1984_Unitrode_Semiconductor_Databook 1984 Unitrode Semiconductor Databook

User Manual: 1984_Unitrode_Semiconductor_Databook

Open the PDF directly: View PDF PDF.
Page Count: 1532

Download1984_Unitrode_Semiconductor_Databook 1984 Unitrode Semiconductor Databook
Open PDF In BrowserView PDF
PART NUMBER INDEX
DESIGNERS' GUIDES
LINEAR INTEGRATED CIRCUITS
POWER TRANSISTORS & DARLINGTONS
POWER HYBRIDS & MODULES
RECTIFIERS
,

HIGH VOLTAGE RECTIFIERS, RECTIFIER
MODULES & MULTIPLIERS
RECTIFIER BRIDGES, DOUBLERS & CENTER·TAPS
POWER ZENERS & TRANSIENT VOLTAGE SUPPRESSORS

II

II

••
II

II

•II

II
SWITCHING & GENERAL PURPOSE DIODES III
PIN DIODES IfI
SENSISTORS· III
THYRISTORS (SCRs, PUTs)

MONOLITHIC CERAMIC CAPACITORS

II

III
HI·REL SCREENING III
THERMAL, MOUNTING & MECHANICAL SPECIFICATIONS III
SALES OFFICES III
APPLICATION & DESIGN DATA

@Copyright 1984 Unitrode Corporation, Lexington, MA. All rights reserved.

PRINTED IN U.S A.

-

-

--------

-

------

-

,
"

ii

INTRODUCTION
Unitrode is recognized today as a world-wide leader in the design,
manufacture and marketing of electronic components. From its inception
more than twenty-two years ago, Unitrode has earned and maintained a
reputation of setting the highest standards of reliability and performance.
Excellence was first established with a unique packaging concept for axialleaded rectifiers and zeners for the military market. This fused-in-glass
product is still unsurpassed in its reliability and performance.
Unitrode's products are designed to meet the demands of many markets
including:
• Data Processing
•
•
•
•

Military
Telecommunications
Industrial Controls
Instrumentation

Today, Unitrode offers a broad line of high quality, high performance
electronic components, including:
•
•
•
•
•

Power Transistors and Darlingtons
Power Hybrid Circuits and Modules
Power Rectifiers
Rectifier Assemblies
Power Zeners and Transient Voltage Suppressors

• Thyristors
• Switching and General Purpose Diodes
• PIN Diodes
• Monolithic Ceramic Capacitors
• Linear Integrated Circuits
We are also a leading manufacturer of data acquisition and conversion
products through our Micro Networks Division in Worcester, Massachusetts
and miniaturized power supply modules through our Powercube subsidiary
in Billerica, Massachusetts. Two recent acquisitions joined our ranks of
product offering; US Microtek Components of Sun Valley, California, a
manufacturer of monolithic ceramic capacitors and (EMI) filters adding to
our leadership position in the ceramic capacitor business and, Power
General Corporation of Canton, Massachusetts, a manufacturer of multiple
output switching power supplies and DC-DC converters.
This DATABOOK lists today's broadest line of discrete semiconductors,
linear integrated circuits and capacitors.
We take pride in our products, and know they will add more value to your
company's products.
UNITROOE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

iii

PRINTED IN U.S.A

iv

TABLE OF CONTENTS
Section

Page

1

PART NUMBER INDEX .... ............................... 1-1

2

DESIGNERS' GUIDES
Power Supply Designers' Guide ......................... 2-3
Motor Control Designers' Guide ........................ 2-16
Military Designers' Guide .............................. 2-17

3

LINEAR INTEGRATED CIRCUITS
Product Selection Guide ................................ 3-3
Data Sheets ........................................... 3-7

4

POWER TRANSISTORS & DARLINGTONS
Product Selection Guide ................................ 4-3
Data Sheets .......................................... 4-11

5

POWER HYBRIDS & MODULES
Product Selection Guide ................................ 5-3
Data Sheets ........................................... 5-4

6

RECTIFIERS
(Standard & Fast Recovery, High Efficiency & Schottky)
Product Selection Guide ................................ 6-3
Data Sheets ........................................... 6-8

7

HIGH VOLTAGE RECTIFIERS, RECTIFIER
MODULES & MULTIPLIERS
Product Selection Guide ................................ 7-3
Data Sheets .......................................... 7-10

8

RECTIFIER BRIDGES, DOUBLERS & CENTER·TAPS
Product Selection Guide ................................ 8-3
Data Sheets ........................................... 8-8

9

POWER ZENERS & TRANSIENT VOLTAGE SUPPRESSORS
Product Selection Guide ................................ 9-3
Data Sheets ........................................... 9-6

10

THYRISTORS (SCRs & PUTs)
Product Selection Guide ............................... 10-3
Data Sheets .......................................... 10-5

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

v

PRINTED IN

u.s

A

vi

Section

11

Page

SWITCHING & GENERAL PURPOSE DIODES
Product Selection Guide ............................... 11-3
Data Sheets .......................................... 11-4

12

PIN DIODES
Product Selection Guide ............................... 12-3
Data Sheets .......................................... 12-6

13

SENSISTORS®
Product Selection Guide ............................... 13-3
Data Sheets .......................................... 13-4

14

MONOLITHIC CERAMIC CAPACITORS
Data Sheets .......................................... 14-3

15

APPLICATION & DESIGN DATA .. ......................... 15-1

16

HI-REL SCREENING ..................................... 16-1

17

THERMAL, MOUNTING & MECHANICAL
SPECIFICATIONS . ....................................... 17-1

18

SALES OFFICES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 18-1

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

vii

PRINTED IN U.S.A.

viii

PART NUMBER INDEX

1-1

II

1-2

PART NUMBER INDEX

PAGE

PART NUMBER

DESCRIPTION
GENERAL PURPOSE
DIODE

11·8

1N251, J
1N456
1N456A
1N457, J .
1N457A
1N458, J
1N458A
1N459, J
1N459A
1N483*
1N483A*
1N483B, J, JTX
1N483C
1N485
1N485B, J, JTX

75mA; 40V; 00·7
90mA; 25V
75mA; 60V
55mA; 125V; 00·7
40mA; 175V
55mA; 150V; 00·7
100mA; 150V
40mA; 200V; 00·7
100mA; 200V
100mA; 70V
100mA; 70V
200mA; 80V; 00·7
100mA; 70V
100mA; 180V
200mA; 200V; 00·7

11·10

1N643, J

40mA; 200V; 00·7

11·12
11·12
11·12
11·12

1N645J, JTX
1N645·1J, JTX, JTXV
1N647, J, JTX
1N647·1, J, JTX, JTXV

400mA;
400mA;
400mA;
400mA;

11·10
11·10
11·14

1N662, J
1N663, J
1N914, J, JTX
1N914·1, A, B
1N916, B
1N3064J, JTX
1N3070, J, JTX, JTXV

40mA; 100V; 00·7
60mA; 100V; 00·7
75mA; 100V
75mA; 100V
75mA; 100V
75mA; 75V; 00·7
150mA; 200V; 00·35

11-4
11·6
*
11·6

·
·

11·6

11·6
*

•*

11·8
*

•

SWITCHING DIODE
RECTIFIER
270V
270V
480V
480V

PAGE

.

11·28
11·24

*
11-16
11·18

GENERAL PURPOSE
DIODE
11·20

1N3595, J, JTX, JTXV
1N3600, J, JTX, JTXV

RECTIFIER
6·8
6·8
6·8
6·8

1N3611,
1N3612,
1N3613,
1N3614,

J, JTX
J,JTX
J, JTX
J, JTX

"717

lr'-!3543

(~VEI0)

7·17
7·17
7·17
7·17

1N3644
1N3645
1N3646
1N3647
1N3656
1N3657
1N3658
1N3957
1N3981
1N3982
1N3983

(HVE15)
(HVE20)
(HVE25)
(HVE30)

··
·
·
*
*
*

9·21

1N4148, J, JTX, JTXV
1N4148·1J, JTX, JTXV
1N4149
1N4150, J, JTX, JTXV
1N4150·1J, JTX, JTXV
lN4151
lN4152

200mA;
150mA;
200m A;
200mA;
200m A;
200m A;
200mA;

JTXV
JTXV
JTXV
JTXV
JTXV

l.OA;200V
l.OA;400V
l.OA; 600V
l.OA; 800V
l.OA; 1000V

1N4305
1N4444
1N4446
1N4447
1N4448
1N4449
1N4450
1N4451
1N4452
1N4453
1N4454,J, JTX, JTXV
1N4454·1, J, JTX, JTXV

200mA;
200mA;
200mA;
200mA;
200mA;
200mA;
200mA;
200m A;
400mA;
200mA;
200mA;
200mA;

75V;
70V;
75V;
75V;
75V;
75V;
40V;
40V;
40V;
30V;
75V;
75V;

00·35
00·35
00·35
00·35
00·35
00·35
00·35
00·35
00·35
00·35
00·35
00·35

1N4461·1N4496,J,
JTX, JTXV
1N4500,
1N4531,
1N4532,
1N4534,
1N4607
1N4608

J,
J,
J,
J,

JTX
JTX, JTXV
JTX, JTXV
JTX, JTXV

l.5W; 5%
300mA;
125mA;
125mA;
150mA;
400mA;
500mA;

80V; 00·35
100V; 00·34
75V; 00·34
75V; 00·34
85V; 00·35
85V; 00·35

1N4883·1 N4884

3.0W; 5%

SWITCHING DIODE
11·18

1N4938, J, JTX

150mA; 200V, 00·7

6·12
6·12
6·12

1N4942, J,JTX,JTXV
1N4944, J, JTX, JTXV
1N4946, J, JTX, JTXV

l.OA; 200V
l.OA; 400V
l.OA; 600V

9·8

1N4954·1N4995, J,
JTX, JTXV
1N4996
1N5063·1N5117
1N5118·1N5134

5.0W;
5.0W;
3.0W;
5.0W;

1N5180
1N5181 (HVE40)
1N5182 (HVE50)
1N5183 (HVE75)
1N5184 (HVElOO)
1N5185
1N5186, J, JTX
1N5187, J, JTX
1N5188, J, JTX
1N5190, J, JTX
1N5207
1N5320
1N5330
1N5415, J, JTX, JTXV
1N5416, J, JTX, JTXV
1N5417, J, JTX, JTXV

4.0A; 100V
4.0kV
5.0kV
7.5kV
10.0kV
3.0A; 60V
3.0A; 100V
3.0A; 200V
3.0A; 400V
3.0A; 600V
4.0A; 400V
l.OA; 120V
0.5A; 1500V
3.0A; 50V
3.0A; 100V
3.0A; 200V

RECTIFIER

ZENER
9·8
9·21
9·25

5%
5%
5%
5%

RECTIFIER
*
7·17
7·17
7·17
7·17

*

6·14
6·14
6·14
6·14

SWITCHING DIODE
11·14
11·14
11·24
11·22
11·22
11·24
11·26

J, JTX,
J, JTX,
J, JTX,
J, JTX,
J,JTX,

ZENER
9·21

ZENER
3.0W; 5%

1N4245,
1N4246,
1N4247,
1N4248,
1N4249,

SWITCHING DIODE
11·34
11·14
11-16
11·28
11·32
11·32

l.OA; 200V
l.OA;400V
l.OA;600V
l.OA;800A
l.OkV
l.5kV
2.0kV
2.5kV
3.0kV
0.75A; 200V
0.75A; 400V
0.75A; 600V
l.OA; 1000V
2.0A; 200V
2.0A; 400V
l.OA; 600V

1N4096·1N4098

150mA; 75V; 00·35
150mA; 75V; 00·35
200mA; 35V; 00·35

ZENER
9·6

150mA; 150V; 00·7
200mA; 75V; 00·7

1N4153, J, JTX, JTXV
1N4153·1J, JTX, JTXV
1N4154

SWITCHING DIODE
11·26
11·26
11·24
11·24
11·24
11·24
11·30
11·30
11·32
11·30
11·16
11·16

SWITCHING DIODE
11·22

SWITCHING DIODE

RECTIFIER
6·10
6·10
6·10
6·10
6·10

SWITCHING DIODE

·

DESCRIPTION

PART NUMBER

100V; 00·35
100V; 00·35
75V; 00·35
75V; 00·35
75V; 00·35
75V; 00·35
40V; 00·35

*

*
*
6·16
6·16
6·16

* Contact Unitrode
Legend: J-JAN JTX-JANTX JTXV-JANTXV
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

1-3

PRINTED IN U.S A

•

PART NUMBER INDEX

PAGE

PART NUMBER

DESCRIPTION

PAGE

PART NUMBER

RECTIFIER
6-16
6-16
6-16

··
·

IN5418, J, JTX, JTXV
IN5419, J, JTX, JTXV
IN5420, J, JTX, JTXV
IN5433
IN5434
IN5435

3.0A; 400V
3.0A; 500V
3.0A; 600V
2.0A; 700V
2.0A; 700V
12.0A; 700V

12-6

IN5550,
IN5551,
IN5552,
IN5553,

J,
J,
J,
J,

JTX,
JTX,
JTX,
JTX,

7-10
7-10
7-10

IN5597, J
IN5600, J
IN5603, J

9-10
9-10
9-10
9-10

IN5610,
IN5611,
IN5612,
IN5613,

J,
J,
J,
J,

JTX
JTX
JTX
JTX

6-20
6-22
6-20
6-22
6-20
6-22
6-20

IN5614,
IN5615,
1N5616,
1N5617,
1N5618,
1N5619,
1N5620,

J,
J,
J,
J,
J,
J,
J,

JTX,
JTX,
JTX,
JTX,
JTX,
JTX,
JTX,

JTXV
JTXV
JTXV
JTXV

IN5957

Low Oistortion, AGC Oiode

ZENER
9-8
9-8

IN5968
IN5969

6-37
6-37

IN6097
IN6098

50A; 30V; 00-5
50A; 40V; 00-5

RECTIFIER MODULE

6-39
6-39
6-39

IN6304, J, JTX, JTXV
IN6305,J,JTX,JTXV
IN6306, J, JTX, JTXV

70A; 50V; 00-5
70A; l00V; 00-5
70A;150V; 00-5

lOkV
5.0kV
5.0kV

6-42
6-44

IN6391, J, JTX, JTXV
IN6392, J, JTX, JTXV

25A; 45V; 00-4
60A; 45V; 00-5

5.0A;
5.0A;
5.0A;
5.0A;

5.0W; 5%
5.0W; 5%

SCHOTTKY RECTIFIER

RECTIFIER

6-18
6-18
6-18
6-18

200V
400V
600V
800V

RECTIFIER

SCHOTTKY RECTIFIER

TRANSIENT VOLTAGE
SUPPRESSOR

TRANSIENT VOLTAGE
SUPPRESSOR

33V
43.7V
54V
191V

9-12
9-12
9-12
9-12
9-12
9-12
9-12
9-12

RECTIFIER
JTXV
JTXV
JTXV
JTXV
JTXV
JTXV
JTXV

l.OA; 200V
l.OA;200V
l.OA; 400V
l.OA;400V
l.OA;600V
l.OA;600V
l.OA;800V

··
··
·•
··•
··•
··
··•
·••
··
·•
·•
··
•
··
·

PIN DIODE
1N5767

General Purpose, PI N

6-24
6-28
6-24
6-24
6-28
6-24
6-24
6-28
6-24
6-28
6-24
6-24
6-28
6-24
6-24
6-28
6-24
6-31
6-24
6-24
6-31
6-24
6-24
6-31

1N5802
1N5802, J, JTX, JTXV
1N5803
1N5804
1N5804, J, JTX, JTXV
1N5805
1N5806
1N5806, J, JTX, JTXV
1N5807
1N5807, J, JTX, JTXV
1N5808
1N5809
1N5809, J, JTX, JTXV
1N581O
IN5811
1N5811, J, JTX, JTXV
1N5812
1N5812, J, JTX, JTXV
1N5813
1N5814
1N5814, J, JTX, JTXV
1N5815
1N5816
1N5816,J,JTX,JTXV

2.5A; 50V
2.5A; 50V
2.5A; 75V
2.5A; 100V
2.5A; 100V
2.5A; 125V
2.5A; 150V
2.5A; 150V
6.0A; 50V
6.0A; 50V
6.0A; 75V
6.0A; 100V
6.0A; 100V
6.0A; 125V
6.0A; 150V
6.0A; 150V
20.0A; 50V; 00-4
20.0A; 50V; 00-4
20.0A; 75V; 00-4
20.0A; 100V; 00-4
20.0A; 100V; 00-4
20.0A; 125V; 00-4
20.0A; 150V; 00-4
20.0A; 150V; 00-4

6-33
6-33
6-33
6-35
6-35
6-35

1N5817
1N5818
1N5819
1N5820
1N5821
1N5822

12-6

DESCRIPTION
PIN DIODE

RECTIFIER

SCHOTTKY RECTIFIER
l.OA;
l.OA;
l.OA;
3.0A;
3.0A;
3.0A;

20V;
30V;
40V;
20V;
30V;
40V;

Sim. to
Sim. to
Sim. to
5im. to
Sim. to
Sim. to

00-41
00-41
00-41
00-201AO
00-201AO
00-201AO

IN6461,
IN6462,
IN6463,
IN6464,
IN6465,
IN6466,
1N6467,
1N6468,

J,
J,
J,
J,
J,
J,
J,
J,

JTX,
JTX,
JTX,
JTX,
JTX,
JTX,
JTX,
JTX,

JTXV
JTXV
JTXV
JTXV
JTXV
JTXV
JTXV
JTXV

5.0V
6.0V
12.0V
15.0V
24.0V
30.5V
40.3V
5l.6V

DIODE
1S44
1S111
1S113
1S120
1S121
lS130
1S131
1S132
1S134
1S920
1S92085
15921
1592185
lS922
1S92285
15923
1S92385
1S924
1S930
lS940
lS941
lS942
lS951
lS952
15953
15960
1S961
lS96185

75mA; 4OV; 00-35
400mA; 225V; 00-7
400mA; 400V; 00-7
200mA; 50V; 00-7
200mA; 150V; 00-7
300mA; 50V; 00-7
300mA; 100V; 00-7
300mA; 200V; 00-7
300mA; 400V; 00-7
200mA; 50V; 00-35
200mA; 50V; 00-35
200mA; 100V; 00-35
200mA; 100V; 00-35
200mA; 150V; 00-35
200mA; 150V; 00-35
200mA; 200V; 00-35
200mA; 200V; 00-35
200mA; 300V; 00-35
300mA; 50V; 00-35
50mA; 30V; 00-35
50mA; 50V; 00-35
50mA; 75V; 00-35
225mA; 70V; 00-35
225mA; 70V; 00-35
225mA; 70V; 00-35
150mA; 50V; 00-35
150mA; 150V; 00-35
150mA; 100V; 00-35

2N876
2N877
2N878
2N879

.35A@100·C
.35A@100·C
.35A@100·C
.35A@100·C

SCR
15V; TO-18
30V; TO-18
60V; TO-18
100V; TO-18

• Contact Unitrode
Legend: J-JAN JTX-JANTX JTXV-JANTXV
UNITRODE CORPORATION. 5 FORBES ROAD
LEXI NGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

1-4

PRINTED IN U.S A

PART NUMBER INDEX

PAGE

··
···
··
··
··
··
··
·•
···
·
··
·•
···•
•
·
·
·
·

10-S
10-5
10-5
10-S
10-5
10-9
10-9
10-9
10-9
10-9
10-9
10-11
10-11
10-11
10-11
10-11

·

DESCRIPTION

PART NUMBER

PAGE

··
··
··
·

SCR
2N880
2N881
2N882
2N883
2N884
2N885
2N886
2N887
2N888
2N889
2N890
2N891
2N948
2N949
2N950
2N951
2N1595
2N1596
2N1597
2N1598
2N1599

.35A@100·C 150V; TO-18
.35A@100·C 200V; TO-18
.35A@100·C 300V; TO-18
.35A@100·C 400V; TO-18
.35A@100·C 15V; TO-18
.35A@100·C 30V; TO-18
.35A@100·C 60V; TO-18
.35A@100·C 100V; TO-18
.35A@100·C 150V; TO-18
.35A@100·C 200V; TO-18
.35A@100·C 300V; TO-18
.35A@100·C 400V; TO-18
.26A@125·C 30V; TO-18
.26A@125·C 60V; TO-18
.26A@125·C 100V; TO-18
.26A@125·C 200V; TO-18
1.0A@80·C 50V; TO-39
1.0A@80·C 100V; TO-39
1.0A@80·C 200V; TO-39
1.0A@80·C 300V; TO-39
1.0A@80·C 400V; TO-39

2N1647
2Nl648
2Nl649
2N1650
2Nl714
2N1715
2Nl716
2Nl717
2Nl718

NPN; 3.0A; 60V; TO-59
NPN; 3.0A; 80V; TO-59
NPN; 3.0A; 60V; TO-59
NPN; 3.0A; 80V; TO-59
NPN; 0.75A; 60V; TO-5
NPN; 0.75A; 100V; TO-5
NPN; 0.75A; 60V; TO-5
NPN; 0.75A; 100V; TO-5
NPN; 0.7SA; 60V; TO-5;
Stud Mount
NPN; 0.75A; 100V; TO-5;
Stud Mount
NPN; 0.75A; 60V; TO-S;
Stud Mount
NPN; 0.7SA; 100V; TO-5;
Stud Mount

POWER TRANSISTOR

2Nl719
2Nl720
2Nl721

4-11
10-13
10-13
10-13
10-13
10-13
10-13
10-13
10-13
10-13
10-13
10-13
10-13
10-13
10-13
10-13

•

··
··
··
··
··
··
··
·••
·
·•
···
·
··
·•

SCR
2N1869
2N1870A,
2N1871A,
2N1872A,
2N1873A
2N1874A,
2N187S
2N1876
2N1877
2N1878
2N1879
2N1880
2Nl881
2N1882
2Nl883
2N1884
2N188S

J
J
J
J

1.2SA@100·C lSV; TO-9
1.25A@100·C 30V; TO-9
1.2SA@100·C 60V; TO-9
1.25A@100·C 100V; TO-9
1.25A@100·C 150V; TO-9
1.25A@100·C 200V; TO-9
1.2SA@100·C lSV; TO-9
1.2SA@100·C 30V; TO-9
1.25A@100·C 60V; TO-9
1.25A@100·C 100V; TO-9
1.2SA@100·C lS0V; TO-9
1.2SA@100·C 200V; TO-9
1.0A@100·C 30V; TO-9
1.0A@100·C 60V; TO-9
1.0A@100·C 100V; TO-9
1.0A@100·C lS0V; TO-9
1.0A@100·C 200V; TO-9

4-15

POWER TRANSISTOR
2N1886

•

NPN; 3.0A; TO-59

DESCRIPTION

PART NUMBER
SCR
2N2009
2N201O
2N2011
2N2012
2N2013
2N2014

1.3A@80·C 25V; TO-39
1.3A@80·C 50V; TO-39
1.3A@80·C 100V; TO-39
1.3A@80·C 200V; TO-39
1.3A@80·C 300V; TO-39
1.3A@80·C 400V; TO-39

2N2150
2N2151 J, JTX

NPN; 2.0A; 80V; TO-59
NPN; 2.0A; 80V; TO-59

POWER TRANSISTOR
SCR
2N2322
2N2323
2N2323, SJ, SJTX, SJTXV
2N2323A, SJ, SJTX, SJTXV
2N2324, SJ, SJTX, SJTXV
2N2324A, SJ,SJTX, SJTXV
2N2325
2N2325A
2N2326, SJ, SJTX, SJTXV
2N2326A, SJ, SJTX, SJTXV
2N2327
2N2327A
2N2328, SJ, SJTX, SJTXV
2N2328A, SJ, SJTX, SJTXV
2N2329, SJ, SJTX, SJTXV
2N2344
2N234S
2N2346
2N2347
2N2348

1.6A@85·C 25V; TO-39
1.6A@85·C 50V; TO-39
1.6A@85·C 50V; TO-39
1.6A@85·C 50V; TO-39
1.6A@85·C 100V; TO-39
1.6A@85·C 100V; TO-39
1.6A@85·C 150V; TO-39
1.6A@85·C 150V; TO-39
1.6A@85·C 200V; TO-39
1.6A@85·C 200V; TO-39
1.6A@85·C 250V; TO-39
1.6A@85·C 250V; TO-39
1.6!'.@85·C 300V; TO-39
1.6A@85·C 300V; TO-39
1.6A@85·C 400V; TO-39
1.6A@5S·C 25V; TO-39
1.6A@55·C SOV; TO-39
1.6A@55·C 100V; TO-39
1.6A@5S·C 150V; TO-39
1.6A@55·C 200V; TO-39

2N26S7
2N2658

NPN; 5.0A; 60V; TO-5
NPN; S.OA; 80V; TO-S

2N2679
2N2680
2N2681
2N2682
2N2683
2N2684
2N2685
2N2686
2N2687
2N2688
2N2689
2N2690

.35A@55·C 30V; TO-18
.35A@SS·C 60V; TO-18
.3SA@S5·C 100V; TO-18
.3SA@SS·C200V; TO-18
.28A@55·C 30V; TO-18
.28A@5S·C60V; TO-18
.28A@5S·C 100V; TO-18
.28A@SS·C 200V; TO-18
.28A@55·C 30V; TO-18
.28A@SS·C 60V; TO-18
.28A@SS·C 100V; TO-18
.28A@S5·C 200V; TO-18

2N2828
2N2829
2N2858
2N2859
2N2877,2N2878
2N2879
2N2880, J, JTX, JTXV
2N2890,2N2891
2N2892, 2N2893
2N2983
2N2984
2N2985

NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;

POWER TRANSISTOR
SCR

POWER TRANSISTOR
3A;
3A;
3A;
3A;
SA;
SA;
5A;
SA;
SA;
3A;
3A;
3A;

60V; TO-S9
60V; TO-59
80V; TO-S
100V; TO-5
80V; TO-S9
100V; TO-S9
80V; TO-S9
80V; TO-S
80V; TO-S9
80V; TO-5
120V; TO-S
80V; TO-5

• Contact Unitrode
legend: J-JAN JTX-JANTX JTXV-JANTXV
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

1-5

PRINTED IN USA

a

PART NUMBER INDEX

PAGE

··
··•
•
•
•
•

··•
··
··
·

10-16
10-16
10-16
10-16
10-16
10-16

•
•
•

·

4-19
4-19
4-19
4-19

·••
·•
···
·••
·•
··
·•
·
··
··•
··

4-15

4-23
4-23
4-23
4-23

PART NUMBER

DESCRIPTION

PAGE

POWER TRANSISTOR
2N29S6
2N29S7
2N29SS
2N29S9
2N2990
2N299l
2N2992
2N2993
2N2994, 2N2995

NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;

3A;
lA;
lA;
lA;
lA;
lA;
lA;
lA;
lA;

2N300l
2N3002
2N3003
2N3004
2N3005
2N3006
2N3007

.25A@55'C 30V; TO-IS
.25A@55'C 60V; TO-IS
.25A@55'C 100V; TO-IS
.25A@55'C 200V; TO-IS
.25A@55'C 30V; TO-IS
.25A@55'C 60V; TO-IS
.25A@55'C 100V; TO-IS
.25A@55'C200V; TO-IS
500mA@lOO'C 30V; TO-IS
500mA@lOO'C 60V; TO-IS
500mA@100'C lOOV; TO-IS
.5A@lOO'C 30V; TO-IS
.5A@100'C 60V; TO-18
.5A@100·C lOOV; TO-IS
2.2A@S5'C lOOV; TO-39
2.2A@S5'C 200V; TO-39
2.2A@85'C 300V; TO-39
2.2A@S5'C 400V; TO-39

•
•
•

l20V; TO-5
SOV; TO-5
100V; TO-5
SOV; TO-5
100V; TO-5
SOV; TO-5 Stud
100V; TO-5 Stud
SOV; TO-5 Stud
lOOV; TO-5 Stud

··•
··•
··•
·•

SCR

2N~OOS

2N:.027,
. 2Nj02S,
2N3029,
2N3030,
2N303l,
2N3032,
2N3273
2N3274
2N3275
2N3276

J,
J,
J,
J,
J,
J,

JTX
JTX
JTX
JTX
JTX
JTX

4-27

•
•

··
··
··
•

POWER TRANSISTOR
2N34lS,
2N34l9,
2N3420,
2N342l,
2N3445
2N3445
2N3447
2N344S
2N3469

J,
J,
J,
J,

JTX,
JTX,
JTX,
JTX,

JTXV
JTXV
JTXV
JTXV

NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;

3.0A;
3.0A;
3.0A;
3.0A;
7.5A;
7.5A;
7.5A;
7.5A;
5.0A;

60V;
SOV;
60V;
SOV;
60V;
SOV;
60V;
SOV;
25V;

•

TO-5
TO-5
TO-5
TO-5
TO-3
TO-3
TO-3
TO-3
TO-5

4-31
4-31

•
•
•
•

·
··
··
·

SCR
2N3555
2N3556
2N3557
2N355S
2N3559
2N3560
2N3561
2N3562

l.6A;
l.6A;
l.6A;
l.6A;
l.6A;
l.6A;
l.6A;
l.6A;

2N3744
2N3745
2N3746
2N3747
2N374S
2N3749,
2N3750
2N375l
2N3752
2N3S50
2N3S5l
2N3S52
2N3S53
2N3996,
2N3997,
2N399S,
2N3999,

NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;

30V; TO-39
60V; TO-39
100V; TO-39
200V; TO-39
30V; TO-39
60V; TO-39
lOOV; TO-39
200V; TO-39

4-35
4-35
4-37
4-37
4-39
4-39
4-39
4-39
4-44
4-44
4-44
4-44
4-49
4-49

POWER TRANSISTOR

J, JTX, JTXV

J,
J,
J,
J,

JTX,
JTX,
JTX,
JTX,

JTXV
JTXV
JTXV
JTXV

5.0A;
5.0A;
5.0A;
5.0A;
5.0A;
5.0A;
5.0A;
5.0A;
5.0A;
5.0A;
5.0A;
5.0A;
5.0A;
5.0A;
5.0A;
5.0A;
5.0A;

40V;
60V;
SOV;
40V;
60V;
80V;
4OV;
60V;
SOV;
SOV;
SOV;
40V;
4OV;
SOV;
80V;
SOV;
SOV;

TO-lll
TO-lll
TO-Ill
TO-Ill
TO-Ill
TO-Ill
TO-Ill
TO-Ill
TO-Ill
TO-59
TO-59
TO-59
TO-59
TO-lll
TO-Ill
TO-59
TO-59

PART NUMBER

DESCRIPTION
POWER TRANSISTOR

2N4000
2N400l
2N4070
2N4075
2N4076

NPN;
NPN;
NPN;
NPN;
NPN;

2N41OS
2N4l09
2N4110
2N4l44
2N4l45
2N4l46
2N4l47
2N4l4S
2N4l49

lSOmA@25'C 50V; TO-IS
lSOmA@25'C 100V; TO-IS
l80mA@25'C200V; TO-IS
250mA@75'C l5V; TO-IS
250mA@75'C30V; TO-IS
250mA@75'C60V; TO-18
250mA@75'C 100V; TO-18
250mA@75'C l50V; TO-IS
250mA@75'C 200V; TO-IS

2N4l50, J, JTX, JTXV

NPN; 1O.OA; 70V; TO-5

l.OA; SOV; TO-5
l.OA; 100V; TO-5
1O.OA; lOOV; TO-3
3.0A; SOV; TO-lll
3.0A; SOV; TO-lll

SCR

POWER TRANSISTOR
SCR
2N42l2
2N42l3
2N42l4
2N42l5
2N42l6
2N42l7
2N42lS
2N42l9

l.OA@85'C
l.OA@S5'C
l.OA@S5'C
l.OA@S5'C
l.OA@S5·C
l.OA@S5'C
l.OA@S5'C
l.OA@S5'C

2N4237-2N4239
2N4300
2N503S, J, JTX, JTXV
2N5039, J, JTX, JTXV
2N5074-2N5075
2N5076-2N5077
2N5334
2N5335
2N5336-2N5337
2N533S-2N5339
2N5346-2N5347
2N534S-2N5349
2N5477-2N547S
2N5479-2N5480
2N5552
2N5552-4
2N565S
2N5659
2N5660, J, JTX, JTXV
2N566l, J, JTX, JTXV
2N5662, J, JTX, JTXV
2N5663, J, JTX, JTXV
2N5664, J, JTX, JTXV
2N5665, J, JTX, JTXV
2N5666, J, JTX, JTXV
2N5667, J, JTX, JTXV
2N5671
2N5672

NPN; l.OA
NPN; 2.0A
NPN; 20.0A; l50V; TO-3
NPN; 20.0A; l20V; TO-3
NPN; 3A; 200V; TO-59
NPN; 3A; 250V; TO-59
NPN; 3A; 60V; TO-39
NPN; 3A; SOV; TO-39
NPN; 5A; SOV; TO-39
NPN; 5A; lOOV; TO-39
NPN; 7A; SOV; TO-59
NPN; 7A; 100V; TO-59
NPN; 7A; SOV; TO-59
NPN; 7A; lOOV; TO-59
NPN; lOA; SOV; TO-5
NPN; lOA; SOV; TO-5 (Stud)
NPN; 20A; SOV; TO-59
NPN;20A;80V;TO-lll
NPN; 3A; 200V; TO-66
NPN; 3A; 300V; TO-66
NPN; 3A; 200V; TO-5
NPN; 3A; 300V; TO-5
NPN; 5A; 200V; TO-56
NPN; 5A; 300V; TO-66
NPN; 5A; 200V; TO-5
NPN; 5A; 300V; TO-5
NPN; 30A; l20V; TO-3
NPN; 30A; 150V; TO-3

25V; TO-39
50V; TO-39
lOOV; TO-39
l50V; TO-39
200V; TO-39
250V; TO-39
300V; TO-39
400V; TO-39

POWER TRANSISTOR

SCR
10-22
10-22
10-22
10-22
10-22

2N5724
2N5725
2N5726
2N5727
2N572S

l.6A@85'C
l.6A@S5'C
l.6A@S5'C
l.6A@S5'C
l.6A@S5·C

4-53
4-53

2N5S3S
2N5839

NPN; 3A; 275V; TO-3
NPN; 3A; 300V; TO-3

60V; TO-39
100V; TO-39
200V; TO-39
300V; TO-39
400V; TO-39

POWER TRANSISTOR

• Contact Unitrode
legend: J-JAN JTX-JANTX JTXV-JANTXV
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

1-6

PRINTED IN U.S Ii.

PART NUMBER INDEX

pAGE

DESCRIPTION

PART NUMBER

PAGE

POWER MOSFET
TRANSISTOR

POWER TRANSISTOR
4-53

•

2N5840
2N6077
2N6078

NPN; 3A; 375V; TO-3
NPN;7A;300V;TO-66
NPN; 7A; 275V; TO-66

10-26
10-26
10-30

2N6119
2N6120
2N6137

400mW@25·C 40V; TO-18
400mW@<'5·C 40V; TO-18
300mW@25·C 40V; TO-18

4-110
4-114
4-114
4-118
4-118
4-122

POWER TRANSISTOR
2N6233
2N6234
2N6235
2N6249
2N6250
2N6251
2N6306, J, JTX JTXV
2N6307
2N6308, J, JTX, JTXV

NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;

4-122

2N6764, J, JTX, JTXV

4-126

2N6765

4-126

2N6766, J, JTX, JTXV

2N6332
2N6333
2N6334
2N6335
2N6336
2N6337

2.0A@80·C
2.0A@80·C
2.0A@80·C
2.0A@80·C
2.0A@80·C
2.0A@80·C

·
•

··

4-57
4-57
4-57
4-61
4-61
4-61

•

··
··
·

PUT

5A; 225V; TO-66
5A; 275V; TO-66
5A; 325V; TO-66
lOA; 300V; TO-3
lOA; 375V; TO-3
lOA; 450V; TO-3
8.0A; 500V; TO-3
8.0A; 600V; TO-3
8.0A; 700V; TO-3
30V; TO-39
50V; TO-39
100V; TO-39
200V; TO-39
300V; TO-39
400V; TO-39

POWER DARLINGTON
2N6350,
2N6351,
2N6352,
2N6353,

J,
J,
J,
J,

JTX,
JTX,
JTX,
JTX,

JTXV
JTXV
JTXV
JTXV

4-70
4-70
4-74
4-74
4-74
4-74
4-74
4-78
4-78
4-82
4-82
4-86
4-86

4-90
4-90
4-90
4-94
4-94
4-98
4-102
4-98
4-98
4-102

2N6354
2N6496
2N6510
2N6511
2N6512
2N6513
2N6514
2N6542
2N6543
2N6544
2N6545
2N6546,
2N6547,
2N6579
2N6580
2N6581
2N6582
2N6583
2N6584
2N6671
2N6672
2N6673
2N6674
2N6675
2N6676
2N6676,
2N6677
2N6678
2N6678,

4-106
4-106
4-110

2N6755
2N6756, J, JTX, JTXV
2N6757

NPN;
NPN;
NPN;
NPN;

10.0A; 80V; TO-33
10.0A; 150V; TO-33
10.0A; 80V; TO-66
1O.OA; 150V; TO-66

POWER TRANSISTOR

···
···

J, JTX, JTXV
J, JTX, JTXV

J, JTX, JTXV
J, JTX, JTXV

NPN; 10.0A; 150V; TO-3
NPN; 15.0A; 150V; TO-3
NPN; 7.0A; 250V; TO-3
NPN; 7.0A; 300V; TO-3
NPN; 7.0A; 350V; TO-3
NPN; 7.0A; 400V; TO-3
NPN; 7.0A; 350V; TO-3
NPN; 5A; 650V; TO-3
NPN; 5A; 850V; TO-3
NPN; 8.0A; 650V; TO-3
NPN; 8.0A; 850V; TO-3
NPN; 15A; 650V; TO-3
NPN; 15A; 850V; TO-3
NPN; lOA; 350V; TO-3
NPN; lOA; 400V; TO-3
NPN; lOA; 450V; TO-3
NPN; lOA; 350V; TO-3
NPN; lOA; 400V; TO-3
NPN; lOA; 450V; TO-3
NPN; 8A; 450V; TO-3
NPN; 8A; 550V; TO-3
NPN; 8A; 650V; TO-3
NPN; lOA; 450V; TO-3
NPN; lOA; 650V; TO-3
NPN; 15A; 450V; TO-3
NPN; 15A; 450V; TO-3
NPN; 15A; 550V; TO-3
NPN; 15A; 650V; TO-3
NPN; 15A; 650V; TO-3

POWER MOSFET
TRANSISTOR
12A; 60V; 0.250; TO-3
14A; 100V; 0.180; TO-3
8A; 150V; 0.60; TO-3

2N6758, J, JTX, JTXV
2N6759
2N6760, J, JTX, JTXV
2N6761
2N6762, J, JTX, JTXV
2N6763

4-130 2N6767
4-130 2N6768, J, JTX, JTXV
4-134 2N6769
4-134 2N6770, J, JTX, JTXV
4-138 2N6781
4-138 2N6782
4-144 .2N6783
4-144 2N6784
4-150 2N6785
4-150 2N6786
4-156 2N6787
4-156 2N6788
4-162 2N6789
4-162 2N6790
4-168 2N6791
4-168 2N6792
4-174 2N6793
4-174 2N6794
4-180 2N6795
4-180 2N6796
4-186 2N6797
4-186 2N6798
4-192 2N6799
4-192 2N6800
4-198 2N6801
4-198 2N6802

SCR

4-65
4·65
4-65
4-65

DESCRIPTION

PART NUMBER

9A; 200V; 0.40; TO-3
4.5A; 350V; l.50; TO-3
5.5A; 400V; l.00; TO-3
4A; 450V; 2.00; TO-3
4.5A; 500V; 1.50; TO-3
31A; 60V; 0.080;
TO-3 (Modified)
38A; 100V; 0.0550;
TO-3 (Modified)
25A; 150V; 0.1200;
TO-3 (Modified)
30A; 200V; 0.0850;
TO-3 (Modified)
12A; 350V; O.4Q; TO-3
14A; 400V; 0.30; TO-3
11A; 450V; 0.50; TO-3
12A; 500V; 0.40; TO-3
3.5A; 60V; 0.60; TO-39
3.5A; 100V; 0.60; TO-39
2.25A; 150V; 1.50; TO-39
2.25A; 200V; l.50; TO-39
1.25A; 350V; 3.60; TO-39
1.25A; 400V; 3.60; TO-39
6.0A; 60V; 0.30; TO-39
6.0A; lOOV; 0.30; TO-39
3.5A; 150V; 0.80; TO-39
3.5A; 200V; 0.80; TO-39
2.0A; 350V; l.80; TO-39
2.0A; 400V; l.80; TO-39
l.5A; 450V; 3.00; TO-39
l.5A; 500V; 3.00; TO-39
8.0A; 60V; .180; TO-39
8.0A; lOOV; .180; TO-39
5.5A; 150V; 0.40; TO-39
5.5A; 200V; 0.40; TO-39
3.0A; 350V; l.00; TO-39
3.0A; 400V; l.00; TO-39
2.5A; 450V; l.50; TO-39
2.5A; 500V; l.50; TO-39

FULL WAVE BRIDGE
8-8
'8-8
8-8
8-10
8-10
8-10
8-12
8-12
8-12
8-12
8-12
8-12
8-14
8-14
8-14
8-14
8-14
8-14
8-14
8-14
8-12
8-12
8-12
8-12

469-1, J, JTX
469-2, J, JTX
469-3, J, JTX
483-1, JTX
483-2, JTX
483-3, JTX
673-1
673-2
673-3
673-4
673-5
673-6
673-7
673-7.5
673-8
673-8.5
673-9
673-10
673-11
673-12
676-1
676-2
676-3
676-4

1 ph;
1 ph;
1 ph;
3 ph;
3 ph;
3 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;

lOA; 200V
lOA; 400V
lOA; 600V
25.0A; 200V
25.0A; 400V
25.0A; 600V
l.5A; 100V
l.5A; 200V
l.5A; 300V
l.5A; 400V
l.5A; 500V
l.5A; 600V
0.6A; 1200V
0.5A; 1800V
O.4A; 2400V
0.3A; 3000V
0.2A; 3600V
.18A; 4200V
.16A; 4800V
.16A; 5000V
l.OA; 100V
l.OA; 200V
LOA; 300V
l. OA; 400V

• Contact Unitrode
Legend: J-JAN JTX-JANTX JTXV-JANTXV
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

1-7

PRINTED IN USA

..

PART NUMBER INDEX

PAGE

PART NUMBER

DESCRIPTION

PAGE

8·12
8·12
8·14
8·14
8·14
8·14
8·14
8·14
8·14
8·14
8·17
8·17
8·17
8·17
8·17
8·17
8·20
8·20
8·20
8·20
8·20
8·20
8·20
8·20
8·20
8·20
8·20
8·20

676·5
676·6
676·12
676·18
676·24
676·30
676·36
676·42
676·48
676·50
678·1
678·2
678·3
678·4
678·5
678·6
679·1
679·2
679·3
679·4
679·5
679·6
680·1
680·2
680·3
680·4
680·5
680·6

1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
3 ph;
3 ph;
3 ph;
3 ph;
3 ph;
3 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;

8·23
8·23
8·23
8·23
8·23
8·23

681·1
681·2
681·3
681·4
681·5
681·6

15A; 100V
15A; 200V
15A;300V
15A;400V
15A; 500V
15A; 600V

8·17
8·17
8·17
8·17
8·17
8·17
8-20
8-20
8·20
8-20
8-20
8-20
8-20
8-20
8·20
8·20
8-20
8-20

682·1
682·2
682·3
682·4
682·5
682·6
683-1
683-2
683-3
683·4
683·5
683-6
684·1
684-2
684·3
684-4
684-5
684-6

3 ph;
3 ph;
3 ph;
3 ph;
3 ph;
3 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;

7·13
7·13
7·13
7·13
7-13
7-13

688·10
688-12
688·15
688·18
688·20
688·25

lOkV
12kV
15kV
18kV
20kV
25kV

DOUBLER OR
CENTER·TAP

1 ph; LOA; 500V

1 ph; LOA; 600V
0.4A; 1200V
.35A; 1800V
.325A; 2400V
.25A; 3000V
.175A; 3600V
.15A; 4200V
.135A; 4800V
.125A; 5000V
25A; 100V
25A; 200V
25A; 300V
25A; 400V
25A; 500V
25A; 600V
25A; 100V
25A; 200V
25A; 300V
25A; 400V
25A; 500V
25A; 600V
lOA; 100V
lOA; 200V
lOA; 300V
lOA; 400V
lOA; 500V
lOA; 600V

DOUBLER OR
CENTER·TAP

FULL WAVE BRIDGE
20A; 100V
20A; 200V
20A; 300V
20A; 400V
20A; 500V
20A; 600V
20A; 100V
20A; 200V
20A; 300V
20A; 400V
20A; 500V
20A; 600V
lOA; 100V
lOA; 200V
lOA; 300V
lOA; 400V
lOA; 500V
lOA; 600V

RECTIFIER MODULE

DESCRIPTION

PART NUMBER

FULL WAVE BRIDGE
8·23
8·23
8·23
8·23
8·23
8·23

689·1
689·2
689·3
689·4
689·5
689·6

15A; 100V
15A;200V
15A;300V
15A;400V
15A;500V
15A;600V

8·17
8·17
8·17
8·17
8·17
8·17
8·17
8·17
8·17
8·17
8·17
8·17
8·25
8·25
8·25
8·25
8·25
8·25
8·25
8·25
8·25
8·25
8·25
8·25
8·27
8·27
8·27
8·27
8·27
8·27
8·27
8·27
8·27
8·27
8·27
8·27
8·29
8-29
8·29
8·29
8-29
8·29
8·29
8-29
8-32
8-32
8·32
8·32
8-32
8·32
8·32
8·32

695·1
695·2
695·3
695·4
695·5
695·6
696·1
696·2
696·3
696·4
696·5
696·6
697·1
697·2
697·3
697·4
697·5
697·6
698·1
698·2
698·3
698·4
698·5
698·6
700·1
700·2
700·3
700-4
700·5
700·6
701·1
701·2
701·3
701·4
701-5
701-6
800·1
800-2
800-3
800-4
801-1
801-2
801-3
801-4
802·1
802-2
802·3
802·4
803-1
803·2
803-3
803·4

3 ph;
3 ph;
3 ph;
3 ph;
3 ph;
3 ph;
3 ph;
3 ph;
3 ph;
3 ph;
3 ph;
3 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
3 ph;
3 ph;
3 ph;
3 ph;
3 ph;
3 ph;
3 ph;
3 ph;
3 ph;
3 ph;
3 ph;
3 ph;
3 ph;
3 ph;
3 ph;
3 ph;
3 ph;
3 ph;
3 ph;
3 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;

8·35
8-35

804-1
804-2

20A;50V
20A; 100V

FULL WAVE BRIDGE
15A; 100V
15A; 200V
15A; 300V
15A; 400V
15A; 500V
15A; 600V
15A; 100V
15A; 200V
15A; 300V
15A; 400V
15A; 500V
15A; 600V
2.5A; 100V
2.5A; 200V
2.5A; 300V
2.5A; 400V
2.5A; 500V
2.5A; 600V
2.25A; 100V
2.25A; 200V
2.25A; 300V
2.25A; 400V
2.25A; 500V
2.25A; 600V
2.5A; 100V
2.5A; 200V
2.5A; 300V
2.5A; 400V
2.5A; 500V
2.5A; 600V
2.25A; 100V
2.25A; 200V
2.25A; 300V
2.25A; 400V
2.25A; 500V
2.25A; 600V
40A; 50V
40A; 100V
40A; 125V
40A; 150V
20A; 50V
20A; 100V
20A; 125V
20A; 150V
35A; 50V
35A; 100V
35A; 125V
35A; 150V
20A; 50V
20A; 100V
20A; 125V
20A; 150V

DOUBLER OR
CENTER·TAP

• Contact Unitrode
Legend: J-JAN JTX-JANTX JTXV-JANTXV
UNITRODE CORPORATION. 5 FORBES ROAO
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326-6509 • TELEX 95-1064

1-8

PRINTED IN USA

PART NUMBER INDEX

PAGE

DESCRIPTION

PART NUMBER

PAGE

··•
·•••
·••
··
··
·•
··
··
··•
·•
··
·••
··
··•
··
··
··
··•
··
··•
··
··
··
··
··
··
·•

DOUBLER DR
CENTER-TAP
8-35
8-35

804-3
804-4

20A; l25V
20A; l50V

10-34
10-34
10-34
10-34
10-34
10-34
10-34
10-34
10-34
10-34
10-34
10-34
10-34
10-34
10-34
10-37
10-37
10-37
10-37
10-37
10-37
10-37
10-37
10-37
10-37
10-37
10-37
10-37
10-37
10-37

AA100
AAlOl
AA102
AA103
AA104
AA107
AA108
AA109
AAllO
AAlll
AA1l4
AA1l5
AA1l6
AA1l7
AA1l8
A0100
A0101
AOl02
AOl03
AOl04
AOl07
A0108
A0109
AOllO
AOll1
A01l4
A0115
A01l6
A01l7
A01l8

0_5A@100°C 60V; TO-18
0_5A@100°C 100V; TO-18
0_5A@100°C 200V; TO-18
0_5A@100°C 300V; TO-18
0_5A@100°C400V; TO-18
0_5A@100°C 60V; TO-18
0_5A@100°C 100V; TO-18
0_5A@100°C 200V; TO-18
0_5A@100°C 300V; TO-18
0_5A@100°C 400V; TO-18
0_5A@100°C 60V; TO-18
O.5A@lOO°C 100V; TO-18
0_5A@100°C 200V; TO-18
0_5A@100°C 300V; TO-18
0_5A@100°C 400V; TO-18
1.6A@85°C 60V; TO-39
1.6A@85°C 100V; TO-39
1.6A@85°C 200V; TO-39
1.6A@85°C 300V; TO-39
1.6A@85°C 400V; TO-39
1.6A@85°C 60V; TO-39
1.6A@85°C 100V; TO-39
1.6A@85°C 200V; TO-39
1.6A@85°C 300V; TO-39
1.6A@85°C 400V; TO-39
1.6A@85°C 60V TO-39
1.6A@85°C 100V; TO-39
1.6A@85°C 200V; TO-39
1.6A@85°C 300V; TO-39
1.6A@85°C 400V; TO-39

BA1270
BA129
BA130

200mA; 100V; 00-35
225mA; 200V; 00-35
75mA; 35V; 00-35

BA150
BA151
BA152

0_5A@100°C 30V; TO-18
0_5A@100°C 60V; TO-18
0_5A@100°C 100V; TO-18

BA155
BA166
BA167W
BA180
BA181
BA209
BA2l9
BA220
BA221
BA3l7
BAVIO
BAV18
BAV19
BAV20
BAV21
BAW24
BAW25
BAW26
BAW27
BAW62
BAW75

100mA; 150V; 00-35
50mA; 20V; 00-35
50mA; 25V; 00-35
50mA; lOY; 00-35
50mA; 20V; 00-35
225mA; 100V; 00-35
100mA; 100V; 00-35
200mA; lOY; 00-35
200mA; 30V; 00-35
100mA; 30V; 00-35
300m A; 60V; 00-35
250mA; 60V; 00-35
250mA; l20V; 00-35
250mA; 180V; 00-35
250mA; 250V; 00-35
600mA; 50V; 00-35
600mA; 50V; 00-35
600mA; 75V; 00-35
600mA; 75V; 00-35
100mA; 75V; 00-35
300mA; 35V; 00-35

SCR

·•
·
··
·
··
··
·•
·•
·••
•
··••
··•
·•

DIODE

SCR

DIODE

•

DESCRIPTION

PART NUMBER
DIODE
BAW76
BAX12
BAX13
BAX16
BAX17
BAX81
BAX84
BAX92
BAYl8
BAYl9
BAY20
BAY21
BAY3l
BAY36
BAY4l
BAY42
BAY43
BAY44
BAY45
BAY46
BAY60
BAY71
BAY72
BAY73
BAY80

300mA; 75V; 00-35
400mA; 90V; 00-35
75mA; 50V; 00-35
200mA; 150V; 00-35
200mA; 200V; 00-35
350mA; 90V; 00-35
75mA; 50V; 00-35
75mA; 50V; 00-35
250mA; 60V; 00-35
250mA; 120V; 00-35
250mA; 180V; 00-35
250mA; 350V; 00-35
l5V; 00-35
100mA; 30V; 00-35
225mA; 40V; 00-35
225mA; 60V; 00-35
225mA; 80V; 00-35
250mA; 50V; 00-35
250mA; l50V; 00-35
250mA; 300V; 00-35
115mA; 25V; 00-35
75mA; 70V; 00-35
225mA; l25V; 00-35
225mA; l25V; 00-35
250mA; l50V; 00-35

POWER TRANSISTOR
BOY55
BOY56
BOY57
BOY58
BOY90
BOY90A
BOY9l
BOY92
BUR23
BUR24
BUSll
BUSllA
BUS12
BUS12A
BUS13
BUS13A
BUS14
BUS14A
Buno
BunOA
Bunl
Bun1A
BUV23
BUV24
BUV46
BUW24
BUW25
BUW26
BUW34
BUW35
BUW36
BUW42
BUW44
BUW45
BUW46
BUW8B
BUWBBA
BUXll
BUX12

NPN; 15A; 60V; TO-3
NPN; 15A; 120V; TO-3
NPN; 25A; 80V; TO-3
NPN; 25A; 125V; TO-3
NPN; l5A; 100V; TO-3
NPN; 15A; 100V; TO-3
N PN; 15A; 80V; TO-3
NPN; l5A; 6OV; TO-3
NPN; 30A; 325V; TO-3
NPN; 30A; 400V; TO-3
NPN; 5A; 400V; TO-3
NPN; 5A; 450V; TO-3
NPN; 8A; 400V; TO-3
NPN; SA; 450V; TO-3
NPN; 15A; 400V; TO-3
NPN; 15A; 450V; TO-3
NPN; 30A; 400V; TO-3
NPN; 30A; 450V; TO-3
NPN; 2A; 400V; TO-220
NPN; 2A; 450V; TO-220
NPN; 5A; 400V; TO-220
NPN; 5A; 450V; TO-220
NPN; 30A; 325V; TO-3
NPN; 20A; 400V; TO-3
NPN; 6A; 400V; TO-220
NPN; lOA; 350V; TO-3
NPN; lOA; 400V; TO-3
NPN; lOA; 450V; TO-3
NPN; lOA; 400V; TO-3
NPN; lOA; 400V; TO-3
NPN; lOA; 450V; TO-3
NPN; l5A; 400V; TO-3
NPN; 15A; 400V; TO-3
NPN; 15A; 400V; TO-3
NPN; 15A; 450V; TO-3
NPN; 6A; 375V; TO-220
NPN; 6A; 400V; TO-220
NPN; 20A; 200V; TO-3
NPN; 20A; 250V; TO-3

• Contact Unitrode
Legend: J-JAN JTX-JANTX JTXV-JANTXV
UNITROOE CORPORATION. 5 FORBES ROAO
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

1-9

PRINTED IN USA

•

PART NUMBER INDEX

PAGE

•
•
•

··•
··
·•
··
··•
···
··
··
·•
·
·
·••
··
··
·••
··
·••
·
·••
•
•
•
•
•
•

·•
··
··

PART NUMBER

DESCRIPTION

PAGE

POWER TRANSISTOR

BUY69A
BUY69B
BUY69C

NPN; l5A; 325V; TO-3
NPN; lOA; 400V; TO-3
NPN; 30A; 325V; TO-3
NPN; 20A; 400V; TO-3
NPN; 30A; 90V; TO-3
NPN;20A; l25V;TO-3
NPN; l5A; 200V; TO-3
NPN; 12A; 250V; TO-3
NPN; lOA; 325V; TO-3
NPN; 8A; 400V; TO-3
NPN; 3_5A; 400V;' TO-3
NPN; 9A; 400V; TO-3
NPN; 9A; 45OV; TO-3
NPN; l5A; 400V; TO-3
NPN; 15A; 450V; TO-3
NPN; lOA; 400V; TO-3
NPN; lOA; 450V; TO-3
NPN; 6A; 400V; TO-3
NPN; 6A; 450V; TO-3
NPN; 2A; 400V; TO-220
NPN; 2A; 450V; TO-220
NPN; 6A; 350V; TO-3
NPN; 6A; 400V; TO-3
NPN; 6A; 45OV; TO-3
NPN; 30A; 400V;
TO-3 (Modified)
NPN; 30A; 450V;
TO-3 (Modified)
NPN; lOA; 400V; TO-3
NPN; lOA; 325V; TO-3
NPN; lOA; 200V; TO-3

BY401
BY402
BY403
BY404

500mA;
500mA;
500mA;
500mA;

BUXl3
BUXl4
BUX23
BUX24
BUX39
BUX40
BUX4l
BUX42
BUX43
BUX44
BUX46
BUX47
BUX47A
BUX48
BUX48A
BUX80
BUX8l
BUX82
BUX83
BUX84
BUX85
BUX97
BUX97A
BUX97B
BUX98
BUX98A

•
•
•

··•
··
···
··•
•
•
•
•
•

··
··
··
·•
·••
··
··
··
·
··
··
·•
··
·••
··•
··•
•

DIODE
50V; 00-7
lOOV; 00-7
200V; 00-7
400V; 00-7

SCHOTTKY RECTIFIER
BYS60-45
BYS75-20
BYS75-30
BYS75-45
BYV19-35
BYVI9-40
BYV19-45
BYV23-3511
BYV23-4511

60A; 45V;
75A; 20V;
75A; 30V;
75A; 45V;
12A; 35V;
l2A; 40V;
l2A; 45V;
75A; 35V;
75A; 45V;

BYV27-50
BYV27-100
BYV27-150
BYV28-50
BYV28-l00
BYV28-150
BYV28-200

2_5Ai
2.5A;
2.5A;
3_5A;
3.5A;
3_5A;
3.5A;

00-5
00-5
00-5
00-5
TO-220AC
TO-220AC
TO-220AC
00-5
00-5

RECTIFIER
50V
lOOV
150V
50V
lOOV
l50V
200V

SCHOTTKY RECTIFIER
BYV33-35
BYV33-40
BYV33-45

•
•
•

l6A; 35V; TO-220AB
l6A; 40V; TO-220AB
16A; 45V; TO-220AB

··
·•
·•

RECTIFIER
BYV79-50
BYV79-100
BYV79-150
BYV79-200
BYW27-50

~

l6A; 50V; TO-220AC
l6A; lOOV; TO-220AC
16A; 150V; TO-220AC
16A; 200V; TO-220AC
2.0A; 50V

PART NUMBER

DESCRIPTION
RECTIFIER

BYW27-100
BYW27-150
BYW27-200
BYW29-50
BYW29-100
BYW29-l50
BYW29-200
BYW31-50
BYW3l-100
BYW3l-l50
BYW5l-50
BYW5l-100
BYW5l-l50
BYW5l-200
BYW77-50
BYW77-100
BYW77-l50
BYW77-200
BYW78-50·
BYW78-100
BYW78-150
BYW78-200
BYW80-50
BYW80-100
BYW80-l50
BYW80-200
BYW8l-50
BYW8l-100
BYW81-150
BYW8l-200
Bffl93-5OI1
BYW93-l0011
BYW93-15OI1
BYW93-20011
BYW99-50
BYW99-100
BYW99-150

2_0A; 100V
2_0A; l50V
2_0A; 200V
7_0A; 50V; TO-220AC
7 _OA; lOOV; TO-220AC
7_0A; 150V; TO-220AC
7_0A; 200V; TO-220AC
25A; 50V; 00-4
25A; lOOV; 00-4
25A; 150V; 00-4
l6A; 50V; TO-220AB
l6A; lOOV; TO-220AB .
16A; 150V; TO-220AB
l6A; 200V; TO-220AB
30A; 50V; 00-4
30A; lOOV; 00-4
30A; l50V; 00-4
30A; 200V; 00-4
50A; 50V; 00-5
50A; lOOV; 00-5
50A; l50V; 00-5
50A; 200V; 00-5
7_0A; 50V; TO-220AC
7_0A; lOOV; TO-220AC
7.0A; 150V; TO-220AC
7.0A; 200V; TO-220AC
25A; 50V; 00-4
25A; l00V; 00-4
25A; 150V; 00-4
25A; 200V; 00-4
70A; 50V; 00-5
70A; lOOV; 00-5
70A; 150V; 00-5
70A; 200V; 00-5
30A; 50V; TO-3
30A; IOOV; TO-3
30A; 150V; TO-3

BZVl6C6V8
BZVl6C7V8
BZV16C8V2
BZVl6C9Vl
BZV16ClO
BZVl6Cll
BZVl6C12
BZVl6C13
BZVl6C15
BZV16Cl6
BZV16C18
BZVl6C20
BZV16C22
BZV16C24
BZVl6C27
BZVl6C30
BZVl6C33
BZVl6C36
BZV16C39
BZVl6C43
BZVl6C47
BZV16C5l
BZV16C56
BZVl6C62
BZV16C68
BZVl6C75
BZVl6C82

7%;3W
7%;3W
7%;3W
7%;3W
7%;3W
7%;3W
7%;3W
7%; 3W
7%;3W
7%; 3W
7%;3W
7%;3W
7%; 3W
7%; 3W
7%;3W
7%;3W
7%;3W
7%;3W
7%;3W
7%;3W
7%;3W
7%; 3W
7%; 3W
7%;3W
7%;3W
7%;3W
7%;3W

ZENERS

• Contact Unitrode
Legend: J-JAN JTX-JANTX JTXV-JANTXV
UNITROOE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

1-10

PRINTED IN USA

PART NUMBER INDEX

PAGE

··••
··
··

10-40
10-40
10-40
10-44
10-44
10-44
10-44
10-44
10-44
10-47
10-47

PART NUMBER

DESCRIPTION

CB200
CB201
CB202
CB203
CD200
CD201
CD202
CD203
GA100
GA101
GA102
GA200-GA200A
GA201-GA201A
GA300-GA300A
GA301-GA301A
GB200-GB200A
GB201-GB201A
GB300-GB300A
GB301-GB301A

0.5A@100'C 30V; TO-18
0.5A@100'C 60V; TO-18
0_5A@100'C 100V; TO-18
0.5A@100'C 200V; TO-18
1.6A@85'C 30V; TO-39
1.6A@85'C 60V; TO-39
1.6A@85'C 100V; TO-39
1.6A@85'C 200V; TO-39
400mA@100'C 30V; TO-18
400mA@100'C 60V; TO-18
400mA@100'C 80V; TO-18
60V; TO-18
100V; TO-18
60V; TO-18
100V; TO-18
60V; TO-59
100V; TO-59
60V; TO-59
100V; TO-59

HIGH VOLTAGE
RECTIFIER
7-15
7-15
7-15
7-15
7-15
7-15
7-15
7-15
7-15
7-17
7-17
7-17
7-17
7-17
7-17
7-17
7-17
7-17
7-17
7-17
7-17
7-17
7-17
7-17
7-17
7-17
7-17
7-19
7-19
7-19
7-19
7-19
7-19
7-19
7-19
7-21
7-21
7-21
7-21
7-21
7-21
7-21
7-21

PAGE

HAlO
HA15
HA20
HA25
HA30
HA40
HA50
HA75
HA100
HS10
HS15
HS20
HS25
HS30
HS40
HS50
HS75
HS100
HVElO (lN3643)
HVE15 (lN3644)
HVE20 (lN3645)
HVE25 (1 N3646)
HVE30 (lN3647)
HVE40 (1 N5181)
HVE50 (lN5182)
HVE75 (lN5183)
HVE100 (lN5184)
HVF2500
HVF5000
HVF7500
HVF10000
HVF12500
HVF15000
HVF20000
HVF25000
HVFS2500
HVFS5000
HVFS7500
HVFS10000
HVFS12500
HVFS15000
HVFS17500
HVFS20000

1.0kV
1.5kV
2.0kV
2.5kV
3.0kV
4_0kV
5_0kV
7.5kV
10kV
1.0kV
1.5kV
2.0kV
2.5kV
3.0kV
4.0kV
5.0kV
7.5kV
10kV
1.0kV
1.5kV
2.0kV
2.5kV
3.0kV
4.0kV
5.0kV
7.5kV
10kV
2.5kV
5.0kV
7.5kV
10kV
12.5kV
15kV
20kV
25kV
2.5kV
5.0kV
7_5kV
10kV
12.5kV
15kV
17.5kV
20kV

DESCRIPTION

PART NUMBER

HIGH VOLTAGE
RECTIFIER

SCR
7-23
7-23
7-23
7-23
7-23
7-23
7-23
7-25
7-25
7-25
7-25
7-25
7-25
7-25
7-27
7-27
7-27
7-27
7-27
7-27
7-27
7-27
7-27
7-29
7-29
7-29
7-29
7-29
7-29
7-29
7-29
7-31
7-31
7-31
7-31
7-31
7-31
7-31
7-31
7-31
7-15
7-15
7-15
7-15
7-15
7-15
7-15
7-15
7-15

HVH5000
HVH7500
HVH10000
HVH12500
HVH15000
HVH20000
HVH25000
HVHF5000
HVHF7500
HVHFlOOOO
HVHFl2500
HVHFl5000
HVHF20000
HVHF25000
HVHJ15K
HVHJ20K
HVHJ22.5K
HVHJ25K
HVHJ30K
HVHJ35K
HVHJ37.5K
HVHJ40K
HVHJ45K
HVHS2500
HVHS5000
HVHS7500
HVHS10000
HVHS12500
HVHS15000
HVHS17500
HVHS20000
HVJX15K
HVJX20K
HVJX22.5K
HVJX25K
HVJX30K
HVJX35K
HVJX37.5K
HVJX40K
HVJX45K
HVXlO
HVX15
HVX20
HVX25
HVX30
HVX40
HVX50
HVX75
HVX100

5.0kV
7.5kV
10kV
12.5kV
15kV
20kV
25kV
5.0kV
7.5kV
10kV
12.5kV
15kV
20kV
25kV
15kV
20kV
22_5kV
25kV
30kV
35kV
37.5kV
40kV
45kV
2.5kV
5.0k'l
7.5kV
10kV
12.5kV
15kV
17.5kV
20kV
15kV
20kV
22.5kV
25kV
30kV
35kV
37.5kV
40kV
45kV
1.0kV
1.5kV
2.0kV
2.5kV
3_0kV
4.0kV
5.0kV
7.5kV
lOkV

ID100
ID101
ID102
ID103
ID104
ID105
ID106
10200
ID201
ID202
10203
10300
ID301

0.5A@100'C 30V; TO-18
0_5A@100'C 60V; TO-18
0.5A@100'C 100V; TO-18
0.5A@100'C 150V; TO-18
0.5A@100'C 200V; TO-18
0.5A@100'C300V;TO-18
0.5A@100'C 400V; TO-18
1.6A@70'C 50V; TO-39
1.6A@70'C 100V; TO-39
1.6A@70'C 150V; TO-39
1.6A@70'C 200V; TO-39
1.6A@70'C 300V; TO-39
1.6A@70'C 400V; TO-39

SCR
10-50
10-50
10-50
10-50
10-50
10-50
10-50
10-53
10-53
10-53
10-53
10-53
10-53

• Contact Unitrode
Legend: J-JAN JTX-JANTX JTXV-JANTXV
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

1-11

PRINTED IN USA

II

PART NUMBER INDEX

PAGE

PART NUMBER

DESCRIPTION

PAGE

7-33
7-33
7-33
7-33
7-33
7-33
7-33
7-33
7-33
7-33
7-33
7-33
7-33
7-33
7-33
7-33
7-33
7-33

KX15
KX20
KX25
KX30
KX40
KX50
KX60
KX80
KX100
KXS15
KXS20
KXS25
KXS30
KXS40
KXS50
KXS60
KXSBO
KXS100

l.5kV
2.0kV
2.5kV
3.0kV
4.0kV
5.0kV
6.0kV
8.0kV
10kV
l.5kV
2.0kV
2.5kV
3.0kV
4.0kV
5.0kV
6.0kV
8.0kV
lOkV

LINEAR INTEGRATED
CIRCUITS
3-7

L292

3-14

L293

3-14

L293E

3-21

L295

·••
··
·•
··•
··
··
5-4
5-4
5-4
5-4
5-4
5-4
5-8
5-8
5-8
5-8
5-8
5-8
5-12

2A; 35V, H-Bridge;
Power SIP
1A; 35V; 4 Channel
Push-Pull Driver;
"Batwing" Plastic Dip
1A; 35V; 4 Channel
Push-Pull Driver;
"Batwing" Plastic Dip
2.5A; 45V; Dual PWM
Solenoid Driver;
Power SIP

POWER TRANSISTOR
MJE13004
MJE13005
MJE13006
MJE13007
MJE13008
MJE13009

NPN;
NPN;
NPN;
NPN;
NPN;
NPN;

4A; 300V; TO-220AB
4A; 400V; TO-220AB
8A; 300V; TO-220AB
8A; 400V; TO-220AB
12A; 300V; TO-220AB
12A; 400V; TO-220AB

PHS51

60A; 45V; DO-5

POWER HYBRIDS
& MODULES
5-12
5-12
5-12
5-12
5-12
5-16
5-16
5-16
5-16
5-16
5-16
5-20
5-20
5-24
5-24
5-24
5-24
5-28
5-28
5-28

PIC646
PIC647
PIC655
PIC656
PIC657
PIC660
PIC661
PIC662
PIC670
PIC671
PIC672
PIC730
PIC740
PIC800
PIC801
PIC810
PIC811
PIC900B
PIC900C
PIC900D

15.0A; 80V (Pos.); TO-3
15.0A; 100V (Pos.); TO-3
15.0A; 60V (Neg.); TO-3
15.0A; 80V (Neg.); TO-3
15.0A; 100V (Neg.); TO-3
10.0A; 60V (Pos.); TO-66
1O.OA; 80V (Pos.); TO-66
10.0A; 100V (Pos.); TO-66
10.0A; 60V (Neg.); TO-66
10.0A; 80V (Neg.); TO-66
10.0A; 100V (Neg.); TO-66
30.0A; 30V (Pos.); TO-3
30.0A; 30V (Pos.); TO-3
8A; 350V (Pos.); TO-66
8A; 400V (Pos.); TO-66
8A; 350V (Neg.); TO-66
8A; 400V (Neg.); TO-66
5.0A; 6OV, 18 Pin Dip
5.0A; BOV. 18 Pin Dip
5.0A; 100V, 18 Pi n Dip

6-46
6-48

SD51
SD241

60A; 45V; DO-5
60A; 45V; TO-3

6-50
6-50
6-50
6-52
6-52
6-52
6-54
6-54
6-54
6-54
6-56
6-56
6-56
6-56

SES5001
SES5002
SES5003
SES5301
SES5302
SES5303
SES5401
SES5402
SES5403
SES5404
SES5501
SES5502
SES5503
SES5504

2.0A; 50V
2.0A; 100V
2.0A; 150V
5.0A; 50V
5.0A; 100V
5.0A; 150V
8.0A; 50V; TO-220AC
8.0A; 100V; TO-220AC
8.0A; 150V; TO-220AC
8.0A; 200V; TO-220AC
16.0A; 50V; TO-220AC
16.0A; 100V; TO-220AC
16.0A; 150V; TO-220AC
16.0A; 200V; TO-220AC

6-59
6-59
6-59
6-59
6-61
6-61
6-61

SES5401C
SES5402C
SES5403C
SES5404C
SES5601C
SES5602C
SES5603C

16A;
16A;
16A;
16A;
25A;
25A;
25A;

6-63
6-63
6-63
6-65
6-65
6-65

SES5701
SES5702
SES5703
SES5801
SES5802
SES5803

20A;
20A;
20A;
60A;
60A;
60A;

8-42
8-42
8-42
8-42

SPA25,J
SPB25, J
SPC25, J
SPD25, J

1 ph;
1 ph;
1 ph;
1 ph;

SCHOTTKY RECTIFIER
RECTIFIER

RECTIFIER,
CENTER-TAP

SCHOTTKY RECTIFIER
RECTIFIER
PHS1001
PHSlO02
PHS1003
PHS2401
PHS2402
PHS2403
PHS2404

l.OA; 50V
l.OA; 100V
l.OA; 150V
16A; 50V; TO-220AB
16A; 100V; TO-220AB
16A; 150V; TO-220AB
16A; 200V; TO-220AB

POWER HYBRIDS
& MODULES
PIC600
PIC601
PIC602
PIC61O'
PIC611
PIC612
PIC625
PIC626
PIC627
PIC635
PIC636
PIC637
PIC645

5.0A; 60V (Pos.); TO-66
5.0A; 80V (Pos.); TO-66
5.0A; 100V (Pos.); TO-66
5.0A; 60V (Neg.); TO-66
5.0A; BOV (Neg.); TO-66
5.0A; 100V (Neg.); TO-66
15.0A; 60V (Pos.); TO-66
15.0A; 80V (Pos.); TO-66
15.0A; 100V (Pos.); TO-66
15.0A; 60V (Neg.); TO-66
15.0A; 80V (Neg.); TO-66
15.0A; 100V (Neg.); TO-66
15.0A; 60V (Pos.); TO-3

DESCRIPTION

PART NUMBER

HIGH VOLTAGE
RECTIFIER

50V; TO-220AB
100V; TO-220AB
150V; TO-220AB
200V; TO-220AB
50V; TO-3
100V; TO-3
150V; TO-3

RECTIFIER
50V; DO-4
100V; DO-4
150V; DO-4
50V; 00-5
100V; DO-5
150V; DO-5

FULL WAVE BRIDGE
25A;
25A;
25A;
25A;

100V
200V
400V
600V

HIGH VOLTAGE
RECTIFIER
7-35
7-35

SXlO
SX15

l.OkV
l.5kV

• Contact Unitrode
Legend: J-JAN JTX-JANTX JTXV-JANTXV
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

1-12

PRINTED IN USA

PART NUMBER INDEX

PAGE

DESCRIPTION

PART NUMBER

HIGH VOLTAGE
RECTIFIER
7-35
7-35
7-35
7-35
7-35
7-35
7-35
7-35
7-35
7-35
7-35
7-35
7-35
7-35
7-35
7-35
7-35
7-35

SX20
SX25
SX30
SX40
SX50
SX60
SX80
SX100
SXS10
SXS15
SXS20
SXS25
SXS30
SXS40
SXS50
SXS60
SXSBO
SXSlOO

2_0kV
2.5kV
3.0kV
4.0kV
5.0kV
6.0kV
8.0kV
10kV
1.0kV
1.5kV
2.0kV
2.5kV
3.0kV
4.0kV
5.0kV
6.0kV
8.0kV
lOkV

PAGE

POWER DARLINGTON
4-204
4-204
4-204
4-204
4-206
4-206
4-206
4-206
4-208
4-208
4-208
4-210
4-210
4-210

0
0
0

··•
·
·•
0

0
0

•
•
•
0
0
0

•
•
•

·
0
0
0
0

·•

Too18
TD041
TD068
T01l7
T0129
T0153
T0176
T0190
T0190C
T0300
T0377
TD413G
TD414
TD473
T0474
TD475
T0482
T0785
T0789
T0789A
T0789B
TD791
TD809
TOS9l
T0893
T0905
TD922
TD993
T0996

SENSISTORft

13-4

TG 1/8

13-4

TM 1/8

9-14
9-14
9-14

1oomA; 50V; 00-35
1OOmA; 150V; 00-35
1oomA; 50V; 00-35
30mA; 30V; 00-35
1oomA; 50V; 00-35
250mA; 50V; 00-35
150mA; 200V; 00-35
250mA; 300V; 00-35
4oomA; 450V; 00-7
15mA; 15V; 00-35
50mA; lOV; 00-35
1SOmA; lOV; 00-35
50mA; 250V; 00-35
1l0mA; 20V; 00-35
1l0mA; 20V; 00-35
50mA; 20V; 00-35
3OOmA; 80V; 00-35
60mA; 35V; 00-35
60mA; 35V; 00-35
60mA; 45V; 00-35
60mA; 60V; 00-35
85mA; l5V; 00-35
200mA; 25V; 00-35
60mA; 85V; 00-35
150mA; 100V; 00-35
150mA; 100V; 00-35
100mA; 50V; 00-35
4oomA; 380V; 00-7
250mA; 380V; 00-35

TVS305-TVS360
TVS41 0-TVS430
TVS505-TVS528

3-25

U13n
U13T2

0

UC1l7K
UC120-05K

0

UC120-12K

•

UC120-15K

3-29

•

·•
3-32
3-25
3-29
3-32
3-25
3-25

·
0

UC137K
UCl40-05K
UC140-12K
UCl40-15K
UC150K
UC2l7K
UC237K
UC250K
UC317K
UC317T
UC320-05K
UC320-05T

0

UC320-12K

•

UC320-12T

0

UC320-15K

0

UC320-15T

3-29
3-29

UC337K
UC337T
UC340-05K

Hermetic 1I8W, Pos. Temp.
Coefficient Thermistor
Plastic 1/8W, Pos Temp.
Coefficient Thermistor

0

0

UC340-05T

TRANSIENT VOLTAGE
SUPPRESSOR

0

UC340-12K

0

UC340-12T

0

UC340-l5K

0

UC340-l5T

150W
150W
500W

PUT
10-55
10-55

U2nOl
U2n05
U2T201
U2T205
U2T301
U2T305
U2T401
U2T405
U2TA506
U2TA508
U2TA51O
U2TA606
U2TA608
U2TA61O

400mW@25°C 40V; TO-18
4oomW@25°C 40V; TO-18

NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;

lO_OA; 80V; TO-33
10.0A; 150V; TO-33
10.0A; 80V; TO-66
10.0A; 150V; TO-66
5.0A; 60V; TO-33
5.0A; 150V; TO-33
5.0A; 60V; TO-66
5.0A; 150V; TO-66
3.0A; 60V; TO-92
3.0A; 80V; TO-92
3.0A; 100V; TO-92
3.0A; 60V; TO-92
3.0A; 80V; TO-92
3.0A; 100V; TO-92

LINEAR INTEGRATED
CIRCUITS

DIODE
0

DESCRIPTION

PART NUMBER

3-32

UC350K

1.5A; TO-3; Pos Adj. Reg.
1.0A; -5V; TO-3;
Precision Fixed Reg.
1.0A; -12V; TO-3;
Precision Fixed Reg.
1.0A; -15V; TO-3;
Precision Fixed Reg.
1.5A; TO-3; Neg. Adj. Reg.
1.0A; +5V; TO-3;
Precision Fixed Reg.
1.0A; + 12V; TO-3;
Precision Fixed Reg.
1.0A; +15V; TO-3;
Precision Fixed Reg.
3.0A; TO-3; Pos. Adj. Reg.
1.5A; TO-3; Pos. Adj. Reg.
1.5A; TO-3; Neg. Adj. Reg.
3.0A; TO-3; Pos. Adj. Reg.
1.5A; TO-3; Pos. Adj. Reg.
1.5A; TO-220; Pos. Adj. Reg.
lAo -5V' TO-3'
Preci~ion Fi~ed Reg.
1A' -5V' TO-220'
Preci~ion Fixed Reg.
1A; -12V; TO-3;
Precision Fixed Reg.
1A; -12V; TO-220;
Precision Fixed Reg.
1A; -15V; TO-3;
Precision Fixed Reg.
1A; -15V; TO-220;
Precision Fixed Reg.
1.5A; TO-3; Neg. Adj. Reg.
1.5A; TO-220; Neg. Adj. Reg.
1A; +5V; TO-3;
Precision Fixed Reg.
1A; +5V; TO-220;
Precision Fixed Reg.
1A; + 12V; TO-3;
Precision Fixed Reg.
1A; + 12V; TO-220;
Precision Fixed Reg.
1A; + 15V; TO-3;
Precision Fixed Reg.
1A; + 15V; TO-220;
Precision Fixed Reg.
3A; TO-3; Pos. Adj. Reg.

• Contact Unit rode
Legend: J-JAN JTX-JANTX JTXV-JANTXV
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

1-13

PRINTED IN U.S A

•

PART NUMBER INDEX

r--PAGE

··•
··
··•

PART NUMBER

DESCRIPTION

PAGE

PART NUMBER

FULL WAVE BRIDGE
UC3BA1
UC3BA2
UC3BA4
UC3BA6
UC3BA1F
UC3BA2F
UC3BA4F
UC3BA6F

3
3
3
3
3
3
3
3

ph;
ph;
ph;
ph;
ph;
ph;
ph;
ph;

25A;
25A;
25A;
25A;
20A;
20A;
20A;
20A;

100V
200V
400V
600V
100V
200V
400V
600V

LINEAR INTEGRATED
CIRCUITS

3-36

UC493AJ

3-36

UC493AN

3-36

UC494AJ

3-36

UC494AN

3-36

UC495AJ

3-36

UC495AN

3-36

UC493ACJ

3-36

UC493ACN

3-36

UC494ACJ

3-36

UC494ACN

3-36

UC495ACJ

3-36

UC495ACN

3-36

UC495BJ

3-36

UC495BN

3-36

UC495BCJ

3-36

UC495BCN

3-45

UC1524AJ

3-45

UC1524AN

3-40

UC1524J

3-40

UC1524N

3-49

UC1525AJ

3-49

UC1525AN

3-56

UC1526J

3-56

UC1526N

3-49

UC1527AJ

3-49

UC1527AN

3-62

UC1543J

40V; 200mA; Precision
PWM; Ceramic Dip
40V; 200mA; Precision
PWM; Plastic Dip
40V; 200mA; Precision
PWM; Ceramic Dip
40V; 200mA; Precision
PWM; Plastic Dip
40V; 200mA; Precision
PWM; Ceramic Dip
40V; 200mA; Precision
PWM; Plastic Dip
40V; 200mA; Precision
PWM; Ceramic Dip
40V; 200mA; Precision
PWM; Plastic Dip
40V; 200mA; Precision
PWM; Ceramic Dip
40V; 200mA; Precision
PWM; Plastic Dip
40V; 200mA; Precision
PWM; Ceramic Dip
40V; 200mA; Precision
PWM; Plastic Dip
Precision PWM wi Buffered
Output; Ceramic Dip
Precision PWM wi Buffered
Output; Plastic Dip
Precision PWM w/Buffered
Output; Ceramic Dip
Precision PWM w/Buffered
Output; Plastic Dip
60V; 200mA; Precision
PWM; Ceramic Dip
60V; 200mA; Precision
PWM; Plastic Dip
40V; 100mA; PWM;
Ceramic Dip
40V; 100mA; PWM;
Plastic Dip
40V; 500mA; Precision
PWM; Ceramic Dip
40V; 500mA; Precision
PWM; Plastic Dip
High Performance
PWM; Ceramic Dip
High Performance
PWM; Plastic Dip
40V; 500mA; Precision
PWM; Ceramic Dip
40V; 500mA; Precision
PWM; Plastic Dip
Power Supply Supervisory
Circuit; Ceramic Dip

DESCRIPTION
LINEAR INTEGRATED
CIRCUITS

3-62

UC1543N

3-62

UC1544J

3-62

UC1544N

3-66

UC1637J

3-66

UC1637N

3-74

UC1704J

3-74

UC1704N

3-7B

UC1706J

3-7B

UC1706N

3-B2

UC1717J

3-B2

UC1717NE

3-90

UC1B34J

3-90

UC1B34N

3-94

UC1B40J

3-94

UCl840N

3-102

UC1B42J

3-102

UC1B42N

3-10B

UC1B46J

3-lOB

UC1B46N

3-10B

UC1B47J

3-10B

UC1B47N

3-116

UC190lJ

3-116

UC1901N

3-120

UC1903J

3-120

UC1903N

3-45

UC2524AJ

3-45

UC2524AN

3-40

UC2524J

Power Supply Supervisory
Circuit; Plastic Dip
Power Supply Supervisory
Circuit; Ceramic Dip
Power Supply Supervisory
Circuit; Plastic Dip
500mA; 40V; PWM DC Servo
Motor Control Chip;
Ceramic Dip
500mA; 40V; PWM DC Servo
Motor Control Chip;
Plastic Dip
Bridge Transducer Switch;
-25"C to + 125"C;
Ceramic Dip
Bridge Transducer Switch;
-25"C to + 125"C;
Plastic Dip
Dual Output Driver;
Ceramic Dip
Dual Output Driver;
Plastic Dip
1A; 40V; Stepper Motor
Drive Circuit;
Ceramic Dip
1A; 40V; Stepper Motor
Drive Circuit;
Plastic Dip
High Efficiency
Linear Regulator;
Ceramic Dip
High Efficiency
Linear Regulator;
Plastic Dip
40V; 200mA; PWM
Controller; Ceramic Dip
40V; 200mA; PWM
Controller; Plastic Dip
Off-line Current
Mode PWM; Ceramic Dip
Off-line Current
Mode PWM; Plastic Dip
Current Mode PWM;
Ceramic Dip
Current Mode PWM;
Plastic Dip
Current Mode PWM;
Ceramic Dip
Current Mode PWM;
Plastic Dip
Isolated Feedback
Generator; Ceramic Dip
Isolated Feedback
Generator; Plastic Dip
Triple Voltage and Line
Monitor; Ceramic Dip
Triple Voltage and Line
Monitor; Plastic Dip
60V; 200mA; Precision
PWM; Ceramic Dip
60V; 200mA; Precision
PWM; Plastic Dip
40V- 100mA' PWM'
C~ramic Dip
,

• Contact Unitrode
Legend: J-JAN JTX-JANTX JTXV-JANTXV
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

1-14

PRINTED IN USA

PART NUMBER INDEX

PAGE

PART NUMBER

DESCRIPTION

PART NUMBER

PAGE

LINEAR INTEGRATED
CIRCUITS
3-40

UC2524N

3-49

UC2525AJ

3-49

UC2525AN

3-56

UC2526J

3-56

UC2526N

3-49

UC2527AJ

3-49

UC2527AN

3-62

UC2543J

3-62

UC2543N

3-62

UC2544J

3-62

UC2544N

3-66

UC2637J

3-66

UC2637N

3-90

UC2834J

3-90

UC2834N

3-94

UC2840J

3-94

UC2840N

3-102

UC2842J

3-102

UC2842N

3-108

UC2846J

3-108

UC2846N

3-108

UC2847J

3-108

UC2847N

3-116

UC290lJ

3-116

UC2901N

3-120

UC2903J

3-120

UC2903N

3-45

UC3524AJ

3-45

UC3524AN

3-40

UC3524J

3-40

UC3524N

40V; 100mA; PWM;
Plastic Dip
40V; 500mA; Precision
PWM; Ceramic Dip
40V; 500mA; Precision
PWM; Plastic Dip
High Performance PWM;
Ceramic Dip
High Performance
PWM; Plastic Dip
40V; 500mA; Precision
PWM; Ceramic Dip
40V; 500mA; Precision
PWM; Plastic Dip
Power Supply Supervisory
Circuit; Ceramic Dip
Power Supply Supervisory
CircUit; Plastic Dip
Power Supply Supervisory
Circuit; Ceramic Dip
Power Supply Supervisory
Circuit; Plastic Dip
500mA; 40V; PWM DC Servo
Motor Control Chip;
Ceramic Dip
500mA; 40V; PWM DC Servo
Motor Control Chip;
Plastic Dip
High Efficiency Linear
Regulator; Ceramic Dip
High Efficiency Linear
Regulator; Plastic Dip
40V; 200mA; PWM
Controller; Plastic Dip
40V; 200mA; PWM
Controller; Ceramic Dip
Off-line Current Mode
PWM; Ceramic Dip
Off-line Current Mode
PWM; Plastic Dip
Current Mode PWM;
Ceramic Dip
Current Mode PWM;
Plastic Dip
Current Mode PWM;
Ceramic Dip
Current Mode PWM;
Plastic Dip
Isolated Feedback
Generator; Ceramic Dip
Isolated Feedback
Generator; Plastic Dip
Triple Voltage and Line
Monitor; Ceramic Dip
Triple Voltage and Line
Monitor; Plastic Dip
50V; 200mA; Precision
PWM; Ceramic Dip
50V; 200mA; Precision
PWM; Plastic Dip
40V' 100mA' PWM'
C~ramic Dip
,
40V; 100mA; PWM;
Plastic Dip

DESCRIPTION
LINEAR INTEGRATED
CIRCUITS

3-49

UC3525AJ

3-49

UC3525AN

3-56

UC3526J

3-56

UC3526N

3-49

UC3527AJ

3-49

UC3527AN

3-62

UC3543J

3-62

UC3543N

3-62

UC3544J

3-62

UC3544N

3-66

UC3637J

3-66

UC3637N

3-74

UC3704J

3-74

UC3704N

3-78

UC3706J

3-78

UC3706N

3-82

UC3717J

3-82

UC3717N

3-90

UC3834J

3-90

UC3834N

3-94

UC3840J

3-94

UC3840N

3-102

UC3842J

3-102

UC3842N

3-108

UC3846J

3-108

UC3846N

3-108

UC3847J

3-108

UC3847N

3-116

UC390lJ

3-116

UC3901N

40V; 500mA; Precision
PWM; Ceramic Dip
40V; 500mA; Precision
PWM; Plastic Dip
High Performance
PWM; Ceramic Dip
High Performance
PWM; Plastic Dip
40V; 500mA; Precision
PWM; Ceramic Dip
40V; 500mA; Precision
PWM; Plastic Dip
Power Supply Supervisory
Circuit; Ceramic Dip
Power Supply Supervisory
Circuit; Plastic Dip
Power Supply Supervisory
Circuit; Ceramic Dip
Power Supply Supervisory
Circuit; Plastic Dip
500mA; 40V; PWM DC Servo
Motor Control Chip;
Ceramic Dip
500mA; 40V; PWM DC Servo
Motor Control Chip;
Plastic Dip
Bridge Transducer Switch;
O°C to + 70°C; Ceramic Dip
Bridge Transducer Switch;
O°C to + 70°C; Plastic Dip
Dual Output Driver;
Ceramic Dip
Dual Output Driver;
Plastic Dip
1A; 40V; Stepper Motor
Drive Circuit;
Ceramic Dip
1A; 40V; Stepper Motor
Drive Circuit;
Plastic Dip
High Efficiency Linear
Regulator; Ceramic Dip
High Efficiency Linear
Regulator; Plastic Dip
40V; 200mA; PWM
Controller; Ceramic Dip
40V; 200mA; PWM
Controller; Plastic Dip
Off-line Current Mode
PWM; Ceramic Dip
Off-line Current Mode
PWM; Plastic Dip
Current Mode PWM;
Ceramic Dip
Current Mode PWM;
Plastic Dip
Current Mode PWM;
Ceramic Dip
Current Mode PWM;
Plastic Dip
Isolated Feedback
Generator; Ceramic Dip
Isolated Feedback
Generator; Plastic Dip

• Contact Unitrode
Legend: J-JAN JTX-JANTX JTXV-JANTXV
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

1-15

- - - - - - --- ._- ._.-._-- _.-

PRINTED IN USA

II

PART NUMBER INDEX

PAGE

PART NUMBER

DESCRIPTION

PAGE

LINEAR INTEGRATED
CIRCUITS
3-120

UC3903J

3-120

UC3903N

3-133

UC7B05ACK

3-133

UC7B05ACT

3-133

UC7B05AK

3-133
3-127
3·127
3-133

UC7B05CK
UC7B05CT
UC7B05K
UC7B12ACK

3-133

UC7B12ACT

3·133

UC7B12AK

3-127
3-127
3-127
3-133

UC7B12CK
UC7B12CT
UC7B12K
UC7B15ACK

3-133

UC7B15ACT

3·133

UC7B15AK

3·127
3-127
3·127
3-145

UC7B15CK
UC7B15CT
UC7B15K
UC7905ACK

3-145

UC7905ACT

3-145

UC7905AK

3-139
3-139
3-139
3-145

UC7905CK
UC7905CT
UC7905K
UC7912ACK

3-145

UC7912ACT

3-145

UC7912AK

3-139
3-139
3-139
3-145

UC7912CK
UC7912CT
UC7912K
UC7915ACK

3-145

UC7915ACT

3-145

UC7915AK

3-139
3-139
3-139

UC7915CK
UC7915CT
UC7915K

··•
··

Triple Voltage and Line
Monitor; Ceramic Dip
Triple Voltage and Line
Monitor; Plastic Dip
1A; +5V; TO-3;
Precision Fixed Reg.
1A; +5V; TO-220;
Precision Fixed Reg.
1A; +5V; TO-3;
Precision Fixed Reg.
1A; +5V; TO-3; Fixed Reg.
1A; +5V; TO-220; Fixed Reg.
1A; +5V; TO·3; Fixed Reg.
1A' + 12V' TO-3'
Precisi~n Fix~d Reg.
1A; + 12V; TO-220;
Precision Fixed Reg.
1A + 12V' TO·3·
Precisi~n Fix~d Reg.
1A; + 12V; TO-3; Fixed Reg.
1A; + 12V; TO·220 Fixed Reg.
1A; + 12V; TO·3; Fixed Reg.
1A + 15V' TO·3·
Precisi~n Fix~d Reg.
1A; + 15V; TO·220;
Precision Fixed Reg.
1A + 15V' TO·3·
Precisi~n Fix~d Reg.
1A; + 15V; TO-3; Fixed Reg.
1A; + 15V; TO·220; Fixed Reg.
1A; + 15V; TO-3; Fixed Reg.
1A; -5V; TO-3;
Precision Fixed Reg.
1A; -5V; TO-220;
Precision Fixed Reg.
1A' -5V' TO-3'
Preci;ion Fi~ed Reg.
1A; -5V; TO-3; Fixed Reg.
1A; -5V; TO-220; Fixed Reg.
1A; -5V; TO-3; Fixed Reg.
1A' -12V' TO-3'
Precisi~n Fix~d Reg.
1A; -12V; TO-220;
Precision Fixed Reg.
1A' -12V' TO-3'
Precisi~n Fix~d Reg.
1A; -12V; TO-3; Fixed Reg.
1A; -12V; TO-220 Fixed Reg.
1A; -12V; TO-3; Fixed Reg.
1A' -15V' TO-3'
Precisi~n Fix~d Reg.
1A; -15V; TO-220;
Precision Fixed Reg.
1A -15V- TO-3'
Precisi~n Fix~d Reg.
1A; -15V; TO-3; Fixed Reg.
1A; -15V; TO-220; Fixed Reg.
1A; -15V; TO-3; Fixed Reg.

FULL WAVE BRIDGE
UCBA1
UCBA2
UCBA4
UCBA6
UCBA1F

1
1
1
1
1

ph;
ph;
ph;
ph;
ph;

25A; 100V
25A; 200V
25A,400V
25A; 600V
20A; 100V

··
·••
··
··
··
··•
···
···
··••
··
··•
··
··
··

DESCRIPTION

PART NUMBER

FULL WAVE BRIDGE
UCBA2F
UCBA4F
UCBA6F
UCBHM1
UCBHM2
UCBHM4
UCBHM6
UCBHM1F
UCBHM2F
UCBHM4F
UCBHM6F

1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;

20A;
20A;
20A;
lOA;
lOA;
lOA;
lOA;
lOA;
lOA;
lOA;
lOA;

200V
400V
600V
100V
200V
400V
600V
100V
200V
400V
600V

DOUBLER OR
CENTER·TAP
UCDA1
UCDA2
UCDA4
UCDA6
UCDA1F
UCDA2F
UCDA4F
UCDA6F
UCNA1
UCNA2
UCNA4
UCNA6
UCNA1F
UCNA2F
UCNA4F
UCNA6F
UCPA1
UCPA2
UCPA4
UCPA6
UCPA1F
UCPA2F
UCPA4F
UCPA6F

15A; 100V
15A;200V
15A;400V
15A;600V
15A; 100V
15A;200V
15A;400V
15A;600V
15A; 100V
15A;200V
15A;400V
15A;600V
15A; 100V
15A;200V
15A;400V
15A;600V
15A; 100V
15A; 200V
15A;400V
15A;600V
15A; 100V
15A;200V
15A;400V
15A; 600V

7-37
7-37
7-37
7-37
7-37
7-37
7-37
7-37
7-37
7-37
7-37
7-37
7-37
7-37
7-37
7-37
7-37
7-37

UDA5
UDA7.5
UDAlO
UDA15
UDB2.5
UDB5
UDB7.5
UDC5
UDC7.5
UDC10
UDC15
UDD2.5
UDD5
UDD7.5
UDE2.5
UDE5
UDF2.5
UDF5

5.0kV
7.5kV
10kV
15kV
2.5kV
5.0kV
7.5kV
5.0kV
7.5kV
lOkV
15kV
2.5kV
5.0kV
7.5kV
2.5kV
5.0kV
2.5kV
5.0kV

9-1B
9-1B
9-1B
9-1B
9-1B
9-1B

UDZ707-UDZ790
UDZB07-UDZB90
UDZ5707-UDZ5790
UDZ5B07-UDZ5B90
UDZB707-UDZB791
UDZB807-UDZBB91

RECTIFIER MODULE

ZENER
Bidirectional
Bidirectional
Bidirectional
Bidirectional
Bidirectional
Bidirectional

3W;
3W;
5W;
5W;
1W;
1W;

5%
10%
5%
10%
5%
10%

• Contact Unitrode
Legend: J-JAN JTX-JANTX JTXV-JANTXV
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

1-16

PRINTED IN USA

PART NUMBER INDEX

PAGE

DESCRIPTION

PART NUMBER

PAGE

6·24
6·24
6·24
6·24
6·24
6·24
6·24
6·24

··•
·

6·67
6·67
6·67
6·67
6·67
6·70
6·70
6·70
6·72
6·72
6·72
6·75
6·75
6·75
6·78
6·78
6·78
6·81
6·81
6·81
6·83
6·83
6·83
6·86
6·86
6·86
6·89
6·89
6·89
6·92
6·92
6·92
6·95
6·95
6·95
6·95
6·98
6·98
6·98
6·98

UES101 (lN5802)
UES102 (lN5803)
UES103 (lN5804)
UES104 (lN5805)
UES201 (lN5807)
UES202 (lN5808)
UES203 (lN5809)
UES204 (lN581O)
UES301
UES302
UES303
UES304
UES501
UES502
UES503
UES504
UES505
UES701
UES702
UES703
UES704
UES705
UES706
UES801
UES802
UES803
UES804
UES805
UES806
UESlO01
UESlO02
UESlO03
UES1101
UES1102
UES1103
UES1104
UES1105
UES1106
UES1301
UES1302
UES1303
UES1304
UES1305
UES1306
UES1401
UES1402
UES1403
UES1404
UES1501
UES1502
UES1503
UES1504

2.5A; 50V
2.5A; 75V
2.5A; 100V
2.5A; 125V
6.0A; 50V
6.0A; 75V
6.0A; 100V
6.0A; 125V
20.0A; 50V
20.0A; 75V
20.0A; 100V
20.0A; 125V
50.0A; 50V; 00·5
50.0A; 75V; 00·5
50.0A; 100V; 00·5
50.0A; 125V; 00·5
50.0A; 150V; 00·5
25.0A; 50V; 00·4
25.0A; 100V; 00·4
25.0A; 150V; 00·4
20.0A; 200V; OOA
20.0A; 300V; 00·4
20.0A; 400V; 00·4
70.0A; 50V; 00·5
70.0A; 100V; 00·5
70.0A; 150V; 00·5
50.0A; 200V; 00·5
50.0A; 300V; 00·5
50.0A; 400V; 00·5
1A; 50V
1A; 100V
1A; 150V
2.5A; 50V
2.5A; 100V
2.5A; 150V
2.0A; 200V
2.0A; 300V
2.0A; 400V
6.0A; 50V
6.0A; 100V
6.0A; 150V
5.0A; 200V
5.0A; 300V
5.0A; 400V
8.0A; 50V; TO·220AC
8.0A; 100V; TO·220AC
8.0A; 150V; TO·220AC
8.0A; 200V; TO·220AC
16A; 50V; TO·220AC
16A; 100V; TO·220AC
16A; 150V; TO·220AC
16A; 200V; TO·220AC

RECTIFIER,
CENTER·TAP
6·101
6·101
6·101
6·101
6·104
6·104
6·104
6·107
6·107
6·107

UES2401
UES2402
UES2403
UES2404
UES2601
UES2602
UES2603
UES2604
UES2605
UES2606

16A;
16A;
16A;
16A;
30A;
30A;
30A;
30A;
30A;
30A;

50V; TO·220AB
100V; TO·220AB
150V; TO·220AB
200V; TO·220AB
50V; TO·3
100V; TO·3
150V; TO·3
200V; TO·3
300V; TO·3
400V; TO·3

DESCRIPTION

PART NUMBER

RECTIFIER MODULE

RECTIFIER
7·41
7·41
7·41

UFB2.5
UFB5
UFB7.5

4·212
4·212
4·214
4·214
4·220
4·220
4·226
4·226
4·232
4·232
4·238
4·238
4·238
4·238
4·244
4·244
4·244
4·244
4·250
4·250
4·250
4·250
4·256
4·256
4·256
4·256
4·262
4·262
4·262
4·262
4·268
4·268
4·268
4·268
4·274
4·274
4·274
4·274
4·280
4·280
4·280
4·280
4·286
4·286
4·286
4·286
4·292
4·292
4·292
4·292
4·298
4·298
4·298
4·298
4·304
4·304
4·304
4·304
4·310

UFNAll
UFNA12
UFN01Z0
UFNDlZ3
UFNOllO
UFN01l3
UFN0120
UFN0123
UFN0210
UFN0213
UFNFl10
UFNFlll
UFNF1l2
UFNF113
UFNFl20
UFNFl21
UFNFl22
UFNFl23
UFNFl30
UFNFl31
UFNFl32
UFNFl33
UFNF210
UFNF211
UFNF212
UFNF213
UFNF220
UFNF221
UFNF222
UFNF223
UFNF230
UFNF231
UFNF232
UFNF233
UFNF310
UFNF311
UFNF312
UFNF313
UFNF320
UFNF321
UFNF322
UFNF323
UFNF330
UFNF331
UFNF332
UFNF333
UFNF420
UFNF421
UFNF422
UFNF423
UFNF430
UFNF431
UFNF432
UFNF433
UFN120
UFN121
UFN122
UFN123
UFN130

2.5kV
5.0kV
7.5kV

POWER MOSFET
TRANSISTOR
LOA; 60V; 1.50; TO·92
LOA; 100V; 1.50; TO·92
0.5A; 100V; 2.40; OILA
0.4A; 60V; 3.20; 01L·4
LOA; 100V; 0.60; OILA
0.8A; 60V; 0.80; 01L·4
1.3A; 100V; 0.30; 01L·4
l.lA; 60V; 0.40; 01L·4
0.6A; 200V; 1.50; 01L·4
0.45A; 150V; 2.40; 01L·4
3.5A; 100V; 0.60; TO·39
3.5A; 60V; 0.60; TO·39
3.5A; 100V; 0.80; TO·39
3.5A; 60V; 0.8n; TO·39
6A; 100V; 0.300; TO·39
6A; 60V; 0.30n; TO·39
5A; 100V; 0.400; TO·39
5A; 60V; 0.400; TO·39
8A; 100V; 0.180; TO·39
8A; 60V; 0.18n; TO·39
7A; 100V; 0.250; TO·39
7A; 60V; 0.250; TO·39
2.2A; 200V; 1.50; TO·39
2.2A; 150V; 1.50; TO·39
1.8A; 200V; 2.40; TO·39
1.8A; 150V; 2.40; TO·39
3.5A; 200V; 0.80; TO·39
3.5A; 150V; 0.80; TO·39
3.0A; 200V; 1.20; TO·39
3.0A; 150V; 1.20; TO·39
5.5A; 200V; 0.40; TO·39
5.5A; 150V; 0.4n; TO·39
4.5A; 200V; 0.6n; TO·39
4.5A; 150V; 0.60; TO·39
l.35A; 400V; 3.60; TO·39
l.35A; 350V; 3.60; TO·39
l.l5A; 400V; 5.00; TO·39
U5A; 350V; 5.0n; TO·39
2.5A; 400V; 1.80; TO·39
2.5A; 350V; 1.80; TO·39
2.0A; 400V; 2.50; TO·39
2.0A; 350V; 2.50; TO·39
3.5A; 400V; 3.50; TO·39
3.5A; 350V; 3.50; TO·39
3.0A; 400V; 3.0n; TO·39
3.0A; 350V; 3.00; TO·39
1.6A; 500V; 3.00; TO·39
1.6A; 450V; 3.00; TO·39
1.4A; 500V; 4.00; TO·39
1.4A; 450V; 4.00; TO·39
2.75A; 500V; 1.5n; TO·39
2.75A; 450V; 1.5n; TO·39
2.25A; 500V; 2.00; TO·39
2.25A; 450V; 2.00; TO·39
8A; 100V; 0.300; TO·3
8A; 60V; 0.30n; TO·3
7 A; 100V; 0.400; TO·3
7A; 60V; 0.400; TO·3
14A; 100V; 0.18n; TO·3

• Contact Unilrode
Legend: J-JAN JTX-JANTX JTXV-JANTXV
UN ITRODE CORPORATION. 5 FORBES ROAD
LEXI NGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

1·17

PRINTED IN USA

•

PART NUMBER INDEX

PAGE

PART NUMBER

DESCRIPTION

PAGE

PART NUMBER

POWER MOSFET
TRANSISTOR
4·310
4·310
4·310
4-316

UFN131
UFN132
UFN133
UFN140

4·316

UFN141

4·316

UFN142

4·316

UFN143

4·322

UFN150

4·322

UFN151

4·322

UFN152

4·322

UFN153

4·328
4·328
4·328
4·328
4·334
4·334
4·334
4·334
4·340

UFN220
UFN221
UFN222
UFN223
UFN230
UFN231
UFN232
UFN233
UFN240

4·340

UFN241

4·340

UFN242

4·340

UFN243

4·346

UFN250

4·346

UFN251

4·346

UFN252

4·346

UFN253

4·352
4·352
4·352
4·352
4-358
4·358
4·358
4·358
4·364
4·364
4·364
4·364
4·370
4·370
4·370
4·370
4·376
4·376
4·376
4·376
4·382

UFN320
UFN321
UFN322
UFN323
UFN330
UFN331
UFN332
UFN333
UFN340
UFN341
UFN342
UFN343
UFN350
UFN351
UFN352
UFN353
UFN420
UFN421
UFN422
UFN423
UFN430

14A; 60V; 0.180; TO·3
12A; 100V; 0.250; TO-3
12A; 60V; 0.250; TO·3
27 A; 100V; 0.850;
TO·3 (Modified)
27A; 60V; 0.850;
TO·3 (Modified)
24A; l00V; O.UO;
TO·3 (Modified)
24A; 60V; 0.110;
TO-3 (Modified)
40A; 100V; 0.0550;
TO·3 (Modified)
40A; 60V; 0.0550;
TO-3 (Modified)
33A; 100V; 0.080;
TO·3 (Modified)
33A; 60V; 0.080;
TO-3 (Modified)
5A; 200V; 0.80; TO·3
5A; 150V; 0.80; TO·3
4A; 200V; 1.20; TO·3
4A; 150V; 1.20; TO·3
9A; 200V; 0.40; TO·3
9A; 150V; 0.40; TO·3
8A; 200V; 0.60; TO·3
8A; 150V; 0.60; TO·3
18A; 200V; 0.180; TO·3
(Modified)
18A; 150V; 0.180; TO·3
(Modified)
16A; 200V; 0.220; TO·3
(Modified)
16A; 150V; 0.220; TO·3
(Modified)
30A; 200V; 0.0850;
TO·3 (Modified)
30A; 150V; 0.0850;
TO·3 (Modified)
25A; 200V; 0.1200;
TO·3 (Modified)
25A; 150V; 0.1200;
TO·3 (Modified)
3A; 400V; 1.80; TO·3
3A; 350V; 1.80; TO·3
2.5A; 400V; 2.50; TO·3
2.5A; 350V; 2.50; TO·3
5.5A; 400V; 1.00; TO·3
5.5A; 350V; 1.00; TO·3
4.5A; 400V; 1.50; TO·3
4.5A; 350V; 1.50; TO·3
lOA; 400V; 0.550; TO·3
lOA; 350V; 0.550; TO·3
8A; 400V; 0.800; TO·3
8A; 350V; 0.800; TO·3
15A; 400V; 0.30; TO·3
15A; 350V; 0.30; TO·3
13A; 400V; 0.40; TO·3
13A; 350V; 0.40; TO·3
2.5A; 500V; 3.00; TO·3
2.5A; 450V; 3.00; TO·3
2A; 500V; 4.00; TO·3
2A; 450V; 4.00; TO·3
4.5A; 500V; 1.50; TO-3

DESCRIPTION
POWER MOSFET
TRANSISTOR

4·382
4·382
4·382
4·388
4·388
4·388
4·388
4·394
4·394
4-394
4·394
4·400
4·400
4·400
4·400
4·406
4·406
4·406
4·406
4·412
4·412
4·412
4-412
4-418
4-418
4-418
4·418
4·424
4·424
4·424
4·424
4·430
4·430
4·430
4·430
4·436
4·436
4·436
4·436
4·442
4·442
4·442
4·442
4·448
4·448
4·448
4·448
4·454
4·454
4·454
4·454
4·460
4·460
4·460
4·460
4·466
4·466
4·466
4·466
4·472
4·472
4·472
4·472
4·478

UFN431
UFN432
UFN433
UFN440
UFN441
UFN442
UFN443
UFN450
UFN451
UFN452
UFN453
UFN510
UFN511
UFN512
UFN513
UFN520
UFN521
UFN522
UFN523
UFN530
UFN531
UFN532
UFN533
UFN540
UFN541
UFN542
UFN543
UFN610
UFN611
UFN612
UFN613
UFN620
UFN621
UFN622
UFN623
UFN630
UFN631
UFN632
UFN633
UFN640
UFN641
UFN642
UFN643
UFN710
UFN711
UFN712
UFN713
UFN720
UFN721
UFN722
UFN723
UFN730
UFN731
UFN732
UFN733
UFN740
UFN741
UFN742
UFN743
UFN820
UFN821
UFN822
UFN823
UFN830

4.5A; 450V; 1.50; TO·3
4A; 500V; 2.00; TO-3
4A; 450V; 2.00; TO·3
8A; 500V; 0.850; TO·3
8A; 450V; 0.850; TO·3
7A; 500V; 1.100; TO·3
7A; 450V; 1.100; TO·3
13A; 500V; 0.40; TO-3
13A; 450V; 0.40; TO·3
12A; 500V; 0.50; TO·3
12A; 450V; 0.50; TO-3
4A; 100V; 0.60; TO-220AB
4A; 60V; 0.60; TO·220AB
3.5A; 100V; 0.80; TO-220AB
3.5A; 60V; 0.80; TO·220AB
8A; 100V; 0.300; TO-220AB
8A; 60V; 0.300; TO-220AB
7A; 100V; 0.400; TO·220AB
7A; 60V; 0.400; TO·220AB
14A; 100V; 0.180; TO·220AB
14A; 60V; 0.180; TO·220AB
12A; 100V; 0.250; TO·220AB
12A; 60V; 0.250; TO·220AB
27A; 100V; 0.0850; TO-220AB
27 A; 60V; 0.0850; TO-220AB
24A; 100V; O.UO; TO·220AB
24A; 60V; 0.110; TO·220AB
2.5A; 200V; 1.50; TO-220AB
2.5A; 150V; 1.50; TO·220AB
2A; 200V; 2.40; TO·220AB
2A; 150V; 2.40; TO-220AB
5A; 200V; 0.80; TO-220AB
5A; 150V; 0.80; TO·220AB
4A; 200V; 1.20; TO·220AB
4A; 150V; 1.20; TO·220AB
9A; 200V; 0.40; TO·220AB
9A; 150V; 0.40; TO·220AB
8A; 200V; 0.60; TO·220AB
8A; 150V; 0.60; TO·220AB
18A; 200V; 0.180; TO·220AB
18A; 150V; 0.180; TO·220AB
16A; 200V; 0.220; TO·220AB
16A; 150V; 0.220; TO·220AB
1.5A; 400V; 3.60; TO·220AB
1.5A; 350V; 3.60; TO-220AB
l.3A; 400V; 5.00; TO-220AB
l.3A; 350V; 5.00; TO-220AB
3A; 400V; 1.80; TO·220AB
3A; 350V; 1.80; TO-220AB
2.5A; 400V; 2.50; TO·220AB
2.5A; 350V; 2.50; TO·220AB
5.5A; 400V; 1.00; TO-220AB
5.5A; 350V; 1.00; TO·220AB
4.5A; 400V; 1.50; TO·220AB
4.5A; 350V; 1.50; TO·220AB
lOA; 400V; 0.550; TO·220AB
lOA; 350V; 0.550; TO·220AB
8A; 400V; 0.800; TO·220AB
8A; 350V; 0.800; TO·220AB
2.5A; 500V; 3.00; TO·220AB
2.5A; 450V; 3.00; TO·220AB
2.0A; 500V; 4.00; TO·220AB
2.0A; 450V; 4.00; TO·220AB
4.5A; 500V; 1.50; TO·220AB

• Contact Unitrode

Legend: J-JAN JTX-JANTX JTXV-JANTXV
UNITROOE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

1·18

PRINTED IN USA

PART NUMBER INDEX

PAGE

PART NUMBER

DESCRIPTION
POWER MOSFET
TRANSISTOR

4-478
4-478
4-478
4-484
4-484
4-484
4-484

UFN831
UFN832
UFN833
UFN840
UFN841
UFN842
UFN843

4.5A;
4.0A;
4.0A;
8.0A;
8.0A;
7.0A;
7.0A;

450V;
500V;
450V;
500V;
450V;
500V;
450V;

l.50; TO-220AB
2.00; TO-220AB
2.00; TO-220AB
0.850; TO-220AB
0_850; TO-220AB
1.100; TO-220AB
1.100; TO-220AB

7-41
7-41
7-41
7-44
7-44
7-44
7-44
7-44
7-44
7-44
7-44
7-44
7-44
7-44
7-44

UFS5
UFS7.5
UFSIO
UGB5
UGB7.5
UGBI0
UGD5
UGD7.5
UGDI0
UGE2.5
UGE5
UGE7.5
UGF2.5
UGF5
UGF7.5

5.0kV
7.5kV
lOkV
5.0kV
7.5kV
10kV
5.0kV
7.5kV
lOkV
2.5kV
5.0kV
7.5kV
2.5kV
5.0kV
7.5kV

UM4000 series
UM4300 series
UM4900 series
U M6000 series
U M6200 series
U M6600 series
U M7000 series
UM7I00 series
UM7200 series
UM7300 series
UM9301 series
UM9401
UM9402
UM9415
UM9441
UM9601-UM9608
UM9701

0.50,3.0pF,25W,100-1200V
1.50,2.2pF,18W,l00-lOOOV
0.50,3.0pF ,37W,l00-600V
l.70,0.5pF,6W,lOO-1000V
0.40, l.lpF, 6W,lOO-400V
2.50,0.4pF,4W,lOO-lOOOV
l.00,0.9pF,10W,lOO-1600V
0.60, l.2pF,10W, 100-800V
0.250,2.2pF, lOW, 100-400V
3.50, 0.7pF, 7.5W, 100-1000V
CATV Attenuator Diodes
2-Way Radio Switch Diodes
2-Way Radio Switch Diodes
2-Way Radio Switch Diodes
Radiation Detector
Microstrip PIN
Low Rs Antenna Switch

4-490
4-490
4-494
4-494
4-498
4-498
4-502
4-502
4-506
4-510

UMTlO06
UMTlO07
UMTlO08
UMTlO09
UMTlOll
UMTlO12
UMTl203
UMTl204
UMT2000
UMT2003

4-513
4-513
4-517
4-517
4-521
4-521
4-525
4-525
4-525
4-525

UMTl3004
UMTl3005
UMTl3006
UMTl3007
UMTl3008
UMTl3009
UPTlll
UPTl12
UPTl13
UPTl14

NPN; 5A; 400V; TO-3
NPN; 5A; 500V; TO-3
NPN; 8A; 300V; TO-3
NPN; 8A; 400V; TO-3
NPN; 15A; 400V; TO-3
NPN; 15A; 500V; TO-3
NPN; 3.0A; 300V; TO-220
NPN; 3.0A; 400V; TO-220
NPN; 15A; 850V; TO-3
NPN; 30A; 850V;
TO-3 (Modified)
NPN; 4.0A; 600V; TO-220
NPN; 4_0A; 700V; TO-220
NPN; ROA; 600V; TO-220
NPN; 8.0A; 700V; TO-220
NPN; 12.0A; 600V; TO-220
NPN; 12.0A; 700V; TO-220
NPN; l.OA; 40V; TO-5
NPN; l.OA; 60V; TO-5
NPN; l.OA; 80V; TO-5
NPN; l.OA; 100V; TO-5

RECTIFIER MODULE

PIN DIODE
12-9
12-14
12-9
12-20
12-20
12-20
12-25
12-25
12-25
12-14
12-30
12-33
12-33
12-33
12-38
12-40
12-50

POWER TRANSISTOR

PAGE

DESCRIPTION

PART NUMBER

POWER TRANSISTOR
4-525
4-527
4-527
4-527
4-527
4-527
4-529
4-529
4-529
4-529
4-529
4-529
4-529
4-529
4-529
4-529
4-531
4-531
4-531
4-531
4-531
4-533
4-533
4-533
4-533
4-533
4-535
4-535
4-535
4-535
4-535
4-537
4-537
4-537
4-539
4-539
4-539
4-539

UPTl15
UPT211
UPT212
UPT213
UPT214
UPT215
UPT311
UPT312
UPT313
UPT314
UPT315
UPT321
UPT322
UPT323
UPT324
UPT325
UPT521
UPT522
UPT523
UPT524
UPT525
UPT611
UPT612
UPT613
UPT614
UPT615
UPT721
UPT722
UPT723
UPT724
UPT725
UPTA510
UPTA520
UPTA530
UPTB520
UPTB530
UPTB540
UPTB550

NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
N PN;

6-110
6-110
6-110
6-110
6-110
6-110
6-110
6-110
6-110
6-110

..

UR105
URllO
UR1l5
UR120
UR125
UR205
UR210
UR215
UR220
UR225
UR710
UR720

2.0A;
l.OA;
l.OA;
l.OA;
l.OA;
2.0A;
2.0A;
2.0A;
2.0A;
2.0A;
l.OA;
l.OA;

7-48
7-48
7-48
7-48
7-48
7-48
7-48
7-48
7-48
7-48
7-48
7-48

US12
US15
US18
US20
US25
US30
US35
US40
US45A
US50A
US60A
US70A

l.OA; 100V; TO-5
2.0A; 40V; TO-5
2.0A; 60V; TO-5
2.0A; 80V; TO-5
2.0A; 100V; TO-5
2.0A; 100V; TO-5
2_0A; 150V; TO-5
2.0A; 200V; TO-5
2.0A; 250V; TO-5
2.0A; 300V; TO-5
2_0A; 300V; TO-5
2.0A; 150V; TO-66
2.0A; 200V; TO-66
2.0A; 250V; TO-66
2.0A; 300V; TO-66
2.0A; 300V; TO-66
3.5A; 150V; TO-66
3.5A; 200V; TO-66
3.5A; 250V; TO-66
3.5A; 300V; TO-66
3.5A; 300V; TO-66
5.0A; 40V; TO-5
5.0A; 60V; TO-5
5.0A; 80V; TO-5
5.0A; 100V; TO-5
5.0A; 100V; TO-5
5.0A; 150V; TO-66
5.0A; 200V; TO-66
5.0A; 250V; TO-66
5.0A; 300V; TO-66
5_0A; 300V; TO-66
0.5A; 100V; TO-92
0.5A; 200V; TO-92
0.5A; 300V; TO-92
O.lA; 200V; TO-92
O.lA; 300V; TO-92
O.lA; 40QV; TO-92
O.lA; 500V; TO-92

RECTIFIER
50V
lOOV
150V
200V
250V
50V
lOOV
150V
200V
250V
lOOV
200V

RECTIFIER MODULE
l.2kV
l.5kV
l.8kV
2.0kV
2.5kV
3.0kV
3.5kV
4.0kV
4.5kV
5.0kV
6.0kV
7.0kV

• Contact Unltrode
Legend: J-JAN JTX-JANTX JTXV-JANTXV
UNITROOE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173· TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

1-19

PRINTED IN USA

•

PART NUMBER INDEX

PAGE

PART NUMBER

DESCRIPTION

PAGE

PART NUMBER

RECTIFIER MODULE
7-48
7-48
7-48
7-48
7-48
7-48
7-41
7-41
7-41
7-41

US80A
US100A
USl20A
US150A
USl80A
US200A
USB2.5
USB5
USB7.5
USB10

8.0kV
10kV
12kV
15kV
18kV
20kV
2.5kV
5.0kV
7.5kV
10kV

SCHOTTKY RECTIFIER
6-113 US0320C
6-113 US0335C
6-113 US0345C
6-115 US0520
6-115 US0535
6-115 US0545
6-118 US0545HR2
6-115 US055Q
6-121 US0620
6-121 US0635
6-121 US0640
6-121 US0645
6-123 US0620C
6-123 US0635C
6-123 US0640C
6-123 US0645C
6-125 US0720
6-125 US0735
6-125 US0740
6-125 US0745
6-127 US0720C
6-127 US0735C
6-127 US0740C
6-127 US0745C
6-129 US0820
6-129 US0835
6-129 US0840
6-129 US0845
6-131 US0920
6-131 US0935
6-131 US0940
6-131 US0945
6-133 US01l20
6-133 US01l30
6-133 USOll40
US06035
US06045

..

30A; 20V; TO-3
30A; 35V; TO-3
30A; 45V; TO-3
75A; 20V; 00-5
75A; 35V; 00-5
75A; 45V; 00-5
75A; 45V; 00-5
75A; 50V; 00-5
6A; 20V; TO-220AC
6A; 35V; TO-220AC
6A; 40V; TO-220AC
6A; 45V; TO-220AC
12A; 20V; TO-220AB
12A; 35V; TO-220AB
12A; 40V; TO-220AB
12A;45V;TO-220AB
8A; 20V; TO-220AC
8A; 35V; TO-220AC
8A; 40V; TO-220AC
8A; 45V; TO-220AC
16A; 20V; TO-220AB
16A; 35V; TO-220AB
16A; 40V; TO-220AB
16A; 45V; TO-220AB
12A; 20V; TO-220AC
12A; 35V; TO-220AC
12A; 40V; TO-220AC
12A; 45V; TO-220AC
16A; 20V; TO-220AC
16A; 35V; TO-220AC
16A; 40V; TO-220AC
16A; 45V; TO-220AC
l.OA;20V;ASA
l.OA;30V;ASA
l.OA;40V;ASA
60A; 35V; 00-5
60A; 45V; 00-5

SCHOTTKY MODULE
6-135
6-135
6-135
6-137
6-137
6-137

USM140C
USM145C
USM150C
USM20040C
USM20045C
USM20050C

7-48
7-48
7-48
7-48
7-48
7-48
7-48
7-48

USR12
USR15
USR18
USR20
USR25
USR30
USR35
USR40A

100A; 40V;
100A; 45V;
lOOA; 50V;
200A; 40V;
200A; 45V;
200A; 50V;

M1
M1
M1
M2
M2
M2

RECTIFIER MODULE
l.2kV
l.5kV
l.8kV
2.0kV
2.5kV
3.0kV
3.5kV
4.0kV

DESCRIPTION
RECTIFIER MODULE

7-48
7-48
7-48
7-48
7-48
7-48
7-48
7-48
7-48
7-41
7-41
7-41
7-41

•
•
•
•
•

·••
•

•
•
•
•

··•
•
•
•
•
•
•
•
•
•
•

6-139
6-139
6-139
6-139
6-139
6-139
6-139
6-139
6-139
6-139
6-139
6-139
6-139
6-139
6-139
6-139
6-139
6-139
6-139
6-139
6-139
6-139
6-139
6-139
6-139

USR45A
USR50A
USR60A
USR70A
USR80A
USR100A
USR120A
USR150A
USRl80A
USS5
USS7.5
USS10
USS15

4_5kV
5_0kV
6_0kV
7_0kV
8_0kV
10kV
12kV
15kV
18kV
5.0kV
7.5kV
10kV
15kV

UT111 (lN536)
UT112 (1 N537)
UT113 (1 N3656)
UT114 (lN539)
UT115 (1 N3657)
UT117 (1N547)
UT118 (1 N3658)
UT119
UT120
UT211 (1 N645)
UT212 (1N646)
UT213 (1 N647)
UT214 (1 N648)
UT215 (lN649)
UT221 (1 N676)
UT222 (1 N677)
UT223 (1 N678)
UT224 (1 N679)
UT225 (1 N681)
UT226 (1 N682)
UT227 (1 N683)
UT228 (1 N684)
UT229 (1 N685)
UT231 (1 N686)
UT232 (1 N687)
UT233 (1 N689)
UT234
UT235
UT236
UT237
UT238
UT242
UT244
UT245
UT247
UT249
UT251
UT252
UT254
UT255
UT257
UT258
UT261
UT262 (lN3981)
UT264 (1 N3982)
UT265
UT267 (1 N3983)
UT268
UT347
UT361
UT362

O.75A; 50V
0.75A; 100V
0.75A; 200V
O.75A; 300V
0.75A; 400V
0.75A; 500V
O.75A; 600V
0.75A; 800V
O.75A; 1000V
0.75A; 225V
0.75A; 300V
O.75A; 400V
0.75A; 500V
O.75A; 600V
O.5A; 100V
O.75A; 100V
O.5A; 200V
O.75A; 200V
O.5A; 300V
O.75A; 300V
O.5A; 400V
O.75A; 400V
O.5A; 500V
O.75A; 500V
O.5A; 600V
O.75A; 600V
l.OA; 200V
l.OA;400V
l.OA; 100V
l.OA; 500V
l.OA; 600V
l.25A;200V
1.25A; 400V
l.25A;500V
l.25A;600V
l.25A; 100V
l.5A; 100V
l.5A; 200V
l.5A;400V
l.5A;500V
l.5A; 600V
l.5A;800V
2.0A; 100V
2.0A; 200V
2.0A; 400V
2.0A; 500V
2.0A; 600V
2.0A; 800V
l.OA; 1000V
l.OA; 800V
l.2A; 800V

RECTIFIER

• Contact Un itrode
Legend: J-JAN JTX-JANTX JTXV-JANTXV
UNITROOE CORPORATION. 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

1-20

PRINTED IN U.S A

PART NUMBER INDEX

PAGE

DESCRIPTION

PART NUMBER

PAGE

6·139
6·139
6·143
6·143
6·143
6·143
6·143

·

6·143
6·143
6·143
6·143
6·143
6·143
6·143
6·143
6·143
6·143
6·143

·•

6·147
6·147
6·147
6·147
6·147
6·147
6·147
6·147
6·147
6·147
6·147
6·147
6·147
6·147
6·147
6·147
6·147
6·147
6·147
6·150
6·150
6·150
6·150
6·150
6·150
6·150
6·150
6·150
6·150
6·150
6·150
6·150
6·150
6·150
6·150
6·150
6·150
6·150
6·150

·•

6·154
6·154
6·154

UT363
UT364
UT2005
UT2010
UT2020
UT2040
UT2060
UT2080
UT3005
UT3010
UT3020
UT3040
UT3060
UT3080·
UT4005
UT4010 (lN5180)
UT4020
UT4040 (l N5207)
UT4060
UT4080
UT4100
UT5105
UT5110
UT5120
UT5130
UT5140
UT5150
UT5160
UT6105
UT6110
UT6120
UT6130
UT6140
UT6160
UT8105
UT8110
UT8120
UT8130
UT8140
UT8160
UTR01
UTR02
UTR10
UTRll
UTR12
UTR20
UTR21
UTR22
UTR30
UTR31
UTR32
UTR40
UTR41
UTR42 (lN5206)
UTR50
UTR51
UTR52
UTR60
UTR61
UTR62
UTR70
UTR71
UTR2305
UTR2310
UTR2320

1.2A; 1000V
1.5A; 1000V
2.0A; 50V
2.0A; 100V
2.0A; 200V
2.0A; 400V
2.0A; 600V
2.0A; 800V
3.0A; 50V
3.0A; 100V
3.0A; 200V
3.0A; 400V
3.0A; 600V
3.0A; 800V
4.0A; 50V
4.0A; 100V
4.0A; 200V
4.0A; 400V
4.0A; 600V
4.0A; 800V
4.0A; 1000V
7.5A; 50V
7.5A; 100V
7.5A; 200V
7.5A; 300V
7.5A; 400V
7.5A; 500V
7.5A; 600V
9.0A; 50V
9.0A; 100V
9.0A; 200V
9.0A; 300V
9.0A; 400V
9.0A; 600V
12.0A; 50V
12.0A; 100V
12.0A; 200V
12.0A; 300V
12.0A; 400V
12.0A; 600V
1.0A;50V
2.0A; 50V
0.5A; 100V
1.0A; 100V
2.0A; 100V
0.5A; 200V
1.0A; 200V
2.0A; 200V
0.5A; 300V
1.0A;300V
2.0A; 300V
0.5A; 400V
1.0A;400V
2.0A; 400V
0.5A; 500V
1.0A; 500V
2.0A; 500V
0.5A; 600V
1.0A; 600V
2.0A; 600V
0.5A; 700V
1.0A;700V
2.0A; 50V
2.0A; 100V
2.0A; 200V

DESCRIPTION

PART NUMBER

RECTIFIER

RECTIFIER
6·154
6·154
6·154
6·154
6·154
6·154
6·154
6·154
6·154
6·154
6·154
6·154
6·154
6·154
6·154
6·158
6·158
6·158
6·158
6·158
6·158
6·158
6·158
6·158
6·158
6·158
6·158
6·158
6·158
6·158
6·161
6·161
6·161
6·161
6·161
6·161
6·161
6·161
6·161
6·161
6·164
6·164
6·164
6·164

.
.

6·164
6·164
6·164
6·164

9·21
9·21
9·21
9·21
9·21
9·21
9·21
9·21
9·23
9·23
9·23
9·23
9·25

UTR2340
UTR2350
UTR2360
UTR3305
UTR3310
UTR3320
UTR3340
UTR3350
UTR3360
UTR4305
UTR4310
UTR4320
UTR4340
UTR4350
UTR4360
UTR4405
UTR4410
UTR4420
UTR4430
UTR4440
UTR5405
UTR5410
UTR5420
UTR5430
UTR5440
UTR6405
UTR6410
UTR6420
UTR6430
UTR6440
UTX105
UTX110
UTX1l5
UTX120
UTX125
UTX205
UTX210
UTX215
UTX220
UTX225
UTX3105
UTX3110
UTX3115
UTX3120
UTX3125
UTX4105
UTX4110
UTX4115
UTX4120
UTX4125

2.0A; 400V
2.0A; 500V
2.0A; 600V
3.0A; 50V
3.0A; 100V
3.0A; 200V
3.0A; 400V
3.0A; 500V
3.0A; 600V
4.0A; 50V
4.0A; 100V
4.0A; 200V
4.0A; 400V
4.0A; 500V
4.0A; 600V
6.0A; 50V
6.0A; 100V
6.0A; 200V
6.0A; 300V
6.0A; 400V
7.5A; 50V
7.5A; 100V
7.5A; 200V
7.5A; 300V
7.5A; 400V
9.0A; 50V
9.0A; 100V
9.0A; 200V
9.0A; 300V
9.0A; 400V
1.0A; 50V
1.0A; 100V
1.0A; 150V
1.0A; 200V
1.0A; 250V
2.0A; 50V
2.OA; 100V
2.0A; 150V
2.0A; 200V
2.0A; 250V
3.0A; 50V
3.0A; 100V
3.0A; 150V
3.0A; 200V
3.0A; 250V
4.0A; 50V
4.0A; 100V
4.0A; 150V
4.0A; 200V
4.0A; 250V

UZllO·UZ1l9
UZ120·UZ140
UZ21O·UZ219
UZ220·UZ240
UZ706·UZ760
UZ770·UZ790
UZ806·UZ860
UZ870·UZ890
UZ4110·UZ4120
UZ4210·UZ4220
UZ4706·UZ4791
UZ4806·UZ4891
UZ5110·UZ5119

3W;
3W;
3W;
3W;
3W;
3W;
3W;
3W;
5W;
5W;
5W;
5W;
5W;

ZENER
5%
5%
10%
10%
5%
5%
10%
10%
5%
10%
5%
10%
5%

• Contact Unit,ode
Legend: J-JAN JTX-JANTX JTXV-JANTXV
UNITRODE CORPORATION' 5 FORBES ROAD
LEXINGTON, MA 02173. TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

1-21

PRINTED IN USA

•

PART NUMBER INDEX

PAGE

PART NUMBER

DESCRIPTION

PAGE

PART NUMBER

DESCRIPTION

ZENER
9-25
9-25
9-25
9-25
9-25
9-25
9-27
9-27
9-27
9-27
9-27
9-27
9-27
9-27
9-27
9-27
9-27
9-27
9-29
9-29
9-29
9-29

..

UZ5l20
UZ52l0-UZ5240
UZ5706-UZ5760
UZ5770-UZ5790
UZ5806-UZ5860
UZ5870-UZ5890
UZ7110
UZ7110L
UZ7210
UZ7210L
UZ7706-UZ7750
UZ7706L-UZ7750L
UZ7756-UZ7790
UZ7756L-UZ7790L
UZ7806-UZ7850
UZ7806L-UZ7850L
UZ7856-UZ7890
UZ7856L-UZ7890L
UZ8110-UZ8l20
UZ82l0-UZ8220
UZ8706-UZ8790
UZ8806-UZ8890
UZSJ06-UZS440
UZS506-UZS640

5W; 5%
5W; 10%
5W; 5%
5W; 5%
5W; 10%
5W; 10%
lOW; 5%
6W; 5%
lOW; 10%
6W; 10%
lOW; 5%
6W; 5%
lOW; 5%
6W; 5%
lOW; 10%
6W; 10%
lOW; 10%
6W; 10%
lW; 5%
lW; 10%
lW; 5%
lW; 10%
3W; 5%
3W; 10%

• Contact Unitrode
Legend: J-JAN JTX-JANTX JTXV-JANTXV
UNITRODE CORPORATION. 5 FORBES ROAD
LEXI NGTON, MA 02173 • TEL (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

1-22

PRINTED IN

u.s

A

DESIGNERS' GUIDES

2-1

2-2

POWER SUPPLY DESIGNERS' GUIDE

II

POWER HYBRIDS & MODULES
, l'ItJl ~,,;J(t,'i':, ::OJ".

OotPtit-

Type

Current, f'k.

I~-

Voltage

PoIerity

60

5A

lOA

15A

,'PIC645
-'~,

--'~'

20A

'~=

"'P'
"

\

,

JJ:" ~ '.'

-.;~.;;,:,~

(n$),

)

100
60
80
100

Pos.
Pos.
Pos.
Neg.
Neg.
Neg.

60
80
100
60
80
100

Pos.
Pos.
Pos.
Neg.
Neg.
Neg.

60
80
100
60
80
100

Pos.
Pos.
Pos.
Neg.
Neg.
Neg.

60
80
100
60
80
100

Pos.
Pos.
Pos.
Neg.
Neg.
Neg.

300

300

30

80

75

150

150

250

250

250

175

300

300

300

150

300

,,:~~
L5@2

4 PIN
TO-66
(Isolated)

L5@5

4 PIN
TO-66
(Isolated)

L5@7

4 PIN
TO-66
(Isolated)

L5@7

3 PIN
TO·3

3 PIN
TO·3

30A

40

Pos.
Pos.

350

300

1@20

8A

400

350

Pas.

200

200

L5@5

350

Neg.

200

200

L5@5

8A

, ,1'ypa,',:
Ple.90tH3>'C. 0 '

,-VoIt,-

400

lCq~.
.
".

,,~lon.·

5A;60V,80V,lOOV
H-Bridge Hybrid Circuit

UNITROOE CORPORATION' 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

'

.";

4 PIN
TO-66
(Isolated)

.

• Designed and Characterized for Inductive Loads
as Stepper Motors, DC Motor Drives,
Full Bridge DC Converters
• Fast Switching Times with
Low (5mA) Drive Current
• Electrically Isolated 18-Pin Dip
with Integral Heat Spreader
• Compatible with Automatic Insertion

2-3

4 PIN
TO-66
(Isolated)

18 PIN DIL
with Integral
Heat Spreader

PRINTED IN U.S.A.

POWER SUPPLY DESIGNERS' GUIDE
LINEAR INTEGRATED CIRCUITS

Pulse Width Modulators

16 Pin DIP

X

500kHz

16 Pin DIP

500kHz

16 Pin DIP

400kHz

200mA

16 Pin DIP

X

18 Pin DIP

X

16 Pin DIP

16 Pin DIP

X
18 Pin DIP

16 Pin DIP

16 Pin DIP

18 Pin DIP

8 Pin DIP

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (6l7) 861-6540
TWX (7l0) 326-6509 • TELEX 95-1064

2-4

PRINTED IN

u.s

A

POWER SUPPLY DESIGNERS' GUIDE
LINEAR INTEGRATED CIRCUITS
Power Supply Support Functions

, .. ;tm

DQCRIPTIOtII

.UCl54a/2543/3543

UC15,W2544i3544
.'

.-~

Power Supply
Supervisory Circuit,
Monitors and Controls
Power Supply Output

'.

<-

0,:,";.

..

"

.

,

..

..
<"

• Minimum V'N-VOUT less than O,5V at 5A Load
with External Pass Device
• Equally Usable for either Positive
or Negative Regulator Design
• Adjustable Low Threshold Current Sense Amplifier
• Under- and Over-Voltage Fault Alert with
Programmable Delay
• Over-Voltage Fault Latch with 100mA
Crowbar Drive Output

16 Pin
DIL

Isolated Feedback
Generator
Stable and Reliable
Alternative to an
Optical Coupler

• An Amplitude-Modulation System for Transformer
Coupling an Isolated Feedback Error Signal
• Internal 1% Reference and Error Amplifier
• Loop Status Monitor
• Low-Cost Alternative to Optical Couplers
• Internal Carrier Oscillator Usable to 5MHz
• Modulator Synchronizable to an External Clock

14 Pin
DIL

Quad Supply and
Line Monitor
Precision System

•
•
•
•
•
•

18 Pin
DIL

.
<, ."

.lJC19MI2903'39(}3

16 Pin
DIL
(1543 Series)

High Efficiency
Linear Regulator,
Low Input-Output
Differentia I

...

' ..
oC1901J2$,:

pAc~·i:'.

Dual, 1.5A, Totem Pole Outputs
Parallel or Push-Pull Operations
Single-Ended to Push-Pull Conversion
Internal Overlap Protection
Analog, Latched Shutdown
High-Speed, Power MOSFET Compatible
Thermal Shutdown Protection
5 to 40V Operation
Low Quiescent Current

, z·
'.,

~.-

•
•
•
•
•
•
•
•
•

,.,'c,

.,--

.'.

.

Dual High Current
MOSFET Compatible
Output Driver

. U(:1$12834/3834

'.'

Over/Under-Voltage, and Current Sensing Circuits
Programmable Time Delays
SCR "Crowbar" Drive of 300mA
Optional Over-Voltage Latch
Internal 1% Accurate Reference
Remote Activation Capability
Uncommitted Comparator
Inputs for Low Voltage Sensing (UC1544 series only)

.

UC17Q9/2706/3706
,

KEY fEATURES
•
•
•
•
•
•
•
•

18 Pin
DIL
(1544 series)
16 Pin
DIL

Monitor Four Power Supply Output Voltage Levels
Both Over- and Under-Voltage Indicators
Internal Inverter for Negative Level Sense
Adjustable Fault Window
Additional Input for Early Line Fault Sense
On Chip, High-Current General Purpose OP-AMP

Functional Circuit
TYPE
_utl7.04~794',

'mHATUItO

"DUCRlPllON
Bridge
Transducer
Switch

.. ' . - --

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

•
•
•
•
•
•
•
•
•

Dual Matched Current Sources
High-Gain Differential Sensing Circuit
Wide Common-Mode Input Capability
Complimentary Digital Open-Collector Outputs
Externally Programmable Time Delay
Optional Output Latch with Reset
Built-in Diagnostic Activation
Wide Supply Voltage Range
High Current Heater Power Source Driver

2-5

:

'MIMI
16 Pin
DIL

PRINTED IN U.S.A

•

POWER SUPPLY DESIGNERS' GUIDE
LINEAR INTEGRATED CIRCUITS
Voltage Regulators
Three Terminal Voltage Regulators, Adjustable
;j:

TO-3
1.5A

Pos.

Adjustable from 1.2V to 37V

TO-3
TO-3

1.5A

Neg.

Adjustable from -1.2V to -37V

3.0A

Pos.

Adjustable from 1.2V to 33V

TO-3
TO-3
TO-3

TO-3
TO-3
TO-3

Three Terminal Voltage Regulators, Fixed, Positive
.
'
.
• fl:EGIJIAl'ED ~PUT yqI,.TAGE.

PAtiW,;E .'

12V ± 1%

15V ± 1%

TO-3
TO-3

12V ± 4%

15V ± 4%

TO-3
TO-3

TO-3
TO-3

Three Terminal Voltage Regulators, Fixed, Negative

1.5A

Neg.

-5V ± 1%

-12V ± 1%

-15V ± 1%

1.5A

Neg.

-5V ± 4%

-12V ± 4%

-15V ± 4%

TO-3

TO-3

• Also available In TO-220 package_

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

2-6

PRINTED IN U.S A

POWER SUPPLY DESIGNERS' GUIDE
N·CHANNEL POWER MOSFETS
TO·3
VO$
.Ora1n

~"."""
.Ort-$tate

Voltage

alice

500'
500

0.4
0.4
0.5
0.85

Soume

10 ContinuClUs
Drain Current
(Amps)

.
10M

Drain

.Resist·

Part

V..

P.....
Pulsed Power

Dra)rl
Source O~~e

Oiss~

Current pation

Voltage

(Amps) (Watts)

(Volts)

Numbers

l00'C
Case

25'C
Case

1.1

2N6770
UFN450
UFN452
UFN440
UFN442

7.75
8.0
7.0
5.0
4.0

12.0
13.0
12.0
8.0
7.0

48
52
48
32
28

150
150
150
125
125

200
200
20'0
200'
200

1.5
1.5
2.0
3.0
4.0

2N6762
UFN430
UFN432
UFN420
UFN422

3.0
3.0
3.5
1.5
1.0

4.5
4.5
4.0
2.5
2.0

18
18
16
10
8

75
75
75
40
40

2()()

450

0.4
0.5
0.5
0.85

450'.

1.1

UFN451
2N6769
UFN453
UFN441
UFN443

8.0
7.0
7.0
5.0
4.0

13.0
11.0
12.0
8.0
7.0

52
44
48
32
28

150
150
150
125
125

450

1.5
2.0
2.0
3.0
4.0

UFN431
2N6761
UFN433
UFN421
UFN423

3.0
2.5
2.5
1.5
1.0

4.5
4.0
4.0
2.5
2.0

18
16
16
10
8

75
75
75
40
40

0.3
0.3
0.4
0.55
0.8

2N6768
UFN350
UFN352
UFN340
UFN342

9.0
9.0
8.0
6.0
5.0

14.0
15.0
13.0
10.0
8.0

56
60
52
40
32

150
150
150
125
125

100

1.0
1.0
1.5
1.8
2.5

2N6760
UFN330
UFN332
UFN320
UFN322

3.5
3.5
3.0
2.0
1.5

5.5
5.5
4.5
3.0
2.5

22
22
18
12
10

75
75
75
40
40

.100
10'0
100

0.3
0.4
0.4
0.55
0.8

UFN351
2N6767
UFN353
UFN341
UFN343

9.0
7.75
8.0
6.0
5.0

15.0
12.0
13.0
10.0
8.0

60
48
52
40
32

150
150
150
125
125

1.0
1.5
1.5
1.8
2.5

UFN331
2N6759
UFN333
UFN321
UFN323

3.5
3.0
3.5
2.0
1.5

5.5
4.5
4.5
3.0
2.5

22
18
18
12
10

75
75
75
40
40

(Volts). (Ohms)

500
500'

50Q
500

500
500'
500
500
450'
450

450

456.

. 45'0

45l.l
450"

400
400
400'
. 400'

400

400
400
400
400
.400

350
950
350'
350
350.

350'

'350
350
350
350

UNITROOE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326-6509 • TELEX 95·1064

200'
200.

15'0
150

150
150

150
150
150' '
150'
100 .

100

100

100

mo'

100
'60

'60

'W
.60
60
60

6(f'

.60
'60

60

2·7

,

.,

Ie Cdntin~s"
.' .Drain .cu~ ••.•.
... :.;fAlr\Ps}- '"

I'~~!~~

f .....f

,~
2S·t Current pa\iOri

Pa!'l

iOO·c
Case

ease

0.085
0.085
0.12
0.18
0.22

2N6766
UFN250
UFN252
UFN240
UFN242

19.0
19.0
16.0
11.0
10.0

30.0
30.0
25.0
18.0
16.0

120
120
100
72
64

150
150
150
125
125

0.4
0.4
0.6
0.8
1.2

2N6758
UFN230
UFN232
UFN220
UFN222

6.0
6.0
5.0
3.0
2.5

9.0
9.0
8.0
5.0
4.0

36
36
32
20
16

75
75
75
40
40

0.12
0.12
0.18
0.22

UFN251
2N6765
UFN253
UFN241
UFN243

19.0
16.0
16.0
11.0
10.0

30.0
25.0
25.0
18.0
16.0

120
100
100
64

150
150
150
125
125

0.4
0.6
0.6
0.8
1.2

UFN231
2N6757
UFN233
UFN221
UFN223

6.0
5.0
5.0
3.0
2.5

9.0
8.0
8.0
5.0
4.0

36
32
32
20
16

75
75
75
40
40

0.055
0.055
0.08
0.085
0.11

2N6764
UFN150
UFN152
UFN140
UFN142

24.0
25.0
20.0
17.0
15.0

38.0
40.0
33.0
27.0
24.0

152
160
132
108
96

150
150
150
125
125

0.18
0.18
0.25
0.3
0.4

2N6756
UFN130
UFN132
UFN120
UFN122

9.0
9.0
8.0
5.0
4.0

14.0
14.0
12.0
8.0
7.0

56
56
48
32
28

75
75
75
40
40

0.055
0.08
0.08
0.085
0.11

UFN151
2N6763
UFN153
UFN141
UFN143

25.0
20.0
20.0
17.0
15.0

40.0
31.0
33.0
27.0
24.0

160
124
132
108
96

150
150
150
125
125

0.18
0.25
0.25
0.3
0.4

UFN131
2N6755
UFN133
UFN121
UFN123

9.0
8.0
8.0
5.0
4.0

14.0
12.0
12.0
8.0
7.0

56
48
48
32
28

75
75
75
40
40

ance

{Ohms) . Numbers

200
200'
"J;5Q' 0.085
150 .

..

"Rbs!i1I'1t

(Amps) .(Wetts)

72

PRINTED IN U S.A.

II

POWER SUPPLY DESIGNERS' GUIDE
N·CHANNEL POWER MOSFETS
TO·220

UFN840
UFN842
UFN830
UFN832
UFN820

5.0
4.0
3.0
2.5
1.5

8.0
7.0
4.5
4.0
2.5

32
28
18
16
10

UFN630
UFN632
UFN620
UFN622
UFN610

6.0
5.0
3.0
2.5
1.5

9.0
8.0
5.0
4.0
2.5

36
32
20
16
10

75
75
40
40
20

UFN822
UFN841
UFN843
UFN831
UFN833

1.0
5.0
4.0
3.0
2.5

2.0
8.0
7.0
4.5
4.0

8
32
28
18
16

UFN612
UFN641
UFN643
UFN631
UFN633

1.25
11.0
10.0
6.0
5.0

2.0
18.0
16.0
9.0
8.0

8
72
64
36
32

20
125
125
75
75

UFN821
UFN823
UFN740
UFN742
UFN730

1.5
1.0
6.0
5.0
3.5

2.5
2.0
10.0
8.0
5.5

10
8
40
32
22

40
40
125
125
75

UFN621
UFN623
UFN611
UFN613
UFN540

3.0
2.5
1.5
1.25
17.0

5.0
4.0
2.5
2.0
27.0

20
16
10
8
108

40
40
20
20
125

UFN732
UFN720
UFN722
UFN710
UFN712

3.0
2.0
1.5
1.0
0.8

4.5
3.0
2.5
1.5
1.3

18
12
10
6
5

75
40
40
20
20

UFN542
UFN530
UFN532
UFN520
UFN522

15.0
9.0
8.0
5.0
4.0

24.0
14.0
12.0
8.0
7.0

96
56
48
32
28

125
75
75
40
40

UFN741
UFN743
UFN731
UFN733
UFN721

6.0
5.0
3.5
3.0
2.0

10.0
8.0
5.5
4.5
3.0

40
32
22
18
12

125
125
75
75
40

UFN510
UFN512
UFN541
UFN543
UFN531

2.5
2.0
17.0
15.0
9.0

4.0
3.5
27.0
24.0
14.0

16
14
108
96
56

20
20
125
125
75

UFN723
UFN711
UFN713
UFN640
UFN642

1.5
1.0
0.8
11.0
10.0

2.5
1.5
1.3
18.0
16.0

10
6
5
72
64

40
20
20
125
125

UFN533
UFN521
UFN523
UFN511
UFN513

8.0
5.0
4.0
2.5
2.0

12.0
8.0
7.0
4.0
3.5

48
32
28
16
14

75
40
40
20
20

UNITROOE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

2-8

PRINTED IN U.S A

POWER SUPPLY DESIGNERS' GUIDE
N·CHANNEL POWER MOSFETS
10·39

~!~
Yo '

)

.,.

,

Part
Numbet$

lOO'C

1.5
1.5
2,0
3,0
3.0
4.0

UFNF430
2N6802
UFNF432
UFNF420
2N6794
UFNF422

1.5
1.5
2.0
3.0
3.0
4.0

~i

~',"
S()O,.

:500:'
400'

'.450, ,.
450"

450

450

"450',
,400'

,400'
400

.40(}·,
400

,~:;.

, '400"

400·

400

'350,.,
'350,."

'~'~'

.35q
,350,

'350

350 "
350'

35D"

260

'~.
200
200

·200

=
200'
1IiO

" 150

'1$.
150:,'

,1"!lU,'"
150,

150
150

'150

'ioo

"'tQo,'
100
100

too'
1GO

!lfIt ~~~d
Drain

~~)

sIX)"

"

~~J'lUOU!i

25"C Current

=.

(Amps)

~~)

1.75
1.5
1.5
1.0
0.95
0.9

2,75
2.5
2.25
1.6
1.5
1,4

11
11
9
65
6.5
5.5

25
25
25
20
20
20

UFNF431
2N6801
UFNF433
UFNF421
2N6793
UFNF423

1.75
1.5
1.5
1.0
0.95
0.9

2.75
2.5
2.25
1.6
1.5
1,4

11
11
9
6.5
6.5
5,5

25
25
25
20
20
20

1.0
1.0
1.5
1.8
1.8
2.5

UFNF330
2N6800
UFNF332
UFNF320
2N6792
UFNF322

2.0
1.6
1.6
1,43
1.25
1.2

3.5
3,0
3.0
2,5
2.0
2,0

14
14
12
10
10
8

25
25
25
20
20
20

3,6
3,6
5,0
1.0
1.0
1.5

UFNF310
2N6786
UFNF312
UFNF331
2N6799
UFNF333

0,85
0.80
0.70
2,0
1.6
1.6

1.35
1.25
1,15
3,5
3,0
3,0

5,5
5,5
4,5
14
14
12

15
15
15
25
25
25

1.8
1.8
2.5
3.6
3.6
5,0

UFNF321
2N6791
UFNF323
UFNF311
2N6785
UFNF313

1.45
1.25
1.2
0.85
0,80
0.70

2,5
2.0
2,0
1.35
1.25
1,15

10
10
8
5.5
5.5
4,5

20
20
20
15
15
15

0,4
0,4
0,6
0,8
0.8
1.2

2FNF6798
UFNF230
UFNF232
2N6790
UFNF220
UFNF222

3.5
3.5
2.8
2.1
2.1
1.75

5,5
5,5
4.5
3,5
3.5
3.0

22
22
18
14
14
12

25
25
25
20
20
20

1.5
1.5
2,4
0,4
0,4
0.6

2N6784
UFNF210
UFNF212
2N6797
UFNF231
UFNF233

1.45
1,4

2.25
2.2
1.8
5.5
5.5
4.5

9
9
7.5
22
22
18

15
15
15
25
25
25

0.8
0.8
1.2
1.5
1.5
2.4

2N6789
UFNF221
UFNF223
2N6783
UFNF211
UFNF213

2.1
2.1
1.75
1.45
1,4

1.1

3.5
3.5
3.0
2.25
2.2
1.8

14
14
12
9
9
7.5

20
20
20
15
15
15

0.18
0,18
0.25
0,3
0,3

2N6796
UFNF130
UFNF132
2N6788
UFNF120
UFNF122

5.0
5.0
4.5
3,5
3,5
3.0

8.0
8,0
7.0
6.0
6,0
5.0

32
32
28
24
24
20

25
25
25
20
20
20

0.4

1.1
3.5
3.5
2.8

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

'J~n

I~:

=
SoUrce

D'S&!-

Case

Case

10·39 (CONT'D)

100

100

100
60
50
50
~O

60
50

60
60

'60

{Ohms}

'8~=

.;'

~m".

~~

Part
NUmbet$.

,··60

fila:)

2.25
2.25
2.0
5.0
5.0
4.5

3.5
3,5
3.0
8.0
8.0
7.0

14
14
12
32
32
28

15
15
15
25
25
25

0.3
0,3
0.4
0.6
0,6
0.8

2N6787
UFNF121
UFNF123
2N6781
UFNF111
UFNF113

3.5
3.5
3,0
2.25
2.25
2.0

6.0
6.0
5.0
3.5
3.5
3.0

24
24
20
14
14
12

20
20
20
15
15
15

Sou,rCIi ' ,itesi&t·

100"

CUmmt

2N6782
UFNF110
UFNF112
2N6795
UFNF131
UFNF133

RD~"'"

(Volts)

0iS&!-

(Amps)

0.6
0.6
0,8
0.18
0.18
0.25

On·$tate

VQllIIP.

~~
rain

'Jow.~.

'.nee .

Peit

.: ':;',

Power
01$51·

l------",.."---j O,~I'l

(Ohmi$)" JliUmlilits
1.5
1.5

Po MAlI.

UFNA12
UFNAll

~~:=~

1.0
1.0

2,0
2.0

2.4
2.4

4 PIN DIP

,,~

2-9

R$5Ist-

. (:; .

($~~'

Pa!,!", •

N4m~'

DraIn

'~~.
,a'

~.
,;21;"1::
.,~'

'p;urr!lflt
AmpS)

1.5
2.4
0.3
0.6

UFND210
UFND213
UFND120
UFNDllO

0.6
0,45
1.3
1.0

2.5
1.8
5.2
4.0

1.0
1.0
1.0
1.0

2,4
0.4
0.8
3.2

UFND1Z0
UFND123
UFND113
UFNDIZ3

0.5
1,1
0.8
0.4

2.0
4.4
3.0
1.5

1.0
1.0
1.0
1.0

PRINTED IN U.S.A.

II

POWER SUPPLY DESIGNERS' GUIDE
NPN POWER SWITCHING TRANSISTORS
Plastic Packaging

300
400

7@2.0
7@2.0

1.2 @2.0
1.2 @2.0

1.0
1.0

4.0
4.0

0.7
0.7

2.0
2.0

TO·220
TO·220

300
400

8@2.0
8@2.0

0.6 @2.0
0.6 @2.0

0.7
0.7

3.5
3.5

0.9
0.9

2.0
2.0

TO·220
TO·220

300
400

6@5.0
6@5.0

1.5 @5.0
1.5 @5.0

1.0
1.0

3.0
3.0

0.7
0.7

5.0
5.0

TO·220
TO·220

300
400

6@8.0
6@8.0

1.5 @8.0
1.5 @8.0

1.0
1.0

3.0
3.0

0.7
0.7

8.0
8.0

TO·220
TO·220

UNITROOE CORPORATION. 5 FORBES ROAO
LEXINGTON, MA 02173· TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

2-10

PRINTED IN USA

POWER SUPPLY DESIGNERS' GUIDE

II

NPN POWER SWITCHING TRANSISTORS (continued)
Metal Can Packaging
TyPe

Min.

v~

hFE@le

250
275
350

10@2.0
1O@2.0
1O@2.0

300
300
350
350
400
400
400

7@3.0
1O@ 5.0
7@3.0
1O@ 5.0
7@3.0
7@3.0
1O@ 5.0

250
300
300
300
350
400
400

Max. Switchltl~ri1e (PS)'
@Ie.,·

Max.
VClII"{tl,@le

.'.

;.

. ,
"

~,.

.

I,

Ie

1/

@Ie

Pkg.

1.0 @3.0
1.5 @2.0
1.5 @2.0

1.5
1.5
1.7

3.0
3.75
3.75

1.5
1.5
1.5

3.0
2.0
2.0

10·3
10·3
10·3

1.0
1.0
1.0
1.0
1.0
1.0
1.0

@3.0
@5.0
@3.0
@5.0
@3.0
@3.0
@5.0

0.7
0.5
0.4
0.5
0.4
0.7
0.5

4.0
2.5
4.0
2.5
4.0
4.0
2.5

0.8
0.4
0.4
0.4
0.4
0.8
0.4

3.0
5.0
3.0
5.0
3.0
3.0
5.0

10·3
10·3
10·3
10·3
10·3
10·3
10·3

15@3.0
15@3.0
7@5.0
7@5.0
12 @3.0
7@5.0
7@5.0

0.8
0.8
1.5
1.5
1.5
1.5
1.5

@3.0
@3.0
@5.0
@5.0
@3.0
@5.0
@5.0

0.6
0.6
1.0
0.4
0.6
1.0
0.4

1.6
1.6
4.0
4.0
1.6
4.0
4.0

0.4
0.4
1.0
0.4
0.4
1.0
0.4

3.0
3.0
5.0
5.0
3.0
5.0
5.0

10·3
10·3
10·3
10·3
10·3
10·3
10·3

120
200
275
300
350
400

1O@
1O@
8@
8@
6@
8@

10.0
10.0
10.0
10.0
10.0
10.0

1.0
1.5
1.5
1.0
1.5
1.0

@1O.0
@1O.0
@1O.0
@1O.0
@1O.0
@1O.0

0.3
2.0
2.0
0.6
2.0
0.6

1.0
3.5
3.5
2.5
3.5
2.5

0.2
1.0
1.0
0.5
1.0
0.5

5.0
10.0
10.0
10.0
10.0
10.0

10·3
10·3
10·3
10·3
10·3
10·3

100
300
300
350
350
400
400
400
450

12@8.0
6@ 10.0
8@ 15.0
6@ 10.0
8@ 15.0
6@ 10.0
6@ 10.0
8@ 15.0
7@ 15.0

1.0
1.5
1.0
1.0
1.0
1.0
1.5
1.0
1.5

@8.0
@1O.0
@ 15.0
@1O.0
@ 15.0
@ 10.0
@1O.0
@ 15.0
@1O.0

0.5
0.7
0.6
0.4
0.6
0.4
0.7
0.6
0.22

1.5
4.0
2.5
4.0
2.5
4.0
4.0
2.5
0.9

0.5
0.7
0.5
0.4
0.5
0.4
0.7
0.5
0.2

8.0
10.0
15.0
10.0
15.0
10.0
10.0
15.0
10.0

10·3
10·3
10·3
10·3
10·3
10·3
10·3
10·3
10·3

75
90

20 @ 10.0
20 @ 12.0

1.0 @1O.0
1.2 @ 12.0

0.5(1)
OBI)

-

0.5(2)
0.5(2)

10.0
12.0

10·3
10·3

90
120
400

20@ 15.0
20@ 15.0
1O@ 15.0

0.75 @ 15.0
0.75@ 15.0
1.5 @20.0

0.5
0.5
1.0

1.5
1.5
3.0

0.5
0.5
0.8

15.0
15.0
20.0

10·3
10·3
10·3

'3~b~

'2N5838
, 21\15839
'

'2N5840

, .,;....'S.oA;

••••
".
.......~

007

8.~A,:

2N63G6

"

'2N6307
2HIi$44

.
5 .....
t~':.
:V, .. '

:

I ' '.,O;OA

•••••

I' .

..

..

·.2NB251 ....

.. 2N6675
15.~

2N64%

2N654ti

2N6676
UMnOU
2N6617
v

•••

".;o~'.>
2N5039
.2N5038
.' 3O;OA'"

I.

2N5671

2N5672
··'VMT2003

' ;

(l)Turn-on Time
("Turn·off Time

UN)TROOE CORPORATION. 5 FORBES ROAD
LEXI NGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

2-11

PRINTED IN USA

POWER SUPPLY DESIGNERS' GUIDE
SCHOTTKY BARRIER POWER RECTIFIERS

20V
30V
40V

0.45@ 1A
0.55@ 1A
0.60@ 1A

10.0

N/A

Axial
Leaded
Plastic

20V
30V
40V

0.450 @ 1A
0.475 @ 1A
0.500 @ lA

10.0

N/A

Axial
Leaded
Plastic

20V
30V
40V

0.475 @3A
0.500@3A
0.525@3A

20.0

N/A

Axial
Leaded
Plastic

20V
35V
40V
45V

0.48@ 6A

50.0

1.0

TO·220AC
(2 Lead)

20V
35V
40V
45V

0.48@ 8A

50.0

1.0

TO·220AC
(2 Lead)

20V
35V
40V
45V

0.51 @ 12A

50.0

1.0

TO·220AC
(2 Lead)

20V
35V
40V
45V

0.53@ 16A

50.0

2.0

TO·220AC
(2 Lead)

30V
40V

0.86@ 157A

250.0

2.0

00·5
(00·223AB)

0.6@60A

200.0@35V

2.0

20V
35V
45V
50V

50.0
0.6@ 60A

2.0

00·5
(DO·223AB)

75.0

"Elevated Temperature

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

2-12

PRINTED IN

u.s

A

POWER SUPPLY DESIGNERS' GUIDE

II

SCHOTTKY BARRIER POWER RECTIFIERS (continued)
Schottky Center-Tap Rectifiers
:

~,

VRWM

Type

.12A
USD620C

US0635C
US0640C·
\)SD645C

VI'~fF

. htfltVr'
(m,b;

~~'.,.
":(.4J
•. , ;'.'..

:,~

'Pki .

20V
35V
40V
45V

0.6@ 12A

50.0

1.0

TO·22OAB

20V
35V
40V
45V

0.6@ 16A

50.0

1.0

TO·220AB

20V
35V
45V

0.6@ 20A

50.0

2.0

TO·3
Center·Tap

45V @ Tj =25°C
35V @ Tj = 125°C

0.6@20A

100.0@35V

2.0

TO·3
Center·Tap

40V
45V
50V

0.63 @ 60A

75.0

2.0

TO-3 Base
(Top Connector
Module)

.

. ··lGA
U507200

U~a5C
U 74(:)C
U50745C

.

'

3OA .
USD320C

US0335C

US0345C

:.50241
"

.

..

lOOA

~i5}!8'
BOA'
.USM2.Q04OC .
USM~

M2

,

USM200?9C.·.·

40V
45V
50V

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

0.64@
100A

125.0

2·13

2.0

Power
Block
(see datasheet)

PRINTED IN USA

POWER SUPPLY DESIGNERS' GUIDE
PIN JUNCTION RECTIFIERS
Low Voltage, Ultra-Fast Recovery (trr :::; 50ns)

50V
100V
150V

.895@ 1A

0.05

25

Axial Leaded
Glass

50V
100V
150V

.895@2A

0.05

25

Axial Leaded
Glass

50V
100V
150V

.850 @ 6A

0.15

30

Axial Leaded
Glass

50V
100V
150V
200V

.895@ 8A

0.15
0.15
0.15
0.50

35

TO·220AC
(2 Lead)

50V
100V
150V
200V

.830@ 16A

0.80
0.80
0.80
1.00

35

TO·220AC
(2 Leacl)

50V
100V
150V

.825@25A

4.0

35

00·4
(DO·203AA).

50V
100V
150V

.840@ 70A

30.0

50

00·5
(00·203AB)

High Voltage, Ultra-Fast Recovery (trr :::; 50ns)

200V
300V
400V

1.15 @ 1A

0.20

50

Axial Leaded
Glass

200V
300V
400V

1.15 @ 3A

0.50

50

Axial Leaded
Glass

200V
300V
400V

1.15 @ 20A

10.0

50

DO·4
(DO·203AA)

200V
300V
400V

1.15 @ 50A

30.0

50

00·5
(00·203AB)

·Elevated Temperature
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

2-14

PRINTED IN U.S.A

POWER SUPPLY DESIGNERS' GUIDE

II

PIN JUNCTION RECTIFIERS (continued)
Ultra-Fast Recovery Center-Tap Rectifiers (trr:::; 50ns)

50V
100V
150V
200V
50V
100V
150V
200V
300V
400V

.895 @8A

0.15
0.15
0.15
0.50

35

TO·220AB

.825@ 15A

4.0

35

TO·3
Center·Tap

1.15 @ 15A

10.0

50

TO·3
Center·Tap

100

Axial Leaded
Glass

Super-Fast Recovery Rectifiers (trr = lOOns)

50V
100V
150V

.895@ 1A

50V
100V
150V

.895@ 5A

.15

100

Axial Leaded
Glass

50V
100V
150V
200V

.945@8A

.15

100

TO·220AC
(2 Lead)

50V
100V
150V

.830@ 20A

4.0

100

(DO·203AA)

50V
100V
150V

.850@60A

30.0

100

DO·203AB

50V
100V
150V
200V

.945 @8A

.15

100

TO·220AB

50V
100V
150V

.830 @ 12.5A

4.0

100

TO·3
Center·Tap

.05
00·4

00·5

"Elevated Temperature

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (7101 326-6509 • TELEX 95-1064

2-15

PRINTED IN USA.

MOTOR CONTROL DESIGNERS' GUIDE
Motor Control Circuits
2A, 36V, 30KHz,
H-Bridge Motor Driver

•
•
•
•

Four Channel
Push-Pull Drivers
for Inductive Loads

•
•
•
•
•
•

Dual PWM Solenoid
Driver and
Stepper Motor Driver

5A;60V,BOV,lOOV
. H-Bridge Hybrid Circuit

Switched Mode
Controller for
DC Motor Drive

External Loop Adjustment
Single Power Supply (lB-36V)
Input Signal Symmetric to Ground
Thermal Protection

lA Output per Channel (2A peak non-repetitive)
Supply Voltage to 36V
Inhibiting Facility
Thermal Protection
High Noise Immunity
E-Version Provides for External
Emitter Sense Resistors
• Compatible with Standard TTL Logic Inputs
•
•
•
•
•

3A Peak Current Per Driver
Supply Voltage to 40V
Current Limiting
Thermal Protection
Compatible with Standard TTL Logic Inputs

• Designed and Characterized for Inductive Loads
as Stepper Motors, DC Motor Drives,
Full Bridge DC Converters
• Fast Switching Times with
Low (5mA) Drive Current
• Electrically Isolated IB-Pin Dip
with Integral Heat Spreader
• Compatible with Automatic Insertion
• Single or Dual Supply Operation

• ± 2.5 to ± 20V Input Supply Range
• ± 5% Initial Oscillator Accuracy;
± 10% Over Temperature

15 Pin
Power SIP

L293
16 Pin
"Batwing" Dip

L293E
20 Pin
"Batwing" Dip
15 Pin
Power SIP

IB Pin DIL with
Integral Heat
Spreader

IB Pin
Dip

• Pulse-by-Pulse Current Limiting
• Under-Voltage Lockout
• Uncommitted PWM Comparators for
Design Flexibility
Stepper Motor
Drive Ci rcu it

Half-Step and Full-Step Mode
Bipolar Constant Current Chopper Drive
Built-In Protection Diodes (Schottky)
Wipe Range of Current Control 5-1000mA
Wide Voltage Range 1O-45V
Designed for Unregulated Motor
Supply Voltage
• Thermal Overload Protection

•
•
•
•
•
•

16 Pin
Dip

Note: U2TA506,8 & 10 and U2TA606, 8 & 10 TD-92 Darlingtons are appropriate for driving DC brushless motors and other inductive loads.

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326·6509 • TELEX 95-1064

2-16

PRINTED IN U.S.A.

MILITARY DESIGNERS' GUIDE

II

SILICON RECTIFIERS
Schottky

45V
45V

0.44V @ 5A (pk)
,0.47V @ lOA (pk)

15mA @ 45V (pk)
20mA @ 45V (pk)

1553*
1554*

00-4
00-5

• Series available as JAN, JANTX and JANTXV

High Efficiency, Fast Switching
:~.«,"")'

.-!,~

,. :.

~

1W~M>'

OUTM

.-

..'

,;Jll

~'

VuM

!'::~:,i11£-':'"
.-,:':=\
.:;

If:i~;;.

VOl.rA(IJ ,.

2.5A

50V
100V
150V

.875V
@
1A

6.0A

50V
100V
150V

20A

70A

/::),~

','tNSe09
."l~n"

;~

~,

=
'

.;:

..

'

,~

>."",'

,

,::":DiI:;::t ~:Ci~:~~.

'.

25n5

Axial
Axial
Axial

.875V
@
4A

30n5

Axial
Axial
Axial

50V
100V
150V

.900V
@
lOA

35n5

00-4
00-4
00-4

50V
100V
150V

.975V
@
70A

50n5

00-5
00-5
00-5

',~l

1477·
1477
1477
1477*
1477
1477
1478"
1478
1478
1550*
1550
1550

• Series available as JAN, JANTX and JANTXV

General Purpose, Fast Recovery
;.'::--

: .~"', .:

·t""~.

,

.~
,

Axial
Axial
Axial

'<"
,

.

1A
1A
1A

200V
400V
600V

1.6V @ 3A
1.6V @ 3A
1.6V @ 3A

150n5
250n5
250n5

Axial
Axial
Axial

3A
3A
3A
3A

100V
200V
400V
600V

1.5V @ 9A
1.5V@9A
1.5V @ 9A
1.5V @ 9A

150n5
200n5
250n5
400n5

Axial
Axial
Axial
Axial

3A
3A
3A
3A
3A
3A

50V
100V
200V
400V
500V
600V

1.5V @ 9A
1.5V @ 9A
1.5V@9A
1.5V@ 9A
1.5V @ 9A
1.5V @ 9A

150n5
150n5
150n5
150n5
250n5
400n5

Axial
Axial
Axial
Axial
Axial
Axial

,

1359*
1359
1359
1429*
1429
1429
1424*·
1424
1424
1424
1411*
1411
1411
1411
1411
1411

• Series available as JAN, JANTX and JANTXV
•• Series available as JAN and JANTX

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL (617) 861-6540
TWX (710) 326·6509 • TELEX 95-1064

2-17

PRINTED IN U.S A.

MILITARY DESIGNERS' GUIDE
SILICON RECTIFIERS (continued)

General Purpose. Standard Recovery

<{: ,".:

:&~{.i~:~l :'::;~L'.
~,:,~~~.f(.':;!·;.

l.OV@ 20mA
l.OV@ 7mA
l.OV@ 3mA
70V
180V

l.OV@ 100mA
l.OV@ 100mA

225mA
165mA
120mA
2A
2A

DO-7
DO-7
DO-7

/193'"
/193
/193

DO-7
DO-7

1118*'
1118
1256**1240"
1240'
1240"
1240'
1286'
1286
1286
1286
1286
1427'
1427
1427
1427
1228"
1228
1228
1228
1420'
1420
1420
1420

40mA

175V

l.OV@ lOmA

400mA
400mA

270V
270V

l.OV@ 400mA
l.OV@400mA

5A
5A

DO-7
DO-35

400mA
400mA

480V
480V

l.OV@400mA
l.OV@400mA

5A
5A

DO-7
DO-35

1A
1A
1A
1A
1A

200V
400V
600V
800V
1000V

1A
1A
1A
1A

500mA

DO-7

l.3V @ 3A
l.3V@ 3A
l.3V @ 3A
l.3V @ 3A
l.3V@ 3A

25A
25A
25A
25A
25A

Axial
Axial
Axial
Axial
Axial

200V
400V
600V
800V

l.3V@
l.3V@
l.3V@
l.3V@

3A
3A
3A
3A

30A
30A
30A
30A

Axial
Axial
Axial
Axial

2A
2A
2A
2A

200V
400V
600V
800V

l.1V
l.1V
l.1V
l.1V

1A
1A
1A
1A

20A
20A
20A
20A

Axial
Axial
Axial
Axial

3A
3A
3A
3A

200V
400V
600V
800V

l.2V @ 9A
1.2V @ 9A
1.2V@9A
l.2V @ 9A

100A
100A
100A
100A

Axial
Axial
Axial
Axial

@
@
@
@

• Series available as JAN, JANTX and JANTXV
•• Series available as JAN and JANTX
••• Series available as JAN only

Radiation Tolerant Rectifiers
.;'"

..

·!JI~E;;.··

2A
2A
2A
2A
2A

50V
100V
150V
200V
250V

1.0 @
l.0 @
1.0 @
1.0 @
l.0 @

1A
1A
1A
1A
1A

20A
20A
20A
20A
20A

>10"
>10"
>10"
>10"
>10"

Axial
Axial
Axial
Axial
Axial

25A
25A
25A
25A
25A

>10"
>10"
>10"
>10"
>10"

Axial
Axial
Axial
Axial
Axial

High Efficiency. Center·Tap Rectifiers and Doublers

200V
300V
400V
UNITROOE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL (6171 861-6540
TWX (710) 326-6509 • TELEX 95-1064

35ns

30A

400A

TO-3
TO-3
TO-3

50ns

30A

400A

TO-3
TO-3
TO-3

1.15V
@

15A

2-18

PRINTED IN U.S A

'

MILITARY DESIGNERS' GUIDE

II

SWITCHING DIODES
Low Current
-,

MAXIMUM
, TYPE

IN251
lN662
INfi63"
IN914
IN3064
IN307()
IN3595
lN36QO
lN4148
IN414!H
1 N415Q. 1
IN4153
IN41S3-1
IN4454
1N4454-1
IN4500
IN4531
IN4,!i'32
IN4534
IN493tt'
IN4938-.1

OUTf'UT
CURRENT

VawM

14mA
40mA
100mA
75mA
75mA
200mA
150mA
200mA
150mA
150mA
200mA
150mA
150mA
200mA
200mA
300mA
125mA
125mA
150mA
150mA
150mA

40V
SOV
SOV
100V
75V
200V
150V
75V
100V
100V
75V
75V
75V
75V
75V
BOV
100V
75V
75V
250V
250V

:

REVERSE

FORWARD
VOLTAGE

RECOVERY
TIME

l.OV @5mA
LOV@ lOmA
LOV@ 100mA
LOV@ lOmA
LOV@ lOmA
l.OV@ 100mA
,SOV @ 10mA
,74V@ lOmA
l,OV@ lOmA
LOV@ 10mA
,74V@ 10mA
,SBV@20mA
,SSV@20mA
l.OV@ lOmA
l.OV @ lOmA
.77V@20mA
l.OV @ 10mA
l.OV @ lOmA
,SBV @ 20mA
l.OV @ 100mA
l.OV @ 100mA

30ns
500ns
500ns
5ns
4ns
50ns
3ps
4ns
5ns
5ns
4ns
4ns
4ns
4ns
4ns
6ns
Sns
4ns
4ns
50ns
50ns

'PACKAIUl ,',

,"
~

.. -

00-7
00-7
00-7
00-35
00-7
00-35
00-7
00-7
00-35
00-35
00-35
00-35
00-35
00-35
00-35
00-35
00-34
00-34
00-34
00-7
00-7

,

.'(+19IlO8'" ,
I1SS'"

1256'"
1256'"
IU6"
1144"
1169"
1241'
1231"
1116'

IU6'
1231'

1337'
1337'
1144"
1144'
1403'
IU6'
1144'
1337"
1169"
1169"

• Series available as JAN, JANTX and JANTXV
•• Series available as JAN and JANTX
••• Series available as JAN only

SWITCHING REGULATOR POWER OUTPUT CIRCUITS
INPUT1OUTf'UT
VOLTAGE

POI.ARIlY

5A

60V
SOV
100V
60V
SOV
100V

Pos,
Pos,
Pos.
Neg,
Neg,
Neg,

15A

60V
SOV
100V
60V
BOV
100V

Pos.
Pos,
Pos,
Neg,
Neg,
Neg,

60V
SOV
100V
60V
SOV
100V

Pos.
Pos.
Pas.
Neg,
Neg,
Neg.

30A

30V
40V

ptCSOi

BA

PICSI0
PICSll

BA

TYPE
PIC600
PIC601
PIC602
PIC610
PIC611
PIC612
PIC625
PIC626
.PlC627
PIC635
PIC636
PIC637

OUTPUT
CURRENT, PIC.

PIC645

PIC646
PIC647
PIC6S5
PIC6S6
PIC657
PIC730
PIC740
PICSOQ

20A

UNITROOE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173· TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

FALL-TIME
VOLTAGE CUIIIIENT
(V)

'(mI),

75

150

175

300

300

300

150

300

Off.STm:

VOI.T.,C~,
{V) ,(I),;.

....
...

l.5@2

4 PIN
TO-66
(Isolated)

l.5@ 7

4 PIN
TO-66
(Isolated)

l.5 @ 7

3 PIN
TO-3

300

300

Pas.
Pas,

350

300

l.0 @ 20

3 PIN
TO-3

350V
400V

Pas,
Pas,

200

200

l.5 @ 5

4 PIN
TO-66
(Isolated)

350V
400V

Neg,
Neg.

200

200

l.5@ 5

4 PIN
TO-66
(Isolated)

2-19

'(

~:

OIJrM··'
CURREN'r
(A)

POLARITY

..'.. ·.UCl17:K '
" "' "; 'UC217K .
,';;',UC317K

1.5A

Pos.

Adjustable from 1.2V to 37V

TO-3
TO-3
TO-3

UC137K
" .lJC237K .
"'uc337K

1.5A

Neg.

Adjustable from -1.2V to -37V

TO-3
TO-3
TO-3

3.0A

Pos.

Adjustable from 1.2V to 33V

TO-3
TO-3
TO-3

<

•..•.•.•

..._<

Three Terminal Voltage Regulators, Fixed, Positive*

.<.\.31g=~~~£$"

1.5A

Pos.

5V ± 1%

12V ± 1%

15V ± 1%

TO-3
TO-3

:··;'··Pl;1.,URIES

1.5A

Pos.

5V ± 4%

12V ± 4%

15V ± 4%

TO-3
TO-3

i 7UC1~ SERI£$

Three Terminal Voltage Regulators, Fixed, Negative*

1.5A

Neg.

-5V ± 1%

-12V ± 1%

-15V ± 1%

TO-3
TO-3

1.5A

Neg.

-5V ± 4%

-12V ± 4%

-15V ± 4%

TO-3
TO-3

*MIL-STO-883 Screening

MIL-ST0-883 Screening Tests

Unitrode offers all of the above devices screened to MIL·STD-883,
customer requirements, and will perform tests as specified by
MIL·M·3851O.

• Internal Visual Pre or Post Cap
• Stabilization Bake
• Temperature Cycling

When ordering MIL·STD-883 Screening, specify:

• Constant Acceleration

• Prime electrical and military temperature range, generic
part number and package type

• Hermeticity
a) Fine
b) Gross

• Class of 883 screening (class A, B or C)

• Pre·Burn·in Electrical Test
• Burn·in Test
• Final Electrical Test
a)
b)
c)
d)

DC@25°C
DC @ Max. and Min. Rated Temperature
Dynamic @ 25°C
Functional @ 25°C

• Radiographic
• Qualification and Quality Conformance Testing
• External Visual

UNITROOE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326·6509 • TELEX 95-1064

2-21

PRINTED IN U.S.A

MILITARY DESIGNERS' GUIDE
BRIDGE RECTIFIERS
. 40Hz· 5kHz

lOA

200V
400V
600V

VF @ 15.7A. 1.35V Max.
IA@ VA. 2J1A Max.
ISUAGE. 100A

1469'

AC~AC

25A

100V
200V
400V
600V

VF @ 39A. 1.4V Max.
IA@VA. 2pA Max.
IstJAGE. 150A

1446'

oc

25A

200V
400V
600V

VF @ 39A. 1.3V Max.
IA@ VR. 3J1A Max.
ISURGE. 150A

/483**

AC~AC
Single Phase

Three Phase

• Series available as JAN and JANTX
•• Series available as JANTX only

HIGH VOLTAGE DOORBELL" MODULES
40Hz· 5kHz

Doorbell" is a registered trademark of Unitrode Corporation
• Series available as JAN only

SENSISTORS

II

Sensistors" is a registered trademark of Unitrode Corporation

POWER MOSFETS
N·Channel

14
9

100
200
400
500

24
19
9

7.75

5.5
4.5
38
30
14
12

152
120
56
48

150
150
150
150

/542A
/542A
/542A
/542A
/543A
/543A
/543A
/543A

• Series available as JAN. JANTX and JANTXV.
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

2-22

PRINTED IN U.S.A.

MILITARY DESIGNERS' GUIDE

.......

NPN POWER SWITCHING TRANSISTORS
~.,

~

2A
2A
2A
2A

200V
300V
200V
300V

3A
3A
3A
3A

60V
SOV
60V
SOV

5A
5A
5A
5A
5A
5A
5A
5A
5A
5A
5A

..

.M•
• • IC~
40@.5A
25@ .5A
40@.5A
25@ .5A
20@
20@
40@
40@

~.~'

__:
>JIIUJI
.•
....:;~~,;

.4V@ 1A
.4V@ 1A
.4V @ 1A
.4V@ 1A

1A
1A
1A
1A

.5V@2A
.5V@2A
.5V@2A
.5V@2A

SOV
SOV
SOV
SOV
SOV
SOV
SOV
200V
300V
200V
300V

40@ 1A
40@ 1A
40@ 1A
40@ 1A
80@ 1A
40@ 1A
SO@lA
40@ 1A
25@lA
40@ 1A
25@ 1A

1.0V@ 1A
.25V@ 1A
.25V@ 1A
.25V@ 1A
.25V@ 1A
.25V@ 1A
.25V@ 1A
.4V @3A
.4V @3A
.4V @3A
.4V @3A

SA
SA
SA
SA
SA
SA

250V
350V
300V
300V
400V
400V

15@3A
12@3A
7@5A
7@5A
7@5A
7@5A

0.SV@3A
1.5V@ 3A
1.5V@ 3A
1.5V @ 3A
1.5V@5A
1.5V @ 5A

lOA
lOA

70V
120V

1O@ lOA
10 @ lOA

15A
15A
15A

100V
300V
400V

20A
20A
30A
30A

0.4.115
0.6.115
0.4.115

TO·66
TO·66
TO-5
TO-6

0.6.115

1.2.115

TO-5
TO-5
TO-5
TO-5

1.2.115

1.2.115
1.2.115

TO-59
TO-59
TO-U1
TO-U1
TO-1U
TO-59
TO-59
TO-66
TO-66
TO-5
TO-5

0.3.115
0.3.115

0.S.u5
1.0.115

0.S.u5
1.0.115
0.S.u5
1.0.115
0.S.u5
1.0.115
0.4.115
0.4.115
0.9.115
0.9.115
0.4.115

TO-3
TO-3
TO-3
TO-3
TO-3
TO-3

0.6V@ 5A
1.0V@ lOA

0.4.115
0.2.115

TO-5
TO-3

12@SA
12@5A
12@5A

1.0V@SA
1.5V @ lOA
1.5V@ lOA

0.3.115

TO-3
TO-3
TO-3

90V
75V

20 @ 12A
20@ lOA

1.2V @ 12A
1.0V@ lOA

90V
120V

20@ 15A
20 @ 15A

0.75V @ 15A
0.75V@ 15A

0.4.115

0.7.115

0.7.115
0.5.115

0.5.115
0.5.115
0.5.115

:~i\~ls~:
1454*
1454
1454
1454
1393*
1393
1393
1393
1277**
1315*
1315
1374*
1374
1374
1374
1455*
1455
1455
1455
149S
149S
N/A
N/A
N/A
N/A

1394*
N/A
N/A

TO-3
TO-3

1525
1525
1439*
1439

TO-3
TO-3

N/A
N/A

• Series available as JAN, JANTX and JANTXV
•• Series available as JAN and JANTX

POWER DARLINGTONS
5A
5A
5A
5A

SOV
150V

2000
1000
2000
1000

sov

150V

TO-33
TO-33
TO-66
TO-66

1472**
1472
1472
1472

TO-1S

1493*

•• Series available as JAN and JANTX

PROGRAMMABLE UNIJUNCTION TRANSISTORS
1.5mA @ RG = 200n
• Available as JAN, JANTX and JANTXV
UNITROOE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
,.TWX (710) 326·6509 • TELEX 95-1064

2-23

PRINTED IN U.S.A

•

MILITARY DESIGNERS' GUIDE'
POWER ZENERS AND TRANSIENT SUPPRESSORS

• Series available as JAN, JANTX and JANTXV

THYRISTORS
Silicon Control Rectifiers

1.25A
1.25A
1.25A
1.25A
1.25A

30V
60V
lOOV
150V
200V

200p.A
200p.A
200p.A
200p.A

O.8V
O.8V
O.8V
O.8V
O.8V

TO-9
TO-9
TO-9
TO-9
TO-9

1198'··
1198
1198

1.6A
1.6A
1.6A
1.6A
1.6A
1.6A
1.6A

50V
lOOV
150V
200V
250V
300V
400V

20p.A
20p.A
20p.A
20p.A
20p.A
20p.A
20p.A

O.6V
O.6V
O.6V
O.6V
O.6V
O.6V
O.6V

TO-39
TO-39
TO-39
TO-39
TO-39
TO-39
TO-39

1276"
1276

N/A
/198

N/A

1276
N/A

1276
1276

• Series available as JAN, JANTX and JANTXV
•• Series available as JAN and JANTX
••• Series available as JAN only
t Available in "A" and non "A" versions

Ultra Fast Switching

Radiation Resistant

t Post 3xlO" NVT
UNITROOE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

2-24

PRINTED IN U.S A.

LINEAR INTEGRATED CIRCUITS

\'

3-1

~

•

3·2

LINEAR INTEGRATED CIRCUITS

PRODUCT SELECTION GUIDE

Pulse Width Modulators

"

/

x
X

PERfORMANc,ECHAAACrElUS'rJCS;

X lOOmA

300kHz X

X X X X 200mA

500kHz X

100mA
OAA

16 Pin DIP

X

16 Pin DIP

500kHz

X X X

16 Pin DIP

500kHz

X X X

16 Pin DIP

X X X X X X 100mA

400kHz

X X X

X

18 Pin DIP

X

300kHz X

X

X

16 Pin DIP

X X X X

X

Pulse

X X X X

X

lOOmA
O.4A
Pulse

200mA

18 Pin DIP

16 Pin DIP
X

x

X

300kHz X

200mA

X
18 Pin DIP

X X X X X X 200mA

X 500kHz

X X X X

X

16 Pin DIP

x

X X X X X 200mA

X 500kHz

X X X X

X

16 Pin DIP

X X X X X X 200mA

X 500kHz

X

X X N/A

lOOmA
1A

X 500kHz

X

X

X

X X X

X

18 Pin DIP

N/A X

8 Pin DIP

Pulse

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

3-3

PRINTED IN

u.s

A

LINEAR INTEGRATED CIRCUITS

PRODUCT SELECTION GUIDE

Power Supply Support Functions
Power Supply
Supervisory Circuit,
Monitors and Controls
Power Supply Output

- Dual High Current
MOSFET Compatible
Output Driver

•
•
•
•
•
•
•
•

Over/Under-Voltage, and Current Sensing Circuits
Programmable Time Delays
SCR "Crowbar" Drive of 300mA
Optional Over-Voltage Latch
Internal 1% Accurate Reference
Remote Activation Capability
Uncommitted Comparator
Inputs for Low Voltage Sensing (UC1544 series only)

•
•
•
•
•
•
•
•
•

Dual, 1.5A, Totem Pole Outputs
Parallel or Push-Pull Operations
Single-Ended to Push-Pull Conversion
Internal Overlap Protection
Analog, Latched Shutdown
High-Speed, Power MOSFET Compatible
Thermal Shutdown Protection
5 to 40V Operation
Low Quiescent Current

16 Pin
DIL
(1543 Series)

18 Pin
DIL
(1544 series)
16 Pin
DIL

High Efficiency
Linear Regulator,
Low Input-Output
Differential

• Minimum V,N-VOur less than O.5V at 5A Load
with External Pass Device
• Equally Usable for either Positive
or Negative Regulator Design
• Adjustable Low Threshold Current Sense Amplifier
• Under- and Over-Voltage Fault Alert with
Programmable Delay
• Over-Voltage Fault Latch with lOOmA
Crowbar Drive Output

16 Pin
DIL

Isolated Feedback
Generator
Stable and Reliable
Alternative to an
Optical Coupler

• An Amplitude-Modulation System for Transformer
Coupling an Isolated Feedback Error Signal
• Internal 1% Reference and Error Amplifier
• Loop Status Monitor
• Low-Cost Alternative to Optical Couplers
• Internal Carrier Oscillator Usable to 5MHz
• Modulator Synchronizable to an External Clock

14 Pin
DIL

Quad Supply and
Line Monitor
Precision System

•
•
•
•
•
•

Monitor Four Power Supply Output Voltage Levels
Both Over- and Ul)der-Voltage Indicators
Internal Inverter for Negative Level Sense
Adjustable Fault Window
Additional Input for Early Line Fault Sense
On Chip, High-Current General Purpose OP-AMP

18 Pin
DIL

Bridge
Transducer
Switch

•
•
•
•
•
•
•
•
•

Dual Matched Current Sources
High-Gain Differential SenSing Circuit
Wide Common-Mode Input Capability
Complimentary Digital Open-Collector Outputs
Externally Programmable Time Delay
Optional Output Latch with Reset
Built-in Diagnostic Activation
Wide Supply Voltage Range
High Current Heater Power Source Driver

16 Pin
DIL

Functional Circuit

UNITROOE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

3-4

PRINTED IN U.S.A

PRODUCT SELECTION GUIDE

LINEAR INTEGRATED CIRCUITS
Voltage Regulators
Three Terminal Voltage Regulators, Adjustable
OUTPUT

TYPE

ClIlWNT
(A)

f'OLARrtY

"

-

"

,-

l'ACKME'

UC117K/lM 117K
l!C217K/LM217K
*UC317KIlM317K

1.5A

Pos_

Adjustable from 1.2V to 37V

TO-3
TO-3
TO-3

UC137KIlM 137K
. UC237K/LM237K
• lIC337K/LM337K

1.5A

Neg.

Adjustable from -1.2V to -37V

TO-3
TO-3
TO-3

UCl50K/LM 150K
UC250K/LM250K
.. UC350K/LM350K

3.0A

Pos_

Adjustable from 1.2V to 33V

TO-3
TO-3
TO-3

Three Terminal Voltage Regulators, Fixed, Positive
,OUTPUT ___
. .

(V)

,

'

,',

REGULATED t)UTf'UT. VOLTAGt!

et.lRRENT

TYPE

UC7800AKlLM14OAK SERIES
.' *UC7800ACKlLM340AK SERIES
, UC18OOK1LMl40K SERIES
UC7800cK/LM340K SERIES

*

'"

.. ,..

.IiEGUv.TEJrO'::f>UTVCtl1AG£'

.,

.

HC

1'A~

(A)

POLAltfTV

1.5A

Pas.

5V ± 1%

12V ± 1%

15V ± 1%

TO-3
TO-3

1.5A

Pas,

5V ±4%

12V ± 4%

15V ± 4%

TO-3
TO-3

Three Terminal Voltage Regulators, Fixed, Negative
,.",

OUTPUT

TYPE

et.lRRENT

.

REGULATED ouTPUTYOLTAGE
,

(V).',"

"

(A)

)()LAltfTV

UCI900AKlLM120K SERIES
.-- .. UC7900ACK SERIES

1.5A

Neg.

-5V ± 1%

-12V ± 1%

-15V± 1%

TO-3
TO-3

UC7900K SERIES
*UC7900CK/LM32QK SERIES

1.5A

Neg,

-5V ± 4%

-12V ± 4%

-15V ± 4%

TO-3
TO-3

,

P~E

• Also available in 10·220 package.

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

3-5

PRINTED IN U S.A

II

LINEAR INTEGRATED CIRCUITS

PRODuct SELECTION GUIDE

Motor Control Circuits
."

OESCRIPTION"

L292

2A, 36V, 30KHz,
H-Bridge Motor Driver

•
•
•
•

Four Channel
Push-Pull Drivers
for I nductive Loads

•
•
•
•
•
•

L293f293E
,

..

,'"

-_.

,
,

,

TYP£

--

l295

;

UCl637/2637/3637

Dual PWM Solenoid
Driver and
Stepper Motor Driver

Switched Mode
Controller for
DC Motor Drive

_.

. KEYF~RES:

External Loop Adjustment
Single Power Supply (18-36V)
Input Signal Symmetric to Ground
Thermal Protection

lA Output per Channel (2A peak non-repetitive)
Supply Voltage to 36V
Inhibiting Facility
Thermal Protection
High Noise Immunity
E-Version Provides for External
Emitter Sense Resistors
• Compatible with Standard TIL Logic Inputs

•
•
•
•
•

3A Peak Current Per Driver
Supply Voltage to 40V
Current Limiting
Thermal Protection
Compatible with Standard TIL Logic Inputs

• Single or Dual Supply Operation

• ± 2.5 to ± 20V Input Supply Range
• ± 5% Initial Oscillator Accuracy;
± 10% Over Temperature

~~,
15 Pin
Power SIP

L293
16 Pin
"Batwing" Dip

L293E
20 Pin
"Batwing" Dip
15 Pin
Power SIP

18 Pin
Dip

• Pulse-by-Pulse Current Limiting
• Under-Voltage Lockout
• Uncommitted PWM Comparators for
Design Flexibility

.
Uct7l7/UC37V

Stepper Motor
Drive Circuit

•
•
•
•
•
•

Half-Step and Full-Step Mode
Bipolar Constant Current Chopper Drive
Built-In Protection Diodes (Schottky)
Wipe Range of Current Control 5-1000mA
Wide Voltage Range 1O-45V
Designed for Unregulated Motor
Supply Voltage
• Therma I Overload Protection

16 Pin
Dip

Note: U2TA506, 8 & 10 and U2TA606, 8 & 10 TO-92 Darlingtons are appropriate for driving DC brush less motors and other inductive loads.

UN ITROOE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

3-6

PRINTED IN USA

LINEAR INTEGRATED CIRCUITS

L292

Switchmode Driver for DC Motors
FEATURES

DESCRIPTION

• Driving capability: 2A, 36V, 30KHz

The L292 is a monlithic LSI circuit in a 15-lead Multiwatt'" package. It is intended to
drive DC motors controlling positioning devices such as used in typewriters, printers,
plotters and other computer peripherals.

• Two logic chip enable inputs
• External loop gain adjustment
• Single power supply (18 to 36V)
• Input signal symmetric to ground
• Thermal protection

The device contains a level shifter, triangle waveform oscillator, error amplifier, PWM
comparator, current sensing amplifier, H-bridge output stage with a 2A, 36V driving
capability and two output enable inputs. Protection circuitry includes under-voltage
output inhibit and thermal protection.

ABSOLUTE MAXIMUM RATINGS

THERMAL DATA

Power Supply, Vs ........................................ 36V
Input Voltage, VI ................................ -15 to +VsV
Inhibit Voltage, Vinhibil ............................... 0 to VsV
Output Current, 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5A
Total Power Dissipation (Tease = 75°C) .................. 25W
Storage and Junction Temperature, Ts1g ........ -40 to +150°C
Thermal Resistance Junction-Case, 8 J c ............... 3°C/W

Thermal Resistance Junction-Case, 8 JC .••.•.•.•. 3°C/W max

BLOCK DIAGRAM
+v,
470pF

cr
lOOnf,;.

2

r---- --- - --------- - --I
I

=f_ RS,

14

---I
I
I
I

L292

1l

10

4_

12

CE2
l5kQ

13
GEl

r1. 5nF
-;:' CT

3-7

~UNITRDDE

•

L292

CONNECTION DIAGRAM

MECHANICAL DATA
V PACKAGE

-

MOTOR

IE=?R.2
INHIBIT(CE1)

11===== 6~~\~lTW)E2)
11===:::::' gD~~Mf~RR AMPL.)

I~
I

!~~~~~~ ~Np~T
(ERR. AMPL.)
INPUT (LEVEL SHIFT)

·11-

OUTPUT C.S.A.

11===== ~~~P. INPUT
II====- ~.JTOR
Dimensions in millimeters

ELECTRICAL CHARACTERISTICS (TA

=25°C; fo•c =20KHz unless otherwise specified)
SYMBOL

PARAMETER
Supply Voltage

V.

Quiescent Drain Current

Id

Input Offset Voltage (Pin 6)

Yo.

MIN.

TEST CONDITIONS

TYP.

18

V. = 20V (offset null)

30

V. = 36V, 10 = 0

Vlnh. L

Inhibit Input Voltage (Pin 12, 13)

Input Current (Pin 6)

linh. L

Vlnh. (L) = 0.4V

linh. H

Vinh. (H) = 3.2V
VI = +8.8V

Input Voltage (Pin 6)

VI

Output Current

10

RS1 = RS2 = 0.20

VD

(including sensing resistors)

Sensing Resistor Voltage Drop

VRS
10
Vi

Tj = 150°C, 10 = 2A

Frequency Range (Pin 10)

mA

±350

mV

2

V

-100

pA

0.5

mA

V

10 = -2A

-9.1

V

±2

A

10 = 2A

220

240

5

V

3.5

V

0.44

V

260

mA/V

mAIV

120

RS1 = RS2 = 0.40
1

foac

pA
mA

9.1

10= 1A
RS1 = RS2 = 0.20

10
-1.8

10 = 2A

VI ± 9.8V, RS1 = RS2 = 0.20

Total Drop Out Voltage

Transconductance

V

50

V

VI = -8.8V

Ii

UNITS

36

3.2

Vinh. H
Inhibit Input Current

MAX.

30

KHz

TRUTH TABLE
Vlnhibit
Pin 12

Pin 13

L
L
H
H

L
H
L
H

Output Stage
Condition
Disabled
Normal Operation
Disabled
Disabled

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

3-8

PRINTED IN U.S A

L292

FUNCTIONAL DESCRIPTION
The error signal input has been designed to accept a bidirectional
error signal symmetrical to ground. The level shifter converts the
± error signal into a single positive signal with the aid of an
internally generated SV reference. This same reference voltage
supplies the triangle wave oscillator whose frequency is fixed by
the external RC network (RT, CT . pins 11 and 10) where:
f esc

=

It is possible to synchronize two L292s, if desired, using the
network shown in Figu re 1.

1
2RC

(with R 2:: S.2KQ)

The oscillator determines the switching frequency of the output
stage and should be in the range 1 to 30KHz.
Motor current is regulated by an internal loop in the L292 which is
performed by the resistors RS1, RS2 and the differential current
sense amplifier, the output of which is filtered by an external RC
network and fed back to the error amplifier.

Figure 1.

The choice of the external components in this RC network (pins 5,
7,9) is determined by the motor type and the bandwidth requirements. The values shown in the diagram are fora 5Q, 5mH motor.
(See L292 Transfer Function Calculation in Application Information).

Finally, two enable inputs are provided on the L292 (pins 12 and
13-active low and high respectively). Thus the output stage may
be inhibited by taking pin 12 high or by taking pin 13 low. The
output will also be inhibited if the supply voltage falls below lSV.

The error signal obtained by the addition of the input and the
current feedback signals (pin 7) is used to pulse width modulate
the oscillator signal by means of the comparator. The pulse width
modulated signal controls the duty cycle ofthe H-bridge to give an
output current corresponding to the L292 input signal.

The enable inputs were implemented in this way because theyare
intended to be driven directly by a microprocessor. Currently
available microprocessors may generate spikes as high as 1.5V
during power-up. These inputs may be used for a variety of applications such as motor inhibit during reset of the logical system
and power-on reset (see Figure 2).

The interval between one side of the bridge switching off and the
other switching on, T, is programmed byCT in conjunction with an
internal resistor RT.
This can be found from:
T = RT . CPIN 10 (CT in the diagram)
Since RT is approximately 1.5 KQ and the recommended T to
avoid simultaneous conduction is 2.5/1S, CPIN 10 should be
around 1.5nF.

"'"'V\I'-{J +V.

The current sense resistors RSI and RSI should be high precision
types (maximum tolerance ±2%) and the recommended value is
given by:

Rmax . 10 max :S O.44V

UNITROOE CORPORATION. 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861·6540
TWX (710) 326-6509 • TELEX 95-1064

Figure 2.

3-9

PRINTED IN U.S.A

•

L292

APPLICATION INFORMATION

+V.

470pF

5100
Fr
loonr;;.

,..-- - - ---

I

:

9

- - - - - - - - - - - ---

5

:I. RS,

3 ________ _

RS,

14

---,
I
I

1292

I

I
I

CUR.

R2

I

SE~~.+I-----t--.

I

RI
:6
V'O'---"'1~2~k"::0""--1

R3

R2

5kO

7.2kO
12kO

ERROR
AMPL.

,

:
:
:
I

I

I
I
I

L___ :: _____________________

10

11

12

CE2

13

CEI

15kO

Figure 3.

The schematic diagram used for the Laplace analysis of the
system is shown in Figure 4.

v,

RS1

=RS2 =R. (sensing resistors)

I

_1_ = 2.5. 10-3 0 (current sensing amplifier transconductance)
R4

1M

=0

I
I

I

LM = Motor inductance
RM = Motor resistance
1M = Motor current

Gmo=--I
VTH •

:'------'
I

L~I~~E~_____

..!

(DC transfer function from the input of the comparator (VTH) to the motor current (1M».

Figure 4.

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 ~ TELEX 95·1064

3·10

PRINTED IN U.S.A

L292

APPLICATION INFORMATION (continued)

s

Neglecting the VCE ••• of the bridge transistor and the VBE of the
diodes:
2Vs

1
Gmo = - RM

where: Vs = supply voltage

1 + ---1M
0.048
2 ~ Wo
(s) = - - ------=--"----,VI
R.
2~s
s'
1+---+ - -

(1)

VA = 8V (reference voltage)

VA

DC Transfer Function

where: Wo =

where:
(pole cancellation)

LM
from which RC = - RM

~

=

1)

~

= 1 from which

2) ~ =

1M
R2R4
1
0.048
A
-(0)=--' - = - - - [-V]
VI
R,R3
R.
R.

1M (I)

1

V2 from which
0.048
= -----(1
R.

Open·Loop Gain and Stability Criterion

1

-

RF
GmoR.
1
--- = --- ----R4 1 + SRFCF
R4C
s (1 + SRFCF)

In order to achieve good stability, the phase margin must be
greater than 45°C when I A.81 = 1.

1

1A.81

2R FCF

)

VI

The previous linear analysis is correct for this example.
Decreasing the ~value, the rise·time ofthe current decreases. But
for a good stability, from relationship (6), the minimum value of ~
is:

<1

1

f=

t
cos ----- e
2RFCF

From Figure 7 it is possible to verify that the L292 works in
"closed· loop" conditions during the entire motor current rise·
time: the voltage lit pin 7 (inverting input of the error amplifier is
locked to the reference voltage VR, present at the non·inverting
input of the same amplifier.

(5)

R.

That means that, at fF = ---'---,1 AIlI must be
27TRFCF
(see Figure 5), that is:

•

(where Vi is the amplitude of the input step).

In DC condition, this is reduced to

sRFC

the damping factor

0.048
-t
1M (t) = ----- [1 - e' 2RFCF (1 + -----)] • VI
R.
4 RFCF

(3)

1M
R2R4
1 +SRFCF
- - (s) = - - - Gmo
2
VI
R.R3
GmoR. + s R4C + S RFCFR4C

A/3 = - - . Gmo

R4C

4 RFCF Gmo R.

By choosing the ~ value, it is possible to determine the system
response to an input step signal. Examples:

(Note that in practice
R must be greater than 5.6KQ)

For RC = LM/RM, the open loop gain is:

is the cutoff frequency

R4C RFCF

-----------IS

(2)

The transfer function is then,

W~

Wo

- m-oR":".r--G

In order to be sure that the current loop is stable the following
condition is imposed:
LM
l+sRC=ls-RM

y
Y

(7)

~min

(6)

1

= 2\12 (phase margin = 45°)

1.2

lA1l1

.,.-

0.9

/

,=

1/../2

~

,=

1

/

~B4--------~~--~

II /

0.6

II
0.3

Figure 5. Open. Loop Frequency Response

o
Closed· Loop System Step Response
a) Small·signals analysis

6

12

15

18

Figure 6. Small Signal Step Response
(Normalized Amplitude vs VR.,cf)

The transfer function (3) can be written as follows:

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

I

.,IV

3·11

PRINTED IN

u.s A

•

L292

APPLICATION INFORMATION (continued)

The cutoff frequency is derived from expression (9) by putting
1M

.

1--1 = 0.707'
Vi

ov

0.048
--(-3dB);
R.

from which:

(10)

Note that RF must be less than 1.5KCl in order to have the maximum current swing at the output of current sensing amplifier.
Working Frequency and Motor Current Ripple
For a value of rotation speed w the e.m.f. Eisequal toKEW, where
KE is the motor speed constant.

OA
V7 = 200mV/div.
1M = lOOmA/dlv.
1= 100",/dlv.
with v, = 1.5 Vp.

Neglecting the motor resistance RM, the VCE.al of the bridge
transistors and the VBE of the diodes, we have:

Figure 7. Motor Current and Pin 7 Voltage Waveforms
(Application of Figure 3). Small Signal Response
b) Large signal response
The large step signal response is limited by slew-rate and inductive load. In this case, during the rise-time ofthe motor current,
the L292 works in open-loop condition, as can be seen from Figure

blM
bt1 = - - - LM
V. - E

(transistors conduction period)

blM
bt2 = - - - LM
V. + E

(diodes conduction period)

(11)

Where blM is the current ripple in the motor (see Figure 9).
The working frequency is:

8.

1

f = - - - = bt1 = bt2
2 RTCT

(12)

where RT is the resistance at pin 11 and CTthecapacitoratpin 10.
RT must be ;:O:8.2Kn due totheoutputcurrentcapabilityatpin 11.

ov

If we consider E = 0 (w = 0; motor stopped) we have:
blM
bt1 = b12 = - - LM

(13)

V.

from this formula we can write

V.

OA

blM =

LM

T

T
(2
= bt1

2"

=b12 = half period)

(13 bis)

The motor current ripple blM must be limited in order to reduce
diSSipation in the motor and the peak output current of the L292.

V7 = lV/dlv
1M = 0 5A/dlv
t = 500ps/dlv

blMma. should be less than 10% of IMma. (see Figure 9).

Figure 8. Motor Current and Pin 7 Voltage Waveforms
(Application of Figure 3). Large Signal Response
The voltage at pin 7 (inverting inputoftheerror amplifier) departs
from the reference voltage VR present at the non-inverting input
and the feedback loop is open.
The feedback loop is on when the motor current reaches its
steady-state value (2A).

Figure 9. Motor Current Waveform

Closed Loop System Bandwidth

From the equation (13 bis) and considering blM = O.IIM max we
have:

A good choice for, is the value 1/-./2. In this case:
1M
0.048
-(s)= - Vi
R.

. 1 + s RFCF
2

2

1 + 2s RFCF + 2S2 RF CF

The module of the transfer function is:
1M

I-y;-I

0.048

=

~ y'[ (1

2)1 +

V.

(8)

0.1 IMma. = - - 2f LMmin

(9)

from which:

CAl RF 2CF2

5 V.

+ 2w RFCF)2 + 1] . [ (1 - 2w RFCd + 1]

UNITROOE CORPORATION. 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

3·12

LMmin = - - f IMma.

(14)

(15)

PRINTED IN U.S A

L292

The switching characteristics of the L292 demand that the working frequency f is less than 30KHz.

Atl

Vsst

A12

Voyer

Atl + At2

Vs

Atl + At2

Vs

'1=1----·------·---

Ifforf = 30KHz, LM is less than LMmin, an external inductor should
be put in series with the motor.

where

'" 2V (2VBE + R.IMI
'" 4V (2VCE sat + 3VBE)
= transistors conduction period.
= diodes conduction period.

From relationship (15) we have:

5 V.

(16)

Lseries = - - - - LM
f IMmax

If Atl

»

4

A problem associated with the system used in the L292 is the
danger of simultaneous conduction in both legs of the output
bridge which, if it were allowed to occur would damage them. To
overcome this the comparator that drives the final stage in effect
consists of two separate comparators (Figure 10): both receive
the same Vt signal but on opposite inputs. The other two inputs are
driven by VTH shifted by plus or minus RTI'. This voltage shift when
compared with Vt results in a delay in switching from one comparator to the other. In this way there will always be a delay between
switching off one leg of the bridge and switching on the other. The
delay T is a function of the integrated resistor RT (l.5K) and an
external capacitor CT connected to pin 10 which also fixes oscillator freq uency.

II

A12 and V. = 20V, we obtain:
(18)

'I = 1- 2()= 80%

Deadtime

(17)

In practice, the efficiency will be slightly lower due to the signal
circuit diSSipation (lW @ 20V) and the finite switching times
(about 1W). If we transfer to the motor a power of 40W the bridge
power dissipation from (18) is lOW and the total diSSipation is
12W. This is an actual efficiency of 77%. Considering a maximum
dissipation equal to 20W for the L292 (Multiwatt package), it is
possible to handle continuous powers greater than 60W.
EXAMPLE
a) Data

- Motor characteristics: LM = 5mH
RM = 50
LM/RM = 1msec
- Voltage and current characteristics:
V. = 20V
1M = 2A
VI = 8.3V
- Closed loop bandwidth: 3kHz.

b) Calculation

- From relationship (4):

It is:
In a typical application, a capacitor of 1.5nF is used to give a
switching delay of 2.25I1S, a more than adequate time when you
consider that the switch-off delay of the integrated transistors is
only 0.5I1s.

0.048
R. = - - - Vi = 0.20
1M

~I'

and from (1):
2V.

Gmo = - - - 1 0

.......--~'a,b

-1

RMVR

./--~Ia,p

RT

VI

-

RC = 1msec [from expression (2)].

-

Assuming, = 1Iy'2; from (7) follows:
1

400 C

f!=2=

.......--~Ic.d
./--~ll,6

4RFCF'0.2

The cutoff frequency is:
143.10-3

IT = - - - - - = 3kHz
RFCF
Figure 10. L292 Deadtime Control

c) Summarizing

Efficiency and Power Dissipation
The expression for the bridge efficiency, independently of the
losses due to the switching times and neglecting the dissipation
due to the motor current ripple, is:

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326-6509 • TELEX 95-1064

RC = 1 . 10-3 sec }
1000 C
----=1
RFCF
-

-

RFCF '" 4711s

C = 47nF
R = 22KO
For RF = 5100 CF= 92nF

3·13

PRINTED IN U S.A.

LINEAR INTEGRATED CIRCUITS

L293
L293E

Push-Pull Four Channel Driver
FEATURES

Di:SCilIPTION

• Output current lA per channel

The L293 and L293E are quad push· pull drivers capable of delivering output currents to
lA per channel. Each channel is controlled by a TIL·compatible logic input and each
pair of drivers (a full bridge) is equipped with an inhibit input which turns off all four
transistors. A separate supply input is provided for the logic so that it may be run off a
lower voltage to reduce dissipation.

• Peak output current 2A per channel
(non repetitive)
• Inhibit facility
• High noise immunity

Additionally the L293E has external connections to the lower emitter of each driver,
permitting the connection of sensing resistor.s, for switchmode control.

• Separate logic supply
• Over·temperature protection

The L293 and L293E are packaged in 16 and 20·pin plastic DIPs respectively; both use the
four center pins to conduct heat to the printed circuit boards.

ABSOLUTE MAXIMUM RATINGS

THERMAL DATA

Collector Supply Voltage, Vc ............................. 36V
Logic Supply Voltage, Vas ................................ 36V
Input Voltage, Vi ......................................... 7V
Inhibit Voltage, Vinh ................ ' ...................... 7V
Peak Output Current (Non·Repetitive), lout ................. 2A
Total Power Dissipation at Tground-pins = 80·C, Ptot ......... 5W
Storage and Junction Temperature, Tstg, TJ ..... -40 to +150·C

Thermal Resistance Junction·Case, 8Jc .......... 14·C/W max
Thermal Resistance Junction·Ambient, 8JA ...... 80·C/W max

CONNECTION DIAGRAM

ORDERING NUMBERS
L2938 (16 leads)
L293E (20 leads)

BLOCK DIAGRAM
DIL·16 (TOP VIEW)

CHIP INHIBIT 1

~ v..

L293

N PACKAGE

INPUT 1

2

15

INPUT 4

OUTPUT 1

3

14

OUTPUT 4

GND

4

13

GND

GND

5

12

GND

OUTPUT 2

6

11

OUTPUT 3

INPUT 2

7

10

v.

8

9

INPUT 3
CHIP INHIBIT 2

Vc

BLOCK DIAGRAM

CONNECTION DIAGRAM

CHIP INHIBIT 1

~ v..

DIL·20 (TOP VIEW)
N PACKAGE

INPUT 1

2

19

INPUT4

OUTPUT!

3

18

OUTPUT 4

SENSE 1

4

17

SENSE4

GND

5

16~ GND

GND

6

15 ~GND

SENSE2

7

14

SENSE 3

OUTPUT2 [ 8

13

OUTPUT 3

INPUT2 [ 9

12

INPUT3

11

CHIP INHIBIT 2

v.

10

~co-~~

12/83

3·14

__~__________________________~

lkQ

UNITRDDE

L293
L293E

MECHANICAL DATA
L293

L293E

8w
ELECTRICAL CHARACTERISTICS (For each channel V. = 24V, V•• = 5V T amb = 25°C unless otherwise specified)
PARAMETER

SYMBOL

Collector Supply Voltage

Ve

Logic Supply Voltage

Vas

Collector Supply Current

Ie

TEST CONDITIONS

MIN.

TYP.

4.5

I••

Input Low Voltage

ViL

Input High Voltage

ViH

Vi = H, 10 = 0, Vinh. =H

16

24

44

60

Vi = H, 10 = 0, Vinh. =H

16

22

Vinh. = L

16

24

-0.3

1.5

V

2.3

Vsa

V

> 7V

2.3

7
-10

p,A

100

p,A

-0.3

1.5

V

V•• :5 7V

2.3

Vsa

V.B > 7V

2.3

7

Vi = L

i;H

Vi = H

Inhibit Low Voltage

Vinh.L

i;nh.L
I;nh.H

mA

Vas :57V

ilL

Low Voltage Inhibit Current

mA

4

Vi = L, 10 = 0, Vinh. = H

Low Voltage I nput Current

High Voltage Inhibit Current

V

6

High Voltage Input Current

Vinh.H

V

36
2

V••

Inhibit High Voltage

UNITS

36
VI = L, '0 = 0, Vinh. = H

Vinh. = L

Total Quiescent Logic Supply Current

MAX.

30

-30

V

-100

p,A

10

p,A

Source Output Saturation Voltage

VCEsalH

10 = -lA

1.4

1.8

V

Sink Output Saturation Voltage

VCEBalL

'0 = 1A

1.2

1.8

V

Sensing Voltage (Pins 4, 7, 14, 17)**

VSENS

Rise Time

t,

2
0.1 to 0.9 Vo'

V

250

ns

Fall Time

tf

0.9 to 0.1 Vo'

250

ns

Turn-On Delay

tON

0.5 Vi to 0.5 Vo

*

450

ns

Turn-Off Delay

toFF

0.5 Vi to 0.5 Vo •

200

ns

·See Figure l.
··Referred to L293E.

UNiTRODE CORPORATION. 5 FORBES ROAD
LEXiNGTON. MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

3-15

PRINTED IN U.S A.

•

L293
L293E

TRUTH TABLE

Figure 1. Switching Times

VI (each channel)

Vo

Vinh.**

H
L
H
L

H
L

H
H
L
L

X·
X·

·High output impedance.
··Relative to the considered channel.

Figure 2. Saturation Voltage vs Output Current

Figure 3. Source Saturation vs Ambient Temperature

Vc = 24V

Vc = 24V

v, = V'nhlbit :;. Vss = 5V

V'nhiblt = Vss = 5V

V V
VeE.at H/

-;::::. P
o

V

~

la = j5A

I--

t::::: ~ElJ8tL

la=

I~

la = 015A

I

la=O.IA

o
-50

1.5

0.5
la

50

-(A)

100

lamb - ("C)

Figure 4. Sink Saturation Voltage vs
Ambient Temperature

Figure 5. Quiescent Logic Supply Current vs
Logic Supply Voltage

Vc =J4V
r--- v,Vlnh==LOW
HIGH

Vc = 24V
Vlnhiblt = Vss = 5V

50

--

I

-

~

48

I

46

1
la=yA

1l
44

10'

V

.........

",

,-:>; .

,

Q~::~I~-_-,_-~~i
~i_'~'i~i~'_JlLf~i ~tlLL'~tJ~____~,
Qi:F:-+t_-_'- li~:--------______________'-___.

f. = 25KHz
~- -,""

y",iJ\c9-:>", -:>",

~,-------+!+-~:-----

,

'\

~-\ .. .;~

II

'\.

\

0\

100

10

R(KCl)

R - (KCl)
t

Fllure 4. Switchinl frequency vs values of Rand C

PRINTED IN U.S.A.

LINEAR INTEGRATED CIRCUITS

UCl17
UC217
UC317

1.5A, Three Terminal Adjustable
Positive Voltage Regulators

FEATURES

DESCRIPTION

•
•
•
•
•
•

This monolithic integrated circuit is an adjustable 3-terminal positive voltage regulator
designed to supply more than 1.5A of load current with an output voltage adjustable
over a 1.2 to 37V range. Although ease of setting the output voltage to any desired value
with only two external resistors is a major feature of this circuit, exceptional line and
load regulation are also offered. In addition, full overload protection consisting of
current limiting, thermal shutdown and safe-area control are included in this device
which is packaged in TO-3 and TO-220 packages. The UC117 is rated for operation
from -55°C to +150°C, the UC217 from -25°C to +150°C and the UC317 from
O°C to + 125°C.

Output voltage adjustable from 1.2 to 37V
Guaranteed 1.5A output current
Line regulation typically 0.01 %/V
Load regulation typically 0.1%
Temperature-independent current limit
Standard 3-lead transistor packages
(TO-3, TO-220)

ABSOLUTE MAXIMUM RATINGS
Power Dissipation ................................. _...... _......... Internally limited
Input-Output Voltage Differential ................................................ 40V
Operating Junction Temperature Range
UC117 ......................................................... -55°C to +150°C
UC217 ......................................................... -25°C to +150°C
UC317 ............................................................ O°C to +125°C
Storage Temperature ............................................... -65°C to + 150°C
Lead Temperature (Soldering, 10 seconds) ..................... _............... 300°C

TYPICAL APPLICATIONS
1.2V-25V Adjustable Regulator

Digllally Selected 0utpuIs

UC117

UC117

V,.----i

I---"~VOUT

R,
240

"'Needed if device is far from
filter capacitors
tOptional-improves transient

response

tt VOUT = 1.25V (1

+

=~)

UC117

v,.
7V - 35V

-..-INPUTS

·Value determines maximum VOUT

·Min output"'" 1.2V

[1JJ
1182

3-25

_UNITRDDE

•

UCl17 UC217 UC317

ELECTRICAL CHARACTERISTICS (Note 1)
PARAMETER

UC317

UC117!UC217

TEST CONDITIONS

MIN.

TYP.

MAX.

0.01

MIN.

UNITS

TYP.

MAX.

0.02

0.01

0.04

%/V

Line Regulation

TA = 25°C. 3V::; (V IN - VOUT)::; 40V.
(Note 2)

Load Regulation

TA = 25°C. lOmA ::; lOUT::; IMAx
VOUT ::;15V. (Note 2)
VOUT 2:: 5V. (Note 2)

5
0.1

15
0.3

5
0.1

25
0.5

mV
%

TA = 25°C. 20ms Pulse

0.03

0.07

0.04

0.07

%/W

50

100

50

100

pA

0.2

5

0.2

5

pA

1.25

1.30

1.25

1.30

V

Thermal Regulation
Adjustment Pin Current
Adjustment Pin Current
Change

lOmA ::; IL ::; IMAx
2.5V ::; (V,N - VOUT) ::; 40V

Reference Voltage

3::; (V,N - VOUT) ::; 40V
lOmA ::; lOUT::; IMAX• P ::; PMAX

Line Regulation

3::; (V ,N - VOUT) ::; 40V. (Note 2)

0.02

0.05

0.02

0.07

%/V

Load Regulation

lOmA ::; lOUT::; IMAX• (Note 2)
VOUT ::; 5V
VOUT 2:: 5V

20
0.3

50
1

20
0.3

70
1.5

mV
%

5

3.5

10

mA

1.20

Temperature Stability

TMIN::; TJ ::; TMAX

1

Minimum Load Current

V,N - VOUT = 40V

3.5

Current Limit

(V IN - VOUT) ::;15V
K Package
T Package
(V,~ - VOUT) = 40V
K Package
T Package

1.5
1.5

1.20

1

2.2
2.2

%

2.2
2.2

A
A

0.4
0.4

0.4
0.4

A
A

0.003

0.003

%

65
80

65
80

dB
dB

1.5
1.5

RMS Output Noise

TA = 25°C. 10Hz::; f ::; 10kHz

Ripple Rejection Ratio

VOUT = lOV. t' = 120Hz
CAOJ = lOpF

Long Term Stability

TA = 125°C. 1000 Hrs.

0.3

1

0.3

1

%

Thermal Resistance. Junction
to Case

K Package
T Package

2.3

3

2.3
4

3

°C/W
°C/W

66

66

Notes: 1. Unless otherwise noted. the above specifications apply over the following conditions:

UCl17: -55°C"; T,"; 150°C
UC217: -25°C"; T, ,,; 150'C
UC317: O'G,,; T,"; 125°G
(V'N - VOUT) = 5V. 10 = O.5A. IMAX =1.5A
2. All regulation specifications are measured at constant junction temperatures using low duty·cycle pulse testing.

TYPICAL PERFORMANCE CHARACTERISTICS
Dropout Voltage

Current Umit

3.0 rA:7V:-OU~T-=:-:IO::!O-m:7
V -.-r--r-..---r-,..-.,

=

g

~

>-

15

'"'"::J

r-~

U

>-

::J

,

~

::J

o

, TJ

1

o

o

2.5

f\

=150'C.J

~

'"~

TJ = -55'C

/

"
TJ =

I,

1.5 f--l--+-+-~~:+-~~I--+--""I

-...:::: r--...

25'C~

V

I

10

f---.l::--+--II--+-+--+-+-I--,i

20

30

1.0L........L_...L._L.....l.._.l..........L_...L.--'_..J

-75

40

INPUT·OUTPUT DIFFERENTIAL (V)

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861·6540
TWX (710) 326'6509'. TELEX 95-1064

-50

-25

25

50

75

100

125

150

JUNCTION TEMPERATURE ('C)

3·26

PRINTED IN U.S,A.

UC117 UC217 UC317

TYPICAL PERFORMANCE CHARACTERISTICS

Minimum Operating Current

Temperature Stability

4.0

1.250

~

,/'

"'

(!)

V

..........

~

~

0

>
u

1.240

"'z

"'el
t:J
'"

•

4.5

1.260

.s<
"'

'"
"'"

2.0

z

\

1.230

2.5

U
I-

"'

V"

u

lfl

15

:;

~ -wb----"

/

/

~//. ~

3.0

IZ

~

T,

3.5

~

CY

1.0

V

~ ~7
TJ= I50 a C

~
~ "'- TJ = 25'C

0.5
1.220
-75

-50

-25

0

25

50

75

100

125

o
o

150

JUNCTION TEMPERATURE ('C)

10

20

30

40

INPUT·DUTPUT DIFFERENTIAL (V)

MECHANICAL SPECIFICATIONS AND CONNECTION DIAGRAMS
UC1l7 UC217 UC317

~EfbE

F-wrM
~I ~*'eI"

Adjustment

Input

H
I

J-

'1?

L

Output

K

C D

e
e
0
E
F

G
H

J
K
L
M

Bottom View

INCHES
.875 MAX.
• 135 MAX.
.250-.450
.312 MIN.
.038-.043DIA.
•188 MAX. RAD.
1.177-1.197
.655-.675
.205-.225
.420-.440
•525 MAX. RAD.
.151-.161DIA.

MILLIMETERS
22.23 MAX .
3.43 MAX •
6.35-11.43
7.92 MIN.
0.97-1.09 DIA .
4.78 MAX. RAD .
29.90-30.40
16.64-17.15
5.21-5.72
10.67-11.18
13.34 MAX. RAD •
3.84-4.09 DIA .

UC317

SEATING
Pl.ANE

~rfi

t-r

hI
A

A

~ f-R
~

I---J

rS-I--.l
~-i
I 3 2

~

.-l.

T

od~'E~

INCHES
MAX
MIN
0.560
0625
B
C

0
I-Adjustment
2-lnput
3-0utput
4-0utput

G

0.380

0.420

0.140
0.020
0.139
0.090

0.190
0.045
0147
0.110
0250
0.025
0.562

0.015
0500
0.045
N

Q

0.190
0.100

0.080
0.045
0.230

0070
0.210

0.120
0115
0055
0270

TO·204AA K(TO·3)

T(TO·220)

MILIMETERS
MIN
MAX
14.23
15.87
966
1066
3.56
4.82
0.51
3.531
2.29

0.38
1270
114
4.83

2.54
2.04
114
5.85

1.14

3.733
279
635
0.64
1427
1.77
533
304
2.92
1.39

685

Note: When ordenng, add suffiX "K" (for TO-3 package) or "T" (for TO-220 package) to the Part Number.

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

3·27

PRINTED IN U.S.A.

UC117 UC217 UC317

APPLICATION HINTS
In operation, the UC117 develops a nominal 1.25V reference
voltage, VREF, between th.e output and adjustment terminal. The
reference voltage is'impressed across program resistor R, and,
since the voltage is constant, a constant current I, then flows
through the output set resistor R., giving an output voltage of

UC1l7

Load Regulation
The UC117 is capable of providing extremely good load regulation
but a few precautions are needed to obtain maximum
performance. The current set resistor connected between the
adjustment terminal and the. outputtermi(lal (usually 2400)
should be tied directly to the output of the regulator rather than
near the load. This eliminates line drops from appearing
effectively in series with the reference and degrading regulation.
With the TO·3 package, it is easy to minimize the reSistance from
the case to the set resistor by using 2 separate leads to the case.
The ground of R2 can be returned near the ground of the load to
provide remote ground sensing and improve load regulation.

Protection Diodes
When external capacitors are used with any IC regulator it is
sometimes necessary to add protection diodes to prevent the
capacitors from discharging through low current points into the
regulator. Most 10/lF capacitors have low enough internal series
resistance to deliver 20A spikes when shorted. Although the surge
is short there is enough energy to damage parts of the IC.
Figure 1
Since the 100/lAcurrentfrom the adjustmentterminal represents
an error term, the UC1l7 was designed to minimize IADJand make
it very constant with line and load changes. To do this, all
quiescent operating current is returned to the outputestablishing
a minimum load current requirement. If there is insufficient load
on the output, the output will rise,

External Capacitors
An input bypass capacitor is recommended. A O.l/lF disc or l/lF
solid tantalum on the input is suitable input bypassing for almost
all applications. The device is more sensitive to the absence of
input bypassing when adjustment or output capacitors are used
but the above values will eliminate the possibility of problems.
The adjustment terminal can be bypassed to ground on the
UC117 to improve ripple rejection. This bypass capacitor
prevents ripple from being amplified as the output voltage is
increased. With a 10/lF bypass capacitor 80 dB ripple rejection is
obtainable at any output level.
In general, the best type of capacitors to use are solid tantalum.
Solid tantalum capacitors have low impedance even at high
frequencies. Depending upon capacitor construction, it takes
about 25/lF in aluminum electrolytic to equall/lF solid tantalum
at high frequencies.

When an output capacitor is connected to a regulator and the
input is shorted, the output capacitor will discharge into the
output of the regulator. The discharge current depends on the
value of the capacitor, the output voltage of the regulator, and the
rate of decrease of Y,N. In the UC1l7, this discharge path is
through a large junction that is able to sustain 15A surge with no
problem. This is not true of other types of positive regulators. For
output capacitors of 25/lF or less, there is no need to use diodes.
The bypass capacitor on the adjustment terminal can discharge
through a low current junction. Discharge occurs when either the
input or output is shorted. Internal to the UC1l7 is a 500 resistor
which limits the peak discharge current. No protection is needed
for output voltages of 25V or less and 10/lF capacitance. Figure 2
shows a UC117 with protection diodes included for use with
outputs greater than 25V and high values of output capacitance.
D,

1N4002

v,.

R,

Although the UCl17 is stable with no output capacitors, like any
feedback circuit, certain values of external capacitance can
cause excessive ringing. This occurs with values between 500pF
and 5000pF. A l/lF solid tantalum (or 25/lF aluminum
electrolytic) on the output swamps this effect and insures
stability.

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95-1064

""-+--~-VOUT

VOUT

=

1.25V

(l+~)

+ R21ADJ

D, protects against C,

D2 protects against C2

Figure 2. Regulator with Protection Diodes

3·28

PRINTED IN ·U.S.A.

UC137
UC237
UC337

LINEAR INTEGRATED CIRCUITS
1.5A, Three Terminal Adjustable
Negative Voltage Regulators
FEATURES

DESCRIPTION

• Output voltage adjustable from -1.2 to
-37V
• Guaranteed 1.5A output current
• Line regulation typically 0.01 %/V
• Load regulation typically 0.3%
• Excellent thermal regulation, 0.002%/W
• 77 dB ripple rejection
• Excellent rejection of thermal transients
• 50 ppmfOC temperature coefficient
• Temperature-independent current limit
• Internal thermal overload protection
• Standard 3-lead transistor packages
(TO-3, TO-220)

The UC137 /UC237 /UC337 are adjustable 3-terminal negative voltage regulators
capable of supplying in excess of -1.5A over an output voltage range of -1.2V to -37V.
These regulators are exceptionally easy to apply, requiring only 2 external resistors to
set the output voltage and 1 output capacitor for frequency compensation. The circuit
design has been optimized for excellent regulation and low thermal transients. Further,
the UC137 series features internal current limiting, thermal shutdown and safe-area
compensation, making them virtually blowout-proof against overloads.
The UC137 /UC237 /UC337 serve a wide variety of applications including local on-card
regulation, programmable-output voltage regulation or precision current regulation. The
UC137 /UC237 /UC337 are ideal complements to the UC117 /UC217 /UC317 adjustable
positive regulators. These devices are available in TO-3 and TO-220 packages. The UC137 is
rated for operation from -55°C to + 150°C, the UC237 from -25°C to + 150°C and the UC337
from O°C to + 125°C.

ABSOLUTE MAXIMUM RATINGS
Power Dissipation _. _. _.. _........... _.. _........... _. _. _. _. _....... Internally limited
Input-Output Voltage Differential. _....... _. _........................ _.... _. _... _40V
Operating Junction Temperature Range
UC137 ...... _. _. _.... _. _............ _............. _... _........ -55°C to +150°C
UC237 _... _. _... _.... _. _...... _........... _. _............. _. _.. -25°C to +150°C
UC337 _......... _. _.... _...... _. _. _... _..... __ .................... O°C to +125°C
Storage Temperature _. _. __ . __ ...................................... -65°C to + 150°C
Lead Temperature (Soldering, 10 seconds) ..................................... 300°C

TYPICAL APPLICATION
Adjustable Negative Voltage Rqulator

V
.,.-; R,
=~c"

-.!...c,t
--I"F

IADJ
-VIN

J-

v..l

I

UC1371
UC337

120n

Ivo",

I

-VOUTtt

·C, = IpF solid tantalum is required only if regulator is far from power-supply filter capacitor.
tOptional-improves transient response

tt

1182

-VOUT

= -1.25V (1 +

l:a~)

3-29

~UNITRDDE

•

UC137 UC237 UC337
ELECTRICAL CHARACTERISTICS (Note 1)
UC1371UC237
TEST CONDITIONS

PARAMETER
Line Regulation

T. = 25'C, 3V:o; IV'N - Vourl :0; 40V
(Note 2)

Load Regulation

T. = 25'C, lOmA :0; 10ur:O; IM• x
IVourl S5V, (Note 2)
IVour I 2: 5V, (Note 2)

Thermal Regulation

MIN,

T. = 25'C, lOms Pulse.

Adjustment Pin Current
Adjustment Pin Current
Change

10mA :0; IL :0; IMAX
2.5V ::;IV,N - Vourl :0; 40V, T. = 25'C

Reference Voltage

T. = 25'C
3:0; IV'N - Vourl :0; 40V
lOmA::; 10ur:O; IMAX' P :0; PMAX

UC337

TYP.

MAX.

0.01

MIN.

UNITS

TYP.

MAX.

0.02

0.01

0.04

%/V

15
0.3

25
0.5

15
0.3

50
1.0

mV
%

0.002

0.02

0.003

0.04

%/W

65

100

65

100

pA

2

5

2

5

pA

-1.225 -1.250 -1.275 -1.213 -1.250 -1.287
-1.200 -1.250 -1.300 -1.200 -1.250 -1.300

V
V

Line Regulation

3V :0; IV'N -

0.02

0.05

0.02

0.07

%/V

Load Regulation

lOmA :0; lour :0; IM• x, (Note 2)
IVour I :0; 5V
IVourl 2: 5V

20
0.3

50
1

20
0.3

70
1.5

mV
%

Temperature Stability

T M'N :0; T; :0; T MAX

0.6

Minimum Load Current

IV'N - Vourl :0; 40V
IV'N - Vourl :0; lOV

2.5
1.2

10
6

mA
mA

Current Limit

IV'N - Vourl :::; 15V
K Package
T Package
IV'N - Vourl = 40V
K Package
T Package

Vourl :0; 40V, (Note 2)

1.5
1.5

RMS Output Noise

T. = 25'C, 10Hz :0; f:O; 10kHz

Ri pple Rejection Ratio

Vour = -lOV, f = 120Hz
C'DJ = lOpF

Long Term Stability

T. = 125'C, 1000 Hours

66

K Package

Thermal Resistance, Junction
to Case

0.6
2.5
1.5

5
3

2.2
2.2

1.5
1.5

%

2.2
2.2

A
A

0.4
0.4

0.4
0.4

A
A

0.003

0.003

%

60

60

dB
dB

77

66

77

0.3

1

0.3

1

%

2.3

3

2.3
4

3

'C/W
'C/W

TPackage

Notes: 1. Unless otherwise noted, the above specifications apply over the following conditions:

UC137: -55'C "T, " 15D'C
UC237: -25'C " T, " 15D'C
UC337: D'C "T," 125'C
IV'N - VouTI =5V, 10 =D.5A, IMAX =1.5A
2. All regulation specifications are measured at constant junction temperatures using low duty-cycle pulse testing.

Current Limit

Dropout Voltage
13.51

r---r-.----r---.--r--r-.---,--..,
VOUT = -5V

AV OUT = lOOmV

f::~
1----___

g

2

~
;;!

~

l-

g 12.511--+-+--=....cl-+--:-I-:--::::-+-+----i

r\,

ii]
0:
0:
::0
()

~

r-

::0

"r-

::0

o

Tj - 150°C

o

o

1101

~

Tj =-55 c C

15
I-

"

::0

~.

1',

"r-

e 1151
::>

'-

''''~
T; /25'C ~ ~ ;;;
1201

1301

ii'
~

10.51 L...--'-_-'---'-_--'-_'---'--_-'---'-_-'
-75 -50 -25
25
50
75 100 125 150

1401

INPUT -OUTPUT DIFFERENTIAL (V)

UNITRODE CORPORATION. 5 FORBES ROAD
LEXI NGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509'. TELEX 95-1064

JUNCTION TEMPERATURE (0G)

3-30

PRINTED IN U.S.A.

UC137 UC237 UC337

TYPICAL PERFORMANCE CHARACTERISTICS

Temperature Stability

Minimum Operating Current
18

11.2701

1.6

-55't/f'

T};
1.4

_ 112601

i::-

<
g

~
~
o

~

w

t-

'"'"

1.0

t-

0.8

~

::>

;::; 11.2501
u

u

............

~

~

~

'"

12

~

u

Iil
'3
a

11.2401

0.6
0.4
0.2

11.2301
-75

-50

-25

25

50

75

100

125

If- .-

TJ; 150'C

o~
o

150

JUNCTION TEMPERATURE ('C)

A
.~

1101

;r

r/

£""

/

Tj=25°C

V

1201

1301

1401

INPUT·OUTPUT DIFFERENTIAL (V)

MECHANICAL SPECIFICATIONS ANO CONNECTION DIAGRAMS
UC137 UC237 UC337

~WE

F

wr~ustment

~kl~l~'"
I
I

I

G

;----:.::

H

I

J-

~

L
Input

7

C D

A

B
C
D

E
F

G
H
J
K
L
M

Bottom View

INCHES
.875 MAX.
• 135 MAX.
.250-.450
.312 MIN.
.038-.043 DIA.
•188 MAX. RAD.
1.177-1.197
.655-.675
.205-.225

MILLIMETERS
22.23 MAX .
3.43 MAX •
6.35-11.43
7.92 MIN •
0.97-1.09 DIA.
4.78 MAX. RAD .
29.90-30.40

.420-.440
.525 MAX. RAD.
.151-.161 DIA.

16.64-17.15
5.21-5.72
10.67-11.18
13.34 MAX. RAD.
3.84-4.09 OIA.

UC337

SEATING
PLANE

i

~[~
IJLl

re-i

F-~'
1 3 2

0

I.:

--l ......
_

.... J

I

~-a
--1

h

"

oj~'t:

A
B

c
l-Adjustment
2-0utput
3-lnput
4-lnput

0
F
G
H
J
K
L
N

Q
R
S
T

TO-204AA K(TO-3)

INCHES
MIN
MAX
0625
0560
0.420
0380
0140
0.190
0.020
0.045
0.147
0139
0090
0110
0.250
0.015
0025
0.500
0.562
0045
0070
0190
0.210
0.120
0100
0080
0115
0.045
0055
0.230
0270

T(TO-220)

MILIMETERS
MAX
MIN
14.23
1587
966
1066
356
482
114
0.51
3531
3733
2.79
229
635
064
038
1427
1270
1.14
177
533
483
254
304
292
204
114
139
585
685

Note: When ordering, add suffix "K" (tor TO-3 package) or "T" (for TO·220 package) to the Part Number.

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON,.MA 02173. TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

3-31

PRINTED IN U.S.A.

II

LINEAR INTEGRATED CIRCUITS

UC150
UC250
UC350

3A, Three Terminal Adjustable
Positive Voltage Regulators
FEATURES

DESCRIPTION

• Output voltage adjl,lstable from 1.2V to
33V
• Guaranteed 3A output current
• Line regulation typically 0.005%1V
• Load regulation typically 0.1 %
• Guaranteed thermal regulation
• Current limit constant with
temperature
• Standard 3-lead transistor package

The UC150/UC250/UC350 are adjustable 3-terminal positive voltage regulators
capable of supplying in excess of 3A over a 1.2V to 33V output range. They require only
2 external resistors to set the output voltage. Further, both line and loaa regulation are
comparable to discrete designs.
In addition to higher performance than fixed regulators, the UC150 series offers full
overload protection. Included on the chip are current limit, thermal overload protection
and safe area protection. All overload protection circuitry remains fully functional even
if the adjustment terminal is accidentally disconnected.
Since the regulator is "floating" and sees only the input·to-output differential voltage,
supplies of several hundred volts can be regulated as long as the maximum input to
output differential is not exceeded.
Supplies requiring electronic shutdown can be achieved by clamping the adjustment
terminal to ground which programs the output to 1.2V where most loads draw little
current.
The UC150/UC250/UC350 are packaged in standard TO·3 transistor packages. The
UC150 is rated for operation from -55·C to +150·C, the UC250 from -25·C to +150·C
and the UC350 from O·C to + 125·C.

ABSOLUTE MAXIMUM RATINGS
Power Dissipation .................................................. Internally limited
Input-Output Voltage Differential ................................................ 35V
Operating Junction Temperature Range
UC150 ......................................................... -55·C to + 150·C
UC250 ......................................................... -25·C to +150·C
UC350 .........................................................•.. O·C to + 125·C
Storage Temperature ............................................... -65·C to +150·C
Lead Temperature (Soldering, 10 seconds) ..................................... 300·C

TYPICAL APPLICATIONS
l.2V-25V AdjuoIablo Reculator
UCI50

VI,.,

~

SA Reculator

R,
0.1

28V

Slow Turn-On

15V Regulator

UC150

UC150

v,.

r-.----....... V15V.
.'"
lN4002

R,

0.1

*Needed if regulator is far from power
supply filter capacitor
tOptional-improves transient
response

tt V"",= 1.25V (I +

=

OUTPUT

~)

Note: Usually R, 2400 for
UCI50 and UC250 and R,

1/82

V,.~i-.JV>o'l.-"""--+---I

= 1200 for UC350

~UNITRDDE

UC150 UC250 UC350

ELECTRICAL CHARACTERISTICS (Note 1)
PARAMETER

TEST CONDITIONS

=

Line Regulation

TA 25°C, 3V :5 (V IN - VOUT) :5 35V,
(Note 2)

Load Regulation

T A 25°C, 10mA :5 louT :5 3A
VOUT :55V, (Note 2)
VOUT 2: 5V, (Note 2)

Thermal Regulation

TYP.

MAX.

0.005

UNITS

TYP.

MAX.

0.01

0.005

0.03

%/V

5
0.1

15
0.3

5
0.1

25
0.1

mV
%

0.002

0.01

0.002

0.03

%/W

50

100

50

100

pA

0.2

5

0.2

5

pA

1.25

1.30

1.25

1.30

V

0.02

0.05

0.02

0.07

%/V

20
0.3

50
1

20
0.3

70
1.5

mV
%

5

3.5

10

mA

MIN.

=

Pulse

=20ms

Adjustment Pin Current
Adjustment Pin Current
Change

lOmA :5 IL :5 3A
3V :5 (V ,N - VOUT) :5 35V

Reference Voltage

3:5 (V ,N - VOUT) :5 35V,
lOmA :5 lOUT :5 3A, P:5 30W

1.20

Line Regulation

3:5 (V ,N

Load Regulation

VOUT :5 5V 10mA :5 10UT:5 3A, (Note 2)
VOUT 2: 5V

Temperature Stability

T MIN :5 T j :5 T MAX

Minimum Load Current

(V'N - VOUT)

Current Limit

(V,N - VOUT) :5lOV
(V'N - VOUT) 30V

RMS Output Noise

TA

Ri pple Rejection Ratio

VOUT
CADJ

Long Term Stability

UC350

UC150/UC250
MIN.

- VOUT) :5 35V, (Note 2)

1.20

1

1

= 35V

3.5
3.0

=

=25°C, lOHz:5 f :5 10kHz
= lOV, f = 120Hz
= 10pF
TA = 125°C, 1000 Hrs.

66

Thermal Resistance, Junction
to Case

4.5
1

3.0

%

A
A

4.5
1

0.003

0.003

%

65
86

65
86

dB
dB

0.3

66
1
1.5

0.3

1

%

1.5

°C/W

Notes: 1. Unless otherwise noted, the above specifications apply over the following conditions:
UC150: -55°C"; T, ,,; 150°C
UC250: -25°C"; T, ,,; 150°C
UC350: O°C ,,; T, ,,; 125°C
(V ,N - VOUT) = 5V, lOUT = 1.5A
2. All regulation specifications are measured at constant junction temperatures using low duty·cycle pulse testing.

UNITRODE CORPORATION· 5 FORBES ROAD
LEXI NGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95-1064

3·33

PRINTED IN U.S.A.

II

UC150 UC250 UC350
TYPICAL PERFORMANCE CHARACTERISTICS

Current Umit

Dropout Voltage
VOUT = lOOmV

T, =125 ,C
'-.:J!

5

...z

~~ r-- T, =
;
; T,=t,~

~J -...,

4

UJ

0:
0:

::J

...

i

~

::J

o

~

;
o

'" '"

o

10

15

r-..

r-

k= 3A

20

1,= 200mA

~~

25

30

0.5
-75

35

-25

INPUT -OUTPUT DIFFERENTIAL (V)

V

ILI= 2A

r- 1"--4.

F:::: t::: t"-- t--.. t--. 1,1=

"

I

U

l"- t-

-55'C

500mA

E;: ~
~~I"
25

75

125

JUNCTION TEMPERATURE ('C)

Ripple Rejection
100r-----r-----r-----r-----r----,

40

IL = 500mA
VIN = 15V
Vour = lOV

20

TI = 25"C

0
10

100

lk

10k

lOOk

1M

FREQUENCY (Hz)

MECHANICAL SPECIFICATIONS AND CONNECTION DIAGRAM
UC150 UC250 UC350

~BbE
C

0

TO·204AA K(TO·3)

F~M

I
G

l

7EiJ-L

~-

"7,-

I
G>

H

I

J

-~
K

Bottom View

,~.

L

Output

A
B

C
D
E
F
G

H
J
K
L

M

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95-1064

INCHU

MilliMETERS

.875 MAX.
. 135 MAX.
.250-.450
.312 MIN.
.038-.043 DIA.
.188 MAX. RAD.
1.177 -1.197
.655-.675
.205-.225
.420-.440
.525 MAX. RAD.
. 151-.161 DIA.

22.23 MAX .
3.43 MAX .
6.35-11.43
7.92 MIN .
0.97-1.09 DIA .
4.78 MAX. RAD.
29.90- 30.40
16.64-17.15
5.21-5.72
10.67-11.18
13.34 MAX. RAD.
3.84-4.09 DlA .

3·34

PRINTED IN U.S.A.

UC150 UC250 UC350

APPLICATION HINTS
In operation, the UC150 develops a nominal 1.25V reference
voltage, VREF, between the output and adjustment terminal. The
reference voltage is impressed across program resistor R, and,
since the voltage is constant, a constant current I, then flows
through the output set resistor R., giving an output voltage of

Load Regulation
The UC150 is capable of providing extremely good load regulation
but a few precautions are needed to obtain maximum
performance. The current set resistor connected between the
adjustment terminal and the output terminal (usually 2400)
should be tied directly to the output of the regulator rather than
near the load. This eliminates line drops from appearing
effectively in series with the reference and degrading regulation.
With the TO-3 package, it is easy to minimize the resistance from
the case to the set resistor by using 2 separate leads to the case.
The ground of R. can be returned near the ground of the load to
provide remote ground sensing and improve load regulation.

UC150

Protection Diodes
When external capacitors are used with any IC regulator it is
sometimes necessary to add protection diodes to prevent the
capacitors from discharging through low current points into the
regulator. Most lOpF capacitors have low enough internal series
resistance to deliver 20A spikes when shorted. Although the surge
is short there is enough energy to damage parts of the IC.
When an output capacitor is connected to a regulator and the
input is shorted, the output capacitor will discharge into the
output of the regulator. The discharged current depends on the
value of the capacitor, the output voltage of the regulator, and the
rate of decrease of V,N. In the UC150, this discharge path is
through a large junction that is able to sustain 25A surge with no
problem. This is not true of other types of positive regulators. For
output capacitors of 25pF or less, there is no need to use diodes.

Figure 1
Since the 50llA current from the adjustment terminal represents
an error term, the UC150 was designed to minimize IADJand make
it very constant with line and load changes. To do this, all
quiescent operating current is returned to the outputestablishing
a minimum load current requirement. If there is insufficient load
on the output, the output will rise.

The bypass capacitor on the adjustment terminal can discharge
through a low current junction. Discharge occurs when either the
input or output is shorted. Internal to the UC150 is a 500 resistor
which limits the peak discharge current. No protection is needed
for output voltages of 25V or less and 10ilF capacitance. Figure 2
shows a UC150 with protection diodes included for use with
outputs greater than 25V and high values of output capacitance.

External Capacitors
An input bypass capacitor is recommended. A O.lIlF disc or IIlF
solid tantalum on the input is suitable input bypassing for almost
all applications. The device is more sensitive to the absence of
input bypassing when adjustment or output capacitors are used
but the above values will eliminate the possibility of problems.
The adjustment terminal can be bypassed to ground on the
UC150 to improve ripple rejection. This bypass capacitor
prevents ripple from being amplified as the output voltage is
increased. With a lOpF bypass capacitor 86 dB ripple rejection is
obtainable at any output level.

D,
IN4DD2

v,.

In general, the best type of capacitors to use are solid tantalum.
Solid tantalum capacitors have low impedance even at high
frequencies. Depending upon capacitor construction, it takes
about 25pF in aluminum electrolytic to equal IpF solid tantalum
at high frequencies.
01 protects against C1

Although the UC150 is stable with no output capacitors, like any
feedback circuit, certain values of external capacitance can
cause excessive ringing. This occurs with values between 500pF
and 5000pF. A IpF solid tantalum (or 251lF aluminum
electrolytic) on the output swamps this effect and insures
stability.

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

D2 protects against C2

VOUT

= 1.25V (

1+

~~)

+ R.I ADJ

Figure 2. Regulator with Protection Diodes

3-35

PRINTED IN U.S.A.

11

LINEAR INTEGRATED CIRCUITS
Advanced Regulating Pulse Width Modulators

UC493A
UC494A
UC495A
UC495B

UC493AC
UC494AC
UC495AC
UC495BC

FEATURES

DESCRIPTION

• DL!al uncommitted 40V, 200mA output
transistors

This entire series of PWM modulators each provide a complete pulse width modulation
system in a single monolithic integrated circuit. These devices include a 5V reference
accurate to ±1 %, two independent amplifiers usable for both voltage and current
sensing, an externally synchronizable oscillator with its linear ramp generator, and two
uncommitted transistor output switches. These two outputs may be operated either in
parallel for single'ended operation or alternating for push· pull applications with an
externally controlled dead· band. These units are internally protected agai'nst double·
pulsing cif' a single output or from extraneous output signals when the input supply
vOltage is below minimum.
The UC495A and UC495B also contain an on·chip 39V zener diode for high·voltage
applications where Vee would be greater than 4OV, and a buffered output ~teering
control that overrides the internal control of the pulse steering flip·flop.
UC493A and UC494A are packaged in a 16'pin DIP, while the UC495A and UC495B are
packaged in an 18·pin DIP. The UC493A, UC494A, UC495A and UC495S are specified
for operation over the full military temperature range of -55·C to + 125·C, while the
UC493AC, UC494AC, UC495AC and UC495BC are designed for industrial applications
from O·C to +70·C.

•
•
•
•
•
•
•
•

1% accurate 5V reference
Dual error amplifiers
Wide range, variable deadtime
Single·ended or push·pull operation
Under· voltage lockout with hysteresis
Double pulse protection
Master or slave oscillator operation
UC493A1UC495B: Built in 80mV
threshold for current limiting

• UC495A1UC495B: Internal 39V zener
diode
• UC495A1UC495B: Buffered steering
control

ABSOLUTE MAXIMUM RATINGS (Note 1)
Supply Voltage, Vee (Note 2) ................ : .............. 45V
Amplifier Input Voltages ............................ Vee + 0.3V
Collector Output Voltage .................•................ 41 V
Collector Output Current ............................... 250mA
Continuous Total Dissipation ......................... 1000mW
@ (or below) 25·C free air temperature range (Note 3)
Storage Temperature Range .................... -65· to +150·C
Lead Temperature %6" (1.6mm) from case for 60 seconds,
J Package ............................................ 300·C
Lead Temperature %6" (1.6mm) from case for 10 seconds,
N Package ........................................... 260··C
Not•• : 1. Over operating free air temperature range unless otherwise noted.

RECOMMENDED OPERATING CONDITIONS
Supply Voltage Vee ................................. 7V to 40V
Error Amplifier Input Voltages ................. -0.3V to Vcc-2V
Collector Output Voltage .................................. 40V
Collector Output Current (each transistor) ............ : .. 200mA
Current into Feedback Terminal ......................... 0.3mA
Timing Capacitor, CT .....................•. 0.47nF to 1O,000nF
Timing Resistor, RT ............................ 1.8KO to 500KO
Oscillator Frequency ................•......... 1kHz to 300kHz
Operating Free Air Temperature
UC493A, UC494A, UC495A, UC495B ....... -55·C to +125·C
UC493AC, UC494AC, UC495AC, UC495BC ..... O.~C to +70·C

2. All voltage values are with respect to network ground terminal.
3. For J package, derate at 8.2mW/'C for ambient temperature
above +28'C. For N package, derate at 9.2mW/'C for ambient
temperature above +41 'C.

BLOCK DIAGRAM
(UC495A & UC495B)

R,
E,

C, --1'''"'-'''':'''::'--''-'

FUNCTION TABLE

DEAD- -O.lV
TIME -11-+----1/
CONTROL

j-----,
I

I

I

NON
INV. INPUT----Il~
INV. INPUT·-----ti"

REFouT

39V
3K

t-vv~--~------GND

PWMCOMP-~---~

'-----I> (UC493

12/83

Output Function

Ground

Single-Ended or
Parallel Operation

VAEF

Push-Pull Alternating
Outputs

UC495A and UC495B Only
Steering Control
(Output Control

,I
COMPo

Output Control
Connected to:

I ______
Vz
L
-':

at VFlEF)

(UC495A & UC495B)

Vs < O.4V
V. > 2.4V

& UC495B)

3·36

Output Function
PWM Output at Q,
PWM Output at Q,

~UNITR_DDE

UC493A
UC494A
UC495A
UC495B

CONNECTION DIAGRAMS
UC493A/UC493AC
UC494A/UC494AC

DIL·l6 (Top View)
J or N Package

DIL·l8 (Top View)
J or N Package

ERROR
AMP

ERROR
AMP

NON·INY INPUT

I

+

NON·INY INPUT

I

+

INY INPUT

2

-

INY INPUT

2

-

COMPEN/PWM COMP INPUT

DEAD TIME CONTROL

4

GROUND

7

DEAD TIME CONTROL

UC493AC
UC494AC
UC495AC
UC495BC

UC495A1UC495AC
UC495B/UC495BC

3 =0 IV
4

GROUND 7J--......-');"~'l!.21

ELECTRICAL CHARACTERISTICS (Unless otherwise stated, oyer recommended operating free·air temperature
range, Vee = 15V, f = 10kHz.)
PARAMETER

TEST CONDITIONS

MIN.

TYP.

MAX.

UNITS

4.95

5

5.05

V

2

25

mV

15

mV

Reference Section

=1mA, TA =25·C
=7V to 40V
10 =1mA to 10mA
A TA =Min. to Max.
VREF =0, TA =25·C
10

Output Voltage (V REF)
Input Regulation

Vee

Output Regulation
Output Voltage over Temperature
Short Circuit Output Current (Note 1)

1
4.90
10

35

5.10

V

50

mA

Oscillator Section
Frequency (Note 2)

CT

=O.OlpF, RT =12kn

10

kHz

Standard Deviation of Frequency
(Note 3)

All values of Vee, CT, RT,
TA constant

10

%

Frequency Change with Voltage

Vee

0.1

%

Frequency Change with Temperature

CT O.OlpF, RT 12kn
A TA Min. to Max.

=7V to 40V, TA =25·C
=
=
=

2

%

-2

-10

pA

3

3.3

Deadtime Control Section (Output Control connected to VREF)
Input Bias Current (Pin 4)

V(PIN

41

Maximum Duty·Cycie (Each Output)

V(PIN

41

Input Threshold Voltage (Pin 4)

=OV to 5.25V
=OV

Zero Duty·Cycie
Maximum Duty·Cycle

%

45
0

V

Amplifier Section (Current Limit specifications apply to UC493A and UC495B only)
I nput Offset Voltage

I Error
I Current Limit

Input Offset Current
Input Bias Current

I Error
I Current Limit

31

=2.5V
70

=2.5V
Vo (P(N 31 =2.5V

Vo (P(N

I Error
I Current Limit

Common·Mode Input Voltage Range
Open Loop
Voltage Gain

Vo (PIN

Vee

31

=3V, Vo =0.5V to 3.5V

I Error
I Current Limit

Vee

Output Sink Current (Pin 3)

VID

Output Source Current (Pin 3)

VID

UNITRODE CORPORATION. S FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

25

250

-0.2

-1

-1

-2

=40V, TA =25·C
=-15mV to -5V, V(PIN 31 =0.7V
=15mV to 5V, V(PIN 31 =3.5V
3·37

mV
nA
pA
V

70

95

66

90

dB

800

kHz

65

80

dB

50

70

0.3

0.7

Unity Gain Bandwidth
Common·Mode
Rejection Ratio

10
90

0.3 to
Vee -2

=7V to 40V

A Vo

2
80

-2

mA
mA

PRINTED IN

u.s

A

II

ELECTRICAL CHARACTERISTICS (Unless otherwise stated, over recommended operating free-air temperature
range Vce = 15V f = 10kHz)
PARAMETER

TEST CONDITIONS

MIN.

TYP.

UC493A UC493AC
UC494A UC494AC
UC495A UC495AC
UC495B UC495BC

MAX.

UNITS

100

JlA

-100

JlA

Output Section

=40V, Vee =40V
=Ve =4OV, VE =0
VE =0, Ie =200mA
Ve =15V, IE =-200mA
VI =VREF

Collector Off-State Current

VeE

Emmitter Off-State Current

Vee

Collector-Emitter
Saturation Voltage

I Common-Emitter
I Emitter-Follower

Output Control I nput Current

2

1.1

1.3

1.5

2.5

V

3.5

mA

PWM Comparator Section
Input Threshold Voltage (Pin 3)

Zero Duty-Cycle

Input Sink Current (Pin 3)

V(PIN 3)

4

=0.7V

0.3

V

4.5

0.7

mA

Steering Control (UC495A and UC495B only, see Function Table)
V(PIN 13)
I nput Current

V(PIN 13)

=0.4V, Ql active
=2.4V, Q2 active

-200
JlA

300

Deadband

mV

500

Zener Diode Circuit (UC495A and UC495B only)

=45V, Iz =2mA
=IV

Breakdown Voltage

Vee

Sink Current

V(PIN 15)

36

39

45

V

0.2

0.3

0.6

mA

6

10

9

15

Total Device
Standby Supply Current

Pin 6 at VREF. All other

Vee

inputs and outputs open.

Vee

Under-Voltage Lockout

=15V
=40V

6.5

3.5

V

300

Hysteresis
Switching Characteristics (TA

mA

mV

=25°C)

Output Voltage Rise Time

Common-Emitter Configuration

Output Voltage Fall Time

RL

Output Voltage Rise Time

Emitter-Follower Configuration

Output Voltage Fall Time

RL

=680, CL =15pF
=680, CL =15pF

Notes: 1. Duration of the short circuit should not exceed one second.
o

2. Frequency for other values of CTand RT is approximately

1.1

f = ---

RTCT
3. Standard deviation is a measure of the statistical.distribution about the mean as derived from the formula

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

3-38

100

200

ns

25

100

ns

100

200

ns

40

100

ns

n
1: (Xn -x)'
n

=1

n- 1

PRINTED IN U.S.A

UC493A UC493AC
UC494A UC494AC
UC495A UC495AC
UC495B UC495BC
Figure 1. Slaving Two or More Control Circuits

Figure 2. Output Circuit of Error Amplifiers

Vee
12

v"

0-----~----------,

VREF

0-------+----.-----,

II

To Remainder
of Error
Amplifier

To Remamder
of Error
Amplifier

CircUIt

CirCUit

To Compensatlon/PWM

.----------U Comparator Input

Slave

(Pin 3)

(Additional
Circuits)

'-O"---jC,

=06mA

+

Figure 3. Output Connections for Single-Ended and Push-Pull Configurations
C,
/"-0---.--<.. Q,

rle to VREF

C,

or a Voltage
as Low as 2.4V

(1 to 250mA

Output
Control

E,
Output
Control

( I t0500mA
Tie To

C,

GND or

a Voltage
up to
04V

"---0--*"--_ Q,

to 250mA

Push-Pull Configuration

Single-Ended Configuration

Figure 5. Operation with Y,N > 40V
Using Internal Zener (UC495A and UC495B Only)

Figure 4. Internal Buffer with Deadband for
Steering Control on UC495A and UC495B

TO
FLIP
FLOP

(1

STEERING
CONTROL

Figure 6. Error Amplifier Sensing Techniques
Vo To Output

Voltage of
System

R,

+
Error

Amp

+

Error
VREF ---+-0----"1 Amp

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

=

VREF

(1

f--o----.

NEGATIVE OUTPUT VOLTAGE

Vo =

POSITIVE OUTPUT VOLTAGE

Vo

R,

+~)

3-39

-VREF

~

R,
Vo To Output
Voltage of
System

PRINTED IN U.S A

LINEAR INTEGRATED CIRCUITS

UC1524
UC2524
UC3524

Regulating Pulse Width Modulators
FEATURES
• Complete PWM Power control circuitry
• Uncommitted outputs for single-ended
or push-pull applications
• Low standby current ... BmA typical
• Interchangeable with SG1524, SG2524
and SG3524, respectively

DESCRIPTION
The UC1524, UC2524 and UC3524 incorporate on a single monolithic chip all the
functions required for the construction of regulating power supplies inverters or
switching regulators. They can also be used as the control element for high-poweroutput applications. The UC1524 family was designed for switching regulators of either
polarity, transformer-coupled dc-to-dc converters, transformerless voltage doublers and
polarity converter applications employing fixed-frequency, pulse-width modulation
techniques. The dual alternating outputs allow either single-ended or push-pull
applications. Each device includes an on-chip reference, error amplifier, programmable
oscillator, pulse-steering flip-flop, two uncommitted output transistors, a high-gain
comparator, and current-limiting and shut-down circuitry. The UC1524 is characterized
for operation over the full military temperature range of -55·C to + 125·C. The UC2524
and UC3524 are designed for operation from -25·C to +B5·C and O·C to +70·C,
respectively.

ABSOLUTE MAXIMUM RATINGS (Note 1)
Supply Voltage, Vee (Notes 2 and 3) ....................... 40V
Collector Output Current ............................... 100mA
Reference Output Current. ............•................. 50mA
Current Through CT Terminal ............................ -5mA
Power Dissipation at TA = +25·C (Note 4) ............. 1000mW
Thermal Resistance, Junction to Ambient ............. 100·C/W
Power Dissipation at Tc =+25·C (Note 5) ............. 2000mW
Thermal Resistance, Junction to Case ..... : ............ 60·C/W
Operating Junction Temperature Range ....... -55·C to +150·C
Storage Temperature Range .................. -65·C to +150·C
Notes: 1. Over operating free·air temperature range unless otherwise

RECOMMENDED OPERATING CONDITIONS
Supply Voltage, Vee ................................. BV to 40V
Reference Output Current. .......................... 0 to 20mA
Current through CT Terminal ................ -0.03mA to -2mA
Timing Resistor, RT ........................... 1.8KCl to 100Kn
Timing Capacitor, CT .......................... 0.00 1pF to O.lpF
Operating Ambient Temperature Range
UC1524 ................................. -55·C to + 125·C
UC2524 .................................. -25·C to +B5·C
UC3524 ..................................... O·C to +70·C

noted.
2. All voltage values are with respect to the ground terminal, pin 8
3. The reference regulator may be bypassed for operation from a

fixed 5V supply by connecting the V"" and reference output
pins both to the supply voltage. In this configuration the
maximum supply voltage is 6V.
4. Derate at lOmW
for ambient temperatures above +50·e
5. Derate at 16mWre for case temperatures above +25'e

re

BLOCK DIAGRAM

CONNECTION DIAGRAM
DIL-16

J or N Package
+5V to all
internal circuitry

VREf

V1N

E8

INV NON· OSC
INPUT INV OUT
INPUT

1/82

3-40

Ca

C"

EA

(+)

(-)

R,

SID COMP
9

C,

GND

C L C L.
SENSE

~UNITRDDE

UC1524 UC2524 UC3524

ELECTRICAL CHARACTERISTICS (Unless otherwise stated, these specifications apply for TA = -55°C to + 125°C for the UC1524,
-25°C to +85°C for the UC2524, and O°C to +70°C for the UC3524, V'N = 20V, and f = 20kHz)

UC1524/UC2524
PARAMETER

TEST CONDITIONS

UC3524

MIN.

TYP.

MAX.

MIN.

TYP.

MAX.

4.8

4.6

UNITS

Reference Section
5.0

5.2

5.0

5.4

V

Line Regulation

Output Voltage
V'N = 8 to 40V

10

20

10

30

mV

Load Regulation

IL = 0 to 20mA

20

50

20

50

mV

Ripple Rejection

f = 120Hz, T, = 25°C

66

66

dB

Short Circuit Current Limit

VREF = 0, T, =25°C

100

100

mA

Temperature Stability

Over Operating Temperature Range

0.3

Long Term Stability

TI = 125°C, t = 1000 Hrs.

20

20

mV

300

300

kHz

5

5

1

0.3

%

1

Oscillator Section
Maximum Frequency

CT = .001mfd, RT = 2kn

Initial Accuracy

RT and CT Constant

Voltage Sta bi Iity

V'N = 8 to 40V, Ti = 25°C

1

1

%

Temperature Stability

Over Operating Temperature Range

2

2

%

Output Amplitude

Pin 3, T, =25°C

3.5

3.5

V

Output Pulse Width

CT = .01mfd, T, = 25°C

0.5

0.5

/1S

Input Offset Voltage

VeM = 2.5V

0.5

5

2

10

mV

Input Bias Current

VeM = 2.5V

2

10

2

10

/1 A

%

Error Amplifier Section

72

Open Loop Voltage Gain
Common Mode Voltage

Ti = 25°C

Common Mode Rejection Ratio

T, = 25°C

Small Signal Bandwidth

Av

Output Voltage

Ti

60

80

1.8

3.4

70

3
0.5

dB
3.4

1.8

70

=OdB, T, =25°C
=25°C

80

MHz

3
3.8

0.5

45

0

V
dB

3.8

V

45

%

Comparator Section
Duty·Cycie

% Each Output On

Input Threshold

Zero Duty-Cycle

Input Threshold

Maximum Duty-Cycle

0

Input Bias Current

1

1

3.5

3.5

V
V

1

1

/1 A

Current Limiting Section
Sense Voltage

=

Pin 9 2V with Error Amplifier
Set for Maximum Out, T, = 25°C

190

Sense Voltage T.C.

210

180

0.2
-1

Common Mode Voltage
i

200

200

220

+1

-1

mV
mV;oC

0.2
+1

V

0.1

50

/1 A

1

2

V

Output Section (Each Output)
Collector-Emitter Voltage
Collector Leakage Current
Saturation Voltage
Emitter Output Voltage
Rise Time
Fall Time

Total Standby Current

40

=40V
Ie =50mA
V'N =20V
Re =2K ohm, Ti =25°C
Re =2K ohm, T, =25°C
V'N =40V
VeE

17

V

40
0.1

50

1

2

18

17

0.2

V

0.2

/1S

0.1

0.1
8

18

10

8

/1S

10

mA

(Excluding oscillator charging current, error and current limit
dividers, and with outputs open)

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

3-41

PRINTED IN U.S.A.

•

UC1524 UC2524 UC3524
TYPICAL CHARACTERISTICS

Open-Loop VOlta"e Amplification
of Error mplifier
vs Frequency

Oscillator Frequency
vs Timing Components

90

1M

m 80
<>
z
0

~

to
0::

70

~ 50
<
\oJ

40

c.~
.0",,,,

r--..

10k

'1":;0::0

0:

~

~ 30

9

20

~

10

z

c,~~

~'

se:

Il.

0

C7'~o
'001

~
z

::;

'"~

r--..

~ lOOk

60

~

C7'~o

........ 'Oa",,,,
C'~b ~

...

lk

'luf:'

0

0

VIN

Tj

= 20V

=25°C

100
10k

lk

1M

lOOk

10

1

10M

FREQUENCY (Hz)

R, -

Output Dead Time vs
Timing Capacitance Value

20

50

100

TIMING RESISTOR (kn)

Output Saturation Voltage
vs Load Current

10

4.0
20V
Tj = 25°C

VIN -

g

3.5

'"~

3.0

Vee = 20V

0

\oJ

>

::;
;::

.,

0

~

...0
...

./

0:

,/

~
~

6

:0

2.5
2.0

'c

Il.

0:

0

:0

0

~

....

4

~

0.4

0
to

Note:
Dead time = blanking pulse width

0.1
0.001

PIU!

our trill II
0.004

om

1.0
.5

I
0.04

0.1
LOAD CURRENT (rnA)

C,-CAPACITANCE (PF)

UNITRODE CORPORATION - 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326·6509 • TELEX 95-1064

1.5

3,42

PRINT'ED IN U.S.A.

UC1524 UC2524 UC3524

PRINCIPLES OF OPERATION
The UC1524 is a fixed-frequency pulse-width-modulation voltage
regulator control circuit. The regulator operates at a frequency that
is programmed by one timing resistor (RT) and one timing capacitor
(CT). RT establishes a constant charging current for CT. This results
in a linear voltage ramp at CT, which is fed to the comparator
providing linear control of the output pulse width by the error
amplifier. The UC1524 contains an on-board 5V regulator that
serves as a reference as well as powering the UC1524's internal
control circuitry and is also useful in supplying external support
functions. This reference voltage is lowered externally by a resistor
divider to provide a reference within the common-mode range of
the error amplifier or an external reference may be used. The power
supply output is sensed by a second resistor divider network to
generate a feedback signal to the error amplifier. The amplifier
output voltage is then compared to the linear voltage ramp at CT.
The resulting modulated pulse out of the high-gain comparator is

then steered to the appropriate output pass transistor (Q, or Q2) by
the pulse-steering flip-flop, which is synchronously toggled by the
oscillator output. The oscillator output pulse also serves as a
blanking pulse to assure both outputs are never on simultaneously
during the transition times. The width of the blanking pulse is
controlled by the value of CT. The outputs may be applied in a pushpull configuration in which their frequency is half that of the base
oscillator, or paralleled for single-ended applications in which the
frequency is equal to that of the oscillator. The output of the error
amplifier shares a common input to the comparator with the
current limiting and shutdown circuitry and can be overridden by
signals from either of these inputs. This common point is also
available externally and may be employed to control the gain of, or
to compensate, the error amplifier, or to provide additional control
to the regulator.

II

TYPICAL APPLICATIONS DATA
Oscillator
The oscillator controls the frequency of the UC1524 and is
programmed by RT and CT according to the approximate formula:

cycle by clamping the output of the error amplifier. This can easily
be done with the circuit below:

V,., 16 }----------,
1N916
Comp

where

RT is in kilohms
CT is in microfarads
f is in kilohertz

Gnd

Practical values of CT fall between 0.001 and 0.1 microfarad.
Practical values of RT fall between 1.8 and 100 kilohms. This results
in a frequency range typically from 120 hertz to 500 kilohertz.

Blanking
The output pulse of the oscillator is used as a blanking pulse at the
output. This pulse width is controlled by the value of CT. If small
values of CTare required for frequency control, the oscillator output
pulse width may still be increased by applying a shunt capacitance
of up to 100pF from pin 3 to ground. If still greater dead-time is
required, it should be accomplished by limiting the maximum duty

..

®f----I~.-- ~.<" 5k
8 } -_ _ _ _ _--J

Synchronous Operation
When an external clock is desired, a clock pulse of approximately
3V can be applied directly to the oscillator output terminal. The
impedance to ground at this point is approximately 2 kilohms. In
this configuration RT CTmust be selected for a clock period slightly
greater than that of the external clock.
If two or more UC1524 regulators are to be operated synchronously,
all oscillator output terminals should be tied together, all CT
terminals connected to a single timing capacitor, and the timing
resistor connected to a single RT terminal. The other RT terminals
can be left open or shorted to VREF • Minimum lead lengths should be
used between the CT terminals.

Push-Pull Transformer·Coupled Circuit

Single-Ended LC Switching Regulator Circuit
V'

+28V

o-----j----.---.-....-----,
\"r~W...,~-o

5V, 5A

1500pF
500pF

vO.IQ
92CM·32683

UNITRODE CORPORATION. 5 FORBES ROAD
LEXI NGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

3-43

PRINTED IN U.S.A.

UC1524 UC2524 UC3524

OPEN LOOP TEST CIRCUIT
2k

1W

1--............0

Outputs

MECHANICAL SPECIFICATIONS
UC1524 UC2524 UC3524

r-

g



<

z

I

=300kO

40 RL::: 30kO

20 RL

9

,I _L. '
¥~~2~~~- r--

roo..

RL::: lOOkn_

~

1;

Pulse Width Modulator
Transfer Function
5O,----r----,---,---,---,

I I
C""'J Ol)f

1;

15
"8'

:~

I'

i!' 10k

,. ... JO

~
~

nt

C'."o

til

c.I_~
I

lk

0

1"",

06"r

~f

115
RoC,

1

100
1

10

02r---+-1-t1~+H--~--~-ttHHj
Note' Dead time = osc output pulse
WIdth plus output delay

1

20

50

01 L-__L-J-~~~__~__~-LLWLU
1
10
20
50
100

100

TIMING RESISTOR - Rr(kn)

~

5

i?
t;

OUrpUT IAT P"N 9
Overdrive:

5%
v: 10%
20%
/50%

o

/,

Turn-Off Delay From
Shutdown - Pin 10

Shutdown Delay From PWM
Comparator - Pin 9

Current Limit Amplifier Delay

,.

OUTPUT COLLECTOR CURRENT (rnA)

TJMING CAPACITOR - CT (nF) .

-

20

1?2 r"

€

~o

:-..,
'/
:f. '/,

1/7 V

~

15

v,;, 20~
RL ",2kO -

10

TJ

::

25·~

r---

~
0

10

~ 01
z

-

0

Pin

f Grorded,

~ 05

INPUT AT
PIN 9

Mlr~rra~~ II~P~6cfnu~se Width

I-

---i

I-

~

r---

t-- t-- f- Note

I I

OUTPUT AT
i'N '~ OR \3

LO

V,N :: 20V, TJ == 25°C
Pin 2 tIed to Pin 16

v," = 2bv
RL '" 2kO
TJ '" 25°C

15

OUTPUT AT
PlNI'20t 13

INPUT AT PIN 4

~ 02

I I

20

!-

0
NJe:

I I

'N~UT IT
~'N

'f

I I
I l

MI~lmu~ mp~Mrul~e WIdth

1 1° "'lh "1'"'1

1'-

1

DElA.Y TIME Cps)

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95-1064

DELAY TIME (ps)

3-48

DELAY TIME (ps)

'pRINTED IN U.S.A.

LINEAR INTEGRATED CIRCUITS
Regulating Pulse Width Modulators
FEATURES
• 8 to 35V operation
• 5.1 V reference trimmed to ±1 %
• 100Hz to 500kHz oscillator range
• Separate oscillator sync terminal
• Adjustable deadtime control
• Internal soft-start
• Pulse-by-pulse shutdown
• Input undervoltage lockout with
hysteresis
• Latching PWM to prevent multiple
pulses
• Dual source/sink output drivers

UC1525A UC1527 A
UC2525A . UC2527A
UC3525A UC3527 A

DESCRIPTION
The UC1525A/ 1527A series of pulse width modulator integrated circuits are designed
to offer improved performance and lowered external parts 'count when used in designing
all types of switching power supplies, The on-chip +5.1V reference is trimmEia to ±1%
and the input common-mode range of the error amplifier includes the reference voltage,
eliminating external resistors. A sync input to the oscillator allows multiple units to be
slaved or a single unit to be synchronized to an external system clock. A single resistor
between the CT and the discharge terminals provide a wide range of dead time adjustment. These devices also feature built-in soft-start circuitry with only an external timing
capacitor required. A shutdown terminal controls both the soft-start circuitry and the
output stages, providing instantaneous turn off through the PWM latch with pulsed
shutdown, as well as soft-start recycle with longer shutdown commands. These
functions are also controlled by an undervoltage lockout which keeps the outputs off
and the soft-start capacitor discharged for sub-normal input voltages. This lockout
circuitry includes approximately 500mV of hysteresis for jitter-free operation. Another
feature of these PWM circuits is a latch following the comparator. Once a PWM pulse has
been terminated for any reason, the outputs will remain off for the duration of the period.
The latch is reset with each clock pulse. The Qutput stages are totem-pole designs
capable of sourcing or sinking in excess of 200mA. The UC1525A output stage features
NOR logic, giving a LOW output for an OFF state. The UC1527A utilizes OR logic which
results in a HIGH output level when OFF.
.

ABSOLUTE MAXIMUM RATINGS (Note 1)
Supply Voltage, (+Vlli) ............ _...................... +40V
Collector Supply Voltage (Ve) .............. _.............. +40V
Logic Inputs ................................... -0.3V to +5.5V
Analog Inputs .... c.............................. -0.3V to +V'N
Output Current, Source or Sink ......................... 500mA
Reference Output Current. .............................. 50mA
Oscillator Charging Current .............................. 5mA
Power Dissipation at TA= +25°C (Note 2) .............. 1000mW
Thermal Resistance, Junction to Ambient ............. 100°C/W
Power Dissipation at Te = +25°C (Note 3) ............. 2000mW
Thermal Resistance, Junction to Case ................. 60°C/W
Operating Junction Temperature ............. -55°C to + 150°C
Storage Temperature Range .................. -65°C to +150°C
Lead Temperature (Soldering, 10 seconds) ............ +300°C
Notes: 1. Values beyond which damage may occur.
2. Derate at lDmWI"C for ambient temperatures above +50°C.
3. Derate at 16mWI"C for case temperatures above +25°C.

RECOMMENDED OPERATING CONDITIONS (Note 4)
Input Voltage (+V'N) .............................. +8V to +35V
Collector Supply Voltage (Ve) .................... +4.5V to +35V
Sink/Source Load Current (steady state) ........... 0 to 100mA
Sink/Source Load Current (peak) ................. 0 to 400mA
Reference Load Current. ............................ 0 to 20mA
Oscillator Frequency Range ........ ." ........ 100Hz to 400kHz
Oscillator Timing Resistor ....................... 2kO to 150kO
Oscillator Timing Capacitor ....................001pF to O.lpF
Dead Time Resistor Range .......................... 0 to 5000
Operating Ambient Temperature Range
UC1525A, UC1527A ...................... -55°C to +125°C
UC2525A, UC2527A ....................... -25°C to +85°C
UC3525A, UC3527A .......................... O°C to +70°C
Notes: 4. Range over which the device is functional and parameter limits

BLOCK DIAGRAM

are guaranteed.

CONNECTION DIAGRAM
DIL·16 (Top View)
J or N Package

GND@-----1

SHUTDOWN@---'VV-f-{;'

4/82

3-49

~UNITRDDE

•

UC1525A UC1527A
UC2525A UC2527 A
UC3525A UC3527A

ELECTRICAL CHARACTERISTICS (+VIN = 20V, and over operating temperature, unless otherwise specified)

PARAMETER

TEST CONDITIONS

UC1525A/UC2525A
UC1527A/UC2527A

UC3525A
UC3527A

UNITS

MIN,

TYP.

MAX.

MIN.

TYP.

MAX.

5.05

5.00

Reference Section
Output Voltage

TI = 25°C

5.10

5.15

5.10

5.20

V

Line Regulation

V,N = 8 to 35V

10

20

10

20

mV

Load Regulation

IL = 0 t020mA

20

50

20

50

mV

Temperature Stability (Note 5)

Over Operating Range

20

50

20

50

mV

Total Output Variation (Note 5)

Line, Load, and Temperature

Short Circuit Current

VREiF = 0, TI =25°C

80

100

Output Noise Voltal\e (Note 5)

10Hz s 10kHz, TI = 25°C

40

Long Term Stability (Note 5)

TI = 125°C

20

5.25

V

80

100

mA

200

40

200

p.Vrms

50

20

50

mV

±2

±6

±2

±6

±0.3

±1

±1

±2

±6

±3

%
%
%

5.00

5.20

4.95

OscillItor Section (Note 6)
Initial Accuracy (Notes 5 & 6)
Voltage Stability (Notes 5 & 6)

TI = 25°C
V,N = 8 to 35V

Temperature Stability (Note 5)

Over Operating Range

Minimum Frequency

RT = 200kO, CT = O.lp.F

Maximum Frequency

RT = 2kO, CT = 470pF

Current Mirror

IRT= 2mA

±3
400

Clock Amplitude (Notes 5 & 6)
Clock Width (Notes 5 & 6)

TI = 25°C

Sync Threshold

1.7

2.0

3.0

3.5

1.0

0.3

2.0

2.8

1.2

1.0

2.5

1.7

2.0
3.5

0.3

0.5

1.2

2.2

Hz
kHz

400

3.0

Sync Voltage = 3.5V

Sync Input Current

±6
120

120

2.2

mA

0.5

1.0

p.s

2.0

2.8

V

1.0

2.5

mA

V

Error Amplifier SectIon (VCM = 5.1 V)
Input Offset Voltage

0.5

5

2

10

mV

Input Bias Current

1

10

1

10

p.A

1

p.A

Input Offset Current

1

DC Open Loop Gain

RL 2! 10 Meg el

Gain·Bandwidth Product
(Note 5)

Av = OdB, Tj = 25°C

DC Transconductance
(Notes 5 & 7)

TI = 25°C, 30kel S RL S IMel

60

75

60

75

dB

1

2

1

2

MHz

1.1

1.5

1.1

1.5

mS

Output Low Level

0.2

Output High Level

0.5

0.2

0.5

V

3.8

5.6

3.8

5.6

V

Common Mode Rejection

VCM = 1.5 to 5.2V

60

75

60

75

dB

Supply Voltage Rejection

V,N = 8 to 35V

50

60

50

60

dB

Not..: 5. These parameters, although guaranteed over the recommended operating conditions, are not 100% tested in production.
1
6. Tested at fosc

=40KHz (RT =3.6kO, CT =O.ljlf, Ro =00). Approximate oscillator frequency is defined by: f =CnO.7RT + 3Ro)

7. DC transconductance (gM) relates to DC open·loop voltage gain (Av) according to the following equation: Av = gMRL
where RL is the resistance from pin 9 to ground.
The minimum 11M specification is used to calculate minimum Av when the error amplifier output is loaded.

UNITROOE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL'!'(617) 861-6540
TWX (1'10) 326-6509 • TELEX 95-1064
.

3-50

PRINTED IN U.S A

UC1525A UCl527A
UC2525A UC2527A
UC3525A UC3527A

ELECTRICAL CHARACTERISTICS (+VIN = 20V, and over operating temperature, unless otherwise specified)

PARAMETER

TEST CONDITIONS

UC3525A
UC3527A

UC1525A/UC2525A
UC1527 A/UC2527A
MIN.

TYP.

45

49

MAX.

MIN.

TYP.

45

49

0.7

0.9

UNITS
MAX.

PWM Comparator
Minimum Duty-Cycle

0

Maximum Duty-Cycle
Input Threshold (Note 6)

Zero Duty-Cycle

Input Threshold (Note 6)

Maximum Duty-Cycle

0_7

Input Bias Current (Note 5)

0_9

0

%
%
V

3.3

3.6

3.3

3.6

V

.05

1.0

.05

1.0

pA

pA

Shutdown Section

=OV, Vss =OV
= 2.5V
To outputs, Vss =5.1V, Tj =25°C
Vso =2.5V
Vso =2.5V, Tj =25°C

Soft Start Current

Vso

Soft Start Low Level
Shutdown Threshold
Shutdown Input Current
Shutdown Delay (Note 5)
Output Drivers (Each Output) (Vc

25

Vso

0.6

50

80

0.4

0.7

0.8

1.0

25

0.6

50

80

0.4

0.7

V

0.8

1.0

V

0.4

1.0

0.4

1.0

mA

0.2

0.5

0.2

0.5

pS

ISINK = 20mA

0.2

0.4

0.2

0.4

V

ISINK = lOOmA

1.0

2.0

1.0

2.0

V

=20V)

Output Low Level

ISOURCE = 20mA

18

19

18

19

ISOURCE = 100mA

17

18

17

18

Under-Voltage Lockout

VCOMP and Vss = High

6

7

6

7

Collector Lea kage

Ve

Rise Time (Note 5)

CL = InF, T/ = 25°C

100

600

Fall Time (Note 5)

CL = Inf, Tj =25°C

50

300

VIN = 35V

14

20

Output High Level

=35V

8

V
V
8

V

200

pA

100

600

ns

50

300

ns

14

20

mA

200

Total Standby Current
Supply Current

Notes: 5. These parameters, a/though guaranteed over the recommended operating conditions, are not 100% tested in production.
6. Tested at lose = 40KHz (RT =3.6kr1, CT = O.lJlF, Ro = 00).

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326-6509 • TELEX 95-1064

3·51

PRINTED IN USA

II

UC1525A UC1527A
UC2525A UC2527A
UC3525A UC3527 A

PRINCIPLES OF OPERATION AND TYPICAL CHARACTERISTICS
UC1525A Output Circuit

UC1525A Output Saturation
Characteristics

(V. Circuli Shown)

4

kov

VIN =
TA = 25°C

l
~~

t---1'iIr--+-<.U) OUTPUT

-. ~
o
5k
CLOCK

10k

RETURN

~ .....

