidro
CasHia 1030
LIlIA 1

Tel: 41-4325, 41-3703
Telex: Pub. Booth 25306

A,M

Northrrip Instruments & Systems LId.
110 MandevUle SI.
P.O. Box 8388
CHRISTCHURCH
Tel: 488-928
Telex: 4203
A,M

Northrop Instruments & Systems LId.
SIJJrdee House
85-B7 Ghuznee SIJeet
P.O. Box 2406
WELLINGTON
Tel: 850-091
Telex: HZ 3380
A,M

NORTHERN IRELAND
See United Kingdom
NORWAY
Hewlell-Packard Norge AlS
Folke Bernadottes vel 50
P.O. Box 3558
N-5033 FYLLlNG.SDALEN (Berll!ln)
Tel: 0047/5/16'55 40
Telex: 16621 hpnas n
CH,CS,E,MS
tlewlett-Packard Norge AlS
Osterndalen 16-18
P_O. Box 34
N-1345 OSTEilAS
Tel: 0047/2/17 11 80
Telex: 16621 hpnas n
A,CH,CM,CS,E,M,P
OMAN
KhimjII Ramdas
P.O. Box 19
MUSCAT
Tel: 722225,745601
Telex: 3289 BROKER MBI.tUSCAT
P

SUhaH & Saud Bahwan
P.O.Box 169

CM,E,M.P

PHILIPPINES
The OnlIne Advanced Systems
Corporation
Rico House, Amorsolo Cor. Herrera
SIJeet
Legaspi VUlege, MakaU
P.O. Box 1510
MeIJoM4NILA
Tel: 85-35-81, 85-34-91, 85-32-21
Telex: 3274 ONLINE
A,CH,CS,E,M

Electronic SpeciaHsts and Proponents

Inc.
690-B Epifanio de /os Santos Avenue
Cubao, QUEZON CITY
P.O. Box 2649 ManHa
Tel: 98-96-81, 96-96-82, 96-96-83
Telex: 40018, 42000 ITT GLOBE
M4CKA YBOOTH
P

PORTUGAL
Mundinter
Intercamblo Mundfal de Comercio
S.A.R.L.
P.O. Box 2761
Av. Antonio Augusto de Aguiar 136
P-L/SBON
Tel: (19) 53-21-31, 53-21-37
Telex: 16691 munter p
M

SoquimIca
Av. de Liberdede, 220-2
1296 L/SBOA Codex
Tel: 56 2181/213
Telex: 13316 SABASA
P

Te/eclra-Empresa Tecnica de
Equipmentos Etecf1icos S. A.R.L.
Rua Rodrigo de Fonseca 103
P. O. Box 2531

II/ISCAT

P-LISBON 1
Tel: (19) 68-60-72

Tel: 734201-3
Telex: 3274 BAHWAN MB

CH,CS,E,P

Telex: 12598

322

PUERTO RICO
Hewlett-Packard Puerto Rico
Ave. Munoz Rivera #101
Esq. Calle Ochoa
HATO REY, Puerto Rico 00918
Tel: (809) 754-7800
Hewlett-Packard Puerto Rico
calle 272 Edificio 203
Urb. Country Club
RIO PIEDRAS, Puerto Rico
P.O. Box 4407
CAROLINA, Puerto Rico 00628
Tel: (809) 762-7255
A,CH,CS
QATAR
Computesrbia
P.O. Box 2750

DOHA
Tel: 883555
Telex: 4806 CHPARB
P

Eastern Technical Services
P.O.Box 4747

DOHA
Tel: 329993
Telex: 4156 EASTEC OH
Nasser Trading & Contracting
P.O.Box 1563

DOHA
Tel: 22170, 23539
Telex: 4439 NASSER DH
M

SAUDI ARABIA
Modern EleclJonic Es/sblishment
Hewlell-Packard Division
P.O. Box 22015

Thuobeh
AL-KHOBAR
Tel' 895-1760, 895-1764
Telex: 671106 HPMEEK SJ
Cable: ELECTA AL-KHOBAR
CH,CS,E,M

