1984_Transistor_and_Diode_Designers_Handbook 1984 Transistor And Diode Designers Handbook
User Manual: 1984_Transistor_and_Diode_Designers_Handbook
Open the PDF directly: View PDF
.
Page Count: 342
| Download | |
| Open PDF In Browser | View PDF |
For Complete .
Application &Sales
.
'.
Information ' ,.'
•
Call
'
Joseph Masarich
Sales Representative
HEWLETT PACKARD
..
NEELY
"Sales Region
3003 scon BLVD.
SANTA CLARA, CA 95050
(408) 988-7234
Microwave Semiconductor
Diode and Transistor
Designers Catalog
1984-85
(/
Intensive research and development of
advanced manufacturing techniques has
enabled Hewlett-Packard to become a
high volume supplier of quality, competitively priced RF / Microwave Diodes and
Transistors.
In addition to our broad product line,
Hewlett-Packard also offers the following
services: Applications support, special
testing for customer requirements and a
one year guarantee on all of our products.
Each product accepted for commercial
sale has been tested for reliability during
the development phase and is subject to
quality assurance procedures throughout
the manufacturing process.
This package of products and services has
enabled Hewlett-Packard to become a
recognized leader in the Semiconductor
Industry.
o
Table of Contents
Ordering Information
Alphanumeric Index
High Reliability
.............................
.............................
Vll
Vlll
................................... 1
Quality and Reliability ............................. 15
Silicon Bipolar Transistors .......................... 23
c
113
Schottky Barrier Diodes
PIN and High Conductance Diodes ................. 213
Step Recovery Diodes ........................... . 301
Integrated Products .............................. 305
Appendix
.......... .. ..................... . ... .
'
,
309
Package Outlines ............................. 310
Stocking Distributors ......................... 315
Sales and Service Offices ................ . . . . .. 318
o
Identifies newly introduced products or capabilities
~ New products are also indicated by boldface listings in the Numeric Index.
iii
A Brief Sketch
Hewlett-Packard is one of the world's
leading designers and manufacturers of
electronic, medical, analytical, and
computing instruments and systems,
diodes, transistors, integrated products,
and optoelectronic products. Since its
founding in Palo Alto, California, in
1939, HP has done its best to offer only
products that represent significant
technological advancements.
Colorado, Washington, Oregon, Idaho,
Massachusetts, New Jersey and
Pennsylvania and at overseas plants
located in the German Federal Republic,
England, Scotland, France, Japan, Singapore, Malaysia, Brazil, Mexico and
Puerto Rico.
However, for the customer, HewlettPackard is no further away than the
nearest telephone. Hewlett-Packard
currently has sales and service offices
located around the world. (Pg. 318).
To maintain its leadership in instrument
and component technology, HewlettPackard invests heavily in new product
development. Research and development
expenditures traditionally average about
10 percent of sales revenue. This level of
commitment enables the company to
employ the latest technologies in
developing innovative products that can
be reliably produced, delivered, and
supported on a continuing basis.
These field offices are staffed by trained
engineers, each of whom has the primary
responsibility of providing technical
assistance and data to customers.
A vast communications network has been
established to link each field office with
the factories and with corporate offices.
No matter what the product or the
request, a customer can be
accommodated by a single contact with
the company.
HP produces more than 3,500 products at
our domestic divisions in California,
iv
RF and Microwave
Semiconductors
(,
"\
Hewlett-Packard's manufacturing plant
located in San Jose, California, houses
such modern equipment as projection
mask aligning and automation handling
systems. Ion implantation, new evaporation and wet processing systems, and
scanning electron microscopy provide the
basis for quality and dependability for the
entire product line.
When quality represents a competitive
edge, or when reputation and dependability of your products is on the line, you
can count on Hewlett-Packard RF and
Microwave Semiconductor Devices for
excellent product consistency.
v
About This Catalog
This Microwave Semiconductor Devices
Designer's Catalog contains detailed and
up-to-date specifications of our complete
line of RF and microwave products. This
catalog is divided into 4 product sections:
Silicon Bipolar Transistors, Schottky Barrier Diodes, PIN and High Conductance
Diodes, and Step Recovery Diodes. At
the end of each section, a complete index
of application notes and bulletins pertaining to the use of those products is
included.
How To Use This Catalog
Three methods are incorporated for
locating components:
• A table of contents that allows you to
locate devices by their general
description.
• An alphanumeric index that lists all
devices by part number plus generic
chip part numbers.
• Selection guides at the beginning of
each product section generally grouping products by major specification,
frequency, etc.
Also included in each section where possible are the equivalent circuits of each
product. These will be of use in the
computer-aided design circuits.
Although product information and
illustrations in this catalog were current at
the time it was approved for printing,
Hewlett-Packard, in a continuing effort to
offer excellent products at a fair value,
reserves the right to change specifications,
designs, and models without notice.
In the transistor product data sheets, the
Absolute Maximum Ratings table indicates the limits of the device. Operation in
excess of any of these conditions may
result in permanent damage to the device.
Information concerning the MTTF design
goals for the devices is included in "Reliability Performance of Bipolar
Transistors", page 108, as well as on the
product data sheets.
vi
(j
Ordering Information,
After Sales Services
How To Order
Certification
All Hewlett-Packard components may be
ordered through any of the Sales and
Service offices listed on page 318. In
addition, for immediate off-the-shelf
delivery of Hewlett-Packard RF and
Microwave Semiconductor devices,
contact any of the worldwide stocking
distributors and representatives listed on
page 315.
Some customers are especially interested
in the test and quality assurance programs
that HP applies to its products. These
Hewlett-Packard programs are documented in a Certificate of Conformance
which is available upon request at the
time of purchase. This certification states:
We certify that the Microwave Semiconductor Division devices were duly tested
and inspected prior to shipment and that
they met all of the published specifications
for these devices.
Warranty
As an expression of confidence in our
products to continue meeting the high
standards of reliability and performance
that customers have come to expect,
Hewlett-Packard Microwave Semiconductor Products carry the following
warranty.
c
Hewlett-Packard's calibration measurements are traceable to the National
Bureau of Standards to the extent allowed
by the Bureau's calibration facilities.
The Hewlett-Packard Quality Program
satisfies the requirements of MIL-Q9858A, MIL-I-45208A, MIL-S-19500,
MIL-C-45662A, and NASA 5300.4 (I.e.)
HP's Components are warranted against
defects in material and workmanship for a
period of one year from the date of shipment. HP will repair or, at its option,
replace components that prove to be
defective in material or workmanship
under proper use during the warranty
period. This warranty extends only to HP
customers.
Service
We firmly believe that our obligation to
you as a customer goes much beyond just
the delivery of your new HP product.
This philosophy is implemented by
Hewlett-Packard in two basic ways: (1) by
designing and building excellent products
with good serviceability, and (2) by backing up those products with a customer
service program which can respond to
your needs with speed and completeness.
NO OTHER WARRANTIES ARE
EXPRESSED OR IMPLIED. HP SPECIFICALL Y DISCLAIMS THE
IMPLIED WARRANTIES OF MERCHANT ABILITY AND FITNESS FOR
A PARTICULAR PURPOSE.
The HP customer service program is one
of the most important facets of our
worldwide operations, providing a local
service capability in many of our field
offices (listed on page 318). Indeed, this
customer service program is one of the
major factors in Hewlett-Packard's
reputation for integrity and responsibility
towards its customers.
EXCLUSIVE REMEDIES
THE REMEDIES PROVIDED
HEREIN ARE BUYER'S SOLE AND
EXCLUSIVE REMEDIES. HP SHALL
NOT BE LIABLE FOR ANY DIRECT,
INDIRECT, SPECIAL, INCIDENTAL,
OR CONSEQUENTIAL DAMAGES,
WHETHER BASED ON CONTRACT
TORT OR ANY OTHER LEGAL
THEORY.
vii
ALPHANUMERIC INDEX
.GENERIC
CHIP
PAGE
NO.
MODEL NO.
DESCRIPTION
HPND-4001
HPND-4005
HPND-4050
HPND-4165
HPND-4166
Beam Lead PIN Diode •••...••.•••...•.•...•..........••..•....••.....••.•.••••••...•••• 222
Beam Lead PIN Diode .......••.....•........•••••••••••.•..•••..••••......•.•...•.•.... 224
Beam Lead PIN Diode •......•••••..••...•...••••••••....•..••..•••.•.....••............ 222
RF PIN Diode ••••.•...••••.......••...•.••.......... 5082'{)()12 .•....••....••.••...••. 229
RF PIN Diode .••.........••......••..•.•.••....•.... 5082-{)012 •.....•••...••....••••. 229
HSCH-oS12
HSCH-oS13
HSCH-oS14
Hi Rei Zero Bias Schottky (HSCH-3486) .••.•••.........•.........•....••.•....•.......••. 192
Matched Pair HSCH-{)814 (5082-2401) .•...•....•••.............•...••......••...•.•••.... 176
Hi Rei Schottky Barrier Diode
(5082-2400) .........•.•.....•......•......••..................•••.....•••...•••••...•.. 176
Matched Pair HSCH-{)816 (5082-2306) ........••...................•......•..•..••••...... 176
Hi Rei Schottky Barrier Diode
(5082-2301) .....••.•..•......••....••..•...............•......•••....•••.....••.•.•.... 176
HSCH-oS15
HSCH-oS16
HSCH-1001
HSCH-1111
HSCH-3206
HSCH-3207
HSCH-3486
General Purpose Schottky Diode (1 N6263) ................................................
Hi Rei Schottky Chip •••.....•......•........•.••..............•.......••......•.•••....
Zero Bias Detector Schottky Diode ................... 5082-{)013 ........................
Zero Bias Detector Schottky Diode ................... 5082-0013 ........................
Zero Bias Detector Schottky Diode ................... HSCH-5017 ......................
141
170
161
161
161
HSCH-5310
HSCH-5311
HSCH-5312
HSCH-5313
HSCH-5314
Medium VF Schottky Beam Lead ..•.....•..•...................•••......•......•....••••
Batch Matched HSCH-5310 .....•...•.•..•......•.•..•.•••.•.••..••.•...................
Medium VF Schottky Beam Lead ....................................................... .
Batch Matched HSCH-5312 ..•....•.•....•..••••........................••...•••.•...•..
Ku Band Medium VF Schottky Beam Lead ............................................... .
127
127
127
127
127
HSCH-5315
HSCH-5316
HSCH-5317
HSCH-5318
HSCH-5319
Batch Matched HSCH-5314 ...•......•.....••.........•.........••......••..••......••..
Medium VF Schottky Beam Lead ..•.........•....•.....•...•.•...•........•.......•..•..
Batch Matched HSCH-5316 ............................................................ .
X-Band Medium VF Schottky Beam Lead ................................................ .
Batch Matched HSCH-5318 •..•.•.•...•.........•••.••.....•......•.•............•......
127
127
127
127
127
HSCH-5330
HSCH-5331
HSCH-5332
HSCH-5333
HSCH-5334
Low VF Schottky Beam Lead ..•.....••.........•......................•.......••.....••.
Batch Matched HSCH-5330 ..•..............••.•...................•..•...•.....•.••..•..
Low VF Schottky Beam Lead ..........•.•..•..........••.•.....•..............•.....•...
Batch Matched HSCH-5332 .......•........•....•..•.....•.......••.•...................
Ku Band Low VF Schottky Beam Lead .................................................. .
127
127
127
127
127
HSCH-5335
HSCH-5336
HSCH-5337
HSCH-5338
HSCH-5339
Batch Matched HSCH-5334 ...•.......•....•.......................••..............••... 127
Low VF Schottky Beam Lead ...................••..•...............••.....•............. 127
Batch Matched HSCH-5336 ............................................................ . 127
X-Band Low VF Schottky Beam Lead ................................................... . 127
Batch Matched HSCH-5338 ....•......••.................••.........................•.•. 127
HSCH-5510
HSCH-5511
HSCH-5530
HSCH-5531
HXTR-2001
Ku Band Med VF Schottky Beam Lead Pair .............................................. .
Med VF Schottky Beam Lead Pair ....................................................... .
Ku Band Low VF Schottky Beam Lead Pair .............................................. .
Low VF Schottky Beam Lead Pair ..•...................•••.•....•.....•...•..••..........
General Purpose Transistor Chip ......•.......•.•.................•••......•............
·HXTR-2101
HXTR-2102
HXTR-3001
HXTR-3002
HXTR-3101
General Purpose Transistor I2N6679) ............... .. HXTR-2001 ..................... .. 50
General Purpose Transistor ..•........•...........•.. HXTR-2001 ..•..•.•..•............ 52
General Purpose Transistor Chip .........•.......•......•...............................
34
Linear Power Transistor Chip ....••...•..................•................•............. .36
Low Cost General Purpose Transistor .......•......... HXTR-3001 ..••.•................
54
HXTR-3102
Low Cost General Purpose Transistor
Linear Power .; .....................................
General Purpose Transistor (2N6838) • • • . . . . . • . . . . . . ..
Linear Power Transistor (2N6839) ......•.••...•.•.....
Low Cost Low Noise Transistor .•.•..................
Low Cost High Performance Transistor .......•..•....
HXTR-3103
HXTR-3104
H~TR-3615
HXTR-3645
viii
HXTR-3002
HXTR-3001
HXTR-3002
HXTR-7011
HXTR-7011
133
133
133
133
32
56
58
61
63
66
/
\
(
(
GENERIC
CHIP
PAGE
NO.
MODEL NO.
DESCRIPTION
HXTR-3675
HXTR-4101
HXTR-5001
HXTR-5002
HXTR-5101
Low Cost High Performance Transistor ............... HXTR-7011
General Purpose Oscillator Transistor ................. HXTR-2001 .......................
Linear Power Transistor Chip ...........................................................
Linear Power Transistor Chip ...........................................................
Linear Power Transistor 12N67011 ..................... HXTR-5001 .......................
69
72
38
41
74
HXTR-5102
HXTR-5103
HXTR-5104
HXTR-6001
HXTR-6101
Linear Power Transistor ............................. HXTR-5002 .......................
Linear Power Transistor 12N6741 1 ..................... HXTR-5001 .......................
Linear Power Transistor ............................. HXTR-5002 .......................
Low Noise Transistor Chip ..............................................................
Low Noise Transistor 12N66171 ....................... HXTR-6001 .......................
77
80
83
44
86
HXTR-6102
HXTR-6103
HXTR-6104
HXTR-6105
HXTR-6106
Low Noise Transistor 12N67421
Low Noise Transistor (2N6618) ...................... .
Low Noise Transistor (2N6743) ...................... .
General Purpose Transistor ......................... .
General Purpose Transistor ......................... .
HXTR-7011
HXTR-7111
JAN 1N5711
JAN 1N5712
JAN 1N5719
Low Noise Transistor Chip ..............................................................
Low Noise High Performance Transistor .............. HXTR-7011 ......................
MIL-S-19500/444 Schottky Diode ..................... 5082-0024 .......................
MIL-S-19500/445 Schottky Diode ..................... 5082-0087 .......................
MIL-S-19500/443 PIN Diode .......................... 5082-0012 .......................
46
104
178
182
256
JANTX 1 N5711
JANTX 1N5712
JANTX 1N5719
JANTXV 1 N5711
JANTXV 1 N5712
MIL-S-19500/444
MIL-S-19500/445
MIL-S-19500/443
MIL-S-19500/444
MIL-S-19500/445
178
182
256
178
182
TXVB-2810
TXVB-2811
TXVB-2835
TXVB-3001
TXVB-3002
Hi-Rei 5082-2810
Hi-Rei 5082-2811
Hi-Rei 5082-2835
Hi-Rei 5082-3001
Hi-Rei 5082-3002
186
186
189
260
260
TXVB-3039
TXVB-3042
TXVB-3043
TXVB-3077
TXVB-3080
Hi-Rei 5082-3039
Hi-Rei 5082-3042
Hi-Rei 5082-3043
Hi-Rei 5082-3077
Hi-Rei 5082-3080
260
263
263
260
266
TXVB-3141
TXVB-3168
TXVB-3188
TXVB-4001
TXVB-4005
Hi-Rei 5082-3141
Hi-Rei 5082-3168
Hi-Rei 5082-3188
Hi-Rei 5082-4001
Hi-Rei 5082-4005
272
269
269
252
254
TXVB-4050
TXVW-5300 Series
TXVW-5500 Series
1 N5165
1N5166
Hi-Rei 5082-4050
Hi-Rei HSCH-5300 Beam Leads
Hi-Rei HSCH-5500 Beam Leads
Schottky Diode ISee 5082-2301 1
Schottky Diode ISee 5082-23021 .........................................................
252
172
174
141
141
1N5167
1N5711
1N5712
1N5719
1N5767
Schottky Diode ISee 5082-23031 .........................................................
H V General Purpose Schottky Diode 15082-28001 ...... 5082-0024 .......................
General Purpose Schottky Diode 15082-28101 .......... 5082-0087 .......................
PIN Diode 15082-30391 ............................... 5082-0012 .......................
PIN Diode 15082-30801 ............................... 5082-0025 .......................
141
141
141
229
229
1N6263
2N6617
2N6618
2N6679
2N6701
General Purpose Schottky Diode IHSCH-10011 ............................................
Low Noise Transistor IHXTR-61 011 .................... HXTR-6001 .......................
Low Noise Transistor IHXTR-61 031 .................... HXTR-6001 .......................
General Purpose Transistor IHXTR-21 01 1 .............. HXTR-2001 .......................
Linear Power Transistor IHXTR-51011 ................. HXTR-5001 .......................
141
86
92
50
74
Schottky Diode .....................
Schottky Diode .....................
PIN Diode ..........................
Schottky Diode .....................
Schottky Diode .....................
ix
HXTR-6001
HXTR-6001
HXTR-6001
HXTR-2001
HXTR-2001
.......................
5082-0024
5082-0087
5082-0012
5082-0024
5082-0087
89
92
95
98
101
GENERIC
CHIP
PAGE
NO.
MODEL NO.
DESCRIPTION
2N6741
2N6742
2N6743
2N6838
2N6839
Low Noise Transistor •.•.•.•.••.•..•....•..•.••.••...
Low Noise Transistor •......•....••......•••...•••..•
Low Noise Transistor ...•...••.•...•.•...•...........
General Purpose Transistor (HXTR-3103) ....•...••.•..
Linear Power Transistor (HXTR-3104) •..••••.••••.•••.
5082-0001
5082-0008
5082-0009
5082-0012
5082-0013
High Speed Switch PIN Chip .•.......•...............•......••.....•........•.....••.•.•
Step Recovery Diode Chip .•......••....•...••.••.•..............••.....•.•.............
X-Band Schottky Detector Chip •.•.•.•..........•.......•..••.•....•......•••••...•..•..
PIN Switching Diode Chip ...••......•..........•....•.....••••...••.•....••............
Low VF Mixer/Zero Bias Detector Schottky Chip ....•.........•..••...••......•.••...••...
220
292
125
220
125
5082-0015
5082-0017
5082-0018
5082-0020
5082-0021
Step
Step
Step
Step
Step
•.......•..•.•••........••.•••.....•..•..•...•...•..•••••..•..
•......•..••.....................••••....••........•••.••..•••
........•.......•••........•.•.•.....••...••••........•...•...
•...•......•...............•......•.•.•..•••......•.•••.•.....
...............•••.....••...•...••...........•.•..............
292
292
292
292
292
5082-0023
5082-0024
5082-0025
5082-0029
5082-0030
X-Band Schottky Mixer Chip .....••........•.............•........•...•.••..............
High Voltage Switching Schottky Chip .....•.•....••....•••.•..........•..•..............
AGC PIN Chip .'........................................................................
Ku-Band Schottky Mixer Chip ..................•..................•.......••..........••
PIN Switching Diode Chip ...............................................................
125
125
220
125
220
5082-0031
5082-0032
5082-0034
5082-0039
5082-0041
General Purpose Schottky Chip ......................................................... 125
Step Recovery Diode Chip ••......•...••.•••.....•..........••.....•......••............ 292
VHF/UHF Switching PIN Chip ..••...•.•.••.....................••....•......•..•...••..• 220
AGC PIN Chip .....•..•........•....••.......................•....•.•......•.•....••..• 220
X-Band Schottky Mixer Chip ............................................................ 125
5082-0047
5082-0049
5082-0057
5082-0058
5082-0087
PIN Switching Diode Chip .••.•..••...•.•.....•..•..•.•.••.•...•.•...•.........•...•....
Medium Power Switch PIN Chip ..........................................................
General Purpose Schottky Diode Chip ...................................................
General Purpose Schottky Diode Chip ...................................................
General Purpose Schottky Chip ......•.......•••........•.••. '. . . . . . . . . • • . • • . . . . . . . . . . . ..
220
220
125
125
125
5082-0090
5082-0094
5082-0097
5082-0112
5082-0113
Step Recovery Diode Chip ..............................................................
General Purpose Schottky Diode Chip ...................................................
General Purpose Schottky Chip .......•.......•.•.......•••............•................
Step Recovery Diode ................................ 5082-0015 ..•.............. ; ......
Step Recovery Diode .••.....••.....•.......................•......•....................
292
125
125
294
294
5082-0114
5082-0132
5082-0151
5082-0153
5082-0180
Step
Step
Step
Step
Step
Recovery
Recovery
Recovery
Recovery
Recovery
Diode
Diode
Diode
Diode
Diode
............................................................. ; ....•
................................ 5082-0015 ........................
· .. . . . . . . . . . . . . . . . . .. .. . . . . . . ... 5082-0018 ........................
.. . .. . . . .. . . . .. • . . . . . .. .. . .. .... 5082-0018 ........................
· . . . . . . . . . . . . .. . .. . .. . . . . . . . . ... 5082-0032 ........................
294
297
294
294
294
5082-0241
5082-0243
5082-0253
5082-0300
5082-0310
Step
Step
Step
Step
Step
Recovery
Recovery
Recovery
Recovery
Recovery
Diode
Diode
Diode
Diode
Diode
· . . . • . . . . . . . . . . . . . • . . . . . . . . . . . .. 5082-0032 ...•...•...•......•.....
....................................................................
· . . . . . . . . • . . . . . • . • . . . . . . . • • . . . •. 5082-0018 ..•.......•.............
· .....•.....••.................. 5082-0017 •.• ; .......•............
· . . • . . . . . . . . . . • . . . . • . • . • • • • • . . .• 5082-0021 .•....• . • . • . . . . • . . . . . . ..
297
297
297
297
297
5082-0320
5082-0335
5082-0800
5082-0803
5082-0805
Step
Step
Step
Step
Step
Recovery
Recovery
Recovery
Recovery
Recovery
Diode
Diode
Diode
Diode
Diode
· • • . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5082-0020 ....••.•...•••.••••.••.. 297
· • . . . . . . . . . . . . . . . . . • . • . . . . . . . . •• 5082-0008 ..............••...•..•. 297
................................................................... 297
.................................................................... 294
297
5082-0810
5082-0815
5082-0820
5082-0821
5082-0825
Step Recovery
Step Recovery
Step Recovery
Step Recovery
Step Recovery
Diode
Diode
Diode
Diode
Diode
...................................................................
...................................................................
· . . . . • • • . • . • • . • . • . • . . . . . . . . . . . .• 5082-0090 .....•.•.........•••••.•
· . . . . • • • . . . • • . . . . • . • . . . . . . . . . . .• 5082-0090 •....•........•..•••.•••
· • . • • . . . • • . . . . . . .. . . . . . . • . . . • • .. 5082-0090 ..•••....•.•............
Recovery
Recovery
Recovery
Recovery
Recovery
Diode
Diode
Diode
Diode
Diode
Chip
Chip
Chip
Chip
Chip
x
HXTR-5103
HXTR-e102
HXTR-e104
HXTR-3001
HXTR-3002
.••......•.•...••••••••
.........•.............
.•••.•....•..••.......
..••......••..•.•••..•
••......•••...........
(
80
89
95
58
61
297
294
297
297
294
\.
(~/
MODEL NO.
DESCRIPTION
GENERIC
CHIP
5082-0830
5082-0833
5082-0835
5082-0840
5082-0885
Step Recovery Diode
Step Recovery Diode
Step Recovery Diode
Step Recovery Diode
Step Recovery Diode
5082-0020
5082-0020
5082-0008
5082-0008
5082-0008
5082-1001
5082-1002
5082-1006
5082-2080
5082-2200
High Conductance Diode (1 N4456) ...... . . . .. .. .. . . . .. .. .. . . . . . . . . . . . . . . . . .. .. . . . .. . . . •.
High Conductance Diode ................................... :...........................
High Conductance Diode ........................................................•....•.
Batch Matched 5082-2835 Schottky ................... 5082-0031 ........................
Hermetic Stripline Schottky Diode .................... HSCH-5316 .......................
248
248·
248
141
146
5082-2201
5082-2202
5082-2203
5082-2207
5082-2208
Batch Matched 5082-2200 ....................... . . ..
Hermetic Stripline Schottky Diode ....................
Batch Matched 5082-2202 ...........................
Stripline Schottky Diode .............................
Batch Matched 5082-2207 ...........................
HSCH-5317
HSCH-5316
HSCH-5317
HSCH-5316
HSCH-5317
146
146
146
146
146
5082-2209
5082-2210
5082-2231
5082-2233
5082-2263
Stripline Schottky Diode .............................
Batch Matched 5082-2209 ...........................
Low VF Hermetic Stripline Schottky Quad .............
Low VF Hermetic Stripline Schottky Quad .............
Hermetic Stripline Schottky Ring Quad ................
HSCH-5316 ......................
HSCH-5317 ......................
5082-9397 .......................
5082-9397 .......................
5082-9396 .......................
146
146
151
151
151
5082-2271
5082-2272
5082-2273
5082-2274
5082-2277
Low VF Stripline Schottky Diode Quad ................
Low VF Stripline Schottky Diode Quad ................
Ku-Band Schottky Mixer Diode .......................
Matched pair of 5082-2273 ...........................
C-Band Stripline Schottky Ring Quad .................
5082-9395
5082-9395
5082-0029
5082-0029
5082-9394
.......................
.......................
.......................
.......................
.......................
151
151
154
154
151
5082-2279
5082-2280
5082-2291
5082-2292
5082-2294
Low VF Broadband Stripline Schottky Quad ...........
Low VF Broadband Stripline Schottky Quad ...........
Stripline Schottky Ring Quad ........................
Stripline Schottky Ring Quad ........................
Stripline Schottky Ring Quad ........................
5082-9397
5082-9399
5082-9696
5082-9696
5082-9698
.......................
.......................
.......................
.......................
.......................
151
151
151
151
151
5082-2295
5082-2296
5082-2297
5082-2298
5082-2301
X-Band Low VF Schottky Diode ...................... 5082-9013 ....................... 154
Matched pair of 5082-2295 ........................... 5082-0013 ....................... 154
X-Band Low VF Schottky Diode ...................... 5082-0013 ....................... 154
Matched pair of 5082-2297 ........................... 5082-0013 ....................... 154
Schottky Barrier Diode ................................................................. 14 t
5082-2302
5082-2303
5082-2305
5082-2306
5082-2308
Schottky Barrier Diode .................................................................
Schottky Barrier Diode .................................................................
Schottky Barrier Diode .................................................................
Matched pai r of 5082-2301 ..............................................................
Matched pair of 5082-2303 ..............................................................
5082-2350
5082-2351
5082-2356
5082-2370
5082-2396
Schottky Barrier Diode ............................................... .'................. 154
Matched pair of 5082-2350 .............................................................. 154
Matched Encapsulated Bridge Quad ..................................................... 141
Matched Quad of 5082-2303 Unconnected ............................................... 141
Matched Encapsulated Ring Quad....................................................... 141
5082-2400
5082-2401
5082-2520
5082-2521
5082-2565
Schottky Barrier Diode .................................................................
Matched pair of 5082-2400 ..............................................................
Schottky Barrier Diode .................................................................
Matched pair of 5082-2520 ..............................................................
Schottky Barrier Diode .................................................................
154
154
154
154
154
5082-2566
5082-2701
5082-2702
5082-2706
5082-2707
Matched pair of 5082-2565 ..............................................................
X-Band Schottky Mixer Diode ........................ 5082-0023 .......................
X-Band Schottky Mixer Diode ........................ 5082-0023 .......................
Matched pair of 5082-2701 ........................... 5082-0023 .......................
Matched pair of 5082-2702 ........................... 5082-0023 .......................
154
154
154
154
154
xi
PAGE
NO.
........................
........................
........................
........................
........................
......•............•...
......................
......................
......................
......................
297
294
297
294
297
141
141
141
141
141
GENERIC
CHIP
PAGE
NO.
MODEL NO.
DESCRIPTION
5082-2711
5082-2712
5082-2713
5082-2714
5082-2723
X-Band Schottky Mixer Diode ........................
Matched pair of 5082-2711 ...........................
X-Band Schottky Mixer Diode ........................
Matched pair of 5082-2713 ...........................
Ku-Band Schottky Mixer Diode .......................
.......................
.......................
.......................
.......................
.......................
154
154
154
154
154
5082-2724
5082-2750
5082-2751
5082-2755
5082-2765
Matched pair of 5082-2723 ........................... 5082-0029 .......................
Schottky Detector Diode ............................. 5082-0009 .......................
Schottky Detector Diode ............................. 5082-0009 .......................
Schottky Detector Diode ...............................................................
Low VF Hermetic Stripline Schottky ................... HSCH-5336 ......................
154
165
165
165
146
5082-2766
5082-2774
5082-2775
5082-2785
5082-2786
Batch Matched 5082-2765 ...........................
Low VF Stripline Schottky Diode ......................
Batch Matched 5082-2774 ...........................
Low VF Hermetic Stripline Schottky ...................
Batch Matched 5082-2785 ... . . . . . . . . .. . . . . . . . . . . . . ..
146
146
146
146
146
5082-2787
5082-2794
5082-2795
5082-2800
5082-2804
Schottky Detector Diode ............................................................... 165
Low VF Stripline Schottky Diode ...................... HSCH-5336 ...................... 146
Batch Matched Pair of 5082-2794 ..................... HSCH-5337 ...................... 146
H V General Purpose Schottky Barrier Diode (1 N5711) ... 5082-0024 ....................... 141
Matched Pair of 5082-2800 Unconnected .............. 5082-0024 ....................... 141
5082-2805
5082-2810
5082-2811
5082-2813
5082-2814
Matched Quad 5082-2800 Unconnected ...............
General Purpose Schottky Diode (1 N5712) .............
General Purpose Schottky Diode .....................
Matched Bridge Quad 5082-2811 Encapsulated ........
Matched Ring Quad 5082-2811 Encapsulated ..........
5082-0024 .......................
5082-0087 .......................
5082-0097
5082-0097 .......................
5082-0097 .......................
141
141
141
141
141
5082-2815
5082-2817
5082-2818
5082-2824
5082-2826
Matched Quad 5082-2811 Unconnected ...............
Schottky Barrier Diode ............................ ,.
Matched Pair of 5082-2817 ...........................
Schottky Barrier Diode ..............................
Batch Matched Diode 5082-2811 .....................
5082-0097
5082-0097
5082-0097
5082-0097
5082-0097
.......................
141
154
154
165
141
5082-2830
5082-2831
5082-2835
5082-2836
5082-2837
Monolithic Matched Schottky Diode Ring Quad ........ 5082-9696
Low VF Monolithic Matched Schottky Quad ........... 5082-9697
Low Offset Schottky Diode ........................... 5082-0031
Batch Matched Diode 5082-2800 ..................... 5082-0024
Schottky Diode Beam Lead ............................................................•
151
151
141
141
131
5082-2900
5082-2912
5082-2970
5082-2997
5082-3001
Schottky Barrier Diode .................................................................
Matched pair of 5082-2900 Unconnected .................................................
Matched Quad 5082-2900 Unconnected ..................................................
Matched Bridge Quad 5082-2900 Encapsulated ...........................................
RF PIN Diode ....•.................................. 5082-0012 ........................
141
141
141
141
229
5082-3002
5082-3039
5082-3040
5082-3041
5082-3042
RF PIN Diode .......................................
RF PIN Diode .......................................
Stripline PIN Diode ..................................
Stripline PIN Diode ..................................
RF PIN Diode .......................................
5082-0012
5082-0012
5082-0012
5082-0001
5082-0001
229
229
235
235
229
5082-3043
5082-3046
5082-3071
5082-3077
5082-3080
RF PIN Diode .......................................
Stripline PIN Diode ..................................
Microwave Limiter PIN Diode ........................
VHF/UHF PIN Switching Diode .......................
HFNHF/UHF Current Controlled Resistor (1 N5767) ....
5082-0001
5082-0049
5082-0001
5082-0012
5082-0025
229
235
233
229
229
5082-3081
HFNHF/UHF Current Controlled Resistor ............
RF Pin Diode
RF Pin Diode
Hermetic Stripline PIN Diode ....................•....
Hermetic Stripline PIN Diode ........................ .
5082-0039
5082-0012
5082-0012
5082-0012
5082-0001
229
246
246
240
240
5082-3101
5082-3102
5082-3140
5082-3141
xii
5082-0023
5082-0023
5082-0023
5082-0023
5082-0029
HSCH-5337
HSCH-5336
HSCH-5337
HSCH-5336
HSCH-5337
......................
......................
......................
......................
......................
.......................
o
MODEL NO.
DESCRIPTION
GENERIC
CHIP
PAGE
NO.
5082-3168
5082-3170
5082-3188
5082-3201
5082-3202
VHF/UHF Switching PIN Diode ..•.........••.........
Hermetic Stripline PIN Diode ....•.•......••.•.....•..
VHF/UHF Switching PIN Diode .••....................
RF PIN Diode ••..........••........•••.....•........
RF PIN Diode
5082-0034
5082-0030
5082-0034
5082-0012
5082-0012
229
240
229
246
246
5082-3303
5082-3304
5082-3305
5082-3306
5082-3340
RF PIN Diode
RF PIN Diode ........•.........•...........•......••
High Speed Switch PIN Diode ......•.................
High Speed Switch PIN Diode ..............•.....•...
Stripline PIN Diode ................................. .
5082-0030
5082-0030
5082-0001
5082-0001
5082-0030
246
246
244
244
235
5082-3379
5082-3900
5082-9394
5082-9395
5082-9396
VHF/UHF Attenuator PIN Diode ...........•....•.......•.................•..............
PIN Diode Beam Lead ........•...........•....•••..........• '.' ..................•......
Beam Lead Quad ....•.•.•...........•.....•.•.....•••................•.......•...•....
Beam Lead Quad ...•..•.............•.............•.........•............•..•...•.....
Beam Lead QUad ................•.......•...••.......•...•............................
229
226
137
137
137
5082-9397
5082-9398
5082-9399
5082-9696
5082-9697
Beam
Beam
Beam
Beam
Beam
137
137
137
137
137
5082-9891
X-Band Schottky Detector Chip .........................................................
Lead
Lead
Lead
Lead
Lead
Quad
Quad
Quad
Quad
Quad
................................................... : ................. .
o
xiii
125
c
HIGH RELIABILITY
Introduction
For over 15 years, MSD has been extensively
ihvolved in many military and space oriented
High Reliability (Hi-Rell Test programs. The
inherent reliability and proven performance of .
our products has provided a vehicle with which
to build a strong record of performance in the
demanding requirements of space programs.
By having a large group of Marketing and
Product Assurance personnel dedicated to the
service of Hi-Rei customers, HP has been
frequently called upon to provide the high
performance, highly reliable components
demanded by many military and commercial
space probe and satellite programs. Among the
many space programs using HP Microwave
Semiconductor Division products are Apollo,
Viking, Intelsat, Space Shuttle,.lndiasat, G-Star,
and Westar.
of devices to operate successfully under the
specified test conditions. A sample test plan
specifies the acceptance level required before
the lot is considered qualified. This test plan
depends on the level of reliability required, and
is mathematically derived.
If a lot does not successfully pass a particular
test during Group A sampling, that lot is 100%
retested for that particular parameter. This
100% testing will remove any non-conforming
devices thereby ensuring that the remaining lot
is reliable.
Sample tests are usually divided into Group A,
Group B, and Group C tests.
Group A tests are electrical tests used to
demonstrate that the parts meet the functional
requirements of the particular specification to
which they are purchased.
This section of the catalog describes the use of
Hi-Rei testing, to demonstrate the quality and
reliability of semiconductor devices.
Group B tests are environmental and life tests.
They are used to demonstrate the ability of the
lot sample to survive test conditions.
Reliability Testing
Group C tests are also environmental and life
tests. They are used to demonstrate the ability
of the generiC device to meet the requirements
of each test. These tests are run infrequently,
hence, they are often referred to as periodic
tests.
Reliability testing is designed to demonstrate
the ability of a device to meet electrical
requirements over its specified life to a
designated confidence level. To achieve this
confidence, Hi-Rei devices are either 100%
tested or qualified by testing a random sample
of devices from the lot.
Group Band C life tests verify the length of the
useful life period under specified bias
conditions (see Figure 1), Some of the Group B
and Group C tests render devices
unserviceable. These tests are called
destructive tests. MIL-S-19500 defines the
following tests as destructive:
The purpose of 100% testing is to verify the
stability of the devices in the completed lot, and
verify that devices are in the useful life period
(see Figure 1), These tests may be environmental
tests or functional tests (i.e. electricall and are
normally referred to as preconditioning and
screening tests, respectively.
Solderability
Soldering Heat
Moisture Resistance
Sample testing is used to statistically
demonstrate the capability of the completed lot
w'
~
a:
o
EARLY
FAILURES RANDOM FAILURES AT LOW. CONSTANT FAILURE RATE
USEFUL LIFE PERIOD
- - - OPERATING LIFE
Figure 1.
2
- - - - - -----------------_.
Terminal Strength
Salt Atmosphere
Salt Spray
.~ ..
Role of Military Specifications
There are numerous specifications associated
with electronic devices. MIL-S-19500 and MILSTD-750 are most frequently used to specify
test programs, methods and conditions for
discrete semiconductors.
reliability. MIL-STD-750 defines the actual tests
and screening methods, conditions and
pass/fail criteria as required by MIL-S-19500.
These tests are divided into three categories:
a. Environmental Tests (1000 Series)
b. Mechanical Tests (2000 Series)
c. Electrical Tests (3000 and 4000 Series)
MIL-S-19500 is the general specification for
discrete semiconductor components. It defines
test sequences to achieve different levels ot
Environmental Tests
MIL-STO-7S0
Method
(
Test Type
Purpose of Test/Simulated Operation
Frequency of Testing
1001
Barometric Pressure
Simulates non-pressurized portion of aircraft at
high altitude. (Required for products with VBR > 200 V
only.!
Group C (periodic)
1021
Moisture Resistance
Simulates tropical environment of high heat
and humidity.
Group C (periodic)
1022
Resistance to Solvents
Simulates cleaning of boards after device installation.
Verifies marking permanency.
Group B
1026
Steady State Life (A)
Simulates accelerated electrical operation. t = 1000 hours.
Group C (periodic)
1027
Steady State Life
(LTPD)
Simulates accelerated electrical operation. t = 340 hours.
Group B
1031
Hi-Temp. Non-Op.
Life (A)
Simulates accelerated shelf life. t
1032
Hi-Temp. Non-Op.
Life (LTPD)
Simulates accelerated shelf life and effect of exposure to
temperture. t = 24 hours for screen, t = 340 hours for
Group B.
100% screen and
Group B.
1038
Diodes
Hi-Temp. Reverse Bias
and Burn-in
Simulates time and stress of actual life use on devices.
Verifies that devices are in the useful life period.
100% Screen.
1039
Transistors
Hi-Temp. Reverse Bias
and Burn-in
Simulates time and stress of actual life use on devices.
Verifies that devices are in the useful life period.
100% Screen.
1041
Salt Atmosphere
Simulates accelerated exposure to sea coast
environment.
Group C (periodic)
1051
Thermal Shock
(Temperature Cycling)
Simulates transfer of parts between extreme
environmental conditions. _
100% Screen.
1056
Thermal Shock
(Glass Strain)
Ensures mechanical integrity by subjecting devices
to sudden changes in temperature.
Group C (periodic)
1071
Fine Leak/Gross Leak
Verifies that packaging is hermetically sealed.
100% screen.
3
= 1000 hours.
Group C (periodic)
Mechanical Tests
MIL-STO-7S0
Method
Test Type
Purpose of Test/Simulated Operation
Frequency of Testing
2006
Constant Acceleration
Ensures die attach and wire bond integrity.
100% screen.
2016
Mechanical Shock
Verifies devices resistance to mechanical stresses.
Group C (periodic)
2017
Die Shear Test
Verifies integrity of die to package bond.
In process/Group B
2026
Solderability
Confirms that the leads are able to take an even
coating of solder with minimum voids.
Group B
2031
Soldering Heat
Determines the devices resistance to the high
temperature encountered during soldering.
Guaranteed by
design.
Terminal Strength
Simulates the leads ability to withstand specified
tension, torq ue, and fatigue.
Group C
2036
A, D,E,F
2037
Bond Strength
Verifies integrity of chip to package interconnection
In process/Group B
2052
PIND (Particallmpact
Noise Detection Test)
Detects loose particles in the package cavity.
100% screen
2056
Vibration Variable
Frequency
Simulates mechanical performance of the device when
subjected to vibration within the specified frequency
range.
Group C (periodic)
2066
Physical Dimensions
Verifies that dimensions meet the design and
specification criteria.
Group C (periodic)
2071
Visual and Mechanical
Ensures that marking and packaging meet specified
requirements.
Group A
2072
Internal Visual (pre-cap)
Ensures high visual quality of end product.
100% screen
2073
Die Visual
Ensures high quality, defect-free semiconductor die
for assembly use.
100% screen
2074
I nternal Visual
(through glass)
Ensures high visual quality of end product.
100% screen
2075
Decap Design
Verification
Verifies that design and construction meet
specifications.
Group B
2076
X-Ray
Non-destructive test performed after final seal that
verifies seal integrity, bond integrity, and
particle-free cavity.
100% screen
2077
Scanning Electron
Microscope (SEM)
Verifies quality and acceptability of metallization on
semiconductor dice.
Samples from each
wafer or lot
Electrical Tests
Class 3000 and 4000 tests define the acceptable testing methods for semiconductor products.
4
Standard HI-Rei Programs
Since the advantages of products tested to
well established reliability standards can be of
significant value to reliabililty oriented
customers, HP makes available a number of
products that have been tested to the same
reliability level as the JAN type devices, but
have HP part numbers and meet HP
designated electrical specifications. These are
our "TX" products. Typical screening
programs are set forth in the Hi-Rei data
sheets.
Hewlett-Packard provides standard Hi-Rei
programs which are patterned after MIL-S19500. These programs are designed to:
1. Eliminate the costly requirements of
generating Hi-Rei specifications.
Hi-Rei Screened Products
Hewlett-Packard provides two types of Hi-Rei
products: DESC qualified (JAN) and Standard
Hi-ReI.
DEse Qualified Products (JAN)
Since a great number of reliability tested
devices are used in military programs, the
JAN (Joint Army-Navy) system has been
established by the U.S. government to provide
standardized levels of reliability at minimum
cost to all users. There are two major
advantages to the JAN type products. First,
the specification, and thus the reliability level
of the device, is pre-specified for the buyer,
eliminating costly creation of special
procurement documents. Second, JAN
devices can be manufactured in large
quantities with subsequent cost reductions.
2. Offer improved delivery for these Hi-Rei
devices.
3. Provide assistance in writing Hi-Rei
specifications.
Three levels of JAN devices are offered by
Hewlett-Packard:
1. JANShipment lots have had Group B tests
performed successfully on a sample basis.
Products available from HP may be classified
into four categories:
a. Dice
b. Beam lead devices
c. Glass packaged devices
d. Ceramic packaged devices
2. JAN TXThe shipment lots have been subjected to
100% screening tests. Individual devices
have been serialized, and drift data has
been recorded. Group B sample data is
then done after screening.
(
Hi-Rei screening requirements vary slightly
due to the unique properties of each category.
The tables that follow list these screening
programs along with the qualification and
quality conformance testing performed for
each category. Screening programs for each
category have been designed to verify the
reliability of the end product.
3. JAN TXV....,..
These are the same level as JAN TX with
the additional requirement of a pre-closure
visual inspection.
5
Diode Test and Screening Options (Typical)*
(All Methods (M) are per MIL-STD-750, Unless Otherwise. Specified)
,--_ST_A_N_D_A_R_D_P_R_O_D_U_C_T_-",II
Internal V,sual
H.P. Standard V,sual Spec
AQL= 1.0%
LOT QUALIFIED PRODUCT II'--__T_X_,_T_XV_P_R_O_D_U_C_T_----'
Internal Visual
H.P. Standard Visual Spec.
AQL= 1.0%
Internal Visual M2072/2074
ITXV Products Only)
CUSTOM PROCESSED
PRODUCT
Lot Qualified Product
PLUS
Additional Customer
Spec. Requirements
TX or TXV Screened Product
PLUS
Additional Customer
Requirements, such as
SEM, PIND, X-Ray, Special
Electrical Specs. etc.
Fine Leak, M1071 H
Gross Leak, M1071 C or E
AQL= 1.0%
Fine Leak. M1071 H
Gross Leak, M1071C or E
AQL = 1.0%
./
D.C. Electrical Tests
TA
= 25°C
Quality Conformance Inspection
Groups A, Band C
6
Diode Test and Screening Options (Typical)* (con't)
(
(All Methods (M) are per MIL-STD-750, Unless Otherwise Specified)
QUALITY CONFORMANCE INSPECTION
:~~~~~~~G~R~O~U~P~A~~~~~~~I ~I_______G_R_o_u_p_B______~I :I~~~~~~~G~R~O~U~P~C~~~~~~~
Subgroup 1, LTPD = 5
I
Subgroup 1, LTPD-15
Solderability, M2026
Resistance to Solvents, M1022
Subgroup 2, LTPD
IIII
= 15
Subgroup 1, LTPD
!
= 10
= 10
Subgroup 2, LTPD
Thermal ShoCk, M1051
(Temperature Cyclingl
Fine Leak, M1071 H
Gross Leak, Ml071C or E
J
Physical Dimensions, M2066
Thermal Shock Glass Strain,
M1056A
Terminal Strength, M2036A
Fine Leak, M1071 H
Gross Leak, M1 071 Cor E
Electrical Tests
(Read and Recordl
Moisture Resistance, M1 021
External Visual, M2071
Electrical Tests
(Read and Recordl
Subgroup 3, LTPD
Dynamic Electrical Tests
TA = 25'C
=5
!
Steady State Operating Life,
M1027, t = 340 hours
Electrical Tests
Subgroup 3, L TPD
lRead, Record and Deltal
= 10
Mechanical Shock, M2016
Vibration Variable Frequency,
M2056
Constant Acceleration, M2006
20 KG, XI, VI, Z1
Electrical Tests
(Read and Recordl
Subgroup 4, L TPD - 20
Decap Design Verification
1 Device 0 Failures
Bond Strength, M2037
(LTPD Applied to M20371
* This represents a typical
screening program for glass or
ceramic packaged diodes.
Subgroup 5, LTPD
= 10
J
= 15
I
Subgroup 4, LTPD
I
Salt Atmosphere, M1041
!
Subgroup 5, A - 10
High Temperature Non-Op
Life, M1032, t = 340 hours
Operating Life, M1027
t = 1000 hrs.
Electrical Tests
(Read, Record and Delta)
Electrical Tests
(Read, Record and Delta)
7
I
Hi-Rei Beam Lead Diode Test/Screen Program (Typical)
(
(All Methods (M) are per MIL-STD-750, Unless Otherwise Specified)
(
100% SCREEN
J
'---~
High Temp. Storage
(Stabilization Bake)
t = 24 hrs.
\
[
SAMPLE TESTS FOR WAFER LOT ACCEPTANCE
'----------'
•
Lead Pull Test
M2011 H/883 4 gms.
LTPD = 20
Assemble Packages
in Suitable Carriers
+
Electrical Tests
(Go- No Go)
Electrical Tests
(Die Probe)
+
Thermal Shock, M1051
(Temp. Cycling)
+
Visual Inspection
HPA-5956-0112-72
)
Electrical Tests
(Read and Record)
r-
+
High Temp. Non-Op Life
M1032, t = 340 hrs.
+
High Temp. Reverse Bias
M1038, t = 340 hrs .
LTPD=10 -
•
Electrical Tests
(Read, Record, Delta)
--
+
Operating Life, M1038
t = 340 hrs.
LTPD=10 -
+
Electrical Tests
(Read, Record, Delta)
-
8
Hi-Rei Chip Diode Test/Screen Program (Typical)
(All Methods (M) are per MIL-STO-750, Unless Otherwise Specified)
(
(
100% SCREEN
J
SAMPLE TESTS FOR WAFER LOT ACCEPTANCE
(
'------------'
]
'----_----J
~
Bond Strength
M2037, LTPD = 20
Electrical Tests
(Die Probe)
~
Assemble Samples
in Suitable Package
~
Electrical Tests
(Go- No Go)
Visual Inspection
M2073
-
Die Shear
M2017, LTPD = 20
+
Thermal Shock, M1051
(Temp. Cycling)
+
Constant Acceleration
M2006, 20 kg, Y1
~
Electrical Tests
(Read and Record)
r-
+
High Temp. Non-Op Life
t= 340 hrs.
LTPD=10-
+
Electric.al Tests
(Read, Record, Delta)
L...
r-
.~
Operating Life, M1038
t = 340 hrs.
J
LTPD= 10-
Electrical Tests
(Read, Record, Delta)
L...
9
I
1
iI
Transistor Test and Screening Options (Typical)
(All Methods (M) are per MIL-STD-750, Unless Otherwise Specified)
,-_S_TA_N_D_A_R_D_P_R_O_D_U_C_T_~II
LOT QUALIFIED PRODUCT
IIL.....__T_X_,_TX_V_P_R_O_D_U_C_T_---J
CUSTOM PROCESSED
PRODUCT
Lot Qualified Product
PLUS
Additional Customer
Spec. Requirements
TX or TXV Screened Product
PLUS
Additional Customer
Requirements, such as
SEM. PIND. X-Ray, Special
Electrical Specs. etc.
Fine Leak M1071H
Gross Leak M1071C or E
AQL 1.0%
Fine Leak M1071H
Gross Leak MlO7)C or E
AQL = 1.0%
D.C. Electrical Tests
TA=25°C
Quality Conformance Inspection
Groups A. Band C
10
\.
(
Transistor Test and Screening Options (Typical) (con't)
(All Methods (M) are per MIL-STO-750, Unless Otherwise Specified)
I
QUAUTY CONFORMANCE INSPECTION
...-----G-R-O-U-P-A-----,"
Subgroup 1, LTPD
~
5
I
GROUP B
Subgroup 1, LTPD - 15
rl----G-R-O-U-P-C-----.
I I
Solderability M2026
Resistance to Solvents M 1022
Subgroup 1, LTPD -15
Physical Dimensions
~
M~066
J
Subgroup 2, LTPD = 10
Subgroup 2, L TPD = 10
Thermal Shock M1051
ITem perature Cycling)
Fine Leak M1071H
Gross Leak M1071C or E
Electrical Tests
(Read and Record)
Thermal Shock (Glass Strain)
M1056A
Terminal Strength, M2036A
Fine Leak, M1071H
Gross Leak, M1071C or E
Moisture Resistance, M1021
External Visual, M2071
Electrical Tests
(Read and Record)
~
Subgroup 3, LTPD - 5
~
Steady State Operating Life
M1027, t = 340 hrs.
Electrical Tests
Dynamic Electrical Tests
TA = 25°C
Subgroup 3, LTPD = 10
(Read, Record and Delta)
Mechanical Shock, M2016
!
Vibration Variable Frequency,
M2056
Constant Acceleration, M2006
20 kg, X1, Y1, Z1
Subgroup 4, L TPD - 20
Electrical Tests
(Read and Record)
Oecap Design Verification
1 Device 0 Failures
Bond Strength M2037
IL TPD Applies to M20371
1. Not applicable to Micro-Plus
packaged devices.
I
!
!
Subgroup 4, LTPD
Subgroup 5. LTPD - 15
Thermal Resistance Tests
(Optional)
I
= 15
Sale Atmosphere M1041
~
Subgroup 5, A - 10
1
Subgroup 6, L TPD
=7
High Temp. Non-Op Ufe,
Mto32, t
= 340
hrs.
Electrical Tests
(Read, Record and Delta)
11
Operating Life M1027
t = toOO hrs.
Electrical Tests
(Read, Record and Delta)
I
Marking, Packaging, Shipping and Handling
Device and container marking is dependent on
the type of device as shown below:
Device
Device Marking
Dice
None
Beam Lead
None
Glass Package
JAN
JIN
ABCDI1j
AQIMI2j
Ceramic Package
DESC
JAN TX
JXIN
ABCDI1j
AQIMI2j
Typical Container/Marking
JAN TXV
JVIN
ABCDI1j
AQIMI2j
HP, Hi-Rei
ABC
DEFI1j
XXXI3j
None on small packages. Marking varies on larger packages.
Noles:
100 dice per waffle pack. Label
on waffle pack.
25 beamleads per gel pack. Label
on gel pack.
Bulk or corregated insert (10
each), packaged in antistatic bag.
Label on bag.
Tape and Reel
Individual or multiple packaging.
Label on packaging container.
Label Marking:
1. Part Number.
Hewlett-Packard
Part Number
Date Code
2. Manufacturers 10.
3. Data Code.
All devices are electrostatic sensitive.
Packaging used is antistatic and impregnated
with conductive material to provide adequate
protection from electrostatic discharge damage.
At a receiving station, the parts should be
Lot Number
Country of Origin
Quantity
treated as ESD sensitive material and
appropriate handling procedures must be used
to avoid degradation due to electrostatic
discharge.
12
o
o
c
15
QUALITY ASSURANCE
CONCEPTS AND METHODOLOGY
Quality Philosophy
definitive working knowledge of reliability
performance, whereby the resulting information is
used to predict long-term device reliability for the
intended application.
Recognizing the increasing importance of
microwave component reliability for the
consumer, industrial, and military markets, the
Microwave Semiconductor Division (MSD) of
Hewlett-Packard has committed itself to achieve
error free performance at all levels of
manufacturing and to deliver the highest level of
product quality and reliability performance. Three
basic ingredients are integrated into the
manufacture of reliable microwave components:
In-process Control and Reliability Testing
The reliability performance of microwave
components can be affected by numerous
operations associated with device manufacturing;
among these being:
• Wafer fabrication process/technology
• The device must be designed with a technical
understanding of the user's applications and
quality requirements.
• Device design and layout
• Packaging design
• The manufacturing processes
- Wafer fabrication
- Package materials
- Assembly materials and procedures
• The device must be manufactured with the
optimum state-of-the-art technology for the
application.
• Controls must be established in the
manufacture of the device.
• In-process controls
• Final electrical test procedures
As a major manufacturer of microwave products,
MSD produces a broad family of many devices.
Since it is not practical, technically necessary, nor
cost effective to qualify each of these products via
life and environmental testing, the logical
approach has been to differentiate
assembly/package related failure mechanisms
from failure modes associated with the wafer
fabrication process. This "die process" and
"package product" approach to reliability has been
a consideration in the new military standards for
microelectronic testing/reliability and is used at
MSD with the following definitions:
• Quality Assurance inspection procedures
• Post-assembly reliability screening
One of the most important aspects of insuring
quality and reliability is through adequate inprocess controls of these operations. Wafer
fabrication controls provide the assembly
operation with a high quality and reliable chip,
while the process controls associated with the
assembly operation assure the optimum in
package integrity. The main areas of Quality
Assurance process controls may be summarized
according to the fabrication and assembly
operations:
• Die Process Family consists of devices which
have identical wafer processing. This premise
recognizes that component geometry and
layout of a product will have little impact on
reliability because established deSign rules
apply to all products fabricated by the same
process.
Quality Assurance Process Controls
• Package/Assembly Family are those of like
construction and are assembled with identical
materials, manufacturing controls and
operations.
Component reliability estimation can therefore be
achieved with a high confidence level from
environmental and life testing data derived from
various product families. Accelerated stress testing
techniques are continuously employed to obtain
Wafer Fabrication
Assembly
Particle count, room and hood
ambient
Die visual
Temperature/Humidity control
Die shear test
Capacitance vs. Voltage plots
Wire bond pull
Furnace tube cleaning
Pre-seal visual
Deionized water checks
Hermeticity
Metal thickness monitor
Electrical test
Metal SEM monitor
Inspection of starting material
16
The Failure Rate Equation relates to the
population of units failed under life testing and the
duration of the test. It is defined by the
relationship
Life and Environmental Stress Tests
To ensure the highest quality product
commensurate with the intended use of the
device, numerous life and environmental tests
have been designed to assess device
performance. The majority of these tests are
designed to simulate more extreme operating
conditions than would actually be encountered in
most practical applications. This ensures the
reliability performance of the device relative to its
intended application. Typical device testing at
MSD generally comprises the following
environmental and life tests:
'11.=
where
A = assessed failure rate
NF = quantity of failures occuring in a time interval
t
No = quantity of acceptable devices at zero hours
t = time interval or duration of test
Life Tests
Generally it is more meaningful to discuss failure
rates in terms of the Mean Time To Failures or
MTTF, which is the reciprocal of the failure rate
and expressed as MTTF = 1/'11.. It is important to
recognize that both A and MTTF are statistical
averages and apply only to the useful life of the
product.
High Temperature Reverse Bias (HTRB)
Operating Life
High Temperature Operating Life (HTOL)
High Temperature Storage Life (HTSL)
Environmental Tests
The Probability of Survival is the likelihood that a
particular device will survive for a given period of
operating time and may be expressed as:
Moisture Resistance Hermeticity
Solderability
(
Mechanical Shock
Thermal Shock
Lead Fatigue
Temperature
Cycling
Vibration Variable Frequency
Vibration Fatigue
where
Power Cycling
Constant Acceleration
t = operating time of the device
Terminal Strength
Salt Atmosphere
A = failure rate = 1/MTTF
Ps = e-At = e-tl(MTTF)
Specific methods and conditions of these tests are
in compliance with MIL-STD-202, MIL-STD-750,
and MIL-STD-883 test specifications, depending
upon the nature of the device being tested and its
functional classification. For more information on
these testing programs please refer to the High
Reliability section of this catalog.
The third mathematical relationship of importance
to reliability is a form of the Arrhenius Equation,
which relates the rate of a thermally accelerated
process to temperature. Expressed in terms of the
failure rate A and the Activation Energy (Ea) for the
process takes the form:
Ea=
Reliability Assessment and Prediction
Numerous concepts and mathematical models
have been proposed to assess the reliability
performance of semiconductor components. Of
these, essentially three fundamental equations are
widely used in the industry for reliability
assessment and prediction of failure rate:
where
Ea = Activation Energy
k = Boltzmann's Constant (8.63 x 10-5 eV/o K)
Ti = Absolute temperatures at which the failure
rates Ai were measured
• The failure rate equation, A
Ai = Failure rate at temperature Ti
From this relationship, the failure rate at some
temperature other than the test temperature can
be determined provided the activation energy of
• The probability of survival, Ps
• The Arrhenius equation for determining the
activation energy of thermal processes, Ea
17
ARRHENIUS PLOT
the failure mode is known. More important, the
activation energy can be determined for various
thermally activated processes. This allows the
reliability analysts to fingerprint specific failure
mechanisms and hence predict the reliability
performance of a product as a function of time
and temperature. In practice, the failure
mechanism of a device is not clearly understood
or the activation energy of the processes are not
known. Hence the derating of failure rates from
accelerated temperature stress testing is usually
accomplished by the use of the non-integrated
Arrhenius equation:
\
.
,
In'
EXTRAPOLATED·LlNE
/ F O R DERATING A
,,
,
\
\
In A = - Ea
kT
+
lIT
In A
Extrapolation of this line to the junction
temperature (TJ) of the device or ambient
temperature (TA) allows the analytical extraction of
the failure rate at the temperature of interest. This
procedure of derating A assumes that the failure
rate is a linear function of time at a fixed level of
stress.
where A is a constant.
A plot of In A vs. T-1 will yield a straight line as
illustrated, with a slope equal to -Eak-1.
18
Reliability Product Monitor Program
The accompanying program matrix has been
constructed by the Reliability Group to provide an
active monitor on the reliability performance of
our products; the intent of the program being:
Fabrication and assembly variables were
considered in the construction of the matrix to
assure that these products would best represent
all product families and their associated
processes.
• To provide a periodic on-going evaluation of
our product reliability.
In addition to the following listed products, all new
products must pass an extensive reliability test
program prior to introduction. This ensures that
the tradition of high quality is upheld in all new
devices.
• Maintain a pulse on fabrication and assembly
operations.
• Identify, via long-term stress testing, the
limitations of our products and thereby
provide future direction to engineering
design, development, and manufacturing
improvements.
Life and Environmental Test Matrix[1]
Life/Environmental Stress
Stress Condition
Minimum Stress Duration
MIL-STD-750
Method 1026.3
TJ/TcH:::; 200° C
1000 hours
High Temperature Storage
MIL-STD-883
Method 1008
Test Condition D
TA= 200°C
2000 hours
MIL-STD-750
Method 1038/1039
Test Condition A
TA= 200°C
1000 hours
Temperature Cycling
MIL-STD-883
Method 1010
Test Condition D
-65° to 200° C
100 cycles
Power Cycling
MIL-STD-750
Method 1036.3
ATc = 100°C
5000 cycles
Thermal Shock
MIL-STD-883
Method 1011
Test Condition D
-65° to 200° C
100 cycles
Solderability
MIL-STD-202
Method 208
T PbSn at 230° C
5 second dwell
Hermeticity
MIL-STD-883
Method 1014
Kr-85/dry N2
Penetrant dye
N/A
Moisture Resistance
MIL-STD-202
Method 106
65° C/98% R.H.
10 day
Vibration Variable Frequency
MIL-STD-750
Method 2056
100 to 2,000 Hz
4 cycles at Sweep Rate
< 4 minutes
Mechanical Shock
MIL-STD-883
Method 2002
Acceleration at
1,500 G's
0.5 msec. pulse
duration
Terminal Strength
MIL-STD-750
Method 2036.3
TBA
(Package Related)
HTRB
(/
Test Method
Operating Life
30 second duration
Note:
1. The intent of the monitor program is to maintain a pulse on the reliability performance of products.
19
--~~--=~-------~~~~.
Reliability Product Monitor Program
Product Line
RF Schottky
Microwave
Schottky
PIN/SRD
Bipolar
Transistors
Part Number
Quantity
Period of Testing
5082-2800
100
Biannual
HSCH-1001
100
Biannual
5082-2835
100
Biannual
5082-2831
100
Biannual
5082-2200/2202
100
Biannual
5082-2301/2302
100
Biannual
5082-3001
100
Biannual
5082-3080
100
Biannual
HPND-4001/4050
100
Biannual
5082-0180
100
Biannual
5082-3188
100
Biannual
HXTR-5103
60
30[21
Biannual
HXTR-61 03/61 04
60
30[2]
Biannual
HXTR-3101/3102
90
Biannual
Life/Environmental Tests
Operating Life
HTRB[1]
High Temperature
Storage[1]
Temperature Cycling
Thermal Shock
Hermeticity[1]
Solderability[1]
Moisture Resistance
Vibration Fatigue
Mechanical Shock
Terminal Strengthl 1]
Power Cyclingl 1]
Moisture Resistance
Pressure Pot[1]
Lead Fatigue[1]
Salt Atmosphere
Solvent Resistance
Noles:
1. Where applicable.
2. May be electrical rejects.
DIODES
HERMETICITY
(100 UNITS)
I
I
25 UNITS
I
I
25 UNITS
25 UNITS
I
25 UNITS
1
20
o
BIPOLAR TRANSISTORS
(Method of Sequential Testing)
HERMETICITY
150 UNITS)
I
I
25 UNITS
"
I
25 UNITS
o
21
23
----------~----
SILICON BIPOLAR TRANSISTORS
CHARACTERISTICS AND APPLICATIONS
The Silicon Bipolar transistor is a semiconductor device, with amplification due to current
gain. The advantages silicon bipolar transistors
have over other transistor types are mature
technology (both in the understanding of the
device physics and the device design), low cost,
and proven reliability. Therefore, silicon bipolar
transistors offer designers a familiar, reliable,
cost effective solution to many of their design
needs.
measured with the emitter connected to the
guard of a four-terminal pair capacitance meter.
F(50 0) (50 n Noise Figure) - The noise figure
of a transistor with a 50 n source impedance.
fo (Gamma Optimum) - The source reflection
coefficient that yields the lowest possible noise
figure of a transistor (FMIN).
IP3(Third Order Intercept Point) - The
intersections of the straight line extensions of
the fundamental output and third order
intermodulation products of a transistor.
The Hewlett-Packard silicon bipolar transistors
are each characterized using standard D.C. and
R.F. specifications. The typical D.C. specifications include pertinent junction parameters
(such as junction breakdown voltages and leakage currents) and Beta (hFE). The R.F. and D.C.
parameters include the following:
P1dB (Power Output at 1 dB Gain Compression)
- When the input power increases until the
small signal tuned gain 'Compresses by 1 dB,
the resultant output power is called P1dB.
S-parameters are four measurable normalized vector quantities that relate to
reflection coefficients and gains. The four Sparameters are described as follows; Sl1, the
input reflection coefficient; S21, the forward
transmission coefficient (gain); S12, the reverse
transmission coefficient (isolation), S22, the
output reflection coefficient.
S-Parameters -
(Minimum Noise Figure) - The lowest
possible noise figure of the transistor when
properly biased and matched for low noise
operation.
FMIN
ft (Transition frequency, "Gain Bandwidth
Product") - ft is the theoretical frequency at
which the common emitter gain IhIe I is unity
(O·dB)' .
MAG (Maximum Available Gain) -
BVCBO (Collector Base Breakdown Voltage with
MAG is
Open Emitter) - DC breakdown voltage,
collector to base, with the emitter open circuited (IE = 0). This is the highest breakdown
voltage of the collector-base junction. BVCBO is
the highest voltage at which the transistor can
be operated without damage in Common Base
circuits.
theoretically the highest transducer power gain
that the transistor can deliver at a given
frequency. It is important to recognize that
MAG can only be deftned when the Stability
Factor, K, is greater than 1.0.
Ga (Noise Figure Gain) - Noise Figure Gain is .
the transducer gain meas.ured with the same
source impedance as that for obtaining the
Minimum Noise Figure, FMIN. Ga is usually
lower than MAG since the optimum source
impedance for FMIN is usually different than for
MAG.
BVCEO (Collector Emitter Breakdown Voltage
with Open Base) - DC breakdown voltage,
collector to emitter, with the base open
circuited (lB= 0), BVCEO is usually lower (as
much as 50%) than BVCBO.
BVCES(Coliector Emitter Breakdown Voltage
with Base Shorted) - DC breakdown voltage,
collector to emitter, with the base short circuited to the emitter (VBE = 0).
GT (Tuned Gain) - Tuned Gain is transducer
power gain measured with the transistor's input
and output impedances matched (tuned),
G1dB (Associated 1 dB Compressed Gain) Gain associated with P1dB. G1dB is 1 dB less
than the transistor small signal gain when it is
matched for maximum output power.
The forward
transmission gain of a transistor with a 50
source and load.
BVEBO (Emitter Base Breakdown Voltage) -DC
breakdown voltage, emitter to base reverse
biased, with open circuited collector (Ie = 0).
(Common Emitter Current Gain, Beta) Common emitter DC current gain, the ratio of
the total DC collector current to the total DC
base current.
hFE
IS21EI2 (Transducer Gain) -
n
C12E (Reverse Transfer CapaCitance) - The
collector-base capacitance of a transistor
24
C)
lEBO (Emitter Base Leakage Current) - DC
leakage current, reverse biased emitter base,
with collector open (Ie = 0).
2001, the transistor chip, is also available for
hybrid applications. All of the HXTR-2000
series devices are characterized from 100 MHz
to 6.5 GHz
ICBO (Collector Base Leakage Current) - DC
leakage current, reverse biased collector to
base, with emitter open circuited (IE = OL
The HXTR-3000 Series
The HXTR-3000 series devices are designed for
high volume, low cost applications in the UHF
range. The HXTR-3000 series consists of two
basic chips; the HXTR-3001 and the HXTR3002. The HXTR-3001 has high gain (typically
16 dB at 2 GHz), and low noise figure (typically
2.2 dB at 2 GHz). The HXTR-3001 is offered in
the HPAC-100X (a low cost, rugged metal/ceramic package) as the HXTR-3101 and the
HXTR-3103. The HXTR-3002 has high linear
output power (typically 21 dBm at 1000 MHz)
and high associated 1 dB compressed gain
(typically 11.5 dB at 1000 MHz). The
HXTR-3002 is also offered in the HPAC-100X,
as the HXTR-3102 and the HXTR-3104. Both
chip products, the HXTR-3001and the HXTR3102 are available for hybrid applications. All of
the HXTR-3000 series devices are characterized
from 100 MHz to 6 GHz.
ICEO (Common Emitter Leakage Current with
Base Open) - DC leakage current, collector to
emitter, with base open circuited (lB = OL
ICES (Collector Emitter Leakage Current with
Base Shorted) - DC leakage current, reversed
biased collector to emitter, with base shorted to
emitter (VEB = 0).
Ie (MAX) (Absolute Maximum Collector Current)
- Ie (MAX) is the maximum collector current
that the transistor can safely withstand for an
extended period.
PT (MAX) (Maximum Power Dissipation) - PT
is the maximum total DC and microwave
power dissipation the transistor can safely
withstand.
(MAX)
TJ (MAX) (Maximum Junction Temperature)The maximum junction temperature at which
the reverse biased collector base junction can
be maintained without irreversibly damaging
the transistor.
('
The HXTR-4101
The HXTR-4101 is designed and characterized
for common-base oscillator transistor applications. The device uses the HXTR-2001 chip
packaged in the HPAC-100. The HXTR-4101
has typical output power (oscillator power) of
20 dBm at 4.3 GHz. This device is characterized
from 1 GHz to 12 GHz.
Included in the data sheets are the "Absolute
Maximum Ratings" which are those conditions
that, when exceeded, will cause permanent
damage to the device. These are the standard
maximum ratings used for derating purposes.
The HXTR-5000 Series
The Hewlett-Packard Silicon Bipolar product
line has six basic transistor types; the HXTR2000 series, the HXTR-3000 series, the
HXTR-41 01, the HXTR-5000 series, the HXTR6000 serios and the new HXTR-7000 series.