"'-V
<::URC SA • Vo

vo.

.1 vOl
~rINK SAr

.02 .03 .04.05 .07 .10

.2

.3.4.5 ·,7

1A

OUTPUT CURRENT. SOURCE OR SINK (A)

PWM

F/F

• SUPPLY

-

.01

I-'

A

W

0---.---.

+VSUPPLV

, - - - . TO OUTPUT FILTER

0----.....- - -......-

RETURN

For single-ended supplies, the driver outputs are grounded.
The Vc terminal is switched to ground by the totem-pole source
transistors on alternate oscillator cycles.

+VsuPPt.Y

0---.-----------,

In conventional push-pull bipolar designs, forward base drive
is controlled by R,-R 3 • Rapid turn-off times for the power
devices are achieved with speed-up capacitors C, and C2•

0--...,.--------.,

+VSUPPLVo--...,.------------.-----,

T,

II
c,

RETURN o--+----------<~
RETURN

The low source impedance ofthe output drivers provides rapid
charging of power FET input capacitance while minimizing
external components.

__

__I

Low power transformers can be driven directly by the UC1525A.
Automatic reset occurs during dead time, when both ends of
the primary winding are switched to ground.

UNITRODE CORPORATION. 5 FORBES ROAD

LEXI NGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

3-52

PRINTED IN U.S.A,

UC1525A UC1527A
UC2525A UC2527A
UC3525A UC3527A

PRINCIPLES OF OPERATION AND TYPICAL CHARACTERISTICS
SHUTDOWN OPTIONS (See Block Diagram)

Since both the compensation and soft-start terminals (Pins 9
and 8) have current source pull-ups, either can readily accept
a pull-down signal which only has to sink a maximum of
lOOIlA to turn off the outputs. This is subject to the added
requirement of discharging whatever external capacitance may
be attached to these pi ns.
An alternate approach is the use of the shutdown circuitry of
Pin 10 which has been improved to enhance the available
shutdown options. Activating this circuit by applying a positive
signal on Pin 10 performs two functions: the PWM latch is
immediately set providing the fastest turn-off signal to the
outputs; and a 150llA current sink begins to discharge the
external soft-start capacitor. If the shutdown command is
short, the PWM signal is terminated without significant
discharge of the soft-start capacitor, thus, allowing, for
example, a convenient implementation of pulse-by-pulse
current limiting_ Holding Pin 10 high for a longer duration,
however, will ultimately discharge this external capacitor,
recycling slow turn-on upon release.

UC1525A Oscillator Schematic

7.4k

2k

14k

RAMP
TO PWM

Pin 10 should not be left floating as noise pickup could
conceivably interrupt normal operation.

CLOCK

Oscillator Discharge Time
vs. R. and C,

Oscillator Charge Time
vs. R, and Cr
200

,-,.----r-,-,.--,--,.-,.----r-,.-,----r----.

100

f--I--I-f--I--+-+H'-I-:H+-IT-t-.H+-I

50

cf

20

:E

:r:

:E

:r:

8

g

'"

~ 300 f---I---+-+-H'---+---,f--+---l'--I+-~
~
ffi
 VON -5 0
G_
0.2

z

1

OJ

0:

/

100

V

OJ

!;(

'"en
OJ

ffi
en

SO

l/

c£

V

10

~

I-

:::>

~

15

20

?S

30

3S

2.46 2.48 2.50

40

Activation Delay vs
Capacitor Value

Current Limit Input Threshold
200

0.1

.01

<

IV

!::
u

1E
.001

OJ

0

.0001

2.50 2.S2 2.54

SENSE INPUT VOLTAGE - (VOLTS)

= 10ms/pF

5

0

'"

OJ

<
u

..

o

~

z

Ii:

I-

:::>

DELAY=~

~

u

~

/

VON SUPPLY VOLTAGE - (VOLTS)

0

u

/

Input

OJ

LO

<
0:
0:

Input

6

..

~

en
iii

LLIJ ulJvLl.

V

Recommended Series Gate ReSistance, Ro

:I:

V
.0.01

V

V

.s
)

OJ

~
~

Ii:
0
--'
0
J:

cn
OJ
0:

J:

I-

100
70
SO
30

VIN = IOV

I'

;;;-

I-S
r- YTH

20

I-

1\

+

1"-

11 1

10 ~setl~mp

e-

.J

R, = 2kO

I'

-+

I'
D.

t- R,

-

"

JJ
.01

0.1

LO

10

lk

DELAY TIME - (MILLISECONDS)

3k Sk 10k

30k 50!< .IM

.3M

1M

R, THRESHOLD SETTING RESISTOR - (OHMS)

Current Limit Amplifier
Frequency Response

Current Limit Amplifier Gain

80C==----+______~~~~----

VIN = lOV
R, = 2kO
TJ = 25°C

70 ~~~+R, = 30kO
60

iii
OJ

____~~~~____~

180

8

R, = IOkO

270 ~

..

'"

-5
0.2

VIN

Sensing Multiple Supply Voltaps
BIAS
SUPPLY -------~- TO SGl39 COMPARATORS
MAIN
POSITIVE
SUPPLY

TO
SHUTDOWN
CIRCUIT

GROUND

ADDITIONAL
POSITIVE
SUPPLY

~

1

R.

R.

=

NEGATIVE
SUPPLY
VOLTAGE

R,

Overcurrent Shutdown

Input Line Monitor

MAIN
BUS
SUPPLY

~

________________________________

~~

BIAS
VOLTAGE

r----------

I
I

SCR
"CROWBAR"

I
I

I
I

i~~JT-~-2.5V

I

R,
PIN8

~--2.5V
SUPPLY

DELAY

PIN 9
OUTPUT

R2

Rse

~~fURN~-~~~--------------------------------~. .

U-

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

0FF
ON

3-65

PRINTED IN USA

•

LINEAR INTEGRATED CIRCUITS

UC1637
UC2637
UC3637

Switched Mode Controller for DC Motor Drive

FEATURES

DESCRIPTION

• Single or dual supply operation

The UC1637 is a pulse width modulator circuit intended to be used for a variety of PWM
motor drive and amplifier applications requiring either uni-directional or bi-directional
drive circuits. When used to replace conventional drivers, this circuit can increase
efficiency and reduce component costs for many applications. All necessary circuitry is
included to generate an analog error signal and modulate two bi-directional pulse train
outputs in proportion to the error signal magnitude and polarity.

• ± 2.5V to ±. 20V input supply range

• ± 5% initial oscillator accuracy; ±

10%

over temperature
• Pulse-by-pulse current limiting
• Under-voltage lockout

This monolithic device contains a sawtooth oscillator, error amplifier, and two PWM
comparators with ± 100mA output stages as standard features. Protection circuitry
includes under-voltage lockout, pulse-by-pulse current limiting, and a shutdown port
with a 2.5V temperature compensated threshold.

• Shutdown input with temperature
compensated 2.5V threshold
• Uncommitted PWM comparators for
design flexibility

The UC1637 is characterized for operation over the full military temperature range of
-55°C to + 125°C, while the UC2637 and UC3637 are characterized for -25°C to +85°C
and O°C to +70°C, respectively.

• Dual lOOmA, sourcelsink output
drivers

BLOCK DIAGRAM
+A'N

-A'N

+V. 6~-----------'----------1---~--~------------------~~~--'

ISET
Is

-C/l
+C/l

E/A OUTPUT

12/83

-B'N +B'N

3-66

~UNITRDDE

UC1637
UC2637
UC3637

CONNECTION DIAGRAM

ABSOLUTE MAXIMUM RATINGS (Note 1)
Supply Voltage (±Vs) .......................................................... ±20V
Output Current, Source/Sink (Pins 4, 7) ....................................... 500mA
Analog Inputs (Pins I, 2, 3, 8, 9, 10, 11, 12, 13, 14, 15, 16) ....................... ±Vs
Error Amplifier Output Current (Pin 17) ...................................... ±20mA
Oscillator Charging Current (Pin 18) ............................................ -2mA
Power Dissipation at TA = 25·C ............................................. 1000mW
Derate at lOmWrC For TA Above 50·C
Power Dissipation at Tc = 25·C ............................................... 2000W
Derate at 16mWrC for Tc above 25·C
Thermal Resistance, Junction to Ambient ................................... 100·C/W
Thermal Resistance, Junction to Case ........................................ 60·C/W
Storage Temperature Range ............•........................... -65·C to +150·C
Lead Temperature (Soldering, 10 Seconds) ................................... +300·C

DIL·18 (TOP VIEW)
J or N PACKAGE

•

Note: 1. Currents are positive into, negative out of the specified terminal.

ELECTRICAL CHARACTERISTICS (Unless otherwise stated, these specifications applyforTA=-55·Cto + 125·Cfor UC1637; -25·Cto +85·C
for the UC2637; and O·C to +70·C for the UC3637; +Vs
16.7kn, CT = 1500pF)

PARAMETER

=+15V, -Vs = -15V, +VTH =5V, -VTH =-5V, RT =

UC1637/UC2637

TEST CONDITIONS

UC3637

UNITS

MIN.

TYP.

MAX.

MIN.

TYP.

MAX.

9.4

10

10.6

9

10

11

kHz

5

7

5

7

%

Oscillator

=25·C

Initial Accuracy

Tj

Voltage Stability

Vs =± 5V to ± 20V, VP1N
VP1N 3 = -3V

Temperature Stability

Over Operating Range

+VTH Input Bias Current

VP1N

-VTH Input Bias Current

1

= 3V

=6V
VP1N 2 =OV
2

0.5

2

-10

0.1

10

-10

-0.5

+Vs-2

+VTH, -VTH Input Range

0.5

2

%

-10

0.1

10

pA

-10

-0.5

-Vs+2 +Vs-2

pA
-Vs+2

V
mV

Error Amplifier
Input Offset Voltage
Input Bias Current
Input Offset Current
Common Mode Range
Open Loop Voltage Gain

=OV
=OV
VCM =OV
Vs = ± 2.5 to 20V
RL = 10K
VCM

1.5

5

1.5

10

VCM

0.5

5

0.5

5

pA

0.1

1

0.1

1

pA

-Vs+2
75

Slew Rate

+Vs
100

-Vs+2
80

15

+Vs

V

100

dB

15

Vips

dB

Unity Gain Bandwidth
CMRR

Over Common Mode Range

PSRR

Vs

Output Si nk Current

VPlN

Output Source Current

=±

2.5V to ± 20V

=OV
VP1N 17 =OV

75

100

75

100

75

110

75

110

-.50

17

High Level Output Voltage

-20

-50

5

11

5

11

13

13.6

13

13.6

Low Level Output Voltage

-14.8

-13

-14.8

dB
-20

mA
mA
V

-13

V

PWM Comparators

=OV
=OV
VCM =OV
Vs =± 5 to ±

Input Offset Voltage

VCM

20

Input Bias Current

VCM

2

Input Hysteresis
Common Mode Range

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

-Vs+1

3-67

2

10

+Vs-2 -Vs+1

pA
mV

10

10
40V

mV

20
10

+Vs-2

V

PRINTED IN U.S A

UC1637
UC2637
UC3637

ELECTRICAL CHARACTERISTICS (Ut:lless otherwise stated. these specifications apply for TA =-55°C to + 125°C for UC1637; -25°C to +85°C
. for the UC2637; and O°C to + 70°C for the UC3637; +V.
16.7kCl. CT = 1500pF)

PARAMETER

=+ 15V. -V. = -15V +VTH =5V. -VTH =-5V. RT =
"

UCl637/UC2637

TEST CONDITIONS

MIN.

UC3637

TYP.

MAX.

MIN.

200

210

180

UNITS

TYP.

MAX.

200

220

Current Limit
Input Offset Voltage

VCM

=OV. Ti =25°C

190

Input Offset Voltage T.C.

-0.2
-10

Input Bias Current
Common Mode Range

V.

=± 2.5V to ± 20V

-0.2
-10

-1.5

-V.

+V.-3

-V.

-2.7

-2.3

mV
mvrc

-1.5

J1A
+V. -3

V

Shutdown
Shutdown Threshold

-2.3

(Note 3)

Hysteresis
Input Bias Current

-2.5
40

VPIN

14

=+V. to -V.

-10

-10

-0.5

-2.5

-2.7

V

40

mV

-0.5

J1A

Under·Voltage Lockout
Start Threshold

(Note 4)

4.15

Hysteresis

4.15

5.0

5.0

0.25

0.25

V
mV

Total Standby Current
Supply Current

8.5

15

8.5

15

I.,NK

-14.9

-13

-14.9

-13

·I.,NK

-14.5

-13

-14.5

-13

mA

Output Section
Output Low Level
Output High Level
Rise Time
Fall Time

=20mA
=100mA
ISOURCE =20mA
I.OURCE = 100mA
(Note 2) CL = 1nf. Ti =25°C
(Note 2) CL = 1nf. Ti =25°C

13

13.5

13

13.5

12

13.5

12

13.5

V
V

100

600

100

600

ns

100

300

100

300

ns

Notes: 2. These parameters. although guaranteed over the recommended operating conditions, are not 100% tested in production.
3. Parameter measured with respect to +Vs (Pin 6).
4. Parameter measured at +Vs (Pin 6) with respect to -Vs (Pin 5).

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326-6509 • TELEX 95·1064

3·68

PRINTED IN USA

UC1637
UC2637
UC3637

FUNCTIONAL DESCRIPTION
Following is a description of each of the functional blocks shown
in the Block Diagram.

-VTH respectively. The +VTH terminal voltage is buffered internally
and also applied to the lee. terminal to develop the capacitor
charging currentthrough RT. If RT is referenced to -Vsas shown in
Figure 1, both the threshold voltage and charging current will vary
proportionally to the supply differential, and the oscillator
frequency will remain constant. The triangle waveform oscillators
frequency and voltage amplitude is determined by the external
components using the formulas given in Figure 1.

Oscillator
The oscillator consists of two comparators, a charging and
discharging current source, a current source set terminal, ' se',
and a flip· flop. The upper and lower threshold of the oscillator
waveform is set externally by applying a voltage at pins +VTH and

R,

------+VTH

R,
-----VTH

1.= _.!..:(+..!.V''''")'''R~-'('--V,-,,),--

.f-VTH = (-Vs)

f=

-v'" = (-v.) + ((+V.) - (-v.) (R,)\

Is

2 C, [(+Vn<) - (-Vn<)]

+

UC1631

!(+Vs)-<-VS)(R2+R3»)
\"
Rl + RJ + R3
R,+R 2 +R3

R,

J
-v.

Figure 1. Oscillator Set Up
PWM Comparators
Two comparators are provided to perform pulse width modulation
for each of the output drivers. Inputs are uncommitted to allow
maximum flexability. The pulse width of the outputs A and B is a
function of the sign and amplitude of the error signal. A negative
signal at Pin lOand Swill lengthen the high'state of output Aand

shorten the high'state of output B. Likewise, a positive error signal
reverses the procedure. Typically, the oscillator waveform is
compared against the summation of the error signal and the
threshold set on Pin 10 and S.

+V.

UC1631

OSCILLATOR

(PIN 2)

M

---+-t-----i

>----A

ERROR
SIGNAL
(PIN 17)

>----B

Figure 2. Comparator Biasing

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

3·69

PRINTED IN U.S.A.

•

UC1637
UC2637
UC3637
MODULATION SCHEMES
Case A Zero Deadtime (Equal voltage on Pi n 10 and Pi n 8)

power-amplifiers are used. Refer to Figure 38.

In this configuration; maximum holding torque or stiffness and
position accuracy is achieved. However, the power input into the
motor is increased. Figure 3A shows this configuration.

case C Increased Deadtime and Deadband Mode
(Voltage on Pin 10> Pin 8)
With the reduction of stiffness and position accuracy, the power
input into the motor around the null point of the servo loop can be
reduced or eliminated by widening the window of the comparator
circuit to a deg·ree of acceptance. Where position accuracy and
mechanical stiffness is unimportant, dead band operation can be
used. This is shown in Figure 3C.

case B Small Deadtinie (Voltage on Pin 10 > Pin 8)
A small differential voltage between Pin 10 and 8 provides the
necessary time delay to reduce the chances of momentary short
circuit in the output stage during transitions, especially where

(PlnlO)-....,....~

(Pin 8,10)

- --

-

-- --- - --

(Pln8)/"""'- - - II - - - -

---

II

JlLfLJL
'I

lJrLJLs
II

- I 1- DEADTIME
(B)

(A)

(Pin 10)

--A---~'---A--

(Pin 8)

L ___ V ____y ____~

(Pm 10) - - - - - - - - - - - - - - - - - - - - -

(Pm B)

_______________________

BOUT _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __

II

---l--.L----~-~----H--I

A~,

(Pin8)~

(PlnlO)~

I

I

I

,I

Aou,JLJLSL

I
I

I

AM

I
I

I I

II II

II
I

I

I

iii

I

I

I

I

I

Bou,LJLSLJI

BOUT _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __

I I

1

(C)

Figure 3_ Modulation Schemes Showing (A) Zero Deadtime (B) Deadtime and (C) Deadband Configurations.

Output Drivers
Each output driver iscapable of both sourcing and sinking 100mA
steady state and up to 500mA on a pulsed basis for rapid
switching of either POWERFET or bipolar transistors. Output levels
are typically -Vs +0.2V@ 50mA low level and +V. - 2.0V@50mA
high level.

VSTART =

R,

UC1637

+v.

+v.~
2.5V

Error Amplifier
The error amplifier consists of a high slew rate (15VI/ls) op-amp
with a typical IMHz bandwidth and low output impedance.
Depending on the ± V. supply voltage, the common mode input
range and the voltage output swing is within 2V of the Vs supply.

,

1

+

SHUTDOWN

R,

~--------------~14~-------4

R,

Under-Yoltage Lockout
An under-voltage lockout circuit holds the outputs in the off state
until a minimum of 4V is reached. At this point, all internal
circuitry is functional and the output drivers are switched on. If
external circuitry requires a higher starting voltage, an over-riding
voltage can be programmed through the shutdown terminal as
shown in Figure 4.

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

2.5 (R, + R,)

-v.

Figure 4. External Under-Yoltage Lockout

3-70

PRINTED IN U.S.A.

UC1637
UC2637
UC3637
Shutdown Comparator
The shutdown terminal may be used for implementing various
shutdown and protection schemes. By pulling the terminal more
than 2.5VbelowVIN, the output drivers will be enabled. This can be
realized using an open collector gate or NPN transistor biased to

either ground or the negative supply. Since the threshold is
temperature stabilized, the comparator can be used as an accu·
rate low voltage lockout (Figure 4) and/or delayed start as in
Figure 5.

UC1637

+v.

-v.
Figure 5. Delayed Start·Up

Current Umit
A latched current limit amplifier with an internal 200mVoffset is
provided to allow pulse·by·pulse current limiting. Differential
inputs will accept common mode signals from -Vs to within 3V of

the +Vs supply while providing excellent noise rejection. Figure 6
shows a typical current sense circuit.

Rs

Figure 6. Current Umit Sensing

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

3-71

PRINTED IN U.S.A.

•

::;..

-Ire

:E~~
x_-I
-z",

;:::!ClO
0-10
-0",

~~o
~s:o

~~~

v,

<.

N
"

~~::n

"S "N"'

~tj~

~·o
"'-Iz

.~

x~.

~~~

11

~S~

10

6

~(fJ

~~
0"
o

"

+Vs

"

.

IS I,

""'

~'. "

-

+

"'!XI

m",

AtN'

SHUT·
DOWN

,.

'1~

'''"14

,

1

Aou, ~J

+VTH

-GN2222

_~.lpF

ill

=;::

2

~

G,

UC1637

400

~

~

0

...z~
0

u

fil

3

"~

-VTH

Bou,

~
~

100

Ilr

Gil

E/A
OUTPUT

-Vs

"
S

27

Bo"

-

+

9

S

,~

-=

r2-

]

~'--

2

"
S
47K

Ts

lul17

')
I
I

I
I
I

-

I

- I

I

10K

~

5
ci

~~

-:!:-

4.7M

M

I---

...;

0.22pF

~
9

ISO

-fl

+ 12
;

5

113

- 13

E/A
15 +

"S

~
PIG900

3

""' '""'" =';=

~

'"

~

400

16 -

J

2N2222

0

"

~
~

ISO

w

.:...

~..-

12

rv

"

6~'5

100

J

~

"

...L_

Figure 7. Bi·Directional Motor Drive with Speed Control and Power-Amplifier

ccc

nnn
WI\> ....

""'"''
...............

WWW

UC1637
UC2637
UC3637
V'N--~--------------------------------------------------------~~--~--~---'

•
POSITION
COMMAND
VOLTAGE

POSITION FEEDBACK VOLTAGE

Figure 8. Single Supply Position Servo Motor Drive

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

3-73

PRINTED IN U.S A.

LINEAR INTEGRATED CIRCUITS

UC1704
UC3704

Bridge Transducer Switch
FEATURES
• Dual matched current sources
• High-gain differential sensing circuit
• Wide common-mode input capability
• Complimentary digital open-collector
outputs

UC1704 COMPATIBLE SENSORS

/

SENSOR TYPE

• Externally programmable time delay

/ ACTIVATION SOURCE.I

• Optional output latch with reset

1;~//w
I ~,I, 'Ii I

/

• Built-in diagnostic activation

h<1~~~"
X
X
X
X X X

Thermistor
Sensistor
Thermocouple
Semiconductor
Photo Voltaic
Photo Resistive
Strain Gage
Piezoelectric
Magneto Resistive
Inductive
Hall Effect
Capacitive

• Wide supply voltage range
• High current heater power source driver

X
X

DESCRIPTION
This integrated circuit contains a complete signal conditioning
system to interface low-level variable impedance transducers to a
digital system. A pair of matched, temperature-compensated current sources are provided for balanced transducer excitation followed by a preCision, high-gain comparator. The output of this
comparator can be delayed by a user-selectable duration, after
which a second comparator will switch complimentary outputs
compatible with all forms of logic. This output section can be
separately activated for diagnostic operation and has an optional
latch with external reset capability. An added feature is a high
current power source useful as a heater driver in differential
temperature sensing applications.

X X X
X X X
X X X X X X
X X
X X X
X X
X X X X
X X
X

The UC1704 is characterized for operation over the full military
temperature range of -55°C to + 125°C while the UC3704 is
designed for O°C to + 70°C environments.

BLOCK DIAGRAM
COMP 2 THRESHOLD

11

VREF

5

t------~

12
CURRENT OUTPUT

12/83

DELAY

3-74

COMP2
INPUT

RESET

REMOTE
ACTIVATE

~UNITRDDE

UC1704
UC3704
ABSOLUTE MAXIMUM RATINGS

CONNECTION DIAGRAM

Supply Voltage (+V ,N) •..•••..••.•••••••••...••••..•••...••••••••••••••••••••••••• 40V
Output Current (each output) .................................................. 50mA
Buffer Power Source Current ................................................. 200mA
Comparator 1 Inputs ................................................... -0.5V to VREF
Comparator 2 Inputs ....................................................... 0 to 5.5V
Remote Activation and Reset Inputs ......................................... 0 to 5.5V
Power Dissipation at TA =25°C ............................................. 1000mW
Derate at lOmW/oC for TA > 50°C
Operating Junction Temperature .................................... -55°C to + 150°C
Storage Temperature Range ........................................ -65°C to + 150°C
Lead Temperature (Soldering. 10 Seconds) ................................... +300°C
NOTE:

DIL-16 (TOP VIEW)

J or N PACKAGE

II
REM. ACT
RESET
COMP.2IN

Unless otherwise specified. all voltages are with respect to ground (Pin 1).
Currents are positive into. negative out of the specified terminal.

COMP.2
THRES
DELAY

ELECTRICAL CHARACTERISTICS

(Unless otherwise stated, these specifications apply forT. = -55°C to + 125°Cforthe UC1704and O°C
to +70°C for the UC3704; Y,N = 15V)

PARAMETER

TEST CONDITIONS

MIN.

TYP.

MAX.

UNITS

Power Inputs
Supply Voltage Range

TA > O°C

Supply Current

Y,N

36

V

5

10

mA

2.1

2.2

2.3

V

-1

-2

-3

mVrC

IlV ,N

2

10

mV

Illo

2

10

mV

±25

mA

4.2

=36V

Reference Section (with respect to Y,N)

= 25°C

VREF Value IV ,N - VREF I

TJ

VREF Temperature Coefficient

Note 1

Line Regulation

=4.2 to 25V
=0 to 4mA
Y,N =36V
VREF =Y,N or Ground

Load Regulation
Short Circuit Current
Current Sources (Q, and Q.)
Output Current (Note 2)
Output Offset Current

Current Set
Cu rrent Set

=lOpA
=200pA

-9

-9.5

-10

pA

-180

-195

-200

pA

0

±1

pA

=REB =20KO

REB

Comparator One
Input Offset Voltage

±1

±4

mV

Input Bias Current

-100

-300

nA

±60

Input Offset Current

=0 to 12V

CMRR

VCM

Voltage Gain

RL> 150KO

Delay Current Source
Output Rise Time

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326-6509 • TELEX 95·1064

=

Overdrive 10mV,
Co 15pF, TJ 25°C

=

=

3-75

60

70

70

85

34

40
2

nA
dB
dB

52

pA

Vips

PRINTED IN

u.s A

UC1704
UC3704

ELECTRICAL CHARACTERISTICS

=

(Unless otherwise stated, these specifications apply for T. -55°Cto +125°Cforthe UC1704and O°C
to + 70·C for the UC3704; V'N = 15V)

PARAMETER

TEST CONDITIONS

TYP.

MAX.

2.2

3.0

3.8

V

14

20

24

KO

MIN.

UNITS

Comparator Two (Qour and Qour)
Threshold Voltage
Threshold Resistance

To Ground

Input Bias Current

=5V
=OV
Pin 13 =OV
T. =25·C
T. =25°C
lour =16mA
lour =50mA
Your =40V
V'N (Pin 12)

Remote Activate Current

Pin 14

Reset Current
Remote Activate Threshold
Reset Threshold
Output Saturation
Output Leakage

Compo Overdrive
RL 5K to V'N

Output Response

=

1

3

0.2

0.5

/lA
.mA

0.2

0.5

mA

0.8

1.2

0.8

1.2

=IV I Turn-on

V
V

0.2

0.5

V

0.7

2.0

V

0.2

10

/l A

0.4

I Turn·off

/IS

1.0

Buffer
Set Voltage (V'N - Vs)

TJ

Drive Current

TJ

=25°C, Is =100mA
= 25·C, Rs =2000, VD =OV

V

1.9

2.1

2.3

90

100

120

I

mA

Note: 1. Parameter guaranteed by des,gn, not tested," product,on.
2. Collector output current =

V'N - V""F - VBE
R.

APPLICATIONS INFORMATION
Sensor Section
The input portion of the UC1704 provides both excitation and
sensing for a iow·ievei, variabie impedance transducer. This
circuitry consists of a pair of highly matched PNP transistors
biased for operation as constant current sources followed by a
high gain precision comparator.

The sensor comparator has a current source pull·up atthe output
so that an external capacitor from this pointto ground can be used
to provide a programmable delay before reaching the second
comparator's threshold. The low·impedance on·state of Comp l's
output provides quick reset of this capacitor. This programmable
delay function is useful for providing transient protection by
requiring that Comp 1 remain activated for a finite period oftime
before Comp 2 triggers. Another application is in counting
repetitive pulses where a miSSing pulse will allow Comp l'soutput
to rise to Comp 2's threshold. This time delay function is:

The reference voltage at the bases of the PNP transistors has a TC
to offset the base·emitter voltage variation of these transistors
resulting in a constant voltage across the external emitter
resistors and correspondingly constant collector currents. With
the emitter resistors external, the user has the option of tailoring
the collector currents for balancing, offsetting, or to provide a
unique temperature characteristic.

Delay

With the PNP transistors' optimum current ranging from 10 to
200/lA, and the common· mode input voltage of the comparator
usable from ground to (V'N - 3V), a wide range of transducer
impedance levels is possible.

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173· TEL. (617) 861·6540
TWX (710) 326-6509 • TELEX 95·1064

=

Comp 2 Threshold
Delay Current

x CD "" 175 ms//IF

If hysteresis is desired for Comparator I, it may be
accommodated by applying positive feedback from the delay
terminal to the non·inverting input on Pin 7. This will aid in
providing oscillation-free transitions for very slowly changing
inputs.

3·76

PRINTED IN U S.A

UC1704
UC3704

Output Section
The output portion of the UC1704 is basically a second
comparator with complimentary, open-collector outputs. This
comparator has a built-in, ground-referenced threshold
implemented with a high-impedance current source and resistor
so that it may be easily overridden with an external voltage source
if desired. Comp 2's input transistors are NPN types which require
at least IV of common-mode voltage for accurate operation and
should not see a differential input voltage greater than 6V.

Reset terminal low overrides the Remote Activate Pin releasing
the latch.

Reference Buffer
This circuit is designed to provide up to lOOmA to drive a highcurrent external PNP transistor useful for powering a heater for
differential temperature measurements. Care must be taken that
power dissipation in Q. does not cause excessive thermal
gradients which will degrade the accuracy of the sensing circuitry.

For diagnostic or latching purposes, the output logic is equipped
with a Remote Activate and Reset function. These pins have
internal pull-ups and are only active when pulled low below a
threshold of approximately 1V. A low signal at the Remote Activate
Pin causes the outputs to change state in exactly the same
manner as if Comp 2's input is raised above the threshold on Pin
11. If Pin 16 is connected to Pin 14, positive feedback results and
the outputs will latch once triggered by Comp 2's input. Pulling the

Using a heating element attached to a temperature sensitive
resistor, RSl, in one leg of the input bridge implements a flow
sensor for either gasses or liquids. As long as there is flow, heat
from the element is carried away and the sensor voltage remains
below threshold. Using an identical sensor, RS2, without a heater
to establish this threshold compensates for the ambienttemperature of the flow.

Typical Application For Monitoring Liquid or Gas Flow

fUc1704 - - - - - -

I
I

lrTl----~
=

-------~

VIN-VREF

=

@25°C

2 2V

5
RSI

----- ~

HEATER BUFFER

---l."'II. .

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEl. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

I------,NPUT SENSOR SECTION - -___0-11...41 - - - - - - OUTPUT SECTION--1

3-77

PRINTED IN U.S A

•

LINEAR INTEGRATED CIRCUITS
Dual Output Driver

UC1706
UC3706

FEATURES

DESCRIPTION

• Dual, 1.5A Totem Pole Outputs

The UCIl06 family of output drivers are made with a high-speed Schottky process to
interface between low-level control functions and high-power switching devices particularly power MOSFET's. These devices implement three generalized functions as
outl ined below:

• 40nsec Rise and Fall into I000pF
• Parallel or Push-Pull Operation
• Single-Ended to Push-Pull Conversion
• High-Speed, Power MOSFET Compatible
• Low Cross-Conduction Current Spike
• Analog, Latched Shutdown
• Internal Deadband Inhibit Circuit
• Low Quiescent Current
• 5 to 40V Operation
• Thermal Shutdown Protection
• I6-Pin Dual-In-Line Package

First: They accept a single-ended, low-current digital input of either polarity and process
it to activate a pair of high-current, totem pole outputs which can source or sink up to
1.5A each.
Second: They provide an optional single-ended to push-pull conversion through the use
of an internal flip-flop driven by double-pulse-suppression logic. With the flip-flop
disabled, the outputs work in parallel for 3.0A capability.
Third: Protection functions are also included for pulse-by-pulse current limiting,
automatic deadband control, and thermal shutdown.
..
These devices are available in a two-watt plastic "Qat:-YrinJrDIPfor\operation over a 0°
to + lO°C temperature range and, with reduced p~r, inal1ermetially sealed cerdip
for -55°C to + 125°C operation.
.,;'
.•.•. ::,'.

TRUTH TABLE

OUT

,-,H. .. ;.

H

~·'K

L

H
L

l

t. -'.OUT = $V.a~N:i:,
=1I'l¥ 111]:

;qor

... L

;"H

.t
l

or

BLOCK DIAGRAM

B INHIBIT 1
INVERTING
INPUT

ANALOG
STOP 1-)

11/83

3-78

~UNITRDDE

UC1706
UC3706

ABSOLUTE MAXIMUM RATINGS

CONNECTION DIAGRAM

N·Pkg

J·Pkg

Supply Voltage, VIN ........................................ 40V ................. 40V
Collector Supply Voltage, Vc ................................ 40V ................. 40V
Output Current (Each Output, Source or Sink)
Steady·State ........................................ ±500mA ............ ±500mA
Peak Transient ......................................... ±1.5A ............... ±1.0A
Capacitive Discharge Energy ............................. 201lJ ................ 151lJ
Digital Inputs ............................................. 5.5V ................ 5.5V
Inhibit Inputs ............................................. 5.5V ................ 5.5V
Stop Inputs ................................................ VIN .................. VIN
Power Dissipation at TA = 25·C .............................. 2W .................. lW
Derate above 50·C ................................. 20mW/·C ........... 1OmW/"C
Power Dissipation at T (Leads/Case) = 25·C .................. 5W .................. 2W
Derate for Ground Lead Temperature above 25·C .... 40mW /·C ................... Derate for Case Temperature above 25·C ................... - ........... 16mW/"C
Operating Temperature Range ............................... -55·C to +125·C ...... .
Storage Temperature Range ................................. -65·C to +150·C ...... .
Load Temperature (Soldering, 10 Seconds) ......................... 300·C ........... .

DIL·16 (TOP VIEW)
J or N PACKAGE

Note: All four ground pins must be
connected to a common ground.

Note: All voltages are with respect to the four ground pins which must be connected together.
All currents are positive into, negative out of the specified terminal.

ELECTRICAL CHARACTERISTICS (Unless otherwise stated, these specifications apply for TA = -55· to + 125·C forthe UC1706 and O·Cto
+70·C for the UC3706; VIN = Vc = 20V.)

TYP.

MAX.

UNITS

VIN Supply Current

VIN = 40V

8

10

rnA

Vc Supply Current

Vc = 40V, Outputs Low

4

5

rnA

Vc Leakage Current

VIN = 0, Vc = 40V

.05

0.1

rnA

0.8

V

-0.6

-1.0

rnA

.05

PARAMETER

TEST CONDITIONS

MIN.

Digital Input Low Level
Digital Input High Level

V

2.2

Input Current

VI = 0

Input Leakage

VI =5V

0.1

rnA

Output High Sat., Vc-Vo

10 = -50mA

2.0

V

Output High Sat., Vc-Vo

10 = -500mA

2.5

V

Output Low Sat., Vo

10 = 50mA

0.4

V

Output Low Sat., Vo

10 = 500mA

2.5

V

Inhibit Threshold

VREF = 0.5V

0.4

0.6

V

Inhibit Threshold

VREF = 3.5V

3.3

3.7

V

Inhibit Input Current

VREF = 0

-20

IlA

Analog Threshold

VCM = 0 to 15V

130

150

mV

Input Bias Current

VCM = 0

-10

-20

IlA

-10
100

155

Thermal Shutdown

UNITROOE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

3-79

·C

PRINTED IN U.S.A

•

UC1706
UC3706

TYPICAL SWITCHING CHARACTERISTICS (VIN = Vc = 20V, TA = 25°C. Delays measured 50% in to 50% out.)
TEST CONDITIONS
PARAMETER
OUTPUT CL=
From Inv. Input to Output:

UNITS

open

1.0

2.2

nF

Rise Time Delay

110

130

140

ns

10% to 90% Rise

20

40

60

ns

Fall Time Delay

80

90

110

ns

90% to 10% Fall

25

30

50

ns

Rise Time Delay

120

130

140

ns

10% to 90% Rise

20

40

60

ns

Fall Time Delay

100

120

130

ns

90% to 10% Fall

25

30

50

ns

From N.!. Input to Output:

Vc Cross-Conduction
Current Spike Duration
Inhibit Delay
Analog Shutdown Delay

Output Rise

25

ns

Output Fall

0

ns

250

ns

180

ns

Inhibit Ref. = IV
Inhibit = 0.5 to 1.5V
Stop (+) Ref. = 0
Stop (-) Input = 0 to 0.5V

CIRCUIT DESCRIPTION
Outputs
The totem-pole outputs have been designed to minimize crossconduction current spikes while maximizing fast, high-current
rise and fall times. Current limiting can be done externally either
at the outputs or at the common Vc pin. The output diodes
included have slow recovery and should be shunted with highspeed external diodes when driving high-frequency inductive
loads.

on until the other has turned-off. The threshold is determined
by the voltage on pin 15 which can be set from 0.5 to 3.5V. When
this circuit is not used, ground pin 15 and leave 1 and 16 open.

Analog Shutdown
This circuit is included to get a latched shutdown as close to the
outputs as possible, from a time standpoint. With an internal
130mV threshold, this comparator has a common-mode range
from ground to (VIN - 3V). When not used, both inputs should be
grounded. The time required for this circuit to latch is inversely
proportional to the amount of overdrive but reaches a minimum of
180nsec. As with the flip-flop, an input off-time of at least 200nsec
is require'd to reset the latch between pulses.

Flip/Flop
Grounding pin 7 activates the internal flip-floptoalternatethetwo
outputs. With pin 7 open, the two outputs operate simultaneously
and can be paralleled for higher current operation. Since the
flip-flop is triggered by the digital input, an off-time of at least
200nsec must be provided to allow the flip/flop to change states.
Note that the circuit logic is configured such that the "OFF" state is
defined as the outputs low.

Supply Voltage
With an internal 5V regulator, this circuit is optimized for use with
a 7 to 40V supply; however, with some slight response time degradation, it can also be driven from 5V.when VIN is low, the entire
circuit is disabled and no current is drawn from Vc. When combined with a UC1840 PWM, the Driver Bias switch can be used to
supply VIN to the UC1706. VIN switching should be fast as if Vc is
high, undefined operation of the outputs may occur with VIN less
than 5V.

Digital Inputs
With both an inverting and non-inverting input available, either
active-high or active-low signals may be acce'pted. These are true
TTL compatible inputs - the threshold is approxi mately 1.2V with
no hysteresis; and external pull-up resistors are not required.
Inhibit Circuit
Although it may have other uses, this circuit is included to eliminate the need for dead band control when driving relatively slow
bipolar power transistors. A diode from each inhibit input to the
opposite power switch collector wi II keep one output from turning-

UNITROOE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

Thermal Considerations
Should the chip temperature reach approximately 155°C, a parallel, non-inverting input is activated driving both outputs to the low
state.

3-80

PRINTED IN U.S.A

-ir-c

"''''z
xX --i

SIMPLIFIED SCHEMATIC DIAGRAM

-z",
~G")o

.8d~
~.?!n

~~g

ANALOG
NON-INV_
INPUT

~~~

'-'"

ANALOG
INVERT
INPUT
L-

~

~~~

r-'o

~~~

+Vw

!~~
~9~

..

co'"

",

';'1»

~'"

~~
o

FLI
AC'

~~P
HE

eW

~

rl-

~

~

~

w
Co
......

DIGIT,
NONINPU

2

3

>---j(}-

~

r1~~ I~ ~r1lfl

")

I

,-,C,r

-

lATE

:&-

A;

"'T

"

~~

,

")

I

DIGI
INVE
INPU

'~~

t

OUl

v~y~~
-

t

120llA 300IlA 120llA

~~

")

c.\3
GND
SUB

+

.~

rh-:A
INHIBIT

>

i<-j-

'Y'

>----j(}

~~~~r

~
REF

~

'·(f~

I

~

~ ~'

IV

E

IV

OUl
"I
1

T

~

B
INHIBIT

cc

nn
w ....

"0 0"
0> 0>

I

LINEAR INTEGRATED CIRCUITS

UC1717
UC3717

Stepper Motor Drive Circuit
FEATURES
• Half-step and full-step capability
• Bipolar constant current motor drive
• Built-in fast recovery Schottky
commutating diodes
• Wide range of current control 5-1000mA
• Wide voltage range 1O-45V
• Designed for unregulated motor supply
voltage
• Current levels can be selected in steps or
varied continuously
• Thermal overload protection

DESCRIPTION
The UC3717 has been designed to control and drive the current in one winding of a
bipolar stepper motor. The circuit consists of an LS·TTL·compatible logic input, a
current sensor, a monostable and an output stage with built· in protection diodes. Two
UC3717s and a few external components form a complete control and drive unit for
LS-TTL or micro-processor controlled stepper motor systems.
The UCl717 is characterized for operation overthe full military temperature range of-55·C
to + 125·C, while the UC3717 is characterized for O·C to +70·C.

ABSOLUTE MAXIMUM RATINGS (Note 1)
Voltage
Logic Supply, Vee ............................................................. 7V
Output Supply, Vm ........................................................... 45V
Input Voltage
Logic Inputs (Pins 7, 8,9) ..................................................... 6V
Analog Input (Pin 10) .........................................................Vee
Reference Input (Pin 11) ..................................................... 15V
Input Current
Logic Inputs (Pins 7, 8, 9) ................................................. -10mA
Analog Inputs (Pins 10, 11) ................................................ -10mA
Output Current (Pins 1,15) ...................................................... ±lA
Junction Temperature, TI .................................................... +150·C
Thermal Resistance, Junction to Ambient (NE Package) ............... , ...... , 45·C/W
Thermal Resistance, Junction to Case (NE Package) .......................... 11 ·C/W
Thermal Resistance, Junction to Ambient (J Package) ....................... 100·C/W
Thermal Resistance, Junction to Case (J Package) ............................ 60·C/W
Storage Temperature Range, Ts ..................................... -55·C to +150·C

CONNECTION DIAGRAM
DIL·16 (TOP VIEW)

J or NE PACKAGE

Note: 1. All voltages are with respect to ground, Pins 4, 5, 12, 13.

Currents are positive into, negative out of the specified terminal.

BLOCK DIAGRAM

CURRENT

TIMING

3·82

EMITTERS

~UNITRODE

UCl717
UC3717
5.0

RECOMMENDED OPERATING CONDITIONS
MIN.

TYP.

Supply Voltage, Vee

4.75

5

5.25

V

Supply Voltage, Vm

10

40

V

Output Current, 1m

20

800

mA

Rise Time Logic Inputs, tr

2

Fall Time Logic Inputs, t,

2

iJS
ps

PARAMETER

Ambient Temperature, t.
UCl717
UC3717

MAX. UNITS

~
z

0

~
en

3.0

'"~

2.0

.......

"

'"
15
OJ

12

-55
0

125
70

•

4.0

I

'"..
~

°C

'c

~

.

~

1.0

i:::::=-

'"""

~

~"'J\<

~s,
'~iI'

~w

0

o

--

"' ....

"' ....

~-.:-150

100

50

AMBIENT TEMPERATURE - ('C)

Figure 1.

ELECTRICAL CHARACTERISTICS (Over recommended operating conditions unless otherwise stated)
PARAMETER

TEST
CONDITIONS

MIN.

TYP.

Supply Current, Icc
High-Level Input Voltage, Pins 7, 8, 9

UNITS

25

mA
V

2.0

Low-Level Input Voltage, Pins 7, 8, 9
High-Level Input Current, Pins 7, 8, 9

V, = 2.4V

Low-Level Input Current, Pins 7, 8, 9

V, = 0.4V

10 = 1
I, = 0

0.8

V

20

pA

-0.4

10 = 0
I I, = 0
Comparator Threshold Voltage

MAX.

VR = 5.0V

mA

390

420

440

230

250

270

mV

65

80

90

mV

mV

r--10 = 0
I, = 1

20

pA

Output Leakage Current

10 = 1
I, = 1
TA =+25'C

100

pA

Total Saturation Voltage Drop

1m = 500mA

4.0

V

-20

Comparator Input Current

Total Power Dissipation

1m = 500mA,
f. = 30kHz

1.4

2.1

W

1m = 800mA,
f. = 30kHz

2.9

3.1

W

30

35

ps

1.6

2.0

ps

+180

°C

toFF

See Figure 5 and 6
Vm = lOV
tON;;;; 5ps

Turn Off Delay, td

See Figure 5 and 6
TA = +25°C;
dVc/dt;;;; 50mV/ps

Cut Off Time,

Thermal Shutdown Junction Temperature

UNITRODE CORPORATION' 5 FORBES ROAD
LEXI NGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

25

+160

3-83

PRINTED IN U.S.A

UC1717
UC3717

TA = +25°C

I--"

-

,.-

0.1

,./

TA = +25°C

V

-01

0.8

0.5

-

0.8

05
OUTPUT CURRENT (A)

OUTPUT CURRENT (A)

Figure 3. Typical Sink Saturation Voltage vs Output Current

Figure 2. Typical Source Saturation Voltage vs Output Current

CHOPPING FREQUENCY = --:-Io-,~+':-Io-,,-

TA = +25°C

o",'AouRta-

II

B
VOLTAGE

(PIN 1, 15)

J

_

to"

.

11

0------_-

....

, ,'----------'
I I

/

I

I

td

-It-

/

I I

/

"

EMITTER

,/

VOLTAGE
(PIN 16)

V"
0.2

~

".,.,.

0.4

0.6

0.8

OUTPUT CURRENT (A)

Figure 5. Connections and Component Values as in Figure 6

Figure 4. Typical Power Losses vs Output Current

FUNCTIONAL DESCRIPTION

coupled with a fixed time delay assures noise immunity and
eliminates cross conduction in the output stage during phase
changes. A low level on the phase input will turn Q2 on and enable
Q3 while a high level will turn Q1 on and enable Q4. (See Figure 7).

The UC3717 drive circuit shown in the block diagram includes the
following functions.
(1) Phase Logic and H·Bridge Output Stage
(2) Voltage Divider with three Comparators for current control

Output Stage
The output stage consists of four Darlington transistors and
associated diodes connected in an H·Bridge configuration. The
diodes are needed to provide a current path when the transistors
are being switched. For fast recovery, Schottky diodes are used
across the source transistors. The Schottky diodes allow the
current to circulate through the winding while the sink transistors
are being switched off. The diodes across the sink transistors in
conjunction with the Schottkys provide the path for the decaying
current during phase reversal. (See Figure 7).

(3) Two Logic inputs for Digital current level select
(4) Monostable for off time generation
Input Logic
If any of the logic inputs are left open, the circuit will treat it as a
high level input.
Phase Input
The phase input terminal, pin 18, controls the direction of the
current through the motor winding. The Schmidt·Trigger input

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

3·84

PRINTED IN U.S.A.

UCI717
UC3717

II

CURRENT

EMITTERS

TIMING

Rc
lk

RSENSE

R,

10

56k

C,
820pF

Cc

820pF

Figure 6.

PHASE INPUT

Ql. Q4

Q2.Q3

LOW

OFF

HIGH

ON

ON
OFF

DASHED LINES INDICATE
CURRENT DECAY PATHS

TABLE 1
10

11

CURRENT LEVEL

0

0

100%

1

0

60%

0

1

19%

1

1

CURRENT INHIBIT

Current Control
The voltage divider. comparators and monostable provide a
means for current sensing and control. The two bit input (I D• I,)
logic selects the desired comparator. The monostable controls
the off time and therefore the magnitude of the current decrease.
The time duration is determined by RT and CT connected to the
timing terminal (pin 2). The reference terminal (pin 11) provides
a means of continuously varying the current for situations
requiring half-stepping and micro·stepping. The relationship
between the logic input signals at pin 7 and 9 in reference to the
current level is shown in Table 1. The values of the different
current levels are determined by the reference voltage together
with the value of the external sense resistor R. (pin 16).
Figure 7. Simplified Schematic of Output Stage

UNITRODE CORPORATION· 5 FORBES ROAD
LEXI NGTON. MA 02173 • TEL. (617) 861·6540
TWX (710) 326-6509 • TELEX 95-1064

3-85

PRINTED IN U.S.A

UCl717
UC3717

Single· Pulse Generator
The pulse generator is a monostable triggered on the positive
going edge of the comparator. Its output is high during the pulse
time and this pulse switches off the power feed to the motor
winding causing the current to decay. The time is determined by
the external timing components RT and CT as:
tOFF

slope of the current decay is steeper, and this is due to the higher
voltage build up across the winding. For better speed
performance of the stepping motor at half step mode, the phase
logic level should be changed the same time the current inhibit is
applied. A typical current wave form is shown in Figure 8.

=0.69 RTCT

If a new trigger signal should occur during tOFF, it is ignored.

Overload Protection
The circuit is equipped with a thermal shutdown function, which
will limit the junction temperature by reducing the output current.
It should be noted however, that a short circuit of the output is not
permitted.

Operation
When the voltage is applied across the motor winding the current
rises linearly and appears across the external sense resistor as an
analog voltage. This voltage is fed through a low·pass filter Re, Ce
to the the voltage comparator (pin 10). At the momentthe voltage
rises beyond the comparator threshold voltage the monostable is
triggered and its output turns off the sink transistors. The current
then circulates through the source transistor and the appropriate
Schottky diode. After the one shot has timed out, the sink
transistor is turned on again and the procedure repeated until a
current reverse command is given. By reversing the logic level of
the phase input (pin 8), both active transistors are being turned
off and the opposite pair turned on. When this happens the
current must first decay to zero before it can reverse. The current
path then provided is through the two diodes and the powersupply. Refer to Figure 7. It should be noticed at this time that the
+5

PHASE A

8

Figure 8.
APPLICATIONS
A typical chopper drive for a two phase bipolar permanent magnet
or hybrid stepping motor is shown in Figure 9. The input can be
controlled by a microprocessor, TTL, LS or CMOS logic.

+5

+40

STEPPI NG MOTOR

Ph

G

UC3717

loA

Ao 15

10
16

4,5

12,13

-=+5

+5

+40
3,14

PHASE B

8 Ph

h

I,B
loB

9

UC3717

10

Ao
16

15

4,5
12,13

Figure 9.
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

3·86

PRINTED IN U.S A.

UCl717
UC3717
The timing diagram in Figure 10 shows the required signal input
for a two phase, full step, stepping sequence. Figure 11 shows a
one phase, full step, stepping sequence, commonly referred toas
wave drive. Figure 12 shows the required input signal for a one
phase-two phase stepping sequence called half-stepping.

The schematic of Figure 14 shows a pulse to half step circuit
generating the signal shown in Figure 12. Care has been taken to
change the phase signal the same time the current inhibit is
applied. This will allow the current to decay faster and therefore
enhance the motor performance at higher step rates.

The circuit of Figure 13 provides the signal shown in Figure 10,
and in conjunction with the circuit shown in Figure 9, will
implement a pulse-to-step two phase, full step, bidirectional
motor drive.

The UC3717 can also be used to drive an external high power
output stage such as the Unitrode PIC900 hybrid circuit in an 18Pin dual-in-line package. The 5A output of the PIC900 can be
controlled with as little as 5mA base drive. Using the UC3717 to
drive the PIC900 provides a uniquely packaged state-of-the-art
high power stepper motor control and drive. See Figure 15.

4

PHASE A

II-____~

PHASE B

--~-..,

----~.~REV

----...,.~FWD

Figure 10. Phase Input Signal for Two Phase Full Step Drive (4 Step Sequence)

4

4

,'--_---oJ
I

I

PHASEA

IL...____

..I

I
PHASE B - - - - . . ,

10,1, A
10. h B

-----<.~

----~~~FWD

REV

Figure 11. Phase and Current-Inhibit Signal for Wave Drive (4 Step Sequence)

I 1 I2

1 314151617181

I
I

PHASE A - - - - . . ,

~

I
PHASE B - - - , - - - - . . ,

r----'V
III

I•• " A
1.. 1, B

n

_-..1-......JnL-_---In. . ___1l..v

_---'n. . _---'n

n

r-Lv

~....

----~.~REV

- - - - -•• FWD

Figure 12. Phase and Current·lnhibit Signal for Half.Stepping (8 Step Sequence)

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

3·87

PRINTED IN USA.

II

UC1717
UC3717
DIRECTION
REV/FWD

I

I

I

PR
D-D

112

Q

[>-0

I
PR
Q

PHASE B

112

7474

.--

PHASE A

1K

7474

CK

Q-

r - CK

ClR

ClR

1

I

CLOCK

Figure 13. Full Step, Bidirectional Two Phase Drive Logic
+5V
~

~
I,A

DIRECTION
SWITCH

,..---------4--10 A

9 So

iI

10 S,
11

ClK
ClR

3 A

...
.......

PHASE A

~

4 B

5 C
6 0

PHASE B

QD 12
R
2

L-_ _ _ _ _ _ _ _ _- .___ I, B

-=

10 B

Figure 14. Half Step, Bidirectional Drive Logic
CONSIDERATION
Half·Stepping
In the half step sequence the power input to the motor alternates
between one or two phases being energized. In a two phase motor
the electrical phase shift between the windings is 90 degrees. The
torque developed is the vector sum of the two windings energized.
Therefore when only one winding is energized the torque of the
motor is reduced by approximately 30%. This causes a torque
ripple and if it is necessary to compensate for this, the VA input
can be used to boost the current of the single energized winding.

Iron Core Losses
Some motors, especially the Tin·Can type, exhibit high iron losses
mostly due to eddy currents which rise in an exponental matter as
the frequency or step rate is increased. The power losses can not
be calculated by 12R where I is the chopping current level and R
the DC resistance ofthe coil. Actual measurements indicate the
effective resistance may be many times larger. Therefore, for
100% duty cycle the current must be limited to a value which will
not overheat the motor. This may not be necessary for lower duty
cycle operation.

Ramping
Every drive system has inertia and must be considered in the drive
scheme. The rotor and load inertia plays a big role at higher
speeds. Unlike the DC motor the stepping motor is a synchronous
motor and does not change its speed due to load variations.
Examining typical stepping motors torque vs. speed curves
indicates a sharp torque drop off for the start-stop without error
curve, even with a constant current drive. The reason for this is
that the torque requirements increase by the square of the speed
change, and the power need increases by the cube of the speed
change. As it can be seen, for good motor performance controlled
acceleration and deceleration should be considered.·

UNITRODE CORPORATION. S FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6S40
TWX (710) 326-6S09 • TELEX 95-1064

Interference
Electrical noise generated by the chopping action can cause
interference problems, particularly in the vicinity of magnetic
storage media. With this in mind, printed circuit layouts, wire runs
and decoupling must be considered. 0.01 to O.lpF ceramic
capacitors for high frequency bypass located near the drive
package across V+ and ground might be very helpful. The
connection and ground leads of the current sensing components
should be kept as short as possible.
Ordering Information
UNITRODE TYPE NUMBER
UC3717NE - 16 Pin Dual-in-line (DIL) "Bat Wing" Package
UC3717J - 16 Pin Dual-in-line Ceramic Package
UCI717J - 16 Pin Dual·in-line Ceramic Package

3-88

PRINTED IN U.S ....

-ire

""'z

X x--i
-z.,
~G)O
O-io

-0",

~~o

~~g

~2~
"~.,

-i .... "

rn w ::::!

roo
~~z
r"

~~~

fl

~5~

mID

m",

,;"",

Zl.,
g~

o

+5V

PIC900

+5V
6

3,14

PHASE~

1~

r---1
1

Bo~

I
1

I
UC3717

I.

•

Ao~

Ii.
161

___ -,

1

1
1
13 1

1

1
14

14,5

12,13

16

w

do
\0

I

14

10

8

1
1
1
1

n

1

_______ J1

1 ill 12
8

117

1

1

Figure 15. UC3717 with PIC900 Power Amplifier

.

'"~

o

cc

z

00

w .....
..........
..........
..........

c:

'"~

II

LINEAR INTEGRATED CIRCUITS

UC1834
UC2834
UC3834

High Efficiency Linear Regulator
FEATURES

DESCRIPTION

• Minimum VIN - VOUT less than O.5V at 5A
load with external pass device
• Equally usable for either positive or
negative regu lator design

The UC1834 family of integrated circuits is optimized for the design of low input-output
differential linear regulators. A high gain amplifier and 200mA sink or source drive
outputs facilitate high output current designs which use an external pass device. With
both positive and negative precision references, either polarity of regulator can be
implemented. A current sense amplifier with a low, adjustable, threshold can be used to
sense and limit currents in either the positive or negative supply lines.

• Adjustable low threshold current sense
amplifier
• Under and over-voltage fault alert with
programmable delay
• Over-voltage fault latch with 100mA
crowbar drive output

In addition, this series of parts has a fault monitoring circuit which senses both under
and over-voltage fault conditions. After a user defined delay for transient rejection, this
circuitry provides a fault alert output for either fault condition. In the over-voltage case,
a 100mA crowbar output is activated. An over-voltage latch will maintain the crowbar
output and can be used to shutdown the driver outputs. System control to the device
can be accommodated at a single input which will act as both a supply reset and
remote shutdown terminal. These die are protected against excessive power dissipation
by an internal thermal shutdown function.

R~TINGS (Note 1)
Input Supply Voltage, VIN •• •• • •• • • • • • • • • • • • • • • • • • • •• • • • • • • • • • • • • • • • • • • • • • •• 40V
Driver Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 400mA
Driver Source to Sink Voltage ............................................... 40V
Crowbar Current ....................................................... -200mA
+ 1.5V Reference Output Current ......................................... -10mA
Fault Alert Voltage ................................,.......................... 40V
Fault Alert Current ....................................................... 15mA
Error Amplifier Inputs ...................................•.......... -O.5V to 35V
Current Sense Inputs ............................................... -O.5V to 40V
O.V. Latch Output Voltage ........................................... -O.5V to 40V
O.V. Latch Output Current ................................................ 15mA
Power Dissipation at TA = 25°C ......................................... 1000mW
Derate at lOmW /~C above TA =50°C
Power Dissipation at Tc =25°C ......................................... 2000mW
Derate at 16mWrC above Tc = 25°C
Thermal Resistance, Junction to Ambient ............................... 100°C/W
Thermal Resistance, Junction to Case ................................... 60°C/W
Operating Junction Temperature ................................ -55°C to +150°C
Storage Temperature ........................................... -65°C to +150°C
Lead Temperature (soldering, 10 seconds) ................................. 300°C
Note: 1. Voltages are reference to VIN-, Pin 5.

ABSOLUTE MAXIMUM

CONNECTION DIAGRAM
DIL-16 (TOP VIEW)

J or N PACKAGE

16 CROWBAR GATE
-20V REF. 2

15

gJT~6t5~ESET

+1.5V REF. 3

14

~~~.f6~~~TIONI

THRESH25? 4

13 DRIVER SOURCE

Currents are positive into, negative out of the specified terminals.

BLOCK DIAGRAM

' - - -......-j 13 DRIVER SOURCE

+1.5V REFERENCE 3
-2,OV REFERENCE

'--~-----I15 O.V. LATCH & RESET

2

+ - - - - - - - 1 - + - - - - - - - - - - 1 1 4 COMPENSATION/SHUTDOWN

SENSE+ 7
THRESHOLD ADJUST 4 1---....1

7/83

L.::=';=~

3-90

~UNITRDDE

UC1834
UC2834
UC3834

ELECTRICAL CHARACTERISTICS (Unless otherwise stated, these specifications apply for TA = -55°C to + 125°C for the UC1834;
-25°C to +85°C for the UC2834' and O°C to +70°C for the UC3834' Y,N+ = 15V Y,N- = OV)

PARAMETER

UC1834/UC2834

TEST CONDITIONS

MIN.

Standby Supply Current

TYP.

MAX.

5.5

7

1.5

1.515

UC3834
MIN.

TYP.

MAX.

5.5

10

1.5

1.53

UNITS
mA

+ 1.5 Volt Reference
T, = 25°C
Output Voltage
TJIMINI

~

1.485

T

J ::;

1.47

TIIMAXI

1.53

1.47
1.455

1.545

V

Line Regulation

V,/ = 5 to 35V

1

10

1

15

mV

Load Regulation

lOUT = 0 to 2mA

1

10

1

15

mV

-2

1.94

V

-2.0 Volt Reference (Note 2)
Output Voltage
+
(Referenced to Y'N )

T, = 25°C

Line Regulation

Y,N + = 5 to 35V

TJIMINI

:S: TJ ::;

2.04

-2

2.06

TjlMAXI

1.5

Output Impedance

1.96

2.06

1.94

2.08

15

1.92
1.5

2.3

20

mV
kO

2.3

Error Amplifier Section
Input Offset Voltage

VCM = 1.5V

1

6

1

10

mV

Input Bias Current

VCM = 1.5V

-1

-4

-1

-8

/1 A

Input Offset Current

VCM = l.5V

0.1

1

0.1

2

/1 A

Small Signal Open Loop Gain

Output @ Pin 14, Pin 12 = V,/
Pin 13, 200 to V,N-

CMRR

VCM = 0.5 to 33V, Y,N+ = 35V

60

80

PSRR

Y,N + = 5 to 35V, VCM = l.5V

70

100

200

350

200

350

50

65

65

dB

60

80

dB

70

100

dB

50

Driver Section
Maximum Output Current
Saturation Voltage

lout = 100mA

Output Leakage Current

Pin 12 = 35V, Pin 13 = V,N-, Pin 14 = Y,N

-

Shutdown Input Voltage
at Pin 14

lOUT ~ 100/1A, Pin 13 = Y,N -, Pin 12 = Y,N +

Shutdown Input Current
at Pin 14

Pin 14 = V'N-, Pin 12 = V,N +,
lOUT ~ 100/1A, Pin 13 = Y'N

0.4

1.2

0.5

1.5

V

0.1

50

0.1

50

/1 A

0.4

1
-100

Thermal Shutdown (Note 3)

mA

0.5

1
-100

-150

165

V
-150

165

/1 A
°C

Fault Amplifier Section
Under- and Over- Voltage
Fault Threshold

VCM = l.5V, @ E/ A Inputs

Common Mode Sensitivity
Supply Sensitivity

120

-1.0

%/V

-0.5

-1.2

%/V

30

45

60

mS//1F

2

5

-0.5
30

45

60

2

5

loUT =lmA

0.2
2

Crowbar Gate Current
Y,N+ = 35V, Pin 16 = V,N-

4

0.2
2

1.3

0.3

0.4

0.6

-100

-175
-0.5

110

0.5

1.0

lOUT = 1mA

O.V. Latch Output
Reset Voltage

Crowba r Gate
Leakage Current

-0.4

-1.0

-0.4

VCM =1.5V, Y'N + = 5 to 35V

O.V. Latch Output Current
O.V. Latch Saturation Voltage

-0.8

V,N+ = 35V, VCM = l.5 to 33V

Fault Delay

Fault Alert Saturation Voltage

190

180

Fault Alert Output Current

mV

150

150

-50

mA
0.5

V
mA

4
1.0

1.3

V

0.3

0.4

0.6

V

-100

-175
-0.5

rnA
-50

/1 A

Note: 2. When using both the 1.5V and -2.0V references the current out of Pin 3 should be balanced by an equivalent current into Pin 2. The -2.0V
output will change -2.3mV per pA of inbalance.
3. Thermal shutdown turns off the driver. If Pin 15 (O.V. Latch Output) is tied to Pin 14 (Compensation/Shutdown), the O.V. Latch will be reset.

UNITROOE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95·1064

3-91

PRINTED IN U S.A

•

UC1834
UC2834
UC3834

=-55°C to + 125°C for the UC1834;
-25°C to +85°C for the UC2834' and O°C to + 70°C for the UC3834' Y,N + = 15V Y,N - = OV )

ELECTRICAL CHARACTERISTICS (Unless otherwise stated, these specifications apply for TA

PARAMETER

I

TEST CONDITIONS

UC1834/UC2834

UC3834

UNITS

MIN.

TYP.

MAX.

MIN.

TYP.

MAX.

Pin 4 Open, VCM

130

150

170

120

150

180

Pin 4

40

50

60

30

50

70

-0.1

-0.3

-0.1

-0.5

%/V

-2

-10

-2

-10

p.A

100

200

100

200

-100

-200

-100

-200

Current Sense Amplifier Section

=Y,N+ or V,N=0.5V, VCM =Y,N+ or V,NPin 4 Open, VCM =Y,N -, Y,N + = 5 to 35V
Pin 4 =0.5V
VCM =V,N+
VCM =Y,N

Threshold Voltage
Threshold Supply Sensitivity
Adj. Input Current
Sense Input Bias Current

Current Sense Threshold Adjustment

mV

p.A

Current Limiting Knee Characteristic

200r-----~------~------._----_,

200

>

E

>
E
I 150

I
=>0.>z=>
-0.

I-----If----I---'

'3o

">
«z

I

[fl

i''"

100

'"-

"'0
"'",
>-0

"",
«'"

>-

~tt
oS

Z

=>

80

«z
",,,,

15

40

t;;

o

If'

~

~

o

o
10

>1 5V OR OPEN

1.5

VOLTAGE AT THRESHOLD ADJUST PIN (PIN 4) -

-10
-7.5
-5.0
-2.5
CURRENT SENSE
THRESHOLD
DIFFERENTIAL VOLTAGE AT CURRENT SENSE INPUTS - mV
(REFERENCED TO SENSE - INPUT)

v

Error Amplilier Gain and Phase
Frequency Response

Current Sense Amplifier Gain and Phase
Frequency Response

80r----.-----,-----r----~---_,

100r-----.-----,-----r----~----_,

OUTPUT AT PIN 14
WITH 820pF TO GND.

OUTPUT AT PIN 14
WITH 820pF TO GND.
T) = 25°C

T) = 25°C

60r---~~-~--~--_+--~

80r---~~-1_--~--_+--~

~

;j

'"OJ

U
UJ
0

OJ

&]

40

0

I

I

;;:

;;:

z

"
"~

UJ

./

/

J

"I
'"I

60

z

"
"~

20

UJ

0

40

90

"8

i'g

'"



>
20r----+---1_--~--_+~~~

-20~

10

___

~

100

__

~

1K

___

~

____

10K

~

____

lOOK

~

O~

10

1M

FREQUENCY - HERTZ

UN/TRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

__

~

____

100

~

1K

____L __ _
10K

~

____

lOOK

180

~

1M

FREQUENCY - HERTZ

3-92

PRINTED IN U S.A

UC1834
UC2834
UC3834
APPLICATION INFORMATION
Foldback Current Limiting

Setting The Threshold Adjust Voltage (V....)

II

UC1834

20V
VOUT

1.5V

R,

ilMAX(Typical)

¥~~~§~JLD _"---"'"-_-' = O.I(V.",,)_

¢8[¥;JE (V

ADJ

RSENSE

)

FOR: R, + R2»

V"OJ

(R,

= 1.5V. _ _R_,_

R,

(V,: - VO"') R,
+

~

R2

R3=~.(R,+R2)

R2) RSENSE

RSENSE. VADJ

+

'TO MAINTAIN -2.0V OUTPUT
1.5

1.5V,

R,' = R,

TYPICAL APPLICATIONS
Both the current sense and error amplifiers
on the UC1834 are transconductance type
amplifiers. As a result, their voltage gain is a
direct function of the load impedence at
their shared output pin, Pin 14. Their small
signal voltage gain as a function of load and
frequency is nominally given by;
Av

_ Zc(f)
7000 and Av

EjA -

for:

5-10 AMP Positive Regulator
~~~yo-~~~----------------------~

~_,--oVOUT

_ lL(f)
700

C S.fA -

f:O; 500kHz and IlL(f)1

:0;

1MO,

where:
Av = small signal voltage gain to Pin 14,
lL(f) = load impedence at Pin 14.

The UC1834 fault delay circuitry prevents
the fault outputs from responding to
transient fault conditions. The delay reset
latch insures that the full, user defined,
delay passes before an over-voltage fault
response occurs. This prevents
unnecessary crowbar, or latched-off
conditions, from occurring following sharp
under-voltage to over-voltage transients.
The crowbar output on the UC1834 is
activated following a sustained over-volatge
condition. The crowbar output remains high
as long as the fault condition persists, or, as
long as the over-voltage latch is set. The
latch is set with an over-voltage fault if the
voltage at Pin 15 is above the latch reset
threshold, typically O.4V. When the latch is
set, its Q output will pull Pin 15 low through a
series diode. As long as a nominal pull-up
load exists, the series diode prevents Qfrom
pulling Pin 15 below the reset threshold.
However, Pin 15 is pulled low enough to
disable the driver outputs if Pins 15 and 14
are tied together. With Pin 15 and 14
common, the regulator will latch off in
response to an over-voltage fault. If the fault
condition is cleared and Pins 14 and 15 are
momentarily pulled below the latch reset
threshold, the driver outputs are re-enabled.
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710l. 326-6509 • TELEX 95-1064

REMOTE

t---+----I---~===~~t:----o ~~~:fOWNI
GROUND

0-+-..-+----15\

5-10 AMP Negative Regulator
GROUND

0-..--....-------------------------------------....-----.-,

I--+-t--+-+---o

REMOTE

SHUTDOWNI
RESET

1lo1-+-+--+-+-~~~~ORING

s0~~0-~~~----------------------------------~--~

3-93

PRINTED IN U.S.A.

LINEAR INTEGRATED CIRCUITS

UC1840
UC2840
UC3840

Programmable, Off-Line, PWM Controller
FEATURES

DESCRIPTION

• All control, driving, monitoring, and
protection functions included

Although containing most of the features required by all types of switching power supply
controllers, the UC1840 family has been optimized for highly-efficient boot-strapped
'primary-side operation in forward or flyback power converters. Two important features
for this mode are a starting circuit which requires little current from the primary input
voltage and feed-forward control for constant volt-second operation over a wide input
voltage range.
In addition to startup and normal regulating PWM functions, these devices offer built-in
protection from over-voltage, under-voltage, and over-current fault conditions. This
monitoring circuitry contains the added features that any fault will initiate a complete
shutdown with provisions for either latch off or automatic restart. In the latch-off mode,
the controller may be started and stopped with external pulsed or steady-state
commands.
Other performance features of these devices include a 1% accurate reference, provision
for slow-turn-on and duty-cycle limiting, and high-speed pulse-by-pulse current limiting
in addition to current fault shutdown.
The UC1840's PWM output stage includes a latch to insure only a single pulse per period
and is designed to optimize the turn off of an external switching device by conducting
during the "OFF" time with a capability for both high peak current and low saturation
voltage. These devices are available in an 18-pin dual-in-line' plastic or ceramic package.
Th,e UC1840 is characterized for operation over the full military temperature' range of
-55°C to + 125°C. The UC2840 and UC3840 are designed for operation from -25°C to
+85°C and O°C to +70°C, respectively.

• Low-current, off-line start circuit
• Feed-forward line regulation over 4 to 1
input range
• PWM latch for single pulse per period
• Pulse-by-pulse current limiting plus
shutdown for over-current fault
• No start-up or shutdown transients
• Slow turn-on and maximum duty-cycle
clamp
• Shutdown upon over- or under-voltage
sensing
• Latch off or continuous retry after fault
• Remote, pulse-commandable start/stop
• PWM output switch usable to 1A peak
current
• 1% reference accuracy
• 500kHz operation
• 18-pin OIL package

BLOCK DIAGRAM

11

v,.
SENSE

10 RAMP

v,.

SUPPLY

DRIVER
BIAS
INV INPUT

PWM
OUTPUT

N,t INPUT
START/UV
5,QV REF

GROUND
SLOW
STARTI
DUTY CYCLE
CLAMP

CUR LIMIT
THRESHOLD

4OOm'

Note: Positive true logic, latch outputs high with set, reset has priority,

11/83

3-94

~UNITRDDE

UC1840
UC2840
UC3840
ABSOLUTE MAXIMUM RATINGS (Note 1)
Supply Voltage, +VIN (Pin 15)
Voltage Driven ......................................... +32V
Current Driven, 100mA maximum ............... Self·limiting
PWM Output Voltage (Pin 12) ............................... 40V
PWM Output Current, Steady-State (Pin 12) ............... 400mA
PWM Output Peak Energy Discharge .................. 20pJouies
Driver Bias Current (Pin 14) ........................... -200mA
Reference Output Current (Pin 16) ....................... -50mA
Slow-Start Sink Current (Pin 8) ............................ 20mA
V,N Sense Current (Pin 11) .... .. . .. .... .. .. .. .. .. .. .. ... lOmA
Current Limit Inputs (Pins 6 & 7) .................. -0.5 to +5.5V
Comparator Inputs (Pins 2, 3, 4, 5, 17, 18) ......... -0.3 to +32V
Power Dissipation at TA = 25·C ........................ 1000mW
Derate at 10 mW;oC for TA above 50·C
Power Dissipation at Tc =25·C ........................ 2000mW
Derate at 16 mW;oC for Tc above 25·C
Thermal Resistance, Junction to Ambient .............. 100·C/W
Thermal Resistance, Junction to Case ................... 60·C/W
Operating Junction Temperature ............... -55·C to + 150·C
Storage Temperature Range ...........•....... -65·C to +150·C
Lead Temperature (Soldering, 10 sec) ................... +3oo·C
Notes: 1. All voltages are with respect to ground, Pin 13.

CONNECTION DIAGRAM
UCl840
UC2840
UC3840

DIL-18 (TOP VIEW)

J or N PACKAGE

COMPENSATION

~

NON·INV INPUT

START/UV

2

17 INVERTING INPUT

OV SENSE

3

16 5.0V REF

STOP

4

15 + VIN SUPPLY

RESET

5

14 DRIVER BIAS
13 GROUND

CURRENT THRESHOLD 6

12 PWM OUTPUT

7

CURRENT SENSE
SLOW-START

8

11

RT/CT

9

10 RAMP

VIN

SENSE

Currents are positive-into, negative-out of the specified terminal.

ELECTRICAL CHARACTERISTICS (Unless otherwise stated, these specifications apply for TA = -55·C to + 125·C for the UC1840,
-25·C to +85·C for the UC2840, and O·C to 70·C for the UC3840; V,N = 20V, RT = 20k,
CT = .001mfd, CR = .001mfd, Current Limit Threshold = 200mV)

PARAMETER

UCl840
UC2840

TEST CONDITIONS

UC3840
UNITS

MIN. TYP. MAX. MIN. TYP. MAX.
Power Inputs
Start-Up Current

V,N = 30V, Pin 2 = 2.5V, TJ = 25·C

Start-Up Current T.C. *

V,N = 30V, Pin 2 = 2.5V

Operati ng Cu rrent

V,N = 30V, Pin 2 = 3.5V

5

10

15

5

Supply OV Clamp

V,N = 20mA

33

40

45

33

4.95

4.9

4

5.5

4

5.5

mA

-0.1

-0.2

-0.1

-0.2

%/·C

10

15

mA

40

48

V

Reference Section
Reference Voltage

TJ = 25·C

5.0

5.05

5.0

5.1

V

Line Regulation

V,N = 8 to 30V

10

15

10

20

mV

10

20

10

Load Regulation

IL = 0 to 20mA

Temperature Coefficient·

Over operating temperature range

Short Circuit Current

VREF = 0, TJ = 25·C

30

mV

±0.4

±0.4

mV;oC

-80

-100

-80 -100

50

53

0.5

1

mA

Oscillator
Nominal Frequency

TJ = 25·C

Voltage Stability

V'N = 8 to 30V

Temperature Coefficient·

Over operati ng temperature range

Maximum Frequency

RT = 2kn, CT = 330pF

47

45

50

55

0.5

1

%

±.08

%;oC

±.08
500

kHz

kHz

500

Ramp Generator
Ramp Current, Minimum

ISENSE = -10pA

Ramp Current, Maximum

ISENSE = LOmA

-11

Ramp Valley
Ramp Peak

Clamping Level

-0.9

-.95

0.3

0.5

3.9

4.2

-11

-14

-14

pA

-0.9

-.95

mA

0.7

0.3

0.5

0.7

V

4.5

3.9

4.2

4.5

V

·Guaranteed by design. Not 100% tested in production.

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

3-95

PRINTED IN U.S A.

II

UC1840
UC2840
UC3840

=-55·C to + 125'C for the UC1840,
-25·C to +85'C for the UC2840, and O'C to 70·C for the UC3840; VIN = 20V, RT = 20k,
CT .001mfd, CR .001mfd, Current Limit Threshold 200m¥)

ELECTRICAL CHARACTERISTICS (Unless otherwise stated, these specifications apply for TA

=

=

PARAMETER

=

UCl840
UC2840

TEST CONDITIONS

UC3840
UNITS

MIN. TYP. MAX. MIN. TYP. MAX.
Error Amplifier
Input Offset Voltage

VCM

=5.0V

Input Bias Current

0.5

5

2

10

mV

0.5

2

1

5

J1A

0.5

J1A

Input Offset Current

0.5

=1 to 3V

60

Open Loop Gain

AVo

Output Swi ng
(Max. Output::; Ramp Peak - 100mV)

Minimum Total Range

0.3

VCM

=1.5 to 5.5V
=8 to 30V
VCOMP =OV
TJ =25·C, AVOL =OdB
TJ =25'C, AVCL =OdB

70

80

70

80

VIN

40

50

40

50

CMRR
PSRR
Short Circuit Current
Gain Bandwidth'
Slew Rate·

66
3.5

-4
1

60

-4
1

0.8

dB
3.5

0.3

-10

2

66

V
dB
dB

-10

mA

2

MHz

0.8

VIJ1s

PWM Section
Continuous Duty Cycle Range'
(other than zero)

Minimum Total Continuous Range
Ramp Peak < 4.2V

Output Saturation

=20mA
lOUT =200mA
VOUT =40V

Output Saturation
Output Leakage
Comparator Delay·

5

lOUT

Pin 8 to Pin 12
TJ 25·C, RL 1kO

=

=

95

95

5

%

0.2

0.4

0.2

0.4

V

1.7

2.2

1.7

2.2

V

0.1

10

0.1

10

J1A

300

500

300

500

ns

3.0

3.2

Sequencing Functions
Comparator Thresholds

Pins 2, 3, 4, 5

Input Bias Current

=OV
Pin 2 =2.5V, TJ =25'C
Input V =20V
Ie =-50mA
Ve =OV
Is =2mA
Vs =4.5V

Start/UV Hysteresis Current
Input Leakage
Driver Bias Saturation Voltage, VIN - VOH
Driver Bias Leakage
Slow·Start Saturation
Slow· Start Leakage

2.8

Pins 3, 4, 5

180

3.0

3.2

-1.0

-3.0

200

220

0.1

10

2

2.8

V

-1.0 -3.0

J1A

200

230

J1A

0.1

10

pA

3

2

3

V

-0.1

-10

-0.1

-10

J1A

0.2

0.5

0.2

0.5

V

0.1

2.0

0.1

2.0

J1A

170

Current Control
Current Limit Offset
Current Shutdown Offset
Input Bias Current

370
Pin 7

=OV

5
430

-2

-5

-0.4

Common Mode Range'
Current Limit Delay'

0
400

TJ

=25·C, Pin 7 to 12, RL =1k

3.0
200

400

360

0

10

mV

400

440

mV

-2

-5

J1A

-0.4
200

3.0

V

400

ns

·Guaranteed by design. Not 100% tested ill production.

UNITRODE CORPORATION. 5 FORBES ROAD
LEXI NGTON. MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

3·96

PRINTED IN

u.s

A.

UC1840
UC2840
UC3840

FUNCTIONAL DESCRIPTION
PWM CONTROL
1. Oscillator:

2. Ramp Generator:

•

Generates a fixed-frequency internal clock from an external RT and CT.
Kc
Frequency = RTCT where Kc is a first-order correction factor = 0.3 log (CT X 10").
dv
sense voltage
Develops a linear ramp with a slope defined externally by - - =
dt
RRCR
CR is normally selected :0:; CT and its value will have some effect upon valley voltage.
CR terminal can be used as an input port for current mode control.

3. Error Amplifier:

Conventional operational amplifier for closed-loop gain and phase compensation.
Low output impedance; unity-gain stable.

4. Reference Generator:

Precision 5.0V for internal and external usage to 50mA.
Tracking 3.0V reference for internal usage only with nominal accuracy of
40V clamp zener for chip OV protection, 100mA maximum current.

± 2%.

5. PWM Comparator:

Generates output pulse which starts at termination of clock pulse and ends when the ramp input
crosses the lowest of two positive inputs.

6. PWM Latch:

Terminates the PWM output pulse when set by inputs from either the PWM comparator, the pulseby-pulse current limit comparator, or the error latch. Resets with each internal clock pulse.

7. PWM Output Switch:

Transistor capable of sinking current to ground which is off during the PWM on-time and turns on
to terminate the power pulse. Current capacity is 400mA saturated with peak capacitance
discharge in excess of one amp.

SEQUENCING FUNCTIONS
1. Start/UV Sense:

This comparator performs three functionsWith an increasing voltage, it generates a turn-on signal at a start threshold.
With a decreasing voltage, it generates a UV fault signal at a lower level separated by a
200pA hysteresis current.
At the UV threshold, it also resets the Error Latch if the Reset Latch has been set.

2. Drive Switch:

Disables most of the chip to hold internal current consumption low, and Driver Bias OFF, until
input voltage reaches start threshold.

3. Driver Bias:

Supplies drive current to external power switch to provide turn-on bias.

4. Slow Start:

Clamps low to hold PWM OFF. Upon release, rises with rate controlled by RsCs for slow increase of
output pulse width.
Also used to clamp maximum duty cycle with divider Rs Roc.

5. Start Latch:

Keeps low input voltage at initial turn-on from being defined as a UV fault. Sets at start level to
monitor for UV fault.

6. Reset Latch:

When reset, this latch insures no reset signal to either Start or Error latches so that first fault will
lock the PWM off.
When set, this latch resets the Start and Error latches at the UV low threshold, allowing a restart.

I
I

I

PROTECTION FUNCTIONS
When set by momentary input, this latch insures immediate PWM shutdown and
1. Error Latch:
hold off until reset.
Inputs to Error Latch are:
a. UV low (after turn-on)
b. OV high
c. Stop low
d. Current Sense 400mV over threshold.
Error Latch resets at UV threshold if Reset Latch is set.
2. Current Limiting:

Differential input comparator terminates individual output pulses each time sense voltage rises
above threshold.
When sense voltage rises to 400mV above threshold, a shutdown signal is sent to Error Latch.

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEl. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

3-97

PRINTED IN USA

UC1840
UC2840
UC3840

PWM Output Saturation Voltage

StartlUV Hysteresis Current

VIN =2QV
v.... ,= 2.5V

~

4~----~------t-----~------~----~
VIN = 20V

a 275

Low duty-cycle
pulse test.

E

e

250

i
,225
i

r--~p.1, ,
IlC\~1""''' 1~P\C"l CH,.R,.CTERISTIC

II>

.. ",,;/.O~\~

__U~,!4~~~ __

-_.:t---:tn---

l-

200

A-::: --..L--l--- uCis;biN-

a 175

iii
ffi

.!!~T~~"'

--UC3s40'MiN---

150 _IlC'i

Ii;
~ 125
-50

-25

50

25

75

100

125

JUNCTION TEMPER,.TURE - ('C)

OUTPUT SINK CURRENT - (rnA)

PWM Output Minimum Pulse Width

Oscillator Frequency

(Pulse width $oes to zero
below value Indicated.)

¥

200

.3
I

'>1

g
~

'"::>

10
5.0

:t:

50

b

3.0

'"

2.0

20

i.:
:IE
::>
:IE

1.0

i

~

S'

If

Z
iii

0.5
0.3
0.2
0.1

5

10

20

50

100

200

500

10

R, TIMING RESISTOR - (kO)

20

50

30

100

200

300

500

OSCILLATOR FREQUENCV - (k Hertz)

·Error Amplifier Open-Loop Gain and Phase

Shutdown Timing

80
5
VIN

60

'"

iii'

:s

40

z

~

'"

~

J20V

Pin 4

~1'\

20

Pin 8
Volts

~

rn
::J
0:

'"

§!

PHASE

lK

10K

lOOK

8'"

20

180 t;:

Pin 12

Volts

:;:

270
360

...... ....c.>o

Co= a

......

I

PWM Output
VOlj8e

en

'"~
:t:
Q.

a

1M

FREQU ENCV - (Hertz)
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95-1064

'

g::x.~~ftage

a

OJ

"-

-......~

100

Input to E1. Slop

a

"-~

-........ ...........

-

Volts

TJ = 25°C

500

1000

1500

DELAV TIME - (n sec)

3·98

PRINTED IN U.S.A.

UC1840
UC2840
UC3840

OPEN·LOOP TEST CIRCUIT
r=-.

"""

R,

lOOk

115

Su pply

R,

180k

V~

VoItage

16

~

R,

20k

L-.!.!.
9

C, .001
R,

,!£

Slow St.

VREF

Y,N Sense

Dnv Bias

UCI840
D.U.T.

RT/Cr

PWM Out

~

'!!"""'l....,/,
14

Roc

iRc=lk

12

Ramp

Gnd 13

Start/UV

Stop

~o--

Reset

f-o/<>-

20k*
2

R,

9k

3

OV Sens

R, 3k

Inv

Camp

tdJ

C"~.OOI

10k

=

NI

I

Output
Monitor

C/L(+)

C/L(-)

6

18

II

+C.

~

7

VREF

Io.1

10k

10k
~

43k

48k
~

PWM
Adj.

2k

L-+

-

_

fR, + R,+ R~

Nominal Frequency = Rrler = 50kHz

fR, + R + R~
Start Voltage = 3 \~) + O.2R,

10k

UVFaultVoltage= 3\ R2+R3 )=8V
=

12V

OV Fault Voltage

fR+R+R~

= 3 ,~) = 32V

Current Sense
Test

Current Limit = 200mV
Current Fault Voltage = 600mV
Duty Cycle Clamp

=50%

FLYBACK APPLICATION (A)

REGULATOR APPLICATION (8)

In this application (see Figure A, next page), complete control is
maintained on the primary side. Control power is provided by RIN
and CJN during start-up, and by a primary-referenced low voltage
winding, N2, for efficient operation after start. The error amplifier
loop is closed to regulate the DC voltage from N2 with other
outputs following through their magnetic coupling - a task made
even easier with the UC1840's feed-forward line regulation.

Although primarily intended for transformer-coupled power systems, the UC1840's advantages of feed-forward for high ripplerejection, a fully contained fault monitoring system and remote
start/stop capability make it worth conSidering for other types of
regulators. Since the fault logic within the UC1840 requires recycling the voltage sensed by the Start/UV Comparator to reset the
error latch, a need for automatic restart must be addressed in a
manner similar to that shown in Figure B (next page). In this
simple, non·isolated, buck regulator; diode 01 provides a lowimpedence bootstrapped drive power source after start-up is
achieved through RIN and CIN. When a fault shutdown terminates
switching action, the loading of Q1 and Rdwililowerthevoitageon
pin 2 to effect an automatic re-start attempt which will continuo
ously recycle until the fault is removed.

An extension to this application for more precise regulation would
be the use of the UC19011soiated Feedback Generator for direct
closed-loop control to an output. The UC1840 will readily accept
digital start! stop commands transmitted from the secondary side
by means of optical couplers.
Not shown are protective snubbers or additional interface circuitry which may be required by the choice of the high-voltage
switch, Qs, or the application.

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

3-99

PRINTED IN U.S.A

UC1840
UC2840
UC3840

UC1840 PROGRAMMABLE PWM CONTROLLER IN A SIMPLIFIED FLYBACK REGULATOR (A)

AC
INPUT

R.

R,

R,

R.

R,

Res

~

r'

UC1840 CONTROLS A HIGH·CURRENT NON·ISOLATED BUCK REGULATOR (B)
Vo

r------------,

!

PIC660

O---~------------------------~----------~~--------_r~_,~

: lOOpH
I
I

:

:

.J

33k

Dl
SESll05

......-+__t-'VIO"k"--f

0.1

Vo = 5V
SA

1

50

"F

QI

2N2222

1000
5V
lOOk

*lnF
24k
3k 2k

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

3·100

PRINTED IN U.S.A.

UC1840
UC2840
UC3840

UC1840 POWER SEQUENCING FUNCTIONS

A

B

I

I

o
I

G

I

H I

M N 0

I I

I I I

SIOW-Sta~

/

Stop
(Note 2)

I

r

I

I

•

V

I

I

I~

lmill

PWM

u

Q

Imflflfl

U

U

Reset

I I
A

B

C

o E

G

H I

I I
M

J

N 0

Q R S

U

V

Notes: 1. VC represents an analog of the output voltage generated by a primary-referenced
secondary winding on the power transformer. It is the voltage monitored by the start/UV
comparator and, in most cases, is the supply voltage, V,N, for the UC1840.
2. Although input to External Stop, Pin 4, is shown, results are the same for any fault input
which sets the Error Latch.

UC1840 POWER SEQUENCING FUNCTIONS
TIME
A

Initial turn-on, Vc rises with light load
Start threshold. Driver Bias loads Vc
Operating PWM regulates Vc
Stop input sets Error Latch turning off PWM
UV low threshold, Error Latch remains set
Start turns on Driver Bias but Error Latch still set

B

C
D

E
F
G

H

}

I

Vc and Driver Bias continue to cycle
Stop command removed
Error Latch reset at UV low threshold
Start threshold now removes slow-start clamp
Return to normal run state
Reset Latch set signal removed
Error Latch set with momentary fau It
Error Latch does not reset as Reset Latch is reset

J
K
L
M

N
0

P
Q
R

EVENT

}

S
T
U

V

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

Vc and Driver Bias recycle with no turn-on.
Reset Latch set is set with momentary Reset signal
Vc must complete cycle to turn-on
Start and Error Latches reset
Normal start initiated
Return to normal run state

3-101

PRINTED IN U.S A.

UC1842
UC2842
UC3842

LINEAR INTEGRATED CIRCUITS
Off-Line Current Mode PWM Controller
FEATURES
• Optimized for off-line control
• Low start up current «lmA)
• Automatic feed forward compensation
• Pulse-by-pulse current limiting
• Enhanced load response characteristics

DESCRIPTION
The UC1842 family of control ICs provides in an eight pin min~citp the necessary
features to implement off-line, fixed frequency current mode coritllol schemes with a
minimal external parts count. The superior performance of~te¢hnique can be
measured in improved line regulation, enhanced loaq~_n-se'o~cteristics, and a
simpler, easier to design control loop. Topological advantages includt' inherent pulse-bypulse current limiting.
.

• Under-voltage lockout with 6V
hysteresis

Protection circuitry includes built in under~.;o_ Joc~ and current limiting. Other
features include fully latched operation, a l~ tril"t\me.d bandgap reference, and start-up
cu rrent less than 1mAo
.
- .;

• Double pulse suppression
• High current totem pole output

These devices feature a totem J!ltJe:Qutpuf~esiined to source and sink high peak
current from a capacitivelQ,~d,!Wj;h aO~;gate.of a power MOSFET. Consistent with N
Channel power devicelO. th~0t4tpUf is low in-ttre OFF state.

• Internally trimmed bandgap reference
• 500kHz operation

CONNECTION DIAGRAM

ABSOLUTE MAXIMUM RATINGS (Note 1)
Supply Voltage (Icc < 30mA) ... _........... _.• .... . . . . . ..
. .... Self Limiting
Supply Voltage (Low Impedence Source) ... ' h . ' C. ;~ . . . . . . . . . _, . . . . . . . . . . . . . . . . . . . . . 30V
Output Current ................. : .....
±lA
Output Energy (Capacitive Load) . . . . . . .
. .................... 5/lJ
Analog Inputs (Pin 2, Pin 3) .....
.......• . ............... -0.3V to Vee
Error Amp Output Sink Current ,:".
.. ........................ lOmA
Power Dissipation at TA ::::; 70 0 e;;" .. ".;.....
. .............................. 1W
Derate 12.5mW/oC for.T... >''1~~C<
Storage Temperature Eqinge :.;;;. ::~,: •.. .':. . ..................... -65°C to + 150°C
Lead Temperature (Sola~iJ,O Sei:O.ll(is) ................ : ................ _... 300°C

,f."........ .

.....................

"li>

Note: 1. All voltages are with respect to Pin 5.
All currents are positivi! lmo the specified terminal.

DIL·S (TOP VIEW)
N or J PACKAGE

COMPOS
VFB

2

V,"

7 Vee

ISENse 3

6 OUTPUT

R,IC, 4

5 GROUND

BLOCK DIAGRAM

'>-..--1 SIR !t:F 1--1r-.....-

......- - - - - - - - t - - - - t
VREF
5.0V
50mA

.LL

2R

3~--------------~

CURRENT
SENSE

3-102

~UNITRDDE

UC1842
UC2842
UC3842
ELECTRICAL SPECIFICATIONS

(Unless otherwise stated, these specifications apply for -55 ::;TA::;125°Cfor UC1842; -25 ::;TA :S85°C
for UC2842; 0 ::; TA ::; 70°C for UC3842; Vcc 15V (Note 5); RT 10K; CT 3.3nF.)

=

PARAMETER

=

=

UC1842
UC2842

TEST CONDITIONS

UC3842
UNITS

MIN.

TYP.

MAX.

MIN.

TYP.

MAX.

4.95

5.00

5.05

4.90

5.00

5.10

V

6

20

6

20

mV

Reference Section

=25°C, 10 =1mA

Output Voltage

Tj

Line Regulation

12::; VIN::; 25V

Load Regulation

1::; 10::;20mA

Temp. Stability

(Note 2)

Total Output Variation

Line, Load, Temp. (Note 2)

Output Noise Voltage

10Hz::; f ::; 10kHz, Ti

Long Term Stability

TA

Output Short Ci rcuit

TA

6

25

6

25

mV

0.2

0.4

0.2

0.4

mV;oC

4.90

=25°C (Note 2)

5.10

4.82

=125°C, 1000 Hrs. (Note 2)
=25°C

5.18

V
pV

50

50
5

25

5

25

mV

-100

-130

-100

-130

mA

52

57

52

57

kHz

0.2

1

0.2

1

Oscillator Section

=25°C

Initial Accuracy

Ti

Voltage Stability

12::; Vcc::; 25V

Temp. Stability

TMIN::; TA::; TMAX (Note 2)

Amplitude

VPIN

4

peak to peak

VPIN

1

=2.5V

47

47

%

5

5

%

1.7

1.7

V

Error Amp Section
Input Voltage

2.45

Input Bias Current

2.50

2.55

-0.3

-1

2.42

2.50

2.58

V

-0.3

-2

pA

AvoL

2::; Vo::; 4V

65

90

65

90

dB

Unity Gain Bandwidth

(Note 2)

0.7

1

0.7

1

MHz

PSRR

12::; Vee::; 25V

60

70

60

70

dB

Output Si nk Current

VPIN

=2.7V, VPIN 1 =1.1V
VPIN 2 =2.3V, VPIN 1 =5V
VPIN 2 =2.3V, RL =15K to ground
VPIN 2 =2.7V, RL =15K to Pin 8

2

6

2

6

mA

-0.5

-0.8

-0.5

-0.8

mA

5

6

5

6

Output Source Current
VOUT High
VOUT Low

2

0.7

1.1

2.85

3

3.15

0.9

1

1.1

V

0.7

1.1

V

2.85

3

3.15

V/V

0.9

1

1.1

Current Sense Section
Gain

(Notes 3 & 4)

Maximum Input Signal

VPIN

PSRR

12 ::; Vcc ::; 25V (Note 3)

1

=5V (Note 3)

70

V
de

-2

-10

-2

-10

pA

200

400

200

400

ns

ISINK

0.1

0.4

0.1

0.4

V

ISINK

1.5

2.2

1.5

2.2

V

Input Bias Current
Delay to Output

70

Tj

=25° (Note 2)

Output Section
Output Low Level
Output High Level
Rise Time
Fall Time

=20mA
=200mA
ISOURCE =20mA
ISOURCE =200mA
Tj =25°C, CL =InF (Note 2)
Ti =25°C, CL =InF (Note 2)

13

13.5

13

13.5

12

13.5

12

13.5

V
V

50

150

50

150

ns

50

150

50

150

ns

Not..: 2. These parameters, although guaranteed, are not 100% tested in production.
3. Parameter measured at trip point of latch with VPIN 2 = o.
4. Gain defined as:
b. VPIN 1
A = b. VPIN 3 ; a :$ VPIN 3:$ a.BV.
5. Adjust Vcc above the start threshold before setting at 15V.

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326·6509 • TELEX 95-1064

3-103

PRINTED IN U.S.A

..

UC1842
UC2842
UC3842
ELECTRICAL SPECIFICATIONS

(Unless otherwise stated, these specifications applyfor-55 $TA $125·Cfor UC1842; -25 $TA $85·C
for UC2842; 0 $ TA $ 70·C for UC3842; Vcc =15V (Note 5); RT =10K; CT =3.3nF.)

PARAMETER

UC1842
UC2842

TEST CONDITIONS
MIN.

TYP.

UC3842
MAlt

MIN.

UNITS

TYP.

MAX.

Under·Voltage Lockout Section
Start Threshold
Min. Operating Voltage

After Turn On

15

16

17

14.5

16

17.5

V

9

10

11

8.5

10

11.5

V

Total Standby Current
Start·Up Current
Operating Supply Current VPIN 2 =VPIN
Vee Zener Voltage
Icc =25mA

3

=OV

0.5

1

0.5

1

mA

11

15

11

15

mA

34

34

V

Not..: 2. These parameters. although guaranteed, are not 100% tested in production.
3. Parameter mllasured at trip point of latch with
4. Gain defined as:

t:. VPIN 1
A = - - - ; 0 ,; VPIN
t:. VPIN 3

V.,•• = O.

3';

O.BV.

5. Adjust Vee above the start threshold before set1ing at 15V.
UNDER·VOLTAGE LOCKOUT

Icc

I
0'!{g":J?~~D
I
I
I
I
IL_____________ _

~:l~::::=:::::-f

f _ . vee

10V

16V

ERROR AMP CONFIGURATION

2.50V
O.5mA

L ________________ _

ERROR AMP CAN SOURCE OR SINK UP TO O.SmA

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

3·104

PRINTED IN U.S.A.

UC1842
UC2842
UC3842
CURRENT SENSE CIRCUIT

•

2R

R

CURRENT
SENSE
COMPARATOR

1V

R

Rs

I
IL

______________ _

PEAK CURRENT (lollS DETERMINED BY THE FORMULA:

Ismax "
A SMALL

.lff-

RC FILTER MAY BE REQUIRED TO SUPPRESS SWITCH TRANSIENTS.

OSCILLATOR WAVEFORMS AND MAXIMUM DUTY CYCLE

VPIN 4

VRE'

8 \----,
RT

RT/CT

4

1---"

I

'"o~H

-IL

______.JnL._____

INTERNAL CLOCK

LARGE AT
SMALL CT
CT

____ -1

INTERNAL CLOCK

Oscillator timing capacitor. CT. is charged by VREF through RT and
discharged by an internal current source. During the discharge
~ime. the internal clock signal blanks the output to the low state.
Selection of RT and CT therefore determines both oscillator
frequency and maximum duty cycle. Charge anddischargetimes
are determined by the formulas:

te" 0.55 RTCT

lei ... RrCT In (

6.3 RT - 2.7)
(RT in 1(0)
6.3 RT - 4

Frequency. then. is: f = (Ie + leIf'.

1.8

ForRT>5k f - - - RrCT

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

3-105

PRINTED IN U.S.A.

UC1842
UC2842
UC3842

Output Saturation Characteristics

,

Vee == 15V

--

TA

=25°C

- - - TA=-55°C

--

- ..~--

Error Amplifier Open·Loop .Frequency Response

,,

,,III
-- -.,...-:: - I--"

" 1/ SOURCE SAT (V"

i.-f-- ~

o
.01

.02

.03.04 .05 .07

i'-,

80

I

J

~

60

~

.........

z

;;:

l::;

"
w

~

r::,.

40

~

0

§?

I

.2

.3.4.5

.7

10

1.0

~~
~~
~
lOOK

v---.0'

-90

-135

.
~

'"m

~

A,-

SITSAi(Vr

.1

-45

OUTPUT CURRENT. SOURCE OR SINK - (A)

100

1K

10K

1M

-180

10M

FREQUENCY - (Hz)

OPEN·LOOP LABORATORY TEST FIXTURE

r---------~~--.---------------------------_.----------------------_oV~,

A }---t"-----Q V"

r~--;1;:;---1
4.7K

r-~~~-~~1

COMP

lK
ERRORAMP~'--4~--~-+-~

ADJUST

4.7K

5K
~-+---~--~~------oOUTPUT
ISENSE
ADJUST

"'--------------
0

20

Z
~

0

"

""

COMPo

"

"

.......
It < O.5mA
100

Error Amplifier can source up to O.5mA.

Ik

10k

lOOk

0'
-90'
-180'

1M

FREQUENCY (Hz)

Error Amp Open. Loop D.C. Gain vs Load Resistance
110

v,~ 20~

=
T, = 25'C -

iD
~

z

100

..,''"w"
':;

90

. /~

;;:

..g
..

ape

1/

0

>

0

zw

I

80

I

0

70

o

10

m

~

~

~

w ro w

~

~

OUTPUT LOAD RESISTANCE. R, (K·OHMS)
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861·6540
TWX (710) 326-6509 • TELEX 95·1064

3-111

PRINTED IN U.S.A.

UC1846 UC1847
UC2846 UC2847
UC3846 UC3847

Parall.1 Operation

9
8

RT

-=

RT
MASTER
CT

r

SYNC

I

COMP

10

t--'V\J\r---;1--::--+------""-------13> ~

10
SYNC

-EfA

COMP

SLAVE
(ADDInDNAL UNITS)

...--o........:8'-!CT

I

Slaving allows parallel operation of two or more
units with equal current sharing.

Puis. by Puis. Current Limiting
I.

(+)4

v...,

R.

(-)3

ISE"8£

O.sv
R.
EfA
CURRENT
LIMIT

R,

COMP

Ra VAEF
---0.5

-::Peak Current (I.) is determined by the formula:

I. = R, + R,

3R.

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326·6509 • TELEX 95·1064

3·112

PRINTED IN U.S A.

UC1846 UC1847
UC2846 UC2847
UC3846 UC3847
Soft Start and Shutdown/Restart Functions

•

ISENSE

COMP

R,
1 CURRENT
LIMIT

r

v...,

16 SHUTDOWN

SHUTDOWN WITHOUT AUTO-RESTART (LATCHED)

SHUTDOWN WITH AUTO·RESTART

CURRENT LIMIT
(PIN 1)

----------\

0.5V------

r----~---------

SHUTDOWN
(PIN 16)

:~~~__________________~rlc__________________-;

!------'nL-____

PWM

[UlL-----

V~~F < O.SmA

VREF

V;;:'

> 3mA (LATCHED OFF)

VREF

If ----

< D.SmA, the shutdown latch will commutate

If ---- > 3mA, the device will latch off

when I.

= D.SmA and a restart cycle will be initiated.

until power is recycled.

R,

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173· TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

R,

3-113

PRINTED IN U.S.A.

UC1846 UC1847
UC2846 UC2847
UC3846 UC3847

Current Sense Amp Connections

CURRENT
SENSE

A small RC filter may be required in some applications to reduce switch transients.
Differential input allows remote, noise free sensing.

Single Ended Boost Configuration

----ucii46---@--------10 SYNC

FEEDBACK

+VfN

Vc

SFTIST

L - - - - --=- - § - - - - - .J
GND

UNITRODE CORPORATION. 5 FORBES ROAO
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

3·114

PRINTED IN U.S.A

UC1846 UC1847
UC2846 UC2847
UC3846 UC3847
Buck Converter with Current Sense Winding

•

----Uci846----@)--------SYNC

FEEDBACK

+VU'l

Vc

SFTIST

L _ _ _ _-=- _ -®- _ _ _ _ ___1I
GNO

Push/Pull Converter with Slope Compensation

RCOMPENSATION

---uci846----@)--------10 SYNC

+VIN

Vc

FEEDBACK

INDUCTOR CURRENT
DOWNSLOPE

SFT/S1

L _ _ _ _-=- _

I

GNO

~-------1

Current loop instability above 50% duty cycle can be corrected
using slope compensation derived from the sawtooth oscillator.
Compensation magnitude should be greater than 112 of the down·

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

slope of the inductor current waveform as shown. Alternatively,
the compensation signal can be summed into the negative input
of the error amplifier.

3·115

PRINTED IN U.S.A

UC1901
UC2901
UC3901

LINEAR INTEGRATED CIRCUITS
Isolated Feedback Generator
FEATURES

DESCRIPTION

• An· amplitude-modulation system for
transformer coupling an isolated
feedback error signal

The UC1901 family is designed to solve many of the problems associated with closing a
feedback control loop across a voltage isolation boundary. As a stable and reliable
alternative to an opti~al coupler, these devices feature an amplitude modulation system
which allows a loop error signal to be coupled with a small RF transformer or capacitor.

• Low-cost alternative to optical couplers
• Internal 1% reference and error
amplifier
• Internal carrier oscillator usable to
5MHz

The programmable, high-frequency oscillator within the UC190l series permits the use
of smaller, less expensive transformers which can readily be built to meet the isolation
requirements of today's line-operated power systems. As an alternative to RF operation,
the external clock input to these devices allows synchronization to a system clock or to
the switching frequency of a SMPS.

• Modulator synchronizable to an external
clock

An additional feature is a status monitoring circuit which provides an active-low output
when the sensed error voltage is within ±lO% of the reference.

• Loop status monitor

Since these devices can also be used as a DC driver for optical·couplers, the benefits of
4.5 to 40V supply operation, a 1% accurate reference, and a high gain general purpose
amplifier offer advantages even though an AC system may not be desired.

ABSOLUTE MAXIMUM RATINGS (Note 1)

CONNECTION DIAGRAM

Input Supply Voltage, Y,N •..••.•..••.•.•.•.•.•.•.•.•.•.•....•..•.•..•.•..•..... 40V
Reference Output Current ................................................... -lOmA
Driver Output Currents ..................................................... -35mA
Status Indicator Voltage ....................................................... 40V
Status Indicator Current ..................................................... 20mA
Ext. Clock Input ............................................................... 40V
Error Amplifier Inputs ............................................... -O.5V to +35V
Power Dissipation at T. =25°C
Derate at lOmWfOC above T. = 50°C.... .. .. .... .. ..................... 1000mW
Power Dissipation at Tc = 25°C
Derate at l6mWfOC above T. =25°C.. .. .. ........ .............. ....... 2000mW
Thermal Resistance, Junction to Ambient .................................. lOO°C/W
Thermal Resistance, Junction to Case ...................................... 60°C/W
Operating Junction Temperature ................................... -55°C to +150°C
Storage Temperature .............................................. -65°C to + 150°C
Lead Temperature (Soldering, 10 seconds) ................................... 300°C
Nota 1: Voltages are referenced to ground, Pin 7.

DIL-14 (TOP VIEW)

J or N PACKAGE

EXT. CLOCK 2

13

5m~~~

12 COMPENSATION
DRIVER B 4

GROUND

7

Currents are positive into, negative out of the specified terminal.

UC1901 SIMPLIFIED SCHEMATIC
5L't~~~ 1 3 1 1 - - - - - - - - - - - - - - ,

V,.
4K

DRIVER 8

4K

4
N.INV INPUT

DRIVER A
INV INPUT

ERROR·AMP
COMPENSATION

J - - - - - - - - - - - - I 9 ~M~~~CE
EXT

500

CLOCK

1.5 VOLT REFERENCE

"--+----------17

12/83

3-116

GROUND

~UNITRDDE

UC190l
UC2901
UC3901
ELECTRICAL CHARACTERISTICS (Unless otherwise stated, these specifications apply for TA = -55·C to +125·C for the UC1901;
-25·C to +S5·C for the UC290l; and O·C to +70·C for the UC390l; VIN = lOY, RT = lOkCl,
CT = S20pF)
PARAMETER

UC3901

UCl90lIUC2901

TEST CONDITIONS

MIN.

TYP.

MAX.

MIN.

TYP.

UNITS
MAX.

Reference Section
Output Voltage

Tj = 25·C

1.4S5

1.5

1.515

1.47

1.5

1.53

TMIN ~ Ti ~ TMAX

1.470

1.5

1.530

1.455

1.5

1.545

V

Line Regulation

VIN = 4.5 to 35V

2

10

2

15

mV

Load Regulation

lOUT = 0 to 5mA

4

10

4

15

mV

Short Circuit Current

T; = 25·C

-35

-45

-35

-45

mA

Error Amplifier Section (To Compensation Terminal)
Input Offset Voltage

VCM = 1.5V

1

4

1

S

mV

Input Bias Current

VCM = 1.5V

-1

-3

-1

-6

pA

Input Offset Current

VCM = 1.5V

0.1

1

0.1

2

pA

Small Signal Open Loop Gain

40

60

40

60

dB

CMRR

VCM = 0.5 to 7.5V

60

SO

60

SO

dB

PSRR

VIN = 5 to 25V

SO

100

SO

100

dB

Output Swing, A Vo

0.4

0.7

0.4

0.7

V

Maximum Sink Current

90

150

90

150

pA

Maximum Source Current

-2

-3

-2

Gain Band Width Product
Slew Rate

-3

mA

1

1

MHz

0.3

0.3

V/p.s

Modulator/Drivers Section (From Compensation Terminal)
Voltage Gain

11

12

10

12

Output Swing

±1.6

±2.S

±1.6

±2.S

V

Driver Sink Current

500

700

500

700

pA

Driver Source Current

-15

-35

-15

-35

mA

25

MHz

Gain Band Width Product

13

25

14

dB

Oscillator Section
Initial Accuracy

T; = 25·C

140

TMIN ~ Ti ~ TMAX

130

Line Sensitivity

VIN = 5 to 35V

150

.15

Maximum Frequency

RT = 10K, CT = 10pF

Ext. Clock Low Threshold

Pin 1 (CT) = VIN

Ext. Clock High Threshold

Pin 1 (CT) = VIN

160

130

170

120

.35

150

.15

5

170

kHz

.60

%tV
MHz

5
0.5

0.5

kHz

ISO

V

1.6

1.6

V

±170

mV

Status Indicator Section
Input Voltage Window

@ E/A Inputs, VCM

= 1.5V

±135

Saturation Voltage

EtA A Input = OV, ISINK = 1.6mA

Max. Output Current

Pin 13 = 3V, EtA A Input = O.OV

Leakage Current
Supply Current

Pin 13 = 40V, EtA A Input = 0.2V
VIN = 35V

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

3-117

±150

±165

±130

±150

0.45

0.45
S

15

S

V
mA

15

.05

1

.05

5

pA

5

S

5

10

mA

PRINTED IN U.S.A.

•

UC1901
UC2901
UC3901

Transformer Coupled Open Loop Transfer Function
10V
1000F

so
~ll1F

NC
D,B

INV

DoA

N.INV

NC

REF

GRND

i

~,

INPUT

~~

DC

40

20

0

10

'" ,
"

........ ....... PHASE

30

z
~

-:-

":"

"GAIN

"

i!;

9

= lOY

O~f= IMHzTI = 25°C

'"

60

~

BIAS

r2~F

10K

VIN

z 50

11

RT

-....

70

45

-

I'-....

~

IN914

0

180

OUTPUT

2700F

100

10

IK

":"

=

Typical Driver Output Swing
vs Temperature
3.4

/

~

/

3.2
C!l

z

10'

5

VIN

=

;:

3.0

0.

2.8

...'"::>
...::>

:i',

!!S

1M

lOOK

Nl N2 = 20T AWG 26
Core = Ferroxcube 3E2A Fernte, 0 5" 0 D torOId
Carner Frequency = IMHz

Oscillator Frequency
108

~

10K

FREQUENCY - HERTZ
Transformer Data

I roo

90
135

IOV

0

RT = lOKO
Tj = 25°C

ffi

2.6

"" "

>

0:
Cl

.,«

2.4

~

105

~

~

"r-...'~
~

2.2

~

0:

Iti5
'"L\'i

1()4

2.0

~

1.8

0.

1.6
-55

APPLICATION INFORMATION
The error amplifier compensation terminal, Pin 12, is intended as
a source of feedback to the amplifier's inverting input at Pin 11.
For most applications, a series DC blocking capacitor should be
part of the feedback network. The amplifier is internally compensated for unity feedback.

-15

25

45

65

85

105

125

the squarewave will have a fixed 50% duty cycle. If the internal
oscillator is disabled by connecting Pin 1, Cr, to V,N then the
frequency and duty cycle of the output will be determined by the
input clock waveform at Pin 2. If the oscillator remains disabled
and there is no clock input at Pin 2, there will be a linear 12dB of
signal gain to one or the other of the driver outputs depending on
the DC state of Pi n 2.

The waveform at the driver outputs is a squarewave with an
amplitude that is proportional to the error amplifier input signal.
There is a fixed 12dB of gain from the error amplifier compensation pin to the modulator driver outputs. The frequency
of the output waveform is controlled by either the internal
oscillator or an external clock signal. With the internal oscillator

UNITROOE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

-35

TEMPERATURE - (OC)

Cr VALUE - PICOFARADS

The driver outputs are emitter followers which will source a
minimum of 15mA of current. The sink current, internally limited
at 700pA, can be increased by adding resistors to ground at the
driver outputs.

3-118

PRINTED IN U.S.A

UC1901
UC2901
UC3901

TYPICAL APPLICATIONS

R.F. Transformer Coupled Feedback

PftIMMY~

POWER AND
SWITCHESi>_ _ _ _--;~

SUPPLY
OUTPUT

.~--~---------------------------------+~~

Feedback Coupled at Switching Frequency

~

PRIMARY
POWER AND
~H~.o-

_____~~

SUPPlY
OUTPUT

~---4--------------------------------~~~

TO SUPPLY

MONITOR

~~~LL;rr:J"

ISOLATION
TRANSFORMER

Optically Coupled DC Feedback

~~RYAND

~

SUPPlY
OUTl'UT

SW1TCH~'~O__________~3

TOPWM~­

CONTROll~_~yt---

/

V

...........

V

r-....

/

,

35

" --

~E

\

/
II

........

\

........

I

,

~

30

0

-.5

i'-..

r--

25

-.6
-.7
-55

-35

-15

25

45

65

85

105

20
-55

125

-35

-15

25

45

65

85

105

125

JUNCTION TEMPERATURE - ·C

JUNCTION TEMPERATURE - ·C

OPERATION AND APPLICATION INFORMATION

[iiCi903- +V'N

REFERENCE
CIRCUIT
TO
OV HYSTERESIS
CONTROL

1.25V

t-----+--t-----u OV THRESHOLD
2.5V

150

OUTPUT

R.
2.5K

R,

2.5K

R.

loc

R.
8K

R.

FAULT WINDOW
THRESHOLD & HYSTERESIS
CIRCUITS

t----I----t-----u UV THRESHOLD

V.OJ
10=-R,

+
V.OJ

.16K

TO
UV HYSTERESIS
CONTROL

I
L __ _
Figure 1. The UC1903 fault window circuitry generates OV and UV thresholds centered around the 2.5V reference. Window magnitude
and threshold hysteresis are proportional to the window adjust Input voltage at Pin 4.

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

3-123

PRINTED IN

u.s

A

UC1903
UC2903
UC3903
OPERATION AND APPLICATION INFORMATION (continued)
Fault Windows Can be Scaled independently

Setting a Fault Window
The fault thresholds on the UC1903 are generated by creating
positive and negative offsets, equal in magnitude, that are
referenced to the chip's 2.5V reference. The resulting fault
. window is centered around 2.5V and has a magnitude equal to
that of the applied offsets. Simplified schematics of the fault
window and reference circuitsare shown in Figure 1 (see previous
page). The magnitude of the offsets is determined by the voltage
applied althe window adjust pin, Pin 4. A bias cancellation circuit
keeps the input current required at Pin 4 low, allowing the use of a
simple resistive divider off the reference to set the adjust pin
voltage.

In many applications, it may be desirable to monitor various
supply voltages, or voltage levels, with varying fault windows.
Using the reference output and external resistive dividers this is
easily accomplished with the UC1903. Figures 3 and 4 illustrate
how the fault window at any sense input can be scaled
independently of the remaining inputs.

MONITORED
SUPPLY VOLTAGE
(V,)

The adjust voltage at Pin 4 is internally applied across R., an 8K
resistor. The resulting current is mirrored four times to generate
current sources lOA, loa, loc, and 100, all equal in magnitude. When
all four of the sense inputs are inside the fault window, a no·fault
condition, Q.and Q.are turned on. In combination with D, and D.
.this prevents loa and loofromaffectingthefaultthresholds.lnthis
case, the OV and UV thresholds are equal to VAEF + 10A(R. + R.) and
VAEF - loc(R7 + R.) respectively. The fault' window can be
expressed as:

(1)

2.5V ±

R,
SENSE 1·4 INPUT

R,
2.5V
REF.

± 10 (V AOJ)

•

R, + R, R,f(R,

+ R,)

R,

V~OJ

F~~( NOM)

; 'In terms of a sensed nominal voltage level, Vs, the window as a
,...... ""'percent variation is:

(2)

FAULT WINDOW FOR THE SENSE INPUT.
IN PERCENT. IS;

• _R_,_
Rl +R2

= 2.5V.

Figure 3. Using the reference output and a resistive divider, a
sense input with an independently wider fault window
can be generated.

V. ± (10 • VADJ)%

When a sense input moves outside the fault window given in
equation (1), the appropriate hysteresis control signal turns off Q.
or Q•. For the under·voltage case, Q. is disabled and current
source 108 flows through D•. The net current through R7 becomes
zero as loa cancels loe, giving an 8% reduction inthe UVthreshold
offset. The over·voltage case is the same, with Q. turning off,
allowing 100 to cancel the current flow, lOA, through Re. The result
is a hysteresis at the sense inputs which is always 8% of the
window magnitude. This is shown graphically in Figure 2.

R,

~~~i 0---+---1'--1
3.125

J

en 3.0
!:;
§; 2.875
I
~

2.750

,

ir

~ 2.625

...en

~ 2.50

en

i::::5
l-

3'

~2.125
:::J

~ 2.0

1.875

..

~

NO

~

,,

~n
FAULT

~~

.5

FAULT WINDOW FOR
THE SENSE INPUT.
IN PERCENT. IS;

20
15

HYsiERESIS

g

10 "-

1..-

I

5
FAULT
WINDOW

:=
g
z

Figure 4. The general purpose op·amp on the UCl903 can be
used to create a sense input with an independently
tighter fault window.

~
-5 ~

~

~

- ..J WINDOW
FAULT j;:
o

~

i- ....

25

1.0

-10~

~ .....
~

1.5

2.0

Figure 4 demonstrates one of many auxiliary functions that the
uncommitted op·amp on the UC1903 can be used for.
Alternatively, this op·amp can be used to buffer high impedence
points, perform logic functions, or for sensing and amplification.
For example, the G.P. op·amp, combined with the 2.5V reference,
can be used to produce and buffer an optically coupied feedback
signal in isolated supplies with primary side control. The output
stage of this op·amp is detailed in Figure 5. The NPN emitter
follower provides high source current capability, ;:::20mA, while
the substrate device, Q., provides good transient sinking
capability.

-15 ~
-20

-25
2.5

WINDOW ADJUST VOLTAGE (VA.,) AT PIN 4

figure 2. The fault window and threshold hysteresis scales as
a function of the voltage applied at Pin 4, the window
adjust pin.

UNITRODE CORPORATION' 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

3-124

PRINTED IN U.S.A

UC1903
UC2903
UC3903
OPERATION AND APPLICATION INFORMATION (continued)

Using The Line/Switcher Sense Output
The line switcher sense inputto the UC1903 can be used for early
detection of line, switcher, or other power source, failures.
Internally referenced to 2.0V, the line sense comparator will
cause the POWER OK output to indicate a fault (active low)
condition when the LINE/SWITCHER SENSE input goes from
above to below 2.0V. The line sense comparator has
approximately 175mV of hysteresis requiring the line/switcher
inputto reach 2.175V before the POWER OK output device can be
turned-off, allowing a no-fault indication. In Figure 7 an example
showing the use of the LINE/SWITCHER SENSE input for early
switcher-fault detection is detailed. A sample signal is taken from

UC1903
G'p.OP-AMP
OUTPUT STAGE

L-----t---,---116
R,
150n

OUTPUT

SUPPLY
OUTPUT

~-+---------iQ,

TO OP-AMP
INPUT STAGE

PWM
CONTROL

R.
500n

t

)f---.-----...~-o

150llA
R,

Figure 5. The G.P. op·amp on the UC1903 has a high source
current p-20mA) capability and enhanced transient
sinking capability through substrate device Q3.

TO UC1903
LINE/SWITCHER
SENSE INPUT

Rgure 7. The line/switcher sense input can be used for an
early line or switcher fault indication.

Sensing a Negative Voltage Level
the output of the power transformer, rectified and filtered, and
used at the line/switcher input. By adjusting the R2 C time
constant with respect to the switching frequency of the supply a nd
the hold up time of the output capacitor, switcher faults can be
detected before supply outputs are significantly affected.

The UC1903 has a dedicated inverter coupled to the sense 4
input. With this inverter, a negative voltage level can be sensed as
shown in Figure 6. The output of this inverter is an unbiased
emitter follower. Bytyingthe inverting input, Pin 5, high the output
emitter follower will be reverse biased,leavingthe sense 4 input in
a high impedence state_ In this manner, the sense 4 input can be
used, as the remaining sense inputs would be, for sensing positive
voltage levels.

OV and UV Comparators Maintain Accurate Thresholds
The structure of the OV and UV comparators, shown in Figure B
results in accurate fault thresholds even in the case where
multiple sense inputs cross a fault threshold simultaneously_
Unused sense inputs can be tied eithertothe2.5Vreference, or to
another, utilized, sense input. The four under- and over-voltage
sense inputs on the UC1903 areciamped as detailed on the Sense
1 input in Figure B. The series 2K resistor, R" and zenerdiode,Z"
prevent extreme under· and over-voltage conditions from
inverting the outputs of the fault comparators_ A parasitic diode,
D" is present at the inputs as well. Under normal operation it is
advisable to insure that voltage levels at all of the sense inputs
stay above -O.3V. The same type of input protection exists at the
line sense input, Pin 15, except a 5K series resistor is used.

+
2.5V

R}

+

NEGATIVE
SUPPLY (-V,)

The fault delay circuitry on the UC1903 is also shown in Figure B.
In the case of an over-voltage condition at one ofthe sense inputs
Q20 is turned off, allowing the internal 60pA current source to
charge the user-selected delay capacitor_ When the capacitor
voltage reaches LBV, the OV and POWER OK outputs become
active low. When the fault condition goes away Q20 is turned back
on, rapidly discharging the delay capacitor. Operation of the
under-voltage delay is, with appropriate substitutions, the same.

NOTE, A SIMILAR SCHEME WI THE G.P.
OP-AMP WILL ALLOW A SECOND NEGATIVE SUPPLY TO BE MONITORED.

Figure 6. Inverting the sense 4 input for monitoring a negative
supply is accommodated with the dedicated inverter.

UNITROOE CORPORATION· 5 FORBES ROAO
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

3-125

PRINTED IN U.S.A

II

UC1903
UC2903
UC3903

OPERATION AND APPLICATION INFORMATION (continued)

+----4-------1+
1.8V

f

OV FAULT
INDICATION
TO OUTPUT
LOGIC

TO
OV
OV
HYSTERESIS
THRESHOLD CONTROL
lOOIlA VOLTAGE

EXT.
UV DELAY
TCAPACITOR

[!}-SENSE2

[!]-- SENSE 3
0--SENSE4

+----4-------1+
1.8V

J7

UV FAULT
INDICATION
TO OUTPUT
LOGIC

Figure 8. The OV and UV comparators on the UCl903 trigger respective fault delay circuits when one or more of the sense inputs
move outside the fault window. Input clamps insure proper operation under extreme fault conditions.

Start Latch and Supply Under·Voltage Sense Allow Predictable
Power· Up
The supply under-voltage sense and start-latch circuitry on the
UC1903 prevents fault indications during start-up or low input
supply (+V'N) conditions. When the input supply voltage is below
the supply under-voltage threshold the OV and UV fault outputs
are disabled and the POWER OK output is active low. The POWER
OK output will remain active until the input supply drops below
approximately 3.0V. With +V'N below this level, all of the open
collector outputs will be off.
When the input supply is low, the under-voltage sense circuitry

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

resets the start-latch. With the start-latch set, the UV fault output
will remain disabled as the input supply rises to its normal
operating level (8-40V). The latch stays set until all of the sense
inputs are above the under-voltage threshold. This allows slow
starting, or supply sequencing, without an artificial under-voltage
fault indication. Once the latch is set, the UV fault output will
respond if any of the sense inputs drop below the under-voltage
threshold.

3-126

PRINTED IN U.S.A.

UC7800
UC7800C
SERIES

LINEAR INTEGRATED CIRCUITS
Three Terminal Fixed Voltage Positive Regulators
FEATURES

DESCRIPTION

•
•
•
•
•
•
•
•

These three terminal monolithic positive voltage regulators employ internal current
limiting, thermal shutdown and safe area compensation, making them essentially
indestructible. If adequate heat sinking is provided, they can deliver over 1A of output
curren!. They are intended as fixed voltage regulators in a wide range of applications
including local (on card) regulation for elimination of distribution problems associated
with single point regulation. In addition to use as fixed voltage regulators, these devices
can be used with external components to obtain adjustable output voltages and
currents. These units feature an on-chip trimming system to set the output voltages to
within ±4% of nominal. Two companion series, the UC7800A and UC7800AC, offer
tighter output tolerances, and improved line and load regulation characteristics.

±4% preset output voltage
Complete specifications at 1A load
No external components
Internal thermal overload protection
Internal short circuit current limiting
Output transistor safe area compensation
Available in TO-3 and TO-220 packages
Output 'voltages of 5, 12 and 15V (For
other voltages, please contact the factory)

ABSOLUTE MAXIMUM RATINGS
Input Voltage .......................... _....... _..................... _.......... 35V
Power Dissipation .................................................. Internally limited
Operating Junction Temperature Range
UC7800 SERIES ................................................ -55°C to +150°C
UC7800C SERIES .................................................. O°C to +125°C
Storage Temperature Range ............... _. _...................... -65°C to +150°C
Lead Temperature (Soldering, 10 seconds)
K (TO-3) package .......................................................... 300°C
T (TO-220) package ..................................... '" ....... _........ 230°C
PowerIThermal Characteristics
T (TO-220) Package
K (TO-3) Package
Rated Power @ 25°C
Te ....................................... 20W _... _. " ........... 15W ..... :.
TA •••••••••••••••••••••••••••••••••••••• 4.3W ................ _. 2W·...... .
Thermal Resistance
8Je ••••••••••••••.•••••••••••••••••••••• 3°C/W .. _.... _........ 3°C/W .... .

8J A

••••••••••••••••••••••••••••••••••••

35°C/W ............... 60°C/W _... .

TVPICAL APPLICATIONS

Fixed Output Regulator

INPUT

0----,----',

.22pF

Current Regulator

f=----f'-<> OUTPUT

INPUT

R,

.1pF

'----=----- 15

fi'
>-

I""""---

If

::J

a

---

o
25

50

75

100

125

150

JUNCTION TEMPERATURE (0C)

::s.:

"'-

""

"-

r-....

loomv

=

-55°C

'"

'~

TJ=150~

05

-25

~

LV;:-2~['..

>-

IOUT=~~

-75 -50

•

Peak Output Current

25

1"'-

o

10

15

20

25

30

35

INPUT TO OUTPUT DIFFERENTIAL (V)

Ripple Rejection
100

II II

II III

80

~ou,=5V

iil
z 60
a

S

;::
u

-

~

'"
::J
U

>;r 15
>-

r--....

............

1/

::J
0

o
-25

25

50

75

100

125

150

~
K-550 C

""

.-

~

r"-...
"""TJ=150~

05

-75 -50

•

Peak Output Current

25

''""

~

o

10

15

20

25

30

35

INPUT TO OUTPUT DIFFERENTIAL (V)

JUNCTION TEMPERATURE (OC)

Ripple Rejection
100

II
II

80

~~,=5V

CD

:!?

......

z 60
0

>=

~

~

w

~

40

""iii

10

100

lk

10k

lOOk

FREQUENCY (Hz)

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

3-137

PRINTED IN U.S.A.

UC7800A UC7800AC SERIES

MECHANICAL SPECIFICATIONS AND CONNECTION DIAGRAMS
UC7800A SERIES
UC7800AC SERIES

F

~BbE

M
Input
Output

~:J:::7--.::

I
G

I

B
D

E

l~
J-

L

F

Ground

G
H
J
K
L
M

7

C 0

A

C

I

H

Bottom View

r

~[f

.~

.312 MIN.
.038-.043 DIA.
•188 MAX. RAD.
1.177-1.197
.655-.675
.205-.225
.420-.440
.525 MAX. RAD.
.151-.161 DIA.

I-¥J
J
f--R

~

I--J

-,

1 3 2

I

-

I
H

S;CTA.A

-l

a

A
8
C

r-------

~

3.43 MAX.
6.35-11.43
7.92 MIN.
0.97-1.09 DIA.
4.78 MAX. RAD .
29.90-30.40
16.64-17.15
5.21-5.72
10.67-11.!8
13.34 MAX. RAD •
3.84-4.09 DIA •

UC7800AC SERIES

W'=-~

F

MILLIMETERS
22.23 MAX .

INCHES
.875 MAX.
.135 MAX.
.250-.450

SEATING

PLANE

TO·204AA K(TO·3)

i-l

l·lnput
2·0utput
3-Ground
4-Ground

od~[:

0
F
G

H
J
K
L
N
Q

R
S
T

INCHES
MIN
MAX
0625
0560
0380
0420
0140
0190
0045
0020
0147
0139
0110
0090
0250
0025
0015
0562
0500
0070
0045
0190
0210
0100
0120
OOSO
0115
0045
0055
0270
0230

-

T(TO·220)

MILIMETERS
MIN
MAX
15.87
1423
1066
966
482
356
114
051
3733
3531
279
229
635
0.64
038
1427
1270
114
177
483
533
254
304
204
292
114
139
585
685

ORDERING INFORMATION
OUTPUT
VOLTAGE

PACKAGE SUFFIX
K(TO·3)

T(TO·220)

5V

UC7805AK
UC7805ACK

UC7805ACT

12V

UC7812AK
UC7812ACK

UC7812ACT

15V

UC7815AK
UC7815ACK

UC7815ACT

UNITRODE CORPORATION. 5 FORBES ROAD
LEXI NGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

--

--

--

3-138

PRINTED IN U S.A.

UC7900
UC7900C
SERIES

LINEAR INTEGRATED CIRCUITS
Three Terminal Fixed Voltage Negative Regulators
FEATURES
• ±4% preset output voltage
• Output current to 1.5A
• One external component
• Internal thermal overload protection
• Internal short circuit current limiting
• Output transistor safe area compensation
• Available in TO-3 and TO-220 packages
• Output voltages of -5, -12 and -15V (For
other voltages, please contact the factory)

DESCRIPTION
These three terminal monolithic negative voltage regulators employ internal current
limiting, thermal shutdown and safe area compensation, making them essentially
indestructible. If adequate heat sinking is provided, they can deliver over lA of output
current. They are intended as fixed voltage regulators in a wide range of applications
including local (on card) regulation for elimination of distribution problems associated
with single point regulation. In addition to use as fixed voltage regulators, these devices
can be used with external components to obtain adjustable output voltages and
currents. These units feature an on-chip trimming system to set the output voltages to
within ±4% of nominal. This regulator series is an optimum complement to the
UC780017800C line of three terminal positve regulators. Two companion series, the
UC7900A and UC7900AC, offer tighter output tolerances, and improved line and load
regulation characteristics.

ABSOLUTE MAXIMUM RATINGS
Input Voltage .................................................................. -35V
Input-Output Voltage Differential ................................................. 30V
Power Dissipation .................................................. Internally limited
Operating Junction Temperature Range
UC7900 SERIES ................................................ -55°C to +150°C
UC7900C SERIES .................................................. O°C to + 125°C
Storage Temperature Range ........................................ -65°C to + 150°C
Lead Temperature (Soldering, 10 seconds)
K (TO-3) package .......................................................... 300°C
T (TO-220) package ........................................................ 230°C
Power/Thermal Characteristics
T (TO·220) Package
K (TO·3) Package
Rated Power @ 25°C
Te ....................................... 20W ................... 15W ...... .
T•...................................... 4.3W .................. 2W ...... .
Thermal Resistance
BJC ••.••.••..•••.••.•••..•••.•••.••..•. • 3°C/W ................. 3°C/W ..... .
BJ ••••••••••••••••••••••••••••••••••••• 35°C/W ............... 60°C/W .... .

TYPICAL APPLICATIONS
Input bypass capacitors are recommended for stable operation of the UC7900 series of regulators over the input voltage and output
current ranges. Output bypass capacitors will improve the transient response of the regulator.
The bypass capacitors, (2.2pF on the input, IpF on the output) should be ceramic or solid tantalum which have good high frequency
characteristics. If aluminum electrolytics are used, their values should be lOpF or larger. The bypass capacitors should be mounted with
the shortest leads, and if possible, directly across the regulator terminals.

Basic Current Regulator

Fixed Output Regulator

V'N o-~r-""

f-=.....--oVOUT

V'N

...-

'----+-0
lOUT

1182

3·139

=

V~T

lOUT

+ 10

~UNITRDDE

•

UC7900 UC7900C SERIES
5V, NEGATIVE

ELECTRICAL CHARACTERISTICS

T,
Output Voltage

Load Regulation
Quiescent Current

MIN.

= 25°C, V'N =-lOV, 10 = 5mA
=

TI 25°C, -25V :0; V'N :0; -BV
5mA:O; 'ouT:O; LOA, P:O; Po
Over Temperature, TM'N

Line Regulation

UC7905

TEST CONDITIONS

PARAMETER

:0;

T,

:0;

T MAX

-5.20

-4.BO

-5.20

-4.BO

V

-5.20

-4.BO

-5.23

-4.77

V

-5.25

-4.75

-5.25

-4.75

V

50

mV

:0;

T,

:0;

25

50

1

2.5

TYP.

25

50

T MAX

1

MAX.

UNITS

MIN.

=25°C, -25V:O; V'N:O; -7V, 10 =5mA
T, =25°C, V'N =-lOV, 5mA :0; 10 :0; 1.5A
T, =25°C, V'N =-10V, 10 =500mA
Over Temperature, TM'N

UC7905C
MAX.

T,

TYP.

100

mV

2.5

mA

3

3

mA

1.0

1.0

mA

.5

.5

mA

Peak Output Current

=25°C, V'N =-lOV, 5mA:O; '0:0; 1.5A
TI =25°C, -25V :0; V'N :0; -BV, 10 = 500mA
T; =25°C, -lBV :0; V'N :0; -BV, 10 =500mA
f = 10Hz to 100KHz, CL = l¢
T, =25°C, V'N =-lOV, 10 = 500mA
T, =25°C, 10 = lA
T, =25°C, V'N =-lOV
TI =25°C

Avg. Temp. Variation
of VOUT

DoC

-.4

-.4

mV;oC

Long Term Stability

1000 Hrs. @ T,

20

20

mV

Thermal Shutdown

V'N

= -lOV,

175

175

°C

TMAX

150

125

°C

TMIN

-55

0

°C

Quiescent Current
Change
Ripple Rejection
Output Noise Voltage
Dropout Voltage
Short Circuit Current

T,

:0;

T,

:0;

=-lOV, 10 =5mA
= 125°C, V'N =-lOV, 10 = 5mA
10 =5mA

TMAX. V'N

54

dB

54
100

100

2.0

2.0

V

1.B

1.B

A

2.0

2.0

A

JiV

Note: All characteristics except noise voltage and ripple rejection are measured using pulse techniques (t.:s 10ms, duty·cycle :s 5%). Output voltage
changes due to changes in internal temperature must be taken into account separately.
Po: 20W for TO·3 (K) and l5W for TO·220 (T); Min IVo' V'NI @ -55°C: 2.5V.

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95-1064

3·140

PRINTED IN U.S.A.

UC7900 UC7900C SERIES
12V, NEGATIVE

ELECTRICAL CHARACTERISTICS

Output Voltage

UC7912

TEST CONDITIONS

PARAMETER

MIN.

UC7912C
MAX.

MIN.

TYP.

MAX.

UNITS

Tj = 25°C, Y,N = -17V, 10 = 5mA

-12.48

-11.52

-12.58

-11.52

V

T, = 25°C, -32V :s Y,N :s -14V
5mA :s 10uT:S LOA, P :s Po

-12.48

-11.52

-12.54

-11.46

V

Over Temperature, T MIN :s T j :s T MAX

-12.60

-11.40

-12.60

-11.40

V

80

mV

Line Regulation

T, = 25°C, -32V :s Y,N :s -14V, 10 = 5mA

Load Regulation

Tj = 25°C, Y'N = -17V, 5mA :s 10 :s 1.5A

30

80

30

240

120

T, = 25°C, Y,N = -17V, 10 = 500mA
Quiescent Current

TYP.

3

3

mV
mA

Over Temperature, T MIN :s T j :s T MAX

4

4

mA

Quiescent Current
Change

T, = 25°C, Y'N = -17V, 5mA :s 10:S 1.5A

.8

.8

mA

T, = 25°C, -32V:s V,N:S -14V, 10 = 500mA

.5

.5

mA

Ripple Rejection

T, = 25°C, -25V :s V'N :s -15V, 10 = 500mA

Output Noise Voltage

f = 10Hz to 100KHz, CL = 1pf
T j = 25°C, Y'N = -17V, 10 = 500mA

200

200

Dropout Voltage

Tj = 25°C, 10 = 1A

1.1

1.1

V

Short Circuit Current

T, = 25°C, Y,N = -17V

1.3

1.3

A

56

56

dB
/lV

Peak Output Current

T j = 25°C

2.0

2.0

A

Avg. Temp. Variation
of VOUT

O°C :s TI :s T MAX. VIN = -17V, 10 = 5mA

-.9

-.9

mvrc

Long Term Stability

1000 Hrs. @ TI = 125°C, Y,N = -17V, 10 = 5mA

48

48

mV

Thermal Shutdown

Y,N = -l7V, 10= 5mA

175

175

°c

T MAX

150

125

°c

TMIN

-55

0

°c

Note: All characteristics except noise voltage and ripple reiection are measured using pulse techniques (tw:S lOms, duty-cycle :s 5%). Output voltage
changes due to changes in internal temperature must be taken into account separately.
Po = 20W for TO-3 (K) and 15W for TO-220 (T).

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326·6509 • TELEX 95-1064

3-141

PRINTED IN U.S.A,

II

UC7900 UC7900C SERIES
15V, NEGATIVE

ELECTRICAL CHARACTERISTICS

Output Voltage

UC7915

TEST CONDITIONS

PARAMETER

MIN.

UC7915C
MAX.

MIN.

TYP.

MAX.

UNITS

Ti = 25°C, V,N = -20V, 10 = 5mA

-15.60

-14.40 ' -15.00

-14.40

V

T, = 25°C, -35V:O:; V,N:o:; -17V
!1mA :0:; 10UT:O:; LOA, P :0:; Po

-15.60

-14.40

-15.68

-14.32

V

Over Temperature, TMIN :0:; Ti:O:; TMAX

-15.75

-14.,25

-15.75

-14.25

V

100

mV

Line Regulation

T, = 25°C, -35V:O:; V,N :0:; -l7V, 10 = 5mA

Load Regulation

TI = 25°C, V,N = -20V, 5mA :0:; 10 :0:; 1.5A

Quiescent Current

TYP.

35

100

35

150

TI = 25°C, V,N = -20V, 10 = 500mA

300
3

3

mV
mA

Over Temperature, TMIN :0:; T, :0:; T MAX

4

4

mA

Quiescent Current
Change

T, = 25°C, V,N = -20V, 5mA :0:; 10:0:; 1.5A

.8

,8

mA

T, = 25°C, -35V:O:; V,N:O:; -17V, 10 = 500mA

,5

.5

mA

Ripple Rejection

TI = 25°C, -28V:O:; V,N:O:; -18V, 10 = 500mA

Output Noise Voltage

f = 10Hz to 100KHz, CL = 1pf
T, = 25°C, V,N = -17V, 10'= 500mA

250

250

Dropout Voltage

TI = 25°C, 10 = 1A

1.1

1.1

V

Short Circuit Current

TI = 25°C, V,N = -20V

1.1

1.1

A

2.0

2.0

A

-1.{)

-1.0

mV;oC

60

60

mV

175

175

°C

(J~,

150

125

°C

"""

-55

0

°C

Peak Output Current

T, = 25°C

Avg. Temp. Variation
of VOUT

O°C :0:; T,:O:; TMAX. V,N = -20V, 10 = 5mA

Long Term Stability

1000 Hrs. @ TI = 125°C, V,N = -20V, 10 = 5mA

Thermal Shutdown

V,N = -20V, 10 =

TMAX
TMIN

5m~
1

56

56

dB
/lV

Note: All characteristics except noise voltage and ripple rejection are, measured using pulse techniques (lw:5 lOms, duty·cycle:5 5%), Output voltage
changes due to changes in internal temperature must be taken into account separately.
Po = 20W for TO·3 (K) and 15W for TO·220 (T).

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326-6509 • TELEX 95·1064

3-142

'PRINTED IN ..u.S.A.

UC7900 UC7900C SERIES
TYPICAL PERFORMANCE CHARACTERISTICS

Dropout Voltage
as a Function of
Junction Temperature

•

Peak Output Current

1.4

0C79,!X
1~:I~;j9S~t~lnlmum

Note:

,

~ 1.2
~

<

i"

is

~ 10

......

Ci
f:::l

~ 0.8

o

-- r1"-- . . .
"""-

louT

--- ~ ~
r-.... ~

~ 1""

~ .......

T,= 150°C

~

J

00",

~<1

..'.

TJ = 25°C

I'-....: ~
t'-....
.......

T

""'r......
. . . . r......
........................ ;

TJ = -55°C

~

Oo"',q

~
,11"'1'. . .

2

~ 0.6
Dropout Condrtron
hOUl

04
-75

I

,

= 5% of VOUT

I

-50 -25

I

I

a

25

50

75

~~

...........

o
100 125 150

o

10

15

20

25

30

35

40

JUNCTION TEMPERATURE (OC)

Ripple Rejection
as a Function of Frequency
lOa

80

,,111111111
, ""'" ""
, ""'" "".
I111

VO ,= -12V AND -15V

L1U'Ull

iD

:s

111111111
ilL

z
0

fd

=>
0-

~ 08

o
I

"'

......

r--

--

lOUr

r---... ......
_1"'-.... .....................

-

...........

>-

..

Peak Output Current

I

~ lA

lou _I

~

~
11)"'1'. . . .

I

I

0

25

75

TJ = -55°C

TJ = 25°C

t'::
r-.... I"-.....
~
t......
........
r::::: ~

~

..........
...........

I
50

~

v;:

T,o 150'C J

00177-4



;!l(l\;)"

,'=:
.~;

,4P6i

,·~i.

,I$();'

::_:
;~:

,S;:;

Part
: Nl.1mbets

l00·C
Cue

1.5
1.5
2,0
3,0
3.0
4,0

UFNF430
2N6802
UFNF432
UFNF420
2N6794
UFNF422

1.5
1.5
2,0
3,0
3.0
4.0

J:ifn ~
Resist-

$\luree

Dillin
2S'C CUrrent'

V~\t!Ige
~)

Cese

(Amps)

1.75
1.5
1.5
1.0
0,95
0.9

2,75
2.5
2.25
1.6
1.5

1.4

11
11
9
65
6,5
5,5

25
25
25
20
20
20

UFNF431
2N6801
UFNF433
UFNF421
2N6793
UFNF423

1.75
1.5
1.5
1.0
0.95
0.9

2,75
2.5
2,25
1.6
1.5
1.4

11
11
9
6.5
6.5
5,5

25
25
25
20
20
20

1.0
1.0
1.5
1.8
1.8
2.5

UFNF330
2N6800
UFNF332
UFNF320
2N6792
UFNF322

2.0
1.6
1.6
1.45
1.25
1.2

3.5
3.0
3.0
2.5
2.0
2.0

14
14
12
10
10
8

25
25
25
20
20
20

3.6
3.6
5.0
1.0
1.0
1.5

UFNF310
2N6786
UFNF312
UFNF331
2N6799
UFNF333

0.85
0.80
0.70
2.0
1.6
1.6

1.35
1.25
1.15
3.5
3.0
3.0

5.5
5.5
4.5
14
14
12

15
15
15
25
25
25

1.8
1.8
2,5
3,6
3.6
5.0

UFNF321
2N6791
UFNF323
UFNF311
2N6785
UFNF313

1.45
1.25
1.2
0,85
0.80
0.70

2.5
2.0
2.0
1.35
1.25
1.15

10
10
8
5,5
5.5
4.5

20
20
20
15
15
15

0.4
0.4
0,6
0,8
0.8
1.2

2FNF6798
UFNF230
UFNF232
2N6790
UFNF220
UFNF222

3.5
3,5
2,8
2,1
2,1
1.75

5,5
5.5
4,5
3,5
3,5
3,0

22
22
18
14
14
12

25
25
25
20
20
20

1.5
1.5
2.4
0.4
0.4
0.6

2N6784
UFNF210
UFNF212
2N6797
UFNF231
UFNF233

1.45
1.4
1.1
3,5
3.5
2.8

2,25
2.2
1.8
5.5
5.5
4.5

9
9
7.5
22
22
18

15
15
15
25
25
25

0.8
0.8
1.2
1.5
1.5
2,4

2N6789
UFNF221
UFNF223
2N6783
UFNF211
UFNF213

2,1
2.1
1.75
1.45
1.1

3,5
3,5
3.0
2.25
2,2
1.8

14
14
12
9
9
7.5

20
20
20
15
15
15

0.18
0.18
0,25
0,3
0.3
0.4

2N6796
UFNFl30
UFNF132
2N6788
UFNF120
UFNF122

5,0
5.0
4,5
3.5
3,5
3.0

8,0
8.0
7,0
6.0
6.0
5.0

32
32
28
24
24
20

25
25
25
20
20
20

1.4

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

lI11Ce

lOO

100
100
60'

,00

::«.1:'
«),

,"6!f

'6().

,<$
'1!J):
;&:l'

Part

(Ohms>

Number$

0,6
0,6
0.8
0.18
0.18
0.25

2N6782
UFNFllO
UFNFl12
2N6795
UFNFl31
UFNF133

2,25
2,25
2.0
5.0
5,0
4,5

3.5
3.5
3.0
8.0
8.0
7,0

14
14
12
32
32
28

15
15
15
25
25
25

0.3
0,3
0.4
0,6
0,6
0.8

2N6787
UFNFl21
UFNF123
2N6781
UFNFlll
UFNF1l3

3.5
3,5
3.0
2.25
2.25
2.0

6.0
6.0
5,0
3.5
3.5
3,0

24
24
20
14
14
12

20
20
20
15
15
15

TO·92
. '0.<

,Vps:
·1)riijfl"

,~

.

.;;.
I"

'

,~

'~)'
1.5
1.5

':~~~:
UFNA12
UFNAll

~
,11»>

Jil)'

;':,:
4·5

2.4
0.4
0,8
3.2

UFND1Z0
UFND123
UFND113
UFND1Z3

Dll-4

1.0
1.0
1.0
1.0

PRINTED IN U.S.A

•

NPN BIPOLAR POWER SWITCHING TRANSISTORS

.5-30A, 60-500V

LOW VOLTAGE

UPT213

UPTA510

UPT214
UPT215

UPTB520

UPTA520

2N3419*

2N3421*

UPT312

2N5662*

HIGH VOLTAGE

UPT313

UPTB530

UPTA530

UPT314
UPT315

2N5663*

UPTB540

'Available as JAN, JANTX, JANTXV.

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95-1064

4·6

PRINTED IN U.S.A.

PRODUCT SELECTION GUIDE

~

~

~

~ TO-llI

TO-59

LOW VOLTAGE
Maximum
CollectQr CUrrent

Package Style

TO-S

0::""

60V

UPT612

!:::...J

' BOY

UPT613

~~

~g i

•

5AMP

cl:~ ~

"TO-59

2N2151 ** 2N3999*
2N2880'
2N3998'

2N3749*
2N3996*

2N3997*

, ~iE ~, 1-..-,- - + - - - - + - - - + - - - - 1 - - - - - + - - - - - 1

~~>

100V

_nil

,

8~

VC~ (sat)

Max,

UPT614
UPT615

30@lA

4O@ lA)30@lA '40,@1i\BO@'lA'

IV@5A

,25V@ lA(lV@JAiar2J;l2151}., "

HIGH VOLTAGE

" ' ',M-aximum

, COj~r. :qurrent

150V

UPT321

,~
ffi~

,'200V

UPT322

25QV

UPT323

'irw ~

275Y

UPT521

'::'",

J±g
'alSo;;;
~¥~

300V

'S!g
"
' (;)<1)'

350V

' ;...1;:5, '
"".

'..::;,,:
. -' .,
~

2N5660'

UPT522

2N5839
UPT324
UPT325

2N5661*

UPT524
UPT525

2N6672

UMTl204

UMTl3005 2N6673

5QOV

':,:~::;'.,

: " tf

UMTl3004 2N6671

UMTl203
2N5840

400V
,~,j.

2N5838

UPT523

,cMaximum

,'O.4e:s , " .

O:3Ms(2~5.660~, O.4ft,S
,Itypicall' O. 6p.s {typical;
,
,(2N566l)

",l~5Ms> :,O,'9~,!.,

"

,

.

"

"

'Available as JAN, JANTX, JANTXV
"Avallable as JAN, JANTX
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95-1064

4·7

PRINTED IN U.S.A.

NPN BIPOLAR POWER SWITCHING TRANSISTORS

.5-30A, 60-500V

~

~TO-3
LOW VOLTAGE

HIGH VOLTAGE

2N5667*

2N5665*

UPT724
UPT725

"Available as JAN, JANTX, JANTXV.

UNITRODE CORPORATION· 5 FORBES ROAD
LEXI NGTON, MA 02173 .. TEL. (617) 861·6540
TWX (710) 326-6509 • TELEX 95-1064

4-8

PRINTED IN U.S.A.

PRODUCT SELECTION GUIDE

,

•

TO.22"B

LOW VOLTAGE

.. Maxlli'Mn'"
lOAMP

. ' COllector
:, ..... CuJtent.

f;~!
/ .~.

.15~

,'I-'-.7rnf........,:,-+-.- - + - - - - - + - ' - - - t - - - - + - - - + - - - - - - 1

2N565S

2N5659

2N5039*
2N503S*

2N5671

2N6496

"Available as JAN, JANTX, JANTXV.

HIGH VOLTAGE

UMTlOOS.
2N6544

UMTl009
2N6545

UNITROOE CORPORATION· 5 FORBES ROAD
LEX I NGTON, MA 02173 • TEL. (6171 861-6540
TWX (710) 326-6509 • TELEX 95-1064

4-9

PRINTED IN U.S.A

POWERDARLI NGTONS

PRODUCT SELECTION GUIDE

External bias types - for fast switching
or other special purpose applications

[."

NPN Power Darlingtons

~

~(3-Pin)

2N6352*
U2T201

2N6350"
U2TlOl
U2T305

U2T405

2N6351*
U2Tl05

2N6353"
U2T205

'Available as JAN, JANTX, and JANTVX types

Plastic NPN Power Darlingtons

Plastic Package types with integral
bias resistance and shunt diode
for maximum economy in standard
applications

U2TA608
U2TA610

UNITAODE CORPORATION. 5 FORBES ROAt...
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95-1064

4-10

PRINTED IN U.S.A.

JAN & JANTX 2N2151

POWER TRANSISTORS
2 Amp, 80V, Planar NPN

DESCRIPTION
Unitrode power transistors provide a unique
combination of low saturation voltage, high
gain and fast switching. They are ideally
suited for power supply pulse amplifier and
similar high efficiency power switching
applications.

FEATURES
• Meets MIL-S-19500/277
• Collector-Base Voltage: up to 150V
• D.C. Collector Current: 2A
• Beta Guaranteed at 3 Current Levels
• Characterized for Safe Operating Area

ABSOLUTE MAXIMUM RATINGS

....... 150V
Collector-Base Voltage, Vcao
......... 100V
Collector-Emitter Voltage, VCEQ ......... .
.........................
8V
Emitter-Base Voltage, VEao
D.C. Collector Current, Ic
..................
2A
.. ......................................... 2A
Base Current, la ............................................................
Power Dissipation
...... 30W
100'C Case .
.. ...................................... -55'C to 175'C
Operating Temperature Range .................... ..
.. ............. -65'C to 200'C
Storage Temperature Range ...... ..

tIIECHANICAL SPECIFICATIONS
JAN & JANTX2N2151

r

G

--I

INCHES
400-.455
090-.150
320-.468
570- 763
318- 380

,:~.
BASE

COLLECTOR

055 ±
G

·gtg

424- 437
185-.215

4-11

MILLIMETERS
10.16-11 56
228-381
8.13-11.88
1448-1938
807-965

140±254
.381

1077-1110
470-546

TO-59

~
~UNITRODE

•

JAN & JANTX

2N~151

ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
/277C
Subgroup

Method

-

Vdc

A-2

3001

Ic = IOOuAdc, Condo D

-

Vdc
uAdc
uAdc
uAdc
uAde
uAde

A-2
A-2
A-2
A-2
A-2
A-2
A-3
A-3
A-3
A-3
A-3
A-3
A-5
A-5
A-5
C-1

3011
3041
3041
3041
3036
3061
3076
3076
3076
3071
3066
3066
3206
3306
3236
3151

Ic = 50mAdc, Condo D
VCE = 120Vdc, VBE = 0, Condo C
VCE = 120Vde, VEB = IVde, Condo A
VCE = 80Vde, Condo D
VCB = 120Vdc, Condo D
VEB = 8Vdc, Cond.-D
Ic = lAde, VCE = 5Vdc
Ic = 0.5Adc, VCE = 5Vde
Ic = O.IAdc, VCE = 5Vdc
Ic = 1Adc, 'B = O.lAdc
Ic = 1Adc, IB = O.lAdc, Condo A
Ic = IAdc, VCE = 5Vdc, Condo B
Ic = O.lAde, VCE = 30Vdc, f = 1kHz
Ic = O.1Adc, VCE = 30Vdc, f = 10M Hz
VCB = 20Vde, 'E = 0, f = 1MHz

Adc
mAdc
mAdc
mj
mj

B-9
B-9
B-9
B-5
B-6

-

100
100
20

uAdc
uAdc
uAdc

A-4
A-4
A-4

3041
3041
3061

VCE = 120Vdc, VBE = 0, Condo C
VcE =120Vdc, VEB = 1Vdc
VEB = 8Vdc, Condo D

-

-

A-4

3076

Ic = 0.5Adc, VCE = 5Vdc

Min.

Max.

BVcBO

150

BVCEO
ICES
ICE)(
ICEo
ICBO
lEBO
hFE
hFE
hFE
VCE (sat)
VBE (sat)
VBE
hfe
fr
Cob
GJ_C

100

-

1.0
1.2
1.2
160
70
160
2.5

'ls/B
Is/B
Isis
EsiB
Es/B

2
200
25
20
80

,-

150'C
Collector-Emitter Cutoff Current
Collector-Emitter Cutoff Current
Emitter-Base Cutoff Current

ICES
ICE)(
lEBO

-

-55'C
D.C. Current Gain (Note 1)

hFE

20

25'C
Collector-Base Breakdown Voltage
Collector-Emitter Breakdown Voltage
(Note 1)
Collector-Emitter Cutoff Current
Collector-Emitter Cutoff Current
Collector-Emitter Cutoff Current
Collector-Base Cutoff Current
Emitter-Base Cutoff Current
D.C. Current Gain (Note 1)
D.C. Current Gain (Note 1)
D.C. Current Gain (Note 1)
Collector Saturation Voltage (Note 1)
Base Saturation Voltage (Note 1)
Base-Emitter Voltage (Note 1)
A.C. Current Gain
Gain-Bandwidth Product
Output Capacitance
Thermal Resistance
100'C
Forward-Biased Second Breakdown
Forward-Biased Second Breakdown
Forward-Biased Second Breakdown
!Jnclamped Inductive Sweep
Clamped Inductive Sweep

-

40
40
40
0.1

-

40
10

-

MIL-STD-750

Units

Symbol

Test

5
5
10
5
2
120
120

-

-

Vdc
Vdc
Vdc

-

MHz
pf

°dw

Test Conditions

VC[ = 15Vdc, t = 60 sec, see curve
VCE = 57Vdc, t = 60 sec, see curve
VCE = 100Vdc, t = 60 sec, see curve
Ic = 2Adc, L = lOmh
Ic = 2Adc, L = 40mh, VcI • mp = 150V

Note: 1. Pulse width = 300ps; duty cycle $ 2%.

UNITRODE CORPORATION. 5 FORBES ROAD
LEXI NGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

4-12

PRINTED IN U.S.A.

JAN & JANTX 2N2151
Unclamped Reverse Bias
Second Breakdown

Forward Bias

Safe Operating Area

10 n r . - - , - - - - , , - - - , - - - - , - - - - - r - - - - ,

10

Tc =100'C

~

5:
f-

~

'"'"
'-'
'"0

::J

~

0

'-'

.2
.1

f---/

t"
ms
Duty Cycle

._
=50%

t,,-lms
Duty Cycle

._
=10% f-----/

X1\/

/

K\

~

\

I
.E

•

~

DC
.5

l"'"
~ "-

05
.02
.01

.01 "-----'------'-----'------'-----'-----'
50
100
10
20
Vee - COLLECTOR TO EMITTER VOLTAGE (V)

200
le'- COLLECTOR CURRENT (AI

Reverse Bias
Safe Operating Area
Clamped Inductive Switching

D.C. Current Gain

10

200

--- --

100

5:

;;:

UJ

Cl

'":::>'"

TJ

t.)

~

2oo"C

/""

UJ

'"'":::>

'"

l-

20

t.)

t.)

0

25'C

so

IZ

0

UJ
...J
...J

V

z

IZ

150'C

..-

-SS'C

........

VeE = SV

~
-.............

~

'\

U

ci

.5

10

1

t.)

~

I

'"

_u

.2

.1

2

10

2

20

50

100 150 200

.OS

v e • - COLLECTOR TO EMITTER VOLTAGE (V)

Ie -

10

+2.0 ,----,---,-----,,---..,------,-------,
TJ = 25'C



B

-

-'-"=10
I,

~

.S
.2
COLLECTOR CURRENT (AI

Saturation Voltage
Temperature Coefficients

Saturation Voltages

z
o

.1

~ -0.5
:::>

~

~

f---+--+---+---t---j'----I

-1.0

f---+--f----f-:

-1.5

f---+--+---:,j."''-::::.....:.;"

-2.0

i-=J-......"q:::.--i--+--+----j

UJ
Q.

.05

i:i
l-

I
~

.02
.01
.05

.1
Ie -

.2
.s
1
COLLECTOR CURRENT (A)

UNITRODE CORPORATION. S FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326·6509 • TELEX 95·1064

4-13

-2.5 L-__..l--__- L____..l--_-'-_---''---_--'
.05
.2
.5
.1
Ie - COLLECTOR CURRENT (AI

PRINTED IN U.S.A.

JAN & JANTX 2N2151

Switching Speed
Characteristics

Switching Speed
Characteristics

1.0

10

I
"I
Vce =20V

.5

..
'0

c
0

Ie -

I B1 =-I 82

.

.2

c.>

II!

ec.>

Storage--;;;;;;

'0
C
0

c.>

25'C-

II!

ec.>

.1

~

~

w

w

::;: .05

::;:

;::

.5

150'C

;::

r--..

r-- -...........[X

--V

Fall time
25'C

.2 t--

.02

=1O

ISO'

b:::::::::

V

~

--

V

.1

.5
Ie -

COLLECTOR CURRENT (Al

Ie -

Therma I Response
Duty cycle
.5
.2

IZ
w
-w

.2
.1

~

~~
~~
I-w

.05 1--.02

w::;:
N_
::::;",

....
::;::;

.02

0:0:

.01

.1

On.

Ow
ZJ:
II...:.

-~§ ~

f-- eI-- I - l- .....- ~
I:?
f-- J.--

.....- ~

./

~ t:::

V

0.5

~~

COLLECTOR CURRENT (Al

Switching Speed Circuit

,.....

Vee =40VDC

J-:::: r:::; V
V

24V

OJ-Cit)

Single Pulse

= r lt) •

R.=--181 +1B.Z

0J-c

Pulse width = 2~s
Duty cycle = ";;2%
Source Impedance
=500

9 J _e = 3.3'C/W
.005
.002

R,

=!!.I"

V.. =-4VDC
.001
.01

.02 .05 .1

.2

.5

1

2

10 20

50 100 200 500 1000

TIME (milliseconds)

UNITRODE CORPORATION. 5 FORBES ROAO
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064 '

4-14

PRINTED IN U.S.A.

JAN, JANTX, & JANTXV 2N2880
JAN, JANTX, & JANTXV 2N3749

·POWER TRANSISTORS
5 Amp, 80V, Planar, NPN

DESCRIPTION

FEATURES
•
•
•
•

Unitrode power transistors provide a unique
combination of low saturation voltage, high
gain and fast switching. They are ideally
suited for power supply, pulse amplifier and
similar high efficiency power switching
applications.

Meets MIL-S-19500/31S
Collector-Base Voltage:
Fast Switching: t r • t f
300nSec max
Low Saturation Voltage: O.2SV max @ lA

=

nov

ABSOLUTE MAXIMUM RATINGS

. nov
....... sov

Collector-Base Voltage, VC80
Collector-Emitter Voltage, VCEO
Emitter-Base Voltage, VE80
D.C. Collector Current, Ic
Power Dissipation
25·C Ambient
lOO·C Case
'Operating and Storage Temperature Range .

..................... 8V
....... SA

... ... 7!N
..... ........... ..•...•.
....... 30W
........... -6S·C to +200·C

MECHANICAL SPECIFICATIONS
JAN, JANTlC, & JANTXV 2N2880

F$~G:}
:
..

EMITTER

_?

H

BASE
COLLECTOR

A
B
C
D
E

INCHES
400- 455
090- 150
.320- 468
570 763
318 380

F

055 ±

G
H

424-.437
185- 215

gig

TO-58

MILLIMETERS
1016-1156
228-3.81
813-1188
1448-1938
8.07-9.65

140±~~t
1077 1110
470546

JAN, JANTX, & JANTXV 2N3749

TO-111

BASE

A
B

C
EMITTER

G
CASE

0
E
F

G
H

J

INCHES
.400 - .455
.090 - .250
.320 - .468
.570 - .763
065 - .090
.313 .318
.070 - .090
.423 - .438
.135 - .215

4-15

MILLIMETERS
10.16 - 11.55
2.28 - 6 35
8.13 - 11.88
14.48 - 19.38
165-228
7.95-807
1.77 - 2.28
10.74 - 11.12
3.43 - 5.46

~UNITRDDE

•

'JAN, JANTX, & JANTXV 2N2880
JAN, JANTX, & JANTXV 2N3749
ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
MIL - STD - 750
TEST CONDITIONS

/315

TEST

SYMBOL

MIN.

MAX.

100

Visual and Mechanical

-

-

Collector-Base Voltage
Collector-Emitter Voltage (1.)
Emitter-Base Voltage
Collector-Emitter Cutoff Current
Collector-Emitter Cutoff Current

BVcBO
BVCEO
BV EBO
ICEO
IcEX

110
SO
8

Collector-Base Cutoff Current
Emitter-Base Cutoff Current

leBo
'lEBO

D.C. Current Gain (1.)
D,C. Current Gain (1.)
D.C. Current Gain (1.)
Collector Saturation Voltage (1.)
Collector Saturation Voltage (1,)
Base Saturation Voltage (1.)
Base On-Voltage (1,)

hFE
hFE
hFE
VCEl"l)
VCE ,,,1)

A.C. Current Gain

-

40
40
15

UNITS

METHOD

A-I

2071

See Mechanical Data

3001
3011
3026
3041
3041

Ic 10"Adc, Condo 0
Ic O.1Adc, Condo 0
IE 10~dc, Condo 0
VCE 60Vdc, Condo 0
VCE nOVdc, VEB 0.5Vdc,
Cond,A
VCB SOVdc, Condo 0
VEB 6Vdc, Cond, 0

10

~dc
~dc

A-2
A-2
A-2
A-2
A-2

0.4
0.4

~dc
~dc

A-2
A-2

3036
3061

-

-

A-3
A-3
A-3
A-3
A-3
A-3
A-3

3076
3076
3076
3071
3071
3066
3066
3206

120

Vdc
Vdc
Vdc

Sub

grOUP

=
=
=
=
=
=
=
=
Ic = 50mAdc, VCE = 5Vdc
Ic = lAde, VCE = 5Vdc
Ic = 5Adc, VCE = 5Vdt
Ic =1Adc, IB = O.1Adc
Ic = 5Adc, IB = 0,5Adc
Ic = lAde, IB = O.lAdc
Ic = lAde, VeE = 2Vdc

0.25

VBElon)

-

1.2
1.2

Vdc
Vdc
Vdc
Vdc

hFE

40

120

-

A-4

Gain-Bandwidth Product
Output Capacitance
Switching Parameters
Delay Time
Rise Time
Storage Time
Fall Time

fT

20

A-4
A-4

3306
3236

1.7
300

ns
ns
"s
ns

A-4
A-4
A-4
A-4

-

Thermal Resistance

9 JC

-

MHz
pf

3,33

'C/W

C-1

3151

IsiB

5

Adc

B-5

3051

Is/B

SO

mAde

B-5

3051

EsiB

12.5

-

mj

B-7

-

EsiB

12.5

mj

B-6

3053

Es/B

12.8

-

mj

B-6

3053

150'C
Collector-Emitter Cutoff Current

IcEX

-

50

~

A-5

3041

VCE = BOVdc, VEB = O.SVdc
Condo A, TA = 150'C

-65'C
D.C. Current Gain (1,)

hFE

15

-

-

A-5

3076

Ie = lAde, VeE = 5Vdc
TA = -65'C

l00'C
Forward-Biased Second
Breakdown
Forward-Biased Second
Breakdown
Clamped Reverse-Biased
Second Breakdown
Unclamped Revers. -Biased
Second Breakdown
Unclamped Reverse-Biased
Second Breakdown

Note 1. Pulse Width

VBElsat)

Cob
td
tr
t,
tf

1.5

120

150
60

300

Ic = 50mAdc, VCE = SVdc,
1KHz
Ie = lAde, VeE = 10Vdc, f = 10MHz
VCB = 10Vdc, IE = 0, f = 1MHz

f

=

}

See Switching Speed Circuit

VCE = 6Vdc, t= 60Sec,
Te = 100'C
VeE = 8OVdc, t = 60Sec,
Te = 100'C
Ie 5A, L = 1mH, VClamp = nov,
Tc = 100'C

=

=

Ie = 5A, L 1mH
Base Open
Ie = 1,6A, L = 10mH
Base Open

= 3OO,,5ec, dUly cycle"" 2%

UNlTRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
'

4-16

PRINTED IN U.S.A.

JAN, JANTX, & JANTXV 2N2880
JAN, JANTX, & JANTXV 2N3749

Unclamped Reverse Bias
Second Breakdown

Forward Bias
Safe Operating Area
10

~

g

"

D.C.

>-

iii
a:

10
"

~

~~ 1;;10 = 50% -

a:
:::>
u
a:

~u~5;;10 = 10% -

~

.2

...........

AI

>..

Ui'

.""c i
g

/\ \

UJ

;::tJ

.2

0

.1

:>

:!:

-" .05

Ie
Jill =-1 11 =10
e"8110

.............

•
-----

0.

~v

............
"- ........ ............

~

.os

...J

--

..........'IJe"

1\'"
~<>
"" v"'<> .... $v

.S

tJ
Z

'\

u
I

Te = 100'C

\1\

~"

'Y'\

"- ~

\\
\\

Tc=loo'C

02

.02
.01

10

20

50

80 100

1
2
3
4
S
Ie - COLLECTOR CURRENT (A)

Vo< - COLLECTOR TO EMITIERVOLTAGE (V)

Reverse Bias
Safe Operating Area
Clamped Inductive Switching

6

D.C_ Current Gain

2N2881J..2N3749
500

20

Ve

,=5V

80V
10

$

!zUJ

l

S

0:
0:

;(

~

TJ

0:

9

100

I-

z
UJ
0:
0:

200°C

:>

2

50

tJ

d

I

8

.eft.

I

.5

V
/'" V

2S'C

V

-:::;s'c

,/

/"

Q

...J
...J

_0

150'C

(!I

:>
tJ

200

z

nov

.........

r--.. ~
r-...::

20

~~

10

S
.01

.2
10

S

so

20

80100

.02

200

.05.1
.2
.5
1
2
Ie - COLLECTOR CURRENT (A)

5

"
10

Ve,-COLLECTOR TO EMITTER VOLTAGE

Saturation Voltage
Temperature Coefficients

Saturation Voltages
10

2

TJ =2S'C
Ie
1'=10

~
UJ
(!I

~
0

>

I

1.0

vIE

(sat)

Z

.2

:>

.1

;:
«
0:
I-

«
III

.OS
.02

/'

~~1J.\)

--

.01
.01

f.--""""

.02

~
~

..1-'..-

.S

0

:>

/

I

2

~

I

V

V

U

I~

~

UJ

0:

-.S

0:

-1

~

~

.S

2

S

-2.5
.01

10

e•

I "";""'---

.....--:r

(;.'1/,.- ........

~-.02

.05

.1

.2

.5

2

5

10

Ie - COLLECTOR CURRENT (A)

Ie - COLLECTOR CURRENT (A)

UNITRODE CORPORATION. S FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6S40
TWX (710) 326-6S09 • TELEX 95-1064

/

~S'C/
_5S'C to

_ ===- .--.
(;.'l/
>r'/.'J'

ill-l.s
I-

'l.O'\:~~ ~

8

'~

Fall Time

Vy

::::::-- I'-....

-

.1

1

.5

2S'C

l~'C

0

::;:

I--

~SO'C I

2

0

0

NOTES:
1. Ie AS lA, 'B. AS -Isz

.2

.5

1

2

10 20

50 100 200 500 1000

TIME (milliseconds)

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

4-18

t::::s lOOmA
2. The values of collector current and base
current are nominal. The actual values will
vary slightly with transistor parameters.

PRINTED IN U.S.A

JAN, JANTX, &JANTXV 2N3418
JAN, JANTX, & JANTXV 2N3419
JAN, JANTX, & JANTXV 2N3420
JAN, JANTX, & JANTXV 2N3421

POWER TRANSISTORS
3 Amp, BOV, Planar NPN

FEATURES

DESCRIPTION

•
•
•
•

Unitrode power transistors provide a unique
combination of low saturation voltage, high
gain, and fast switching. They are ideally
suited for power supply, pulse amplifier and
similar high frequency power switching
applications.

Meets MIL-S-19500/393
Collector-Base Voltage: up to 125V
Peak Collector Current: SA
High Power Dissipation in TO-S:
lSW@ Tc = lOO·C
• Fast Switching

ABSOLUTE MAXIMUM RATINGS
JAN, JANTX, & JANTXV

JAN, JANTX, & JANTXV

2N341B
2N3420

2N3419
2N3421

Collector-Base Voltage, VeBo
Collector-Emitter Voltage, VCEQ
Emitter-Base Voltage, VEBO
D.C. Collector Current, Ie
Peak Collector Current, Ie
Power Dissipation
25·C Ambient
lOO·C Case
Operating and Storage Temperature Range

. 125V
.... 80V
... 8V
.... 3A
.5A

.... 8SV.
60V
. 8V..
3A
SA.

l.OW

l.OW
15W

lSW
-65·C to +200·C.

MECHANICAL SPECIFICATIONS
JAN, JANTX, & JANTXV 2N3418-2N3421

fo- C

I

T

1i E

D

l

iTf~:

e---·
- _. . .

I
--,--

F

A
B
C
0
E

INCHES
335 370
305- 335
240 260
15 MIN
010 030

gg1

F

OI7±

G
H
J

200
100
03l± 003
029 .045
100

K

L

4-19

TO-5

MILLIMETERS
851 9.40
775 851
6.09 660
3810 MIN
254 762

432

±

.g~~

508
2.54
787± 076
736-114
254

~UNITRDDE

•

JAN, JANTX, & JANTXV 2N3418-2N3421
ELECTRICAL SPECIFICATIO.NS (at 25°C unless noted)
TEST

SYMBOL

Visual and Mechanical

-

Collector-Emitter Breakdown Voltage (1.)
2N3418, 2N3420
2N3419, 2N3421
Collector-Emitter Cutoff Current
2N3418, 2N3420
2N3419, 2N3421
Collector-Emitter Cutoff Current
2N3418, 2N3420
2N3419, 2N3421
Emitter-Base Cutoff Current
Emitter-Base Cutoff Current

BV cEO

D.C. Current Gain (1.)
2N3418, 2N3419
2N3420, 2N3421
D.C. Current Gain (1.)
2N3418, 2N3419
2N3420, 2N3421
D.C. Current Gain (1.)
2N3418, 2N3419
2N3420, 2N3421
D.C. Current Gain (1.)
2N3418, 2N3419
2N3420, 2N3421
Collector-Emitter Saturation Voltage (1.)
Collector-Emitter Saturation Voltage (1.)
Base-Emitter Saturation Voltage (1.)
Base-Emitter Saturation Voltage (1.)
Gain Bandwidth Product
Output Capacitance
Switching Parameters
Turn-on Time
Turn-off Time
100°C
Forward Biased Second
Forward Biased Second
Forward Biased Second
Forward Biased Second
2N3418, 2N3420
2N3419, 2N3421

Breakdown
Breakdown
Breakdown
Breakdown

Unclamped Reverse Biased
Second Breakdown
Clamped Reverse Biased Second
Breakdown
150°C
Collector-Emitter Cutoff Current
2N3418, 2N3420
2N3419, 2N3421
-55°C
D.C. Current Gain (1.)

ICEX
IcEO

MIN.

hFE

UNITS

A-I

2071

See Mechanical Data

A-2

3011

Ic

A-2

3041

A-2

3041

A-2
A-2

3061
3061

VES 0.5Vdc, Condo A
VCE 80Vdc
VCE 120Vdc
Cond.D
VCE 45Vdc
VCE 60Vdc
VES 6Vdc, Condo D
VES 8Vdc, Condo D

A-3

3076

=
=
=
=
=
=
=
Ic = 100mAdc, VCE = 2Vdc

A-3

3076

Ic

= lAde, VCE = 2Vdc

A-3

3076

Ic

= 2Adc, VCE = 2Vdc

A-3

3076

Ic

= 5Adc, VCE = 5Vdc

3071
3071
3066
3066

-

60
80

-

Vdc
Vdc

-

0.5
0.5

!lAde
!lAde

-

5.0
5.0
0.5
10

!lAde
!lAde
!lAde
!lAde

20
40

-

-

20
40

60
120

-

15
30

-

-

10
15

-

-

0.25
0.5
1.2
1.4

Vdc
Vdc
Vdc
Vdc

A-3
A-3
A-3
A-3

-

hFE
hFE
hFE

-

-

-

-

-

TEST CONDITIONS

METHOD

-

-

MIL - STD -750

/393

Sub-

group

-

-

IESO
IESO

MAX.

= 50mAdc, Condo D

= lAde, Is = O.1Adc
= 2Adc, Is = 0.2Adc
= lAde, Is =O.lAdc
= 2Adc, Is = 0.2Adc
3306 Ic = O.lAdc, VCE = lOVdc, f = 20MHz
3236 Vcs = lOVdc, IE = 0, f = 1MHz
- ~ Ic = lAde, I" = -I" = O.1Adc

VCEI ,,!)
VCE (,,!)
VBE (,,!)
VSE (,,!)

0.6
0.7

fT
Cob

-

160
150

MHz
pf

A-4
A-4

too

-

0.3
1.2

!lS
!lS

A-4
A-4

3
1
0.4

-

-

-

Adc
Adc
Adc

B-6
B-6
B-6
B-6

3005
3005
3005
3005

185
120

-

-

mAde
mAde

Eslb

45

-

mj

B-7

-

Es/b

180

-

mj

B-8

-

A-5

3041

-

-

50
50

!lAde
!lAde

VES
VCE
VCE

10

-

A-5

3076

Ic

toff

Is/b
Is/b
Is/b
Is/b

40

ICEX

hFE

-

-

Ic
Ic
Ic
Ic

See Switching Speed Circuit

=
=
=
=
=

=
=
=
=

=
=

=
=

=
=
=

VCE 5Vdc, t
60sec, TC 100°C
VCE 15Vdc, t 60sec, TC 100°C
VCE 37Vdc, t 60sec, TC 100°C
t 60sec, TC 100°C
VCE 60Vdc
VcE =80Vdc

Ic 3Adc, L lOmH,
Base Open
Ic 3Adc, L 40mH,
V clamp Rated Vcso

=

= 0.5Vdc, Condo A, T = 150°C
= 80Vdc,
= 120Vde,
A

= lAde, VCE = 2Vdc, T = -55°C
A

Note: 1. Pulse width:::: 300p,Sec, duty cycle:::;: 2%.

UNITRODE CORPORATION· 5 FORBES ROAD
LEXI NGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

4-20

PRINTED IN USA.

JAN, JANTX, & JANTXV 2N3418·2N3421

Forward Bias
Safe Operating Area

Unclamped Reverse Bias
Second Breakdown

10

5:
I-

10

~

2

Z

'"a:a:

"a:
0

'"
..J
..J

D.C.
.5
.2

0

.1

I

.05

.~

1'--.,"'" k

0

I0

.

pUlsl Widlh =11mS Duly Cy~'e = 50%

Tc = 100'C

g
'"z0

~I\

.2

"~

.1

0

I

2N3419,21

1

.01

~~"'"

'"'"

\

t-

It :::::

II

~

"'- ~
V

-411

.05

2N3~18,20-1-

.02

M T C = 100'C
~
_ _ Ie
"6 0
111-12-10

\

\

.5

«

I0

1"\

\

\

~"

-

_0

2

r::

~~
'\

0

\

..J

= ~

.02

.01

o

5
1020
506080
VeE - COLLECTOR TO EMITTER VOLTAGE

Reverse Bias
Safe Operating Area
Clamped Inductive Switching

1

2
3
4
S
'e-COLLECTOR CURRENT (A)

O.C. Current Gain Vs. Collector Current
180

10

VeE =2V
160

5
TJ

5:

::;;

200°C

z
;;:

I-

Z

'"a:a:

"a:

C>

2.0

I-

1.0

t;

'"
..J
..J

0

2N3418,20 - I
2N3419,21-

I

'"a:a:

100

0

80

I

60

_0

0.2

~

r-

40

--

----

.05

51020
506080
VeE - COLLECTOR TO EMITTER VOLTAGE (V)

.5

>

...

-

-

t--5~~
-i_
2

.5

.2

.1

.2

+.5

f--1-.....L

o

~

-.5 f--1--+-'-t-+-j--j--I-r-

"a::~ -.1
'"
0.

~
.05

1.5

'"o

,/

.02

-- ~

2S'C

z

...'"~

/'

.1

.01
.005 .01

~

~ 1.0 f--1--+-'-t-+-l-

/

.2

•02

~

--

V" (sal)

.05

-- -

-55'

Q

Ie
"=10

0

150'C \ -

1- ....

Saturation Voltage
Temperature Coefficients

TJ = 25'C

~

"-

2N3420,21

Ie - COLLECTOR CURRENT (A)

10

'"«C>

r-

.1

Saturation Voltage

~

2N3418, 19

25'C

.- 1--

o
1

-.......-

20

0.1

-- -

120

"0
ci

0.5

0

I~

!-~

z

0

0

"...-

140

~-1.5

f--1--'-.

l-

I
~

f-4='=jI--+-t-+--IP....
.01

.5

.02

.05

.1

.2

.5

2

5

Ie - COLLECTOR CURRENT (A)

Ie - COLLECTOR CURRENT (A)

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

-.2

4·21

PRINTED IN U.S.A.

JAN, JANTX, & JANTXV 2N3418-2N3421

Switching Speed
Characteristics

Switching Speed
Characteristics
10

Vee =20V

Vee=120V

.5
181 =-1 12
~
'tI

"u0

~
u
g
UJ

::!

;:

1=----+ I

.2

rise ISO"C

r--

Stor.age tl
age

.05

FaU

.2

.5

2
Ie -

5

0 1 J.5

.5

Q.2

I.2

Ui~

~~

.1

c ...

.05

UJ:;:

!::!...J...J

«

::!:;:
Zl:

Ie -

O;!.-

-

~~

::; ~

"7'

t,

-

25"

O.~

1
COLLECTOR CURRENT (A)

Switching Speed Circuit

-

t-20.3Vde

20U

~

-IV

.01

9 J...cltl
.005

= rill· 9 J -C

!lJ.e -

i

.002

n

116V

,/

II'-~

i'--

time t f 150 0

~

~ingle PUlse
.02 . . . . . . 1/

0:0:

OUJ

~

-~ 1---

-1-

.5

COLLECTOR CURRENT (A)

Thermal Response

~S

c_ I---

t·

.1

.01

UJ

.lI

'1
Fall lime

Z

Ie -

=10

~
~c~ k

.1

.02

I.

Pulse width

2115

Duty cycle = .-: 2%
Source Impedance

6.1"C/W

I I

o-.......-IIJ\/'v__...- I

50~!

I

-6.4Vde
.001

.01 .02 .05 .1

.2

.5
1 2
5 10 20
TIME (milliseconds)

UNITROOE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

50 100 200 500 1000

4-22

PRINTED IN U.S.A.

POWER TRANSISTORS

JAN,
JAN,
JAN,
JAN,

5 Amp, SOY, Planar NPN

JANTX,
JANTX,
JANTX,
JANTX,

& JANTXV 2N3996
& JANTXV 2N3997
& JANTXV 2N3998
& JANTXV 2N3999

FEATURES

DESCRIPTION

•
•
•
•
•

Unitrode power transistors provide a
unique combination of low saturation
voltage, high gain and fast switching. They
are ideally suited for power supply pulse
amplifier and similar high efficiency' power
switching applications.

Meets MIL-S-19S00/374'
Collector-Base Voltage: Up to lOOV
D.C. Collector Current: SA
Fast Switching
Beta Guaranteed at 3 Current Levels

ABSOLUTE MAXIMUM RATINGS

Collector-Base Voltage, VCBO
Collector-Emitter Voltage, VCER .
Emitter-Base Voltage, VEBO
D.C. Collector Current, I". . ....................... .
Peak Collector Current, Ie ...
Power Dissipation
25°C Ambient .
100°C Case.
Operating and Storage Temperature Range

.............. lOOV
.. ... 80V
8V
.. ............ 5A
.. ..... lOA
... 2W
...30W
..-6SoC to 200°C

MECHANICAL SPECIFICATIONS
JAN, JANTX, & JANTXV 2N3996, 2N3997

A
B

C
10-32. NF-2A
THREAD

EMITTER

G
CASE

D
E
F
G
H
J

INCHES
.400 - .455

MILLIMETERS
10.16 - 11 55

.090 250
.320 - .468
570 .763
.065 - 090

2.28 813
14.48 1.65 7.95 177

313

318

WO -

090

.423
135

.438
.215

10.74

343

6.35
11.88
19.38
2.28
8.07

2.28
11.12
5.46

JAN, JANTX, & JANTXV 2N3998, 2N3999

A
B
C

0
E

INCHES
400 455
090 150
320- 468
570- 763
31B 380

gig

F

055 ±

G

424 437

H

185- 215

4-23

TO-111

T0-59

MILLIMETERS
1016 11 56
228-381
8.13 11 88
1448-1938
807-965

140 ±

~~

10 77-1110
470-546

~UNITRDDE

II

JAN, JANTX, & JANTXV 2N3996, 2N3997, 2N3998, 2N3999
ELECTRICAL SPECIFICATIONS (at 25'C unless noted)t
2N3996*
2N3998*
Symbol

Test

Min.

2N3997*
2N3999*

Max.

Min.

Max.

Units

D.C. Current Gain

hfE

30

-

60

-

D.C. Current Gain (Note 1)

hfE

40

120

80

240

D.C. Current Gain (Note 1)

hfE

15

-

20

D.C. Current Gain, -55'C (Note 1)

hfE

10

-

20

-

Collector Saturation Voltage (Note 1)

VeE (sat)
VeE (sat)

-

0.25

. Collector Saturation Voltage (Note 1)
Base Saturation Voltage (Note 1)

V" (sat)

0.6

Base Saturation Voltage (Note 1)

V" (sat)

Collector-Emitter Breakdown Voltage
(Note 1)
Emitter-Base Cutoff Current
Emitter-Base Cutoff Current

le=5A, Ve,=5V

-

lc=lA, Ve,=2V
lc=lA, 1.=100 mA

V

2

V

le=5A, 1.=500 mA

1.2

0.6

1.2

V

lc=lA, I.=ioo rnA

-

1.6

-

1.6

V

le=5A, 1.=500 mA

BVeEO

80

-

80

-

V

10=50 mA, 1.=0

hBO

-

0.2

-

0.2

p.A

V,,=5V, 10=0

lEBO

-

10

p.A

V,,=8V,le=0

5

"A

Ve,=90V, R,,=O

10

-

10

10

"A

Ve,=60V, 1.=0

50

-

50

"A

Ve,=90, R,,=O

150

-

150

pf

Ve.=lOV, 1,=0, f=1 MHz

-

-

le=lA, Ve,=5V, f=10 MHz

0.3
2

p's
p's

le=lA
Ib,=100mA, Ib,= -100 mA

ICES

I cEo

-

Collector Cutoff Current, 1SO'C

ICES

-

Collector Capacitance

Cob

-

A.C. Current Gain (High Frequency)

hr.
toff

5

4

to,

-

2

0.3
1.5

Notes:
1. Pulse width = 3001'5; duty cycle 52%.
t All values in this table are JEDEC registered.

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326·6509 • TELEX 95·1064

le=lA, VeE=2V

0.25

Collector Cutoff Current

Switching Speeds

10=50 mA, VeE=2V

-

Collector Cutoff Current

Turn-on Time
Turn-off Time

-

Test Conditions

4
-

-

*Also applicable to
JAN and JANTX versions

4·24

PRINTED IN U.S.A.

JAN, JANTX, & JANTXV 2N3996, 2N3997, 2N3998, 2N3999

Unclamped Reverse Bias
Second Breakdown

Forward Bias
Safe Operating Area
10

"-

g
>-

.........

~

~u~yl:le= 50% -

Z

"'

0:
0:

.5

:J

'-'

t p -O.5ms

0:

/

N
X"

~

.

~

.~

.2

~'"
g
'"z0

\

.2

0
~

.1

.05

I

"-

'B.

I

~"'0~"
"- \ /;.",1 I'..........
-'"

"',~"

Kr--., . . . . . r--.

.05

.........

.02

.01

.01
10

v" -

50

20

80 100

o

1

2

I'--

4

5

Ie - COLLECTOR CURRENT (A)

COLLECTOR TO EMInER VOLTAGE (!I)

Reverse Bias
Safe Operating Area
Clamped Inductive Switching

D.C, Current Gain
2N3996-2N3998
SOO

20

I

200

...~

z

;;:

Z

'"0:0:

...'"

TJ ~ 20QoC

o

g

'"0:0:

2

:J
0
0

I

8
I

V

-;,

50

V

~ 25'CI

I"'--. ~

V

-;,

~ -SS~C

r--..

0

..J

r---..

100

z

::>

.2

I

Ve,=SV

10

0:

II

~o%-

..J

.02

Te= 100'C
Ie

== -182 == To

'"

\ '\

.5

~

0
:J

.1

'-'
I

\ 1\

2

I::

"~

Duty Cycle = 10% -

0

\\ 1\

' " T, = 100'C

"'"

D.C

10

20

T J = 150'C

L ..J.

V

V

........

'\

~G

I'-- .........

~

~

.S
10

5
.01

.2
Ve , -

5
10
20
SO 80
COLLECTOR TO EMITTER VOLTAGE

.02

.05 .1
.2
.5
1
2
Ie - COLLECTOR CURRENT (A)

D.C. Current Gain
2N3997-2N3999

l-Lc
J

200

...'"
'"

100

V ~J=~S'C
,/

z

0:
0:

:J
0

I
~

/'

so

U
ci

10

Saturation Voltage
10

SOO

z
;;:

S

V

I
Ve,=SV

-.......

~

V ~J=~55'C-""'" ~ ~
-.......
'\
V
r----.
"-..,

'"C1
~

§!

10

.OS .1
.2
.S
1
2
Ie - COLLECTOR CURRENT (A)

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

VIE (sat)

1.0

.S

Z

o

~.

~
0:

::>

~

"

.<:

.02

1

Ie

I- 1'=10

20

.01

TJ =2S'C

.2
Ve , (sat)
1
.05
.02
.01

10

-.01

4-25

............

.02

... V

V
./

V

J

.2
.5
1
2
.05 .1
Ie - COLLECTOR CURRENT (A)

...tv

10

PRINTED IN U.S.A.

JAN, JANTX, & JANTXV 2N3996, 2N3997, 2N3998, 2N3999

Saturation Voltage
Temperature Coefficients

Switching Speed
Characteristics

2

?

;-

~=10
I,

1.5

~

'"

1.0

(3

.5

I-

Z

<§l0(j

W

;;:

~

'/.,>o(j
~c'

"w

w
0::
:>
I'Jc,

I '/.<5
,><"1
t>~

V .....

l-

I

....,

J

c

l--:; ~

-2.0

Ie
1,,=1"=10

I I

.2

0

.,"u
l!

Rise T1ime, tr

.1 f - - - 25°C

u

g

a--

w
:;; .05

'/.,,:;C
j,SoC\O/

--::pp

II.

:;; -1.S

V

_550C to 25°C

-1

w

V

L--I;.zr;<§l"V
~

0

<>

Vee =20V
.5 I-----

7'

>=
.02

--

~
r-- r- I--

b?

1/

V

++-

...I--'

I--

liol
-2.5
.01

.01
.02

.05.1
.2.5
2
Ie -'- COLLECTOR CURRENT (A)

5

2

1

10

Vcc=20V

r-

....,

r

Duty cycle
.2
1500C

V
.5

250C

.2

I---

.2

Zz

.1

I-w
w:;;
N_

.05

~[3

1-)"

-I--.: '"

]~r::> ~ ~ Vi,.-

Fall Time 2SoC

>=

Iz
w

u;~

Ktorage Time--t:----

0

.,"u
l!u
g

0.5

.5

Ie

I" = 1111 =

c

~~~

10

Thermal Response

I

10

5

Ie - COLLECTOR CURRENT (A)

Switching Speed
Characteristics

w
:;;

~~

2S'C

Delay Time

>



.5

OJ

I
~ Duty Cycle

1OOpSee, 10% Duty Cycle

8

II

\\ 1\

.~
c:

~~

.2

...J
...J

I~

I

1ms~e, 10% D~ty CYCI~

0:

§w

~

10

j10p~ee,

.1

~

jZ...,,'" t--..
~

I



~

"z.... 100

200°C

'"0:

OJ

0:

0:

::> 50

t

OJ

w

cJ
ci

o

I

...J
...J

OJ

20

--

IJ~ f--

;;;:

W
0:
0:

•

.......... ~ase opeln

...J

•02 I- T,

~ 10JOC I

~ -='82 = 'CliO -

1'1

.1

z
I

i"'--

_u· 05

'"

\.

~

.2

o

IT

1\

.5

u
::>

1\

...............

VlJ= 2l:s-f----

~~

..............

\
I"-

l-

I

_u .5~--~-----+----+_---+-----1--t_1

10
5

.01

.02

VeE-COLLECTOR TO EMITTER VOLTAGE (V)

Saturation Voltage
Temperature Coefficients

Saturation Voltages
10

r-

P

~,=25lc

~
w .5

"!:i«
0

>
.1

-~

.02
.01
.01

.02

lell, ~ 10

L

V

~

.05.1
.2
.5
1
2
Ie - COLLECTOR CURRENT (A)

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95·1064

S
::'z!

-

~

.2

.05

2

;- 1.5

la= I C/IO

VBEISATI

10

.OS .1
.2
.5
Ie - COLLECTOR CURRENT (A)

V

/

I

w

t:i

ii:

./

.S

"-

'"oOJ

/

'"

0:

::>

~

0:

f-L::.V e:...-

..-

/"
..-/
-f-5SoC to 25°C

-.5

....
I
~

/
f:j.V BE

-2

-2.5
.01

10

4-29

/

-/- f----

F::
-~
--

.2

Z

-v::-::;-~§@

"'
.2
iii",
ZO

~ ~ .1

f-O

8N::;;~

.05

:J~
~ « .02

0:::;;

offi
Z:I:

.01

If-

€

2-

Ie -

.0

....-

....-::

-:::::

./

,./
/'

S

10

COLLECTOR CURRENT (A)

Switching Speed Circuit

.S

-- -

~
.oy

-

2

1

Therma I Response

f-

t--- ':> 

DISSI~A.'\

AT PESIREO OPEI'tATING VOLTAGE. DER ...JE
TION CURRENT LIMIT AND 15. CURRENT LIMIT FROM
is'C SOAR CURVE

20

"
0.3

L-.L....I.I-JI....lII.J..,u111-,--...1.1L-,--,-I...L..L.J..1.1L--J
2

10
VeE -

so

20

DASH LINES ON SOAR CURVES ARE EXTENSIONS OF

DISSIPATION LIMITS FOR TEMPERATURE DERATING

PURrOSESol

o

100 200

i'- .......

~~

z

'"0:0:

"

o

COLLECTOR VOLTAGE (V)

40
Te -

Saturation Voltages

'\
1,\

I
I
J
L
120
160
80
CASE TEMPERATURE (OC)
I

200

DC Current Gain
SOO

II
lell, = 10

5~OC

~

'"~

200

I.

VBe

k,:;;

(SAT)

,

z

!iII!I

150°C

;;:

....z"

100

25°C

UJ

150°C
0.5

~

o

>

V

0.2

0.1

50

VeE (SAT)

£

20

~ ...... 1/

_55°C

f.- ro-

"g

V

\~

:li::>

~

_f-

10

_~,?C

~

1\

VeE =2V

.05
0.2

0.5
Ie -

10

20

0.2

COLLECTOR CURRENT (A)

0.5
Ie -

10

20

COLLECTOR CURRENT (A)

Turn-Off Time

Turn·On Time
1000

SOD

.

200

"l~

~-

"

I,

~

'";::

'" 100

:;;

:;;

;::

II10
0.2

0.2

"'-!.

= IC/IO

-

:t;-- i'
.......

~

~

Vee = 30V
lSI

-

0.5

so
20 I--

r-....

.
..3

r--....

-

=laz=l c/IO
TJ = 25°C
'BI

/

'\

Vee = lOV

0.1

"

T J = 25°C

I I II II
0.5
Ie -

10

.05
0.2

20

UNITRODE CORPORATION' 5 FORBES ROAD.
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

0.5
Ie -

COLLECTOR CURRENT (A)

4-34

1

2

5

10

20

COLLECTOR CURRENT (A)

PRINTED IN U.S.A.

POWER TRANSISTORS

2N5552

5552·4

10 Amp, 120V, Planar NPN

FEATURES
• Collector-Base Voltage: up to l20V
• Peak Collector Current: lOA
• Fast Switching
• Beta Guaranteed at 3 Current Levels

DESCRIPTION
Unitrode power transistors provide a
un ique combination of low saturation
voltage, high gain and fast switching. They
are ideally suited for power supply pulse
amplifier and simi lar high efficiency power
switching applications.

ABSOLUTE MAXIMUM RATINGS
........................... l20V
... 80V

Collector-Base Voltage, Vc'o
Collector-Emitter Voltage, VCEO .
Emitter-Base Voltage, VE,o
D.C. Collector Current, Ic .
Power Dissipation
25'C Ambient
lOO'C Case ....... .
Operating and Storage Temperature Range ....

.7V
. lOA

..... l.25W
....... 15W

...... -WC to 200'C

MECHANICAL SPECIFICATIONS
2N5552

I-cr

D

1

A
B
C
0
E

r=r=~1
T 1i-- - I -

I+
B

E

--- --

-- - --

F
G

F

H
J

K
L

THREAD

017±OO2
.001
200
100
.O3l±.OO3
029-.045
.100

MILLIMETERS

851-940
7.75-851
6.09-660
3810 MIN
254-762

432 ± .g~~
5.08
2.54

787t 076
736-114
254

-rr- +:j
r=;:~~~~~~~[tfE:
[JF
fr' ~COlLECTOR
B

10-3' • NF-'A

INCHES
.335 370
305- 335
240- 260
15 MIN
.010- 030

I-- A
c
t\
1-n+~111111=1111111n:d1111!1 ~I
_

D

t...

TO-5

5552·4

TO·5 (Stud)

BASE

,,.1 ,

•" +

T G

rj

EMITTER

A
B

C
D
E
F
G
H

INCHES
.340 - .360
.315 - .335
.095 - 115
1.5 MIN.
017 ± 001
.337 - 387
.424 437
.200

4-35

MILLIMETERS
8.63 - 9.14
8.00 - 8.51
2.41 - 2.92
38.10 MIN.
.432 ± .0254
957 - 9.83

10.77 - 1110
5.08

~UNITRODE

•

2N5552 5552-4
ELECTRICAL SPECIFICATIONS (at 25·C unless noted)t
Test
D.C. Current Gain
D.C. Current Gain (Note 2)

Symbol

Test Conditions

Min.

Max.

Units

hfE

40

250

-

Ie = O.5A, VeE = 2V

hfE

50

150

-

Ie = 5A, VeE =5V

D.C. Current Gain (Note 2)

hfE

30

-

-

I, = lOA, VCE = 5V

Collector Saturation Voltage (Note 2)

VCE (sat)

-

0.5

V

Ie = 5A, I, =0.5A

Collector Saturation Voltage (Note 2)

VCE (sat)

1.0

V

Ie = lOA, IB = lA

Base Saturation Voltage (Note 2)

VBE (sat)

-

1.3

V

Ic =5A, Ie =0.5A

Base Saturation Voltage (Note 2)

VBE (sat)

-

1.8

V

Ie = lOA, I, = lA

Collector-Emitter Sustaining Voltage (Note 2)

BVCER

120

-

V

Ic = 100mA, RBE = IOn

Collector-Emitter Sustaining Voltage (Note 2)

Vcra (sus)

80

-

V

Ic = lOOmA, I, = 0

Collector-Emitter Voltage (Note 2)

BVCES

120

-

V

Ic = 0.2I'A, RAE = 0

Emitter-Base Breakdown Voltage

BV EBO

7

-

V

IE = lOpA, Ic = 0

Collector Cutoff Current

ICES

-

0.2

ItA

VCE = 120V, RAE = 0

Collector Cutoff Current, 150·C

ICES

-

0.1

mA

VCE = 80, RBE = 0, T = l50·C

Collector Capacitance

Cobo

-

A.C. Current Gain
Switching Speeds

Turn-on Time
Turn-off Time

150

pf

VCB = 10, IE=O, f = 1MHz

h"

3

-

-

Ic = 0.5A, VCE = 5V f = 10M Hz

to"

-

tor'

-

100
700

ns
ns

Ic =5A
Ibl = 250ma I", = - 250ma

Notes:

1. The device may be switched between maximum rated collector current and maximum rated collector-emitter voltage along a resistive
load line provided the switching time is less than 10 microseconds. Switching at low speed through regions of high instantaneous power

dissipation may cause second breakdown to occur, with consequent damage to the device.
2. Pulse width = 300/15; duty cycle ,;;2%.
t All values in this table are JEDEC registered.

Switching Speed Circuit
+25V

.05JI

r

i

G

~

~IIIIUIII;I~~':,"ffi.
!.

'BASE

10· i~RE~~ 2A ' -

COLLECTOR

D
E

INCHES
400 .455
090 150
320- 468
570 763
318- 380

F

055

G
H

424- 437
185- 215

A
B

e

±

gt~

MILLIMETERS
10 16-11 56
2.28 381
8131188
14481938
807965
140

±

'~g1

1077-1110
470-546

2N5659

INCHES
A

B

e

10·32. NF·2A
THREAD

G

EMITTER
CASE

0
E
F

G
H

Collector Isolated from Case.

T0-59

J

400
090
320
.570
.065
313
.070
423
.135

- .455
- 250
- .468
763
- 090
- .318
090
438
215

4-37

TO-111

MILLIMETERS

10.16 - 11.55
228-635
813 - 11.88
14.48 19.38
165 - 2.28
7.95 8.07
1 77 - 2.28
1074 11.12
343 546

~UNITRDDE

II

2NS6S8

2NS6S9

Electrical Specifications (at 25°C unless noted)t
Symbol

Test

Min.

Max.

Units

Test Conditions

D.C. Current Gain

hFE

40

250

-

Ic = 0.5A,

VCE = 2V

D.C. Current Gain

hFE

SO

150

Ic = SA,

VCE = SV

(Note 1)

D.C. Current Gain

hFE

30

-

Ic = lOA,

VCE = 5V

(Note 1)

Collector Saturation Voltage

VCE (sat)

.5

V

Ie = SA,

I, = O.SA

(Note 1)

Collector Saturation Voltage

VCE (sat)

1.0

V

Ic = lOA,

I, =IA

(Note 1)

Base Saturation Voltage

V'E (sat)

1.3

V

Ic = SA,

I, = O.5A

(Note 1)

V'E (sat)
BVCER

1.8

V

Ic = lOA,

I, = lA

(Note 1)

V

Ic = 100mA,

R'E = IOn

Base Saturation Voltage
Collector-Emitter Breakdown Voltage
Collector-Emitter Breakdown Voltage

120

BVCES
BVcEO

120

V

Collector-Emitter Breakdown Voltage

80

V

Ic = 0.2"A,
Ic = 100mA,

R'E = 0
IB=O

Emitter-Base Breakdown Voltage

BV EBO

7

V

IE = lO"A,

Ic = 0

(Note 1)

Collector Cutoff Current

ICES

0.2

JlA

VCE = 120V,

R'E=O

Collector Cutoff Current, 150°C

ICES

0.1

mA

VCE = 80V,

Cabo

ISO

pf

Vc , = lOV,
Ic =.: O.5A,

R'E = 0,
IE=O,

T = 150°C

Collector Capacitance

VCE = 5V,

f = 10MHz

A.C. Current Ga i n

Switching Speeds

hie

3

Turn-on Time

too

150

ns

Ic = SA

Turn-off Time

toff

800

ns

Ibl = 2S0mA
Note 2.

f = IMHz

Ib2 = -2S0mA

Notes:
1. Pulse width = 300"S; duty cycle $2%.
2. Measured in saturated switching speed circuit.
t All values in this table are JEDEC registered.

Switching Speed Circuit
+25V

sov

.05~f

51!

Jl
H
-25V

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

4-38

PRINTED IN U.S.A

POWER TRANSISTORS

JAN,
JAN,
JAN,
JAN,

2 Amp, 300V, Planar NPN

JANTX,
JANTX,
JANTX,
JANTX,

& JANTXV 2N5660
& JANTXV 2N5661
& JANTXV 2N5662
& JANTXV 2N5663

FEATURES

DESCRIPTION

•
•
•
•
•

Unitrode high voltage transistors provide
a unique combination of low saturation
voltage, fast switching, and excellent gain.
They are ideally suited for off-line power
supply designs and other applications
where the increased voltage rating adds
to system reliability.

Meets MIL-S-19500/454
COllector-Base Voltage: up to 400V
D.C. Collector Current: 5A
Peak Collector Current: lOA
Fast Switching

JAN, JANTX,
& JANTXV

ABSOLUTE MAXIMUM RATINGS

JAN, JANTX,
& JANTXV
2N5&&'

2N5BIO

250V.. .
Collector-Base Voltage, Vcao ......... .
2OOV ........... ..
Collector-Emitter Voltage, VCEO
6V ...... ..
Emitter-Base Voltage, VEBO ..
.. ............................ ..... .. ... 2A
D.C. Collector Current, Ic .
.... ......... 5A.
Peak Collector Current, Ic .
Power Dissipation
2.0W ....
25·C Ambient
... 20W.
lOO·C Case .................... .
Operating and Storage Temperature Range

JAN, JANTX,
& JANTXV
2N5&B2

JAN, JANTX,
& JANTXV
2NSB83

................ 400V
...... 300V
.... 6V
...... 6V........................ 6V ...... .
2A
.............. 2A.......
... 2A ..
..... SA
5A.......
.... SA.......... .
... 400V......

..... 250V......

. 3OOV..........

. 2OOV.

......... 2.OW... ..................... 1.2W ..

......... 1.2W

. lOW........................ l5W .. .
.. ......... -6S·C to lOO·C ..

................. lSW

MECHANICAL SPECIFICATIONS
JAN, JANTX, & JANTXV 2N56&O JAN, JANTX, & JANTXV 2N5661

TO-66

H
BASE

EMITTER

MILLIMETERS
15.75 MAX.
050 - .075
1.27 - 1.90
.250 - .340
6.35 - 8.63
.360 MIN.
9.14 MIN .
.711- .863
.028 - 034 DIA.
24.33 - 24.43
.958 - .962
14.47 - 14.98
.570 - .590
3.68 MAX. RAD .
.145 MAX. RAD.
. 142 - .152 DIA. 3.60 - 3.86 OIA .
8.89
MAX. RAD .
.350 MAX. RAO.
.190 - .210
4.82 - 5.33
.093 - .107
2.36 - 2.72
INCHES

A
B

C
D
E

F
G
H

J
K
L
M

620 MAX.

JAN, JANTX, & JANTXV 2N5662 JAN, JANTX, & JANTXV 2N5663

--C-r D ~

I

If

1iE

.

I B1-...~~
- _.

i±L-':- . .
F

A
B

C
0
E

INCHES
.335-.370
305-.335
.240- 260
15 MIN
.010- 030

'GGf

F

017 ±

G
H
J

.200
100
.03h.OO3
029- 045
.100

K

l

4-39

TO-5

MILLIMETERS
8.51 940
775-8.51
6.09-660
38.10 MIN.

254- 762
432:t:

.~~

5.08
2.54
787± 076
.736-114
2.54

~UNITRDDE

•

JAN, JANTX, & JANTXV 2N5660 JAN, JANTX, & JANTXV 2N5661
JAN, JANTX, & JANTXV 2N5662 JAN, JANTX, & JANTXV 2N5663

ELECTRICAL SPECIFICATIONS (at 25'C .unless noted)
2N5660, 2N5662

Test

Symbol

Min.

Max.

Units

Visual and mechanical

/454
Sub
group Method

A-I

MIL-STD-7S0

Test conditions

2071

See Mechanical Data

25'C
Collector-Emitter Breakdown Voltage (Note 1)

BVe..*

250

-

Vdc

A-2

3011

Ie = 10mAdc; Rae

Collector-Emitter Breakdown Voltage (Note 1)

BVeEo*

200

-

Vdc

A-2

3011

Ie

-

Vdc

A-2

3026

= loon; Condo B
= 10mAdc; Condo D
IE = 1Ol'Adc; Condo D

Emitter-Base Breakdown Voltage

BV"o*

Collector-Emitter Cutoff Current

'CES*

-

0.2

I'Adc

A-2

3041

VeE

-

0.1

pAdc

A-2

3036

6

= 200Vdc; Condo C

Collector-Base Cutoff Current

'eBO

Collector-Base Cutoff Current

, cBo

1.0 mAdc

A-2

3036

D.C. Current Gain (Note 1)

h~E*

40

-

-

A-3

3076

= 200Vdc; Condo D
Ve• = 250Vdc; Condo D
Ie = 50mAdc, VeE = 2Vdc

D.C. Current Gain (Note 1)

hF/

40

120

-

A-3

3076

Ie

D.C. Current Gain (Note 1)

hfE*

15

D.C. Current Gain (Note 1)

-

Collector Saturation Voltage (Note 1)

h"
VeE(sat)*

-

Collector Saturation Voltage (Note 1)

VeE(sat)

Base Saturation Voltage (Note 1)

V,,(sat)*

= 1Adc, VeE = 5Vdc
A-3 3076 Ie = 2Adc, VeE = 5Vdc
A-3 3071 Ie = 1Adc, I. = O.lAdc
A-3 3071 Ie = 2Adc, I. = O.4Adc
A-3 3066 Ie = 1Adc, I.
O.lAdc; Condo A
A-3 3066 Ie = 2Adc, I, = 0.4Adc; Condo A
A-4 3306 Ie
O.1Adc, VeE = 5Vdc, f = 10MHz
A-4 3236 Ve• = 10Vdc, IE = 0, f = 1MHz

Base Saturation Voltage (Note 1)

V"(sat)

5

-

0.4 Vdc
0.8

Vdc

1.2 Vdc
1.5 Vdc

Gain-Bandwidth Product

f T*

20

70

MHz

Output Capacitance

C,b

-

45

pf

Thermal Resistance

f)J_C

-

5.0

'C/W

6.7

'C/W

2N5660
2N5662
Switching Speeds

.

Turn-on time

t on*

Turn-off time

tOff

A-3

= 0.5Adc, VeE = 5Vdc

Ie

=

=

C-1

-

3076

Ve•

3151

= 0.5Adc

0.25 I'S

A-4

-

0.85 I'S

A-4

-

Adc

B-6

3051

VeE

Adc

B-6

3051

VeE

Ie

100'C
Forward Biased Second Breakdown

Is/.

0.6

-

Adc

B-7

3051

Is/.

27

-

mAdc

B-7

3051

= 10Vdc, t = 1Sec
= 40Vdc, t = lSec
VeE = 200Vdc, t = 1Sec
VeE = 7.5 Vdc, t = 1Sec
VeE = 25Vdc, t = 1Sec
VeE = 200Vdc, t = 1Sec

Unclamped Reverse Biased Second Breakdown

Es/.

0.2

-

mj

B-8

3053

Ie

= 2Adc, L =0.1 mh

Clamped Reverse Biased Second Breakdown

Est.

80

-

mj

B-9

3053

Ie

= 2Adc, L·= 40mh, Vol.m,

A-5

3041

VeE

A-6

3076

Ie

2N5660

2N5662

-

Is/.

2

lsi.

0.5

Is/.

36

-

mAdc

B-6

3051

Is/.

2

-

Adc

B-7

3051

= 200V

150'C
Collctor-Emitter Cutoff Current

'CES

*

-

100 I'Adc

= 200Vdc, Condo C

-65'e
D.C. Current Gain (Note 1)

h"

15

-

-

= 0.5Adc, VeE = 5Vdc

Notes:
1. Pulse width = 300115; duty cycle :Q% .
• Those parameters marked with a • are JEDEC registered and devices meeting these specifications are available as commercial 2N devices.

UNITROOE CORPORATION. S FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 9S-1064

4-40

PRINTED IN U.S.A.

JAN, JANTX, & JANTXV 2N5660 JAN, JANTX, & JANTXV 2N5661
JAN, JANTX, & JANTXV 2N5662 JAN, JANTX, & JANTXV 2N5663

ELECTRICAL SPECIFICATIONS (at 25°C unless noted)
2N5661, 2N5663

Test

Symbol

Min.

Max.

Units

Visual and mechanical

/454
Sub

group

MIL-STD-750
Method

A-1

2071

Test conditions

See Mechanical Data

25°C

= 10mAdc; Roe = 100f!; Cond_ B
= 10mAdc; Cond_ D
IE = lOJ.lAdc; Cond_ D

Collector-Emitter Breakdown Voltage (Note 1)

BVCER*

400

A-2

3011

Ie

BVeEO *

300

-

Vdc

Collector-Emitter Breakdown Voltage (Note 1)

Vdc

A-2

3011

Ie

Emitter-Base Breakdown Voltage

BV"o*

6

-

Vdc

A-2

3026
3041

Collector-Emitter Cutoff Current

ICES

COllector-Base Cutoff Current

I cBo

COllector-Base Cutoff Current

0.2

/lAdc

A-2

0.1

/lAdc

= 300Vdc; Condo D
A-2 3036 Ve, = 400Vdc; Condo D
A-3 3076 Ie = 50mAdc, VeE = 2Vdc
A-3 3076 Ie = O.5Adc, VeE = 5Vdc
A-3 3076 Ie = 1Adc, VeE = 5Vdc
A-3 3076 Ie = 2Adc, VeE = 5Vdc
A-3 3071 Ie = 1Adc, I, = O.lAdc
A-3 3071 Ie = 2Adc, I, = 0.4Adc
A-3 3066 Ie = 1Adc, I, = O.1Adc; Condo A
A-3 3066 Ie = 2Adc, I, = 0.4Adc; Condo A
A-4 3306 Ie = 0.2Adc, VeE = lOVdc, f = lOMHz
A-4 3236 Ve, = 10Vdc, IE = 0, f = 1MHz

IcBO

1.0

mAdc

D.C. Current Gain (Note 1)

hFt

25

-

D.C. Current Gain (Note 1)

hFE*

25

75

D.C. Current Gain (Note 1)

-

-

hFE*

15

D.C. Current Gain (Note 1)

h"

5

Collector Saturation Voltage (Note 1)

VeE(sat)*

-

0.4

Vdc

Collector Saturation Voltage (Note 1)

VeE(sat)

-

0.8

Vdc

Base Saturation Voltage (Note 1)

V,,(sat)*

Vdc

1.5

Vdc

Gain-Bandwith Product

Voe(sat)
f T*

-

1.2

Base Saturation Voltage (Note 1)

20

70

MHz

Output Capacitance

Cob

-

45

pf

Thermal Resistance

9 J_ c

-

5.0

°C/W

6.7

°C/W

2N5661

Switching Speeds

-

A-2

3036

C-1

3151

VeE
Ve,

Turn-on time

to/

-

0.25 J.lS

A-4

toll *

-

0.85 J.lS

A-4

-

Ie

Turn-off time

I SIB
I,,"

0.5

ISIB

2N5663

= 300 Vdc; Condo C

-

= O.5Adc

1000C
Forward Biased Second Breakdown
Adc

B-6

3051

VeE

Adc

B-6

3051

VeE

19

-

mAdc

B-6

3051

IS/B

2

-

Adc

B-7

3051

ISIB

0.6

-

Adc

B-7

3051

IS/8

14

-

mAdc

B-7

3051

Unclamped Reverse Biased Second Breakdown

ES/B

0.2

mj

B-8

3053

Clamped Reverse Biased Second Breakdown

ESIB

80

-

mj

B-9

3053

= 10Vdc, t = 1Sec
= 40Vdc, t = 1Sec
VeE = 300Vdc, t = 1Sec
VeE = 7.5 Vdc, t = 1Sec
VeE = 25Vdc, t = ISec
VeE = 300Vdc, t = ISec
Ie = 2Adc, L 0.1 mh
Ie = 2Adc, L
40mh, V,'.mp = 300V

ICEs

-

A-5

3041

VeE

A-6

3076

Ie

2N5661

2N5663

2

=
=

150°C
COllector-Emitter Cutoff Current

100 JlAdc

=300Vdc, Condo C

_65°C
D.C. Current Gain (Note 1)

h"

10

-

-

= O.5Adc, VeE = 5Vdc

Notes:

1. Pulse width = 300/1S; duty cycle :'02% .
• Those parameters marked with a • are JEDEC registered and devices meeting these specifications are available as commercial 2N devices.

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

4-41

PRINTED IN U S.A

II

JAN, JANTX, & JANTXV 2N5660 JAN, JANTX, & JANTXV 2N5661
JAN, JANTX, & JANTXV 2N5662 JAN, JANTX, & JANTXV 2N5663
Forward Bias
Safe Operating Area
2N5660, 2N5661

Forward Bias
Safe Operating Area
2N5662, 2N5663

10

10
Tc = 100'C

Tc = 100'C

g

'"

>-

150:

DC.

0:

::J

"

t p =lms
_
Duty Cycle = 10%

0:

~
"

f-

.1

1'0
~

"

~

1\.'/ .\

I

.2

0:
0:

.5

~2

8

.1 _

1,= 100",
_
Duty Cycle = 10%

I"

~ r-...

f---/

1\

P\V ~

I

!\

.05

..2

\

.02

1,= Ims
_
Duty Cycle = 10%

0:

'\

os

DC.

a

,\

\

'\. l'\.

r'\.

§

(\~
~

t.= 100",
._
~
Duty Cycle = 10%

'\ ~

g

\

.02

2N5660

2NS661

2NS662

01

10

I

20

SO

100 200 300

V", - COLLECTOR TO EMITTER VOLTAGE 01)

Reverse Bias
Safe Operating Area
Clamped Inductive Switching

Unclamped Reverse Bias
Second Breakdown
10

10

T. = 25'C

~~

'"

.~

"

t:
Q)

~

g
"'oz

;::
o

5

I'

~
~

""

.2
.1

~

5:

2

I-

Z

"'
0:

~.=-o.5V

.2

--

.02

2r5660'162- ---I

0:

g
...J

~V,,=-4V

1 .05

1

0:

a .5

~

...J

.01

T= lOO'C

181 =-I 82 =l c /lO

........

\.

.5

!!:

8

.02
.01

o

2

1.5
.5
Ie-COLLECTOR CURRENT (A)

1

2
VeE -

10

20

50

100 200 300

COLLECTOR·EMITTER VOLTAGE (V)

D.C. Current Gain

D.C. Current Gain

2N5660, 2N5662

2N5661, 2N5663

1000
VCE =5V

V",=5V

SOO

500

z 200

;;:

I-

" 100

li:
l:!0: so

-

Z200

~

~

150'C
25'C

:J

55'C
20

1Z

"~

--

100

l:!0:

50

~

20

:J

\~

d

I

r-.

2N5661, 63- -

.1

I .05
.2

1000

~

2NS663

.01
10
20
SO 100 200 300
V", - COLLECTOR TO EMITTER VOLTAGE 01)

I

10

d

I

\,

10

--

..........

lSO'C

l"'--.

---~

-2;C

1

.......

-55'C

~

~

\
2

1
.01

.02

.05
Ie -

.1

.2

.5

1

2

.01 .02

10

COLLECTOR CURRENT (A)

UNITROOE CORPORATION. S FORBES ROAO
LEXINGTON. MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

.05

Ie -

4-42

.1

.2

.5

2

5

10

COLLECTOR CURRENT (A)

PRINTED IN U.S.A.

JAN, JANTX, & JANTXV 2N5660 JAN, JANTX, & JANTXV 2N5661
JAN, JANTX, & JANTXV 2N5662 JAN, JANTX, & JANTXV 2N5663

Saturation Voltalle
Temperature Coefficients

Saturation Voltages
+2

~J = 2slc

P
>+1.5
.s
~

+1

'"U

+.5

z

--- /

VIEI I.-leIS

.2

u.

VeE' 'B= 'CliO

V'

It.--/' V

.1

r-

.05
.01

f-.02

~

5rC tO l25'C V

-.5

=>

/ /

>-

~

-1

"'

V

25'C to lSO'V

Q.

:!i -1.5

'">-

-2 r-- A V"

1

~TI'lle/'l

~

I--"

.01

10

.05 .1
.2
.5
2
Ie - COLLECTOR CURRENT (A)

.02

'C

.2

.1

~

::E .05

~

ill

eu

~

'"

;::

Rise Time,
tr ~
__ f-""

............

t~

7

/
'iii'

/

'C

c:

~

8
ill

g

/2S'C

--- --t::

Delay Time,

10

10

'.='C/IO

'iii'
c:
0
u

".~ ~55'C to 25'C

Switching Speed
Characteristics

Vee _IOOV

.5

,/

-2.5

.2.5
2
.05 .1
Ie - COLLECTOR CURRENT (A)

Switching Speed
Characteristics
1.0

•

V

L-+-:::t::1-r7

AVe.

'"uo

/

10

25'C to lSO'C

ii:

I

/

'C/lB~

§.

'"
;::

::E

~

.02

2S'C

~

'2s;c
.5
lSO'C

==

----""':--

-

r-Storage Time, ts

t"--

...........

-I-

<

I - f-f-

Fall Time, t f

.2

.01

,./'

~

-----

2S'C

.1
.2

.5
1
Ie - COLLECTOR CURRENT (A)

.2

2

.5
Ie - COLLECTOR CURRENT (A)

Thermal Response

Switching Speed Circuits
Duty Cycle
.5
TektroniX
541Aor
Equivalent

!z
'"

.2

iii'"
zu
« z .1
0::<
>-0
fa ~ .05
N:!i

~:
;\;\ .02
0::0::
Tektronix
S4lA or
Equivalent

~ ~ .01
1>~

0.5

1;;;;jiiiiI-

f - f~~
Ir--+--- k: ~ ~

j

~

,.-

f-'"

v:V

V
~
.01/ ~

~

=
=

0 J.o
o

.1

z
I

1
I

i'--

T---

.02

~

.2

o

.1

u

1

~N566S,167

.02
.01
5
VeE -

1

COLLECTOR CURRENT (A)

10
20
50 100 200 300
COLLECTOR VOLTAGE (V)

D.C. Current Gain

D.C. Current Gain

2N5665. 2N5667

2N5664. 2N5666
1000

1000

VeE

VeE = 5V
500

500

~ 200

"'"
f-

zOJ
~

::>
u

100

50

U 20
ci

I

~

P-

I--

:V

I--'

--

z
;;:

r-...

'z"

~

t"---

OJ

~

0:
0:

V

(J

U 20
ci

I

'\

150'C

~

50

::>

~

= 5V

200

... 100

10

r--.. t-....

2JC

~

~:s-- l--

-.. ~

VI--'

"" ~\'

10

1

1
.01

f-..

_u .05

3

Ie -

---

I

1-o

.5

0:

~=-4V

..J

.01

~

u

"- ~VBE=-2V

~

2N5664,66

0:

~

~

~

.05

g

§

.02

.05
.1
.2
.5
1
2
Ie - COLLECTOR CURRENT (A)

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

.01

10

.02

.05
Ie -

4-47

.1

.2

.5

10

COLLECTOR CURRENT (A)

PRINTED IN U.S.A.

JAN, JANTX, & JANTXV 2N5664 JAN, JANTX, & JANTXV 2N5666
JAN, JANTX, & JANTXV 2N5665 JAN, JANTX, & JANTXV 2N5667

Saturation Voltal{e
Temperature Coefficients

Saturation Voltages
T;

_ +2

= 25!C

P
~+1.5

~
UJ

";::
..J

I-- ~

VIE. 18= 'CIS

I--""""

.5

~ +1
UJ
U +5
u:u.

Ld:

II

VeE, 1.= I CIIO
.1

.05
.01

.02

-~

~

'1

'.=

UJ

a:: -.5

~

55;C to 25°C

/

-1

0:

UJ

25°C to lSIiV/

a.
~ -1.5

~ I--

I -2

'CIS

~

1

-2.5
.01

10

.02

'/

Vi

f--"'17

1/

V

V

~t025OC

....

.2
.5
.05 .1
Ie - COLLECTOR CURRENT (A)

~

- f-

:>

V

VeE

JoV CE

UJ

J

.2

25°C to l50°C/

8

IV

0

>

leI's ~ 10

10

.05 .1
.2
.5
Ie - COLLECTOR CURRENT (A)

Switching Speed
Characteristics

Switch ing Speed
Characteristics
10
Vee

.5r-~-t~----+-~r---+---~-1

= 100V

182=-I'I=IC/10

""u'"o
'""~

g

l"- t- .....

150°C

Storage Time,
1

t~

f-r-t25°C

I---- [--.....
l-

UJ

:i: .5

>=

V

I-t-

.02 t-i-i--HH----t---t---t-

N."l n'j'

.2

T

I--- k:

f--"' V

~

_V

V

s:

?

25°C

.1
.5
Ie - COLLECTOR CURRENT (A)

Ie - COLLECTOR CURRENT (A)

Switching Speed Circuits

Thermal Response
Duty Cycle

+lOOV

....
Z

100!!

Tektronix
54IA or
EqUivalent

~

•5

~~
.... <

.1

~~
NO.

.05

~:;;!

.02

Z UJ

.01

::i~
-4V

:5~
1:1:

+100V

'B.

= -18Z =

SOmA
TektrOniX
54lA or
EqUivalent

25V

~~ .005

t::::
- I-- l - f-

.2
.• 2

ZUJ

0.5

~ ,...-

~ ,.-

..-

..... ~ .....- ........

.....~ V ",,- .....-V
.....-

V./"

i--S:ngle Pulse

.001
.01 .02
-4V

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

4-48

~

.....

r-- ...... :::::
~ ;/'

.002
10)(5

~~~

l::;::; Iiiiiii

P

.05 .1.2

9 J-e (t) = r(t) • 8 J-C
9 J-C = 3.3°C/w for 2NS664,65
9 J-C = 6.7°C/w for I I 2Nr6~, 671

.5 1 2
5 10 20
TIME (milliseconds)

--

r-

50 100 200 500 1000

PRINTED IN U.S.A.

2N5671
2N5672

POWER TRANSISTORS
30A, 150V, Fast Switching,
Silicon NPN Mesa

DESCRIPTION
These glass passivated power transistors
combine fast-switching, low saturation
voltage and rugged Es/b capability.
They are designed for use in switching
regulators, converters, inverters and
switching-control amplifiers.

FEATURES
• Collector-Base Voltage: up to 150V
• DC Collector Current 30A
• low VCE ISAT)
0.75V Max_
• ton
O.5I'S} @ Ic 15A,
• t'lll 0.51'S

=
=

=

=

=

ABSOLUTE MAXIMUM RATINGS •
2N5I71

* Collector-to-Base Voltage, VCIO

INS&71

,., .....................................................................................................................................l20V................................ 150V
Collector-Emitter Sustaining Voltage, VCEX (SUS)
................................................................................................. 120V ................................ 150V
VCEIl (SUS) ............................................. ............................................................. nov ................................. .l40V

*
*
*
*
*

~~~.(~~S).:::::::::::::::::::::::::::'::::::::::::::::'.::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::.~~::::::::::::::::::::::::::::::::::~~~~

Emitter-Base Voltage, VEIO .....................
Collector Current, Ic continuous
Base Current, la continuous .. ...... ...........
Power Dissipation, 25'C Case ....................
Operating and Storage Temperature Range

......................................................................................30A...................................30A
.. ..............................................................................................................10A................................... .lOA
..........................
.. ........................... .l40W.................................140W
.. .................. ..
.. ......................... -65 to 200'C................ ..

• JEDEC registered values.

MECHANICAL SPECIFICATIONS

N9TE:

2N5671-2N5672

Leads may be soldered to within

Ih6" of base provided temperaturetime exposure is less than 260°C
for 10 seconds.

F

M

I ~~'~
I
~BbE ei'
H
I

C 0

A
B

J-~

7

BASE
EMITTER

L

c
D
E
F
G
H
J

K
L
M

ins.

mm.

875 MAX
.135 MAX .
.250-.450
312 MIN.
.038- 043 OIA
188 MAX. RAD
1.177 1.197
655-.675
205- 225
.420 440
525 MAX. RAD
151- 161 DIA.

22.23 MAX.
343 MAX.
6.35-1143
792 MIN.
0.97 1.09 OIA .
4.78 MAX. RAD.
2990-3040
16.64-1715
5.21-572
10.67-1118
13.34 MAX. RAD
3.84-4.09 DIA.

TO-204AA (TO-3)

[1JJ
6-79

4-49

_UNITRDDE

•

2N5671 2N5672
ELECTRICAL SPECIFICATIONS (at 25"C unless noted)
Test

Symbol

2N5671
MIN.
MAX.

2N5672
MAX.
MIN.

Test Conditions

Units

D.C. Current Gain (Note 1)

hFE

20

100

20

100

Ic = 15A, Va = 2V

20

-

20

-

Ic = 2OA, Va = 5V

0.75

0.75

V

Ic = 15A, la = 1.2A

1.5

V

Ic = 15A, la = 1.2A

1.6

-

D.C. Current Gain (Note 1)

hFE

Collector Saturation Voltage
(Note 1)

VCEI"tl

Base Saturation Voltage (Note 1)

VaElsatl

Base to Emitter Voltage (Note 1)

VaE

-

Collector-Emitter Sustaining
Voltage (Note 2)

VCEOI,",I

90

-

120

-

V

Ic = 0.2A, I. = 0

Collector-Emitter Sustaining
Voltage (Note 2)

VCElCI •••1

120

-

150

-

V

VaE = -1.5V

1.5

1.6

v
V

Ic = 15A, VCE = 5V

Ic=0.2A

*

la=O
Collector-Emitter Sustaining
Voltage (Note 2)

*

*

*

VCER 1•••1

Emitter-Cutoff Current

lEBO

Collector Cutoff Current

ICEO

Collector Cutoff Current

ICEV

110
10

-

-

140
10

-

mA

VEa = 7.0V

10

mA

VCE = 80V

mA

VCE = 135V, V.E= -1.5V

-

15

-

10
12

-

10
10

V

RaE = 50n, Ic = 0.2A

VCE = 110V, VaE = -1.5V
VCE = 100V, VaE = -1.5V,
Tc =150"C

Magnitude of Small
Signal Forward Current Transfer
Ratio

h'e

10

-

10

-

Collector Capacitance

Cob

-

900

-

900

pF

Vca =10V,f=lMHz

Second Breakdown Energy

Es/b

20

-

20

-

mJ

Vae = 4V, Ic = 15A
RaE = 20n, L = 180l'H

Forward Bias
Second Breakdown
Collector Current

Isib

5.8
0.9

-

5.8
0.9

-

A

Switching Speeds:
Turn-on Time
(Delay + Rise)

tan

-

0.5

-

0.5

I'S

-

1.5

-

1.5

I'S

0.5

0.5

I'S

1.25

"C/W

Storage Time

t.

Fall Time

t,

Thermal Resistance:
Junction-to-Case

RSJC

1.25

VCE = 10V, Ic = 2A, f = 5MHz

VCE = 24V, t = Is, non-rep.
VCE = 45V, t = 15, non-rep.

I c =15A
lal = la2 = 1.2A
VCC= 30V

VCE = 40V, Ic = 0.5A

Notes:

1. Pulse width = 2501'S; duty cycle ,;1 %.
2. Sustaining Voltage. Measured at a high current point where collector·emitter voltage is lowest. Current pulse length"" 50I'S; duty cycle'; 1 %.
Voltage clamped at maximum collector·emitter voltage.
• JEDEC registered values.

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (6171 861-6540
TWX (710) 326-6509 • TELEX 95-1064

4-50

PRINTED IN U.S.A.

2N5671 2N5672

Forward Bias Safe Operating Area
30

NJ

20

D.C.

~
z>-

10

,

= 25'C

~

'"

0

..

"-

~

..J
..J

8

~

....

"'0>z
"''"

~{/1f#1

~
"'~

~J~

z

\

1

........

;:

r\-'

2N5671
2N5672

60

.'""

\

\
158 Llmitedt

80

>u

\

\

"'\
:--..

·100.5

"-

,

"'

Te

1mS

I'

0:
0:
:l
U
0:

I
-"

I

1\.

,lamS

Power Derating
100

R--",
~"'0

40

'"

AT OUIRED OPERATING VOLTAGE.

20

:l
U

TI()Irf CU/fllilENT LIMIT AND's
ZS'C SOAR CURYE

I>

" ""

DlR"'T~ OISSI~"."

CUIUttNT LIMIT FROM

'\

DASH LINlS ON SOAR CURVES ARE EXTtNSIOIIIS OF
DISSIPATION
PURPOSE~

0.5

o

0.3

20

10

2

50

100

200

a

•

,.~o
~

LIM'1'DR j~MPEAITUIltElEftAT'NG

~

40
80
120
160
TC - CASE TEMPERATURE I'C)

200

VeE - COLLECTOR VOLTAGE (V)

DC Current Gain
500
V~E-511

I

--

200

z
;;:

"....
'"'"

100

100'C

l-

I

r-

25!C

zw

50

,.....

:l
U
(,)

0

l

20

V

V

l"'55'C

10

5
0.2

0.5

10

20

Ie - COLLECTOR CURRENT (A)

Transistor -

Resistive - Turn·On Time

Saturation Voltages

3.0

1000
..",

VIE ".tl

1.0 I--

~

"!:i.
w

.5

0

z
0
;:

.'"
......
:l

/~
~

2S'C
-100'C

>

.1
.05

Vl

I!:::

500

sk,c

t%

/

g: 200

......... v

......-::: ~/

-

'::'5~

-C
=::::::

,./

~
,,-

V

Vee

25'C

........
100'C.....

100'C

,=8- r-

.5

10
Ie - COLLECTOR CURRENT (A)

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

10

0.5

S:

=

Vcc 30V
Ie/Ian

o.a

20 30

td

~

20

1

.04

~

~ l""'r2f.c

fJ1t /

:::"""'-;s'C

le/l

.3

-

::::-

/'
t, r-

100'C

2

10

20

Ie - COLLECTOR CURRENT (A)

4·51

PRINTED IN U.S.A.

2N5671 2N5672

Resistive Turn-Off Time

---- -

I--ts

'"
.3

Vee = 30V
le/l, :;"8

"'::;;

;:
(!l

z
i(.)

...
'"
~

0.5

100'C

'"

25'C~

r--

0.2

'"

k
100'C

I-lf
0.1

r-

i

25' ;...-

.05
0.5

0.2

Ie -

10

20

COLLECTOR CURRENT (Al

Switching Time Test Circuit

:6Tl _

R"

~4vLf
P.W.

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

=25"5

4-52

PRINTED IN U.S.A.

2N5838
2N5839
2N5840

POWER TRANSISTORS
3A,375V
Silicon NPN Mesa

FEATURES

DESCRIPTION

•
•
•
•

These high voltage glass passivated power
transistors combine fast switching, low
saturation voltage and rugged Es/b capability.
They are designed for use in off-line power
supplies, high voltage inverters, switching
regulators, ignition systems and deflection
circuits.

Collector-Base Voltage: up to 375V
Peak Collector Current: SA
Low Saturation Voltage
High Second Breakdown Energy

ABSOLUTE MAXIMUM RATINGS *
2N5838

2N5na

2N5840

Collector-Base Voltage, VC80 ............. ...................... .................................. ........................... 275V .....................
300V....................... .... 375V
Collector-Emitter Voltage, VCEO .. .........•......................•... ....•........•..•..•..•................
. .. 250V..........................
275V ................................ 350V
Emitter-Base Voltage, VEBO ........................................ ................................................... ..•..•...•.•. . 6V..............................
..6V..................................... 6V
Collector Current, Ic continuous ........................................................................................ ....... 3A ................................ 3A................................... 3A
SA................................... 5A
Collector Current, ICM, peak .......................................................................................................... SA .........................
Base Current, I, continuous .... .......................................................................................... .. 1.5A.............................. 1.5A...............
.......... 1.5A
Power Dissipation, Pr 25·C Case ............................................................................................. lOOW........................
lOOW................................ .100W
Operating and Storage Temperature Range
........................................................................................-65 to +200·C ............................................
• JEDEC registered values.

MECHANICAL SPECIFICATIONS
NOTE:
Leads may be soldered to within

TO-204AA (TO-3) (Copper)

1116" of base provided temperaturetime eXpOsure is less than 260°C

for 10 seconds.
A
B

F
Base
Emitter

C
D

E
F

G

L
Drain

(Case)

H

J
K

L
M

6-79

ins.
875 MAX.
.135 MAX.
.250-.450
.312 MIN
0.057 0.063 DIA.
188 MAX. RAD
1177-1197
655-.675
.205- 225
420-.440
525 MAX. RAD
.151- 161 DIA.

4-53

mm.
22.23 MAX.
3.43 MAX .
6.35-11.43
7.92 MIN
1.45-1.60 DIA.
4.78 MAX RAD
29.90-30.40
16.64-17.15
5.21-572
10.67-1118
13 34 MAX RAD.
3.84-409 DIA

[bD UNITRDDE

..

2N5838 2N5839 2N5840
ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
Test
D.C. Current Gain (Note 1)

Symbol
hFE

2N5839
2N5840
2N5838
MIN. MAX. MIN. MAX. MIN. MAX.
20
20
20

-

-

10

50

10

50

-

-

-

-

V

Ic =3A,VCE =2V

1.5

V

Ic = 2A, la = 0.2A

-

V

Ic = 3A, la = 0.375A

hFE

D.C. Current Gain (Note 1)

hFE

Collector Saturation Voltage
(Note 1)

VCEI,.t)

-

-

-

1.5

Collector Saturation Voltage
(Note 1)

VCEI"t)

-

1.0

-

-

Base Saturation Voltage (Note 1)

VBE (,.,)

-

-

Base Saturation Voltage (Note 1)

VBEI,.tl

-

2.0

-

-

-

Collector-Emitter Sustaining
Voltage (Note 2)

VCEO ISUS)

250

-

275

-

Collector-Emitter Sustaining
Voltage

VCEX

275

-

300

-

Emitter-Base Cutoff Current

'EBO

Collector Cutoff Current

Collector Cutoff Current

ICEO

I CEV

2.0

V

Ic = 2A, la = 0.2A

V

Ic = 3A, IB = 0.375A

350

-

V

Ic = 200mA, la =

375

-

V

Ic = O.lA, VaE = -1.5V,
L= 10mH

-

1.0

-

1.0

-

1.0

mA

VES =6V

2.0

-

-

-

-

VCE - 200V

-

-

2.0

2.0

mA

VCE = 250V

5.0

-

-

-

mA

-

-

-

8.0

-

-

-

-

-

5.0

-

-

-

-

-

-

5.0

2.5A

-

2.5A

-

Forward Bias Second Breakdown

Islb

2.5A

-

Second Breakdown Energy

Es/b

0.45

-

0.45

Collector Capacitance

Cob

-

150

-

Small Signal High Frequency
Gain

hIe

ICEV

2.0

Ic =2A,V CE =3V

-

Collector Cutoff Current, 150'C

Test Conditions
Ic = O.5A, VCE = 5V

40

D.C. Current Gain (Note 1)

8

Units

-

-

5

-

2.0

150

5

0.45

5

-

b

VCE = 265V

2.0

VCE = 290V

VaE = -1.5V

VCE = 360V

-

VCE = 265V
mA

VCE = 290V

VaE = -1.5V

VCE = 360V
VCE = 40V, tp = 1 Sec.

-

mJ

RaE = 501l, L = 100.uH

150

pF

Vca = 10V, IE = 0, f = 1 MHz

-

MHz

Ic = .2A, VCE = lOV, f = 1 MHz

Switching Speeds:
td

-

-

-

0.7

-

Delay Time

.uS
td
t,

-

-

0.6

-

-

1.5

-

-

la, = 182 = (.375A)

.uS
t,

-

t,

_. -

t,

-

3.0

tl

-

-

1.5

-

-

-

-

-

3.75

-

3.0

Storage Time

-

-

-

-

1.5

-

1.5

Fall Time

Ic = 2A, VCE = 200V:

-

1.5

ReJC

-

1.75

-

-

-

-

1.75

-

1.75

I" = 1'2 = (0.2A)
Ic = 3A, VCE = 200V,
I" = 1'2 = (.375A)
Ic = 2A, VCE = 200V,
101 = 102 = (0.2A)

"S
tl

la, = 1'2 = (0.2A)
Ic = 3A, VCE = 200V,
I" = 1'2 = (.375A)

.uS
-

la, = la2 = (O.2A)
Ic = 3A, VCE = 200V,
Ic = 2A, VCE = 200V,

1.75

Rise Time

Thermal Resistance

Ic = 2A, VCE = 200V,

0.7

Ic = 3A, VCE = 200V,
la, = 102 = (.375A)

'C/W

Notes:

1. Pulse width = 250"S; duty cycleo51 %,
2. Sustaining Voltage. Measured at a high current point where coliector-emitter voltage is lowest. Current pulse length'" 501lS; duty cycle 05 1%.
Voltage clamped at maximum collector-emitter voltage .
• JEDEC registered values,

UNITRODE CORPORATION. 5 FORBES ROAD
LEXI NGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
.

4-54

PRINTED IN U.S.A.

2N5838 2N5839

Forward Bias Safe Operating Area

Power Derating
100

10
D.C.

~

~

"'\.

....z

Power DisSipatio~--,~
Limited

I

'"0:0:

\

Ims--

"Cl

....0

lSI

;::
«

a:

Limited

.5

UJ

2N5838

0

0

T e =2S'C
Curves Apply Below

.2

1ft ~ate~

.1
5

20

10
Ve , -

~J

'"

~

K~

~"'<>

DISSIPATION l'MrTi FOR

200

o

500

.......

DISSI~A

AT DESIRED OPERATING VOLTAGE. DERATE
'\
liON CURRENT LIMIT AND ',. CURRENT LIMIT FROM
25"C50"'1'I CURVE

20

1

PURPOSES

100

a

40
Tc -

COLLECTOR VOLTAGE (V)

TMPERinJRE ,ERATING

I"

160

120

80

'\
200

GASE TEMPERATURE ('G)

Saturation Voltages

D.C. Current Gain
5

I I
V e, = SV

100

z
;;:
Cl

'e/l, = 5

2
100'C

?;

50

....

Z

0:
0:

::>

20

I

I

.-

0

t.i
r:i

'"Cl
~0

25'C

'"

"":::::

-~

SS'C

10

>

-55'C

5'
0.5

z

~I\

i=

~

....

~

0.1

0.2
Ie -

O.S

2

.05
.05

5

COLLECTOR CURRENT (A)

UNITRODE CORPORATION. S FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861-6540
TWX (710) 326·6S09 • TELEX 9S-1064

0.1

0.2
Ie -

4-55

~ V 25'C

".,.

«
III

2

--: ~ ....

VV

0

5

/

55'C
/ 0 C/V

100'C

«
a:

.r:'I1.

0.1

--

VIE ($lIt]

::> 0.2

.OS

•

('0

......

DASH LINES ON SOAR CURVES ARE EXTENSIONS OF

III

200

"',1':

,j',j'

40

1111
50

~(I

UJ

a:
a:
::>
u

2N5840

Vt'O

......

'\i

....
z

.-

I-\--

2NS839

I
..!'

60

z

0:

0

""-

"

«

0

..J
..J

."

80

....0
u

::>

'"0

": :--...

It:

10ms

2N5840

~

VeE

0.5

l1at]

2

5

COLLECTOR CURRENT (Al

PRINTED IN U.S.A.

/
2N5838 2N5839 2N5840

Resistive - Turn-On Time

Resi~tive -

1000

Turn~Off Time

10

./

.....

./

t.
2

'U1

3
w

100

100'C

l' I'--...

ts

::;

i=

25'C

i=

td

0.5

50

II

20

0.2

0.5
Ie -

2

0.1
0.1

10

1--"" .......

V

V~

J.25'C

I
0.2
Ie -

COLLECTOR CURRENT (A)

100'C

...... ~

0.2

I

Vee = 125V
le/l,=5

~

~

2S~C-

10
0.1

---

I/"

"

'U1

oS
~

V

5

2S'C

125V
5

Vee
le tl,

100'C
500

0.5

1

2

10

COLLECTOR CURRENT (A)

Switching Time Test Circuit
200V

6V

112 =

i;,
R,

P.W.

UNITRODE CORPORATION. 6 FOReES ROAO
LEXINGTON. MA 02173. TEL. (817) 881-8540
TWX (710) 328·8609. TELEX 96·1084

= 25#5

4·56

PRINTED IN U.S.A.

2N6249
2N6250
2N6251

POWER TRANSISTORS
IOA,450V, Fast Switching,
Silicon NPN Mesa

FEATURES

OESCRIPTION

•
•
•
•

These high voltage glass passivated power
transistors combine fast switching, low
saturation voltage and rugged Es/b capability_
They are designed for use in off-line power
supplies, high voltage inverters, switching
regulators, ignition systems and deflection
circuits.

Collector-Base Voltage: up to 450V
Peak Collector Current: 30A
Low Saturation Voltage
Maximum Safe Area of Operation

ABSOLUTE MAXIMUM RATINGS
2N&248

• Collector-Base Voltage, Vcso ................. .
• Collector-Emitter Voltage, VCEO
Emitter-Base Voltage, VESO .
• Collector Current, Ic continuous
Collector Current, I CM • peak.
• Base Current, Is continuous
• Power DisSipation, PT 2S·C Case ....
• Operating and Storage Temperature Range

*

2N6250

2N6251

..... . .. .. .... 300V.....
.. ........ ..... 37SV......
........... 450V
200V...
.... 275V...... . . . ............ 350V
.. .................. 6V....
.. ...... 6V......
...6V
........................... JOA ....... .
.. lOA. ..................... lOA
............. ....... .........
.. 30A...
.......... 30A
................ 20A
...... lOA........
lOA..
............. lOA

.. ..175W...........

.......... 175W.....

175W

.................... -65 to +200·C ..

JEDEC registered values.

MECHANICAL SPECIFICATIONS
NOTE:

2N6249-2N6251

Leads may be soldered to within
l1t6" of base provided temperature~
time exposure is less than 260°C
for 10 seconds.

F

~WE
C 0

6-79

A
B

M
BASE

IT ~.J::L
ei'
H
I

J-~

"K

EMITTER

c
D
E
F

G
H

L

J
K
L
M

ins.
875 MAX
135 MAX
250 450
312 MIN
038 043 DIA
188 MAX RAO
1177 1197
655 .675
205- 225
420 440
525 MAX RAD
151-161 DIA

4-57

TO-204AA (TO-3)

mm.
2223 MAX
343 MAX
635-1143
792 MIN
097-109 DIA
478 MAX RAD
2990-3040
16641715
521 572
10 67 11 18
1334 MAX RAD
384409 DIA

~UNITRDDE

•

.

2N6249 2N6250 2N6251

ELECTRICAL SPECIFICATIONS (at 25'C unless noted)

*

Collector Saturation Voltage
(Note 1)

VCElsot)

-

1.5

-

1.5

-

1.5

V

. V'E(sot)

-

2.25

-

2.25

-

2.25

V

Test Conditions
Ic _lOA, VCE _ 3.0V
Ic =
I. =
I. =
I. =

lOA
LOA (2N6249)
1.25A (2N6250)
1.67A (2N6251)

Collector-Emitter Sustaining
Voltage (Note 2)

VCEO (sus)

200

-

275

-

350

-

V

Ic=2QOmA

Collector-Emitter Sustaining
Voltage (Note 2)

VCEX (.u.)

225

-

300

-

375

-

V

Ic = 200mA, R.E= 500
L= 14mH

Emitter Base Cutoff Current

lEBO

1.0

1.0

mA

ICEO

5.0

-

1.0

Collector Cutoff Current

-

5.0

rnA

5.0

...,..

5.0

mA

10

10

mA

2.5

-

2.5

mJ

5.8
0.3

-

A

1.0

'C/W

Second Breakdown Energy

Es/b

-

2.5

-

Forward Bias Second Breakdown

I sib

5.8
0.3

-

5.8
0.3

-

Thermal Resistance

ReJc

Collector Cutoff Current
Collector Cutoff Current, 125'

*

Units

hFE

Base Saturation Voltage (Note 1)

*

Symbol

2N6251
2N6249
2N62SO
MIN. MAX. MIN. MAX. MIN. MAX.
50
10 50
8
50
6

Test
D.C. Current Gain (Note 1)

High Frequency Gain
SWitching Speeds:
Rise Time
Storage Time
Fall Time

ICEV
, CEV

IhFEI

-

5.0
5.0
10

-

-

2.0
3.5
1.U

0.8
1.8
U.5

2.0
3.5
1.U

IC = lOA
1., = 1.2= 1.0A (2N6249)
IBI = I., = 1.25A (2N6250)
'BI = IB2 = 1.67A (2N6251)

1.0

-

1.0

-

2.5

0.8

2.0
3.5
1.0

0.8
1.8
0.0

1.8

0.5

Ic = lOA, L = 50"H
RaE = SOU, VBE loff) = -4V

2.5

-

tf

VCEO ISUS)

V. E= -1.5V
VCE = rated VCER ISUS)

VCE = 30V
VCE = 100V
VCE = 10V,I c = SA
Ic = lA, VCE = lOV, f = 1 MHz

2.5

t
t

VEl =6V
VCE = 50V less than rated

-

"S

Notes:

1. Pulse width = 2501'S; duty cycle :$1 %.
2. Sustaining Voltage. Measured at a high current point where collector·emitter voltage is lowest. Current pulse length '" 50I'S; duty cycle :$ 1%.
Voltage clamped at maximum collector·emitter voltage.
• JEDEC registered values.

UNITRODE CORPORATION. 5 FORBES ROAD
LEX INGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 '. TELEX 95-1064

4-58

PRINTED IN U.S.A.

2N6249 2N6250 2N6251

Forward Bias Safe Operating Area

Power Derating
100

"

40

~

~

'\ f'.

80

0:

...u
0

""z"

l'\. ~ ~(I4r.I~~O
......

U'U';.

60

"

au

0:
0:

:)

r"-

o

...

1.0

au

'\

I--t'

Limited

CJ

.4

I
..!'

.2

H~U~

i-2N6249

'l\
.1\1\

.1

200

.04
10

..

HIN~J51

1\

~'

Te = 25'C

~

40
80
160
120
TC - CASE TEMPERATURE ('C)

"- \
K
I\l\
'1 ;tedl IV' f\
I\.
.!

f--- Iso

oJ
oJ

TMPERjTURE

~y

Dissipation

2.0 f--- Li

a:

0

P.wJ

P.W.
ImS

Power

u

0

DASl1llNES ON SOAR CURVES ARE EXTENSIONS Of
DISSiPATION lIMITj FOR
,ERATING
PURPOSES

o

4.0

II

'~io~'s r-.

D. .

:)

........

OERAt~ OISSt~'"

u

au

CJ

AT DESIRED OPERATING VOLTAGE,
'\
TtON CURRENT LIMIT AND II .. CURRENT LIMIT FROM
2S"C SOAR CURVE

20

10

0:
0:

~<"0

...z

g

...z

"

~J'1i
'&--1,.

>=
0:
au 40
0

LI

20

20

50

100

200

500

1000

VeE - COLLECTOR VOLTAGE (V)

Reverse Biased Safe Operating Area
40

==

Saturation Voltages
5

-In
VIEloffl :s:;;.-5V

'C/5

'SI -

II

Te= 100'C

g

10

au

4.0

:)

2.0

....
z

'"'"
....'"0

u
u

1/

1.0

au

2ii250

oJ
oJ

0

u
I
_0

1/

2

,..~

II
~r7

~

...

(!J

0

z
0

_VIE ("'1

'L

2S'C

>

'rr

ss.lc

I--

"!:i

11 II

2~W9L

I

lell, = 5

0.5

i==- t-

100'C

~

11 r-

'"

v:

:)

~

0.4
2N6251'- f - -

0.2
VClIlitl

~~

~V

~V

0.2
0.1 t - 1OO'C
.1

2S'C

r-Ft-. ss'c

.04
10

20

50

100

200

soo

.05
0.2

0.5
2
Ie - COLLECTOR CURRENT (A)

1000

10

20

VeE. I''') - COLLECTOR VOLTAGE (V)

DC Current Gain

soo
Typical
Inductive Load
Switching Performance

200

z
;;:

(!J

...

...
'"'"
Z

50

:)

U
U

~

20

.r:

.......

~~!s.

~~

i"""

t f•
nS

t,j
nS

3

25
100

.8
1.10

.14
.18

.025
.035

5

25
100

.9
1.2

.14
.16

.025
.030

10

25
100

1.2
1.5

.05
.12

.050
.100

~

10

5
0.2

t,
~S

-100'C
2S'C

0

I

-

TJ
'C

Ie
Amps

VeE =5V
100

10
2
0.5
Ie - COLLECTOR CURRENT (A)

UNITROOE CORPORATION. 5 FORBES ROAO
LEXINGTON, MA 02173 • TEL. (617) 861.6540
TWX (710) 326·6509 • TELEX 95·1064

20

4·59

PRINTED IN U.S.A.

2N6249 2N6250 2N6251

Resistive Turn·Off Time

Resistive Turn·On Time
'10

1000

100·C
500

I"

~ ~

.
.s
III

'\ ~ r-.;I'-

200

I"~

100

l-

loo·c

t,

2r.c
2.0

III

t.

:Iii

I;.I1II f"!!=

;::

.S

.2

l'l-llrl
Ie -

1

2

5

10

.2

t,

....

-;c'""-

.1

20

COLLECTOR CURRENT (A)

-r

/

loo·C

.2

I

~

,~

"

vcc = 250V

10

,'\

"-

.3 1.0

2S·C

!,,_S

I'
I'

II

l00"C

20

r-

~",,:,,5_
111=-112

'U

:Iii

50

Vep, ,,25OV

'i;.--

I i"-

2S·C-

........

r-.

j:

-....

5.0

.5

5

"" '"
10

20

Ie-COLLECTOR CURRENT (A)

Switching Time Test Circuit
200V

RI1

P.W.=2SI'S

UNITRODE CORPORATION. 5 FORBES ROAO
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

4·60

PRINTEO IN U.S.A.

POWER TRANSISTORS

JAN, JANTX, & JANTXV 2N6306
2N6307
JAN, JANTX, & JANTXV 2N6308

8 Amp, 700V,
Triple Diffused NPN Mesa
FEATURES
• Collector-Base Voltage: up to 700V
• Peak Collector Current: 16A
• Rise Time: ::; 600ns l @ I =3A
• Fall Time: ::; 400ns f
c
• JAN, JANTX, & JANTXV available in
• 2N6306 and 2N6308

DESCRIPTION
These high voltage triple diffused glass
passivated power transistors combine fast
switching, low saturation voltage and rugged
Es/b capability_ They are designed for use in
off-line power supplies, high voltage inverters,
switching regulators, ignition systems and
deflection circuits_

JAN, JANTX,
& JANTXV
2N6306

ABSOLUTE MAXIMUM RATINGS·
Collector-Base Voltage, VCBO .
Collector-Emitter Voltage, VCEO
Emitter-Base Voltage, VEBO
Collector Current, Ic continuous .
Collector Current, ICM, peak
Base Current, IB, continuous
Power Dissipation, Pr 25'C Case
Operating and Storage Temperature Range

50OV.
250V ..
... SV ..
SA
16A.
4A
. 125W

2N6307

600V.
300V .. .
SV.. .
.. SA
.16A... .
... 4A .. .
.. l25W.
.. -65 to +200'C ...

JAN, JANTX,
&JANTXV
2N6308

............ 700V
..350V
.................. 8V

........... SA

.16A
..... 4A
......... 125W

• JEDEC registered values.

MECHANICAL SPECIFICATIONS
JAN, JANTX, & JANTXV 2N6306
2N6307
JAN, JANTX, & JANTXV 2N6308

NOTE:
Leads may be soldered to within
1/1&" of base provided temperaturetime exposure is less than 260'C
for 10 seconds.

F

'ffrl' I ~.L
~[J
B

C

D

1

H
I

i'

@

J-i:'
K

A
B

M
BASE
EMITTER

L

c
D
E
F
G
H
J
K
L
M

ins.

mm.

.875 MAX
135 MAX.
250 .450
.312 MIN
038- 043 DIA.
188 MAX RAD.
1.177 1.197
655- 675
205- 225
.420- 440
.525 MAX RAD
.151-.161 DIA

2223 MAX .
3.43 MAX
6.35-11.43
7.92 MIN .
0.97-1.09 DIA.
478 MAX. RAD.
2990-304D
16.64-17.15
5.21-5.72
10 67-11.18
13 34 MAX. RAD .
3.84-4.09 DIA .

4-61

TO-204AA (T0-3)

~UNITRDDE

4

JAN, JANTX, & JANTXV 2N6306
2N6307
JAN, JANTX, & JANTXV 2N6308
ELECTRICAL SPECIFICATIONS (at 25·C unless noted)*
J, JTX, JTXV 2NG30G

Symbol

Test

I 2NG307 I J, JTX, JTXV 2NG308

MIN.

MAX.

MIN.

Test Conditions

MAX.

MIN.

MAX.

D.C. Current Gain (Note 1)

h'E

15

75

15

75

12

60

Ic =3A,VCE =5V

4

-

4

-

3

-

I c =BA,VCE =5V

Units

D.C. Current Gain (Note 1)

h'E

Collector Saturation Voltage
(Note 1)

VCE(sat)

-

O.B

-

1.0

-

1.5

V

Ic = 3A, I. = 0.6A

Collector Saturation Voltage
(Note 1)

VCE(slItl

-

5.0

-

5.0

-

-

V

Ic = BA, I. = 2A

Collector Saturation Voltage
(Note 1)

VCE {,,'}

-

-

-

-

-

5.0

V

Ic = BA, I. = 2.67A

Base Saturation Voltage (Note 1)

VBElsat)

-

2.3

-

2.3

-

-

V

Ic=BA,IB=2A

Base Saturation Voltage (Note 1)

VBE {",}

-

-

-

-

-

2.5

V

Ic = BA, I. = 2.67A

Base-Emitter Voltage (Note 1)

VBE Cool

-

1.3

-

1.3

-

1.5

V

Ic = 3A, VCE = SV

Collector-Emitter Sustaining
Voltage (Note 2)

VCEO {SUS}

250

-

300

-

350

-

V

Ic = 100mA, IB = 0

Emitter-Base Cutoff Current

lEBO

-

1.0

-

1.0

-

1.0

mA

-

0.5

-

-

-

-

-

0.5

-

-

-

-

-

-

0.5

-

O.S

-

-

-

-

-

0.5

-

-

-

-

0.5

-

-

Collector Cutoff Current

Collector Cutoff Current

Collector Cutoff Current, 150·C

ICEO

ICEV

ICEV

-

-

-

-

2.5

-

-

-

2.5

-

-

-

-

-

-

-

2.5

-

IBO

-

1BO

-

250

-

250

-

Second Breakdown Energy

Es/b

1BO

Collector Capacitance

Cob

-

Gain-Bandwidth Product

5

fr

-

5

-

5

VEB=BV
VcE =2S0V

mA

VCE = 300V
VCE = 350V

mA

VCE=SOOV}
VCE =0 600V V. E= -1.SV
VcE =700V

mA

VCE=SOOV}
VCE = 600V V. E= -1.5V
VCE = 700V

mJ

Ic = 3.0A, L = 40 mH
RBE = 3Kf!, VBB2 = I.5V

250

pF

VCB = 10V, IE = 0, f = 1 MHz

-

MHz

Ic = .3A, VCE = lOY, f = 1 MHz

Switching Speeds:
Rise Time

tr

-

0.6

-

0.6

-

.0.6

I'S

Vce = 125V, Ie = 3A
1. , =0.6A

Storage Time

t,

-

1.6

-

1.6

-

1.6

"s

Vcc = 125V, Ic = 3A
I" = 0.6A, 1. 2 = 1.5A
Pulse Width = 25"s

Storage Ti me

t,

-

O.B

-

O.B

-

O.B

I'S

Vce = 125V, Ic = 3A
1. , = 0.6A, 1.2 = 1.5A
Pulse Width = 5.0 "s

Fall Time

t,

-

0.4

-

0.4

0.4

I'S

Vcc = 125V, Ic = 3A
I" = 0.6A, 1. 2 = 1.5A

ReJc

-

1.0

-

1.0

-

1.0

·C/W

Thermal Resistance
Notes:
1. Pulse width; 250pS; duty cycle :51 %.

2. Sustaining Voltage. Measured at a high current point where collector-emitter voltage is lowest. Current pulse length'" 50pS; duty cycle :5 1%.
Voltage clamped at maximum collector·emitte" voltage .
• JEDEC registered values.

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (GI7) 8Gl-G540
TWX (710) 326-G509 • TELEX 95-IOG4

4-62

PRINTED IN USA

JAN, JANTX, & JANTXV 2N6306
2N6307
JAN, JANTX, & JANTXV 2N6308

Power Derating

Forward Bias Safe Operating Area
100

20rrrn'--r-r-'-r""rr-.-'-.~~

...z~
"'

loi i i~i i oi.~i~ i~i i ~ i~;~:i~ ·~ - ~ ~

0:
0:

..J
..J

u

lu

Te

'"

";::z
'"'"

25'C

0

...
Z

"'

,
1\

0:
0:

60

~cl

~1t
~<"0

I III

DASH LINES ON SOAR CURVES ARE EXTENSIONS Of

DISSIPATION LIMITS FOR TEMPERATURE DERATING

1\

Slj

""'\

PURroSES'1

1 1 III ' \
0.2 LLl..l..1L--.L...L-L....L..L.l.LLJ..L.:L.L.....LLl.......l.-l
5
10
20
50
100
200
500
VeE - COLLECTOR VOLTAGE (V)

o

"

Dlssr~A-'

AT DESIRED OPERATING VOLTAGE, DERATE
liON CURRENT LIMIT AND Is b CURRENT LIMIT FROM
2S"C SOAR CURVE

0

I I LiM:TED~-+-\--+-+-I

I IIII

40

20

::>

'

•

'" {/-t"

0:

1\ '

CURV~~#6~:E:ELOW

0.5

I!'I!'

...

0

III

III

"'o

"-

80

0:

t\'

§

u

1,\1"r\. ~'~ ....;:,.~()

~

DISSIPATION ...._!--'!I'\~-H\4-I-'~dH-'...::,!l..l'0'+-1
LIMITED
~,

::>
u
0:

'"

t--...

I
I
I
I
40
80
120
160
Te - CASE TEMPERATURE ('C)

o

1,\
200

Saturation Voltages

D.C. Current Gain
200
lell, _5
100

z

;;:

"...

150'C
50

z

"'0:0:
::>
u

20

U
ci 10

~

25'C

-,

-55'C

-- -....

" ,

n

10- I-

,

"..."''"

0.5

F25'C

>
0.2

st

'lJ·C

r-

---

2

0.1

0.1

Vee- 10V
Vee = 3V

0.2
0.5
Ie - COLLECTOR CURRENT (A)

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326·6509 • TELEX 95·1064

~
55'C

.05
0.1

10

4-63

V //

'j

0

~I'

/j

I-isQ·C

..J

1

VBEe;;~ ~I'

55'C

~

...

--

I-"'"

0.2

.....V

/\JCEISAT)

"/

0.5
Ie - COLLECTOR CURRENT (A)

10

PRINTED IN U.S A.

JAN, JANTX, & JANTXV 2N6306
2N6307
JAN, JANTX, & JANTXV 2N6308

Switching Time Test Circuit
R _ 125V
l~
Ie
RB2

125V

= 5V

I"

RBI

= ~v

-RB2

"

IN5802

Turn·On Time

Turn·Off Time

1000

500

"'"'"

..
5

UJ

:;

Vee = 125V
leI I" =5
leI I" =2
T J = 25"C

,,",

......
I.

100

I,

~ i--"

..!:.

i'.

;:

50
0.2

20

10
0.1

Vee - 125V
lell,= 5
VBE \ofl\=5V
T J = 25"C

........
If

0_1

......

..... ~

.05
0.2
0.5
Ie .,.. COLLECTOR CURRENT (A)

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

10

0_1

0.2
Ie -

4-64

0.5
COLLECTOR CURRENT (A)

10

PRINTED IN U.S.A.

JAN,
JAN,
JAN,
JAN,

POWER DARLINGTONS
5 Amp, 150V, NPN

FEATURES
•
•
•
•

JANTX
JANTX
JANTX
JANTX

& JANTXV 2N6350

& JANTXV 2N6351

& JANTXV 2N6352
& JANTXV 2N6353

DESCRIPTION

High Current Gain: up to 2000 min. @ Ie = 5A
Low Saturation Voltage: as low as 1.5V max. @ Ie = 2A
Peak Current: to lOA
JAN/JANTX/JANTXV versions meet MIL-S-19500/472

Unitrode NPN Darlingtons consist of a
two transistor circuit on a single
monolithic planar chip. The 2N6350
series is characterized for fast switching applications.

ABSOLUTE MAXIMUM RATINGS
TO·33
JAN. JANTX
& JANTXV
2N6350

3 PIN TO-66
JAN. JANTX
JAN. JANTX
& JANTXV
& JANTXV
2N6352
2N6353

JAN. JANTX
& JANTXV
2N6351

Collector-Emitter Voltage ................................ BOV ...•.•.• 150V ................................ BOV ...•••.. 150V .. .
Emitter-Base Voltages
VEB2 .................................................. 6V .......... 6V ................................. 6V .......... 6V .. .
VEBl ................................................. 12V ......... 12V ................................ 12V ......... 12V .. .
D.C. Collector Current. .................................... 5A .......... 5A ................................. 5A .......... 5A .. .
Peak Collector Current ................................... IOA ......... IOA ................................ lOA ......... lOA .. .
Base I Current ......................................... O.5A ..... '" O.5A ............................... O.5A ........ O.5A .. .
Power Dissipation
25°CAmbient ........................................ 1W .......... lW ................................. 2W .......... 2W .. .
100°C Case .......................................... 5W .......... 5W ............................... 25W ........ 25W .. .
Thermal Resistance
Junction-to-Case .......................................................................................................... .
Operating and StorageTemperature Range .................................................................................... ..

MECHANICAL SPECIFICATIONS
JAN. JANTX & JANTXV 2N6350

~

ElJ

,

'~- ~~ ;1~~
G

305-335
335-370
240- 260

);

COLLECTOR

A

JAN. JANTX & JANTXV 2N6351

0

M'"

E

OlH

gg~

15 MIN
018 MAX

031 t 003
200
lOO
029-045
lOO

BASE 1

-L

TO-33

775-851
851-940
610-660

432:t·~~
3810 MIN
046MAX
079:1: 08

lO2
254

074-114
254

COLLECTOR CONNECTED TO CASE

JAN. JANTX & JANTXV 2N6352

JAN. JANTX & JANTXV 2N6353

,

250-340

635-864

B

620 MAX

1575MAX

C

050-075

190-210
190-210

127191
071-086
914MIN
2433-2443
483-533
483-533

350 MAX RAD
570-590

889 MAX RAO
1448-1499

028- 034
360 MIN

F
G
H

J

COLLECTOR CONNECTED TO CASE

"

958- 962

142-152

361-386

145 MAX RAD

368MAX RAD

4-65

3 PIN TO-66

~
[1JJ UNITRODE

•

ELECTRICAL SPECIFICATIONS (at 2S"C unless noted)

JAN & JANTX 2N6350

JAN & JANTX 2N6351

JAN & JANTX 2N6352

JAN & JANTX 2N6353

MIL-STD-750
Test

Visual and Mechanical
25'C
Collector-Emitter Breakdown Voltage
2N6350, 2N6352
2N6351, 2N6353
Emitter Base Breakdown Voltage, Base 1
Emitter Base Breakdown Voltage, Base 2
Collector - Emitter Cutoff Current
D.C. Current Gain
2N6350, 2N6352
2N6351, 2N6353
D.C. Current Gain
2N6350, 2N6352
2N6351, 2N6353
D.C. Current Gain
2N6350,2N6352
2N6351, 2N6353
Collector Saturation Voltage
2N6350, 2N6352
2N6351, 2N6353
Base Saturation Voltage
A.C. Current Gain

Symbol

Min.

Max.

Units

BVeER

BVEBO '
BV EB02
,CEX
hFE

80
150
12
6
1.0

Vdc
Vdc
Vdc
Vdc
I'Adc

Method
2071

2000
1000

Ic

3026
3026
3041
3076

'E - 12mA Base 2 Open
'E == 12mA Base 1 Open
VeE ~ BVeER Rating
VCE == 5Vdc; Ic == LOA (pulse)
R8E2 == 1K

3076

VCE == 5Vdc; Ic == 5.0Adc (pulse)
RBE, == 100 Ohms

3076

VCE == 5Vdc; Ic == 10Adc (pulse)
Rm == 100 Ohms

3071

Ic == 5.0Adc, Rm == 100 Ohms
IB' == 5mAdc (pulse)
'B' == 10mAdc (pulse)
Ic == 5.0Adc (pulse), VCE == 5Vdc
Rm == 100 Ohms
VCE == 10Vdc, Ic == 1.0Adc, f == 10MHz
R8E2 == 100 Ohms
VCBI == 10Vdc, 100KHz:;;;; f:;;;; 1MHz
Base 2 open
Vcc == 30V dc; IC == 5.0Adc
See Switching Speed Circuit
Vcc == 30Vdc; Ie == 5.0Adc
See Switching Speed Circuit

10000
10000

hFE
400
200
VCE (sat)
1.5
2.5
2.5

VBE , (on)
IhFEI

5

Vdc
Vdc
Vdc

3066
3066

25

== 25mA, RBE , == 2.2K, R8E2 == 100 Ohms

30n

2000
1000
hFE

Test Conditions

See Mechanical Data

COBO'

120

pf

3236

Turn-on Time

too

0.5

I'S

3251

Turn-off Time

toff

1.2

I'S

3251

150'C
Collector-Emitter Cutoff Current

,CEX

1.0

I'Ade

3041

VEB , == 2Vdc, Rm == 100 Ohms
VeE ~ BVeER Rating

-65'C
D.C. Current Gain
2N6350, 2N6352
2N6351, 2N6353

hFE

3076

VeE == 5Vdc, Ic == 5.0Adc (pulse)
REEl == 100 Ohms

Output Capacitance

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

400
200

4-66

PRINTED IN U.S.A.

JAN, JANTX & JANTXV 2N6350

JAN, JANTX & JANTXV 2N6351

JAN, JANTX & JANTXV 2N6352

JAN, JANTX & JANTXV 2N6353

Forward Bias
Safe Operating Area
2N6352, 2N6353

Forward Bias
Safe Operating Area
2N6350, 2N6351
10

"-

~'\

"- '\ I
1"'- .~ ~ '\ \ 1\

10

lO,uSec,1%

5

'"1"'-~~ 1\

DC ' "

0:
0:

a

1

1m Sec
2S% Duty Cycle

o
~

.2

8

.1

I-

Im5ele, lOr'
100~5ee,

I

P\ 1\

10%

_0.05

-Duty Cyre

:>

Im5ec,10%

0:

0

....
u

.2

w

..J
..J

1\

1
_0

.02

.OS

\

.02

\
I

10 20
SO 80 ISO
COLLECTOR TO EMITTER VOLTAGE (V)

1
VeE -

V"" -

10

10

\\ ''',

"

.~

T. = 2S'C

i'

,\

0;-

.S
.2

.....

~

/

, 1....

" .....

Limit per
c .1 - MIL-S-19S00/472
@VB1E =-4V,
~
R",=IK_
.OS -

()

:>

...J

1

.02

J

...

"

1

r--

'"

5:
~

I

W
0:
0:

a

8JG::::: 0,

0

't~
"
¢!

o....

M

1

.2

..J

(oa.? I--::::

""~?t>l..
OJ.?

.01

.S

0:

.......

\,j- ,-", 1"- .......
>\>..... [

+c=100'C RIlE :s:;; lOon

5

IC/loo_

5

.1

I

.OS

()

2N63S0,
2N63S2

_0

,

1

1

3
Ie -

=

-112

Valid for VIlE
from 0 to -SV

,'-.

()

z
«
....

,

'"

=

lB.

" "-

\

S
1020
SO 80 ISO
COLLECTOR TO EMITTER VOLTAGE (V)

Reverse Bias
Safe Operating Area
Clamped Inductive Switching

Unclamped Reverse Bias
Second Breakdown

w

I

.01

4
S
6
7
8
COLLECTOR CURRENT (A)

1

10

2
VeE -

SO 8090 ISO
S 10 20
COLLECTOR TO EMITTER VOLTAGE (V)

D.C. Current Gain
2N6351,2N6353
10,000

SO,OOO

V r--- "-

5,000
20,000

«

I.v

10,000

"~

5,000


-<.q

/

W

V V

:>

<.i
ci

I

SOO

/

if

.s::

200

/1-

V

100

/

"v

V

-<.~ fJv

.L

- "~

~~/

z

«

"z....

1\
i""'"'

w

0:
0:

()

<.i
ci

/

veE

I

= 5V

if

.s::

R,,, = 1000 f1

/

SOO

l0

100
50

v:: V/

V/v

/
/

-

"-;c

V

~
\

'l'

-<.ql

...-:;-",~f><;

veE = SV
RazE = lOO{l-

I I

20

V
SO
.01

/-<."

1,000

200

~
/'

f.- ~

-<", r-;v

2,000

:>

/

/v

/

2N63S1,
2N63S3

.02

D.C. Current Gain
2N6350, 2N6352

z

100#5ec
10%

.01

.01

"'~"

1\ ~

100#50c
1% -

1\ \

.1

0

\

()

1\1-- 2N63S1

2N63S0-o

I

.S

()

1\

1,\

ImSec, 25%

W
0:
0:

lOOj.tSec,
1%

Te= l00'C

,\-10#sec
1%

2

....
z

'\"\..

.5

0:

5:

~ "- f\
~\ 1\

I-

Z
W

,
D~ 1"'- N
h k l\ ~
,,
~

i"'-l"-' ['...

Tc = 100°C

10
.02

.0S.1
.2
.S 1
2
Ie - COLLECTOR CURRENT (A)

UNITRODE CORPORATION· S FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6S40
TWX (710) 326-6S09 • TELEX 9S-1064

5

10

.01

4-67

.02

.OS.I
.2
.5
I
2
Ie - COLLECTOR CURRENT (A)

S 10

PRINTED IN U.S A.

•

JAN. JANTX & JANTXV 2N6350

JAN. JANTX & JANTXV 2N6351

JAN. JANTX & JANTXV 2N6352

JAN. JANTX & JANTXV 2N6353

Saturation Voltage
Temperature Coefficients

Saturation Voltages

i-\,'0- "m._ "

1.1
:

.1

Ie

i

=

I. ~

\

"

.1

.2

:>

+3

E

'C/IOOO

U)

I-- +2

z

--

V"
~ f...--

"'

U +1
ii:

"'U0
"':Jc:

V;

'/
./

-1

I--

r---

. = --=+-£"

INcE

"'I--

-3

I

-4

~

.1

.5
2
COLLECTOR CURRENT (A)

.2

Ie -

IB

~

0

e

.2

V

u

~

~ r-

V

r-t-

"':;;

;::

~.III Tilm~. ~f

1y

'"

'tl

ill

'"

25'C

~

8

'"

I

.~

~,,,,e'\7
\I.,.e f--:':'

.s .5
"':;;

150'C.,.----::

;::

- - 25'C

"'t-.

.5
Ic -

.2

2
COLLECTOR CURRENT (A)

2N6351

2N635D & 52 Switching Speed Circuit

&

.5

:-:::,..:::::

,/""

~

Delay Time, td

~

0.5

-

----V

~or~ge Time, tl

I---- I~

Vcc = 30V
lal=-Is:z=IC/250

'tl

.1 f--25'C

~

i---t-

150'C

IC/250

RB2E

u

10

Switching Speed
Characteristics

V~c '= ~riv
=
= loon

f-

~Ct025'C

-5
10

(A)

Switching Speed
Characteristics
.05

L

y /V

AVSf:

>
(2%

II--

=

_
~

2. Outpulwaveformsare mOnitored on an
oscilloscope wIth the followmg character.s!lcs,
I,:;;; 15 ns, Z" ~ 10 Mil, C,n';;; 11 5 pF.
Resistors shall be nomnductivetypes.

J

0.5

---:::::I;;;;ii ~

I--~
f---l -

------- ,-- ~ ~1'

~ ..--

.3f--

V': V

V
~
.01/V

~

~

=

:r

0 J . c (t) ,(t)-eJ _C
0 J •c = 4'C/W

f~' 2~63sr' 2~56513

~
Single Pulse

7~rc 2N~~;./~565~

.005
.002

The DC power supplIes may require additional
by-passlne: '" order to minimize nnglng.

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

.001
.01 .02

4-68

.05 .1

.2

.5 1 2
10 20
TIME (milliseconds)

50 100 200 5001000

PRINTED IN U.S.A.

JAN, JANTX & JANTXV 2N6350

JAN, JANTX & JANTXV 2N6351

JAN, JANTX & JANTXV 2N6352

JAN, JANTX & JANTXV 2N6353

•

D.C. Current Gain VS. Collector Current
2N6350 - 2N6353
10,000 , . . - - - - - - , - - - - - - , - - - - - ,

z

~

z

1000

i-----:71/r ---j::::===:::::-i

100

~"c--r'----t------t----------l

"'

0:
0:
:J
U

U

o
I

10

.1

.01
Ie -

1.0

10

COLLECTOR CURRENT (A)

2N6350 & 52 Switching Speed Circuit

2N6351 & 3 Switching Speed Circuit

1-10"4
- 10%- -

- -90%
- -INPUT WAVEFORM
: (SEE NOTES 1 AND 2)

ov -ltonl- -l toll Ij ~~froo;o
9 0 % - U J ?S~¥~6T~A~EFORM

- 10%- -

ov

---+i

- -90%
- -INPUT WAVEFORM
: (SEE NOTES 1 AND 2)

---It..,:- -l to" lI

I

+30Vdc

10%
OUTPUT WAVEFORM

+30Vdc

(SEE NOTE 2)

I

611

60
SCOPE
(SEE

SCOPE
(SEE
NOTE 2)

NOTE 2)

SOli
PULSE
IN
o---'\IV'V--+---'\./VIr-+--o--{
B,

B,

Ik!!

lOa!!
-lOVdc

-lOVdc

NOTES:
1. The input waveform is supplied by a pulse
generator with the following characteristics:
t; :s:;;; 15 ns, t f ~ 15 ns, Zod ::::: 500, PW ::::: 10 p.S,
Duty cycle S;; 2%.
2. Output waveforms are monitored on an
oscilloscope with the following characteristics:
tr ~ 15 ns, lin ~ 10 MQ, C,n ~ 11.5 pF.
3. Resistors shall be non inductive types.
4. The DC power supplies may require additional
by-passing in order to minimize ringing.

UNITROOE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95-1064

4-69

PRINTED IN U.S.A.

2N6354
2N6496

POWER TRANSISTORS
20 Amp, 150 V, Double Diffused NPN Mesa

FEATURES

DESCRIPTION

•
•
•
•

These double diffused glass passivated
mesa power transistors combine fastswitching, low saturation voltage and
rugged Es/b capability. They are designed for use in switching regulators,
converters, inverters and switchingcontrol amplifiers.

COllector-Base Voltage: up to 150V
Peak Collector Current: 30A
Rise Time: ~ 500ns t
Fall Time: ~ 500ns I @ Ie up to 12A

ABSOLUTE MAXIMUM RATINGS*
2N6354

2N6496

Collector-Base Voltage, VCBO ............................................................................................................. 150V .. .
150V
Collector-Emitter Sustaining Voltage, VCER (SUS) (1) ............................................................. - .. .
130V
VCEQ (SUS)
120V.
Emitter-Base Voltage, VEBO .................................................................................................................. 6.5V.
. ..7V
Collector Current, Ie continuous ....................................................................................................... 1OA ... .
.l5A
Collector Current, ICM peak ...................................................................................................................12A
Base Current, IB continuous .................................................................................................................. .5A .
..5A
Power Dissipation, 25'C Case ............................................................................................................ 140W...
.140W
Operating and Storage Temperature Range ........................................................................................-65 to 200'C

nov

(1) With RBE ~ 50n

* JEOEC

registered values.

MECHANICAL SPECIFICATIONS

2N6354, 2N6496

NOTE:
Leads may be soldered to within
'A." of base provided temperaturetime exposure is less than 260'C
for 10 seconds.

F

~WE I \\ I
/,

1

G

H
I

C

D

A
B

M

,

BASE

c

EMITTER

0

E
F

G

,:,"--.:

@

J-~

7

L

H

J
K
L
M

ins.
.875 MAX.
.135 MAX.
.250-.450
.312 MIN.
038- 043 DIA.
. 188 MAX RAD
1.177-1.197
.655- 675
'.205-.225
.420-.440
.525 MAX. RAD.
. 151-.161DIA.

4-70

TO-204AA (TO-3)

mm.
22.23 MAX .
3.43 MAX .
6.35-11.43
7.92 MIN .
0.97-1.09 DIA.
4.78 MAX. RAD .
29.90-30.40
16.64-17.15
5.21-5.72
10.67-11.18
13 34 MAX. RAD .
3.84-4.09 DIA .

~UNITRODE

2N6354

2N6496

Electrical Specifications (at 25°C unless noted)
2N6354
Test

D.C. Current Gain
(Note 1)

hFE

D.C. Current Gain
(Note 1)

hFE

D.C. Current Gain
(Note 1)

2N6496

MIN. MAX. MIN. MAX.

-

-

10 100

hFE

-

-

-

-

0.5

VCE I"')

-

-

VCE I"')

-

1.0

Collector Saturation
Voltage (Note 1)

-

VCE

,.....

-

Base Saturation
Voltage (Note 1)

VBE I"')

I"')

VBE

{sat)

-

-

-

-

V

Ic = 0.2A
VBE = -1.5V
IB=O
RBE = 100 n

V

RaE = 50 n, Ic = 0.2A
RaE = 100 n, Ic = 0.2A

V

IE= 5mA
IE - 50mA

-

Collector-Emitter
Sustaining Voltage
(Note 2)

VCEX

(sus)

-

-

-

Collector-Emitter
Sustaining Voltage
(Note 2)

(sus)

130

-

130

VeER

Emitter-Base Voltage

VEBO

Collector Cutoff
Current

ICBO

Gollector Cutoff
Current

-

ICEO

-

-

S

-

20

Collector Cutoff
Current

ICEV

- - - - 10

Collector Cutoff
Current, 125°C

ICEV

-

20

-

-

Collector Cutoff
Current, 150°C

ICEV

Emitter Cutoff
Current

lEBO

Magnitude of Small
Signal Forward. Current Transfer
Ratio
Collector Capacitance
Thermal Resistance:
Junction-to-Case

-

-

5.0

-

-

Ihr. I

-

-

8.0

-

Cob

-

300

RoJC

-

-

-

1.25

2.0

-

-

-

-

-

7.0

- - 20
- - - 25
- - - 50
12 - - 300
- 1.25
- -

V
V

mA
mA

mA

mA
mA

mA

=
=
=
=

l2A, IB = 1.2A
20A, IB = 5A
5A, IB _ O.5A
8A, IB = 0.8A
lOA, IB _ 1A
20A, IB = 5A

Ic=0.2A

120

-

•

Ic = lOA, IB = LOA

V

(sus)

-

V

V
V

VCEO

-

V

2A, VCE = SV
5A, VCE = 2V
8A, VCE _ 2V
lOA, VCE = 2V
lOA, VCE = 5V
l2A, VCE = 5V
5A, IB = .5A
8A, IB = .8A

Ic =
Ic =
Ic Ic =
Ic Ic =
Ic =
Ie =

- 100 -

2.0

6.5

-

Test Conditions

Ic
Ic
Ic
Ic
Ic
Ic

-

-

-

-

- 1.0
- -

-

-

-

12 100

_.

1.3" -

-

Units

- -

-

20 150

Collector Saturation
Voltage (Note 1)
Collector Saturation
Voltage (Note 1)

Base Saturation
Voltage (Note 1)
Collector-Emitter
Sustaining Voltage
(Note 2)

*

Symbol

VCB = 150V
VCE =
VCE =
VCE =
VCE VCE =
VCE VCE =

5SV
70V
100V

nov, VaE - -1.5V
130V, VBE = 0
l40V, VBE - -1.SV
l40V, VBE = 0

VCE = l40V
VCE = 85V, VaE = -1.5V
VCE - 100V, VBE _ -l.SV
VCE = 130V, VBE = OV
VBE = -5V
VB =-6.5V
VBE = -7V
VCE = 10V, Ic = 2A, f = 5 MHz
VCE = lOV, Ic = lA, f = 10 MHz

pF
°C/W

VCB = 10V, f = 1 MHz
VCE = 10V, Ic = lOA
VCE - 20V, Ic - lA

Notes:
1. Pulse width; 2501lS; duty cycle :S1 %.
2. Sustaining Voltage. Measured at a high current point where collector-emitter voltage is lowest. Current pulse
length"" 501lS; duty cycle :s 1%.
Voltage clamped at maximum collector-emitter voltage .
• JEDEC registered values.

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

4-71

PRINTED IN USA

2N6354

2N6496

Electrical Specifications (at 25°C unless noted)
2N6354
Symbol

Test

Second Breakdown
Energy

*

0.3

-

-

-

-

5.7

-

Eslb

Forward Bias
Second Breakdown
Collector Current
Switching Speeds
Rise Time
Storage Time
Fall Time
Rise Time
Storage Ti me
Fall Time
Rise Time
Storage Ti me
Fall Time
Rise Time
Storage Time
Fall Time

2N6496

Units

MIN. MAX. MIN. MAX.

-

-

-

5.5

-

-

-

5.0
0.9

-

Islb

-

t,
t,
tf
t,
t,
tf
t,
t,
tf

-

0.3
1.0
0.2

-

- - - - - -

t,
t,
tf

-

mJ

-

-

A

-

-

1'5

0.5
1.5
0.5

fiS

-

-

fiS

fiS

Test Conditions

=
=
=
=
=

=
=
=
=
=

Ie
5A, VBE
-l.OV
RBE
51 n, L
25.. H
Ie - 8A, VBE _ -4.0V
RBE
20 n, L
180.. H
Ie
13A, VBE
-4.0V
RBE
20 n, L
180.. H
VeE - 25V, t _Is, non-rep.
VeE = 28V, t _ Is, non-rep.
VeE - 45V, t _ Is, non-rep.

=
= =
=
=
=
=
= =
=
= =
=

Ie
SA
IBI
I" .SA
Vee
30V
Ie
8A
IB'
I" = .8A
Vee
30V
Ie - lOA
IBI I" l.OA
Vee
30V
Ie _12A
IBI I" l.2A
Vee
30V

* JEDEC registered values.

Forward Bias Safe Operating Area
for 2N6354

,
30

I

20

~
I-

II

r-!0"'~"'.!'