Modern EleclJonic Establishment
Hewlel/-Packard DivIsion
P.O. Box 1228
Redec Plaza, 6th Floor

JEDDAH
Tel: 644 38 48
Telex: 4027 12 FARNAS SJ
Cable: ELECTA JEOOAH
CH,CS,E.M

Modern EleclJonic Establishrnant
Hewleff-Packard Division
P.O.Box 22015
RtYADH
Tel: 491-9715,491-63 87
Telex: 202049 MEERYD SJ
CH,CS,E,M

Abdul Ghani EI Ajou
P.O. 80x 78
RIYADH
Tel: 4041717
Telex: 200 932 EL AJOU
P

SCOTLAND
See United Kingdom
SINGAPORE
HewleH-Peckard Singapore JSales)
Pte. Ltd.
#08-00 Incheape House
450-2 Alexandra Road
P.O. Box 58 Alexandra Rd. Post Office
SlNGAPORE,9115
Tel: 631788
Telex: HPSGSO RS 34209
cable: HEWPACK, Sinll!lpore
A,CH,CS,E,MS,P

SALES & SUPPORT OFFICES
Arranged alphabetically by country
SINGAPORE (Cont'd)
Dynamar Inlernational Ltd.
Unit 05-11 Block 6
Ko/am Ayer Industrial Estate
SINGAPORE 1334
Tel: 747-6188
Telex: RS 26283
CM

(

SOUTH AFRICA
Hewlett-Packard So Africa (Pty.) Ltd.
P.O. Box 120
Howard Place CAPE PROYINCE 7450
Pine Park Cenler, Forest Drive,
Pinelands
CAPE PROYINCE 7405
Tel: 53-7954
Telex: 57-20006
A,CH,CM,E,MS,P
Hewlett·Packard So Africa (Pty.) Ltd.
P.O. Box 37099
92 Overport Drive
DURBAN 4067
Tel: 28-4178, 28-4179, 28·4110
Telex: 6-22954
CH,CM
Hewlett·Packard So Africa (Ply.) Ltd.
6 Linton Arcade
511 Cape Road
Linton Grange
PORT ELIZABETH 6000
Tel: 041-302148
CH
Hewlett·Packard So Africa (Pty.) Ltd.
P.O.Box 33345
Glenstantla 0010 TRANSYAAL
1st Floor East
Constantia Park Ridge Shopping
Centre
Constantia Park
PRETORIA
Tel: 982043
Telex: 32163
CH,E
Hewlett-Packard So Africa (Ply.) Ltd.
Private Bag Wendywood
SANDTON 2144
Tel: 802-5111, 802-5125
Telex: 4-20877
Cable: HEWPACK Johannesburg
A,CH,CM,CS,E,MS,P
SPAIN
Hewlett-Packard Espanola S.A.
Calle Enlenza, 321
E-BARCELONA 29
Tel: 322.24.51, 321.73.54
Telex: 52603 hpbee
A,CH,CS,E,MS,P
Hewlett-Packard Espanola S.A.
Calle San Vicente SINo
Edificio Albia II
E-8ILBAO 1
Tel: 423.83.06
A,CH,E,MS
Hewlett-Packard Espanola SA
Crta. de la Coruna, Km. 16, 400
Las Rozas
E-MADRID
Tel: (1) 637.00.11
CH,CS,M
Hewlett-Packard Espanola S.A.
Avda.S. Francisco Javier, Sino
Planta 10. Edlficio SovUla 2,
E-SEV1LLA 5
Tel: 64.44.54
Telex: 72933
A,CS,MS,P

Hewlett-Packard Espanola SA
Calle Ramon Gordillo, 1 (Entlo.3)
E·YALENCIA 10
Tel: 361-1354
CH,P