The HXTR-5000 series devices are designed for
those applications where high linear output is
required. The HXTR-5000 series consists of two
basic transistor chips, the HXTR-5001 and the
HXTR-5002. Both transistor chips have 2 J.Lm
emitter widths and Ta2N ballast resistors. The
HXTR-5001 has a total device dissipation of 700
mW, while the HXTR-5002 has a device
dissipation of 2.7 W. The HXTR-5001 has higher
linear output power than the HXTR-2000 series
(P1dB typically 23 dBm at 2 GHz), and high
associated 1 dB compressed gain (typically 13.5
dB of 2 GHz). The HXTR-5001 is offered in the
HPAC-100 and the HPAC-200. The HXTR-5101
is in the HPAC-100, and the HXTR-5103 is in
the HPAC-200. The HXTR-5002 has the highest
linear output power of the transistor product
line (typically 29 dBm at 2 GHz) and high
associated 1 dB compressed gain (typically 12.5
The HXTR-2000 Series
The HXTR-2000 series is designed for general
gain amplifier stage requirements. The HXTR2000 series devices have 2J.Lm emitter widths,
and 450 mW of total device dissipation. These
transistors have high maximum available gain
(typically 17.5 dB at 2 GHz), high linear output
power (P1dB typically 20 dBm at 2 GHz) with a
small degradation in noise figure (typically 2.2
dB at 2 GHz). The HXTR-2000 series is offered
in two rugged hermetic packages, the HPAC100 and the HPAC-70GT. The HXTR-2101 is
packaged in the HPAC-100, and the HXTR-2102
is packaged in the HPAC-70GT. The HXTR25
dB gain at 2 GHz). The HXTR-5002 devices are
offered in the hermetic packages HPAC-200
GB/GT and the HPAC-200. The HXTR-5102 is
packaged in the HPAC-200 GB/GT, and the
HXTR-5104 is packaged in the HPAC-200. Both
chip transistors, the HXTR-5001 and HXTR5002, are available for hybrid applications. All
the HXTR-5000 series devices are characterized
from 100 MHz to 6 GHz.
The HXTR-6000 Series
The HXTR-6000 series devices are designed for
those applications where low noise performance is a premium. These devices stem from
two basic transistor chips, the HXTR-6001 and
the HXTR-2001. The transistors using the
HXTR-6001 have the lowest noise figure and
the highest associated gain. The HXTR-6001
transistor has a 1 ILm emitter width, a typical
noise figure of 1.7 dB (at 2 GHz) with 13 dB of
associated gain, and 150 mW of total device
dissipation. The HXTR-6001 transistors are
offered in the HPAC-70GT and the HPAC-100.
The HXTR-6101 and the HXTR-6102 (low noise
selection of the HXTR-6101) are offered in the
HPAC-70GT. The HXTR-6103 and the HXTR-
e
6104 (low noise selection of the HXTR-6103)
are in the HPAC-100. The chip, the HXTR-6001,
is available for hybrid applications. The HXTR6105 and the HXTR-6106 use the HXTR-2001
chip. The HXTR-6105 is packaged in the HPAC100, and the HXTR-6106 is packaged in the
HPAC-70GT. The HXTR-6105 and the HXTR6106 are low noise selections of the HXTR-2101
and the HXTR-2102 respectively. These devices
are all characterized from 100 MHz to 6 GHz, or
higher.
The HXTR-7000 Series
The HXTR-7000 series devices are designed for
those applications where low noise and high
linear power output performances are required.
The chip, the HXTR c 7011, has 0.6 ILm emitter
widths, a typical noise figure of 1.7 dB with an
associated gain 13 dB at 2 GHz and 600 mW
total device power dissipation. The HXTR-7011
is offered in two rugged hermetic packages: the
high volume low cost HPAC-100X (HXTR-3615,
HXTR-3645, HXTR-3675) and the HPAC-100
(HXTR-71111. All the HXTR-7000 series devices
are characterized from 100 MHz to 6000 MHz.
26
SILICON BIPOLAR TRANSISTOR
PACKAGE SELECTION GUIDE
High Performance
Low
Noise
4 GHz
2 GHz
(HXTR-) (HXTR-)
Low Cost
Linear
Power
General
Purpose
Low
Noise
General
Purpose
Linear
Power
4 GHz
(HXTR-)
2 GHz
(HXTR-)
4 GHz
(HXTR-)
2 GHz
(HXTR-)
1 GHz
(HXTR-)
1 GHz
(HXTR-)
1 GHz
(HXTR-)
5001
5002
3002
5001
5002
7011
3001
7011
3002
7011
3104
3615
3645
3101
3615
3102
3104
3615
~
6001
7011
6001
7011
2001
2001
3001
=t
3675
3645
3675
3103
3645
0
6101
6102
2102
2102
6106
7111
6103
6104
2101
6105
2101
CHiP
HPAC-l00X
DV~
0
HPAC-70GT
+
+
5101
5101
5103
5103
5104
5102
5102
CJ
HPAC-l00
HPAC-200
0
10
0 0)
0
HPAC-200GB/GT
27
---------- ---------------
BIPOLAR TRANSISTOR SELECTION GUIDE
TYPICAL NOISE FIGURE VS. FREQUENCY
(PACKAGED TRANSISTOR)
4.0,-,--,--,-,--,-----,---,-----,--,,,
3.0
in
"~
2
~.
""
ilj
2.0
~
i5
z
1.0
FREQUENCY (GHz)
TYPICAL NOISE FIGURE VS. FREQUENCY
(CHIP TRANSISTORS)
4. 0
3.0
VV
HXTR-2001~
HXTR-300' ............
y/ . /
Ix
",./'
0
1.0
"
V
~
-- ~ ~ ~HXTR-7011
""",~
~
-- -- :~ F--''''
-- ---
-
~.",.
"I'HXTR-f 1.1 eV). For operation above this
condition, refer to page 108. "Reliability Performance of
Bipolar Transistors".
Thermocompression Wire Bond at a stage temperature of
310 ± 10°C, using a tip force of 30 ± 5 grams with 0.7 or 1.0
mil gold wire. A one mil minimum wire clearance at the passivation edge is recommended. (Ultrasonic bonding is not
recommended.!
32
(
Electrical Specifications at TA =25°C
MIL-5TD-TSO
Test Method
30111'
Pa,~meters
Symbol
BVCES
and Test Conditions
Colleetc,-Emitte, Breakdown Voltage at
je-100~A
VCE~15V
V
ICEO
Colleclof-Emltter Leakage Current at
3041.1"
nA
ieeo
Collector Cutoff Current at Vce=15V
3036.1"
nA
hFE
Forward Current Transfer Ratio at VCE-15V. Ic=15mA
3076.1 '
MAG
Maximum Available Gain
Pide
Vee = 15V, Ie = 25 rnA
Power Output at ldB Gain Compression
FMIN
Minimum Noise Figure
VeE
1-2GHz
4GHz
~
w
'"
'0
z
«
'"«
36
32
28
24
20
16
.......
I I
I I
""'-
I
I
MAG
"''"
"-
i-"'"
J
VeE -3V_
/'
If ~
/ ......... VeE -W'::
~
V/.. ......
""":'1
-
11
10
W
l'\.
I\,
1//
,,/
V
~FI'N
0.2
I
-
12
'"
0,1
3.8
Veel = lQ - ,15V-
13
"
1
11.5
20.0
18,5
J
15
14
1
12
17,5
dB
16
I
r-- S
r-- I 21.I'
220
HMeasured under low ambient light conditions
1
~
120
2,3
3246.1
46Hz
"300ps wide pulse measurement <2°/0 duty cY'cie.
100
50
dBm
f=2.0GHz
Max.
500
dB
4GHz
15V, Ie = 25 rnA
=
Typ.
Min.
30
-
f=2GHz
VeE = 15V, Ie = 15 mA
VeE '1V\
1
3
0.4 0,6
o
FREQUENCY IGHz)
(
Units
I
!
10
15
25
20
30
COLLECTOR CURRENT (mA)
Figure 1. Typical MAG, IS21E12, and
Noise Figure (FMIN) vs. Frequency at VeE
= 15 V, Ic = 25 mAo
Figure 2. TypicallS21EI2 vs. Current at 2
GHz,
Typical S-parameterS*VCE = 15V. Ic = 25mA
$11
Freq. (MHz)
100
200
300
400
500
600
700
800
900
1000
1500
2000
2500
3000
3500
4000
4500
5000
5500
6000
Mag.
0.57
0.68
0.72
0.74
0.75
0,76
0,76
0.76
0.76
0.76
0.77
0.77
0,77
0.77
0.77
0.76
0.76
0.76
0.76
0,76
(dB)
33,3
·172
14.5
12.0
10,1
8.6
7.2
6.0
5,1
-175
·176
-177
-178
.179
-179
-179
-180
-180
30.2
276
2!>.4
23.7
22.2
20.8
19.9
18,8
18.0
4.1
3.5
2,9
$22
$12
$21
Ang.
-88
-124
-141
-150
-156
-160
-163
·165
-167
-168
Mag.
Ang.
(dB)
Mag.
46,2
32,5
144
123
113
106
102
-42
-39
0,008
0,011
0.013
0.014
0,014
0,015
0.015
0,016
0,015
0.017
0,021
0.025
0.029
0,034
0,038
0,043
0,048
0052
0.057
23.9
18,7
15.3
12.9
11.0
9.8
99
2,0
1.6
1,6
1.5
1.4
-37
-37
·36
97
-36
95
77
-36
-36
-35
-34
-32
-31
73
-29
69
66
63
59
56
53
-28
93
91
85
81
8,7
7,9
5.3
4.0
3.2
2.7
2.3
-38
-27
-26
-26
-25
-24
0.062
Ang.
58
43
37
35
35
36
37
38
40
42
49
See page 49.
33
0.44
Ang.
-20
-26
-26
-24
-22
-21
-20
·19
-18
·18
·18
54
0.43
0.43
58
0.43
-23
0.43
0.44
0.44
0.45
0,45
0.46
0.47
-26
60
61
62
62
62
62
61
*Values do not include any parasitic bonding inductances and were generated by use of a computer model.
RF Equivalent Circuit
Mag.
0,85
0.67
0,56
0.51
0.48
0.46
0,45
0.44
0.44
-20
·29
-32
-35
-38
-41
-44
Flin-
GENERAL PURPOSE
TRANSISTOR CHIP
HEWLETT
~aI PACKARD
HXTR-300l
Features
HIGH GAIN
16 dB Typical at 2 GHz
1--------
305
(o.ol~)
PAD
HIGH OUTPUT POWER
21.0 dBm P1dB Typical at 1 GHz
LOW NOISE FIGURE
1.5 dB Typical FMIN al1000 MHz
WIDE DYNAMIC RANGE
305 {O.012}
LARGE GOLD BONDING PADS
Description/Applications
The HXTR-3001 is an NPN silicon bipolar transistor chip
designed for use in hybrid applications requiring superior
noise figure and associated gain performance at VHF, UHF,
and microwave frequencies. Use of ion implantation and
self alignment techniques in its fabrication produce superior
device uniformities and performance.
BASE
The HXTR-3001 features a metallization system that provides consistent and reliable performance at rated
dissipation under high temperature operation. The HXTR3001 also is provided with a dielectric scratch protection
over its active area and large gold bonding pads for ease of
use in most hybrid applications.
Chip Outline
DimenSions In Micrometers (Inches) - 25 (O.001)
Gold Bonding Pad Typical Dimensions
Base:
50 10.002! x 50 '0.002:
Emitter:
75,0.0031 x 38 )0.0015'
89 10.00351 Typical
Chip Thickness:
Collector Back Contact:
Silicon-Gold Eutectic
Absolute Maximum Ratings"
(TA =
25°C)
Symbol
Parameter
Collector to Base Voltage
Collector to Emilter Voltage
Emitter to Base Voltage
DC Collector Current
Total Device Dissipation
Junction Temperature
Storage Temperature
VCBO
VCEO
VE80
Ie
Pr
TJ
TSTa
Limit
30V
20V
1.SV
70 mA
900 mW
30Q"C
-65 0 C to
300°C
~Operation in excess of anyone of these conditions may result
permanent damage to this device.
Recommended Die Attach
and Bonding Procedures
In
Eutectic Die Attach at a stage temperature of 410 ± 1Qoe
under an N2 ambient. Chip should be lightly scrubbed using
a tweezer and eutectic should flow within five seconds.
Notes:
1. Power dissipation derating should include a C)JB (Junctionto-Back contact thermal resistance) of 125° C/W.
Total
(~)JA
(Junction-ta-Ambient) will be dependent upon the
heat sinking provided in the individual application.
2. A MTTF of 1.0 x 107 hours will be met or exceeded when the
Thermocompression Wire Bond at a stage temperature of
310 ± 10° C, using a tip force of 30 ± 5 grams with 0.7 or 1.0
mil gold wire. A one mil minimum wire clearance at the passivation edge is recommended. (Ultrasonic bonding is not
recommended.)
junction temperature is maintained under TJ = 200 0 C (based
on an activation energy of 1.1 eV). For operation above this
condition, refer to page 108. "Reliability Performance of
Bipolar Transistors".
34
(
/ Electrical Specifications at TA = 25°C
MIL-8TD-150
Teat MethOd
Symbol
Parameters and Test Conditions
BVCES
Collector-Emitter Breakdown Voltage at Ie = 1oo"A
ICEO
Collector-Emiller Leakage Current at Vce = 15V
ICBO
Collector Cutolf Current at VCIl
= 15V
hFE
Forward Current Transler Ratio at VeE
MAG
Maximum Available Ga,n
= 15V. Ie ~ 15mA
Min.
Units
3011.1'
V
Mall.
Typ.
30
3041.1"
nA
500
3036.1"
nA
100
-
3076.1'
50
1= 2000 MHz
dB
f =1000 MHz
2000 MHz
dBm
120
220
16.0
Vc.=15V, Ic=15 rnA
P'dS
Power Output at 1 dB Gain Compress1on
FMIN
VCF15V. IC=25 rnA
M,,'I;mum Noise Figure
I'"
500 MHz
1000 MHz
3246.1
21,0
19.0
1.2
1,5
dB
2000 MHz
Vee=10V, le=7 rnA
2.2
'300!,s Wide pulse measurement <2% duty cycle.
"Measured under low ambient light conditions.
2.
22
- V~E Jsv i
.:s
lil
24
~
~
i..
'\'!
W
~
€.
12
10
"""I
0
I
fI
~ "
12
N
16
N
~~
16
I I
\Ie£'2V
..eC:::-
18
20 - -
I
15V- -
20
0;
I,
'\
vCE""'f\ - e -
/
!
(
0.1
00
10
15
~
FREQUENCY (GHz)
Figure 1. Typical MAG. IS21 E!2,
Maximum Stable Gain IMSGI, and
Noise Figure IFMINI vs. Frequency.
20
25
30
ImAI
Figure 2. TypicallS21 EI2
of 500 GHz.
VS.
Current
Typical 5- Parameters· VeE = 15V. Ie = 15 mA
511
521
~
512
Freq. (MHz)
Mag.
Ang.
(dB)
Mag.
Ang.
(dB)
Mag.
Ang.
Mag.
100
200
300
400
0.651
0714
0.7410,754
0.761
0765
0.767
0.768
0.769
0.770
0770
0,769
0.766
0.163
0760
-74
-113
30.6
27.8
146
125
25.3
23,2
14.46
21.S
11.84
10.00
8.63
7.59
6.77
6.11
4.10
3.06
-37.2
-33.9
-32.9
-32,3
-32.0
-31.7
-31.5
-31,2
-31.0
-30.7
-29.3
-28,0
-26.8
-25.7
0.014
0,020
0.023
0.024
0.025
0.026
0.027
0.028
0.028
59
43
-132
34.04
24.66
18.41
0.851
0.659
0.539
0.471
0.429
OA05
0,389
0.377
0,370
0.365
500
600
700
800
900
1000
1500
2000
2500
3000
3500
4000
0.756
-143
-lSI
-155
-159
-162
·164
-166
-171
-174
-176
-177
-178
-179
20.0
18.7
17.6
16,6
157
12.2
9.8
7.8
6.2
4.9
3.7
2.46
2.05
1.75
1.53
114
107
102
98
95
93
91
89
81
74
69
63
58
53
-24.7
-23.S
See page 49.
35
33
31
32
32
33
34
0.Q29
35
0.034
0.040
0.046
0,052
0.058
0.064
41
44
47
48
'Values do not include any parasitic bonding inductances and were generated by use of a computer mOdel.
RF Equivalent Circuit
36
48
48
0.358
0.364
0.375
0.389
0.405
0.423
Ang.
-2:3
-33
·36
-36
-35
-34
-34
-34
-34
·34
-38
-43
-49
-55
·tn
--66
LINEAR POWER
TRANSISTOR CHIP
r/i~ HEWLETT
a!e.
PACKARD
HXTR-3002
Features
HIGH OUTPUT POWER
22 dBm Typical P1dB at 1 GHz
HIGH PldB GAIN
18.0 dB Typical GldB at 1 GHz
HIGH IS21EI2 GAIN
16.5 dB Typical at 500 MHz
LARGE GOLD BONDING PADS
Description/Applications
The HXTR-3002 is an NPN silicon bipolar lransislor chip
designed for use in hybrid applications requiring superior
noise figure and associated gain performance at VHF, UHF,
and microwave frequencies. Use of ion implantation and
self alignment techniques in its fabrication produce superior
device uniformities and performance.
BASE
HXTR-3002 features a' metallization system that provides
consistent and reliable performance at rated dissipation
under high temperature operation. The HXTR-3002 also is
provided with a dielectric scratch proteciton over its active
area and large gold bonding pads for ease of use in most
hybrid applications.
Chip Outline
Dimensions in Micrometers (Inches) .!: 25 (O.o01)
Gold Bonding Pad Typical Dimensions
Base:
50 (O.002i x 5010.002;
Emitter:
75,0.0031 x 38 ,0.0015i
Chip Thickness:
89 10.0035i Typical
Collector Back Contact:
Silicon-Gold Eutectic
Absolute Maximum Ratings*
ITA = 25°CI
Symbol
Vcao
VCEO
V"eo
Ic
PT
TJ
Tsr(J
Parameter
Collector to Base Voltage
Collector to Em ilter Voltage
Emitter to Base Voltage
DC collector Current
Total Device Dissipation
Junction Temperature
Storage Temperature
Umit
45V
27V
4.0V
100 rnA
1AW
300°C
-65'C to
300'C
Recommended Die Attach
and Bonding Procedures
"Operation in excess of anyone of these conditions may result In
permanent damage to this device.
Eutectic Die Attach at a stage temperature of 410 ± 10'C
under an N2 ambient Chip should be lightly scrubbed using
a tweezer and eutectic should flow within five seconds.
Notes:
1. Power dissipation derating should include a (-)JS (Junctionto-Sack contact thermal resistance) of 125°C/W.
Total
(')JA
(Junction-to-Ambient! will be dependent upon the
heat sinking provided in the individual application.
Thermocompression Wire Bond at a stage temperature of
310 ± 10° C, using a tip force of 30 ± 5 grams with 0.7 or 1.0
mil gold wire. A one mil minimum wire clearance at the passivation edge is recommended. (Ultrasonic bonding is not
recommended.!
2. A MTTF of 3.5 x 106 hours will be met or exceeded when the
junction temperature is maintained under TJ = 125°C (based
on an activation energy of 1.1 eVl. For operation above this
condition, refer to page 108. "Reliability Performance of
Bipolar Transistors".
36
(
Electrical Specifications at TA = 25°C
Symbol
BVcEO
Parameters and Test Condltlons
Collector· Base Breakdown Voltage at Ie ~ 3 rnA
Coliector·Emitter Breakdown Voltage at Ie ~ 15 rnA
BVEBO
Emitter·8ase Breakdown Voltage at IB
BVCBO
~
~
Test
MIL-STO-750
3001.1'
30 pA
2V
lEBO
Emitter·Base Leakage Current at YES
ICES
ICBO
Collector·Emitter Leakage Current at VeE
~
32 V
Units
V
Min.
40
Typ.
3011.1'
V
24
30261'
V
$.3
30611'
pA
2
30411"
nA
200
30361"
nA
hFE
Coliector·Base Leakage Current at VeB ~ 20 V
Forward Current Transfer Ratio at VeE ~ 18 V. Ie
PldS
Power Output at 1 dB Gain CompressIon
f
1000 MHz
dBm
22.0
GldB
AssOCiated 1 dB Compressed Gain
VCE= 18V.lc=30 rnA
f = fOOO MHz
dB
180
\S21E1 2
Transducer Gain
VCE'c 18 V, Ic ~ 30 mA
f = 500 MHz
1000 MHz
d8
16.5
~
30 mA
100
30761'
~
Max.
15
40
75
13.6
'300 /-Is wide pulse measurement at ::;2% duty cycle.
"Measured under low ambient light conditions
E
~
28
20
26
24
18
~
'"Cl
22
16
20
14
18
"'-''"
16
"
12
~
14
W
0)
W
12
10
;E
10
~
c5
"'"
0
(
0.1
0.2 0.3
10
0.5
Figure 1. Typical MAG.IS21E\2.
Maximum Stable Gain IMSGI and Power
Output at 1 dB Gain Compression IPldSI
VS. Frequency. VCE ~ 18 V, Ie = 30 rnA.
Typical S-Paranleters* VCE =
100
200
300
400
500
600
700
800
900
1000
1500
2000
2500
3000
3500
4000
Mag.
0.658
0656
0.652
0,648
0.644
0641
0.637
0.634
0632
0629
0.623
0618
0614
0.611
0608
0604
50
Figure 2. TypicallS21 EI2 vs. Current at
500 MHz.
5 21
An9·
-17
(dB)
·32
185
183
-47
-60
178
17.3
·72
16.7
161
154
14.8
14.2
136
-82
·91
-99
·105
-111
·131
·143
·151
·156
-160
·163
10.9
8.8
7.0
5.6
4.3
3.3
S ..
5,2
Mag.
844
8.18
7.79
7.33
6.85
637
5.91
549
5.11
4,76
350
2.74
2.24
1.90
1.65
1.46
Ang.
(dB)
170
161
153
145
138
132
-35.9
-30.1
·27.0
·250
-23.7
·22.7
126
-220
121
117
113
98
88
79
72
·21.5
-210
·20.7
·19.7
65
59
-19.2
·18,8
·18.4
-18.1
·17.7
Mag.
0,016
0031
0.045
0.056
0066
0073
0080
0.085
Ang,
Mag,
82
75
0.991
0089
0.092
0.103
0.110
0,115
0.120
0.125
0130
'Values do not Include any paraSitic bonding Inductances and were generated by use of a computer model.
RF Equivalent Circuit
40
18V. Ic = 30 mA
S"
Freq. (MHz)
30
20
Ic(JnA)
FREQUENCY (GHz)
See page 49.
37
68
62
56
52
48
45
42
39
32
29
28
27
27
27
0965
0.926
0881
0.833
0.787
0.744
0.706
0.671
0641
0.541
0492
0.469
0,461
0.460
0.465
Ang.
-7
-14
·20
·25
·29
-33
-36
·39
·41
-43
·50
-54
·58
-62
-66
-70
Flio-
LINEAR POWER
TRANSISTOR CHIP
HEWLETT
~~ PACKARD
HXTR-5001
Features
HIGH OUTPUT POWER
23 dBm Typical PldB at 2 GHz
22 dBm Typical PldB at 4 GHz
'I
HIGH PldB GAIN
13.5 dB Typical GldB at 2 GHz
8.0 dB Typical G ldB at 4 GHz
-r
I
HIGH POWER-ADDED EFFICIENCY
1
I
I
'"l'"
Description IApplications
The HXTR-500l is an NPN silicon bipolar transistor chip
designed for use in hybrid applications requiring superior
noise figure and associated gain performance at VHF, UHF,
and microwave frequencies. Use of ion implantation and
self alignment techniques in its fabrication produce superior
device uniformities and performance.
I
I
_...L
BASE
The HXTR-5001 features a metallization system that provides consistent and reliable performance at rated
dissipation under high temperature operation. The
HXTR-5001 also is provided with a dielectric scratch protection over its active area.
Chip Oulline
Dimensions in Micrometers (Inches)
~
25 (0.001)
Gold Bonding Pad Dimensions: 25 :0.001· x 25 '0.001,
TYPical
891.0.0035, Typical
Silicon-Gold Eutectic
Absolute Maximum Ratings *
Chip Thickness:
Collector Back Contact:
ITA = 25°C)
Symbol
VCBO
VCEO
V.BO
Ie
Pr
TJ
TSTG
Parameter
Collector to Sase Voltage
Collector to Emitter Voltage
Emitter to Base Voltage
DC Collector Current
Total Device Dissipation
Junction Temperature
Storage Temperature
Limit
45V
27V
4.0V
lOOmA
lAW
300°C
-65'C to
300'C
Recommended Die Attach
and Bonding Procedures
*Operation in excess of anyone of these conditions may result in permanent
damage to this device.
Notes:
Eutectic Die Attach at a stage temperature of410 ± 10°C
under an N2 ambient. Chip should be lightly scrubbed using
a tweezer and eutectic should flow within five seconds.
1. Power disSipation derating should include a (..)JB (Junction-
to-Sack contact thermal resistance) of 125°C/W.
Total ElJA (Junction-to-Ambient) will be dependent upon the
heat sinking provided in the individual application.
Thermocompression Wire Bond at a stage temperature of
310 ± 10° C, using a tip force of 30 ± 5 grams with 0.7 or 1.0
mil gold wire. A one mil minimum wire clearance at the passivation edge is recommended. (Ultrasonic bonding is not
recommended.!
2. A MTTF of 3.5 x 106 hours will be met or exceeded when the
junction temperature is maintained under TJ ::::: 125 0 C (based
on an activation energy of 1.1 eV). For operation above this
condition, refer to page 108. "Reliability Performance of
Bipolar Transistors".
38
( / Electrical Specifications at TA=25°C
Test
MIL-$TO-750
Symbol
Parametel'$ and Te$\ Condlllon$
BVCBO
Collector-Base Breakdown Voltage at 'e
BVCEO
::I mA
Collector-Emitter Breakdown Vollage at Ie = 15 mA
BVEBO
Emitter-Base Breakdown Voltage al'e = 30
~
lEBO
Emitter-Base Leakage Current at VEe = 2 V
ICES
Collector-Emitter Leakage Current
Units
Min.
V
40
3001.1'
~A
3011,1'
V
24
3026.1'
V
3.3
30611
at VeE = 32 V
ICBO
Collector-Base Leakage Current al Ves = 20 V
I1FE
Forward Current Transfer Ratio al VCE = 1 V, Ic = 30 mA
P1dB
Power 0 utput at 1 dB Gain Compression
e
3041.1"
/'A
nA
3036.1"
nA
f = 2 GHz
4GHz
dB
PSAT
Saturated Power Output ,8 dB Gain'
13 dB Gain,
f= 2GHz
4 GHz
dBm
Power-Added Efficiency at 1 dB Compl'llssion
f = 28Hz
4GHz
%
Thlfd Order Intercept Point
VeE ~ 18 V. Ie 30 mA
f
4 GHz
dBm
IPJ
100
75
40
23.0
22.0
dBm
ASSOciated 1 dB Compressed Gam
"
2
15
GldB
Max.
200
3076.1"
f= 2 GHz
4GHz
Typ.
13.5
8.0
25.5
25.0
35
25
32
*300 }.ls wide pulse measurement at ~2% duty cycle.
"Measured under low ambient light conditions
30
E
~
'"
25
i'--
~
0:
..
Q
(
20
!H
"
I
I
10
:;;
..
<5
:;;
0,1
0.2 0.3
0.5
iii
:!!
\
~
".
E
Q
20
~r-:1BV
~P'"
Z
r- -
j2V
~
MAG
4
Pl~B
'"
i i
!'\
[;1'
o
I
"" \"
15
N
~
:-
30
P1dB
IS21EI~
Z
iii
:!!
Jool
,
'"
0-
10
o
6 8
18V
TV ~ -
GldB
o
10
20
30
40
50
FREQUENCY IGHz)
COLLECTOR CURRENT (mA)
Figure 1. Typical MAG. Maximum Stable
Gain IMSG}.IS21EI2 and PldB Linear
Power vs. Frequency at VCE = 18 V.
Ic = 30 mA.
Figure 2. Typical PldB Linear Power and
Associated 1 dB Compressed Gain vs.
Current at VeE = 12 V and 18 V at 4 GHz.
39
(
Typical S-parameters· VCE = 18V, Ic = 30 rnA
~1I
822
812
Mag.
Ang.
4B
Mag.
Ang.
dB
Mag.
Ang,
Mag,
Ang.
0,100
0,200
03Q0
0.74
0.73
0.72
0.71
0.70
0.69
0,67
067
0.66
0.65
0,63
0.62
0.61
0.61
0.61
0,60
060
0.60
0.59
0.59
-15
·30
·44
-57
-68
-78
·67
·94
-101
-107"
·128
-140
·148
-154
·158
-161
-164
-166
-168
-169
20.2
10,2
9,88
9.42
8.87
8.28
7.71
7.16
6.65
6.19
5.78
4.25
3.33
2.73
2.32
2.02
1.79
1.61
1.47
1.35
1.25
171
162
154
146
140
-S8
-33
·30
·28
-26
-25
·25
-24
-24
-23
-22
-22
·21
-21
-20
-20
-19
-19
-19
-18
0.01
0.02
0.03
0.04
005
0.08
0,08
0.06
0.07
0.07
0,08
0.08
0,09
009
0.10
0.10
0,11
0.11
0.12
0.12
8S
75
69
63
58
54
0.99
0,97
0.93
0.89
0.85
0,80
076
0.73
0.70
0.67
0.58
0.53
0.51
0.50
0.49
0.49
0.49
0.49
0.49
0,49
-5
-10
·15
-19
0,400
,
9:11
Freq. (GHz)
0.500
0.600
0.700
0,800
0.900
1.000
1',500
2 000
2.500
3.000
3,SOO
4.0'00
4S00
5.900
5.S00
6.000
19.9
19.5
19,0
18.4
17.7 .
17.1
16.5
15.8
15.2
12.6
10.5
8.7
7.3
6.1
5.8
4.1
3.3
2.6
2.0
134
129
124
120
117
103
94
87
81
76
71
66
62
58
55
50
47
44
42
37
35
35
35
36
37
38
39
40
40
-22
-24
·26
-28
-29
·30
·32
·$2
·33
-35
·36
·38
-40
-43
·45
·47
'Values do not Include any parasitic bonding Inductances and were generated by use of a computer model.
RF Equivalent Circuit
See page 49.
(
40
Flio-
LINEAR POWER
TRANSISTOR CHIP
HEWLETT
~~ PACKARD
Features
HXTR-5002
t-------(o~SI-------I
HIGH OUTPUT POWER
29 dBm Typical PldB at 2 GHz
27.5 dBm Typical PldB at4 GHz
HIGH PldB GAIN
12.5 dB Typical GldB at 2 GHz
7.5 dB Typical GldB at 4 GHz
HIGH POWER-ADDED EFFICIENCY
Description IApplications
The HXTR-5002 is an NPN silicon bipolar transistor chip
designed for use in hybrid applications requiring superior
noise figure and associated gain performance at VHF, UHF,
and microwave frequencies. Use of ion implantation and
self alignment techniques in its fabrication produce superior
device uniformities and performance.
The HXTR-5002 features a metallization system that provides consistent and reliable performance at rated
dissipation under high temperature operation. The
HXTR-5002 also is provided with a dielectric scratch protection over its active area.
Gold Bonding t>ad Dimensions: - 38 (O.0015) x 20 (0.008) Typlca)
Chip Thlckne • ., 90 (0.0035! Typical
Coliector Sack Contact: Silicon-Gold Eutectic
( .
Absolute Maximum Ratings'
(TA = 25°CI
Symbol
VCBO
VCEO
VEBO
Ie
p,TJ
TSTG
Parameter
Collector to Base Voltage
Collector to Emitter Voltage
Emitter to Base Voltage
DC Collector Current
Total Device Dissipation
Junction Temperature
Storage Temperature
Limtt
45V
27V
4V
250 rnA
4W
300·C
-65'C to
Recommended Die Attach
and Bonding Procedures
3oo·C
·Operation in excess of anyone of these conditions may resut.tln permanent
damage to this device.
Eutectic Die Attach at a stage temperature of 410 ± 10°C
under an N2 ambient. Chip should be lightly scrubbed using
a tweezer and eutectic should flow within five seconds.
Notes:
1. Power dissipation derating should include a (·)JB (Junctionto-Back contact thermal resistancel of 125 0 C/W.
Total (")JA (Junction-to-Ambientl will be dependent upon the
heat sinking provided in the individual application.
2. A MTTF of 3.5 x 106 hours will be met or exceeded when the
junction temperature is maintained under TJ = 125 0 C (based
on an activation energy of 1.1 eVI. For operation above this
Thermocompression Wire Bond at a stage temperature of
310 ± 10° C, using a tip force of 30 ± 5 grams with 0.7 or 1.0
mil gold wire. A one mil minimum wire clearance at the passivation edge is recommended. (Ultrasonic bonding is not
recommended.!
condition, refer to page 108. "Reliability Performance of
Bipolar Transistors",
41
Electrical Specifications at TA=25°C
Test
MIL·STD·750
Symbol
Paramalets and Test Condliion.
BVcBo
Collector-Base Breakdown Voltage at
SVCEO
Collector-Emitter Breakdown Voltage at Ic=50mA
BVEBO
Emitter-Base Breakdown Voltage at
Ic~10mA
3001.1'
IB=100~A
Units
Min.
V
40
3011.1'
V
24
3026.1'
V
3.3
Typ.
Max.
IE80
Emitter-Base Leakage Current at VEB=2V
3061.1
~A
5
ICE$
Collector-Emitter Leakage Current at VCE=32V
3041.1"
nA
200
ICBO
Collector-Base Leakage Current at Vcs=20V
3036.1"
nA
hrE
Forward Current Transfer Ratio at Vce=18V. Ic=110mA
3076.1'
P'dB
Power Output at ldB Gain Compression
GldB
Associated fdS Compressed Gain
f= 2GHz
4GHz
dSm
f = 2GHz
4GHz
Saturated Power Output 18dB Gainl
(3dB Gain!
f
II
Power-Added Efficiency at IdB Compression
j
IP3
Third Order Intercept POint
PSAT
= 2GHz
4GHz
= 2GHz
VCE=18V,
f
= 4GHz
40
75
29.0
27.5
dB
12.5
7.5
dBm
31.0
29.5
(I/o
4GHz
100
15
38
23
dBm
37
Ic~110mA
*300 J.1sec wide pulse measurement at:5 2% duty cycle.
*"'Measured under lOW ambient light conditions.
30
25
.
~
"
.
0
2
«
E
~
20
15
10
'"
FREQUENCY (GHz)
COLLECTOR CURRENT (mAl
Figure 1. Typical/S21E/ 2 MAG and P, dB
Linear Power vs. Frequency at
Figure 2. Typical P1dB Linear Power and
Associated 1 dB Compressed Gain vs.
VCE = 18 V, Ic = 110 mAo
Current at VCE = 12 and 18 V at 4 GHz.
42
(
Typical S-Parameters* VeE =
18V, Ie = 110mA
811
Freq, (GHz)
Mag.
Ang.
(dB)
821
Mag.
0.100
0.200
0.300
0.400
0,500
0.600
0,700
0.800
0.900
1,000
1,500
2.000
2,500
3,000
3,500
4.000
4.500
5,000
5,500
6.000
0.55
0.65
0,72
0.76
0,79
0.80
0.81
0,81
0.82
0.82
0.83
0.83
0,83
0.83
0,83
0.83
0,83
0.83
0.83
0.83
-61
25.4
24.2
22.3
20.6
19,1
17.8
1M
15.5
14,S
13.7
10,3
19.7
16.2
13.1
10,7
9.01
7.73
6.74
5.97
5,35
4.84
3.29
7.9
2.49
2,00
-98
-119
-132
-141
-147
-151
-155
-158
-160
-167
-170
-173
-174
-175
-176
·177
-177
-178
-178
6.0
4,5
3,2
2,1
1,1
0,3
-0,5
-1,2
1,68
1.44
1.27
1,13
1.03
0,94
0.87
Ang.
(dB)
156
133
125
117
111
106
102
99
97
94
86
80
74
69
64
60
-31.S
-27.3
-25.6
-24.8
-24.4
-24.1
-24.0
-23,8
-2$,7
-23,7
-23.4
-23.3
-23.1
-22,9
-22.6
-22.4
-22.1
·21,9
-21,6
-21.4
55
51
47
43
812
Mag.
0.03
0.04
0,05
0.06
0,06
0.06
0.06
0,06
0,06
0.06
0.07
0,07
0.Q7
0.07
0,07
O.OB
0.08
0.08
0.08
0.08
*(Values do not include any parasitic bonding inductances and were generated by use of a computer modeL)
RF Equivalent Circuit
See page 49.
(
43
822
Ang.
Mag.
Ang,
68
50
39
0,93
-26
-46
-60
-71
-78
-84
32
27
24
22
20
19
18
16
16
17
18
19
20
21
21
22
22
0.76
0.63
0.53
0.45
DAD
0.36
0.33
0.31
0,30
0.25
0,24
0.24
0.25
0.27
0.28
0.30
0,32
0,34
0,35
·89
-93
-96
-99
-100
-114
-117
-118
-119
.120
-121
-121
-122
·123
/
Fh=- HEWLETT
~~
LOW NOISE
TRANSISTOR CHIP
PACKARD
I
."
HXTR-6001
Features
LOW NOISE FIGURE
1.7 dB Typical FMIN at 2 GHz
2.7 dB Typical FMIN at 4 GHz
1
1------- 305 ( 0 . 0 1 2 ) - - - - - 1
I
HIGH ASSOCIATED GAIN.
13.0 dB Typical G a at 2 GHz
9.0 dB Typical Ga at 4 GHz
/-::-
i
j
sa
Description/Applications
~~-~-~~~~
305
(0.012)
The HXTR-6001 is an NPN silicon bipolar transistor chip
designed for use in hybrid applicattons requiring superior
noise figure and associated gain performance at VHF, UHF,
and microwave frequencies. Use of ion implantation and
self alignment techniques in its fabrication produce superior
device uniformities and performance.
The HXTR-6001 features a metallization system that provides consistent and reliable performance at rated
dissipation under high temperature operation. The
HXTR-6001 also is provided with a dielectric scratch protection over its active area.
Chip Outline
Dimensions hI Micrometers (Inches) ± 25 (0.001)
Absolute Maximum Ratings *
Gold Bonding Pad Dimensions: 25 (0.001) x 25 (0.001)
Typical
89 (0.0035) Typical
Chip Thickness:
Silicon-Gold Eutectic
Collector Back Contact:
(TA = 25°C)
Parameter
Symbol
Vceo
VCEO
VEBO
Ic
PT
TJ
TSTG
Collector to Base Voltage
Co"ector to Emitter Voltage
Em Itter to Base Valtege
DC Collector Current
Total Device Dissipation
Junction Temperature
Storage Temperature
Lim"
35V
20V
1.5V
20mA
300mW
300°C
-6S·C to
3oo·C
Recommended Die Attach
and Bonding Procedures
~Operation in excess of anyone of these conditions may result in
permanent damage to this device.
Notes:
Eulectlc Die Attach at a stage temperature of 410 ± 10' C
under an N2 ambient. Chip should be lightly scrubbed using
a tweezer and eutectic should flow within five seconds.
1. Power dissipation derating should include a 0JB (Junction-
to-Back contact thermal resistance) of 125'C/W.
Total 0JA (Junction-to-Amblent) will be dependent upon the
heat sinking provided in the individual application.
2. A MTTF of 1.0 x 107 hours will be met or exceeded when the
junction temperature is maintained under TJ = 200°C (based
on an activation energy of 1.1 eVl. For operation above this
condition, refer to page 108. "Reliability Performance of
Thermocompression Wire Bond at a stage temperature of
310 ± 10°C, using a tip force of 30 ± 5 grams with 0.7 or 1.0
mil gold wire. A one mil minimum wire clearance at the passivation edge is recommended. (Ultrasonic bonding is not
recommended,)
Bipolar Transistors",
44
'
..
\
(
Electrical Specifications at TA = 25°C
Symbol
8VCES
ICEO
ICBO
hFE
FMIN
Ga
MIL-STD-750
Test Method
301U'
3041.1"
Parameters and Test Conditions
Collector-Emitter Breakdown Voltage at Ic=100!,A
Collector-Emitter Leakage Current at Vce=10V
Collector Cutoff Current at VC8=10V
Forward Current Transfer Ratio at Vce=10V, Ic~4mA
Minimum Noise Figure
1-2 GHz
Associated Gain
~
1=2 GHz
3036,1"
3076.1'
Units
V
nA
nA
-
Min.
30
Typ.
Malt.
150
500
100
250
50
1,7
3246.1
2.7
13.0
d8
90
4GHz
VCE=10V, le=4mA
*300ILS wide pulse measurement ::;2% duty cycle.
*'Measured under low ambient light conditions.
21
18
15
~
to
r--.- .........
12
r--
.,
-
0
1----.
i
'""
f------.
I
z
"'"
M~G
'"Ga"""'"
'"",,
r-...
.....
l'-..
i
_FM~
1.0
2.0
3.0
4.0 5_0 6.0
FREQUENCY (GHz)
COLLECTOR CURRENT (mA)
Figure 1, Typical MAG. Noise Figure
Figure 2. TypicaIIS21EI2,
4 GHz.
(FMJN), and Associated Gain vs.
(
Frequency at VCE
=
10 V, Ie
=
10V. Ic = 4mA
$11
100
200
300
400
500
600
700
800
900
1000
1500
2QOO
2500
3000
3500
4000
4500
5000
5500
6000
7000
Mag.
0.87
0.85
0.82
0.79
0.76
0.73
0.70
0.68
0,66
0.65
0.60
0.58
0.57
0.56
0.56
0.55
0.55
0.55
0,55
0.54
054
Ang.
-16
·30
-44
-57
·68
·78
(dB)
22.0
21.7
21,1
20.5
19,8
19.1
·86
18.5
·94
-100
17.6
17.0
16.3
13.5
11.3
9.5
8.1
6.8
5,7
4.8
-106
-126
-139
·146
-152
-156
-159
-162
-164
-165
-167
-169
3,9
3.2
2,5
1.4
S21
Mag.
12.60
12.10
11.40
$12
10,60
9,77
900
837
7,62
7.05
6.54
4.73
3.67
2,99
2.53
2,19
1.93
1,73
1.57
1.44
1.34
1.17
Ang.
170
160
151
144
137
131
126
121
118
114
102
(dB)
Mag.
-46
-40
-36
-35
0.005
0010
0015
93
-29
-28
-27
-26
-26
·25
-24
·24
-23
-22
87
82
77
72
68
65
61
57
51
·34
-32
-32
-31
-31
·31
-29
oms
0.021
0.024
0.025
0.027
0.028
0.029
0.034
0,037
0.041
0.045
0.049
M53
0.057
0.062
See page 49.
45
S22
Ang.
82
75
68
63
58
55
52
50
48
47
45
45
47
49
51
52
53
54
0,~8
55
0.071
0.080
55
56
*Values do not include any parasitic bonding inductances and were generated by use of a computer model.
RF Equivalent Circuit
Current at
4 mAo
Typical S- Parameters" VCE =
Freq. (MHz)
VS.
Mag.
0.99
0,98
0.95
0,93
0,91
0.89
0.87
0.85
0.84
0.82
0.79
0.78
0.77
0,77
0.76
0.76
0.78
0.76
0.71'1
0.76
0,77
Ang.
-3
-5
·7
·9
-10
-to
-11
-11
-11
-11·
-12
-13
-14
-15
-16
-18
-19
-21
-23
-24
-28
Flio-
LOW NOISE
TRANSISTOR
CHIP
HEWLETT
~~ PACKARD
HXTR-7011
Features
LOW NOISE FIGURE
2.8 dB Typical FMIN at 4 GHz
1----- 3OS(0Il12)
HIGH ASSOCIATED GAIN
8 dB Typical Ga at 4 GHz
------"I
1
HIGH OUTPUT POWER
18.0 dBm Typical G1dB at 4 GHz
WIDE DYNAMIC RANGE
LARGE GOLD BONDING PADS
30S
:1
Description
The HXTR-7011 is an NPN silico.n bipolar transistor chip
designed for use in hybrid applications requiring superior
noise figure and associated gain performance at VHF, UHF,
and microwave frequencies. Use of ion implantation and
self alignment techniques in its fabrication produce superior
device uniformities and periormance.
The HXTR-7011 features a metallization system that provides consistent and reliable performance at rated
dissipation under high temperature operation. The HXTR7011 also is provided with a dielectric scratch protection
over its active area and large gC'id bonding pads for ease of
use in most hybrid application~.
ChlpOulflne
Dimensions in Micrometers (Inches) .t 25 (0.001)
Gold Bonding Pad
Dimensions (Typicall:
Chip Thickness (Typical',:
Collector Back Contacl:
Absolute Maximum Ratings*
(TA= 25°CI
Symbol
Vcao
Vceo
VellO'
Ie
Pr
TJ
TSTa
Limit
Parameter
Collector to Base Voltage
Collector to Emitter Voltage
Emitter to Base Voltage
DC Collector Current
Tota! Device Dissipation
Junction Temperature
.Storage Temperature
40 (0.0016) X 48 (0.0019'
89 (0.0035)
Silicon-Gold Eutectic
30V
11lV
1.5 V
65mA
600mW
300°0
-65°C to
300°0
Recommended Die Attach
and Bonding Procedures
·Operation in excess of anyone of these conditions may result in
permanent damage to this device.
Notes:
1. Power dissipation derating should include a ~)JB (Junctionto-Back contact thermer resistancel of 125° C/W.
Total HJA (Junction-to-Ambient) will be dependent upon the
heat sinking provided in the individual application.
Eutectic, Die Attach at a stage temperature of 410 ± 10°C
under an N2 ambient. Chip should be lightly scrubbed using
a tweezer and eutectic should flow within five seconds.
Thermocompression Wire Bond at a stage temperature of
310 ± 10° C, using a tip force of 30 ± 5 grams with 0.7 or 1.0
mil gold wire. A one mil minimum wire clearance at the passivation edge is recommended. (Ultrasonic bonding is not
recommended.J
2. A MTTF of 1 x lor hours will be met or exceeded when the
junction temperature is maintained under TJ = 200·C (based
on an activation energy of 1.1 eV). For operation above this
condition, refer to page 108. "Reliability Performance of
Bipolar Transistors".
46
(
Electrical specifications at TeAsE
MIL·STD·750
Test Method
Symbol
Parameters and Test Conditions
BVCBO
Coilector·Base Breakdown Voltage at Ie - 100
~A
BVCEO
Collector-Emitter Breakdown Voltage at Ie
15 mA
ICBO
Coliector·Base Cutoff Current at VCE
ICEO
Collector-Emilter Leakage al VeE - 15 V
hFE
Forward Current Transfer Ratio al VCE = 10 V,
FMIN
Minimum Noise Figure
VeE = 10 V, Ie = 10 mA
~
c
15 V
Ic~10mA
f = 1000 MHz
f~ 2000 MHz
f =4000 MHz
t
P'dB
Power Output at 1 dB Gain
Compression, VCE = 15 V. Ie = 18 mA,
GloB
Associated 1 dB Compressed Gain.
VCE=15V,lc=18mA
Min.
V
30
18
3011.1"
V
3036.1"
nA
3041.1
nA
Typ,
50
175
dB
U
32461
1.7
2.8
m 1000 MHz
f = 2QOO MHz
f = 4000 MHz
dB
18.0
13,0
1= 4000 MHz
dBm
18.0
f = 4000 MHz
dB
6.5
32461
8,2
*300 f.1s wide pulse measurement::s 2% duty cycle.
uMeasured under low ambient light conditions.
10
./
G~
/
r
~
w
(.
0:
::J
'u:"
w
1
"
0,
'"o
-
/
----
-
FMIN
I
3
I J
4 5
LI
10
l
20
30
COLLECTOR CURRENT (rnA)
FREQUENCY (GHz)
Figure 1. Typical FMIN, Ga , IS21 EI2 and
MSG VS. Frequency at VCE ~ 10 V, Ie ~
10 mA.
Figure 2. Typical FMIN and Associated
Gain vs. Ie at 4 GHz lor VCE ~ 10 V.
COLLECTOR CURRENT (rnA)
Figure 3. Typical IS21 EI2
2000 GHz.
47
VS.
Current at
Max,
50
55
3076.1
Associated Gain
VeE = 10V, le= lOrnA
Ga
Unlla
3001.1"
Typical S-Parameters
(VeE = 10 V, Ie = 10 mAl
$11
Freq.(MHz)
Mag.
Ang.
(dB)
100
200
300
400
0.68
0.66
0,63
0,62
27.7
26.1
24,5
500
600
700
800
900
1000
1500
2000
2500
3000
3500
4000
4500
5000
5500
6000
0,62
-41
-74
-99
-Ill
-107
-135
-143
-149
-154
-159
0.61
0.60
0.59
0,59
0.59
0.59
0,57
0.61
0.64
-176
172
163
156
0.70
0.71
0,78
0,83
0,88
0.93
149
144
138
137
133
134
Typical S-Parameters
23.0
21,5
20.2
19,0
18,0
17,1
16.2
12,9
10,5
8.7
7,2
5,9
4.7
3.6
2,8
2.1
1,1
(VeE
= 15 V,
$11
Freq. (MHz)
Mag.
Ang.
(dS)
100
200
300
400
500
600
700
800
0,63
0,62
0,81
-53
-90
-112
-127
-130
-146
-152
-153
-162
29,5
27,5
25,5
900
1000
1500
2000
2500
3000
3500
4000
4500
5000
5500
6000
0.61
0,60
0,60
0,59
0.59
0,59
0,59
0,59
0.58
0,62
0,64
0,70
0,72
0.79
0.85
0.88
0.94
-166
180
163
160
158
147
143
136
136
23.6
22.8
20,6
19,3
18.3
17,3
16,5
13.1
10.6
8,8
7.8
6.0
4,8
132
3,7
2,9
2,1
133
1.2
RF Equivalent Circuit
$12
$21
Mag.
24.27
20.18
16.79
14,13
11.89
10.23
8.91
7.94
7.16
6.46
4.42
3,35
2.72
2.29
1.97
1.72
1.51
1.38
1,27
1,14
Ie
Ang.
(dB)
Mag.
Ang.
Mag.
158
140
126
119
112
107
103
99
97
95
84
77
70
64
58
53
48
42
38
33
-36.6
-33.9
-32.1
-30.9
-29,3
-29,2
0.02
0.02
0,03
0,03
0.03
0.04
0.03
0.04
0,04
0.04
66
73
0,93
0,83
55
54
0.73
0.67
0,62
0,58
0,57
0.55
0.53
0,52
-29.4
-29.1
-28,6
-27,6
-26.6
-24,9
-233
-21.6
-20,0
-18,7
-17.1
-16.3
0.05
0.06
0.Q7
48
51
53
52
55
55
64
75
0.48
0,50
100
0.46
0.46
0.43
0.43
0040
0.36
0.36
0,33
Mag.
Ang.
Mag.
-41.1
-36,3
-34,8
-32.6
0,01
0,02
0,02
0,02
71
-33,1
0.02
0.03
0,03
0.91
0.79
0,70
0,64
0.60
0.59
0,57
0,56
0,55
0.08
0.10
0,12
·15.0
-14,6
0,14
0,15
0,18
0,19
Ang.
(dB)
151
133
121
111
108
103
100
96
94
91
82
75
83
69
94
95
99
99
98
$22
Ang.
-12
-19
-23
-23
-24
-22
·21
-20
-19
-18
-16
-IS
-17
-20
-21
-28
-27
-41
-49
-67
= 18 mAl
$12
$21
Mag.
29.85
23,71
18,84
15,14
13,80
10,72
9,23
8.22
7,83
16,66
4,52
3.39
2,75
69
63
57
2.32
2,00
1,74
1,53
140
1.27
1.15
See page 49.
48
-31,6
-31,2
-30.5
-30.2
-29.4
-27.7
-25.6
-24,0
0.03
0.03
0,03
0,04
0.05
0,06
-16.6
0.08
0.09
0,11
0,14
0,15
-15,2
-14,8
0.17
0.18
-21.9
-20.5
52
-19,0
46
41
36
31
-17.4
60
50
56
46
49
53
55
61
62
59
81
89
94
97
99
102
101
101
103
$22
Ang.
-13
-19
-21
-20
-20
-lS
-17
-16
0.54
0,52
-14
·14
-14
0,53
-12
0.49
0.50
0.47
0,47
0.44
0.39
0,39
0,35
-14
-17
-17
-24
-24
-37
-44
-61
SILICON BIPOLAR TRANSISTOR CHIP
EQUIVALENT CIRCUITS[1]
(
EMITTER
BASE
"1.-------'
RBA
01,
1
RBC
RBI
RB'
CBP
CBA
NOTE 1:
This equivalent circuit is for the transistor chip only. It does not include
parasitic bonding reactances. For additional information, please refer to
"Low-Noise Microwave Bipolar Transistor with Sub-Half-Micrometer
Emitter Width" by Tzu-Hwa Hsu and Craig P. Snapp, I EEE Transactions
Rc
on Electron Devices, Vol. ED-25, No.6, June 1978.
COLLECTOR
Current Dependent Current Source
"0
o
0'0
~
- - - exp (-j 2 n I rl
1 + j I/Ib
=---
1+ hFE
00
Re " ~ - - - - lcos (2n Irl -I
1 + (1/lbI 2
sin
fb
(2n hi]
-00
1m
0
~
----
1
lsin 2n ITI +1
fb
+ (1/lbI 2
sin
(2n ITI]
Bipolar Chip Equivalent Circuit Elements
Device
CSP
(pFI
C EP
(pF)
Cal
(pF)
CSE
(pF)
(pF)
CSA
CTE
(pF)
REC
(0)
RSI & Rec RSE
(ll)
(Il)
ReA
(ll)
fle
(n)
Re
(!I)
,,0
tb
GHz
psec.
108
,T
HXTR-2001, 15V,25rnA
0,066
0,06
0,07
0,056
D,032
4,8
02
0,2
35
4.4
5
1.0
0,990
22,7
HXTR-2001, 15 V, 15 mA
0,066
0,06
0,7
0,056
0,032
4.3
0,2
0.2
3.5
4.4
5
1,7
0,990
22.7
10,6
HXTR-3001, 15 V, 15 rnA
0,117
0,15
007
0,056
0,032
4,$
0.2
02
3.5
4,4
5
1.7
0,990
22.7
10.6
HXTR-3002, 18 V, 30 mA
0,117
0.19
0,07
0,053
1.03'
5.1
7.2
0,2
5.6
4.7
5
0,86
0,976
227
108
HXTR-5001, 18 V, 30 mA
0065
0.06
0.07
0053
1,034
51
7,2
0,2
5.6
4.7
5
0,66
0,976
22.7
10.8
HXTR-S002, 18 V, 110 rnA
0.105
0.15
0,22
0,18
0,11
17,3
3,1
0,2
1.7
1.4
3
0.24
0,976
227
10,9
HXTR-6001, 10 V, 4 rnA
0,053
0.05
0.01:1
0,016
0.0055
1,03
0.7
04
78
61
7
8,6
0990
22.7
12,1
HXTR-7011, 10 V. 10 mA
0,113
0,11
0,07
0,03'
0,017
3.65
0,22
0,13
0,9
2.0
6
2.6
0,990
16,4
156
49
Fliff4
GENERAL PURPOSE
TRANSISTOR
HEWLETT
~~ PACKARD
2N6679
(HXTR -2101)
Features
HIGH GAIN
-I
10.5 dB Typical at 4 GHz
1--
0•1 fO.04) TYP
ED
HERMETIC PACKAGE
I
_S.310.130)l
r-"":_~
Description
MIN.
+
c:z-t
C
The 2N6679 (HXTR-2101) is an NPN bipolar transistor
designed for high gain and output power at 4 GHz. The
device is manufactured using ion implantation and self
alignment techniques. The chip is provided with a dielectric
scratch protection over its active area.
0.51 10.02)
TYP.
The 2N6679 is supplied in the HPAC-100, a rugged
metal/ceramic hermetic package, and is capable of meeting
the environmental requirements of MIL-S-19500 and the
test requirements of MIL-STD-750/883.
__ 2.5 ;!; 0.26.......
(D.10, 0.011
Absolute Maximum Ratings*
Symbol
VCBO
VCEO
VE60
Ie
Pr
TJ
TSTG
-
Parameter
Collector to Base Voltage
Collector to Emitter Voltage
Emitter to Base Voltage
DC Collector Current
Total Device Dissipation
Junction Temperature
Storage Temperature
Lead Temperature
(Soldering 10 seconds each lead)
•
limit
30V
20V
1.5V
1.07:1:0.3
I
I
DIMENSIONS IN MILLIMETERS IINCHES).
+250'C
·Operation in excess of anyone of these conditions may result
permanent damage to this device.
In
Notes:
1. A tlJC maximum of 210'C/W should be used for derating
and junction temperature calculations (TJ = PD x (1JC
+
Outline HPAC-l00
TCASE).
2. A MTTF of 1.0 x 107 hours will be met or exceeded when the
junction temperature is maintained under TJ = 200 0 C (based
on an activation energy of 1.1 eVl. For operation above this
condition, refer to page 108. "Reliability Performance of
Bipolar Transistors".
50
J
t
70mA
900mW
300'C
-65'C to
200'C
01 i~~04)
n=IIIIJ1
_
=====~J;;;;;;;;;;;J~====::=J'.....L
L
10.042it 0.0;;,;1:1
(
Electrical Specifications at TCASE=25°C
Symbol
Parameters end Test Conditions
eVees
Collector·Emltter Breakdown Voltage le.. tOOJ,tA
CollelrtOr·Emitter Leakage Cummt at Vce"15V
Collector Cutoff Current at Vcs=15V
Forward Current Transfer Ratio VCS-16V,lc"'5mA
T\Jt\ed Gain Vee" 15V, Ic" 25 mAo
Frequencv .. 4 GHz
!ceo
leeo
hFe
GT
"
MIL..sTD·760
Test Method
,3011.1·
nA
3036.1
3076.1"
nA
Mal(.
Typ.
30
V
3041.1
Power Output at 1 dB Compres$ion
P1da
Min.
Units
500
100
-
50
120
dB
9.0
10.5
dBrn
220
18.5
'Vce"15V, Ic"'25mA, Frequency .. 4 GHz
*300,.s wIde pulse measurement <;2% duty cycle.
~
~
'"
~
iii
I.
I.
I.
I.
2' _
22
I. !~
I.,.
~
;.-
I. Ii
..•
•
~
F/
••
5
=
--
10
Vc;li-SV
-f': ,.-
\~.2V
)
15
20
1
25
30
Figure 3. Typical IS21EI2
Figure 2, Typical Power Output at
1 dB Compression and Small
VS.
4 GHz.
Signal Gain VS, Collector at 4 GHz
for VeE = 15 V.
Tvpical S-parameters VCE = 15V, Ic = 25 rnA
at,
811
Freq. (Utu)
100
500
1000
1500
2000
2500
3000
3500
4000
4500
5000
5500
5000
6500
Mag.
Ang.
(dB)
Mag.
Ang.
0.59
0.58
0.59
0.59
0.60
0.61
0.62
0.63
0.62
0.61
0.60
0.62
0.62
0.62
-66
3O.S
34.S
146
-150
-175
22.1
12.7
6.86
96
173
162
158
146
139
131
123
116
109
103
93
13.3
16.7
11.0
8.9
7.3
5,9
4.8
3.5
2.6
78
64
53
43
4.61
3.53
2.79
2.32
33
22
11
1.96
1.73
1.50
1.35
1
-9
1.8
1.23
-19
0.9
0.0
1.11
1.02
-28
-37
51
35
40
lel mA)
Ie (mA)
Figure 1, Typical MAG. 1521 EI2 and
Tuned Gain vs, Frequency at VeE
15 V, Ie 25 mA.
Vel *-'leV
~ 1.-.....
!II
FREQUENCY IGHz)
=
!
8
12
2
I
,
z
20
12
j
{
j
(d8)
·40.0 '
-33.2
-30.5
-28.0
-25.7
-24.2
-22.6
-21.2
.19.7
-18.6
-17.0
-15.9
-15.6
-13.7
812
Mag.
0,01
0.02
0.03
M4
0.05
0.06
0.07
0.09
0.10
0.12
0.14
0.16
0.17
0.20
St.
Ang.
Mag.
Ang.
69
44
51
55
35
55
0.S6
0.51
0.44
0.45
0.44
0.47
0.48
0.52
0.55
0.59
0.65
0.66
0.66
0.87
-18
56
53
50
48
44
36
32
28
·27
-32
-39
-49
-60
-67
-79
-84
-93
-102
-113
-123
-131
Bias at
Fli;W
HEWLETT
a:~ PACKARD
GENERAL PURPOSE
TRANSISTOR
HXTR -2102
Features
HIGH GAIN
11 dB Typical at 4 GHz
HERMETIC PACKAGE
L
BASE
tl
r
Q.508 (o.n~'D
Description
The HXTR-2102 is an NPN bipolar transistor designed for
high gain and wide dynamic range up to 6 GHz. The device
is manufactured using ion implantation and self alignment
techniques. The chip is provided with a dielectric scratch
protection over its active area.
EMITTEJ
_5.oe(O.~1
,
TYP.
The HXTR-2102 is supplied in the HPAC-70GT, a rugged
metal/ceramic hermetic package, and is capable of
meeting the environmental requirements of MIL-S-19500
and the test requirements of MIL-STO-750/883.
1.00 (0Jl391
MAX.
I
Absolute Maximum Ratings"
(TeASE = 25°C)
Symbol
Vello
VCEO
VellO
Ie
PT
TJ
TSTO
-
Parameter
Collector to aase Voltage
Collettor to Emitter Voltage
Emitter to aase Voltage
DC Collector Current
Total Device OiS$ipatlon
Junction Temperature
Storage Temperature
Lead Temperature
,Soldering 10 seconds each lead'
Limit
SOV
2()V
1.5V
70mA
900mW
3OO"C
-&\'C to
DIMENSIONS IN MILLIMETERS AlIID (INCHES).
2oo'C
+250'0
Out/lne HPAC·70 OT
·Operation in excess of anyone of these conditions may result In
permanent damage to this device.
Notes:
1. A BJC maximum of 185°C/W should be used for derating
and junction temperature calculations ITJ ~ Po x BJC +
TCASEI.
2. A MTTF of 1.0 x 107 hours will be met or exceeded when the
junction temperature Is maintained under TJ '" 200"C I based
on an activation energy of 1.1 eVI. For operation above this
condition, refer to page 108. "Reliability Performance of
Bipolar Transistors".
52
(
Electrical Specifications at TCASE=2SoC
MIL·STD·1SO
.' Symbol
T..tMelhod
Parema.ar. and T..t CondItione'
CoileotoH;mit~r Br.. kdown vilitige at I¢ ~ 100"A .
BVCES
. ICEO
CoUector.Elnit\&r Leekage Current ~t VCE ".1&V
Collector Cutoff Current $t Vce '" 15V
Forward Current TreMofer RatiO at VCE" 15V. Ie" 15mA
j=2G~
Tuned Gain
4 GHz
VCE '" i5V, 10 '" 25mA
Power Output at 1 dB Co.mpre&sltm
1=2 GHa
V06='15V.lo" 25mA
4 GHz
lOBO
hFE
ar
1'1da:
Unlta
,,.In.
fVD.
500
nA
nA'
-
307M'
dB
Max.
30·
V
S011.1'
3041.1'
3036.1
:100
50
13.0
120
15.0.
1.1.0.
220
:<0.0
dBm
18.5
'300!,s wide pulse measurement S2% duty cycle.
,.,.,.
- ,.
i
30
m 22
3
20
20
16
8
; . 18
i
~
f
16~-+~~~~~r+~
~ ::~-+~~
i 10f--++++
°O·'":.'--;O~.'-'-;O:':.'-';O!-:!.• U.':'::.O:---f.'.O,..u.-,l'.O:l.=".O:u,~lO.O
FREQUENCV tOHz)
COLLECTOR CURRENT (mA)
COLLECTOR CURRENT (mAl
Figure 1. Typical MAG, and Is" EI2 vs.
Frequency at VCE = 15 V, Ic = 25 mAo
Figure 2. Typical Power Output at 1
dB Compression and Small Signal
Gain VS. Current for VCE = 15 V.
Figure 3. TypicallS21EI2 vs. Current
at 2 GHz.
TypicalS-parameters
I'req. (MHz)
100
200
. 300
400
SOO
600
700
800
900
1000
1500
2000
2500
3000
3500
4000
4500
SOOO
5500
SOOO
6500
Mag.
0,63
0.63
0,84
0.64
0.84
0.64
0.64
0.64
0.84
0.64
0,66
0.65
0.67
0.64
0.12
0.69
0.70
0.72
0.70
0.75
0,70
VCE = 15V, Ic = 25mA
S11
. Ang.
-56
·99
-122
-136
-146
·153
·158
-182
-166
-170
179
172
165
161
156
149
141
136
128
122
119
(dB)
SO,S
28.4
26.1
24.2
22.6
21.2
19.9
18,6
17.8
16.9
13.5
11.1
9,'
7.6
6.4
5.3
4.4
33
2.5
1,7
0.8
521
Mag.
33,4
26,2
20,3
16.2
13.4
11.5
9.9
6.8
7.6
7.0
4.7
3.6
2.9
2.4
2.1
1.8
1.7
1.5
1.3
1.2
1.1
Ang.
149
128
115
107
101
96
92
88
85
83
70
60
50
40
32
22
14
6
-3
-11
-20
53
1d8)
·39.2
-35.9
-34.9
-33.6
-32,6
-32.4
-32.0
-31.7
·31.4
-SO.8
-29.1
-27.1
-25.7
-24.3
-23.3
-22.6
-21.8
-21.3
·20.7
-20.1
-19.6
S12
Mag.
0.011
0.G16
0.018
0,021
0,023
0,024
0.025
0.026
0.027
0.029
0,035
0.044
0,052
0.061
0.066
0.074
0.081
0.085
0.092
0.098
0.105
Sa2
Ang.
62
49
45
42
42
43
43
45
44
46
49
53
55
57
53
48
44
39
34
30
26
Mag.
0,88
0.72
0.61
0.54
0,50
0,48
0.47
0.47
0,48
0.47
0.44
0.46
0.47
0.52
0,51
0.56
0.55
0.58
0.62
0.63
0.70
Ang•
·16
·25
-28
·29
-31
-32
-33
-34
·34
-35
·40
-so
-59
-66
-79
-as
·92
-101
-109
-118
-127
LOW COST
GENERAL PURPOSE
TRANSISTOR
Flin-
HEWLETT
~~ PACKARD
HXTR-31Dl
Features
HIGH GAIN
19.5 dB Typical at 1 GHz
LOW NOISE FIGURE
1.8 dB Typical FMIN at 1 GHz
LOW COST HERMETIC PACKAGE
Description
The HXTR-3101 is a low cost NPN bipolar transistor
designed for high gain and wide dynamic range up to 4000
MHz. To achieve excellent uniformity and reliability, the
manufacturing process utilizes self-alignment and ion
implantation techniques. The chip is provided with a dielectric scratch protection over its active area.
The HXTR-3101 is supplied in the HPAC-100X, a rugged
metal/ceramic package, and is capable of meeting the
environmental requirements of MIL-S-19500 and the
electrical test conditions of MIL-STO-750.
C·----0.55
aUI
TYP.
Absolute Maximum Ratings •
(TeASE
Paramaler
VCBa
VCEO
VEao
Ie
PT
TJ
Collector to Base Voltage
Collector to Emitter Voltage
Emitter to Base Voltage
DC Collector Current
Total Device Dissipation
Junction Temperature
Storage Temperature
TSTG
~O=.,===:!;;~~=
= 25' C)
Symbol
IL
Value
1•OO41
TYP.
:JOV
l8V
1.5V
SOmA
DIMENSIONS fN Mll..LlMeTERS UNCHES!
600mW
300'C
--6S'Cto150'C
'Operation In excess of anyone of these conditions may result
permanent damage to this device
Outline HPAC-100X
In
Notes:
1. A ~)JC maximum of 180' C/W should be used for derating
and junction temperature calculations (TJ = Po x t)JC +
TCASEI.
2. A MTTF of 1 x 107 hours will be met or exceeded when the
junction temperature is maintained under TJ = 200 0 C (based
on an activation energy of 1.1 eV). For operation above this
condition, refer to page 108. "Reliability Performance of
Bipolar Transistors"
54
Electrical Specifications at TCASE = 25°C
(.
./
MIL..s1'tl-761l
Tett MtIIiod .
3001.1"
PaI'8l'Mlera ami Tett CondUIoIIII
Collector-Sase Breakdown Voltage at Ie"" 100 ,.A
Symbol
BVoso
lceo
CoIlector-Base CutQIf Current at Voa -15 V
3036., ••
hFE
Forward Current Transfer Ratio at Voe" 10 V, Ie" 10 mA.
3076,,'
IT
Gain Bandwidth ProduQt at Voe" 10 V, Ie "151T1A
1821e1 2
Trafl1!Ma••
Typ,
50
75
15
3076.1'
Ie" 30 mA
Min.
75
GHz
' 4:0
s.s
dB
10.5
12.5
dem
19.0
21.0
dB
14.0
16.0
Vee"15V.le=3OmA
Associated 1 de Compressed Gain at 1000 MHz
Vee'" 15 V. Ic '" SO mA
Reverse Transfer Capacitance
Ie = 0 m'A; VeE'" 10V, f .. 1 MHz
G'dB
em,
!
'2
iii
'i
"to
~
V
,"
."
-"w
$
II
o
o
500
1500
2000
3000
4000
Mag.
Ang.
0.76
0.69
0.62
0.55
0,54
0.52
0.51
0.53
0.54
-19
·52
-79
·110
·126
-155 .
-177
(dS)
18.9
17.7
16.1
13.8
12.7
9.9
7.9
156
5.1
3.0
132
Typical S-Parameters
100
300
500
800
1000
1500
2000
3000
4000
Mag.
0.1]
0.69
0.60
0.53
0,53
0.51
0.50
0.53
0.54
I
\J
\
\
1\
l~c.i.v._
lJ '11
10
3V\
1r+
2
40
20
50
O!:-o3-.L4-!.5,-L.L.J..u..--,~--!-,-L....L.J
FREaUENCY (GHz)
Ang.
·21
·57
-85
·116
·131
·159
·180
·153
130
vs. Current
Figure 3. Typical Power Output at
1 dB Gain Compression vs.