10

Z

f=
'--

'UJ

'"'"
e.>

Forward Bias Safe Operating Area
for 2N6496

DISSIPATlON·O'" ~.!'
LIMITED
'~

,

~

\

'"

0

,~I

,... r:==

~I==

'.

l-

e.>

UJ
..J
..J

0

Tc

e.>

\

= 25'C

\

1
_u

ISIb LIMITED
0.5

I

0.3
2

I

10
20
50
100
VeE -COLLECTOR VOLTAGE (V)

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

0.3

'----'I~-'-'
1,--,
11..w11u--1-,-,-1--,--,I---'-J..~"----'
100 200
10
20
so

2

200

VeE -

4-72

COLLECTOR VOLTAGE (V)

PRINTED IN U.S,A.

2N6354

Power Derating

DC Current Gain

100

'" "-"-r\.

500

t-....

~

80

'"ua....

.
"
.'"
"-

60

UJ

....Z

.........

'"~

"""-

1'{~

40

20

DASH LINES ON SOAR CURVES ARE EXTENSIONS OF
DISSIPATION LIMITS FOR TEMPERATURE DERATING
PUR,POSES J

o

40
Te -

I--t-

g
"

200

0.2

0.5
Ie -

Saturation Voltages

~

1\

10

1"-

I
I
80
120
160
CASE TEMPERATURE ('CI

~

f..-r20
VeE = 2V

'\

I

o

_SS·c

u

DISSI~A"

AT DESIRED OPERATING VOLTAGE, DERATE
nON CURRENT LIMIT AND 1\ b CURRENT LIMIT FROM
25'C SOAR CURVE

25'C

50

::J

~~o

....

150'C

" 100

!"...;.

~J'ti

z

'"'"
'"
::J
U

z
;;:

',.~o

is'iS'

j::

200

'~{/.f?,

~

Z

c

2N6496

10

20

COLLECTOR CURRENT (A)

Switching Time Test Circuit

II
5V

lell, = 10

5~'C

~

.."::;

T;;

II

~fJ

V8EISIIT)

:6Jl_

150'C

UJ

~4VLJ

0.5

a

>
0.2

I'"

\~i1':~ Vv

0.1

V

PW.

VeE (SAT)

= 25#$

i;'

_"",c

.05
0.2

0.5
I,. -

10

20

COLLECTOR CURRENT (AI

Turn-Off Time

Turn-On Time
1000

-

Vee = 30V
500

200

'"
oS

'"j::

:;;

r-t-

" r-.

lSI

I"-

/

I" "-

t,

'":;;

100

182

= 1C/1O

-

-

TJ = 25'C

t:'r--.

....3

..........

=

0.5

j::

50
0.2

N

f--

Vee =30V
20 ~ ISI=lc/IO
f-- TJ = 25'C
10
0.2

);-..

0.1

I I I III
0.5
Ie -

I'

1
2
10
COLLECTOR CURRENT (AI

UNITROOE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL (6171 861-6540
TWX (710) 326-6509 • TELEX 95-1064

.05
0.2

20

4-73

0.5
Ie -

i-"

1
2
10
COLLECTOR CURRENT (A)

20

PRINTED IN U.S.A.

•

POWER TRANSISTORS

2N6510
2N6511
2N6512
2N6513
2N6514

7 Amp, 400V, Triple Diffused NPN Mesa
FEATURES

DESCRIPTION

•
•
•
•

These high voltage triple diffused glass
passivated power transistors combine fast
switching, low saturation voltage and rugged
Eslb capability. They are designed for use in
off-line power supplies, high voltage inverters,
switching regulators, ignition systems and
deflection ci rcuits.

Collector-Base Voltage: up to 400V
Peak Collector Current: IDA
Rise Time: ;;;; 1.5",s l @ I _ 4A
Fall Time: ;;;; 1.5",s f
c-

ABSOLUTE MAXIMUM RATINGS
2N6510

(1) RaE

2N6511

.. 250V ...
. .250V ..
200V ..

'Collector Base Voltage, VCPo
Collector-Emitter Sustaining Voltage, VCER 1",1 III
'Collector-Emitter Sustaining Voltage, VCEO Isusl .. '
"Emitter-Base Voltage, VESO
'Collector Current, Ic continuous
'Base Current, Is
'Emitter Current, IE"
.... .......... .
'Power Dissipation, PT 25"C Case
'Operating and Storage Temperature Range

2N6512

2N6513

3OOV..
350V..
. . 400V ... .
300V...
.. 350V...
..400V ... .
. 250V.... . ... .... 300V..
. .. 350V .. .
.. 6V..
....6 V . . . ....6V ..... .
... .7A..
........... .lA...
...... .lA .... .
.. IDA................. 10A.
... IOA
........3A ..................3A . ....
...... 3A .. .

. .. 6V.
..7A....
.. IDA.
...... 3A..

... .. 120W...

l20W

2N6514

350V
350V
.. 300V

... 6V
. ... .lA
.. IOA
.... 3A

...... l20W .. ..... .... 120W .. ........ 120W
-65 to +200"C.

=SOil

*JEDEC registered values

MECHANICAL SPECIFICATIONS

2N&51 0 2N6511

NOTE:
Leads may be soldered to within
'It..' of base provided temperature·
time exposure is less than 260"C
for 10 seconds.

~iJE
C

D

A
B

F~M

17EJ .-

G

I

H

i'

Ie

J-~

7

BASE

c

EMITTER

D

E
F
G

L

H

J
K
L
M

2N6512 2N&513 2N6514

ins.
875 MAX
135 MAX.
250 450
.312 MIN
038- 043 DIA.
188 MAX RAD.
1177-1.197
.655 .675
205- 225
420-.440
.525 MAX. RAD
151-161 DIA

4-74

TO-204AA (TO-3)

mm.
2223 MAX.
3.43 MAX
635-1143
7.92 MIN .
097-1.09 DIA
478 MAX RAD
29.90 30.40
16.64-17.15
521 572
10.67 11.18
13.34 MAX. RAD
3.84 409 DIA

~UNITRDDE

2N6510 2N6511 2N6512 2N6513 2N6514
ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
2N6514

2N6510

Test

*D.C. Current Gain (Note 1)
'Collector Saturation Voltage
(Note 1)

Symbol

Min.

Max.

Min.

Max.

10
-

SO
1.S
2.S
1.7
-

-

50

-

1.S
2.S
1.7

-

300'

-

V

3S0

-

-

V

-

S.O

-

-

hFE

-

VCE''''I

-

'Base Saturation Voltage (Note 1)

VSE''''I

-

Collector-Emitter Sustaining
Voltage (Note 2)

VCEO ''"'I
VCER ''"'I

250

'Collector Cutoff Current

ICEV

-

'Collector Cutoff Current 100'C

IcEV

-

td
t,
t,
tf

-

'Switching Speeds
Delay Time
Rise Time
Storage Time
Fall Time
Delay Time
Rise Time
Storage Time
Fall Time

200·

-

0.2
1.S
S.O
1.5

-

-

-

S.O
10
-

-

td
t,
t,
tf

10

-

-

Units

V

V

mA
mA

10

Test Conditions

Ic _3A,VCE _3V
Ic =SA,VCE =3V
Ic = 3A, Is = 0.6A
Ic = SA, Is = lA
Ic=7A,ls=3A
Ic = 3A, Is = 0.6A
Ic=SA,ls=lA
Ic=0.2A
Ic = 0.2A, RSE = son
VCE = 2S0V, VSE - -1.5V
VCE = 3S0V, VSE = -l.SV
VCE = 2S0V, VSE = -1.SV
VCE = 350V, VSE = -1.5V

-

"s

VCC= 200V
Ic =3A
lSI = IS2 = 0.6A

0.2
1.5
S.O
1.5

pS

Vcc=200V
Ic =5A
lSI =l s2 =lA

ELECTRICAL SPECIFICATIONS (at 25'C unless noted)'
2N6511

Test

Symbol

Min.

Max.

*D.C. Current Gain (Note 1)

hFE

10

'Collector Saturation Voltage
(Note 1)

VCE '''')

'Base Saturation Voltage (Note 1)

VSE("'I

-

SO
1.5
2.S
1.7

Collector-Emitter Sustaining
Voltage (Note 2)

VCEO',"'I
VCER (,u,)

250
300

-

'Collector Cutoff Current

ICEV

-

-

'Collector Cutoff Current, 100'C
'Switching Speeds
Delay Time
Rise Time
Storage Time
Fall Time

ICEV

td
t,
t,
tf

-

5.0

-

2N6512
Min.
Max.

10

300
350

-

50
1.5
2.S
1.7

Max.

10

SO
1.5
2.S
1.7

-

-

3S0
400
-

5.0
-

-

-

-

-

0.2
1.5
5.0
1.5

-

-

0.2
1.5
5.0
1.5

-

10

10

Notes:
1. Pulse width = 250pS; duty cycle $1%.
2, Sustaining Voltage. Measured at a high current point where collector·emitter voltage
Voltage clamped at maximum collector-emitter voltage .
• JEDEC registered values.

UNITROOE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

2N6513

Min.

4-75

-

IS

5.0

-

Units

V
V
V
V
mA

mA

10
0.2
1.5
5.0
1.5

I-'S

Test Conditions

Ic =4A,VCE =3V
Ic = 4A, Is = 0.8A
Ic=7A,ls=3A
Ic = 4A, Is = 0.8A
Ic = 0.2A
Ic = 0.2A, RSE = 50n
VCE - 300V, VSE _ -l.5V
VCE = 350V, VSE = -1.5V
VCE - 400V, VSE - -1.5V
VCE = 3OOV, VSE = -1.5V
VCE = 300V, VSE = -1.5V
VCE = 400V, VSE = -1.5V
VCC= 200V
Ic=4A
lSI = IS2 = 0.8A

lowest. Current pulse length'" 501-'5; duty cycle $ 1%,

PRINTED IN U S.A

•

2N6510 2N6511

2N6512

2N6513

2N6514

ELECTRICAL SPECIFICATIONS (at 25'C unless noted)"
All Types

Test
Emitter-Base Cutoff Current

Symbol

Min.

-

'EBO

Magnitude of
Common Emitter
Small-Signal
Short Circuit
Forward Current
Transfer Ratio

Ihfe I

3

Forward-Bias
Second Breakdown

I<

Max.

Units

3.0

mA

Test Conditions

VEB =6V

'c=lA
VCE = 10V
f=lMHz

9

-

A

VCE = 35V, t = Is, non-rep.

0.1

A

VCE = 200V, t = IS,l1on-rep.

Cob

100

200

pF

Vce = IOV, f = IMHz

R6JC

-

1.46

'C/W

3.16

Collector Current

Islb

Collector Capacitance
Thermal Resistance,
Junction-to-Case

VCE = 20V,I c = SA

All values in this table are JEDEC registered.

Power Derating

Forward Bias Safe Operating Area
100

'" ""
~

~

S
I-

a:

W

IU

80

"

0

Z

«

0::

a:

"-

::>
u

<.!l
Z

;::
«
a:

0::

oI-

U

'"c

'"
.J
.J

60

...... ~
u

~HIII~HII--j-r~~L-M~1EHD~-11r~~,~

I II

IS/j II ITIII

\

10

20
50
100
200
VeE-COLLECTOR VOLTAGE (V)

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

AT DESIRED OPERATING VOLTAGE. DERAjE

20

PUiOSESJ

o

500

o

40

I

L
80

L

"

.........

OISSI~A\

TION CURRENT LIMIT AND I, b CURRENT LIMIT FADM
2S'C SOAR CURVE
DASH LINES ON SOAR CURVES ARE EXTENSIONS OF
DISSIPATION LIMITS FOR TEMPERATURE DERATING

\

0.2LL~~--'--'--~~~~LL~L-LL-L~

5

r-...

~4,
~<"0

40

I-

8
I

~,.~O

"'",
~J
~o

1
120

'\

'\

L

160

200

Te - CASE TEMPERATURE ("C)

4-76

PRINTED IN U.S.A.

2N6510 2N6511

2N6512

2N6513

2N6514

Saturation Voltages

D.C. Current Gain
200
lell,-S
100

z
;:c


ls6'c

I-

---

0.1

0.2
Ie -

0.1

VCE _lOV
VeE

=

~

3V

SS'C

O.S
COLLECTOR CURRENT (A)

.05
0.1

10

I. / ./.

I--i5Q.c
-j

0.2

.r:t

2

•

VBEk~ ::::::~

...

2S'C

V ./ /'

. . . .V

-

~

0.2
Ie -

""

/VCEISAT)

/'

0.5
COLLECTOR CURRENT (A)

10

Switching Time Test Circuit
R _ 200V
L-

200V

Ie

R,= SV

~

P.W.

= 25j'S

Turn·Off Time

Turn·On Time
10

1000

Vee 200V
S
ICIlB
I"
I"
T J = 25 C C

500

........

"

.

t,

'"

td

"

;;; 100

-

I--

r--

t,

I---

"';:::

::;:

::;:

;:::

0.5

50

Vee - 200V
20 f- lell, = 5
VB£ (011)
SV
TJ =2S'C
10
0.1
0.2
O.S
Ie - COLLECTOR CURRENT (A)

r-

"

tf

0.2

=

UNITRODE CORPORATION· S FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6S09 .. TELEX 95-1064

"-

!'....

_I-"""'

0.1
0.1

10

0.2
Ie -

4-77

0.5
COLLECTOR CURRENT (A)

PRINTED IN USA

10

2N6542
2N6543

POWER TRAI\JSISTORS
5A,850V, Fast Switching,
Silicon NPN Mesa

DESCRIPTION
These high voltage glass passivated power
transistors combine fast switching, low
saturation voltage and rugged Eslb capability_
They are designed for use in off-line power
supplies, high voltage inverters, switching
regulators, ignition systems and deflection
circuits.

FEATURES
• Collector-Base Voltage: up to 850V
• Peak Collector Current: lOA
• Rise Time: ';;;;0.7I'S} @ I - 3A
• Fall Time: ';;;;0.81'5
c• Key Parameters characterized at lOO·C

ABSOLUTE MAXIMUM RATINGS *
2N6542

2N6543

Collector-Base Voltage, VeBo ............................................................................................................................ 650V.............................................. 850V
Collector-Emitter Voltage, VCEO (SUS) .................................................................................................................. 300V............................................
400V
Emitter-Base Voltage, VEBO ..................................................................................................................................... 9V...................................................... 9V
Collector Current, Ic, continuous ......................................................................................................................... 5A...................................................... 5A
Collector Current, Ie peak ........ ....................
....................................................................................lOA ..................................................... IOA
Base Current, IB, continuous ................................................................................................................................ 5A ...................................................... 5A
Power Dissipation, 25·C Case ......................................................................................................................... 100W............................................... lOOW
Derating Factor ..................................................................................................................................................571W/·C....................................... .571W/·C
Operating and Storage Temperature Range ........................................................................................................................-65 to 200·C ......................
• JEDEC registered values.

MECHANICAL SPECIFICATIONS
NOTE:

2N6542 2N6543

Leads may be soldered to within

TO·204AA (TO·3)

l1u" of base provided temperature·
time exposure is less than 260"C
for 10 seconds.

F

~~j'
C

6·79

D

[
G

I

M

.!

BASE

'Q)-

\7I.

11
H
J

~

e-

J-~
1K

EMITTER

N
L

A
B
C
0
E
F
G
H

J
K
L

M
N

ins.
875 MAX
135 MAX
250- 450
312 MIN
038- 043 OIA
188 MAX RAO
1177 1197
655- 675
205- 225
420- 440
525 MAX RAO
151 1610lA
190·210

4-78

mm.
2223 MAX
343 MAX
635-1143
792 MIN
097-10901A
478 MAX RAO
2990 3040
1664-1715
521-572
1067-11 18
13 34 MAX RAO
384-40901A
4.83-533

~UNITRODE

2N6542

2N6543

ELECTRICAL SPECIFICATIONS (at 25·C unless noted)·
Test
D.C. Current Gain (Note 1)

Symbol
hFE

2N6542
MIN.
MAX.
12
60

2N6543
MIN.
MAX.
12
60

Units

Test Conditions

Ic = 1.5A, VCE = 2V

D.C. Current Gain (Note 1)

hFE

Collector Saturation Voltage
(Note 1)

VCEI,.t)

-

1.0

-

1.0

V

Ic = 3.0A, la = 0.6A

Collector Saturation Voltage,
Tc = 100·C (Note 1)

VCEI..t)

-

2.0

-

2.0

V

Ic = 3.0A, la = 0.6A

Collector Saturation Voltage
(Note 1)

VCEI,.tl

-

5.0

-

5.0

V

Ic = 5.0A, la = LOA

Base Saturation Voltage (Note 1)

VBE

sat

-

1.4

-

1.4

V

Ic = 3.0A, la = 0.6A

Base Saturation Voltage,
Tc = 100·C (Note 1)

VaE 1..11

-

1.4

-

1.4

V

Ic = 3.0A, la = 0.6A

Collector-Emitter Sustaining
Voltage (Note 2)

VCEO I",)

300

-

400

-

V

Ic=O.lA,la=O

Collector-Emitter Sustaining
Voltage
Tc = 100· C (Note 2)

VCEX I'u,)

350

-

450

-

V

L = 180,aH, Ic = 2.6A
VaE =-5V
VCE clamped to rated VCEX 1m!

Collector-Emitter Sustaining
Voltage
Tc = 100·C (Note 2)

VCEX I'u,)

200

-

300

-

V

L = 180!'H,lc = SA
VaE lotij = -5V
Vc~ clamp to Vceo -100V

Emitter-Base Cutoff Current

IE•O

Collector Cutoff Current

7

ICEV

35

7

35

-

1

-

0.5

-

-

-

-

0.5

2.5

3.0

1

Ic = 3.0A, VCE = 2V

mA
mA

VEa =9V
VCE = 650V, VaE = -l.SV
VCE = 8S0V, VaE = -1.SV

-

3.0

ICER

-

-

-

Output Capacitance,
Common Base

Cobo

SO

150

50

150

pF

Gain-Bandwidth Product

Fy

6

24

6

24

MHz

VCE = 10V, Ic = 0.2A, f = 1 MHz

Forward Bias Second Breakdown

Islb

200

-

200

-

mA

P.W. = 1 sec. single shot
VCE = lOOV

Energy Second Breakdown
(unclamped)

Eslb

180

-

180

-

,aJ

Resistive Switching Speeds
Delay Time
Rise Time
Storage Time
Fall Time

td
t,
t,
tf

-

0.05
0.7
4.0
0.8

-

0.05
0.7
4.0
0.8

"S

Collector Cutoff Current,
Tc = lOO·C
Collector Cutoff Current,
Tc=lOO·C

ICEV

Inductive Switching Speeds
Tc = lOO·C
Storage Ti me
Fall Time

t,
tf

Thermal Resistance,
Junction-to-Case

RSJC

-

-

4.0
0.8
1.75

-

-

2.5

-

mA
mA

4.0
0.8

,as

1.75

·C/W

VCE = 6S0V, VaE = -1.SV
VCE = 8S0V, VaE = -1.SV
VCE = 6S0V, R = SOn
VCE = 8S0V, R = SOn
Vca = 10V, f = 1 MHz

I c =3.OA

L = 40!,H, VSE om = 4.0 Vdc
Ic = 3.0A, tp = 100!,sec
Vee = 250V
Is, = IS2 = 0.6A
VaElofij =5V
I c =3.0A
la = 0.6A, VaE lofij = 5.0 Vdc
VaElolll =5V
VCE clamp = rated VCEX I,u,)

Notes:
1. Pulse width = 250/1S; duty cycle :51 %.
2. Sustaining Voltage. Measured at a high current point where collector·emiller voltage is lowest. Current pulse length", 50/1S; duty cycle :5 1%.
Voltage clamped at maximum collector·emiller voltage .
• JEDEC registered values.

UNITRODE CORPORATION' 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

4-79

PRINTED IN U.S.A.

•

2N6542

Forward Bias Safe Operating Area

2N6543

Power Derating
100

"

t-.....

~

J

I-

~ so

,lmS

Power Dissi pationl";/--I\t++tt-~\''\=';J';''-+-+--I
Limited

Z

i'

UJ

0:
0:

0:

0

,'\

r\.

I-

U

...«

10mS

:>

u

I'\. ~

";::z

0:

~
~
...J

60

I

~{/",

~d'd'

~J'1'

«

UJ

0

8

40

I

I-

I I

I

-"

Z

2N6542

6

2N6543

Te = 25
I
: '\.
Curves Apply Belowt-H+++t-t-'~\-IHH
0

.2

II II

I II RaledV eEo

:>

10

20

50

100

20

2!j'C SOAR CURVE
DASH LINES ON SOAR CURVES ARE EXTENSIONS OF

DISSIPATION LlM'Ti FDA TrMPERrURE
PUAPOSES

o

.Iww~~-L~~~-L~LU~~~~LL...J

5

200

~()

AT DESIRED OPER .... TING VOLTAGE.
'\
TION CURRENT LIMIT AND Is b CURRENT LIMIT FADM

u

1\

500

o

VeE-COLLECTOR VOLTAGE (V)

IERAT'NG

z
;;:

I-

...

2N6542~

Cl

0:
0:

0:

:>

0.5

u

u

c.l
0
I

UJ
...J
...J

u

I

100°C

I-

25°C

UJ

u

0

2N6543 0.2

-"

I

20

f-""

55°C

~~
I""'- ~

10

~~

If

.t:

,VBI;

0.1

I

50

Z

:>

I-

j

100

~

0

200

VeE = 5V

!--

0:
0:

I'\.

D.C. Current Gain
200

UJ

'\

J_

40
80
120
160
TC - CASE TEMPERATURE (OC)

Reverse Biased Safe Operating Area

Z

........

DERAT~ OIS51~A

UJ

0:
0:

'-...

'&~

0:

...J

'''~o
r-...

(off)

5

~5V

=Te"; 100°C

2

.05
10

20

50

100

500

200

.05

1000

VeEX 1"'1- COLLECTOR VOLTAGE (V)

0.1

0.2
0.5
2
Ie - COLLECTOR CURRENT (A)

5

Saturation Voltages
Typical
I nductive Load
Switching Performance

I
lell, = 5
2

~

-55°C

UJ

;"

25°

0

> 0.5

z

;::
«0:

/oifC7v'

-

:> 0.2

I-

«IJ)

I -- I-

0.1

0.1

TJ
°c

I.

If.

JLS

nS

tf;
nS

3.0

25
100

.45
.575

70
100

10
20

5.0

25
100

.475
.60

25
45

4
10

8.0

25
100

.525
.625

20
45

10
15

Ie
Amps

,--: 1-.-

55°C
100°C

0

.05
.05

-

Y'BE \s"'1

/

/V

~ /hoc
VeE!s.. ,)

0.2
0.5
Ie - COLLECTOR CURRENT (A)

UNITROOE CORPORATION. 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

4-80

PRINTED IN U.S.A.

2N6542

Resistive Turn-On Time

Resistive Turn-Off Time

1000

10

25'C

1/

V

"'' "

'efl ,

5

V

t--r---

t.

i'

2

I--

u;

on

.s
UJ

'1' "-

...:i!

100

;::

;::

t.

~

25'C

~

Vee = 125V
'efl, = 5
0.2

0.5
'e -

2

5

0.1
0.1

10

COLLECTOR CURRENT CA)

100'C

Vt.,

....

"f::::

0.2

20

ts

25'C
0.5

50

II

lOO'C

.3

10
0.1

125V
5

Vee

100'C
500

:i!

2N6543

jV

25'C

I
0.2
'e -

0.5
1
2
COLLECTOR CURRENT CA)

10

TEST CONDITIONS FOR DYNAMIC PERFORMANCE
VeE<

VCEO(SUSl

'"

Z

o
;::
oz

+IOV

............... 1

0J"'l...

I-

Atta~n

:::>

~

PW Varied to Attain
Ie = 100mA

1-",
S~

Leod:::: SOmH

O...J

Reod

5:;:

15\?
+175V _

Vel Imp

=:

Vee:::: IOV

O.7n

(Unclamped)

'--*"_1-01
~",=,-"",.-/'iQ4.12

Lw,l

= 180,uH

ReoLi

::::

Q.05n

~

3%

QI 2N6408 Q3 2N5875
Q2 2N6406 Q4 2N5877
Diodes IN4933

Vclamp

::::::

Rated V CEX Value

Vee:::: 20V

lIOCl

4Vfl

0J"'l...

OUTPUT WAVEFORMS
t f Clamped
Unclamped :::: t J

/tf

~~-'.L~t

PW Varied to Attain Ie

Leo" =40/LH
Rco ., =O.2n

Vee

= IOV

(Unclamped)

t, Adjusted to
Obtain Ie

t

=
1

t

See Above For
Detailed Conditions

"'='

2

leo" (lCpk)
Vee
Lcoll (lCpl<)
Vclamp

Test Equipment
Tektronix Scope
475 or Equivalent

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861·6540
TWX (710) 326-6509 • TELEX 95-1064

4-81

= +13V

---..0

0JU-

I

--11V~2

'e=3A
PW <;; loo#s

Vel amp

fo:::: 500kHz

INDUCTIVE TEST CIRCUIT

...

L...ji~"""'M-:..1o~-5V

Specified Peak Ie-

Duty Cycle
f=lkHz

I

IB,=O.6A~

O.OI#F
Set +V,n to Obtain a Forced
hfE = 5 and Adjust PW to

o

RESISTIVE SWITCHING

AND 'NDUCTIVE SWITCHING

pwA
-4V

200

U

Il.

(SUS)

Drive Circuit
+4V

tf:s; 5ns
tf:s;;; SOns
Duty Cycle <;; 2%
Vee =250V
RL =83!l
01 = IN5820 or Equiv.
R,=2oo
RESISTIVE TEST CIRCUIT

~

BTUT

I
2~ 01

-5V

RL

.=.Vcc

~

PRINTED IN U.S.A.

POWER TRANSISTORS

2N6544
2N6545

8 Amp, 850V, Triple Diffused, NPN, Mesa

FEATURES

DESCRIPTION

•
•
•
•
•

These high voltage triple diffused glass
passivated pOwer transistors combine fast
switching, low saturation voltage and rugged
Eslb capability. They are designed for use in
off-line power supplies, high voltage inverters,
switching regulators, ignition systems and
deflection circuits.

Collector-Base Voltage: up to S50V
Peak Collecto'r Current: 16A
Rise ~ime: ~ 1.01's t @ I _ SA
Fall Time: ~ 1.0l'S f
eKey Parameters characterized at 100°C

ABSOLUTE MAXIMUM RATINGS·
2NB545

2NB544

Collector-Base Voltage, VeBo
Collector-Emitter Voltage, VCEQ (SUSI
Emitter-Base Voltage, VEBO .....
Collector Current, Ie. continuous
Base Current, lB. continuous
Emitter Current, IE, continuous.
Power Dissipation, 25°C Case
Derating Factor
Operating and Storage Temperature Range

..... 850V

650V.... .

... 400V
9V

... JOOV.. .
.. 9V.

....... SA
........ SA

SA ..
...... 8A.
.... 16A.

.. ..... 16A
................. 125W

125W...
....714W/oC ..

..................714W/oC
.. -65 to 200°C ....

• JEDEC registered values.

MECHANICAL SPECIFICATIONS
NOTE:
Leads may be soldered to within

2N6544 2N6545

of base provided temperaturetime exposure is less than 260~C
for 10 seconds.

TO-204AA (TO-3)

1/16"

F

~OOE
C

D

M

I~~....

G
1

~

H
I

A
B

I"

G-

J-!1?

1-

K

BASE
EMITIER

N

c
D
E
F
G
H

L

J
K

e
M

N

ins.
875 MAX
135 MAX
250 450
312 MIN
D38- 043 DIA
188 MAX RAD
1177-1197
655- 675
205- 225
420- 440
525 MAX RAD
151- 161 DIA

190·.210

mm.
2223 MAX
343 MAX
635 11 43
792 MIN
097-1 D9 DIA
478 MAX RAD
2990-3040
1664-1715
521-572
1067-1118
1334 MAX RAD
384-409 DIA
4.83·5.33

4-82

~UNITRODE

I

2N6544 2N6545
ELECTRICAL SPECIFICATIONS (at 25·C unless noted)"
Symbol

Test

2N6544
MAX.
MIN.
12
60

2N6545
MAX.
MIN.
12
60

Test Conditions

Units

Ic = 2.5A, VCE = 3V

D.C. Current Gain (Note 1)

hFE

D.C. Current Gain (Note 1)

hFE

Collector Saturation Voltage
(Note 1)

VCE("t)

-

1.5

-

1.5

V

Ic = 5.0A, la = 1.0A

Collector Saturation Voltage,
Tc = 100·C (Note 1)

VCE(,atl

-

2.S

V

Ic = S.OA, la = 1.0A

VCE(,atl

-

2.S

Collector Saturation Voltage
(Note 1)

S.O

-

S.O

V

Ic = 8.0A, la = 2.0A

Base Saturation Voltage (Note 1)

VaE(,atl

-

1.6

-

1.6

V

Ic = S.OA, la = 1.0A

Base Saturation Voltage,
TC= 100·C (Note 1)

VaE(,atl

-

1.6

-

1.6

V

Ic = S.OA, la = LOA

Collector-Emitter Sustaining
Voltage (Note 2)

VCEO ('u,)

300

-

400

-

V

Ic=O.lA

Collector-Emitter Sustaining
Voltage
Tc = 100°C (Note 2)

VCEX {sus}

350

-

4S0

-

V

L = 180I'H, Ic =4.SA
VaE=-SV
VCE clamped to rated VCEX (,u'l

Emitter-Base Cutoff Current

IEao

-

1

-

O.S

-

-

-

2.5

-

-

-

2.S

Collector Cutoff Current

ICEV

7

7

35

35

1

O.S

-

Ic = 5.0A, VCE = 3V

mA
mA

Collector Cutoff Current,
Tc =lDO°C

ICEV

Collector Cutoff Current,
Tc =lDO°C

-

3.0

ICER

-

-

Output Capacitance,
Common Base

Cabo

100

200

100

200

pF

Gain-Bandwidth Product

Fr

6

24

6

24

MHz

Energy Second Breakdown
(unclamped)

Es/b

Resistive Switching Speeds
Delay Time
Rise Time
Storage Time
Fall Time

3.0

mA

mA

VEa =9V
VCE = 6S0V, VaE = -1.SV
VCE = 8S0V, VaE = -1.5V
VCE = 6S0V, VaE = -1.SV
VCE = 850V, VaE = -l.SV
VCE = 650V, R = son
VCE = 8S0V, R = 50n
Vca::';: lOY, f = 1 MHz
VCE = lOY, Ic = 0.3A, f = 1 MHz

SOO

-

sao

-

I'J

Ic=S.OA
la=l.OA
L=401'H

td
tr
t,
tf

-

0.05
1.0
4.0
1.0

-

I'S

-

0.05
1.0
4.0
1.0

Ic= S.OA
Vcc=250V
lal = la2 = 1.0A
VaE(offl =SV

t,
tf

-

-

4.0
0.9

-

4.0
0.9

I'S

ReJc

-

1.4

-

1.4

°C/W

-

Inductive Switching Speeds
Tc = 100°C
Storage Ti me
Fall Time
Thermal Resistance,
Junction-to-Case

Ic=S.OA
la = LOA
VaE(Offl =SV
VCE clamp = rated VCEX (,u,)

Notes:
1. Pulse width = 250pS; duty cycle,,;l %.
2. Sustaining Voltage. Measured at a high current point where collector·emitter voltage is lowest. Current pulse length
Voltage clamped at maximum collector·emitter voltage .
• JEDEC registered values.

UN ITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (7101 326·6509 • TELEX 95·1064

4·83

55

50pS; duty cycle"; 1%.

PRINTED IN U.S A.

•

2N6544 2N6545

Forward Bias Safe Operating Area
20

Power Derating
100

III

~

...
'"

~

,



10

Ie
Amps

TJ
'C

t,

t,.

ps

ps

t fj
p.s

3.0

25
100

.90
1.40

.07
.12

.07
.15

5.0

25
100

.98
1.52

.10
.15

.11

8.0

25
100

1.10
1.70

.14
.20

.11

.20
.18

//

I-r5Q.c
'j

V/./

tfv ;;;:;:

~/VeE{SATI

0.2
15J,C

VeE _10V

Inductive Load
Switching Performance

lell, - 5

25'C

'~~

0.2
0.5
Ie - COLLECTOR CUI/RENT (A)

Saturation Voltages

55'C

~~

- - - VeE =3V

2

20
50
100
200
500
VeEXISUS! - COLLECTOR VOLTAGE (V)

~

--

r:-

I
st

I

~l00°C

200

~~

ci 10 ~r--

I

~5V

~

.1

-

<..i

u

..l

I

50

Z

I
I
I

U

.1

40
80
120
160
Te-CASE TEMPERATURE ('C)

100

z

I

'"

.1

'\

D.C. Current Gain

-- M-

...

DISSI~A'~

TION CURRENT LIMIT AND 'SI'o CURRENT LIMIT FROM

DASH LINES ON SOAR CURVES ARE EXTENSIONS OF
DISSIPATION LIMITS FOR TEMPERATURE DERATING

500

......

~~

200

Z

b..

~~

40

U

!~,

\

~

...

1'0.

0::

Reverse Biased Safe Operating Area

(!I

~"~l>

is'd'/.

...o.t

(Reoll

U
0:

PW Varied to Attain Ie

VClamp

INDUCTIVE TEST CIRCUIT

en

1

= 1.0A

L~OI'
R~o'l

=20V
10 = 500kHz
Vee

(Unclamped)

---r.
I
t
° . 4v.,,1:°0
Ii
lSI)

181

-4V O.Ol~F
Set +V,n to Obtain a Forced
hFE = 5 and Adjust PW to
Attain Specified Peak IeQ1 2N640B Q3 2NSB7S
Duty Cycle ~ 3%
Q2 2N6406 Q4 2NSBn
1 = 1kHz
Diodes 1N4933

~2

~

RESISTIVE SWITCHING

pwA

0-..rL.

z

AND INDUCTIVE SWITCHING

Drive Circuit
+4V

en

o

i=

[SUS,

Lead ('Cpk)

2

VClamp

Test Equipment
Tektronix Scope
475 or Equivalent

Turn-Off Time

Turn-On Time

10

1000

125V
Vee
le ll• 5
I"
I"
T J = 25'C

t- 1""- to-.

SOO

".....

'I'
I'

J
I,

f"

T'-

'0

oS

td

t,

k:::1--'

I'

"'
:;; 100

i=
0.5

50

r....
If

0.2

"

0.1

0.1

0.2
Ie -

=

1I

f'..
r-

20

V

0.5
1
COLLECTOR CURRENT (A)

UNITRODE CORPORATION. S FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) B61-6540
TWX (710) 326-6S09 • TELEX 9S-1064

Vee
125V
le ll ,=5
VSE(off) :::::5V

T J =2S'C

10
0.1

10

4-85

0.2
Ie -

o.s

S

10

COLLECTOR CURRENT (A)

PRINTED IN U.S.A.

PO\A/ER TRANSISTORS

JAN, JANTX, & JANTVX 2N6546
JAN, JANTX, & JANTVX 2N6547

15A,850V, Fast Switching,
Silicon NPN Mesa

FEATURES

DESCRIPTION

•
•
•
•
•

These high voltage glass passivated power
transistors combine fast switching, low
saturation voltage and rugged Es/b capability.
They are designed for use in off-line power
supplies, high voltage inverters, switching
regulators, ignition systems and deflection
circuits.

Collector-Emitter Voltage: up to 850V
Peak Collector Current: 30A
Rise Time: ~ 0.7pS} @ I = lOA
Fall Time: ~ 0.7 pS
c
Qualified to MIL-S-19500/525

ABSOLUTE MAXIMUM RATINGS
2N6546
2N6547
Collector-Emitter Sustaining Voltage, VCEX ........ _........................... 650V . _.. _... , _.......... 850V
Collector-Emitter Voltage, VCEO (SUS) ......................................... 300V ........ _.. _. _.... _.400V
Emitter-Base Voltage, VEBO ..... __ . _..................... _. _........ _. _. _. _.... 8V ...... _............... 8V
Collector Current, Ic, continuous _... __ . _. _. _.... _.... _. _........... _. _. _. __ ... 15A .............. _...... 15A
Collector Current, Ic peak ... _...... _..... __ . _. _.. _........ _... _. _........ _. _.30A ................. _. _.30A
Base Current, IB, continuous. _. _...... _.. _... _............................... _lOA .. ___ .. _........ _.... lOA
Emitter Current, IE, continuous ............................................... 25A . __ . _. __ ........ _.... 25A
Power Dissipation, 25·C Case .............................. _..... _.. _. _... _. 175W ...... _............ 175W
Derating Factor ............. _... _......... _._ ..... _....................... IW;oC .. ___ ..... __ ._ .... IW/·C
Operating and Storage Temperature Range ..... ____ ..•.. _... _..... _.. _. _. _. _. _.. _. _.. -65 to +200·C ....... _

MECHANICAL SPECIFICATIONS
NOTE:
Leads may be soldered to within
1116" Of base provided temperaturetime exposure is less than 260°C
for 10 seconds.

JAN. JANTX. & JANTXV 2N6546
JAN. JANTX. & JANTXV 2N6547
ins.
A

F

M

~OOE l ~7 i'·
-

j

J-

C

12183

0

B
C

~

IK

BASE

0

EM!TTER

E

N

F
G

H

mm.
2223 MAX
343 MAX
635-1143

312 MIN
038- 043 OIA

792 MIN
097-10901A

188 MAX RAO
1177 1197
655- 675
205- 225

478 MAX RAD
2990-3040
1664-1715

K

420- 440

521-572
10 67-1118

L
M

525 MAX RAO
151- 161 OIA

13 34 MAX RAO
384-409 DIA

N

190-.210

J

L

875 MAX
135 MAX
250- 450

4-86

TO-204AA (TO-3)

483·533

~UNITRDDE

JAN, JANTX, & JANTVX 2N6546
JAN, JANTX, & JANTVX 2N6547
ELECTRICAL SPECIFICATIONS (at 25'C unl... noted)·

Test

Symbol

D.C. Current Gain (Note 1)

hFE

D.C. Current Gain (Note 1)
D.C. Current Gain (Note 1)

2N6546
MIN.
MAX.
12

60

hFE

6

-

hFE

15

-

5.0

VeE CsaU

-

Collector-Emitter Sustaining
Voltage (Note 2)

VCEO Csusl

300

Emitter-Base Cutoff Current

lEBO

Collector Cutoff Current

ICEX

Collector Saturation Voltage (Note 1)

VCE CsaU

Collector Saturation Voltage (Note 1)

VCE CsaU

Base Saturation Vottage (Note 1)

--

Collector Cutoff Current,
Tc = 150'C

ICEX

-

Output Capacitance
Common Base

Cabo

-

Resistive Switching Speeds
Turn-on Time
Turn-off Time
Thermal Resistance,
Junction-to-Case

tON
tOFF
RBJC

-

2N6547
MIN.
MAX.

Units

Test Conditions

12

60

Ic = 5.0A. VCE = 2.0V

6

-

Ic = lOA, VCE = 2.0V

15

-

Ic - lA, Vee = 2V

1.5

V

Ic = lOA, Ie = 2.0A

5.0

V

Ic = 15A, Ie = 3.0A

1.6

-

1.6

V

Ic - lOA, Ie = 2.0A

-

400

-

V

1

-

1

mA

VEe = 8V

-

-1

mA

VCE = 650V, VeE = -1.5V
VCE = 850V, VeE = -1.5V

-

30

mA

VCE = 650V, VeE = -1.5V
VCE = 850V, VeE = -1.5V

-

500

pF

Vce =lOV. f = 1MHz

1.0
4.7

pS

Ic = lOA
Vcc = 250V
IB1 = IB2 = 2.0A

1.0

'C/W

1.5

1

-

30
500
1.0
4.7
1.0

-

-

Ic = O.lA. Ie = 0

Notes:
1. Pulse width = 25011S; duty cycle $1 %.
2. Sustaining Voltage. Measured at a high current point where collector-emitter voltage is lowest. Current pulse length'" 5011S; duty cycle $ 1%.
Voltage clamped at maximum collector-emitter voltage.
• JEDEC registered values.

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

4-87

PRINTED IN U.S.A.

•

JAN, JANTX, & JANTVX 2N6546
JAN, JANTX, & JANTVX 2N6547

Forward Bias Safe Operating Area

Power Derating
100

~

~ t-....

"

0:

...U

0

.
."
"-

,

I"

80

...... ~{/~

~

60

z
;::

'''~()

'1',,>

~J

'"

...'"Z
'"

0:
0:
:l
U

,

N~

0:

0

'"

40

AT OESIREP OPERATING VOLTAGE, DERATE

20

~<"0

OISSI~"'.'\

lION CURRENT LIMIT AND I, b CUAAENT LIMn FADM
U'C SOAR CURVE

DASH LINES ON SOAR CURVES ARE £XTENSIONS OF

~

DISSIPATION LlMITj FOR TrMPEAjTURE rERATING
PURPOSES

o

o

.......

I

40
80
120
160
TC - CASE TEMPERATURE ('C)

"

200

VeE-COLLECTOR VOLTAGE (V)

DC Current Gain

Saturation Voltages
500

5

II II

IL

lell, = 5
2

~

~

\oJ

"~
0

>

I

55"~

200

[1

.r; ~

i-- VIE ,...,

z

« 100

~-

"

\oJ

0::
0::

lOO"C

:>

0.2
VeE(..t}

kX



= 5V

Z

25"

0.5

z

~0::

VeE

I-

1
2
5
10
0.5
'e - COLLECTOR CURRENT (A)

20

Typical
Inductive Load
Switching Performance

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

t,

TJ
"C

,,5

nS

nS

3

25
100

.8
1.10

.14
.18

.025
.030

5

25
100

.90
1.20

.14
.16

.025
.030

10

25
100

1.20
1.50

.05
.12

.050
.10

Ie
Amps

4-88

t"

tfi

PRINTED 'N U.S.A.

JAN, JANTX, & JANTVX 2N6546
JAN, JANTX, & JANTVX 2N6547

Resistive Turn-Off Time

Resistive Turn-On Time
10

1000

100'C

500

'"

I

loo'C

/

~ ~
,,~

Ui

.s
LIJ

~'"

"

200

t,

100

;::

B,_S

""'
.:;
t,

---~

;::

1
10

Ie -

I"

.S

"'"

~

"" """

./

loo'C

......

tf

I,;'

-?

-;;~
[-

.1
.2

20

•

"

1.0

.2

.S

.2

I"

LIJ

1121

'11-

10

250V

~,:::S_

:;

Vee =250V
20

I

vee

2.0

2S'C
loo'C

50

r---. .-

J:C r-.....

2S'C-

.... "

.~ -

U

'"

::;;

S.O

.S

COLLECTOR CURRENT CA)

2

Ie -

S

10

20

COLLECTOR CURRENT CA)

TEST CONDITIONS FOR DYNAMIC PERFORMANCE
VCEOISUSJ

Drive Circuit

f/l

Z

o
;::
is

+IOV

5

II.

pw-l"b-4V

200

8

ISP.

+4V

_1

0..rL

z

!:

RESISTIVE SWITCHING

V eEX ISUS} AND INDUCTIVE SWITCHING

O.O.F

JL
o
•

t-;_~1

Set +V.o to Obtain a Forced
~~-.,.,,.,,-I1Q4.r,.z
hFE = S and Adjust PW to
yl ...............,.,...:..:i..--5V
Attain Specified Peak
QI 2N6408 Q3 2N5875
Duty Cyele .; 3%
Q2
2N6406 Q4 2N5877
f
1kHZ
Diodes IN4933

4V1i

Leo., = 80mH
Reod =0.70
VcialllP

Vee

= lOY

(Unclamped)

=

leOl1
Reoll

== 180p.H
== a.OS!!

VCI~mp

== Rated Vux

Value

Vee = 20V
fo = 500kHz
OUTPUT WAVEFORMS
t f Clamped
Unclamped = t~

/t,

'--f'<-:-_;'>-'-->- t

PW Varied to Attain Ie

leod
Reod

= 40.uH

Vee

= lOY

== 0.20

------.0

= IDA

2

t, Adjusted to

tf

~

1001'S

SOns

Duty Cycle" 2%
Vee =250V
R,=25P.
01 = IN5820 or Equiv.
R.=61l
RESISTIVE TEST CIRCUIT

Obtain Ie

= Leo"

t

"'='

2

(ICPkl

Vee

1

t

VeE

- -llV

Ie

tf~5ns

V cl • mp (Unclamped)

INDUCTIVE TEST CIRCUIT

__ I

O~

PW"

'c'

PW Varied to Attain
Ie = lOOmA

=+13V

I

IBA=2.0A~
38.SV
100

Leod (ICPk)
VClamp

Test Equipment
Tektronix Scope
475 or Equivalent

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02171 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

4-89

PRINTED IN U.S.A.

POWER TRANSISTORS

2N6671
2N6672
2N6673

8A, 400V, NPN Mesa

FEATURES

DESCRIPTION

•
•
•
•

These high voltage, multiple layer
epitaxial, glass passivated power
transistors combine fast switching, low
saturation voltage and rugged secondbreakdown capability. They are designed
for use in off-line power supplies, high
voltage inverters and switching regulators.

Collector Emitter Voltage: up to 650V
Peak Collector Current: lOA
Storage Time ~ 2.5ps } at Ie = 5A
Fall Time ~ O.4ps

ABSOLUTE MAXIMUM RATINGS"
2N6671

2N6672

2N6673

Collector Emitter Voltage, VeEv ................... 450V ........ 550V ......... 650V
Collector Emitter Voltage, VeEx ................... 350V ........ 400V ......... 450V
Collector Emitter Voltage, VeEo ISUSJ ............... 300V ........ 350V ......... 400V
Emitter Base Voltage, VE• O .. • .. .. .. .. • .. .. • .. .. • .. • .. .. .. .. .. . . . 8V ............... .
Collector Current. Ie continuous.. .. .. ..... .. .. ...... .. .......... 8A ............... .
Collector Current, leMIP.akl ....................................... l2A ............... .
Base Current, I. continuous .................................... 4A ............... .
Power Dissipation, up to 25°C ................................. l50W ............. ..
above 25°C, derate linearly ................ 0.86W;oC ........... ..
Operating and Storage Temperature Range ................ -65°C to +200°C
• JEDEC registered values.

MECHANICAL SPECIFICATIONS
2N6671 2N6672 2N6673

NOTE:
Leads may be soldered to Within
'It." of base provided temperature·
time exposure is less than 260'C
for 10 seconds.

F-W- M

~SbE I 7

I~~

C 0

4/82

i"·-

J-

~
K

BASE
EMITTER

A
B

C
D
E
F
G
H

L

J
K
L
M

INCHES
875 MAX.
135 MAX.
250 .043 DIA
312 MIN
038-.043 DIA
.188 MAX. RAO.
1177 1.197
655- 675
205- 225
420-.440
525 MAX RAO
.151- 161 DIA.

4-90

TO-204AA (10·3)

MILLIMETERS
22.23 MAX.
3.43 MAX
635-11.43
792 MIN
097-1.09 DIA
4.78 MAX. RAD
2990-3040
16.64- 17 15
5.21-5.72
10 67-11.18
13 34 MAX. RAD.
384-409 DIA

~UNITRODE

2N6671 2N6672 2N6673

ELECTRICAL SPECIFICATIONS (at 25°C unless noted)
TEST

Collector Cutoff Current

Collector Cutoff Current
Te=125°C

SYMBOL

le.v

ICEV

Emitter Base Cutoff Current

leeo

Collector Emitter Sustaining Voltage
(Notes 1 & 2)

VCEOlsusl

2N6671

2N6672

2N6673

MIN. MAX. MIN. MAX. MIN. MAX.

UNITS

TEST CONDITIONS

-

0.1

-

-

-

-

mA

VeE = 450V, Va. = -1.5V

-

-

-

0.1

-

-

mA

VeE = 550V, Va. = -1.5V

-

-

-

mA

VeE = 650V, Va. = -1.5V

1

-

0.1

-

-

mA

VeE = 450V, VBE = -1.5V

-

-

1

-

-

mA

VeE = 550V, Va. = -1.5V

-

-

-

-

1

mA

VeE = 650V, Va. = -1.5V

-

2

-

2

-

2

mA

Va. = -SV, Ie = 0

300

-

350

-

400

-

V

Ie '= 0.2A, la =0

10

40

10

40

10

40

1.6

1.6

-

1.6

V

Ie = 5A, la = 1A

1

-

1

-

1

V

Ie = 5A, la = 1A

DC Current Gain (Note 1)

hF•

Base Saturation Voltage (Note 1)

VBElsatJ

Collector Saturation Voltage (Note 1)

VCElsatJ

-

Collector Saturation Voltage
Te = 125°C (Note 1)

VCElsatJ

-

2

-

2

-

2

V

Ie = 5A, la = 1A

Collector Saturation Voltage (Note 1)

VCElsati

-

2

-

2

-

2

V

Ie = SA, la = 4A

350

-

400

-

450

-

V

L = 170JlH, Raa = 50
Va. = -5V
Ie = 5A, la = 1A

200

-

250

-

300

-

V

L = 170JlH, Ree = 50
Ve. = -5V
Ie = SA, Ie = 3A

3

12

3

12

3

12

Collector Emitter Voltage (Note 2)

AC Current Gain

Ie = 5A, VeE = 3V

VCEX

Ihf.1

Ie = 0.2A
VeE = lOV
f =5MHz

Gain·Bandwidth Product

h

15

60

15

60

15

60

MHz

Output Capacitance Common Base

CObO

50

300

50

300

50

300

pF

Vee = 10V, f = O.lMHz

Delay Time

td

-

0.1

-

0.1

-

0.1

Rise Time

t,

-

0.5

-

0.5

-

JlS

0.5

Ie = 5A, leO' 1A
Vee = 125V
tp " 20Jls

Storage Ti me

t,

2.5

-

2.5

JlS

tf

0.4

-

2.5

Fall Time

-

0.4

-

0.4

Ie = 5A, -I. = 1A
Vee = 125V
tp= 20Jls

Crossover Ti me

te

-

0.4

-

0.4

-

0.4

JlS

Ie = 5A, 1. 2 = 1A
Vee = 125V
Lc = 170JlH, Re = 250
Collector clamped to VeEx

Rise Time

t,

-

0.8

-

O.S

-

0.8

JlS

Ie = 5A, I. = 1A
Vee = 125V
t p = 20Jls

Storage Time

t,

4

-

4

-

4

tf

O.S

-

JlS

Fall Time

-

O.S

-

O.S

Ie = 5A, -I. = 1A
Vee = 125V
tp 0'. 20Jls

Crossover Ti me

te

-

O.S

-

O.S

-

0.8

JlS

Ie = 5A, le2 = 1A
Vee = 125V
L = 170JlH, Re = 250
Collector clamped to Ve• x

ReJe

-

1.17

-

1.17

-

1.17

°C/W

VeE = 10V, Ie = 0.2A

Switching Speeds

Switching Speeds
Te = 125°C

Thermal Resistance, Junction to Case

*JEDEC registered

values.
Notes: 1. Pulse duration = 300/15; duty factor :;; 2%
2 CAUTION: The sustaining voltage VCEOCsusl and VCEX must not be measured on a curve tracer.

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
(710) 326-6509 • TELEX 95-1064

TW~

4-91

PRINTED IN U.S.A.

•

2N6671 2N6672 2N6673

Typical Collector·to·Emitter Saturation
Voltage as a Function of Collector Current

Typical Base·to·Emitter Saturation
Voltage as a Function of Collector Current
40

Ie = Ic/5

Ie = 1e/5

08

06

f------I-I----+---Ji:: ~ig:g

ffi

1--

t:c.
2"",

Tc =

25 C
Q

04

""'~~'"'

0:0
0>.

-40's..

I-

f..--::

Uz
~o

~~

02

8~
I=>

_ 125' C
~~R((1')-

~!;{

:::::::::::c~s( 1(l>Ip(R~

0(/)
>

01
08
06

04

04
8

4

10

8

1

Io-COLLECTOR CURRENT (A)

Typical Saturated·Switching· Time
Characteristics
CASE TEMPERATURE (T oJ = 25'C

Typical de beta Characteristics
200
0

COLLECTOR-TO-EMITTER
VOLTAGE (V,,) = 3V

IS1

Vee

~
~ 100
~

'"z-<

0:
lI-

80

60

~ 40

0:
0:

=>
'-'

'"~
0:

.--

.........

.....

L

;;;--

'-'

1

10

01

"'x"s.

~

~~

"

1t

'"I

=-1 92 = lA
= 125V

t p = 20/.1

0:

20

10

Io-COLLECTOR CURRENT (A)

CASE

..............
TEMPERAr
~
tE (T,)._
40·C

6 8 1

~
K

200

I---

6

~
810

........

-

--

~
---......
t,

t,

~

~

.-./

10 - COLLECTOR CURRENT (A)

I,-COLLECTOR CURRENT (A)

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95-1064

f::::::

~.

4-92

PRINTED IN U.S.A.

2N6671 2N6672 2N6673

Typical Thermal·Response Characteristics
(Normalized)

Maximum Operating Areas

(Te

'"z
«
f-

=25°C)

10

u


I-~

1-",

'"'"

!::>'

20

·OJ 1.0

0"
I-;-~
"'0
0>

~§:
"'z
<0
ICli

_40· C

~

06

<,~\I>?~I'''I

>

~Q

6~

~:::::::~~\)\l.C
~e)<\

0.8

C/
~

0Z

~

"';:; 1.0

m~

/
.,/

",,,,

::;~

~~
0-'

0;:'
.C

~

~
~

.1
6

8 10

20

40

60100

10

15

Ie-COLLECTOR CURRENT (A)

Ie-COLLECTOR CURRENT (A)

Typical dc beta Characteristics
100
0

80

~ 60

'"

~

'"z<

40

COLLECTOR· TO-EMITTER VOLTAGE (Vco) =3V

C'-?O'~

~
"'<,:

'"

l-

25·C



"~
'"
It
<.>
"

-

a:

10

-40·C

r.....

1
4

6

"
8 10

20

40 60 80100

I,-COLLECTOR CURRENT (A)

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

4·96

PRINTED IN U.S.A.

2N6674 2N6675

-

w

./

'-'
z
«

~

/

~

It:

;;!

::;;

8J

I

>>- 01

/

is
Vi

z

<:i

/

>-

fa
N

/

V

100

«

Pulsed Operation';'

r-- I~ (Mai) ~ulsed
g

/'

>-

is

10

.. '\

(J

r--~For Single et--r--~

~

r-

%.

Nonrepetltrve
fUlsel

0

Case Temperature (T c) = 25°C-

J,

L7~:~;,~ ~,~~\~cir~:;:ted

(J

In

::;;

(2N6674)_

V"o(Max) = 400V (2N6675)
0.01

01

0001

0.01

01

1

10

t,-PULSE WIDTH (s)

:<:r

'=

~~

Temperature)

I- V"o(Max) = 300V

It:

o
z

"q,

\

J\~

I IJ

+

%="'"

t::~~
DISSipation Limited _

It:

/

\~

Ie (Max) Continuous,",
DC OperatlOj

'"=>
'">-0

/

:J

•

Maximum Operating Areas
For All Types (Tc = 25°C)

Typical Thermal·Response Characteristics
(Normalized)

~"
'i.

10
100
V,,-COLLECTOR·TO·EMITTER VOLTAGE (V)

1000

Maximum Operating Conditions for
Switching Between Saturation
and Cutoff

Dissipation and ISIB Derating Curves
125

>-

100

W

It:
It:

'"=>
It:

!\

it
It:
~

0

(J

~

~'\

8J

25

50

75

100

125

150 175

i¥'2N6675

0

2N6674'-..,.

(J'

J,

'\

0-

25

100°C

0

>-

'''1''

50

tc~

It:

'-'

a

10

>zw

I'\.

=>
'-' 75
0

w

>zw

g

1\

z

200

a

225 250

To-CASE TEMPERATURE (OC)

I

I

100

200

I

I

I

300 350 400 450 500

VCEXIClAMPEOj-CLAMPED

COLLECTOR· TO· EMITTER VOLTAGE (V)

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326·6509 • TELEX 95·1064

4·97

PRINTED IN U.S.A.

2N6676
2N6677
2N6678

POWER TRANSISTORS
15A, 400V NPN Mesa

FEATURES

DESCRIPTION

•
•
•
•

These high voltage, multiple layer
epitaxial, glass passivated power
transistors combine fast switching, low
saturation voltage and rugged secondbreakdown capability. They are designed
for use in off-line power supplies, high
voltage inverters and switching regulators.

Collector Emitter Voltage: up to 650V
Peak Collector Current: 20A
Storage Time :5 2.5J1S} at Ie = 15A
Fall Time :5 O.5J1s

ABSOLUTE MAXIMUM RATINGS·
2N6676

2N6677

2N6678

Collector Emitter Voltage, VeEV .................. 450V ....... " 550V .......... 650V
Collector Emitter Voltage, VeEX .................. 350V ......... 400V ......... .450V
Collector Ernitter Voltage, VeEO,""" ............... 300V ......... 350V ......... .400V
Emitter Base Voltage, VEBO ....................................... 8V ................ .
Collector Current, Ie continuous. " .............................. 15A ............... .
Collector Current, leMIP.akl ....................................... 20A ............... .
Base Current, IB continuous ..................................... 5A ................ .
Power Dissipation, up to 25°C .... , .................. " " .. , ... 175W ............... .
above 25°C, derate linearly .................. 1W;oC .............. .
Operating and Storage Temperature Range ....... , '" " " . -65°C to +200°C ......... .
• JEDEC registered values.

MECHANICAL SPECIFICATIONS
NOTE:
Leads may be soldered to within
'I.... of base provided temperature·
time exposure 's less than 260°C
for 10 seconds.

2N6676 2N6677 2N6678

F

~iJE
C D

4/82

I
G

l

A
B

M
-

H

":\/'

........ I

J

G-

J- 't"

K

C
BASE
EMITTER

D
E
F
G
H

J

L

K
L
M

INCHES
875 MAX
135 MAX
250- 043 DIA
312 MIN
.038-.043 DIA
188 MAX RAD
1177 1197
655- 675
205- 225
420 440
525 MAX RAD
151- 161 DIA

4-98

TO·204AA (TO·3)

MILLIMETERS
2223 MAX
343 MAX
635-11.43
792 MIN.
097-109 DIA
4.78 MAX RAD.
2990-3040
1664- 17 15
521-5.72
10.67-1118
1334 MAX RAD
384-409 DIA

~UNITRODE

2N6676 2N6677 2N6678
ELECTRICAL SPECIFICATIONS (at 25°C unless noted)·
TEST

Collector Cutoff Current

Collector Cutoff Current
Te =100°C

SYMBOL

leEv

leEv

2N6676

2N6677

2N6678

MIN. MAX. MIN. MAX. MIN. MAX.

UNITS

TEST CONDITIONS

-

0.1

-

-

mA

VeE = 450V, Vee = -1.5V

-

-

0.1

-

-

-

-

mA

VeE = 550V, Vae = -1.5V

-

-

-

-

-

0.1

mA

VeE = 650V, Vee = -1.5V

-

1

-

-

-

mA

VeE = 450V, VOE. = -1.5V

-

-

-

1

-

-

mA

VeE = 550V, Vse = -1.5V

-

-

-

mA

VeE = 650V, V.E = -1.5V

2

-

2

-

1
2

mA

V•• = -8V, Ie = 0

300

-

350

-

400

-

V

Emitter Base Cutoff Current

I.BO

Collector Emitter Sustaining Voltage
(Notes 1 & 2)

VCEOlsuSI

DC Current Gain (Note 1)

h F•

8

-

8

-

8

-

Base Saturation Voltage (Note 1)

VBElsati

-

l.5

l.5

-

1.5

V

Ie = 15A, I. = 3A

Collector Saturation Voltage (Note 1)

VCElsati

-

1

-

1

-

1

V

Ie = 15A, I. = 3A

Collector Saturation Voltage
Te=lOO°C

VeECsatl

-

2

-

2

-

2

V

Ie = 15A, I. = 3A

Collector Saturation Voltage (Note 1)

VeElsali

-

l.5

-

1.5

-

1.5

V

Ie = 15A, I. = 3A

Collector Emitter Voltage (Note 2)

Ve••

350

400

-

450

-

V

L = 50pH, R•• = 20
V•• = -6V, VeE is clamped
Ie = 15A, I. = 3A

AC Current Gain

Ih,.1

3

3

10

3

10

Gain-Banqwidth Product

h

Output Capacitance Common Base

Cobo

10

Ie = 0.2A, I. =0
Ie = 15A, VeE = 3V

Ie = lA
VeE = lOY
f =5MHz

15

50

15

50

15

50

MHz

150

500

150

500

150

500

pF

Vea = lOV, f = O.IMHz

ps

Ie = 15A, I. = 3A
Vee = 200V, -V•• = -6V
t p = 20ps

ps

Ie = 15A, -I .. = 3A
Vet; = 200V, -V.E = -6V
t p = 20ps

VeE = 10V, Ie = lA

Switching Speeds
Delay Time

td

-

0.1

-

0.1

-

0.1

Rise Time

t,

-

0.6

-

0.6

-

0.6

Storage Time

t.

-

2.5

-

2.5

-

2.5

Fall Time

t,

-

0.5

-

0.5

-

0.5

Crossover Ti me

te

-

0.5

-

0.5

-

0.5

tIS

Ie = 15A, I. = 3A
Vee = 200V, V., = -6V
L = 50pH, Re :$ 13.500
Collector clamped to VeE.

Rise Time

t,

-

1

-

1

-

1

ps

Ie = 15A, I. = 3A
Vet; = 200V, V., = -6V
L = 50pH, Re:$ 13.50
Collector Clamped to VeE.

Storage Time

t.

-

4

-

4

4

t,

-

1

-

ps

Fall Time

1

-

Ie = 15A, -1.2 = 3A
Vet; = 200V, V.E =-6V
L = 50pH, Re :$ 13.50
Collector clamped to Vee.

Crossover Time

te

-

0.8

-

0.8

-

0.8

ps

Ie = 15A, I. = 3A
Vee = 200V, V.. = -6V
L = 50pH, Re:$ 13.50
Collector clamped to VeE.

R8Je

-

1

-

1

-

1

°C/W

Switching Speeds
Te = 100°C

Thermal Resistance, Junction to Case

1

• JEDEC registered values.
Notes: 1. Pulse duration = 3OO/1s; duty factor ,; 2%
2. CAUTION: The sustaining voltage VceolSuSI and VCEX must not be measured on a curve tracer.

UNITROOE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

4-99

PRINTED IN U.S A

II

2N6676 2N6677 2N6678

Typical Collector lo-Emitter Saturation
Voltage Cnaracteristics

Typical Elase-to-Emitter Saturation
Voltage as a Function of Collector Current,
40

la = Ic/5

o:~

"'>
I-~
20

/

1-",

,v/

~~
0-'

"",,'>.'\':J

1-0

..:.>

U>z
~g

I;::

1.0

";;J

i~
>

08
06

<,i//

~
~~
::---

~

~

~ --:~~;; <:§l0C
-

~"-,,,,,

)<\

~c ~ts'l'-~\.~G

k~~~?~I'-~1
C~5'1

c,'" :::::.-::

~

;:=--

~

~",c

0,4
6

20

8 10

40

60 100

10

15

k-COLLECTOR CURRENT (A)

k-COLLECTOR CURRENT (A)

Typical dc beta Characteristics
100
80

0

COLLECTOR, TO-EMITTER VOLTAGE (V.,) =3V

~ 60

0:

~

U>

z

0-1.\'",

40

'"

~
1,I.o~

0:
lI-

150:
0:

25oc
20

::J
<.)

~ r(r{.J~
. . . . r--.~
v~

~

0:

[2

10

/00'b

~~

0
0:

-40'C

......

<.)

0

I

1
6

"

8 10

20

40

60 80 100

I,-COLLECTOR CURRENT (A)

UNITROOE CORPORATION. 5 FORBES ROAO
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

4-100

PRINTED IN U.S A

2N6676 2N6677 2N6678

w
U
Z

~

f{i

V

'"
«

~

:;;

ffi

:I:

>>- 01

I

15

in

z
«

/

'">-

§

/'

/

./

V

100

..........

Pulsed Operatlon*

t--I~ (Max) Pulsed

g
>-

15

DC

/

~q,

1 ~="'"

operatlo~ z=Ni~

DISSipation limited

-t-

0'

err.:-V

t--'For Single
r-Nonrepebtlve

J~~r--I

Pulse

casl Tem~er~t~re

j

0

u

'1:,

(Tc) = 250C:. <:P

001
0001

tft "

aI

001

10

I

t,-PULSE WIDTH (5)

Dissipation and

ISlb

%.

V"c(Max) = 400V (2N6678)

aI

.

1\;;;

r-~~:~~~~~~: 1~g~ ~~~~m~

z

E

~

lmearly with Increase
In Temperature)

~
o

:<0-

\I"

(Curves must be Derated

J,

T

,~

Ie (Max) Contlnuou~

10

'"'"=>
u
'"u>-0

/

:::;

«

•

Maximum Operating Areas
(Te =2S0C)

Typical Thermal·Response Characteristics
(Normalized)

10

100

1000

V,,-COLLECTOR-TO-EMITTER VOLTAGE (V)

Maximum Operating Conditions
For Switching Between Saturation
and Cutoff

Derating Curves

125
15

>-

100

1'\

15

'"'"=>
u

8

75

g
>-

l\.

1\

!;(

'"0
~

>-

z

15

50

'"'"=>
u
8'"
I'\q~~

~

25

a

25

50

75

100 125

\

150 175 200

I"-

I"--I

225 250

I

I

'"

100

200

300 400 350 450

VCEXICLAMPEDI-CLAMPED COLLECTORTO-EMITTER VOLTAGE (V)

T,-CASE TEMPERATURE (OC)

UNITROOE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

2N6678,-

J,

'0

0.

2N6677 '-

u

0

~"',

w

2N6676 ......

TC" 100°C

~

4-101

PRINTED IN USA.

POWER TRANSISTORS

JAN, JANTX, & JANTXV 2N6676
JAN, JANTX, & JANTXV 2N6678

15A, 400V NPN Mesa

FEATURES

DESCRIPTION

• Collector Emitter Voltage: up to 650V
• Peak Collector Current: 20A
• Stora~e Time ~ 2.5/lS} at Ie = 15A
• Fall Time ~ 0.5/ls

These high voltage, multiple layer
epitaxial, glass passivated power
transistors combine fast switching, low
saturation voltage and rugged secondbreakdown capability. They are designed
for use in of(line power supplies, high
voltage inverters and switching regulators.

ABSOLUTE MAXIMUM RATINGS·

2N6676

2N6678

Collector Base Voltage, VCBO .................... 450V ......................... 650V
Collector Emitter Voltage, VCEX ................. 450V ......................... 650V
Collector Emitter Voltage, VCEOlsUSI .............. 300V ......................... 400V
Emitter Base Voltage, VEBO ...................................... 8V................ .
Collector Current, Ic continuous ................................ 15A ............... .
Collector Current, ICMlpeakl ..................................... 20A ............... .
Base Current, IB continuous ..................................... 5A ............... .
Power Dissipation, up to 25°C ................................. 175W .............. .
Power Dissipation, above 25°C, derate lineraly .................. 1W;oC ............. .
Operating and Storage Temperature Range ................ -65°C to +200°C ........ .

MECHANICAL SPECIFICATIONS
JAN, JANTX, & JANTXV 2N6676
JAN, JANTX, & JANTXV 2N6678

NOTE:
Leads may be soldered to within

'A.' of base provided temperature·
time exposure is less than 260'C
for 10 seconds.

F

~~E
C D

12/83

A
B

M

I~'~

j 7 1"·J-

~

Ii(

C
BASE
EMITTER

D
E
F
G
H
J

L

K

L
M

INCHES
.875 MAX.
135 MAX
250- 043 DIA.
.312 MIN.
.038- 043 DIA
188 MAX RAD.
1.177-1.197
655- 675
.205 225
420-.440
525 MAX RAD
151-161 DIA.

4-102

TO-204AA (TO·3)

MILLIMETERS
22.23 MAX.
343 MAX.
6.35-11.43
7.92 MIN
0.97-109 DIA
4.78 MAX. RAD
29.90 30.40
1664-.17.15
521-5.72
10.67-11.18
13.34 MAX. RAD.
3.84 409 DIA

~UNITRODE

JAN, JANTX, & JANTXV 2N6676
JAN, JANTX, & JANTXV 2N6678
ELECTRICAL SPECIFICATIONS (at 25°C unless noted)·
TEST
Collector Cutoff Current

SYMBOL

ICEX

Collector Cutoff Current
Tc = 125°C

ICEX

Emitter Base Cutoff Current

lEBO

Collector Emitter Sustaining Voltage
(Notes 1 & 2)

VCEOlsus,

2N6676

2N6678

UNITS

TEST CONDITIONS

MIN.

MAX.

MIN.

-

0.1

-

-

mA

VCE = 450V, VBE = -1.5V

-

-

-

0.1

mA

VCE = 650V, VBE = -1.5V

1

-

mA

VCE = 450V, VBE = -1.5V

-

-

-

1

mA

VCE = 650V, VBE = -1.5V

2

-

2

mA

VBE = -8V, Ic = OV

300

-

400

-

V

Ic = 0.2A, IB = OV

MAX.

DC Current Gain (Note 1)

hFE

15

40

15

40

DC Current Gain (Note 1)

hFE

8

20

8

20

Base Saturation Voltage (Note 1)

VBElsati

1.5

1.5

V

Ic = 15A, IB = 3A

1

-

1

V

Ic = 15A, IB = 3A

2

-

2

V

Ic = 15A, IB = 3A

V

Ic = 15A, IB = 3A

Ic = LOA, VCE = 3V
Ic = 15A, VCE = 3V

Collector Saturation Voltage (Note 1)

VCElsaD

Collector Saturation Voltage
Tc = 125°C

VCElsati

-

Collector Saturation Voltage (Note 1)

VCElsaD

-

1.5

-

1.5

AC Current Gain

Ihl~

3

10

3

10

Gain·Bandwidth Product

f,-

15

50

15

50

MHz

Output Capacitance Common Base

CObo

150

500

150

500

pF

VCB = 10V, f = O.lMHz

Switching Speeds
Delay Time

td

0.1

-

0.1

0.6

-

0.6

I1S

Ic = 15A, IB = 3A
Vcc = 200V, -VBE = -6V
tp = 20/15

2.5

I1S

Ic = 15A, -IB2 = 3A
Vcc = 200V, -VBE = -6V
tp = 2Ol1s
Ic = 15A, IB = 3A
Vee = 200V, VBE = -6V
L = 5011H, Rc ~ 13.500
Collector clamped to VCEX

Ic = 1A
VCE = 10V
f = 5MHz

Rise Time

tr

-

Storage Time

ts

-

2.5

Fall Time

tl

-

0.5

-

Crossover Time

te

-

0.5

-

0.5

I1S

Switching Speeds, TA = 125°C
Delay Time

0.5

VCE = 10V, Ic = 1A

Id

-

0.1

I1S

t,.

-

1

-

0.1

Rise Time

1

I1S

Ic = 15A, IB = 3A
Vee = 200V, VBE = -6V
L = 50I1H, Rc ~ 13.50
Collector clamped to VCEX

Storage Ti me

ts

-

4

-

4

Fall Time

tl

-

1

-

I1S

1

Ic = 15A, -IB2 = 3A
vee = 200V, VBE = -6V
L = 50I1H, Rc ~ 13.50
Collector clamped to VCEX

Crossover Time

te

-

0.8

-

0.8

I1S

Ic = 15A, IB = 3A
Vee = 200V, VBE = -6V
L = 50I1H, Rc ~ 13.50
Collector clamped to VCEX

R8JC

-

1

-

1

°C/W

Thermal Resistance, Junction to Case

• JEDEC registered values.
Notes: 1. Pulse duration =300/JS; duty factor::; 2%
2. CAUTION: The sustaining voltage VCEOlsus' and VCEX must not be measured on a curve tracer.

UNITROOE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

4-103

PRINTED IN U.S A.

II

JAN, JANTX, & JANTXV 2N6676
JAN, JANTX, & JANTXV 2N6678

Typical

Typical Base-to-Emitter Saturation
Voltage as a Function of Collector Current
40

Collector-to-Emitte~ Saturation
Voltage Characteristics

18 = le/5

!
ffiS'

1-'":
I-w

/
.v/

20

~~
o~

1-0

~~
«0
Ole:

I~
"=>

i~
>

1.0
08
06

;

,0-

~

,"
fv'<-~

~f-:::::::::~~,oo'C
~~.(ui>.~(lCl
<~~",~~I'-~I
C~5'1

,$

~~

--

v~::::...-::

--=-'

po-

0.4

I

6810

20

40

60100

I

fv"

~",c

~

10

15

I,-COLLECTOR CURRENT (A)

ie-COLLECTOR CURRENT (A)

Typical dc beta Characteristics
100
0

80

~ 60

5'"
~

z
«

40

COLLECTOR·TO·EMITTER VOLTAGE (V,,) =3V

('-1.l'~
~

4,1.0<,;

'"

l-

I-

~

'"'"=>

25'C

~ ~r1"oil

' \ . 0.)

20

....... , \."000

u

- '~

Cl

'"~

e'"u

10

-4Q'C

......

r........

Cl

1
4

6

8 10

20

40

60 80 100

ie-COLLECTOR CURRENT (A)

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

4-104

PRINTED IN U.S.A.

JAN, JANTX, & JANTXV 2N6676
JAN, JANTX, & JANTXV 2N6678

-

w
U

Z

~

/'

ill
~

"'"

ffi

Co
Co

~

01

/

/'

(T, = 25°C)

100

/

~
Co

~

z

riCo

U

~
0

'"~

Smgle
Nonrepetltlve
Pulse

I
Tem~r~t~re

J,

t-V".(Max)
V".(Max)

o

z

001

=

001

01

10

10

t,-PULSE WIDTH (5)

"

=300V (2N6676)=400V (2N6678)

01

0001

\

1\

casl
(T,) 25'C
(Curves must be Derated
Lmearly with Increase
In Temperature)

u

II

::

~

~*For

r--

'"0Co

/

§

~

\"' ~
I ~=~

Ie (Max) Continuous,,"

DtSSIP~~o~Jfr~~:~d :t: ~ ~~

go
:0

/

iii

10

Operatlon"'-t-

Pulsed

f - I; (Ma~) ~ul~e~

/'

'"
I

,/

•

Maximum Operating Areas

Typical Thermal-Response Characteristics
(Normalized)

~

~

\

100

1000

V,,-COLLECTOR·TO·EMITTER VOLTAGE (V)

Safe Operating Area For Switchinr
Between Saturation And Cutoff
(Clamped Inductive Load)

Dissipation and I." Derating Curves
125

TA = 25'C
100

1\
"-

Co

~

'"'"
u

:0

8
~

75

~

0
Co

~

16

~
.2

~

50

50

75

100

125

~

::J

150 175

200

0

u

225 250

100

T,-CASE TEMPERATURE ('C)

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

2N6678- !--

U

'\

25

2N6676

'"0Co

~'\

ffi

25

'"

10

:0

'4~,

0-

a

12

~

u

14

Co

200

300

400

500

COLLECTOR TO EMITTER VOLTAGE VeE (V)

4-105

PRINTED IN U.S.A.

POWER MOSFET TRANSISTORS
100 Volt, 0.18 Ohm
N-Channel

2N6755
J, JTX, JTXV 2N6756

FEATURES

DESCRIPTION

•
•
•
•
•
•

The Unitrode power MOSFET design utilizes the most advanced technology available.
This efficient design achieves a very low ROs-_-......_-...-J

Il ...

UNITROOE CORPORATION" 5 FORBES ROAO
LEXINGTON, MA 02173 " TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95·1064

4-107

PRINTED IN USA

•

2N6755
JAN, JANTX, & JANTXV 2N6756

Fig. 4 - Typical Transfer Characteristics

Fig. 3 - Typical Output Characteristics
20

~jlSPU1ETEJT _

10Vyav

-

/

-

r

VGS''!= =

r

SI'-

I

lV_

16

20
'--

~hS

PU!LSE

,

II

TEll

Yas" 15V

16

J

:1

.~-

!IJ
'(II

-

hV

TJ'"+125 0C

-i.'J.2S.C ~ f/J
TJ 'jss,c
~ r.;
,

r-

10
20
30
40
Vas. DRAIN TO SOURCE YOl TAGE (VOL IS)

50

Fig. 6- Typical Saturation Characteristics
(2N6756)

(2N6755)
10

mJ

9~~ ~

•

8V ..........

W/

_ISo,..SP!LSET!ST

~

e

08

1.2

16

~ V"

-

~ ~6V
~V

--

"

~

~V

~

iGS"i

o.

-9i"
8Y, r:.......... ~ ~
IV . . . . . ~ ~ ~

2

~r-

lOy"

-

./

--

V

J ~ /'

2

10

ffi V

~ VI ,/
~ ~ ~V
.4~ /
~ '/ ~J

I~ /"

10

VGS. GATE·TO-SOURCE VOL lAGE (VOL lSI

Fig. 5- Typical Saturation Characteristics
8hsPULSETEST

rI

_sy- ~

V1GS"r= F
20

04
0.8
12
16
VDS. DRAIN·TO-SOURCE VOLTAGE (VOL lS)

20

Vas. DRAIN TO SOURGE VOLTAGE (VOLTS)

Fig. 8 - Maximum Safe Operating Area

Fig. 7 - Typical Transconductance Vs. Drain Current
50
10

lO"L I--f-

2N6756
20

.....

..-

V

-

~

U
f.

ill
~

TJ "·550C

10

"!>

~'25'~

i

I

TJ= 12SDe

i.m-.r ~'"

rH'

," ,

~~

5.0

~

_6

I\..

V

1 ms

I-- l -

10mj-

~-

I\..

20

I--

Vas" lSV

TJ " ISOoC MAX.

t\

SING LE PU LSE

1O(""'i,m,

f-- l-

I\..

z

,/

lOOps.

f- 2N6155

-

1.0

DC
10

,.

20

IS

4.05.0

10. DRAIN CURRENT (AMPERES)

UNITROOE CORPORATION. 5 FORBES ROAO
LEXINGTON, MA 02173 • TEL. (617) 861,6540
TWX (710) 326·6509 • TELEX 95·1064

2N6755

0.5
10

20

50

2N6756

100

f-- -

200

Vas. DRAIN·TD·SDURCE VOLTAGE (VOLTS)

4-108

PRINTED IN U.S.A

2N6755
JAN, JANTX, & JANTXV 2N6756

Fig.9-Normalized Typical On-Resistance Vs. Temperature

Fig. 10 - Typical Capacitance Vs. Draln-to-Source Voltage
1000

~GS· J

1

f: 1 MHz

•

1600

V
/
/

:

~

...... V

0

6

o.1

\

vGS::: lOV

'r

9A

40

o\

\

1

80
120
40
TJ,JUNCTION TEMPERATURE fDC)

-40

~ soo~
u

- - r--

:,.......

V

1200

:!

C,,,

"-

160

L

I--

c~

10

30

20

so

40

VOS, ORAIN·TO·SOURCE VOLTAGE (VOLTS)

Fig. 12 - Typical Body-Drain Diode Forward Voltage

Fig. 11 - Power V•. Temperature Derating Curve
80

~
70

~

z

§

\.

60

S

'/'SM.2N6756

l'......
\.

SO

'\

0

E
ill

/ / 's, 2N6756

40

'\

Ci
~

3!

I

I

30

f

.P

20

I

I\.

10

-T .,50,n
J

60
80
100
Te. CASE TEMPERATURE (DC)

40

120

I
TJ"'250C

I

\.
1.0

\.
20

I

1I

o

VSO,SOURCE·TO-ORAIN VOLTAGE ,VOLTS)

140

Fig. 14 - Switching Time Waveforms

Fig. 13 - Switching Time Test Circuit

PULSEt~IDTH~

VGS'oo)

--+_----...,

INPUT, V,
_

v,

1 J:
50%

~O%

90%

10%

VGS (otf)

.. , . - - - . TO SCOPE

tdlon)

50%
10%

INPUT PULSE
RISE TIME

t']

INPUT PULSE
FALL TIME

!(flotf)

VDS(Off)-{dO%
OUTPUT, V,

90%

VOS , o o ) F
I::"'--+"::'::JI'

ton ---I

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

4-109

1.-

toff

PRINTED IN USA

POWER MOSFET TRANSISTORS
200 Volt, 0.4 Ohm

2N6757
J, JTX, JTXV 2N6758

N-Channel

FEATURES

DESCRIPTION

•
•
•
•
•
•

The Unitrode power MOSFET design utilizes the most advanced technology available.
This efficient design achieves a very low RoB•on) and a high transconductance.

Fast Switching
Low Drive Current
Ease of Paralleling
No Second Breakdown
Excellent Temperature Stability
Qualified to MIL-S-19500/542A

The Unittode power MOSFET features all of the advantages of MOS technology such as
voltage control, freedom from second breakdown, very fast switching speeds, and
thermal stability.
These power MOSFETS are ideally suited for many high-speed, high-power switching
applications such as switching power supplies, motor controls, and wide-band and
audio amplifiers.

PRODUCT SUMMARY
Part Number

VDS

RDS(on)

ID

2N6757

150V

0.60

8A

2N6758

200V

0.40

9A

MECHANICAL SPECIFICATIONS

2122(0815)

1013:t~MAX
OIA~'Htm
T

TO-2D4AA (TO-3 )

SEATING

PLANE

6~1~~IIO'A-ll--

TWO PLACES

2N6757
JAN. JANTX, & JANTXV 2N6758

10 16(0401 MIN
TWO PLACES

2661
00501 MAX

l=l~l;~1 OIA
TWO PLACES

DRAIN
(CASE)

t MEASURED AT SEATING PLANE

Dimensions in Millimeters and (lnchesl

11/83

4-110

~UNITRDDE

2N6757
JAN, JANTX, & JANTXV 2N6758
ABSOLUTE MAXIMUM RATINGS
Parameter
Drain - Source Voltage

VDS

2N6757

2N6758

Units

150"

200"

V
V

VDGR
'D·TC·2SoC

Drain - Ga.e Voltage IRGS' 1 Mill

150"

200"

Continuous Drain Current

8.0"

9.0"

A

'D·TC·l00oC

Continuous Drain Currant

5.0"

6.0"

A

12

'DM

Pulsed Drain Current

VGS
PD.TC = 25°C

Gata - Source Volta..

PD. TC -1000C

15

A

.:t20"

V

Max. Power Dissipation

75" (See Fig. 11)

W

Max. Power Dissipation

30' ISee Fig. 11)

'LM

Line.r Derating Factor
Inductive Current, Camped

TJ

Operating and

T"g

Sto,", Temperature Range

W

0.6' (See Fig. 11)
(See Fig. 1 and 2) L = 100 ~H
12
I
15

Lead Temperatur.

W/K
A

-55* to 150·

°C

300" (0.063 in. 11.6mml from case for lOs)

°C

ELECTRICAL CHARACTERISTICS @ TC = 2SoC (Unles~ otherwise specified)
BVDSS

VGSlth) Gate Threshold Voltage

-

Min.

Typ.

Max.

Units

150

-

-

V

2N6758

200

V

10 = 1.0mA

2.0"

-

-

ALL

4.0"

V

VOS=VGS·'o=lmA

Type

Parameter
Drain - Source Breakdown Voltage

2N6757

Tlst Conditions
VGS = 0

'GSSF

Gate - Body Leak. Forward

ALL

-

-

100"

nA

VGS = 20V

'GSSR

Gate - 80dy Leakage Reverse

ALL

-

-

100"

nA

VGS = -20V

'DSS

Zero Gate Voltage Drain Current

VOS'" Max. Rating. VGS "" 0

ALL

-

0.1

1.0"

mA

-

0.2

4.0"

mA

-

-

4.S"

V

VGS = 10V, "0 = SA
VGS = 10V, "0 = 9A

VOS - Max. Ra.ing. VGS - 0, TC = 125°C

VOSCon} Static Drain-Sourc. On-8tate
Vol.age

2N6757
2N6758

-

-

3.6"

V

AOS(on) St8t,ic Drain·Source On-5tat.
Reslltance (0

2N6757

-

0.4

0.6"

n

VGS - 10V, 10 - SA

0.25

0.4"

n

VGS - 10V, 10 - 6A
VGS - 10V, 10 - SA, TC' 125°C

0

2NS758

ROS(on) Static Drain-Source On-State
Resistance

CD

lit.

Forward Transconductance

(0

2N6757

-

-

1.13"

n

2NS758

-

-

0.75"

n

ALL

3.0"

5.0

9.0"

S (U)

VGS = 10V, "0 - 6A, Tc ~ 125°C
VOS' 15V, 10 = 6A

Cill

Input Capacitance

ALL

350"

600

800"

pF

C....

Output Capacitance

ALL

100"

250

450"

pF

C'"

Reverse Transfer Capacitance

ALL

40"

80

ISO"

pF

'd (on)

Turn-On Delay Time

ALL

30"

ns

Rise Time

ALL

-

-

'r

-

50"

ns

VOO ~90V,IO = SA, Zo = 15n
(See Fig•. 13 and 14)

Id (off)

Turn-Off Delay Time

ALL

-

-

50"

ns

(MOSFET switching times are essentially

'f

Fall Time

ALL

-

-

40"

ns

independent of operating temperature.)

VGS = 0, VOS = 25V, f = 1.0 MHz
See Fig. 10

THERMAL RESISTANCE
R. hCS

Case·.o-5ink

Mounting surface flat, smooth, and greased.

R thJA

Junction-ta-Ambient

Free Air Operation

BOOY-ORAIN OIOOE RATINGS AND CHARACTERISTICS
IS

Continuous Source Current
(Body Diode)
Pulsed Source Current
I Body Diode)

VSD

Diode Forward Voltage

2N6758
Irr

Reverse Recovery Time

ALL

ORR

Reverse Recovered Charge

ALL

-JEOEC registered values.

CD Pulse Test:

-

-

-

-

-

0.75"

ISM

(0

-

2NS757
2NS758
2NS757
2NS758
2N6757

-

8.0"
9.0"
12
15
1.50·

0.80"

-

-

650

A

Modified MOSF ET symbol
showing the integral
reverse P-N junction rectif,er.

A

~

V

TC - 2SoC,I S - 8A, VGS - 0

I.S0"

V

TC = 25°C, IS - 9A, VGS' 0

-

ns

T J - lS00C. IF = ISM, dlF/d. = 100 A/~.

~C

T J - 150°C, IF - ISM, dlF/d. - 100 A/~s

10

Pulse Width ~ 300 ,",sec, Duty Cycle ~ 2%

Fig. 2 - Clamped Inductive Waveforms

Fig, 1 - Clamped Inductive Test Circuit
VARY tp TO OBTAIN
REQUIRED PEAK 'L

VGS-R ~O_UT~~r--::r
"l----<>---~-.........,
UNITROOE CORPORATION" 5 FORBES ROAD
LEXINGTON, MA 02173· TEL, (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

4-111

PRINTED IN U.S A

•

2N6757
JAN, JANTX, & JANTXV 2N6758

Fig. 4 - Typical Transfer Characteristics

Fig. 3 - Typical Output Characteristics

,

2lI

10~r

16

10

8Oj,IS'Ul$ETEST

IJI

IO,..PULS£TEST

r- VD~= 15V

Ii

lV-~

V

/I

2
VGS·6V

- I-

I
TJ".+1250C

,

8

TJ=25 0C

TJ .. -550C
5V- ~

'V_

j

b"

~ '::ill
""- /J.L

2

rn..

~;r

I-

20
40
60
80
Vas. DRAIN·TO·SOURCE VOL lAGE (VOLTS)

I

100

VGS. GATE·lO·SOURCE VOLTAGE (VOLTS)

Fig. 5- Typical Saturation Characteristics

Fig. 6- Typical Saturation Characteristics

(2N6757)

(2N6758)

10

t-- Jo PUlSE nlT

J.~ ",.r~ ~ ~',OV
'V_ r--

ps

J

I~

~ t/< ~ .""-:V t-~~v6V
~r/

'I

.....

_VGS'sv- r--

~

~

r- r--

Ir

J-r-

IL'

1

1

vos. DRAIN·TO-SOURCE VOLTAGE (VOLTS)

Vas. ORAIN·TD-SOURCE VOLTAGE (VOLTS)

Fig.7 - Typical Transconductance Vs. Drain Current

0

Fig. 8 - Maximum Safe Operating Area

0

•

0

r...

TJ= -55°C
6

..,..- I---'"
V V I-V..... I---'" I-'"

4

TJ= 25°C

~100"'

l'I

0

I',

0

I",

!'

TJ= 125°C

o. 5

I

Vas" 15V

~~5.o':~.M~X
..L.l .1

IDC

80 IlS PULSE TEST
4

16151

O. 2

10

5.0

10. DRAIN CURREN! !AMPERES)

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

lm.t-

Im:_

,h V
iff

0"':-

.-1-

0

10

20

50

100

12N6J~8
200

500

Vos' DRAIN·TQ-SOURCE VOLTAGE (VOLTS)

4·112

PRINTED IN U.S.A.

2N6757
JAN, JANTX, & JANTXV 2N6758

Fig.9-Normalized Typical On-Resistance Vs. Temperature

Fig. 10 - Typical Capacitance Vs. Drain-to-Source Voltage

•

2000
VJS'O

2.2

V

V

~

1/

t-1MHz

/

1600

!
z
~

U

§

./
/

800

u'

/'

,-

1200

V

vGs= 10V

400

t-...

l'..
\

10 GA I
1
0

0.2
40

-40

80

120

"- -..... ~

"1"-0..

-

c,.

10
20
30
VoS. oRAIN-To-SoURCE VOLTAGE (VOLTSI

lGO

TJ, JUNCTION TEMPERATURE (DCl

Fig. 11 - Power Vs. Temperature Derating Curve

c,.

50

Fig. 12 - Typical Body-Drain Diode Forward Voltage

80
70

~

50

i

40

'\

I

I

~ 20
10

I II

'""

r----TJOI500C{-JTJ0250C

1.0

1\

20

40

I

1

,,\

30

I

I

1'\

5

'"

r 's,2NG758I

'\

0

iii

10

',,-

60

z

d...'r2NG758

to-- I\.

GO
80
100
TC, CASE TEMPERATURE (OCI

120

I

o

Vso, SOURCE-To-ORAIN VOLTAGE IVoLTSI

140

Fig. 14 - Switching Time Waveforms

Fig. 13 - Switching Time Test Circuit
VGS (on)
INPUT, Vi
_...T--~

j

Vo
TO SCOPE

VGS loffl

__ _

+-,~~P_U_LS_:_~_'D_T_H~
90%

9096

INPUT PULSE
RISE TIME

50%
10%

INPUT PULSE
fALL TIME

"'(0111

UNITROOE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (6l7) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

4-113

PRINTED IN USA

POWER MOSFET TRANSISTORS
400 Volt, 1.0 Ohm
N-Channel

2N6759
J, JTX, JTXV 2N6760

FEATURES

DESCRIPTION

•
•
•
•
•
'.

The Unitrode power MOSFET design utilizes the most advanced technology available.
This efficient design achieves a very low RO"'anJ and a high transconductance.

Fast Switching
Low Drive Current
Ease of Paralleling
No Second Breakdown
Excellent Temperature Stability
Qualified to MIL-S-19500/542A

The Unitrode power MOSFET features all of the advantages of MOS technology such as
voltage control, freedom from second breakdown, very fast switching speeds, and
thermal stability.
These power MOSFETS are ideally suited for many high-speed, high-power switching
applications such as switching power supplies, motor controls, and wide-band and
audio amplifiers.

PRODUCT SUMMARY
Part Number

Vos

ROS(on)

10

2N6759

350V

1.5n

4.5A

2N6760

400V

LOn

5.5A

MECHANICAL SPECIFICATIONS

342

2222(0875)
MAX alA 11~(O.SO!

2N6759
JAN, JANTX, & JANTXV 2N6760

TO-204AA (T0-3)

10 ":LX
rl~f:::TJNG
TTT
PLANE

Jr,!~~jIOIA--l~

10

TWO PLACES

16{D401 MIN

TWO PLACES

2661
(1 0501 MAX

H:I~l;lIDIA
TWO PLACES

DRAIN
(CASE)

Mgm:~~r
1 MEASURED AT SEATING PLANE

Dimensions in Millimeters and (Inches)

11/83

4-114

~UNITRDDE

2N6759
JAN, JANTX, & JANTXV 2N6760
ABSOLUTE MAXIMUM RATINGS
2N6759

2N6760

Units

350"

400"

V

350"

400"

V

Continuous Drain Current

4.5"

5.5"

A

10@TC- 100°C

Continuous Drain Current

3.0"

3.5"

A

10M

Pulsed Drain Current

7.0

8.0

V GS

Gate - Source Voltage

PO@TC= 25°C
PO@TC= 100°C

Parameter

VOS

Drain - Source Voltage

VOGR

Drain - Gate Voltage (RGS

10@TC= 25°C

==

1 MO)

A

.t20"

V

Max. Power Dissipation

75" (See fig. 11)

W

Max. Power Oissipation

30" (See fig. 111

W

0.6" (See fig. 11)
(S•• fig. 1 and 21 L - 100 ~H
7.0
I
8.0

W/K

ILM

Linear Derating Factor
Inductive Current, Clamped

TJ

Operating and

Tstg

Storage Temperature Rang.

Lead Temperature

•

A

-55* to 150·

°c

300" (0.063 in. (1.6mml from ca.. for 10.1

°c

ELECTRICAL CHARACTERISTICS @ TC = 2SoC (Unless otherwise specified)
Parameter

Type

Min.

Typ.

Max.

Units

2N6759

350

-

V

-

V

10 = 1.0mA

4.0"

V

VOS=VGS,IO= 1 mA

Test Conditions

2N6760

400

VGS(thl Gate Threshold Voltage

ALL

2.0"

I GSSf

Gate - Body Leakage Forward

ALL

-

-

100"

nA

VGS - 20V

IGSSR

Gate - Body Leakage Reverse

ALL

-

-

100"

nA

V GS = -20V

lOSS

Zero Gat. Voltage Drain Current

-

0.1

1.0"

mA

Vos - Max. Rating, VGS = 0

-

0.2

4.0"

mA

VOS = Max. RatIng, V GS - 0, T C - 125°C

BVOSS

Drain - Source Breakdown Voltage

ALL

Voston) Static Drain-Source On·State

CD

Voltage

ROS(onl Static

Orain~Source On·Stat8

0

Resistance

ROS(onl Static

Drain~Source On·Stat8

Resistance

g"

0

Forward Transconductance

CD

VGS = 0

2N6759

-

-

7.0"

V

V GS - 10V, 10 - 4.5A

2N6760

-

-

6.7"

V

V GS = 10V, 10 = 5.5A

2N6759

-

1.0

1.5"

n

VGS = 10V,I 0

2N6760

-

0.8

1.0"

n

V GS - 10V, 10 - 3.5A

2N6759

-

n

VGS - 10V, 10 - 3A, TC - 125°C

-

-

3.3"

2N6760

2.2"

n

VGS

ALL

3.0"

4.5

9.0"

S lUI

VOS

Ciss

Input Capacitance

ALL

350"

600

800"

pf

COlS

Output Capacitance

ALL

50"

150

300"

pf

= 3A

= 10V, 10 - 3.5A, TC = 125°C
= 15V, 10 = 3.5A

V GS = 0, VOS = 25V, f = 1.0 MHz
See Fig. 10

Crss

Reverse Transf.r Capacitance

ALL

20"

40

80"

pf

td (anI

Turn-On Delay Time

ALL

-

30"

n.

V OO "" 175V,1 0

tr

Rise Time

ALL

-

-

35"

ns

(S.. figs. 13 and 141

td (0111

Turn-Off Delay Time

ALL

-

-

tf

Fall Time

ALL

= 3.5A, Zo = 15n

55"

ns

(MOSFET sWitching times are essentially

35"

ns

Independent of operating temperature.!

1.67'

KIW
KIW
KIW

THERMAL RESISTANCE

I RthJC
I RthCS
I A thJA

Junction-fa-Case

ALL

Case-to-Smk

ALL

-

01

-

Junctlon-to-Amblent

ALL

-

-

30

I

I
I

Mounting surface flat. smooth, and greased
Free Air Operation

BODY·DRAIN DIODE RATINGS AND CHARACTERISTICS
IS

2N6759

Continuous Source Current
(Body Diode)

2N6760
2N6759
2N6760
2N6759

0.70"

4.5"
5.5"
7.0
8.0

A

1.4"

V

Modified MOSF ET symbol
shOWing the integral
reverse P·N Junction rectlflSr.

~

ISM

Pulsed Source Current
(Body Diode)

VSO

Diode Forward Voltage

2N6760

0.75"

-

1.5*

V

T C = 25°C, IS

t"
C RR

Reverse Recovery Time

ALL

-

550

-

ns

T J = 150°C. If = ISM. dlf/dt = 100 A/~s

Reverse Recovered Charge

ALL

-

8.0

-

"C

T J - 150°C, If = ISM, dlf/dt - 100 A/~s

*JEDEC registered values.

CD

CD Pulse Test:

A
T C - 25°C. IS - 4.5A, VGS - 0

= 5.5A.

VGS = 0

Pulse Width ~ 300 1l5eC, Duty Cvcle ~ 2%

Fig, 1 - Clamped Inductive Test Circuit

Fig, 2 - Clamped Inductive Waveforms

VARY tp TO OBTAIN
REOUIRED PEAK IL

VGS'

R

~D_UT~'-'-::r
Il

+-_-6---+-....,.,I\o-.J

UNITROOE CORPORATION" 5 FORBES ROAO
LEXINGTON, MA 02173 " TEL. (617) 861-6540
TWX (7101 326·6509 " TELEX 95-1064

4·115

PRINTED IN

u.s

A

2N6759
JAN, JANTX, & JANTXV 2N6760
Fig. 3 - Typical Output Charactaristics

'f

Fig. 4 - Typical Transfer Characteristics

80 joIS PULSE TEST

V
VG!·5.!V;;;;

F f=

5.0V""

f-- f""

r

801II"ULSETEtr

Vas'" 15V

TJ=+125 0 C

I
I

TJ' 250~",""
TJ ••55'~~

4.5V

1-1

I

'1V""
50

100

L&

F"'" F=

250

200

150

300
VGS. GATE·TO-SOURCE VOLTAGE (VOLTS)

Ves. DRAIN·TO.sOURCE VOL lAGE (VOLlSI

Fig. 6- Typical Saturation Characteristics

Fig. 5- Typical Saturation Characteristics

(2N67601

(2N67591

J. .l J

SOli' PULSE TEST

J

Id~ffv

Jv

~

5

-

VGS"

IDJffv

- JOIIS')LSETJT

s.ov

AV

If

J
(,.

4.5V- f0-

r

45V- f-

J

I

I

I

4.0V- f--

I

4
Vas. DRAIN TO·SOURCE VOL lAGE (VOLTS)

V

4I~ 1==

r

10

10

vas. DRAIN·TO.sOURCE VOLTAGE (VOLTS)

Fig.7 - Typical Transconductance Vs. Drain Current

Fig. 8 - Maximum Safe Operating Area
10

10

2N6760

1D~s

ZN 759

2N6760

5.0

V

fi V,......

II V

III'

-VG"50V- ~

P
I'

IV"

I

'oj

'IJ
rt

----

t:::-

t-r-

I...

TJ=-550C -

'.

\

~

N6759

2.0

I'

z

w

TJ= 25°C

~

1.0

, ,

I

~

i
1m,

0.5

'\.

_Co

0.2

-

SINGLE PULSE

I
10

f.lo1m,

"'"

TJ " 1500 C MAX

I

10

I

~

z

180,uSP~lSETEIST

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

I

I
·~100j.lS

i3

TJ. ,25Jc

Vas" 15V

4
'0. DRAIN CURRENT (AMPERES)

'\.

~

20

50

N6759

100

200

I

-.J.
I

I

DC
ZNS 6

500

Vas. DRAIN·TD·SDURCE VDLTAGE (VOLTS)

4-116

PRINTED IN U.S.A.

2N6759
JAN, JANTX, & JANTXV 2N6760

Fig. 10 - Typical Capacitance Vs. Drain-to-Source Voltage

Fig.9-Normalized Typical On·Resistance Vs. Temperature

2DOO

~Gs·6

~

2.2

t"' 1 MHz

~

•

1600

V

V
/

~

/

V

V

/

\

400

VGS·IOV

Ir3.5~

-'"

~~

I--

0.2
-40

..... C/SS

40

120

80

~
10

160

TJ, JUNCTION TEMPERATURE (OCI

Fig. 11 - Power V•. Temperature Derating Curve
80
70

i
z

-

30

50

Fig. 12 - Typical Body-Drain Diode Forward Voltage

T 'SM. 206760

""\.

I

'\

60

50

/

"\

..c

'\

~ 30

:<

20

~

10

20

~IS.2N6760

/ II

'\

0

I

I

'\.

E
40
iii
.P

20

Vas. DRAIN-lO·SOURCE VOLTAGE (VOLTS)

40

60
80
lDO
Te. CASE TEMPERATURE (DC)

,,~,-~t.,-

I

\.

120

Fig. 13 - Switching Time 'Test Circuit

1.0

"

o

I
I

VSQ. SOURCE·la·DRAIN VOLTAGE (VOLTS)

140

Fig. 14 - Switching Time Waveforms
PULSEIpWIDTH
VGS(on)

O%

~

INPUT. VI

-~--·~~SCOPE

VGS (off)

INPUT PULSE
RISE TIME

1==

td (on)

~
90%

··'·"T'-'I

50%
10%

INPUT PULSE
FAll TIME

td (off)

I'

OUTPUT,V o
""J90%
VOS 1..1 : - :
I" ';;;;" __~::J'
10n--l

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

4-117

PRINTED IN U.S A

POWER MOSFET TRANSISTORS
500 Volt, 1.5 Ohm

2N6761
J, JTX, JTXV 2N6762

N-Channel

FEATURES

DESCRIPTION

•
•
•
•
•
•

The Unitrode power MOSFET design utilizes the most advanced technology available.
This efficient design achieves a very low Ros.on) and a high transconductance.

Fast Switching
Low Drive Current
Ease of Paralleling
No Second Breakdown
Excellent Temperature Stability
Qualified to MIL-S-19500/542A

The Unitrode power MOSFET features all of the. advantages of MOS technology such as
voltage control, freedom from second breakdown, very fast switching speeds, and
thermal stability.
These power MOSFETS are ideally suited for many high-speed, high-power switching
applications such as switching power supplies, motor controls, and wide-band and
audio amplifiers.

PRODUCT SUMMARY

Part Number

VDS

RDS(on)

ID

2N6761

450V

2.00

4.0A

2N6762

500V

1.50

4.5A

MECHANICAL SPECIFICATIONS

22.2210"5)
342

MAX OIA

IJUI~

2N6761
JAN, JANTX, & JANTXV 2N6762

TO·204AA (TO·3)

I013J:~~
-r-

SEATING

PlAAE

~nl~rJID1A-11--

10 ISfOotOI MIN

TWO PLACES

TWO PLACES

2UI
(I OSOI MAX

;111~mIOIA
TWO PLACES

DRAIN
(CASEI

SOURCE

t MEASURED AT SEATING PLANE

Dimensions in Millimeters and (Inches)

11/83

4·118

~UNITRODE

2N6761
JAN, JANTX, & JANTXV 2N6762
ABSOLUTE MAXIMUM RATINGS
2N6762

Units

V

450"

500"
500"

Continuous Drain Current

4.0"

4.5-

A

IO·TC·IOOOC

Continuous Drain Current

2.5"

3.0"

A

10M

Pulsed Drain Current

6.0

7.0

VGS

Gatl - Source Voltage

',remltlr

2N6761
450"

VOS

Drain - Source Voltage

VOGR
IOOTC·2SoC

Orain - Gat. Voltage (RGS = I MOl

=25°C

V

A

%20·

V

W

M. •. Power Dillipltion

75" (See Fig. III

POOTC'IOOOC

Max, Power Oiuipltion

30" (See Fig. III

W

0.6" (See Fig. III
(See Fig. I and 21 L 100 ~H
6.0
I
7.0

W/K

ILM

Line.r Derating FlCtOr
Inductive Current, Clamped

TJ
T,tg

Operating and
Storage Temperature Range

-55* to 150-

°C

300" (0.063 in. (1.6rnml from case for lOll

°C

PO. TC

=

L.ead Temperatur.

•

A

ELECTRICAL CHARACTERISTICS @ TC = 2S"C (Unless otherwise specified)
'aram.ter
avOSS

Drain - Source Breakdown Voltage

Type

Min.

2N6761

450

Typ.

-

Max.

Units

-

V
V

4.0"

V

VOS=VGS,IO= I mA

100"

nA

VGS • 20V
VGS = -20V

Tlst Conditions

VGS' 0
IO=4.0mA

2N6762

500

-

VGSfthl Gate Threshold Voltage
IGSSF
Gatl Body Leakage Forward

ALL

2.0"

IGSSR

Gate - Body Leakage River..

ALL

-

100"

nA

lOSS

Z.ro Gate Voltage Drain Current

0.1

1.0"

mA

V DS • O.B X Max. Rating, VGS - 0

0.2

4.0"

mA

Vos =- Ma>c. Rating, VGS - 0, TC - 25°C to 12SoC

ALL

-

ALL

VOS(on) Static Drain-Source On·State
Voltage

2N676 I

-

V

-

-

B.O"

2N6762

7.7"

V

v GS = 10V, 10 ' 4.5A

ROSfonl Static Drain-Source On-State
Resistance

2N6761

-

I.S

2.0"

0

VGS

1.3

1.5"

0

VGS

-

4.4"

0

3.3"

0

0

CD

-

2N6762

ROSlonl Static Drain·Source On-5tate
Rllistance

2N6761

0

2N6762

0

VGS = 10V, 10 = 4A

= 10V, 10 = 2.SA
= 10V, 10 - 3.0A
VGS = 10V, 10 = 2.SA, TC = 12S o C
VGS = 10V, Ie. = 3.0A, TC - 125°C
VOS = 16V, 10 = 3A

gls

Forward Transconductance

ALL

2.5"

3.5

7.5"

5 (UI

Cin

Input capacitance

ALL

350"

600

800"

pF

C_

Output Capacitance

ALL

2S"

100

200"

pF

Cm

Rever.. Transf.r Capacitance

ALL

IS"

30

60"

pF

td (onl

Turn-On Delay Time

ALL
ALL

-

n.

Rise Time

30"

n.

V DD '" 225V, 10 - 3A, Zo - ISO
(Se. Figs. 13 and 141

'd loffl
't

Turn-Off D.'ay Time

ALL

-

30"

tr

55"

n.

(MOSFET switching times are essential IV

Fill Time

ALL

30"

"'

independent of operating temperature.)

-

THERMAL RESISTANCE
RtI!JC
R thCS

Junction·to-case

R thJA

Junction·to-Ambient

ea..·to-Sink

I

ALL

I
I

ALL

I -

I -

I

1.67"

I

I - I 0.1 I - I
I - I - I 30 I

ALL

KIW
K/W
KIW

VGS • 0, VOS
Se. Fig. 10

= 25V, f·

1.0 MHz

I

I

I Mounting surface flat, smooth, and greased.
I FrH Air Operation

J
I

BODY·DRAIN DIODE RATINGS AND CHARACTERISTICS
IS

Continuous Source Current
(Body Oiodel

-

2N6761
2N6762
2N6761
2N6762
2N6761

0.65"

ISM

Pulsed Source Current
fBody Diodel

VSO

Diode Forward Voltage

2N6762

0.7"

-

trr

Rever.. Recovery Tim.

ALL

-

500

QRR

Reverse Recovered Charge

ALL

-

7.0

*JEOEC registered values.

C0

CD Pulse Test:

Pulse Width

-

4.0"
4.5"
6.0
7.0

A

Modified MOSFET symbol
showing the integral
rever .. P-N junction rectifier.

A

~

V

TC - 2SoC, IS - 4A, VGS = 0

1.4"

V

TC· 25°C, IS =4.5A, VGS' 0

-

n.

TJ = 150°C, IF - ISM, dlFldt· 100 AI~.

-

~C

T J = 150°C, IF' ISM, dlF'dt = 100 AI~.

1.3"

< 300 "sec, Duty Cycle:S;;;; 2%

Fig, 1 - Clamped Inductive Test Circuit

Fig, 2 - Clamped Inductive Waveforms

VARY tp TO OBTAIN

VGs.R

REQUIRED PEAK 'L
OUT
IL+---<~-~"""'_......J

UNITROOE CORPORATION" S FORBES ROAD
LEXINGTON, MA 02173 • TEL. (6171 861·6540
TWX (710) 326·6509 • TELEX 95·1064

4·119

PRINTED IN

u.s

A

2N6761
JAN, JANTX, & JANTXV 2N6762

Fig. 4 - Typical Transfer Characteristics

Fig. 3 - Typical Output Characteristics

•

10V

5.5V-

I I I

,

I-- t -

I

10", PULSE TEST

f--11O".LLS£I UST

5

If

Ves= 16V

•

- I-

VG5' 5OV-

I--- _TJ=~1250C

3

I--- -TJ;-55'C, ~
TJ' 2"C-..

t---..,'-.....h,l

'r" F F

ri

/ VI

1

+=1=1=

~
1

300

100
200
Vas. DRAIN TO SOURCE VOLTAGE (VOLlS)

Fig. 6- Typical Saturation Characteristics

Fig. 5- Typical Saturation Characteristics

8)111 PUlt TESJ

/
L- .,....

#

(2N6762)

,

(2N6761)
I-

4'
VGS. GATE TO SOURCE VOLTAGE (VOL lSI

lO:Y I-V;5r-

-ll'sl'OrsETElr

/

3

~

)

1

YGS

",=

2

~

Vas. QRAIN·TO·SOURCE VOLTAGE (VOL IS)

,
3

.,,1--4"

/'

/

/ V
V V I--""

JI V

1

.;'

IJ V
IVI
r

'Y5.l=

vGs''',v-

,..-

..:V~

/

I.

I.

Vas. DRAIN TO SOURCE VOL rAGE (VOL IS)

Fig. 8 - Maximum Safe Operating Area

I.

--

2N6762

10~s

,

2N6761

~

-

,.

~

I'

2.0

:!

....
z

=
=

,

2NB761

5..~.

TJ'2~

.;'~~.L-

I--

/. ~

Fig. 7 - Typical Transconductance Vs. Drain Current

T,"-55'~:'"

~ :,......

~

~~

4Ot~ ~

I"

7

/

I

J

5

l~

•

50t=1..-::

It--

.

r-..
1.0

' ...
"

"

,

"

'\[

lOOps

T

~

u

z

~

-"

1~

0.5

1--+-+-+-+-H+J++-'-"I.--+--''k--+rf-l~4-l
]1
1--+--+-+-++-++t++--+-+>.rt-+N
1 lqj
TJ "'1500CMAX.
i
I

02 f--SINGlEPUl5E

Ves'" 16V
80jl$PUlSE TEST

+++I+++--+-+-AJ.l-I-J+t++
1+1

I I

2N6761i

~ZJ62

lL-~~-L-L~LLU--L-L~~~~~

W
10. DRAIN CURRENT (AMPERES)

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

w

w

~

~

~

Vas. ORA.IN-TO·SOURCE VOLTAGE (VOlTSj

4-120

PRINTED IN U.S A

2N6761
JAN, JANTX, & JANTXV 2N6762

Fig.9-Normalized Typical On·Resistance Vs. Temperature

Fig. 10 - Typical Capacitance VI. Drain-to-Sourca Voltaua
2000

I

2.2

'-1MHz
1600

L

!

L
./

./

6

.V

V

o.2

1200

~
U

§

/

0

l\.

800

u

lL
VGS-10V

Irl.5~

40
80
120
TJ. JUNCTION TEMPERATURE (OC)

ellS

1\

,\

'00

......

\

~

~

160

,......

10
20
30
40
VOS. ORAIN·TO·SOURCE VOLTAGE IVOLTS)

Fig. 11 - Power VI. Temperature Derating Curve
~

~

z

~

50

ill
~

.P

30

20

1"-

10

~

1.0

l\
20

ISM.2N6'62

/

~

is

~

r
I

IS.2NG'62

'\

40

I

/ #

\,

0

~

I

'~

60

50

Fig. 12 - Typical Body.Drain Diode Forward Voltage

80

'0

•

JGS - 01

1/

40
80
100
60
TC. CASE TEMPERATURE 10C)

120

".,-~t~I J

o

Vso. SOURCE·TO·ORAIN VOLTAGE IVOLTS)

140

Fig. 14 - Switching Time Waveforms

Fig. 13 - Switching Time T... t Circuit

PULSEI~IDTH~

VGS (on)

---+-'-::::----~

INPUT,V I

Vo

_-r--? TO SCOPE

VGS loff)
td(on)

O%

~

90%

INPUT PULSE
RISE TIME

J:

50%
10%

INPUT PULSE
FALL TIME

ltttofl)

I
'''~'T'-II

9UTPUT,V o
~90%
VOS l o o ) l ' [ _ _-+";';;J

ton---f

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

4-121

PRINTED IN U.S A

POWER MOSFET TRANSISTORS
100 Volt, 0.055 Ohm

2N6763
J, JTX, JTXV 2N6764

N-Channel

FEATURES

DESCRIPTION

•
•
•
•
•
•

The Unitrode power MOSFET design utilizes the most advanced technology available.
This efficient design achieves a very low ROBlon. and a high transconductance.

Fast Switching
Low Drive Current
Ease of Paralleling
No Second Breakdown
Excellent Temperature Stability
Qualified to MIL-S-19500/543A

The Unitrode power MOSFET features all of the advantages of MOS technology such as
voltage control, freedom from second breakdown, very fast switching speeds, and
thermal stability.
These power MOSFETS are ideally suited for many high-speed, high-power switching
applications such as switching power supplies, motor controls, and wide-band and
audio amplifiers.

PRODUCT SUMMARY

Part Number

Vos

ROS(on)

10

2N6763

60V

0.080

31A

2N6764

100V

0.0550

38A

MECHANICAL SPECIFICATIONS

2~!~'~:!"

342

"'1 '04'81

jom1MAX~3

2N6763
JAN. JANTX, & JANTXV 2N6764

TO·204AE (TO-3 modified)

(025

~

SEATING

...L
T

PLANE

160!°f,I01A
II
14510
-'1
TWO PLACES

'falUl~1

1

TWO PLACES

2661

I 0501 MAX

;UI:'1;UDlA

TWO PLACES

DRAIN
(CASEI
SOURCE

n·gl~1;glf
t MEASURED AT SEATING PLANE

Dimensions in Millimeters and (Inches)

11/83

4-122

~UNITRDDE

2N6763
JAN, JANTX, & JANTXV 2N6764

ABSOLUTE MAXIMUM RATINGS
2N6763

2N6764

Units

VoS

Drain - Source Voltage

50"

100"

V

VoGR
10@TC- 2SoC

Drain - Gate Voltage (RGS '" 1 Mil)

100"

V

Continuous Dram Current

50"
31"

38"

A

10@TC' 100°C

Continuous Drain Current

20"

24"

A

10M
VGS

Pulsed Drain Current

60

70

Gate - Source Voltage

;,20"

V

Po@TC- 2SoC

MIX, Power Dissipation

ISO" (See Fig. 111

W

Po@TC= 100°C

Max. Power Dissipation

60" (See Fig. 111

W

Linear Derating Factor

1.2" (See Fig. 111
(See FIg. 1 and 21 L - 100 ~H
60
I
70

WIK

Parameter

ILM

Inductive Current, Clamped

TJ

Op8!ating and
Storage Temperatur. Range

TitS

Lead Temperatur.

A

A

-55· to 150·

°C

300· 10.063 In, f1.6mm) from case for 10s)

°c

ELECTRICAL CHARACTERISTICS @ TC = 25°C (Unless otherwise specified)
'arameter
BVOSS

Drain - Source Breakdown Voltage

Test Conditions

Type

Min.

Typ.

Max.

Units

2N6763

60

-

-

V
V

10 = 1.0mA

4.0"

V

VOS=VGS,lo=lmA

100"

nA

VGS - 20V

100"

nA

VGS - -20V
VOS'" Max. Rating, V GS '" 0

VGS = 0

2N6764

100

VGSlthl Gate Threshold Voltage
IGSSF
Gate - Body Leakage Forward

ALL

2.0"

ALL

-

IGSSR

Gate - Body Leakage Reverse

ALL

-

lOSS

Zero Gate Voltage Drain Current

-

0.1

1.0"

mA

ALL

0.2

4.0"

mA

VOS(on) Static Drain-Source On·State
Voltage

2N6763

-

-

2.4S"

V

2N6764

-

-

2.09"

V

V GS = 10V, 10 - 3SA

RoS(onl Static Drain-Source On-State
Resistance

2N6763

-

0.06

O.OS"

VGS = 10V, 10 = 20A

2N6764

RoS(onl Static Orain-Source On·State
Resistance

2N6763

-

CD

CD

0

CD

Vas'" Max. Rating. V GS - O. T C - 125°C

VGS = 10V 10 = 31A

0.045

0.055"

n
n

-

0.136"

u

VGS = 10V, 10 = 20A, T C

0.094"

n

VGS - 10V, 10 - 24A, T C - 125°C

2N6764

V GS - 10V, 10 - 24A
=

125°C

g"

Forward Transconductance

ALL

9.0"

12.S

27"

5 (UI

Cill

Input capacitance

ALL

1000"

2000

3000"

pF

Coss

Output Capacitance

ALL

SOO"

1000

IS00"

pF

C....

Reverse Transfer Capacitance

ALL

ISO"

3S0

500"

pF

'd (onl

Turn-On Oelay Time

ALL

-

-

3S"

ns

VoO"" 24V,IO = 24A, Zo = 4.7!l

I,

Rise Time

ALL

100"

n.

(See Figs. 13 and 141

'd (off)

Turn-Off Oelay Time

ALL

Fall Time

ALL

I,

-

-

VOS - ISV, 10 - 24A
VGS' 0, VoS = 2SV,"

1.0 MHz

See Fig. 10

12S"

ns

(MOSFET switching times are essentially

100'

n.

Independent of operating temperature.)

0.83"

KfW
t<.fW

Mounting surface flat. smooth. and greasad.

30

KIW

Free Air Operation

3'38"

A

THERMAL RESISTANCE
R thJC

Junction-to-Case

ALL

RthCS

C.se-to-8ink

ALL

R thJA

Junction-ta-Ambient

ALL

01

BODY-DRAIN DIODE RATINGS AND CHARACTERISTICS
IS
ISM

Continuous Source Current
(Body oiodel
Pulsed Source Current
(Body oiodel

2N6763
2N6764
2N6763
2N6764
2N6763

-

-

-

-

70

0.90"

-

I.S"

-

-

VSo

Diode Forward Voltage

2N6764

0.9S"

-

I"

Reverse Recoverv Time

ALL

-

500

Q RR

Reverse Recovered Charge

ALL

• JEOEC registered values.

o

CD

60

Modified MOSF ET symbol
showing the integral
reverse P-N Junction rectifier.

A

~

V

TC - 2SoC,I S - 31A, VGS - 0

1.9"

V

T C - 2SoC, IS = 3SA, VGS = 0

-

ns

T J = IS00C,IF = ISM,dlFldl = 100 AI~s

~C

T J = IS00C. IF = ISM, dlFldt = 100 AI~s

10

Pulse Test: Pulse Widlh .;; 300 ~sec, Duty Cycle';; 2%

Fig. 1 - Clamped Inductive Test Circuit

Fig. 2 - Clamped Inductive Waveforms

VARY I. TO OBTAIN
REQUIREO PEAK IL

VGS·

R

uO_UT~~r..".
IL ....-_<>-_-....-'lM---'

UNITROoE CORPORATION" 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (6171 861·6540
TWX (710) 326-6509 • TELEX 95-1064

4-123

PRINTED IN U.S A.

•

2N6763
JAN, JANTX, & JANTXV 2N6764

Fig. 3 - Typical Output Characteristics
&0

/

~

!

30

z

2D

i

30

I

i

I

i
~

'"
E

"j

10

15

hI!
1TJ-25I C...........VI
~J'-55! ""-j rtf
i -Ch J
A/ 'I

TJ -+1250C

z

&~

'"
E

II
III

20

~

7~

~

"
'1

I

r- VOS"5V

iii

I

IJL

r

r IO~PULSE~EST

25

·JGsa.l

40

iii

Fig. 4 - Typical Transfer Characteristics

t

8O/dPULSET~ST

lovllav

10

0

5~
.~
10

20

~

30

40

&0

Vos. ORA1N·TO-SOURCE VOLTAGE IVOLTS)

VGS. GATE·TO-SOURCEVOLTAGE (VOLTS)

Fig. 6- Typical Saturation Characteristics

Fig. 5- Typical Saturation Characteristics

(2N67641

(2N67631
20
VGS"ff!

/

20

.J/dPUJE TESJ _

r-

Jt{
8V

1&

V//J{

~

,4 Vii"

~

~ 12

IJIJ

i

Jr/

z

~V

E

~V

~

I

,.

0.'

0.&

/

,~~

1.6

&V~

~

-

.,....
1.2

7V

~~

!~ '/ "...

I
y

~~

I..- ~

-

JJ V /'

8

5r

JV
'r

12

/&1"

~ l/
~:~ V

Vw

18

-

"...

J/d PUiETE!

2.0

5V

'V

0.4

1.2

0.8

1.6

2.0

VDS. DRAIN·TO·SOURCE VOLTAGE IVOLTS)

Vos. DRAIN·TO·SOURCE VOLTAGE (VOLTS)

Fig. 7 - Typical Transconductance Vs. Drain Current

Fig. 8 - Maximum Safe Operating Area
1110

20

2N6764

0

2

/. ~ V-

V- I~

TJ.~550C -;;;;

.

~

~6~

TJ-250C

0

"
'. , ,

I'\.

0

~

0

II '/
1/

~

I

I

2. 0

j;"'PUrETEr - r20

30

40

1.0
3.0

50

10. DRAIN CURRENT IAMPERES)

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

1001l-s- -

~,

lin,

I'-.

10ml- e.-

TJ= 1500C MAX.
SINGLE PULSE

VOS=15V

,

10

"

2N6763

--D=+l250 C-

1.:0- ""

8

10",- 2N

50

IIIIII

DC

Ii III
5.0

10

206763
20

50

-e-

'NilS'
100

200

VOS' ORAIN·TO·SOURCE VOLTAGE IVOLTS)

4-124

PRINTED IN U.S.A

2N6763
JAN, JANTX. & JANTXV 2N6764

Fig.9 - Normalized Typical On·Resistance Vs. Temperature

Fig. 10 - Typical Capacitance Vs. Drain-to-Source Voltage
4000

VG~'O

2.2

3200

/'

~\

V

I~

V
V

\.
BOO

vGS -IOV
ID'24A

40
80
120
TJ. JUNCTION TEMPERATURE (aC)

~

r"-

C!..

"- r-.....

0.2
-40

c,..

\ ~

....... V

...

•

f" 1 MHz

\

to.1
c'"

10
20
30
40
VOS. DRAIN·TO-SOURCE VOLTAGE (VOLTS)

160

50

Fig. 12 - Typical Body-Drain Diode Forward Voltage
Fig. 11 - Power Vs. Temperature Derating Curve
ISM.2N6764

""I\.

140

120

I

'\

~

80

~
i3

1,\

iii
6

20

/

40
80
80
100
TC. CASE TEMPERATURE (aC)

10

t

.

I-TJ-150aC r TJ'25aC

w
u

""

20

II

$

'\

z

co

i

120

I

~

L

!b

1.0

!\

IS. 2N6764

VI

!Ii

I\.

r---

I

o
VSO.SOURCE·TO·ORAIN VOLTAGE (VOLTS)

140

Fig. 14 - Switching Time Waveforms
Fig. 13 - Switching Time Test Circuit
VGS(on)

PRF "'1 kHz
tp"lps

INPUT, Vi

v,

_.J'--'"

r-----.,
I
20
I
4.m I
I n.
I
I 20V
.L
____ .JI

20

Va
TO SCOPE

VGS (aH)

INPUT PULSE
FALL TIME

["~I~

4.70

~_ _~9~;;;,

t..--toff

UNITRODE CORPORATION, 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95-1064

4-125

PRINTED IN U S.A

POWER MOSFET TRANSISTORS
200 Volt, 0.085 Ohm
N-Channel

2N6765
J, JTX, JTXV 2N6766

FEATURES

DESCRIPTION

•
•
•
•
•
•

The Unitrode power MOSFET design utilizes the most advanced technology available.
This efficient design achieves a very low RDSlanl and a high transconductance.

Fast Switching
Low Drive Cu rrent
Ease of Paralleling
No Second Breakdown
Excellent Temperature Stability
Qualified to MIL·S·19500/543A

The Unitrode power MOSFET features all of the advantages of MOS technology such as
voltage control, freedom from second breakdown, very fast switching speeds, and
thermal stability.
These power MOSFETS are ideally suited for many high·speed, high·power switching
applications such as switching power supplies, motor controls, and wide·band and
audio amplifiers.

PRODUCT SUMMARY

Part Number

VDs

RDS(on)

ID

2N6765

150V

0.1200

25A

2N6766

200V

0.0850

30A

MECHANICAL SPECIFICATIONS
2N6765
JAN, JANTX, & JANTXV 2N6766

TO·204AE (TO·3 modified)

222210875)

"13±x~.AX
DlA~~
SEATING
PLANE

T
::~I~:;~IDIA -I

:fal~3m

TWO PLACES

TWO PLACES

2667
(I 0501 MAX

a:

I~'I~U OIA
TWO PLACES
DRAIN

(CASE')
SOURCE

~U~I~':~lt
t MEASURED AT SEATING PLANE

Dimensions in Millimeters and (lnchesl

11/83

4·126

~UNITRDDE

2N6765
JAN, JANTX, & JANTXV 2N6766
ABSOLUTE MAXIMUM RATINGS
2N6765

2N6766

Units

VOS

Drain - Sourte Voltage

150'

200'

V

VOO R
10@TC-250C

Drain - Gate Voltage (AGS - , MOl

150'

200-

V

Continuous Drain Current

25'

30'

A

10@TC=loooC

Continuous Drain Current

16-

19'

A

50

60

A

Parameter

10M

Pulsed Drain Current

VOS
PO @T C -250C

Gate - Source Voltage

±20'

V

Max. Power Dissipation

150' (See Fig. 111

W

PO@T C - 100°C

Max. Power DISSipation

60' (See Fig. 111

W

Linesr Derating Factor

1.2- (See Fig. 111
(See Fig. 1 and 2) L - loo~H
50
I
60

W/K

ILM

Inductive Current, Clamped

TJ
T ltg

Operating and

-55* to 150-

°C

300' (0.063 in. (I.Bmml from ca.. for lOs)

°c

Storage T amparature Range
Lead Temperature

II

A

ELECTRICAL CHARACTERISTICS @ TC = 25°C (Unless otherwise specified)
Parameter

BVOSS

Drain - Source Breakdown Voltage

VOS(thl Gatl Threshold Voltage

Type

Min.

Typ.

Max.

Units

2N6765

150

-

V
V

10= 1.0mA

4.0'

V

VOS=VOS,IO=1 mA

100'

nA

VOS - 20V

100'

nA

VOS = -20V

Test Conditions

2N6766

200

ALL

2.0'

-

-

-

0.1

1.0'

mA

VOS = Max. Rating, VOS = 0

0.2

4.0'

mA

V OS = Max. Rating, VOS = 0, T C = 125°C

3.0·

V

2.7-

V

VOS = 10V, 10 = 30A

IOSSF

Gate - Body Leakage Forward

ALL

IOSSR

Gate - Body Leakage Reverse

ALL

lOSS

Z.ro Gate Voltage Drain Current

ALL

VOS=O

V OS(onl Static Drain·Source On-State
Voltage

2N6765

-

2N6766

-

-

ROS(onl Static Drain-Source On-State

2N6765

-

0.09

0.12'

n

VOS = 10V, 10 = 16A

2N6766

-

0.07

0.085'

n

VOS = 10V, 10 = 19A

2N6765

-

0.216'

n

Vos = 10V, 10 = 16A, TC = 125°C

2N6766

-

-

0153'

n

Vos - 10V, 10 - 19A, TC - 125°C

ALL

9.0'

15.5

27"

S (UI
pF

CD

Resistance

CD

ROS(onl Static Dram-Source On-State
Resistance

CD

CD

VOS = 10V, 10 - 25A

gfs

Forward Transconductance

C isl

Input Capacitance

ALL

1000'

2000

3000'

Coss

Output Capacitance

ALL

450'

800

1200'

pF

Cr ..

Reverse Transfer Capacitance

ALL

150'

300

500'

pF

td (onl

Turn-On Delay Time

ALL

-

-

35'

ns

VOO;>; 95V, 10 = 19A, Zo = 4.7n

tr

Aise Time

ALL

-

-

100'

ns

(See FIgs. 13 and 14)

td (offl

Turn-Off Delay Time

ALL

-

-

125'

ns

(MOSFET switching times are essentially

tf

Fall Time

ALL

-

100'

ns

Independent of operating temperature.)

VOS - 15V, 10 - 19A
Vos = 0, VOS = 25V, f = 1.0 MHz
See Fig. 10

THERMAL RESISTANCE
R,hJC

Junction-to-Case

I

ALL

R thCS

Case-to-Sink

R'hJA

Junction-to-Ambient

I
I

ALL

ALL

I

-

I

-

I

I
I

-

I
I

0'

I
I

-

-

0.83'

30

I

I
I

KIW
KIW
KIW

I
I Mounting surface flat, smooth, and greased.
I Free Air Operation

I

I
I

BODY·DRAIN DIODE RATINGS AND CHARACTERISTICS
IS
ISM

-

25-

-

30'
50
60

A

1.7"

V

TC - 25°C, IS = 25A, VOS = 0

0.9'

-

I.S·

V

T C = 25°C, IS = 30A, VOS

-

500

-

ns

T J - 150°C, IF' ISM, dlF/dt = 100 A/~s

~C

T J = 150°C, IF = ISM, dlF/dt = 100 A/~.

-

Continuous Source Current

2N6765

(Body Diodel

2N6766
2N6765
2N6766
2N6765

0.S5·

2N6766
ALL

Pulsed Source Current

(Body Diodel

CD

VSO

Diode Forward Voltage

trr

Reverse Recovery Time

ORR

Reverse Recovered Charge

·JEDEC registered valull.

CD Pulse Tost:

-

ALL

10

A

Modified MOSFET symbol
showing the integral
reverse P-N Junction rectifier.

~

=0

Pulse Width';;; 300 ~sec, Duty Cycle';;; 2%

Fig. 2 - Clamped Inductive Waveforms

Fig. 1 - Clamped Inductive Test Circuit
VARY tp TO OBTAIN

vGs=R ~D_UT_'-r-"
REQUIRED PEAK IL

IL+---<>---_-"M---'
UNITRDOE CORPORATION. 5 FORBES ROAD
LEXI NGTON, MA 02173 • TEL. (617) 861·6540
TWX (7101 326·6509 • TELEX 95·1064

4·127

PRINTED IN USA.

2N6765
JAN, JANTX, & JANTXV 2N6766

Fig. 3 - Typical Output Characteristics
50
UriI!J9V
.8V
40

'h. PULSE TEST

J J
VGS'7V-

V

Fig. 4 - Typical Transfer Characteristics
30

-

~
3

...
z

,.~

30

av-

I

-

~

~

I

rl

25 -IOI

z

V

E

'V

I2D

Fig. 8 - Maximum Safe Operating Area

loo.mm~.
Z~~++~

.J-'"'""

10~-

2N676

50
20

V. V

~

l~

TJ;; 125°C

w

~

~DS 'I~V

/)

I-

0.8
1.2
16
D.'
VoS. oRAIN·TO·SOURCE VOLTAGE IVOLTS)

1/1;. 25JC

I. V
1/ 1/I-"'""
l/

VGS·5V

"....
./

I"""

2.0

Fig. 7 - Typical Transconductance Vs. Drain Current

-50~C

i/

9V
8V
7V_

~

~

T;'

~

V

'V_

ZO

,

r8 V

~ r--.:

/. V

~

Q4
OJ
12
1.6
Vos. DRAIN·TD·SOURCE VOLTAGE IVOLTS)

IreST

16

.13
i..
..

A[/

.E

IDV-;
80 I~

co'" 1.4
0:'

V

~~
~
co

3200

1.0

j
0.6

0.2

r-

-

~

l/

2400

~

;u-

./'"

1600

\
,\

l~
\ ~

\

. /~

40

80

120

160

.....

.......

C",

20

-

30

40

Fig. 12 - Typical Body·Drain Diode Forward Voltage

"-

ISM,2N6766.___

¥

'I\.

tS,2N~766

",,-

/,

"\

//

"

TJ""500~HTJ=250C

I'\..

20

II

"

2

\

20

.r-

VOS. ORAIN·TO·SOURCE VOLTAGE IVOLTSI

Fig. 11 - Power Vs. Temperature Derating Curve

120

C:"

i'...

10

TJ. JUNCTION TEMPERATU RE lOCI

140

C,g

~

r\.

800

-40

MHz

60
80
100
Te,eASE TEMPERATURE lOC)

40

120

1.0

140

o
VSO,SOURCE·TO·ORAIN VOLTAGE IVOLTS)

Fig. 14 - Switching Time Waveforms

Fig. 13 - Switching Time Test Circuit

PUlSEt~IDTH~
VGS 1001 ---+-~"""---..,
Va

_.r--'P TO SCOPE

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

INPUT,V I

VGS loffl

4·129

90%

90%

50%

111%

PRINTED IN U.S A

•

POWER MOSFET TRANSISTORS
400 Volt, 0.3 Ohm

2N6767
J, JTX, JTXV 2N6768

N-Channel

DESCRIPTION

FEATURES
•
•
•
•
•
•

Fa~t Switching

The Unitrode power MOSFET design utilizes the most advanced technology available.
This efficient design achieves a very low Ros,o"' and a high transconductance.

Low Drive Current
Ease of Paralleling
No Second Breakdown
Excellent Temperature Stability
Qualified to MIL-S-19500/543A

The Unitrode power MOSFET features all of the advantages of MOS technology such as
voltage control, freedom from second breakdown, very fast switching speeds, and
thermal stability.
These power MOSFETS are ideally suited for many high-speed, high-power switching
applications such as switching power supplies, motor controls, and wide-band and
audio amplifiers.

PRODUCT SUMMARY
Part Number

VDs

RDS(on)

ID

2N6767

350V

0.40

12A

2N6768

400V

0.30

14A

MECHANICAL SPECIFICATIONS

34,

'~!~'~:~5I "1m~i

"13J:~~"
-r-

2N6767
JAN, JANTX, & JANTXV 2N6768

TO·204AA (TO·3)

SEATING

PL~E

JnI8ImIDIA--I~
TWO PLACES

10 16 (040) MIN
TWO PLACES

;=!~IWD'A

TWO PLACES

DRAIN
(CASE)

;~ ~~ I~:;glt
t MEASURED AT SEATING PLANE

Dimensions in Millimeters and (Inches)

11/83

4-130

~UNITRDDE

2N6767
JAN, JANTX, & JANTXV 2N6768
ABSOLUTE MAXIMUM RATINGS
Parameter

2N6767

2N6768

Units

VOS

Drain - Source Voltage

3S0"

400"

V

VOGR
10@TC-250C

Drain - Gate Voltage fRGS - 1 MO)

3S0"

400"

V

Continuous Drain Current

12"

14"

A

10@TC- 100°C

Continuous Drain Current

7.75"

9.0"

A

10M

Pulsed Drain Current

20

2S

A

VGS
PO @TC-2SoC

Gate - Source Voltage

..20"

V

Max. Powlr Dissipation

ISO" (See Fog. 111

W

PO@TC- 100°C

Max. Power Dissipation

60·

Linear Derating Factor

ILM

Inductive Current, Clamped

TJ
T stg

()peratlng and

{See

Fig. 111

Lead Temperature

W/K
A

-55· to 150·

°C

300· (0.063 10. 11.6mm) from case for lOs)

°C

Storage Temperature Range

II

W

1.2" (See Fog. 111
(See Fog. 1 .nd 21 L - 100 "H
20
I
2S

ELECTRICAL CHARACTERISTICS @ TC = 25°C (Unless otherwise specified)
Parameter
BVOSS

Drain - Source Breakdown Voltage

Typo

Min.

Typ.

Max.

Units

2N6767

3S0

-

-

V

-

V

'0'" 1.0mA

4.0"

V

VOS - VGS. 10 - 1 mA

-

100"

nA

VGS - 20V

-

100"

nA

VGS - -20V

0.1

1.0"

mA

Vas -

-

0.2

4.0"

mA

VOS'" Max. Rating, VGS

2N6767

-

-

5.4'

V

VGS" 10V, 10 ' l2A

2N6768

-

5.6"

V

VGS - 10V. 10 - 14A

2N6767

-

0.3

0.4"

2N6768

-

0.2S

0.3"

2N6767

-

-

0.88"

2N6768

-

0.66"

n
n
n
n

ALL

8.0"

11.0

24"

S (UI

2N6768

400

VGS(thl Gate Threshold Voltage
IGSSF
Gate - BodV Leakage Forward

ALL

2.0"

ALL

-

IGSSR

Gate - Body Leakage Reverse

ALL

lOSS

Zero Gate Voltage Drain Current

-

ALL

VDS(on) Static Drain-Source On-State

(i)

Voltage

ROS(on) Static Oraln-Source On-State
Resistance

(i)

ROS(onl Static Drain-Source On-State
Resistance

(i)

CD

Test Conditions

VGS -0

Max, Rating,

VGS

-

a

=0, TC = 125°C

VGS - lOY. 10 - 7.7SA
VGS - 10V. 10 • 9.0A
VGS' 10V,I 0 - 7.7SA, TC '12SoC
VGS - 10V. 10 - 9.0A, T C· l2SoC

9fs

Forward Transconductance

Cis,

Input Capacitance

ALL

1000'

2000

3000'

pF

Coss

Output Capacitance

ALL

200"

400

600'

pF

C'SS

Reverse Transfer Capacitance

ALL

50'

100

200"

pF

td (ani

Turn-On Delay Time

ALL

-

-

3S'

ns

VOO "" laOV, 10 • 9.0A. Zo • 4.7n

t,

Rise Time

ALL

-

6S"

ns

(See Figs. 13 and 14)

td (off)

Turn-Off Delay Time

ALL

-

ISO"

ns

(MOSFET sWitch Lng times are essentLally

tf

Fall Time

ALL

7S"

ns

Independent of operating temperature)

-

VOS - ISV. 10 - 9.0A
VGS - O. VOS - 2SV. f - 1.0 MHz
See Fig. 10

--'

THERMAL RESISTANCE
R thJC

Junction-to-Case

R thCS

Case-to-Sink

Mountong su,face fl.t, smooth. and

R thJA

Junctlon-to-Ambient

Free Air OperatLon

g,e::~
~

BODY· DRAIN DIODE RATINGS AND CHARACTERISTICS
IS

Continuous Source Current
(Body Diode)

ISM

Pulsed Source Current
(Body Diode)

VSO

Diode Forward Voltage

t"

Reverse Recovery Time

ORR

Reverse Recovered Charge

*JEOEC regIStered values.

CD

CD Pulse Test:

-

-

-

-

-

-

-

-

12"
14'
20
25
1.6"

0.85'

-

1.7"

V

TC· 2SoC. IS - 14A, VGS· 0

-

1000

-

ns

T J - IS0 0 C. IF - ISM. dlF/dt - 100 A/"s

2S

-

"C

TJ • IS0oC. IF; ISM. dlF/dt - 100 A/"s

2N6767
2N6768
2N6767
2N6768
2N6767

O.S"

2N6768
ALL
ALL

A

Modified MOSFET symbol
shOWing the integral
reverse P-N JunctLon rectLfler.

A
V

TC - 25°C, IS - 12A, VGS-O

4~
----

Pulse Width =s;;;; 300 ",sec, Duty Cycle =s;;;; 2%

Fig. 1 - Clamped Inductive Test Circuit

Fig. 2 - Clamped Inductive Waveforms

VARY tp TO OBTAIN

VGs.R

REQUIRED PEAK IL

DUT

IL+-_ _o-__""--"I>'Io-J
UNITRODE CORPORATION" 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 " TELEX 95·1064

4·131

PRINTED IN U.S.A

2N6767
JAN, JANTX, & JANTXV 2N6768

Fig. 3 - TVpical Output Characteristics

Fig. 4 - TVpical Transfer Characteristics
2

20

I.OV

'0

lO"sflOLSE TEST

vjs '&'~V l - I-

I

r-- 801pULSE ~EST

I
I
f- Vos="V

8

I

1
&tv~ ~ ~

2

8

1
V-

,

6

TJ"+125 0 C

TJ' !Soc,

"-

TJ"&SOC,

')

4

l- t-

7'rJ
1/ JII

2

,.~V_ I-- +--

/. V

3.&V- I-- +-1&0
200
2&0
&0
'00
Vas. DHAIN-TO-SOURCE VOLTAGE (VOLTS)

300

VGS. GATE·TO-SOURCE VOLTAGE (VOLTS)

Fig. 6- TVPical Saturation Characteristics
(2N67681

Fig. 5- TVpical Saturation Characteristics
(2N67671
'0

'0

LpuL,J-

VGS'~V

~'r

_l,.sPU~ET£!T

j

IJ'

4

J
1/

2

,,~

....... ' .• V

!-'"uv

~

V

W

~''f

/I

!J
6

VGs=;,,/:

j,

If'

-r

)

~~
j

3lv

'r

If"

II"

4'°1

,J.
lSI
Vos. DRAIN·lO·SOURCE VOLTAGE (VOL TSI

VDS. DRAIN·TO·SOURCE VOLTAGE (VOLTS)

Fig. 7 - TVPical Transconductance VI. Drain Current

Fig. 8 - Maximum Safe Operating Area

20

!i!i

'6

w

u

i

TJ= ·5SaC

-

j..--"" r

!il
'2

~V

iii

I~

~
Ii

I

l~

~ . / i-"

TJ=2'"C

TJ" +12!,:.

~ J--

V
VOS'" 15V
I

r-- r--

I

I 1 l- r-

If

'PU

'2

ETE

'a. DRAIN CURRENT (AMPERES)

UNITROOE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173· TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

'6

20

Vos. DRAIN-TO-SOURCE VOl. lAGE (VOL lSI

4·132

PRINTED IN U S.A

2N6767
JAN, JANTX, & JANTXV 2N6768

Fig.9-Normalized Typical On·Resistance V•. Temperature

Fig. 10 - Typical Capacitance V•. Drain·to-Source Voltage
4000

2.2

/

3200

~

"

/
/

~

§" 1600

./

0

o.6

,\

z

L

~

2400

u

4

oS

VG~'O

~

-

..,/

,

800

VGS" IOV
IO=9A

40
120
80
TJ. JUNCTION TEMPERATU RE (DC)

I'-..

.........

~

" t-...

0.2
-40

"'

\ I\,

u'

1/

•

I

f= 1 MHz

C,"

.........

~
""- ,"-C ns
50

10
20
30
40
Vos. DRAIN·TO·SOURCE VOLTAGE (VOLTS)

160

Fig. 12 - Typical Body-Drain Diode Forward Voltage
Fig. 11 - Power V•. Temperature Derating Curve

I!

"-

140

.

'\

z

i'"

80

'"'"

60

/

"t'-,.

~ 100

'\

~

~

~ 40
20

20

40

1

lL

r\.

120

~

ISM. 2N6768

60

80

Is.2N6768

r-- TJ = 1500~C I TJz250C

'"

100

~
r\

120

1.0

140

o
Vso. SOURCE·TO-ORA1N VOLTAGE (VOLTSI

TC. CASE TEMPERATURE (OCI

Fig. 13 - Switching Time Test Circuit

Fig. 14 - Switching Time Waveform.

VGS (MI ---+-~~---~

_.r--.

UNITROOE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

Vo
TO SCOPE

INPUT PULSE

FALL TIME

4-133

PRINTED IN USA

POWER MOSFET TRANSISTORS
500 Volt, 0.4 Ohm
N-Channel

FEATURES
,•
•
•
•
•
•

2N6769
J, JTX, JTXV 2N6770

DESCRIPTION

Fast SWitching
Low Drive Current
Ease of Paralleling
No Second Breakdown
Excellent Temperature Stability
Qualified to MIL-S-19500/543A

The Unitrode power MOSFET design utilizes the most advanced technology available.
This efficient design achieves a very low ROSfonf and a high transconductance.
The Unitrode power MOSFET features all of the advantages of MOS technology such as
voltage control, freedom from second breakdown, very fast switching speeds, and
thermal stability.
These power MOSFETS are ideally suited for many high-speed, high-power switching
applications such as switching power supplies, motor controls, and wide-band and
audio amplifiers.

PRODUCT SUMMARY
Part Number

Vos

ROS(on)

10

2N6769

450V

0.50

11A

2N6770

500V

0.40

12A

MECHANICAL SPECIFICATIONS
2222(0815)

1013:t~.AX
DfA~~

T

2N6769
JAN, JANTX, & JANTXV 2N6770

TO-204AA (TO-3)

SEATING
PLANE

~~I~~~IO!A-II--

10 161040)MIN

TWO PLACES

TWO PLACES

i-tl0~)6~AX

J

;:I~l~a '~~~+~;==;-r
!
DIA

TWO PLACES

?c~~~~

-.. I!~
I

SOURCE

"\ l!1I1!!!!I'.!.
\

:; i>' ~V

GATE

'"

1)

''''

/I 573 MAX

3040(11911

~

~-$:~====_L

-~ f--B:lgi&~r

--

f--1A1H~:;gI'

1 MEASURED AT SEAT.r.G PLANE

Dimensions in Millimeters and IInches}

11/83

4-134

~UNITRDDE

2N6769
JAN, JANTX, & JANTXV 2N6770
ABSOLUTE MAXIMUM RATINGS
Parameter
Drain - Source Voltage

VOS

2N6769

Drain - Gate Voltage (RGS = 1 MO)

450"

2N6770
500"

450"

500"

V

Units

V

VOGR
10@TC'2SoC

Continuous Drain Current

11"

12"

A

10"TC' l000C

Continuous Drain Current

7.0"

7.7S"

A

10M
VGS

Pulsed Drain Current

20

2S

A

Gate - Source Voltage

%20"

V

PO" TC = 2SoC

Max. Power Dissipation

150" (See Fig. 111

W

PO"TC= l000C

Max. Power Dissipation

60" (See F.g. 111

Line., Derating Factor

1.2" (See Fig. 111
(See Fig. 1 and 21 L = 1 00 ~H
20
I
2S

ILM

Inductive Current. Clamped

TJ

Operating and
Storagl Temperature Range

T"g

Lead Temperatur.

W
W/K

A

-55* to 150-

Oc

300' (0.063 in. (1.6mml from case for 10.)

°C

ELECTRICAL CHARACTERISTICS @ TC = 2SD C (Un)ess otherwise specified)
Perlmettr
·avOSS

Typo

Drain - Source Breakdown Voltage

VGSlth) Gatl Threshold Voltage

2N6769

Min.
450

Typ.

-

Mex.

-

Unit.
V

Tilt Conditions

VGS=O

2N6770

SOO

-

-

V

10-4.0mA

ALL

2.0'

-

4.0"

V

VOS' VGS' 10 = 1 mA

IGSSF
IGSSR

Gate - Body Leakage Forward

ALL

-

-

100'

nA

VGS = 20V

Gate - Body Leakage Reverse

ALL

-

100'

nA

VGS

lOSS

Zero Gate Voltage Drain Current

0.1

1.0'

mA

VOS

=-20V
=0.8 X Max. Raling, VGS' 0

0.2

4.0·

mA

VOS

= Mex. Raling, VGS' 0, TC = 2SoC 10 12SoC

-

6.0'

V
V

2N6770

-

ALL

8.0'

ALL

VOS(on) Static Drain-Source On-Stats
Vol_ (i)

2N6769

ROS(on) Static Drain-Source O"..State
Rllistance

2N6769

2N6770

CD

2N6770

ROS(on) Static Drain-Source On-5tate
Resistance (0
gfs

Forward Transconductance

2N6769

0)

-

6.0"

0.4

O.S"

n

0.3

0.4'

n

VGS

-

1.1"

n

VGS = 10V, 10 = 7.0A, T C = 12SoC

-

0.8B"

n

12.0

24"

S (UI
pF

VGS =10V, 10' 7.0A

= 10V.10 =

7.7SA

VGS = 10V, 10 = 7.7SA, TC = 12SoC
VOS = ISV, 10 = 7.7SA

Ciss

Input Capacitance

ALL

1000"

2000

3000"

Co..
Cm

Output Capacitance

ALL

200"

400

600"

pF

Reverse Transfer Capacitance

ALL

SO"

100

200"

pF

-

-

3S"

n,

-

50"

n.

(See Figs. 13 and 14)

-

ISO"

ns

(MOSFET switching times are essentially

70"

ns

independent of operating temperature.)

KIW
KIW
KIW

Id (on)

Turn-On Delay Time

ALL

I,

Rise Time

ALL

Id (offl

Turn-Off Delay Time

ALL

If

Fall Time

ALL

VGS

=O. VOS = 2SV. f = 1.0 MHz

See F.g. 10
VOO ;"210V, 10 = 7.7SA, Zo = 4.7n

THERMAL RESISTANCE

I RlhJC

I R'hCS
I RlhJA

Junction-to-Case

ALL

-

-

0.B3"

Case-to-Sink

ALL

-

0.1

-

Junction-to-Ambient

ALL

-

-

30

-

-

II"
12'
20
2S
I.S"

Mounting surface flat. smooth. and greased.
Free Air Operation

BODY·DRAIN DIODE RATINGS AND CHARACTERISTICS
2N6769
2N6770
2N6769
2N6770
2N6769

0.7S"

2N6770

O.SO·

-

ALL

-

400

IS

Continuous Source Current
(Body Diode)

ISM

Pulsed Source Current
(Body Diode)

VSO

Diode Forward Voltage

Irr

Reverse Recovery Time

ORR

Reverse Recovered Charge

ALL

• JEOEC registered valull.

CD

(i) Pulse Test:

-

10

A

Modified MOSFET symbol
showing the integral
reverse P·N junction rectifier.

A

~

V

TC=2SoC,IS= lIA,VGS-O

1.6"

V

TC =2SoC, IS= 12A,VGS=0

-

ns

TJ = 150°C, IF • ISM, dlF/dt· 100 A/~.

~C

T J = IS00C, IF • ISM, dlF/dl = 100 AI~,

Pulse Widlh "300 ~sec, Duty Cycle" 2%

Fig. 2 - Clamped Inductive Waveforms

Fig. 1 - Clamped Inductive Test Circuit
VARY tp TO OBTAIN

VGs.R

REQUIRED PEAK

IL

~D~U_T,"r::

..

IL+----- 1010nl

x ROSlon) max., VGS

200·

pF

100·

pF

-

25·

pF

-

15"

ns

Voo

25·

ns

See Fig. 17

25"

ns

20·

ns

(MOSFET switching times are essentially
independent of operating temperature.)

7.5

nC

5.0

=

VGS OV, VOS
See Fig. 10

=25V, f =1.0MHz

=35V, 10 =2.25A, Zo =500

=

=

-

nC

5.0

-

nH

Measu red from the
drain lead. 5mm (0.2
in.) from header to
center of die.

15

-

nH

Measured from the
source lead, 5mm (0.2
in.) from header to
source bonding pad.

2.0
3.0

ALL

-

ALL

-

=

VGS lOY, 10 8.0A, VOS O.S Max. Rating,
See Fig. IS for test circuit. (Gate charge is essentially
independent of operating temperature.)

nC
Modified MOSFET
symbol showing the
internal device
inductances.

$

THERMAL RESISTANCE
RthJC

Junction-to-Case

RthJA

Junction-to Ambient

Free Air Operation

*Indicates JEDEC registered values.

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

4-139

PRINTED IN U.S A

II

2N6781

2N6782

SOURCE·DRAlN DIODE RATINGS AND CHARACTERISTICS
Is

Continuous Source Current
(Body Diode)

ALL

-

-

ISM

Pulse Source Current
(Body Diode) <3>

ALL

-

Vso

Diode Forward Voltage (2)

ALL

.7S·

-

trr

Reverse Recovery Time

ALL

Qrr

Reverse Recovered Charge

ALL

ton

Forward Turn·on Time

ALL



.~- r-

~

0.'

1.Ous

..

I

~ .....

'I IJ
/J/

'0

Vas. GATE TO SOURCE VOLTAGE WOl T5)

..,.VGS·'V- ~

~V

2.'

'r~

~

0

~550C

0

/.~~ ~

Q /'"

I"-- 1.1/
TJ" 25 C
I
I"-- II ~
TJ"
I

50

V IV - ~
~

5.•

f--- TJ. t25 DC

48

01

I V

I.'

mill

56

Fig. 3 - Typical Saturation Characteristics

'.0

ROSlon)

16

-

il
/

vos> loton) J(

EH

5~- ~

0.1

r-..!... PUl~1 TIS!

1.2

Ir=

1.4

;

+ Lo.

by max. junction temperature.
see Transient Thermal Impedance Curve (Fig. S).

Fig. 1 - Typical Output Characteristics

c

Ls

<3> Repetitive Rating: Pulse Width limited

·Indicates JEOEC registered values.

10

~

=2S·C, Is =3.SA, VGS =OV
TJ = lS0·C, IF =3.SA, dlF/dt = 100Mps
TJ = lS0·C, IF =3.SA, dlF/dt = 100Mps

Tc

ns

(2) Pulse Test: Pulse width::; 300pS, Duty Cycle::; 2%.

'.0

Modified MOSFET symbol
showing the integral
reverse P·N junction rectifier.

10

20

500

VOS. ORAIN·TO-SOURCE VOLTAGE IVOLTS!

4-140

PRINTED IN

u.s

A

2N6781

2N6782

Fig.5 - Maximum Effective Transient Thermal Impedance, Junction·to·Case Vs. Pulse Duration
I

IIII

!iii ~i;

0=05
~

0.2

r-

0.1

--

I

i_

_LJ

~2~

~O.02

1 DUTV FACTOR, 0 =

~

SINGLE PULSE (TRANSIENT

I mERMi" iMPEiAiTI

•

3:flSL

iii ~iiII

l::=0 05

NOTES

*"

2 PER UNIT BASE· R1hJC • 8.33 DEG Ciw
3 TJM ~ Te "POM ZthJC(tJ

I

1"""'"
10.3

10.4

10.2

10.1

1.0

10

11. SQUARE WAVE PULSE DURATION (SECONDS)

Fig. 6 - Typical Transconductance Vs. Drain Current
40
3.6

r--J ~s PUJSf1~(Dn);TESl
vias >

Fig. 7 - Tvpical Source·Drain Diode Forward Voltage
10

ROSlon)

,

ma~

3.2

!15

//

2.'

iii
w

2.4

u

z

i
1:

12

D.•
04

o

TJ" l2S oC

IV

I~

Y
o

1--

TJ" 150 0 C

I

"
16

24

32

4.0

4.8

56

64

12

II

80

02

Fig. 8 - Breakdown Voltage Vs. Temperature

u

«

~~

1.05

./

"'!:!

,,"

~;i! 1.00
CO

~~

0.95

!i

0.90

:i

'"i!!
i;

10

12

14

16

18

20

2.50

1.15
1.10

...." .

08

2.25

z

3:

c
c

I
06

Fig. 9 - Normalized On·Resistance Va. Temperature

1.20

z

04

I

VSO. SOURCE TO-CRAIN VOLTAGE (VOLTS)

1.25

c
>

I' 1

I

'0. DRAIN CURRENT lAMPE RES)

'"~

ITJ - 25'C

I

1

DB

I

TJ" 2SoC

/ ,'

16

I

II I

20

g
~

I

TJ = -55°C

. . . .V

"

/'

V

in

V

~
:;:

/'

;"'"

c - 1.00

~

..

c

·20

20

./

g~

O.BO
-40

./

1.15

>-- 1.50
"?o
Zw
o!:!
w~
u< 1.25

0.85

0.15
·60

2.00

40

60

80

100

120

0.50

...... io"'"

.61/

4·141

/'

"

V
VGS -10V
'0= 15A

I

0.25

o

140

TJ• JUNCTION TEMPERATURE (oCl

UN/TROOE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (7l0) 326-6509 • TELEX 95·1064

0.15

./

-40

/

V

·20

I

20
40
60
80
100
TJ.JUNCTION TEMPERATURE ('C)

120

140

PRINTED IN U.S.A

2N6781

Fig .. 10 - Typical Capacitance VI. Drain·to·Source Voltage
!GIl

2N6782

Fig. 11 - Typical Gate Charge Vs. Gate-to-Source Voltage
20

Jus. 1
0

.au
COo •

li'M~'

in

Coo + Cool. c", SHORTEO

c:>
<:. 15

cIa ,cld
"

.~

~
~

C_.Cdl+c~·+t

3l1li

I

-c",+CooI

zao

u

1110

I I

~

-

Voo =lOV
VD, = SOV ..:::
Veo =SOV

w

to

~

c:>

>

w

10

~

/

:::>
c:>

l\

"
\

c!.

1\ ....... ~

C:"

-

II

C~

/

10
20
3D
4D
Vos. ORAIN·TO.sOURCE VOLTAGE (VOLTS!

'I'
.I~
II"'

I

;;:
---'--~

Fig. 17 - Switching Time Test Circuit
ADJUST Rl
TO OBTAIN

E,

SPECIFIED'D

AL

V,

PULSE
GENERATOR

r-----..,
I
I
I

L_

TO SCOPE

son

Fig. 18 - Gate Charge Test Circuit
+Vos
(ISOLATED
SUPPLY)

-

oI=tI:·5mA

--"'fVv-.....-"VV\,--o ·VDS
IG
CURRENT

SHUNT

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

4-143

ID
CURRENT
SHUNT

PRINTED IN U S.A

2N6783
2N6784

POWER MOSFET TRANSISTORS
200 Volt, 1.5 Ohm

N-Channel

FEATURES

DESCRIPTION

•
•
•
•
•

The Unitrode power MOSFET design utilizes the most advanced technology available.
This efficient design achieves a very low Roston, and a high transconductance.

Fast Switch i ng
Low Drive Current
Ease of Paralleling
No Second Breakdown
Excellent Temperature Stability

The Unitrode power MOSFET features all of the advantages of MOS technology such as
voltage control, freedom from second breakdown, very fast switching speeds, and
thermal stability.
These power MOSFETS are ideally suited for many high-speed, high-power switching
applications such as switching power supplies, motor controls, and wide-band and
audio amplifiers.

PRODUCT SUMMARY
Part Number

VDS

,RDS(on)

ID

2N6783

150V

1.50

2.25A

2N6784

200V

1.50

2.25A

"
:.f

MECHANICAL SPECIFICATIONS

2N6783, 2N6784

TO-205 AD (TO-39)

086 to OM,

,

lilTlfi'Oii'l

:12:' ~088(OOl5}

DRAIN

SOURce

GATE

!'tOB10 2D)

91~111~

~r

825(0325)
OIA

045iOQ18}

I

1422

(0

451101801

l43010169!

------:~,

0361'0)"

18031071)

56}

"'",OSOI

REF

~

053to02l!!;
04110016)
3PLACES

All Dimensions in Mitlimeters and (Inches)

11/83

4-144

~UNITRDDE

2N6783 2N6784
ABSOLUTE MAXIMUM RATINGS
Parameter

2N6783

2N6784

Units

150"

200"

V

Drain - Gate Voltage (RGS = 1MO)  1010n)

20"

Ogd

ls

Vos

-

nH

Voo = 75V, 10 = 1.5A, Zo = 500

VGS = lOV, 10 = 4.5A, Vos = 0.8 Max. Rating,
See Fig. 18 for test circuit. (Gate charge is essentially
independent of operating temperature.)

Measured from the
drain lead. 5mm (0.2
in.) from header to
center of die.

Measured from the
source lead, 5mm (0.2
in.) from header to
source bonding pad.

Modified MOSFET
symbol showing the
internal device

inductances.

$

THERMAL RESISTANCE
RthJC

Junction-to-Case

RthJA

Junction-to Ambient

Free Air Operation

·'ndlcates JEDEC registered values.

UN)TROOE CORPORATION· 5 FORBES ROAO
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

4-145

PRINTED IN

u.s

A

2N6783 2N6784

SOURCE·DRAIN DIODE RATINGS AND CHARACTERISTICS
Is

Continuous Source Current
(Body Diode)

ALL

-

-

2.25'

A

ISM

Pulse Source Current
(Body Diode) @

ALL

-

-

9

A

1.5"

VSD

Diode Forward Voltage®

ALL

0.7

-

trr

Reverse Recovery Time

ALL

-

290

Qrr

Reverse Recovered Charge

ALL

-

2.0

ton

Forward Turn-on Time

ALL

 '0(on) II ROSl on) max.

~
~

1.0

"z

.."

I

-80t"PUl~ETES~

~

z

/I II

I'---- 'fj

TJ= -55 DC

:! 30

~

~

TJ = •25DC

'0

z

~E

/J /

TJ.toc

r-l .".!.. "1T

40

~

Fig. 2 - Typical Transfer Charact.ristic.

1
9V
8V t--

TJ

@Repet.t.ve Rat.ng: Pulse w.dth IIm.ted
by max. junction temperature.
See Transient Thermal Impedance Curve (Fig. 5).

Fig. 1 - Typical Output Characteristics

~~

Tc

pC

*Indicates JEDEC registered values.

4.5

=25'C. IS =2.25A. VGS =OV
=150'C. IF =2.25A. dlF/dt =l00Al/JS
TJ =150'C. IF =2.25A. dlF/dt =l00Al/JS

V
ns

Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by Ls + LD.

® Pulse Test: Pulse w.dth :;; 300l's. Duty Cycle:;; 2%.

5.0

Modified MOSFET symbol
showing the integral
reverse P-N junction rectifier.

~ .......
~V

20
30
'0
Vos, DRAIN-TO-SOURCE VOLTAGE (VOLTS)

'0

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL (617) 861-6540
TWX (710) 326-6509 • TELEX 95·1064

6[-

i
_

!...
~5

10ps

'\

1.0

100ps

0.5

1.0ms

0.2
z
~ 0.1
.§ O.OS

5~_

DC=

T, - 150'C MAX.
=
- SINGLE PULSE
2N6783

0.02

.~-

0.01

5.0

I I 1111111
1.0

10

2N6784

11111
20

50

100

III
200

sao

V... DRAIN-TO-SDURCE VOLTAGE (VOLTS)

4-146

PRINTED IN

u.s

A

2N6783 2N6784

Fig. 5 - Maximum Effective Tranlient Thermal Impedance, Junction·to.ca .. Vs. Pul .. Duration

,

•

0'05

NOTES

f-

0.2

f-

0.1

3n.J1..

~Iii

~2~

F=O.OS

1=002

1 DUTY FACTOR, 0" :;

~

SINGLE PULSE (TRANSIENT

2 PER UNIT BASE

·mERMjliMPEnT"

i--"I'

~

RthJC" 833 DEG elW.

3 TJM-TC"'POMlthJC1t)
10.1

10

10

II. SDUARE WAVE PULSE DURATION (SECONQS)

Fig. 6 - Typical Transconductance V,. Drain Current
4.0

3.&

!

Fig. 7 - Typical Sou_·Dr.in Diod. Forward Voltage
10

~~~PU~TE!T
Vas> 'Olonl x RaSlon)

3.2

m.~.

5

! z.8
~
~

L.

,
:i
CI

....
-

~

J
I

2

2.4
TJ II-55°C

0

. /~

1.6

~

TJ I,

1/ . "1-"'1""

1.2

TJ

0

25.t!

1'125'~

Sr-

i ~ 10-

0.8

t--

II'

0.4

o

o

J"TJ"SO'C
TJ. 125'C

j

2

I

1.0

20

'.0

3.0

5.0

1.0
2.0
3.0
4.0
VSD. SOURCE·TO·ORAIN VOLTAGE IVOLTSI

5.0

10. DRAIN CURRENT (AMPERES)

Fig. 8 - Breakdown Voltage VI. Temperature

Fig. 9 - Nosmalized On·Rlliltlnee VI. T_reture

1.25

2.2
5

1/

.." ~

., ~

~

i-""

•

i...,..- ~

V

-40

o

40
10
120
TJ, JUNCTION TEMPERATURE lOCI

UNITROOE CORPORATION' 5 FORBES ROAO
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95-1064

0.2

110

4-147

l/

...... 10"'"

0

\ ....
0.15

V

~

IL

~,..,

"

Vas" lOY

'~'l.jA

o
40
10
120
TJ,JUNCTION TEMPERATURE ",el

110

PRINTED IN U.S.A

2N6783

Fig. 11 - Typal Gate Charge VI Gate-to-8ource Voltage

Fig. 10 - Typical Capacitance Vs. Drain·to-Sourca Voltage
5011

I
I

j

..

~

300

~

I

2011

u'

100

20

JGsoo'
1-1MH,

.l J

V~' 40L.. .

c,. - C.. ~ cto. ~'" SHORTEDC.. -col
C.... Cdl+~
..

400

v., .lDOr . . . . ~ 7

-

-Cds+ t,d

,

Va••

I

\ I ' .......

\

..

,

\

-- 1.

.,

160r2:
/.

C,~

~

/

I

~
C,.

2.

2N6784

-

30

la = 4A
FOR TEST CIRCUIT

I

I

S~E FIG~RE

4

1r

-

10

6

a•. TOTAL GATE CHARGE (nC)

50

Vas. DAAIN·TO-SOURCE VOLTAGE (VOLlSI

Fig. 12 - Typical On-Resistanca Vs. Drain Current

Fig. 13 - Maximum Drain Currenl VI Ca•• Temperalure
2.5

ROSlon) MEASURED WITH CURRENT PULSE Of
DURATION. INITIAL TJ = 250C (HEATING

2.0~1

EFFECT OF 2.0 .. PULSE IS M'j'MAl.i

r- 2.0

3

........ ......

I

IJ

!'.... t'-",.

...........

::E

VGS·1OV

$1.5

~

i
I

~ 1.0

- -~

~

k~ov

.."

"- '\.
~

0.5

\
50

10

75

100

125

150

Te. CASE TEMPERATURE ('C)

'0. DRAIN CURRENT (AMPERES)

Fig. 14 - Power Vs. Temperature Derating Curve
2.

"-

"I\..

"r-..."- ,

"'t\.. ,
20

40

60

80

100

120

"

140

Te. CASE TEMPERATURE (OCI

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

4-148

PRINTED IN U.S.A

2N6783 2N6784

Fig. 15 - Clamped Inductive Test Circuit

•

Fig. 16 - Clamped Inductive Waveforms

VARY lp TO OBTAIN
REQUIRED PEAK Il

VGS =

TO
L

r.r--

OUT

1P

Fig. 17 - Switching Time Test Circuit

Y,
PULSE
GENERATOR

D ur.

r-----.,

I

I
I

L_

5O1l

I

I

___ .J

TO SCOPE

O.OUl

SOn

HIGH FREQUENCY
SHUNT

Fig. 18 - Gate Charge Test Circuit
+Vos
(ISOLATED
SUPPLY)

-

o~·5mA

-.J\N\r-~-J\J"',.-- 1010n) x ROSlon)

max., VGS = 10V

Vos = 15V, 10 = 0.8A
VGS = OV, VOS = 25V, f = 1.0MHz
See Fi~ 10

15-

ns

Voo = 170V, 10 = 0.8A, Zo = 500

ns

See Fig. 17

-

20'
35-

ns

-

30'

ns

(MOSFET switching times are essentially
independent of operating temperature.)

6.0

7.5

nC

3.0

-

nC

3.0

VGS = lOY, 10 = 2.0A, Vos = 0.8 Max. Rating.
See Fig. 18 for test circuit. (Gate charge is essentially
independent of operating temperature.)

Qg.

Gate-Source Charge

ALL

Qgd

Gate-Drain ("Miller") Charge

ALL

Lo

Internal Drain Inductance

ALL

-

5.0

-

nH

Measured from the
drain lead. 5mm (0.2
in.) from header to
center of die.

Ls

Internal Source Inductance

ALL

-

15

-

nH

Measured from the
source lead, 5mm (0.2
in.) from header to
source bonding pad.

nC
Modified MOSFET
symbol showing the
internal device
inductances.

$

THERMAL RESISTANCE
RthJC

Junction-to-Case

RthJA

Junction-to Ambient

Free Air Operation

*Indicates JEDEC registered values.

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

4-151

PRINTED IN U.S A.

II

2N6785 2N6786

SOURCE·DRAIN DIODE RATINGS AND CHARACTERISTICS
IS

Continucus Source Current
(Body Diode)

ALL

-

-

ISM

Pulse Source Current
(Body Diode) I»

ALL

-

VSD

Diode Forward Voltage C2>

ALL

0.6·

-

-

trr

Reverse Recovery Time

ALL

Q..

Reverse Recovered Charge

ALL

ton

Forward Turn-on Time

ALL

1.25·

A

5.5

A

1.4·

V

-

380

pC

Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by

..

(2) Pulse Test: Pulse WIdth :5 3OO/ls, Duty Cycle :5 2%.

(j) TJ = 25' to 150'C.

1.16

iii

i
~

.a

..
:

2.20

J~PUL~T£S!

H~.

1.98
116

VGS! 6V

1.54

iii

1.54

~

1.32

~:E

1.32

i:

1.10

-J..v~s ,JmJ
I~(onl
>

110

V TJ: 125',C
VTJ.25'C- I-. / /T; ••55'C

E

5V

0.04
0.22

o
o

100

60

20

Lro

0.22

4~

o

Jj V

0.04

Fig. 3 - Typical Saturation Characteristics
2.20

f--

1.98

-J~'PUL~ETESt

1.78

1.54
1.32

~

..
z 1.10

~

0.81

,

Fig. 4 - Forward Blaa Sal. Operallng Area
10

IW~
7V
9Y

~

"-'e'

8V

~VGS'6V-

o

0.2

.~

0.1

I"

0.01
1.0

10

VOS. DRAIN·TO·SOURCE VOLTAGE IVOL TSI

UNITROOE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

tOms

DC

1v
4

lo,.s

1m

0.02

/

o

::>

1.

~T,-l50'C MAX .
.E 0.05 ~SINGLE PU LSE

5V

r

0.22

0.5

~
a:

,

1.0

...
<>

J

0.04

-

f-

ffi
a:
~
2
$

l/

~ 0.6&

10

VGS. GATE TO SOURCE VOLTAGE (VOL lSI

VDS. DRAIN·TO·SOURCE VOLTAGE IVDLTSI

i8

r

I

mlX~

co 068

co 0.88

E

iii
II:
..
!i~_

I

x ROSlonl

z 0.88

0.88

o

+ LD·

Fig. 2 - Typical Transfer Characteristics

Fig. 1 - Typical Output Charactoristics

1.81

La

I»Repetltlve Ratmg: Pulse WIdth limIted
by max. junction temperature.
See Transient Thermal Impedance Curve (Fig. 5).

·Indicates JEDEC registered values.

2.20

.aE1

=25'C, Is =1.25A, VPS =OV
TJ =150'C, IF =1.25A, dlF/dt =100A/"s
TJ =150'C, IF =1.25A, dlF/dt =looA/"s

Tc

ns

-

2.7

Modified MOSFET symbol
showing the integral
reverse P-N junction rectifier.

2N6785 2N67

I II ilill
10

II I I
20

50

100 200

500

V... DRAIN·TO-SOURCE VOLTAGE (VOLTS)

4·152

PRINTED IN U.S.A.

2N6785 2N6786

Fig.5 - Maximum Effective Transient Thermal Impedance, Junction·to·Cas. Vs. Pulse Duration

I I
f-D. 0.5

•

m.n
NOTES

~iifi::

f - 0.2
f - 0.1

~2~

F'=.o.05

~O.02

, DUTY FACTOR, 0 "

~

SINGLE PULse (TRANSIENT

2

. mERMjLtPTiTII

....-r-

:~

PER UNITBASE' R,hJC" S.33 DEG. CIW.

3 TJM - TC;; POM ZthJC1tl .

1.0

10

II. SQUARE WAVE PULSE DURATION (SECONDS)

Fig. 6 - Typical Transconductance Vs. Drain Current

Fig. 7 - Typical Source-Drain Diode Forward Voltage

3.0

10

r-4"PU!SE
TE!' ROSlon'I
vas>

21

'Olon) II

~ 24

~

2

I

50

mall.

I

§
~

,... V

18

I:

V

~ 0.9

i

06

03

.

rl

~

lit

/ V
~~

V

-I-'""

-

--

...5z
'"'"~

TJ= -55 DC

TJ =

lsoc -

TJ' :25 0 C

z

10

~

-

'"
~

~

'I

o
o

10

05

01

01
022

044 066

088

11

132

154

t 76

198

22

r-r-- I--'
o

TJ;; 150°C
I
TJ"15OC

20

10

'a. DRAIN CURRENT (AMPERES)

3.0

5.0

4.0

VSQ. SOURCE TO-DRAIN VOL rAGE (VOL lSI

Fig. 9 - Normalized On·Resistance Vs. Temperature

Fig. 8 - Breakdown Voltage Vs. Temperature
1.2 5

,

11

~ "

~

5

>

"... i"'"
5

5

,... V

v

i""""

/

V

V

)'

i""""
./

./

,/

-- I--~

5

V

06

;'
0.7 5

-40

vGS
10

=

TOV

10.SA,

01
40
80
120
TJ. JUNCTION TEMPERATURE (OCI

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326-6509 • TELEX 95-1064

160

4-153

-40

40
80
120
TJ. JUNCTION TEMPERATURE (DCI

160

PRINTED IN U.S A.

2N6785 2N6786

Fig. 10 - Typical Capacitance Vs. Drain·to-Source Voltage
250

t~ • t~ + t~. Cd. ~HORT~O

r- C. . . C..
200

150

~

100

20

1

GS +0

f; IMHz

C_.Cdl+~

~
\~

~
lil

J

Fig. 11 - Typical Gate Charge VI. Gate·to·Source Voltage

~+

~C.. +C..

f'!

a

..

~

I

\

50

u

'"

I\.

I'

I

VOS' 320V
10

~

::?

..... ........
i'o..

-

~

>

/

C'"

10
20
30
40
VOS. DRAIN TO SOURCE VOLTAGE IVOLTSI

~

V

I

~

~
fo.-

""- I)j ~

A~

:0

\

\

I

~
>

\

u'

vOS' 200V

~
c

c,..

~

VOS! 80V
15

J

10"' 2A

FOR lEST CIRCUIT
SrFIGrEli

50

0"

4

r--

6

10

TOTAL GATE CHARGE InCI

Fig. 13 - Maximum Drain Current VI. Ca.. Temperature

Fig. 12 - Typical On·Resistance Vs. Drain Current
10

15

v.,
h

VGs,l/

ROSlon! MEASuJEO WIT.'

CURREN~

PULSE OF 2 oloiS DURATION
INITIAL TJ =2Suc (HEATING

-----;

EFFECT OF 2 0 "sPULSE IS MINIMAll

z
co

~

i'-.

:! 09
~

z

'"'"u
:0

z

06

~

/;'

'i'. "'-

.E>
03

V

o

r-....

~

/

-

......

.

I
3

r--....

12

\tGs,..20V_

o

25

15

50

100

"

125

\

,
150

Te. CASE TEMPERATURE IOC)

10. DRAIN CURRENT (AMPERES)

Fig. 14 - Power VI. Temperature Derating Curve
20

""
20

40

"r-...

60

80

",
IOU

""-"r\
120

140

Te. CASE TEMPERATURE (OCI

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326·6509 • TELEX 95-1064

4-154

PRINTED IN U.S.A

2N6785 2N6786

•

Fig. 16 - Clamped Inductive Waveforms

Fig. 15 - Clamped Inductive Test Circuit
VARY lp TO OBTAIN
REQUIRED PEAK Il

VGS·R

Fig. 17 - Switching Time Test Circuit

PULSE
GENERATOR
r-----...,

I
50n
I
I I1
I
I
L _ ___ .1

50n

Fig. 18 - Gate Charge Test Circuit
+Vos
!ISOLATED
SUPPlYI

-

o~,·smA

UNITROOE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326·6509 • TELEX 95-1064

4-155

'G
C.URRENT

10
CURRENT

SHUNT

SHUNT

PRINTED IN U.S.A

POWER MOSFET TRANSISTORS

2N6787
2N6788

100 Volt, 0.30 Ohm
N-Channel

FEATURES

DESCRIPTION

•
•
•
•
•

The Unitrode power MOSFET design utilizes the most advanced technology available.
This efficient design achieves a very low Roslon) and a high transconductance.

Fast Switching
Low Drive Current
Ease of Paralleling
No Second Breakdown
Excellent Temperature Stability

The Unitrode power MOSFET features all of the advantages of MOS technology such as
voltage control, freedom from second breakdown, very fast switching speeds, and
thermal stability.
These power MOSFETS are ideally suited for many high-speed, high-power switching
applications such as switching power supplies, motor controls, and wide-band and
audio amplifiers.

PRODUCT SUMMARY
Part Number

VDS

RDS(on)

ID

2N6787

60V

0.30n

6.0A

2N6788

lOOV

0.30n

6.0A

MECHANICAL SPECIFICATIONS
2N6787, 2N6788

TO-205 AD (TO-39)

50B(020)

045(0018)

03"O~'";r;r;~_..1
\
1422 {D 56)

nro1~

~!~:~~~:

1803(07H
REF

~

OIA

JPLACES

All Dimensions In Millimeters and (Inches)

11/83

4-156

~UNITRDDE

2Np787 2N6788
ABSOLUTE~AXIMUM

RATINGS
Parameter

2N6787

2N6788

Units

VOS

Drain· Source Voltage

60·

100'

V

VOGR
10 @Tc = 25°C

Drain· Gate Voltage (RGS = 1MQ)

60·

100'

V

Continuous Drain Current

6.0·

6.0·

A

10M

Pulsed Drain Current

24

24

A

VGS

Gate· Source Voltage

Po @TC=25°C

Max. Power Dissipation
Linear Derating Factor

ILM

Inductive Current, Clamped

TJ
Tslg

Operating Junction and
Storage Temperature Range

±20·

V

20' (See Fig. 14)

W
W/K

0.16' (See Fig. 14)

I

24

Lead Temperature

(See ~l15 an116) L = 100l'H

I

A

-55 to 150

°C

300(0.063 in. (L6mm) from case for las)'

°C

ELECTRICAL CHARACTERISTICS @ Tc = 25°C (Unless otherwise specified)
Parameter
BVoss

Drain· Source
Breakdown Voltage

VGSlthi

Gate Threshold Voltage

Type

Min.

Typ.

Max.

Units

2N6787

60·
100·

-

V

2N6788

V

10 = LamA

ALL

2.0·

-

4.0'

V

VOS - VGS, 10 = LamA

-

IGSS

Gate·Source Leakage Forward

ALL

-

IGSS

Gate·Source Leakage Reverse

ALL

loss

Zero Gate Voltage Drain Current

ALL

-

1010ni

On·State Drain Current

ROSloni

Static Drain·Source
On·State Resistance

ROSloni

Static Drain·Source
On·State Resistance

Test Conditions
VGS = OV

100'

nA

VGS = 20V

-100'

nA

VGS = -20V

1.0'
4.0·

mA

VOS - Max. Rating, VGS = OV

mA

Vos = Max. Rating, VGS = OV, Tc = 125°C

-

A

VOS

ALL

6.0

-

®

ALL

-

-

0.30·

n

VGS = lOV, 10 = 3.5A

®

ALL

-

-

0.54·

n

VGS = lOV, 10 = 3.5A, Tc = 125°C

ALL

-

-

1.80'

V

VGS = lOV, 10 = 6.0A

ALL

1.5·

4.5·

S(o)

VOS = 15V, 10 = 3.5A

ALL

200·

600·

pF

400·

pF

100·

pF

40·

ns

70'

ns

See Fig. 17

40'

ns

70'

ns

(MOSFET switching times are essentially
independent of operating temperature.)

®

-

> 1010ni

x ROSloni max., VGS = 10V

VOSloni

On·State Drain·Source
Voltage ®

g,s

Forward Transconductance

C'ss
Coss

Input Capacitance
Output Capacitance

ALL

100·

CrsB

Reverse Transfer Capacitance

ALL

20·

tdlonl
T,

Turn·On Delay Time

ALL

Rise Time

ALL

tdloffl

Turn·Off Delay Time

ALL

It

Fall Time

ALL

-

-

Qg

T atal Gate Charge
(Gate·Source Plus Gate·Drain)

ALL

-

10

15

nC
nC
nH

Measured from the
drain lead. 5mm (0.2
in.) from header to
center of die.

nH

Measured from the
source lead, 5mm (0.2
in.) from header to
source bonding pad.

®

Qg.

Gate·Source Charge

ALL

-

6.0

Ogd

Gate·Drain ("Miller") Charge

ALL

4.0

Lo

Internal Drain Inductance

ALL

-

5.0

-

Ls

Internal Source Inductance

ALL

-

15

-

nC

VGS = OV, Vos = 25V, f = 1.0MHz
See Fig. 10
Voo = 35V, 10 = 3.5A, Zo = 50n

Voo = 35V, 10 = 2.25A, Zo = 50n
See Fig. 17
(MOSFET switching times are essentially
independent of operating temperature.)
Modified MOSFET
symbol showing the
internal device
inductances.

$

THERMAL RESISTANCE
RthJC

Junction·to·Case

RthJA

Junction·to Ambient

Free Air Operation

*Indicates JEDEC registered values.

UNITROOE CORPORATION. 5 FORBES ROAO
LEXINGTON, MA 02173 • TEL (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

4-157

PRINTED IN USA

•

2N6787 2N6788

SOURCE·DRAIN DIODE RATINGS AND CHARACTERISTICS



u

z

~.
E

_'v

I

lOOIs
1.0

::::;}.-I ~:C M X.
o.5 =SINGLE PULSE

I.Omi=

0.2

.v

O. I
1.0

Vos. DRAIN·TO SOURCE VOLTAGE (VOLTS)

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326·6509 • TELEX 95-1064

,I

~

50

VGS"V-

~~

]) fY

-55°1"1 'IJ

fI,v

•

Fig. 3 - Typical Saturation Characteristics

.0

TJ.

•

ov-

AI
II,
rl V

Vas> 10(on) x ROSton) max.
TJ','25'j"-..,
TJI·25'~"-..,

vGs"I'-

.0

r-~~,uL~ETEsl-

DC
10

20

2N6787

2N6788

50

100 200

500

Vas. ORA1N·TO-SOURCE VOLTAGE (VOL TSI

4-158

PRINTED IN U.S A

2N6787 2N6788

Fig. 5 - Maximum Effective Transient Thermal Impedance, Junction·to·Case VI. Pulse Duration
t-.

iii

I
I

~

:i

1.0

>'"

tiffi

~~
"'u

0.5

~! 0.2

~~

I I I

NOTES:

iii ~-

O.Z

-~.I

ELrl.
~z~

0.1

i; 0.05 =0J15
.,"

-o.oz

U ...

2",

.Et-

a

J

I. DUTY FACTOR. 0 "

O~I

0.02

'0"

10.5

3. TJM' TC" POM Z'hJCIII.

10-3

5

10-2

-

~

II
II

TJ

l.S50!-== 0:=
I

r/ ... ~ ,....

TJ= 125°C

,

~
;;
t-

~

Vos> 'Olon) I( ROS(on) max.

I

I
1.0

20

VTJ"250C

I

I ,

o

VSD,SOURCE·TD·DRA'N VOLTAGE (VOLTSI

Fig. 9 - Normalized On·Resi_ VI. Tempel'lltUra
2.50

1.20

...

2.25

~

UO

u

1.15

>

Ico 1.10
~S 1.05
......
Ii!:::!

V

1.00

~

"'" "'"

:;:
t;s
"",

5J~ 0.95

L

1.50

00

~~ 1.00

0.15

0.B5

i

0.50

O.BO

~

0.Z5

20
~
60
60 100
TJ.JUNCTION TEMPERATURE (OCI

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

120

140

",.

./

....... V

~~

Z
:
o

·ZO

1/

o~

V

..0

.L

1.75

~':i. 1.25

... V

",'"

0.75
·60

I

~TJ"500C

~

1.25

0.90

II

'II

~

Fig. 8 - Braakdown Voltage VI. Temperature

!~

~

...~

...... ~

~

~

~'fI""

S

12
16
'0. DRAIN CURRENT lAMPE RES)

~:

~

"
'"'"u '0
'"z

IOj,PUlSi TEST

o~

10

1.0

Fig. 7 - Typical Source·Drain Diode Forward Voltage

J ' 2 5 · b 1==

~

/ . . . 1'"

10-1

". SQUARE WAVE PULSE DURATION (SECDNDSI

Fig. 6 - Typical Transconductance VI. Drain Current

. / V'

~

Z. PER UNIT BASE· R,hjC "6.25 OEG. C/W.

SINGLE PULSE ITRANSIENT
THERMAL \M~At~CEI~

0.01

WI

•

0-0.5

",~

"'""'"

VGS"OV

'0" 3A

20

40

i

I

60

au

100

120

I~

TJ, JUNCT'ON TEMPERATURE (OCI

4·159

PRINTED IN U.S.A

2N6787 2N6788

Fig. 10 - Typical Capacitanca Vs. Drain-to-Sourca Voltage
lGOO

I

Cia •

C• • Cds +

&00

~

'r--....

li!
~

§

\

400

r\..

u-

\

200

J

fttMH.'

c. + cid. Cds SHORTED

C,. -Cgd

:!

20

I JosJ

BOO

-- I

Fig. 11 - Typical Gate Charge VI Gate-t<>:Sourca Voltage

c:.~~

-

Vos! 20V
V.. ··50V
Ves' BOV

-

-CdI+CIId

I

c..

........ ......

\

~

I

i
cos

J..

V
6.0

;S
w
u

z

0.6

-

8
12
16
D" TOTAL GATE CHARGE (nC)

...........

"

4.8

I-- VGl'IOV

~

w
u

~

0.4

J

:>

"
~

-

'z"
~

~'

0.2

J

-

--

20

~

.......

.......

"- .........

z

"

-

Fig. 13 - Maximum Drain Current VB CaBe Temperature

0.8

~

I I

50

Fig. 12 - Typical On-Resistance Vs. Drain Current

~

I•• lOA
FOR TEST CIRCUIT
SEE FIGURE 18

I

10
20
30
40
VDS' DRAIN·TD-50URCE VOLTAGE (VOLTS)

"> ~

""

VGS'20V

\

I

-

ROS(on) MEASURED WITH CURRENT PULSE OF 2.0~ DURATION. INITIAL TJ '" 25 0 C. (HEATING

\

EFFECT OF 2.0 IlS PULSE IS MINIMAL)
10

20

o

40

30

50

25

75

100

125

150

Te, CASE TEMPERATURE (OC)

10. DRAIN CURRENT (AMPERES)

Fig. 14 - Power Vs. Temperature Derating Curve
20

'\

"

g 15

\.

~

z

"fi·
~
is

ID

'\

~

~

~

'\.

~

I\.
i\

20

UNITRODE CORPORATION - 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95-1064

100
40
50
8D
TC, CASE TEMPERATURE I'C)

4-160

120

140

PRINTED IN U.S.A

2N6787 2N6788

Fig. 15 - Clamped Inductive Test Circuit

•

Fig. 16 - Clamped Inductiv. Waveforms

VARY 'p TO OITAI.
REQUIRED PEAK 'L

TO

VGs·tr1'L

OUT

......_...J

'L ....--<)--~

Fig. 17 - Switching Time Test Circuit
ADJUST RL
TO OaTAIN
SPECIFIED 10
Vi

PULSE
GENERATOR

El
RL

r-----'
I
I
I

L_

5011

1

TO SCOPE

_ __ .JI

Fig. 18 - Gate Charge Test Circuit
+VDS

(ISOLATED
SUPPLYI

-

Lnl.SmA

o

-""'rv\,-.....--"VV\,....-o
10
CURRENT
SHUNT

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

4-161

-VOS

10

":'

CURRENT

SHUNT

PRINTED IN U.S.A.

2N6789
2N6790

POWER MOSFET TRANSISTORS
200 Volt, 0.80 Ohm
N-Channel

FEATURES

DESCRIPTION

•
•
•
•
•

The Unitrode power MOSFET design utilizes the most advanced technology available.
This efficient design achieves a very low ROSlanl and a high transconductance.

Fast Switching
Low Drive Current
Ease of Paralleling
No Second Breakdown
Excellent Temperature ~tability

The Unitrode power MOSFET features all of the advantages of MOS technology such as
voltage control, freedom from second breakdown, very fast switching speeds, and
thermal stability.
These power MOSFETS are ideally suited for many high·speed, high· power switching
applications such as switching power supplies, motor controls, and wide-band and
audio amplifiers.

PRODUCT SUMMARY
Part Number

VDS

RDS(on)

ID

2N6789

150V

0.80n

3.5A

2N6790

200V

0.80n

3.5A

MECHANICAL SPECIFICATIONS

~~5'~:::::3"

*

DRAIN
GATE

2N6789, 2N6790

TO-205 AD (TO-39)

SOURCE

&08(020)

91~1~~~

~rDiAl
8 2~ (II 32M

(145(0018)

036 lOOt

451(0180)

-~"301(OI69)

F'ii"ii"';;dI...i

J"

1422!O!:!61

I21C
~:~~~~~~:

18031011)
REF

~

DlA

3 PLACES

All Dimensions In Millimeters and (Inches)

11/83

4-162

~UNITRDDE

2N6789 2N6790
ABSOLUTE MAXIMUM RATINGS
Parameter
VOS

Drain· Source Voltage (j)

VOGR

Drain· Gate Voltage (RGS

10@Te

=25°C

2N6790

Units

150'

200'

V

150'

200'

V

3.5'

3.5'

A

14

14

=1MQ) (j)

Continuous Drain Current

10M

Pulsed Drain Current @

VGS

Gate· Source Voltage

Po @ Te

2N67S9

=25°C

A
V

~20'

Max. Power Dissipation

20' (See Fig. 14)

W

Linear Derating Factor

0.16' (See Fig. 14)

W/K

ILM

Inductive Current, Clamped

TJ
Totg

Operating Junction and
Storage Temperature Range

I

14

Lead Temperature

(See Fig. 15 and 16) L
14

j

=lOOIlH J

A

-55 to 150

°C

300(0.063 in. (1.6mm) from case for lOs)'

°C

ELECTRICAL CHARACTERISTICS @ Tc = 25°C (Unless otherwise specified)
Parameter

Type

Min.

Typ.

Max.

2N67S9

150'

-

-

V

10 = 1.0mA

4.0'

V

VOS = VGS, 10

100'

nA

VGS = 20V

BVOSS

Drain· Source
Breakdown Voltage

2N6790

200'

VGSllh)

Gate Threshold Voltage

ALL

2.0'

IGSS

Gate·Source Leakage Forward

ALL

-

IGSS

Gate·Source Leakage Reverse

ALL

-

ALL

-

ALL

3.5

-

ALL

-

ALL

loss

Zero Gate Voltage Drain Current

1010n)

On·State Drain Current

ROSlon)

Static Drain·Source
On·State Resistance

~.

ROSlon)

Static Drain·Source
On·State Resistance

®

®

V

VGS

=OV
= 1.0mA

-100'

nA

VGS = -20V

1.0'

IlA

Vos = Max. Rating, VGS = OV

4.0'

IlA

Vos = Max. Rating, VGS

-

A

VOS

-

O.S·

0

VGS = lOV, 10 = 2.25A

0

VGS = lOV, 10

> 1010n)

=OV, Te

= 125°C

x ROSlon) max., VGS = lOV

-

-

1.5'

ALL

-

-

2.8'

V

VGS = 10V, 10 = 3.5A

ALL

1.5'

4.5'

S(u)

VOS = 15V, 10 - 2.25A

600'

pF

300'

pF

80'

pF

40'

ns

50'

ns

See Fig. 17

50'

ns

(MOSFET switching times are essentially
independent of operating temperature.)

VOSlon)

On·State Drain·Source
Voltage  ID(on) x "OSlon) max.

'I
V1GS:

2

,

i

!

I

Tj-1250C

2-

rT,]'s'c

~

TJ- -55(1C

I

I

I

j'

,

6D

2D

80
Ves, DRAIN TO SOURCE VOL lAGE (VOLlS)

II If

VII
VI

If

-

fIr
I

J.
I

•

I

i

~

=25'C, Is =3.5A, VGS =OV
TJ = l50'C, IF =3.5A, dlF/dt =lOOAll's
TJ =l50'C, IF =3.5A, dlF/dt =lOOAlpS

Tc

ns

®Pulse Test: Pulse width :5 300I'S, Duty Cycle:5 2%.

0

Modified MOSFET symbol
showing the integral
reverse P-N junction rectifier.

~

.J

"J (jJ
~ 'I

10

100
VGs. GATE TO SOURCE VOLTAGE (VOLTS)

Fig. 3 - Typical Saturation Characteristics

Fig. 4 - Forward Bla. Sale Operating Area
100
50

IO~(
1G1I.!'UlSE

~EST //.,:

J
V

/
I

'If'

/

~
~

~-

::E

20
10

tOps

:$.
I-

Z
W

.........VGS,,5V

,

a:
a:

:::>
<.>

J

'"
:;:
a:
Q

~

.

1.0
0.5

,

,

E!,-15O'C MAX.
~SINGLEPU LSE

tOms
2N6789

0.1

10

,

100ps

0.2
1.0

Vos. DRAIN TO-SOURCE VOLTAGE (VOLTSI

101L

2

5

10

20

50

100

~~
200

500

V.., DRAIN·To-SOURCE VOLTAGE (VOLTS)

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

4·164

PRINTED IN U.S A

2N6789

2N6790

Fig. 5 - Maximum Effective Transient Thermal Impedance, Junction·to·Case Vs. Pulse Duration

.

2

5

too.

iii-

~

2

f1

El.JL
~2~

f-

l. DUTY FACTOR. 0"

'0.01

i,

:i

2. PER UNIT BASE" RthJC : 6.25 DEG. CIW

iULSE

",M~E,O,~~CEI

'",.

•

NOTES,

3. TJM - TC 'POM ZthJCl,1

1
10-3

10-4

10-2

10-1

1.0

'0

11. SaUARE WAVE PULSE DURATION (SECONDS)

Fig. 7 - Typical Source·Drain Diode Forward Voltage

Fig. 6 - Typical Transconductance Vs. Drain Current

,

•
_ 4
~

TJ

I
/

.......

/'

,

-55 0

~V TJ!I2.,i

!;;

3

,

l !

V

/, /V'

,iI
V

TJ

5

..",. ~

5

f-TJ= 1500 C

,

Y'''!''''ii

4
10. DRAIN CURRENT !AMPERES)

'T

'111
I

I

0

10

TJ"15D OC_

'"

0

vas> 1010n) II ROSlon) mill.

25°C
~

,

-

~

,

TJ= 25°C

VSQ. SOURCE TO-CRAIN VOL rAGE (VOL IS)

Fig. 9 - Normelizad On·Resistance VI. Tamperature

Fig. 8 - Breakdown Volta... VI. Temperatura

,

1.2

2.2

I~

,

'V

/

.,... .... ""
..,;-

.,..

..",.

""""

/

""""

~
~

~

V

V
VGS·'0V

'r'A,

I ....

0.7'

-411

4D

80

120

02

180

4D

so

120

TJ, JUNCTION TEMPERATURE (Oel

TJ. JUNCTION TEMPERATURE tOC)

UNITROOE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

/

4·165

PRINTED IN USA.

2N6789 2N6790

Fig. 10 - Typical Capacitance V •• Drain·to·Source Voltage

Fig. 11 - Typical Gate Charge vs Gate-to-Source Voltage

1000

20

JUS" J

'-I

,
'." 1 M~'
CIII = C\JI+Cgd,CdsSHORTED~ Cgd

800

em

u

600

\' r--..

z

;:

~

~\

400

\
\

U

200

\

\ "'

r-

V", - 40V
VDS =' 100V
V", = 160V

-

""'Cds+Cgd

,.....

5

-

CIIICgd

COIS = Cds + Cgr; + Cgd

I
CIS>

~ l~

~

,..

,..

~~

II

-::]::

10 = 7A

/

FOR TEST CIRCUIT
SjE FlrE1i

V

c,~

10
10
30
40
Vos. DRAIN TO SOURCE VOLTAGE (VOLTS!

8

50

12

a,. TOTAL GATE CHARGE (nC)

Fig. 12 - Typical On· Resistance Vs. Drain Current

Fig. 13 - Maximum Drain Current

VI

-

16

20

CaBe Temperature

5
5

4
u

z

vGS'" IOV

~

........

~1 0
z

I"'-

"'""l"'-

)

c

5

I..- ~ ~ I--

f'.

v.~
VGS z 20V

~
1

~

20",5 DURATION INITIAL TJ '" 25 0 C (HEATING

EFFECT OF 2.0 itS PULSE IS MINIMAll

0

10
15
10. DRAIN CURRENT (AMPERES)

,

J"...

ROSlon) MEASURED WITH CURRENT PULSE OF

50

25

20

75
100
125
Te. CASE TEMPERATURE (0G)

150

Fig. 14 - Power Vs. Temperature Derating Curve
20

'\

5

l\
1'\

'\

\

'\

5

"

~

20

UNITROOE CORPORATION. 5 FORBES ROAO
LEXINGTON. MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

.0
80
100
Te, CMc TEMPERATURE (DC)

40

4-166

120

140

PRINTED IN 'U 5 A

2N6789 2N6790

Fig. 15 - Clamped Inductive Test Circuit

•

Fig. 16 - Clamped Inductive Waveforms

VARY Ip TO 08TAIN
REQUIRED PEAK Il

vGs·R

Fig. 17 - Switching Time Test Circuit

PULSE

GENERATOR
r-----..,
:

I

50u

I

I

L ____ ...J

5011

Fig. 18 - Gate Charge Test Circuit
i-Vos
(ISOLATEO
SUPPLY)

-

O I " : ' J I . l . 5 mA

\r-.....-'V'''''~-o
IG
(.URRENT
SHUNT

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

4·167

-Vos

10
CURRENT
SHUNT

PRINTED IN U.S A

2N6791
2N6792

POWER MOSFET TRANSISTORS
400 Volt, 1.8 Ohm

N-Channel

FEATURES

DESCRIPTION

•
•
•
•
•

The Unitrode power MOSFET design utilizes the most advanced technology available.
This efficient design achieves a very low Ros•• and a high transconductance.

Fast Switch i ng
Low Drive Current
Ease of Paralleling
No Second Breakdown
Excellent Temperature Stability

n.

The Unitrode power MOSFET features all of the advantages of MOS technology such as
voltage control, freedom from second breakdown, very fast switching speeds, and
thermal stability.
These power MOSFETS are ideally suited for many high-speed, high-power switching
applications such as switching power supplies, motor controls, and wide-band and
audio amplifiers.

PRODUCT SUMMARY
Pari Number

Vos

ROS(on)

10

2N6791

350V

1.80

2.0A

2N6792

400V

1.80

2.0A

MECHANICAL SPECIFICATIONS
2N6791, 2N6792

TO·205 AD (TO·39)

Soal02DI

1803(071)

~F
~:~:~~~~\

01A

JPlACES

All Dimensions in Millimeters and (Inches)

11/83

4-168

~UNITRDDE

2N6791

2N6792

ABSOLUTE MAXIMUM RATINGS
Parameter

2N6791

2N6792

Units

350'

400'

V

350'

400'

V

2.0'

2.0'

A

10

10

 1010n)

ROSlonl

Static Drain-Source
On-State Resistance

®

ALL

-

-

1.8'

0

VGS

=10V, 10 = 1.25A

ROSlon)

Static Drain-Source
On-State Resistance

®

ALL

-

-

4.0-

0

VGS

=10V, 10 = 1.25A, Te =125'C

VOSlonl

On-State Drain-Source
Voltage

®

ALL

-

-

3.6-

V

VGS

gl-

Forward Transconductance

ALL

1.0'

3.0-

stU)

Vos

=10V, 10 =2.0A
=15V, 10 =1.25A

®

®

-

Ciss

Input Capacitance

ALL

200·

-

600-

pF

C_

Output Capacitance

ALL

40-

-

200-

pF

Cras

Reverse Transfer Capacitance

ALL

5·

-

40-

pF

tdlonl

Turn-On Delay Time

ALL

T,

Rise Time

ALL

=

x ROSlon) max., VGS ; 10V

VGS OV, VOS
See Fig. 10

=25V, f =1.0MHz

tdloff)

Turn-Off Delay Time

ALL

tl

Fall Time

ALL

-

Qg

Total Gate Charge
(Gate-Source Plus Gate-Drain)

ALL

-

12

15

nC

6.0

-

nC

6.0

-

nC

5.0

-

nH

Measured from the
drain lead. 5mm (0.2
in.) from header to
center of die.

15

-

nH

Measured from the
source lead, 5mm (0.2
in.) from header to
source bonding pad.

Qg.

Gate-Source Charge

ALL

Ogd

Gate-Drain ("Miller") Charge

ALL

Lo

Internal Drain Inductance

ALL

-

Ls

Internal Source Inductance

ALL

-

=500

-

40'

ns

Voo - 35V, 10 - 1.25A, Zo

-

35"

ns

See Fig. 17

-

60-

ns

35'

ns

(MOSFET switching times are essentially
independent of operating temperature.)

=

=

VGS - lOV, 10 5.0A, Vos 0.8 Max. Rating.
See Fig. 18 for test circuit. (Gate charge is essentially
independent of operating temperature.)

Modified MOSFET
symbol showing the
internal device
inductances.

$

THERMAL RESISTANCE
RthJe

Junction-ta-Case

RthJA

Junction-to Ambient

Free Air Operation

·Indicates JEDEC registered values.

UNITROOE CORPORATION· 5 FORBES ROAO
LEXINGTON, MA 02173 • TEl. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

4-169

PRINTED IN U.S A

•

2N6791

2N6792

SOURCE·DRAIN DIODE RATINGS AND CHARACTERISTICS
Is

Continuous Source Current
(Body Diode)

ALL

-

-

20·

A

ISM

Pulse Source Current
(Body Diode)@

ALL

-

-

10

A

Vso

Diode Forward Voltage

ALL

0.6·

-

1.4·

V

Tc = 25·C, Is = 2.0A, VGS = OV

ns

TJ = 150·C, IF = 2.0A, dlF/dt = 100AlJ.lS

pC

TJ = 150·C, IF = 2.0A, dlF/dt = 100Alps

®

trr

Reverse Recovery Time

ALL

Qrr

Reverse Recovered Ch.arge

ALL

ton

Forward Turn-on Time

(j)TJ

.

= 25° to 150 C.

ALL

® Pulse Test: Pulse width

-

-

450

-

3.1

:s 300ps,

Duty Cycle

:s 2%.

@ Repetttive Rating: Pulse width limited
by max. junction temperature.
See Transient Thermal Impedance Curve (Fig. 5).

Fig. 1 - TYPical Output Characteristics

Fig_ 2 - Typical Transfer Characteri.tic.

')~(

-

~l,v- I-"

I

j

W

VG.·

80p,PUlSETEST

II.

f.ov

!

J

!II

TJ:12!i o

TJ=2S D C

-r

Ir

~rl

Ii
IV

-

l

I.

/I
rl/

lr

ETEs

I I I
I
vos> 10(on) k RoStonl max

1.,v

V

TJ ~ _55°':,:,--

1

v

I
12

16

'" '/I1.1rl
r----~

."VI'

1

20

VGS, GATE TO SOURCE VOLTAGE (VOLTS)

Vas. DRAIN TO SOUItCE VOLTAGE iVOl lS!

Fig. 4 - Forward BI.s Safe Operating Area

Fig. 3 - Typical Saturation Characteristics

lOV

8!llpuJ
I
I

I

J

~

Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by LS + Lo·

·'ndicates JEDEC registered values_

~

Modified MOSFET symbol
showing the integral
reverse P-N junction rectifier.

10

60V

"l'O'l",JT- r- r-

,

-

,.lv
~
~

1.0

$

...z

0.5

li!
a:

.'"

0.2

tOps

,

LW

,

lOps

:&

VGS"!i.hv

3

<.:>

2

:iE
a:
Q

•. V

0.1

.E 0.05

1

4'r
100

200

lOOps

"

300

tOm,

E! = 150·C MAX.
SE
~S\NGLE PUL

DP,

0.02
0.01
1.0

Vos, ORA.IN TO SOURCE VOL rAGE iVOl TS)

I

2N6791

II
10

20

50

100 200

2N6792

IIII
500

VD', DRAIN-TO·SOURCE VOLTAGE (VOLTS)

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (6171 861·6540
TWX (710) 326·6509 • TELEX 95·1064

4·170

PRINTED IN U.S.A

2N6791

2N6792

Fig. 5 - Maximum Effective Transient Thermal Impedance. Junction-to-Case Vs. Pulse Duration

I

I I

0-0.5
NOTES,

HLSL

0.2

~b.,

~

I
r-0.05

III!~~

~2~

1. DUTY FACTOR. 0 '"

;--0.02
0.01

#

2. PER UNIT BASE = RthJC .. 6.25 OEG. CIW.

i-"'SINGLE PULSE (TRANSIENT
THERMAllMPEOANCEI

3 TJM - TC" POM ZthJC1tl

I
10-3

10-2

1.0

10

tl. SQUARE WAVE PULSE DURATION (SECONDS)

Fig. 6 - Typical Transconductance Vs. Drain Current

fr-

1

.ol"uL~ETE1T
I
I
I

vos > 'Olon)II

Fig. 7 - Typical Source-Drain Diode Forward Voltage

I

I

I

1

ROSlon) max

TJ:: 15°C

5
TJ::-550C-

...... ~
~
,/

/ I'"

......

i"""' ....

-

...-j'""
TJ::250C

;;:;:

-

r- TJ~ 125!C- -

..,

,

0

~

I"""

TJ=1500C_

5
-TJ= 150°C

~~

I'

10

I

7
I
I I

1

o

TJ:: 25°C
1

'0, CRAIN CURRENT (AMPERES)

VSO, SOURCE TO DRAIN va LTAGE (VOLTS)

Fig. 8 - Breakdown Voltage Vs. Temperature

Fig. 9 - Normalizad On-Resistance Vs. Tamperature

,

11

11

"

~

~
~

11

09

0

z

~

~

V

105

~
~

0

~

,

'V-

........

/

........ ~

I'

V

....... V

/

. / r""

/'

,/

V

08 5

10:

/
01

,
·40

40
TJ JUNCTION

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95-1064

80
TEMP~RATURE

110

vGS" IOV

1.25:

01
160

-40

(uCI

4-171

40
80
110
TJ. JUNCTION TEMPERATURE (OC)

160

PRINTED IN U.S.A

•

2N6791
Fig. 11 - Typical Gate Charge V,. Gate·to·Source Voltage

Fig. 10 - Typical Capacitance Vs. Drain·to·Source Voltage
1000

V~S' 0 I

20

.1

1 l,.lMH~

\

""w
u

l\

600

~

U

\
\
\ r-....

~

400

U

200

\

-

"'Cds + Cgd

-

JBOV

~oov

I

C,"

"-

'""" ~

Vas = 320V

A~

~

U/

I

....... r-

-

10

I

C,"
C,"

10 "SA

fOR TEST CIRCUIT

St' "i

V
30

20

EFFECT OF 2.0j.ls PULSE IS MINIMAL.I

VGS"~

-

't

/
JL

.......

2.0

........

.......

16

20

~

""" ......

V

~

" '\

L'

0.5

10

'--

2.5

VGS '" 10V

... ~

'

Fig. 13 - Maximum Drain Current Vs. Case Temperature

Fig. 12 - Typical On-Resistance Vs. Drain Current
ROSlonl MEASURED WITH CURRENT PULSE OF
2.0 ~s DURATiON. INITIAL TJ '" 25°C. (HEATING

UR

12
Og. TOTAL GATE CHARGE InCI

50

40

Vas. DRAIN TO SOURCE VOL TAGE (VOL lSI

1

Vas
VOS'

-

c"Cgd

cO'' " Cgd

toss '" Cds +

z

;!

.1

CIU " C", + ';9'1. Cds ~HOATED_
CBS" Cgd

800

2N6792

o

25

12

,

1\
75

50

to. DRAIN CURRENT (AMPERES)

100

125

150

To. CASE TEMPERATURE (OC)

Fig. 14 - Power Vs. Temperature Derating Curve
20

~ 15

"-'\.
\.

~

z

'\

o

~

iii

10

\

i5

'\.

5

~
~

20

40

60

80

100

120

140

Te. CASE TEMPERATURE (OC)

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

4-172

PRINTED IN U.S A

2N6791

Fig. 15 - Clamped Inductive Test Circuit

•

Fig. 16 - Clamped Inductive Waveforms
EC

VARY tp TO OBTAIN
REQUIRED PEAK Il

VGS.R

2N6792

~O~U_T",,-,.....,..
'L+----o---.........- - '
El • 0.5 BVOSS

EC' 0.75 BVOSS

Fig. 17 - Switching Time Test Circuit

PULSE
GENERATOR

r-----..,

:
I

son

I

I

L ____ ...1

son

Fig. 18 - Gate Charge Test Circuit
+Vos
USOLATED
SUPPLY!

-

o~·5mA

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

--"'fVv-.....-'VV\,.--- 1010n)

loss

Zero Gate Voltage Drain Current

1010n)

On-State Drain Current

ROSlon)

Static Drain-Source
On-State Resistance

®

ALL

-

-

3.0'

0

VGS

=lOV, 10 =l.OA

ROSlon)

Static Drain-Source
On-State Resistance

®

ALL

-

-

6.6"

0

VGS

=10V, 10 =l.OA, Te = 125°C

-

4.5'

V

VGS

=lOV, 10 = L5A

3.0'

S(o)

-

600"

pF

150'

pF

40-

pF

40'

ns

30'

ns

-

60-

ns

-

30'

ns

®

VOSlon)

On-State Drain-Source
Voltage ®

gfs

Forward Transconductance

Ciss

ALL

-

Test Conditions
VGS

ALL

-

ALL

LO"

Input Capacitance

ALL

200'

Coss

Output Capacitance

ALL

30"

Crss

Reverse Transfer Capacitance

ALL

5-

tdlon)

Turn-On Delay Time

ALL

Tr

Rise Time

ALL

®

Vos = 15V, 10

- 125°C

x ROSlon) max., VGS = lOY

=LOA

VGS = OV, Vos = 25V, f
See Fig. 10

tdloffl

Turn-Off Delay Time

ALL

If

Fall Time

ALL

-

Qg

Total Gate Charge
(Gate-Source Plus Gate-Drain)

ALL

-

11

15

nC

Qg.

Gate-Source Charge

ALL

5

-

nC

Ogd

Gate-Drain ("Miller") Charge

ALL

6

-

nC

Lo

Internal Drain Inductance

ALL

-

5.0

-

nH

Measured from the
drain lead. 5mm (0.2
in.) from header to
center of die.

Ls

Internal Source Inductance

ALL

-

15

-

nH

Measured from the
source lead, 5mm (0.2
in.) from header to
source bonding pad.

=LOMHz

=

Voo 225V, 10 = l.OA, Zo = 500
See Fig. 17
(MOSFET switching times are essentially
independent of operating temperature.)

=

VGS = lOV, 10 = 3.0A, VOS 0.8 Max. Rating,
See Fig. 18 for test circuit. (Gate charge is essentially
independent of operating temperature
Modified MOSFET
symbol showing the
internal device
inductances.

$

THERMAL RESISTANCE
RlhJe

Junction-to-Case

RlhJA .

Junction-to Ambient

Free Air Operliltion

*Indicates JEOEC registered values.

UNITROOE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173· TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

4-175

PRINTED IN U.S A

•

2N6793 2N6794
SOURCE·DRAIN DIODE RATINGS AND CHARACTERISTICS
IS

Continuous Source Current
(Body Diode)

ALL

ISM

Pulse Source Current
(Body Diode) Ql

VSD

Diode Forward Voltage ®

trr

Qrr

Modified MOSFET symbol
showing the integral
reverse P-N junction rectifier.

~

-

-

1.5"

ALL

-

A

0.6-

-

6.5

ALL

1.2-

V

TC ; 25'C, IS ; 1.5A, VGS ; OV

Reverse Recovery Time

ALL

TJ; 150'C, IF; 1.5A, dlFldt ; lOOAll's

ALL

-

ns

Reverse Recovered Charge

pC

T J ; 150'C, IF ; 1.5A, dlFldt ; lOOA/l's.

600
3.5

A

-

ALL
Forward Turn-on Time
Intrinsic turn·on time is negligible. Turn·on speed is substantially controlled by LS + LD.
ton
 I~(on) ~ ROS(~n) maxi

1

I/,
/I

I
60V

!

I

sL

TJ: 125°C

r-- - ' ,

I
1

/; 'I

I

l.& ~

45V
40V
100

50

150

250

200

10

Vas. DRAIN TO·SOURCE VOL TAGE (VOLTS)

VGS. GATE TQ·SQURCE VOLTAGE (VOLTS)

Fig. 3 - Typical Saturation Characteristics

Fig. 4 -

P'OV J

-SlJ.lIPU!SETEJ

~".,.,

65V"'" ~

60V-

~

~
::Ii

r-

V

/
J

I

5jv=

vr+·"

i

~

=

-

1.0

tOps

,

1~'

,

~

.EO.OS

=

-

4-176

0.01

tOm

ET
-l50'C MAX.
f=S\NGLE PULSE

OC
2N6793 2N6794

0.02

41V40V=_
20

1

0.2

~ 0.1

12
16
Vas. ORAIN·TO SOURCE VOLTAGE (VOL lS)

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL (617) 861·6540
TWX (710) 326·6509 • TELEX 95-1064

_. -

:5. 0.5

If

1

Forward 81a. Safe Operating Ar. .

10

1/

1.

"-,~
C,- "--,~

TJ-.55 0

sL

1

I

TJ - 25°C

1 1
1.0

111111

5 10 20
50 100 200
500
Ves. DRAIN·TO-SOURCE VOLTAGE (VOLTS)

PRINTED IN U.S A

2N6793

2N6794

Fig.5 - Maximum Effective Transient Thermal Impedance. Junction·to·Case VI. Pulse Duration

I
I

•

.-

n = 05
NOTES

-

02
1

-bl
=005

"""
~SINGlE

001

--r

~2~

1 DUTY FACTOR, 0 =

-002

1

HL.lL

Iii11III

THERMAlIMPEOANCE)

..J.-

:!

2. PER UNIT BASE" RthJC = &.25 OEG. C/W.

PULSE (TRANSIENT

3 TJM ~ TC" POM ZthJc(tl .

10.3

2

10-2

10.1

10

10

'I. SQUARE WAVE PULSE DURATION (SECONDSI

Fig. 6 - Typical Transconductance Vs. Drain Current

,

,

.1

,

80 ... 1 PULSE TEST

r-- Vas> 10(onl

ll

RaSlon)

Fig. 7 - Typical Source-Drain Diode Forward Voltage

1
mill

Tj.-5~

~

V

h

1

lC/
/I

",

V
........ ~

V V"""

-

TJ= 2SOC....Tj'250"

TJ = l2!;oC

""'Tj'''OO~=

_TJ=150 0 C

~ .....

=
>
r--.TJ = 250C

III

I

I

I(

10

J
o

10. DRAIN CURRENT IAMPERES)

VSQ. SOURCE TO DRAIN VOLTAGE (VOLTS)

Fig. 8 - Breakdown Voltage Vs. Temperature

Fig. 9 - Normalized On-Resistance Vs. Temparature
6

125

!ov
r- r- v~S'
IO =1 OA

II

2
5

..,. V
~

b--'"

......

,. ~

J

B

V

V
~

. /V

V

0

./V'

V

5
6

i,.;"
07 5

-40

80
120
TJ, JUNCTION TEMPERATURE lOCI

UNITROOE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

2

160

-40

40

BO

120

160

TJ. JUNCTION TEMPERATURE (OCI

4-177

PRINTED IN USA

2N6793 2N6794

Fig. 10 - Typical Capacitance Vs. Drain·to-Source Voltage
1Il00

I
VGS '0
I f· 1 MH, I

I
I

C.a =

800

20

I

t .. + tgd. Cds SHORTED -

C.. -C",

u

,y,-

U

\

200

......

t""-..
........ r-

I

5

-

1

1

C'D

.0

,..

10 =3A

FOR TEST CIRCUIT

II

C",-

10
20
30
Vas. DRAIN-lO-SOURCE VOll AGE (VOL IS)

..........
~

~

C'U

sr r l
F1

50

8

r----

E

12

16

20

0,. TOTAL GATE CHARGE 'oCI

Fig. 12 - Typical On·Resistance Vs. Drain Current
9

I

VOS'250V

~OS' ~OOV..........

I
I

l\

§ '00

-

"I--...........-~

Fig. 17 - Switching Time Test CircuIt

PULSE

r-----.,
GENERATOR

I

I
I

L_

50!!

I

I

___ ...J

50!l

Fig. 18 - Gate Charge Test Circuit
+Vos
!ISOLATED
SUPPLY)

-

O~15mA

I.

c.uRRENT
SHUNT

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

4-179

10

CURRENT
SHUNT

PRINTED IN U.S.A

POWER MOSFET TRANSISTORS

2N6795
2N6796

100 Volt, 0.18 Ohm
N-Channel

FEATURES

DESCRIPTION

•
•
•
•
•

The Unitrode power MOSFET design utilizes the most advanced technology available.
This efficient design achieves a very low RosI.nJ and a high transconductance.

Fast Switching
Low Drive Current
Ease of Paralleling
No Second Breakdown
Excellent Temperature Stability

The Unitrode power MOSFET features all of the advantages of MOS technology such as
voltage control, freedom from second breakdown, very fast switching speeds, and
thermal stability.
These power MOSFETS are ideally suited for many high·speed, high· power switching
applications such as switching power supplies, motor controls, and wide·band and
audio amplifiers.

PRODUCT SUMMARY
Pan Number

VDS

RDS(on)

ID

2N6795

60V

0.18n

8.0A

2N6796

100V

0.18n

8.0A

'*"

MECHANICAL SPECIFICATIONS

,

",,0 OJ"

2N6795, 2N6796

TO·205 AD (TO·39)

1172 {DD281

~'~OB8(D0351

DRAIN

SOURCE

GATE

508(020)

914(036)

2:;:325)

045(0018)
03610014)

~r"Al

451101801
430(0169)

L"rFii"ii"'"_...L

I

1422(056)

fffG"fjj"5ij")

1803(011)

~F

","02l,S
If4ilifii1fI
3 PLACES

All Dimensions in Mitlimeters and (Inches)

11/83

4-180

~UNITRDDE

2N6795 2N6796
ABSOLUTE MAXIMUM RATINGS
Parameter
Vos

Drain - Source Voltage (j)

VOGR

Drain - Gate Voltage (RGS

10 @Tc

=25·C

2N6795

2N6796

Units

60·

100·

V

60-

100·

V

8.0·

8-0·

A

32

32

=1Mn) (j)

Continuous Drain Current

@

10M

Pulsed Drain Current

VGS

Gate - Source Voltage

Po@Tc-25'C

Max. Power Dissipation

25· (See Fig. 14)

W

Linear Derating Factor

0.2· (See Fig. 14)

W/K

ILM

Inductive Current, Clamped

TJ
Tstg

Operating Junction and
Storage Temperature Range

A
±20·

L

32

Lead Temperature

V

(See Fig. 15 and 16) L
32

I

= 100llH J

A

-55 to 150

'C

300(0.063 in. (l.6mm) from case for lOs)·

·C

ELECTRICAL CHARACTERISTICS @ Te = 25'C (Unless otherwise specified)
Parameter

Type

Min.

Typ.

Max.

Units

2N6795

60·

-

V

4.0·

V

=OV
10 = l.OmA
VOS =VGS, 10 = l.OmA

BVoss

Drain· Source
Breakdown Voltage

2N6796

100·

VGSlth)

Gate Threshold Voltage

ALL

2.0·

IGSS

Gate-Source Leakage Forward

ALL

-

IGSS

Gate-Source Leakage Reverse

ALL

loss

Zero Gate Voltage Drain Current

ALL

-

10(on)

On-State Drain Current @

ALL

8.0

-

ROSlonl

Static Drain-Source
On-State Resistance @

ALL

-

ROSlonl

Static Drain-Source
On-State Resistance @

ALL

VOSlonl

On-State Drain-Source
Voltage@

ALL

gfs

Forward Transconductance @

ALL

3.0·

Ciss

Input Capacitance

ALL

350·

Coss

Output Capacitance

ALL

150-

Crss

Reverse Transfer Capacitance

ALL

50·

tdlonl

Turn-On Delay Time

ALL

-

T,

Rise Time

ALL

100·

nA

VGS = 20V

-100·

nA

VGS

1.0·

mA

Vos

4.0·

mA

VOS

-

A

VOS

-

0.18·

0

VGS

=-20V
=Max. Rating, VGS =OV
=Max. Rating, VGS =OV, Tc = 125'C
> 1010n) x ROSlonl max., VGS =10V
=10V, 10 =5.0A

-

-

0.35·

0

VGS

=10V, 10 =5.0A, Tc = 125'C

-

-

1.56·

V

VGS

9.0·

S(U)

Vos

=10V, 10 =S.OA
= 15V, 10 - 5.0A

900·

pF

tdloffl

Turn-Off Delay Time

ALL

It

Fall Time

ALL

-

Qg

Total Gate Charge
(Gate-Source Plus Gate-Drain)

ALL

Qg.

Gate-Source Charge

ALL

Ogd

Gate-Drain ("Miller") Charge

ALL

Lo

Internal Drain Inductance

ALL

Ls

Internal Source Inductance

ALL

V

Test Conditions
VGS

-

=25V, f =1.0MHz

500·

pF

150·

pF

-

30·

ns

Voo

75-

ns

See Fig. 17
(MOSFET switching times are essentially
independent of operating temperature.)

40·

ns

-

45-

ns

-

18

30

nC

-

9

-

nC

-

=

VGS OV, VOS
See Fig. 10

-

9
5.0

15

-

nC
nH

nH

=30V, 10 =5.0A, Zo = 150

=

=

=

VGS lOV, 10 18A, VOS 0.8 Max. Rating,
See Fig. 18 for test circuit. (Gate charge is essentially
independent of operating temperature.)
Measured from the
drain lead. 5mm (0.2
in.) from header to
center of die.

Measured from the
source lead, 5mm (0.2
in_) from header to
source bonding pad.

Modified MOSFET
symbol showing the
internal device

inductances.

$

THERMAL RESISTANCE
R'hJC

Junction-to-Case

R'hJA

Junction-to Ambient

Free Air Operation

*Indicates JEDEC registered values.

UNITROOE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173· TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

4-181

PRINTED IN USA

•

2N6795 2N6796
SOURCE·DRAIN DIODE RATINGS AND CHARACTERISTICS
Is

Continuous Source Current
(Body Diode)

ALL

-

-

ISM

Pulse Source Current
(Body Diode) @

ALL

-

Vso

Diode Forward Voltage ®

ALL

0.75·

-

trr

Reverse Recovery Time

ALL

-

300

-

Qrr

Reverse Recovered Charge

ALL

1.5

-

Ion

Forward Turn-on Time

ALL

 iOlonl ~ RaSlan) ..,I.x.

1.

I(

J
J

2

VGS"T= =

r

jV-

I'

~

~

rt

'II
///

TJ-+1250C

=1,TJ.2S C-...... ~h
TJ"tC.0 ~
0

10

20

.y-rso

.

30

10

Vas. QRAIN·TO-SQURCE VOLTAGE (YOLTS)

Fig.

YGS. GATE·TO·SOURCE VOLTAGE (VOLTS)

3 - Typical Saturation Characteristics

Fig. 4 -

Forward Blaa Sale Operating Araa

100
10
IQ,!s'ULSETEST

IOJ

9~~
8V _________ '--."

8

J. ~ '/

~ '/

~ '/

A'/

I~ V
~ ~V

2

~

_sl
f-"""

."

0.'

./

20

/'

$
'"....

if

~('

~~ ./

~V

so

1.2

tOps

1

z

-

~
~

1~

:>
u

~

z

~

1.0

o.s

~ ~\NGl~~~~s~X.

tOms

DC

0.2

1.6

O. 1
1.0

2.0

~6~96

2Nrri
10

20

SO

100

200

SOO

Vas. DRAIN·TO-SOURCE VOLTAGE (VOLTS)

Vas. DRAIN·TO-SDURCE VOLlAGE (VOL TSI

UNITROOE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

10

-

!!

,GS-',
0.8

1-'

4-182

PRINTED IN U,S,A

2N6795 2N6796

Fig. 5 - Maximum Effective Transient Thermal Impedance, Junction·to·Case Vs. Pulse Duration

I

•

O· 0.5
NOTES

~~.2

K1.JL

1-~.1

~2~

Eo.o5
0.02

T DUTY FACTOR, 0

=

:~

~001

THERMAlIMPEQANCE)

...J...oI""'"

trw.

2 PER UNIT BASE" RthJC"!i 0 DEG.

"-;,NGLE PULSE ITRANSIENT

3 TJM· Te" POM ZthJc(t)

10-3

10-2

10.1

10

1.0

tl,SQUARE WAVE PULSE DURATION (SECONDS)

Fig. 6 - Typical Transconductance Vs. Drain Current

Fig. 7 - Typical Source·Drain Diode Forward Voltage

10

......

~

V I---

-

../"/
~

~

i....

TJ"-!iSOC

2

A

z

~'25'~

//

~

B

10

z

TJ= 1250C

~

r--- TJ· 150'C I

U V
vas> lo(on)

II

I
I I

ROS(on) max.

8D(,PUliE TESj
10

I I

10

15

25

20

o

05

10. DRAIN CURRENT (AMPERES)

Fig. 8 - Breakdown Voltage Vs. Temperature

~

10

20

3.0

25

VSQ. SOURCE·TO DRAIN VOLTAGE (VOL IS)

Fig. 9 - Normalized On·Resistance VI. Temperature

1.25
w

TJ" 2S OC

1

r'''
V

/'

250

1.20

u
«

225

z
115

v

>

.....V

In

~

~ffi

0'"
u«
w~

....... V"

g~

~z

~z

~

~
075
·60

-40

-20

20

40

60

80

100

120

150

v

...... , /

125
100
0.15
050

1--

--

...... V

.......V

VGS'10VI

I

-

'0l<4A

0.25

o

140

-60

TJ,JUNCTION TEMPERATURE (OCI

UNITROOE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

175

!.;:

...... V

....... V"

2.00

-40

-20

20

40

60

80

100

120

140

TJ, JUNCTION TEMPERATURE (DCI

4-183

PRINTED IN U.S A

2N6795 2N6796

Fig. 10 - Typical Capacitance VI. Drain·to·Source Voltage

Fig. 11 - Typical Gate Charge Vs. Gate·to·Source Voltage
20

2000

1 tG,· !
I

~I

1200

v.. - 'lOV

I

os

I
I
V.. ·50V

r-- r--

I

gd

.h:

J

I

C'SS

,...

\

10

lJ Ir

~V

I

1\ i'-..

I

V.. = 80V

-

cCgs+~gd

==Cds+ Cgd

\

400

Cds +

=

g
§ 800 ~~
U

I

I MK,

era .. Cgd
Coss

:

,.

CIa '" Cgs+ Cgd. Cds SHORTED _

1600

II

10·8A
FOR TEST CIRCUIT
SEE FIGURE 18

/

C!.
c~ss

~

V
30

20

40

1

\6
24
Og. TOTAL GATE CHARGE ('lei

Vos. DRAIN TO SOURCE VOLTAGE (VOLTS)

-

~

32

40

Fig. 13 - Maximum Drain Current V•. Case Temperature

Fig. 12 - Typical On·Resistance Vs. Drain Current

10
0.6

I

RO'(~"6 MEA,JREO WITJ~ CURREN~ PULSE dF

20

05

u

jA

URATION INITIAL TJ "25°C (HEATING

I-- EFFECT OF

2

0,"

PULSE IS MINIMAll

-

l""""'-

z

~
~

04

v~s

z

o
w
u

Z

......

= 10V

b-

r-....

03

=>
o

~
~

I'-...

""'",

)

02

V

1

r\

r

V

10

1\

)

·20V

20
40
30
'D. DRAIN CURRENT (AMPERES)

o

50

50

25

60

75

125

100

Te. CASE TEMPERATURE

150

~DC)

Fig. 14 - Power Vs. Temperature Derating Curve
0
5

0

5

.........

0

~

"'" t'..

5
0

\

20

40

60

'" "' "

80

100

120

r-....

140

Te. CASE TEMPERATU RE (DC)

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

4·184

PRINTED IN U.S.A.

2N6795 2N6796

Fig. 15 - Clamped Inductive Test Circuit

•

Fig. 16 - Clamped Inductive Waveforms

VARY" TO OBTAIN

i5

E.' "oUT

VGS"!r"L

Fig. 17 - Switching Time Test Circuit
ADJUST AL TO OBTAIN
SPECIFIED 10

V,
PULSE
GENERATOR

r-----'

I

I
I

L_

-''''---~TO

5001

___ .JI

SCOPE

500

Fig. 18 - Gate Charge Test Circuit
+Vos
(ISOLATED
SUPPl VI

-

O~·5mA

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

4-185

IG

10

CURRENT
SHUNT

CURRENT
SHUNT

PRINTED IN U.S A

POWER MOSFET TRANSISTORS

2N6797
2N6798

200 Volt, 0.4 Ohm

N-Channel

FEATURES

DESCRIPTION

•
•
•
•
•

The Unitrode power MOSFET design utilizes the most advanced technology available.
This efficient design achieves a very low Roslon. and a high transconductance.

Fast Switching
Low Drive Current
Ease of Paralleling
No Second Breakdown
Excellent Temperature Stability

The Unitrode power MOSFET features all of the advantages of MOS technology such as
voltage control, freedom from second breakdown, very fast switching speeds, and
thermal stability.
These power MOSFETS are ideally suited for many high-speed, high-power switching
applications such as switching power supplies, motor controls, and wide-band and
audio amplifiers.

PRODUCT SUMMARY
Part Number

VDS

RD5(on)

ID

2N6797

150V

0.40

5.5A

2N6798

200V

0.40

5.5A

MECHANICAL SPECIFICATIONS
2N6797, 2N6798

TO·205 AD (TO·39)

!i08(0201

~:~:~~~:

DIll.

JPlACES

All Dimensions In Millimeters and (Inches)

11/83

4-186

~UNITRDDE

2N6797 2N6798
ABSOLUTE MAXIMUM RATINGS
Parameter

2N6797

2N6798

Units

150·

200·

V

150·

200·

V

Continuous Drain Current

5.5·

5.5·

A

10M

Pulsed Drain Current @

22

22

VGS

Gate - Sou rce Voltage

VOS

Drain - Source Voltage

VOGR

Drain - Gate Voltage (RGS

10 @Tc

Po @Tc

=25'C
=25'C

(j)

= lMO) (j)

A
±20·

V

Max. Power Dissipation

25" (See Fig. 14)

W

Linear Derating Factor

0.2· (See Fig. 14)

W/K

ILM

Inductive Current, Clamped

TJ
Tstg

Operating Junction and
Storage Temperature Range

I

22

Lead Temperature

(See Fig. 15 and 16) L
22
I

= 100pH I

A

-55 to 150

'C

300(0.063 in. (1.6mm) from case for lOs)

'C

ELECTRICAL CHARACTERISTICS @ Tc = 2S'C (Unless otherwise specified)
Type

Min.

Typ.

Max.

Units

2N6797

150·

-

-

V

2N6798

200·

ALL

2.0·

Gate-Source Leakage Forward

ALL

Gate-Source Leakage Reverse

ALL

-

Parameter
BVoss

Drain - Source
Breakdown Voltage

VGSlth)

Gate Threshold Voltage

'GSS
'GSS

Test Conditions
VGS

=OV

-

-

V

10

-

4.0"

V

Vos - VGS, 10

100·

nA

VGS

-100·

nA

VGS

1.0·

rnA

Vos - Max. Rating, VGS

4.0·

rnA

Vos - Max. Rating, VGS

-

=LOrnA
=LOrnA

=20V
=-20V

loSS

Zero Gate Voltage Drain Current

ALL

5.5

-

-

A

VOS

> 1010n)

-

-

0.4·

0

VGS

=10V, '0 =3.5A

-

0.75·

0

VGS

=lOV, '0 =3.5A, TC = 125'C

-

2.2·

V

VGS

7.5"

S(U)

=10V, '0 =5.5A
=3.5A

'Olon)

On-State Drain Current ®

ALL

ROSlon)

Static Drain-Source
On-State Resistance

®

ALL

ROSlon)

Static Drain-Source
On-State Resistance

®

ALL

VOSlon)

On-State Drain-Source
Voltage

®

ALL

-

gls

Forward Transconductance ®

ALL

2.5'

Ciss

Input Capacitance

ALL

350'

COBS

Output Capacitance

ALL

100'

C,ss

Reverse Transfer Capacitance

ALL

40·

tdlon)

Turn-On Delay Time

ALL

T,

Rise Time

ALL

-

900·

pF

450·

pF

150"

pF

x ROSlon)

=OV
=OV, TC = 125'C
max., VGS = lOV

VOS - 15V, 10

=

VGS OV, VOS
See Fig. 10

=25V, f =1.0MHz

=77V, 10 =3.5A, Zo = 150

tdloffl

Turn-Off Delay Time

ALL

tl

Fall Time

ALL

-

Qg

Total Gate Charge
(Gate-Source Plus Gate-Drain)

ALL

-

19

30

nC

Qg.

Gate-Source Charge

ALL

10

-

nC

Ogd

Gate-Drain ("Millen Charge

ALL

9

-

nC

Lo

Internal Drain Inductance

ALL

-

5.0

-

nH

Measu red from the
drain lead. 5mm (0.2
in.) from header to
center of die.

Ls

Internal Source 'nductance

ALL

-

15

-

nH

Measured from the
source lead, 5mm (0.2
in.) from header to
source bonding pad.

30·

ns

Voo

-

50·

ns

See Fig. 17

-

50'

ns

40·

ns

(MOSFET switching times are essentially
independent of operating temperature.)

=

=

=

VGS lOV, 10 llA, VOS 0.8 Max. Rating.
See Fig. 18 for test circuit. (Gate charge is essentially
independent of operating temperature.)

Modified MOSFET
symbol showing the
internal device
inductances.

$

THERMAL RESISTANCE
RthJC

Junction-to-Case

RthJA

Junction-to Ambient

Free Air Operation

*Indicates JEDEC registered values.

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

4-187

PRINTED IN USA

•

2N6797 2N6798

SOURCE·DRAIN DIDDE RATINGS AND CHARACTERISTICS
IS

Continuous Source Current
(Body Diode)

ALL

-

-

5.5·

A

ISM

Pulse Source Current
(Body Diode) @

ALL

-

-

22

A

Vso

Diode Forward Voltage @

ALL

0.75·

-

1.5·

V

t"

Reverse Recovery Time

ALL

TJ = 150'C, IF = 5.5A, dlF/dt = lOOA/lls

Reverse Recovered Charge

ALL

-

ns

Q"

IIC

TJ = 150'C, IF = 5.5A, dlF/dt = 100A/1/5

ton

Forward Turn-on Time

ALL

(j)TJ = 25' to 150'C.

-

450
3.0

@Repetltlve Rating: Pulse width limited
by max. junction temperature.
See Transient Thermal Impedance Curve (Fig. 5).

*Indicates JEOEC registered values.

Fig. 2 - Typical Transfer Characteristics

Fig. 1 - Typical Output Characteristics

16

,

IOH'v

,.

80 ",P\JLS£ TEST

7V ...,.....

V'

VGS"6V

-

,

80"sPULSETEST
I
r- Vo~>10(on)'X ROSlon) max

- -

5V-

60

TJ"-55(1C

......

80

V

J
250C i'-..
~ ~I
'-- fl11

2

rJ/
k2 V

.v- I-40

III

II,
B
I

TJ-+125 0C

T~ =

20

~

Te = 25'C, Is = 5.5A, VGS = OV

Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by Ls + Lo.

@)Pulse Test: Pulse width,,; 3001/5, Duty Cycle"; 2%.

20

Modified MOSFET symbol
showing the integral
reverse P-N junction rectifier.

..

,

Vos. DRAIN TO SOURCE VOLTAGE (VOLTS}

Vas. GATE TO SOURCE VOLTAGE (VOLTS)

Fig. 3 - Typical Saturation Characte.istics

Fig. 4 - Forward Bla. Sals Operating Area

100
10

A~

- JOl'Spuls£TE!r

~

,.

I~

f/

A- t--

50

'11 ~ ~....)ov
.v_ I-~I< ,'-- . . . . . iv~v- r"----~
J~

'I

-

20

ill
0::

Ie
s

-

~

~
=>
'"

1.01'8
101'8

0::

~

co
~

jV

-

-

...

I--- VGS '" sv-

J

r"

10

-

1.0

lOllI'S

=:! -lSO'C MAX.

0.5 =S\NGLEPU LSE

tOms

02
2 Iml

0.1
1.0

Yas. DRAIN·TO SOURCE VOLTAGI:. (VOL lS)

2

10

20

50

100

2N~
DCI
200

500

V.., DRAIN·TO-SOURCE VOLTAGE (VOLTS)

UNITROOE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326·6509 • TELEX 95·1064

4-188

PRINTED IN U.S.A

2N6797 2N6,98

Fig. 5 - Maximum Effective Transient Thermal Impedance, Junction·to.case Vs. Pulse Duration

...z

I

i!

L
~~

wi;

>=>

;: '"
~~

°

0-0.5
NOTES'

.5

~i 0.2

:>1::

i!
"'~
,,'"

JE

1
..

ffi.JL

-h.2
-0.1

0.1

~2~

:::::0.05

~= 0.05

"

•

10

0~2

1. DUTY FACTOR. 0 = :;

-0.01

0.01
10-5

2 PER UNIT BASE = RthJC '" 5 0 DEG. crw.

"S,NGLE PULSE ITRANSIENT
THERMAL IMPEDANCE)

0.02

.J....+-""

3. TJM - TC" POM ZtlucCtI .

10-3

10"

10-2

5

10.1

1.0

10

I1.SQUARE WAVE PULSE DURATION (SECONDS)

Fig. 6 - Typical Transconductance Vs. Drain Current

Fig. 7 - Typical Source·Drain Diode Forward Voltage

10

~

10 2
TJ =25 0C

~

'"
:>

...z

....

TJ ~ -S50e

./" ~

-

V ......- r""'"'

h

,>":. ..~

III

TJ= 25°C

"
~

L

u

z

TJ

~

1250C

'TJ= ISOoC

//

10

..

TJ= ISOoC

..

>

"1

~

Vas> 10(onll( ROSlon) mIx.

.."

I

II TJ=L

5OC

8(J.u,PUlSETEST

10
10

o

10. DRAIN CURRENT (AMPERES)

VSQ. SOU fleE TO-DRAIN VOLTAGE (VOL lSI

Fig. 9 - Normalized On·Resistance Vs. Temperature

Fig. 8 - Breakdown Voltage Vs. Temperature

,

12

2.2

~

11

,

~/

u

>

.".

V

......./

"

.......

~

....... ~

~

/

1.B

~s

~

ww
~~

1.4

~

~:
,,'"
~~ 1.0

/

~
i

~

40

80

120

160

0.2

,;

./~

V
VGS"OV

'r

o

~

3A

1

~

TJ. JUNCTION TEMPERATURE C'CI

TJ. JUNCTION TEMPERATURE (DC)

UNITROOE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

0.6

/

/

4·189

1m

'"

PRINTED IN U S.A

2N6797 2N6798

Fig. 10 - Typical Capacitance Vs. Drain·to-Source Voltage
2000

I

I I

I

"I'MH'I

VDS = 40V

Cia

,,' ..

u:

1200

U

l'

800

1\

u
400

\

"'

-"'-

--

~

J

5

,,,

V", = 100V

..1 I "
VDS= 60VI~

t--

=-=Cds + Cgd

;!

::5

20

"c. + ~gd. Cds SHORTE~ 1-era '= Cgd
I-COSI",Cds+ CCIII~pd

'600

~

V~S '0

Fig. 11 - Typical Gate Charge VI Gate.to-Source Voltage

I

r

0

,.

~~U

A

C,a

I

5

.1
~
c,u

40
20
30
Vas. DRAIN TO SOURCE VOLTAGE (VOL IS)

0

50

10

Fig. 12 - Typical On-Resistance V,. Drain (:urrent

ID = llA
FOR TEST CIRCUIT
SEj FIGUIRE 18

1
V

1

16
24
32
C" TOTAL GATE CHARGE (nC)

40

Fig. 13 - Maximum Drain Current VI Case Temperatura

8

6.0
1

r.....

vGS -" IOV

8

6

I 'J"'oo,
~
.......

6
4

/

-

......-:
2

-

..--

I-"

4

VGS= 20V

r-- ROSlool MEASUREO WITH CURRENT

J
puel,

'" f'..

~

I\.
1\

I. 2

\

OF

2 D/Js DURATION INITIAL TJ -" 2SoC (HEATING

EFFECT OF lOps PULSE IS MINIMAL)

,0

30

20

0
25

40

50

75
100
125
To, CASE TEMPERATURE ('C)

10. DRAIN CURRENT (AMPERES)

150

Fig. 14 - Power Vs. Temperature Derating Curve
0
5
0
5

"I"-

0

5

.......

,
~

0
5

20

40

60

80

'"

100

120

........

~
140

Te. CASE TEMPFRATURE (OC)

UNITROOE CORPORATION· 5 FORBES ROAO
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

4-190

PRINTED IN U.S.A.

2N6797 2N6798

Fig. 15 - Clamped Inductive Test Circuit

•

Fig. 16 - Clamped Inductive Waveforms

VARY Ip TO OBTAIN
REQUIRED PEAK IL

VGS·R

Fig. 17 - Switching Time Test Circuit

v,

_..r--

Vo

P

ro SCOPE

Fig. 18 - Gate Charge Test Circuit
+Vos
(ISOLATED
SUPPLY)

-

O~15mA

IG
CURRENT
SHUNT

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326·6509 • TELEX 95-1064

I.

--'\I"".r--t-~'VII'It-o -VOS

4-191

CURRENT
SHUNT

PRINTED IN U.S.A

2N6799
2N6800

POWER MOSFET TRANSISTORS
400 Volt, 1.0 Ohm
N-Channel

FEATURES

DESCRIPTION

•
•
•
•
•

The Unitrode power MOSFET design utilizes the most advanced technology available.
This efficient design achieves a very low RDslon. and a high transconductance.

Fast Switching
Low Drive Current
Ease of Paralleling
No Second Breakdown
Excellent Temperature Stability

The Unitrode power MOSFET features all of the advantages of MOS technology such as
voltage control, freedom from second breakdown, very fast switching speeds, and
thermal stability.
These power MOSFETS are ideally suited for many high·speed, high-power switching
applications such as switching power supplies, motor controls, and wide-band and
audio amplifiers.

PRODUCT SUMMARY
Part Number

Vos

ROS(on)

ID

2N6799

350V

3.0A

2N6800

400V

LOn
Lon

3.0A

MECHANICAL SPECIFICATIONS
2N6799, 2N6800

TO-205 AD (TO-39)

508((120)

9~:;:::~1

04!H0018)

036W0141

~r"Al

451!OI80!
430101691

.L"ii"iii"ii'"'.~

I

1422(056)
1210(050)

~!~:~~~~:

1803(011)

~F

DIA

3 PLACES

All Dimensions in Millimeters and (Inches)

11/83

4-192

~UNITRODE

2N6799

2N6800

ABSOLUTE MAXIMUM RATINGS
2N6799

2N6800

Units

VOS

Drain· Source Voltage Q)

Parameter

350'

400'

V

VOGR
10@To=25'C

Drain· Gate Voltage (RGS = IMQ) Q)

350'

400'

V

Continuous Drain Current

3.0'

3.0'

A

10M

Pulsed Drain Current

14

14

A

VGS

Gate· Source Voltage

Po @To = 25'C

Max. Power Dissipation

ILM

Inductive Current, Clamped

TJ

Operating Junction and
Storage Temperature Range

®

Linear Derating Factor

Tstg

±20'

V

25' (See Fig. 14)

W
W/K

0.20' (See Fig. 14)

I

14

Lead Temperature

(See Fig. 15 and 16) L = 100llH
14

I

I

A

-55 to 150

'C

300(0.063 in. (1.6mm) from case for lOs)'

'C

ELECTRICAL CHARACTERISTICS @ Te = 2S'C (Unless otherwise specified)
Parameter
BVoss

Drain· Source
Breakdown Voltage

Type

Min.

Typ.

Max.

Units

2N6799

350'
400'

-

V

2N6800

V

10 = LOrnA

ALL

2.0'

4.0'

V

Vos = VGS, 10 = LOrnA

-

-

VGSlthl

Gate Threshold Voltage

IGSS

Gate·Source Leakage Forward

ALL

IGSS

Gate·Source Leakage Reverse

ALL

-

Test Cond itions
VGS = OV

100'

nA

VGS = 20V

-100'

nA

VGS = -20V

1.0'

rnA

VOS - Max. Rating, VGS = OV

4.0'

rnA

Vos = Max. Rating, VGS = OV, TO = 125'C

-

A

Vos

losS

Zero Gate Voltage Drain Current

ALL

-

1010ni

On·State Drain Current ®

ALL

3.0

-

ROSlonl

Static Drain·Source
On·State Resistance ®

ALL

-

-

1.0'

a

VGS = lOV, 10 = 2.0A

ROSlonl

Static Drain-Source
On·State Resistance ®

ALL

-

-

2.4'

a

VGS = lOV, 10 = 2.0A, To = 125'C

VOSlonl

On·State Drain·Source
Voltage ®

ALL

-

-

3.0'

V

VGS = lOV, 10 = 3.0A

gls

Forward Transconductance ®

ALL

2.0'

6.0'

S(U)

VOS = 15V, 10 = 2.0A

Ci8S

Input Capacitance

ALL

350'

900'

pF

300'

pF

80'

pF

30'

ns

35'
55-

ns

35-

ns

Coss

Output Capacitance

ALL

50'

CIS.

Reverse Transfer Capacitance

ALL

20'

tdlon)
T,

Turn·On Delay Time

ALL

-

Rise Time

ALL

-

-

-

> 1010n) x ROSlon)

VGS = OV, Vos = 25V, f = LOMHz
See Fig. 10

Idloffl

Turn·Off Delay Time

ALL

tl

Fall Time

ALL

-

-

Qg

Total Gate Charge
(Gate·Source Plus Gate·Drain)

ALL

-

18

30

nC

Qg.

Gate·Source Charge

ALL

-

nC

Ogd

Gate·Drain ("Miller") Charge

ALL

7

-

nC

Lo

Internal Drain Inductance

ALL

-

11
5.0

-

nH

Measured from the
drain lead. 5mm (0.2
in.) from header to
center of die.

La

Internal Source Inductance

ALL

-

15

-

nH

Measured from the
source lead, 5mm (0.2
in.) from header to
source bonding pad.

ns

max., VGS = 10V

Voo = 176V, 10 = 2.0A, Zo = 150
See Fig. 17
(MOSFET switching times are essentially
independent of operating temperature.)
VGS = lOV, 10 = 6.0A, Vos = 0.8 Max. Rating.
See Fig. 18 for test circui!. (Gate charge is essentially
independent of operating temperature.)

Modified MOSFET
symbol showing the
internal device
inductances.

$

THERMAL RESISTANCE
RthJO

Junction·to·Case

RthJA

Junction·to Ambient

Free Air Operation

*Indicates JEDEC registered values.

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

4-193

PRINTED IN U.S.A

•

2N6799 2N6800

SOURCE·DRAIN DIODE RATINGS AND CHARACTERISTICS
15

Continuous Source Current
(Body Diode)

ALL

-

-

3.0"

A

15M

Pulse Source Current
(Body Diode) @

All

-

-

14

A

VSD

Diode Forward Voltage ~

Atl

0.7"

-

1.4'

V

-

pC

t"

Reverse Recovery Time

All

-

600

Qrr

Reverse Recovered Charge

All

-

4.0

Ion

Forward Turn·on Time

.

 10(onl II RDS(onl mu:.

1

,

~

TC = 25'C. 15

45V- I--

,j'
I

If

0.02 t=~+++rn1t=~+++rn1p2N~679II~~2~N6800~

40V- I--

,

11wI
0.01 L...J....l.-LLJ..LLLIL.l...L..L.LWlllL.JLL...llJ..L1.U
1.0
10
20
50 100 200 500

\0

Vas. DRAIN TO SOURCE VOLTAGE (VOLTS)

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

VOS. DRAIN·TO·SOURCE VOLTAGE (VOLTSI

4·194

PRINTED IN U.S.A.

2N6799 2N6800

Fig. 5 - Maximum Effective Tranlient Thermal Impedance, Junction-to.c.se VI. Pulse Duration

~

!~E
wz

I

:t~
5:~ 0.2

~i
a-

..

~

J~

N~

f-~.2

•

f-~.I

O. I EO~5

C><
2.10.05

==

•

1.0

>=>
;:: .. 0 0-0.5
~~ .5

f - 0.02
0.01

~

mIL
~2-l

I. OUTYFACTOR. D'

~INGLE PULSE ~U~~I~NT

0.02
0.01
10-5

• i!!

NOTES:

iii"

THERMAL IMPEDANCE)

~

3. TJM - TC• Pou Z""C(',·

10-3

10-4

:~

2. PER UNIT BASE' R'hJC' U OEG. CIW.

2
5
10-2
2
5
10-1
'I.SQUARE WAVE PULSE DURATION (SECONOSI

Fig. 6 - Typical Transconductance Vs. Drain Current

10

1.8

Fig. 7 - Typical Source-Drain Diode Forward Voltage

'0

I
TJ '" 25 DC

/.

lfiV

II V
II'

.......

,

t:::..

----

t.TJ~-S50C-

........ TJ'" ISOOC

./

TJ: 25 0 C

-

//

T,i'12,t.",
I

TJ: ISOOC

"1

I

vos> IOton). Roiton) mla.

I I

!801'IP[LSf TEST

'0

10

TJ' f5 0C

o

10. DRAIN CURRENT (AMPERES)

Vso. SOURCE TO DRAIN VOLTAGE (VOL lS)

Fig. 8 - Breakdown Voltage Vs. Temperature

Fig. 9 - Normalized On-Resistance VI. Temperature

.lI

2

,.. V
,/

--

i--""'

,,-

--

~

f'

V
V
~

V

/

,/

g

~

,/
0.6

;'
Oil

-40

40
80
120
TJ JUNCTION TEMPERATURE IOC)

UNITRODE CORPORATION, 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

0.2
'60

4-195

-40

VGS '10V
10 i2.OAI

40
80
120
TJ. JUNCTION TEMPERATURE (OCI

160

PRINTED IN U.S.A

2N6799

Fig. 10 - Typical Capacitance Vs. Drain·to·Source Voltage
1000

1

1600

I

.1

MHl
I

0
1 .

clSS ; cgs'" CgeI. Cds SHO RTEO

-

ens"

-

Cgd

C"Cgd

~

Coa=.Cds+Cp+Cgd

1200

::

§" 800
u'

400

Fig. 11 - Typical Gate Charge VI. Gate·to·Source Voltage

~GS ,J
t=,

)OS'
5

Vas = J20V

CISS

~ H;

-

~

0

rs..

5

~

81v,,--

V,oS'2~V,

-

"=Cds"" Cgd

~

- f-A

/

10

40

30

(II'

~ 14
FOR TEST CIRCUIT

10

sr F'iuRE Ii
16

50

Vas. ORAIN TO SOURCE VOL rAGE (VOL IS)

24

40

32

01). TOTAL GATE CHARGE (IlC)

Fig. 12 - Typical· On-Resistance Vs. Drain Current

u

,.

~

~,-

1

10

2N6800

Fig. 13 - Maximum Drain Current VI. Case Temperature

VGS,'0':/.

z

'"
~

~

.IVGS'10V_

2

/

z

o
u

~

"
o

~
z

~

I

-

V

......

.........
.........

V

.........

i'-

1
ROS(an) MEASURED WITH CURRENT PULSE OF
2 OJ.,lS DURATION INITIAL TJ 2S oC (HEATING
EFFECT OF 2 0 /-IS PULSE IS MINIMAL)
'0

10

15

10

15

30

75

50

100

'"

125

\
150

'a. DRAIN CURRENT (AMPERES)

'0- DRAIN CURRENT (AMPERES)

Fig. 14 - Power Vs. Temperature Derating Curve
40
35

5

30

z

25

~

10

~

0

ill
;5

..........

,
"

~

~

~

15

r-.......

0.-

10

10

40

60

80

'" '""

100

120

140

Te. CASE TEMPERATURE (DC)

UNITROOE CORPORATION. 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

4·196

PRINTED IN U S.A.

2N6799 2N6800

EC

VARY Ip TO OBTAIN

VG,.R

•

FiO. 16 - aamped Inducti •• W."eforml

Fig. 15 - Clamped Inducti •• Test Circuit

REQUIRED PEAK 'L
OUT

'L+---6---...."""',.,....-'
e, ~ 0,5 BVoss EC "0.75 BVoss

Fig. 17 - Switching Tima T.st Circuit

PRF::lkHl

v.

Vi

_..r---' TO SCOPE

Fig. 18 - Gata Chlrga Test Circuit
+Vos
(ISOLATED
SUPPLY!

-

o~·5mA

--'\IV\r'~-'V'''''- 101on)

ROSlonl

Static Drain-Source
On-State Resistance ®

ALL

-

-

1.5"

0

VGS

=10V, 10 = 1.5A, Te =25'C

ROSlonl

Static Drain-Source
On-State Resistance ®

ALL

-

0

VGS

=lOV, 10 = 1.5A, Te = 125'C

VOSlonl

ALL

-

-

3.5"

On-State Drain-Source
Voltage®

3.75'

V

VGS =.10V, 10 = 2.5A

gf.

Forward Transconductance ®

ALL

1.5'

Ciss

Input Capacitance

ALL

350'

-

COBS

Output Capacitance

ALL

25'

Cras

Reverse Transfer Capacitance

ALL

15'

tdlonl

Turn-On Delay Time

ALL

-

T,

Rise Time

ALL

-

tdloff)

Turn-Off Delay Time

ALL

-

-

-

4.5'

S(U)

900'

pF

200'

pF

60'

pF

30'

ns

30'

ns

55"

ns

tf

Fall Time

ALL

-

-

30'

ns

Qg

Total Gate Charge
(Gate-Source Plus Gate-Drain)

ALL

-

22

30

nC

X

ROSlonl max., VGS = lOV

Vos

=15V, 10 =1.5A

VGS

=OV, VOS =25V, f =1.0MHz

Voo

=225V, 10 =1.5A, Zo = 150

S~e Fig. 10

See Fig. 17

(MOSFET switching times are essentially
independent of operating temperature.)

=

=

Qg.

Gate-Source Charge

ALL

Ogd

Gate-Drain ("Miller") Charge

ALL

-

11
11

Lo

Internal Drain Inductance

ALL

-

-

5.0

-

nH

Measured from the
drain lead. 5mm (0.2
in.) from header to
center of die.

Ls

Internal Source Inductance

ALL

-

15

-

nH

Measured from the
source lead, 5mm (0.2
in.) from header to
source bonding pad.

nC

=

VGS lOV, 10 6.0A, VOS 0.8 Max. Rating,
See Fig. 18 for test circuit. (Gate charge is essentially
independent of operating temperature.)

nC
Modified MOSFET
symbol showing the
internal device
inductances.

$

THERMAL RESISTANCE
RthJe

Junction-te-Case

RthJA

Junction-to Ambient

Free Air Operation

*Indicates JEDEC registered values.

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173. TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

4-199

PRINTED IN U.S A

•

2N6801

IS

Continuous Source Current
(Body Diode)

ALL

-

-

2.S"

A

ISM

Pulse Source Current
(Body Diode) ~

ALL

-

-

11

A

-

Modified MOSFET symbol
showing the integral
reverse P·N junction rectifier.

=
=
=

=
=
=

2N6802

~

=

ALL
0.7·
Diode Forward Voltege (2)
1.4·
V
Tc 2S·C. Is 2.SA. VGS OV
Reverse Recovery Time
ALL
800
ns
TJ lSO·C, IF 2.SA. dlF/dt lOOAlpS
ALL
pC
Reverse Recovered Charge
4.6
TJ lSO·C, IF 2.SA. dlF/dt lOOAlpS
Forward Tum·on Time
ALL
Intrinsic tum·on time is negligible. Turn·on speed is substentially controlled by La, + LD.
Ion
..
 IOlon) II ROSlon) max.

vGs'sov- I-

'r-

-

1= =

-

I-- TJ = ~12S0C

-

t--TJ='-S50C

Tj= 250C

~

",'iI
fI.

I

I

I. ~I

'!V~ ~ =
100

=
=

~
300

200

1

VGS. GATE TO SOURCE VOL TAGE (VOL lSI

Vas. DRAIN TO SOURCE VOLTAGE (VOL lSI

Flg.3 - Typical Saturation Characteristic.

Fig. 4 - Forward Bla. Safe OperaUng Area
10
I.IljS

I-

19:?,__
;;~'V

801"sPUJETES!

;9

~

L. ......

3

~

)

I

I"

l?

-

T

I

1---

50~=~

I

1.0

....:$.

0.5

::&

~I1C

:::>
to

!Ii

I1C

VGS'' ,= =
"Y"'"

Q

.E

....

IIljS

1 l¢

tOm

0.1
=T = 15O"C MAX.
0.05 =SINGLE PULSE

C

2_1 2N6802

0.02
0.01

1.0

10

I I IIIII!
10

I I
20

50

100 200

V... DRAIN·TO-SOURCE VOLTAGE (VOLTS)

Vos. DRAIN lO-SOURCE VOLTAGE (VOLTS)

4·200

III

I

0.2

IIII
500

2N6801

2N6802

Fig. 5 - Maximum Effectiv. Transient Thermal Impedance, Junction·to-Case Vs. Pulse Duration

I

•

0'" 0.5
NOTES

~

f-~.2

f-b.1

~~

JTUL

Iil""

~2~

If

E~·05
0.02

r-O.OI

~INGLE PULSE (TRA~SIENT

2 PER UNIT BASE = R'hJC .. 5 0 DEG CfW

THERMAL IMPEDANCE)

..i-+"'"

:~

1 DUTY FACTOR, 0 =

3 TJM - TC" POM ZthJCl!l

10-3

2

5

10.2

2

S

10-1

1.0

10

'I. SQUARE WAVE PULSE DURATION (SECONDS)

Fig.6 - Typical Transconductance Vs. Drain Current
TJ

./

V
I

/

V

V

-550C___

M
TJ = 25;;'-

./

1/

I l/
/, '/

~

V

J

Fig. 7 - Typical Source.!)r.in Diode Forward Voltage

-- -

ITJ "25 0 C

1..0""'"

r'-TJ'" 1500e

/'

J:'::~ r-

,/"

//

..,

TJ= 150°C

IV!

vas> 1010n) x ROSlon)

f

I

miX.

80~PULSETEST

10

TJ=j5 0 C

I I

o

10. DRAIN CURRENT IAMPERES)

VSQ. SQURCE·TO-DRAIN VOLTAGE (VOLTS)

Fig. 9 - Normalized On·Resillence VI. Temperature

Fig. 8 - Breakdown Voltage Vs. Temperature
1.2 5

2.2

5

.".

./
6

V

./

V

"

IL

...

/

f-""

V

"
!

,P
_

. /~

0.6

.;"
-40

40
80
120
TJ,JUNCTION TEMPERATURE loe}

UNITRODE CORPORATION· 5 FORBES ROAD
LEXI NGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

/

/'"

5

0.7 6

V

160

V
VGS-IOV

'01 ~

I2~A

40
80
120
TJ.JUNCTION TEMPERATURE (OC)

4·201

110

PRINTED IN USA.

2N6801 2N6802

Fig. 10 - Typical Capacitance V•. Drain·to.source Voltage

Fig. 11 - Tvpical Gate Charge Vs. Gate·to.source Voltage

2000

20

J

GS .'

-

u

CotI=Cd.
I

1200

~

~

u

\

:'I 800

tliCed
c,,+cgd

-

Vas _I,OOV
I

-

Vas - 4DOV

Vas - 250V

~

~/

AII'

_\ '~

~

10

-

/

u

>

'0 "6A
FOR TEST CIRCUIT

V

20

30

1

16

SO

40

'I

30

r-- r--

........
........

VGS"10V~

...

.,/

""

V

V

'0

Fig. 13 - Maximum Drain Current VI. Ca .. Temperature

24

V

32

24

0!l' TOTAL GATE CH,II,RGE (nCI

Fig. 12 - Typical On·Resistance VI. Drain Current
ROSlonl MEASURED WtTH CURRENT PULSE OF
2.0",sDURATION INITIAL TJ'"25 0 C (HEATING
EFFECT OF 2 O.,PULSE IS MINIMAL

I--

SE FIGiRE ",

Vas. ORAIN TO SOURCE VOLTAGE (VOlTSI

,o

"'-.

~/

c,n

\
'00

-

'Ot;Cds+Ctd

z

;0

J.

I ',' MHrl

tip = c.. +Cgd,CdsSHORTED
c",' c..

1600

VGS= 20V

........
.......... r-...

-

~

.......

,
r\.
~

06

10
15
'0. DRAIN CURRENT (AMPERES)

20

\

a

SO

2S

2S

15

100

ISO

Te. CASE TEMPERATURE (OC)

Fig. 1 d - Power Vs. Temperature Derating Curve
40
3S

~
;;
z

30

2S

"" " "'-

0

~
ii 2.
c

.......

~

~
.P

15
10

~

I""
20

.0

80

100

Tc CASE TEMPERATURl

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326-6509 • TELEX 95·1064

4·202

(oC)

120

........

"

140

PRINTED IN U.S.A

2N6801

Fig. 15 - Clamped Inductive Test Circuit

2N6802

•

Fig. 16 - Clamped Inductive Waveform.
EC

VARY tp TO OBTAIN

VOS.R

REQUIRED PEAK Il
OUT

',_--6---....__,.,..-'
E1 = 0 5 BVOSS

EC = 0 15 BVOSS

Fig. 17 - Switching Time Test Circuit

_oT"-- TOv, SCOPE

Fig. 18 - Gate Charge Tast Circuit
+Vos
(ISOLATED
SUPPLY)

-

o~·5mA

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95·1064

'0

'D

CURRENT
SAMPLING
RESISTOR

CURRENT
SAMPLING
RESISTOR

4-203

PRINTED IN USA.

U2TIOI
U2TI05
U2T201
U2T205

POWER DARLINGTONS
10 Amp, 150V, Planar NPN

FEATURES
•
•
•
•
•

DESCRIPTION

High Current Gain: up to 2000 min @ Ic == SA
Low Saturation Voltage: as low as l.SV max @ Ic == SA
High Voltage: up to ISOV min VCER
Monolithic Design Incorporating Multiple-Emitter Techniques
Triple-Diffused Planar Construction

Unitrode NPN Darlingtons consist of a two
transistor circuit on a single monolithic
planar chip.

ABSOLUTE MAXIMUM RATINGS
3 PIN TO-66

TO-33

U2T101

BOV.

Collector-Emitter Voltage
Emitter Base Voltages,

D.C. Collector Current
Peak Collector Current
Base I Current .
Power Dissipation
2S0C Ambient .
100°C Case
Thermal Resistance, Junction to Case .
Operating and Storage Temperature Range

ISOV ...
6V ....
12V
SA .

'" ... 6V .

VE82
VEBI

12V
SA.
. ... lOA ..
.. ..... .... O.SA.

U2T201

U2Tl05

.. ISOV

.6V
.... 12V
SA.

.6V
12V
SA

lOA .

.... lOA .....

O.5A

...... O.SA ..

U2T205

. BOV ..

lOA
.... O.5A

2.SW ..
2.SW
.2SW
2SW
4°C/W
-6SoC to 2000C

.. IW.
. IW...
........... SW.
. SW.
20°C/W
-6SoC to 200°C

MECHANICAL SPECIFICATIONS
U2Tl05

U2Tl0l

..

TO-33

,

305-335
3:35-370

775-851
851-940
610-660

240-260

ggf

017%

E

15 MIN

432t ~g
3810 MIN
046MAX

018 MAX

031i003
200
100
029-045
100

079:t 08
102

254
074-114

254

COLLECTOR CONNECTED TO CASE

U2T201

.

,

c

~
111

C

635-864
lS7SMAX

050-075
028-034

127-191
071-086
914 MIN
2433-2443

J
K
L
M

958- 962
190- 210
190-210
350 MAX RAO

570-590
142-152
145 MAX RAO

3 Pin TO-66

oooo

250- 340
620 MAX

360 MIN

H

U2T205

483-533
483-533
889 MAX RAD

1448-1499
361-386
368 MAX RAO

COLLECTOR CONNECTED TO CASE

4-204

~UNITRDDE

U2T10l

U2TI05

U2T201 U2T205

ELECTRICAL SPECIFICATIONS (at 25°C unless noted)
U2T101
Test
D.C. Current Gain
(Note 1)
D.C. Current Gain
(Note 1)
Collector Saturation Voltage
(Note 1)
Collector-Emitter
Breakdown Voltage
(Note 1)

U2T201

U2T105

Symbol

Min.

Max.

Min.

Max.

hFE

2000

-

1000

-

-

Ic = LOA, VCE = 2V, R82E = 1K

hFE

2000

-

1000

-

-

Ic = 5A, VCE = 5V, R82E = 100

VCE (sat)

-

1.5

-

2.5

V

Ic = 5A, RB2E = 100
U2T10l, 201: 1" = 5mA
U2T105, 205: 1" = lOrnA

BVCER

BO

-

150

-

V

Ic = 25mA, R"E = 2.2K, RB2E = 100

&

&

U2T205
Units

Collector Cutoff
Current

ICER

-

1.0

-

1.0

p.A

Collector Cutoff
Current

ICER

-

1.0

-

1.0

rnA

Collector Capacitance
A.C. Current Gain
Delay Time
Rise Time
Switching
Speeds
Storage Time

Cobo

-

100
5
100 Typ.
300 :ryp.

-

h'e
td
t.

Fall Time
Nate: 1. Pulse width

pf

100
5
100 Typ.
400 Typ.

-

ns
ns

t,

600 Typ.

500 Typ.

ns

t,

500 Typ.

SOO Typ.

ns

= 300 .uSi duty cycle

1"'~

$
IZ

...a:

a:

::>
u

a:

.5

t

.2

8

.1

UJ
...J
...J

I

_u

1"'-

Maximum Safe Operating Area

"-

"-

1

a:

,ulse Width=1 ms

aa:

.5

t5UJ

.2

o

r....

...J
...J

.1

1

.05

8

"- 1\

'~

Pulse Width = lms
Duty Cycle = 25%

\

\\\
\

\

Pulse Width = Ims
Duty Cycle = 10%
!\

i"-U2T205

I\;; "'-U2T201

_u

I+-U2T105
1-+--U2T101

Te = 100°C

D.C.- ~

...a:

"'- '\ r....

''

'"

$
IZ

=1 ms
D~ty Cycle = 25%

'\. Pulse Width

I"

.02

,"-

TA - 25'C

_l Duty Crcle = 2.5%

''""
'" "" '"
I'\.

U2T201 & 205
10

r--rul~el Width ~ 1 ms
~ I\.
I. Duty Cycle - 10%

D.C.- ~

.05

.01

I

r\.

RBI E= 2.2K, RB2E = 100
U2T10l, 201: VCE = BOV
U2T10S, 205: VCE = 1SOV
R"E - 2.2K, RB2E _ 100, T _lSOoC
U2T101, 201: VCE = BOV
U2T105, 205: VCE = lS0V
VC" = 10, IE = 0, f = 1MHz
Ic _1.0A, VCE - 10V, f - 10MHz, RB2E - 100
Vcc - 30V,
Ic=SA,
U2T10l, 201: I, (on) = I, (off) = SmA,
U2T105, 205: I, (on) = I, (off) = lOrnA,
RB2E = 100

~20/0.

Maximum Safe Operating Area
U2Tl0l & 105
10

Test Conditions

.02

"-

.01

5 10 20
50 80100150
VeE - COLLECTOR -EMITTER VOLTAGE (V)

1

2
5 10
20 50 80100150
VeE - COLLECTOR - EMITTER VOLTAGE (V)

D.C. Current Gain VS. Collector Current

U2Tl0l, U2Tl05, U2T201, U2T205
10.000 r - - - - - , - - - - - , - - - - - ,

z
;;:

"
a:
'"a:

1000

I-

z

::>
u
ti
ci

I
,:

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

4·205

100

10 '--_ _ _ _-'-_ _ _ _-L--_ _ _- - - '
.01
.1
1.0
10
Ie - COLLECTOR CURRENT (A)

•

U2T301
U2T305

POWER DARLINGTONS

U2T401
U2T405

5 Amp, 150V, Planar NPN
FEATURES
• High Current Gain: 1000 min. @ Ie 2A
• Low Saturation Voltage: as low as 1.SV max. @ Ie
2A
• High Voltage: up to 150V min. VeER
• Monolithic Design Incorporating Multiple-Emitter Techniques
• Triple-Diffused Planar Construction

=

OESCRIPTION
Unitrode NPN Darlingtons consist of a two
transistor circuit on a single monolithic
planar chip.

=

ABSOLUTE MAXIMUM RATINGS
3 PIN TO-II
U2T401
U2T405

TO-33

Collector-Emitter Voltage
Emitter Base Voltages,

VEB2
VEBI

.

D.C. Collector Current
Peak Collector Current
Base 1 Current ....
Power Dissipation
25·C Ambient .. .. ............... .
lOO·C Case .
Thermal Resistance
Junction to Case ...
Operating and Storage Temperature Range

U2T301

U2T305

........ 60V...

....... 1S0V ...

.. 6OV..

.. 150V

....................... 6V................. 6V
........... 6V...
.. 6V. .... ...............
............... ..................
.. .... 12V............... 12V
............... 12V .......... 12V.. .
............ 2A......
...2A
..... 2A
.......... 2A .. .
......... SA
SA
..... SA...
. SA ..
. O.SA.............. O.5A
.. O.SA ............ O.5A .

... !W ..

lW

... 4W ..

.4W

................ 2W............... 2W
.. ................................... 16W ............. 16W

........ ..... 2S·C/W ..
. -65·C to 200·C.

6·C/W....
. .... -6S·C to 200·C

MECHANICAL SPECIFICATIONS

U2T301

U2T305

TO-33

In•.

305-335

775-851
851-940
610-660

335-370

240- 260
0171:

BASE2

E

~~

432i: ~~

15MIN
DIS MAX

3810MIN
046 MAX

031 t 003

079
102
254

200
100
029-045
100

t

08

074-114
254

COLLECTOR CONNECTED TO CASE

U2T401

",

C

F
G
H
J
K

U2T405

250-340

635-864

620 MAl(

1575 MAX

050-075

127-191

028- 034

071-086

360 MIN

914MIN

958-962

2433-2443
483-533
483-533

190-210
190- 210
350 MAX RAO

570-590
142-152
145 MAX RAO

3 Pin TO-66

889 MAX RAD

1448-1499
361-386
368 MAX RAD

COLLECTOR CONNECTED TO CASE

4-206

~UNITRDDE

U2T301

U2T40~

U2T305 U2T401

ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
Test

U2T301 & U2T401
Min.
Max.

Symbol

U2T30S & U2T 405
Min.
Max.

Test Conditions

Units

1000

-

-

1000

-

1000

-

-

VCE (sat)

-

1.5

-

2.5

V

= lA, VCE =2V, RB2E = 1K
Ic =2A, VCE = 5V, R82E = 100
Ie: =2A, Rm :::;: 100, IB' = 4mA

BV CER

60

-

150

-

V

Ic

Collector Cutoff
Current

ICER

-

1.0

-

1.0

I'A

Collector Cutoff
Current

ICER

-

1.0

-

1.0

mA

D.C. Current Gain
(Note 1)
D.C. Current Gain
(Note 1)
Collector Saturation Voltage
(Note 1)
Collector-Emitter
Breakdown Voltage
(Note 1)

Collector Capacitance
A.C. Current Gain
Delay Time
Rise Time
Switching
Speeds
Storage Ti me
Fall Time

hFE

1000

hFE

GO
5
100 Typ.
200 Typ.
800 Typ.
300 Typ.

Cabo
hfe

td
t,

t,
tf

=

=

2.2K, R82E

= 100

=

=

pf

-

-

25mA, RBIE

2.2K, Rm = 100
U2T301, 401: VCE = GOV
U2T305, 405: VCE 150V'
RBIE - 2.2K, R82E _ 100, T _ 150'C
U2T301, 401: VCE = 60V
U2T305, 405: VCE = 150V
VCB' - 10V, IE - 0, f _ 1M Hz
Ic - 0.5A, VCE - 10V, f _ 10M Hz, R82E _ 100
RBIE

60
5
100 Typ.
300 Typ.
800 Typ.
300 Typ.

-

Ic

ns
ns
ns
ns

Vcc

=

3OV, Ic

Rm

=

100

=

2A, IB (on)

=

IB (off)

=

4mA

Note: 1. Pulse width = 300 I'S; duty cycle ";;2%.

Maximum Safe Operating Area
U2T301 & 305
5

i'I""
f"'. I". 1"<

1"\
~

....Z
~

.5

1"\

II:

:::l

u

II:

.2

o

t...

I-Dt

.1

...J

5

.05

I

I'"
=

.02

=
=
Pulse Width = Ims
Duty Cycle = 10%

~

~

I'\.

....
Z

...~

.5

Duty Cycle

:::l

I

.2

II:

~

&l

=

25%

I I

Pulse Width
Duty Cycle

=Ims

Tc

\

= 10%

.1

8

]'\

.05
D.C.-

I

U2T301

= loo'C

1\\
U

...J
...J

1\
~

l\

1\
~I'

_u .02

I<--- U2T305

I<-

t--U2T401

.01

I"
1

Pulse Width = Ims

u

I"

l~

~

2

]'\

I'"

.01

.0oS

.! !

T, =2S'C
Pulse Width
Ims
Duty Cycle
2.5%

f'). f'\,

Pulse Width
Ims
Duty Cycle - 25%

u

_u

I". /
~ I". ~
~

Maximum Safe Operating Area
U2T401 & 405

)+-U2T405
.005

10
20
SO 100 ISO
Ve,-COLLECTOR-EMITTER VOLTAGE (V)

1

2

5
10 20
SO 100 ISO
COLLECTOR - EM lITER VOLTAGE (V)

Ve, -

O.C. Current Gain vs. Collector Current

U2T301, U2T305, U2T401, U2T405
10,000 , - - - - - , - - - - - - , - - - - - ,
T = 12S'C

z

~....

1000

~---~t_~~-~~~~r_~

...z
II:
II:

:::l
U

U
c:i 100 ~~:....--t_----+----~

I

10

.1

.01
Ie UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

1.0

10

COLLECTOR CURRENT (A)

4-207

PRINTED IN U.S.A.

•

POWER DARLINGTONS

U2TA506
U2TA508
U2TA510

3 Amp, IOOV, Planar NPN, Plastic

FEATURES
• High Current Gain: 500 min. @ Ic = 3A
• Low Saturation Voltage: as low as 1.5V max. @ Ic
• Economic Plastic Molded Construction

DESCRIPTION
Unitrode NPN Darlingtons consist of a
two transistor circuit on a single monolithic planar chip, including integral bias.
resistance. and protective diode. It is
ideally suited for pulse power applications in power supplies, printers, solid
state relays and displays.

=3A

ABSOLUTE MAXIMUM RATINGS
U2TA506

U2TA50B

U2TA51 0

......... SOV .....
Collector-Base Voltage, Vao ................. .
.. ...... IOOV ....... .
.. ............. I20V
Collector-Emitter Voltage, VCEO
........... IOOV
....... 60V.
SOV ... .
Emitter-Base Voltage, VEao
5V .. ................... .
D.C. Collector Current, Ic .
..............75A
Peak Collector Current, Ic ...
5A.
Base Current, la ....
.6A ..... .
Power Dissipation
25'C Case
........................ .....................................
. ......................... 2.2W ................................................... .
25'C Ambient
.............................................
............ 871mW'
.................................
Thermal Resistance, 9 J _ C
....................................................................................... .......................
... 62.5'C/W ...............................................
Thermal Resistance, 9 J _ A
........................................................... .......
. ............ 155'C/W .............................................. ..
Storage Temperature Range .
..................... .................................
.............. -55 to +150'C ............................... .
..............................
.................................... +175'C ........................................... ..
Maximum Junction Temperature .. ...... ........

U2TA506

T
A

c::s

...L

~B~-

U2TA508

U2TA510

TO-92

D

=r
I ICc>-= j 17'~
=

C

E

~

1

Be>--

-I ~'
EC>--'

H

A

B
C
D
E
F
G
H

J

INCHES
.135 MIN.
170 - 210
500 MIN.
.016 - .019
175 - 205
.125 - .165
080 - 105
095 - 105
.045 - .055

MIlliMETERS
3.42 MIN
431-5.33
12.70 MIN.
406 - .482
4.44 - 5 21
3.17 - 4.19
203 - 2.66
2.41 - 2.66
114 - 140

[ill]
3/78

4-208

_UNITRODE

U2TA506 U2TA508 U2TA510
ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
Test

Symbol

D.C. Current Gain (Note 1)
D.C. Current Gai n (Note 1)
D.C. Current Gain (Note 1)
Collector Saturation Voltage (Note 1)
Collector-Emitter Breakdown Voltage
(Note 1)
U2TA506
U2TA508
U2TA510
Collector-Emitter Cutoff Current
Collector-Emitter Cutoff Current
Emitter-Base Cutoff Current
Output Capacitance
A.C. Current Gain
Rise Time
Storage Time
Fall Time

hFE
hFE
hFE
VCE (sat)
BVcEO

Min.

-

-

Vdc
Vdc

10
1
50
50

t,

=
=
=
=
=
=

/LAdc
mAdc
/LAdc
pf

=
=
=
= =
=
=
= =

VCE
rating, R lOOn
VCE
rating, R lOOn, TA 125'C
VEB
5Vdc
VCB
10Vdc, IE 0, f
1MHz
Ic 1Adc, VCE 5Vdc, f
10MHz
Ic- 2A
Vcc
rating, IB 1001
IB loffl
4mA

-

4.0 Typ.
600 Typ.
1500 Typ.
800 Typ.

=
=
=
=

Ic
lA, VCE 5Vdc
Ic
3A, VCE 5Vdc
Ic
SA, VCE 5Vdc
Ic 3A, IB
30mA
Ic _10mAdc

-

60
80
100

tf

=
=
=
=

-

-

1000
500
300 Typ.
1.5

ICER
ICER
lEBO
Cob
hf•
t,

Test Conditions

Units

Max.

ns
ns
ns

Note 1: Pulse width = 3001'5; duty cycle:S 2%.
Note 2: For thermal considerations for operating U2TA506. U2TA508 and U2TA51O. refer to Application Note U·77.

Maximum Safe Operati11g Area
U2TA506, 508 & 510

1"'3:
I-

'
"
"''
"
'" I'""'''"""'-

b-,.
'" .5 ~ ~
Z

0:
0:

:::>
(J

0:

.2

0

ti

'"
..J
..J

0

.05

(J

I

_u

D.C .~

Pulse

02

OilY
1

cyr

TA =25·C.

D

z

:<

to
I-

'"0:0:
:::>
(J

'Ims~
" 17

e = [25'i

1K

z

~
f)(

width =

,---,-:::::==:::r------,

Pulse Width = Imsuty Cycle = 2.5%

c..i
ci 100

I

-U2TA506

Duty Cycle = 10%
Pulse Width == Ims

01
.005

V

1 tl

D.C. Current Gain VS. Collector Current

10K

~

-U2TA508
_,U2TA510

10L-_ _ _ _L-_ _ _ _L-_ _ _

2
5
10 20
50 100 ISO
VeE-COLLECTOR TO EM liTER VOLTAGE IV)

.01

.1

IA

~

lOA

Ie - COLLECTOR CURRENT IAI

Saturation Voltage
vs Base Current
2.00

\

\

1.75
1\25'C

~1.50
s::

\

(J

~
;::: 1.25
I

\.~25'C
= 3A

~ I::::::..

\

J 1.00

125O~

.75

0.1 0.2

"-,.......

~

j

\

0.5

1.0

f=:::

Ie = lA
~'C

.........

2

5

10

20

50 100 200

I. - BASE CURRENT (mA)
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. 1617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

4-209

PRINTED IN U.S.A.

•

U2TA606
U2TA608
U2TA610

POWER DARLINGTONS
3A, lOOV, Planar PNP, Plastic
FEATURES

DESCRIPTION

• High current gain: 500 min @ Ie = 3A
• Low saturation voltage: as low as 1.5V
max@ le= 3A
• Economic plastic molded construction

Unitrode PNP Darlingtons consist of two
transistor circuits on a single monolithic
planar chip, including integral bias
resistance. It is ideally suited for pulse
applications.in power supplies, printers,
solid state relays and displays.

ABSOLUTE MAXIMUM RATINGS
U2TA606

U2TA608

U2TA610

Collector-Base Voltage, VeBO ..................... .- ....................... 80V ....... : .......... 100V ................. 120V .. .
Collector-Emitter Voltage, VeEo .......................................... 60V .................. 80V .................. 100V .. .
Emitter-Base Voltage, VEeo ...................................................................... 5V ........................... .
D.C. Collector Current, Ie ....................................................................... 0.75A ......................... .
Peak Collector Current, Ie ...................................................................... 5.0A .......................... .
Base Current, Ie ............................................................................... 0.6A .......................... .
Power Dissi pation
25°C Case ..................................................................................2.2W .......................... .
25°C Ambient .....................................................................,....... 871mW ........................ .
Thermal Resistance, 8J-e .................................................................... 62.5°C/W ....................... .
Thermal Resistance, 8J-' ..................................................................... 155°C/W ........................ .
Storage Temperature Range .............................................................. -55°C to +150°C .................... .
Maximum Junction Temperature .............................................................. 150°C ......................... .

MECHANICAL SPECIFICATIONS
U2TA606 U2TA608 U2TA610

TO-92

D

T[l:+~iJ
~l:~ "

i

~B---+-C~ ~F

G

A

B
C
D
E
F

G
H

J

INCHES
.135 MIN.
.170 - .210
.500 MIN.
.016 - .019
.175 - .205
.125 - .165
.080 - .105
.095 - .105
.045 - .055

MILLIMETERS
3.42 MIN.
4.31 - 5.33
12.70 MIN
.406 - .482
4.44 - 5.21
3.17 - 4.19
2.03 - 2.66
2.41 - 2.66
1.14 - 1.40

[ill]
3/83

4-210

_UNITRODE

U2TA606'U2TA608 U2TA610

ELECTRICAL SPECIFICATIONS (at 25°C unless noted)
TEST
D.C. Current Gain (Note 1)
D.C. Current Gain (Note 1)
Collector Saturation
Voltage (Note 1)
Collector-Emitter Breakdown
Voltage (Note 1)
U2TA606
U2TA608
U2TA61O

SYMBOL

MIN.

MAX.

UNITS

hFE
hFE
VeE(sat)

1000
500

-

-

-

1.5

60
80
100

-

-

10
1
50
50

BVeEo

Vdc

=-lA, VeE =-5Vdc
=-3A, VeE =-5Vdc
=-3A, 10 = -30mA

Vdc

Ie

=-lOmAdc

/lAdc
mAdc
/lAdc
pF

VeE
VeE
VEO
Veo

-

Collector-Emitter Cutoff Current
Collector-Emitter Cutoff Current
Emitter-Base Cutoff Current
Output Capacitance

leER
IEoo
Cob

A.C. Current Gain

hFE

4.0 Typ.

-

Rise Time
Storage Time
Fall Time

t,
t,
t,

600 Typ.
1500 Typ.
800 Typ.

ns
ns
ns

leER

TEST CONDITIONS
Ie
Ie
Ie

= Rating, R = lOOn
= Rating, R =lOOn, T = 125°(
= -5Vdc
= -lOVdc, IE:' 0, f = 1MHz
Ie =-lAdc, VeE =-5Vdc, f = 10M Hz
Ie = -2A
Vee = Rating, 10 (on) = I. (off) = -4mA

Note: 1. Pulse width = 300/1s; duty cycle:5 2%.
Nota: 2. For thermal considerations for operating U2TA606, U2TA608 and U2TA610, refer to Application Note U-77.

Saturation Voltage vs
Base Current

Gain vs Collector Current
3000
2000

VeE = 5V

~

-'

C3

~lOOO

~

!z'"UJ

700

200

V

V

125'C

...... V

25'C"

~~

175
-'

«
(J
ii: 150

~

i'=

 10(onl

iii

~ 0.8

5

I-

~

0.6

::.

0.4

2.0

I~

TJ "1-55'~,--

50

I
IJ:;;;

k;~v

~

-

~

D••

"

0.2

i

0.1

III

UFND1ZO

Id.!

UFNDIZ 3

1.0

UFND1ZO

~

UFND1Z3

5

lOOps

l-

0.05

z

..::

1 ms

!?

I

TJ" 150'C MAX.
SINGLE PULSE

0.02

i

10Im
DC

0.01
0.005

.l-~

I

4V_ i--

UFND1Z3

UFND1ZO

0.002

I
2
3
4
VOS, ORAIN-TO-SOURCE VOLTAGE (VOLTSI

UNITRODE CORPORATION. 5 FORBES ROAD
LEXI NGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

12

Fig, 4 - Maximum Safe Operating Area

/.~ V- I
~7~- f ./. ~
.I.~ V
I
"'-VGS"jV- ~
~ i"""

~
.... T

J)

10
VGS, GATE·TO-SOURCE VOLTAGE (VOLTSI

3.0
2.0

.... ~ _Jv- I-

f--

2"~ "" ........

rn

Fig. 3 - Typical Saturation Characteristics

0.4

TJ •

5l
I
4V

...

,'I

TJ' 125'~""

!?
0.2

- 8o~ILLSE )EST

if
"

B

z

10
20
30
40
Vos, ORAIN-TO-SOURCE VOLTAGE IVOLTSI

1.6

J

!Ii

I

r

If

RaSlon) max.

II:

1.0

VGS-6 V

/

80 ~ puJmJT

9l

I
Y
I

0.4

LO'

Fig, 2 - Typical Transfer Characteristics
1.2

iov
f-

+

 'olonl

D.•

1/

CI

0.2

-

,

V

J

t; 0.3
CI
z

:>

~
I

V

/

"~

ii

-

TJ-!S5 0 C

i

ew

10~smm

,IRoSI~nl ~,.

0.5

ill

Fig. 6 - Typical Sou rca-Drain Dioda Forward Voltage

~

TJ=25 0 C

~

i;"

V-

r-r-r-r~II~-+~~~~

0.2-

TJ' 15DOC:II''--f--I--+-+--I---t--t

.1

0.25

0.15

0.5

1.0

'/

I

0.61=

P

J

0.1

/.

~~ I.D'~~f1/~V~~~~

TJ" 1250C

II/

l-

~

~

1.25

0.1

1.5

TJ=250C-f-+-I--+--I

0L-...J.-0J..4:--.L.l.JJ":'~':..8-JI...-~I.I..2-J...--L'.6~.J..~2.0.

10. DRAIN CURRENT (AMPERES)

Vso. SOURCE·TO-DRAIN VOLTAGE (VOLTS)

Fig. 8 - Normalized On-Resistance V,. Temperatura

Fig. 7 - Breakdown Voltage Vs. Temperature

2. 5

1.25

,.,..

V~s clJv

,.,.. io-"""

r-- -'ocO.5A

., ~
./

/

I'

,V

i-'"

i-'"
r-

./

V

V

. / i-'"

5

0.75
-40

o

40

80

120

o

160

-40

TJ. JUNCT'ON TEMPERATURE 10C)

UNITROOE CORPORATION. 5 FORBES ROAO
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326·6509 • TELEX 95-1064

o

40

80

120

160

TJ.JUNCT'ON TEMPERATURE 1°C)

4-217

PRINTED IN U.S A.

•

UFNDIZO UFNDIZ3

Fig. 10 - Typical Gate Charge VI. Gate-to·Source Voltage

Fig. 9 - Typical Capacitance VI. Drain·to·Source Voltage
100

I
_I

v~s. o!
f'l MHz

60

\

20

~ Vos'

-

f"..

\
w

I

c!..
"""""
cL
%

/.(/

II
1.0

~

3.0

4.0

Fig. 12 - Maximum Drain Current VI. Case Temperature
05

f"".. ......

2.6

~.8~~Wu~~~~g:~~N~~T~LC~JR=R2E5~1~~~:!~~G
EffECT OF 2.0 P.I PULSE IS MINIMAL.)

.......

0.4

I!

2

...z
'"'"=>

As'20V

~

2.0

Og. TOTAL GATE CHARGE (nC)

Fig. 11 - Typical On-Resistance VI. Drain Current

-

'O·1.2A
FOR TEST CIRCUIT~EEFIG~RE.f7 I

5/

-

~

~V

/; V

o

W
~
~
~
40
VOS. ORAIN·TO-SOURCE VOLTAGE (VOLTSI

8

BDV. UFN01ZO
.

I

I

r'\.

VOS'50:~

Cia

\

40

",'

)OS'2J,

5

-

~Cds+Cgd

\~ 1'-0...

!'"

~

1

cC,,+~gd
go gd

Coss=Cds+

...

1

C;" • Cgo + Coli. Cds SHORTEO_
C'" • Coli

80

.so

0

V

z

~

........

"
.......

03

-......

........

......... ,D1Z0

UFN~

02

"""",""'I\.
.....

~

!?
I

1.4

o

1.0

2.0

o

3.0

25

50

75

'0- DRAIN CURRENT (AMPERES)

100

125

,

~

15U

Te. CASE TEMPERATURE (OC)

Fig. 13 - Power VI. Temperature Derating Curve
4

Rlht" IJKIW- I-

2

0

-....... ......
8

-.......

6

i'......

i'......
o. 2

f'-..
-.......

20

40

60

80

100

120

,

140

Te. CASE TEMPERATURE (DC)

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326-6509 • TELEX 95-1064

4-218

PRINTED IN U.S A.

UFND1ZO

Fig. 14 - Clamped Inductive Test Circuit

Fig. 15 - Clamped Inductive Waveforms

R

II

r+-1

VAAY tp TO OBTAIN
REQUIRED PEAK Il

VGS'

UFND1Z3

Uo_UT~~r-Y

> \
'"
Il

'"

Il+-----o-----~~~~

;'

\

\._-----

Fig. 16 - Switching Time Test Circuit

v,
PULSE

GENERATOR
r------,

I
I
I

L_

50n

-

I

I

___ .J

''---~TO

SCOPE

O.Oln

50n

HIGH FREQUENCY
SHUNT

Fig. 17 - Gate Charge Test Circuit

,------0 ~~g~ATEO
SUPPlYI
SAME TYPE
AS OUT

12V
BATTERY

-

OUT

o~1.5mA

--'\N\r-4-"'VV\,.--O -VoS
IG

CURRENT
SHUNT

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

4-219

10
'":"

CURRENT

SHUNT

PRINTED IN USA

UFNDII0
UFNDl13

POWER MOSFET TRANSISTORS
100 Volt, 0.6 Ohm

N-Channel

FEATURES

DESCRIPTION

•
•
•
•
•
•
•

The Unitrode power MOSFET design utilizes the most advanced technology available.
This efficient design achieves a very low Ros,o~) and a high transconductance.

For Automatic Insertion
Compact, End Stackable
Fast Switching
Low Drive Current
Easily Paralleled
No Second Brea kdown
Excellent Temperature Stability

The Unitrode power MOSFET features all of the advantages of MOS technology such as
voltage control, freedom from second breakdown, very fast switching speeds, and
thermal stability.
When packaged in the low profile, end stackable 4 pin dual-in-line package, the
Unitrode power MOSFET devices can be used in high volume applications where
automatic insertion is a must such as computer circuit boards, consumer equipment,
and printers.

PRODUCT SUMMARY

Part Number

VDs

RDS(on)

ID

UFNDllO

100V

0.60

l.OA

UFND1l3

60V

0.80

0.8A

MECHANICAL SPECIFICATIONS
UFNDllO UFND1l3

DIL-4

,mho
~G

043(D01!J

II

031 (0(112)-11--

(i)

162J!3001

o

APf'lIES TO SPRUD OF LUDSPRIORTO INSTALLATION

G)APPLIESTOINSTALLEDLEADCENTERS

Nominal Dimensions in Millimeters and (Inches)

4/83

4-220

~UNITRDDE

UFNDllO UFND1l3

ABSOLUTE MAXIMUM RATINGS
Parameter

UFNOll0

UFNOl13

Units

100

60

V

Drain - Gate Voltege IRGS = 1 Mill (j)

100

60

V

Continuous Drain Current

1.0

O.S

A

10M

Pulsed Drain Current

8.0

6.4

A

VGS
PO@TC= 25°C

Max. Power Dissipation

VOS

Drain - Source Voltage

VOGR
10@TC= 25°C

CV

Gate - Source Voltage

±20
1.0

Linear Derating Factor

O.OOS
8.0

z

1OO~H

•

A

6.4

I

Operating Junction and
Storage Temperature Range

TJ
T stg

W
WIK

ISee Fig. 131

(See Fig. 14 and 151 L

Inductive Current, Clamped

ILM

V

ISee Fig. 131

-55to150

°C

ELECTRICAL CHARACTERISTICS @ TC = 25·C (Unless otherwise specified)
Parameter

BVOSS

Drain - Source Breakdown Voltage

V GSlthl Gate Threshold Voltage

Type

Min.

Typ.

Max.

Units

UFNOll0

100

-

-

V

VGS

= OV

UFNOl13

60

-

-

V

10 =

250~A

ALL

2.0

-

4.0

V

VOS - VGS' 10 - 250~A

500
-500

nA

VGS

nA

VGS - -20V

Test Conditions

IGSS
IGSS

Gate-Source Leakage Forward

ALL

-

-

Gate-Source Leakage Reverse

ALL

-

-

lOSS

Zero Gate Voltage Drain Current

ALL

-

-

250

~A

VOS = Max. Rating, VGS

-

1000

~A

VOS = Max. Rating x 0.8, VGS = OV, T C = 125·C

UFNOll0

1.0

-

-

A

UFNOl13

O.S

-

-

A

UFN0110

-

0.5

0.6

II

UFNOl13

-

0.6

O.S

II

ALL

o.s
-

10(onl

On-State Drain Current

®

= 20V
= OV

VOS ) 10(on) x ROS(on) max.' V GS = 10V

ROS(on) Static Drain-Source On-State
Resistance ®

®

VGS = 10V, 10

gfs

Forward Transconductance

Cjss

Input Capacitance

ALL

Coss

Output Capacitance

ALL

Crss

Reverse Transfer Capacitance

ALL

td on
tr

Turn-On Delay Time

ALL

Rise Time

ALL

td off)

Turn-Off Delay Time

tf

Fall Time

Qg
Qgs

1.2

-

S(Ul

135

200

pF

SO

100

pF

20

25

pF

10

20

ns
ns

15

25

ALL

-

15

25

ns

ALL

-

10

20

n.

Total Gate Charge
(Gate-Source Plus Gate-Drain)

ALL

-

5.0

7.0

nC

Gate-Source Charge

ALL

2.0

Gate-Drain ("Miller") Charge

ALL

7.0

-

nC

Qgd

-

nC

LO

Internal Drain Inductance

-

4.0

-

nH

ALL

LS

Internal Source Inductance

ALL

= O.SA

VOS ) 10(onl x ROS(on) max.' 10 = O.SA
VGS = OV, VOS
See Fig. 9

= 25V, f = 1.0 MHz

VOO = 0.5 BV OSS ' 10 - 0.8A, Zo = 5011
See Fig. 16
(MOSFET switching times are essentially
independent of operating temperature.)

V GS - 10V, 10 = 4.0A, VOS = O.S Max. Rating.
See Fig. 17 for test circuit. (Gate charge is essentially
independent of operating temperature.)

Measured from the
drain lead, 2.0mm
(0.08 in.1 from

Modified MOSFET
symbol showing the
internal device
inductances.

package to center of
die .

-

6.0

-

nH

.@)

Measured from the
source lead, 2.0mm

(0.08 in.) from
package to source

bonding pad.
,.

THERMAL RESISTANCE
RthJA

Junction-to-Ambient

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

Free Air Operation

4-221

PRINTED IN

u.s

A

UFNDllO

UFND1l3

SOURCE·DRAIN DIODE RATINGS AND CHARACTERISTICS
IS

Continuous Source CUfFent

ISM

Modified MOSFET symbol
showing the integral
reverse P-N junction rectifier.

UFNDll0

-

-

1.0

A

UFND113

-

-

0.8

A

UFNDll0

-

-

8.0

A

·UFNDI13

-

-

6.4

A

UFNDll0

-

-

2.5

V

UFND112

-

2.0

100

-

0.2

-

~C

TJ = 150·C, IF = LOA, dlF/dt - l00A/"s

(Body Diodel

Pulse Source Current

(Body Diodel

~

VSD

Diode Forward Voltage @

t"
ORR

Reverse Recovery. Time

ALL

Reverse Recovered Charge

ALL

-

ton

Forward Turn-on Time

ALL

Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by LS

(j)TJ = 25·Cto 150·C.

= 25·C.IS = LOA. Vas = OV

V

TC

ns

TJ

= 25·C,lS = O.SA, VGS = OV
= 150·C, IF - 1.0A, dlF/dt = 100 A/~s

Fig, 2 - Typical Transfer Characteristics
5.0

Fr=~~

tJ

4.0

~

~J'-5!OC,

4.0

;rJ'2~OC,

~ 3.0

80 14 PULSE TEST. 1
I
I
I

IZ
W

I-- f--Vos> IO(on)

""=>
'"z

6V

:! 2.0

2.0

Q

E

1.0

5r

4~
10

20

30

~

o

o

50

40

10
VGS, GATE·TO.sOURCE VOLTAGE (VOLTSI

Vas. DRAIN-TO-SOURCE VOLTAGE (VOLTS)

Fig, 4 - Maximum Safe Operating Area

Fig, 3 - typical Saturation Characteristics
5.0

-80LpujETES)~

AV

1li
~
:IE

~

~ [/

3.0

J. V

l-

I
z

~

i~
~7
BV

4.0

".

10

/

-

'E
1.0

J

IY
o
o

5.0

-VGS'7V-

~
j ~

2.0

2.0

~

1.0

"S

0.5

""
u'"

0.2

~

sy-

z

~

"'I:

IHr~113

~~~Dllo

0.05

10

~$

l00~.