SWEDEN
Hewlett-Packard Sverige AB
Sunnanvagen 14K
S·22226 LUND
Tel: (046) 13-69·79
Telex: (854) 17886 (via Spanga
office)
CH
Hewlett-Packard Sverige AB
Ostra Tullgatan.?
S-21128 MALMO
Tel: (040) 70270
Telex: (854) 17886 (via Spanga
office)
Hewlett-Packard Sverige AS
Vastra Vin.!ergatan·9
S- 70344 OREBRO
Tel: (19) 10·48-80
Telex: (854) 17886 (via Spanga
office)
CH
Hewlen-Packard Svertge AS
Skalholtsgatan 9, Kista
Box 19
S-I6393 SpANGA
Tel: (08) 750-2000
Telex: (854) 17886
Telefax: (08) 7527781
A,CH,CM,CS,E,MS,P
Hewlen·Packard Sverige AS
Frmallisgat~n 30
S·42132 VASTRA.fROLUNDA
Tel: (031) 49-09-50
Telex: (854) 17886 (via Spanga
office)
CH,E,P
SWITZERLAND
Hewlett-Packard (Schweiz) AG
Claraslrasse 12
CH·4058 BASEL
Tel: (61) 33-59-20
A
Hewlett-Packard (Schweiz) AG
7, rue du Bois-du-Lan
Case Postale 365
CH·1217 MEYRIN 2
Tel: (0041) 22-83-11·11
Telex:27333 HPAG CH
CH,CM,CS
Hewlett-Packard (Schweiz) AG
Allmend 2
CH-8967 WIDEN
Tel: (0041) 57 31 21 11
Telex: 53933 hpag ch
Cable: HPAG CH
A,CH,CM,CS,E,MS,P
SYRIA
General Electronic Inc.
NurI Basha Ahnaf Ebn Kays Street
P.O. Box 5781
DAMASCUS
Tel' 33-24-87
Telex: 411215
Cable: ELECTROBOR DAMASCUS
E

Middle East Electronics
P.D.Box 2308
Abu Rumnaneh
DAMASCUS
Tel: 334 5 92
Telex: 411 304

E.M.A.
Medina Eidem Sokak No.41/6
Yuksel Gaddesi
ANKARA
Tel: 175622
Telex: 42 591

M

M

TAIWAN
Hewlett·Packard Far East Ltd.
Kaohsiung Office
2/F 68-2, Chung Cheng 3rd Road
KAOHSIUNG
Tel: (07) 241-2318
CH,CS,E
Hewlett·Packard Far East Ltd.
Taiwan Branch
8th Floor
337 Fu Hsing North Road
TAIPEI
Tel: (02) 712-0404
Telex: 24439 HEWPACK
Cable:HEWPACK Taipei
A,CH,CM,CS,E,M,P
Ing Lih Trading Co.
3rd Floor, 7 Jen-Ai Road, Sec. 2
TAlPEt 100
Tel: (02) 3948191
Cable: INGLIH TAIPEI

UNITED ARAB EMIRATES
Emitac Ltd.
P.O. Box 2711
ABUOHABt
Tel: 82 04 19·20
Gable: EMITAC ABUDHABI
Emitac Ltd.
P.O. Box t641
SHARJAH
Tel: 591 181
Telex: 68136 Emitac Sh

A

THAILAND
Unimesa
30 Pa/pong Ave., Suriwong
BANGKOK 5
Tel: 235-5727
Telex: 84439 Simonco TH
Gable: UNlMESA Bangkok
A,CH.CS,E,M

Bangkok Business Equipment Ltd.
5/5-6 Dejo Road
BANGKOK
Tel: 234·8670, 234-8671
Telex: 87669-BEO/.HPT TH
Gable: BUSIQUIPT Bangkok
P

TRINIDAD & TOBAGO
Caribbean Telecoms Ltd.
501A Jerninghsm Avenue
P.O. Box 732
PORT-oF-sPAIN
Tel: 62-44213, 62-44214
Telex: 235,272 HUGCO WG
CM,E,M,P

TUNISIA
Tunisie E/ec/ton/que
31 Avenue de /a Liberte
TUNIS
Tel' 280-144
E,P

Corems
1 ter. Av. de Carthage
TUNIS
Tel: 253-621
Telex: 12319 CABAM TN
M

TURKEY
Teknim Company Ltd.
/tsn Gaddesi No. 7
Kavaklldere, ANKARA
Tel: 275800
Telex: 42155 TKNM TR
E