Frequency.
8 21
Mag.
a.Sl
7.67
6.38
4.89
4.31
3.14
2.41
1.79
1.41
Allg.
(dB)
8 12
Mag.
165
143
126
109
95
74
57
30
-36.0
-27.0
·24,0
'22,2
-21.0
-20.2
·19.1
·17.8
-15.6
0.016
0.045
0.063
0.076
0.089
0.OS8
0.10S
0.129
0,166
4
~2
Ang.
Mag.
Ang.
72
60
50
41
34
30
0,96
-10
·25
·35
-40
0.52
-45
-55
29
0,48
0,49
052
-85
·lOS
31
29
0.89
0,78
0,65
0,59
-63
rVcE=15V,lc=30mAI
8 11
Freq. (MHz)
\
,VCE=15V, ic=20mA'
$11
800
1000
'\
Figure 2. Typical IS21 EI2
at 1000 MHz.
Typical S-Parameters
800
l"'-.
'\. 5V
\1
\ J
OV
lclmAJ
Figure 1. Typical IS21E12. MAG, and
Maximum Stable Gain IMSGI vs.
Frequency.
100
-
~
I 1\ i
0.36
Vel!,'" 5-20V
i'
, i
FREQUENCY (GHzJ
Freq.(MH~
1
I
I
.....
~
~
I
.~ ~
OJ
:s
~
pF
8 21
Mag.
4.29
Ang.
164
139
122
105
92
9.8
$,08
72
7.7
4.8
2.7
2.41
55
1,74
28
1.38
3
(dB)
19.7
18.3
16,4
13,9
12.7
9.66
8.22
6.60
4.95
62
(dS)
035.9
-27.1
-24.4
-22.7
-21.4
-20.4
'19.8
-17.8
-15,5
8 12
Mag.
0.016
0.044
0.060
0.Q73
0.085
0.095
0.102
0,129
0.167
8 2
Ang.
71
58
48
40
34
32
31
33
29
Mag.
0.91)
0.87
0,75
0.63
0.58
0.51
Ang.
·10
·27
-36
·40
-44
-53
0.48
·62
0.50
0.52
-10e
-84
\
(
LOW COST,
LOW NOISE
TRANSISTOR
Flin-
HEWLETT
a!~ PACKARD
HXTR-3615
Features
:. "
LOW NOISE FIGURE
1A dB Typical FMIN at 1 GHz
HIGH ASSOCIATED GAIN
16.6 dB Typical Ga at 1 GHz
WIDE DYNAMIC RANGE
LOW COST HERMETIC PACKAGE
Description
The HXTR-3615 is a low cost NPN silicon bipolar transistor. Designed to provide low noise, high gain, and wide
dynamic range performance for VHF, UHF, and microwave
applications. This device is manufactured using ion
implantation and self alignment techniques and the transistor chip has a dielectric scratch protection over its
active area.
The HXTR-3615 is supplied in the HPAC-100X, a rugged
metal/ceramic package, capable of meeting the
environmental requirements of MIL-S-19500 and the
electrical test conditions of MIL-STD-750.
Absolute Maximum Ratings·
(TeASE = 25° C)
SymbQI
P«ramld be used for derating
and junction temperature calculations (TJ = Po x eJC +
TCASE),
2. A MTTF of 1 x 7 hours will be met or exceeded when the
junction temperature is maintained under TJ = 200'C (based
on an activation energy of 1.1 eV). For operation above this
condition, refer to page 108. "Reliability Performance of
Bipolar Transistors':.
63
~
~~---~~
----------
Electrical specifications at TeAsE = 25°C
~
MIL-$TO-7SO
Symbol
Paramelens $lei Teet CondItIone
BVello
Collector-BaM Breakdown VOltage at 10
Te$tMelhod
=100 pA
Unitt
3001;1'
II
Min.
'25
V
16
aVeEo
Collector-Emlttlilr Breakdown VOltalllil at 10 '" 15 rnA
lcao
COllector-Base Cutoff Current at VOB - 15 V
3011.t'
3036,1'"
10EO
CoUeclor-Emlt!$t Leakage Currem at VOE '" 15 V
3041.1
hFE
Forward OUrrem Transf\lr RatIO at Voe = 10 V, Ie *10 rnA
3076.1'
fT
Gain Bandwidth Product at Vee" 10 V.1o '" 10 rnA
FMIIII
Minimum Noise Figure at
VeE 10 V, Ie "'10 rnA
100
nA
100
180
50
GHz
f= SOOMHz
f=1000MHz
f =2000 MHz
MHz
500 MHz
f= 1000 MHz
f= 2000 MHz
1=4000 MHz
=
3246.1
5
1,3
dB
1.4
2.0
'=4000
Go
,=
A$S()Clatad Gain
VCE'" 10V, ie-lOrnA
3.5
Power Output at 1 dB Gain Compression
VCE=15V.lc=1SrnA
GldS
Associated 1 dB Compresslild Gain at 1000 MHz
Vce=15 V,IO'" 18 rnA
C12E
Reverse TranSfer Capscitance
Voa=10V.lo=0 rnA
f=
dB
21.S
dBm
16.6
12.0
7.0
19.0
dB
19.0
pF
0.3
$246.1
at 1000 MHz
PldS
Mn
1 MHz
"300 pS wide pulse measurement S 2% duty cycle.
uMeasured under low ambient light conditions.
w
a:
::>
/
"u:
IIIOISE FIGURE
w
IFMIIII
'"(5z
~~.5-L-L-L~1.0~------~2,0~--~3.~0~4.~
%~.I~~0.~2~0.~3-L~LLU1~.0~~2f.0~~4.0
FREQUENCY (GH,)
FREQUENCY (MH,)
Figure'1. Typical FMIN and Associated
Gain vs. Frequency at VeE = 10 V,
Ie = 10 rnA.
Figure 2. Typical IS21 EI2 and Maximum
Stable Gain (MSG) vs. Frequency at
VeE = 10 V and Ie = lOrnA.
Typical Noise Parameters
18
VCE = 10 V. Ic = 10 rnA
16
FtlNIlIen1IY
(M~)
SOO
1000
2000
4000
"MIN
(dB)
~lWi
Mllg.
1.3
1.3
(50 ('l)
1.4
2.0
1,6
0.20
135
2.4
0.39
-177
4,7
3.S
4.4
0.54
-116
18.1
fo
Rn
Ang.
)ov
16V
14
(Ohms)
0
2
15.4
0
8
,
~
-
V
1/
~5V
(V~2V-
'r\.
\
IV
6
4
10
15
20
25
30
COLLECTOR CURRENT {mAl
Figure 3. TypicallS21EI2 vs. Current at
1000 MHz.
64
(
Typical S-Parameters
(VeE
= 10 V,
$11
Freq. (MHz)
joo
200
300
400
500
500
100
600
900
1000
1500
2000
2500
3000
3500
4000
5000
5000
Ang.
-43
·16
-103
O.SS
·119
-132
-141
·149
-156
-162
0,52
-168
0.53
0.50
0.54
0.55
0.60
0.61
0.72
0.81
172
155
142
0.53
130
117
108
90
76
(dS)
21.6
25.9
24.1
22.4
20.9
19,6
18A
100
200
300
(
0.59
0.57
400
500
600
0.55
0.64
0.54
700
800
9oo
1000
1500
2000
2500
3000
O,SS
3500
4000
5000
6000
0,63
0.52
0.52
0,52
0.51
0,54
0.56
0.61
0,62
0,74
0,63
$12
Mag.
23.92
19.63
15.94
13.22
11.11
9.52
8,$0
17.4
16.4
15.6
12,2
5.4
4.3
(dS)
-35.9
-33.2
Mag.
Ang.
0.02
sa
0.02
121
-31A
70
53
112
105
-30.2
-28,6
99
-26.4
-26,4
0.03
0.03
0.04
0.04
0.04
6.00
86
63
4.09
67
3,11
54
2.53
2,14
1,87
43
32
20
10
2.6
1.63
1,35
-10
1.2
1.15
·29
(VeE
= 15 V,
Ie
-28.0
-27,3
·2M
-24.7
-22,7
-20.8
-19.0
-17.4
-16.0
-13,4
-11.2
-56
-,93
-116
·131,·
-143
-152
·158
-165
-170
-175
187
152
139
127
115
106
89
75
0.04
0,04
0,05
52
46
49
50
49
51
SO
0.06
55
0.Q7
0,09
58
0.11
0,14
0,16
0.21
0,27
59
56
56
52
43
32
Mag,
0.92
0.81
0.70
0.64
0,59
Ang,
-14
0.5S
0.55
0,53
-32
-23
·28
·30
-32
·32
-32
-32
0.52
0.50
0,47
O.SO
0.47
-34
-41
-45
'0
-55
-64
OA9
0,47
-71
-as
0.49
0.44
0.44
-105
-134
= 18 rnA)
512
821
. Ang.
822
Ang.
155
136
94
89
7.37
6,61
9.8
8.1
6,6
$'1
Mag.
0.62
= 10 rnA)
$21
Mag.
0.S7
0.63
0.59
0.57
0.57
0.55
0,54
Typical S-Parameters
Freq. (MHz)
Ie
(dB)
29,3
Mag.
29.17
27.1
24.9
23,0
21.3
20,0
18.7
17,6
16.6
15.8
12.4
10,0
22.60
17,66
14.14
11.65
9.96
8.57
7.57
6.78
6.18
4.16
3.16
8.2
2.57
6,7
5.5
4.4
2,7
2,17
1.89
1.66
1.36
1.3
1.16
Ang.
148
129
115
(dB)
-40.0
107
100
95
91
66
83
79
65
53
42
30
19
8
·12
-31
65
622
Ang.
-35,4
Mag.
0.01
0,02
-34,0
0.02
50
-31.7
-32,0
-30,8
-30,0
-29,1
0.03
0.03
0.03
0,03
0.04
0.04
0,04
0.05
0.07
0,09
0.11
0,13
0.15
0.21
0,27
55
-28.6
-27.7
-25,5
-23.2
·21.3
-19.3
-17.8
-16.3
-13.6
-11.4
69
66
47
48
51
52
57
57
59
63
64
62
59
55
45
34
Mag.
0.90
0.77
0,67
0.62
0.58
0,66
0.55
a.54
0.53
0.52
0.50
0.52
0.50
0.52
0.50
0.52
0.47
0,46
Ang.
-16
·23
·26
·28
·28
·27
-28
-29
-28
·29
-37
·42
·51
-61
-68
-80
-102
-130
Fli;'
HEWLETT
~~ PACKARD
LOW COST,
HIGH PERFORMANCE
TRANSISTOR
/
HXTR-3645
Features
GUARANTEED NOISE FIGURE
2.2 dB Maximum FMIN at 2 GHz
GUARANTEED ASSOCIATED GAIN
12.2 dB Minimum Ga at 2 GHz
HIGH OUTPUT POWER
19.0 dBm Typical PldB at 2 GHz
HIGH PldB GAIN
13.5 dB Typical GldB at 2 GHz
HIGH GAIN BANDWIDTH PRODUCT
6.0 GHz Typical IT
LOW COST HERMETIC PACKAGE
Description
The HXTR-3645 is an NPN silicon bipolar transistor
designed for use in low noise wide band amplifier or
medium power oscillation applications requiring superior
VHF, UHF, or microwave performance. Excellent device
uniformities, performance, and reliability are produced by
the ion implantation and self alignment techniques Used in
the fabrication of these devices. The transistor chip has a
dielectric scratch protection over its active area.
The HXTR-3645 is supplied in the HPAC-l00X, a rugged
hermetic metal-ceramic package, capable of meeting the
environmental requirements of MIL-S-19500 and the test
requirements of MIL-STD-750/883.
DIMENSIONS IN MILLIMeTERS (INCHES)
Absolute Maximum Ratings*
(TeASE = 25' C)
Synlbol
Parjlllleter
Vcso
VCEO
Collector to Base Voltage
COllector to Emiuer Voltage
Emitter to Base Voltage
DC COllector Current
Total Oevlce Dissipation
Junction Temperature
Storage Temperature
VEBO
Ie
Pr
TJ
TSTG
·Operatlon
In
O\rtline HPAC-100X
Value
sov
18 V
1.5V
85mA
600mW
3OO'C
-65'C 1015O'C
excess of anyone of these conditions may result in
permanent damage to this device.
Notes:
1. A ~)JC maximum of 170' C/W should be used for derating
and junction temperature calculations (TJ = Po x 8JC +
TCASE).
2. A MTTF of 1 x 107 hours will be met or exceeded when the
junction temperature is maintained under T J = 200' C (based
on an activation energy of 1.1 eV), For operation above this
condition, refer to page 108. "Reliability Performance of
Bipolar Transistors".
66
(
Electrical specifications at TCASE
MIL·STO·7S0
Tett Method
Symbol
Parameters and Test Conditions
eVeso
BVeeo
Collector-Base Breakdown VOltage at Ie '" 100 I'A
Collector-Emitter Breakdown Voltage allo '" 15 mA
leBO
Colleotor-Base Cutoff Current at Vee'" 15 V
leEO
Oollector-Emitter Leakage Ourrent at VeE'" 15 V
ilfE
Forward Ourrent Transfer Ratio at VeE -10 V. Ie -10 mA
fr
Gain BandWidth Product at VeE'" 10 V. Ie '" 10 rnA
Minimum Noise Figure
VeE"" 10 V. Ie'" 10 mA
fMIN
ASSOciated Gain
Vee = 10 V, Ie "" 10 mA
G.
3001.1'
3011.1'
3036.1"
3041.1
3076,1
GlOB
Min.
V
V
nA
30
18
TVp.
50
175
55
GHz
6.0
3246.1
dB
1.2
1,2
1.4
1.7
f= 500 MHz
3246,1
dB
22.S
dBm
17,5
14,6
13.0
19,0
de
13.5
f'" 1000 MHz
f= 1500 MHz
f=2000MHz
12.2
VCE=15V.tc~16mA
Reverse Transfer Oapacitance
Voa=10V,le-'OmA
C'2E
'300}J.s wide pulse measurement::; 2% duty cycle.
f=
pF
1 MHz
0,27
"Measured under low ambient light conditions.
10~--------+---~--------~
~
w
a:
"u:"
(
w
NOISE FIGURE 1
oL--L~~~~_______~(PM~IN~)_~O
0.5
1.0
2.0
a"'z
~",'---0'-.2-0-'.3-'-:"0'::.5-'--='0.""7'-'-",'00- - - : :2'0.0--='3.0
3.0
FREQUENCY (GHz)
FREQUENCY (GHz)
Figure 1. Typical Noise Figure and
Associated Gain vs. Frequency at
VCE~ 10V, Ic~ 10 mA,
Figure 2, Typical\S2'E\2, and Maximum
Stable Gain IMSGI VS, Frequency at
VCE~ 10Vand Ic~10 mA.
10
10V
5V
~
~
z
;r
w
a:
3V
~
"~
u
"
""u:
"-
I-
w
'"a
'"
0
z
'"'"
"
°0~-~--7'0~-7.'5~-2~0~--~25~~30
COLLECTOR CURRENT (rnA)
COLLECTOR CURRENT (rnA)
Figure 3, Typical FMIN and Associated
Gain (Gal VS, Collector Current at
Figure 4. Typical \S2' E\2 vs. Current at
2000 MHz.
VCE~10V,
67
Max.
50
nA
f= 500 MHz
f~ 1000 MHz
f = 1500 MHz
f = 2000 MHz
Power Output at 1 dB Gain at 2000 MHz
Compression. VeE'" 15 V, Ie" 18 mA
ASSOCiated 1 dB Compressed Gain at 2000 MHz
Pldll
Unit.
1,9
Typical Noise Parameters
~r--------r-------------~
1IcI\'15V
1e·18mA
VeE = 10 V, Ie = 10 rnA
Frequency
ro
(111Hz)
FMIII
(dB)
Fsoo
(dB)
Mllg.
500
1.2
1.2
(Sam
1000
1.2
1.3
0.20
135
7.3
2000
1.7
2.0
0.39
-177
2,2
Ang.
-
25~-------+-------------4
Rn
(ohm$)
0
10~-------+-------------4
~~.5~~O.7~70.791~.O~------2~.O~--~3.0
FREQUENCY (GHz)
Figure 5. Typical Power Output at I dB
Compression Gain vs. Frequency.
Typical S-P arameters
(VeE = 10 V. Ie = 10 rnA)
8'1
Freq.(MHz)
Mag.
Ang.
(dB)
100
200
300
400
0.67
0.63
0.59
0.57
0.57
0.55
0.54
0.53
0.53
0.52
0.53
0.50
-43
-78
-103
-119
-132
-141
-149
-158
-162
-166
172
155
142
130
116
106
27.6
25.9
24.1
22.4
20.9
19.6
18.4
500
600
700
800
900
1000
1500
2000
2500
3000
3500
4000
0.54
0.55
0.60
0.61
17.4
16.4
15.6
12.2
9.8
8.1
6.6
5.4
4.3
~
Mag.
$22
$12
23.92
19.63
15.94
13.22
11.11
9.52
Ang.
(dB)
155
136
121
-35.9
112
105
99
8.30
94
7.37
6.61
86
89
83
67
54
43
6.00
4.09
3.11
2.53
2.14
1.87
1.63
32
20
10
-33.2
-31.4
-30.2
·28.6
-28.4
-28.4
-28.0
-27.3
-26.4
-24.1
-22.7
Mag.
0.02
0.02
0.03
0.03
0.04
0.04
0.04
0.04
0.()4
-19.0
-17.4
-16,0
0.05
0.05
0.07
0.09
0.11
0.14
0.16
(dS)
812
Mag.
-2O.S
Ang.
aa
70
53
52
46
49
50
49
51
50
55
58
59
Mag.
Ang.
0.92
0.81
0.70
-23
0.64
0.59
0.56
0.55
0.53
0.52
0.50
0.47
0.50
56
52
0.47
0.49
0.47
0,49
Ang.
Mag.
0.01
0.02
0.02
69
0.03
0.03
55
0.90
0.77
0.87
0.52
58
.14
-26
·30
-32
-32
-32
-32
-32
-34
-41
-45
-55
-64
-71
-83
Typical S-Parameters (VeE = 15 V, Ie = 18 mAl
i21
811
Freq. (MHz)
100
200
300
400
500
600
700
800
900
1000
1500
2000
2500
3000
3500
4000
Mag.
0.82
0.59
0.57
0.55
0.54
0.54
0.53
0.53
0.52
0.52
0.52
0.51
0.64
0.56
0.61
0.62
Ang.
-58
-93
-116
-131
-143
-1$2
-158
-165
-170
-175
167
152
139
127
115
106
(dB)
Mag.
29.3
27.1
24.9
23.0
21.3
20.0
lB.7
29.17
22.60
17.66
11.6
16.6
15.8
12.4
10.0
8.2
6.7
5.5
4.4
Ang.
148
129
115
101
100
14.14
11.65
9.96
8.57
7.57
6.78
6.16
4.16
3.16
2.57
2.17
1.69
1.66
95
91
86
-35.4
-34.0
-31.7
-32.0
-30.8
-3(W
-29.1
0.03
0.03
0.04
0.04
0.04
63
-28.6
79
-27.7
65
53
42
-25.5
-23.2
-21.3
-19.3
-17.8
0.05
-16.3
0.15
30
19
8
68
-40.0
0.07
0.09
0.11
0.13
66
50
47
48
51
52
57
57
59
63
64
52
59
55
0.58
0.56
0.55
0.64
0.53
0.52
o.sO
0.52
0.50
0.52
0.50
0.52
822
Ang.
·18
-23
-26
-26
-2S
':;'7
':;'8
-29
-28
-29
-37
-42
-51
-81
-88
-80
(
(
Flio-
HEWLETT
~~ PACKARD
LOW COST,
HIGH PERFORMANCE
TRANSISTOR
HXTR-3675
Features
GUARANTEED NOISE FIGURE
3.4 dB Maximum FMIN at 4 GHz
GUARANTEED ASSOCIATED GAIN
7.7 dB Minimum Ga at 4 GHz
HIGH OUTPUT POWER
17.5 dBm Typical PldB at 4 GHz
HIGH PldB GAIN
8.4 dB Typical GldB at 4 GHz
HIGH GAIN BANDWIDTH PRODUCT
6.0 GHz Typical IT
LOW COST HERMETIC PACKAGE
Description
The HXTR-3675 is an NPN silicon bipolar transistor
designed for use in low noise wide band amplifier or
medium power oscillation applications requiring superior
VHF, UHF, or microwave performance. Excellent device
uniformities, performance, and reliability are produced by
the ion implantation and self alignment techniques used in
the fabrication of these devices. The chip is provided with
scratch protection over its active area.
(
0.55
The HXTR-3675 is supplied in the HPAC-l00X, a rugged
hermetic metal-ceramic package capable of meeting the
environmental requirements of MIL-S-19500 and the test
requirements of MIL-STD-750/883.
1-i.~::'~~8j*r DIAl
.t,1:± 0.1
{.OS).± ,01)41
__~
1.0221
I,
[
i ---;-T_VP_._ _ _ _
f
to.,
tic.
'::::Y=I=T=:!i
1.071)
J l
MAX.
L
t(04)
TYP.
Absolute Maximum Ratings*
(TeASE
= 25° C)
DIMENSIONS IN MILLIMETERS {lNCHESI
Symbol
Parameter
Vcao
Vcw
Veso
Collector to Base Vollage
Collector to Emitter Voltage
Emitter to Base Voltage
DC Collector Current
Total Device Dissipation
Junction Temperature
Storage Temperatore
Ic
PT
TJ
TSTG
Value
30V
18V
1.5V
60mA
600mW
300°0
-65"C to
+150°C
Outline HPAC-l00X
·Operation in excess of anyone of these conditions may result in
permanent damage to this device.
Notes:
1. A 0JC maximum of 170°C/W should be used for derating
and junction temperature calculations (T J = Po x 8JC
+
TCASEI.
2. A MTTF of 1.0 x 107 hours will be met or exceeded when the
junction temperature is maintained under TJ = 200 0 C Ibased
on an activation energy of 1.1 eVI. For operation above this
condition, refer to page 108. "Reliability Performance of
Bipolar Transistors",
69
1.8
f
Electrical Specifications at TeAsE
MIL-STD-7liO
T ••• Method
Symbol
Para.mele'" alld T••t Condltlons
8Veeo
Collector-'Base Breakdown Volt~ge at Ie
Unlll
8VOEO
=100 MA
Colle¢tor~Emltter i3reakdown Voltage at Ie =15 mA
leBo
.CoHector-8ase Cutoff Current at Vee'" 15 V
3036,1'-
nA
ICED
Collector-Emitter Leakage Current at VeE'" '5 V
3041.1
nA
hFa
IT
ForWard Current TransterRatio at Vee" 10 V, Ie'" 10 mA
3078,'
. Gain Bandwidth PrQductat VOo '" 10 V. Ic=10 mA
Minimum Noise Figure
. VeE'" 10 V. Ie = 10 rnA
I"MIN
3001,"
3011."
V
18
Mall.
50
·50
175
56
6.0
dB
1.2
f .. 1000 MHz
Associated Gain
Vea=10V,lc"'10mA
3246.1
1,;
2:8
t'" 1000 MHz
PldB
Power Output at 1 dB Compression at 4000 MHz
Compression, Vel' = 15 V, Ie'" 18 rnA
GldB
Associated 1 dB Compressed Gain at 4000 MH.
VCE= 15 V, Ie = 18 rnA
C12E
Reverse Transfer Capacitance
Ves= 10 V, Ic=O mA
t=
M
di3
17.7
13.0
8.3
3246.1
1=2000 MHz
f=4000MHz
"300 J-ls wide pulse measurement S 2% auty cyCle.
30
GH~
I'" 2000 MHz
1=4000 MHz
G.
Typ.
Min.
V
7.7
1 MHz
dBrn
\7,5
di3
8A
pF
0.29
··Measured under low ambient light conditions.
25
r---....
20
iii
:l!
~
z
0
COllECTOR CURRENT (rnA)
COLLECTOR CURRENT (rnA)
Figure 4. TypicallS21EI2
4000 MHz.
Figure 3. Typical FMIN and Associated
Gain IGal vs. Collector Current at
VCE = 10 V.
70
VS.
Current at
Typical Noise Parameters
(
VeE= 10V, le= 10 rnA
Frequen/IY
(MHll
FMIN
(d&)
"sou
(d&)
GMIN
(dB)
1000
1.2
2000
4000
1.8
1.3
2.0
13.0
Mag.
0.2
0.4
2.8
4.1
8.3
0.6
17.7
ro
Ang.
An
(ohms)
-117
6.5
2.9
-117
21,5
135
FREQUENCY (OHzl
Figure 5. Typical Power Output at
1 dB Compression Gain vs.
Frequency.
Typical S-Parameters
(VeE = 10 V, Ie = 10 rnA)
$11
Fnl+- '.3MIN,
CHARACTERIZED FOR OSCILLATOR
APPLICATIONS UP TO 10 GHz
,....",..~-i
e
0.51 (0.021
TYP.
COMMON BASE CONFIGURATION
Description
The HXTR-4101 is an NPN bipolar transistor designed for
consistent high oscillator output. Each device is tested for
specified oscillator performance at 4.3 GHz. The device
utilizes ion implantation and self alignment techniques' in its
manufacture. The chip is provided with dielectric scratch
protection over its active area.
The HXTR-4101 is supplied in the HPAC-100, a rugged
metal/ceramic hermetic package, and is capable of meeting
the environmental requirements of MIL·S-19500 and the
test requirements of MIL-STD-750/883.
Absolute Maximum Ratings *
Ie
Pr
TJ
Tsm
-
Parameler
Collector to 8ase Voltage
Collector to Emitter Voltage
Emitter to Sase Voltage
DC Collector Current
Total Device Dissipation
Junction Temperature
Storage Temperature
Lead Temperature
(Soldering 10 seconds each lead)
~
c:::::7't
HERMETIC PACKAGE
Symbol
Vcao
VCEO
V€.so
I
TYP.
DIM.NSIONS IN MILLIMOTERS (INCHES).
limit
30V
20V
I.SV
70mA
900mW
300·C
-
50
Max.
dBc/Hz
2.
::>
-
Typ.
wide pulse measurement ~2% duty cycle.
22
E
~
V
nA
nA
f = 3 GHz
4,3GHz
6 GHz
BGHz
N/C
Min.
30
Units
'"
!g
12
,.
ill
1i
z
FREQUENCY (GHz)
(
Figure 1. Typical Tuned Power
Output vs. Frequency at VOB = 15 V,
Ie = 30 mA.
COLLECTOR CURRENT (rnA)
FREQUENCY FROM CARRIER (KHz)
Figure 2. Typical Oscillator Power
VS. Current for VeB = 15 V at
Figure 3. Typical Phase Noise to
Carrier Ration (N/CI vs. Frequency
from Carrier at 4.3 GHz, VeB = 15 V,
Ie = 30 mA.
4.3 GHz.
Typical 5 - Parameters
VeB = 15 V, Ie'" 30 rnA
$'1
521
$12
$22
Freq. (MHz)
Mag.
Ang.
Mag.
Ang.
Mag.
Ang.
Mag.
Ang.
1000
1500
2000
2500
3000
3500
4000
4500
5000
6000
7000
8000
9000
10000
11000
12000
0.93
0,94
0.96
0,98
0.99
1.01
1,02
1.Q1
0.98
0.91
0.85
0,78
0.76
0.72
0.70
0,64'
161
153
144
134
123
115
106
96
88
74
61
49
44
27
6
-24
1,93
1,92
1.95
1.97
1.96
1.95
1.87
1.79
1.65
1,32
1.06
0.87
0.76
0.72
0,68
0.67
-29
-44
-59
-76
-94
-114
-133
-155
-174
144
109
74
60
29
5
-25
0.Q11
0,023
0.039
0,061
0.086
0.117
0.154
0.186
0.217
0.245
0.267
0.298
0.238
0,288
0,302
0.320
127
126
120
113
105
93
84
70
58
35
17
1
-10
-24
-38
-58
1,01
1.04
1,06
1.10
1,12
1.16
1,19
1.20
1.21
1.10
0.99
0.89
0.93
0,89
0.84
0,82
-15
-31
-45
-59
-74
-91
-108
-127
-143
-176
157
135
131
113
102
92
73
rh~
~~
LINEAR POWER
TRANSISTOR
HEWLETT
PACKARD
2N6701
(HXTR -5101)
Features
HIGH OUTPUT POWER
23 dBm Typical P1dB at 2 GHz
22 dBm Typical P1dB at 4 GHz
HIGH PldB GAIN
13 dB Typical GldB at 2 GHz
7.5 dB Typical GldB at 4 GHz
HIGH POWER-ADDED EFFICIENCY
HERMETIC PACKAGE
Description IApplications
ll.6' (0.02)
TVP.
The 2N6701 (HXTR-5101) is an NPN bipolar transistor designed for high output power and gain up to 5 GHz. To
achieve excellent uniformity and reliability, the manufacturing process utilizes ion implantation and self alignment
techniques. The chip has a dielectric scratch protection over
its active area and TII.2N ballast resistors for ruggedness.
The superior gain, power, and distortion performance of the
2N6701 commend it for applications in radar, ECM, space,
and commercial and military telecommunications. The
2N6701 features both guaranteed power output and
associated gain at 1 dB gain compression.
The 2N6701 is supplied in the HPAC-100, a metal/ceramic
hermetic package, and is capable of meeting the
environmental requirements of MIL-S-19500 and the test
requirements of MIL-STO-750/883.
0.110.0041
I I
i'
t~I======~~~"~====~lt
tJ.£\ frloi
Absolute Maximum Ratings *
DIMENSIONS IN MILLIMI!TERS (INCHES},
(TeASE = 25°C)
Symbol
VCBO
VCEO
VEBO
Ie
Pr
TJ
T5TG
-
Parameter
Collector to Base Voltage
Collector to Emitter Voltage
Emitter to Sase Voltage
DC Collector Current
Total Device Dissipation
Junction Temperature
Storage Temperature
Limit
45V
27V
4V
Outline HPAC-l00
100 rnA
1.1 W
aoo·C
-es"C to
200'C
Lead Temperature
(Soldering 10 seconds each lead)
+25O"C
·Operatlon In eAcess of anyone 01 these conclltlons may result in
permanent damage to this device.
Notes:
1. A 9JC maximum of 210°C/W should be used for derating
and junction temperature calculations IT J = Po x (-)JC +
TCASEI.
2. A MTTF of 3.5 x 106 hours will be met or exceeded when the
junction temperature is maintained under TJ = 1250 C Ibased
on an activation energy of 1.1 eVI. For operation above this
condition, refer to page 108. "Reliability Performance of
Bipolar Transistors".
74
/
(
Electrical Specifications at TeAsE =25°C
Test
MIL·STD-1S0
Unite
Typ.
MIn.
Symbol
Parameter. and Test Conditione
eVCBO
COllector-ease Breakdown Voltage at Ie '" SmA
3001.1'
V
eVCiO
Collector-Smitter Breakdown Voltage at Ie '" 15mA
3011.1'
V
24
SViSO
Smitter-ease Breakdown Voltage at Ie'" 30llA
3026.1'
V
3.3
Malt.
40
2
lEBO
Emitter-ease leakage Current at Vea=2V
3061.1
ICES
Collector-Emitter Leakage Current at VCE"32V
3041, 1
/l-A
nA
200
leao
Collector-ease Leakage Current at VCB=20V
3036.1
nA
100
hFE
Forward Current Transfer Ratio at Vce=lSV.
Ie'" SOmA
3076."
P1de
Power Output at ldB Gain Compression
G1ae
Associated 1dS Compressed Gain
15
40
21.0
23.0
22.0
6.5
13
7.5
dBm
f=2GHz
4GHz
2GHz
4GHz
de
15
PSAr
Saturated Power Output (SdS Gain)
(SdS Gain)
20Hz
4GHz
dBm
25.5
25.0
'I
Power-Added Efficiency
at 1dS Compression
2GHz
4GHz
%
35
24
IP3
Third Order Intercept Point
Vce=18V. Ic=30mA
40Hz
dBm
31
300,us Wide pulse measurement at ::5:2% duty cycle.
0
~E
I
•.
]
c
!----
z
"E
"~.
I
0
I
30
iii
'"
P1dB
Z
;;
i'
1$2t~ 12
~
"-
I\. I\M~G
10
"cz
"
~
:;;'"
~
~
r\1'
20
10
>~
1=
~
o.1
~
z
;;
"cz
"
'"'"
E
~
w
~
>-
0
I
.2
.4
.6.8 1
4
6
0
810
FREQUENCY (GHzj
COLLECTOR CURRENT (mA)
Figure 1. Typical MAG. Maximum Slable
Gain IMSGI. and IS21EI2. vs. Frequency at
VeE = 18 V. Ie = 30 rnA.
Figure 2. TypicallS21 EI2 vs. Curren1 a12
and 4 GHz.
25
15
t
24
I
23
22
21
20
v::
-- .---!~.
h
19
18
Vte
-
~
r-....
G,,,,
I
20
~
'z"
>-
'\.
.....
-30
!
ISV
,-
,.
L
~
COLLECTOR CURRENT {rnA}
Figure 4. Typical PldB Linear Power and
Associated 1 dB Compressed Gain vs.
Curren1 at VeE = 12 and 18 V at 4 GHz.
~
~
8 10
FREQUENCY (GHz)
Figure 5. Typical Noise Figure IFMINI and
Associated Gain (G a) when tuned for
Minimum Noise vs. Frequency at VeE ==
18 V. Ie = 10 rnA. Typical Noise Figure
(Fp) when tuned for Max P1 dB at
VeE = 18 V. Ie = 30 rnA.
75
~
-20
~
-40
:r>-
/
/
-30
VPIMQ
/
-50
-60
-10
/
/
0
0
I
6
~
-10
"'~
~
50
10
"'V
.,...,.
20
J:
:=
~ F-
40
10
'P,
30
w
G,
0
10
//
~
5
10
'\.
.'\.
S
Figure 3. Typical PldB Linear Power and
Associated 1 dB Compressed Gain vs.
Frequency at VeE = 18 V. Ie = 30 rnA.
40
~
~
0
12V
I'
6
FREQUENCY (GHz)
'\.
l8V
'/
17
:=
to;
.5
/
-5
10
15
20
25
30
INPUT POWER OF EACH TONE (dBm)
Figure 6. Typical Two Tone 3rd Order
I ntermodulation Distortion at 2 GHz for a
frequency separation of 5 MHz at
VeE = 18 V. Ie = 30 rnA.
'180
Figure 7. Typical I'MS, I'ML, (calculated
from the average S-parameters) in the 2 to
6GHz frequency range, at VCE = lBV, Ic =
30mA.
Typical S-Parameters
VeE = 18V, Ie = 30mA
$21
Mag,
S'1
Freq. (MHz)
Mag.
Ang.
(dB)
100
200
0.80
0.78
0,75
0,72
0,6B
0.66
0.64
062
0,61
0,60
0,56
0,55
0.56
0,55
0,56
0,54
0,54
0.52
0.54
0.54
-19
-37
-53
-68
-81
-92
-102
-111
-119
-126
-151
-169
179
168
158
148
137
128
115
108
20.6
20.1
19.5
lB.7
17.9
17,0
16.2
15,5
14,8
14.1
11,2
300
400
500
600
700
800
900
1000
1500
2000
2500
3000
3500
4000
4500
5000
5500
6000
TypicalS-parameters
10.7
10.2
9.44
B,63
7,87
7,15
6,52
5.96
5.49
5.08
3,64
2,80
2.29
1.93
1.69
1,50
1,33
1,21
1,12
1.01
B.9
7.2
5,7
4.5
3,5
2,5
1.6
1,0
0.0
VeE
= 15V,
Ie
Freq. (MHz)
Mag.
Ang.
(dB)
100
200
300
400
500
600
700
800
900
1000
1500
2000
2500
3000
3500
4000
4500
5000
5500
6000
0,80
0.78
0,76
0,73
0,69
0.67
0,64
0,62
0.60
0.60
0,57
0.55
0.56
0.56
-18
-35
-50
·64
-77
-88
-97
-107
-115
-122
-148
-166
-178
171
160
151
141
130
118
110
19,4
19.1
18.5
17.8
17.1
16,3
15.5
14.11
14,2
13,5
10.8
8,6
6,9
5.1
4,$
3.3
2.3
1,5
0,8
0.0
9,35
9,07
8.44
7,79
7,16
6.56
6,02
5.54
5.13
4,76
3.47
2.69
2,21
1.80
1.65
1,47
1,30
1.18
1.10
0,99
0.56
0,53
0,53
0,50
0,52
0,53
(dB)
165
154
143
133
124
117
110
104
99
94
75
59
45
33
21
10
0
-11
-37
-31
-28
·27
-26
-25
-24
-24
S'2
Mag.
Ang.
Mag.
$22
Ang.
77
67
60
53
47
42
39
33
31
25
22
21
21
20
19
18
16
14
11
0,98
0.94
0.88
0.83
0.78
0.73
0,69
0,66
0.64
0.61
0.55
0.52
0.53
0,52
0.55
0,58
0,58
0.62
0,60
0.64
-8
-15
-21
·26
-30
-33
-36
-38
-41
-43
-51
-61
-72
-79
-89
-96
-106
-113
-122
-132
S22
Ang_
-22
-21
-21
-20
-19
·19
-18
-17
-17
0.01
0.03
0,04
0.05
0,05
0,06
0.06
0.07
0.07
0,07
0.06
008
0,09
0,09
0.10
0,11
0.11
0.13
0.14
0,15
Ang.
(dB)
812
Mag.
Ang,
Mag.
168
155
145
135
127
119
113
107
101
-37
-31
-28
-26
-25
-24
-23
0,01
0,02
0.03
0.04
0,05
0,06
0,06
78
69
61
55
49
44
40
·23
0.06
0,98
0.95
0,91
0,86
0,81
0,76
0.72
0,69
0.66
0.63
0.57
0,54
0,55
0.50
0,56
0.59
0,59
0,62
0.61
0,64
-23
-32
-23
-23
-23
36
= 15mA
821
Mag.
$"
Ang.
96
76
60
46
36
21
10
0
-10
-22
-31
76
-23
·23
-22
-21
-21
-20
-20
-19
-19
-18
-17
-16
37
0,07
34
0,07
32
0.08
0,08
0,09
0,09
0.10
0.11
0,11
0.12
0,14
0,15
24
21
19
21
18
18
17
15
13
11
-7
-14
-20
·25
-29
-32
-35
-38
-40
-43
-53
·63
·75
-85
-91
-99
-108
-116
·124
-135
(
Flio-
LINEAR POWER
TRANSISTOR
HEWLETT
~~ PACKARD
HXTR-5102
Features
HIGH OUTPUT POWER
29 dBm Typical P1dB at 2 GHz
27.5 dBm Typical P1dB at 4 GHz
HIGH P1dB GAIN
11.5 dB Typical G1dB at 2 GHz
7 dB Typical G1dB at 4 GHz
HIGH POWER-ADDED EFFICIENCY
HERMETIC FLANGE PACKAGE
DescriptionlApplications
(
The HXTR-5102 is an NPN bipolar transistor designed for
high output power and gain up to 5 GHz. To achieve
excellent uniformity and reliability, the manufacturing
process utilizes ion implantation and self-alignment techniques. The chip has a dielectric scratch protection over its
active area and T82N ballast resistors for ruggedness. A silicone conformal coating protects the chip and matching
network.
PIMElIIISIONS IN
Ouiline
MllllMETE~S
HNCH£Sl
HPAC-200 GB/GT
Absolute Maximum Ratings *
The superior power, gain and distortion performance of
the HXTR-5102 commend it for use in broad and
narrowband commercial and military telecommunications, radar and ECM applications. Additionally, its
partial internal matching makes it ideal for broad
bandwidth designs in the 2 to 5 GHz frequency range with
minimal sacrifice of output power and gain.
(TeASE = 25° C)
Symbol
Vcse
VCEe
VESO
Ie
Pr
TJ
TSTG
The HXTR-5102 is supplied in the HPAC-200GB/GT, a
metal/ceramic hermetic package with a BeO heat
conductor, and is capable of meeting the environmental
requirements of MIL-S-19500 and the test requirements of
MIL-STD-750/883.
-
Umll
Parameter
Collector to Base VOltage
Collector to Emitter Voltage
Emlner to 8ase Voltage
DC Collector Curren!
Total Oevlce Olsslpatlon
Junction Temperature
Storage Temperature
Lead Temperature
-30
1:
-40
il
..L-
. j-
1--- I-1--.- 1---
lPo
30
c
'''''
i
40
50
40
~
F
./
c--f
4
• 10
60
".z
lo"C:
,
'"
G,
"-
AIfol
30
,
I
50
40
VS,
-
......
GH.
~
."-
,16V
I I
r--
10
2
60
'''"r- ....
I. I-1. --
30
Figure 2, Typical IS21 EI2
1 and 2 GHz,
",,;.~v
_f"""
I
I
I
......... Old. _
15
J J
....
20
15
1
COLLECTOR CURRENT {mAl
Figure 1. Typical Galm~xl' Maximum Stable
Gain IGm,l, and IS21EI VS, Frequency at
VeE = 18 V, Ie = 30 rnA,
~
l"- _
f-_.-
P'J.dS -
20
oTt- -f
.J
10
r'-l-
25
.,i.. -~r
12V.ff=
f"
0~1--~,2~~4~6~.~1--~~~4~6~."0
tt
30
... -
-50
-50
-10
i
"" ... ~
~ •• f.-"
~
--
, ./
;""'Y
! 'V
1 V
I
Y
-5
".,
10
15
20
INPUT POWER OF EACH TONE (dBm)
Figure 6, Typical Two Tone 3rd Order
Intermodulation Distortion at 2 GHz for a
frequency separation of 5 MHz at
VeE = 18 V, Ie = 30 rnA,
90
~90
Figure 7. Typical rMS, rML (Calculated from the
Average S-Parameters) in the 2 to 4GHz Frequency
Range for VCE = 18V, Ic = 30mA.
Typical 5- Parameters
VCE = 18V, Ic = 30mA
$11
Freq. (MHz)
100
200
300
400
500
600
700
800
900
1000
1500
2000
2500
3000
3500
4000
4500
5000
5500
6000
Mag.
0.74
0.71
o.se
0.66
0.62
0.60
Cl.5S
0.55
0,54
0.52
0.49
0.47
0.47
0.45
0,45.
0.42
0.41
0.39
0.39
0.37
Ang.
-20
-40
-57
-72
·86
·97
·108
·116
-124
-131
-159
-179
165
151
138
123
110
89
(dB)
74
1.4
0.7
55
Typical 5- Parameters
20.7
20.3
1M
18.7
17.8
16.9
16.2
15.4
14.6
13.8
11.0
8.8
7.1
5.S
4.7
3.7
3.2
2.2
VCE
100
200
300
400
500
600
700
800
900
1000
1500
2000
2500
3000
3500
4000
4500
5000
5500
6000
Mag.
0.74
0.70
0.67
0.63
0.60
0,58
0.57
0.55
0.54
0,52
0.48
0.46
0.46
0.45
0.44
0.43
0.41
0.38
0.39
0.37
Ang.
-19
-37
-54
-69
-83
-95
-105
-113
-121
-128
-156
-171
167
153
140
126
112
93
74
56
Ang.
165
152
140
130
121
113
106
100
94
88
66
46
32
17
2
-11
3.53
2.77
2.27
1,95
1.71
1.54
1.44
1.29
1.16
1.09
-24
-38
-53
-64
(dS)
·31
-32
-29
-27
·26
-25
·25
·24
-24
-23
-22
-21
-20
·19
·18
-17
-16
·15
-14
-13
$,2
Mag.
0.Q1
$22
Mag.
0.03
Ang.
79
68
0.04
0,04
0.05
0.06
0.06
0.06
0.07
0.07
0.08
S2
55
49
44
41
38
35
33
25
0.09
22
0,10
0,11
0,12
0.14
0.16
0.17
0.19
0.22
16
15
10
4
1
-6
-12
-17
0.69
0.84
0.79
0.75
0.71
0.68
0.65
0.63
0,58
0.56
0.56
0.59
0.59
0.64
0.65
0.69
0.69
0.69
Ang.
-9
0.98
0.94
-17
-23
-28
-33
·37
·40
·42
.44
-46
-59
-67
-81
-90
-103
-111
·121
-131
-139
-148
= 15V,lc = 115mA
S11
Freq. (MHz)
$21
Mag.
10.90
10.30
9.49
8.65
7.77
7.01
6.43
5.87
5.38
4.91
(dS)
191
16.S
16.2
17.5
16.S
16.0
15.2
14.5
13.8
13.0
10.2
8.0
6.3
5.0
3.8
2.S
1.9
1.0
O.S
-0.3
S21
Mag.
822
$12
Aug.
164
152
141
130
121
113
107
101
95
89
66
9.05
8.76
8.16
7.52
6,90
6.32
5.78
5.29
4.88
4.48
3.23
2,51
2.00
1.76
1.56
1.38
1.24
1.12
1.09
0.96
46
31
16
0
-13
-26
-40
·55
-67
82
(dB)
-37
-31
-26
-27
-26
-25
-24
-24
·23
-23
·22
-21
-20
·19
-18
-17
·16
-15
-14
-13
Mag.
0.01
0.Q3
0.04
0.05
0.05
0.06
0.06
0.07
0.07
0.07
0.08
0.09
0,10
0.11
0,12
0.14
0,15
0.17
0.20
0.23
Ang.
81
68
60
53
48
43
40
37
34
31
25
21
16
16
12
8
4
-1
-6
-12
Mag.
0.98
0.94
0.90
0,85
0.80
0.76
0.73
0.70
0.67
0.65
0.60
0.56
0.57
0.59
0.60
0.64
0.64
0.68
0.70
0.69
Allg.
-8
-15
-21
-26
-31
-35
-38
-40
-43
-45
-55
-65
-77
-86
-98
-106
-114
-123
-130
-139
(
Flin-
LINEAR POWER
TRANSISTOR
HEWLETT
~e.. PACKARD
HXTR-51O~
Features
HIGH OUTPUT POWER
29 dBm Typical PldB at 2 GHz
HIGH P1dB GAIN
9 dB Typical GldB at 2 GHz
3.25 (O.128) DlA.
TYP,
LOW DISTORTION
HIGH POWER-ADDED EFFICIENCY
'Je=::=J.-l
HERMETIC PACKAGE
BI
.762
1.030)
Description/Applications
TYP
The HXTR-5014 is an NPN bipolar transistor designed for
high gain and linear output power up to 4 GHz. To achieve
excellent uniformity and reliability, the manufacturing process utilizes ion implantation and self-alignment techniques.
The chip has a dielectric scratch protection over its active
area and Tll2N ballast resistors for ruggedness.
E
J L
1.62
(0.060)
TYP.
The superior power, gain and distortion performance of
the HXTR-5104 commend it for use in RF and IF
applications in radar, ECM, space, and other commercial
and military communications.
(
1.27
0.102
(0.0501
10.004)
TYP,
TYP.
The HXTR-5104 utilizes the HPAC-20D, a metal/ceramic
hermetic package with a BeD heat conductor, and is
capable of meeting the environmental requirements of
MIL-S-1950D and the test requirements of MIL-STD750/883.
Absolute Maximum Ratings*
IT CASE
= 25° C)
Symbol
VCBO
VeEo
Veso
Ie
PT
TJ
TSTG
-
ALL DIMENSIONS ARE IN MILLIMETERS IINCHES).
Parameter
Collector to Base Voltage
Collector to Emitter Voltage
Emitter to Base Voltage
DC Collector Current
Total Device Dissipation
Junction Temperature
Storage Temperature
Lead Temperature
(SOldering 10 seconds each lead)
Limit
45V
27V
4V
250 mA
Outline HPAC·200
4W
300°C
435°C to
200°C
+250°C
'Operation in excess of anyone of these conditions may result in
permanent damage to this device.
Notes:
1. A elJC maximum of 55 0 C/W should be used for derating and
junction temperature calculations (TJ = PD X 0JC + TeAsEl.
2. A MTTF of 3.5 x 106 hours will be met or exceeded when the
junction temperature is maintained under TJ = 125 0 C (based
on an activation energy of 1.1 eVi. For operation above this
condition, refer to page 108. "Reliability Performance of
Bipolar Transistors".
83
Electrical Specifications at TCASE=25°C
Tut
MIL·$TD-7SO
Symbol Par.mete... and Tut Conditions
BVCBO
COllector-Base Sreakdown Voltage at 1c=10mA
3001.1'
Units
Min.
V
40
Mal(.
Typ.
BVCEO
Collector-Emitter Breakdown Voltage at Ic"'50mA
3011.1'
V
24
BVEBO
Emitter-Base Breakdown Voltage at IS"'100p.A
3026.1'
V
3.3
IE60
Emitter-Base Leakage Current at VEB=2V
3061.1
p.A
iCES
Collector-Emitter Leakage Current at VCE=32V
3041.1
nA
10
200
3036.1
nA
100
IceO
Collector-Base Leakage Current at VCB"'20V
hFe
Forward Current Transfer Ratio at Vce=18V,
lo-110mA
PldB
Power Output at ldB Gain Compression
15
40
dBm
28.0
29.0
2GHz
dB
8.0
9.0
2GHz
dBm
31.0
2GHz
%
35
2GHz
dBm
37
3016.1*
f'"
2GHz
G'dB
Associated ldB Compressed Gain
PSAT
Saturated Power Output (Gain=5dB)
'1
Power-Added Efficiency
,at ldB Compression
Third Order Intercept Point
Vce=18V. ic"'11OmA
IP$
75
300l's Wide pulse measurement at ,;2% duty cycle,
12
,
~
w
~
, ves-'
I[-..01
10
-I'-o!'oo,
~
~~ pv
1- .... i"" 1---
_t:0
f-' ' - lav
"-
'"~.
t'!!..
,
iii
:s
~
~
;g
I"""
i'l
f-~. r~5V
'"
~
f-ri
1 -
r'
I I '
I
i
00
"""
0;;;;
1c;H,T'" r-...:
f-;;'r
",'
/
I
50
100
150
FREQUENCV (GHz)
COLLECTOR CURRENT (mAl
FREQUENCV (GHz)
Figure 1, Typical MAG, Maximum Stable
Gain IMSGI and IS21EI 2 VS, Frequency at
VCE = 18 V, Ic = 110 rnA.
Figur~ 2, Typical IS21EI 2 vs, Current
at 1 and 2 GHz,
Figure 3, Typical P, dB Linear Power and
Associated 1 dB Compressed Gain vs,
Frequency at VCE = 18 V, Ic = 110 mA.
15
30
29
28
27
2.
25
24
,/
V
/
1/
......
I~I
VCE,"lIW
, II), Go
lid\.
i i·1 \.
12.5
12V
.......
V "dB
10
ILl
,..'so
100
18V
F
, 'I
;:: 150
COLLECTOR CURRENT (rnA)
Figure 4, Typical P'dB Linear
Power and Associated 1 dB
Compressed Gain vs. Current at
VCE
\.
~" ~
~,
ll,dO
~+ W-
;
75
V'
r-- i-
II II
L ' It
= 12 and 18 V at 2 GHz,
~
I !I
25
0
j
.L
, 11,1
.-
/'.1 I
........ i ""IN
\. /' I
...x: .
I
"
I
I
I
'~
J
. i
,5
~
W
g
~
j'l
6
8 10
50 )---
-
40 1-:30 f-f20
10
~
I-f-
....
i
-10
~
-20
5
-30
f-
-40
-60_ 5
-
,-- .. f--
- r--
. r-
';::p ... :
!
'f-
It•
7rI-,--
- 'r,y- ITt
-
-so
-.IJ-' ;...~~~
I,,..r-
o
~
'I
.1
~
60
V
V
A
1
10
15
20
25
FREQUENCY (GHzj
INPUT POWER OF EACH TONE (dBm)
Figure 5, Typical Noise Figure IFminl and
Associated Gain IGal VS, Frequency when
tuned for Minimum Noise at VCE = 18 V,
Ic = 25 rnA. Typical Noise Figure IFpl when
tuned for Max P'dB at VCE = 1.8 V, Ie = 110 mA,
Figure 6, Typical Two Tone 3rd
Order Intermodulalion Distortion al
2 GHz for a frequency separation of
5 MHz at VCE = 18 V, Ic = 110 mA,
84
(
90'
±180"
-90'
Figure 7. Typical rMS, rML (calculated from the average
S-parameters) in the 1.5 to 3.5GHz frequency range,
at VCE = 18V, Ic = 110mA.
Typical S-Parameters
VCE
= 18V,
$11
(
Freq. (MHZ)
100
200
300
400
500
600
700
800
900
1000
1500
2000
2500
3000
3500
4000
4500
5000
5500
6000
Mag.
0,48
0,54
0.59
0.61
0.63
0.64
0.65
0.65
0.65
0.64
0.65
0.65
0.66
0.65
0.64
0.63.
0.61
0.59
0.58
0.5S
Ic
= 110mA
$21
Ang.
-68
-109
-132
-146
-155
-162
-168
-172
-176
179
169
151
139
128
115
103
87
72
53
38
(dB)
24.8
22.6
20.4
18.5
16.9
15.5
14.3
13.3
12.4
11.5
8.2
6.0
4.3
2.9
1.8
0.9
0.2
-0.7
-1.6
-2.3
$12
Ang.
140
127
112
102
94
68
83
78
73
69
50
33
17
2
-13
Mag.
17.30
13,50
10.50
8,43
7.02
5.98
5.21
4.62
4.15
3.70
2.57
1.99
1.64
1,40
1.23
1.11
1.03
0.93
0.84
0.77
-27
-41
-54
-67
-79
85
$22
Mag.
0.03
0.04
0.05
0.06
0.06
0.06
0.07
Ang.
62
-23
om
33
-23
-22
-20
-19
-17
0.Q7
33
0.08
0.10
0.11
0.14
0.16
0.19
0.22
0.26
0.29
0.34
0.37
32
31
30
(dB)
-31
-27
-26
-25
-24
-24
-24
-16
-15
-13
-12
-11
-10
-9
48
40
36
34
33
33
25
20
14
5
-2
-12
-22
-31
Mag.
0.88
0.69
0.55
0.47
0.41
0.38
0.35
0.34
0.32
0.32
0.32
0.33
0.39
0.42
0,46
0.51
0.53
0.57
0.57
0.60
Ang.
-27
-46
-58
-66
-71
-76
-80
-84
-87
-90
-104
-118
-130
-140
-152
-161
-172
179
167
155
Flio-
LOW NOISE
TRANSISTOR
HEWLETT
~~ PACKARD
2N6617
(HXTR-61 01)
Features
LOW NOISE FIGURE
2.8 dB Typical FMIN at 4 GHz
0.762 (0.0301
TYP.
HIGH ASSOCIATED GAIN
9.0 dB Typical Ga at 4 GHz
1
HERMETIC PACKAGE
O.5Q8
BASE\
to.OZOID
TYP.
I
Description
~EMITTER
The 2N6617 (HXTR-6101) is an NPN bipolar transistor
designed for minimum noise figure. The device utlizies ion
implantation techniques in its manufacture and the chip is
also provided with scratch protection over its active area.
The device is supplied in the HPAC-70GT, a rugged
metal/ceramic hermetic package, and is capable of meeting the environmental requirements of MIL-S-19500 and
the test requirements of MIL-STO-750/883.
r---S.08 (0.201--:
TVP.
1.00 (O.039)
Mh==d1I.=J
L==+
~.
0.838 (0,033)
Absolute Maximum Ratings *
(TeASE
Veso
VCEO
VeBO
Ie
PT
TJ
TSTG(MAX)
-
TVP.
= 25° C)
Symbol
Parameter
Collector 10 Base Voltage
Collector to E.mltter Voltage
Emitter to 8ase Voltage
OC Collector Current
Total Device Dissipation
Junction Temperature
Storage Temperature
Lead Temperature
(Soldering 10 seconds each lead)
limit
35V
20V
1.5V
20mA
300mW
30QoC
-65°C to
200'C
+250'C
'Operatlon In excess of anyone of these conditions may result
permanent damage to this device
o:533liJ.02Tj
0.102 (0.0041
DIMENSIONS IN MILLIMETERS AND (INCHES).
OUtlioe HPAC-70GT
In
Notes:
1. A 8JC maximum of 245° C/W should be used for derating
and junction temperature calculations (T J = Po x 0JC +
TCASEI.
2. A MTTF of 1.0 x 107 hours will be met or exceeded when the
junction temperature is maintained under TJ = 200 0 C (based
on an activation energy of 1.1 eV). For operation above this
condition, refer to page 108. "Reliability Performance of
Bipolar Transistors".
86
(
Electrical specifications at TeAsE =25°C
Test
MIL-STD·7S0
Unlt$
Min.
Typ.
Max.
Symbol
Parameters And Test Conditions
BVcEs
Collector-Emitter Breakdown Voltage at Ic"'100pA
3001.1'
V
leEO
Collector-Emitter Leakage Current at VCE=10V
3041.1
nA
500
100
lello
Collector Cutoff Current at VC6"'10V
3036.1
nA
hFE
Forward Current Transfer Ratio at VCEl'='10V. Ic"'4mA
3076.1*
-
F~llN
Minimum Noise Figure
f= 4 GHz
2 GHz
30
50
dB
150
250
1.6
2.8
3.0
3246.1
Ga
Associated Gain
f=
4 GHz
2 GHz
dB
dB
Bias Conditions for Above: VeE = 10V. Ie
~
8.0
9.0
13.5
4mA
-
300/-<5 wide pulse measurement at :5.2% duty cycle
18
16
12
"- .... r-,.
14
~
" '"
A~~I~T.d"o."
(G~J
....
....
iii
':E"
z
J
/'
//
fil"
~
~
"
"z
z
'--
""=- .
l
(
2.0
3.0
4.0
5.0
-NOISE FIGU~f
-
~
~
L i.fI
-
o
o
FREQUENCY {GHz)
COLLECTOR CURRENT (rnA)
'N«"V
~10V
...... ~
I
'C<
./
1,5
2.0
3.0
4.0
I ASSOClATED GAIN
I
5.0
!
i
1---.
,
1
6.0
(Gq. (MHz)
(Mag'/Ang.)
1000
1500
2000
3000
4000
5000
6000
.480/23"
.450/61 '
.410/88'
.4251121'
.475/166'
.5301-164'
.520/-131'
RN
FMIN (dB)
23.31
15.57
15.73
10.72
3.50
2.81
7.23
1.45
1.58
1.72
2.18
2.75
3.67
4.78
(Ohms)
Low power Bias Per formance
Bias
VeE
V
Ie
mA
FMIN
dB
G.
RN
dB
Ohms
3
3
3
0.25
0.50
1.00
2.25
1.87
1.55
8.5
12.7
15.7
605
25.5
13.9
f.
fL
Mag.lAng. Mag'/Ang.
.805/31"
.713/38'
.571/39'
.788/25'
.779/29'
.774129'
Figure 4. NOise Parameters at 1 GHz.
Frequency
BIA5
1000 MHz
1500 MHz
2000 MHz
G,
dB
F M•N
G.
FMIN
mA
FMIN
dB
dB
dB
dB
0.25
050
10
2.25
1.87
1.55
8.5
127
15.7
267
206
1.73
50
9.9
11.7
2.83
VeE
Ie
V
3
3
3
223
179
3000MHz
G.
dB
FM.N
4.7
79
10.2
388
G,
dB
dB
2.93
4.1
6.4
2.38
8.1
Figure 5. Noise Performance vs. Frequency and Bias.
(
Typical S-Parameters
VCE = 3V. Ic = 0.25mA
5 11
Freq. (MHz)
500
1000
1500
2000
3000
Mag.
Ang.
.988
.956
.929
.910
.888
(dB)
5 21
Mag.
Ang.
(dB)
5a
Mag.
5:u
Ang.
Mag.
Ang
6
,993
.975
.956
.945
.938
-12
-22
-33
-42
·59
-22
-42
-65
-81
-112
-6.9
-7.2
-7.5
-7,7
-8.1
.451
.438
.423
.412
.394
152
127
106
89
56
-28.2
-23.1
-20.6
-19,7
-19.3
.039
.070
.093
.104
.10B
5 21
Mag.
Ang.
(dB)
5'2
Mag.
Ang.
Mag.
Ang.
-3.3
.991
.863
.792
.747
.688
152
128
107
91
60
-28.4
-23.6
-21.4
-20.6
-20.1
.038
.066
.085
.093
.099
70
52
35
24
7
.986
.955
920
906
.889
-13
-24
-34
-43
-60
52,
Mag.
Ang.
(d8)
Mag.
Ang,
Mag.
Ang.
1.67
1.54
1.36
1.25
1.09
149
125
104
88
59
-28.6
-24.3
-23.1
-22.6
-22.1
.037
.061
.070
.074
,079
66
47
31
23
10
.972
.919
.873
.854
.842
-14
-25
-36
·43
-59
72
55
38
27
K
.220
.464
.586
.679
.821
VCE = 3V, Ic = O.50mA
511
Freq. (MHz)
Mag.
Ang.
(dB)
500
.976
.929
.887
.858
.818
-24
-47
-72
-89
-121
-O.B
1000
1500
2000
3000
-1.3
-2.0
-2.5
5 22
K
.220
.423
.583
.682
,818
VCE = 3V, Ic = 1.0mA
5 11
Freq, (MHz)
Mag.
Ang.
(dB)
500
1000
1500
2000
3000
.952
.884
.821
.775
.738
-25
-54
-82
-102
-133
4.4
3.7
2.7
1.9
.77
$22
$'2
91
K
.328
.492
.664
.793
.908
Fli;'
LOW NOISE
TRANSISTOR
HEWLETT
~~ PACKARD
2N6618
(HXTR- 6103)
Features
GUARANTEED LOW NOISE FIGURE
2.2 dB Maximum FMIN at 2 GHz
HIGH ASSOCIATED GAIN
12.0 dB Typical Ga at 2 GHz
l
3.3 (o.I30l
1I
MIN •
HERMETIC PACKAGE
. ...",..-.!'-
C
z::=:::7
t
Description
1.
0.51 (0.02)
TYP.
The 2N6618 (HXTR-6103) is an NPN bipolar transistor
designed for minimum noise figure at 2 GHz. The device
utilizes ion implantation and self alignment techniques in its
manufacture. The chip is provided with scratch protection
over its active area.
These devices are supplied in the HPAC-l00, a rugged
metal/ceramic hermetic package •. and are capable of
meeting the environmental requirements of MIL-S-19500
and the test requirements of MIL-STD-750/883.
Absolute Maximum Ratings *
I
CTcAse= 25· C)
Symbol
VCBO
VeEo
VESO
Ie
PT
TJ
T6m
-
Parameler
Collector to Sase Voltage
Collector to Emitter Voltage
Emitter to Base Voltage
DC Collector Current
Tolal Dev1ce Dlssipatlon
Junotion Temperature
Stontga Temperature
Lead Temperature
(SolderingtO seconds each lead)
I
O.t (0.004)
TYP.
1.Il7fo.3
+
1O.04t.
-LL
0.0..':'=====;"!;;;;;;;;J~====::J.
n;;;:;:rw
t
UmIt
35V
20V
1.5V
20mA
300mW
3000C
DIMeNSIONS IN 1\"~LlMETERS (/I'iCHES).
-65°010
2OO·C
+250·C
*Operation in excess of anyone of these conditions may result in
permanent damage to this device.
OuIDne HPAC-100
Notes:
1. A 6JC maximum of 245' C/W should be used for derating
and junction temperature calculations (TJ = Po x 6JC +
TCASEL
2. A MTTF of 1.0 x 107 hours will be met or exceeded when the
junction temperature is maintained under TJ = 200' C (based
on an activation energy of 1.1 eV). For operation above this
condition, refer to page 108. "Reliability Performance of
Bipolar Transistors".
92
(
Electrical Specifications at TCASE =25°C
Symbol
Parameters And Test Conditions
BVCES
Collector Emitter Breakdown Voltage at Ie '" 1OO"A
Test
MIL-STD-7S0
Unitt
Min.
3011."
V
30
= 10V
ICEO
Collector Emitter Leakage Current at VCE
3041.1
nA
leBo
Collector Cut Off Current at Ves '" 10V
3036.1
nA
hFE
Forward Current Transfer Ratio at VCE=10V, ic=3mA
3076."
-
FMIN
Minimum Noise Figure at 2 GHz
3246.1
dB
G.
Associated Gain at 2 GHz
Typ,
Max,
500
100
50
dB
11.0
150
250
1.8
2.2
12.0
= 3 mA
Bias for above: VeE'" lOY, Ie
'300 p.s wide pulse measurement at ,; 2% duty cycle.
14
'"
IG.1
~
w
1
~
-
a:
"ii:
C,'l
=-
w
'"oz
r--...
JG
"
z
~~'
r--
....-K'
12
;;
0
V
./
C,'l
~
@
~
<3
0
11
1.5
2.0
~
-
z
«
NOI$E fiGURE IFMINI
o
o
4.0
3.0
(G.I
0
z
1.0
........ -
«
'"
,l
o
./
(j
0
z
«
C,'l
«
NOISE fiGURE IFM•NI
1
13
~
-1
o
FREQUENCY (GHz)
COLLECTOR CURRENT (mAl
Figure 1. Typical MAG, FMIN and
Associated Gain vs. Frequency at VeE
Figure 2. Typical FMIN and Associated
Gain VS. Collector Current at 2 GHz for
VeE = 10 V ITuned for FMINI.
=
10V,le=3mA.
16
I
14
~
12
~
,.....
10
"'-
/
I!!:
1/
.g
1---'
-
V- ........ t-...
VeE = UiV
VeE -jOV
VeE =6V
-
~
f'..
Vee
'\
-av
VeE :II1V
1
COLLECTOR CURRENT (mAl
Figure 3. TypieallS21 EI2 vs. Bias at
2 GHz.
93
Typical Noise Parameters
j
VCE=10V,lc=3mA
r.
RN
FMIN
(Ohma)
(dB)
1.65
1.60
1000
(tilagJAng.)
.465/36'
1500
.369/67"
25.1
22.5
2000
.323194"
23.3
Freq. (MHz)
1.55
Typical S- Parameters VCE = 10V, Ie = 3 mA
$21
$11
Freq. (MHz)
100
200
300
400
500
600
700
800
900
1000
1500
2000
2500
3000
3500
4000
5000
6000
Mag.
0.93
0.89
0.86
0.83
0.79
0.75
0.71
. 0.68
0.65
0.62
0.52
0.50
0.50
0.49
0.54
0.52
0,53
0.48
S22
812
Ang.
(d8)
Mllg.
Ang.
(d8)
Mag.
Ang.
Mag.
Ang.
-11.5
-23.0
-34.0
-44.0
-54.0
-65.0
-73.0
-81.0
-91.0
-97.0
-129.0
-151.0
-169.0
175.0
165.0
156.0
140.0
120.0
16.2
17.1
16.4
15.9
15.6
15.4
15.0
14.4
14.0
13.5
11.4
9.3
7.8
6.5
5.4
4.5
2.6
0.9
6.46
7.13
6.58
6.26
6.02
5.91
5.62
5.25
4.99
4.72
3.71
2.93
2.45
2.12
1.87
1.67
1.35
1.11
168.0
158.0
149.0
142.0
135.0
128.0
121.0
116.0
111.0
106,0
64.0
69.0
55.0
42.0
29.0
19.0
-3.0
-22.0
-42.0
-37.0
-34.0
-32.0
-30.0
-29.0
-29.0
-28.0
·28.0
-27.0
-27.0
-26.0
-26.0
-26.0
-25.0
-24.0
-23.0
-21.0
0.01
0.01
0.02
0.03
0.03
0.04
0.04
0.04
0.04
0.04
0.05
0.05
0.05
0.06
0.06
0.06
0.08
0.09
77.0
77.0
66.0
60.0
55.0
51.0
48.0
45.0
43.0
41.0
32.0
31.0
31.0
33.0
35.0
37.0
35.0
34.0
0.99
0.97
0.94
0.92
0.89
0.87
0.85
0.64
0.83
0.81
0.74
0.72
0.69
0.68
0.65
0.61S
0.71
0.73
-4.0
-8.0
-12.0
-16.0
-19.0
-21.0
-24.0
-25.0
-27.0
-28.0
-35.0
-43.0
-51.0
-57.0
-68.0
-76.0
-96.0
-112.0
(
94
(
Flidl
LOW NOISE
TRANSISTOR
HEWLETT
~~ PACKARD
2N6743
(HXTR-61 04)
Features
GUARANTEED LOW NOISE FIGURE
1.6 dB Maximum FMIN at 1.5 GHz
HIGH ASSOCIATED GAIN
14.0 dB Typical Ga at 1.5 GHz
HERMETIC PACKAGE
Description
The 2N6743 (HXTR-6104) is an NPN bipolar transistor
designed for minimum noise figure at 1.5 GHz. The device
utilizes ion implantation techniques and self alignment techniques in its manufacture. The chip is provided with scratch
protection over its active area.
.....2.51; O.ze..,..,..
10.10 ± 0.01)
The 2N6743 (HXTR-6104) is supplied in the HPAC-100, a
rugged metal/ceramic hermetic package, and is capable of
meeting the environmental requirements of MIL-S-19500
and the test requirements of MIL-STO-750/883.
c
Absolute Maximum Ratings *
Symbol
Veso l11
VCEOP,
VEBOlll
Ie 111
Pr 11 ;
TJ
TSTG
-
Parameter
Collector to Base Voltage
Collector to Emitter Voltage
Emitter to Base Voltage
DC Collector Current
Total Device Dissipation
Junction Temperature
Storage Temperature
Lead Temperature
Soldering 10 seconds each lead,
Limit
35V
20V
1.5V
20 mA
300 mW
300'C
-65'C to
200'C
+250'C
~Operation in excess of anyone of these conditions may resUlt in
permanent damage to this device.
DIMENSIONS IN MIL"METERS fiNCHES).
-Outline HPAC-100
Notes:
1. A 0)JC maximum of 245' C/W should be used for derating
and junction temperature calculations (T J = Po X 0)JC +
TCASEI.
2. A MTTF of 1.0 x 107 hours will be met or exceeded when the
junction temperature is maintained under TJ = 200 0 C (based
on an activation energy of 1.1 eV). For operation above this
condition, refer to page 108. "Reliability Performance of
Bipolar Transistors"
95
Electrical Specifications at TCASE=25°C
Symbol
Parameters And Test Conditions
BVCEs
Collector Emitter Breakdown Voltage at Ie
ICEO
Collector Emitter Leakage Current at VCE '" 10V
leBo
Collector Cut Off Current at Vca
Iln
Forward CurrentTransfer Ratio at VCE=10V,lc=3mA
FMIN
Minimum Noise Figure
f= 1.5 GHz
Associated Gain
f= 1.5 GHz
Bias for above: VeE'" 10V. Ie
G.