1 ....

UFND113

=

10m~_

10~~

0.1

1>

TJ = 150DC MAX.
SI~G,lE'PULSE

I

0.02

5Y1
VOS, ORAIN·TO·SOURCE VOLTAGE (VOLTSI

UFND110

IZ

f/

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

RDSIOn).max,

J

E
1.0

I(

,

~

~

lLII

TJ= moc

~

I

.......

'II
i I '-J.!IJ fj

.~

L.o

o

I 'I

10 II:S PU LSE TEST

~f=BV

o

+ Leo

@PulseTest:Pulsewidth .. 300"s, Duty Cycle .. 2%.

Fig, 1 - Typical Output Characteristics
5.0

TC

0.01

4~_

0.005
0.5

4·222

DC

UFND113
1.0

. UFND110

10 20
50 100 200
500
VOS' DRAIN·TO·SOURCE VOLTAGE (VDLTSI

PRINTED IN USA

UFNDllO

Fig. 5 - Typical Transconductance VI. Drain Current

~

2.8

w
<.>

2.4

;e

10

-Lj,lI,lsETJsT

~DS >1'Dloo)1 x ROS~on) ml.

3.2

~

2.0

~
;:!

...

f..-

1.5

V

1.2

~

0.8
0.4

5

/

//

~

~z

:,....-- ,...-

-

/ /

1 '2JOC
J

TJ '" 25 0C

TJ ,.12soe

5 f--TJ= ISOoC

t ~ ....... r-

I

II

I

2

L

!

o. 1

0.2

'D. ORAIN CURRENT (AMPERES)

0

~

~S

1.20

2.25

1.15

2.00

1.10

./

1.05

:;:;!::;!

~~
=>'"

1.00

.. ;!;

0.95

00

~
z

~

0

:g

~

0.90

./

V

L

,/"

1.8

2.0

1.15
z
~ffi 1.50
~~

V

~~

...... ~

./

1.25

~~ 1.00

..................

~

0.15

I

0.50

0.80
·20

20

40

60

80

100

120

o

140

........ f-""

·60

i...--"

VGS"0V
'D"'O.8A

-40

-20

20

40

r

I

60

80

100

120

140

TJ• JUNCTION TEMPERATURE (oCI

TJ• JUNCTION TEMPERATURE (OC)

UNITRODE CORPORATION· 5 FORBES ROAO
LEXINGTON. MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

V

.........

0.25
-40

/"

....... V

0'"

0.85

0.1~0

,

0.6
0.8
10
1.2
14
16
Vso. SOURCE·TO·DRAIN VOLTAGE (VOLTS)
0.4

2.5D

>

z

I

Fig. 8 - Normalized On-Resistance VI. Temperature

Fig. 7 - Breakdown Voltage VI. Temperature
1.25
w

J

11 I

TJ=-55 0 C

o
o

~

•

Fig. 6 - Typical Source-Drain Diode Forward Voltage

4.0
3.6

UFND1l3

4-223

PRINTED IN USA

UFNDllO

Fig. 10 - Typical Gate Charge Vs. Gate·to·Source Voltage

Fig. 9 - Typical Capacitance VI. Drain·to-Source Voltage
5110

...'"

~
~

20

JGSJ

.IC·

1. .l

.. ..'
'-IMHz

=C + C'" Cds SHORTED
"c,. - C'"
COll·Cd.... ~- I-..
IItIC.+Cgd
- I--

400

!Sc

..~

~
w

'"

3110

~ 2011

100

\

\

""""'r-

--

I

cL

Y,.

PULSE IS

•

50

MINIMA~.I

~

-

f'..
~

~

....

_v1s= 10V

r-.....

:$ 0.6
zw

"'"'
B

"'=>c

z

./

~~

=

~

r'NDll0

UFND1~

d.•

......

~

'" r--...',

~

~
.9
c

VGS 12oV-

t

......

r....

~

1.0

0.5

10

""""'- i'..

0.8

15

'~"

6

Fig. 12 - Maximum Drain Current Vs. Case Temperature

f--

-

-

0.2

~
10

15

-

0., TOTAL GATE CHARGE (nCI

1.5

~

10='A
FOR TEST CIRCUIT
SiE FIGt E ';

/'

w

~

V

~

1.0

EFFECT OF

~ If"

>""

I

~.gSi:n&u~~A~~:~~N~;i:l ~~R:R~:oTC.P~Hl:!T~~G

§

/~

10

>

2.0

;

Vos = IJ'N, UFND110

_

..~

C!..

Fig. 11· - Typical On·Resistance Vs. Drain Current

...

-

~.,.
Cia

10
20
30
40
Vos. oRA1N·To-SoURCE VOLTAGE (VoLTSI

...z

Vps-sr',

>

~=>

\~

V~S-Jv,
15

c

~ t\

U

UFND1l3

o

20

25

50

75

' 0, DRAIN CURRENT (AMPERES!

100

125

,

~

150

TC. CASE TEMPERATURE (OCI

Fig. 13 - Power VI. Temperature Derating Curve
1.6
I.'

~

!z

1.2

R'hJA <: 120 K/W-

"",

1.0

c

E 0.8
~

c

"'

~

0.6

"~

e D.•

"-

0.2

o

o

20

40

60

-

80

"

100

120

"- t'...
140

TC, CASE TEMPERATURE (OCI

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

4-224

PRINTED IN U S.A

UFNDllO UFND1l3

R

•

Fig. 15 - Clamped Inductive Waveforms

Fig. 14 - Clamped Inductive Test Circuit

VARY., TO OBTAIN

VGS '

IVLO~UT~~c:T
Fig. 16 - Switching Time Test Circuit

PULSE
GENERATOR

r-----'
I

I
I

L_

50n

I

_ __ oJI

TO SCOPE

50n

Fig. 17 - Gate Charge Test Circuit
+Vos
(ISOLATED
SUPPlYI

o.r=n.s mA

V-~>-"'Vv\,....-O -VOS

IG

CURRENT
SHUNT

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02i73 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

4-225

~

10
CURRENT
SHUNT

PRINTED IN USA

POWER MOSFET TRANSISTORS

UFND120
UFND123

100 Volt, 0.3 Ohm

N-Channel

FEATURES

DESCRIPTION

•
•
•
•
•
•
•

The Unitrode power MOSFET design utilizes the most advanced technology available.
This efficient design achieves a very low Ros'on. and a high transconductance.

For Automatic Insertion
Compact, End Stackable
Fast Switching
Low Drive Current
Easily Paralleled
No Second Breakdown
Excellent Temperature Stability

The Unitrode power MOSFET features all of the advantages of MOS technology such as
voltage control, freedom from second breakdown, very fast switching speeds, and
thermal stability.
When packaged in the low profile, end stackable 4 pin dual-in-line package, the
Unitrode power MOSFET devices can be used in high volume applications where
automatic insertion is a must such as computer circuit boards, telecommunication
equipment, consumer equipment, and printers.

PRODUCT SUMMARY
Part Number

VDS

RDS(on)

ID

UFND120

100V

0.30

l.3A

UFND123

60V

0.40

l.lA

MECHANICAL SPECIFICATIONS

cp,.

D

UFND120 UFND123

DIL-4

•

,G

(!)APPLIESTDSPAfAODFtEADSPIIiOATOlffSTALLATION

Q)APPUESTOINSTAtlEOlEADtEIlTEIlS

Nominal Dimensions in Millimeters and (Inches)

4/83

4-226

~UNITRODE

UFND120

UFND123

ABSOLUTE MAXIMUM RATINGS
Parameter

UFNDl20

UFND123

Units

100

60

V

100

60

V

Continuous Drain Current

1.3

1.1

A

IDM

Pulsed Drain Current

S.2

4.4

VGS
PD@TA= 2S·C

Gate - Source Voltage

CD

VDS

Drain - Source Voltage

VDGR
ID@TA= 2S·C

Drain - Gate Vol'age IRGS = 1 Mil)

CD

Max. Power Dissipation

Linear Derating Factor

1.0 (See Fig. 13)

W

O.OOB (See Fig. 13)

W/K

(See Fig. 14 and lS) L = 1OO~H

Inductive Current, Clamped

ILM

I

S.21
Operating Junction and
Storage Temperature Range

TJ
T stg

A
V

±20

lead Temperature

A

4.4

-S5to 150

·C

300 (0.063 in. (1.6mm) Irom case lor lOs)

·C

ELECTRICAL CHARACTERISTICS @ TC = 2S·C (Unless otherwise specified)
Parameter
BVDSS

Drain - Source Breakdown Voltage

Type

Min.

Typ.

UFNDl20

100

-

UFND123

50

ALL

2.0

Gate - Source Leakage Forward

ALL

IGSS

Gate - Source Leakage Reverse

ALL

lOSS

Zero Gate Voltage Drain Current

-

VGS(th) Gate Threshold Voltage
IGSS

10(on)

ALL
On-State Drain Current

@

UFN0120

ROS(on) Static Drain - Source On-State

Resistance

®

®

1.3

Max.
-

Units

-

V

4.0

V

VOS

500

nA

VGS - 20V

-500

nA

VGS - -20V

250

,.A

VOS

1000

,.A

VOS ~ Max. Rating x O.B. VGS

-

A
A

UFN0123

1.1

UFNOl20

0.25

0.30

11

UFND123

-

0.30

0.40

ALL

0.9

1.0

-

0
5 (UI

9ls

Forward Transconductance

Ciss

Input Capacitance

ALL

-

450

600

pF

Coss

Output Capacitance

ALL

200

400

pF

C rss

Reverse Transfer Capacitance

ALL

SO

100

pF

td(on)

Turn-On Delay Time

ALL

tr

Rise Time

ALL

tdlolll
tl

Turn-Off Delay Time

ALL

Fall Time

ALL

-

Qg

Total Gate Charge

ALL

-

(Gate-Source Plus Gate-Drain)

Test Conditions
VGS = OV
10 = 2S0,.A

V

VOS

= VGS. 10

= 250~A

= Max. Rating. VGS = OV

VGS = 10V.10 = 0.5A
VOS

> 1010n) x ROS(on) max.' 10 = 0.6A

VGS = OV. VOS

= 25V. I = 1.0 MHz

See Fig. 9

40

ns

VOO ~ 0.5 BVOSS. 10 = 0.6A. Zo

70

ns

See Fig. 16

SO

100

ns

35

70

ns

(MOSFET switching times are essentially
independent of operating temperature.)

11

15

nC

Gate-Source Charge

ALL

-

6.0

-

nC

Qgd

Gate-Drain ("Miller") Charge

ALL

-

S.O

-

nC

LO

Internal Drain Inductance

ALL

-

4.0

-

nH

VGS

= 10V.10 = 5.2A. VOS = O.B Max. Rating.

See Fig. 17 for test circuit. (Gate charge is essentially
independent of operating temperature.)

Measured from the
drain lead, 2.0mm

(0.08 in.) Irom
package to center of
die.

Internal Source Inductance

ALL

-

= 5011

20
35

Oss

LS

= OV. T C = 125°C

> 10(on) x ROS(on) max.' VGS = 10V

-

6.0

nH

Measured from the
source lead, 2.0mm

(0.08 in.) Irom
package to source
bonding pad.

Modilied MOSFET
symbol showing the
internal device
inductances .

.@)

THERMAL RESISTANCE
RthJA

Junction-ta-Ambient

UNITROOE CORPORATION. 5 FORBES ROAD
LEXI NGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326·6509 • TELEX 95-1064

ALL

120

4-227

K/W

Free Air Operation

PRINTED IN U.S A

•

UFND120

UFND123

SOURCE·DRAIN DIODE RATINGS AND CHARACTERISTICS
IS
ISM

Continuous Source Current
IBody Diode)

-

UFND120
UFND123

Pulse Source Current (Body Diode)

UFND120

-

UFND123

®

-

1.3

A

1.1

A

-

5.2

A

-

4.4

A

-

2.5

V

TC - 25°C,IS - 1.3A, VGS - OV

2.3

V

TC - 25°C, IS - 1.1A, VGS - OV

-

ns

TJ

~C

TJ

Modified MOSFET symbol
showing the integral
reverse P~N junction rectifier.

4Ef.

VSD

Diode Forward Voltage

trr

Reverse Recovery Time

ALL

-

280

ORR

Reverse Recovered Charge

ALL

-

1.6

ton

Forward Turn-on Time

ALL

Intrinsic tum-on time is negligible. Turn-on speed is substantially controlled by LS

UFND120
UFND123

Fig. 1 - Typical Output Characteristics

Fig;
2D

0

flOV

9~-

r-

Vos> 'Olon) II:

8

I
I

I--

5~-

iJ. /

J

Ty2501~
TJ = ~5S01"i

l/) rY

rlJ

hY

•

r-

II,

T'1 12'OCl'---

I-"

.~-- I-10
20
30
40
Vos. DRAIN TO·SOUR{'E VOLTAGE (VOLTS)

3-

/1

•

8

'r-

r- ROS(on) 1ItIJI.

,

8V- I VGS''1-

2 - Typical Transfer Characteristics

~~~pu~ETESI

lOps PULSE TEST

1/

Fig.

+ lO'

(2iPulse Test: Pulse width .. 300~s, Duty Cycle .. 2%.

CllTJ = 25°C to 150°C.

"
,

= 150°C, IF = 1.3A, dlF/dt = 100A/~s
= 150 oC,IF = 1.3A, dlF/dt = 100A/~s

,

511

.

~~

"

10

VGS. GATE·l0.s0URCE VOLTAGE (VOLTS)

Fig. 4 - Maximum Saf. Operating Area

Typical Saturation Characteristics
10

0

8

,

8o~.JpiJlJTEST I--- iiY.l
7/V" .I...............

-I--

II.
///
Vh ;.......-

,
4

ll'

, If/

JV

~

1.0

I

D.'

vGs·,Ii-

--

0.2

I

0.1

I

~;~

0.05

'CI

f-5V

0.02

I

'r

[UFNI

0.01
0.005

•

Vas. DRAIN·IO-SOURCE VOLTAGE (VOLTS)

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. 1617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

p1i

2

/, ';':/1
~

of:
~u

.1

10

120,
50

VDS DRAIN·TO.sOURCE VOLTAGE (VOL TSI

4·228

PRINTED IN U.S A

UFND120

/'

3

z
<
~

Z

/ 'V

'/

I

2

I --r

TJ'" 25°C

5

TJ"125 0C

l-

0

5
r-TJ'" 150°C

Vas> lo(on) x ROSlon) max.

80T PULS jTEST

TJ=150 0 C_

'1

711

2

I

I

0
12
16
10. DRAIN CURRENT (AMPERES}

~

...,. I""'"

,

2

,/

~, I)
"

2

TJ~-550L '=
_f.- I-"J.",!_ f=

,
/

II

Q
Q

V-

II

Fig. 6 - Tvpical Source-Drain Diode Forward Voltage

Fig. 5 - Tvpical Transconductance VI. Drain Current

4

UFND123

~

TJ'" 25°C

20
VSQ. SOURCE TO-DRAIN VOLTAGE (VOL lSI

Fig. 8 - Normalized On-Resistance VI. Temperature

Fig. 7 - Breakdown Voltage V,. Temperature

•

1.2

22
u

•
•

".~

...... i-"""

"..

~

~

1.8

~~ 1.4
g~

*~

1.0

•

~

06

-40

/

V

00

'",.

•

V

"?~

."...
./

OJ

~

z

~

~

40

80

120

02

160

TJ, JUNCTION TEMPERATURE (DC)

UNITROOE CORPORATION. 5 FORBES ROAO
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95·1064

,/

./

..............

vGS

I......
-40

=

lOV

'r06~
40

80

120

160

TJ,JUNCTION TEMPERATURE (DC)

4-229

PRINTED IN U S.A

UFND120 UFND123

Fig. 9 - Typical Capacitance Vs. Drain-to.source Voltage

Fig. 10 - Typical Gate Charge VI. Gate-to-Source Voltage

1000

20

I JGs·J

,I

800

JJ

'i' IMHtZ

Cja '"

ell + Cgd. Cds SHORTED -

erst· CgeI

~
w
!i1

e _c",+ e"c.o

........

~

§"

-

&00

\

400

u'

\
200

\

" i'-- .......

011

CIII+Cgd
-CdI+Cgd

-

i

-

"'

I

u

~
~

I

'"

so

12

-

~VG!"DV

~

"

z

~

0

2::: ....
....... ........ t-....
......

0.9

UFNDl3)

r--... ['.t-....

.... ~ r-....

0-

w

z

D.'

W

0

~
02

20

16

Fig. 12 - Maximum Drain Current VI. Case Temperature

~

z

I--

Qg. TOTAL GATE CHARGE (nCI

~

~

~~~ ~~:T

CIRCUITSEE FIGURE 11

s

I
~
~

j

/

0.8

u

II

~

!f

/'"

I'--- ~ ~
~V

4~

""

e;a

Fig. 11 - Typical On-Resistance Vs. Drain Current

~

10

0

:;

.0

0.6

Vas= SOV

I
I- VoS -1lIN, UFND13)

~> -

eta

10
20
30
Vas- DRAIN-TO-SOURCE VOLTAGE (VOLTS)

z

VDs l'20V
15

----~

~

)

~

u

1/

z O.S

~

"- ~

~

-"'--;';;-20V

j -~DS(,"I

UFNDl23.........

~

.P

'\\

O.3

IF _ f---

10

'a.

30
DRAIN CURRENT (AMPERES)

20

0
25

'0

,

\\

MEASURED WITH CURRE.tulSE
2 0 ~s DURATION INITIAL TJ = 25 0 C. (HEATING
EFFECT OF 2 Ops PULSE IS MINIMAU

50

15

100

150

lA, AMBIENT TEMPERATURE (OCI

Fig. 13 - Power VI. Temperature Derating Curve
14

RthL

1.2

E 1.0
0

illQ

0.8

"

0.6

~

~

~

0.'
0.2

20

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

lJKIW-1-

-......,

"z

~

~

~

" "'-I'"

&0
80
100
'0
lA, AMBIENT TEMPERATURE (DCI

4-230

120

"- i'.
140

PRINTED IN U.S.A.

UFND120

Fig. 14 - Clamped Inductive Test Circuit

UFND123

II

Fig. 15 - Clamped Inductive Waveforms
EC

VARY tp TO OBTAIN
REQUIRED PEAK 'L

V G S . R OUT

'l ...--o---.................-'
E1 = 0.5 BVOSS

EC = 0 75 BVOSS

Fig. 16 - Switching TIm. Test Circuit

PULSE

r-----.,
I
GENERATOR

I
I

SOn

L ____ J

r
I

50n

FiO. 17 - Gate Charge Test Circuit
+Vos
(ISOLATED
SUPPLY)

-

o~·5mA

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326·6509 • TELEX 95·1064

-""''V'.,...-+~'\I\'''-O·VOS
10
10
CURRENT
CURRENT
SAMPLING
SAMPLING
RESISTOR
RESISTOR

4·231

PRINTED IN U.S.A.

POWER MOSFET TRANSISTORS

UFND210
UFND213

200 Volt, 1.5 Ohm
N-Channel

FEATURES
• For Automatic Insertion
• Compact, End Stackable
• Fast Switching
• Low Drive Current
• Easily Paralleled
• No Second Breakdown
• Excellent Temperature Stability

DESCRIPTION
The Unitrode power MOSFET design utilizes the most advanced technology available.
This efficient design achieves a very low RDo(on' and a high transconductance.
The Unitrode power MOSFET features all of the advantages of MOS technology such as
voltage control, freedom from second breakdown, very fast switching speeds, and
thermal stability.
When packaged in the low profile, end stackable 4 pin dual·in·line package, the
Unitrode power MOSFET devices can be used in high volume applications where
automatic insertion is a must such as computer circuit boards, telecommunication
equipment, consumer equipment, and printers.

PRODUCT SUMMARY

Part Number

Vos

RDS(on)

10

UFND210

200V

1.50

O.6A

UFND213

150V

2.40

O.45A

MECHANICAL SPECIFICATIONS

D

CO,

UFND210 UFND213

,

,

G

1-I

0.3 (0

01~1 II

0311oom-i

DIL·4

t--

502 (0198)
MAX

0)

."

162(OlOOi

' 1010ni x ROSlonl max.' VGS = 10V

VGS

= 10V, 10 = 0.3A

VOS

> 1010ni x ROSlonl max.' 10 - 0.3A

VGS

= OV, VOS = 25V, I = 1.0 MHz

11

Qfs

Forward Transconductance

Ciss

Input Capacitance

All

-

135

150

pF

Coss

Output Capacitance

All

--

60

80

pF
pF

erss

= 25Ol'A
= VGS, 10 = 25Ol'A

4.0

IGSS

Source Leakage Reverse

Test Conditions

= OV

See Fig. 9

Reverse Transfer Capacitance

All

-

16

25

tdlonl
tr

Turn-On Delay Time

All

-

8.0

15

ns

VOO

Rise Time

All

15

25

ns

See Fig. 16

tdloffl
tf

Turn-Off Delay Time

ALL

-

10

15

ns

Fall Time

All

-

8.0

15

ns

(MOSFET switching times are essentially
Independent of operating temperature.)

Og

Total Gate Charge
(Gate-Source Plus Gate-Drain)

All

-

5.0

7.5

nC

Ogs

Gate-Source Charge

All

-

2.0

-

nC

°gd

Gate-Drain ("Miller") Charge

All

-.

3.0

-

nC

LO

Internal Drain Inductance

ALL

-

4.0

-

nH

VGS

2

0.5 BVOSS, 10

= 10V, 10 = 2.5A, VOS = 0.8 Max. Rating.

See Fig. 17 for test circuit. (Gate charge is essentially
independent of operating temperature.)

Measured from the
drain lead, 2.0mm

10.08 in.1 from
package to center of
die .

lS

Internal Source Inductance

All

-

6.0

-

nH

= 0.3A, Zo = 501l

Measured from the
source lead, 2.0mm

10.08 in.1 Irom
package to source
bonding pad.

Modified MOSFET
symbol showing the
internal device
inductances.

.@)

THERMAL RESISTANCE
RthJA

Junction-to-Ambient

UNITROOE CORPORATION. 5 FORBES ROAD
LEXINGTON. MA 02173 • TEl. 16171 861-6540
TWX 1710) 326-6509 • TELEX 95-1064

ALL

120

4-233

K/W

Free Air Operation

PRINTED IN U.S A

•

UFND210 UFND213

SOURCE·DRAIN DIODE RATINGS AND CHARACTERISTICS
Continuous Source Current
(Body Diode)

IS
ISM

>

·Pulse Source Current (Body Diode)

®

UFND210

-

UFNb213

-

UFN0210

-

UFND213

-

UFND210

.-

UFND213

-

0.6

A

0.45

A

2.5
1.8
2.0

V

Diode Forward Voltage

trr

Reverse Recovery Time

ALL

ORR

Reverse Recovered Charge

ALL

-

Forward' Turn-on Time

ALL

Intrinsic turn-on time IS

ton

=

reverse

1.8

V

-

ns

TJ

290
2.0

~~

9V
8V

f--

r-lIAlPU~ETE

~

TJ.,125DC

T

VGS'7V-

~

i

I
TJ'" 25°C

'.D

-

I

~

TJ"' -55°C

~

TEST
...5z 3.D r- 80V~S >PULSE
101(on) x ~OS{on) mlx. 1

!! 3.0

~

w

=
=

5~- -

~

z

~

6

!?
1.0

2.D

!?
,D

4~ _ _

o

20

'0

.

30

~

D
D

.D

8~

IJSPJSE

40

9V
8V

~

3."

~~

=
=
~

u

~

20

!?
1.0

~

"D

~

~

I.D

~~

I

D.2

...

i

1-

z
~
_"

J_

,

10ms

DD5

lOOms

0.02
D.D

,

TJ'" ISOoC MAX

I

SINGLE PULSE

DC

UFND213

0.002
D.DD

5D

Vos. DRAIN·TQ-SOURCE VOLTAGE (VOLTS)

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

D.

0.005

5~_

4.D

'm.

UFND213

6

3.D

100..

D.5

.......

2.D

'D..

UFND213
UFND210

I.D

~GS'7r-

~V
~ .,......

IJ

II
'1/

.!!l'~O

~

'"'JJ
'" 1"1

Fig_ 4 - Maximum Safe Operating Are.

TElT
'OV

/I V

VGS, GA.TE·TD·SOURCE VOLTAGE (VOLTS)

Fig. 3 - Typical Saturation Characteristics

_

/

IJ
~

'D

Vas. QRAIN·TO·SQURCE VOLTAGE (VOLTS)

5.0

LO'

I

~

u

1-

z 2.0

o

+

Fig. 2 - Typical Transfer Characteristics.

.",

z

= 150°C, IF = 0.6A, dlF/dt = 100A/~s

TJ - 150°C, IF - 0.6A, dlF/dt - l00A/"s
"C
negligible. Turn-on speed is substantially controlled by LS

'.D

4.0

...5z

junction rectifier.

TA ,25°C, IS - 0.6A, VGS - OV
TA = 25°C, IS - 0.45A, VGS - OV

Fig. 1 - Typical Output Characteristics

~

P~N

@PulseTest: Pulse width .. 300,,5, Duty Cycle .. 2%.

25°C to 150°C.

5.0

~

showing the integral

A
A·

VSD

 "Olon) ~ RDS(onllltl~.

~

~

~

1/

'/

2.8

I

2.'

, .,.....-

t; 2.0

8

10

r-! ~ pula n!T

3.2

II

Fig. 6 - Typical Sourca·Drain Diode Forward Voltag.

16

l/1/

1.2

0.8
0.'

t ~ f.-

II-'

o
o

TJ =-550C

TJ I'25.d

,..--

TJI"25'~

-

_.

TJa t50 0 e

'--

h J • 125'C

~

I

1

1.0

2.0

3.0

'.0

1.0
2.0
3.0
4.0
VSQ. SOURCE-TO·ORAIN VOLTAGE (VOLTSI

5.0

10. DRAIN CURRENT (AMPERES)

Fig. 7 - Breakdown Voltage VI. Temperature

5.0

Fig. 8 - Normalized On·R.sistance Vs. Tamperature

1.2 5
2. 2

1/

5

1/ ~

8

/

,/
/

~

V

l/

./

V

I......
0.75
-40

V

V

./

0.2
40
80
120
TJ,JUNCTION TEMPERATURE (OCI

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

-40

160

V"

V
vGs·JOY

'r03~

40

80

120

180

TJ, JUNCTION TEMPERATURE (DC)

4·235

PRINTED IN U.S.A

UFND210 UFND213

Fig. 9 - Typical Capacitance VI. Drain·to.source Voltage

sao

20

I

JGs.ol
I 'i I MH,'I_I
eo. • e.. + e". e",SHORTEO-

400

era· cget

l

.... Cds + c..

,

~

i-- VDS • l6OV; Uffill210

-

10

II
J

5

I

~
40

30

10" 2.5A

FOR TEST CIRCUIT-

SEj FIGU(E 111

/

e",

20

50

Fig. 11 - Typical On;i:celistance VI. Drain Current
RaSlon) MEASURED WITH CURRENT PULSE OF
2.0"sDURATION INITIAL TJ=25 0 C. (HEATING

EFFEeT OF 2.0 '" PULSE IS MIj'MAl.i

10

Fig. 12 - Maximum Drain Currant VI. Case Temperatura

r-r-

0.6

.........

['-....

0.5

J

.
z

- -

..........
........ ~ffi1l210

""""'" r-....

1
VGS= lOY

........

0.3

.....
........

UfNIl213

~

"z

u

~~ov

....... V

r-

Qg. TOTAL GATE CHARGE InC)

Vos. DRAIN·TO·SOURCE VOLTAGE (VOLTS)

I

~

A~

1
eL

.........

A~ ~

Vorl01v ........

I

1\ ['.:

\

v~s =4JV

-

eoa=c.+ ~
+c.c.

1\
100

Fig. 10 - Typical Gate Charge VI. Gata·to.source Voltage

"

.....

" ""
........

~ 0.2

~

o. I

~

50

10
10. DRAIN CURRENT (AMPERES)

75

100

125

150

TA, AMBIENT TEMPERATURE (DC)

Fig. 13 - Power VI. Temperatura Derating Curve
14

I

R,JA<120 KIW- f-

2

'" "'
"-

,

~

~

O. 2

20

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

'" "

40
60
80
100
120
lA. AMBIENT TEMPERATURE (DC)

4·236

"-

140

PRINTED IN U.S.A.

UFND210

UFND213

•

Fig. 15 - Clamped Inductive Waveforms

Fig. 14 - Clamped Inductiva Tast Circuit

EC
VARY tp TO OBTAIN
REDUIRED PEAK Il

VGs~R

OUT

,,+---0---.....-"11,.,........
El = 0.5 BVOSS

EC = 0.75 BVOSS

Fig. 16 - Switching Tima Tast Circuit

v,
PULSE

r-----..,
GENERATOR

I

I
I
L _

SOu

I
I

___ .J

-

''--~TO

SCOPE

50n

Fig. 17 - Gate Charge Tast Circuit
+Vos
(ISOLATED
SUPPLY)

-

o~:5mA

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

--'\i'\l'l.r--+--''VII'v-o-Vos
'G

'0

CURRENT
SAMPLING
RESISTOR

CURRENT
SAMPLING
RESISTOR

4-237

PRINTED IN U.S.A

UFNF110
UFNFlll
UFNFl12
UFNFl13

POWER MOSFET TRANSISTORS
100 Volt, 0.60 Ohm

N-Channel

FEATURES

DESCRIPTION

•
•
•
•
•

The Unitrode power MOSFET design utilizes the most advanced technology available,
This efficient design achieves a very low Ros.on• and a high transconductance,

Fast Switching
Low Drive Current
Ease of Paralleling
No Second Brea kdown
Excellent Temperature Stability

,

The Unitrode power MOSFET features all of the advantages of MOS technology such as
voltage control, freedom from second breakdown, very fast switching speeds, and
thermal stability,
These power MOSFETS are ideally suited for many high-speed, high-power switching
applications such as switching power supplies, motor controls, and wide-band and
audio amplifiers,

PRODUCT SUMMARY
Part Number

VDS

RDS(on)

ID

UFNF110

lOOV

0.60

3.5A

UFNF111

60V

0.60

3.5A

UFNF112

lOOV

0.80

3.0A

UFNF113

60V

0.80

3.0A

MECHANICAL SPECIFICATIONS
UFNFllO UFNFlll UFNF112 UFNF113

TO-20SAD (TO-39)

50810.20}

~:~I~~M

OIA

3PlA.CES

All Dimensions in Millimeters and {lnchesl

[1J]
4/83

4-238

_UNITRODE

UFNFllO UFNFlll

UFNF112 UFNF113

ABSOLUTE MAXIMUM RATINGS
Parameter

UFNF110

UFNF111

UFNF113

Units

VOS

Drain - Source Voltage (j)

100

60

100

60

V

VOGR
10@TC-25°C

Drain - Gate Voltage (RGS = 1 Mil) (j)

100

60

100

60

V

Continuous Drain Current

3.5

3.5

3.0

3.0

A

10M

Pulsed Drain Current @

14

14

12

12

VGS
Po@TC=25°C

Gate ~ Source Voltage
Max. Power Dissipation

Inductive Current, Clamped

1

14

Lead Temperature

V

15

(See Fig. 14)

0.12

(See Fig. 14)

W
WIK

(See Fig. 15 and 16) L = 100~H
14
I
12

Operating Junction and
Storage Temperature Range

TJ
T stg

A

±20

Linear Derating Factor

ILM

UFNF112

I

A

12

-55to 150

·C

300 (0.063 in. (1.6mm) Irom case lor lOs)

·C

ELECTRICAL CHARACTERISTICS@TC = 25·C (Un)ess otherwise specified)
Type

Parameter

BVOSS

Drain - Source Breakdown Voltage

Min.

Typ.

Max.

Units

UFNFll0
UFNF112

100

-

-

V

Test Conditions
VGS

UFNF111
UFNF113

60

-

-

V

10

= OV

= 250l'A

ALL

2.0

-

4.0

V

IGSS

Gate-Source Leakage Forward

ALL

-

100

nA

VGS - 20V

ALL

-

-100

V GS(th) Gate Threshold Voltage
IGSS

Gate-Source Leakage Reverse

lOSS

Zero Gate Voltage Drain Current

10(on)

On-State Drain Current

®

ROS(on) Static Drain-Source On-State
Resistance ®

®

= VGS' 10 =

25Ol'A

= -20V

nA

VGS

250

I'A

VOS - Max. Rating, VGS - OV
VOS

-

-

1000

I'A

UFNF110
UFNF111

3.5

-

-

A

UFNF112
UFNFl13

3.0

-

-

A

UFNF110
UFNF111

-

0.5

0.6

Il

UFNF112
UFNF113

-

0.6

O.S

Il

ALL

VOS

= Max. RatingxO,S,VGS = OV,TC = 125·C

VOS ) 10(on) x ROS(on) max.' V GS = 10V

VGS

9ls

Forward Transconductance

ALL

1.0

1.5

-

S(l.l)

Ciss

Input Capacitance

ALL

-

135

200

pF

Coss

Output Capacitance

ALL

-

SO

100

pF

C rss

Reverse Transfer Capacitance

ALL

-

20

25

pF

td(on)

Turn-On Delay Time

ALL

20

ns

Rise Time

ALL

-

10

tr

15

25

n.

= 10V,I0 = 1.5A

V OS ) 10(on) x ROS(on) max.' 10 - 1. 5A
VGS = OV, VOS = 25V, 1= 1.0 MHz
See Fig. 10
VOO = 0.5 BVOSS,IO
See Fig. 17

= 1 .SA, Zo =

500

td(ofl)

Turn-Off Delay Time

ALL

25

ns

(MOSFET switching times are essentially

Fall Time

ALL

-

15

tl

10

20

ns

independent of operating temperature.)

Qg

Total Gate Charge

ALL

-

5.0

7.5

nC

IGate-Source Pius Gate·Drain)

Qgs

Gate-Source Charge

ALL

-

2.0

-

nC

Qgd

Gate-Drain ("Miller") Charge

ALL

-

3.0

-

nC

LO

Internal Drain Inductance

ALL

-

5.0

-

nH

V GS = 10V, 10

= S.OA, VOS -

Measured from the

Modified MOSFET

drain lead, 5 mm (0.2

symbol showing the
internal device
inductances .

in.) from header to
center of die.

LS

Internal Source Inductance

ALL

-

15

-

nH

O.S Max. Rating.

See Fig. 18 for test circuit. (Gate charge is essentially
independent of operating temperature.)

Measured from the

source lead, 5mm (0.2
in.) from header to
source bonding pad.

.@)

THERMAL RESISTANCE
RthJC

Junction-to·Case
Free Air Operation

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

4-239

PRINTED IN U.S.A

•

UFNFllO UFNFlll

UFNF1l2 UFNFl13

SOURCE·DRAIN DIODE RATINGS AND CHARACTERISTICS
IS

ISM

VSD

Continuous Source Current
(Body Diodel

Pulse Source Current
(Body Diode! @

Diode Forward Voltage ®

-

-

3.5

A.

UFNF112
UFNF113

-

-

3.0

A

UFNFll0
UFNFlll

-

-

14

A

UFNF112
UFNF113

-

-

12

A

UFNFll0
UFNFlll

-

-

2.5

V

UFNF112
UFNF113

-

-

2.0

V

TC

ALL

-

200

-

ns

T J = 150·C,IF - ;j.bA,dIF/dt - 100A/"s
TJ = 150·C,IF = 3.5A,dI F/dt - 100A/"s

t"
QRR

Reverse Recovery Time
Reverse Recovered Charge

ALL

ton

Forward Turn-on Time

ALL

 'O(on) x
6.4
ROS(on) mell.

I
ay= F=

)

1.6

i

/"

0.8
~

o

o

50

,

I /

')

~
4

10

VGS. GATHD·SDURCE VOLTAGE IVOLTS)

Fig. 3 - Typical Saturation Characteristics

Fig. 4 - Maximum Safe Operating Area
100

8.0
1.2

I V

- L ,JLSf TElT
loA'

~

......
"

U

~<

~V

z

w
u

4.0

z

3.2

E

Z.'

~

~ f/'

~V

~~~

16
0.8

ZO UFNFll0,1

~
~8r~ r-~~

~

I'

0.5

..... VGS·1V-

I

6~-

I

5~-

4~_

I...

-

~~,2.3

10~s

UFNF110,;

100,u.s

w

~

~

Z

I

UFNF112,3

z

-

~
1.0
<0
.;

-

-

-

10

z

~

1.0 1.5
Z.O 2.5 3.0 3.5 4.0 4.\
VDS. DRAIN·TD·SDURCE VOLTAGE IVDLTSI

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (6171 861·6540
TWX (710) 326·6509 • TELEX 95·1064

~

0.\

=

='TC'Z50C
TJ' 110°C MAX.
_ R,hJC • B.33 KiW

O.Z -:-t~GL[PULSE
O. 1
1.0

\.0

I

LUI

1m,

"'

lOT'
lOOms

UFNFll1,3
UFNF110,2
10

VDS.

4·240

-

OPERATiON IN THIS
AREA is LIMITED
BV ROS(on)

~

./.r~
9V V
~

6.4
5.6

+i-·Hi

50

ZO

DRAIN.TQ~DURCE

DCI
\0

100

I
200

500

VOLTAGE IVOLTSI

PRINTED IN U.S.A

UFNFllO UFNFlll UFNF112 UFNF1l3

Fig.5 - Maximum Effective Transient Thermal Impedance, Junction·to·Case Vs. Pulse Duration
I

J

~

f-D' 0.5

i-

0.1

r-

0.1

•

NOTES

lf1.JL
~2~

=,0.05
=:0.02

1. DUTY FACTOR, 0 =

~

.....,.

:~

SINGLE PULSE (TRANSiENT

2. PER UNIT BASE' R,hJC • B.33 DEG CIW

IirERMiliMPEiAiTI I

3. TJM - Te'" POM ZthJc(t),

10.4

10.3

10.2

10-1

1.0

10

'I, SDUARE WAVE PULSE DURATION (SECONDS)

Fig. 6 - Typical Transconductance Vs. Drain Current

..

0

3.6

~
~

Fig. 7 - Typical Source·Drain Diode Forward Voltage
10

r-J

loll PUJSE

TEsl

vIas > I~(on) ~ ROSlon} ma~.

3.2

/

/1/'

2.8

iii
~

2.4

R~

20

.... 1.6
~
~ 1.2

~

0.8

0.'

o

I

TJ =-550C

./~

IV

/ II

..,.

TJ= 125 0 C

c-'

TJ'" 150 0 C

I

TJ = 25°C

I

f

I' 1

I

0.8

16

I

TJ= 250 C

If.V
o

I

2.'
32 '.0
'.B 5.6
'0. DRAIN CURRENT lAMPE RES)

6.'

01
7.2

80

o

I

II
0.2

0.4

II
06

0.8

1.0

1.2

1.4

1.6

1.8

2.0

VSQ. SOURCE-TO-DRAIN VOL rAGE (VOLTS)

Fig. 8 - Breakdown Voltage Vs. Temperature

Fig. 9 - Normalized On·Resistance VI. Temperature
2.50

1.2 5

2.25

1.20

z

./
",

V

./

,...-

~

2.00

~

w

:;

Zw

V

1.50

o~

g!

",~

",Z
0-

0.75
0.50

0

~

.20

./

1.00

....

Z

~

-40

./

w~

u< 1.25

~

0.7~0

./

1.75

-

....
",0

20

40

60

80

100

120

V

V
./
VGS',0V
10'" 15A

0.25

0-60

140

-40

-20

20

40

r'

I

60

BO

100

120

140

TJ • JUNCTION TEMPERATURE (DC)

TJ• JUNCTION TEMPERATURE (DC)

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173· TEl. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

...... f.oo"""

V

l/

4-241

PRINTED IN USA

UFNFllO UFNFlll

Fig. 11 - Typical Gate Charge Vs. Gate·to-Source Voltage

Fig., 10 - Typical Capacitance Vs. Drain·to-Source Voltage
500

I
I

400

ZO
JGs.ol
f·111HI

Cill • C. + c",.
Cra 'C",

~
~

l!

5;f
:su

c... SHORTED

t

C_.Cd·+~..

300

-Ccts+ C...

zaG

100

1\

\ "-

..........

VpS;:5~V ...........

w

'"~

VOS' II1I'I. UFNFll0. 112

r-

/~

0'

>

w

10

u

~

I

6

'~" ,

1/

w

:g

>

C~

/

10
20
40
30
Vos. ORAIN·TO.soURCE VOLTAGE IVOLTSI

~V

>"

ILL

~

0

COlI

\

IS

~

cL
~

v~S' z!v "-

~

-

I

t\

UFNF1l2 UFNF1l3

I.

"0' BA
FOR TESTCIRCUIT
Si E FIGiRE

"i

50

f--10

ag. TOTAL GATE CHARGE (nC)

Fig. 12 - Typical On·Resistance Vs. Drain Current

Fig. 13 - Maximum Drain Current VI. Case Temperature

2,0

:.g~Wu~~~:E~N~~J:LC~JR.Ris~1,P~~~!~~G
EFFECT OF

2'1.'

PUL~E IS MINIMAL.!

-

~

......

Ii:
!!: 3

vis'10V

"...
w

~
~

u

2

z

V

~

~

UFNF112.113

~

VGS'ZOV -

I
10

I--

-......; ~

E

~

-

........ ~~0.111

~

0

r---..t-..
I"- r--... .................

z

I

,

r\

15

o2,

20

~

75

T

tD.DRAIN CURRENT (AMPERES)

100

c. CAse TEMPERATURE (OC)

125

ISO

Fig. 14 - Power Vs. Temperature Derating Curve
ZO

" "r-...
""
!'\..

"-

20

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861·6540
TWX (710) 326-6509 • TELEX 95·1064

""-'"

40
BO
60
1I1O
TC. CASE TEMPERATURE lOCI

4·242

120

"

140

PRINTED IN U.S.A

UFNF1l0 UFNFlll

Fig. 15 - Clamped Inductive Test Circuit

UFNF1l2

UFNF1l3

..

Fig. 16 - Clamped Inductive Waveforms

VAAV Ip TO OBTAIN
REQUIRED PEAK IL

TO

VGS"~'pL

OUT

Fig. 17 - Switching Time Test Circuit

PULSE
GENERATOR

r-----.,
:
SOn
I
I ____ ...JI
L

SOn

Fig. 18 - Gate Charge Test Circuit
+Vos
(ISOLATED
SUPPLY)

12V
BATTERY

-

oI=n·5IJlA

IG
CURRENT
SHUNT

UNITROOE CORPORATION. 5 FORBES ROAO
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

4-243

":"

10
CURRENT
SHUNT

PRINTED IN U.S A.

POWER MOSFET TRANSISTORS

UFNF120
UFNF121
UFNF122
UFNF123

100 Volt, 0.30 Ohm
N-Channel

FEATURES

DESCRIPTION

•
•
•
•
•

The Unitrode power MOSFET design utilizes the most advanced technology available.
This efficient design achieves a very low Ros'on' and a high transconductance.

Fast Switching
Low Drive Current
Ease of Paralleling
No Second Breakdown
Excellent Temperature Stability

The Unitrode power MOSFET features all of the advantages of MOS technology such as
voltage control, freedom from second breakdown, very fast switching speeds, and
thermal stability.
These power MOSFETS are ideally suited for many high-speed, high-power switching
applications such as switching power supplies, motor controls, and wide-band and
audio amplifiers.

PRODUCT SUMMARY
Part Number

Vos

ROS(on)

10

UFNF120

100V

0.30n

6.0A

UFNF121

60V

0.30n

6.0A

UFNF122

100V

0.40n

5.0A

UFNF123

60V

0.40n

5.0A

"
*

MECHANICAL SPECIFICATIONS

UFNF120 UFNF121 UFNF122 UFNF123

TO·205AD (T0·39)

"6(00'41

jj""ff([lftf)

.::t2:·~088100351

DRAIN
GATE

SOURCE

508 {O 201

914(0361
_OIA_

r825D\~3125)

046(00181

"'lOOt..

.~t

451101801

J.

430101691

I

18113(0711

1422(0561

Rr

" "(D'"

O""~11S

---.l

~
3 PLACES

All Dimensions

4/83

In

Millimeters and (Inches)

4·244

~UNITRDDE

UFNFl20 UFNFl21

UFNFl22

UFNFl23

ABSOLUTE MAXIMUM RATINGS
Parameter

UFNF120

UFNF121

UFNF122

UFNFl23

Units

100

60

100

60

V

100

60

100

60

V

6.0

6.0

5.0

5.0

A

24

24

20

20

 10(on) x ROS(en) mix.

10

20

50

100

200

500

Vas. ORAtN-TO-SOURCE VOLTAGE (VOLTS)

4-246

PRINTED IN US.'"

UFNFl20

UFNFl21 UFNFl22 UFNFl23

Fig. 5 - Maximum Effective Transient Thermal Impedance, Junction·to.case Vs. Pulse Duration

....z

I

~

!-

1.0

>::>
;:~

05 D·0.5

~t:
~z

~~ .

~~ 0.2

~~

..

~~ 0.1
~

~~ O.OS

clffi

:ErlJL

-~.1

~2-J

=0.05

",'"

=N~

NOTES,

0.2

1. DUTY FACTOR. 0"

-0.02

2"

•

1

0.01
0.02

0.01
10-5

..I--

3. TJM· TC' PDM Z,hJCltl .

10-3

10'"

:~

2. PER UNIT BASE' R'hJC' 6.25 DEG. C/W.

SINGLE PULSE ITRANSIENT
1HERIMA,L "MrED,~~CEI
5

10-2

2

5

10-'

10

1.0

'1. SQUARE WAVE PULSE DURATION ISECONDSI

Fig. 6 - Typical Transconductance Vs. Drain Current

TJ..,L

_f-" -J'25'~-

. /V

l-

lL . . . 1-'

IJ

r/ ; ' -~

Fig. 7 - Typical Source·Drain Diode Forward Voltage

.fi'

=

-=

~

TJ ~ 125,1

10II

I

JI
I

Vos> 'O(onl II ROSlon)

,
I

miX.

aojl'UL~ITEST

I

1.0

20

16

'2

o

2.50

1.20

,/

~6 1.05

,.. "........

~~

:~

~~ 1.00

,.. Vi"'"

1.15

o~

........ "........

g~

;g~

1.00

......... V

::i;

~
~

I

0.80
·20

........ V"

z~

....

~:i 1.25

........ "........

-40

~

./

t;a 1.50

0.85

0.75
·60

~~

Ii

...... "........

::>~

0.90

2.00

~

In

1.10

2.25

..

'"z

1.15

~

°f

Fig. 9 - Normalized On·Resistance VI. Temperature

1.25

~~ 0.95

'TJ- 25

VSD. SOURCE·TO·ORAIN VOLTAGE IVOLTS)

Fig. 8 - Breakdown Voltage Vs. Temperature

....
..

I

_TJ-150'C

'0. DRAIN CURRENT (AMPERES)

~

"

20
40
60
80 lDO
TJ.JUNCTION TEMPERATURE I'C)

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON. MA 02173 ' TEL. (617) 861·6540
TWX (710) 326·6509 ' TELEX 95·1064

120

140

4·247

0.75

I....... " .
0.50

VGS -10V
'0' 3A

i

0.25
0--60

-441

.20

I

20
40
60
80 100
TJ.JUNCTION TEMPERATURE I'C)

120

140

PRINTED IN U.S.A.

UFNF120 UFNF121

Fig. 10 - Typical Capacitance Vs. Drain·to·Source Voltage
1000

I Jos·J
I ' ., .L

Fig. 11 - Typical Gate Charge V,. Gate·to·Source Voltage
20

t·IMH•

IGO

cia • c. + cod. Cds SHORTEO

~

IGO

COlI a CdI+

\

Vos 20V

lil

i

i'..
400

+
~
od

~

\

I

r-.

/

CI

fi

'"

6.0

.........

....

4.8

r---- r-- VGl.IOV

I

12

i'..

.........
......... .....

~

~

0.2

J

-

~~

J

-

16

20

....... UFNFI20. 121

.........

..... ~

, -0

UFNF1~ ~

~

0.4

'1

,

~

.,coco~

RE 8

Fig. 13 - Maximum Drain Currant VI. eale Temperature

~
0.6

SIEE Flr

Qg' TOTAL GATE CHARGE (nt)

0.8

~

~

FOR TEST CIRCUIT

V

50

~

10= IDA

J

J..

Fig. 12 - Typical On·Resistance Vs. Drain Current

'"

UFllFl~. 122 '--., ~
~

10
20
30
40
Vos. ORAIN·TO-SOURCE VOLTAOE (VOLTS)

2

Vos = P/JoI.

r-

I--

I

I\.

\

"

Vos '" sov

Cia

\

y'

200

- ..

5

I--

-Cds+Cgd

~

r--

c'" • cod

i

UFNF122 UFNF123

-

"I~

I--

,,~

Vas' 20V

I

12

10

20

\

I---

I-RDS(onl MEASUREO WITH CURRENT PULSE OF 2.0," DURATION. INITIAL TJ" 25°C. (HEATING
EFFECT OF 2.0 liS PULSE IS MINIMAL.)
.

o

25

40

30

75

50

100

125

150

Te. CASE TEMPERATURE (OC)

'0. ORAIN CURRENT (AMPERES)

Fig. 14 - Power Vs. Temperature Derating Curve
20

@

15

"-",.

"\

!z

'\

co

E 10

.!li
co

I

'\

~

20

40

50

50

~

\.

rn

r\
~

TC. CASE TEMPERATURE (OC)

UNITROOE CORPORATION. 5 FORBES ROAO
LEXINGTON, MA 02173 • TEL (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

4·248

PRINTED IN U.S A.

UFNF120

UFNF121

UFNF122

UFNF123

•

Fig. 16 - Clamped Inductive Waveforms

Fig. 15 - Clamped Inductive Test Circuit

VARY I, TO DITAIN
REQUIRED PEAK Il

TO
VGS=trt'L

OUT

Fig. 17 - Switching Time Test Circuit

PULSE

r-----'
I
GENERATOR

I
IiOIl
I
IL ____ J I

-'''---~TO SCOPE

IiOIl

Fig. 18 - Gate Charge Test Circuit
+V DS
(ISOLATED
SUPPL VI

-

O~I.~mA

--'\;'V'Ir.....-'VII\,--o
IG
CURRENT
SHUNT

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326·6509 • TELEX 95-1064

4-249

-VOS

10

CURRENT
SHUNT

PRINTED IN USA.

POWER MOSFET TRANSISTORS

UFNF130
UFNF131
UFNF132
UFNF133

100 Volt, 0.18 Ohm

N-Channel

FEATURES

DESCRIPTION

•
•
•
•
•

The Unitrode power MOSFET design utilizes the most advanced technology available.
This efficient design achieves a very low Roslon, and a high transconductance.

Fast Switching
Low Drive Current
Ease of Paralleling
No Second Breakdown
Excellent Temperature Stability

The Unitrode power MOSFET features all of the advantages of MOS technology such as
voltage control, freedom from second breakdown, very fast switching speeds, and
thermal stability.
These power MOSFETS are ideally suited for many high-speed, high-power switching
applications such as switching power supplies, motor controls, and wide-band and
audio amplifiers.

PRODUCT SUMMARY

Part Number

Vos

ROS(on)

10

UFNF130

100V

0.180

8.0A

UFNF131

60V

0.180

8.0A

UFNF132

lOOV

0.250

7.0A

UFNFl33

60V

0.250

7.0A

MECHANICAL SPECIFICATIONS
UFNF130 UFNF131 UFNF132 UFNF133

TO·205AD (TO·39)

*

'~'!:::l;:

j2:; ~088(00351

DRAIN

SOURCE

GATE

508(0201

SI41036)
,-"CIA'"
825(0325)

!t-DlA1~
0.45(01118)

' ' DOl''

In

"r-'

14 22 (~~~I
11

O.53(00211~

4.30(0189)

!I
180)(0111

Rr

--.1

ffilOD1Jl
JPLACES

All Dimensions in Millimeters and (Inches)

4/83

4-250

~UNITRODE

UFNFl30

UFNFl31

UFNFl32

UFNFl33

ABSOLUTE MAXIMUM RATINGS
UFNFl30

UFNF131

UFNFl32

UFNF133

Units

100

60

100

60

V

100

60

100

60

V

Continuous Drain Current

8.0

8.0

7.0

7.0

A

10M

Pulsed Drain Current @

32

32

28

28

VGS
PO@TC=25°C

Gate - Source Voltage

Parameter

 iD(on) ~ ROS(on) rr!.x.

~

VGS'r= ~

r

,

~ !O.uS,JLSETE~T

~"'PU!SETJT _ -

IOVy.:V

16

Fig. 2 - Typical Transfer Characteristics

r---.... '(!J
~V

50

'0

10

Vas. DRAIN·TO-SOUflCE VOLTAGE (VOLTS)

VGS. GATE·TO-SOUReE VOLTAGE (VOLTSI

Fig. 3 - Typical Saturation Characteristics

Fig. 4 - Maximum Safe Operating Area
100

10
10 ~I PU LSE TEST

.M /'

10J.

9~" "J ~/

8

8V""-.

~V

A~

6

~"/ /
~ '/

~ :II
A~ / '

2

./

~

..
~

10~'

UFNFI32~\

10 I::::JFM:!o,\

S

100",

I'

UFNFl32,3

~

'i'

w

~
~

........

_5V

~

:>
u

f-'

z

~

E

'1

0.8
1.2
1.6
VDS. DRAIN·TO-SOURCE VOLTAGE (VOLTS)

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

20

z

,GS'

0.'

f-.=130,1

./

/"

IP
I#'

OPERATION IN THIS
AREA IS LIMITED
BY ROSlon)

50

10i',
1.0
0.5

-TC·25'C
=TJ· 150'e MAX.
_ AthJC • 5.0 KIW

0.2

_,SIN~lE P~\~~ I

111111

0.1
1.0

2.0

4-252

100m~=

DC

UFNF131.3

UFNFl30,2

10
20
50
100 200
VOS. DRAIN·TO.$OURCE VOLTAGE (VOL TSI

500

PRINTED IN U.S A

UFNFl30 UFNFl31

UFNF132 UFNFl33

Fig. 5 - Maximum Effective Transient Thermal Impedance, Junction-to-Case Vs. Pulse Duration

I

•

o· 0.5
NOTES.

3nJL

r-b2
r-O.l

P2~

FO.05
0.02

1. DUTY FACTOR. 0 '"

0.01

..J....+-'

:~

2. PER UNIT BASE" RthJC:: 5 0 OEG. eIW.

""-;,NGLE PULSE (TRANSIENT
THERMAL IMPEDANCE)

3 TJM-TC=POMZthJC(tl .

10-4

10-2

10-1

10

1.0

tl. SQUARE WAVE PULSE DURATION (SECONDS)

Fig. 6 - Typical Transconductance Vs. Drain Current

Fig. 7 - Typical Source-Drain Diode Forward Voltage

10

.h

~

~

i....

TJ=-55 0C

/I
(,
V

/'

A

z

~.250l

~~

~ ........

2

//

~

B10
z

~

~

TJs 1250C

~TJ.'50ocl

/;""

TJ =25 0 C

I
Vas> 10(on) II ROS(on) max.

I
I I

"(''"'j''''1

I I

10

25

10
15
20
'0. DRAIN CURRENT (AMPERES)

o

05

1.5

1.0

25

2.0

3.0

VSQ. SOURCE·TO·DRAIN VOLTAGE (VOL IS)

Fig. 8 - Breakdown Voltage Vs. Temperature

Fig. 9 - Normalized On-Resistanea VI. Temperature

1.25

2.50
225

z

'"
in
~

;""

./

./

0a
ZW

;""

w~

~'"

;""

~~
",z

V

-40

0-

....
z

~

-20

20

40

60

80

100

120

./

1.25

..".

1.00

0.75

,...

.,.".

,/

V

,/

,/
VOS,'0V-

~

I

I

-

10 ·4A

0.50
0.25

o

140

-60

-40

-20

20

40

60

80

100

120

140

TJ, JUNCTION TEMPERATURE (DC)

TJ,JUNCTION TEMPERATURE (DC)

UNITROOE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326·6509 • TELEX 95-1064

150

o!::!

~
0.75
-60

1.75

:;

..,.;""
..".

2.00

4-253

PRINTED IN USA

UFNF130 UFNF131

Fig. 10 - Typical Capacitance Vs. Drain·to·Source Voltage

UFNF132

UFNF133

Fig. 11 - Typical Gate Charge Vs. Gate-to-Source Voltage
20

2000

1 ~Gs' J

:

I

1'1 MH,

I

;

I

c;" • Cg, + C.... Cd. SHORTED _

1600

C'" • C....
Coa • Cdl+

\

u

10

"-

r--

~

I

~

ou

.L

c~.

"

UFNF1~, 132~ ~ ~
Jd~

U

"
"'"
~

c!u

\

1\

>

~
~

~
..0

vos - f1J\/,

~

-

~~dl+C",

If"--

~

-

CC~~gd
us ,d

Vos" 20V

15 t---t--- VOS' 50V

10 '18A
FOR TEST CIRCUIT

TFlGr'i

V

'0

10
20
'0
Vos. ORAIN TO SOURCE VOlTAGE {VOL lSI

50

16

24

t---

32

40

Qg' TOTAL GATE CHARGE (nC)

Fig. 13 - Maximum Drain Current V,. Case Temperature

Fig. 12 - Typical On·Resistance VI. Drain Current

10

0.6

I
w
u

R8SI~"6 MEASJREo WITJ CURREN~o PULSE olF

2. ps

0.5

z

~

........

--l"-l"-

1
0 .•

v~s '" lOV

2

"

URATION. INITIAL TJ = 2S C. (HEATING
IS MINIMAl.l
-

I-- EFFECT OF ,.0 '" PULSE

......
~

J"'.. ~'131
f".

W

~

0.3

~

0.2

Z

~

UFjF~ ~

)
V

I

10

vr

'0

~~

"'~~

,
-'OV

0

30

'0

50

25

60

50

'0' DRAIN CURRENT (AMPERES)

75
100
Te. CASE TEMPERATURE (DC)

125

150

Fig. 14 - Power Vs. Temperature Derating Cur.e
0

5

5

"- .......

0

'"

5

0

" ""-

5

20

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

"-

40
60
80
100
120
Te. CASE TEMPERATURE (DC)

4-254

"r-...
140

PRINT'EO IN U.S.A

UFNFl30 UFNFl31

Fig. 15 - Clamped Inductiv. Test Circuit

UFNFl32 UFNFl33

•

Fig. 16 - Clamped Inductiv. Waveforms

VARY I, TO OBTAIN

iDA·'~uT

VGl·trt,~

--<.....-.-.__-'

' L ...

Fig. 17 - Switching Tim. Test Circuit
ADJUST RL TO OBTAIN

SPECIFIED 10
V;

PULSE

1""-----,
I
GENERATOR

I
I

lOll

-'''---~TO

I
I

SCOPE

L_ _ __ .J

Fig. 18 - Gate Charge Test Circuit
+Vos
(ISOLATED
SUPPLY'

LTI·5

o

-

mA

10
CURRENT
SHUNT

UN'TROOE CORPORATION. 5 FORBES ROAO
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

4·255

10
":"'

CURRENT
SHUNT

PRINTED IN U.S A.

POWER MOSFET TRANSISTORS

UFNF2'10
UFNF211
UFNF212
UFNF213

200 Volt, 1.5 Ohm

N-Channel

FEATURES

DESCRIPTION

•
•
•
•
•

The Unitrode power MOSFET design utilizes the most advanced technology available.
This efficient design achieves a very low Ros.on. and a high transconductance.

Fast Switching
Low Drive Current
Ease of Paralleling
No Second Breakdown
Excellent Temperature Stability

The Unitrode power MOSFET features all of the advantages of MOS technology such as
voltage control, freedom from second breakdown, very fast switching speeds, and
thermal stability.
These power MOSFETS are ideally suited for many high·speed, high· power switching
applications such as switching power supplies, motor controls, and wide· band and
audio amplifiers.

PRODUCT SUMMARY

Part Number

Vos

ROS(on)

10

UFNF210

200V

1.50

2.2A

UFNF211

150V

1.50

2.2A

UFNF212

200V

2.40

1.8A

UFNF213

150V

i40

1.8A

MECHANICAL SPECIFICATIONS
UFNF210 UFNF211

UFNF212 UFNF213

TO·205AD (TO·39)

5081020)

l'

~ !~'~~l

DlA

3 PLACES

All Dimensions in Millimeters and IInches}

OJ]
4/83

4-256

_UNITRDDE

UFNF210 UFNF211

UFNF212 UFNF213

ABSOLUTE MAXIMUM RATINGS
UFNF210

UFNF211

UFNF212

UFNF213

Units

VOS

Drain - Source Vc~tage [)

200

150

200

150

V

VOGR
10@TC=25°C

Drain - Gate Voltage IRGS = 1 Mil) (j)

200

150

200

'150

V

Cont:nuous Drain Current

2.2

2.2

1.B

I.B

A

10M

Pulsed Drain Current @

9.0

9.0

7.5

7.5

VGS
PO@TC=25°C

Gate - Source Voltage

Parameter

Max. Power Dissipation
Linear Derating Factor

I

9.0

Lead Temperature

ELECTRICAL CHARACTERISTICS @ TC

W
W/K

Drain - Source Breakdown Voltage

A

7.5

-55to 150

°C

300 (0.063 in. (1.6mml from case for 10s)

°C

Test Conditions

Type

Min.

Typ.

Max.

Units

UFNF210
UFNF212

200

-

-

V

VGS

UFNF211
UFNF213

150

-

-

V

10

4.0

V

VOS = VGS. 10

100

nA

ALL

2.0

ALL

IGSS

Gate - Source Leakage Reverse

ALL

-

-

-100

nA

VGS

lOSS

Zero Gate Voltage Drain Current

-

-

250

pA

VOS
VOS

1010n)

On-State Drain Current

ALL

@

ROS(on) Static Drain - Source On-State
Resistance ®

®

-

-

1000

pA

UFNF210
UFNF211

2.2

-

-

A

UFNF212
UFNF213

1.B

-

-

A

UFNF210
UFNF211

-

1.0

1.5

(J

UFNF212
UFNF213

-

2.4

(J

= OV

= 250pA

Gate - Source Leakage Forward

VGS(thl Gate Threshold Voltage
IGSS

I

=25·C (Unless otherwise specified)

Parameter

BVOSS

15 ISee Fig. 14)
0.12 ISee Fig. 14)

Operating Junction and
Storage Temperature Range

TJ
T sts

V

ISee Fig. 15 and 16) L = 1DOpH
9.0
I
7.5

Inductive Current, Clamped

ILM

A

±20

= 250pA

VGS - 20V

= -20V
= Max. Rating. V GS = OV
= Max. Rating x O.B, VGS =

OV, TC

VOS ) 10(onl x ROSlon) max.' VGS

VGS = 10V, 10
1.5

~

= 10V

1.25A

Qfs

Forward Transconductance

ALL

O.B

1.3

-

SCU)

Cjss

Input Capacitance

ALL

135

150

pF

Coss

Output Capacitance

ALL

-

60

BO

pF

Crss

Reverse Transfer Capacitance

ALL

-

16

25

pF

-

B.O

15

ns

VOO

15

25

ns

See Fig. 17
(MOSFET switching times are essentially
Independent of operating temperature.)

tdlon)

Turn-On Delay Time

ALL

tr

Rise Time

ALL

td off

Turn-Off Delay Time

ALL

15

ns

Fall Time

ALL

-

10

tf

B.O

15

ns

Og

Total Gate Charge
(Gate-Source Plus Gate-Drain)

ALL

-

5.0

7.5

nC

Ogs

Gate-Source Charge

ALL

-

2.0

-

nC

°gd

Gate-Drain ("Miller") Charge

ALL

-

3.0

nC

LO

Internal Drain Inductance

ALL

-

5.0

-

nH

VOS ) 1010ni x ROS(on) max.' 10 = 1.25A
VGS = OV, VOS

= 25V, f = 1.0 MHz

See Fig. 10

= 0.5 BVOSS, 10 = 1.25A, Zo

VGS = 10V, 10 =4.5A. VOS = O.BV Max. Rating.

Measured from the
drain lead, 5mm
to center of die.

Internal Source Inductance

ALL

-

15

-

nH

= 5011

See Fig. 18 for test circuit. (Gate charge is essentially
independent of operating temperature.)

(0.2 in.) from header

LS

= 125°C

Measured from the
source lead, 5mm

(0.2 in.) from header
to source bonding

pad.

Modified MOSFET
symbol showing the
internal device
inductances .

.@)

THERMAL RESISTANCE
RthJC

Junction-to-Case

RthJA

Junction-to-Ambient

UNITROOE CORPORATION. 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95-1064

Free Air Operation

4-257

PRINTED IN U.S.A.

•

UFNF210 UFNF211

UFNF212 UFNF213

SOURCE.DRAI.4"i)IODE RATINGS AND CHARACtERISTICS
Continuous Source Current
(Body Diode)

IS

Pulse Source Current
(Body Diode) ®

ISM

VSD

Diode Forward Voltage @

UFNF210
UFNF211

-

-

UFNF212
UFNF213

-

UFNF21.0
UFNF211
UFNF212
UFNF213
UFNF210
UFNF211
UFNF212
UFNF213

-

2.2

A

-

1.8

A

-

-

9.0

A

-

-

7.5

A

-

-

2.0

V

Modified MOSFET symbol
showing the integral
reverse P-N junction' rectifier.

.~
TC = 25°C, IS = 2.2A, VGS = OV

-

1.8

V

TC = 25°C, IS = 1.8A, VGS = OV

t"

Reverse Recovery Time

ALL

,.

290

ns

TJ = 150°C, IF = 2.2A,dIFldt =

100A/~s

QRR

Reverse Recovered Charge

ALL

-

2.0

-

~C

TJ = 150°C, IF = 2.2A, dlFldt =

100A/~s

Forward Turn-on Time

ALL

Intrinsic turn-on time is negligible. Turn-dn speed is substantially controlled by lS + LOo

ton
(j)TJ

= 25°C to 150°C.

@PulseTest: Pulse width .. 300~s, Outy Cycle .. 2%.

@RepetitiveRating: Pulse width limited
by max. junction temperature.
See Transient Thermal Impedance Curve (Fig. 5).

Fig. 2 - Typical Transfer Characteristics

Fig. 1 - Typical Output Characteristics

5.0
4.5

~~

9V
8V

-

-Lp./swl
J

;;;

i
z

2.0

I
TJ"'25 0C

TJ "'-55 0C

~

",.,

:! 3.0
~

25

r-- 80 r PU U;E TES~

I

1.0

'5t- .-..J_,-

0.5

o
o

10

20

Vas. ORAIN·TO:SOURCE VOLTAGE (VOLTS)

Fig.

3 - Typical Saturation Characte.ristics

Fig. 4 - Maximum Safe Operating Area

- !#J.I pulsE TElT
.A

iii

'"

2.0

"
E
1.0

o~
o

~

~

1.0

2 U",!F212.213
~ 1.0
z

~
Q

6

5~_

-

TC'25'C

0.2 -

TJ '" 1500C MAX.

-

RthJC' B.33 K/W

0.05
1.0

5.0

10m
UFNF211. 213
UFNF210. 212'::~

10

20

50

100

lOOms

OC=t=
200

500

VOS. ORAIN·TO-SOURCE VOLTAGE (VOLTS)

Vas. DRAIN·TO-SOURCE VOLTAGE (VOL IS)

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95-1064

1m.

0.1 == SINGLE PULSE==

4~_
'.0

I

l"-

0.5

E

3.0

lOOps

~

.......

2.0

lOps

"

1-

~~

UFNF212, 213

~ 5
,;
UFNF210, 211

~

:! 3.0

~:~I~~~~~NBI~ ~~!So~IREA_

10 UFNF210.211

~~
~GS"Y
~i~~
~V

~

II I II

20

10V
9V
8V

~,

~

10

50

4.0

z

II
'1/

VGS. GATE·lO·SOURCE VOL lAGE (VOLTS)

5.0

i

~

o
o

50

40

30

/)

20

E

1.0

/
1/ V

~rr

VOS> jOlon) x ROS(on) max.

,.,
~

I--

~

J~

I

~
~
~

6r-

~E 1.5

I

~

GS " V - ~

~ 3.5

3.0

TJ' ,125'C
4.0

'.0

l.5

5.0

4-258

PRINTED IN U.S.A.

UFNF210

UFNF211

UFNF212

UFNF213

Fig. 5 - Maximum Effective Transient Thermal Impedance, Junction-to-Case Vs. Pulse Duration

I
II

JlU

•

0=05

NOTES

~

f - 02
f - 0'

~2~

(==0.05
f-'0.02

1 DUTY FACTOR, 0 =

J2.Ir"""

SINGLE PULSE (TRANSIENT

2 PER UNIT BASE" RthJC" 8 33 DEG C/W

ili"iERTiMPEnTII

i--"'1'

!~

3 TJM-TC=POMlthJC(t)

10-2

10

'0

'I,SQUARE WAVE PULSE DURATION (SECONDS)

Fig. 6 - Tvpical Transconductance Vs. Drain Current
4.0
3.6

~
~

;a

5

III

fl

I

2

~

2.0

:3

1.6

~

1.2

TJ" -55 DC

..... ~ +-

1/ .,... ~ r0-

~

~

PUlSE TE!l

2.8
2.

:i!

10
jJl

Vas> 10(on) x ROS(on) ma~.

3.2

w
u

z

r- ~

Fig. 7 - TVpical Source·Drain Diode Forward Voltage

0.8
04

J. ~ ~

0

TJ "

25,d

T}.

l25,b

r--- I'

if/

o
o

TJ" 150 a C

5r--

~

TJ }"'C

1

2

,
1.0

2.0

30

4.0

5.0

20

'0

'0. DRAIN CURRENT (AMPERES)

3.0

40

Vso. SOURCE·TO DRAIN VOLTAGE (VOLTS)

Fig. 8 - Breakdown Voltage V•• Temperature

Fig. 9 - Normalized Dn·Resistance VI. Temperature

1.25

2.2

IL.

,.. ~

5

~
./

V

1/
l/

V

..... V

V

V

./

5."

,/
.....

5

I......
0.75
-40

40

80

'20

vas- IOV
''11.'1

0.2

,6(1

40
80
120
TJ, JUNCTION TEMpeRATURE (OCI

TJ, JUNCTION TEMPERATURE (OC)

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173· TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

~

4·259

1611

PRINTED IN USA

UFNF210 UFNF211

Fig. 11 - Typical Gate Charge Vs. Gate·to·Source Voltage

Fig. 10 - Typical Capacitance Vs. Drain·to·Source Voltage
500

20

1

JGs·ol

I 'i 1 MH,'
'00

C. . .

.lJ

Cg. + Cgd. Cds SHORTED-

era '" Cgd

~
u

300

l

'"::

u

::
5

,

Vor 'oor . . . . 2: ~

-

VOS = 1&IV. UFNF210. 21~

I

1\

100

1\ f'..

\

v!S '40L.,

-

COII"'Cdl+a
p+ ..
-'Cds+Cgd

200

u

UFNF212 UFNF213

.I. ~

1

CI~

-

/

I

....

7

r- ~

-

C",

10
20
30
40
Vas. DRAIN-TO-SOURCE VOLTAGE IVOLTS)

10 :4A

I

FOR TEST CIRCUIT
EE FI~URE

i

/
50

't

I---

4
S
Og. TOTAL GATE CHARGE (nC)

Fig. 12 - Typical On·Resistance Vs. Drain Current

'0

Fig. 13 - Maximum Drain Current Vs, Case Temperature
2. 5

i

RoS(on) MEASURED WITH CURRENT PULSE OF
20

j.I$

DURATION INITIAL TJ = 250&. (HEATING

EFFECT OF 2 0", PULSE IS M'i'MAl

......... ......

I--- 2.0

I""'--- .......
I""'--- r........

J

1
VGS" lOV

5

...........

-

---- V

1

~NF210.211

' - - UFNF212. 213'

....

""-

'"

~ k;:-;ov
O. 5

10

50

75

~

'"

100

I\.

~\

125

'\\,
150

Te. CASE TEMPERATURE (DC)

10. DRAIN CURRENT (AMPERES)

Fig. 14 - Power Vs. Temperature Derating Curve
20

""

'" "-

I'..

"- "-

20

40

so

80

100

120

,

"-

140

Te. CASE TEMPEfiATURE (DC)

UNITROOE CORPORATION. 5 FORBES ROAO
LEXINGTON. MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

4·260

PRINTED IN U.S A

UFNF210 UFNF211

Fig. 15 - Clamped Inductive Test Circuit

UFNF212

UFNF213

II

Fig. 16 - Clamped Inductive Waveforms

VARY Ip TO OBTAIN
REQUIREOPEAK Il

TO
pL

VGS=!.,J-'

DUT

Fig. 17 - Switching Time Test Circuit

PULSE
GENERATOR
r------,

I
I
I

L _

!iOn

I
I

50U

_ _ _ ...J

Fig. 18 - Gate Charge Test Circuit
+Vos
(ISOLATED
SUPPLY)

11V
BATTERY

-

O~5mA

UNITRODE CORPORATION' 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

4-261

IG

ID

CURRENT
SHUNT

CURRENT
SHUNT

PRINTED IN USA

POWER MOSFET TRANSISTORS

UFNF220
UFNF221
UFNF222
UFNF223

200 Volt, 0.8 Ohm

N-Channel

FEATURES

DESCRIPTION

•
•
•
•
•

The Unitrode power MOSFET design utilizes the most advanced technology available.
This efficient design achieves a very low ROS(on' and a high transconductance.

Fast Switching
Low Drive Current
Ease of Paralleling
No Second Breakdown
Excellent Temperature Stability

The Unitrode power MOSFET features all of the advantages of MOS technology such as
voltage control, freedom from second breakdown, very fast switching speeds, and
thermal stability.
These power MOSFETS are ideally suited for many high-speed, high-power switching
applications such as switching power supplies, motor controls, and wide-band and
audio amplifiers.

PRODUCT SUMMARY

Part Number

Vos

RDS(on)

ID

UFNF220

200V

0.8n

3.5A

UFNF221

150V

0.8n

3.5A

UFNF222

200V

1.2n

3.0A

UFNF223

150V

1.2n

3.0A

MECHANICAL SPECIFICATIONS
UFNF220 UFNF221 UFNF222 UFNF223

TO-20SAD (TO·39)

~"'~:::3"

ORA.IN

*

SOURCE

GATE

SlIBIO.20)

914(0.36)
_OIA_

045(00181

r8.25D\~32151 !M1O.1.W

~

t,~J,71'
lH~(~;1

REF

o",,~,;S ~

o:momT.
3 PLACES

All Dimensions in Millimeters and (Inches)

4/83

4-262

~UNITRODE

UFNF220

UFNF221

UFNF222 UFNF223

ABSOLUTE MAXIMUM RATINGS
Parameter
Dram - Source Voltage

VOGR

Drain - Gate Voltage IRGS ~ 1 Mill

10@TC~25°C

Continuous Drain Current

10M

Pulsed Dram Current

VGS

Gate - Source Voltage

PD@TC~25°C

UFNF220

UFNF221

UFNF222

UFNF223

Units

200

150

200

150

V

200

150

200

150

V

3.5

3.5

3.0

3.0

A

14

14

12

12

 1010n) x AOSfon)

max.

W
VI

SV

8J

I

-

VGS"'5V

i
,
i

't

"

20
40
80
VOS. DRAIN TO SOURCE VOLTAGE (Val TS)

I
TJ"'125 0C

..4

~
f-TJJ250C
I i'--, '(Jf
TJ"I- 55OC

~V

•

'"

10

VGS. GATE TO SOURCE VOLTAGE (VOLTSI

Fig. 4 - Maximum Safe Operating Area

Fig. 3 - Typical Saturation Characteristics
0
5

4

li~t.
8V

all ... ),ULSE

V

~~~,223'

~

I
p-

3

5

2

,.,.-VGs=5V

o.

'V

If'

100~s

I

UFNF222, 223

,

'I'

I'

I III

Te =250e
C- TJ = 150 0e MAX.
2f- RthJe =6.25 KfW
C- SINGl~ PUlS TIl

"'"

lOOms

,

DCU
UFNF221,223

VDS. DRAIN TO SOURCE VOLTAGE (VOLTSI

UNITRODE CORPORATION' 5 FORBES ROAD
LEXINGTON, MA 02173 - TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

0.05

"

I

'O~'

~

5~

/

I.

r-

UFNF220,221

0

I

I

I

~EST Jjs{

OPERATION IN THIS AREA
IS LIMITED BY ROSlon)

ou~;J,J,1

1.0

'0

20

50

'DO

UFNf22I), 222
200

500

VDS. DRAIN·TO·SOURCE VOLTAGE (VOLTS)

4-264

PRINTED IN U.S A

UFNF220 UFNF221

UFNF222 UFNF223

Fig. 5 - Maximum Effective Transient Thermal Impedance, Junction-to-Case Vs. Pulse Duration

....z
fl!

;L

wz
>=>

1-1-

1.0

~~

~

0:0.5

>=~ 0

.&

~~ 0.2

ND

::;~

!~ 0.1

-6.•

~iO.05

-=-0.05

}~

-Q.02

Uw

'"

0.02

}

0.01

ELJL

:0.

~2~

1. DUTY FACTOR, 0 =

~SINGlE PULSE (TRANSIENT

0.01

10-3

3. TJM - TC :: 'OM ZthJC(t).

10-1
10-2
11, SDUARE WAVE PULSE DURATION (SECONDS)

/'

-'"

/

l
.iI
IV

;'

,...

t

J

i--

.S50

~
T,! ",oJ

.0

1.0

Fig. 7 - Typical Source-Drain Diode Forward Voltage

Fig. 6 - Typical Transconductance Vs. Drain Current

TJ

:~

2. PER UNIT BASE· RthJC = 6.25 DEG. elW.

THERMAL IMPEDANCE)
10-5

•

NOTES,

0.2

TJ= 25 0 &

I-"
~

~

,,-

TJ=15D OC_

I#'

~

/;'
f-TJ = 1500 C

'III
I
T

vas> IOlonl x ROSlan) max.

"i"'"TTEf~-

1.0

10
ID. DRAIN CURRENT (AMPERES)

o

TJ = 25 0 C

Vso. SOURCE TO-DRAIN VOLTAGE (VOLTS)

Fig. 9 - Normalized On-Resistance VI. Tamperatur.

Fig. 8 - Breakdown Voltllgll VI. Tampemura
1.25

2.2

/
5

,."., ~

..... '"

8

., ,.".,
5

V

iL"

/

.".
~

~

5

V

V

'"
vGS -.ov

'r

I.....
0.7 5
-40

40

80

.20

0.2

-40

'60

o

40

2A

I

80

.20

'811

TJ.JUNCTIONTEMPERATURE 10C)

TJ. JUNCTION TEMPERATURE (DC)

UNITROOE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326:6509 • TELEX 95-1064

/

/

7

4-265

PRINTED IN U.S A

UFNF220 UFNF221 UFNF222 UFNF223

Fig. 10 - Typical Capacitance Vs. Drain·to·Source Voltage
1000

Fig. 11 - Typical Gate Charge V,. Gate-to·Source Voltage
10

J J
1,-' M~'II
G••

I

era" Cgd

"

600

~

400

\

U

100

""'Cds+Cgd

"-

\

\

~
u

=
:>

"""
10

10

40

z

~

=

6
~

~
-"

~

~
~

-- -,../

05

f--

i

.-:- .......

.......
..........
.......

UFNF220. 221

..........

..........

UFNF222. 223
...........

z 2

VGS" 20V

..........

10

i'- ~

"- ~

o

20

15

50

25

75

20

"'"

IS

S
~

z
0

125

"
150

\.

"\

10

=

~
,p

"-~
20

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

100

Te. CASE TEMPERATURE (OC)

Fig. 14 - Power Vs. Temperature Derating Curve

~

........ i'..

1

AOS(on) MEASURED WITH CURRENT PULSE OF
2 Op.s DURATION INITIAL TJ" 250C (HEATING
EFFECT OF 2 0,1.1$ PULSE IS MINIMAL)

Bi
c

........ i"'--

~

E

'a. DRAIN CURRENT (AMPERES)

20

Fig. 13 - Maximum Drain Current Vs. Case Temperature

S 3

J

u

:>

16

"

10

0

I--

Og. TOTAL GATE CHARGE (nC)

-l.

i5

sr

50

VGS:' IOV

t;
'"

IO=1A
FOR TEST CIRCUIT
E FIGtURE Ii

/

~VOl TS)

Fig. 12 - Typical On·Resistance Vs. Drain Current

u

~~

/

30

~~

/

c,.

Vas, DRAIN 10 SOURCE VOLTAGE

I

10

~

t7::

~

ltJ i?'

~

-...

i'-,

r--- Vo. = 16OV. UFNP220, 222

~

!"--

15

IVO"1'00V

~

c,~

~

VO'i 40V
IS

w

I

,

~

-

CgsCgd
COU"'Cdl+Cgs+Cgd

1\

z

'"

;

CIIl .. Cgs + Cgd. Cds SHO RTED-

800

,.

40
80
100
TC, CASt. TEMPERATURE (OC)

4·266

~
120

140

PRINTED IN U S.A

UFNF220 UFNF221

Fig. 15 - Clamped Inductive Test Circuit

UFNF222 UFNF223

Fig. 16 - Clamped Inductive Waveforms

II

VARY 'p TO OBTAIN
FlEQUIAEOPEAK'L

VDS·R

Fig. 17 - Switching Time Test Circuit

PULSE
GENERATOR
r------,

:
I

50!!

I
I

L ____ .J

50!!

Fig. 18 - Gate Charge Test Circuit
+Vos
(ISOLATED
SUPPLY)

or=IT

-

15mA

-.J\,IV'v--+-IV'.tV-o -Vos
IG
10
r.URRENT
CURRENT
SHUNT

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

4-267

SHUNT

PRINTED IN U.S.A

POWER MOSFET TRANSISTORS

UFNF230
UFNF231
UFNF232
UFNF233

200 Volt, 0.4 Ohm
N-Channel

FEATURES

DESCRIPTION

•
•
•
•
•

The Unitrode power MOSFET design utilizes the most advanced technology available.
This efficient design achieves a very low RDSfOn) and a high transconductance.

Fast Switching
Low Drive Current
Ease of Paralleling
No Second Brea kdown
Excellent Temperature Stability

The Unitrode power MOSFET features all of the advantages of MOS technology such as
voltage control, freedom from second breakdown, very fast switching speeds, and
thermal stability.
These power MOSFETS are ideally ·suited for many high-speed, high-power switching
applications such as switching power supplies, motor controls, and wide-band and
audio amplifiers.

PRODUCT SUMMARY
Part Number

VDS

RDS(on)

ID

UFNF230

200V

0.40

5.5A

UFNF231

150V

0.40

5.5A

UFNF232

200V

0.60

4.5A

UFNF233

150V

0.60·

4.5A

MECHANICAL SPECIFICATIONS
UFNF230 UFNF231 UFNF232 UFNF233

TO-20SAD (TO-39)

508 10 20}

~:fm~m

OIA

3 PLACES

All Dimensions in Millimeters and (Inches)

4/83

4-268

~UNITRDDE

UFNF230 UFNF231

UFNF232 UFNF233

ABSOLUTE MAXIMUM RATINGS
UFNF230

UFNF231

UFNF232

UFNF233

Units

200

150

200

150

V

Orain - Gate Voltage IRGS - 1 Mill (j)

200

150

200

150

V

Continuous Drain Current

5.5

5.5

4.5

4.5

A

10M

Pulsed Drain Current @

22

22

18

18

A

VGS
PO@TC - 25'C

Gate - Source Voltage

±20

V

Max. Power Dissipation

25 ISe. Fig. 141

W

0.2 ISee Fig. 141

W/K

Parameter
VOS

Drain -

VOGR
10@TC

~

25'C

Source Voltage

 IO(onJ1x ROS(on) max

/J

I

12

i

VGS "6V

J

I'-I'TJ

"'25 0 C

,

T1 ~ 25°C

z

~

p

5V

A

>-..:. '-{II

TJ ~ -S5"C

~

I'- I'-

I
4Y

./L.

I'- I'-

20

40
60
80
Vos. DRAIN TO SOURCE VOLTAGE (VOLTS)

III

'II

100
VGS. GATE TO-SOURCE VOlTAG£ (VOL lS)

Fig. 3 - Typical Saturation Characteristir.s

Fig, 4 - Maximum Safe Operating Area
lOB

10

.6~

t--

L,,5pJsETElr

J

i~

~K

~ /<
~r/

'I

~

%
9V-

.

~~v

UFNF230,l

'~"

5 UFNF232,3

a

2

z
: 1.0

~

Eo.S F

~

r0.2

t--

0.1

lOOps

II

f-

Q

Vas. DRAIN·TO·SOURCE VOL TAG!; (VOLTS)

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEl. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

10 ,

~ 10

I-"'"'

II'"

UFNF232,3

iii

~v- t--

j"-

I-

20

f-

___ V05,5V-

J

IS LIMITED BY ROS(on)

UFNF230.1

",lOY

""-iv

OPERATION IN THIS AREA

50

~

"

-+

I""

I
lOms

Te - 250 C
1500 C MAX.

TJ"
RthJC • 5.0 KIW
SINGLE PULSE

lOOms

I I

UFNF231,3
1.0

10

20

50

100

DB~F230,2

200

500

Vas. DRAIN·TO-50URCE VOLTAGE (VOLTS)

4·270

PRINTED IN U.S A

UFNF230

UFNF231

UFNF232

UFNF233

Fig. 5 - Maximum Effective Transient Thermal Impedance, Junction·to.ca .. V,. Pulse Duration

I

II

0- 0.5
NOTES:

3:fUL

I-h.2
1-~.1

~ -~

EO.05
O.OZ

0.01

~z~

1.

ITRA~~'~NT

2 PER UNIT BASE ~ RthJC" 5.0 UEG. elW.

"";'NGLE PULSE
THERMAL IMPEDANCE)

.J..-+-""

3. TJM - Te" POM ZlhJC(t)·

10-3

10-4

DUTYFACTOR,O=!~

5
10-2
10-1
tt.SQUARE WAVE PULSE DURATION (SECONDS)

10

1.0

Fig. 7 - Typical Source·Drain Diode Forward Voltage

Fig. 6 - Typical Transconductance Vs. Drain Current
10

~

10 2
TJ" 25 0C

"~
~

TJ'" -55 OC

,./"
V ...... ,.-

"/~ ..-

hV

-

Iff

..
z

TJ ~ 25°C

./

~

~

10

..

TJ -150°C

~
~

Vas> 'Ofon) x RoS/ on) max.

I

I

TJ' ~50C

I I

80,,$PtllSETEST

'0 o

10

'TJ= 150 0 C

/I

z
Tr12SDC

""

to. DRAIN CURRENT (AMPERES)

VSD. SOURCE·TO·DRAIN VOLTAGE (VOL lS)

Fig. 8 - Breakdown Voltage VI. Temperature

Fig. 9 - Normalized On·Re.istance VI. Temperature

125

..'"
~

2.2
1/

11 5

>

~
~S 1.05
......
~~

:~

~I

~~

09 5

V

......
./

/"

........

~

'" --

~

,/
~

/'

z

~.

;

...;'

0.85

;"
075
-40

/

/

40

80

120

0.2

160

-40

vGS .. lOV

'r

40

3A

,

80

120

180

TJ,JUNCTION TEMPERATURE (DC)

TJ. JUNCTION TEMPERATURE (oCI

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

"

/

4·271

PRINTED IN USA

UFNF230 UFNF231

Fig. 10 - Typical Capacitance Vs. Drain-to-Source Voltage
2000

1

1600

0

t'" 1 MHz

I

I

1

1

eiss '" Cga" Ggd. Cds SHORTED

Cra '" Gild

"'~
;0
<;
;<
~

VOS'·40V

-

, r ....

-

,,' '"

800

u'

400

,"-

\

.......

........

6OV.UFN~. 232t'----... ~

,"
~

I

~

l\

vos •

-

.... Cds .. Ggd

I
i"-.
vos • 100V

.f-..-

Coss"Cds" cCgsCr
1200

A

C!..

'/

,

~C,.

10

/

ID= 11A
FOR TEST CIRCUIT

V
30

20

,0

40

16

4. 8

f""..~

........

r--..

z
o

6

-

V

....,....

_r-

I--

""-

"
........

UFNF232. 233

I'.... UFNF2~. 231

"-

""-r"\

I'" ~

VGS=2i V

",

2

.~

M'ASU,lo WITH CU'RENT puJ, Of

20liSDURAT10N INITIAL TJ;25 0 C (HEATING
EFFECT OF 2 OilS PULSE IS MINIMAL)

10

40

6.0

vGS" 10V

'05[00'

32

Fig. 13 - Maximum Drain Current Vs. Case Temperature

I

-

24

Qg. TOTAL GATE CHARGE (nC)

Fig. 12 - Typical On-Resistance Vs. Drain Current

2

I--

SjEFlyRE Ii

Vas. DRAIN TO-SOURCE VOLTAGE (VOLTS)

,

UFNF233

Fig. 11 - Tvpical Gate Charge Vs. Gate·to·Source Voltage

v~s'O

I

UFNF232

20

30

40

75

50

10. DRAIN CURRENT (AMPERES)

100

125

150

TC. CASE TEMPERATURE (OC)

Fig. 14 - Power Vs. Tempe"ature Derating Curve
40

35

i"

30

~

~

z

""', '"r"....

2,

0

~

ilic;

20

~

~ "

,p

"

10

1"-

20

UN[TROOE CORPORATION. 5 FORBES ROAD
~EX[NGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6,09 • TELEX 95·1064

60
80
100
t20
TC. CASE TEMPFRATURE (OC)

40

4·272

"'"

I'....

140

PRINTED IN U.S.A

UFN230

UFN231

UFN232

UFN233

Fig. 16 - Clamped Inductive Waveforms

Fig. 15 - Clamped Inductive Test Circuit

II

VARY Ip TO oeTAIN

REQUIRED PEAk 'l

VGs·R

'l ....---<>---4--_-'

Fig. 17 - Switching Time Test Circuit

v,

10

Vo

-~-...... TO SCOPE

HiH

Fig. 18 - Gate Charge Test Circuit
+Vos
(ISOLATED
SUPPLY)

-

I':TI,1.5mA

o

-.J\J'V\,~"'-JV\"'-O

'G

CURRENT
SHUNT

UNITROOE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326-6509 • TELEX 95·1064

4·273

-VDS

'0

CURRENT
SHUNT

PRINTED IN USA

UFNF310
UFNF311
UFNF312
UFNF313

POWER MOSFET TRANSISTORS
400 Volt, 3.6 Ohm

FEATURES

DESCRIPTION

•
•
•
•
•

The Unitrode power MOSFET design utilizes the most advanced technology available.
This efficient design achieves a very low Ros'anJ and a high transconductance.

Fast Switching
Low Drive Current
Ease of Paralleling
No Second Breakdown
Excellent Temperature Stability

The Unitrode power MOSFET features all of the advantages of MOS technology such as
voltage control, freedom from second breakdown, very fast switching speeds, and
thermal stability.
These power MOSFETS are ideally suited for many high-speed, high-power switching
applications such as switching power supplies, motor controls, and wide-band and audio
amplifiers.

PRODUCT SUMMARY
Part Number

VDS

RDS(on)

ID

UFNF310

400V

3.60

1.35A

UFNF311

350V

3.60

l.35A

UFNF312

400V

5.00

1.15A

UFNF313

350V

5.00

1.15A

MECHANICAL SPECIFICATIONS
UFNF310 UFNF311 UFNF312 UFNF313

TO-205AD (TO-39)

508(0201

g:~I~Wt1:

01"

1 PLACES

All Dimensions in Millimeters and {lnchesl

4/83

4-274

~UNITRDDE

UFNF310 UFNF311 UFNF312 UFNF313

ABSOLUTE MAXIMUM RATINGS
Parameter

UFNF310

UFNF311

UFNF312

UFNF313

400

350

400

350

V

400

350

400

350

V

1.35

1.35

1.15

1. 15

A

5.5

5.5

4.5

4.5

A

'D(onl x RDS(onl max.' VGS

= 10V

VGS = 10V, 'D = O.BA

9fs

Forward Transconductance

ALL

0.5

1.2

-

5 (III

CisS

Input Capacitance

ALL

-

135

150

pF
pF

VDS

>ID(on) x RDS(on) max.'

ID = O.BA

VGS = OV, VDS = 25V, f = 1.0 MHz

Coss

Output Capacitance

ALL

-

35

50

Crss

Reverse Transfer Capacitance

ALL

-

B.O

15

pF

tdl9nL
tr

Turn-On Delay Time

ALL

-

3.0

10

ns

Rise Time

ALL

20

ns

See Fig. 17

Turn-Off Delay Time

ALL

-

10

td off
tf

5.0

10

ns

Fall Time

ALL

-

B.O

15

ns

(MOSFET switching times are essentially
independent of operating temperature.)

Qg

Total Gate Charge

ALL

-

6.0

7.5

nC

(Gate-Source Plus Gate-Drain)

Qgs

Gate-Source Charge

ALL

-

3.0

-

nC

Qgd

Gate-Drain ("Miller") Charge

ALL

-

3.0

-

nC

LD

Internal Drain Inductance

ALL

-

5.0

-

nH

See Fig. 10
VDD ~ 0.5 BVDSS, ID = O.SA, Zo - 501l

VGS = 10V, ID =2.0A, VDS = O.BV Max. Rating.
See Fig. 18 for test circuit. (Gate charge is essentially
independent of operating temperature.)

Measured from the
drain lead, 5mm

(0.2 in.) from header
to center of die.

LS

Internal Source Inductance

ALL

-

15

-

nH

Measured from the
source lead, 5mm

(0.2 in.) from header
to source bonding
pad.

Modified MOSFET
symbol showing the
internal device
inductances .

.@)

THERMAL RESISTANCE
RthJC

Junction-to-Case

RthJA

Junction-to-Ambient

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95·1064

Free Air Operation

4-275

PRINTED IN USA.

•

UFNF310 UFNF311 UFNF312 UFNF313

SOURCE·DRAIN DIODE RATINGS AND CHARACTERISTICS
UFNF310
UFNF311

-

-

1.35

A

UFNF312
UFNF313

-

-

1.15

A

UFNF310
UFNF311

-

-

5.5

A

UFNF312
UFNF313

-

-

4.5

A

UFNF310
UFNF311

-

-

1.6

V

TC

UFNF312
UFNF313

-

-

1.5

V

TC

= 25°C, IS = 1.15A, VGS = OV

Reverse Recovery Time

ALL

380

TJ

Reverse Recovered Charge

ALL

-

ns

ORR

-

~C

TJ

= 150 oC,IF = 1.35A,dIF/dl = 100A/~s
= 150°C, IF = 1.35A, dlF/dl = 1OOA/~s

Ion

Forward Tum-on Time

ALL

IntrinsIc turn-on time is negligible. Turn-on speed is substantially controlled by LS + LO-

Continuous Source Current

IS

(Body Diodel

Pulse Source Current

ISM

(Body Diodel @

VSD

'rr
 10(on) II ROS(on) mIX.

~~

t--t-+-t--t-+---,t--t-+-t---I

....
z

1.32

t--t-+-t--t-+--lIt--t-+-t---I

0.88
,........TJ=1250C
0.661--t-+-t--t--II'b-f",,--:T
.J:' 25o~-f--

11.10
t--t-+-t--t---H'II-t--t-+-t---I

0.88

z

E

0.66

E

~

5V

0.44
0.22

""

0.22

,~
o

20

'0

60

80

t--t-+-t--++.,.,..-t--+-+-f----I

.L~

°OL--~~~~~~~~~--~~~~--~'0

100

VGS. GATE·TO·SOURCE VOLTAGE (VOLTSI

Fig. 3 - Tvpical Saturation Characteristics
2.20

1.98 f - -

~JIISPUlISE rest

,..

1.76

i

1.54

i

1.10

z

0.88

il

~

E

/

0.66

~

10~
1v 9"

UFNF310. 311

"
8V
.... VGS·6V-

~
~~

az
~

c

-

5V

V

,'v

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326-6509 • TELEX 95·1064

10~s

10 UFNF312.313

100",

05

,

..

02

01
005

"-

TC=25 0C
TJ" 1500C MAX
RthJC " 8.33 K/W
SINGLE PULSE

IOms
lOOms

1.

~J

200

500

P~~~~11111 ~1~:::::

002

UFNF310, 312

0.0 1

II'

10

10
Vas. DRAIN·la-SOURCE VOLTAGE (VOLTSI

~

UFNF310,311

~
~

~

o
o

it_OPERATION IN THIS AREA
IS LIMITED BY R §jon

UFNF312.313

'"

I

D...
0.22

Fig. 4 - Maximum Safe Operating Area

~

1.32

TJ<-550C

O"r-+-+-+-~h~~~~~-+~

Ves. DRAIN-IO-SOURCE VOLTAGE (VOLlSI

~

,

1.54

~

1.10

o

r-~ .. PU~SE TESl-+-I---:>
,,~

NOTES

~~ fw" 0.2
f~~

mIL

0.2

.. 2

....
....
~:::;

O. 1

0.1

EO.05

~~ 0.05
f=:0.02
Uw

2%

';:'"

j

0.02

•

0-0.5

0.5

1 DUTY FACTOR. 0"

:~

:J:ID?
~t~~~+t
SINGLE PULSE (TRANSIENT1f=:H=:+=~++W=:+=~:j:::H=+1:tt~:j:: 2. PER UNIT BASE" RthJC = 8.33 DEG. elW.
I3.TJM - TC" 'OM Z,hJCItI.

'1ItRMjl tEiAiTI Iii

0.0 1""'"
10-5

10-3

10-4

10-2

1.0

10

II. SQUARE WAVE PULSE DURATION (SECONDS)

Fig. 6 - Typical Transconductance Vs. Drain Current

Fig. 7 - Typical Source·Drain Diode Forward Voltage

3.0

10

f-4.,PU!SETEJT

2. 7

I

I

Vas> 'O(on) II ROS(on)

~

24

ili

21

5.0

max

!>

§
~

18
15

,/

~ 12

~

£

....
z

TJ = ~550C

!

.,.,
/'

,...
~
/

0.9
06

,,"'"

---

r-

2.0

w

~
~

TJ=

"z

lSDC I--

TJ= 125 DC

U

10

~

r--

~

05

>

-

~

~

'/1

03

o

II

rl

,.

0.2

TJ

-

=

ISOoC
I

~ TJ"!5 0 C

'I
o

022

044 066

088

11

1 32

1 54

1 16

1 98

01

22

o

10

'0. DRAIN CURRENT (AMPERES)

4.0

3.0

20

5.0

VSD, SOURCE TO-CRAIN VOLTAGE (VOL lSI

Fig. 8 - Breakdown Voltage Vs. Temperature

Fig.9 - Normalized On·Resistance VI. Temperature

1.2 5

22
5

V

5

,...V

L

.,., .,.,

v

~

~
~

",...

~

./

-- r--

g

~

~

06

V

./
vGS = IOV

i

'0 0.8A,

L
0.75
-40

40
80
120
TJ, JUNCTION TEMPERATURE (DC)

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

0.2

160

-40

40

80

120

160

TJ, JUNCTION TEMPERATURE jOe)

4-277

PRINTED IN USA

UFNF310 UFNF311 UFNF312 UFNF313

Fig. 11 - Typical Gate Charge Vs. Gate-to·Source Voltage

Fig. 10 - Typical Capacitance Vs. Drain·to·Source Voltage
250

.1

.1

I

2..

ellS "elll + Cgd. Cds SHORTED
C", • C",
200

~. . . Cd.'
\'

- 150

z

;!

~
j

\

100

\

..;

\

50

1
Gs ' 0
I::: 1 MHz

C"C",

e,,' c",'

JBOY

Vas

~Cd.·C",

\

u

10

J

I

Vas = 20DV

C'G

Vas = 320V

I

1

f\

Dj ~

V

~~

'\

"- :--....
I'~
r10

t'--- ~

I

~

/

~'G

10

40

30

/

10 -2A
FOR TEST CIRCUIT

Si E FIG!"E

50

4

'i

-

6

10

a,. TOTAL GATE CHARGE I,CI

Vas. DRAIN-TO SOURCE VOLTAGE (VOLTS)

Fig. 13 - Maximum Drain Current VI. Case Temperature

Fig. 12 - Typical On-Resistance Vs. Drain Current
10

5

VGS"l/
ROSI,,1 MEASUJEO WIT)CURREJ

z

~ 8

PULSEOF20$AsOURATlON

_

~z

EFFECT OF 2 0 /.IS PULSE IS MINIMAL)

INITIAL TJ=25 0 C (HEATING

o

V's

b

.......
11

.........

UFNF312.313

.........

......

UFNF310,311

........

I
/

5

/"
3

,
r-....

........

r---. . . .

vGS=20V_

r-...
i'o..

'" "~~

~

3

....V

,

:\\

o

o

'\~

25

50

10. DRAIN CURRENT (AMPERES)

75

100
Te. t:ASE TEMPERATURE JOCI

125

150

Fig. 14 - Power Vs. Temperature Derating Curve
10

" "'~

""
l'..

"-

20

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95·1064

40

60
80
100
Te. CASE TEMPERATURE (OCI

4-278

"f\.."1'\
120

140

PRINTED IN U S.A

UFNF310 UFNF311 UFNF312 UFNF313

•

Fig. 16 - Clamped Inductive Waveform.

Fig. 15 - Clamped Inductive Test Circuit

EC

VARY tp TO OBTAIN
REQUIRED PEAK Il
V G S - R OUT

IL....- - 6 - - -....._ _--l
El '" 0.5 BVOSS EC = 0.75 SVOSS

Fig. 17 - Switching Time Test Circuit

PULSE
GENERATOR
r-----.,

I
I
I
L _

son

I

I

___ ...1

son

Fig. 18 - Gate Charge Test Circuit
+Vos
(ISOLATED
SUPPLY)

-

O~·SmA

IG
CURRENT
SAMPLING
RESISTOR

UNITRODE CORPORATION - 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861-6540
TWX (710) 326·6509 • TELEX 95·1064

4-279

.".

10
CURRENT
SAMPLING
RESISTOR

PRINTED IN U.S.A

POWER MOSFET TRANSISTORS

UFNF320
UFNF321
UFNF322
UFNF323

400 Volt, 1.8 Ohm

FEATURES
• Fast Switch i ng
• Low Drive Current
• Ease of Paralleling
• No Second Breakdown
• Excellent Temperature Stability

DESCRIPTION
The Unitrode power MOSFET design utilizes the most advanced technology available.
This efficient design achieves a very low ROSlon) and a high transconductance.
The Unitrode power MOSFET features all of the advantages of MOS technology such as
voltage control, freedom from second breakdown, very fast switching speeds, and
thermal stability.
.
These power MOSFETS are ideally suited for many high-speed, high-power switching
applications such as switching power supplies, motor controls, and wide-band and audio
amplifiers.

PRODUCT SUMMARY
Part Number

VDS

RDS(on)

ID

UFNF320

400V

1.80

2.5A

UFNF321

350V

1.80

2.5A

UFNF322

400V

2.50

2.0A

UFNF323

350V

2.50

2.0A

MECHANICAL SPECIFICATIONS
UFNF320 UFNF321 UFNF322 UFNF323

All Oimensions

4/83

In

TO·205AD (TO·39)

Millimeters and (Inches)

4·280

~UNITRODE

UFNF320 UFNF321 UFNF322 UFNF323

ABSOLUTE MAXIMUM RATINGS
Parameter

UFNF320

UFNF321

UFNF322

UFNF323

Units

400

350

400

350

V

400

350

400

350

V

2.5

2.5

2.0

2.0

A

10

10

8.0

8.0

CD

VOS

Drain - Source Voltage

VOGR
10@TC = 25°C

Drain - Gate Voltage IRGS = 1 Mill

10M

Pulsed Drain Current

VGS
PO@TC=25°C

Gate - Source Voltage

CD

Continuous Drain Current

@

Max. Power Dissipation
Linear Derating Factor

J

10

Lead Temperature

ELECTRICAL CHARACTERISTICS @ TC
Parameter

BVOSS

20 ISee Fig. 14)

W

0.161See Fig. 14)

W/K

Operating Junction and
Storage Temperature Range

TJ
T stg

Drain - Source Breakdown Voltage

VGSlth) Gate Threshold Voltage

V

ISee Fig. 15 and 16) L - 100~H
10
I
8.0

Inductive Current, Clamped

ILM

A

±20

A

8.0

I

-55to 150

°C

30010.063 In. 11.6mm) from case for lOs)

°c

= 25°C (Unless otherwise specified)
Type

Min.

Typ.

Max.

Units

UFNF320
UFNF322

400

-

-

V

VGS = OV

UFNF321
UFNF323

350

-

-

V

10 =

ALL

2.0

-

4.0

V

VOS = VGS, 10 = 250~A

100

nA

VGS = 20V

-100

nA

VGS = -20V

Test Conditions

250~A

IGSS

Gate - Source Leakage Forward

ALL

-

IGSS

Gate -

ALL

-

lOSS

Zero Gate Voltage Drain Current

-

-

ALL

250

~A

VOS = Max. Rating, VGS = OV

-

-

1000

~A

VOS = Max. Rating xO.8, VGS - OV, TC - 125°C

UFNF320
UFNF321

2.5

-

-

A

UFNF322
UFNF323

2.0

-

-

A

1010n)

Source Leakage Reverse

On-State Drain Current

®

ROS(on) Static Drain - Source On-State
Resistance ®

®

VOS >1010n) x ROSlon) max.' VGS = 10V

UFNF320
UFNF321

-

1.5

1.8

!l

UFNF322
UFNF323

-

1.8

2.5

!l

VGS = 10V, 10 = 1.25A

9fs

Forward Transconductance

ALL

1.0

2.0

-

SIUI

Ciss

Input Capacitance

ALL

450

600

pF

Coss

Output Capacitance

ALL

100

200

pF

C rss

Reverse Transfer Capacitance

ALL

20

40

pF

tq(onl

Turn-On Delay Time

ALL

-

20

40

ns

VOO = 0.5 BVOSS, 10 = 2.0A, Zo = 5011

tr

Rise Time

ALL

25

50

ns

S.e Fig. 17

t1010n) x ROSlon) max.' 10 - 1.25A
VGS = OV, VOS = 25V, f = 1.0 MHz
See Fig. 10

VGS = 10V, 10 = 5.0A, VDS = 0.8V Max. Rating.
See Fig. 18 for test circuit. (Gate charge is essentially
independent of operating temperature.)

Measured from the
drain lead, 5mm

10.2 In.) from header
to center of die.

LS

Internal Source Inductance

ALL

-

15

-

nH

Measured from the
source lead, 5mm

10.2 in.) from header
to source bonding

Modified MOSFET
symbol showing the
internal device
inductances .

.@)

pad.

THERMAL RESISTANCE
RthJC

Junction-to-Case

Rh A

Junction-to-Ambient

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

Free Air Operation

4-281

PRINTED IN U.S A

•

UFNF320 UFNF321 UFNF322 UFNF323

SOURCE·DRAIN DIODE RATINGS AND CHARACTERISTICS
Continuous Source Current
IBody Oiode)

Modified MOSFET symbol
showing the Integral
reverse P-N Junction rectifier.

UFNF320
UFNF321

-

-

2.5

UFNF322
UFNF323

-

-

2.0

A

UFNF320
UFNF321

-

-

10

A

UFNF322
UFNF323

-

-

8.0

A

UFNF320
UFNF321

-

-

1.6

V

TC

UFNF322
UFNF323

-

-

1.5

V

Tc ~ 25°C, IS ~ 2.0A, VGS = OV

t"
ORR

Reverse Recovery Time

ALL

450

-

ns

T J - 150°C, IF - 2.5A, dlF/dt - 1 OOA/~s

Reverse Recovered Charge

ALL

-

3.1

-

~c

TJ = 1 50 oc,IF

ton

Forward Turn-on Time

ALL

Intrinsic turn-on time

IS

Pulse Source Current
IBody Diode) @

ISM

VSD

(j)TJ

Diode Forward Voltage @

= 25°C to 150°C.

A

IS

@PulseTest: Pulse width" 300~s, Duty Cycle" 2%.

'J~(

I~
J

3

1/

IS

~

2.5A, dlF/dt

I

VD~ > 1~(DnIIX RD~(onll max.

,

r--

J
TJ

2

~

III

125°

"'-- rl
"'-- J/

TJ ~ 25°C
TJ" -55°C

~ rt}

'10V

V ::-'.v
12

"

20
VGS, GATE TO SOURCE VOLTAGE (VOLTS)

Vos. DRAIN TO SOURCE VOLTAGE (VOLTS,

Fig. 3 - Typical Saturation Characteristics

Fig. 4 - Maximum Safe Operating Are.

OPERATION IN THIS AREA

20

8OJ"V+"JT- - f-

UFNF320. 32'
10

5

It IS LIMITED BY RDS(on)

UFNF322, 323

5lv

'"

VGS"!i

"
a
~

~v

10~s

UFNF320, 32'

~

~

3

100~s

UF~F322, 323

1.0

I,..

~

2
4

~
E"

V

10m

02

O. 1
0.0 5

1

4r
200
Vas, DRAIN TO·SQUACE VOLTAGE (VOLTS)

UNITRODE CORPORATION. 5 FORBES ROAD
LEXI NGTON, MA 02173 • TEL. (617) 861-6540
TWX (7l0) 326-6509 • TELEX 95-1064

00 I

1.0

4-282

TC = 25 0 C
TJ = lS00C MAX.

100m,

RthJC=6.25 K!W
SINGLE PULSE

IIII

002
300

F F

0.5

z

100

+ lO'

rtf
M/
Ii

1

1

60V

~ 100A/~s

,1/

c- 80JSl'uJETEJr

I

r

OV

Fig. 2 - Tvpical Transfer Characteristics

5-

80jJ!PUlSETfST

~

substantially controlled by LS

I

l~

lOV

negligible. Turn-on speed

2.5A, VGS

6

.j,v

VI

~

25°C, IS

VGS "IOV

J

2

I

-

~

@Repetitive Rating: Pulse width limited
by max. junction temperature,
See Transient Thermal Impedance Curve (Fig. 5).

Fig. 1 - Tvpical Output Characteristics

~i,v-

~

OCm
UFN~21, 323

UFNF320. 322

III
5
10 20
50 100 200
500
VDS, DRAIN·TD·SOURCE VOLTAGE (VOLTS)

PRINTED IN USA

UFNF320 UFNF321 UFNF322 UFNF323

Fig. 5 - Maximum Effective Transient Thermal Impedance, Junction·to-Case Vs. Pulse Duration

I

•

0-0.5
NOTES,

El...fL

0.2

~h.l

~2--l

1
=0.05

1. DUTY FACTOR, 0"

-b.02
0.01

-

THERMAllMPEOANCEl
10-4

:~

2. PER UNIT BASE - R'hJC' 6.25 OEG. CIW.

SINGLE PULSE (TRANSIENT

3 TJM - TC z POM ZthJC!t).

10-2

10-3

1.0

10

tl,SQUARE WAve PULSE OURATION (SECONDS)

Fig. 6 - Typical Transconductance Vs. Drain Current

I-I--

"l.pu!" TE~T

Fig_ 7 - Typical Source-Drain Diode Forw.ard Voltage

I

I

vcis > 1~(Onll Ras/oni ma)(~
J(

-

TJ = 25°C
TJ=-S50C-

~
V ,./'

/. V i--'"

II. ~

r

-"

,..-r

I-:
~

TJ=2!i oC

'#'

TJ~ 125lc~ t--TJ" 1500 C

:;:;TJ;-150 0 C_

'/

/1
10

TJ = 25°C

I

o

10. DRAIN CURRENT (AMPERESI

VSD. SOURCE TO DRAIN VOLTAGE (VOLTS}

Fig. 8 - Breakdown Voltage Vs. Temperature

Fig. 9 - Normalized On-Resistance Vs. Temperature

I"

~-

22

,.....-

115

,..V

105

095

./

V
/

i---"'" V

/
,r

i---"'"

/

V
§

~

085

~

06

,;'
015
-40

40
80
120
TJ JUNCTION TEMPERATURE lOCI

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

02

160

-40

4-283

k"
vGS = lOV

to = 1.25A
I
I

120
40
80
TJ. JUNCTION TEMPERATURE lOCI

160

PRINTED IN U S A<

UFNF320 UFNF321 UFNF322 UFNF323

Fig. 10 - Typical Capacitance V,. Drain·to·Source Voltage
1000

V~S'

1
CIII

800

~

400

\

:\\

/fS+
Ct
go gd

;

-

\

Vos'

~

1
C,a

"

~

10

A~

0

~

"'"
>'"

Co.,

1/

5

I

IO=SA
FOR TEST CIRCUIT

V

C,"

20

10

30

12
0!l_ TOT Al GATE CHARGE (nC)

~o

16

2.5

j
1'1/

2.0

VGS"~

.........

r-...

........

r-..... ...... ........

.........

t- UFNF322.

UFNF320. 321

32~ ......... "-

"-

VGS" lOV

.,1/
i-""""

" ""
......... ~

~

"'~
l'\

,

o.~

1

10

10

Fig. 13 - Maximum Drain Current Vs. Ca.. Temperature

RaS(on) MEASURED WITH CURRENT PULSE OF
2.0IlsDURATION. INITIAL TJ=25 0 C (HEATING
EFFECT OF 2.0 ps PULSE IS MINIMAL)

..V

-

SIEE FljURE 1[8

Vas. DRAIN TO SOURCE VOLTAGE (VOLTS)

Fig. 12 - Typical On·Resistance Vs. Drain Current

~

~

UJ

~

10

i'...

Vas::: 320V

"
iil

i'-- .......
r-

~OOV "--

>

\,

200

voslsov

1~

'"

-

-Cds+Cgd

--

......

t!:

..;

.L -'

f: 1 MHr

eli + Cgd. Cds SHORTED_

Coa .. Cds +

1\

"z

§

20

1

Cm • Cgd

600

w

..

0

Fig. 11 - Typical Gate Charge Vs. Gate·to·Source Voltage

12

75

~o

10. DRAIN CURRENT (AMPERES)

100

125

150

Te. CASE TEMPERATURE (OC)

Fig. 14 - Power Vs. Temperature Derating Curve
20

'\

1~

S
i!
z
0

~

iii
;5

'"

r\.

"- r\
'\

10

~

~

'\

~

;0

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

40

100
Te. CASE TEMPERATURE (OC)

60

80

4·284

'"

120

i\
140

PRINTED IN U.S.A

UFNF320 UFNF321 UFNF322 UFNF323

Fig. 15 - Clamped Inductive Test Circuit

EC

VARY tp TO OBTAIN
REQUIRED PEAK 'l

VGS.R

•

Fig. 16 - Clamped Inductive Waveforms

OUT

' t ....-

......: ) - _ -...._ .......
£1 ., 0.5 BVOSS

EC = 0.75 BVOSS

Fig. 17 - Switching Time Test Circuit

PULSE
GENERATOR

r-----.,
I
I
I

L _

son

I

son

I
_ _ _ ...J

Fig. 18 - Gate Charge Test Circuit
+Vos
(ISOLATED
SUPPLY)

I=-n..5

o

UNITROOE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

-

mA

4-285

IG

10

CURRENT
SAMPLING
RESISTOR

SAMPLING
RESISTOR

CURRENT

PRINTED IN U.S A

POWER MOSFET TRANSISTORS

UFNF330
UFNF331
UFNF332
UFNF333

400 Volt, 1.0 Ohm

FEATURES

DESCRIPTION

•
•
•
•
•

The Unitrode power MOSFET design utilizes the most advanced technology available.
This efficient design achieves a very low Roslon' and a high transconductance.

Fast Switching
Low Drive Current
Ease of Paralleling
No Second Breakdown
Excellent T~mperature Stability

The Unitrode power MOSFET features all of the advantages of MOS technology such as
voltage control, freedom from second breakdown, very fast switching speeds, and
thermal stability.
These power MOSFETS are ideally suited for many high-speed, high-power switching
applications such as switching power supplies, motor controls, and wide-band and audio
amplifiers.

PRODUCT SUMMARY
Part Number

VDS

RDS(on)

ID

UFNF330

400V

1.00

3.5A

UFNF331

350V

1.00

3.5A

UFNF432

400V

1.50

3.0A

UFNF333

350V

1.50

3.0A

MECHANICAl. SPECIFICATIONS
UFNF330 UFNF331 UFNF332 UFNF333

TO-205AD (TO-39)

50810201

::~:~g~J:

DlA

JPLACES

All Dimensions in Millimeters and (Inches)

4/83

4-286

~UNITRDDE

UFNF330 UFNF331 UFNF332 UFNF333

ABSOLUTE MAXIMUM RATINGS
Parameter
Source Voltage

UFNF330

UFNF331

UFNF332

UFNF333

Units

400

350

400

350

V

400

350

400

350

V

3.5

3.5

3.0

3.0

A

14

14

12

12

A

G)

VOS

Drain -

VOGR
10@TC- 25 ° C

Orain - Gate Voltage IRGS = 1 M{!)
Continuous Drain Current

10M

Pulsed Dram Current

VGS
PO@TC = 25°C

Gate - SourceVoltage

±20

V

Max. Power DISSipation

25 ISee FIg. 14)

W

0.2 ISee Fig. 14)

W/K

CD

@

Linear Derating Factor

ILM

Inductive Current, Clamped

TJ
T stg

Operating Junction and

14

I

ISee FIg. 15 and 16) L = 100/LH
14
I
12

A

12

-55 to 150

°C

30010.063 In. 11.6mm) from case for lOs)

°C

Storage Temperature Range
Lead Temperature

I

ELECTRICAL CHARACTERISTICS @ TC = 25°C (Unless otherwise specified)
Parameter

BVOSS

Drain -

Source Breakdown Voltage

VGSlth) Gate Threshold Voltage

Type

Min.

Typ.

Max.

Units

UFNF330
UFNF332

400

-

-

V

UFNF331
UFNF333

350

-

-

V

10 = 250!,A

ALL

2.0

-

4.0

V

VOS = VGS.IO = 250!,A

-

-

100

nA

VGS = 20V

-100

nA

VGS = -20V

250

/LA

VOS = Max. RatIng, VGS = OV

-

1000

!,A

VOS = Max. Rating x 0.8, VGS = OV, TC = 125°C

UFNF330
UFNF331

3.5

-

-

A

UFNF332
UFNF333

3.0

-

-

A

UFNF330
UFNF331

-

0.8

1.0

n

UFNF332
UFNF333

-

1.0

1.5

!l

IGSS

Gate -

Source leakage Forward

ALL

IGSS

Gate -

Source Leakage Reverse

ALL

lOSS

Zero Gate Voltage Drain Current

1010n)

On-State Drain Current

@

ROSlon) Static Drain - Source On-State
Resistance

(g)

®

ALL

VOS > 1010n) x ROSlon) max.' VGS = 10V

VGS = 10V.10 = 2.0A

gfs

Forward Transconductance

ALL

2.0

3.5

-

SIUl

Ciss

Input Capacitance

ALL

-

700

900

pF

Coss

Output Capacitance

ALL

-

150

300

pF

erss

Reverse Transfer Capacitance

ALL

-

40

SO

pF

td on
tr

Turn-On Delay Time

ALL

Rise Time

ALL

tgLatt!.
tf

Turn-Oft Oelay Time

ALL

Fall Time

ALL

-

-

Qg

Total Gate Charge

ALL

-

(Gate-Source Plus Gate-Drain)

ns
ns

See Fig. 17

55

ns

35

ns

(MOSFET switching times are essentially
independent of operating temperature.)

18

30

nC

ALL

-

11

-

nC

Qgd

Gate-Drain ("Miller") Charge

ALL

-

7.0

-

nC

LO

Internal Drain Inductance

ALL

-

5.0

-

nH

ALL

-

VGS = OV, VOS = 25V, f = 1.0 MHz
See Fig. 10

30

Gate-Source Charge

Internal Source Inductance

VOS> IOJonJ x ROSLon!.max., 10 - 2.0A

35

Qgs

LS

Test Conditions

VGS = OV

15

-

nH

VOO = 175V,10 - 2.0A,Zo - 15!l

VGS = 10V, 10 =7.0A, VOS = O.SV Max. Rating.
See Fig. 18 for test circuit. (Gate charge is essentially
independent of operating temperature.)

Measured from the
drain lead, 5mm

Modified MOSFET
symbol showing the

10.2 in.) from header

internal device

to center of die .

inductances.

Measured from the
source lead. 5mm

(0.2 in.) from header
to source bonding

pad.

.@)

THERMAL RESISTANCE
RthJC

Junction-to-Case

RthJA

Junction-ta-Ambient

UNITRODE CORPORATION· 5 FORBES ROAO
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95-1064

Free Air Operation

4-287

PRINTED IN USA

•

UFNF330 UFNF331 UFNF332 UFNF333

SOURCE·DRAIN DIODE RATINGS AND CHARACTERISTICS
IS

ISM

VSD

Continuous Source Current
IBody Diode)

Pulse Source Current
(Body Diode) @

Diode Forward Voltage @

UFNF330
UFNF331

-

-

3.5

A

UFNF332
UFNF333

-

-

3.0

A

UFNF330
UFNF331

-

-

14

A

UFNF332
UFNF333

-

-

12

A

UFNF330
UFNF331

-

-

1.6

V

UFNF332
UFNF333

-

-

1.5

V

TC

= 25°C, IS = 3.0A, VGS = OV

600

-

ns

TJ

~C

TJ

= 150°C, IF = 3.5A, dlF/dt = 1OOA/~s
= 150°C, IF = 3.5A, dlF/dt = 1OOA/~s

Modified MOSFET symbol
showing the integral
reverse P-N junction rectifier.

~
= 25°C. IS = 3.5A. VGS = OV

TC

t"
QRR

Reverse Recovery Time

ALL

Reverse Recovered Charge

ALL

-

ton

Forward Turn-on Time

ALL

IntrinSIC turn-on time IS negligible. Turn-on speed is substantially controlled by LS

4.0

@PulseTest: Pulse width" 300ps, Duty Cycle" 2%.

+ LO'

® Repetitive Rating: Pulse width limited
by max. junction temperature.
See Transient Thermal Impedance Curve (Fig. 5).

Fig. 1 - Typical Output Characteristics

,KJ

Fig. 2 - Typical Transfer Characteristics

80l/5PULse TEST

VG;"L;;;; = F

801I,PUlSETEST

vas> 'o(on) x RaS(on) max.

5OV'" ..... F---

TJ"+1250C

TJ'''OC""-...
4SV-

-

TJ"'-55ac~

t"-

rh

,

,

1'1

'IV"" """ F"'"
100

150

100

lLt,

300

250

f-./,

rn

vGS. GATnO·SOURCE VOLTAGE (VOLTS)

Vas. DRAIN TO SOURCE VOL rAGE (VOL IS)

Fig. 3 - Typical Saturation Characteristics

Fig.4 - Maximum Safe Operating Are.
OPERATION IN THIS AREA

J.

,I,

JJv
,o~fv

80jil PULSE TEST

o

r--

o

-VGS~50V- )"-"

Jfi$EF.m

5 UFNF330, 331

'{/

I

U~~FJab,IJJl'Z~S LIMITED BY RoS!ooi

2 UFNF332.333

lOps
1111

lOOps

J

1
II'

45V-

r--

,

I
'I

4OV- I-4

10

Vas. DRAIN TO SOURCE VOLTAGE (VOLTS)

UNITROOE CORPORATION' 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

VoS. ORAIN·TO-SOURCE VOLTAGE (VoLTSI

4-288

PRINTED IN U.S.A

UFNF330 UFNF331 UFNF332 UFNF333

Fig.5 - Maximum Effective Transient Thermal Impedance, Junction·to·Case Vs. Pulse Duration

...
z

I

~

:L
........

wz

>=>

;::'" 05

~~

.

S~ 0.2
NO

::::i~

0- 0.5

NOTES,

~6.2

m.JL

....

...-:

L~.l

i~ 0.1 =OD5

~2~

C><

~I 0.05

]

1 DUTY FACTOR, 0 = :~

0.02

J~

~

II

1.0

0.01

~'NGLE PULSE ITRAJi'~NT

0,02

0,01
10-5

2. PER UNIT BASE· RthJC '" 5,0 DEG e/W

THERMAllMPEDANCEI

~
10-4

3. TJM - TC " POM ZthJc(t).

10-2

10-3

10

1.0

tl,SQUARE WAVE PULSE DURATION (SECONDS)

Fig. 6 - Typical Transconductance Vs. Dram Current

Fig. 7 - Typical Source-Drain Diode Forward Voltage

10

TJ" 25 0C

L

TJ"'·55 OC -

-

...- ; -

f'"

lfi
II V"""

Itr

TJ'" 25 0C

--

.......:: :::::-

'TJ= ISOOC

//

r}" ,2s Jc_

vas> 10(on) K RoSI(on)

!..'"

'">
'"
~

m~x

TJ - !SOOC

"'f

,,
I

I

80"sPULSETEST

10
10

TJ !5 0 C
0

o
VSD. sou RCE TO DRAIN

10. DRAIN CURRENT (AMPERES)

Fig. 8 - Breakdown Voltage Vs. Temperature

va LTAGE (VOL lS)

Fig. 9 - Normalized On-Resistance V•. Temperature

115

22

.,...
C>

115

-

v

~

>

.......... V

,.,

. /V

./

V
/
/'"

..........

./

V
./
015
-40

80
40
120
TJ JUNCTION TEMPERATURE (oCI

UNITROOE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

V
VGS

=

lOV

10 i2.OAI

02
160

-40

4-289

40
80
120
TJ. JUNCTION TEMPERATURE (OC)

160

PRINTED IN USA

UFNF330 UFNF331 UFNF332 UFNF333

Fig. 10 - Typical Capacitance Vs. Drain-to·Source Voltage

Fig. 11 - Typical Gate Charge Vs. Gate·to·Source Voltage

1000

tGS'

10

J

I I \. 1 M~' I
ellS .. C.. + Cgd. Cds SHORTED f - -

1600

era '" Cgd
~

~

~
,~

COII·,Cds+CIII+Cgd

1200

;!

5

vlOS • abv",
V,oS'l~OV ....

f--

CpC",

800

y'

400

~
~

-

vas" 320V

f--

-,:,Cds+ tgd

~,.

~ C'SS
~

~

~

/

10" lA
FOR TEST CIRCUIT

V

10

10

30

16

50

40

Fig. 12 - Typical On·Resistance Vs. Drain Current

VGS"°V

T

14

31

.......

.......

3

.........
.........

....... .........

.........

,...- /

f--

UFNF332. 333

UFNF330.331

........

........
......... .......... ......

........ t'-....

1
ROS(on) MEASURED WITH CURRENT PULSE OF
2 0 ~s OURATION INITIAL TJ" 250C (HEATING
EFFECT OF 2 OjJs PULSE IS MINIMAL)

30

10

15

40

I

/
10

-

Fig. 13 - Maximum Drain Current Vs. Case Temperature

/VGS'10V_

-

SIEE FljURE

Qg. TOTAL GATE CHARGE (IlC)

Vos, DRAIN TO SOURCE VOLTAGE (VOL lSI

1

~

75

50

100

'a. oRAIN CURRENT (AMPERESI

10. DRAIN CURRENT (AMPERES)

Fig. 14 - Power Vs. Temperature Derating Curve

"

115

~

"
150

40

35

i"

30

z

15

~

10

.........

0

ill
c

"- ......

~

~

15

""'-

~ 10

10

40

60

~
80

'"

100

120

........

,

140

Te. CASE TEMPERATURE (DC)

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

4-290

PRINTED IN U.S.A.

UFNF330 UFNF331 UFNF332 UFNF333

Fig. 15 - Clamped Inductive Test Circuit

R

•

Fig. 16 - Clamped Inductive Waveforms
EC

VARY tp TO OBTAIN
REOUIRED PEAK Il

VGS'

~D_UT~V-"Y
' L+-_----....._--'
E,· 0.5 BVoss Ec' 0 75 BVoss

Fig. 17 - Switching Time Test Circuit

V;
PULSE
GENERATOR

r------,
I
I
I

L _

son

I

- ''--~ TO SCOPE

I

SOn

___ .J

Fig. 18 - Gate Charge Test Circuit
+Vos
(ISOLATED
SUPPLYI

-

0~·5mA

--'\N\r---i---'Vv\,--o -VOS
IG
CURRENT
SAMPLING
RESISTOR

UNITROOE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326·6509 • TELEX 95-1064

4-291

10
CURRENT
SAMPLING
RESISTOR

PRINTED IN U.S A

UFNF420
UFNF421
UFNF422
UFNF423

POWER MOSFET TRANSISTORS
500 Volt, 3.0 Ohm

FEATURES

DESCRIPTION

•
•
•
•
•

The Unitrode power MOSFET design utilizes the most advanced technology available.
This efficient design achieves a very low ROa(on) and high transconductance.

Fast Switching
Low Drive Current
Ease of Paralleling
No Second Breakdown
Excellent Temperature Stability

a

The Unitrode power MOSFET features all of the advantages of MOS technology such as
voltage control, freedom from second breakdown, very fast switching speeds, and
thermal stability.
These power MOSFETS are ideally suited for many high·speed, high·power switching
applications such as switching power supplies, motor controls, and wide· band and audio
amplifiers.

PRODUCT SUMMARY
Part Number

VDS

RDS(on)

ID

UFNF420

500V

3.00

1.6A

UFNF421

450V

3.00

1.6A

UFNF422

500V

4.00

1.4A

UFNF423

450V

4.00

1.4A

MECHANICAL SPECIFICATIONS
UFNF420 UFNF421 UFNF422 UFNF423

TO·205AD (TO·39)

*

~"'~::::~:3"

DRAtN

SOURCE

GATE

508(0201

~~:~~

045(00181

r8250~~32l&) !ll.l1.!!2I

~

J.

1422(056)

111o!,,"

430101891

11
1

1803 1071)

Rr

--.J

~:~:~g~~: :7

JPlACES

All Dimensions in Millimeters and (Inches)

4/83

4·292

~UNITRDDE

UFNF420 UFNF421 UFNF422 UFNF423

ABSOLUTE MAXIMUM RATINGS
Parameter

UFNF420

UFNF421

UFNF422

UFNF423

Units

500

450

500

450

V

500

450

500

450

V

1.6

1.6

1.4

1.4

A

6.5

6.5

5.5

5.5

 10ton) - ROSton) max.

I
60V

I

,

sL

i - - _TJ'"
I

I
sL
I

1

125°C

TJ" -55 0 C"
1

45V

,

40V

50

100

150

200

250

Vos. DRAIN TO·SOURCE VOLTAGE \VOlTS)

!P70V.1.

J

3

1/

~""

65V=

60V-

,

V

1

r-=

4~V_

16

10

~~

05

8

02

~

100$1.$

1m,

~

OPERATION IN THIS AREA
IS LIMITED BY ROSton)

',h lm.

i

-

',bb~.

01

002

r=
f-f--

00 1

'0

10

TC '" 25 0 C
TJ - 150°C MAX
Rt IlJC"'S25KlWSINGLE PULSE -

LJ

f-f--

UFNF421, 423
1111111

I

III
10

, I

UFNF420, 422

20

SO

100

200

m
III
SOO

Vas. DRAIN TO·SOURCE VOLTAGE !VOL TSI

Vas. DRAIN·TO·SOURCE VOL TAGE (VOLTS)

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

101~Stl

U~N~4io, 421
UFNF422, 423

~

EOOS

4OV====
12

"liFNF422.423

z

vrT-- --=

L

10

UFNF420, 421

F=

+=J

b

~~

Fig, 4 - Maximum Safe Operating Area
10

V

,

i'--.J.
I'--J'.J
/;"1

VGS. GATE·TO·SOURCE VOLTAGE (VOL TSI

Fig, 3 - Tvpical Saturation Characteristics

r-slO 1010n) x ROSton) mix.

102
TJ.-~

.....
/ / ' ......
/'

Ih ~

l~

-

./

-

~

~

I.- -;~.250t_

. /10-

TJ:

"

:!
~

z

TJ=250 C,

~
~
~

mot

""

u

z

~

TJ= 150 0

10

e

"""""TJ = 15DOC-::=:=

~

>
~

t--TJ = 25 0 C

;

/I

111

I(

10

I

I
o

3·

10. CRAIN CURRENT (AMPERES)

VSQ. SOURCE TO-DRAIN VOLTAGE (VOLTS)

Fig. 8 - Breakdown Voltage Vs. Temperature

Fig. 9 - Normalized On· Resistance VI. TemperBtur.
26

125

,...

110V
- r- V~S=
10:: I OA

/
/

~

j

",. ~
".
..",.

",.

/

/

V'
V

""
0.15

-40

./

!

~

40

80

120

~ ......

V

0.2

160

-40

TJ. JUNCTION TEMPERATURE (DC)

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861·6540
TWX (710) 326-6509 • TELEX 95-1064

0.6

4-295

40
80
120
TJ, JUNCTION TEMPERATURE (DC)

180

PRINTED IN USA

UFNF420 UFNF421 UFNF422 UFNF423

Fig. 10 - Typical Capacitance Vs. Orain·to·Source Voltage
1000

20

I

VGS1.0

I

s

w

~

I

COll·Cds+fC~
go+ ..
600

400

I

- I--

I

I

~\" "-

--

I--

I

C,g

\ .....
\ r-....

200

I

vos' 250V
I
vos' 400V

I

l\

U

Vas" l00V

r--

-

-Cdl+Cgd

~

§

I '·I.MH. I

Cia'" CgI+Cgd.CdtSHORTEDCIlI -C..

800

Fig. 11 - Typical Gate Charge Vs. Gate·to.source Voltage

r-

I
Co..
C",-

I

.....

10
20
30
'0
Vas. DRAIN·IO·SOURCE VOll AGE (VOLTS)

,.

8

SjE F1G URE
1

'i

12

16

A.. TOTAL GATE CHARGE I,CI

Fig. 12 - Typical On·Resistance V•. Orain Current
9

,.J

10 '3A
FOR'TESTC1RCU1T

V

50

~
I"-

t-20

Fig. 13 - Maximum Orain Current Vs. Case Temperature

I

2.0

vGS'" IOV

8

V

6

5

/

•
3

2

6

/vGS'20V

7

,

2

J
V

!

~

f'..

i"- I'--

........

f'.... t"-, UFNF420. 421
UFNF422••;?~

8

/V
V

......

~

•

O.

ROSlon) MEASURI:D WITH CURRENT PULSE OF
2.0",sDURATION INITIAL TJ:25 0 C (HEATING
EFFECT OF 2.0 I-iS PULSE IS MINIMAL.1

10

'a. DRAIN CURRENT (AMPERES)

,

r\

0
25

14

12

~

75

50

100

125

'50

Te. CASE TEMPERATURE (DC)

Fig. 14 - Power Vs. Temperature Oerating Curve
0

'\

5

1'\
1\

\

0

'\

'\
1'\

5

'\
20

UNITRODE CORPORATION' 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861-6540
TWX (710) 326·6509 • TELEX 95·1064

40

60
80
100
Te, CASE TEMPERATURE (DC)

4-296

120

140

PRINTED IN U S.A

UFNF420 UFNF421 UFNF422 UFNF423

Fig. 15 - Clamped Inductive Test Circuit

•

Fig. 16 - Clamped Inductive Waveforms

VARY tp TO OBTAIN
REQUIRED PEAK.IL
V G S . R OUT
I L _ - - < O - - -___.........,
£1'" 0.5 BVOSS

EC '" 0.75 BVDSS

Fig. 17 - Switching Time Test Circuit

PULSE
GENERATOR
r------,

I
I
I

L _

son

I

son

I

___ .J

Fig. 18 - Gate Charge Test Circuit
+Vos
(ISOLATED
SUPPLY)

-

O~·SmA

IG
CURRENT
SAMPLING
RESISTOR

UNITROOE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326-6509 , TELEX 95-1064

4-297

10

CURRENT
SAMPLING
RESISTOR

PRINTED IN U.S A.

UFNF430
UFNF431
UFNF432
UFNF433

POWER MOSFET TRANSISTORS
500 Volt, 1.5 Ohm
N-Channel

FEATURES

DESCRIPTION

•
•
•
•
•

The Unitrode power MOSFET design utilizes the most advanced technology available.
This efficient design achieves a very low Ros,on. and a high transconductance.

Fast Switching
Low Drive Current
Ease of Paralleling
No Second Breakdown
Excellent Temperature Stability

The Unitrode power MOSFET features all of the advantages of MOS technology such as
voltage control, freedom from second breakdown, very fast switching speeds, and
thermal stability.
These power MOSFETS are ideally suited for many high-speed, high-power switching
applications such as switching power supplies, motor controls, and wide-band and
audio amplifiers.

PRODUCT SUMMARY

Part Number

VDS

RDS(on)

ID

UFNF430

500V

1.50

2.75A

UFNF431

450V

1.50

2.75A

UFNF432

500V

2.00

2.25A

UFNF433

450V

2.00

2.25A

"
*

MECHANICAL SPECII'ICATIONS

UFNF430 UFNF431 UFNF432 UFNF433

TO-205AD (to-39)

K!l:ir.:

~'~D88ID0351

DRAIN

SOURCE

GATE

508(020)

~~~!.~

045(0018)

'36".T

ra.25D~~3l25) ~

4.3ifWl6ij

.:,1711

1:~

::~m~~!

DIA

3 PLACES

All Dimensions in Millimeters and (Inches)

4/83

4-298

D::D UNITRODE

UFNF430

UFNF431

UFNF432 UFNF433

ABSOLUTE MAXIMUM RATINGS
UFNF430

UFNF431

UFNF432

UFNF433

500

450

500

450

V

Drain - Gate Voltage IRGS - 1 Mill (j)

500

450

500

450

V

Continuous Drain Current

2.75

2.75

2.25

2.25

A

11

11

9.0

9.0

A

Parameter

VOS

Drain -

VOGR
10@TC - 25°C
10M

Pulsed Drain Current

VGS
PO@TC-25°C

Max. Power Dissipation

Gate -

Source Voltage

CD

®

±20

V

251See Fig. 141

W

Source Voltage

0.21See Fig. 141

Linear Derating Factor

11

I

11

Operating Junction and
Storage Temperature Range

TJ
T5t9

Lead Temperature

ELECTRICAL CHARACTERISnCS @ TC

BVOSS Drain - Source Breakdown Voltage

IGSS

Gate - Source Leakage Reverse

lOSS

Zero Gate Voltage Drain Current

1010ni

On-State Drain Current

ROS(onl Static Drain Resistance

®

®

Source On-State

®

I

9.0

A

9.0

I

-55to150

°c

300 (0.063 rn. (1.6mm) from case for 105)

·C

=2S·C (Unless otherwise specified)

Parameter

V GSJtht Gate Threshold Voltage
Gate - Source leakage Forward
IGSS

W/K

ISee Fig. 15 and 161 L - 100~H

Inductive Current. Clamped

ILM

Type

Min.

Typ.

Max.

Units

UFNF430
UFNF432

500

-

-

V

VGS

450

-

-

V

10 = 250~A

2.0

-

4.0

V

VOS = VGS' 10 - 250~A

SOO

nA

VGS = 20V

UFNF431
UFNF433
ALL
ALL

-

ALL

-

ALL

Test Conditions
~

OV

-

-500

nA

VGS - -20V

-

250

~A

VOS - Max. Rating, VGS - OV

~A

VOS = Max. Rating x O.B, VGS = OV, T C - 12S·C

-

1000

UFNF430
UFNF431

2.75

-

-

A

UFNF432
UFNF433

2.2S

-

-

A

UFNF430
UFNF431
UFNF432
UFNF433
ALL

-

1.3

1.5

II

-

1.5

2.0

II

1.5

2.S

-

5 lUI

ALL

-

600

BOO

pF

100

200

pF

VOS ) 1010n) x ROSlon) max.' VGS = 10V

VGS = 10V, 10 = 1.5A

gf.

Forward Transconductance

Ciss

Input Capacitance

Coss

Output Capacitance

ALL

Crss

Reverse Transfer Capacitance

ALL

60

pF

Turn-On Delay Time

ALL

-

30

tdlon)
tr

-

30

ns

VOO

Rise Time

ALL

-

-

30

ns

See Fig. 17

tdloll)
tf

Turn-Off Delay Time

ALL

-

ns

ALL

-

55

Fall Time

30

ns

(MOSFET switching times are essentially
independent of operating temperature.)

Total Gate Charge
(Gate-Source Plus Gate-Drain)

ALL

-

22

30

nC

Ogs

Gate-Source Charge

ALL

-

11

-

nC

°gd

Gate-Drain ("Miller") Charge

ALL

-

11

nC

LO

Internal Drain Inductance

ALL

-

5.0

-

Og

LS

Internal Source Inductance

Units

ALL

_.

-

lS

-

nH

nH

VOS ) 10 on x ROSlonl max.' 10 - 1.SA
VGS = OV, VOS = 2SV, 1= 1.0 MHz
See Fig. 10
s

225V, 10 = 1.5A, Zo - 1511

VGS = 10V, 10 =6.0A, VOS = O.BVMax. Rating.
See Fig. 18 for test circuit. (Gate charge is essentially
independent of operating temperature.)

Modilied MOSFET

Measured from the
drain lead, 5mm
(0.2 in.! from header
to center of die .

symbol showing tt:Je
internal device
inductances.

Measured from the
source lead, 5mm
(0.2 In.) from header
to source bonding

.@)

pad.

THERMAL RESISTANCE
RthJC

Junction-to-Case

RthJA

Junction-to-Amblent

UNITROOE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

Free Air Operation

4-299

PRINTED IN u.S A

•

UFNF430 UFNF431

UFNF432 UFNF433

SOURCE·DRAIN DIODE RATINGS AND CHARACTERISTICS
IS

Continuous Source Current

IBody Dlodel

ISM

Pulse Source Current

IBody Diodel @

VSD

®

Diode Forward Voltage

Modified MOSFET symbol

UFNF430
UFNF431
UFNF432
UFNF433

-

-"

2.75

A

-

-

2.25

A

UFNF430
UFNF431

-

11

A

UFNF432
UFNF433

-

"-

9.0

A

UFNF430
UFNF431

-

-

1.4

V

TC

~

25°C, IS

~

2.75A, VGS

~

OV

UFNF432
UFNF433
ALL

-

-

1.3

V

TC

~

25°C, IS

~

2.25A, VGS

~

OV

800

-

ns

TJ - 150°C, IF - 2.75A, dlF/dt -

l00Al~s

~C

TJ - 150°C, IF - 2.7SA, dlF/dt -

100A/~s

showmg the mtegral
reverse P-N Junction rectlflN

j~

trr

Reverse Recovery Time

QAA

Reverse Recovered Charge

ALL

-

ton

Forward Turn-on Time

ALL

Intrinsic turn-on time IS negligible. Turn-on speed IS substantially controlled by LS + lO'

 1010n) II RaSlon) mall.
vGS ~ 5 DV-

-

~
3

f-- _TJ"~12~OC
T.l~2!iOC,
2f-- -TJ~I~550C, ~

'r- = 1=

'-......11
rJ.

I

I

/ 'I

'!V~ = F

~
300

100
200
Vos. DRAIN TO SOURCE VOL lAGE (VOL lSI

VGS. GATE TO SOURCE VOLTAGE (VOLTS)

Fig. 3 - Typical Saturation Characteristics

Fig. 4 - Maximum Safe Operating Area
20

5
801111 PUJE

TESJ

,

/

#

L ,.......-

3

lO:r f-7;'1_

10

t-

UFNF432, 433

5Ot=~

2

VGS~4:i= ~

4OV_

F"

1J = 1500 C MAX

,'~

1
0.01.0

Vos, DRAIN TO-SOURCE VOLTAGE (VOL IS)

joms,

LTC - 25'C

lOOms

RthJC = 5.0 KfW
SINGLE PULSE

O,tt-

III

002

10

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (7101 326·6509 • TELEX 95·1064

ll~~k

0

,
00

~

10~s-

IOOj.ls

UFNF432 433

j

I

OPERATION IN THIS AREA
l.lIS LIMITED BY ROSlon)

UFNF430, 431

/
2

!!tN~431

I~~~Ff1t' 433

III
2

10

20

50

100 200

1~~~~'f2
500

VOS, DRAIN·TO·SOURCE VOLTAGE (VOLTS)

4·300

PRINTED IN U.S.A

UFNF430 UFNF431

UFNF432

UFNF433

Fig. 5 - Maximum Effective Transient Thermal Impedance, Junction~to-Case Vs. Pulse Duration

I
-

•

-

0= 05

,

JrUL

-

"""

i!I

i""":

--

-

--

,

0.02

r--oo,

--

~INGlE PULSE (TRANSIENT

2

,

NOTES

--- -

f-~_2
2
f--o,
'Eoo,

=!)

0 QEG C/W

3 TJM - Te" POM ZlhJClt)

10-3

10-4

:~

2 PER UNIT BASE" RthJC

r--

THERMAL IMPEDANCE I

...1-1-'"

~2~

DUTY FACTOR, 0"

10-1

10

'0

I,. SQUARE WAVE PULSE DURATION (SECONDS)

Fig. 6 - Typical Transconductance VI. Drain Current

Fig. 7 - Typical Source-Drain Diode Forward Voltage
2

TJ.-",l...... ~ r-

L
I
1/

L

. . . r--f

V

TJ= 2!iDC

TJ=~

~~~

L

V

P

................

-

, /, V

,

max.

//

..,

TJ= ISODC

,I

2

I I TJ'!'"

IO"s PULSE TEST

0
10. DRAIN CURRENT (AMPERES)

VSD. SOURCE·TO-DRAIN VOLTAGE (VOL lSI

Fig. 8 - Breakdown Voltage VI. Temperature

"

.......... TJ= ISOoC

/'

0

,
Vas> 10(onl x ROSlon)

IJII'

f---2

1/ /

IVJ

J

2

Fig. 9 - Normalized On-Relistanoa VI. Temperatura

,

V

2_ 2

1/

,
.......
~

,
'~

..... 10-'"

/

....... ~

/

.......... V

/

0

/
6

,
-'0

/

4

,
01

/

8

'0

80

120

0, 2

160

TJ, JUNCTION TEMPERATURE (DC)

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

/

VGS-10V

'r ",

, /
40

10

I
'20

'80

TJ. JUNCTION TEMPERATURE 1°C)

4-301

PRINTED IN USA

UFNF430

2000

20

)G5'01
tilMH{

J .1

Cits '" c9l + Cgd. Cds SHORTED -

1600

era = Cgd

;:;

:l:

800

u

1'-

vas ~ 250V

gd

-

vas ~

hV

,

\ '" ~s

/

~

10

~/

400V

~/

C,"

,\
400

t: ~

I

CCgs+~gd

..
""Cds+Cgd

1200

z

:'l

VO)100V

COlI '" Cds +

;0

UFNF432 UFNF433

Fig. 11 - TVpical Gate Charge Vs. Gate·to.source Voltage

Fig. 10 - Typical Capacitance Vs. Drain·to.source Voltage

.1

UFNF431

30

20

40

/

'O"'SA
FOR TEST CI ReUIT

f--

SEtFIGyE 18

1

31

24

\6

50

Vas. DRAIN TO SOURCE VOLTAGE (VOL IS)

40

Og. TOTAL GATE CHARGE (I1C)

Fig. 12 - Typical On·Resistance Vs. Drain Current

Fig. 13 - Maximum Drain Current Vs. Case Temperature
30

ROSlon) MEASURED WITH CURRENT PULSE OF
20 ,",S DURATION INITIAL TJ" 250C (HEATING

II

EfFECT OF 2.0", PULSE IS MINIMAL

i'

24

:-

l
VGs • 1OV W

V

... ~

V

I

VGS"2BV

......

.......

r--.. .......

-

"'

UFNF432, 4;--'

V VI

UFNF4~.

431

"

"-

~~

"~'\

06

10

"

20

'0. DRAIN CURRENT (AMPERES)

,

'\

o

1

~

50

100
Te. CASE TEMPERATURE (OC)

125

150

Fig. 11. - Power Vs. Temperature Derating Curve
40
35

~

30

~

>;
z

0

~

iii

"

"'r-..

20

<5
~

~

,t

15

.......

I'....

i'--

10

20

40

80

100

Te CASE TEMPERATUAI::

UNITROOE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

4-302

""
(oC)

120

.......

"

140

PRINTED IN USA

UFNF430 UFNF431

Fig. 15 - Clamped Inductive Test Circuit

UFNF432 UFNF433

II

Fig. 16 - Clamped Inductive Waveforms
Eo

VARY Ip TO OBTAIN

VGS.R

REQUIRED PEAK Il
OUT

'l+---t>---......JV<. iOlon) x

r--- ROS(on) max.

TJ "I 125'1'------ rJ V
T'I""'I'------ If) fY

I--

TJ=-5501~

'I'

,l-r I--

- - -- -- -

/I

f---

.v- I--

~

-+

I-' V - I--

10
10
3lJ
40
Vas. ORAIN TO SOURCE VOLTAGE (VOL IS)

l..d ~
2
4
•
VGS. GATE·TO·SOURCE YOL TAGE (YOLTS)

50

Fig. 3 - Typical Saturation Characteristics

,.
80/.ljpULSE1TEST

1/,
D'/

~

50

20

- UFNI20, 1

OPERATION IN THIS
AREA IS LIMITED
BY ROS(on}

-tTlh

I

lOti

1\

= UFN120. 1

1001-1$

FN122,3

VGS=6V--

,VII. /"

J. ~

)V

\0

Fig. 4 - Maximum Safe Operating Area
100

--

- f1iY~ ,.....
7/9V8V .J~
/, ';:/1

rJ/

fI,v

I--

!"

I
I

-RthJC" 312 K/W
2 _ISINGlE PULSE ,,_

I
'Y

oI

10

4

Vas. DRAIN TO SOURCE VOLTAGE \VOL IS)

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

10ms
lOOms

_ TC=25 0C

=TJ -150'C MAX

I - -'i

t-

1m,

10

DC

U~N\20, 2

UFN121 3
20

50

100

200

500

VOS. ORAIN TO SOURCE VOLTAGE (VOLTS)

4·306

PRINTED IN USA

UFN120

UFN121

UFN122

UFN123

Fig. 5 - Maximum Effective Transient Thermal Impedance, Junction·to·Cas. Vs. Pulse Duration
[

•

[
0-0.5
NOTES

mIL

f-b.2
f-0.1

~

=0.05
-0.02

...,

;;;0.01

~2~

iii~

1 DUTY FACTOR, 0;

SINGLE PULSE ITRANSIENT

~~

2. PER UNIT BASE'" RthJC:' 3.12 OEG. elW.

THERMAL IMPEDANCE}

3. TJM-TC",POMZthJCItl
10-3

10

1.0
11. SQUARE WAVE PULSE DURATION (SECONDS)

Fig. 6 - Typical Transconductance Vs. Drain Current

Fig. 7 - Typical Source·Drain Diode Forward Voltage

~ b-== =

TJ -s50

~

/'

l/ L

r/

,'I
/I

V-

.."
,,/

--

I

g

102

~'25h =
~ -T
TJ! 125 1

TJ"Z5 0C

I

..... ~

I

0

~

10

-TJ,,500 C

Vas> 'Olon»)( ROS(on) max.
8Oj,PUlSjTEST

16

12

10

I

7

2
1.0

TJ::-,500 C_

~

z

~

~

I

TJ"'25 0 C

I
o

'D. DRAIN CURRENT 1AMPERES)

VSD. SOURCE·TO-DRAIN VOLTAGE (VOL IS)

Fig. 8 - Breakdown Voltage Vs. Temperature

Fig. 9 - Normalized On·Resistance VI. Temperature
2.2

1.25
w

c:~

u

1.15

>

.."

!
"

~ 'S 1.06

., "..

Ww

"'N

:~

~!

~~ 0,95

z

!

~

0.85

"..

~

~

1.8

z

CIS 1.4
Ww

V

~~

~:
~~ 1.0

l...,..o-' "".

""

/'

..

6

0,6

40
80
120
TJ. JUNCTION TEMPERATURE (OCI

UNITROOE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

160

./

V"

,/

~

i:
0.75
-40

/~

~

",

/'

",.

r

VGS'10V

V

0.2
-40

40

3A

80

I -

r-120

TJ,JUNCTION TEMPERATURE fOCI

4·307

PRINTED IN U S.A

UFN120 UFN121

Fig. 11 - Typical Gate Charge V•. Gate-to-Source Voltage

Fig. 10 - Typical Capacitance V,. Drain-to-Source Voltage
1000

I .l

20

J

Vas :0

I

800

\

'z"'

;5

"~

:t

III

'~

\

400

~

-

eoes '"' Cds+ CC,+~gd

gIf

"'"""

-

'IIIICds+Cgd

-'""~ I--

C;"

w

~

~

~

J'"

\

V
50

0"

-

.......

I-- VGS' IOV

0

w

D.•

t

~

0.2

12
TOTAL GATE CHARGE ("CI

16

20

Fig. 13 - Maximum Drain Current Vs. Case Temperature

z

~

10 -IDA
FOR TEST CIRCUIT
SIEE F'iURE 18
1

J

~
~

~

II

5

I

w

'"'

V

10

I
"~
:=z

~

>

0.8

0.6

10

....

Fig. 12 - Typical On-Resistance V,. Drain Current

~

VOS • BOV,

f--

"
6c-

10
20
30
40
VOS' ORAIN·TO·SOURCE VOLTAGE (VOLTSI

'z"'

UFN1~, 122 ~ ~
VOS·50V

0

I

\

VO~20V

15

~

I
C,,,

I\..

u"

200

J

f,'IMH,'1

C,• • CIII + CgIf. Cd. SHORTED C", • CgIf

~ 600
w

UFN122 UFN123

-f-- '"

-~OS(onl

J

..........
.......... f....

:::

UFNI20, 121
..........

UFNI22, 123

........ ~

r-....: "'-

1/

-

~

'" ,
I\.

f.--C20V

~

IF __ -

MEASURED WITH CURREJ PULSE
2.0,us DURATION. INITIAL TJ '" 25°C (HEATING
EFFECT OF 2.0 IJS PULSE IS MJNIMAL.)

10

20

o

40

30

25

50

15

100

125

150

Te. CASE TEMPERATURE (DC)

10, DRAIN CURRENT (AMPERES)

Fig. 14 - Power V,. Temperature Derating Curve
40

'\

35

30

i
z

25

~

20

\.
\.

"\

0

illQ

I\.

'\

~

~

15

\.

~

~

10

20

40

60

80

100

Te. CASE TEMPERATURE (OC)

UNITROOE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

4-308

'"

120

i"\
140

PRINTED IN U.S.A

UFN120

UFN121

UFN122

UFN123

•

Fig. 16 - Clamped Inductive Waveforms

Fig. 15 - Clamped Inductive Test Circuit
VARY tp TO OBTAIN
REQUIRED PEAK IL

VOS·R

'l---<)---<~""'--'

Fig. 17 - Switching Time Test Circuit

PULSE
GENERATOR

r-----..,
I
I
I

L_

son

Fig. 18 - Gate Charge Test Circuit
+Vos
(ISOLATED
SUPPLY)

-

I"::']}.S rnA

o

--'\iI\l'Ir-.....-'II'I!\__-<>

'.

CURRENT
SHUNT

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEl. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

4·309

-VOS

10

"':

CURRENT
SHUNT

PRINTED IN U.S.A.

UFN130
UFN131
UFN132
UFN133

POWER MOSFET TRANSISTORS
100 Volt, 0.18 Ohm

N-Channel

FEATURES

DESCRIPTION

•
•
•
•
•

The Unitrode power MOSFET design utilizes the most advanced technology available.
This efficient design achieves a very low Roslanl and a high transconductance.

Fast Switching
Low Drive Current
Ease of Paralleling
No Second Breakdown
Excellent Temperature Stability

The Unitrode power MOSFET features all of the advantages of MOS technology such as
voltage control, freedom from second breakdown, very fast switching speeds, and
thermal stability.
These power MOSFETS are ideally suited for many high-speed, high-power switching
applications such as switching power supplies, motor controls, and wide-band and
audio amplifiers.

PRODUCT SUMMARY

Part Number

VDS

RDS(on)

ID

UFN130
UFN131
UFN132
UFN133

lOOV
60V
100V
60V

0.18n
0.18n
0.25n
0.25n

14A
14A
12A
12A

MECHANICAL SPECIFICATIONS
UFN130 UFN131 UFN132 UFN133

TO-204AA (TO-3)

2222{0875)

"'f~·AXDIA~~
SEATING

T

PLANE

a; IS til --H-OIA

TWO PLACES

1016(040) MIN

TWO PLACES

H!I~mIO'A

TWO PLACES

DRAIN

(CASEI
SOURCE

16~~IK:;glt
f

MEASURED AT SEATING PLANE

Dimensions in Millimeters and (Inches)

4/83

4-310

~UNITRDDE

UFN130 UFN131

UFN132

UFN133

ABSOLUTE MAXIMUM RATINGS
UFNl30

UFN131

UFNl32

UFNl33

Units

Vas

Orain • Source Voltage (j)

100

60

100

60

V

VOGR
10@TC=25°C

Drain· Gate Voltage (RGS - 1 Mil) (j)

100

60

100

60

V

Continuous Drain Current

14

14

12

12

A

10@TC = 100°C Continuous Drain Current
Pulsed Drain Current @
10M

9.0

9.0

8.0

8.0

A

56

56

48

48

Parameter

VGS
PO@TC=25°C

Gate ~ Source Voltage
Max. Power Dissipation
Linear Derating Factor

I

56

75

(See Fig. 14)

0.6

(See Fig. 14)

(See Fig. 15 and 16) L = 100"H
56
I
48

Inductive Current, Clamped

ILM

Operating Junction and

TJ
Tstg

A
V

±20

J

A

48

-55to 150

°C

300 (0.063 in. (1.6mm) from case for lOs)

°C

Storage Temperature Range
Lead Temperature

W
WIK

ELECTRICAL CHARACTERISTICS@Te= 25°C (Unless otherwise specified)
Parameter

8VOSS Drain - Source Breakdown Voltage

Type

Min.

Typ.

Max.

Units

UFNl30
UFN132

100

-

-

V

UFN131
UFNl33

10 = 250"A
Vas - VGS' 10 = 250"A

60

-

-

V

V GS(tltl Gate Threshold Voltage
Gate-Source Leakage Forward
IGSS

ALL

2.0

4.0

V

ALL

IGSS

Gate-Source Leakage Reverse

ALL

-

lOSS

Zero Gate Voltage Drain Current

-

-

-

UFNl30
UFN131

10(on)

®

ROS(on) Static Orain·Source On·State
Resistance

®

®

VGS = OV

100

nA

VGS = 20V

-100

nA

VGS - ·20V

250

VOS = Ma •. Rating, VGS = OV

-

"A

1000

"A

VOS - Ma •. Rating. 0.8, VGS = OV, TC - 125°C

14

-

-

A

UFN132
UFN133

12

-

-

A

UFN130
UFN131

-

0.14

0.18

0

UFN132
UFN133

-

0.20

0.25

0

ALL

4.0

5.5

-

Sill)

ALL

-

600

800

pF

300

500

pF

100

150

pF

ALL
On·State Drain Current

Test Conditions

VOS > 10(onl' ROS(on) ma •. ' V GS = 10V

VGS = 10V, 10 = 8.0A

gfs

Forward Transconductance

Ciss

Input Capacitance

Coss
C rss

Output Capacitance

ALL

Reverse Transfer Capacitance

ALL

tdlonl
tr

TurnMOn Delay Time

ALL

-

Rise Time

ALL

-

tdloffi
tf

Turn·Olf Oelay TIme

ALL

Fall Time

ALL

Qg

Total Gate Charge
(GateMSource Plus Gate-Drain)

-

30

ns

75

ns

-

-

40

ns

-

-

45

ns

ALL

-

18

30

nC

vas> 10(onl' "as (on) ma •. ' 10 • 8.0A
VGS = OV, Vas = 25V, I = 1.0 MHz
See Fig. 10
VOO = 36V, 10 - 8.0A, Zo
See Fig. 17

= 150

(MOSFET switching times are essentially
independent of operating temperature.)

V GS - 10V, 10 = 18A, Vas = 0.8 Ma •. Rating.
See Fig. 18 for test circuit. (Gate charge is essentially
independent of operating temperature.)

Qgs

Gate-Source Charge

ALL

-

9.0

-

nC

Qgd

Gate·Orain ("Miller"l Charge

ALL

-

9.0

-

nC

La

Internal Drain Inductance

ALL

-

5.0

-

nH

Measured between
the contact screw on
header that is closer to
source and gate pins
and center of die .

LS

Internal Source Inductanqe

ALL

-

12.5

-

nH

Measured from the
source pin, 6 mm
(0.25 in.) Irom header
and source bonding
pad.

Modilied MOSFET
symbol showing the
internal device
inductances.

.@)

~

THERMAL RESISTANCE
RthJC

Junction·to·Case

RthCS

Case·to·Sink

Mounting surface flat, smooth, and greased.

RthJA

Junction·to·Ambient

Free Air Operation

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173· TEL. (617) 861-6540
TWX (710) 326·6509 • TELEX 95·1064

4·311

PRINTED IN U.S.A

•

UFN130

UFN131

UFN132 UFN133

SOURCE·DRAIN DIODE RATINGS AND CHARACTERISTICS
IS

ISM

VSD

Continuous Source Current
(Body Diode)

-

-

14

A

UFN132
UFNl33

-

-

12

A

UFNl30
UFN131

-

-

56

A

UFN132
UFN133

-

-

48

A

UFN130
UFN131

-

-

2.5

V

TC = 25°C.IS = 14A. VGS = OV

UFN132
UFN133

-

-

2.3

V

TC = 25°C.IS = 12A. VGS = OV

360

-

ns

T J - 150°C.I F - 14A. dlF/dt - 100A/~s
T J - 150·C. IF - 14A. dlF/dt - 1 OOA/~s

Pulse Source Current
(Body Diode) @

Diode Forward Voltage @

Modified MOSFET symbol
showIng the Integral
reverse P-N Junction rectifier.

UFNI30
UFN131

~

trr

Reverse Recovery Time

ALL

QRR

Reverse Recovered Charge

ALL

-

ton

Forward Turn-on Time

ALL

Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by LS + LO-

2.1

~C

@PulseTest: Pulse width'; 300~s. Duty Cycle'; 2%.

@ Repetitive Rating: Pulse Width limited
by max. Junction temperature.
See Transient Thermal Impedance Curve (Fig. 5).

Fig. 2 - Typical Transfer Characteristics

Fig. 1 - Typical Output Characteristics
20

20
IOVya:V

16

sliJspulsETEJT_ r-16

VGso6V=

I

=

//,
l(Jf

1- -

,~-

fA/

TJ" +125 0C

; i TJ0 25 0 C
rJo j55 0 C

-

10
20
30
'0
Vas. DRAIN TO SOURCE VOLTAGE (VOLTS)

--::: fJl

0 ,'I

Fig. 4 - Maximum Safe Operating Area
100

80 ""PU LSE TEST

&

10JI

9~'-......, --.........

8

8V'-......,

~ /'[

so

./

!

~ jI ~(
~~ /

~ '/

Ih Y

_J
.........

~

~

~

f-

10~s

I I

I'

100~s

FUFNl32.3

10

1 ms

=
~

101m.
100 ms
10

0.5

DC

~rco250C
~TJ" 1500C MAX

r-

RthJC - 1 67 K/W
02 r-IS1NGlE PULSE

12

°

16

o1

10

20

Vas, DRAIN TO SOURCE VOLTAGE (VOltS)

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

['
~,

"uz

i 'I
08

r-~F~lJ. 1~

z

E

GS

04

.

UFNl32.3

20

"...."

A~ : /

2

OPERATION IN THIS
ARE~~UMITED BY ROS(on)

1= UFNl30. 1

~

01/,/

10

vGS, GATE}O.SOURCE VOL TAGE (VOLTS)

Fig. 3 - Typical Saturation .Characteristics

10

"
"
J
/I

5

V

1/

~ax.

VOS> 1010n) x ROS(on)

I{

V-

~Oj.lSPU!lSETE~T

-

I
7V

f-

UFN131.3

I

11111
10

20

UFNl30.2

II
50

I
100

I
200

500

VOS. DRAIN TO SOURCE VOLTAGE (VOLTS)

4-312

PRINTED IN U.S A

UFN130 UFN131

UFN132

UFN133

Fig.5 - Maximum Effective Transient Thermal Impedance. Junction·to-Case Vs. Pulse Duration

I

•

1
O' 0.5
NOTES,

mIL

1-0.2
0.1

~2~

0.05
=0.02=
~~.o!,;..

I

:~

SINGLE PULSE (TRANSIENT

1 DUTV FACTOR, 0"

mrMA~ '~PEOfN~E\ I I

2 PER UNIT BASE' R"JC • 1.61 OE6. ClW.
3 TJM - TC • POM ZthJell).

jIlL
10-2

10-3

1.0

10

t"SOUARE WAVE PULSE DURATION (SECONDS)

Fig. 6 - Typical Transconductance Vs. Drain Current

Fig. 7 - Typical Sourca-Drain Diode Forward Voltage

10

-

~~

,

U

TJ;; 25 0 C

...'z"

~"5,l

I-

ij

~,;;

TJ;-550C

102

~

~
~
~

u

z

TJ;; 125°C

~w

V
Vas> lo(on) II ROS(on)

10

15

10. DRAIN CURRENT (AMPERESI

=

!SOOC

"1

~

I
10

"

10

TJ

~

BO(IPUljETESI

V

:'-TJ" 1500C

//

10

>

max.

"""

./

w

I I

TJ',50C

o
Vso. SOURCE·Ta-DRAIN VOLTAGE (VOLTS)

Fig.8 - Breakdown Voltage Vs. Temperature

Fig. 9 - Normalized On-Resistance VI. Temperature
22

12 5

5

",

5

."

/

....... "
/

.... " ,
./

./

V

./

5",

V

V

I

5

0) 5
-40

V

40

80

120

VGS"OV _

'r

6A

-

I

2

160

-40

TJ. JUNCTION TEMPERATURE (DC)

UNITROOE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

06

/'

40

80

120

TJ. JUNCTION TEMPERATURE (DC)

4-313

PRINTED IN USA

UFN130 UFN131

Fig. 10 - Typical Capacitance Vs. Drain·to·Source Voltage
2000

II

.

~

~Gs·J

~

~
w

t-..

400

\ ~

'"=>

20

~~

10

~
:;;
I;;

I

~

/

>

30

H

I

C~a

10

10-18A

FOR TEST CIRCUIT

V

40

50

16

32

40

Fig. 13 - Maximum Drain Current Vs. Case Temperature
20

ROSILa MEASUIRED WITH 1CURRENi PULSE
2.0 JIS

0.5

24

0,. TOTAL GATE CHARGE (o,CI

Fig. 12 - Typical On-Resistance Vs. Drain Current
0.6

w
u

f--

TFITEIi

Vos. ORAIN·TO·SOURCE VOLTAGE IVOLTSI

IS!

UFN1~.I32~ ~ r
VOS-50V

VOS -BIN.

~

u

L

r--

\

I~

f-- -

>

C!a

\

VOS' 20V
15

'"

-

I

800

U

~

-

+c...
~

"Cds+Cgot

z

~

20

.l .1
Cp~Cgd.t.SHORTEO_

c.· Cell·
1200

Fig. 11 - Typical Gate Charge Vs. Gate-to-Source Voltage

1-1MH •

Cia •
C. . . cgd

1800

UFN132 UFN133

r-

o~

URATION. INITIAL TJ = 25°C. (HEATING

EFFECT OF 2.0

I'" PULSE IS MINIMAL.l

16

-

Z

~

~

0.4

0

w
u

'"=>

0.2

0

g

~

0.1

VGS -

20

-r--..... ["'.. ......

---

~

30

:--...: ~

r

~

40

~

.,

ov

o
10

......... ~FNI30.131
UFNI32.133

_V

-

i'-j"-.... ........

)

0

~

-

0.3

6

:i;

.....

V~ -10V

z

50

50

25

60

10 , DRAIN CURRENT (AMPERES)

100
15
TC. CASE TEMPERATURE 10C)

m

150

Fig. 14 - Power Vs. Temperature Derating Curve
80

10

- I'\.

'\

I\.
'\f\.

'\

'\

0

I'" i\.

0

0

i\
20

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

40

60

80
100
Te. CASE TEMPERATURE (OCI

4-314

120

140

PRINTED IN U.S A.

UFN130 UFN131 UFN132 UFN133

II
Fig. 15 - Clamped Inductive Test Circuit

Fig. 16 - Clamped Inductive Waveforms

VARY Ip TO OBTAIN
REQUIRED PEAK Il

VGSOR

Il+---<>---~"M.-J

Fig. 17 - Switching Time Test Circuit

PRF'" 1 kHz

v,

tp'Olj.1s

V,

_ . r - - - r TO SCOPE

r------,
I

I
I
IL_
20V

z,

I
I

Zo

_ __ ...II

ISS?

Fig. 18 - Gate Charge Test Circuit
+Vos
(ISOLATED
SUPPLY)

-

0~1.5mA

--'\J'V'Ir"....-'V'I/\,--o -VOS
IG
CURRENT
SHUNT

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

4-315

10
CURRENT
SHUNT

PRINTED IN U.S A

UFN140
UFN141
UFN142
UFN143

POWER MOSFET TRANSISTORS
100 Volt, 0.085 Ohm
N-Channel

FEATURES

DESCRIPTION

•
•
•
•
•

The Unitrode power MOSFET design utilizes the most advanced technology available.
This efficient design achieves a very low ROS 10(on) x
ROS(on) max.

II

6~

I

10

s~

.-!!.~

4~
10
20
30
40
VOS, ORA1N·TO·SOURCE VOLTAGE IVOLTS!"

50

4

II

"

10

VGS. GATE·TO.sOURCE VOLTAGE IVOLTSI

Fig, 3 - Typical Saturation Characteristics

Fig. 4 - Maximum Safe Operating Area
1000

50
10V

40

I--80LpuJETESJ

~

!Ii

s

"-/V

30

20

~

E
10

- -

~~

",

if
,
~~I

!-7V

- rI--

VGS-6V

5Vr4V

AREA IS LIMITED

~
~

"S>-

-

UFNl40,l
100
UFN142.3
50

lO,us

z
w

UFNl40.1

lOj/J.S_

~
~

w

20 -

UFN142, 3

z

~

10

1 ~,

II

=

='TC=25 0 C

Eo

TJ - 150'C MAX ~
'--- R1hJC -1 0 KIW

t--

- SINGLE PULSE lit

I-- t - -

"

I--

200

I

10
10

Vas. DRAIN-lO·SOURCE VOLTAGE (VOLTS)

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEl. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

OPERATION IN THIS

BY ROSlon)

i,...oo"

'l "

f=

SOO

f--

I;BV

>-

I.,

'9V'

I I IIII
10

IOms

1'1'_

10

UFN141.3
UFN140.2
20

DC
50

100

200

500

Vos. 0 RAIN TO SOU ACE VOLTAGE (VO l lS)

4·318

PRINTED IN U S.A

UFN140 UFN141

UFN142 UFN143

Fig. 5 - Maximum Effective Transient Thermal Impedance, Junction·to-Case Vs. Pulse Duration

...z

I

w

iii

;L

......
wz

1.0

>~

U

05

oZ 0.'
w 10(on) x ROS(on) max

3

TJ" 1500C

,0

30

411

J II 1

I I

0

50

II
TJ=25 0C

2

10

rz

I

5

rj

V

04

10. DRAIN CURRENT (AMPERES)

1.2

0.8

1.6

2.0

Vso. SOURCE·TQ·DRAIN VOLTAGE (VOL IS)

Fig. 8 - Breakdown Voltage Vs. Temperature

Fig. 9 - Normalized On-Resistance Vs. Temperature

,.

1.2 5

5

w

~
Q

1.1 5

0

>

V I---"

5

5

1/1"

5

V~

V

V

I---

V

0

.-

5

0.1

•

-40

!
o

40

80

120

UNITRODE CORPORATION' 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

-40

4-319

.......

L

V
VGS·1OV

ID~ 18.1.

o. 5

0

160

TJ,JUNCTION TEMPERATURE (OC)

~

....V

o

40
80
120
TJ, JUNCTION TEMPERATURE (OC)

160

PRINTED IN U.S A

UFN140 UFN141

Fig. 10 - Typical Capacitance Vs. Drain·to·Source Voltage

UFN142 UFN143

Fig. 11 - Typical Gate Charge Vs. Gate·to·Source Voltage

2000
Cia =c. + Cgd. Cds SHORTED
VG; -OV
- C ... ·Cgd
f"'lMHz

~

1600

Coa"'CdS+~
.. ' gd

\"'"" ......
\

20

-

-

II:IC.+C_
COl

VOS'30~~

5

r----

'~.~
~

I

~

o VOS' SOV. UFN1~. 142

I\,

......... too..

-,c'"

\

400

L

i'.
w

I-

-

~

~

~

IO-34A
FOR TEST CIRCUITSi E FIGUtE 18

1

I

II

I
ro

~

J

5

M

%

~

20

Vos. ORAIN·TO·SOURCE VOLTAGE (VOLTS)

Fig. 12 - Typical On·Resistance Vs. Drain Current

80

60

Fig. 13 - Maximum Drein Current Vs. Case Temperature
30

O.3
Rgs(oni MEASURE10 WITH Cu'RRENT pulsE OF
2... au RATION. INITIAL TJ' 250C. (HEATING

r---

I- EFFECT OF 2.0 .. PULSE IS MINIMAL.)

24

u

~~

40

Qg. TOTAL GATE CHARGE (nCI

j ,

o.2

i""'o i'..

.......

~

r-..... ......... r-....

i'-- l '

il!

z

~

18

...z

VGS l.ov

o

'"'"=>

)

.1

-I--'
20

u

z 12

40

~

-

V

80

~

o

~

9

~"'20V

60

UFNI40,141

UFNI42,~ ~
.......

w

~
~

~

0
25

120

100

so

75
100
TC, CASE TEMPERATURE (OCr

10. ORAIN CURRENT (AMPE~ES)

125

150

Fig. 14 - Powe, Vs. Temperature Derating Curve
1~

12O~

~

"'

r\.

0

"'

~

"'-

0

"' ,
"' ,

a
0

~

.......

20

UNITROOE CORPORATION. 5 FORBES ROAO
LEXINGTON. MA 02173 • TEL. (617) 861-6540
TWX (710) 326·6509 • TELEX 95·1064

~

BO

80
100
TC. CASE TEMPERATURE (OC)

4·320

120

140

PRINTED IN U.S.A

UFN140 UFN141

UFN142

UFN143

Fig. 16 - Clamped Inductive Waveforms

Fig. 15 - Clamped Inductive Test Circuit

•

VARY tp TO OBTAIN
REQUIREO PEAK IL
VGS-R

vO_UT-......r:"
IL4_--<>----4......_.....J

Fig. 17 - Switching Time Test Circuit
30V

ADJUST RlTO OBTAIN

Jon

SPECIFIED '0

Vos

r;U~ -

-

I GENERATOR

1.--___-o-__

-C...

-lI,.j--,:K 0 U.T

;J~RCE n I
I IMPEDANCE
L ___ J

Fig. 18 - Gate Charge Test Circuit
+Vas
(ISOLATED
SUPPLY)

12V
BATTERY

-

O~·5mA

-..I\i'V'v---t-'VI/\,--<> ·VOS
IG
CURRENT
SHUNT

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

4·321

[0
CURRENT
SHUNT

PRINTED IN U.S.A

UFN150
UFN151
UFN152
UFN153

POWER MOSFET TRANSISTORS
100 Volt, 0.055 Ohm
N-Channel

FEATURES

DESCRIPTION

•
•
•
•
•

The Unitrode power MOSFET design utili~es the most advanced technology available.
This efficient design achieves a very low RDs.an) and a high transconductance.

Fast Switching
Low Drive Current
Ease of Paralleling
No Second Breakdown
Excellent Temperature Stability

The Unitrode power MOSFET features all of the advantages of MOS technology such as
voltage control, freedom from second breakdown, very fast switching speeds, and
thermal stability.
These power MOSFETS are ideally suited for many high-speed, high-power switching
applications such as switching power supplies, motor controls, and wide-band and
audio amplifiers.

PRODUCT SUMMARY

Part Number

VDS

RDS(an)

ID

UFN150
UFN151
UFN152
UFN153

100V
60V
100V
60V

0.0550
0.0550
0.080
0.080

40A
40A
33A
33A

MECHANICAL SPECIFICATIONS
UFN150 UFN151 UFN152 UFN153

TO·204AE (TO·3 mDCIified)

222210.8151

.",'~
...L I~/:~ITfi
ttEATING
=+LANE

T

~:I~.=~:OIA
-i
TWO PLACES

l~a:~:I~1

TWO PLACES

2661
(1 0501 MAX

;·=I:·t~U OIA
TWO PLACES

DRAIN
(CASE)

1~~~l~:~~lf
t MEASURED AT SEATING PLANE

Dimensions in MlIItmeters and IInches)

4/83

4-322

~UNITRDDE

UFN150 UFN151

UFN152 UFN153

ABSOLUTE MAXIMUM RATINGS
UFNl50

UFN151

UFN152

UFNl53

Units

VOS

Drain - Source Voltage (j)

100

60

100

60

V

VOGR
10@TC = 25°C

Drain - Gate Voltage IRGS = 1 MOl (j)

100

60

100

60

V

Continuous Drain Current

40

40

33

33

A

'O@TC = 100°C Continuous Drain Current

25

25

20

20

A

160

160

132

132

A

Parameter

10M

Pulsed Drain Current @

VGS
PO@TC= 25°C

Gate - Source Voltage
Max. Power Dissipation
Unear Derating Factor

'LM

Inductive Current, Clamped

TJ
T stg

Operating Junction and

ISee Fig. 14)

W

1.2

ISee Fig. 14)

W/K

(See Fig. 15 and 161 L - 1OO~H
160
I
132

Drain - Source Breakdown Voltage

VGSlthl Gate Threshold Voltage

-55to 150

°C

300 (0.063 in. 11.6mml from case for lOs)

°C

Type

Min.

Typ.

Max.

Units

UFN1S0
UFN152

100

-

-

V

UFN15l
UFN153

60

-

-

V

10 = 250~A

ALL

2.0

4.0

V

VOS - VGS, '0 - 250~A

-

-

100

nA

VGS = 20V

-100

nA

VGS = ·20V

250

~A

VOS - Max. Rating, VGS - OV

1000

~A

VOS = Max. RatingxO.S, VGS = OV, TC = 125'C

UFN150
UFN151

40

-

-

A

UFN152
UFN153

33

-

-

A

UFN150
UFN151

-

0.045 0.055

UFN152
UFN153

-

0.06

IGSS

Gate-Source Leakage Forward

ALL

'GSS

Gate-Source leakage Reverse

ALL

lOSS

Zero Gate Voltage Drain Current

ALL
On-State Drain Current

®

ROS(on) Static Drain-Source On-State
Resistance

A

132

I

=25'C (Unless otherwise specified)

Parameter

1010ni

150

Storage Temperature Range
Lead Temperature

BVOSS

I

160

ELECTRICAL CHARACTERISTICS @ Te

V

±20

®

®

Test Conditions

VGS = OV

VOS

>'Olon) x ROSlon) max.' V GS

= 10V

!l

VGS = 10V, 10 = 20A
0.08

!l

> Dian) x

gfs

Forward Transconductance

ALL

9.0

11

-

SIUl

Ciss

Input Capacitance

ALL

-

2000

3000

pF

Coss

Output Capacitance

ALL

1500

pF

Reverse Transfer Capacitance

ALL

-

1000

Crss

350

500

pF

tdlonl
tr

Turn·On Delay Time

ALL

-

-

35

ns

VOO = 24V, '0 = 20A, Zo = 4.70

Rise Time

ALL

-

100

ns

See Figure 17.

tdloffl
tf

Turn-Off Delay Time

ALL

-

125

ns

Fall Time

ALL

-

-

100

ns

(MOSFET switching times are essentially
independent of operating temperature.)

Qg

Total Gate Charge

ALL

-

63

120

nC

(Gate-Source Plus Gate-Drain)

Qgs

Gate-Source Charge

ALL

-

27

-

nC

Qgd

Gate-Drain I" Miller") Charge

ALL

-

36

-

nC

LO

Internal Drain Inductance

ALL

-

5.0

-

nH

VOS

OSlon) max.' '0 - 20A

VGS = OV, VOS = 25V, f = 1.0 MHz
See Fig. 10

V GS = 10V, '0 = 50A, VOS = 0.8 Max. Rating.
See Fig. 18 for test circuit. (Gate charge is essentially
independent of operating temperature.)

Measured betwee.n

the contact screw on
header that is closer to

source and gate pins
and center of die.
LS

Internal Source Inductance

ALL

-

12.5

-

nH

Measured from the

source pin. 6 mm
10.25 in.l from header
and source bonding
pad.

Modified MOSFET
symbol showing the
internal device
inductances.

$

THERMAL RESISTANCE
RthJC
RthCS

Case·to·Sink

Mounting surface flat, smooth, and greased.

RthJA

Junction-te-Ambient

Free Air Operation

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

4-323

PRINTED IN U.S.A.

•

UFN150 UFN151

UFN152 UFN153

SOURCE·DRAIN DIODE RATINGS AND CHARACTERISTICS
IS

ISM

VSD

Continuous Source Current
(Body Diode)

Pulse Source Current
. (Body Diode) @

®

Diode Forward Voltage

UFN150
UFN151

-

-

40

.A

UFN152
UFN153

-

-

33

A

UFN150
UFN151

-

-

160

.A

UFN152
UFN153

-

-

132

A

UFN150
UFN151

-

-

2.5

V

Modified MOSFET symbol

showing the integral
reverse P-N junction rectifier.

~
TC = 25°C, IS = 40A, VGS = OV

UFN152
UFN153

-

-

2.3

V

TC = 25°C, IS = 33A, VGS.= OV

600

-

ns

T J = l50·C,I F - 40A, dlF/dt = 100All's

3.3

-

I'C

T J - l50·C, IF = 40A, dlF/dt = 100A/I's

t"
QRR

Reverse Recovery Time

ALL

Reverse Recovered Charge

ALL

-

ton

Forward Turn-on Time

ALL

Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by LS

+ LO'

@ Repetitive Rating: Pulse width limited

®Pulse Test: Pulse width .. 300l'S, Duty Cycle" 2%.


10(on) x RDSlonl max.

~
50

VGS. GATE·TO-SOURCE VOLTAGE (VOLTS)

Fig. 3 - TVpical Saturation Characteristics

Fig. 4 - Maximum Safe Operating Area
1000

20
VGS=

l~Vf/

IX?,

16

BJ}lSPUl~ETESJ _

/

III,I(

~ f'lL" i--""'

500

200

UFNl50.1

0.8

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

10",
100~=

1 m.

}JFNI52,3

II I I
=TC·2S'C
::: TJ' IS0'C MAX.
::: RthJC • 0.83 KfW

"

10lms
lOOms

=

I
y

12
16
Vos. DRA1N·TO-SOURCE VOL rAGE (VOLlS)
0.4

"

UFNl52,3

,/'

t~

If-

UFN150,1

,....

!IJ /6t
if// I
1/ st

~

OPERATION IN THIS
AREA IS LIMITED
BY RDSlon)

~'rGL~ pmEl1

1.0
1.0

20

JJI

UFN151, 3
10

20

50

DC
UFNl50,2
100

200

500

VOS. DRAIN·TO·SOURCE VOLTAGE IVOLTS)

4·324

PRINTED IN U.S.A

UFN150 UFN151

UFN152 UFN153

Fig. 5 - Maximum Effective Transient Thermal Impedance, Junction·to·Case Vs. Pulse Duration

i

I

:L
wz
>:>

n

1.0

~I-

0'0.6

0.6

S~ 0.2

..::ilf=

NOTES

f--~l

2~~ 0.0

"w

:t~

~2~
*"

5 "-0.01

~

0.02

J

0.0 1

II

ELJL

"-0.1

;~ O. lb~.06
=<
0.02

1 DUTY FACTOR, 0 '"

SINGLE PULSE ITRANS1ENT
THERMAL IMPEDANCE} }

I I

1111111

3. TJM - TC' PDM Z'hJCh}

1

w3

10-5

2. PER UNIT BASE' R,hJC' 0.83 DEG. CIW.

2
5
10-2
2
5
10-1
'1. SQUARE WAVE PULSE DURATION ISECONDS}

Fig. 6 - Typical Transconductance Vs. Drain Current

1.0

10

Fig. 7 - Typical Source-Drain Diode Forward Voltage

20
~~

C=

TJ=ls5 0C f;:;;:;
J..- ~

16

k V
/. V': V

+-

TJ"'2S oC

-

t::::::=:

.I

ill
TJ=l~

J.~ V
~

J.V
III

TJ'150D~

TJ",;.1250C-

I--""'"

~

TJ=25 0 C

TJ'" 25 0 C

iDS> 'Dlan} , RDSIOf

I

I

I

rJlSPUjSETEr

'f

10

20

30

40

1.0

50

°

'0. DRAIN CURRENT (AMPERES)

Fig. 8 - Breakdown Voltage V•. Temperature

1
2
3
VSO. SOURCE·TO·ORAIN VOLTAGE IVOLTS)

Fig. 9 - Normalized On·Resistance Vs. Temperature
2.2

1.2 5

~=

8
11 5

>

~
=
~~ 1.06

. /~

eN

=::;
w<

:If

~~

ez

~

~

0.96",.-

~

.......

."... I---

V

4

V

I-'"
./

°
!

~

0.85

,..

,...... .."

....V
VGS·'0V
10·14A -

o.6

I

~

07 5
-40

40

80

120

0.2

160

TJ, JUNCTION TEMPERATURE (OC)

UNITRODE CORPORATION· 5 FORBES ROAD
LEXI NGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326-6509 • TELEX 95·1064

-40

40

80

-

I
120

TJ, JUNCTION TEMPERATURE (DC)

4·325

PRINTED IN U.S A

UFN150 UFN151

3200

.i

2400

g

.

§

1800

I VG~ =

I egaI

\
,\

Cia ;

f'" ,I MHt

20

I I

-

+ Cgd. Cds SHORTED

Cgs cgd

u

~

=>

I

~

"I

'"

/
V

~

oss

_r
c",

~

I
10
20
30
40
VDS. DRAIN·TD·SDURCE VOLTAGE IVDLTSI

40

32
014

~

">-

~

5 24

~

:;

84

tl2

r--

.........

UFN152.

153~

w

~
~

~

z

1

0.06

002

-~

o

-

40

80

120

J\.

1'\.\

~

'\~

E

~~

-"v

16

,,

......
........

=>

:i;

J

140

~ ~N150.151

z

0.10

~

-

.........

i"""-- ........

~

1

VGS ", 10V

u

c

r--....

EFFECT OF 2 0" PUT IS MINIMAl.l

z

=>

.........

RDSlo;1 MEASURED WITH CURRENT P0LSE OF

z
c

56

'j

Fig. 13 - Maximum Drain Current Vs. Case Temperature

2.0~s DURATION INITIAL TJ '" 25°C (HEATING

w

In

28

SfE FIG1URE

0,. TOTAL GATE CHARGE I"CI

0.20

..

IO=50A

FOR TEST CIRCUIT

50

Fig. 12 - Typical On·Resistance Vs. Drain Current

i

u

'7
w

""'" C

~

~ 'f'

10

~

I

.........

.....

!:;
c
>

c,..

r-...

50
VDS=
I
I
r-VDS = 8OV. UFNl50.152

«
'"

j[t:Cds+Cgd

r" ~ ,

VD~=20L,

15

w

-

COli" CIk+ Cgs+cgd

\

~

-

era .. CgeI

l\\
1~

800

0

UFN153

Fig. 11 - Typical Gate Charge Vs. Gate·to..source Voltage

Fig. 10 - Typical Capacitance Vs. Drain·to·Source Voltage
4000

UFN152

'\
o

160

25

50

75

100

125

150

Te. CASE TEMPERATURE (OC)

10. DRAIN CURRENT (AMPERES)

Fig. 14 - Power Vs. Temperature Derating Curve

'\.

140

'\

\.

120

'\

S
'"

100

'\

z
c

i

80

w

~

60

.P

40

'\

iiiQ

~

20

zo

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON. MA 02173· TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

40

'"

80
100
Te. CASE TEMPERATURE (OC)
60

4-326

~

120

1\
140

PRINTED IN U.S A

UFN150

Fig. 15 - Clamped Inductive Test Circuit

UFN151

UFN152

UFN153

Fig. 16 - Clamped Inductive Waveforms

II

VARY tp TO OBTAIN

VGS.R

REDUIRED PEAK It
OUT

'l"'---<)---~"M..--I

Fig. 17 - Switching Time Test Circuit

VDS

r;U~ -

- -O-lr-__O-_-"~

I GENERATOR

I ig~RCE
IMPEDANCE

n

I

L ___ J

Fig. 18 - Gate Charge Test Circuit

+Vos
(ISOLATED
SUPPLY)

-

O~1.5mA

--"-N'\,........---'\IV\,---o -VDS
IG
10
CURRENT
SHUNT

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

4-327

CURRENT
SHUNT

PRINTED IN U.S.A

UFN220
UFN221
UFN222
UFN223

POWER MOSFET TRANSISTORS
200 Volt, 0.8 Ohm

N-Channel

FEATURES

DESCRIPTION

•
•
•
•
•

The Unitrode power MOSFET design utilizes the most advanced technology available.
This efficient design achieves a very low Roslon• and a high transconductance.

Fast Switching
Low Drive Current
Ease of Paralleling
No Second Breakdown
Excellent Temperature Stability

The Unitrode power MOSFET features all of the advantages of MOS technology such as
voltage control, freedom from second breakdown, very fast switching speeds, and
thermal stability.
These power MOSFETS are ideally suited for many high-speed, high-power switching
applications such as switching power supplies, motor controls, and wide-band and
audio amplifiers.

PRODUCT SUMMARY
Part Number

Vos

ROS(on)

10

UFN220
UFN221
UFN222
UFN223

200V
150V
200V
150V

0.80
0.80
1.20
1.20

5.0A
5.0A
4.0A
4.0A

MECHANICAL SPECIFICATIONS
UFN220 UFN221 UFN222 UFN223

TO-204AA (TO·3)

2222(08751

"13'f~·AX01A~~
SEATING

T

PLANE

J~lg:mID'A-l~

1016(0.401 MIN

TWO PLACES

TWO PLACES

2661
110!iOIMAX

;~:~I~aD'A

TWO PLACES

DIIAIN

(CASEI

SOURCE

1117(044Olt

mmmm

t MEASURED AT SEATING PLANE

Dimensions in Millimeters and (Inches)

4/83

4-328

~UNITRDDE

UFN220 UFN221

UFN222 UFN223

ABSOLUTE MAXIMUM RATINGS
UFN220

UFN221

UFN222

UFN223

Units

VOS

Drain - Source Voltage (1)

200

150

200

150

V

VOGR
10@TC - 25·C

Drain - Gate Voltage IRGS = 1 MOl (j)

200

150

200

150

V

Continuous Drain Current

5.0

5.0

4.0

4.0

A

10@TC = 100·C Continuous Drain Current

3.0

3.0

2.5

2.5

A

20

20

16

16

Parameter

10M

Pulsed Drain Current @

VGS

Gate - Source Voltage

PO@TC= 25°C

Max. Power Dissipation
Linear Derating Factor
Inductive Current, Clamped

ILM

I

20

40

ISee Fig. 141

W

0.32

ISee Fig. 141

W/K

ISee Fig. 15 and 161 L - l00I'H
20
I
16

Operating Junction and
Storage Temperature Range

TJ
TstA

A
V

±20

Lead Temperature

I

A

16

-50 to 150

°C

300 10.063 in. 11.6mml from case for 10s1

·C

ELECTRICAL CHARACTERISTICS @ TC = 25°C (Unless otherwise specified)
Parameter
BVOSS Drain - Source Breakdown Vottage

VGSlthl Gate Threshold Voltage
IGSS

Gate-Source leakage Forward
Gate-Source leakage Reverse

lOSS

Zero Gate Voltage Drain Current

1010ni

On-State Drain Current ®

IGSS

ROSlonl Static Drain-Source On-State

Resistance (2)

Test Conditions

Type

Min.

Typ.

Max.

Units

UFN220
UFN222

200

-

-

V

UFN221
UFN223

150

-

-

V

10 = 250l'A

ALL

2.0

-

4.0

V

VOS = VGS, 10 = 250l'A

ALL

-

-

100

nA

ALL

-

-

-100

nA

VGS = -20V

ALL

-

250

I'A

VOS = Max. Rating, VGS = OV

1000

I'A

VOS - Max. Rating x O.B, VGS = OV, TC = 125°C

UFN220
UFN221

5.0

-

-

A

UFN222
UFN223

4.0

-

-

A

UFN220
UFN221

-

0.5

O.B

II

UFN222
UFN223

-

0.8

1.2

II

VGS = OV

VGS - 20V

V OS ) 1010ni x ROSlonl max.' VGS - 10V

VGS = 10V,I0 = 2.5A

gfs

Forward Transconductance  ID(on) x "DS(on) mp.

~

OV

IJ
I

4
! - - TJ = 1250C

VGS=Sj

,-

'r

w

40

60.

80
Vos. DRAIN TO SOURCE VOLTAGE (VOL IS),

/, I
/111
'II

I
I

'---....
"J
"--..,. '(If

I

~ rJ

TJ= 250C

TJ = -550C

100

10
VGS. GATE TO·SOURCE VOLTAGE (VOLTSI

Fig. 4 - Maximum Safe Operating Are.

Fig. 3 - Typical Saturation Characteristics
100

50
5

4

8O.JpUlSE~EST

,

J

I
II
I

I

V-

'7,( V

!l o{

20

~

;
I3

~
fo-VGS"V

10

E

0.'

I',
10",

-~~ri,31
1.0

/

"rr~i
=UFN220,l

z

~
co

UFN220,l

OPERATION IN THIS
AREA IS LIMITED
BY RDSlon)

,

1001'S

1'.'
1 m.

II II
f=Tc o 25'C

f= TJ - 150'C MAX.

10ms

I- R,hJC' 3.12 KiW
4V

0.2

If'

O. 1
1.0

10
VDS. DRAIN TO·SOURCE VOLTAGE (VOLTSI

UN)TRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

I-rl~GLf P~~flll

4-330

II I 11111:

10t±
DC

U~li3

UFN220,2

50 100 200
10
20
VDS, DRAIN·TD-SDURCE VOLTAGE IVDLTS)

500

PRINTED IN U.S.A.

UFN220 UFN221

UFN222 UFN223

Fig.5 - Maximum Effective Transient Thermal Impedance, Junction·to·Case Vs. Pulse Duration

~
iii

;L

I

n
1-1-

wz

1."

>"

reNO~

II

0-=0.5

o.5

NOTES.

~

r-6.2

0.2

-0.1

::i~

~;; t;jjji~

;~ O. 1 =0.05
0<
-0.02
:o:~ 0.05

"w
:2:

-

~2~

1 DUTY FACTOR, 0"

;;;:0.01

,r"....

~

0.02

J

0,01

SINGLE PULSE (TRANSIENT
THERMAL IMPEDANCE)

:i

2. PER UNIT BASE" RthJC = 3.12 DEG. elW.

3. TJM • TC• 'OM Z,hJcft).

10-5

10-2

t"

1.0

10

SQUARE WAVE PULSE DURATION (SECONDS)

Fig. 7 - Typical Source-Drain Diode Forward Voltage

Fig. 6 - Typical Transconductance Vs. Drain Current

,
TJ

/'

V

/

2

V

LI/ /

V

IY/

,/Ii
U

l~!i5oJ

Ty-

-

TJ!125,1

TJ;z 250C

-

~

~

1#
TJ= ISOaC

-y

Vas> 'Olon) x ROSlon) max

8Oi"p",!,"'ii-

o
VSD, SOURCE-TO-DRAIN VOLTAGE (VOLTS)

Fig, 9 - Normalized On-Resistance Vs. Temperature

Fig.8 - Breakdown Voltage Vs. Temperature

,

22

12

11

,
,

~

~s 10

Ww

"'N
m::;

".

w ..

~~

;S~ 09

m-

'V

./'

.,..,

"...

"z
~

'"

~

0

Ww
~~
,,~

,/

.... 0

z~

~

t

~
40
80
120
TJ. JUNCTION TEMPERATURE JDC)

UNITROOE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

/

V
14

//

0"
","'
0'"

,/

08 5

075
-40

'S

~

z

0

z

~•

V

w

>

~

TJ" 2SoC

I

10. ORAIN CURRENT (AMPERES)

~

I

I
'0

to

co

"""

TJ" 1500 C_

'0

~V

0.6

1/
VGS = lOV

""
0.2

160

/

-40

ID,'2A

40

80

120

TJ. JUNCTION TEMPERATURE (OC)

4-331

PRINTED IN U.S.A.

UFN220

Fig. 10 - Typical Capacitance VI. Drain·tc.source Voltage

Cgd.::'

1\

~

C. . .

\

\

\

\

VOSj40V
5

-

Cds+~~:

-"' -t5::
-

-Cdl+Cgd

.,

'~P'

V

1'-0..

/

I

IO-6A
fOR TEST CIRCUIT

sr

50

I--

FlG,URE Ii

12

0"

16

20

TOTAL GATE CHARGE {,CI

Fig. 13 - Maximum Drain Current VI. Case Temperature

Fig. 12 - Typical On-Resistance VI. Drain Current

.........

1.5

j

~

:--......

:c
E
~

........

VGS -IOV

z 0.5

J

..--V

V"

~

"-

r--.....

UFN22Il,221

- I-UFN:~ ........ i'

1.0

z

j

~

.~ ~

-C ..

10
20
30
40
VDS. DRAIN·TO·SOURCE VOLTAGE {VOL TSI

~
..."
..:!""

I

-.YOS = 16OV, UFN22Il, 222

c,..

i..

~

VOS'IOOV ~

I

-

1

\"

400

200

.L .1

,
1'1 MHz
Co. - C,. ~
SHORTEOC.. -Cgd

800

~

UFN223

20
JGS·J

.;

UFN222

Fig. 11 - Typical Gate Charge Vs. Gate·tc-Source Voltage

1000

~ 600
w

UFN221

t--.,.'

---

"- .......

"" ~\

...-.--1-"""
VGS' 20V

,

,~

:.g~~u~~~~~:E~N~~r:LC~JR.Ri5~1.p~~:!~~G
EFFECT OF 2.0 '" PULSE IS MINIMAL.l
10
15
10, DRAIN CURRENT {AMPERESI

o

20

25

50

75
100
TC, CASE TEMPERATURE (OCI

125

ISO

Fig. 14 - Power VI. Temperature Derating Curve
40

~

35

~

~

30

I\.
I\.

2&

'\

;::

:

20

'"~

15

~

\

"

~

10

"\.

20

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

100
60
80
Te. CASE TEMPERATURE 1°C)

40

4-332

120

\
140

PRINTED IN U.S.A

UFN220 UFN221

UFN222 UFN223

•

Fig. 16 - Clamped Inductive Waveforms

Fig. 15 - Clamped Inductive Test Circuit
VARY tp TO OBTAIN
REQUIRED PEAK IL

VGS.R

OUT
'L+--_>---~_,......J

Fig. 17 - Switching Time Test Circuit

v,
PULSE

GENERATOR

r------,
:

1

SOU

1
1

L ____ .1

-''--~TO

SCOPE

so!!

Fig. 18 - Gate Charge Test Circuit
+Vos
(ISOLATED
SUPPLY)

12V
BATTERV

-

or=ll1.SmA

--'\,IV',,........-A,J\I\.,.....-o
IG
CURRENT
SHUNT

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL, (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

4-333

-VOS

10
CURRENT
SHUNT

PRINTED IN U.S A.

UFN230
UFN231
UFN232
UFN233

POWER MOSFET TRANSISTORS
200 Volt, 0.4 Ohm

N-Channel

FEATURES

DESCRIPTION

•
•
•
•
•

The Unitrode power MOSFET design utilizes the most advanced technology available.
This efficient design achieves a very low RosI• n• and a high transconductance.

Fast Switching
Low Drive Current
Ease of Paralleling
No Second Breakdown
Excellent Temperature Stability

The Unitrode power MOSFET features all of the advantages of MOS technology such as
voltage control, freedom from second breakdown, very fast switching speeds, and
thermal stability.
These power MOSFETS are ideally suited for many high-speed, high-power switching
applications such as switching power supplies, motor controls, and wide-band and
audio amplifiers.

PRODUCT SUMMARY

YDS
200V
150V
200V
150V

Part Number

UFN230
UFN231
UFN232
UFN233

ROS(on)

ID

0.40
0.40
0.60
0.60

9.0A
9.0A
8.0A
8.0A

MECHANICAL SPECIFICATIONS
UFN230 UFN231

UFN232 UFN233

TO-204AA (TO-3)

222210815)

"13:t~.AX
D'A~~
SEATING
PlANE

T
~~I~·IIDIA.-t

TWO PLACES

10.16(0401 MIN
TWO PLAces

jUI~l~'1
•
1 014

TWO PLACES

DRAIN
(CASEI
SOURCE

MA~lg:;gjt
t MEASURED AT SEATING PLANE

Dimensions in Millimeters and (Inches)

4/83

4-334

~UNITRODE

UFN230 UFN231

UFN232 UFN233

ABSOLUTE MAXIMUM RATINGS
Parameter

UFN230

UFN231

UFN232

UFN233

200

150

200

150

V

200

150

200

150

V

9.0

9.0

8.0

B.O

A

6.0

6.0

5.0

5.0

A

36

36

32

32

A

75

±20
(See Fig. 14)

0.6

(See Fig. 14)

CD

VOS

Drain - Source Voltage

VOGR
10@TC = 25·C

Drain - Gate Voltage (RGS - 1 MmgJ
Continuous Drain Current

10@TC = 100·C Continuous Drain Current
Pulsed Drain Current @

10M
VGS
PO@Tc

Gate - Source Voltage
s

25·C

Max. Power Dissipation
linear Derating Factor

Inductive Current, Clamped

ILM

Operating Junction and
Storage Temperature Range

TJ
T stg

Lead Temperature

V

W
W/K

ISee Fig. 15 and 16) L = 100"H
I
32
36

I

36

Units

I

A

32

-55 to 150

·C

300 (0.063 In. (1.6mm) from case for 1Os)

·C

ELECTRICAL CHARACTERISTICS @ TC = 25°C (Unless otherwise specified)
Parameter

BVOSS Drain - Source Breakdown Voltage

VGSlth) Gate Threshold Voltage

Type

Min.

Typ.

Max.

Units

UFN230
UFN232

200

-

-

V

UFN231
UFN233

150

-

-

V

10 = 250"A

ALL

2.0

-

4.0

V

100
-100

nA

VOS = ~GS' 10 = 250,.A
VGS = 20V

nA

VGS = -20V

250

"A

VOS = Max. Rating, VGS = OV
VOS_= Max. RatingxO.B, VGS = OV, TC - 125·C

IGSS
IGSS

Gate-Source Leakage Forward

ALL

Gate-Source Leakage Reverse

ALL

lOSS

Zero Gate Voltage Drain Current

10(on)

On-State Drain Current

®

ROS(on) Static Drain-Source On-State
Resistance ®

-

-

-

-

-

-

1000

"A

UFN230
UFN231

9.0

-

-

A

UFN232
UFN233

B.O

-

-

A

UFN230
UFN231

-

0.25

0.4

0

UFN232
UFN233
ALL

-

0.4

0.6

0

ALL

VGS = 10V, 10 = 5.0A
4.B

-

SUl)

-

600

BOO

pF

250

450

pF

BO

150

pF

30

ns

50

ns

ALL

-

-

50

ns

ALL

-

-

40

ns

Total Gate Charge
IGate-Source Plus Gate-Drain)

ALL

-

19

30

nC

Ogs

Gate-Source Charge

ALL

Gate-Drain ("Miller") Charge

ALL

-

10

Ogd

9.0

nC

LO

Internal Drain Inductance

ALL

-

5.0

-

Forward Transconductance

Ciss
Coss
Crss

Input Capacitance

ALL

Output Capacitance

ALL

Reverse Transfer Capacitance

ALL

tdlon)

Turn-On Delay Time

ALL

tr

Rise Time

ALL

tdloffl
If

Tum-Off Delay Time
Fall TIme

Og

VGS = OV

VOS ) 10(on) x ROS(on) max.' V GS • 10V

3.0

®

9fs

Test Conditions

-

nC

nH

vos ) 'O(on) x KOS(on) max.'

10 - 5.0A

VGS = OV, VOS = 25V, f = 1.0 MHz
See Fig. 10
VOO ~ 90V, 10
See Fig. 17

= 5.0A, Zo -

150

(MOSFET switching times are essentially
independent of operating temperature.)

=

VGS
10V, 10 - 12A, VOS. O.B Max. Rating.
See Fig. 1B for test circuit. (Gate charge is essentially
independent of operating temperature.)

Measured between
the contact screw on

Modified MOSFET
symbol showing the

header that is closer to
source and gate pins

inductances.

internal device

and center of die.
LS

Internal Source Inductance

ALL

-

12.5

-

nH

Measured from the
source pin. 6 mm
(0.25 in.) from header
and source bonding
pad.

-$

THERMAL RESISTANCE
Junction~to~C8se

Case-to-Sink

Mounting surface flat, smooth, and greased.

Junction-ta-Ambient

Free Air Operation

UNITROOE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. 1617) 861-6540
TWX (710) 326·6509 • TELEX 95-1064

4-335

PRINTED IN U.S.A

•

UFN230 UFN231

UFN232

UFN233

SOURCE·DRAIN DIODE RATINGS AND CHARACTERISTICS
IS

ISM

VSD

Continuous Source Current
(Body Diode)

Pulse Source Current
(Body Diode) @

®

Diode Forward Voltage

-

-

9.0

A

UFN232
UFN233

-

-

8.0

A

UFN230
UFN231

-

-

36

A

UFN232
UFN233

-

-

32

A

UFN230
UFN231

-

-

2.0

V

TC = 25·C.IS = 9.0A. VGS = OV

UFN232
UFN233

-

-

TC = 25·C.IS = S.OA. VGS = OV

trr

Reverse Recovery Time

ALL

ORR

Reverse Recovered Charge

ALL

ton

Forward Turn-on Time

ALL

 IO(on,!x ROSlon) max.

I-- r--

Itl

8

H

I

VGS=~V

-

I

r--

TJ=/'250C

Tr 250C
TJ . -5S DC
5V-

2

80
Vos. DRAIN·lO·SOURCE VOLTAGE (VOL IS)

'00
VGS. GATE·TO-SOURCE VOLTAGE (VOLTS)

Fig. 4 - Maximum Safe Operating Area

Fig. 3 - Typical Saturation Characteristics

'0

~~ Lt:

',ov
~ ~ i'-- 9V_

. . .-. - Jo"spuLETElr

~ tI< ~ ~:Vv

~r/

"

J .... ..-

~

~

J

",1

6V

-

VGS=5V-

-

lOOms

j"-

",.

-

UFN231.3

DHUItJao.2
II

1'1111
50

Vas. DRAIN·TO SOURCE VOLTAGE (VOL IS)

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

1I1

'II

LL,'/

r--

4V -

~ '-//J
.........

r--

60

40

20

A

""-.

'00

200

500

Vas. DRAIN·Ta·SOURCE VOLTAGE (VOL TSI

4·336

PRINTED IN U.S.A

UFN230 UFN231

UFN232 UFN233

Fig. 5 - Maximum Effective Transient Thermal Impedance, Junction-ta-Case Vs. Pulse Duration

...z

n
~~

wz

II

J

w

~
;L

•

1.0

>~

0 .. 0.5

o.5

NOTES

El.SL

r-O.2

ffi~ 0.2
NO
::::i~

0.1

i~ 0.1

~2~

0.05

0"
z.~ 0.05

0.02
~0.01

Uw

~

l~

%

002

~

0.01

J

1 DUTY FACTOR, 0"

2 PER UNIT 8ASE" RthJC" 1 67 DEG C/W

I

I I

3 TJM - Te = POM ZthJCttl

j
10.2

10-4

10-5

:~

SINGLE PULSE iTRANSIENT

LrfIRMA~ '~PEOtNfEII

10-1

1.0

10

tl,SQUARE WAVE PULSE DURATION (SECONDS)

Fig. 6 - Typical Transconductance Vs. Drain Current

Fig. 7 - Typical Source-Drain Diod. Forward Voltage

10

.-

,

r--

_.

---

TJ' 5!J°C

r....- .-.--

V V

1'/ V...... I-"'

Ii. V
If

-

TJ- 25 0 C

TJ

=<

12&OC

f--

I

vas> 1010n) x ROS(on)

~

m!x

I

I

aOllspUlSETEST

10
10. DRAIN CURRENT (AMPERES)

VSQ, SOURCE-TO-DRAIN VOL lAGE (VOL IS)

Fig. 8 - Breakdown Voltage Vs. Temperature

Fig. 9 - Normalized On-Resistance Vs. Temperature

12 5

22

~

~

~

11 5

>
z

g
~§

~

105

~N

~:o

w""
~q~

. /V

~"

~~ 095
z

~.

~

I/"

.-- ~

....- V

V
./

V"

08 5

~

015

-40

40
80
120
TJ, JUNCTION TEMPE RATURE (oC)

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

06

./

/"

/

V

V

V
vGS" IOV

./

IDI·3.5~

02
160

·40

4D

80

120

TJ, JUNCTION TEMPERATURE (DC)

4-337

PRINTED IN USA

UFN230 UFN231

Fig. 10 - Typical Capacitance Vs. Drain·to-Source Voltage
2000

Fig. 11 - Typical Gate Charge V,. Gate·to-Source Voltage

'---'--'--'-"',r--.--..---.-,...-,--,

20

V~S'O

I

~

~
w

'"

~>

VOS 40V '-...,

J~

Ii.

~

I

if

I

50

~

16

........

VGS"10V

0.6

I"-. .......

......... 1........

...........

-~-UFN232~

z

w

"

-

0.'

V r.....-::

0

~

~
0

j-i 0.2

r-

32

40

I

30

20

UFN230.231

......... 1'-.,

~" ~

'" "

~
VGS = 20V

ROSlon) MEASURED WITH CURRENT PUJE OF
2.0"'1 DURATION. INITIAL TJ = 25°C (HEATING
EFFECT OF 2.0"' PULSE IS MINIMAl.)
10

24

Ii

10

0

.,5'"

SiE FlyRE

Fig. 13 - Maximum Drain Current Vs. Case Temperature

,

"z

~

10'12A
FOR TEST CIRCUIT

~

0,. TOTAL GATE CHARGE InC)

Fig. 12 - Typical On·Resistance VI. Drain Current
0.8

,.
,

15 - , . . - VOS = 100V
1'-.....,
VOS ·1601', UFN230. 232.

~ 10

10
20
30
VOS. ORAIN·TO-SOURCE VOLTAGE IVOLTS)

UFN232 UFN233

o

40

25

50

10. DRAIN CURRENT IAMPERES)

15

100

~

125

,

'1~

150

TC. CASE TEMPERATURE 10C)

Fig. 14 - Power VI. Temperature Derating Curve
80

10

5
~

z

60

-

""'~

'\

50

'\

0

E
iii

40

'"

30

.P

20

~

E

~

'\.
I\.

10

'i\
20

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326-6509 • TELEX 95-1064

40
60
80
100
TC. CASE TEMPERATURE 1°C)

4·338

120

140

PRINTED IN U.S.A

UFN230 UFN231

UFN232 UFN233

Fig. 16 - Clamped Inductive Waveforms

Fig. 15 - Clamped Inductive Test Circuit

•

VARY tp TO OBTAIN
REGUIREDPEAK IL

V.S·R

'l ....----------..:,...;.......J

Fig. 17 - Switching Time Test Circuit

v,

Zo

--~~SCOPE

- .....

150

Fig. 18 - Gate Charge Test Circuit
+Vos
(ISOLATED
SUPPLY)

-

LJI1.S mA

o

-..I\."'I',~""'-'VIA~-o

IG
CURRENT
SHUNT

UNITROOE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

4-339

·VOS

10
CURRENT
SHUNT

PRINTED IN U.S A

UFN240
UFN241
UFN242
UFN243

POWER MOSFET TRANSISTORS
200 Volt, 0.2 Ohm

N-Channel

FEATURES

DESCRIPTION

•
•
•
•
•

The Unitrode power MOSFET design utilizes the most advanced technology available.
This efficient design achieves a very low ROBlon. and a high transconductance.

Fast Switching
Low Drive Current
Ease of Paralleling
No Second Breakdown
Excellent Temperature Stability

The Unitrode power MOSFET features all of the advantages of MOS technology such as
voltage control;freedom from second breakdown, very fast switching speeds, and
thermal stability.
These power MOSFETS are ideally suited for many high·speed, high· power switching
applications such as switching power supplies, motor controls, and wide·band and
audio amplifiers.

PRODUCT SUMMARY

Part Number

VDS

RDS(on)

ID

UFN240
UFN241
UFN242
UFN243

200V
150V
200V
150V

O.lSO
O.lSO
0.220
0.220

lSA
lSA
16A
16A

MECHANICAL SPECIFICATIONS
UFN240 UFN241

UFN242 UFN243

TO-204AE (TO-3 modified)

2222 (0875)
342

MAX CIA

'B~m;~

IO":L~~
T

SEATING
PLANE

,.60IIt.D&3I D1A

flrllilim

TWO PLACES

n:. 11'1;'1,

II
-'f

HI91~::OI

18
0
TWO PLACES

2667
I 0501 MAX

OIA
TWO PLACES

DRAIN

ICASEI
SOURCE

l~gl~'::lt
f MEASURED AT SEATING PLANE

Dimensions in Millimeters and (Inches)

4/S3

4-340

[U] UNITRODE

UFN240 UFN241

UFN242 UFN243

ABSOLUTE MAXIMUM RATINGS
UFN240

UFN241

UFN242

UFN243

Units

200

150

200

150

V

200

150

200

150

V

Continuous Drain Current

18

18

16

16

A

10@TC = 100°C

Continuous Drain Current

11

11

10

10

A

10M

Pulsed Drain Current

72

72

64

64

VGS
PO@TC=25°C

Gate - Source Voltage

Parameter

CD

VOS

Drain - Source Voltage

VOGR
10@TC=25°C

Drain - Gate Voltage (RGS = 1 Mill

CD

®

Max. Power Dissipation

125

(See Fig. 141

W

1.0

(See Fig. 141

W/K

I

72

(See Fig. 15 and 161 L - 1OO~H
72
I
64

Operating Junction and
Storage Temperature Range

TJ
T stg

V

Linear Derating Factor
Inductive Current, Clamped

ILM

A

±20

Lead Temperature

A

64

I

-55to 150

°C

300 (0.063 in. O.6mml from case for 10s1

°C

ELECTRICAL CHARACTERISTICS @ TC = 25"C (Unless otherwise specified)
Parameter

BVOSS

Drain - Source Breakdown Voltage

VGS(thl Gate Threshold Voltage

Type

Min.

Typ.

Max.

Units

UFN240
UFN242

200

-

-

V

UFN241
UFN243

150

-

-

V

10 = 250~A

ALL

2.0

-

4.0

V

VOS = VGS' 10 = 250~A

-

100

nA

VGS = 20V

-100

nA

VGS = -20V

IGSS

Gate-Source Leakage Forward

ALL

-

IGSS

Gate-Source Leakage Reverse

ALL

lOSS

Zero Gate Voltage Drain Current

-

10(onl

®

ROS(on) Static Drain-Source On-State
Resistance ®

®

~A

VOS = Max. Rating, VGS

1000

~A

VOS = Max. Rating x 0.8, VGS = OV, T C = 125°C

UFN240
UFN241

18

-

-

A

UFN242
UFN243

16

-

-

A

UFN240
UFN241

-

0.14

0.18

(l

UFN242
UFN243

-

0.20

0.22

0

V OS ) 10(onl x ROS(onl max.' V GS = 10V

VGS = 10V, 10 = IDA

9fs

Forward Transconductance

ALL

6.0

9.0

-

S([JI

Ciss

Input Capacitance

ALL

-

1275

1600

pF

-

500

750

pF

160

300

pF

Coss

Output Capacitance

ALL

erss

Reverse Transfer Capacitance

ALL

td(onl

Turn-On Delay Time

ALL

tr

Rise Time

ALL

VGS

= OV, VOS =

See Fig. 10

= 75V, 10 =

16

30

ns

VOO

60

ns

See Fig. 17
(MOSFET switching times are essentially
independent of operating temperature I

Turn-Off Delay Time

ALL

80

ns

ALL

-

40

Fall Time

31

60

ns

Qg

Total Gate Charge

ALL

-

43

60

nC

Gate-Source Charge

ALL

16

-

nC

Qgd

Gate-Drain ("Miller") Charge

ALL

-

27

-

nC

LO

Internal Drain Inductance

ALL

-

5.0

-

nH

IDA, Zo = 4.70

V GS = 10V, 10 = 22A, VOS = 0.8 Max. Rating.
See Fig. 18 for test circuit. (Gate charge is essentially
independent of operating temperature.)

Measured between

Modified MOSFET

the contact screw on

symbol showing the
internal device
inductances.

header that is closer to
source and gate pins
and center of die .

LS

Internal Source Inductance

ALL

= IDA

25V, f = 1.0 MHz

27

td(offi

Q gs

V OS ) 10(onl x ROS(onl max.' 10

-

tf

(Gate-Source Plus Gate-Drain)

= OV

250

-

-

ALL
On-State Drain Current

Test Conditions
VGS = OV

-

12.5

-

nH

Measured from the
source pin, 6 mm
(0.25 in.) from header
and source bonding

pad.

.$

THERMAL RESISTANCE
RthJC

Junction-to-Case

RthCS

Case-to-Sink

Mounting surface flat, smooth, and greased.

RthJA

Junction-to-Amblent

Free Air Operation

UNITROOE CORPORATION. 5 FORBES ROAD
LEXI NGTON, MA 02<73 • TEL. (6171 861-6540
TWX (710) 326-6509 • ·TELEX 95-1064

4-341

PRINTED IN U.S.A

•

UFN240 UFN241

UFN242 UFN243

SOURCE·DRAIN DIODE RATINGS AND CHARACTERISTICS
IS

Continuous,Source Current

(Body Diodel

ISM

Pulse Source Current

(Body Diodel

VSD

®

Diode Forward Voltage ~

Reverse Recovery Time

Modified MOSFET symbol

UFN240
UFN241

-

-

18

A

UFN242
UFN243

-

-

16

A

UFN240
UFN241

-

-

72

A

UFN242
UFN243

-

-

64

A

UFN240
UFN241

-

-

2.0

V

UFN242
UFN243

-

-

1.9

V

TC = 25·C, IS = 16A, VGS = OV

ALL

-

650

ns

TJ = 150·C, IF - 18A, dlF/dt - 100A/!,s

4.1

-

pC

T J - 150·C, IF = 18A, dlF/dt = 100A/!,s

showing the integral
reverse P-N junction rectifier.

~
TC = 25·C, IS = 18A, VGS = OV

t"
QRR'

Reverse Recovered Charge

ALL

-

ton

Forward Turn-on Time

ALL

Intnnsic turn-on time is negligible. Turn-on speed is substantially controlled by LS

(j)TJ = 25·C to 150·C.

~Pulse Test: Pulse width'; 300I'S, Duty Cycle'; 2%.

@

+

LO

Repetitive Rating: Pulse width Ii~ited
by max. junction temperature.
See Transient Thermal Impedance Curve (Fig. 5).

Fig. 2 - Typical Transfer Characteristics

Fig. 1 - Typical Output Characteristics
40
10V
32

r--

40

"
~~J.

T1=·55~C~

llllPutsETJr- -

'":-'9V

32

~J'25~C~

T

125;C"

7V

f---8DPI PULSE TEST

~DS > ~D(On) RDS~On) m~x.
IX

,

vGs' 6~

AI
hI
" -II II

'I

"rtf

i,,JI

J

5V

..... ~

41v

50

20
30
40
10
VDS, DRAIN·ro-SOURCE VOLTAGE (VOLTSI

10
VGS, GATE·TO·SOURCE VOLTAGE (VOLTSI

Fig. 3 - Typical Saturation Characteristics

Fig. 4 - Maximum S8fe Operating Area
100

r-JIJ.S PUlSE TEJr

~~
~?
~~

.......
~ y.

N IN tHI S A EA 'tL!M TED

y RO~(onl

=V FN242,3

50

32

o ERATI

=UFN240 1

40

,,,"

UFN240 1

20

10~s

10rfJ.S

UFN242,3

......Iv-

1

~r

6

8

~

~

~ i;-""

lOms
lOOms

VGS=;V-

;;.-""

I='TC=25'C
TJ=150·C MAX

0.2 I-nGLf P,"iS,E,

Jv

o. 1

4

10

VOS, DRAIN·TO·SOURCE VOLTAGE (VOLTSI

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

DC=

f:::

r- RthJC = 1 0 K/W

~v-

~
1

T'

UFN241,3

/I I II I
5

U~240. 2

111111
10

20

50

100

11I11
200

500

VOS. DRA'N·TO-SOURCE VOLTAGE (VOLTSI

4·342

PRINTED IN U.S A.

UFN240 UFN241

UFN242 UFN243

Fig. 5 - Maximum Effective Transient Thermal Impedance. Junction·to·Case Vs. Pulse Duration

...z
~

I

2

II

;L

"'1:: 1.0
wz
>=>
0-05
.,~
<.>w O. 5

$~

ffi~ O.2

NO

::i:t!

"':IE
"'00(

0.02

i~
",'"

5 r?OI

:z.~ 0.0

~
j

El.JL

I---~.I

O.11:::=0.05

~~

0.0 2
0.0 I

•

NOTES.

0.2

1 DUTY FACTOR, 0 '" :21

SINGLE PULSE (TRANSIENT

TIHTETR~~\ IMP iEO~NCE1 I

t-::+:j:::=+:t+l+i:ft:=+=+:=j=+:t+t~11II+=~I+=
t
'H::t:jtj:j:~t+=+:j:::~W+=++ 2 PER UNITBASE • R,hJC • 1.0 OEG. CIW.
t3. TJM-TC=POMZthJC(t)

10-5

10-4

10-2

10-3

10-1

10

1.0

t,.saUARE WAVE PULSE DURATION (SECONDS)

Fig. 6 - Typical Transconductance Vs. Drain Current

Fig. 7 - Typical Source-Drain Diode Forward Voltage

19.0

50

",
~ 15.2

~

iii

./

~
~

".,

/ ...,. ..-

~11.4

Q

TJ "'-55°C

~ 20

T~' 250lc

z

...

~

1/,

10

z

;;:

:5

~ II/I /
~

""

~

~
w

T~= 12JoC- t--

~

1.6

3.8

A'f"

t3

I

5

-

r- TJ • 150 0 cl

I

TJ= 25°C

B?IlS PU~SE TES1T

r

Vas> 10(onl x ROS(on)

max.
1.0

16

24

32

40

I ,
o

10. ORAIN CURRENT IAMPERESI

04

0.8

1.2

2.0

1.6

VSO. SOURCE·TO-DRAIN VOLTAGE (VOLTS)

Fig. 8 - Breakdown Voltage Vs. Temperature

Fig. 9 - Normalized On-Resistance Vs. Temperature
2.5

1.25
w

<.>

z

~

,. V'

5

...,.V

./

~

2.0

,/

".,

... V

,. V

V

./

V

V

V

/

/'

VGS = IOV

19AI
0.75
-40

40

80

120

40

160

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

80

120

160

TJ. JUNCTION TEMPERATURE (DC)

TJ, JUNCTION TEMPERATURE (DC)

4-343

PRINTED IN U.S.A

UFN240 UFN241

Fig. 10 - Typical Capacitance Vs. Drain·to-Source Voltage
2000

I--- C..

a Cgd

CI1I Cgd
C.'" Cds + Cp+Cgd ,

lalMHz

-

I

..... "C",+Cgd

r-

\
\
4flO

\

0

_ VGS a OV

~
1600

Fig. 11 - Typical Gate Charge Vs. Gate·to-Source Voltage

J J.

Cia· till + CId_ Cds SHORTED

~

.

5

vos' 40V"",
I

I

r-f--- VOS'100V
""I
I ""vos' l6OV. UFN240. 242",
0

i'

--

"~
".... 1"cl
--;-.

""

10
15
20
25
30
35
40
VOS. ORAIN·TO-SOURCE VOLTAGE (VOLTSI

~

45

-

/

10

50

40

60

80

0,.. TOTAL GATE CHARGE (nCI
Fig. 13 - Maximum Drain Current V,. Case Temperatura
10

I

["'.
16

~ 0.4

i

..........

.........

......... ......... r-....
.......

V S'lOV

~ 0.3

i"- t'-.

UFN240.241

....... ~,

w

~

0.2

V

z

~

gO. 1

;

#
'0'21A
FOR TEST CIRCUIT
SEE FIGrRE 18
1

V

0.5

~

~

/

5

Fig. 12 - Typical On·Resistance Vs. Drain Current

~

UFN242 UFN243

UFN242. 243

-

J

'~

k~'10V

'1~

ROS,,"I MEASURED WITH CURRENTlpULS! OF
2.0~s DURATION. INITIAL TJ = 25°C. (HEATING
EFFECT OF 2.0 p.s PULSE IS MINIMAl.l
10

,~

40

60

-

'\,

r-0
25

100

80

'0. ORAIN CURRENT (AMPERESI

75
100
TC. CASE TEMPERATURE ('CI

50

115

150

Fig. 14 - Power Vs. Temperature Derating Curve
140
110

- "'

0

"

:\..

"

~

"

\...

"\

~

"

I\...

0

10

UNITROOE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

40
60
80
100
TC. CASE TEMPERATURE ('CI

4-344

120

"

\...

140

PRINTED IN U.S.A.

UFN240 UFN241

UFN242 UFN243

II

Fig. 16 - Clamped Inductive Wavaforms

Fig. 15 - Clamped Inductive Test Circuit
VARY •• TO OBTA'N
REQU.REO PEAK 'L
V a S . R "OU_T........r Y
·L+-----o-----~~~~

Fig. 17 - Switching Time Test Circuit
7SV

am

ADJUST RL TO OBTAIN
SPECIFIED 10

Vos

r;U~ - - -O_li--__-o-_--'I.J-~
I GENERATOR
Sl I
I :JJlRCE
LIMPEDANCE
____ J

Fig. 18 - Gata Charge Test Circuit
+Vos
(ISOLATED

SUPPlVI

-

I:[1.5 mA

o

\r--4-'Vv\,...-O -VOS
IG
CURRENT
SHUNT

UNITRODE CORPORATION· 5 FORBES ROAD
LEXI NGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

4-345

10
CURRENT

SHUNT

PRINTED IN U.S A.

UFN250
UFN251
UFN252
UFN253

POWER MOSFET TRANSISTORS
200 Volt, 0.085 Ohm
N-Channel

FEATURES

DESCRIPTION

•
•
•
•
•

The Unitrode power MOSFET design utilizes the most advanced technology available.
This efficient design achieves a very low ROBlon. and a high transconductance.

Fast Switching
Low Drive Current
Ease of Paralleling
No Second Breakdown
Excellent Temperature Stability

The Unitrode power MOSFET features all of the advantages of MOS technology such as
voltage control, freedom from second breakdown, very fast switching speeds, and
thermal stability.
These power MOSFETS are ideally suited for many high-speed, high-power switching
applications such as switching power supplies, motor controls, and wide-band and
audio amplifiers.

PRODUCT SUMMARY
Part Number

VDS

RDS(on)

ID

UFN250
UFN251
UFN252
UFN253

200V
150V
200V
150V

0.0850
0.0850
0.1200
0.1200

30A
30A
25A
25A

MECHANICAL SPECIFICATIONS
UFN250 UFN251 UFN252 UFN253

TO·204AE (TO·3 modified)

22.22(08751

10I3,±~.AX
DlA~~
SEAtiNG

T

PLANE

I&:'I'UJIOIA I
141
TWO PLACES

I

u191048m

181044
TWO PLACES

2661
11 0501 MAX

U:I~:l;U OIA.
TWO PLACES

DRAIN
ICASE)

lAnl~'mlt
t MEASURED AT SEATING PLANE

Dimensions in Millimeters and (Inches)

4/83

4·346

~UNITRDDE

UFN250 UFN251

UFN252 UFN253

ABSOLUTE MAXIMUM RATINGS
UFN250

UFN251

UFN252

UFN253

Units

VOS

Drain - Source Voltage (j)

200

150

200

150

V

VOGR
10@TC= 25°C

Drain - Gate Voltage IRGS - 1 Mill (j)

200

150

200

150

V

Continuous Drain Current

30

30

25

25

A

10@TC - 100°C

Continuous Drain Current

19

19

16

16

A

10M

Pulsed Drain Current @

120

120

100

100

A

VGS
PO@TC=25°C

Gate - Source Voltage

Parameter

linear Derating Factor

ILM

Inductive Current, Clamped

TJ
Tstg

Operating Junction and
Storage Temperature Range

V

±20

Max. Power Dissipation

I

120

Lead Temperature

150

ISee Fig. 141

W

1.2

ISee Fig. 141

W/K

ISee Fig. 15 and 161 L = 100~H
120
I
100

A

100

I

-55to 150

°c

30010.063 In. 11.6mml Irom case lor 10s1

°c

ELECTRICAL CHARACTERISTICS @ TC = 25°C (Unless otherwise specified)
Parameter

BVOSS Drain - Source Breakdown Voltage

VGSlthl Gate Threshold Voltage

Type

Min.

Typ.

Max.

Units

UFN250
UFN252

200

-

-

V

VGS = OV

UFN251
UFN253

150

-

-

V

10 = 250~A

ALL

2.0

-

4.0

V

-

-

100

nA

VGS = 20V

-100

IGSS
IGSS

Gate-Source leakage Forward

ALL

Gate-Source Leakage Reverse

ALL

lOSS

Zero Gate Voltage Drain Current

1010ni

On-State Drain Current

®

ROS(on) Static Drain-Source On-State
Resistance ~

®

Test Conditions

VOS - VGS, 10 - 250~A

nA

VGS = -20V

250

~A

VOS = Max. Rating, VGS - OV

-

-

1000

~A

VOS = Max. RatingxO.8, VGS = OV, TC = 125°C

UFN250
UFN251

30

-

-

A

UFN252
UFN253

25

-

-

A

UFN250
UFN251

-

0.07

0.085

[l

UFN252
UFN253

-

0.09

0.120

[l

ALL

V OS ) 1010ni x ROSlonl max.' VGS = 10V

VGS = 10V, 10 = 16A
16A

9ls

Forward Transconductance

ALL

8.0

14

-

S lUI

Ciss

Input Capacitance

ALL

2000

3000

pF

Coss

Output Capacitance

ALL

BOO

1200

pF

C rss

Reverse Transfer Capacitance

ALL

-

300

500

pF

tdlonl

Turn-On Delay Time

ALL

-

35

ns

VOO - 95V, '0

tr

Rise Time

ALL

100

ns

See Fig. 17

tdloffl
tl

Turn-Off Delay Time

ALL

-

-

125

ns

Fall Time

ALL

-

-

100

ns

(MOSFET switching times are essentially
independent of operating temperature.)

Qg

Total Gate Charge

ALL

-

79

120

nC

(Gate-Source Plus Gate-Drain)

Q gs

Gate-Source Charge

ALL

-

37

-

nC

Qgd

Gate-Drain ("Miller") Charge

ALL

-

42

-

nC

LO

Internal Drain Inductance

ALL

-

5.0

-

nH

LS

Internal Source Inductance

ALL

-

12.5

-

nH

VOS ) 1010ni x ROSlonl max.' 10

VGS = OV, VOS = 25V, 1= 1.0 MHz
See Fig. 10

V GS = 10V, 10

= 16A, Zo = 4.70

= 3BA, VOS

= O.B Max. Rating.

See Fig. 18 for test circuit. (Gate charge is essentially
independent of operating temperature.)

Measured between
the contact screw on
header that is closer to
source and gate pins
and center of die.
Measured from the
source pin, 6 mm

10.25 in.1 from header
and source bonding

pad.

Modified MOSFET
symbol showing the
internal device
inductances.

$

THERMAL RESISTANCE
RthJC

Junction-to-Case

RthCS

Case-to-Sink

Mounting surface flat, smooth, and greased.

RthJA

Junction-ta-Ambient

Free Air Operation

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

4-347

PRINTED IN U.S.A

•

UFN250

UFN251

UFN252

UFN253

SOURCE·ORAIN DIODE RATINGS AND CHARACTERISTICS
IS

ISM

VSD

Continuous Source Current
(Body Oiodel

Pulse Source Current
(Body Diodel @

Diode Forward Voltage ®

Modified MOSFET symbol
showing the integral
reverse P-N junctlqn rectifier.

UFN250
UFN251

-

-

30

A

UFN252
UFN253

-

-

25

.A

UFN250
UFN251

-

-

120

A

UFN252
UFN253

-

-

100

A

UFN250
UFN251

-

-

2.0

V

-

-

1.8

V

T C ~ 25°C. IS ~ 25A. VGS ~ OV

750

-

ns

T J = 150°C. IF - 30A. dlF/dt - 100A/~s

4.7

-

~C

TJ

UFN252
UFN253

~
T C ~ 25°C. IS ~ 30A. VGS ~ OV

ORR

Reverse Recovered Charge

ALL

-

ton

Forward Turn-on Time

ALL

IntrinSIc turn-on time IS negligible. Turn-on speed is substantiallv controlled by LS

t"

Reverse Recovery Time

 10(on) x RUS(on) max.

25

.....~
u

1/

80/.lSPULSETEST .

V

40

Fig. 2 - Typica' Transfer Characteristics

.l. J.

50

!;
5

-

i

20

15

z

20

E

5V10

~

0

-

TJ'" 125°C

10

l ---.. JJ

E

-lTJ '25 C

--

4~3.5V
___

~

50

10
20
30
40
Vos. ORAIN.TO-SOURCE·VOlTA.GE (VOL TSI

VGS, GATE·TO·SOURCE VOLTAGE (VOLTS)

Fig. 3 - Typica' Saturation Characteristics

e---

80

8~~~
,~~ ""

~ 12

:!o

A

E

;

,

~

~

~~N250. 1
UFN252,3

;;GS' 5V

I--

UFN250. l'

'V
/

10j.ls
100j.ls

UFN252.3

,

~ '/

~~

1m.

"-

0

10~s

5

~

M

OPERATION IN THIS
AREA IS LIMITED
BY ROSlon)

II I

200

'/'

i

8

'v

9V

,,J PULJTEST

16

z

Fig. 4 - Maximum Safe Operating Area
500

2ll

i

---..

'J,
~J' -50lc
I~ KI

10 ms

Te'" 25°C

4V

M

U

U

~ TJ' 150°C MAX

f--

5
1.0

2.0

VOS. OAAIN·TO·SOUACE VOLT AGE (VOLTSI

UNITROOE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

UFN2 51.3~

R'hJC'" 083 K/W

10 I=,SINGLE PULSE

UF N250.2
10

20

50

100

I
DC
200

500

VCS, CRAIN TO·SOURCE VOLTAGE (VOLTS)

4·348

PRINTED IN U.S.A

UFN250 UFN251

UFN252 UFN253

Fig.5 - Maximum Effective Transient Thermal Impedance, Junction·to-Case Vs. Pulse Duration
I

•

o -o.S

~~

~h.2
0.1

....

2

I

1

3nJL
~2~

I~O.OS
f--0.02
S
0.01

NOTES

1. DUTY FACTOR. O· :;

SINGLE PULSE (TRANSIENT
THERMAL IMPEO~NCIEI I

1111111

I

2. PER UNIT BASE - R1hJC' 0.83 OEG. CIW.
3. TJM - TC' POM ZlhJCIII.

I
10-2

10-3

10-4

10-1

1.0

10

11. SQUARE WAVE PULSE DURATION (SECONDS)

Fig. 6 - Typical Transconductance V,. Drain Current
0

T~ • -SO~C

.J.-

I.;""

V1;. 2s JC
V. V

6

JV
VI V

2

i

V~S > 1~I'nl

TJ -1S0 OC

5

1

i

V

II

'L
TJ'150'c1

IY

z

~
~

',ROSI'?I m... -

BOjJ.S PULSE TEST

V

10

TJ=25 0 C

~

~
10

20

1.0
30

'a. DRAIN CURRENT (AMPERES)

40

50

o
VSO' SOURCE·TO·ORAIN VOLTAGE IVOLTSI

Fig. 8 - Breakdown Voltage V,. Temperature

Fig. 9 - Normalized On·Resiltllnce VI. Temperature
2.4

v~s"L

1.2 s

I

s

Sv- . /

V

-' ~

......
~

w
u

-

;

I--'

1.1'

1.8

/

V
....... . "
O. 6

40

80

120

0.2

1M

TJ, JUNCTION TEMPERATURE (DC)

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

I

'0"5A

2.2

z

S
0.1 5
-40

i"""

V~

TJ" 260 c

10 2

:Ii

TJ" 125 0C

~r/

8

4

Fig. 7 - Typical Source-Drain Diode Forwlrd Voltage

4-349

L

IL

f'

~

-40

40
120
80
TJ. JUNCTION TEMPERATURE I'CI

1M

PRINTED IN U.S.A

UFN250

Fig. 10 - Typical Capacitance Vs. Drain·to·Source Voltage
4000

3200

:- 2400

;!

~

1600

I VG~'O

.I

\

.\

\

800

IVD).OV

-

Ct

c

I
I
Vas = IOOV
I

"

~~

I
C:u

"-

I'.....

:r-r--

__ Grss

10

20

/

30

40

/

..
u

z

FOR TEST CIRCUIT

~

24

(HEATING EfFECT OF 2 0 ,.1.5
-PULSE IS MINIMALl

~
z

r-......
..........

..........

UFN250,251

UFN252, 253"-

0.14

.......

=>
0

:;
:;;

~

g

/

'"

~

./,

~

40

120

80

~

\~

/VGs=20V

.--

i,.....--":
o

,"

./

)

0.10

0.06

'" "'-"- "'-

..........

r-- -

0

~

140

112

I"'-. .......

t;

u

84

Fig. 13 - Maximum Drain Current Vs. Case Temperature
3D

I

56

Og. TOTAL GATE CHARGE (nC)

RaS(on) MEASURED WITH
CURRENT PULSE OF
2.0 /.IS OU RATlON
INITIAL TJ = 25 0C

VGS= IOV

f--

SjE FIG1URE '18
28

0.22

018

"

10 '38A

50

Fig. 12 - Typical On·Resistance Vs. Drain Current

~

~

~ rY

Vas. DRAIN-IO·SOURCE VOLTAGE (VOLTS)

.

I

c,u

"

~

-vas ·16OV, UFN250. 252 t'--.

-

I

\ ~

oj

I 1._

=Cgd

tOIS = Cds+ Cvs+
91
gd
"=Cds+Cgd

l~

UFN253

20

.

,.IMH' I

UFN252

Fig. 11 - Typical Gate Charge Vs. Gate-to-Source Voltage

C'IS '" Cgs + Cgd, Cds SHORTED

em

UFN251

a

160

25

100
75
Te. CASE TEMPERATURE (OC)

50

10, DRAIN CURRENT (AMPERES)

125

150

Fig. 14 - Power Vs. Temperature Derating Curve

'\..