323

CH.CS.f,M,P

UNITED KINGDOM
GREAT BRITAIN
Hewlett-Packard Ltd.
Trafalgar House
Navigation Road
ALTRINCHAM
Cheshire WA 14 lNU
Tel: 061 9286422
Telex: 668068
A,CH,CS,E,M,MS,P
Hewlett-Packard Ltd.
Eistree House, Elslree Way
BOREHAMWOOD, Herts WD6 1SG
Tel: 01 207 SOOO
Telex: 8952716
E,CH,CS,P
Hewlett-Packard Ltd.
Oakfield House, Oakfield Grove
Clifton BRISTOL, Avon BS8 2BN
Tel: 0272 736806
Telex: 444302
CH,CS,E,P
Hewlett-Packard Ltd.
Bridewell House
Bridewell Place
LONDON EC4V 6BS
Tel: 01 563 6565
Telex: 298163
CH,CS,P
Hewlett·Packard Ltd.
Fourier House
257-263 High Street
LONDON COLNEY
Herts. AL2 1HA, SI. Albans
Tel: 0727 24400
Telex: 1-8952716
CH,CS
Hewlett-Packard ltd.
Pontefract Road
NORMANTON, West Yorkshire WF6 lRN
Tel: 0924 895566
Telex: 557355
CH,CS,P
Hewlett-Packard ltd.
The Quadrangle
106-118 Station Road
REDHILL, Surrey RHI IPS
Tel: 0737 66655
Telex: 947234
CH,CS,E,P

SALES & SUPPORT OFFICES
Arranged alphabetically by country
GREAT BRITAIN (Cont'd)
Hewlett·Packard Ltd.
Avon House
435 Stratford Road
Shirley, SOLIHULL, West Midlands
B904BL
Tel: 021 7458800
Telex: 339105
CH,CS,E,P
Hewlett-Packard Ltd.
West End House
41 High Streel, West End
SOUTHAMPTON
Hampshire S03 300
Tel: 04218 6767
Telex: 477138
CH,CS,P
Hewlett·Packard Ltd.
Eskdale Rd.
Winnersh, WOK INGHAM
Berkshire RG 11 5DZ
Tel: 0734 696622
Telex: 84B8B4
E
Hewlett-Packard Ltd.
King Street Lane
Winnersh, WOKINGHAM
Berkshire RG 11 5AR
Tel: 0734 784774
Telex: 847178
A,CH,CS,E,M,MP,P
Hewlett·Packard Ltd.
Nine Mile Ride
Easlhampstead, WOK INGHAM
Berkshire, 3RGII 3LL
Tel: 0344 773100
Telex: 848805
CH,CS,E,P
IRELAND
NORTHERN IRELAND
Hewlett-Packard Ltd.
Cardiac Services Building
95A Finaghy Road South
BELFAST BT10 OBY
Tel: 0232 625-566
Telex: 747626
CH,CS
SCOTLAND
Hewlett-Packard Ltd.
SOUTH QUEENSFERRY
West Lothian, EH30 9TG
Tel: 031 331 1188
Telex: 72682·
CH,CM,CS,E,M,P
UNITED STATES
Alabama
Hewlett-Packard Co.
700 Century Park South, Suite 128
BIRMINGHAM, AL 35226
Tel: (205) 822-6802
A,CH,M
Hewlett-Packard Co.
420 Wynn Drive
HUNTSVILLE, AL 35805
P.O. Box 7700
HUNTSVILLE, AL 35807
Tel: (205) 830-2000
CH,CM,CS,E,M'
Arizona
Hewletl-Packard Co.
8080 Poinle Parkway Wesl
PHOENIX, AZ 85044
Tel: (602)273-8000
A,CH,CM,CS,E,MS