= 100!,A
= 10V
.
Test
MIL·STD·750
Units
Min.
3011.1'
V
30
30411
nA
3036.1
nA
3076.1'
-
3246.1
Typ.
Max.
500
100
50
150
250
1.4
1;6
dB
13.0
dB
14.0
= 3 mA
"300 p,s wide pulse measurement at.::; 2% duty cycle.
5
I
...............
4
ASSOCIAT~
_GAIN
(G"
~
'"
MiG -
.............
cc
::J
w
-
'"i5
z
1
V
1
"'"~
w
"u:
1
3
2
Y
~
~
3
- NOr
i-""NoISE FIGURE (FMI.I
2
1.5
2.0
G2IN-
'"'" 1
1
1.0
IG,I
/
1
o
o
.."... -;:;lCIATko
3.0
F r R rM1N( -
-
0
4.0
FREQUENCY (GH,I
COLLECTOR CURRENT (rnA)
Figure 2. Typical Noise Figure and
Figure 1. Typical MAG. FMIN and Associated Gain vs. Frequency at VeE = 10 V,
Ie = 3 mA.
Associated Gain vs. Ie at 1.5 GHz
for VeE = 10V (Tuned for FMINI.
16
Vc• '15V "VeE'" 10V
14
VeE -6V
12
~
~ I"-
10
"-w
~
-
o
"
-l
f' -
-
Typical Noise parameters
.....
~:
VeE= 10V Ic=3 rnA
ro
RI'I
FMII'I
.- r---
Freq. (MHz)
(Mag.! Ang.)
(Ohms)
(dB)
1000
.465/36"
25.09
1.20
1500
.369/67'
22.47
1.40
2000
.323/94'
23.31
1.50
, VC.=1V
o
COLLECTOR CURRENT (mAl
Figure 3. TypicallS21EI2 vs. Bias at
1.5 GHz.
96
(
Typical S-Parameters VCE = 10V, lc = 3 mA
821
8"
812
Freq. (MHz)
Mag.
Ang.
(dB)
Mag.
Ang.
100
200
300
400
500
600
700
800
900
1000
1500
2000
2500
3000
3500
4000
5000
6000
0.93
0.89
0.86
0.83
0.79
0.75
0.71
0.6s
0.65
0.62
0.52
0.50
0.50
0,49
0.54
0.52
0.53
OAS
-11,l>
-23.0
-34.0
-44.0
-54.0
-65.0
-73.0
-Sl.0
-91.0
-97.0
-129.0
-151.0
-169.0
175.0
165.0
156.0
140.0
120.0
16.2
17.1
16.4
15.9
15.6
15.4
15.0
14.4
14.0
13.5
11.4
9.3
7.8
6.5
5.4
4.5
2.6
0.9
6.46
7.13
6.58
6.26
6.02
5.91
5.62
5.25
4.99
4.72
3.71
293
168.0
158.0
149,0
142.0
135.0
128.0
121.0
116.0
111.0
106.0
84.0
69.0
55.0
42.0
29.0
19.0
-30
-22.0
2045
2.12
1.87
1.67
1.35
1.11
(
97
(dB)
-42.0
-370
-34.0
-32.0
-30.0
-29.0
-29.0
-28.0
-28.0
-27.0
-27.0
-26.0
-26.0
-26.0
-25.0
-24.0
-23.0
-210
822
Mag.
Ang.
Mag.
Ang.
0.01
0.Q1
0.02
0.03
0.03
0.04
0.04
0.04
0.04
0.04
0.05
0.05
0.05
0.06
0.06
0.06
0.08
0.09
77.0
77.0
66.0
60.0
55.0
51.0
48.0
45.0
43.0
41.0
32.0
31.0
31.0
33.0
35.0
37.0
35.0
34.0
0.99
0.97
0.94
0.92
0.89
0.87
0.85
0.S4
0.83
0.81
0.74
0.72
0.69
0.68
0.65
0.6S
0.71
0.73
-4.0
·8.0
-12.0
-16.0
-19.0
-21:0
-24.0
-25.0
-27.0
-28.0
-35.0
-43.0
-51.0
-57.0
-68.0
-76.0
-960
-112.0
FliO'l
a:e.
GENERAL PURPOSE
TRANSISTOR
HEWLETT
PACKARD
HXTR-6105
Features
LOW NOISE FIGURE
4.2 dB Maximum FMIN at 4 GHz
HIGH ASSOCIATED GAIN
9 dB Typical Ga at 4 GHz
WIDE DYNAMIC RANGE
ho-
I
HERMETIC PACKAGE
.-?-<-"'I
3.3 (0.13f
MIN,
c
_I
-,
c:z-•
0.5110.021
Description
TVP.
The HXTR-6105 is an NPN bipolar transistor designed for high
gain up to 4 GHz with high output dynamic range. This
transistor also features high output power and high gain at
the NF bias and tuning conditions.
The device utilizes ion implantation techniques and self
alignment techniques in its manufacture. The chip is provided with a dielectric scratch protection over its active area.
The HXTR-6105 is supplied in the HPAC-100, a rugged
metal/ceramic hermetic package, and is capable of meeting
the environmental requirements of MIL-S-19500 and the
test requirements of MIL-STD-750/883.
0.1 (0.0041
I
I
(.042, O.O..ll=====~!;;;;;;;;;;J-.;;!====:::I
1.07.tI 0.3
t i"
Absolute Maximum Ratings *
~
DIMENSIONS IN MILUMETERS (INCHES),
(TeASE = 25° C)
Symbol
VCSO
VCEO
VEBO
Ie
Pr
TJ
TSTG
Parameter
Collector to Sase Voltage
Collector to Emitter Voltage
Emitter to Base Voltage
DC Collector Current
Total Device Dissipation
Junction Temperature
Storage Temperature
-
Lead Temperature \Soldenng
10 seconds each lead'
LImit
30V
20V
1.5V
70 mA
90DmW
3DO·C
-6S·C to
20DoC
Oulline HPAC-100
+2SO"C
*Operallon In excess of anyone of these conditions may result in
permanent damage to this device.
Notes:
1. A 0JC maximum of210·C/W should be used for derating and
junction temperature calculations (TJ = PD X 0JC + TCASEI.
2. A MTTF of 1.0 x 107 hours will be met or exceeded when the
junction temperature is maintained under TJ = 200·C (based
on an activation energy of 1.1 eV). For operation above this
condition, refer to page 108. "Reliability Performance of Bipolar Transistors".
98
TYP.
+
t
(
Electrical Specifications at TCA SE =25°C
Symbol
Mll-STD·750
Test Method
Parametersaod T est Conditions
*
Units
Min.
V
30
BVCES
Collector-Emitter Breakdown Voltage le=100pA
3011.1
ICEO
Collector-Emitter Leakage Current atVeE=15V
3041.1
nA
leBO
Collector Cut Off Current at VeB = 15V
3036.1
nA
hFE
Forward Current Transfer Ratio at VCE=15V, le=15mA
3076.1'
-
FMIN
Minimum Noise Figure
Ga
P'dS
300 J.ls Wide pulse measurement at
100
50
3246.1
dB
8.0
120
220
2.2
3.8
4.2
15.0
9.0
14
dBm
- 2% duty cycle,
Max.
500
dB
f = 1.5 GHz
=4GHz
Associated Gain
f=1.5GHz VeE = 15V, Ie = 15mA
= 4 GHz
Power Output at ldB Compression at 4 GHz
VeE = 15V, Ie'" 15mA
Typ.
~
20
_ _ _ _ ASSOCIATED GAIN
18
115V, 15 mAl
/
I
I
f--~d- ASSOCIATED GAIN
";;
(lOV.5 mAf
:£
2
12
'"@
f-
"aU
'"'"
"
(.
~~.O---------2~.0----3~.0---4~.0--5~.0--6~.04
FREQUENCY (GHz)
COLLECTOR CURRENT (rnA)
Figure 1. Typical FMIN and
Associated Gain vs. Frequency
Figure 2. Typical FMIN and
Associated Gain vs. Ic at 4 GHz for
VCE=15V (Tuned for FMINI.
I
!. -
VeE'" 15V
~
VeE'" 10V
~ ,/
V~
if;
/,
VI
A
I
.....
Typical Noise Parameters
VeE= 15V, le= 15 mA
"""
Freq. (MHz)
VeE" 2V
1
10
15
.'\.
I'
20
25
30
COLLECTOR CURRENT 1m A)
Figure 3. Typical IS21EI2 VS. Current
at 4 GHz.
99
FM1N
(dB)
6.81
1.80
2.15
3.01
2000
3000
,5411-158'
533
5.04
6.54
4000
5000
.6281-135'
.624/-107'
15.54
3.81
60.14
4.75
1500
H-h.
RN
(Ohms)
.238/123'
3851142'
.429/173'
1000
/.
I' 0
(Mag./Ang.)
2-25
Typical S-Parameters
1It1
$,1
Freq. (MHz)
100
500
1000
1500
2000
2500
3000
3500
Mag.
0,66
0.59
0,59
0.59
0.61
0.60
0.62
4500
6000
0.62
0.82
0.60
0.60
6000
0,62
4000
5500
O.Sl
(
VCE = 15V, Ic = 15mA
(dS)
,Mag.
Ang.
-52
29.0
22.0
16.5
13.1
10.8
8.8
7,2
28.3
12.5
6.71
4.54
3.48
:t75
2.28
1.93
1.70
1,50
1.35
1,23
1,11
152
101
-139
-169
177
165
159
148
141
132
126
118
112
104
5.7
4.6
3.5
2.6
1.8
0.9
IdB)
-39.2
32
-37.7
-29.6
-27.5
-25.5
-24.0
-22.7
21
-21.4
10
0,0
-9
-20,0
-19.0
-20
-16.8
-16.1
eo
65
53
43
-29
-17.2
Mag.
0,01
0.03
0.03
0.04
0.05
0.05
0.07
0,09
0.10
0.11
0.14
0.14
0.16
\
S~2
$12
Ang.
Ang.
69
41
45
49
50
51
52
49
47
45
42
35
31
Mag.
0.90
0,5/5
0.47
0.47
0.47 .
0.49
0,50
0.54
0.57
O.eo
0.65
0.66
0,67
Ang.
-16
-33
-37
-41
-50
-61
·68
-eo
-85
-94
-102
-112
-122
(
100
(
Fli;'
GENERAL PURPOSE
TRANSISTOR
HEWLETT
a:~ PACKARD
HXTR -6106
Features
GUARANTEED LOW NOISE FIGURE
2.7 dB Maximum FMIN at 2 GHz
HIGH ASSOCIATED GAIN
11.5 dB Typical G a at 2 GHz
WIDE DYNAMIC RANGE
HERMETIC PACKAGE
J
eASE
4·508tO:OOo'iD
tyP.
Description
I
The HXTR-6106 is an NPN bipolar transistor designed for
low noise up to 6 GHz with wide dynamic range. This
transistor also features high output power and high gain at
the NF bias and tuning conditions.
The device utilizes ion implantation and self alignment
techniques in its manufacture and the chip is provided with
a dielectric scratch protection over its active area.
The HXTR-6106 is supplied in the HPAC-70GT, a rugged
metal/ceramic hermetic package, and is capable of
meeting the environmental requirements of MIL-S-19500
and the test requirements of MIL-STD-750/883.
Absolute Maximum Ratings *
(T CASE = 25° C)
Symbol
VCBO
Vceo
VEW
10
PT
TJ
TSTG
-
Parameter
C¢lIector to Base Voltage
C¢lIector to Emitter Voltage
Emltta r to Sase Voltage
DC C¢lIector Current
Total Device Dissipation
Junction Temperature
Storage Tem perature
Lead Temperature I Soldering
10 seconds each lead,
Limit
DIMENSiONS ~N MILLIMETERS !lNCHESI.
SOV
20V
1.5V
70mA
900mW
Outline HPAC-70GT
3OO·C
-65·C 10
200·C
+250·C
'Operatlon In excess of anyone of these conditions may result
permanent damage to this device.
In
Notes:
1. A BJC maximum of 185· C/W should be used for derating
and junction temperature calculations (T J = Po X BJC +
TCASEL
2. A MTTF of 1.0 x 107 hours will be met or exceeded when the
junction temperature is maintained under TJ = 200°C (based
on an activation energy of 1.1 eV!. For operation above this
condition, refer to page 108. "Reliability Performance of
Bipolar Transistors".
101
Electrical Specifications at TCASE =25°C
Symbol
BVen
Iceo
Iceo
hFE
FMIt<
G.
Plde
M/L-STO·750
Parameter. and Test Condlllons
Test Method
3011 ".
Col/ector-Emitter Breakdown Voltage at Ie 100"A
3041.1
Collector-Emitter Leakage Current at Vet! '" 15V
Collector Cutoff Currant at Vee; 15V
3036.1
Forward Current Transfer Ratio at VeE 15V. Ie ISmA
3076.1'
Minimum Noise Figure
f"'2 GHz
4 GHz
3246.1
Associated Gain
~
Vee; 15V.lc ~ 10 rnA
4 GHz
f~2 GHl
Associated Output Power at 1dB Gain Compression
Vee ~ 15V, Ie = lOrnA
=
=
Units
Min.
V
nA
nA
30
500
100
-
=
Max.
Typ.
50
dB
10.0
120
220
2.5
3.8
2.7
11.5
9.0
dBm
15
·300,us wide pulse measurement :52% duty cycle.
~
~
""8
f-
0
w
"'i3z
~
COLLECTOR, CURRENT (rnA)
COLLECTOR CURRENT (rnA)
Figure 3. Typical FMIN and Associated
Gain IGal vs. Collector Current at
VCE=10V.
Figure 4. Typical IS21 E/2 vs. Current at
4000 MHz.
105
-
20
15
~
'" ~
j
~
10
~
i5
Typical Noise Parameters
~
VCE= 10 V, Ic= 10 mA
-"-
~
"
Frequency
(MH.)
FMIN
GMIN
(dB)
(dB)
Mag.
l'0
Rn
Ang.
(ohms)
1000
1.2
18.5
0.22
141
2.6
2000
1.7
13.8
0.43
174
3"3
4000
2.8
8.7
0.57
-138
11.6
Vee"" 15 V
ic'" l8mA
o
1.0
u
2.0
3"0
4.0
FREQUENCY (GHzj
Figure 5" Typical Power Output at 1 dB
Compression Gain vs. Frequency.
Typical S-Parameters (VCE = 10 V, Ic = 10 mAl
$11
$21
$12
522
Freq. (MHz)
Mag.
Ang.
(dB)
Mag.
Ang.
Mag,
Ang.
Mag.
Ang.
100
200
300
400
500
600
700
800
900
1000
1500
2000
2500
3000
3500
4000
4500
5000
5500
6000
6500
0.68
0"64
0"65
0.63
-46
-78
-105
-120
·131
-140
-148
·154
·160
·164
-178
171
164
156
149
141
132
123
112
103
93
27"8
26.1
246
20.2
16.5
13.6
11.4
9.7
8.5
7.5
154
135
121
113
106
100
95
90
86
83
68
57
45
0"02
002
63
5A
47
43
39
43
0"93
0"80
0.70
0.63
0.58
-32
43
0.52
0"50
0.62
0.61
0.61
0.60
0.61
0.61
0.61
0.61
0.62
0.63
0.63
0.62
0.61
0.60
0.61
0"62
0.62
Typical S-Parameters
24.4
22.7
2U
19"7
18.6
17"5
16"6
157
12.4
101
8.2
6B
5"5
4.5
3.5
V
2.0
1.2
0.5
6B
6",
42
3.2
2.6
2.2
L9
L7
1.5
1.4
1.3
1.2
0"03
0.03
0.Q3
0.04
0.04
0.04
0.04
0.05
0"06
43
43
43
49
56
60
61
61
59
57
53
48
43
36
0.Q7
24
14
5
-4
-14
·22
-31
0.09
0.11
0.13
0.15
0.18
0.21
0.23
0.26
34
U
0"03
-15
-26
-34
-35
-36
-36
-37
-40
-41
·50
·57
-68
·75
·85
-93
-102
-110
-118
-131
-140
0.54
0.48
0.47
0.46
0,47
0,49
0.52
0.54
Og
0.57
0"62
0"63
067
0.71
(VCE = 15 V, Ic = 18 mAl
$21
S11
$12
$22
Freq, (MHl)
Mag.
Ang.
(dS)
Mag.
Ang.
Mag.
Ang.
Mag.
Ang.
100
200
300
400
500
600
700
800
900
1000
1500
2000
2500
3000
3500
4000
4500
5000
5500
6000
6500
0.63
0.61
0.62
062
0.61
0.60
0.60
0.60
060
0.60
0.61
0.61
-59
-95
-119
29.7
30.6
23.5
18.3
14.7
12"1
102
149
129
115
107
101
95
91
87
83
81
67
55
44
33
23
13
4
-6
·16
-24
·33
0.Q1
64
46
48
43
0.90
075
0"65
0"60
0"56
-18
-26
M2
0"63
063
0"62
0.62
060
0.62
0.63
0.63
·133
·143
·151
-157
-162
·167
·170
177
168
161
153
147
139
130
121
110
102
91
27.4
25.3
23.4
21.7
20.2
19.0
17.8
16.9
16.0
12.7
lOA
8.3
6.9
5.6
4.6
3.5
2.9
2"3
U
0.8
8"9
7.8
7.0
6.3
4.3
3.3
2.6
2.2
1.9
1.7
1.5
1.4
1.3
1.2
1.1
106
0.02
0.02
0"02
0.03
0.03
0.03
0.03
0.03
0"03
0.04
0.06
0.07
OD9
0.11
0",3
0.15
0",8
0.21
023
0.26
48
44
49
49
51
51
60
65
67
68
ee
64
60
56
52
46
40
053
0.52
OBO
049
0.48
048
0"50
0"52
0.54
056
0.60
0"60
0.65
0.65
0.70
0.74
-3~
-31
-31
·32
·32
·32
·35
-35
-46
-53
-64
-72
-83
-89
-100
·106
·116
·128
-137
c
107
Flin-
HEWLETT
~~ PACKARD
RELIABILITY
PERFORMANCE
BIPOLAR TRANSISTORS
HXTR-2000
HXTR-3000
HXTR-5000
HXTR-6000
HXTR-7000
PRODUCT SERIES
Description
For applications requiring component reliability estimation, Hewlett-Packard provides reliability information for all
families of devices.
These bipolar transistor products utilize a common manufacturing process, to include similar metallization systems,
ion implantation, and self-alignment techniques, maintaining in this fashion a high degree of uniform quality and
reliability.
The reliability performance of this bipolar transistor family is
governed primarily by a thermally activated process. Hence,
the junction temperature Tj of the device dictates the performance achieved under various applications.
Applications
This information represents the capabilities of the generic
device. Performance criteria and Mean Time To Failure
(MTTF) values presented here are achieved with MIL-S19500 level sampling.
Life and Environmental Test Performance
Life/Environment
Stress
Operating
Life
High
Temperature
Storage
HTRB
Temperature
Cycling
Thermal
Shock
Solderability
Hermeticity
Moisture
Resistance
Vibration
Variable
Frequency
Mechanical
Shock
Terminal
Strength
Minimum
Stress Duration
1000 Hours
Typical Performance
Criteria, LTPD
orA
5
Test Method
M1L-STD-750
Method 1026.3
MIL-8TO-883
Method 1008
Stress Condition
TJiTcH ~ ZOO°C
Tes! Condition D,
TA=200°C
1000 Hours
7
MIL-STD·750
Method 10381
1039
MIL-STD-883
Method 1010
MIL-STD-883
Method 1011
MIL-STD-202
Method 208
MIL-STD-883
Method 1014
MIL-STD-202
Method 106
MIL-STD-750
Method 2056
Test Condition A.
TA ~ 200°C
1000 Hours
7
Test Condition D,
--135 0 C to 200 0 C
Test Condition D,
--135° C to 200 Q C
100 cycles
15
100 cycles
15
TPbSn @230°C
5 sec. dwell
15
KR-85/Dry N2
Penetrant Dye
65° C/98% R.H.
N/A
15
10 days
15
100 to 2,000 Hz
4 Cycles @ Sweep
Rate <4 min.
15
Acceleration @
1500G'5
TBA
(PaCkage Related)
0.5 msec. Pulse Duration
15
30 sec. duration
15
MIL-STO-883
Method 2002
MIL-STO-750
Method 2036.3
108
./
(
400
350
300
i'"
250
1',
~ ...
200
~I"
r--...~
;;
w'
a:
::>
150
""
lutc
(J
..
c
2$'C
a:
;:
a:
(J
~
O'c
z
-50"C
>
f!
C
I
...
I
Q
a:
1L-~LU~L_~LWJllL_~LLUlW
1.0
1.2
0.01
0.1
VF - FORWARD VOLTAGE IVOLTS)
1.0
10
IF - FORWARD CURRENT (rnA)
Figure 2. Typical Dynamic Resistance IRD) vs. Forward
Current IIF)
Figure 1. Typical Forward Characteristics
2.0
I
-~~
.
1
...
i:L 1.5
.!!
w
a:
a:
:i
~
(J
i
I
r :\J
I 1-
a
I
o
w
'"ffi
I
~
0' 0.5
a:
I
!:
20
v. -
30
40
10
50
REVERSE VOLTAGE IVOLTS)
VR
-
20
I
30
40
50
REVERSE VOLTAGE IV)
Figure 4. Typical Capacitance ICT) vs. Reverse Voltage IVR)
Figure 3. Typical Variation of Reverse Current IIR) vs. Reverse
Voltage IVR) at Various Temperatures
132
(
BEAM LEAD SCHOTTKY
DIODE PAIRS FOR
MIXERS AND DETECTORS
r/ifl'l
HEWLETT
~~ PACKARD
HSCH-5510
HSCH-5511
HSCH-5530
HSCH-5531
Features
MONOLITHIC PAIR
Closely Matched Electrical Parameters
LOW CAPACITANCE
0.10 pF Max. at 0 Volts
I-------~:~:------
u
c
a:
a:
:::>
u
c
a:
~
~
f2
f2
0.20
0.40
0.60
0.80
°0~----0~.~20~--~O.L40~--~O.~60~--O~.~80~--1~.OO
1.00
FORWARD VOLTAGE (VI
FORWARD VOLTAGE (VI
Figure 2. Typical Forward Characteristics at TA = 25 0 C
Figure 3. Typical Forward Characteristics at TA = 25 0 C
139
~---
.. - - - . - - - -
BONDING AND HANDLING PROCEDURES
FOR BEAM LEAD DIODES
1. Storage
Under normal circumstances, storage of beam lead diodes
in HP supplied waffle/gel packs is sufficient. In particularly
dusty or chemically hazardous environments, storage in
an inert atmosphere desicator is advised.
Thermocompression: See Application Note 979 "The Handling and Bonding of Beam Lead Devices Made Easy". This
method is good for hard substrates only.
Wobble: This method picks up the device, places it on the
substrate and forms a thermocompression bond all in one
operation. This is. described in MIL-STD-883B Method
2017 and is intended for hard substrates only. Equipment
specifically designed for beam lead wobble bonding is
available from KULICKE and SOFFA in Hursham PA.
2. Handling
In order to avoid damage to beam lead devices, particular
care must be exercised during inspection, testing, and
assembly. Although the beam lead diode is designed to
have exceptional lead strength, its small size and delicate
nature requires that special handling techniques be
observed so that the devices will not be mechanically or
electrically damaged. A vacuum pickup is recommended
for picking up beam lead devices, particularly larger ones,
e.g., quads. Care must be exercised to assure that the
vacuum opening of the needle is sufficiently small to avoid
passage of the device through the opening. A #27 tip is
recommended for picking up single beam lead devices. A
20X magnification is needed for precise positioning of the
tip on the device. Where a vacuum pickup is not used, a
sharpened wooden Q-tip dipped in isopropyl alcohol is
very commonly used to handle beam lead devices.
Ultrasonic: Not recommended.
Resistance Welding or Parallel-GAP Welding: To make
welding quads easier, attach one electrode of the welder
to the substrate and use the second electrode for welding
in lieu of the parallel gap electrode. To make welding on
soft substrates easier, a low pressure welding head is
recommended. Suitable equipment is available from
HUGHES, Industrial Products Division in Carlsbad, CA.
For more information, see Application Note 993, "Beam
Lead Diode Bonding to Soft Substrates".
3. Cleaning
For organic contamination use a warm rinse of trichorethane followed by a cold rinse in acetone and methanol.
Dry under unfrared heat lamp for 5-10 mintues on clean
filter paper. Freon degreaser may replace trichloroethane
for light organic contamination.
•
Ultrasonic cleaning is not recommended
•
Acid solvents should not be used
Epoxy: With solvent free, low resistivity epoxies (available
from ABLESTIK in Gardenia, CA, MICON in Lexington,
MA., and many others) and improvements in dispensing
equipment, the quality of epoxy bonds is sufficient for
many applications. Equipment is available from
ADVANCED SEMICONDUCTOR MATERIALS AMERICA,
INC. Assembly Products' Group in Chandler AZ (Automatic), and West Bond in Orange, CA (Manual!.
4. Bonding
See Application Note 992, "Beam Lead Attachment
Methods", for a general description of the various methods
for attaching beam lead diodes to both hard and soft
substrates.
Rellow: By preparing the substrate with tin or solder plating, reflow soldering can be suitably preformed using a
modified wire bonder. The probe is used as a soldering tip.
WEST BOND or UNITEK bonders make suitable bonds.
140
/
(
Flin-
HEWLETT
~~ PACKARD
SCHOTTKY BARRIER
DIODES FOR
GENERAL PURPOSE
APPLICATIONS
1N5711'
lN5712'
5082-2301
5082-2302
5082-2303
5082-2305
5082-2800/10/11/35'
5082-2900'
HSCH-lOO1 (1 N6263J'
Features
LOW TURN-ON VOLTAGE: AS LOW AS
0_34VAT 1mA
PI CO-SECOND SWITCHING SPEED
HIGH BREAKDOWN VOLTAGE: UP TO 70V
MATCHED CHARACTERISTICS AVAILABLE
Description IApplications
The 1N5711, 1 N5712, 5082-2800/10/11 are passivated
Schottky barrier diodes which use a patented "guard
ring" design to achieve a high breakdown voltage.
Packaged in a low cost glass package, they are well suited
for high level detecting, mixing, switching, gating, log or
A-D converting, video detecting, frequency discriminating,
sampling and wave shaping.
The 5082-2835 is a passivated Schottky diode in a low cost
glass package. It is optimized for low turn-on voltage. The
5082-2835 is particularly well suited for the UHF mixing
needs of the CATV marketplace.
DIME1\I:SIOM IN
MllUMfTEAS
AND tlNCHf.SJ.
The 5082-2300 and 2900 Series devices are unpassivated
Schottky diodes in a glass package. These diodes have
extremely low l/f noise and are ideal for low noise mixing,
and high sensitivity detecting. They are particularly well
suited for use in Doppler or narrow band video receivers.
(
OUTLINE 15
The HSCH-l00l is a Hybrid Schottky diode sealed in a
rugged double stud Outline 12 glass package suitable for
automatic insertion. The low turn-on voltage, fast
switching speed, and low cost of these diodes make them
ideal for general purpose switching.
Package Characteristics
Application Bulletins 13, 14, 15, and 16 describe
applications in which these diodes are used for speed up
of a transistor, clipping, clamping, and sampling,
respectively. Other digital and RF applications are described in Application Bulletins 26, 27, 28, 30, 31 and 36.
Lead Material:
Lead Finish:
Maximum Soldering
Temperature:
Minimum Lead
Strength:
Typical Package
Inductance:
Maximum Ratings
Junction Operating and Storage Temperature Range
5082-2305, 2301, 2302, 2303, 2900 .... -60° C to +100° C
1 N5711, 1 N5712, 5082-2800/10/11,
HSCH-l00l .. _. . . . . . . . . . . . . . . . . . .. -65° C to +200° C
5082-2835 ......................... -60° C to +150° C
Operation of these devices within the above temperature ratings will assure a device Median Time To
Faifure (MTTF) of approximately 1 x 107 hours.
DC Power Dissipation (Measured in an infinite heat sink at
T CASE
Typical Package
Capacitance:
Outline 15
Dumet
lN5711, lN5712: Tin
2800 Series: Ti n
2300,2900 Series: Gold
Dumet
Tin
230' C for 5 sec.
260'C
for 10 sec.
41b. Pull
10 lb. Pull
1N5711, 1N5712: 2.0 nH
2800 Series: 2.0 nH
2300,2900
Series: 3.0 nH
1.8 nH
0.25 pF
1N5711, 1N5712: 0.2 pF
2800 Series: 0.2 pF
2300,2900
Series: 0.07 pF
The leads on the Outline 15 package should
be restricted so that the
bend starts at least 1/16 inch
from the g lass body .
• Also available in Tape and Reel. Please contact
local HP Sales Office for further information.
= 25° C)
Derate linearly to zero at maximum rated temperature
5082-2305, 2301, 2302, 2303, 2900 .• ,....... 100 mW
1 N5711, 1N5712, 5082-2800/10/11 ....•... _.. , 250 mW
5082-2835 ...... _.................. _....... 150 mW
HSCH-l00l ..•• _•.........••.....• _...•... 400 mW
Peak Inverse Voltage
OUTLINE 12
.................... _..... _ VBR
141
Electrical Specifications at TA=25°C
Maximum
Reverse Leakage
Current
Package
Outline
Minimum
Breakdown
Voltage
VSR {V}
Maximum
Forward
Voltage
VF {mVI
VF",1V Max
at Forward
Current
IF {mAl
fR (nA)
2800
15
70
410
15
200
50
2.0
lN5711
15
10
410
15
200
50
2.0
2305
15
30
400
75
300
15
1.0
2301
15
30
400
50
300
15
1,0
2302
15
30
400
35
300
15
1.0
2303
15
20
400
35
500
15
1.0
1.2
Part
Number
5082·
at
VR (VI
Maximum
Capacitance
Cr (pFI
2810
15
20
410
35
100
15
lN5712
15
20
550
35
150
16
1.2
2811
15
15
410
20
100
8
1.2
2900
15
10
400
20
100
5
1.2
2835
15
8'
340
lOt
100
1
1.0
HSCH·1001
(lN62S31
12
60
410
15
200
50
2.2
IR '" 10pA
*'R " 100 pA
IF" 1 rnA
Test
Conditions
tVF
= .45V
VR =0 V
f = 1.0 MHz
Note:
Effective Carrier Lifetime IT) for all these diodes is 100 ps maximum measured with Krakauer method at 20 mA except for HSCH-1001
I1N6263), 1N5711, and 1N5712 which are measured at5 mAo
Matched Pairs and Quads
Basic
Part
Number
5082·
Matched
Pair
Unconnected
Matched
Quad
Unconnected
2301
5082·2306
AVF"'20mV
ACo '" 0.2 pF
2303
5082·2308
AVF '" 20 mV
AGo '" 0.2 pF
5082·2370
IlVF = 20 mV
IlCo '" 0.2 pF
2900
5082-2912
AVF = 30 mV
5082-2970
IlVF" 30 mV
2800
5082·2804
IlVF = 20 mV
5082·2805
LlVF" 20mV
2811
Matched
Ring Quad
Encapsulated
G·10utline
Matched
Bridge Quad
Encapsulated
G·2 Outline
Batch
Matched
Test Conditions
IlVF at IF =0.75,20 rnA
IlCo atf = 1.0 MHz
5082·2815
IlVF" 20 mV
IlCo = 0.20 pF
5082·2396
AVF '" 20 mV
IlCo '" 0.2 pF
5082·2814
IlVF; 20 mV
ACo" 0.20 pF
2835
142
5082·2356
IlVF = 20 mV
IlCo = 0.2 pF
IlVF at IF =0,75, 20 mA
IlCoat f" 1.0 MHz
5082-2997
IlV F " 30 mV
IlVF at IF '" 1.0, 10 mA
5082·2813
IlVF "20 mV
IlCo " 0.20 pF
5082-2836'
IlVF '" 20 mV
IlCo '" 0.1 pF
AVF at IF" 0.5, 5 rnA
'IF = 10 mA
IlCo at f " 1.0 MHz
5082·2826
IlVF = 10 mV
IlCo " 0.1 pF
IlVF at IF ; 10 rnA
IlCo at f " 1.0 MHz
5082·2080
LlVF = 10 mV
IlCo = 0.1 pF
AVF at IF" 10mA
IlCo at f '" 1.0 MHz
{
Outline G·;!
Outline G·l
5.Q.8L20}
MAX
i
.. "'I
5.08 C201
8.13 (,321
MAX,
MAX.
t,EAO lENGTH 19.05(0.71;) MIN.
LEAO LENGTH 1905 [0.76, MIN
~----:",3
LEAD FINISH -GOLO
All OIMENSIONS IN- MILLIMETERS (INCHES).
Typical Parameters
1000
TEMPE.RATURE
COEFFICIENT
s
w
U
~
~
100
u
""
z
~
I
o
or
10~------~------~1~0------~'5
10
0.1
(
VF - FORWARD VOLTAGE (V)
Figure 1. I-V Curve Showing
Typical Temperature Variation for
5082-2300 and 5082-2900 Series
Schottky Diodes.
10
IF - FORWARD CURRENT (mAl
V BR (VI
Figure 2. 5082-2300 Series Typical
Reverse Current VS. Reverse
Voltage at Various Temperatures.
Figure 3. 5082-2300 Series and
5082-2900 Series Typical Dynamic
Resistance (RD) vs. Forward Current (IF).
50
<'
.s
~
I-
w
:0
"U
"u
"
":;>"
:;;
U
Z
I-
~
;t
U
a:
I
<'>
0.2
-"
1.2
V R - REVERSE VOLTAGE (V)
Figure 4. 5082-2300 and 50822900 Series Typical Capacitance
vs. Reverse Voltage.
VF - FORWARD VOL TAGE (V)
Figure 5. I-V Curve Showing Typical Temperature Variation for
5082-2800 or 1 N5711 Schottky
Diodes.
143
V R - REVERSE VOLTAGE (V)
Figure 6. 15082-2800 or 1 N5711)
Typical Variation of Reverse Current IIRi vs. Reverse Voltage IVRi at
Various Temperatures.
100
2.0
~
1.5
w
:i"
~
",
1.0
:t
I; 0.5
\
10
20
30
40
1.0
50
VR
Figure 8. I-V Curve Showing Typical Temperature Variation for the
5082-2810 or 1 N5712 Schottky
Diode.
Figure 7. 15082-2800 or 1N57111
Typical Capacitance ICTI vs.
Reverse Voltage IVRI.
25
1.2
v, - FORWARD VOLTAGE IVI
V R - REVERSE VOLTAGE (VI
-
30
REVERSE VOLTAGE IVI
Figure 9. 15082-2810 or 1 N57121
Typical Variation of Reverse
Current IIAI vs. Reverse Voltage
IVAI at Various Temperatures.
~
IX
IX
G
w
U)
IX
w
~
,
IX
.iF
1.0
1.2
25
vR
VF - FORWARD VOLTAGE (VI
Figure 10. I-V Curve Showing Typical. Temperature Variation for the
5082-2811 Schottky Diode:
-
30
REVERSE VOLTAGE IVI
.2
.4
.6
.8
1.0
V, - FORWAAD VOLTAGE IVI
Figure 12. I-V Curve Showing Typical Temperature Variations for
5082-2835 Schottky Diode.
Figure 11. 15082-2811 I Typical
Variation of Reverse Current IIRI
vs. Reverse Voltage IVRI at Various
Temperatures.
1.4
1.2
iw
"~
!Zw
a:
IX
G
I-
~
1:1
w
il,
IX
I;
IX
~
,
-'"
1.0
.8
.6
.4
~
.~ """,,-5082'2al~8Jl.ll\15'12 _
5082"1i3$
.2
10
VA - REVERSE VOLTAGE IVI
Figure 13. 15082-28351 Typical
Variation.of Reverse Current IIRI
vs. Reverse Voltage IVRI at Various
Temperatures.
VR - REVERSE VOLTAGE IVI
Figure 14. Typical Capacitance ICTI
vs. Reverse Voltage IVRI.
144
" - FOAWAAD CUAAENT ImAI
Figure 15. Typical Dynamic Resistance IRDI vs. Forward Current
IIFI.
1.2
./
(
1
I-
(5
a:
a:
::J
"'a:"
~
a:
V>
I
!:
10~--~1~0----2~0----3~0----4~0--~5~0~~60
1.0
VR - REVERSE VOLTAGE IVI
VF - FORWARD VOLTAGE (V)
Figure 16. Typical Variation of Forward Current (IF) vs.
Forward Voltage (VF) at Various Temperatures for the
HSCH-1001.
Figure 17. Typical Variation of Reverse Current (IR) vs.
Reverse Voltage (VR) at Various Temperatures for the
HSCH-1001.
2. 5
1000
S
u
"'z
2. 0
~
""'z
"U
g;
""
"
l-
V>
1.
Bia:
I-
u
51'"
1. 0
I
liE
"z
r--
>
"I
0"
Q
5
(
0
a:
10
20
30
40
10
50
1
10
100
IF - FORWARD CURRENT (mA)
VR - REVERSE VOLTAGE (V)
Figure 18. Typical Capacitance ICTi vs. Reverse Voltage
IVR) for the HSCH-1001.
Figure 19. Typical Dynamic Resistance (RD) vs. Forward
Current (IF) at TA = 25°C for the HSCH-1001.
145
FliD'l
HEWLETT
~~ PACKARD
SCHOTTKY BARRIER
DIODES FOR STRIPLlNE,
MICROSTRIP MIXERS
AND DETECTORS
5082-2200/01/02/03
5082-2207/08/09/10
5082-2765/66
5082-2774/75
5082-2785/86
5082-2794/95
Features
ANGLE
cur
30,50 0
ALTERNATe 0,13 (005/
DIA HolE 1,5 (0,06-)
FROM fND
SMALL SIZE
LOW NOISE FIGURE
6 dB Typical at 9 GHz
RUGGED DESIGN
HIGH UNIFORMITY
HIGH BURNOUT RATING
1 W RF Pulse Power Incident
0.10
W.Q04)
BOTH MEDIUM AND LOW BARRIER
AVAILABLE
TY'
=~
OutllneC-2
C p '" 0.055 pF
Description IApplications
This family consists of medium barrier and low barrier
beam lead diodes mounted in easily handled carrier packages. Low barrier diodes provide optimum noise figure at
low local oscillator drive levels. Medium barrier diodes
provide a wider dynamic range for lower distortion mixer
designs. Application Note 976 presents impedance matching techniques for an X-Band mixer.
CATHOOE
b
Maximum Ratings
Operating and Storage Temperature Range
C-2 Packaged Diodes ............... -65° C to +125° C
H-2 Packaged Diodes ............... -65° C to +200° C
Outline H-2
Cp = 0.175 pF
Operation of these devices within the above temperature ratings will assure a device Median Time To
Failure (MTTF) of approximately 1 x 107 hours.
Pulse Power I ncident at TCASE = 25° C
Ill's pulse, Du = 0.001)
OIMENSIONS IN MillIMETERS ANO
............ 1 W
Package Characteristics
CW Power Dissipation at TeAsE = 25° C
(Mounted in infinite Heat Sink) .............. 125 mW
(Derate linearly to Zero at Maximum Operating
Temperature)
These diodes are designed for microstrip and stripline use.
The kovar leads provide good continuity of transmission
line impedance to the diode. Outline C2 is a plastic on
ceramic package. Outline H2 has a metal ceramic hermetic seal. The ceramic is alumina. Metal parts are gold
plated kovar.
Diode Mounting Temperature in Packages
C-2 ........................
H-2 ........................
HNCti~Sl.
235°C for 10 sec max.
260°C for 10 sec max.
The hermetic package, outline H2, is capable of passing
many of the environmental tests of MIL-STD-750. The
applicable solderability test is reference 2031.1: 260° C, 10
seconds.
Peak Inverse Voltage ............................. 4 V
These diodes are ESD sensitive. Handle with care to avoid
static discharge through the diode.
146
(
RF Electrical Specifications at TA = 25° C
Part
Number
5082-
Batch
Matched
5082.
Barrier
Maximum
Nolte
Figure
NF (dB)
2200
2201
Medium
6.0
2202
2203
Medium
6.5
2,0:1
Hermetic
2765
2766
Low
6,0
1.5:1
H-2
2765
2186
Low
6,5
2.0:1
2207
2205
Medium
6.0
1.5:1
2209
2210
Medium
6.5
2.0:1
Broadband
2774
2775
Low
6.0
1.5:1
C-2
2794
2795
Low
6.5
Test
Conditions
..lNF:50,3 dB
Test Freq.
(GHz)
9,375
IF
Impedance
ZIF (1l)
Min.
Max.
Maximum
SWR
Package
Typical
Capacitance
CT (pF)
1,$:1
200
400
200
400
0.3
2.0:1
0.22
DC Load Resistance'" 0 II
L..O. Power'" 1 mW
IF'" 30 MHz. 1.5 dB NF
.lZIF:>25 !l
V"'O
Typical Detector Characteristics at TA = 25° C
MEDIUM BARRIER AND LOW BARRIER (DC BIAS)
Symbol
Typlcal Value
Unlls
Teal Conditions
TSS
·54
d8m
20Jl,A Bias
Voltage Sensitivity
'Y
e.e
mVIJI,W
Video Resistance
Rv
1400
n
Symbol
Typlcal Valul>
Unlls
TSS
·44
d8m
Parameter
Tangential Sensitivity
Video Bandwidth" 2 MHz
f=10GHa
LOW BARRIER (ZERO BIAS)
Parameter
(
Tangential Sensitivity
Te.t Condition.
Zero Bias
Voltage Sensitivity
l'
10
mVlJl,W
Video Resistance
Rv
1.8
Ma
Video Bandwidth ~ 2 MHz
f
=10 GHz
Typical Parameters
LOW BARRIER
MEDIUM BARRIER
100 ",,---,.._ _.,--_...,-_ _.,--_-,
«g
«g
10
t-
t-
iE
iE
a:
a:
u 1.0
a:
a:
a:
u
5:
5:
"
";::a:
"a:
"
";::
"a:
0.1
I
0.1
.!!"
.!!"
0.01 '-_.L..1-.....L_.lL..._-'-_ _' - - _ - '
0.2
0.4
0.6
0.8
0.8
1.0
VF - FORWARD VOLTAGE (VI
VF - FORWARD VOLTAGE (V)
Figure 2. Typical Forward Characteristics
Figure 1. Typical Forward Characteristics
147
Figure 3. Typical Admittance Characteristics,
5082-2200 and 5082-2765 with self bias.
Figure 4. Typical Admittance Characteristics,
5082-2200 and 5082-2765 with external bias.
Figure 5. Typical Admittance Characteristics,
5082-2202 and 5082-2785 with self bias.
Figure 6. Typical Admittance Characteristics,
5082-2202 and 5082-2785 with external bias.
148
(
(
Figure 7. Typical Admittance Characteristics,
5082-2207 and 5082-2774 with self bias.
Figure 8. Typical Admittance Characteristics,
5082-2207 and 5082-2774 with external bias.
Figure 9. Typical Admittance Characteristics,
5082-2209 and 5082-2794 with self bias.
Figure 10. Typical Admittance Characteristics,
5082-2209 and 5082-2794 with external bias.
\
149
7.5
500 PPD STRIPLINE
1/8 INCH GROUND PLANE SPACING
v
7.0
iii
:s
'u:"
to
6.5
/
w
(;
Z
'"
DEVICE UNDER TEST
1/
w
a:
CATHODE GROUNDED
"A"
~~~pp~o~~~~ ~
-.-L
I TL_~~:::::::J'
__
AIR
6.0
GROUND
4.1
10.161
PAC~AGE
(>2
1+2
5.5 ,
11
13
15
DiMENSION
'4A"
1.91 ± 0.06
(0.075 • 0.0021
2HJ:t 0.05
[0.106.0.0021
DIMENSIONS IN MILLIMETERS (INCHES)
FREQUENCY (GHzl
Figure 12. Admittance Test Circuit.
Figure 11. Typical Noise Figure VS. Frequency for
5082-2209,2794.
MODEL FOR H2 DIODES
14.Sf2
47.S!1:
0.775 (0,0;305)
€EFF. = 6.37
46.00
0.320 (0.0126)
fEFf.
=
6.37
0.085 pF
DIMENSIONS IN MILLIMETERS (INCHES)
1 rnA Reet. Current
20 /lA Ext. Bias
Symbol
5082-2200, 5082-2766
5082·2200. 6082·2765
Units
Junction Resistance
RJ
258
545
Ohms
Junction Capacitance
CJ
0.255
0.302
pF
Parameter
/
MODEL FOR C-2 DIODES
14.S'u
67.0.11
0.318 (0.0125)
lEFF.
=
6.37
0.065 pF
DIMENSIONS IN MILLIMETERS (INCHES)
Parameter
Symbol
1 rnA Reet. Current
20 "A Ext. Bias
5082-2207, 5082-2774
5082·2207, 5082-2774
Units
Junction Resistance
RJ
338
421
Ohms
Junction Capacitance
CJ
0.189
0.195
pF
150
(
Fli;'
HEWLETT
~J:. PACKARD
SCHOTTKY BARRIER DIODE
QUADS FOR DOUBLE
BALANCED MIXERS
Features
5082-2231
5082-2233
5082-2263
5082-2271172
5082-2277
5082-2279/80
5082-2291/92
5082-2294
5082-2830/31
18.
<0,1501
MIN.
SMALL SIZE
Eases Broad Band Designs
1
1~'D.OI81
Lm:6ffi
TIGHT MATCH
Improves Mixer Balance
i
IMPROVED BALANCE OVER TEMPERATURE
RUGGED DESIGN
BOTH MEDIUM AND LOW BARRIER
DIODES AVAILABLE
OuWneC-4
Cp • 0.06 pF 6"fIOnal
Cp ~ 0.01 pI' adj.",m
Description / Applications
~~~:~
1-----,.....L
These matched diode quads use a monolithic array of
Schottky diodes interconnected in ring configuration. The
relative proximity of the diode junction on the wafer assures
uniform electrical characteristics and temperature tracking.
(
\
These diodes are designed for lise in double balanced mixers,
phase detectors, AM modulators, and pulse modulators
requiring wideband operation and small size. The low barrier
diodes allow for optimum mixer noise figure at lower than
conventional local oscillator levels. The wider dynamic range
of the medium barrier diodes allows for better distortion
performance.
1.21 !O.O!H MAX.
!
i
O"!O~§l
C"j
T
0.64 ~.{J251 MAX
-L
T
Q.Oi ,0.-003)
O",line E-1
Cp = 6.07 pF diagonal
Cp = O.o!l pF a6j.oem
Maximum Ratings
Junction Operating and Stora\le Temperature Range:
H-4 Packaged Diodes .............. -65°C to+150 oC
E-1 and C-4 Packaged Diodes ....... -65°C to+125°C
Operation of these devices within the above
temperature ratings will assure a device
Median Time To Failure (MTTF) of approximately 1 x 10 7 hours.
DC Power Dissipation .............. 75 mW per Junction
Derate linearly to zero at maximum rated temperatures
(measured in infinite heat sink at TCASE = 25 0 C)
Soldering Temperature ........... H-4 260· C for 10 sec.
C-4 235 0 C for 10 sec.
E-1 220· C for 10 sec.
These diodes are ESD sensitive. Handle with care to avoid
static discharge through the diode.
Outli""H-4
Cp = 0,16 pF diagonal
Cp • 0.20 pF adjacent
OtMIENSION$. IN MlUIMETERS AND (INCHest.
151
Selection Guide
~
Package'
Barrier
To 20Hz
2·40Hz
4-8 GHz
8·12 GHz
5082·2271
5082·2277
5082·2263
12·18 GHz
Outline
E·'
Medium
5082-2830
low Cost
Low
5082·2831
H·4
Medium
6082-2263
6082-2263
Hermetic
Low
5082·2231
5082·2231
5082-2233
C·4
Medium
5082-2291
5082·2291
5082-2292
6082-2294
5082-2294
Broadband
Low
5082·2271
6082·2271
6082·2272
5082·2279
5082·2280
Typical
Parameters
Electrical Characteristics at TA=25°C
Part
Number
5082-
Package
Barrier
Maximum
Maximum
Maximum CapaCitance
CT (pF)
Capacitance
VF
Difference Difference
,;"VF
'-'
a:
::>
Cl
Cl
a:
u:
t.-
I
a:
u:
.,w
az
7.0
az
V
I
6.0
\
/
I
.,w
~
:/
1
r"-
I
121r
-4
(
12
o
10
LOCAL OSCILLATOR POWER IdBm)
12
14
16
18
FREOUENCY IGHz)
Figure 25. Typical Noise Figure vs. Frequency. IF ~ 30 MHz,
NFIF ~ 1.5 dB, PLO ~ 1 mW. Diode tuned at each frequency
15082-2200, -2700 seriesl.
Figure 24. Typical Noise Figure and IF Impedance vs. Local
Oscillator Power. 5082-2295 through -2298. Diode unmatched
in 50 n line ..
.30
500
t· 9.37~ Glit
I
I
.25
400
-w
..
C.l
z
iii
~
w
..
~
.
:!!
w
300
z
::>
I-
Cl
u:
.,
w
200
az
C.l
J:
C.l
100
0
-12
.20
C.l
a:
~
~
"0-
.15
~
.10
X·BAND DEVICES
KU'r ND DfVIOES!
.05
-8
-4
o
o
12
LOCAL OSCILLATOR POWER (dBm)
0.5
1.0
1.5
2.0
2.5
3.0
REVERSE VOLTAGE IV)
Figure 26. Typical Noise Figure and IF Impedance vs. Local Oscillator Power. Diode tuned at each local oscillator power level
15082-22951.
Figure 27. Typical Chip Capacitance vs. Reverse Voltage,
-2700 Series.
160
(
rli~ HEWLETT
a!~ PACKARD
ZERO BIAS SCHOTTKY
-3206/07
DIODES FOR MIXERS HSCH
HSCH-3486
AND DETECTORS
Features
HIGH VOLTAGE SENSITIVITY
NO BIAS REQUIRED
CHOICE OF HIGH OR LOW VIDEO IMPEDANCE
Description/Applications
The high zero bias voltage sensitivity of these Schottky
Barrier diodes makes them ideally suitabie for narrow
bandwidth video detectors, ECM receivers, and measurement equipment. These diodes also make excellent mixers
for use with low power LO.
Maximum Ratings
Operating and Storage
Temperature Range ................. -65° C to +150° C
Operation of these devices within the above
temperature ratings will assure a device
Median Time To Failure (MTTF) of approximately 1 x 107 hours.
(
Outline 49
Outline 15
CW Power Dissipation at TA = 25° C
HSCH-3206, -3207 .......................... 200 mW
HSCH-3486 ....... . . . . . . . . . . . . . . . . . . . . . . . .. 300 mW
Derate Linearly to 0 W at 150° C
Pulse Power Dissipation at T A = 25° C.
Peak power incident.
1 1'5 pulse, Du = 0.001 .......................... 1 W
Outline 44
DIMEnSIONS IN
These diodes are ESD sensitive. Handle with care to avoid
static discharge through the diode.
Mlt.ll~ETeRS AND
{lNCHESI.
package Characteristics
The HP Outline 15 package has a glass hermetic seal with
gold plated Dumet leads which should be restricted 50 that the
bend starts at least 1/16" (1.6 mm) from the glass body. With
this restriction, it will meet MIL-STD-750, Method 2036,
The HP Outline 49 package has a metal-ceramic hermetic seal.
The anode and cathode studs are gold-plated Kovar. The
maximum soldering temperature is 230°C for 5 seconds.
Stud-stud T IR is 0.010" max.
Conditions A and E (4Ib. [1.8 kg] tension for30 minutes). The
maximum soldering temperature is 230° C for 5 seconds.
Marking is by digital coding with a cathode band.
The HP Outline 44 package is a hermetically sealed ceramic
package. The anode and cathode are gold-plated Kovar. The
maximum soldering temperature is 230° C for 5 seconds.
161
Electrical Specifications at TA=25°C
Video
Resistance
Rv (KO)
Min.
Max.
Package
Outline
Maximum
Tangential
Sensitivity
TSS (dSm)
HSCH-3207
44
-42
8
80
300
0,30
HSCH-3206
49
-42
10
100
300
0.30
HSCH-3486
15
-54
7.5
2
8
Pari
Number
Video
Bandwidth
=2MHz
Ites! = 10 GH;z:
Test Conditions
Note:
For HSCH-3207. -3206. IR
= 10 MA Imax) at VR =
3 V at TA
Minimum
Voltage
Sensitivity
')' (mVlI'W)
Power in "" -40 dBm
ftest = 10 GHz
= 25° C,
Typical
Total Capacitance
Cr (pF)
0,30
VR "'OV
f = 1 MHz
For reverse characteristics of HSCH-3486 see Figure 3,
Typical Characteristics
~
E
?
10
I-
I-
iii
,1
::>
a:
a:
0
w
::>
"!::i'"
""a:
,01
0
~
>
a:
f2
.001
,0001 ' - - ' - - ' - - ' - - ' - - ' - - ' - - - '
-40
-20
20
POWER IN (dBm)
FORWARD VOLTAGE IV)
Figure 2, Typical Forward Characteristics at T A = 25° C.
Figure 1. Typical Dynamic Transfer Characteristics.
50
~
,;
~
E
E
40
>I-
I-
iiia:
;;
::>
0;
a:
i=
"
lii
a:
30
~w
w
'""~
i;;
a:
20
0
>
REVERSE VOLTAGE IV)
FREQUENCY (GHz)
Figure 3, Typical Reverse Characteristics at TA = 25° C,
Figure 4. Typical Voltage Sensitivity vs, Frequency.
162
('
60
E
0>
~
....>:;
58
I
i=
iii
ilico
-
.......
I I -
HSCH,3486
i'.
RL -lMEGOHM
"'-
56
-'
"z
"iii
i=
"ili
"....
54
-'
52
Z
"
--
r-
HSCH·3206
HSCH·3Z07
-
"'-
j-.....
........
50
10
FREQUENCY (GH,I
BIAS CURRENT ("AI
Figure 5. Typical Tangential Sensitivity vs. Frequency.
Figure 6. Typical Voltage Sensitivity vs. Bias Current.
50
45
3:
40
>
35
--"!c
..s
....>:;
30
i=
iii
25
co
w
ili
20
""':;
0
>
10
-75
VS.
1-"
1"'---1'.
----
~H' '\
Rl = 1 MEGOHM
-25
"
~
\
FREQUENCY 10
55
I.......
25
~
z
o
~
-'
:::l
Cl
o
:;
....~
~
~
o
a:
o
Cl
a:
....J:
u-
n
z
o
i=
"~
a:
L.a. POWER (dBml
Figure 9. Mixer Performance.
163
i=
iii
z
~
i
125
Figure 8. Effect of Temperature on HSCH-3486.
Bias Current.
E
~
....>:;
-'
"ili
i=
"I'. N
75
50
45
TEMPERATURE rCI
BIAS CURRENT ("AI
Figure 7. TYPical Tangential Sensitivity
- -.....
15
o
c
/'
60
!
i
40
35
175
"z
"....
Figure 11. Typical Admittance Characteristics, HSCH-3207.
Figure 10. Typical Admittance Characteristics, HSCH-3206.
Figure 12. Typical Admittance Characteristics, HSCH-3486.
164
(
FliflW
5082 -2750/51
5082-2755
5082-2787
5082-2824
SCHOTTKY
BARRIER DIODES
FOR DETECTORS
HEWLETT
~e..II PACKARD
Features
- ~i:Slr-
IMPROVED DETECTION SENSITIVITY
TSS OF -55 dBm at 10 GHz
CATH01YE END
INDICA-rED BY
COlORDOT\
,.a~
m.
LOW 1/1 NOISE
Typical Noise-Temperature
Ratio = 4 dB at 1 kHz
-L
,\r
--r
~~
li
I
:,33-UlOl
HIGH PEAK POWER DISSIPATION
4.5 W RF Peak Pulse Power
.•• ITI\ii
II
CA.jHOOE
Description / Applications
The low 1 If noise and high voltage sensitivity make these
Schottky barrier diodes ideally suitable for narrow
bandwidth video detectors, and Doppler mixers as required in
Doppler radar equipment, ECM receivers, and measurement
equipment.
Outline 15
(
Maximum Ratings
p-tMfN$tONS tN
MU.. lIMElEAS ANt:;) UNCH!:'St
Junction Operating and Storage Temperature Range
5082-2824 ............... , ....... -65°Cto+200oC
All Others ...... , ... , ...... , ...... -60 D C to+150°C
Operation of these devices within the above temperature
ratings will assure a device Median Time To Failure
(MTTF) of approximately 1 x 10 7 hours.
package Characteristics
The HP Outline 15 package has a glass hermetic seal with
plated Dumet leads which should be restricted so that the
bend starts at least 1 .16" (1.6 mm) from the glass body. With
this restriction, it will meet MIL-STD-750, Method 2036,
Conditions A and E (4 lb. [1 .8 kg] tension for 30 minutes). The
maximum soldering temperature is 230°C for 5 seconds.
Marking is by digital coding with a cathode band.
DC Power Dissipation - Power Absorbed by Diode
Derate linearly to zero at Maximum Temperature
5082-2824 .,." ........ , ... ,.......... 250 mW
All Others
................ ,", .... 100mW
Solderi ng Temperature , ...... , .... ,.,' 230°C for 5 sec.
RF Peak Pulse Power at TeAsE = 25° C (Pulse Width =
1 MS, Du = 0.001)
5082-2824 (Power Absorbed by Diode) .....
All Others(Power Incident) ... , ..... ,......
Maximum Peak Inverse Voltage (PIV) " " " " " " ' "
Outline 44
The HP Outline 49 package has a metal-ceramic hermetic
seal. The anode and cathode studs are gold-plated Kovar, The
maximum soldering temperature is 230° C for 5 seconds.
Stud-stud TIR is 0.010" max.
4.5 W
2.0 W
V SR
The HP Outline 44 package is a hermetically sealed ceramic
package. The anode and cathode are gold-plated Kovar. The
maximum soldering temperature is 230°C for 5 seconds.
Note: The 2700 series diodes are ESD sensitive. Handle with
care to avoid static discharge through the diode.
165
Electrical specifications at TA=25°C
Part
Number Package
5082.
Outline
y(mV/I'W)
-56
6.0
-52
3.5
2824
2787'
2755
2751
2750
Voltage
M.ximum
Tangential
SaneltMty
TSS (dBm)
15
Sensitivltv
Minimum
·55
49
Typical Parameters
Video
Resistance
Rv(kfi)
Min. M.".
Minimum
Breakdown
Voltage
VSR(Vl
1.5
1.2
Junction
Capacitance
CJO(pF)
15
2 8t20 kHz
8at 1 kHz
4
6.0 at 20 kHz
15.0at 1 kHz
.1
Rv=50fi
V=O
1.0
~
.12
1.6
5
Noise
Temperature
Ratio atf
(dB)
44
Test
Condrtlons
Video Bandwidth ~ 2 MHz
fRF 2 GHz for 6082-2824,
10 GHz for all others
ISlAS 20 ~A; Video Amp.
Eq. Noise, RA = SOOn.
=
=
Same as for TSS at RF
Signal Power Level of
-40 dBm. Load Resis·
IR "'10I'A
tanoo : l00kn
°RF Parameters for the 5082·2787 are sample tested only.
30
iii
:!1.
Q
..
..
20
I-
a:
w
a:
:>
I-
a:
w
~
I-
w
'"isz
6082-2824
I
-10
10'
10 3
10'
10'
FREQUENCY (Hz)
POWER INPUT (dBm)
Figure 2. Typical Dynamic Transfer Characteristic.
(5082-2750 Series).
Figure 1. Typical Flicker (1/f) Noise vs. Frequency.
60
E
DC BIAS = 20 "A
RA =-500H
Rl '" 10.0 K~l
-i -_.__.__.'
I-
;;
i=
iii
I
54
:'i
..'"
..
:'i
..
-'
ri
52
z
to
iii
-'
56 .
1-----
50
i=
to
z
f : 2 GHl; 5082·2824
f = 10 GHz; 5082·2750 SERIES
BW", 2 MHz
48
I-
52L-~--------~~------~~---'
2
10
3
12
14
4
16
18
46
20 5082-2750/51/55
5082·2824
I
.-. --
5
10
100
DC BIAS CURRENT ("A)
SIGNAL FREOUENCYIGH,)
Figure 4. Typical TSS vs. Bias.
Figure 3. Typical TSS vs. Frequency.
166
500
(
:i
EIZ
W
0::
0::
:::>
"g
"
0::
i...
"
FORWARD DC VOLTAGE (VI
Figure 5. Typical Forward Characteristics at TA = 25°C.
Figure 6. Typical Admittance Characteristics, 5082-2824
with external bias.
Figure 7. Typical Admittance Characteristics. 5082-2755
with external bias.
Figure 8. Typical Admittance Characteristics, 5082-2755
with self bias.
(
167
Figure 9. Typical Admittance Characteristics, 5082-2751
with self bias.
Figure 10. Typical Admittance Characteristics, 5082-2751
with external bias.
Figure 11. Typical Admittance Characteristics, 5082-2750
with self bias.
Figure 12. Typical Admittance Characteristics, 5082-2750
with external bias.
168
c
169
HIGH RELIABILITY
SCHOTTKY CHIP FOR
MEDICAL APPLICATIONS
r/£~ HEWLETT
~~ PACKARD
HSCH-llll
(Generic 5082-0024)
Features
JAN-TXV EQUIVALENT
HIGH BREAKDOWN VOLTAGE
PICO-SECOND SWITCHING SPEED
LOW TURN-ON
QUALITY PERFORMANCE TESTED
Test Program Patterned after MIL-S-19500
L -. 0.38----.J
1-"
(5)-1
ALL DIMENSIONS IN
mrt! AND (111000 inchl
Program Description
Medical life support equipment requires highly reliable
components. To meet that requirement, Hewlett-Packard's
policy is to supply only components which have been tested
in the equivalent of a JAN-TXV program.
The components and documentation supplied conform to
the present requirements imposed by the Food and Drug
Administration regulations concerning medical devices. It
will be standard practice for all orders of life support application components to: (1) be shipped with a statement
confirming release to ship by the Product Assurance
Department, (2) be provided with traceability of the testing
done, and (3) be packaged so they can go into customer
stock with minimum handling.
Oulllne Drawing
Maximum Ratings
Operating and Storage Temperature
Range ............................. -65° C to 200° C
When assembled in hermetic packages, operation of these devices within the recommended
temperature limits will assure a device Mean
Time to Failure (MTTF) of approximately 1 x 107
hours.
Reverse Voltage IWorkingl ................ 50 V Ipeak)
The reliability tests possible for components supplied in
chip form are inadequate to condition and screen them thoroughly. The customer must rely on the screening tests he
performs on his finished device in order to eliminate chips
that are subject to early life failure. To provide the highest
confidence that the screening tests on the finished device
will be successful, HP will conduct JAN-TXV type qualification tests on packaged samples from the lot of chips and
ship only from accepted lots. Qualification data are available upon request.
Power Dissipation at TeAsE = 25°C .......... 250 mW
IDerate Linearly at 1.43mW/o C to Zero at 200° C)
TABLE I. ELECTRICAL SPECIFICATIONS AT TA = 25°C (Similar to 5082-0024)
Symbol
Min.
Max.
Units
Breakdown Voltage
VeR
70
-
V
IR'" 10 I'A
Forward Voltage
W,
-
.41
V
IFI = 1 mA
Forward Voltage
VF2
-
1.0
V
IF2= 15 mA
IR
-
50
nA
VR =50 V
1.7
pF
VR =
Specification
Reverse Leakage Current
Capacitance
CJIO)
-
170
Test Condition
a V and f = 1 MHz
\,
(
TABLE II. 100% INSPECTION FOR HSCH-1111 SCHOTTKY CHIPS
Inepectlon
MIL-$TD-750
fftthod
Condl1lons
-
Per Table I.
1, Electrical Test (Die Probe),VBA, VF1, IR, CHo}
2073
2. Visual In,pectlon
TABLE III. WAFER LOT ACCEPTANCE TEST FOR HSCH-1111
MIWTD-750 Method
(elt~ as noted)
Teat/lnepectlon
Condition A.
n=11.r"1
n;11.r=1
MII.-STO-B83
Method 2019
2. Ole Shear Strength,
(48 hrs. bake at 200' C prior to thie teat).
-
3. Assembly'ln Suitable Carriers
1051
5. Thermal Shock (Temperature Cyoling)
6. Constant Acceleration
20
20
-
-
4. Electrical Test (Go/No Go)
LTPD
Condillone
MII.-STD-88S
Method 2011, Condo 0
1. Bond Strength
?006
20 KG atYl
Per Table I
7. Interim Electrical Test (VF, VaR, IR, OJ)
1032
S. High Temperature !.ife (Non-Operating)
t "" 340 Hours at 200' C
-
9. Interim Electrioal Test
1038
10. Operating Ufe
12. Electrical Stability Verifloatlon
10
Condition B. 10"" 33 mA,
VRM '" 50 V, f=60 H..,
TA'" 25'0. t '" 340 hrs.
-
11. Final Eleotrical Test
10
Per Table I
Per Table I
.;\VFS41 mVat1 mA
,;\VBR S 5 Vat 10 p.A
.J.IR S; 50 nA al 50 V
Typical Parameters
:_-l_4-_t--1'50
126
1
-L._-I--l--:--1'OO
~
~
1000
r-i:::::.i:::=I=--t-'T751---j
a
w
'"w
~
~
I
!:
Tp.('Cl
40
VF - FORWARD VOLTAGE (VOLTS)
IF - FORWARD CURRENT (mA)
171
50
VR - REVERSE VOLTAGE (VOLTS)
Flin-
HIGH RELIABILITY
BEAM LEAD SCHOTTKY
DIODES FOR MIXERS
AND DETECTORS
HEWLETT
~~ PACKARD
TXVW-5300
SERIES
Features
PLATINUM TRI-METAL SYSTEM
Higher Temperature
NITRIDE PASSIVATION
Stable, Reliable Performance
LOW NOISE FIGURE
6 dB Typical at 9 GHz
HIGH UNIFORMITY
Tightly Controlled Process Insures Uniform RF
Characteristics
RUGGED CONSTRUCTION
4 Grams Minimum Lead Pull
lii.$)
QUALITY PERFORMANCE TESTED
Test Program Patterned after MIL-S-19500
~
SILICON
7101l!j1
8rJf
I I
Description/Applications
I~
GLASS
670 (26)
,
f:9.+111
40 l1~
DIMENSIONS I;J pm 1111000 inch)
This family consists of medium and low barrier microwave
Schottky diodes available as hybrid beam leads or mounted
in easily handled carrier packages. Hewlett-Packard has
developed a cost effective standard test program designed
to screen these microwave Schottky diodes for applications requiring high-reliability performance.
Oulllne07
/
TABLE I. ELECTRICAL SPECIFICATIONS FOR RF TESTED DIODES AT TA = 25° C
Part
Number
HSCH-
Barrier
5318
5314
IF
Impedance
ztF (n)
Max.
Min.
Maximum
SWR
Minimum
Breakdown
Voltage
VaR (V)
6.2al
Medium
5,138
5334
Maximum
Noise
Figure
NF(dB)
9.375 GHz
7.2 at
16GHz
200
400
1.5.1
4
200
400
1.5.1
4
6.2 at
Low
9.375 GHz
7.2 al
Maximum
Dynamlc
R_lstance
RD(!l)
Maximum
Total
capacitance
12
(CT(PF)
0.25
18
0.15
12
0.25
18
0.15
Maximum
Leakage
Current
IR(nA)
Voltage
VF(mv)
500
450
500
300
VR = tV
IF= 1 mA
Typical
Forward
16GHz
Teal
Conditions
DC Load Realslance = 0 n
IR=10;5
IF = 5 mA Krakauer MethOd
INote II
IF2 = 15mA
= SOV
=OV and f ,. 1 MHz
(
JAN 1 N5711: Samples of each lot are subjected to Group A inspection for parameters listed in Table I. and to Group B and Group
C tests listed below. All tests are to the conditions and limits specified by MIL-S-19500/444.
JANTX lN5711: Devices undergo 100% screening tests as listed below to the conditions and limits specified by MIL-S-19500/
444***. A sample of the JANTX lot is then subjected to Group A, Group S, and Group C tests as for the JAN 1 N5711 above.
JANTXV lN5711:
to TX screening.
Devices are subject to 100% visual inspection in accordance with M1L-S-19500/444 prior to being subjected
*** JANTX and JANTXV devices have gold plated leads.
TABLE II. 100% SCREENING PROGRAM
MIL-$TD-750 Method
Screening TesVlnspection
Conditions/Comments
48 hours, TA ~ 200° C
1032
t
2. Thermal Shock (Temperature Cycling)
1051
Condition F, 10 Cycles
3. Centrifuge (Constant Acceleration)
2006
20 KG. Yl axis.
4.Hermeticity Tests
1071
Condition H.
Condition E
1.High Temperature Storage
(Stabilization Bake)
Fine Leak
Gross Leak
See Table I
5.1nterim Electrical Tests IIR. VFI
10 "" 33 mA. VR = 50 V (peak)
TA ~ 25°C, f = 60 Hz. T ~ 96 hours.
1038
6. Burn-In
7.Final Electrical Tests and Drift Evaluation
10% PDA
ilR, VBR)
.lIR 5. 50 nA or 100% whichever is greater
..lVF ~ ±41 mV de.
L--.-.
TABLE III. GROUP A INSPECTION
MIL-STD-750
Melh')d
Test/Inspection
Subgroup 1
Visual and Mechanical
LTPD
2071
Subgroup 2
Electncal Tests at 25° C
(
Conditions/Comments
5
VSR, VF1. VF2, IR1, Cra and
per Table I.
~
Subgroup 3
High Temperature Operation ITA = 1500 C)
Reverse Currrent ilR2!
-
T
2
5
Per Table I
--'--.
TABLE IV. GROUP B INSPECTION
Test/Inspection
Subgroup 1
Physical Dimensions
Subgroup 2
Solderability
Thermal Shock (Temperature Cycling)
Thermal Shock IGlass Strain)
Terminal Strength ITension)
Hermetic Seal
Moisture Resistance
End Points:
Breakdown Voltage iVSRi
Forward Voltage iVF)
Reverse Current iIR1'._ _ _ _ _ _ _ __
MIL-STD-750
Method
Conditions/Comments
--
15
2066
2026
1051
1056
2036
1071
1021
4021
4011
4011
179
LTPD
I
Immerse to within 0.1 inch
of body.