140

~

120

'\,
~

::

~ 100

z

o

~

80

'\

ill
<5
~

60

~

~ 40
20

20

UNITRODE CORPORATION· 5 FORBES ROAO
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

'"

40
60
80
100
Te' CASE TEMPERATURE (OC)

4-350

~

120

i\
140

PRINTED IN USA

UFNF250 UFNF251

UFNF252

UFNF253

•

Fig. 16 - Clamped Inductiv. Wav.forms

Fig. 15 - Clamped Inductiv. T.st Circuit

Fig. 17 - Switching Time Test Circuit
El

~~~~~TE~l,~O OBTAIN

Rl
VOS

r;U~ - - -o-li---O----"--t-::t'
I GENERATOR
.fl I
I ~~RCE
IMPEDANCE
L ___ J

Fig. 18 - Gat. Charge Test Circuit

+Vos
(ISDLATEO
SUPPLY)

-

o~I.5mA

--"'N'Ir.....-'V"',.--Q
IG
10
CURRENT
SHUNT

UNITROOE CORPORATION. 5 FORBES ROAO
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

4-351

'":"'

-Ves

CURRENT
SHUNT

PRINTED IN U.S.A.

UFN320
UFN321
UFN322
UFN323

POWER MOSFET TRANSISTORS
400 Volt, 1.8 Ohm

N-Channel

FEATURES

DESCRIPTION

•
•
•
•
•

The Unitrode power MOSFET design utilizes the most advanced technology available.
This efficient design achieves a very low Roseon. and a high transconductance.

Fast Switching
Low Drive Current
Ease of Paralleling
No Second Breakdown
Excellent Temperature Stability

The Unitrode power MOSFET features all of the advantages of MOS technology such as
voltage control, freedom from second breakdown, very fast switching speeds, and
thermal stability.
These power MOSFETS are ideally suited for many high-speed, high-power switching
applications such as switching power supplies, motor controls, and wide-band and
audio amplifiers.

PRODUCT SUMMARY

Part Number

VDS

RDS(onl

ID

UFN320
UFN321
UFN322
UFN323

400V
350V
400V
350V

1.80
1.80
2.50
2.50

3.0A
3.0A
2.5A
2.5A

MECHANICAL SPECIFICATIONS
UFN320 UFN321 UFN322 UFN323

TO-204AA (TO·3)

22.22(0115)
342

MAX OIA

'~1lI~=

"13:L~~.
T

SEATING

PLANE

~;YIUaIDIA-I1--

TWO PLACES

10.16(0.4OIMI"
TWO PLACES

a:l~lta OIA
TWO PLACES
DRAIN

(CASE)

11 11 (044O)t

..-mmiIJ

t MEASURED AT SEATING PLANE

Dimensions in Millimeters and (Inches)

4/83

4-352

~UNITRDDE

UFN320 UFN321

UFN322. UFN323

ABSOLUTE MAXIMUM RATINGS
UFN320

UFN321

UFN322

UFN323

400

350

400

350

V

400

350

400

350

V

Continuous Drain Current

3.0

3.0

2.5

2.5

A

10@TC = 100°C Continuous Drain Current
Pulsed Drain Current @
10M

2.0

2.0

1.5

1.5

A

12

12

10

10

Parameter

 'Olon) x ROS(on) mix .

3

J

J

II

uv

TJ=2S oC

V-

I

TJ= -SSoC

I

1

I

4

16

1

2U

VGS. GATE TO SOURCE VCilTAGE (VOL TSI

VOS. DRAIN·lQ·SOURCE VOLTAGE (VOLTS,

Fig. 3 - Typical Saturation Characteristics

Fig. 4 - Maximum Safe Operating Area
50

10V

B.GV

~ ~V

I
12

.. J,pu+"J,- r- r--

20

8lf

OPERATION IN THIS"
AREA IS LlMITEO
BY ROSlon)
--

UFN320,1

UFN322.3

.Iv
I

5

UFN320.1

I

"r"
200

f-- R1hJC' 3.12 K/W
o. 1 FSINGLE PULSE

10

3110

VOS. DRAIN·TO.sOURCE VOLTAGE (VOLTS)

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

I'

f-- TC' 2.0C

o.2 f--TJ"500CM AX.

I
100

III
1m.

5

uv
1

lIJ~.
r...

I

2

lOllS

"-

~,

2 UFN322.3

vGs···rv

3

i"- fl
"-... IJI

':i VJ

4.0V

IT

III

TJ= 1250C

2

,-

UFN321.3,.,
UFN320, 2;;;;
10

20

so

100

2(10

1~~'

~
II
DC

.00

Vos, ORAIN·TO.sOURCE VOLTAGE IVOLTS)

4-354

PRINTED IN U.S.A.

UFN320 UFN321

UFN322

UFN323

Fig. 5 - Maximum Effective Transient Thermal Impedance, Junction·to·Case Vs. Pulse Duration
0Z

I
I

w

ii

L
~ ....

1.0

n
wz

>=>

ffl:i
NC

0.2

::::i~

NOTES

ELJL

-6.2
-0.1

~2~

i~ 0.1 =0.05
c Ilo(on)l" A~S(on)l ma}

I-

2
TJ '" 25 DC

5
TJ=-55 DC-

V
V

/

-r

-

".

~

TJ = 25°C

-

~

2

I-,- TJ~1251c- -

TJ=150 0 C_

5
r-TJ - 1S0 a C

I

ill

2

I'

~

1

0
10. DRAIN CURRENT (AMPERESI

I

TJ = 25°C

VSQ. SOURCE-TO·DRAIN VO LlAGE (VOL IS)

Fig.8 - Breakdown Voltage Vs. Temperature

Fig. 9 - Normalized On-Resistance VI. Temperature

,

22

5

".
5
..",.

V

~

~

/

...
/
/

. /V

/

/'

06

./
-40

L

/

~

5

07 5

~

'#'

0

,ii. ~

5

=--

;::;;

40

80

120

VGS" lOV
'0-1.5A -

"

-I

1

-

02

160

-40

TJ, JUNCTION TEMPERATURE (DC)

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173. TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

/

40

80

120

TJ. JUNCTION TEMPERATURE 10C)

4-355

PRINTED IN U.S.A.

UFN320 UFN321

Fig. 10 - TVPical Capacitance Vs. Drain·to.source Voltage
1000

I
Ciss

BOO

u

z
;'!

§ 400
u'

..

-

~

-

'"

1\ \

\

\

~

gd

VOS! BOV

15

VOS'

~

I

u

~
~

VOS·320V
10

0

~

'~"

,

~

t'--- t--.

Coss

"-

C'"

~OOV b,""'- ~V"

>

CISS

-~

\

200

,1 J

f:'MH~

CIII + Cgd. Cds SHORTED_

't!Cds+Cgd

.......

U

20

COSS=Cds+tc,,+cr

l\

600

Fig. 11 - Tvpical Gate Charge VI. Gate·to.source Voltage

em'" Cgd

\

-'"

IE

V~S)

UFN322 UFN323

tJ

~

II

5

10 ·4A
FOR TEST CIRCUIT

I

jEF'IUREj

V

10
20
30
40
, VOS. DRAIN·ro·SOURCE VOLTAGE IVOLTS)

~

B

50

12

16

0;, TOTAL GATE CHARGE I,C)

Fig. 12 - Tvpical On·Resistance VI. Drain Current

r-20

Fig. 13 - Maximum Drain Current VI. Case Temperature
5

ROS(on) MEASURED WITH CURRENT PULSE OF
2.01'1 DURATION. INITIAL TJ = 250C. (HEATING

EFFECT OF 2.0 ... PULSE IS MINIMALl

VGS"~

/
If/

4

-- l"-

3

VGS' 20V
3

1

-I--

i-""'"

. .V

I'-....

l""- t--.

2

:1"-"""

UFN320.32~_ r---t'--- L'-'"
UFN322. 323
I'~

1

4

0

12

10

,

~

25

50

10. DRAIN CURRENT lAMPE RES)

75
100
TC. CASE TEMPERATURE 10C)

125

150

Fig. 14 - Power Vs. Temperature Derating Curve
40

\

5

1\
f\..

'\

0

'\

5

'\

0
5

20

40

60

BO

100

Te. CASE TEMPERATURE 1°C)

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326·6509 • TELEX 95·1064

4-356

'"

120

r\
140

PRINTED IN U.S A.

UFN320

Fig. 15 - Clamped Inductive Test Circuit

UFN321

UFN322

UFN323

•

Fig. 16 - Clamped Inductive Waveforms

VARY tp TO OBTAIN

REOUIRED PEAK Il

VOS·R

'L +---<)---<..-"",,---,

Fig. 17 - Switching Time Test Circuit
ADJUST RL

E1

l008TA1N
SPECIFIED 10

Rl

v,
PULSE
GENERATOR

r------,
I

I
I

L_

TO SCOPE

50H

Fig. 18 - Gate Charge Test Circuit
+Vos
(ISOLATED
SUPPLY)

12V
BATTERY

-

15mA
Or=-TI

IG
CURRENT
SHUNT

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

4-357

10
CURRENT
SHUNT

PRINTED IN U.S A

UFN330
UFN331
UFN332
UFN333

POWER MOSFET TRANSISTORS
400 Volt, 1.0 Ohm

N-Channel

FEATURES

DESCRIPTION

•
•
•
•
•

The Unitrode power MOSFET design utilizes the most advanced technology available.
This efficient design achieves a very low RDs IO{on) x ROS(on) max.

6

S

sov-- F" """

TJ=+125 0 C

TJ' 2S.~""'oj
3

TJ' -SS.~"-...

,.sv- r-- -

2

,
so

,so

'00

200

I.
.Lt

"r'" ~ ~
2S0

1J
if

300
VGS. GATE·TO·SOURCE VOLTAGE (VOLTS)

Vas. DRAIN·TO-SOURCE VOLTAGE (VOLlS)

Fig, 3 - Typical Saturation Characteristics

Fig, 4 - Maximum Safe Operating Area

'00
OPERATION IN THIS

80

t LS~
PU

ld~Jfv
TEST

JV
f/

-

SO

JFJllO,1 1

VGS= SOY

20

~

i

J

r
I

'.SV- ' -

If

S

4
Vas. DRAIN·Ta-SOURCE VOLTAGE (VOLTS)

1.01,1

-=

O.

I

'ni

,

1.0

I I

,'~,

I

rTc'25 C
5 ~TJ' '50·C MAX.
r R,hJC • 1.61 KJW
O. 2 r-f'NGLE PULSE

O.

4·360

,

,

2

~

'0

10",.

r-UFN332,3

z

......

.t

t=UFN330,1

I
=

40V_

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (6171 861·6540
TWX (7101 326·6509 • TELEX 95·1064

UFN332,3
10

>-

I(
I~

REA IS LIMITED
BY ROSlon)

IIII1

'Oms
UFN331,3
UFN330,2

'I~'i'i

::::

50 '00 200
'0
20
VOS' ORAIN·TO·SOURCE VOLTAGE (VOLTS)

iCltt

500

PRINTED IN U.S.A

UFN330

UFN331

UFN332 UFN333

Fig. 5 - Maximum Effective Transient Thermal Impedance, Junction·to·Case Vs. Pulse Duration

ffi

iii

;L

wz
,,~

0

>~

~~

.5

~~ 0.2

0=0.5

NOTES

--6.2

NCO
::i~

i~ 0.1
z,~ 0.05
<'>w

2%

.i''''

-N~

~

0.1

0<

'"

•

_.
1.0

t-I-

0.02

~2~

O.OS

-

0.02
0.01

SINGLE PULSE (TRANSIENT
mRMAt

1 DUTY FACTOR, 0"

I~PEOfNfE\ ( (

~~

2 PER UNIT BASE'" RthJC = 1.67 OEG C/w.
3 TJM-TC=POMZthJC1t).

0.01
10-5

10-4

10-2

10-3

10-1

1.0

10

I,.SQUARE WAVE PULSE DURATION (SECONDS)

Fig. 6 - Typical Transconductance Vs. Drain Current

Fig. 7 - Tvpical Source-Drain Diode Forward Voltage

10

--

If'

./

~

~

\0

co

TJ

>

=

;

Rnsl(an) m1ax

..,

150°C

~

'O(on) x

I'TJ'ISOOC

/I

z

T}-125J~

Vas>

'-""'"

~

TJ" 25°C

........-: ~
V

TJ = 25 0C

z

TJ=-55 0 C -

_r--

~
/; C--" i-"'"

~
"",..

10 1

I

80 "s PULSE TEST

10
\0

I I

TJ' fSoc

o

to. DRAIN CURRENT (AMPERES)

VSQ. SOURCE TO·DRAIN VOLTAGE (VOL IS)

Fig. 8 - Breakdown Voltage Vs. Temperature

Fig.9 - Normalized On-Resistance Vs. Temperature
12

11 5

/
S

S

......S",.,

~

..,

.."

'"z
to"

....... ......

18

/

~
z

~ffi

...,.. ........

V
14

/V

~!:::!

..,..0'"
g~

/

o~

:Z:~

1.0

~

,/

-i;

~

S

01 S
-40

/
VGS = IOV

06

IOI'20A

/V

1

02
40
80
110
TJ. JUNCTION TEMPERATU RE (DC)

UNITROOE CORPORATION. 5 FORBES ROAO
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

160

-40

4-361

40

80

120

PRINTED IN U S.A

UFN330 UFN331

Fig. 10 - Typical Capacitance Vs. Drain·to-SOurce Voltage

Fig. 11 - Typical Gate Charge Vs. Gate-to-SOurce Voltage

2000

0

tGS·J

I I

1200

~

"IOCds+Cgd

~

;:;

§ 800
U

I

1
I
Cill '" ell + tgd. Cds SKDATED
em'" egd
CtlICgd
coss =Cds + C.+Cgd

1600

~

f= 1 MHz

-

.'DS· 81v,,-

vps '" 2~OV ......
vas ~ J20V

~

-

-;;,".

~,.

_CO"

-

~ :i;:

400

UFN332 UFN333

J

~

/

~~

10'" 7A

10
20
30
40
VOS. ORAIN·TO·SOURCE VOLTAGE IVOLTS)

SIEE FljURE

'i

24

32

FOR TESTCIRCUIT ) - -

I

16

5(1

40

ag. TOTAL GATE CHARGE InC)

Fig. 12 - Typical On-Resistance Vs. Drain Current

Fig. 13 - Maximum Drain Current Vs. Case Temperature
10

3

VGS'lOV
'/VGS'20V-

/
1

-

V

rr-

/

--

r- r--...
-r- . . . ........
UFN332, 333.......

ROSlon) MEASURED WITH CURRENT PULSE Of

2 Op.s DURATION. INITIAL TJ=250C. (HEATING
EFFECT OF 2.0 1'5 PULSE IS MINIMAL)
10

15

20

25

o

30

25

50

'a. ~RAIN CURRENT (AMPERES)

-

UFN33II.331

75

~~

100

........

125

,

~

150

Te. CASE TEMPERATURE (OC)

Fig. 14 - Power Vs. Temperature Derating Curve
80

70

~
~

z

-

"'\.
'\

60

'\.

"I'..'\

5(1

0

;::
~

..~

40

'\

~ 30
~

~ 20
10

20

40

60

80

'"

100

:\.

120

i\
140

Te. CASE TEMPERATURE (DC)

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

4-362

PRINTED IN U.S.A.

UFN330 UFN331

Fig. 15 - Clamped Inductive Test Circuit

UFN332

UFN333

•

Fig. 16 - Clamped Inductive Waveforms

VARY tp TO OBTAIN

REOUIRED PEAK Il

VDS·R

Fig. 17 - Switching Tim. Test Circuit

_.r--p

v,
TO SCOPE

Fig. 18 - Gate Charge Test Circuit
+Vos
(ISOLATED
SUPPLY)

-

O~1.5mA

IG
CURRENT

SHUNT

UNITROOE CORPORATION. 5 FORBES ROAO
LEXINGTON, MA 02173. TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

4-363

10
CURRENT
SHUNT

PRINTED IN U.S.A

UFN340
UFN341
UFN342
UFN343

POWER MOSFET TRANSISTORS
400 Volt, 0.55 Ohm

N-Channel

FEATURES

DESCRIPTION

•
•
•
•
•

The Unitrode power MOSFET design utilizes the most advanced technology available.
This efficient design achieves a very low Ros.onl and a high transconductance.

Fast Switching
Low Drive Current
Ease of Paralleling
No Second Breakdown
Excellent Temperature Stability

The Unitrode power MOSFET features all of the advantages of MOS technology such as
voltage control, freedom from second breakdown, very fast switching speeds, and
thermal stability.
These power MOSFETS are ideally suited for many high-speed, high-power switching
applications such as switching power supplies, motor controls, and wide-band and
audio amplifiers.

PRODUCT SUMMARY

Part Number

VDS

RDS(on)

ID

UFN340

400V

0.550

lOA

UFN341

350V

0.550

lOA

UFN342

400V

0.800

8.0A

UFN343

350V

0.800

8.0A

MECHANICAL SPECIFICATIONS
UFN340 UFN341 UFN342 UFN343

TO·204AA (TO·3)

2222(0875)
342

MAXDIA

l1;UI~~~1

"J3:L~~'
T

SEATING
PLANE

~Wm::IIOIA-11-

TWO PLACES

10 16 (O.40) MIN
TWO PLACES

~um:~aDlA
TWO PLACES

DRAIN
(CASE)

II 17 (0 44O)t

lmlmlII

t MEASURED AT SEATING PLANE

Dimensions in Millimeters and (Inches)

4/83

4-364

~UNITRODE

UFN340 UFN341

UFN342 UFN343

ABSOLUTE MAXIMUM RATINGS
Parameter

UFN340

UFN341

UFN342

UFN343

400

350

400

350

V

400

350

400

350

V

10

10

8.0

8.0

A

6.0

6.0

5.0

5.0

A

40

32

32

A

CD

VOS

Drain - Source Voltage

VOGR
10@TC=25°C

Drain - Gate Voltage (RGS = 1 Mm

Continuous Drain Current

10@TC= 100°C

Continuous Drain Current

10M

Pulsed Drain Current @

40

VGS
PO@TC = 25°C

Max. Power Dissipation

ILM

Inductive Current, Clamped

TJ
T stg

Operating Junction and

CD

Gate - Source Voltage

±20

linear Derating Factor

Dlain - Source Breakdown Voltage

V GS(th) Gate Threshold Voltage

(See Fig. 14)

A

32

-55to 150

°c

300 (0.063 in. (1.6mm) from case for 10s)

°C

Type

Min.

Typ.

Max.

Units

400

-

-

V

UFN341
UFN343

350

-

-

V

10

ALL

2.0

-

4.0

V

VOS = VGS' 10 - 250~A

-

-

100

nA

VGS

-

-100

nA

VGS = -20V

-

-

250

~A

VOS

-

1000

~A

VOS - Max. Aating x 0.8, VGS - OV, T C - 125°C

UFN340
UFN341

10

-

-

A

UFN342
UFN343

8.0

-

-

A

UFN340
UFN341

-

0.47

0.55

{)

UFN342
UFN343

-

0.68

0.80

0

Gate-Source Leakage Forward

ALL

IGSS

Gate-Source leak~ge Reverse

ALL

lOSS

Zero Gate Voltage Drain Current

ALL
On-State Drain Current

I

UFN340
UFN342

IGSS

10(on)

1.0

W
WIK

=25°C (Un)ess otherwise specified)

Parameter

BVOSS

(See Fig. 14)

Storage Temperature Range
Lead Temperature

V

125

(See Fig. 15 and 16) L = 1 OO~H
40
I
32

I

40

ELECTRICAL CHARACTERISTICS @ TC

Units

®

ROS(on) Static Drain-Source On-State
Resistance ®

®

Test Conditions
VGS = OV

= 250~A
= 20V
= Max. Aating, VGS = OV

V OS ) 10(on) x ROS(on) max.' V GS

E

10V

VGS = 10V, 10 = 5.0A

9f.

Forward Transconductance

ALL

4.0

7.0

-

Sm)

CISS

Input Capacitance

ALL

1250

1600

pF

Coss

Output Capacitance

ALL

-

300

450

pF

VOS ) 10(on) x AOS(on) max.' 10 = 5.0A
VGS = OV, VOS

= 25V, f

= 1.0 MHz

See Fig. 10

C rss

Reverse Transfer Capacitance

ALL

-

80

150

pF

td(on)

Turn·On Delay Time

ALL

17

35

ns

VOO = 175V, 10 = 5.0A, Zo = 4.70

tr

Rise Time

ALL

-

5.0

15

ns

See Fig. 17
(MOSFET switching times are essentially
independent of operating temperature.)

td(off)

Turn-Off Delay Time

ALL

90

ns

Fall Time

ALL

-

45

tf

16

35

ns

Qg

Total Gate Charge

ALL

-

41

60

nC

ALL

-

18

-

nC

(Gate·Source Plus Gate·Drain)

Q gS

Gate·Source Charge

Qgd

Gate·Drain ("Miller") Charge

ALL

-

23

-

nC

LO

Internal Drain Inductance

ALL

-

5.0

-

nH

LS

Internal Source Inductance

ALL

-

12.5

-

nH

V GS = 10V, 10 = 12A, VOS = 0.8 Max. Rating.
See Fig. 18 for test circuit. (Gate charge is essentially
independent of operating temperature.)

Measured between
the contact screw on
header that is closer to
source and gate pins
and center of die .
Measured from the
source pin, 6 mm

(0.25 in.1 from header
and source bonding

pad.

Modified MOSFET
symbol showing the
internal device
inductances.

.$

THERMAL RESISTANCE
RthJC

Junction·to·Case

RthCS

Case-to-Sink

Mounting surface flat, smooth, and greased.

RthJA

Junction·to·Ambient

Free Air Operation

UNITROOE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

4-365

PRINTED IN U S.A

•

UFN340 UFN341

UFN342

UFN343

SOURCE·DRAIN DIODE RATINGS AND CHARACTERISTICS
IS

ISM

VSD

Continuous Source Current
IBody Diode)

Pulse Source Current
IBody Diode) ®

Diode Forward Voltage ®

UFN340
UFN341

-

-

10

A

UFN342
UFN343

-

-

a.o

A

UFN340
UFN341

-

-

40

A

UFN342
UFN343

-

-

32

A

UFN340
UFN341

-

-

2.0

V

Modified MOSFET symbol
showing the integral
reverse P.:N junction rectifier.

~

TC

= 25°C, IS = 10A, VGS = OV

V

TC

= 25°C, IS = a.OA, VGS = OV

ns

T J = 150°C, IF - 10A,dl F/dt - 100A/~s

UFN342
UFN343

-

-

1.9

ALL

-

BOO

-

5.7

-

~C

T J = 150°C, IF - 10A, dlF/dt

t"
QRR

Reverse Recovery Time
Reverse Recovered Charge

ALL

-

ton

Forward Turn-on Time

ALL

Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by LS

®Pulse Test: Pulse width" 300~s, Duty Cycle" 2%.

®

Fig. 1 - Typical Output Characteristics
25

,,

20

....~
~

5 15

z

TJ
11v

10

~
Q

TJ"'25 0 C

20

0

I 'tJ

,

r--8flpIPULSETEST

Vas > I~(on) ~ ROS(onl

VGS -6V

,I

ma~.

I

j

II
/; rrJ
~

5[

4~
20
40
60
80
VOS, ORA1N·TO·SOURCE VOLTAGE (VOLTS)

VGS, GATE·TO·SOURCE VOLTAGE (VOLTS)

Fig.4 - Maximum Safe Operating Area
100

OPERATION IN THIS

AREA IS LIMITED

I--JIJSPU!SETE~

50 -UFN340,1

-~F~342. 3
20

BV,

~~V_
5

.,

.... t!!-

~

w

....

2

BY RO Oil

,,-,

I'

~

4

6

z

Yr

~
~

u

z

GS ' 5IV-

B

,10 1m'

~

10

E

~-TC"250C
05
TJ.'50'CMAX

f=

r-

I-

t=-

1

10

10

:10~

I-

RthJC" 1 0 K!W

UFN341.3

i-ISINGL' PULSI'I

VOS, ORAIN·TO·SOURCE VOLTAGE (VOLTS)'

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. 1617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

10,:Ls
100,us

t:: UFN342, 3

=

4~~

L

10

"...'"

~
.... ~ I--

;;"'6V-

'1

r-I U~N3k.11

~

P"

~"

5

h

.~:

0

0

10

4

'00

Fig. 3 - Typical Saturation Characteristics
5

'I

-..........

I
TJ'" U5 e ~
I

I

12

01/

'!ss.c
I

J

z

w

=
=
=>
u

Fig. 2 - Typical Transfer Characteristics

80 IJS PULSE TEST

V

+ LO'

Repetitive Rating: P~lse width limited
by max. junction temperature.
See Transient Thermal Impedance Curve (Fig. 5).

25

10'fL~v

J

= 100A/~s

'UFN340.'2

IIII
10

20

50

100

200

lCL
I
500

Vas. DRAIN·IO·SOURCE VOLTAGE (VOLTS)

4-366

PRINTED iN U.S.A.

UFN340

UFN341

UFN342

UFN343

Fig. 5 - Maximum Effective Transient Thermal Impedance. Junction·to·Case Vs. Pulse Duration

L

•

0=0.5

NOTES'

mIL

0.2

rO.l

~2~

1 ,==0.0'
0.02
SINGLE PULSE (TRANSIENT

r-~.01

1 DUTY FACTOR. 0 =

II

iHfiii! lMPj Oi NCE

:!

2 PER UNIT SASE" RthJC :;: 1.0 DEG C/W

3. TJM· Te = POM ZthJC(t)

1
10-4

10.1

10-2

10-3

10

1.0

.,. SQUARE WAVE PULSE DURATION (SECONDS)

Fig. 7 - Typical Source·Drain Diode Forward Voltage

Fig. 6 - Typical Transconductance Vs. Drain Current
15

I

-~"'PU~SET~~

vas> 'O(on} x ROS(on)

20

ma~.

I

~

TJ=-55 0 C

/
TJ = 25°C

/

,II

~

r\" 12J c

TJ" ISOOC

o

HV-

VI

2r-- TJ'2J

il

10

25

10
15
20
10. DRAIN CURRENT IAMPERES)

o

I
VSQ. SOURCE·IO·DRAIN VOLTAGE (VOLTS)

Fig. 9 - Normalized On-Resistance Vs. Temperature

Fig. 8 - Breakdown Voltage Vs. Temperature

2.5

1.25

I'

."",...
./

V

.....

..... ....

/

./

5

."",...

. /V

,,-V

0

V
."",...

V
VGS' 10V
10·5.5A -

-

5

0.15
-40

40
80
120
TJ. JUNCTION TEMPERATURE I'C)

UNITROOE CORPORATION. 5 FORBES ROAO
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

o

-40

160

4-367

120
40
80
TJ,JUNCTION TEMPERATURE IOC)

160

PRINTED IN U.S.A

UFN340 UFN341

Fig. 10 - Typical Capacitance V,. Drain·to·Source Voltage
2000

Fig. 11 - Typical Gate Charge Vs. Gate·to-Source Voltage

ilL

till .. till + Cgd. Cds SHORTED.!
cra-egd
_VGS'ov

rCIllCgd
1600 ~ C,.=Cd,+CIII+Cgd

r--.... ~

20

"IMH,

I'.. "Cds + Cgd

\

~

I.

VCS'80J~
I
I

c'

r----- r- vos, = 200VI~

\

VCS=320V~

,"

\
400

~

1\

......

"- ""-

'"

~

r- ~C..

w

~

ro

~

~

'c-12A
TEST CIRCUIT

~

%

40

SEE FIGrE 18,

~

40
60
0g, TOTAL GATE CHARGE (nCI

c

~o.4

V

l/

80

Fig. 13 - Maximum Drain Current VI. Ca.. Temperatura

V

'/

VGS~10VJ

i"""'--r--,

--

~S=20V

1"-

-......

r--....

t"-...

6

~

r-....
UFN342~

UFN340. 341 _

.......

r--

....... 1'......

4

1'\'\

1-~

~

2

10

-

20

w

2

-

Fc~

V

r--

RaSlon) MEASURED WITH CURRENT PULSE Of
2.01'S DURATION. INITIAL TJ = 25°C. (HEATING
EFFECT OF 2.0 IJl'PULSE IS MINIMAl.)

./

~

1

~

Fig. 12 - Typical On·Resistance Vs. Drain Current

8

~~

1

Vos. ORAIN-TO-SOURCE VOLTAGE (VOLTS)

'-6

UFN342 UFN343

20

30

0

40

-'11

25

50

75
100
TC. CASE TEMPERATURE (DC)

'0, CRAIN CURRENT (AMPERES)

125

150

Fig. 14 - Power V,. Temperature Derating Curve
140
120 1 - -

1-0..

"

I'\.

0

0

0

"

~

" ",
~

0

"

~

"

~

20

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

40
60
80
100
TC. CASE TEMPERATURE (DC)

4-368

120

140

PRINTED IN U.S.A.

UFN340

Fig. 15 - Clamped Inductive Test Circuit

UFN341

UFN342

UFN343

•

Fig. 16 - Clamped Inductive Waveforms

VARY" TO OBTAIN
REQUIRED PEAK Il

VGS.R

OUT

-<>--............._ ......

' __
L

Fig. 17 - Switching Time Test Circuit
175V
ADJUST RL TO OBTAIN
SPECIFIED 10

33n

VOS

r;U~

--

I GENERATOR
I :J~CE
IMPEDANCE

-~-ilr-_ _O----'l....~
~

n

L ___

I

J

Fig. 18 - Gate Charge Test Circuit
+Vos
(ISOLATED
SUPPLY)

-

O~·5mA

UNITROOE CORPORATION. 5 FORBES ROAD
LEXI NGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326-6509 • TELEX 95-1064

-..I\IV'v--"-'Vv\~-o -V OS
IG
10
CURRENT
CURRENT
SHUNT
SHUNT

4-369

PRINTED IN USA

UFN350
UFN351
UFN352
UFN353

POWER MOSFET TRANSISTORS
400 Volt, 0.3 Ohm

N-Channel

FEATURES

DESCRIPTION

•
•
•
•
•

The Unitrode power MOSFET design utilizes the most advanced technology available.
This efficient design achieves a very low Ros•• and a high transconductance.

Fast Switching
Low Drive Current
Ease of Paralleling
No Second Breakdown
Excellent Temperature Stability

n.

The Unitrode power MOSFET features all of the advantages of MOS technology such as
voltage control, freedom from second breakdown, very fast switching speeds, and
thermal stability.
These power MOSFETS are ideally suited for many high-speed, high-power switching
applications such as switching power supplies, motor controls, and wide-band and
audio amplifiers.

PRODUCT SUMMARY

Part Number

VDS

RDS(on)

ID

UFN350
UFN351
UFN352
UFN353

400V
350V
400V
350V

0.30
0.30
0.40
0.40

15A
15A
13A
13A

MECHANICAL SPECIFICATIONS
UFN350 UFN351

UFN352 UFN353

TO-204AA (TO·3)

2Z221087S)

"'~TIx.AXO'A~~

SEATlHG
PlANE

T

~ ~ m'~il

DIA.-I
TWO PLACES

10.16 (0.40) MIN
TWO PLACES

afl~ :~B OIA
TWO PLACES

DRAIN
(CASE)

SOURCE

;~Mlg·:;t
t MEASURED AT SEATING PLANE

Dimensions in Millimeters and (Inches)

4/83

4-370

~UNITRODE

UFN350 UFN351

UFN352

UFN353

ABSOLUTE MAXIMUM RATINGS
UFN350

UFN351

UFN352

UFN353

Units

400

350

400

350

V

400

350

400

350

V

Continuous Drain Current

15

15

13

13

A

10@TC = 100°C Continuous Drain Current

9.0

9.0

B.O

B.O

A

60

60

52

52

Parameter

 IOlo!) x RD~IOn) ma~.

l -I -

I

I

TJ=+1250C

'rv:: F= F=

+-

TJ=250C
TJ = -55°C .....

l -I -

'fll
VII

.hv_ f-- f--

"V_ I -I 50

100

150

200

2'0

"'"

'j

./.V

300

Vas. DRAIN·TO·SOURCE VOLTAGE (VOL lS)

..

VGS, GATE·TO-SOURCE VOLTAGE (VOL TSI

Fig: 3 - Typical Saturation Characteristics

Fig. 4 - Maximum Safe Operating Area
100
OPERATION N HI

I-UFN350, j

10

vGS'~V

h tv

alIJJPU}SETEJ-

5

II

I.

~

r

'. ,

.~

UFN352,3

10

10'J.

ioiJ~s
1m,

'"

...... 45V

:'>
~

I. '/

1/
J 1/
J

UFN352,3

20 I-JJaro1jl

~

A EA IS lIMI E_D '\~
BY ROS(on)

50

z

~
~
~

IOms

u

~

"""r

+

!?

01

•

UNITRODE CORPORATION. 5 FORBES ROAO
LEXINGTON, MA 02173 • TEL. (617) 86J.6540
TWX (710) 326-6509 • TELEX 95-1064

=

_TC=25 0 C

02

Vas. DRAIN·TO·SOURCE VOLTA.GE (VOLTS)

'"

10
05

TJ' 15DoC MAX
_ RthJC = 0 83 K/W

DC

UFN351,3
111111

-ISI~GliPIUWII

I

II

UF~~, 2

II I
10

lOOms

IIIIII
10

20

50

lOa

II
200

500

Vas, DRAIN TO SOURCE VOLTAGE (VOLTS)

4·372

PRINTED IN U.S A.

UFN350 UFN351

UFN352 UFN353

Fig. 5 - Maximum Effective Transient Thermal Impedance, Junction·to-Case Vs. Pulse Duration

~

II

•

0" O!i

NOTES

I---~ 2

3:fUL

01

~2~

~d05
f-- 002

....

0.01

"-

I DUTY FACTOR, 0 '"

SINGLE PULSE (TRANSIENT

THERMAl,'rpEO~NCIEI

I

I

IIIII

3 TJM·TC=POMZthJC(t)

10-3

10-4

:~

2 PER UNIT BASE" RthJC = 0 83 DEG. C}W

2

10-2

2

10-1

10

10

11, SQUARE WAVE PULSE DURATION (SECONDS)

Fig. 7 - Typical Source-Drain Diode Forward Voltage

Fig. 6 - Typical Transconductance Vs. Drain Current
20

ffi

i

16

I

~

-

f-- TJ· i5 0C

-

;---

TJ=150 C==

TJ"25 cC
TJ

11

"

i~

i j / 'V

I

I

I

I

I

- Vas"> 10(on) x ROS(on)
[

I

--

+--

I

I

10
10

16

--

f - - '---

o
VSD. SOU RCE TO DRAIN VOLTAGE (VOL lS)

Fig. 9 - Normalized On-Resistance Vs. Temperature

Fig.8 - Breakdown Voltage Vs. Temperature

21

125

z

./

,...,

."

,...,

~

."

00

~~

/V

~~

0,,"
'<'~
00

/

~z
z- 10

~
]

085

~

0

1

06

~

;;;

075
-40

/1'

14

"'"

",

40

80

120

160

TJ,JUNCTlON TEMPERATURE (DC)

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

V

!

I

~

z_

V

I

18

~

....... I"

"

~

--

TJ" 25°C

.
max -

10. DRAIN CURRENT (AMPERES)

~

,

TJ=15~

Ii!

11

~

II

80"5PULSETESi--t-

If

0

f==

I'

!2.:!,;

[-+-

I

l~

+

i

//V

~

...a' o

TJ" -55!lC

I

r- ,
. . . V ........-r
~ V ,.-H-r

§

u

~

i I
I i

...

.;"

,./

L'
VGS

=

IOV

'O·55A ~ I--

'I

I

02
-40

40

80

120

TJ. JUNCTION TEMPE RATU RE (OC)

4-373

PRINTED IN U S.A

UFN350

Fig. 10 - Typical Capacitance Vs. Drain·to·Source Voltage
4000

3200

,

2400

~

1=1 MHz

~
~

~

1800

",'

BOO

~

C,a

w

CISS

:l

,

\ I\,

v~s'8L ...

IS

V~S'2~V .....

'"
.........

1\

'"z
:!

eru

~

Cgs + Cgd. Cds SHORTEO
= Cgd

~
~

=

COSS=CdS+a
,.
gd

-

Vos' 320V

r--

10

..,6

i--

~

S

/

'O"8A
FOR TEST CIRCUIT-

V
30

20

40

1

SE FlGUIRE 18

50

18

VOS. ORAIN·TO·SOURCE VOLTAGE IVOLTS)

,

5

0.4

~
iO.2

~

16b-~--~--+---~-+--4---+-~--~~

/

z

o

:; o.3

20r--r--~-r--~-r--~-r--~~--'

VGS'20V_

0.6

%

140

Fig. 13 - Maximum Drain Current Vs. Case Temperature

/;
L'/
If'

~
~

112

vGs= lOV

2

~

84

,I

o.7

~

56

-

1

Og. TOTAL GATE CHARGE (nC)

Fig. 12 - Typical On·Resistance Vs. Drain Current
0.8

~,.

~

>-

'"'"

""'Cds+Cgd

::::~'f'

~~

0

f--

"'r-... ~.
~'"
10

UFN353

20

'-,,-

~

UFN352

Fig. 11 - Typical Gate Charge Vs. Gate·to·Source Voltage

VG~'O
1

~

UFN351

-

V

10

V
ROS(on) MEASURED WITH CURRENT PULSE OF
2.0/JsDURATlON. INITIAL TJ=25 0 C (HEATING
EFFECT OF 2.0 II-S PULSE IS MINIMAL)

10

40

30

50

60

OL-~

70

__~~~__~~__~~__~~

25

50

75
100
Te. CASE TEMPERATURE (OC)

10. DRAIN CURRENT (AMPERES)

125

150

Fig. 14 - Power Vs. Temperature Derating Curve
140

'\..
I

120

":\...
'\

S
"

100

'\..

'\

z

0

~

80

"

60

,\1

~
~

~

!':\...

~ 40
20

"

"\

20

40

60

80

100

Te. CASE TEMPERATURE (OC)

UNITROOE CORPORATION. 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861·6540
TWX (710) 326-6509 • TELEX 95·1064

4-374

120

140

PRINTED IN USA

UFN350

Fig. 15 - Clamped Inductive Test Circuit

UFN351

UFN352

UFN353

Fig. 16 - Clamped Inductive Waveforms

II

VARY tp TO OBTAIN
REa.UIRED PEAK Il

VGS·R

'L_--(>---<~w.-J

Fig. 17 - Switching Time Test Circuit
E,

Vos

- - -~-ilr-_-6----'t,..I-::f
Ir;u~
GENERATOR
...,.
~g~"CE Jl
I IMPEDANCE
I
L ___ J

Fig. 18 - Gate Charge Test Circuit
+Vos
(ISOLATED
SUPPLY)

12V
BATTERY

-

O~1.5mA

IG
CURRENT
SHUNT

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

4-375

10
CURRENT
SHUNT

PRINTED IN U.S A

UFN420
UFN421
UFN422
UFN423

POWER MOSFET TRANSISTORS
500 Volt, 3.0 Ohm

N-Channel

FEATURES

DESCRIPTION

•
•
•
•
•

The Unitrode power MOSFET design utilizes the most advanced technology available.
This efficient design achieves a very low Roslon. and a high transconductance.

Fast Switching
Low Drive Current
Ease of Paralleling
No Second Breakdown
Excellent Temperature Stability

The Unitrode power MOSFET features all of the advantages of MOS technology such as
voltage control, freedom from second breakdown, very fast switching speeds, and
thermal stability.
These power MOSFETS are ideally suited for many high-speed, high-power switching
applications such as switching power supplies, motor controls, and wide-band and
audio amplifiers.

PRODUCT SUMMARY
Part Number

Vos

ROS(on)

10

UFN420

500V

3.0n

2.5A

UFN421

450V

3.0n

2.5A

UFN422

500V

4.0n

2.0A

UFN423

450V

4.0n

2.0A

MECHANICAL SPECIFICATIONS
UFN420 UFN421 UFN422 UFN423

TO-204AA (TO-3)

2222(0815)
342

MAX OIA

l1~(O~~1

"13J:1=ffSEATING
T~
PLANE

6;'1~:::IDIA-I1-

TWO PLACES

10 16 (040)MIN

TWO PLACES

a:lsnHO'A

TWO PLACES

DRAIN

(CASEI

lH~mtl~t
t MEASURED AT SEATING PLANE

Dimensions in Millimeters and (Inches)

4/83

4-376

~UNITRDDE

UFN420 UFN421

UFN422 UFN423

ABSOLUTE MAXIMUM RATINGS
UFN420

UFN421

UFN422

UFN423

VOS

Orain - Source Voltage (j)

500

450

500

450

V

VOGR
10@TC= 25°C

Orain - Gate Voltage IRGS = 1 M(lI (j)

500

450

500

450

V

Continuous Drain Current

2.5

2.5

2.0

2.0

A

10@TC = 100°C

Continuous Drain Current

1.5

1.5

1.0

1.0

A

10M

Pulsed Orain Current @

10

10

8.0

8.0

VGS
PO@TC-25°C

Gate - Source Voltage

Parameter

Max. Power Dissipation

I

10

40

ISee Fig. 14)

W

0.32

ISee Fig. 141

W/K

ISee Fig. 15 and lSI L - 100"H
10
I
B.O

Inductive Current, Clamped

Operating Junction and
Storage Temperature Range

TJ
T stg

A
V

±20

Linear Derating Factor

ILM

Units

Lead Temperature

I

A

8.0

-55to 150

°C

300 10.OS3 in. 11.Smml from case for 10s1

°C

ELECTRICAL CHARACTERISTICS @ Te = 25°C (Unless otherwise specified)
Typ.

Max.

Units

-

-

V

-

-

V

10 = 250"A

4.0

V

VOS

100

nA

VGS - 20V

Parameter

Type

Drain - Source Breakdown Voltage

UFN420
UFN422

500

UFN421
UFN423

450

VGSlth) Gate Threshold Voltage
Gate-Source Leakage Forward
IGSS

ALL

2.0

ALL

IGSS

Gate-Source Leakage Reverse

ALL

-

lOSS

Zero Gate Voltage Drain Current

-

-

BVOSS

1010n)

AOSlon) Static Drain-Source On-State
Resistance

®

nA

VGS = -20V

"A

VOS - Max. Rating, VGS - OV

-

-

1000

"A

VOS

UFN420
UFN421

2.5

-

-

A

UFN422
UFN423

2.0

-

-

A

UFN420
UFN421

-

2.5

3.0

Il

UFN422
UFN423

-

3.0

4.0

[J

VGS

ALL

1.0

1.75

-

S tUl

Input Capacitance

ALL

-

300

400

pF

Coss

Output Capacitance

ALL

75

150

pF

C rss

Reverse Transfer Capacitance

ALL

20

40

pF

tdlon)

Turn-On Delay TIme

ALL

-

30

SO

ns

tr

Rise Time

ALL

-

25

50

ns

tdlolt)

Turn-Off Delay Time

ALL

SO

ns

Fall Time

ALL

-

30

tf

15

30

ns

Og

Total Gate Charge

ALL

-

11

15

nC

Ogs

Gate-Source Charge

ALL

-

5.0

-

nC

Ogd

Gate-Drain t"Miller"l Charge

ALL

-

S.O

-

nC

LO

Internal Drain Inductance

ALL

-

5.0

-

nH

ALL

= Max. Rating x 0.8, VGS

= OV, TC

= 125°C

VOS >1010n) x ROSlon) max.' VGS = 10V

Forward Transconductance @

Internal Source Inductance

= VGS, 10 = 250"A

250

Ciss

LS

VGS = OV

-100

9fs

(Gate-Source Plus Gate-Drain)

Test Conditions

-

ALL
On-State Drain Current @

Min.

-

12.5

-

nH

= 10V, 10 = 1.0A

VOS ) 10ton) x ROSton) max.' 10 - I.UA
VGS

= OV, VOS = 25V, f

= 1.0 MHz

See Fig. 10
V OO = 0.5 BV OSS ' 10
See Fig. 17

= 1.0A, Zo

= SOil

(MOSFET switching times are essentially
independent of operating temperature.)

V GS = 10V, 10

= 3.0A, VOS -

0.8 Max. Rating.

See Fig. 18 for test circuit. (Gate charge is essentially
independent of operating temperature.)

Measured between
the contact screw on
header that is closer to
source and gate pins
and center of die.
Measured from the
source pin, 6 mm

to.25 in.) from header
and source bonding

pad.

Modified MOSFET
symbol showing the
internal device
inductances.

$

THERMAL RESISTANCE
RthJC

Junctlon-to-Case

RthCS

Case-to-Sink

Mounting surface flat, smooth, and greased.

RthJA

Junctlon-te-Ambient

Free Air Operation

UNITROOE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. 1617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

4-377

PRINTED IN U.S A

•

UFN420 UFN421

UFN422 UFN423

SOURCE·DRAIN DIODE RATINGS AND CHARACTERISTICS
Continuous Source Current

IS

(Body Diode I

Pulse Source Current

ISM

(Body Diodel @

VSD

Diode Forward Voltage @

Modified MOSFET symbol

UFN420
UFN421

-

-

2.5

A

UFN422
UFN423

-

-

2.0

A

UFN420
UFN421

-

-

10

A

UFN422
UFN423

-

-

8.0

A

UFN420
UFN421

-

-

1.4

V

TC

= 25·C, IS = 2.5A, VGS = OV
= 25°C, IS = 2.0A, VGS = OV

showing the integral
reverse P~N jl..llction rectifier.

~

UFN422
UFN423

-

-

1.3

V

TC

All

-

600

-

ns

T J - 150·C, IF = 2.5A, dlFldt = 100A/!,s

3.5

-

~C

T J - 150·C.I F = 2.SA, dlF/dt = 100A/!'.

trr

Reverse Recovery Time

ORR

Reverse Recovered Charge

All

-

ton

Forward Turn~on Time

All

Intnnsic turn~on time is negligible. Turn-on speed is substantially controlled by lS



6.!V

5

-

v

r-TJ= 125°C

I

I

TJ""250C~

TJ'.55.C"

'sr

k::::: ~

4.0V

100

150

10

250

200

VGS. GATE·TO·SOURCE VOLTAGE (VOLTS)

Vas. DRAIN-IO-SOURCE VOLTAGE (VOLTS)

Fig, 3

~

Typical Saturation Characteristics

P70V.J.

-Sll.llpuLETEJ

~'r"""

i

6.5V~

"""'"

6.OV-

.JV=
l

J

If
I
12

-

AREA IS LIMITED
BY ROSlon)

r

UFN420,1
3

['ill

I-UFN420.1

l'"

r-tr~~
0

Lru

~

lms
r, ltL.

I- TC·25·C

VGS'5.L=

'=-

4~V_

,..-

T I

2

r- TJ= 1500C MAX.

I- RthJC'312K/W

1

40V====
16
20

005
10

Vas. DRAIN-TO·SOURCE VOLTAGE (VOL TS)

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (7101 326·6509 • TELEX 95·1064

OPERATION IN THIS

II I

20

I-~FIl422.

V

1

Fig. 4 - Maximum Safe Operating Area
50

10

1/

V

i'J
l;

4.5V

50

r---.....~

SINGLE PULSE

UFN421, ~~
UFN420. ~;
10

20

50

100

200

i

DC

500

Vas DRAIN·TO·SOURCE Vall AGE (VOLTS)

4·378

PRINTED IN U.S.A.

UFN420 UFN421

UFN423

Fig. 5 - Maximum Effective Transient Thermal Impedance. Junction·to·Case Vs. Pulse Duration

..
z

I

~

L
I-!::

UFN422

I

1.0

",z

>=>

>= '"

~~

0'0.5

05

.

ffi~ 0.2

N"
::;~

r-O.l

~

i~ 0.1 ",,0.05

,,'"
2..! 0.05 -0.02
"w
2=
,£'..

-

;;;0.01

""

0.02

N

0.01
10-5

1

•

NOTES.
r-6.2

mJL

-

iii!

~2~

~~

1 DUTY FACTOR, 0 =

SINGLE PULSE (TRANSIENT
THERMAL1MPEOANCEI

2 PER UNIT BASE = RthJC '" 3.12 OEG. elW.
3 TJM· Te '" POM ZthJC1t)

10-4

10-1

1.0

10

'I.SQUARE WAVE PULSE DURATION (SECONOSI

Fig. 7 - Typical Source-Drain Diode Forward Voltage

Fig. 6 - Typical Transconductance Vs. Drain Current

80 ~I PULSE TEST.

, , , 1
Vas> 10(on) x ROS(on)

-

I

102

max.

Tj'~

h
/(/

V
VV

~ !--

"..

"

.......
.......

'"~

.''""

t_

~ ,.... T;'250
~

n
Tj! 125 0

z

Tj'250C,

'"'"=>

t

"z

~w

10 f- TJ '" 1S0oC

~

III
I

~
~

,

/I

,

1.0

o

2.6

w

1.15

"..

i

~

~ Ci 1.05
ww

".~

,"N

"':;

"''''
~I

~~

0.95

~

...

"z

jov
- - V~S'
'0= 2.5A

~

II

2.2

'"to

~

"

J

18

/

/'

V

. /V

/'

V-

....,.V

~
Q

I

Fig. 9 - Normalized On-Resistance Vs. Temperature

1.25

C)

= 25 0 C,

VSD. SOURCHO·ORAIN VOLTAGE IVOL TSI

Fig. 8 - Breakdown Voltage Vs. Temperature

~

r---.TJ

I

'0. DRAIN CURRENT (AMPERES)

:>

"'-Tj"50 0C =

V

0.85

/"

i;

0.1 5

80

-40

120

160

TJ. JUNCTION TEMPERATURE (OCI

UNITRODE CORPORATION. 5 FORBES ROAD
LEXI NGTON. MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

0.2
-40

40

80

120

160

TJ, JUNCTION TEMPERATURE (DC)

4-379

PRINTED IN U S.A.

UFN420 UFN421

Fig. 10 - Typical Capacitance VI. Drain·to·Source Voltage
1000

VGSI.o

I

...

I

I

11·'.MHz
COo •
+ C.... Cd. SHORTED Cra -C...

c..

+ ...
~
-Cdl+C,:I

600

w

u

z

-

§

400

u

1\\ ~

\

200

\

.......

- f--

w

~ 10

~

:;:

'"!II
>

/

C"'- ....

10
40
20
30
VDS. DRAIN·TD.sOURCE VDLTAGE IVOLTS)

,.
,.
tJ

~

"

Ijj

C,.

'-.....
'-.....

I~

">

I

1"- to-

I

Vos '" 400V

'"'"
:;

Ciss

t--....

I

w

I

,\

I
I
VDS' 250V

"~ 15

I

i:!

VOS'" l00V

~

- f--

COlI- Cdl+

~

Fig. 11 - Typical Gate Charge Vs. Gate·to·Source Voltage
20

I

800

UFN422 UFN423

/

'D=3A
FOR TEST CIRCUIT
Si E FIGtRE

'i

8

50

12

a". TOTAL GATE CHARGE '"C)

Fig. 12 - Typical On·Resistance Vs. Drain Current

16

r-20

Fig. 13 - Maximum Drain Current VI. Case Temperature
3.0

. 1
VGS ·10V

t

/

...... V
2

L

V

/

2.4

r--... t-....

S'20V

V

at"- ~
t--

I......... I'.
i""""'-

t-UFN422.~ ......

"' "

.......

2

V

~20.421

~"I'I.

O.6

~

;,g~~u~~~~~:E~N~~::LC~~R2E5~tP~':-:!~~G
EFFECT DF 2.0 •• PULSE IS MINIMAL.)
14

12

10

0
25

50

'D. DRAIN CURRENT (AMPERES)

75
100
TC. CASE TEMPERATURE I'C)

125

,

~

150

Fig. 14 - Power Vs. Temperature Derating Curve
0

'\

5

~
f'\

5

'\
1'\

0

\

5

'\

0
5

~
\

20

UN)TROOE CORPORATION· 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

40
60
80
100
TC. CASE TEMPERATURE I'CI

4·380

120

140

PRINTED IN U.S A

UFN420 UFN421

Fig. 15 - Clamped Inductive Test Circuit

UFN422

UFN423

II

Fig. 16 - Clamped Inductive Waveforms

VARY tp TO OBTAIN
REQUIRED PEAK 'L

TO
VGS=:r--tP-L

OUT

Fig. 17 - Switching Time Test Circuit

v,

PULSE
GENERATOR

O.U.T.

r-----...,
I
I
I

L _

50n

I
I

___ ...J

TO SCOPE
O.Oln
HIGH FREQUENCY
SHUNT

50n

Fig. 18 - Gate Charge Test Circuit
+Vos
(ISOLATED
SUPPLY)

-

o~15mA

-J\J'V'v-....-'\II/\r---o -VOS

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

4-381

IG

10

CURRENT
SHUNT

CURRENT
SHUNT

PRINTED IN U.S A

UFN430
UFN431
UFN432
UFN433

POWER MOSFET TRANSISTORS
500 Volt, 1.5 Ohm

N-Channel

FEATURES

DESCRIPTION

•
•
•
•
•

The Unitrode power MOSFET design utilizes the most advanced technology available.
This efficient design achieves a very low RosI.nl and a high transconductance.

Fast Switching
Low Drive Current
Ease of Paralleling
No Second Breakdown
Excellent Temperature Stability

The Unitrode power MOSFET features all of the advantages of MOS technology such as
voltage control, freedom from second breakdown, very fast switching speeds, and
thermal stability.
These power MOSFETS are ideally suited for many high·speed, high-power switching
applications such as switching power supplies, motor controls, and wide-band and
audio amplifiers.

PRODUCT SUMMARY
Part Number

Vos

RDS(on)

ID

UFN430
UFN431
UFN432
UFN433

500V
450V
500V
450V

1.50
1.50
2.00
2.00

4.5A
4.5A
4.0A
4.0A

MECHANICAL SPECIFICATIONS
UFN430 UFN431 UFN432 UFN433

TO-204AA (TO-3)

22.22 (081S)
3.42

MA)( OtA

'H~I~;~I

10131:~'
~.

SEATING

T

PLANE

~DIA'-1~
TWO PLACES

10 16 (040) MIN

TWO PLACES

;:Jlt:;11 OIA
TWO PLACES

DRAIN

(CASEI
SOURCE

1~~~I8.:;t
t

MEASURED AT SEATING PlA'NE

Dimensions in Millimeters and (Inches)

4/83

4-382

~UNITRODE

UFN430

UFN431

UFN432

UFN433

ABSOLUTE MAXIMUM RATINGS
UFN430

UFN431

UFN432

UFN433

Units

500

450

500

450

V

Drain - Gate Voltage IRGS ~ 1 M!l) (j)

500

450

500

450

V

Continuous Drain Current

4.5

4.5

4.0

4.0

A

3.0

3.0

2.5

2.5

A

18

18

16

16

Parameter

VOS

Drain ~ Source Voltage

VOGA
10 @ TC ~ 25°C

CD

10 @TC - 100°C

Continuous Drain Current

10M

Pulsed Drain Current

VGS
PO@ TC ~ 25°C

Gate - Source Voltage

®

75

Max. Power Dissipation

0.6

Linear Derating Factor
Inductive Current. Clamped

ILM

I

18

Lead Temperature

ELECTRICAL CHARACTERISTICS @ TC

~

ISee Fig. 141

W

ISee Fig. 141
~

W/K

1OO~H
16

I

A

16

-55to 150

°C

30010.063 In. 11 .6mml from case for 10s1

°C

25°C (Unless otherwise specified)
Min.

Typ.

Max.

Units

UFN430
UFN432

500

-

-

V

VGS ~ OV

UFN431
UFN433

450

-

-

V

10

VOS - VGS, 10 - 250~A

Type

Parameter

BVOSS

V

ISee Fig. 1 5 and 161 L
I
18

Operating Junction and
Storage Temperature Range

TJ
T stg

A

±20

Drain - Source Breakdown Voltage

Test Conditions

~ 250~A

ALL

2.0

-

4.0

V

IGSS

Gate-Source leakage Forward

ALL

-

-

100

nA

VGS ~ 20V

IGSS

Gate-Source leakage Reverse

ALL

-

-

-100

nA

VGS - -20V

loSS

Zero Gate Voltage Drain Current

-

250

~A

VOS ~ Max. Rating, VGS ~ OV

-

-

1000

~A

VOS - Max. Rating xO.8, VGS - OV, TC - 125°C

UFN430
UFN431

4.5

-

-

A

UFN432
UFN433

4.0

-

-

A

UFN430
UFN431

-

1.3

1.5

II

UFN432
UFN433

-

1.5

2.0

II

V GStll]L Gate Threshold Voltage

1010ni

On-State Drain Current

@

ROS(on) Static Drain-Source On-State
Resistance ®

®

ALL

VOS ) 1010ni x ROS(onl max.' V GS ~ 10V

VGS

~

10V, 10

~

2.SA

9fs

Forward Transconductance

ALL

2.5

3.2

-

S IlJI

Ciss

Input Capacitance

ALL

-

600

800

pF

Coss

Output Capacitance

ALL

-

100

200

pF

C rss

Reverse Transfer Capacitance

ALL

-

30

60

pF

tdlonl

Turn-On Delay Time

ALL

-

-

30

ns

VOO ~ 225V, 10

tr

Rise Time

ALL

ns

See Fig. 17

Turn-Off Delay Time

ALL

-

30

tdloffl
tf

-

55

ns

Fall Time

ALL

-

-

30

ns

(MOSFET switching times are essentially
independent of operating temperature.)

Qg

Total Gate Charge
(Gate-Source Plus Gate-Drain)

ALL

-

22

30

nC

Qgs

Gate-Source Charge

ALL

-

11

-

nC

Qgd

Gate-Drain ("Miller") Charge

ALL

-

11

-

nC

LO

Internal Drain Inductance

ALL

-

5.0

-

nH

LS

Internal Source Inductance

ALL

-

12.5

-

nH

VOS ) 10(onl x ROSlonl max.' 10 - 2.5A
VGS ~ OV, VOS ~ 25V, f ~ 1.0 MHz
See Fig. 10

= 2.5A, Zo

~

1511

V GS ~ 10V, 10 ~ 6.0A.-V OS ~ 0.8 Max. Rating.
See Fig. 18 for test circuit. (Gate charge is essentially
independent of operating temperature.)

Measured between
the contact screw on
header that is closer to
source and gate pins
and center of die .
Measured from the
source pin. 6 mm

10.25 in.1 from header
and source bonding

pad.

Modified MOSFET
symbol showing the
internal aevice
inductances.

.@)

THERMAL RESISTANCE
RthJC

Junction-to-Case

RthCS

Case-to-Sink

Mounting surface flat. smooth. and greased.

RthJA

Junction-to-Ambient

Free Air Operation

UNITROOE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173· TEL. (6171 861-6540
TWX (7101 326·6509 • TELEX 95-1064

4-383

PRINTED IN U S.A

•

UFN430

UFN431

UFN432

UFN433

SOURCE·DRAIN DIODE RATINGS AND CHARACTERISTICS
IS

ISM

VSD

UFN430
UFN431

-

-

4.5

A

UFN432
UFN433

-

-

4.0

A

UFN430
UFN431

-

-

18

A

UFN432
UFN433

-

-

16

A

UFN430
UFN431

-

-

1.4

V

TC = 25·C.IS = 4.5A. VGS = OV

UFN432
UFN433

-

-

1.3

V

T C = 25·C. IS = 4.0A. VGS = OV

800

-

ns

TJ = 150·C.I F - 4.5A. dlF/dt = 100A/"s
T J = 150·C. IF - 4.5A. dlF/dt - 100A/"s

Continuous Source Current
IBody Diode!

Pulse Source Current
IBody Diode! @

Diode Forward Voltage @

Modified MOSFET symbol

showing the integral
reverse P-N junction rectifier.

~

trr

Reverse Recovery Time

ALL

QRR

Reverse Recovered Charge

ALL

-

ton

Forward Turn-on Time

ALL

Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by LS

'Olon) x ROSlon) max. vGs'sov- l -I - "jV- F F - r- TJ '" ~1250C - )--TJ"SS.C, TJ ~ 25 DC....... ~ ~"""""'1 'IV= 100 / FF 200 ~ 300 1 Vas. DRAIN·TO·SOURCE VOLTAGE (VOLTSI Fig. 3 - Typical Saturation Characteristics f, "J. I 2 4 5 6 VGS. GATE TO·SOURCE VOlTAGE (VOlTS) Fig. 4 - Maximum Safe Operating Area 100 , OPERATION IN THIS AREA IS L1MITEO BY ROSlon) so S f- ')jjS PUJE TESJ ~ L, ~ 3 ) # ~:r S.SV_ f- - UFN430.1 20 S.ov=~ ~ iti ..a UFN432.3 0 S ~UFN430.1 It-I'''' Vos~4.SV= ~ L I 1."1 I ... ~TC·25·C O. 5 ~~J"SO.CMAX. 10ms FN431.3 UFN430.2 O. 2 H'NGLE PP\SFI """" O. I 1.0 10 Vas. DRAIN·TO·SOURCE VOLT~GE (VOLTS} UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON. MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95·1064 i;ut, r- R,hJC • 1.67 KIW •.oy""" II" ~ 1.0 '".E> 10", ! 1 1,( r- UFN432. 3 ~ z 2 - / I I IIII 10 20 50 ""100 lOOms I==~ 200 ~~ttl 500 VOS' ORAIN·TO·SOURCE VOLTAGE (VOLTS) 4·384 PRINTED IN U.S A. UFN430 UFN431 UFN432 UFN433 Fig.5 - Maximum Effective Transient Thermal Impedance. Junction·to·Case Vs. Pulse Duration H- • D: 0.5 NOTES 3:flIL 1-02 0.1 ~2~ O.OS r002-=: I - 0.0!.:,. , DUTY FACTOR. 0 - SINGLE PULSE (TRANSIENT mlAMAt '~PEOtNrE: II 3 TJM - ie JlJ 10-3 10-4 :~ 2 PER UNIT BASE'" R1hJC" 1 67 DEG C/W '" POM ZthJC(t) 10-2 10 1.0 11. SQUARE WAVE PULSE DURATION (SECONDS) Fig. 6 - Typical Transconductance Vs. Drain Current TJ =- 550 ,/ / c....- ~ ~ ..,-./f TJ=~ ./ J ,/ V / ./ /" Fig. 7 - Typical Source-Drain Diode Forward Voltage ~:;:I~ I-- ~ " " - , TJ =25 0 C ~ z ./ '" I'-TJ'" ISOoC ~ /I z ~ 1£ L I. V IVI 102 10 w .., TJ-15D OC > ~ Vas> loton) x ROSton) max I 80llsPUlSfHST 10 I I TJ = f5 0 C o 10. DRAIN CURRENT (AMPERES) VSQ. SOURCE·TO·DRAIN VOLlAGE (VOLTS) Fig. 8 - Breakdown Voltage Vs. Temperature Fig. 9 - Normalized On-Resistance Vs. Temperature " 12S / w '" ~ 115 > z ~ '"Ww ~a "' r""'" l05 ~~ ~~ z '" in ..., .., ~ ~ z ::ffi ~!::! /" ..". .... :~ ez 0.95 :,;' 18 ~ / ~" ~~ ~ j 0.B5 40 BO 120 TJ. JUNCTION TEMPERATURE (DC) UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON. MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95·1064 / 10 / 06 ~ 0.15 -40 / 14 5:;! . / V" : '"~ / u ,/ / VGS = IOV '"1",.51- f-- 02 160 -40 40 BO 120 TJ, JUNCTION TEMPERATURE lOCI 4-385 PRINTED IN U.S A UFN430 Fig. 10 - Typical Capacitance Vs. Drain-to-Source Voltage 2000 J ri COlI 1200 ~ 800 ..; =Cd,+ ~ +Cgd I\. - Vas= IODV I - Vas -'oov Vas'" 250V -=Cds+Cgd z ...« Fig. 11 - Typical Gate Charge Vs. Gate-to-Source Voltage J C'" - Cgd -'" ~ C," \ 5 \ ~V V j ..... ~ ~ r- ~ -.... I'-.. VGS" 10V ... 1' V V V V 40 5 j V 32 Fig. 13 - Maximum Drain Current Vs. Case Temperature 2.0~s DURATION. INITIAL TJ- 25 0 C. (HEATING EFFECT OF 2.0., PULSE IS MINIMAU 1 24 Og. TOTAL GATE CHARGE tnC) RDSlon) MEASURED WITH CURRENT PULSE OF 2 't i SE, FIG 16 50 Fig. 12 - Typical On-Resistance Vs. Drain Current 3 '0-6A FOR TEST CIRCUIT- r - V r-. 10 20 30 40 VOS. ORAIN·TO·SOURCE VOLTAGE IVOL TS) 5 f"', ~V h'V \ 400 UFN433 li 1MH C. . . Cp+Cgd.C.,SHORTEO - 1600 u UFN432 20 1 GS ' 0 I UFN431 VGS' 20V t-- r- ..... r--.... UFN430,431 r-UF::~ ...... ~~ ........ r-... " ~ .... ~ " o 1 10 15 '0, DRAIN CURRENT IAMPERES) 20 25 25 50 75 100 Te. CASE TEMPERATURE IOC) , ~ I 125 150 Fig. 14 - Power Vs. Temperature Derating Curve 0 I-0 I\. 0 "I\. ""'\ 0 0 0 L\ 0 ~ 0 20 40 60 80 100 Te. CASE TEMPERATURE IOC) UNITROOE CORPORATION. 5 FORBES ROAD LEXINGTON. MA 02173 • TEL. (617) 861-6540 TWX (710) 326·6509 • TELEX 95-1064 4-386 '" " 120 140 PRINTED IN U.S.A UFN430 UFN431 Fig. 15 - Clamped Inductive Test Circuit UFN432 UFN433 II Fig. 16 - Clamped Inductive Waveforms VARY Ip TO OBTAIN REQUIRED PEAK Il VGS·R 'l_--<)--~~"M"""" Fig. 17 - Switching Time Test Circuit v, -~--PTO SCOPE Fig. 18 - Gate Charge Test Circuit +Vos (ISOLATED SUPPLY) - oI=n·5mA '. CURRENT SHUNT UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON. MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95·1064 4·387 10 CURRENT SHUNT PRINTED IN U.S.A. UFN440 UFN441 UFN442 UFN443 POWER MOSFET TRANSISTORS 500 Volt, 0.85 Ohm N-Channel FEATURES DESCRIPTION • • • • • The Unitrode power MOSFET design utilizes the most advanced technology available. This efficient design achieves a very low ROSlonl and a high transconductance. Fast Switching Low Drive Current Ease of Paralleling No'Second Breakdown Excellent Temperature Stability The Unitrode power MOSFET features all of the advantages of MOS technology such as voltage control, freedom from second breakdown, very fast switching speeds, and thermal stability. These power MOSFETS are ideally suited for many high-speed, high-power switching applications such as switching power supplies, motor controls, and wide-band and audio amplifiers. PRODUCT SUMMARY Part Number VDS RDS(on) ID UFN440 500V 0.850 8.0A UFN441 450V 0.850 8.0A UFN442 500V 1.100 7.0A UFN443 450V 1.100 7.0A MECHANICAL SPECIFICATIONS UFN440 UFN441 UFN442 UFN443 TO·204AA (TO·3) 222210815) 100i±~X.AX DIA~~ SEATING T PLANE J~I~3HIDIA-I 10.16/0.40) MIN TWO PLACES TWO PLACES 2661 (1 050) MAX UlIsml DIA TWO PLACES DRAIN (CASEI SOURCE ',17\04401t !rnlml!l t MEASURED AT SEATING PLANE Oimensions in Millimeters and (Inches) 4/83 4-388 ~UNITRODE UFN440 UFN441 UFN442 UFN443 ABSOLUTE MAXIMUM RATINGS UFN440 UFN441 UFN442 UFN443 Units 500 450 500 450 V 500 450 500 450 V Continuous Drain Current 8.0 8.0 7.0 7.0 A 10@TC = 100·C Continuous Drain Current 5.0 5.0 4.0 4.0 A 10M Pulsed Drain Current @ 32 32 28 28 VGS PO@TC=25·C Gate· Source Voltage Parameter IOlon) x ROSlon) ma~. 16 I / /V VGs.J J' 'J 2 II I r I /J A y 1 [ Ii. V 4~ ~ 20 40 60 80 VDS. DRAIN·TD·SOURCE VOLTAGE IVOlTSI VTJ'-55'C I VTJ:25'C TJ" 1250 C i- I-- W 10 4 100 VGS. GATE·TO-SOURCE VOLTAGE (VOLTS) Fig. 3 - Typical Saturation Characteristics Fig. 4 - Maximum Safe Operating Area 100 10 ...0IIII 10V 9V 8OjJ..!PULS)TEST' ~ 8v ". 50 .", 20 7Vy ~~ ~6V / ~ V'. I 4~ 2 4 6 8 VDS. DRAIN-TO-SOURCE VOLTAGE (VOlTSI UNITRODE CORPORATION' 5 FORBES ROAD LEXINGTON. MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 O~ t' TC'25'C TJ' 150'C MAX. - RthJC • 1.0 K/W 0.2 _ISINGlE PULSE 1117' UFN441.3 ~DC ...LI IJ III. I~~'~ ~ 0.5 Om = - o1 1.0 10 10~s 11~. ~ 1.0 11': ~ , Q E " , z ~ ". ~U~~.\ ! VGS'5V , _~F~44n -UFN442.3 :;; ~ I 10 '" OPERATION IN THIS AREA IS LIMITED BY ROS(on) -UFN440.1 10 20 50 100 200 I III 500 VDS. DRAIN-TO-SOURCEVOlTAGE (VOlTSI 4-390 PRINTED IN U.S A. UFN440 UFN441 UFN442 UFN443 Fig. 5 - Maximum Effective Transient Thermal Impedance. Junction·to·Case Vs. Pulse Duration ffi 2 iii :L 1.0 ""!:: wz >=> ~! O.5 ",20 w< 0.2 ~~ <", 1IIIIIIillIl~l~ • 0-0.5 0.2 f--O.I O. I 1::=0.05 0.02 :O:~ 0.05 Uw ~~ ~2~ .... ~2' 1\ =-"" I I lH~=++~++=++~+:14+=++ 2. PER UNIT BASE RtnJC % 0.02 t-t-:++:++t+=+++t==t:+=1=t~L~J~J~lI+==.l~~+= llllil I J 3.TJM·TC,POMZ,hJCI') "'< ~ I-?Ol 2% SINGLE PULSE ITRANSIENT ~Hf~·MT~ IMPFOAINCEll I DUTY FACTOR. O' z ~ 0.0 I 10-5 10-3 2 5 10-2 10-1 Z 1.0 DEG. C/W. 10 1.0 'I. SQUARE WAVE PULSE DURATION ISECONOS) Fig. 6 - Typical Transconductance Vs. Drain Current 16.0 ~~I'IPutSETElT 20 ~DS > io(onl ~ RDS(~n) mat. ~ 12.B ~ § ~ 9.6 ~ l j " /~ 6.4 3.2 / TJ :s-55 Q C ~ il1 ~ ~ , Fig. 7 - Typical Source-Drain Diode Forward Voltage r TJ= lS00 C TJ =25 0 C != rL'12slc r TJ :25 0 C 0.2 8 12 16 10. DRAIN CURRENT (AMPERES) O. I 20 VSQ. SOURCE·TO·DRAIN VOLrAGE (VOL TSI Fig. 8 - Breakdown Voltage Vs. Temperature Fig. 9 - Normalized On-Resistance Vs. Temperature 1.25 2.5 ~ w ~ / 1.15 > ,,/ ./ .,/'r' ..,,"/ ". .,/ ./ .,/ ,,/ '" V L vGs" JIIV ........ o 0.75 -40 40 80 120 160 -40 40 80 120 - 160 TJ, JUNCTION TEMPERATURE (OC) TJ,JUNCTION TEMPERATURE (OC) UNITROOE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) B61·6540 TWX (710) 326·6509 • TELEX 95·1064 10-4.5A - 4·391 PRINTED IN U.S.A UFN440 UFN441 UFN442 UFN443 Fig. 11 - Typical Gate Charge Vs. Gate·to·Source Voltage Fig. 10 - Typical Capacitance Vs. Drain·to·Source Voltage 2000 1600 :- 1200 ~ ~_. BOO '00 C;a • c.. +C.,.c.,SHORTEO _c... c., i'\. a J J 20 _VGS'OV '''lMHz COlI"' Cd,+ ..... gel ~ -C.,+C"'. I ....... r--.. ~ C. g \ ~ u "', 1"'- r-... ~ ~ :; ~ ~ ~ W % • VOS, DRAIN TO·SOURCE VOLTAGE IVOLTS) Fig. 12 - Typical On·Resistance Vs. Drain Current 3.5 ~ e 3.0 EFFECT OF 2.0,us PULSE IS MINIMAL J ~ ~ z '" I 2,5 VGS'" IOV ~ 2.0 . ~ ~ 60 40 20 BO Qg. TOTAL GATE CHARGE (nCl Fig. 13 - Maximum Drain Current Vs. Case Temperature r:- B ~ 6 / U 1.0 - SEE FIGURE lB ....... r---... -- r-... t...... ~ "" -- V'VGs o 20V ~ '"..,'" '"z ~ FOR TEST CIRCUIT 0 MEASU~EO WIT~ CURRE~T RgSI';) PULSE10F 2. •' DURATION. INITIAL TJ' 25'C. IHEATING_ u z W 'O"10A " C", ~ ~ I > C,. ~ ~ I "~ r- ffi 10 ~ !\. d 0 ~ > "'" ........ VOS"00V",:v os 2~OV "'vos' .ocv",- " \ \ \ 15 ~ ~ 4 ..... V UFN440, 441 ~ UFN~4~ ~ 2 0.5 10 15 20 25 30 0 25 35 ",, CS ~ 50 75 100 125 150 Te. CASE TEMPERATURE (OCI '0. DRAIN CURRENT IAMPERESI Fig. 14 - Power Vs. Temperature Derating Curve ,. 0 12O~ ""'" 0 0 ~ '" , " ~ 0 "\ I\. '" 0 20 UNITROOE CORPORATION. 5 FORBES ROAO LEXINGTON. MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95·1064 BO 100 40 so TC, CASE TEMPERATURE I'C) 4·392 ~ 120 " ~ ,. PRINTED IN U.S.A. UFN440 UFN441 Fig. 15 - Clamped Inductive Test Circuit UFN442 UFN443 • Fig. 16 - Clamped Inductive Waveforms VARY tp TO OBT/dN REQUIRED PEAK 'L VGS-R _D~UT~~c::JI' IL+_---<)----4........._-J Fig. 17 - Switching Time Test Circuit 200V ADJUST RL TO OBTAIN SPECIFIED 10 45(1 VDS r;;U~ - - -O_lr---o--......lI..t=:l' I GENERATOR I :~.?RCE Jl I IMPEDANCE L ___ J Fig. 18 - Gate Charge Test Circuit +Vos (ISOLATED SUPPLY) - O~5mA IG CURRENT SHUNT UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95·1064 4-393 10 CURRENT SHUNT PRINTED IN U.S.A. UFN450 UFN451 UFN452 UFN453 POWER MOSFET TRANSISTORS 500 Volt, 0.4 Ohm N-Channel FEATURES DESCRIPTION • • • • • The Unitrode power MOSFET design utilizes the most advanced technology available. This efficient design achieves a very low Roslo". and a high transconductance. Fast Switching Low Drive Current Ease of Paralleling No Second Breakdown Excellent Temperature Stability The Unitrode power MOSFET features all of the advantages of MOS technology such as voltage control, freedom from second breakdown, very fast switching speeds, and thermal stability. These power MOSFETS are ideally suited for many high-speed, high-power switching applications such as switching power supplies, motor controls, and wide-band and audio amplifiers. PRODUCT SUMMARY Part Number VDS RDS(on) ID UFN450 UFN451 UFN452 UFN453 500V 450V 500V 450V 0.40 0.40 0.50 0.50 13A 13A 12A 12A MECHANICAL SPECIFICATIONS UFN450 UFN451 UFN452 UFN453 TO-204AA (TO-3) 2222108151 1013:t~.AX D'A~~ SEATING T J'r, I~':::I PLANE OIA TWO PLACES -I 10.1610.401 MIN. TWO PLACES ;=I~ml OIA TWO PLACES DRAIN (CASEI fAUI~':~mf t MEASURED AT SEATING PLANE Dimensions in Millimeter. and (Inches) 4/83 4-394 ~UNITRDDE UFN450 UFN451 UFN452 UFN453 ABSOLUTE MAXIMUM RATINGS Parameter UFN450 UFN451 UFN452 UFN453 Units 500 450 500 450 V 500 450 500 450 V 13 13 12 12 A 8.0 8.0 7.0 7.0 A 52 52 48 48 Drain - Source Voltage (j) VOS Drain - Gate Voltage IRGS - 1 Mill (j) VOGR Continuous Drain Current 10@TC= 25 DC 10@TC = 100 DC Continuous Drain Current @ 10M Pulsed Drain Current VGS PO@TC=25 DC Gate - Source Voltage Max. Power Dissipation 150 Linear Derating Factor 1.2 Inductive Current, Clamped ILM I 52 Lead Temperature W ISee Fig. 141 W/K ISee Fig. 141 ISee Fig. 14 and 151 L - 100~H 52 I 48 Operating Junction and Storage Temperature Range TJ T stg A V ±20 A 48 I -55to 150 DC 300 10.063In.ll.6mml from case for 10s1 DC ELECTRICAL CHARACTERISTICS @ TC = 2SD C (Unless otherwise specified) Min. Typ. Max. Units UFN450 UFN452 500 - - V UFN451 UFN453 450 - - V 10 = 250~A ALL 2.0 4.0 V VOS = VGS, 10 = 250~A Type Parameter BVOSS Drain - Source Breakdown Voltage IGSS Gate-Source leakage Forward ALL - IGSS Gate-Source Leakage Reverse ALL lOSS Zero Gate Voltage Drain Current - - - - UFN450 UFN451 13 - - A UFN452 UFN453 12 - - A UFN450 UFN451 - 0.3 0.4 n UFN452 UFN453 - 0.4 0.5 !l V GSlthl Gate Threshold Voltage 1010ni On-State Drain Current @ ROSfon) Static Drain-Source On-State Resistance ® ® ALL Test Conditions VGS = OV 100 nA VGS = 20V -100 nA VGS= -20V 250 ~A VOS = Max. Rating, VGS = OV 1000 ~A VOS = Max. RatingxO.8, VGS = OV, TC - 125 DC VOS ) 1010ni x ROSlonl max.' VGS = 10V VGS = 10V,I0 = 7.0A gfs Forward Transconductance ALL 6.0 11 - SIUI Ciss Input Capacitance ALL 2000 3000 pF Coss Output Capacitance ALL 400 600 pF e rss Reverse Transfer Capacitance ALL - 100 200 pF tdlonl tr Turn-On Delay Time ALL - 35 ns VOO = 210V,I 0 = 7.0A, Zo = 4.7!l Rise Time ALL - 50 ns See Fig. 17 150 ns - 70 ns (MOSFET switching times are essentially independent of operating temperature.) t!ILo!n Turn-Off Delay Time ALL tf Fall Time ALL - Qg Total Gate Charge ALL - 82 120 nC (Gate-Source Plus Gate-Drainl Qgs Gate-Source Charge ALL - 40 Qgd Gate-Drain I"Miller"l Charge ALL - 42 - nC LO Internal Drain Inductance ALL - 5.0 - nH LS Internal Source Inductance ALL - 12.5 - nC nH V OS ) 1010ni x ROSlonl max.' 10 = 7.0A VGS = OV, VOS = 25V, f = 1.0 MHz See Fig. 10 V GS = 10V, 10 = 16A, VOS = 0.8 Max. Rating. See Fig. 18 for test circuit. (Gate charge is essentially independent of operating temperature.) Measured between the contact screw on header that is closer to source and gate pins and center of die. Measured from the source pin, 6 mm 10.25 in.1 from header and source bonding pad. Modified MOSFET symbol showing the internal device inductances. $ THERMAL RESISTANCE RthJC Junction-to-Case RthCS Case-to-Sink Mounting surface flat, smooth. and greased. RthJA Junction-to-Ambient Free Air Operation UN ITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. 16171 861-6540 TWX 17101 326-6509 • TELEX 95-1064 4-395 PRINTED IN USA • UFN450 UFN451 UFN452 UFN453 SOURCE·DRAIN DIODE RATINGS AND CHARACTERISTICS IS ISM VSO Continuous Source Current IBody Olodel Pulse Source Current IBody Oiodel @ Oiode Forward Voltage ® UFN450 UFN451 - - 13 A UFN452 UFN453 12 A ~ - - UFN450 UFN451 - - 52 A UFN452 UFN453 - - 48 A UFN450 UFN451 - - 1.4 V UFN452 UFN453 - - 1.3 V TC ~ 25°C, IS ~ 12A, VGS ~ OV 1300 - ns T J - 150°C, IF - 13A, dlF/dt - 100A/"s trr Reverse Recovery Time ALL QRR Reverse Recovered Charge ALL - ton Forward Turn-on Time ALL Intrinsic turn-on time , 10(on) , x ROS(on) lOOms ~F:~: ~:o III 10 20 50 100 1,~I~! I I 200 DC it 500 Vas. DRAIN·TO·SOU RCE VOLTAGE (VOLTS) 4·396 PRINTED IN U.S.A UFN450 UFN451 UFN452 UFN453 Fig. 5 - Maximum Effective Transient Thermal Impedance, Junction-to-Ca.e Vs. Pulse Duration I 0·0.5 m.n.. II NOTES f-b.2 0.1 ~2~ lb6.05 >==0.02 51--0.01 2 1 1. DUTY FACTOR, 0" SINGLE PULSE {TRANSIENT THERMAL IMPEDANCE} I I I 3. TJM - Te" POM ZthJCIt). 11 1111 2 10-3 10-4 5 10-2 'I. SQUARE WAVE PULSE Fig. 6 - Typical Transconductance Vs. Drain Current 20 / /' V ./ V ~ V ~ ~ I-- *" 2. PER UNIT BASE· R,hJC • 0 83 OEG. CIW. 2 5 ~URATION 10-1 1.0 10 ISECONOS} Fig. 7 - Typical Source-Drain Diode Forward Voltage ~ T~. 2sdc --- ..... t===: 1== T~ • 2S0C ~ I ~ TJ" 150°C I IV V (I TJ'" 15QoC ~V I JV III 5 vas> lo(on) x ROS(on) mix. '{f B0j'PUlS1ETEST TJ =25 DC 1.0 10 15 20 1 J.l I 25 1 JI1 o 1 10. CRAIN CURRENT (AMPERES) VSO. SOURCE-TO·ORAIN VOLTAGE IVOLTS} Fig. 8 - Breakdown Voltage Vs. Temperature Fig. 9 - Normalized On-Resistance Vs. Temperature ~GS. \ov 1.2 S 2. 2 V I I lOS' SA V S ".. J...--' S ..". 5 V ./ ~ 8 ..LV I-"" J...--' L V / 0 S 6 _. " 07S -40 ./ 4 40 80 120 O. 2 160 -40 TJ. JUNCTION TEMPERATURE (DC) UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 V .L 40 80 120 160 TJ. JUNCTION TEMPERATURE (DC) 4-397 PRINTED IN U S.A UFN450 Fig. 10 - Typical Capacitance Vs. Drain·to·Source Voltage Cia'" CIII + CgII. Cds SHORTED k-CID 'Cgd 3200 2400 w C ~CQI5"Cds+ ~ 91+ gd z ;'! ;:; "' l\ 20 f=lMHz I ~ ;t ;:\ 1600 u" , \ "" o. ~ ......... I'---. t Vas" 4QOV ~ > lSS w u 10 "- ......... ~ ..,~ ... ;jj I ,/ ........ ~'" 10 20 40 30 28 ~ ~ ~ .......... / => 5) 6 ~ o.5 ! ;0.4 "" "~ ~ V.OSI'" MEASURED WITH CURRENT L PULSE OF 2 0 IJ.S DURATION / 10 INITIAL TJ = 25°C. (HEATING EFFECT OF 2.0 20 30 ~s 40 140 UFN450.451 V ~ O.3 r--.... 1'. . . r-- f--UFN4:.~ f'.. .........~ o.7 ~ 112 r-..... 12 VVGS.20V w u 84 r--- 15 VGS'101 o.8 56 'i Fig. 13 - Maximum Drain Current V•. Case Temperature z ~ ° SI' FIGjRE 9, TOTAL GATE CHARGE (nC) ~ w u " 10 = l6A 50 Fig. 12 - Typical Dn·Resistance Vs. Drain Current E 09 if FOR TESTCIRCUIT Vas. ORAIN·TO·SOURCE VOLTAGE (VOLTS) 1.0 ~ ~ I) I ~ ~oa i'--- ~~ => \ I\, 800 los .1100V I I VoS' 250V I I 15 ~ ..... UFN453 VGS'O ==:Cds+Cgd -u UFN452 Fig. 11 - Typical Gate Charge V•. Gate·to·Source Voltage J 4000 UFN451 , "I~ PULSE IS MINIMAl.) 50 60 o 70 25 50 10. DRAIN CURRENT (AMPERES) 75 100 125 150 TC, CASE TEMPERATU RE (OC) Fig. 14 - Power Vs. Temperature Derating Curve '- 140 [\. 120 't\.'\ ~ ~ 100 z o ~ ill 80 '\ is ~ 60 f: 40 ~ "- 20 20 40 60 80 100 Te' CASE TEMPERATURE (OC) UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95·1064 4-398 '" 120 1\ 140 PRINTED IN USA UFN450 UFN451 Fig. 15 - Clamped Inductive Test Circuit UFN452 UFN453 Fig. 16 - Clamped Inductive Waveforms • VARY tp TO OBTAIN REQUIRED PEAK Il VOS.R OUT IL4----<)--~......_ - ' Fig. 17 - Switching Time Test Circuit El Vos r;U~ - - -,,-;1r-__0-_-"~ I GENERATOR .n I I ig~RCE IMPEDANCE L ___ J ~ Fig. 18 - Gate Charge Test Circuit +Vos (ISOLATED SUPPl VI - o~1.5mA --"'''''Ir....-'VV\,--o -VOS IG CURRENT SHUNT UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON. MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 4-399 "':" 10 CURRENT SHUNT PRINTED IN u.s A UFN510 UFN511 UFN512 UFN513 POWER MOSFET TRANSISTORS 100 Volt, 0.6 Ohm N-Channel FEATURES DESCRIPTION • • • • • • The Unitrode power MOSFET design utilizes the most advanced technology available. This efficient design achieves a very low Reslonl and a high transconductance. Compact Plastic Package Fast Switching Low Drive Current Ease or Paralleling No Second Breakdown Excellent Temperature Stability The Unitrode power MOSFET features all of the advantages of MOS technology such as voltage control, freedom from second breakdown, very fast switching speeds, and thermal stability. These power MOSFETS are ideally suited for many high-speed, high-power switching applications such as switching power supplies, motor controls, and wide-band and audio amplifiers. PRODUCT SUMMARY Part Number VDS RDS(on) ID UFN5lO lOOV 0.60 4.0A UFN511 60V 0.60 4.0A UFN512 lOOV 0.80 3.5A UFN513 60V 0.80 3.5A MECHANICAL SPECIFICATIONS UFN510 UFN511 UFN512 UFN513 TO-220AB !EfIM3-S0UACE 482(ol~0) I 3S6((I1401 I !-t-+-+-' g::: :~: ::: ::llm ~~j:~'r,~: ~(D1151 j!ECTION D x-x tt----l ~~~:~:g;~: 2 04 (DOBDi Dimensions in Millimeters and (Inches) 4/83 4-400 ~UNITRDDE UFN510 UFN511 UFN512 UFN513 ABSOLUTE MAXIMUM RATINGS UFN512 UFN513 Units 100 60 100 60 V 100 60 100 60 V Continuous Drain Current 4.0 4.0 3.5 3.5 A 10@TC = 100°C Continuous Drain Current 2.5 2.5 2.0 2.0 A 10M Pulsed Drain Current 16 16 14 14 VGS PO@TC = 25°C Gate - Source Voltage UFN510 Parameter IOl on)x ~ 4.0 z / / / I- 801I1.11 PULlE TES! I z 6~- - 2.4 0 7.2 _ 6.4 ~ 8.0 o1 r- TC·25'C TJ· 150'C MAX. r- "'hJC • 6 4 Kffl I-SINGLE PULSE f::: 1.0 50 10m, lOb~s- DC UFN511. 3 10 20 50 UFN510.2 100 200 500 Vas. DRAIN TO-SOURCE VOL lAGE (VOL lS) 4-402 PRINTED IN U.S.A UFN510 UFN511 UFN512 UFN513 Fig. 5 - Maximum Effective Transient Thermal Impedance, Junction·to·Case Vs. Pulse Duration >z I w ~ L wz 1-1- I 1.0 >=> ~~ NOTES: 0.5 -h, NO :::i~ ~~ 0.1 3.02 0.05 }~ ~ ~2~ =005 0< E ffi.JL iiIP 02 ffi~ 0.2 ~~ • 0-0.5 ;:'" 1. DUTV FACTOR, 0 '" .. o.oi- 0.02 ~ 0,01 .A 10.5 :~ SINGLE PULSE (TRANSIENT 2. PER UNIT BASE' R'hJC - 6.4 OEG. C/W. T(H~~~tL1~PE(OAN~E) ( ( 3 TJM' TC' POM Z,hJC(tl . 10.3 2 10.2 10.1 10 1.0 '1. SOUARE WAVE PULSE DURATION (SECONDS) Fig. 6 - Typical Transconductance Vs. Drain Current 4.0 3.6 ill 2.8 w 2.4 10 -.Lpu!..ml ( I~(on) ~ vias> 3.2 ~ Fig. 7 - TVPical Source-Drain Diode Forward Voltage ROSlon) maJ. f // § "z I TJ 2.0 1.6 /' 1.2 J/' ~ ~ ~ 0.8 0.4 o = I -55°C ~ TJ=25 0 C ..... TJ = 1250C I II I TJ" 25°C -TJ=tSOOc V. , / I r o I J I 0.8 1.6 2.4 3.2 4.0 4.B 5.6 6.4 7.2 J o. 1 8.0 0.2 '0. DRAIN CURRENT (AMPERES) Fig. 8 - Breakdown Voltage V,. Temperature I 0.4 0.6 0.8 1.0 1.2 1.4 1.6 VSO. SOURCE·TO·ORAIN VOLTAGE (VOLTS) 1.8 2.0 Fig. 9 - Normalized On-Resistance VI. Temperature 2.50 1.25 2.25 ./ ....... . /V ./ V ~ 2.00 In ~ 1.75 ;ga 1.50 Ww ./ 1/ ~t:! ./ g~ 1.25 "> .. ,,/ V ~~ 1.00 ~ 0.75 ! O.SO ~ ....... I-""" k" / VGS - IDV '0",·5A 025 0.7~0 -40 -20 20 40 60 80 100 120 0-&0 140 V . /V -40 .20 20 40 r I 60 80 100 120 140 TJ• JUNCTION TEMPERATURE (DC) UN(TROOE CORPORATION. 5 FORBES ROAO LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95·1064 4·403 PRINTED IN U.S.A UFN510 UFN511 Fig. 10 - Typical Capacitance Vs. Drain·to·Source Voltage SOD I I 1_ fi 'MHI' w u 200 U 100 l\ \ l\.. \ \ " r- vps = 5~~ '-.... - ""'Cds+Cgd z ~ - COSl"'Cdl+~ os· gel 300 ~ V~S· 2iv """' Ct. = ell' + Cgd. Cds SHORTED C,. • CgeI ~ Fig. 11 - Typical Gate Charge Vs. Gate·to-Source Voltage 20 I t.ol 400 f-- ~DS • BDV. UFN510. 512 ~V /0 ~ I I c!.. Ii 1/ C~ .C~ r- UFN512 UFN513 / 10 20 30 40 VOS. ORAIN·TO·SOURCE VOLTAGE IVOLTS) / 10 = 8A sr F'GiRE li FOR TEST CIRCUIT t-- 50 4 ~,TOTAl Fig. 12 - Typical On·Resistance Vs. Drain Current 10 GATE CHARGE (nC) Fig. 13 - Maximum Drain Currant VI. Case Temperatura 2.0 ROS(on) MEASURED WITH CURRENT PULSE OF I ~ ~ 2.0JUDURATION. INITIAL TJ=25 0 C (HEATING EFFECT OF 2'1"' PULSE IS MINIMAl.) I--- - ........ r--... ....... ........ 1.5 vis= ~ r--.... IOV z o w ~ 1.0 ......... ......... f - - f - - UFN512.513 6 :;; ~ Q~ g 0.5 V S i'- =" ~ - VGS'20V - I ~ .... ~ V .... ~ UFN510.511 ....... I 10 , 1\ IS o 20 25 50 10, DRAIN CURRENT (AMPERES) 75 100 125 150 Te. CASE TEMPERATURE (OCI Fig. 14 - Power Vs. Temperature Derating Curve 20 '\ "- I\. \, \ -~ o UNfTRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95·1064 o \. r\ 20 40 60 80 100 TC. CASE TEMPERATURE IDC) 4·404 120 140 PRINTED IN U.S A UFN510 Fig. 15 - Clamped Inductive Test Circuit UFN511 UFN512 UFN513 • Fig. 16 - Clamped Inductive Waveforms VARY Ip TO OBTAIN REQUIRED PEAK IL TO PL OUT VGS"!,J-t Fig. 17 - Switching Time Test Circuit AOJUST RL El TO OBTAIN SPECIFIED 10 V, Rl PULSE GENERATOR O.U.T. r-----., I I I L_ 50n I I _ _ _ ...J TO SCOPE O.Oln 50<1 HIGH FREQUENCY SHUNT Fig. 18 - Gate Charge Test Circuit .-----<.> ~~gtA TE 0 SUPPlYI SAME TYPE AS OUT - OUT 0.r=[1.5mA IG CURRENT SHUNT UNITROOE CORPORATION. 5 FORBES ROAO LEXI NGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95-1064 . 4-405 10 CURRENT SHUNT PRINTED IN U.S A UFN520 UFN521 UFN522 UFN523 POWER MOSFET TRANSISTORS 100 Volt, 0.3 Ohm N-Channel FEATURES DESCRIPTION • • • • • • The Unitrode power MOSFET design utilizes the most advanced technology available. This efficient design achieves a very low RoSton. and a high transconductance. Compact Plastic Package Fast Switching Low Drive Current Ease of Paralleling No Second Breakdown Excellent Temperature Stability The Unitrode power MOSFET features all of the advantages of MOS technology such as voltage control, freedom from second breakdown, very fast switching speeds, and thermal stability. These power MOSFETS are ideally suited for many high-speed, high-power switching applications such as switching power supplies, motor controls, and wide-band and audio amplifiers. PRODUCT SUMMARY Part Number VDS RDS(on) ID UFN520 lOOY O.30n 8.0A UFN52l 60Y O.30n 8.0A UFN522 lOOY O.40n 7.0A UFN523 60Y O.40n 7.0A MECHANICAL SPECIFICATIONS UFN520 UFN521 UFN522 UFN523 TO-22DAB TERM 4- DRAIN T!~~~3~-D::~:CE TERM 1- DATE l 4.82(O.~ ~J "'~ 9I"'lO' H~l:ml 7.110.1151 '2.6410.0801 5.33(0.2101 4.83 (o.1i01 j!ECTION x-x 0 '1----+1 ~:~t :~:~I Dimensions in Millimeten and (Inches) [1::D 4/83 4-406 _UNITRODE UFN520 UFN521 UFN522 UFN523 ABSOLUTE MAXIMUM RATINGS UFN520 UFN521 UFN522 UFN523 Units 100 60 100 60 V Drain - Gat. Voltage (RGS = 1 Mil) (j) 100 60 100 60 V Continuous Drain Current 8.0 8.0 7.0 7.0 A 10@TC= 100°C Continuous Drain Current 5.0 5.0 4.0 4.0 A 32 32 28 28 Parameter Drain ~ Source Voltage VOS VOGR 10@TC- 25°C CD 10M Pulsed Drain Current @ VGS PO@TC = 25°C Gate - Source Voltage Max. Power Dissipation Linear Derating Factor I 32 40 (See Fig. 141 W 0.32 (See Fig. 14) W/K (See Fig. 15 and 161 L - 1 OO~H 32 I 28 Inductive Current. Clamped ILM Operating Junction and Storage Temperature Range TJ Tstg Lead Temperature • A V ±20 A 28 I -55to 150 °C 300 (0.063 in. (1.6mm) from case for lOs) °C ELECTRICAL CHARACTERISTICS @ TC = 25'C (Unless otherwise specified) Parameter BVOSS Drain - Source Breakdown Voltage VGSlthl Gate Threshold Voltage Type Min. Typ. Max. Units UFN520 UFN522 100 - - V VGS = OV UFN521 UFN523 60 - V 10 = 25Ol'A ALL 2.0 - 4.0 V VOS - VGS' 10 - 25Ol'A Test Conditions IGSS IGSS Gate-Source Leakage Forward ALL - - 500 nA VGS = 20V Gate-Source Leakage Reverse ALL -- -500 nA VGS - -20V lOSS Zero Gate Voltage Drain Current - - 250 I'A VOS = Max. Rating, VGS = OV - 1000 I'A VOS = Max. Rating xO.8, VGS = OV, TC = 125°C UFN520 UFN521 B.O - - A UFN522 UFN523 7.0 - - A UFN520 UFN521 - 0.25 0.30 II UFN522 UFN523 - 0.30 0.40 II 10(on) On-State Drain Current ® ROSlon) Static Drain-Source On-State Resistance ® ALL V OS ) 10(on) x ROS(on) max.' V GS VGS = 10V,I0 9fs Forward Transconductance ALL 1.5 2.9 - S (UI Ciss Input Capacitance ALL 450 600 pF 200 400 pF 50 100 pF @ Coss Output Capacitance ALL - C rss Reverse Transfer Capacitance ALL - tdlonl Turn-On Delay Time ALL - 20 40 ns tr Rise Time ALL - 35 70 ns td(offl Turn-Off Delay Time ALL 100 ns Fall Time ALL - 50 tf 35 70 ns Og Total Gate Charge (Gate-Source Plus Gate-Drain) ALL - 10 15 nC Qgs Gate-Source Charge ALL - 6.0 - nC °gd Gate-Drain ("Miller"l Charge ALL - 4.0 - nC LO Internal Drain Inductance - 3.5 - nH ALL - 4.5 - nH = 4.0A vos ) 10(onl x ROS(on) max.' VGS = OV, VOS = 10V = 25V, f 10 4.0A = 1.0 MHz See Fig. 10 VOO = 0.5 BVOSS,IO See Fig. 17 = 4.0A, Zo = 5011 (MOSFET switching times are essentially independent of operating temperature.) V GS = 15V, 10 = lOA, VOS = O.B Max. Rating. See Fig. 18 for test circuit. (Gate charge is essentially independent of operating temperature.) Measured from the contact screw on tab to center of die. Measured from the Modified MOSFET symbol showing the internal device inductances. drain lead, 6mm 10.25 in.1 from package to center of die. LS Internal Source Inductance ALL - 7.5 - nH Measured from the source lead. 6mm (0.25 in.1 from package to source bonding pad. $ THERMAL RESISTANCE RthJC Junction-to-Case RthCS Case-to-Sink Mounting surface flat. smooth. and greased. RthJA Junction-to-Ambient Free Air Operation UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173. TEL. (6171 861-6540 TWX (710) 326-6509 • TELEX 95-1064 4-407 PRINTED IN u.s A UFN520 UFN521 UFN522 UFN523 SOURCE·DRAIN DIODE RATINGS AND CHARACTERISTICS IS ISM VSD Continuous Source Current (Body Diode) Pulse Source Current (Body Diode) @ ® Diode Forward Voltage Modified MDSFET symbol showing the integral reverse P~N junction rectifier. UFN520 UFN521 -- - B.O UFN522 UFN523 - - 7.0 A UFN520 UFN521 - - 32 A UFN522 UFN523 - - 28 A UFN520 UFN521 - - 2.S V TC UFN522 UFN523 TC ~ 2SoC, IS ~ 7.0A, VGS = OV A ~ 2SoC, IS ~ 8.0A, VGS ~ ~ OV 2.3 V t" ORR ALL - - Reverse Recovery Time 280 TJ = lSO·C, IF - 8.0A, d)Fldt - 100AI"s Reverse Recovered Charge ALL - 1.6 - ns "C T J - lSO·C, IF = 8.0A,d(Fldt. 100AI"s ton Forward Turn-on Time ALL Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by LS ® Pulse Test: Pulse width .. 300"s, Duty Cycle .. 2%. G) T J = 25°C to lSO·C. + LO' @ Repetitive Rating: Pulse width limited by max. junction temperature. See Transient Thermal Impedance Curve (Fig. 5). Fig. 1 - Typical Output Characteristics Fig. 2 - Typical Transfer Characteristics 20 20 /'0J -St..,!SETESl 8O~PULSETEST 9~- 16 I 8V- - 16 .l-I ,~- - 125 'C i 12 z 8 i I VGS''I- AI T"I 1,,---V T'I"'I"---- .II fY ~ - // 1/, I vos> 10(on) x ROS(onl max. TJ=-~~O!~ i E /I IJ /J.'/ rJ' 5~- 10 20 30 40 ~ so 80loJpULSE1TEST I-- Fig. 4 - Maximum Safe Operating Area OPERATION IN THIS 100.~~ 50 AREA IS LIMITED 7l :J.......... '.tv'j 1O,~y A' 10 VGS. GATE·TO-SOURCE VOLTAGE (VOL TSI Fig. 3 - Typical Saturation Characteristics 0 W 4 Ves. DRAIN·TO-SOURCE VOLTAGE (VOLTS) c- UFN520. 1 f- BY ROSI,,) 8 8 j, W. V bV IJ. V , iX' If! • ~ )V 't.- 1 100",-, I VG;"V- - I I f-'y I 'Y 1 0·11·'::.0,.....-,!-...L...~I..1.1~10:-'-:2!:0,.....-'-:'50:'-'.l.!,~OO:-'-~20::-0-'--'-:5±OO!-W.IJ , Vas. DRAIN·TO·SOURCE VOLTAGE (VOLTS) UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 VOS, ORAIN·TO-SOURCE VOLTAGE IVOLTSI 4-408 PRINTED IN U.S.A. UFN520 UFN521 UFN522 UFN523 Fig.5 - Maximum Effective Transient Thermal Impedance, Junction·to·Case Vs. Pulse Duration I • 0=0.5 NOTES' f-O.2 ~ .- f-O., , EO.05 lTl.JL I11III' ~2~ F-U.02 !~ 1. DUTY FACTOR, 0;; ~y SINGLE PULSE (TRANSIENT THERMAL IMPEDANCE) 2. PER UNIT BASE' RthJC' 3.'2 OEG. CIW. , 3. TJM' TC' POM ZthJClt). '0.3 2 w2 '0" t,.SQUARE WAVE PULSE OURATION ISECONOS) Fig. 6 - Typical Transconductance Vs. Drain Current 5 4 1/ r/ 3 1 k IJ IL ./ ./ V -- V TJ ~ 2 l-",!= '== 2 ;;.",L-: i= TJ ..... V ~ ~ ~ ~ 12~oC l Vas> 10(on) ~ 2 i W 0 I( 1 ""'" t-TJ= "O'C /11 2 J I 0 16 TJ'" 1500C_ 5 t-- ROSlon) max 80iSPULSjTEST 12 TJ:250C 5 1 -- '0 Fig. 7 - Typical Source·Drain Diode Forward Voltage .... 1-- "-1 V 1.0 10 '0. DRAIN CURRENT fAMPERES) , TJ ; 25°C VSO. SOURCE·TO·DRAIN VOLTAGE IVOLTS) Fig. 8 - Breakdown Voltage Vs. Temperature Fig. 9 - Normalized On·Resistance V,. Temperature 22 12 5 5 - ..L L" j.-- j....-" V 5 . /V .,.""'" l/ /' ./ 5 ....... ,/ 5 ....... 07 5 -.0 ,r 40 80 120 " I vGS = 'ov 10=3A - -40 - 1 1 2 '60 TJ. JUNCTION TEMPERATURE tDC) UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON. MA 02173 • TEL. (617) 861·6540 TWX (710) 326-6509 • TELEX 95·1064 L 40 BO '20 TJ,JUNCTION TEMPERATURE (DC) 4·409 PRINTED IN U.S A.. UFN520 II JGs·J I .. 0: .e il 600 ~ !i ~ ~ '~ \ ~ .; 200 I I-I MH, c.. ' \ \ -........ -.. Cd,' CC"'r.r II UFN523 20 Cia =c,.' C... Cd, SHORTED _ Crw -C.. 800 UFN522 Fig. 11 - Typical Gate Charge VI. Gate·to.source Voltage Fig. 10 - Typical Capacitanca VI. Drain·to·Source Voltage 1000 UFN521 Sd -Cell + Cgd - --,--- ~ -- '" m - Vos = BOV. 10 "'"=> 0 6..,. ~ .. I '" '0-10A FOR TEST CIRCUIT I > crssi / 10 20 30 VOS' ORAIN·TO-SOURCE VOLTAGE (VOLTS) ~ II ~.;, C~.. UFN5~. 522 ~ ~ VDS' 50V ~> I C ~ VDS 20V 15 ~ rFlrRElt 12 50 16 10 0,. TOTAL GATE CHARGE I.C} Fig. 12 - Typical On·Resistance Vs. Drain Current Fig. 13 - Maximum Drain Current VI. Case Temperature 10 0.8 0; i. " z i 0.6 I-- I--VG I = ......... 10V ........ ......... is "'"=> "':= z 0.' g ~ 0.2 - --I' f--~DS(o.) i'........ " UFN520. 521 ~, UFN522.523 ) 0 ~ ........ ......... :---. ~:-... V '" ---~20V MEASURED WITH CURRENJ PULSE IDF . _ i - - 2.0"'5 DURATION. INITIAL TJ" 250 C. (HEATING EFFECT OF 2.0 #1$ PULSE IS MINIMAl.) ro w ~ o ~ ~ n ~ '0. DRAIN CURRENT (AMPERES) ~ :\.. ~ rn ,'\ ~ Te. CASE TEMPERATURE (OC) Fig. 14 - Power Vs. Temperature Derating Curve '0 '\ 5 ~ z o ~ ~ 30 20 '" ~ 15 e 10 " "-'\ 25 I\. 1'\ 5 20 UNITROOE CORPORATION· 5 FORBES ROAO LEXINGTON. MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95·1064 \ " f 40 60 80 }OO TC. CASE TEMPERATURE I'C) 4·410 120 '\ 140 PRINTED IN U S.A. UFN520 UFN521 UFN522 UFN523 • Fig. 16 - Clamped Inductive Waveforms Fig. 15 - Clamped Inductive Test Circuit VARY tp TO OBTAIN VGS.R REI1UII'ED PEAK IL OUT IL"'--<)---<~---' Fig. 17 - Switching Time Test Circuit PULSE GENERATOR r-----.., I I I L _ 50n I I ___ ..J TO SCOPE O.Oln 50n HIGH FREQUENCY SHUNT Fig. 18 - Gate Charge Test Circuit +Vos IISOLATEO SUPPLY) - 0I=rr:·5mA -.l\i'V'v-.....-'VV\,--O -Vas IG ID CURRENT CURRENT SHUNT SHUNT UNITROOE CORPORATION. 5 FORBES ROAO LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95·1064 4-411 PRINTED IN U.S A. UFN530 UFN531 UFN532 UFN533 POWER MOSFET TRANSISTORS 100 Volt, 0.18 Ohm N-Channel ' .. FEATURES DESCRIPTION • • • • • • The Unitrode power MOSFET design utilizes the most advanced technology available. This efficient design achieves a very low RCS 10(on) x ROS(on) 16 :5. 12 /h 'II Ii '/ z ~ y- - r 4V- 10 20 30 40 Vas. DRAIN TO-SOURCE VOLTAGE (VOL IS) - /1 /I i VGS"'(= = , ~8X. j i" r - t, P~ E TJ"+125 DC ~.TJ"25'C TJ" i55'C 50 rJ ~ '(/J ~V 10 4 VGS. GATE·TO·SOURCE VOLTAGE (VOLTS) Fig. 3 - Typical Saturation Characteristics Fig. 4. - Maximum Safe Operating Area 100 FU"'FN"'530=',=lq::mffioiPpEiER;;A~nilio'NNill.11TFHHiillS;-jEIHffiI 10 80,..sPUlSE TEST 9~~ 8V~ A 'l ~V ~v V ..-J ~ ~V ~ 501= UFN532,3 . i'Y w'L ./ ~ jli V- ~'/ / IhV ~~~~t$~~A~RfEfl~S*I~M~'T~E~O~BY~RO~S~I'~"J~tt~m ~. ffi V IOJI ~ -- U30!I[, 10 UFN532.3 0,,". 10p:s lOb ."',-+++++++1 "... :> z ~ ~ "z ~E 10~~~~~~~~~~~~~'0ro~m~S~t!~1 ~TC=25DC 0.5 ~ DC TJ" 1500C MAX t- RthJC " 1 67 K!W +-+-i-H+t+ttlI--H--++t-t1-ttl 02r--ISliGLrPn'!EII' - +-++-tfjHlt uFN53il • 2 [GS"'I 04 0.8 12 16 Vas. DRAIN TO SOURCE VOLTAGE (VOL IS) UNITROOE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173· TEL. 1617) 861-6540 TWX 1710) 326-6509 • TELEX 95·1064 ~ 20 I IIIII ~F~li3 ..L "':0-L-':-..l...'--':-UJ..u'0:-'-2:':O:-'--~5':'OWJ'~OO:-'--=20:::-0..L..-':5=00:'-'-'.I.I 20 Vas. DRAIN TO·SOU RCE VOL 1 AGE (VO lIS) 4-414 PRINTED IN u.s A UFN530 UFN531 UFN532 UFN533 Fig. 5 - Maximum Effective Transient Thermal Impedance. Junction·to·Case Vs. Pulse Duration ...z I i?i ;L ...... wz 1.0 >:> i=~ ~~ 0.5 0.2 ~~ 01 :::;; Iii - 0.1 ~ - - +1-t-H+tt-+-t SINGLE PULSE (TRANSIENT _ ffiSl. ~2~ 1 DUTY FACTOR, 0 = :,' __ 1-+-+-+-+++++iltERi A\ lMPtonil 11,+--++--+-H-H-ttt-H-t-t+1-+ttt--t-t ,. PER UNIT BASE _ RthJC _ 167 OEG C/W. ,i"'" ~ - ~-+++f-tttt--t-+--++++++tt-...+-t 0.05 coo( z.~ 0.05 ~001 Uw ~" • NOTES f-02 Z C woo( NC ::;~ 00(" 0-05 0.0' t=tt:::j:::t:w:tttt=:::j:=!:::::j:::j:ttt~=t=~ttl::j:j:ttt=tt=!:tttttti.=-~ 3 TJM - Te '" POM ZthJC1d 0.01 10-5 10-1 10-3 10" 10 1.0 II. SQUARE WAVE PULSE OURATION (SECONDS) Fig. 6 - Typical Transconductance Vs. Drain Current Fig. 7 - Typical Source-Drain Diode Forward Voltage 10 --- -- / ' ..- Vj.- TJ" 25 0 C TJ - 55 D C 1..0"" ~-'5,l "TJ - 150°C /' /I TJ:125 0 C f=' 1-'- U V TJ"" 150 a C f.V vas> IO(on) x ROS(on) max. "1 I 8O('PULf'Tl_ V 10 10 15 20 25 f TJ- 50C I I I o 1o. DRAIN CURRENT jAMPERES) VSD. SOURCE-TO-DRAIN VOLTAGE (VOLTS) Fig.8 - Breakdown Voltage Vs. Temperature Fig. 9 - Normalized On-Resistance V,. Temperature 125 2 ,..... ,.V ~ I" - - I -- r . /~ ... V ~ ./ ./ ./ VGS" lOV IO=6A . - I 015 ·40 40 UNITROOE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95·1064 120 80 TJ, JUNCTION TEMPERATURE - I 02 160 ·40 tOCI 40 80 120 TJ, JUNCTION TEMPERATURE (DC) 4·415 PRINTED IN U.S.A UFN530 UFN531 Fig. 11 - Typical Gate Charge Vs. Gate·to·Source Voltage Fig. 10 - Typical Capacitance Vs. Drain·to·Source Voltage 20 0 160 1--+-1-+1---+-1-+- UFN532 UFN533 20 r---r--,.--r--.--,--r-r-...,--,-.., It G,· J I "., M~' I I ! ~ ~ VDS'20V 1'-... - - vDS'SOV Cill • C.. + cgd. Cds SHORTED - c'" • cgd Vos ~ sov. UFN51, 532 "--- - "--+-1-+- COlO • Cds + / .."+Ccgdgd ~~ - 1200,. ~-+_+-_+_+-~-_C_ds~+_C~gd-r_I--+--1 ~. 800rs\ttn:eC!QE~~ 400 \~ c: 10 I / Q 20 30 40 U I L--+--I--+--+-l _ / 'D"lIA FOR TEST CIRCUIT TF'TEli 50 16 Vas. DRAIN TO SOURCE vOLTAGE (VOLTS) O~ I I'" 16 ....... D•• vJs z '"u z IOV ~ ~ 0.3 '"z>:' ~ 0.2 j 0.1 40 Fig. 13 - Maximum Drain Current V,. Case Temperature RDSI:'J MEASU'RED WITH' CURRENi PULSE 2.0 JIS URATION. INITIAL TJ '" 25°&. (HEATING !;! 0.5 '-- EFFECT OF 2.0 PULSE IS MINIMALl ~ u z .,is 32 20 0.6 ~ 24 - Og. TOTAL GATE CHARGE (nC) Fig. 12 - Typical On· Resistance Vs. Drain Current ~ ~~ V J VGS • 10 20 30 -- I"-I"-- ....... ........ r--..,UFN530, 531 U::~ ~ ~ I":::-.- r ~ OV o 50 40 25 60 50 ' 0 , DRAIN CURRENT lAMPE RES) 75 100 TC, CASE TEMPERATURE I'C) 125 ~ 150 Fig. 14 - Power VI. Temperatura Derating Curve 0 0 - I\. '\.. 0 '\ 0 '\ 0 '\ I'\.. '\. 0 20 UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95·1064 .0 40 80 100 Te. CASE TEMPERATUAE (Oe) 4·416 '\ 12G 140 PRINTED IN U.S.A. UFN530 UFN531 Fig. 15 - Clamped Inductive Test Circuit UFN532 UFN533 • Fig. 16 - Clamped Inductive Waveforms ~ VARY Ip TO OBTAIN REQUIRED PEAK II Ip' I VGS·R I I " ' ..... " "" \ " \..._----- Fig. 17 - Switching Time Test Circuit Vo -.~--.. TO SCOPE Fig. 18 - Gate Charge Test Circuit +Vos (ISOLATED SUPPLY) - O~15mA UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON. MA 02173 • TEl. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 IG 10 CURRENT SHUNT CURRENT 4-417 SHUNT PRINTED IN U.S.A UFN540 UFN541 UFN542 UFN543 POWER MOSFET TRANSISTORS 100 Volt, 0.085 Ohm N-Channel FEATURES DESCRIPTION • • • • • • The Unitrode power MOSFET design utilizes the most advanced technology available. This efficient design achieves a very low Roslo{o'n)x 40 40 RaSlon) max. ~ i ...~ t TI=-li5 C, Tp260 C, TJ = 125 0C" 30 ly I z 20 ~ = E VOS' 10 l 6~ j 10 5~ ,J.'" 4~ 10 20 30 40 VOS, ORAIN·T0-60URCE VOLTAGE (VOLTS) so I. If/ / Z", DV rJ I' " , 8 VGS, GATE·TO·SOURCE VOLTAGE (VOL TSI Fig. 3 - Typical Saturation Characteristics 10 Fig, 4 - Maximum Safe Operating Area 1000 50 40 /V 9V r-IOLPUJETEST ~ ... 30 z 20 I ~ E ~ = 10 L rr V '-- ~ ~ ~V ~~ OPERATION IN THIS AREA IS LIMITED BY ROS(on) 200 = UFN540,l 100 ~ .7V - VGS = 6V - ~ SOO l..,...ooo ~ .,8V I ' ~ !Ii ~ '" so ~ ~ 20 B UFN542,3 z ~ II-- ;;: § 10 E 'i~sI TJ'" 150aC MAX RthJC= 1 OK/w IOms lOOms UFN541,3 UFN540,2 10 1.0 • VOS, ORAIN·TO·SOURCE VOLTAGE IVOLTS) 4-420 ~, 25 fiNIGLri"ISil 4 V _ I-- UNITROOE CORPORATION. 5 FORBES ROAO LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326·6509 • TELEX 95·1064 10~s , tc ~ 10ci 5 V - I-- I - UFN542,3 DC 10 20 50 100 200 Vas. DRAIN·TO SOURCE VOLTAGE (VOLTS) 500 PRINTED IN U.S A UFN540 UFN541 UFN542 UFN543 Fig.5 - Maximum Effective Transient Thermal Impedance, Junction-to-Case Vs. Pulse Duration 1 • 0'05 mn ~2~ NOTES. f-~.2 f-0.1 EO.05 - r-0.02 ~O.01 SINGLE PULSE (TRANSIENT THERMAL IMPEDANCE! I--t"T 1-- f- 1 DUTY FACTOR. 0" - :~ 2 PER UNIT BASE" RthJC" 1.0 DEG C!W. 3 TJM - Te = POM ZthJC(t) 10-3 10-4 10-2 10-1 10 10 il,saUARE WAVE PULSE DURATION (SECONDS) Fig_ 6 - Typical Transconductance Vs. Drain Current Fig. 7 - Tvpical Source-Drain Diode Forward Voltage 15 TJ'" ~ tJ V 12 / ! V § 50 -55 DC - ~ r/ ~ ~ ~ 30 20 '0. DRAIN CURRENT (AMPERESI '" Fig_ 8 - Breakdown Voltage Vs_ Temperature 2 I o II TJ= 25 De 'I' 1 1 I I 04 0.8 1.2 1.6 VSQ, SOURCE· TO-DRAIN VOLTAGE (VOLTS) 1.05 V =:; ~i "'0 ~~ 095 Z ~ Q 2.0 Fig.9 - Normalized On-Resistance Vs. Temperature 115 ~ ~ TJ' 150'C 2.5 > ",;:l - 10 50 40 I II 5 ~ 1.25 ~s 10 z E Q /1 w Vas> 'O(on))( ROSlon) max. ; rJ' ...z Tj'12JC 8? IJI PU ~SE TE~T 10 A~ ~ 20 '/' IV UV ~ ~ V ,., ........ ~ ~ ~ ... V ... V i,...o-" ........ ./ ....... . / , VGS'10V , '0= 16A 0.85 ~ 0.75 -40 o 40 80 120 o 160 -40 UNITROOE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 40 80 120 160 TJ. JUNCTION TEMPERATURE fDC) TJ. JUNCTION TEMPERATURE ('CI 4-421 PRINTED IN U.S A UFN540 UFN541 Fig. 10 - Typical Capacitance Vs. Drain·to·Source Voltage 2000 1600 UFN542 UFN543 Fig. 11 - Typical Gate Charge Vs. Gate·to·Source Voltage .!. Cia' Cgo+ Cgd. Cd. SHORTED I r C.... Cgd _VGS'OV ~ f;lMHz ~COII'C"+ go +Cgd 20 .... -C,,+Cgd ~ \ VOS=30~~ C," r-_V~S'50~ vos \. 400 \ [""-... ~ COlO -r- ........ w cL W ~ ~ -~ 40 , BOV, UFN540, 10·34A / V % 20 ~ t--- z VGS ~ l.ov Z ~ o. 1 J J ------~ 20 ...... ......... 18 ~ -v;:~ UFN540.54' r- - " ~~ z 12 - "- UFN542.~ t'-... i u C> r-... ~ C> "'" ........ ~ ........ ........ 24 ~ 0.2 C> 80 30 ! .,."' 60 Fig. 13 - Maximum Drain Current Vs. Case Temperature lMEASURE~ ROS(Onl WITH CUIRRENT pulsE OF 2.0ps [JURATION. INITIAL TJ '" 25DC. (HEATING r- EFFECT OF 2.0 p. rlSE ~S MINIMAl.l w 40 Og. TOTAL GATE CHARGE InC) Fig. 12 - Typical On·Resistance Vs. Drain Current I ~ FOR TEST CIRCUITSI E FIGUrE 18 I VOS. ORAIN·TO·SOURCE VOLTAGE (VOLTSI 0.3 ...J.. '''~ 54~ / r-- ~ = '1~ E \ 60 80 40 10. DRAIN CURRENT (AMPERESI 100 o 120 15 50 75 100 Te, CASE TEMPERATURE (DCI 125 ISO Fig. 14 - Power Vs. Temperature Derating Curve 140 g 120 ~ I-\. " I\. !. 100 z C> ~ 80 15 '" 8U ~ ,e " t\.. "" r\. I\. 40 20 20 UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL (617) 861·6540 TWX (710) 326·6509 • TELEX 95·1064 " "- 40 60 80 100 TC. CASE TEMPERATURE (DC) 4-422 I\. 120 ~ 140 PRINTED IN USA UFN540 UFN541 Fig. 15 - Clamped Inductive Test Circuit UFN542 UFN543 • Fig. 16 - Clamped Inductive Waveforms VARY', TO OBTAIN REQUIRED PEAK 'L VOS' R . D_UT........"9' 'L---<>--~~-~ Fig. 17 - Switching Time Test Circuit 30V ADJUST RL TO OBTAIN SPECIFIED 10 3.0!1 VOS r,U~ - - -o_l,.-__-o-_--''-t-~ I GENERATOR I ;~~RCE Jl I LIM'EOANCE ___ J Fig. 18 - Gate Charge Tatt Circuit ..----0 ~~g~ATED SUPPLY) SAME TYPE AS OUT o J=n.5 - OUT mA --'\.IV''''.....-'\/'IA.,-o() -VOS IG CURRENT SHUNT UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (71D) 326·6509 • TELEX 95·1064 4-423 ID CURRENT SHUNT PRINTED IN U.S A UFN610 UFN611 UFN612 UFN613 POWER MOSFET TRANSISTORS 200 Volt, 1.5 Ohm N-Channel FEATURES DESCRIPTION • • • • • • The Unitrode power MOSFET design utilizes the most advanced technology available. This efficient design achieves a very low RoStonJ and a high transconductance. Compact Plastic Package Fast Switching Low Drive Current Ease of Paralleling No Second Brea kdown Excellent Temperature Stability The Unitrode power MOSFET features all of the advantages of MOS technology such as voltage control, freedom from second breakdown, very fast switching speeds, and thermal stability. These power MOSFETS are ideally suited for many high·speed, high·power switching applications such as switching power supplies, motor controls, and wide-band and audio amplifiers. PRODUCT SUMMARY Part Number Vos ROS(on) 10 UFN610 UFN611 UFN612 UFN613 200V 150V 200V 150V 1.50 1.50 2.40 2.40 2.5A 2.5A 2.0A 2.0A MECHANICAL SPECIFICATIONS UFN610 UFN611 TERM4DRAIN UFN612 UFN613 TO·220AB ...J 1-.1.39(0.055) '-.1'· 051 (0020) 685(0270) 585(02301 TERM 3 - SOURCE l 482(Ol~' !-t--f-+--' 356(0140) m::~:l ::l:m~ ~j~:~~~: --l 292(01151 1!ECTION x-x D TI--I ~!~ :~ ~~: 204(0080i Dimensions in Millimeters and (Inches) [1JJ 4/83 4-424 _UNITRDDE UFN610 UFN611 UFN612 UFN613 ABSOLUTE MAXIMUM RATINGS UFN610 UFN611 UFN612 UFN613 Units 200 150 200 150 V Dram - Gate Voltage IRGS = 1 MOl (j) 200 150 200 150 V Continuous Drain Current 2.5 2.5 2.0 2.0 A Continuous Drain Current 1.5 1.5 1.25 1.25 A 10 10 8.0 8.0 Parameter VOS Drain - Source Voltage VOGR 10@TC - 25°C 10@TC ~ 100"C lol(on) x ~OSton) max.l = = I u 6i- r- 2 ~ 1.5 20 E 1.0 o 10 20 3D 40 /J 10 5t"""4t ___ 0.5 ill ~ o o 50 10 Vas. DRAIN-TO-SOURCE VOLlAGE {VOLTS) VGS. GATE·TO SOURCE VOLTAGE (VOLTS) Fig. 4 - Maximum Safe Operating Area Fig. 3 - Typical Saturation Characteristics 50 5.0 r--,..-r--,..-r--,..-r--,--,--,---, _~",..ls, T,IT -+---+-+-+--I--!---I 40 /) ~ 2.0 o 'f/ t--SO ~s PULSE TEST w 25 I II 20 I--+--+----+-+-I--+-+':~ ~ ~ UFN610. 1, 10 8V~P ~ /, / i'---- II / i'---- 'fj OPERATION IN THIS AREA IS LIMITED BY ROSIon) I 101015 UFN612.3 ~ '5..." I 2 ~ c E 10~j.L5 UFN610.1 3.0 U~12'131 I' I'. I 1m-l- 2.0 r- T~oi5'~ 02 1.0 )-'-- RlhJC o. ,"= 0~~~~~~_ _~~~~4~ __ o 1.0 2.0 3.0 4.0 0.05 10 5.0 VDS. DRAIN·TO·SOURCE VOLTAGE (VOLTSI UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON. MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95·1064 I"- r- TJ = 150 aCMAX. 0 ~ ..... ~ r- UFN61 13 C= ••. UFN61 0.2 6.4 KIW SINGLE PULSE 10 20 50 100 IOms I 1~8: DC 200 500 VDS. DRAIN·TO.sOURCE VOLTAGE (VOLTS) 4-426 PRINTED IN U.S.A. UFN610 UFN611 UFN612 UFN613 Fig. 5 - Maximum Effective Transient Thermal Impedance, Junction·to·Case Vs. Pulse Duration ~ z I w ~wz :>=> o -o.s 0.5 ~~ NC f-O.l :;~ i~ 0.1 ~O.02 }~ N~ .......r ~2~ 1. _0.01 0.02 lJlJL ~i EO.05 co< z.~ 0.05 Uw NOTES, .... 0.2 S~ 0.2 '" • 1.0 1-1- tffi :; 2. PER UNIT BASE' R,hJC' 6.4 OEG. C/W. SINGLE PULSE (TRANSIENT ~Hm~L '~PEIOANfEII I ~ 0.01 10-5 ~UTY FACTOR, 0 - 3. TJM - TC' POM Z,hJC(I)' w~ 10-4 2 5 w~ 1~ 2 1.0 10 '1. SQUARE WAVE PULSE DURATION (SECONOSI Fig. 6 - Typical Transconductance Vs. Drain Current 4.0 3.6 0 r--~~PU~SETElT VoS>IO(onJ x ROSlan) ~ ! Fig. 7 - Typical Sourca-Drain Diode Forward Voltage 3.2 ma~. 5 fl 2.B i!l w U z 2 2.4 0< ~ TJ=-55 0 C 2.0 iii 1.6 ~ 1.2 ~ ;i 0.6 0.4 0 ..,.. l.- I-- 1/ t ~~ 1.0 TJ I'25,J ,... - ./ 11'/ o o j...- TJ~ 125'~ 5 O. 1 2.0 3.0 4.0 '0. DRAIN CURRENT (AMPERESI 1.0 2.0 3.0 4.0 VSO. SOURCHO·ORAIN VOLTAGE IVOLTSI 5.0 C 1.09 1.06 V :> ./ ./V C ~ffi 1.04 ~~ 1.02 ~V .. t::! 5~ CIJ~ := ~ C / 0.99 V 0.9 7 0.94 0.9 2V V V 0.69 -55 -34.5 -14 2.04 v 1.89 w U ~ t; ~ lL 1.74 1.59 t-- z j VGS"0V r,o . LOA ./ 1.43 ~S UN ., . 1.26 z!! 1.13 g~ COO o-C ~ C I oo V V V 0.82 0.52 k"" 6.5 27 47.5 68 66.5 109 129.5 150 TJ.JUNCTION TEMPERATURE ('CI V 0.98 0.61 UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON. MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 5.0 Fig. 9 - Normalized On-Resistance VI. Temperature V 1.1 1 i I 2 Fig. 8 - Breakdown Voltage VI. Temperature ~ TJ'" ISOOC ~ TJ. 125'C 1.14 w III L V -55 -34.5 -14 4-427 6.5 21 41.5 88 88.5 109 129.5 150 TJ. JUNCTION TEMPERATURE ('CI PRINT EO IN U.S A. UFN610 Fig. 10 - Typical Capacitanca Vs. Drain·to.source Voltage 500 ~ ~ i JGs·ol I 'i 3110 c_ .. c.+~ p' 1'1 -c.+ tgd I c,.' , 200 \ 100 \ K \ Fig. 11 - Typical Gate Charge Vs. Gate-to·Sourca Voltage .lJ I MH,' Ct• • cl'I. Cds SHORTEDCID -CI'I U ..'"~ - ~ V~S'40~ 15 ; - -- A~ ~ Vor 100~"-. - Vos = lCKlV. UFN610. 61 Q > ~ .I. ~ I ,.... UFN612 UFN613 20 I 400 z c UFN611 cL / I ~ I - C'" 10 20 40 30 VDS. ORAIN-TO·SOURCE VOLTAGE (VOLTS) 10'3A FOR TEST CIRCUIT V 50 ~EE FI~URE 'r r-10 4 Og. TOTAL GATE CHARGE InC) Fig. 12 - Typical Dn-Resistanca Vs. Drain Current Fig. 13 - Maximum Drain Current Vs. Case Temparatura 3.0 RDS(o.) MEASURED WITH CURRENT PULSE OF 2.0,.. DURATION. INITIAL TJ' 250 C. (HEATING EFFECT OF 2.0,.. PULSE ISM'j'MAL.i f--- f--2.4 VG~"J ,...,V I - - I"- ~ 1.8 2 1.2 ~ --V r---.. ..... ~ .s~ I I--~ GS '20V i'.... r-- ......... UFN610.611 ......... UFN612. 613' ......... I'-.. ~ " i"- !? o.6 ~ r\ 0 10 ........ 25 50 '0. DRAIN CURRENT (AMPERES) 15 100 125 150 TC. CASE TEMPERATURE (OC) Fig. 14 - Power Vs. Temperature Derating Curve 20 '\ "- " '\ \ l\. '\. o UN)TRODE CORPORATION • 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861,6540 TWX (710) 326-6509 • TELEX 95-1064 o 20 60 80 100 TC. CASE TEMPERATURE (OC) 40 4-428 1'\ 120 " 140 PRINTED IN U.S A. UFN610 UFN611 UFN612 UFN613 • Fig. 16 - Clamped Inductive Waveforms Fig. 15 - Clamped Inductive Test Circuit VARY Ip TO OBTAIN REQUIRED PEAK Il VGS = :r.r- TOL OUT tp . Fig. 17 - Switching Time Test Circuit PULSE GENERATOR r-----..., : 5011 I I I 5011 L ____ ...1 Fig. 18 - Gate Charge Test Circuit +Vos (ISOLATED SUPPLY) o.r=TI - 5mA \r-~>-"'VV\,---o IG CURRENT SHUNT UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710r 326·6509 • TELEX 95·1064 4-429 -Vos 10 CURRENT SHUNT PRINTED IN USA UFN620 UFN621 UFN622 UFN623 POWER ·MOSFET TRANSISTORS 200 Volt, '0~8 Ohm N-Channel FEATURES DESCRIPTION • • • • • • The Unitrode power MOSFET design utilizes the most advanced technology available. This efficient design achieves a very low Roslon. and a high transconductance. Compact Plastic Package Fast Switching Low Drive Cu rrent Ease of Paralleling No Second Breakdown Excellent TemperC!ture Stability The Unitrode power MOSFET features all of the advantages of MOS technology such as voltage control, freedom from second breakdown, very fast switching speeds, and thermal stability. . These power MOSFETS are ideally suited for many high-speed, high-power switching applications such as switching power supplies, motor controls, and wide-band and audio amplifiers. PRODUCT SUMMARY Part Number VDS RDS(on) ID UFN620 UFN621 UFN622 UFN623 200V 150V 200V 150V 0.80 0.80 1.20 1.20 5.0A 5.0A 4.0A 4.0A MECHANICAL SPECIFICATIONS UFN620 UfN621 UFN622 UFN623 TO-220AB TERM3-S0URCE l 4.82101~ ~ L....f-+-+-' ~~:::~: ::::~l; -;;1 j!ECTlONX-X ~D 11---1 (0 1151 HH~'~~: 20410.Q80I Dimensions in Millimeters and (lnchesl [bD 4/83 4-430 _UNITRODE UFN620 UFN621 UFN622 UFN623 ABSOLUTE MAXIMUM RATINGS UFN620 UFN621 UFN622 UFN623 Units 200 150 200 150 V 200 150 200 150 V Continuous Drain Current 5.0 5.0 4.0 4.0 A 10 @TC = 100°C Continuous Drain Current 3.0 3.0 2.5 2.5 A 20 20 16 16 Parameter CD VOS Drain - Source Voltage VOGR 10@TC-25°C Drain - Gate Voltage IRGS = 1 M!J) 10M Pulsed Drain Current @ VGS Gate - Source Voltage PO@TC-25°C Max. Power Dissipation CD Linear Derating Factor 20 40 ISeeFig.141 W 0.32 ISee FIg. 141 W/K I Operating Junction and Storage Temperature Range TJ T stg Lead Temperature V ISee Fig. 15 and 161 L = tOO~H 20 I 16 Inductive Current, Clamped ILM A f20 A 16 I -55 to 150 °C 30010.063 In. 11.6mml from case for 10s1 °C ELECTRICAL CHARACTERISTICS @ TC = 25"C (Unless otherwise specified) Parameter BVOSS Drain - Source Breakdown Voltage VGSltl)] Gate Threshold Voltage Min. Typ. Max. Units 200 - - V UFN621 UFN623 150 - - V 10 ALL 2.0 4.0 V VOS - VGS, 10 - 250~A - SOO nA VGS = 20V -500 nA VGS = ·20V 2S0 ~A VOS = Max. Rating, VGS = OV - - tOOO ~A VOS = Max. RatingxO.B, VGS = OV, TC = 12SoC UFN620 UFN621 S.O - - A UFN622 UFN623 4.0 - - A UFN620 UFN621 - 0.5 O.B n UFN622 UFN623 - O.B 1.2 n Type UFN620 UFN622 IGSS Gate-Source Leakage Forward ALL IGSS Gate-Source Leakage Reverse ALL lOSS Zero Gate Voltage Drain Current 1010ni On-State Drain Current (l) ROSlon) Static Drain-Source On-State Resistance ~ ALL - Test Conditions VGS = OV = 2S0~A VOS ) 1010ni x ROSlonl max.' V GS = 10V V GS = 10V, 10 = 2.SA 2.SA 9fs Forward Transconductance (g) ALL 1.3 2.5 - S Illi C iss Input Capacitance ALL - 4S0 600 pF C oss Output Capacitance ALL - 150 300 pF C rss Reverse Transfer Capacitance ALL - 40 BO pF td on Turn~On ALL - 20 40 ns VOO = 2.S BV OSS ' 10 = 2.SA, Zo - t, Rise Time ALL 30 60 ns See Fig. 17 tdloffl Turn-Off Delay Time ALL 50 100 ns tf Fall Time ALL - 30 60 ns (MOSFET switching times are essentially Independent of operating temperature.) Q9 Total Gate Charge ALL - 11 15 nC Gate-Source Charge ALL - 5.0 - nC Qgd Gate~Draln ALL LO Internal Drain Inductance Delay Time (Gate-Source Plus Gate-Drain) Q gs ("Miller") Charge ALL - 6.0 - nC - 3.S - nH - 4.5 - nH VOS ) 1010ni x ROSlonl max.' 10 VGS = OV, VOS = 25V, f = 1.0 MHz See Fig. 10 son V GS = 50V, 10 = 6.0A, VOS = O.B Max. Rating. See Fig. 18 for test circuit. (Gate charge is essentially independent of operating temperature.) Measured from the contact screw on tab to center of die. Measured from the Modified MOSFET symbol showing the internal device inductances. drain lead, 6mm 10.2S In.) from package to center of die. LS Internal Source Inductance ALL - 7.S - nH Measured from the source lead, 6mm 10.25 In. I from package to source bonding pad. .$ THERMAL RESISTANCE RthJC Junction-to-Case RthCS Case-to-Sink MountIng surface flat, smooth, and greased. RthJA Junctlon-to-Ambient Free Air Operation UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173· TEL. (617) 861-6540 TWX (710) 326·6509 • TELEX 95-1064 4-431 PRINTED IN U.S A • UFN620 UFN621 UFN622 UFN623 SOURCE·DRAIN DIODE RATINGS AND CHARACTERISTICS Continuous Source Current (Body Diode) IS ISM Pulse Source Current (Body Diode) VSD ® ® Diode Forward Voltage Modified MOSFET symbol showing the mtegral reverse P·N junction rectifier. UFN620 UFN621 - - 5.0 A UFN622 UFN623 - - 4.0 A UFN620 UFN621 - - 20 A UFN622 UFN623 - - 16 A UFN620 UFN621 - - 1.8 V TC TC ~ 25'C. IS ~ 4.0A. VGS ~ OV UFN622 UFN623 ~ ~ 25'C. IS 5.0A. VGS JPl. ~ OV - - 1.4 V trr Reverse Recovery Time ALL - 350 - ns T J - 150'C. IF - 5.0A. dlFldt - 100 AIl's ORR Reverse Recovered Charge ALL - 2.3 - I'C T J - 150'C. IF - 5.0A. dlFldt - 100 AIl's ton Forward Turn-on Time ALL IntrinsIc turn-on time IS negligible. Turn-on speed CD T J ~ 25'C to 150'C. ~ Pulse Test: Pulse width'; 3001'5. Duty Cycle'; 2%. IS substantially controlled by LS + Ln. @ Repetitive Rating: Pulse width limited by max. Junction temperature. See Transient Thermal Impedance Curve (Fig. 5). Fig. 1 - Typical Output Characteristics Fig. 2 - Typical Transfer Characteristics 10 10 lOY r- 7Y f-- ~ I.IS r-- 810,us PulSE TEJr VOS>IOlon)'x ROS(on) pulSE TEll ~.x. 6Y ~ /, / /III 1/1 1/ I VGS ~ sr r- If TJ" 125°C rT, !','c "'-, .J '(jf I rC- y 10 60 40 TJ=f55 0 C 80 ~ ~V 100 10 Vos. DRAIN·TO SOURCE VOLTAGE (VOLTS) VGS. GATE·TO SOURCE VOLTAGE (VOLTS) Fig. 3 - Typical Saturation Characteristics Fig. 4 - Maximum Safe Operating Area 100 , OPERATION IN THIS AREA IS LIMITED BY RDS(on) &0 lOr!, V UFN62D.1 8v 8{)/.I)PULSE~EST /J6{ UFN622.3 ~ I If/ 3 1 / _VGS"V l 10#,5 100#,5 UFN622.3 I I, ~. I 1m" 0.& I I' ~UFN620.1 4Y 0.1 I/' 1.0 Vas. DRAIN·TO SOURCE VOLTAGE (VOLTS) UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95·1064 I~t± OC SI~G~E ~UIL~\ 111- i- 0.1 to lOms Te" 25°C Tr 1500 e MAX. R1hJC "'3.12 K!W 10 10 UfMI21.3 &0 100 UFN620.2 200 &00 VOS. ORAIN·TO·SOURCE VOLTAGE (VOLTS) 4-432 PRINTED IN U.S A UFN620 UFN621 UFN622 UFN623 Fig. 5 - Maximum Effective Transient Thermal Impedance, Junction·to·Case Vs. Pulse Duration ...z I w ill L 1-1- wz >:> 1.0 • D' 05 ;::'" §~ I I NOTES 0.5 'h 2 ffi~ 02 ~~ El.JL .... f--O' ~~ 0.1 c« 0.05 ~2----.j 2.10.05 1=0.02 "w J~ '" 0.02 } 001 ~.J!f-- ._f-- SINGLE PULSE (TRANSIENT THERMAL IMPEDANCE) 1. DUTY FACTOR, 0" .. :~ 2. PER UNIT BASE' R,hJC' 3.'2 DEG. CIW. -+- - 3. TJM' TC' POM Z'hJcl1l. .0.5 10-2 .0 '0 'I. SQUARE WAVE PULSE DURATION (SECONDS) Fig.6 - Typical Transconductance Vs. Drain Current Fig. 7 - Typical Source·Drain Diode Forward Voltage 1 5 l • kff V V / 3 / 2 fO J TJ -55o I r- V "...::> 5 TJ - 25°C '" "z 1 L I""'" z :> TJ! '25'! /V 1 ~ ~ /V Vas> jOlon) x ROSlon) III ~ 0 1 -I I I I .., I-TJ" 150°C dI 2 II I ~rpulrETEsll TJ" 25 0 C 1 0 1D '0, DRAIN CURRENT (AMPERES) Vso. SQURCE·TQ·DRAIN VOLTAGE (VOL IS) Fig. 8 - Breakdown Voltage Vs. Temperature Fig. 9 - Normalized On·Resistance VI. Temperature 1 125 i 5 V 8 5 ./ .,. / ~ ~ !o"'" V, " . +--- V 4 V / 0 5V' 6 5 -40 TJ' 150''<- 5 .IV; 07 5 ~ 40 BO 120 1/ 2 ·40 '60 TJ, JUNCTION TEMPERATURE (OCI UNITROOE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326·6509 • TELEX 95·1064 V 4·433 L VGS -.OV 'r 2A 40 80 TJ. JUNCTION TEMPERATURE (DC) 110 PRINTED IN U.S.A UFN620 UFN621 Fig. 10 - Typical Capacitance Vs. Drain·to·Source Voltage 1000 20 I I -w 600 ',"1 M~'I CiA"" Cgs + Cgd. Cds SHORTED Cns • Cgd u z ;! ::" 400 ;3 COlI = Cds + Cgs + Cgd \ ... \ "'='Cdl+Clld -I- - ~ ~ w VOS'100V I- ~ u ~ 10 '" >,. ~ ~ J > 50 ....... VGS' 'OV 1.0 z 0 '~z" ~ .". I 0.5 -- sr 12 - J r-..... 16 20 ['.. r--.... "'"1"N620. t'-....' 621 I- UFN6:;;;-" ........ I'- , /I-- V -::- ...... V FIG1URE Ii Fig. 13 - Maximum Drain Current Vs. Case Temperature w z 10"SA Qy. TOTAL GATE CHARGE (nC) ......... u ~ ~~ FOR TEST CIRCUIT ~ V Crss I 0 ~~ / w ~ 1.5 " ~ 0 Fig. 12 - Typical On·Resistance Vs. Drain Current w u ~ L4~ " 10 20 30 40 Vas, DRAIN TO·SOURCE VOLTAGE (VOLTS) ~ I VOS' l6OV. UFN620. 622 0 t--. ~ I > I C1SS \ "' -- :5:: \ VOS; 40V '5 " \ u' 200 CgoCgd l\ UFN623 Fig. 11 - Typical Gate Charge Vs. Gate·to·Source Voltage JGS .J 800 UFN622 VGS' 20V " ..\ ..... "~'\ I ROS(on) MEASURED WITH CURRENT PULSE OF 2.01Js DURATION. INITIAL TJ" 250C. (HEATING EFfECT OF 2.0 III PULSE IS MINIMAL.) 10 15 10. DRAIN CURRENT (AMPERES) o 20 75 100 Te, CASE TEMPERATURE (OC) 50 25 125 150 Fig. 14 - Power Vs. Temperature Derating Curve 40 '\ 5 " I'... '\ I I\. 5 20 UNITROOE CORPORATION. 5 FORBES ROAD LEXINGTON. MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95·1064 '\ ,""i,\ 40 60 80 100 Te. CASE TEMPERATURE (DC) 4-434 I 1\ 120 140 PRINTED IN U.S.A UFN620 UFN621 Fig. 15 - Clamped Inductive Test Circuit UFN622 UFN623 .. Fig. 16 - Clamped Inductiv. Waveforms VARY Ip TO OBTAIN REQUIRED PEAK Il vos·R --- 10(on) 'x ROSlon) max, r- - 81 II I .5 12 i vas'" BV r- !-- TJ /I z ~ TJ= 125°C l- 10 ~ Vas> 10(onl x ROS(on) TJ ~ ~ max. = ISOoC "1 I I I 80ps PULSE TEST 10 10 o lD. DRAIN CURRENT (AMPERES) Fig. 9 - Normalized On-Resistance Vs_ Temperature Fig.8 - Breakdown Voltage Vs. Temperature 22 115 > ........ ...... ~ ~o 1.05 Ww ~N ~::l .." W .. =>0 ~ ~~ u z ........ .... ~ ~ ~~ 1.4 V V ~~ g;;! .... " o~ ... 0 z~ ", ./ 10 ~ il; 40 80 120 TJ. JUNCTION TEMPERATURE (OCI UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 06 ./ V V VGS ./ 0.2 160 V / /' ~ 0.85 075 -40 ~ 1.8 z ........ V ~~ ~~ 0.95 TJo j50 C VSD, SOU RCE·ID-DRAIN VOLTAGE (VOL IS) 125 '" ~ i'TJ o 150 0 C /' -40 0 10V loo3.5A 4D 80 120 TJ.JUNCTION TEMPERATURE (OC) 4-439 PRINTED IN U.S A UFN630 UFN631 Fig. 10 - Typical Capacitance VI. Drain·to-Source Voltage UFN632 UFN633 Fig. 11 - Typical Gate Charge Vs. Gate·to-Source Voltage 2000 20 VJs-O .L I. I 800 U 400 -Cds+Cgd I l\ VOS =U!QV, UF~, 632 o. > A. o ~ 1/ "'" ~ "- I ...... '0' 12A FOR TEST CIRCUIT SjE FIGrRE 1i V C'" 10 20 30 40 VDS. ORAIN·TO-SOURCE VOLTAGE (VOLTS) 16 OJ 32 40 Fig. 13 - Maximum Drain Currant VI. Cale Temperatura 10 I ........ ......... ......... vGS -IOV S '" -UFN632~ ................ -- 24 f-- flg, TOTAL GATE CHARGE (nC) Fig. 12 - Typical On·Resiltance V,. Drain Current 2 Jl) r I~ , '"~ c.. .......... vos' 100V ~ 10 ~ \ Vos" 4QV -r--- - ~ COII-Cd.+ gs+Cgd ~ 1200 ~ .1 t-IMHz Cia - CI!I~Cgd.Cd.SH~RTED _ CIII • Cgd 1600 V -~ f-- - .........UFN630, 631 ," ........ '" 1 vGs' 2 V ~ ~ ~ "I~ \ ROS(on) MEASURED WITH CURRENT PUJE OF 2.0 pi OURATION. INITIAL TJ" 250C. (HEATING EFFECT OF 2.0., PULSE IS MINIMAL) 10 20 30 10, DRAIN CURRENT (AMPERES) o 40 25 50 75 100 Tc, CASE TEMPERATURE ('C) 125 ISO Fig. 14 - Power VI •.Temperature Derating Curve 80 70 ~ r-- ~ "r\. 60 '\ !;( iO z 50 '\ 0 ~ ~ '" ~ ~ 40 '" 30 20 ~ 10 20 UNITROOE CORPORATION. 5 FORBES ROAD LEXINGTON. MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 - TELEX 95·1064 40 80 100 60 TC. CASE TEMPERATURE (OC) 4·440 "- '\ 120 140 PRINTED IN U.S.A UFN630 Fig. 15 - Clamped Inductive Test Circuit UFN631 UFN632 UFN633 • Fig. 16 - Clamped Inductive Waveforms VARY tp TO OBTAIN REQUIRED PEAK IL vGs·TvQ ~PL 'L+--->---"'''''''..-J Fig. 17 - Switching Time Test Circuit PRF;:.1 kHz tp=lJ.!s V, V, _ _'r'-~ TO SCOPE r-----.., I z, I 1511 I I.n. I IL.:10V _ _ _ _ -II Zo ISH Fig. 18 - Gate Charge Test Circuit r---o ~~g~ATED SUPP,LY) SAME TYPE AS OUT - OUT 0~1.5mA UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95·1064 4-441 IG '0 CURRENT SHUNT CURRENT SHUNT PRINTED IN U.S.A UFN640 UFN641 UFN642 UFN643 POWER MOSFET TRANSISTORS 200 Volt, 0.2 Ohm N-Channel FEATURES DESCRIPTION • • • • • • The Unitrode power MOSFET design utilizes the most advanced technology available. This efficient design achieves a very low RosI• n• and a high transconductance. Compact Plastic Package Fast Switching Low Drive Current Ease of Paralleling No Second Breakdown Excellent Temperature Stability The Unitrode power MOSFET features all of the advantages of MOS technology such as voltage control, freedom from second breakdown, very fast switching speeds, and thermal stability. These power MOSFETS are ideally suited for many high-speed, high-power switching applications such as switching power supplies, motor controls, and wide-band and audio amplifiers. PRODUCT SUMMARY Part Number VDs RDS(on) ID UFN640 200V 0.lS0 lSA UFN641 150V 0.lS0 lSA UFN642 200V 0.220 16A UFN643 150V 0.220 16A MECHANICAL SPECIFICATIONS UFN640 UFN641 UFN642 UFN643 ~.4210.1W ~ 9Miii18Oi '086(O'4201~ TO-220AB TERM4- DRAIN t~DlA TERM 3 - SOURCE 11.5110.6501 14.2310.5601 +- I~OOF'N 6lJ.5IIt MAX 14.1310.5801 L X l 4.82tO.'~ .561.1 H-++-' ~ m:~:~: :::::ml 114(0.0451 ffilrn!I 1.1~ (0.010) 1.1 (O,MS) ,LSECTION r -;;110.,151 'Z.G4111.01Oi 0 x-x 1-----1 ~.~;:~T~: Dimensions in Millimeters and (lnchesl 4/S3 4-442 ~UNITRDDE UFN640 UFN641 UFN642 UFN643 ABSOLUTE MAXIMUM RATINGS UFN640 UFN641 UFN642 UFN643 Units 200 150 200 150 V 200 150 200 150 V Continuous Drain Current lB lB 16 16 A 10@TC = 100°C Continuous Drain Current 11 11 10 10 A 10M Pulsed Drain Current 72 72 64 64 A VGS PO@TC=25°C Gate ~ Source Voltage Max. Power Dissipation ILM Inductive Current, Clamped Parameter CD VOS Drain - Source Voltage VOGR 10@TC-25°C Drain - Gate Voltage IRGS = 1 MOl CD @ ±20 linear Derating Factor I 1.0 ISee Fig. 14) ELECTRICAL CHARACTERISTICS @ Te ~ Parameter V GSIlI1l Gate Threshold Voltage 100~H 64 I A 64 -55 to 150'C °C 30010.064 in. 11.6mm) from case for 105) °C Type Min. Typ. Max. Units UFN640 UFN642 200 - - V VGS = OV UFN641 UFN643 150 - -- V 10 = ALL 2.0 4.0 V - - 500 -500 nA nA VGS - -20V - - 250 jJ.A VOS = Max. Rating, VGS = OV VOS = Max. Rating x O.B, VGS = OV, TC = 125°C IGSS IGSS Gate·Source Leakage Forward ALL Gate·Source Leakage Reverse ALL lOSS Zero Gate Voltage Dram Current 1010ni On-State Drain Current ~ ROS lon ) Static Drain-Source On-State ® ® ALL - - 1000 jJ.A UFN640 UFN641 18 - - A UFN642 UFN643 16 - - A UFN640 UFN641 UFN642 UFN643 - 0.14 0.18 !l - 0.20 0.22 !l Test Conditions 250~A VOS - VGS' 10 - 250~A VGS = 20V V OS ) 1010n) x ROSlon) max.' V GS = 10V VGS = 10V, 10 = lOA 9fs Forward Transconductance ALL 6.0 10 - SIOI Ciss Input Capacitance ALL - 1275 1600 pF Coss Output Capacitance ALL pF C rss Reverse Transfer Capacitance ALL tdlonl tr Turn-On Delay Time ALL Rise Time ALL tdlolli tf Turn-Off Delay Time ALL Fall Time Og °9.5 V OS ) 1010n) x ROSlon) max.' 10 - lOA VGS = OV, VOS = 25V, f = 1.0 MHz 500 750 - 160 300 pF 16 30 ns VOO = 75V, 10 = IDA, Zo ~ 4.70 27 60 ns See Fig. 17 - 40 BO ns ALL 31 60 ns (MOSFET switching times are essentially independent of operating temperature.) Total Gate Charge IGate-Source Plus Gate-Drain) ALL - 43 60 nC Gate-Source Charge ALL - 16 - nC ALL - 27 - nC - 3.5 - nH Qgd Gate-Orai~ I"Miller"l Charge LO Internal Drain Inductance ALL LS W WIK 25'C (Unless otherwise specified) Drain· Source Breakdown Voltage Resistance I 72 Operating Junction and Storage Temperature Range Lead Temperature 8VOSS ISee Fig. 14) ISee Fig. 15 and 16) L - 72 TJ T stg V 125 Internal Source Inductance ALL ~ See Fig. 10 V GS z 10V, 10 z 22A, VOS z 0.8 Max. Rating. See Fig. 1B for test circuit. IGate charge is essentially independent of operating temperature.) Measured from the contact screw on tab to center of die. - 4.5 - nH Measured from the drain lead, 6mm 10.25 in.l from package to center of die. - 7.5 - nH Measured from the source lead, 6mm 10.25 In.1 from package to source bonding pad. Modified MOSFET symbol showing the internal device inductances. $ THERMAL RESISTANCE RthJC JunctlOn-to~Case RthCS Case-to-Sink Mounting surface flat, smooth, and greased. RthJA Junction-to-Amblent Free Air Operation UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL, (617) 861-6540 TWX 1710) 326-6509 • TELEX 95-1064 4-443 PRINTED IN USA. • UFN640 UFN641 UFN642 UFN643 SOURCE-DRAIN DIODE RATINGS AND CHARACTERISTICS Continuous Source Current (Body Diode) IS ISM VSD Pulse Source Current IBody Diode) @ Diode Forward Voltage ® UFN640 UFN641 - - 18 A UFN642 UFN643 - - 16 A UFN640 UFN641 UFN642 UFN643 - - 72 A - - 64 A UFN640 UFN641 - - 2.0 V UFN642 UFN643 - - 1.9 V - ns trr Reverse Recovery Time ALL ORR Reverse Recovered Charge ALL ton Forward Turn-on Time ALL IDlon) II( RDS(on) m.~. , ., I' J ~ 10 VDS. DRAIN·TD·SOURCE VOLTAGE (VOLTS) 10 VGs. GATHO·SDURCE VOLTAGE (VOLTS) Fig. 3 - Typical Saturation Characteristics Fig. 4 - Maximum Safe Operating Area 100 40 r--- J~. ruLE TEJT l~~ 32 ~? ~ ~~ fP _Jv." ~~ ~ ",. ~ Op RATI N IN HI ~~6401 vGS"f V- ~ V' ~ ~ ~ .... 10;~ lips ,; ~ 1~: I 10ms z ~ "E> lOOms 1.0 f= TC' 25'C 0.5 ~ TJ' 150'C MAX - rDEr I- RthJC • 1.0 KIW JvJv_ 0.2 f-ISI~GLf pmEI 0.1 1.0 1 2 3 4 VDS, DRAIN·TO·SDURCE VOLTAGE (VOLTS) UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 - UFN642,3 10 L!~ITEO Byt'ton) \ UFN640,l 20 AREA IS "'. 50 I-UFN642.3 I U II 1,3 U~,2 I IIIII 10 20 50 100 III 200 500 VOS. DRAIN·TO·SOURCE VOLTAGE (VOLTS) 4-444 PRINTED IN U.S.A. UFN640 UFN641 UFN642 UFN643 Fig. 5 - Maximum Effective Transient Thermal Impedance, Junction·to·Case Vs. Pulse Duration I • 0-0.5 NOT£S. rO.2 3nSL -~ 1- 0.1 ~2~ B·05 rO.02 .-0.01 SINGLE PULSE (TRANSIENT I-1"'T THERMAlIMPEOANCE) :~ 1. DUTY fACTOR, 0" 2 PER UNIT BASE'" RthJ&" 1.0 DEG C/W 3 TJM-TC"POMZthJC(t). 10-3 10-2 10-1 10 1.0 fl. saUARE WAVE PULSE DURATION (SECONDS) Fig. 7 - Typical Source-Drain Diode Forward Voltage Fig. 6 - Typical Transconductance Vs. Drain Current 190 152 TJ z = ;' A~ q -55°C w ill ./V iii U 11.4 L L '/ z '" i ~ ~ £ 76 38 T\ - 25le ~ LJc- 5 f-- -TJ-150'C r Tj = 25 0 C 2 Vas> 'o(on) x ROS(on) max. I 10 16 24 32 '0. DRAIN CURRENT (AMPERES) 40 Fig. 8 - Breakdown Voltage Vs. Temperature o J 0.4 08 1.2 1.6 VSD. SOURCE·TO DRAIN VOLTAGE IVOl TSI 2.0 Fig. 9 - Normalized On-Resistance V,. Temperature 25 12 5 w w ~ I I 1 8~., PU~SE TE~T III III 0 - 1 iJ [L' ...... 50 I I U Z > ". 5 ~ ,. ~ 1.1 5 .;'" . /V /' "' ~o 1.5 zw eN w:O U," ... V ....... ,,/ "':0 =>", ee ~~ 1.0 V :; ~ 5 0.7 5 -40 ,/ 2.0 ~w - J 40 80 120 l/ ....... / VGS - IOV 'r 0.5 o-40 160 40 9A I 80 120 160 TJ, JUNCTION TEMPERATURE (OC) TJ,JUNCTION TEMPERATURE (DC) UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 V V 4-445 PRINTED IN U.S.A UFN640 c:... C~ + c~. Cd.S~ORTE6 t- r-JGS.ot- -Cra'C,d \ 1600 \ 800 \ u' 400 ~ \,. ." - ""'Cds+Cgd 5 ~ VOS=40V~ I I "'Vbs • l6OV. UFN640. 642 ......... ~ ....... ~ ~ ~ SEEFIGiRE18I 20 20 .......... 6 ........ 0.4 r--..... I""--. ~ .......... 2 3 ~ 1'-..["--. V S=10V ~ => o :;; ~ go. 1 ~ } o.2 .... / - --- 60 "" ~'\ , - 80 0 25 100 I-- ~ 4 EFFECT OF 2.0 ~s PULSE IS MINIMAL) ~ ~ ..... 8 ~;'20V ROSI,"I MEASURED WITH CURRENTlpUlSJ OF 2 [] ~s OURATION. INITIAL TJ = 25°C. (HEATING f-20 UFN640.641 ""~, UFN642. 643 ,~ w u 6 80 60 Fig. 13 - Maximum Drain Current Vs. Case Temperature z ~ 40 - D. g, TOTAL GATE CHARGE (nC) o.5 z o - 10 = 22A W % ~ # FOR TEST CIRCUIT V Fig. 12 - Typical On·Resistance Vs. Drain Current u '# L - cl -.... w '-.., / ~ VOS. ORAIN·TO·SOURCE VOLT AGE IVOL TSI I I Vas'" lODV 1----- I ........ ~ w UFN643 20 r- -.!:'" \ ~ CgsC,d C.... Cds+Cgs+C" - ~ i'oo.. ~1200 ~ ~ f= 1 MHz UFN642 Fig. 11 - Typical Gate Charge Vs. Gate·to·Source Voltage Fig. 10 - Typical Capacitance Vs. Drain·to·Source Voltage 2000 UFN641 75 50 100 125 150 Te. CASE TEMPERATURE (uG) to, DRAIN CURRENT (AMPERES) Fig. 14 - Power Vs. Temperature Derating Curve 140 120 - I"\.. '" I'\. " 0 \.. 0 '" r'\.. 0 0 '"" "\.. " ~ 20 40 60 80 100 120 140 TC. CASE TEMPERATURE I'CI UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95·1064 4·446 PRINTED IN U.S A UFN640 UFN641 Fig. 15 - Clamped Inductive Test Circuit UFN642 UFN643 • Fig. 16 - Clamped Inductive Waveforms VARY tp TO OBTAIN R REQU'RED PEAK 'L YGS ' ~D~UT~-.rc::J/f' 'L_---./o---...._I.-.J Fig. 17 - Switching Time Test Circuit 15V ADJUST Rl TO OBTAIN SPECIFIED 10 aID VDS r;U~ - - -o_lr--__-<>-_--'~~ I GENERATOR Jl I I :J~RCE L'MPEDANCE ___ J Fig. 18 - Gate Charge Test Circuit +VDS !ISOLATED SUPPLYI s=TI. o - 5 mA --'\./V'\"---.-'VV\,--o -VDS 'G 'D CURRENT SHUNT UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95·1064 4-447 ~ CURRENT SHUNT PRINTED IN U S.A UFN710 UFN711 UFN712 UFN713 POWER MOS"FET TRANSISTORS 400 Volt, 3.6 Ohm N-Channel FEATURES DESCRIPTION • • • • • • The Unitrode power MOSFET design utilizes the most advanced technology available. This efficient design achieves a very low Roslon> and a high transconductance. Compact Plastic Package Fast Switching Low Drive Current Ease of Paralleling No Second Breakdown Excellent Temperature Stability The Unitrode power MOSFET features all of the advantages of MOS technology such as voltage control, freedom from second breakdown, very fast switching speeds, and thermal stability. These power MOSFETS are ideally suited for many high-speed, high-power switching applications such as switching power supplies, motor controls, and wide-band and audio amplifiers. PRODUCT SUMMARY Part Number VDS RDS(on) ID UFN710 400V 3.60 1.5A UFN711 350V 3.60 1.5A UFN712 400V 5.00 1.3A UFN713 350V 5.00 l.3A MECHANICAL SPECIFICATIONS UFN710 UFN711 UFN712 UFN713 TO-220AB TERM3-S0URCE '·4.82(O.'~J 356 (0 140J ~ ~(O"51 '-+-+-+---' l~:::: !:l::~ ~ECTlONX-X ~;~:~~: 0 ti----l ~~~:~g-~: 2.D4(0 D8Di Dimensions in Millimeters and (Inches) 4/83 4-448 ~UNITRDDE UFN710 UFN711 UFN712 UFN713 ABSOLUTE MAXIMUM RATINGS UFN710 UFN711 UFN712 UFN713 400 350 400 350 V Drain - Gate Voltage IRGS ~ 1 Mil) (j) 400 350 400 350 V Continuous Drain Current 1.5 1.5 1.3 1.3 A lo@ TC ~ 100°C Continuous Drain Current 1.0 1.0 O.S O.S A 6.0 6.0 5.0 5.0 Parameter VoS Drain - Source Voltage VoGR 10@TC~25°C @ 10M Pulsed Drain Current VGS Po@ TC Gate - Source Voltage ~ 25°C ~I0t'-(o_n'-)'t-R_o_SI,-!,n.:.)_m'_'t-'-+f---JI---+-+--I VGS'6V 0.88 z ~ 0,66 0.88 1---+-+-~--+---h""+--1I---+-+--I / 5v 0.44 0.22 U 0 20 60 40 0.44 -- 4~ 80 1---+-+---t-+-ct-fjJFV--:;I-L',,--IT'tJ"_-_55..,'C_-+--I /J o~~~~L~~~~~~~~ o JOO 10 VGS. GATE·TO·SOURCE VOLTAGE NOlTS) Fig, 3 - Typical Saturation Characteristics .. 1,32 ~ 1.10 z 0.88 ~ 0.66 ::! ~ , z w ;;: / ,-r7V ~~ ~ r 0.22 ~~V 8V / o r- ~F~71~, j .... VGS·6v - l * i ~ I , -- z ~ , 5V " OPERATION IN THIS AREA IS LIMITED BY, ROSI,n) -T C'250C =TJ "150'C MAX, - R,hJC " 6.4 K/W 0.02 :-:f'~GLr TI~E, 0.01 10 4-450 U lr~'S '11' lh~s III O. 1 _0 0.05 VOS, ORAIN·TO,SOURCE VOLTAGE IVOL TS) UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95·1064 0.5 '" 1'.1' I', 1.0 C: UFN712, 3 :: 0.2 .tv o 10/-1$ I- UFN712, 3 ~ J 0.44 I=UFN710,1 p- 10V.w I-- r-aLSPUL'SETEJ 1.76 1.54 Fig. 4 - Maximum Safe Operating Area 10 2.20 ~ ~ 0221--+--+---+-~~~-+--+--1-+--I Vos. tlRA1N·TO-SOURCE VOLTAGE IVOlTS) 1.98 TJ" 125°C Eo 0.661--+--+---+-+----.H-lri/-:T.J:' 25 0 C-r-- lDDms , UFN711,3 IIIII UFN710,2 Jic' II III 1.0 10 20 50 100 200 VOS' ORAIN,TO-SOURCE VOLTAGE (VOLTS) 500 PRINTED IN U.S.A. UFN710 UFN711 UFN712 UFN713 Fig. 5 - Maximum Effective Transient Thermal Impedance, Junction·to·Case Vs. Pulse Duration I I .. 0·0.5 NOTES- ~ 0.2 ~~, lT1S1.. IiiIIII" !:::iiI ~2~ FO.05 BJ I. 0.01 .A ~UTY FACTOR. O' :; 2. PER UNIT BASE" RthJC • 6.' OEG. CIW. SINGLE PULSE (TRANSIENT THERMAL IMPEDANCE} 3. TJM - TC" POM ZthJc(t} . 10-3 10-4 10-1 10-2 10 1.0 t1. SQUARE WAVE PULSE OURATION (SECONDS) Fig. 6 - Typical Transconductance Vs. Drain Current Fig. 7 - Typical Source-Drein Diode Forward Voltage ° ° 3.0 2.7 -.j",.ui"TE!r Vas> tOl on) It ROS(on) milt. _ 2.4 ~ ! I ...... ~ !-/V i-"'" _I"'"' / '/ V ~ 1.5 --- -- .... 1.2 li1 ~ 0.9 i " 2. I iii ~ 1.8 IR III 0.6 3 TJ" -55 0 C Q TJ ,.15 0 C- r - ° TJ' ~250C f - - 5 f-- 111 If °o 0.22 V IY 2f-- 044 0.66 0.88 11 132 1.54 116 198 O. I 22 1.0 Fig. 8 - Breakdown Voltage Vs. Temperature 1.08 ~ 1.07 .~ 1.05 / ~a 1.03 ~~ 0.99 ~ V 09 7 2/ 9 V V / 1.0 I =>'" 0.9 J 6 / Ww ~~ 0.94 lL 2.04 / 0.9 5 5.0 40 Fig. 9 - Normalized On-Resistance VI. Tampareture ./ > ~; 3.0 2.2 I ° ~ 2.0 Vso. SOURCE-TO-ORAIN VOLTAGE (VOLTSI 10, DRAIN CURRENT (AMPERES) 1.1 TJ: 1500 e I TJ"i5OC / V 7 / V 2 V -55 -34.5 L 0.65 0.47 -I. 6.5 27 47.5 6B BB.5 109 129.5 ISO UNITROOE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 L -55 -34.5 TJ,JUNCTION TEMPERATURE (OCI VGS"OV to "'O.6A V '" -14 6.5 27 47.5 6B 88.5 109 129.5 ISO TJ. JUNCTION TEMPERATURE (OCI 4-451 PRINTED IN U.S.A UFN710 UFN711 UFN712 UFN713 Fig. 11 - Typical Gate Charge Vs. Gate·to·Source Voltage Fig. 10 - Typical Capacitance Vs. Drain·to·Source Voltage 0 Vas Jsov 5 ~~ VOS = 200V I I VOS' 320V 0 II J 10 ·2A FOR TEST CIRCUIT f--Si E FIGr E Ii II 20 40 30 ~~ A~ 5 10 .......... 50 4 6 10 0,. TOTAL GATE CHARGE InCI Vas. DRAIN-lO-SOURCE VOLTAGE (VOLTS) Fig. 13 - Maximum Drain Current V•. Case Temperature Fig. 12 - Typical On·Resistance Vs. Drain Current 2.0 10 v., t VGs=ILI ROSI": MEASUJEO WITH CURREN~ 1 PULSE OF 2.0,us ~URATION. INITIAL TJ =25°C. (HEAT1NG EFFECT OF 2.0., PULSE 'f MINIMAL.! _ 6 r--..... 2r--..... VGS"20V_ II V 3 - V o f---- . . . . r-..... t'--.... . . . . .UFN710. 711 ..... 1'-... UFN712. 713 r--...~ "- B / ./ ""'" 0.4 ~ ~ '\ 1 o 25 '0. DRAIN CURRENT IAMPERES) 50 75 100 125 150 TC. CASE TEMPERATURE lOCI Fig. 14 - Power Vs. Temperature Derating Curve 20 " ~ I\. \ \. '\ o UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95·1064 o 20 "'" 80 100 60 40 TC. CASE TEMPERATURE lOCI 4·452 120 r\ 140 PRINTED IN U.S A UFN710 UFN711 Fig. 15 - Clamped Inductive Test Circuit UFN712 UFN713 Fig. 16 - Clamped Inductive Waveforms • VARY Ip TO OBTAIN REQUIRED PEAK Il Tn VGs=ij-tpL OUT --<>---4......w.---' ' l .... Fig. 17 - Switching Time Test Circuit v, PULSE GENERATOR r-----., I I I L _ 50!! I I _ _ _ ...J -'''----TOSCOPE 10 I 00lu Son t HIGH FREQUENCY SHUNT Fig. 18 - Gate Charge Test Circuit +Vos (ISOLATED SUPPl Y) - oI=tI:·5mA ...,--"I.IV'Ir.....-'VV\r--o -Vos IG CURRENT SHUNT UNITROOE CORPORATION. 5 FORBES ROAO LEXINGTON, MA 02173· TEL. (617) 861·6540 TWX (710) 326-6509 • TELEX 95-1064 4-453 "':"' 10 CURRENT SHUNT PRINTED IN U.S A UFN720 UFN721 UFN722 UFN723 POWER MOSFET TRANSISTORS 400 Volt, 1.8 Ohm N-Channel FEATURES DESCRIPTION • • • • • • The Unitrode power MOSFET design utilizes the most advanced technology available. This efficient design aChieves a very low Roslonl and a high transconductance. Compact Plastic Package Fast Switching Low Drive Current Ease of Paralleling No Second Breakdown Excellent Temperature Stability The Unitrode power MOSFET features all of the advantages of MOS technology such as voltage control, freedom from second breakdown, very fast switching speeds, and thermal stability. These power MOSFETS are ideally suited for many high·speed, high·power switching applications such as switching power supplies, motor controls, and wide·band and audio amplifiers. PRODUCT SUMMARY Part Number VDS RDS(on) ID UFN720 UFN721 UFN722 UFN723 400V 350V 400V 350V 1.80 1.80 2.50 2.50 3.0A 3.0A 2.5A 2.5A MECHANICAL SPECIFICATIONS UFN720 UFN721 UFN722 UFN723 TO·220AB TERM4- DRAIN T!:~.:~-D~o:,: .. TUM 1- GATE :n~ l ~ '1m2; 4. .1 ..t...SECTIOIIX-X 1.14((1.G411 o:ma:mJ r --I 2.12ID.115) rI j::::;j !:::m;;: 2lI'IU.OJ Dimensions in Millimeters and (Inches) 4/83 4·454 ~UNITRODE UFN720 UFN721 UFN722 UFN723 ABSOLUTE MAXIMUM RATINGS UFN720 UFN721 UFN722 UFN723 Units 400 3S0 400 3S0 V 400 3S0 400 3S0 V Continuous Drain Current 3.0 3.0 2.5 2.5 A 10@TC - 100·C Continuous Drain Current Pulsed Drain Current @ 10M 2.0 2.0 l.S 1.5 A 12 12 10 10 Parameter VOS Drain - Source Voltage (j) VOGR 10@TC Drain - Gate Voltage IRGS = 2S·C VGS PO@TC- 2S·C = 1 Mill (j) Gate - Source Voltage Max. Power Dissipation Linear Derating Factor Inductive Current, Clamped ILM 40 ISee Fig. 14) W 0.32 ISee Fig. 14) W/K Operating Junction and Storage Temperature Range Lead Temperature V ISee Fig. 15 and 16) L 12 I I 12 TJ T stg A ±20 = IOOI'H 10 I A 10 -55 to 150 ·C 30010.063 in. 11.6mm) from cas. for lOs) ·C ELECTRICAL CHARACTERISTICS @ TC = 2S·C (Unless otherwise specified) Type Min. Typ. Max. Units UFN720 UFN722 400 - - V VGS UFN721 UFN723 350 - - V 10 V GSlth) Gate Threshold Voltage Gate-Source Leakage Forward IGSS ALL 2.0 4.0 V VOS ALL - nA ALL - SOO -500 nA VGS 250 VOS - Max. Rating, VGS - OV Parameter BVOSS Drain - Source Breakdown Voltage IGSS Gate-Source Leakage Reverse lOSS Zero Gate Voltage Drain Current 1010n) On-State Drain Current ® ROSlon) Static Drain-Source On-State Resistance ® - - 1000 "A I'A UFN720 UFN721 3.0 - - A UFN722 UFN723 2.5 - - A UFN720 UFN721 - 1.5 1.8 !l UFN722 UFN723 - 1.8 2.5 !l ALL - Test Conditions = OV = 2S0l'A = VGS, 10 = 250,.A VGS - 20V VOS = -20V = Max. Rating x 0.8, VGS = OV, T C = 12S·C V OS ) 1010n) x ROSlon) max.' V GS VGS = 10V = 10V, 10 = 1.5A gls Forward Transconductance (2) ALL 1.0 2.0 - S (0) Ciss Input Capacitance ALL 450 600 pF Coss Output Capacitance ALL - 100 200 pF Crs• Reverse Transfer Capacitance ALL - 20 40 pF tdlonl tr Turn-On Delay Time ALL - 20 40 ns Rise Time ALL 25 ns SO 50 100 ns IMOSFET switching times are essentially 25 50 ns independent of operating temperature.) 12 15 nC tdloffl tf Qg Turn-Off Delay Time ALL Fall Time ALL - Total Gate Charge IGate-Source Plus Gate-Drain) ALL - Qgs Gate-Source Charge ALL - 6.0 - nC Qgd Gate-Drain I"Miller") Charge ALL - 6.0 - nC LO Internal Drain Inductance - 3.5 - nH ALL - 4.5 - nH VOS ) 1010n) x ROSlon) max.' 10 - I.SA VGS = OV, VOS = 25V, f VOO = 0.5 BVOSS,I O = I.SA, Zo - 500 See Fig. 17 V GS = 10V,I 0 = 4.0A, VOS - 0.8 Max. Rating. See Fig. 18 for test circuit.IGate charge is essentially independent of operating temperature.) Measured from the contact screw on tab to center of die. Internal Source Inauctance ALL - 7.S - Modified MOSFET symbol showing the internal device inductances. Measured from the drain lead, 6mm 10.25 in.) from package to center of die. LS = 1.0 MHz See Fig. 10 nH Measured from the source lead, 6mm 10.25 in.) from package to source bonding pad. $ THERMAL RESISTANCE Junction-to-Case Case-to-Sink Mounting surface flat, smooth. and greased. Junction-to-Ambient Free Air Operation UNITROOE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 4-455 PRINTED IN U.S.A. • UFN720 UFN721 UFN722 UFN723 SOURCE·DRAIN DIODE RATINGS AND CHARACTERISTICS Continuous Source Current (Body Diodel IS ISM VSD Pulse Source Current (Body Diodel@ UFN720 UFN721 - - 3.0 A UFN722 UFN723 - - 2.5 A UFN720 UFN721 Diode Forward Voltage ® Modified MOSFET symbol showing the integral reverse P·N junction rectifier. ~ - 12 A UFN722 UFN723 - - 10 A UFN720 UFN721 - - 1.6 V TC = 25°C, IS = 3.0A, VGS = OV UFN722 UFN723 - - 1.5 V TC = 25°C,IS = 2.5A, VGS = OV ALL 450 - ns T J - 150°C, IF - 3.0A, dlF/dt - 100A/~s 3.1 - ~C TJ t" ORR Reverse Recovery Time Reverse Recovered Charge ALL - ton Forward Turn-on Time ALL IntrinsIc turn-on time is negligible. Turn-on speed is substantially controlled by LS (j) T J = 25'C to 150°C. ® Pulse Test: Pulse width" 300"s, Duty Cycle" 2%. = 150'C, IF - 3.0A, dlF/dt = 100 A/"s + LO' @ Repetitive Rating: Pulse width limited by m'ax. junction temperature. See Transient Thermal Impedance Curve (Fig. 5). Fig, 1 - Typical Output Characteristics 'OV B.OY Fig. 2 - Typical Transfer Characteristics "J'PU+TEJ,- f- f- 5 - 5.L I I III BoJIPULJETEslr I I I I I I Ves > 10(on) x ROS(on) max. r11 ~rI IJ U VGs=sbv A III I I 2 1 TJ" 125°C 4.5V T,! ,,01 I TJ = ·55 QC 1 'r I'---. /I rl [)I;t J....o': ~V . 300 100 200 Vas. DRAIN·TO-SOURCE VOLTAGE IVOLTS) '" , VGS, GATE TO·SOURCE VOLTAGE (VOLTS) Fig, 3 - Typical Saturation Characteristics Fig. 4 - Maximum Safe Operating Area 50 ')~( ~!.5V- I-" I~ J 1/ I £ • r'- 80 liS PULSE TEST r- ,,, UFN720,l 1.0 , 10p.s :', 1'. " I 100l-ls III ~ • m. 0.5 E> I 0.2 '" lOti TC "' 25°C TJ" 150 0CMAX. UFN72t,3~ R.hJC· 3.'2 KIW 0.' ov 12 16 00.5 1.0 20 Vas. ORAIN·TO·SOURCE VOLTAGE (VOLTS) UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173· TEL. (617) 861·6540 TWX (710) 3~6·6509 • TELEX 95-1064 i UFN722,3 AREA IS LIMITED BY ROSlonl z ·j.5V 'l i.. UFN722,3 5 I V- r- UFNnO,l 10 VG,·I·ov J OPERATION IN THIS 1 20 S~~EPUL'E UFN720,2 '0 20 50 '00 200 n: ltO, s, II DC 500 VOS, ORAIN·TO-SOURCE VOLTAGE IVOLTSI 4·456 PRINTED IN USA UFN720 UFN721 UFN722 UFN723 Fig. 5 - Maximum Effective Transient Thermal Impedance, Junction·to·Case Vs. Pulse Duration I 1 0" 05 • NOTES m.JL -01 -01 ~1~ ~ =005 -001 :~ 1 DUTY FACTOR, 0" ~ SINGLE PULSE (TRANSIENT iHIEIRI~Al'~P~OAN,CE: I 2 PER UNIT BASE'" RthJC = 3.12 DEG. - etw. 3 TJM-TC=POMZthJC(t) 10-3 10-1 1.0 10 '1, SQUARE WAVE PULSE DURATION (SECONDS) Fig. 7 - Typical Source-Drain Diode Forward Voltage Fig. 6 - Typical Transconductance Vs. Drain Current - 1 801$PUL~ETElT I v~s > Ilo(on)l)( R~S(onll rna} TJ '" 25DC '~ ~ --tTJ :25 0C ::::: ~ ~ ..- .-.- f- 1) 1251c- r-......- p ~ = /' .,,V. V - TJ=-55 DC- ~- f-- -- - i+ -t- 1---r- 5 -TJ= 150°C -1- 'fi/ 2 I -10 TJ =25 0 C / o 1 10. DRAIN CURRENT IAMPERES) VSQ. SOURCE-TO-DRAIN VOLTAGE (VOLTS) Fig. 9 - Normalized On-Resistance Vs. Temperature Fig.8 - Breakdown Voltage V•. Temperature 22 115 5 ...... ."., 5 / , / ..; ..". ..". / ..". / j 5 V 06 /'" 40 80 110 TJ. JUNCTION TEMPERATURE (DC) UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326·6509 • TELEX 95-1064 / / 5"" 07 5 -40 TJ;,500 C_ '# ---l- ". 160 4-457 / vGs= IOV 101"5A 1 02 -40 40 80 TJ, JUNCTION TEMPERATU AE (DC) I--- 120 PRINTED IN USA UFN720 UFN721 Fig. 10 - Typical Capacitance Vs. Drain·to·Source Voltage 1000 UFN722 UFN723 Fig. 11 - Typical Gate Charge Vs. Gate-to.source Voltage V~S'OI 20 i l .L Cia" ell + C~, Cds SHORTED f· f MH, 800 - ~ 600 ;:" c'" • Cgd 1\ ~\ ·2 ;t ~ 4110 U 200 \ \\ \ ~ \ ~Cdl+Cgd - ~. - CQII"'Cds+ fJI+Cgd \ I'.... G r-- I ~ w "'" ~ fO A~ ~ ~ 0 "~ I'--rr- I FOR TEST CIRCUIT jEE FljURE f 8 EFFECT OF 2.0., PULSE IS MINIMAL) B 12 0". TOTAL GATE CHARGE InC) 16 20 Fig. 13 - Maximum Drain Current VI. Case Temperature i VGS"ovp., VGS' 20V V ~ 3 i 2 z ~ ....... r- rl- t-- - ...... :----. UFN720. 721 _ .............. t::--- . . . . UFN722. 723 E ~ o 12 f-- ......;:: ~ 1 fO f- l 50 / f/ ROS(on) MEASURED WITH CURRENT PULSE OF 2.0IlsDURATION. INITIAL TJ=250 C (HEATING - fO"4A V Cr.. Fig. 12 - Typical On-Resistance Vs. Drain Current -I--' II 5 > co.. ~ Ir~ w lil ~OOV ""-- ~ VOS' 32DV 0 > 10 20 30 40 VOS. ORAfN·TO·SOURCE VOLTAGE (VOLTS) 1 VOS' ~ CISS t-. VOS180V 15 ~ 25 50 'D. DRAIN CURRENT (AMPERESj 100 75 Te. CASE TEMPERATURE (OCI 125 150 Fig. 14 - Power Vs. Temperature Derating Curve 40 35 ~ '\ '" 30 z 25 ~ 20 0 ili is '" ~ ~ 15 \. '\. '\ '\ 1'\ 10 [\ 20 UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95·1064 40 60 80 100 TC. CASE TEMPERATURE 1°C) 4-458 120 140 PRINTED IN U.S.A UFN720 UFN721 UFN722 UFN723 • Fig. 16 - Clamped Inductive Waveforms Fig. 15 - Clamped Inductive Test Circuit VARY tp TO OBTAIN flEDUIREDPEAK Il VGS·R Fig. 17 - Switching Time Test Circuit ADJUST RL TO OBTAIN SPECIFIED 10 V, El Rl PULSE GENERATOR r------, I I I L_ 50u I I _ _ _ ...I TO SCOPE 50n Fig. 18 - Gate Charge Test Circuit +Vos (ISOLATED SUPPLY) - o~·5mA --'\J'V',~""-'V'''''~-O IG CURRENT SHUNT UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON. MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95·1064 4·459 -=- -VOS 10 CURRENT SHUNT PRINTED IN U.S.A UFN730 UFN731 UFN732 UFN733 POWER MOSFET TRANSISTORS 400 Volt, 1.0 Ohm N-Channel FEATURES DESCRIPTION • • • • • • The Unitrode power MOSFET design utilizes the most advanced technology available. This efficient design achieves a very low Ros.on. and a high transconductance. Compact Plastic Package Fast Switching Low Drive Current Ease of Paralleling No Second Breakdown Excellent Temperature Stability The Unitrode power MOSFET features all of the advantages of MOS technology such as voltage control, freedom from second breakdown, very fast switching speeds, and thermal stability. These power MOSFETS are ideally suited for many high-speed, high-power switching applications such as switching power supplies, motor controls, and wide-band and audio amplifiers. PRODUCT SUMMARY Part Number VDS RDS(on) ID UFN730 UFN731 UFN732 UFN733 400V 350V 400V 350V LOn Lon L5n 1.5n 5.5A 5.5A 4.5A 4.5A MECHANICAL SPECIFICATIONS UFN730 UFN731 UFN732 UFN733 TO-220AB Dimensions in Millimeters and IInchesl 4/83 4-460 ~UNITRODE UFN730 UFN731 UFN732 UFN733 ABSOLUTE MAXIMUM RATINGS UFN730 UFN731 UFN732 UFN733 Units 400 350 400 350 V 400 350 400 350 V Continuous Drain Current 5.5 5.5 4.5 4.5 A 10@TC = 100°C Continuous Drain Current 3.5 3.5 3.0 3.0 A 10M Pulsed Orain Current @ 22 22 18 18 VGS PO@TC = 25°C Gate - Source Voltage Parameter IOlon) x ROSlon) TJ • 15'f""'- I I 50 80l'slpULSE = F= 1'1 = 1= .Lb 300 250 Vas, DRAIN·Ta·SOURCE VOL rAGE (VOL lS) VGS. GATE·TO·SOURCE VOLTAGE (VOLTS) Fig. 3 - Tvpical Saturation. Characteristics Fig. 4 - Maximum Safe Operating Area 100 5 ,I, 1 8O,.,sPUlSE TEST , J/ r-- ,. ...JFN730, 1 1 r-Vos·5.0V- r-- 0 :;:.;;;.~ ~Frr32i 3 0 J If IV' 1 PERATION IN THIS AREA IS LIMITED BY RaSlon) 0 10v,Jfv 1(/ 3 1 J , UF.Ii130,1 10IJS 5 UFN732,3 4.5V- 'M]' I, L,1 r- 11~.l vl I I f=Tc ~'15'C 5 f:::T J ' 150'C MAX. / f---RthJC" 1 67 KIW 4.0V- I-- O. If O. 1 10 10 Ves. DRAIN·TO SOURCE VOLTAGE (VOLTS) UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEl. (617) 861·6540 TWX (710) 326·6509 • TELEX 95·1064 'H'1GlfWfl UFN731. 3...., \\11 \ UFN730,2 II II1III 10 20 50 100 - 100 'm ri~1t III 500 VOS' DRAIN·TO·SOURCE VOLTAGE (VOLTS) 4·462 PRINTED IN USA UFN730 UFN731 UFN732 UFN733 Fig. 5 - Maximum Effective Transient Thermal Impedance, Junction·to·Case Vs. Pulse Duration ...z w 111 :L ~ 111~llllillllllllllllllll!IIII!!~~!:!;i~~=~l wz ~; ~~ 0.5 -0.2 ~:i 0.2 i! Nm.JL:TES: 0"0.5 0.1 OM ~ U NO ~Z~ 0.05 .... 0.05 1.0 ~O.Ol ~ffi SINGLE PUlse (TRANSIENT !_!' w ~ Vos > 10(onl x ROS(onl ~ ma~. I'TJ'150 0 C /" w TJ = 25°C - II' ""... TJ=-55 0 C - I 1I I 80jJsPULSETEST 10 10 o 10, DRAIN CURRENT (AMPERES) TJ '1 5Oc Vso. SOURCE-lO-DRAIN VOLTAGE (VOLTSI Fig. 9 - Normalized On-Resistance V,. Temperature Fig. 8 - Breakdown Voltage Vs. Temperature lZ5 11 w u V ".. ~ V z ........ ~ ~ i-""'" 18 / ~ / z oa- V ww ~~ L ~ '4 / ,,~ ~~ / ... 0 z~ 10 ~ 0 ] ~ 075 ·40 V 06 UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95·1064 160 VGS' !(lV '°1" "AI /"" 02 40 80 lZ0 TJ. JUNCTION TEMPE RATURE lOCI /.. ·40 o 40 80 110 TJ , JUNCTION TEMPERATURE tOC) 4-463 PRINTED IN U.S A • UFN730 UFN731 Fig. 10 - Typical Capacitance Vs. Drain-to-Source Voltage UFN732 UFN733 Fig. 11 - Typical Gate Charge VI. Gate-to-Source Voltage 20 1000 } ~GS .J l 1'1 MH, .1 1600 ~ 1200 Vos = 32/N. UM30. h2 "- c--' r- "'Cds + Cgd, ~ 0 ;! § 80 o~ CIS5 o~ r- , ~ I"- ,..A \ 40 ~ ~~ U U abv" vos = 200V" f- C.-Cd,+ gs+Ctd ~ vlOS= Cill • c. + Cgd. Cd. SHORTED fC", • Cgd 5 J ~ 10 / 10' IA FOR TEST CIRCUIT II 20 30 40 F IS 50 Vos. DRAIN TO SOURC[ VOLTAGE (VOL lSI QQ. Fig. 12 - Typical On·Resistance Vs. Drain Current r rl r- E 24 40 32 TOTAL GATE CHARGE (nCl Fig. 13 - Maximum Drain Current Vs. Ca.. Temperatura 10 3 VGS.'0'!/. ) 1 - V '/VGs=20V_ rr- t-~ V r- 1'-- UFN732. 733 2 r- r- UFN730. 731 r-t"-~~ ........."'" r"" ~ "" ~ RDSI"I MEASURED WITH CURRENT PULSE OF 2.0psDURATION. INITIAL TJ"'25 0 C. (HEATING 'I EFFECT OF 2.0", PULSE IS MINIMAL.l 10 15 20 10. DRAIN CURRENT (AMPERESI 0 25 25 30 50 15 100 Tc. CASE TEMPERATURE (OCI 125 150 Fig. 14 - Power Vs. Temperature Derating Curve 0 I-0 ~ "\ r'\ 0 "\ '\ 0 '\ 0 0 I'\. I'\. 0 '\ 20 UNITROOE CORPORATION. 5 FORBES ROAD LEXINGTON. MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 40 80 100 60 Te. CASE TEMPERATURE IDC) 4-464 120 140 PRINTED IN U S.A UFN730 UFN731 UFN732 UFN733 • Fig. 16 - Clamped Inductive Waveforms Fig. 15 - Clamped Inductive Test Circuit VARY Ip TO OST AtN REQUtREOPEAK IL vos·R , O!iBVoss o75BVOSS Fig. 17 - Switching Time Test Circuit Vo _.:r--~ TO SCOPE Fig. 18 - Gate Charge Test Circuit +Vos (ISOLATED SUPPLY) - o~5mA -""'I\I'\~""'-'Vv\~-O IG 10 CURRENT CURRENT SHUNT UNITROOE CORPORATION. 5 FORBES ROAO LEXINGTON. MA 02173 • TEL. (617) 861-6540 TWX (710) 326·6509 • TELEX 95-,1064 4-465 -v OS SHUNT PRINTED IN USA UFN740 UFN741 UFN742 UFN743 POWER MOSFET TRANSISTORS 400 Volt, 0.55 Ohm N-Channel FEATURES DESCRIPTION • • • • • • The Unitrode power MOSFET design utilizes the most advanced technology available. This efficient design achieves a very low Roslon > and a high transconductance. Compact Plastic Package Fast Switching Low Drive Current Ease of Paralleling No Second Breakdown Excellent Temperature Stability The Unitrode power MOSFET features all of the advantages of MOS technology such as voltage control, freedom from second breakdown, very fast switching speeds, and thermal stability. These power MOSFETS are ideally suited for many high·speed, high·power switching applications such as switching power supplies, motor controls, and wide·band and audio amplifiers. PRODUCT SUMMARY Part Number VDS RDS(on) ID UFN740 400V 0.550 lOA UFN741 350V 0.550 lOA UFN742 400V 0.800 8.0A UFN743 350V 0.800 8.0A MECHANICAL SPECIFICATIONS UFN740 UFN741 1""(o.'20>~ Hi 10.1:1 ~T8i1Ol8Ol UFN742 UFN743 TO·220AB TERM4- DRAIN t~OIA r-8j TERM 3 - SOURCE 18.S~!;= } '~O·FIN. T us 10.2501 • AX -.l. 14.73 (0.580) "L ~ It ~ -=- 117(0.010) 115!O.IMS) Dimensions in Millimeters and (Inches) 4/83 4·466 ~UNITRDDE UFN740 UFN741 UFN742 UFN743 ABSOLUTE MAXIMUM RATINGS UFN740 UFN741 UFN742 UFN743 Units 400 350 400 350 V 400 350 400 350 V Continuous Drain Current 10 10 8.0 8.0 A 10@TC - 100·C Continuous Drain Current 6.0 6.0 5.0 5.0 A 10M Pulsed Orain Current 40 40 32 32 A VGS PO@TC=25°C Max. Power Dissipation Parameter VOS Drain - Source Voltage Q) VOGR 10@TC = 25°C Orain - Gate Voltage IRGS - 1 Mil) 'OloIT) x ROSlon) max.' VGS = 10V VGS = 10V. 10 = 5.0A gfs Forward Transconductance (2) ALL 4.0 7.0 - SUlI Cjss Input Capacitance ALL - 1250 1600 pF Cos. Output Capacitance ALL - 300 450 pF VOS >10(on) x ROSlon) max.' 10 - 5.0A VGS = OV. VOS = 25V. f = 1.0 MHz See Fig. 10 Crss Reverse Transfer Capacitance ALL - 80 150 pF tdfonl Turn-On Delay Time ALL - 17 35 ns VOO = 175V.I O = 5.0A.Z o tr Rise Time ALL - 5.0 15 ns See Fig. 17 tdfoffl Turn-Off Delay Time ALL - 45 90 ns IMOSFET switching times are essentially tf Fall Time ALL - 16 35 ns independent of operating temperature.) Qg Total Gate Charge IGate-Source Plus Gate-Drain) ALL - 41 60 nC Qgs Gate-Source Charge ALL - 18 - nC Qgd Gate-Drain I"Miller") Charge ALL - 23 - nC LO Internal Drain IndUctance - 3.5 - nH ALL - 4.5 - nH V GS = 10V. 10 - 12A. VOS - 0.8 Max. Rating. See Fig. 18 for test circuit. IGate charge is essentially independent of operating temperature.) Measured from the contact screw on tab to center of die. Internal Source Inductance ALL - Modified MOSFET symbol showing the internal device inductances. Measured from the drain lead. 6mm 10.25 in.) from package to center of die. LS - 4.70 7.5 - nH Measured from the source lead, 6mm 10.25 in.) from package to source bonding pad. $ THERMAL RESISTANCE RthJC Junction-ta-Case RthCS Case-to-Sink Mounting surface fist, smooth, and greased. RthJA Junction-ta-Ambient Free Air Operation UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 4-467 PRINTED IN u.s A UFN740 UFN741 UFN742 UFN743 SOURCE-DRAIN DIODE RATINGS AND CHARACTERISTICS ' Continuous Source Current (Body Diode) IS ISM VSD Pulse Source Current IBody Diodel @ ® Diode Forward Voltage Modified MOSFET symbol showing the integral reverse P-N junction rectifier. UFN740 UFN741 - - 10 A UFN742 UFN743 - - B.O A UFN740 UFN741 - - 40 A UFN742 UFN743 - - 32 A UFN740 UFN741 - - 2.0 V TC = 25°C, IS = lOA, VGS = OV UFN742 UFN743 - - 1.9 V TC = 25°C. IS = B.OA. VGS = OV BOO - ns TJ ~~ • 150'C,IF - 10A,dlFldt = l00Al!,s T J • 150'C, IF = lOA, dlFldt = 100 Alps trr Reverse Recovery Time ALL ORR Reverse Recovered Charge ALL - ton Forward Turn-on Time ALL Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by lS + lOo 'O(on) x ROS(on) mix. , I ~ 0 I TJ·'25OC J !;; Oil IO/J.I'ULSETEST J 20 Fig. 2 - Typical Transfer Characteristics 25 VI "1 1 '1 I , J II E 5 y I. 4~ 20 40 so 80 VOS, ORAIN·TO·SOURCE VOLTAGE (VOLTSI ~ VGS. GATE·TO·SOURCE VOLTAGE (VOL TSI Fig. 4 - Maximum Safe Operating Area Fig. 3 - Typical Saturation Characteristics 100 25 r-JPlPUlSETJ so I- UFN740. 1 20 ~~V_ 5 ~'e ~ 5 ~ ~" / ~+ ..... OPERAI~.~ . BY Roston) INTHIS I, ~I'i- I' lQ",s lOOps =UFN742.3 ~ ~~ :;;...sv- ~ , , 1m. III ~ 10ms E :=::TC' 2SOC 0.5 ;:::: TJ' ISO'C MAX lOOms '-- RthJC '" 1.0 K/W r- SINGLE PULSE -~GS'5IV- ~ 02 ~V 2 4 B I VDS. ORAIN·TO-SOURCE VOLTAGE (VOLTSI UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON. MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 - --;z AREA IS LIMITED UFN742.3 20 IV, 10 1110 o. 1 10 1.0 UFN741.3::::; I~lrf'f 10 20 50 100 200 ~~ 1T 500 Vas. ORAIN·TD-SOURCE VOLTAGE (VOLTS) 4-468 PRINTED IN U.S.A UFN740 UFN741 UFN742 UFN743 Fig. 5 ... Maximum Effective Transient Thermal Impedance, Junction·to·Case Vs. Pulse Duration I 2 • 0 0=0.5 NOTES r~.2 2 3:JLJL rO.l ~2-1 ~ '1==00' 5 r002 ;;;0.01 1 DUTY FACTOR, 0 - SINGLE PULSE (TRANSIENT THERMAL IMPEDANCE) 2~ :~ 2 PER UNIT BASE'" RthJC:: 1.0 OEG elW. 3. TJM - Te '" POM ZthJC(t} 1 10-3 10-4 10-2 10-1 1.0 10 11. SQUARE WAVE PULSE DURATION (SECONDS) Fig. 7 ... Typical Source-Drain Diode Forward Voltage Fig. 6 ... Typical Transconductance Vs. Drain Current 15 - J~ PUJSE TEsl v'os > / 20 I~(on))e' ROSlon) maJ. I ~ TJ=-55 0 C /~ TJ =25 0 C / T~" 12~OC ~ ~ 1/ , TJ = 1500e VI U If-- 10 Hi 20 10. DRAIN CURRENT (AMPERES) 10 25 T '-'I- 25 C I o Vso. SOURCE·TO-DRAIN VOLTAGE (VOL IS) Fig. 9 ... Normalized On-Resistance Vs. Temperature Fig. 8 ... Breakdown Voltage Vs. Temperature , 2.5 12 ./V 5 5 5 V ./ V ,.. ....... ,.. ...... ..,..... .... / / ,/ / 0.5 5 o 0.7 5 -40 40 80 120 -40 160 TJ, JUNCTION TEMPERATURE (OCI UNITROOE CORPORATION. 5 FORBES ROAD LEXINGTON. MA 02173 • TEL. (617) 861-6540 TWX (710) 326·6509 • TELEX 95·1064 ~ 4-469 """V o V VGS"OV __ 'D'5.5A 4(/ 80 120 TJ. JUNCTION TEMPERATURE lOCI >-- 160 PRINTED IN USA UFN740 UFN741 Fig. 10 - Typical Capacitance Vs. Drain·to·Source Voltage 2000 .!. 1'00.. ! 20 -cd,+clId I ~ ""'- \ \ ,~ 1200 §u Fig. 11 - Tvpical Gate Charge Vs. Gate-to·Source Voltage C;a ,cII + cild. !:,t. SHORTEO.! ,.-- c ra ' CgrJ _ _vGs'ov ~ '·IMH. ~C""Cd'+ + lid lS00 VOS'80J_~ I I c!. r-- r-VoS'200V I I~ VDS' 320V "-.., 1 0 1\ ," '" 800 \ -.... ....... 1'00.. ~ """'" ~ ~ ~ ~ u lo"2A FOR TEST CIRCUIT / F TEI8 ~ DURATION. INITIAL TJ '" 250C. (HEATING EFFECT OF 2.0 IlS PULSE IS MINIMALl VGS~lOVJ 2 8 . . .V l/ i"- r--.. II / i"""- ~'20V f' r---... ....... r-.... i' ~ UFN742~ UFN740.741 '"'"" ....... 20 80 Fig. 13 - Maximum Drain Current VI. Case Temperature 1-~ 10 60 ag• TOTAL GATE CHARGE (nC) 10 ROS(on) MEASURED WITH CURRENT PULSE OF 40 20 Fig. 12 - Typical On-Resistance Vs. Drain Current 2.0~ - f 1- Vos. oRAIN-TO-SOURCE VOLTAGE (VOLTS) 6 ~ I l cra A~ W 5 ""'- ... w a m 4 UFN742 UFN743 0 40 30 50 25 75 100 TC. CASE TEMPERATURE ('C) 10. DRAIN CURRENT (AMPERES) r---- ", ~ 125 , 150 Fig. 14 - Power VI. Temperature Derating Curve 1~ 120 ~ '"" " "'\ ", " ~ 0 "- 1'\ '\ m ~ so 80 100 120 ~ 1~ TC. CASE TEMPERATURE ('C) UNITROOE CORPORATION. 5 FORBES ROAD LEXINGTON. MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 4-470 PRINTED IN U,S.A UFN740 UFN741 Fig. 15 - Clamped Inductive Test Circuit UFN742 UFN743 • Fig. 16 - Clamped Inductive Waveforms VARY tp TO OITAIN VGS.R . REQUIRED PEAK IL D_UT........r::F IL+---<>--- 1~lon) ~ RDS(~n) ma~. 1/ I 6.0V I j t-- ~TJ::::1250e I I Sf I">~ J;~ k:::::: ~ L T 1 4.~V 4.0V 50 100 150 200 VDS. DRA1N·TO·SOURCE VOLTAGE IVOLTS) 10 250 VGS. GATE·TO·SOURCE VOLTAGE IVOL TS) Fig. 4 - Maximum Safe Operating Area Fig. 3 - Typical Saturation Characteristics "-7.0V.1. r-- sl JJI Pu!SE TESl ~~ I 6.V"'" 6.0V- V f 1 J 5y= b I 50 """" 20 10 1/ V Vi S '+=== - UFN822.3 ~ UFN820.1 i z = ~ E F--=o '=!== II I OPERATION IN THIS AREA IS LlMITEO BY ROSlon) u~Nko.ll m ~ 4.~V_1-- 4.0V 12 16 VDS, DRAIN·TO·SOURCE VOLTAGE IVOLTSI UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 1'--.1/ TJ = 25°C TJ"-55'C" 10", I'. \ .. . 10 1m. 05 -, Te" 250e 0.2 f-TJ" 150'C MAX. f- RthJC " 3.12 K/W O. 1 ",=SINGLE PULSE III 10ms UFNB21, ~~ UFN820,2 10 20 " UF~22.~ 1.0 20 50 100 200 i1 DC 500 Vas. DRAIN·TO·SOURCE VOLTAGE IVOLTS) 4-474 PRINTED IN U.S.A. UFN820 UFN821 UFN822 UFN823 Fig. 5 - Maximum Effective Transient Thermal Impedance, Junction·to·Case Vs. Pulse Duration I 1 1 I 0'0.5 .... 1--0.1 1 1::=0.05 ~ -- ... 1- 0.2 3:JL...rL PDM ::oil! ~2~ 1--0.02 r-~ 11 NOTES, 1. DUTY FACTOR. 0 '" ~~ SINGLE PULSE (TRANSIENT 2. PER UNIT BASE' R'hJC' 3.12 DEG. CIW. THERMAL IMPEDANCEI 3. TJM' TC' PDM Z'hJc(tI· 1 10-3 'I. 2 5 10-2 2 5 10-1 SOUARE WAVE PULSE DURATION (SECONDS) Fig. 6 - Typical Transconductance Vs. Drain Current , , 80/JsPUlSE TEST ' \ t---vos> 10(00) K RaS(on) '~ ,. ~ ~ r---;j'25,L- I-"" .......... f.V !': >- z --- w TJ'25'C, ~ ~ ~ u z TJ"'1250C __ ~ Ih ~ -- 10 I:::::=.-TJ= 1S0 OC '" TJ • 150'Cc::::: w ~ j~ ~ ~ II I l"-TJ' 25'C III I I 'I 1.0 .1 o 1 10. DRAIN CURRENT (AMPERES) VSD. SDURCE·TO·DRAIN VOLTAGE IVOLTS) Fig.8 - Breakdown Voltage Vs. Temperature Fig. 9 - Normalized On·Resistance Vs. Temperature 2.6 1.2 6 5 - lL vGS .lov r- r- IO·2.5A l--" j...' V 5 ", 5 V 10 J. max. V VV 1.0 Fig. 7 - Typical Source·Drain Diod. Forward Voltage TJ'-~ V 5· ~ j , . /~ lL V 'I' 0 ./ 5 6 07 5 -40 40 80 120 2 160 -40 TJ, JUNCTION TEMPERATURE (OCI UNITROOE CORPORATION. 5 FORBES ROAD LEXI NGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95·1064 VI" ~ 40 80 120 160 TJ. JUNCTION TEMPERATURE (DC) 4·475 PRINTED IN U.S A UFN820 Fig. 10 - Typical Capacitance VI. Drain·to·Source Voltage 100II i ~ I Fig. 11 - Typical Gate Charge VI. Gate·to-Source Voltage J f· \MHZ L J Vas'" lOOV Co. • Cp + Cad. C... SHORTEO- r-C,. - Cgd ! C_.Cds+~ - f-- , - f-- -Cds+ C... I I ~~ l"dr- ~~ q Cia Co. -. ~ viis • 4DDV. UFN82D. 822 ~ I \' ...... ~ \ I........ 200 ! Vos'" 2S0V I I 1\ \\ r---. 400 U UFN823 VGS'.o J 800 UFN822 20 I 800 UFN821 I C,.- 10 40 20 30 VOs. ORAIN·T0-80URCE VOLTAGE (VOLTS) / '0"3A 1 FOR TEST CIRCUIT C-- SjE F'1RE 50 12 15 20 Og. TOTAL GATE CHARGE (nC) Fig. 12 - Typical On-Resistance VI. Drain Current Fig. 13 - Maximum Drain Currant VI. Case Temperatura 3.0 1 VGS -10V 8 7 6 5 V 4 3 ." 2 V / V J Iv If 2.4 S'20V r---... ~ ~ 11.8 l"- I'-. f' r-... i t-- r-u~~ ....... r-.... UFNI2O.821 1'l z t'-... '"",- 1.2 ....... ~ / co !'.."" E ~ O.6 EFFECT OF a .. PULSE IS MINIMAL.) 10 0 25 14 12 ~ , RDS(on) MEASURED WITH CURRENT PULSE OF 2.0", DURATION. INITIAL TJ· 250C. IHEATING ,D. DRAIN CURRENT (AMPERES) 75 50 100 126 150 TC. CASE TEMPERATURE.(OC) Fig. 14 - Power VI. Temperature Derating Curve 4D '\ 35 ~ ~ \ 0 \ 5 " 0 ~ 5 2D UNITROOE CORPORATION. 5 FORBES ROAD LEXINGTON. MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95·1064 8D 100 60 TC. CASE TEMPERATURE (OC) 4D 4·476 120 ~ 140 PRINTED IN U.S.A. UFN820 UFN821 Fig. 15 - Clamped Inductive Test Circuit UFN822 UFN823 • Fig. 16 - Clamped Inductive Waveforms VARY tp TO OBTAIN REQUIRED PEAK IL VGS" TD r.r-tPL OUT 'L ....--<>--- ALL VOS = OV, T C = 125·C >1010n) x ROSlon) max.' V GS = 10V VGS = 10V,I0 = 2.SA >1010n) x ROSlon) max.' 10 = 2.5A gfs Forward Transconductance ALL 2.5 3.25 - S ItIl Ciss Input Capacitance ALL 600 800 pF Coss Output Capacitance ALL 100 200 pF C rss Reverse Transfer Capacitance ALL - 30 60 pF tdlon) Turn-On Delay Time ALL ALL - ns Rise Time - 30 tr 30 ns See Fig. 17 tdloff) tf Turn-Off Delay Time ALL - 55 ns Fall Time ALL - - 30 ns (MOSFET switching times are essentially independent of operating temperature.) Qg Total Gate Charge ALL - 22 30 nC Gate-Source Charge ALL - 11 - nC Qgd Gate-Drain I"Miller") Charge ALL - II - nC LO Internal Drain Inductance - 3.5 - nH (Gate-Source Plus Gate-Drain) Qgs ALL - 4.5 - nH VOS VGS = OV, VOS = 25V, f = 1.0 MHz See Fig. 10 VOO = 225V,I 0 = 2.5A, Zo = 1511 V GS = 10V, 10 - 6.0A, VOS - 0.8 Max. Rating. See Fig. 18 for test circuit. (Gate charge is essentially independent of operating temperature.) Measured from the contact screw on tab to center of die. Measured from the drain lead, 6mm 10.25 in.) from package to center of die. LS Internal Source Inductance ALL - 7.5 - Modified MOSFET symbol showing the internal device inductances. nH Measured from the source lead. 6mm 10.25 in.) from package to source bonding pad. $ THERMAL RESISTANCE RthJC Junction-to-Case AthCS Case-to-Sink Mounting surface flat, smooth, and greased. RthJA Junction-to-Ambient Free Air Operation UNITRODE CORPORATION. 5 FORBES ROAD LEXI NGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 4-479 PRINTED IN u.s A UFN830 UFN831 UFN832 UFN833 SOURCE·DRAIN DIODE RATINGS AND CHARACTERISTICS IS ISM VSD Continuous Source Current (Body Diodel Pulse Source Current (Body Diodel@ Diode Forward Voltage @ UFN830 UFN831 - - 4.5 A UFN832 UFN833 Modified MOSFET symbol - - 4.0 A UFN830 UFNB31 - - 18 A UFNB32 UFNB33 - - 16 A UFNB30 UFNB31 - - 1.6 V UFNB32 UFNB33 - - 1.5 800 - ~C T J - 150·C, IF showing the integral reverse P-N Junction rectifier. ~ TC = 25'C, IS = 4.5A, VGS = OV V TC = 25'C, IS = 4.0A, VGS = OV ns T J - 150·C, IF = 4.5A, dlF/dt = 4.5A, dlF/dt - 1 00 A/~s trr Reverse Recovery Time ALL ORR Reverse Recovered Charge ALL - ton Forward Turn-on Time ALL Intnnsic turn-on time is negligible. Turn-on speed is substantially controlled by LS + LO' 4.6 @ Pulse Test: Pulse width .. 300~s, Duty Cycle .. 2%. CDTJ = 25'C to 150'C. 100 A/~s @ Repetitive Rating: Pulse Width limited by max. junction temperature. See Transient Thermal Impedance Curve (Fig. 5), Fig. 2 - Typical Transter Characteristics Fig. 1 - Typical Output Characteristics 10V 55V- I I r-I aOllS luLSE1TEST 1- , -BO ,,5 PULSE TEST Vos> lO(on) x ROS(on) vGs·'·ov- max -3 '------ _TJ"'~1250C r--- -TJ"-"OC, ~ l'--...----""'f1 TJ''''C, '["- = = rJ. / '1/ I ,!V~ = = 200 100 ~ 300 VGS. GATE TO SOURCE VOLTAGE {VOLTS) Vas, DRAIN TO SOURCE VOLTAGE (VOLTS} Fig, 3 - Typical Saturation Characteristics Fig, 4 - MaKimum Sate Operating Area 100 , 80~fPUJETESJ ~ L- V 3 # 50"= ::::: , I l? II'" i 10 ~ VGs·"t= 10~s 2 ~ 10 _0 05 ,+~ ~ r-.. I.oi 0.2 O. 1111 Ut~32i~r z = - UFN830,1 "'"'u=> 10 100~s I, l,r I I 1m. f-- TC' 2SoC f=TJ ,'so'c MAX. f-- RthJC • 1.67 KIW 10ms UF~831, r-ISI~GLT pnSIEll , 1 Lllli , 0 3 UFNsaO,2::::: 10 20 SO 100 200 lOOms o~tH SOD Yes, DRAIN·TO·SOURCE VOLTAGE (VOLTS) Ves, DRAIN TO-SOURCE VOLTAGE (VOL IS) UNITROOE CORPORATION. 5 FORBES ROAD LEXI NGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95·1064 UFN830,1 ~~3 20 >z ) 2 OPERATION IN THIS AREA IS liMITED BY ROS(on) so IO~1r' V;,._ r-- 4·480 PRINTED IN USA UFN830 UFN831 UFN832 UFN833 Fig. 5 - Maximum Effective Transient Thermal Impedance, Junction·to·Casa Vs. Pulse Duration ~ ~ :L wz ~; ~~ ~~ ~~ 111!1111111111111111111111111111~~!~!;l~~~tl 0"0.5 r.n n 0.5 r-0.2 0.2 0.1 .J:..J LJ L 0.1 t ~2~ 0.05 ~ :':i" ~:I- ~A-°:~'F 5~ .-.- 1.0 "":.... 0.05 ~ ~ 0.02 SINGLE PULSE ITRANSIENT " 1. DUTY FACTOR, 0" 'I '2 I--f-+-++++++r~,HERMI AjLlMPIED~N'CTEII' 1 -11-11"tt---t-+-H-++++tI-t-+-+t--t+H++-+-+ 2. PER UNIT BASE· R,hJC • 1.67 DEG. CIW. f-++--++H+t1ft11-++-+_+-1+1 3. TJM' TC' PDM ~'hJCltI. 0.01 10"5 TJ1 •. ./ / 3 /' /, VI /' r-::r 10 Fig. 7 - Typical Source-Drain Diode Forward Voltage '1~I;.- f-" - ~ 10 2 TJ = 25°C ~ " :; ", i ~ H 10 ~ ~ V TJ: 1sooe ~ 'I ffi Vas> 10(on) It ROS(on) max. 'TJ"150 0C /' z I' I jOllSPUtSETEr 1.0 I I TJ'~50C o 10. DRAIN CURRENT (AMPERES) VSD. SOURCE-TO·DRAIN VOLTAGE (VOLTS) Fig. 8 - Breakdown Voltaga Vs. Temperature Fig. 9 - Normalized On-Resistance Vs. Temperature 22 12 5 U z 5 ".. .",. i-"""" 5 ". L' "" in '" / 18 ./ ~ffi 14 V UN / ~~ .,,, .". / o~ :;~ ~ ! ~ 5 40 80 120 160 TJ,JUNCTION TEMPERATURE (OC) UNITRODE CORPORATION. 5 FORBES ROAO LEXINGTON, MA 02173 • TEL (617) 861·6540 TWX (710) 326·6509 • TELEX 95·1064 L / ~ z 5V- 07 5 -40 1.0 ",h _ I--I - TJ=~ / /' V / / 'V 1/ /' 1 10.1 'I. SQUARE WAVE PULSE DURATION ISECDNDSI Fig. 6 - Typical Transconductance Vs. Drain Current 4 5 10.2 10" 1.0 06 ,V / ./ VGS' 10V Irl.5 j - r-- 0.2 -40 40 80 120 TJ. JUNCTlON TEMPERATURE (OC) 4-481 PRINTED IN U.S A. II UFN830 Fig. 10 - Typical Capacitance Vs. Drain·to·Source Voltage UFN831 UFN832 UFN833 Fig. 11 - Typical Gate Charge Vs. Gate-to·Source Voltage 2000 20 v'GS" 0' J J .' I" 1 MH, Cia'" Cp + Cgd. Cds SHORTED _ 1600 CIlI u z U ;t ~ 800 u' I' r---: \ ...... ~ \ - ~Cds+Cgd - Vas = IODV I Vas =,250V Vos= 40DV , ~ ISS ~~ ~V V /// \ 400 Cgd C"Cgd Coa"'Cds+Cgs+Cwd 1200 ;0 '" ~ 10 L - '0' 8A FOR TEST CIRCUIT- c--- V 20 30 40 Vos. DRAIN·TO·SOURCE VOLTAGE (VOL IS) SlFIG1REli 16 50 24 32 40 Og. TOTAL GATE CHARGE InC) Fig. 12 - Typical On-Resistance Vs. Drain Current Fig. 13 - Maximum Drain Current Vs. Case Temperature 5 ROS(on) MEASURED WITH CURRENT PULSE OF 2.0~s DURATION. INITIAL TJ = 25°C. (HEATING EFFECT OF 2.0., PULSE IS MINIMAL II r......... 4 VGS'·l0V 3 2 .. r' V V V V V VGS" 20V c-- j:--- I"'-... r-...... ....... J'... r-UFN:'~ UFN830.831 ........ r-.,. ........ t"--..~ f"". ~ .... ~ o 1 10 , '&. 1 15 20 25 25 50 10. DRAIN CURRENT (AMPERES) 75 100 125 150 Te, CASE TEMPERATURE (DC) Fig. 14 - Power VI. Temperature Derating Curve 80 t-0 r-...'\ 1'\ 'j'\.. 0 '\ '\ 0 0 '\. 0 20 40 60 80 100 Te. CASE TEMPERATURE (DC) UNITRODE CORPORATION. 5 FORBES ROAD LEXI NGTON, MA 02173 • TEL, (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 4-482 '" 120 ~ 140 PRINTED IN U.S.A. UFN830 Fig. 15 - Clamped Inductive Test Circuit UFN831 UFN832 UFN833 II Fig. 16 - Clamped Inductive Waveforms VARY., TO OBTAIN REQUIRED PEAIC 'L VGSOR Fig. 17 - Switching Time Test Circuit PRF" 1 kHz v, v, tp" I J,/S _ r-----.., I z, I 151! I I I1. I I 20V _ __ ...II 1..:_ Zo ......- - y TO SCOPE ISH Fig. 1B - Gate Charge Test Circuit +V DS (ISOLATED SUPPLY) - 0..r=Jl·5mA --I\,IV',_....-"'V\.~-o -VOS IG 10 CURRENT SHUNT UNITROOE CORPORATION 0 5 FORBES ROAD LEXINGTON, MA 02173 0 TEL. (617) 861-6540 TWX (710) 326-6509 0 TELEX 95-1064 4-483 -=- CURRENT SHUNT PRINTED IN U.S.A UFN840 UFN841 UFN842 UFN843 POWER MOSFET TRANSISTORS 500 Volt, 0.85 Ohm N-Channel FEATURES DESCRIPTION • • • • • • The Unitrode power MOSFET design utilizes the most advanced technology available. This efficient design achieves a very low ROSton} and a high transconductance. Compact Plastic Package Fast Switching Low Drive Current Ease of Paralleling No Second Breakdown Excellent Temperature Stability The Unitrode power MOSFET features all of the advantages of MOS technology such as voltage control, freedom from second breakdown, very fast switching speeds, and thermal stability. These power MOSFETS are ideally suited for many high-speed, high-power switching applications such as switching power supplies, motor controls, and wide-band and audio amplifiers. PRODUCT SUMMARY Part Number Vos ROS(on) 10 UFN840 UFN841 UFN842 UFN843 500V 450V 500V 450V 0.850 0.850 1.100 1.100 8.0A 8.0A 7.0A 7.0A MECHANICAL SPECIFICATIONS UFN840 UFN841 3.42(0.1351 UFN842 UFN843 TO-220AB ~1D.""""~ 9.S8ili:38bl 25410.100} •.0I10.t6I1oIA ~± 1651(0.8501 1423(0.560) ~ 1~0F-"lN TERM3-S0URCE T 482(O.1~" 356(01401 j l LXX 6.35(02501 MAX -.L 14.13(0.5801 1.77 (00101 1 15 {00451 ~ (0.1151 !-+-++-' l~:::;:: :f,:~ml iYECTlONX-X ~D T"I----I ~~~ :~::l 204(O.08Oi Dimensions in Millimeters and (Inches) 4/83 4-484 ~UNITRDDE UFN840 UFN841 UFN842 UFN843 ABSOLUTE MAXIMUM RATINGS Parameter UFNB40 UFN841 UFN842 UFN843 Units 500 450 500 450 V 500 450 500 450 V Continuous Drain Current 8.0 8.0 7.0 7.0 A 10@TC = 100°C Continuous Drain Current 5.0 5.0 4.0 4.0 A 32 32 28 28 °C Gate - Source Voltage CV Max. Power Dissipation linear Derating Factor Inductive Current, Clamped ILM I 32 Tst\t Lead Temperature V 125 ISee Fig. 14) 1.0 ISee Fig. 14) ISee Fig. 15 and 16) L = 100!,H 32 I 28 Operating Junction and Storage Temperature Range TJ A ±20 W WIK A 28 J -55to150 °C 30010.063 in. 11.6mm) from case for lOs) °C ELECTRICAL CHARACTERISTICS @ TC = 25"C (Unless otherwise specified) Parameter BVOSS Drain - Source Breakdown Voltage V GSlth) Gate Threshold Voltage Type Min. Typ. Max. Units UFN840 UFN842 500 - - V VGS = OV UFN841 UFN843 450 V 10 = 250!,A 2.0 - - ALL 4.0 V 500 nA VGS = 20V Test Conditions VOS - VGS, 10 - 25Ol'A IGSS IGSS Gate-Source Leakage Forward ALL - Gate-Source Leakage Reverse ALL - - -500 nA VGS - -20V lOSS Zero Gate Voltage Drain Current ALL - - 250 I'A VOS = Max. Rating, V GS = OV - 1000 I'A VOS UFN840 UFN841 8.0 - - A UFN842 UFN843 7.0 - - A UFN840 UFN841 - 0.8 0.85 [l UFN842 UFN843 - 1.0 1.1 (I ALL 4.0 6.5 - S 10) 10(on) On-State Orain Current ® ROS(on) Static Drain-Source On-State Resistance ~ 9fs Forward Transconductance ® = Max. RatingxO.8, VGS = OV, TC = 125°C V OS ) 1010n) x ROSlon) max.' VGS ~ 10V VGS = 10V, 10 = 4.0A VOS ) 1010n) x ROSlon) max.' 10 Ciss Input Capacitance ALL - 1225 1600 pF Coss Output Capacitance ALL - 200 350 pF 85 150 pF 17 35 ns VOO ~ 200V, 10 5 15 ns See Fig. 17 = 4.0A VGS = OV, VOS = 25V, f = 1.0 MHz See Fig. 10 Crss Reverse Transfer Capacitance ALL tdlonl Turn-On Oelay Time ALL tr Rise Time ALL - tdloffl Turn-Off Oalay Time ALL - 42 90 ns tf Fall Time ALL - 14 30 ns (MOSFET switching times are essentially independent of operating temperature. 1 Qg Total Gata Charge ALL - 42 60 nC V GS ~ 10V, 10 = lOA, VOS = 0.8 Max. Rating. Gate-Source Charge ALL 20 - nC Qgd Gate-Orain I"Miller") Charge ALL - 22 - nC LO Internal Drain Inductance - 3.5 - nH (Gate-Source Plus Gate-Drainl Qgs K 4.0A, Zo = 4.70 See Fig. 18 for test circuit. (Gate charge is essentially independent of operating temperature.) Measured from the contact screw on tab to center of die. ALL - 4.5 - nH inductances. Measured from the drain lead, 6mm 10.25 in.) from package to center of die. LS Internal Source Inductance ALL - Modified MOSFET symbol showing the internal device 7.5 - nH Measured from the source lead, 6mm 10.25 in.) from package to source bonding pad. -$ THERMAL RESISTANCE RthJC Junction-to-Case RthCS Case-to-Sink Mounting surface flat. smooth, and greased. RthJA Junction-ta-Ambient Free Air Operation UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 4-485 PRINTED IN U.S.A Ii,! UFN840 UFN841 UFN842 UFN843 SOURCE·DRAIN DIODE RATINGS AND CHARACTERISTICS Continuous Source Current (Body Diode) Modified MOSFET symbol showing the integral reverse P~N junction rectifier. UFN840 UFN841 - - 8.0 A UFN842 UFN843 - - 7.0 A UFN840 UFN841 - - 32 A UFN842 UFN843 - - 28 A UFN840 UFN841 - - 2.0 V UFN842 UFN843 - - 1.9 trr Reverse Recovery Time ALL Reverse Recovered Charge ALL - 1100 QRR 6.4 ton Forward Turn-on Time ALL Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by LS IS ISM VSO Pulse' Source Current (Body Diode) @ Diode Forward voltage @ 1010n) x ADS(on) max. ~I I V D I A y y II ~ 10 Fig. 4 - Maximum Safe Operating Area ~~ ~ 50 ~ 7V~".. ~ ~ !" 6V '" i VGS' 5V 51= , 2 , IL 4·486' IOms 100m f-r-; I, ittt 1m, II t f= TJ' 150'e MAX H: 1 10 10 I' , rti -tiiiffi . a VOS. ORAIN·TO.sOURCE VOLTAGE (VOLTS) r- ... ,- r-- Te' 25'e 5 OPERA.TION IN THIS AREA IS LIMITED BY ROS(on) r UFN842,3 r-- RthJC • I 0 KIW 2 f-- SINGLE PULSE jV UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95·1064 01::: JFN~:,I .9 If' .!!!N840.1 UIFNf'1 31· ~1 0 .J~ r- of- z ~ I 'II" 10 . VG~, GATE·TO·SOURCE VOLTAGE (VOLTSI 10 0 ~ r- 4 100 Fig. 3 - Typical Saturation Characteristics ~ ~_ /TJ=125 0C '1/ ~ 20 40 60 80 VOS. ORAIN·TO.sOURCE VOLTAGE (VOLTS) 10V 9V 8V I V·~J·"250~ JJ. V 4~ 80p.lpuLSe 1YeST VTJ'.550C 1 - ;ol~, "tttt 100m ~- UFN84I.3 OC 1 ILIFN~:2 iffi 50 100 200 to 20 Vas. DRAIN TO SOURCE VOLTAGE (VOLTS) 500 PRINTED IN U.S A UFN840 UFN841 UFN842 UFN843 Fig. 5 - Maximum Effective Transient Thermal Impedance, Junction·to-Case Vs. Pulse Duration ffi iii L ~z ~~ 0=0.5 ,,~ 0.5 $~ ~~ ~~ ~~ c c ililllll!llllllllllllllllllllfll f-~.2 0.2 t:;;:; !::::= ~+t=~I1""'=+++++++1:t+=++ ~~ =-j 1--0.1 0.1 <=0.05 1.0I1---0.02 ~~ 0.052 io-I""T' C:;0.01 t-t- ..... ~ ~ 0.0 El..IL NOTES: PDM ~2--l * ~'HN~;~:~~~~J~:~~~:ENT-t_+-I-++t+tl-+-+-+t-t-t1I-tt+-++ 2.1. PER UNIT BASE' RthJC· 1.0 DEG. CIW. DUTY FACTOR. 0 '" 3. TJM - Te =POM ZthJc(tl. 0.01 L......L......L.-l....L...J..J...u.U",-l.-l.--1-l....L.u.J..u......J--1_'-I-I...u.J.IJ_'-'-...L.,u...L...UJ.J.......L.-'-.......J...................................- "...................,lJ 1.0 10 ~ ~ ~ ~ ~ II.SDUARE WAVE PULSE DURATION (SECDNDSI Fig. 6 - Typical Transconductance Vs. Drain Current 16.0 Fig. 7 - Typical Source-Drain Diode Forward Voltage f--~ /JJ pulSE TEll ~DS > l'O(on) ~ RDS(~nl ml~. ! 12.8 i ili iil ~ 9.6 TJ= -55°C ~ TJ" 25 0 C / l 3.2 'r r1,. 12Slc ~ ~ If 8 12 '0. DRAIN CURRENT (AMPERESI 2 TJ= 1500 C z ~w ~ 16 1.0 O. 5r= TJ" 250C 0.2 O. 20 IL 5 I I z ~ 6.4 ~ £ 10 ~ co , 20 , , 2 3 4 VSO. SOURCE·TO·ORAIN VOLTAGE (VOLTSI Fig. 8 - Breakdown Voltage Vs. Temperature Fig. 9 - Normalized On-Resistance VI. Temperature 1.25 2.5 ..L L V~ .,.,. j...' / V L 0 5/ ./' "..,. 5 V VGS-IOV 'O"·5A - - 5 o 0.1 5 -40 V lL 40 80 '20 -40 '60 TJ,JUNCTtDN TEMPERATURE (DC) UNITROOE CORPORATION' 5 FORBES ROAO LEXINGTON. MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 4-487 40 80 120 TJ,JUNCTION TEMPERATURE (DC) 160 PRINTED IN U.S.A • UFN840 UFN841 Fig. 10 - Typical Capacitanea VI. Drain·to-Source Voltage 2000 Cits • c. +cgd. Cdo SHORTED - c.. " Cgd _ ~ 1600 UFN842 UFN843 Fig. 11 - Typical Gate Charge Vs. Gate·to·Sourea Voltage JVGS'OVJ. 0 f=lMHz ~c .. "c.t.+ .+ gd -Cdl+Cgd ~ 1200 ~ ~ 800 u' 400 ....... ~ \ \ \ \ , "' 5 VOS'400V" 0 'I'\. w ~os' I?£IV "" ,vos' 2~OV" ~ C'IS r 5 ...... j'... ..... ~ ~ ~ 'O"'OA FOR TESTCIRCUIT SEE FIGURE 18 ~ ~ % ~ 00 3.0 0,. TOTAL GATE CHARGE (nCI Fig. 13 - Maximum Drain Current Vs. Case Temperature 10 MEASU~EO WIT~ CURRE~T ROS(. II PULSEIOF 2.0 •• ~URATION. INITIAL TJ' 25'C. (HEATING EFFECT OF 2.0 ",PULSE IS MINIMAL.l .- 1 ~ u z ~ 2.5 VGS"OV ~ g ~ 2.0 :i1 ~ .,~ ! / 1.5 .." 1.0 1 0.5 r---- 8 --- ......... ........ t--.... ......... ~ ~VGS"20V ~ .,~ 80 60 20 Fig. 12 - Typieal On·Resistanea Vs. Drain Current ig - I c., VOS. ORAIN·TO·SOURCE VOLTAGE (VOLTSI 3.5 ~ / C'D ~ ...&i ~ ~ --b,N,841 U~8~ "- ", V ~~ 2 ----10 15 20 25 '0. DRAIN CURRENT (AMPERESI 30 o 35 ~ 25 50 75 100 TC. CASE TEMPERATURE ('CI 125 150 Fig. 14 - Power Vs. Temparature Derating Curve 140 120 0 --- " i"I.. r\. "" r\. I'\. " r\. 0 ~ UNITRODE CORPORATION· 5 FORBES ROAD LEXI NGTON. MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 40 60 80 100 TC, CASE TEMPERATURE (OCI 4-488 "" r\.. 120 140 PRINTED IN U.S.A UFN840 UFN841 Fig. 15 - Clamped Inductive Test Circuit UFN842 UFN843 Fig. 16 - Clamped Inductive Waveforms • VARY tp TO OBTAIN REQUIRED PEAK 'L VGS.R OUT 'L---o---........".......~ Fig. 17 - Switching Time Test Circuit 200V ADJUST Rl TO OBTAIN SPECIFIED 10 4511 VDS r;U~ ---1 I GENERATOR OUT o-,-----.().---'l..J--1I Jl I I ~ri~CE IMPEDANCE L ___ J Fig. 18 - Gate Charge Test Circuit +Vos (ISOLATED SUPPl VJ - O~·5mA IG CURRENT SHUNT UNITROOE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95·1064 4-489 10 CURRENT SHUNT PRINTED IN U.S.A POWER TRANSISTORS UMTI006 UMTI007 5A,500V, Fast Switching, High ES/b Silicon NPN Mesa FEATURES DESCRIPTION • • • • • • These high voltage glass passivated power transistors combine fast switching; low saturation voltage and rugged Eslb capability. They are designed for use in off-line power supplies, high voltage inverters, switching regulators, ignition systems and deflection circuits. Rise Time: 0.4"S} Fall Time: 0.4"S Ic 3A High Second Breakdown Energy: 540"J Collector Emitter Voltage: up to 500V Peak Collector Current: lOA Key Parameters characterized at 100·C = ABSOLUTE MAXIMUM RATINGS UMTfl106 Collector Emitter Voltage, VCEV ....................... .......................... ......................................... ....... ........... UMTfOO7 ............. 400V.................................SOOV ~~::t~~O~!:i~:rt~go!t,a~EeB,ov~E~.(S~~I.::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ...... :::.:: . :: . . . . . . . . . . . . . :........................................................................ 3DDV ................................. 4DDV .............. 7V...................................... 7V Collector Current, Ic continuous ............................................................................................................................................. SA ..................................... SA Collector Current, Ic peak ........................................................................................ ................................. ...................... 10A ................................... 10A Base Current, la continuous .................................................................................................................................................... SA .................................... SA Power Dissipation, 2S·C Case ................... ......................................................................................... .................. lDDW ................................ 1DDW Derating Factor .............................................................. .................................. .................................. .. ..........S71W'·C..........................S71W'·C Operating and Storage Temperature Range. ....... ..................... ...................... .. .......................... -6S to 200·C................ .. MECHANICAL SPECIFICATIONS NOTE: UMTlOO6 UMT1007 Leads may be soldered to within 1116" of base provided temperaturetime exposure is less than 260°C for 10 seconds. F ~iJE C 6-79 D A B M BASE ~I ~~'i" H j G J-~ ~ K EMITTER L c D E F G H J K L M ins. 875 MAX .135 MAX 250-.450 .312 MIN .038- 043 DIA . 188 MAX RAD 1.177-1.197 655- 675 .205- 225 420- 440 .525 MAX RAD 151-.161DIA 4-490 TO-204AA (TO-3) mm. 22.23 MAX. 343 MAX. 635-1143 7.92 MIN 0.97-1.09 DIA. 478 MAX RAD . 2990 30.40 1664-17.15 5.21-572 10 67-11.18 13 34 MAX. RAD . 3.84 409 DIA ~UNITRDDE UMTl006 UMTl007 ELECTRICAL SPECIFICATIONS (at 25'C unless noted) Test Symbol UMTlO06 MIN. MAX. UMTlOO7 MIN. MAX. Units Test Conditions D.C. Current Gain (Note 1) hFE 12 60 12 60 Ic = 1.5A, VCE = 2V 7 35 7 35 Ic = 3.0A, VCE = 'N D.C. Current Gain (Note 1) hFE Collector Saturation Voltage (Note 1) VCE("II - 1.0 - 1.0 V Ic = 3.0A, IB = 0.6A Collector Saturation Voltage, Tc = 100'C (Note 1) VCE(,,'I - 2.0 - 2.0 V Ic = 3.0A, IB = 0.6A Collector Saturation Voltage (Note 1) VCE(••'I 5.0 - 5.0 V Ic = 5.OA, IB = 1.0A Base Saturation Voltage (Note 1) VBE( ••II 1.4 V Ic = 3.0A, IB = 0.6A VBE (••11 1.4 - 1.4 Base Saturation Voltage, TC = 100'C (Note 1) - 1.4 V Ic = 3.0A, IB = 0.6A Collector-Emitter Sustaining Voltage (Note 2) VCEO( ...I 300 - 400 - V Ic = O.1A, IB = Collector-Emitter Sustaining Voltage Tc = 100'C (Note 2) VCEX('''I 350 - 450 - V Ic = 3.0A, L = 180,aH IBI = IB2 = 0.6A VCE clamp = rated VCEX (,usl Emitter-Base Cutoff Current lEBO - - - 2.5 - - - - 2.5 50 ISO 50 ISO pF 6 24 6 24 MHz Collector Cutoff Current I CEV Collector Cutoff Current, Tc =100'C ICEV Collector Cutoff Current, Tc =100'C ICER Output Capacitance, Common Base Coho Gain-Bandwidth Product FT Energy Second Breakdown (unclamped) Es/b Resistive Switching Speeds Delay Time Rise Time Storage Time Fall Time - 1 0.5 3.0 1 0.5 3.0 mA mA mA mA a VEB =9V VCE = 400V, VBE = -1.5V VCE = 500V, VBE = -1.5V VCE = 400V, VBE = -1.SV VCE = 500V, VBE = -1.SV VCE = 400V, RBE = 500 VCE = SOOV, RBE = SOO VcB =lOV,f=lMHz VCE = 10V, Ic = 0.2A, f = 1 MHz 540 - 540 - ,aJ Ic = 3.0A, VBE lofij = 4V L = 120,aH unclamped td t, t. tf - .05 0.4 4.0 0.4 - .05 0.4 4.0 0.4 I'S Ic=3.0A Vcc = 200V IBI = IB2 = 0.6A VBEloff) =5V Inductive Switching Speeds Tc=lOO'C Storage Time Fall Time ts t, 4.0 0.4 ,as Ic = 3.0A, L = 180,aH IBI = IB2 = 0.6A VCE clamp = rated VCElt (sus) RsJC - 4.0 0.4 Thermal Resistance, Junction-to-Case - 1.7S 'C/W 1.75 Notes: 1. Pulse width = 2501'S; duty cycle :51%. 2. Sustaining Voltage. Measured at a high current pOint where collector-emitter voltage is lowest. Current pulse length", 501'5; duty. cycle :5 1%. Voltage clamped at maximum collector-emitter voltage. UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON. MA 02173 • TEL (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 4-491 PRINTED IN U.S.A. • UMTl006 UMTlOO7 Forward Bias Safe Operating Area '" g [;1'" .... Power Oi~~pation Limited Z '"0:0: "'I\-- 10mS 1\ :> 0 t; ~ 80 '...." u '"-" 60 0 1mS ";:: 1\ U 0: '" 0 t"-... 20#5]15; t-D.C. ..J ..J ."I" 100 10 Z Is,Limited '"'" 40 '"'" 20 OJ 0 .5 '\ UMTlO06"", t-\" u I _u UMTlO07 Te 25'C Curves Apply Below .2 1m ~atef .1 5 10 Ve , - 50 f- '" :> u I ~(/~ ~~~/ I~ ~J''01' ~<"0 DISSI~A '" " AT OESIRED OPERATING VOLTAGE, CERATE '\ TION CURRENT LIMIT AND I,. CURRENT LIMIT FAOM 2~·C SOA" CURVE DASH LINES ON SOAR CURVES ARE EXTENSIONS OF DISSIPATION lIMITj FDA T1EMPERjTURE ,ERATING PURPOSES I\~ 100 I\. '1'.<~ \ IIIII 20 f'.., .... z \.I\. IIIII Vi,o Power Derating o 500 200 o '\ 1,\ 40 80 120 160 Tc - CASE TEMPERATURE I'C) COLLECTOR VOLTAGE (V) 200 Reverse Biased Safe Operating Area r-- r-- V'Etaff) ~5V Te ~ 100'C I I I I I--- ..!.£=IB1=l sz g r-- .... z 5 UMTlO06 '"0:0: ----i 1 :> u 0: ~ 0.5 1 ..J ..J UMTl007 - 0 u I 0.2 _u 0.1 .05 10 20 50 100 200 500 1000 Veoxl ".,- COLLECTOR VOLTAGE (V) Saturation Voltages D.C. Current Gain 200 Ve , 100 lell, z ;;: '"z.... I = 5V 100°C 50 25'C '"0:0: I :> 20 u t-- .~ <3 0 10 " !:i ~~ 55'C r--- ~ I 55'C '"'" ~I\ 55' /ortb' &- 100'C z 0 ~ I-- 0: :> 0.2 r.~ ~ ~ '" .05 0.1 Ie - 0.2 0.5 COLLECTOR CURRENT (A) UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 II l- VSE 118fl s' 0 > 0.5 =5 V !-- 0.1 ~ 1A7 ~ V 25'C VCE(IUj .05 5 .05 0.1 Ie - 4-492 0.2 0.5 COLLECTOR CURRENT (A) PRINTED IN U.~.A. UMTl006 UMTl007 Resistive Turn·On Time ReSistive Turn·Off Time 1000 10 500 2S'C V V ~ 5 ---.. V tr I'. 2 ~ "Ui E. w 100 .:; w :2 -I'=- .'~"B= -r--- Vee = 12SV .. _f-- -Iell, = 5 { 100'C r---.l' i'-- :2 ;= ;= td ~ ?SQC !::-.. lDO'C .-....... V "':::::1"'- 0.2 20 ts 2S'C 0.5 50 V Vee = 125V lell ,=5 /t ~ 25'C I 0.1 10 0.1 0.2 0.5 Ie - 0.2 0.5 Ie - COLLECTOR CURRENT (A) 0.1 10 • 1D0'C COLLECTOR CURRENT (A) Switching Time, VeEx I'"'} Test Circuit 10 Esfb Test Circuit +IOV 200V R _ 200V L - Ie . R8 =¥,lB,:::: 1s2 FOR RESISTIVE SWITCHING. L ~ 0, UNCLAMPED :6V nLJ_ -_ +107Vn -.J R, L IS\1 ADJUST P.W. TO OBTAIN 3A PEAK Ie 4V P.W. = 25MS SOil -4V UNITRODE CORPORATION. S FORBES ROAD LEXINGTON, MA 02173 • TEL. 1617) 861·6540 TWX (710) 326·6509 • TELEX 95·1064 4-493 PRINTED IN USA POWER TRANSISTORS UMTI008 UMTI009 BAmp,500VFastSwitching, High ES/b Silicon NPN Mesa FEATURES • • • • • • DESCRIPTION t These high voltage triple diffused glass passivated power transistors combine fast switching, low saturation voltage and rugged Es/b capability. They are designed for use in off-line power supplies, high voltage inverters, switching regulators, ignition systems and deflection circuits. Rise Time: 0.4/ls I - SA Fall Time: 0.4/ls f c High Second Breakdown Energy: 1500/lJ Collector Emitter Voltage: up to 500V Peak Collector Current: 16A Key Parameters characterized at 100·C ABSOLUTE MAXIMUM RATINGS UMT1008 ............... 400V............... Collector Emitter Voltage, VCEV ................ . Collector Emitter Voltage, VCEOISUSI . Emitter Base Voltage, VEBO .............. . Collector Current, Ie continuous Collector Current, Ic peak. Base Current, IB continuous ..... Power Dissipation, 25·C Case Derating Factor. .................................... . Operating and Storage Temperature Range ... 300V...... ............ 7V... UMT1009 ...... SOOV 400V ........ 7V ......... SA... ....................... SA . ..... 16A.. ... 16A ................. SA...... ............... SA .............. 125W........ ........... 125W .714W/·C............... .....714W/·C .............. -65 to 200·C MECHANICAL SPECIFICATIONS NOTE: TO-204AA (TO-3) Loads may be soldered to within 1/16" of base provided temperaturetime exposure is less than 260°C for 10 seconds. F ~iT C 4/77A D G I I M ~.1..H I A B i" J-~ 7 BASE c EMITTER D L F G H J K L M E ins. B75 MAX 135 MAX 250- 450 312 MIN 03B- 043 DIA 188 MAX RAD 1177-1197 655- 675 205- 225 420- 440 525 MAX RAD 151- 161 OIA 4-494 mm. 2223 MAX 343 MAX 635-1143 792 MIN 097-109 DIA 478 MAX RAD 2990 3040 1664-1715 521 572 1067 1118 1334 MAX RAD 384 409 DIA ~UNITRODE UMTlOO8 UMTl009 ELECTRICAL SPECIFICATIONS (at 25'C unless noted) Symbol Test D.C. Current Gain (Note 1) hFE UMTlO08 MAX. MIN. 12 60 7 UMTlO09 MAX. MIN. 60 12 7 Units 35 Test Conditions Ic = 2.5A, VCE = 3V Ic = 5.0A, VCE = 3V D.C. Current Gain (Note 1) hFE Collector Saturation Voltage (Note 1) VCE I,at) - 1.5 - 1.5 V Ic = 5.0A, la = 1.0A Collector Saturation Voltage, TC = 100'C (Note 1) VCEI ••I ) - 2.5 - 2.5 V Ic = 5.0A, I. = 1.0A Collector Saturation Voltage (Note 1) VCEI..I ) - 5.0 5.0 V Ic = S.OA, I. = 2.0A 1.6 V Ic = 5.0A, I. = 1.0A 1.6 - 1.6 V Ic = 5.0A, la = 1.0A VCEO I'"') 300 - 400 - V Ic=O.lA VCEXlsus) 350 - 450 - V Base Saturation Voltage (Note 1) Base Saturation Voltage, TC = 100'C (Note 1) Collector-Emitter Sustaining Voltage (Note 2) Collector-Emitter Sustaining Voltage TC= 100'C (Note 2) Emitter-Base Cutoff Current Collector Cutoff Current V.E ..I VaE 1••1) lEBO I CEV Collector Cutoff Current, Tc =100'C I CEV Collector Cutoff Current, Tc = 100'C ICER Output Capacitance, Common Base Cobo Gain-Bandwidth Product Fy Energy Second Breakdown (unclamped) Es/b Resistive Switching Speeds Delay Time Rise Time Storage Time Fall Time 35 1.6 - - 3.0 100 200 100 200 pF 6 30 6 30 MHz - 1 0.5 - 2.S - 3.0 1 - O.S 2.S - mA mA mA mA IS00 - 1500 - I'J td t, t. t, - 0.1 0.4 4.0 0.4 - 0.1 0.4 4.0 0.4 ps Inductive Switching Speeds Tc= 100'C Storage Time Fall Time t, t, 4.0 0.4 - 4.0 0.4 fl.S Thermal Resistance, Junction-to-Case RSJC - 1.4 - 1.4 'C/W Ic = 5.0A, L = lS0l'H lal = 182 = 1A VCE clamp = rated VCEX ISUS) VEB = 9V VCE =400V, VaE = -1.SV VCE = 500V, VaE = -1.5V VCE =400V, VaE = -1.SV VCE = SOOV, VIE = -l.SV = VCE = 4OOV, RaE son VCE = SOOV, RaE = SOn Vca =10V,f=lMHz VCE = 10V, Ic = 0.3A, f = 1 MHz I c =5.0A lal =IA L = 120pH unclamped Ic=S.OA Vcc=200V lal = la, = 1.0A VaE lo'~ = 5V Ic = 5.0A, L = 180I'H I" = la,=IA VCE clamp = rated VCF$. (SUS) Notes: 1. Pulse width = 2501'S; duty cycle ,,;1 %. 2. Sustaining Voltage. Measured at a high current point where collector·emitter voltage is lowest. Current pulse length Voltage clamped at maximum collector-emitter voltage. UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON. MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 4-495 51! 50pS; duty cycle ,,; 1%. PRINTED IN U.S.A. • UMTl008 Forward Bias Safe Operating Area 20 ~ $ ... '"a:a: "a: ~ <~ ~"" "'\ ""'\. :--.... ~~ ~'" ~ 80 a: Z ,', Power Derating 100 IlL 10 ~~ ::> ,2 ... u 0 1,\ "" ,, . . '\ " "- ";::z '" 1:\ '" , "\ , " '"-'-'o I 25°C Te CURVES APPLY BELOW RATED VeEO 5 10 \ j Jill 0.2 '~ \ 't, ~J "- 'K~ w a: a: 20 ~~ AT DESIRED OPERATING VOLTAGE, i'- ...... I--- 1-- DERAT~ DISSI~A.'\ liON CURRENT LIMIT AND '1. CURRENT LIMIT FROM 2S·C SOAR CURVE '\ DASH LINES ON SOAR CURVES ARE EXTENSIONS OF I DISSIPATION LIMITS FOR TEMPERATURE DERATING \ 20 50 100 200 VeE-COLLECTOR VOLTAGE (V) iI'.s:...., 40 ::> u I ~(/ I I I '" I I I "a:0 ... "'" -' -' 0.5 0 -- ~ "I -" UMTl 09 UMTlO08 V BE (OFF: = 0.2 Tc 0.1 I III 10 50 20 VeEXISuSJ - I I = ::;{SV :S;;100°C 100 I I I I I I 200 500 COLLECTOR VOLTAGE (V) Saturation Voltages D.C. Current Gain 200 lell, - 5 100 z ~ ... ~ 1-125° C 50 ,. - 25°C ~~, ::> 20 "cJ !I-- ci 10 ", ~ , -- , _55°C r- "..... , .."!:i w ~oC -j > I 0.2 ls60c r:: .. r- - 2 0.1 - 0.1 VeE-IOV VeE =3V ,.... =25°C 0.5 0 ~~ VBE~T~ :::::1' 55°C ~ 4- 55°C ./ ./ V / I' - .... ....... 1-" /\CElSATI "/ f-'" .... .05 0.2 Ie - 0.5 COLLECTOR CURRENT (A) UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX {7l11l,.326'6509 • TELEX 95-1064 0.1 10 0.5 0.2 Ie - 4-496 10 COLLECTOR CURRENT (A) PRINTED IN U.S.A. UMTIOO8 UMTIOO9 Switching Time, VCEX 1m) Test Circuit Eslb Test Circuit +'OV 200V • R _ 200V lIe R'=¥"BI=112 , 0.211 FOR RESISTIVE SWITCHING, L = 0, UNCLAMPED :6Jl . - - 4V ~-IIII-- VeE clamp +I07Vn R, LJ ~ L 1511 ADJUSTP.W. TO OBTAIN 3A PEAK Ie P.W. =25"S SOD -4V Turn-Off Time Turn-On Time 1000 1"- . . . . 500 ........ t, 200 'in r:: td ;100 ..... .. .5 w 0.5 I.. ::; " so 0.2 r 10 0.1 vee - 200V le/l,=5 VBe (off) = SV TJ=25°C 0.2 Ie - 0.5 I 2 5 COLLECTOR CURRENT (A) UNITRODE CORPORATION - 5 FORBES ROAD LEXINGTON. MA 02173 - TEL. (617) 861-6540 TWl< (710) 326-6509 - TELEX 95-1064 200V Vee 'in "~ ;:: 20 ...... ~ :; ;:: t, I" TJ '" 0.1 t, leiS = 25°C ...... 1-' .05 10 0.1 4-497 0.2 Ie - 0.5 COLLECTOR CURRENT (A) 10 PRINTED IN U.S.A. UMTIOll UMTI012 POWER TRANSISTORS 15A, 500V, Fast Switching, High ES/b Silicon NPN Mesa FEATURES • Rise Time: 0.4I'S} Ic lOA • Fall Time: 0.41'S • High Second Breakdown Energy: 6000I'J • Low Saturation Voltage • Collector Emitter Voltage: up to 500V • Peak Collector Current: 30A • Key Parameters characterized at lOO'C DESCRIPTION These high voltage glass passivated power transistors combine fast switching, low saturation voltage and rugged Eslb capabil ity. They are designed for use in off-line power supplies, high voltage inverters, switching regulators, ignition systems and deflection circuits. = ABSOLUTE MAXIMUM RATINGS UMT10ll UMT1012 Collector Emitter Voltage, VCEV ........................................................................................................................................... 400V................................. 500V Collector Emitter Voltage, VCEO (SUSI .................................................................................................................................. 300V.................................400V Emitter Base Voltage, VEBO ......................................................................................... ................................ ........................... 9V.................................... 9V Collector Current, Ic continuous ..................... .................................................. ..................... ........ 15A.................................. 15A Collector Current, Ic peak .............................................. ................................... .......................... .............. 30A ...................................30A Base Current, IB continuous .................. ~......................... ..................... .............................. ....... lOA....... .................. .10A Power Dissipation, 25'C Case .............. . .................... ....................... .... 175W .............................. 175W Derating Factor ................ ........................... ....... ......................... .......... 1.0W/'C...... ..1.OW/'C Operating and Storage Temperature Range. .. .. ............ .. .......... '" ..... ............. -65 to 200'C. MECHANICAL SPECIFICATIONS NOTE: Leads may be soldered to within 1/16" UMT1011 time exposure is less than 260'C for 10 seconds. F ~EtE e D 6-79 UMT1012 TO-204AA (TO·3) of base provided temperature· I J ~.tH I A M eI' J-~ 7 B BASE c EMlnER D E F G L H J K L M ins. 875 MAX. 135 MAX 250- 450 312MIN. 038-.043 OIA .188 MAX RAO. 1.177-1.197 .655- 675 205-.225 .420- 440 525 MAX. RAO. .151- 161 OIA. 4-498 mm. 22.23 MAX. 3.43 MAX. 6.35 11.43 7.92 MIN. 097 109 OIA 4.78 MAX. RAO 29.90-30.40 16.64-17.15 5.21-5.72 10.67 1118 13.34 MAX. RAO. 3.84-409 OIA . ~UNITRDDE UMTlOll UMTl012 ELECTRICAL SPECIFICATIONS (at 25·C unless noted) Symbol UMTlOll MIN. MAX. 12 60 UMTlO12 MAX. MIN. 12 60 Test Conditions Units Test D.C. Current Gain (Note 1) hFE D.C. Current Gain (Note 1) hFE Collector Saturation Voltage (Note 1) VCE{"'I - 1.0 - 1.0 V Ic = lOA, I, = 2.0A Collector Saturation Voltage, TC= 100·C (Note 1) VCE{"'I - 2.0 - 2.0 V Ic = lOA, I, = 2.0A Collector Saturation Voltage (Note 1) VCE{,a'l - S.O - S.O V Ic = lSA, I, = 3.0A Base Saturation Voltage (Note 1) V8E {,a'i 1.6 - 1.6 V Ic = lOA, I, = 2.0A Base Saturation Voltage, TC= 100·C (Note 1) V'E {,.'I - 1.6 - 1.6 V Ic = lOA, 18 = 2.0A Collector-Emitter Sustaining Voltage (Note 2) VCEO {SU'I 300 - 400 - V I c =0.1A,1 8 =0 Collector-Emitter Sustaining Voltage TC= 100·C (Note 2) VCEX{SU'I 350 - 450 - V Ic = 8.0A, L = 180"H 18• = 182 = 2.0A VCE clamp = rated VCEX {ml Emitter-Base Cutoff Current lEBO - 1 rnA - - - 3.0 - 1 1.0 - - 3.0 3.0 - - - - 3.0 180 360 180 360 pF 6 24 6 24 MHz Collector Cutoff Current IcEV Collector Cutoff Current, Tc = 100·C IcEV Collector Cutoff Current, Tc = 100·C ICER Output Capacitance, Common Base Cobo Gain-Bandwidth Product Fr Energy Second Breakdown (unclamped) Es/b Resistive Switching Speeds Delay Time Rise Time Storage Time Fall Time td t, t, tf Inductive Switching Speeds Tc = 100·C Storage Time Fall Time ts tf Thermal Resistance, Junction-to-Case ReJc 6 6 30 Ic = S.OA, VCE = 2.0V Ic = lOA, VCE = 2.0V 30 1.0 - rnA rnA rnA VE,=9V VCE = 400V, V8E = -1.5V VCE = SOOV, V8E = -1.SV VCE = 400V, V'E = -1.5V VCE = SOOV, V'E = -1.SV VCE = 400V, R8E = SOO VCE = SOOV, R8E =sao Vca = 10V, f = 1 MHz VCE = 10V, Ic = O.SA, f = 1 MHz 6000 - 6000 - "J Ic = lOA, V8E {offl = -4V L = 120"H unclamped - .OS 0.4 4.0 0.4 - "S - .05 0.4 4.0 0.4 Ic=lOA VCC= 200V 18• = 182 = 2.0A V8E {ofij =5V - 4.0 0.4 - 4.0 0.4 "S 1.0 - 1.0 ·CIW Ic = lOA, L = 180"H 18• = 182 = 2.0A VCE clamp = rated VCEX {ml Notes: 1. Pu{se width = 250115; duty cycle :51 %. 2. Susta.ning Voltage. Measured at a high current point where collector·emitter voltage is lowest. Current pulse length'" 50115; duty cycle :5 1%. Voltage clamped at maximum collector·emitter voltage. UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326·6509 • TELEX 95·1064 4-499 PRINTED IN U.S.A. • UMTlOll UMTl012 Forward Bias Safe Operating Area Power Derating 100 " "r\. :"~-~I-'~~~~~~I~I~I t'.... ~ 1,\ 80 0: 0 . " . 60 '"0 40 t3 "- "'.s- ~J z i= 0: ~ ;;) AT DESIRED OPERATING VOLTAGE, DASH LINES ON SOAR CURVES ARE EXTENSIONS CW DISSIPATleN LIMITj fOft PUJtIJOSES o o 2.0 0: 1.0 lMPERrURE r"ATING I--+--+I-+-+-H~I-HI--+I-\ '_t--bU::!~::ITt-It-0t-12H A~4=L~;m=I~=I~~d:t+4~~l'\==~~~~r\~rr=U~~tlT!~J.~~i '\ !S'C SOAR CURVE u ~ , Dt:RAT~ DISSI~"'.'\ TION CURRENT LIMIT AND Is ~ CURRENT LIMIT FROM 4.0 u ~O 20 5 !Z "'k P.W. 1\ P.W. I> \IOmS 1\ ImS ~+~::e~~t:+1~~+=t:=t::j::m:t:j Power \r\ "i DiSSiPatlon_Hrt++++_~-1--+---1I-H+++-l Limiled I 1\ '" ""'- ...... ~ ~~ .... Z '"0:0: i'... ~ ,''-, >--:O~S· ~ ......... D.C.1'-. 10 ..... ~~/"" . ~ 1",1"~o .2~T+e-~+·2-S.+cL-+~++H~~~.,~-+~,~++H '\ 40 80 120 160 Tc - CASE TEMPERATURE ('C) r--f'-t--t-I+-++t~\i\-\I--+-t-+++tH .1 200 t::::Jt:::±::±:±:±±t±±I:::±fdl::±:±±t:l±J .04 20 10 50 100 200 500 VeE-COLLECTOR VOLTAGE (V) 1000 Reverse Biased Safe Operating Area 40 VIE 20 I /' 5 IZ 4.0 0: 0: ~ .... .... 0 u ~SV I III UMTlOll 1.0 II 0.4 / / ~ ::> 2.0 u 0: = I ~=I,,=111 10 III (off) Tc'; 100'C ~ / JM~IOI2 1 0.2 .JI .1 .04 10 20 50 500 100 200 VCEX 1...1- COLLECTOR VOLTAGE (V) 1000 Saturation Voltages Current Gain 500 1111 I lell, = 5 III ~ g z 0 ss.lc I-- !:i 2S' 0.5 ~ - 200 II ~7 ~ ,.- VII 1"'1 z < VCE=5V 100 ".... 100'C Z III 0: 0: ~ 0: 50 f--- I--IOO'C ::> !;( 0.2 III 0.1 1--100'C I IV~ V ~ ..:: ~ .05 r-r==t-: 5S'C 0.2 0.5 5 Ie - COLLECTOR CURRENT (A) UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON. MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95·1064 20 ~~js. ~ 10 2S'C 10 5 0.2 20 4·500 ~ 25'C u ~ ~~ ::> ~~ ~ 2 5 10 0.5 I Ie-COLLECTOR CURRENT (A) 20 PRINTED IN U.S.A. UMTlOll UMTl012 Resistive Turn·Off Time Resistive Turn·On Time 10 1000 500 '\ , ~ ~ 200 ...oS III 100 1OO'C "- rt- f-- ~ 5.0 2S'":C 2S'C- .... t, ;;;;;;;':OO·C ...... ..... ..... ..... .... 1-" 2.0 I '" .... "- 'U ........ "'- :l! ::; .3 1.0 2S'C ;: t. 1OO'C 50 III ::; 1;;;IIIIIIII ~ i= .5 ,~ / ....... Vcc = 250V 20 B,-S 111--1121 10 .2 -;:~ B,=51 111 --1 12 .5 2 10 5 Ie-COLLECTOR CURRENT (A) .2 ~ ~ t, ." I .1 20 l00'C 1'-0.. Vee -25OV .2 1 .5 5 Ie - COLLECTOR CURRENT (A) Switching Time, VeEX (.." Test Circuit 10 20 Eslb Test Circuit +10V 200V 1201'H R _ 200V L- Ie R.=¥,I,,=1 82 , FOR RESISTIVE SWITCHING, L=O 7'J}s VeE clamp R, +:n 3011 ADJUST P.W. TO OBTAIN lOA PEAK Ie SOil P.W.=2SI'S -4V - UNITRODE CORPORATION· 5 FORBES ROAD LEXING,TON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 4·501 - PRINTED IN U$A • POWER TRANSISTORS UMT1203 UMT1204 3 Amp, 500V, Fast Switching Silicon NPN Mesa FEATURES. OESCRIPTION • • • • • • These high voltage triple diffused glass passivated power transistors, in a plastic TO-220AB package, combine fast switching, low saturation voltage and rugged Est. capability. They are designed for use in offline power supplies, high voltage inverters, switching regulators, deflection circuits, motor controls and solenoid/relay drivers. Collector Emitter Voltage: up to 500V Peak Collector Current: 5A Rise Time: ~ 1.OI'S t t l - 2A Fall Time: ~ O.7",s f a cKey Parameters characterized at l00'C Economical Plastic Molded Construction ABSOLUTE MAXIMUM RATINGS UMT1203 UMT1204 Collector Emitter Voltage, VCEV . ............... .................................................................... ........... 400V......... .... 500V Collector Emitter Voltage, VCEO (SUS) .. ....................... ..................................... ...........300V ..................................400V Emitter Base Voltage, VEBO ................. . .............................................................. .............7V......................................7V Collector Current, Ic continuous ....................... ...................................................... ...............3A......................................3A Collector Current, ICM peak ..... ..................... ........................................................ ...............5A. ..................................... 5A Base Current, 18 continuous ........................................................................................................................... .lA..................................... .lA ..................... ................................................................................................... 40W ................................... 40W Power Dissipation, 25'C Case Derating Factor ................. . ............................................................. .... O.32W/.C .........................O.32W/'C Operating and Storage Temperature Range ..................................................................................... -65 to 150'C ....................... . MECHANICAL SPECIFICATIONS UMTl203, UMTl204 SEATING PLANE DIM F MILLIMETERS MIN MAX 14.23 15.87 9.66 10.66 3.56 4.82 0.51 1.14 3.531 3.733 TO-220AB INCHES MIN MAX 0.560 0.625 0.380 0.420 0.140 0,190 0.020 0.045 0.139 0.147 r-I-;';-"'G-+_r-,;,;,?-,t-i;'3.:..~"'.+~~~ f-r--.-.'c.~--+-.,c;,~-.,3'-8p~~=,6:-+' o.~ ~ !---c- 12.70 14.27 0.500 1.14 1.77 0045 0070 N 4.83 5.33 0.190 1- 02iil '.54 3.04 0.100 0.120 2.04 1.14 2.92 0.080 1.39 0.045 0.055 6.85 0.230 0.270 K PIN 1. BASE 2. COL.LECTOR 3. EMITTER 4 COLLECTOR r-o- 5" 4177A 4-502 0.562 0.115 ~UNITRDDE UMTl203 UMTl204 ELECTRICAL SPECIFICATIONS (at 25'C unless noted) Test Symbol UMTl203 MIN. MAX. UMTl204 MIN. MAX. Test Conditions Units hFE 12 60 12 60 Ic = 1.0A, VCE = 3V hFE 7 3S 7 3S Ic = 2.0A, VCE = 3V D.C. Current Gain (Note 1) D.C. Current Gain (Note 1) Collector Saturation Voltage (Note 1) VCEI ••,) - 1.2 - 1.2 V Ic = 2.0A, Is = O.4A Collector Saturation Voltage, Tc = 100'C (Note 1) VCEI..,) - 1.S - 1.S V Ic = 2.0A, Is = O.4A Collector Saturation Voltage (Note 1) VCEI ••,) - 3.0 - 3.0 V Ic = 3.0A, I, = O.7SA Base Saturation Voltage (Note 1) VSE 1'.'1 - 1.3 - 1.3 V Ic = 2.0A, Is = 0.4A Base Satu ration Voltage, Tc = 100'C (Note 1) VSE I'.') - 1.S - loS V Ic = 2.0A, Is = 0.4A Collector-Emitter Sustaining Voltage (Note 2) VCEolsu.1 300 - 400 - V Ic =O.lA Collector-Emitter Sustaining Voltage Tc = 100'C (Note 2) VCEXI •••( 350 - 450 - V Ic = 2.0A, L = SOO"H I" = IS2 = 0.4A VCE clamp = rated VCEX I'.') Emitter-Base Cutoff Current IESO Collector Cutoff Current I CEV Collector Cutoff Current, Tc = 1oo'C I CEV Collector Cutoff Current, Tc = 100'C ICER Output Capacitance, Common Base Cobo Gain-Bandwidth Product Fr Energy Second Breakdown (unclamped) Eslb Resistive Switching Speeds Delay Time Rise Time Storage Time Fall Time td tr t. t, Inductive Switching Speeds Tc = 100'C Storage Time Fall Time t. tf Thermal Resistance, Junction-to-Case RSJC - - 1 1 - O.S O.S 2.S - - - 2.S 3.0 - 3.0 - - - mA mA mA rnA Vy =7V VCE = 400V, VSE = -l.SV VCE = SOOV, V'E = -l.SV VCE = 400V, VSE = -l.SV VCE = SOOV, VSE = -1.SV VCE = 400V, R = 500 - - 35 100 35 100 pF 6 30 6 30 MHz 80 - 80 - "J Ic = 2.0A lSI =0.4A L = 40"H unclamped - 0.1 1.0 4.0 0.7 - 0.1 1.0 4.0 0.7 lIS Ic = 2.0A Vcc = 200V lSI = IS2 = 0.4A VSE lof~ = SV - 4.0 0.9 - - 4.0 0.9 - 3.12 - 3.12 I'S VCE = 500V, R = 500 Vea = lOV,f =1 MHz VCE = 10V, Ic = 0.3A, f = 1 MHz Ic = 2.0A, L = SOO"H I" = I" = 0.4A VCE clamp = rated VCEX I'.') 'C/W Notes: 1. Pu Ise width = 2501'S; duty cycle ,;;1%. 2. Sustaining Voltage. Measured at a high current point where collector·emitter voltage is lowes!. Current pulse length '" 501'S; duty cycle:;; 1%. Voltage clamped at maximum collector·emitter voltage. UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX 1710) 326-6509 • TELEX 95·1064 4-503 PRINTED IN U.S.A. • UMTl203 UMTl204 Forward Bias Safe Operating Area Power Derating 100 1'1.. 1\ $ I- Z UJ ""- DISSIPATION LIMITED a: a: :l 0 '\IV ~iJ~~ .. 1'\ ~OC'I -:>,~ III UJ ..J ..J 0 Te ;:: 0.2 _u 1\. \ \ CURVES APPLY BELOW RATED VeEO I " UJ \ 40 Z OJ ISIb LIMITED 1\ 20 :l AT DESIRED OPERATING VOLTAGE, DERATE DISSIPATION CURRENT I U LIMIT FR10M -LlM!T AND Is~ CURRENT 2S'iSOAAtRVE 20 50 100 200 Ve, - COLLECTOR VOLTAGE (V) j'., I \ a: a: o .05 10 '" I- ISIb LIMITE 5 I PURPOSES \. 0 " ;~~E::~~~~~:U~~~::!~~~Gl~ i'- i= « a: \ \ \. 0.1 DASH LINES ON SOAR CURVES ARE 1\ 60 <.!l Z ", " = 25'C \ I0 , , I- 80 0 , 0 0 ~ \ a: :~, '" a: 0.5 0 ~ ........ ,I 11N.'1,. 1 500 o 40 Te - I '" ISSIPATION LIMITED \ 80 120 160 CASE TEMPERATURE ('C) 200 Reverse Biased Safe Operating Area I §: I- -- I- Z UJ a: a: :J u a: 0 0.5 1 1 1 1 \ 1\ \ \ UMTl204 -UMTl203 \ \ \ IU UJ ..J ..J 0 0 I I I I 1,,=0.4A 0.2 I--Te = 100'C I I I _u 0.1 I .05 10 20 V eEX " ..1- 50 100 500 200 1000 COLLECTOR VOLTAGE (V) Saturation Voltages D.C. Current Gain le/l.= 5 I i....o" Vae (uti 55'C ~ "'<.!l ~ 0 0.5 ::::::: ~ '/ 25' lSO'C '/ > VeE flatl 0.2 SO'C 0.1 .05 .05 Ie - COLLECTOR CURRENT (A) UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326-6509 • TELEX 95-1064 4-504 ...-/ ~ ~/ V V _55' 0.1 Ie - 0.5 0.2 COLLECTOR CURRENT (A) PRINTED IN U.S.A. UMT1203 Switching Time Test Circuit UMT1204 Es/b Test Circuit +10V 125V 125V RL=~ L R.=¥,laL=I BZ • 0.211 FOR RESISTIVE SWITCHING, L=O t--III--v eE clamp +308V n :6~ .J L 3011 ADJUST P.W. TO OBTAIN 2A PEAK Ie -4V P.W.=25/LS 5011 -4V Resistive Turn-On Time Resistive Turn-Off Time 2000 Vee = 200V 1000 IB! = TJ 500 '" E. :;; 200 UJ ;:: ,~ 1"- "- 100 t. tSl =: leIS = 25'C - = = r-- -I- r---- .......... - ....3 V .... :;; 0.5 ;:: ~ 0.2 Vee 50 0.1 0.1 Ie - .05 .05 0.2 0.5 COLLECTOR CURRENT (A) UNITRODE CORPORATION - 5 FORBES ROAD LEXI NGTON, MA 02173 - TEL. (617) 861-6540 TWX (710) 326-6509 - TELEX 95-1064 = 200V = 25'C 0.1 0.2 Ie - 4-505 - / v 181 -= '82= 'cIS TJ 20 .05 t,-- 0.5 COLLECTOR CURRENT (A) PRINTED IN U.S.A. • POWER TRANSISTORS UMT2000 15A,450V NPN Mesa FEATURES • • • • DESCRIPTION Collector Emitter Voltage: 850V Peak Collector Current: 20A Storage Time::; 800ns } at Ic = lOA Fall Time::; 70ns Thesll high voltage, multiple layer . epitaxial, glass passivated power transistors combine fast switching, low saturation voltage and rugged secondbreakdown capability. They are designed for use in off-line power supplies, high voltage inverters and switching regulators. ABSOLUTE MAXIMUM RATINGS Collector Emitter Voltage, VCEV .................................................. 850V Collector Emitter Voltage, VCEOI.u.1 .............................................. .450V Emitter Base Voltage, VESO ........................................................ 6V Collector Current, Ic continuous .................................................. 15A Collector Current, ICM peak (Note 1) .............................................. 20A Base Current, IB continuous ..................................................... lOA Base Current, IBM peak .......................................................... 15A Power Dissipation, 25°C Case .................................................. 175W 100°C Case ................................................ 100W above 25°C, derate linearly ................................. 1WrC Operating and Storage Temperature Range .......................... -65°C to +200°C Thermal Resistance, Junction to Case, R9JC .................................... l"C/W NOle: 1. Pulse Test - Pulse Width = 5ms; Duty Cycle :5 10% MECHANICAL SPECIFICATIONS NOTE: Leads may be soldered to within 1f16" of base provided temperaturetime exposure is less than 260°C for 10 seconds. UMT2000 F ~WE e D 4/82 I G A B M - ! 11\ .I. . j jH G) J- 'i? K C BASE EMlnER 0 N G E F H L J K L M N INCHES MILLIMETERS .875 MAX. 135 MAX. .250-.043 DIA. .312 MIN. .038-.043 OIA 188 MAX. RAO 1.177-1.197 .655- 675 .205-.225 .420-.440 .525 MAX. RAO. .151-.161 DIA. .190-.210 22.23 MAX . 3.43 MAX. 6.35-11.43 7.92 MIN . 097-1 09 OIA . 478 MAX RAO. 29.90-30.40 16.64- 17.15 5.21 5.72 10.67-11.18 13.34 MAX. RAO . 3.84 4.09 OIA. 4.83-5.33 4·506 TO·204AA (TO·3) ~UNITRODE UMT2000 ELECTRICAL SPECIFICATIONS (at 25°C unless noted) TEST SYMBOL UNITS TEST CONDITIONS MIN. TYP. MAX. 450 - - V VeEv = 850V, VaEloff) = 1.5V Off Characteristics Collector Emitter Sustaining Voltage VCEO(sus) Ie = 100mA, la = 0, L = lOmH Collector Cutoff Current ICEV - - 0.25 mA Collector Cutoff Current Te = 100°C ICEV - - 2.5 mA VeEv = 850V, VOEloffi = 1.5V Collector Cutoff Current Te = 100°C leER - - 1.5 mA VeE = 850V, ROE = 500 Emitter Cutoff Current lEBO - - 1.0 mA VEO = 6V, Ie = 0 On Characteristics (Note 1) Collector Emitter Saturation Voltage VCElsatJ - V Ie = 5A, 10 = 0.5A VCEIs8tl - - 2.5 Collector Emitter Saturation Voltage 3.0 V Ie = lOA, 10 = lA Collector Emitter Saturation Voltage Te = 100°C VCElsatl - 3.0 - V Ie = lOA, 10 = lA Base Emitter Saturation Voltage VBElsat) - - 1.5 V Ie = lOA, la = lA Base Emitter Saturation Voltage Te = 100°C VSElsaU - 1.5 - V Ie = lOA, 10 = lA DC Current Gain hFE 5.0 - - Cobo - - 400 pF Veo = lOV, IE = 0, f test = 1.0kHz ton t, tf - 220 900 150 - ns ns ns Ie = lOA Vee = 250V 101 = lA 102 = 2A, Ro = 1.60 t, tf - 500 40 - - ns ns Ie = lOA Vee = 250V 101 = lA 102 = 2A, Ro = 1.60 VOEloffl = 5V - 650 30 50 1500 150 200 ns ns ns Ie = lOA 101 = lA VOEloff) = 5V VeEIPk) = 400V 850 30 70 - ns ns ns Ie = lOA 101 = lA VOEloff) = 5V VeE'Pk) = 400V Ie = l5A, VeE = 5V Dynamic Characteristics Output Capacitance Switching Characteristics Resistive Switching Speeds Turn on Time Storage Ti me (Note 2) Fall Time (Note 2) Storage Time (Note 2) Fall Time (Note 2) Inductive Switching Speeds Te= 100°C Storage Time Fall Time Crossover Time Te= 150°C Storage Ti me Fall Time Crossover Ti me t" t" te t" tf, te - - - - - - - Notes: 1 Pulse Test - Pulse Width = 300#5, Duty Cycle '" ~050 >25040 "'~ 1 Te = ztc --:::::: f::::: ~ '> ~~ ~ L <.!) ~ ~ 1.0 ;22;:'- :::..--I-~ ~e 1e ~ 20 '"~O.70 >- 'C ~ ,;, 0.50 ~030 0 .30 t= ~~oc -- 8020 ~ ~ > 0.15 015 LO 050 2.0 30 007 0.05 0.15 50 70 10 15 05 Ie-COLLECTOR CURRENT (A) Te = 100'C ;;' <.!) >- ~ ............ ~ '":::J § '"~ ~ u ~ U " 1 10 20 5.0 2.0 10 15 1ms ~ r-- t-Te= 25'C \ 1\ \ \ .2 010 ~ _._ Bondmg Wire Limit _ _ Thermal Limit Second Breakdown Limit 005 V", = 5.0V 1.0 10 '"l1 dc I ~ 05 , 8 \\ 5.0 02 50 20 '"~050 ~ \\ 30 Te = 25'C lOps"""" ~ '" u f3f = 5 I I 10 1', 5.0 20 ~ ., 10 Te = k5'C V ~ / Maximum Forward Bias Safe Operating Area 20 I z L ~ VL Ie-COLLECTOR CURRENT (A) DC Current Gain 50 ~ ~ - > 0.10 0.20 t~ 11~0'C""" ~ 1'\ ~ 002 20 10 50 Ie-COLLECTOR CURRENT (A) 10 20 30 50 70 100 200 300 450 Ve,-COLLECTOR-EMITTER VOLTAGE (V) Power Derating 100 ~ ::''"u :: 80 '\ ~ 60 Thermal(~ '">=z g "'" '\ 1\. Operating r\. 40 '\ ~ ~ 20 40 80 120 Te-CASE TEMPERATURE ('C) UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326-6509 • TELEX 95-1064 4·508 "" 160 200 PRI~TED IN U.S.A. UMT2000 TYPICAL DYNAMIC CHARACTERISTICS -- Typical Storage Time Transient Thermal Response 6 -0.5 -~ "'" AjP'" ~~ ~~ 5000 r7' ZIII=J,h 3000 K- ~1000 !w I r-r-. II _/.f,y _12A 700 ~ 500 -.;~. fBI' - 7A o ..7 ~ 300 / L u- ~ 200 t==~~·C- 0.05 10' 10' 10 ' Vo< = 20V 100 d=tp/T ~ 10-2 10 ' =~ -;;; q,:s.~ / 192 2000 1.5 20 3.0 50 70 10 15 Io-COLLECTOR CURRENT (A) Collector Current Fall Time Inductive Switching Measurements 1000 I~ g 500 ~ .... ./ ............ -' ~ 200 .... z lI! 0: 100 ::l <.l 0: o .... ~ "'" 1'0.. "" ~ 1,-\ 182 - 2A - v" 90%l a1 " - r--t==~~·C 10 15 lO%VcE(Pkl I, 1,-1 20 - 1,/ ~.>. 50 8 ok ='" ,/ ~"""+- ~I.. f~t,, 10/ I-- f--I .. - .L ....... I 90%V,,(p ) 1\ 90%1,(pk) ./ ,0 300 ....... \r- - __ I"~ r1~"" r-..... 2%1 0 Icpk f--- / Vee = 20V i\...../ 2.0 3.0 50 70 10 15 I,-COLLECTOR CURRENT (A) TIME Crossover Time 1500 1000 1,,=0_ 500 c ,.:;:; 300 ;:: 200 15 > Sl ~ V r--.." ,/ '~ 'r--..., ~ 100 1,,=2A= <.l I ." IS2 - 7 A _ 50 20 15 r-t~~~·C Vee =20V 15 20 30 5.0 7.0 10 15 I,-COLLECTOR CURRENT (A) UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95-1064 4·509 PRINTED IN U.S.A. POWER TRANSISTORS UMT2003 30A, 400V, NPN Mesa FEATURES DESCRIPTION • • • • These high voltage, multiple layer epitaxial, glass passivated power transistors combine fast switching, low saturation voltage and rugged second· breakdown capability. They are designed for use in off·line power supplies, high voltage inverters and switching regulators. Collector Emitter Voltage: 850V Peak Collector Current: 60A Storage Time ~ 3ps } at Ie = 20A Fall Time ~ O.8ps ABSOLUTE MAXIMUM RATINGS Collector Emitter Voltage, VeEV .................................................. 850V Collector Emitter Voltage, Ve.o,,"s' .......... , ................................... .400V Emitter Base Voltage, V.BO ........................................................ 7V Collector Current, Ie continuous .................................................. 30A Collector Current, leM peak ...................................................... 60A Base Current, IB continuous ...................................................... 8A Base Current, IBM peak .......................................................... 30A Power Dissipatiorl, 25°C Case .. : ............................................... 250W Junction Temperature. " ................................... , " ..........•... +200°C Thermal Resistance, Junction to Case, R.Je ............................... :: .. o.rc/w MECHANICAL SPECIFICATIONS UMT2003 NOTE: Leads may be soldered to within 'A... of base provided temperature· time exposure is less than 260'C for 10 seconds. F ~anE C 0 I G j A B M L~ ~\~. ~ I' J- ~ 'K C BASE EMITTER 0 E N G F H J L K L M N INCHES 875 MAX. . 135 MAX .250-.043 DIA. .312 MIN .057-.063 188 MAX. RAD. 1177-1.197 655-.675 205-.225 .420-.440 .525 MAX. RAD. .151 161DIA 190 .210 TO-204AA (TO-3) MILLIMETERS 22.23 MAX 343 MAX . 6.35-11.43 7.92 MIN . 1.45-1.60DIA 478 MAX RAD. 2990-30.40 16.64-17.15 5.21-5.72 1067-1118 13.34 MAX RAD 384-409DIA 483-5.33 [1::J] 4/82 4-510 _UNITRODE UMT2003 ELECTRICAL SPECIFICATIONS (at 25°C unless noted) TEST SYMBOL UNITS MIN. TYP. MAX. 400 - - V 7 - 30 V TEST CONDITIONS Off Characteristics Collector Emitter Sustaining Voltage VCEOIsusJ Emitter Base Voltage VEBO Ie = 0.2A. la = 0 L = 25mH Ie = ~A. la = O.lA Collector Cutoff Current Te = 25°C leEx - - 0.4 mA VeE = VeEX VaE = -2.5V Collector Cutoff Current Te = 125°C ICEX - - 4 mA VeE = VeEx VaE = -2.5V Collector Cutoff Current Te = 25°C leER - - 1 mA VeE = VeEx RaE $ 50 Collector Cutoff Current Te = 125°C leER - - S mA VeE = VeEX RaE $ 50 Emitter Cutoff Current IESO - - 2 mA VEa = 5V. Ie = 0 - 1.5 V Ie = 20A. la = 4A 3.5 V Ie = 30A. la = SA 1.6 V Ie = 20A, la = 4A On Characteristics (Note 1) Collector Emitter Saturation Voltage VCEtsatJ Collector Emitter Saturation Voltage VCEtsaU Base Emitter Saturation VeElsat) - Gain-Bandwidth Product h - 5 - MHz Output Capacitance Cobo - 500 - pF VeE = lOV, f = IMHz Resistive Switching Speeds Turn On Time Storage Time Fall Time ton t, tf - - 0.55 1.5 0.3 1 3 O.S ps ps ps Ie = 20A Vee = 150V la1 = -182 = 4A Inductive Switching Speeds T, = 25°C Storage Time Fall Time t, tf - - 3.5 O.OS - - ps ps Ie = 20A, la'end' = 4A La = 50pH Vee = 300V, -VBE = 5V Is - - 5 0.4 ps ps Ie = 20A, IB'end' = 4A La = 1.5pH Vee = 30V, -VBE = 5V Dynamic Characteristics VeE = 10V, Ie = lA f = IMHz Switching Characteristics Inductive Switching Speeds T, = 100°C Storage Time Fall Time tf Note: 1. t, = 300/ls; duty cycle"; 2%. UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326-6509 • TELEX 95-1064 4-511 PRINTED IN U.S.A. • UMT2003 Transient Thermal Response DC and Pulse Area ~300 - ~, '\ ~~~ f'., ~ .'1.1\ g 100 I~ \, fZ "' C< '" " ::J C< ~::l \ 10 o " 1 1', 10 .<~ \0'7" ... 'oS' ~,~ " \ \ / rV__~____r-__~~_ ~ T CAS" 25°F - - DC OperatIon -I SIn,IO i"ln 1 ~ ....', f\ I'i~\' f\' 1\ ,\ .2 001 :~; 'f<.- 1.... ,;;;- 10-2 20 -,--:-6_=_I'_/T-:-':,;11_',:-1,-:--:, , - :_ _-,-:-_ _-,-::_ _ 10 100 200 40 2 10 1 10° 10 1 102 tp(ms) Ve• - COLLECTOR·EMITTER VOLTAGE (V) Forward Biased Safe Operating Area (FBSOA) g ~ 30 1--1--+--+--/ C< C< ::J "o C< ~ 8 20r--+--+--t--- 1 .2 lOr--+--t--t-- °0~-~--2~00--'--~400 600 700 The shaded area can only be used for turn on. Ve• - COLLECTOR·EMITTER VOLTAGE (V) UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95·1064 4-512 PRINTED IN U.S.A. POWER TRANSISTORS UMT13004 UMT13005 4A, 700V, Fast Switching, Silicon NPN Mesa FEATURES DESCRIPTION • • • • • • These high voltage glass passivated power transistors, in a plastic TO·220AB package, combine fast switching, low saturation voltage and rugged Es/. capability. They are designed for use in off·line power supplies, high voltage inverters, switching regulators, deflection circuits, motor controls and solenoid/relay drivers. Collector Emitter Voltage: up to 700V Peak Collector Current: SA Rise Time: ,,:;;.7#S} t I - 2A Fall Time: ":;;0.9#5 a cKey Parameters characterized at 100'C Economical Plastic Molded Construction ABSOLUTE MAXIMUM RATINGS UMT13DD4 Collector Emitter Voltage, VCEV 600V.............. . ........................................................... .............................................. UMT1300S .. ... 700V ~~:~t~~O~;:i~~~t~~!~a~:~v~E~.(S~~I.:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ............... :::::::.::::: ....~O~~::::::::::: ....... ::::::::::::::~~ Collector Current, Ic continuous .......................... ..................................................... .. ............... 4A. ....................................4A Collector Current, ICM peak ......... ................................ ............................ .............................. .. ............SA.... .. ........ SA Base Current, 18 continuous ..................... ...................... ................................. ...2A...................... ...2A Power Dissipation, 25'C Case ......... ................................. .... 75W......... .. ........ .75W Derating Factor ...................................... . ....... ............. . .. 0.59W/'C.........................0.5CJW/'C Operating and Storage Temperature Range. .................................................. . -65 to lS0'C ...... . MECHANICAL SPECIFICATIONS UMT13004, UMT13005 SEATING PLANE TO·220AB A I I ~- L1 I -1 ---l S~CT R I Jl A-A JI~I It~L II OJ N 6-79 G PIN:. ~~~~ECTOR 3. EMITTER 4 COLLECTOR K 12.70 L 1.14 4.83 N Q - 1427 0.500 533 '1.77'- -O.G45 1.14 1.39 0190 0100 0080 0045 5.B5 6.85 O~30 254 2.04 '" 2.92 4·513 0025 0562 0070 0210 0120 ~ 0.055 O.27() [1JJ UNITRDDE • UMT13004 UMTl3005 ELECTRICAL SPECIFICATIONS (at 25'C unless noted) Test D.C. Current Gain (Note 1) Symbol D.C. Current Gain (Note 1) hFE Collector Saturation Voltage (Note 1) VCE('.'I Collector } T - 25'C Saturation Tc ;;;; 100'C Voltage c (Note 1) hFE 8 VCE (..,) Collector Saturation Voltage (Note 1) VCE('.'I Base Saturation Voltage (Note 1) VaE (••,) Base } T - 25'C Saturation Tc;;;; 100'C Voltage c (Note 1) UMT13004 MIN. MAX. 60 10 VaE (.af) Collector-Emitter Sustaining Voltage (Note 2) VCEO (.u.1 Emitter-Base Cutoff Current IEao Collector Cutoff Current ICEV Collector Cutoff Current, Tc =100'C IcEv Output Capacitance, Common Base Cobo Gain-Bandwidth Product FT Resistive Switching Speeds Delay Time Rise Time Storage Time Fall Time td tr t. t, Inductive Switching Speeds Tc= 100'C Storage Time Fall Time (t,; + ttV> t, t, Thermal Resistance, Junction-to-Case Thermal Resistance, Junction-to-Ambient UMT13005 MAX. MIN. 10 60 - .5 0.6 1.0 - 1.0 1.2 1.6 1.5 - 300 - 1 1 - 5 - - .5 Ic = LOA, la = 0.2A V Ic = 2.0A, la = 0.5A 1.0 V Ic = 4.0A, la = LOA 1.2 V Ic = LOA, la = 0.2A V Ic = 2.0A, la = O.5A Ic=10mA 1.0 1.6 1.5 400 - V - 1 mA - mA 1 - S 6S typo - Ic - 2.0A, VCE - SV V 0.6 - 65 typo 4 Ic - LOA, VCE - 5V 40 8 40 4 Test Conditions Units mA pF - MHz - 0.1 0.7 3.S 0.9 - 0.1 0.7 3.5 0.9 4.0 0.9 ,uS 1.67 - 4.0 0.9 RaJc - 1.67 'C/W RaJA - 62.5 - 62.5 'C/W ,uS VEa =9V VCE = 600V, VaE = -1.5V VCE = 7ooV, VaE = -1.SV VCE = 600V, VaE = -1.SV VCE = 700V, VaE =-1.5V Vca = 10V, f = 1 MHz VCE = 10V, Ic = .SA, f = 1 MHz Ic =2.0A Vcc = 12SV lal = la2 = O.4A VaE (0111 = SV, P.W. = 2S,uS Ic = 2.0A, L = SOO,uH lal = 0.4A, VaE (o'fl = SV VCE clamp = rated VCEX (.u.) Notes: 1. Pulse width = 250pS; duty cycle :51%. 2. Sustaining Voltage. Measured at a high current point where collector· emitter voltage is lowest. Current pulse length .. 50pS; duty cycle :5 1%. Voltage clamped at maximum collector·emitter voltage. Typical Inductive Load Switching Performance Ie Amps 0.5 1.0 2.0 UNITROOE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95-1064 TJ ·C t, I'S t f• nS 25 100 25 100 25 100 1.8 1.2 1.0 1.5 1.2 1.7 180 240 4·514 160 220 180 230 tfi nS 20 30 21 30 25 35 PRINTED IN U.S.A. UMT13004 UMT13005 Forward Bias Safe Operating Area Power Derating 100 5.0 ~ D.C. +--f...,c+-+''k++ 1mS r\. Z UJIl:~U ~ ~ ~S 2.0 DISSIPATION ~ LIMITED-~ >- ""- rTTJ ' ", ..... jUM,T 13OO I >Z UJ Il: Il: \ \ \ 40 0 .2r-~~++~~[;-\~~rH~ so 20 100 200 500 1\\ AT DESIRED OPERATING VOLTAGE. DERATE DISSIPATION CURRENT I _LIMIT AND II'" CURAENT LIMIT FROM U o 10 I ........ 20 :J \ ! 1\ Il: UJ IS/b LIMITED"-\ ....... ......... ~'b LIMITED z ;:: " .5 ~~~E::~~~!~:U~':~~:!~~~GL~ PURPOSES \ 60 (!J OASH LINES ON SOAR CURVES ARE \ 0 U 8 ~ 80 Il: !d01'0~~Bi UMT1300! ~ ~ r-.... 1\ ........ "-rOAR["'" I -I o 40 Te - 1000 \~ISSIPATION LIMITED 1- 1\ 80 120 160 CASE TEMPERATURE ('C) 200 Ve,-COLLECTORVOLTAGE (V) Reverse Biased Safe Operating Area , ~ I $: Te -100'C zUJ V'E {offl - -5V >-. ~ ~ Il: Il: :J U Il: 0 >U 0.5 UMT13004 - UJ ...I ...I 0 U 0.2 UMT1300S- I ~ 0.1 .05 10 100 200 500 20 50 Ve," 1"'1 - COLLECTOR VOLTAGE (V) 1000 Saturation Voltages D.C. Current Gain 200 I II 100 lsW I I le/l, 0- ~ "!:,'0j I I Isd.c III b;:::: VBE{SAT) f-- --;25' lSO'C UJ (!J I = 10 0.5 f-- > V- 0.2 ISO' 0_1 r=-. ::25' ::::.. . . . V ii' V' ~ VeE (SAT) SS'C .05 .02 Ie - COLLECTOR CURRENT (A) UNITRODE CORPORATION,S FORBES ROAD LEXI NGTON. MA 02173 ' TEL. (617) 861-6540 TWX (710l 326-6509 ' TELEX 95-1064 .05 Ie - 4-515 0.1 0.2 0.5 COLLECTOR CURRENT (A) PRINTED IN U.S.A. • UMT13004 UMT1300S Resistive Turn-On Time 2000 Resistive Turn-Off Time Ve~ ~ 200~ 1000 I" TJ I- = = ie lS i" 25°C ~ f-r-. f"" '" oS ~ 200 ;:: r--- ~ ... _V ~ w 0.5 :; ;:: I'\. l' 100 t, ~ 0.2 Vee 50 0.1 ~ i" i" 0.1 0.2 .05 .05 0.5 V 200V f"...: i,.....---' ie l5 25°C TJ 20 .05 t,l-->- I"- 500 0.1 0.2 0.5 ie - COLLECTOR CURRENT (A) ie - COLLECTOR CURRENT (A) Switching Time Test Circuit 125V R _125V l- R. Ie = ¥, I IiI = In FOR RESISTIVE SWiTCHING, L=O +6 V nU_ 0-_ +-...~- VeE ciamp 4V P.W. =25#5 UNiTRODE CORPORATION - 5 FORBES ROAD LEXiNGTON, MA 02173 - TEL. (617) 861-6540 TWX (710) 326-6509 - TELEX 95-1064 4-516 PRINTED IN U.S.A. UMT13006 UMT13007 POWER TRANSISTORS SA, 700V, Fast Switching, Silicon NPN Mesa FEATURES DESCRIPTION • • • • • • These high voltage glass passivated power transistors, in a plastic TO-220AB package, combine fast switching, low saturation voltage and rugged Es/. capability. They are designed for use in off-line power supplies, high voltage inverters, switching regulators, deflection circuits, motor controls and solenoid/relay drivers Collector Emitter Voltage: up to 700V Peak Collector Current: 16A Rise Time: .::;; l.OIlS} t I - 5A Fall Time: .::;; 0.7,,5 a cKey Parameters characterized at lOO'C Economical Plastic Molded Construction ABSOLUTE MAXIMUM RATINGS UMT1300& UMT13007 Collector Emitter Voltage, VCEV ..................... .................................................................. ...... ............... ......... 600V.. ..... .700V Collector Emitter Voltage, VCEO (SUS) ......... ....................• ...................................................... . ..........••... 300V...... ............ 400V Emitter Base Voltage, VEBO ............................................ ............................................................. ........... SV................................. 8V Collector Current, Ic continuous ................................................................................................ ................................. SA..................................... SA Collector Current, ICM peak ........................................................................................................ .. ........... .l6A ................................ 16A Base Current, 18 continuous ...................................................................................... .. ........ 4A ................................... 4A Power Dissipation, 25'C Case ....... ................... .................................................................... .. sow............................ .. SOW Derating Factor ................ ..................................................................... .. ................. O.641W/'C....... .. ... O.641W/'C Operating and Storage Temperature Range ......... ............................ .. .......... -65 to 150'C...... .. MECHANICAL SPECIFICATIONS UMTl3006, UMTl3007 SEATING PLANE MILLIMETERS DIM A 1 0 ---1 6·79 ¥#- I MAX INCHES MIN MAX 15.87 0.560 9.66 10.66 3.56 4.82 0.51 1.14 0.380 0.140 0.020 3.531 3.733 2.29 2.79 6.35 A 0.38 S~CT A A R MIN 14.23 oJ~'EGL PIN 1. BASE 2. COLLECTOR J EMITTER 4 COLLECTOR 06' 12.70 14.27 1.14 1.77 '" 5.33 2.54 2.04 1.14 58. 0139 0.090 I 0.625 I 0.420 0.190 0.045 0.147 0.110 0.250 0.015,0.025 1.39 0500 0.562 0045 I 0.070 0.190 0.210 0.100 0.120 0.080 O.l1S 0.045 0.055 6.85 0.230 '.0< 2.92 4-517 TO·220AB 0.210 ~UNITRDDE • UMT13006 UMT13007 ELECTRICAL SPECIFICATIONS (at 25'C unless noted) Symbol Test D.C. Current Gain (Note 1) D.C. Current Gain (Note 1) Collector Saturation Voltage (Note 1) Collector Saturation Te= 25'C Te =l00'C Voltage (Note 1) Collector Saturation Voltage (Note 1) Base Saturation Voltage (Note 1) Base Saturation Te =2S'C Te = 100'C Voltage (Note 1) Collector-Emitter Sustaining Voltage (Note 2) Emitter·Base Cutoff Current - 1.0 VeE!••'1 - 1.5 2.0 - 3.0 VCEI..,) V'E(H') VIE ("') VeEO(.usl lEBO Collector Cutoff Current, Te lOO'C leEV = UMT13007 MIN. MAX. 40 30 VeE ('.'1 leEv Output Capacitance, Common Base Gain-Bandwidth Product Resistive Switching Speeds Delay Time Rise Time Storage Time Fall Time Inductive Switching Speeds Te 100'C Storage Time Fall Time (tf; + ttv) Therma I Resistance, Junction-to-Case Thermal Resistance, Junction-to·Ambient 8 6 hFE hFE Collector Cutoff Current = UMT13006 MIN. MAX. 1.6 1.5 - 300 - 400 - 1 1.0 - 1.2 S - Cobo 1l0typ. Fr 4 40 30 8 6 - - - 4 Ic=2.0A, VCE=SV Ie = S.OA, VeE = 5V V Ie = 2.0A, I, = 0.4A 1.5 2.0 V Ie = S.OA, I, = 1.0A 3.0 V Ie = a.OA, I, = 2.0A 1.2 V Ie = 2.0A, la = 0.4A 1.6 1.5 V Ie = S.OA, I. = 1.0A - V le=10mA 1 mA - mA 1.0 -5 mA pF - MHz I'S td tr t. tf - 0.1 1.0 3.0 0.7 - 0.1 1.0 3.0 0.7 t. tf - 2.3 0.7 2.3 0.7 I'S 1.56 'C/W 62.S 'C/W RaJC - 1.56 - RaJA - 62.5 - Test Conditions 1.0 1l0typ. - Units VEI =9V VeE = 6OOV, VaE = VeE = 7ooV,VIE = VeE = 600V, VIE = VCE = 7ooV, V.E -1.5V -1.SV -1.SV -l.SV = =10V, f =1 MHz VeE =lOY, Ie = 0.5A, f = 1 MHz Vea le=S.OA Vee = 125V la, = 18Z=lA VaE(ofij =SV Ie = S.OA, VIE (ofij = SV 1.,=lA VeE clamp = rated VeEl( ('usl Notes: 1. Pulse width = 250#5; duty cycle :51%. 2. Sustaining Voltage. Measured at a high current pOint where collector·emitter voltage is lowest. Current pulse length'" 501'5; duty cycle :5 1%. Voltage clamped at maximum collector·emitter voltage. Typical Inductive Load Switching Performance Conditions: V clamp at rated VCEX fsus} (refer to RBSOA curve) VBI; loff} =-sv UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95·1p64 Ie Amps TJ ·C t, t f• tIl pS nS nS 3.0 25 100 .45 .575 70 100 10 20 5.0 25 100 .475 .60 25 45 10 8.0 25 100 .525 .625 20 45 10 15 4-518 4 PRINTED IN U.S.A. UMT13006 UMT13007 Power Oerating Forward Bias Safe Operating Area 100 20 10 I D.C. ~ ~ OmS ~ mS ...z ~ BO \ 0:: '"'" :> " '" "\ Dissipation Limited- ~ '" g I'. ";::z MTl30?'i\; 1 8 I 0.5 DASH LINES ON SOAR CURVES ARE 40 '"'" 20 " ......... i"'\ OJ nInIII Tc 25'C ES APPLY B L RATED Vc"" 10 1\ \. 100 o 500 200 • Is,b LIMITED \ AT DESIRED OPERATING VOLTAGE. OERATE DISSIPATION CURRENT I r-LIMIT AND III~ CURRENT LIMIT FROM u so 20 VCE - :> \. I! PURPOSES 1\ I " '"a ...z ~~~E:i~~~!~:u~~~::~~~~L~ "'~ 60 0:: I" Limited ...l ...u0 ""- UMTl301J6o Power I'\. u _0 ~ i'.. r\ ~o~s \?ISSIPATION LIMITED "'I 1"'" I I I 1\ so•• o 40 Tc - COLLECTOR VOLTAGE (V) BO 120 160 CASE TEMPERATURE ('C) 200 Reverse Biased Safe Operating Area 40 20 g ...z '"'" :> 10 SA 5 4 '"u a'" t; OJ ...l UMTl3006 ..J au I .l> .4 .2 .1 .04 10 so 20 100 200 SOO 1000 VCEX I"'I-COLLECTOR VOLTAGE (V) D.C. Current Gain Saturation Voltages 200 5 I VCE I = SV 100 'cll.=5 2 z < Cl ... 100'C '"'" :> '"u ~ SO Z 2S'C -I .- 20 ri - ""~ 5S'C ci 10 I ~ -55'C OJ " !:i a > z a ~, 0.5 5' ~ V V 0.1 Ic - 0.2 0.5 2 COLLECTOR CURRENT (A) UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON. MA 02173 • TEL. (617) B61-6540 TWX (710) 326-6509 • TELEX 95-1064 O'~ VV If) 0.1 / 100'C '" !;( 5 ~"" 55' :> 0.2 ~ .c .05 f.--; VIE (MIt) Cl ~ ~V :-- 25'C VcEflolltl .05 5 .05 4-519 0.1 2 0.2 0.5 'e-COLLECTOR CURRENT (A) 5 PRINTED IN U.S.A. UMT13006 UMT13007 Resistive Turn-Off Time Resistive Turn-On Time 1000 10 Vee lell, 100'C SOD ...... . .s ... :; "t-.. 5 1/ V 25'C' V t. 2 'iii' t--r-- '- ... 100 1oo'C ..... 1'- ....... .;; ts :; ;: ;: t. SO 25'C 0,5 ~ 0.2 20 Vee= 125V le/l,=5 10 0.1 125V 5 0.2 0.5 2 0.1 0.1 10 Ie-COLLECTOR CURRENT (A) ":::: 100'C i-"t, - .....J.... / J. 25'C I 0.2 0.5 1 2 Ie - COLLECTOR CURRENT (A) 10 Switching Time Test Circuit 125V 125V RL=~ R,=¥,I,,=IIZ • FOR RESISTIVE SWITCHING, L=O +--'1-- Ve• clamp R, P.W.=25/tS UNITRODE CORPORATION - 5 FORBES ROAD LEXINGTON. MA 02173 - TEL. (6171 861·6540 TWX (710) 326·6509 - TELEX 95-1064 4-520 PRINTED IN U.S.A. POWER TRANSISTORS UMT13008 UMT13009 12A, 700V, Fast Switching, Silicon NPN Mesa FEATURES DESCRIPTION • Collector Emitter Voltage: up to 700V • Peak Collector Current: 24A • Rise Time: ~ 1.0I'S} t I - 8A • Fall Time: ~ 0.7"S a c• Key Parameters characterized at 100'C • Economical Plastic Molded Construction These high voltage glass passivated power transistors, in a plastic TO-220AB package. combine fast switching, low saturation voltage and rugged Es/. capability. They are designed for use in off-line power supplies, high voltage inverters, switching regulators, deflection circuits. motor controls and solenoid/relay drivers. ABSOLUTE MAXIMUM RATINGS UMT13008 Collector Emitter Voltage, VCEV Collector Emitter Voltage, VCEO (SUSI . Emitter Base Voltage, VEBO .................................................• Collector Current, Ic continuous. Collector Current, ICM peak ... Base Current, la continuous. Power Dissipation, 25'C Case. Derating Factor ......... . Operating and Storage Temperature Range UMT13009 .................. 600V. ........... 700V . ........... 300V ........................ 400V . ................... 9V...... ............. 9V ..12A. . ..... 24A. .. 6A.... ...l2A .......... 24A .......6A lOOW.. .. lOOW ........ 0.80W/'C................... 0.80W/'C .. -65 to 150'C .. . MECHANICAL SPECIFICATIONS UMT13008 UMT13009 DIM • B C D F G H J PIN 1. BASE 2. COLLECTOR 3 EMITTER 4 COLLECTOR 6-79 · L N Q • S T MILLIMETERS MAX MI' 14.23 15.87 ....'.56 0.51 3.531 '.29 10.66 4.82 1.14 3.733 2.79 INCHIS MI. MAX 0.... 0.310 0.140 0.020 0.139 0.090 12.70 1.14 I." '.54 3.04 1.14 !1.I5 0.6. 14.21 1.77 5.33 3.04 2.92 1.39 6.15 4-521 0.625 0.... 0.190 0.045 0.147 0.110 0.500 0.250 0.025 0.562 0.045 I 0,070 0.190 0.210 6.35 0.31 TO-220AB 0015 0.100 0.0•• 0.045 0.210 0,120 0.U5 0.055 0.270 ~UNITRDDE II UMT13008 UMT13009 ELECTRICAL SPECIFICATIONS (at 25°C unless noted) Test D.C. Current Gain (Note 1) hFE D.C. Current Gain (Note 1) hFE Collector Saturation Voltage (Note 1) VCE Is.f) Collector Saturation Voltage (Note 1) VCE (..,) Tc =2Soc Tc = 100'C Collector Saturation Voltage (Note 1) VCE(s.') Base Saturation Voltage (Note 1) VaE( .. fl Base Saturation Voltage (Note 1) UMTl3OO8 MIN. MAX. 8 40 Symbol Tc =25'C Tc = lOO'C Collector-Emitter Sustaining Voltage (Note 2) VCEO Isus) Emitter-Base Cutoff Current IEao Collector Cutoff Current ICEV Collector Cutoff Current, ,Tc = lOO'C ICEV Output Capacitance, Common Base Cabo Gain-Bandwidth Product Fr Resistive Switching Speeds Delay Time Rise Time Storage Time Fall Time td t, ts tf Inductive Switching Speeds Tc= lOO'C Storage Time Fall Time (t f ; + ttv) ts tf Thermal Resistance, Junction-to-Case Thermal Resistance, Junction-to-Ambient 30 6 VaE(s.') UMTl3OO9 MIN. MAX. 8 40 - 1.0 6 - 1.0 V Ic = 8.0A, la = 1.6A 3.0 V Ic = 12.0A, la = 3A 1.2 V Ic 2.0 - 3.0 1.6 - - loS - loS 300 - 400 - 1 - S.O - 4 - - 1.5 2.0 V =S.OA, la = LOA Ic =8.0A, la = 1.6A - V Ic = lOmA 1 mA 1.6 1.0 5.0 180 typo 180typ. - 4 =S.OA, la = LOA Ic loS - =SV Ic = 8.0A, VCE = SV V - 1.0 Test Conditions Ic - S.OA, VCE 30 - 1.2 Units mA mA pF - MHz VEa =9V VCE = 600V, VaE = -1.SV VCE = 700V, VaE = -l.SV VCE = 600V, VaE = -1.5V VCE - 700V, Vae _ -1.5V Vca =lOV, f = 1 MHz VCE = 10V, Ic = O.SA, f = 1 MHz 0.1 1.0 3.0 0.7 - 0.1 1.0 3.0 0.7 /,S I c =8.0 Vcc 125V la, = la2 = 1.6A VaE (offl = 5V 2.3 0.7 2.3 0.7 /,S Ic 8A, VaE (offl = 5V la, = 1.6A VCE clamp = rated VCEX (sus) 1.25 °C/W 62.5 'C/W RSJC - 1.2S - RSJA - 62.5 - = = Notes: 1. Pulse width = 250pS; duty cycle ,;;1 %, 2. Sustaining Voltage. Measured at a high current pOint where collector-emitter voltage is lowest. Current pulse length'" 50pS; duty cycle';; 1%, Voltage clamped at maximum collector-emitter voltage. Typical I nductive Load Switching Performance Conditions: Ie Amps Ic =5 3.0 I" V clamp at rated VCEX (susl (refer to RBSOA curve) VeE (offl =-sv 5.0 8.0 12.0 UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 4-522 TJ °C 25 100 ~ 100 25 100 25 100 t, t,. nS t" nS 0.5 0.85 0.65 0.90 0.72 .092 .70 .78 100 130 10 14 10 12 12 28 25 110 pS 40 50 60 65 70 70 PRINTED IN U.S.A. UMT13008 UMT13009 Forward Bias Safe Operating Area 40 I 20 ~S 10 D.C. $ .... Z a:: a:: ::J u a:: " 4.0 UI 1 -" "(!l J"... Te - 25'C .10 '\ '\ UMT 3008 ~ I.- 1\ PURPOSES "" tTIIl 50 ....z t-- UI a:: a:: 20 ::J '\ t---LlMIT AND 100 IS/~ CURRENT LiMIT 25'1 SOAR JURVE I ~ o • I,. b LI M ITED , FirM \j'SSIPATION LIMITED 1\ 200 40 80 120 160 T - CASE TEMPERATURE ('C) e 500 200 f".- 1\ AT DESIRED OPERATING VOLTAGE. DERATE DISSIPATION CURRENT U o 1 \ \ 40 0 _'\ 3OO9 20 UI ~ '\ I,I,,~~ .04 ;:: « a:: ~ ~ .20 10 60 ~~~E~ES~~~!~:U~~~;::~~~GL~ \ 0 IU « DASH LINES ON SOAR CURVES ARE Z 1\ I" LIMITED S 80 ~ l'... 1\ ~ a:: '\ 1.0 .40 ~ ~ I'- 1..... ..J ..J u r-.... 20#r i"-r-,. LlMITEp-j---< ~ UI 0 :-... I". 1mS DISSIPATION~ 2.0 ~ u Power Derating 100 VeE-COLLECTOR VOLTAGE (V) Reverse Biased Safe Operating Area 15 12 10 $ .... Z UI a:: a:: ::J u a:: ~ ..J ..J 2.0 l\ VIE {off} ~-5V Tc ~ 100°C 1\ IBI =2.5A 1.0 0 u .5 1 -" UMTl3008 UMTl3009 .2 .1S 10 so 20 I 100 200 SOO 1000 v eEX ,,,,,-COLLECTOR VOLTAGE (V) 200 100 z ;;: <.!l 2S'C 0 1 tnT -5S'C U U c VeE - 5V 'e ll,-5 IIII IIII J ~I '1/ 100'C UI a:: a:: Saturation Voltages so ....Z ::J D.C. Current Gain fo"'" 0 I- -='" - .~ I--'~ -55'C V'E{sat) ~ k~ 100'C UI ~ r-..:~ !:i I' 25'C o. S ~ o > ~ VII 0.2 IJiI. S 2 .OS ~ 0.1 0.2 O.S 10 o. 1 .05 .05 20 Ie - COLLECTOR CURRENT (A) UNITRODE CORPORATION. S FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6S09 • TELEX 95-1064 rrJ I;r-= 25'C 0.1 -""" 0.2 1ID~ VeE (sat) /'/ V /-S5'C .J,.- 10 O.S 20 Ie - COLLECTOR CURRENT (A) 4-523 PRINTED IN U.S.A. UMT13008 UMT13009 Resistive Turn-Off Time Resistive Turn-On Time 2000 1000 - r-- f- Ve• = 125V I IIIIII 1- 1,,=1.,= % L 500 ~ ~~ 100 100'C .... ~ . V lA 1/ ~IBI ~ O'e,.. '"::;:;:: ~~ r-- Irs 100'C i"'" 100'C ....... ~ II' I, "'25'C 0.1 U1 20 .20 I" .3 0.5 25'C 0.2 50 2~ I........ I ~..."<1' ... '"::E t.~ VeE = 125V oS 200 ~ ;:: 1ho·cl I"-r- 2S"C IJ 1\ .5 Ie - COLLECTOR CURRENT (A) 10 .05 .2 20 .5 10 Ie-COLLECTOR CURRENT (A) 20 Switching Time Test Circuit 125V 125V RL=~ Ra =¥,1 81 =IIZ • FOR RESISTIVE SWITCHING, L=O :6J}s ~"'--VCE clamp R. -4V P.W. =25~S UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95·1064 4·524 PRINTED IN U.S.A, POWER TRANSISTORS UPTl11 UPT112 UPT113 UPT114 UPTl15 1 Amp, 150V, Planar NPN FEATURES • Collector-Base Voltage: up to l50V • Peak Collector Current: 2A • Turn-on Time: lOOns • Turn-off Ti me: 250ns DESCRIPTION Unitrode power transistors provide a unique combination of low saturation voltage, high gain and fast switching. They are ideally suited for power supply pulse amplifier and similar high efficiency power switching applications. ABSOLUTE MAXIMUM RATINGS UPT113 UPT112 UPT111 UPT114 .. 60V .................. SOV .. Collector-Base Voltage, Vcao . Collector-Emitter Voltage, VCEO Emitter-Base Voltage, VEao D.C. Collector Current, Ic Peak Collector Current, Ic Base Current, I a ............. lOOV .... GOV .. . SOV . 5V .. . ..... 5V. .. lA .......... 1A.. . . ... 2A .... .... ... 2A.. . 0.5A .. .0.5A .. 40V .5V.. . lA.... ........ 2A... 0.5A. . UPT115 l20V .. ... lSOV 100V 100V ... . SV ... SV . ....... lA .. .1A . 2A .. ........ 2A O.SA .. ...... .... ...... O.SA Power Dissipation 25'C Ambient 100'C Case Thermal Resistance, 6 J _ C Operating and Storage Temperature Range .SSW. .4W. .. 2S'C/W -6S'C to 200'C . MECHANICAL SPECIFICATIONS UPT111 ---CoT:: 0 --; r=r=~i __ ~1iE i Af ----- W ----- -. I -- ---.------- --- F UPTll2 A B C UPT113 UPT114 INCHES 335- 370 305-.335 240- 260 UPT115 TO-5 MILLIMETERS 851 940 775 851 609-660 3810 MIN 0 E 15 MIN F 017 ± G H J K l 200 100 031± 003 029- 045 100 010- 030 ·g21 4-525 0254 0762 432 ± g~~ 508 254 787't 076 736 114 254 ~UNITRDDE • UPTl11 UPT112 UPTl13 UPT114 UPTll5 ELECTRICAL SPECIFICATIONS (at 25°C unless noted) Test D.C. Current Gain (Note 1) D.C. Current Gain (Note 1) D.C. Current Gain (Note 1) Collector Saturation Voltage (Note 1) Base Saturation Voltage (Note 1) Collector-Emitter Breakdown Voltage (Note 1) UPT111 UPT112 UPT113 UPT114 UPT115 Collector-Emitter Breakdown Voltage (Note 1) UPT1l1 UPT112 UPTll3 UPT114-5 Collector-Emitter Cutoff Current Collector-Emitter Cutoff Current, 150·C Emitter-Base Cutoff Current Output Capacitance Gain-Bandwidth Product Turn-on Time Switching Speeds Turn-off Ti me Note: 1. Pulse Width _ 300 ~s; Symbol Min. Max. Units hFE hFE 30 20 - - 1.0 1.2 Vdc Vdc hFf' VCE (sat) VaE (sat) BVCER 60 80 100 120 150 - 40 60 80 100 - BVcEO ICER ICER I ESO Cob fT ton toff Vdc = 0.5A, VCE = 5Vdc = lA, VCE = 5Vdc = 2A, VCE = 5Vdc = lA, la = O.IA = lA, la = O.1A Ic = lOmAdc; RaE = lOOn Vdc Ic !LAdc mAdc !LAdc pf MHz ns ns VCE - rated BVcEO, RaE - lOOn VCE rated BVCEO' RaE lOOn, T 150·C VES 5Vdc Vcs 10Vdc, IE 0, f IMHz Ic - O.IAde, VCE _ 5Vdc, f _ 10M Hz Ic _IA 15 Typ. - - 10 1.0 50 40 - - 50 Typ. 100 Typ. 250 Typ. g 1 ~ .5 .... z 0: ::> .2 CJ 0: ~ I'\.. "-. ""- .1 .... 8.05 I'\.. "~ 1 J TA=2~·C Pulse Width = 1 ins .01 l = = = 500 D~~cle = 2.5%,- z ;;: "'X'" "....z = = = = l>\. ms~ ~ 0: UPTlll UPT1l2 UPT1l3 t-UPTlI4 t-UPT1l5 ::> TJ~Lc ,....-- 200 f,--50 CJ TJ = -SS·C <5 ~ c:i I 20 .t 10 .005 VeE = SV TJJS~ "- 100 ....0: I .02 Pulse Widlh = 1 Dut CYClj = 2i% _u = 10mAdc D.C. Current Gain vs. Collector Current " "- D,C j .J Ic Ic Ic Ic Ic duty cycle ,.2%. Maximum Safe Operating Area UPT111 -115 2 Test Conditions --M r---. ~ '\ 5 10 20 50 100 VeE-COLLECTOR - EMITTER VOLTAGE (V) .02 Switching Speed Circuit .05 .1 .2 .5 Ie - COLLECTOR CURRENT (A) +60V GOIl 2SV .0S~f Jl ~-""""-'--"M H _ _- I 10~s -4V UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326·6509 • TELEX 95-1064 4-526 PRINTED IN U S.A. UPT211 UPT212 UPT213 UPT214 UPT215 POWER TRANSISTORS 2 Amp, 150V, Planar NPN FEATURES • Collector-Base Voltage: up to l50V • Peak Collector Current: 5A • Turn-on Time: Bans • Turn-off Time: 300ns OESCRIPTION Unitrode power transistors provide a unique combination of low saturation voltage, high gain and fast switching. They are ideally suited for power supply, pulse amplifier and similar high efficiency power switching applications. ABSOLUTE MAXIMUM RATINGS UPT211 UPT213 UPT212 UPT214 UPT215 Collector-Base Voltage, VCBO . . 6OV..... ....... 80V ...................... lOOV.... '" l2OV.. . .... l50V Collector-Emitter Voltage, VCEO . 40V . .. 60V . SOV ........ ............... lOOV... .... lOOV . ... 5V.. 5V..... .............. 5V......... .... 5V......... ....... 5V Emitter-Base Voltage, VEBO .............. . D.C. Collector Current, Ic . M.. ............ M....... ._M_ .. M_. ........ M Peak Collector Current, Ic 5A.. ......... ......... 5A ........... 5A ..... _._.... . .. 5A ..................... _. 5A Base Current, IB . . .... M M ............. _..... ~._... .~ ....... M Power Dissipation 25°C Ambient . ...... 85W .............................................................................. lOO°C Case 4W ............................................................................... Thermal Resistance, 9 J _ C .... 25°C/W ........................................................................... Operating and Storage Temperature Range .................................... . _65°C to 2000C .............................................................__ . MECHANICAL SPECIFICATIONS UPT211 -- C r D r=T"~I_iIE 1- -- . I.. I e- _ ... 1 ! __ ~ -' .. F A B C -1 A UPT212 BASE D UPT213 INCHES 335- 370 305- 335 240- 260 15 MIN E 010- 030 F O17±gg~ G H J K 200 100 03l± 003 l 029- 045 100 4-527 UPT214 UPT215 TO-5 MILLIMETERS 851-940 775-851 609-660 3810 MIN 0254-0762 432 ± g~~ 5 08 254 787± 076 736 114 254 ~UNITRODE • UPT211 UPT212 UPT213 .UPT214 UPT215 ELECTRICAL SPECIFICATIONS (at 25'C unless noted) Symbol Min. Max. Units hFE hFE hFE Vcdsat) VBE (sat) 30 20 - - - 1.0 1.2 Vdc Vdc Ic = Ic = Ic = Ic = Ic = Vdc Ie = 10mAdc; RBE = lOOn 60 80 100 120 150 Vdc Ic Test D.C. Current Gain (Note 1) D.C. Current Gain (Note 1) D.C. Current Gain (Note 1) Collector Saturation Voltage (Note 1) Base Saturation Voltage (Note 1) Collector-Emitter Breakdown Voltage (Note 1) UPT211 UPT212 UPT213 UPT214 UPT215 Collector-Emitter Breakdown Voltage (Note 1) UPT211 UPT212 UPT213 UPT214-5 Collector-Emitter Cutoff Current Collector-Emitter Cutoff Current, 150'C Emitter-Base Cutoff Current Output Capacitance Gain-Bandwidth Product Turn-on Time Switching Speeds Turn-off Time Not.: 1. Pulse width 10 Typ. BVCER BVCEO - 40 60 80 100 - ICER ICER lEBO Cob fT ton toff Test Conditions 10 1.0 50 40 lOmAdc VCE = rated BV cEO , RBE = 1000 VCE = rated BVCEO ' RBE = lOon, T = 150'C VEB = 5Vdc VCB = 10Vdc, IE = 0, f = 1MHz Ic = O.IAdc, VCE _ 5Vdc, f _ 10MHz Ic=2A /LAdc mAdc /!Adc pf MHz ns ns 70 Typ. 130 Typ. 300 Typ. = 0.5A, VCE = 5Vdc 2A, VCE = 5Vdc 5A, VCE = 5Vdc 2A, IB = 0.2A 2A, IB = 0.2A = 300 I'S; duty cycle ",2%. D.C. Current Gain vs. Collector Current Maximum Safe Operating Area UPT211-215 , ,, '/ ,',,, V l"-,. ~ $ ... 1 z "'~ .5 ::> o ~ .2 ~ .1 8 .05 I _u .02 f\... A K f-Dt "'- = fms~ DUlY eye'i ~ tI = 2.5% VeE = 5V I Pulse Width = Ims Duty Cycle = 10% 200 r- z ¢ TA = 25°C ~ 100 "''~" 50 o -- - I 20 it I--UPT213 -IT'~25'C - I'-.. ~,~-5Jc ~ ~ ~ UPT211 f--UPT212 y, .01 .005 ,Duty Cycle f\... Width T,_IJ Pulse Width = Ims ~ (A puise / ~ \ 10 UPT214 !+--UPT215 5 125102050100 V, E- .05 .1 1<., - COLLECTOR - EMlnER VOLTAGE (V) .2 .5 COLLECTOR CURRENT (A) Switching Speed Circuit +60V 25V .05~f fl.,..............,.,....... . . . . . . . . . . . . . -l H IQps -4V UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON. MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95·1064 4-528 PRINTED IN U.S.A. POWER TRANSISTORS UPT311 UPT312 UPT313 UPT314 UPT315 2 Amp, 400V, Planar NPN UPT321 UPT322 UPT323 UPT324 UPT325 DESCRIPTION Unitrode high voltage transistors provide a unique combination of low saturation voltage, fast switching, and excellent gain. They are ideally suited for off-line power supply designs and other applications where the increased voltage rating adds to system reliability. FEATURES • Collector-Base Voltage: up to 400V • Peak Collector Current: 3A • Turn-on Time: 200 ns • Turn-off Time: 800 ns ABSOLUTE MAXIMUM RATINGS UPT311 UPT321 UPT312 UPT3Z2 UPT313 UPT323 UPT314 UPT324 UPT315 UPT325 300V ........ ...... 350V .. .. ............ ...... 400V 250V .. ........ ........... . 300V .. ... 300V ..... 5V... .. ........... 5V. .. ......... 5V 2A.... ....... 2A ........ 2A .... 3A .................. 3A.. .. .. 3A Collector-Base Voltage, VeBo 200V.. ........ 250V .. . . 150V .. . . 200V. Collector-Emitter Voltage, VCEO ' Emitter-Base Voltage, VEBO .5V .................... 5V .. .. D.C. Collector Current, Ie .......... 2A. . ...... 2A .. Peak Collector Current, Ic .3A.. 3A ..... .. 1A .. 1A Base Current, IB Power Dissipation 25'C Ambient lOO'C Case Thermal Resistance, 8 J _ C . Operating and Storage Temperature Range . ~.. UPT311-315 .. ..... lW ... . lOW ... .. lO'C/W -65'C to 200'C ~... ~ UPT321-325 .. 2W .. .J6W .. . 6.7'C/W .... -65'C to 200'C MECHANICAL SPECIFICATIONS UPT311 UPT312 A B C 0 E UPT321 UPT313 INCHES 335- 370 305 335 240 260 15 MIN. 010- 030 F 017 ± G H J K L 200 100 UPT322 UPT314 TO-5 MILLIMETERS 851 940 775-851 609-660 38.10 MIN 0254 0762 ggi 432 ± g~l 508 254 787± 076 736 114 254 03l± 003 029- 045 100 UPT323 UPT315 UPT324 UPT325 TO-66 H BASE EMITTER A B C 0 E F G H J K L M INCHES MILLIMETERS 620 MAX. 1575 MAX. .050 - .075 1.27 - 1.90 .250 - .340 6.35 - 8.63 .360 MIN 9.14 MIN . .028 - 034 OIA .711 .863 .958 - .962 24.33 - 24.43 570 - .590 14.47 - 14.98 145 MAX RAO. 3.68 MAX. RAO. 142 - .152 OIA. 3.60 - 3.86 OIA. .350 MAX. RAD 889 MAX. RAD. .190 - 210 4.82 - 5.33 093 - 107 2.36 - 2.72 4-529 ~UNITRODE • UPT311 UPT~12 UPT313 UPT314 UPT315 UPT321 UPT322 UPT323 , UPT324 UPT325 ELECTRICAL SPECIFICATIONS (at 25°C unless noted) Symbol Min. Max. Units hFE hFE hFE VCE (sat) V8E (sat: BVCER 30 10 - - Test D.C. Current Gain (Note 1) D.C. Current Gain (Note 1) D.C. Current Gain (Note 1) Collector Saturation Voltage (Note 1) Base Saturation Voltage (Note 1) Collector-Emitter Breakdown Voltage (Note 1) UPT311, UPT321 UPT312, UPT322 UPT313, UPT323 UPT314, UPT324 UPT315, UPT325 Collector-Emitter Breakdown Voltage (Note 1) UPT311, UPT321 UPT312, UPT322 UPT313, UPT323 UPT314-5, UPT324-5 Collector-Emitter Cutoff Current Collector-Emitter Cutoff Current, 150°C Emitter-Base Cutoff Current Output Capacitance Gain-Bandwidth Product Turn-on Time Switching Speeds Turn-off Time Note: l. Pulse width = 300 "s, duty cycle - 300 350 400 BVCEO - 1"'- 1 Z ~ II: ::> o Pulse Width::;: 1 ms ,2 II: 5 .05 /lAdc mAdc /lAdc pf MHz ns ns ~c ~ lODGe DU~Y Cycle ==:; 10% Pulse Width = 1 ms 1\ \ I "- ~ g ~ ~ Pulse Wid h= o II: o ,2 i Pulse Width = 1 ms >'\\ ms D.C, .1 I- \~ z ~u .02 VeE - COLLECTOR - EMITTER VOLTAGE (V) ~LJ.c - o - _i, _ 5~·C--"'" ~ -~~ I-- o veE == sv -- ~J,=25~ .- ~ 50 I-- \ UPT321 UPT322UPT323 UPT324/325 .oI 100 200 300 100 "'II: I .005 SO 200 ci UPT314/315 20 z ~ ~ .005 500 ~ l00'C DU~Y Cycle= 10% .5 Duly Cycle = 25%/" II: :> fc 5 .os UPT311 UPT312 UPT313 10 = = D.C. Current Gain VI. CoUector Current o ,01 = = = VCE rated BVCEO' R8E lOOn VCE rated BVCEO' RBE lOOn, T = 150°C VE8 = 5Vdc VCB 10Vdc, 'E = 0, f = 1M Hz Ic - 0.5Adc, VCE _ 5Vdc, f _ 10MHz Ic _lA Maximum Safe Operating Area t; o ~u,02 = lOmAdc UPT321- 325 :~ D,C•. / .1 Ic ",2%. l\ " >1,\ .5 Duty Cycle = 25% t ~ ~ 10 1.0 50 50 40 Typ. 200 Typ. 800 Typ. UPT311-315 5 Vdc - 150 200 250 300 ICER ICER I E80 Cob fT ton torr Vdc Vdc Vdc - 200 250 Maximum Safe Operating Area I- 10 Typ. 1.0 1.5 Test Conditions = 0.5A, VCE = 5Vdc =2A, VCE =5Vdc =3A, VCE = 5Vdc = 2A, 18 = 0.4A =2A, 18 =O.4A Ic = 10mAdc; R8E = lOOn Ic Ic Ic Ic Ic 20 "i~ 10 \ 5 10 20 50 100 200 300 5 VeE - COLLECTOR - EMITTER VOLTAGE (V) .03 .OS .1 Ie - .2 .5 1 2 3 COLLECTOR CURRENT (A) Switchinl Speed Circuit +100V loon 2SV .0,"1 Jl . . . . . . ___~. . . . . . .--t H 10~s -sv UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95·1064 4-530 PRINTED IN U.S.A. UPT521 UPT522 UPT523 UPT524 UPT525 POWER TRANSISTORS 3 Amp, 400V, Planar NPN FEATURES DESCRIPTION • • • • Unitrode high voltage transistors provide a unique combination of low saturation voltage, fast switching, and excellent gain. They are ideally suited for off-line power supply designs and other applications where the increased voltage rating adds to system reliability. Collector-Base Voltage: up to 400V Peak Collector Current: 5A Tu'rn-on Time: 200ns Turn-off Time: 900ns ABSOLUTE MAXIMUM RATINGS UPT521 Collector-Base Voltage, VCBO . Collector-Emitter Voltage, VCEO .. Emitter-Base Voltage, VEBO . D.C. Collector Current, Ic ...... Peak Collector Current, Ic Base Current, 18 . Power Dissipation 25'C Ambient . 100'C Case Thermal Resistance, 8 J _ C . Operating and Storage Temperature Range 250V ... . 200V . .5V.. .... 3A ........ 5A .2A ....... 2A UPT524 UPT523 UPT522 ... 200V .. .... 150V ........ ... 5V ......... 3A .. . .5A ...... 300V .. ....... 250V ... 5V. ... 3A .. ... 5A . 2A UPT525 ........ 350V .... ..... 400V ..... 300V ........ 300V 5V .. 5V .. . 3A .. . ..................... 3A .... 5A .. 5A ... 2A ...... .... 2A .. .. 2W ... 25W .. ...... 4'C/W -65'C to 200'C MECHANICAL SPECIFICATIONS UPT521 UPT522 UPT523 UPT524 UPT525 TO·66 H r-M' B+i~ o BASE E.MITTER INCHES A B C 0 E F G H J K L M .620 050 250 360 .028 958 .570 145 . 142 350 190 .093 MILLIMETERS MAX. 1575 MAX. .075 127-190 - .340 6.35 8.63 MIN. 9.14 MIN. - 034 DIA. .711 .863 24.33 - 24.43 - .962 - 590 14.47 - 14.98 MAX. RAD. 3.68 MAX. RAD. - .152 DIA. 3.60 - 3.86 DIA . MAX. RAD. 8.89 MAX. RAD. - .210 4.82 - 5 33 107 2.36 2.72 4-531 ~UNITRODE • UPT521 UPT522 UPT523 UPT524. UPT525 ELECTRICAL SPECIFICATIONS (at 25"C unless noted) Symbol Min. Max. Units hFE hFE hFE Vc,(sat) VSE (sat) BVCER 25 10 - - Test D.C. Current Gain (Note 1) D.C. Current Gain (Note 1) D.C. Current Gain {Note 1) Collector Saturation Voltage (Note 1) Base Saturation Voltage (Note 1) Collector-Emitter Breakdown Voltage (Note 1) UPT521 UPT522 UPT523 UPT524 UPT525 Collector-Emitter Breakdown Voltage (Note 1) UPT521 UPT522 UPT523 UPT524-5 Collector-Emitter Cutoff Current Collector-Emitter Cutoff Current, 150"C Emitter-Base Cutoff Current Output Capacitance Gain-Bandwidth Product Turn-on Time Switching Speeds Turn-off Time Nate: 1. Pulse width 10 Typ. 1.5 400 - 150 200 250 300 - 200 250 300 350 BVcEO - ICER ICER lEBO Cob fr ton toff Vdc Vdc Ic Vdc Vdc l.U - Test Conditions =l.OA, VCE = 5Vdc =3A, VCE =5Vdc =5A, VCE = 5Vdc =3A, I, =0.6A =3A, Is =0.6A Ic = lOmA(~; RSE = lOOn Ic Ic Ic Ic Ic 10 1.0 50 120 30 Typ. 200 Typ. 900 Typ. =10mAdc = = = = /LAdc mAdc /LAdc pf MHz ns ns = = VCE rated BVCEO' RBE lOOn VCE rated BVCEO' RBE lOOn, T 150"C VEB 5Vdc Vcs 10Vdc, IE 0, f = 1MHz Ic - 0.5Adc, VCE _ 5Vdc, f _ 10MHz Ic - 3A = = = 300 I'S; duty cycle :;;:2%. Maximum Safe Operating Area L S I- 1 ~ .5 " I.D.C. ~ ~ g .2 ~ .1 8 .05 1 _u "~l .. Pulse Width _ 1 ms Duty Cycle = 10% Z a: ) D.c. Current Gain VI. Collector Current 500 Te=IOO·C Pulse Width = 1 m~_ ~~utyycle = 25% -'" z 1,\,\ 200 ~ 100 z 1\" '" a: ~ u \ 50 ~ \ 120 ~~fJ- .02 UPT523- --- sv~ TJ~ TJ - 2S·C " T,=-5~ '\.. ............. -......... ~ I\- , ~ 10 UPT524/52 .01 VeE = 5 .005 5 I VeE - 10 20 COLLECTOR - 50 .05 100 200300 EMITTER VOLTAGE (V) .5 .1 Ie - COLLECTOR CURRENT (AI Switching Speed Circuit +I00V 330 -sv UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 4-532 PRINTED IN U.S.A. POWER TRANSISTORS UPT611 UPT612 UPT613 UPT614 UPT615 5 Amp, 150V, Planar NPN FEATURES DESCRIPTION • • • • Unitrode power transistors provide a unique combination of low saturation voltage, high gain and fast switching. They are ideally suited for power supply, pulse amplifier and similar high efficiency power switching applications. Collector-Base Voltage: up to lSOV Peak Collector Current: lOA Turn-on Time: 250ns Turn-off Time: 550ns ABSOLUTE MAXIMUM RATINGS UPT&11 UPT612 Collector-Base Voltage, VCBO .. 60V .. 40V Collector-Emitter Voltage, VCEO '" Emitter-Base Voltage, VEBO ........ .5V .. . D.C. Collector Current, Ic .................... 5A .. . Peak Collector Current, Ic ....... lOA ... Base Current, IB 2A Power Dissipation 25'C Ambient . IOO'C Case Thermal Resistance, 9 J _ C . Operating and Storage Temperature Range UPT613 UPT614 .... ....... SOY. ....... IOOV... ............ 120V.... 60V BOV .... lOOV 5V .......................... 5V...... .. ......... 5V... .. M ... UPTB15 . .......... 150V IOOV 5V ... M ......... M.........M lOA.. ....... lOA. M..... .... M.. . ...... lOA. .......... M.... .......... lOA ......... M . IW 5W ... . . . 20'C/W .. . -65'C to 200'C ... MECHANICAL SPECIFICATIONS UPT611 UPT612 UPT613 UPT614 UPT615 A B C D E INCHES .335- 370 305-.335 240- 260 15 MIN 010- 030 8g~ F 017 G H J K L 20D 100 031± 003 029- D45 100 ± 4-533 TO-5 MILLlMtTERS 851-9.40 7.75-851 609-660 38.10 MIN. 0254 0.762 432 ± g~~ 508 254 787± 076 736 114 254 ~UNITRDDE • UPT611 UPT612 UPT613 UPT614 UPT615 ELECTRICAL SPECIFICATIONS (at 25·C unless noted) Symbol Min. hFE hFE hFE VCE (sat) 30 15 Test D.C. Current Gain (Note 1) D.C. Current Gain (Note 1) D.C. Current Gain (Note 1) Collector Saturation Voltage (Note 1) UPT611-3 UPT614-5 Base Saturation Voltage (Note 1) COllector-Emitter Breakdown Voltage (Note 1) UPT611 UPT612 UPT613 UPT614 UPT615 Collector-Emitter Breakdown Voltage (Note 1) UPT611 UPT612 UPT613 UPT614-5 Collector-Emitter Cutoff Current Collector-Emitter Cutoff Current, 150·C Emitter-Base Cutoff Current Output Capacitance Gain-Bandwidth Product Turn-on Time Switching Speeds Turn-off Time = 300 ps, Note: 1. Pulse WIdth Max. - -- - - - VSE (sat) BVCER 1..0 1.5 Vdc Vdc 1.5 Vdc 60 80 100 120 150 - Vdc Vdc BVCEQ - 40 60 80 100 - ICER ICER lEBO Cob fr ton toll 1 ::J u .5 0: 1= ~ a u I u .2 " I"" 1"'- 1"'I" " I" '< ~ '\, "" '""'1"'- .1 .05 .02 = 10mAdc = = = = = I-- .01 = = VCE rated BVCEQ' RSE lOOn, T 150·C VES 5Vdc VCS lOVdc, IE 0, f 1M Hz Ic 0.5Adc, VCE 5Vdc, f 10MHz Ic 5A = -= = = D.C. Current Gain ys. Collector Current 500 ~ 0: Ic duty cycle ';2%. I" l:1 = 5A, Is = O.SA = 10mAdci RSE = lOOn 1/CE = rated BV CEQ' RSE = 10011 ,uAdc mAdc ,uAdc pf MHz ns ns 10 1.0 50 120 40 Typ_ 250 Typ. 500 Typ. = lA, VCE = 5Vdc = 5A, VCE = 5Vdc = lOA, VCE = 5Vdc = 5A, Is = O.5A Ic Ie 10 l;: Ic Ic Ic Ic - 12 Typ. Maximum Safe Operating Area 5 Test Conditions Units - UPT611 UPT612 UPT613 UPT614/15 1 VeE - ~ ~ 5 10 20 COLLECTOR - J T,,:::: 2S"C VeE 5V TJ :::: 150"C ~ Duty Cycle :::: 2.5%, 200 z ;;: ........- Pulse Width :::: 1 ms lr("""" V- CJ 100 Duty Cycle - ~ 0: 10%, _ _ _ _ Pulse Width :::: g; 1 ms SO u U Duty Cycle _ 25%, _ _ _ _ ci I Pulse Width :::: Ims_ D.C. 20 10 - ;:b --- L-- ............. TJ t\ --~" == -55"C 5 50 100 EMITTER VOLTAGE (V) .1 .2 1(. - .5 COLLECTOR CURRENT (A) ~ \ 10 Switching Speed Circuit +60V 12n SOV son 100 -4V UNITRODE CORPORATION. 5 FORBES ROAD LEXINqTON, MA 02173 • TEL. (6Vl 861-6540 TWX (7lQl 326-6509 • TELEX 95-.1064 4-534 PRINTED IN U.S.A. POWER TRANSISTORS UPT721 UPT722 UPT723 UPT724 UPT725 5 Amp, 400V, Planar NPN FEATURES OESCRIPTION • • • • Unitrode high voltage transistors provide a unique combination of low saturation voltage, fast switching, and excellent gain. They are ideally suited for off-line power supply designs and other applications where the increased voltage rating adds to system reliability. Collector-Base Voltage: up to 400V Peak Collector Current: lOA Turn-on Time: 2S0ns Turn-off Time: 800ns ABSOLUTE MAXIMUM RATINGS Collector-Base Voltage, VCBO Collector-Emitter Voltage, VCEO Emitter-Base Voltage, VEBO D.C. Collector Current, Ic . Peak Collector Current, Ic Base Current, IB Power Dissipation 2S"C Ambient 100"C Case Thermal Resistance, 9 J _ C Operating and Storage Temperature Range UPT721 UPT722 UPT723 2ooV ... 300V. 2S0V .. .... 5V .. SA ... 2S0V. 200V .. SV . . SA .. . lOA. lOA.. . lOA 3A. 3A. 3A ISOV. ... SV ..... . . SA ... .. UPT724 .350V .... 300V .... SV SA .. UPT725 400V .300V ...... SV lOA 3A .. 3A 2W 2SW 4"C/W -6S"C to 200"C MECHANICAL SPECIFICATIONS UPT721 UPT722 UPT723 UPT724 UPT725 TO-66 H BASE EMITTER A B C D E F G H J K L M INCHES .620 MAX. 050 - 075 250 - 340 360 MIN 02B - .034 DIA 95B - .962 570 - 590 145 MAX. RAD. 152 DIA 142 350 MAX RAD. 190 - 210 093 107 4-535 SA . lOA ..... MILLIMETERS 15.75 MAX 127 190 635 - B.63 9.14MIN .711 - .B63 2433 2443 1447 149B 358 MAX RAD. 3.60 3 B6 DIA BB9 MAX. RAD 4.B2 5.33 236-2.72 OJ] UNITRODE • UPT721 UPT722 UPT723 UPT724 UPT72S ELECTRICAL SPECIFICATIONS (at 25·C unless noted) Test D.C. Current Gain (Note 1) D.C. Current Gain (Note 1) D.C. Current Gain (Note 1) Collector Saturation Voltage (Note 1) Base Saturation Voltage (Note 1) Collector-Emitter Breakdown Voltage (Note 1) UPT721 UPT722 UPT723 UPT724 UPT72S Collector-Emitter Breakdown Voltage (Note 1) UPT721 UPT722 UPT723 UPT724-S Collector-Emitter Cutoff Current Collector-Emitter Cutoff Current, lS0·C Emitter-Base Cutoff Current Output Capacitance Gain-Bandwidth Ptoduct Turn-on Time Switching Speeds Turn-off Time Note: 1. Pulse width Symbol Min. Max. hFE hFE hFE VCE (sat) VBE (sat) BVCER 2S 10 - Vdc == lA, VCE == SVdc == SA, VCE == SVdc == lOA, VCE == SVdc == SA, IB == 1A == SA, IB == 1A !-: == 10mAdc; RBE == 10011 Vdc Ic /lAdc mAdc /lAdc pf MHz ns ns VCE == rated BVCEO' RBE == 10011 VCE == rated BVCEO ' RBE == 10011, T == 150·C VEB == SVdc VCB == lOVdc, IE == 0, f == 1MHz Ic - O.SAdc, VCE - SVdc, f _ 10MHz - 1.0 1.B Vdc Vdc - ~ 2S0 300 3S0 400 BlicEO 200 250 300 - 10 1.0 50 120 30 Typ. 250 Typ. BOO Typ. "\t\. >- 2 ~ 1 0: ::> " ~ == SA D.C. Current Gain YS. Collector Current Maximum Safe Operating Area 5 IC = 300 ~s; duty cycle ,,2%. 10 Z == 10mAdc - 150 ICER ICER lEBO Cob fr too toll Ic Ic Ic Ic Ic - STyp. - Test Conditions Units '" T,I= 1"\ ~ 1 ~u .OS ~~::ec~~~~::~o!'J "'0: • I ~ 100 ~ I Z \~ ~ " ~ D.C:~ I UPT721UPT722 UPT123 UPT724/2S- .02 .01 200 z ;;: .2 ~ loo.c- 10:;F~ t\. Pulse Width = 1 ms Duty Cyc'e = .. 500,--,..---,---,---.---.,.---, 1 5 V'E - 10 20 SO so 20 1--1---+--+--1"~~+----i 10 S 100 200 300 I--I---+--+--+--'i"k-'rl __ .2 .5 1 2 5 COLLECTOR CURRENT (A) L-~ .1 COLLECTOR-EMITTER VOLTAGE (V) J-_J-_L-_-U~~ 'e - 10 Switching Speed Circuit +'00V 25V Jl 1--01 .10.' 10 pS -4V UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON. MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 4-536 PRINTED IN U.S.A. POWER TRANSISTORS UPTA510 UPTA520 UPTA530 0.5 Amp, 300V, Planar NPN, Plastic FEATURES OESCRIPTION • • • • Unitrode high voltage transistors provide a unique combination of low saturation voltage, fast switching, and excellent gain. They are ideally suited for off-line power supply designs and other applications where the increased voltage rating adds to system reliability. Designed for High Speed Switching Applications Collector-Emitter Voltage: up to 300V Peak Collector Current: IA Economical Plastic Molded Construction ABSOLUTE MAXIMUM RATINGS UPTA51G UPTA520 UPTA530 Collector-Base Voltage, VCBO ......... 150V.................... 2S0V.. . 350V . IOOV.. .... 200V........ ....... .. . .. 300V Collector-Emitter Voltage, VCEO . ................................. SV... " SV...... ............ SV Emitter-Base Voltage, VEBO D.C. Collector Current, Ie ..... ... ~ .. ~ .... ~ Peak Collector Current, Ie ........................ IA ......... IA.. ......... IA Base Current, IB ..........................................SA.. . ..SA ..•SA Power Dissipation 2S·C Case ........ 2.4W .. 2S·C Ambient . 7S0mW ............................................... Thermal Resistance, eJ _ C ............................ . ............................ 62.5·C/W . ..... .............. Thermal Resistance, e J _ A ............................................... . .. 200·C/W Storage Temperature Range . ............................................... ...... ........... -SS·C to +150·C ...................................... ........................................................ ........................... +17S·C ............................................... Maximum Junction Temperature MECHANICAL SPECIFICATIONS UPTA510 UPTA520 UPTA530 A B C o E F G H INCHES .135 MIN. .170 - .210 500 MIN. 016 - 019 175 205 .125 - .165 080 - 105 095 105 045 - 055 TO-92 MILLIMETERS 3.42 MIN. 4.31 - 5.33 1270 MIN. 406 - .482 4.44 5.21 317-4.19 203 266 241 266 1.14 - 140 [1::lJ 3/78 4-537 _UNITRDDE • UPTAS10 UPTAS20 UPTAS30 ELECTRICAL SPECIFICATIONS (at 25'C unless noted) Test Symbol Min. Max. Units D.C. Current Gain (Note 1) D.C. Current Gain (Note 1) D.C. Current Gain (Note 1) Collector Saturation Voltage (Note 1) hFE hFE hFE VCE (sat) VCE (sat) VeE (sat) BVceo 20 8 - - Vdc Vdc Vdc Vdc Ic = .1A, VCE = SVdc Ic = .SA, VCE = SVdc Ic = lA, VCE = SVdc Ic = .SA, Ie = .1A Ic = .2A, Ie = .02A Ic = .SA, Ie = .1A Ic _lO"Adc Vdc Ic = 10mAdc Base Saturation Voltage (Note 1) Collector-Base Breakdown Voltage (Note 1) UPTAS10 UPTA520 UPTA530 Collector-Emitter Breakdown Voltage (Note 1) UPTA510 UPTA52O, UPTA530 Collector-Emitter Cutoff Current Collector-Emitter Cutoff Current Emitter-Base Cutoff Current Output Capacitance Gain-Bandwidth Product Rise Time Delay Time Storage Time Fall Time - STyp. 150 250 350 1.0 .S 1.5 - BVcEO 100 200 300 - ICES ICES IEeo Cob fr 10 1 50 50 td ts tf = VCE rated BVCEO' VeE = 0 VCE = rated BVcEO, T = 125'C, VeE = 0 VEe = 5Vdc Vce = 10Vdc, IE = 0, f 1MHz Ic = lAde, VCE = 5Vdc, f 10M Hz Ic =.5A "Adc mAdc "Adc pf MHz ns ns ns ns - 15 100 Typ. 50 Typ. 500 Typ. 200 Typ. tr Test Conditions = = Note: 1. Pulse width = 300ps; duty cycle:;; 2%. Note: 2. For thermal considerations for operating UPTA510, UPTA520 and UPTA530, refer to Application Note U·77. D.C. current Gain VS, 500 VeE ~ 100 10 ~ sv Vee TJ =12S' C d C TJ = 20 LS5' C r- 10 5 .01 --- ........... t- B 50 I~ r- __ TJ =125'C '"a:a: ~~ -- r- I Z200 ~ Switching Speeds Collector Current ~ ~ -....... ~ .05 .1 .2 .5 Ie - COLLECTOR CURRENT (A) .02 ~ 5 . . . f::oc fs:-.. ..... .... ..... ':: 100kHz) results in smaller inductor-capacitor filter and improved power supply response time • High operating efficiency: Typical 2A circuit performanceRise and Fall time <75ns Efficiency >85% • No reverse recovery spike generated by commutating diode (See note 4. and Fig. 2.) • Electrically isolated, 4-Pin, TO-66 hermetic case DESCRIPTION The Unitrode ESP Switching Regulator is a unique hybrid transistor circuit, specifically designed, constructed and specified for use in high current switching regulator applications. The designer is thus relieved of one of the most time consuming, tedious and critical aspects of switching regulator design: choosing the appropriate switching transistors and commutating diode, and empirically determining the optimum drive and bias conditions. Switching regulators, when compared to conventional'regulators, result in significant reductions in size, weight, and internal power losses and a major decrease in overall cost. Using the Unitrode PIC600 series, the designer can achieve further improvements in size, weight, efficiency, and costs. At the same time, because of the PIC600 series design and packaging, the designer is aided in overcoming two of the most significant POS. INPUT drawbacks to switching regulators: noise generation and slow response time; there is, in fact, no diode reverse recovery spike (see note 4.). The PIC600 series switching regulators are designed and characterized to be driven with standard integrated circuit voltage regulators. They are completely characterized over their entire operating range of -55"C to +125"C. The devices are enclosed in a special 4-pin TO·66 package, hermetically sealed for high reliability. The hybrid circuit construction utilizes thick film resistors on a beryllia substrate for maximum thermal conductivity and resultant low thermal impedance. All of the active elements in the hybrid are fully passivated. Application Notes U-68 and U-76 provide a detailed description of the hybrid circuit and design guidance for specific circuit applications. SCHEMATIC PIC600 PIC601 PIC602 r-----~~ PIC610 PIC611 PIC612 NEG. 4 INPUT 0-__.-------., POS. OUTPUT 2 COMMON NEG. r-1r-_~ OUTPUT DRIVE 2 COMMON MECHANICAL SPECIFICATIONS PIC600 PIC601 PIC602 PIC610 PIC611 PIC612 4-Pin T0-66 1. Case is electrically isolated. 2. Loads may be soldered to within 1/ 16" of base provided temperaturetime exposure is less than 260°C for 10 seconds. J 142_ 152 OIA 361-386 OtA -~~t~~-~ ~:~~=-= 8/78 5-4 ~UNITRDDE PIC600 PIC601 PIC602 PIC6l0 PIC611 PIC6l2 ABSOLUTE MAXIMUM RATINGS PIC600 Input Voltage, V4_2 .•...... Output Voltage, V'_2 ....................... . Drive·lnput Reverse Voltage, V'_4 . Output Current, I, ............................... . Drive Current, I, ................... . PIC601 PIC602 PIC610 PICI" PICI12 ............ 60V .................... SOV .................. 100V................ -60V................ -SOV.............. -lOOV .................... 60V .................... 80V.................. lOOV................ -60V................ -SOV .............. -lOOV .............. 5V ...................... 5V...................... 5V.................. -5V .................. -5V.................. -sv .................. SA...................... SA...................... 5A.................. -SA.................. -SA.................. -5A ..... -0.2A ................ -0.2A. ............... -0.2A .................... 0.2A ................... 0.2A. ................... 0.2A Thermal Resistance Junction to Case, 9 J _C Power Switch 4.0°C/W Commutating Diode 4.0'C/W Case to Ambient, 9 c _A 60.0'C/W Operating Temperature Range, Tc • -55'C to +125'C Maximum Junction Temperature, Tj . +lSO'C Sterage Temperature Range -65'C to +lSO'C ELECTRICAL SPECIFICATIONS (at 25'C unless noted) Test Current Delay Time Current Rise Time Voltage Voltage Voltage Symbol td; tri Rise Time t" Storage Time Fall Time t" t f, Current Fall Time tfi Efficiency (Notes 2. & 4.) ~ On·State Voltage (Note 3.) V4_I (On) On-State Voltage (Note 3.) V4- I(onl Diode Forward Voltage (Note 3.) V2- I{OnJ V2_ I(On) Diode Forward Voltage (Note 3.) Off-State Current Off-State Current Diode Reverse Current Diode Reverse Current 1.-, '.-, 1,_, 1,_, PIC600, 601, 602 Typ. Max. Min. PIC610, 611, 612 Typ. Max. Min. - 50 75 - 30 50 450 - 50 75 - 70 150 85 - - - - 20 40 Conditions Units 50 75 ns V" == 25V(-2SV) VO"t == 5V(-5V) 30 50 ns 'oot 450 - ns I, 50 75 ns See Figure 2. - 70 150 ns See notes 1., 2., 4. - 85 - 20 40 ns 1.0 1.5 2.5 3.5 - .8 1.0 - -.8 -1.0 1.0 1.5 -1.0 -1.5 % V V V V -0.1 -10 pA -1.0 -1.5 -2.5 -3.5 0.1 10 - 10 - - -10 - 1.0 10 - -1.0 -10 - 500 - - SOO - - pA pA pA == 2A(-2A) == -20mA(20mA) NOTE 5 == 2A(-2A), I, == -.02A(.02A) NOTE 5 == 5A(-5A), I, == -.02A(.02A) NOTE 5 I, == 2A(-2A) I, == 5A(-5A) V. == Rated input voltage V. == Rated input voltage, TA == 100'C V, == Rated output voltage V, == Rated output voltage, T A == 100°C I. I. NOTES: 1. In switching an inductive load, the current will lead the voltage on turn on and lag the voltage on turn-off (see Figure 2.). Therefore, Voltage Delay Time (tov) '" tdl + trl and Current Storage Time (lsi) '" Isv + tlv· __ 2. The efficiency is a measure of internal power losses and is equal to Output Power divided by Input Power. The switching speed circuit of Figure 1., in which the efficiency is measured, is representative of typical operating conditions for the PIC600 switching regulators. 3. Pulse test: Duration = 300/ls, Duty Cycle :5 2%. 4. As can be seen from the switching waveforms shown in Figure 2., no reverse of forward recovery spike is generated by the commutating diode during switching! This reduces self'generated noise, since no current spike is fed through the switching regulator. It also improves efficiency and reliabilty, since the power switch only carries current during turn-on. 5. To insure safe operation 13 should be ,,=120mAI during TON. Operation at 13 <120mAI can permanently damage device. POWER DISSIPATION CONSIDERATIONS The total power losses in the switching regulator is the sum olthe switching losses, and the power switch and diode D.C. losses. Once total power dissipation has been determined, the Power Dissipation curve, or thermal resistance data may be used to determine the allowable case or ambient temperature for any operating condition. The switching losses curve presents data for a frequency of 20KHz. To find losses at any other frequency, multiply by 1120KHz. The D.C. losses curve presents data for a duty cycle of .2. To find D.C. losses at any other duty cycle, multiply by 0/.2 forthe power switch and by (1·0)/.8 forthe diode. At frequencies much below 10KHz the above method for determining the allowable case or ambient temperature becomes invalid and a detailed transient thermal analysis must be performed. Please see Design Note 6 (DN-6) for further information. UNITROOE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 5-5 PRINTED IN U,S.A. PIC600 PIC601 PIC602 PIC610 PIC611 PIC612 Power Dissipation ~ z Efficiency 40 100 35 90 0 j:: ''!:" '"'"C 0: '"a~ "w '"w'" > '" 0: f 80 30 f 25 """" r\ 20 15 ~ \ Maximum allowable average power dissipation each, for the power switch and for the diode. Maximum allowable case 10 [ temperature .-. 0 o -50 -25 0 To - ['.. 25 '" ...w 40 " \ 125~C 75 100 V," 20 125 == Voul :::: .5 .6 .7.8.9 1 I, - MAXIMUM~ ~ ~ ...J .2 Power Switch D.C. Losses Duty Cycle..::: .2, T, 25'C = --::;V .05 I' .02 - . I I en w I IIl .5 0 - ...J .2 c.i ci v-:: ~V Duty V/ ~YPICAL f--" .1 I-- I-- .05 I = MAXIM~~ u z 20kHz, V()IJ' f I 20kHZ. 'Ve ,. == 20mA --j---+___,A---j To = 25'C .2~~_T~r-----~~~~~~~ MAXIMUM .1 Power Switch----:7"""---~...+'''- 50 en w en en .05 1=....."'F+pf-""~---t----j--t----> /,fQO/JS 10% duty cycle lOpS 10% duty cycle g '" z i - .02 ~ .01 ~ en .005 DC "- ""- Tc = lOQ'C f""'i"'''+''''I''''r--r------.,,~t__-_?1lOOkHz) results in smaller inductor-capacitor filter and improved power supply response time • High operating efficiency: Typical 7A circuit performanceRise and Fall time <300 ns Efficiency >85% • No reverse recovery spike generated by commutating diode (See note 4. and Fig. 2.) • Electrically isolated, 4-Pin, T066 hermetic case DESCRIPTION The Unitrode ESP Switching Regulator is a unique hybrid transistor circuit, specifically designed, constructed and specified for use in high current switching regulator applications. The designer is thus relieved of one of the most time consuming, tedious and critical aspects of switching regulator design: choosing the appropriate switching transistors and commutating diode, and empirically determining the optimum drive and bias conditions. significant drawbacks to switching regulators: noise generation and slow response time; there is, in fact, no diode reverse recovery spike (See note 4.). The PIC600 series switching regulators are designed and characterized to be driven wih standard integrated circuit voltage regulators. They are completely characterized over their entire operating range of -55'C to +l25'C. The devices are enclosed in a special 4-pin T066 package, hermetically sealed for high reliability. The hybrid circuit construction utilizes thick film resistors on a beryllia substrate for maximum thermal conductivity and resultant low thermal impedance. All of the active elements in the hybrid are fully passivated. Switching regulators, when compared to conventional regulators, result in significant reductions in size, weight, 'and internal power losses and a major decrease in overall cost. Using the Unitrode PIC600 series the designer can achieve further improvements in size, weight, efficiency, and costs. At the same time, because of the PIC600 series design and packaging, the designer is aided in overcoming two of the most Application Notes U-68 and U-76 provide a detailed description of the hybrid circuit and design guidance for specific circuit applications. SCHEMATIC PIC625 PIC626 PIC627 NEG. 4 INPUT ( } - - . - - - - . POS. OUTPUT POS. INPUT PIC635 PIC636 PIC637 2 COMMON NEG. r--<~_-o OUTPUT COMMON MECHANICAL SPECIFICATIONS NOTES: PIC625 PIC626 PIC627 PIC635 PIC636 PIC637 4-Pin TO-66 1. Case is electrically isolated. 2. Loads may be soldered to within lite" of base provided temperaturetime exposure is less than 260°C for 10 seconds. mm Ins. A 620 MAX 1575 MAX 127-191 • 050-075 C 028-034 0 958-962 E 190-210 ----071-066 -~--~ 8/78 2433-2443 -- 483-533 ~---.- 190-210 483-533 350 MAX RAD a89 MAX RAD H 570-590 1448·1499 J 142-15201A 361-386DIA K 360 MIN 914 MIN L 250-340 635-864 5-8 [1::D UNITRDDE PIC625 PIC626 PIC627 PIC635 PIC636 PIC637 ABSOLUTE MAXIMUM RATINGS PIC625 Input Voltage, V4_, Output Voltage, V ,_, Drive-Input Reverse Voltage, V3 _4 Output Current, I, Drive Current, I, .............. .. PIC626 PIC627 PIC635 PIC636 PIC637 ........ 60V........ 80V.................. 100V.... ... -60V ................ -80V.............. -l00V .......... 60V .................... 80V.................. 100V................ -60V................ -BOV.............. -l00V ........... 5V............. 5V...................... 5V .................. -5V.................. -5V .................. -5A . ... 15A .................... 15A.................... 15A................ -15A................ -15A ................ -15A ....... -0.4A ................ -0.4A................ -0.4A.................... O.4A ................... 0.4A .................... 0.4A ... Thermal Resistance Junction to Case, 6 J _C 4.0"C/W Power Switch 4.0"C/W Commutating Diode Case to Ambient, 60.0"C/W 6 CA II -55"C to +125"C Operating Temperature Range, T C Maximum Junction Temperature, Tj +150'C Storage Temperature Range -65'C to +150'C ELECTRICAL SPECIFICATIONS (at 25"C unless noted) Test Symbol Current Delay Time tdi Current Rise Time tri Voltage Rise Time trv Voltage Storage Time tsv Voltage Fall Time t,v Current Fall Time tn Efficiency (Notes 2 and 4) ~ On-State Voltage (Note 3) V4_I(Onl On-State Voltage (Note 3) Diode Fwd. Voltage (Note 3) V4-I(on) V2_I(On) Diode FWd. Voltage (Note 3) V2_I(on) Off-State Current I.-I Off-State Current I.-I Diode Reverse Current 1,-, 1,-2 Diode Reverse Current PIC62s/626/627 Typ. Max. Min. - 70 175 - 175 300 - 35 60 65 150 40 700 60 - 85 - 1.0 1.5 2.5 3.5 .85 1.25 PIC63S/636/637 Typ. Max. Units 35 60 ns Vin = 25V(-25V) Min. .95 1.75 0.1 10 10 - - 1.0 10 500 - Conditions 65 175 ns Vo"1 = 5V(-5V) 40 60 ns 700 - ns 10 "1 = 7AC-7A) 13 = -30mA(30mA) NOTE 5 100 300 ns See Figure 2 175 300 ns See notes 1, 2, 4 85 - % -1.0 -1.5 V I. = 7A(-7A), 13 = -.03A(.03A) NOTE -2.5 -3.5 V I. = 15A(-15Al, 13 = -.03A(.03A) NOTE -.85 -1.25 V -.95 -1.75 V 12 =7A(-7A) 12 = 15AC-15Al -0.1 -10 "A -10 - - -1.0 - 500 5 5 V. = Rated input voltage V. = Rated input voltage, -10 "A p.A - "A V, = Rated output voltage, TA = 100'C V I = Rated output voltage TA = 100'C NOTES: 1. In switching an inductive load. the current will lead the voltage on turn-on and lag the voltage on turn-off (see Figure 2). Therefore. Voltage Delay Time (tDV) '" tel; + tri and Current Storage Time (lsi) "'Isv + tlv. 2. The efficiency is a measure of internal power losses and is equal to Output Power divided by Input Power. The switching speed circuit of Figure 1. in which the efficiency is measured. is representative of typical operating conditions for the PIC600 series switching regulators. 3. Pulse test: Duration = 300jJS, Duty Cycle:5 2%. 4. As can be seen from the switching waveforms shown in Figure 2, no reverse of forward recovery spike is generated by the commutating diode during switching! This reduces self'generated noise, since no current spike is fed through the switching regulator. It also improves efficiency and reliability, since the power switch only carries current during turn·on. 5. To insure safe operation 13 should be;" 130mAI during TON. Operation at 13 < 130mAI can permanently damage device. POWER DISSIPATION CONSIDERATIONS The total power losses in the switching regulator is the sum olthe switching losses, and the power switch and diode D.C. losses. Once total power dissipation has been determined, the Power Dissipation curve, or thermal resistance data may be used to determine the allowable case or ambient temperature for any operating condition. The switching losses curve presents data for a frequency of 20KHz. To find losses at any other frequency, multiply by fl20KHz. The D.C. losses curve presents data for a duty cycle of .2. To find D.C. losses at any other duty cycle, multiply by 0/.2 forthe power switch and by (1-0)/.8 for the diode. At frequencies much below 10KHz the above method for determining the allowable case or ambient temperature becomes invalid and a detailed transient thermal analysis must be performed. Please see Design Note 6 (DN·6) for further information. UNITRODE CORPORATION' 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 5-9 PRINTED IN U.S.A PIC625 PIC626 PIC627 PIC635 PIC636 PIC637 Power Dissipation Efficiency 40 ~ 100 Z 0 ;:: i1: iii VI 15 '\ 1\ 25 ~ > u 0. w 15 '" Maximum allowable average power dissipation each, for the power switch and for the diode. 5 temperature 70 60 ... 'r\. '\ 0- As measured in the circuit shown in Figure 1. V,"=25V Vo" = V," X Duty Cycle I, =30mA T, =25'C 30 20 Maximum allowable case o 10 = 125°C 0 -50 -25 0 25 50 75 100 125 T c - CASE TEMPERATURE ('C) 150 5 6 7 8 9 10 I, -OUTPUT CURRENT (A) Diode D.C. Losses 100 Power Switch Duty Cycle 0.2 Diode Duty Cycle 0.8 25'C T, To obtain diode losses at any other duty cycle, multiply by (I·D)/.8 where D = Power Switch Duty Cycle. 50 I 20 ~ 10 '"w 0 ./ ..J c.i t:i 1.0 ~ t::- ~ 20 30mA Duty Cycle 0.2, I, T, 25'C To obtain power switch losses at any other duty cycle, multiply by D/.2, where D is the duty cycle. 50 20 V ~ 10 VI w VI VI r- L MAXIMUM 9 c.i t:i ~ .5 .5 .2 .2 .10 I, - 15 Power Switch D.C. Losses 100 TYPICAL- t---- I--MAXIMUM VI VI 5V Z -----' - - - - = 20kHz .f ! "\ t 25V:Lil...JLJ - OV Note: PIC63S, PIC636, PIC637 Circuit and waveforms are identical but of opposite polarity (V" Dn·State Characteristics 5 16 /' 14 TYPICAL 12 :> u / 18 UJ 0: 0: 14 u 12 / :> ';::" 0: lOOkHz) results in smaller inductor-capacitor filter and improved power supply response time • High operating efficiency: Typical 7A circuit performanceRise and Fall time <300 ns Efficiency >85% • No reverse recovery spike generated by commutating diode (See note 4. and Fig. 2.) DESCRIPTION significant drawbacks to switching regulators: noise generation and slow response time; there is, in fact, no diode reverse recovery spi ke (See note 4.). The Unitrode ESP Switching Regulator is a unique hybrid transistor circuit, specifically designed, constructed and specified for use in high current switching regulator applications. The designer is thus relieved of one of the most time consuming, tedious and critical aspects of switching regulator design: choosing the appropriate switching transistors and commutating diode, and empirically determining the optimum drive and bias conditions. The PIC600 series switching regulators are designed and characterized to be driven with standard integrated circuit voltage regulators. They are completely characterized over their entire operating range of -55'C to +125'C. The devices are enclosed in a special 3 pin TO-3 package, hermetically sealed for high reliability. The hybrid circuit construction utilizes thick film resistors on a beryllia substrate for maximum thermal conductivity and resultant low thermal impedance. All of the active elements in the hybrid are fully passivated. Switching regulators, when compared to conventional regulators, result in significant reductions in size, weight, and internal power losses and a major decrease in overall cost. Using the Unitrode PIC600 series the designer can achieve further improvements in size, weight, efficiency, and costs. At the same time, because of the PIC600 series design and packaging, the designer is aided in overcoming two of the most pas. INPUT Application Notes U-68 and U-76 provide a detailed description of the hybrid circuit and design guidance for specific circuit applications. SCHEMATIC PIC645 PIC646 PIC647 pos. r-----.-4J PIC655 PIC656 PIC657 NEG. 4 INPUT 0-.....------.. OUTPUT r-1r-_-0 NEG. OUTPUT 2 COMMON DRIVE COMMON MECHANICAL SPECIFICATIONS PIC645 PIC646 PIC647 PIC655 PIC656 PIC657 4 1 3 NOTE: Loads may be soldered to within 1116" of base provided temperaturetime exposure is less than 260°C for 10 seconds. 8/78 A B C D E F G H J K L M N P ins. 875 MAX .135 250- 450 .312 MIN. .205-.225 .420- 440 145 165 .395- 405 151 161 DIA 188 MAX RAD 525 MAX. RAD 708 728 1177-1197 038 043 DIA 5-12 3 Pin TO-3 mm 2223 MAX 343 6.35-1143 792 MIN 521-572 1067-1118 368 419 10 03-10 29 384 409 DIA 478 MAX. RAD. 1334 MAX RAD 1798-1849 2990-3040 97 109 DIA om _UNITRDDE PICG45 PICG4G PICG47 PICG55 PICG56 PICG57 ABSOLUTE MAXIMUM RATINGS PICB45 PICB4B PICB47 PICB55 PIC656 PIC657 Input Voltage, V4 _2 . .... GOV..... SOV...... . 10DV.......... ..... -GOV................ -SOV.............. -lOOV ......... GOV............. SOV.... ..... 1ODV. ............... -GOV................ -SOV .............. -lOOV Output Voltage, V'_2 Drive·lnput Reverse Voltage, V'_4 . ..................... 5V.... ... 5V...................... 5V.................. -5V.................. -5V.................. -5V Continuous Output Current, I, ........... l5A.............. l5A .................... l5A ................ -15A ................ -15A ................ -15A Peak Output Current .... 2OA.... ... 20A.................... 20A................ -20A................ -20A................ -20A Drive Current, I, ... -0.4A ............... -0.4A. ............... -0.4A.................... 0.4A.................... 0.4A.................... 0.4A Thermal Resistance Junction to Case, !) J-C 2"C/W Power Switch 2"C/W Commutating Diode 30.0"C/W Case to Ambient, HC-A Operating Temperature Range, Tc -55"C to +125"C Maximum Junction Temperature, TJ +150"C Storage Temperature Range -WC to +15O"C ELECTRICAL SPECIFICATIONS (at 25"C unless noted) PIC645/64B/647 Test Current Delay Time Current Rise Time Voltage Rise Time Voltage Storage Time Voltage Fall Time Current Fall Time Efficiency (Notes 2 and 4) On·State Voltage (Note 3) On·State Voltage (Note 3) Diode Fwd. Voltage (Note 3) Diode Fwd. Voltage (Note 3) Off·State Current Off·State Current Diode Reverse Current Diode Reverse Current Symbol Min. Typ. - I•. , - 14-, - I,., I,., - 35 G5 40 700 70 175 S5 1.0 2.5 .S5 .95 0.1 10 1.0 - SOD tdi tri t" t" tlv - tfi - '1 - V4-'{O"1 V•. '10"1 V'·'lo"1 - V2- I (OnJ - Max. GO 150 GO 175 300 1.5 3.5 1.25 1.75 10 10 - PIC655/656/657 Typ. Min. - 35 65 40 700 100 175 S5 -1.0 -2.5 -.S5 -.95 -0.1 -10 -1.0 500 - - - Max. Units GO ns ns ns ns ns ns % V V V V 175 GO 300 300 -1.5 -3.5 -1.25 -1.75 -10 -10 - p.A p.A p.A p.A Conditions Vi" = 25V(-25V) Vo"1 = 5V(-5V) 1°"1 = 7A(-7A) I, = -30mA(30mA) NOTE 5 See Figure 2 See notes I, 2, 4 I. = 7A(-7A), I, = -.03A(.03A) NOTE 5 I. = 15A(-15A), I, = -.03A(.03A) NOTE 5 I, =7A(-7A) I, = 15A(-15A) V. = Rated input voltage V. = Rated input voltage, TA = 100"C V, = Rated output voltage V, = Rated output voltage, TA = 100"C NOTES: 1. In switching an induclive load, the current will lead the voltage on turn-on and lag the voltage on turn-off (see Figure 2). Therefore. Voltage Delay Time (tov) '" Idi + tri and Current Storage Time (tsi) '" Isv + tlv· 2. The efficiency is a measure of internal power losses and is equal to Output Power divided by Input Power. The switching speed circuit of Figure 1, in which the efficiency is measured, is representative of typical operating conditions for the PIC600 series switching regulators. 3. Pulse test: Duration; 300J.lS. Duty Cycle :'0 2%. 4. As can be seen from the switching waveforms shown in Figure 2, no reverse of forward recovery spike is generated by the commutating diode during switching! This reduces self-generated noise, since no current spike is fed through the switching regulator. It also improves efficiency and reliability, since the power switch only carries current during turn-on. 5. To insure safe operation 13 should be 2: 130mAI during TON· Operation at 13 < 130mAI can permanently damage device. POWER DISSIPATION CONSIDERATIONS The total power losses in the switching regulator is the sum of the switching losses, and the power switch and diode D.C. losses. Once total power dissipation has been determined, the Power Dissipation curve, or thermal resistance data may be used to determine the allowable case or ambient temperature for any operating condition. The switching losses curve presents data for a frequency of 20KHz. To find losses at any other frequency, multiply by f120KHz. The D.C. losses curve presents data for a duty cycle of .2. To find D.C. losses at any other duty cycle, multiply by 0/.2 forthe power switch and by (1-0)/.8 forthe diode. At frequencies much below 10KHz the above method for determining the allowable case or ambient temperature becomes invalid and a detailed transient thermal analysis must be performed. Please see DeSign Note 6 (DN-6) for further information. UNITROOE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. {617} 861-6540 TWX (710) 326-6509 • TELEX 95·1064 5·13 PRINTED IN USA II PIC645 PIC646 PIC647 PIC655 PIC656 PIC657 Efficiency Power Dissipation 100 80 ~ z . 90 70 ;:: 60 '\ 0. (jj II) 50 C ~ I'" 0: W :;: 40 0 0. w 30 "'" 0: W 20 '"I 10 > 0.0 > 0 "' U 1'\ \ 60 50 40 s::- 30 r--.. '\ As measured in the circuit shown--+--1 in Figure 1. V,,=25V 20 = Vout V III X Duty Cycle I, = JOmA To = 25'C 10 O~~~~~~-L~~-L 25 50 75 100 125 CASE TEMPERATURE ('C) Tc - 70 ...u: "' = o 150 2 I - Diode D.C. Losses 100 Power Switch Duty Cycle Diode Duty Cycle 0.8 To 25'C 50 ~ 10 L w 20 /. ~ -- II) -MAXIMUM II) II) 20 10 II) "' TYPICAL- I--- II) II) 0 .,I' .......-: ...... I---" V MAXIMUM 0 .,I c..i d 1.0 15 Duty Cycle JOmA 0.2, I, 25'C To To obtain power switch losses at any other duty cycle, multiply by 0/.2, where D is the duty cycle. 50 other duty cycle, multiply by (1-0)/.8 whele 0 = Power Switch Duty Cycle. __~__~ 5 6 7 8 9 10 OUTPUT CURRENT (A) Power Switch D,C. Losses 100 0.2 To obtain diode losses at any 20 5V f = 50KHz,V •• , = 5V~ Z Maximum allowable average power dissipation each, for the power switch and for the diode. Maximum allowable case temperature 125°C -50 -25 20KHz,Vowl f 80 0 cJ d .5 .5 .2 .2 - I-'" .10 TYPICAL V """"1-/ I-- ,1 20 5678910 I, - OUTPUT CURRENT (A) 5 6 7 8 910 I, - OUTPUT CURRENT (A) 2 20 Maximum Safe Operating Area Switching Losses PIC 645, 646, 647-655, 656, 657 10 50 ./" ~ II) w II) II) g "Iz U f- ii' II) MAXIMUM - ~ 20 --..... 1.0 - .5 .2 ,...... ,.... .10 .05 I-- - TYPICAL - MAXIMUM 4 2 I, - = 25V, f = 20KHz Tc = 25'C ') = 30mA DC ............. Te = 100'C j Diode U11 J......-t4 Tr~ICAL .01 JOOps 10% duty cycle lOps 10% duty cycle ...... Power Switch A .02 Y,n Power Switch .................... 78910 OUTPUT CURRENT (A) ~ 0.5 PIC 645 655 PIC 646, 656 PIC 647, 657 0.2 - piode 0,1 J 20 4 5 V.-,(ON) 10 20 304050 100 ON·STATE VOLTAGE To determine switching losses at any other frequency, multiply by f/20KHz where f is the frequency at which the losses are to be determined. UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173· TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 5-14 PRINTED IN USA. PIC645 PIC646 PIC647 PIC655 PIC656 PIC657 v,,, = +25V ---'''VII'v'--'-, -'--JYY''NL---t---, - - - t- ! V4 _ t POWER SWITCH Voul = 5V =- IDRIVl -30mA Pulse Width.:::: 10p.5 : Ton =10J.(S - Tofl :::: 40,us Note: No Diode Reverse or Forward Recovery Spike (See note 4.) t---~-------'--- Rep. Rate = 20kHz \., +25VI~~' _ OvU U f····;:)"···~~::~~~·~;~:··~·I:~·~············· ! U Figure 1. PIC645, 646, 647 Switching Speed Circuit On·State Characteristics 16 14 a: a: :> u 12 ~ ./ OJ TYPICAL . V I- V =+3omA.) Z I- l/MAXIMUM "1 0 -" / 12 0 TYPICAL a: "- / OJ 0 a I I?V ~ V •• , (on) - 1~ V'.'(on) - ON·STATE VOLTAGE (V) V" 25V 5V I, T, 30mA 25'C V oul Fall Time 1000 As measured in the circuit shown in Figure 1. soo Yin 200 "Vi oS 25V Voul 5V 30mA I, 400 300 ~ T, 25'C , 200 tn oS OJ :;; 100 50 40 .c::: t" ;:: teo I---!- .I OJ :;; 100 ;:: I U DIODE FORWARD VOLTAGE (V) Turn·on Time As measured in the circuit shown in Figure 1. 500 400 300 TI :::: 25 C C J / -' :/1 1000 i V 'L L a I. 0 MAXIMUM 0 T, = 2S'C 1,=30mA- f-- III I 14 a: V z 16 « 10 :;: / / I- 18 OJ a: a: :> u V / 10 OJ DRIVE 20 18 I- =-25V, V""' =-5V, I Diode Forward Characteristics 20 ~ \ Figure 2. PIC645, 646, 647 Switching Waveforms Note: PIC655, PIC656, PIC657 Circuit and waveforms are identical but of opposite polarity (V" Z .\ I 30 50 40 30 20 20 t" tp, 10 10 2 I, - 5678910 OUTPUT CURRENT (A) UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95·1064 20 2 I, - 5·15 45678910 OUTPUT CURRENT (A) 20 PRINTED IN U.S.A. • POWER INTEGRATED CIRCUIT PIC660 PIC661 PIC662 PIC670 PIC671 PIC672 Switching Regulator 10 Amp Positive and Negative Power Output Stages FEATURES • Designed and characterized for switching regulator applications • Cost saving design reduces size, improves efficiency, reduces noise and RFI (See note 4.) • High operating frequency (to >lOOkHz) results in smaller inductor-capacitor filter and improved power supply response time • High operating efficiency: Typical 5A circuit performanceRise and Fall time <300ns Efficiency >85% • No reverse recovery spike generated by commutating diode (See note 4. and Fig. 2.) • Electrically isolated, 4-Pin, TO-66 hermetic case DESCRIPTION The Unitrode Switching Regulator is a unique hybrid transistor circuit, specifically designed, constructed and specified for use in high current switching regulator applications. The designer is thus relieved of one of the most time consuming, tedious and critical aspects of switching regulator design: choosing the appropriate switching transistors and commutating diode, and empirically determining the optimum drive and bias conditions. significant drawbacks to switching regulators: noise generation and slow response time; there is, in fact, no diode reverse recovery spi ke (See note 4.). The PIC600 series switching regulators are designed and characterized to be driven with standard integrated circuit voltage regulators. They are completely characterized over their entire operating range of -55°C to +125°C. The devices are enclosed in a special 4-Pin TO-66 package, hermetically sealed for high reliability. The hybrid circuit construction utilizes thick film resistors on a beryllia substrate for maximum thermal conductivity and resultant low thermal impedance. All of the active elements in the hybrid are fully passivated. Switching regulators, when compared to conventional regulators, result in significant reductions in size, weight, and internal power losses and a major decrease in overall cost. Using the Unitrode PIC600 series the designer can achieve further improvements in size, weight, efficiency, and costs. At the same time, because of the PIC600 series design and packaging, the designer is aided in overcoming two of the most SCHEMATIC PIC660 PIC661 PIC662 POS. INPUT Application Notes U-68 and U-76 provide a detailed description of the hybrid circuit and design guidance for specific circuit applications. r-----~_O NEG. POS. OUTPUT INPUT 4 PIC670 PIC671 PIC672 0-.....-----,. 2 COMMON NEG. ~~_-o OUTPUT DRIVE COMMON MECHANICAL SPECIFICATIONS PIC660 NOTES: PIC661 PIC662 PIC670 PIC671 PIC672 4-Pin TO-66 1. Case is electrically isolated. 2. Loads may be soldered to within 1116" Of base provided temperatureIns. time exposure is less than 260°C for 10 seconds. B 1\4 JDK 4/82 A 620 MAX 1575 MAX B 050-075 127-191 C 026-034 071-086 D 958-962 243J-2443 E 190-210 483-533 190- 210 483-533 G 350 MAX RAD 689 MAX RAD H 570- 590 14461499 F J 142-152 DIA 361-386 DIA K 360 MIN 914M1N L 250 340 635-864 OUTPUT(l) 5-16 ~UNITRDDE PIC660 PIC661 PIC662 PIC670 PIC671 PIC672 ABSOLUTE MAXIMUM RATINGS PIC660 PIC661 PIC662 PIC670 PIC671 PIC672 -BOV ........ -lOOV Input Voltage, V.-2 ........................... 60V BOV lOOV ......... -60V -BOV .........-lOOV Output Voltage, V'-2 .......................... 60V BOV ......... lOOV ......... -60V -5V ......... -5V 5V ......... 5V ......... -5V Drive·lnput Reverse Voltage, V3- . . . . . . . . . . . . . . . 5V -lOA ......... -IOA Output Current, I, ............................ lOA lOA ......... lOA ......... -lOA 0.4A ......... 0.4A Drive Current, 13 ............................ -0.4A ........ -O.4A ......... -O.4A ......... O.4A Thermal Resistance Junction to Case, 8J- c Power Switch ............................................................. 4.0'C/W .................................... . Com mutating Diode ...................................................... 4.0'C/W .................................... . Case to Ambient, 8e-•........................................................ GO.O'C/W.................................... . Operating Temperature Range, Te ............................................ -55'C to +125'C................................ . Maximum Junction Temperature, T, ............................................... .+lSO'C .................................... . Storage Temperature Range .................................................. -65'C to +lSO'C .............................. .. ELECTRICAL SPECIFICATIONS (at 25'C unless noted) Test Current Delay Time Current Rise Time Voltage Rise Time Voltage Storage Time Voltage Fall Time Current Fall Time Efficiency (Notes 2 and 4) On·State Voltage (Note 3) On·State Voltage (Note 3) Diode Fwd. Voltage (Note 3) Diode Fwd. Voltage (Note 3) Off·State Current Off·State Current Diode Reverse Current Diode Reverse Current Symbol tdi tri trv tsv tfv tf! ~ V•. "onl V4-I(onl V'.'(onl V'.'(onl I•. , 14-, I,., I,., PIC660/661/662 Min. Typ. Max. - PIC670/6711672 Min. 35 60 65 ISO 40 60 700 - 70 175 175 - 300 - - - 85 1.0 1.5 3.5 2.5 .85 1.25 .95 0.1 1.75 10 10 1.0 - 500 - 10 Typ. 35 65 Max; Units GO 175 60 ns 700 - ns ns ns 100 300 ns 175 85 -1.0 300 ns 40 loul = 5A(-5A) 13 = -30mA(30mA) NOTE 5 See Figure 2 See notes I, 2, 4 - % -1.5 -3.5 V V V I. = 5A(-5A), 13 = -.03A(.03A) NOTE 5 I. = lOA(-lOA), 13 = -.03A(.03A) NOTE 5 I, =5A(-5A) V -10 I, = lOA(-lOA) V. == Rated input voltage -2.5 -.85 -1.25 -.95 -1.75 -0.1 Conditions Yin = 25V(-25V) Voul = 5V(-5V) -10 - p.A p.A -1.0 500 -10 /LA V. = Rated input Yoltage, TA V, Rated output Yoltage - p.A V, = Rated output Yoltage, T A = 100'C = =100'C NOTES: 1. In switching an inductive load, the current will lead the voltage on turn-on and lag the voltage on turn-off (see Figure 2). Therefore, Voltage Delay Time (tOY) '" lei! + tn and Current Storage Time (le,) ""lev + ttv. 2. The efficiency is a measure of internal power losses and is equal to Output Power divided by Input Power. The switching speed circuit of Figure I, in which the efficiency is measured, is representative of typical operating conditions for the PIC600 series switching regulators. 3. Pulse test: Duration = 300pS, Duty Cycle"; 2%. 4. As can be seen from the switching waveforms shown in Figure 2, no reverse of forward recovery spike is generated by the commutating diode during switching! This reduces self-generated noise, since no current spike is fed through the switching regulator. 11 also improves efficiency and reliability, since the power switch only carries current during turn-on. 5. To insure safe operation 13 should be 2: 130mAI during TON. Operation at 13 < 130mAI can permanently damage device. POWER DISSIPATION CONSIDERATIONS The total power losses in the switching regulator is the sum of the switching losses, and the powerswitchand diode D.C. losses. Once total power dissipation has been determined, the Power Dissipation curve, or thermal resistance data may be used to determine the allowable case or ambient temperature for any operating condition. The switching losses curve presents data for a frequency of 20KHz. To find losses at any other frequency, multiply by f120KHz. The D.C. losses curve presents data for a duty cycle of .2. To find D.C. losses at any other duty cycle, multiply by 0/.2 forthe power switch and by (1-0)/.8 forthe diode. At frequencies much below 10KHz the above method for determining the allowable case or ambient temperature becomes invalid and a detailed transient thermal analysis mvst be performed. Please see Design Note 6 (DN-6) for further information. UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95·1064 5·17 PRINTED IN U.S.A. • PIC660 PIC661 Power Dissipation PIC662 PIC670 PIC671 Efficiency 40 100 35 90 f ~KHZ' Voo• i20V I... ~ z ~ f 30 ~ 0.. is 25 >u "'Uu: ... 1,\ 0 ..,"''"a: ..,"'> 15 I"'- Maximum allowable average power dissipation each, for the power switch and for the diode. Maximum allowable case temperature 125'C 10 I 0..0 "'I .. -50 -25 Tc - =20KHz, V... =SV '\ 40 As measured in the circuit shown--+--I in Figure 1. v. = 2SV VOIJ1 = V,n X Duty Cycle b = 30mA 30 Tc 25 50 75 100 125 CASE TEMPERATURE ('C) 10 4 - ~ en f--MAXIMUM 15 20 TYPICAL- Duty cycle - 0.2, 13 = 30mA 50 Te = 25'C 20 To obtain power sWitch losses at any other duty cycle, multiply by 0/ .2, where D is the duty cycle. 10 II) - '" II) II) 0 MAXIMUM 0 -------' - - - - = 20k Hz PIC671 V4 _ 1 \, =-30mA Pulse Width.= 10.u5 PIC670 + VOU1 = 5V Rep. Rate PIC662 t· ..·;:"}················································ ": ; COMMUTATING DIODE , ! Figure 1. PIC660. 661. 662 Switching Speed Circuit \ Figure 2. PIC660. 661. 662 Switching Waveforms Note: PIC670, PIC671, PIC672 Circuit and waveforms are identical but of opposite polarity (V," = -15V, V,", = -5V, IDR'VE = +30mA.) On·State Characteristics Diode Forward Characteristics 20 20 18 ~ z ... w '"'" :> 18 ~ 16 z ... 16 w 14 '":>'" u 12 0 "'"i: ...'"0 <) w 10 ...l;: z 0 TYPICAL / II) / MAXIMUM TJ = 25°C 1,= 30mA - ,/ V Iii I -' f-- 14 12 10 0 0 f-- I o 1.5 .5 V,.,(on} - V," = 15V As measured in the circuit shown in Figure 1. V," - 15V SOO vout = 5V Vout 400 300 b = 30mA T; = 25'C ~ 200 ~~-+-1-1-+1--+-+-+~4---+-~ on oS w - 5V b - 30mA T; = 25'C 200 t" i= I t" t., ~ .1 :!! 100 tn , tf, oS w ~ll00.11 50 40 30 2.5 DIODE FORWARD VOLTAGE (V) Fall Time 1000 As measured in the circuit shown in Figure 1. 400 300 - /-"Y o Turn·on Time SOO MAXIMUM T) = 25°C J -' V,_,(on)- ON-STATE VOLTAGE (V) 1000 II 1/ / C I. /1 ! I I TYPICAL w so 40 30 20 r-1--t-t~~--~-+~+----+--~ 20 10 5678910 I, - 20 UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326·6S09 • TELEX 95-1064 5678910 2 OUTPUT CURRENT (A) I, - 5-19 20 OUTPUT CURRENT (A) PRINTED IN U.S.A. • POWER INTEGRATED CIRCUIT PIC730 PIC740 Schottky Switching Regulator 30A, 40V Power Output Stages FEATURES APPLICATIONS: • Designed and characterized for switching regulator applications • Cost saving design reduces size, improves efficiency, reduces noise and RFI • High operating frequency (to 100kHz) results in smaller inductor-capacitor filter and improved power supply response time • Low forward drop of Schottky Rectifier: VF .6V at 20A • High Efficiency: 90% typo @ 15A (see last page) High efficiency and high current Buck or Flyback type switching regulator. = DESCRIPTION The Unitrode PIC700 series are unique hybrid circuits, specifi· cally designed, constructed and specified for use in high current switching regulator applications. The designer is thus relieved of one of the most time consuming, tedious and critical aspects of switching regulator design: choosing the appropriate switching transistors and commutating diode. significant drawbacks to switching regulators: noise generation and slow response time. The PIC700 series switching regulators are completely characterized over their entire operating range of -55°C to +125°C. The devices are enclosed in a special 3 pin TO-3 package, hermetically sealed'for high reliability. The hybrid circuit construction utilizes a beryllia substrate for maximum thermal conductivity and resultant low thermal impedance. All of the active elements in the hybrid are fully passivated. Switching regulators, when compared to conventional regulators, result in significant reductions in size, weight, and internal power losses and a major decrease in overall cost. Using the Unitrode PIC700 series the designer can achieve further improvements in size, weight, efficiency, and costs. At the same time, because of the PIC700 series design and packaging, the designer is aided in overcoming two of the most SCHEMATIC PIC730 PIC740 POS. 4 INPUT POS. OUTPUT 0---"" 3 2 DRIVE COMMON MECHANICAL SPECIFICATIONS PIC730 PIC740 NOTE: Leacls may be solclerecl to within 1/16H of base provided temperatureA 4 1 3 [~p 22.23 MAX. .135 3.43 6.35-11.43 ,312 MIN. 7.92 MIN. 205-.225 521-5.72 F .420-440 10,67-11.18 G .145-165 3.68-4.19 H .395-.405 10.03-1029 ,151-.161 CIA 3.84-4.090IA. J 188 MAX. RAO. 4.78 MAX RAD .525 MAX. RAD. 13.34 MAX. RAe L 5-79 .875 MAX. .250-.450 C 0 ~f1 mm In8. time exposure is less than 260"'C for 10 seconds. 3 Pin TO-3 M 708-728 17.98-1849 N p 1.1n-1.197 29.90-30.40 038-.043 DIA 97-1.090IA. 5·20 ~UNITRDDE PIC730 PIC740 ABSOLUTE MAXIMUM RATINGS PIC730 PIC740 Input Voltage ............................ .. .............. 30V .......... .. ............ 40V Output Voltage ............................. 30V ."............ .. ................................................ ............ 40V Drive-Input Reverse Voltage .......................................................................... 7V ..................................................................................... 7V Continuous Output Current ............................................................................................ 20A .....................................................................................2OA Peak Output Current ........................................................................................................... 30A ................... .. ..........................................................30A Drive Current .................................... ........................................................... .. .......... 5A .. ,....... . ........................................................... 5A Thermal Resistance Junction to Case, e J-C Power Switch ........................................................................................................................................................l.O'C/W.. .. Commutating Diode .................... .............................................................................................................2.0'C/W....... . Case to Ambient, e C_A ...... .................... .. .................................................................................................. 30'C/W ..... . Operating Temperature Range, Tc ........................................................................................................................-55'C to +125'C........... .. Maximum Junction Temperature, TJ ................................................................................................................+150'C ... . Storage Temperature Range .... . ...................................................................................................-65'C to +150'C ............ . ELECTRICAL SPECIFICATIONS (at 25°C unless noted) SCHOTTKY RECTIFIER Symbol Test PIC730 Min. PIC740 . Max. Min. Max. Unit Test Conditions rated, Tc 125'C Pulse Width Duty Cycle VR - = Maximum Instantaneous Reverse Current i. - 50 - 50 rnA Maximum Instantaneous Forward Voltage VF - 0.6 - 0.6 V iF Te Collector Saturation Voltage (Note 1) VeE 1•• 1, - 1.0 - 1.0 V Ie:::: 20A Base Saturation Voltage (Note 1) V'EI"" - 1.5 - 1.5 V Ie = 20A Collector-Emitter Sustaining Voltage (Note 2) VCEOlsus} 30 - 40 - V Ie =100mA ICEO - 10 - 10 = 3001.5, = 1 percent = 20A = 125'C, TRANSISTOR Collector Cut-off Current Emitter Cut-off Current Resistive Switching Speed Rise Storage Fall Inductive Switching Speed Current Fall Voltage Fall mA VeE P.w. = 2.5A I, = 2.5A Is =40V =3001'5 IESO - 10 - 10 rnA VES =7V P.W. =300l's t, t. t, - 500 1.5 250 - 500 1.5 250 nS I'S nS Vee 30V Ie 20A I" IS2 2.5A VSE loffl -4V t" 300 TYP. 300 TYP. nS t,y 350 TYP. 350 TYP. nS = = = = = TJ = 100'C Vee = 30V Ic =20A VClamp =VCEO L = 1751'H IS1 = IS2 =2.5A Notas 1. Pulse Jength=250 P.s; duty cycle ... 1%. 2. Sustaming Voltage. Measured at a high current point where collector-emitter voltage is lowest. Current pulse length eo 50 I'Si duty cycle ~ 1%. Voltage clamp~ at maximum collector-emitter voltage. UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (6171 861-6540 TWX (7101 326-6509 • TELEX 95-1064 5-21 PRINTED IN U.S.A. II PIC730 PIC740 Power Dissipation DC Current Gain 160 500 ~ 140 ~ " 0 Transistor 200 120 '\ ~ c. .~ 100 is ~ ~ 0 80 Schottky Rectifier ID. 60 ""- ~ CI) I 40 CI '~ 20 0: 0: "" " C "\ .c~ 1'\ o -25 25 50 75 100 Tc - Case Temperature ('C) 125 1.0 I-- 0.2 150 .5 ~ 20 I%: ~ 10 z > z :> I--.05 f..--- VI f::::=::: k ...... ......-: ~./ :> V ...u0 ~ V W·Hdol's lil-.l ~1~.. I~ t= ' <' Te = 25'C '"0:0: ./ :::5~ .1 ~ ~ lll"\. "'@" ... IV?" 1--100'C ;: 0 20 Forward Bias Safe Operating Area ./ 25'C 10 0.5 30 51.C ..J ~ V l"- -55'C V Ie - COLLECTOR CURRENT (A) V'Elutl 0 20 10 Transistor - Saturation Voltages 3.0 ;:: « 0: 50 u u 5 o '"CI 100 I.U ........ -SO ~ - J 25 C Z ~ \ u "- ... ..... r- :> "- «> z ;;: Vee - 5v 10d,c u r\ \ 0: Veef,.fj I--t- W ..J ..J I" Limited V 1 1\ 0 05'C u I 100'C _u lellj=a- t- 0.5 .04 0.3 .3 .5 5 10 Ie - COLLECTOR CURRENT (A) 10 2 20 30 20 50 100 200 VeE - COLLECTOR VOLTAGE (V) Resistive - Turn·Off Time Resistive - Turn·On Time 1000 soo .. / g 200 '"::;; 100'C ./ r1" t, - ..... ~ -ioo. ;:: 100 t--ts Vee =30V lellB~8 100'C I"- .:> '" ::;; ;:: i2r,c CI z CI z r u r ~ - 2 r- 1-1""r-t- ... 50 ~ ~ VI VI 0.5 25''!:s ~ t-.... i"0.2 100'C -If O. 1 20 ....... 1 25'l--' Vee = 30V lell ~ 10 0.2 ,;= 10 2 0.5 Ie - COLLECTOR CURRENT (A) UNITRODE CORPORATION, 5 FORBES ROAD LEXINGTON. MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 ' TELEX 95·1064 .05 0.2 20 0.5 2 10 20 Ie - COLLECTOR CURRENT (A) 5·22 PRINTED IN U.S.A. PIC730 PIC740 Rectifier - Typical Reverse Current vs Reverse Voltage Rectifier - Forward Current vs Forward Voltage 1000 .001 .002 SOO .005 .01 .02 .05 .10 .20 .50 1.0 2.0 5.0 10 20 200 100 50 125'C~ ~// // '/ 20 10 ~ f- ~-55'C z w ct: ct: ::> V / 100'C IJ .2 i"- .1 .2 '"ct: w > w 25'C 500 1000 2000 ./' / 100'C ~ ~ ro .4 .5 .6 .7 .8 .9 1.0 1.1 1.2 1.3 V,-FORWARD VOLTAGE (V) r- II / 5000 ~ ~ IOma ~ 50 M w so ~ ~ ~ V,-REVERSE VOLTAGE (% of V'WM) I .3 50 100 200 ct: I I .1 w ~ / II ,I .5 u -- 25'C_ 125'C 10 Possible Circuit Configurations 15 AMP SWITCHING REGULATOR 15 AMP Pass Transistor - Unsaturated·Mode T, PIC740 r-------, EIN=..2_5~_~1"_~I", SWITCHING REGULATOR Pass Transistor - .--------, , Eo=5V I N, Saturated~MDde PIC740 I , I . "', I 100 1500'" 500 " 50V SOOp;f 50V 10V I L_ 10V ~ 2N3762 , .1 ~4--+--r UC1524 or EQUIV UC1524 or EQUIV. -F"""~:ot" Trans, T, Ferroxcube INDUCTOR L N 35 turns = Re&\Ilatlon . Typ. Efficiency at 15A Wire size #18 ..... lI'KI .,,' Amold A4-17172 core, 2616p·3B7 N I =2. NJ =16. NI = 40, Inductor L N 35 turns. Wireslze#lB = Regulation Typ. EfficIency at 15A .•18% go% Arnold A4-17172 Unitrode Corporation makes no representation that the use or interconnection of the circuits described herein will not infringe In existing or future patent rights, nor do the descriptions contained herein imply the granting of licenses to make, use or sell ~quipment constructed in accordance therewith. UNITRODE CORPORATION. 5 FORBES ROAD LEXI NGTON, MA 02173 • TEL. (617) 861-6540 TWX (no) 326-6509 • TELEX 95-1064 5-23 PRINTED IN U S.A. POWER INTEGRATED CIRCUIT PICSOO PICSOl PICSlO PICSll Switching Regulator BA, 400V Power Output Stages APPLICATIONS: FEATURES • Designed and characterized for switching regulator applications • Cost saving design reduces size, improves efficiency, reduces noise and RFI • High operating frequency (to 100kHz) results in smaller inductor-capacitor filter and improved power supply response time • High operating efficiency • Electrically isolated, 4 PIN, TO-66 hermetic case • Fast reverse recovery time of commutating diode • Low capacitance between active components and case (= lOpf) PICBOO/801-High voltage Buck or Flyback regulator. PICBI0/811-Single ended half bridge (2 required), Full bridge (4 required), Deflection circuits, . DC motor drive. . DESCRIPTION The Unitrode PIC800 series are power hybrid circuits, specifically designed, constructed and specified for use in high voltage switching regulator applications. The designer is thus relieved of one of the most time consuming, tedious and critical aspects of switching regulator design: choosing the appropriate switching transistors and commutating diode. significant drawbacks to switching regulators: noise generation and slow response time; the reverse recovery time of the commutating diode is less than 50 nanoseconds. The capacitance between the active components and the package is about 10 picofarads. PIC800 series are completely characterized over their entire operating range of -55'C to +125'C. The devices are enclosed in a special 4-pin TO,66 package, hermetically sealed for high reliability. The hybrid circuit construction utilizes a beryllia substrate for maximum thermal conductivity and resultant low thermal impedance. All of the active elements in the hybrid are fu lIy passivated. Suggested circuit applications are listed on fourth page of this sheet. Switching regulators, when compared to conventional regulators, result in significant reductions in size, weight, and internal power losses and a major decrease in overall cost. Using the Unitrode PIC800 series the designer can achieve further improvements in size, weight, efficiency, and costs. At the same time, because of the PIC800 series design and packaging, the designer is aided in overcoming two of the most SCHEMATIC PIC800 PIC801 PIC810 PIC811 DRIVE MECHANICAL SPECIFICATIONS NOTES, 1. Case is electrically isolated. 2. Leads may be soldered to within 1116" Of base provided temperaturetime exposure is less than 260"C for 10 seconds. PICBOO PICB01 ins. PICB10 PICB11 mm A 620 MAX 1575MAX • 050-075 127-191 C 028-034 071-086 0 958-962 2433-2443 E 190-210 483-533 190-210 483-533 350 MAX RAD 889 MAX RAO H 570-590 1448·1499 J 142-152 DIA 361-38801A 360 MIN 914MIN 250-340 635-664 4-Pin TO-&8 ~ BASE DRIVE (1) 5/79 5-24 ~UNITRDDE PIC800 ABSOLUTE MAXIMUM RATINGS PIC80l PIC810 PIC800·PIC810 .. ... 350V... ....... .350V... .... SV... ...... 8A .5A ...................... . I nput Voltage . Output Voltage Drive·lnput Reverse Voltage Peak Output Current . Continuous Output Current Drive Current . .. 400V ........... 400V 5V ..SA ...5A .... 2A .... 2A Thermal Resistance Junction to Case, 8 J •c Power Switch Commutating Diode. Case to Ambient, 8 C• A Operating Temperature Range, Tc . Maximum Junction Temperature, TJ . Storage Temperature Range. PIC811 PICB01·PICBll 2'C/W 3'C/W 60.0'C/W -55'C to +125'C +150'C -65'C to +l50'C • ELECTRICAL SPECIFICATIONS (at 25'C unless noted) RECTIFIER Test Maximum Inst. Reverse Current Maximum Forward Voltage Symbol PIC800·PIC810 Min. Max. PIC801-prC811 Min. Max. TJ = 25'C TJ = 100'C i, - 20 - 500 TJ = 25'C TJ = loo'C - 1.25 - 1.15 - 1.25 V, V, 350 - 400 - DC Blocking Voltage Maximum Reverse t" Recovery Time - - Test Conditions "A VR = rated, Pulse Width = 3OO"s, Duty Cycle = 1 percent 20 500 1.15 - 50 Unit 50 V i,=3A V Pulse Width = 300"s, I, = 20"A nS 1,"'hA,I,=IA I"e = .25A V Ie = 2.0A, I, = 0.4A V Ie = S.OA, I, = LOA TRANSISTOR Collector Saturation Voltage (Note I) Collector Saturation ! Vee!s.!, Te = 25'C Te = 100'C Voltage (Note 1) Collector Saturation Voltage (Note 1) ! Base Saturation Voltage VCE(satl VeElsat, VIE Is"" - 1.0 - 1.5 - 2.0 - - 1.0 1.5 2.0 - 3.0 - 3.0 V Ie = S.OA, I, = 2.0A - 1.2 - 1.2 V Ic = 2.0A, I, = 0.4A V Ie = 5.0A, I, = LOA Tc = 100'C VaEInfl - 1.6 - 1.6 Te =25'C VBE{$illl - 1.5 - 1.5 VCEOIslIsl 350 - 400 - V Ic=lOmA VCEX!MI 350 - 400 - V 'al =182 = O.6A VeE clamp = rated VCEX f511S1 Emitter·Base Cutoff Current lEBO - 1 - 1 mA V.,=9V Collector Cutoff Current - 1.0 'CEV - 1.0 mA VCE = 350V, VIE = -1.SV VCE = 400V, VIE = -1.5V Collector Cutoff Current, Tc = 1oo'C - - 5 'CEV - - - mA VCE = 350V, VIE = -1.5V VCE = 400V, VIE = -1.SV Cobo 110 Typ 110 Typ pF Vc, = 10V, f = 1 MHz 4 - 4 - MHz ISO - ISO - .J - 0.1 O.S 2.0 0.4 - - - 0.1 O.S 2.0 0.4 ,s Ie = S.OA Vce = 125V I.. = II~ = lA VIE loffl = SV - 2,3 0.4 - 2.3 0.4 "s VCE clamp Base Saturation Voltage (Note 1) Collector-Emitter Sustaining Voltage (Note 2) Ie = 3.0A, L = lSOI'H Collector-Emitter Sustaining Voltage (Note 2) Output Capacitance, Common Base Gain-Bandwidth Product Energy Second Breakdown (unclamped) Resistive Switching Speeds Delay Time Rise Time Storage Time Fall Time Inductive Switching Speeds Te = loo'C Storage Ti me Fall Time F, - 5 Ic = 3.0A, VIE lofll E,/, td t, t, tt t, tt - - Notes 1. Pulse length""'250 .us; duty cycle 0;;:; 1%. 2 Sustaining Voltage. Measured at a high current point where collector-emitter voltage Voltage clamped at maximum collector-emitter voltage. UNITRODE CORPORATION· 5 FORBES ROAD LEXI NGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95·1064 VeE = 10V, le=O.SA, f = 1 MHz 5.25 IS = 4V I" =0.6A L = 40"H unclamped Ie = S.OA, VIE lot~ = 5V 1.,=J 12 =lA = rated VCo. ISllsl lowest. Current pulse length;;: 50 .us; duty cycle 0;;:; 1%, PRtNTED IN U.S.A. PIC800 PIC801 PIC810 Forward Bias Safe Operating Area Power Dissipation 80 ! z 10 70 .'" iii OJ i5 a: UJ . :;: 60 \ so UJ "'a:" UJ > '", . .0 "'" " '\. f0 40 0 30 UJ 10 o ".. ./0. . ::-.. '"-'-' 0 ~ 11 '\~ 11 .5 0 % \. " Tc = 25°C Curves Apply Bel~W ..!' .2 = \. mRanVe'i Te - 25 50 75 100 125 CASE TEMPERATURE (OC) 150 5 10 \ r\ .1 -25 ~ ~ IS8 Limited , "~ '%: ~~~ ~. '" ~ 0 Maximum allowable average "'power dissipation each, for the transistor and for the rectifier. Maximum allowable case temperature 125°C -50 [\~ j' [\ 0: "\ 20 "-~~ 2 0: 0: :J 0 ~~ ~ fZ \. REC'TIFIEh "- "- ~ TRdNSISioR 0 ;:: PIC811 soo 200 50 100 20 VeE-COLLECTOR VOLTAGE (V) Saturation Voltages Reverse Biased Safe Operating Area 5 I Ie'" =5 II ~ fZ ~IC,800 UJ PIC 810 0: 0: ~ PIC 801 ~ '-PIC 811 ~ ~ :J o 0:: ~ > 0.5 -' o 0: -' 0.2 ........ OJ 0.1 f- 0.1 so 20 100 200 500 .05 .05 1000 0.1 VV ~ V~5°C VeE!sat) 0.5 0.2 COLLECTOR CURRENT (A) Ie - Ve,x 1'''1- COLLECTOR VOLTAGE (V) 6,.. /olfc/ :J 0.2 f- I 10 I- --: (sat) 55° 100°C '" '" .05 VBE 25° 0 0.5 z 0 ;:: o _55°C UJ V(clamp) = 350V VCC = 125V t, If, .S nS tfi nS 2S'C 100'C 1.2 1.76 120 140 160 185 le=3A 2S'C l00'C .8 1.1 100 170 100 130 le=5A 2S'C l00'C .9 1.0 80 190 100 Current Temp. le= lA 140 APPLICATIONS: BUCK REGULATOR FULL BRIDGE PUSH·PULL ,-,..-----.-..---0 E'N PIC 810 PIC 810 E." HALF BRIDGE SINGLE ENDED EJN DEFLECTION CIRCUIT 0--,.-------..., ICrr , . FLYBACK TRANSFORMER II ~ -, J . : PIC 810 _.J : PIC 811 I PIC 810 Yoke J ' -_ _ _ _ _........ Eollt UNITRODE CORPORATION· S FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326-6509 • TELEX 95-1064 5-27 PRINTED IN U.S.A. POWER INTEGRATED CIRCUIT PIC900B PIC900C PIC900D H-Bridge Power Output Stage 5A, lOOV FEATURES • Designed and characterized for inductive loads such as Stepper Motor Drivers DC Motor Drivers Full Bridge DC Converters • Fast switching times with low (5mA) drive current • Electrically isolated 18 pin dual-in-line package with integral heat spreader • Compatible with automatic insertion DESCRIPTION The PIC900 is a unique hybrid circuit specifically designed to simplify construction of bipolar stepper motor controls and fullbridge DC converters. The matched transistors and drMl(s allow low saturation voltages and consistent thermal resl!ioriile. The low drive current insures compatibility with ap~pri'at$ •. driver logic. The hybrid circuit construction lJtilizes ttllCk-fifll\.. resistors on an alumina substrate for ('\1i!xim.;.m therrmu .' . ,. conductivity and resultant low thetmal impedi!nce. All t""':' active elements in the hybrid are ftiiliy PMiSivateq. ISQ!Mion between the active circuitaoo the metal heat spri;i8rler exceeds 3kV. " f·:' 8 11 2 17 MECHANICAL SPECIFICATIONS OIL· IS INCHES A B C D E F G H j K 3/83 5-28 .400 .020 . 600 TYP .064 1.00 1.10 .800 1.180 MAX. . 180 MAX. L .021 . 100 TYP. M .550 MILLIMETERS 10.16 0.51 15.24 TYP. 1.63 25.40 27.94 20.32 29.97 MAX. 4.57 MAX . .533 2.54 TYP. 1397 ~UNITRaDE PIC900B PIC900C PIC900D ABSOLUTE MAXIMUM RATINGS PIC900B PIC900C PIC900D Transistor, Collector-Emitter Voltage,VeEo .......................... _................... 60V ....... _..... SOV ............ 100V Transistor, DC Collector Current, Ie ................................................ _..................... 5A .................. . Diode, DC Blocking Voltage ........................................................... 60V ............. SOV ............ 100V Diode, Forward DC Current ............................................................................. 5A .................. . Diode, Reverse Recovery Time, tn .................................................................... 50ns max ................ . Thermal Resistance Junction to Case, (JJ-e Power Switch ..... _. . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. 4.5 0 C/W ............... . Clamp Diode ................................................................................ 4.5°C/W ............... . Operating Temperature Range, Te ................................................................. -55°C to +125°C ........... . Maximum Junction Temperature, T, ... - .. _............................................................ +150 0 C ................ . Storage Temperature Range ...................................................................... -65°C to +150°C ........... . ELECTRICAL CHARACTERISTICS (at 25°C unless noted) PNP Drive Test Symbol Min_ Typ. Max_ Min. On-State Voltage (Note 1) On-State Voltage (Note 1) Diode Forward Voltage (Note 1) Diode Forward Voltage (Note 1) VeE - VeE VF VF Off· State Current Off-State Current Diode Reverse Current Diode Reverse Current Current Delay Time Current Rise Time Voltage Rise Time Voltage Storage Time Voltage Fall Time Current Fall Time NPN Drive - 1.0 1.2 1.5 2.2 - O.S 1.0 1.1 I ceo - 0.1 leEo IR IR t., tn - 10 1.0 t" t" tf, tf, - - - - 1.5 10 - 10 500 90 65 150 50 100 S50 IS00 500 SO~ ISO 400 - - - - Typ_ Max_ 1.0 1.2 O.S 1.0 0.1 1.5 2.2 10 1.0 500 - 90 65 1.1 1.5 10 10 150 - 50 100 S50 IS00 - 500 ISO - SOO 400 Conditions Unit V V V V /lA /lA /lA /lA ns ns ns Ie = 2A, I. = -5mA (5mA) Ie = 5A, I. = -5mA (5mA) IF = 2A IF = 5A VeE = rated voltage VeE = rated voltage, TA = 100°C VR = rated voltage VR = rated voltage, TA = 100°C VeE = 50V ns Ie = 2A ns ns I. = 5mA NOTE: 1. Pulse test: duration = 300ps, duty cycle"" 2%. UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 5-29 PRINTED IN U S.A • PIC900B PIC900C PIC900D Forward Bias Safe Operating Area Power Dissipation 10 40 5 4 3 2 lOpS,',;!;: ~ DC 1ms ' " 10% DUty~ ~Cycle >- as 10% Duty Cycle ~ z ~ 0 ~ iii ::J 0.2 Q. '"u'"::J Ci >::J OJ 0 0: OJ 3: 35 30 25 1"'- 20 ~ Tc·100°C ~ 01 I .05 .04 .03 .02 ~ PIC900B .01 1 4 5 10 20 30 50 10 I ri' PIC900C ~ 15 r o -50 -25 25 ON·STATE VOLTAGE (V) '" 100 125 150 Switching Losses - Single Switch Vee = 50V 1-1,.5mA f·20kHz Tc ·25°C Tc -100°C- / MlxlMUM ... ~ fZ ~ [1l 05 0: I,; ,", 2 ' ,., ~ UESIOOI V~;' .895 @ lA t", 25ns Vii' t,;;' UESI003 .895 @ lA 25ns IN5802* UESllOl .895 @ 2A 25ns IN5807* UES1301 UES1401 UES1501 .850 @ 6A .895 @ 8A .975 @ 16A 30ns 35ns 35ns IN5803 .895 @ lA 25ns IN5808 ,850 @ 6A 30ns IN5804* UESll02 .895 @ 2A 25ns IN5809* UES1302 UES1402 UES1502 .850 @ 6A .895 @ 8A .975 @ 16A 30ns 35ns 35ns IN5805 .895 @ lA 25ns IN5810 .850 @ 6A 30ns IN5806* UESll03 ,895 @ 2A 25ns IN5811* UES1303 UES1503 UES1403 ,850 @ 6A ,895 @8A .975 @ 16A 30ns 35ns 35ns UESll04 1.15 @ lA 50ns UES1304 1.15 @ 3A 50ns UESll05 1.15 @ lA 50ns UES1305 1.15 @ 3A 50ns UESll06 1.15 @ lA 50ns UES1306 1.15 @ 3A 50ns UES1504 .975 @ 16A 35ns "Available as JAN. JANTX. JANTXV UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95·1064 6·4 Pnnted in U.S.A. PRODUCT SELECTION GUIDE ULTRA-FAST RECOVERY (trr - 25 to 50ns) • IN5812* UES701 .825@25A 35ns IN5813 :825@25A 35ns IN5814* UES702 UES2602 .825@25A .825@ 1 35ns 35ns IN6305 UES802 .84@70A 50ns IN5815 .825@25A 35ns IN5816* UES703 UES2603 .825@25A .825@ 1 35ns 35ns UES704 1.15 @20A 50ns UES804 UES2604 1.15 @ 15A 1.15 @ 50A 50ns 50ns UES705 1.15 @ 20A 50ns UES2605 UES805 1.15@ 15A 1.15 @ 50A 50ns 50ns UES706 1.15 @ 20A 50ns UES2606 UES806 1.15 @ 15A 1.15 @ 50A 50ns 50ns IN6306 UES803 .84@70A 50ns *Available as JAN, JANTX, JANTXV UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95-1064 6·5 Printed in U.S.A. RECTIFIERS A B SUPER-FAST RECOVERY (t" - 75 to lOOns) UTXl05 1.00 @ .5A 75ns UTX205 1.0V@ lA 75ns SES5001 .975@ lA lOOns UTX3l05 lV@2A lOOns UTX4l05 lV@3A lOOns UTXll0 l.OV@ .5A 75ns UTX2l0 l.OV @-lA 75ns SES5002 .975@ lA lOOns UTX3llO l.OV @ 2A l-OOns UTX4ll0 l.OV @3A lOOns UTX115 1.00 @ .5A 75ns UTX2l5 1.0V@ lA 75ns SES5003 .975@ lA lOOns UTX3115 l.OV@2A lOOns UTX4115 l.OV @3A lOOns UTX120 l.00@ lA 75ns UTX220 l.OV@ lA 75ns UTX3l20 1.0V@2A lOOns UTX4120 1.0V @3A lOOns UTX125 l.00 @ .5A 75ns UTX225 l.OV@ lA 75ns SES5401 1.025 @ SA lOOns SES540lC SES5501 1.025 @ SA 1.025 @ l6A lOOns lOOns SES5701 .S3 @ 20A lOOns SES5601C .S3 @ l2.5A lOOns SES5S0l .S5 @ 60A lOOns SES5302 . SES5402 .975 @ 5A 1.025 @ SA lOOns lOOns SES5402C SES5502 1.025 @ SA 1.025 @ l6A lOOns lOOns SES5702 .S3 @ 20A lOOns SES5602C .S3 @ l2.5A lOOns SES5S02 .S5 @ 60A lOOns SES5303 .975 @ 5A lOOns SES5403 1.025 @ SA lOOns SES5403C 1.025 @ SA lOOns SES5503 1.02 @ l6A lOOns SES5703 .S3 @ 20A lOOns SES5603C .S3 @ l2.5A lOOns SES5S03 .S5 @ 60A lOOns SES5404 1.025 @ SA lOOns SES5404C 1.025 @ SA lOOns SES5504 1.02 @ l6A lOOns SES5301 .975 @ 5A lOOns UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173· TEL. (617) 861·6540 TWX (710) 326-6509 • TELEX 95-1064 6-6 PRINTED IN USA PRODUCT SELECTION GUIDE A FAST RECOVERY (t" - 150 to 500ns) ,,~D.C. .·~\ltCUl'r$l1t 1A .,~~c_Style vF ,.;:~v t,.. .'. . Il~' vp '. ~, .:," <. ."". , I:~.,· ,,, 'v , .trr I . 200v' .:" F , S "' ··:1 ' ','. ,4. ,. •• :c..•. .' , .. 400V 50lW' .?Vy,,; ;,J., If C IN5415* UTR4305 l.1V @ ,5A 250ns LlV@ lA 250ns LlV@3A 250ns 1.5V@9A 150ns LlV@4A 250ns UTR4405 UTR5405 UTR6405 LlV@6A 300ns UTRll UTR12 UTR3310 IN5416* IN5186*' UTR4310 LlV@,5A 250ns UTR21 LlV@ lA 250ns LlV@3A 250ns UTR3320 1.5V @ 9A 150ns IN5417* IN5187*' LlV@4A 250ns UTR4320 ' IN4942* IN5615* UTR22 LlV@,5A 250ns UTR31 LlV@,5A 300ns l.3V@ lA 150ns LlV @ lA 250ns UTR32 LlV@ lA 300ns LlV@3A 250ns 1.5V @ 9A 150ns LlV@4A 250ns UTR41 IN4944* IN5617* UTR42 UTR3340 IN5418* IN5188" UTR4340 LlV@.5A 350ns 1.3V @ lA 150ns LlV@ lA 350ns LlV@3A 300ns 1.5V@ 9A 150ns UTR52 LlV@ lA 400ns UTR3350 LlV@3A 350ns IN5419* 1.5V@9A 250ns UTR62 UTR3360 LlV@ lA 400ns LlV@3A 400ns IN5420' IN5190" 1.5V@ 9A 400ns LlV@4A 400ns UTR4350 LlV@4A 400ns UTR4360 UTR51 iV,{' LlV@,5A .tn. ; 400ns UTR61 :: ,. ·W, ·tn, ' 6-9A UTR3305 A . ,-",' 600\1 .. .- UTR02 J '. ..... 'vF • BO()Y '41\ 3A UTROI :".:.,' ;"," 3A 8 , I' . 2A B " ) lA A A " ..... B LlV@.5A 400ns IN4946* IN5619' 1.3V @ lA 250ns UTR4410 UTR5410 UTR6410 LlV@6A 300ns UTR4420 UTR5420 UTR6420 LlV@6A 400ns UTR4440 UTR5440 UTR6440 LlV@6A 500ns LlV@4A 400ns 'Available as JAN, JANTX, JANTXV "Available as JAN, JANTX UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95·1064 6·7 PRINTED IN U.S A RECTIFIERS JAN &JANTX IN3611-1N3614 Military Approved, 1 Amp, General Purpose FEATURES DESCRIPTION • • • • This series of MIL approved JAN and JANTX general purpose lamp rectifiers are useful in many high rei applications. Qualified to MIL-S-19500/228 Continuous Rating: lA Surge Rating: 30A PIV: to 800V ABSOLUTE MAXIMUM RATINGS Peak Reverse Voltage Min. Reverse Working Valtag. 240V 480V 720V 920V 200V 400V 600V 800V Type JAN JAN JAN JAN & JANTX IN3611 & JANTX IN3612 & JANTX IN3613 & JANTX IN3614 Maximum Average D.C. Output Current .. 1.0A @ TA == lOO'C . O.3A @ TA == 150'C Non-Repetitive Sinusoidal Surge Current (8.3ms) ................. 30A Operating Temperature Range. . .................................. -65'C to +175'C Storage Temperature Range .... -WC to +200'C Thermal Resistance ... See Lead Temperature Derating Curve MECHANICAL SPECIFICATIONS JAN & JANTX1N3611-1N3614 I Band indicates 1.-155" TYP ....I 028" -:'.001 3.9mm 0 7lmm ~ 03 --->. _"t~·eni:JJt °i~~'':~P 1 D I· i I It>----178:~ -r----_ )1:1: .A0 H o~~;~~~x. _ _ _- , - l-oasT-- t'----j---L- 250" MAX I r;V;~m" : 700" MIN! BODY A 6,3Smm --------, 1.625" MIN 413mm I I 6-8 ~UNITRODE JAN & JANTX IN3611-1N3614 ELECTRICAL SPECIFICATIONS (at 25'C unless noted) Maximum D.C. Minimum Reverse Reverse Type JAN JAN JAN JAN Peak Reverse D.C. Voltage Breakdown 200V 400V 600V BOOV 240V 4BOV 720V 920V & JANTX IN3611 & JANTX IN3612 & JANTX IN3613 & JANTX IN3614 Voltage @ 100#A L= ::!a: <) ....: ;::2 ... ... "... ~ 1 ... Q ~ .. 4 3.5 ..... ~ III '""'" ~ ~~ I "# ~ ..2 60 50 75 100 125 150 TL - LEAD TEMPERATURE ('C) I • I I Turret 1" centersf--f-+-I-+++1f+1"~~*-+-1 Turret W· centers~~ Printed Circuit ?: "' 40 t--- 20 o 10 100 CYCLES AT 60 Hz HALF SINE WAVE .·5 1,000 175 Typical Reverse Current vs PIV .001 .002 2 .5 ;; .005 .01 ... .02 V- .:; I ...z <) .05 .1 .2 III .5 II:: ... Z .2 a: :> I/!"' ,(.J~~(.J $ ~ id:-f- ~ .1 :> <) I 11IIII 10 ... 300pA I III 80 Typical Forward Current vs Forward Voltage :5: IpA @l.OA o ~~ 2S 150'C Q '" ."- II:: "z ~ ...a: ":> ... .: II:: ............ 1'-... II:: I 2S'C l.1V(pk) O.6V III L=~ I~ <) Max. Allowable Forward Surge vs Number of Cycles ,f~ :> at D.C. Voltage 100 ~ 3 I Min. Maximum Current vs Lead Temperature ...:5:z Current Peak Forward Voltage 'Iii i .05 I -'"".02 / .01 .005 / .002 .001 .2 .4 V, - I -I II:: ,. + 7S'C 10 20 I I ~125'C 50 100 Ii .6 .8 1 VOLTAGE (V) ./ -+2S'C ....... r- W I II / ... ...>a: ....-' SO'C 150 1.2 UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6S09 • TELEX 95-1064 100 50 % OF PIV 1.4 6-9 PRINTED IN U.S.A. RECTIFIERS 1N4245-1 N4249 JAN, JANTX &JANTXV Military Approved, 1 Amp, General Purpose FEATURES • Qualified to MIL-S-19500/286 • Surge Rating: 25A • PIV: to IOOOV • Controlled Avalanche • No Plastic, Epoxy, Silicone, Oxides, Gases or Solder are used DESCRIPTION This series of general purpose power rectifiers are available as JAN, JANTX or JANTXV for many power supply applicatons. ABSOLUTE MAXIMUM RATINGS Maximum Reverse VOltage Type 200V 400V 600V 800V lOOOV JAN, JAN, JAN, JAN, JAN, JANTX, JANTXV IN4245 JANTX, JANTXV IN4246 JANTX, JANTXV IN4247 JANTX, JANTXV IN4248 JANTX, JANTXV IN4249 Maximum Average D.C. Output Current @ TA =. IOO'C. .. . ...... ... .... . ........ l.OA @ TA I50'C .................... . ..... O.333A Non-Repetitive Sinusoidal Surge Current . ............ 25A Operating Temperature Range .. -65'C to +175'C Storage Temperature Range. .... -65'C to +175'C Thermal Resistance .... ..................... See Lead Temperature Derating Curve = MECHANICAL SPECIFICATIONS J, JT)(, JTXV lN4245-1N4249 I ---.:t. Sand Ind,cat~!"'" cathode e~ 1 I 155" TYP 3,9mm.... BODYA 028" ...... 001 O.71mm':=.03 i f 1/79 6-10 ~UNITRDDE JAN, JANTX, JANTXV IN4245·1N4249 ELECTRICAL SPECIFICATIONS (at 25"C unless noted) Type Minimum Reverse Breakdown Voltage PIV @ 100~A J, J, J, J, J, JTX, JTXV 1N4245 JTX, JTXV IN4246 JTX, JTXV IN4247 JTX, JTXV IN4248 JTX, JTXV IN4249 == !f2A *Measured In circuit IF 240V 480V 720V 960V 1150V 200V 400V 600V BOOV 1000V t = IR 1.0A, I REC Max. Min. 1.3V(pk} 0.6V @3.0A(pk} I 002 ::>' V- ~ I w z>- .... Z .2 w ~ .1 /iV~ :;:8 'l.i'4~I-e- ::> <.>.05 li / I .,-.02 II .01 .005 II II .001 .2 <.> ....... ....o +25°C "... Ul > w a: ~5OC 10 20 "a: 80 '-' a: ::> 60 ~ I .6 1 V, - VOLTAGE (V) 1.2 25 50 T, - ~ -........ ~~ "" IIIII ~ --..:::: ~~ 40 o .5 100 125 ISO 175 LEAD TEMPERATURE (OC) Reverse·Recovery Circuit 10 \J Q + Turret liz" centers Printed Circuit _ -=- 25Vdc (APPROX.) r--- I!l NOTE3 r-.:::::: f:~ 20 75 0 OSC I LLOSCOPE NOTEI NOTES: "if 10 100 1.000 1. Oscilloscope: Rise time r; 3n5; input impedance = 50H. 2. Pulse Generator: Rise time 8nsi source im~edance IOU. 3. Current viewing resistor, non-inductive, coaxial recommended. c: CYCLES AT 60 Hz HALF SINE WAVE UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON. MA 02173 • TEL. (617) 861·6540 TWX (710Y 326·6509 • TELEX 95·1064 6·11 ... Uj ALL SERIES I I JTurret IIII I I 1" centers OJ VJ 1 1.5 1'\ 1.4 "'-l"- 0 .... ~ 50 100 50 VJ c::; "" I"" ."- % OF PIV .4 OJ "';: L=~ ~, "a: Allowable Forward Surge vs Number of Cycles 100 ~~~ OJ ~25;C 150 3.5 '-' 1 50 100 4 ""l ;: ;:: 2 <.> I II _8 ~ 3 a: ::> / W 0: / I .... Z 0: W I I .002 e- <.> w L =W' ~ 50'C .05 .1 2 ::> -{'-' 0'-' '-' '-' 1.......- 005 01 .02 0: 0: • Maximum Current vs Lead Temperature .001 .5 5.0,,5 150"A Typical Reverse Current vs PIV 10 '-' Z ;:: 1.0"A Time* == JAA Typical Forward Current vs Forward Voltage 5: Maximum Reverse Recovery Maximum Reverse Current 25°C 150°C Forward Voltage PRINTED IN U.S.A. JAN, JANTX, & JANTXV IN4942 JAN, JANTX, & JANTXV IN4944 JAN, JANTX, & JANTXV IN4946 RECTIFIERS Military Approved, 1 Amp, Fast Recovery FEATURES • Qualified to MIL-S-19S00/359 • Surge Rating: 15A • PIV: to 600V • Controlled AValanche DESCRIPTION These fast recovery rectifiers are suitable for use as power devices for many applications. Devices are available as JAN, JANTX or JANTXV. ABSOLUTE MAXIMUM RATINGS Maximum Rlve ..e Voltap 200V 400V 600V Type JAN, JANTX, & JANTXVIN4942 JAN, JANTX, & JANTXV IN4944 JAN, JANTX, & JANTXV IN4946 Maximum Average D.C. Output Current @ T... :: 55'C ....................................................................................... 1.0A @ T... :: l00'C .................................................................................. O.75A Non-Repetitive Sinusoidal Surge Current (8.3ms) ......, .................................................................... 15A Operating Temperature Range ...................................................................... --65'C to +175'C Storage Temperature Range ............................................................................ --65'C to +175'C Thermal Resistance .................................................. See Lead Temperature Derating Curve MECHANICAL SPECIFICATIONS JAN, JANTX, & JANTXV 1N4942. 1N4944. 1N4946 1 Band indicated, cathode end .OSS" TVI'. [ ] l.4mm 1 &: i 1S5N TYP "'1 3.9mm·... 028" .... 001 O.71mm'=.03 ~ 111 BODY A :l 0 .085" MAX. 2.16,tm ~.085" TYP. 2.2mm ~.1~:~~:nN. i'-2W.;~~~ 1.625" MIN. 41.3mm 1/79 6-12 ~UNITRODE JAN, JANTX, & JANTXV IN4942, IN4944, IN4946 ELECTRICAL SPECIFICATIONS ~ ~ u;: r---..... ~ t\. ~ I .$ ~ lSO ~ .... z ::E '"'" c'II"' t- "cr: UI IVVV Iii;''' ." t'." !If! f II II I .2 0: 0: u.05 I _".02 II .01 .005 / .002 0 175 :< .:; vvVv1// .5 0 LEAD TEMPERATURE ('C) I .001 .2 .4 V, - .... .02 :::l W 0: I II .-- 50'C W +75'C 10 20 1/ / ~2$'!( 50 100 I 150 .6 .8 1 VOLTAGE IV) 1.2 100 50 % OF PIV 1.4 Characteristic Waveform. 10 \I +0.5A + _ -=- 45pf 35pf 25pf .005 .01 w Z Reverse-Recovery Circuit SOQ 150ns 150ns 250ns .001 .002 z UI Capacitance @V.=12V f = IMHz Typical Reverse Current vs PIV 10 1.5 AMP SERIES >:::l - z "'~ [/11 Il'o ~ ~/';:, ,2 ,002 ,001 "'a: "'> "'a: III [I ,01 .005 / 1/ II ~ A V, - -' C::::;::;;-+2S'C "1 I .... 10 20 C::::;::;;-+7S'C 50 10O 200 "/ [A12S'C 500 I ~ ~-5O'C ::l 0 II / I -,",,02 ,S "' ~ "f.~ "/~/V) "/I .1 ::l z>- - a: a: 00 0,05 .3 ;( / ~ .5 ,05 .1 ,2 1.000 • I VOLTAGE {VI UNITRODE CORPORATION, 5 FORBES ROAD LEXINGTON, MA 02173 ' TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 I~ 150 14 6-15 100 50 % OF PIV PRINTED IN U.S.A. • RECTIFIERS IN5415-1N5420 JAN, JANTX & JANTXV Military Approved, Fast Recovery, 3 Amp FEATURES • Qualified to MIL-S-19500/411 • PIV: to 600V • Controlled Avalanche DESCRIPTION This series of devices as designed to meet the need for high speed, power rectifiers in military high-rei power supplies. ABSOLUTE MAXIMUM RATINGS Peak Invane Valtage Type JAN, JANTX, JANTXV IN5415 JAN, JANTX, JANTXV IN5416 JAN, JANTX, JANTXV IN5417 JAN, JANTX, JANTXV IN5418 JAN, JANTX, JANTXV IN5419 JAN, JANTX, JANTXV IN5420 50V lOOV 200V 400V 500V 600V Maximum Average D.C. Output Current @ TA = 55'C @ TA lOO'C Non-Repetitive Sinusoidal Surge Current (8.3ms) Operating Temperature Range Storage Temperature Range. Thermal Resistance e JL @ L = %" .. .. 3.0A ... 2.0A = ...... 80A ................................ -65'C to +175'C ........... -65'C to +200'C .. ....... 2O'C/W See Lead Temperature Derating Curve MECHANICAL SPECIFICATIONS J, JT)e, JTXV 1N5415-1N5420 BODY B Dimensions in inches. 6-16 ~UNITRDDE JAN, JANTX, JANTXV lN5415 ·lN5420 ELECTRICAL SPECIFICATIONS (at 2S'C unless noted) Minimum Type Reverse Breakdown Voltage @5O#A PIV 50V l00V 200V 400V 500V 600V J, JTX, JTXV lN5415 J, JTX, JTXV lN5416 J, JTX, JTXV lN5417 J, JTX, JTXV lN5418 J, JTX, JTXV lN5419 J, JTX, JT! u I -" nov 220V 440V 550V 660V = 150 150 150 150 250 400 1.5V(pk) 0.6V 1.0"A @9Adc tp 300"s 20"A = lA, I.EC =0.25A. Typical Forward Current vs. Forward Voltage 20K 10K 5K ~O!C V;.....r I ~ 2K ;: IK Z 500 I-'" +25'~ ,;, I'-.§>~o ~ I 50 _.... 20 If II ... I? /1/ II ~ 200 i3 100 +100'C 'J / OJ .0 1- jrf ~ 10 5 III II 2 .2 .4 +150'C IIA " .6.8 1.2 V, -VOLTAGE(V) 1.4 1.6 J 100 50 Maximum Power % PIV VS. Lead Temperature ~ ~ 20 ~ ;;: 18 2 16 l- e:: 14 o 10 ~ ~ a. :;;; Maximum Current vs. Lead Temperature ( = L = .125, l~~ .Y ............. rL - .750 55 TL - " .......... 95 Le~d Le~gth X ~ from Body- "" ....... ---, ........... ...... 75 i 135 Tl R8JL TI - I.,...." (I I ~ r-.. -4:... _t-- 8 6 750..... 4 I I 2 0 0 t- t-j../:. N-J 1\% r+"+\ I'. ~ I"-- "- 1\ ..... r-r:::: :--,l .500 IL 1"'1"" 25 50 75 100 125 150 175 TL - LEAO TEMPERATURE ('C) Reverse .. Recovery Circuit SOil ......... [',. -.........:: ~ 115 Plmaxl - K ~J-'N..". ~ 12 35 100'C 55V Typical Reverse Current vs. PIV .0001 .0002 .0005 .001 .002 .005 .01 .02 .05 .1 .2 .5 1 2 5 10 20 50 100 200 500 1000 ISO Maximum Reverse Recovery Time* Reverse Current Forward Voltage ~ ISS 10 II + 175 _ -=- LEAD TEMPERATURE ('C) 25Vdc (APPROX.) III NOTEl OSCILLOSCOPE NOTEI NOTES: 1. Oscilloscope: Rise time ~ 3ns; input impedance = sou. 2. Pulse Generator: Rise time ~ 8ns; source imlledance IOU. 3. Current viewing resistor, non-inductive, coaxial recommended. UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861 ..6540 TWX (710) 326 ..6509 • TELEX 95.. 1064 6 .. 17 PRINTED IN U.S.A. RECTIFIERS 1N5550-1 N5553 JAN, JANTX & JANTXV Military Approved, 5 Amp, General Purpose FEATURES • Qualified to MIL-S-19500/420A • Continuous Rating: 5A • PIV: to BOOV • TX Parts 100% Screened • Miniature Size • Controlled Avalanche DESCRIPTION This series of military approved rectifiers is useful in many military applications. The 100% screening requirements in the "TX" version combined with the unique Unitrode construction assures the highest degree of reliability. ABSOLUTE MAXIMUM RATINGS Peak Inverse Voltage Type 200V JAN,-JANTX & JANTXV 1N5550 400V 600V JAN, JANTX & JANTXV 1N5551 JAN, JANTX & JANTXV 1N5552 JAN, JANTX & JANTXV 1N5553 BOOV Maximum Average D.C. Output Current @ TA = 55'C @TL =55'C .......... . Non-Repetitive Sinusoidal Surge Current (8.3ms) Operating Temperature Range Storage Temperature Range . Thermal Resistance ................................ . ....................... 3.0A .. ............................................. S.OA ................................ 100A ........................ -65'C to +175'C ..... -65'C to +200'C See Lead Temperature Derating Curve MECHANICAL SPECIFICATIONS J, JTX, JTXV 1N5550-1 N5553 6-18 BODY B ~UNITRDDE JAN, JANTX, JANTXV IN5550-IN5553 ELECTRICAL SPECIFICATIONS (at 25'C unless noted) Maximum Type Peak Inverse Voltage Minimum Reverse Breakdown Voltage @ SOpA J, JTX, JTXV IN5550 200V 240V J, JTX, JTXV IN555I 400V 460V J, JTX, JTXV IN5552 600V 660V J, JTX, JTXV IN5553 800V 880V Leakage Current @ PIV Peak Forward Voltage Min. I Max. 0.6V 2S'C 100 C Time* I.O"A 75"A 2.0"s 1.2V @ IF Maximum Reverse Recovery == 9A(pk) (8.3ms) *Measured in a test circuit IF =o.5A, IR =::: 1.OA, tREe = O.2SA Maximum Power Dissipation vs. Lead Temperature Maximum Current vs. Lead Temperature '"" ii: >= $ '"0: 2 U ~ = Le~d L = .12~ L=~ l~ I- '"'" ::;,'" '"'" ........ ".......... l"---- L d.7S0 0: 0: Le'ngth from Body- 0: U o:~ "';: ;:- '" I'" ,,2 0.." :;:>= ::;,'" :;:!!: t--. f'-..- J"., -V> XV> "'-" ]"--.:~ > '" 55 TL - 75 95 115 135 155 / L 175 .2 '"::;, .5 1 0: 0: u ..- - _r- 10 20 I ~ f.--' SO 100 200 _t'" SOD 1000 .-25'C E. +0.5A I- 200 '"0:0: 100 u 50 ::;, 75'C " ;: '" " r--' 17S 0: 20 0: 10 125'C 50'C I J 1/ I I / / j I 1 SO 25'C I / II / / LL o / / II 1 I 0.25 V, - 0.5 0.75 1.0 1.25 1.5 FORWARD VOLTAGE (V) Reverse-Recovery Circuit ~ 50 n 101/ '\ - OA -0.25A + === / (A~~~g~.) 0-----, 1 \l / -1.0A 150 III /1/ 2 V /1 I 1/ / ;(500 Characteristic Wave Form t" 125 ~W V;-jV 1,000 % OF PIV -1 100 LEAD TEMPERATURE ('C) 100'C -" 100 I L=.37~~ ~L=.500- 75 SO 5,000 I 150 ......, ReJL :::-- ::::;.<.. r--:: :::::::::::~ 10,000 2,000 0: 0: ro /' I""- 175'C '"V> '"~ t'-.... I I I L = .2S0 Typical Forward Current YS. Forward Voltage 50'C .OS ;( .:; .1 2 P(max} :::: TJ - Tl t::--- TL - Typical Reverse Current vs. PIV I- t--. t--. 25 LEAD TEMPERATURE ('C) .01 .02 -- l- :;: ~ 35 20 18 I--L = .000 16 ........... 14 f"--... 12 10 \V NOTE3 H-'cm SET TIME BASE NOTES: FOR 500ns/ em UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 9S-1064 OSCILLOSCOPE NOTEl 1. Oscilloscope: Rise time t; 3n5; input impedance:::: SOH. 2. Pulse Generator: Rise time::; Bns; source impedance 10\1. 3. Current viewing resistor, non-inductive, coaxial recommended. 6-19 PRINTiP IN U.S.A RECTIFIERS IN5614, IN5616, IN5618, IN5620, JAN, JANTX & JANTXV Standard Recovery, 1 Amp Military Approved FEATURES DESCRIPTION • Qualified to Mll-S-19500/427 • PI V: to BOOV • Controlled Avalanche This series of medium power general purpose rectifiers can be used in the most demanding military supplies. Rugged mechanical integrity and tight electrical parameters make them particularly useful. ABSOLUTE MAXIMUM RATINGS Peak Inverse Voltage Type 200V 400V 600V 800V JAN, JANTX & JANTXV IN5614 JAN, JANTX & JANTXV IN5616 JAN, JANTX & JANTXV IN5618 JAN, JANTX & JANTXV IN5620 Maximum Average D.C. Output Current @ TA =55'C. ............... 1.0A ..... O.75A @ TA =,lOO'C ............ . Non-Repetitive Sinusoidal Surge Current (8.3ms) .. Operating Temperature Range. Storage Temperature Range Thermal Resistance e JL @ L =%" ................. .................. 30A . -65'C to +175'C .... -65'C to +200'C ......... 38'C/W See Lead Temperature Derating Curve MECHANICAL SPECIFICATIONS J, JTX, JTXV lN5614, lN5616, lN5618, lN5620 1/79 6-20 BODY A ~UNITRODE JAN, JANTX, JANTXV IN5614, IN5616, IN5618, IN5620 ELECTRICAL SPECIFICATIONS (at 25°C unless noted) Minimum Reverse Maximum Type PIV Breakdown Voltage @ SO#A J, JTX, JTXV IN5614 200V 220V J, JTX, JTXV IN5616 J, JTX, JTXV IN5618 J, JTX, JTXV IN5620 400V 440V 600V 800V 660V 880V *Measured in Circuit IF = lilA, IR = l.OA, 'REG Forward Voltage Min. 0.8 ~ Maximum Reverse Reverse 25°C l00'C Recovery Time* 0.5"A 25"A 2.0,,5 Current Max. l.3V(pk) @3.0A tp = 300,,5 = JAA II Typical Reverse Current VS. PIV .0001 .0002 .0005 .001 .002 .005 ::< .01 .3 .02 I- .05 Typical Forward Voltage vs. Forward Current 10K 5K ~ ~I?:: 2K ::< I/V JIIII j 1/1/ oi.JL~ t.., , "'- u o L=~ "';:::u:: u "'~ "'>< ............. I 50 75 T, - ~ ~.. ~ en o 6 ~.. ~ i"" 0: ~ 4 :i: ::;: ::> :; X < :; r---...... ~ '\. 100 125 10 20 50 100 200 500 1000 .5 ~ ISO 1 ° I ..J.... +l50'C I ISO 100 50 175 % PIV Typical Forward Voltage VS. Forward Current ' 10K 5K p(m~.;= T,-T~_ 2K ...~500 I .1 I I I Lr Lead Length from Bod~ r~ - ~~ ~ lK °Jl ~ 200 I ~ 100 I ::> 50 .500" u I~L='.750" - .375";--" ~ -4. :r-+-::: "::l':z. ....... -.:: t:::: ~ ~ -T1jOO'; 25 m.L 2 5 LEAD TEMPERATURE ('C) I I I I z a ;::: !Q I -" Maximum Power vs. Lead Temperature 10 +25'C /.. g; .......... .2 25 .05 I .5 0_"" 1 ..................... ......... ~ 0: .02 ./ ~< .1 cr.3 .2 L~ ~ "'0: .3 ... SO'C 50 75 100 125 150 TL - LEAD TEMPERATURE ('C) I 20 -" 10 "'" IV / 'J / 1j/J d J<>fJ-lI/' /J y. y. .2 175 ... .4 .6 .8 1 1.2 1.4 1.6 V, -VOLTAGE(V) Reverse·Recovery Circuit SOil 10 !! + _ -=- 25Vdc (APPROX.) III NOTE3 OSCILLOSCOPE NOTEI NOTES: 1. Oscilloscope: Rise time::;;: 3n5; input impedance = 500. 2. Pulse Generator: Rise time ~ ans, source impedance 10n. 3. Current viewing resistor, non-inductive, coaxial recommended. UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95·1064 6·23 PRINTED IN U.S.A. • RECTIFIERS IN5802-1N5806 IN5807-1N5811 IN5812-1N5816 High Efficiency, ESP, 2.5 Amp to 20 Amp FEATURES • Exceptional Efficiency • Low Forward Voltage • Extremely Fast Reverse Recovery Time • Extremely Fast Forward Recovery Time • High Surge • Small Size • Rugged, High Current Termination • Radiation Tolerant DESCRIPTION This series of High Efficiency Power Rectifiers allows circuit designers to deSign high current, high frequency suppi ies to 500 kHz with very low diode losses. The high forward surge capability makes these devices useful in protective circuits. ABSOLUTE MAXIMUM RATINGS 2.1 Amp lAmp Ped In ...,.. Volta,. Se,le. Series Series flJV 75V lODV l25V lfIJV lN5802 lN5803 lN5804 lN5805 lN5806 lN5807 lN5808 lN5809 lN58l0 lN5811 lN58l2 lN5813 lN58l4 lN58l5 lN5816 I .. AMP SERIES 2.5 AMP Maximum Average D.C. Output Current @ TL 75·C, L ~H @ Tc lOD·C .. Non-Repetitive Sinusoidal Surge Current (8.3ms) .. Operating and Storage Temperature Range Thermal Resistance 2.5A and 6A Series .. lOA Series = = 20 Amp SERIES = 2.5A ..... 20 AMP SERIES .. 6.0A .. • ••••• HH.H. . 35A. H •• H • • • • • • • • • • • • • HH ••••• 125A.. lO.OA .... 2flJA -65·C to +175·C. ...... See Lead Temperature Derating Curve ••••• •••••••••••••••• • •• H •••••• 3.0·C/W MECHANICAL SPECIFICATIONS O 1N58D2-1N5801 BODY A 1N58D7-1N5811 BODY B 015" MAX 216mm 085" ~ TYP' 22mm 700" MIN 178mm 250" MAX 6.JSmm 1 0 - - - - - I ~~~:,:.N ____- '" u Q '" ;;: ~ u '"'" '" ""'" > '" " I 2.5 AMP SERIES from Body 5 4 ~ r-- '", 5 _,=.A 4 ~ ......... II '\ '" " -"'- 2 \ ......... 50 75 100 125 ......... rl ... z '" 15 ''"" :> u ...;;:0 ~ 10 u ... \ ISO 175 T, - LEAD TEMPERATURE C'C) UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326·6509 • TELEX 95-1064 '" ...;;:o u ~ o 125 ISO CASE TEMPERATURE C'C) 6-25 "'" 6 "'i--. L=~· ~ 4 "'" "'" i'.... II: \ ~ i"-.. \ 4 i'.... T, - 125 ISO ti ~ \ " 100 @ .... I 75 .,'" ~ .2 SO ~ ~ '\.r\ ~ 25 10 6 ~ 2 175 12 8 I\. l= .. ··.....", II: _0 =from leadeady Jnllh "\ :> \ 100 L l="'~\. '" '"" "... > "I o \J 10 II: \\ II: ~ lAMP SERIES ~ lZ II: "'" ~\~ 25 ~ 3 _.... l=" """ I-- "0 '"., @ "'" '" 1\ ~ L = Lead Lenllh 12 20 AMP SERIES " 2 o 175 LEAD TEMPERATURE C'C) PRINTED IN USA. IN5802-1N5806 Typical Forward Current vs. Forward Voltale Typical Forward Current vs. Forward Voltale 10 S 100 ~~ 2.SAMPSERI S VI ...!z: I .S .2 V ::> .os CJ I .: I- .02 I 01 .oos .. 2 ~ 1 ~ .5 ...z .02 3 4 5 6 7 8 910111213 V, - VOLTAGE IV) -11II I 1'''''' 81J !Z... I1II ~ ~~I :;:' I I "I 5 5 6 7 .8 9 10111213 IA 10-/ ;l-~~ 02 II 01 II II .....z i-' os I--" II: II: ::> ....1--"1- ~ !Z... T=25'C II: &SERIES I .: 50 100 1-1--"1--" ~ T=+75 C ( T _25~C JL1 1 I 10 TiYl 130120110100 90 80 10 60 50 40 )() 20 10 0 VOLTAGE IN % OF PIV UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 200 1000 T= +25 C 10 20 .: 20 I( TTY ic ... T _ +75 C 100 200 6-26 ----- 11+125 C ~ 5 130 120 110100 90 80 70 60 50 40 30 20 10 0 VOLTAGE IN % OF PIV 20 AMP SERIES A-soc ...... .... ~ 100 1...-1--" .... I -I- -f-- ::> ... 1-1-110 - I 01 02 /' 0: / v I I Typical Reverse Current vs. Voltage 01 < .3 ~J I ::;:. 123456789101112131415 V, - VOLTAGE IV) Typical Reverse Current vs. Voltage 01 :; 05 V j -VOLTAGE (V) 2.5_AMP SERIES r--f- ~Vf "Vu r--r ~ it I ~ II 02 4 lij II I II 2 .3 V V II 2 II: II: ::> II I Typical Reverse Current vs. Voltale .001 10 g --~ -k" iJ" .os I 01 2 II .: .2 001 I I I I II I I .002 III 20 '/1/ / I g ....-::;::: ;::::F' V/~ 20 AMP SERIES 50 ..-:::::: ~~ 20 f~ ~15-1~I II: II: 100 10 IN5812-1N5816 Typical Forward Current vs. Forward Voltage lAMP SERIES so // / / III g IN5807-1N5811 1000 125 100 75 50 VOLTAGE IN % OF PIV ./ f-"" V 2S PRINTED IN U.S A. IN5802·1N5806 Reverse·Recovery Time Circuit IN5807·1N5811 IN5812·1N5816 Characteristic Waveform I, . t" r-- ~ • IREC I I I I, LI SET TIME BASE FOR 5 NS/CM NOTES: 1. Oscilloscope: Rise time ~ 3 ns; input impedance:::::; 50 !2. 2. Pulse Generator: Rise time:::; 8 ns; source impedance 10 \!. Forward Pulse Current VS. Duration Multiple Surp Current VI. Durltion 10,00:1 100 5,000 g '" 80 Z ~ 1,0Cl(} ~ soo 0: ~ ... 0: f'.-. "'"I'.... ...... ~ eo '~40 " ::> "... I" 0: ~ 100 ~ 50 .. o 1'20 T MOUNT @L..... = .." Nl=: Ipr'"i l"- ed CircUit 10 l,us Ips so 10,..s 1001's PULSE DURATION UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326·6509 • TELEX 95-1064 lOms 1 2 5 10 20 so 100 200 soo lUOO CYCLES AT 60 Hz SINE WAVE 6·27 PRINTED IN U.S A. RECTIFIERS IN5802, IN5804, IN5806, IN5807,lN5809,lN5811 JAN, JANTX &JANTXV Military Approved, High Efficiency, 2.5 Amp and 6.0 Amp FEATURES DESCRIPTION • Qualified to MIL-S-19500/477 • PIV: to 150V • Low Forward Voltage This series of high efficiency power rectifiers are particularly applicable to switching regulator power supplies where extremely fast switching and low forward losses are most important ABSOLUTE MAXIMUM RATINGS Peak Inverse Voltage SOV lOOV 150V 2.SA Series 6.A Series JAN, JANTX & JANTXV IN5802 JAN, JANTX & JANTXV IN5804 JAN, JANTX & JANTXV IN5806 JAN, JANTX & JANTXV IN5807 JAN, JANTX & JANTXV IN5809 JAN, JANTX & JANTXV IN5811 Maximum Average D.C. Output Current @TL 75'C, L=%" @ TA 55'C Non-Repetitive Sinusoidal Surge Current (8.3ms) .. Operating Temperature Range . Storage Temperature Range Thermal Resistance, 8 JL @ L =~" 2.5A SERIES = ............ 2.5A . 1.0A .. = . 35A .. 6A SERIES ..6.0A ....... 3.0A . ... 125A .-65'C to +175'C .. .-65'C to +200'C .. ... 59'C/W 35.5~C/W. See lead temperature derating curve MECHANICAL SPECIFICATIONS J, JTX, JTXV 1N5802-1N5806 BODY A J, JTX, JTXV 1N5807-1N5811 BODY B Dimensions in inches. Dimensions in inches. 6-28 ~UNITRDDE J, JTX & JTXV IN5807-IN5811 J, JTX & JTXV IN5802-IN5806 ELECTRICAL SPECIFICATIONS (at 25°C unless noted) Minimum Breakdown Type PIV Maximum Reverse Current Voltage Forward Voltage @ 100~A J, JTX, JTXV IN 5807 J, JTX, JTXV IN5809 J, JTX, JTXV IN5811 J, JTX, JTXV IN5802 J, JTX, JTXV lN5804 J, JTX, JTXV IN5806 50V 60V lOOV 110V l50V l60V 50V 60V lOOV llOV l50V l60V @ 25°C @ 5p.A l50,uA .875V Max. @lA(pk) .975V Max. @2.5A(pk) .8VMax. @lA(pk) l,uA 50,uA 30ns Output Current vs. Lead Temperature 1N5802-5806 l '\ 10 L_lfa" .......... I I ~r~:dB~:~gth - L = Lead '\ "'" "",L=~ ~ \ "" '" , \ -........ \ - "", 50 T~ 125 150 100 -LEAD TEMPERATURE (Oe) 75 cr 10 ;;: 8 "' ~ :; ~" L_3fe:" .......... ~ ""- ~ 25 "'o ~ 12 '" '\.. '\. """ "" "\ L~ " o 25 175 so TL - 75 100 ~ 2 IR = I.OA IREC = O.lA di/dt = lOOA/,us min. 25ns IF = IR = 0.5A IREC = O.05A di/dt = 65A/,us min. :~~g!~ ,,-~ I J L - .0007 "'" I / K '"r--.... L - .2507 ~ ---1- • t-... 4.8 -r--: t:-- :::----... LL = .750 r--: Il:::::::= ~ I 0 .500../ L L 25 50 75 "" 3.• ~ .375~ 100 125 150 2.4 1.2 175 *MAX. LEAD TEMPERATURE t°C) "'- \ 125 20 Z 18 o 'F = lN5807 IN5809 IN5811 ~ i= 16 « !!: 14 *Maximum lead temperature in °C (T L) at point "L" from body. (For maximum operating junction temperature of 175°C with equal two-lead conditions.) """ ."'- \~\ .'\.. \ o Le~"h_ L -1fB" \. "'- rl from Body '\ l=%" 100°C .8V Max. @4A (pk) 1N5807-5811 '\ 25°C .875V Max. @4A(pk) .925V Max. @6A(pk) Output Current vs. Lead Temperature 12 Maximum Reverse Recovery Time @PIV 100°C " 150 ~ 175 LEAD TEMPERATURE (ot) Characteristic Waveform Reverse·Recovery Circuit -0 t" ~ I REC ~ T NOTES: ! I, SET TIME BASE FOR 5 NS/CM = 1. Oscilloscope: Rise time ~ 3nsi input impedance sou. 2. Pulse Generator: Rise time:::; 8n5; source impedance IOn. 3. Current viewing resistor, non~inductive, coaxial recommended. UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 6-29 PRINTED IN U.S.A. • JAN & JANTX IN5802·1N5806 Typical Forward Current vs. Forward Voltage JAN & JANTX lN5807·5811 Typical Reverse Current vs. Voltage JAN & JANTX lN5807·5811 100 .01 .02 50 / / [/ '/ / / / I 10 g ...z "' J 2 0: 0: :> u I .1 .02 .01 II I .1 .2 I(J !z 2 ....- l- I- :> 'I 'f. 100 200 1000 .5 .6 .7 .8 .9 1 1.1 1.2 1.3 V,-VOLTAGE (V) =+12S'C 120 - ...-V - ~ 100 90 80 70 60 50 40 30 20 10 VOLTAGE IN % OF PIV I .2 V /./ V h:-t'1S0Jc .01 V II II IIKI!2 ,; ; .1 .05 ,0 Kl- V I . II .02 / II .01 I 1 V .001 .1 ~.OS =+ 2S'C i I .3 .4 1 T 1- 10-+_:::- ~ 0: 0: ? ,/ I V // .05 ~ "' .... ....§ -/- ~ Il~l'O I I I I'f. .2 .2 L / r1r 50 T .1 ,I ,/ il ~ .5 I -~ Vi' V"' I/' ;'" V ~% / ~ 20 JAN & JANTX IN5807·1N5811 [ 1 120 -- ./ - vi' 100 90 80 70 60 50 40 30 20 10 VOLTAGE IN % OF PIV a PRINTED IN U,S.A, IN5812,lN5814,lN5816 JAN, JANTX &JANTXV RECTIFIERS Military Approved High Efficiency, 20 Amp FEATURES DESCRIPTION • • • • • This series is suited for use as a power rectifier in switching regulator and high frequency inverter/converter and other appropriate equipment circuits where low voltage drop and fast recovery times are important. Qualified to MIL-S-l9500/478 Exceptional Efficiency Mechanically Rugged Low Thermal Resistance JAN, JANTX and JANTXV Available ABSOLUTE MAXIMUM RATINGS Peak Inver.e Volta.e SOV Type JAN, JANTX, JANTXV lN58l2 lOOV l50V JAN, JANTX, JANTXV, lN58l4 JAN, JANTX, JANTXV IN5816 Maximum Average D.C. Output Current @ Tc =lOO°C = .. 20A ... 5A @ TA 55°C Non-Repetitive Sinusoidal Surge Current @ 8.3mSec . ..... 400A Thermal Resistance, Junction to Case Operating Junction Temperature ...... l.SoC/W ....... -65°C to +175°C ... _65°C to +200°C Storage Ambient Temperature MECHANICAL SPECIFICATIONS J, JTX, JTXV lN5812, lN5814, lN5816 mm ins. A B C D E F G H 00-4 .078 MAX. .437 ± .015 405 MAX. .800 MAX. 430 ± 010 250 MAX. 424 MAX .066 MIN DIA I 98 MAX. 1l.l0 ±0.38 10.29 MAX. 2032 MAX 10 92 ± 0 25 6.35 MAX 1077 MAX. 1.68 MIN. DIA. Note.' 1. 2. 3. 4. Polarity is cathode-to-stud. All metal surfaces tin plated. Maximum unlubricated stud torque: 15 inch pounds. Angular orientation of terminal is undefined. 6-31 ~UNITADDE • JAN, JANTX, JANTXV IN5812, lN5814, IN5816 ELECTRICAL SPECIFICATIONS (at 25'C unless noted) Minimum Peak Inverse Type Breakdown Vollage @ 100"A Vollage J, JTX, jTXV 1N5812 50V 60V J, JTX, JTXV 1N5814 lOOV nov J, JT)(' JTXV 1N5816 150V 160V Maximum Reverse Recovery Time @ If, IR, IREe 35nsec 1.0A -1.0A ...z~ 15 .."' :J (,) 10 ::; ::; X ~ 5 Recovery Vollage @ IA Ir = ansec Junction Capacitance @-IOV 15nsec 2.2V 300pf Maximum VV ~ 20 ~ 10 II § 1'1 / 0: 2 (,) ::; :J 1 f-- ~ 05 ~ ~ 1\ \ / 02 ..!: 0 I 005 002 001 175 Typical Reverse Current vs. Reverse Voltage .001 .002 V:: E:;::;:;:: 50 1\ 75Ol'A Time @ IA Recovery 10 IV Typical Forward Current VS. Forward Voltage ~ 1OI'A Maximum Forward 100 100 125 150 CASE TEMPERATURE ('C) .95V MAX. lOO'C Recovery -0.1 A \ :J "::;I ,\\ .86V MAX. 25'C Maximum Forward Output Current vs. Case Temperature 20 Maximum Leakage ·Current @PIV Peak Forward Vollage @ 10Apk @ 20Apk Reverse II / II ."'. .05 .1 :J .2 (,) I "'0: > "' Vl i7f '" 0: I II / J ...z II f#'''" J ~ ~# ~ V L --l-1T _+2S'C .005 :< .01 oS .02 .5 1 2 If- 20 50 I 01234567.8.9101112131415 VF-VOlTAGE (V) Reverse-Recovery Time Test Circuit V 5 -" 10 r ~J I~ +100'C -- TJ = +125'C K=+150'C J --- VI LL I 130 120 HO 100 90 80 70 60 50 40 30 20 10 V, - REVERSE VOLTAGE (% OF PIV) Characteristic Waveform ~ I" -.l.- <- D.U.T. IF= lA III N.I. (coaxial) 6-32 = .1A I ! \ NOTES: 1. Oscilloscope: Rise time:::; 3 ns; input impedance = 50 n. 2. Pulse Generator: Rise time::; 8 ns; source impedance 10 UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON. MA 02173 ' TEL. (617) 861·6540 TWX (710) 326-6509 • TELEX 95-1064 I REC [0 SET TIME BASE FOR 5 NSICM T I, = IA T ~2. PRINTED IN U.S A POWER SCHOTTKY RECTIFIERS IN5817 IN5818 IN5819 lA, Up to 40V FEATURES DESCRIPTION • Very Low Forward Voltage (0.45V max @ lA for the IN5817) • Low Stored Charge, Majority Carrier Conduction • Economical, Convenient Plastic Package • Small Size The IN5817, IN5818 and IN5819 series of Schottky barrier rectifiers are ideally suited for use as rectifiers in low voltage, high frequency inverters, as free wheeling diodes and as polarity protection diodes. ABSOLUTE MAXIMUM RATINGS· lNS817 lNS818 lNS819 Peak Repetitive Reverse Voltage, VRRM ....................... 20V ................... 30V ................... 40V . Working Peak Reverse Voltage, VRWM ......................... 20V ................... 30V ................... 40V . DC Blocking Voltage, VR ..................................... 20V ................... 30V ................... 40V . Non·Repetiti\e Peak Reverse Voltage, VRSM ................... 24V ................... 36V ................... 48V . RMS Reversf' 'Joltage, VR'RMS' ................................ 14V ................... 21V ................... 28V . Average R~c;,"ied Forward Current, 10 ................................................ l.OA ........................ . (VR'e.u", :S 0.2 VR(DC), TL =90°C, R9JA =80°C/W, PC Board Mounting, see Note 1, TA =55°C) Ambient Temperature, TA.................................... 85°C ................... 80°C .................. 75°C. Rated VR(DC), PF'AV' =0, R8JA =80°C/W) Non·Repetitive Peak Surge Current, IFsM ....................................... 25A (for one cycle) ................. . (Surge applied at rated load conditions, half·wave, single phase 60Hz, T L = 70°C) Operating and Storage Junction Temperature Range, .......................... -65°C to +125°C .................. . (Reverse Voltage Applied) Peak Operating Junction Temperature, T"okl ............................. " ........... 150°C ....................... . (Forward Current Applied) Thermal Resistance, Junction to Ambient (Note 1), R.JA .......................... 80°C/W Max.................... . • JEDEC registered values. Note 1: Lead Temperature reference is cathode lead 'f,,' from case. MECHANICAL SPECIFICATIONS IN5817 IN5818 IN5819 CATHODE BAND INCHES rK~ 'L==K11A La A B D K MILLIMETERS MIN MAX MIN MAX 0.160 0.110 0.030 1.0 0.260 0.120 0.034 4.06 2.79 0.76 25.4 6.60 3.05 0.86 - ASA - Soldering 220°C, %6" from case for ten seconds 4/82 6·33 ~UNITRDDE II IN5817 IN5818 IN5819 ELECTRICAL CHARACTERISTICS (TL =2SoC unless CHARACTERISTIC SYMBOL Maximum Instantaneous Forward Voltage (Note 2) VF Maximum Instantaneous Reverse Current @ Rated DC Voltage (Note 2) iR • JEDEC registered values. Note 2: Pulse width = 3001's; duty cycle noted)· lNS8l7 lNS8l8 lNS8l9 UNITS 0.450 0.550 0.600 V 0.750 0.875 0.900 V 1.0 1.0 1.0 mA 10 10 10 mA CONDITIONS =LOA =3.0A TL =25·C TL =100·C iF iF = 2%. Typical Reverse Current vs Reverse Voltage Typical Forward Voltage VI Forward Current (lNS8l7) 10 .s.... as0: 20 T, = 125°e < g .5 "''"0: "'~ 0: I ~ == T, = 125°e F 0: r- T, = 75°e ::> 0: .05 . .02 12 .2 -' .1 .1 LL Cl T, = 75°e ~ T,-25°e= u ::> u 10 .... as0: T, = 100 0 e TA 0: ;< 0: T,=25°e 01 005 = =- =-55°C .5 I .05 .02 002 001 10 20 30 40 50 60 70 80 .01 90 100 o .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 v, - FORWARD VOLTAGE (V) V, - REVERSE VOLTAGE (% of V.WM) Typical Forward Voltage VI Forward Current (lNS8l8, lNS8l9) Output Current vs Lead Temperature (L = '/a") 1.2 g ....z 20 g !Z ~ F a'" ~ .5 I .2 -' .1 " "\\. "' 0: 0: FT, = 75°e T" - 25°C / ffi ~ T, = 125°e 10 r- ....... 1.0 TA - -55°C ~ ::> u == .8 8 u: ;:: 1;l == .6 \ 0: ."''" .."' 0: 1\ .4 > I .2 \ .2 .05 \ o .02 .01 65 o .1 .2 .3 .4 .5 .6 .7 .8 .9 75 85 95 105 115 125 T, - LEAD TEMPERATURE (Oe) 1.0 V, - FORWARD VOLTAGE (V) UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 6-34 PRINTED IN U.S.A IN5820 IN5821 IN5822 POWER SCHOTTKY RECTIFIERS 3A, Up to 40V FEATURES DESCRIPTION • Very Low Forward Voltage (0.475V max @ 3A for the 1N5820) • Low Stored Charge, Majority Carrier Conduction • Economical, Convenient Plastic Package • Small Size The 1N5820, 1N5821 and 1N5822 series of Schottky barrier rectifiers are ideally suited for use as rectifiers in low voltage, high frequency inverters, as free wheeling diodes and as polarity protection diodes. ABSOLUTE MAXIMUM RATINGS· IN5820 IN5821 IN5822 Peak Repetitive Reverse Voltage, VRRM ....................... 20V ................... 30V ................... 40V . Working Peak Reverse Voltage, VRWM ......................... 20V ................... 30V ................... 40V . DC Blocking Voltage, VR ••••••••••••••••••••••••••• " •••••••• 20V ................... 30V ................... 40V . Non-Repetitive Peak Reverse Voltage, VRSM ....... _. _..... _... 24V .... _... _... _...... 36V . _. _... _......... _. 48V . RMS Reverse Voltage, VRIRMS' .. _..... _.. ____ . _. _........ _. _.. 14V ... _..... _. _... _... 21 V .... _. _. _.... _... _. 28V _ Average Rectified Forward Current, 10 ................. _. _.............. _......... _... 3.0A ........ _.. _. _...... _. _. _ (VRlequ"" ::; 0.2 VR(DC), TL =95°C, ReJA =28°C/W, PC Board Mounting, see Note 1, T A = 55°C) Ambient Temperature, TA.... _.. _...... _........ _. _.. _....... 90°C _.................. 85°C ....... _. _.. _...... 80°C. (Rated VR(DC), PFIAV' =0, ReJA = 28°C/W) Non-Repetitive Peak Surge Current, IFsM . _____ ..... _.. _......... _. _. _. _....... _80A (for one cycle) ........... _..... . (Surge applied at rated load conditions, half-wave, single phase 60Hz, TL =75°C) Operating and Storage Junction Temperature Range, ........... _. _. _. _. _. _.. _. -65°C to + 125°C. _................ . (Reverse Voltage Applied) Peak Operating Junction Temperature, T"P"_' _.................. _........ _... _...... _150°C .. __ ........ _........ _.. (Forward Current Applied) Thermal Resistance, Junction to Ambient (Note 1), RaJA .......... _. _... _.... _. .. 28°C/W Max .. _. _.... _.... _. _... . • JEDEC registered values. Note 1: Lead Temperature reference is cathode lead %2' from case. MECHANICAL SPECIFICATIONS IN5820 IN5821 IN5822 A B 0 K INCHES MIN MAX 0.160 0.260 0.110 0.120 0.030 0.034 1.0 - ASB MILLIMETERS MIN MAX 4.06 6.60 2.79 3.05 0.86 0.76 25.4 - Soldering: 220°C. 1f1'" from case for ten seconds 4/82 6-35 ~UNITRDDE • lN5820 lN5821 lN5822 ELECTRICAL CHARACTERISTICS (Tl = 25°C unless noted)* SYMBOL CHARACTERISTIC Maximum Instantaneous Forward Voltage (Note 2) VF Maximum Instantaneous Reverse Current @ Rated DC Voltage (Note 2) iR • JEDEC registered values. Note 2: Pulse width 3001'5; duty cycle = IN5820 IN5821 IN5822 UNITS CONDITIONS iF = 3.0A 0.475 0.500 0.525 V 0.850 0.900 0.950 V iF = 9.4A 2.0 2.0 2.0 mA Tl= 25°C 2.0 2.0 2.0 mA TL = 100°C =2% Typical Reverse Current vs Reverse Voltage Typical Forward Voltage vs Forward Current 10 50 T, -125'C 20 T, - 100'G ~ 5 g TA -75°C '" .05 .02 ffi '" ... TA '"'":::> u "'" ~ .1 1::; T, - 25'C TA = -55°C e .2 -" .1 I .05 .005 02 002 .01 001 o 10 ~ V, - w ro w ~ REVERSE VOLTAGE (% of v,...) W =25°C I ./ 01 ===:T, -75'G >- >- '"'" 5 /.'/ IE .5 IE :::> u ===: 1= T, - 125'G 10 V ~ ~ o .1 .2 .5 .9 10 V, - FORWARD VOLTAGE (V) 100 Output Current vs Case Temperature (L = 'Is") g ...z ~ ....... r-... 30 '" 2.5 a'" fa ;;: r\ 20 ~ \ \ ~ 1.5 ~ \ ~ 10 I \ .5! 1\ \ o 65 75 85 95 105 115 125 T, - LEAD TEMPERATURE ('G) UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 (710) 326-6509 • TELEX 95·1064 T~X 6-36 PRINTED IN U.S.A. IN6097 IN6098 POWER SCHOTTKY RECTIFIERS 50 Amp, 30 and 40 Volts DESCRIPTION Unitrode's series of Schottky barrier power rectifiers is ideally suited for output rectifiers and catch diodes in low voltage power supplies. The Unitrode high conductivity design, using a heavy copper top post and 4 point crimp, ensures cool thermal operation and low dynamic impedance. Rugged design absorbs stress that can damage glass·to-metal seal during installation and use. FEATURES • Very Low Forward Voltage • Low Recovered Charge • Rugged Package Design (DO·5) • Low Thermal Resistance • High Surge Current • Reverse Energy Tested (2A pk) ABSOLUTE MAXIMUM RATINGS Working Peak Reverse Voltage, VRWM DC Blocking Voltage, VR . Repetitive Peak Reverse Voltage, V•• M .. Non-repetitive Peak Reverse Voltage, V. SM Average Rectified Forward Current, 10 1 NSOl7 = Non-repetitive Peak Surge Current (S.3 mS), I FSM Storage Temperature Range, T'I9 Peak Operating Junction Temperature, Tj(pkl Thermal Resistance Junction to Case, ReJc . ELECTRICAL CHARACTERISTICS (TCASE Characteristic Maximum Instantaneous Reverse Current Maximum Reverse Current Maximum Instantaneous Forward Voltage Capacitance 1NSOl8 .30V .. .. .40V .... 30V ... . ...40V .40V .. 30V ............... .. .4SV .. 36V ........ .. .................... 50A (Te == WC). 20A (Te 105'C) SOOA ... -65 to + 125°C. .+150°C l'C/WMax........................... . . == 25'C) Symbol I" Both Types Units Conditions 250 mA VRWM = Rated, Te ==125'C Pulse Width 3001's, Duty Cycle ~ 2 percent M = I. 250 mA VFM 0.S6 V VR 10 = 50A' Te VFM 0.60 V C1 7000 pF =Rated, Te = 115°C =70°C = IF lOA Pulse Width 300l's Duty Cycle ~ 2 percent V. == 1.0V 'I'M = 15lA MECHANICAL SPECIFICATIONS 1N6097, 1N6098 A 225 + 005 060 MIN 156 c!:. 020 00-5 572!" 0 13 152 MIN 396'" 0 51 o 156 MIN FLAT E 667 DIA MAX 16940lA MAX 375 MAX 1720., 0 25 953 MAX 396 MIN FLAT 229MAX 140 MIN DIA M N 356 MIN OIA 1000 MAX 2540 MAX 450 MAX 1143 MAX 438' 015 1113'038 078 MAX I 98 MAX Notes: 1. 2. 3. 4. Cathode Is stud. Maximum un lubricated stud torque: 30 inch pounds. Angular orientation of terminal is undefined. Maximum tension (90') anode terminal 15 pounds for 30 seconds. 4/82 6-37 ~UNITRDDE II IN6097, IN6098 Typical Forward Current vs Forward Voltage Typical Reverse Current vs Reverse Voltage 1000 -'-~ 100 ...~ 15 '"'"::J U ::;.-\~~ :( 100 // 10 F 150' 15 f::12 'c f- 75"C If C '""" / '" J. \2~'c '"'" 25'C I ;: .s... / - V V ::J ~1O.0 /---55'C ...... ~ 1 .1 ');'4 v ~c ./ 10 :'\~~ 0.1 .2 .3 .4 .5 .6 .9 1.0 / 1",oc '"ffi ~ ...... o V,-FORWARD VOLTAGE (V) 10 20 fo 30 40 50 V.-REVERSE VOLTAGE (V) MECHANICAL SPECIFICATIONS 1N6097,1N6098 FLEXIBLE TOP LEAD (OPTIONAL) Add an "F" Suffix to Part Number. Standard JEDEC 00·5 Package @ M ~ Ip N - R '#8FleXlblel ~-<""""-=::It=l Cable 7 x 95/36 ·ShrlOkable SIeevlOg Covers I-QJ'S p Q S T INCHES MILLIMETERS 71B MAX. 450 t 250 525 MAX. 675 t 035 205. 005 .075 • 010 1125 MAX IB24 MAX. 1143 t 6.35 13.23 MAX. 1715 t 0.B9 521tOl3 191t025 2B 5B MAX 00-5 with Flexible Lead lead "'To 125"C (AmbIent) Note: Consult Factory tOf Non-standard Lead Lengths UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326-6509 • TELEX 95-1064 6-38 PRINTED IN U.S.A. IN6304-1N6306 JAN, JANTX, JANTXV RECTIFIERS High Efficiency, 70A FEATURES DESCRIPTION • • • • • • • • The IN6304 Series is specifically designed for operation in power switching circuits operating at frequencies of at least 20KHz. The very low forward voltage and very fast recovery time make them par· ticularly suited for switching type power supplies. High Continuous Current Rating Very Low Forward Voltage Very Fast Switching Speeds High Surge Capability Low Thermal Resistance Mechanically Rugged Both Polarities Available Qualified to MIL-S-19500/550 II ABSOLUTE MAXIMUM RATINGS Peak Inverse Voltage, lN6304 ...... . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . .. 50V Peak Inverse Voltage, lN6305 ................................................. 100V Peak Inverse Voltage, lN6306 ................................................. 150V Maximum Average D.C. Output Current at Tc = 100°C........ . . . . . . . . . . . . . . . . . . .. 70A Non-Repetitive Sinusodal Surge Current 8.3ms .................................. 800A Thermal Resistance, Junction to Case ....................................... 0.8°C/W Operating and Storage Temperature Range .......................... -65°C to +175°C Operating and Storage Temperature Range (JEDEC types) ........... -55°C to + 175°C POWER CYCLING SWITCHING CHARACTERISTICS These devices possess the unique ability to pass many thousands of cycles of a stress test designed to evaluate the integrity of the bonding systems used in the construction of power rectifiers. In this stress test, the case of the device is not heat sunk. Full rated forward current is supplied to force a case temperature increase at least 75°C, at which time, the current is removed and the case allowed to cool. The cycle is repeated a minimum of 5,000 times to simulate equipment being turned on and off. Extended powercycling tests demonstrate a product capability in excess of 25,000 cycles. The switching times of these ultra-fast rectifiers increase relatively little, with temperature or at different currents. Even in severe applications, such as catch diodes for switching regulators and output rectifiers for high frequency square wave inverters, these devices switch many times faster than the fastest associated transistors. Thus, the stresses on and powers dissipated in the switching transistors are substantially less than when using other rectifiers. MECHANICAL SPECIFICATIONS IN6304·1N6306 225:!; 005 060 MIN C 156!; 020 156 MIN FLAT , G 1/4·28 K L 1694 DIA MAX 1720!; 0 25 • N 140 MIN DIA 1000 MAX 450 MAX 438!; 015 078 MAX o 396 MIN FLAT 667 CIA MAX 090 MAX 677!. 010 375 MAX UNF - 2A 572!; 0 13 152 MIN 396!; 0 51 DO·203AB (00-5) 229MAX 953 MAX 356 MIN DIA 2540 MAX 1143 MAX 1113" 038 198MAX Notes: 1. Standard polarity is cathode-ta-stud. For reverse poJanty (anode-ta-stud) add suffix "R", ie. IN6304R. 2. All metal surfaces tin plated. 3. Maximum unlubricated stud torque: 20 inch pounds (20 kg. em). 4. Angular orientation of terminal is undefined. 4/82 6·39 ~UNITRDDE JAN, JANTX, JANTXV lN6304-1N6306 ELECTRICAL SPECIFICATIONS Maximum Forward Voltage VF VR Type Tc 50V 100V l50V IN6304 IN6305 lN6306 = 25°C Tc _975V Maximum Reverse Cu rrent Maximum Reverse Recovery Time IR = 150°C Tc = 25°C = 150°C Tc t" .840V @ @ 70A tp =3OOf.lS 70A tp =3OOf.lS 25f.lA 30mA 25f.lA 30mA 50ns lA-lA-O.lA .975V @ J, JTX, JTXV lN6304 J, JTX, JTXV IN6305 J, JTX, JTXV IN6306 50V 100V l50V 70A tp" 3OOf.ls .840V 1.18V 70A tp =3OOf.ls 50ns'" @ @ 60ns'2' l50A t p = 3OOf.lS (1) '21 IF = O.5A, IR = lA, IREe = O.25A, di/" = 85A1/ls (min.). IFM = 70A, di/.t = l30A//ls. Type VA J, JTX, JTXV lN6304 J, JTX, JTXV lN6305 J, JTX, JTXV lN6306 50V 100V 150V Maximum Forward Recovery Time l5ns IFM = lA, t, =8ns IFM 70 ~ >zOJ 0: 0: 50 ::> tJ ........... I~ >- ::> "- 30 >::> iE ~ I~ 10 100 Tc - @ -lOV 600pF 180 f----+-~~=+-~-+_------l ::> u I- ::> Q. I- ~ I _0 2.2V = lA, t, =8ns IF IfUty Cycle g I- 0 Maximum Junction Capacitance Peak Output Current vs_ Case Temperature Output Current vs_ Case Temperature _ Maximum Forward Voltage ::> o '"~ Q. I '\ 1 125 150 175 CASE TEMPERATURE (OC) _ 60f-~--~~-~~~~~~~-i 20 10, Average of Rectifled.L....f-----''"-d-''~~tt_l Half Sine ~OLO--~12~0--~14~0--~1~60-~~ T, - CASE TEMPERATURE (0C) UNITROOE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 6-40 PRINTED IN U.S.A. JAN, JANTX, JANTXV IN6304-1N6306 Forward Current Forward Voltage Typical Reverse Current vs. Reverse Voltage VS. .001 .002 ~ 100 f---;r---+----r---~.f~.f_4--__i 50 r---~---+----r-f_I_~~--_1--__1 g '" 3 o 20 f--+--f---f< z ~ Ii" 10 f--+--I--I :l TJ .02 I-- I-- C '" i--r- .01 is '" 1 I-- V .005 = 25'C .05 .1 I- .2 "'a:a: ) .5 1 u I 2 -~ l- +- f- TJ t- p- TJ = (100'C = +l;1·c V ) II 10 H j.-< IA 20 IL-__ o 0.2 L-L-~ 0.4 __L-~~~__~__~ 1.4 50 V, - FORWARD VOLTAGE (V) III F:t7+15h'c I I I 130 120 lIO 100 90 80 70 60 50 40 30 20 10 0 VOLTAGE IN % OF PIV Maximum Forward Surge vs. Number of eyc les 800 ~ I- 600 Z ~ E I"" I "- "'a:a: :l u 400 200 f\J'L u "' .5 .:!"' .2 z « c r------- i'--, ..J ~ I J Thermal Impedance vs. Pulse Width ~ ~lCYCIE « r-:fV"'" ./ VV .1 VV :E a: .05 r-- r--- "'J: V l- I .02 ~ .01 N .01.02 .05.1.2 tp - N- 10 20 50 100 CYCLES OF 60 Hz SINEWAVE .5 1 2 5 10 20 50 100 200 PULSE WIDTH (mS) 1000 200 Reverse-Recovery Circuit Characteristic Waveform - - too D. U. T. \ IREC I I In N.I. (coaxial) 1\ I I. .I SET TIME BASE FOR 5 NS/CM NOTES: 1. Oscilloscope: RIse time :$ 3ns; input impedance = 500. 2. Pulse Generator: Rise time S 8ns; source impedance = 100. 3. Current viewing resistor, non-inductive, coaxial recommended. UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173. TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95-1064 6-41 PRINTED IN U.S.A. POWER SC'HOTTKY RECTIFIERS 50A Pk, 45V IN6391 JAN, JANTX, JANTXV FEATURES DESCRIPTION • • • • • • • The IN6391 has a Schottky barrier junction and is ideally suited for output rectifiers' and catch diodes in low voltage power supplies. Rugged design absorbs stress that can damage glass-to-metal seal during installation and use. Very Low Forward Voltage Low Recovered Charge Rugged Package Design (DO-4) High Efficiency for Low Voltage Supplies 45V Blocking @ Rated T,m .. 54V Repetitive Surge Voltage Qualified to MIL-S-19500/553 ABSOLUTE MAXIMUM RATINGS Working Peak Reverse Voltage, VRWM __ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45V DC Blocking Voltage, VR .. _..................................................... 45V Peak Repetitive Surge Voltage, VR8M @ IRM ........................ _.............. 54V Average Rectified Forward Current, 10 @ Tc = 125°C ... _....... _.......... _.. _.... 25A Peak Repetitive Forward Current (Rated VR, Square Wave, 20kHz, 50% Duty Cycle), IFRM @ Tc = 125°C ........ _................. _.......................... _.... 50A Non-Repetitive Peak Surge Current (8.3ms), IF8M . _............. _. _.............. 600A Peak Reverse Transient Current, IRM .............................................. 2A Operating and Storage Temperature Range ............ _..... _...... -55°C to +175°C Thermal Resistance, Junction to Case, RSJC ................................. 2.0°C/W MECHANICAL SPECIFICATIONS JAN, JANTX, JANTXV IN6391 A B C D E F G H INCHES .078 MAX. .437' .015 .405 MAX. .800 MAX. .430' .010 .250 MAX. .424 MAX. .066 MIN. DIA. 00-4 MILLIMETERS 1.98 MAX. 11.10' 0.38 10.29 MAX. 20.32 MAX. 10.92' 0.25 6.35 MAX. 10.77 MAX. 1.68 MIN. DIA. NOTES: 1. Cathode is stud. 2. All metal surfaces tin plated. 3. Maximum unlubricated stud torque: 10 inch pounds. 4. Angular orientation of terminal is undefined. [1JJ 4/83 6-42 _UNITRODE JAN, JANTX, JANTXV 1N6391 ELECTRICAL CHARACTERISTICS (TeAsE = 25°C) Symbol limit Units Maximum Instantaneous Reverse Current iR 15 40 40 mA mA mA Te = 25°C, VR = VRWM Te= 125°C Te = 175°C Pulse Width = 4OOl1s Duty Cycle = 1% Maximum Instantaneous Forward Voltage VF 0.44 0.68 V V iF = 5A, Te = 25°C iF = 50A, Te = 25°C Pulse Width = 3OOl1s Duty Cycle = 1% Capacitance C, 2000 pF VR = 5.0V Characteristic Conditions II Typical Reverse Current vs Reverse Voltage Typical Forward Current vs Forward Voltage 1000 V- ~~ §: .... ~ '"'"::::> '-' 10 100 ~ :( .5. ....z ... '"'"::::> V III VI II I I I II 0.1 L·L \.19: """""" """"""¥~ ~G 100 o / () I .!! I Vrl II 02 10 0.1 04 v, - 06 0.8 .01 1.0 0 20 VOLTAGE (V) 40 60 80 100 120 %OFV. V.eMAI) Rating vs Case Temperature 50 45 \ 40 35 ?: 30 ~ 25 > 20 • \ \ \ 15 1 10 -50 \ -25 25 50 75 100 125 150 175 CASE TEMPERATURE ('C) UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 6-43 PRINTED IN u.s A. POWER SCHOTTKY RECTIFIERS IN6392 JAN, JANTX, JANTXV 120A Pk FEATURES DESCRIPTION • • • • • • • • The lN6392 Schottky barrier power rectifier is ideally suited for output rectifiers and catch diodes in low voltage power supplies. The Unitrode high conductivity design, using a heavy copper top post and 4 point crimp, ensures cool thermal operation and low dynamic impedance. Rugged design absorbs stress that can damage glass-to-metal seal during installation and use. Very Low Forward Voltage (0.6 at 60A, 125°C) Low Recovered Charge Rugged Package Design (DO-5) High Efficiency for Low Voltage Supplies Low Thermal Resistance (l.O°C/W) High Surge Current (800A) Low Reverse Current (60mA at rated VRat 125°C) Qualified to MIL-S-19500/554 ABSOLUTE MAXIMUM RATINGS Working Peak.Reverse Voltage, VRWM ............................................. 45V DC Blocking Voltage, VR ..... _............................... _.................. 45V Peak Repetitive Surge Voltage, VR8M @ IRM ............................ _....... _.. 54V Peak Repetitive Forward Current (Rated VR, Square Wave, 20kHz, 50% Duty Cycle), IFRM ....... 120A (at Te = 115°C) Average Rectified Forward Current, IFIAVI ... _..................... 60A (at Te = 115°C) Non-Repetitive Peak Surge Current (8.3ms), IF8M ...................... _......... 800A Peak Reverse Transient Current, IRM ..................... _....... _................ 2A Operating and Storage Temperature Range ......................... -55°C to + 175°C Thermal Resistance, Junction to Case, R8Je ........ _.................. _..... 1.0°C/W MECHANICAL SPECIFICATIONS JAN, JANTX, JANTXV IN6392 A B e 0 E F G H J K L M N INCHES .225 ± .005 .060 MIN. .156 ± .020 .156 MIN. FLAT .667 OIA. MAX. .090 MAX. .677' .010 .375 MAX. .140 MIN. OIA. 1.000 MAX. .450 MAX. .438' .015 .078 MAX. 00-5 MILLIMETERS 5.72 ± 0.13 1.52 MIN . 3.96' 0.51 3.96 MIN. FLAT 16.94 OIA. MAX . 2.29 MAX. 17.20' 0.25 9.53 MAX . 3.56 MIN DIA . 25.40 MAX. 11.43 MAX . 11.13' 0.38 1.98 MAX . NOTES: 1. Cathode is stud. 2. All metal surfaces tin plated. 4/83 3. Maximum unlubricated stud torque: 30 inch pounds (35 kg. em). 4. Angular orientation of terminal is undefined. 6-44 ~UNITRDDE JAN, JANTX, JANTXV IN6392 =25°C) ELECTRICAL CHARACTERISTICS (T CASE Characteristic Symbol limit Units iR 20 60 600 mA mA mA 0.47 0.68 0.82 V V V iF lOA, Tc 25°C iF = 60A, Tc = 25°C iF = 120A, Tc 125°C Pulse Width = 300j.fs Duty Cycle = 1% 3000 pF VR = 5.0V Maximum Instantaneous Reverse Current Maximum Instantaneous Forward Voltage VF Maximum Capacitance C, Conditions = = = VR VRWM Tc 125°C Tc 175°C Pulse Width 400j.fs Duty Cycle = 1% = = = = Typical Forward Current vs Forward Voltage II Typical Reverse Current vs Reverse Voltage 1000 A ~ ;:;.....- 100 - 175°C € .... iE '"'" :::l I--t- 4' 100 F " '"'" 3100 25°C 1-75 °C / - .... 150° F12,oC 0 '" < ;: 150°C oS iE // V/ / 10 ;':"-55°C 125°C w I '\ ~g5 _u. 30 Z "''" ::> '"u ::l ffi ~ '".1 20 10 / ~ * ,'); I I 1/ ~~ j ~ V- I' V II ~ V ~ ~~/ Jri V V 1IV1 o 0.1 .2.3.4 .5 .6 .7.8.91.01.11.21.31.4 0-~ l/~ I- ...... ~c, ...... 10' 5 10 15 20 25 30 35 40 45 V.-REVERSE VOLTAGE (V) V,- FORWARD VOLTAGE (V) VRRM Rating vs Case Temperature 45 .......... 40 r---.. .......... r---.. ~ 30 J 20 10 o - 50 75 25 125 150 TEMPERATURE ('CI UNITRODE CORPORATION. 5 FORBES ROALJ LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 6-49 PRINTED IN USA • SES5001-SES5003 RECTIFIERS High Efficiency, 2A FEATURES • Fast Recovery Times • Low Forward Voltage • Small Size • Convenient Package DESCRIPTION An axial leaded power rectifier useful in many switching applications. Particularly suited where very fast recovery and low forward voltage are required. ABSOLUTE MAXIMUM RATINGS Peak Inverse Voltage, SES5001 ...................................................................................50V Peak Inverse Voltage, SES5002 .................................................................................. 100V Peak Inverse Voltage, SES5003 .................................................................................. 150V Maximum Average D.C. Output Current atT L = 75·C, L=3/8" .......................................................... 2A Non·Repetitive Surge Current at S.3mS ............................................................................ 35A Thermal Resistance, @ L=3/S" ...............................................................................3S·CIW Operating and Storage Temperature Range .............................................................. - 55·C + 175·C ELECTRICAL SPECIFICATIONS Type PIV SES5001 SES5002 SES5003 50V 100V 150V 'Measured in circulI IF Maximum Forward Voltage (VF) @ TJ =25·C TJ =100·C .975V @ 1A .S95V @ 1A Maximum Reverse Current (I R) @PIV @ TJ =25·C @ TJ =100·C 2"A 50"A Maximum Reverse Recovery Time' 100nS = .5A, IR = 1.0A, IREC = .25A MECHANICAL SPECIFICATIONS SES5001-SES5003 7 1 , is047-:,1::'-, '.0'28 ± .001 .071mm :r .03 1180 BODY Al t 085 max '-_ _ _ _-' _ _ _ _ _ _-'1_16mm max I I-432mm .- .170 6·50 ~UNITR.DDE SES5001-SES5003 Output Current vs. Lead Temperature :! ... 4 UJ 0: 0: :::l '-....... :::l :;; ~ :;; //: VV d~ 1,- 2 ~ LI_'liI" I ~ 25 50 .5 z ~ .1 j--- I _"" .02 "'" '"'" 100 $ ~/ISJ 0: E .05 ............ ........ 7S /1/1/ VIII II." ~ II 5 .... 2 "~ l=~" 1/ .01 10.... u ....' 50 I 175 100 UJ a:: 0: :::l 500 r-- o UJ ~ :::l .. 100 50 --- .1.us .5 f'.- 80 i'-.. ~ 60 UJ " 40 0: vV +125'C 100 80 60 40 20 VOLTAGE IN % OF PIV .'" '""- :::l --- ---- 10 V Multiple Surge Current vs. Duration 100 ";:: t"-- T (V) Z l- f-f- -+-±it.":J If 120 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.01.11.21.3 DUra~j~~ar;r ~U~~~R~~:~~i~~SpUlse ~ !;; 1.000 1 __.J.'; T = +7S'C 10 Forward Pulse Current vs. Duration 5,000 1 -" /I V~-VOLTAGE 10,000 i-TJ =2S'C .5 :::l 0 I .001 150 0: 0: '"""" 1--""1-" zUJ 1/ .002 M ,; ~ .05 ;: .1 f{ ...' ti ~~ H I .005 "'-....... ,,\ 125 .01 /1/ / / l~- "'" """ ~,d k L=Ifa" U :;; .001 1,- ............ z Typical Reverse Current vs. Voltage 10 1 L Typical Forward Current vs. Forward Voltage 5 50 10,u.5 1oo,u5 PULSE DURATION 1ms 5 ....... ~ ..,.0 TL MOUNT @ length = 3/a" I--- ~-L_ 20 printed cirCu1it I lOms 2 10 20 50 100 200 500 1000 CYCLES AT 60 Hz SINE WAVE Reverse-Recovery Circuit son 10 n + _ -=- 25Vdc (APPROX.) 1 {1 NOTE 3 OSCILLOSCOPE NOTE I NOTES: 1. Oscilloscope: Rise time<3nS; Input Impedance=50Q, 2. Pulse Generator: Rise tlme<8nS; source Impedance 102. 3. Current viewing resistor, non·inductlve, coaxial recommended. UNITROOE CORPORATION, 5 FORBES ROAD LEXINGTON, MA 02173 ' TEL. (617) 861·6540 TWX (710) 326·6509 ' TELEX 95·1064 6-51 PRINTED IN U.SA. II SES5301-SES5303 RECTIFIERS High Efficiency, 5A FEATURES • Low Forward Voltage • Fast Recovery Times • Small Size • High Surge DESCRIPTION An axial leaded power rectifier useful in many switching applications. Partlcu larly suited where very fast recovery and low forward voltage are required. ABSOLUTE MAXIMUM RATINGS Peak Inverse Voltage, SES5301 ...................................................................................50V Peak Inverse Voltage, SES5302 .................................................................................. 100V Peak Inverse Voltage, SES5303 .................................................................................. 150V Maximum Average D.C. Output Current at T l = 75 'C, L = 3/8" . ......................................................... 5A Non·Repetitive Sinusoidal Surge Current at 8.3mS .................................................................. 11 OA Thermal Resistance at L = 3/8" ............................................................................... 20 'C/W Operating and Storage Temperature Range ............................................................ - 55 'C to + 170 'C ELECTRICAL SPECIFICATIONS Type PIV SES5301 SES5302 SES5303 50V 100V 150V • Measured in circuit IF Maximum Reverse Current (I R) @PIV Maximum Forward Voltage (VF) @ TJ =25·C TJ =100·C 0.975V @ 5A 0.895V @ @TJ =25·C @TJ =100·C 5,.,A 150,.,A Maximum Reverse Recovery Time· 100n5 5A =O.5A, IR =1.0A, 'REC =O.25A MECHANICAL SPECIFICATIONS SES5301-SES5303 ~1.0min I--T 25.4mm 1 !d .040'.001 l.02mm ± .03 1/80 BODY Bl .'145 max l68mm ' -_ _ _---' _ _ _ _ _.l... 1_.200 max_I 5.0Bmm 6-52 ~UNITRODE SES5301-SES5303 Typical Forward Current VS. Forward Voltage Output Current vs. Lead Temperature 10 Ifa",,\ L $ ...z UJ '"::>'" "I "" L= ......... ! 20 ra"~ r--... '" 10 $ 50 TL - 5,000 $ !z 1,000 ~ ::> '" "'"~ ::> Q. 500 I \ I~ \.. -!? "'" ~~ 125 -%.0f/- 150 75 LEAD TEMPERATURE (DC) ~~ r'T~ ,-' ,...,.., 02 II II 1 01 175 I 10 I -" 20 I- L '" e.-C-- = +75'C ,J I I 1 T I- 100 200 rr T = +100'C ~ T 1000 r-fl , I: ,-' 120 .1 .2 .3 .4 .5 .6 .7 :8 .9 1.01.11.21.3 ( I I I L = +125'C II II I 100 80 60 40 20 'VOLTAGE IN % OF pry Vr-VOLTAGE IV) VS. Duration I r-- r--. 1/ 1-1- = +25°C I ::> u I U TJ 0: 0: II 05 e.- ....'!z "' / / -"" ,2 ~_SOoC .2 :<: I I V1' TJ .1 1// I I a .5 1\ 100 -- 2 "' ~ Forward Pulse Current 10,000 ... z \ "" /Y:: %; 1,- T, 1\ L='I~~ 25 50 r~r r- '\ .01 ,02 100 I I I\. Typical Reverse Current vs. Voltage I Multiple Surge Current VS. Duration 100 I Dura~~~a:;r~U~~~R~,:::~ri~~SpUlse I" co8() z ~ ""'- ~ ;:: r-. r-- 100 " 60 '"C> ::> '"",40 0: r-- r-- -..... ..... ...o 50 #20 10 50 10,,5 100"S 1mS 5 10mS ~ T, MOUNT @length=",," lNl=::: I pnnrea Crrcult I 5 10 20 50 100 200 CYCLES AT 60 Hz SINE WAVE 2 PULSE DURATION 500 '000 Reverse-Recovery Circuit 10 \I SOil + _ -=- 25 Vdc (APPROX.) 11l NOTE3 OSC I LLOSCOPE NOTEl = NOTES: 1. Oscilloscope: Rise time ~ 3nS j input impedance 2. Pulse Generator: Rise time ~ 8nS i source impedance 100. 3. Current viewing resistor, non-inductive, coaxial recommended. = son. UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEl. (617) 861-6540 TWX (710) 326·6509 • TELEX 95-1064 6-53 PRINTED IN USA. .. SES5401-SES5404 RECTIFIERS High Efficiency, 8A DESCRIPTION The SES5401 Series, in the economical, convenient TO-220 package, Is specifically designed for operation in power switching circuits to frequencies in excess of 100kHz. The very low forward voltage and very fast recovery time make them particularly suited for switching type ABSOLUTE MAXIMUM RATINGS power supplies. Peak Inverse Voltage, SES5401 .............................................................' ...................... 50V Peak Inverse Voltage, SES5402 .................................................................................. 100V Peak Inverse Voltage, SES5403 .................................................................................. 150V Peak Inverse Voltage, SES5404 ................................................................................. 200V Maximum Average D.C. Output Current @Tc = 125·C .............................................................. 8.0A @TA = 25·C ...............................................................3.0A @TA =25·C(Note1) ........................................................ 8.0A Non-Repetitive Sinusoidal Surge Current, 8.3mS .................................................................... 70A Thermal Resistance, Junction to Case,0J .c ..................................................................... 2.5 ·CIW Thermal Resistance, J unction to Ambient, 0 J .A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60 ·CIW Operating and Storage Temperature Range ............................................................ - 55·C to + 150·C FEATURES • Low Forward Voltage • Fast .Recovery Times • Economical, Convenient TO-220 Package • Low Thermal Resistance • Mechanically Rugged • PIV up to 200V NOTE 1. Using Wakefield Type 295 heatslnk with convection cooling. For more definitive data refer to the Output Current vs. Temperature Curves on this datasheet. ELECTRICAL SPECIFICATIONS Type PIV SES5401 SES5402 SES5403 SES5404 50V 100V 150V 200V Maximum Forward Voltage (V.) @ Maximum Reverse Current (IR) @PIV T;=25°C TJ = 100°C @TJ=25°C @TJ= 100°C 1.025V@SA 0.945V @SA 5t1A 150tlA 150tlA 150tlA 500tlA Maximum Reverse Recovery Time' Typical Forward Recovery Voltage @lA t, = 8ns lOOns 1.4V "Measured in circuit IF = 0.50A, IR = 1.0A, IREC = 0.25A MECHANICAL SPECIFICATIONS SES5401-SES5404 SEATING PLANE r I A A B j C D r-lL1 I --I .7IDII~ ~ S;CTAA A A H I 1 J ~G o I J F G H J K I~ I r- L PIN 1. Cathode 2. Anode Tab is connected to Cathode. N 11182 TO-220AC B -: to- L N R S T MILLIMETERS INCHES MIN MAX MIN MAX 0560 0625 1423 1587 0380 0420 966 10 66 , 82 0140 0190 356 0020 0045 0.51 0139 0147 3531 3733 279 0090 0110 229 0.250 635 0015 0025 038 064 0500 0562 12.70 14.27 0045 0070 114 l.n 0190 0.210 4.83 533 0.100 0120 254 304 0.080 o l15 204 292 0045 0.055 114 139 0230 0270 585 685 "' 6-54 ~UNITRDDE SES5401-SES5404 Typical Forward Current vs. Forward Voltage Output Current Temperature VS. 12 100 .0 I 50 .02 20 10 ~ , ~ Z I- "' Z 0: 0: u "'0:0: I u :> :> I -~ -~ .5 1-;- .1 III .05 O~~~-L a 25 __~__~__~~ 50 100 125 TEMPERATURE ('C) .01 150 ~." III I .1 .2 .3 .4 'I- .., 1/ i50: II I I 5,000 1,000 g r-....... 500 I- Z "'0: ~ u 100 50 "' (f) ...J ~ u 10 _"" 20 If ',-, 100 I I ";:z '" 80 0: '""- 60 "en 0: -- :> 0 ;f. 40 2.5 i3 UJ 0.. 1.0 ...J .5 ~~ ::;; ::;; 5'" ( I I I I 100 80 60 40 20 f'.... VS. Ouration - 2 -- 10 20 50 100 200 CYCLES AT 60 Hz SINE WAVE ~ 500 1000 Reverse-Recovery Circuit Ion + 25Vdc :=::: (APPROX.) -I- 10 NOTE 3 OSCILLOSCOPE NOTE 1 V. . . J: rile II I I ."," .25 .1 "'r--..... " son i-" l- I to 1 120 lOms Thermal Impedance vs. Pulse Width "' 1000 i' 20 1 1ms l- T =+125'C "- 50 .1ps ~ I Multiple Surge Current UJ r-.. ~Jlrlc T =+100'C VOLTAGE IN % OF PIV 100 I -- ------ - 200 .5 .6 .7 .8 .9 1.0 1.11.21.3 Peak Half Sine Current ~s. I Duration for Non·Repetitive Pulse .5 ,/ 10 V,-VOLTAGE(V) :> 0.. 2 0: ::> Forward Pulse Current vs. Ouration 10,000 4±s.c J .. I- .... II'l-ilJt ['I I .2 .02 ~ / " '/ rI I I .2 .IV, 8 IA I I T J =-50°C ":::~ """~ ~ 10 I- Typical Reverse Current VS. Voltage l/~ .05 .01.02 .05.1 .2 NOTES: .5 1 2 5 10 20 50100 200 1. Oscilloscope: Rise time::;; 3n5; input impedance = 500. 2. Pulse Generator: Rise time::;; 8ns; source impedance lOn . 3. Current viewing resistor, non-inductive. coaxial recommended. 1000 t, - PULSE WIDTH (ms) UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (7l01 326-6509 • TELEX 95·1064 6-55 PRINTED IN U.S.A. .. SES5501 SES5502 SES5503 SES5504 RECTIFIERS High Efficiency, 16A FEATURES DESCRIPTION • • • • • The SES5500 Series, in the economical, convenient TO-220 package, is specifically designed for operation in power switching circuits to frequencies in excess of 100kHz. The very low forward voltage and very fast recovery time make them particularly suited for switching type power supplies. Very Low Forward Voltage Very Fast Recovery Times Economical, Convenient TO-220 Package Low Thermal Resistance Mechanically Rugged ABSOLUTE MAXIMUM RATINGS Peak Inverse Voltage, SES5501 .................................................. 50V Peak Inverse Voltage, SES5502 ... : .................................... _........ 100V Peak Inverse Voltage, SES5503 . _............................................... 150V Peak Inverse Voltage, SES5504 ................................................. 200V Maximum Average D.C. Output Current @Tc=95°C ............................ 16A @T.= 25°C ........................... 3.3A @ T. = 25°C (Note 1) .................. 9.0A Non-Repetitive Sinusoidal Surge Current, 8.3ms .................. _.............. 250A Thermal Resistance, Junction to Case, 8J -c .................................. 1.5°C/W Thermal Resistance, Junction to Ambient, 8J-. . .............................. 60°C/W Operating and Storage Temperature ................................ -55°C to +150°C Note: 1. Using Wakefield Type 295 heatsink with conveclion cooling. For more definitive data refer to the Output Current vs Temperature Curve on this data sheet. MECHANICAL SPECIFICATIONS PLAN: b-IRJ ~--l - ~~ SECT A-A N 0139 G ~ r J~:~LG PIN j D H I*- I. Cathode PIN 2 Anode Tab IS connected to Cathode. TO-220AC MILLIM£TERS MIN MAX 1587 lD 66 482 0190 0045 114 0147 3531 3733 279 0110 229 0250 635 0025 038 064 0562 1270 1427 0070 ll4 177 , 83 0210 533 0120 254 304 0115 292 2 O' 0055 13' 0270 585 685 INCHES MIN 0560 0380 0140 0020 --1 1,._:...,2 Dr ,g 3/83 SES5501-SES5504 rBlJ '~\p,t ~iJ K L N R 0090 0015 0500 0045 0190 0100 OOSO 0045 0230 6-56 MAX 0625 0420 1423 966 356 051 "' ~UNITRDDE SES5501 SES5502 SES5503 SES5504 ELECTRICAL SPECIFICATIONS Maximum Forward Voltage Type Maximum Reverse Current Maximum Reverse @PIV Recovery PIV =25'C TJ SES5501 SES5502 SES5503 SES5504 50V lOOV l50V 200V TJ 1.025V @ l6A = lOQ'C TJ .945V@ 16A =25'C TJ lOJ1A Typical Forward Recovery Voltage @lA tr 8ns Time* = lOQ'C = lOOns 800J1A 2.0V Typical Forward Current vs Forward Voltage Output Current vs Temperature • 50 16 14 20 I- ~ zOJ 10 ::J '"'" 8 U +150°C +125'C ~ IzOJ 12 + lOooe 10 +25°C -50°C '"'"::JU I -" I -" 0.5 ' -_ _ _-LLJ...JL-l-L_--'-_ _-"-_--.l'----.J 0.4 0.6 08 1.0 12 o v, - TEMPERATURE (0C) Forward Pulse Current vs Duration Typical Reverse Current vs Voltage 5000 ....- 1000 < -3 I- zOJ '"'"::J u l~ l'/.~oC""" /f ~JoC 1/ 200 ./" 500 100 50 10.000 J,( 2000 5.000 ~ ~ ~~se r--, 1.000 ~, IZ /' ~ 500 r-- ::J OJ '" Square Pulse Current vs Duration for Non-Repetitive i'.... J U V> '"~ VOLTAGE (V) OJ "1 10 - - 5 -" 1 05 02 0.1 '1.7 - it /'" 20 40 60 80 ~" 50 r- !' 100 100 10 120 . Ips .5 50 100", 1ms lOms % OF PIV PULSE DURATION UNITRODE CORPORATION ° 5 FORBES ROAD LEXINGTON, MA 02173 ° TEL. (617) 861-6540 TWX (710) 326-6509 ° TELEX 95-1064 6-57 PRINTED IN U S.A SES5501 SES5502 SES5503 SES5504 Thermal Impedance vs Pulse Width Multiple Surge Current vs Duration 100 80 "z~ '"'" '"::>" u I t- '/- .2 II .1 III .05 .02 .01 rL IL is',o ;: UJ a: a: I--' ::> 1 10 _" 20 I- 0 Kllffi tl"f. ,II f;=f-+-I2S'C 1 ~ II. ~ ~ z =-'so-c .1 ~y 10 10 011 .02 50 lT J _+7S'C I I 11 ',-, 200 '7 1000 ~ 100 I1I1 120 .1 .2 .3 .4 .5 .6 .7 .8 .91.01.11.21.3 II ..l I- ij'-ri'~ TJ +125'C - i I I I I 100 80 60 40 20 VOLTAGE IN % OF PIV V,-VOLTAGE(V) Forward Pulse Current VS. Duration 10.000 1 1 5.000 1.000 ~ Multiple Surge Current VS. Duration 100 f f 1 Peak Half SmeCurrent vs. Duration for Non-Repetitive Pulse r--. :::---" 500 '"z '" "''" ::> '" r--. -..... 50 .5 Ims "'~ 20 1 2 lOps lOOps PULSE DURATION i'... 0 50 Ips .1#5 40 " LL if. 10 60 II: I--. 100 ~ ~ II: l'"""'"- t'- I" 80 lOms 10 20 - -- 50 100 200 r- 500 100 CYCLES AT 60 Hz SINE WAVE Thermal Impedance VS. Pulse Width Reverse,Recovery Circuit 100 500 2.0 ~~,... 1.0 .4 ~I' .2 4.L g .02 , 1-"1-" + :::::: 25Vdc (APPROX.) Hl ~ 1 .0 IL I-"'" NOTE 3 OSCILLOSCOPE NOTE 1 ~ .01.02 .05.1.2 .5 1 2 5 10 20 50100 200 NOTES: 1. OSCilloscope: Rise time:;:; 3n5; input impedance = 50(1. 2. Pulse Generator: Rise time :s; 8ns; source impedance IOn. 1000 3. Current viewing resistor, non-inductive, coaxial recommended. t., - PULSE WIDTH (ms) UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95·1064 6-60 PRINTED IN USA RECTIFIERS SES5601C SES5602C SES5603C High Efficiency, 25A Center-Tap FEATURES • Low Forward Voltage • Fast Switching Speed • Convenient Package • High Surge Capability • Low Thermal Resistance • Mechanically Rugged TO-3 Package • Available as Positive or Negative Center-Tap DESCRIPTION The SES, super-fast recovery, rectifiers are specifically designed for operation in power switching circuits_ Their super-fast recovery time and very low forward voltage make them particularly efficient in most switching applications_ ABSOLUTE MAXIMUM RATINGS Peak Inverse Voltage, SES5601C _............................... __ ................................................ 50V Peak Inverse Voltage, SES5602C ......................................... _........................ _............. _100V Peak Inverse Voltage, SES5603C ...... _.................................. _....................................... 150V Maximum Average D.C. Output Current at Tc = 100°C .............. _............................................. _.. _25A Non-Repetitive Sinusoidal Surge Current 8_3 mS .................. _................................................ 400A Thermal Resistance, Junction to Case .................. _........................................................ 1 "C/W Operating and Storage Temperature Range ............................................................ - 55"C to + 175"C ELECTRICAL SPECIFICATIONS PER DIODE Type PIV SES5601C SES5602C SES5603C 50V 100V 150V Maximum Forward Voltage (VF ) @ Maximum Reverse Current (lR) @PIV Tc=2SoC Tc=12SoC @Tc =2S oC @Tc =12S oC 0.990V @ 12.5A to=300f'$ 0.830V @ 12.5A to = 3OOf'$ 20,.,A 4mA Maximum Reverse Recovery Time" 100nS "Measured in circuit IF = O.5A, IR=1.0A, IREC=O.25A MECHANICAL SPECIFICATIONS SES5601C-SESS603C POSITIVE OUTPUT • .1 I 14 • CASE ~i1' C 0 ins. F~M :~.r~ I" G · ....... - Ij j J ~ f.-----. K A .875 MAX. B .135 MAX. 3.43 MAX. c .250-.450 6.35-11.43 0 .312 MIN. E .038-.043 OIA. 22.23 MAX. 7.92 MIN. 0.97-1.09 OIA. F .188 MAX. RAD. G 1.177-1.197 29.00-30.40 H .655-.675 16.84-17.15 J .205-.225 5.21-5.72 K .420-.440 10.67-11.18 H L TO-204AA (T0-3) mm 4.78 MAX. RAD. L .525 MAX. RAD. 13.34 MAX. RAD. M .151-.161DIA 3.84-4.09 DIA. NOTES: 1. Standard polarity Is positive output. For reverse polarity (negative output) add suffix "Rol, Ie, SES5601CR. 2. All metal surfaces tin plated. 1/80 6-61 ~UNITRDDE II SES5601C-SES5603C Typical Forward Current VS. Forward Voltage Typical Reverse Current vs. Reverse Voltage .001 .002 I I ..-H-r .005 5 !zOJ .02 I- z '"'" en '"~ '" OJ ..!' .5 I 2 -- - -r F=Tt +loo'C I--- TJ = +125'C 10 20 SO 20 / 10 '"::>'" .05 .1 ::> .2 OJ CJ OJ TJ 30 TJ _+25'C C .01 g SO V I ~ :::;.:-= V 0 '"~ I- I II / / II ...'" 0 1--'/ -~ .5 V +150'C ,I .2 II / I' !- -T =+75'C / , I .4 I ,\. J / CJ ~V = +150'C V, - .6 .8 1.0 FORWARD VOLTAGE (V) 1.2 130 120 lIO 100 90 80 70 60 SO 40 30 20 10 V, - REVERSE VOLTAGE (% OF PIV) Maximum Forward Surge vs. Number of Cycles 400 ~ "" '" 5300 IZ OJ '" '"i:l2oo I -~ 100 ~ _ 1.0 t "'u z .5 C3 a. "' .2 .. ~ ''-..... f\A ~ICYC~E .05 "' l: l- - 10 20 SO 100 CYCLES OF 60 Hz SINEWAVE V / V .02 I ~ .01 .01.02 .05.1 .2 I\< t, N- _f- '/ ,I ..J ~ -,-/V :;;! ~ Thermal Impedance vs. Pulse Width .5 I 2 5 10 20 50 100200 PULSE WIDTH (mS) 1000 200 Reverse-Recovery Circuit Output Current vs. Case Temperature 500 100 30 5 -'-- IZ OJ ''"" ::> 20 ~ CJ I- ::> Il. I- ::> 0 10 I .2 100 Tc - + _ -=- " 25Vdc (APPROX.) 10 '" NOTE 3 OSCI LLOSCOPE NOTE 1 = ~ NOTES • = 1. Oscilloscope: Rise time:s;;; 3nSi inpu~ impedance 500. 2. Pulse Generator: Rise time ~8nSj source impedance 100. 3. Current viewing resistor, non-inductive, coaxial recommended. 125 ISO 175 CASE TEMPERATURE ('C) UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON. iliA 02173 • TEL (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 6-62 PRINTED IN U.S.A. SES5701 SES5702 SES5703 RECTIFIERS High Efficiency, 20A DESCRIPTION The SES, super·fast recovery, rectifiers are specifically designed for operation in power switching circuits. Their super·fast recovery time and very low forward voltage drop make them particularly efficient in most switching applications. FEATURES • Low Forward Voltage • Fast Switching • Low Thermal Resistance • High Surge Capability • Mechanically Rugged DO·4 Package • Reverse Polarity Available ABSOLUTE MAXIMUM RATINGS Peak Inverse Voltage, SES5701 ...................................................................................50V Peak Inverse Voltage, SES5702 .................................................................................. 100V Peak Inverse Voltage, SES5703 .................................................................................. 150V Maximum Average D.C. Output Current at Tc = 100oC ................................................................ 20A Non·Repetitive Sinusoidal Surge Current B.3 mS ................................................................... 400A Thermal Resistance, Junction to Case ......................................................................... 1.5·C/W Operating and Storage Temperature Range ............................................................ - 55·C to + 175·C ELECTRICAL SPECIFICATIONS Type PIV Maximum Forward Voltage (VFI @ Maximum Reverse Current (IRI @PIV Tc=12SoC SES5701 SES5702 SES5703 50V 100V 150V .990V @ 20A tp =300,..s @ Tc=2SoC @Tc =12S oC 20iA 4mA .830 @ 20A tp=300,..s Maximum Reverse Recovery Time' lOOnS 'Measured in circuit IF = .5A, IR = 1.0A, IREC = .25A MECHANICAL SPECI FICATIONS SESS701-SESS703 ins. A -f::J Ell GJ , #~.~ UNF·2A F A 00·4 mm 1.98 MAX. .078 MAX. B ±.437 ±.O15 11.10 ±0.38 C .405 MAX. 10.29 MAX. 0 .BOO MAX. 20.32 MAX. E .424 MAX. F .066 MIN. DIA. G .430 ±.010 10.92 ±0.25 H .250 MAX. 6.35 MAX. 10.77 MAX. 1.68 MIN. DIA. NOTES: 1. Standard polarity Is cathode-ta-stud. For reverse Polarity (anode-ta-stud) add suffix "R",le. SES5701 A. 2. All metal surfaces tin plated. 3. Maximum unlubricated stud torque: 10 inch pounds. 4. Angular orientation of terminal Is undefined. 1/80 6·63 ~UNITRDDE II SES5701 - SES5703 Typical Reverse Current vs. Reverse Voltage .001 .002 I I V J " g ffi g: a ~ .01 .02 .05 .1 .5 ~ _or. 10 20 50 30 IZ '"0:0: 20 u 10 ~ ~ V TJ = +12S'C .-V 0: -" 7~ ~=+IS0'C J iii I / ...0 I 1 I I / V/ II / / / V / / .4 I TJ =1+ 75 ,C V / 0: +100'C r- r ~J 2 I 5: 0 f.- .- // )/", :> .2 0: '" TJJ -+150'C /' so ...1-+1 T -+2S'C .005 Typical Forward Current VB. Forward Voltage 80 .8 .6 VF 1.0 FORWARD VOLTAGE (V) - 130 120 no 100 90 80 70 60 50 40 30 20 10 0 V, - REVERSE VOLTAGE (% OF PIV) Maximum Forward Surge vs. Number of Cycles Thermal Impedance vs. Pulse Width ,...-f.-- r-r- 400 I"'" 5: 300 IZ '" 0: 0: a 200 I -~ 100 "" '" J\...JL ~ICYC~E N ~ .5 oJ U Z '" . C oJ VV .2 / :;: f"'-. .1 -' "" '"~ .05 oJ '~ J: l- I - 1/ / .02 J .01 .01.02 .05.1 .2 ON I, - 10 20 50 100 CYCLES OF 60 Hz SINEWAVE V .5 1 2 5 10 20 50100200 PULSE WIDTH (mSI 1000 200 Reverse-Recovery Circuit Output Current vs. Case Temperature soo 100 25 5: I- z '"0:0: :> u 20 15 + ~ I- :> 0. I- :> 0 I _0 10 5 100 Te - _ -=- ~ 25Vdc (APPROX.) 10 NOTE 3 '" ~ aSCI LlQSCOPE NOTE 1 NOTES: ~ 1. Oscilloscope: Rise time ~ 3nSi input impedance = SOO. 2. Pulse Generator: Rise time :::;;;8n8'; source impedance 100. 3. Current viewing resistor, non-inductive, coaxial recommended. 175 150 125 CASE TEMPERATURE ('C) UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173· TEL. (617) 861-6540 TWX (710) 326·6509 • TELEX 95·1064 6·64 PRINTED IN U.S.A. SES5801 SES5802 SES5803 RECTIFIERS High Efficiency, 6DA DESCRIPTION The SES, super·fast recovery, rectifiers are specifically designed for operation in power switching circuits. Their super·fast recovery time and very low forward voltage drop make them particularly efficient in most switching applications . FEATURES • Low Forward Voltage • Fast Switching Speeds • High Surge Capability • Low Thermal Resistance • Mechanically Rugged 00·5 Package • Reverse Polarity Available ABSOLUTE MAXIMUM RATINGS Peak Inverse Voltage, SES5BOl ...................................................................................50V Peak Inverse Voltage, SES5B02 .................................. _............................................... 100V Peak Inverse Voltage, SES5B03 .................................................... _. _........................... 150V Maximum Average D.C. Output Current at Tc = 100°C ............................................ _................... BOA Non-Repetitive Sinusoidal Surge Current B.3 mS ................................................................... BOOA Thermal Resistance, Junction to Case ......................................................................... O.B ·CIW Operating and Storage Temperature Range ............................................................ - 55·C to + 175·C ELECTRICAL SPECIFICATIONS Maximum Reverse Current (IR) @PIV Tc=25°C Tc=150°C @Tc=25°C @Tc=150oC Maximum Reverse Recovery Time' 0.990V @ BOA t p = 3OOI'S O.B50V @ BOA t p = 3OOI'S 25,..A 30mA 100nS Maximum Forward Voltage (VF) Type SES5B01 SES5B02 SES5B03 PIV SOV 100V lSOV @ ·Measured in circuit IF =O.5A,IR=1.0A,IREC=O.25A MECHANICAL SPECIFICATIONS SES5801-SES5803 ins. A 225 ± 005 B 060 MIN UNF - 2A 1.52MIN • 3.96 :t 051 . 158 ± .020 0 .156 MIN FLAT 396 MIN. FLAT E .667 DlA. MAX 1694 DIA MAX F 1(4·28/ mm 5.72.1:013 C .090 MAX G .667:2:.010 H .375 J .140 MIN. DIA K 1000 MAX 00·5 2.29 MAX 1694 ::t: 0.25 '.53 L 450 MAX M 438:!: 015 N 078 MAX 356 MIN. CIA 25.40 MAX 1143MAX 1113:t: 0.38 1.98 MAX. Note.: 1. Standard polarity Is cathode·to-stud. For reverse polarity (anode-te-stud) add suffix "R", Ie. SES5801R. 2. All metal surfaces tin plated. 3. Maximum un lubricated stud torque: 20 inch pounds. 4. An angular orientation of terminal Is undefined. 1/80 6-65 ~UNITRDDE • SES5801-SES5803 Typical Reverse Current vs. Reverse Voltage Forward Current vs. Forward Voltage 200 .001 .002 TJ >- I- .005 .01 :< oS .02 UJ .05 .1 .2 ~ .5 I- z 0:: ~. 1--1- UJ 5 10 20 SO 0:: 0:: 30 u 20 ::> / 0:: ~ 10 0:: V "- ) I 0 / -" I--' ~~lsb'c .-~- i-t-t-- III V C ) ~ / / ~ I- 600 UJ ~ '" UJ 400 I 200 u .5 ... .2 .... .1 0:: .05 z "cUJ 0:: 0:: -~ ~ ~ ~ IVL ~ICYCIE "::;; UJ l: l- I"---- r-- I .-I-f- .02 ./' VV VV V ~ .01 .01.02 .05.1 .2 tp - N- 10 20 so 100 CYCLES OF 60 Hz SINEWAVE I- I-- UJ so ~ u I- ... ::> I- ::> 0 1000 Reverse-Recovery Circuit Ion 50n 70 Z 0:: 0:: .5 1 2 5 10 20 SO lOa 200 PULSE WIDTH (mS) 200 Output Current vs. Case Temperature ::> 1.2 1.0 V ... ~ .8 FORWARD VOLTAGE (V) E Z ::> u V Thermal Impedance V5. Pulse Width ~ ~ / .6 V, - Maximum Forward Surge vs. Number of Cycles +7S'C J / .4 130 120 110 100 90 80 70 60 so 40 30 20 10 a VOLTAGE IN % OF PIV 800 I / I / ~ fr t- TJ - / SO lZ r- h _TJ = +IOO'C r- I>'""'~TJ = +I~'C ./ "s. 70 ~ r--- r--- r TJ = 2S'C : = +IS0'C 100 30 I _0 10 100 Te - + _ -=- '" "'" 25Vdc (APPROX.) In NOTE 3 '" OSCILLOSCOPE NOTE 1 = ~ NOTES: 1. Oscilloscope: Rise time ~3nS j input impedance 500. 2. Pulse Generator: Rise time ~ 8nSi source impedance 100. 3. Current viewinl resistor, non-inductive, coaxial recommended. = "" 125 ISO 175 CASE TEMPERATURE ('C) UNITRODE CORPORATION,S FORBES ROAD L~XINGTON, MA 02173, TEL. (617) 861-6540 TWX (710) 326-6509 ' TELEX 95-1064 6-66 PRINTED IN U.S.A. UES501-UES505 RECTIFIERS High Efficiency, 50 Amp FEATURES DESCRIPTION: • • • • • • • • This series of High Efficiency Power Rectifiers allows circuit designers to design high current, high frequency supplies with very low diode losses. Reverse recovery time is typically 1/10 - 1/100th of equivalent power rectifiers, with even lower forward voltage. 50A Continuous Rating at Case Temperature of 12S'C Exceptional Efficiency Low Forward Voltage Extremely Fast Reverse Recovery Time Extremely Fast Forward Recovery Time High Surge Radiation Tolerant Rugged, High Current Termination • ABSOLUTE MAXIMUM RATINGS Peak Inverse Voltage Type SOV 75V 100V 12SV lS0V UES501 UES502 UES503 UES504 UES505 Maximum Average D.C. Output Current @ Tc =12S'C Non-Repetitive Sinusoidal Surge Current (8.3ms) Operating Temperature Range Storage Temperature Range. Thermal Resistance ...... SOA ............. " .... 600A -65'C to +175'C -65'C to +17SoC . ................. l'C/W MECHANICAL SPECIFICATIONS UES501-UES505 1---A~25~ln;~5 572!: 0.13 B 060 MIN 152 MIN C 156" 020 396'" 0 51 D E F G 156 MIN FLAT 6670lA MAX 090 MAX 677:!: 010 H 3HMAX J 140 MIN OIA K 1000 MAX l 450 MAX M 438:!. 015 N 078 MAX 00-5 3 96 MIN FLAT 1694 DlA MAX 229 MAX 1720'" 025 953 MAlt 3 56MIN DlA 2540 MAX 1143 MAX 11 13'" 038 I 98 MAX Notes: 1. Angular orientation of terminal is undefined. 2. All metal surfaces tin plated. 3. Maximum unlubricated stud torque: 30 inch pounds. 4. All dimenSions in Inches. 5. Polarity is cathode to stUd; for anode to stud add suffix "R". 6-67 ~UNITRDDE UES50l-UES505 ELECTRICAL SPECIFICATIONS (at 25'C unless noted) Maximum Forward Voltage Drop Peak Inverse Voltage Type UES501 UES502 UES503 UES504 UES505 SOV 7SV 100V Maximum Leakage Current 125'C 2S"A lOrnA SOns. lA-lA-O.SA - .95V@50A (pW= 250rns) 125V 25'C Maximum Reverse Recovery Time trr @ IF~IR.. IREC lS0V Pulse Thermal Impedance vs. Pulse Width Output Current vs. Case Temp. ~ ~ 50 .... 40 OJ 0: 0: ::> u 30 .... ::> ...... 0.9 c' 0.8 "- I '\ '"\ I 155 ":;; 0.4 "'....I 0.3 ....z 165 ".... 0: 5K 2K "' 1K . VI ..J ............ ~ .... z '-- t--- -- "'0:0: TYPICAL ::> u t--- ~ 1\ \. 500 '\ "'- 400 300 -~ "'............ I t--- ::> 500 200 ............ 200 100 5 10,1.15 50 100/15 500 PULSE DURATION UNITRODE CORPORATION· 5 FORBES ROAD lEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 9,5.1064 Ims 25 Multiple Surge Current vs. Duration 600 2DK ::> u 50 100 200 500 15 PULSE WIDTH -I(ms) 20 CASE TEMPERATURE ('C) SDK "'0:0: / / 175 look 10K V 01 Square Pulse Current vs. Duration for Non-Repetition Square Wave .... z / 0.2 "'zVi \ Tc - 0.6 0: 10 145 c / /V ..J _0 135 0.7 ~ 0.5 \ 125 "'uz ."'" 1\ ::> 20 0 ~ .// v "" ~ Z e 5 lOms 1 2 10 20 - 50 100 200 HALF CYCLES OF 60Hz SINE WAVE 6-68 PRINTED IN U.S.A. UES501-UES505 Typical Forward Current vs, Forward Voltage 500 v~ 200 ~ ... so '"0:0: 20 :::> 0 0 0: ... .5 .2 .1 ..."'>a: 1/ I- ~y;; t- '"L ,...... .1 .3 V '" • ,I .7 .9 1.1 V.- VOLTAGE (V) I-t-:r J 1.3 1.5 1/ -1'l!J;~ .5 II T -UKI' J I- J....I--" y TJ-125' 10 20 1so·d- TJ J I I 140 Reverse-Recovery Circuit 120 100 80 60 40 20 VOLTAGE - IN % P.I.V. Characteristic Waveform t" r - lREC·1f2A 1A '\ IJ NOTES: 1. Oscilloscope: Rise time ~ 3 ns; input impedance::::: 50 n. 2. Pulse Generator: Rise time ~ 8 OS; source impedance 10 Po. 3. Current viewing resistor, non-inductive, coaxial recommended. UNITRODE CORPORATION - 5 FORBES ROAD LEXINGTON, MA 02173 - TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95-1064 Ld" 2~'~_ I- SO 100 J-.""J .5 I- ...a: - t> .05 .1 .2 :::> m'TI ~"I~" ..8 .n D1 TJ '"a:0: ...u II II III/ ~ 0: ;; .§. .005 .01 .02 ...z [/f/ VI! 10 0 ~E:::f;': V:rA" lLfL ILV 100 z Typical Reverse Current vs. Voltage .001 .002 6-69 1 ! r 1A SET TIME BASE FOR 10 NS/CM PRINTED IN U.S.A. RECTIFIERS UES701-U ES703 High Efficiency, 25 A DESCRIPTION Designed to meet the efficiency'demand of switching type power supplies, these devices are useful in many switching applications. The low thermal resistance and forward voltage drop of this series allows the user to replace 00-5 size devices in many applications. FEATURES • Low Forward Voltage • Very Fast Switching • Low Thermal Resistance • High Surge Capability • Mechanically Rugged • Both Polarities Available ABSOLUTE MAXIMUM RATINGS Peak Inverse Voltage,. UES701 . Peak Inverse Voltage, UES702 ..... Peak Inverse Voltage, UES703 . Maximum Average D.C. Output Current at Tc lOO'C . Non-Repetitive Sinusoidal Surge Current at 8.3ms . Thermal Resistance, Junction to Case ...... Operating and Storage Temperature Range .. ......... 50V .. .......... 100V .. ............... l50V '" 25A ..400A 1.5'C/W ...... -55'C to +175'C = POWER CYCLING These devices possess the unique ability to pass many thousands of cycles of a stress test designed to evaluate the integrity of the bonding systems used in the construction of power rectifiers. In this stress test, the case of the device is not heat sunk. Full rated forward current is supplied to force a case temperature increase at least 75'C, at which time, the current is removed and the case allowed to cool. The cycle is repeated a minimum of 5,000 times to simulate 'equipment being turned on and off. Extended power cycling tests demonstrate a product capability in excess of 25,000 cycles. SWITCHING CHARACTERISTICS The switching times of these ultra-fast rectifiers increase relatively little, with temperature or at different currents. Even in severe applications, such as catch diodes for switching regulators and output rectifiers for high frequency square wave inverters, these devices switch many times faster than the fastest associated transistors. Thus, the stresses on and powers dissipated in the switching transistors are substantially less than when using other rectifiers. MECHANICAL SPECIFICATIONS UES701-UES703 mm ins. A 8 .078 MAX 437 ~ 015 C .405 MAX 1029 MAX. D 20.32 MAX. 10 92 ~ 0 25 6.35 MAX G 800 MAX 430 ~ 010 250 MAX 424 MAX H 066 MIN DIA E F DO-4 1.98 MAX 11.10 ±O.38 10.77 MAX. 1 68 MIN. DIA. Notes: 1. Standard polarity is cathode-to-stud. For reverse Polarity (anode-la-stud) add suffiX I4R", ie. UES701R. 2. All metal surfaces tin plated. 3. Maximum unlubricated stud torque: ·15 inch pounds. 4. Angular orientation of terminal is undefined. 6-70 ~UNITRODE UES701-UES703 ELECTRICAL SPECIFICATIONS Type UES701 UES702 UES703 * Measured 50V lOOV 150V in circuit 'F = O.SA, 'R Maximum Reverse Current @ Maximum Forward Voltage @ PIV Tc =2S'C Tc = 12S'C .950 .825 Tc= 12S'C 2Ol'A 4mA 35nS @ @ tp Tc= 2S'C Maximum Reverse Recovery Time* 25A 3ool'S = t p 25A 3OOI'S = = lA, 'REC = O.2SA Typical Reverse Current vs. Reverse Voltage .001 .002 I I .s I- .05 ~ .1 .2 ~ c: '" 1 '"a:c: - 20 50 -r- f::TJ V I 10 20 / I ,I :> 2 _01: J Z -- +100'C u / c: ~ c: I / -~ II 1 .4 I I I V, / / 1= F=i"=+IS0'C L _I ~ ~ I I I II /1 if II ...0 1--/ TJ = +12S'C 10 0 f-- / /"p . . ) V~ ~J =~7S'C V V'- T = +125'C ~ 30 I- .5 ~ TJ = +1 50 ':"50 J .01 .02 Z '"~ ./ J-+ T - +2S'C .005 <" Forward Current Forward Voltage VS. 80 II - - = TYPICAL V, - - - - = MAXIMUM V, .6 V, - 1.0 .8 FORWARD VOLTAGE (V) 130 120 lIO 100 90 80 70 60 50 40 30 20 10 0 v, - REVERSE VOLTAGE (% OF PI V) Maximum Forward Surge vs. Number of Cycles 400 ~ ~ 300 I- Z '"c:c: a200 . I -~ 100 ;: 1.0 '" .5 E '" '" "'- IV\... ~ICYC~E u Z <5 '" 11. "'" - "~ '" .05 I .02 i .01 :I: I- Z 20 '"c:c: :> u ~ ~ '\ 15 I- :> 11. I- :> 10 0 I _0 100 Tc - -- V ..-f- !-' / .1 .J 1/ / l- ''-..., .01.02 .05.1 .2 N tp - .5 1 2 5 10 20 50100200 PULSE WIDTH (mS) 1000 200 Reverse-Recovery Circuit Output Current VS, ,Case Temperature 25 VV .2 ::; 10 20 SO 100 N ~ CYCLES OF 60 Hz 51 NEWAVE ~ Thermal Impedance vs. Pulse Width son Ion + _ -=- ~ 25Vdc (APPROX.) In NOTE 3 "" "" OSCILLOSCOPE NOTE I = NOTES: 1. Oscilloscope: Rise time ~ 3nsj input impedance = 500. 2. Pulse Generator: Rise time ~ 8nsj source impedance 100. 3. Current viewing resistor, non-inductive, coaxial recommended. "'" 175 125 150 CASE TEMPERATURE ('C) UNITRODE CORPORATION. S FORBES ROAD LEXI NGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326·6509 • TELEX 95·1064 6-71 PRINTED IN U,S.A. RECTIFIERS UES704--U ES706 High Efficiency, 20A FEATURES • Very Low Forward Voltage (l.15V) • Very Fast Recovery Times (50nSec) • Low Thermal Resistance • High Surge Capability • Mechanically Rugged • Both Polarities Avai lable DESCRIPTION The UES704 series is specifically designed for operation in power switching circuits operating at frequencies of at least 20 KHz. The low thermal resistance and forward voltage drop of this series allows the user to replace 00-5 size devices in many applications. ABSOLUTE MAXIMUM RATINGS Peak Inverse Voltage, UES704 ........ .................................................................200V Peak Inverse Voltage, UES705 ..................... .. ..................... 300V Peak Inverse Voltage, UES706 ......... ............................ ..................... .. ...................400V Ave. D.C. Output Current, 10 @ Tc 100'C ....... .. ........................................20A Surge Current, 8.3mSec ........................ .. ...........................................300A Thermal Resistance, Junction to case .....................................l.5'C/W Operating and Storage Temperature Range ................ -55'C to +150'C = POWER CYCLING These devices possess the unique ability to pass many thousands of cycles of a stress test designed to evaluate the integrity of the bonding systems used in the construction of power rectifiers. In this stress test, the case of the device is not heat sunk. Full rated forward current is supplied to force a case temperature increase at least 75'C, at which time, the current is removed and the case allowed to cool. The cycle is repeated a minimum of 5,000 times to simulate equipment being turned on and off. Extended power cycling tests demonstrate a product capability in excess of 25,000 cycles. SWITCHING CHARACTERISTICS The switching times of these ultra-fast rectifiers increase relatively little, with temperature or at different currents. Even in severe applications, such as catch diodes for switching regulators and output rectifiers for high frequency square wave inverters, these devices switch many times faster than the fastest associated transistors. Thus, the stresses on and powers dissipated in the switching transistors are substantially less than when using other rectifiers. MECHANICAL SPECIFICATIONS UES704-UES70& A B 078 .437 C .405 D .800 E .430 F 250 G 424 H .066 DO-4 mm ins. MAX. ± .015 MAX. MAX . ± .010 MAX MAX . MIN. DIA. 1.98 MAX. 11.10 ±0.38 10.29 MAX. 20.32 MAX. 10.92 ± 0.25 6.35 MAX. 1077 MAX. 1.68 MIN. DIA Notes. 1. Standard polarity is cathode-ta-stud. For reverse Polarity (anode-ta-stud) add suffix "R", ie. UES704R. 2. All metal surfaces tin plated. 3. Maximum unlubricated stud torque. 15 inch pounds. 4. Angular orientation of terminal is undefined. 4/79 (Rev. 1) 6-72 ~UNITRDDE UES704-UES706 ELECTRICAL SPECIFICATIONS Type Maximum Forward Voltage UES704 UES705 UES706 200V 300V 400V Maximum Maximum T c =25'C Tc= 125'C T c =25'C T c =l25'C Reverse Recovery Time* 1.25V @ 20A tp =3OOI'S 1.l5V @20A tp = 300l'S 5Ol'A lOrnA SOnS PIV Reverse Current * Measured In Circuit IF = O.SA, IR = lA, 'REe - O.25A Output Current vs. Case Temperature II Peak Output Current vs. Case Temperature 100 ~ 30 I- Z OJ 0:: 0:: :> 20 u I- € - -........ :> Q, I- :> 0 80 I- 10 I _0 100 Tc - i50:: 0:: """" 110 120 0) <..> 60 I0) 0.. I0) 0 ""'" 130 140 '"~ 40 0.. 1 20 150 CASE TEMPERATURE ('C) T, - CASE TEMPERATURE ('C) Typical Reverse Current vs. Reverse Voltage Typical Forward Current vs. Forward Voltage 100 ~ 50 ~ ~ 20 I- 10 ~ 5 z ~ 1 '" :;: .5 0:: ~ .2 IV wi- · .02 .01 r-- II 1/ J1 'f.. II ~ -- II 2~ / 10 20 30 40 50 60 70 80 90 100 110 120 130 140150 V. - 6-73 ~ I-""' o V, - FORWARO VOLTAGE IV) UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 -- - 10 11/ .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 1.11.2 1.3 1.41.5 12S'C 100 Ill: I I,...- I-"ido,c 1/ II If w '" Ill: OJ 'f.. II f-- /1 IK :> u 0/ -- If Z OJ 0:: 0:: !/. I I - h1o'c 10K I- 1- I IV ""IJr-y y ,0 ,0 'f.. _" .1 .05 <" .3 1/ / V" l,...;" 1/ / / I ~/ 1/ 0:: G2 lOOK ~ 7" REVERSE VOLTAGE (% OF PIV) PRINTED IN U.S.A. UES704-UES706 Maximum Forward Surge VS. Number of Cycles 300 g g "'u z f"- C!i ""- 200 '"'" I,. vV I-f- ,5 "'II. ,2 .. ,1 vV' ..J "'- ::;; l'--, ~ "J\..JL ,ICiCLE "''" :I: l- I ~ I'--- r-- N ,05 t- V V ::;; :::> u _ll: 100 Thermal Impedance vs. Pulse Width V lL ,02 .01 ,01.02 ,05,1 ,2 tp - ,5 1 2 5 10 20 50 100 200 PULSE WIDTH (mS) 1000 o 1 N- 10 20 50 100 CYCLES OF 60 Hz SINEWAVE 200 Reverse-Recovery Circuit soo Ion + _ -=- 25Vdc (APPROX,) In NOTE 3 OSCILLOSCOPE NOTE 1 = NOTES. 1. Oscilloscope: Rise time ~ 3nsj input impedance 500. 2. Pulse Generator: Rise time ~ 8nsi source impedance 100. 3. Current viewing resistor, non·inductive, coaxial recommended. = UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON. MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 6-74 PRINTED IN U.S.A. RECTIFIERS UES801-UES803 High Efficiency, 70 Amp FEATURES • High Continuous Current Rating • Very Low Forward Voltage • Very Fast Switching Speeds • High Surge Capabi I ity • Low Thermal Resistance • Mechanically Rugged • Both Polarities Avai lable • Available with Flexible Top Lead DESCRIPTION The UESSOI Series is specifically designed for operation in power switching circuits operating at frequencies of at least 20 KHz. The very low forward voltage and very fast recovery time make them particularly suited for switching type power supplies. ABSOLUTE MAXIMUM RATINGS Peak Inverse Voltage, UES801 Peak Inverse Voltage, UES802 . Peak Inverse Voltage, UESS03 . Maximum Average D.C. Output Current at Tc = lOO'C Non-Repetitive Sinusoidal Surge Current S.3 ms Thermal Resistance, Junction to Case Operating and Storage Temperature Range .. 50V ... 100V . lSOV 70A ... SOOA 0.8'C/W -55'C to +175'C SWITCHING CHARACTERISTICS The switching times of these ultra-fast rectifiers increase relatively little, with temperature or at different currents. Even in severe applications, such as catch diodes for switching regulators and output rectifiers for high frequency square wave inverters, these devices switch many times faster than the fastest associated transistors. Thus, the stresses on and powers dissipated in the switching transistors are substantially less than when using other rectifiers. POWER CYCLING . These devices possess the unique ability to pass many thousands of cycles of a stress test designed to evaluate the integrity of the bonding systems used in the construction of power rectifiers. In this stress test, the case of the device is not heat sunk. Full rated forward current is supplied to force a case temperature increase at least 75'C, at which time, the current is removed and the case allowed to cool. The cycle is repeated a minimum of 5,000 times to simulate equipment being turned on and off. Extended power cycling tests demonstrate a product capability in excess of 25,000 cycles. MECHANICAL SPECIFICATIONS UES801-UES803 225 + 005 060 MIN 572 -<- 0 13 C IS6:!: 020 156 MIN FLAT 667 alA MAX 090 MAX 396 MIN FLAT 1694 alA MAX 2 29 MAX 677:t 010 1720:t025 375 MAX 140 MIN DIA I 000 MAX V4·28 UNF·2A o 1 52 MIN o E 00-5 396+051 953 MAX 3 56 MIN DIA 2540 MAX 450 MAX 11 43 MAX M 438:t 015 11 13:t 0 38 N 078 MAX 198 MAX Noles: 1. Standard polarity is cathode-to-stud. For reverse polarity (anode-to-stud) add suffix "R", ie. UESB01R. 2. All metal surfaces tin plated. 3. Maximum unlubricated stud torque: 20 inch pounds (20 kg. em). 4. Angular orientation of terminal is undefined. 5/80 (Revised) 6-75 ~UNITRODE • UES801·UES803 ELECTRICAL SPECIFICATIONS Type Maximum Forward Voltage @ PIV UES801 UES802 UES803 SOV lOOV lSOV Maximum Reverse Current @ T c =2S'C Tc = lSO'C .975V .840V @ @ 70A t.=300pS 70A t.=300pS Maximum Reverse Recovery Tc _2S'C Tc = lSO'C Time* 25pA 30mA SOnS Nole. Add 0.03 Volts to Max Forward Voltage for Flexible Top Lead Option •• Measured in circuit I, = 0.5A. I. = lAo I.oc = 0.25A Output Current vs. Case Temperature ~ 70 ......... f- ....Z a: a: so :l U I~ f- :l Il. f- :l 30 Peak Output Current vs. case Temperature g IF Duty Cycle z 180 .... I~ '"'" ::> u >::> 140 Il. >::> ~ 0 I _0 10 0 '"OS 100 1 60 Il. "\ 100 Tc - 220 >- ISO 175 125 CASE TEMPERATURE ('CI - 20 1o• Average of Rectified Half Sine 0 100 120 140 160 Tc - CASE TEMPERATURE ('C) Typical Reverse Current VS. Reverse Voltage Forward Current Forward Voltage VS. r--,....--,---r--.-~"7""TTT"-.., .001 .002 100 1--+--+-+--bh.y~L..t---; .005 200 J I-- 1--/ l - f- .01 ~ 50 z I---t---+--'I---:~I---I-+--!----I .... 5 a'"'"o 20 ~-+---+--f, '" ~ ~ 10 <- .05 .02 f- z.... 0: 0: :l ~-+---+--I u f- /- T J = 25'C .1 .2 ) .5 I I-- -~ ./- _ TJ = +IOO'C I-- p- ~TJ 10 20 1 ~_~~~L-~_-U_~~ o 0.2 0.4 v, - 0.6 0.8 1.0 1.2 III 1.4 J i--" ~15h'c I I i 130 120 110 100 90 80 70 60 SO 40 30 20 10 0 VOLTAGE IN % OF PIV fORWARO VOLTAGE (V) UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173· TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 H so It! __~~ =+I;~'C / 6-76 PRINTED IN U.S.A. UES801-UES803 Maximum Forward Surge vs. Number of Cycles Thermal Impedance vs. Pulse Width 800 ~ I- 600 z ...a: a: OJ u 400 I -~ 200 ~ ."" "" ~ z Cl ~ e-f-f- .5 /" .2 VV ::;; ~ ..J « ::;; ~ .1 ...a: .05 J: l- ' -:--- f\J'L. ~ICYC~E I .02 V V ~ .01 '" ..... V .01.02 .05.1.2 .5 1 2 5 10 20 50 100 200 1000 t. - PULSE WIDTH (mS) 2 N- 10 20 50 100 CYCLES OF 60 Hz SINEWAVE 200 Reverse-Recovery Circuit 50n 100 + _ -=- 25Vdc (APPROX.) In OSCILLOSCOPE NOTE 1 NOTE 3 NOTES. 1. Oscilloscope: Rise time ~ 3ns; input impedance = 500. 2. Pulse Generator: Rise time ~ 8nsj source impedance 100. 3. Current viewing resistor, non-inductive, coaxial recommended. MECHANICAL SPECIFICATIONS DO-5 with Flexible Lead FLEXIBLE TOP LEAD (OPTIONAL) Add an "F" Suffix to Part Number. Standard JEDEC 00·5 Package @ N h=TM1 ~ #8 R , iEbIp FleXible I Cable 7 X 95/361:L .............. ~o II Peak Ou~ut Current vs. Case em perature 180 ~ 1'-. g 160 "- >- ~ 140 f'-. "- 20 o 50nS 200 511. 5 Reverse Recovery Time'" _12S~C = O.2SA 60 ~ 50 Tc 30mA Output Current vs_ Case Temperature ....z Maximum Maximum Reverse Curent '"'"::>u >- I'\. 10 120 130 80 '"~ \ o 110 100 0 >::> \ 100 1l: 140 1 60 40 150 20 70 T, - CASE TEMPERATURE ('C) Typical Reverse Current vs. Reverse Voltage Typical Forward Current vs. Forward Voltage 1K lOOK I 500 _ 200 ~ j? 0: 1/ .." 125'C ..... r-" 100'C r-" lK ::1 ~ '25'C 100 0:: I 11/ -- ~ 10 - lL lL A 1 o ~2~A~~J~SUUUUUUU V, - FORWARO VOLTAGE (V) UNITROOE CORPORATION. S FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 ~ UJ 11°'c i-" U -", flr1!f-"i 111 Ii 1/ V UJ '"f.~1 II ~ 10K ~ -~"O~1,ol/ q • 0: o t"" I'""" 10 20 30 40 50 60 70 80 90 100110120130140 V. - 6-79 REVERSE VOLTAGE (% OF PIV) PRINTED IN U.S.A. UES804-UES806 Maximum Forward Surge vs. Number of Cycles 600 ~ IZ '"0:0: 500 400 :> u 300 I -~ 200 "" ""~ ~ z ~ I-f-t- .5 /' .2 -' ........ « .1 I/'V ::0 a: .05 w ~ X l- b-.. -- 1 I V .02 ~ .01 t-- N V VI-"" vV ::0 CYCLE I vs. Pulse Width « a f--.!\J'L It----<\I 100 Thermal Impedance .01.02 .05.1 .2 tp - .5 1 2 5 10 20 50 100 200 1000 PULSE WIDTH emS) o 1 2 10 N- 20 100 50 200 CYCLES OF 60 Hz SINEWAVE Reverse·Recovery Circuit son 100 + -=_ 25Vdc IAPPROX.) III NOTE 3 OSCILLOSCOPE NOTE 1 = NOTES: 1. Oscilloscope: Rise time ~ 3nsj input impedance 500. 2. Pulse Generator: Rise time ~ 8nsj source impedance 100. 3. Current viewing resistor, non-inductive, coaxial recommended. = UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 6-80 PRINTED IN U.S.A. UES1001-UES1003 RECTIFIERS High Efficiency, 1A FEATURES • Very Fast Recovery Times • Very Low Forward Voltage • Small Size • Convenient Package DESCRIPTION An axial leaded power rectifier useful in many switching applications. Particularly suited where very fast recovery and low forward voltage are required. ABSOLUTE MAXIMUM RATINGS Peak Inverse Voltage, UES1001 ...................................................................................50V Peak Inverse Voltage, UES1002 .................................................................................. 100V Peak Inverse Voltage, UES1003 .................................................................................. 150V Maximum Average D.C. Output Current atT L = 75·C, L=318" .......................................................... 1A Non·Repetitive Surge Current at 8.3mS ............................................................................30A Thermal Resistance at L = 3/8' ................................................................................75 ·ClW Operating and Storage Temperature Range .............................................................. - 55·C + 175·C ELECTRICAL SPECIFICATIONS Type PIV UES1001 UES1002 UES1003 50V 100V 150V "Measured In circuit IF TJ =25°C TJ =100oC @ TJ =25°C @TJ =100°C Maximum Reverse Recovery TIme' .975V @ 1A .895V @ 1A 2"A 50"A .25nS Maximum Reverse Current (IR) @PIV Maximum Forward Voltage (VF) @ = .5A, 'R = 1.0A, 'REC = .25A MECHANICAL SPECIFICATIONS UES1001·UES1003 I 1.0 min ,T, 25.4mm-1 I .bS5 max . 028 ± .001 .071mm ± .03 2.16mm --'I_ L -_ _ _- ' _ _ _ _ _ .170 max -4.32mm - 1/10 BODY Al I 6·81 ~UNITADDE II UES1001-UES1003 I .001 10 1,,- Ld~ 1,- . 5 ~ zUJ v: J,;- """ '" " L=Ve" :0 "::;:0 ~ ::; X « 1 ::; ~ ~ L _ ¥e" I I J--.. --- L::=¥4" so 25 TL - . . .2 z II.;,'" ~ .1 '" ""- 0: ~ .05 ~I-- I _- .02 '\ '" i'-.. II .01 .005 ~\ .002 ~ 75 100 125 150 LEAD TEMPERATURE (OC) .01 ~ . 1/1/ II J g / 0: 0: l-' ~ ,..... 1/ ,: "]'-' ,-' :~ zUJ 0<'> II~ ~ ~ II -!- J. :0 "I V .05 .1 l--I-~ i-;.J = 25°C .5 -" J.- II I _f-- I-- ~:+l25°C T t,....V V J 50 100 120 .1 .2 .3 .4.5 .6 .7 .8 .91.01.11.21.3 175 1-1- T - +75°C 10 I .001 8,iloJ I-:::I::::b::- 1/1/ '11/ .5 T, 0: 0: Typical Reverse Current vs. Voltage Typical Forward Current vs. Forward Voltage Output Current VS. Lead Temperature 100 80 60 40 20 VOLTAGE IN % OF prY V~-VOLTAGE(V) Peak Output Current VS. Lead Temperature Forward Pulse Current VS. Duration 4 0 f-"....+--+--+--h~+-:-..,...+-:--+-I 10,000 3: Square Pulse Current vs. Duration for Non-Repetitive Pulse 5,000 f- z 3.2 5 '"'"'":::> u f- ir ~ 1,000 UJ " UJ 0 0.. -i- :0 :::> '"~ 500 0: 0: 2.4 f- ~ :0 16 100 I--1-1"--- 50 0.. j 10 .8 .1.u5 50 90 70 T, - 110 130 150 f'.. '" 80 ~ Z ~ 0: 60 "'l;1 . " l'-- ~ 40 o tf. 20 2 50 -- lOllS 100.u5 PULSE DURATION -- 5 1m. lOms 170 Reverse·Recovery Circuit ion + l' ~ _ -=- TL MOUNT @ Length = ¥e" i'-- R::.l 5 10 20 50 100 200 SOD In OSCILLOSCOPE NOTE 1 = NOTES: 1. Oscilloscope: Rise tim~3nS; Input Impedance=50Q. 2. Pulse Generator: Rise tlme ' u "'~ :> .. f'.. <.> 80 100 SO 10 •1,us .5 ~ --- 0: r-- 60 "'<.>0: r-- r-- .. -- r-- SO lO,us lOO.us PULSE DURATION ~ a f. r- 1m• 5 '"""" b" r-...~ Tl MOUNT @ Length ~ 'iii" 40 I"--20 R=:::tpr["ted CirCujit - 1 lOms 2 5 10 20 SO 100 200 500 1000 CYCLES AT 60 Hz SINE WAVE Reverse-Recovery Circuit SOP. lOP. + _ -=- 25Vdc (APPRDX.) 10 NOTE 3 OSCILLOSCOPE NOTEl NOTES: 1. Oscilloscope: Rise time ~ 3ns; input impedance = 500. 2. Pulse Generator: Rise time ~ 8nsj source impedance 100. 3. CUrrent viewing reSistor, non·inductive, coaxial recommended. UNITROOE CORPORATION. 5 FORBES ROAO LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326·6509 • TELEX 95-1064 6-85 PRINTED IN U.S.A. • UESII04-UESII06 RECTIFIERS High Efficiency, 2A FEATURES DESCRIPTION • • • • The UESll04 series is specifically designed for operation in power switching circuits operating at frequencies of at least 20 KHz. Very low Forward Voltage (l.15V) Very Fast Recovery Times (50nSec) Small Size Convenient Package ABSOLUTE MAXIMUM RATINGS Peak Inverse Voltage, UESll04 .......................................................................200V Peak Inverse Voltage, UESll05 . ............300V Peak Inverse Voltage, UESll06 . ...................400V Maximum Average D.C. Output Current, 10 @ TA 25'C (Free Air) ....... .lA @ TL 50'C, L= 3A," .............................................................2A Surge Current, 8.3mSec .... ......................... .................................................20A Thermal Resistance @'l %" .... ..... ..........................................38'C/W Operating and Storage Temperature Range '" .. .... ......... ............... -55'C to +150'C = = = MECHANICAL SPECIFICATIONS UES1104-UES1106 BOOY A .085N TYP. ~ 2.2mm I- .7f?~~::' j - - .2~~~~X._ f.-_ _ _ _ 1·1~~~~N. - - - - - 0 1 [bJJ 4/79 (Rev. 1) 6-86 _UNITRDDE UESll04-UESl106 ELECTRICAL SPECIFICATIONS Maximum PIV UESll04 UESll05 UESll06 200V 300V 400V Maximum Reverse Recovery Maximum Reverse Current Forward Voltage Type T J =25°C TJ = 100°C 1.25V @lA tp =300,uS 1.15V @lA tp = 3001'5 @ PIV, TJ = 25°C = 100°C TJ 10/,A T!me* SOnS 200,uA * Measured In Circuit IF _ a.5A, 1", - lA. I"'EC _ O.2SA Output Current vs. Lead Temperature 2.5 , - - , - - , - - - , - - - , - - , - - - - , ~ 2 '"~ 1.5 .... z • Peak OU¥!ut Current VS. Lead em perature 50 f------"'k-+-_+_ ~ 40 f- => al f---+--+--"<:--t-----t--f---I '"'"u :;, u .... 30 f- => :;, ::=> a. f- :;, 0 o I .5 '"a. i:i 1----+--+--P....-t-\--+--1 _0 1 50 T, - 20 10 75 100 125 150 LEAD TEMPERATURE (0G) T, - LEAD TEMPERATURE (0C) Typical Reverse Current vs. Reverse Voltage Typical Forward Current vs. Forward Voltage 10 ~ z .... 10K :;:::: ~~ ~ '//' 1 ~j W 0: 0: ~ II => U ~ I .01 -~ .001 1K !z.... ~ 100 => ~ .1 ~ 0: ~ / / / .... I 1JT f~ & f- '-;';' f- II II ;, !f! If) II 5? II: .... ~ ~~ III 1/ _tit J...,.../ V ,; 100°C 1. 0 o.1 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.01.11.21.31.41.5 o V, - FORWARD VOLTAGE IV) UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 I' 10 II: I .)1- "1 J...~ J... 1rOC u 6-87 " 20 V. - 40 60 80 rc 100 120 140 160 180 REVERSE VOLTAGE (% OF PIV) PRINTED IN U.S.A. UESl104-UESl106 Output Current vs. Ambient Temperature. Multiple Surge Current vs. Duration 100 ~ ~ .8 ....z w cr cr .6 "",,- "'-"\ u .... :0 .4 :0 '" 0: uJ " 40 :::> 1\ \ .2 25 '" 75 100 ~ "0 #- 20 TL MOUNT = %" @ Length r- R==:tprrted Circut 1\ \ 50 "'" I'-... ...... 60 0: _0 o aD j:: 0 I . '\ :0 ....... " z 125 1 2 10 20 SO 100 200 500 -1000 CYCLES AT 60 Hz SINE WAVE 150 TA -AMBIENT TEMPERATURE ('C) Reverse-Recovery Circuit 50 t! + _ -=- 25Vdc (APPROX.) 1t! NOTE 3 OSCILLOSCOPE NOTE 1 NOTES: 1. Oscilloscope: Rise time :s;; 3nsj input impedance:::::: son. 2. Pulse Generator: Rise time::;;; 8nsi source impedance 100. 3. Current viewing reSistor, non-inductive, coaxial recommended. UNITROOE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 6-88 PRINTED IN U.S,A. RECTIFIERS UES1301-UES1303 High Efficiency, 6A FEATURES DESCRIPTION • • • • Now power rectifiers in axial leaded package to meet the most demanding switching applications. An industrial product with military reliability. Very Low Forward Voltage Very Fast Recovery Times Small Size High Surge II ABSOLUTE MAXIMUM RATINGS Peak Inverse Voltage, UESl301 Peak Inverse Voltage, UES1302 Peak Inverse Voltage, UES1303 Maximum Average D.C. Output Current at TL 75·C, L Non-Repetitive Sinusoidal Surge Current at 8.3ms Thermal Resistance at L = %" Operating and Storage Temperature Range = ....... 50V ................. lODV ................ 150V =%" .6.DA .... 125A ........ 2D·C/W .... -55·C to +175·C MECHANICAL SPECIFICATIONS UES1301-1303 h,- BODY Bl l.Omm 25.4mm_1 \45 max . .040 ± .001 l.02mm ± 03 l68mm max_I '------' ------'- 1_.200 508mm 6-89 ~UNITRaDE UE5130I-UE51303 ELECTRICAL SPECIFICATIONS Type PIV UE51301 UE51302 UE51303 SOV lOOV lSOV Maximum Forward Voltage @ Maximum Reverse Current Maximum @ Reverse TJ =2S'C TJ _100'C TJ -2S'C TJ _100'C Recovery Time* .925V .850V @6A tp=3001'5 51'A lSOI'A 30n5 @6A tp = 3001'5 • Measured in circuit I. = O.SA, I. = lA, IROC = O.2SA VS. 12 , ::> r- ~- W;\. "- 1\ " L=~""" 6 ~ .~ L_'I u 12 I- _ "'c:c: I- '\ ::> 0I- ::> 0 1""- \ " "i'.. '"~ 0- \ I 1 " ."'.!\ 4 ""- l\\ '\ 50 75 100 125 150 T, - LEAD TEMPERATURE ('C) 25 50 70 175 T, - LEAD TEMPERATURE ('C) Typical Reverse Current VS. Voltage Typical Forward Current VS. Forward Voltage 100 .01 .2 JJ I I ~ I I- II Z w 1 ~ VII f--, 05 02 .01 I,! ... I I l- I T = +7S"C 100 T = +100"C T = +12S"C 200 II I 1000 ,J { ~ 120 1 ,2 .3 4 .5 6 7 .8 9 1 0 1.1 1 2 1.3 V 10 _" 20 I- I I ' , 2 'I JI;1.'~ ' J ::> I -!II ,,....... 1...... f- r-f= 25"C T II: II: -~o, • - $ I ~ I f- I- - () - .1 r//V 10 I T J ::::; -SOOC ..-::~ ?:~ 20 a: a: ::> A .02 50 I I J. -I-- ,J II I L iI k- I I I 100 80 60 40 20 VOLTAGE IN % OF PlY Y, - VOLT AGE (V) UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWlC (7~g) 326-6509 • TELEX 95-1064 6-90 PRINTED IN U.S.A. UESl301-UES1303 Forward Pulse Current vs. Duration 10,000 5,000 g ""'"'"- r--- ~ 1,000 ::ta: r-- 500 Square Pulse Current vs. Duration for Non-Repetitive Pulse 100 .. SO :J I" ,,80 z :::---. :J "!J"' Multiple Surge Current vs. Duration 100 J -....... t'-- r'-... ~ a: 60 w "~ r-- ""- I'.. I""" a: 40 ~ Nl=::: t- l:; "20 10 .11'5 .5 Ips SO Printed CircUit I I 5 1m_ 101'5 1001's PULSE DURATION T, MOUNT @L..".,=\i" IOms 1 2 5 10 20 50 100 200 500 1000 CYCLES AT 60 Hz SINE WAVE Reverse·Recovery Circuit 10 II 5011 + -=-=- 25 Vdc (APPROX.) III NOTE] OSCILLOSCOPE NOTEI = NOTES: 1. Oscilloscope: Rise time :s:; 3ns; input impedance 500. 2. Pulse Generator: Rise time ~ 8ns; source impedance 100. 3. Current viewing resistor, non-inductive, coaxial recommended. = UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326·6509 • TELEX 95-1064 . 6-91 PRINTED IN U.S.A. II RECTIFIERS UES1304-UES1306 High Efficiency, 5A FEATURES· • Very Low Forward Voltage (1.15V) • Very Fast Recovery Times (50nSec) • Small Size • High Surge DESCRIPTION The UESl304 series is specifically designed for operation in power switching circuits operating at frequencies of at least 20 KHz. ABSOLUTE MAXIMUM RATINGS . Peak Inverse Voltage, UES1304 ................... . .........................................................................200V Peak Inverse Voltage, UES1305 ... . .........................................................................300V Peak Inverse Voltage, UES1306 ................... . .........................................................................400V Maximum Average D.C. Output Current, 10 @ TA 25'C (Free Air) ......... .........................................................................................3A @ TL = SO'C, L = %" ................................................................................................................ 5A Surge Current, 8.3mSec . .. ..... .......... ........ ........................................................... ..70A Thermal Resistance @ L - %" .... ...................................................... 20'C/W Operating and Storage Temperature Range ................... -55'C to +150'C = MECHANICAL SPECIFICATIONS UES1304·1306 ~ .1lS"TYP. 2.9mm BODYB rn W - L..t--t-"lJ'b::d=~--.L-----+---.t_ i l.toS"TYP. I .975" MIN. 24.8mm I 1 2.7mm MAX. r-------.300"7.62mm 1------2.:.~::;'.------'i 4/79 (Rev. 1) 6-92 ~UNITRDDE UES1304-UES1306 ELECTRICAL SPECIFICATIONS Type PIV UES1304 UES130S UES1306 200V 300V 400V Maximum Reverse Current fREe Reverse Recovery T J =2S'C TJ = 100'C @ PIV, T J = 2S'C T J =100'C Time· 1.2SV @3A tp 300"S 1.15V @3A tp 300"S 2O"A SOOpA SOnS = * Measured in circuit IF- = O.SA, IR = lA, Maximum Maximum Forward Voltage = = D.25A .. Peak Output Current vs. Lead Temperature Output Current vs. Lead Temperature 20 ~ -.......... "" g >- zUJ T, '\ g: I L :::: \ ::J ~8" >- ::J 0- >- ::J 0 \ '""" UJ 0- I \ o 50 TL - 75 100 12 () \ 25 16 125 > 150 LEAD TEMPERATURE ('C) llO 70 T, - LEAD TEMPERATURE ('C) Typical Reverse Current vs. Reverse Voltage Typical Forward Current vs. Forward Voltage rf 10K 100 I :! 0 >- z UJ a: a: :::> , 1 () o a: ~ a: oLL _~ 0 1 I ~ I'~'I IJ J.... a: 100-' a: I :::> tr ~':{~~/lCJ ,1/.§ w '"ffi 100'C I tJ III If! V 125"C UJ I 10 iiia: -~ V 00 1 0002040608101214161.82 .... 0 1 V, - FORWARD VOLTAGE IV) UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON. MA 02173 • TEL. (617) 861·6540 TWX (710) 326-6509 • TELEX 95-1064 ... Z 01 V K I- 20 V. - 6-93 40 l- 60 n I 80 100 120 140 160 180 REVERSE VOLTAGE (% OF PIV) PRINTED IN U.S.A. UES1304-UES1306 Output Current vs Ambient Temperature 3 I~r--. 3: 2.5 II: II: :;, (,J 1.5 II. 0 I o 25 f'-, 80 '" r-.... ~ ""''~" 40 ...o 1" ~ '1'20 T. MOUNT @L.enath= ..•· 'fi:::: I t- pr,nj CIrcUIt 1\ .5 1"- "'60 \ :;, _0 "Z "l\. "\ .... zL&J .... .... :;, Multiple Surge Current VS. Duration 100 I 5 2 \ 10 20 50 100 200 500 1000 CYCLES AT 60 Hz SINE WAVE 50 7S 100 125 150 TA - AMBIENT TEMPERATURE ("C) Reverse-Recovery Circuit 50ll 10 \I + -=-=- 25 Vdc (APPROX.) III NOTE] OSCILLOSCOPE NOTEI = NOTES. 1. Oscilloscope: Rise time", 3n5; Input impedance = SOIl. 2. Pulse Generator: Rise time ~ 8ns; source impedance 100. 3. Current viewing resistor, non.inductive, coaxial recommended. UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95-1064 6·94 PRINTED IN U.S.A. RECTIFIERS UES1401-UES1404 High Efficiency, 8A FEATURES DESCRIPTION • • • • • • The UES1401 Series, in a plastic package similar to the TO·220, is specifically designed for operation in power switching circuits to frequencies in excess of 100kHz. The very low forward voltage and very fast recovery time make them particularly suited for switching type power supplies. Very Low Forward Voltage Very Fast Recovery Times Economical, Convenient Plastic Package Low Thermal Resistance Mechanically Rugged PIV up to 200V ABSOLUTE MAXIMUM RATINGS Peak Inverse Voltage, UES1401 .................................................. 50V Peak Inverse Voltage, UES1402 ................................................. 100V Peak Inverse Voltage, UES1403 ................................................. 150V Peak Inverse Voltage, UES1404 ................................................. 200V Maximum Average D.C. Output Current @Te= 125°C (Note 1) .................... 8.0A @TA= 25°C .............................. 3.0A @ T A = 25°C (Note 2) ..................... 8.0A Non·Repetitive Sinusoidal Surge Current, 8.3ms .................................. 80A Thermal Resistance, Junction to Case, OJ-C ................................... 2.5°C/W Thermal Resistance, Junction to Ambient, OJ-A •••••••••••••••••••••••••••••••• 60°C/W Operating and Storage Temperature Range ........................... -55°C to +150°C Note 1. Above lOO°C use the tab for electrical connection. Note 2. Using Wakefield Type 295 heatsink with convection cooling. For more definitive data refer to the Output Current vs. Temperature Curves on this datasheet. MECHANICAL SPECIFICATIONS UESI401-1404 SEATING PLANE T0220AC INCHES A B --.l "I 'f ~ jJ D I~'I-L PIN 1. Cathode 2. Anode G Tab is connected to Cathode. N 11182 to-- C D F G H J K l N R S T MI. 0560 0380 0140 0020 0139 0090 - 0.015 0.500 0045 0190 0100 0080 0045 0230 MILLIMETERS MAX MA. MIN 0625 1423 1587 0420 966 1066 482 0190 356 114 0045 D51 0.147 3531 3733 279 0110 229 0250 635 0025 038 064 0562 1270 1427 177 0070 114 0210 483 533 2.54 304 0120 204 292 0115 139 0055 114 0270 585 6.85 6-95 - ~UNITRDDE UES1401 UES1402 UES1403 UES1404 ELECTRICAL SPECIFICATIONS Maximum Forward Voltage @ Type PIV UES1401 UES1402 UES1403 UES1404 50V 100V 150V 200V TJ ·Measured in circuit I, =25·C 0.9V@4A 0.975 @ SA . tp = 300JlS TJ Maximum Reverse Current @PIV = 100·C 0.SV@4A 0.S95 @ SA TJ =25·C TJ = 100·C Maximum Reverse Recovery Time* Typical Forward Recovery Voltage @ lA t, =Sns 35ns 1.4V 150JlA 150JlA 150JlA 500JlA 5JlA =O.5A, IR = l.OA, IREe =O.2SA Output Current vs Temperature Peak Output Current vs Case Temperature 26 g 10 f - - I - - I - 22 f- t5 '"'" $ :::l U f:::l I- Z 0.. "''" f:::l I 0.. '"c.> 18 14 0 :::l ~ '" 10 1 6 140 OL-_L-_L-_L-_L-_L-~ o 25 50 75 100 125 TEMPERATURE ('C) 150 Tc - CASE TEMPERATURE ('C) Typical Forward Current vs Forward Voltage 100 .01 50 .02 W?rA/ 10 $ I- Z '"c.> ::> I -~ .5 .2 .1 .05 .01 .1 .2 ~./II 1 f-+-+,-ItI1J /0...'" /1 J..' I ~~ I-t"lt J l- .. UJ 0: 0: V :::J I 10 _" 20 +-H-++-1 III1 r- r~ U I- ~ lJ:1!1 1000 ~ TJ _+12S'C 120 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.01.11.21.3 V,-VOLTAGE(V) TJ _ +75'C 200 100 I UNITROOE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1.064 I- !;; e-:~/~f{J,~+-t--H-+"" II .02 J,.o1 TJ=j'C 20 "''" Typical Reverse Current vs Voltage i II I I 100 eo 60 40 20 VOLTAGE IN % OF PIV 6-96 PRINTED IN U.S.A. UES1401 UES1402 UES1403 UES1404 Multiple Surge Current vs Duration Forward Pulse Current ys Duration 10,000 5,000 1,000 i£ r--. r---. I I ! ~ I ";::z Duration for Non-Repetitive Pulse ........... 500 >- W 0: w I Peak Half Sine Current vs. Z ~ u 100 . . . r-- r--. 100 80 « 0: " 60 w "OJ 0: "-..... 40 (fl " ~ "~ u. r- 0 50 20 '# (fl ..J OJ Q. --- 10 .5 1ps 50 lOps 1ps 1 2 lOOps 1ms lOms 10 20 50 100 200 500 1000 CYCLES AT 60 Hz SINE WAVE PULSE DURATION Thermal Impedance vs Pulse Width Reverse-Recovery Circuit 500 100 2.5 1.0 V .... .5 j .05 + 1--'1--' l- ::::: 25Vdc (APPROX.) 10 NOTE 3 i-" .25 .1 .... OSCILLOSCOPE NOTE 1 ""V /~ .01.02 .05.1 .2 .5 1 2 5 10 20 50100200 NOTES: 1. Oscilloscope: Rise time :S 3n5; input impedance = 500. 2. Pulse Generator: Rise time S 8ns; source impedance lOn . 3. Current viewing resistor. non-inductive. coaxial recommended. 1000 t, - PULSE WIDTH (ms) UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 6-97 PRINTED IN U.S.A. • RECTIFIERS UES1501 UES1502 UES1503 UES1504 High Efficiency, 16A FEATURES • • • • • DESCRIPTION The UES1500 Series, in the economical, Very Low Forward Voltage Very Fast Recovery Times Economical, Convenient TO-220 Package Low Thermal Resistance Mechanically Rugged convenient TO·220 package, is specifically designed for operation in power switchi ng . circuits to frequencies in excess of 100kHz. The very low forward voltage and very fast recovery time make them particularly suited for switching type power supplies. ABSOLUTE MAXIMUM RATINGS Peak Inverse Voltage, UES150l ................................................. 50V Peak Inverse Voltage, UES1502 ................................................ lOOV Peak Inverse Voltage, UES1503 ................................................ 150V Peak Inverse Voltage, UES1504 ................................................ 200V Maximum Average D.C. Output Current @Tc = 100°C ........................... 16A @ T. = 25°C ........................... 3.3A @ T. = 25°C (Note 1) ................. lO.OA Non·Repetitive Sinusoidal Surge Current, 8.3ms ................................. 300A Thermal Resistance, Junction to Case, 8...., .................................. 1.5°C/W Thermal Resistance, Junction to Ambient, 8J-. • •••••••••••••••••••••••••••••• 60°C/W Operating and Storage Temperature ................................ -55°C to +150°C Nota: 1. Using Wakefield Type 295 heatsink with convection cooling. For more definitive data refer to the Output Current vs Temperature Curve on this data sheet. MECHANICAL SPECIFICATIONS UES1501-UESl504 • A b B C 0 D~i H r~ H J SECTA·A ~J K jJ ~ 8..:.1: I--GL 1 o I N ...... 3/83 F G PIN 1. Calhode PIN 2. Anode Tab is connecled to Cathode. L N R S T TO-220AC INCHES MILLIMETERS MIN MAX IIIN 0560 0625 14.23 1587 0380 0420 9.66 1066 0140 0.190 356 482 0020 0045 051 114 0139 0.147 3.531 3733 0090 0110 22. 27. 0250 635 0015 0025 038 064 0500 0562 1270 1427 0045 0070 114 177 0190 0210 483 533 0100 0120 254 304 0080 0115 204 292 139 . 0045 0.055 114 0230 0270 585 685 "" 6-98 ~UNITRDDE UES1501 UES1502 UES1503 UES1504 ELECTRICAL SPECIFICATIONS Maximum Forward Voltage Type PIV =25·C TJ 50V lOOV 150V 200V UES1501 UES1502 UES1503 UES1504 TJ = lOO·C .975V@ 16A .S95V @ 16A !.lOV @ 32A l.OV @ 32A TJ Recovery Time· =25·C TJ = lOO·C SOOpA lOpA 50 '/v ~~ i 16 I- zOJ cr cr :J 14 20 G: "/ +150C>C 12 g U Gl I- +125°C 10 Z 10 +100·e +25·e -50·e - OJ tl :J U OJ I -" cr . .. '"cr h~ / I > I -" 0.5 .3 .4 Typical Reverse Current vs Voltage ~ z 200 /' cr cr :J u 100 50 /' IOJ - A lZS·C"",,- J OJ cr .6 .7 .8 .9 Square Pulse Current vs Duration for Non-Repetitive "",Pulse g 1,000 ~ I- ~ cr cr ::> .......... 1"-, 500 u 1"- ~ 5 - .!!i 0.2 0.1 1........... OJ 10 0.5 1.0 l.l 1.2 VOLTAGE (V) I"-f".- ~f-'" 'l.f> 0.. 100 50 100 10 120 .lpS .5 50 IpS lOOpS 1m. lOms % OF PIV PULSE DURATION UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95·1064 6·99 PRINTED IN !-l.S A UES1501 Multiple Surp Current vs Duration 100 80 "z~ ...a: \ ~ 60 l;'! :0 ...'"0 40 '\ V$ Pulse Width 2.5 :i d ~ ...e..-u r- z ~ ~ ill 0.5 '"a: 0.25 ... '":I: ~I- f-f- VI-" V l- I .:t" 50 100 200 I..- ::;; "r--t- 20 10 20 I-'" 1.0 « Cl oF. 1 2 UES1502 UES1503 UES1504 Thermal Impedance l./ 0.1 II V .05 .01 02 .05.1 .2 500 1000 CYCLES AT 60 Hz SINE WAVE .5 1 2 tp - 5 10 20 50 100200 1000 PULSE WIDTH (ms) Reverse·Recovery Circuit lOll 501l + - ::: 25Vdc (APPROX.) III NOTE 3 OSCILLOSCOPE NOTE 1 NOTES: 1. Oscilloscope: Rise time $ 3ns; input impedance = 500. 2. Pulse Generator: Rise time S 8ns; source impedance IOn. 3. Current viewing resistor, non-inductive, coaxial recommended. UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95·1064 6·100 PRINTED IN U.S.A. RECTIFIERS UES2401-UES2404 High Efficiency, 16A Center-Tap FEATURES DESCRIPTION • Very Low Forward Voltage • Very Fast Recovery Times • Economical, Convenient TO·220AB Package • Low Thermal Resistance • Mechanically Rugged • PIV up to 200V The UES2401 Series in the economical, convenient TO·220AB package, is specifically designed for operation in power switching circuits to frequencies in excess of 100kHz. The series combines two high efficiency devices into one package, simplifying installation, reducing heatsink requirements and the need to purchase matched components. ABSOLUTE MAXIMUM RATINGS Peak Inverse Voltage, UES2401 .................................................. 50V Peak Inverse Voltage, UES2402 ................................................. lOOV Peak Inverse Voltage, UES2403 ................................................. 150V Peak Inverse Voltage, UES2404 ................................................. 200V Maximum Average D.C. Output Current @ Te = 125°C (Note 1) .................... 16A @ T. =25°C ............................... 3A @ T. = 25°C (Note 2) ..................... lOA Non·Repetitive Sinusoidal Surge Current, 8.3ms .................................. 80A Thermal Resistance, Junction to Case, 8J -e ................................. 1.75°C/W Thermal Resistance, Junction to Ambient, 8J-' ................................ 60°C/W Operating and Storage Temperature Range ........................... -55°C to +150°C Note 1. Above 8A use the tab for electrical connection. Note 2. Using Wakefield Type 295 heatsink with convection cooling. For more definitive data refer to the Output Current vs. Temperature Curves on this datasheet. MECHANICAL SPECIFICATIONS UES2401·2404 SEATING PLANE A B C - I'~ Pin 1 D i Pin 2 & Tab 14. Pin3 F G H J K L N Q R S T 11/82 INCHES MI. MAX 0560 0625 0380 0420 0140 0190 0020 0045 0139 0147 0090 0110 0250 0015 0025 0500 0562 0045 0070 0190 0210 0100 0120 0080 0115 0045 0055 0230 0270 - 6·101 TO·220AB MILLIMETERS MI. MAX 1423 1587 966 10.66 482 356 051 II. 3531 3.733 229 279 635 038 06. 12.70 1427 II. 177 483 533 25. 304 20. 292 II. 139 685 585 ~UNITRODE .. UES2401 UES2402 UES2403 UES2404 ELECTRICAL SPECIFICATIONS Maximum Forward Voltage @ Type PIV UES2401 UES2402 UES2403 UES2404 50V lOOV 150V 200V TJ :.. =25°C 0.9V@4A 0.975@ BA tp =300ps TJ Maximum Reverse Current @PIV = lOO°C = 25°C TJ 0.BV@4A 0.B95@ BA TJ = 100°C Maximum Reverse Recovery Time* Typical Forward Recovery Voltage @lA t, =Bns 35ns 1.4V 150pA 150pA 150/lA 500/lA 5pA ·Measured in circuit IF = O.5A, I. = l.OA, IREe = O.25A Output Current vs Temperature Peak Output Current vs Case Temperature 18 16 . ~ 14 Z 12 ::> 10 I 8 '"a:a: !Z ~ '":::J '"~ 14r-----t-~~r-~~~~~~_4~ !:io (.) -~ 18~~~t-~~~~~r-~--t-\---1 ~ 10~----+-----~--~r_~~~~~ I 1 6 ~----+_----~----r_--~t-'I~++l 110 120 130 140 150 T, - CASE TEMPERATURE (oC) Typical Forward Current vs Forward Voltage 100 50 i.dI~ ~ .... 20 10 .. ~ "' (.) I -~ .5 .2 .1 .01 =-'SOOC .1 ~ ... z r<~ ~iJ // I I y.. 5:p 1/ II 10..... 'r-- l-J--2S J- c. o - UJ 0: 0: ...... V :0 'I CJ 'r--j ,-' I .2 /1/ oCJ y.. IIAJ I I .02 r-~ ~ ~II 1-IS .05 .02 .. ~ I/V' A z a: a: ::> ~ Typical Reverse Current vs Voltage 10 _"" 20 I- I ...' 100 I 200 ill I .01 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.01.11.21.3 1000 ~ (f 120 ~JlrIc I' 1~10r~ T - ~ =+125°C ( I I I I 100 80 60 40 20 VOLTAGE IN % OF PIV VF-VOLTAGE(V) UNITRODE CORPORATION ° 5 FORBES ROAD LEXINGTON, MA 02173 ° TEL. (617) 861-6540 TWX (710) 326·6509 ° TELEX 95·1064 6·102 PRINTED IN U.S.A. UES2401 UES2402 UES2403 UES2404 Multiple Surge Current vs Duration Forward Pulse Current vs Duration 10,000 i'-.... t-- ~ 1,000 5: r I I 5,000 I II:: 100 o « II:: "'" r---... t-- r--..... Z "' !5 ";::z I Peak Half Sine cu;re-;ft vs, Duration for Non-Repetitive Pulse I"'--... 500 I- r 1 100 "'" i'.... 60 "' l'.. "'~ II:: ::> '".... 40 -r-.- ~ 0 so "''" :::> 80 # 20 ...J Q, 10 ,5 .lps 5 1 2 50 10,.,5 lps lOOps 1mo 10 20 50 100 200 500 1000 CYCLES AT 60 Hz SINE WAVE lOms PULSE DURATION Reverse-Recovery Circuit Thermal Impedance vs Pulse Width _ ~ I,..oj....-j... 1.0 "''-' ~ .4 / ,2 .1 i!: I J .04 VV +"'" + :::: ~io"" -' « ~ Ion 2,0 E ~ ~ son 25Vdc (APPROX.) In V NOTE 3 V OSCI LLOSCOPE NOTE 1 =NOTES: ,02 •01.02 .05.1.2 .5 1 2 1. Oscilloscope: Rise time :5 3n5; input impedance = 500. 2. Pulse Generator: Rise time :5 8ns; source Impedance lOn . 5 10 20 50100200 1000 3. Current Viewing resistor, non-inductive, coaxial recommended. t, - PULSE WIDTH (mo) UNITRODE CORPORATION' 5 FORBES ROAD LEXI NGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 6-103 PRINTED IN U.S.A. II RECTIFIERS UES2601-U ES2603 High Efficiency, 30A Center-Tap FEATURES • Very Low Forward Voltage • Very Fast Switching Speed • Convenient Package • High Surge • Low Thermal Resistance • Mechanically Rugged • Both Polarities Available DESCRIPTION This series combines two high efficiency devices into one package, simplifying installation, reducing heat sink requirements and the need to purchase matched components. ABSOLUTE MAXIMUM RATINGS Peak Inverse Voltage, UES2601 Peak Inverse Voltage, UES2602 Peak Inverse Voltage, UES2603 . 100'C . Maximum Average D.C. Output Current at Tc Non-Repetitive Sinusoidal Surge Current 8.3 ms Thermal Resistance, Junction to Case Operating and Storage Temperature Range ........ . .......... SOV .......... looV .. .... lSOV .. ..... 30A ........ 4ooA = ....... l'C/W -55'C to +175'C POWER CYCLING These devices possess the unique ability to pass many thous,mds of cycles of a stress test designed to evaluate the integrity of the bonding systems used in the construction of power rectifiers. In this stress test, the case of the device is not heat sunk. Full rated forward current is supplied to force a case temperature increase at least 75'C, at which time, the current is removed and the case allowed to cool. The cycle is repeated a minimum of 5,000 times to simulate equipment being turned on and off. Extended power cycling tests demonstrate a product capability in excess of 25,000 cycles. SWITCHING CHARACTERISTICS The switching times of these ultra-fast rectifiers increase relatively little, with temperature or at different currents. Even in severe applications, such as catch diodes for switching regulators and output rectifiers for high frequency square wave inverters, these devices switch many times faster than the fastest associated transistors. Thus, the stresses on and powers dissipated in the switching transistors are substantially less than when using other rectifiers. MECHANICAL SPECIFICATIONS • POSITIVE OUTPUT ~ I 14 • • NEGATIVE OUT!"UT '4 1~, • CASE CASE F ~iJE UES2601-UES2603 A B M ANODE 1 G I ~.t..H I I i" J-~ C D 7 ANODE 2 C D E F G L H J K L M ins. .875 MAX. . 135 MAX. .250-.450 .312 MIN. .038-.043 DIA. . 188 MAX. RAD. 1.177-1.197 655- 675 .205-.225 .420-.440 .525 MAX. RAD. .151-.161 DIA. TO-204AA (TO-3) mm. 22.23 MAX . 3.43 MAX . 6.35-1143 7.92 MIN . 0.97-1.09 DIA. 4.78 MAX. RAD . 29.90-30.40 16.64-17.15 5.21-5.72 10.67-11.18 13.34 MAX. RAD . 3.84-4.09 DIA. Not.: Standard polarity is positive output. For reverse polarity (negative output) add suffix uR", ie. UES2601R. 6-104 ~UNITRDDE UES2601- UES2603 ELECTRICAL SPECIFICATIONS Type PIV UES2601 UES2602 UES2603 SOV lOOV 150V * Measured in circuit 'F = O.SA, 'R = Maximum Maximum Forward Voltage Reverse Current @ @ Tc = 2S·C Tc = 12S·C .930V .825V @ tp lA, 'REe 15A 300I'S = :> 20 4mA 35nS = O.25A Peak Output Current vs. case Temperature 50 ,---.,-....----r.......--,--,r--,.,...--., os 40 t---"'ot-----p.~=~---\~H-_t I- 15 a'"'" ~ u I- :> 0.. I- :> 0 2OI'A = ~ IZ W 0: Time· I- ~ a: Tc= 12S·C 15A 300I'S Output Current vs. Case Temperature 30 Reverse Recovery Tc = 25°C @ tp Maximum 10 :> "- I- ;:) ~ 20 t - - - i - .'\ I _0 100 Tc - 30t---+----p~-~~~_\r-t__t I- ~ J 10 i---t----+---t---t-'I['IH---t 12S 150 175 CASE TEMPERATURE (·C) Tc - CASE TEMPERATURE (·C) Forward Current vs. Forward Voltage 50 TJ = +150·C 30 ~ I- z w /V 10 V a: a: J ::> u II c a: II ... I -" .5 .2 I I-TJ - +75'C I- TJ = +12S·C ,1 z .05 .1 :> .2 u UJ a: a: w a: w '" ~ a: - - - TYPICAL VF - - - - = MAXIMUM V -- I .8 1.0 FORWARD VOLTAGE (V) .6 V, - .5 12 10 20 50 1.2 l - I-- r- :::Tr= J ".. I '/ .4 J I- ~ /1 / II fZ t:::: I ....l--±: T -+2S·C .005 4: .01 oS .02 / J ~ a: 0 Ii" ~ ..- \. 20 Typical Reverse Current vs. Reverse Voltage .001 .002 li II 11 +l00·C TJ =+125·C """ -T J f- I __ V.1 = +150·C .iL .L 130 120 110 100 90 80 70 60 50 40 30 20 10 V, - REVERSE VOLTAGE (% OF PIV) UNITRODE CORPORATION· 5 FORBES ROAD LEX INGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326·6509 • TELEX 9S·1064 6·105 PRINTED IN U.S.A. II UES2601- UES2603 Maximum Forward Surge vs. Number of Cycles 400 ~ 300 t ~ '" ":;'" IV\.. 1/ « ~ II: uJ J: l- "'- . . . .1'---.. I ....~ - ~ICYC1E N- V .1 ...J :; 50 100 10 20 CYCLES OF 60 Hz SINEWAVE / .2 Q. '" I V/ « ~ 200 100 i.,.-V 1-1- .5 u \oJ -~ Thermal Impedance vs. Pulse Width 1.0 z l;: a'"'" ~ -. .05 V .02 .01 .01.02 .05.1 .2 tp - .5 1 2 5 10 20 50100200 PULSE WIDTH (mS) 1000 200 Reverse-Recovery Circuit Ion SOP. + _ -=- 25Vdc (APPROX.) III NOTE 3 OSCILLOSCOPE NOTE 1 NOTES: 1. Oscilloscope: Rise time ~ 3nsj input impedance 500. 2. Pulse Generator: Rise time ~ 8ns; source impedance 100. 3. Current viewing resistor, non-inductive, coaxial recommended. = UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 6-106 PRINTED IN U.S.A. UES2604-U ES2606 RECTIFIERS High Efficiency, 30A Center-Tap FEATURES • Very Low Forward Voltage (1.15V) • Very Fast Recovery Times (50nSec) • Low Profile Package • High Surge Capability • Low Thermal Resistance • Mechanically Rugged • Both Polarities Available OESCRIPTION The UES2604 series is specifically designed for operation in power switching circuits operating at frequencies of at least 20 KHz. This series combines two high efficiency devices into one package, simplifying installation, reducing heat sink requirements and the need to purchase matched components. ABSOLUTE MAXIMUM RATINGS Peak Inverse Voltage, UES2604 ................................................................................................. 200V Peak Inverse Voltage, UES2605 ................................................................................................... 300V Peak Inverse Voltage, UES2606 .................................................................................................400V Maximum Average D.C. Output Current @ Tc 100'C ...................... .... 30A Surge Current, 8.3mSec ................................................................................................................ 300A Thermal Resistance, Junction to Case .................................... .. ...... 1'C/W Operating and Storage Temperature Range ............................................... -55'C to +150'C = SWITCHING CHARACTERISTICS The switching times of these ultra-fast rectifiers increase relatively little, with temperature or at different currents. Even in severe applications, such as catch diodes for switching regulators and output rectifiers for high frequency square wave inverters, these devices switch many times faster than the fastest associated transistors. Thus, the stresses on and powers dissipated in the switching transistors are substantially less than when using other rectifiers. POWER CYCLING These devices possess the unique ability to pass many thousands of cycles of a stress test designed to evaluate the integrity of the bonding systems used in the construction of power rectifiers. In this stress test, the case of the device is not heat sunk. Full rated forward current is supplied to force a case temperature increase at least 75'C, at which time, the current is removed and the case allowed to cool. The cycle is repeated a minimum of 5,000 times to simulate equipment being turned on and off. Extended power cycling tests demonstrate a product capability in excess of 25,000 cycles. MECHANICAL SPECIFICATIONS • POSITIVE OUTPUT .1 I 14 • • NEGATIVE OUTPUT ''II·' CASE CASE F H J A B M I ~.J:1 ~WE I' C D UES2604-U ES2606 • e J~~ "I< ANOOE 1 ANODE 2 L C 0 E F G H J K L M Ins. .875 MAX. 135 MAX 250-.450 .312 MIN. .038-.043 OIA. . 188 MAX. RAO 1.177-1.197 .655- 675 205-.225 .420- 440 525 MAX RAO 151 161DIA. TO-204AA (TO·3) mm. 22.23 MAX. 3.43 MAX. 635-11.43 7.92 MIN . 0.97-1.09 OIA. 4.78 MAX. RAO . 29.90 30.40 16.64-17.15 521-5.72 10.67-11.18 13 34 MAX. RAD. 3.84-4.09 DIA. Note: Standard polarity is positive output. For reverse polarity (negative output) add suffix URn, ie. UES2604R. 4/79 (Rev. 1) 6-107 ~UNITRDDE • UES2604·UES2606 ELECTRICAL SPECIFICATIONS, PER LEG Type Maximum Forward Voltage PIV UES2604 UES2605 UES2606 200V 300V 400V "'Measured in circuit Tc = 12S'C Tc =2S'C Tc = 12S'C Time* 1.25V @ l5A tp =3001'5 1.15V @15A tp -;; 3001'5 5OI'A lOmA 50nS = .5A,IR =lA, I REC = .25A IF t:::::--.. 3D Reverse Recovery Tc= 2S'C Peak Output Current vs. Case Temperature Output Current vs. Case Temperature ~ Maximum Maximum Reverse Current t- ~ Z '"0:0: ::> 20 <.> t- ::> 0.. t- ::> 10 0 I '" is 40 ~"""-+-~.-+-'~ .... i!i0: "\ 0: ::J U ~ .... ::J 0.. t:; ~ \ 0 20~--+---+---~~~~r-~ .:5 0.. \ .2 I 10~--+---+---+---~l---1 1 100 110 120 130 140 150 Tc - CASE TEMPERATURE ('C) 110 70 130 T, - CASE TEMPERATURE ('C) Typical Reverse Current vs. Reverse Voltage Forward Current vs. Forward Voltage lOOK 100 50 ;/ ~ ~ ?: g2D t- 10 ~ 5 z / V/ 0: ::> u ~ 1 ~ .5 0: 2 .2 I .1 .05 .02 .01 ! // ~ V II V / / I !z '"a:0: V ::> <.> '"enffi r--.CJ .CJ .CJ f-.~/ / v r- 'f..$ 'f..~ 'f..tIl1- Ilit II t-"y'" I II II II "/-,,.:'1 Ii I-J""~ - If KIf" I' If V" I V 100 10 L- ...... II 125'C ...... /l 1-'id000C I ..!' - 2~ / i-'"" 1/ o 10 20 30 40 50 60 70 80 90 100 110 120 130140150 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 1.11.21.31.41.5 V, - FORWARD VOLTAGE IV) UNITRODE CORPORATION. 5 FORBE.S ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326·6509 • TELEX 95-1064 - 10K i;j a: 1V Y Y I I V, - 6·108 REVERSE VOLTAGE (% OF PIV) PRINTED IN U.S.A,' . UES2604·UES2606 Maximum Forward Surge vs. Number of Cycles Thermal Impedance ~ 1.0 UJ U .5 vs. Pulse Width [.....:- i--i-- P 300 3: I- ...a: Z 200 a: ;;) (J I J 100 '" '" Z o ,1CiCLE .1 ...J « ....z UJ 0: 0: ~= 'Is""'- :::l ........... 1 :::l u UJ ;;: Ei UJ 0: UJ ~ 1 ~ I 0: UJ ;;; ~~ = Vs" ~'" t:; ---I--... I ~ .2 L " '""" ."""'" ~ ............. 25 1 AMP SERIES ~ 'i. UJ 10" NVT 10" lOIS 10 '4 10 '4 10" 10 '6 lOIS 10 '4 10 '4 Maximum Current vs Lead Temperature 2 AMP SERIES L:::: Va" ~ z .... Maximum Radiation Tolerance 100'C 25'C "" .............. -......-.. _0 25 50 75 100 125 150 175 TL - LEAD TEMPERATURE ('C) 50 TL - ~~ ~ ~ 75 100 125 150 175 LEAD TEMPERATURE ('C) Allowable Forward Surge vs Number of Cycles 100 "z;::« 0: 80 UJ 'en" 0: :::l 60 ";;: 40 """ I III Turret 1" centers Turret 1/2" centers ~ '-'::: ~ UJ Printed Circuit r-r-:::::: ::f[ U UJ 0.. ...en ALL SERIES 20 0 If. 10 100 CYCLES AT 60 Hz HALF SINE WAVE UNITRDDE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326·6509 • TELEX 95·1064 6·111 1,000 PRINTED IN U.S.A URI0S-UR20S URllO-UR21O URllS-UR21S UR120-UR220 UR12S-UR22S Typical Reverse Current vs PlY :< .05 .1 I- .2 3 ...z '"'" :::l ... ...>'" ... '" I ALL SERIES .01 .02 Typical Forward Current vs Forward Voltage 10 ~'C ~C .5 10 2 AMP SERIES ~ V 10 20 75'C ~.05 ~ LL. V 200 ~ 125'C 500 1,000 .01 .005 100 II .001 50 % OF PIV 0: .2 a: a II ~ I- ...a: Z 1,000 ALL SERIES ~ a: .02 I / / .002 II .8 1 1.2 1.4 il I I I II .001 .6 VOLTAGE (V) / 11 11 2 ~ .4 • V, - VOLTAGE (V) 1 1.2 1.4 Reverse Pulse Power vs Pulse Duration 100,000 ALL SERIES Square Pulse Current vs Duration for Non-Repetitive Pu Ise (8.3 ms sine wave equivalent to 3 ms squaret wave) r--. ~ <.> (8.3 ms sine wave equivalent to 3 ms square wave) F t-- ... ...0... 1,000 ...:::l 100 -.... III ...J 100 ...:::l 10 Square Pulse Current vs Duration for Non-Repetitive Pulse 10,000 a: ~ .1~s II .005 .4 a: III ...J "~KJ5?- t-- F"i-"i-' 1 111 1 o V, - :::l ... :~;tff .2 .1 .... 01 Forward Pulse Current vs Pulse Duration 10,000 .5 ~ .05 II lL / .002 ISO ... II I I II I !/',; V/ 1LL lL ~ !Z '/..f: ;; "u/;u jl; ~7- .1 o'" .02 50 100 ~~ lLlLIL .5 I- z... a 0 1 AMP SERIES VV'I VII '" a: .2 III Typical Forward Current vs Forward Voltage llill llill lill -.... 10 bs lO~s 100",5 Ims 10ms PULSE DURATION (SECONDS) UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 6-112 lOOns ttlS 10~s 100.u5 Ims PULSE DURATION (SECONDS) lOms PRINTED IN U.S A USD320C USD335C USD345C DUAL POWER SCHOTTKY RECTIFIERS 60A Pk, 45V DESCRIPTION The USD300C series has two Schottky barriers arranged in a common cathode configuration and is ideally suited for a full wave output rectifier in low voltage switching power supplies. FEATURES • Very Low Forward Voltage • Low Recovered Charge • Rugged Package Design (TO-3) • High Efficiency for Low Voltage Supplies • 45V Blocking @ Rated Tlma, • 50V Repetitive Surge Voltage • Dual Schottky Rectifier in a Single Package ABSOLUTE MAXIMUM RATINGS (Total for USD300C Series) USD320C USD335C USD345C Average Rectified Forward Current, 10 @ Tc = lOO°C ......................................... 30A ........................ . ABSOLUTE MAXIMUM RATINGS (Per Diode) Working Peak Reverse Voltage VRWM' .................................... 20V ............. 35V ............. 45V .... . DC Blocking Voltage, VR ............................................... 20V ............. 35V ............. 45V .... . Peak Repetitive Surge Voltage, VRSM @ IRM ..........................•.. 24V ............. 42V ............. 54V .... . Average Rectified Forward Current, 10 ........................................ 30A in full wave configuration* ......... . Non-repetitive Peak Surge current (8.3 mS), IFSM ........................................................ 500A ..................... . Peak Reverse Transient Current, IRM ..................................................... 2A ...................... . Storage Temperature Range, T.tg • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • -55°C to +200°C.............. '" Peak Operating Junction Temperature, T, max' .••.•.•.•.•••••••••••••.••••••••••••.•••••.. 175°C .................... . Thermal Resistance, Junction to Case,R'Jc ............................................. 1.4°C/W ................... . • Each Anode Pin Limited to 18A Average. Package Capability 30A Average ELECTRICAL CHARACTERISTICS (TeASE =25°C) Symbol limit Units Maximum Instantaneous Reverse Current iR 10 50 mA mA Tc =25°C, VR =VRWM Tc = 125°C Pulse Width =400jl5 Duty Cycle = 1 percent Maximum Instantaneous Forward Voltage VF 0.57 0.66 0.60 V V V iF = lOA, Tc =25°C iF = 20A, Tc = 25°C iF =20A, Tc = 125°C Pulse Width =300jl5 Duty Cycle =1 percent Characteristic Ct 2000 pF VR =5.0V dv/dt 1000 v/jl5 VR=VRWM Capacitance Voltage Rate of Change Conditions MECHANICAL SPECIFICATIONS NOTE: Leads may be soldered to within 111," of base provided temperaturetime exposure is less than 260'C for 10 seconds. ANODE 2 • C A M B ANODE 1 ~~~L I I' H j G:J J-~ 0 14 I .ANODE 1 "K ANOOE 2 L C D E F G H J K L M ins. mm. 875 MAX. . 135 MAX. .250-.450 .312 MIN. .038- 043 DIA. .188 MAX. RAD. 1.177-1.197 655 .675 .205-.225 .420- 440 525 MAX. RAD .151-.161 DIA. 22.23 MAX. 3.43 MAX . 6.35-11.43 7.92 MIN. 0.97-1.09 DIA. 4.78 MAX. RAD . 29.90-30.40 16.64-17.15 5.21-5.72 10 67-11.18 1334 MAX RAD 384-4.09 DIA . Notes: All metal surfaces tin plated. 4/82 USD300C SERIES TO·204AA (T0·3) CASE (CATHODEI F ~ffu[ ~I 6-113 ~UNITRDDE III USD320C USD335C USQ345C Typical Reverse Current vs. Reverse Voltage Typical Forward Current vs. Forward Voltage I I L.... ~ I lJ -' 0, JJ 100 ,'l."i lOO I 1000 III VV - ~ ~~ -... If t:k V --6 ./ I 7~oC 1/ 0.2 ~ W~oc I II " ~ () 4 06 08 V / I i-""" '/ V ~" " I [) V, VDLTAGE(V) 01 o 20 40 60 80 100 120 % OfVR V".... Rating vs. Case Temperature 50 45 1 Ur D34 C 35 USD335C '20 USD320C n -50 25 50 75 100 125 ISO 175 Case Temperature eC) UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 86H540 TWX (710) 326-6509 • TELEX 95-1064 6-114 PRINTED IN U.S.A. POWER SCHOTTKY RECTIFIERS USD520 USD535 USD545 USD550 150 Amp Pk, Up to 45V FEATURES DESCRIPTION • • • • • • • • This series of Schottky barrier power rectifiers is ideally suited for output rectifiers and catch diodes in low voltage power supplies. The Unitrode high conductivity design, using a heavy copper top post and 4 point crimp, ensures cool thermal operation and low dynamic impedance. Rugged design absorbs stress that can damage glass-tometal seal during installation and use. Very Low Forward Voltage (O.6V at 60A, 125°C) Low Recovered Charge Rugged Package Design (00·5) High Efficiency for Low Voltage Supplies Low Thermal Resistance (0.8°C/W) High Surge Current (1000A) Low Reverse Current «50mA at rated VR at 125°C) Available with Flexible Top Lead ABSOLUTE MAXIMUM RATINGS USD520 USD550 USD545 USD535 Working Peak Reverse Voltage, VRWM .................. 20V ........... 35V ........... 45V ........... 50V DC Blocking Voltage, VR .............................. 20V ........... 35V ........... 45V ........... 50V Peak Repetitive Surge Voltage, VRSM @ IRM ............. 24V ........... 42V ........... 54V ........... 60V Peak Repetitive Forward Current (Rated VR, Square Wave, 20KHz, 50 percent Duty Cycle), IFRM ................................................... I50A (at Te 115°C) Average Rectified Forward Current, IFIAV) ............................................. 75A (at Te = 115°C) Non-repetitive Peak Surge Current (8.3mS), IFSM .........................................•...... , I000A Peak Reverse Transient Current, IRM ................................................................. 2A Storage Temperature Range, Tst. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -55° to +200'C Operating Junction Temperature, TJ ............................................................ +175°C Thermal Resistance Junction-to-Case, RB JC ••• _ ••••••••••••••••••• _ ••• _ ••••••••••••• _ ••••••• , •• 0.8°C/W = MECHANICAL SPECIFICATIONS ,... 0 B .""~ A .225 z 005 0 E .060 MIN. .156 ± .020 156 MIN FLAT .66701A MAX .090 MAX .677 ± .010 .375 MAX 140 MIN. DIA K 1.000 MAX. L 450 MAlt M .438'" .015 N 078 MAX. USD520 USD535 USD545 USD550 DO-5 5.72:t 0.13 1.52 MIN. 3.96'" 0.51 3.96 MIN FLAT 1694 OIA MAX 2.29 MAX . 17 20 ... 0.25 9.53 MAX . 