Hewlett-Packard Co.
2424 East Aragon Road
TUCSON, AZ 85706
Tel: (602) 889·463 t
CH,E,MS"
California
Hewlett-Packard Co.
99 South Hill Dr.
BRISBANE, CA 94005
Tel: (415) 330-2500
CH,CS
Hewlett-Packard Co.
P.O. Box 7830 (93747)
5060 E. Clinton Avenue, Suile 102
FRESNO, CA 93727
Tel: (209) 252-9652
CH,CS,MS
Hewlett-Packard Co.
P.C. Box 423.0
1421 South Manhattan Avenue
FULLERTON, CA 92631
Tel: (714) 999-6700
CH,CM,CS,E,MP
Hewlett-Packard Co.
320 S. Kellogg, Suile B
GOLETA, CA 93117
Tel: (805) 967-3405
CH
Hewlett-Packard Co.
5400 W. Rosecrans Boulevard
LAWNDALE, CA 90260
P.O. Box 92105
LOS ANGELES, CA 90009
Tel: (213) 970-7500
Telex: 910-325-6608
CH,CM,CS,MP
Hewlett-Packard Co.
3155 Porler Oaks Drive
PALO ALTO, CA 94304
Tel: (415) 857-8000
CH,CS,E
Hewlett-Packard Co.
4244 So. Market Court, Suile A
P.O. Box 15976
SACRAMENTO, CA 95852
Tel: (916) 929-7222
A' ,CH,CS,E,MS
Hewlett-Packard Co.
9606 Aero Drive
P.O. Box 23333
SAN DIEGO, CA 92139
Tel: (619) 279-3200
CH,CM,CS,E,MP
Hewlett-Packard Co.
2305 Camino Ramon ·C"
SAN'RAMON, CA 94583
Tel: (415) 838-5900
CH,CS
Hewlett-Packard Co.
3005 Scott Boulevard
SANTA CLARA, CA 95050
Tel: (408) 988-7000
Telex: 910-338-0586
A,CH,CM,CS,E,MP
Hewlett-Packard Co.
5703 Corsa Avenue
WESTLAKE VILLAGE, CA 91362
Tel: (213) 706-6800
E',CH',CS'
Colorado
Hewletl-Packard Co.
24 Inverness Place, East
ENGLEWOOD, CO 80112
Tel: (303) 649-5000
A,CH,CM,CS,E,MS

324

Connecticut
Hewlett-Packard Co.
47 Barnes Industrial Road South
P.O. Box 5007
WALLINGFORD, CT 06492
Tel: (203) 265-7801
A,CH,CM,CS,E,MS
Florida
Hewlett-Packard Co.
2901 N.W. 62nd Sireet
P.O. Box 24210
FORT LAUDERDALE, FL 33307
Tel: (305) 973-2600
CH,CS,E,MP
Hewlett-Packard Co.
6177 Lake Ellenor Drive
P.O. Box 13910
ORLANDO, FL 32859
Tel: (3.05) 859-2900
A,CH,CM,CS,E,MS
Hewlett-Packard Co.
5750B N. Hoover Blvd., Suite 123
P.C. Box 15200
TAMPA, FL 33614
Tel: (813) 884-3282
A' ,CH,CM,CS,E' ,M'
Georgia
Hewlett-Packard Co.
2000 South Park Place
P.C. Box 105005
ATLANTA, GA 30348
Tel: (404) 955-1500
Telex: 810-766-4890
A,CH,CM,CS,E,MP
Hawaii
Hewlett-Packard Co.
Kawaiahao Plaza, Suite 190
567 South King Streel
HONOLULU, HI 96813
Tel: (808) 526-1555
A,CH,E,MS
illinois
Hewlett-Packard Co.
304 Eldorado Road
P.O. Box 1607
BLOOMINGTON, IL 61701
Tel: (309) 662-9411
CH,MS"
Hewlett-Packard Co.
1100 31st Streel, .Suite 100
DOWNERS GROVE, IL 60515
Tel: (312) 960-5760
CH,CS
Hewlett-Packard Co.
5201 Tollview Drive
ROLLING MEADOWS, IL 60008
Tel: (312) 255-9BOO
Telex: 910-687-1066
A,CH,CM,CS,E,MP
Indiana
Hewlett-Packard Co.
7301 No. Shadeland Avenue
P.O. Box 50807
INDIANAPOLIS, IN 4625.0
Tel: (317) 842-1000
A,CH,CM,CS,E,MS
Iowa
Hewlett-Packard Co.
177622nd Slreel, Suite 1
WEST DES MOINES, IA 50265
Tel: (515) 224-1435
CH,MS"