Condition C, 10 Cycles
Condition A
Condition A. 15 secs.,
2lbs.
Condition E
Omit initial conditioning
Per Table I
Per Table I
Per Table I
10
TABLE IV. GROUP B INSPECTION (Cont.)
MIL·STD-750
Method
Test/Inspection
Subgroup 3
Shock
2016
Vibration Variable Frequency
Constant Acceleration
2056
2006
Conditions/Comments
Non-operating; 1500 G;
t'" 0.5 ms. 5 blows in each
LTPD
10
orientation X,. Y1. YZ
Non-operating
Non-operating; 20 KG; X"
Y1. Y2
End Points: (same
as Subgroup 2)
Subgroup 4
Terminal Strength; Lead Fatigue
2036
Condition E with lead
restriction.
1031
TA=200'C.111
4021
63 V min. at 10 pA
1.05 V max. at 15 rnA
300 nA max. at 50 V
10
SubgroupS
High Temperature Life (Non-Operating)
End Points:
Breakdown Voltage (VaR)
ForWard Voltage (VFI
Reverse Current (tAl
4011
4016
'\=3
Subgroup 6
Steady State Operating Life
End Points: (same as Subgroup 5)
1026
10 = 33 mA lavgJ; VR = 50 V
(peak) f = 60 Hz.
TA = 25'C,1 11
,\=3
Conditions/Comments
LTPD
1. t = 1000 hours every 6 months to qualify product. t = 340 hours on eacn lot tnerealter.
TABLE V. GROUP C INSPECTION
Test/Inspection
MIL-STD-750
Method
Subgroup 1
Salt Atmosphere (Corrosion)
Subgroup 2
Resistance to Solvents
Subgroup 3
Thermal Shock (Temperature CYCling)
End Points:
Breakdown Voltage (VaR)
Forward Voltage (VF21
Reverse Current OR1 I
1041
20
MIL-STO-202
Methoo 215
10
1061
Condition C. 25 cycles; time
at temperature extremes =
15 minutes min. total test
time =72 hours max,
4021
4011
Per Table 1
Per Table I
Per Table I
4016
Subgroup 4
Low Temperature Operation (-65 0 CJ
Forward Voltage (VF1)
Forward Voltage (Vf21
Breakdown Voltage (VBR)
10
20
0.55 Vat 1 mA
1.0 V all 5 mA
70V at 10pA
180
(
Typical Parameters
s
;{
E
w
!ii
IZ
w
a:
a:
:>
u
a
a:
;:
a:
'a"
~
150'0
100'0
5O'e
25'0
0'0
iiia:
u
lii
:il>
..sollie
a
u.
I
J!-
I
c
a:
1,0
1,2
VF - FORWARD VOLTAGE (VOLTS)
IF - FORWARD CURRENT (mA)
~
__4---r--1--1100
75
VR - REVERSE VOLTAGE (VOLTS)
181
F/iOW
HEWLETT
~~ PACKARD
SCHOTTKY SWITCHING DIODE
JAN 1N5712
MILITARY APPROVED JANTX 1N5712
MIL-S-19500/445 JANTXV 1N5712
Features
PICO-SECOND SWITCHING SPEED
2
DC Electncal Tests at 25 C
(
Subgroup 3
High Temperature Operation ITA
Reverse Currrent IIR2)
I
Conditions/Comments
---
5
2071
~
LTPO
VSR, VF1, VF2, IRl, CTO, l'
per Table I.
2
per Table I.
2
150°C)
4016
TABLE IV. GROUP B INSPECTION
Test/Inspection
MIL-S';'O-7S0
Method
Subgroup 1
Physical Dim8nslons
2066
Subgroup 2
Solderability
2026
Conditions/Comments
15
Thermal Shock (Temperature Cycling)
Thermal Shock (Glass Strain)
Terminal Strength (Tension)
1051
1056
2036
Hermetic Seal
Moisture Resistance
End Points:
Breakdown Voltage IVSR)
Forward Voltage IVF2)
Reverse Current IIR11
1071
1021
Immerse to within 0.1 inch of
body.
Condition C, 10 Cycles
Condition A
Condition A, 15 secs.,
2lbs.
Condition E
Omit initial conditioning
4021
4011
4011
Per Table I
Per Table I
Per Table I
183
LTPD
10
TABLE IV. GROUP B INSPECTION (Cont.)
Te$l/ln$pection
MIL-STD-750
Method
Conditions/Comments
LTPD
Subgroup 3
Non-operating; 1500 G;
t '" 0.5 ms, 5 blows in each
orientation Xl, Yl, Y2
Non-operating
Non-operating; 20 KG; Xl,
Yl, Y2
10
2036
Test Condition E with lead
restriction.
10
1031
TA=200'C,J11
4021
4011
4016
18 V min. at 10 }AA
1.05 V max. at 35 mA
200 nA max. al16 V
1026
10 = 33 mA; VR = 50 V
(peak) f = 60 Hz.
TA '" 25' C,lll
Shock
2016
Vibration Variable Frequency
Constant Acceleration
2056
2006
End Points; (same as Subgroup 2)
Subgroup 4
Terminal Strength; Lead Fatigue
SubgroupS
High Temperature life (Non-Operating)
End Points;
Breakdown Voltage (VBR)
Forward Voltage (VF2)
Reverse Current OR1}
Subgroup 6
Steady State Operating Life
End Points; (same as Subgroup 5l
A=3
A=3
1. t = 1000 hours every 6 months to qualify product, t = 340 hours on each lot thereafter.
TABLE V. GROUP C INSPECTION
Test/Inspection
Subgroup 1
Salt Atmosphere (Corrosion)
Subgroup 2
Rosistance to Solvents
$ubgroup3
Thermal Shock
o
~.10~----f_-f_4----_4----_+----d
I
I
~c
.01 '--....,0:-'::.2:-L-........,0::l.4:---:-'0.6:--:"0.:"S·_-.J1.0
v, -
10
IF - FORWARD CURRENT (rnA)
FORWARD VOLTAGE (VOLTS)
(
~~5-L_-:2~5-0~2~5~5~0-:7~5~,~0:"01~2~5~,5.,..0-L-L-L-L~
TA -
AMBIENT TEMPERATURE (OC)
185
10
Flin-
HIGH RELIABILITY
GENERAL PURPOSE
SCHOTTKY BARRIER DIODES
HEWLETT
~~ PACKARD
TX-2810
TX-2811
TX8-2810 TX8-2811
TXV-2810 TXV-2811
TXVB-2810 TXVB-2811
(Generic 5082-2810 and -2811)
Features
MEDIUM TURN-ON VOLTAGE
PICO-SECOND SWITCHING SPEED
0.41 (.o16)
,
L-.....-
O- r
[3ljf.014l----: 1 - -
HERMETIC PACKAGE
QUALITY PERFORMANCE TESTED
Test Program Patterned after MIL-S-19500
2M \"00)
MIN.
r-I
~
Description/Applications
4.321.170)
3.811.150)
I
The 5082-2810 and -2811 are passivated Schottky diodes
which use a patented "guard ring" design to achieve a high
breakdown voltage. They are packaged in a hermetically
sealed glass package. They are well suited for high level
detecting. mixing, switching, gating, log or A-D converting,
video detecting, frequency discriminating, sampling, and
wave shaping.
-t
25~1~:OO)
O___ 1
Maximum Ratings
DIMENSIONS IN MILLIMETERS AND (INCHES)
Operating and Storage Temperature
Range .............................. 1>5 0 C to +200 0 C
Peak Inverse Voltage ............................. VSR
Power Dissipation at TeASE = 25 0 C ............ 250 mW
Derate linearly at 1.43 mW/o C to zero at 200 0 C
Maximum Solder Temperature ..... 230 0 C for 5 seconds
Oulline 15
TABLE I. ELECTRICAL SPECIFICATIONS AT TA = 25 0 C (UNLESS OTHERWISE SPECIFIED)
Similar to 5082-2810 and 5082-2811
Part
Number
5082-
Minimum
Breakdown
Voltage
VSR (V)
2810
20
2811
15
Test
Conditions
IR=10jJ.A
Maximum
Forward
Voltage
VF (mV)
410
IF~l
VF=l V Max.
at Forward
Current
IF (mA)
Maximum
Reverse
Leakage
Current
IR (nA) at VR (V)
Maximum
Reverse
Leakage
Current at 1250 C
IR (pA) at VR (V)
35
100
15
150
15
20
100
8
100
8
mA
Maximum
Capacitance
~(pF)
1.2
VR=OV
f= 1.0 MHz
186
()
High Reliability Programs
TABLE II. PART NUMBER SYSTEM FOR ORDER
AND RFQ INFORMATION
Three basic levels of High-Rei testing are offered.
1. The TX prefix indicates a part that is preconditioned
and screened to the program shown in Table III and IV.
2. The TXB prefix identifies a part that is preconditioned
and screened to TX level with a Group B quality conformance test as shown in Table V.
3. The TXV and TXVB prefix indicates that an internal visual inspection per MIL-STD-750 Method 2074 is
included as part of the preconditioning and screening.
Screening Level
Part Number
Commercial
5082-2810
5082-2811
100% Screen (per Tables III
and IV)
TX-2810
TX-2811
From these three basic levels, four combinations are available. Please refer to Table II as a guide.
TXB-2810
TXB-2811
100% Scraen and Group B (per
Tables Ill, IV and V)
TXV-2810
TXV-2811
100% Screen and visual (per
Tables III and IV)
TXVB-2810
TXVB-2811
100% Screen and Group B (per
Tables Ill, IV and V) with visual
TABLE III. 100% SCREENING PROGRAM
MIL-5TD·750
Method
Screening Test/Inspection
1. Internal Visual ITXV only}
Conditions/Comments
2074
2. High Temperature Storage (Stabilization Bake)
1032
t= 48 hours, TA = 200"C
3. Thermal Shock (Temperatura Cycling)
4. Constant Acceleration
1051
Condition C. 10 Cycles
5. Hermeticity Tests
Fine Leak
Gross Leak
2006
20 KG, y, axis
1071
Condition H
Condition C
1038
Condition B, t = 96 hours, T A = 25" C,
VR = 80% VSR, f=60 Hz, 10=20 mA DC
(5082-2811),33 mA DC (5082-2810)
Per Table I
6. Interim Electrical Tests (VF, IRli
7. Power Burn-I n
:J.YF = ±55 mV, :J.IRl = ±20 nA or 100%
whichever is greater (5082-2811 i,
.lIRl'= ±30 nA or 100% whiChever is
greater (5082·2810i
8. Final Electrical Tests (See Table Il and Stability
Verification
TABLE IV. GROUP A ACCEPTANCE TEST
Test/Inspection
Subgroup 1
Visual and Mechanical
Subgroup 2
DC Electrical Tests at 25°C
Subgroup 3
Reverse leakage OR) at TA = 125° C
MIL·STD·750
Method
Conditions/Comments
2071
LTPD
5
-
187
See Table I for Tests and
Conditions (Read and Record)
5
See Table I for Tests and
Conditions (Read and Recordl
5
TABLE V.
GROUP B ACCEPTANCE TEST
MIL.·STO·750
Method
Te$tII nspeclion
Subgroup 1
Physical Dimension
Subgroup 2
Solderability
Resistance to Solvents
Electrical Test at 25"C OR1,
Subgroup 4
Mechanical Shock
Vibration, Variable Frequency
Constant Acceleration
Electrical Test at 25° C
Subgroup 5
Terminal Strength
SubgroupS
High Temperature Life
INon-operating)
Electrical Test at 25" C 1IR1, Vpl
Electrical Stability Verification
Subgroup 7
Steady State Operating Life
LTPD
2066
15
2026
1022
15
See Table I
VF)
Subgroup 3
Temperature CycHng
Thermal Shock
Terminal Strength
Hermetic Seal
Fine Leak
Gross Leak
Moisture Resistance
Visual and Mechanical
Electrical Test at 25°COR1, Vp)
Conditions/Comments
1051
Condition C, 10 Cycles
Condition A
Condition A
1056
2036
10
1071
Condition H
Condition C
1021
2071
See Table I
2016
2056
2006
10
See Table I
2036
Condition E
15
1032
t = 340 hOurs, TA = 200· C
5
See Table I
.:.VF '" :t55 mV, ':'IR '" ±20 nA or
100% Whichever is greater (5082-28111
AIR = ±30 nA or 100%
whichever is greater 15082-281 Q)
t=340 hours, TA"'2S"C, 1:60 Hz,
VR 80% VSR, 10 = 20 mA DC
(5082-2811 )
10 = 33 nA DC (5082-2810)
See Table I
::'VF = ±55 mV, ':'IR = ±20 nA or
100% whichever is greater (5082-2811 I
AIR = ±30 nA or 100%
whichever is greater15082-28101
1027
Electrical Test at 25°C OR1, VF)
Electrical Stability Verification
188
S
(
Flin-
HIGH RELIABILITY
SCHOTTKY
SWITCHING DIODES
HEWLETT
~~ PACKARD
TX-2835
TXV-2835
TXB-2835
TXVB-2835
(Generic S082-283S)
Features
SUITABLE FOR SPACE APPLICATIONS
0.41 (0.016)---1
LOW TURN-ON VOLTAGE
FAST SWITCHING
~J:.
PLANAR PASSIVATED
LOW TEMPERATURE COEFFICIENT
UNIFORM FORWARD TRACKING
QUALITY PERFORMANCE TESTED
Test Program Patterned after MIL-S-19500
Description/Applications
CATHODE
The TX-2835 is an epitaxial, planar passivated diode
whose construction utilizes a metal-to-silicon junction.
This results in extremely low forward voltage drops and
ultra high speed switching, for applications that require
high reliability screening.
(
f---
II
o:aw.ml
4
f
""11_-
The low forward voltage drop, combined with fast switching and high temperature capability, makes these devices
attractive as replacements for germanium and silicon PIN
junction diodes in such applications as low level switching, clamping, sampling, reference circuits, and low noise
UHF mixers.
~!~
~~
The uniformity of forward characteristics with current over
the temperature range also makes these units suitable for
circuitry requiring tight matching of characteristics.
DIMENSIONS IN MI~UMETEI\S HNCtIES).
Maximum Ratings
Oulline 15
Power Dissipation at T CASE = 25° C ........... 150 mW
Derate linearly at 1.20 mW/o C to zero at 150° C
Operating Temperature Range ....... -60°C to +150°C
Storage Temperature Range ......... -60°C to +150°C
TABLE I. ELECTRICAL SPECIFICATIONS AT TA = 25°C
CharacleriStlc$
Breakdown Voltage
Reverse Current
Symbol
MIn.
VBR
8
Mo.
100
IR1
Unite
Test CondItions
lIofts
nA
lA '" 100 p,A
VA=1 V
VR = 1 V.I = 125G C
Reverse Current
IA2
100
p.A
Forward Voltage
VFl
0.34
volts
IF"'"
Forward Voltage
VF2
0.45
volts
IF=10mA
Cap"citance
Cro
1,0
pF
T
100
psec
Effective Minority
Carrier Lifetime
189
mA
VA '" 0, t = 1 MHz
IF=20 mA
PART NUMBER SYSTEM FOR ORDER AND RFQ
INFORMATION
TX-2835
(
Devices undergo 100% screening as specified in Table II and Table III (excluding step 1).
TXV-2835
Devices undergo 100% screening per Table I! and Table II!.
TXB-2835
FOllowing 100% screen per Table II (delete step 1). samples of lot are subjected to Group A
(Table lIll. and Group B (Table IV).
TXVB-2835
Complete screen and lot qualification per Tables II-!V.
TABLE II. 100% SCREENING PROGRAM
Screening Tesl/lnspectlon
MIL·STD-750 Method
(Except as Noted)
Conditions
1. Internal Visual
2074
2. High Temperature Storage
1032
48 Hours minimum at 150"C
3. Temperature Cycling
1051
Condition F - 20 cycles, 10 minutes at
extremes HiQ" C to ±150° C)
4. Constant Acceleration
5. Hermetic Seal
Fine Leak
Gross Leak
6. Interim Electrical Test
lAt. YeA, CTO, VF1, VF2
7. Burn-In
a.
Final Electrical Test
2006
20 KG. Yl axis
1071
Condition H. 5 X 10-8 cc/sec max.
Conjition E
-
Read and Record
Condition B. PFM = 150 rnW pk .• VAM = 5 V pk.,
f= tlO Hz. t = 168 hr. min .. TA = 25°C
1038
-
Same as Step 7
9. Electrical Stability Verification
.llAl $ 50 nA or 100% of initial value.
whichever is greater
..lVFl $10% of initial value
10. Percent Detective Allowable (PDA)
10% of devicE'S submitted to burn-in.
/
TABLE III. GROUP A ACCEPTANCE TEST
Test/Inspection
Subgroup 1
External Visual Inspection
MIL-STD-750
Method
Conditions
2071
LTPD
5
Subgroup 2
Electrical Test
IR1. YeA. Cro, WI, VF2 at TA = 25°C
Subgroup 3
Electrical Test at TA= 25°C
Carrier Lifetime IT)
See Table I
(Read and Record)
3
See Table I
(Read and Record)
3
See Table I
(Read al1d Record)
7
Subgroup 4
Electrical Test
Reverse Leakage (IR) at T A = 125° C
190
"
(
TABLE IV. GROUP B PROGRAM
MIL·STD-150
TesVlnspection
Subgroup 1
Solderability
Resistance to solvents
Subgroup 2
Thermal Shock (Temperature CYCling)
Hermetic Seal
Fine Leak
Gross Leak
DC Electrical Tests OF! and VF)
Subgroup 3
Steady State Operating Life
DC Electrical Tests (lR and VFl
Subgroup 4
Decap Internal Visual
(Design Verification)
Bond Strength
SubgroupS
High Temperature Life
(Non-Operating)
DC Electrical Tests (lR and VF)
Method
Conditions/Comments
2026
1022
LTPD
15
Condition F1 (25 cycles!
1051
1071
10
Condition H
Condition C or E
See Table I.
1027
t "'340 hours, TA = 25·C,
PFM "" 200 mW. f""60 Hl. VRM '" 56 V
See Table I.
5
2075
2037
20
1032
t = 340 hours, TA '" 150°C
See Table L
191
7
rh~
~~
HIGH RELIABILITY
ZERO BIAS SCHOTTKY
DETECTOR DIODE
HEWLETT
PACKARD
(
HSCH-OB12
\
(Generic HSCH-3486)
Features
HIGH TANGENTIAL SENSITIVITY
NO BIAS REQUIRED
HERMETIC GLASS PACKAGE
QUALITY PERFORMANCE TESTED
Test Program Patterned after MIL-S-19500
Description/Applications
The high tangential sensitivity of these Schottky Barrier
diodes makes them ideally suitable for narrow bandwidth
video detectors, ECM receivers, and measurement equipment. These diodes also make excellent mixers for use
with low power La.
Maximum Ratings
Operating and Storage Temperature
Range ............................ -£5°Cto+150°C
Operation of these devices within the above
temperature ratings will assure a device
Median Time To Failure (MTTF) of approximately 1 x 107 hours.
CW Power Dissipation at TCASE = 25° C ....... 300 mW
Derate linearly at 2.40 mW/oC to zero at 150°C
Pulse Power Dissipation
Peak Power absorbed by the diode at T A = 25° C
1 JLs pulse, Du = 0.001 .......................... 1 W
DIM~N$lONS IN
MILl.IMIlTSRS AND /INCHES)
Outllrw 1S
These diodes are ESD sensitive. Handle with care to avoid
static discharge through the diode.
TABLE I. ELECTRICAL SPECIFICATIONS AT TA = 25°C
Part
Number
Maxfmwn
MinImum
Video
Maximum
Tangential
Voltage
ReeIstance
Forward
Typical
Senelllvlty
TSS(dBm)
SensItiVIty
Viktage
'l'(mV/p.w)
Min.
Max.
VF(mV}
Total Capacitance
Cr(pF)
-54
7$
2
8
400
0.30
Rv (Kfl)
HSCt+0812
(Screerwd
HSCH-3486)
Test
Conditions
Video
BandWidth = 2 MHz
ttes! = 10 GHz
Power In .. -40 dBm
ttes! = 10 GHz
192
IF=1 rnA
VFI""OV
f=1 MHz
,/
High Reliability conditioning and Acceptance Testing
(All methods are per MIL-STD-750 unless otherwise specified)
100% SCREENING PROGRAM
Screening Testllnspection
MIL-STD-1S0 Method
1, Internal Visual Inspection
-
Conditions/Comments
Per H.P. Method A-5956-0562-72
2. High Temperature Storage
(Stabilization Bake)
1032
t
3. Thermal Shock (Temperature Cycling)
1051
-65"C to +150"C, 10 cycles, 30 minutes
per cycle
4. Constant Acceleration
2006
200 KG. Yl axis.
1071
Condition G or H.
Condition A or C. Step 1 only.
Fine Leak
Gross Leak
5. Hermeticity Tests
6. Interim Electrical Tests (VF)
Per Table I. TA '" 25° C,
1038
7. Burn-in
P"" 10 mW, TA = 25" C, t"" 168 hours
Per Table I. TA=25"C
8. Final Electrical Tests (VFf
9. Drift Eval uation
48 hours" TA= 150"C
PDA=15111
J,VF =±5 mV
10. Electrical Tests. RF Parameters
Nole:
1. If rejects are greater than 15% but less than 30%, one more burn-in may be performed with a new 10% POA.
GROUP A ACCEPTANCE TEST
Test/Inspection
Subgroup 1
Visual and Mechanical
(\
MIL-STO-750
Method
Conditions/Comments
2071
Subgroup 2
DC Electrical Tests at 25 0 C
15
Per Table I
193
LTPO
5
194
(
RELIABILITY DATA
PASSIVATED GENERAL PURPOSE
SCHOTTKY DIODES
r/i~ HEWLETT
~~ PACKARD
Description
For applications requiring component reliability estimation, Hewlett-Packard provides reliability data for all
families of devices. Data is compiled from reliability tests
run to demonstrate that a product meets the design criteria. Periodically, additional tests are run. The data on this
sheet represents the latest review of accumulated test
results. All data recorded here is for passivated Schottky
diodes mounted in hermetically sealed glass packages.
Applications
This information represents the capabilities of the generic
device. Failure rate and MTTF values presented here are
achievable with normal MIL-19500 test screening. Reliability can be guaranteed only under specified conditions by
testing specific lots, under specified conditions and LTPD
levels.
Applicable Part Numbers
1N5711
1 N5712
1N6263
5082-0024
5082-0031
5082-0057
5082-0058
5082-0087
5082-0094
(
5082-0097
5082-2080
5082-2800
5082-2804
5082-2805
5082-2810
5082-2811
5082-2813
5082-2814
5082-2815
5082-2817
5082-2818
5082-2824
5082-2826
5082-2835
5082-2836
HSCH-1001
400
350
E
300
I-
.0'
w'
a;
:::>
250
...... r-.
I-
"~
1:l
I-
"i=0
;;""
EA"* 1.2eV
200
.............
!"."
r-..... r---!"."
r-.... ....
150
100
10 3
104
105
106
MTTF (HOURS)
Mean Time to Failure vs. Junction Temperature
195
107
lOS
Burn-In and storage
Te$\ Condilions(1)
Test
LTPD per 1000 Hours
High Temperature Ufe
Storage at: 200· C
2.0
Steady State Operating Life
PFM""250 mW
VRM = 800k of VeR
TA=25·C f= 60 Hz
2.0
High Temperature Reverse Bias
VR '" 80% of VBR
TA=200·C
2.0
Note:
1. 1000 hours minimum on all life tests.
Environmental
Test
Temperature Cycling
MIL-STD-750
1051C
Test Condillon
10 cycles from'-65·C to 200°C, 5 Mrs. al extremes,
5 mi n. transfer
LTPD
10
Thermal Shock
1056
10 cycles from O· C to 100· C, 3 sec. transfer
10
Mechanical Shock
2016
5 blows each at Xl, X2, Y, 1500G, 0.5 msec. pulse
10
20G min., 60 Hz
10
4,4 min, cycles each X, Y, Z at 20G min., 100 to
2000 Hz
10
Vibration Fatigue
Vibration Variable Frequency
Constant Accelerati on
2046.1
2056
20KG,1 minute per axis
5
Moisture ReSistance
1021.1
240 hours, 9().98% relative humidity
10
Salt Atmosphere
1041.1
35· C fog for 24 hours
5
Sn 60, Pb 40, 230·C
10
Solderability
2006
2026
196
(
RELIABILITY OAT A
TRI METAL BEAM LEAD
SCHOTTKY DIODES
r/i~ HEWLETT
':1:.
PACKARD
Description
For applications requiring component reliability estimation, Hewlett-Packard provides reliability data for all
families of devices. Data is compiled from reliability tests
run to demonstrate that a product meets the design criteria. Periodically, additional tests are run. The data on this
sheet represents the latest review of accumulated test
results. All data recorded here is for tri metal beam lead
Schottky diodes mounted in hermetically sealed H
packages.
Applications
This information represents the capabilities of the generic
device. Failure rate and MTTF values presented here are
achievable with normal MIL-19500 test screening. Reliability can be guaranteed only under specified conditions by
testing specific lots, under specified conditions and LTPD
levels.
Applicable Part Numbers
HSCH-5300 Series
HSCH-5500 Series
5082-2200
5082-2201
5082-2202
5082-2203
5082-2207
(
5082-2208
5082-2209
5082-2210
5082-2765
5082-2766
5082-2774
5082-2775
5082-2785
5082-2786
5082-2794
5082-2795
5082-2837
400
.....
350
:::::r-.
300
. . . . . r-.
,:!
w' 250
..............
a:
::J
!
I-
~"
~
IZ
r"-i"o
i'-..~" toEA = 1.2.v
100
....
""
0
;::
u
z
'l
50
103
104
106
10·
MTTF (HOURS)
Mean Time to Failure vs. Junction Temperature
201
.... ""
...........
107
.... ....
10S
Burn-In and storage
Test
Test Condltions£l]
LTPO per 1000 Hours
High Temperature Life
Storage at 125" C
2,0
Steady State Operating Life
PFM"'50 mW
TA'" 25°C f = 60 Hz
2,0
Note:
1, 1000 hours minimum on all life tests,
Environmental
Test
Temperature Cycling
Te$t Condition
MIL·STO·750
1051C
LTPO
10 cycles from -{i5"C to 125"C, 5 hrs, at extremes,
5 min, transfer
10
Thermal Shock
1056
10 cycles from 0° C to 1000 C, 3 sec, transfer
10
Mechanical Shock
2016
5 blows each at Xl, X2, y, 1500G, 0,5 msec, pulse
10
Vibration Variable Frequency
2056
4,4 min, cycles each X, Y, Z at 20G min" 100 to
2000 Hz
10
Moisture Resistance
1021.1
240 hours, 90-98% relative humidity
10
Salt Atmosphere
1041,1
35° C fog for 24 hours
10
Sn60, Pb4D, 230"C
10
SOlderability
2026
202
(
Flin-
RELIABILITY DATA
MESH SCHOTTKY DIODES
HEWLETT
~~ PACKARD
Description
For applications requiring component reliability estimation, Hewlett-Packard provides reliability data for all
families of devices. Data is compiled from reliability tests
run to demonstrate that a product meets the design criteria. Periodically, additional tests are run. The data on this
sheet represents the latest review of accumulated test
results. All data recorded here is for mesh Schottky diodes
mounted in hermetically sealed glass packages.
Applications
This information represents the capabilities of the generic
device. Failure rate and MTTF values presented here are
achievable with normal MIL-19500 test screening. Reliability can be guaranteed only under specified conditions by
lesting specific lots, under specified conditions and LTPD
levels.
Applicable Part Numbers
5082-2301
5082-2302
5082-2303
5082-2305
5082-2306
5082-2308
5082-2350
5082-2351
(
5082-2356
5082-2370
5082-2396
5082-2400
5082-2401
5082-2520
5082-2521
5082-2565
5082-2566
5082-2755
5082-2787
5082-2900
5082-2912
5082-2970
5082-2997
HSCH-3486
200
r--...
_150
",:'
............
'-
r--...
w'
a:
"!;;
fA = 1.2.V I'--r-.
....... 1'--
~
:;; 100
w
-I'--
IZ
a
~
z
;;
50
102
103
104
1(J5
10·
MTTF (HOURS)
Mean Time to Failure vs. Junction Temperature
203
107
lOS
1()9
Burn-In and storage
Test
Test Condltionsl 1J
LTPD per 1000 Hours
High Temperature Ufe
Storage at 1~O" C
2.0
Steady State Operating life
PFM= 125 mW
VRM = 80% of VeR
TA 2S"C 1=60 Hz
2.0
High Temperature Reverse Bias
VR = 80% of VBFI
TA=100'C
3.0
Note:
1. 1000 hours minimum on all life tests.
Environmental
Test
Temperature Cycling
Test Condition
MIL·STD-750
1051C
LTPO
10 cycles from -.t>S" C to 100· C, 5 hrs. at extremes,
5 min. transfer
10
10
Thermal Shock
1056
10 cycles from 0° C to 100· C, 3 sec. transfer
Mechanical Shock
2016
5 blows each at Xl, X2, y, 1500(3,0.5 msec. pulse
10
Vibration Variable Frequency
2Q56
4,4 min. cycles each X, Y, Z at 20G min., 100 to
2000 Hz
10
Moisture Resistance
1021,1
240 hours, 90-98% relative humidity
10
Terminal Strength
2036.1
Condition A
10
Sn60, Pb40, 230"C
10
SOlderability
2026
204
(
FliOW
RELIABILITY DATA
PASSIVATED
N-TYPE MICROWAVE
SCHOTTKY DIODES
HEWLETT
~~ PACKARD
Description
For applications requiring component reliability estimation, Hewlett-Packard provides reliability data for all
families of devices. Data is compiled from reliability tests
run to demonstrate that a product meets the design criteria. Periodically, additional tests are run. The data on this
sheet represents the latest review of accumulated test
results. All data recorded here is for N-type passivated
microwave Schottky diodes mounted in non-hermetic
unsealed 44 packages.
Applications
This information represents the capabilities of the generic
device. Failure rate and MTTF values presented here are
achievable with normal MIL-19500 test screening. Reliability can be guaranteed only under specified conditions by
testing specific lots, under specified conditions and LTPD
levels.
Applicable Part Numbers
5082-0013
5082-0023
5082-0029
5082-0041
5082-2273
5082-2274
5082-2295
5082-2296
5082-2297
5082-2298
5082-2701
5082-2702
5082-2706
5082-2707
5082-2711
5082-2712
5082-2713
5082-2714
5082-2723
5082-2724
HSCH-3206
HSCH-3207
200
..........
t'--"
~
........
150
.........
to'
w'
a:
::>
>-
..
. . . . . . . r-... . . .
~
1.i
>-
..... 1-.
fA
~ 1,2.V ~
100
" r-.... . .
"i=
0
z
;;"
i"
50
103
10'
105
106
MTTF (HOURSI
Mean Time to Failure vs. Junction Temperature
205
10'
108
Burn-In and Storage
Test Conditionsl:1J
Test
LTPD per 1000 Hours
High Temperature Life
Storage at 1250 C
3.0
Steady State Operating Life
PfM =75 mW
VRM = 80% of VeR
TA = 25°C f'" 60 Hz
4.0
Note:
1. 1000 hours minimum on all life tests.
Environmental
Test
Temperature Cycling
MIL-STO-7S0
1051C
Test Condition
LTPD
10 cycles from ~5° C to 125 0 C, 5 hrs. at extremes,
5 min. transfer
10
Thermal Shock
1056
10 cycles from O'C to 1000 e, 3 sec. transfer
10
Mechanical Shock
2016
5 blows each at X1, X2, Y, 1500G, 0.5 msec. pulse
10
Vibration Fatigue
2046,1
Vibration Variable Frequency
20G min" 60 Hz
10
2056
4,4 min, cycles each X, Y, Z at 20G min" 100 to
2000 Hz
10
2006
20KG, 1 minute per axis
10
Moisture Resistance
1021.1
240 hours, 90-98% relative humidity
10
Salt Atmosphere
1041.1
35' e fog for 24 hou rs
12
Constant Acceleration
206
(
Flin-
RELIABILITY DATA
PASSIVATED
P-TYPE MICROWAVE
SCHOTTKY DIODES
HEWLETT
~~ PACKARD
Description
For applications requiring component reliability estimation, Hewlett-Packard provides reliability data for all
families of devices. Data is compiled from reliability tests
run to demonstrate that a product meets the design criteria. Periodically, additional tests are run. The data on this
sheet represents the latest review of accumulated test
results. All data recorded here is for P-type passivated
microwave Schottky diodes mounted in non-hermetic
unsealed 44 packages.
Applications
This information represents the capabilities of the generic
device. Failure rate and MTTF values presented here are
achievable with normal MIL-19500 test screening. Reliability can be guaranteed only under specified conditions by
testing specific lots, under specified conditions and LTPD
levels.
Applicable Part Numbers
5082-0009
5082-2750
5082-2751
5082-9891
200
..........
10.", ....
150
.......
.......
E
t='
ui
::J
t-
«
EA '" 1.2eV
ffi
~t-
........
..............
0:
........ ........
100
........... ......
";::0
r....1'
u
z
i'
;;
50
103
I
104
105
106
MTTF IHOURSI
Mean Time to Failure vs. Junction Temperature
207
107
10'
Burn-In and Storage
Test Conditiona(1)
Test
LTPD per 1000 Hour.
High Temperature Lffe
Storage at 125" C
4.0
Steady State Operatlng Life
PFM= 100mW
VRM '" 80".1. of VeA
TA=25°C f:60 Hz
3.0
Note:
1. 1000 hours minimum on all lite tests.
Environmental
Test
Temperature Cycling
MIL-STO-750
10510
Test ConditiOn
10 cycles from -65·C to 2OO·C, 5 hra. 'at extremes,
5 min. transfer
Thermal Shock
1056
10 cycles from O· C to 100" C, 3 sec. transfer
Mechanical ShOck
2016
5 blows each at Xl,
Vibration Fatigue
2046.1
Vibration Variable Frequency
2056
X2, Y, 15OOG, 0.5 msec. pulse
LTPO
10
10
10
20G min" 60 Hz
10
4,4 min. cycles each X, Y, Z at 20<3 min" 100 to
10
2000 Hz
Moisture Resistance
1021.1
240 hours, 90-98% relative humidity
10
Salt Atmosphere
1041.1
35· C fog for 24 hours
12
208
\
ABSTRACTS OF
APPLICATION NOTES AND BULLETINS
(
The Microwave Semiconductor Division field sales force is supported by a division applications staff. These technical specialists
investigate circuit applications of most interest to the users of these semiconductor devices. The results of these investigations
are reported in application notes or brief application bulletins. A complete list with brief abstracts is presented here.
Below is a brief summary of Application Notes for diodes and transistors. All of the Application Notes are available from your
local HP Sales Office or nearest Components Authorized Distributor or Representative.
Schottky Diode Applications
923
large signal type, also known as linear or peak detectors.
Techniques for raising the compression level are presented.
An example is given illustrating the effect of bias current
level on an HP 5082-2751 detector.
Hot Carrier Diode Video Detectors
Describes the characteristics of HP Schottky barrier diodes
intended for use in video detector or video receiver circuits,
and discusses some design features of such circuits.
956-6 Temperature Dependence of Schottky
Detector Voltage Sensitivity
Though less sensitive then the heterodyne receiver, the
many advantages of the video receiver make it extremely
useful. The Schottky diode can be used to advantage in
applications such as beacon, missile-guidance, fuseactivating, and counter-measure receivers, and as powerleveling and signal-monitoring detectors.
A discussion of the effects that temperature changes have
on Schottky barrier diodes. Performance improves at lower
temperatures in a predictable manner. Data presented were
obtained using HP 5082-2750 detector diodes.
963 Impedance Matching Techniques for
Mixers and Detectors
Among the subjects discussed are the performance characteristics of video detector diodes - tangential sensitivity,
video resistance, voltage sensitivity and figure of merit; how
these characteristics affect the bandwidth of a video detector, video detector design considerations; considerations
that affect dynamic range; and considerations that vary the
level at which burnout can occur.
c
Presents a methodical technique for matching complex
loads, such as Schottky diodes, to a transmission line. Direct
application to broadband mixers and detectors is illustrated.
969 An Optimum Zero Bias Schottky
Detector Diode
942 Schottky Diodes for High Volume
Low-Cost Applications
Descri bes the use of HSCH-3486 zero bias detector
diodes. Their forward voltage characteristics are detailed,
as well as discussion of voltage sensitivity including
effects of junction capacitance, load resistance and reflection loss on sensitivity. Temperature characteristic curves
for both devices are also included.
Discusses switching, sampling, mixing, and other applications where the substitution of Schottky diodes will provide
significant improvement over PN junction devices.
956-1 The Criterion for the Tangential Sensitivity Measurement
976 Broadband Microstrip Mixer Design,
The Butterfly Mixer
Discusses the meaning of Tangential Sensitivity and a
recommended measurement technique.
956-3
A microstrip mixer on RT/duroid substrate is designed for
the frequency range 8 GHz to 12 GHz. Hewlett-Packard
Schottky barrier diode model 5082-2207 is used. Low impedance shunt transmission lines are difficult to realize and
present a problem in this type of circuit. Radial line stubs are
used to avoid this problem.
Flicker Noise in Schottky Diodes
Treats the subject of flicker (1/f) noise in Schottky diodes,
comparing 4 different types.
956-4
Schottky Diode Voltage Doubler
986
Explains how Schottky detectors can be combined to
achieve higher output voltages than would be produced by a
Single diode.
956-5 Dynamic Range Extension of
Schottky Detectors
Square Law and Linear Detection
Frequency, diode capacitance, breakdown voltage, and load
resistance all have an effect on the slope of a microwave
detector. At high input levels the linearity may be controlled
by proper tuning.
9987
Discusses operation of two types of detectors: the small
signal type, also known as square-law detectors; and the
Is Bias Current Necessary?
Bias current is often necessary to reduce the impedance of
detector diodes to a reasonable level. However, when the
209
signal level is high, rectified current may reduce the impedance without the need for bias current Measurements with
the 5082-2755 diode are used to illustrate this effect.
988 All Schottky Diodes are Zero
Bias Detectors
recommended thermocompression bonding. Described in
this application note is a new method of resistive spot welding or modified gap welding, which uses a single electrode
to weld the beam while the conductor is contacted separately. This method allows tight pressure to be used on the
weld probe, resulting in an effective bond without damaging
the beam lead device.
Diodes which are normally biased make excellent detectors
when the bias is eliminated. It is necessary to use a load with
an impedance comparable to the diode impedance. This is
shown with a 5082-2755 diode used with a 3469B,multimeter
as the load.
Schottky Diodes
AB 5
Hybrid Integrated Circuits
Applications
974 Die Attach and Bonding Techniques for
Diodes and Transistors
AB 7
Several package styles are available for use with hybrid
integrated circuits. This application note gives detailed
instructions for attaching and bonding these devices. A brief
description of an impedance matching technique for mixer
diodes is also included.
Mixer Distortion Measurements
Describes the measurement of distortion in a balanced
mixer by the two tone method.
AB 13 Transistor Speed Up Using Schottky
Diodes
979 The Handling and Bonding of Beam Lead
Devices Made Easy
Significant reduction in transistor switching delay time can
be achieved by adding a Schottky diode and a PIN diode to
the transistor switching circuit. This improvement in switchi ng performance also extends the oscillator capability of the
transistor to higher frequencies.
Beam Lead devices are particularly attractive for hybrid circuits because of their low parasitics and small size. The
availability of equipment and techniques specifically designed for their small size has facilitated the handling and
bonding of these devices. This application note describes
some of this equipment and techniques, and outlines suggestions forthe proper handling and bonding of Beam Lead
devices.
AB 14 WaveformClipping with Schottky
Diodes
Consideration is given in this application bulletin to the
design requirements of clipping circuits which are used to
limit the transmission of Signals above or below specified
levels. The characteristics of Schottky diodes needed to
achieve the required performance in these circuits are discussed and recommendations made.
991 Harmonic Mixing with the HSCH-5530
Series Dual Diode
The dual diode on coplanar waveguide forms an antiparallel pair. This arrangement is excellent for mixers with
subharmonic local oscillators. A mixer for 34 GHz was
designed and built. Conversion loss was measured as a
function of frequency and local oscillator power level.
8992
Current Source for Diode Testing
This application bulletin describes a constant current source
designed primarily for the ease of use in laboratory measurements. Easily programmable by thumb wheel switching
in 10 p.A steps from 10 p.A to 700 mA, its accuracy exceeds
most commercially available current sources.
AB 15 Waveform Clamping with Schottky
Diodes
Discussed in this application bulletin are the circuit design
and diode performance requirements for a clamping circuit,
which is used as a DC restorer or level shifter. Schottky
diodes having the required characteristics for this type of
circuit are recommended.
Beam Lead Attachment Methods
This application bulletin gives a general description of various methods of attaching beam lead components to both
hard and soft substrates. A table summarizes the most
common attachment methods with advantages, disadvantages, and equipment costs.
AB 16 Waveform Sampling with Schottky
Diodes
This application bulletin discusses the design considerations for a sampling circuit used to sample high frequency
repetitive signals and reproduce them at lower frequencies
for ease of monitoring. Schottky diode performance
requirements important in the realization of a sampling circuit are considered.
0993 Beam Lead Diode Bonding to Soft
Substrate
o
The hard gold surface on standard pc boards with soft substrate material makes it almost impossible to successfully
bond beam lead diodes onto the boards with normally
210
o
AB 31 Using the HSCH-1001 Schottky Diode
in a Data Terminal Memory
AB 26 Using the HSCH-1001 Schottky Diode
for Interfacing in Microprocessor Controlled AID
Conversion Circuits
The use of custom codec (coder/decoder) IC chips simplifies the analog to digital circuitry in microprocessor
controlled digital switching circuits. This application bulletin
describes the use of the HSCH-1001 Schottky diode to
achieve the required compatible interface between the
codec chip and the rest of the circuit in order to realize
optimum circuit performance.
The simplicity in a read only memory (ROM) circuit allows
the circuit to be large in terms of storage capacity. A large
capacity requires a large matrix of active devices. Theuse of
HSCH-1001 Schottky diodes in a ROM circuit can ease the
power drain because of their low forward voltage. The use of
discrete circuit elements offers ease of repair and modification. These and other important considerations are
discussed in this application bulletin.
AB 27 Using the HSCH-1001 Schottky Diode
in an AGC Detector Circuit
AB 36 Using the HSCH-1001 Schottky Diode
in a Digital Logic Gate
A detector circuit such as one used for AGC or video detection simply realized with the use of the HSCH-1001 Schottky
diode is described in this application bulletin.
Simple "and" and "or" gates consisting of diodes and resistors can be combined into circuits which will perform
increasingly complex functions. The achievement of low
loss when the diode is biased on and of high isolation when
the diode is biased off are the principal characteristics of
these types of logic gates. This application bulletin describes how the HSCH-1001 Schottky diode is particularly
suited for this type of application because of its low forward
voltage and other inherent characteristics.
AB 28 Optocoupler Speedup using the
HSCH-1001 Schottky Diode
An optocoupler typically contains a transistor in the output
circuit. When the optocoupler is turned on, the transistor is
usually in the saturated state, which means the turn-off time
will be unnecessarily long. This application bulletin describeshow the HSCH-1001 Schottky diode can be used to
alleviate the saturation effects on the transistor and thus
improve switching time.
AB 30 Using the 5082-2835 Schottky Diode for
Protecting and Improving the Performance of an
Operational Amplifier
o
High level voltage spikes degrade the performance of an
operational amplifier, and, in extreme cases, destroy the
amplifier permanently. This application bulletin describes
how the 5082-2835 Schottky diode can be used to protect an
operational amplifier against high level voltage overload,
and also to improve output response.
211
c'
213
CHARACTERISTICS OF PIN DIODES
The most important feature of the PIN diode is
its basic property of being an almost pure
resistor at RF frequencies, whose resistance
value can be varied from approximately 10,000
ohms to less than 1 ohm by the control current
flowing through it. Most diodes exhibit this
characteristic to some degree, but the PIN
diode is optimized in design to achieve a
relatively wide resistance range, good
linearity, low distortion, and low current drive.
The characteristics of the PIN diode make it
suitable for use in switches, attenuators,
modulators, limiters, phase shifters, and other
signal control circuits.
current, the geometry of the I-layer and the
properties of the carriers. For a given type of
PIN diode with uniform characteristics,
resistance is inversely proportional to the
forward bias current. Whereas, only high off
resistance and low on resistance are important
in switching applications, the resistance
characteristics in the entire dynamic range are
of concern in attenuator applications. Linearity
of resistance with bias makes the PIN diode
useful for attenuator applications.
Carrier Lifetime
An important parameter of the PIN diode is the
carrier lif.etime, T, which is useful for defining
the low frequency limit, fo = 2!T ' for linear
performance of the diode. For RF signal
frequencies below fo, the PIN diode rectifies the
signal much like an ordinary PN junction diode,
and considerable output distortion results. (See
Application Note 957-3 for additional discussion
on rectification causes and effects). At
frequencies above fo, less rectification occurs
with increasing frequency, allowing the PIN
diode to appear more linear, approaching a
pure resistor.
Device Characteristics
The principal parameters of a PIN diode which
play major roles in determining the
performance of a circuit include the following:
RF Resistance
The PIN diode structure consists of an I
(Intri nsic) layer of very high resistivity material
sandwiched between regions of highly doped P
(positively charged) material and N (negatively
charged) material. With reverse or zero bias, the
I-layer is depleted of charges and the PIN diode
exhibits very high resistance. When forward
bias is applied across the PIN diode, positive
charge from the P region and negative charge
from the N region are injected into the I-layer,
therefore increasing its conductivity and
lowering its resistance. The high off resistance
and low on resistance make the PIN diode
attractive for switching applications.
For applications requiring good linearity and
low distortion the minimum signal frequency
should be.ten times fo, i.e., fmin = 210 , = 1&.. This
restriction is not important in switching T
applications, where the diode is normally
biased either completely off or on. In those
states, since most of the power is either
reflected or transmitted, the effect of RF current
on the total charge is small and distortion is not
a problem.
At RF frequencies, the PIN diode with forward
bias behaves essentially as a pure resistor. The
resistance of the PIN diode is related to the bias
214
[-
("-->
Capacitance
Diode capacitance limits switch and attenuator
performance at high frequencies in the form of
isolation rolloff and increased insertion loss.
Optimum performance can be achieved by one
of several alternatives available. Using a low
capacitance diode would be one solution. Since
the junction capacitance of a PIN diode is
related to the geometry and electrical properties
of the I-layer similar to the case of RF
resistance, an R-C trade-off may be feasible.
Special techniques can be employed to
minimize capacitive (and other parasitic)
effects, and in some cases even to take
advantage of them. (Some of the techniques for
improving high frequency performance are
discussed in Application Notes 922 and 957-2.)
reverse bias applied. With forward bias current,
charge is stored in the I-layer. When a reverse
pulse is applied, reverse current will flow for a
short period of time, known as delay time, td.
When a sufficient number of carriers have been
removed, the current begins to decrease. The
time required for the reverse current to
decrease from 90% to 10% is called the transition time, tt. The sum, td + tt, is the reverse
recovery time, which is a measure of the time it
takes to switch the diode from on to off.
Reverse Breakdown Voltage
The reverse breakdown voltage defines the
recommended maximum signal level for safe
operation of the diode. Operation at signal levels above the reverse breakdown voltage may
result in degradation of diode characteristics or
in permanent damage to the diode.
Reverse Recovery Time
Reverse recovery time is a measure of switching
time, and is dependent on the forward and
215
APPLICATIONS OF PIN DIODES
Isolation
Isolation is the measure of RF leakage between
the input and output when the switch is off. For
high isolation (low transmission) low
capacitance is required in a series switch
especially at high frequencies (Figure 3), Low
resistance is required in a shunt switch (Figure 4),
PIN diodes are used principally for the control
of RF and microwave signals. Applications
include switching, attenuating, modulating,
limiting and phase shifting. Certain diode
requirements are common to all these control
functions, while others are more important in a
particular type of usage.
Switching Speed
In many applications, switching time is very
important. Reverse recovery time is a measure
of the switching time of a PIN diode, the time
required to switch the diode from ON to OFF.
The time needed to switch the diode from OFF
to ON is shorter. (See Application Note 929 for
details).
SWitching Applications
The performance of a PIN diode circuit is
directly related to the basic characteristics of
the diode. As an illustrative example, the
performance of a PIN diode switch can be
simply approximated by treating the PIN diode
essentially as a resistor in the forward biased
state and a capacitor in the reverse biased state.
Switch performance can then be analyzed as
follows:
Power Handling Capability
The RF power (CW or pulse) that can be
handled safely by a diode switch is limited by
two factors - the breakdown voltage of the
diode, and thermal considerations, which
involve the maximum junction temperature and
the thermal resistance of the diode and
packaging. Other factors affecting power
handling capability are ambient temperatures,
frequency, attenuation level (which is related to
diode resistance), pulse width and duty cycle.
(See Application Note 922 for details).
Insertion Loss
The loss of signal attributed to the diode when
the switch is on (transmission state) is insertion
loss. For low insertion loss, low resistance is
needed in a series switch (Figure 1). Low
capacitance (particularly at high frequencies) is
needed in a shunt switch (Figure 2) .
.8
150
1
~
I
-
/
c=J50
.6
-
V
.4
~3900-
HPND-4005-
//
.2
V.
/
r--
V
~I(pND-4001
I.L. = 10 LOG
~+ 1~0)
HP~D-405~
5082-0~01.
0012
5082-0034
2
DIODE RESISTANCE - R (OHMS)
FREQUENCY (GHz)
Figure 1. Typical Insertion Loss of Series Diode Switch.
Figure 2. Typical Insertion Loss of Shunt Diode Switch.
216
(
70r--------------,--------------~
50
f--------OJ50
60r-------------~--------------~
n
n-----i
40r---~'"------~--------------~
20~------------~----~~------~
10r--------------+------~~~~~
DIODE RESISTANCE - R en)
FREQUENCY IGH,)
Figure 3. Typical Isolation of Series Diode Switch.
Figure 4. Typical Isolation of Shunt Diode Switch.
Attenuators
(
Whereas a switch is used only in its maxium
ON or OFF state, an attenuator is operated
throughout its dynamic range (or resistance
range in the case of a diode attenuatorL
Although a single diode series or shunt switch
can be used as an attenuator, it cannot offer in
its entire dynamic range constant input and
output impedance, which is required for
optimum source and load matching in most
attenuator applications. By using a multiple
diode circuit such as a rr, T, or bridged-T
attenuator, constant input and output
impedance can be achieved throughout the
attenuation range.
A PIN diode limiter is essentially an attenuator
that uses self bias rather than externally applied
bias. As the RF input increases, the rectified
current generated by the PIN diode (in some
limiter circuits by an auxiliary Schottky diode)
biases the diode to a low resistance state. Most
of the input power is then attenuated, allowing
very little to be transmitted. The sensitive
equipment that follows is thus protected.
For a limiter circuit to be efficient, it is essential
that the PIN diode has fast switching time.
Without an auxiliary diode, a PIN diode with
good rectification efficiency is needed to
achieve low resistance. Another diode
requirement is good heat transfer
characteristics (low thermal resistance).
An additional requirement in most attenuator
applications is low distortion. Distortion can be
kept at a minimum, if the carrier lifetime of the
PIN diode used is greater than the inverse of
the signal frequency, preferrably T >
where
T is the carrier lifetime and f is the signal
frequency.
Phase Shifters
\6,
The high speed switching capabilities and low
ON and high OFF resistance states of the PIN
diode make it also very useful for many types of
high speed, current controlled phase shifter
applications. Another important requirement for
these applications is the uniformity of diode
characteristics such as capacitance and
resistance particularly in systems where a large
number of elements are involved.
Limiters
Sensitive amplifiers, mixers, and detectors in
microwave systems can be protected against
damage by high level signals with the use of a
PIN diode limiter shunting the transmission line.
217
PIN DIODE SELECTION GUIDE
Hewlett-Packard PIN diodes are available in
chip form and several types of packages, which
lend themselves more suitable for particular
applications, Packaged devices containing the
generic chips are listed in the Selection Guide
in the order of increasing junction capacitance.
For switching, attenuating, and other general
purpose applications particularly in the
VHF/UHF range, the low cost glass package
(Outline 15) is suitable. Due to their low
parasitics, ceramic packages (Outlines 31 and
38) are suited for broadband circuits up to 1
GHz and for resonated narrowband circuits up
to 8 GHz. In addition, they have medium power
handling capability.
Stripline packages (Outlines 60 and 61),
containing built-in low pass matching circuits,
can be used in broadband designs up to 18
GHz. Because of good heat sinking, they can
handle high power in switching, attenuating
and limiting applications. The beam lead
packages with low parasitics are designed for
use in stripline or microstrip circuits using welding or thermo-compression bonding techniques.
(Devices listed in the order of increasing junction capacitance)
All part numbers, 5082- (except HPND- as noted)
Maximum
Junction
Capacitance
(pF)
( ote 1)
0.02'"
eftR
0.025 ....
Packaged Devices Containing Similar Chips
(Package Outline)
Typical
RF
Resistance
R. (n)
(Note 3)
4.7ft
Chip
0.08'
6.0t
1.8ttt
0.12
0.8
0012
0.12
0.8
0030
0.15
0.15"
0.6
1.3ttt
0047
0.16"
0.8ft
0001
0.20
1.5
0025
0.20
0.20
1.2"
2.0
0.6
OAttt
0039
0049
0034
Package
Capacitance
(pF)
Pages
Beam
Lead
HPND4005
3900
HPND4001
Glass
(15)
3001
3002
3039
3077
i N5719
HPND4165
HPND4166
Ceramic
(31)
(38)
3201
3202
3101
3102
3303
3304
(60)
Stripline
(61)
3140
3040
3170
3340
3141
3041
3071
HPND4050
3042
3043
3080
3379
1 N5767
3081
3306
3305
3046
3168
3188
(Note 2)
.13
.2
.2
.03
Notes:
1. All capacitance measured with VR = 50 volts, except:
'VR = 30 volts
'''VR = 10 volts
"VR = 20 volts
.... VR = 0 volt
3. RF resistance measured with IF = 100 mA, except:
t1F=50 mA
ttlF = 20 mA
tttlF = 10 mA
2. Capacitance of beam lead devices includes package
capacitance.
218
.03
PIN DIODE ALPHANUMERIC INDEX
(./
Page Number
Commercial
Data Sheet
Standard
Hi-Rei
Data Sheet
Part No.
Description
HPND-4001
HPND-4005
HPND-4050
HPND-4165
HPND-4166
Beam Lead PIN Diode
Beam Lead PIN Diode
Beam Lead PIN Diode
RF PIN Diode
RF PIN Diode
JAN 1N5719
JANTX 1 N5719
TXVB-3001
TXVB-3002
TXVB-3039
MIL-S-19500/443 PIN Diode
MIL-S-19500/443 PIN Diode
Hi-Rei 5082-3001
Hi-Rei 5082-3002
Hi-Rei 5082-3039
256
256
260
260
260
TXVB-3042
TXVB-3043
TXVB-3077
TXVB-3080
TXVB-3141
Hi-Rei 5082-3042
Hi-Rei 5082-3043
Hi-Rei 5082-3077
Hi-Rei 5082-3080
Hi-Rei 5082-3141
263
263
260
266
272
TXVB-3168
TXVB-3188
TXVB-4001
TXVB-4005
TXVB-4050
Hi-Rei 5082-3168
Hi-Rei 5082-3188
Hi-Rei 5082-4001
Hi-Rei 5082-4005
Hi-Rei 5082-4050
269
269
252
254
252
1N5719
1N5767
5082-0001
5082-0012
5082-0025
PIN Diode 15082-3039)
PIN Diode 15082-3080>
High Speed Switch PIN Chip
PIN Switching Diode Chip
AGC PIN Chip
229
229
220
220
220
5082-0030
5082-0034
5082-0039
5082-0047
5082-0049
PIN Switching Diode Chip
VHF/UHF Switching PIN Chip
AGC PIN Chip
PIN Switching Diode Chip
Medium Power Switch PIN Chip
220
220
220
220
220
5082-1001
5082-1002
5082-1006
5082-3001
5082-3002
High Conductance Diode 11 N4456)
High Conductance Diode
High Conductance Diode
RF PIN Diode
RF PIN Diode
248
248
248
229
229
5082-3039
5082-3040
5082-3041
5082-3042
5082-3043
RF PIN Diode
Stripline PIN Diode
Stripline PIN Diode
RF PIN Diode
RF PIN Diode
229
235
235
229
229
5082-3046
5082-3071
5082-3077
5082-3080
5082-3081
Stripline PIN Diode
Microwave Limiter PIN Diode
VHF/UHF PIN Switching Diode
HFIVHF/UHF Current Controlled Resistor
HFIVHF/UHF Current Controlled Resistor
235
233
229
229
229
5082-3101
5082-3102
5082-3140
5082-3141
5082-3168
RF Pin Diode
RF Pin Diode
Hermetic Stripline PIN Diode
Hermetic Stripline PIN Diode
VHF/UHF Switching PIN Diode
2413
246
240
240
229
5082-3170
5082-3188
5082-3201
5082-3202
5082-3303
Hermetic Stripline PIN Diode
VHF/UHF Switching PIN Diode
RF PIN Diode
RF PIN Diode
RF PIN Diode
240
229
246
246
246
5082-3304
5082-3305
5082-3306
5082-3340
5082-3379
RF PIN Diode
High Speed Switch PIN Diode
High Speed Switch PIN Diode
Stripline PIN Diode
VHF/UHF Attenuator PIN Diode
246
244
244
235
229
5082-3900
PI N Diode Beam Lead
226
222
224
222
229
229
219
252
254
252
Reliability
Data Sheet
276
276,278
276
282
282
282
280
260
260
282
282
260
282
263
263
260
266
282
280
272
269
280
269
280
r/i~ HEWLETT
~~ PACKARD
5082-0001
5082-0012
5082-0025
5082-0030
5082-0034
5082-0039
5082-0047
5082-0049
PIN DIODE CHIPS
FOR HYBRID MIC
SWITCHES/ATTENUATORS
Features
WIDE RANGE OF CAPACITANCE
0_12 pF to 1_2 pF Maximum
All OTHER CHIPS
I-tJ II
LOW SERIES RESISTANCE
0.4 n Typical
I~x-I
OXIDE PASSIVATED
l
r--~=------'I v
WIDE RANGE OF BREAKDOWN VOLTAGE
35 V to 300 V Minimum
f
Outline 01
Description
These PIN diode chips are silicon dioxide passivated of mesa
(5082-0001 I, pitted planar (5082-0012, -00301, and planar
(5082-0047, -0034, -0025, -0039, -00491 construction. The fabrication processes are optimized for long term reliability and
tightly controlled for uniformity in electrical performance.
HP Part Humber 5081·
I
0011
(}imenstfm
0047
0
0030
0.13
X
0.38
0034
0015
023
0.51
(201
(151
0.13
009
15)
13.5)
Top
Contact
ca~~~(ie
-Bottom
Contact
Au,
Ano-de
0.15
Au.
Anode
Ag.
Anode
Au.
Calhode
(6)
0049
0.24
(9.51
(9)
(5)
y
0039
023
(9
I
0001
0.06
12"
0.38
( 15)
008
1321
0.11
;4.51
ca~~~de
Au.
Anode-
Au.
Anode.
Cathode
Au.
Dimensions in millimeters (1/1000 inch)
Maximum Ratings
Junction Operating and Storage
Temperature Range ................
Applications
-65'C to +150'C
These general purpose PIN diodes are intended for low
power switching applications such,as duplexers, antenna
switching matrices, digital phase shifters, time multiplex
filters, TR switches, pulse and amplitude modulators,
limiters; leveling circuits, and attenuators.
Soldering Temperature
5082-0012, -0025, -0030, -0034, -0039,
-0047, -0049 ......... +425' C for one minute maximum
5092-0001 .......... +300' C for one minute maximum
The 5082-0034 is ideally suited for hybrid VHF/UHF
bandswitching.
Operation of these devices within the above temperature ratings will assure a device Median Time To
Failure (MTTF) of approximately 1 x 107 hours.
The 5082-0001 is optimized for applications requiring fast
switching.
220
(
Electrical Specifications
at TA = 25°C
Chip
Part
Nearest
Equivalent
Packaged
Typical
Series
Resistance
Rs(n)
Lifetime
Typical
Rent..
Recovery
Time, lrr
r(n$)
(n$)
5082·
Part No.
5082.
VBR(V)
Maximum
Junction
Capacitance
Ci(pF)
0012
3001
150
0,12
0.8
400
100
0030
3301
150
0-12
0.8
400
100
100
Number
Minimum
Breakdown
Voltage
Typical Parameters
Typl,:al
0047
3001
150
0,15
0.6
400
0001'
3041
70
0.16'
O.S'
15
5
0025
3080
100
0.20
1.5
1300
1000
0039
3081
100
0.20
2,0
2000
0049
3046
300
0.20
0.6
1000
0034
3168
35
1,2'
0.4*'
40
12
VR "'VBR
Measure
IR :510 "A
VR=50V
'VR "" 20V
f 1 MHz
13]
IF=100mA
'IF= 20 rnA
''If=10mA
f= 100 MHz
IF= 50 rnA
IR""250 rnA
If ",,'20 rnA
VR'" 10V
[1'.2]
1000
"
200
Notes:
1. Use standard thermocompression bonding techniques. Ultrasonic bonding is not recommended.
2. Either ultrasonic or thermocompression bonding techniques can be employed.
3. Total capacitance CT = Cj + C p , where Cj is the junction capacitance under reverse bias and C p is the package parasitic capacitance.
221
Flin-
LOW LOSS
BEAM LEAD
PIN DIODES
HEWLETT
~~ PACKARD
HPND -4001
HPND -4050
Features
LOW SERIES RESISTANCE
1.3!l Typical
LOW CAPACITANCE
0.07 pF Typical
FAST SWITCHING
2 ns Typical
RUGGED CONSTRUCTION.
4 Grams Minimum Lead Pull
WH
====~~~~=====~\'-_____1
T
-
Description
6012.4)
DIMENSIONS IN ,..1111000 ,",hi
The HPND-4001 and -4050 are beam lead PIN diodes designed
specifically for low capacitance, low series resistance and rugged
construction. The new H P mesa process allows the fabrication of
beam lead PINs with a very low RC product. A nitride
passivation layer provides immunity from contaminants which
would otherwise lead to IR drift. A deposited glass layer
(glassivated) provides scratch protection.
mm
OuUine 07
Applications
The HPND-4001 and -4050 beam lead PIN diodes are designed
for use in stripline or microstrip circuits. Applications include
switching, attenuating, phase shifting and modulating at
microwave frequencies. The low capacitance and low series
resistance at low current make these devices ideal for
applications in the shunt configuration.
Maximum Ratings
Operating Temperature...............
Storage Temperature ................
·-----T
-65°C to +175°C
-65°C to +200°C
Operation of these devices within the above
temperature ratings will assure a device
Median Time To Failure (MTTF) of approximately 1 x 107 hours.
Power Dissipation at TeASE = 25°C ............ 250 mW
(Derate linearly to zero at 175°CI
Minimum Lead Strength ....... 4 grams pull on either lead
Bonding and Handling
Procedures
See page 228.
222
I
\
(
Electrical Specifications at TA=25°C
Breakdown
Voltage
V BFI (V)
Part
Number
Series
Resistance
Re (11)
Capacitance
CT (pF)
Minority Carrier
Lifetime
T (ns)
Reverse Recovery
Time
Irr (ns)
Min.
Typ.
Typ.
Max.
Typ.
Max.
Typ.
Typ.
HPND-4001
50
80
1.8
2.2
0.01'
0.08'
30
HPNO-4050
30
40
1.3
17
012
015
25
3
2
IF"" 10 rnA
IR = 6 rnA
IF = 10 mA
VR = 10V
Test
IF = 10 rnA
f= 100 MHz
VR "" VSR
Measure
IR $10 IlA
Conditions
VR = 10 V
'VR 30V
f = 1 MHz
Typical Parameters
100
-
ffi
a:
a:
u
"«in
:::l
u
"«a:
10
i:ia:
;:
~
a:
a:
ir
1.0
0.1
FORWARD VOLTAGE (VOLTS)
(
1.0
10
100
FORWARD BIAS CURRENT (rnA)
Figure 2. Typical RF Resistance vs. Forward
Figure 1. Typical Forward Characteristics.
Bias Current.
0.30
w
:;;
i=
~ 0.20
w
u
z
«
....
13
;;:
;3
0,10
20
>-
~
8'i
>
o
~
a:
~
HPND-4050
'-..
10
8'i
HPND-4001
~
a:
10
20
10
30
REVERSE VOLTAGE (V)
20
30
FORWARD CURRENT (mA)
Figure 3. Typical Capacitance vs. Reverse Voltage.
Figure 4. Typical Reverse Recovery Time vs. Forward
Current (Shunt Configuration)
223
BEAM LEAD
PIN DIODE
rli~ HEWLETT
~~ PACKARD
HPND- 4005
Features
HIGH BREAKDOWN VOLTAGE
120V Typical
LOW CAPACITANCE
0.017 pF Typical
LOW RESISTANCE
4.70 Typical
RUGGED CONSTRUCTION
4 Grams Minimum Lead Pull
(1) 1J!LII'------~:g(*ID
NITRIDE PASSIVATED
'-LWo(~:l)
OIMEN$JON$ iN ~m (1/1000 inch)
Description
Outline 21
The HPND-4005 planar beam lead PIN diode is constructed
to offer exceptional lead strength while achieving excellent
electrical performance at high frequencies. High beam
strength offers users superior assembly yield, while extremely low capacitance allows high isolation to be realized.
Nitride passivation and polyimide glassivation provide reliable device protection.
Applications
The HPND-4005 beam lead PIN diode is designed for use in
stripline or microstrip circuits. Applications include switching, attenuating. phase shifting, limiting and modulating at
microwave frequencies. The extremely low capacitance of
the HPND-4005 makes it ideal for circuits requiring high
isolation in a series diode configuration.
Maximum Ratings
Operating Temperature .................. - 6S·C to + 17S·C
Storage Temperature .................... - 6S·C to + 200·C
Operation of these devices within the above
temperature ratings will .assure a device
Median Time To Failure (MTTF) of approximately 1 x 107 hours.
Power Dissipation at TeAsE
= 25°C ............ 250 mW
Bonding and Handling
Procedures
(Derate linearly to zero at 175° C)
Minimum Lead Strength ........... 4 grams pull on either lead
Diode Mounting Temperature ........... 220·C for 10 seconds
maximum
See page 228.
224
(
Electrical Specifications at TA = 25°C
Parameter
Symbol
Min.
Typ.
Max.
Units
Breakdown Voltage
V BR
100
120
-
V
Series Resistance
Rs
-
4.7
6.5
Ohm
Capacitance
CT
-
.017
.02
pF
Minority Carrier lifetime
r
-
100
150
ns
Reverse Recovery Time
Irr
-
20
35
ns
Conditions
IR= 10 ~A
IF =20 rnA,
1=100 MHz
VR =10V,
f=10GHz
IF=10mA
fR~6 rnA
IF= 20 rnA
VR ", 10 V
90% Recovery
"Total capacitance calculated from measured isolation value in a series configuration.
'TYpical Parameters
§:
w
<..l
Z
~ 100
\=-----+- .->..;c--'----I-----"
iii
w
a:
u.
a:
.0' '--_ _
~_L
.25
(
_ _ _ _ _ _..L_ __ '
.50
.75
1.00
'OL,-~~ill.,c-~L4WL,~~~~,OC-~~~,00
1.25
FORWARD VOLTAGE (V)
FORWARD BIAS CURRENT (rnA)
Figure 1. Typical Forward Conduction Characteristics.
Figure 2. Typical RF Resistance vs. Forward Bias Current.
40
0.10
ISOLATION AT:
.,
-30V
-10V~,
'" "
~30
ov.....
z
5
~ 20
~
=
ffi
........ ~ '(I);;
5
~
0.04
~
20mA
1\
"-----
50 rnA
10
10
1
o
0.0 2
10
18
FREQUENCY (GHz)
20
30
REVERSE VOLTAGE (VOLTS)
Figure 3. Typical Isolation and Insertion Loss in the Series
Figure 4. Typical Capacitance at 1 MHz vs. Reverse Bias.
Configuration (Zo ~ 50n>.
225
Flio-
BEAM LEAD
PIN DIODE
HEWLETT
~~ PACKARD
Features
5082-3900
Outline Drawing
HIGH BREAKDOWN VOLTAGE
200 V Minimum
I.
·c
)
LOW CAPACITANCE
0.02 pF Typical
RUGGED CONSTRUCTION
2 grams Minimum Lead Pull
NITRIDE PASSIVATED
730(~1
680 (26-.8)
;?Q!i(l'L4'-t-2S.Q(11.01:t~6§(10~)-+
200 (79-j
1_190 (14)
200 {7,9}
: ] [ : --------+--~=r-----.~
i~:
CATHODE
;C;;:==='i\}~_-=;;;:====-----1
'-----' _ _ _ _ _
~~
t
Description
1-j
~
The 5082-3900 planar beam lead PIN diode offers low capacitance to allow high isolation at RF and Microwave frequencies.
Nitride passivation and rugged construction insures reliable
performance and assembly yields.
255(10.0)
165 (6.5'
65 {2EI
4d{1:s}
DIMi!:NSloNS IN pm (1/1000 inch'
Outline 06
Maximum Ratings
Applications
Operating Temperature
The HP 5082-3900 Beam Lead PIN diode is designed for use in
stripline or microstrip circuits using welding, thermocompression or ultrasonic bonding techniques. PIN applications
include switching, attenuating, phase shifting, limiting and
modulating at microwave frequencies.
Storage Temperature
..............
-60°C to + 150°C
................. -60°C to +150°C
~ 25°C ............. 250 mW
(Derate linearly to zero at 150°C)
Minimum Lead Strength ....... 2 grams pull on either lead
Power Dissipation at TeAsE
Diode Mounting Temperature ..... 220°C for 10 sec. max.
Bonding and Handling
Procedures
Operation of these devices within the above temperature ratings will assure a device Median Time to Failure
(MTTF) of approximately 1 x 107 hours.