3.56 MIN. OIA 2540 MAlt 11 43 MAX. 11.13::!: 0.38 1.98 MAX. Notes: 1. Cathode is stud. 2. All metal surfaces tin plated. 3. Maximum unlubricated stud tOrque: 30 inch pounds (35 kg. em). 4. Angular orientation of terminal is undefined. 6-115 4/82 ~UNITRDDE .. USD520·USD535 USD545 USD550 ELECTRICAL CHARACTERISTICS (TCASE = 25°C) Characteristic Symbol Limit USD550 20 (50) 20 (75) Maximum Instantaneous Reverse Current iF Maximum Instantaneous Forward Voltage VF 0.50 0.68 0.60 Flexible Top Lead Option VF (0.63) V Maximum Capacitance CI 4000 pF dvldt 1000 VipS Maximum Voltage Rate of Change Conditions Units USD545 VR = VRWM (Tc = 125°C) Pulse Width = 300ps, Duty Cycle = 1 percent mA iF = 1OA, Tc iF =60A, Tc iF =60A, Tc =25°C =25°C =25°C iF =60A, (Tc = 125°C) VR = 5.0V VR = rated V V V Typical Forward Current vs Forward Voltage Typical Reverse Current vs Reverse Voltage 1000 .~ 100 ~ a''0:""i 10 0: ::> 17 'C- ~ ~12,,'C 0: 1-75 C I ~ - <,100 V// g !Zw r=:=: 150' '-' 0 ::;.-- I ~lO.O A":--55'C ~ ~ J. 1 I .1 a l.0 0.1 .2 .3 .4 .5 .6 .7 .8 .9 l.0 125'C / - ~ 0: lSO'C - 0: 0: 25'C ,/ a 75'C I V,-FORWARO VOLTAGE (V) V ~l~2r;,oC m 10 - 175'C I I ~ ~ so 00 m 50 50 ~ V,-REVERSE VOLTAGE (% 01 VON.) Maximum Current vs Case Temperature 150 " " '\. \ r\. "'~ ~5 120 !:: .... .... z 0: "'''' '" 0: Q. 0: :J -= uc « '" Q. 0: « 50 - I;: ~ 0:. ~o - 40 \ 50% DUTY SQUARE WAVE 1 20 KHz = \ \ 100 \ 1\ ... 125 =0 \ ~ t-- v, = RATED v, \ 150 \ \ 175 Tc-CASE TEMPERATURE ('C) UNITRODE CORPORATION. 5 ~ORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6~ TWX (710) 326·6509 • TELEX 95-1064 PRINTED IN U.S.A. USD520 USD535 USD545 USD550 VR/MAXI Rating vs Case Temperature 60 50 USi550 45 USr45 40 35 ~ • USD535 30 Vl :; 0 > I 25 :: 20 us 520 ~ 15 10 -50 o -25 25 50 75 100 125 150 175 CASE TEMPERATURE ('C) MECHANICAL SPECIFICATIONS USD520F USD535F USD545F USD550F FLEXIBLE TOP LEAD (OPTIONAL) Add an "F" Suffix to Part Number. Standard JEDEC DO-5 Package @ I~TMl ~ N 08 FI."bl. I R iEbl C.ble7x95/36~ .Shrmkable Sleevmg l- Q I P jls M N P Q R S T INCHES .718 MAX. 4.50 t .250 .525 MAX. 675 t .035 .205 t 005 075 t .010 1.125 MAX 00·5 with Flexible Lead MILLIMETERS 18.24 MAX 114.3 t 6.35 13.23 MAX. 17.15 t 0.89 5.21 t 0.13 1.91 t 0.25 28.58 MAX. Covers Lead *To 125°C (Ambient) Note: Consult Factory for Non-standard Lead Lengths. 'UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 PRINTED IN U.S.A. 6·117 POWER SCHOTTKY RECTIFIERS USD545HR2 150A Pk, 45V FEATURES DESCRIPTION • • • • • • • • • The USD545 Schottky barrier power rectifier is ideally suited for output rectifiers and catch diodes in low voltage power supplies. Unitrode semiconductors are inherently high·reliability devices; however, for those users who want the ultimate assurance of reliability, we offer the USD545 Schottky with 100% HR·SH screening as described elsewhere within this data sheet. Very Low Forward (0.6V at 75A, 125°C) High Reverse Surge Voltage (60V) Low Recovered Charge Rugged Package Design (DO-5) High Efficiency for Low Voltage Supplies Low Thermal Resistance (0.8° CIW) High Surge Current (lOOOA) Low Reverse Current «50mA at rated VRat 125°C) High Reliability Screening ABSOLUTE MAXIMUM RATINGS Working Peak Reverse Voltage VWN ... ••••••••••••••••••••••••••••••••••••••••••••• 45V DC Blocking Voltage, VR ...................................•..................... 45V Peak Repetitive Transient Voltage, VRSM ........................................... 60V Peak Repetitive Forward Current (Rated VR, Square Wave, 20KHz, 50 percent Duty Cycle), IFR.................................. 150A (at Tc = 115°C) Average Rectified Forward Current, IFIAVI .......................... 75A (at Tc = 115°C) Non·repetitive Peak Surge Current (8.3mS), I FS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1000A Peak Reverse Surge Current, IRo. ••.••.•••.••..•.••••••.•.••.••.••••.•••••.••.•..•• 2A Storage Temperature Range, TsI••.••.•...•.....••.•..•••..•.•••..•.• -55°C to +200°C Operating Junction Temperature, Tj • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • +175°C Thermal Resistance Junction-to·Case, R9JC ••••••••••••••••••••••••••••••••••• 0.8°C/W MECHANICAL SPECIFICATIONS USD545HR2 B ~ 00-5 Ins. 0 225:t 005 'CC"~ \'4·28 UNF·2A 060 MIN C 0 E 156'" 020 156 MIN FLAT 572:!: 013 152 MIN. 3 96::!:: 0 51 090 MAX 396 MIN FLAT 16940lA MAX 229MAX 677 1720+025 66701A MAX + 010 .375 MAX 140 MIN OIA K 1000 MAX L 450 MAx 438:t 015 078 MAX 953 MAX. 356 MIN DIA 25.40 MAX 11 43 MAX 1113'" 0 38 1 98 MAX Nates, Cathode is stud. All meta' surfaces tin plated. Maximum unlubrlcated stud torque: 30 inch pounds (35 kg. cm). 1. 2. 3. 4. Angular orientation of terminal is undefined. OJ] 4/82 6-118 _UNITRDDE USD545HR2 ELECTRICAL CHARACTERISTICS =2S·C) (TCASE Symbol Characteristic Maximum Instantaneous Reverse Cu rre nt IR Maximum Instantaneous Forward Current VF Conditions mA VR=45V Tc = 25·C Tc = 125·C Tc = 150·C Pulse Width = 3OOl'S Duty Cycle = 1 percent V IF = 75A Tc = 25·C Tc = 125·C Tc = 150·C Pulse Width = 3OOl'S Duty Cycle = 1 percent VR =5V 0.70 0.60 0.55 Capacitance (1) Units 10 50 175 Voltage Rate of Change Reverse Energy Max. C, 4000 pF dvldt 1000 VII'S 2 ER III VR = 45V Duty Cycle A ~ 1 percent See Reverse Energy Circuit. v,,"'" vs Case Temperature Typical Reverse Current vs Reverse Voltage 50 00 1 45 0.02 0.0 5 40 o. 1 35 ~ f' 30 C> ~ o 25 ~ 20 0: 0.2 ~ 0.5 '"'"=>u I ./ L '".J: 5 ~ ~ / ~ ./ /' ", ~ 0 5 100 45 0 -55 -50 -25 0 25 50 75 100 125 150 40 35 ./ V125'C V- / / / 10 20 0 V'']; '\> /" ~~ > ~ 1 ./ V ~ I-- V "" 30 25 20 15 10 v, REVERSE VOLTAGE (% OFV""M) 175 CASE TEMPERATURE ('C) Typical Forward Current vs. Forward Voltage Peak Relletitive Forward Current 200 150 150 '" r\"'" ~g 120 '" <" ~f;i ... "'=> "'u 80 I;. 1~ "", 100 VR = 0 r\. E~ 0..0: r- V,= 45V 50% DUTY CYCLE r- SQUARE WAVE f = 20KHz \ 125 150 I 5: 1\ \ 100 "\. w a: a: 20 <.J 10 ::> 'i .!!' , ~ '"'"::> '-' ::> 0 - 5 ft5 'l' / 12S0C ~oC 10 100 40 60 80 % of V, (V) VS. Temperature 1.0 .8 .6 120 V, - VOLTAGE (V) Average Forward C4rrent VS. Temperature V. Rating 100% INFINITE HEATSINK with VRWM = RATED (T c reference) /' ~.V' \ FREE~ .......... (T" reference) I .~ ~ VRWM = RATED--- r\. 25 50 75 \ \ \\,\ Tc=--T. = - - - - 1 VA = 0 V_. ~\ \ / V, ,\ \ -....~ ~v_. \~ \ I~ \ 50 25 0 25 50 75 100 125 150 175 TEMPERATURE ('C) '\ 100 125 150 TEMPERATURE (OC) UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 86H540 TWX (710) 326·6509 • TELEX 95-1064 6-122 PRINTED IN U.S.A. DUAL POWER SCHOTTKY RECTIFIERS 12A Av, up to 45V USD620C USD635C USD640C USD645C FEATURES DESCRIPTION • • • • • The USD600C series of power Schottky rectifiers, in the industry standard TO-220 package, is specifically designed for operation in power switching circuits to frequencies in excess of 100 KHz. The series combines Schottky rectifiers in one convenient package; thus, simplifying installation, reduCing heatsink requirements and component parts count. Very Low Forward Voltage Reverse Transient Capability Economical Convenient Plastic Package Mechanically Rugged 45V Worki ng Voltage @ Rated T"m." ABSOLUTE MAXIMUM RATINGS (Per Diode Unless Otherwise Noted) USD620C USD635C USD640C USD645C Working Peak Reverse Voltage, VRWM .................................................... 20V ............. 35V ............. 40V ............ 45V .. .. DC Blocking Voltage, VR .................................................................... 20V ............. 35V ............. 40V ............ 45V .. .. Peak Repetitive Surge Voltage, VRSM @ IRM " .......... · ................................ 24V ....... _.. _.. 42V ............. 48V ............ 54V .. .. Average Rectified Forward Current@Tc= 115°C, 10* .... " ...................................................... 12A ................................ . Non-repetitive Peak Surge Current (8.3ms), IFSM .................................................................... 150A ................................ . Peak Reverse Transient Current, IRM .................................................................................... lA ............................... .. Operating Junction Temperature, T, ........... ...................................................................... 150°C .............................. . Storage Temperature Range, Ts.................................................. " ...... " .................... -55°C to +150·C ...................... .. Thermal Resistance, Junction to Case, ROJC ...................................................................... 3.0°C/W ............................ .. "'Full Wave Center-Tap; 10 ~AVt 20 KHz Square Wave ELECTRICAL CHARACTERISTICS (T CASE =25°C) (Per Diode) SYMBOL LIMIT UNITS Maximum Instantaneous Reverse Current CHARACTERISTIC iR 5 mA VR = VRWM Pulse Width = 400)15 Duty Cycle = 1 pe rcent Maximum Instantaneous Reverse Current iR 50 mA VR = VRWM Pulse Width = 400)15 Duty Cycle = 1 percent Tc = 125°C 0.55 0.65 V iF = 6A iF = 12A 0.48 0.60 V iF = 6A iF = 12A Maximum Instantaneous Forward Voltage VF Capacitance Voltage Rate of Change C. 1000 pF dv/dt 1000 V/)15 CONDITIONS I Tc = 125°C VR = 5V VR = VRWM MECHANICAL SPECIFICATIONS USD600C SERIES SEATING PLANE • 'M .... Pin 1 1 ... Pin 3 Pin2 & Tab A 0 c , 0 G H ,..... lUl ,0.51 35]1 1270 1.14 Q • S T .. ,." ,... 1.14 .OS .AX 10.16 0.140 '" 3,733 ... 2.19 L INCMIS MIN 15.'7 6.35 '.38 N 4/82 .'"' .... .... .......... ..... .13. ..... ". MILLIMETERI MA • M'N J • TO·220AB 1427 .77 ..... ..... ..... - 0.045 . .to 30. Q.100 I." 6.85 6-123 0.110 0.015 5.n 20' 0.110 0.045 0.147 ..... 0-045 0.210 0.512 0.010 0110 0.110 0.115 0.055 ono ~UNITRDDE .. USD620C USD635C USD640C USD645C Forward Current vs. Forward Voltage 100 100 MAXIMUM VF vs IF vs T:;: TYPICAL VF VS IF vs T - - W g ... as / <- -' ~ / 10 II: II: :0 U Cl II: .4f'/.,,'C '" ffi W?/ 1.0 .1 ~ MAXIMUM IR vs VR VS T- ~ .01 : I _2 20 .6 .8 \ \ :0 0.. FREE AIR (T A refere~Ce) ..:t::: h:- k o 25 50 VAWM = RATED 120 V. Vow. \ ,\ \ \\ Tc=--T.=---- , l' 1\ -50 -25 25 50 75 100 125 150 175 TEMPERATURE ('C) '" 75 Vow. 1 vR = 0 .E 100 1\ 1\ 8 o ~.V. (Tc reference) :0 i-- T= V. Rating vs. Temperature 100% INFINITE HEATSINK with VP,WM = RATED 10 I VS VOLTAGE (V) ... :0 0 VA 80 60 \ ... ... VS %ofV,(V) 14 / 40 1.0 Average Output Current ¥s. Temperature '"'"u TYPICAL hi .001 .4 v, - g as " I I I 12 '/.",<:, It:':'~<:' §i! ~<; '" ... 0.1 ~ ... '"'" '" /::,V 12"C ~'C S :0 U ./ I ~ ~ I- 10 ;z L II: l2 Reverse Current VS. Voltage ............ 100 ~ 125 ISO TEMPERATURE ('C) UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 6-124 PRINTED IN U,S.A. USD720 USD735 USD740 USD745 POWER SCHOTTKY RECTIFIERS 16A Pk, up to 45V FEATURES DESCRIPTION • • • • • The USD700 series of Schottky power rectifiers is ideally suited for output rectifiers and catch diodes in high frequency low voltage power supplies. Very Low Forward Voltage Reverse Transient Capability Economical Convenient Plastic Package Mechanically Rugged 45V Working Voltage @ Rated T"m." ABSOLUTE MAXIMUM RATINGS USD720 USD735 USD740 USD745 Working Peak Reverse Voltage, VRWM ...................................................... 20V ............. 35V ............. 40V ............. 45V .. DC Blocking Voltage, VR ...................................................................... 20V ............. 35V ............. 40V ............. 45V .. Peak Repetitive Surge Voltage, VR8M @ IRM ............................................... 24V ............ 42V ........... ,. 48V ............ 54V .. Average Rectified Forward Current @ Tc = U5°C, IF (AV) ............................................................. 8A ................................ . Peak Repetitive Forward Current (Rated VR, Square Wave, 20 KHz, 50% Duty Cycle, @ Tc = U5°G), IFRM ........ .......................................... I6A .............................. .. Non·repetitive Peak Surge Current (8.3ms), IF8M ..................................................................... 200A ................ .. Peak Reverse Transient Current, IRM .................................................................................... IA .............................. .. Operating Junction Temperature, T, .................................................................................... 150°C ............................. . Storage Temperature Range, T8t•................................................................................ -55°C to + 150°C ...................... . Thermal Resistance, Junction to Case, R8JC ........................................................................ 2.8°C/W ............................ . ELECTRICAL CHARACTERISTICS (TCASE = 25°C) SYMBOL LIMIT UNITS Maximum Instantaneous Reverse Current CHARACTERISTIC iR 5 mA VR VRWM Pulse Width 400j./S Duty Cycle 1 percent Maximum Instantaneous Reverse Current iR 50 mA VR VRWM Pulse Width 400j./S Duty Cycle 1 percent Tc 125°C 0.55 0.65 V 0.48 0.60 V Maximum Instantaneous Forward Voltage Capacitance Voltage Rate of Change VF Ct 1000 pF dV/dt 1000 V/j./S CONDITIONS = = = = = =8A =16A iF =8A } iF =16A VR =5V VR =VRWM = = iF iF Tc =125°C MECHANICAL SPECIFICATIONS USD700 SERIES SEATING TO-220AC PLANE DIM A B C 0 F G MILLlMmRS MIN MAX 1423 966 356 051 3531 229 H J K L N Q R S T 4/82 038 1270 114 483 254 204 114 585 1587 1066 4.82 114 3733 279 635 064 1427 177 533 304 292 139 685 6-125 INCHES MIN MAX 0560 0380 0140 0.020 0139 0090 0015 0500 0045 0190 0100 OOBO 0045 0230 0625 0420 0190 0045 0147 0110 0250 0025 0562 0070 0210 0120 0115 0055 0270 ~UNITRDDE • USD720 USD735 ·USD740 USD745 Forward Current Forward Voltage Reverse Current vs. Voltage . VS. 100 100 MAXIMUM VF \IS IF \IS T- TYPICAL VF VS IF VS ,e,/' g I- z .~ < lZS"C ~"G 10 5 ',// I- 10 '" C< C< ~,,"c :::l U (J ;'7 0 C< ~ I~ C< 1.0 '" '"G:i r¢ iF'Pi .1 §Ii! ~ 0: I I. J 0.1 .2 I I .001 MAXIMUM IR VS VA vs T= TYPICAL IR vs Vp. vs T =, / .!' .01 -" I I 7:,,,"c t!!':~v 12 - T= I 1 I 80 60 100 Average Forward Current vs. Temperature V. Rating vs. Temperature 10 100% I'V,WM V, g 120 %ofV,(V) 1.0 V' \ \ 8 V'WM \ I- Z '" C< C< ~\ :::l U 0 0: « \\.\ Tc=--TA = - - - - ;< C< 12 I\~ -" 0 0 25 50 75 100 125 -50 -25 150 UNITRODE CORPORATION" 5 FORBES ROAD LEXINGTON, MA .02173 " TEL. (617) 861·6540 TWX (710) 326·6509 " TELEX 95-1064 25 50 75 100 125 150 175 TEMPERATURE ("G) TEMPERATURE ("G) 6-126 PRINTED IN U.S.A. DUAL POWER SCHOTTKY RECTIFIERS 16A Av, up to 45V USD720C USD735C USD740C USD745C DESCRIPTION The USD700C series of power Schottky rectifiers, in the industry standard TO·220 package, is specifically designed for operation in power switching circuits to frequencies in excess of 100 KHz. The series combines Schottky rectifiers in one convenient package; thus, simplifying installation, reducing heatsink requirements and component parts count. FEATURES • Very Low Forward Voltage • Reverse Transient Capability • Economical Convenient Plastic Package • Mechanically Rugged • 45V Working Voltage @ Rated T"m." ABSOLUTE MAXIMUM RATINGS (Per Diode Unless Otherwise Noted) USD720C USD73SC USD740C USD74SC Working Peak Reverse Voltage, VRWM ....................................... 20V ........... 35V ........... 40V ........... 45V .. . DC Blocking Voltage, VR ....................................................20V ........... 35V ........... 40V ........... 45V .. . Peak Repetitive Surge Voltage, VRSM @ IRM ................................. 24V ........... 42V ........... 4SV ........... 54V .. . Average Rectified Forward Current @ Tc = U5·C, 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16A ......................... .. Non·repetitive Peak Surge Current (S.3ms), IFSM ................................................. 200A..................... " ... . Peak Reverse Transient Current, IRM .............................................................. IA ........................... . Operating Junction Temperature, Tj ............................................................ I50·C ........................ .. Storage Temperature Range, Tstg .......................................................... -55·C to +150·C .................... . Thermal Resistance, Junction to Case, R9JC .................................................... 2.S·C/W .. ..................... .. ·Full Wave Center·Tap; 10 (AV) 20KHz Square Wave ELECTRICAL CHARACTERISTICS (TeASE = 2S·C) (Per Diode) SYMBOL LIMIT UNITS Maximum Instantaneous Reverse Current CHARACTERISTIC iR 5 mA VR VRWM Pulse Width 400j./s Duty Cycle = 1 percent Maximum Instantaneous Reverse Current iR 50 mA VR VRWM Pulse Width 400j./S Duty Cycle 1 percent Te I25·C 0.55 0.65 V iF SA iF = 16A 0.4S 0.60 V Maximum Instantaneous Forward Voltage VF Capacitance Voltage Rate of Change CONDITIONS = = = = = = = Ct 1000 pF =SA ~ =16A VR =5V dv/dt 1000 V/j./S VR= VRWM iF iF Te =I25·C MECHANICAL SPECIFICATIONS TO·220AB .,M MILLIMETERS MI. MU • ~ Pin 1 1 Pin2 & Tab ~ • • Pin! H J .. INC ES MI. ....0 10", '" '56 A."" A.'" 0.140 0020 0.110 0.045 Q.l41 "' 0.0" '" '" '" "" '" otO) ". ,'"... otOO 051 3531 0.38 1270 IU 3133 1427 177 0015 0.500 00.. 48' 30' ... ... '04 1.1' 4/82 MA' 0.615 15., 1423 t." 6·127 0 .... 0.045 0.210 ........, 0.110 0."" 0.070 0210 0.110 0.115 0.055 0.270 ~UNITRDDE • ,USD720C USq735C USD740C USD745C Reverse Current vs. Voltage Forward Current Forward Voltage VS. 100 100 MA~IMUM TYPIC~L VF vs IF VS T = VF vs I,F vs T - /-7. "/ ,,~ ~ fz ~ lO :< V/ r,j;J 0: ~ '"'C .1 G; ~,>'C ~.;V ;; 0: .!! -" , 1'/ Ii I .L. ~ :::> u 0: ~ f- 0: 0: <.J '0 125'C ~'C S ~ :::J f2 I J- 10 MAXIMUM 1ft VS .01 / VA VS T -= - TYPICAL 1ft vs VR vs T = - - f 0.1 .2 .001 J .4 v, - 20 .6 VOLTAGE (V) 40 Average Output Current vs. Temperature ~.v. 16 ~--+---~---+----~~+---~ 121---+--\---+--\---4---\ ~ 10 1--+--1--+--1---++---1 :::J u ir f:::J I 4 1=:::;:;;?~4.;+:"" 25 50 75 TEMPERATURE Vow. V. Vow. " \.\ Tc=--T.=---- f- .2 120 \'\ \l \\ 14 ~ o 100 V. Rating vs. Temperature 100% § 80 60 %ofV.(V) 1.0 .8 I\~ 100 125 -50 -25 150 ee) UNITRODE CORPORATION· 5 FORBES RoAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6i;b9 • TELEX 96-1064 ' " 25 50 75 100 125 150 175 TEMPERATURE ('C) 6-128 PRINTED IN U.S.A. POWER SCHOTTKY RECTIFIERS USD820 USD835 USD840 USD845 24A Pk, up to 45V FEATURES DESCRIPTION • • • • • The USD800 series of Schottky barrier power rectifiers is ideally suited for output rectifiers and catch diodes in low voltage power supplies. Very Low Forward Voltage (0.45V max @ 12A) Reverse Transient Capability Economical Convenient Plastic Package Mechanically Rugged 45V Blocking Voltage @ Rated T,m.. ABSOLUTE MAXIMUM RATINGS USD820 USD835 USD840 USD845 Working Peak Reverse Voltage, VRW........................................... 20V ........... 35V ........... 40V........... 45V DC Blocking Voltage, VR ..................................................... 20V ........... 35V ........... 40V ........... 45V Peak Repetitive Surge Voltage, VRSM @ IR...................................... 24V ........... 42V ........... 48V ........... 54V Average Rectified Forward Current @ Tc = 115°C, 10 ••••••.•••••.••..•••••••••••••••••••••••••••••.•• 12A ...................... . Peak Repetitive Forward Current (Rated VR, Square Wave, 20KHz, 50% Duty Cycle, @ Tc = 115°C), IFR.......................................... 24A ...................... . Non-repetitive Peak Surge Current (8.3mS), IFSM .................................................... 200A ..................... . Peak Reverse Transient Current, IRM ................................................................ 1A ...................... . Operating Junction Temperature, T; ................................................................ 150°C ..................... . Storage Temperature Range, Ts••............................................................ -55°C to + 150°C ................ . Thermal Resistance, Junction to Case, R.JC ••••••••••••••••••••••••••••••••••••••••••••••••••••••• 2.4°C/W .................... . ELECTRICAL CHARACTERISTICS (T CAse =25°C) CONDITIONS SYMBOL LIMIT UNITS Maximum Instantaneous Reverse Current iR 20 mA VR = VRW .. Pulse Width = 400pS Duty Cycle = 1 percent Typical Instantaneous Reverse Current iR 50 mA VR = VRWM Pulse Width = 400pS Duty Cycle = 1 percent Tc = 125°C 0.59 V iF," 12A 0.51 V iF ;=12A Tc = 125°C VR= 5V CHARACTERISTIC Maximum Instantaneous Forward Voltage Capacitance Voltage Rate of Change VF C. 2000 pF dvldt 1000 VipS VR= VRWM MECHANICAL SPECIFICATIONS USD800 SERIES SEATING PLANE DIM A B C D f G H J K L N R S T 4/82 MILLIMETERS MIN MAX 1423 966 356 051 3531 229 038 1270 114 483 254 204 114 585 1587 1066 482 114 3733 279 635 064 1427 177 533 304 292 139 685 6-129 TO·220AC INCHES MIN MAX 0625 0560 0380 0140 002D 0139 0090 0015 0500 0045 0190 0100 0080 0045 0230 0420 0190 0045 0147 0110 0250 0025 0562 0070 0210 0120 0115 0055 0270 ~UNITRDDE • 'USD820 USq835 USD840 USD845 Typical Reverse Current ¥S. Voltage Typical Forward Current VS. Forward Voltage 100 100 - 50 ~V ~~ T; = 125'C , {J"= 1OO'C T; =75'Cr"'" 1 T; =25'C I § =,f'1 I =:!glt = = - .~ ...~!!J>:?, ;.> 0.0 1 7' " / 0.1 0.0 0.1 0.2 Y J J I I I o 10 20 "' 0.3 V 1 0.4 0.5 0.6 0.7 V, - VOLTAGE 01) 0.8 0.9 I I I 30 40 50 60 70 80 90 100 110 120 130 %ofV,CV) 1.0 Output Current Temperature V. Rating vs. Temperature VS. 14 100% VRWM \V, 12 ~r~c::!e=t~~d/ ~1O :> ~ 1\ \ (.) f- ir '3o J. ,\ "\\ :\ 0: 0: ::::J 6 Free Air 4 - 'j; reference) .....:::: ~ 25 V'I= 0 ~/Rated "< ~ 75 50 100 TEMPERATURE C'C) UNITRODE CORPORATION. 5 FORBES ROAD LEXI NGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 Vow. \ \ \ (T (: reference) V, Tc=--TA = ---- \ -50 -25 25 50 75 100 125 150 175 TEMPERATURE C'C) ~ 125 ,\ I\~ 150 6-130 PRINTED IN U.S.A. USD920 USD935 USD940 USD945 POWER SCHOTTKY RECTIFIERS 32A Pk, up to 45V FEATURES DESCRIPTION • • • • • The USD900 series of Schottky barrier power rectifiers is ideally suited for output rectifiers and catch diodes in low voltage power supplies. Very Low Forward Voltage (0.5V max @ 16A) Reverse Transient Capability Economical Convenient Plastic Package Mechanically Rugged 45V Blocking Voltage @ Rated Tlma, ABSOLUTE MAXIMUM RATINGS USD920 USD935 USD940 USD945 Working Peak Reverse Voltage, VRWM ....................................... 20V .......... 35V .......... 40V .......... 45V .. DC Blocking Voltage, VR ................................................... 20V .......... 35V .......... 40V .......... 45V .. Peak Repetitive Surge Voltage, VRSM @ IRM ................................. 24V .......... 42V .......... 48V .......... 54V .. Average Rectified Forward Current @ Te = 115°C, 10 ••••••.•.•••••.•••.••.•••••••••••.•••••••••••• 16A ....................... . Peak Repetitive Forward Current (Rated VR, Square Wave, 20KHz, 50% Duty Cycle, @ Te = 115°C), ,FRM ...................................... 32A ....................... . Non-repetitive Peak Surge Current (8.3mS), IFSM .................................................. 250A ....................... . Peak Reverse Transient Current, IRM .............................................................. 2A ........................ . Operating Junction Temperature, T j • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 150°C ...................... . Storage Temperature Range, T st•..•..•.•.•.•.••...•..•••.•••.....••..•.••.•.•.......•.•... -55°C to +150°C ................. . Thermal Resistance, Junction to Case, RSJe ...................................................... 2°C/W ...................... . ELECTRICAL CHARACTERISTICS (T CASE = 25°C) CHARACTERISTIC CONDITIONS SYMBOL LIMIT UNITS Maximum Instantaneous Reverse Cu rrent iR 20 mA VR = VRWM Pulse Width = 400pS Duty Cycle = 1 percent Typical Instantaneous Reverse Current iR 50 mA VR = VRWM Pulse Width = 400pS Duty Cyc Ie = 1 percent Te = 125°C 0.6 V iF = 16A 0.53 V iF =16A Te = 125°C VR = 5V Maximum Instantaneous Forward Voltage Capacitance Voltage Rate of Change VF Ct 2000 pF dvldt 1000 VipS VR = VRWM MECHANICAL SPECIFICATIONS USD900 SERIES SfATING TO·220AC PLANE DIM A B C D F G H J K L N Q R S T 4/82 MILLIMETERS MIN MAX 1587 10 66 482 114 3733 279 635 064 038 1270 1427 114 177 483 533 304 25" 204 292 1.14 139 585 685 1423 966 356 051 3.531 229 6-131 INCHES MIN MAX 0.560 0625 0380 0.420 0140 0190 0020 0045 0139 0.147 0090 0110 0250 0015 0.025 o SOO 0562 0045 0070 0190 0210 0.100 0120 0080 0115 0045 0.055 0230 0270 ~UNITRDDE II USD920 USD935. USD940 USD945 Typical Reverse Current VS. Voltage Typical Forward Current VS. Forward Voltage 100 100 T, 50 I~ ~=lbo'c ~7 ~10 zOJ Tj =75°C I '"'" r-- Tj = 25°C :::l U "«'" I '" f2" ~ ~ ~i9ih '" 1= ~ ...?:~ I-- ~' ~I " -" I / III 01 0.0 0.1 0.2 0.3 V I /1 ====..'' o 0.4 0.5 06 0.7 08 09 10 20 30 40 50 60 70 80 90 100 110120 130 %ofV,(V) 10 V, - VOLTAGE (V) Output Current Temperature V. Rating VS. Temperature VS. 100% ~.V' 16 ~--+---~---+--~--~~~ ~ 12 ~ 10 ~ VRWM \, \ 14 V, VRW• ~ \\ \ f--+--f--+--f--+\----i :::l u >- i[ . >- :::l o \\~\ Tc=--T.=---- I I\~ _ __ 3_ _ _ _ 75 100 125 ~ __ 50 ~ __ ~ o L -_ _ o 25 ~ .E ~ "',' " 10 h V <' =125"C -50 -25 150 TEMPERATURE (0C) UNITRODE CORPORATION· 5 FORBES ROAD LEXI t'lGTON, MA 02173 " ·TEL. (617) 861-6540 TWX (710) 326-6509 " TELEX 95·1064 25 50 75 100 125 150 175 TEMPERATURE (OC) 6-132 PRINTED IN U.S.A. POWER SCHOTTKY RECTIFIERS USDl120 USDl130 USDl140 lA, Up to 40V FEATURES DESCRIPTION • Very Low Forward Voltage (O.45V max @ 1A for the USD1120) • Low Stored Charge, Majority Carrier Conduction • Economical, Convenient Plastic Package • Small Size The USD1120, USD1130 and USDl140 series of Schottky barrier rectifiers are ideally suited for use as rectifiers in low voltage, high frequency inverters, as free wheeling diodes and as polarity protection diodes. • ABSOLUTE MAXIMUM RATINGS USD1l20 USD1l30 USDl140 Peak Repetitive Reverse Voltage, VRRM ........................ 20V .................... 30V ................... 40V ............ .. Working Peak Reverse Voltage, VRWM .......................... 20V ................... 30V ................... 40V ............ .. DC Blocking Voltage, VR ...................................... 20V ................... 30V ................... 40V ............. . Non·Repetitive Peak Reverse Voltage, VR8M .................... 24V ................... 36V ................... 48V ............. . RMS Reverse Voltage, VR(RMSI ................................. 14V .................... 21V ................... 28V: ............ . Average Rectified Forward Current, 10 ................................................. l.OA ..................................... . (VR(eqU'" :5 0.2 VR(DC), TL = 90°C, ROJA 80°C/W, PC Board Mounting, see Note 1, T A = 55°C) Ambient Temperature, T A ................................... 85°C ................... 80°C .................. 75°C ............ . (Rated VR(DC), PFCAVI = 0, ROJA = 80°C/W) Non·Repetitive Peak Surge Current, 1. 8M ....................................... 50A (for one cycle) .............................. . (Surge applied at rated load conditions, half·wave, single phase 60Hz, TL = 70°C) Operating and Storage Junction Temperature Range, ........................... -65°C to +150°C ............................... . (Reverse Voltage Applied) Thermal Resistance, Junction to Ambient (Note 1), R JA ........................... 80°C/W Max................................. . = Note 1: Lead Temperature reference is cathode lead V.i' from case. MECHANICAL SPECIFICATIONS USD1l20 USD1130 USDl140 A B D K Soldering 220°C. 11182 1/16" INCHES MIN MAX 0.160 0.260 0.110 0.120 0.030 0.034 1.0 - ASA MILLIMETERS MIN MAX 4.06 6.60 2.79 3.05 0.76 0.86 25.4 - from case for ten seconds 6-133 ~UNITRODE .. USDl120 USDl130 USDl140 ELECTRICAL SPECIFICATIONS (T L = 25°C unless noted) CHARACTERISTIC SYMBOL Maximum Instantaneous Forward Voltage (Note 2) VF Maximum Instantaneous Reverse Current @ Rated DC Voltage (Note 2) i. Note 2: Pulse'width USD1120 USD1l30 USD1l40 UNITS 0.450 0.475 0.500 V 0.600 0.625 0.650 V 1.0 1.0 1.0 mA 10 10 10 mA CONDITIONS = LOA =3.1A TL =25°C TL = 100°C iF iF = 300/15; duty cycle = 2%. Typical Forward Voltage vs Forward Current (USD1120) Typical Reverse Current vs Reverse Voltage 10 20 TA -125°C 15 ~ w ~ g F .2 :::J 0: ~TA -75°C 01 T. - 125"G T.-75"C 1/ « s:0: 12 = t== T... - -55 D C .5 .2 I TA _25°C 25"C= T. U 0 0: 05 ~ a::: .02 I == F :::J 1= " ~ 10 >- ti 0: T. -lOO"C .1 005 05 .002 .02 .001 .01 10 20 30 40 50 60 70 80 90 100 7 01.23.4.5 .8 9 1.0 V, - FORWARD VOLTAGE (V) V, - REVERSE VOLTAGE (% of V'WM) Typical Forward Voltage vs Forward Current (USD1l30. USD1l40) Output Current vs Lead Temperature 1.2 20 g T. = 125"G lO >- z E W 0: 0: g =~ >T.=25"G F V T. - 55"G 0: 3: 0: 12 I W 0: 0: :::J u :::J « --..... t'-.... z T. - 75"G "0 1.0 I==: I=:: .5 ....,~ 08 '" 0 0: « s:0: 12 0.6 w .2 '"ffi« .1 04 > « .05 I 0.2 ~ .01 a '" " '- 0 .02 ~ .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 75 V, - FORWARD VOLTAGE (V) UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON,MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95-1064 85 95 105 115 125 135 145 T, - LEAD TEMPERATURE ("G) 6·134 PRINTED IN U.S.A. USM140C USM145C USM150C Preliminary POWER SCHOTTKY MODULES lOOA, Up to 50V FEATURES OESCRIPTION • Low Forward Voltage The Unitrode Schottky Module utilizes high current Schottky rectifiers, in a convenient single package, arranged in a common cathode configuration. The combination of low thermal resistance and high conductance terminals makes this device ideally suited for high current full wave center-tap rectification or feedforward applications. • Low Recovered Charge • High Reverse Transient Capability • High Surge Current • High Efficiency for Low Voltage Designs ABSOLUTE MAXIMUM RATINGS (per diode unless noted) USM140C USMl45C USM150C Working Peak Reverse Voltage, VFtWM ..................................... 40V ............... 45V .............. 50V ............ . DC Blocking Voltage, VR ................................................. 40V ............... 45V .............. 50V ............ . Peak Repetitive Surge Voltage, VRSM ...................................... 48V ............... 54V .............. 60V ............ . Peak Repetitive Forward Current (Rated VR, Square Wave, 20KHz 50 Percent Duty Cycle), IFRM ............................................................. IOOA .............................. . Average Rectified Forward Current, 10 .•.•.•...•..•.•.•••...••........••.. IOOA (@ Te = 115·C Fullwave Configuration) .......... . Non·repetitive Peak Surge Current, IFSM ................................................... IOOOA ............................ . Peak Reverse Transient Current, IRM. . . . . . . . . . . . .. . . . .. . . . . . . . . . . . . ... .. .. . . . . . . . . . . . . . .. . .. 2A .............................. . Storage Temperature Range, TSTG .................................................... -40·C to + I50·C ....................... . Operating Temperature Range, TJ ................................................... -40·C to + I75·C ....................... . Thermal Resistance, R9JBP ......................................................... per module ...................... . o.rc/w MECHANICAL SPECIFICATIONS USM140C USM145C USMl50C "~~rl \ti \ ~ ~~" 1~~\ 1 ~~11 ~ t- '. F TERMINAL (C) (AI) ELECTRICALLY COMMON TO BASE PLATE 11/83 -/ ~ INCHES MILLlMmRS MAX. MIN. MAll 1.197 20.39 30.40 .030 .035 .762 .889 .365 .385 9.27 9.78 .370 .390 9.40 9.91 .8BO 22.35 .160 .IBO 4.06 4.57 .270 .290 6.87 7.37 .151 .161 3.84 4.09 .188 RAO. 4.78 RAO. .030 .035 .762 .889 .525 RAO. 13.34 RAO. TBP Ref. Point - Geometric Center of Base Plate MIN. (Al/~\ r- Ml L A B C 0 E F G H J K (A2) L T 1.177 6-135 ~UNITRODE II USMl40C USM145C USM150C ELECTRICAL CHARACTERISTICS (TBP = 25°C unless noted) (Per Diode) CHARACTERISTICS SYMBOL CONDITIONS = = Maximum Instantaneous Reverse Current iR VR VRWM (T BP 125°C) Pulsewidth 400ps Duty Cycle 1% Maximum Instantaneous Forward Voltage VF IF 60A (Tap 125°C) Pulsewidth 300pS Duty Cycle 1% Maximum Instantaneous Forward Voltage VF IF l00A (Tap 125°C) Pulsewidth 300ps Duty Cycle 1% Ct VR = = Capacitance Voltage Rate of Change = UNITS 20 (75) mA .690 (.630) V .860 (.775) V = = = = = = =5V VR =VRWM dvldt Reverse Energy = LIMIT 3000 pF 1000 Vips 2 A See Reverse Energy Circuit IRM Typical Reverse Current vs Reverse Voltage Typical Forward Current VI Forward Voltage 200 100 g ....z w 10 () S.O '"'":::> 0 '"'"3< '"~ ... < .s.... /J '/J / ISO'C'12S'C: 2.0 I J l- i- "II 0.1 0.2 0.3 0.4 () ... 2S'C ,- II I 0.2 10 '"'"w ~ '", 7S'C -4O'F 0.6 f..- .-- 0.5 0.2 0.7 0.8 09 1.0 -I- 7 5' 1.0 0.1 05 i-- f.-" 125 C S.O 3.0 w 'I' 20 w '"'":::> .f.J /1 I j 0.5 z '// I fj 1.0 ~~ 50 ~ ~ /' 20 v 100 ~ ~ V' 50 o 10 W ~ ~ 50 W L V ./ 25' M ~ ~ ~ V. - REVERSE VOLTAGE ('II. of V_) V, - FORWARD VOLTAGE (V) Output Current VI ease Temperature Reverse Energy Circuit 120 -....... 100 ......... r--... ~ -..lOV ........ ....... L .......... =24phy " 60 40 20 t. adjust for desired peak current in D.U.T. when Q turns off. Q, must have fall time tf of lOOns max. o 100 110 120 130 I~ 150 Tap - BASE PLATE TEMPERATURE ('C) UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326·6509 • TELEX 95·1064 6-136 PRINTED IN USA USM20040C USM20045C USM20050C Preliminary POWER SCHOTTKY MODULES 200A, Up to 50V FEATURES • Low Forward Voltage • Low Recovered Charge • High Reverse Transient Capability • High Surge Current • High Efficiency for Low Voltage Designs DESCRIPTION The Unitrode Schottky Module utilizes high current Schottky rectifiers, in a convenient single package, arranged in a common cathode configuration. The combination of low thermal resistance and high conductance terminals makes this device ideally suited for higher current full wave center-tap rectification or feedforward applications. ABSOLUTE MAXIMUM RAllNGS (per diode unless noted) USM20040C USM20045C USM200SOC Working Peak Reverse Voltage, VRWM .. _...... __ . ___ . _.............. _. _. __ 40V . _.. _.... _.. _. _45V .. _. __ . _... _.. 50V .. ____ . _. _.. . DC Blocking Voltage, VR .. _..... _. __ .......... _.. __ .. _.. _. __ ..... _. _. _. _. 40V ... __ .... _. _... 45V .. _.. _... ____ . 50V _........ _.. . Peak Repetitive Surge Voltage, VRSM _............ __ ... _. __ .............. _. 48V _.. _........... 54V ..... _... _. _. _60V _.. _.. ___ . _.. Peak Repetitive Forward Current (Rated VR, Square Wave, 20KHz 50 Percent Duty Cycle). IFRM ______ .. _..... ____ ......... _.. __ . _. __ . _. _...... __ . __ .... __ .. _200A .. __ . __ ... _. __ .... _........... . Average Rectified Forward Current, 10. ______________ ... ____ .... ____ .. ____ 200A (@ Te = 115·C Fullwave Configuration) .. ________ ... Non-repetitive Peak Surge Current, IFSM .......................... ____ ................. __ ... 2000A __ .... __ ..... __ ............... . Peak Reverse Transient Current, IRM .. __ ... __ ................ __ ....... __ . __ ... __ .. __ ... __ . .. 2A. __ .... __ .... ___ ........ __ ..... . Storage Temperature Range, TsTG ......... ____ ...... __ .... ____ ....................... -40·C to + 175°C __ ..... __ ...... ____ ..... . Operating Temperature Range, TJ .. __ ............... __ '" __ .................... __ . __ . -40°C to + 175°C ...... __ .. __ .......... __ . Thermal Resistance, RBJBP ............................................ __ .......... O.28°C/W per module ... ____ ............ __ .. Thermal Resistance, RSJBP ................................................ __ ......... O.56°C/W per leg ........................ . MECHANICAL SPECIFICATIONS USM20040C USM20045C USM20050C M2 Terminal Torque: 50 (Min.) 75(Max.) lb. - in. Mounting Base Torque: 30(Min.) 40(Max.) lb. - in. HI-m----w-~ Al~A21 C (ELECTRICALLY COMMON TO BASE PLATE) 11/83 A B C 0 E F G H T MILLIMETERS INCHES MAX, MAX. MIN. MIN. 66.80 2.63 1.35 1.40 34,29 35.56 .70 .80 17.78 20.32 15.88 .625 79,76 80.26 3.14 3.16 92.71 3.65 ,27 6,35 6,86 .25 '/. - 20 UNF With Captive Lockwasher TBP Ref. Point - Geometric Center of Base Plate 6-137 ~UNITRODE • USM20040C USM20045C USM20050C ELECTRICAL CHARACTERISTICS (TBP = 25°C unless noted) (Per Diode) CHARACTERISTICS SYMBOL Maximum InstantaneQus Reverse Cu rrent iR Maximum Instantaneous Forward Voltage VF IF = 100A Pulsewidth =3001's Duty Cycle = 1% (TBP = 125°C) Maximum Instantaneous Forward Voltage VF Capacitance C. Voltage Rate of Change dvldt Reverse Energy USM20045C USM20050C V (.575) IF = 200A Pulsewidth = 300pS Duty Cycle = 1% (T BP = 125°C) (.745) VR = 5V 6000 pF VR = VRWM 1000 VIpS 2 A .800 Typical Forward Current vs Forward Voltage 5, 20 w 10 ....z 0: 0: :::> "0 5.0 ~ ~ 2.0 2 1.0 ". 0.5 :r: AW .s.... w U> 75'C - 25'C 0.1 -40'C g ....z 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 :::l 80 ...... 0 ...... r- V ~ /" V' 25'C I I o 10 20 30 40 50 60 70 80 90 100 Reverse Energy Circuit ~ .......... ...... +10V ....... 160 120 ...... V VR - REVERSE VOLTAGE ~ 01 VVR") FORWARD VOLTAGE (V) .... .......... '-.. 0: 0: "::>.... 1.0 0.1 w ::> 2.0 ~ I- 0.2 Output Current VII ease Temperature 220 0: ~ I 10 0.5 v, - 200 20 5.0 I 1'/ o I ~C 50 0: w ~ f- 'f 0.1 () .$ III/ 0.2 0: 0: ::> 'II I f. 100 z W ,///1 (/1 II 150'CoJ I ~ 200 ~ 12~'C~ I 400 ~ 50 V Typical Reverse Current vs Reverse Voltage 200 100 mA 30 (150) 30 (125) See Reverse Energy Circuit IRM UNITS LIMIT CONDITIONS VR = VRWM Pulsewidth = 400pS Duty Cycle = 1% (T BP = 125°C) I oS 40 t. adjust for desired peak current in D.U.T. when Q turns off. Q, must have fall time t, of lOOns max. o 100 110 120 130 140 150 Top - BASE PLATE TEMPERATURE ('e) UNITRODE CORPORATION' 5 FORBES ROAD LEXINGTON, MA 02173 • ·TEL (617) 861·6540 TWX (710) 326·6509 • TELEX 95·1064 6·138 PRINTED IN U.S.A. UT236-UT347 UT249-UT363 UT251-UT364 UT261-UT268 RECTIFIERS Standard Recovery, 1 Amp to 2 Amp DESCRIPTION These miniature power rectifiers offer the user extreme reliability for high-rei military supplies_ FEATURES • Continuous Rating: to 2A • Controlled Avalanche • Surge Rating: to 30A • PIV: to lOOOV • Miniature Package • ABSOLUTE MAXIMUM RATINGS 1 Amp 1.25 Amp 1.5 Amp Peak Inverse Voltage Series Series Series 100V 200V 400V 500V 600V 800V 1000V UT236 UT234 UT235 UT237 UT238 UT361 UT347 UT249 UT242 UT244 UT245 UT247 UT362 UT363 UT251 UT252 UT254 UT255 UT257 UT258 UT364 Maximum Average D.C. Output Current @ T, == 25'C @ T, == lOO'C Non-Repetitive Sinuosoidal Surge (8.3ms) Operating Temperature Range Storage Temperature Range Thermal Resistance 1 AMP SERIES ....... 1.0A. O.5A ... .20A .. 2 Amp Series UT261 UT262 UT264 UT265 UT267 UT268 1.5 AMP SERIES 1-25 AMP SERIES 1.25A .. ......... O.65A ... . 1.5A. ...... O.75A ... 2 AMP SERIES ..... 2.0A ............ 1.0A ......... 20A.. . ..... 25A.... ... 30A -195'C to +175'C .. -195'C to +175'C. ................. . See lead temperature derating curve ............................. . MECHANICAL SPECIFICATIONS UT236-UT347 UT249-UT363 UT251-UT364 UT261-UT268 BODY A Part Identification: Orange band indicates "UT." Part number· printed on body. Polarity: Denoted by orange band. Weight: 0.26 grams, typica:. 6-139 ~UNITRDDE UT236-UT347 UT249-UT363 UT251-UT364 UT261-UT268 ELECTRICAL SPECIFICATIONS (at 25·C unless noted) TYpe PIV UT26I UT262 UT264 UT265 UT267 UT268 UT25I UT252 UT254 UT255 UT257 UT258 UT364 UT249 UT242 UT244 UT245 UT247 UT362 UT363 UT236 UT234 UT235 UT237 UT238 UT361 UT347 IOOV 200V 400V SOOV 600V 800V IOOV 200V 400V SOOV 600V 800V IOOOV IOOV 200V 400V 500V 600V SOOV lOOOV lOOV 200V 400V 500V 600V 800V lOOOV Maximum Leakage Current t1iJ PIV Maximum Forward Voltage Drop 2S'C 100·C IV@900mA 2pA 75pA IV@7SOmA 2pA 75pA IV@500mA 2pA 75pA IV@400mA 2pA 75pA' Maximum Current vs Lead Temperature Maximum Current vs Lead Temperature 1 AMP SERIES ~ z '"'" a'"o ...;;: ~ '"'" " « '"«>'" 2 ~ 3 ~ 2.5 ~ L=W· 1.1 AMP SERIES ...~z >- 2 ,~~---+---+---+--~ '" o ii: '" ;: @ ~~ 1.5 f;l ~ '"'" ~ '"~ d 1 L = :::> u 2 L=~ L~ ...................... 1 .2 .2 o 25 50 Tl - 75 100 125 150 175 LEAD TEMPERATURE ('C) UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710),326-6509 • TELEX 95-1064 25 6-140 3 '""'"" "~ '":u @ ~ I'--- ~ I I Va" r-..... ~~ 1 l':: t\. ............ .5 ~ II !::; "I n o 50 75 100 125 150 175 T, - LEAD TEMPERATURE ('C) PRINTED IN U.S.A. UT236-UT347 UT249-UT363 UT251-UT364 UT261-UT268 Maximum Current vs lead Telllflerature Maximum Current vs lead Temperature 1.2SAMP SERIES ~ ~ I- I- Z L W 0: 0: :> U o w ;;: ~ 0: W : 1 Z = '4" U 2J W 0 ;;: ;::: ~,. 1"'- I'----.. ['... "a:w > "I .5 --......:: ~'\ ..9 25 50 Tl - 75 100 --........... 1 150 25 LEAD TEMPERATURE (OC) :t .:; zw :> U .05 .1 .2 en w .5 w > w 2 0: 0: 75 v.. 1/1/ ~ I III .5 1//" oCJ w u.05 I li .01 I .005 ---t;'5°C " .002 II % OF PIV .6 .8 1 VOLTAGE (V) V, - Typical Forward Current vs Forward Voltage II 11 .4 .2 1.25 AMP SERIES v~ ~P- l:>- 1/[/vV' / J[/[/ ~ .5 I- ~ I~ U.05 Q" w II .01 u.05 II .002 2 A V, - II .01 .005 II II .001 1/·1 I _".02 II ~ ~ 1 VOLTAGE (V) UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON. MA 02173. TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 IL .001 12 IA .2 6-141 0 I II II I .002 I 0" r-r-r.L ~ -J..~ -I-lJ~1 :> I .005 CJ (r) ~ .1 f- 1/·/ I I _~.02 ik .0 ~/~CJ Z .2 0 "'ill$?- l-J..J II V I- r- liCJ oCJ CJ CJ- ~ .1 :> 1.4 10 1.5 AMP SERIES Z .2 1.2 Typical Forward Current vs Forward Voltage 10 ~ .5 l- [L II II .001 50 U II I I II _~.02 ~75OC {J S ~k5: "/-"/--1-1 ~ .1 :> ../ 100 175 VVrL i w 150 2 AMP SERIES 0: 150 125 Typical Forward Current vs Forward Voltage -~OC 50 100 .5 LEAD TEMPERATURE (OC) Z .2 10 20 <> ~ -......... ~~ 100 I- 0: ...1/ ...... u: ~ 2 ....... sooC .02 I- 50 Tl - - .005 .01 2J @ 10 ALL SERIES (g ~ 1,,\ 175 Typical leakage Current VS. PIV .001 .002 '" .'" ""'" I'--.. ..9 " 125 3 h :IE ", "':~ 3 0: 0: @ -... r--. "I w ...0 "'" ~ ~~ "r!:..-W'""- ~ w > _.t =Va" A V, - 1/ I L .6 .8 I VOLTAGE (V) 1.2 1.4 PRINTED IN U.S.A. II UT236-UT347 UT249-UT363 UT251-UT364 UT261-UT268 Typical Forward Current vs Forward Voltage 10 1 AMP SERIES // ~ V/ /V ~ .5 .... z /V II .2 w it f--r- L:~8"ff :;::;:f!, ~ .1 0 ::0 U.05 II I ':.02 I1I1 .01 .005 I .002 II II j .001 .2 Ill/ I .4 .6 .8 1 VOLTAGE (V) V, - 1.2 Efficiency vs Frequency at Rated Current (Sine Wave) Allowable Forward Surge vs Number of Cycles 100 i ~ '" "'" '" '";;: ::0 80 .""- ....... IIII 60 " ~t:::I' III C ~Go III ... 100 -.... ALL SERIES VI I I ~Jr~~ll" c~nte~s ~ .... ... ::00 ::> ::ow - 0'-' Turret 1/2" centers Printed Circuit 40 ~ffi '" '" 60 U' 40 w N 30 ~§ 20 w@) 10 -:I: ...~ * 70 50 ZO C -ALL SERIES 90 80 ~~ >-0 ..:::::: :::::fl 20 1.4 a 1,000 100 10 2 3 4 6 810K lOOK 1M FREQUENCY (Hz) -HALF WAVE RESISTIVE LOAD NO FILTER 1K CYCLES AT 60 Hz HALF SINE WAVE Reverse Pulse Power vs Pulse Duration Forward Pulse Current vs Pulse Duration 10,000 g z0- 1,000 F' ,LI !'.I t"- 100,000 ES fo~ ~!"~•• ;j:.ii'i$. 1(8.3t::'~' ~~esCiua~e~~~~~lellll .11 'wit" '"'" '" 0 ::0 Go W VI U ...'"::0 III ! ...::0 100 Q. Go 10 l~s 10.s l00~! 1,000 100 10 1m! 10m! lOOns 1.. 10.5 lOa.! 1m! 10m! PULSE DURATION (SECONDS) PULSE DURATION (SECONDS) UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 10,000 6-142 PRINTED IN U.S.A. UT2005-UT2060 UT3005- UT3060 UT4005-UT4060 RECTIFIERS Standard Recovery, 2 Amp to 4 Amp FEATURES DESCRIPTION • • • • • High average power and surge capability make these series of devices attractive in many high-rei applications. Continuous Rating:to4A Controlled Avalanche Surge Rating:to IOOA PIV: to 600 V Miniature Package All Unitrode rectifiers have a sleeve of pure hard glass fused to the silicon junction. Since the silicon sees only this glass, electrical characteristics are permanently stable. This voidless, monolithic package is totally unaffected by the most severe moisture or temperature testing. ABSOLUTE MAXIMUM RATINGS 2 Amp Series 3Amp 4Amp Peak Inverse Voltage Series Series SOV 100V 200V 400V 600V UT200S UT2010 UT2020 UT2040 UT2060 UT300S UT3010 UT3020 UT3040 UT3060 UT400S UT4010 UT4020 UT4040 UT4060 Maximum Average D.C. Output Current @ TA = 2S·C @ TA lOO·C . Non-Repetitive Sinusoidal Surge Current (8.3ms) Operating Temperature Range Storage Temperature Range Thermal Resistance = 2AMP SERIES 3AMP SERIES . 2.0A .. . 3.0A. 4AMP SERIES ...... 4.0A ......... 2.0A 1.0A I.SA .. .60A 80A .. -19S·C to +17S·C -19S·C to +200"C See lead temperature derating curve ... lOOA MECHANICAL SPECIFICATIONS UT200S-UT2060 UT3005-UT3060 UT4005-UT4060 BODY B Part Identification: Orange band indicates !lUT." Part number printed on body. Polarity: Denoted by orange band. Weight: 0.75 grams, typical. 6-143 ~UNITRDDE • UT2005-UT2060 UT3005-UT3060 UT400S-UT4060 ELECTRICAL SPECIFICATIONS (at 25'C unless noted) Maximum Leakage Current @ PIV IV@3A Sp.A IOOp.A UT300S UnOIO UT3020 UT3040 UT3060 SOV IOOV 200V 400V 600V IV@2A Sp.A IOO"A UT200S UT2010 UT2020 UT2040 UT2060 SOV IOOV 200V 400V 600V IV@IA S"A IOO"A I ~ z 0: ::> u o "'u: ;: 2 lil0: "' Maximum Current Lead Temperature 3.5 ""l ~ :Ii 0: '" ~ I ~ ~ 0 50 T, - 75 100 125 150 L 04 lil0: "'u: l = W'" L ~,:-- ~=" "' i"---- " ~2 "I 1 0 175 LEAD TEMPERATURE ('C) ~ '{ "'> ~ .2 u 1.5 II '~ ~ "I ::> ;: _.... f"--- "- ~ "" 0: '"'" ® 2 ~ '" '" z ~=r~ \"L \l = Va" l :;!5 2.5~ YS 3AMP SERIES _6 :;. L=!> "" 1'--,..,... I"'" Maximum Current Lead Temperature YS 2 AMP SERIES l = 1/8" 25 100'C PIV SOV IOOV 200V 400V 600V Maximum Current Lead Temperature :;! l 25'C Type UT400S UT4010 UT4020 UT4040 UT4060 YS ~ Maximum Forward Voltage Drop 4 25 SO ~ TI - 100 125 6 "'0:0: ::> 5 i'~)~)l\ ~ u 0 4 II ~ "'0: "' 3 u ""> "' "I ~ 2 f"'-... ~ ~ i"'-. 1'\\ '-L\ l"--, .2 hl ~ 175 ~ (~C) SO T, - 6-144 ~ 1'\ ' " 1"'- \ 1~!~4" 25 UN)TRODE CORPORATION, 5 FORBES ROAD LEXIN.GTON. MA 02173 • TEL (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 4AMP SERIES 1"- 0: ~ .~ ISO LEAD TEMPERATURE 2 z "';:u: ..... " "I" """" " "-1\ 75 :Ii '"'" ® ~ " '" -. 0 \1," 75 100 125 ISO 175 LEAD TEMPERATURE ('C) PRINTED IN U,S.A. UT2005-UT2060 Typical Forward Current vs Forward Voltage 10 10 3 AMP SERIES I 5 II II III .5 :i"' ~ Il.~U 8~r ;, .1 II I I _~.02 .01 .001 .2 I .002 / ~ Z "'~ .4 .6 VOLTAGE (V) .8 1 1.2 1.4 2 :::> 0.05 .!: .02 I- U f'\J '"'":::>'" 0 0 ." II .005 / .2 I II I 1.2 1A V :SO"C "' '">'" "''" .1 .2 .E_ ---- .5 --- II) I / .01 .001 !.J "'" ,I / I .002 .:; Z ~U • ~ 1 VOLTAGE (V) .os :;( /~ fA"' 0 -I- -I- -1-/' ...., A V, - I I I ALL SERIES .01 .02 / I III .1 I II Typical Reverse Current vs PIV /V 4 AMP SERIES .2 / .001 V, - .5 II .005 II I1I1 5 / .01 / Typical Forward Current vs Forward Voltage 10 II I I .;;.02 !/ 1/ -I- -I- o.os i/ • £~§t~~ + I .1 :::> / II .005 .002 ~r7 1- :;: :::> 0.05 Z .2 "'~ 00 AI III III1 II/ I1I1 5.5 ~ Z .2 UT4005-UT4060 Typical Forward Current vs Forward Voltage // 2 AMP SERIES UT3005-UT3060 10 20 so -- 100 200 I / 500 2S"C ./ 7S"C /' 12S"C 1,000 .4 .6 .8 V, - VOLTAGE (V) UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 1 1.2 ISO 1.4 6-145 100 SO % OF PIV o PRINTED IN U.S.A. UT200S-UT2060 UT300S-Un060 UT400S-UT4060 Allowable Forward Surge vs Number of Cycles 100 " '"'" ~ :J '" z >= I~ 80 ALL SERIES ~ 11111 I&.. 60 ~ III 0 '"u:: ~ ....; 40 U '""- III Turret Ih" centers Printed Circuit --- -::.t ~ 20 LL I I +ulr~~~ I" c~nte~s 0 'if 1,000 10 100 CYCLES AT 60 Hz HALF SINE WAVE Forward Pulse Current vs Pulse Duration 10,000 . ~~Ise_c~r~~~~:sp= ~ z .... '"'" '":J '"'"...J (8.3 msec sine wave equivalent to 3 ms square wave) 1,000 U r---... 100 :J "- 10 1":5 .1u.s 10{l.s 100u.s Ims PULSE DURATION (SECONDS) lOms Reverse Pulse Power vs Pulse Duration 100,000 ALL ~ RI 10,000 '"'";: 0 "- 1,000 '" III ...J :J "- 100 10 lOOns UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 l.s lO,us Ims 100.s PULSE DURATION (SECONDS) 6-146 lOms PRINTED IN U.S.A. UT51 05· UT5160 UT6105·UT6160 UT8105·UT8160 RECTIFIERS Standard Recovery, 7.5 Amp to 12 Amp DESCRIPTION These series of high current rectifiers offers opportunity for size and weight reduction in high power supplies. FEATURES • Rating: 12A • Controlled Avalanche • Miniature Package • Surge Rating: 200A II ABSOLUTE MAXIMUM RATINGS 12 Amp SAmp 7.5 Amp Peak Inverse Voltage Series Series Series 50V UTB105 UTBllO UTB120 UTB140 UTB160 UT6105 UT6110 UT6120 UT6140 UT6160 UT5105 UT5110 UT5120 UT5140 UT5160 lOOV 200V 400V 600V 12 AMP SERIES Maximum Average D.C. Output Current = 12.0A..... @ Tc l00"C . Non-Repetitive Sinusoidal Surge Current (B.3ms) Operating and Storage Temperature Range . Thermal Resistance, Junction to Case . Current Derating. S AMP SERIES .................. 9.0A.... 7.5 AMP SERIES 7.SA ....... . ...... . 200A..... ... ..... 175A........ ............ lS0A ........... -65"C to +175"C .. . ................. 7.S"C/Watt .... . ......... See current vs. case temperature curve MECHANICAL SPECIFICATIONS UT5105-UT5160 UT6105-UT6160 "J .187" MAX. .045" TYP . .005 MAX. (475mm) (O.l1mm) Radius .460" MAX:----oI~ .112 MAX. \ 1(1l.68m~ UT8105-UT8160 BODY C - Stud Mount ,187" HEX. (4.75mm) ).. 1/ ·~;II~?-./, 230" (584mm) #4·40 )( :250" (6:34mm) LONG THREAD .120" TYP. (3.0Smm) Part Identification: Numerals and polarity letter indH:ate "UT" type numberj e.g., 8105R. Polarity: Cathode to Stud is standard. Reverse polarity denoted by uR" Suffix. Finish: Metal parts gold plated per MIL-G-45204, Type II. Max. Weight: 1.5 grams. Also available with insulated stud. Reference Design Note·17. Installation Maximum unlubricated stud torque: 28 inch-ounces. Insulating hardware supplied. Do not use a screwdriver in the turret slot for installation purposes. or damage may result. 6-147 ~UNITRODE UTSlOS-UTS160 UT6l0S-UT6H;OUT8l0S-UT8l60 ElECTRICAL SPECIFICATIONS (at 2~ C unless noted) Type Peak Inverse Voltage UT810S UT8110 UT8l20 UT8l40 UT8160 UT610S UT6110 UT6l20 UT6l40 UT6l60 UTSlOS UTSll0 UTS120 UTS140 UTS160 SOV lOOV 200V 400V 600V SOV lOOV 200V 400V 600V SOV lOOV 200V 400V 600V Max. Reverse Current at PIV Maximum Forward Voltage 25°C 100°C lV@8A 1OI'A 300l'A lV@6A 1OI'A 3OOl'A lV@SA lOI'A 300"A Typical ForwardVoltage vs Forward Current Typical Forward Voltage vs Forward Current 10,000 r---r--,----r--r77-.--;ro-----; 10,000 f-----j----'-+--+--,¥H'--+---i 5,000 .e 2,000 ~ !z 1,000 f---t-+-+-IIf-f+l~+---t---1 I- 1,000 5,000 <: ~ 500 u 200 f--+-+--f-!,rf-*-+--+---1 0: 0: ::J c ~ 0: ~ 2.000 Z "' f---+-+t'--ll'r-l-f-+--+-----1 500 200 100 0: 0: ::J U C 0: so 0: 50 ~ 0 LL 20f--++-+-.H-+~-+--+---1 20 10L-~L-H-~LL-L_L-~~ a .2 .4 .6.8 Vf 100 10 1.2 0 vorts Typical ForwardVoltage vs Forward Current. 10,000 <: .§. 2,000 !z 1,000 "'~ 500 ~ 200 0: 100 ~ 0: ~ 50 20 10 <: .:0 lZ / II I / "'0:0: II / I ::J r-r-- f~O~U ~s ~ ~1~ "I[ I :t ~ I I .2 .4 .6 u .8 .4 .6 .8 Vr:: Volts 1.2 Typical P.I.V. vs Reverse Current V/V/ ~VjV I I 7.5 Amp 5,000 .2 ::J U "' I 0: "' 50'C 1L .5 I 5 10 rJ) "'> ~ .05 .1 SO i ~c 100 J-.- 0: +r SOO 1000 150 1.2 V f Volts 6-148 25 ° C soc 100 50 0/0 of P.l.V. PRINTED IN U.S.A. UT5105-UT5160 UT6105-UT6160 UT8105-UT8160 Current Rating vs Case Temperature 100 -r- r-+ 1 1 1 .. .!: ~ + 1\ 50 I I 1"\ ?f. i . --- .- o o J 100 200 II Temperature <'C Forward Pulse Current VS. Pulse Duration 1 0 K " " . ~ 1:: 1K ~ ~ u e: :; 100 0. 1mS 10mS Pulse Duration (Seconds) Reverse Pulse Power vs. Pulse Duration lOOK ~ 10K ij ~ 0 1K 0. ~ :; 0. 100 10 .1.5 1.5 10.5 100.5 1mS 10mS Pulse Duration (Seconds) UNITRODE CORPORATION· 5 FORBES ROAD LEX I NGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 6-149 PRINTED IN U.S.A. RECTIFIERS UTRIO-UTR60 UTROI-UTR61 UTR02-UTR62 Fast Recovery, 0.5 Amp to 2 Amp FEATURES • Continuous Rating: to 2A • Controlled Avalanche • Surge Rating: to 25A • Fast Recovery 40kHz Operation • PIV: to 600V • Miniature Package DESCRIPTION These miniature fast recovery rectifiers permit operation at full frequencies as high as 4JkHz square wave. They have the unique Unitrode Fused in Glass con· struction. ABSOLUTE MAXIMUM RATINGS V. Amp Series Peak Inverse Voltl," 50V lOOV 200V 300V 400V SOOV 600V 1 Amp UTRIO UTR20 UTR30 UTR40 UTR50 UTR60 Maximum Average D.C. Output Current @ TA = 25·C @ TA = lOO·C ... Non-Repetitive Sinusoidal Surge Current (8.3ms) . Operating Temperature Range Storage Temperature Range . Thermal Resistance .................. . 2 Amp Series Series UTROI UTRll UTR2l UTR3l UTR4l UTR5l UTR6l UTR02 UTR12 UTR22 UTR32 UTR42 UTR52 UTR62 V. AMP SERIES 2AMP SERIES 1 AMP SERIES .... O.SA ... . ......................... O.25A .. . ............. 1.0A.. .......... O.SA. ... 2OA... ...... l5A. ... 2.0A ................... 1.0A .. ........... 25A ..-195·C to +175·C .. .. -195·C to +200·C .. .. See lead temperature derating curves .. MECHANICAL SPECIFICATIONS UTR1D-UTR60 UTR01-UTR61 UTR02-UTR62 BODY A Part Identification: Green band indicates IIUTR." Part number printed on body. Polarity: Denoted by Green band. Weight: 0.26 grams, typical. 6-150 ~UNITRDDE UTRlO-UTR60 UTROl-UTR6l UTR02-UTR62 ELECTRICAL SPECIFICATIONS (at 25·C unless noted) Maximum Leakage Current @PIV Maximum Forward Type UTR02 UTRl2 UTR22 UTR32 UTR42 UTR52 UTR62 UTROl UTRll UTR2l UTR3l UTR4l UTR5l UTR6l UTRlO UTR20 UTR30 UTR40 UTR50 UTR60 Voltage Drop PIV 50V looV 200V 300V 400V 500V 600V 50V looV 200V 300V 400V 500V 600V lOOV 200V 300V 400V 500V 600V Maximum Junction Capacitance Maximum Reverse Recovery 100·C 2S·C l.lV @ lOoomA 3"A loo"A l.lV@500mA 3"A lOOI'A l.1V@200mA 3"A lOO"A @2S·C 10V 60pf 40pf 32pf 28pf 24pf 20pf l6pf 60pf 40pf 32pf 28pf 24pf 20pf 16pf 40pf 32pf 28pf 24pf 20pf 16pf oV l50pf lOOpf 80pf 70pf 60pf 50pf 40pf l50pf lOOpf 80pf 70pf 60pf 50pf 40pf lOOpf 80pf 70pf 60pf 50pf 40pf Time* 250n5 250ns 250n5 3OOn5 350n5 400ns 400n5 250ns 25On5 25On5 300n5 350n5 400n5 400n5 25On5 250n5 300n5 350n5 400n5 400n5 II *Recovery time is measured from lO.OmA to lO.OmA recovery to 5.0mA Maximum Current vs Lead Temperature ... z u o ~ "'u: ;:: u I.!;,,:= ~4" "'a: "' ............ 1 - "'""" """"~ '-.... 3 2 so T, - 75 100 "'" - ISO ~ 0: 0: 2.5 ~ 0 2 :e G2 u:"' ;:: :.l0: """' @ 1 1 "' > "I ..:? 175 .-< II ~ .5 ,-----,--,----,---------,,, 2.5 1.75 ...z~ "'a:a: f--+--+-+---'--'---1r- 1.5 ::J "l n 1.25 'V 1 !;;l .75 @ .5 "-< u '" 0 i'" "'u: 1.5 - 0: ~ ~- 125 @ 15 II . ~ ~ 25 ... .,'"~ 2.5! - ............. " I AMP SERIES ~ -f- 3.5 1.!;,.='Ia·~ ::J ""a: "' > 2 AMP SERIES -'i "'a:a: Maximum Current vs Lead Temperature 1.5 I I~=W' ~ Maximum Current vs Lead Temperature ;:: u "'0: "'~ .5 .."' 0: > .25 ~ ! II ~ n .S! 25 50 TL LEAD TEMPERATURE (-C) - 75 100 125 175 ISO LEAD TEMPERATURE (DC) 25 50 TL - 75 100 125 150 175 LEAD TEMPERATURE ( C) Reverse·Recovery Circuit - 990Q 10V D.C. D.U.T. + 10[1 + 20V ' - - - - - - - - - - 0 D.C.o---------l UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON. MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 6·151 PRINTED IN U.S.A. UTRIO-UTR60 Typical Forward Current vs Forward Voltage 10 10 1 AMP SERIES /~ !;:.-:.. /: ~ ... '"~ r/J?~foU -1--1-1 ::;) U.05 / I .,...02 .01 .005 I / / / .001 .2 .4 V, - .01 1.2 .2 1.4 '"0:0: ::;) VV IV / II .05 ...3 '"0:0: I ~ 8g; ~!~+ .02 .01 II .005 1 .002 III '"0: '" > '" I ~'C .5 '"C ./ 10 20 75'C 0: II 50 100 200 / V 500 \,000 ISO UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95·1064 1.4 .05 .1 .2 If) ~ 1.2 .4 .6 .8 V, - VOLTAGE (V) 1.2 U .001 .2 .6 .8 I VOLTAGE (V) ::;) h!oJ !oJ SJ /} u .,..I :< Z I II J .4 V, - ALL SERIES .01 .02 1/" ~/' .1 !I Typical Reverse Current vs PIV 0.5 AMP SERIES ...Z~ / I II .00\ Typical Forward Current vs Forward Voltage .2 I .002 .6 .8 I VOLTAGE (V) .5 II .005 J I-r- j / I .,...02 / / / .002 -I- -I- -I- 1 U.05 I ,U ,U ,U :::: ~ /Q SI- .1 ::;) I I / I / VV II I:,U Z .2 $~/(J~ .1 /// ~ .5 /'1 .2 '" /' '/ '/ ~ .5 '"~ UTR02·UTR62 Typical Forward Current vs Forward Voltage 2 AMP SERIES 2 ...Z UTROI-UTR61 100 50 12S'C o % OF PIV 1.4' 6-152 PRINTED IN U.S.A. UTR10-UTR60 Efficiency vs Frequency at Rated Current (Sine Wave) 100 I/) 90 -I- 1- ... ::lO 80 ::l'" 70 t?ffi 60 l!:> 0" ,p.> >-U 40 ~ci ... N 30 !.!o ,,-0 20 ... @ 10 -:I: Allowable Forward Surge vs Number of Cycles ALL SERIES 80 I' 60 f---+-++l-H-ttI~~~k:-H 20 2 3 4 6 810K lOOK 10 100 HALF CYCLES Of 60 Hz SINE WAVE 1M ... 1,000 100,000 ALL SERIES Square Pulse Current vs Duration for Non-Repetitive Pu Ise (8.3 ms sine wave equivalent to 3 ms square wave) .......... ~ ...;: ..... ..... 0 ::l 11 "l L--~~ __ 4 3,,, I'\. ['---... . 0 4 "" ~ ~ ............. 3 ~f'" :J 0 0 '" .., @ .: L='1> i= 2 3 ," II "- '\. ~ '" " "" ~ 2 50 75 100 125 ISO 175 T, - LEAD TEMPERATURE (OC) ..,0a: i'----..r-.,. .., .. ~ "a: 2 AMP SERIES II ~ 1 I -- 3.5 2.5 '\,.. 2 SO 25 T, - ~:0 ," 1.5 II ... ~ ""'~ ~ 1 75 100 125 150 LEAD TEMPERATURE (OC) ~ .5 ~ 0 (!l @ "" .""~ '-...... . r\ ""'-.. l'\.\ ~ 25 :E Z :;! a: :0 ~ :2 "'-\\ L=~,,, ""'l 5 I- L __ 'Ie" "- 0 "'- "- \\.\ .9 1 5 a: :J ~ .. '" Z :;! "" 600pf 400pf 320pf 240pf 200pf 160pf 600pf 400pf 320pf 240pf .2oopf 160pf 600pf 400pf 320pf 240pf 200pf 160pf Maximum Current vs Lead Temperature L:::: Ifs" I- " -IOV 250n5 250n5 250n5 400n5 400n5 400n5 250n5 250n5 250n5 300n5 350ns 400n5 250n5 250n5 250n5 3OOn5 350n5 4oon5 3 AMP SERIES _6 5- ~~)"r-... OV Maxi mum Current vs Lead Temperature \I I\,. ;; @25'C Time* a.SA. Maximum Current vs Lead Temperature V," 100°C l.lV@4A *RecQvery time is measured from lA to lA recovering to Maximum Junction Capacitance Maximum Reverse Recovery o 175 50 75 100 125 150 175 T, - LEAD TEMPERATURE (OC) Reverse Recovery Circuit 5V D.C. _ 0----------------, + SCOPE .-----'V'IAr-------D+------"'VIA,...----~HI· + L----------------o UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95-1064 10V D.C. 0----------------' 6-155 PRINTED IN U.S.A. UTR2305-UTR2360 UTR3305-UTR3360 UTR4305-UTR4360 Typical Forward Current vs Forward Voltage 10 10 V~ / 4 AMP SERIES Typical Forward Current vs Forward Voltage 3 AMP SERIES '/ (/ ~ .5 ... "'~ / .1 u.OS II / I .!'-.02 / .005 "'~ I II .2 .4 V, - .01 .002 1.2 .2 1.4 Typical Forward Current vs Forward Voltage 10 ...z "' 0: 0: :l ~lI i-!$~ "i- i- .!'-.02 .002 .DD1 I 1/ .2 .5 "' II> 0: "'> "' 0: 1/ I .01 .005 .2 0 .1/ 1/ I .3 0: 0: :l II .4 .6 .8 I V, - VOLTAGE (V) UNITROOE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 vs PIV 50'C l---':': 25'C L rt-' ·2 10 20 -- t-' 50 100 2DD L 7S'C L' j...../12S'C 150 1.2 1.4 _~ SOD 1,0DD I 1.2 .05 .1 Z ... "' IAo,ooo .1 0.05 • :< /[1 V .2 .6 .8 1 VOLTAGE (V) .01 .02 1/1/ 1/1/ II .4 V, - II Typical Reverse Current Vvv 2 AMP SERIES ~ If .001 .6 .8 1 VOLTAGE (V) / I .005 I .5 II I .... 02 / I (J I-f.~~~l i- +. I .1 0.05 / II CJ oC,) o() :l / 1/ 1/ II Z .2 / / .01 i~ .5 .... u u :l .DD1 5: L~J !J5J J& i-~ !~/+ /ii- I Z .2 .002 VIL LV ILL ~/ / / III II j 100 SO % OF PIV 1.4 6-156 PRINTED IN U.S.A. UTR2305·UTR2360 UTR3305·UTR3360 UTR4305 ·UTR4360 Elficiencyvs Frequency at Rated Current (SineWave) 100 en ... 90 olO 80 ~ "'- ... ...J ::> OlW ...0" 015'" Allowable Forward Surge vs Number of Cycles 100 -......... ALL SERIES 70 ">=z '"a: "a:ol en " "' 50 >-U 40 -=c::; N 30 W !do ... 0 20 w@ 10 ...en0 ~ 60 '" ~ 20 100 10 CYCLES AT 60 Hz HALF SINE WAVE Reverse Pulse Power Forward Pulse Current vs Pulse Duration YS 1,000 Pulse Duration 100,000 ~ ALL SERIES ALL SERIES Square Pulse CUrrent vs Duration for Non-Repetitive Pulse (8.3 ms Sine wave equivalent to 3 ms square wave) ~ 1,000 Square Pulse Power vs DUration for Non-Repetitive Pulse (8.3 ms sine wave equivalent to 3 ms square wave) 10,000 a: W W !: a: a: 0 0.. ol u 100 1111 1,000 W en ........ W ~ tl r--::::: :J... ;11 10,000 ... I I-- 40 1M lOOK 1K 2 3 4 6 810K FREQUENCY (Hz) -HALF WAVE RESISTIVE LOAD NO FILTER ~ z rYr'iiII Turret 1" centers-~ Turrel 1f2" cenlers-=~ Printed Circuit ----;' "- ... 0 1111 I W u" Z" W -:I: II r-... W 60 ~~ ~ 80 b ...J ol "- ol 0.. 100 10 10 .1,u5 1,us 10,us 1oo.us Ims lOms PULSE DURATION (SECONDS) UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95·1064 6·157 lOOns l,us IOtlS lOO,us Ims PULSE DURATION (SECONDS) IOms PRINTED IN U.S.A. II RECTIFIERS UTR4405·UTR4440 UTR5405·UTR5440 UTR6405·UTR6440 Fast Recovery, 6 Amp to 9 Amp FEATURES DESCRIPTION • • • • • • The same basic construction as all Unitrode diodes, but using a miniature stud mounting and larger junction area, provides a 9 Amp continuous and 150 Amp surge rating in a package only one fifth the weight and one quarter the volume of conventional types. Continuous Rating: to 9A Controlled Avalanche Surge Rating: to 1SOA Fast Recovery, 40kHz Operation PIV: to 400V Miniature Package ABSOLUTE MAXIMUM RATINGS 9 Amp & Amp 7.5 Amp Peak Inverse Voltalle Series Series Series SOV 100V 200V 400V UTR4405 UTR4410 UTR4420 UTR4440 UTR5405 UTR54l0 UTR5420 UTR5440 UTR6405 UTR6410 UTR6420 UTR6440 6AMP SERIES Maximum Average D.C. Output Current @ Tc = lOO'C . Non-Repetitive Sinusoidal Surge Current (8.3ms) Operating Temperature Range Storage Temperature Range . Thermal Resistance 6.0A ...... 120A... 7.5 AMP SERIES .. 7.5A 9.0 AMP SERIES . 9.0A .. ............... 135A.. .. 150A . -195'C to +175'C .. .-195'C to +200'C . ... 7.5'C/W ............................ . MECHANICAL SPECIFICATIONS UTR6405·UTR6440 .187" MAX. #4-40 x UTR5405-UTR5440 UTR4405-UTR4440 BODY C - Stud Mount .045" TYP, :~;g: ~~:~:~~~ LONG THREAD Part Identification: Numerals and polarity letter indicate UTR type number, e.g., UTR 4405. Polarity: Cathode to Stud is standard. Reverse polarity denoted by IIR" suffix. Finish: Metal parts gold plated per MIL-G-45204, Type II. Wei,ht: 1.5 grams, typical. Also available with insulated stud. Reference Design Note·l7. Installation Maximum unlubricated stud torque: 28 inchaounces. Insulating hardware supplied. Do not use a screwdriver in the turret slot for installation purposes, or damage may result. 6-158 ~UNITRDDE UTR4405·UTR4440 UTR5405·UTR5440 UTR6405·UTR6440 ELECTRICAL SPECIFICATIONS (at 25'C unless noted) Type PIV UTR6405 UTR6410 UTR6420 UTR6440 UTR5405 UTR5410 UTR5420 UTR5440 UTR4405 UTR44l0 UTR4420 UTR4440 50V lOOV 200V 400V SOV lOOV 200V 400V SOV lOOV 200V 400V Maximum Maximum Forward Voltage Drop 25'C 100'C 1.lV@6.0A lOpA 300pA 1.lV@5.0A lOJlA 300JlA l.lV@4.0A lOJlA 300JlA Reverse Current @ PIV Maximum Reverse Recovery Time* 300n5 300n5 400n5 500n5 300n5 300n5 400n5 SOOn5 300n5 300n5 400n5 SOOn5 *Recovery time is measured from lA to lA, recovering to O.SA. Typical Forward Voltage vs Forward Current Typical Forward Voltage vs Forward Current 30,000 I 20,000 10,000 I- +175'~t. +100'C 2,000 UJ 1,000 () I ::t oS +25'C 500 200 1,000 zUJ -SO'C 0: 0: III SO / / .2 .4 IF - II 20 .6 .8 1.2 1.4 .2 VOLTAGE (V) 10,000 ::t oS I- zUJ 0: 0: 1,000 200 I 100 -" SO 20 ~ UJ 0: 0: :> ~ lQ 50 0: 100 200 I ISO 100 ./ 25'C ./ 75'C ./ 125'C I SO % OF PIV II .8 -- 500 1.000 2.000 I I II I .6 -- ~ II .4 5 10 20 UJ // II IF - .--- z / / .2 50'C I- II / / / 10 1.4 .2 .3 .5 ,4---50'C '/ 'j 500 :> () IJ '/ 1.2 1 .05 .1 +175'~~ ~25'C +lOO'C- 2,000 I .6.8 VOLTAGE (V) ALL SERIES .02 ~/ 6 AMP SERIES .4 IF - Typical Reverse Current vs PIV Typical Forward Voltage vs Forward Current 5,000 I 50 I 1/ 30 1// / 100 i/ V ;/; !1 ~ 200 -" LVi 1// / ~ & ~(J A~() ~ () /I 100 / SOD :> III I I -~ 2,000 I- // / :> ~ V~ 5,000 'IL !I 1/ Ifr Z 0: 0: 10,000 II II 5,000 11 ~ 7.5 AMP SERIES 0V 9 AMP SERIES ::t oS 20,000 V// 1.2 1.4 VOLTAGE (V) UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326-6509 • TELEX 95·1064 6·159 PRINTED IN U.S.A. II UTR4405·UTR4440 Reverse Recovery Circuit + (/) 90 ::>0 80 ::>UJ 0" 70 ~~ 50 -II-..J ~> SCOPE ~ffi ALL SERIES I" 60 >u 40 UJ N -:t 30 ~o III D.U.T. 4!! ~g ...UJ@I 20 ~ 10 + ~---------------o~~.o---------------~ lK 2 3 4 6 810K lOOK 1M FREQUENCY (Hz) -HALF WAVE RESISTIVE LOAD NO FILTER Current Rating vs Case Temperature Forward Pulse Current vs Pulse Duration 10,000 100 i"\ ALL SERIES Square Pulse Current vs Duration for Non-Repetitive Pulse "\. 5 ~ I- z \ "z a: UTR6405-UTR6440 Efficiency vs Frequency at Rated Current (Sine Wave) 100 5V D.C. UTR5405-UTR5440 UJ a: a: 1"\ 50 ....... ::> r\. oC! (8.3 msec sine wave equivalent ""-' to 3 ms square wave) ALL SERIES 1,000 <> UJ 100 (/) ..J ::> Q. "\. 40 60 80 100 140 120 160 TEMPERATURE ('C) '" 180 10 l,us .1,u5 200 10.u5 1ms 100~s lOms PULSE DURATION (SECONDS) Reverse Pulse Power vs Pulse Duration 100,000 Square Pulse Current vs Duration for Non-Repetitive Pu Ise !a: 10,000 0 1,000 '"~ II. 111111Ir-ALL SERIES (S.l msec sine wave equivalent to 3 ms square wave) r-... 1111 11111 1111 100,u5 Ims '"..J (/) ::> II. 100 10 lOOns l.u.s laps 10ms PULSE DURATION (SECONDS) UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 6-160 PRINTED IN U.S.A. RECTIFIERS UTX l05-UTX125 UTX205-UTX225 Ultra-Fast Recovery, 1 Amp and 2 Amp FEATURES DESCRIPTION • • • • • These miniature ultra-fast recovery rectifiers permit operation at full power at frequencies as high as 100kHz square wave. They may be used as half wave rectifiers or as legs of a bridge. Continuous Rating: to 2A Controlled Avalanche Surge: to 25A Recovery Ti me less than 75ns Miniature Package • ABSOLUTE MAXIMUM RATINGS Peak Inverse Voltage 50V lOOV 150V 200V 250V 1 Amp 2 Amp Series UTXI05 UTX110 UTXll5 UTXl20 UTX125 Series UTX205 UTX2I0 UTX215 UTX220 UTX225 Maximum Average D.C. Output Current @ TA == 25°C @ TA == 100°C Non-Repetitive Sinusoidal Surge Current (8.3ms) Operating Temperature Range Storage Temperature Range Thermal Resistance . 1 AMP 2AMP SERIES SERIES ... l.OA ... O.5A. .2.0A ...... 1.(}A .... 20A.. . 25A -195°C to +175°C ... ..... -195°C to +200°C See Lead Temperature Derating Curve . MECHANICAL SPECIFICATIONS UTX105-UTX125 UTX205-UTX225 BODY A Part Identification: Green band indicates "UTX." Part number printed on body. Polarity: Denoted by green band. Weight: 0.26 grams, typical. 6-161 ~UNITRODE UTX105'UTX125. UTX205-UTX225 ELECTRICAL SPECIFICATIONS (at 25'C unless noted) Leakage Current @PIV Maximum Type PIV UTX 205 UTX 210 UTX215 UTX 220 UTX 225 UTX 105 UTX 110 UTX 115 UTX 120 UTX 125 50V 100V 150V 200V ·2SOV 50V 100V lSOV 200V 250V Max. Reverse Recovery Voltage Forward Drop 25'C 100'C Time* 1.0V@lAdc 3p.A SOp.A 75n5 1.0V @ 0.5 Adc 3p.A 50p.A 75ns *Recovery trme IS measured from lO.OmA to lO.OmA recovery to S.OmA. Maximum Current vs Lead Temperature Maximum Current vs Lead Temperature 1 AMP SERIES ~ I- '"a:a: "'a:a: ao 2 L 2.5 = Va" '" :e~ !:l o ~ >= U II ~ 1 « '"'" ~ 1. (') ~ a: a: '"> « .5 "' ~ I I I o o 25 50 Tl - 75 100 125 150 175 LEAD TEMPERATURE ('C) Reverse Recovery Circuit 25 100 en -I1- ... 10V D.C. + Scope 80 ::>'" 0'" 70 ~ffi ~~ >-u U· ~+ .5 "\ 50 75 100 125 ISO 175 T, - LEAD TEMPERATURE ('C) ZO ALL SERIES SO 40 30 ~o 20 "'@ 10 -:I: ~ ·60 ",- ... 0 ... 0 I 1M IK 2 3 4 6 810K lOOK FREQUENCY (H,) --HALF WAVE RESISTIVE LOAD NO FILTER = UNITRODE CORPORATION' 5 FORBES ROAD LEXINGTON, MA 02173 ' TEL. (617) 861-6540 TWX (7l0) 326-6S09 ' TELEX 95-1064 90 ::>0 e:> 9901l lOll , "'"-"~ ~ Efficiency vs Frequency· at Rated Current (Sine Wave) UZ 840 lKIl 20V D.C. ~ ............ .2 .2 + ,~4" "' a: ... a: ~ "\ "' ii: .:-..:::-t---j---j---j--L1.5~:-l 4 -~=%'~ ::> U (e) ii: '"~ ~ Z Z 2 AMP SERIES L:::::. Jfa" ~ I- 6-162 PRINTED IN U 5.A. UTX205-UTX225 UTX105-UT~125 Typical Forward Current vs Forward Voltage Typica I Leakage Current vs. PIV 10 ALL SERIES .001 .002 Z ::J u w I: w U.05 I 0:: I ./ _".02 l----+75'C .01 I 10 20 I .002 150 100 50 2 % OF PIV A V, - ~ ....z lK ALL SERIES r--- Square Pulse Current vs Duration for Non·Repetitive Pulse (8.3ms sine wave equivalent to 3 rns square wave) .001 .2 lA II II / II .4 .6 V, - VOLTAGE (V) .8 I 1.2 1.4 ~+fllmll=:ffl:mm Square CUrrent vsPulse ~ Duration for Pulse Non-Repetitive ! (8.3 ms sine wave equivalent to 3 ms square wave) 10K 0: w w ~ 0 0- U ..J II .002 11 J.1 Reverse Pulse Power vs Pulse Duration 0:: 0: '" II .005 12 w ~~ ,IV, '/ ~ iLL' 50'C I I-- 2AMP SERIES ..--:;;:: ~ 1....-- .05 .1 .2 w 0:: 0:: 10 1 AMP SERIES .005 .01 .02 :; .3 .... Typical Forward Current vs Forward Voltage lK w '"::J 100 ..J ::J 0- 0- 100 .J'i.l.llIl II 11111 lD IttS II 11m lOO~s lO,us Ims 10 lOms l.us lOOns PULSE DURATION (SECONDS) lO~IS 100.(15 1ms PULSE DURATION (SECONDS) 10ms Allowable Forward Surge vs Number of Cycles 100 "z ~ 0: I~l' JJUll 80 II1111 0: ::J 60 '"C w u: U W I I I Turret I" centers- W " ALL SERIES J_Ll 40 1--t-++t+l-lf~~~~I:::~-+-1 Tur~~:~:~~ C~i~~e.:;~ -...: r ~ 0- '"... o 20 = ~ I '" ~=W' 0: ~ W "" ~ " Z - I 0: 0: I'\. :::l 4 '\ 1'\ 3 '\ 1""'- 0 0 :E '":0 ii: ® >= u \ ""'- 1"\.\ ~ K '\ 1\ 2 4 W W .......II "" > "I ~ "" "-'" I"---. 2 0: -........... W 1 - I"-. 1\\ f'..\\ 25 ~ 25 "i ~J'4" W 0: "-I "" L='li!" "- U ." = Va" '" Z W '\ ~ L I- 1~_3(8" 5 II Maximum Current vs Lead Temperature Maximum Current vs Lead Temperature 50 T, - r"-. "- """'" I'\. '\ "\ 1\ "'"L"\.\~ 75 100 125 150 175 LEAD TEMPERATURE (OC) 50 75 100 125 150 175 T, - LEAD TEMPERATURE (Oe) Efficiency vs Frequency at Rated Current (Sine Wave) Reverse Recovery Circuit 100 5V D.C. IJ) + SCOPE ;:~ :::lo eo> :::lw 0" ~ffi .,> ~-u 4~! D.U.T. ~c + 80 70 60 50 40 w N -J: ~o 30 LU@ 10 ,,-0 ,,-0 20 lK 10V 0 - - - - - - - - - - - 1 D.C. UNITRODE CORPORATION ° 5 FORBES ROAD LEXINGTON, MA 02173 ° TEL. (617) 861-6540 TWX (710) 326·6509 ° TELEX 95-1064 ALL SERIES 90 2 3 4 6 8IOK lOOK 1M FREQUENCY (Hz) - HALF WAVE RESISTIVE LOAD NO FIL fER 6-165 PRINTED IN U.S.A UTX 3105-UTX 3120 Typical Leakage Current vs PIV ALL SERIES .01 .02 =< .3 I- z UJ a: a: I .05 .1 I 1./ .2 - :::l UJ a: 1 OJ V75°C en 10 20 - 50 100 200 SOO ..., u .05 I I "'" .02 .01 I .005 .002 .001 ..., u U '" (J II .2 .4 VF 11 ~.02 II 1 .01 il .005 .002 1/ .001 .6 .8 1 VOLTAGE (V) - .05 I II I 1.2 Forward Pulse Current vs Pulse Duration uu IS -t-~!~/~ .,. -t- J ~ .1 :::l II 1/ ~u ~ Z .2 j I II II III .5 UJ 11'1 II I 125°C 100 50 % OF PIV ou 5: I- Ik .,. .,.~f~t .,. I II 1 II :::l 1,000 ISO ~u .2 ~ .1 V '/ 3 AMP SERIES il/ /1 1 1 II Ii II I ~ .5 ...Z 10 Vi/ / r- .5 Typical Forward Current vs Forward Voltage V 4 AMP SERIES ___ 25°C (J > UJ 10 sooC UJ a: Typical Forward Current vs Forward Voltage ./ UTX 4105-UTX 4120 1.4 2 I J II 1 .4 V, - ll.II • ~ 1 VOLTAGE (V) 12 1.4 Reverse Pulse Power vs Pulse Duration 10,000 100,000 1:::= ALL St;RIt;S .+?. .'!..u~!: Non-Repetitive Pulse Power vs Pulse DUration (S.3 ms sine wave equivalent to 3 ms square wave) 5: ~ ~ 1,000 a: UJ UJ ;: a: a: ~ :::l (J 1,000 UJ '" UJ ~ (8.3 ms sine wave equivalent to 3 ms~square wave) 10,000 oJ 100 :::l :::l Il. Il. 10 100 III 10 . 1fJS l.us lOps lOOp.s Ims lOms lOOn • IpS PULSE DURATION (SECONDS) IOttS 100,u5 Ims PULSE DURATION (SECONDS) lOms Allowable Forward Surge vs Number of Cycles ALL SERIES I I ~~r~~: 1" c~nte~. 111111 UJ "~ I 60 '"o I--t--+-++++++I~~-...;::;;~~i<:-+f?-I Tur~~:n~~~ c;i~~~~ UJ ii: 40 I ~ r--= 8 Il. ~ 20 '0 10 100 CYCLES AT 60 Hz HALF SINE WAVE UNITRODE CORPORATION· 5 FORBES ROAD LEXI NGTON, MA 02173 • TEL (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 6-166 1,000 PRINTED IN USA. HIGH VOLTAGE RECTIFIERS, RECTIFIER MODULES & MULTIPLIERS 7-1 7-2 PRODUCT SELECTION GUIDE HIGH VOLTAGE RECTIFIERS & RECTIFIER MODULES s~ g ~ DG SA-SM STANDARD RECOVERY AVERAGE D.C. OUTPUT CURRENT .100•.25OA 1.0kV. .250.5OA .50- .75· lA .75A HVElO 1· 1.5A 2.5- 1.52A 5f\ 5· SA 67A SXSlO SL SJ HSlO SK lN3643 SJ (USl2) SA . f.¥, , I'· ',. HSl5 SXSl5 SL (USl5) SA KXSl5 SM (US20) SA SXS20 SL KXS20 SM HS25 (US25) SK S8 SXS25 SL SK HVEl5 SJ lN3644 f;·;~.!·:y': SJ .:0' .", , ,". I'J;8!\y , (USl8)' SA "> HS20 SK HVE20 SJ lN3645 SJ (USB2.5) OH HVHS 2500 PC HVE25 SJ KXS25 (UDE2.5) (UGE2.5) SM DO DG (UDB2.5) DO lN3646 SJ HS30 HVE30 SXS30 SL (US30) SJ S8 SK :,,' KXS30 SM lN3647 SJ (US35) SC HS40 SK (uS40) SC SXS40 SL KXS40 SM HVE40 SJ lN5l8l SJ (US45A) SO Parentheses ( UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173· TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95-1064 ) deSignates product uSing fused-in-glass Single chip rectifiers; all others use stacked chips. 7-3 Printed in U.S.A. HIGH VOLTAGE RECTIFIERS & RECTIFIER MODULES HVH 5000 PB HVHF 5000 PB (US50A) SO SXS60 SL (US60A) KXS60 SM SO (UDA7.5) DO (UDB7 HVHS 7500 PC DG DG DO (uS80A) SE SXS80 SL HVH 10000 PB HVHF KXS80 SM (UDA10) KXS100 HVHS SM 10000 PC DO. 1N5597) DE DG 10000 PB SXS100 SL (USBlO) DH (USSlO) DH HVH HVHS 12500 12500 PC PB HVHF 12500 PB UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861~540 TWX (710) 326~509 • TELEX 95·1064 Parentheses ( ) designates product uSing fused-in-glass single chip rectifiers; all others use stacked chips "Available as JAN 7-4 PRINTED IN U.S,A ~ PRODUCT SELECTION GUIDE S ~DDE ~ BE DF,DG STANDARD RECOVERY HVHJ 15K (US150A) PA (USS15) DH SF HVH 15000 (UDA15) DD PB HVHS 15000 PC HVHF 15000 PB (688-15) BE HVHS 17500 PC (US180A) (688-18) HVHJ 20K SF BE (US200A) HVH 20000 SF PA PB HVHS 20000 PC HVHF 20000 PB (688-20) BE HVHJ 22.5K PA HVHJ 25K PA (688-25) BE HVH 25000 PB HVHF 25000 PB HVHJ 30K PA HVHJ 35K PA HVHJ 37.5K PA HVHJ 40K PA HVHJ 45K PA UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95-1064 Parentheses ( ) deSignates product usmg fused-m-glass smgle chip rectifiers; alJ others use stacked chips. 7-5 PRINTED IN U.S A HIGH VOLTAGE RECTIFIERS & RECTIFIER MODULES / ~ ~ / SA-SN PA- PC FAST RECOVERY (USR12) SA HA15* (USR15) SX15* KX15* SK SA SL SM HVX15 SJ (USR18) SA HA20' (USR20) SX20' KX20* SK SB SL SM HVX20' SJ HA25* HVF 2500t SX25* SK HVX25* PB (UFB2.5) SJ (USR25) OH SL SB HVFS 2500t PC (UDD2.5) KX25* SM (UDF2.5) DO (UGF2.5) DG DO HA30' (USR30) SX30* KX30' SK SC SL SM (USR40A) SX40' KX40* SO SL SM HVX30' SJ (USR35) SC :; . ~;·r~ !·':~£f·:;~~~·;r ,:~~ , , .. .".': , Parentheses ( UNITRODE CORPORATION. 5 FORBES ROAD LEXI NGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95·1064 • " ..!~ . • ) designates product uSing fused·in·glass single chip rectifiers; all others use stacked chips. 7·6 PRINTED IN U.S A ~ ~9 Q . BE PRODUCT SELECTION GUIDE U OG OH FAST RECOVERY ;.~, Inverse Voltage 5.0kV > ....."">.:.".'~. ¥.', AVERAGE. D.C. OUTJ>UT CURRENT Peak .' •050- 1.5- ; 22.5A .". 2.S: . .lOOA .250.50A .50.75A HA50 (USR50A) HVF 5000t SX50' (UDC5) SL DO MVX50 PB (UFB5) (UDD5) PC SJ (UFS5) OH DO KX50' DG SM (UGF5) so SK .75- '1- .100-. .250A .. lA 1.5A 2A M (UDF5) DO' IUGD5) HVFS 5000t OH OG 6~DkV (USR60A) SX60' KX60' SO SL SM '. 7.OkV (USR70A) SE 7.5kV HA75 HVF 7500t (UDC7.5) HVX75 PB (UDD7.5) SJ (UFB7.5) DO SK (UFS7.5) HVFS 7500t PC (UGD7.5) DG (UGF7.5) OH DG DO OH ,B.01<\' IOkV (USR80A) SX80' KX80' SE SL SM HAlOO (USRIOOA) KXlOO' (UGDIO) SE HVF lOOOOt (UDCIO) SK DO SM OG HVXlOO PB (688·lOR) SJ SXIOO' BE HVFS lOOOOt PC SL (UFSlO) OH 12kV (USR120A) (688-12R) SF BE 12 . 5kV, HVFS 12500t HVF 12500t PB Reverse Reeov$ty lime: {tvlliX.l" • .250ns 500ns . . , ' 500ns .. .. 250ri»*, . 'v" . . "l5Onst': ~~; ....• ' .. :-., 50lJns ~., ~ ...> ,. ~ . .. ., . SOOns' 250ns*" ... ' ';il ;~;~.t, PC L~2;Z~; ~;~}4i~;~~~ Parentheses ( ) deSignates product using fused'In,glass single chip reclillers; all others use stacked chips .. UNITROOE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173' TEL. (617) 861-6540 7-7 PRINTED IN U.S.A TWX (710) 326·6509 • TELEX 95-1064 PRODUCT SELECTION GUIDE HIGH VOLTAGE RECTIFIERS & RECTIFIER MODULES .. ..8 ~ FAST RECOVERY / /... Q,.I! Iw:.•.~ HVFS 17500 PC HVJX 20K PA (USR180A) SF (688-18R) BE (688-20R) BE HVF 20000t PB (688-25R) BE HVF 25000 t PB HVFS 20000 PC HVJX 22.5K PA HVJX 25K PA HVJX 30K PA HVJX 35K PA HVJX 37.5K PA HVJX 40K PA HVJX 45K PA Parentheses ( UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 . TWX (710) 326-6509 • TELEX 9S-1064 ) designates product usmg fused-m-glass single chip rectifiers; all others use stacked chips. 7-8 PRINTED IN U.S.A. CUSTOMER SPECIFICATION SHEET FOR SPECIAL RECTIFIER ASSEMBLIES Date _ _ _ _ _ _ _ __ Company Name _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ,Phone _ _ _ _ _ _ _ __ Address _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _City _ _ _ _ _ _ _ _ State _ _ _ _ _ __ Engineer _ _ _ _ _ _ _ _ _ _ Ext. _ _ _ Buyer _ _ _ _ _ _ _ _ _ _ _ ,Ext. _ _ _ _ New Application,----Existing Application, Presently Using _ _ _ _ _ _ __ Quantities to Quote _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _._ _ _ _ _ _ _ __ ELECTRICAL REQUIREMENTS Rectifier Application: 1. Circuit: _ _ _ _ _ Half Wave _ _ _ __ Center Tap 2. AC Input: _ _ _ _ _ Volts CPS 3. DC Output: 4. Max. Transient Voltage: Volts 5. Max. Fault Current: 6. Type of Load Doubler Phase Amps At Bridge Wave Shape °c Volts Amps For Sec. Modulator Application: 1. Use 2. Peak Voltage ___~____----__---------------V 3. Wave Shape 4. Rise or Switching Time _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Sec. 5. Peak Pulse Current ~---------------AmpsAt-------oC 6. Pulse Duration ____~----------------------__ Sec. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Amps 7. Average Current ______________________________________________ PPS 8. PRF ENVIRONMENTAL REQUIREMENTS Operating Medium Operating Temperature Range Storage Temperature Range Other Requirements _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ MECHANICAL REQUIREMENTS Maximum Size _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ Maximum Weight _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ Terminal Provisions _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ Mounting Provisions _ _ _ _ _--'-_ _ _ _ _ _._ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ 7-9 ~UNITRDDE RECTIFIER ASSEMBLIES JAN IN5597 JAN IN5600 JAN IN5603 High Voltage Stacks, 1Amp to 5 Amp, Military Approved FEATURES DESCRIPTION • • • • • • • This series of military high-voltage highcurrent stacks offers the utmost in reliability as required in military system designs. The rectifiers are assembled with diodes which have been subjected to TX type screening tests. Qualified to MIL-S-19500/404A PIV: to lOkV Surge Ratings: to 200A Current Ratings: to 5A Only Fused-in-Glass Diodes Used Controlled Avalanche Characteristics Modular Package For Easy Stacking ABSOLUTE MAXIMUM RATINGS JAN lN5597 JAN lN5600 JAN lN5603 lOkV ..... 5kV ........ . .. 5kV Peak Inverse Voltage Maximum Average D.C. Output Current @ Tc 75'C Non-Repetitive SinuSoidal Surge (8.3ms) @Te 75'C. Operating and Storage Temperature Range = lA = .30A .......... 2A... BOA .5A ..... 200A -65'C to +15O'C MECHANICAL SPECIFICATIONS DE THREAD RELIEF TO /' A 012 OUT TO CIA = MAX ",0, MINOR OIA FROM 1 TO 3 THOS TERMINAL 2 020 MIN )(45 CHAM DF JAN 1N5597 Lt, A B c C, o JAN 1N5600 JAN 1N5603 NOTES Minimum .73 (18.54) .240 .265 1.85 .57 (6.10) (6.73) 46.99) (14.48) 1. All marking shall be on cathode side of module. 2. Threaded stud ¥4-2BUNF-2A. 3. Threaded stud %-24UNF-2A. 4. Threaded insert ¥4-2BUNF-2B. Ltr A2,6 C C, 00 00, 5. 6, 7. 8. Dimensions in inches With metnc equivalents (mm) in parentheses Minimum Maximum .970 (24.64) 1.020 (25.91) 0 ( .03) .307 (7.80) .317 (B.05) .318 (B.OS) .400 (10.16) 3.450 (87.63) 3.650 (92.71) .95 (24.13) 1.250 (31.75) NOTES B 3 5.7 Threaded insert %-24UNF-2B. Cathode connected to terminal 2. Cathode connected to terminal 1. Module contour within dimension A is not specified. 7-10 [l)JJ UNITRDDE JAN IN5597 JAN IN5600 JAN IN5603 Electrical Specifications (at 2S'C unless noted) Maximum Forward Voltage Drop Type PIV Min. Max. l3V@lA 6V@2A 6V@5A 19V@lA lOV@2A 10V@5A Maximum Leakage Current @ PIV TA - kV JAN IN5597 JAN IN5600 JAN 1N5603 10 5 5 25°C TA - Reverse 100'C ~A pI pI joules 1 5 5 75 100 100 5 7 15 30 30 40 2 6 12 Typical Forward Voltage vs. Forward Current 10K JAN1NS597 5K W// /; '// :;( lK S 500 >- / Z ~ 200 OJ 100 0: ~ 0: o.. ~& 20 10 / E ~ 500 >- z 1 0 OJ 100 OJ " .5 1.25 1.5 MULTIPLY V F BY, z ~ 200 0: OJ 100 OJ o 0: ~ 0: o .. 50 I r-- 10 I I o L L L .25 .5 .75 FORWARD VOLTAGE - 1.25 1.5 MULTIPLY VF BY, JAN1~5600 L 50°C .05 I ;f: .1 ..- .:0 .2 >- .5 ~~~§; 1 1 I ~ I I ___ +25'C z "'0:0: kJ - OJ C,) I I I 10 II .02 IJ III II 20 .01 I V~ >- I / I Typical Leakage Current vs. PIV 1// '/ JAN1N56D3 ~1(* f! fl If / II I I .75 10K S 500 r-- u 1 Typical Forward Voltage vs. Forward Current ;f: lK 20 o .. I L 2K 50 /1 / I II / II / II FORWARD VOLTAGE - 5K o « ~ 0: I If .25 V ~ 200 0: !O "'I j'" ""i-""i-.... 1/ II I I 1/ / / VI li V_L ;f: lK // I II/ IVi I/~nu" 50 W; j/ 2K II II 0: u o JAN1N56OD 5K 2K Transient Energy Absorption ~A Typical Forward Voltage vs. Forward Current 10K Capacitance @ V, = looV Min. Max. "««"''" I "' ...J 10 20 50 100 ~ 200 ~ +75'C L 125'C 500 1 o .25 .5 .75 FORWARD VOLTAGE - 1.25 lK 1.5 125 MULTIPLY VF BY, UNITRODE CORPORATION 0 5 FORBES ROAD LEXINGTON, MA 02173 0 TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95-1064 7-11 100 75 50 0/0 OF PIV 25 PRINTED IN U.S.A. JAN IN5597 JAN IN5600 JAN IN5603 Typical Leakage Current .001 .002 VS. PIV f- JAN! N5597 -- SO"C .os .1 ::> .2 a: a: r (J (!J '" .5 1 .... z 1,/ 10 20 1 --t;soc 100 S "« « 10 20 L +25°C .1 I--'" so 100 200 ~ +75°C .1 ~5°C ~ lK 25 7S so % OF PIV - 500 'I 12S UJ '" ~ ~7SoC ..J SDoC .S :> u PIV ~ .os .1 .2 0: 0: s oc VS. JAN!~5603 UJ I 2 50 100 ~ - .... z UJ UJ .01 .02 1 .oos :;( .01 .5 .02 « « UJ Ty"pica I Leakage Current 125 100 7S 50 25 % OF PIV Current Derating Curve 100 \ \ (!J z ;:: « a: 1f. \ 50 \ \ o -" o 50 100 150 CASE TEMPERATURE ec) 200 Discrete diode inspection lot . • 100% Burn-In of discrete diodes 1. Measurement of specified parameters 100% process conditioning of discrete diodes 2. Reverse bias burn-in 1. High-temperature storage 3. Measurement of specified parameters to 2. Thermal Shock (temperature cycling) 3. Reverse-recovery time I determine delta f--t 4. Lot rejection criteria based on rejects from burn-in test Preparation for delivery UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95·1064 Review of groups A, B, and C data for lot accept or reject. 7·12 H Assembly and encapsulation of discrete diodes into bridge assembly I J ~ Inspection test to verify LTPD Group A Group B Group C PRINTED IN U.S.A. RECTIFIER ASSEMBLIES 688 SERIES High Voltage Stacks, Standard and Fast Recovery FEATURES • PIV: from 10kV to 25kV • Surge Rating: to 20A • Recovery Time Available: to 500ns • Current Ratings: to 0.6A • Bonded Plate for Maximum Heat Transfer • Controlled Avalanche Characteristics • Only Fused-in-Glass Diodes Used ABSOLUTE MAXIMUM RATINGS Peak Inverse Voltage Maximum Average D.C. Output Current. Non-repetitive Sinusoidal Surge (8.3ms) Operating and Storage Temperature Range Thermal Resistance Junction to Ambient Junction to Case . DESCRIPTION This series of high power stacks has a unique packaging design that provides characteristics not obtainable in conventional molded epoxy packages. This series, therefore, is ideally suited for high-voltage, high-power applications. .... IOkV to 25kV .. See Electrical Specifications .. 20A ..... -65'C to +150'C ... 25'C/W .... IO'C/W 688 SERIES A B C 0 ins. mm. 1.140 MAX. 2.985-3.015 2.110-2.140 .740-770 .720 .750 28.96 MAX. 75.82-76.58 53.59-54.36 1880-19.56 18.29 19.05 BE .dd suffix R to denote Fast Recovery version. For example, for recovery time, trr == SOOns; order 688-10R. TYpical Weight - 2.5 ounces 70 grams MARKING Cathode - Positive Output Anode - Negative 7-l3 [1JJ UNITRDDE 688 SERIES Electrical Specifications (at 25°C unless noted) Maximum Ratings Maximum Average Maximum ~eakage Maximum Forward Type Standard And Fast Recovery* 688-10 688-12 688-15 688-18 688-20 688-25 D.C. Output Current @PIV Voltage Drop PIV kV 10 12 15 18 20 25 Current TA - 25°C p.A TA _100°C p.A 2 100 17V@0.4A 20V@0.4A 25V@0.4A 30V@0.4A 34V@0.4A 42V@0.4A Tc _100°C Amps 0.60 0.50 0.40 0.35 0.30 ·0.20 *Add suffix R to denote Fast Recovery version. Typical Forward Voltage Per Leg vs. Forward Current Typical Leakage Current VS. PIV 10 vV vv VI Ii' ,l>- vv / / ~ .5 z I- "'0:0: .2 '-' .1 .05 :> . 0 0: ;: 0: 0 "- 1--'-- /;::;:"1-/ II .005 .002 .001 t-t- ,<.>, ~8/OJ?- .02 .01 II I o .2 // / II .4 / .6 V-V .01 .02 .05 .1 ~ .2 Iz .5 /' +25"C "'0:0: :> '-' ."''"."' <.'l II /'o"C ..J I .J-"'": 10 20 50 100 200 500 +7S'C ./ V+125,C I lK .8 1 1.2 FORWARD VOLTAGE - MULTIPLY V, 125 1.4 BY, 100 75 50 25 % OF PIV Current Derating Curve 100 \ <.'l Z ;:: .. 50 \ 0: ;II. ,I 6 UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95-1064 I o 50 100 150 CASE TEMPERATURE ('C) 7-14 200 PRlfHED IN U S.A. HIGH VOLTAGE SILICON RECTIFIERS HA10-100 HVX10-100 100-250mA Fast Recovery, Miniature FEATURES • PI v: From 1.0kV to 10kV • 250nS Reverse Recovery • High Surge Current Ratings • Low Reverse Leakage • Corona Free DESCRIPTION The HVX/HA silicon rectifier series combine a medium rectified current capability and high reliabilty in a miniature package for commercial, industrial and military applications. The use of cylindrical die construction and metallurgical bonds minimize electrical and mechanical stress, contributing to long life. The fast reverse recovery characteristics enhance applications in high frequency power conversion and control circuits. ABSOLUTE MAXIMUM RATINGS Peak Inverse Voltage ..............•.................................. 1.0kV to 10kV Maximum Average Rectified Current ....... , ............ See Electrical Specifications Maximum One Cycle Surge 8.3mS ................. " ... See Electrical Specifications Maximum Recurrent Peak Current Surge ................ See Electrical Specifications Operating and Storage Temperature Range ............. , ........... -65°C to +150°C MECHANICAL SPECIFICATIONS I~ --II 031 ± 002" orA (079) ± (0 OS) 999% SILVER j HVX10-100 SJ HA10-100 SK 410 ± .005" (1041) ± (0.13) c=J/=== I-I 1.12 M.n (284) I .140± 005"OIA (3.57) ± (0 13) --j DimenSions In Inches and (millimeterS) .031 ± 002" D1A (0.79) ± (0.05) 99.9% SILVER ~I .200 ± .005" (5.08) ± (013) ~j====4DI=== ~ DimenSions In 112 Min (284) --jI Q 100 ± .005" DIA. (2.54) ± (0.13) 11.::/1 H Inches and (millimeters) Reformatted 12179 7·15 ~UNITRODE HA10-l00 HVX10-100 Type Type ELECTRICAL SPECIFICATIONS (at 25°C unless noted) Peak Maximum Maximum Maximum Inverse Reverse Forward Reverse Voltage' Voltage Recovery Current @100mA @PIV Time PIV HVX10 HVX15 HVX20 HVX25 HVX30 HVX40 HVX50 HVX75 HVX100 HA10 HA15 HA20 HA25 HA30 HA40 HA50 HA75 HA100 VF IR V 25°C pA 100°C pA V 1000 1500 2000 2500 3000 4000 5000 7500 10000 1 1 1 1 1 1 1 1 1 20 20 20 20 20 20 20 20 20 5 5 5 5 5 12 12 12 12 MAXIMUM RATINGS Maximum Maximum Recurrent Average Rectified Currentt Maximum Peak Current One Cycle Surge 8.3mS Surge IF 'F(surge) mA 125°C mA A A 125 125 125 125 125 62.5 62.5 62.5 62.5 62.5 2.5 2.5 2.5 2.5 2.5 25 25 25 25 1.0 1.0 1.0 1.0 14 14 14 14 14 4 4 4 4 TRR 10 nS 50°C mA 100°C 250 250 250 250 250 250 250 250 250 250 250 250 250 250 100 100 100 100 50 50 50 50 *Operation and testing of devices over 10,000 V/inch may require re-encapsulation or immersion in a suitable dielectric material. t The stated, AVERAGE RECTIFIED CURRENT ratings require no heat sinking, special mounting orforced air across the body of the device. NOTE: Maximum lead temperature for soldering is 250° C, 3/8" (9.5mm) from case for 5 seconds maximum. MAXIMUM FORWARD CURRENT VS AMBIENT TEMPERATURE <.!l Z ~ II: 100 1\ 1\ fZ W u..1I: o a:: ~aCl 75 ow II: ffi ~ 50 ~ 0.. II: o u.. W 25 <.!l « II: w > « 0 -55 25 75 50 100 " 125 AMBIENT TEMPERATURE (OC) REVERSE RECOVERY TEST CONDITIONS: I F = 50 mA, I R = 100 rnA, I RR = 25 rnA 150 175 REVERSE RECOVERY WAVE FORM t " t --- T. . i- ~ """,,- io" ' .. '. 1 REVERSE RECOVERY TEST CIRCUIT R.U.T. I / 1 .01 PULSE . , -i>I-- 5111 SCOPE TEKTRONIX 7403 OR EQUIVALENT GENERATOR HEWLETT PACKARD 214A OR EQUIVALENT SOli 3411 120 .J UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326·6509 • TELEX 95-1064 7·16 PRINTED IN U.S.A. HIGH VOLTAGE SILICON RECTIFIERS HS10-100 HVE10-30 (1N3643-47) HVE40-100 (1N5181-84) 10D-250mA Standard Recovery, Miniature FEATURES • PI v: From 1.0kV to 10kV • JEDEC Types • High Surge Current Ratings • Low Reverse Leakage • Corona Free DESCRIPTION The HVE/HS silicon rectifier series combine a medium average rectified current capability and high reliability in a miniature package for commercial, industrial and military applications. The use of cylindrical die construction and metallurgical bonds minimize electrical and mechanical stress, contributing to long life. A 2 microsecond reverse recovery characteristic improves the circuit efficiency of power conversion and control systems. ABSOLUTE MAXIMUM RATINGS HS HVE Peak Inverse Voltage ........ , ........ , .... , ........... " ......... , ................................1.0kV ................... 10kV Maximum Average Rectified Current ............................ , .. '" ............................. See Electrical Specifications. Maximum One Cycle Surge 8.3mS ................................................................. See Electrical Specifications. Maximum Recurrent Peak Current Surge ........................................................... See Electrical Specifications. Operating and Storage Temperature Range ......................................................... : .... -65 0 C to +175 0 C .... .. MECHANICAL SPECIFICATIONS HVE10-30 (1 N3643-47) HVE40-100 (1N5181-84) SJ .410 ± 005 (1041) ± (0.13) o 0) 140 ± .005 DIA (3.56) ± (0.13) DimenSions In Inches and (millimeterS) HS10-100 r .031 ± .002 DIA (0.79) ± (0.05) 999% SILV 1--1 I I SK 200 ± 005 (5.08) ± (0.13) ~====lDI=== ~ \~~~~~ ~ DimenSions In 100 ± 005 DIA (254) ± (0.13) Inches and (millimeters) Reformatted 12179 7-17 ~UNITRDDE HS10-100 HVE10-30 (1N3643) HVE40-100 (1N5181-84) ELECTRICAL SPECIFICATIONS (al 25'C unless noled) Peak Maximum Reverse Current Inverse Voltage* Maximum Reverse Recovery Time Forward Voltage@ 100mA Max. @PIV Maximum Average Maximum Recurrent Rectified Currentt Current Peak Maximum One Cycle Surge 8.3mS Surge IR PIV 21'S 21'S MAXIMUM RATINGS Maximum VF 25°C 100°C 10 25°C 50°C 100°C 150°C IF(surge) IF Type V /lA /lA V mA mA rnA A A HS10 HVE10 (IN3643) 1000 1 20 3.5 250 150 50 2.5 14 HS15 HVE15 (IN3644) 1500 1 20 3.5 250 150 50 2.5 14 HS20 HVE20 (1 N3645) 2000 1 20 3.5 250 150 50 2.5 14 HS25 HVE25 (1 N3646) 2500 1 20 3.5 250 150 50 2.5 14 HS30 HVE30 (IN3647) 3000 1 20 3.5 250 150 50 2.5 14 HS40 HVE40 (IN5181) 4000 1 20 10.0 100 60 20 1.0 4 HS50 HVE50 (IN5182) 5000 1 20 10.0 100 60 20 1.0 4 HS75 HVE75 (IN5183) 7500 1 20 10.0 100 60 20 1.0 4 HS100 HVE100 (IN5184) 10000 1 20 10.0 100 60 20 1.0 4 Type 'Operation and testing of devices over 10,000 Vlinch may require re-encapsulation or immersion in a suitable dielectric material. tThe stated, AVERAGE RECTIFIED CURRENT ratings require no heat sinking, special mounting or forced air across the body of the device. NOTE: Maximum lead temperature for soldering is 250'C 3/8" (9.5mm) from case for 5 seconds maximum. HVE/HVE1Q-30/1N3643-47 « 300 f- 2SO " ""- SZ w a: a: :::> 200 0 c a: ISO ~ a: f2 100 HVE/HVE4Q-l00/lN5181-84) ~ 125 w :::> o r'\. W a: w > « SO o o -65 25 50 75 75 C C) « I'" f- ZI00 a: a: 100 a: ~ SO a: r'\. US "- w ~ ~ 150 "" , ~ f2 25 W ~ 0 o -65 175 AMBIENT TEMPERATURE (OC) 25 50 '15 100 125 ~~ 150 175 AMBIENT TEMPERATURE (OC) REVERSE RECOVERY TEST CONDITIONS: I F =50 rnA,1 R =100 mA, I RR =25 rnA REVERSE RECOVERY WAVE FORM I ~T t ~ .01 '. 1 REVERSE RECOVERY TEST CIRCUIT R.U.T. .. _ I / / ,."",.. .. T ' lK SIn PULSE GENERATOR HEWLEn PACKARD 214A OR EQUIVALENT son 120 J UNITRODE CORPORATION. 5 FORBES ROAD LEXI,NGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326·6509 • TELEX 95·1064 7-18 PRINTED IN U.S.A. HIGH VOLTAGE SILICON RECTIFIERS HVF2500-25000 MULTISTAC Fast Recovery, High Current FEATURES • PIV: From 2.SkV to 2SkV • 150nS Reverse Recovery • High Surge Current Ratings • Low Reverse Leakage • Corona Free DESCRIPTION The HVF MULTISTAC high current, high voltage silicon rectifier's convenient size and high power capability meets the reliability requirements of commercial, industrial and military applications. Reliability with economy are obtained through the use of proprietary innovations in manufacturing technique. Cylindrical die construction and metallurgical bonds minimize electrical and mechanical stress, contributing to long life. ABSOLUTE MAXIMUM RATINGS Peak Inverse Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . .. 2.5kV to 25kV Maximum Average Rectified Current ...................... See Electrical Specifications Maximum One Cycle Surge 8.3mS ........................ See Electrical Specifications Operating and Storage Temperature Range ........................... -55°C to +150°C MECHANICAL SPECIFICATIONS 1..- CASE LENGTH ===============(C HVF2500-25000 --I . pi== T PB 250 ± 01" 1635mm) ± 1 254mm) 50 ± 02" ± (50Bmm) 1{1270mm) TINNEO COPPER LEAOS 051 ± 001" DIA 1130mm) ± 1·254mm) . - - - - - 2" Mon - - - - - (50.80rnm) DimenSions In L.....'F= I ~ r ~-----~ PART NUMBER t CASE LENGTH INCHES MILLIMETERS HVF2500 1.125 ± .02 28.58 + .508 HVF5OO0 2.000 ± .02 50.80 ± .508 69.85 ± .508 HVF7500 2,750 ± .02 HVF10000 3.500 ± .02 88.90 + .508 HVF12500 4.250 ± .02 107.95 ± 508 HVF15000 4.260 ± ,02 107.95 ± .508 HVF20000 4.250 ± .02 107.95 ± .508 HVF25000 4.250 ± .02 107.95 ± .508 Inches and (millimeters) Reformatted 12/79 7-19 ~UNITRDDE HVF2500 - 25000 ELECTRICAL SPECIFICATIONS (at 25'C unless noted) Peak Maximum Reverse Current Inverse Type Voltage* Maximum Forward Voltage @loMax. VF @PIV PIV IR V HVF2500 HVF5000 2500 5000 7500 10000 12500 15000 20000 25000 HVF7500 HVF10000 HVF12500 HVF15000 HVF20000 HVF25000 25'C 100'C I"A 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 I"A 15 15 15 15 15 15 15 15 MAXIMUM RATING$ Maximum Reverse Recovery Time Maximum Maximum Average Rectified Currentt One Cycle Surge 8.3mS TRR V nS 5.5 11.0 150 150 16.5 22.0 27.5 33.0 150 150 150 150 150 150 38.5 44.0 IF(surge) 10 55'C A .5 .5 .5 .5 .5 .5 .5 .5 Case Length l00'C A .33 .33 25'C A 40 40 .33 .33 40 40 .33 40 40 40 40 .33 .33 .33 100'C A 20 20 20 20 20 20 20 20 Ins. 1.125 2.000 2.750 3.500 4.250 4.250 4.250 4.250 MM 28.58 50.80 69.85 88.90 107.95 107.95 107.95 107.95 * Operation and testing of devices over 10,000 V/inch may require re-encapsulation or immersion in a suitable dielectric material. t The stated, AVERAGE RECTIFIED CURRENT ratings require no heat sinking, special mounting or forced air across the body ofthe device. NOTE: Maximum lead temperature for soldering is 250'C 3/8" (9.5mm) from case for 5 seconds. MAXIMUM FORWARD CURRENT VS. AMBIENT TEMPERATURE ~r----r---.r---,---- 600~-"",,~- (!) w -+-__._ ___ ..J Environment Multiply by OIL ....................... FORCED AIR 200 CFM .... FORCED AIR 400 CFM .... FORCED AIR 200 CFM .... 1.0 1.5 1.75 2.0 ~~-"""~~~---+---- ffi0.. W ~ a: «or----r~~~~~--~~~~~~ ~ XO~--+~~~--~~~~f---r----i w « E Cl 200 ~ a: l00f----+--=-F"'--''''i==+-''''''''"'~~-i a: f2 FORWARD CURRENT PER LEG VS. AMBIENT TEMPERATURE (OC) REVERSE RECOVERY TEST CONDITIONS: IF = O.IA, IR = O.2A, IRR = O.05A REVERSE RECOVERY WAVE FORM TAR" 150nS I! t -- i ---(>I--- Tn r---- .01 ~ ~~ I. REVERSE RECOVERY TEST CIRCUIT R.U.T. ./ I u UNITRODE CORPORATION. 5 FORBES ROAD LEXI NGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95-1064 I•• lk SISI SCOI'f TEkTRONIX PULSE GENEIATOI HEWLETt 7403 OR EOUIYAUNT PACKARD 214A 01 EQUIVALENT I SOll 34ll 120 Reverse recovery is measured on each rectifier stack prior to manufacture of the assembly 7·20 PRINTED IN U.S.A. HIGH VOLTAGE SILICON RECTIFIERS HVFS2500-20000 MULTISTAC Fast Recovery, High Current FEATURES • PI v, From 2.SkV to 20kV • 150nS Reverse Recovery • High Surge Current Ratings • Low Reverse Leakage • Corona Free DESCRIPTION The HVFS MULTISTAC high current, high voltage silicon rectifier's convenient size and high power capability meets the reliability requirements of commercial, industrial and military applications. Reliability with economy are obtained through the use of proprietary innovations in manufacturing technique. Cylindrical die construction and metallurgical bonds minimize electrical and mechanical stress, contributing to long life. ABSOLUTE MAXIMUM RATINGS Peak Inverse Voltage ••...............................................•.. 2.5kV to 20kV Maximum Average Rectified Current ...•.............•..•.... See Electrical Specifications Maximum One Cycle Surge 8.3mS •....•...•.........•...... See Electrical Specifications Operating and Storage Temperature Range ..........................•. -55°C to +150°C MECHANICAL SPECIFICATIONS HVFS2500-20000 PC 38 ± 01 (965) ± (254) 051 ± 003 DIA. (1 30) ± (008) ____~)F======= ====~I==~C 1--I I CASE LENGTH --I t 69 (17.53) ± 02 ± (0.51) \- - - - - 20 Min (50.8) - - - , CASE LENGTH PART NUMBER INCHES HVS2500 1.5 ± .03 381 HVS5000 25 ± .03 635±O76 HVS7500 3.5 ± 03 4.5 HVS10000 HVS17500 HVS20000 88.9 ± 0.76 ± 0.76 1143 ± 0.76 ± 0 76 ± 0.76 55 ± .03 1397 I 65 ± 03 1651 6.5 ± 03 165.1 ± 0.76 I 65 ± .03 1651 ±O.76 HVS12500 HVS15000 ± .03 MILLIMETERS I Dimensions In inches and (mIllimeters) Reformatted 12/79 7-21 [1JJ UNITRDDE HVFS2500·20000 ELECTRICAL SPECIFICATIONS (at 25°C unless noted) Peak Maximum Reverse Current Inverse Type Voltage* Maximum Forward Voltage @Io VF @PIV PIV IR V 25°C p.A 100°C HVFS2500 2500 10 HVFS5000 HVFS7500 5000 7500 HVFS10000 10000 HVFS12500 HVFS15000 12500 15000 HVFS17500 HVFS20000 MAXIMUM RATINGS Maximum Reverse Recovery Maximum Average Maximum One Cycle Surge 8.3mS .IF(surge) Rectified Currentt Time TRR 10 lDOoC 25°C A lDOoC A Ins. MM 200 1.5 38.1 200 100 100 2.5 63.5 1.3 200 100 3.5 2.2 2.2 1.3 1.3 200 200 100 100 4.5 5.5 88.9 114.9 139.7 150 150 2.2 1.3 200 100 6.5 165.1 2.2 1.3 200 100 6.5 165.1 150 2.2 1.3 200 100 6.5 165.1 V nS 55°C A 120 8 150 2.2 A 1.3 10 120 16 150 2.2 1.3 10 120 21 150 2.2 10 120 10 10 120 120 29 36 44 150 150 17500 10 120 51 '20000 10 120 58 p.A Case Length *Operation and testing of devices over 10,000 V/inch may require re-encapsulation or immersion in a suitable dielectric material. t The stated, AVERAGE RECTIFIED CURRENT ratings require no heat sinking, special mounting or forced air across the body of the device. . ' NOTE: Maximum lead temperature forsoldering is 250°C 3/8" (9.5mm) from case for 5 seconds. MAXIMUM FORWARD CURRENT VS AMBIENT TEMPERATURE CJ Z ;:: ~ 100 " I- Z W o~ ~G 75 wO oa: ffi~ so o "- "\r\. \ Q.a: ~ 25 \ CJ ..: 400 ..: w ..: 300 ::J ..: ;: E 0 a: 200 a: 0 100 (!) 80 a: en ;?; 60 40 "- 20 0 0.1 FORWARD CURRENT PER LEG VS. AMBIENT TEMPERATURE (0 C) 0.2 0." 1.0 0.6 2.0 ".0 6.0 10 RC TIME CONSTANT (mS) NON·RECURRENT FORWARD CURRENT SURGE CURVE "--.. •, ....... ...... .r .... ... ......... t-.. ,;;:;-~ ~' :" NUMBER OF CYCLES AT 60 CPS UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95-1064 / " 1 .- .0.1 / °t 25"( REVERSf RECOVERY TEST CIRCUIT IMRSE RECOVERY WAVE FORM 'I J 7-24 ~ ~ .. ' T _'01 "'''' _"" . , ~ Sl • "CIWO 214... 01: EOUIVALENl' ~a<~~ SO.,eo _. Y ,..... ........... SCCfl " M. .. 50 • m Reverse recovery is measu red on each rectifier stack prior to manufacture of the assembly. PRINTED IN U.S.A. HIGH VOLTAGE SILICON RECTIFIERS HVH F5000-25000 MULTISTAC Standard Recovery, High Current FEATURES • PI v: From 5kV to 25kV • 1JlS Reverse Recovery • High Surge Current Ratings • Low Reverse Leakage • Corona Free DESCRIPTION The HVHF MULTISTAC high current, high voltage silicon rectifier's convenient size and high power capability meets the reliability requirements of commercial, industrial and military applications. Reliability with economy are obtained through the use of proprietary innovations in manufacturing technique. Cylindrical die construction and metallurgical bonds minimize electrical and mechanical stress, contributing to long life. ABSOLUTE MAXIMUM RATINGS Peak Inverse Voltage ...................................................... 5kV to 25kV Maximum Average Rectified Current ......................... See Electrical Specifications Maximum One Cycle Surge 8.3mS .......................... See Electrical Specifications Operating and Storage Temperature Range .. '" ....................... -55°C to +150°C MECHANICAL SPECIFICATIONS 1- CASE LENGTH ===============(( HVHFSOOO-2S000 -1 , PB 250 ± 01" F '1==1 6 35mm) ± I 254mm) T (1.3o:~1 50 ± 02" : (~~~~~~. c=====99='3=%=S='L=V=E=R='=j=f==~I 1 - - - - - 2" Mm (50 BOmm) 1(1270mm) _____ ± (S08mm) ---------~l i i PART NUMBER HVHF5000 1 HVHF7S00 HVHF10000 i DImenSIons In Inches and (millimeterS) Reformatted 12/79 --,~ ~ I I ! CASE LENGTH INCHES 1125 ± .02 1.625 ± 02 ± 2.375 ± 2.750 ± 2.000 J I I MILLIMETERS 28.58 ± 0.508 4128±0508 I 02 50BO±050B 02 HVHF20000 3.500 ± 02 ± 0.508 ± 0.508 8890 ± 0.508 HVHF25000 4250± 02 10795±OS08 HVHF12500 HVHF15000 02 7-25 60 33 6985 ~UNITRDDE HVHF5000-25000 ELECTRICAL SPECIFICATIONS (at 25' C unless noted) Peak Inverse Voltage* Type Maximum Reverse Current Maximum Forward Maximum Average Voltage Recovery @PIV @Io Time Rectified Currentt IA VF TA~ 10 V pS 7 1 1 PIV 25'C p.A V 5000 HVHF5000 HVHF7500 HVHF10000 HVHF12500 HVHF15000 HVHF20000 HVHF25000 7500 10000 12500 0.1 0.1 0.1 0.1 15000 20000 25000 0.1 0.1 0.1 MAXIMUM RATI.NGS Maximum Reverse 100'C p.A 15 15 15 15 10 14 17 15 15 15 20 27 33 1 1 1 1 1 Maximum One Cycle Surge 8.3mS IF(surge) 55'C A .5 100'C A .33 25'C A 60 100'C A 30 .5 .5 .5 .33 .33 .33 30 .5 .5 .5 .33 .33 .33 60 60 60 60 60 60 40 40 40 40 40 Case Length Ins. 1.125 , MM 28.58 41.28 1.625 2.000 2.375 50.80 60.33 2.750 3,500 4.250 69.85 88.90 107.95 *Operation and testing of devices over 10,000 V/inch may require re-encapsulation or immersion in a suitable dielectric material. tThestated, AVERAGE RECTIFIED CURRENT ratings require no heat sinking, special mounting or forced air across the body olthe device. NOTE: Maximum lead temperature for soldering is 250'C 3/8" (9.5mm) from case for 5 seconds. MAXIMUM FORWARD CURRENT VS. AMBIENT TEMPERATURE Multiply Iy 7 0 0 , - - - - , - - - , - - - - , - - EnvlronrMnt CMl.. 20 --f--fORCEDAIR200CFM FORCED AIR 400CFM •• 1 75 . °25 ,. . 15 50 FORWARD CURRENT PER LEG VS. AMBIENT TEMPERATURE ('C) REVERSE RECOVERY TEST CONDITIONS: IF = 100mA, IR = 200m A, IRR = SOmA REVERSE RECOVERY TEST CIRCUIT REVERSE RECOVERY WAVE FORM R.U.T. ---l>I-- Ii. I---T ....... t I. 1 I / .01 /' J UNITROOE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 .• TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95·1064 ".,.,. ~ 1•• lK 5111 PULSE GENERATOR $COlI TEKTRONIX 7403 01 EQUIVALENT HEWLEn PACKARD 214A OR EOUIVALENT T 5O11 lOll 120 Reverse recovery is measured on each rectifier stack prior to manufacture of the assembly. 7·26 PRINTED IN U.S.A HIGH VOLTAGE SILICON RECTIFIERS HVHJ15K-45K MULTISTAC Medium Recovery, Medium Current FEATURES • PIV: From 15kV to 45kV • 2pS Reverse Recovery • High Surge • Low Reverse Leakage • Corona Free DESCRIPTION The HVHJ MULTISTAC medium current. high voltage silicon rectifier assembly's small size and high power capability meets the stringent reliability requirements of commercial, industrial and military applications. Reliabilty with economy are obtained through the use of proprietary innovations in manufacturing technique. Cylindrical die construction and metallurgical bonds minimize electrical and mechanical stress, contributing to long life. ABSOLUTE MAXIMUM RATINGS Peak Inverse Voltage ....................•................................ 15kV to 45kV Maximum Average Rectified Current ...•..........•.....•.•.. See Electrical Specifications Maximum One Cycle Surge 8.3mS .....•..........•..•...... See Electrical Specifications Operating and Storage Temperature Range ............................ -55°C to +150°C MECHANICAL SPECIFIC~onQ!IIS HVHJ15K-45K 040 ± .001 250 DlA PA ± .01 (6.35) ± (0.254) (1016) ± (.0254) \ ====~~C~________~)F~~=== ------r- ~ i - - - - C A S E LENGTH---- I I--- I ± .01 (6.35) ± (.0254) .250 Dimensions in inches and (millimeters) I 20 Min. _ _ _ (50.8) CASE LENGTH PART NUMBER INCHES HVHJ15K 15 ± .02 381 ± .508 HVHJ20K 20 ± 02 508 ± .508 HVHJ225K 2.0 50.8 ± .508 2.5 ± ± .02 HVHJ25K 02 63.5 ± .508 MILLIMETERS HVHJ30K 2.5 ± .02 635 ± .508 HVHJ35K 30 ± .02 76.2 ± .5OB HVHJ37.SK 3.0 ± .02 76.2 HVHJ40K 35 ± .02 889 ± .SOS HVHJ45K 35 ± .02 889 ± .508 ± .508 [1JJ Reformatted 12179 7-27 _UNITRDDE HVHJ15K-45K ELECTRICAL SPECIFICATIONS (at 25°C unless noted) Peak Maximum Reverse Current Inverse Type Voltage* Maximum Forward Voltage @Io VF @PIV PIV IA V HVHJ15K 15000 HVHJ20K HVHJ22.5K 20000 22500 25'C 100°C IJ.A 0.1 0.1 IJ.A 25 0.1 25 HVHJ25K 25000 0.1 HVHJ30K HVHJ35K 30000 0.1 0.1 MAXIMUM RATINGS. Maximum One Cycle Surge 8.3mS Maximum Maximum Reverse Average Rectified Currentt Recovery Time TAA Case Length IF(surge) 10 /1S 55'C mA 100°C mA 25°C A A Ins. MM 20 2 50 30 5 2.5 1.5 38.1 30 30 2 50 30 5 2 50 30 5 2.5 2.5 2.0 2.0 50.8 25 25 40 2 30 30 5 5 2.5 2.5 63.5 2 50 50 2.5 40 2.5 25 50 2 50 30 5 2.5 3.0 63.5 76.2 V 25 100'C 50.8 HVHJ37.5K 35000 37500 0.1 25 50 2 50 30 5 2.5 3.0 76.2 HVHJ40K 40000 0.1 25 60 2 50 30 5 2.5 3.5 88.9 HVHJ45K 45000 0.1 25 60 2 50 30 5 2.5 3.5 88.9 *Operation and testing of devices over 10,000 V/inch may require re-encapsulation or immersion in a suitable dielectric material. t The stated, AVERAGE RECTIFIED CURRENT ratings require no heatsinking, special mounting or forced air across the body of the device. NOTE: Maximum lead temperature for soldering is 250°C 3/8" (9.5mm) from case for 5 seconds. MAXIMUM FORWARD CURRENT VS. AMBIENT TEMPERATURE (!) z ~ '" fZ 100 I" w u.'" a'" !zGO 7' ~ w ~~ wil: ~ so ~ \ 0..", f2 w (!) 25 \ « '">w « o o -55 25 ~ 75 100 1H ISO 11. AMBIENT TEMPERATURE (OC)' REVERSE RECOVERY TEST CONDITIONS: IF=50mA, I A=100mA, IAA =25mA REVERSE RECOVERY WAVE FORM REVERSE RECOVERY TEST CIRCUIT R.U.T. .01 io-. TRR ...... IfF T RA "'2uS ~ t j IR 1 I{ ./ In ---- T ,. --t+-- 5111 SCOPE lIK'IRONIX PULSE GENERATOR HEWLEn 7403 OR EQUIVALENT PACKARD 214A OR EQUIVALENT SOil 3411 120 J UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95-1064 7-28 PRINTED IN U.S.A. HIGH VOLTAGE SILICON RECTIFIERS HVHS2500-20000 MULTISTAC Medium Recovery, High Current FEATURES • PIV: From 2.SkV to 20kV • 2.JJS Reverse Recovery • High Surge Current Ratings • Low Reverse Leakage • Corona Free DESCRIPTION The HVHS MULTISTAC high current, high voltage silicon rectifier's convenient size and high power capability meets the reliability requirements of commercial, industrial and military applications. Reliability with economy are obtained through the use of proprietary innovations in manufacturing technique. Cylindrical die construction and metallurgical bonds minimize electrical and mechanical stress, contributing to long life. ABSOLUTE MAXIMUM RATINGS Peak Inverse Voltage . ................................................... 2.SkV to 20kV Maximum Average Rectified Current ......................... See Electrical Specifications Maximum One Cycle Surge B.3 mS ...........•.•.•.......... See Electrical Specifications Operating and Storage Temperature Range ................•........... -S5°C to +150°C MECHANICAL SPECIFICATIONS . HVHS2S00-20000 PC 38 ± 01 (9.6S) ± (2.S4) .051 ± .003 DIA. (1.30) ± (0.08) I ====~l~C~__~)F====== 1----I I CASE LENGTH .69 ± .02 (17.S3) ± (0.S1) I ---- 2.0 Min . (SO.8) - - - I CASE LENGTH PART NUMBER INCHES HVHS2S00 1.5 ± 03 38.1 ± 0.76 HVHSSOOO 2.5 + .03 635 ± 0.76 MILLIMETERS ± 0.76 HVHS7S00 35 ± .1)3 HVHS10000 4.5 ± 03 HVHS12S00 5.5 ± HVHS15QOO 6.5 ± .03 1651 ± 0.76 HVHS17S00 6.5 ± .03 1651 ± 0.76 HVHS20000 6.5 ± .03 165.1 03 88.9 114.3 ± 0.76 139.7 ± 0.76 ± 0.76 Dimensions in inches and (millimeters) Reformatted 12179 7-29 ~UNITRDDE HVHS2500-20000 ELECTRICAL SPECIFICATIONS t.0' _rlR~ .iF t I '. 1 . /~ I( ~ .. ' PULSE GENERATOR 5'll. SCOPE TEKTRONIX 1403 OR EQUIVAlENT HEWLm PAC.AlD 214A OR EQUIVALENT T 34ll. J UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173· TEL. (617) 861-6540 TWX (710)·326-6509 • TELEX 95-1064 •• .20 Reverse recovery IS measured on each rectifier stack prior to manufacture of the assembly 7-30 PRINTED IN U.S.A HIGH VOLTAGE SILICON RECTIFIERS HVJX15K-45K MULTISTAC Fast Recovery, Medium Current FEATURES • PI v: From 15kV to 45kV • 200nS Reverse Recovery • High Surge Current Ratings • Low Reverse Leakage • Corona Free DESCRIPTION The HVJX MULTISTAC medium current high voltage silicon rectifier assembly's small size and high power capabilty meets the stringent reliabilty requirements of commercial, industrial and military applications. Reliability with economy are obtained through the use of proprietary innovations in manufacturing technique. Cylindrical die construction and metallurgical bonds minimize electrical and mechanical stress, contributing to long life. ABSOLUTE MAXIMUM RATINGS Peak Inverse Voltage ..................................................... 15kV to 45kV Maximum Average Rectified Current ......................... See Electrical Specifications Maximum One Cycle Surge 8.3 mS .......................... See Electrical Specifications Operating and Storage Temperature Range ............................ -55°C to +150°C MECHANICAL SPECIFICATIONS HVJX15K-45K PA 250 ± .01 (6.35) ± (254) 40 ± 001 DIA (1016) ± (0254) I r --1-======~1==(=============)~~~~== 1 - - - - CASE LENGTH - - - - I--- I 250 ± 01 (635) ± (254) CASE LENGTH PART Dimensions In inches and (millimeters) Reformatted 12/79 I 20 Min. _ _ (508) NUMBER INCHES HVJX15K 15 ± 02 381 ± 506 HVJX20K 2.0 ± .02 50.8 ± .508 HVJX22.5K 2.0 ± 02 50.8 +- 508 HVJX25K 25 ± .02 635 ± 508 HVJX30K 2.5 ± 635 +- .SOB HVJX35K 3.0 ± 02 76.2 ± SOB HVJX37.5K 3.0 + .02 76.2 ± .508 .02 MILLIMETERS HVJX40K 3.5 ± 02 889 ± .50B HVJX45K 3.5 ± 88.9 ± .508 .02 7-31 [1J] UNITRDDE HVJX15K-45K MAXIMUM RATINGS ELECTRICAL SPECIFICATIONS « 0 -55 o 25 7S ~ 100 125 150 175 AMBIENT TEMPERATURE (0G) REVERSE RECOVERY TEST CONDITIONS' IF =50mA. IA =100mA. IRA =25mA REVERSE RECOVERY WAVE FORM REVERSE RECOVERY TEST CIRCUIT R.U.T. ~ t I. TRR :200n$ I-- r.. r- ·t ~~ lK SIll PULSE SCOPE GENHArO. HEWlETT PACKARD 11KTIONIX 7403 OR EQUIVAlENT 214A OR EQUIVALENT /~ IR 1 .01 5O11 3411 120 ~ .J UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95·1064 7·32 PRINTED IN U.S.A. HIGH VOLTAGE SILICON RECTIFIERS KX1S-100 KXS1S-100 POWERSTACK 1.5 to 3.0A Very High Current, Miniature FEATURES • PIV: From 1.5kVto 10kV • 1.5t03.0A • 250nS Reverse Recovery • High Surge Ratings • Low Reverse Leakage • Corona Free DESCRIPTION The KX/KXS silicon rectifier series is a unique concept for high current high voltage applications. Matched junction characteristics and low stray capacitance due to metallurgically bonded junctions eliminates the need for external compensation networks. These rectifiers utilize HVO's cylindrical die construction, which minimizes electrical and mechanical stress, insuring long life for commercial, military and industrial applications. ABSOLUTE MAXIMUM RATINGS Peak Inverse Voltage .................................................... 1.5kV to 10kV Maximum Average Rectified Current ...................... See Electrical Specifications Maximum One Cycle Surge B.3mS ........................ See Electrical Specifications Operating Temperature Range ........................................ -55"C to +150"C Storage Temperature Range .......................................... -55" C to +175" C MECHANICAL SPECIFICATIONS KX15-100 KXS15-100 SM 093 ± 003D1A (2.36) ± (076) 99.9% SILVER - ; - - ] ~ .40 Min. (10.16) II 1+---+ .375 ± .015 (9.52) ± (.381) .500 ± .015 OIA. (12.7) ± (.381) Dimensions in inches and (millimeters) Reformatted 12/79 7-33 [1JJ UNITRDDE · KX1S-100 MAXIMU~ RATINqS ELECTRICAL SPECIFICATIONS u L 1 1/ / I I I I I I 50 Ct: '/ ~~1f'~ 7;;:fJr ~ 200 Ct: :> 100 u Ct: Typical Leakage Current VS. PIV I I II I / ;t IK - /, UJ "'" ''-'"" 10 20 UJ II .25 .5 .75 FORWARD VOLTAGE - 50 100 200 IK 1.25 1.5 MULTIPLY V, BY, I V _ _ +75'C j I 500 o ,/ +25'C 125 100 75 - ~5'C 50 25 % OF PIV Output Current Ratio VS. Velocity of Air Flow Current Derating Curve ~ 1.75 ~ Ct: 1.50 '"~ 1.25 VI u ./ ~ 1.00 ... .75 ~ I .50 'z~" V 50 Ct: f--+-+-+--'~'oIc-----1--+-+----1 '. t'- / .... '" 5 V - V 50 100 150 AMBIENT TEMPERATURE ('C) 200 '" .25 100 V- 200 300 400 500 600 VELOCITY OF AIR (LFM) Current Derating Curve 100 "z ~ 'z~" \ 50 Ct: 100 Current Derating CUl1le "--"'-"'r-.,:--'--"--'--"-""--' 50 f---+--+-+-~",-,+----1--+--1 , Ct: t'- t'0L--L__L--L__L-~__~~~ o 50 100 150 200 CASE TEMPERATURE ('C) Oil Immersed CASE TEMPERATURE ('C) Air Coaled UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95-1064 7·40 PRINTED IN U.S.A. UFB, UFS, USB, USS SERIES RECTIFIER ASSEMBLIES High Voltage Stacks, Standard and Fast Recovery FEATURES DESCRIPTION • • • • • • • • These assemblies uniquely combine a versatile stackable design with all the requirements for reliable high voltage operation. All modules are suitable for bridge or series operations. Controlled Avalanche Characteristics Only Fused-in-Glass Diodes Used High Forward and Reverse Surge Capability Transfer Molded for Voidless Construction Modular for Easy Stacking PIV: from 2.5 kV to 15kV Recovery Times: to 500ns Continuous Ratings: to 2.3A ABSOLUTE MAXIMUM RATINGS Peak Inverse Voltage, USS Series Peak Inverse Voltage, USB Series Peak Inverse Voltage, UFS Series Peak Inverse Voltage, UFB Series. Maximum Average D.C. Output Current Non-Repetitive Sinusoidal Surge (8.3ms) Operating and Storage Temperature Range 5.0 kV to 15 kV . 2.5 kV to lOkV ...... .. ....... 5.0 kV to 10kV . 2.5 kV to 7.5 kV .. See Electrical Specifications S!le Electrical Specifications .. --6S"C to +lSO"C MECHANICAL SPECIFICATIONS UFB, UFS, USB, USS SERIES $ J~~~A~R~~~ Ai! -- 10-32 J - jiG - ~\J~F'2B 0 TYpical Weight: USS & UFS Series - ins. A • \ ' E B G 0 E .230-.235 .980-1.10 .020 .040 .320-.330 97 100 DH mm. 5.84-5.97 24.89-27.94 0.51 1.02 8.13-8.38 24.64-25.40 1.0 ounce 28 grams USB & UFB Series -1.1 ou nce 31 grams MARKING Type number marked on unit. Polarity - Cathode connected, to stud. 7-41 ~UNITRDDE UFB, UFS, USB, USS SERIES Electrical Specifications (at 25°C unless noted) Maximum Ratings Maximum Maximum Maximum Maximum Forward Type Standard Recovery USS5 USS7.5 USS10 USS15 USB 2.5 USB5 USB 7.5 USB 10 Standard Recovery Fast Recovery UFS5 UFS7.5 UFS10 UFB2.5 UFB5 UFB7.5 Fast Recovery PIV kV Voltage Drop 5.0 7.5 10 15 2.5 5.0 7.5 10 5.0 7.5 10 2.5 5.0 7.5 9V@0.6A 13V@0.5A 17V@0.3A 25V@0.2A 5V@ 1.1A 9V@0.7A 13V@0.5A 17V@O.4A Reverse Transient Energy Leakage Current @PIV Reverse Recovery Time Absor~Jon p.A ns joules 12V@0.5A 18V@0.4A 23V@0.3A 6V@0.9A 12V@0.6A 18V@0.4A 5 - 10 - 5 soo· 3SOt SOO· 3SOt 10 Average D.C. Output Current TA - 25°C TA = 50°C AIR OIL Amps Amps 1.5 2.5 3.0 5.0 3.0 6.0 9.0 12 0.60 0.45 0.35 0.25 1.1 0.68 0.53 0.43 1.5 2.5 3.0 3.0 6.0 9.0 0.50 0.38 0.30 0.90 0.58 0.45 Non·Repetitive Sinusoidal Surge (8.3ms) Amps 1.1 0.91 0.71 0.51 23 1.5 1.2 1.0 0.90 0.75 0.58 2.0 1.3 1.0 25 80 20 70 *Measured in a reverse recovery circuit switching from lA forward to lA reverse current recovering to O.5A. tMeasured in a reverse recovery circuit switching from .SA foward current to lA reverse current, recovery to .25A. Output Current Ratio vs. Velocity of Air Flow V '" ~ 2.00 .. ....~1.50 I I o '"::> ...o::> 100 "- 60 ...z Ul '"'"::> "- r--... 0 '\ o o 300 400 500 600 0 0 ... ...''0"" Ul \ FIG.2 0 20 40 60 i,\ 60 '\ \. 40 If! 80 100 120 140 160 180 \ 20 TEMPERATURE ('C) VELOCITY OF AIR (LFM) ~ 80 0.. ~ 20 200 ...::> ... ::> '\ 5 40 :sIf!''"" Output Current vs. Ambient (Oil) Temperature .... £100 0.. FIG. 1 V- "- 80 0: V ::> '" 1.00 (;i / .... 0.. Output Current vs. Ambient (Air) Temperature ... / ~ 1.75 ::; 1.25 ~ 100 - '" 2.50 z ~2.25 _ \ FIG. 3 20 40 60 80 100 120 140 160 180 TEMPERATURE (OC) Application example: The rectifier is to be used in a cabinet at 60°C with ambient air moving at 400 lFM. The rating is reduced (Fig. 2) by a factor of 0.81 due to the elevated temperature, but it is enhanced by 2 X (Fig. 1) due to the air flow. Hence the DC output current is 0.81 x 2, or 1.6 times the 25°C air rating. Forward Pulse Current 10K 5K 2K 1K VS. Multiple Surge Current vs. Duration Duration 100 SQUARE PULSE r-~ 5: !z 500 Ul '" 200 ~ 100 o 50 20 10 .1.u5 r--:: I:::-- ~ 5: I I I I r--: ~USB p:::: ~ UFB UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326-6509 • TELEX 9H064 0: .. 60 .. 40 0:1: ~ ~~ lOps lOOps DURATION 80 "' .... ::>'" F=:: I .Ul "'z z UlV> Rt--. t::::t:--. 1ms I 0 _it::£, '" Ul 0.. I" 20 o lOms 7·42 ........ .......... I ....... ~SB& UFB l'---J. i-1 uss ~ UF~ t-...... 10 20 50 100 200 CYCLES OF 60Hz SINEWAVE -..;;;; 500 1000 PRINTED IN U.S.A. UFB, UFS, USB, USS SERIES Typical Forward Voltage VS. Forward Current 10 Typical Forward Voltage VS. Forward Current Typica I Forward Voltage VS. Forward Current 10 10 USB SERIES USS SERIES I UFB SERIES V. 1/ V 5 !z .5 1"'IIII OJ ~ .2 (J .1 :> c '"~ '"~ //V III II' I .05 .02 .01 II \17~oC +iOOjC .001 I II .005 .002 I I- I r---~ II ~ .2 ~ .1 '"~ .05 :> +25°C 11/ II + 75°C 1-01 .005 .002 Typical Forward Voltage vs. Forward Current I .002 z I/V. VI/V II I1II OJ ~ :> (J .2 .1 LL .005 .05 .02 15°C .01 .005 IJ II II I if f- II '"""' .002 .001 o A II II .2 .4 .6 .8 1.0 1.2 1.4 FORWARD VOLTAGE- MULTIPLY V, BY, .01 .0s ~ .1 25°C ~ .2 .5 ,..., ..... f-"'" :5...J 75°C <' .=, .... zOJ '"'" - 10 20 f-"'" i! 125 100 75 50 7-43 ...."'i12I C I I 25 0.1 - 0.2 "Ii r- +25°C- -+1s1-f- (J OJ "" "'" -- 0.5 :> OJ ...J % OF PIV UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (71.0) 326·6509 • TELEX 95-1064 ~oL - .02 z 50 II II USS AND UFS SERlE .005 <' .02 100 ~"'-50°C I Typical Leakage Current VS. PIV .... f.-::!:.5doc +25°C rrlt I I ~Joc +25°C o .2 .4 .6 .8 1.0 1.2 1.4 FORWARD VOLTAGE- MULTIPLY V, BY, PIV .=, ";2 I :1 II II-~ V .001 USB AN" UFB SERIES ..... 05 OJ +l00°C .002 .01 ~ J I f1/ .01 (J C '"~ o'" VS. +lWC .02 .002 .005 .5 '"~ ri I 1-1 1/ Typical Leakage Current .001 UFS SERIES 5.... ~ o .2 .4 .6 .8 1.0 1.2 1.4 FORWARD VOLTAGE - MULTIPLY V, BY, 10 'f 1/1/ '" .05 'II I A II .001 o .2 .4 .6 .8 1.0 1.2 1.4 FORWARO VOLTAGE- MULTiPLY V, BY, .2 .1 c i rV- II r-< ILllII .5 ~ :> r.-:t- +25°C II .01 10 l/.~I'l .... zOJ (J '" L I -LJ g' 1 / II I I ~ .02 II I 1 .5 OJ II I 5 ~ V r; - -- 10 20 50 ,...,v 125°C 100 200 125 100 75 50 % OF PIV 25 o PRINTED IN U.S.A. RECTIFIER ASSEMBLIES UGB, UGD, UGE, UGF SERIES High Voltage Doorbell® Modules Standard and Fast Recovery FEATURES OESCRIPTION • • • • • • • This series of high-voltage, high-current stacks that incorporate a unique modular design makes it particularly well-suited for high power applications such as in radar systems as charge, hold-off and clipper diodes. Current Ratings: to IDA PIV: 2.5 kV tv lOkV Recovery Times: to 500ns Only Fused-in-Glass Diodes Used Controlled Avalanche Characteristics Stackable to 6OOll.V Modular Package for Easy Stacking ABSOLUTE MAXIMUM RATINGS Peak Inverse Voltage UGB, UGD Series. UGS, UGF Series Maximum Average D.C. Output Current Non-repetitive Sinusoidal Surge (8.3ms) Operating and Storage Temperature Range ......SkVto 10 kV .2.SkV to 7.SkV See Electrical Specifications .......... See Electrical Specifications .............. -6SoC to +lSO°C MECHANICAL SPECIFICATIONS UGB, UGO, UGE, UGF SERIES DG 3.487" DIA MAX 1<-----87.Smm---- u w III ..J .. IDura~~~·f~r r:,".!!eDc:~!:.~n~:spUI" (8.3 ~ 1K Forward Pulse Current vs. Pulse Duration 10K wave eQuivalen t square wave) ---- ... ~ or or :> u ~ 'i'!!1 100 t§ ~ (8.3 ms sine wave equivalent to 3 ms square wave) 1K ~ 100 ..J :> :> Square Pulse CUrrent vs Duration for Non-Repetitive Pu Ise - uG"'se uN n:;,.eS.... ;;:~~es == 0.. 10 .I.uS WWll I.S 10"S 100"S ImS PULSE DURATION (SECONDS) UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95·1064 10m$ 10mS 7-45 PRINTED IN U.S.A. UGB, UGD, UGE, UGF SERIES Multiple Surge Rating vs. L"uation '"z ;: ~ 100 ....... UJ ~ 80 1"'--1"- :l '"o § b, 60 UJ 40 I UJ g; 20 1 "- ~ °1 10 100 CYCLES AT 60 Hz. HALF SINE WAVE Typical Forward Voltage vs. Forward Current , .'. 10K ~ 200 u 0 0: / 100 50 I--- « ~ 0: 20 10 u J::'g;,l? UJ '" « « UJ " I I I ..J ~ / II I I 1 a I .5 50 100 10K UGE, UGF SERIES//. I ... - 500 ~ 200 0: :l lOa u o 50 ~ 0: 20 0: fi: L VI, II I ~ ...Z I II o .25 I t!1 « "« UJ ..J j.,...- .05 .1 50'C .2 - .5 10 20 /" 50 100 200 IK 1.25 1.5 FORWARO VOLTAGE- MULTIPLY V, BY: ./ +25'C ___ +75'C 500 .75 UNITROOE CORPORATION. 5 FORBES ROAO LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95-1064 o 25 UGE, UGF SERIES r-- UJ II .5 75 50 % OF PIV UJ I I I I I IlL 100 0: 0: :l U ,/1 1 10 I .01 .02 11:44j;!t fi: '" /' Z V +125'C Typical Leakage Current VS. PIV 1/ 1 1 E L +75'C I 125 Typical Forward Voltage VS. Forward Current 2K ..- 500 lK J I ;; lK - 5 10 20 200 .25 .5 .75 I 1,25 1.5 FORWARO VOLTAGE- MULTIPLY V, BY: 5K L ___ +25'C UJ ~'ill! q:.:;:. !fIt / 50'C 0: 0: :l u "- 0 ... Z II I / ..,/ :( 'II 1 z UGB, UGD SERIES .05 .1 .3 .2 / V/ JI II I lK .s... 500 0: :l .01 .02 V/; '/ 2K ;; Typical Leakage Current VS. PIV .' UGB, UGD SERIES 5K 1,000 125 100 75 - 50 ~5'C 25 o % OF PIV 7·46 PRINTED IN U.S.A. UGB, UGD, UGE, UGF SERIES Output Current Ratio vs. Velocity of Air Flow Current Derating Curve ~ 1.75 ~ 0: 1.50 "'~ 1.25 fJ') u ~ 1.00 ."' ./ .75 ...J :J ::;; .50 I V "z~ V 50 r-~~~---+--'~'t,~,--~~r-~---l # / ...J ;:: V OL-~ o __- L_ _L - - . . . l_ _- L_ _L - - . . . l_ _ 50 ~ 200 AMBIENT TEMPERATURE ('C) 100 V- 200 300 400 500 tiOO VELOCITY OF AIR CLFM) Current Derating Curve Current Derating CUNe 100 100 I·... " " « 0: 150 .25 '" "z;:: 100 z" ;:: « 0: " 50 # " " ,, 50 # , I I 0 0 50 ISO 100 CASE TEMPERATURE C'C) Air Cooled UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 0 200 0 50 100 150 200 CASE TEMPERATURE C'C) Oil Immersed 7-47 PRINTED IN U.S.A. RECTIFIER ASSEMBLIES US12-US200A USR12-USR180A High Voltage Stacks, .125 Amp to 1 Amp, Standard and Fast Recovery FEATURES • Controlled Avalanche Characteristics • Recovery Times: to 500ns • Transfer Molded for Voidless Encapsulation • High Forward and Reverse Surge Capability • PI V: from 1200 to 20, OOOV • Only Fused-in-Glass Diodes Used DESCRIPTION This series of High Voltage, Medium Current Stacks are assembled from hermetically sealed, controlled avalanche individual diodes. Therefore, they offer the ultimate in reliability for such applications as clipper diodes, back swing diodes and hold-off diodes in pulse modulators. ABSOLUTE MAXIMUM RATINGS Peak Inverse Voltage ..... Maximum Average D.C. Output Current Non-Repetitive Sinusoidal Surge (8.3ms) Operating and Storage Temperature Range . Output Current Ratio vs Velocity of Air Flow 2.50 r--r--.----,,---,---.---, "~ 2.25 t--+-+--1f----+--J::;,"'" ~ ........... .. ....... 1200 to 20,000V ....... See Electrical Specifications ............................................ 20A ............... _65°C to +lSOOC ~ 100 :3~ ... 80 0: 0: :l .. !!: 2.00 o 60 ...~ 1.75 t--+-+-AI--?l- o a :-rs"c / ...~ .0 1 / .0 .005 .002 ~ Iz '"~ II II I I 1 ~ .0 3: 'j / / /1/ I- Z / f .2 .4 o a /; VI .5 I .2 ~ .01 .005 -~"C +17S"C +1~"Ct .002 I .6 US SERIES .8 FORWARD VOLTAGE - 1.0 1.2 / .001 1.4 MULTIPLY V, BY, I / / '"a:a: 0 ;2 i'...I:i 10 20 500 I USR SERIES -- so 200 I I I ~C '1 -I V +12S"C I US AND USR SERIES 120 110 100 90 80 70 60 50 40 30 20 10 0 .2 .4 .6 .8 10 1.2 1.4 FORWARD VOLTAGE - MULTIPLY V, BY, % OF P.I.V. Multiple Forward Surge Rating (!J z ~ a: ~ 100 a: ~ 80 a ~ ~ ~ '" 60 ~ u:: US 200 ~ 100 ~ t--.. 50 - IUSR/ ~ 20 ~ 10 0.1,u5 l.us lO,u:s lOOJ,ls Ims lOms 'i .'" ~ 40 ... 20 I----.... o I 'if 10 DURATION UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95-1064 (!J 1 II I -so~c sooo - DUR~~I~/i.r8:~W/E~~~I~~JEV~uLSE 2000 1000 ~ ~ 500 -....;:: I- :> f..- 0 '" 100 10000 z :> +25"C Forward Pulse Current vs Duration +~S"~- z '"a:a: I ~ - i - f..- .:1- .5 / II / I .02 .2 I- III II I I / .1 ~ a: ;( I VI II a: .05 / I / / .001 :> I. 1 +2S"C +ITcl 7 I .1 10V 100 1,000 CYCLES AT 60Hz HALF SINE WAVE 7-50 PRINTED IN U.S.A US12-US200A USR12-USR180A MECHANICAL SPECIFICATIONS B ~ ====e::::::B== c I.-A +c=:::J B I 0 -0/1+- c=D D .1 ~A~ BODY SA } c BL BODY SB 0 0 -.J~ C BODY SC D jA-i Bl D ===lc=J=t===tc BODY SD IAIB~ ~=.rl--I~=t ( c \) BODY SE D lG -ill ==200\1" <,,' ,:', 676-2 698-2 684-2 683-2 676-3 698-3 684-3 683-3 676-4 698-4 684-4 683-4 676-5 698-5 684-5 683-5 676-6 698-6 684-6 683-6 Gor S Gor S GorS GorS Gor S GA GA GA GA GA NA NA NA NA NA 802-1 MA MA MA NB NB NB NB NB 676-12 HJ 676-18 HK ; 2;:4\ 676-36 HN '4;OkV 4,?kV 676-42 HO 4i,8kV< 676-48 <, ' . HP '5.01<11.> 676-50 .!. HP ,mv; ~~,~,~•• ·50~ Parentheses ( ) designates product uSIng stacked chips 8-4 PRINTED IN u.s A PRODUCT SELECTION GUIDE Three Phase FUll-Wave Bridge STANDARD RECOVERY Peak Inverse Voltage Per leg FAST RECOVERY AVERAGE D.C. OUTPUT CURRENT I-3A 4.S-15A IS-2M Peak 700-1 F 695-1 NC 10dV 678-1 NC '. '~ G ME AVERAGE D.C.· OUTPUT CURRENT Inverse Voltage Per leg I-SA 4.S-1SA I5-25A SOV SOV 100V ~NC . ~ 2S-40A 801-1 800-1 801-2 800-2 ME 701-1 F 696-1 NC 682-1 NC ME ME ME 12SV 125V 801-3 800-3 l50Y 150Y 801-4 800-4 50ns SOns 200V 700-2 F 695-2 678-2 300V 700-3 F 695-3 678-3 400V 700-4 F 695-4 678-4 500V 700-5 F 695-5 678-5 600V 700-6 F 695-6 678-6 NC NC NC NC NC NC 483-1" ME NC NC 483-2" ME NC NC 483-3· ME 701-2 F 696-2 682-2 300v 701-3 F 696-3 682-3 400V 701-4 F 696-4 682-4 SOOV 701-5 F 696-5 682-5 600V 701-6 F 696-6 682-6 500ns 500ns 500ns 2.SkV 5.0kV 3.0kV 7.SkV 4.0kV lOkV 5.0kV Reverse n::rn:.) Parentheses ( UNITRODE CORPORATION. 5 FORBES ROAD LEXI NGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 ME 200V 2.5kV ... Available as JANTX Parentheses ( ) designates product using stacked chips ME 8-5 NC NC NC NC NC ME ME NC NC NC NC NC ) designates product using stacked chips PRINTED IN U.S.A. • RECTIFIER BRIDGES Doublers and Center-Tap Rectifiers 9 '~ n\:~;:j ,;~t: M·l ~2 a ~ lirTO-220AB ~TO-3 USD335C USD635C USD735C TO-220AB TO·220AB TO-3 USD640C USD740C USD345C USM140C USM20040C TO-220AB TO-220AB 50241 TO-3 M·1 M-2 USM145C USM20045C USD645C TO-220AB USD745C TO-220AB ~NO M-1 M-2 USM150C USM20050C M-1 M-2 681·1 NO 681·2 NO 681·3 NO 681·4 NO 681·5 NO 681·6 NO UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL (617) 861·6540 TWX (710) 326·6509 • TELEX 95-1064 8·6 PRINTED IN U.S A. RECTIFIER BRIDGES Doublers and Center-Tap Rectifiers ~ ~NO FAST RECOVERY Peak ~TO-3 UJ.TRA.fAST RECOVERY SUPER FAST RECOVERY ~~r-____~r-______r-~______ AVT~~·_E~n_'C_'_O_U_~-T._~ ___RE_N~.T__~r-~__~~~---------1 Per lAg 1-:-2A 2-15A . 'loA 25A 16A 20A lOA 20V 35V 689-1 NO SES5401C* SES5601C* UES2401 * 804-1 UES2601 TO·220AB TO·3 TO·220AB MF TO·3 SES5402C* SES5602C* UES2402* 804-2 UES2602 TO·3 TO·220AB TO·220AB MF TO·3 804-3 MF .1~ ':',. /,::,,: 689-2 NO SES5403C* SES5603C* UES2403* 804·4 TO·220AB TO·3 TO·220AB MF SES5404C* UES2404* TO·220AB TO·220AB UES2603 TO·3 UES2604 TO·3 689-3 UES2605 689-4 UES2606 NO TO·3 NO TO·3 ·Center·tap only UNITROOE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326·6509 • TELEX 95·1064 8-7 PRINTED IN U.S.A II RECTIFIER ASSEMBLIES JAN & JANTX 469-1 JAN & JANTX 469-2 JAN & JANTX 469-3 Single Phase Bridges, 10 Amp, Military Approved FEATURES DESCRIPTION • • • • • • • This series of military high-current single-phase bridge offer the utmost in reliability as required in military system designs. The TX series is assembled with diodes which have been subjected to 100% screen i ng tests. Qualified to MIL-S-19500/469 Current Rating: to lOA PIV: from 200 to 600V Surge Ratings: to 100A Only Fused-in-Glass Diodes Used Controlled Avalanche Characteristics Aluminum Heat Sink Case, Electrically Insulated Dimensions INCHES Ltr ABSOI,UTE MAXIMUM RATINGS Peak Inverse Voltage Maximum Average D.C. Output Current @Tc=+55°C @Tc = +1OO°C. Non-Repetitive Sinusoidal Surge (8.3ms) @Tc=+55°C .. Operating and Storage Temper u c a:: ..: ~ a:: 0 u. I .5 .2 I1I1 10JCk u '8 -}:.;:'+55 => u II') 1/1/ .05 II -~ .01 .005 .002 0 II .2 1/ I ...- .5 "'zw '"'" ;;) <) 0 ~'" '0..." ~ +-,:;: 8,0 .5 ~ z w a: a: ;;) u ".. ..'" & UJ 1- I .1 .05 .2 I" .4 .5 ~ 10 20 - J..--- 125 1.2 "50 \. +75'C a a I 500 IK .8 "z ~ '"If. '\. \. ./ I .6 /' 1--+25'C 50 lOa 200 // /I / .2 .05 .1 .2 UJ oJ lOa """50'C .01 .02 1 ... !/V II /, / / '/ AO iJt / S Current Derating Curve Typical Leakage Current YS: PIV 50 100 ISO CASE TEMPERATURE ('C) 175 V +125'C I 50 100 75 % OF PIV 25 1.4 FORWARD VOLTAGE (V) I Discrete diode inspection lot ~ 100 Percent process conditioning of discrete diodes :-----t I. High-temperature storage 100 Percent burn·in of discrete diodes I. Measurement of specified parameters 2. Thermal shock (temperature cycling) 2. Reverse bias burn·in 3. Reverse·recovery time 3. Measurement of specified parameters to determine delta 4. Lot rejection criteria based on rejects from burn·in test :-----t Assembly and encapsulation of discrete diodes into bridge assembly 1 Inspection tests to verify l TPO Group A Group B Group C 1 Review of groups A, B, and C data for lot accept or reject J Preparation for delivery UNITRODE CORPORATION 5 FORBES ROAD LEXINGTON, MA 02173 • TEL (617) 861·6540 TWX (710) 326·6509 • TELEX 95·1064 8-11 PRINTED IN U.S.A • RECTIFIER ASSEMBLIES 673,676 SERIES Single Phase Bridges, 1.5Amp, Standard and Fast Recovery DESCRIPTION These miniature transfer-molded singlephase power bridges are designed for universal application in power supplies. One basic bridge assembly comes in a choice of lead configurations for mounting in wired chassis or on printed boards. FEATURES • Miniature Package • Surge Ratings: to 25A • PIV's: from 100 to 600V • Recovery Times: to 500ns • Controlled Avalanche Characteristics • Only Fused-in-Glass Diodes Used ABSOLUTE MAXIMUM RATINGS Peak Inverse Voltage. Maximum Average D.C. Output Current Non-Repetitive Sinusoidal Surge (8.3mS) Operating and Storage Temperature Range . Thermal Resistance Junction to Ambient .. 100 to 600V . See Electrical Specifications .... See Electrical Specifications ............... -65°C to +150°C ............ 50°C/W MECHANICAL SPECIFICATIONS 673,676 SERIES .028" Dia. G BODY O.71mm 1.25" Min. long 31.Bmm Tinned Copper O.32~ + ____ AC S.13mm Lead -1 ~O.1S" I Max. 3.S1mm AC _ .125" ±.030 3.18mm ±.76 0.32" Max. Typica. Weight G: 8.13mm 0.05 ounces 1.4 grams 673, 676 SERIES 440" Max. 1117mm mr S BODY .187" Max. 4.7Smm ll~ M~ AC-AC .100·· Typ. -- ~ . 5 100 200 300 400 500 i 600 ... ~ a o 40 o ~ 1\ 20 40 60 80 100 120 140 160 180 AMBIENT (AIR) TEMPERATURE (·C) V - VELOCITY OF AIR (LFMi 60 :> '" 20 P 80 a: \ o "B~DY J IthrOulgh Output Current vs Ambient (Oil) Temperature :J §.loo :> V .....--- ~ 01.75 :> ::E 1.25 tS a: a: Output Current vs Ambient (Air) Temperature 20 a: ... o ... 20 40 '\ '\ "\ \. \ I 60 80 100 120 140 160 180 AMBIENT (OIL) TEMPERATURE (·C) Application example: The rectifier is to be used in a cabinet at 60·C with ambient air moving at 400 LFM. The rating is reduced (Fig. 2) by a factor of 0.81 due to the elevated temperature, but is enhanced by 2.X (Fig. 1) due to the air flow. Hence the DC output current is 0.81 x 2, or 1.6 times the 25·C air rating. Reverse·Recovery CirCUit lKU + 20V D.C. 990n D U.T lOll UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326·6509 • TELEX 95·1064 8-15 PRINTED IN U.S.A. 673, 676 SER I ES Typical Forward Voltage Forward Current YS Typical Forward Voltage Forward Current 10 10 673 SERIES 676 SERIES ;j ~j 5 .5 ~ .2 z>- ~ " 0: ~ IV .1 :-r 5 'c .0 I .005 +ll7 .0-02 .00 I ~ z>- 1 1 I .1 "« .05 III 1// I ;;: .02 0: ""- I I I I :::> 0: +25'C .2 .4 .6 FORWARD VOLTAGE - IVI II .2 (J I II LI Ii1 711 /; VI .5 '"0:0: 1//.II .0 ~ .0 f0 '/ 1/ 'j / i/ 0: YS tl75'C .01 11 .005 -5r C tlOrcT .002 I .001 - Typical Leakage Current .01 I- .02 .05 .1 .2 >z .5 .:; I- '"0:0: :::> '"'"-'« / II ~ / +25'C -50~C I YS. Voltage 10'6 ~ +~5'~- :.- ~C (J '"«Cl I 1 I j .2 .4 .6 .8 10 1.2 1.4 FORWARD VOLTAGE- MULTIPLY V, BY: 1.0 1.2 1.4 MULTIPLY VF BY: .8 ;( / I L II / i 10 20 50 100 200 500 _i--" I Y +125'C I I I 120 110 100 90 80 70 60 50 40 30 20 10 0 % OF P.I.V. UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 8-16 PRINTED IN U.S.A. 678,682,695 696 SERIES RECTIFIER ASSEMBLIES Three Phase Bridges, 15-25 Amp, Standard and Fast Recovery Magnum ® FEATURES • Current Rating: to 25A • PIVs: from 100 to 600V • Only Fused-in-Glass Diodes Used • Recovery Times: to 500ns • Controlled Avalanche Characteristics • Surge Ratings: to 150A • Aluminum Heat Sink Case, Electrically Insulated DESCRIPTION This series of three phase MAGNUM ® bridges offer the ultimate in high current power supply applications. The fast recovery series allows operation at full power at high frequencies (up to 40KHz squarewave), often used in choppers, inverters and converters in aircraft, missiles, etc., equipment. II ABSOLUTE MAXIMUM RATINGS ....... 100 to 600V Peak Inverse Voltage See Electrical Specifications Maximum Average D.C. Output Current Non-Repetitive Sinusoidal Surge (8.3ms) .... See Electrical Specifications Operating and Storage Temperature Range .......... ---65'C to +150'C Thermal Resistance Junction to Ambient, All Series .. ..... 20'C/W Junction to Case, 678, 682 Series . 1.5'C/W Junction to Case, 695, 696 Series. .. .. 3.0'C/W MECHANICAL SPECIFICATIONS 678, 682, 695, 696 SERIES ins. A B e D E F G H J K L .820 MAX. .09 DIA. TYP. .164-.174 DIA. .365-.385 1.870-1.880 .740 .760 .370-.390 .040 TYP .486-.506 115-.135 2.240-2.260 NC mm. 20.83 MAX . 2.29 DIA. TYP. 4.17-4.42 DIA. 9.27-9.78 47.50-47.75 18.80 19.30 9.40-9.91 1.02 TYP 12.34 12.85 2.92-3.43 56.90 57.40 Typical weight - 30 grams MARKING Alternating Current Input Cathode - Positive Output Anode - Negative Part number is printed on the body. Magnum® is a registered trademark of Unitrode Corporation 8-17 ~UNITRDDE 678, 682, 695, 696 SER IES Electrical Specifications (at 25·C unless noted) Maximum Ratings Maximum Maximum PIV Per Leg Volts Type Standard Recovery 678-1 678-2 678-3 678-4 678-5 100 200 300 400 500 600 100 200 300 400 500 600 100 200 300 400 500 600 100 200 300 400 500 600 678~ Standard Recovery 695-1 695-2 695-3 695-4 695-5 695~ Fast Recovery 682-1 682-2 682-3 682-4 682-5 682-6 696-1 696-2 696-3 696-4 696-5 696-6 Fast Recovery Maximum Leakage Current Per Leg@ PIV TA - 25·C TA -lOO·C p.A /LA Forward Voltage Drop Per Leg Average Maximum Reverse Non-Repetitive Sinusoidal Surge (S.3ms) TA _lOO·C D.C. Output Current Recovery Tc _ 55·C Time* ns Tc _lOO·C Amps Amps Amps 1.2V@10A 10 200 - 25 18.5 150 1.2V@2A 5 150 - 15 9 80 1.2V@6A 10 200 500 20 14 150 1.2V@2A 5 150 500 15 9 60 *Measured in a reverse recovery circuit switching from 1.OA forward to 1.OA reverse current recovering to O.SA. Typical Forward Voltage Per Leg VS. Forward Current 30 ~ r; II V/ 10 +175'~i I 100,6 ::> u o ~ /L II ....z~ 11---+-+--+7'-I-1+--I+--t---1 1-+25'C ~ 0: .5 0: ~ .2 .1 .05 .02 I .2 .5 r--+--r-f+i-f~-+-4-~ ::> // I I III / I /I II I I 0: V. ~ .2 1--+--+f-lhHf--+-+--j ~ ~ ... 1/ /1/ ~ .... z I .5 OJ / II .2 0: 0: B h.,0 ~ c:s0~0(J ~" ...., rv "1-:;:-1-, .1 0 ~ .05 u ~0: o II / .02 II .... 01 .1 I .005 .05 f---+-++I'-t-+l--+-+---1 .02 1--+f--+---I-+--cH--+-+--j I .002 .001 I .4 .6.8 1.2 FORWARD VOLTAGE (V) VV v/ 695, 696 SERIES / II It c--Jo'c 0: 0: 10 //// 678 SERIES 20 ~ .... zOJ Typical Forward Voltage Per leg VS. Forward Current Typical Forward Voltage Per Leg vs_ Forward Current 1.4 UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 .2 .4 .6.8 1.2 .2 II II I II .4 .6.8 1.2 1.4 FORWARD VOLTAGE (V) 1.4 FORWARD VOLTAGE IV) 8-18 PRINTED IN U.S.A. 678,682,695,696 SERIES Typical Leakage Current vs. PIV I...... I- 695, 696 SERIES 50°C /' _____ +25°C 1 1 ../" ___ ,P5°C V _ 125 100 75 +125°C 50 25 % OF PIV • Reverse Recovery Circuit SQ 41l 10V D.C. D.U.T. W SCOPE = Current Derating Curve Current Derating Curve 100 100 55°C 'l"'4.. CJ ),' z ~ a: 696 SERIES 50 I 682 SERIES 55°C , CJ ~ a: if 695 SERIES 50 o 150 100 50 CASE TEMPERATURE (OC) Fast Recovery Series UNITRODE CORPORATION· 5 FORBES ROAD LEXI NGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95·1064 ~ " ';" if 1'\ I" o 678 SERIES -;;':-1.. -}-~ z ~ " o 175 8·19 o 150 50 100 CASE TEMPERATURE (OC) Standard Recovery Series 175 PRINTED IN U.S A 679,680,683,684 SERIES RECTIFIER ASSEMBLIES Single Phase Bridges, 10-25 Amp, Standard and Fast Recovery Magnum™ FEATURES DESCRIPTION • • • • • • • This series of single phase MAGNUMTM bridge offers the designer the ultimate in high current power supply applications. The fast recovery series allows operation at full power at high frequencies, up to 40kHz square wave, which is often used in chopper, inverters and converters in aircraft, missiles, etc., equipment. Current Ratings: to 25A Recovery Ti me: to 500ns PIVs: from 100 to 600V Surge Ratings: to 1SOA Only Fused-in-Glass Diodes Used Controlled Avalanche Characteristics Aluminum Heat Sink Case, Electrically Insulated ABSOLUTE MAXIMUM RATINGS . 100 to 600V Peak Inverse Voltage. Maximum Average D.C. Output Current . ..... See Electrical Specifications Non-Repetitive Sinusoidal Surge (8.3ms) ..... See Electrical Specifications Operating and Storage Temperature Range . .............. -65·C to +lSO·C Thermal Resistance Junction to Ambient, 679, 683 Series .. 20·C/W Junction to Ambient, 680, 684 Series . .. .............. 25·C/W Junction to Case, 679, 683 Series . ... 2.0·C/W Junction to Case, 680, 684 Series 4.0·C/W MECHANICAL SPECIFICATIONS 680, 684 SERIES 'f' """~' ~ Typical Weight - '" mm . ins. A B C D E F G NA .240 MAX. .57 MAX. .040 TYP. .750 MAX. .750 MAX. .140 DIA. .09 DIA. TYP. 6.10 MAX. 14.45 MAX . 1.02 TYP. 19.05 MAX . 19.05 MAX. 3.56 DlA. 2.29 DIA. TYP . Typical We,ght 10 grams 0.35 ounces 10 grams 679, 683 SERIES ~F- I-G E1 l i I ~-lb UriflU IOLtJ= ..l... +-.L U ~K ,"' , A Typical Weight - I 0.7 ounces r A B C 0 E F G TINN~D cU"1r -r-~ ins. H L -I~M J K L M .328 MAX. .750 MAX. .04QTYP. 1.125 MAX. .562 1.125 MAX. .193 .562 .500 .09 DIA. TYP. .062 .062 NB mm. 8.33 MAX. 19.05 MAX. 1.02 TYP. 28.58 MAX. 14.27 28.58 MAX. 4.90 14.27 12.70 2.29 DIA. TYP . 1.57 1.57 20 grams 8-20. ~UNITRDDE 679,680,683,684 SERIES Maximum Ratings Electrical Specifications (at 25'C unless noted) Maximum Leakage Current Per Leg @ PIV Maximum Forward Voltage Drop Per Leg PIV Per Leg Type 100 200 300 400 500 600 100 200 300 400 500 600 100 200 300 400 500 600 100 200 300 400 679-1 679-2 679-3 679-4 679-5 679-6 680-1 680-2 680-3 680-4 680-5 680-6 683-1 683-2 683-3 683-4 683-5 683-6 684-1 684-2 684-3 684-4 684-5 684-6 Standard Recovery Fast Recovery Fast Recovery Non-Repetitive Sinusoidal Surge (8.3ms) TA _IOO'C TA _ 25'C TA-lOO'C "A "A ns Amps 1.2V@10A lO 200 - 25 18.5 150 1.2Y@2A 2 50 - lO 6 50 1.2V@6A 10 200 500 20 14 150 1.2Y@2A 5 100 500 10 6 50 Volts Standard Recovery Maximum Average D.C. Output Current Maximum Reverse Recovery Time* Tc _ 55'C Tc - lOO'C Amps Amps SOO 600 "'Measured in a reverse recovery circuit switching from l.OA forward to 1.0A reverse current recovering to O.SA. Typical Forward Voltage Per Leg VS. Forward Current 30 20 iLL" EL III 1/ ~ .... zOJ +lW~1.. I I 100'C ~ VL I ....~ _+25'C a:: o u. .2 .1 III .05 I .02 .2 1 1--1--+---hhft-JY't--I--1 z OJ c: c: OJ '" '"u::> // I III / I II .5 .... z II lit --Jo'c a:: a:: ::> u o a:: .5 1--1--+......,f+f-ft-f-+--I--1 ltlL JL / .5 .2 B ~ .2 f--t--hl--ft-++--j--f--t U ...., " L.J.. ~ .1 .01 1--1--1-++--+-+-+--+--/--1 .02 1--1+--+-1++-+--+--1--1 I II .002 .001 J 1.4 UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (6l7) 861·6540 TWX (7l0) 326·6509 • TELEX 95-1064 .2 .4 .6.8 1.2 FORWARD VOLTAGE (V) 8·21 I II .005 .05 0 C) 11/ "~ .02 o I1I1I1 !//..J !:! 0~() t, " rv 1- :;: 1- I .1 ~ .05 :;;; I .4 .6 .8 1 1.2 FORWARD VOLTAGE (V) / / VV V 680, 684 SERIES 0V 10 ~ 10 10 ,IV';'; 679 SERIES Typical Forward Voltage Per Leg VS. Forward Current Typical Forward Voltage Per Leg vs. Forward Current o .2 I l I II .4 .6.8 1.2 1.4 FORWARD VOLTAGE (V) 1.4 PRINTED IN U.S A • 679,680,683,684 SERIES Typical Leakage Current vs. PlY .05 .1 Typical Leakage Current vs. PlY Typical Leakage Current vs. PlY ..l;;;:c- 679,683 SERIES 1./ 684 SERIES .01 .02 .05 ;t .3 ... .5 1 UJ 0: 0: (J UJ f.--"'+75'C 50 '~" 100 '" « UJ - oJ SOO 1K 125 100 75 - (J "« oJ +125'C .02 ~ +75'C 10 20 _ 25 125 % OF PIV 100 .2 (J UJ .5 -~5'C I ";2 / ;;'i ---+75'C oJ ../ 10 20 50 100 +125'C 50 75 .1 ~ 500 1K so 50'C z /' 50 100 200 ....Y ,/ .005 .01 ... .05 .5 ::l ./ ~ ./ ______ +25'C .2 UJ 0: 0: I 10 UJ "« ...z ./ _.--+25'C z ::l ;t .3 .1 680 SERIES .001 .002 50'C 1 ~'C i 125 25 100 75 50 25 % OF PIV % OF PIV Reverse Recovery Circuit UZ 640 51) 41) 10V D.C. D.U.T. 5V D.C. SCOPE Current Derating Curve Current Derating Curve 100 100 55'C z" ~ 0: " f.~ "z 1',' 680 SERIES 50 ~ 0: ~ ... ~ 'if. o a ~ 55'C 679 SERIES 50 ~, 683 SERIES ';,,,, 'k' 684 SERIES 50 , ~ ~~ 'if. "' 1"\ 100 150 CASE TEMPERATURE eC) Standard Recovery Series UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 ... a 175 o 50 100 150 CASE TEMPERATURE ('C) 175 Fast Recovery Series 8-22 PRINTED IN U.S.A. RECTIFIER ASSEMBLIES 681,689 SERIES Doubler and Center Tap, 15 Amp, Standard and Fast Recovery, Magnum® FEATURES • Current Ratings: to 15A • Aluminum Heat Sink Case, Electrically Insulated • Only Fused-in-Glass Diodes Used • Controlled Avalanche Characteristics • PIV: 100 to 600V • Surge Ratings: to 150A DESCRIPTION This series of MAGNUM ® doublers and center tap rectifiers offers high current and high thermal conductivity needed in high current power supply applications. The MAGNUM®' package is virtually indestructable and lends its use to high environmental stresses, as seen in aircraft, missile and satellite equipment. ABSOLUTE MAXIMUM RATINGS Peak Inverse Voltages . Maximum Average D.C. Output Current @Tc=+55°C @Tc=+lOO°C Non-Repetitive Sinusoidal Surge (8.3ms) @ TA = +100°C . Operating and Storage Temperature Range. Thermal Resistance Junction to Ambient Junction to Case .. 100 to 600V II 15A lOA ....... 150A -65°C to +150°C .................. 20°C/W ... 6.0°C/W MECHANICAL SPECIFICATIONS 681, 689 SERIES ., ~_"_2.260 _ _ - - - - " I :~~~DIA. fo- 2240 L:::@ , ~I= = ]01 ~ (2 PLACES) 1.490---1 1 ----, .354 -].480 .09 OIA. TYP.,: ~ liD" • 334 -4:-TlNNED cu .. 040 TYP. "P" ~ ~--'---T~60 I, Ir'L.....---"---''--,1 ~ J.. .322 MAX. W~~_ _ _ _ _ _~~'I ~~ I AC I .1 + + .1 I ~ AC AC AC "N" _.-----M~I----'-----I.~I- .1351 115 Orientation of terminals shown for "D" For "P" or "N" center terminal IS at 90 0 from the AC terminals MARKING Alternating Current Input Cathode - Positive Output Anode - Negative Part number is printed on the body. . AC ND Typical Weight - 0.3S ounces 10 grams t Add suffix P, N, or 0 for terminal Magnum® is a registered trademark of Unitrode Corporation configuration P, N, or D. For example, for center tap configuration, P, order 681-IP. 8-23 ~UNITRDDE 681,689 SERIES Electrical Specifications (at 25°C unless noted) PIV Per Leg Type Reverse Recovery Time* Volts Standard Recovery 681-1 681-2 681-3 681-4 681-5 681-6 689-1 689-2 689-3 689-4 689-5 689-6 Fast Recovery Maximum Leakage Current Per Leg@ PIV Maximum Maximum Forward Voltage Drop Per Leg TA nS 100 200 300 400 500 600 100 200 300 400 500 GOO 1.2V@lOA 1.2V@ lOA 500 TA = 10(}OC = 25°C p.A p.A 10 200 10 200 *Measured in a reverse recovery circuit from lA forward to lA reverse current recovery to O.SA. Typical Forward Voltage Per Leg VS. Forward Current 10 Typical Leakage Current vs. PIV VL 1/ +175°C- ~ I r-- I- +10(}OC,--J ~1ft U / II 1// i/ I / I I I Z UJ '" 0: .5 :> u ~ .2 g~ .1 ... .01 .5 ..,/ I--""" +25°C I- 50°C_ Z UJ 0: 0: :> u 10 ./ UJ "« « UJ '" 1---:j.75°C 50 100 oJ / II .05 .02 ~ +25°P / J;;c .05 .1 II!, / 500 1K /11 :--125 II I .2 .4 100 75 50 Y +125°C 25 % OF PIV I .6 .8 1.Q 1.2 FORWARD VOLTAGE (V) Reverse-Recovery Circuit UZ840 Current Derating Curve 100 55°C " " z ~ + 1', 10V D.V. sV D.C. 50 '"#- 1', o o 50 100 150 CASE TEMPERATURE ("C) UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 175 8-24 PRINTED IN U,S.A. RECTIFIER ASSEMBLIES 697,698 SERIES Single Phase Bridges, 7.5 Amp, Standard and Fast Recovery FEATURES • Miniature High Current Assemblies • Continuous Ratings: to 7.5A • Surge Ratings: to 80A • PIV's: from 100V to 600V • Recovery Times: to 500ns • Only Fused-in-Glass Diodes Used • Controlled Avalanche Characteristics DESCRIPTION These miniature molded high-current single-phase bridges are designed for universal application in power supplies. One basic bridge fills current requirements up to 7.5A, with PIV's from 100 to 600 volts and recovery times of standard, and 500ns max. ABSOLUTE MAXIMUM RATINGS Peak Inverse Voltage Maximum Average D.C. Output Current Non-Repetitive Sinusoidal Surge (8.3ms) Operating and Storage Temperature Range Thermal Resistance Junction to Ambient Junction to Case II 100 to 600V See Electrical Specifications See Electrical Specifications -65'C to +150'C . 32'C/W lO'C/W MECHANICAL SPECIFICATIONS 697, 698 SERIES GA B C o -j Tinned Copper lead r A B C 0 E F TYpical Weight - Ins. 0.50'.01 .032 DIA. LO MIN. .250 MAX. . 150 TYP. 0.50' 01 mm. 12.70 •.25 0.81DIA . 25.4 MIN. 6.35 MAX . 3.81 TYP . 12.70'.25 0.14 ounce. 4.0 grams MARKING Alternating Current Input Cathode - Positive Output Anode - Negative Part number is printed on the body. 8-25 ~UNITRODE 697,698 SERIES Electrical Specifications (at 25°C unless noted) Type Standard Recovery 697-1 697-2 697-3 697-4 . 697-5 697-6 698-1 698-2 698-3 698-4 698-5 698-6 Fast Recovery Maximum Forward PIV Per Leg Volts 100 200 300 400 500 600 100 200 300 400 500 600 Voltage Drop Per Leg Maximum Ratings Leakage Current Maximum Reverse Recovery Timet Per Leg @ PlY TA = 25'C TA = 100°C ~A 5 200 l.lV@2A 5 200 Non-Repetitive Sinusoidal Surge D.C. Output Current TA = 25'C Amps ns ~A 1.0V@2A Maximum Average 500 (8.3ms) Amps Tc=55°C Amps 2.5 7.5 80 2.25 7.0 70 tMeasured in a reverse recovery circuit switching from lA forward to lA reverse current recovering to .SA. 10 ;'J/j $ 698 ~.05 ~ +- / 15 .02 II' .01 II .005 .002 II .001 ~ A • I ~ I I .002 I FORWARD VOLTAGE lA (V) .2 A .6 Typical Leakage Current VS. PIV ALL SERIES .01 .02 .05 .1 :;c .2 .:; Iz .5 ./ 50'C ./ --+25'C '"0::0:: :> u .."""'. "' I ..J I .001 1~ i I I .01 .005 1 , :;:.:; "/- I 15 .02 il II ilklff,~!~ II I I C ~.05 "- ~ VI IV / / '" I I 1 .5 ~ .2 :> u .1 II II $ I- z (,J<.JU C VV' VV' / / /[/ 1---1//J I :;:.ij~~f~f~ :;:. + I .2 SERIES i III 1/ .5 :> u .1 "- 10 }'/ '/ SERIES 697 !!: '"~ Typical Forward Voltage Per Leg vs. Forward Current Typical Forward Voltage Per Leg vs. Forward Current II V ,........ +75'C 10 20 50 100 200 500 V I--"" +125'C 1.000 .8 1 FORWARD VOLTAGE 1.2 100 150 1.4 50 % OF PlY (V) Reverse Recovery Circuit Current Derating Curve 50 + , , , 55'C 100 40 " , D.C. ~ D.U.T. , ,, SCOPE I o UNITRODE CORPORATION' 5 FORBES ROAD LEXI NGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95·1064 I ,, , 50 ~ 10 , ,CASE TEMP. , , FREE AIR "Z 10V , 8·26 : o 50 150 100 TEMPERATURE ('C) 200 PRINTED IN U.S.A. RECTIFIER ASSEMBLIES 700, 701 SERIES Three Phase Bridges, 2.5 Amp, Standard and Fast Recovery FEATURES DESCRIPTION • Miniature Package • Recovery Time: to SOOns • Surge Ratings: to 2SA • PIV: from 100 to 600V • Controlled Avalanche Characteristics • Only Fused-in-Glass Diodes Used These miniature transfer-molded highvoltage three-phase power bridges are designed for universal application in power supplies. One basic bridge fills current requirements up to 2.SA, with PIV's from 100 to 600 volts and recovery times of standard and SOOns. • ABSOLUTE MAXIMUM RATINGS 100 to 600V See Electrical Specifications See Electrical Specifications .. .......... -6S'C to +lS0'C Peak Inverse Voltage Maximum Average D.C. Output Current . Non-Repetitive Sinusoidal Surge (8.3ms) . Operating and Storage Temperature Range. Thermal Resistance Junction-to-Ambient ............................ 2S'C/W MECHANICAL SPECIFICATIONS A../ B~ 1 J _ji__ Tinned I ~1C I~e [~~ H 1 de Ae{} G-i 700, 701 SERIES f-- F Copper ins. A B .310 .621 .512 .460 .255 1.030 .220 875 .028 C D E F G H J REF. MAX. MAX. MAX. DIA. mm. 7.87 15.77 13.0 REF. 11.68 MAX. 648 26.16 MAX. 5.59 MAX . 22.23 0.71 DIA. Typical Weight - 0.12 ounces 3,5 grams MARKING Alternating Current Input Cathode - Positive Output Anode - Negative Part number is printed on the body. 8-27 ~UNITRDDE 700,701 SERIES Maximum Ratings Electrical Specifications (at 25°C unless noted) Maximum PIV Per Leg Type leakage Maximum Forward Voltage Drop Per Leg TA - 100'C Maximum Reverse Recovery Timet I,A I,A ns 1.0V@0.5A 2 100 l.lV@O.SA 2 100 Current Per Leg@ PIV TA - 2S'C Volts 100 200 300 400 SOO 600 100 200 300 400 500 600 700-1 700-2 700-3 700-4 700-S 700-6 701-1 701-2 701-3 701-4 701-S 701-6 Standard Recovery Fast Recovery Average D.C. Output CUrrent Non-Repetitive Sinusoidal Surge (8.3ms) TA - SS'C Amps Amps sao 2.S 25 2.2S 20 tMeasured in a reverse recovery circuit switching from lOrnA forward to lOrnA reverse current recovering to SmA. Typical Forward Voltage Per Leg YS. Forward Current Typical Forward Voltage Per Leg ys. Forward Current 10 Typical Leakage Current Ys. PIV 10 700 SE!lIES 701 SERIES c;:;.. :3: VV': I- z '"::>'""' u 0 '"«~ :3: "' a'"'" .1 I .05 II II .002 .001 .2 .05 / J .6 / V j 001 8 1 12 14 "'0:: '"::> u "'« "« "' - II / / .002 FORWARD VOLTAGE (V) .05 .1 I I ./' .5 +2S'C L I Cl .01 I I ~oC SERIE~ I- - " 8~,,* ....,:;: -.;... I .005 II .4 .1 ~ ..:; Z V I'I ~l!1u ,u ,u .2 '~" .02 I I / .005 .5 ~ « "1-"1- I III '" ~ .02 .01 $°jl]7l~U ~ iJ lif- :;( V/ Z L .2 Vl/ IV/ I- / .5 ALL .01 .02 .2 ! II II / ..J ,../ 10 20 +7S'C i 50 100 I ,/ 200 ~+125°C " 500 1.000 J .4 .6 .8 1 1.2 FORWARD VOLTAGE (V) 100 150 1.4 50 % OF PIV Reverse Recovery Circuit Current Derating Curve IKIl 100 r - - + 9901l z 20V D.C. D.U.T 0:: UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON. MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 - - " o 8-28 CONVECTION COOLED "" 50 'if. lOll I I " Cl >= « ""'. o 100 150 50 AMBIENT TEMPERATURE ('C) 200 PRINTED IN U.S.A. 800,801 SERIES RECTIFIER ASSEMBLIES Three Phase Bridges, 20-40 Amp, High Efficiency, ESP FEATURES • Current Ratings: to 40A • Recovery Time: SOns • Surge Ratings: to 250A • PIVs: from 50 to 150V • Only Fused-in-Glass Diodes Used • Exceptionally High Efficiency • Aluminum Heat Sink Case, Electrically Insulated DESCRIPTION This series of three phase bridges offers the highest efficiency possible for applications where nothing else will do. The series allows operation at full power at high frequencies. • ABSOLUTE MAXIMUM RATINGS Peak Inverse Voltages ..... 50 to 150V Maximum Average D.C. Output Current. .. See Electrical Specifications Non-Repetitive Sinusoidal Surge (8.3ms) ...... See Electrical Specifications Operating and Storage Temperature Range ... -65'C to +150'C Thermal Resistance Junction to Ambient, All Series. . ... 20'C/W Junction to Case, 800 Series l.5"C/W Junction to Case, 801 Series. ... 3.0'C/W MECHANICAL SPECIFICATIONS 800, 801 SERIES A' B C D E F G H J ins. .740-.760 2.240-2.260 .365 .385 .164-.174 DIA. .370 .390 .486-.506 .115 .135 1.870-1.880 .820 MAX. ME mm . 18.80-19.30 56.90-57.40 9.27-9.78 4.17-4.42 DIA. 9.40-9.91 12.34-12.85 2.92 3.43 47.50-47.75 20.83 MAX . Typical Weight -1.0 ounce 30 grams MARKING Alternating Current Input Cathode - Positive Output Anode - Negative Part number is printed on the body. 8-29 ~UNITRDDE 800,801 SERIES Maximum Ratings Electrical Specifications (at 25'C unless noted) Maximum PIV Per Leg Volts Type ESP 800-1 800-2 800-3 800-4 801-1 801-2 801-3 801-4 Recovery ESP Recovery Maximum Forward Voltage Drop Per Leg 50 100 125 150 50 100 125 150 Maximum Reverse Average Maximum Reverse Leakage Current Per Leg@ PIV D.C. Output Current Tc _ 55'C Tc - 100'C Amps Amps Recovery Time* Non-Repetitive Sinusoidal Surge (8.3ms) TA _l00'C TA - 25'C p,A TA _l00'C p.A .95V@10A 20 1000 50 40 25 250 .95V@6A 10 300 50 20 16 125 ns Amps *Measured in a reverse recovery circuit switching from lA forward to 1A reverse current recovering to a.SA. Forward Surge Current vs. Duration I I I, ;; ~ 320 ~ 280 ~ ~ 240 200 ::;J ""'" ... 80 o 40 ::;J ... 140 z , I .02 .05 ~ 120 !!5 100 i, -.......... 1,801 SERIES ~ ~ 80 -..... [ r-.. 60 ~ 40 -r.01 I /I I II ;; ~ 160 00 SERIES I IZ u 160 ~ 120 a. Forward Surge Current VS. Duration o 20 o .1 .2 .5 10 20 .01 .02 .05 DURATION (SEC.) .1 .2 .5 10 20 DURATION (SEC.) Current Derating Curve '0 40 ~ 35 UJ ll: ll: 25 ::;J 20 ... z U ," 30 ... 15 ...a. 10 ::;J r--.... ~ t 801 SERIES h 800 SERIES I - r- ""r- " , 0 UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173. TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95·1064 a 55 100 CASE TEMPERATURE ('C) 8·30 I i'-... i ....... I--J ::;J o ! I , N 150 PRINTED IN U.S.A. 800,801 SERIES Typical Forward Voltage Per Leg vs. Forward Current Typical Forward Voltage Per Leg VS. Forward Current 100 100 /.~;::: 800 SERIES 50 50 /~~ 20 ~ "CJ CJ 1--- 'W.../i!" /5 OJ U "f.. ~ .05 "~ I .2 a II .S / U a C,J .5 0: " " ;; .2 0: a 801 SERIES .01 1.5 .1 1-1- r-I-!- ~ T - +75"C 10 w "" "" "~ - 100 T = +125"C 200 100 75 50 Ii? I I .1 .2 .3 .4 .5 .6 .7 .8.9 1.1 FORWARD VOLTAGE (V) 1.3 Typical Leakage Current PIV VS. • 8 0 SERI S A=-5J I L /' Tl~ 10 20 W ..J ./" .251_ T - -7S'e..-- r- T =-12'::;"- V 100 200 1K 125 -f. ....... OJ U ..... i--' ~ 20 ...I J .... z OJ w / -f. j I il .2 W 0: 0: W 0: 0: U /?/i! ~"A$-fr j .1 T _ +25'C k- z -1' -.! ~50lc I .2 .... .01 .02 'Ill' V... re- .02 Typical Leakage Current vs. PIV .01 .02 H- ~'/"CJ CJ "- .1 .05 .5 .7 .9 1.1 1.3 FORWARO VOLTAGE (V) .3 If / OJ U I .01 .1 I II I III III / / W 0: 0: >/7 -f. '" II "- .1 ~ CJ ;;, 10 ....z VI II / W 0: 0: /.;:::: ~;:;'/ / / 20 10 ~ ....z 801 SERIES 25 1K % OF PIV 125 Reverse·Recovery Circuit 75 50 % OF PIV 100 25 Characteristic Waveform t .. ~ i'- \ 1n NOTE3 luc \ i i I I, II SET TIME BASE FOR 5 NS/CM NOTES: 1. Oscilloscope: Rise time (; 3ns; input impedance = SOU. 2. Pulse Generator: Rise time ~ 8nsi source impedance IOn. 3. Current viewing resistor, non-inductive, coaxial recommended. UNITRODE CORPORATION. 5 FORBES ROAO LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326-6509 • TELEX 95-1064 8·31 PRINTED IN U.S A. 802,803 SERIES RECTIFIER ASSEMBLIES Single Phase Bridges, 20-35 Amp, High Efficiency ESP Series FEATURES DESCRIPTION • • • • • • • This series of single phase bridges offer the 'highest efficiency possible for applications where nothing else will do. The series allow operation at full power at very high frequency. Current Ratings: to 35A Recovery Time: 50ns Surge Ratings: to 250A PIVs: from 50 to 150V Only Fused-in-Glass Diodes Used Exceptional High Efficiency Aluminum Heat Sink Case, Electrically Insulated ABSOLUTE MAXIMUM RATINGS Peak Inverse Voltage . ....... 50 to 150V Maximum Average D.C. Output Current . See Electrical Specifications Non-Repetitive Sinusoidal Surge (8.3ms) ........ See Electrical Specifications Operating and Storage Temperature Range .... .... -65'C to +150'C Thermal Resistance Junction to Ambient, 802 Series. . ............ 20'C/W 803 Series. ....................... 25'C/W Junction to Case, 802 Series . .......... 2.0'C/W 803 Series .... .... ........ 4.0'C/W MECHANICAL SPECIFICATIONS 803 SERIES ~E Dl---. ;;-cili A B C 0 E ins. .735-.755 .570 MAX. .226-.246 .735-.755 .13O-.150DIA. MA mm. 18.67-19.18 14.48 MAX . 5.74-6.25 18.67-19.18 3.30-3.81 ~ c Typical Weight - 0.35 ounces 10 grams 802 SERIES AniB tr K A + B +-~~r~krHr~ LI; . J~r-~' L I Io--G C 0 E F G H J K ins. .056-.066 .052-.072 1.115-1.135 .552-.572 .552-.572 .180-.200 DlA. .490-.510 .750 MAX. .302-.322 1.115-1.135 MB mm. 1.42-1.68 1.32-1.83 28.32-28.83 14.02-14.53 14.02-14.53 4.57 5.08 DIA . 12.45-12.95 19.05 MAX. 7.67 8.18 28.32-28.83 Typical Weight - 0.70 ounces 20 grams 8-32 ~UNITRODE 802,803 SERIES Electrical Specifications (at 25'C unless noted) Maximum Forward Voltage Drop Per Leg PIV Per Leg Volts Type 802-1 802-2 802-3 802-4 803-1 803-2 803-3 803-4 ESP Recovery ESP Recovery 50 100 125 150 50 100 125 150 Maximum Reverse leakage Current Per Leg @ PIV Maximum Ratings Maximum Average Non-Repetitive Sinusoidal D.C. Output Surge (8.3ms) Maximum Reverse Recovery Time'" Tc - 55"C Tc _IOO'C ns Amps Amps TA - lOO'C Amps Current TA - 25"C pA TA - 100'C pA .95V@10A 20 1000 50 35 22.5 250 .95V@6A 10 300 50 20 16 125 "'Measured in a reverse recovery circuit switching from lA forward to lA reverse current recovering to O.5A. Typical Forward Voltage Per Leg VS. Forward Current Typical Forward Voltage Per Leg VS. Forward Current 100 V:: ~~ 802 SERIES 50 3 I u. .1 o fI""" r---- .:;>. . . g (,) 'I- ;: I/ / .5 1/ .1 I IZ UJ 0: 0: u .~ If .2 ~ ~ u. /'" /'1- / .05 .02 .01 I II VS. 0 / il Typical Leakage Current .01 .02 V- PIV , / /11tolc .2 I I r- T _ +25"C 1>- ,,/' VS. 1.3 803 SERIES .1 T 1=+251_ _ f .3 .5 .7 .9 l.l FORWARD VOLTAGE (V) 1.5 PIV t(J 'I- II II .1 A=-5Jc 1 -f.--J"" r--r--- bl~ .1 802 SERIES .2 -li" 8jtd:u ." r--r--- 1/ ~_ i/r- z - UJ 0: 0: :0 :0 U UJ co 10 "'"'" .5 c ~ .5 .7 .9 l.l 1.3 FORWARD VOLTAGE (V) .1 1 :0 h"--i!? Typical Leakage Current .01 .02 a: II I I .3 IZ UJ 0: I II I .01 '/1/'/ I I /1/ VI II II I ~ VIII I ~ .05 .2 II V Z UJ 0: 0: ~ 0: V;t:::::: ~v 20 10 10 5 803 SERIES 50 /~fJ 20 :? I- 100 20 T_+75'~ UJ ...J 100 200 T = +12::;"- ~ - 100 75 50 % OF PIV UNITRODE CORPORATION' 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95·1064 i--" i5" ..J 100 T _ +125"C 200 .---- IK 25 8-33 i--" II 125 IK 125 T-~ 10 ~ 20 100 50 75 % OF PIV 25 PRINTED IN U.S.A. 802,803 SERIES Current Derating Curve 0' 40 "C ~ 35 i', tz 30 I :> 15 0t::: 10 I-- - h"- I t- 0 f-/ a02 SERIES UJ a: 25 a: :> u 20 '" I' a03 SERIES 1---~. i'-r..... r-... r--.., r--. I I I I 55 150 100 CASE TEMPERATURE eC) Forward Surge Current vs. Duration forward Surge Current vs. Duration u u t- 140 Z ~ 120 ;:: 2ao ~ 160 ~ 100 U ao ~ 320 ~ 240 ~ 200 ............ -.......... :> 60 / ~ 40 o U r-- t- i[ I La03 SERIES 20 I II o .01 .02 .05 _1 .2 .5 160 r-........ ~ 120 - 0- t- ao o 40 :> I La02 SERIES I IIIII o 10 20 .01 .02 .05 .1 .2 - l- .5 10 20 DURATION (SEC.) DURATION (SEC.) Characteristic Waveform Reverse·Recovery Circuit - t" 0--- \ I REC \ ~ 1 r h l.I SET TIME BASE FOR 5 NS/CM NOTES: 1. Oscilloscope: Rise time ~ 3nsi input impedance = 50!? 2. Pulse Generator: Rise time::::;; 8ns; source impedance Ion. 3. Current viewing resistor, non-inductive, coaxial recommended. UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) a61·6540 TWX (710) 326·6509 • TELEX 95-1064 8·34 PRINTED IN U.S.A 804 SERIES RECTIFIER ASSEMBLIES Doublers and Center Tap, 20 Amp, High Efficiency, ESP FEATURES • Current Rating: to 20A • Aluminum Heat Sink Case, Electrically Insulated • Recovery Time: SOns • Surge Rating: to 2S0A • PIVs: from SO to lS0V • Only Fused-in-Glass Diodes Used • Exceptional High Efficiency DESCRIPTION This series of doublers and center tap rectifiers offer the ultimate in high efficiency application. The rectifiers are particularly suited to switching regulator supplies where very fast recovery time and low forward drop are of prime importance. ABSOLUTE MAXIMUM RATINGS Peak Inverse Voltage Maximum Average D.C. Output Current @ Tc +SS·C @ Tc +100·C . Non-Repetitive Sinusoidal Surge (8.3ms) @ TA +100·C . Operating and Storage Temperature Range . Thermal Resistance Junction to Ambient . Junction to Case . II ....................... 50 to lS0V = = = ....................... 20A ........ 14A ........................ 250A . . -65·C to +15O"C ..... 20·C/W . ......... 6.0·C/W MECHANICAL SPECIFICATIONS 804 SERIES MF AC r I ~:~~;DIA. i";!;"1r~==;:;===:;:;=;rl:v "P" . ~ "N" . ~ AC -'- AC 5/80 AC ~I AC Typical Weight -0.35 ounces 10 grams Dimensions in inches. MARKING Alternating Current Input Cathode - Positive Output Anode - Negative Part number is printed on the body. + "D" ....._ _ ~f--l...--~~I----- (2 PLACES) t Add suffix P, N, or 0 for terminal configuration P, N, or D. For example, for center tap configuration, P, order B04-IP 8-35 ~UNITRDDE 804 SERIES Electrical Specifications (at 25'C unless noted) PIV Per Leg Type Maximum Leakage Current (pA) Per Leg @ PIV Maximum Forward Voltage Drop Per Leg TA = 25'C Volts 804-1 804-2 804-3 804-4 ESP Recovery 50 100 125 150 .95V@lOA TA Maximum Reverse Recovery = 100'C Time* pA pA ns 10 500 50 *Measured in a reverse recovery circuit switching from lA forward to lA reverse current recovering to a.SA. Typical Forward Voltage Per Leg VS. Forward Current 100 50 V~~ 20 II 5 2 0:: 1 ~ .2 f2 .1 !Z "'0::0:: -(.: :;: '" II .5 II / .01 .1 .3 "' "''"" "~ I I UNITRODE CORPORATION, 5 FORBES ROAD LEXINGTON, MA 02173' TEL. (617) 861-6540 TWX (710) 326-6509" TELEX 95-1064 A=-sot r 1 ./ TL+21_ 10 20 T=+7S':-- 7 100 200 T=+12 I .5 .7 .9 1.1 1.3 FORWARD VOLTAGE (V) PIV u 0 I I ./' .2 YS. :> ." {5,O ~ .05 0:: ~ 11/ / I v..l,o II r-/ !l1f !- Z ~ .1 I 10 ~ Typical Leakage Current .01 .02 v~ ~P'" lK 125 1.5 8-36 100 ::s.-............. 75 50 % OF PIV 25 PRINTED IN U.S.A 804 SERIES Forward Surge Current vs. Duration II ;;- ! 160 .... 140 z ~ 120 g; 100 u t- 80 o I ;;- I 11-1-II _ I rs: "r::. ~ 60 I--- 5 I Current Derating Curve 40 20 _01 Ii .i I .05 804 SERIES I _1 .2 - I I W 0: 25 0: :::> u 20 I I r- ...... t:::> IS r- / L [ .02 L --.. I ~ 35 ti Z 30 ~-l -t- -- 40 "0 II I r4:# I I .5 ...."- :::> 0 I 804 SERIES 10 o 20 r-r-., I I I I o 10 ! 55 i'100 150 CASE TEMPERATURE ('C) DURATION (SEC.) • Reverse-Recovery Circuit 1n NOTE3 NOTES: 1. Oscilloscope: Rise time ~ 3nsj input impedance = son. 2. Pulse Generator: Rise time ~ 8ns; source impedance Ion. 3. Current viewing resistor, non-inductive, coaxial recommended. Characteristic Waveform ~ t" I'- \ I REe \ ~ 1 r I, LI SET TIME BASE FOR 5 NS/CM UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 8-37 PRINTED IN U.S.A. SES5401 C-SES5404C RECTIFIERS High Efficiency, 16A Center-Tap FEATURES • Low Forward Voltage • Fast Recovery Times • Economical, Convenient TO-220AB Package • Low Thermal Resistance • Mechanically Rugged DESCRIPTION The SES5401C Series in the economical, convenient TO-220AB package, is specifically designed for operation in power switching circuits to frequencies in excess of 100KHz. The series combines two high efficiency devices into one package, simplifYing installation, reducing heatsink requirements and the need to purchase matched components. ABSOLUTE MAXIMUM RATINGS Peak Inverse Voltage, SES5401C _. _. ___ . _. _. _. ___ ... ____ . _. _.. _. _.. _. _. __ . _. _...... _. _. _.. _.. _. _. _. _. _.. _.. _.. _.. __ . _. _. _. _50V Peak Inverse Voltage, SES5402C ___ . _... __ . _.. _. _. _. _. _. _... _. _.... _. __ . _. ___ .... _. _. _.... _. __ . _. _. _. _.. _.. _.. _.. _.. _. _. _.100V Peak Inverse Voltage, SES5403C . _. _______ . _.. _. _. _. _. _. _. _. _.. ___ . _. __ . __ ....... _. _. _. _.. _. __ . _. _. _. _.. _.. _.. _.. __ . _. _... 150V Peak Inverse Voltage, SES5404C .. _. _. _. _. _. ____ .... ______ . _.... _. _. __ . _.. _. _. _. _... ___ . _. _... _. _. _.... _.. _.......... __ .. _200V Maximum Average D.C. Output Current @ Tc = 125°C __ . _. _____ . _.. _. _. _. _. _. _. _. ___ . _. _______ .... _. ____ .. __ .... _. _. _. _....... _. _. _. _. _.. __ . _.. __ . ___ . _. ___ 16A @ TA = 25°C . ___ . _. __ . __ . _. _. ___ . _. _. ____ . _. ___ . _. _. _.... _. __ . _. __ . _... _. _. _. _. _... _... _. _. _. __ . _..... _.. __ . _. _. _. _. 3A @ TA = 25°C (Note 1) _... _. _. ___ . _____ . __ ... _____ . _. _.... _. _. __ . _.. _... _. _. _. ___ . _. _. _. _. _. _. _. __ . __ .... __ .. _. ___ . _. lOA Non-Repetitive Sinusoidal Surge Current, 8.3mS ... _____ . __ . _.... _. _.. _. __ . _. _. _. _. _.. __ . _. _. _. _. _. __ . _. _. ___ . __ . _.... ___ . _.70A Thermal Resistance, Junction to Case, OJ-c. _. _.. _. _. _. _.. _. _.. _. _. __ . _.. _. ___ .. ________ . _. _. _. _. _.. ___ . _... _..... _.. _ 1.75°C/W Thermal Resistance, Junction to Ambient, OJ-A _. _. ___________ .. _.... ____ .. _.. ____ . _. _. _. __ . _.... _. _. _. _.. _.. _.. __ .. _. __ 60°C/W Operating and Storage Temperature Range .......... ___ ...... _...... _.. _............ __ ................ _.. __ ... -55°C to + l50°C Note 1_ Using Wakefield Type 295 heatsink with convection cooling. For more definitive data refer to the Output Current vs. Temperature Curves on this data sheet. ELECTRICAL SPECIFICATIONS Type Maximum Forward Voltage (VF) @ PIV TJ=2S oC SES5401C SES5402C SES5403C 50V l00V l50V Maximum Reverse Current (I R) @PIV TJ=100 oC @ TJ=2S oC @ TJ =100 oC 5"A l50"A O.945V @ SA 1_025V @ SA Maximum Reyerse Recovery Tim.· Typical Forward Recovery Voltage @IA t,.=8nS lOOnS 1.4V °Measured In circuit IF =O.5A, IR = 1.0A, IREO =O.25A MECHANICAL SPECIFICATIONS SES5401-SES5404C SEATING PLANE D' .. . • B c j r-I U I ....j .:n- ~ SECT A·' ~ • ~ Plnl ! iii. Pin3 , 0 G H 14.23 0.51 3.531 1.1" 3.73] 2." 2." 0." 14.27 1.77 & K 12.70 Tab L 1.1" • INCHII 0.... 0.... 0.140 0.... 0.131 ..., 2." 2.04 .... 1.1" 5.33 .... '.04 U. 1.1, 8-38 0.... 0.... 0,110 0.045 0.147 0.110 6.l5 0.31 Q . 15.'7 10.66 J 5 T 1110 ..,. .. .., . ....'.5O ... ..... MILLIMIT'_. Pin2 N .. . .. TO-220AB 0.015 0.... 0.045 0.110 0.100 0.... D.IMS ..... 0.... 0.025 0.'" 0.010 0.110 0.120 0.115 0.... 0.210 ~UNITRDDE SES5401C·SES5404C Output Current vs. Temperature Typical Forward Current vs. Forward Voltage Typical Reverse Current vs. Voltage .01 .02 100 18 50 16 ~ 14 zOJ 12 :> 10 ... 20 .1 .2 ~V 10 / II: II: I II: IX -~ :> '"0 40 # 20 ...... "- IX !"--. 50 10 .5 -....... "'i'... ..................... --- LL 50 lOpS 20 Multiple Surge Current vs. Duration 100 :> Q. 40 V,-VOLTAGE(V) Peak Half Sine CUrrent vs. Duration for Non-Repetitive Pulse .............. = +12S C L' VOLTAGE IN % OF PIV Forward Pulse Current vs. Duration 10.000 V ~JI ~Ior I ( .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 1.11.21.3 TEMPERATURE (OC)· l- J .. I-ti;s·c f- '" iJ i~I :;: [II'" ,II J II .05 .02 z ~I zOJ ,e1~1~ j I G A .875 MAX B .135 MAX. 3.43 MAX . c .250-.450 6.35-11.43 D .312 MIN. E .038-.043 OIA. j J ~ I+---K 22.23 MAX. 7.92 MIN • 0.97-1.090IA. 4.78 MAX. RAD . F .188 MAX. RAD. G 1.177-1.197 2900-30.40 H .655-.675 16.64-17.15 J .205-.225 5.21-5.72 K ,420-.440 10.67-11.18 L .525 MAX. RAD. 13.34 MAX. RAD • M .151-.1610IA H L 204AA (TO-3) mm 3.84-4.09 OIA. NOTES: 1. Standard pOlarity Is poSItive output. For reverse polarity (negative output) add suffix "A", ie, SES5601CR. 2. All metal surfaces tin plated. 1/10 8-40 ~UNITRDDE SES5601C-SES5603C Typical Forward Current VI. Forward Voltaga Typical Reverse Current vs. Reverse Voltage .001 .002 I I so ./ J-t- .005 .01 oS .02 TJ _+25'C ;; 20 ~ .... z 10 ....Z .05 a: .1 a: :l .2 u .5 III '"0:0: '" '"a: > '" '"a: ~ :l ---- t- -r f::i-f-- +100'C I . c-- =+125'C' /F= F=T:' =+ISO'C ~ r-TJ I 10 20 so TJ 30 I -'--"" } u I ;: ( 0 0: <[ V II I L :l 0: ... 0 bf -" .5 V .2 V, - 130 120 110 100 90 80 70 60 so 40 30 20 10 0 V, - REVERSE VOLTAGE (% OF PIV) Maximum Forward Surge VS. Number of Cycles 400 ~ .... 300 Z '"a:a: "" -~ 100 J\.J'L V .6 1.0 .8 FORWARD VOLTAGE (V) ....... .....- .5 u ~ I z VV <[ o '" "" ~ICYC~E .2 W Q. :> <[ ~ .05 '...." "'" - J: ",,---- 10 20 50 100 CYCLES OF 60 Hz SINEWAVE 1.2 • ..-1- V / .1 -' / / .02 I g .01 .01.02 .05.1 .2 Of< tp - N- / ~ -TJ =+75'C Thermal Impedance vs. Pulse Width w a200 / 1\ "'/ V I' I .4 I .1 L V =+150'C ~ V .5 1 2 5 10 20 50100200 PULSE WIDTH (mS) 1000 200 Reverse-Recovery Circuit Output Current vs. Case Temperature Ion 50 n 30 ~ ....z '"a:0: :l r20 u .... ....Q. :l :l 0 I _0 10 + _ -=- "" '" ~ '" 100 Tc - 25Vdc (APPROX.I III NOTE 3 OSCI LLOSCOPE NOTE I NOTES: 1. Oscilloscope: Rise time ~ 3nSi input impedance = son. 2. Pulse Generator: Rise time ~ 8nS; source impedance 100. 3. Current viewing resistor, non-inductive, coaxial recommended. 125 150 175 CASE TEMPERATURE ('C) UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326-6509 • TELEX 95-1064 8-41 PRINTED IN U.S.A RECTIFIER ASSEMBLIES JAN JAN JAN JAN Single Phase Bridges, 25 Amp, Military Approved SPA25 SPB25 SPC25 SPD25 FEATURES DESCRIPTION • • • • • • • This series of military high-current single-phase bridges offer the utmost in reliability as required in military system designs. This series is assembled with diodes which have been subjected to 100% screening tests. Qualified to MIL-S-19500/446 Current Rating: to 25A PIV: from 100 to 600V Surge Ratings: to 150A Only Fused-in-Glass Diodes Used Controlled Avalanche Characteristics Aluminum Heat Sink Case, Electrically Insulated ABSOLUTE MAXIMUM RATINGS Peak Inverse Voltage Maximum Average D.C. Output Current @ Tc == 55°C @ Tc == 100°C Non-Repetitive Sinusoidal Surge (8.3ms) @ Tc == 55°C Operating and Storage Temperature Range Thermal Resistance Junction to Ambient Junction to Case . 100 to 600V ..... 25A ...... 15A .......... 150A ...... -65°C to +150°C ................... 20°C/W .... ..... 2,SOC/W Ltr C, C, C, C. ~~DI ¢D2 ¢Ol ~D • ('105 H, H2 H, H. L, l2 L, L. Ls W Dimensions INCHES MILLIMETERS MIN. MIN . MAX. MAX. .552 .624 .312 .495 .lB9 .057 .10B .141 .225 .669 .300 .040 .042 .370 .307 .OB9 .132 .026 1.104 .572 .760 .3BO .512 .195 .067 .11B .151 .235 1.060 .500 .060 .062 .560 .365 .099 .142 .036 1.144 14.02 15.B5 7.92 12.57 4.BO 1.45 2.74 3.58 5.72 17.53 7.62 1.02 1.07 9.40 7.80 2.26 3.35 .66 2B.04 14.53 19.30 9.65 13.00 4.95 1.70 3.00 3.B4 5.97 26.92 12.70 1.52 1.57 14.22 9.27 2.49 3.61 .91 29.06 MECHANICAL SPECIFICATIONS SPA25 SPB25 SPC25 SPD25 MC NOTES: 1. Terminals shall be hot tin dipped or silver plated. 2. Polarity shall be marked on terminal side of device. 3, Point at which Tc is read (must be in metal part of case). 4. Locating pin shall be adjacent to positive terminal. 5. Insulating sleeve shall be alumina (AL 2 0]) or equivalent. 8-42 ~UNITRODE JAN SPA25 JAN SPB25 JAN SPC25 JAN SPD25 Electrical Specifications (at 25°C unless noted) Maximum Reverse Recovery Peak Forward Voltage Drop* PIV Per Leg Type Volts JAN JAN JAN JAN Minimum 100 200 400 600 SPA25 SPB25 SPC25 SPD25 1 Maximum Leakage Current Per Le : @ PIV Timet Maximum 0.9V Tc pS 1.4V 2 =25°C Tc =lQO°C pA pA 2 150 @39A(pk) *Peak forward voltage drop is measured at a pulse width of 8.3ms. tMeasured in a reverse recovery circuit switching from O.SA forward to t.OA reverse current recovery to a.SA. Typical Forward Voltage Per Leg VS. Forward Current 50 // ~ 20 ~ /~ 10 ... zw '"'" ::J U 0 "f-. .5 II .1 .1 .2 w .5 '"'" ./ _ _ +25°C "'" _ ''"" 10 20 w ..J I .2 .6 .4 '\ o o 1 - 50 100 200 500 IK I II I 1\ 50 '\ 1./ +75°C w 125 I .05 '\. 1 U /I "z ~ '" ;f. I\, ::J // .2 ... '\. 50°C .05 z Current Derating Curve 100 I ....... .01 .02 ~ / VI Ij II I. / / /I ,,8:vi? Ihk:;:'/:t fA"Vt ~ '"'" ;; '"u.0 Typical Leakage Current vs. PIV 100 75 50 50 100 150 CASE TEMPERATURE (OC) 175 ./ +125°C 25 % OF PIV .8 1.2 1.4 FORWARD VOLTAGE (V) 100 Percent process conditioning 100 Percent of discrete diodes burn~in of discrete diodes 1. High-temperature storage 1. Measurement of specified parameters 2. Thermal shock (temperature cycling) 2. Reverse bias burn-in 3. Reverse-recovery time 3. Measurement of specified parameters to determine delta 4. Lot rejection criteria Reverse·Recovery Circuit SOil 10 based on rejects from burn-in test !~ + _ -=- I!! Inspection tests to verify L TPD Group A Group B Group C Review of groups A, 8, and C data for lot accept or reject 25Vdc (APPROX.) NOTE3 Assembly and encapsulation of discrete diodes into bridge assembly OSCILLOSCOPE NOTE I NOTES: = 1. Oscilloscope: Rise time ~ 3nsi input impedance SOP.. 2. Pulse Generator: Rise time ~ 8nsi source impedance lOP.. 3. Current viewing resistor, non-inductive, coaxial recommended. UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON. MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95·1064 8-43 PRINTED IN U.S A. • U ES2401-U ES2404 RECTIFIERS High Efficiency, 16A Center-Tap FEATURES DESCRIPTION • • • • • The UES2401 Series in the economical, convenient TO-220AB package, is specifically designed for operation in power switching circuits to frequencies in excess of 100KHz. The series combines two high efficiency devices into one package, simplifying installation, reducing heatsink requirements and the need to purchase matched components. Very Low Forward Voltage Very Fast Recovery Times Economical, Convenient TO-220AB Package Low Thermal Resistance Mechanically Rugged ABSOLUTE MAXIMUM RATINGS Peak Inverse Voltage, UES2401 .................................................. 50V Peak Inverse Voltage, UES2402 ................................................. 100V Peak Inverse Voltage, UES2403 ................................................. 150V Peak Inverse Voltage, UES2404 ................................................. 200V Maximum Average D.C. Output Current @ Tc = 125°C (Note 1) .................................................... 1GA @ TA =25°C .............................................................. 3A @ TA =25°C (Note 2) ..................................................... 10A Non-Repetitive Sinusoidal Surge Current, 8.3mS .................................. 80A Thermal Resistance, Junction to Case, BJ- c ................................. 1.75°C/W Thermal Resistance, Junction to Ambient, BJ-A ............................... GO°C/W Operating and Storage Temperature Range .......................... -55°C to + 150°C Note 1. Above 8A use the tab for electrical connection. Note 2. Using Wakefield Type 295 heatsink with convection cooling. For more definitive data refer to the Output Current vs. Temperature Curves on this datasheet. MECHANICAL SPECIFICATIONS UES2401·2404 SEATING PLANE MILLIMETERS .,M • • • ~ Pin 1 ! Pin2 & Tab 14. PI,n 3 MI. .... 14.23 C 3,"' 0 0.51 • G H J MA' 15.•7 10.66 "'. 1.14 .... 3.7ll 3.531 2.79 6.35 • L 0," 12.10 1.14 0." 14.27 1.77 N "'3 5,33 '.54 l," Q •• T .... ....1." 1.14 5.&5 6-79 (Revised) 8-44 1.15 TO·220AB .... INCMIS .A, MI. "',. 0,310 0.140 ...10 Q,tH .....- 0.015 "",. .0.045 0.110 0.100 0.045 0.210 MID 0.11G 0.045 0.147 0.110 0.110 0.02' 0.... 0.070 UlO a.11G 0.U5 O.OSS '.170 O:::JJ UNITRODE UES2401 UES2404 ELECTRICAL SPECIFICATIONS Maximum Forward Voltage Type PIV UES2401 UES2402 UES2403 UES2404 50V looV 150V 200V "Measured in circuit IF Maximum Reverse Current @PIV TJ = 25°C TJ = lOO°C TJ = 25°C TJ = lOO°C O.9V@4A O.975V@ 8A tp =3OO/lS O.8V@ 4A O.895V@8A 5/lA 150/lA Maximum Reverse Recovery Time· Typical Forward Recovery Voltage @ lA T, =8nS 35nS 1.4V =O.5A, IR =l.OA, IREC =O.25A Typical Forward Current vs. Forward Voltage Output Current vs. Temperature Typical Reverse Current VS. Voltage .01 100 18 16 5: 14 ... 12 ....z '"'" 20 ...5:z '"'" :J u I -~ .2 IA I I .5 .2 I -~ .1 f- -'rJ It ,-' 0: 0: V ::> 'I '/- iii +-I--H-+-1 I II ]0 ++++-H '-+-+-+-+-+--1 ~J ~ -r5~C 1...--~J ~ ~10~·~. 100 200 I III 1000 .01 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 1.11.21.3 pI-- f-- _'" 20 .05 H--IIH'YH-I .... .02 =2~·C. '" II ,-' I-TJ Z =:~~l~;;I: - l- I-- 1-1-- ~ I- w U TJ =-SOOC .1 10 10 :J 1./1' .02 50 rt 120 T = .J.12S·C ill I I 100 80 60 40 20 VOLTAGE IN % OF PIV V,-VOLTAGE(V) Multiple Surge Current vs, Duration Forward Pulse Current VS. Duration 10,000 5,000 1,000 5: I I .......... W !5'" -r-..r- 100 50 u I I Peak Half Sine Current vs. I ~ ...... ~ Duration for Non-Repetitive Pulse 500 ....Z 100 Cl Z 80 '~ ~ '"w 60 iil'" 40 Cl ........... " , .....'-...... u. o (f. 10 1 2 50 .5 20 lmS lamS ---. - 50 100 200 10 20 CYCLES AT 60 Hz SINE WAVE 500 1000 PULSE DURATION ~ ~ 1.0 w .4 '"w ~ .2 I ~ N .04 .... ./ 10--'" ~ + = (A~5p~g'ic.) 1Q NOTE3 V' .1 l:: .... 10 II .... 1-.... Q. ~ -' « ::;; 50Q 2.0 w u z « c Reverse-Recovery Circuit Thermal Impedance VS. Pulse Width G-----. OSCILLOSCOPE NOTEI V' .02 .01.02 .05.1.2 tp - .5 1 2 S 10 20 50 100 200 NOTES: 1. Oscilloscope: Rise time'" 3nS; Input impedance ~ 50n. 2. Pulse Generator: Rise time'" 8nS; source Impedance IOn. 3. Current viewing resistor, non-inductive, coaxial recommended. 1000 PULSE WIDTH (mS) UNITRODE CORPORATION· 5 FORBES ROAD LEXI NGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95-1064 8-45 PRINTED IN U S.A. II RECTIFIERS UES2601-UES2603 High Efficiency, 30A Center-Tap FEATURES • Very Low Forward Voltage • Very Fast Switching Speed • Convenient Package • High Surge • Low Thermal Resistance • Mechanically Rugged • Both Polarities Available DESCRIPTION This series combines two high efficiency devices into one package, simplifying installation, reducing heat sink requirements and the need to purchase matched components. ABSOLUTE MAXIMUM RATINGS Peak Inverse Voltage, UES260l Peak Inverse Voltage, UES2602 Peak Inverse Voltage, UES2603 Maximum Average D.C. Output Current at Tc lOO'C Non-Repetitive Sinusoidal Surge Current 8.3 ms Thermal Resistance, Junction to Case Operating and Storage Temperature Range 50V lOOV . l50V .30A .400A l'C/W = -55'C to +175'C POWER CYCLING These devices possess the unique ability to pass many thousands of cycles of a stress test designed to evaluate the integrity of the bonding systems used in the construction of power rectifiers. In this stress test, the case of the device is not heat sunk. Full rated forward current is supplied to force a case temperature increase at least 75'C, at which time, the current is removed and the case allowed to cool. The cycle is repeated a minimum of 5,000 times to simulate equipment being turned on and off. Extended power cycling tests demonstrate a product capability in excess of 25,000 cycles. SWITCHING CHARACTERISTICS The switching times of these ultra-fast rectifiers increase relatively little, with temperature or at different currents. Even in severe applications, such as catch diodes for switching regulators and output rectifiers for high frequency square wave inverters, these devices switch many times faster than the fastest associated transistors. Thus, the stresses on and powers dissipated in the switching transistors are substantially less than when using other rectifiers. MECHANICAL SPECIFICATIONS • POSITIVE OUTPUT .1 I 14 • • NEGATIVE OUTPUT CASE ~WE UES2601-UES2603 14 1.1 • CASE F~_M ~.l'~" I 7 ~_ A B ANODE 1 ANOqE 2 I G J~~ C D 'I< L c 0 E F G H J K L M Inl. .875 MAX .135 MAX. 250-.450 312 MIN. .038-.0430IA. 188 MAX. RAD. 1177-1.197 .655-.675 205 .225 420-.440 .525 MAX. RAD. .151- 161 DIA. TO·204AA (TO·3) mm. 22.23 MAX . 3.43 MAX . 6.35-11.43 7.92 MIN. 0.97-1.09 OIA. 4.78 MAX. RAD. 29.90-30.40 16.64-17.15 5.21-5.72 10.67 11.18 13.34 MAX. RAD . 3.84-4.09 DIA . Note: Standard polarity is positive output. For reverse polarity (negative output) add suffix "R", ie. UES2601R. 8-46 ~UNITRODE UES2601- UES2603 ELECTRICAL SPECIFICATIONS Maximum Type UES2601 UES2602 UES2603 Tc = 2S'C Tc = 12S'C Tr = 2S'C Tc= 12S'C Maximum Reverse Recovery Time* .930V @ 15A t p 3ool'S .825V @ 15A t p 3ool'S 2OI'A 4mA 35nS @ SOV IOOV lSOV = in Circuit IF::::; a.SA, IR = lA, 'REe * Measured Maximum Reverse Current @ Forward Voltage PIV = = O.2SA Typical Reverse Current vs. Reverse Voltage .001 .002 I Forward Current vs. Forward Voltage 50 :../ AdT -+2S'C .005 ~ .01 .02 J I- "' .2 "'~ 0: ,-'" I -«- U C 0: I- ~ - ~ ~+IOO'C I 0: 10 20 50 I = ::::t J ... 0 .5 = +ISO'C I I ~I .2 II V I I / ~ -T =+12S'C -TJ = +7S'C J / - - = TYPICAL V, - - - - = MAXIMUM V II I .4 I "/ /1 / ~ V ~r. \- V/ '" '" / V II .! 0: >I _...-V TJ = +12S'C 1 « ;: I / / 0: ::> .1 .5 / 0: Z .05 ~ 10 Z I- ~ 20 5: .s "'~ TJ = +150'C 30 1.0 .8 FORWARD VOLTAGE (V) .6 V, - 1.2 130 120 110100 90 80 70 60 50 40 30 20 10 V, - REVERSE VOLTAGE (% OF PIV) Maximum Forward Surge vs. Number of Cycles 400 I~ 5: 300 1.0 E "' Z 0: 0: "' It---tl CYC~E " :;0 0: 10 20 50 100 CYCLES OF 60 Hz SINEWAVE N- V J: l- - .02 I ~ .01 .01.02 .05.1 .2 .5 1 2 5 10 20 50100200 tp - PULSE WIDTH ImS) '" 30 I- Z "'0:0: ::> 20 - Reverse-Recovery Circuit ::> 0I- ::> 0 + _ -=- ~ u 10 I _0 100 Tc - 100 50 P. ~ I- 1000 200 Output Current vs. Case Temperature 5: / .05 UI '-...... V ..-f- V .1 ..J "" -~ .2 0:;0 "" 200 I, -" 100 .f\.JL v/ « c ~ I- Z .5 u I~ UI a Thermal Impedance vs. Pulse Width ~ 25Vdc IAPPROX.) 10 NOTE 3 ~ NOTES: OSCI LLOSCOPE NOTEl = 1. Oscilloscope: Rise time:::;;; 3ns; input impedance = SOO. 2. Pulse Generator: Rise time :s;;; 8ns, source impedance 100. 3. Current viewing resistor, non-inductive, coaxial recommended. 125 175 ISO CASE TEMPERATURE ('C) UNITROOE CORPORATION, 5 FORBES ROAD LEXINGTON. MA 02173 ' TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95·1064 8·47 PRINTED IN u.s A. UE82604-U E82606 RECTIFIERS High Efficiency, 30A Center-Tap FEATURES DESCRIPTION • • • • • • • The UES2604 series is specifically designed for operation in power switching circuits operating at frequencies of at least 20 KHz. This series combines two high efficiency devices into one package, simplifying installation, reducing heat sink requirements and the need to purchase matched components. Very Low Forward Voltage (1.l5V) Very Fast Recovery Times (50nSec) Low Profile Package High Surge Capability Low Thermal Resistance Mechanically Rugged Both Polarities Available ABSOLUTE MAXIMUM RATINGS Peak I nverse Voltage, UES2604 ................................................................................................. 200V Peak Inverse Voltage, UES260S ................................................................................................. 300V Peak Inverse Voltage, UES2606 ........ ................................. ................................ ........... 400V Maximum Average D.C. Output Current @ Tc 100'C ........................ ........... 30A Surge Current, 8.3mSec .......................................... ............................. .................... ....... 300A Thermal Resistance, Junction to Case .................................. ... 1'C/W Operating and Storage Temperature Range ........................ . .. -55'C to +150'C = POWER CYCLING SWITCHING CHARACTERISTICS These devices possess the unique ability to pass many thousands of cycles of a stress test designed to evaluate the integrity of the bonding systems used in the construction of power rectifiers. In this stress test, the case of the device is not heat sunk. Full rated forward current is supplied to force a case temperature increase at least 75'C, at which time, the current is removed and the case allowed to cool. The cycle is repeated a minimum of 5,000 times to simulate equipment being turned on and off. Extended power cycling tests demonstrate a product capability in excess of 25,000 cycles. The switching times of th'ese ultra-fast rectifiers increase relatively little, with temperature or at different currents. Even in severe applications, such as catch diodes for switching regulators and output rectifiers for high frequency square wave inverters, these devices switch many times faster than the fastest associated transistors. Thus, the stresses on and powers dissipated in the switching transistors are substantially less than when using other rectifiers. MECHANICAL SPECIFICATIONS • POSITIVE OUTPUT ~ 1 14 • • CASE NEGATIVE OUTPUT '41-' ins. mm . .875 MAX. .135 MAX 250-.450 312 MIN. .038-.043 OIA. . 188 MAX. RAO. 1.177-1.197 655-.675 22.23 MAX. 3.43 MAX. 6.35-11.43 7.92 MIN. 0.97-1.09 OIA . 4.78 MAX. RAO . 29.90-30.40 1664-17.15 5.21-5.72 10.67-11.18 13.34 MAX. RAO. 3.84-4.09 OIA . CASE ~iJE F~,M ~~~'I f" H I e J-~ ~ C UES2604-U ES2606 • D K A B ANODE 1 ANODE 2 c 0 E F G H L J K L M .205 .225 .420-.440 525 MAX. RAO. .151 .16101A TO-204AA (TO-3) Nale. Standard polarity is positive output. For reverse polarity (negative output) add suffix "R", Ie. UES2604R. 4/79 (Rev. 1) 8-48 ~UNITRDDE UES2604-U ES2606 ELECTRICAL SPECIFICATIONS, PER LEG Type UES2604 UES2605 UES2606 200V 300V 400V *Measured In Circuit IF =' .5A, 1\1 = lA, fREG =: Reverse Current Tc = 12S'C Tc =2S'C Tc= 12S'C Time* 1.25V @ l5A t. =3OOI'S 1.15V @15A t. -;; 300l'S 50llA lOrnA 50nS .25A 100 K LIJ '"'" 10- r 50 ......- 'l. I ~ ;::::: P: V 20 ~ .... 10 z ,/ UJ '/ /V U 0: ,<> 0: ;J? l? 0 .2 '"I 25'C ./ 0 -- ... L -~ .02 I .01 1/ o 10 20 30 40 50 60 70 80 90 100 110 120 130 140150 V, - II II I"" ~ .... ffi II I V, - FORWARD VOLTAGE (V) IIh) iJj J f--".:l''<''- .<..y'-..:y .1 .05 ~ r--- f-- .;:'.;' V / V/ C 10 0 '/ [/ '/ 5 '"0: ::J >- ""iCTo,c ~ -~ 100 V' r W VI LIJ 'It"c;. 125'C K/ ::J (J '" Forward Current vs. Forward Voltage I 10 K Recovery Tc = 2S'C Typical Reverse Current vs. Reverse Voltage <: .:! ....Z Maximum Reverse Maximum Maximum Forward Voltage PIV .... .01 .01.02 .05.1 .2 .5 1 2 5 10 20 50 100 200 t. - PULSE WIDTH ImS) 1000 o 2 N- 10 20 50 100 CYCLES OF 60 Hz SINEWAVE 200 Output Current vs. Case Temperature Reverse-Recovery Circuit 100 50 P. ~ 30 ....Z UJ 0: 0: :J 20 u ....:J Q. .... :J 0 I _0 10 ~ ~ ~ + -=_ '" 1\ 10 NOTE 3 0..\ OSCI LLOSCOPE NOTE 1 NOTES. 1. Oscilloscope: Rise time ~ 3nsi input impedance = son. 2. Pulse Generator: Rise time :s;;; 8nsi source impedance 100. 3. Current viewing resistor, non-inductive, coaxial recommended. 100 110 120 130 140 150 Tc - CASE TEMPERATURE ('C) UNITRODE CORPORATION, 5 FORBES ROAD LEXINGTON, MA 02173 ' TEL. (617) 861-6540 TWX (710) 326-6509 ' TELEX 95-1064 25Vdc IAPPROX.) 8-49 PRINTED IN U.S.A. II POWER SCHOTTKY MODULES USM140C USM145C USM150C Preliminary lOOA, Up to 50V DESCRIPTION The Unitrode Schottky Module utilizes high current Schottky rectifiers, in a convenient single package, arranged in a common cathode configuration. The combination of low thermal resistance and high conductance terminals makes this device ideally suited for high current full wave center·tap rectification or feed· forward applications. FEATURES • Low Forward Voltage • Low Recovered Charge • High Reverse Transient Capability • High Surge Current • High Efficiency for Low Voltage Designs ABSOLUTE MAXIMUM RATINGS (per diode unless noted) USM140C USM145C USMl50C Working Peak Reverse Voltage, VRWM ............................ , ........ 40V ............... 45V .............. 50V ............ . DC Blocking Voltage, VR .......................................•.•....... 40V .........•..... 45V .............. 50V ............ . Peak Repetitive Surge Voltage, VRSM .............•..... , .................. 48V ............... 54V. " •.......... 60V ............ . Peak Repetitive Forward Current (Rated VR, Square Wave, 20KHz 50 Percent Duty Cycle), IFRM ..................•.......................................... IOOA .......................•....... Average Rectified Forward Current; 10 •••..•.••••...•.•••••.••.•.•.•.•.••. IOOA (@ Tc = 115·C Fullwave Configuration) .......... . Non-repetitive Peak Surge Current, IFSM .........................•......................... IOOOA ............................ . Peak Reverse Transient Current, IRM ....................•...... " ..................•..•. " •. 2A .............................. . Storage Temperature Range, TSTG .................................................... -40·C to + 150·C ..•.•................... Operating Temperature Range, TJ ................................................... -40·C to + 175·C ....................... . Thermal Resistance, RSJBP ......................................................... O.7·C/W per module ...................... . MECHANICAL SPECIFICATIONS USM140C USM145C USM150C "-r~rl "Ali \ 1r ~~~B~ '1~(\ ~I W r- (A1)/ I _ ". A \~ L F TERMINAL (C) (AI) ELECTRICALLY COMMON TO BASE PLATE 11/83 ~ (A2) A B C 0 E F G H J K L T INCHES MAX. MIN. 1.177 1.197 .030 .035 .365 .385 .370 .390 .880 .160 .1SO .270 .290 .151 .161 .188 RAD. .030 .035 .525 RAD. TBP Ref. Point - Ml MILLIMETERS MIN. MAX. 20.39 30.40 .762 .889 9.27 9.78 9.40 9.91 22.35 4.06 4.57 6.87 7.37 3.84 4.09 4.78 RAD. .762 .889 13.34 RAD. - Geometric - Center of Base Plate 8-50 ~UNITRODE USMI40C USMI45C USMI50C =2S C unless noted) (Per Diode) ELECTRICAL CHARACTERISTICS (Tap o CHARACTERISTICS SYMBOL CONDITIONS = = Maximum Instantaneous Reverse Current iR VR VRWM (T BP I25°C) Pulsewidth 400/ls Duty Cycle 1% Maximum Instantaneous Forward Voltage VF IF 60A (TBP I25°C) Pulsewidth 300/15 Duty Cycle 1% Maximum Instantaneous Forward Voltage VF IF 100A (TBP I25°C) Pulsewidth 300/ls Duty Cycle 1% Ct VR dv/dt VR = = Capacitance Voltage Rate of Change Reverse Energy = = = = = = = = =5V =VRWM See Reverse Energy Circuit IRM Typical Forward Current vs Forward Voltage LIMIT UNITS 20 (75) rnA .690 (.630) V .860 (.775) V 3000 pF 1000 V//15 2 A II Typical Reverse Current vs Reverse Voltage : 200 100 ...:? ~ ~~ 20 10 150'C- 0: '-' 50 1125'C~ 0 0: ~ 20 12 10 ... 05 <- ...oSz 0: 0: -f.J ill / I II 'I 1/ 0.1 0.2 0.3 10 "' "'~ 3.0 0: 1.0 ~ 0.5 - 75'C 25'C -4°'F ~ ~ "W 0.2 I 0.1 05 06 0.7 08 09 10 --- ~ V 0: I 0.4 125 C 5.0 '-' d / II 20 OJ Ul l I /- !I- 0.2 "' (II 'I 'I 0: ~r 50 I" /J VI / 0: OJ 100 ~~~ 50 o W. m ~ ----~ ./ ,/ 25' w w m w ~ ~ V, - REVERSE VOLTAGE (% ofV,w.) V, - FORWARD VOLTAGE (V) Output Current vs Case Temperature Reverse Energy Circuit 120 100 -....... ................ .......... ...... w ........... "" w 40 20 t p adjust for desired peak current in D.U.T. when Q turns off. Q, must have fall time t, of lOOns max. o 100 110 120 130 140 150 TB. - BASE PLATE TEMPERATURE ('C) UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON. MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 8-51 PRINTED IN U.S.A POWER SCHOTTKY MODULES USM20040C USM20045C USM20050C 200A, Up to 50V Preliminary FEATURES DESCRIPTION • Low Forward Voltage The Unitrode Schottky Module utilizes high current Schottky rectifiers, in a convenient single package, arranged in a common cathode configuration. The combination of low thermal resistance and high conductance terminals makes this device ideally suited for higher current full wave center-tap rectification or feedforward applications. • Low Recovered Charge • High Reverse Transient Capability • High Surge Current • High Efficiency for Low Voltage Designs ABSOLUTE MAXIMUM RAnNGS (per diode unless noted) USM20040C . USM20045C USM20050C Working Peak Reverse Voltage, VRWM ........ _.. _.................. , ... _.. 40V ............... 45V .............. 50V ............ . DC Blocking Voltage, VR ............ _... '" ............... _.... _......... 40V ............... 45V .............. 50V ............ . Peak Repetitive Surge Voltage, VRSM ........................ _............. 48V ............... 54V .............. 60V ............ . Peak Repetitive Forward Current (Rated VR, Square Wave, 20KHz 50 Percent Duty Cycle). IFRM ....................... _.,. _. _............................... 200A .............................. . Average Rectified Forward Current, 10 .................................... 200A (@ Te = 115°C Fullwave Configuration) ............ . Non·repetitive Peak Surge Current, IFsM ....................................................2000A .............................. . Peak Reverse Transient Current, IRM . . . .. .. . . . .. . . . . . . .. . . . . . . . .. . . . . . . . . . . . . . . .. . .. . . . . .. .. 2A, .............................. . Storage Temperature Range, TsTG .................................................... -40°C to + 175°C ........................ . Operating Temperature Range, TJ .................................................... -40°C to + 175°C ........................ . Therl)1al Resistance, R BJBP ........................................................ 0.28°C/W per module .. _. _.. _. _. _... _.. _... . Thermal Resistance, RBJBP-" _.. _.... _.. _. _...... _. _. _... _. _......... _.... _. _.. _..... 0.56°C/W per leg ..•....... _. _.......... _.. MECHANICAL SPECIFICATIONS USM20040C USM20045C USM20050C M2 Terminal Torque: 50 (Min.) 75(Max.) lb. - in. Mounting Base Torque: 30(Min.) 40(Max.) lb. - in. INCHES MIN. MAX. EfI~I~ A1~A2! c (ELECTRICALLY COMMON TO BASE PLATE) 11/83 MILLIMETERS MAX. MIN. H 66.80 2.63 1.35 1.40 34.29 35.56 .80 17.78 20.32 .70 .625 15.88 3.14 3.16 79.76 80.26 3.65 92.71 .25 .27 6.35 6.86 II, - 20 UNF With Captive Lockwasher T TBP Ref. Point· Geometric Center of Base Plate A B C 0 E F G 8-52 ~UNITRODE USM20040C USM20045C USM20050C ELECTRICAL CHARACTERISTICS (TBP = 25°C unless noted) (Per Diode) CHARACTERISTICS SYMBOL CONDITIONS LIMIT Maximum Instantaneous Reverse Current iR Pulsewidth = 400ps Duty Cycle = 1% (TBP = 125°C) Maximum Instantaneous Forward Voltage VF IF = 100A Pulsewidth =300ps Duty Cycle = 1% (T BP = 125°C) Maximum Instantaneous Forward Voltage VF Capacitance Ct Voltage Rate of Change dvldt Reverse Energy 30 (125) V (.575) IF = 200A Pulsewidth = 300ps Duty Cycle = 1% (T BP = 125°C) (.745) VR = 5V 6000 pF VR = VRWM 1000 Vips 2 A .BOO Typical Forward Current vs Forward Voltage 200 ~ .... 15 0: 20 u 5.0 0: ::l ~ 0: 150"C., 2.0 Ii? 1.0 "" 0.5 II 0.1 o 0.1 0.2 , 0.3 v, - 220 3: ....z 0: 0: ::l .... ::l .... ::l 10 w 5.0 75"C 0: 2.0 .$ 1.0 V f-' 06 0.7 0.8 0.9 1.0 FORWARD VOLTAGE (V) I---'" - V i-'" V 1/ 25"C I 0.2 0.1 0.5 1- 0.5 I o 10 20 30 40 50 60 70 80 90 100 VR - REVERSE VOLTAGE (% of VVRM) Reverse Enerzy Circuit ............... ............ +lOV ........ r-.... 160 L .......... =24phy "" 120 Q. 0 20 ~ -4O"C W u 0: 0: ::l U 0: 0.4 - 12r.c 1 Ul Output Current vs ease Temperature 200 50 w VI;' I II/II 100 ....z W doc/. 'U f- 75"C /1 II - 25"C 0.2 <" 5 ll//V II ff I Cl 0: I ~ -I 200 h~ 10 I 400 ...a w 50 V Typical Reverse Current vs Reverse Voltage ~ 100 mA 30 (150) See Reverse Energy Circuit IRM UNITS USM20045C USM20050C VR = VRWM 80 I .E 40 t p adjust for desired peak current in D.U.T. when Q turns off. Q, must have fall time t, of lOOns max. o 100 110 120 130 140 150 TB. - BASE PLATE TEMPERATURE ("C) UNITROOE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 8-53 PRINTED IN USA. II UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95·1064 8·54 PRINTED IN U.S A. POWER ZENERS & TRANSIENT VOLTAGE SUPPRESSORS 9-1 II 9·2 PRODUCT SELECTION GUIDE POWER ZENERS AND TRANSIENT VOLTAGE SUPPRESSORS Transient Voltage Suppressors Max. Peak Pulse Current Ipp Vc@ I.. Peak Power forlmS (V) (V) (A) (V) CW) TVS305 TV5310 TVS312 TVS315 TVS318 TVS324 TVS328 TVS348 TVS360 TVS4lO TVS42D TVS430 5.0 100 120 15.0 18.0 24.0 28.0 48.0 60.0 100.0 200.0 300.0 6.0 ILl 13.8 167 20.4 28.4 307 54 67 111 234 342 17 8.9 71 59 49 3.6 3.2 TVS505 TVS510 TVS512 TVS515 TVS518 TVS52'4 TVSS28 5.0 10.0 12.0 15.0 18.0 24.0 28.0 6.0 ILl 138 16.7 20.4 28.4 30.7 53.7 30.3 23.8 19.8 16.3 11.9 10.7 9.3 16.5 21.0 25.2 30.5 42.0 46.5 IN6451** 5.0 6.0 12.0 15.0 24.0 30.5 40.3 51.6 56 46 22 19 12 11 8 6 9 11 22.6 26.5 41.4 47.5 63.5 78.5 500 32.0 24.0 19.0 5.7 47.5 63.5 79.5 265.0 1500 Stand .Qff Part No. f c I f :. f JJI •. .1N5462u lN6463'" IN6464"· l.N6465*~··· ·1.N6466** .. lN6%7"*~, IN6468"* . >. ~ Max. Min . Breakdown Voltage 8V'm",@lmA Clamping Voltage V. IN561O" lN56110 1N5612' 8 IN5513' 5.6 6.5 13.6 16.4 27.0 33.0 43.7 54.0 @ @ @ @ @ @ @ @ Voltage' . 8.7 16.8 21.0 25 31 42 46 82 105 160 360 520 1.7 1.4 .91 .42 .28 25mA 20mA 5mA 5mA 2mA 1mA ImA 1mA 33.0 43.7 54.0 191.0 CCl 150 500 • "'Available In JAN & JANTX "''''Aval!able In JAN, JANTX and JANTXV Bi-directional Zeners ..' POWer .. lW Pllck8p Styi. I ~ :. i t UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 9S,1064 AA . . 3VL ,"" :!iYt < ~ ". : ".;.. ......... :;;;JJB;;/ UDZ8807 UDZ8808 UDZ8809 UDZ8810 UDZ8812 UDZ807 UDZ808 UDZ809 UDZ810 UDZ812 UDZ5807 UDZ5808 UDZ5809 UDZ5810 UDZ5812 UDZ8815 UDZ8818 UDZ8820 UDZ8824 UDZ8827 UDZ815 UDZ818 UDZ820 UDZ824 UDZ827 UDZ5815 UDZ5818 UDZ5820 UDZ5824 UDZ5827 40 45 UDZ8830 UDZ8833 UDZ8836 UDZ8840 UDZ8845 UDZ830 UDZ833 UDZ836 UDZ840 UDZ845 UDZ5830 UDZ5833 UDZ5836 UDZ5840 UDZ5845 60 . UDZ8860 UDZ860 UDZ5860 7.5 8.2 9.1 i . 10 H! 15 18 20 24 27 '30 33 36 9-3 PRINTED IN U S.A. POWER ZENERS AND TRANSIENT VOLTAGE SUPPRESSORS A POWER ZENERS UZ8706 UZ8707 UZ8708 UZ8709 UZ8710 IN446I * IN4462* IN4463* IN4464* IN4465* IN5063 IN5064 IN5065 IN5066 IN5067 BZVI6C6V8*** BZVI6C7V5*** BZVI6C8V2*** BZVI6C9VI *** BZVI6ClO *** UZ4706 UZ4707 UZ4708 UZ4709 UZ4710 UZ8711 UZ8712 UZ8713 UZ8714 UZ87I5 IN4466* IN4467* IN4468* BZVI6Cll *** BZVI6CI2*** BZVI6CI3*** UZ4712 UZ4713 IN4469* IN5068 IN4883 IN5069 IN5070 IN507I BZVI6CI5*** IN4470* IN4471* IN4472* IN4473* IN4474* IN5072 IN5073 IN4884 IN5074 IN5075 BZVI6CI6*** BZVI6CI8*** BZVI6C20*** BZVI6C22*** BZVI6C24*** IN4475* IN4476* IN4477* IN4478* IN4479* IN5076 IN5077 IN5078 IN5079 IN5080 IN4480* IN4481* IN4482* IN4483* IN4484* IN4485* IN508I IN5082 IN5083 IN5084 IN5085 IN5086 IN5087 IN5088 IN5089 IN5090 \~~~~"\; ::~.:" ,'. ,", . . . " B UZ7706L UZ7707L UZ7708L UZ7709L UZ7710L UZ7706 UZ7707 UZ7708 UZ7709 UZ7710 UZ47I5 IN4959* IN4960* IN496I * IN5118 IN4962* UZ7711L UZ77I2L UZ77I3L UZ77I4L UZ77I5L UZ7711 UZ77I2 UZ77I3 UZ77I4 UZ77I5 UZ4716 UZ4718 UZ4720 UZ4722 UZ4724 IN4963* IN4964* IN4965* IN4966* IN4967* UZ77I6L UZ77I8L UZ7720L UZ7722L UZ7724L UZ77I6 UZ77I8 UZ7720 UZ7722 UZ7724 BZVI6C27*** BZVI6C30*** BZVI6C33*** BZVI6C36*** BZVI6C39*** UZ4727 UZ4730 UZ4733 UZ4736 UZ4739 IN4968* IN4969* IN4970* IN4971 * IN4972* UZ7727L UZ7730L UZ7733L UZ7736L UZ7727 IN7730 UZ7733 UZ7736 UZ7740 UZ4743 UZ7745L UZ7745 BZVI6C47*** UZ4747 IN5119 IN4973* IN5I20 IN4974* IN5I2I UZ7740L BZVI6C43*** UZ7750L UZ7750 BZVI6C51*** BZVI6C56*** UZ475I UZ4756 UZ7756L UZ7760L UZ7756 UZ7760 BZV16C62*** BZVI6C68*** ., . ~ ,:l30\~(: .:;i ~ :,,::: ";\:, . .~ ; • Available as JAN, JANTX, & JANTXV •• For 100j.lS pulse width t 10% and 20% tolerance also available ••• Pro Electron Diodes 7% tolerance UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 9-4 PRINTED IN USA PRODUCT SELECTION GUIDE ~C CL POWER ZENERS Power 1W 1.5W 3W 3W 5W 5W Package Style A UZ8770 UZ8775 UZ8780 A A IN5091 IN5092 IN5093 IN5094 IN4096 IN4095 IN4097 IN5096 IN5097 IN5098 A B B IN5123 IN4979* IN5124 IN4980* IN5125 IN4981 * IN4982* IN4983* IN4984* IN4985* 70V 75V SOY 82Y 90V IN4487* UZ8790 91V 'lOOV HOV 'ifc: i{2. ~ 120V 130V 140V 150Y 160Y "170\1 , 1SOY '"" ;: 190Y (!I 200Y w, 200V IN4486* UZ8110 UZ811 I UZ8112 UZ8113 UZ8114 UZ8115 UZ8116 UZ8117 UZ8118 UZ8119 UZ8120 IN4488* IN4489* IN4490* IN4491 * IN4492* IN4493* IN4494* IN4495* IN4496* ~ 24{)V '260\1 .~' , ·210Y'. 2so,V" . , 300!J:, 32/W 330V 34QY, 3601/· !SOY. 390'( 400V f'ULSEPOWE~ *• jOOW." l4OW:~-~ BZVI6C75*** UZ4775 BZVI6C82*** UZ4782 BZVl6C91 *** BZV16ClOO*** UZ4791 UZ4110 UZ4111 UZ4112 UZ4113 IN5099 IN5098 IN5100 IN5101 IN5102 UZ4115 UZ4116 UZ4118 IN5103 IN5104 IN5105 IN5106 IN5107 IN5108 IN5109 IN5110 IN5111 IN5112 IN5113 IN5114 IN5115 IN5116 IN5117 "230W ,~' "';-, <' UZ4120 -'2iOW: " .:'., ,>, ,. .'1:26YJ/~~ '''~~>~~~T>:':~~~'~ 6W lOW CL C UZ7770L UZ7775L UZ7780L UZ7770 UZ7775 UZ7780 UZ7790L UZ7790 UZ7110L UZ7110 IN4986* IN4987* IN5127 IN4988* II IN5128 IN4989* IN4990* IN4991 * IN5129 IN4992* IN5130 IN4993* IN5131 IN4994* IN5132 IN4995* IN5133 IN4996 IN5134 ):}!~?~i';:; ~Y.f;;M ~i~. • Available as JAN, JANTX, & JANTXV •• For 1001lS pulse width t 10% and 20% tolerance also available ••• Pro Eleelron Diodes 7% tolerance UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 9-5 PRINTED 1N USA POWERZENERS 1N4461-1 N4496 JAN, JANTX & JANTXV 1.5 Watt, Military FEATURES DESCRIPTION • 5 Times Greater Surge Rating than JANIN3016 Series • Low Reverse Current: to 50nA • 1,4 Size of Conventional! Watt Zeners Fused-in-glass, metallurgically bonded 1.5 watt zeners, qualified to MIL-S-19500/406. ABSOLUTE MAXIMUM RATINGS Zener Voltage, Vz ....... 6.S to 200V Continuous Current .... See Table Surge Current (S.3ms) ......... See Table Surge Power. .. ..................................... See Graph .. ............. See Lead Temperature Derating Curve Power.. Storage and Operating Temperature . .. -65'C to +175'C MECHANICAL SPECIFICATIONS JAN, JANTX & JANTXV lN4461-1N4496 1 °i~;.J~P Ba~~th~~I;~~J"'\ 0 ( T BODY A i,155" TYP ....1 028" =.001 3.9mm 071mm =03 Iyl :D 0 JII ~O85" ! o~~;~~~x. I TYPJ 2.2mm 1--,700" MIN.~.250" MAX, 17.8mm 6.3Smm 1.625" MIN. 41.3mm Max. Surge Power vs. Surge Duration Power Dissipation vs. Lead Temperature Derating Curve ~ z o ~ is '""' ~ x ":; Typical Zener Impedance VS. Zener Current 10Kr---~--~---r--- 2.5 I--+-+-+-~t--+-+-----j ~ 5K 0: 2K I ~-r----SQUARE I PULSE- 1.5 I--+-+-----'N ~ UJ ~ .5 1K 500 ""'" I----="""'j-~---+----+---I ~ 200 OJ (fJ § "'~ ""-"' u "' iii 1Kr----~---~----, r---t---"'oo;;::-t----t-----j .......... 100 r---t---P"'c--t-----j 50 I--_+---+-~~"'I;;;::_ ............ -----i 100 :; ~ 10 I----t----''''-f''''-~o;;::-----i "' N 201---~--_I---_+-~,,~ 50 LEAD TEMPERATURE (OC) 10L---L---~-~i--~~ Ip.s lOps IOOJ,l.s Ims SURGE DURATION 1/79 9-6 lOms 1 .1 10 ZENER CURRENT (mA) ~UNITRDDE JAN, JANTX & JANTXV 1N4461-1N4496 Electrical Specifications at 25°C Type ±5% Tolerance IN4461 IN4462 IN4463 IN4464 IN4465 IN4466 IN4467 IN4468 IN4469 IN4470 IN4471 IN447? IN4473 IN4474 IN4475 IN4476 IN4477 IN4478 IN4479 IN4480 IN4481 IN4482 IN4483 IN4484 IN4485 1N4486 1N4487 IN4488 IN4489 1N4490 1N4491 1N4492 1N4493 1N4494 1N4495 1N4496 Max. Zener Impedance ~ NomInal Zener Voltage t V z @ In Current @ I" Volts mA 6.8 7.5 8.2 9.1 10 11 12 13 15 16 18 20 22 24 27 30 33 36 39 43 47 51 56 62 68 75 82 91 100 110 120 130 ISO 160 180 200 Test 37 34 31 28 25 23 21 19 17 15.5 14 12.5 11.5 10.5 9.5 8.5 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.7 3.3 3.0 2.8 2.5 2.0 2.0 1.9 1.7 1.6 1.4 1.2 Maximum Ratings MaxImum Reverse Leakage Current Z" Voltage * ... Regulation In I" .6.BV Max Ohms Ohms mA Volts #A 200 400 400 500 500 550 550 550 600 600 650 650 650 700 700 750 800 850 900 950 1000 1100 1300 1500 1700 2000 2500 3000 3100 4000 4500 5000 6000 6500 7000 8000 1.0 .5 .5 .5 .25 .25 .25 .25 .30 .35 .40 .45 .50 .55 .60 .65 .75 .80 .83 .95 1.0 !.l 5.0 1.0 .50 .30 .30 .30 .20 .10 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 Zz 2.5 2.5 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 14 16 18 20 25 27 30 40 50 60 70 80 100 130 160 200 250 300 400 SOO 700 1000 1300 1500 @ I" .2~ .25 .25 .25 .25 .25 .25 .25 .25 .25 .25 .25 .25 .25 .25 .25 .25 .25 .25 .25 !.3 1.4 1.5 1.7 1.8 1.9 2.1 2.3 2.5 2.7 3.0 3.3 3.6 4.0 4.4 5.0 5.5 6.0 7.0 8.0 10.0 12.0 .25 .25 .25 .25 .25 .25 .25 .25 MaxImum Cont. Current 'RC9} VR, .25 .25 .25 .25 .25 .25 .25 .25 Maximum Surge Current:t V, Iz• Is Volts mA Amps 4.08 4.50 4.92 5.46 8.0 8.8 9.6 10.4 12.0 12.8 14.4 16.0 17.6 19.2 21.6 24.0 26.4 28.8 31.2 34.4 37.6 40.8 44.8 49.6 54.4 60.0 65.6 72.8 SO.O 88.0 96.0 104 120 128 144 160 210 191 174 157 143 130 119 110 95 90 79 71 65 60 53 48 43 40 37 33 30 28 26 23 21 19 17 16 14 13 12 11 9.5 8.9 7.9 7.2 5.0 4.5 U 3. 3.0 2.6 2.4 2.2 1.8 1.6 1.4 1.2 !.l .90 .80 .75 .66 .60 .54 .48 .45 .42 .39 .35 .32 .29 .26 .23 .20 .19 .18 .16 .14 .12 .10 .08 t All Zener voltages are measured with an automated test set using a 35 millisecond test time. Longer or shorter test times will have a corresponding effect on the measured value due to heating effects. §.Zener impedance is derived from the 60 cycle AC Voltage created when AC current with RMS value of 10% of DC Zener test current is superim· posed on the test current. ** j,BV is obtained by measuring the voltage change when the test current is changed from 10% to 50% of Iz max under DC conditions. During this measurement the leads are heat sunk .375 .inch from the body and maintained at 25°C. * Ratings shown are for peak sinusoidal surge current of 8.3 ms duration, non-repetitive. The 8.3 ms square pulse rating is 71% of the value shown. Rating exceeds JEDEC Registered Specification. UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON. MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95-1064 9-7 PRINTED IN U.S.A. II 1 N4954-1 N4995 1 N5968-1 N5969 POWER ZENERS JAN, JANTX & JANTXV 5 Watt, Military 1 N4996 FEATURES • 2 Times Greater Surge Rating than Conventional 10 Watt Zeners • Small Physical Size ABSOLUTE MAXIMUM RATINGS Zener Voltage, V, Continuous Current Surge Current (8.3ms) Surge Power ... Power. Storage and Operating Temperature DESCRIPTION Fused·in·glass, metallurgically-bonded 5 watt zeners, qualified to MIL· S ·19500/356. .. 5.6 to 390V See Table See Table ... See Graph See Lead Temperature Derating Curve -65°C to +175°C MECHANICAL SPECIFICATIONS J, JTX, JTXV IN4954·1N4995 J, JTX, JTXV IN5968·1N5969 IN4996 ~ .3{lO" MAX. 7.62mm ----2.:.~~::.-- ...... r-- "" lOOK r\ ~ ,1~<", ~ ~ ~ '" 1'-.... o L = Lead Length from Body 25 50 75 100 r\ ~ 150 175 o ~ r-...... "" 1'-.... IK ::;; 200 100 lOOns 1#5 50~~~~~~~~~ « ~ 500 ~ l\ 125 ~ ............ ~ 2K \ § w 100 f---:~~..,J.~""':::"'.k-+---+----j .......... OJ LEAD TEMPERATURE (OC) 4/82 10K SQUARE PULSE I'-.... a. 5K ~ I o ii'o lKr-~_~~----r-~--~~ 500~~~~~~--~+---~~ SOK ;; 20K cs>'" N"~~ ~" \ 1'-..... Typical Zener Impedance vs. Zener Current Max. Surge Power vs. Surge Duration Power Dissipation vs. Lead Temperature Derating Curve 8 T.145" MAX. fL -1.1g'i';;~' .975" MIN. 24.Bmm __ O BODY B 10#5 :; 5~+-----+~~",,"~"""""-- OJ iii I ~+-----+-+----1----">R-"""'-...1, N .5~+-----+-+----~+-~~:~~ ....... 100#5 SURGE DURATION 9-8 10~+---~~~~~4.~~----j 0: Ims " 10ms 5 10 50 100 500 lA ZENER CURRENT (mA) ~UNITRODE 1N4954-1N4995, 1N5968-1N5969, JAN, JANTX & JANTXV, 1N4996 Electrical Specifications at 25'C Maximum Zener Impedance § Type Nominal Zener Voltage! Vz @ ±5% Tolerance 'ZT Z"tt Test Current I" Volts mA 5.6 6.2 6.8 7.5 8.2 9.1 10.0 220 220 175 175 150 150 125 11 12 13 15 16 @ Zz@l n '1t'::;;1mA Maximum Reverse leakage Current Voltage Regulation LBV §§ Ohms Volts 1.0 1.0 400 1000 0.4 0.5 1000 800 600 400 125 125 100 100 75 75 1.0 1.5 1.5 2.0 2.0 2.5 2.5 3.0 3.5 3.5 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.8 1.0 18 20 22 24 27 65 65 50 50 50 4.0 4.5 5.0 5.0 6.0 160 165 170 175 180 1N4969* 1N4970* 1N4971* 1N1I972* 1N4973* 30 33 36 39 43 40 40 30 30 30 8 10 11 14 20 1N4974* 1N4975* 1N4976* 1N4977* 1N4978* 47 51 56 62 68 25 25 20 20 20 1N4979* 1N4980* 1N4981* 1N4982* 1N4983* 75 82 91 100 110 1N4984* 1N4985* 1N4986 * 1N4987* 1N4988* 1N5968* 1N5969* 1N4954* 1N4955* 1N4956* 1N4957* 1N4958* 1N4959* 1N4960* 1N4961* 1N4962* 1N4963* 1N4964* 1N4965* 1N4966* 1N4967* 1N4968* Ohms Maximum Ratings I, tt V, I, Volts ~A 5000 5000 1000 1000 1SO 300 100 200 SO 100 25 50 25 25 Maximum Maximum Temperature Continuous Coell. Current IZM TC @'Zl * %/DC 4.28 4.74 .04 .04 5.2 5.7 6.2 6.9 7.6 .05 mA Maximum Surge Current:t: Is Amps .06 .07 865 765 700 630 580 520 475 20 20 40 32 24 22 20 19 18 16 12 10 .06 .06 1.1 10 10 10 5 5 15 10 10 5 5 8.4 9.1 9.9 11.4 12.2 .07 .07 .08 .08 .08 430 395 365 315 294 1.2 1.5 1.8 2.0 2.0 5 2 2 2 2 5 2 2 2 2 13.7 15.2 16.7 18.2 20.6 .085 .085 .085 .090 .090 264 237 216 198 176 9.0 8.0 7.0 6.5 6.0 190 200 220 230 240 2.5 2.8 3.0 3.0 3.3 2 2 2 2 2 2 2 2 2 2 22.8 25.1 27.4 29.7 32.7 .090 .095 .095 .095 .095 158 144 132 122 110 5.5 5.0 4.5 4.0 3.5 25 27 35 42 50 250 270 320 400 500 3.5 4.0 4.4 5.0 5.5 2 2 2 2 2 2 2 2 2 2 35.8 38.8 42.6 47.1 51.7 .095 .095 .095 .100 .100 3.2 3.0 2.8 2.5 2.2 20 15 15 12 12 55 80 90 110 125 620 720 760 800 1000 6.0 6.6 7.5 8.0 9.0 2 2 2 2 2 2 2 2 2 2 56.0 62.2 69.2 76.0 83.6 .100 .100 .100 .100 .100 100 92 84 76 70 63.0 58.0 52.5 47.5 43.0 120 130 ISO 160 180 10 10 8 5 170 190 330 350 450 1150 1250 1500 1650 1750 10 11 13 14 16 2 2 2 2 2 2 2 2 2 2 91.2 98.8 114.0 121.6 136.8 .100 .105 .105 .105 .110 39.5 36.6 31.6 29.4 26.4 1.00 0.80 0.75 0.70 0.60 1N4989* 1N4990* 1N4991* 1N4992* 1N4993* 200 220 240 270 300 5 5 5 5 4 SOO 550 650 800 9SO 1850 2000 2050 2100 2150 18 19 22 25 28 2 2 2 2 2 2 2 2 2 2 152 167 182 206 228 .110 .115 .115 .120 .120 23.6 21.6 19.8 17.5 15.6 1N4994* 1N4995* 1N4996 330 360 390 4 3 3 1175 1400 1800 2200 2300 2500 32 35 40 2 2 2 2 2 2 251 274 297 .120 .120 .120 14.4 13.0 12.0 O.SO O.SO 0.40 0.35 0.30 0.25 0.22 0.20 8 130 140 145 150 155 2.0 1.8 1.6 1.4 1.2 * Available as JAN, JANTX & JANTXV • t All zener voltages are measured with an automated test set using a 35 msec test time. longer or shorter test times will have a correspond· ing effect on the measured value due to heating effects. § Zener impedance is derived from the 60-cycle voltage created when AC current with RMS value of 10% of DC zener test current is super- imposed on the test current. 10% to 50% of Iz max under DC conditions. During this measurement the leads are heat sunk .375 inch from the body and maintained at 25°C. Maximum current based on 5 Watt Rating. See lead temperature derating curves for proper mounting methods. Figures shown are for peak sinusoidal surge current of 8.3 msec duration, non·repetitive. The 8.3 ms square pulse rating is 71% of the value shown. These specifications apply only to JAN and JANTX ~§.1BV is obtained by measuring the voltage change when the test current is changed from * * tt UNITRODE CORPORATION. 5 FORBES ROAD LEXI NGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 9-9 PRINTED IN U.S A. POWER ZENERS JAN &JANTX IN5610-1N5613 Transient Suppressor Diodes FEATURES DESCRIPTION • 1500 Watts for 1ms Pulse Power Capability • Small Physical Size • Designed to be Used in Mi I-Std-704A Applications Zener diodes with high surge capability qualified to MIL-S-19500/434. ABSOLUTE MAXIMUM RATINGS (at 25"C except where otherwise noted) lNS.ll lN5610 Zener Voltage Forward Surge Current 200A. Zener Surge Current, at 25°C Surge Current, at 150°C Surge Power 32.0A 5.5A lN5612 lN5613 See Electrical Specifications 200A 200A 200A 24.0A 4.8A See Graph Storage and Operating Temperature 19.0A 3.2A 5.7A 1.0A -65°C to +175°C JAN & JANTX 1N5&10-1 N5613 Double C BODY t 185" 0 .MAX. 1 Polarity: Cathode indicated by band. Weight: 1.5 gram (approximate). Mounting Position: Any. Leads: Tinned Copper. Marking: Type number marked on unit. 1/79 9-10 Q:::O UNITRODE JAN & JANTX IN5610-1N5613 ELECTRICAL SPECIFICATIONS (at 25°C unless noted) Max. Reverse Min. Zener Voltage § Vz@ ImA Type Max. Zener Leakage Voltage! Vz @ Is Current IR@V R Volts Volts Amps IN561O* IN56U* 33.0 43.7 47.5 32.0 63.5 24.0 IN5612* 54.0 7S.5 IN5613* 191.0 265.0 19.0 5.7 pA Volts Max. Forward Voltaget @ 100 Amps Volts Typical Temperature Coefficient 4.S .093 .094 .100 5.0 5.0 30.5 40.3 5.0 49.0 4.S 4.S 5.0 175.0 4.S %/OC .096 Notes: • Available as JAN and JANTX. § DUration of applied current ~ 300ms, duty cycle::::; 2%. t utilizing a pulse which decays exponentially to 50% of the peak value in Ims. See graph entitled "Pulse Waveform." :I: Peak Sinusoidal surge current of 8.3ms duration, non-repetitive. APPLICATIONS Voltage transients can be suppressed with series elements, shunt elements, or a combination of both. These elements may be passive or active. For low and medium power applications, a series resistor and zener clamp offer several attractive features: 1. Simplicity of design 2. High reliability 3. Fast response time The IN5610 series of surge suppressors will suppress the following transients defined by MIL-S-704A without the use of any series limiting resistance beyond that provided by the source: 1. All 600V transients (category #1 on chart below) 2. All BOV transients except those generated by the main voltage regulator (category #2 on chart below) 3. The overvoltage transients generated by the main voltage regulator (category #3 on chart below) will also be suppressed by the IN5610 series if: a. A 20 ohm series limiting resistor is used, or b. No series resistance is used but the zener is protected within 500 I'S by using, for example, an SCR crowbar The above statements are based on the source impedances and dv / dt characteristics as given in ARINC* Specification #413. This report entitled "Guidance for Aircraft Electrical Power Utilization and Transient Protection" serves to further define MIL-STD-704A for large aircraft electrical systems. Peak Power Rating vs. Pulse Width" lOOK l 50K _ *Pulse Wi~th is defined as that _ point at which pulse power decays to 50% of peak 20 K ......... 10K ~ 0: UJ " 0 "- 2K '"'" 1K UJ Maximum Duration Min. Source Amplitude Inductive Switching 600 V :s;; 10 p's 50 ohms 2. BUS Switching BOV :s;; 10 ms 15 ohms 3. Main Voltage Regulator SO V ;;;, 10 ms 0.2 ohms Source of Transient 1. Impedance " 10 .1 TIME (ms) Pulse Waveform 100% ~ ~ "-- - 2 TIME (ms) 4 Peak Power Rating" vs. Ambient Temperature 2000 50V/ms 1500 ~ 0: UJ 1000 " stands for Aeronautical Radio, Inc. (Annapolis, Maryland 21401) .............. 200 100 .01 dv/dt These Surge Suppressors are useful in a variety of other applications where semiconductor devices must function reliably in an environment subject to extremely high but short term surges. * ARINC ------......... 500 "- 50 Category .............. 5K 11 Millisec~nd PUIS~ ~ 0 "- 500 a -~ ~ ~ n ~ m ~ AMBIENT TEMPERATURE (Oe) UNITRODE CORPORATION. s FORBES ROAD LEXINGTON, MA 02173. TEL. (617) 861-6540 TWX (710) 326·6509 • TELEX 95-1064 9-11 PRINTED IN u.s A. TRANSIENT VOLTAGE SUPPRESSORS IN6461-1N6468 JAN, JANTX & JANTXV 500W, Military FEATURES DESCRIPTION • 500W Power Capability for 1 ms pulse • Glass Encapsulated Device • Clamping Time in Picoseconds Transient voltage suppressor of noncavity design and qualified to MIL-S-19500/551. Metallurgically bonded for high reliabilty. ABSOLUTE MAXIMUM RATINGS @ 25°C Stand-off Voltage, VR ................................................... 5.0V to 51.6V Peak Pulse Power (lms)*, PPR ................................................. 500W Forward Surge Current @ tp = 8.33ms, l,sM ................................... 80A(pk) Peak Pulse Current. .................. _............... _..................... see table Breakdown Voltage ......................................................... see table Power, Continuous (Derate @ 16.7mW;oC above T. = 25°C), PR • • • • • • • • • • • • • • • • • • 2.5W Storage Temperature ............................................... -55°C to +200°C Operating Temperature ............................................. -55°C to +175°C 'See Figure 2 for Peak Pulse Power VS. Pulse Duration. MECHANICAL SPECIFICATIONS J, JTX & JTXV IN6461·1N6468 BODY B .040" .... 001 l02mm ±03 .975" MIN. 24.8mm 4/82 9-12 ~UNITRODE JAN, JANTX & JANTXV 1N6461·1N6468 ELECTRICAL SPECIFICATIONS @ 25°C Max. Max. Clamping Clamping Voltage @Ipp Voltage Max. (tp 1ms) Temperature (Ve MAX) @Ipp Inverse Coefficient oc VISR ) for tp 1ms Voltage Max Peak Pulse Current Ipp Min. Test Current Max. Stand·off Breakdown Leakage IBR@ Voltage Voltage tp 300ms Current VR Duty Cycle s; 2% I R @ VR @ IBR = Part No. 1N6461 = = = tp ~ 201'5 tr ~ 81's (Fig. 4) tp 1ms tr 101'5 (Fig 3) = -V eMs)!. V V mA I'A A(pk) A(pk) V V %/"C 5.0 5.6 25 3000 56 315 9.0 -3.5 0.040 IN6462 6.0 6.5 20 2500 46 258 11.0 -3.2 0.040 1N6463 12.0 13.6 5 500 22 125 22.6 -3.8 0.050 1N6464 15.0 16.4 5 500 19 107 26.5 -3.8 0.060 1N6465 24.0 27.0 2 50 12 69 41.4 -3.6 0.084 1N6466 30.5 33.0 1 3 11 63 47.5 -3.6 0.093 1N6467 40.3 43.7 1 2 8 45 63.5 -3.5 0.094 1N6468 51.6 54.0 1 2 6 35 78.5 -3.4 0.096 1. 100 50 ~ J>- Peak Pulse Power vs. Pulse Duration 2. Derating Curve 125% l' 100% '\ z'" ~~ "'>- ::>"" "", ",0 0., ..,N ""- wee Figure 4 for eak Pulse vs Puls.e \. Tlille Characteristics) 75% ~ e,o ",>- wZ ; e.. ~\ lOa II ~ '"w ;< '"""e..w w "' ill ""'" G:i '"L 0.5 i\r 150 ~ 0: 0.3 200 0.1 lOOns 250 Ips 10115 TEMPERATURE (OC) 3. 4. Current Impulse Waveform Current Impulse Waveform A Ip =lOps) "15 ~ ~ z w ~ 50% ::> ~50%r---~~---t_---T_--~ ::> "l ""lw .1 .1 °w ~ ::> ~ e.. ~ __ 0% ~ 4 a 10 20 "'"'" 30 40 50 .......... 60 70 80 t-TIME"'s) t-TIME(ms) UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 I 1\ >- >- pUI!e tlmeldurabJn IS deJmed as that pomt where the pulse current decays to 50% of /p (Rise time to 100 percent of Ip =8tJs) ::. "15 ~ a lOms 100% Pulse time duration IS defined as that pOInt where the pulse current decays to 50% of Ip (Rise time to 100 percent of """ Ims lOOps PULSE TIME (tp) 100% . . - - - - - - - , - - - - - ' - , - - - - - , - - - - - - - , O%L-_ _ _L -_ _ _L -_ _ _ "" 9-13 PRINTED IN U.S A. TVS305· TVS430 TVS505·TVS528 TRANSIENT VOLTAGE SUPPRESSORS FEATURES DESCRIPTION • Up to 500W for ImS Pulse Power Capability • Clamping Time in Picoseconds • Direct Applicability for all popular Microprocessors and IC families • Metallurgically bonded assembly system to assure long term reliability • Miniature glass encased hermetically sealed package Unitrode's TVS series of transient voltage suppressors feature oxide passivated zener type chips with fullfaced metallurgical bonds on both sides to achieve high surge capability and negligible electrical degradation under repeated surge conditions. The series is especially useful in protecting microprocessor, MOS, CMOS, TTL, Schottky TTL, ECl, I'l and linear integrated circuits from spurious transient disturbances. ABSOLUTE MAXIMUM RATINGS @ 25'C TVS5D5-TVS528 TVS3DS-TVS43D Stand-off Voltage, VR ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 5 to 300V ................................. 5.0V to 28.0V Peak Pulse Power (lmS)" ...................................................................... 150W ............................................ 500W Forward Surge Current (8.3mS half sinewavel .............................................. 15A .............................................. 50A Peak Pulse Current ......................................................................... See Table ....................................... See Table Breakdown Voltage .......................................................................... See Table ........................................ See Table Power, Continuous .................................................................................. 3W ............................................... 5W Storage lind Operating Temperature ............................................ -65 to + 175'C ............................... -65to +175'C 'See Figures 3 and 4 for Peak Pulse Power vs Pulse DuratIOn. MECHANICAL SPECIFICATIONS I °i~~·.J~P 1 Bag~t~~~~~t;~" 15'" TYP 39mm [] ( I BODY A TVS505 Series BODYB 028""!.. 001 j 0 7lmr =.03 I 111 TVS305 Series )0 ! 08'" MAX. 2. 16 m t ~O85" TYP 22mm ~ 7~~~~~:"N _2~~5~'::'1.625" MIN 413mm MECHANICAL SPECIFICATIONS .040" ± .001 l.02mm ::t.03 .975" MIN. 24.8mm 2/80 9-14 . ~·UNITRDDE TVS 305-TVS 430 TVS 505-TVS 528 ELECTRICAL SPECIFICATIONS @ 25'C TVS Par! No. TVS305 TVS310 TVS312 TVS315 TVS318 TVS324 TVS328 TVS348 TVS360 TVS410 TVS420 TVS430 TVS505 TVS510 TVS512 TVS515 TVS518 TVS524 TVS528 Stand ·Off Voltage V, Max. Peak Pulse Current* Max. Clamping Max. Clamping Voltage* Voltage* BV(mlnl @ ImA Max. Leakage Current I,@V, I"" Vc@lpp Vc@lA V V p.A A V 5.0 10.0 12 15 18 24 28 48 60 100 200 300 5.0 10.0 12.0 15.0 18.0 24.0 28.0 6.0 ILl 13.8 16.7 20.4 28.4 30.7 54 67 III 234 342 6.0 ILl 13.8 16.7 20.4 28.4 30.7 50 2 1 1 1 1 1 1 1 1 1 1 300 5 5 5 5 5 5 17 8.9 7.1 5.9 4.9 3.6 3.2 1.7 1.4 .91 .42 .28 53.7 30.3 23.8 19.8 16.3 11.9 10.7 8.7 16.8 21.0 25 31 42 46 82 105 160 360 520 9.3 16.5 21.0 25.2 30.5 42.0 46.5 Min. Breakdown Voltage Max. Clamping Voltage* Vc @ SA lOA V V - - - - - - - - - - - - - 7.4 13.2 16.5 19.7 23.8 32.4 35.9 - - - - 7.9 14.4 18.5 22.2 - 26.0 37.0 41.0 *For ImS pulse: see Figure 1. II Pulse Waveform 1. G z t« 0: j" '0 ~ t- Z w ~100 OJ '-' w :3 OJ D.. I 50 U "' \ 75 r\ \ N = "0 PULSE TIME DURATION (tp) POINT WHERE I, DECAYS TO 50% OF Ipp ~ Derating Curve 2. 100 50 ~ 25 ---- r-- 0.." t-TIME (ms) UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON. MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95·1064 9-15 o o 50 \ \ \ 100 150 TEMPERATURE ('C) 200 PRINTED IN U.S.A. TVS305·TVS430 TVS505-TVS528 3. 10 ~ ffi l< oQ. "'~ " Q. ~ Peak Pulse Powervs. Pulse Duration 100 "" ~ 4. Peak Pulse Power vs. Pulse Duration EXPONENTIAL PULSE EXPONENTIAL PULSE ~ ~ "~, 0.1 Q. ,01 IO"S ImS 100"S a: 10 ~ ~ " < '" "'I Q. " '" " ~ ...... "' ~ Q. 0: IO"S PULSETIME (I,> 5. " ,I 10mS " 10mS ImS 100"S PULSE TIME (t,> 6. Clamping Voltage vs. Pulse Current Capacitance VI. Stand·Off Voltage 10,000 100 EE FIGURE I FOR WAVEFORM ~ OJ '"~ MEASURED @ZEROBIAS- LII U Z ~ ~1000 MEASURED @ • C3 I =MEASURED @ ZERO ~ "" 1 lE 505 I u > ~f STAND-OFF VOLTAGE - UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95-1064 -- 10 SIS 512 I-- 510 505 :3u TVS 3 1 100 10 V. - ~ 20 ii: :; ,,-, MEASURED@~ '} 100 528 525 518 §; BI~~ '\ '\ 50 40 30 1 (V) 10 I, - 9-16 20 50 100 PULSE CURRENT (AI PRINTED IN U.S.A. TVS305-TVS430 TVS505-TVS528 CHOOSING AND SPECIFYING THE PROPER TVS The following terms are generally used in specifying Transient Voltage Suppressors (TVS): 1. Stand-off Voltage (VR) is the highest reverse voltage at which the TVS will be non-conducting_ 2. Minimum Breakdown Voltage (BV min) is the reverse voltage at which the TVS conducts 1 mill i-amp. This is the point where the TVS begins to limit the transient. 3. Maximum Clamping Voltage (V e max) is the maximum voltage the TVS will allow during a transient "spike." Figure 7 graphically shows all three terms. II + Figure 7 The three most important factors in choosing the appropriate TVS for an application in their order of importance are: 1. Pulse power (Pp) - Choose the TVS series that will handle the Transient Pulse Power_ Transient Pulse Power is equal to the clamping voltage (Ve> times the peak pulse current (ipp). The pulse duration vs. pulse power graph on the TVS data sheet can then be used to determine the maximum allowable pulse duration. (Figure 3 or 4). 2. Standoff voltage (VR) - From the TVS series selected, choose the device with the stand-off voltage equal to or greater than the normal circuit operating voltage. 