Kansas
Hewlett-Packard Co.
7804 East Funston Road, #203
WICHITA, KS 67207
Tel: (316) 684-8491
CH
Kentucky
Hewlett-Packard Co.
10300 Linn Station Road, #100
LOUISVILLE, KY 40223
Tel: (502) 426-0100
A,CH,CS,MS
Louisiana
Hewlett-Packard Co.
160 James Drive Easl
ST. ROSE, LA 70087
P.O. Box 1449
KENNER, LA 70063
Tel: (504) 467-4100
A,CH,CS,E,MS
Maryland
Hewlett-Packard Co.
3701 Koppers Street
BALTIMORE, MD 21227
Tel: (301) 644-5800
Telex: 710-862-1943
A,CH,CM,CS,E,MS
Hewlett-Packard Co.
2 Choke Cherry Road
ROCKVILLE, MD 20850
Tel: (301) 948-6370
A,CH,CM,CS,E,MP
Massachusetts
Hewlett-Packard Co.
1775 Minuleman Road
ANDOVER, MA 01810
Tel: (617) 682-1500
A,C,CH,CS,CM,E,MP,P'
Hewlett-Packard Co.
32 Hartwell Avenue
LEXINGTON, MA 02173
Tel: (617) 861-8960
CH,CS,E
Michigan
Hewlett-Packard Co.
4326 Cascade Road S.E.
GRAND RAPIDS, MI 49506
Tel: (616) 957-1970
CH,CS,MS
Hewlett-Packard Co.
1771 W. Big Beaver Road
TROY, MI 48084
Tel: (313) 643-8474
CH,CS
Minnesota
Hewlett-Packard Co.
2025 W. Larpenteur Ave.
ST. PAUL, MN 55113
Tel: (612) 644-1100
A,CH,CM,CS,E,MP
Missouri
Hewlett-Packard Co.
11131 Colorado Avenue
KANSAS CITY, MO 64137
Tel: (816) 763-8000
A,CH,CM,CS,E,MS
Hewlett-Packard Co.
13001 Hollenberg Drive
BRIDGETON, MO 63044
Tel: (314) 344·5100
A,CH,CS,E,MP

/

~.

(-j

SALES & SUPPORT OFFICES
Arranged alphabetically by country
UNITED STATES (Cont'd)
Nebraska
Hewlett-Packard
10824 Old Mill Rd., Suite 3
OMAHA, NE 68154
Tel: (402) 334-1813
CM,MS

New Jersey
Hewlett-Packard Co.
120 W. Century Road
PARAMUS, NJ 07652
Tel: (201) 265-5000
A,CH,CM,CS,E,MP
Hewlett-Packard Co.
60 New England Av. West
PISCATAWAY, NJ 08854
Tel: (201) 981-1199
A,CH,CM,CS,E

New Mexico
Hewlett-Packard Co.
11300 Lomas Blvd.,N.E.
P.O. Box 11634
ALBUQUERQUE, NM 87112
Tel: (505) 292-1330
CH,CS,E,MS

New York

('

Hewlett-Packard Co.
5 Computer Drive South
ALBANY, NY 12205
Tel: (518) 458-1550
A,CH,E,MS
Hewlett-Packard Co.
9600 Main Street
P.O. Box AC
CLARENCE, NY 14031
Tel: (716) 759-8621
CH
Hewlett-Packard Co.
200 Cross Keys Office Park
FAIRPORT, NY 14450
Tel: (716) 223·9950
CH,CM,CS,E,MS
Hewlett·Packard Co.
7641 Henry Clay Blvd.
LIVERPOOL, NY 13088
Tel: (315) 451·1820
A,CH,CM,E,MS
Hewlett·Packard Co.
No.1 Pennsylvania Plaza
55th Floor
34th Street & 8th Avenue
MANHATTAN NY 10119
Tel: (212) 971·0800
CH,CS,E·,M·
Hewlett·Packard Co.
250 Westchester Avenue
WHITE PLAINS, NY 10604
Tel: (914) 684·6100
CM,CH,CS,E
Hewlett-Packard Co.
3 Crossways Park West
WOODBURY, NY 11797
Tel: (516) 921·0300
A,CH,CM,CS,E,MS