See page 228.
226
( __/ Electrical specifications at TA = 25° C
Symbol
Min.
Typ.
Max.
Units
Conditions
VeR
150
200
I r =10"A
Series Resistance
Rs
-
-
V
6
8
ohm
Capacitance
Co
-
0.02
0.025
pF
v=o V, f'" 3 GHz
ns
If"" 50 rnA, Ir - 250 MHz
Parameter
Breakdown Voltage
150
Minority Carner Lifetime
If=50 rnA. f=' 100 MHz
Typical Parameters
100
:::
"in
.5
:;'
iiia:
I
"
~
a:
I
,
u
I
I
,
5082·3039.
HPNO·4165i66
5082· 3042/43
IN5719
I
S082- 3001 102
0
FORWARD BIA~ CURRENT (rnA)
Figure 5. Typical RF Resistance
VS.
0
10
20
I1
I
30
40
70
REVERSE VOLTAGE (V)
Forward Bias Current.
Figure 6. Typical Capacitance vs. Reverse Voltage.
231
Typical parameters (Continued)
2.5
2.0
u.
..sw
z
tt:
I
r- S082-3168
10
20
W
>
15
~tt:
W
S082.:\'88
10
'"ffi
~
"- r---
00
25
.s
tt:
5Il8MOSOi81
[1082-331t1
20
30
40
50
60
0
70
0
Figure 7. Typical Capacitance
VB.
Reverse Voltage.
Figure 8. Typical Reverse Recovery Time vs. Forward Current for
Various Reverse Driving Voltages, 5082-3042, 3043.
lQdB eRIOG!'.~. TEl' ATTEIllUATOR
.• 1>032· 3001
3002
3OJ9
40dB mV OUTI'I.IT LEVELS
ONE INI'I./T FREOUEIIICY FIXED 100 MHz
3077
"
:s
;:
>
i;l
~
tt:
w
>
0
40
tt:
0
ffi
0
20
iii
INS119
w
'\
t;;
100
tt:
ii:
tt:
60
;:
W
~ t-....
9w
'"ffi
III
~
0
10
20
o
Figure 9. Typical Reverse Recovery Time vs. Forward Current
for Various Reverse Driving Voltages.
PIN DIODE cROSS MODULATION
10 dB BRIDQED Tn ATTEIllUATOR
UNMOOUljTEO
Mfh-
rEQrlllCl'°O
-
iii
a:
0
40
t;;
a:
ii:
~-'
w
\\
\ "- ......
100% MODULATION 15 kHz
40 dB mV OUTPUT LEVELS
w
Q
a:
50
60
CD
70
800
20
30
40
60
60
M
80
Figure 10. Typical Second Order Intermodulation Distortion.
10
30
10
FREQUENCY (MHz)
FORWARD CURRENT (mAl
:s
Ffrr2j'
100
30
20
5082-3IlOO
-...: r-.
eo
tt:
10
30
FORWARO CURRENT (mA)
1000
:;
20
10
'REVERSE VOLTAGE IV)
\
, r--..
i\
"'10
20
30
1-r-"I
5032-3050
S082-$379
5llS2>i'
40
50
60
70
80
MODULATED FREQUENCY (MHz)
Figure ". Typical Cross Modulation Distortion.
232
/
Flin-
PIN DIODE
LIMITER
HEWLETT
~e.tII PACKARD
5082-3071
Features
HIGH POWER HANDLING CAPABILITY
50 W Peak Pulse Power
LOW INTERMODULATION PRODUCTS
Typical 0.2 W Threshold Assures Wide Dynamic
Linear Range
BROAD BANDWIDTH
500 MHz to 10 GHz
LOW INSERTION LOSS
Less than 1 dB in X-band
EASY TO USE
Package Compatible with Stripline and Microstrip
0.38 MIN. I,OU»
(4pt,.ACESJ
NEGLIGIBLE SPIKE LEAKAGE
Outline 51
Maximum Ratings
(
Junction Operating and Storage
Temperature Range ................... -65°C to+125°C
Power Dissipationl 1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.0 W
Peak Incident Pulse Powerl 2] •••••••••••••••••.•••• 50 W
Peak Inverse Voltage ............................. 50 V
Soldering Temperature ................. 230°C for 5 sec
Description/Applications
The HP 5082-3071 passive limiter chip is functionally
integrated into a 50 ohm transmission line to provide a
broadband, linear, low insertion loss transfer characteristic
for small signal levels. At higher signal levels selfrectification reduces the diode resistance to provide limiting
as shown in Figure 2. Limiter performance is practically
independent of temperature over the rated temperature
range.
Operation of these devices within the above
temperature ratings will assure a device
Median Time To Failure (MTTF) of approximate/y 1 x 107 hours.
Notes:
1. Device properly mounted in sufficient heak sink at TA = 25° C,
The 5082-3071 limiter module isdesignedfor applications in
telecommunication equipment, ECM receivers, distance
measuring equipment, radar receivers, telemetry equipment, and transponders operating anywhere in the
frequency range from 500 MHz through 10 GHz. An external
dc return is required for self bias operation. This dc return is
often present in the existing circuit, i.e. inductively coupled
antennas, or it can be provided by a A/4 resonant shunt
transmission line. Selection of a high characteristic
impedance for the shunttransmission line affords broadband
operation. Another easy to realize dc return consists of a
small diameter wire connected at a right angle tothe electric
field in a microstrip or stripline circuit. A 10 mA forward
current will actuate the PIN diode as a shunt switch providing
approximately 20 d8 of isolation.
derate linearly to zero at maximum operating temperature.
2. tp = 1 I'S, f = 10 GHz, Du = O.OOt, Zo = 50 n, TA = 25°C.
Mechanical specifications
The cover channel supplied with each diode should be used
in balanced stripline circuits in order to provide good
electrical continuity from the upper to the lower ground plane
through the package base metal. Higher order modes will be
excited if this cover is left off or if poor electrical contact is
made to the ground plane.
The package transmission channel is filled with epoxy resin
which combines a low expansion coefficient with high
chemical stability.
233
Electrical Specifications at TA = 25°C
Part Number
5082·
Package
Outline
Heat
Sink
3071
61
Cathode
1.2
2.0
Test
Conditions
-
-
Pin ~ OdBm
f = 9.4GHz
Pin OdBm
f=9.4GHz
Maximum Insertion
Loss (dB)
Maximum
SWR
Maximum RF Leakage
Power (WI
1.0
P,n=50W
Typical Recovery
Time (os)
100
Pin; 50W
INPUT POWER (mW)
Figure 1. Heat Sink Polarity
Figure 2. Typical Pulse Limiting
Characteristics
234
Figure 3. Suggested Stripline Assembly
Flin-
HEWLETT
~~ PACKARD
5082-3040
5082-3041
5082-3046
5082-3340
STRIPLINE PIN
DIODE SWITCHES/
ATTENUATORS
Features
LOW COST TO USE
Designed for Easy Mounting
BROADBAND OPERATION
HF through X-band
LOW INSERTION LOSS
Less than 0.5 dB to 10 GHz (5082-3040, -3340)
HIGH ISOLATION
Greater than 20 dB to 10 GHz
FAST SWITCHING/MODULATING
5 ns Typical (5082-3041)
LOW DRIVE CURRENT REQUIRED
Less than 20 mA for 20 dB Isolation (5082-3041)
Description/Applications
These diodes are designed for applications in microwave and
HF-UHF systems using stripline or microstrip transmission
line techniques.
Typical circuit functions performed consist of switching.
duplexing, multiplexing, leveling, modulating, limiting, or
gain control functions as required in TR switches, pulse
modulators, phase shifters, and amplitude modulators
operating in the frequency range from HF through Ku-Band.
(
DIMENSIONS IN MILLIMETERS AND (INCHES)
Outline 61
These diodes provide nearly ideal transmission characteristics from HF through Ku-Band.
Maximum Ratings
The 5082-3340 is a reverse polarity device with characteristics similar to the 5082-3040. The 5082-3041 is
recommended for applications requiring fast switching or
high frequency modulation of microwave signals, or where
the lowest bias current for the maximum attenuation is
required.
Part No. 5082Junction Operating and
Storage Temperature
Range
The 5082-3046 has been developed for high peak pulse
power handling as required in TR switches for distance
measurement and TACAN equipment. The long effective
minority carrier lifetime provides for low intermodulation
products down to 10 MHz.
More information is available in HP AN 922 (Applications of
PIN Diodes) and 929 (Fast Switching PIN Diodes).
-3040
-3340
-65°C to
125°C
-3041
-3046
-65°C to
125°C
Power Dissipation[1]
2.5W
1.0W
4.0W
Peak Incident Pulse
Powerl 2]
225 W
50W
2000W
Peak Inverse Voltage
150V
70 V
300V
Soldering Temperature
230 0 C for 5 sec.
Notes:
1. Device properly mounted in sufficient heat sink at 25° C, de-
Mechanical specifications
rate linearly to zero at maximum operating temperature.
The cover channel supplied with each diode should be used
in balanced stripline circuits in order to provide good
electrical continuity from the upper to the lower ground plane
through the package base metal. Higher order modes will be
excited if this cover is left off or if poor electrical contact is
made to the ground plane.
2. t p =ll's,f=10GHz,Du=O.001,Zo=50(l,T A =25°C.
Operation of these devices within the above
temperature ratings will assure a device
Median Time To Failure (MTTF) of approximately 1 x 107 hours.
The package transmission channel is filled with epoxy resin
which combines a low expansion coefficient with high
chemical stability.
235
Electrical Specifications at TA =25°C
Part
Number
Minimum
Isolation
Maximum
Insertion
Loss
(dB)
(dBI
Maximum
SWR
Typical
CWPowar
Switching
Capability
Maximum
Reverse
Recovery
Time
t,r
(ns)
Typical Carrier
Lifetime
r
PA
(nsl
(WI
30
5082·
Package
Outline
3040
61
Anode
20
0.5
1.5
-
400
3041
61
Cathode
20
1.0
1.5
10
15
13
3046
61
Anode
20
1.0
1.5
..
1000
50
3340
61
Cathode
400
30
..
..
Test
Conditions
(Note 3)
Heat
Sink
20
0.5
IF ",1 OOmA
(Except
3041;
IF=20mA)
..
1.5
IF'" 0
Pin'" tmW
..
IF'" SOmA
IR" 2SOmA
IF'" 20mA
IF'" 0
Pin" tmW
VR" 10V
Recovery
to 90%
Note 3:Test Frequencies: 8 GHz 5082-3041. -3046; 10 GHz 5082-3040. and -3340.
Typical Parameters
12
FORWARD VOLTAGE (V)
FORWARD VOLTAGE (V)
FORWARD VOLTAGE (V)
Figure 1. Typical Forward Characteristics.
34
1.8
1.4
1.2
1.6
/
1.0
0.8
~
~'~~¢-
0.6
0.4
0.2
o
V
~ i-""'"
2
:/V
10
12
~
"/
~
1.4
~-
A~LDIO/
---
14
16
FREQUENCY {GHz}
Figure 2. Typical Insertion Loss vs.
Frequency.
1.2
18
f1
V
L
V
32
/
N
30
28
.....
26
........
~,)'O~l
1'-..)'a,,6'
........,
,,~
24
,
........,
r--
22
-........
-
20
10
12
14
16
18
FREQUENCY (GHz)
Figure 3. Typical SWR vs. Frequency.
236
18
2
10
12
14
16
18
FREQUENCY {GHz}
Figure 4. Typical Isolation vs. Frequency.
(
100
BIAS CURRENT (rnA)
FigureS. Typical Attenuation Above Zero
Bias Insertion Loss vs. Bias Current
at f = 8 GHz.
HEAT SINK POLARITY
Equivalent Circuits
Forward Bias(lsolation State)
Zo=50n
Rp
Lp
Zero Bias (I nsertion Loss State)
Zo=50n
Lp
Rp
Lp
Rp
€r = 1
Er'" 1
R,
Lp
Zo"'50.n
Er= 1
R,
--£2--
c,
Typical Equivalent Circuit Parameters -Forward Bias
Part Number
5082·
Lp
Rp
Rs
Ll
£1
£2
(pHI
(m
(m
(pH)
(mm)
(mm)
3040,3340
200
0.25
1.0
20
2.4
5.0
3041
220
0.25
1.0
20
2.4
5.0
3046
220
0.25
0.6
17
2.4
5.0
Typical Equivalent Circuit Parameters - Zero Bias
Lp
(pHI
Rp
Rl
L2
H2
CT
£1
6082·
(11)
(KI1)
(pH)
(Km
(pFI
(mml
£2
(mm)
3040,3340
200
0.25
()O
0
5.0
0.10
2.4
5.0
3041
220
0.25
00
0
1.5
0.15
2.4
5.0
3046
220
0.25
DO
0
1.5
0.15
2.4
5.0
Part Number
237
Typical Switching Parameters
REVERSE RECOVERY TIME
Shown below is reverse recovery time, (trr) vs. forward
current, (IF) for various reverse pulse voltages VR. The circuit
used to measure trr is shown in Figure 7.
RF SWITCHING SPEED
HP 5082-3041
The RF switching speed of the HP 5082-3041 may be considered in terms of the change in RF isolation at 2 GHz. This
switching speed is dependent upon the forward bias current,
reverse bias drive pulse, and characteristics of the pulse
source. The RF switching speed for the shunt-mounted stripline diode in a 50 n system is considered for two cases: one
driving the diode from the forward bias state to the reverse
bias state (isolation to insertion loss), second, driving the
diode from the reverse bias state to the forward bias state
(insertion loss to isolation).
D.U.T.
'"
~"I-~-"""~.0"k-ni.)tl--'>---<-=-r-50-n""
TO SCOPE
Figure 7. Basic Irr Test Selup.
The total time it takes to switch the shunt diode from the
isolation state (forward bias) to the insertion loss state
(reverse bias) is shown in Figure 6. These curves are for
three forward bias conditions with the diode driven in each
case with three different reverse voltage pulses (VPR). The
total switching time for each case includes the delay time
(pulse initiation to 20 dB isolation) and transition time(20dB
isolation to 0.9 dB isolation). Slightly faster switching times
may be realized by spiking the leading edge of the pulse or
using a lower impedance pulse driver.
3or-----r---~r----~
]
~
,.>=
25
20
ffi
>
0
15
~
w
il
10
~
l-POWER It: O-dSm lFQ",2G:~
I I .
8
24
I,
r;
'10mAI I L
IF ""SOmA
If *20mA
o
I
I i
I
Ii
6
2
1°V
8
11
~W
V
4
0
o
a:
~
°0~-~-~,0~--~-~2~0-~-~30
FORWARD CURRENT (rnA)
II
Figure 8. Typical Reverse Recovery Time vs. Forward Current for
Various Reverse Driving Vollages, 5082-3041.
I
1\: I, l
~lt~1.+~~
H"
2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
TIME (ns)
Figure 6. Isolalion vs. Time (Turn-on) for HP 5082-3041.
FrequencY,2 GHz.
The ti me it takes to switch the diode from zero or reverse bias
to a given isolation is less than the time from isolation to the
insertion loss case. For all cases of forward bias generated by
the pulse generator (positive pulse), the RF switching time
from the insertion loss state to the isolation state was less
than 2 nanoseconds. A more detailed treatise on switching
speed is published in AN929; Fast Switching PIN Diodes.
10 01----"---:,~O---'---:::---~--:30
FORWARD CURRENT {rnA}
Figure 9. Typical Reverse Recovery Time vs. Forward Currenl for
Various Reverse Driving Vollages, 5082-3340.
238
(
'OO~--~--~'O~--~--~2~O---L--~30
FORWARD CURRENT (mA)
Figure 10. Typical Reverse Recovery Time vs. Forward Current
lor Various Reverse Driving Voltages, 5082-3040.
Figure 11. Suggested Strlpllne Assembly.
239
Fli;'
HEWLETT
a:~ PACKARD
HERMETIC PIN DIODES FOR
STRIPLINE/MICROSTRIP
SWITCHES/ATTENUATORS
5082-3140
5082-3141
5082-3170
Features
BROADBAND OPERATION
HF through X-band
LOW INSERTION LOSS
Less than 0.5 dB to 10 GHz (5082-3140, -3170)
HIGH ISOLATION
Greater than 20 dB to 10 GHz (5082-3140, -3170)
FAST SWITCHING/MODULATING
5 ns Typical (5082-3141)
LOW DRIVE CURRENT REQUIRED
Less than 20 mA for 20 dB Isolation (5082-3141)
OIMENSIONS IN MILLIMETEflSAlIItl (INCHES}
Qutline60
Description/Applications
The HP 5082-3140 and -31.70 are passivated planar devices
and the 5082-3141 is a passivated mesa device. All are in a
shunt configuration in hermetic stripline packages which are
suitable for Hi-Rei applications. These diodes are optimized
for good continuity of characteristic impedance which allows
a continuous transition when used in 50 ohm microstrip or
stripline circuits.
Maximum Ratings
Part No. 5062-
Junction Operating and
Storage Temperature
Range
Power Disslpationi 11
These diodes are designed for applications in microwave and
HF-UHF systems using stripline or microstrip transmission
line techniques.
Typical circuit functions performed consist of switching,
duplexing, multiplexing, leveling, modulating, limiting, or gain
control functions as required in TR switches, pulse modulators, phase shifters, and amplitude modulators operating in
the frequimcy range from HF through Ku-Band. These diodes
provide nearly ideal transmission characteristics from HF
through Ku-Band.
-3140
-3170
-3141
-65 9 C to 150·C -65°C to 150"C
l.loW
O.75W
Peak Incident Pulse
Powerl 21
225W
50W
Peak Inverse Voltage
1!)OV
70V
Soldering Tempf,lrature
230" C for 5 sec.
Notes:
1. Device properly mounted in sufficient heat sink at 25° C, derate linearly to zero at maximum operating temperature.
2. tp ~ II's, f ~ 10 GHz, Du ~ 0.001, Zo ~ 50 n, TA ~ 25°C.
The 5082-3170 is a reverse polarity device with characteristics similar to the 5082-3140.
The 5082-3141 is recommended for applications requiring
fast switching or high frequency modulation of microwave
signals, or where the lowest bias current for maximum attenuation is required.
Mechanical specifications
Package Outline 60 is hermetically sealed and capable of
meeting the stringent requirements of space level high reliability testing. Both the package and lead materials are gold
plated Kovar.
More information is available in HP Application Note 922
(Applications of PIN Diodes) and 929 (Fast Switching PIN
Diodes!.
240
(
Electrical Specifications at TA=25°C
Part
Maximum
Typical
CWPower
Minimum
Maximum
Insertion
Isolation
(dB)
loss
IdB)
Maximum
SWR
Reverse
R_very
Time
trr
Ins!
Typical Carrier
Lifetime
Swltohing
Capability
PA
Number
5082·
Outline
3140
60
Anode
20
0.5
1.5
-
Ins)
400
3141
60
Cathode
20
1.0
1.5
10
15
13
3170
60
Cathode
20
0.5
1.5
400
30
Test
Conditions
(Note 3)
-
-
-
Heat
Sink
Package
1j::=100mA IF =0
IF .. 0
(Except
PIt\=lmW
Pjn= 1mW
l'
IF =2OmA
3141;
fF=20mA)
VR =10V
Recovery
to 90%
(W)
30
-
1j::=5OmA
IR = 250mA
Note 3: Test Frequencies: 8 GHz 5082-3141.10 GHz 5082-3140, -3170.
Typical Parameters
1.4
1.2
/'
1.0
,.' / /
0.8
,;."
06
0.4
02
(
1.2
FORWARD VOLTAGE (V)
FORWARD VOLTAGE (V)
~
1.4
At.lDIO~
1.2
V
V
1/
V
30
........ .....
24
14
16
18
FREQUENCY IGHz)
Figure 3. Typical SWR vs. Frequency.
10
12
14
16
18
,
" r--- ~1
26
J, r-.... .......
~~ f ' r-....
,
20
12
2
100,----,---,----,----,---,
22
10
o
32
28
V
~~
Figure 2. Typical Insertion Loss vs.
Frequency.
34
1.6
41~
,/o;,f!>' r-- -
FREQUENCY IGHz)
Figure 1. Typical Forward Characteristics.
1.8
,/
7
18
2
10
12
FREQUENCY (GHz)
14
........
'"
16
Figure 4. Typical Isolation vs. Frequency.
241
100
18
BIAS CURREN1 (mAl
Figure 5. Typical Attenuation Above Zero
Bias Insertion Loss vs. Bias Current
at I = 8 GHz.
Equivalent Circuits
Forward Bias(lsolation State)
Zo"'50n
Rp
Lp
Zero Bias (J nsertioo Loss State)
Lp
€r'" 1
R,
--£,--
--£1-
Typical Equivalent Circuit Parameters -Forward Bias
Part Number
5082·
Lp
(pH)
Rp
Rs
£2
(m
L,
(pH)
Q,
(m
(mm)
(mm)
3140,3170
3141
150
0.0
0.95
30
3.8
3.8
150
0.0
0.8
20
3.8
3.8
Typical Equivalent Circuit Parameters - Zero Bias
Part Number
5082·
Lp
(pH)
Rp
R1
CT
£,
£2
{Km
L2
(pH)
R2
{m
(Km
(pF)
(mm)
{mml
1.2
16
0.0
0.20
5.3
5.3
""
0
0.4
0.14
4.4
4.4
3140,3170
30
0.0
3141
200
0.0
Typical Switching Parameters
RF SWITCHING SPEED
HP 5082·3141
The RF switching speed of the HP 5082·3141 may be considered in terms of the change I in RF isolation at 2 GHz. This
switching speed is dependent upon the forward bias current.
reverse bias drive pulse. and characteristics of the pulse
source. The RF switching speed for the shunt-mounted stripline diode in a 50 II system is considered for two cases, one
driving the diode from the forward bias state to the reverse
bias state (isolation to insertion loss), second driving the
diode from the reverse bias state to the forward bias state
(insertion loss to isolation).
TIME (ns)
Figure 6. Isolation vs. Time (Turn-on) for HP 5082-3141
Frequency,2 GHz.
The total time it takes to switch the shunt diode from the
isolation state (forward bias) to the insertion loss state
(reverse bias) is shown in Figure 6. These curves are for
three forward bias conditions with the diode driven in each
case with three different reverse voltage pulses (VPR). The
total switching time for each case includes the delay time
(pulse initiation to 20 dB isolation) and transition time (20 dB
isolation to 0.9 dB isolation). Slightly faster switching times
may be realized by spiking the leading edge of the pulse or
using a lower impedance pulse driver.
The time it takes to switch the diode from zero or reverse bias
to a given isolation is less than the time from isolation to the
insertion loss case. For all cases of forward bias generated by
the pulse generator (positive pulse), the RF switching time
from the insertion loss state to the isolation state was less
than 2 nanoseconds. A more detailed treatise on switching
speed is published in AN929; Fast Switching PIN Diodes.
242
(
REVERSE RECOVERY TIME
30
Shown below is reverse recovery time, (trr) vs. forward
current, (IF) for various reverse pulse voltages VR' The circuit
used to measure trr is shown in Figure 7.
!
~
;::
. r;::I-:-.. ,. .
ffi
>
C.U.T.
0
1rl
a:
-l:>I-.....-"1-=-....50-n.. TO SCOPE
kn
iJj
ffi
25
20
'5
,.
G;
a:
••
'0
2.
30
FORWARD CURRENT (rnA)
Figure 7. Basic trr Test Setup.
Figure 8. Typical Reverse Recovery Time vs. Forward Current for
Various Reverse Driving Voltages, 5082-3141.
FORWARD CURRENT (mA)
FORWARD CURRENT (rnA)
(
Figure 9. Typical Reverse Recovery Time VS. Forward Current for
Various Reverse Driving Voltages, 5082-3140.
Figure 10. Typical Reverse Recovery Time vs. Forward Current
for Various Reverse Driving Voltages, 5082-3170.
243
r/i~ HEWLETT
~~ PACKARD
PIN DIODES FOR
FAST SWITCHING
AND ATTENUATING
5082-3305
5082-3306
Features
NANOSECOND SWITCHING TIME
Typically Less than 5 ns
LOW RESIDUAL SERIES RESISTANCE
Less than 1 n
LOW DRIVE CURRENT REQUIRED
Less than 20 mA for 1 n Rs
HIGH POWER LIMITING CAPABILITY
50 W Peak Pulse Power
Outline 38 (50824305)
CATHODE HEAT SINK
Description IApplications
The HP 5082-3305 and 5082-3306 are passivated silicon
PIN diodes of mesa construction. Precisely controlled
processing provides an exceptional combination of fast RF
switching and low residual series resistance.
These HP PIN diodes provide unique benefits in the high
isolation to insertion loss ratio afforded by the low residual
resistance at low bias currents and the ultra-fast recovery
realized through lower stored charge. Where low drive power
is desired these diodes provide excellent performance at very
low bias currents.
t+_:L.i:;_~ _;~---i----~.
HEAT SfNK
2,H {,Olt'l}
:--1TsWa"1
The HP 5082-3305 and 5082-3306 ceramic package PIN
diodes are intended for controlling and processing
microwave signals up to Ku band. Typical applications
include single and multi-throw switches, pulse modulators,
amplitude modulators, phase shifters, duplexers, diplexers
and TR switches.
Oulline 31 (5082-3306)
PIMENStON-S IN MILL1METERS AND I ~NCHES),
Mechanical Specifications
Maximum Ratings
The HP Package Outline 31 has a metal ceramic hermetic
seal. The heat sink stud is gold-plated copper. The opposite
stud is gold-plated kovar. Typical package inductance is 1.0
nH and typical package capacitance is 0.2 pF.
Junction Operating and Storage Temperature Range
..................................... -65°Cto+150°C
Operation of these devices within the above
temperature ratings will assure a device Median
Time To Failure (MTTF) of approximately 1 x 107
hours.
The HP Package Outline 38 also has a metal ceramic
hermetic seal. The heat sink contact is gold plated copper.
The opposite contact is gold-plated kovar. Typical package
inductance is 0.4 nH and typical package capacitance is 0.2
pF.
DC Power Dissipation at TeASE = 25' C
(Derate linearly to zero at 150°C)
HP 5082-3305 ........................... .. 0.7W
HP 5082-3306 ........................... . 1.25W
The maximum soldering temperature for diodes in either
package is 230'C for 5 seconds.
244
(
FAST SWITCHING/ATTENUATING
Electrical specifications at TA = 25°C
Maximum
Part
Number
5082·
Package
Outline
3305
38
3306
31
Minimum
Breakdown
Voltage
\faR (VI
Heat
Sink
cathode
Test
Conditions
Maximum
Maximum
Total
Seriel
Resistance
Capacitance
CT (pFI
Reverse
Recovery
Time
Rs(nl
trr (ns)
70
0.4
1.0
10.0
70
0.45
1.0
10.0
If'" 20mA
VR = 10V
VR = VBR, rneas.
f .. 1 MHz
t= 100 MHz
IR";;10/lA
VR '" 20V
IF =2OmA
90% Reooverv
Typical Parameters
0.2
30
c
"Co
""'z
c:
w
>
8
"'c:
"''"c:
"'>
"'c:
"z
0
;::
I
";;z
(
25
"':;;
I
10
I
20
15
10
Va = 2V
V~
#
SV
Va = lOY
a
30
a
10
30
FORWARD CURRENT (mA)
REVERSE VOLTAGE (V)
Figure 2. Typical Reverse Recovery Time vs. Forward Current
Figure 1. Typical Junction Capacitance vs. Reverse Voltage.
for Various Reverse Driving Voltages.
.
1.2
FORWARD VOLTAGE (V)
FORWARD BIAS CURRENT (mA)
Figure 4. Typical Forward Current vs. Forward Voltage.
Figure 3. Typical RF Resistance vs. Forward Bias Current.
245
Flin-
HEWLETT
~e. PACKARD
5082-3101
5082-3102
5082-3201
5082-3202
5082-3303
5082-3304
PIN DIODES
FOR RF POWER
SWITCHING/
ATTENUATION
Features
HIGH ISOLATION
Greater Than 25 dB
LOW INSERTION LOSS
HIGH CONTROL SIGNAL DYNAMIC RANGE
10,000: 1 RF Resistance Change
LOW HARMONIC DISTORTION LIFETIME
Greater Than 100 ns
Outline 38
BOTH ANODE AND CATHODE HEAT SINK
MODELS AVAILABLE
Description IApplications
1 I
-~'W{1
SOOnlS}
HP 5082-3101/02,5082-3201/02,5082-3303/04 PIN
diodes are silicon devices manufactured using modern processing techniques to provide optimum characteristics for RF
switching, signal conditioning and control. These devices are
of planar passivated design. Both anode and cathode heat
sink models are available.
16;'0641
152[060;
t63L)64J
f.52t'66"Gl
t-
PIN diodes provide a variable RF resistance with DC bias
current. The main advantages of a PIN diode over PN
switching diodes are the low forward resistance and the low
device capacitance.
~
1
2,a9to94~
l.OOt,03Zl-
O,64/,{t25}
L
& 91,!.2:j}
These HP PIN Diodes are intended for use in RF switching,
multiplexing, modulating, phase shifting, and attenuating
applications from approximately 10 MHz to frequencies well
into the microwave region. Due to their low parasitic
capacitance and inductance, both HPPackage Outline 31 and
38 are well suited for broadband circuits up to 1 GHz and for
resonated circuits up to 8 GHz.
5.1
'I""')
MAK
-
HE ATS1NI(
f+-~t~~~;Outline 31
These devices are especially useful where the lowest
residual series resistance and junction capacitance are
required for high on-to-off switching ratios. At constant bias
the RF resistance is relatively Insensitive to temperature,
increasing only 20% for a temperature change from +25°C to
+1000C.
DIMENSIONS IN MILLIMETERS AIliD (INCHES}
Mechanical Specifications
Maximum Ratings
The HP Package Outline 31 has a metal ceramic hermetic
seal. The heat sink stud is gold-plated copper. The opposite
stud is gold-plated kovar. Typical package Inductance is 1.0
nH and typical package capacitance is 0.2 pF.
Junction Operating and Storage
Temperature Range .................. -65°C to +150°C
Operation of these devices within the above
temperature ratings will assure a device Median
Time To Failure (MTTF) of approximately 1 x 107
hours.
The HP Package Outline 38 also has a metal ceramic
hermetic seal. The heat sink contact is gold plated copper.
The opposite contact is gold-plated kovar. Typical package
inductance is 0.4 nH and typical package capacitance is 0.2
pF.
DC Power Dissipation at 25' C. (Derate linearly to zero at
150'C)
HP5082-3101,3102 .. .............
1.0W
HP 5082-3201,3202,3303,3304 ............ 3.0W
The maximum soldering temperature for diodes in either
package is 230°C for 5 seconds.
246
(
RF POWER SWITCHING/ATTENUATING
Electrical Specifications at TA=25°C
Part
Number
5082-
Package
Outline
Minimum
Breakdown
Voltage
VSR (V)
Heat
Sink
Maximum
Residual
Series
Resistance
RS(U)
Maximum
Total
Capacitance
Cr (pF)
Typical
Reverse
Recovery
Time
trr (os)
Minimum
Carrier
Lifetime
r (ns)
TypicalCW
Power
Handling
Capability
PA (WI
3101
38
200
0.32
1.2
100
100
40
3102
38
300
0.30
0.8
100
100
60
3201
31
3202
31
3303
31
3304
31
Anode
Cathode
Test
Conditions
200
0.35
1.2
100
100
120
300
0.32
0.8
100
100
180
200
0.40
1.2
100
100
120
300
0.32
0.8
100
100
180
VR =VSR, meas.
IR '" 10llA
VR=50V,f=lMHz
IF=100mA IF = SOmA
IF =20mA, VR"'10V Series' Switch
f=100MHz IR = 250mA 90% Recovery
in 50£! System
""Divide by four for a shunt switch.
Typical Parameters
(
'O'='O,J.l.lliJlOL,...L.l.LllJJl-Llllilll-L.Llli""",L.
O ..LJ.J.WjjJ,oo
FORWARD BIAS CURRENT (mA)
Figure 1. Typical RF Resistance vs. Forward
Bias Current
FORWARD BIAS CURRENT (rnA)
Figure 2. Typical RF Resistance
Bias Current.
VS.
FORWARD VOLTAGE (V)
Forward
Figure 3 Typical Forward Characteristics.
o.3,-------,-------,
--i"'1MHt
Lp
- - - f > lOG MHl
Rs
cj
c p " Package Capacitance
4> " Package
Inductance
Rs" Residual Series Resistance
oJ\
Rj
Cp
--~-"----I-----I
RI" I-Layer Resistance
C I '" I·Layer Capacitance
TYPICAL VALUES FOR Cp AND Lp ARE GIVEN UNDER "MECHANICAL
SPECIFICATIONS". WITH REVERSE BIAS, RI ~ lor, n. TOTAL
CAPACITANCE IS CT AND IS GIVEN IN "ELECTR ICAl SPECifiCATIONS".
WITH FORWARD BIAS CI IS NO LONGER PRESENT. RI DECREASES
WITH INCREASING FORWARD BIAS TO APPROXIMATELY ZERO AT
100 rnA.
°0~-----~,LO------~20
REVERSE VOLTAGE (V)
Figure 4. Typical Chip Capacitance vs.
Reverse Voltage
Figure 5. Device Equivalent Circuit.
247
Flio-
HIGH
HEWLETT
5082·1001
5082·1002
5082·1006
CONDUCT ANCE
DIODES
~~ PACKARD
Features
!+----I-
--.--t--
FAST SWITCHING
LOW CAPACITANCE
HIGH CURRENT CAPABILITY
25,4 (1.00)
MIN,
o
Description / Applications
ml~
CATHooe
The 5082-1000 series of diodes feature planar silicon
epitaxial construction to provide high conductance, low
capacitance, and nanosecond turn-on and turn-off,
Turn-on time and voltage overshoot are minimized in
these diodes of low conductivity modulation,
These diodes are ideally suited for applications such as
core drivers, pulse generators, input gates or wherever
high conductance without loss of speed is required,
0
25.4 (1,00)
MIN.
...--t..-*_
Maximum Ratings
11!!&!l.~
-I I- OM (0.018)
WIV - Working Inverse Voltage
1006 ,., ............. " .................... 40 Volts
1001/1 002 ................................. 30 Volts
IF (Surge) - Forward Current Surge,
1,0 Second Duration ..................... 0,75 Amp
IF (Surge) - Forward Current Surge,
1.0 Microsecond Duration ................ 7,50 Amp
DIMENSIONS IN MILLIMETERS AND {INCHES)
Outline 11
Mechanical specifications
Power Dissipationl 1 1 @TeASE=25°C ......... 500 mW
Operating Temperature Range .. , .... -£5° C to +175° C
Storage Temperature Range ... , .. , .. -£5° C to +200° C
The HP Outline 11 package has a glass hermetic seal with
dumet leads. The package will meet MIL-STD-750, Method
2036, Condition A (2 Ibs, tension for 15 sec.) and E, The
maximum soldering temperature is 230°C for 5 seconds,
Outline 11 package capacitance and inductance are
typically 0,15 pF and 4 nH respectively,
Operation of these devices within the above
temperature ratings will assure
a
device Median
Time To Failure (MTTF) of approximately 1 x 107
hours,
Electrical specifications at TA =25°C
Part
Number
5082·
Minimum
Breakdown
Voltage
VeR{V)
Minimum
Forward
Current
IF (mA)
Minimum
Forward
Current
IF (rnA)
Maximum
Reverse
Leakage
Current
IR (nA)
Maximum
Reverse
Leakage
Current
IR(/lAJ
Maximum
Total
Capacitance
Co (pF)
Maximum
Reverse
Recovery
Time
fft (ns)
Maximum
Turn-On
Time
ton (ns)
1001
35
150
500
200
200
2.5
35
300
800
200
200
1.5
3,0
1,5
1002
2,0
2,5
1006
50
150
500
200
200
1.1
1,5
Test
Conditions
IR=10MA
VF=l,OV
VF=lAV
\2J
\21
J3J
1500 0 3 !
VR=OV,
1=1.0 MHz
iFigure 9:
,Figure 10\
4. Inductance measured at the edge of the glass package seal is
NOTES: I. Mounted on a printed circuit board in still air,
typically 4,0 nH for all devices,
2, Measured at a repetition rate not to exceed the power
5, Rectification Efficiency is typically 65% for all devices
dissipation.
(Figure 8),
3, VR=35V for 1006; VR=30V for 1001, 1002,
248
(
1000
:<
100
~
10
Cl
1.0
a:
a:
OJ
u
a:
r--
;;II
t,
f(
V
~
.01
o
.2
0
a:
a:
OJ
u
U
If
Cl
a:
;,
a:
"
r
~
V
.6
1.0
.8
,vi
/
/
i
s
~
7i
.4
/~
100
f-
/
/1
";,a:
:<
Vi ~
r--i6V /
"1
1000
io"""
VI
V
S
f-
/
V
1.2
I--,q
[,,0/ v
~1
-1 ~7
J..'C
::
1.0
I
/
.1
.01
1.4
-
10
o
I
.2
.6
.4
FORWARD VOL TAGE IVI
.8
Figure 1. Typical Forward Conduction Characteristics.
5082-1001 and 1006.
10,000
4000
100
S
\
>-
"a:w
a:
10
OJ
u
Cl
a:
1>\
1.0
~
~
.1
.01
0.5
(
1.0
1.5
2.0
400
u
w
200
G:;
a:
\
2.5
1.4
V
/
L ./
1000
"a:a:w
'"ffi
/
2000
OJ
'""'?-
"
a:
;,
1.2
Figure 2. Typical Forward Conduction Characteristics.
5082-1002.
1000
:<
1.0
FORWARD VOLTAGE (VI
~
II' <><>""-
-.,.'V"'-;:; ,,:'9
:2 I,li;!V
-
/'
/
100
40
I
I
i
75
100
20
3.0
3.5
10
4.0
o
25
TEMPERATURE COEFFICIENT ImvrCI
50
125
150
175
AMBIENT TEMPERATURE I'CI
Figure 3. Typical Forward Current Temperature
Coefficient.
Figure 4. Typical Reverse Current at Specified VR vs.
Increasing Temperature.
1000
0.6
400
0.5
1
f-
200
",{)S7..·~ . . . . . r
100
~
a:
a:
OJ
u
w
'"ffi
G:;
a:
40
0.4
,.......t;:::. V
.......... r-
10
~
'\'
I\.
0.3
~.-
20
1\
l
"\
0.2
i-""'<;:
2.0
e:;
:l;:
1,5
w
r-"
i'-........
5081·1002
l-
<>:
u
I
u
1.0
I!
~
5082·100L.
6082~1006
I'-0.5
I
10
15
20
25
30
35
VR - REVERSE VOLTAGE (VOLTSI
Figure 7. Typical Capacitance vs. Reverse Voltage
Characteristics.
TEST FIXTURE
SIGNAL
GENERATOR
r--
POWER
AMPLIFIER
r---:-
HP 6lllIC
ATTENUATOR
WEINSCHEL
r--
10db
lOW
r---
I--
r--
50 U
t+
VTVM
HP411A
COAXIAL
F£ED.THRU
PROSE
I\
5.0K
VTVM
20pf
~IODE UNDER
nST
Figure 8. Test Circuit for Measuring the Rectification Efficiency. Signal source is adjusted to 100 MHz and 2V RMS as read
on the 411A. The rectification efficiency calculated from the DC output voltage by RE = Vocl2.83 is typically 65% for all
devices.
Gr
50n
~:
O.U.T.
1.0~F
1--.---0---1)1---<>--..---0 TO SCOPE
1.0kn
~~
't
I,
Figure 9. Test Circuit for Measuring Reverse Recovery Time. IF is set at 20 mA and VR at 2V.
'
'-r
L
9I
r
ATTENUATOR
PULSE
GENERATOR
I
~
20 dB
TRIGGER
O.U.T.
J
'I
$AMPUNG
$C01'S
f
Figure 10. Test Circuit for Measuring Turn-On Time. IF is adjusted for 10 mA after applying the step voltage. tON is measured
as the time required to reach 0,9 IF from initial application of the step voltage. For high excitation levels the tON value is
significantly lower than the value specified, i.e., at 100 mA tON is typically less than 1.0 ns.
250
c
c
251
_ _ _ _ _•
_ _ _ • • _ _ _ _ •••• H _ _ . . . . . . . " • •
,~,
...
_.,
-
•••••
-.~.-
••• , - . -
,.--'"
-
•
- --- ..•.- . . - _ . .-
_...--....... .... _¥. '._"
~
FliOW
HIGH RELIABILITY
BEAM LEAD
PIN DIODES
HEWLETT
~~ PACKARD
TXVP-4001
TXVP-40S0
(Generic HPND-4001/-4050)
Features
QUALITY PERFORMANCE TESTED
Test Program Patterned After MIL-S-19500
LOW SERIES RESISTANCE
1.3 n Typical
LOW CAPACITANCE
0.07 pF Typical
1:t~g:3
====:::;=.,........==;:===
___
1 _L.
\ ___--'7
--t
FAST SWITCHING
2 ns Typical
-----t-
RUGGED CONSTRUCTION
4 Grams Minimum Lead Pull
60 (2AI
4O"(l:m
DIMENSIONS IN ... nl1000 "'''',
OutUne21
Description/Applications
Maximum Ratings
The TXVP-4001 and -4050 are beam lead PIN diodes
designed specifically for low capacitance, low series resistance and rugged construction. The new HP mesa
process allows the fabrication of beam lead PINs with a
very low RC product. A nitride passivation layer provides
immunity from contaminants which would otherwise lead
to IR drift. A deposited layer provides scratch protection.
Operating Temperature .............. -65°C to +175°C
Storage Temperature ................ -65°C to +200°C
Power Dissipation at 25°C ..................... 250 mW
(Derate linearly to zero at 175°C)
Minimum Lead Strength ...... 4 grams pull on either lead
The TXVP-4001 and -4050 beam lead PIN diodes are
designed for use in stripline or microstrip circuits. Applications include switching, attenuating, phase shifting and
modulating at microwave frequencies. The low capacitance and low series resistance at low current make these
devices ideal for applications in the shunt configuration.
Bonding Techniques
Thermocompression bonding is recommended but welding, thermosonic bonding or conductive epoxy can also be
used. For additional information, see Application Note 974,
"Die Attach and Bonding Techniques for Diodes and
Transistors," or Application Note 979, "The Handling and
Bonding of Beam Lead Devices Made Easy".
After completion of the 100% inspection program per
Table II, lot samples are subjected to the tests of Table III.
TABLE I. ELECTRICAL SPECIFICATIONS AT TA = 25°C
Pat!
Number
Breakdown
Voltage
V8R(V)
Minority Canter
Re_ "'-"ery
Capacitance
Lifetime
Or(PF)
T(M)
Time
,"(M)
Ser1e8
R.....nce
Rs(O)
Typ.
Max.
Rewrse
Current
Forward
",(nA)
Voltage
VF(V)
Min.
50
Typ.
Typ.
Max.
TyPo
Typ.
Max.
Max.
TXVP-4001
80
1.8
2.2
0.07'
O,OS'
30
3
100"
0.97
TXVP-4050
30
40
1.3
1.7
0.12
0.15
25
2
100
0.98
IF=10mA
iR=8mA
IF"'10mA
VA=10V
. VR=10V
"H2samples
only
IF=50mA
Test
,COnditions
VR= VBR
Measure
iRS 10 ItA
IF=10mA
ft 100 MHt
VR-20V
'VR=3OV
f=lMHz
'Total capaCitance calculated from measured isolation value in a series configuration.
252
;'
"
,~,
"'-
,/
(
TABLE II. 100% INSPECTION PROGRAM
Tesl/lnspeetion
Method
1. High Temperature Storage
(Stabilization Bake)
2. Electrical Test t (Read,
Record I
10 cycles from -65" C to +200° C,
15 minutes at extremes
-
-
65
=150°C
10
..lIR < ±50 nA or 100% whichever is
greater, ..l VF < 10%
-
and Record i)
9. Operating Lite
-
-
1038
-
340 hours, 1=60 Hz, Tc = 125°C
VR = 80% of rated VSR, PFM 50 mW, n "" 65
=
10
o:llR < ±50 nA or 100%, whichever is
greater.
(J"VF<10%
Note 1: Per MIL-STO-883.
(
Typical Parameters
,OO.----,.-----r-------,
40
ISOLATION AT:
-JOV,
-10V"
30
ov ...... ,
20
"'\,
.... .................
" '\,
.... '0:::;
INSSRTION LOSS AT:
....
lOrnA
~k
~
"'rnA
,OJ!;-5---f.:-L--.""'5:----:'-:::.00:---:;-!,1.25
FORWARD VOLTAGE (V)
'O~,~~~~~~~~~'O~~~,OO
FORWARD BIAS CURRENT (mAl
10,
I
SOmA
'0
FREQUENCY (GHz)
Figure 1. Typical Forward Conduction
Figure 2. Typical RF Resistance vs.
Figure 3. Typical Isolation and
Characteristics.
Forward Bias Current.
Insertion Loss in the Series
Configuration 1Zo
255
,
= 50 llI.
18
0
rhn.~ HEWLETT
~~ PACKARD
PIN SWITCHING DIODE
MILITARY APPROVED
Mll-S-19500/443
JAN 1N571 9
JANTX 1N571 9
Features
QUALITY PERFORMANCE TESTED
Proven Reliability
0.41
!:.ol6)
I 1---L
0.36('014)~.
LARGE DYNAMIC RANGE
LOW HARMONIC DISTORTION
HIGH SERIES ISOLATION
O-'-T
25.4 (1.00)
Description / Applications
The JAN Series 1N5719 is a planar passivated silicon PIN
diode designed for use in RF switching circuits. These
devices are well suited for variable attenuator, AGC,
modulator, limiter, and phase shifter applications that
require the high reliability of a JAN/JANTX device.
4.321.170)
CATHODE"
~r
25.4 0.001
Maximum Ratings at TCA SE =25°C
o_~~
Operating and Storage Temperature
Range ................
9
"'-_..
. ...... ·65°Cto+150°C
Operation of these devices within the
recommended temperature limits will assure a device Mean Time to Failure (MTTF)
of approximately 1 x 107 hours.
DIMENSIONS IN MILLIMETERS AND (INCHESI
Oulline 15
Reverse Voltage (Working) at 25°C.
. . . . . . . . . . 100 V de
Reverse Voltage (non-rep)
. . . . . . . . . . . . . .. 150 V pk
Power Dissipation [At 25°C] ... ..........
250 mW
Derate at 2.0 mWrC above TeAsE = 25°C;
assumes an infinite heat sink
TABLE I. ELECTRICAL SPECIFICATIONS AT TA = 25° C
(Per Table I, Group A Testing of MIL·S·19500/443)
Part Number
1N5719
Minimum
Breakdown
Voltage!1]
VeR (V)
Maximum
Forward
Voltage
VF (V)
Maximum
Reverse
Current
IRl (nA)
150
1.0
250
Test
Conditions
fR=10,uA
IF= 100 mA
VR
= 100V
Maximum
Reverse
Current
IR2 (MA)
Maximum
Capacitance
CVR (pF)
Maximum
Series
Resistance
Rs (n)
Minimum
Effective
Carrier
Lifetime
T (ns)
15
0.30
1.25
100
VR = 100V
TA'" 150·C
VR 100V
f= 1 MHz
IF= 100 mA
f=100MHz
IF =50 mA
iR=250 rnA
Note 1:
Tested per MIL-STD·750. Method 4021.
256
(
JAN 1 N5719: Samples of each lot are subjected to Group A inspection for parameters listed in Table I, and to Group Band
Group C tests listed below. All tests are to the conditions and limits specified by MIL-S-19500/443.
JANTX 1 N5719: Devices undergo 100% screening tests as listed below to the conditions and limits specified by MIL-S19500/443*. A sample of the JANTX lot is then subjected to Group A, Group B, and Group Ctests asfortheJAN 1 N5719 above.
* JANTX devices have gold plated leads.
Table II 100% SCREENING PROGRAM (TX)
MIL·STO-150 Method
Screening TeSVlnspectlon
1. High Temperature Storage (Stabilization Bakel
Conditions/Comments
1032
t=48 hours, TA= 150°C
2. Thermal Shock (Temperature Cyclingl
1051
10 Cycles, Condition F
3. Centrifuge (Constant Acceleration)
2006
20 Kg., Y1 axis
4. HermetiCity Tests
Fine Leak
Gross Leak
1071
Condition H
Condition C or E
5. Interim Electrical Tests (JR, W)
See Table I
6. Burn-in
=
10 ~ 70 mA (Averagel, VR 120V Weakl
TA "" 25" C, f ~ 60 Hz, t = 96 hrs
1038
7. Final Electrical Tests and Drift Evaluation
IIR, Wi
..iIR = ±250 nA or 100% whichever is
greater
.lVF = +100 mV
10%P DA
Table III GROUP A INSPECTION
Test/Inspection
Subgroup 1
Visual and Mechanical
MIL-STO·150
Method
Conditions/Comments
2071
5
Subgroup 2
DC Electrical Tests at 25° C
(
Subgroup 3
Dynamic Electrical Tests at 25° C
Subgroup 4
High Temperature Operation ITA"" 150°0
Reverse CurrenlllR2i
LTPO
-
VSR, W. IR1. CVR and Rs per Table I
2
r per Table
10
4016
J
10
Per Table I
257
Table IV GROUP B INSPECTION
Test/Inspection
MIL-STD·750
Method
Conditions/Comments
Subgroup 1
Physical Dimensions
Subgroup 2
Solderability
Thermal Shock (Temperature Cycling)
Thermal Shock (Glass Strain)
Terminal Strength (Tension)
Hermetic Seal
Moisture Resistance
End Points:
Forward Voltage (VF)
Reverse Current UR1)
Subgroup 3
Shock
Vibration Variable Frequency
Constant Acceleration
End Points:
Forward Voltage (VF)
Reverse Current (tAl I
Subgroup 4
Terminal Strength; Lead Fatigue
15
2066
10
2026
1051
1056
2036
1071
1021
Immerse to within 0.1 inch of body
Test Condition F
Test Condition A
Test Condition A, 15 secs., 4 Ibs.
Test Condition E
Omit initial conditioning
4011
4011
Per Table I
Per Table I
2016
2056
2006
Non-operating, 1500G; t'" 0.5 ms
5 blows in each orientation Xl, Yl, Y2
Non-operating
Non-operating: 20 kg; Xl, Y1, Y2
4011
4011
Per Table I
Per Table I
2036
Test Condition E with lead rastriction
1031
TA"" 150·C,Ill
4011
4016
Per Table I
Per Table I
..lIR '" +25% of initial value
or +50 nA whichever is greater
1026
10 e 70 rnA, VR '" 120 V
(Peak); f"' 60 Hz, ,11
4011
4016
Per Table I
Per Table I
..l.IFl e +25% of initial value
or +50 nA whichever is greater
10
10
SubgroupS
High Temperature Life (Non-Operating)
End POints:
Forward VOltage iVFI
Reverse Current (lA1)
Drift (..l.IA1)
Subgroup 6
Steady State 0 perating Life
End Points:
Forward Voltage (VF)
Reverse Current ((Rl)
Drift (';;IFlll
LTPD
A "'3
-
h"'3
-
1. t ~ 1000 hours every 6 months to qualify product, t ~ 340 hours on each lot thereafter.
258
(
Table V GROUP C INSPECTION
MIL-STD·150
Method
Testflnspection
Conditions/Comments
Subgroup 1
Barometric Pressure, Reduced
Measurements During Test:
Reverse Current
1001
Pressure: 15 mm Hg; t
4016
D,C, Method, VR '" 100 V de
Subgroup 2
Salt Atmosphere ICorrosion)
1041
= 1 min,
LTPO
20
20
Subgroup 3
Resistance to Solvents
20
-
Subgroup 4
Thermal Shock (Temperature CYCling)
Method 215 of MIL-STD·202
20
End Points:
Forward Voltage IVF)
Reverse Current (JRll
1051
Test Condition F-l; Time at
temperature extremes"" 15 minutes
minimum
total test time = 72 hours maximum,
4011
4016
Per Table I
PerTable I
SubgroupS
20
Low Temperature Operation (--65 0 CI
Forward Voltage (WI
Breakdown Voltage NSRI
4011
4021
<1,15Vatlf=100mA
Per Table t
Typical Parameters
(
w
U
Z
~
in
iii
~
:;0
1.2
100
FORWARD BIAS CURRENT (mA)
FORWARD VOLTAGE (V)
Typical RF Resistance vs. Forward Bias Current.
Typical Forward Current vs. Forward Voltage.
259
Flin-
HIGH RELIABILITY
PIN DIODES FOR
RF SWITCHING AND
A TTENUA TING
HEWLETT
~~ PACKARD
(Generic 5082-3001, -3002, -3039 and -3077)
rX-300112
TXB-300112
TXV-300112
TXVB-300112
TX-3039
TXB-3039
TXV-3039
TXVB-303!1
TX-3077
TXB-3077
TXV-3077
TXVB-3077
Features
QUALITY PERFORMANCE TESTED
Test Program Patterned After MIL-S-19500
LOW HARMONIC DISTORTION
LARGE DYNAMIC RANGE
LOW SERIES RESISTANCE
LOW CAPACITANCE
CATHODE",
"
LOW TEMPERATURE
COEFFICIENT
Typically Less Than 20%
Resistance Change from
25°C to 100°C
DIMENSIONS IN
MILLIMETERS ArjD (INCHES)
Outline 16
Description / Applications
These general purpose switching diodes are intended for
low power switching applications such as RF duplexers,
antenna switching matrices, digital phase shifters, and time
multiplex filters.
Maximum Ratings
Junction Operating and Storage
Temperature Range
............... -65°Cto+150°C
The RF resistance of a PIN diode is a function of the current
flowing in the diode. These current controlled resistors are
specified for use in control applications such as variable RF
attenuators, automatic gain control circuits, RF modulators, electrically tuned filters, analog phase shifters, and RF
limiters.
Operation of these devices within the above
temperature ratings will assure a device Median
Time To Failure (MTTF) of approximately 1 x 107
hours.
Power Dissipation at TCASE = 25° C .............. 250mW
(Derate linearly to zero at 150°C)
Peak Inverse Voltage (PIV) ...............
. ... IBR
TABLE I. ELECTRICAL SPECIFICATIONS AT TA = 25° C
Maximum
Residual
Series
Resistance
Rs (n)
Minimum
Effective
Carrier
Lifetime
T (ns)
100
100
100
100
1.0
100
100
100
100
1.0
1.0
100
IF=20 rnA
VA"" 10 V
90% Recovery
IF= 100 rnA
VA=100V
5082-3002
0.20
5082-3001
0.25
200
5082-3039
5082-3077
0.25
0.30
150
200
1.25
1.5
100
Test
Conditions
VR=50 V
f= 1 MHz
VR = VSA
Measure
IR= 10llA
IF= 100 mA
f= 100 MHz
IF ""50 mA
IF\= 250 rnA
Number
1.0
1.0
260
Typical
Reverse
Recovery Time
Maximum
Reverse
Leakage
Current
fR (nA)
100
Maximum
Forward
Voltage
VF(V)
1.0
Minimum
Breakdown
Voltage
VBIl (V)
300
Part
Maximum
Total
Capacitance
CT (pF)
trdns)
100
(
High Reliability Programs
TABLE II. PART NUMBER SYSTEM FOR ORDER
AND RFQ INFORMATION.
Three basic levels of High-Rei testing are offered.
1. The TX prefix indicates a part that is preconditioned
and screened to the program shown in Table III and IV.
2. The TXB prefix identifies a part that is preconditioned
and screened to TX level with a Group B quality conformance test as shown in Table V.
3. The TXV and TXVB prefix indicates that an internal visual inspection per MIL-STD-750 Method 2074 is
included as part of the preconditioning and screening.
PartNumbar
PreliJt
From these three basic levels, four combinations are available. Please refer to Table II as a guide.
Scraanlng l",el
5082-
Commercial
TX-
100% Screen (per Tables III arid
TXB-
100% Screen 'and Group
Tables III, IVandVl
TXV-
100% Screan and Visual (per
Tables Ill, and IV}
TXVB-
l00"k Screen and Group B (per
Tables III, IV and V) With visual
IV!
a (per
TABLE III. 100% SCREENING PROGRAM
Screening Test/Inspection
MIl-STD-750 Method
1. lnlernal Visual (As required by Table III
2074
2. High Temperature Strorage
§
0:
W
'"ffi
ii;
0:
10L-__
o
~
__- L__
10
~
____
~
__- L_ _
20
~
30
FORWARD CURRENT (rnA)
Figure 3. Typical Reverse Recovery Time vs. Forward Current
for Various Reverse Driving Voltages.
262
(
FliOW
HIGH RELIABILITY
PIN DIODES
HEWLETT
a!~ PACKARD
(Generic 5082- 3042 and -3043)
TX-3042
TXB-3042
TXV-3042
TXVB-3042
TX-3043
TXB-3043
TXV-3043
TXVB-3043
Features
QUALITY PERFORMANCE TESTED
Test Program Patterned after MIL-S-19500
FAST SWITCHING
10 ns Maximum
LOW SERIES RESISTANCE
1_5!1 Maximum
LOW CAPACITANCE
0.4 pF Maximum
LOW DRIVE CURRENT REQUIRED
Less than 20 mA for 1!1 Rs
Description/Applications
The TX-3042 and -3043 are oxide passivated silicon PIN
diodes of mesa construction. Precisely controlled processing provides an exceptional combination of fast RF
switching and low residual series resistance.
These hermetically sealed. glass packaged PIN diodes are
intended for controlling and processing microwave signals
through Ku band. Typical applications include single and
multi-throw switches, pulse modulators, amplitude
modulators, phase shifters, TR switches and duplexers.
(
DIMENSIONS IN MILLIMETERS flNCHESt.
Maximum Ratings
Outline 15
Operating and Storage Temperature
Range ............................ _65° C to +150° C
Reverse Voltage (Working) .................. Rated VSR
Power Dissipation at TeAsE = 25° C ........... 250 mW
(Derate linearly to zero at 150°C)
Package 15 Maximum Solder Temperature ...... 230°C
for 5 seconds
TABLE I. ELECTRICAL SPECIFICATIONS AT TA = 25°C
Maximum
Reverse
Recovery
Time
trdns)
Maximum
Forward
Voltage
VF (V)
Maximum
Reverse
Leakage
Current
IR (ns)
15
5
1
100
15
10
1
100
IF=50 mA
iR =250 rnA
iF=20mA
VR = 10 V
90% Recovery
iF=100 rnA
VR=80%
Rated VSR
Minimum
Breakdown
Voltage
V eR (V)
Maximum
Total
Capacitance
CT-20 (pF)
Maximum
Residual
Series
ReSistance
Rs (n)
Typical
Effective
Carrier
Lifetime
.,. (ns)
5082-3042
70
0.4
1.0
5082-3043
50
0.4
1.5
Test
Conditions
VR=VSR
Measure
IR:;; 10 p.A.
VR=20 V
f= 1 MHz
IF= 20 rnA
f = 100 MHz
Part
Number
263
High Reliability Programs
TABLE II. PART NUMBER SYSTEM FOR ORDER
AND RFQ INFORMATION.
Three basic levels of High-Rei testing are offered.
1. The TX prefix indicates a part that is preconditioned
and screened to the program shown in Table III and IV.
2. The TXB prefix identifies a part that is precond itioned
and screened to TX level with a Group B quality conformance test as shown in Table V.
3. The TXV and TXVB prefix indicates that an internal visual inspection per MIL-STD-750 Method 2074 is
included as part of the preconditioning and screening.
Screening Level
Part Number
From these three basic levels, four combinations are available. Please refer to Table II as a guide.
5082-3042
5082-3043
Commercial
TX-3042
TX-3043
100% Screen fperTableslfl and IV)
TXB-3042
TXB-3043
100% Screen and Group B lper
Tables III, IV and V)
TXV-3042
TXV-3043
100'% Screen and Visuallper
Tables III and IV)
TXVEl-3042
TXVB-3043
100% Screen and Group B Iper
Tables III, IV and V) with visual
TABLE III. 100% SCREENING PROGRAM.
Screening Te&tllnspectlon
MIL·STD-7oo Method
1. Internal Visual (As required by Table III
2074
CondillOnslComments
2. High Temperature Storage IStab. Bakel
1032
t= 48 hours, TA =: 150"C
3. Thermal Shock (Temperature Cycflngl
1051
Condition F, 10 Cycles
20 Kg., Y1 axis
4. Constant Acceleration
2006
5. Hermeticlty (SealTestsl
Fine Leak
Gross!.eak
1071
6. HTRB
1038
ConditionH
Condition C or E
t'" 48 hours, TA '" 150· C,
VR = 80% of rated VeR
See Table I
7. Interim Electrical Tests (lR, VFl
8. Burn-In
1038
9. Final Electrical Tests {lR. Vp}
t= 168 hours, TA '" 25°C.
PFM = 200 mW. f '" 60 Hz.
VRM"" s0041 of rated VSR
.l1R S; ±50 nA or 100%. whichever
is greater.
.lVFS±10%.
TABLE IV. GROUP A PROGRAM.
Test/inspection
Subgroup 1
Visual and Mechanical
Subgroup 2
DC Electrical Tests at 25" C
Subgroup 3
Oynamic Electrical Tests at 25' C
MIL-$TD-750
Method
Conditions/Comments
2071
-
LTPD
5
See Table I for tests and conditions.
5
See Table I for tests and cond ilons.
S
264
TABLE V. GROUP B PROGRAM .
(
. j
Testllnspection
Subgroup 1
Solderability
Resistance to solvents
MIL-$TD-750
Method
CondltiQl1S/Comments·
2026
1022
LTPD
15
$ubgroup2
Thermal Shock (Temperature Cycling)
Hermetic Seal
Fine Leak
Gross Leak
DC Electrical Tests (IR and VF)
Subgroup 3
Steady State Operating Ufe
1051
1071
Subgroup 5
High Temperature Ufe
(Non-Operating)
DC Electrical Tests (lR and VF)
10
ConditionH
Condition C or E
See Table I.
1027
DC Electrical Tests (/R and VF)
Subgroup 4
Oecap Internal Visual
(Design Verification)
Die Shear
Condition F1 (25 cycles)
t =340 hours. TA '" 25°C,
PFM'" 200 mW. f '" 60 Hz, VAM '" 80%
of rated VBR
See Table I.
5
2075
2037
1032
20
t = 340 hours, TA = 150° C
See Table I.
('
265
7
Flin-
HIGH RELIABILITY
PIN ATTENUATOR
DIODES
HEWLETT
~~ PACKARD
TX-3080
TX8-3080
TXV-3080
TXV8-3080
(Generic 5082-3080>
Features
QUALITY PERFORMANCE TESTED
Test Program Patterned after MIL-S-19500
0.41 (0.016'----1
[36~
LOW DISTORTION
l---
II
~J:
HERMETICALLY SEALED GLASS PACKAGE
USEFUL DOWN TO 1 MHz
tl
TIGHT RESISTANCE TRACKING BETWEEN
UNITS
SPECIFIED RF RESISTANCE WITH BIAS
r
LOW TEMPERATURE COEFFICIENT
4.32 (0.110)
Description/Applications
f
CATHOOE
The TX-3080 passivated silicon planar diffused PIN diode
is specially tested as an RF current controlled resistor. The
long minority carrier lifetime assures usefulness at
operating frequencies down to 1 MHz, with very low
distortion. Tightly controlled fabrication process for RF
resistance variation with bias makes these diodes ideally
suited· for constant impedance AGC-circuits, leveling
circuits, electronically controlled RC and RL circuits, pi-,
T-, or bridged T- attenuators operating between 1 MHz to
1 GHz with very low distortion.
~~
DIMENSIONS IN MILLIMETERS (INCHES).
Maximum Ratings
Operating and Storage Temperature
Range ............................ -65° C to +150° C
Reverse Voltage (Working) ................ 100 V(peak)
Power Dissipation at TeASE = 25° C ........... 250 mW
(Derate linearly to zero at 150°C)
Package 15 Maximum Solder Temperature ...... 230° C
for 5 seconds
Outline 15
TABLE I. ELECTRICAL SPECIFICATIONS AT TA = 25°C
Part
Number
-3080
Test
Condition
Minimum
Maximum
Total
Breakdown
Voltage
Capacitance
VSfI (V)
Cr (pF)
100
0.4
VR"'VSR
Measure
iR$;10 !'A
VR"'50 V
f= 1 MHz
Typical
Effective
Minority
Carrier
Lifetime
T (ns)
Maximum
Residual
Series
Resistance
Rs (ll)
Minimum
High
Resistance
Limit
RM (Il)
Maximum
Low
Resistance
Limit
RL (n)
Maximum
Forward
Voltage
VF (V)
1300
2.5
1000
8
1
IF=50 rnA IF= 100 mA IF""O.Ol mA
IR "'250 mA f=l00MHz f=l00MHz
266
IF=20 mA iF =30 mA
f=100 MHz
Maximum
Reverse
Leakage
Current
IfI CnA)
100
VR=50 V
(
\
(
High Reliability programs
TABLE II. PART NUMBER SYSTEM FOR ORDER
AND RFQ INFORMATION.
Three basic levels of High-Rei testing are offered.
1. The TX prefix indicates a part that is preconditioned
and screened to the program shown in Tables III and
IV.
Part Number
2. The TXB prefix identifies a part that is preconditioned
and screened to TX level with a Group B quality
conformance test as shown in Table V.
3. The TXV and TXVB prefix indicates that an internal
visual inspection per MIL-STD-750 Method 2074 is
included as part of the preconditioning and screening.
From these three basic levels, four combinations are
available. Please reler to Table II as a guide.
Screening Level
5082-3080
CommerCial
TX-3080
100% SCfeen (per Tables III and IV)
TXB-3080
10()IR <; ±50 nA or 100%, Whichever
;,VF <; ±100/0.
is greater.
TABLE IV. GROUP A PROGRAM.
Tesl/lnspeclion
Subgroup 1
Visual and Mechanical
Subgroup 2
DC Electrical Tests at 25' C
Subgroup 3
Dynamic Electrical Tesls at 25°C
MIL-STO-750
Method
Conditions/Comments
2071
LTPD
5
-
See Table I for tests and conditions.
5
-
See Table I for tests and conditions.
5
270
(
TABLE V. GROUP B PROGRAM.
TesVlnspection
SUbgroup 1
SolderablUty
Resistance 10 solvents
Subgroup 2
Thermal Shock (Temperature Cycling)
Hermetic Seal
Fine Leak
Gross Leak
DC ElectrICal Tests (lR and VF)
MIL-$TD-750
Method
Conditions/COmments
2026
1022
15
Condition F1 (25 cycles)
1051
1071
10
CondilionH
Condition C or E
See Table I.
SubgroupS
Steady State Operating Life
LTPD
t =340 hours, TA "" 25°C,
PFM = 200 mW, 1""60 Hz, VRM '" 28 V
See Table I.
1027
DC Electrical Tests OR and VF)
5
Subgroup 4
Decap Internal Visual
(Design Verification)
Die Shear
SubgroupS
High Temperature life
(Non-Operating)
DC Electrical Tests (lR and VF)
2075
2037
20
1032
t= 340 hours, TA"" 150°C
See Table I.
271
7
HIGH RELIABILITY PIN DIODES
FOR STRIPLINE AND MICROSTRIP
SWITCHES, ATTENUA TORS, AND
LIMITERS
rli~ HEWLETT
~~ PACKARD
TX-3141
TXB-3141
TXV-3141
TXVB-3141
(Generic 5082-3141)
Features
QUALITY PERFORMANCE TESTED
Test Program Patterned after MIL-S-19500
BROADBAND OPERATION
HF through X-band
LOW INSERTION LOSS
Less than 1.0 dB to 8 GHz
HIGH ISOLATION
Greater than 20 dB to 8 GHz
FAST SWITCHING/MODULATING
5 ns Typical
LOW DRIVE CURRENT REQUIRED
Less than 20 mA for 20 dB Isolation
Outline 60
Maximum Ratings
Description/Applications
Operating and Storage Temperature
Range ............................... -65° C to 150° C
Operation of these devices within the recommended temperature limits will assure a
device Mean Time To Failure (MTTF) of
approximately 1 x 107 hours.
The 5082-3141 is a specially processed oxide passivated
mesa PIN diode in shunt configuration within a 50 D hermetic package (Outline 60), optimized for good continuity of characteristic impedance, which allows a continuous transition when used in 50 D stripline or microstrip
circuits. The stripline package overcomes the limitations in
insertion loss, isolation, and bandwidth that are imposed by
package parasitics of the other packages. The TX-3141 is
recommended for applications requiring fast switching or
high frequency signal modulation or where low bias current
for maximum attenuation is required.
Reverse Voltage (Working) ........................ 70 V
Power Dissipation at TeASE = 25° C ............ 250 mW
(Derate linearly to zero at 150°C)
Peak Incident Pulse Power ....................... 50 W
(tp = 1 I'S, f = 10 GHz, Du - 0.001, Zo = 50 1lI
TABLE I. ELECTRICAL SPECIFICATIONS AT TA = 25° C
Part
Number
5082-3141
Test
Conditions
Heat
Sink
Cathode
Minimum
Isolation (dB)
Maximum
Insertion
Loss (dB)
Maximum
SWR
Maximum
Reverse
Typical
Recovery
Carrier
Time (trr) (ns) Lifetime (ns)
Forward
Voltage
VF(V)
Reverse
Current
IR (nA)
20
1.0
1.5:1
10
15
1.0
100
IF =20 mA
f= 8 GHz
IF =0
PIN=l mW
1=8 GHz
IF=O
PIN =1 mW
f~8 GHz
IF 20mA
VR = 10 V
Recovery
to 90%
IF =50 mA
IR= 250 mA
IF=50 mA
VR =50V
272
(
High Reliability Programs
TABLE II. PART NUMBER SYSTEM FOR ORDER
AND RFQ INFORMATION
Three basic levels of High-Rei testing are offered.
1. The TX prefix indicates a part that is preconditioned
and screened to the program shown in Table III and IV.
2. The TXB prefix identifies a part that is preconditioned
and screened to TX level with a Group B quality conformance test as shown in Table V.
3. The TXV and TXVB prefix indicates that an internal visual inspection per MIL-STO-750 Method 2074 is
Included as part of the preconditioning and screening.
Part Number
5082-3141
TX-3141
From these three basIc levels, four combinations are available. Please refer to Table II as a guide.