North Carolina
Hewlett-Packard Co.
5605 Roanne Way
P.O. Box 26500
GREENSBORO, NC 27420
Tel: (919) 852·1800
A,CH,CM,CS,E,MS

Ohio
Hewlett-Packard Co.
9920 Carver Road
CINCINNATI, OH 45242
Tel: (513) 891-9870
CH,CS,MS
Hewlett-Packard Co.
16500 Sprague Road
CLEVELAND, OH 44130
Tel: (216) 243-7300
A,CH,CM,CS,E,MS
Hewlett-Packard Co.
962 Crupper Ave.
COLUMBUS, OH 43229
Tel: (614) 436-1041
Elf: Nov. 25, 1983
675 Brooksedge Blvd.
WESTERVILLE, OH 43081
CH,CM,CS,E·
Hewlett-Packard Co.
330 Progress Rd.
DAYTON, OH 45449
Tel: (513) 859-8202
A,CH,CM,E· ,MS

Hewlett-Packard Co.
3070 Directors Row
MEMPHIS, TN 38131
Tel: (901) 346-8370
A,CH,MS

Texas
Hewlett-Packard Co.
4171 North Mesa
Suite C-110
EL PASO, TX 79902
Tel: (915) 533-3555
CH,E·,MS··
Hewlett-Packard Co.
10535 Harwin Drive
P.O. Box 42816
HOUSTON, TX 77042
Tel: (713) 776-6400
A,CH,CM,CS,E,MP
Hewlett-Packard Co.
930 E. Campbell Rd.
P.O. Box 1270
RICHARDSON, TX 75080
Tel: (214) 231-6101
A,CH,CM,CS,E,MP
Hewlett-Packard Co.
1020 Central Parkway South
P.O. Box 32993
SAN ANTONIO, TX 78216
Tel: (512) 494-9336
CH,CS,E,MS

URUGUAY
Pabfo Ferrando S.A.C. e I.
Avenida /lalia 2877
CasHla de Correa 370
MONTEVIDEO
Tel: 80·2586
Telex: Public Booth 90 1
A,CM,E,M

VENEZUELA

Virginia

Hewlett·Packard de Venezuela C.A.
3RA Transversal Los Ruices Norte
Edificio Segre 1, 2 & 3
Apartado 50933
CARACAS 1071
Tel: 239·4133
Telex: 251046 HEWPACK
A,CH,CS,E,MS,P
Hewlelt·Packard de Venezuela C.A.
Calle·72·Entre 3H y 3Y, No. 3H·40
Edlficio Ada-Evelyn, Local B
Apartado 2646
400 I, MARACAIBO, Estado Zulla
Tel: (061) 80.304
C,E·
Hewlelt-Packard de Venezuela C.A.
Calle Vargas Rondon
Edlficio Seguros Carabobo, Piso 10
VALENCIA
Tel: (041) 51385
CH,CS,P
Bloelectronica Medica C.A.
Calle 8uen Pastor
Edit. Cota Mil-Piso 2 y Semi Sotano 1
BoleitaNorte
Apartado 50710 CARACAS 1050A
Tel: 239 84 41
Telex: 26518

Hewlett-Packard Co.
9255 S. W. Pioneer Court
P.O. Box 328
WILSONVILLE, OR 97070
Tel: (503) 682·8000
A,CH,CS,E· ,MS

Hewlett-Packard Co.
4305 Cox Road
GLEN ALLEN, VA 23060
P.O. Box 9669
RICHMOND, VA 23228
Tel: (604) 747·7750
A,CH,CS,E,MS

ZIMBABWE
Field Technical Sales
45 Kelvin Road, North
P.B.3458
SAUSB/JRY
Tel: 705231
Telex: 4·122 RH