Screening Level
Commercial
100% Screen (per Table III and IV)
TXB-3141
100% Screen and Group B Iper
Table III, IV. and V)
TXV-3141
100% Screen and Visual lper Table
Iii, and IV)
TXV8-3141
100% Screen and Group 8 (per
Table III, IV, and V) wilh Visual
TABLE III. 100% SCREENING PROGRAM
MIL·STD-750 Method
Screening Test/Inspection
1. Internal Visual (As required by Table III
2074
Conditions/Comments
2. High Temperature Storage (Stabilization Bake)
1032
t '" 48 hours, TA -150·C
3. Thermal Shock (Temperature Cycling)
1051
Condition F, 10 Cycles
4. Constant Acceleration
2006
20 Kg., Y, axis
5. Hermeticity Tests
1071
Condition H
Condition C or E
Fine Leak
Gross Leak
6. High Temperature Reverse Bias (HTRB)
1038
I'" 48 hours, TA '" 150°C, VR ~ 56 V
1038
t ~ 168 hours, TA'" 25· C,
PFM : 200 mW, VRM = 56 V
7. Inlerim Electrical Tests (IR, VF)
See Table I
B. Burn-In
.lIR s: ±50 nA or 100%, whichever
::.VF:; ±10%.
is greater.
9. Final Electrical Tests OR, VFI
(
TABLE IV. GROUP A PROGRAM
Test/Inspection
Subgroup 1
Visual and Mechanical
Subgroup 2
DC Electrical Tests at 25° C
Subgroup 3
Dynamic Electrical Tests at 25° C
MIL-STD-750
Method
Conditions/Comments
5
2071
-
LTPD
See Table I for lests and conditions.
5
See Table I tor tests and conditons.
5
273
TABLE V. GROUP B PROGRAM
Test/Inspection
SUbgroup 1
Solderability
Resistance to solvents
MIL-STD·750
Method
Condltlons/Commeots
2026
LTPD
15
1022
Subgroup 2
'Thermal Shock (Temperature Cycling)
Hermetic Seal
Fine Leak
Gross Leak
DC Electrical Tests OR and VF)
Subgroup 3
Steady State Operating Ufe
1051
1071
Condition Fl 125 cycles)
10
Condition H
Condition Cor E
See Table L
1027
t = 340 hours, T A = 25° C,
PFM = 200 mW, VRM '" 56 V
$eeTable L
DC Electrical Tests OR and VF)
5
Subgroup 4
Decap Internal Visual
(Design Verification)
DteShear
2075
2037
20
SubgroupS
High Temperature Life
INon-Operating)
DC Electrical Tests ItR and VF)
1032
t '" 340 hours, TA = 150·C
See Table I.
274
7
c
275
~------------
-
----
------
Fli;'
HEWLETT
a!~ PACKARD
RELIABILITY BULLETIN
BEAM LEAD DIODES
Conclusion
Hewlett-Packard's beam lead diodes have successfully
passed stringent environmental testing. Therefore, it is
recommended that Hewlett-Packard beam lead diodes be
used in military and space applications without the necessity
of hermetically sealed packaging.
General
For applications requiring component reliability estimation,
Hewlett-Packard provides reliability data for all families of
devices. Data is compiled from reliability tests run to demonstrate that a product meets the specified design criteria. All
Schottky and PIN beam lead families have fulfilled the standard requirements of reliabililty qualification, and the results of
these tests are available upon request from Hewlett-Packard.
SINGLE
Program Description
The purpose of this program is to qualify all beam lead
diodes for operation in extreme environmental conditions
which may be encountered during military and space
operations.
The following test sequence has been designed to assess the
endurance of beam lead diodes through relevant environmental stresses such as heat and humidity. To qualify a device as
hermetic, the conventional procedure is to perform. dyepenetrant and Radiflo tests. However, because of the absence
of an enclosed cavity in the unique design of the beam lead
diode, these tests are not directly applicable. Therefore, this
program utilizes reliability tests such as moisture resistance,
salt atmosphere, and immersion to verify that the passivation
layer on the beam lead acts as a seal to protect the active
area of the diode,
PAIR
Typical Beam Lead Outlines
Applicable Part Numbers
PIN Beam Leads
HPND-4001
HPND-4005
HPND-4050
To perform these tests, various Schottky and PIN diodes were
mounted in non-hermetic, open packages and tested as
exposed beam lead devices.
276
- - - - - --_._---
(
Test sequence
Test
Test Condltlons
MIL-STD-750
1021
98% R.H. -10· C to 65' C, 10 days
Temperature Cycling
1051
-65" C to 200· C, 100 cyc.
Constant Acceleration
2006
20 KG, 1 min. each axis
1041
35° fog, 24 hours
Moisture Resistance! 1,21
Salt Atmosphere!21
Salt Water Immel'$lonl2,
(MfL-sTD-883B,
M1oo2Sl
65· C saturated NaCI solution, 2 cycles
LTPD
7
10
10
Notes:
1. The sequence of moisture resistance and temperature cycling followed by constant acceleration assures a thorough evaluation of
the effect of exposure to high humidity and heat conditions. End pOints were taken after each test.
2. End pOints were: Visual at 100X magnification and D.C. testing to MIL-STD-19500.
Results
As demonstrated by these tests, Hewlett-Packard's beam lead
layer acts as a sealant and provides immunity from contaminants which could lead to IR drift. Conductive particle
protection is provided by a layer of polyimide, which also
functions as scratch protection. Therefore, it is recommended
that Hewlett-Packard beam lead diodes be used in military
and space applications without the necessity of hermetically
sealed packaging.
diodes exhibit superior performance when subjected to
severe environmental conditions. This proven reliability is
achieveable because of Hewlett-Packard's unique beam lead
design. These beam lead diodes are made of tri-metal (Tj-PtAu or NiCr-P!-Au), which extends both the operating and
storage temperature range. In addition, a nitride passivation
277
r/iOW
RELIABILITY DATA
BEAM LEAD
PIN DIODES
HEWLETT
~e.4I PACKARD
HPND·4005
Description
For applications requiring component reliability estimation,
Hewlett-Packard provides reliability data for all families of
devices. Data is initially compiled from reliability tests run
prior to market introduction to demonstrate that a product
meets design criteria. Additional tests are run periodically.
The data on this sheet represents the latest review of
accumulated test results.
Applications
This information represents the capabilities of the generic
device. Failure rates and MTTF values presented here are
achievable with normal MIL-S-19500 TX level screening.
Reliability can only be guaranteed by testing specified lots
of devices, under specified conditions, with specified L TPD
levels.
400
300
........ r--.
EA = 1.7
r-r-.
;>
'v
(BEAM lEAD FAMIL VI
r-r--.
200
........ 1"'-
w'
a:
::>
t-
t"---I"'-
"~
~
t2
I
0
>=
u
2
100
;;
50
102
103
105
104
la'
la'
108
MTTF (HRS.I
Mean Time 10 Failure vs. Junction Temperature
Burn-In and Storage
LTPDt1000 Hours
Test
Test Conditions
High Temperature Life
1,000 hrs. min. storage time @ 2000 C
2.0
Steady State Operating Life
1,000 hrs. min. operating time@IF=30mA, TA= 150°C
2.0
278
(
Environmental
//
Test
Temperature Cyc1ing
MIL-STD-750
Reference
1051.1
Cond, B
Thermal Shock
1056.1
Soldering Heat
2031
Shock
Vibration Fatigue.
2016.1
2046
Tellt Conditions
10 cycles from -65" C to +200° C. 30 min. at extremes, 5 min.
transfer
LTPD
4
10 cycles from 0' C 10 +100'C, 3 sec. transfer
6
10 seconds at 200·C
15
5 blows each at X" Y,. Y2, 1500 G, 0.5 msec pulse
5
32 ± 8 hrs. each at X. Y. Z. 96 hr. total, 60 Hz. 20 G min.
5
(~
279
Fli;'
1N5767
5082·3080
5082·3168
5082·3188
RELIABILITY DATA
PIN DIODES
HEWLETT
~~ PACKARD
Description
For applications requiring component reliability estimation,
Hewlett-Packard provides reliability data for all families of
devices. Data is initially compiled from reliability tests run
prior to market introduction to demonstrate that a product
meets design criteria. Additional tests are run periodically.
The data on this sheet represents the latest review of accumulated test results.
Applications
This information represents the capabilities of the generic
device. Failure rates and MTTF values presented here are
achievable with normaIMIL-S-19500 TX level screening.
Reliability can only be guaranteed by testing specified lots of
devices, under specified conditions, with specified LTPD
levels.
400
350
300
"' ....
250
"
w'
ec
200
::>
I-
"~
iii
...... .... 1'-
150
e,. =1.30\1
IZ
..... r--,
r.....
0
;:
z
"'l
100
I'-
50
25
10'
103
10'
105
10'
108
107
109
MTTF (HRS.)
Mean Time to Failure vs. Junction Temperature
Burn-In and storage
Test
Test Col'Iditlons
High Temperature Life
1,000 hrs. min. storage time@150"C
Steady State Operating Life
1,000 hrs. min operating time @ PFM = 250 mW, VRM
1=60 Hz, TA=25°C
280
LTPO/l000 Hours
2
~
20 V,
2
(
Environmental
Test
Solderability
Temperature Cycling
MIL-$TO-750
Reference
2026
1051.1
Condo B
Test Conditions
LTPO
Sn 60, Pb 40, solder at 230· C
6
10 cycles from -{)S" C to + 150" C, 0.5 hrs. at extremes,
5 min. transfer
7
6
Thermal Shock
1056.1
5 cycles from DoC to +100· C, 3 sec. transfer
Moisture Resistance
1021.1
10 days, 90-98% RH, -10 to +65' C, non operating
5
Shock
2016.1
5 blows each Xl, Yl, Y2, 1500 G. 0.5 msec pulse
6
Vibration Fatigue
2046
32 ± 8 hrs, each X, Y, Z, 96 hr. total, 60 HZ,20 G min.
5
Vibration Variable Frequency
2056
4,4 minute cycles each X, Y, Z, at 20 G min. 100 to 2000 Hz
5
2006
1 minute each Xl, Yi, Y2, a120,000 G
5
Miniature glass package, -3, 90' arcs, 2 leads, 8 oz.,
lead restriction
6
35° fog for 24 hours
7
Constant Acceleration
Terminal Strength
2037.1
Condo E
Salt Atmosphere
1041.1
(
281
1N5719
FliOW
5082·3001
5082·3002
5082·3039
5082·3077
RELIABILITY DATA
PIN DIODES
HEWLETT
a!~ PACKARD
HPNO·4165
HPNO·4166
Description
For applications requiring component reliability estimation,
Hewlett·Packard provides reliability data for all families of
devices. Data is initially compiled from reliability tests run
prior to market introduction to demonstrate that a product
meets design criteria. Additional tests are run periodically.
The data on this sheet represents the latest review of accum·
ulated test results.
Applications
This information represents the capabilities of the generic
device. Failure rates and MTTF values presented here are
achievable with normal MIL·S·19500 TX level screening.
Reliabilitycan only be guaranteed by testing specified lots of
devices, under specified conditions, with specified LTPD
levels.
400
350
300
250
"
~.
I"----r-,
200
r--.
:J
~
"~
~
>z
o
~
z
150
r--
,
........
EA"" 1.3eV
r--.
r-.....
10 0
I
:;
.......... r-,
I
0
5
102
104
105
108
106
109
MTTF (HRS.)
Mean Time to Failure vs. Junction Temperature
Burn-In and storage
Test
Test Conditions
High Temperature Life
1,000 hrs min. storage time @ 150" C
Steady State Operating Life
1,000 hrs. min. operating time @ PFM
f = 60 Hz, T A = 25" C
282
LTPO/1000 Hours
2
= 250 mW. VRM
~
150 V,
2
Environmental
Test
Solderability
Temperature Cycling
MIL-STD-750
Reference
2026
1051.1
Condo B
Test Conditions
LTPD
Sn 60, Pb 40, solder at 230 0 C
5
5 cycles from -65° C to +150° C, 0.5 hrs. at extremes,
5 min. transfer
5
Thermal Shock
1056.1
5 cycles from 0° C to +100°C, 3 sec. transfer
8
Moisture Resistance
1021.1
10 days, 90-98% RH, -10 to +65"C, non-operating
5
Shock
2016.1
5 blows each Xl, Y" Y2, 1500 G. 0.5 msec pulse
5
Vibration Variable Frequency
2056
4,4 minute cycles each X, Y, Z, at 20 G min. 100 to 2000 Hz
5
Constant Acceleration
2006
1 minute each X" Y" Y2, at 20,000 G
5
Miniature glass package -3,90' arcs, 2 leads, 8 OZ., lead
restriction
5
Kr-8S/dry N2 penetrant dye
2
Terminal Strength
Hermeticity
2037.1
Condo E
1014
(
283
ABSTRACTS OF
APPLICATION NOTES AND BULLETINS
The Microwave Semiconductor Division field sales force is supported by a division applications staff. These technical specialists
investigate circuit applications of most interest to the users of these semiconductor devices. The results of these investigations are
reported in application notes or in brief application bulletins.
A complete list with brief abstracts is presented here. Below is a brief summary of Application Notes for PIN diodes. All of the
Application Notes are available from your local HP Sales Office or nearest HP Components Authorized Distributor or
Representative.
918 Pulse and Waveform Generation with
Step Recovery Diodes
957-1 Broadbanding the Shunt PIN Diode
SPOT Switch
This note describes how the Step Recovery Diode can be
used in a variety of pulse shaping and waveform generating circuits. The pulse shaping Circuits involve reduction
of rise and/or fall time of an input pulse. Other applications include a square wave generator, pulse delay
generator, and FM discriminator.
Covers an impedance matching technique which improves
the bandwidth of shunt PIN diode switches.
957-2 Reducing the Insertion Loss of a Shunt
PIN Diode
Examines a simple filter design which includes the shunt PIN
diode capacitance into a low pass filter, thereby extending
the upper frequency limit.
922 Application of PIN Diodes
Discusses how the PIN diode can be applied to a variety of
RF control circuits. Such applications as attenuating, leveling, amplitude and pulse modulating, switching, and phase
shifting are discussed in detail. Also examines some of the
important properties of the PIN diode and how they affect its
application.
957-3 Rectlfcatlon Effects In
PIN Attenuators
Attenuation levels of PIN diodes are changed by high incident power. Variation in attenuation may be minimized by
proper choice of bias resistance. Performance of a PI N diode
is limited by both carrier level and frequency because of
rectification effects. This note presents the effects of frequency, power level, and bias supply for three types of HP
diodes: 5082-3170, 3140 and 3141.
929 Fast-Switching PIN Diodes
Discusses the switching speed of the PIN diodes and the
considerations which affect switching capability. For HP's
5082-3041/3042 fast-switching PIN diodes, AN 929 outlines
basic drive requirements and comments on a few practical
switching circuits. Considerations involved in the design of
the filters required for use with the diodes are also discussed.
For the 5082-3041, AN 929 provides two curves: 1) typical
isolation vs. forward bias and 2) switching time vs. forward
bias for peak reverse current as a parameter.
971 The Beam Lead Mesa PIN in Shunt
Applications
The low RC product, fast switching time, and other unique
features of the HPND-4050 beam lead PIN diode make it
well-suited for switching applications in the shunt configuration. Switching performance, practical circuits, handling,
and bonding instructions are included in this application
note.
932 Selection and Use of Microwave Diode
Switches and Limiters
974 Ole Attach and Bonding Techniques for
Diodes and Transistors
Helps the systems designer select the proper switching or
limiting component and assists him in integrating this component into the overall design of the system. This note is a
practical, user-oriented approach to problems encountered
with switching and limiting microwave signals.
Several package styles are avai lable for use with hybrid
integrated circuits. This application note gives detailed
instructions for attaching and bonding these devices. A brief
description of an impedance matching technique for mixer
diodes is also included.
936 High Performance PIN Attenuator for
Low-Cost AGe Applications
985 Achieve High Isolation in Series
Applications with the Low Capacitance
HPND-4005 Beam Lead PIN
PIN diodes offer an economical way of achieving excellent
performance in AGC circuits. Significant improvements in
crossmodulation and intermodulation distortion performance are obtained, compared to transistors. This note
discusses other advantages of PIN diodes, such as low frequency operation, constant impedance levels, and low
power consumption.
Low capacitance is required for a diode to achieve high
isolation in the series configuration. On the other hand, low
resistance is needed for low insertion loss. This combination
of characteristics in the HPND-4005 Beam Lead PIN diode
284
--------------------------------------------------------------------------------------------
o
this application note is a new method of resistive spot welding or modified gap welding, which uses a single electrode
to weld the beam while the conductor is contracted separately. This method allows light pressure to be used on the
weld probe, resulting in an effective bond without damaging
the beam lead device.
makes it well suited for series switching applications. The
performance of this diode in a SPST switch and a SPOT
switch is described in this application note. The equivalent
circuits derived in this note would be useful in the design of
circuits for switching and other signal control applications.
992
Beam Lead Attachment Methods
AB 5 Current Source for Diode Testing
This application bulletin gives a general discription of various methods of attaching beam lead components to both
hard and soft substrates. A table summarizes most common
attachment methods with advantages, disadvantages, and
equipment costs.
This application bulletin describes a constant current source
designed primarily for the ease of use in laboratory measurements. Easily programmable by thumb wheel switches
in 10,.,.A steps from 10,.,.A to 700 mA, its accuracy exceeds
most commercially available current sources.
993 Beam Lead Diode Bonding to
Soft Substrate (Restart)
AB 6 PIN Diode RF Resistance Measurement
The hard gold surface on standard PC boards with soft
substrate material makes it almost impossible to successfully bond beam lead diodes on to the boards with normally
recommended thermocompression bonding. Described in
The use of the HP 4815 Vector Impedance Meter in conjunction with a tunable test fixture provides an efficient and
reliable means for measuring the RF resistance of a PIN
diode.
o
285
---
c'
287
/
CHARACTERISTICS OF STEP RECOVERY DIODES
The Step Recovery diode is most graphically
. described as a charge-controlled switch. That is,
a forward bias stores charge, a reverse bias
dEipletes this stored charge, and when fully
depleted the SRD ceases to conduct current.
The action of turning off, or ceasing current
conduction, takes place so fast that the diode
can be used to produce an impulse. If this is done
cyclically, a train of impulses is produced. A
periodic series of impulses in the time domain
converts to a series of frequencies (all multiples
of the basic exciting frequency) in the frequency
domain. If these impulses are used to excite a
resonant circuit, much of the total power in the
spectrum can be concentrated into a single
frequency. Thus input power at one frequency
can be converted to output power at a higher
frequency.
The reverse voltage breakdown limit, VBR, limits
the pulse height and can limit the input power
before the thermal limit is reached.
The low frequency limit of the exciting signal is
set by minority carrier lifetime, T, and the ability
to form an effective impulse at the higher
frequencies is determined by the transition time,
tt. Under forward current flow, IF, charge is built
up in the SRD. Once reverse biased, reverse
current will flow for a short period of time. This is
called the delay time, td, as in the PIN diode.
When all of the carriers have been removed, the
current drops abruptly to zero. The time required
for the reverse current to go from 0.8 IR to 0.2 IR
is called transition time. Typical transition times
range from 360 psec. down to 60 psec. for Step
Recovery diodes.
The delay time td is related to minority carrier life
time T by
Two specifications that limit the total power
output in any given multiplier mode are
maximum junction temperature and thermal
resistance. Within this limit, the output for a
given input is determined by the efficiency of
conversion. Efficiency depends heavily on the
design of the multiplier, so Hewlett-Packard does
not specify it.
td
T
200°C- TA
0JC
TA = ambient temperature, 0 C
0JC = thermal resistance, ° C/W
2. Efficiency,
where
Po
"YJ
= Po+
- -Po
-
).
Minority carrier lifetime sets the lower input
frequency limit because as the frequency gets
lower and lower, more and more of the charge is
dissipated by recombination during a cycle
which reduces the energy in the impulse. The
input frequency should be larger than the inverse
of T to minimize this loss of energy.
1. Maximum Power Dissipation, Po (power
dissipated by the diode)
where
IR
Lifetime is measured by setting IF = 1.7 IR so that
to = T.
The above specifications are related as follows:
Po=
IF
= In (1 + -
The highest output frequency for reasonable
efficiency as a multiplier is limited by the width of
the impulse spike which is determined by the
transition time. Efficiency declines when the
output frequency exceeds the inverse of the
transition time.
,100%
Po = output power
Po = power dissipation
288
(
APPLICATIONS OF STEP RECOVERY DIODES
928 Ku-Band Step Recovery Multipliers
As brought out in the previous section, the Step
Recovery diode can be made to produce very
sharp and narrow pulses. These contain
harmonics of the exciting frequency.
Discusses the use of step-recovery diodes in a
times-eight single-stage frequency multiplier
which, at 16 GHz, has a typical maximum output
of 75 mW. The note also provides design
modifications, together with references, for
meeting other performance requirements.
A circuit which exploits the Step Recovery
diode's production of a multitude of frequency
components is called a Comb Generator. Comb
generators are used in measurement equipment
such as Spectrum Analyzers to produce locking
signals.
948 How to Get More Output Power from a
Comb Generator with the Right Bias
Resistance
Another type of circuit picks out a single
harmonic and optimizes the power output
around that harmonic. This circuit is called a
Multiplier. The end result of a multiplier is output
power at some multiple (2fj, 3fj, etc.) of the input
frequency. The efficiency of the conversion is
high enough to make this a very practical
scheme for multiplying up from a readily
available low frequency oscillator to get a higher
frequency signal. Multipliers are used as local
oscillators, low power transmitters, or transmitter
drivers in radar, telemetry, telecommunications,
and instrumentation.
(
Power output in a comb generator can be doubled
by using an appropriate bias resistor. With a half
watt input level near 1 GHz, the optimum
resistance is about 200 ohms. Higher values of
resistance would be needed for higher input
frequencies or lower input power.
989 Step Recovery Diode Multiplier
A straightforward technique for multiplier design
is presented. The input circuit is a low pass filter
which allows all of the input power to be absorbed
by the diode and reflects harmonic power back to
the diode. The output circuit is a bandpass filter
which offers a low loss path to the desired
frequency while reflecting all other harmonics
back to the diode. The technique is illustrated by a
doubler to 4 GHz using Hewlett-Packard 50820805 step recovery diode.
The Microwave Semiconductor Division Field
Sales Representative is supported by an
applications staff. These technical specialists
investigate circuit applications of most interest to
the users of these semiconductor devices. The
result of these investigations are reported in
application notes. Below is a brief summary of
Application Notes for Step Recovery Diodes. All
of these are available from your local HP Sales
Office or nearest HP Components Authorized
Distributor or Representative.
289
STEP RECOVERY DIODE SELECTION GUIDE
LEGEND
Part Number (5082Glass
Package
Chip
0017
-
0032
0180
-
0113,0114
0021
0015
-
-
0112
-
)
Ceramic
Package
0300
75
0241
50
-
35
0310
40
0132
35
0243
35
0151,0153
0253
25
-
0803
0800
75
-
0815
0805
60
0810
60
0018
-
-
0090
0825
0820,0821
45
0020
0833
0830,0320
30
0008
0840
0335,0830,
0885
25
page 292
page 294
t:====
::::::::J TYPICAL OUTPUT FREQUENCY
TYPICAL INPUT FREQUENCY
VBR
(V)
=--=-=====-=:J
c: ==.:-~-=-=::: =:::::J
C
C.:-..:-_-_--=-_-_-~.::J
C:.:-.:-.:-.:-_-":-':":-':_-==::J
C:'::::. .-=--_-..:-..:-":--=:l
[=::.::::.-:::::::::.. :::::J
C-:...-_-_--=--==-=-:.=:::J
c======-=-:: .:::=J
C=======::'-:'-=::::J
r
L.
[
page 297
FREQUENCY (GHz)
~rl-'I----~I~f'~'~I--~--~---'I------~Ir--------'1
25 50
100 1 2
12
18
26
BANDS
290
L
S
c
x
Ku
K
(
STEP RECOVERY DIODE ALPHANUMERIC INDEX
Page Number
(
Commercial
Data Sheet
Reliability
Data Sheet
Chip
Chip
Chip
Chip
Chip
292
292
292
292
292
301
301
301
301
301
Recovery
Recovery
Recovery
Recovery
Recovery
Diode Chip
Diode Chip
Diode Chip
Diode
Diode
292
292
292
294
294
301
301
301
301
301
Step
Step
Step
Step
Step
Recovery
Recovery
Recovery
Recovery
Recovery
Diode
Diode
Diode
Diode
Diode
294
297
294
294
294
301
301
301
301
301
5082-0241
5082-0243
5082-0253
5082-0300
5082-0310
Step
Step
Step
Step
Step
Recovery
Recovery
Recovery
Recovery
Recovery
Diode
Diode
Diode
Diode
Diode
5082-0032
297
297
297
297
297
301
301
301
301
301
5082-0320
5082-0335
5082-0800
5082-0803
5082-0805
Step
Step
Step
Step
Step
Recovery
Recovery
Recovery
Recovery
Recovery
Diode
Diode
Diode
Diode
Diode
5082-0020
5082-0008
297
297
297
294
297
301
301
301
301
301
5082-0810
5082-0815
5082-0820
5082-0821
5082-0825
Step
Step
Step
Step
Step
Recovery
Recovery
Recovery
Recovery
Recovery
Diode
Diode
Diode
Diode
Diode
5082-0090
5082-0090
5082-0090
297
297
297
297
294
301
301
301
301
301
5082-0830
5082-0833
5082-0835
5082-0840
5082-0885
Step
Step
Step
Step
Step
Recovery
Recovery
Recovery
Recovery
Recovery
Diode
Diode
Diode
Diode
Diode
5082-0020
5082-0020
5082-0008
5082-0008
5082-0008
297
294
297
294
297
301
301
301
301
301
Part No.
Description
Chip
5082-0008
5082-0015
5082-0017
5082-0018
5082-0020
Step
Step
Step
Step
Step
Recovery
Recovery
Recovery
Recovery
Recovery
Diode
Diode
Diode
Diode
Diode
5082-0021
5082-0032
5082-0090
5082-0112
5082-0113
Step
Step
Step
Step
Step
5082-0114
5082-0132
5082-0151
5082-0153
5082-0180
5082-0015
5082-0015
5082-0018
5082-0018
5082-0032
5082-0018
5082-0017
5082-0021
291
rli~ HEWLETT
~~ PACKARD
5082-0008
5082-0015
5082-0017
STEP RECOVERY
DIODE CHIPS
(
5082~0018
5082-0020
5082-0021
5082-0032
5082-0090
Features
OPTIMIZED FOR BOTH LOW AND HIGH ORDER
MULTIPLIER DESIGNS FROM UHF THROUGH
Ku BAND
PASSIVATED CHIP FOR MAXIMUM STABILITY
AND RELIABILITY
GOLD TOP CONTACT FOR LONG SHELF LIFE
AND BONDABILITY
OutlineD1
Description
!
5082.
These diodes are manufactured using modern epitaxial
growth techniques. The diodes are passivated with a thermal oxide for maximum stability. The result is a family of
devices offering highly repeatable, efficient and reliable performance. Both the anode and cathode contact
metalizations are gold aHowing long shelf life and repeatable bondability. These diodes are designed to meet the
general requirements of MIL-S-19500.
Of men..
sioo
0020
0008
001$
0017
0
0,13
15'
0.06
12.51
0,15
!6!
x
0.38
0.38
0.39
'16,S'
0.64
!1$j
,151
0.38
nS)
Y
0.11
0.11
0.11
(4,5)
14.51
{4,51
OIM~NSIONS
Maximum Ratings
IN
0018
0,05
'2)
0021
0.22
0032
0090
0.32
0.15
18.5·
'12,5)
.e,
0.38
125)
0-51
0.38
15
PASSIVATED CHIP FOR MAXIMUM STABILITY
AND RELIABILITY
AVAILABLE IN A VARIETY OF PACKAGES
Description/Applications
These diodes are manufactured using modern epitaxial
growth techniques. The diodes are passivated with a thermal
oxide for maximum stability. The result is a family of devices
offering highly repeatable, efficient and reliable performance
which are designed to meet the general requirements of
MIL-S-19500.
25.4 (1.00f
MIN.
CATHOOE
These diodes are intended for medium and low power multipliers. Typical applications are in local oscillators, especially
where low phase noise is required, in terrestrial communications, satellite communications, TYRO, mobile communications and test equipment. Input frequencies extend down to
10 MHz with output frequencies reaching 26 GHz.
DIMeNSIONS IN
WlIU... IMIi:TERSAND
UNCHES),
2M 11.00)
MIN.
--'---*-
Maximum Ratings
0
II
-I
Outline 11
0.1;6 10.0221
1-0.46" io.61$f
Junction Operating and
Storage Temperature
. . . . . . . . . . . . . -65°C to 200°C
Operation of these devices within the above
temperature ratings will assure a device
Median Time To Failure (MTTF) of approximately 1 x 107 hours.
°
DC Power Dissipation at TeASE = 25' C . . .. 200 C - Tcase
Mechanical specifications
The HP outline 15 and 11 packages have glass hermetic seals
with dumet leads. The maximum soldering temperature is
230° C for 5 seconds, The leads on out I ine 15 should be
restricted so that any bend starts at least 1.6 mm (.063 in.1
from the glass body.
°jc
Soldering Temperature . ............... 230°C for 5 sec.
294
(
\ Electrical specifications at TA = 25 0 C
Part
Maximum
Junction
Capacitance
OJ
Number
(pF)
Minimum
Breakdown
Voltage
VaR
(V)
Minimum
Cutoff
Frequency
(GHz)
(psec)
Ie
Transition
Tlme[1]
Maximum
Charge
tt
Minimum
Lifetime
Lewl
T
(pc)
(nsec)
Package
Outline
5082-0803
6.0'
70
100
400
1600
200
16
5082-0113
4.65
35
260
1600
80
11
5082-0180
4.45
50
-
226
1500
100
5082-0816
4.0'
50
140
320
1500
100
11
'15
5082-0114
3.65
35
-
225
1500
80
11
5082-P825
2.0'
45
160
160
300
30
15
15
5082-0833
1.S'
25
175
90
300
10
5082-0112
1.55
35
175
1000
50
11
5082-0151
0.65
15
-
100
200
10
15
5082..Q840
0.60'
15
300
100
10
15
0.40
25
-
75
5082-0153
95
200
10
15
Test
Conditions
f= 1 MHz
VR=10V
'VR "'SV
IR""10p,A
fc'"
IF'" 10 mA
IR=6 rnA
1
211'Rs
Cj
Notes:
1. The transition times shown for the package 15 devices are limited by the package inductance to a minimum of 100 ps, The lower
transition times shown for the -0833. -0840, -0151, and -0153 are based on the performance of the chip,
2, Typical HJC for Outline 15 is 600"C/W and for Outline 11 is 300" C/W,
Figure 1. Test circuit for transition time. The pulse generator circuit is adjusted for a 0.5 A pulse when testing 5082-0151 and -9840. A
pulse of 1 ,OA is used for all other diodes, The bias current is adjusted for the specified stored charge leveL The transition time is read
between the 20% and the 80% points on the oscilloscope,
295
/
CURRENT
SOURCE
-
HP4815A
VECTOR IMP
METER
r--
D.U.T.
PO 2005
PRECISION
POWER SUPPLY
-
HP 3430A
D.V.M.
Figure 2. Test set-up for measurement of series resistance. The D.U.T. IS forward biased (IF) and the real part of the diode impedance
is measured at 100 MHz. The D.V.M. is set up to read the real part on the Vector voltmeter. The precision power supply is used to
offset the test circuit resistance. Rs is measured at IF ~ 100 mA except 5082-0803 where IF ~ 500 mAo
+v
r--- ---,I
I
:~
I
PULSE
GENERATOR
HP
8082A
:1
I -=-
1.OK
I
SAMPllNG
OSCillOSCOPE
HP
17226
I
I
11~iF
50~
I
I
I
D~r
I
L_'~':..._~~..J
son
""
Figure 3. The circuit for measurement of the effective minority carrier lifetime. The value of the reverse current {IR) is approximately
6 mA and the forward current (IF) is 10 mA. The lifetime (r) is measured across the 50% paints of the observed wave shape. The input
pulse is provided by a pulse generator having a rise time of less than one nanosecond. The output pulse is amplified and observed on
a sampling oscilloscope.
296
(
/
Flin-
a!a
HEWLETT
PACKARD
CERAMIC PACKAGED
STEP RECOVERY
DIODES
5082-0132
5082-0241
5082-0243
5082-0253
5082-0300
5082-0310
5082-0320
5082-0335
Features
UHF THROUGH Ku BAND DIODES
For Low Order and High Order Multipliers
RFTESTED
For Guaranteed Performance (5082-0300 Series)
HERMETIC PACKAGE
For Industrial/Military Environments
Description/Applications
Olllll1lt41
HP Step Recovery Diodes are constructed using modern epitaxial techniques. Oxide passivation insures maximum
stability and reliability. Devices are available in many package
styles.
(
These devices are intended for use as low and high order
harmonic generators requiring the ultimate in performance
and reliability. They excel as doublers as well as high order
multipliers, because the fast transition time design allows full
usage of the forward stored charge effect in improving nonlinearity and efficiency for frequency multiplication. These step
recovery diodes have the basic design capability to meet the
general reliability requirements of MIL-S-19500, in addition
to the special reliability requirements of man-rated space
systems.
-r
O.Kt.0251
MAX.
CATHODE
HEATSlNl(
(lp"o.2pF
Lp'" hH
Out\itle 11
Maximum Ratings
Junction Operating and
Storage Temperature .................. -65° C to 200° C
Operation of these devices within the above
temperature ratings will assure a device
Median Time To Failure (MTTF) of approximately 1 x 107 hours.
DC Power Dissipation at
2000 C _ T
TCASE = 25°C .........................
CASE
9jc
Oulllne40
Soldering Temperature .....•........... 230° C for 5 sec.
Mechanical Specifications
Hewlett-Packard's Step Recovery Diodes are available in a
variety of packages. The metal ceramic packages are hermetically sealed. The anode studs and flanges are gold-plated
Kovar. The cathode studs aie gold-plated copper. The maximum soldering temperature for metal-ceramic packages is
230· C for 5 seconds.
OIMENSIONS IN MILLIM~TERSANO flNCHESt
297
5082-0800
5082-0805
5082-0810
5082-0820
5082-0821
5082-0830
5082-0835
5082-0885
Electrical specifications at TA = 25° C
Part
Number
5082'()SOO
3.5
5.0
75
100
40
400
1500
5082-0241
-
4.6'
65
-
31
200
1500
5082-0805
2.5
3.5
60
140
31
320
5082.()81O
1.5
2.5
60
140
31
5082.()82Q
0.7
1.5
45
160
S082.()821
0.7
1.5
45
160
5082'()132
1.5'
35
5082-0243
-
1.2'
35
-
5082-0830
0.35
1.2
25
5082-0253
-
O.S'
25
5082-0835
0.1
0.5
15
5082-0885
0.1
0.5
Test
Conditions
f= 1 MHz
Minimum
Breakdown
Yoltage
YeR
(V)
Frequency
Transition
Time
Junction
Capacitance
CJ
(pF)
Min.
Max.
Minimum
Cutoff
Minimum
Maximum Charge Lifetime
Level
T
Package
It
(p$ec)
Oumne
(pC)
(nsec)
Typical
Thermal
Resistance
Typical
Output
°jc
(oC/W)
Power
Po
(W)
200
15
10
100
20
-
1500
100
20
6
260
1000
80
25
4
31
160
300
30
30
2.5
41
160
300
30
30
2.5
31
175
1000
50
40
31
200
600
40
50
-
200
31
100
300
10
45
1.0
-
31
100
200
10
75
-
350
31
75
100
10
60
0.3
15
350
56
75
100
10
60
iR=10",A
fe '"
1
fe
(GHz)
IF= 10 rnA
iR"'6mA
---
VR=6V
'VR = 10 V
0.3
Asa
doubler
at
midband.
2 "Rs Cj
RF Tested Diodes at TA = 25° C
ELECTRICAL SPECIFICATIONS
Part
Number
5082-
Minimum
Output
Output
Frequency,
Juncllon
Capacitance
at -10 V.
(;J)
Power,
poll]
{WI
Min.
Max.
Breakdown
VoHage
at IR= 10 IJ.A
VeR
(V)
Max.
Min.
Typical
Transition Time
Maximum
Thermal
Gharge
Typical
Lifetime
(ps)
Lewei
(pc)
(ns)
Resistance.
°jc
(·CfW)
Package
Outline
(GHz)
N
Order
0300
2
Xl0
2.0
3.2
4.7
75
100
14
40
300
2400
200
0310
6
X 10
0.4
1.6
2.7
40
60
30
41
160
1000
75
0320
10
X5
0.23
0.35
1.0
25
40
60
-11
75
300
25
0335
16
X8
0.03
0.25
0.5
20
30
75
31
80
100
15
fo
Note:
1. Guaranteed multiplier tested results. Input power is:
5082-0300
15 W
5062-0320
2W
5082-0310
4W
5062-0335 0.65 W
298
It
T
C:
10
I
~
~
~
~
I
.OO,~
~
POWER IN - W
POWER IN-W
Figure 1. Typical Output Powers vs.
Input Power at TA = 25' C. The 5082-0300
is measured in a x 10 multiplier with P,N
at 0.2 GHz and Po at 2.0 GHz: The
5082-0310 is measured in a x 10
multiplier with P,N at 0.6 GHz and Po at
6.0 GHz.
o
~
0
~
~
.01
~
0
0
w
~
.01 ~
~
~
0
~
I
I
~
~
~
~
•
~
~
•
.1
n
!
fa (GHtl
Figure 3. Predicted power output curves
for 03XX step recovery diodes in X3, X4,
and X5 multiplier applications. These
results were obtained using computer
optimization programs.
Figure 2. Typical Output Power vs. Input
Power at T A = 25' C. The 5082-0335 is
measured in a x 8 multiplier with P,N at
2 GHz and Po at 16 GHz. The 5082-0320
is measured in a x 5 multiplier with P,N at
2.0 GHz and Po at 10 GHz.
Figure 4. Test circuit for transition time. Tne pulse generator circuit IS adjusted for a 0.5 A pulse when testing 5082-0253, -0335, -0835, and
-0885. A pulse of 1.0 A is used for all other diodes. The bias current is adjusted for the specified stored charge level. The transition time is
read between the 20% and the 80% pOints on the oscilloscope.
CURRENT
SOURCE
-
D.U.T.
I--
HP 4815A
VECTOR IMP
METER
r--- ---,I
:F
PULSE
GENERATOR
HP
8082A
PRECISION
POWER SUPPLY
r--
50n
D.V.M.
:1
I -=I
I
l' O.F
I
I
I
1,OK
I
I
I
SAMPLING
OSCILLOSCOPE
HP
1722B
D~r I
L_'~~_~~-1
son
Figure 6. The circuit for measurement of the effective minOrity
carrier lifetime. The value of the reverse current URI is
approximately 6 mA and the forward current IIFI is 10 mAo The
lifetime ITI is measured across the 50% pOints of the observed
wave shape. The input pulse is provided by.a pulse generator
having a rise time of less than one nanosecond. The output pulse
is amplified and observed on a sampling oscilloscope.
Figure 5. Test set-up for measurement of series resistance. The
D.U.T. is forward biased (IF) and the real part of the diode
impedance is measured at 100 MHz. The D.V.M, is set up to read
the real part on the Vector Voltmeter. The precision power
supply is used to offset the test circuit resistance. Rs is measured
at IF = 100 mA except -0800 where IF = 500 mAo
299
300
(
Flio-
RELIABILITY DATA
STEP RECOVERY DIODES
HEWLETT
~~ PACKARD
Description
For applications requiring component reliability estimation,
Hewlett-Packard provides reliability data for all families of
devices. Data is initially compiled from reliability tests run
prior to market introduction to demonstrate that a product
meets design criteria. Additional tests are run periodically.
The data on this sheet represents the latest review of
accumulated test results.
o
Applications
This information represents the capabilities of the generic
device. Failure rates and MTTF values presented here are
achievable with normal MIL-S-19500 TX level screening.
Reliability can only be guaranteed by testing specified lots
of devices, under specified conditions, with specified LTPD
levels.
400
350
E
300
........
.........
w
a:
::J
250
f-
ffi"
(
~f-
......... r-,
200
EA -= 1.61;iV
Z
0
;::
u
z
~
r---. t--. ....
......
150
r-
r--...
100
102
10'
104
10'
10'
107
10'
109
MTTF (HRS.I
Mean Time To Failure vs. Junction Temperature
Burn-In and storage
Preconditioning and screening tests are recommended for devices terminating in high reliability equipments. The following
results were obtained with preconditioning and screening.
Telll
Test Conditions
L TPD/1000 Hours
High Temperature Life
1.000 hrs. min. storage time at 150" C
2
Steady State Operating Life
1,000 hrs. min. operating time at TA = 150°C, PFM = 175 mW.
VRM'" 12 V, f=
Hz, TA= 25·C
3
eo
301
Environmental
The following cumulative test results have been obtained from reliability testing performed at HP Components Division, in
accordance with the latest revisions of Military Semiconductor Specifications MIL-STD-19S00, MIL-STD-202 and MIL-STD-7S0,
Test
Temperature Cycling
MIL-STO-7S0
Reference
1051,1
Cond, B
Test Conditions
LTPO
5 cycles from -65"C to t150°C, ,S hours at
¢xtremes, 5 min, transfer
5
Thermal Shock
10S6,1
5 cycles from O°C to +100·C, 3 sec, transfer
S
Moisture Resistance
1021.1
10 days, 90-98% RH, -10 to +65' C,
non-operating
8
Shock
2016.1
5 blows each Xl, Y1, Y2, 1500 G, O,S msec pulse
10
Vibration Fatigue
2046
32:t 8 hrs, each X, Y, Z, 96 hr. total,
60 Hz, 20 G min,
10
Vibration Variable
Frequency
2056
4,4 minute cycles each X. Y, Z. at 20 G min.
100 to 2000 Hz
10
2006
1 minuteeachX1,Y1, Y2,at20,000G
10
2037,1
Cond.F
Pkg, 32 - 2 Ibs, for 3 sec, 120· apart
20
35' fog for 24 hours
20
Constant Acceleration
Terminal Strength
Salt Atmosphere
1041.1
302
o
o
c
c
305
FliOW
INTEGRATED
PRODUCTS
HEWLETT
~~ PACKARD
SWITCHES
MODULATORS
LIMITERS
MIXERS
COMB
GENERATORS
PIN DIODE SWITCHES
PIN ABSORPTIVE MODULATORS
• Broadband, .1-18 GHz
• 33130 Series Optimized
for Low I nsertion Loss
• son Match at all
Attenuation Levels
• Greater than Octave
Band Coverage
• 33140 Series Optimized
for Fast Swtichlng, 5 ns
• ~"edium and High Isolation
Units Available In Each Series
• SOns Switching (10ns
Available on Special
Request)
• Hermetic PIN Diode Modules
• Hermetic PIN Diode Modules
• Add-On Driver Available
for 33140 Series
PIN DIODE LIMITERS
• Broadband, .4-12 GHz
DOUBLE BALANCED MIXERS
• Low Limiting Threshold, 5mW Typical, 8-12 GHz
• Broadband
10534 Series: .05-150 MHz
10514 Series: .2-500 MHz
• Low Insertion Loss, 1.5dB Typical, 8-12 GHz
• Low Leakage, 20mW Typical, 8-12 GHz
• Hermetic PIN Diode Module
33701A - Module
33711 A - Module with SMA Connectors
• Low Conversion Loss
• Low 1/f Noise, Typically
Less than 100 nV per
Root Hz
• High Isolation Between
Ports
COMB GENERATORS
• 100,250,500 and 1000 MHz
Drive Frequencies (Drive
Frequencies in 50-1500 MHz Range
Available on Special Request)
• Wide Range of Package Styles
"A" Versions: BNC Jacks (Options Available)
"B" Versions: Pins for PC Mounting
"C" Versions: Miniature, Pins for PC Mounting
• Input Matched to
• Hermetically Sealed Schottky Diodes
son
• Self-biased, no External Bias Required
• Narrow Output Pulses:
130ps Pulse Width with 10V Amplitude
HMXR-5001 WIDEBAND DOUBLE BALANCED
MIXER
• Broadband Output Comb Up to 40 GHz Available
• Wideband - 2 to 12.4 GHz
Usable to 18 GHz
• Hermetic Step Recovery Diode Modules
• Wide IF Bandwidth
0.01 to 1.0 GHz
33150A MICROWAVE BIAS NETWORK
0.1-18 GHz
• Wideband
• Low Insertion Loss
•
• High RF to DC
Isolation
• Rugged Construction
• Hermetically Packaged Diodes
For a copy of the Microwave Integrated Products Catalog
(5952-98710) write: Inquiries Mgr., Hewlett-Packard, 1507 Page
Mill Road, Palo Alto, CA 94304.
306
o
o
309
PACKAGE OUTLINES
All dimensions in millimeters (inches), except where noted.
For complete package specifications refer to individual product specification sheets.
Drawings are not to scale.
1-____ ~~,jl3~ 1~l----------l
-~ (~)-t-~ (!.!:Q}:t~ (~)-200 (7.9)
1_'90 (1.4)
200 (7.9) -
I
0.38
I
- - - (15) -------
06
01
'" See data sheet.
1------------- ~~~ l~~: -------------1
L
225 (9)
2OOl8l - , .
250 (1m
2OOl8I
--IL
225 (9)
175 (7)
225 (9)
'2OOl8i-
<~::][rr-------':l~
~
8 (0.32)
I
\
DIMENSIONS IN
",m
7________________1____~
(1/1000 inch)
60 (2.4)
07
03
rr------------~~----------~
L
/GOlDBEAM
t
" \
g~ """PLATINUM
8 (.3)
s\:
METALLIZATION
GLASS
;:r
DIMENSIONS IN J..lm (1/1000 INCH)
04
08
310
4OlT.6i
All dimensions in millimeters (inchesl, except where noted.
For complete package specifications refer to individual product specification sheets.
Drawings are not to scale.
(/
110 (4)
-WID)
1
0.86 (.034)
~
0.64 (.025)
MAX.
DIMENSIONS IN,u.m (1/1000 inch)
1
If.--,.98
~ (.086)
I 0.30 (.012)
(.078) --1 D.25 (.0101
10
38
31
~:f)
O~oo)
~
(0.073)
1.70 tu:067)
0.58 (.023)
l=-t
,~--._
I
--r
~
~
L
5.38 (.212)
4.70 (.185)
25.4 (1.001
MIN.
g:U=-o-~
11
(.,23)_1 D.ii (.014)
I-~
2.99(.118)
~
1.911.075)
1.42 (0.58)
4.06 (0.16)
0.28 (.011)
il.2i fiiiiii
3-48
UNC-2A
HEAT SINK
Q'
12
L.J
2 .•7 (.105)
----as4 (.100) ----
O-::J.OO)
1.93
(.076)
1.73 f.Oiil
40
-<~qMIN'
I
I
(
4.32 (.170)
-=r
1_
ir
0.58 (.023)
o.3•
25.411.00)
MIN.
g;~-[)--~
(.014)
3.12 (.,23)1
2.99 (.118)
I
1.S0 (.071)
1.37 (.054)
I
1.63 (.064)
1.52 (.060)
..!
ANODE-HEAT SINK
;-
(4'3)~"0
[~80
__
_dJ__
___
..,
--r
-+
3.43(.135)
2.90 (.114)
15
IL
I
1 .• 3 (.064)
~
f-~:~~ ::~~:~~
=+'_+
i
~(5.11
,0 4 3
1. 1
41
130(5.1)
110(4.3)
':+t
t
(0.4) 10
(0.31 T
720 (28.3)
LI'
'L !:i¥'
26 MIN (1)
680(26.8)
iilIII,
GLASS SILICON
220 IB.7)
180 l7.ii
~(·OS5) DIA.
H 1.30 (.051)
. -
320112.6)
, . 2 7 ; ' : ; 0 ' CATHODE
1.02 (.040)
~
Lp".3nh
Cp=.13pF
280 (11.0)
21
44
311
II--
!.,~t044)D ---1.I
I
110 (4)
90(3.5)
CB (.052)
1.24 (]j4§)
All dimensions in millimeters (inches:l, except where noted.
For complete package specifications refer to individual product specification sheets.
Drawings are not to scale.
I
1.57 (0.062)
ill (0.058)
2.16 (0.085)
1:65 (0.065)
~
).
~. ill~
'''. / / 'to.
~;>/~'.
~/
1.52 (0.060)
1 02 (0.040)
"-..,
0.38 MIN. (0.015)
(4 PLACES)
TYPICAL
CHIP
LOCATION
49
61
1.40 (.055) DIA.
1.30 (.051)
CATHODE
-j-----------lI
1:]--,
,
1.27 (.050)
1.02 (.040)
---'---*56
1.27 (0.050)
MAX.
0.36 (0.014)
MAX.
(O~c:a04)
TYP.
===j~I""'II-"=;===f
~
C2
3.81
(0.150)
MIN.
//1/
/3.18 (0.125)
2.95 (0.115)
//Je
0.10
(0.004)
TYP.
0.38 (0.015)
MAX.
60
.~=
t
~
C4
312
==t
All dimensions in millimeters (inches!, except where noted.
For complete package specifications refer to individual product specification sheets.
Drawings are not to scale.
(
LID DIAMETER
2.59 {QJW
2.06 (0.081)--
0.56 (0.022)
0.46 (O.Q1S)
2.79 (D.11e»
L-_ _ _-\ 229 (0.090)
t
1------, ~
2.69 (0.106)
2.34 (0.0921 ~
r----!
I-- 4.06 10.160)
3.56 (0.140)
J
SQUARE
T
1.27 (0.05) MAX
~I=~=fA-------'I===~
~:~~ i~:~~~: T
0.20 (O.OOS)
O.10l([OO4T
O.89~
~
0.64 (0.025)
'D-- =1
0.15 (0.006)
0.08 (Q1i03'j
=f====~===~==
0.64 {G.02S} ]
MAX
H4
E1
ct
'~l~
5'0Bl'20)
I...._.8.13 (.32)_~ MAX •
MAX.
0.79 (0.031)
TVP
LEAD LENGTH 19.05 (0.75) MIN.
tcJj-----r:
q
G1/G2
0.10 (0.004)
TYP.
J.84 (0.033)
0.53 (0.021)
HPAC-70GT
0.58 (0.023)
0:43 (0.017)
CATHODE
~
('..,
b
\,--~
I 2.64
~~
(O.'O~)
c::::J~
I
(0.092-4. 3,30 (0,130)
SQUARE
0.20 (0.008)
0.10 ~)
KOVAR LEADS.
Au PLATED"
t
J
MIN.
0.89 (0.035)
T
r = = = = f 6 4 (0.025) 0.'8 (0.007)
=
0.08 (0.003)
0.10 (0.004)
=-'--
L~T
r
T
1.3 (0.05) TYP.
H2
HPAC-100
313
All dimensions in millimeters (inches), except where noted.
For complete package specifications refer to individual product specification sheets.
Drawings are not to scale.
HPAC-100X
(~~8~) TYP.
~ (ci~~)
3.25 (0.128) orA.
/TVP.
2.0
(0.080}--·~
------'"".>--_.--1
0.64 (0.025)
0.38 (0:011))
+
t=:l
T
'"
+
TV":.II. __1.O
(0.040)
TYP.
0.102
(0.004)
TYP.
T~P.
It:
I
5.1 TVP
I
~
~~~.(~~~~ (6.~8) D-- (o~064) ~~ic~~~~s
1.27
(0.050)
rr-
I
~I
. '.-'1(0.20)
..'
0.79 RTYP.
(.031)
"".:
(0.03)
TYP.
L
r-
.'0
TVP. :
I 0.76
1.52
I
(0.060)----1
TYP.
~
3.05
.
.. (D.12) TYP.
TYP.
~
I
L--L5.46 (0.215)
4.96 (o:T95l
HPAC-200
HPAC-200 GB/GT
314
.
(
HP Components
Authorized Distributor
and Representative Directory
May 1984
United States
Alabama
California (COnt.I
Florida (Conl.i
Iowa
Hall-Mark Electronics
4900 Bradford Drive
Huntsville 35805
(205) 837-8700
Schweber Electronics
3110 Patrick Henry Drive
Santa Clara 95050
(408) 748-4700
Hall-Mark Electronics
15301 Roosevel t 81 vd.
Sui te 303
Clearwater 33520
(813) 530-4543
Schweber Electronics
5270 North Park place N.E.
Cedar Rapids 52402
(319) 373-1417
Hami 1 ton/Avnet
wyle Laboratories
Electronics-Marketing Group
124 Maryland Street
E1 Segundo 90245
(213) 322-8100
Hamilton/Avnet Electronics
6801 N.W. 15th Way
Ft. Lauderdale 33309
(305) 971-2900
4812 Commercial Drive
Huntsville 35805
(205) 837-7210
Schweber Electronics
2227 Drake Avenue, S.W.
Sui te 14
Huntsville 35805
(205) 882-2200
Arizona
Hamilton/Avnet
505 South Madison
Tempe 85281
(602) 231-5100
wyle Labora tor ies
Electronics Marketing Group
8155 North 24th Avenue
Phoenix 85021
(G02) 249-2232
in Tucson (602)
884-7082
Calilornia
(
Hall-Mark Electronics
1110 Ringwood Court
San Jose 95131
(40B) 946-0900
Hanti 1 ton/Avnet
4103 Northgate Blvd.
Sacramento 95834
(916) 925-2216
Hamilton/Avnet
4545 Viewridge Avenue
San Diego 92123
(619) 571-7510
Hami 1 ton/Avnet
1175 Bordeaux Drive
sunnyvale 94086
(408) 743-3355
Hamil ton Electro Sales
3170 Pullman Street
Costa Mesa 92626
(714) 641-4166
Hamil ton Electro Sales
10950 W. Washington Blvd.
Culver City 90230
(213) 558-2121
SchwebtH: Electronics
21139 Victory Boulevard
Canoga Park 91303
(213) 99q -4702
Wyle Laboratories
Electronics Marketing Group
17872 Cowan Avenue
Irvine 92714
(714) 863-1611
wyle Laboratories
Electronics Marketing Group
IllSl Sun Center Drive
Rancho Cordova 95670
(916) 638-5282
Wyla Laboratories
Electronics Marketing Group
9525 Chesapeake Drive
San Diego 92123
(619) 565-9171
wyle Laboratories
Electronics Marketing Group
3000 Bowers Avenue
santa Clara 95052
(408) 727-2500
Colorado
Hami 1 ton/Avnet
8765 East Orchard
Sui te 708
Englewood 80111
(303) 740-1000
Wy1e Laborator ies
Electronics Marketing Group
451 E. 124th Avenue
Thornton 80241
(303) 457-9953
Connecticut
Hami 1 ton/Avnet
Couunerce Dr i ve
Commerce Industrial Park
Danbury 06810
(203) 797-2800
Schweber Electronics
Finance Drive
Commerce Industrial Park
Danbury 06810
(203) 792-3500
Florida
Schweber Electronics
17822 Gillette Avenue
Irvine 92714
(714) 863-0200
Hall-Mark Electronics
16 71 W. McNab Road
Ft. Lauderdale 33309
(305) 971-9280
Schweber Electronics
1771 Tribute Road
Suite B
Sacramento 95815
(916) 929-9732
Hall-Mark Electronics
7648 southland Blvd.
Suite 100
Orlando 32809
(305) 855-4020
Hamilton/Avnet
3197 Tech Drive North
St. Petersburg 33702
(813) 576-3930
Hamilton/Avnet
6947 university Blvd.
Winter Park 32792
(305) 628-3888
Schweber Electronics
181 Whooping Loop
AltaMonte springs 32701
(305) 331-7555
Schweber Electronics
2830 N. 28th Terrace
Hollywood 33020
(305) 927-0511
Kansas
Hall-Mark Electronics
10815 Lakeview Dr ive
LenexCi 66219
(913) 888-4747
Hamilton/Avnet
9219 Quivlra Road
Overland Park 66215
(913) 888-8900
Maryland
Hall-Mark Electronics
6655 Amberton Drive
Baltimore 21227
(301) 796-9300
Georgia
Hamilton/Avnet
6822 Oak Hall Lane
Columbia 21045
(301) 995-3500
Hall-Mark Electronics
6410 Atlantic Boulevard
Suite 115
Norcross 30071
(404) 447-8000
Schweber Electronics
9330 Gaither Road
Gaithersburg 20760
(301) 840-5900
Hami 1 ton/Avnet
5825 D. Peachtree Corners East
Norcross 30092
(404) 447-7507
Massachusells
Schweber Electronics
303 Research Drive
Sui te 210
Norcross 30092
(404) 449-9170
Illinois
Hall-Mark Electronics
1177 Industrial Drive
Bensenville 60106
(312) 860-3800
Hami 1 ton/Avnet
1130 Thorndale Avenue
Bensenville 60106
(312) 860-7700
Schweber Electronics
904 Cambridge Drive
Elk Greve village 60007
(312) 364-3750
Hami 1 ton/Avnet
50 Tower Office Park
Woburn 01801
(617) 273-7500
Schweber Electronics
25 Wiggins Avenue
Bedford 01730
(617) 275-5100
Michigan
Hami 1 ton/Avnet
2215 29th Street S.E.
Grand Rapids 49508
(616) 243-8805
Hami 1 ton/Avnet
32487 Schoolcraft R"oad
Lh·onia 48150
(313) 522-4700
Indiana
pioneer-Standard
13485 Stamford
Livonia 48150
(313) 525-1800
Hami 1 ton/Avnet
485 Gradle Drive
Carmel 46032
(317) 844-9333
Schweber Electronics
12060 Hubbard Drive
Livonia 48150
(313) 525-8100
Pioneer-Standard
6408 Castleplace Drive
Indianapolis 46250
(317) 849-7300
315
Minnesota
New York Icont.)
Ohio Icont.!
Texas I conI.)
Hall-Mark Electronics
'1838 12th Avenue, So.
Bloomington 55420
(612) 854-3223
Hamil ton/Avnet
16 Corporate Circle
East Syracuse 13057'
(315) 4"37-2641
Hamllton/AVnet
3939 Ann Arbor
Houston 77063
(713) 780-1771
Hami 1 ton/Avnet
Schweber Electronics
7865 Paragon Road
Suite 210
D,ayton, 45459
(513) 439-1800
Hami 1 ton/Avnet
5 Hub Drive
Melville 11746
(516) 454-6060
Oklahoma
Schweber Electronics
7424 w. 78th Stl.'.eet
Edina 55435
(612) 941-5280
Hamil ton/Avnet
333 Metro Park Drive
Rochester 14623
(716) 475-9130
Hall-Mark Electronics
5460 South 103rd E. Avenue
Tuls'a 74145
(918) 665-3200
Missouri
Schweber Electronics
2 Townline Circle
Rochester 14623
(716) 424-2222
Schweber Electronics
4815 S. Sheridan
Sui te 109
Tulsa 74145
(918) 622-8000
10300 Bren Road E.
Minneapolis 55343
(612) 932-0600
.
Hall-Mark Electronics
2662 Metro Blvd.
Maryland Heights 63043
(314) 291-5350
Hamilton/Avnet
13743 Shoreline Court
Earth City 63045
(314) 344-1200
New Hampshire
Schweber Electronics
Bedford Farms; Bldg. 2
Kilton" South River Road
Manchester 03102
(603) 625-2250
New Jersey
Hall-Mark Electronics
spr ingdale Bus! ness Center
2091 springdale Road
Cherry Hill 08003
(609) 424-7300
Schweber Electronics
Jericho Turnpike
Westbury 11590
(516) 334-7474
Hall-Mark Electronics
5237 North Boulevard
Raleigh 27604
(919) 872-0712
Schweber Electronics
5285 North Boulevard
Raleigh 27604
(919) 876-0000
Hall-Mark Electronics
6130 Sunbury Road
Westerville 430U
(614) 891-4555
Schweber Electronics
18 Madison Road
Fairfield 07006
(201) 227-7880
New Mexico
Pennsylvania
Pioneer-Standard
259 Kappa DriVe
Pi ttsburg 15238
(412) 782-2300
Ohio
Hamilton/Avnet
Hami 1 ton/Avnet
10 Industrial Road
Fairfield 07006
(201) 575-3390
Wyle Laboratories
Electronics Marketing Group
5289 N.E. Elam Young parkway
Sui te E-I00
Hillsboro 97123
(503) 640-6000
Hamil ton/Avnet
3510 spring Forest Road
Raleigh 27604
(919) 878-0810
Hall-Mark Electronics
5821 Harper Road
Solon 44139
(216) 349-4632
Cherry Hill 08003
(609) 424-0100
Hamil ton/Avnet
6024 S.W. Jean Road
Bldg. C, Suite 10
Lake Oswego 97034
(503) 635-8831
North Carolina
Hall-Mark Electronics
116 Fairfield Road
Fairfield 07006
(201) 575-4415
1 Keystone Avenue
Oregon
Schweber Electronics
231 Gibraltar Road
Horsham 19044
(215) 441-0600
Schweber Electronics
1000 RIDe Place
Sui te 203
Pi ttsburg 15238
(412) 782-1600
Hami 1 ton/Avnet
4588 Emery Industrial Parkway
Cleveland 44128
(216) 831-3500
Hami 1 ton/Avnet
945 senate Drive
Dayton, Ohio 45459
(513) 433-0610
Schwe~er Electronics
6300 La Calma Drive
Suite 240
Austin 78752
(512) 458-8253
Schweber Electronics
4202 Beltway Drive
Dallas 75234
(214) 661-5010
Schweber Electronics
10625 Richmond Avenue
Sui te 100
Houston 77042
(713) 784-3600
Utah
Hamil ton/Avnet
1585 West 21st S.
Salt Lake City 84119
(801) 972-2800
Wyle Laboratories
Electronics Marketing Group
1959 S. 4130 west
Unit B
Salt Lake City 84104
(BOl) 974-9953
Washington
Hami 1 ton/Avnet
14212 N.E. 21st Street
Bellevue 98006
(206) 453-5844
Wyle Laborator ies
Electronics Marketing Group
1750 132nd Avenue, N.E.
Bellevue 98005
(206) 453-8300
Texas
Wisconsin
Hall-Mark Electronics
12211 Technology
Austin 78759
(512) 258-8848
Hall-Mark Electronics
9625 South 20th Street
Oakcreek 53154
(414) 761-3000
Hall-Mark Electronics
11333 Pagemill Drive
Dallas 75231
(214) 341-1147·
Pioneer-Standard
4800 East 131st S:treet
Cleveland 44105
(216) 587-3600
Hami 1 ton/Avnet
.2111 W. Walnut Hill Lane
. Irving 75062
(214) 659-4111
Hami 1 ton/Avnet
2975 Moorland Road
New Berlin 53151
(4H) 784-4510
Pioneer-Standard
4433 lnterpoint Boulevard
Dayton ,45404
(513) 236-9900
Hall-Mark Electronics
8000 Westglen
P.O. Box 42190
Houston 77042
(713) 781-6100
Schweber Electronics
23880 Commerce Park Road
Beachwood 44122
(216) 464-2970
Hamilton/Avnet
2401 Rutland
Austin 78758
(512) 837-8911
Australia
Australia Icon1.l
Australia Icon1.l
Australia Icont.!
STC-Cannon Components pty. Ltd.
Gabba Towers
4il V",lture Street
Woolloongabba, Qld. 4102
.(61) 07 393-0377
(61) 07 393-0595
STC-Cannon Components pty. Ltd.
605 Gardeners Road
Mascot, New South !1ales 2020
(61) 02 693 1666
STC-Cannon Components pty. Ltd.
396 Scarborough Beach Road
Osborne Park
Western Australia 6017
(Gl) 09 444 0211
VSI Electronics pty. Ltd.
11th Floor
United Dominion' Building
127 Creek Street
Brisbane, Queensland 4000
(61) 07 229 8827
Hami 1 ton/Avnet
2524 Baylor S. E.
Albuquerque 87106
(505) 765-1500
New York
Hall-Mark Electronics
1 Comac Loop
Ronkonkoma 11779
(516) 737-0600
Schweber Electronics
150 S. Sunnyslope
Suite 120
Brookfield 53005
(414) 784-9020
International
STC-Cannon Components pty. Ltd.
unit 2
66 Humphr ies Terrace
Kilkenny
South Australia 5009
(61) 08 268 70B8
STC-Cannon Components pty. Ltd.
248 Wickham Road
Moorabbin
Victor ia 3189
(61) 03 555 9566
316
VSl Electronics pty. Ltd.
Office 8
116 Melbourne "Street
North Adelaide
South Australia 5006
(61) 08 267 4848
VSI ElectrQnics pty. Ltd.
Sui te 3
118 Church Street
Hawthorn, Victorla 3122
(61) 03 819 5044
(
Australia (conti
Denmark
Israel
Singapore
VSI Electronics Pty. Ltd.
Interelko A.P.S.
SILOVEJ
26YO Karlslunde
(45) 3 140700
Motorola Israel Ltd.
Electronics and Engineering
16 Kremenetski Street
P.O. Box 25016
Tel Aviv 67899
(972) 3 338973
oynamar International Ltd.
suite 05-11
12, Lorong Bakar Batu
Kolam Ayer Industrial Estate
Singapore 1334
(65) 747-6188
Unit 1
25 Brisbane Street
East perth, W.A. 6000
(61) 09 328 8499
VSI Electronics Pty. Ltd.
16 Dickson Avenue
Artarmon, N.S.W. 20
(61) 02 439 8622
Finland
Field-OY
Veneentekljantie 18
00210 Helsinki 21
(358) 0 6922 577
Austria
Transistor V.m.h.H
Auhofstr. 41a
A-1l30 Wi en
(43) 222 829451
(43)
222 829404
Belgium
Diode Belgium
LuchtschipstI:aat/Rue De
L' Aeronef 2
1140 Brusselss
(32) 2 216 2100
Brazil
Aimex
Zone Industrielle d'Antony
4H, rue de l' Aubepine
92160 Antony
(33) 1 6662112
So. Africa
Advanced Semiconduc I:.or
Devices (Pty) Ltd.
P.O. Box 2944
Johannesburgh 2000, S.A.
(27) 11 802-58204
Eledra S.p.A.
Viale ElveZla 18
20154 Milano
(39) 2 349751
Spain
Japan
F. Feutrler
H, Benoit Malon
92150 Surensnes
(33) 1 7724646
Ryoyo Electric corporation
Meishin Building
1-20-19 Nishiki
Naka-Ku, Nagoya, 460
(81) 52 2030277
Feutr ier
Rue de Trois Glorievses
42270 St. priest En Jarez
(33) 77 7746733
F.
Ryoyo Electric Corporation
TalYo ShoJi Building
4-6 Nakanoshima
Klta-Ku, Osaka, 530
(81) 6 4481631
Datatronix Electronica LTDA
Av. Pacaembu, 746-Cl1
Sao Paulo
(55} 11 8260111
S.C.A. I .B.
80 rue d'Arcueil
Zone Silic
94150 Rungis
(33) 1 6872313
Canada
Germany
Ryoyo Electric Corporatlon
Konwa Su i ld i ng
12-22 Tsukiji, l-Chome
Chuo-Ku, Tokyo
(81) 3 543771
Hamilton/Avnet
Electronics Ltd.
Distron GmbH
Behaimstr. 3
0-1000 Berlin 10
(49) 30 3421041
Tokyo Electron Company, Ltd.
Sinjuku-Nomura Building
Tokyo 160
(81) 3 3434411
EBV Elektronik
Oberweg 6
0-8025 Unterhaching
(49) 89 611051
Korea
6845 Rexwood Drive
Units 3, 4 &: 5
Mississauga, Ontario L4V lR2
(416) 677-7432
Hami 1 ton/Avnet
Electronics Ltd.
2670 Sabourin Street
St. Laurent
Montreal, Quebec H4S 1M2
(514)
331-6443
Hami 1 ton/Avnet
Electronics Ltd.
(~
France
Italy
Celdis Italiana S.p.A.
Via F. LL Gracchi, 36
20092 Cinisello Balsamo
Milano
(39) 2 6120041
210 Colonnade Road
Nepean, Ontario K7E 7J5
(613)
226-1700
Zentronics, Ltd.
8 Tilbury Court
Brampton, Ontario L6T 3T4
(416) 451-9600
Zentronics, Ltd.
Bay il
3300 14th Avenue, N.E.
Calgary, Alberta T2A 6J4
(403) 272-1021
zentronics, Ltd.
155 Colonnade Road
Units 17 & 18
Nepean, Ontario K2E 7Kl
(613) 226-8840
Zentronics, Ltd.
505 Locke Street
St. Laurent
Montreal, Quebec H4T lX7
(514) 735-5361
zentronics, Ltd.
Unit 108
11400 Bridgeport Road
Richmond, B.C. V6X 1T2
(604) 273-5575
zentronics, Ltd.
546 Weber Street North
Uni t 10
Waterloo, Ontario N2L 5C6
(519) 884-5700
Zentronics, Ltd.
590 Berry Street
Winnipeg, Mani toba R3H 051
(204) 775-8661
Diode Espana
Avda. Brasil 5, 1st planta
Madr id 20
(34) 1 455 3&86
Sweden
AS
Box 103
123 22 E'arsta
(46) 8132160
TRACO
Switzerland
Saerlocher AG
Foerrlibuckstrasse 110
CH-8037 Zuerich
(41) 1 429900
Fabr imex Ag
Kirchenweg 5
Cli-8032 Zuerich
(41) 1 251-2929
United Kingdom
Samsung Electronics Co., Ltd.
Industrial Products Division
76-561 Yeoksam-Dong Kangnam-Ku
Seoul
(82) 2 555 7555
Ingenieurbuero Dreyer
Flensburger Strasse 3
0-2380 Schleswig
(49) 4621 23121
Jermyn GmbH
postfach 1180
0-6277 Camberg
(49) 6434 230
Netherlands
Koning en Hartman
E1ektrotechniek BV
Koperwerf 30
2544 EN Den Haag
(31) 70 210101
SASCO GmbH
0-8011 putzbrunn
Hermann-Oberth-StraBe 16
Munich
(49) 89 46111
New Zealand
Hong Kong
VSI Electronics pty. Ltd.
123 Manukau Road
Epsom, Auckland
(64) 97686042
CET LTD.
1402 Tung Wah Mansion
199-203 Hennessy Road
Wanchai
(852) 5 729376
VSI Electronics Pty. Ltd.
P.O. Box 11145
Wellington
(64) 4848922
India
VSI Electronics pty. Ltd.