Pennsylvania

Washington

C,E,M,P

Oklahoma
Hewlett-Packard Co.
304 N. Meridian, Suite A
P.O. Box 75609
OKLAHOMA CITY, OK 73147
Tel: (405) 946-9499
A·,CH,E·,MS
Hewlett-Packard Co.
3840 S. 103rd E. Avenue, #100
P.O. Box 35747
TULSA, OK 74153
Tel: (918) 665-3300
A··,CH,CS,M·

Oregon

Hewlett·Packard Co.
111 Zeta Drive
PITTSBURGH, PA 15238
Tel: (412) 782·0400
A,CH,CS,E,MP
Hewlett-Packard Co.
2750 Monroe Boulevard
P.O. Box 713
VALLEY FORGE, PA 19482
Tel: (215) 666·9000
A,CH,CM,E,M

South Carolina
Hewlett-Packard Co.
Brookside Park, Suite 122
1 Harbison Way
P.O. Box 21708
COLUMBIA, SC 29221
Tel: (803) 732·0400
CH,E,MS
Hewlett·Packard Co.
Koger Executive Center
Chesterfield Bldg., Suite 124
GREENVILLE, SC 29615
Tel: (803) 297·4120

Tennessee

Utah
Hewlett-Packard Co.
3530 W. 2100 South
SALT LAKE CITY, UT 84119
Tel: (801) 974-1700
A,CH,CS,E,MS

Hewlett-Packard Co.
15815 S.E. 37th Street
BELLEVUE, WA 98006
Tel: (206) 643-4000
A,CH,CM,CS,E,MP
Hewlett·Packard Co.
Suite A
708 North Argonne Road
SPOKANE, WA 99212
Tel: (509) 922·7000
CH,CS

West Virginia
Hewlett·Packard Co.
4604 MacCorkle Ave.
P.O. Box 4297
CHARLESTON, WV 25304
Tel: (304) 925·0492
A,MS

Wisconsin
Hewlett·Packard Co.
150 S. Sunny Slope Road
BROOKFIELD, WI 53005
Tel: (414) 784·8600
A,CH,CS,E· ,MP

Hewlett·Packard Co.
224 Peters Road, Suite 102
P.O. Box 22490
KNOXVILLE, TN 37922
Tel: (615) 691·2371
A·,CH,MS

325

July 1983

5952·6900

Indicales main office

HP distributors are printed in italics.

(

\

Flia-

HEWLETT

~~ PACKARD

For more information call your local HP sales office listed in the telephone directory white pages. Ask
for the Components Department. Or write to Hewlett-Packard: U.S.A. - P.O. Box 10301, Palo Alto,
CA 94303-0890. Europe - P.O. Box 999 1180 AZ Amstelveen, The Netherlands, Canada - 6877
Goreway Drive, Mississauga, L4V IM8, Ontario. Japan - Yokogawa-Hewlett-Packard Ltd., 3-29-21,
Takaido-Higashi, Suginami-ku. Tokyo 168. Elsewhere in the world, write to Hewlett-Packard
Intercontinental, 3495 .Deer Creek Road, Palo Alto, CA 94304.
Printed in U.S.A.

Data Subject to Change

5953-4494 (6/ 84)



Source Exif Data:
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
PDF Version                     : 1.3
Linearized                      : No
XMP Toolkit                     : Adobe XMP Core 4.2.1-c043 52.372728, 2009/01/18-15:56:37
Create Date                     : 2013:08:03 13:49:37-08:00
Modify Date                     : 2013:08:03 14:24:22-07:00
Metadata Date                   : 2013:08:03 14:24:22-07:00
Producer                        : Adobe Acrobat 9.55 Paper Capture Plug-in
Format                          : application/pdf
Document ID                     : uuid:2c2de627-bb42-da4b-b1a6-d8925c98bf72
Instance ID                     : uuid:04aa3337-6ac3-ff44-abc9-4f103caed407
Page Layout                     : SinglePage
Page Mode                       : UseNone
Page Count                      : 342
EXIF Metadata provided by
EXIF.tools

Navigation menu