295 Cashel Street
Christchurch
(64) 60928
Blue Star Ltd. (REP)
Sabri Complex II Floor
24 Residency Road
Bangalore 560 025
Tel: 55660
Norway
Blue Star Ltd. (REP)
Sahas
414/2 Vir Savarkar Marg
prabhadevi
Bombay 400 025
Tel: 422-6155
HEE'RO Teknisk A/S
P.O. BOX 6596, Rode>loekka
Oslo 5
(47) 2 380286
Blue star Ltd.
(REP)
Bhandari House,
7th/8th Floors
91 Nehru place
New Delhi 110 024
Tel~ 682547
317
Celdis Ltd.
37-39 Loverock Road
Reading, Berkshire
RG3 lED
(44) 734 585171
Jermyn-Mogul Distribution
vestry Estate
Otford Road
Sevenoaks, Kent
TN14 5EU
(44) 732 450144
Macro Marketing Ltd.
Burnham Lane
Slough, Berkshire
SLI 6LN
(44) 628 64422
Farnell Electronic
Components Ltd.
Canal Road
Leeds LS12 2TU
(44) 532-636311
Yugoslavia
Elektrotehna N. Sol. O.
Tozd Elzas N. Sol. O.
Titova 81
61001 LjublJana
(38) 61 347749
(38) 61 347841
SALES & SUPPORT OFFICES
Arranged alphabeticaHy by country
Product Line Sales/Support Key
Key Product Line
A Analyllcal
CM Componenls
C Compuler Syslems Sales only
CH Compuler Systems Hardware Sales and Services
CS Compuler Syslems Sollware Sal.s and Services
E Electronic Instruments &: Measurement Systems
M Medical Producls
MP Medical Producls Primary SRO
MS Medical Producls Secondary SRO
P Personal Computation Products
Sales only for specific product line
.. Supporl only for specific produciline
IMPORTANT: These symbols designale general produclline capabilily. They do nol
insure sales or support availability for all products within a line, at all locations.
Contact your local sales office for information regarding locations where HP support
is available for specific products.
HP dislflbutors are pr;nled in Italics.
HEADQUARTERS OFFICES
If there is no sales office listed for your area, contact one of these
headquarters offices.
NORTH/CENTRAL AFRICA
Hewlell·Packard SA
7, Rue du Bois·du·Lan
CH-1217 MEYRlN 2. Swilzerland
Tei: (022) 83 12 12
Telex: 27835 hpse
Cable: HEWPACKSA Geneve
ASIA
Hewlell-Packard Asia Lid.
61h Floor, Sun Hung Kai Cenlre
30 Harbour Rd.
G.P.O. Box 795
HONG KONG
Tel: 5·8323211
Aller Jan. I, 1984
47th Floor, China Resources Bldg.
26 Harbour Rd., Wanchai
HONG KONG
Telex: 66678 HEWPA HX
Cable: HEWPACK HONG KONG
CANADA
Hewlell·Packard (Canada) Lid.
6877 Gareway Drive
MISSISSAUGA, Ontario L4V 1M8
Tel: (416) 678-9430
Telex: 610-492-4246
EASTERN EUROPE
Hewlett-Packard Ges.m.b.h.
lieblgasse t
P.O.Box 72
A-1222 VIENNA, Austria
Tei: (222) 2365110
Telex: 1 34425 HEPA A
NORTHERN EUROPE
Hewlett·Packard SA
Uilenstede 475
P.O.8ox 999
NL-1180 AZ AMSTELVEEN
The Netherlands
Tel: 20 437771
SOUTH EAST EUROPE
Hewlett-Packard S.A.
7, Rue du Bois-du-Lan
CH-1217 MEYRIN 2, Swilzerland
Tel: (022) 83 12 12
Telex: 27835 hpse
Cable: HEWPACKSA Geneve
OTHER EUROPE
Hewlett-Packard SA
P.O. Box
150, Rte du Nant-D'Avrii
CH-1217 MEYRIN 2, Swilzerland
Tel: (022) 83 8111
Telex: 22486 hpsa
Cable: HEWPACKSA Geneve
MEDITERRANEAN AND
MIDDLE EAST
Hewlell-Packard SA
Mediterranean and Middle East
Operations
Atrina Centre
32 Kifissias Ave.
Paradissos-Amarousion, ATHENS
Greece
Tel: 682 88 11
Telex: 21-6588 HPAT GR
Cable: HEWPACKSA Alhens
EASTERN USA
Hewlett-Packard Co.
4 Choke Cherry Road
ROCKVILLE, MO 20850
Tel: (301) 258-2000
MIDWESTERN USA
Hewlett-Packard Co.
5201 Tollview Drive
ROLLING MEADOWS, IL 60008
Tel: (312) 255-9800
SOUTHERN USA
Hewlett-Packard Co.
2000 South Park Place
P.O. Box 105005
ATLANTA, GA 30348
Tel: (404) 955-1500
WESTERN USA
Hewlett-Packard Co.
3939 Lankershim Blvd.
P.O. Box 3919
LOS ANGELES, CA 91604
Tel: (213) 506-3700
OTHER INTERNATIONAL
AREAS
Hewlett-Packard Co.
Inlercontinental Headquarters
3495 Deer Creek Road
PALO ALTO, CA 94304
Tel: (415) 857-1501
Telex: 034-8300
Cable: HEWPACK
ANGOLA
Teleelra
Empresa Teenlea de Equipamenlos
R. Barbosa Rodrigues, 41-1 0 T.
Calxa Poslal6487
LUANDA
Te!.· 35515,35516
E,P
ARGENTINA
Hewlell-Packard Argentina SA
Avenida Santa Fe 2035
Martinez 1640 BUENOS AIRES
Tel: 798-5735, 792-1293
Telex: 17595 BIONAR
Cable: HEWPACKARG
A,E,CH,CS,P
BIolron S.A.C.I.M. e /.
Av Paseo Colon 221, PIso 9
1399 BUENOS AIRES
Tel: 30-4846, 30-1851
Telex: 17595 BIONAR
M
AUSTRALIA
Adelaide, South Australia
Office
Hewlett-Packard Australia Ltd.
153 Greenhill Road
PARKSIDE, SA 5063
Tel: 272-5911
Telex: 82536
Cable: HEWPARD Adelaide
A· ,CH,CM"E,MS,P
Brisbane, Queensland Office
Hewlett-Packard Australia Lid.
10 Payne Road
THE GAP, Queensland 4061
Tel: 30-4133
Telex: 42133
Cable: HEWPARD Brisbane
A,CH,CM,E,M,P
Canberra, Australia
Capital Territory
Office
Hewlett-Packard Australia Ltd.
121 Wollongong Street
FYSHWICK, A.C. T. 2609
Tel: 80 4244
Telex: 62650
Cable: HEWPARD Canberra
CH,CM,E,P
Melbourne, Victoria Office
Hewlelt.-Packard Australia Lid.
31-41 Joseph Street
BLACKBURN, Victoria 3130
Tel: 895-2895
Telex: 31-024
Cable: HEWPARD Melbourne
A,CH,CM,CS,E,MS,P
Perth, Western Australia
Office
Hewlell-Packard Australia Ltd.
261 Stirling Highway
CLAREMONT, W.A. 6010
Tel: 383·2188
Telex: 93859
Cable: HEWPARD Perth
A,CH,CM,E,MS,P
318
Sydney, New South Wales
Office
Hewlett-Packard Auslralia Ltd.
17-23 Talavera Road
P.O. Box 308
NORTH RYDE, N.S.W. 2113
Tel: 887-1611
Telex: 21561
Cable: HEWPARD Sydney
A,CH,CM,CS,E,MS,P
AUSTRIA
Hewlett-Packard Ges.m.b.h.
Grollenhoistrasse 94
A·8052 GRAZ
Tel: (0316) 291 566
Telex: 32375
CH,E
Hewlett-Packard Ges.m.b.h.
Lieblgasse 1
P.O. Box 72
A-1222 VIENNA
Tel: (0222) 23 65 11-0
Telex: 134425 HEPA A
A,CH,CM,CS,E,MS,P
BAHRAIN
Green Salon
PO. Box 557
Manama
BAHRAIN
Tel: 255503-255950
Telex: 84419
p
Wael Pharmacy
P.O. Box 648
BAHRAIN
Tel: 256123
Telex: 8550 WAEL BN
E,C.M
BELGIUM
Hewlett·Packard Belgium SAIN.v.
Blvd de la Woluwe, 100
Woluwedal
B-1200 BRUSSELS
Tel: (02) 762-32-00
Telex: 23-494 paloben bru
A,CH,CM,CS,E,MP,P
BRAZIL
Hewlett-Packard do Brasill.e.C. Ltda.
Alameda Rio Negro, 750
Alphaville
06400 BARUERI SP
Tel: (011) 421.1311
Telex: (011) 33872 HPBR-BR
Cable: HEWPACK Sao Paulo
A,CH,CM,CS,E,M,P
Hewlell-Packard do Brasill.e.C. Ltda.
Avenida Epilacio Pessoa, 4664
22471 RIO DE JANEIRO-RJ
Tel: (021) 286.0237
Telex: 021-21905 HPBR-BR
Cable: HEWPACK Rio de Janeiro
A,CH,CM,E,MS,P·
ANAMEO I.C.E.!. Ltda.
Rua Bage, 103
04012 SAO PAULO
Tel: (011) 570-5726
Telex: 021·21905 HPBR-BR
M
(
SALES & SUPPORT OFFICES
Arranged alphabetically by country
CANADA
Alberte
Hewlett-Packard (Canada) Ltd.
3030 3rd Avenue N.E.
CALGARY, Alberta T2A 6T7
Tel: (403) 235-3100
A,CH,CM,E',MS,P'
Hewlett-Packard (Canada) Ltd.
11120A-178th Street
EDMONTON, Alberta TSS lP2
Tel: (403) 486-8686
A,CH,CM,CS,E,MS,P
BrlUah Columbia
Hewlett-Packard (Canada) Ltd.
10691 Shellbrldge Way
RICHMOND,
British Columbia V6X 2W7
Tel: (604) 270-2277
Telex: 610-922-5059
A,CH,CM,CS,E' ,MS,P'
Manitoba
Hewlett-Packard (Canada) Ltd.
380-550 Century Street
WINNIPEG, Manitoba R3H OY 1
Tel: (204) 786-6701
A,CH,CM,E,MS,P'
Nova Scotia
Hewlett-Packard (Canada) Ltd.
P.O. Box 931
900 Windmill Road
DARTMOUTH, Nova Scotia B2Y 3Z6
Tel: (902).469-7820
CH,CM,CS,E' ,MS,P'
Ontario
Hewlett-Packard (Canada) Ltd.
3325 N. Service Rd., Unit 6
BURUNGTON, Ontario P3A 2A3
Tel: (416) 335-8644
CS,M'
Hewlett-Packard (Canada) Ltd.
552 Newbold Street
LONDON, Ontario NBE 2S5
Tel: (519) 686-9181
A,CH,CM,E' ,MS,P'
Hewlett-Packard (Canada) Ltd.
6877 Goreway Drive
MISSISSAUGA, Ontario L4V lM8
Tel: (416) 678-9430
A,CH,CM,CS,E,MP,P
Hewlell-Packard (Canada) Lid.
2670 Cueensview Dr.
OTTAWA, Ontario K2B 8K 1
Tel: (613) 820-6483
A,CH,CM,CS,E',MS,P'
Hewlell-Packard (Canada) Ltd.
220 Yorkland Blvd., Unit #11
WILLOWDALE, Ontario M2J 1R5
Tel: (416) 499-9333
CH
Quebec
Hewlell-Packard (Canada) Ltd.
17500 South Service Road
Trans-Canada Highway
KIRKLAND, Quebec H9J 2M5
Tel: (514) 697-4232
A,CH,CM,CS,E,MP,P'
Hewlell-Packard (Canada) Ltd.
Les Galeries du Vallon
2323 Du Versonl Nord
STE. FOY, Quebec GIN 4C2
Tel: (418) 687-4570
CH
DOMINICAN REPUBLIC
Mlcroprog S.A.
Juan Tomas Mejfa y Cotes No. 60
Arroyo Hondo
SANTO DOMINGO
Tel: 565-6268
Telex: 4510 ARENTA OR (RCA) P
CHILE
Jorge Calcagni y Cia. Ltda.
Av. IlaNa 634 Santiago
Casi/la 16475
SANTIAGO 9
Tel: 222-0222
Telex: Public Boolh 440001
A,C4/,E,M
Olympia (ChHe) Llda.
Av. Rodrigo de Araya 1045
Casi/la 256-V
SANTIAGO 21
Tel: (02) 22 55 044
Telex: 240-565 OL YMP CL
Cable: OtympiachHe SantlagochHe
CH,CS,P
CHINA, People's Republic of
China Hewlel/-Packard Rep. Office
P.O. Box 418
lA Lane 2, Luchang 51.
Beiwei Rd., Xuanwu DisITicl
BEIJING
Tel: 33-1947, 33-7426
Telex: 22601 CTSHP CN
Cable: 1920
A,CH,CM,CS,E,P
COLOMBIA
InsITumenlaci6n
H. A. Langebaek & Kier S.A.
Carrera 4A No. 52A-26
Aparlado Aereo 6287
BOGOTA I, D.E.
Tel: 212-1466
Telex: 44400 INST CO
Cable: AARIS Bogola
C4/,E,M
Casa HumboIdl Llda.
Carrera 14, No. 98-60
Apartado Aereo 51283
BOGOTA I, DE
Tel: 256-1686
Telex: 45403 CCAL CO.
A
ECUADOR
CYEDE Cia. Lida.
AvenirJa Eloy Affaro 1749
CasH/a 6423 Cet
QUITO
Tel: 450-975, 243-052
Telex: 2548 CYEDE ED
CM.E,P
Hasp/lalar S.A.
Robles 625
Casi/la 3590
QUITO
Tel: 545-250, 545-122
Telex: 2485 HOSPTL ED
Cable: HOSPITALAR-Ouilo
M
EGYPT
Inlernalional Engineering Assoclales
24 Hussetn l/eg8zi SITeel
Kasr-el-Aini
CAIRO
Tel: 23829,21641
Telex: lEA UN 93830
CH,CS,E,M
EGYPOR
P.O. Box 2558
42 fI Zahraa SITeel
CAIRO, Egypl
Tel: 650021
Telex: 93337
P
EL SALVADOR
IPESA de fI Salvador S.A.
29 Avenida Norte 1216
SAN SALVADOR
Tel: 26-6858, 26-6868
Telex: 20539IPESASAL
A,CH,CM,CS,E,P
COSTA RICA
CienUfica Coslarricense S.A.
AvenirJa 2, Cane 5
San Pedro de MonIes de aca
Aparlado .10159
SANJOSE
Tel: 24-38-20, 24-08-19
Telex: 2367 GALGUR CR
CM.E,M
FINLAND
Hewlett-Packard Oy
Revonlulenlie 7
PL 24
SF-02101 ESPOO 10
Tel: (90) 4550211
Telex: 121583 hewpa sf
CH,CM,CS,P
Hewlell-Packard Oy
(Olarinluoma 7)
PL 24
02101 ESPOO 10
Tel: (90) 4521022
A,E,MS
Hewlell-Packard Oy
Aatoksenkalv 10-C
SF-40720-72 JYYASKYLA
Tel: (941) 216318
CH
Hewlell-Packard Oy
Kainvunlie 1-C
SF-90140·140ULU
Tel: (981) 338785
CH
CYPRUS
Telerexa LId.
P.O. Box 4809
14C Slassinos Avenue
NICOSIA
Tel: 62698
Telex: 2894 LEV/DO CY
E,M,P
DENMARK
Hewlell-Packard AlS
Datavej 52
DK-3460 BIRKEROD
Tel: (02) 81-66-40
Telex: 37409 hpas dk
A,CH,CM,CS,E,MS,P
Hewlell-Packard AlS
Rolighedsvej 32
DK-8240 RISSKOV, Aarhus
Tel: (06) 17-60-00
Telex: 37409 hpas dk
CH,E
319
FRANCE
Hewlett-Packard France
Z.I. Mercure B
Rue Berthelot
F-13763 Les Milies Cedex
AtX-EN-PROVENC£
Tel: 16 (42) 59-41-02
Telex: 410770F
A,CH,E,MS,P'
Hewlett-Packard France
64, rue Marchand Saillant
F-610oo ALENCON
Tel: 16 (33) 29 04 42
Hewlett-Packard France
Boite Postale 503
F-25026 BESANCON
28 rue de la Republlque
F-2S000 BESANCON
Tel: 16 (81) 83-16-22
CH,M
Hewlett-Packard France
13, Place Napoleon III
F-290oo BREST
Tel: 16 (98) 03-38-35
Hewlett-Packard France
Chemin des Mouilles
Boile Poslale 162
F-69130 ECULLY Cedax (Lyon)
Tel: 16 (78) 833-81-25
Telex: 310617F
A,CH,CS,E,MP
Hewlett-Packard France
Tour Lorraine
Boulevard de France
F-91035 EYRY Cedex
Tel: 166077-96-60
Telex: 692315F
E
Hewlett-Packard France
Pare d' Activite du Bois Briard
Ave. du Lac
F-91040 EYRY Cedex
Tel: 166077-8383
Telex: 692315F
E
Hewlett-Packard France
5, avenue Raymond Chanas
F-38320 EYBENS (Grenoble)
Tel: 16 (76) 25-81-41
Telex: 980124 HP GRENOB EYBE
CH
Hewlett-Packard France
Centre d' Affaire Paris-Nord
BAliment Amp~re 5 ~tage
Rue de la Commune de Paris
Boite Postale 300
F-93153 LE BLANC MESNIL
Tel: 16 (1) 865-44-52
Telex: 211032F
CH,CS,E,MS
Hewlell-Packard France
Pare d'Actlvlt~s Cadera
Quartier Jean Marmoz
Avenue du Pr~sident JF Kennedy
F·33700 MERIGNAC (Bordfiaux)
Tel: 16 (56) 34-00-84
Telex: 550105F
CH,E,MS
Hewlell-Packard France
Immueble "Les 3 B"
Nouveau Chemin de la Garde
ZAC de Bois Briand
F-44085 NANTES Cedex
Tel: 16 (40) 50-32-22
CH"
SALES & SUPPORT OFFICES
Arranged alphabetically by country
FRANCE (Cont'd)
Hewlett-Packard Franca
125, rue du Faubourg Bannier
F-45000 OIILEANS
Tel: 16 (38) 6801 63
Hewlett-Packard France
Zone Industrielle de Courtaboeuf
Avenue des Tropiques
F-91947 Les Ulis Cedex ORIAY
Tel: (6) 907-78-25
Telex: 600048F
A,CH,CM,CS,E,MP,P
Hewlett-Packard Franca
Paris Porte-Maillot
15, Avenue de L'Amlral Brlllx
F-75782 PARIS CEOEX 16
Tel: 16 (I) 502-12-20
Telex: 613663F
CH,MS,P
Hewlett-Packard Franca
124, Boulevard Tourasse
F-64000 PAU
Tel: 16 (59) 80 38 02
Hewlett-Packard France
2 Allee de la Bourgonnette
F-35100 RENNES
Tel: 16 (99) 51-42-44
Telex: 7409.12F
CH,CM,E,MS,P'
Hewlett-Packard France
98 Avenue de Bretagne
F-76100 ROUEN
Tel: 16 (35) 63-57-66
CW',CS
Hewlett-Packard France
4 Rue Thomas Mann
Boite Postale 56
F-67033 STRASBOURG Cedex
Tel: 16 (88) 28-56-46
Telex: 89014 IF
CH,E,MS,P'
Hewlett-Packard France
Le Peripole
20, Chemin du Pigeonnier de la
Cepi~e
F-31063 TOULOUSE Cedex
Tel: 16(61)40-11-12
Telex: 531639F
A,CH,CS,E,P'
Hewlett-Packard Franca
9, rue Baudln
F-260oo VALENCE
Tel: 16 (75) 42 76 16
Hewlett-Packard France
Carolor
ZAC de Bois Briand
F-57640 VlGY (Metz)
Tel: 16 (8) 771 20 22
CH
Hewlett-Packard France
Immeuble Pericentre
F-59658 VILLENEUVE D'ASCQ Cedex
Tel: 16 (20) 91-41-25
Telex: 160124F
CH,E,MS,P'
GERMAN FEDERAL
REPUBLIC
Hewlett-Packard GmbH
Geschlftsstelle
Keithstrasse 2-4
0- 1000 BERLIN 30
Tel: (030) 24-90-86
Tetex: 01S 3405 hpbln d
A,CH,E,M,P
Hewlett-Packard GmbH
GeschKftsstene
Herrenberger Strass•. 130
0-7030 BOBLINGEN
Tel: (7031) 14-0
Telex:
A,CH,CM,CS,E,MP,P
Hewlett-Packard GmbH
GeschHftsstene
Emanuel-Leutze-Strasse I
0-4000 DUSSELOOIIF
Tel: (0211) 5971-1
Tetex: 085186 533 hpdd d
A,CH,CS,E,MS,P
Hewlett-Packard GmbH
Geschllftsstelle
Schleefstr. 28a
0-4600 DORTMUND-Aplerbeck
Tel: (0231) 45001
Hewlett-Packard GmbH
Vertriebszelitrale Frankfurt
Bemer Strasse I 17
Postfach 560 140
0-6000 FRANKFURT 56
Tel: (0611) 50-04-1
Tetex: 04 13249 hpffm d
A,CH,CM,CS,E,MP,P
Hewlett-Packard GmbH
GeschHftsstelle
Aussenstene Bad Homburg
Louisenstrasse 115
0-6380 BAD HOMBURG
Tel: (06172) 109-0
Hewlett-Packard GmbH
GeschKftsstene
Kapstadtring 5
0-2000 HAMBURG 60
Tel: (040) 63604- I
Telex: 021 63 032 hphh d
A,CH,CS,E,MS,P
Hewlett-Packard GmbH
GeschKftsstelle
Heidering 37-39
0-3000 HANNOVER 6 I
Tel: (051 I) 5706-0
Telex: 092 3259
A,CH,CM,E,MS,P
Hewlett-Packard GmbH
Geschllftsstelle
Rosslauer Weg 2-4
0-6600 MANNHEIM
Tel: (0621) 70050
Telex: 0462105
A,C,E
Hewlett-Packard GmbH
GeschKftsstelle
Messerschmittstrasse 7
0-7910 NEU ULM
Tel: 0731-7024 I
Telex: 0712816 HP ULM-O
A,C,E'
Hewlett-Packard GmbH
GeschHftsstelle
Ehhericherstr. 13
0-8500 NURNBERG 10
Tel: (091 I) 5205-0
Telex: 0623860
CH,CM,E,MS,P
Hewlett-Packard GmbH
Geschlflsstelle
Eschenstrasse 5
0-8028 TAUFKIRCHEN
Tet: (089)6117-1
Telex: 0524985
A,CH,CM,E,MS,P
GREAT BRITAIN
See United Kingdom
GREECE
Koslas Ksraynnis S.A.
8 Omirou Streel
ATHENS 133
Tel: 32 30 303, 32 37371
Telex: 215962 RKAR GR
A,CH,CM.CS,E,M,P
P/.AJS/O S.A.
G. Gerardos
24 Siournsra Sireel
ATHENS
Tel.' 36-11-160
Telex: 221871
P
GUATEMALA
IPESA
Avenida Reforms 3-48, Zona 9
QUA TEMALA CITY
Tel: 316627, 314786
Telex: 4192 TELTRO GU
A,CH,CM,CS,E,M,P
HONG KONG
Hewlett-Packard Hong Kong, Ltd.
G.P.O. Box 795
5th Floor, Sun Hung Kai Centre
30 Harbour Road
HONG KONG
Tel: 5-832321 I
Telex: 66678 HEWPA HX
Cable: HEWPACK HONG KONG
E,CH,CS,P
CET LId.
1402 T/HIg Wah MansIon
199-203 Hennessy Rd.
Wanchia, HONG KONG
Tel: 5-729376
Telex: 85148 efT HX
CM
Schmidt & Co. (Hong Kong) LId.
Wing on Centre, 28th Floor
Connaught Road, C.
HONGKONG
Tel: 5-455644
Telex: 74766 SCHMX HX
A,M
ICELAND
E/ding Trading Company Inc.
Hafnamvoli-Tryggvagolu
P.O. Box 895
IS-REYKJAVIK
Tel: 1-58-20, 1-63-03
M
INDIA
Computer products are sold through
Blue Star Ltd. All computer repairs and
maintenanca service is done IIlrough
Computer Maintenance Corp.
Blue Slar Ltd.
Sabri Complex HFloor
24 Residency Rd.
BANGALDRE 560 025
Tel: 55660
Telex: 0845-430
Cable: BLUESTAR
A,CH',CM,CS',E
320
Blue Slar Ltd.
Band Box House
Prabhadevl
BOMBA Y400 025
Tel: 422-310 1
Telex: 011-3751
Cable: BLUESTAR
A,M
Blue Slar LId.
Sahas
41412 VIr Savarksr Marg
Prabhadevl
BOMBA Y400 025
Tel: 422-6155
Telex: 011-4093
Cable: FROSTBLUE
A,CH',CM.CS',E.M
Blue Slar LId.
Katyan, 19 V/shwas Colony
Alkapuri, BORODA, 390 005
Tel: 65235
cable: BLUE STAR
A
Blue Slar LId.
7 Hare Streel
CALCUTTA 700 001
Tel: 12-01-31
Telex: 021-7655
cable: BLUESTAR
A,M
Blue Star LId.
133 Kodambakksm High Road
MADRAS 600 034
Tel: 82057
Telex: 041-379
cable: BLUESTAR
A,M
Blue Star LId.
Bhandsri House, 7tN81h Floors
91 Nehru Place
NEW DELHI 110 024
Tel: 682547
Telex: 031-2463
cable: BLUESTAR
A,CH',CM.CS',E,M
Blue Star LId.
15116:C Wellesley Rd.
PUNE411 011
Tel: 22775
cable: BLUE STAR
A
Blue Star LId.
2-2-4711108 Botarum Rd.
SECUNDERABAD 500 003
Tel.' 72057
Telex: 0155-459
cable: BLUEFROST
A,E
Blue Star Ltd.
T.C. 71603 Poornims
Maruthankuzhi
TRlVANDRUM 695013
Tel: 65799
Telex: 0884-259
cable: BLUESTAR
E
Computer Mainlenance Corporation
LId.
115, Sarojini Oevl Road
SECUNDERABAD 500 003
Tel: 310-184, 345-774
Telex: 031-2960
CH"
SALES & SUPPORT OFFICES
(
Arranged alphabetically by country
INDONESIA
BEReA Indonesia P. T.
P.O.Box 496/JkI.
JI. Abdul Muis 62
JAKARTA
Tel: 21-373009
Telex: 46748 BERSAL IA
Cable: BERSAL JAKARTA
P
BERCA Indonesia P. T.
P_O.Box 2497/Jkt
Antara Bldg., 17th Floor
.n_ Madan Mardeka Seiatan 17
JAKARTA-PIISAT
Tel: 21-344-181
Telex: BERSAL IA
A,CS,E,M
BEReA Indonesia P. T.
P. O. Box 174/SBY.
.n. Kutei No. 11
SURABAYA
Tel' 68172
Telex: 31146 BERSAL SB
Cable: BERSAL-SURABAYA
A',E.M.P
IRAQ
Hewlett-Packard Trading S.A.
Service Operalion
AI Mansoor Cily 9B/317
BAGHDAD
Tel: 551-49-73
Telex: 212-455 HEPAIRAQ IK
CH,CS
f
IRELAND
Hewletl-Packard Ireland Ltd.
82/63 Lower Leeson Streel
DUBLIN 2
Tel: OODI 608800
Telex: 30439
A,CH,CM,CS,E,M,P
Cardiac Services LId.
KHmoreRoad
Arlane
DUBLIN 5
Tel: (01) 351820
Telex: 30439
M
ISRAEL
Eldan EleclJonic InslJumenl LId.
P.O.Box 1270
JERUSALEM 91000
16, Ohanav SI.
JERUSALEM 94467
Tel: 533221, 553242
Telex: 25231 ABIPAKRD H.
A
Electronics Engineering Division
Molorola Israel LId.
16 Kremene/ski Street
P. O. Box 25016
TEL-A VlV 6T899
Tel: 3 88 388
Telex: 33569 MaUl H.
Gable: BAS TEL Tel-Aviv
CH,CM,CS,E,M,P
ITALY
Hewlett-Packard Italiana S.p.A
Traversa 99C
Via Giulio Petroni, 19
1-70124 BARI
Tel: (080) 41-07-44
M
Hewlett-Packard Italiana S.p.A.
Via Martin Luther King, 38/111
1·40132 BOLOGNA
Tel: (051) 402394
Telex: 511630
CH,E,MS
Hewlett-Packard Italiana S.p.A.
Via Principe Nicola 43G1C
1-95126 CATANIA
Tel: (095) 37-10-87
Telex: 970291
C,P
Hewlett-Packard Italiana S.pA
Via G. Oi Villorio 9
1-20063 CERNUSCO SUL NAVIGLIO
(Milano)
Tel: (02) 923691
Telex: 334632
A,CH,CM,CS,E,MP,P
Hewlell-Packard lIaliana S.p.A.
Via C. Colombo 49
1-20090 TREZZANO SUL NAVIGLIO
(Milano)
Tel: (02) 4459041
Telex: 322116
C,M
Hewlett-Packard lIaliana S.p.A.
Via Nuova San Rocco a
Capodimonle, 62/A
1-80131 NAPOLI
Tel: (081) 7413544
Telex: 710698
A,CH,E
Hewlett-Packard Iialiana S.p.A.
Viale G. Modugno 33
1-16156 GENOVA PEGLI
Tel: (010) 68-37-07
Telex: 215238
E,C
Hewlett-Packard Itallana S.p.A.
Via Pelizzo 15
1-35128PADOVA
Tel: (049) 664888
Telex: 430315
A,CH,E,MS
Hewlett-Packard Italiana S.p.A.
Viale C. Pavese 340
1-00144 ROMA EUR
Tel: (06) 54831
Telex: 610514
A,CH,CM,CS,E,MS,P·
Hewlell-Packard Italiana S.p.A.
Via di Casellina 571C
1-50018 SCANDICC~FIRENZE
Tel: (055) 753863
Hewlett-Packard Iialiana S.p.A.
Corso Svizzera, 185
1-10144 TORINO
Tel: (011) 74 4044
Telex: 221079
CH,E
JAPAN
Yokogawa-Hewlett-Packard Lid.
152-1,Onna
ATSUGI, Kanagawa, 243
Tel: (0462) 28-0451
CM,C·,E
Yokogawa-Helwett-Packard Ltd.
Meiji-Seimei Bldg. 6F
3-1 Hon Chiba-Cho
CHIBA,280
Tel: 472 25 7701
E,CH,CS
Yokogawa·Hewlett-Packard Ltd.
Yasuda-Seimei Hiroshima Bldg.
6-11, Hon·dori, Naka-ku
HIROSHIMA, 730
Tel: 82-241-0611
Yokogawa-Hewlett-Packard Ltd.
Towa Building
2-3, Kaigan-dori, 2 Chome Chuo-ku
KOBE,650
Tel: (078) 392-4791
C,E
Yokogawa-Hewlett-Packard Lid.
Kumagaya Asahl 82 Bldg
3-4 Tsukuba
KUMAGAYA, Sailama 360
Tel: (0485) 24-6563
CH,CM,E
Yokogawa-Hewlett-Pack81d Ltd.
Asahi Shinbun Oalichl Selmei Bldg .
4-7, Hanabala-cho
KUMAMOTO,860
Tel: (0963) 54-7311
CH,E
Yokogawa-Hewlett-Packard Ltd.
Shin-Kyolo Cenler Bldg.
614, Higashi-ShiokoJi-cho
Karasuma-Nishiiru
Shlokojl-dori, Shimogyo-ku
KYOTO, 600
Tel: 075-343-0921
CH,E
Yokogawa-Hewlett-Packard Ltd.
Milo Mitsui Bldg
4-73, Sanno-maru, 1 Chome
MITO, Ibaraki 310
Tel: (0292) 25-7470
CH,CM,E
Yokogawa-Hewlett-Packard Ltd.
Sumitomo Seime114-9 Bldg.
Meieki-Minami, 2 Chome
Nakamura-ku
NAGOYA,450
Tel: (052) 571-5171
CH,CM,CS,E,MS
Yokogawa-Hewlett-Packard Ltd.
Chua Bldg.,
4-20 Nishinakajima, 5 Chome
Yodogawa-ku
OSAKA,532
Tel: (08) 304-6021
Telex: YHPOSA 523-3624
A,CH,CM,CS,E,MP,P·
Yokogawa-Hewlett-Packard Ltd.
27-15, Yabe, 1 Chome
SAGAMIHARA Kanagawa, 229
Tel: 0427 59-1311
Yokogawa-Hewlell-Packard lid.
Oaiichi Seimei 8ldg.
7-1, Nishi Shinjuku, 2 ChOme
Shinjuku-ku,TOKYO 160
Tel: 03-348-4611
CH,E
Yokogawa-Hewlett-Packard Ltd.
29-21 Takaido-Higashi, 3 Chome
Suginami-ku TOKYO 168
Tel: (03) 331-611
Telex: 232-2024 YHPTOK
A,CH,CM,CS,E,MP,P·
Yokogawa-Hewlett-Packard Ltg.
Oaiichi Asano Building
2-8, Odori, 5 Chome
UTSUNOMIYA, Tochigi 320
Tel: (0286) 25-7155
CH,CS,E
321
Yokogawa·Hewlett-Pack81d Ltd.
Yasuda Seimei Nishiguchi Bldg.
30-4 Tsuruya-cho, 3 Chome
YOKOHAMA 221
Tel: (045) 312-1252
CH,CM,E
JORDAN
Mouasher coUsins Company
P.O. Box 1387 .
AMMAN
Tel: 24907, 39907
Telex: 21456 SABCO JO
CH,E,M,P
KENYA
ADCOM LId, Inc., Kenya
P.O.Box 30070
NAIROBI
Tel: 331955
Telex: 22639
E,M
KOREA
Samsung Electronics HP Division
12 Fl Klnam Bldg.
San 75-31, Yeoksam-Dong
Kangnam-Ku
Yeongdong P. O. Box 72
SEOUL
Tel: 555-7555, 555-5447
Telex: K27364 SAMSAN
A,CH,CM,CS,E,M,P
KUWAIT
AI-Khaldiya Trading & Contracling
P.O. Box 830 Safat
KUWAIT
Tel: 42-4910,41-1726
Telex: 22481 Areeg kt
CH.E,M
Photo & Cine Equipmenl
P.O. Box 270 Safat
KUWAtT
Tel: 42-2846, 42-3801
Telex: 22247 Malin kt
P
LEBANON
G.M. Oohnadjian
Achrafieh
P. O. Box 165. 167
BEIRIJT
Tel: 290293
!./P""
Computer Information Systems
P.O. Box 11-6274
BEIRUT
Tel: 8940 73
Telex: 22259
C
LUXEMBOURG
Hewlett-Packard Belgium S.A.lN.V.
Blvd de Ia Woluwe, 100
Woluwedal
B-1200 BRUSSELS
Tel: (02) 762-32-00
Telex: 23-494 paloben bru
A,CH,CM,CS,E,MP,P
MALAYSIA
Hewlett-Packard Sales (Malaysia)
Sdn. Bhd.
1S1 Floor, Bangunan British
American
Jalan Semantan, Oarnansara Heights
KUALA WMPUR 23-03
Tel: 943022
Telex: MA31011
A,CH,E,M,P·
SALES & SUPPORT OFFICES
Arranged alphabetically by country
MAYLAYSIA (Cont'd)
Protei Engineering
P.O.Box 7977
Lot 6624, SecUon 64
2314 Pending Road
Kuching, SARA WAK
Tel: 36299
Telex: M4 70904 PROMAL
Cable: PROTELENG
A,E,M
MALTA
Philip To/edo LId.
NoIBbIIe Rd.
MRlEHEL
Tel: 44747, 45566
Telex: Media MW 649
E,P
MEXICO
Hewlell-Packard Mexicana, B.A.
deC.V.
Av. Perllerico Sur No. 6501
Tepepan, Xochlmllco.
16020 MEXICO D,F,
Tel: 6-76-46-00
Telex: 17-74-507 HEWPACK MEX
A,CH,CS,E,MS,P
Hewlett-Packard Mexlcana, S.A.
de C,V.
Ave. Colonia del Valle 409
Col. del Valle
Municipio de Garza Garcia
MONTERREY, Nuevo Leon
Tel: 78 42 41
Telex: 038 410
CH
ECISA
Jose Vasconcelos No. 278
Col. Condesa Oe/eg. Cuauht6rnoc
MEXICOO,F. 06740
Tel: 553-1206
Telex: 17-72755 ECE ME
M
MOROCCO
Oo/beau
81 rue Karatch/
CASABLANCA
Tel: 3041-82, 3068-38
Telex: 23051,22822
E
Gerep
2 rue d'Agadir
Bo/Ie Pos/sle 156
CASABLANCA
Tel: 272093, 272095
Telex: 23 739
P
NETHERLANDS
Hewlett-Packard Nederland B.V.
Van Heuven Goedherliaan 121
NL 1181KK AMSTELVEEN
P,O. Box 667
NL 1180 AR AMSTELVEEN
Tel: (020) 47-20-21
Telex: 13 216 HEPA NL
A,CH,CM,CS,E,MP,P
Hewlett-Peckard Nederland B.V.
Bonll!lrd 2
NL 2906VK CAPELLE AID IJSSEL
P.O. Box 41
NL 2900AA CAPELLE AID IJSSEL
Tel: (10) 51-6444
Telex: 21261 HEPAC NL
A,CH,CS,E
Hewlell-Packard Nederland B.V.
Pastoor Petersstraat 134-136
NL 5612 LV EINDHOVEN
P.O. Box 2342
NL 5600 CH EINDHOVEN
Tel: (040) 326911
Telex: 51464 hepae nl
A,CW',E,M
NEW ZEALAND
Hewlell-Packard (N.Z.) LId.
5 Owens Road
P.O. Box 26-189
Epsom, AUCKLAND
Tel: 687-159
Cable: HEWPACK Auckland
CH,CM,E,P'
Hewlelt-Packard (N.Z.) LId.
4-12 Cruickshenk Street
Kilbirnie, WELLINGTON 3
P.O. Box 9443
Courtenay Place, WELLINGTON 3
Tel: 877-199
Cable: HEWPACK Wellington
CH,CM,E,P
Northrop Instruments & Systems LId.
369 Khyber Pass Road
P. O. Box 8602
AUCKLAND
Tel: 794-091
Telex: 60605
PAKISTAN
Mushko & Company LId.
1-8, S1Jeet43
Sector F-B/l
tSLAMABAD
Tel: 51071
Cable: FEMUS Rawalpindi
A,E,M
Mushko & Company Lid.
Oosman Chambers
AbduIl8h Haroon Road
KARACHI 0302
Tel: 524131, 524132
Telex: 2894 MUSKO PI<
Cable: COOPERA TOR Karachi
A,E,M,P'
PANAMA
Electr6nico 8alboa, S.A.
Calle Samuel Lewis, Ed. Alfa
Apartado 4929
PANAM4 5
Tel: 63-6613, 63-6748
Telex: 3463 ELECTRON PG
A,CM,E,M.P
PERU
cra Electro Medica S.A.
Los Flamencos 145, San Isidro
CasHia 1030
LIlIA 1
Tel: 41-4325, 41-3703
Telex: Pub. Booth 25306
A,M
Northrrip Instruments & Systems LId.
110 MandevUle SI.
P.O. Box 8388
CHRISTCHURCH
Tel: 488-928
Telex: 4203
A,M
Northrop Instruments & Systems LId.
SIJJrdee House
85-B7 Ghuznee SIJeet
P.O. Box 2406
WELLINGTON
Tel: 850-091
Telex: HZ 3380
A,M
NORTHERN IRELAND
See United Kingdom
NORWAY
Hewlell-Packard Norge AlS
Folke Bernadottes vel 50
P.O. Box 3558
N-5033 FYLLlNG.SDALEN (Berll!ln)
Tel: 0047/5/16'55 40
Telex: 16621 hpnas n
CH,CS,E,MS
tlewlett-Packard Norge AlS
Osterndalen 16-18
P_O. Box 34
N-1345 OSTEilAS
Tel: 0047/2/17 11 80
Telex: 16621 hpnas n
A,CH,CM,CS,E,M,P
OMAN
KhimjII Ramdas
P.O. Box 19
MUSCAT
Tel: 722225,745601
Telex: 3289 BROKER MBI.tUSCAT
P
SUhaH & Saud Bahwan
P.O.Box 169
CM,E,M.P
PHILIPPINES
The OnlIne Advanced Systems
Corporation
Rico House, Amorsolo Cor. Herrera
SIJeet
Legaspi VUlege, MakaU
P.O. Box 1510
MeIJoM4NILA
Tel: 85-35-81, 85-34-91, 85-32-21
Telex: 3274 ONLINE
A,CH,CS,E,M
Electronic SpeciaHsts and Proponents
Inc.
690-B Epifanio de /os Santos Avenue
Cubao, QUEZON CITY
P.O. Box 2649 ManHa
Tel: 98-96-81, 96-96-82, 96-96-83
Telex: 40018, 42000 ITT GLOBE
M4CKA YBOOTH
P
PORTUGAL
Mundinter
Intercamblo Mundfal de Comercio
S.A.R.L.
P.O. Box 2761
Av. Antonio Augusto de Aguiar 136
P-L/SBON
Tel: (19) 53-21-31, 53-21-37
Telex: 16691 munter p
M
SoquimIca
Av. de Liberdede, 220-2
1296 L/SBOA Codex
Tel: 56 2181/213
Telex: 13316 SABASA
P
Te/eclra-Empresa Tecnica de
Equipmentos Etecf1icos S. A.R.L.
Rua Rodrigo de Fonseca 103
P. O. Box 2531
II/ISCAT
P-LISBON 1
Tel: (19) 68-60-72
Tel: 734201-3
Telex: 3274 BAHWAN MB
CH,CS,E,P
Telex: 12598
322
PUERTO RICO
Hewlett-Packard Puerto Rico
Ave. Munoz Rivera #101
Esq. Calle Ochoa
HATO REY, Puerto Rico 00918
Tel: (809) 754-7800
Hewlett-Packard Puerto Rico
calle 272 Edificio 203
Urb. Country Club
RIO PIEDRAS, Puerto Rico
P.O. Box 4407
CAROLINA, Puerto Rico 00628
Tel: (809) 762-7255
A,CH,CS
QATAR
Computesrbia
P.O. Box 2750
DOHA
Tel: 883555
Telex: 4806 CHPARB
P
Eastern Technical Services
P.O.Box 4747
DOHA
Tel: 329993
Telex: 4156 EASTEC OH
Nasser Trading & Contracting
P.O.Box 1563
DOHA
Tel: 22170, 23539
Telex: 4439 NASSER DH
M
SAUDI ARABIA
Modern EleclJonic Es/sblishment
Hewlell-Packard Division
P.O. Box 22015
Thuobeh
AL-KHOBAR
Tel' 895-1760, 895-1764
Telex: 671106 HPMEEK SJ
Cable: ELECTA AL-KHOBAR
CH,CS,E,M
Modern EleclJonic Establishment
Hewlel/-Packard DivIsion
P.O. Box 1228
Redec Plaza, 6th Floor
JEDDAH
Tel: 644 38 48
Telex: 4027 12 FARNAS SJ
Cable: ELECTA JEOOAH
CH,CS,E.M
Modern EleclJonic Establishrnant
Hewleff-Packard Division
P.O.Box 22015
RtYADH
Tel: 491-9715,491-63 87
Telex: 202049 MEERYD SJ
CH,CS,E,M
Abdul Ghani EI Ajou
P.O. 80x 78
RIYADH
Tel: 4041717
Telex: 200 932 EL AJOU
P
SCOTLAND
See United Kingdom
SINGAPORE
HewleH-Peckard Singapore JSales)
Pte. Ltd.
#08-00 Incheape House
450-2 Alexandra Road
P.O. Box 58 Alexandra Rd. Post Office
SlNGAPORE,9115
Tel: 631788
Telex: HPSGSO RS 34209
cable: HEWPACK, Sinll!lpore
A,CH,CS,E,MS,P
SALES & SUPPORT OFFICES
Arranged alphabetically by country
SINGAPORE (Cont'd)
Dynamar Inlernational Ltd.
Unit 05-11 Block 6
Ko/am Ayer Industrial Estate
SINGAPORE 1334
Tel: 747-6188
Telex: RS 26283
CM
(
SOUTH AFRICA
Hewlett-Packard So Africa (Pty.) Ltd.
P.O. Box 120
Howard Place CAPE PROYINCE 7450
Pine Park Cenler, Forest Drive,
Pinelands
CAPE PROYINCE 7405
Tel: 53-7954
Telex: 57-20006
A,CH,CM,E,MS,P
Hewlett·Packard So Africa (Pty.) Ltd.
P.O. Box 37099
92 Overport Drive
DURBAN 4067
Tel: 28-4178, 28-4179, 28·4110
Telex: 6-22954
CH,CM
Hewlett·Packard So Africa (Ply.) Ltd.
6 Linton Arcade
511 Cape Road
Linton Grange
PORT ELIZABETH 6000
Tel: 041-302148
CH
Hewlett·Packard So Africa (Pty.) Ltd.
P.O.Box 33345
Glenstantla 0010 TRANSYAAL
1st Floor East
Constantia Park Ridge Shopping
Centre
Constantia Park
PRETORIA
Tel: 982043
Telex: 32163
CH,E
Hewlett-Packard So Africa (Ply.) Ltd.
Private Bag Wendywood
SANDTON 2144
Tel: 802-5111, 802-5125
Telex: 4-20877
Cable: HEWPACK Johannesburg
A,CH,CM,CS,E,MS,P
SPAIN
Hewlett-Packard Espanola S.A.
Calle Enlenza, 321
E-BARCELONA 29
Tel: 322.24.51, 321.73.54
Telex: 52603 hpbee
A,CH,CS,E,MS,P
Hewlett-Packard Espanola S.A.
Calle San Vicente SINo
Edificio Albia II
E-8ILBAO 1
Tel: 423.83.06
A,CH,E,MS
Hewlett-Packard Espanola SA
Crta. de la Coruna, Km. 16, 400
Las Rozas
E-MADRID
Tel: (1) 637.00.11
CH,CS,M
Hewlett-Packard Espanola S.A.
Avda.S. Francisco Javier, Sino
Planta 10. Edlficio SovUla 2,
E-SEV1LLA 5
Tel: 64.44.54
Telex: 72933
A,CS,MS,P
Hewlett-Packard Espanola SA
Calle Ramon Gordillo, 1 (Entlo.3)
E·YALENCIA 10
Tel: 361-1354
CH,P
SWEDEN
Hewlett-Packard Sverige AB
Sunnanvagen 14K
S·22226 LUND
Tel: (046) 13-69·79
Telex: (854) 17886 (via Spanga
office)
CH
Hewlett-Packard Sverige AB
Ostra Tullgatan.?
S-21128 MALMO
Tel: (040) 70270
Telex: (854) 17886 (via Spanga
office)
Hewlett-Packard Sverige AS
Vastra Vin.!ergatan·9
S- 70344 OREBRO
Tel: (19) 10·48-80
Telex: (854) 17886 (via Spanga
office)
CH
Hewlen-Packard Svertge AS
Skalholtsgatan 9, Kista
Box 19
S-I6393 SpANGA
Tel: (08) 750-2000
Telex: (854) 17886
Telefax: (08) 7527781
A,CH,CM,CS,E,MS,P
Hewlen·Packard Sverige AS
Frmallisgat~n 30
S·42132 VASTRA.fROLUNDA
Tel: (031) 49-09-50
Telex: (854) 17886 (via Spanga
office)
CH,E,P
SWITZERLAND
Hewlett-Packard (Schweiz) AG
Claraslrasse 12
CH·4058 BASEL
Tel: (61) 33-59-20
A
Hewlett-Packard (Schweiz) AG
7, rue du Bois-du-Lan
Case Postale 365
CH·1217 MEYRIN 2
Tel: (0041) 22-83-11·11
Telex:27333 HPAG CH
CH,CM,CS
Hewlett-Packard (Schweiz) AG
Allmend 2
CH-8967 WIDEN
Tel: (0041) 57 31 21 11
Telex: 53933 hpag ch
Cable: HPAG CH
A,CH,CM,CS,E,MS,P
SYRIA
General Electronic Inc.
NurI Basha Ahnaf Ebn Kays Street
P.O. Box 5781
DAMASCUS
Tel' 33-24-87
Telex: 411215
Cable: ELECTROBOR DAMASCUS
E
Middle East Electronics
P.D.Box 2308
Abu Rumnaneh
DAMASCUS
Tel: 334 5 92
Telex: 411 304
E.M.A.
Medina Eidem Sokak No.41/6
Yuksel Gaddesi
ANKARA
Tel: 175622
Telex: 42 591
M
M
TAIWAN
Hewlett·Packard Far East Ltd.
Kaohsiung Office
2/F 68-2, Chung Cheng 3rd Road
KAOHSIUNG
Tel: (07) 241-2318
CH,CS,E
Hewlett·Packard Far East Ltd.
Taiwan Branch
8th Floor
337 Fu Hsing North Road
TAIPEI
Tel: (02) 712-0404
Telex: 24439 HEWPACK
Cable:HEWPACK Taipei
A,CH,CM,CS,E,M,P
Ing Lih Trading Co.
3rd Floor, 7 Jen-Ai Road, Sec. 2
TAlPEt 100
Tel: (02) 3948191
Cable: INGLIH TAIPEI
UNITED ARAB EMIRATES
Emitac Ltd.
P.O. Box 2711
ABUOHABt
Tel: 82 04 19·20
Gable: EMITAC ABUDHABI
Emitac Ltd.
P.O. Box t641
SHARJAH
Tel: 591 181
Telex: 68136 Emitac Sh
A
THAILAND
Unimesa
30 Pa/pong Ave., Suriwong
BANGKOK 5
Tel: 235-5727
Telex: 84439 Simonco TH
Gable: UNlMESA Bangkok
A,CH.CS,E,M
Bangkok Business Equipment Ltd.
5/5-6 Dejo Road
BANGKOK
Tel: 234·8670, 234-8671
Telex: 87669-BEO/.HPT TH
Gable: BUSIQUIPT Bangkok
P
TRINIDAD & TOBAGO
Caribbean Telecoms Ltd.
501A Jerninghsm Avenue
P.O. Box 732
PORT-oF-sPAIN
Tel: 62-44213, 62-44214
Telex: 235,272 HUGCO WG
CM,E,M,P
TUNISIA
Tunisie E/ec/ton/que
31 Avenue de /a Liberte
TUNIS
Tel' 280-144
E,P
Corems
1 ter. Av. de Carthage
TUNIS
Tel: 253-621
Telex: 12319 CABAM TN
M
TURKEY
Teknim Company Ltd.
/tsn Gaddesi No. 7
Kavaklldere, ANKARA
Tel: 275800
Telex: 42155 TKNM TR
E
323
CH.CS.f,M,P
UNITED KINGDOM
GREAT BRITAIN
Hewlett-Packard Ltd.
Trafalgar House
Navigation Road
ALTRINCHAM
Cheshire WA 14 lNU
Tel: 061 9286422
Telex: 668068
A,CH,CS,E,M,MS,P
Hewlett-Packard Ltd.
Eistree House, Elslree Way
BOREHAMWOOD, Herts WD6 1SG
Tel: 01 207 SOOO
Telex: 8952716
E,CH,CS,P
Hewlett-Packard Ltd.
Oakfield House, Oakfield Grove
Clifton BRISTOL, Avon BS8 2BN
Tel: 0272 736806
Telex: 444302
CH,CS,E,P
Hewlett-Packard Ltd.
Bridewell House
Bridewell Place
LONDON EC4V 6BS
Tel: 01 563 6565
Telex: 298163
CH,CS,P
Hewlett·Packard Ltd.
Fourier House
257-263 High Street
LONDON COLNEY
Herts. AL2 1HA, SI. Albans
Tel: 0727 24400
Telex: 1-8952716
CH,CS
Hewlett-Packard ltd.
Pontefract Road
NORMANTON, West Yorkshire WF6 lRN
Tel: 0924 895566
Telex: 557355
CH,CS,P
Hewlett-Packard ltd.
The Quadrangle
106-118 Station Road
REDHILL, Surrey RHI IPS
Tel: 0737 66655
Telex: 947234
CH,CS,E,P
SALES & SUPPORT OFFICES
Arranged alphabetically by country
GREAT BRITAIN (Cont'd)
Hewlett·Packard Ltd.
Avon House
435 Stratford Road
Shirley, SOLIHULL, West Midlands
B904BL
Tel: 021 7458800
Telex: 339105
CH,CS,E,P
Hewlett-Packard Ltd.
West End House
41 High Streel, West End
SOUTHAMPTON
Hampshire S03 300
Tel: 04218 6767
Telex: 477138
CH,CS,P
Hewlett·Packard Ltd.
Eskdale Rd.
Winnersh, WOK INGHAM
Berkshire RG 11 5DZ
Tel: 0734 696622
Telex: 84B8B4
E
Hewlett-Packard Ltd.
King Street Lane
Winnersh, WOKINGHAM
Berkshire RG 11 5AR
Tel: 0734 784774
Telex: 847178
A,CH,CS,E,M,MP,P
Hewlett·Packard Ltd.
Nine Mile Ride
Easlhampstead, WOK INGHAM
Berkshire, 3RGII 3LL
Tel: 0344 773100
Telex: 848805
CH,CS,E,P
IRELAND
NORTHERN IRELAND
Hewlett-Packard Ltd.
Cardiac Services Building
95A Finaghy Road South
BELFAST BT10 OBY
Tel: 0232 625-566
Telex: 747626
CH,CS
SCOTLAND
Hewlett-Packard Ltd.
SOUTH QUEENSFERRY
West Lothian, EH30 9TG
Tel: 031 331 1188
Telex: 72682·
CH,CM,CS,E,M,P
UNITED STATES
Alabama
Hewlett-Packard Co.
700 Century Park South, Suite 128
BIRMINGHAM, AL 35226
Tel: (205) 822-6802
A,CH,M
Hewlett-Packard Co.
420 Wynn Drive
HUNTSVILLE, AL 35805
P.O. Box 7700
HUNTSVILLE, AL 35807
Tel: (205) 830-2000
CH,CM,CS,E,M'
Arizona
Hewletl-Packard Co.
8080 Poinle Parkway Wesl
PHOENIX, AZ 85044
Tel: (602)273-8000
A,CH,CM,CS,E,MS
Hewlett-Packard Co.
2424 East Aragon Road
TUCSON, AZ 85706
Tel: (602) 889·463 t
CH,E,MS"
California
Hewlett-Packard Co.
99 South Hill Dr.
BRISBANE, CA 94005
Tel: (415) 330-2500
CH,CS
Hewlett-Packard Co.
P.O. Box 7830 (93747)
5060 E. Clinton Avenue, Suile 102
FRESNO, CA 93727
Tel: (209) 252-9652
CH,CS,MS
Hewlett-Packard Co.
P.C. Box 423.0
1421 South Manhattan Avenue
FULLERTON, CA 92631
Tel: (714) 999-6700
CH,CM,CS,E,MP
Hewlett-Packard Co.
320 S. Kellogg, Suile B
GOLETA, CA 93117
Tel: (805) 967-3405
CH
Hewlett-Packard Co.
5400 W. Rosecrans Boulevard
LAWNDALE, CA 90260
P.O. Box 92105
LOS ANGELES, CA 90009
Tel: (213) 970-7500
Telex: 910-325-6608
CH,CM,CS,MP
Hewlett-Packard Co.
3155 Porler Oaks Drive
PALO ALTO, CA 94304
Tel: (415) 857-8000
CH,CS,E
Hewlett-Packard Co.
4244 So. Market Court, Suile A
P.O. Box 15976
SACRAMENTO, CA 95852
Tel: (916) 929-7222
A' ,CH,CS,E,MS
Hewlett-Packard Co.
9606 Aero Drive
P.O. Box 23333
SAN DIEGO, CA 92139
Tel: (619) 279-3200
CH,CM,CS,E,MP
Hewlett-Packard Co.
2305 Camino Ramon ·C"
SAN'RAMON, CA 94583
Tel: (415) 838-5900
CH,CS
Hewlett-Packard Co.
3005 Scott Boulevard
SANTA CLARA, CA 95050
Tel: (408) 988-7000
Telex: 910-338-0586
A,CH,CM,CS,E,MP
Hewlett-Packard Co.
5703 Corsa Avenue
WESTLAKE VILLAGE, CA 91362
Tel: (213) 706-6800
E',CH',CS'
Colorado
Hewletl-Packard Co.
24 Inverness Place, East
ENGLEWOOD, CO 80112
Tel: (303) 649-5000
A,CH,CM,CS,E,MS
324
Connecticut
Hewlett-Packard Co.
47 Barnes Industrial Road South
P.O. Box 5007
WALLINGFORD, CT 06492
Tel: (203) 265-7801
A,CH,CM,CS,E,MS
Florida
Hewlett-Packard Co.
2901 N.W. 62nd Sireet
P.O. Box 24210
FORT LAUDERDALE, FL 33307
Tel: (305) 973-2600
CH,CS,E,MP
Hewlett-Packard Co.
6177 Lake Ellenor Drive
P.O. Box 13910
ORLANDO, FL 32859
Tel: (3.05) 859-2900
A,CH,CM,CS,E,MS
Hewlett-Packard Co.
5750B N. Hoover Blvd., Suite 123
P.C. Box 15200
TAMPA, FL 33614
Tel: (813) 884-3282
A' ,CH,CM,CS,E' ,M'
Georgia
Hewlett-Packard Co.
2000 South Park Place
P.C. Box 105005
ATLANTA, GA 30348
Tel: (404) 955-1500
Telex: 810-766-4890
A,CH,CM,CS,E,MP
Hawaii
Hewlett-Packard Co.
Kawaiahao Plaza, Suite 190
567 South King Streel
HONOLULU, HI 96813
Tel: (808) 526-1555
A,CH,E,MS
illinois
Hewlett-Packard Co.
304 Eldorado Road
P.O. Box 1607
BLOOMINGTON, IL 61701
Tel: (309) 662-9411
CH,MS"
Hewlett-Packard Co.
1100 31st Streel, .Suite 100
DOWNERS GROVE, IL 60515
Tel: (312) 960-5760
CH,CS
Hewlett-Packard Co.
5201 Tollview Drive
ROLLING MEADOWS, IL 60008
Tel: (312) 255-9BOO
Telex: 910-687-1066
A,CH,CM,CS,E,MP
Indiana
Hewlett-Packard Co.
7301 No. Shadeland Avenue
P.O. Box 50807
INDIANAPOLIS, IN 4625.0
Tel: (317) 842-1000
A,CH,CM,CS,E,MS
Iowa
Hewlett-Packard Co.
177622nd Slreel, Suite 1
WEST DES MOINES, IA 50265
Tel: (515) 224-1435
CH,MS"
Kansas
Hewlett-Packard Co.
7804 East Funston Road, #203
WICHITA, KS 67207
Tel: (316) 684-8491
CH
Kentucky
Hewlett-Packard Co.
10300 Linn Station Road, #100
LOUISVILLE, KY 40223
Tel: (502) 426-0100
A,CH,CS,MS
Louisiana
Hewlett-Packard Co.
160 James Drive Easl
ST. ROSE, LA 70087
P.O. Box 1449
KENNER, LA 70063
Tel: (504) 467-4100
A,CH,CS,E,MS
Maryland
Hewlett-Packard Co.
3701 Koppers Street
BALTIMORE, MD 21227
Tel: (301) 644-5800
Telex: 710-862-1943
A,CH,CM,CS,E,MS
Hewlett-Packard Co.
2 Choke Cherry Road
ROCKVILLE, MD 20850
Tel: (301) 948-6370
A,CH,CM,CS,E,MP
Massachusetts
Hewlett-Packard Co.
1775 Minuleman Road
ANDOVER, MA 01810
Tel: (617) 682-1500
A,C,CH,CS,CM,E,MP,P'
Hewlett-Packard Co.
32 Hartwell Avenue
LEXINGTON, MA 02173
Tel: (617) 861-8960
CH,CS,E
Michigan
Hewlett-Packard Co.
4326 Cascade Road S.E.
GRAND RAPIDS, MI 49506
Tel: (616) 957-1970
CH,CS,MS
Hewlett-Packard Co.
1771 W. Big Beaver Road
TROY, MI 48084
Tel: (313) 643-8474
CH,CS
Minnesota
Hewlett-Packard Co.
2025 W. Larpenteur Ave.
ST. PAUL, MN 55113
Tel: (612) 644-1100
A,CH,CM,CS,E,MP
Missouri
Hewlett-Packard Co.
11131 Colorado Avenue
KANSAS CITY, MO 64137
Tel: (816) 763-8000
A,CH,CM,CS,E,MS
Hewlett-Packard Co.
13001 Hollenberg Drive
BRIDGETON, MO 63044
Tel: (314) 344·5100
A,CH,CS,E,MP
/
~.
(-j
SALES & SUPPORT OFFICES
Arranged alphabetically by country
UNITED STATES (Cont'd)
Nebraska
Hewlett-Packard
10824 Old Mill Rd., Suite 3
OMAHA, NE 68154
Tel: (402) 334-1813
CM,MS
New Jersey
Hewlett-Packard Co.
120 W. Century Road
PARAMUS, NJ 07652
Tel: (201) 265-5000
A,CH,CM,CS,E,MP
Hewlett-Packard Co.
60 New England Av. West
PISCATAWAY, NJ 08854
Tel: (201) 981-1199
A,CH,CM,CS,E
New Mexico
Hewlett-Packard Co.
11300 Lomas Blvd.,N.E.
P.O. Box 11634
ALBUQUERQUE, NM 87112
Tel: (505) 292-1330
CH,CS,E,MS
New York
('
Hewlett-Packard Co.
5 Computer Drive South
ALBANY, NY 12205
Tel: (518) 458-1550
A,CH,E,MS
Hewlett-Packard Co.
9600 Main Street
P.O. Box AC
CLARENCE, NY 14031
Tel: (716) 759-8621
CH
Hewlett-Packard Co.
200 Cross Keys Office Park
FAIRPORT, NY 14450
Tel: (716) 223·9950
CH,CM,CS,E,MS
Hewlett·Packard Co.
7641 Henry Clay Blvd.
LIVERPOOL, NY 13088
Tel: (315) 451·1820
A,CH,CM,E,MS
Hewlett·Packard Co.
No.1 Pennsylvania Plaza
55th Floor
34th Street & 8th Avenue
MANHATTAN NY 10119
Tel: (212) 971·0800
CH,CS,E·,M·
Hewlett·Packard Co.
250 Westchester Avenue
WHITE PLAINS, NY 10604
Tel: (914) 684·6100
CM,CH,CS,E
Hewlett-Packard Co.
3 Crossways Park West
WOODBURY, NY 11797
Tel: (516) 921·0300
A,CH,CM,CS,E,MS
North Carolina
Hewlett-Packard Co.
5605 Roanne Way
P.O. Box 26500
GREENSBORO, NC 27420
Tel: (919) 852·1800
A,CH,CM,CS,E,MS
Ohio
Hewlett-Packard Co.
9920 Carver Road
CINCINNATI, OH 45242
Tel: (513) 891-9870
CH,CS,MS
Hewlett-Packard Co.
16500 Sprague Road
CLEVELAND, OH 44130
Tel: (216) 243-7300
A,CH,CM,CS,E,MS
Hewlett-Packard Co.
962 Crupper Ave.
COLUMBUS, OH 43229
Tel: (614) 436-1041
Elf: Nov. 25, 1983
675 Brooksedge Blvd.
WESTERVILLE, OH 43081
CH,CM,CS,E·
Hewlett-Packard Co.
330 Progress Rd.
DAYTON, OH 45449
Tel: (513) 859-8202
A,CH,CM,E· ,MS
Hewlett-Packard Co.
3070 Directors Row
MEMPHIS, TN 38131
Tel: (901) 346-8370
A,CH,MS
Texas
Hewlett-Packard Co.
4171 North Mesa
Suite C-110
EL PASO, TX 79902
Tel: (915) 533-3555
CH,E·,MS··
Hewlett-Packard Co.
10535 Harwin Drive
P.O. Box 42816
HOUSTON, TX 77042
Tel: (713) 776-6400
A,CH,CM,CS,E,MP
Hewlett-Packard Co.
930 E. Campbell Rd.
P.O. Box 1270
RICHARDSON, TX 75080
Tel: (214) 231-6101
A,CH,CM,CS,E,MP
Hewlett-Packard Co.
1020 Central Parkway South
P.O. Box 32993
SAN ANTONIO, TX 78216
Tel: (512) 494-9336
CH,CS,E,MS
URUGUAY
Pabfo Ferrando S.A.C. e I.
Avenida /lalia 2877
CasHla de Correa 370
MONTEVIDEO
Tel: 80·2586
Telex: Public Booth 90 1
A,CM,E,M
VENEZUELA
Virginia
Hewlett·Packard de Venezuela C.A.
3RA Transversal Los Ruices Norte
Edificio Segre 1, 2 & 3
Apartado 50933
CARACAS 1071
Tel: 239·4133
Telex: 251046 HEWPACK
A,CH,CS,E,MS,P
Hewlelt·Packard de Venezuela C.A.
Calle·72·Entre 3H y 3Y, No. 3H·40
Edlficio Ada-Evelyn, Local B
Apartado 2646
400 I, MARACAIBO, Estado Zulla
Tel: (061) 80.304
C,E·
Hewlelt-Packard de Venezuela C.A.
Calle Vargas Rondon
Edlficio Seguros Carabobo, Piso 10
VALENCIA
Tel: (041) 51385
CH,CS,P
Bloelectronica Medica C.A.
Calle 8uen Pastor
Edit. Cota Mil-Piso 2 y Semi Sotano 1
BoleitaNorte
Apartado 50710 CARACAS 1050A
Tel: 239 84 41
Telex: 26518
Hewlett-Packard Co.
9255 S. W. Pioneer Court
P.O. Box 328
WILSONVILLE, OR 97070
Tel: (503) 682·8000
A,CH,CS,E· ,MS
Hewlett-Packard Co.
4305 Cox Road
GLEN ALLEN, VA 23060
P.O. Box 9669
RICHMOND, VA 23228
Tel: (604) 747·7750
A,CH,CS,E,MS
ZIMBABWE
Field Technical Sales
45 Kelvin Road, North
P.B.3458
SAUSB/JRY
Tel: 705231
Telex: 4·122 RH
Pennsylvania
Washington
C,E,M,P
Oklahoma
Hewlett-Packard Co.
304 N. Meridian, Suite A
P.O. Box 75609
OKLAHOMA CITY, OK 73147
Tel: (405) 946-9499
A·,CH,E·,MS
Hewlett-Packard Co.
3840 S. 103rd E. Avenue, #100
P.O. Box 35747
TULSA, OK 74153
Tel: (918) 665-3300
A··,CH,CS,M·
Oregon
Hewlett·Packard Co.
111 Zeta Drive
PITTSBURGH, PA 15238
Tel: (412) 782·0400
A,CH,CS,E,MP
Hewlett-Packard Co.
2750 Monroe Boulevard
P.O. Box 713
VALLEY FORGE, PA 19482
Tel: (215) 666·9000
A,CH,CM,E,M
South Carolina
Hewlett-Packard Co.
Brookside Park, Suite 122
1 Harbison Way
P.O. Box 21708
COLUMBIA, SC 29221
Tel: (803) 732·0400
CH,E,MS
Hewlett·Packard Co.
Koger Executive Center
Chesterfield Bldg., Suite 124
GREENVILLE, SC 29615
Tel: (803) 297·4120
Tennessee
Utah
Hewlett-Packard Co.
3530 W. 2100 South
SALT LAKE CITY, UT 84119
Tel: (801) 974-1700
A,CH,CS,E,MS
Hewlett-Packard Co.
15815 S.E. 37th Street
BELLEVUE, WA 98006
Tel: (206) 643-4000
A,CH,CM,CS,E,MP
Hewlett·Packard Co.
Suite A
708 North Argonne Road
SPOKANE, WA 99212
Tel: (509) 922·7000
CH,CS
West Virginia
Hewlett·Packard Co.
4604 MacCorkle Ave.
P.O. Box 4297
CHARLESTON, WV 25304
Tel: (304) 925·0492
A,MS
Wisconsin
Hewlett·Packard Co.
150 S. Sunny Slope Road
BROOKFIELD, WI 53005
Tel: (414) 784·8600
A,CH,CS,E· ,MP
Hewlett·Packard Co.
224 Peters Road, Suite 102
P.O. Box 22490
KNOXVILLE, TN 37922
Tel: (615) 691·2371
A·,CH,MS
325
July 1983
5952·6900
Indicales main office
HP distributors are printed in italics.
(
\
Flia-
HEWLETT
~~ PACKARD
For more information call your local HP sales office listed in the telephone directory white pages. Ask
for the Components Department. Or write to Hewlett-Packard: U.S.A. - P.O. Box 10301, Palo Alto,
CA 94303-0890. Europe - P.O. Box 999 1180 AZ Amstelveen, The Netherlands, Canada - 6877
Goreway Drive, Mississauga, L4V IM8, Ontario. Japan - Yokogawa-Hewlett-Packard Ltd., 3-29-21,
Takaido-Higashi, Suginami-ku. Tokyo 168. Elsewhere in the world, write to Hewlett-Packard
Intercontinental, 3495 .Deer Creek Road, Palo Alto, CA 94304.
Printed in U.S.A.
Data Subject to Change
5953-4494 (6/ 84)
Source Exif Data:
File Type : PDF File Type Extension : pdf MIME Type : application/pdf PDF Version : 1.3 Linearized : No XMP Toolkit : Adobe XMP Core 4.2.1-c043 52.372728, 2009/01/18-15:56:37 Create Date : 2013:08:03 13:49:37-08:00 Modify Date : 2013:08:03 14:24:22-07:00 Metadata Date : 2013:08:03 14:24:22-07:00 Producer : Adobe Acrobat 9.55 Paper Capture Plug-in Format : application/pdf Document ID : uuid:2c2de627-bb42-da4b-b1a6-d8925c98bf72 Instance ID : uuid:04aa3337-6ac3-ff44-abc9-4f103caed407 Page Layout : SinglePage Page Mode : UseNone Page Count : 342EXIF Metadata provided by EXIF.tools