3. Maximum Clamping Voltage (V eMAx ) - Determine the clamping voltage of the device chosen for the transient given and be sure it is below the voltage that might damage any components. For further information see Unitrode Application Note U-79, "Guidelines for Using Transient Voltage Suppressors. " UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (7l0) 326-6509 • TELEX 95-1064 9-17 PRINTED IN u.s A. UDZ807 SERIES UDZ5807 SERIES UDZ8807 SERIES AC POWER ZENERS 1, 3 and 5 Watt Types FEATURES DESCRIPTION • • • • These devices consist of two fused-in-glass zeners brazed cathode to cathode to provide zener action in both directions. Zener Characteristics in Both Directions 7.S to GOV High Surge Ratings Small Physical Size ABSOLUTE MAXIMUM RATINGS 7.S to GOV See Tables ..... See Tables . ..See Graph Zener Voltage . Continuous Current Surge Current (8.3ms) Surge Power. Power See Data Sheets for Related Series (UZ8807, UZ807 and UZS807) Storage and Operating Temperature -6S'C to +17S'C MECHANICAL SPECIFICATIONS UDZ807 SERIES UDZ5807 SERIES UDZ8807 SERIES 1 & 3 WATT 5 WATT ~ .Dr1 P[ ~E --+--_c~=~f-----*MARKING: "D." followed by last 3 to 4 digits and part number. Example: 1.5 volt ±10%. 1 wett type 'would be marked: "08807". Dimensions 1 Watt UDZ8807 Seri•• Ins. A B C a E 450 085 275 .028 700 MAX. MAX. TYP ± .DOI MIN 5 Watt UDZ5807 Seri•• 3 Watt UDZ807 Series mm 11.43 MAX. 2.16 MAX. 6.99 TYP. 71 ± .03 1778 MIN. mm Ins. A B C a E .450 MAX. .085 MAX. .275 TYP. .028 ± .DOI .7DO MIN. 11.43 MAX. 2.16 MAX. 6.99 TYP. .71 ± .03 17.78 MIN . 9-18 ins. A 8 C 0 E .5DO .145 .325 .040 .975 MAX. MAX. TYP. ± .001 MIN. mm 12.70 MAX . 3.68 MAX . 8.26 TYP. 1.02 ± .03 24.77 MIN . ~UNITRDDE UDZ807 SERIES UDZ5807 SERIES Electrical Specifications at 25°C Type ±10% Tolerance * Nominal Zener Voltaget Vz @ lIT Volts Test Current IZT Max. Zener Imped § Zz @ lIT mA Ohms UDZ8807 SERIES Maximum Ratings" Maximum Leakage @ Reverse Voltage • ±5% ±lO% Current Maximum Cont. Current lno Maximum Surge CurrenH Is Volts Volts mA Amps 4.9 5.4 5.9 6.6 8.6 10.8 12.9 14.4 17.3 19.4 21.6 23.7 25.9 28.8 32.4 43.2 5.2 5.7 6.2 6.9 9.1 11.4 13.7 15.2 18.2 20.6 22.8 25.1 27.4 30.4 34.2 45.6 125 115 105 95 85 63 52 47 40 35 31 28 26 24 22 15 5 4.5 3.9 3.37 2.25 1.65 1.12 1.12 0.825 0.825 0.825 0.675 0.562 0.562 0.450 0.337 4.9 5.4 5.9 6.6 8.6 10.8 12.9 14.4 17.3 19.4 21.6 23.7 25.9 28.8 32.4 43.2 5.2 5.7 6.2 6.9 9.1 11.4 13.7 15.2 18.2 20.6 22.8 25.1 27.4 30.4 34.7 45.6 400 360. 330 300 250 200 170 150 125 110 100 90 85 75 65 50 10 8 7 5 4 3 2 2 1.5 1.5 1.5 1.2 1 1 0.8 0.6 #A 1 WATT ZENERS - Specifications apply for both directions. 7.5 34 UDZ8807 6 50 8.2 31 7 UDZ8808 30 9.1 28 UDZ8809 8 10 10 25 UDZ8810 8.5 3 12 23 UDZ8812 9 1 15 17 UDZ8815 14 0.5 18 14 UDZ8818 20 0.5 20 12.5 UDZ8820 0.5 23 24 10.5 25 UDZ8824 0.5 27 UDZ8827 9.5 35 0.5 30 8.5 40 0.5 UDZ8830 33 7.5 UDZ8833 45 0.5 7.0 36 UDZ8836 50 0.5 40 6.5 62 UDZ8840 0.5 45 6 75 UDZ8845 0.5 60 4 125 0.5 UDZ8860 3 WATT ZENERS - Specifications apply for both directions. UDZ807 UDZ808 UDZ809 UDZ810 UDZ812 UDZ815 UDZ818 UDZ820 UDZ824 UDZ827 UDZ830 UDZ833 UDZ836 UDZ840 UDZ845 UDZ860 7.5 8.2 9.1 10 12 15 18 20 24 27 30 33 36 40 45 60 75 75 75 75 65 50 40 40 30 25 25 20 20 20 15 10 500 300 200 100 10 10 5 5 5 1 1 1 1 1 1 1 3 4 4 5 5 6 8 9 10 12 15 21 21 27 37 70 *For ±5% voltage tolerance change the 3rd number from the right from 8 to 7 i.e. UDZ8807 to UDZ8707, etc. tAli zener voltages are measured with an automated test set using a 35ms test time. Longer or shorter test times will have a corresponding . effect on the measured value due to heating effects. §Zener impedance is derived from the 6o-cycle voltage created when AC current with RMS value of 10% of DC zener test current is superimposed on the test current. **D.C. Ratings are based on the lead temperature conditions shown in the data sheets covering the UDZ8807, UOZ807, and UDZ5807 series devices. Other conditions will affect the power ratings of all the families except the 1 watt zener family. However, the surge values given apply for any mounting conditions including printed circuit board mounting. :f:Figures shown are for peak sinusoidal surge current of 8.3ms duration using 60 cycle AC. The 8.3ms square pulse rating is 71% of the value shown. Typical Reverse Surge Power vs. Surge Duration lOOK 50 20 ~ 10K 0: UJ 50 ~ 20 0.. 1K UJ 50 -' 20 :::> 0.. 100 r-... SQUARE PULSE f - - .......... ~ ............. J"--..... ......... ......... '-. ......... .............. r-...-...........JW ~~ I 47"7" S '" ~~4~ ~S<'I/ <'S 50 ~ 20 10 lOOns UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON. MA 02173 • TEl. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 S ~47"7"S_.- ltts IOtts IOOtts lms PULSE DURATION (S) For Sinusoidal Pulse, Peak Value is 1.4 Times Value Shown 9-19 ........ IOms PRINTED IN U.S.A. II UDZ807 SERIES UDZ5807 SERIES Maximum Ratings·· Electrical Specifications at 25'C Type ::t:l0% Tolerance * Nominal Zener Voltaget Vz @ IZl Volts Max. Zener Imped § ZI Test Current lIT lIT mA Ohms @ Maximum Leakage @ Reverse Voltage ±10% Current #A 5 WATT ZENERS - Specifications apply for both directions. UDZ5807 7.5 175 1.8 500 8.2 150 1.8 400 UDZ5808 UDZ5809 9.1 150 2.5 200 UDZ5810 10 125 2.5 100 UDZ5812 12 2.5 50 100 UDZ5815 15 75 15 3.5 18 10 UDZ5818 65 4 UDZ5820 65 4.5 10 20 UDZ5824 24 50 5 10 UDZ5827 27 50 6 10 UDZ5830 30 40 8 10 UDZ5833 33 40 10 5 UDZ5836 36 30 11 5 5 UDZ5840 40 14 30 UDZ5845 45 30 20 5 UDZ5860 60 20 40 5 UDZ8807 SERIES Volts 4.9 5.4 5.9 6.6 8.6 10.8 12.9 14.4 17.3 19.4 21.6 23.7 25.9 28.8 32.4 43.2 ±5% Maximum Cont. Current lIM Maximum Surge Currentt Is Volts mA Amps 5.2 5.7 6.2 6.9 9.1 11.4 13.7 15.2 18.2 20.6 22.8 25.1 27.4 30.4 34.2 45.6 620 570 510 470 385 300 255 220 180 155 140 130 120 105 95 75 40 32 24 22 18 12 9 8 6.5 6 5.5 5 4.5 4 3.5 2.5 'For ±5% voltage tolerance change the 3rd number from the right from 8 to 7 i.e. UOZ8807 to UOZ8707, etc. tAli zener voltages are measured with an automated test set using a 35ms test time. Longer or shorter test times will have a corresponding effect on the measured value due to heating effects. §Zener impedance is derived from the 6()..cycle voltage created when AC current with RMS value of 10% of DC zener test current is posed on the test current. superim~ **D.C. Ratings are based on the lead temperature conditions shown in the data sheets covering the UOZ8807, UDZ807, and UDZ5807 series devices. Other conditions will affect the power ratings of all the families except the 1 watt zener family. However, the surge values given apply for any mounting conditions including printed circuit board mounting. :j:Figures shown are for peak sinusoidal surge current of 8.3ms duration using 60 cycle AC. The S.3ms square pulse rating is 71% of the value shown. UNITROOE CORPORATION· 5 FORBES ROAO LEXI NGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95-1064 9·20 PRINTED IN U.S.A. POWER ZENERS UZ706 SERIES UZ806 SERIES 3 Watt FEATURES DESCRIPTION • 10 Times Greater Surge Rating than Conventional 1 Watt Types • Small Physical Size Fused-in-glass metallurgically bonded 3 watt zener diodes. ABSOLUTE MAXIMUM RATINGS 6.S to 400V Zener Voltage, Vz Continuous Current Surge Current (S.3ms) Surge Power Power Storage and Operating Temperature See Table See Table See Graph See Lead Temperature Derating Curve to +175°C -we II MECHANICAL SPECIFICATIONS UZ706 SERIES 1 °i5;':~P Band 0 1 155" TYP 3.9mm mdlcate~...... cathode end" r- ], 0 l"mm,U I~~~'~ 1 BODY A 028" :::':: 001 0 7lmm :..':: 03 ! I I :r:: 111 oS:: j UZ806SERIES I I 1 O~5;~:;:~X j 700" MIN 250" MAX 17.8mm ~ 635mm ___ 1.~15;~~N_ UZ Prefix is identified by a Blue or Red Cathode Band Power Oissipation vs. Lead Temperature Derating Curve VS. Typical Zener Impedance vs. Zener Current Surge Power Surge Duration 10K 5K ""- ~ . ~ 2K '" lK w ~ a. lLJ 200 CJ en w -- z g 175 :;; '"Zw 50 ""'"' UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 lOOns Ips lK f----.21"---;;::----"";....==+------i lOllS lOOtls Ims SURGE DURATION (5) 9-21 100 f-----'~~~~......:-=:':-±,__-__1 w a. 10 50 75 100 125 150 LEAD TEMPERATURE (OC) r--;::--,----,----,-----, u 20 25 S '" ""'"' ""- 500 ~ 100 SQUARE PULSE 10K 10f---+--"""'~""'~....r--__1 W N ""'"' lOms .1 L-__ .1 ~ ____- L____ ~~~ 1 10 100 ZENER CURRENT (mA) IA PRINTED IN U.S.A UZ706 SERIES. UZ806 SERIES Maximum Ratings Electrical Specifications at 25°C Nominal Type* ±5% ~ Max. Zener Impedance § Zener Voltage t Vz@ln Jedec"'* Maximum Reverse Leakage Curren! Test Current ±5% IZT Zz@I ZT I,@V, ± 10% V, V, Typ. Maximum Temp. Continuous Coefficient Curren! IZM Tc @ 'ZT * Maximum Surge Current1: Is Tolerance R~gistration Volts rnA Ohms pA Volts Volts %/OC rnA Amps UZl06 UZl07 UZ708 UZl09 UZl10 UZ712 UZl13 UZ714 UZ715 UZ716 UZ718 UZ720 UZl22 UZ724 UZl27 UZ730 UZ733 UZl36 UZ740 UZ745 UZ750 UZ756 UZl60. UZ770 UZ775 UZl80 UZ790 UZ110 UZ111 UZ112 UZll3 UZ114 UZ115 UZ116 UZll7 UZ118 UZ119 UZ120 UZ122 UZ124 UZ126 UZ128 UZ130 UZ132 UZ134 UZ136 UZ138 UZ140 1N5063 1N5064 1N5065 IN 5066 1N5067 1N4883 1N5069 1N5070 1N5071 1N5072 1N5073 1N4884 1N5074 1N5075 1N5076 1N5077 1N5078 1N5079 1N5081 1N50B3 1N5085 1N50B7 1N50B8 1N5091 1N5092 1N5093 1N4096 1N4097 1N5096 1N5097 1N5098 1N5099 1N4098 1N5100 1N5101 1N5102 1N5103 1N5104 1N5105 1N5106 1N5107 1N5109 IN5110 1N5111 1N5113 1N5114 1N5115 IN5117 6.8 7.5 8.2 9.1 10.0 12 13 14 15 16 18 20 22 24 27 30 33 36 40 45 50 56 60 70 75 BO 90 100 110 120 130 140 150 160 170 1BO 190 200 220 240 260 280 300 320 340 360 380 400 75 75 75 75 75 65 50 50 50 50 40 40 30 30 25 25 20 20 20 15 15 10 10 2 2 3 3 4 5 6 6 6 7 8 9 10 10 12 15 21 21 27 37 50 70 70 90 100 115 150 175 250 325 375 550 650 700 750 850 900 950 1100 1300 1500 1700 1900 2100 2400 2700 3000 3500 500 300 200 100 40 10 10 10 10 5 5 5 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 5.2 5.7 6.2 6.9 7.6 9.1 9.9 10.6 11.4 12.2 13.7 15.2 16.7 18.2 20.6 22.8 25.1 27.4 30.4 34.2 38.0 42.6 45.7 53.3 56.0 60.8 68.5 76.0 83.6 91.2 98.8 106 114 122 129 4.9 5.4 5.9 6.6 7.2 8.6 9.3 10.1 10.8 11.5 12.9 14.4 15.8 17.3 19.4 21.6 23.7 25.9 2B.8 32.4 36.0 40.3 43.2 50.5 54.0 57.7 64.B 72.0 79.2 86.4 93.6 101 108 115 122 129 137 144 158 173 187 202 216 230 245 259 274 288 .04 .04 .05 .05 .06 .07 .07 .07 .07 .07 .08 .08 .08 .08 .09 .090 .090 .090 .095 .095 .095 .095 .095 .095 .095 .095 .095 .100 .100 .100 .100 .100 .100 .100 .100 .100 .100 .100 .100 .105 .105 .105 .105 .105 .110 .110 .110 .110 440 400 360 330 300 250 230 210 200 185 170 150 135 125 110 100 90 85 75 65 60 55 50 45 40 35 30 30 25 25 20 20 20 20 18 18 15 15 15 12 12 10 10 9 9 8 8 7 10.0 8.0 7.0 6.0 5.0 4.0 4.0 4.0 3.0 3.0 2.0 2.0 2.0 1.5 1.5 1.5 1.2 1.0 1.0 0.8 0.8 0.7 0.6 0.6 0.5 0.4 0.4 0.4 0.3 0.2 0.20 0.20 0.20 0.15 0.15 0.10 0.10 0.10 0.09 0.09 0.08 0.08 0.07 0.07 0.06 0.06 0.06 0.06 10 10 10 8.0 5.0 5.0 5.0 5.0 5.0 5.0 4.0 4.0 4.0 4.0 4.0 3.0 3.0 3.0 3.0 3.0 2.0 2.0 2.0 2.0 2.0 137 144 152 167 182 198 213 228 243 258 274 289 304 Specify 20% voltage tolerance by changing first numeral of type number trom 7 to 9. (UZ709 becomes UZ909) or from 1 to 3 (Ullli becomes UZ31l). Specify 10% voltage tolerance by changing first numeral of type number from 7 to 8. (UZ709 becomes UZ809) or from 1 to 2 (Ul111 becomes UZ21l). ** Jedec registration applies to ±5% tolerance zeners only. t :#e~~"o~ tho~t~::S~~:dmV~~~~r~~eW!~hh~~tfnU~o~;~~~.test set using a 35 ms test time. Longer or shorter test times willi have a corresponding § Zener impedance is derived from the 60-cycle AC voltage created when AC current with RMS value of 10% of DC zener test current is super~ imposed on the test current. current based on 3 watt rating. See lead temperature derating curves for proper mounting methods. t Figures shown are for a peak sinusoidal surge current of 8.3ms dUration using 60 cycle AC. The 8.3ms square pulse rating is 71% of the value shown. * Maximum UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710, 326·6509 • TELEX 95-1064 9-22 PRINTED IN U S.A UZ4706 SERIES UZ4806 SERIES POWER ZENERS 5 Watt, Industrial FEATURES DESCRIPTION • 2 Times Greater Surge Rating than Plastic Types • Small Physical Size • Impervious to Moisture Fused-in-glass 5 watt zeners with the same electrical specs as the IN5342-1N5388 series. ABSOLUTE MAXIMUM RATINGS ..... 6.8 to 200V . See Table See Table See Graph Sep Lead Temperature Derating Curve -65'C to +175'C Zener Voltage, V, Continuous Current Surge Current (8.3ms) Surge Power Power Storage and Operating Temperature . II MECHANICAL SPECIFICATIONS UZ470B SERIES UZ480& SERIES BODY B UZ Prefix is identified by a Blue or Red Cathode Band 10K ~ 0 ;:: ~ 2K ""-Vi c: 1K w ;;: 500 "'- ~ 200 ~ 100 c: w ;;: ::> 0 Q. X "'- SQUARE PULSE o 0 ":;; 1Kr-~~-'-'----'--r---'--' 500~~~~~+----+--~---r~ "- 5K z If) (/) 1 L Typical Zener Impedance vs. Zener Current Surge Power vs. Surge Duration Power Dissipation vs. Lead Temperature Derating Curve 50 " '" I"....., 20 10 0 lOOns 0 LEAD TEMPERATURE ('C) l.u5 10,u.5 loo,u.5 Ims SURGE DURATION (5) 9-23 IOms ZENER CURRENT (mA) ~UNITRDDE UZ4706 SERIES UZ4806 SERIES Electrical Specifications at 25°C Nominal Zener Voltage t Type Tolerance UZ4706 UZ4707 UZ4708 UZ4709 UZ471 0 UZ4712 UZ4713 UZ4715 UZ4716 UZ4718 UZ4720 UZ4722 UZ4724 UZ4727 UZ4730 UZ4733 UZ4736 UZ4739 UZ4743 UZ4747 UZ4751 UZ4756 UZ4762 UZ4768 UZ4775 UZ4782 UZ4791 UZ4110 UZ4111 UZ4112 UZ4113 UZ4115 UZ4116 UZ4118 UZ4120 ±10% Tolerance UZ4806 UZ4807 UZ4808 UZ4809 UZ4810 UZ4812 UZ4813 UZ4815 UZ4816 UZ4818 UZ4820 UZ4822 UZ4824 UZ4827 UZ4830 UZ4833 UZ4836 UZ4839 UZ4843 UZ4847 UZ4851 UZ4856 UZ4862 UZ4868 UZ4875 UZ4882 UZ4891 UZ4210 LJZ4211 UZ4212 UZ4213 UZ4215 UZ4216 UZ4218 UZ4220 ZZK Maximum Leakage @ Reverse Voltage Test Current IZT IZT IZI<= IrnA Volts mA Ohms Ohms itA 6.8 7.5 8.2 9.1 10 12 13 15 16 18 20 22 24 27 30 33 36 39 43 47 51 56 62 68 75 82 91 100 110 120 130 150 160 180 200 175 175 150 150 125 100 100 75 75 65 65 50 50 50 1 1.5 1.5 2 2 2.5 3 3.5 3.5 4 4.5 5 5 6 8 10 11 14 20 25 27 35 42 50 55 80 90 100 125 170 190 330 350 450 500 1000 800 600 400 125 140 145 150 155 160 165 170 175 180 190 200 220 230 240 250 270 320 400 500 620 720 760 800 1000 1150 1250 1500 1650 1750 1850 500 400 200 100 75 50 25 15 10 10 10 10 10 10 10 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 VZ@IZT ±5% Zz 40 40 30 30 30 25 25 20 20 20 20 15 15 12 12 10 10 8 8 5 5 @ @ Maximum Ratings Reverse Voltage Max. Zener Impedance § Current Maximum Cant. Current IZM Maximum Surge Current; Is ±10% ±5% Volts Volts mA Amps 4.9 5.4 5.9 6.6 7.2 8.6 9.3 10.8 11.5 12.9 14.4 15.8 17.3 19.4 21.6 23.7 25.9 28.1 31 33.8 36.7 40.3 44.6 49.0 54.0 59.0 65.5 72.0 79.2 86.4 93.6 108 115 129 144 5.2 5.7 6.2 6.9 7.6 9.1 9.9 11.4 12.2 13.7 15.2 16.7 18.2 20.6 22.8 25.1 27.4 29.7 32.7 35.8 38.8 42.6 47.1 51.7 56 62.2 69.2 76.0 83.6 91.2 98.8 114.0 121.6 136.8 152.0 675 620 570 510 470 385 350 300 275 255 220 195 180 155 140 130 120 105 100 96 85 81 73 61 60 55 50 45 40 38 35 31 30 25 22 32 26.5 19.2 17.6 16 14.4 12.8 9.6 8 7.2 6.4 5.6 5.2 4.8 4.4 4.0 3.6 3.2 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.3 1.1 1.0 .8 .64 .60 .56 .48 .40 Maximum VF @ 1.0 Amp = 1.2 Volts for all types tAli zener voltages are measured with an automated test set using a 35 ms test time. Longer or shorter test times will have a corresponding effect on the measured value due to heating effects. < §Zener impedance is derived from the 60-cycle voltage created when AC current with RMS value of 10% of DC zener test current is superimposed on the test current. +~~~!J~~~~~o~~:;: ~~~S~e:a~i~~~;~if~~ ~~t~~ ~~~~~n~~~:ri~ UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95·1064 ms duration using 60 cycle AC. 9·24 PRINTED IN U S.A. POWER ZENERS UZ5706 SERIES UZ5806 SERIES 5 Watt DESCRIPTION Fused·in.glass, metallurgically·bonded 5 watt zeners. FEATURES • 2 Times Greater Surge Rating than Conventional 10 Watt Zeners • Small Physical Size ABSOLUTE MAXIMUM RATINGS Zener Voltage, Vz Continuous Current Surge Current (B.3ms) Surge Power Power. Storage and Operating Temperature 6.B to 400V " See Table See Table See Graph . See Lead Temperature Derating Curve -o5'C to +175'C MECHANICAL SPECIFICATIONS UZ5706 SERIES UZ5806 SERIES II BODY B UZ Prefix is identified by a Blue or Red Cathode Band Power Dissipation vs. Lead Temperature Derating Curve Surge Power vs. Surge Duration Typical Zener Impedance vs. Zener Current lOOK ~ 50K z o >= « ~20K 0: "- iii OJ Ci "- 10K ~ 5K (/) 0: OJ !: o "- OJ 2K '" IK 0: :::l r----- ---- "" ,"'" r-'" OJ r-... o __~__~__L-~__-L~~ 25 50 75 100 125 ISO LEAD TEMPERATURE ('C) 175 100 lOOns ;;: "'" "'" 200 OL-~ ~ « c ~ 1 (/) 500 x« ;;: !,us s 100 SQUARE PULSE 10,«5 lOO,us 10f-+---~~~~~~~~'--1 5 f-+-----t--N....-""'-''''''''--'''-''''' 0: OJ ~ N Ims SURGE DURATION (S) 9·25 f-N~""-I:--"'i-<::--"'~-+----t--1 50~~~~~~~~~ "" IOms 1f-+-----t--r_--_1_~~~~, .5f-+-----t~r_--_1_-+~~V~-1 .1~~ .5 I __ ~~L_ 5 10 _ __L~_ _ _ _L-~ 50 100 500 ·IA ZENER CURRENT (mA) ~UNITRDDE 'uz5106"SERIES Maximum Ratings Electrical Specifications at 25'C Type ±S% Nominal Zener * ±10% Max. Zener Impedance§ Maximum Reverse Leakage Current Test Voltage t Vz @ IZI Current IZT ZZ@IZI I, ±S% V, ± 10% V, Volts Volts Tolerance Tolerance Volts mA Ohms uA UZ5706 UZ5707 UZ5708 UZ5709 UZ5710 UZ5712 UZ5713 UZ5714 UZ5715 UZ5716 UZ5718 UZ5720 UZ5722 UZ5724 UZ5727 UZ5730 UZ5733 UZ5736 UZ5740 UZ5745 UZ5750 UZ5755 UZ5760 UZ5170 UZ5175 UZ5780 UZ5790 UZ5110 UZ5111 UZ5112 UZ5113 UZ5114 UZ5115 UZ5116 UZ5117 UZ5118 UZ5119 UZ5120 UZ5122 UZ5t24 UZ5126 UZ5128 UZ5130 UZ5132 UZ5134 UZ5136 UZ5138 UZ5140 UZ5806 UZ5807 UZ5808 UZ5809 UZ5810 UZ5812 UZ5813 UZ5814 UZ5815 UZ5816 UZ5818 UZ5820 UZ5822 UZ5824 UZ5827 UZ5830 UZ5833 UZ5836 UZ5840 UZ5845 UZ5850 UZ5856 UZ5860 UZ5870 UZ5875 UZ5880 UZ5890 UZ5210 UZ5211 UZ5212 UZ5213 UZ5214 UZ5215 UZ5216 UZ5217 UZ5218 UZ5219 UZ5220 UZ5222 UZ5224 UZ5226 UZ5228 UZ5230 UZ5232 UZ5234 UZ5236 UZ5238 UZ5240 6.8 7.5 8.2 9.1 10.0 12 13 14 15 16 18 20 22 24 27 30 33 36 40 45 50 56 60 70 75 80 90 100 110 120 130 140 150 160 170 180 190 200 220 240 260 280 300 320 175 175 150 150 125 100 100 100 75 15 65 65 50 50 50 40 40 30 30 30 25 20 20 20 15 15 15 10 10 10 10 8 8 8 8 5 5 5 5 5 5 4 4 4 4 3 3 3 1.0 1.5 1.5 2.0 2.0 2.5 3.0 3.0 3.5 3.5 4.0 4.5 5.0 5.0 6.0 8 10 11 14 20 25 35 40 50 55 80 90 100 125 170 190 230 500 400 200 100 75 50 25 20 15 10 10 10 10 340 360 380 400 UZ5806 SERIES t8 10 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 330 350 380 450 470 500 550 650 750 850 950 1100 1200 1400 1500 1800 5.2 5.7 6.2 6.9 7.6 9.1 9.9 10.6 11.4 12.2 13.7 15.2 16.7 18.2 20.6 22.8 25.1 27.4 30.4 34.2 38.0 42.6 45.7 53.3 56.0 60.8 68.5 76.0 83.6 91.2 98.8 106.0 114.0 ~ J~~:8 5 5 5 5 5 5 5 5 5 5 5 5 5 137 144 152 167 182 198 213 228 243 258 274 289 304 4.9 5.4 5.9 6.6 7.2 8.6 9.3 10.1 10.8 11.5 12.9 14.4 15.8 tU 21.6 23.7 25.9 28.8 32.4 36.0 40.3 43.2 50.5 54.0 57.7 ,64.8 72.0 79.2 86.4 93.6 101.0 108.0 m:8 129 137 144 158 173 187 202 216 230 245 259 274 288 Typ. Temp. Coefl. Tc @ IZT '* 'C .05 .06 .06 .06 .07 .07 .08 .08 .08 .08 .085 .085 .085 .090 .090 .09 .09 .095 .095 .095 .095 .095 .100 .100 .100 .100 .100 .100 .100 .100 .105 .105 .105 .105 .105 .110 .110 .110 .115 .115 .120 .120 .120 .120 .120 .120 .120 .120 Maximum Continuous Current IZM * Maximum Surge Current Is * AmDS mA 675 620 570 510 470 385 350 320 300 275 255 40 32 24 22 20 18 16 14 12 10 9.0 8.0 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.8 2.5 2.3 2.0 1.8 1.6 1.4 1.2 1.0 0.80 0.80 0.75 0.70 0.65 0.60 0.55 0.50 0.45 0.40 0.35 0.30 0.25 0.24 0.23 0.22 0.21 0.20 220 ' 195 180 155 140 130 120 105 95 85 80 75 65 60 55 50 45 40 38 35 33 31 30 27 25 24 22 20 18 17 16 15 14 13 12 12 11 Temperature Range, Operatmg and Storage -6S·C to +17S·C, • Specify 20% tolerance by changing the second numeral of type number from 8 to 9 (UZS809 becomes UZS909) or from 2 to 3 (UZS211 becomes UZS311). t All zener. voltages are measured with an automated test set using a 35 millisecond test time. Longer or shorter test times will have a correspondins; effect on the measured value due to heating effects. § Zener impedance is derived from the 6o-cycle AC voltage created when AC current with RMS value of 10% of DC zener test current is superimpOsed on the test current. Maximum current based on 5 watt rating:. See lead temperature derating curves for proper mounting methods. Figures shown are for a peak sinusoidal surge current of 8.3ms duration USing 60 cycle -AC. the 8.3ms--square pulse rating is 71% of the value shown. ** Several of the above types now have JEDEC IN type numbers. The following cross-reference table lists the appropriate IN numbers; specifications are same as above. ' JEDEC "" UNITRODE TYPE JEDEC "" UNITRODE TYPE 1N5118 1N5119 lN5120 1N5121 1N5122 1N5123 JEDEC "" UZ5714 UZ5740 UZ5745 UZ5750 UZ5760 UZ5770 1N5124 1N5125 1N5126 1N5127 1N5128 1N5129 UZ5780 UZ5790 UZ5114 UZ5117 UZ5119 UZ5126 1N5130 1N5131 1N5132 1N5133 1N5134 UNITROOE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6S40 TWX (710) 326-6509 • TELEX 95-1064 9-26 UNITRODE TYPE UZ5128 UZ5132 UZ5134 UZ5138 UZ5140 PRINTED IN U.S.A. POWER ZENERS UZ7706L and UZ7806L SERlE,S UZ7706 and UZ7806 SERIES 6 Watt, Military, 10 Watt Military FEATURES DESCRIPTION • High Surge Rating • Small Physical Size • leaded and Stud Packages Available Fused-in-glass, metallurgically bonded 6 watt leaded zeners and 10 watt stud-type zeners. ABSOLUTE MAXIMUM RATINGS Zener Voltage, VZ . Continuous Current Surge Current (S.3ms) Surge Power . Power ... 6.S to lOOV .... See Table .. See Table See Graph UZ7706l & UZ7S06l See lead Temperature Derating Curve UZ7706 & UZ7S06 @lOO'C Case lOW Storage and Operating Temperature ... -65'C to +175'C MECHANICAL SPECIFICATIONS UZ7706L and UZ7806l SERIES BODYCLead Mount Band indicates cathode end ---,------i~~~~P. [] -.1_'1_ ----- j-:__ .925" MIN. , I 1,0'''TYP. l 2.7mm .400" MAX ~'~~--~2;;:~~---------1 UZ Prer", is identified by a Blue or Red Cathode Band UZ7706 and UZ7806 SERIES #4-40 x :~;g:: !~:;:~~~ BODY C - Stud Mount LONG THREAD POLARITY: Cathode to Stud is standard. Re· verse polarity denoted by "R" suffix. FINISH: Metal parts gold plated per MIL-G45204, Type II. WEIGHT: 1.5 grams (max.) INSTALLATION PRECAUTIONS: Maximum unlubricated stud torque: 28 inch~ounces. Do not use a screwdriver in the turret slot for installation purposes, or damage may result. Also available with insulated stud. Reference Design Note-17. 9-27 ~UNITRDDE • UZ7706l and UZ7806l SERIES UZ7706 and UZ7806 SERIES Electrical Specifications at 25·C Maximum Ratings Maximum Reverse Type * Nominal Zener Voltage t VZ@IZT Leakage Current Max. Zener Impedance § Test Current I" I.@V, ZZ@IZT ±5% V. ± 10% V, Typ. Temp. Coell. Tc@ I" Maximum Continuous Current* I"" Maximum Surge Current I, * ±5% Tolerance ±10% Tolerance Volts mA Ohms ~A Volts Volts %!"C mA UZ7706 UZ7707 UZ7708 UZ7709 UZ7710 UZ7806 UZ7807 UZ7808 UZ7809 UZ7810 6.8 7.5 8.2 9.1 10.0 350 325 300 275 250 0.6 0.7 0.8 1.0 1.0 1000 800 200 150 100 5.2 5.7 6.2 6.9 7.6 4.9 5.4 5.9 6.6 7.2 .04 .04 .05 .05 .06 1350 1250 ll50 1020 950 50 41 31 29 26 UZ7712 UZ7713 UZ7714 UZ7715 UZ7716 UZ7812 UZ7813 UZ7814 UZ7815 UZ7816 12 13 14 15 .16 200 200 1.3 150 150 1.5 1.5 2.0 2.5 75 50 40 30 20 9.1 9.9 10.6 ll.4 12.2 8.6 9.3 10.1 10.8 11.5 .07 .07 .07 .07 .07 770 700 640 600 550 23 21 20 17 15 UZ7718 UZ7720 UZ7722 UZ7724 UZ7727 UZ7818 UZ7820 UZ7822 UZ7824 UZ7827 18 20 22 24 27 130 120 100 100 90 3.5 4.0 4.5 5.0 6.0 20 20 20 20 20 13.7 15.2 16.7 18.2 20.6 12.9 14.4 15.8 17.3 19.4 .08 .08 .08 .08 .09 500 440 390 360 310 II 10 UZ7730 UZ7733 UZ7736 UZ7740 UZ7745 UZ7830 UZ7833 UZ7836 UZ7840 UZ7845 30 33 36 40 45 80 70 60 60 50 8 10 12 15 20 20 10 10 10 22.8 25.1 27.4 30.4 34.2 21.6 23.7 25.9 28.8 32.4 .090 .090 .090 .095 .095 280 260 240 210 180 8.5 7.5 7.0 6.4 5.5 UZ7750 UZ7756 UZ7760 UZ7770 UZ7775 UZ7850 UZ7856 UZ7860 UZ7870 UZ7875 50 56 60 70 75 50 40 40 35 30 22 30 35 40 45 10 10 10 10 10 38.0 42.6 45.6 53.2 56.0 36.0 40.3 43.2 50.4 54.0 .095 .095 .095 .095 .095 170 160 150 130 120 4.6 4.1 3.7 3.3 3.1 UZ7780 UZ7790 UZ71l0 UZ7880 UZ7890 UZ7210 80 90 100 30 25 20 60 75 90 10 10 10 60.8 68.4 76.0 57.6 64.8 72.0 .095 .095 .100 llO 100 90 2.9 2.6 2.3 175 10 Amps 13 12 9 lOooe Case derate linerally to zero at 175°C Case. Lead Mounted: See lead temperature derating curve. Power Rating: Stud Mounted: 10 Watts at Temperature Range: Operating and storage -65°C to 175°C. * Specify 20% tolerance by changing the second numeral of type number from 8 to 9 (UZ7809 becomes UZ7909) or from 2 to 3 (UZ7210 becomes UZ731O). Specify leaded version by adding an L suffix (UZ7809 becomes UZ78D9L). All zener voltages are measured with an automated test set using a 35 msec test time. Longer or shorter test times will have a corresponding effect on the measured value due to heating effects. § Zener impedance is derived from the 6O-cycle voltage created when AC current with RMS value of 10% of DC zener test current is superimposed on the test current. Ratings Based on lODoC Case temperature; for leaded devices multiply by 0.6. Figures shown are for a peak sinusoidal surge current of 8.3ms duration, non-repetitive. The 8.3ms square pulse rating is 71 % of the value shown t * t V5. Power Dissipation Lead Temperature Derating Curve V5. Surge Power Surge Duration Typical Zener Impedance vs. Zener Current 100 ~'------'-'-----'-'--r--' 50 ~~~--t-~---~~~---+~ lOOK 50K ~20K ;;; 10K OJ " ~OJ 5K "" SQUARE ~ IK => ~ ""- 25 50 75 100 125 150 LEAD TEMPERATURE (OC) 175 UNITRODE CORPORATION' 5 FORBES ROAD LEXI NGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 .. '"c~ :;; 10 f--'''jo.;:~~~~",,""---II--+-----+----I 5 t----'t-<:-"'-<:""'~~"""~l---+_--__+~ 1 t---~---">.,f""...J-'''''-'''-'if..?-k-:'::"---+~ .5 t---+_----P...J-'.....""":-"'-~2- 0: OJ "-.,. 200 o B OJ '-.,. "'" ""- ""- 2K '" 500 0'-----'"---~-L-----'-----'------3i PULS~ ~ N .1 t---+_----t-+-----'k-f"oo;:-"""<.t-=-:l .05t---+-----t-~----~~~""<.t~ 100 lOOns IJls lOJls lOOJls lms SURGE DURATION (S) 9-28 10ms ZENER CURRENT (mA) PRINTED IN U.S.A UZ8706 SERIES UZ8806 SERIES POWER ZENERS 1 Watt, Industrial FEATURES • High Surge Ratings • A Quarter the Size of Conventional! Watt Zeners • Impervious to Moisture ABSOLUTE MAXIMUM RATINGS Zener Voltage, VZ . Continuous Current Surge Current (B.3ms) Surge Power Power. Storage and Operating Temperature DESCRIPTION One watt zener diodes, hermetically sealed in glass. . ........................ 6.B to 200V See Table See Table ......... See Graph . . See Lead Temperature Derating Curve -6S'C to +17S'C II MECHANICAL SPECIFICATIONS UZ8706 SERIES UZ8806 SERIES BOOYA UZ Prefix is identified by a Blue or Red Cathode Band Power Dissipation vs. Lead Temperature Derating Curve 1.5 VS. ,.--".--,--,.,..---,~-.-~-,----, 5K ... ~ 2K z ;:: ffi ..x lK "' 200 "'" "':i' 1""'- '" . "'" SO 20 :E .. ~ w .""'-.. SO 75 100 125 150 LEAD TEMPERATURE (oG) 175 lOOns ""'-., bs lOlLS lOOps Ims SURGE DURATJDN (5) 9-29 10 f---~~~t-~--"".p-..2'-<..,.----I N ...... 10 25 100 ""' :E r-... ~ 100 0 100V 75V u '" .5 s SQUARE PULSE ~ sao iii '"i5 "''":;: 1Kr-~~~r-~~~r-~~--' 10K ~ 0 Typical Zener Impedance VS. Zener Current Surge Power Surge Duration IOms 1 .1 10 ZENER CURRENT (rnA) 100 ~UNITRDDE UZ8706 SERIES UZ8806 SERIES Maximum Ratings Electrical Specifications at 25'C Type Nominal Zener Voltage t Vz @ Tolerance ±5% ±10% Tolerance UZ8706 UZ8707 UZ8708 UZ8709 UZ 8710 UZ8712 UZ8713 UZ 8714 UZ 8715 UZ8716 UZ8718 UZ 8720 UZ8722 UZ 8724 UZ 8727 UZ8730 UZ 8733 UZ 8736 UZ8740 UZ8745 UZ 8750 UZ8756 UZ 8760 UZ8770 UZ 8775 UZ8780 UZ8790 UZ8110 UZ8111 UZ 8112 UZ 8113 UZ8114 UZ8115 UZ8116 UZ8117 UZ8118 UZ8119 UZ 8120 UZ8806 UZ 8807 UZ8808 UZ 8809 UZ 8810 UZ8812 UZ8813 UZ8814 UZ8815 UZ8816 UZ8818 UZ8820 UZ8820 UZ8824 UZ8827 UZ 8830 UZ8833 UZ8836 UZ8840 UZ 8845 UZ8850 UZ8856 UZ8860 UZ8870 UZ 8875 UZ8880 UZ8890 UZ8210 UZ8211 UZ8212 UZ8213 UZ8214 UZ 8215 UZ8216 UZ8217 UZ 8218 UZ8219 UZ8220 Test Current Max. Zener Impedance§ 'ZT ZZ @ Izr mA Ohms IZT Volts 6.8 7.5 8.2 9.1 10 12 13 14 15 16 18 20 22 24 27 30 33 36 40 45 50 56 60 70 75 80 90 100 110 120 130 140 150 160 170 180 190 200 37 34 31 28 25 23 21 19 17 15.5 14.0 12.5 11.5 10.5 9.5 8.5 7.5 7.0 6.5 6.0 5.0 4.5 4.0 3.7 3.3 3.0 2.8 2.5 2.3 2.0 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 3.5 4.0 4.5 5.0 7.0 9.0 10 12 14 16 20 22 23 25 35 40 45 50 62 75 85 110 125 150 175 200 250 350 450 550 700 850 1000 1100 1200 1300 1400 1500 Maximum Reverse Leakage Current ±5% ±10% V. I,@V, V. ~A 50 30 10 3.0 2.0 1.0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 Volts 5.2 5.7 6.2 6.9 7.6 9.1 9.9 10.6 11.4 12.1 13.7 15.2 16.7 18.2 20.5 22.8 25.1 27.3 30.4 34.2 38.0 42.5 45.6 53.2 57.0 60.8 68.4 76.0 83.6 91.2 98.8 106' 114 121 129 137 144 152 Volts 4.9 5.4 5.9 6.6 7.2 8.6 9.3 10.1 10.8 11.5 12.9 14.4 15.8 17.3 19.4 21.6 23.7 25.9 28.8 32.4 36.0 40.3 43.2 50.4 54.0 57.6 64.8 72.0 79.2 86.4 93.6 100 108 115 122 129 137 144 Typ. Temp. Coefficient ContinuOU!I Current Maximum Surge Current T.C. @ IZT I"" Is %/'C 0.04 0.04 0.05 0.05 0.06 0.07 0.07 0.07 0.07 0.07 0.08 0.08 0.08 0.08 0.09 0.09 0.09 0.09 0.095 0.095 0.095 iJ.095 0.095 0.095 0.095 0.095 0.095 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 rnA Amps 140 125 115 105 95 85 80 74 63 60 52 47 43 40 35 31 28 26 24 22 20 17 15 14 12 11 10 9.5 8.5 8.0 7.2 6.8 6.3 5.9 5.6 5.2 5.0 4.7 Maximum * * 5.00 4.50 3.90 3.37 2.77 2.25 2.25 2.25 1.65. 1.65 1.12 1.12 1.12 0.825 0.825 0.825 0.675 0.562 0.562 0.450 0.450 0.390 0.337 0.337 0.277 0.225 0.225 0.225 0.165 0.112 0.112 0.112 0.112 0.082 0.082 0.056 0.056 0.056 t All zener voltages are measured with an automated test set uSing a 35 millisecond test time. Longer or shorter test times Will have a corresponding effect on the measured value due to heating effects. §Zener impedance is derived from the 50-cycle AC voltage created when AC current with RMS value of 10% of DC zener test current is superimposed on the test current. *Ratings are based on free air. TA is 25~C. For use at 1.5 watts see derating curve. ;Figures shown are for a peak sinusoidal surge'current of 8.3 ms duration using 60 cycle AC. The 8.3 ms square pulse rating is 71% of the value shown. UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 0217-3 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95-1064 9-30 PRINTED IN U,S,A. THYRISTORS (SCRs, PUTs) 10-1 10-2 THYRISTORS (SCRs & PUTs) PRODUCT SELECTION GUIDE TO-IS TO-9 TO-39 "Available as JAN and JANTX types. "Available as JAN type. '''Available as JAN, JANTX, JANTXV types. t3mA available from factory UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 10-3 PRINTED IN u.s A THYRISTORS (SCRs & PUTs) PRODUCT SELECTION GUIDE ULTRAFAST SWITCHING ~ IP ~ .ITl ...., TO·tS '~ . ':'" 5: J~ .0 ' t;.; " tq = 'f'" :~ , >';,r.,., " t;.; , : ".:; : 2~0t~ .;~ : l~ TO·59 . GA200 GA300 GA20l GA301 2Dn!! (TYP.) , 60V ", GB200A GB20lA 'Ul[l.l>, '" c, GB3DDA GB30lA ..:.:.:. '~~~ ",,', :~~..-:.., " ••• -> ~ RADIATION HARDENED SCRs -, O,,:Stllte 0.4A Current 'rt-~ Paclqtge StYle .... a !;( 3QV, Iii'" tt'i~ ~I 6t)V' GAIOI '" . ~!:i.lQ ~~~" w Q. ;.; a>Q.ur~ w~,u.( TO·tS T(l-18 ' ~l SOY GA102 I- Iv "= 70pA@R..= 10K U13Tl 'r, .. 2i 10K ohms, VD == SV 'TM == 2A (pulse test) Specified test circuit VGRM == SV, anode open IG == - lS0p.A, VD == SV - 15 15 100 100 - p.A p.A V rnA RGK == 1K, VDRM == Rating RGK == 1K, VRRM == - Rating RGS == 100 ohms, VD== SV IG == - lS0p.A, VD== SV 1.0 500 15 V p.A rnA RGK == 100 ohms, VD == 5V RGK > 10K ohms, VD== SV IG == - 150p.A, VAA == 5V 'DRM IRRM VGD 'H 0:2 0.2 VGT IGT 'H - - - - - - + + tAli values in this table are JEDEC registered. Note, Voltage ratings apply over the full operating temperature range, provided the gate is connected to the cathode through a resistor, 1 K or smaller, or other adequate gate bias is used. Triggering and Bias Stabilization Gate Trigger Voltage Gate Trigger Current 1.4 r---------,---,----,--,------,r------,-,.---. 800 ~ ~ 600 ... z '"~ 400 ;'" P>-.. §: V//> ALL UNITS FIRE fj/// l0 ~ 200 ~ V/// V/ //~ a: ... // //V/ '"«... V/~ ~ /N/Y~ min. K '"I NO UNITS FIRE ::> 1.2 f-------1--+--f---+------1--+--+----I '" <.> a: ~IGTmax. .8 ~LT~~r¥~~~+-~f_-+--+----I .6 ~~~~~7LAf~+f7Y~~~~~ .4 f-------1f_~~~~+f~~~~~~ .2 f----f---j ~ '"~ '" IG1 I ~ _~-200 -400 -65 ~ '"'" > D -25 25 50 75 100 125 TJ - JUNCTION TEMPERATURE ('C) UNITRODE CORPORATION· 5 FORBES ROAD LI;XINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326·6509 • TELEX 95·1064 ~_~L_~_-L_~_L_~_-L~ -65 150 10-6 -25 25 50 75 100 125 TJ - JUNCTION TEMPERATURE ('C) 150 PRINTED IN U.S.A. 2N1870A-2N1874A Holding Current 1. Max. Holding Current (Current Bias) 2_ Max. Holding Current. (Resistor Bias) 50 50 <" <" .s... 20 ~ 10 ~ Ir Ir ::> o I--I--I-- I G =-1.5mA t-- r=;;;; ~ I-- t-- " C o I ;: 1::= 10 ~ ::> o "~ 3K~~ ............... IG =-.05mA X ;: I .2 _r. .1 ;: -25 25 50 75 100 125 TJ - JUNCTION TEMPERATURE ('C) .2 .1 4. Min. Holding Current (Resistor Bias) <" ....5. "' z 0 r-+:-;:A I _r. Z i .1 .05 -65 IG =-.05mA -I- F==:::.1i<, ~ .5 t - - 3 1 - t-- 1- .2 r-- r-- Z i t--t---. -25 25 50 75 100 125 T J - JUNCTION TEMPERATURE ('C) UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON. MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 r-- I -~ r----.. 1\ - j-i. t-- J: ::;: .15 r- 0 .5 = 100!) 300, ..J .5 .2 R~K "Cz r- ~ 1.5 J: i 10 ::> I o 20 Ir Ir 2 ...I Z JUNCTION TEMPERATURE ('C) - 50 r--- o ~ TJ 10 ::> ~~ ·~6·~5--_-:2L5--L---:2:'::5-J50--:-7.L5--:"10L.0-1-'-25::--:"I50 150 20 Ir Ir r-- t::::::", X 50 ~ ......., I--rt:::: .5 3. Min. Holding Current (Current Bias) "o RGK = 10'j(S;;: ~ 2 o .5 -65 ~ -~ ~~ ...I .05 L-_----'_---"--_-"-----'_---'--_--'---_L-----' ~ ... -- ~oon J: J: _:1:. - 20 Ir . . N-- ..J X '" Ir I-; r:::::: ~ t~ z ~ ::;: ....5.z .1 .05 150 -65 10-7 RGK = 10K I-- ~ b- r-- l - -- r--t--r-.. I- t-- r-- -25 0 25 50 75 100 125 T J - JUNCTION TEMPERATURE ('C) 150 PRINTED IN U.S.A. 2N1870A-2N1874A Current Ratings - Thermal Design 1. On-State Current VS. Voltage 50 10 ... Z 0: 0: ::> ... I<.l ::> ...I<.l .5 I en Z ..., IXI' " r II 1--",_) .1 .05 .05 .1 ...> ;:: ...;::"... 'II 0: II-~ .2.5 2 10 V,- ON VOLTAGE (V) 20 I, 50 .5 90 ... 0: 0: 20 ... 10 ::> <.l .001 r--- -- l- f!: If! z 0 ...'"-" ...> ;:: ...;::"... -- « 0: -........ -....... .oi""-- .003- .5 .1 ...... I?--- ~ ~ .1 ~ 20 ...z 10 I- ''"" "-\ 0: 0: ::> 25 TA m.. - ::> en '""-«... AFTIR SurGE ~ .1 5. Average Current vs, Case Temperature POWER DISSIPATION (W) 2 1.5 1 .5 10-' 10 .5 ~ Iz ~ 1.2 1~ 0: 0: "' <.l <.l z .6 ~ o ~ "' ~ en Z 6~ .4 .3 ~ 0 I ~ .3 100 T c m.. - ~ ___ J_ _ _ _- L_ _ _ UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326-6509 • TELEX 95-1064 ~~ 10' 10' o 150 10-8 POWER DISSIPATION (W) .5 .375 .25 .125 ~ ~ "~ ,," """""~ """ '\ ~\ ~ , ~0. ~ .1 L-_~ 120 110 130 140 MAX. CASE TEMPERATURE ('C) = 100'C L "'- ~\ > « .2 90 .2 ci r----+-----r----~~~~~~r_--~ o L - _ - L_ _ _ Tc 10-' 10-' 10- 1 1 10 SURGE DURATION (5) 6;- i'--.. I- I J .4 ::> .8 DC 1~ 0: 0: ::> "' -4 PA .625 o DC ... , 6. Average Current VS. Ambient Temperature 1.4 r - - - , - - , - - - ; - - - r - - - - , - - r - - - , .... z ,, DASL LINk: MAY" \:""b, NOT BE SUSTAINED FOR 0.1 SECONDS - ('I .2 .05 150 BE~ORE ~URG~ = 0 BLJCKIN~ VOL~AGE .5 I 1- I, ,, RA~ ~ 0: "'-\\ ~\ ~ \1 , SOLID LINE: ~ 'BLOCKING VOLTAGE "MAY BE APPLIED IMMEDIATELY AFTER SURGE '""' 125 50 75 100 150 MAX. AMBIENT TEMPERATURE ('C) PA 2.5 \ Surge Current vs. Time "" '" "- 5 <.l \\ o mM - ,, 50 """'" \ DUTYCYCLE~ r-.. .2 I, .l' .05 .03- "'-.. '" '\\ 110 120 130 140 MAX. CASE TEMPERATURE ('C) 100 4. 50 Z '\ .:: .05 POWER DISSIPATION (W) .5 .375 .25 .125 I- .3~ .1 3. Peak Current vs. Ambient Temperature ~ -:1~ ~\ .2 Tc PA .625 .03 DUTYCYCL~ r----... "- TYPICAL CHARACTERISTICS ,,-\ r--.... "- .01 ~ r-- ili'" !;/tJ• ~0 on 'i -'" .2 10 « I- -........ .003 --- 20 0 ,", ,, , en 0 0: 0: I" « -.- I- "' l 2 I- Z ~ POWER DISSIPATION (W) 2 1.5 1 .5 50 Z ,IvI I- Peak Current VS. Case Temperature PA 2.5 ) ov,~ ~ J:~~<' // ~ 20 ~ 2. o 50 25 75 100 125 150 TA m.. - MAX. AMBIENT TEMPERATURE ('C) PRINTED IN U.S.A. 2N 1875-2N 1880 SCRs 1.25 Amp, Planar FEATURES DESCRIPTION • • • • • • • This high sensitivity series, featuring very precise control of triggering characteristics, is particularly useful for timing and time delay circuits, voltage limit detectors, high gain static switching, logic circuits, pulse and sweep generators, and related appl ications. Operating D.C. Current Range: 10-1250mA Peak Pulse Current: to 30A Maximum Gate Current to Fire: 20l'A Firing Voltage: .52±.08V Voltage Ratings: to 200V "Turn-on" Time: Typically O.1I'S Low On Voltage: 2.5V Maximum at 2A This series is available in a TO-9 package, with all leads isolated from the case, providing a maximum thermal resistance of 20'C/Watt between junction and case. ABSOLUTE MAXIMUM RATINGS 2N1875 2N1876 2N1877 2N1878 2N187. 2Nl880 Repetitive Peak Off-State Voltage, VORM ..... l5V............. ... 30V ........ . 60V. ... 100V.................... l50V.................... 200V Repetitive Peak Reverse Voltage, VRRM ..... ...... l5V..................... 30V... . ... 60V. .... lOOV.................... l50V.................... 200V D.C. On-State Current, IT lOO'C Ambient . . .. .. ... ............ ........ 250mA .. 100'C Case .....................................................................................................1.25A '" .................................................................... ....... upto 30A ..................................................................... Repetitive Peak On-State Current, ITRM .. . Peak One Cycle Surge (Non-Rep.) On-State Current, I TSM ...............................15A........................................................................... Peak Gate Current, IGM . .... 250mA ....................................................... . ... 25mA ........................................................................ Average Gate Current, IGIAV) ........................... 5V........................................................................... Re',;erse Gate Voltage, VGR .................... . .................20·C/W...................................................................... Thermal Resistance, Junction to Case, R9J _ C .. -65'C to +l50·C ............................................................. Operating and Storage Temperature Range MECHANICAL SPECIFICATIONS 2N1875-2N1880 rc1F l 81 CATHODE E 0 ~- --- -- - A ---- -- ---- F C ,,~~' t /. \ G GATE -- I ~ -IJ- ANODE mm. 1M. A B , 0 F G H J 275-335 290-370 200-260 15 MIN 010-030 017:1: ~I 699-775 737-940 508-660 3810 MIN 25-76 432;t g~~ 'DO 50. 100 100 254 254 10-9 TO-9 ~UNITRDDE 2N187S-2N1880 ELECTRICAL SPECIFICATIONS (at 25°C unless noted)t Symbol Test Subgroup 1 (Visual and Mechanical) Subgroup 2 (2S0C Tests) Off-State Current Reverse Current Reverse Gate Current Gate Trigger Current Gate Trigger Voltage Anode Trigger Current (Note 2) On-State Voltage Holding Current Subgroup 3 (2S0C Tests) Turn-on Time Turn-off Time Gate Trigger - on Pulse Width Circuit Commutated Turn-off Time Subgroup 4 (12S0C Tests) High Temp. Off-State Current High Temp. Reverse Current 10RM IRRM ISR 1ST VST IAT VT IH Typical Max. Units .44 - O.S 0.5 0.5 5 .52 100 1.8 1.0 5 10 10 ,..A 2.S 3 ,..A ,..A V ,..A V mA - 0.1 0.5 O.S 10 - ,..s ,..s ,..s ,..s ~ IT = .SA 5 IS 20 100 ,..A ,..A Vo = Rating, RSK = 1K VRRM = Rating 0.8 0.3 ton toll tpg(on) tq 10RM IRRM Test Conditions Min. VORM = Rating, RSK = 1K VR• M = Rating VSR = 2V Vo = SV, Rss = 10K Vo = SV, Rss = lOOn Vo=5V IT = 2A (Pulse Test) Is = -lS0,..A, VAA = SV ,..A 20 .60 - Is =20mA Vo = 30V IT = .SA, iR = .SA, RSK = 1K Note: 1. Voltage ratings apply over the operating temperature range, provided the gate is connected to the cathode through an appropriate re· sistor, or adequate gate bias is used. 2. For a maximum limit of SOpA, use suffix If_I" and drop "2N". Example: 1877-1. t All values in this table are JEDEC registered. TRIGGERING AND BIAS STABILIZATION < 1. Gate Trigger Current 2. Gate Trigger Voltage 80,----,---,--,---,--,--,---r--, 1.4 ,-----,----,----,---,---,--,---,-----, w~----~~--_+--~--+---~~--~ ~ .3 1.2 ~----~~--_+---+---+--l--_+-----1 .8 ~~--~-l--_+---+---+--l--_+-----1 OJ ~ o > ~ OJ C> C> ~ .6 W.fH.fH.W,Wl'Ht~""" OJ ~ I .4 i-----\--_+--+_ ~~~~~~~~ >tiJ .2 ~OL-----L--J---L---L--~--L-~--~ -65 -25 TJ - 0 25 50 75 100 125 -25 150 JUNCTION TEMPERATURE (OC) UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326·6509 • TELEX 95·1064 TJ 10-10 - 25 50 75 100 125 150 JUNCTION TEMPERATURE (OC) PRINTED IN U.S.A SCRs 2N1881-2N1885 1 Amp, Planar FEATURES DESCRIPTION • • • • These types are useful in AC and DC static switching, proportioning control, relay and thyratron replacement, DC to AC converters, servo motor driving, protective circuits, and related applications. This series is available in a TO-9 package, with all leads isolated from the case, providing a maximum thermal resistance of 20'C/Watt between junction and case. One Cycle Surge Current: l5A Voltage Rati ngs: to 200V Low "On-Voltage": 2V Max. at lA Operation: to l50'C Junction Temperature • All Leads Isolated for Design Flexibility ABSOLUTE MAXIMUM RATINGS 2N1881 2N1882 Repetitive Peak Off-State Voltage, VORM ...... 30V. Repetitive Peak Reverse Voltage, VRRM . 30V ..... D.C. On-State Current, IT lOO'C Ambient .... lOO'C Case Repetitive Peak On-State Current, ITRM Peak One Cycle Surge (Non-Rep.) On-State Current, I TSM Peak Gate Current, IGM . Average Gate Current IGIAV} Reverse Gate Voltage, VGR Thermal Resistance, Junction to Case, Re J-C Operating and Storage Temperature Range . 2N1884 2N1883 ............. lOOV .. .. . ........... l00V .. . ..... 60V . GOV .. 150V ... . .. 150V .. . 2N1885 .. 200V .. ... 200V . 250mA .. .... 1.0A .. up to 30A .... J5A .. .. 250mA.. .. .................... . 25mA .. 3V .............................. . . 20'C/W .. . . ... -G5'C to +l50'C MECHANICAL SPECIFICATIONS 2N1881-2N1885 I c1F l D E B 1-- - A CATHODE A -- --- - -- - - -- \.F TO-9 • GI~t'\ +--; I \ 1/ ~ -IJ- GATE -ANODE C D ins 275-335 290-370 200-260 15 MIN mm. 699-775 737-940 508-660 3810 MIN E 010-030 f 017t G H J 200 100 100 ~~ 10-11 25-76 432:t g~~ 50' 254 254 ~UNITRODE 2N1881-2N188S ELECTRICAL SPECIFICATIONS (at 25'C unless noted)t Test Subgroup 1 (Visual and Mechanical) Subgroup 2 (2S'C Tests) Off-State Current Reverse Current Reverse Gate Current Gate Trigger Current Gate Trigger Voltage On-State Voltage Holding Current Anode Trigger Current Subgroup 3 (2S'C Tests) Turn-on Time Gate Trigger - on Pulse Width Turn-off Time Circuit Commutated Turn-off Time Subgroup 3 (12S'C Tests) High Temp. Off-State Current High Temp. Reverse Current Symbol IORM IRRM IGR IGT VGT VT IH IAT ton tpg (on) toff to IORM IRRM Min. Typical Max. Units 0.40 - 0.5 0.5 0.5 0.2 1 1.5 10 10 10 2 2 "A "A I'A mA V V mA mA 2 0.2 1 1 10 - 15 15 200 200 2 0.5 "s "s "s "s "A "A Test Conditions = = = = = = = = = = = = = = IG = 2OmA, IT =O.SA, Vo = 30V IG =20mA, IT = O.SA, Vo = 30V IT = lA, IR = IA, RGK = IK IT = lA, IR = lA, RGK = IK RGK = 1K, VORM = Rating RGK =1K, VRRM = Rating RGK 1K, VORM Rating RGK 1K, VRRM RatingVGRM 2V RGS 10K, Vo SV RGS loon, Vo SV IT 1A (pulse test) IG -lS0"A, Vo SV RGS 10K, Vo SV t All values in this table are JEDEC registered. Note: Voltage ratings apply over the operating temperature range, provided the gate is connected to the cathode through an appropriate reSistor, or adequate gate bias is used. UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 10-12 PRINTED IN U.S.A. SCRs 2N2322-2N2329 2N2323A-2N2328A 2N2323S-2N2329S, J, JTX, JTXV 2N2323AS-2N2328AS, J, JTX, JTXV 1.6 Amp, Planar FEATURES DESCRIPTION • Available as JAN, JANTX, & JANTXV Types • JAN Types Available in TO·5 • 1.6A D.C. Current • Peak Currents: to 30A • Voltage Ratings: to 400V • 20J1A Max. Trigger Current ("A" types) • O.6V Max. Trigger Voltage ("A" types) These are premium thyristor switches intended for use in high performance industrial, military and space applications requiring a high degree of reliability assurance. This series is useful in a wide variety of applications including timing and programming circuits, protective and warning circuits, driving relays, driving indicator lamps, encoding and decoding circuits, replacing relays, thyratrons, and magamps, servo motor control, pulse generation, plus many others. The high surge current rating U5A -1 cycle) makes this series particularly useful for squib firing. The following JAN, JANTX and JANTXV types are specified under Mil-S-195001276A and are included in Mil-STD-70l as recommended types for military usage: 2N2323 JAN2N2323S JANTX2N2323S JANTlIV2N2323S 2N2323A JAN2N2323AS JANTX2N2323AS JANTXV2N2323AS 50V ABSOLUTE MAXIMUM RATINGS 2N2322 2N2324 JAN2N2324S JANTX2N2324S JANTlIV2N2324S 2N2324A JAN2N2324AS JANTX2N2324AS JANTlIV2N2324AS . . lOOV Repetitive Peak Off-State Voltage, VDRM 25V. Repetitive Peak Reverse Voltage, VRRM 50V .............. lOOV . 25V ... Non-Repetitive Peak Reverse Voltage, VRSM « 5ms) .. '" ......... 40V ......... 75V ........... lSOV D.C. On-State Current, IT 80"C Ambient 85"C Case One Cycle Surge (Non-Rep.) On-State Current, ITSM . Repetitive Peak On-State Current, ITM Gate Power Dissipation, PGM . Gate Power Dissipation, PGM(AV) . Peak Gate Current, IGM Peak Gate Voltage, Forward and Reverse . Reverse Gate Current, IGR Storage Temperature Range . Operating Temperature Range 2N2326 JAN2N2326S JANTX2N2326S JANTXV2N2326S 2N2326A 2N2325 JAN2N2326AS 2N2325A JANTX2N2326AS JANTlIV2N2326AS l50V . 200V .. l50V .. 2N2328 JAN2N2328S JANTX2N2328S JANTlIV2N2328S 2N2328A !N2321 2N2327 JAN2N2328AS JAN2N23295 2N2327A JANTX2N2328AS JANTX2N23295 JANTlIV2N2328AS JANTlIV2N2329S 250V ........ 300V ................. 400V .200V ......... 250V ........... 300V ................ 400V 225V ........ 300V . .350V ... . 400V ............... 500V .300mA .. . ...... 1.6A ... . ..15A .. ..... 30A .. . .. O.lW ... O.OlW .. lOOmA .... .6V... . 3mA ... .. -65"C to +150"C -65"C to +125"C ................................. .. MECHANICAL SPECIFICATIONS 2N2322·2N2329 2N2323S·2N2328S, J, JTX, JTXV 2N2323A·2N2328A 2N2323AS·2N2328AS, J, JTX, JTXV [c~ B E l ~ INCHES .-. ----- - - --- GATE -.....::c..,...,-~ AJ F --I L ANODE A .315-.335 B .350-.370 C .240-.260 D .010-.030 E .5 MIN F .016-.019 G .190-.210 H .085-.105 J .028-.034 K .029-.045 L .100 10-13 TO-205AD (TO·39) MILLIMETERS 8.00-8.51 8.89-9.39 6.35-6.60 0.25-0.76 12.70 MIN .406-.483 4.83-5.33 2.16-2.67 .711-.864 .737-1.14 2.54 ~UNITRDDE 2N2322·2N2329 2N2323S·2N2328S, J, JTX, JTXV 2N2323A·2N2328A 2N2323AS·2N2328AS, J, JTX, JTXV ELECTRICAL SPECIFICATIONS Symbol Test Visual and Mechanical 25'C Off-State Current Reverse Current Gate Trigger Current "An Types non-"An Types Gate Trigger Voltage "An Types non-"An Types On-State Voltage Holding Current Reverse Gate Current Delay Time Rise Time Circuit Commutated Turn-Off Time l25'C Off-State Current Reverse Current Gate Trigger Voltage Holding Current "An Types non-"An Types Off-State Voltage - Critical Rate of Rise "An Types non-"An Types -65'C Off-State Current Reverse Current Gate Trigger Current "AU Types non-HAn Types Gate Trigger Voltage "An Types non-"An Types Holding Current Min. Typical Max. Test Conditions Units MIL-STD-750, Method 2071 - 0.1 0.1 10 10 "A p.A VORM = Rating, RGK = lK (2K for "An Types) VRRM = Rating, RGK = lK (2K for "An Types) - 2 50 20 200 "A "A Vo = 6V, RL = lOOn Vo = 6V, RL = lOon 0.35 0.35 0.52 0.55 2.0 0.3 1 0.6 0.4 20 0.60 O.SO 2.2 2.0 200· V V V rnA "A Vo = 6V, RGK = 2K, RL = lOOn Vo = 6V, RGK = lK, RL = lOan ITM = 4A (pulse test) Vo = 6V, RGK = lK (2K for "An Types) VGR = 6V IG = lamA, IT = lA, Vo = 30V IG = lOrnA, IT = lA, Vo = 30V IT = lA, IR = lA, RGK = lK - 100 100 0.1 1 1 0.3 "A p.A V VORM = Rating, RGK = lK (2K for "An Types) VRRM = Rating, RGK = lK (2K for "An Types) Vo = Rated VO' RGK = lK (2K for "An Types) O.lt 0.15t - - IORM IRRM IGT - - VGT - VTM IH IGR td tr tq - IORM IRRM VGT IH dvldt - 0.7· LS· IORM IRRM IGT VGT IH "S "S "S rnA rnA Vo = 6V, RGK = 2K Vo = 6V, RGK = lK VII'S V/"s VO = Rating, RGK = 2K Vo = Rating, RGK - lK - .05 .05 5.0· 5.0· "A "A VORM = Rating, RGK = lK (2K for "An Types) VRRM = Rating, RGK = lK (2K for "An Types) - - 50 100 75 350 "A "A Vo = 6V, RL = lOOn Vo = 6V, RL = lOOn - 0.7 - 0.75 O.S· 0.9t La 3.0t V V V rnA Vo = Vo = Vo = Vo - - - 6V, RGK = 6V, RGK = 6V, RGK 6V, RGK = 2K, RL = lOOn 2K, RL = lOOn lK, RL lOOn lK (2K for "AU Types) = = = • JAN and JANTX Types only. t Industrial Types only. JAN and JANTX Acceptance Tests 100% Screening TX-Types Group B Tests Group C Tests High Temperature Storage Temperature Cycling Constant Acceleration Fine & Gross Hermetic Seal Electrical Test Burn-in Electrical Test Subgroup 1- Reverse Gate Current Surge Current Non-Repetitive Reverse Voltage Subgroup 1- Physical Dimensions Subgroup 2 - Low Temp. Low Temp. Low Temp. Low Temp. Reverse Blocking Current Forward Blocking Current Gate Trigger Voltage Gate Trigger Current Subgroup 3- Temperature Cycling Thermal Shock Moisture Resistance Solderability Subgroup 2 - Shock Constant Acceleration Vibration, Variable Frequency Subgroup 3 - Barometric Pressure, Reduced Subgroup 4 - Salt Atmosphere Subgroup 5 - Terminal Strength Subgroup 6 -Intermittent Operating Life Test Subgroup 4 - Blocking Life Test UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL (617) 861·6540 TWX (710) 326·6509 • TELEX 95-1064 10-14 PRINTED IN U.S.A. 2N2322·2N2329 2N2323S·2N2328S, J, JTX, JTXV 2N2323A·2N2328A 2N2323AS·2N2328AS, J, JlX, JTXV Gate Trigger Current Gate Trigger Voltage ...~ .8 C!l ~ 0 > ... .6 II: C!l C!l a:I- ... .4 !C C!l I :;- .2 > -400 L -____L-__L-~L__J__~___L__~ ~5 TJ -25 0 25 50 75 100 - JUNCTION TEMPERATURE (·C) 125 -25 o 25 50 75 100 T J -JUNCTION TEMPERATURE (·C) Average Current vs. Case Temperature Holding Current PD - POWER DISSIPATION (W) 20 10 r------- = 2K - g I Z ... I II: II: I II: II: ::::> I- r-- Z 2 '" C!l Z ... r-- '"... I- ;!: ... ... .. .5 C!l I I"" An~le = 180·C 12O!C •8 '60'~ II: _z :t •2 .1 I -25 0 25 50 75 100 TJ - JUNCTION TEMPERATURE (·C) PD - ........... ...... .4 125 ~ I"" I"'-... ~ r-....... ........... "","";:::: ~ ........ ........... o75 - "" ~~ --~ 80 85 90 95 m"- MAXIMUM Tc Average Current --....... J L -__~L-~__- L__~__L-__ L-~ ~5 --- CO~duction _I"" 1.2 II} Z 0 ..J :I: D:C. 1.6 ::::> C o ---,- -- - "A" Types l I- .5 1.5 RGK 125 vs. Ambient Temperature 100 105 110 115 120 125 CASE TEMPERATURE ('C) Surge Current POWER DISSIPATION (W) g I- ... Z II: II: -- - - .8 ::::> '"... I- ;!: DC \. .6 '\ IJ) z0 ...C!l ...> .4 I .2 .. .. """" 120'C II: 60'C ~ ..F .............. ............... TA=~ 2 o o o TA m.. - MAXIMUM AMBIENT TEMPERATURE (·C) UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95·1064 10·15 Tc = 85'C 1 2 5 10 20 CYCLES AT 60Hz I 50 100 PRINTED IN U.S.A. JAN & JANTX 2N3027 -2N3032 SCRs 0.5 Amp, Planar FEATURES DESCRIPTION • JAN and JANTX Types Available • Fully Characterized for "Worst Case" Design • Passivated Planar Construction for Maximum Reliabilityand Parameter Uniformity • Low On-State Voltage and Fast Switching at High Current Levels • Typical Turn-On Time: 0.121's • Typical Recovery Time: O.7I'S • Pulse Currents: to 30A The 2N3027 series of planar SCRs (controlled switches) are intended for use in military and space applications requiring a high degree of reliability. They offer a unique combination of extremely fast switching, precise triggering, high pulse power, small size, intrinsic parameter stability, and high radiation tolerance. The JAN and JANTX types are specified under MIL-S-19500/4l9, and are included in MIL-STD-70l as recommended types for military usage. ABSOLUTE MAXIMUM RATINGS JAN & JANTX 2N3G27 JAN & JANTX 2N3030 JAN & JANTX 2N3G28 JAN & JANTX 2N3031 JAN & JANTX 2N3029 JAN & JANTX 2N3032 Repetitive Peak Off-State Voltage, VDRM ....................... 30V. ........... GOV ..... . .......... lOOV Repetitive Peak Reverse Voltage, VRRM .. ..... 30V........... . ................. 100V . ...... GOV .. D.C. On-State Current, IT lOO'C Case ... ............................ . ......... 500mA ... . ... 2SOmA 75'C Ambient ................... . Repetitive Peak On-State Current, ITRM .............. 30A .................................... . Surge (Non-Rep.) On-State Current, I TSM ....... 5A ...... . SOms Sms ..... SA .. . Peak Gate Current, ISM ........................... ......................... . .. ...... 2SOmA. Average Gate Current, IS(Avl ...... . ........... ............................................. . . ... 25mA Reverse Gate Voltage ..... ..... ... ..... .... . ...................................... . .......... 5V .. Reverse Gate Current ...................... . .........3mA............ ......................... . . ....................................... . Storage Temperature Range .. ... -65'C to +200'C .. . .................... . Operating Temperature Range. .......................... . -65'C to +150'C ........................ . Note: Blocking voltage ratings apply over the operating temperature range, provided the gate is connected to the cathode through an appropriate resistor, or adequate gate bias is used. (See section on bias stabilization.) MECHANICAL SPECIFICATIONS JAN & JANTX 2N3027-2N3032 GATE B ANODE INCHES .178-.195DIA. .170-.210 .5 MIN. 209-.230 OIA . .017 ± G H J :~~ 8:~' 020 MAX lOOt 010 DIA. .041:1:.005 .028- 048 10-16 TO-18 e MILLIMETERS 4.52-4.95 DIA. 4.31-5.33 12.70 MIN. 531-584 DIA. .432' :g~~ .508 MAX. 2.54:1:.254 DIA . 1.041:.127 .711-122 ~UNITRDDE JAN & JANTX 2N3027-2N3032 ELECTRICAL SPECIFICATIONS (at 25'C unless noted) 2N3027 - 2N3028 - 2N3029 Symbol Parameter SUBGROUP 1 Visual and Mechanical SUBGROUP 2 (25°C Tests) Off-State Current Reverse Current Reverse Gate Voltage Gate Trigger Current Gate Trigger Voltage On-State Voltage Holding Current SUBGROUP 3 (25°C Tests) Off-State Voltage - Critical Rate of Rise Gate Trigger-on Pulse Width Delay Time Rise Time Circuit Commutated Turn·off Time SUBGROUP 4 (150°C Tests) High Temp. Off-State Current High Temp. Reverse Current High Temp. Gate Trigger Voltage High Temp. Holding Current SUBGROUP 5 ( 65°C Tests) Low Temp. Gate Trigger Voltage Low Temp. Gate Trigger Current Low Temp. Holding Current Min. Typical Max. - - - - - IORM 'RRM 5 -5 .40 0.8 0.3 .002 .002 8 8 .55 1.2 0.7 0.1 0.1 VG, IGT VGT VT IH pA pA V pA V V mA dvJdt tpg fonl 60 .07 .08 .04 0.7 30 - td t, tq - IORM - - 200 .80 1.5 5.0 - Test Conditions Units MIL-STD-750 Method 2071 RGK vipS 0.2 pS - pS 2.0 pS 20 50 0.6 1.0 pA pA V mA pS 'RRM - VGT IH .10 .05 2 20 .15 .20 VGT IGT IH 0.6 0 0.5 0.75 150 3.5 1.1 1.2 10 V mA mA = lK, VORM = Rating = = = = = = = = = = RGK = lK, Vo = 30V IG = 10mA, IT = lA, VOM = 30V IG = 10mA, IT = lA, Vo = 30V IG = 10mA, IT = lA, Vo = 30V IT = lA, i, = lA, RGK = lK RGK = lK, VO'M = Rating RGK = lK, V = Rating RGS = 100!!, Vo = 5V RGK = lK, Vo =5V RGS = lOO!!, Vo = 5V RGS = 10K, Vo = 5V RGK = lK, Vo = 5V RGK lK, VRRM Rating IG' O.lmA RGS 10K, Vo 5V RGS lOO!!, Vo 5V iT lA (pulse test) RGK lK, Vo 5V RRM ELECTRICAL SPECIFICATIONS (at 25'C unless noted) 2N3030 - 2N3031 - 2N3032 Parameter SUBGROUP 1 Visual and Mechanical SUBGROUP 2 (25°C Tests) Off-State Current Reverse Current Reverse Gate Voltage Gate Trigger Current Gate Trigger Voltage On-State Voltage Holding Current SUBGROUP 3 (25°C Tests) Off-State Voltage - Critical Rate of Rise Gate Trigger-on Pulse Width Delay Time Rise Time Circuit Commutated Turn-off Time SUBGROUP 4 (150°C Tests) High Temp. Off-State Current Symbol Min. Typical Max. Units - - - - - MIL-STD-75O Method 2071 - .002 .002 8 0.1 0.1 pA pA V pA V V mA RGK lK, VO'M Rating RGK lK, VRRM Rating IG' O.lmA RGS 10K, Vo 5V RGS 100!!, Vo 5V iT lA (pulse test) RGK lK, Vo 5V IDRM IRRM - VG, IGT VGT VT IH 5 -5 0.44 0.8 0.3 dvJdt tpg (on) td t, tq - 30 1.2 1.0 60 .05 0.1 .05 0.7 - - pS 2.0 pS = = = = = = = = = = = = RGK = lK, Vo = 30V IG = 10mA, IT = lA, Vo = 30V IG = 10mA, IT = lA, Vo = 30V IG = 10mA, IT = lA, Vo = JOV IT = lA, i, = lA, RGK = lK RGK RGS RGK 20 0.6 1.5 4.0 0.1 - vipS pS pS VGT IH .10 .05 2 20 .15 .JO 20 50 0.4 2.0 pA pA V mA VGT IGT IH 0.44 0 0.5 0.8 0.4 5.0 0.95 0.5 V mA mA IORM High Temp. Reverse Current IRRM High Temp. Gate Trigger Voltage High Temp. Holding Current SUBGROUP 5 (_65°C Tests) Low Temp. Gate Trigger Voltage Low Temp. Gate Trigger Current Low Temp. Holding Current Test Conditions 8 RGK = lK, VORM = Rating = lK, V"M = Rating = lOO!!, Vo = 5V = lK, Vo = 5V RGS = 100!!, Vo = 5V RGS = 10K, Vo = 5V RGK = lK, Vo = 5V High Reliability Processing The 2N3027-2N3032 series provides a complete range of high reliability processing from the standard devices that undergo extensive electrical testing, through JAN and JANTX levels. 100% processing, Group B, and Group C tests for JAN and JANTX devices is shown below. For further details, see MIL-S-19500/4l9(EL). 100% Screening TX-Types High Temperature Storage Temperature Cycling Constant Acceleration Fine & Gross Hermetic Seal Electrical Test Burn-in Electrical Test Group B Tests Subgroup 1- Physical Dimensions Subgroup 2 - Solderability Temperature Cycling Thermal Shock Constant Acceleration Moisture Resistance Subgroup 3 - Surge Current Subgroup 4 - Blocking Life Test Subgroup 5 - Storage Life Test Subgroup 6 - Operating Life Test UN/TRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 10-17 Group C Tests Subgroup 1- Shock Vibration, Variable Frequency Subgroup 2 - Salt Atmosphere Subgroup 3 - Terminal Strength Subgroup 4- High Temp. Anode Voltage - Critical rate or rise Subgroup 5- Storage Life Test Subgroup 6 - Operating Life Test PRINTED IN U.S.A. JAN & JANTX 2N3027-2N3032 TYPICAL CHARACTERISTICS 2N3027 - 2N3028 - 2N3029 Gate Trigger Current 1400 ,----,----.--,--.---,---,----,------, ~ 1200 k-----j--f---f--+----j---I---f---I l!;; 100e F*----j--f---f--+----j---I---f---I .:; uJ Gate Trigger Voltage 2 1.4 ,----,---r-,--,--,-----,----,----, '"'" ::J 800 f7L-A----j--i--+-ALL UNITS JIRE u '" ~ " 600 iT-lH'-kt--f---f--+----j---I---f---I "' ~ 400 ~~~~~-~-+--~-+-~~ :t 'I ..§ 200 Hcr-hI'-T-ftH")-.-=-+-,----I:---+--t---I 0 ~~~L4~~~~~ " > .2 NO UNITS FIRE a -200 L -_ _~~_--'-_-'-_L------L_--'----.J -65 -25 25 50 75 100 125 150 TJ 3 - u; i Min • .critical dv/dt (25°C - R Bias) 200 ""- >- '">= u 20 10 "'u TJ = 25°C : 1K 10K r-.... RGK - 30K \ "'GV, ::J ::;: ~ ::;: 1 1 '"-' 20 '"u>= 1" \.. \ 10 u ::;: ......... ::J \ ~ z i I .5 -DASH LINES SHOW ;001 ~fd CAPACITORADDlED BETfEEN IGATE CATHOD~ .2 1 2 5 10 20 50 100 200 .2 Max. Holding Current (Resistor Bias) ... '"'" "o uJ 20 ~ 10 ...z ::J U - -' o :r X I _I --- ~ Z ~ .§. "- I , 300P. K 3K I .... 11(+.:,0!!.,1 - , ft~110K- ~1(+.001 --i- - 1 10 20 50 100 VD-APPLIED OFF-STATE VOLTAGE (V) 6 Min. Holding Current (Resistor Bias) 200 f=::::: ~ ........... '"u "0z '" :r o\'''<~ .2 ~ UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 ° TEL. (617) 861-6540 TWX (710) 326-6509 ° TELEX 95-1064 .5 ::;: I _I .2 Z .1 i -25 a 25 50 75 100 125 TJ - JUNCTION TEMPERATURE (oC) ~ -' 0 .1 -65 10 uJ .5 .05 20 '"::J X ~ -fJ = 12~oC 50 50 ~ .§. z 150 DASH LINES SHOW .001 ~fd CAPACITOR ADDED BETWEEN GATE AND CATHODE VD-APPLIED OFF-STATE VOLTAGE (V) 5 125 BIASED AS SHOWN IN FIG. 1 .5 tND 100 :i \ "' ~ -BIAlED AS SHOWN IN FIG. 1 1 50 >- '- ~ '0 75 l 1\ ~ 100 't.'f-. \ ::;: 50 500 z: I 3K 25 JUNCTION TEMPERATURE (oC) - Min. Critical dv/dt (125°C - R Bias) 200 \ I I'... 'C 4 1\ ~ + ~\ § 300P. I, 100 '0 50 -' TJ JUNCTION TEMPERATURE (oC) 500 -25 -65 ~ ~ 8:::-- --- .05 -65 150 10-18 R -.:. Gk _~ 100 _ r-<:::~[! r-- r---.r-... t::::: r--.... c- 1;00 ~, 3~""""" ~ Gkl"'101~ "r-..... -25 25 50 75 100 125 T J - JUNCTION TEMPERATURE (OC) 150 PRINTED IN U.S.A. JAN & JANTX 2N3027-2N3032 TYPICAL CHARACTERISTICS 2N3030 - 2N3031 - 2N3032 Gate Trigger Current 600 ;;( .=. >- 500 w ~ 400 z :::> () '" w 300 "S? 200 >« 100 '"w>- "I -" r-+-A I i ~ ~ Gate Trigger Voltage 2 ~ i 1.4 ,-----y-,--,-----y-,--r-----y--, 1.2 r__-~r__--t---t-- w « "~ ALL UN1ITS FIRE-L ~ ffi .8 V7~~r__--t---t--~-r__~-_r~ "S? % @ ~ t;;. a w >- MAX. <3 IGr ~IN. .4 r__---'f----t-- I --<. >'0 .2 -100 NO UNITS FIRE I -200 -65 Tj I [ -25 25 50 75 100 125 JUNCTION TEMPERATURE ("C) 150 -65 3 Min. Critical dv/dt (25"C - R Bias) 500 \ \ "'-... 300!) ~ 100 ~ 50 "" 20 ~> ...J 1l ;::: 0: u :;; 10 Tj 5 \ :::> :;; z BIASED AS :;; 1"'-.. 1K I'.. 3K_ ~ t--l* .... - f'--I'.... 1 " 10K \';. , 30K RGK - '., IN FIG. 1 1 li 200 50 >= 0: () :;; ::> :;; Z 10 1\ "\ \., \ 20 ~ 1 20 50 100 1 200 6 50 10 20 50 100 200 APPLIED OFF-STATE VOLTAGE (V) Min. Holding Current (Resistor Bias) ;;( .s>- 'r-- t - 20 w 10 '"'" "zi5 =- :::> F:::: ::::::: ~~O!! ~ ::::::: ~ 1--f? () 20 z 10 '"'":::> "zi5 .............. ...J 0 .5 () ------- r--.... 1'-, .......... J: -' r-- 50 ;;( I lOK - 10K - " -- - ;-;... .001 1 R t"'---GK- 5 Vo - APPLIED OFF-STATE VOLTAGE (V) Max. Holding Current (Resistor Bias) X « :;; I r-- .2 10 Vo - zw ~K 'OOl DASH LINES SHOW .001 ~fd CAPACITOR ADDED BETWEEN GATE AND CATHODE ADpED BETWEEN GATE AND CATHODE 1 .s>- 11 ',lK-;.. BIASED AS SHOWN IN FIG. 1 .5 .2 1\ 1K "- :;; .5 f-DASH LINES SHOW .001 ~fd CAPACITOR- 300!) = 125"C Tj P I, .\ 100 "">""...J « u -\- SHOW~ 1 -;;; 150 Min. Critical dv/dt (125"C - R Bias) 500 I \ \ = 25"C 4 l:~ 118... \\ 200 -25 25 50 75 100 125 T j - JUNCTION TEMPERATURE ("C) ............ ---~ -~ JK ...J J: Z .5 I -' .2 :E .1 :E f? "<~ .2 Z .05 -65 -25 Tj - 25 50 75 100 125 JUNCTION TEMPERATURE ("C) UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95-1064 :::::- 0 .05 -65 150 10-19 --,--- :--.:::: :::::::: E==::: ::::r--: 0~OOI! r--r-~ t:---... ~~~ b" f? ---hi-- G" ':::-... f :.JR""- lOK............... ~ ~ ........... ........ ~ t:::::." -25 25 50 75 100 125 T j - JUNCTION TEMPERATURE ("C) 150 PRINTED IN U.S.A, JAN & JANTX 2N3027-2N3032 CURRENT RATINGS C2 50 ~ 10 I W '"'" ::J U W I I- « I I- '"0Z /I II .05 .1 .2 Vj - 2 7{ '" .001 20 -:oti3- ~ .......... « I- '"Z 0 - 2 « w w > TypicalCharacteristics w .2 w on 0- II '"I ....... ........ ....... ............ Cfe .1 ~ > 1-" .5 10 20 J. 50 .05 90 ON-STATE VOLTAGE (V) 120 110 100 ~\ ~ ............ 1':3~i;-;-..... 1 .5 ;:: ;:: --..... ~ '" -r-:-r- 1'\\ 10 w '" i 1--' 1-'" .05 I- p ~ u, ~ .1 W '"'" u ::J 0- ~~ ..: .2 ~ A Z , I .5 I ~ 50 W + ~l+- I- POWER DISSIPATION (W) 5 I- oV I Z PA - ~ %~J R=r 20 Peak Current vs. Case Temperature Forward on Current vs. Voltage Cl 130 ~\ ~\ ~\ \ "'-\ 140 150 Tc m,,-MAX. CASE TEMPERATURE (OC) C3 Peak Current vs. Ambient Temperature TO-18 Ratings (see note) PA - ~ .3 50 I- Z w '"'" 20 -- u 10 w S 2 '" « w -- 0- w .5 > ;:: ;:: w w 0- '"I J .2 .1 .05 o 25 TA m" - C5 50 .5 DC '"'" u ~ w l- i:" .2 ci > « I .1 ''"" ........ () w N 100 75 z "' "'\ '0Z" .5 2 ~ ~ "'" '\\ .2 ::J '"I ,,\ J 150 .1 ~ DAS~ LlNJ BLOdKINGiVOLTAGE MA~~ NOT BE SUSTAINED FOR 0.1 SECONDS AFTER SURGE .05 10_, 11l"4 10-' 10-' 10-1 1 10 10' 10' PA - ~ .4 POWER DISSIPATION (W) .3 .1 .2 ~ ~ .3 ~==~--~~~~-b----+-----~--~ w '"'" ::J U S w z o ~ J ~ 130 I ~ o 120 140 " .1 ~---t-----t-----+----+--~~------i 75 150 MAX. CASE TEMPERATURE (~C) UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95·1064 .2 r---~-----t--~~~~+-----~--~ "I '-\ ~ 0 110 "- r---.... .... C6 Average Current vs. Ambient Temperature TO-18 Ratings (see note) I'-..... r-0..'\ 1'--.'" ~ 100 , SOLID LINE RAT;;;:' BLOCKING VOLTAGE ~ MAY BE APPLIED AFTER SUR1E I I I SURGE DURATION (Sec) "'- Tc m" - "- w POWER DISSIPATION (W) A =0 "'-, "- a:w ~ 90 IF BEFORE SURGE "I 0 \ 125 10 , i:" ......;.0:1 ~ ~ l- .0./ !?!:..tYCYCl 20 ::J -...:.,00:1 3¢~" " ."\ .3 '"Z w r--y;;- , ' \ .4 zw ::J I- Z '00./ Average Current vs. Case Temperature PA - ~ ~ 50 MAX. AMBIENT TEMPERATURE (OC) 5 I- r--- .1 r--- ..........."' ~ r--- ....... ",\ r--. -<::: ~ l -t-- ::J '"z 0 .2 Surge Current vs. Time C4 POWER DISSIPATION (W) .4 TA ... - 10-20 100 125 150 MAX. AMBIENT TEMPERATURE (OC) PRINTED IN U.S.A. JAN & JANTX 2N3027-2N3032 SWITCHING 5PEEDS 51 Maximum Delay Time td' Rise Time t,. and Gate Trigger Pulse Width tpg (on) 10 I ~ .::, OJ :;; ;:: .5 TJ 2JoC_ I, = lA 't'\,. I ~ ! I I I ~ I~ -It. ~ ~ .01 .02 .2 ~ MAX t .1 1""-' • ·9 .05 .1.2 .5 5 10 16 - PULSE GATE CURRENT (rnA) ,- ~- ~25ob_ .2 I MAX. teg (lG .05 1- ~ ::l o 5 ON-STATE CURRENT (A) I ~~ W 20 10 ~ .::, OJ ;:: l~oc,i,;0. 't - ~_o oC 2S - , .--r,-'" -25 25 50 75 100 125 TJ - JUNCTION TEMPERATURE (oC) 150 -:- - IF l--- --- Rr=lj- .1 .5 .2 'T UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 ::-I--:-- 2SoC , " - .2 .1 < 10K i, -If>, .2 - ~ .5 GK 0 .5 I - L ~V Maximum Circuit Commutated Turn-off Ti me tq ~ :;; R -65 100 50 k'" .1 W 55 ........- V S ~ U 5 'T - . _ 0 10K ,,- I-:::: ~ I-'" ~ f..-- f.-- ~ GK - .... ' 2 R <.J I .1 / lK :;; :;; ..- 10mA) .02 .01 10 S MAX. t I I 50 f---IF ilA OJ - 150 Maximum Circuit Commutated Turn-off Time tq ::l r--MAX. td (lG = 10mA) .1 -25 25 50 75 100 125 T J - JUNCTION TEMPERATURE (oC) .::, = MAX. teg (IG - 0.5mA) ~ ;:: MAX. td (I G - 10mA) Z 20 0.5mA~ o,sr (lG - 10mA) a: _ J 'G 1 "' 100 ......o r-- I 54 1 MAX. td (16 .5 I . O.sJA)- ( MAX. t, .01 --65 20 rI MAX t .02 T; .5 OJ :;; MAX. td (lG .05 53 Maximum Delay Time td' Rise Time t,. and Gate Trigger Pulse Width tpg (on) 10 i -L OJ I .01 i .5 ;:: , .02 I :;; v '\~ MAX.t, .05 J .r "I .1 1:=11- b- i .2 10 L I\. I 52 Maximum Delay Time td' Rise Time t,. and Gate Trigger Pulse Width tpg (on) 10 20 ON-STATE CURRENT (A) 10-21 PRINTED IN U.S.A. SCRs 2N5724-2N5728 1.6 Amp, Planar FEATURES DESCRIPTION • Maximum Gate Trigger Current: 20l'A • Closely Controlled Gate Trigger Voltage: .44 to .6V • Operating Current Range: 2mA to l.6A • Voltage Ratings: to 400V • Low On-State Voltage • Specified for dv/dt and Switching Time These devices are intended for general purpose usage in Military/aerospace or severe industrial environments. Major design parameters are specified at the temperature extremes, thus permitting worst case design on the basis of guaranteed values . These devices undergo 100% preconditioning, which includes high temperature storage and temperature cycling followed by a fine leak test as a regular part of the manufacturing procedure. The high voltage types of the 2NS724 series are especially useful as pulse modulator switches in low to medium power pulse modulator applications. Specific parameters such as rise time, delay time, holding current, and recovery time can be selected for optimum performance in a pulse modulator circuit. ABSOLUTE MAXIMUM RATINGS 2N5724 2N5725 Repetitive Peak Off-State Voltage, VDRM . . 60V Repetitive Peak Reverse Voltage, VRRM . 60V. Non-Repetitive Peak Off-State Voltage, VDSM . D.C. On-State Current, 'T 7S'C Ambient 8S'C Case Repetitive Peak On-State Current, 'TRM Peak One Cycle Surge (Non-Rep.) On-State Current, ' TSM Peak Gate Current, IGM . Average Gate Current, IG(Av) Reverse Gate Current, IGR . . Reverse Gate Voltage, VGR . Operating and Storage Temperature Range 2N5726 ... 100V................. 200V. ... 100V ... ....... 200V ... . SOOV.. " 2N5727 .. 300V .... ............ 300V. 2N5728 .. .. 400V ..... 400V ..... 4S0mA ...... l.6A .. up to 30A .. lSA .. . 2S0mA. 25mA .. ..3mA 6V... -6S'C to +lS0'C .. MECHANICAL SPECIFICATIONS 2N5724-2N5728 ins. 305-335 335-370 240-260 010- 030 5MtN 017± gg~ 200 100 031:1:003 029-045 100 10-22 TO-20SAD (TO-39) 775-851 851-940 635-660 25-76 1270 MIN 432 ± g~§ 508 254 79±O8 74-114 2.54 [1JJ UNITRODE 2NS724-2NS72'B ELECTRICAL SPECIFICATIONS Test SUBGROUP 1 Visual and Mechanical SUBGROUP 2 (2S'C TESTS) Off-State Current Reverse Current Reverse Gate Voltage Gate Trigger Current Gate Trigger Voltage On-State Voltage Holding Current SUBGROUP 3 (2S'C TESTS) Off-State Voltage - Critical Rate of Rise Gate Trigger-on Pulse Width Delay Time Rise Time Circuit Commutated Turn-off Time 2NS724, 2NS72S, 2NS726, 2NS727,2N5728 SUBGROUP 4 (1S0'C TESTS) High Temp. Off-State Current High Temp. Reverse Current High Temp. Gate Trigger Voltage High Temp. Holding Current SUBGROUP 5 (-6S'C TESTS) Low Temp. Gate Trigger Voltage Low Temp. Gate Trigger Current Low Temp. Holding Current Symbol Min. Typical - - - - - IORM IRRM VGR IGT VGT VT IH - 0.1 0.1 0.3 .OS .OS 8 2 O.S 2.3 O.B 20 0.6 2.S 2.0 I'A I'A V I'A V V rnA 100 150 S 0.44 - dvldt tpg (on) td tr - tq - IORM IRRM VGT IH 0.10 0.10 - VGT IGT IH Max. - = = = = = = = = = = = = RGK = lK, Vo = 30V IG = lOrnA, IT = lA, Vo = 30V IG = lOrnA, IT = lA, Vo = 30V IG = lOrnA, IT = lA, Vo = 30V RGK lK, VORM Rating RGK lK, VRRM Rating IGR O.lmA RGS 10K, Vo SV RGS 100f!, Vo SV IT SA (pulse test) RGK lK, Vo SV 0.1 0.1 0.3 0.5 - viI's I'S I'S - ,,5 IS 30 30 SO "s "s IT 50 200 80 O.1S O.lS 200 - I'A I'A V rnA RGK RGK RGS RGK 0.7 0.9 l2S 3.0 V I'A rnA 50 - Test Conditions Units 1.2 = lA, iR = lA, RGK = lK = lK, VORM = Rating = lK, VRRM = Rating~ = 100f!, V = SV = lK, Vo = SV RGS = loof!, Vo = SV RGS = 10K, Vo = SV RGK = lK, Vo = SV D Note 1 See rating curves for full rating information. Note 2 Blocking voltage ratings apply over the full operating temperature range, provided the gate is connected to the cathode through a resistor, lK or smaller, or other adequate gate bias is used. Gate Trigger Current Gate Trigger Voltage 800 :;( .::; 1.4 1.2 600 '"0: ~ ALL UNITS FIRE fZ '"« '...." 0: :> f- 400 0 (J > 0: '"'"'" ii: ALL UNITS FIRE 1.0 f- '"«f- '"I 0: .8 ''"" ii: .6 '" 200 f- V/rrr-n., '" « f- ~ Ji fjllL '"I ~ -200 .4 ~ > .2 NO UNITS FIRE -400 0 L....... -65 -25 TJ - 25 50 75 100 125 150 -65 JUNCTION TEMPERATURE ('C) UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710, 326-6509 • TELEX 95·1064 -25 TJ 10-23 - 25 50 75 100 125 150 JUNCTION TEMPERATURE ('C) PRINTED IN U.S.A. 2N57Z4-2N5728 Max. Holding Current Off-State Current so 1000 r------,-------,----"---,--- ! ~ ~ '" 10 ''"" 10 I-------t-------+------+~~--t-------~ :> r----r-- '" - ~ 100 I-------t-------+------+------t------r--\ 1.01-------t-----;;;>"""I'------+---::..-£t--------\ --- oJ: ~ .5 I I -- ---- 11( t---FI""'lOI( X .1 - - - ------ .01 .001 L -____ 25 ~ ______ 50 TJ ~ ____ ~ ______ ~ _____ 100 125 75 JUNCTION TEMPERATURE (OC) - .05 1SO -65 -25 TJ Min_ Holding Current so 50 20 20 l- 10 10 '":>'" 5 :( .5 z '" 75 On-State Current VS. Voltage ~ j--t- l- so 25 JUNCTION TEMPERATURE (OC) - 0.1 0.2 0.5 --"" ,1.0 2.0 5.0 10 20 50 V, -ON-STATE VOLTAGE (V) 10-24 PRINTED IN U.S.A. 2N5724·2N5728 Avg. Current vs. Ambient Temperature Avg. Current vs. Case Temperature PD 2.0 2.0 ~ z 1.2 "- V> Z 0 3,,~ .8 ....... ci > '"I ..f' 6¢~f--- .4 ---- "","" i'-....." I 80 90 T em" - POWER DISSIPATION (W) .8 .6 .4 .2 DC ~ .7 I- .6 "''" ::> .5 '" u ;:"' l~ I-- 110 .4 V> Z 0 ci 120 6¢ .3 > '" ---t---- t':: ~ 100 19 3,.) I- ~~ ~ ........... r0 I'.... "! 70 1. .8 z 1<, '" l- Pc .5 ~ '" "' "'I- 1.0 ! I- '"'"::> u 1.5 DC 1.6 POWER DISSIPATION (W) --...:::: 130 '"I - .2 .1 ~ 140 150 25 TA m" - MAX. CASE TEMPERATURE (OC)' 50 75 100 125 MAX. AMBIENT TEMPERATURE (·C) 150 Surge Current ~ 50 I- Z "''" ::> '" u ;:"' 20 r--- t----, I~ 10 I "'J .~ I- '1 z 0 0: "''"Z Tc=85°~- .......... 0 ~ "''"' '" ::> V> '"'" "' Il. j I'" .5 T A = 75 0 ";;- .2 .1 .05 10- 5 10-4 10-3 10- 2 10-1 10 10' 10' SURGE DURATION (s) UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326·6509 • TELEX 95-1064 10·25 PRINTED IN U,S.A. 2N6119-2N6120 PUTs Planar, TO-18, Hermetic FEATURES DESCRIPTION • • • • • • Functionally equivalent to standard unijunction transistors, Unitrode's Programmable Unijunction Transistors offer the distinct advantage of versatile programming. External resistors can be added to meet the designer's needs in programming Eta, RBB , I. and Iv functions. This series also features a hermetically sealed TO-18 package for optimum reliability in all environmental conditions. Applications include pulse and timing circuits, SCR trigger circuits, relaxation oscillators and sensing circuits. For additional information see Unitrode Application Note U-66. Hermetically Sealed TO-18 Metal Can Programmable Eta, RBB , I. and Iv Maximum Peak Point Current: 150nA Minimum Valley Current to 1.5mA Nano-Amp Leakage Passivated Planar Construction for Maximum 'Reliabilityand Parameter Uniformity ABSOLUTE MAXIMUM RATINGS ±40V ....... 40V ...... 40V -5V Anode-to-Cathode Voltage, VAK Gate-to-Cathode Forward Voltage, VGK . Gate-to-Anode Reverse Voltage, VGAR . Gate-to-Cathode Reverse Voltage, VGKR Peak Recurrent Forward Current 10"s, 1% Duty Cycle ... 1OO"s, 1% Duty Cycle . Power Dissipation 25°C Ambient Derating Factor Storage Temperature Operating Temperature Range ........... 8A ................... .......... ........ .5A .... 400mW ... 3.2mW/oC _55°C to +125°C .. -55°C to +125°C MECHANICAL SPECIFICATIONS 2N6119-2N6l20 rt B C j GATE -.-~=-r A = 0 ...L...! <=iF" J ~~F~E TO-1S A 8 C ANODE 0 GATE CONNECTED TO CASE G H J INCHES .178- 195 DIA. .170-.210 .5 MIN. .209-.230 DIA. .017 ± :gg~ 8:~ 020 MAX. 1oo:l:.0lD DIA. .041± 005 028-.048 10·26 MILLlMmRS 4.52-4.95 DIA. 4.31-5.33 12.70 MIN . 5.31-5.84 DIA. .432 ± .~A .508 MAX. 2.54:1:.254 OIA. 1.04:1:.127 711 1.22 ~UNITRODE 2N6119-2N6120 ELECTRICAL SPECIFICATIONS (at 25'C unless noted) 2N6120 2N6119 Symbol Test Fig. Min. Max. Min. Max. Units - 5 2 - 1.0 0.15 itA itA itA itA Peak Current I, 1 70 - 25 - Valley Current Iv 1 - 50 - 25 Vr 1 1.5 0.2 0.2 Gate-to·Anode Leakage IGAO 2 Gate-to-Cathode Leakage Forward Voltage Pulse Output Voltage Pulse Output Rate of Rise IGKS VF 3 Offset Voltage Vo t, 4 5 5 - 0.6 1.6 10 100 100 1.0 - - 9 - 80 '[rJ" EY C - R2 - 9 - 80 = 10k, Vs = lOV = 1 Meg. = 10k, Vs = lOV = 1 Meg. = 200n = 10k, Vs = lOV = 1 Meg. T = 25'C, Vs = 40V T = 75'C Vs = 40V IF = 50mA mA V V nA nA nA V V ns vr =vp -vs vp VS V, Vs :l 0.6 0.6 10 100 100 1.0 - +V A G - 1.0 0.2 0.2 Test Conditions RG RG RG RG RG RG RG '='Vs::::Y Rt+R z Vv I, IF Iv II c) Characteristic Curve b) Equivalent Test Circuit a} Typical Circuit Figure 1 Tr l V, ' ...L. Figure 2 Figure 4 Figure 3 +20V RT 51 OK 6V CT .2 pI .6V L-dJ-"-_ _ _ _ _ _ __ Figure 5 UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 10-27 PRINTED IN U.S,A. 2N6119-2N6120 ".:; Typical Peak Point Current YS. Gate Source Voltage " 10 lZ _1 _ 2N6 119 I- Z '" 10K!! 0: " u U lZ I- .'" . .... . 10Ka 1Ma >:: a. ...J --K 1--- ..'" ---- . ...J ii: >- I .... ~ -~ I- ~'1000 200!l 0: 2000 :) u >- '";;J, 100 10KU ...J > ...J 10KU C3 ii: >l- 10 1MU I ~ Rs=lMU ..? 0 - f"-... I"'- " -40 -20 0 20 40 60 80 100 120 140 160 TA - AMBIENT TEMPERATURE ('C) Typical Valley Current YS. Ambient Temperature __ r -- 10,000 --- -- --- I- ~1000 I 10KU_ u i:i...J --- --- -- ...J ;; 100 I l"'- I"'- r- l- 10KU, r- t- 1- . l~U'l'"-- I"'- l"'- ...J , u ii: >l- ----- --- --- 10 Rs=lMU I t-. '1'" ~ ..? , -- l - t- '!'---80 20 GATE SOURCE VOLTAGE (V) UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX mOl 326-6509 • TELEX 95-1064 Vs 10Vl -'--2N6119 - - - - 2N6120 20 z :) 15 = J 20~_u-1-1-lI- t1 - - - r-- ~ 0: 10 Vs - , ....... Typical Valley Current ---2N6119 - - - - 2N6120 z ~o I"'-t--- YS. Gate Source Voltage 10,000 " ,01 -80 v s, = ~ov - - - 2N6119 - - - - 2N6120 .... ,, I --- 10 15 20 Vs -GATE SOURCE VOLTAGE (V) .:; .1 I- ,01 -~ K r--- r--- ,, I" .... .... " I" f'. , a. u , .... ~ >:: u RG==:lM!J .... I Re 1MU, 0a. ,1 ii: >- I t'-... t'-... f'-... 1f~g~ .l 1. 10KU :) :) z 0a. 10 '"0:0: - - - - 2N6120 r-- Typical Peak Point Current YS. Ambient Temperature .:; ~O -40 -20 0 - 20 40 60 80 100 120 140 160 TA -AMBIENT TEMPERATURE ('C) 10-28 PRINTED IN U.S.A. 2N6119·2N6120 Typical Pulse Output Circuit Supply Voltage Typical Offset Voltage vs. Ambient Temperature 1.4 . ~ I 1.3 ~ 1.2 UJ "!:; VS, Vs '. 1.1 0 > 1.0 I- 40 .9 11. I- 36 ...... .8 0 32 .7 UJ 28 ..J .6 0 > I- UJ (/) 0 ::> ::> (/) ..J t'i 0:: .5 l- >- .4 I " ,;- .3 , ~ "'~" = 10V ::> . ..... ~ 1> I'" ~ .1 lesslhanl"atthe- 12 l- It? ./~.N ..J I ....... 1 4 >0 0 L-.J.I~-'-....l.-L-LII_IL....L-L....L...l-L-'--.l..--' 048121620242832364044485256 -80 -60 -40 -20 0 20 40 60 80 100 120140 160 V-CIRCUIT SUPPLY VOLTAGE (V) AMBIENT TEMPERATURE (OC) Typical On-State Current VS. Voltage Gate-Anode Blocking Current vs. Ambient Temperature :? R mu.t be chosen so that the current3va,Iabie at the 'mngpOmtexceedsl,and sleady-staleon currenl,s 24 u 0:: ./0 ....... TA - '" '" 11. 1'\ .2 20P Vo 10 ,:; I- Z UJ 0:: 0:: ~ ::> I- u ~ Z .1 UJ 0:: 0:: ~--~----4------+----~~~--~ ;;: u ..J In UJ C I- . ~ '"i5 (/) Z .01 c---jc------t--7"---+-,~--I__--_I 0 UJ I !:i: -" "I .001 ~ I ::> g .1 L.__' -____LL____-L______' -____.J .;p -80 -50 TA - o 50 100 150 AMBIENT TEMPERATURE (OC) .01 10 .1 V, - UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95·1064 10-29 100 ON·STATE VOLTAGE (V) PRINTED IN U.S.A. 2N6137 PUTs Military, Planar, TO-18, Hermetic FEATURES OESCRIPTION • Available as JAN and JANTX types per MIL standard 19500/493 • -55°C to +125°C Temperature Range for Timing and Oscillator Circuits • I, :;;;; 10ilA at T = -55°C Iv ;;;. 40l'A at T = +12SoC • Programmable ~, RBB , Ip and Iv • Peak Recurrent Current: of SA • low On-State Voltage Drop • Hermetically Sealed Metal Case and Planar Passivated Construction for Maximum Reliability and Parameter Stability. The Programmable Unijunction Transistor is functionally equivalent to a standard unijunction transistor with the advantage that external resistors can be used to program ~, RBB , Ip, and lv, depending upon the designer's needs. The Unitrode device, in addition to allowing programmable versatility, is completely planar passivated and packaged in a TO-1S hermetically sealed package, which offers an order of magnitude improvement in inherent reliability over many similar devices. Applications include pulse and timing circuits, SCR trigger circuits, relaxation oscillators, and sensing circuits. For further application information see Unitrode Application Note U-66. ABSOLUTE MAXIMUM RATINGS .... 40V Anode-to-Cathode Forward Voltage, VAK Anode-to-Cathode Reverse Voltage, VAKR ..... Gate-to-Cathode Forward Voltage, VGK Gate-to-Anode Reverse Voltage, VGAR Gate-to-Cathode Reverse Voltage, VGKR Peak Recurrent Forward Current, 10l's 1% Duty Cycle. Peak Gate Current, IGM Average Gate Current, IG(AV) . Power Dissipation 2SOC Ambient. Derating Factor Storage Temperature Range Operating Temperature Range ........ 40V ..... 40'1 ............................ 40V ......... SV ....... 5A ....... 250mA ........ SOmA .... 300mW ........ 2.4mVi/oC -SSoC to +125°C .. _55°C to +12SoC MECHANICAL SPECIFICATIONS 2N6l37 rt j -r-[]=-r = B A ..L- GATE C 0 C D c:;;= J ~~F ~ TO-1S INCHES .178-.195 DIA. .170- 210 .5 MIN. .209- 230 DIA. 017:1: .002 OIA. E ANOOE CONNECTED TO CASE G . .001 DIA. .020 MAX. .100'.010 DlA .04lt.OO5 .028-.048 10-30 MILLIMETERS 4.52-4.95 DIA . 4.31-5.33 12.70 MIN . 5.31-5.84 DIA .432 ± .g~~ .508 MAX. 2.54:.254 OIA. 1.04: 127 .711-1.22 ~UNITRDDE 2N6137 ELECTRICAL SPECIFICATIONS (at 25'C unless noted)t Figure Minimum Typical Maximum Units Test Conditions SUBGROUP 1 Visual and Mechanical Symbol - - - - - - - SUBGROUP 2 Gate-anode blocking current Gate-cathode blocking current I GAO I GKS 2 3 - 2 5 10 100 nA nA VG.::= Rating VGK ::= Rating SUBGROUP 3 Peak-point anode current Ip 1 - Vr 1 I,A I'A V V RG ::= 1 Meg I V - 10V RG::= 10K ( ; - Peak-point offset voltage Valley-point anode current Iv 1 1 2.5 0.26 0.35 15 200 2 llA RG RG RG Test 0.2 0.2 - 70 1.5 SUBGROUP 4 Forward on-state voltage Peak pulse voltage Peak pulse voltage rise time VF Vo t, SUBGROUPS Gate-anode blocking current (l25'C Test) Valley-point anode current (l25'C Test) Peak-point anode current (-55'C Test) t I GAO Iv Ip 4 5 5 - 2 1 1 - 9 - 40 - 0.85 12 50 150 100 7.5 2 5 1.6 0.6 50 - - RG ::= 1 Meg ( V - lOY RG::= 10K $- I,A rnA = = 110KMeg f V, = lOY = 200!! V V ns 1,::= SOmA 500 nA - I'A IlA VG• ::= Rating RG::= 10K, V, ::= lOV RG ::= 10K, V, ::= lOY 1.0 80 10 All values in table are JEDEC registered Iv VALLEY CURRENT NEGATIVE RESISTANCE Ip .,,-REGION SWITCH~ POINT ===!=+Vs Vp Vr a) Typical Circuit b) Equivalent Test Circuit Vv VALLEY VOLTAGE == Vp -Vs PEAK VOLTAGE Figure 1 T~ If Figure 2 Figure 3 Note: Conditions for oscillation V8B -V p ---> Figure 4 +20V R, SIOK Ip R Vas-V" ---< C, Iv .2 III R Figure 5 UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 10-31 PRINTED IN U S.A 2N6137 Peak Point Current vs_ Ambient Temperature Peak Point Current vs. Gate Source Resistance 10 Vs SPEC. MAX. 10 10V Vs ........... I~PEC. "< :.:; .... .... '"'" ::> z z '"u .... ::> u ....z '"'" '" "- 0 Q. '"'" .. .1 Q. '" ~ "" ~ ~ '"L5 « 0. ~~lKO "" ~ MAX. z .1 1 '" .01 100 RG - 1K 10K lOOK GATE SOURCE RESISTANCE (Il) .01 -50 1M SPEC. MAX. '::>'"" u >- '"'" '" ::> u >- V '" « ..J ..J V > I> 10 1 .001 ~1 I G- 100 ....z SPEC. MIN. z 1 -........ < .:! '" - v 100 .... ;;: ~G=IM\I ............ 75 100 25 50 AMBI ENT TEMPERATURE ('C) 1000 V ..J ..J 10KO '-..... ~ GATE CURRENT 1 ~ (*!I (MA) UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 150 Valley Current VS. Ambient Temperature Valley Current VS. Gate Current '" -25 TA - 1000 < .:! 10V --- -- -25 TA - 10-32 :--- r-- 10 1 -50 10 -- = Vs 10V RG 10KO ~G=IMO 25 50 75 100 AMBIENT TEMPERATURE ('C) 125 PRINTED IN U.S.A 2N6137 Offset Voltage vs. Ambient Temperature Typical Pulse Output Voltage vs. Circuit Supply Voltage 3.0 '~r 100 ~ 2.5 C w '"~ « > w ::> a. '" « I- ::> ..J 0 I- Note: R must be chosen so that the current available at the firing point exceeds Ip and steady state on current is less than I¥ at the desired level of V, for the circuit to oscillate. I- I- > 80 0 ~ 2.0 J 1.5 60 0 SPEC. MAX. @ RG = 1MI] M, 27K 20 w (Jl ..J w ::> - -:,,',,/ I 0/ ,," <><">,, .": ( l- l-t o~!) .5 « ~ SPEC. MAX.@ RG 20 . = 10KIl 0 > o 25 50 75 100 TA - AMBIENT TEMPERATURE ('C) , ,\e'br--!::) Q 40 ..J o LL ~ ~ V ~ri~~6~;i' 80 100 40 20 60 V - CIRCUIT SUPPLY VOLTAGE (V) 125 Typical Current vs. On·State Voitage Gate-Anode Blocking Current vs. Ambient Temperature 10 T .. 25'C It vGAO T . 125'C £, ~ a: a: u ::> Z w u j .1 / ;:: '" z ;< 0 .L ..J I- V W C (Jl I J '" a: a: ::> u w z0 I IZ W I I- Rating= u I ! 20 "~ 0 ~600 i ALL UNITS FIRE! ~ Ic.- MAX "'~ I i ~-20 r-'"" 400 ::> u I I IGI MIN I NO UNITS FIRE "ir !Z " 8200 ~ ir "'~ '"I (!l_40 ALL UNITS FIRE f))", ~ IGT MAX. 'GT I ;, --60 ..- -80 -65 ~ Ij//; MIN. VI; 's; NO UNITS FIRE _~-200 -25 TJ - 25 50 7S 100 125 JUNCTION TEMPERATURE (Oe) I -400 150 -65 -'25 TJ Gate Trigger Current AA114 Series - 25 50 75 100 125 ISO JUNCTION TEMPERATURE (OC) Gate Trigger Voltage ~ ""'~ 1.2 I---+-+--+-+--I--+-+-'" 1 I---+-+--+-+--I--+-+-'" g a: ""'~" .6~qf,~¥h%9~~+--I---+-t-.., "' "!;;: .4~--+-+--4-~~~~~~~'" I ;, > -25 0 25 50 75 100 125 TJ - JUNCTION TEMPERATURE ('C) UNITROOE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95·1064 ISO .2 r----+---+ __t--+-+--IL--""Itfj -25 25 50 75 100 125 T J - JUNCTION TEMPERATURE (GC) 10·35 ISO PRINTED IN U.S.A. AAlOO·AAl04 Max. Holding Current AAI07·AAlll AA114-AA118 Min. Holding Current so :; g 20 ~ 10 r-- t-- RSK IOOll =:: ~ '"'" ::> "~ i- 9o :I: X ~ I _'X. i lK -- - r- '-t-- r- t-- I-- .5 .2 R6K = :-- r- l~K r- t-- .1 .os -65 -2S TJ - 0 25 50 75 100 125 -25 0 25 50 75 100 125 T J - JUNCTION TEMPERATURE tOe) ISO JUNCTION TEMPERATURE (OC) AVI. CUrl'llnt VS. Case Tempe...ture sPD - .5 DC g ~ ;;-- 0: ~ is .3 .2 g l<"' ~'" l" ~'\ ''::>"" ""' !< ~~ ~ ........ ~ ~ ~I ~ .1 .3 Ir,;- ~ I;;- ,,~~ DC 6. ~ "'"'"~'" ~ ~ .2 "'" is ~~ ~ I rD - POrER DISSI~ATION (Wi .4 " '. '" '::>" ~ Avg. Current VI. Ambient Temperature '1'WER 0ASSIPATJON (W)t ~, ' \ .4 .1 o 90 100 Tc mo. - 110 120 140 130 " o ISO o 25 T.... MAX. CASE TEMPERATURE (Ge) Jna. - 50 75 100 125 150 MAX. AMBIENT TEMPERATURE {Ge} Surge Current g l< ~~ ~~ ~ ,,~ ~ 150 SO IT BEFORE SURGE "''" = 0 '::>" " 1()2 J UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON. MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95·1064 10-36 103 ·'PRINTED IN U.S.A. ADI00-ADI04 ADI07-ADll1 ADl14-ADl18 SCRs 1.6 Amp, Planar FEATURES DESCRIPTION • • • • This data sheet describes Unitrode's AD Series 1.6A SCRs designed for mediumcurrent control and sensing applications. Units are available in a complete range of blocking voltages from 60 to 400 volts. Maximum Gate Trigger Current: 2, 20 or 200!,A Tight Gate Trigger Voltage Range: .44 to .6V Voltage Ratings: to 400V Specified for dv/dt and Switching Time The ADlOO series offers a maximum gate trigger current of 2.0 microamps making it the most sensitive device of its type. The ADlO7 series has a maximum IGT of 20.uA while this parameter is specified at 200!,A for the AD1l4 series. ABSOLUTE MAXIMUM RATINGS AD100 AD107 AD114 Repetitive Peak Off-State Voltage, VORM . . .... Repetitive Peak Reverse Voltage, VRRM .. ....... Non-Repetitive Peak Reverse Voltage, VRSM . . Non-Repetitive Peak Off-State Voltage, VOSM D.C. On-State Current, IT 7S'C Ambient . 85'C Case Repetitive Peak On-State Current, ITRM Peak One Cycle Surge (Non-Rep.) On-State Current, Peak Gate Current, IGM Average Gate Current, IGIAVI . Reverse Gate Voltage, VGR Operating and Storage Temperature Range AD102 ADIOS AD116 AD10l AD108 AD115 60V. .. lOOV .. ... lOOV ... ......... lSOV.. GOV. 80V ..... AD103 ADll0 ADI17 .. 200V ... . ........ 200V .. . .......... ..... 300V .. . SOOV .. .............. 300V . ... 300V . ......... 400V ... AD104 AD111 AD118 ... 400V . ..... 400V SOOV ... 450mA ... ......................... l.6A up to 30A. ... .lSA. .. .... 2S0mA.. ........2SmA. ... . ... 6V ... . -6S'C to +150'C ... ITSM . MECHANICAL SPECIFICATIONS AD100-AD104 AD107-AD111 [eTc B E l ~~? - ~ ~~,! ~. ------- A - F - - ~'OO" G \ K " , -1--' ./ -- L 305-335 335-370 240-260 C 0 E 010-030 5 MIN F Ol7± G 200 100 GATE ~f---ANODE ---1 ins. A B ~ H J gg~ K 031±003 029-045 L 100 10-37 ADl14-AD118 TO-20SAD (TO-39) mm 775-851 851-940 635-660 25-76 1270 MIN 432:t ~§ 5DB 254 79% 08 74-114 254 ~UNITRDDE AD100-AD104 ADl07-AD111 ADU4-ADU8 ELECTRICAL SPECIFICATIONS (at 25'C unless noted) Parameter SUBGROUP 1 Visual & Mechanical SUBGROUP 2 (25'C TESTS) Off-State Current Reverse Current Reverse Gate Current Gate Trigger Current ADlOO-104 AD107-111 AD114-U8 Gate Trigger Voltage On-State Voltage Holding Current SUBGROUP 3 (25'C TESTS) On-State Voltage-Critical Rate of Rise Gate Trigger-on Pulse Width Delay Time Rise Time Circuit Com mutated Turn·off Time SUBGROUP 4 (125'C TESTS) Off-State Current Reverse Current Gate Trigger Voltage Holding Current Symbol Min. Typical Max. Units - 0.44 - - - - .01 .01 0.1 0.1 0.1 0.2 p.A p.A p.A 0.2 2.0 20 0.52 1.1 0.5 2.0 20 200 0.60 1.5 2.0 p.A p.A p.A V V mA - Vlp.s 50 P.s RGK = 1K, Vo = 30V IG lOmA, IT lA, Vo = 30V IG 10mA, IT = lA, Vo = 30V IG = 10mA, IT = lA, Vo 30V IT = lA, IR lA, RGK lK 100 100 p.A p.A V mA RGK = RGK = RGS = RGK 10RM IRRM IGR IGT VGT VT IH 0.3 dvldt tpg (on) td tr tg IORM IRRM VGT IH 100 0.5 0.6 0.4 20 50 - 0.15 0.2 2.0 10 30 0.2 0.4 Test Conditions RGK = 1K, VORM = Rating RGK = 1K, VRRM Rating VGR = 2)/ RGS = 10K, Vo = 5V = = = = p'S p's p'S - 1.5 = RGS lOOn, Vo 5V IT = 1.0 Amp (pulse) RGK = 1K = = = = = 1K, VORM = Rating lK, VRRM = Rating lOOn, Vo = 5V lK Note: Blocking voltage ratings apply over the full operating temperature range, provided the gate is connected to the cathode through a resistor, 1000 ohms or smaller, or other adequate bias is used. Gate Trigger Current AD107 Series Gate Trigger Current AD100 Series 80 < .5 . I- z 0: 0: .." ~ - ~ 600 0: 0: ~ IGT MAX. IGT MIN. -20 .. , rtIIIJ. NO UNITS FIRE '" *--40 I ~ I -25 0 2S so 75 100 125 T J -JUNCTION TEMPERATURE (OC) -- ---- .'0, ~ • 'IAX_ r- z '"'" "'"<.> " z § 10 2 ' R ~G'~IOO!! .5 .2 ' - lK I -_~-OIO/( I ~ I '"" u - "N-- I "~ ~ ---t---r ---~. ~ ~ x Min. Holding Current -:- l - .1 -25 TJ - 0 25 -- - 50 75 100 125 L ----L--L~~ ~ I 2r-!~~~~-=..:~ ~ I ---t--+--'--+--F"'-k;;~-- .05 -65 150 -25 TJ AVI. Current VI. Case Tampellture 1 0 JUNCTION TEMPERATURE (Oe) - Avg. Current v•• Ambient Tempellture Po - POWER DISSIPATION (W) 1.5 POWER DISSIPATION (W) .5 .8 .8 r------,-- g DC ! .6 I I.3. C1 .8 z .4 6. "'-... "'- ............. ['-.. r- --- ......... I '" ~ 70 Te "'.' - 90 100 110 120 -t-- ~ 130 .3 JI .2 ~ 140 150 25 T A "u - 100 125 150 50 75 MAX. AMBIENT TEMPERATURE (Oe) Surge Current >- T '"a '" 20 ----+-....... I -~ '" r: o I I I 2 I ! 1 ~ '" .5 ~ " ~ ---I .1 ~50 ~'" -----! t-----+----"'k----f'''''__'k- MAX. CASE TEMPERATURE (Ge) ei I 1 ~ --I""--- c::--:-:: ~ 0 --t----1 '" ~ .2 . . . - .-.--~ - '"'" '"" u -.;: 80 .4 -[- - ' ) t-------+---"<-+---+--'--~--~ ~ .6 ~-...;,.---,,~----!-- '"a:: 1.2 "u '" S o I .7 S 1.6 >- ~ I §" JUNCTION TEMPERATURE (Oe) PD - I ~ .5~~~~:t==tT..toc ! ! I ! I , I . . .2 I .1 . -. J .os 10"" UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326-6509 • TELEX 95-1064 10 I 10 -, 10 -, 10 . - 1 10 i 10 2 UP SURGE DURATION (5) 10-39 PRINTED IN U.S.A. GAIOO GAIOI GAI02 SCRs Nuclear Radiation Resistant, Planar FEATURES DESCRIPTION • Optimized for Radiation Resistance • Fully Characterized for "Worst Case" Design • Post Radiation Design Limits Specified • Passivated Planar Construction for Maximum Reliability and Parameter Uniformity • Pulse Currents: to 30A • Max. Trigger Current 20mA after 3 X 10 '4 NVT • Max. Holding Current 30mA after 3 X 10 '4 NVT The GA100 Series of Radiation Hard SCRs have been designed to provide significantly greater radiation tolerance than conventi 'nal SCRs or Transistors with the same current handling ability. This Series is capable of operation after exposure to lO'S NVT. The radiation resistant characteristics of the GA100 series devices make them particularly desirable for use under radiation environments in squib firing circuits; inverters and converters; pulse generators; relay drivers; and modulator discharge switches. ABSOLUTE MAXIMUM RATINGS GA10l GA100 . ....... 60V ..... . 30V ... Repetitive Peak Off-State Voltage, VORM D.C. On-State Current, Ir 75'C Ambient . 100'C Case . Repetitive Peak On-State Current, IrRM . Surge (non-rep.) On-State Current, IrsM (Sq. Pulse-50ms) Peak Gate Current, IGM Average Gate Current, IG(Av) . Reverse Gate Voltage, VGR .. Reverse Gate Current, IGR . Storage Temperature Range . Operating Temperature Range . GA102 SOV 200mA .. .... ..400mA .. up to 30A ..................... 5A ....... . ... 250mA .. ................. . . ... 25mA ... . ........... 5V ...... . ..... 3mA. .. -WC to +200'C. . .... -65·C to +150'C ..... . MECHANICAL SPECIFICATIONS GA100 GA10l GAl 02 TO·18 GATE A ANODE 0 . E F G H INCHES .178-.195 OIA. .170-.210 .5 MIN. 4.52-4.95 DIA 4.31-5.33 12.70 MIN. 209-.230 DIA. 5.31-5.84 DlA. .017 • :gg~ g:~: .432 • :g~~ .020 MAX. .100*-.010 DlA. .04l:t 005 .028-.048 10-40 MILLIMET£RS .508 MAX. 2.S4:t.2S4 DIA. 1.04t.127 .711-1.22 ~UNITRODE GA100 GA101 GA102 ELECTRICAL SPECIFICATIONS (at 25'C unless noted) Test IORM IGR 1ST VGT VT IH dvc/ dt tpg (on) td t, tq IORM VGT )t' 10 14 NVT Design limits Units Test Conditions Typ. Max. Min. - - - - - - MIL-STO-750 Method 2071 - .005 .01 2.3 O.S 1.1 0.7 0.1 0.1 3.5 0.7 loS 10 - 1.0 1.0 20 1.5 3.0 30 /LA /LA mA V V mA RGK 220n, VORM Rating VGR 2V RGK 220n, Vo 5V RGK 220n, Vo SV iT 1A (pulse test) RGK 220n - V//LS "S /LS "S "s Min. SUBGROUP 1 Visual and Mechanical SUBGROUP 2 (2S'C Tests) Off-State Current Reverse Gate Current Input Trigger Current (Note 2) Gate Trigger Voltage On-State Voltage Holding Current SUBGROUP 3 (2S'C Tests) Off-State Voltage-Critical Rate of Rise Gate Trigger-on Pulse Width Delay Time Rise Time Circuit Commutated Turn-off Time SUBGROUP 4 (12S'C Tests) High Temp Off-State Current High Temp Gate Trigger Voltage Post 3 Pre radiation Limits Symbol - 1.8 0.4 0.8 0.3 20 - - 0.1 40 .02 .02 .OS loS 10 .17 - .OS - 2.5 100 - 0.1 Max. 0.1 - - 1.0 100 - "A V = = = = = = = = = RGK = 220n, Vo = 30V IG = 25mA, IT = lA, Vo = 30V IG = 25mA, IT = lA, Vo = 30V IG = 25mA, IT = lA, Vo = 30V IT = lA, iR = lA, RGK = 220!l RGK = 220n, VORM = Rating RGK = 220n, Vo = 5V Notes: 1. Off·State voltage ratings apply over the operating temperature range provided the gate is connected to the cathode through an appropriate resistor, or other adequate bias is used. 2. Total Input Trigger Current, including current required by 220n gate bias resistance. DESIGN CONSIDERATIONS 1. Curve 1 shows the off-state current, IORM of the SCR as a function of temperature. IORM is increased by radiation damage, but is not a design consideration at the recommended gate bias levels. In order to optimize for radiation tolerance, reverse blocking capability has not been retained as a design feature. Devices with reverse blocking capability can be provided. . 2. Minimum critical dv/dt levels are defined in Curve 2. The dv/dt capability is improved after radiation because of reduced triggering sensitivity. dv/dt is therefore a design consideration only prior to radiation. 3. Curves 3 and 4 show the limits of Gate Trigger Voltage and Total Input Trigger Current prior to radiation. Maximum design limits after a total radiation dosage of 3 x 10'4 NVT is also shown. Curves 5 and 6 show the maximum limits of Gate Trigger Voltage and Total Input Trigger Currents as a junction of neutron dosage. The minimum level of Trigger current prior to radiation is established by the shunting effect of a 220 ohm resistor between gate and cathode. After radiation the device is less sensitive and Total Trigger Current will increase to a level relatively independent of the bias resistance. The 220 ohm resistor is recommended since it raises the minimum preradiation trigger current to a level that is closer to the past radiation limit and minimizes the percentage change in this parameter. 4. Current ratings shown in Curves 10, 11, and 12 apply after the device has been subjected to 3 x 10'4 NVT. Current ratings prior to radiation are greater than the values indicated. 5. Gamma radiation produces a reversible ionization (leakage) current within the device which is directly proportional to the Gamma flux level. When the Gamma flux level is in the range of 10 to 100 Roentgens per microsecond for burst durations greater than 1 microsecond, the device will self trigger ON. For the radiation bursts associated with nuclear explosions, the Gamma flux level will invariably cause device triggering at radiation levels significantly below the levels that would produce detectable permanent device damage due to cumulative neutron dosage. In applications where the burst effect triggering cannot be tolerated, it is necessary to reset the device after the radiation burst. Special circuit approaches such as additional SCRs to c.rowbar or otherwise cancel the output function may be used. UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWXJ710) 326·6509 • TELEX 95·1064 10-41 PRINTED IN U S.A GAlOO 1. 1000 2. Off-State Current GAI02 Minimum Critical DV/DT vs. Neutron Dosage SOD r---'---'---'---'--"7l GAlOl I = RGK 220(J '" 200 - v 0 -30V ~ 100 I- Z ~ 10 f---+ '" IIJ ~ o =-+-: 20 ~ 2.0 ~ 75 125 100 O.S 1010 150 ,..---,.--,--,--....,--,.----.--r-...., f---+--t-- I- 200 '"'" 100 '" SO UI I- .... 1.0 ~"""'-+- >~ 0.5 F=.....r-;:;~~~~~~~~~~~ 0 25 50 75 100 125 5. 10 ~ -' S ~ 0 I- 150 -6S Max. Gate Trigger Voltage vs. Neutron Dosage SOD RGK ; 220(J 3.0 t - Vo = 5V UI "~ 2.5 '" L 2.0 UI ""iX I- . ..:. 1.5 UI _6S'C .... "X 1.0 2S'C 0.5 +12S'C 1010 = ~ .s 200 I- z 100 '"'" :l U '" SO 1011 -- - 10 12 V V V 10 13 NVT il Vi I RGK I- Vo = 220(J = sv 1 UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 20 10 r--_6S'C i==-1 2s,c Q. V 10 14 UI ""iX .... .... :l 150 Max. Input Trigger Current vs. Neutron Dosage UI -' 0 > -2S 2S SO 7S 100 12S TJ JUNCTION TEMPERATURE ('C) 6. 3.5 ~ = 5V 20 :l JUNCTION TEMPERATURE ('C) - 10 16 U ""iX ~ Vo Z UI Q. -25 10 15 = 2200 RGK .s RGK = 220!l---r--r--"j VD = 5V k;;:--+--t--r----lr--t--t--+---I TJ 10 14 1000 ~ SOD 1.5 t---+--t-"""k...: I 1013 Input Trigger Current 4. Gate Trigger Voltage :l IIJ 10 12 1011 NVT 3.5 t---+--t---'r----i---r--j---t---t 2.0 / V +d5'C JUNCTION TEMPERATURE ('C) - IIJ ~ --- 10 Z L..._ _....L._ _- ' -_ _- - '_ _--'~_~ 3. 3.5 -----V l 25 C :l .01 1--74----+----+---i----1 50 / -6~'C :. :. // // TJ "~" -' ;::: iX 0.1 ....= - + - - 25 i!i 50 1, u .001 ~ b :> c u 1.0 .... I -~ 100 . :l U ~" ~ +12S'C .. - II ./ // 'L L _.-/ X :. 10 15 O.S 10 10 10 16 10-42 1011 10 12 1013 NVT 10 14 10 15 10 16 PRINTED IN U.S.A. GA100 Holding Current 7. 500 =< ....z =< .§. .... .§. 200 '" :::J "Z 100 0: 0: z UI 0: 0: .- /. 50 -65'C t.'J :::J t.'J Z 0 ..J x l: :;; 1 1 o +25'C 10 l: o '" -' TJ - 50 75 100 125 RGK lOll 10 10 10 12 20 10 o 5.0 r--- r- I - - f-I, 2.0 LOA .- "I 1.0 ,,/' I, = O.IA >" '" 20 ~ 5.0 "I z 0 2.0 '""" 1.0 '">>= 0.5 0.2 '" 0.2 O.i >= Q. '" 0: 1 1011 1012 1013 NVT 1014 1015 J 10 16 PA- 25 0 0.5 0.4 0.3 0.2 50 0.1 50 ~ ....z '00/ 20 10 '".... '" 5.0 :::J 0: 0: I/) z0 "'" :::J I/) 1.0 0.5 '" > 0.5 '"""'" UI Q. UI 0.2 .l- Q. Q. >= >= 1 1 0.2 100 0.1 125 150 AMBIENT TEMPERATURE ('C) Surge Current VS. Time ,, '" '"1"', I, BE~ORE ~URG~ = 0 I'" " ~ , SOLID LINE, RATED ' " ' BLOCKING VOLTAGE MAY BE APPLIED AFTER SURGE r-, ~, 1'-- DAS~ LlN~' BLOCKING VOLTAGE Tc.::: l00'C MAY NOT BE SUSTAINED FOR ~.1 S~CON~S AF~ER SYRGE TA=~ 0.1 0: J 5.0 2.0 1.0 UI 10 "'" t.'J 0: 2.0 20 75 50 m,,- MAX. 12. POWER DISSIPATION (W) () ....'" 0.1 0.1 11. Peak Current vs. Case Temperature :::J 0.2 .05 TA '"0:0: 0.3 Q. .05 1010 ~ .... z 10 16 10 "....'" '" ~ 0.5 :;; I, 50 :::J --- ~ UI 10 15 POWER DISSIPATION (W) 0.4 ~ 0: 0: / I, = 5.0A 10 14 10. Peak Current vs. Ambient Temperature ....z > 10 13 NVT JUNCTION TEMPERATURE ('C) PA- ~ = 220(! 0.5 150 50 '"t.'J / 1.0 9. Max. Dn·State Voltage vs. Neutron Dosage is V -' x '" S VI / +125'C :;; ~ -----/ 20 0 ..J () 25 GAI02 8. Max. Holding Current vs. Neutron Dosage 100r-----r--,---.---.---r--,---~_. -25 GAlOl .05 10-5 .05 90 100 T C m" - 110 120 130 140 150 10-4 10-3 10-2 10- 1 1 10 10 2 103 SURGE DURATION (5) MAX. CASE TEMPERATURE ('C) UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 10-43 PRINTED IN U.S.A. SCRs GA200 GA200A GA201 GA20lA Nanosecond Switching, Planar GB200 GB200A GB201 GB20lA FEATURES DESCRIPTION • • • • • The Unitrode Nanosecond Thyristor Switch combines the turn-on speed of logic level transistors with the high current switching capability inherent in SCRs. With this device engineers can now design circuits capable of switching pulse currents of lA in less than IOns or up to 30A in less than 20ns. Rise Time: IOns Delay Time: IOns Recovery Time: 0.51's Pulse Current: to lOOA Turn-on with 20ns, 10 mA Gate Pulse The GA/GB200 series is specifically designed for use as switching elements in high speed, low-to-medium power radar pulse modulators. Other applications include switching elements for phased array radars, laser pulse drivers, harmonic wave-form generators, line drivers and high current replacements for avalanche transistors. For applications requiring higher voltage levels, Unitrode has developed several "series string" circuits which allow the series connection of virtually an unlimited number of devices for voltages as high as 2000V with no significant decrease in speed. These circuits are described in Unitrode's,Design Note #14. ABSOLUTE MAXIMUM RATINGS GA2DD GA2DDA Repetitive Peak Off-State Voltage, VORM . Repetitive Peak On-State Current, ITRM . D.C. On-State Current, IT 70°C Ambient . 70°C Case. Peak Gate Current, IGM Average Gate Current, IGIAV) Reverse Gate Current, IGR . Reverse Gate Voltage, VGR ... Storage Temperature Range . Operating Temperature Range GA2Dl GA2D1A GB2DD GB2DDA GB201 GB2D1A .... 60V ....... . . ..... 100V......................... 60Y ....... . ... 100V . . . up to IOOA ... up to 100A . . ." ..... 200mA . .. ..400mA .. 250mA .. 25mA. . 3mA. . ... 5Y .... 6A. . ...... 250mA .... .. .............................. 50mA .. 3mA ...... 5V ... .. .. -65°C to +200°C ........................................ ... -wC to +150°C. MECHANICAL SPECIFICATIONS GA200 GA200A GA201 INCHES A B C 0 .178-.195 DIA E .017 ± F G .020 MAX. H J 170 .210 5MIN .209-.230 OIA 'GGf g:~ lOOt 010 DIA 04U 005 .028- 048 C 0 E NOTE: Anode connected to case. INCHES .400- 455 .090-.150 320-.468 570- 763 .318 380 :8ig F ,055 G H 424- 437 185- 215 t 10-44 TO-18 MILLIMETERS 452-4.95 DIA. 431 5.33 12.70 MIN 5.31-5.84 DIA . .432 ± :g~~ .508 MAX . 2.54:1:.254 DIA 1.04;1; 127 711-1.22 GB200 GB200A GB201 A B GA201A GB201A TO-59 MIUIMETERS 10 16-11.56 228-381 8.13-11.88 14.48-19.38 807-965 140 t '~~i 1077-11.10 4.70 546 ~UNITROOE GA200 ELECTRICAL SPECIFICATIONS (at 25'C unless noted) GA20l GA20lA GB200 GB200A GB20l GA200A GB20lA Test Symbol Min. - Delay Time td - Rise Time GA200, 200A, GB200, 200A t, Rise Time GA20l, 20lA, GB20l, 20lA t, - Gate Trigger on Pulse Width Circuit Com mutated Turn-off Time GA200,.20l, GB200, 201 GA200A, 20lA, GB200A, 20lA - Typ. Test Conditions Max. Units 30 ns ns IG :=: 20mA, IT :=; lA IG :=: 30mA, IT :=; lA 25 ns ns Vo:=; 60V, IT:=: 1A (1) Vo :=; 60V, IT :=: 30A (1) 20 ns ns Vo :=; 100V, IT :=; lA (1) Vo:=; 100V, IT:=: 30A (1) IG :=; lOmA, IT :=; lA 20 10 - 15 25 - 10 20 - t p9 !onl - .02 .05 ps tq - 0.8 2.0 I'S tq - 0.3 0.5 ~s - .01 0.1 ~A VORM :=; Rating, RGK :=: lK - 20 100 /IA VORM :=; Rating, RGK l50'C IT :=; lA, I. :=; lA, RGK :=: lK Off-State Current IORM Reverse Current IRRM - 1.0 10 mA VRRM :=; 30V, RGK :=; lK (2) Reverse Gate Current IGR - .01 0.1 mA VGRM :=; 5V Gate Trigger Current IGT - 10 200 IIA Vo:=; 5V, RGs:=: 10K Gate Trigger Voltage VGT On-State Vo Itage VT Holding Current IH Off-State Voltage-Critical Rate of Rise Notes: 1. Is = lOrnA; Pulse Test, dv/dt = lK, 0.4 .06 0.75 V Vo:=; SV, RGs:=: lOOn, T :=; 2S'C 0.10 0.2 - V T:=; +150'C - 1.1 1.5 V IT:=:2A 0.3 2.0 5.0 mA Vo :=; 5V, RGK :=: lK, T :=; 25'C 0.05 0.2 mA T:=; +150'C 20 40 - Vips Vo = 30V, RGK = lK Duty Cycle <1%. 2. Pulse test intended to guarantee reverse anode voltage capability for pulse commutation. Device should not be operated in the Reverse blocking mode on a continuous basis. Switching Speed (Typical) GA/GB200 Series 1000 Peak Current vs. Pulse Width . GA200 Series ...... ~1000 r------.----....,.----~ z '"'" :J U OJ S100 . 100 oS If) Z .... o :;: '"a.. ;:: I ~ ;;'i ~ 10 ;:: E a.. DUTY CYCLE = .005% OUT DUTY CYCLE .0001 % Y CYCLE _ 0 ~ OR LESS -·l%...: ~ DUTY CYCLE .1%~----.I DUTY CYCLE - .05% OUTY CYCLE - .5r0.2 DUTY CYCLE = 1% .... 1 L -_ _ _ _ _k -_ _ _ .1 ~ '"I J _ _ _ __ J 10 I, - ANODE CURRENT (AI 100 DUTY CYCLE _ 5%-'" DUTY CYCLE '110%--" 1.1 100 10 tp - PULSE WIDTH (ps) NOTES: 1. DATA BASED ON ON-STATE VOLTAGE GRAPH AT T, = 1SO'C. BLOCKING VOLTAGE MAY BE APPLIED IMMEDIATELY AFTER TERMINATION OF CURRENT PULSE. NOTES: 1. Vo = Rated VO'M 2. TA =25'C 3.I G =20mA 4. td = 20ns TYPICALLY FOR ALL TYPES INDEPENDENT OF ANODE CURRENT UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6S09 • TELEX 95-1064 ---=::: 10 10-45 PRINTED IN U.S.A. \ GA200 GA200A GA201 GA201A GB200 GB200A GB201 GB201A Peak Current vs. Pulse Width GB200 Series Peak Current VS. Pulse Width GB200 Series $1000 IT I- Z '"a:a: :::> u w DUTY CYCLE=l% tE,UTY CYCLE .1% OR LESS DUTY CYCLE .5% ~ '"Z o ~U YCYCL DUTY CYCLE DUTY CYCLE '" '" 10%-' I 0. ~ j:: 5 '"a: 0. 10 PULSE WIDTH (.s) .1%-' DUTY CYCLE 10 DUTY CYCLE is: J DUTY CYCLE _ 5%~ DUTY CYCLE 10%-' ~- T DUTY CYCLE _ SO%~ 10 (.s) 100 NOTES: 1. DATA BASED ON ON·STATE VOLTAGE GRAPH AT T, = 150'C. BLOCKING VOLTAGE MAY BE APPLIED IMMEDIATELY AFTER TERMINATION OF CURRENT PULSE. 2. TA = 75°C APPLIED IMMEDIATELY AFTER TERMINATION OF CURRENT PULSE. 2. Tc = 75'C Surge Rating Maximum GA/GB200 Series On-State Current vs. Voltage GA/GB200 Series Ti=150~? DUTY CYCLE t, - PULSE WIDTH ~~~~~~~GG:~~~~~ ~A~ ~~·C. $ .001% OR LESS DUTY CYCLE 100 NOTES: 1. DATA BASED ON ON·STATE 100 DUTY CYCLE t::---=I: « DUTY CYCLE _ 20~::/ DUTY CYCLE = SO% tp - DUTY CYCLE= .05% 100 ~;=25'C I I- Z "' 0: 0: 10 ::l 0 "'!( I- III z 0 I / II I ..!' II .1 .1 I VIM - 10 ON·STATE VOLTAGE (V) 100 tp - 10 PULSE WIDTH (.s) 100 NOTES: 1. BLOCKING VOLTAGE MAY NOT BE APPLIED FOR .001 SEC. AFTER TERMINATION OF SURGE PULSE AS JUNCTION TEMPERATURE WILL EXCEED lSO'C. 2. T c =7S'C UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON. MA 02173 • TEL. (617) 861·6540 TWX (710) 326-6S09 • TELEX 95-1064 10-46 PRINTED IN U.S.A. SCRs GA300 GA300A GA301 GA301A Commercial Nanosecond Switching Planar FEATURES • Rise Time: IOns • Delay Time: IOns • Recovery Time: 0.51's • Pulse Current: to IOOA • Turn·on with 20ns, 10mA gate pulse GB300 GB300A GB301 GB301A DESCRIPTION Unitrode's Nanosecond Thyristor Switch combines the turn-on speed of logic level transistors with the high current switching capability inherent in SCRs. With this device, engineers can now design circuits capable of switching pulse currents of lA in less than IOns or up to 30A in less than 20ns. The GA300, GB300 Series is specifically designed for use as the switching element in high speed laser diode pulse drivers. Other applications include electronic crowbars, harmonic wave-form generators, line drivers and general purpose replacements for avalanche transistors. For applications requiring higher voltage levels, Unitrode has developed several "series string" circuits which allow the series connection of an unlimited number of devices for voltages as high as 2000V with no significant decrease in speed. These circuits are described in Unitrode's Design Note #14. ABSOLUTE MAXIMUM RATINGS GA300 GA300A Repetitive Peak Off-State Voltage, VDRM Repetitive Peak On-State Current, ITRM Peak Gate Current, IGM . Average Gate Current, IGIAVj Reverse Gate Current, IGR . Reverse Gate Voltage, VGR . Storage Temperature Range . Operating Temperature Range GA30t GA30tA . .... GOV. . GB300 GB300A GB30t GB30tA 100V .. up to 100A . 250mA 25mA .. 3mA. .. 5V .. GOV........ .. 100V .. up to 100A 250mA. 50mA. 3mA ." ..... 5V . .. -G5'C to +150'C... ................ .. ................. . O'C to +l25'C ...... . ..... .... ...... ...... .. ....... . MECHANICAL SPECIFICATIONS GA300 B INCHES 178 .195 DIA 170-.210 C D .5 MIN. .209 23001A. E 017 ± F G 020 MAX lOOt 010 OIA. 041± 005 028- 048 A H J GB300 r- G GATE ANODE -. 88f gt~ GB300A GA301 GA301A TO-18 MILLIMETERS 452-49501A 431-533 12.70 MIN 531-5.84 DlA 432 ± .051 .025 508 MAX 2 54t.254 CIA I 04t 127 .711 122 GB301 GB301A TO-59 ->I $ !:} F CATHODE GA300A TH INCHES MILLIMETERS A 400 455 10 16-11 56 B 228-381 E .090- 150 320 468 570- 763 318 .380 C D gIg 813-1188 14.48 1938 807-965 .~~t F 055 ± G 424- 437 1077 11.10 H 185- 215 4.70 546 1.40 ± NOTE: Anode connected to case. 1179 10-47 ~UNITRDDE GA300, GA300A, GA30l, GA30lA G8300, G8300A, G8301, G830lA ELECTRICAL SPECIFICATIONS (at 25°C unless noted) Min. Typical t, - 20 10 15 25 10 20 tq - Symbol Test Delay Time td Rise Time (Note 1) GA300, 300A, G8300, 300A t, Rise Time (Note 1) GA30l, 30lA, G830l, 301A Circuit Commutated Turn-off Time GA300, 301, G8300, 301 GA300A, 301A, G8300A, 301A Gate Trigger-on Pulse Width Off-state Current IDRM Reverse Current (Note 2) IRRM - Gate Trigger Voltage VGT 0.4 0.10 tpg Ion) Gate Trigger Current On-state Voltage Off-state Voltage - Critical Rate of Rise Reverse Gate Current Holding Current Notes: 1. IG = 10mA; Pulse Test, Duty Cycle - IGT VT dvldt 15 IGR - IH 0.3 0.05 Test Conditions Units Max. 30 IG == 20mA, IT == lA IG == 30mA, IT == lA VD- GOV, IT - lA VD == GOV, IT == 30A VD - 100V, IT - lA VD == 100V, IT == 30A ns 25 - ns 20 (Note 1) (Note 1) - ns 0.8 2.0 p.S IT U.j 0.5 p's IT - lA, IR - lA, RGK _ lK 0.02 0.01 20 0.05 O.G 0.2 10 1.1 30 0.01 2.0 0.4 - p's p.A p.A mA V V 200 1.5 fJA V IG == lOmA, IT == lA VDRM - Rating, RGK _ lK, T _ 25°C VDRM == Rating, RGK == lK, T == 125°C (Note 2) VRRM - 30V, RGK - lK VD - 5V, RGS - lOOn, T _ 25°C VD == 5V, RGS == lOon, T == 125°C VD - 5V, RGS - 10K IT _2A VD - 30V, RGK _ lK VGR - 5V VD - 5V, RGK _ lK, T _ 25°C VD == 5V, RGK == lK, T == 125°C 1.0 U.l 100 10 0.75 - Vlp.s 0.1 5.0 mA mA mA - == lA, IR == lA, RGK == lK < 1%. 2. Pulse test intended to guarantee reverse anode voltage capability for pulse commutation. Device should not be operated in the reverse blocking mode on a continuous basis. Switching Speed VS, Current GA/GB300 Series 1000 , - - - - - - - - , - - - - - , - - - - - - , Notes: '" .3 1. V0 :::::: Peak Current VS. Pulse Width GA300 Series ~1000 .... Rated V DRM 2. TA = 25°C 3. 16 = 20mA 4. tD = 20ns typically for all types Blocking Voltage may be applied immediately after current pulse '-' independent of anode current. ;:: "'....i': "' o Z (/) <3 .os~y .1% Q, 10 t:=::::;==----t""==----',i-----j I r--:::::::- = 75°C. .01 % . . . L.OO5% "~ -' ~ termination. 2. TA 100 (/) ir = 125°C. graph at T, '" "''" :J "' 100 1 - - - - - + - - - - - + - - - - - - 1 :;;; a: Notes: 1. Data based on On-State Voltage Z "'>;:: 10 .5%.....1' ;:: 1%~ "' "''" 50/.::::), lrDuty Cycle = .0001% or less ~ t--- -= Q, 1 .1 10 IT - ANODE CURRENT (A) UNITRODE CORPORATION. 5 FORBES ROAD LEX INGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 10%. I L -________L -________l -______- - - ' ]. 100 1 .1 10-48 10 Tp - PULSE WIDTH (#s) 100 PRINTED IN U.S.A. GA300, GA300A, GA301. GA301A GB300, GB300A, GB301, GB301A Peak Current VS. Pulse Width GB300 Series Peak Current vs. Pulse Width GB300 Series ~1000 , - - - - - - - , - - - - - - , - - - - - - , ~1000 ....z Notes: 1. Based on On~State Voltage graph at T, 125°C. Blocking Voltage may be applied immediately after current pulse .... = z OJ '"'" ::J U 10/:~ termination. .5%, 2. Tc 75°C. OJ !;( 100 .... = ~ '"z '"'" 1 ::J U 5%_- '"L:i '"z > 10 '" '""> '" :::::: 20%-'" OJ o « ~ 10% "- 50%--"'" ~ >= >= OJ 0: '"0: >= -+_____-! OJ ....~ 100 .........-Duty Cycle = .1% or less ~ o Notes: 1. Based on Qn·State Voltage graph at T, = 125°C. Blocking Voltage may be applied immediately after current pulse termination. 2. TA = 75°C. _ _ _ OJ 10 5% 10% a. "OJ I I .1 .1 Tp - 10 PULSE WIDTH <"s) 50% J- 1 100 1 .1 Tp - 100 10 PULSE WIDTH ("s) III on-State Voltage VS. Current GA/GB300 Series Surge Rating GA/GB300 Series ~ ~1000 100 Notes, '"'" 0: ::J U 5: s"''" .... z OJ 0: 0: ::J U OJ 10 Z f- ~ 100 Non~Repetitlive Peak curr~ o 'L:ia." .... « .... 1. Blocking Voltage may not be applied for O.ls atter termination of surge pulse as junction temperature will ereed 125°C. 2. TA = 75°C. '" > '"z >= ~ 0 I 10 "- '"0: .: Z o z I .1 .1 VTM - 10 ON-STATE VOLTAGE (V) UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 1 .1 100 Tp - 10-49 10 PULSE WIDTH ("s) 100 PRINTED IN U.S.A. ID100-1 D106 SCRs .5 Amp, Planar FEATURES DESCRIPTION • • • • This Data Sheet describes Unitrode's line of hermetically sealed industrial SCRs designed for low-voltage, low-current sensing application. The 10100 Series is packaged in a TO-18 metal case with Unitrode's unique oxide passivated junctions, offering the highest degree of reliability and parameter stability for any device in its price range. Typical applications include lamp driving, relay driving, sensor, pulse-generating 'and timing circuits. Voltage Ratings: to 400V Maximum Gate Trigger Current: 200!,A Hermetically Sealed TO-18 Metal Can Planar Passivated Construction ABSOLUTE MAXIMUM RATINGS ID100 ID10l Repetitive Peak Off-State Voltage, VDRM . .. 30V ........ GOV.. Repetitive Peak Reverse Voltage, VRRM .. 30V .... 60V . On-State Current, IT 7S'C Ambient 100'C Case Repetitive Peak On-State Current, ITRM . Peak One Cycle Surge (Non-Rep.) On-State Current, I TSM Peak Gate Current, IGM . . ......... . Average Gate Current, IG(Av) .. . Reverse Gate Voltage, VGR .... . Storage Temperature Range . Operating Temperature Range H.H H • ID102 H •• ID103 100V.. . lS0V... 100V ..... lS0V H. ID104 ID105 ID106 . 200V. 200V. 300V 30ov. . ... 400V 400V 2S0mA O.SA. ••••••••••••••••••••••••••••••••• 6A .. '" up to 30A ... 2S0mA .. ... 2SmA ." . .. 6V.. .................................... ... -6S'C to +lS0'C -WC to +12S'C ........ H ••••••••••••••••••• H H ••• H •••••• ............ • MECHANICAL SPECIFICATIONS 10100-10106 A B C D INCHES .178-.195 DIA. 170- 210 5 MIN 209- 230 DIA. E .017 ± '88~ F G .020 MAX. 100:1:.010 DIA. g:~. H .041±.OO5 J .028-.048 10-50 TO-IS MILLIMETERS 4.52-4.95 DIA 431-5.33 1270 MIN. 531-5.84 DIA. .432 ± :8~~ 508 MAX 2 54t.254 DIA 1.O4±.127 711 1.22 ~UNITRODE 10100-10106 ELECTRICAL SPECIFICATIONS (at 25'C unless noted) Test Symbol Min. IDRM - Reversing Current IRRM - Gate Trigger Current IGT - Off-State Current Typical Max. Units Test Conditions 5.0 10.0 10 15 5.0 50 100 50 100 200 500 0.8 1.0 p.A p.A p.A p.A p.A p.A V V V V mA mA p's p's p's VDRM - Rating, RGK _ 1K, T _ 125'C, 10100-10104 VDRM Rating, RGK 1K, T 125'C, 10105-10106 VRRM - Rating, RGK - 1K, T _ 125'C, 10100-10104 VRRM Rating, RGK 1K, T 125'C, 10105-10106 VD - 5V, RGS 10K VD 5V, RGS 10K, T -40'C lOOn VD - 5V, RGS VD 5V, RGS lOOn, T -40'C lOOn, T 125'C VD 5V, RGS ITM 1 Amp Pulse RGK _lK RGK 1K, T -40'C IG 10mA, IT lA, VD 30V IT IR lA, RGK 1K, 10100-10104 IT IR lA, RGK 1K, 10105-10106 - 0.4 Gate Trigger Voltage - - 0.10 - - - 1.0 1.7 5.0 10.0 - 0.5 8.0 15.0 VGT Peak On-State Voltage VTM Holding Current IH Turn-on Time to, Circuit Com mutated Turn-off Time 0.55 tq - - - = = = = = = = = = = = = = = = = = = = = = = = = = = = = = Note: Blocking voltage ratings apply over the full operating temperature range, provided the gate is connected to the cathode through a resistor, lOaD ohms or smaller, or other adequate bias is used. Gate Trigger Current vs. Junction Temp. Gate Trigger Voltage vs. Junction Temp. 1.4 ~ ~ 1.2 I- UJ Z UJ ~ 0: 0: :J o (J > ~~""6 0: UJ '"Q 0: ~~ f-..~~_....: 0: I- UJ !< ~ =:::-:::.,..... IUJ I- :i.'" ..J ~ .6 -""" ~~ « '" 0.. .8 '" ii: -i l- I .2 I _1:ii-2 >ID -25 -65 TJ 0 25 50 75 100 125 ISO 0 -65 JUNCTION TEMPERATURE ('C) - -25 TJ 1000 g~ 20 ... _500 o~ !2: 10 1-..1. r-- :J (J '" z ;:; ..J o 1~=lKU :i - t-- t-- r- ----,..... J: .5 I _I .2 .1 RGK -25 T, - "- ~ O:UJ ..J« ~ Iii a:~ ~ 0 20 10 '" " " "' "\ "- '" b "'- I~ r-.. ......... 125 150 . UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 b l RGK -25 TJ 10-51 = Rjted~fRM = 10011 RGK I"- ~= 1 -65 JUNCTION TEMPERATURE ('C) Vo "t'--. ,,0: 100 ISO RGK - >- 75 125 i"-- r'-.:---,lKD _.", 50 100 . . . . t'--. :CUJ 25 75 ~ ...... r-, (JI- = 10Kn I~ .05 -65 - ~ ~ 100 t: ~ SO r---- ............ (J ii: i:: ~ ~200 ~~ - 100!! 50 dv/dt vs. Junction Temp. 50 RGK - 25 JUNCTION TEMPERATURE ('C) - Holding Current vs. Junction Temp. 0: 0: Vo = 6V ~ t.:S r..;:: .4 (J ii: > I- > UJ .;;:::. Rated Vo - 25 50 75 100 lOKn l I 125 150 JUNCTION TEMPERATURE ('C) PRINTED IN U.S A 10100-10106 Gate Pulse for Turn-On vs. Pulse Gate Current 10 1. IT = lA, Vo \ ~~ :>- 2. T, "\ :;;z -0 z· -z :;;0: ..J::> «I- .5 (Jo: ~~ 1-., .2 I~ -::> .1 "I- .05 go. -., ~C3 = Circuit Commutated Turn-Off Time VS. Junction Temp. 100 Rated v~ .1 \, -::::- 10105, 106 " " ....... .2 .1 .05 .1 .2 .5 2 10 iG - PULSE GATE CURRENT (rnA) 20 -65 10 VI Z 0 .5 ::> ., .2 I .01 0.1 0.2 VT - 1 0.5 50 75 100 125 150 .50 (J .20 I« I- .10 "! " ., .,'" .05 « 0: > « .02 I ~ I .02 25 JUNCTION TEMPERATURE (OC) 0 1I I .: .05 - z I .1 v 0: 0: lL 0: 0: S I- .,z jI I- (J ~ is ~ 25°C ~/;:-l125od .,Z ::> \1" Current VS. Power Dissipation 1 TJ -25 TJ Current vs. On State Voltage ., • 'l '\.p..., \.q.. ,,"'........... 1"- .02 ~ ~ \1', J"-.- .01 .01 .02 . "'" '\.p...,~\1- ~~~ "'- . ! ~'" ~~~"'~' = 25°C 1.0 _2.0 5.0 10 TYPICAL ON-STATE VOLTAGE (V) UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 .01 ~--+-----+----t--~----~----r---~ .005 L----L-----'----.J.---'------,L---c'::----=" .01 .02 .05 .10 .20 .50 1.0 2.0 W- MAXIMUM ON-STATE POWER DISSIPATION (W) 20 10-52 PRINTED IN U.S.A. SCRs 10200-10203 10300-10301 1.6 Amp, Planar FEATURES DESCRIPTION • • • • This Data Sheet describes Unitrode's line of hermetically sealed industrial SCRs designed for high-voltage, medium-current control applications. The Series is packaged in a TO-39 metal case with Unitrode's unique oxide passivated junctions to ensure reliability and parameter stability. Typical applications include relay equipment, motor controls, process controllers and pu Ise generators. Voltage Rating: to 200V Max. Gate Trigger Current: 200I'A Hermetically Sealed Metal Can Planar Passivated Construction ABSOLUTE MAXIMUM RATINGS ID200 ID201 Repetitive Peak Off-State Voltage, VDRM . 50V Repetitive Peak Reverse Voltage, VRRM 50V . Non-Repetitive Peak Reverse Voltage, VRSM «5ms) 75V.... On-State Current, IT(RMS) 70'C Case 75'C Ambient Peak One Cycle Surge (Non-Repetitive) On-State Current, I TSM Repetitive Peak On-State Current, ITRM Rate of Rise of On-State Current, di/dt I't (for times> 1.5 ms) . Peak Gate Current, IGM Average Gate Current, IG(Av) . Reverse Gate Voltage, VGR .. Storage Temperature Range Operating Temperature Range ID202 ID300 ID203 ID301 ..... 300V ............ 400V l50V .... 200V ..... l50V ... 200V .. ...... 300V .............. 400V .. 500V 225V........... 300V ..... . ..... 400V.. lOW .... .... lOW. . l50V 1.6A .. 450mA .. l5A . up to 30A ... lOOA/l's O.83A's .. .. 250mA ... 25mA ... . ......... 6V .. . -WC to +150'C . ... -40'C to +11O'C ........................................... . MECHANICAL SPECIFICATIONS 10200-10203 B [ ClfcE l Il~ - --- AJ F Z 45' 10300-10301 mm CATHODE 305- 335 ~",3'/ 335-370 240-260 ,/ 020-030 GATE G 1270 MIN 5 MIN 017 ± gg~ 200 100 ANODE 775-851 851-940 635-660 25-76 03l:tOO3 029-045 100 10-53 432 ± TO-20SAD (TO-39) A g~~ 508 '54 79:1:08 74-114 254 ~UNITRDDE , I D200-1 D203, 1D300-1D301 ELECTRICAL SPECIFICATIONS (at 25'C unless noted) Test Symbol Typ. Max. Units - - 10 100 10 100 200 500 0.8 1.0 ",A p.A p.A ",A ",A ",A V V V V mA mA mA VDRM Rating, RGK lK, T 25'C VORM Rating, RGK lK, T 1l0'C VRRM Rating, RGK lK, T 25'C VRRM Rating, RGK lK, T llO'C VD 5V, RGS 10K, T 25'C VD 5V, RGS 10K, T -40'C VD 5V, RGS lOOn, T 25'C VD 5V, RGS lOOn, T -40'C VD 5V, RGS lOon, T 1l0'C IT 4 Amp Pulse, T 25'C RGK - lK, T 25'C RGK lK, T -40'C RGK = lK, T 1l0'C V/",s VDRM Off-State Current 10RM Reverse Current IRRM Gate Trigger Current IGT On-State Voltage VGT 0.4 0.5 0.2 Peak On - Voltage VTM - IH 0.3 0.4 0.2 Holding Current Off-State VoltageCritical Rate of Rise Turn-on Time Circuit Commutated Turn-off Time dv/dt t tq Test Conditions Min. - 5 10 0.52 0.7 0.7 - - 2.2 3.0 6.0 1.0 - - 40 20 ",s ",5 = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = Rated, RGK =lK, T =1l0'C IG =10mA, IT =I ,Vo =30V, T =25'C IT = iR =lA, RGK =lK, T =25'C Note: Blocking voltage ratings apply over the full operating temperature range, provided the gate is connected to the cathode through a resistor, 1000 ohms or smaller, or other adequate bias is used. UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (71'0),326-6509 ~ TELEX 95-1064 10-54 PRINTED IN U.S.A U13T1-U13T2 PUTs Planar, TO-18 Hermetic FEATURES DESCRIPTION • • • • • • The Unitrode hermetically sealed TO-18 metal can series of programmable unijunction transistors feature blocking voltages to 100V, the highest available to designers. These PUTs are functionally equivalent to standard unijunction transistors, with the added advantages of programming versatility. External resistors can be added to program ~, RBB , Ip and I" depending upon your design requirements. All units are fully planar passivated. This series features a hermetically sealed TO-18 package for optimum reliability in all environmental conditions. Applications include pulse and timing circuits, SCR trigger circuits, relaxation oscillators, and sensing circuits. For further application information see Unitrode's Application Note U-66. Voltage Ratings: to 100V Maximum Peak Current: 150nA Valley Current: as low as 25 p.A Low Forward Voltage Drop Nano-Amp Leakage Hermetically Sealed TO-IS Metal Can ABSOLUTE MAXIMUM RATINGS 40V .40V Anode-to-Cathode Forward Voltage, VAK Anode-to-Cathode Reverse Voltage, VAKR Gate-to-Cathode Forward Voltage, VGK Gate-to-Anode Reverse Voltage, VGAR . Gate-to-Cathode Reverse Voltage, VGKR Peak Recurrent Forward Current 10 P.s 1% Duty Cycle . 100 p'S 1% Duty Cycle Power Dissipation 25'C Ambient Derating Factor Storage Temperature Range Operating Temperature Range 40V 40V 5V .. 8A ..5A .400mW 3.2mW/'C -55'C to +150'C . -55'C to +150'C MECHANICAL SPECIFICATIONS U13T1·UI3T2 A S C D E GATE CONNECTED TO CASE INCHES 178-.195 DIA. 170-.210 .5 MIN. .209-.230 DIA. .017 ± :~~ 81~' F G H .020 MAX 100:1:.010 DIA. J 028- 048 .041:1: 005 10-55 TO-IS MiLlIMETERS 4.52-4.95 DIA. 4.31-5.33 12.70 MIN. 5.31-5.84 DIA. .432 ± :~~ .508 MAX 2.54::1:.254 DIA 1.04:1: 127 .711-1.22 ~UNITRODE U13T1·U13T2 ELECTRICAL SPECIFICATIONS (at 25°C unless noted) U13T2 U13Tl Symbol Fig. Min. Max. Min. Max. Units Peak Current Ip 1 S 2 - 1.0 O.1S p.A p.A Valley Current Iv 1 70 - 2S - 25 p.A p.A Test - SO - Vr 1 0.2 0.2 0.6 1.6 0.2 0.2 0.6 0.6 V V Gate-to-Anode Leakage IGAO 2 10 100 nA nA I GKS 3 100 nA Forward Voltage VF 4 - 10 100 Gate-to-Cathode Leakage - loS V Vo S 6 tr S Offset Voltage Pulse Output Voltage Pulse Output Rate of Rise - 100 1.S - :L V 80 nS 1 VF 2 Vv Ip Iv IF c) Characteristic Curve b) Equivalent Test Circuit a) Typical Circuit vT =vp -vs Vs :=.V=~ s R +R R2 - v, G Vs C - 80 0:: 'E~]' A 6 Test Conditions = 10k, V, = lOY =1 Meg. RG = 10k, V, =10V RG =1 Meg. RG = 10k, V, = lOY RG = 1 Meg. T =2SoC, V, = rating T = 7SoC V, = rating IF = SOmA RG RG Figure 1 T~ 1:-1 Figure 2 Figure 4 Figure 3 +20V R, 16K Vs 6V R, 27K .6V ~=:...:..c _ _ _ _ _ _ _-+ Figure 5 UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95-1064 10-56 PRINTED IN U.S.A. SWITCHING & GENERAL PURPOSE DIODES 11-1 III 11-2 PRODUCT SELECTION GUIDE SWITCHING AND GENERAL PURPOSE DIODES I SWITCHING Type Reverse Voltage (V) Average Forward Current (mA) IN4453 IN4154 11'1251* IN4152 IN445Q IN4451 'lN4452 .·lN4444 IN3064"* IN4532*"" IN4534*** 1N4151 IN4153!"· 11'44305 .. 11'44446 IN4447 iN4448 IN4449 , IN3600 lO ** IN4149 ....••. IN41S0""" IN4454*** IN4500***; IN4607 IN662* IN663* ., ,'. ··11'1914""*, lN4S31*iIo* . IN4148***"" IN3Q70**> lN493S"''"' " 30 35 40 40 40 40 40 70 75 75 75 75 75 75 75 75 75 75 75 75 75 75 80 85 100 100 100 100 100 200 200 200 150 75 150 200 200 200 200 75 125 150 150 150 150 150 150 150 150 200 200 200 200 300 400 40 40 75 125 200 100 150 . Forward Voltage (V) .51·.63 @ O.lmA 1.0 @ 30mA 1.0 @ 5mA .49-.52 @ O.lmA .42-.54 @ O.lmA .4-.5 @ O.lmA .42-.54 @ O.lmA .44-.55 @ O.lmA 1.0 @ 10mA 1.0 @ 10mA .74-.88 @ 20mA 1.0 @ 50mA .49-.55 @ O.lmA .5-.575 @ .25mA 1.0 @ 20mA 1.0 @ 20mA 1.0 @ 100mA 1.0 @ 30mA .54-.62 @ lmA 1.0 @ 10mA .54-.62 @ lmA 1.0 @ 10mA .64-.72 @ lOmA 1.1 @ 400mA 1.0 @ 10mA 1.0 @ 100mA 1.0 @ 10mA 1.0 @ 10mA 1.0 @ 10mA 1.0 @ 100mA 1.0 @ 10mA Reverse Recovery Time (os) .. Junction Capacitance (pF) 2 150 2 4 10 50 7 4 4 4 2 2 2 4 4 4 4 4 4 4 2 6 10 500 500 5 5 4 50 50 30 4 2 4 6 30 2 2 2 2 2 2 2 4 2 4 2 2.5 2 2.5 2 4 4 3 3 4 4 4 5 5 Ell GENERAL PURPOSE . 'Reverse Voltage Type lN456 IN457* .- IN483B** 11'1458* IN3595*** IN459* lN643* IN485B** IN64S .... IN647 .... " Average (V) Forward . Curretlt ; (rnA)· 30 70 80 150 150 200 200 200 270 480 90 75 200 55 150 40 40 200 400 400 .' " Forward Voltage N) 1.0 @40mA 1.0 @20mA 1.0 @ 100mA 1.0 @7mA .83-1.0 @ 200mA 1.0 @ 3mA 1.0 @ 10mA 1.0 @ 100mA 1.0 @400mA 1.0 @400mA Reverse '. Recovery Junction , rime.;,.,' .Capacita!'lce . 2 ~ 10 ~ 5 fZ 2 I 1.0 U = +175"C >/ Typical Reverse Voltage vs. Reverse Current II 1/ / V II .1 I .2 .3 .4 005 00 1 02 TJ = 25"C ~ 100"C IX: IX: ~ I-- -- ./ => ~ .s W 1.0 ~ 1.-1- I .!!' I -- 100"C f- -- V 10- 10 20 -- J - -175"C IX: ;.:::;; 50 100 280 260 240220200180 160 140 120 100 80 60 40 20 0 9 1.01.1 1.2 1.314 1.5 FORWARD VOLTAGE (V) UNITRODE CORPORATION" 5 FORBES ROAD LEXINGTON, MA 02173 " TEL. (617) 861-6540 TWX (710) 326-6509 " TELEX 95-1064 ./ I 05 1 U I .8 l.-- 1- J .5 .6 .7 VF - ~ 25"C / I j V I _ -65"C / 1/ !/ II I .1 II /~ f-I- _ / / ..!.L .Ij "j 'I f-;- 30V 70V 150V 200V 0.00 1 002 Y:: ~A' TJ ;:- 100 t-t-Z W 5 @100~ 5~@ 25V 60V 125V 175V Typical Forward Voltage vs. Forward Current 1000 Peak Reverse Voltage Reverse Current @TA = 150·C VR - REVERSE VOLTAGE (V) 11-7 PRINTED IN U.S.A. • DIODE JAN & JANTX 1N483B JAN &JANTX IN485B General Purpose Low Current FEATURES DESCRIPTION • • • • • This Series is useful In low current rectifying applications for military, industrial and commercial equipment. Metallurgical Bond Qualified to MIL-S-19500/118 Planar Passivated Chip D0-7 Package Non-JAN Available ABSOLUTE MAXIMUM RATINGS, AT 25'C 1N483B 80V 70V Reverse Breakdown Voltage Peak Working Voltage 1N485B 200V 180V = = Average Output Current @ TA 25'C .. .................... ............ 200mA TA 150'C ............................ SOmA Current Derating 1.2 mAdc/'C from 25'C to 150'C and 1.0 mAdc/'C from 150'C to 200'C ................................ 2 Amps Surge Current, 8.3mSec .................................... Operating Temperature Range . -65'C to +200'C Storage Temperature Range. ........ -65'C to +200'C MECHANICAL SPECIFICATIONS J & JTX 1N483B, 1N485B A =~II h* Tr- -t-c--j B A B C D 12179 INCHES 085 - .125 .230 - 300 10 MIN 018 - .022 MILLIMETERS 2.16 - 3.17 5.84 - 7.62 2540 MIN. .46 - .56 11-8 O::D _UNITRODE JAN & JANTX 1N483B & 1N485B ELECTRICAL SPECIFICATIONS (at 25°C unless noted) Forward Voltage @ l00mAdc, 8.Smsec dc=2% MAX. Reverse Reverse Reverse Type Current @2S'C Current @25'C Current @ lSO'C 1N483B 1N485B 25nA@70Vdc 25nA @ 180Vdc 100 I'A(pk) @ 80V(pk) 100 I'A(pk) @ 200V(pk) 5.0 I'A @ 70Vdc 5.0 I'A @ 180Vdc 1.0V(pk) Reverse Voltage vs. Reverse Current Forward Voltage vs. Forward Current 1000 /- ;,-'AA V; "/ A =< .§ 100 f- f- TJ f- Z II UJ / 10 I II 0: ~ a: o -" .1 f- II / V I / 05 01 .2 z uJ 0: 0: loboc ::J u I k-" - f-- 1.0 > UJ 2 UJ ./ f-- f- l- I ) 175'C 10 20 ~ f - 1--- - V ..,/ 50 100 140 130 120 liD 100 90 80 70 60 50 40 30 20 10 0 V, - REVERSE VOLTAGE tV) I (O~ ---l.~ .-1- e- 0: .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 1.1 1.2 1.31.4 1.5 V, - FORWARD VOLTAGE tV) Production Process 1. Raw Material 2. Factory Processing --..,/ 100'C .5 UJ 0: -" 1 f I ./ = 25'C "''" 0.1 .2 -" 10 20 ~ / I -I ---l~. f-- L 100'C -- --- .5 1.0 V f,.--- L 17S'C 5 - _I- ..- , / ' I- 50 100 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 V. - REVERSE VOLTAGE (V) (% OF PIV) J .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 1.1 1.2 1.31.4 1.5 V, - FORWARO VOLTAGE (V) Production Process 1. Raw Material 2. Factory Processing z ./ I--- i--- I () II / II .02 -'I-" II 1/- f---f r- 2S'C II ~ I T J =25'C 0.01 f- r- -6S'C V I .005 Vj I I Z ~ 0.001 .002 /. v. A 1000 Inspection Lot Formed at Final Assembly Operation *100 Percent Process Conditioning 1. High-Temp Storage 2. Temp Cycling 3_ Hermetic Seal Tests - *100 Percent Burn-In Inspection Tests to Verify LTPD Group A Group B 1. Measurement of ... Specified Parameters 2_ Burn-In 3_ Measurement of Specified Parameters to Determine Delta --- *Order of the tests in the blocks shall be performed as shown. Order of procedure diagrams for TX types only. UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 11-13 PRINTED IN U.S.A. II COMPUTER DIODE JAN, JANTX, IN914 JAN, JANTX, JANTXVIN4148 JAN, JANTX, JANTXV IN4148-1 JAN, JANTX, JANTXV IN4531 General Purpose Switching FEATURES· DESCRIPTION • • • • • This series is very popular for general purpose switching applications in electronic equipment Metallurgical Bond Qualified to MIL-S-19500/116 Planar Passivated Chip . DO-34 or DO-35 Package Non-JAN Available ABSOLUTE MAXIMUM RATINGS, AT 25°C Reverse Breakdown Voltage ................................................. 100V Peak Working Voltage ........................................................ 75V Average Output Current, IN914 .......................................... 75mAdc IN4148 ....................................... 200mAdc IN4148-1 ..................................... 150mAdc IN4531 ....................................... 125mAdc Surge Current, 8.3ms ................................................... 500mA Operating Temperature Range ................................... -65°C to + 175°C Storage Temperature Range ..................................... -65°C to +200°C MECHANICAL SPECIFICATIONS J, JTX IN914 J, JTX, JTXV IN4148 J, JTX, JTXV IN4148-1 J, JTX, JTXV IN4531 A ..L D =911 ~=rF T~ --+- c--l B J.JTX IN914 J JTX & JTXV IN4148 ·1 J JTX & JTXV IN4531 INCHES INCHES MILLIMETERS .045 - 065 1.14 - 1.65 A 056 - .075 1.42 - 1.90 B .080 - 110 2032-279 B .140 - .180 355 - 4 57 C D 4/82 MILLIMETERS A 10 MIN. .018 - .022 25.40 MIN. C .46 - .56 D 1.0 MIN .018 - .022 25.40 MIN .46 - 56 11-14 ~UNITRDDE J, JTX lN9l4 J, JTX, JTXV, lN4l48-lN4l48-l J JTX JTXV 1 N453l ELECTRICAL SPECIFICATIONS (at 25'C unless noted) Peak Reverse Reverse Current @2S'C Reverse Current @2S'C 25nAdc @ VR = 20Vdc 5.01lAdc @ V.=7SVdc Foward Forward Reverse Forward Voltage Recovery Recovery Recovery Voltage Time Time Capacitance 20ns @ IF = 50mAdc 5ns @ IF= IR=lOmA Rl = 100 ohms VR=OV, f= 1 MHz V'ig = 50mV (pk-pk) @2S'C Reverse Current @lSO'C Reverse Current @l50'C lOOIlA (pk) @ VR = 100V (pk) 50llAdc @ VR =20Vdc lOOIlAdc @ VR= 75Vdc Current 4.0 pF@ S.OV (pk) @ IF=50mAdc 1.0Vdc @ IF = 10mAdc 2.8 pF@ VR= 1.5V, f = 1 MHz V,;g = SOmV (pk-pk) Reverse Voltage vs. Reverse Current Forward Voltage VS. Forward Current 0.001 ..-.-.-.-,-...,.---r-o"-T--r---,r-r-.--v--, .002I-H-1I-+--+1+-1-j--t-IIH-1-:;;o/ u 125mA-- r'\i\ Cl 0: ;: .s<- 75 ::> ..'" 2pF @ VR : 0 Vdc, f: 1 MHz Vsig : 50mV (pk to pk) Average Rectified Current vs. Ambient Temperature for lN4454,·1 and lN4532 Average Rectified Current vs. Ambient Temperature for lN3064 <- Capacitance 4ns @ IF : I. : 10mAdc RL : 100 ohms c:=; 3pF 11-17 PRINTED IN U.S A. COMPUTER DIODE JAN, JANTX IN3070 JAN, JANTX IN4938 Switching FEATURES • Double-plug Construction • Qualified to MIL-S-19500/169 • Available in 00-7 or 00-3.5 package DESCRIPTION Double-plug construction affords integral positive contact by means of a thermal compression bond. Moisture free stability is ensured through hermetic sealing. The coefficients of thermal expansion of the glass case and the dumet plugs are closely matched. Hot solder dipped leads are standard. ABSOLUTE MAXIMUM RATINGS, AT 25°C Reverse Breakdown Voltage _................................................... 200V Steady-State Forward Current at (or below) 25°C Free Air Temperature .......... 150mA Peak Surge Current, lsec ..................................................... 500mA Peak Surge Current, lms ......................................................... 2A Continuous Power Dissipation at (or below) 25°C Free Air Temperature ........ 250mW Operating Temperature Range ...................................... -65°C to +200°C Storage Temperature Range ........................................ -65°C to +200°C MECHANICAL SPECIFICATIONS J, JTX IN3070 J, JTX IN4938 A J.. D =~ II ~=r~= TI- 8 -+- C'-1 J JTX lN4938 INCHES INCHES A 065 MAX 165 MAX A 8 .155 MAX. 394 MAX. 8 C 0 4/82 J JTX lN3070 MILLIMETERS 1.0 MIN 020 254 MIN 0.51 C D MILLIMETERS 0.085 MAX. 2159 MAX .180 - 0.220 10 MIN 4.572 - 5 588 25.4 MIN. 018 - 0022 0457 - 0.559 11-18 ~UNITRDDE JAN, JANTX IN3070 JAN,.JANTX IN4938 ELECTRICAL SPECIFICATIONS (at 25°C unless noted) Type IN3070 IN4938 Maximum Reverse Current @25°C @ 150°C Maximum Forward Voltage Maximum Capacitance Maximum Reverse Recovery Time IVdc @ IF = 100mAdc 5pF @ V. = 0, f = IMHz 50ns @ IF = 30mA I. = 30mA I.Ec = ImA 100pAdc @ 175Vdc O.lpAdc @ 175Vdc Steady-State Current vs. Free Air Temperature 180 :< &150 I"~ I- iE '"'" 120 u :::l '\ D ~ ~ 90 fi: '" I- >'" "! 60 > D ;:5 ~ J, 30 o o 25 50 " '" 100 '\'\. 150 '" III 200 T,-FREE AIR TEMPERATURE C'C) UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 11-19 PRINTED IN U.S.A. JAN, JANTX, JANTXV IN3595 COMPUTER DIODE 150 rnA, Switching DESCRIPTION A very useful device for medium current switching applications_ FEATURES • Metallurgical Bond • Qualified to MIL-S-19500/241 • Planar Passivated Chip • 00-7 Package • Non-JAN Available ABSOLUTE MAXIMUM RATINGS, AT 2SoC Peak Reverse Voltage ____ . _..... _.. _.. _............. _................ __ .. _..... _.. _........ __ .................. 125V Reverse Breakdown Voltage ..... _.............................................................................. 150V Average Output Current ....................................................................................150mAdc Surge Current, 15 ............................................................................................500mA 1j15 ...............................................................................................4A Operating Temperature Range ...................................................................... -65·Cto +150·C Storage Temperature Range ........................................................................ -65·Cto +200·C MECHANICAL SPECIFICATIONS JAN, JANTX, JANTXV 1N3S95 00·7 A ..l.. D =~II ~* Tr-- B --t-C-j A B C D 12/79 INCHES .092 - .130 .130 .300 1.0 -1.5 018 - .022 MILLIMETERS 2.37 - 3.30 3.30 7.62 2540 - 38.10 46 - .56 11-20 ~UNITRODE JAN, JANTX, JANTXV IN3595 ELECTRICAL SPECIFICATIONS (at 25°C unless noted) VF, IF = 100mAdc Limits VF, IF = 200mAdc Min 0.83Vdc O.79Vdc Max 1.00Vdc O.92Vdc Limits lA, VA = 125Vdc lA, VA = 30Vdc TA = 125'C Min Max 1.0nAdc VF• IF = 10mAdc VF, IF = 5mAdc VF, IF = 1mAdc O.74Vdc O.65Vdc O.60Vdc O.52Vdc 0.88Vdc O.80Vdc O.75Vdc O.68Vdc lA, VA = 125Vdc IA. VA = 125Vdc C VA = OVdc trr IF = 10mAdc TA = 125'C TA = 150'C f = 1MHz VA = 35Vdc VF, IF = 50mAdc - O.3~dc - O.5~dc 3.0~dc - - 8.0pF 3.0"S Typical Reverse Voltage vs Reverse Current 0.001 .002 ~ t- z OJ !to !to ::l u r .005 0.01 .02 TJ = 25°C I I .05 0.1 .2 - - 100o~ .5 1.0 !to I - .E; 10 20 V ./ l- I- 'OJ ffiG:; I.d"""J .- III J 17;C~ ~ - 50 100 280 260 240 220 200 180 160 140 120 100 80 60 40 20 0 VR - REVERSE VOLTAGE (V) UNITRODE CORPORATION· 5 FORBES ROAD LEXI NGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95·1064 11-21 PRINTED IN U.S.A. COMPUTER DIODE JAN, JANTX & JANTXV IN3600 JAN, JANTX & JANTXV IN4150 JAN, JANTX & JANTXV IN4150-1 200mA Low Power, Switch ing FEATURES • Metallurgical Bond • Qualified to MIL-8-19500/231 • Planar Passivated Chip • 00-7 or 00-35 Package • Non-JAN Available DESCRIPTION This series of switching diodes is useful in many computer switching applications, for both military and commercial systems. ABSOLUTE MAXIMUM RATINGS, AT 25·C Reverse Breakdown Voltage .................................................................................................... 75V Peak Working Voltage .............................................................................................................. SOV Average Output Current .................................................................................................... 200mA Surge Current (lsec) ................................................................................................................ O.5A (ll'sec) ... .... .... ......... ..... .... .... .... .... ... ......... ..... ...... ... ..... ...... ................ ... ..... ...... 4.OA Operating Temperature Range .................................................................. -65·C to +175·C Storage Temperature Range ...................................................................... -65·C to +200·C MECHANICAL SPECIFICATIONS J, JTX & JTXV1N3600 J, JTX & JTXV 1N4150, 1N4150-1 A --1.. D =1111I- ---+-l===r* C --j B INCHES A B C D 12179 .078 - .107 .195 - .300 1.0 MIN. .018 - .022 INCHES MILLIMETERS 1.98 - 2.72 4.95 - 7.62 25.40 MIN. .46 - .56 A B C D .056 - .075 .140 - .180 1.0 MIN. .018 - .022 MILLIMETERS 1.42 3.55 25.40 .46 11·22 -1.90 - 4.57 MIN. - .56 ~UNITRDDE JAN, JANTX & JANTXV IN3600, IN4150 & IN415!l-1 ELECTRICAL SPECIFICATIONS (at 25°C unless noted) Reverse Breakdown Characteristics Forward Voltage Forward Voltage Forward Voltage Forward Voltage Forward Voltage Voltage VF4 IF=100mAdc (pulse) Vf§ IF=200 mAdc (pulse) BV IR = 5.0 I'Adc 0.820Vdc 0.920 Vdc 0.870Vdc 1.00Vdc Reverse Reverse Recovery Time Recovery Time Conditions VF, IF=l mAdc VF2 IF=10 mAdc VF3 IF =50 mAdc (pulse) Minimum Maximum 0.540 Vdc 0.620Vdc 0.660 Vdc 0.740Vdc 0.760 Vdc 0.860 Vdc Characteristics Reverse Current Reverse Current Junction Capacitance Conditions IR VR=50Vdc I. V.=50Vdc TA = 150°C C V.=O F=l MHz V,;g = 50 mv (p-p) Maximum O.1I'Adc 100l'Adc 2.5 pf t rr , 4 nsec g 100 I< 50 '"~ 20 <.> 10 0: 5 ~ 2 ~ o « ~ I _" .5 .2 .1 r-I- o() o() l~fJ! r-.&J~J 1Il/i?II Ii I j- -I- II I-r-I- t r-I- ~ ~ ffi ! il 10 nsec .005 ~ -J5·c'b......,F..J.-.-=t---tI--t-t-tT1 om HHH-+ri-==+-+-·2S.b !--: ~ .02 t-HH'7't-+--+,~-+I--:P--t'9--t--t--t­ E .05 t-H-I'-t-,J,...-'f----+-+-+--+--t--t--t0::: 0.1 e-f-HI-7I<::...f-+-+--+-+-+-+-+-+-! 1 - - II 6 nsec 0.001 r-r-lr-1r-1-r-r-,--,--,-,-,-,"T"'1 .002 L v V t( __ I- 1--1--! '/ t f, IF = 200 mAde; tp = 100 nsec; t,=0.4 nsec trrz Reverse Voltage vs. Reverse Current Typical Forward Current YS Voltage 500 - Forward Recovery Time IF=I.= IF=I.= 10 to 200 mAdc; 200 to 400 mAdc; RL = 100 ohms RL = 100 ohms 1000 :;: 200 75Vdc j;j .2t-H~--t-+--+-+-+-+--+--t--t--tI/~ r- .5r-~~H-+-+-t-t-r-r-r-t-~ J2 fL 1.0f-I-L f+-I+-+-+--H-+-+-I00 0: I I ~I-~t-fl r r- I- S°hJ;:;JW~n*-:t~t.J...-'w t). '-- _-'-_1 100 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 1.1 1.2 1.31.4 1.5 140 130 120 110 100 90 80 70 60 50 40 30 20 10 VR - REVERSE VOLTAGE (V) (% OF PIV) v,- FORWARD VOLTAGE (V) Inspection lots lots proposed for formed at final assembly operation I~ non-TX (sealing) types I..... 10~~~~-+--t-T-~-+-+-+--t-~ 20 r-1It'l+tH-+-+-t-t-r-t--175'c-~ Review of Inspection tests to verify lTPD Groups A and B I~ data for Group A accept or reject Group B 1-+ 0 Non-TX Preparation for Delivery t , lots proposed for "TX"types 100 Percent burn-in* (reverse and forward bias tests) 1. Measurement of specified parameters 100 Percent process conditioning* 1. High-temp storage 2. Therma I shock (glass strain) 3. Acceleration 4. Hermetic seal tests .... 2. Reverse bias 3. Measurement of specified parameter to determire delta 4. Forward bias 5. Measurement of specified parameters to determine delta 6. lot rejection criteria based on rejects from the Reverse and Forward bias tests. t Review of Group Aand B data for lot accept or reject iTX Preparation for Delivery Order of procedure diagram for non-TX and "TX" types. UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95·1064 -. Inspection tests to verify lTPD Group A Group B 11·23 PRINTED IN U.S.A Ell Switching IN4149, IN4151, IN4154 IN4446, IN4447, IN4448 IN4449 FEATURES • Metallurgical Bond • Planar Passivated • DO·35 DESCRIPTION This series offers Metallurgical Bonding and is very popular for general purpose switching applications. COMPUTER DIODE ABSOLUTE MAXIMUM RATINGS, AT 2SoC 1N4149 1N41S1 1N41S4 1N4446 1N4447 1N4448 1N4449 Peak Reverse Voltage ............... 75V ........ 75V ........ 35V ........ 75V ........ 75V ........ 75V ........ 75V ....... . Average Rectified Current ............................................... 200mAdc .................................. . Surge Current, 8.3 mS .................................................... 500mA .................................. .. Operating Temperature Range ...................................... - 65'C to + 150'C ............................... . Storage Temperature Range ........................................ - 65'C to + 200'C ............................... . MECHANICAL SPECIFICATIONS 1N4149, 1N41S1. 1N41S4, 1N4446. 1N4447. 1N4448 1N4449 DO·3S A ....L D =911 p=* Tf- B+C-.j 12/79 A B C D INCHES .065 .155 10 MIN .020 MILLIMETERS 165 3.94 25.4 MIN. .51 11·24 ~UNITRDDE lN4149, lN4151, lN4154 lN4446, lN4447, lN4448 lN4449 ELECTRICAL SPECIFICATIONS (at 2S'C unless noted) Forward Voltage Type Peak Inverse Voltage @ 10mA 1 N4149 75 1.0 - 1N4151 75 - 1N4154 35 - 1.0 - 1N4446 75 1.0 75 1.0 - - 1N4447 1N4448 75 - - - 1N4449 75 - - @20mA @ 30mA -- @ SOmA 1.0 @ 100mA - S- Z w a: a: u / ::> ~ / 10 / i~ I V TJ = +17S·C 100 I 10 _LL Lt' 1 .1 .2 I'- V l£- f t-- 50 4pF 4nS 50 4pF 2nS 25 100 4pF 2nS 25 20 50 4pF 4nS 20 25 20 50 4pF 4nS - - 1.0 20 25 20 50 4pF 4nS 1.0 - - 20 25 20 50 2pF 4nS Typical Reverse Voltale 0.001 .002 lf- c- -6S·C / .02 V Z .05 w a: 0.1 a: 2S·C 100·C ::> U I .2 j J i[ 3 .4 5 .6 .7 I I---' I-"" / 20 II 8 .9 1.0 1.1 1.2 1.3 I 4 1.5 ,/ _ I /I H17S·C v VR - 11-25 III ..... L I V Hj - ,/ I- 140 130 120 110 100 90 80 70 60 so 40 30 20 10 FORWARD VOLTAGE IV) UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6S09 • TELEX 95-1064 :.- .... f"'" j 10 so 100 - - 100·C I ~ 1'1 2slc Reverse Current :I w .5 a: 1.0 w > w a: (/) / / i/ VI. iJ =' +Js·c' .005 _ 0_01 I II VF - 20 50 20 :;.-....-: ~ ~ V 25 50 25 100 Typical Forward Voltage vs Forward Current f- 20 50 - 1000 < Reverse Reverse Junction Recovery Current @ 1S0·C Capacitance Time @ OV VRiA tRR Reverse Current VRnA 0 REVERSE VOLTAGE IV) PRINTED IN U.S A IN4152, IN4305, IN4444 COMPUTER DIODE Switching FEATURES • Metallurgical Bond • Planar Passivated • 00·35 Package DESCRIPTION This series offers Metallurgical Bonding and is very popular for general purpose switching applications. ABSOLUTE MAXIMUM RATINGS, AT 2S'C 1N41S2 1N430S 1N4444 Peak Reverse Voltage ................................................................................................................................. 40V ............ 75V ............ 70V ..... . Reverse Working Voltage ........................., ................................................................................................. 30V ............ 50V ............ 50V ...... . Average Rectified Current ........................................................................................................................................... 200mAdc, ...................... . Surge Current, 8.3 mS .................................................................................................................................................... 500mA ...... :................. . Operating Temperature Range ........................................................................................................................... -65'C to +150'C .............. . Storage Temperature Range ............................................................................................................................... - 65 'C to + 200 'C .............. . MECHANICAL SPECIFICATIONS 1N4152, 1N4305, 1N4444 00·35 A ..1. D =~II ~=* Tf--B -t-c-~ INCHES A B C D 12/79 .065 MAX 155 MAX, 10MIN, ,020 MILLIMETERS 1.65 MAX . 3,94 MAX, 25,40 MIN, 51 11·26 ~UNITRODE IN4152, IN4305, IN4444 ELECTRICAL SPECIFICATIONS (at 25·C unless noted) Forward Voltage @ O.1mA Peak Inverse Voltage (V) Type Forward Voltage @O.25mA Forward Voltage @ 1.0mA Forward Voltage @2.0mA min max min max min max min max Forward Voltage @10mA min Forward Voltage @20mA Forward Voltage @100mA max min max min max 1N4152 40 0.49 0.55 0.53 0.59 0.59 0.67 0.62 0.70 0.70 0.81 0.74 0.88 - - 1N4305 75 - - 0.505 0.575 0.55 0.65 0.61 0.71 0.70 0.85 - - - 1N4444 70 0.44 0.55 - 0.56 0.68 - - 0.69 0.82 - - Reverse Current @ 150·C VR ~ Reverse Current Junction Capacitance @ OV Reverse Recovery Time t" Type VR (nA) 1N4152 30 50 30 50 2pF 2nS 1N4305 50 100 50 100 2pF 2nS 1N4444 50 50 50 2pF 7nS 50 «E 2 ;::- 100 Z w 5 :;J 2 0: 0: U o 0: « ~ o lL I _lL 0001 002 ~r-+--J,iV) -!,-UtP;!:/~16S~lI I I I rl J V /' f , il 10 5 / 2 10 / 5 / '1 .1 I / ,f .2 .3 .4 / 1 I I 5 .6 .7 ~ I ! w I I V .5 w > W 1.0 I _0: -- ./ V I I I-- V -I 10 I / 17S'C _ -- J......t'""' I ",£ f- 50 I-100 140 130120110 100 90 80 70 60 50 40 30 20 10 I V F -- FORWARD VOLTAGE (V) V R -- REVERSE VOLTAGE (V) (% OF PIV) 11-27 III V : II 20 I I I I I-- I-- 100'C I 1 ...--r --I / 0: 9 1.01 1 12 1314 1.5 UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173· TEL. (617) 861-6540 TWX (710) 326·6509 • TELEX 95-1064 en 0: ! : i : I 8 05 01 U : , 1.0 ./ 2S'C :;J I I I --- 02 0: 0: t- = -6S'C 001 IZ W , i II II - 1- , --r--;---+-i100'C -I. +-t-+-- r-- r005 r- r-TJ / ~2S'C' 0.85 Reverse Voltage vs. Reverse Current Forward Voltage vs. Forward Current 1000 - PRINTED IN U.S A. 0 JAN, JANTX & JANTXV IN4153 JAN, JANTX & JANTXV IN4534 COMPUTER DIODE 150mA Switching Diode DESCRIPTION FEATURES • Metallurgical Bond • Qualified to MIL-S-19500/337 • Planar Passivated Chip • DO-34 or DO-35 Package • Non-JAN Available This device is particularly suited to applications where tightly controlled forward characteristics and fast recovery time are important. ABSOLUTE MAXIMUM RATINGS. AT 25°C Reverse Breakdown Voltage ________ ........................................... 75V Peak Working Voltage ......................................................... 50V Average Output Current* ................................................... I50mA Surge Current. Ills ........................................................ 2.0A Operating Temperature Range ................................... _ -65°C to +200°C Storage Temperature Range ...................................... -65°C to +200°C "Derate O.86mAdc1"C for TA above 25°C. MECHANICAL SPECIFICATIONS J. JTX & JTXV lN4153 J. JTX & JTXV lN4534 A ..L 11 r==r{= =11I-B+C-j 0 J- JTX & JTXV lN4534 A B C 0 4/82 INCHES 050 065 .080 - .120 10- 15 .018 - .022 MILLIMETERS 127 - 1.65 203-3.05 254-381 .46 - 56 A B C D J JTX & JTXV lN4153 MILLIMETERS INCHES 056 - .075 142 - 1.90 140 - 180 3.55 - 4 57 2540 MIN 1.0 MIN 46 - .56 .018 - .022 11-28 [1J] UNITRODE J, JTX & JTXV 1N4I53 J, JTX & JTXV IN4534 ELECTRICAL SPECIFICATIONS (at 25'C unless noted) Limit VF1 IF = 100 p.Ade VF2 IF = 250p.Ade VFl IF= 1 mAde VF4 IF= 2 mAde Vn IF= 10 mAde VF6 IF=20mAde Min Max 0.490Vde 0.550Vde 0.S30Vde 0.590Vde 0.590Vde 0.670Vde 0.620Vde 0.700Vdc 0.700Vde 0.810Vdc 0.740Vde 0.880Vdc C IR2 VR = 50V TA = 150°C IR = 50V VR = 0 = IMHz tn IF = IR = lOmAdc RL = 100 ohms Reverse Breakdown Voltage IR = 5.0pAde Limit VR Min Max - - - - 75V 0.05pAdc 50pAde 2.0pF 4ns - f Reverse Voltage vs. Reverse Current Forward Voltage vs. Forward Current 0.001 .002 1000 ..s TJ 100 = 17S'C- -/ ~- tZ // UJ 0: 0: ::::l ~ 1 '"0: W V, - 0: -" I - ./ ~ I I ./ 100'C 1.0 I--"' 5 10 20 100 ---I~~ V 2sI'e r- ...... 1-' ~ I .5 50 .5 .6 .7 .8 9 1.01.1 1.2 1.31.4 1.5 FORWARD VOLTAGE (V) Production Process 1. Raw Materia I 2. Factory Processing VI > W / I 1 1 0.1 .2 u w / .1 .2 .3 .4 .05 0: 0: :J / 0.01 .02 I- zw I -" / -6S'C 25'C / / / / 10 ;t .3 100'C / ~ .1 J / 10 0: '" '""-o ,..,.-: ~ ~ V '/ / 1 ITJ l J 5 , J .005 ......- 1/ II I--"' _r-"' _f-- I V ~ f- f- 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 v, - REVERSE VOLTAGE (V) (% OF PIV) Inspection Lot Formed at Final Assembly Operation * 100 Percent Process Conditioning 1. High-Temp Storage 2. Temp Cycling 3. Hermetic Seal Tests - *100 Percent Burn-In 1. Measurement of Inspection Tests to Verify LTPD Group A Group B Specified Parameters 2. Burn-In 3. Measurement of Specified Parameters to Determine Delta -- *Order of the tests in the blocks shall be performed as shown. Order of procedure diagrams for TX types only. UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 11-29 PRINTED IN USA. III IN4450, IN4451, IN4453 COMPUTER DIODE Switching DESCRIPTION This series offers Metallurgical Bonding and is very popular for general purpose switching applications. FEATURES • Metallurgical Bond • Planar Passivated • 00-35 Package ABSOLUTE MAXIMUM RATINGS, AT 25'C 1N4450 1 N4451 1 N4453 Peak Reverse Voltage ................................................................................................................................. 40V ............ 40V ............ 30V .... .. Reverse Working Voltage ........................................................................................................................... 30V ............ 30V ............ 20V .... .. Average Rectified Current ........................................................................................................................................... 200mAdc ...................... . Surge Current, B.3 mS .................................................................................................................................................... 500mA ....................... .. Operating Temperature Range ........................................................................................................................... - 65 'C to + 150 'C .............. . Storage Temperature Range ............................................................................................................................... - 65 'C to + 200 'C .............. . MECHANICAL SPECIFICATIONS 1 N4450, 1 N4451 , 1 N4453 A B C D 12179 INCHES 065 155 10 MIN .020 00-35 MILLIMETERS 1.65 3.94 25.4 MIN .51 11-30 ~UNITRDDE IN4450, IN4451, IN44!:>. ELECTRICAL SPECIFICATIONS (at 2S·C unless noted) Forward Voltage @O.01mA Peak Inverse Voltage (V) Type Forward Voltage @O.1mA min max min 40 - - 1N4451 40 - 1N4453 30 0.43 1N4450 Forward Voltage @100mA Forward Voltage @10mA max min max min max min 0.42 0.54 0.52 0.64 0.64 0.76 0.80 - 0.40 0.50 0.51 0.61 0.62 0.72 0.75 0.55 0.51 0.63 0.60 0.71 0.69 0.80 0.80 Reverse Current @ 1S0·C VR /lA Reverse Current Forward Voltage @ 1.0mA Junction Capacitance @ OV Reverse Recovery Time t" Type VR (nA) 1N4450 30 50 30 50 4pF 4nS 1N4451 30 50 30 50 6pF 10nS 1N4453 20 50 20 50 30pF - ~ a: a: o=> o a: 0.001 002 ~ - /' '/ V /f TJ = + 17S'C ~ L / 1..4 -65'C . II 10 V / io / LL I 1.0 / ,1 .1 / II -j r- 005 ,; i1i 05 ~ 0.1 5 I w 8!w ~ a: I .!!- I j II I .5 .6 .7 .8 .9 max 0.96 - 1.0 0.875 - - - 1.0 0.92 - - r- r- r- I I ./ ~ TJ = 6S'C -- 1---/" 2S'C /" f-""""" I I 1/ V .5 l00'C 1.0 ~ ..- /" J 10 20 J II - ~ ~- I ~ I 100 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 1.01.1 1.2 1.31.4 1.5 VF - FORWARD VOLTAGE (V) UNITRODE CORPORATION, 5 FORBES ROAD LEX INGTON. MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 ' TELEX 95·1064 min .2 50 .2 .3 .4 max ~ / il / min ~ O~~ 2S'C 100'C I J / _LL / 1/ f max Forward Voltage @300mA Reverse Voltage vs. Reverse Current Forward Voltage vs. Forward Current 1000 ;:: 100 Z w 5 Forward Voltage @200mA VR - REVERSE VOLTAGE (V) 11-31 PRINTED IN U.S A. • IN4452, IN4607, IN4608 COMPUTER DIODE High Conductance DESCRIPTION This sedes offers Metallurgical Bonding and is specifically designed for high conductance switching applications such as core memories. FEATURES • Metallurgical Bond • Planar Passivated • High Conductance • 00-35 Package ABSOLUTE MAXIMUM RATINGS, AT 25·C IN4452 IN4607 IN4608 Peak Reverse Voltage ......................................................... 40V 85V 85V Reverse Working Voltage ...................................................... 30V 50V 50V Average Rectified Current ............................................................. 400mAdc ................. 500mAdc .. Surge Current, 8.3 mS .................................................................... 1A .............................. . Operating Temperature Range ............................................................. -65·C to +150·C ................ . Storage Temperature Range ................................................................ -65·C to +200·C ................ . MECHANICAL SPECIFICATIONS IN4452, IN4607, IN4608 00-35 A --.L D =911 Pi* Tf---- ---+C ----j B A B C D 12/79 INCHES .065 .155 1.0 MIN. 020 MILLIMETERS 165 3.94 25.4 MIN .51 11-32 ~UNITRDDE 1N4452, 1N4607, 1N4608 ELECTRICAL SPECIFICATIONS (at 25·C unless noted) Forward Voltage @O.lmA min max Peak Type Inverse Voltage 1N4452 1N4607 1N4608 40V 85V 85V Type Forward Voltage @ 600mA min max 0.421 0.39 0.39 Forward Voltage @ 1.0mA min max Forward Voltage @lOmA min max 0 .54 0.51 10.62 0. 60 0.50 0.50 0.60 0.61 0.49 0.50 0.60 0.61 Forward Voltage @ IOOOmA min max IN4452 IN4607 IN4608 Forward Voltage @lOOmA min max 1 /' ~ 500 <" g V V/ VV/ 200 I- 100 Z w II: II: ::::> (.) 0 II: 20 10 « 3: II: Reverse Current @ IOO·C Reverse Current @ ISO·C VR VR 30 150 50 100 50 100 50 25 50 25 /lA /lA / 0 / i/ / LL I LL I .5 II 1 I :/:V t" 50nS IOnS lOnS .002 / .005 1: 0.01 ~ I- Z w II: II: (.) 2 w rn .5 w > w 1.0 2 II: II: I .02 .05 0.1 ::::> J I 25"C ..... ,../ V I II II: 10 20 50 100 5 6 7 .8 .9 1.0 1.1 1.2 1.3 1.4 1.5 V F - FORWARD VOLTAGE (V) 4 UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEl. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 = 1 ;1 Typical Reverse Voltage vs Reverse Current II 2 .3 =10 .001 / J I Forward Voltage @SOOmA min max Reverse Recovery Time Junction Capacitance @ OV 4pF 4pF 1 II / / / Forward Voltage @400mA min max 1 -1- Reverse Current VR nA !/;'(ii/i/l /~~ ct' f? 50 Forward Voltage @3S0mA min max 71 0 .83 100.72 .71 0. 0.74 0.87 1.0 OBI 0:95 0.71 0.74 0.85 0.81 0.93 0.84 0.96 Typical Forward Voltage vs Forward Current 1000 Forward Voltage @2S0mA min max ( L - -- ~ ,.. .......... i"'" III V 100"C f-- ~ 150"C -~ I ,...... ~ 140130120110 100 90 80 70 60 50 40 30 20 10 V R - REVERSE VOLTAGE (V) 11-33 0 PRINTED IN U S.A COMPUTER DIODE JAN & JANTX 1N4500 500mA Switching Diode FEATURES DESCRIPTION • • • • • This device IS a fast switching, high conductance diode for military, space, high rei and other systems. Metallurgical Bond Qualified to MIL-S-19500/403 Planar Passivated Chip 00-35 Package Non-JAN Available ABSOLUTE MAXIMUM RATINGS, AT 25'C Reverse Breakdown Voltage Peak Working Voltage ...... . Average Output Current Surge Current, lsec.. .. ................ . l"sec ................ .. Operating Temperature Range . Storage Temperature R,.nge .... .80Vdc . ............ 75Vpk ......... 300mAdc . ......................... O.SA .. ....................... 4.0A .................... -65'C to +175'C .. ....... -65'C to +200'C MECHANICAL SPECIFICATIONS J & JTX 1N4500 A -.L 0 =911 p=* Tf--B -+-c~ A B C 0 12179 INCHES 060 - .107 140 300 1.0 MIN 018 - .022 MILLIMETERS 1.52-272 355 - 7.62 25.40 MIN .46 - .56 11-34 ~UNITRDDE JAN & JANTX 1N4500 ELECTRICAL SPECIFICATIONS (at 25·C unless noted) Limits VFI IF = 250pAdc VF2 IF= 1.0mAdc VF, F=10mAdc VF4 IF=20mAdc VFs l/ IF=300mAdc mVdc 470 560 mVdc 520 600 mVdc 640 720 mVdc 670 770 Vdc Minimum Maximum By IR VR = 75Vdc IR =5pAdc nAdc Minimum Maximum pAdc nsec 100 6.0 - 0.001 .002 /- /' /r _ TJ =+175'C V V- I I .005 '- --65'C / 1/ II- f - ....z <: .:\ 25'C .... zuJ UJ c: c: ~ 10 c: ~ c: o... 100'C / / I UJ I I / ' ..... Lots proposed for non-TX types 1-. /' ./ I..-- I ~ /' ./ / J / I I-- 5 /' -- -- 100'? ~- i- r l/:r-l I I .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 1.1 1.2 1.31.4 1.5 V, - FORWARD VOLTAGE (V) Inspection lots formed at final assembly operation (sealing) -" 10 20 I -+25,b V .5 1.0 --- V .05 0.1 .2 c: UJ > UJ c: I 5 50 100 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 V, - REVERSE VOLTAGE (V) (% DF PIV) I II 0.01 .02 " .lMt!lr. V." 5(111 'I1tll1S:X; PACKAGE STYLES ======~~======== A Style Basic Diode ~ ~ 0E Style Ribbon AXIal Leads *0 Style Insulated Stud *C Style Stud B Style Round Axial Leads 15 1.0 10 For UM4000. 6000 & 7000 Series :',;. :;~~ri@;:'" . ~.. T.~:i~t; mA.Q'ifn.).() 4.0 .~ y 'i\ ·Not available for UM6000, UM6600, UM6200, For UM9600 Senes Cup Cup Flange Flange UM960112 UM9605/6 UM9603/4 UM9607/8 Drawings are not actual size. UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95-1064 12-4 PRINTED IN U.S.A PIN DIODES PRODUCT SELECTION GUIDE For applications information, see PIN Diode Designers' Handbook and Catalog (PD-SOOB) VOLTAGE RATINGS 600V .,." ':8.OOV'.:.,; ',1QMV. Series UM4000 UM4300 UM4900 UM6000 UM6200 UM6600 lOOV 200V j j j j j j j j j j j UM7000 UM7100 UM7200 UM7300 j / I j j I j j j I j I I I 400V ' ',\ I / j I I I 12-5 j I I I ORDERING INFORMATION Part numbers of Switching and High Power Attenuator PIN diodes consist of the letters UM followed by four digits and one or two letters, The first two digits indicate the diode series, the next two digits specify the voltage rating in hundreds of volts, The remaining letters denote the package style, Reverse polarity is available for C, and D, style and denoted by adding second letter R, UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEl. (617) 86J.6540 TWX (710) 326-6509 • TELEX 95-1064 ., ' i I For Example: PRINTED IN US,. 1N5767 (5082 - 3080)SERIES 1N5957 SERIES PIN DIODE Features • Useful attenuation from 1 I-IA to 100 rnA bias. • Capacitance below 0.4 pF. • Low distortion in switches and attenuators. • Rugged Unitrode construction. Description The 1N5767 and 1N5957 PIN diodes are based upon low capacitance PIN chips designed with long minority carrier lifetime, and thick intrinsic width. Thus operation as low as 1 MHz is possible with low distortion. Additionally, the low diode capacitance allows useful operation well into the microwave frequency range. The 1N5767 (5082-3080) is a general purpose low power PIN diode designed for both switch and attenuator applications. The 1N5957 is primarily used as an attenuator PIN diode and is particularly suitable wherever current controlled, wide dynamic range resistance elements are required. The 1N5957 has also been characterized for the 75Q attenuator, commonly employed in CATV systems. MAXIMUM RATINGS Reverse Voltage (VR) - Volts (IR 10 IJA) 100V Average Power Dissipation: (25 'C) Free Air (P oJ 400 mW (Derate linearly to 175'C) = Operating and Storage Temperature Range ~UNITRODE 12·6 1N5767 (5082-3080) 1N5957 Electrical Specifications (25°C) Test Symbol 1N5767 (5082· 3080) 1N5957 Total Capacitance (Max) Series Resistance CT Rs Series Resistance Rs Series Resistance Rs Carrier Lifetime (Min) T 0.4 pF 1000Q(min) 2000Q(typ) SQ(max) 4Q{typ) 2.5Q(max) 1.5Q(typ) 1.0 ",S Reverse Current (Max) Current for Rs = 75Q (typ) Return Loss (typ) IR 10 lAA 175 0.7mA - 30 dB 0.4 pF 1500Q(min) 3000Q(typ) SQ(max) 6Q(typ) 3.5Q{max) 2.0Q(typ) 1.5(min) 2{typ) 10 lAA O.S mA1.2mA 30 dB - -40dB -50dB -60dB -65 dB Second Order Distortion (typ) Third Order Distortion (typ) RESISTANCE VS FORWARD CURRENT (TYPICAL) 10K ~ .. IIIIIII :' ,I I j.... I i ' , i ~ tl :!I 50V,1 MHz 10 ,.,A, 100 MHz 20 mA 100 MHz 100 mA 100 MHz IF = 10 mA V R = Rating Rs = 75Q Diode terminates 75Q line Bridged tee attenuator atten. = 10 dB Pin = 50 dBmV F, = 10 MHz, F2 = 13 MHz FORWARD VOLTAGE VS FORWARD CURRENT (TYPICAL) II lN5767 , 'I I I It. i lN5957 LIJ. kl: II 11 tii i ! 1 " ~' , lN5767 0 ~ 0.01 0.10 -+- 'I Z 1.0 w I i3 a a: 1 0,001 '~~7 a: a: (3080) IIIII 111111 ~ ~ .. ,p '- 10.0 I 100 III 100 I, ----t" E 1000 !.!! iii Conditions ' il:' l 1.0 10.0 ~ a: o u. j 100.0 J 0,10 I Diode Current (mA.) 1 0.01 1 0.001 o .2 II .4 .6 .8 1.0 FORWARD VOLTAGE (VOLTS) UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (6171 16106540 TWX (710) _6509 • TELEX 9501064 12-7 PRINTED IN US ... 1N5767 (5082-3080) 1N5957 lI'OTAL CAPACITANCE va REVERSE VOLTAGE .8 ~ fl c: J!! .7 ." .6 .~ g- .5 5M~ U iii ~ .4 10~r- .3 100 MHz I 13 1 MHz I .2 2 5 10 20 50 100 200 500 1000 V,- Reverse Voltage (V) PARALLEL RESISTANCE VS REVERSE VOLTAGE. ' 100 I£100MHi r=1'-" t..,....--- ~JJ~z 2 : "c: u 50 1.0GIHZ I--'" ~ r 'iii " II: ]! ~ I'\. ............. ......... o 1.1 G> '\ 1l(5i a: w ;: u c: '\ \UM4300C ~UM4300D" « 0- /'" 1.2 G> 125 150 175 0 +20 +40 +60 +80 +100 +120 Temperature (OC) STUD TEMPERATURE (oC) PULSE THERMAL IMPEDANCE VS PULSE WIDTH ~ 100. lllllill ~ 11111111 11111111 ~ I 10. Part numbers of Unitrode PIN Diodes consist of the letters UM followed by four digits and one or two letters. The first two digits indicate the diode series, the next ~ f- two digits specify the minimum breakdown voltage in hundreds of voits. The remaining letters denote the package style. Reverse polarity (anode on stud end) is available in C or D Styles and denoted by adding second letterR. Iliililt' UItI!I I ~ '"~ ORDERING INSTRUCTIONS .u:~7~.lllIII .1 IUM43100 MHz 1 ~HZ: 10,0 U ...J a 1.0 I- ~ U 1 Ii:' 5 10 V, - 20 50 100 200 o 2 1 500 V. - REVERSE VOLTAGE (V) 5 10 20 50 100 REVERSE VOLTAGE (V) UM6600 SERIES ORDERING INSTRUCTIONS .8 Part numbers of Unitrode PIN diodes consist of the letters UM followed by four digits and one or two letters. The first two digits indicate the diode series, the next two digits specify the minimum breakdown voltage in hundreds of volts. The remaining letters denote the package style. Reverse polarity (anode large end cap) is available for the C style and denoted by adding second letter R. Ii:' e .7 UJ (J z « !:: .6 « « (J .5 --' .4 (J Il. « I- aI- , "\ :Mr l'. 5 .3 U M~z-.." 10 1100 .2 MHz 1HZ, 2 V, - UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (6171 861-6540 TWX (710) 326-6509 • TELEX 95-1064 12-22 " '" 5 10 20 50 100 REVERSE VOLTAGE (V) PRINTED IN USA UM6000 UM6200 UM6600 POWER RATING - AXIAL LEADE,D DIODE UM8OOOIUM8200 UM8800 ~ z o ~ L" 114" (S.3Smm) ~ (~.~~~~I a:: l = 1/2" 2 (12.7mml ~ x ~ = l 314H (1905mm) I ~c 75 50 TL 100 175 T L' LEAD TEMPERATURE (oCI LEAD TEMPERATURE (oC) POWER RATING 0:: W 6 s:~ e~ 5 o.z we Cl- 4 0::0. w_ 3 >00 2 ~!;t ~oo 6.0W I""-. 4.0W I ~ -............. UM6600 ....... r-......... I ........ a -50 -25 II "-.. -............. ~ 10 1 0.< I UM6000 and ~M6200 Series ~ a 25 50 75 100 125 150 175 TEMPERATURE (OC) (of one metal pin) PULSE THERMAL IMPEDANCE VS PULSE WIDTH ~ 100 E UI 0 50 Z 20 10 0 w 5 ::!: 2 ~ 0. ..J « ::!: 0:: w .2 w .1 .05 00 ..J ::l 0. I as UNITROOE CORPORATION. 5 FORBES ROAD LEXINGTON. MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 - ~~ .5 :I: I- - .02 .01 ~ -~ ~UM~O:~ SERIES ·UM6600 SERI lUlJ] V / liW1IL 10- 5 10- 4 10- 3 10- 2 PULSE WIDTH (SEC) PRINTED IN USA 12-23 UM6000 UM6200 UM6600 MECHANICAL SPECIFICATIONS STYLE B STYLE A .085 095 12.16) 12.411 ~ !I-- i! I I 008 1.20) MIN. TO GLASS 1 .070 11.JS) DIA. MAX. L ~ rI. .975 15.08) 124 .S ) +1.200) j'N· MAX. 11 t 975 124.8) MIN. l =~= c~ 1.75) .0315 .0295 11IA.~78) BLACK CATHOOE DOT STYLE C CARTRIDGE .040 11.02) ---,-.070 MAX. OIA. MAX . YELLOW CATHODE BAND .019·.021 1.482·.530) STYLE E RIBBON LEADS .225 .205 ·~6 i1.63) 11.521 -r L 15.72) r --- u o o a: ~ a: II: ~ o '"I II ~ en '"I " a: ,.0 . . . .. . 0.1 lmA -'" I L......L--LLJ...........1...LJLWUI'--I....J.J..LLIL-..u...L.IJ.UL-L...Ll.WIL.-L.J:Z!_ lIlA lOi1oA lOO11A I'F - lmA FO~,A,A'D lOrnA l00mA I lA l0011A CURRENT lOUA o I 0.2 0.4 0.6 0.8 1.0 1.2 V F - FORWARD VOLTAGE (V) UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 91>-1064 12~26 PRINTED IN USA. UM7000 UM7100 UM7200 TYPICAL Rp CHARACTERISTIC TYPICAL UM 7000 SERIES 1M UM 7000 SERIES ,----y------y-------, § 3 rL: !!::. UJ U ~ lOOK I - - - - - f - f - - - + - - - - \ ~ v; UJ 0.5 GHz _-::::F--1.0 GHz :J '" 'iii £ ";;; .LJ.M93.01 100 .... EE ::$~ 10 ~ ~ 11> 0 "Cio u.. / 10 .1 .01 .1 10 .5 100 Diode Current (rnA) UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON. MA 02173 • TEL (617) 861·6540 TWX (710) 326-6S09 • TELEX 95-1064 .6 .7 .8 .9 1.0 1.1 Forward Voltage (Volts) 12-31 PAINTED IN USA UM9301 TEST CIRCUIT FOR DISTORTION MEASUREMENTS NORMALIZED RS VS TEMPERATURE 1.3 ,/ 1.2 CD 0 / " Ui I;(\ C " 0 ~ :; ~ CD .. 70 " 80 ~ 0 "Ci 0 a; CD CD "el"l. ".\'0'1. .s. 0 '" third order distortion 60 u: 0 ~ second order distortion 50 "0'.. .1 = Input Power +60 dBmV Input Frequencies 10 MHz ...l..l..Ll..LL & 13 MHz 90 ilJilLWillillill 100 o .01 = 2 4 6 8 10 12 14 16 18 20 024681012141618202224 Attenuation (dB) Attenuation (dB) MECHANICAL SPECIFICATIONS t .975" 24.8mm MIN. l 250" .975" 635mmr24.8mm MAX. MIN. -;~~~~~~111rl~, 190" 2.29mm ~I LCATHODE -l \~ .029"DIA . . 74mm ~ .027" .68mm I BAND MAX. UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326-6509 • TELEX 95-1064 PRINTED IN USA 12·32 PIN DIODE UM9401 SERIES UM9402 SERIES UM9415 SERIES COMMERCIAL TWO-WAY RADIO ANTENNA SWITCH DIODES Features • Specified low distortion • Unitrode ruggedness and reliability • Low bias current requirements • Priced for high quantity applications Description: Unitrode offers a series of PIN diodes specifically designed and characterized for solid state antenna switches in commercial twoway radios. Antenna switches using the UM9401 and UM9415 series PIN diodes provide high isolation, low loss and low distortion characteristics formerly possible only with electromechanical relay type switches. The UM9401 and UM9402 diodes can handle above 100W of transmitter power, while the UM9415 will handle over 1000W. The extensive characterization of these PIN diodes in antenna switch applications has resulted in guaranteed low distortion specifications under transmit and receive conditions. These diodes also feature low forward bias resistance and high zero bias impedance which are required for low loss, high isolation and wide bandwidth antenna switch performance. MAXIMUM RATINGS Reverse Voltage (VR) - Volts (lR = 10 j./A) Average Power Dissipation (PA) Leads - Y2 in. Overall to 25°C Heat Sink 25°C (Package Flange) Temperature Free Air UM9401 UM9402 UM9415 50V 50V 50V 5.5W - 10W - 10W 1.5W - 2.5W Operating and Storage Temperature Range ~UNITRODE 12-33 III UM9401 UM9402 UM9415 Electrical Specifications ! UM9415 VR = SOV , / 100 Z :--l I--. r-- !! VR '" OV l000MHz " 0 I'-. .... UMVR941'" SOV UM940119402 ~R"'OV a: FREQUENCY 1 UM~1J ~~OV lOMHz l00MHz lGHz FREQUENCY UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-&509 • TELEX 95-1064 PRINTED IN 12·34 us ... UM9401 UM9402 UM9415 POWER RATING UM940119402 POWER RATING UM9415 14 r---~--~---'--~----'---~--' ~ z o ~ 121---+---+---4-~4---~~~--~ oa:ill'0~-":""'++ ~ 61---+---~~od-"~""'---+---+---1 X ~ 6 I 0..0 ~ 41==~......F>-..i~~~~' 2 1---+---~---+---4----~~~--~ 25 50 75 100 125 150 25 175 TL - Lead Temperature (OC) 50 75 100 125 150 175 T L - HEAT SINK TEMPERATURE (oc) MAXIMUM TRANSMITTER POWER UM9401/UM9402 UM9415 i -'000 j ~ ·E In c:: j!: II! E :l E --- =",L = v." -- -~ z. = 5012,0 £ I I _ 100 l Z. i-- -1 T , .., SiJij "'-1 If _ -::. ~"'-1 ...... ......... IF = 200mA ::::::::: -:.... I ~ Q) " .~ II ~ "- "" 1,\ ..!.:~ ~ "'-1 ......... 'f..,~ ....... 50"'-1 ~ i'. E E :l :2: I 10 0 II! '\ :2: '\ I '( 10 100 125 150 25 50 = 50 mA ,IF '\ ........ ~ "- '\" IF 75 100 125 20mA = 10mA 150 TL - Lead Temperature (OC) TL - Lead Temperature (OC) UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 ...... IF 10 75 -- c:: ·x 50 IF - 100 mA 100 In .~ 25 = 50, L = Y2" (12.7 mm), 0 = 00 1:::::, PRINTED IN USA 12-35 UM9401 UM9402 UM9415 Maximum Transmitter Power The maximum CW transmitter power, PT(max), a PIN diode antenna switch can handle depends on the diode resistance, Rs, power dissipation, Po, antenna SWR, 0, and nominal impedance, Zoo The expression relating these parameters is as follows: (0;0 1 ) PT(max) -_ Po x Zo Ro 2 [Watts] Characteristic curves are shown in the data section which give both the maximum and typical diode resistance, Rs as a function of forward current. The maximum power dissipation rating of the PIN diode depends both on the length of the diode leads and the temperature of the contacts to which the leads are connected. A graph defining the maximum power dissipation at various combinations of overall lead length (L) and lead temperature (T J is given in the data section., From these curves and the above equation, the power handling capability of the PIN diode may be computed for a specific application. Curves are also presented which show the maximum transmitter power that an antenna DC SUPPLY switch using UM9401s and UM9415s can safely handle for various forward currents and lead temperatures. These curves are based on a typical qesign condition of a V2 in. total overall lead length, 50Q line impedance and a totally mismatched antenna (0 (0). For the case of a perfectly matched antenna, the maximum transmitter power can be increased by a factor of 4. = Design Information A circuit configuration for a two-way radio antenna switch using PIN diodes consists of a diode placed in series with the transmitter and a shunt diode placed a' quarter wavelength from the antenna in the direction of the receiver as shown. For low frequency operation, the quarter wave line may be simulated by lumped elements. Typical performance of antenna switches using PIN diodes forward biased at 100 mA is less than 0.2 dB insertion loss and 30 dB isolation during transmit; at zero bias the receive insertion loss is less than 0.3 dB. This performance is achievable across a ± 20% bandwidth at center frequencies ranging from 10 to 500 MHz. ANTENNA RFC DCB DCB 02 TRANSMITTER RECEIVER o L C = Z o/2do = 1/2"foZo RECEIVER o UNITROOE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL, (617) 861-6540 TWX (710) 326-6509 • TELEX 9S-1064 PRINTED IN U S It. 12-36 UM9401 UM9402 UM9415 UM9401 UM9402 .020 (.51) Min . a 'L II II J ELLOW .029 (.74) ,.,nm ~ --.£ .090 (2.29) Dia. max ---.r '''D''.~ (1.40) LDia. CM .975 (24.8) Min. .055 (1.40) Dia . max. CATHODE BAND Dia. max 9D .250 Max. (6.35) -1l .975 (24.8) Min. .142 .130 (3.61) (3.30) .012 (.30) .010 (.25) UM9415 YELLOW CATHODE BAND 1.30 Dia. max ~(3.30) Dia. .97b Min. (24.8) .300 Max. (7.62) Dimensions: inches (millimeters) 12·37 .975 Min. (24.8) -J PIN RADIATION DETECTORS Features • High Photocurrent Sensitivity • High Reliability Construction • Fast Rise Time • Wide Dynamic Range ,. Hardness to Neutron Bombardment • Low Operating Voltage Description Silicon PIN devices are effective detectors of nuclear and· electromagnetic radiation. This includes gamma radiation, electrons, and X-rays. The detecfbrs can be used across the temperature range of - 55°C to + 175 °C instead of being restricted to use at low temperatures. The absorbed radiation produces electronhole pairs in the space charge region. These charges are swept out by the applied field and result in a current flow proportional to the rate of absorbed radiation. The Unitrode UM9441 series utilizes high resistivity material and is designed to have a uniform area mesa structure to define the active volume. The current sensitivity of UM9441 these devices is proportional only to the I-region volume and is independent of temperature so long as applied voltage exceeds the saturation voltage. This structure also minimizes the effects of permanent damage caused by neutrons and other high energy radiation. Experiments on devices of the UM9441 design show no degradation in gamma sensitivity resulting from a total dose of 1014 neutrons/cm 2 of 1 MeV equivalent. Package The UM9441 is an axially leaded device constructed by metallurgically bonding the PIN chip in between two molybdenum refractory pins that are typically 0.125 inches in diameter and 0.050 inches long. Hyper-pure glass is then fused over this bond to form a voidless seal. Leads are then brazed to ends of molybdenum pins. This results in a highreliability package using materials so well thermally matched that the UM9441 can withstand temperature shock or cycling from -196°C to + 300°C. ABSOLUTE MAXIMUM RATINGS Reverse Voltage ....... 100V Photocurrent .......... 1A Storage Temperature ... - 55°C to + 200°C Operating Temperature. - 55°C to + 175 °C MECHANICAL SPECIFICATIONS UM9441 '\ YELLOW CATHODE BAND \ 029 (074\ DIA ~i"~' .. I . . . - 200DIA MAX . ,---1 ( 508\ !~--hI I It I- I ~---~~~ ---+~;~+----~~~ ----1 (2481 (3811 12481 ~UNITRDDE Dimensions In inches (millimeters) 12-38 UM9441 Electrical Specifications ~:: J';;~k100pF) ill! 1200 1800 Dissipation Factor: .' ·11 1000 -55°C to +125°C o ±30 PPM/oC m 681 821 .... t 102 122 • 152 ~ 182 222 ~. 2700 272 3300 332 3900 392 4700 472 5800 562 """ Capacitance Tolerance: 6800 F (±1 %), G (±2%), J (±5%), K (±10%), M (±20%) 8200 822 .01 mF 103 Guidelines for Automatic Insertion: 682 How To Order STYLE CG PACKAGE A 170 x 075 B 170 x 100 C 200 x 100 D 260 x 100 E 300 x 110 F 400 x 150 'G 300)( 150 EIA CAPACI· TANCE CODE TOLERANCE VOLTAGE TEMPERATURE CHARAC, TERISTIC Capacitance F G ±1% ±2% ±5% ± 10% M ±20% Z + 80%. -20% V GMV C 25V D 50V E 100V N Value '" pF J K F NPO X X7R Z Z5U 200V "Consult factory for values and voltages UNITROOE CORPORATION. 5 FORBES ROAO LEXINGTON. MA 02173. TEL. (617) 861-6540 TWX (710) 326·6509 • TELEX 95-1064 14-12 PRINTED IN U.S A X7R (BX) Characteristics PACKAGE Body length(max,) £iqdy 0.8. I-~~~h-l -==II llead I (max.) bo\1Y die. Capacitance pF !eng1h 1.0 ins. ~.4mm 1" C 1) .260 Ins. 4.32 (mm) .200 ms. 5.08 (mm) .100 ins .100 ins. 2.54 (mm) 2.54 (mm) Voltage 2550100 Voltage A .170 ins. .170 ins 432 (mrn) .075 ins. 1.91 (mm) Voltage 2550100 2550100 660 (mm) .300 ins. 762 (mm) .400 ins. 10.16 (mm) 100 ins . 2.54 (mm) .110 ins. 2.79 (mm) .150 ins . 3.Bl(mm) Voltage 2550100 Voltage 2550100 Voltage 2550100 EIA Capacitance Code 100 101 120 121 150 151 180 181 220 221 270 271 Performance Specifications 330 331 390 391 MIL Specifications: 470 471 560 581 Meets or exceeds applicable portions of MIL-C-11015 and MIL-C-39014. : 680 681 820 821 Insulation Resistance: 1000 102 Minimum 100,000 megohms or 1,000 megohm microfarads, whichever is less, with rated voltage applied, @ 25°C (see curve for other temperatures). 1200 122 1500 152 1800 182 2200 222 2700 272 3300 332 2.5 x WVDC 3900 392 Life Test: 2 x WVDC @ 125°C, 1000 hours. Lead Material: 4700 472 5800 562 Dielectric Strength: Tinned Copper Clad Steel Temperature Range: -55°C to +125°C Temperature Coefficient: !.Ii 6800 682 8200 822 .01 mF 103 .012 123 .015 153 ,018 183 II! .022 223 ±15% .027 273 Dissipation Factor: .033 333 2.5% @ 1 KHz @ 1 VRMS .039 393 .047 473 Capacitance Tolerance: .058 583 K (±10%), M (±20%) Consult Factory for J (±5%) Tolerance .068 683 ill Iii .082 .10 Guidelines for Automatic Insertion: 104 .12 124 .15 154 .18 184 .22 224 .27 274 How To Order STYLE CG UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON. MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 823 PACKAGE 170 x 075 170 x 100 200 x 100 260 x 100 E 300 x 110 F 400 x 150 'G 300 x 150 A B C D 14-13 EIA CAPACI· TANCE CODE TOLERANCE C 25V D SOV E 100V F 200V ±1% ±2% ±5% Capacitance Value '" pF M Z V ±10% ±20% +80%, VOLTAGE TEMPERATURE CHARAC· TERISTIC N NPO X XlR Z Z5U ~20% GMV PRINTED IN USA Z5U Characteristics (General Purpose) Body Length (max.) Body Dia. Insulation Resistance: Minimum 100,000 megohms or 1,000 megohm microfarads, whichever is less, with rated voltage applied, @ 25°C (see curve for other temperatures). .300 ins . .400 ins. 7.62 (mm) 10.16 (mm) •075 Ins. •100 Ins• 2.54 (mm) .lOOin8. 2.54 (mm) .110 ins. 2.79(mm) 3.81 (mm) Voltage 2550100 Voltage 2550100 Voltage 2550100 Voltage Voltage pF 2550100 2550100 .150ln8. EIA Capacitance Code 1000 102 1200 122 1500 152 1800 182 2200 222 2700 272 3300 332 392 3900 '.lfi:· 4700 5600 6800 8200 .012 2.5 x WVDC below .5 mfd; 2.0 x WVDC .5 mfd and above .015 Life Test: .022 2 x WVDC @ 85°C, 1000 hours. .027 l'. 472 582 682 822 103 123 153 ~. ; 'fill III .018 .033 Lead Material: .200 ins. 5.08 (mm) CapaCitance .01 mF Dielectric Strength: .170 ins. 4.32 (mm) 1.91 (mm) (max.) Performance Specifications .170 ins. 4.32 (mm) . 183 223 273 333 ,. " .039 393 Tinned Copper Clad Steel .047 473 Temperature Range: .056 563 +lO°C to +85°C .088 683 .082 823 Temperature Coefficient: .12 Dissipation Factor: .15 3.0% max. at 1 KHz., 25°C, @ .3 VRMS .18 Capacitance Tolerance: "r': :(,; ~·:.r>f· ;;",.;: UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 124 154 184 224 .27 27• ~ .33 334 .39 394 .47 47' .56 564 .68 684 .82 824 1.0 105 How To Order STYLE ;\~1~~::;,.·.··.·~~; 104 ''..Jl .22 M (±20%), Z (+80%, -20%), GMV (+100%, -0%). Guidelines for Automatic Insertion: ". III .10 +22, -56% CG PACKAGE x 075 A 170 B 170 x 100 C 200 x 100 D 260 x 100 E F -G EIA CAPACITANCE CODE TOLERANCE VOLTAGE Capacitance F Value m C 25V D 50V J pF 300xl1Q 400 x 150 300 x 150 ±1% G ±2% K M ±5% ±10% ±20% Z V GMV E F 10DV 2DOV TEMPERATURE CHARAC· TERISTIC N NPO X X7R Z Z5U + 80%, -20% ·Consull factory for values and voltages 14-14 PRINTED IN U.S.A APPLICATION & DESIGN DATA 15-1 III 15-2 APPLICATION AND DESIGN DATA SUBJECT PAGE SUBJECT PAGE LINEAR INTEGRATED CIRCUITS POWER HYBRIDS & MODULES A Second Generation - IC Switch Mode Controller Optimized for High Frequency Power Mosfet Drive (U·89) ................................ 15·137 Switching Regulator Design Guide (U·68A) ............. 15·13 Flyback and Boost Switching Power Supplies (U·76) .... 15·46 Detecting Impending Core Saturation in switched·Mode Power Converters (U·81) ............. 15·68 The UC1524A Integrated PWM Control Circuit Provides New Performance Levels for an Old Standard (U·90) ......................... 15·148 Hybrid Circuits for Low Voltage Switched· Mode Converters (U·82) .................... 15·76 Applying the UCI840 to Provide Total Control for Low·Cost, Primary·Referenced Switching Power Systems (U·91) .................... 15·160 Hybrid Circuits for Off·Line Switching Power Supplies (U·84) ..................... 15·89 A New Integrated Circuit for Current·Mode Control (U·93) ..................................... 15·170 Minimizing Storage Time When Using Unitrode Switching Regulator Power Output Circuits (ON·3) ... 15·215 The UC1901 Simplifies the Problem of Isolated Feedback in Switching Regulators (U.94) ...................... 15·179 Avoiding Spurious Oscillation When Using Unitrode Switching Regulator Power Output Circuits (ON-4) ... 15·216 A Simple Isolation Amplifier Using the UC1901 (DN·19) ......................... 15·240 Operating the Switching Regulator Output Circuit at Low Frequencies (DN·6) ......................... 15·220 PIN DIODES Pin Diode Designers' Handbook & Catalog (PD500B) . . . . . . .. • A 350 Watt Switching Regulated Output Power Supply for Multiple Outputs Utilizing Unitrode Semiconductor Components (ON·8) ........ 15·224 POWER TRANSISTORS & DARLINGTONS THYRISTORS (SCRs & PUTs) Power Darlingtons as Switching Devices (U·70B) ............ • The Unitrode monolithic power Darlington is characterized and compared with other switching methods. Unique ad· vantages are discussed and basic circuits for many modern applications are shown. Incorporate Active Inrush Current Limiting to Improve Reliability and Efficiency of Power Supplies (U·83) .............................. 15·85 Programmable Unijunction Transistors (U·66) ........... 15·5 Squib· Firing Circuit Provides for Reliable Firing, from Low Level Inputs (ON·10) ..................... 15·230 Thermal Design Considerations for Operating Unitrode's TO·92 Transistors and Darlingtons in Pulsed·Power Applications (U·77) ................. 15·55 Combined AC·DC Load Control Simplifies sCR Reset (ON·11) ................................. 15·232 500W, 200kHz Off·Line Power Supply Using Power MOsFETs (U·87) ............................ 15·115 Turn·off Method for SCRs Minimizes Effect of OV/DT (ON.13) .................................... 15·234 Design Considerations for Power MOsFET Gate Drive Circuitry (U·88) ......................... 15·121 Nanosecond sCR Switch for Reliable High Current Pulse Generators and Modulators (DN·14) ........... 15·236 Proportional Base Drive of Bipolar Power Transistors in Switching Power Supplies (D1) ................... 15·191 Nanosecond SCR Switch for Laser Oiode Pulse Driver (ON·15) ............................... 15·238 How to Safely Check Sustaining Voltage on Power Transistors (DN·5) ........................... 15·217 TRANSIENT VOLTAGE SUPPRESSORS/ZENERS Guidelines for Using Transient Voltage Suppressors (U·79) ................................. 15·59 RECTIFIERS The Importance of Rectifier Characteristics in Switching Power Supply Design (U·73A) .............. 15·35 Determining the Change in Zener Voltage when the Current is Changed (ON·1A) ........................ 15·214 Design Guide· Power Schottky Rectifiers in a Switching Regulator (U·85) .......................... 15·99 DESIGN REVIEW 250 Watt Off·Line Forward Converter Design Review (Tl) ................................ 15·198 RECTIFIER ASSEMBLIES, HIGH VOLTAGE RECTIFIERS Doorbell 8 High Voltage Stacking (N·136B) .................. • Self'stacking rectifier modules are described and shown in numerous applications. Examplesofcircuitsand mounting configurations are given. Ooorbell 8 Tube Replacement (N·130B) ..................... * The advantages of using rectifier modules to replace tubes are discussed. Case histories are noted and advice is given relating to module selection and installation. Pertinent ratings and other information is presented in tabular form, and outlines are shown for standard caps and bases. *Does not appear in Databook. UNITROOE CORPORATION. 5 FORBES ROAD LEXINGTON. MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95·1064 15·3 PRINTED IN U.S A III Unitrode Corporation makes no representation that the use or interconnection of the circuits described herein will not infringe on existing or future patent rights, nor do the descriptions contained herein imply the granting of licenses to make, use or sell equipment constructed in accordance therewith. © 1984, by Unitrode Corporation. All rights reserved. This section, or any part or parts thereof, must not be reproduced in any form without permission of the copyright owner. NOTE: The information presented in this section is believed to be accurate and reliable. However, no responsibility is assumed by Unitrode Corporation for its use. Doorbell". Chipstrate", and Magnum" are registered trademarks of Unitrode Corporation. UNITRODE CORPORATION· 5 FORBES ROAD LEX I NGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 15-4 PRINTED IN U.S.A. APPLICATION NOTE U-66 PROGRAMMABLE UNIJUNCTION TRANSISTORS INTRODUCTION The Programmable Unijunction Transistor is today's preferred device for low cost timing circuits, oscillators, sensing circuits, and a wide range of other applications where a variable voltage level threshold is desired. This note describes the principle of operation of the PUT, its electrical characteristics, and its various applications. PRINCIPLE OF OPERATION The PUT is a three-terminal device as shown in the schematic representation, Fig. la. The anode voltage VA and the gate voltage VG are measured with respect to the cathode (k). The corresponding anode, gate and cathode currents are given respectively by lA, IG, and IK' The most general usage of a PUT involves an external gate resistor RG as shown in Fig. 1a. Hence, the voltage generally referred to in characterizing PUT's is the applied voltage Vs rather than the gate voltage VG which is less than Vs by the voltage drop across RG. The theory of operation of the PUT can perhaps be best understood by considering that it is a four-layer (PNPN) device, as is a silicon-controlled rectifier (SCR). The basic PUT structure is shown in Fig. lb, in which it is noted that the gate is adjacent the anode, in contrast to an SCR in which the gate lead is adjacent the cathode. As shown in Fig. lc, the PUT, has a two-transistor analogy, which is similar to that used to explain the operation of an SCR, except that the gate connection is common to the PNP base and the NPN collector. Regenerative switching occurs when the sum of the alpha's dynamically approach unity. The net result is that when the anode voltage exceeds the gate voltage by an amount equal to the emitter to base drop of the PNP transistor, the positive feedback drops the anode-cathode voltage and presents a negative resistance. Figure la. PUT Parameters UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 Figure 1b. PUT Structure 15-5 PRINTED IN U.S.A. APPLICATION NOTE U-66 K (Cathode) Figure 1c. Two Transistor Analogy ANODE CHARACTERISTIC The PUT, together with RG as shown in Fig. 1a, exhibits a negative resistance characteristic illustrated in Fig. 2 for a fixed value of Vs and RG. For anode voltages less than the peak voltage Vp at which a current IGA flows. (Region I), a,positive incremen~al resistance results. For anode currents above the valley current lV, which occurs at the valley voltage Vv (Region III) a positive incremental resistance also occurs. However, for anode currents between the peak point current Ip and the valley current IV (Region II) the incremental resistance is negative. This region is un· stable and forms the basis for use in oscillator circuits. With VA less than Vs forward anode cur· rent flows. At the peak current point, Ip where VA exceeds Vp the PUT will regeneratively switch to its low impedance state: anode current increases rapidly to a level limited by external load resistance. The PUT will remain on this "ON STATE" until the anode current is reduced to a level below the valley current, IV' At this point the PUT returns to its blocking or "OFF STATE", because operation in the negative region is unstable. Operation in the region between 'D and IV will be covered in detail. FIII IV ~ I'" I I Ip V T = Vp - Vs - - VALLEY ..... ...r~ II " ..... ~ __ II_ _ _ _ _ _ _" _ _ PEAK Figure 2. PUT Characteristics UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326-6509 • TELEX 95-1064 15-6 PRINTED IN U.S.A. U-66 APPLICATION NOTE ADVANTAGES The primary advantage of the PUT over the UJT is the programmability of operating parameters such as peak point current lip), valley current (IV)' and offset voltage (V T ), which is defined as (1) These are easily programmed over a range by the choice of circuit components. Shown in Fig. 3 are the relationships between Ip and IV vs stand off voltage (VS) and gate source impedance (R g). As observed from Fig. 3, operation at higher voltages allow a greater spread between Ip and IV' The significance of this becomes apparent in applications where the negative resistance (Region II, Fig. 2) must be large and must remain relatively broad over a temperature range. Other advantages of the PUT over the UJT are: 1. Lower current drain through R, and R2 ; the UJT required several milliamperes of current, The PUT micro amperes of current. 2. Lower peak point current of the PUT allows use of larger Rt (timing resistor) therefore, the Ct may be smaller for the same time delay hence, lower in cost. Lower capacitance values also result in lower leakage current and lower temperature coefficient. 3. Higher efficiency is available due to greater energy transfer from the capacitor to the load. The on state voltage (VF) is considerably lower for a PUT than for a UJT. 4. High or low operating voltages may be used; Vs as low as 2V or greater than 40V will operate the PUT. 5. The PUT has an overall extended operating range due to programmability of Ip and IV' 6. Greater uniformity of triggering point. Stand off ratio J] is not determined by manufacturing tolerance. 10,000 Iv ~ ~2200 ~ 1,000 -.:; 1KO 0:: u 100 100Kil :::» u w " I I (j~MO 10 _0..,2- Ip 1KO 2200 r.~ 'J 10KO 0.1 100KO 1MO 0.01 .001 .01 0.1 1.0 10 100 1000 Vs IG ::::: RG Gate Source Current (mA) UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 Figure 3. 15-7 PRINTED IN U,S.A. U-66 APPLICATION NOTE BASIC PUT OSCILLATOR An analysis of the basic PUT oscillator demonstrates.the inter-relationship of parameters. From Fig.4b, the voltage Va changes at a rate determined by the RtC t charging path. When the PUT is operating in Region I, the anode voltage is given by Va = VBB (1-e- t / Rt Ct) (2) The standoff voltage is related to the supply voltage VBB (3) where R, (4) 71 = - - R, + R2 Triggering is accomplished when the voltage on the capacitor reaches the standoff voltage Vs; plus the offset vo.ltage VT , i.e. V BB (1-e-t/RtCt)-VT = 1/ V BB (5) The switching time occurs at t = RtCt in ( -V~) (6) '-1/--VBB VT varies only slightly with temperature having a temperature coefficient of about 2.5 mv/oC. Advantages of the PUT over the UJT are readily observed by comparing their operation in a simple relaxation oscillator circuit. Figure 4a shows a typical UJT oscillator with the simplified UJT model. In the off state the resistance ratio at the intersection of r, and r2 is a fixed value represented by 71 (intrinsic stand off ratio). This ratio which determines the device triggering voltage is established in the manufacturing process by the resistance of the silicon material and the diode contact. Manufacturing tolerance result in values of 71 which typically range in value from about 0.4 to 0.9. Replacing the UJT with a PUT results in stable operation in any given circuit (Fig. 4b). The parameter stand-off ratio 1/ is now established exclusively by setting the value of R2 and R, and remains relatively temperature stable. Ip and IV are controlled by gate source resist~nce Rg and stand off voltage Vs (Fig. 3). A detailed discussion of the PUT oscillator will be given. 81 Typical UJT Oscillator UJT Model Figure 4a. UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 15-8 PRINTED IN U.S.A. APPLICATION NOTE U-66 R1 TJ R1 + R2 R2 RT Vs r Va Standoff Ratio r A R1 CT TJ V BB VT Vp - RG R1 + R2 Vs Standoff Voltage Offset Voltage Vs R1R2 Gate Source Resistance (7) Fig.4b CONDITIONS FOR OSCILLATION Switching on takes place at the peak point (Ip) switching off requires that current through the PUT be less than the valley current (I V). Therefore, the load line must intersect the characteristic curve in the negative resistance region Fig. 5 and must be above the Ip point. CONDITION FOR SUSTAINED OSCILLATION VSS - Vp RT (max) > Ip (max) VT This condition insures current levels greater than the Ip (8) This condition insures current levels lower than the I V (9) This condition insures more stable operation. 1 - TJ »-g- SB (10) III IV Negative Resistance Load Line Ip Vv "" 0.6v UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 Vs Vp Figure 5. Offset Voltage 15-9 PRINTED IN U.S.A. U-66 APPLICATION NOTE CONDITIONS FOR ONE SHOT OPERATION V BB - Vp RT > Ip (max) >IV must be satisfied. Since the load current is in the positive resistance region, the PUT will LATCH on and remain on. PUT OFFSET COMPENSATION In order to compensate for offset voltage (VT) temperature shift, a diode 01 forward biased through RO may be used Fig. 6. The value of RO is selected by: V BB RO = - - Ip (max) A diode having a forward voltage temperature characteristic similar to the offset voltage temperature coefficient (TC) would provide optimum compensation. Figure 6. Offset Compensation Methods UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326-6509 • TELEX 95-1064 15-10 PRINTED IN U.S.A. APPLICATION NOTE U-66 TUNABLE FREQUENCY OSCILLATORS Variable oscillator circuits which include active elements for discharging the timing capacitor CT are shown in Fig. 7. A second method is given as in Fig. 8. Rn 1Kn R2 5.6KO FREQUENCY RANGE 40 Hz to 65 kHz RT2 3Mn OUTPUT PULSE Rise time-200 nsec. Pulse width -10fLseC. Recovery time < 200 nsec. PUT CT .005iJ.F Vo R1 15Kn Fig. 7 FREQUENCY RANGE 40 Hz to 40 kHz OUTPUT PULSE SCR Width - 5 IJ.sec. Fig. 8 UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326·6509 • TELEX 95·1064 15·11 PRINTED IN U.S.A. U-66. APPLICATION NOTE DESIGN EXAMPLE A relaxation oscillator. A trigger generator is needed to provide a pulse of energy. The required repetition rate is 1000 pulses per second. A power source of 20 Vdc is available. Step 1 Step 2 Select the value of Rl and R2 based on Ip, IV requirements. For RG = 10Kn, (Fig.3) Rl ~ 27Kn, R2 ~ 16Kn this will give an T} of ~ 0.63. (Equations 7 and 4). From Fig. 9 with T given as 0.001 sec and = 0.63. T} of 0.63. RtCt = 0.001, T/RTCT = 1 @T} Step 3 The condition for sustained oscillation must be satisfied (equations 8 and 9) hence, 275K < Rt < 1.4 meg (using spec values for a 2N6027). Step 4 The value of capacitance is chosen by considering the rise time and energy required. Since RTCT = 0.001 the CT range is 0.0007 < CT < 0.0036J.lfd. Choose a standard value of capacitance and resistance. For example, CT = 0.002J.lfd and RT = 470Kn (Standard Value). For this example Rt = 470Kn, Ct = 0.002J.lfd. A cathode resistance of 20n will provide a pulse of current of 130 ma with a pulse width of 300 nsec. 1.1 I 1.0 Vi .9 .8 / .7 ~ to) ~ - ) .6 .5 .4 / .3 .2 .1 /' o o V .1 V / I I I I • I / ex: ~ ~ / I I r I I I V I I I I I I .2 .3 .4 .5 .6 .63 .7 .8 Stand Off Ratio 17 Fig. 9 UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95·1064 15-12 PRINTED IN U.S.A. APPLICATION NOTE U-68A SWITCHING REGULATOR DESIGN GUIDE I. The Advantages of the Switching Regulator Unlike conventional "dissipative" series or shunt regulators, in which the power-regulating transistor operates in a continuous-conduction mode, dissipating large amounts of power at high load currents especially when the input-output voltage difference is large- the switching regulator has high efficiency under all input and output conditions. Furthermore, since the power-transistor "switch" is always either cut off or saturated (except for a very brief transition between those two states), the switching regulator can achieve good regulation despite large changes in input voltage, and maintains high efficiency over wide ranges in load current. industrial process control systems, instrumentation, and communication, Compared to the dissipative regulator, the switching regulator does have some disadvantages which preclude its use in some applications. The primary power source delivers current to the switching regulator in pulses which, for efficiency reasons, have short rise and fall times. In those applications where a significant series impedance appears between the supply and the regulator, the rapid changes in current can generate considerable noise. This problem can be reduced by reducing the series impedance, increasing the switching time, or by filtering the input to the regulator, Because the switching regulator regulates by varying the ON-OFF duty cycle of the power-transistor switch, and the switching frequency can be made very much higher than the line frequency, the filtering elements used in the power supply can be made small, lightweight, low in cost, and very efficient- i.e., with almost negligible power losses. It is possible to drive the switching regulator with very poorly filtered DC (in fact, in high-power applications, three-phase rectification without filtering of any kind is often used to develop the input DC from the power line), thereby eliminating large and expensive line-frequency filtering elements. A second problem of the switching regulator, compared to the dissipative regulator, is its response time to rapid changes in load current. The switching regulator will reach a new equilibrium only when the average inductor current reaches its new steady-state value. In order to make this time short, it is advantageous to use low inductor values, or else to use a large difference between the input and output voltage. Improved circuits for controlling switching regulators have been developed at Unitrode, thereby eliminating some earlier design constraints and optimizing the performance attainable with available hardware. These new circuits permit taking full advantage of the economy and efficiency of the Unitrode PIC600 Series Hybrid Power Switch. Finally, it is possible to design switching regulators with excellent load-transient properties, so that step increases of load current cause relatively small instantaneous changes in output voltage, recovery from which is essentially completed in a few hundred microseconds. The design approach used herein is believed to be original, and to be clearly superior to earlier methods of calculating the key parameters and designing the power inductor ... yielding explicit, accurate results in significantly less time than the approximate equations in common use. The switching regulator has become increasingly popular in new-equipment designs, not only in aerospace and defense applications, but in computers, 15-13 U-68A APPLICATION NOTE II. The Switching Regulator Described and Characterized The basic configuration of a switching regulator is shown in Figure 1. It accepts a DC voltage input, Ein, and regulates a DC ouput voltage, Eo, despite variations in Ein and load current. Although the static regulation, dynamic regulation, and ripple rejection of this type of regulator cannot be as easily optimized as they can in a continuous (so-called "dissipative") series regulator, its efficiency, power density (Watts output per cubic inch) and economy are all markedly superior to the series regulator ... particularly for low-voltage, high-current supplies. Unlike a series regulator, it maintains high efficiency with high input voltages. Switching regulators can thus be employed with high efficiency to derive low voltage outputs from a high voltage unregulated supply. load, circulating through "catch" diode 01. The input of the LC filter is now at zero Volts, il decreases to its original value and the cycle repeats. The output voltage, Eo, will equal the time average of the voltage at the input of the LC filter: where: T = 1/f The control circuit senses and regulates Eo by controlling the duty cycle, a = ton/T. If Ein increases, the control circuit will cause a corresponding reduction in the duty cycle, a, so as to maintain a constant Eo. All of these advantages derive from the method of regulating the output voltage: by varying the duty cycle ot a power-transistor switch, rather than varying the voltage drop across a power transistor operating in the linear mode. Because the switch (01 in Figure 1) is always in the saturated state when it is conducting, and is otherwise completely non-conducting (except for a brief commutation time between the ON and OFF states), the power dissipated in the regulator is much lower than it would be in a series regulator for the same input and output conditions. Eo = a Ein Rs -!.!.- L I, c E In FROMAS~DNS\NG 01 CONTROL CIRCUITS The basic switching regulator circuit functions as follows: The control circuit causes transistor switch, 01, to switch on and off at a predetermined frequency, f. During the time that 01 is on, to", the input voltage, Ein, is applied to the input of the LC filter, causing current il to increase. When 01 is off, the energy stored in the inductor, L, maintains current flow to the UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326-6509. TELEX 95·1064 ESR Figure 1. Switching Regulator Basic Configuration 15·14 APPLICATION NOTE U-68A r 1/f-j T too ----- VL -0 toff D.il/2 ~ I tM + toff I I I --tI 2 i. = T (1 I - ~i~) i~ = EO) Em Eo Ttoff 00 D.i I :Co I~T --12 T21.- vESR - il max - il min D.i2 D.Q Figure 2e T L D.iJ Vc = Ein - EO t i1 Figure 2d ton Ein -Eo Figure 2b i2 TE2.. tou Figure 2a Figure2c too Ein -Eo i2 il-Io D.i2 D.il I Eo D.vc D.Q C 1 D.iJ 2 2" C !. 2 D.iJ SfC t .~ ~ ~V T D.VESR D.iI ESR 0 eo Vc + VESR Figure 2f eo D.e o D.vc OR D.VESR, whichever is greater. NOTE: See Appendix A for rigorous analysis and justification Figure 2. Switching Regulator Waveforms UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95·1064 15·15 III APPLICATION NOTE U-68A Figure 2 shows some of the important waveforms and equations which define the operation of the switching regulator power circuit. The following discussion is based on several simplifying assumptions which are explained and justified or corrected in Appendix A. The most significant assumptions are to neglect the saturation voltage of 01, the forward drop of D1, and the series loss resistance, Rs, of the inductor, L. Figure 2a shows the voltage across inductor, L, which equals (Ein - Eo) during to", and (-Eo) during toft. Under equilibrium conditions, when output load current, 10, is constant, the average voltage across L must, by definition, equal zero. Figure 2b shows the current il through the inductor. Under equilibrium output current conditions, the increase in current during too. ,1h must equal the decrease in current during toft. The average value of II equals the output current, 10. Figure 2c shows current i2 through the capacitor, which is equal to (il - 10). The average value of i2 = 0, and Ai2 = Ail' Current i2 causes a ripple voltage to appear at the output. The output ripple voltage, eo, has two components, a capacitive component, Ve, and a resistive component, VESR, caused by the equivalent series resistance of the capacitor. Figure 2d shows the capacitive component, Ve, of the ripple voltage, which is the time integral of the capacitor current, i2. Note that Ve is the integral of a triangular wave, and is not sinusoidal. Also note that Ve is in "quadrature" with i2, in the sense that Ve min and Ve max occur at times A and B, midway in the too and toft intervals, when b is zero. The total charge, AO flowing into C is computed graphically by finding the area of the triangular current waveform between time A and time B (Area = Y2 bh; AO = Y2 x r/2 x Aid2). The UNITRODE CORPORATION. 5 FORBES ROAD LEXI NGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326·6509 • TELEX 95-1064 15-16 peak to peak capacitive ripple component AVe = AO/C = Aid8fC. (The factor 8f for a triangular current waveform is comparable to 21Tf for a sinusoidal input current.) Figure 2e shows the resistive component, VESR, of the ripple voltage which simply equals i2 x ESR, and is in phase with b. Figure 2f, the total output ripple voltage, eo, is the sum of the waveforms in Figures 2d and 2e. Note that since Ve and Vm are in quadrature, the greater of these two components dominates, and for all practical purposes the peak to peak output ripple voltage, Ae o, is equal to either AVe or AVESR whichever is greater. The magnitude of VESR in comparison with Ve shown in these waveforms is not exaggerated. Indeed, when designing a switching regulator to operate at frequencies greater than 20 kHz in order to achieve small size and low cost in the Land C filter elements, the ESR of the capacitor usually dominates completely. Even when high quality capacitors (low ESR) are employed, it is usually necessary to use a larger capacitance value than would otherwise be required in order to realize the ESR required to achieve the ripple objective of the design. With conventional free running switching regulator control circuits, capacitor ESR also causes very significant departure from the design frequency, which can result in large ripple magnitude, inductor saturation, and switching transistor failure. In the circuits developed at Unitrode and presented in the next section, the frequency-variation effect caused by ESR is effectively eliminated, leaving only the ripple consideration. Detailed design considerations for switching regulator power circuits are contained in Section IV. U-68A APPLICATION NOTE III. Applications Circuits for Switching Regulators The design and performance of conventional switching regulators are usually dominated by the ESR of the output capacitor. However, in the group of circuits described in this section, the following parametric relationships and circuit characteristics are easily and economically attained: • The switching frequency may be selected and established at the optimum value for the switching components, and will be independent of the value of the ESR of the output capacitor. • The value of toff is held relatively constant, over wide ranges of load current and input voltage, and independent of the ESR of the output capacitor. Constant toff results in constant ripple current and output ripple voltage. • Settable overcurrent limiting is provided, thereby protecting both the load and the switching transistors under all conditions, and preventing saturation of the power inductor during the startup transient period, thereby minimizing startup overshoot. • • The overcurrent limiting circuit is significantly lower in dissipation than conventional current-limit-feedback arrangements. The drive current to the power output (switch) stage is regulated to a pre-determined value, for best efficiency and optimum switching speed. Drive current is automatically increased at low temperatures and decreased at high temperatures, thereby maintaining optimum drive conditions for the power switch. 3 typifies this family of regulators. It is shown implemented by the popular LM305 regulator IC, and a Unitrode Series PIC600 Hybrid Power Switch, comprising a quasi-Darlington switching transistor, a fast recovery catch diode, and transistor bias resistors, all matched for optimum efficiency and switching speed (up to 100 kHz without derating). The configuration of Figure 3 is a positive output regulator, with performance characteristics as follows: Ein 5V ± Aeo 1% 100 mV p-p (2% p-p ripple) 10 = Isc 2 to 10A 12A Regulation versus Ein (20 to 40V) < 25 mV Transient Recovery Time for step change in load current from 2A to 10A. or 10A to 2A < 150 fLsec. = 50 kHz nominal Efficiency> 70% The circuit of Figure 3 operates in the fixed-oft-time mode; hence, output ripple is independent of input voltage over wide ranges. In this circuit, two feedback signal paths are provided: • Note that, although the use of this circuit approach permits essentially constant "toff" operation even with capacitors having relatively high ESR, the output ripple voltage is increased by high ESR. (If the ripple developed across ESR is significantly larger than that developed across C, then the ripple is essentially proportional to ESR.) Not all of the circuits that follow have all of the virtues listed above, but the exceptions will be noted. Figure UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95·1064 20to 40V Eo 15·17 DC Feedback. A fraction of the DC output voltage, Eo, is fed back to the inverting input of the LM305 through voltage divider R1, R2. The DC voltage at the inverting input is compared to a reference voltage (approximately 1.8V) within the LM305, and the LM305 regulates Eo so that the voltage fed back to the inverting input is essentially equal to the built in reference Voltage. The R1, R2 divider ratio therefore establishes the level of the DC output voltage, Eo. Resistor R5 improves output voltage regulation versus input voltage changes by feeding a small compensating voltage proportional to the input voltage into the inverting input of the LM305. II APPLICATION NOTE • AC Feedback. Capacitor C1 feeds back an AC voltage waveform to the inverting input of the LM305. This voltage is proportional to the output ripple voltage plus the AC voltage developed across R,. tJ.eo + tJ.VR" Capacitor C2 feeds back an AC voltage to the non-inverting input of the LM305. This voltage is proportional to the output ripple voltage plus the AC voltage across R3, tJ.eo + VRl. When the circuit values are properly established, the same, fraction of tJ.e o is fed back to both inverting and non-inverting inputs, thereby effectively cancelling. The operation of the switching regulator is thus rendered independent of the output ripple voltage developed across the C or ESR of the output capacitor. Since the tJ.e o components cancel each other, the LM305 essentially compares tJ.VR' at the inverting input to tJ.VRl at the non-inverting input. Voltage tJ.VRl is a rectangular waveform with a peak-to-peak amplitude equal to I drive x R3, where I drive is the base drive to the hybrid switching transistor provided by the LM305, and aVR' is a triangular waveform with a peakto-peak amplitude equal to tJ.i l x R" where tJ.i l is the ripple current through inductor L. When the drive current is on, aVRl is at its peak positive amplitude. As i1 increases, VR' increases proportionately. When the positive amplitude of aVR' reaches aVR3, this causes the LM305 to switch off the drive current, aVRl immediately drops to its peak negative amplitude, and i1 starts to fall. When aVR' reaches a negative amplitude equal to aVRl, the LM305 switches the drive current back on, and the process repeats. In this manner, the LM305 controls the power switch so that ail is fixed. Since toff = ail x L/Eo, with fixed values of Land Eo, toff is fixed and independent of changes in Ein or capacitor C or ESR values. U-68A Current-limiting action is provided by transistor 01, the collector of which is connected to the "gate" or "inhibit" terminal of the LM305 (pin 7). When the load current is normal, 01 is cut off and pin 7 floats; but when the voltage drop across R, increases to a value greater than the sum of VBE (01) and VRl, 01 turns on, cutting off the drive current from the LM305 and, ultimately, the power switch. This cutoff action is made to "latch" by the fact that, with the drive cut off, VR3 disappears. This keeps 01 on, until the current through R, drops significantly - enough to make the voltage drop across R, fall below the VBE of 01. The current through Rio' following such an overload cutoff action, falls linearly at the rate of Eo/L. When 01 is cut off, drive current is restored. The circuit will then continue to switch on and off at a frequency comparable to normal operation, with the average current limited at the design limit, and power dissipation held to safe values. L 22 .... H R, 006 +---+-0' Co 240 .... fd o025 !l R4, connected between pins 1 and 8 of the LM305, establishes the desired level of base drive for the PIC600 Series Hybrid Power Switch, and determines the hysteresis voltage across R3. UNITRODE CORPORATION· 5 FORBES ROAD LEXI NGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 E out Figure 3. Positive Voltage Switching Regulator 15-18 U-68A APPLICATION NOTE Transient response of the switching regulator of Figure 3 is shown in Figures 4,5, and 6. ~ / Output L Volts / a !J a 100 200 Time. 300 400 500 ~sec Figure 4. Ein from 0 to 25V O~I~~~t 3+---+--+---+--+---1 rectangular current pulse associated with the power switch turning on and off from propagating into the Ein supply line. The capacitance value required is a function of the impedance characteristics of the Ein supply and intervening wiring. Watch out for underdamped resonance with the inductance of the input wiring, or transient induced ringing may occur. The input capacitor must have short leads, and the ground side should preferably be connected directly to the ground side of the output filter capacitor. A 10A negative voltage switching regulator, utilizing an LM304 and PIC600 series, is shown in Figure 7. A reference voltage is determined by resistor R1 and R2. The error amplifier controls the output voltage at twice the voltage across R2. Diode 01 is used to ensure a potential difference of less than 2V at the unregulated input (pin 5) with respect to the reference supply (pin 3). (If the unregulated supply terminal gets more than 2V positive with respect to reference supply, the collector isolation junction of transistor 06 of LM304 becomes forward biased and disrupts the reference.) Current limiting is achieved, in Figure 7, by means of reducing the reference voltage to ground with the help of transistor 01 and resistor R8, instead of turning off the base drive to the power output switch as in Figure 3. 0+---+--+---+--+---1 o 100 200 300 400 500 Time ~sec Figure 5.10 from 4A to 10A The functions of the rest of the components and the operation of the switching regulator are the same as described for Figure 3. IV" A positive switching regulator using a /LA723 is shown in Figure 8. Output The basic performance and circuit operation is the same as Figure 3. Vol Is The circuit shown in Figure 9 is a high voltage positive switching regulator. Because the LM305 (like almost ailiC regulators) cannot be operated at supply voltage in excess of 40V, this circuit uses a fraction of Ein as a power supply for the IC circuit by means of zener diode and current limiting resistor R9. The voltage isolation between LM305 and power switch, and the regulated base drive to the power switch are provided by transistor 02. at a ------:'+00--,-----:2+00--,-----:3+00--4+00---1 500 Time, .usee Figure 6.10 from 10A to 4A It is usually necessary to employ a noise filtering capacitor across the input of any switching regulator. This functions to prevent the steep waveform of the UNITROOE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95·1064 15·19 • U-68A APPLICATION NOTE The basic operation of the circuit and design approach is the same as that of a low voltage positive switching regulator. The circuit shown in Figure 10 is a negative high voltage switching regulator. This circuit is similar to the low voltage negative switching regulator with a minor modification. Transistor Q2, resistor R1 0 and R11 are all used to provide regulated base drive to the power output stage and also to provide the voltage isolation between power output stage and LM305. The resistor R9 is used to limit current through zener diode under steady state and startup conditions . • '0 ~-r.;¢-...,--, 01 e1 R5 007 R6 22 Eout '---1---"--0- Eoul I RB Co 240~f R2 ':" 0.02511 82011 3BK Figure 7. Negative Voltage Switching Regulator Figure 9. High VOltage Positive Switching Regulator - - - - - -.,-..-<>,-.., - + Em R6 R6 15K 22K R, 006 '---+......6-<) +Eout Eoul e2 001p.f R2 47K T e 24Of" o -= 002511 82011 Figure 10. High Voltage Negative Switching Regulator Figure 8. Positive Voltage Switching Regulator UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326·6509 • TELEX 95-1064 15·20 U-68A APPLICATION NOTE IV. Designing the Power Circuit In designing a switching regulator power supply, the following parameters will normally be predefined. Specific values shown for each parameter will be used as the basis for a design example: Eo 5V Output Voltage 100 mV Output Ripple Voltage, Peakto Peak lomax 1OA Output Current, Full Load lomin 2A Output Current, Minimum Load Ein max 40V Input Voltage, Maximum Einmin 20V Input Voltage, Minimum Frequency Power output DC losses Switching losses Total power Input Real izable efficiency High frequency operation is distinctly advantageous in that the cost, weight and volume of both Land C filter elements are reduced. However, above the frequency where the capacitor ESR exceeds its capacitive reactance, no further reduction in capacitor size or cost will occur. This frequency, in the range of 1-50 kHz, depends upon the "quality" of the capacitor in terms of ESR. Above this frequency, the inductor will continue to diminish in size and cost, although when the inductor reaches a very small size, cost will level off. The main factor limiting high frequency operation is the drop in efficiency caused by switching losses in the power switching transistor and "catch" diode. The higher cost of these fast switching semiconductors required to operate efficiently at high frequencies must be weighed against the reduced cost, size and weight of the Land C components to arrive at the optimum frequency for any specific application. It may be desirable to work the design through at several frequencies in order to make a decision. 20kHz 50kHz 50 10 1 61 82% 50 10 2.5 62.5 80% 100 kHz 50 10 5 65 77% Transistors and diodes which do not have the fast switching capabilities of the PIC 625/635 will become efficiency limited at much lower frequencies. Note that in this specific application, a dissipative regulator design will incur power losses in the series transistor of 350W, resulting in an efficiency of 12.5 percent! The control circuits shown in the previous section control the on-off switching periods by sensing and controlling the ripple current, ~h, through the inductor L. This mode of operation results in a constant ripple current and (assuming Eo and L are fixed) constant off time, toff , independent of input Voltage. The relationship between toff , f, Eo, and Ein is as follows (from Figure 2a): toff = (1 - Eo/Ein) / f With toff and Eo fixed by the control circuit, f will change when Ein changes, and f will be maximum when Ein is maximum. In our specific example, fmax Ein max Eo In the specific application defined at the beginning of this section, the power output (Eo x 10 max) is 50W. UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 1 kHz 50 10 0.05 60.05 83.3% For our example, we will choose a frequency of 50 kHz, even though the efficiency is not significantly reduced at 100 kHz. At 100 kHz most currently available tantalum and aluminum electrolytic capacitors begin to exhibit series inductance. The first step in the design is to decide on the operating frequency of the switching regulator. No concrete rules can be given for this decision. Operation above 20 kHz is desirable to eliminate the possibility of audio noise. Referring to the specification for the Unitrode PIC 625/635 Hybrid Power Switch, the DC losses (Transistor VeE"" Diode VF) under the conditions of this application amount to 10W. The following tabulation shows the switching losses and overall efficiency at several frequencies. 15-21 50 kHz 40V 5V APPLICATION NOTE U-68A so that: toff = 3. (1 - 5/40) / 50,000 = 17.5fLsec Now, with toff fixed at 17.5 fLsec, if Ein changes to Ein min 20V, = f moc (1 - Eo/Ein) ton = (1 - 5/20) 17.5 X 10 6 = 43 kH z The fact that the frequency changes slightly with Ein is really not important, as stated earlier, because constant toff operation results in more constant output ripple than constant frequency operation. Having determined (or assumed) the maximum operating frequency and calculated toff, we next proceed to find specific values for Land C. Land C together form a low pass filter which reduces the rectangular waveform at the filter input to a DC output voltage, Eo, with a small amount of ripple, Aeo, superimposed. To achieve a specified Ae o requires a specific LC product, independent of load current. Theoretically, this LC product can be achieved with any LlC ratio - small L and large C, or large L and small C (or very large L and no C at all, using instead the load resistance RL as one element of an LI R filter). There are, however, several practical economic and performance considerations that apply to selecting specific Land C values. Losses in a practical inductor are higher than in a capacitor with equal energy storage capacity (assuming low ESR). This again argues for small L, large C. One major objection to a low LI C ratio is that it causes large and sometimes intolerable overshoot in input current and output voltage on startup, when the circuit is first energized. Input current overshoot can saturate the inductor and destroy the switching transistor. The current limiting feature of the applications circuits shown in Section III effectively controls the startup transient, thereby protecting all components and minimizing voltage overshoot. With current limiting, this problem is eliminated and no longer pertains to the selection of Land C values. Referring to Figure 2b and its associated equations, the peak-to-peak ripple current through the inductor, Ail, is inversely proportional to the inductance, L. As L is made smaller, Ail increases. Maximum limits on Ah determine how small L is permitted to be, as follows: 1. 1. Under the power and frequency ranges commonly encountered in switching regulator circuits, it costs more to store energy in an inductor than in a capacitor. Also, an inductor will have considerably greater weight and volume than a capacitor with equal energy storage capacity. Small Land large C, within the limits defined below, will usually result in the lowest cost, weight and size design. The instantaneous current through L ranges between a maximum of 10 + Aid2 and a minimum of 10 - Aid2. If Aid2 is permitted to become larger than 10, the minimum inductor current becomes a negative value. This is impossible, since neither the switching transistor nor the "catch" diode will conduct. Therefore, the switching regulator goes into a discontinuous mode of operation which is perfectly safe, but the frequency changes considerably and regulation with output current changes becomes relatively poor. The worst case consideration to insure that discontinuous operation does not occur is to make Aid2 equal to the minimum load output current, 10 min, or Ail = 2 10 min. 2. Small L and large C results in low "surge impedance" of the filter, hence better transient behavior with step changes in load current. It is not practical to apply this criterion if 10 min is very small «0.05 10 max) because Ail would then be very small, forcing an impractically large L value. In applications It is favorable to push in the direction of small Land large C for the following reasons: UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95·1064 15·22 APPLICATION NOTE U-68A where 10 min is very small, there are two alternatives: (a) raise 10 min by preloading the supply, or (b) make 8i l = 2(0.05 10 max) = 0.1 10 max realizing that when 10 becomes less than 0.05 10 max, the discontinuous mode will occur. 2. The maximum peak current is equal to the full load current, 10 max + 8id2. As L is decreased, the corresponding increase in 8i 1 will begin to cause a significant increase in the maximum peak current. Since the inductor must be designed not to saturate at the maximum peak current, this begins to negate the cost, size and weight advantages of making the L value smaller. Higher peak currents will have an adverse effect on efficiency and transistor drive requirements, and may require transistor and "catch" diodes with higher current ratings (and higher cost). It is, therefore, recommended that 8id2 be no greater than 0.25 10 max, which will limit the maximum peak current to 1.25 10 max, or 8i l max = 0.510 max. The final step is to determine the requirements for the capacitor C and ESR values which will result in the desired output ripple voltage, 8e o. Since the two components of 8eo : 8Vc and 8VESR, are in "quadrature", we can consider each component separatelY, with a worst case error of less than 20 percent when both components are equal. This much error is highly unlikely, since the ESR component usually dominates completely when operating at high frequencies. From Figure 2d: C = note that C varies inversely with f. In order to achieve 8Vc less than the desired maximum 8e o, the minimum value for C must be determined at the lowest frequency, fm", calculated previously. Cmin 8 x 43 X 10 3 x 100 X 10- 3 114 jLF In summary: 210 min, within the following somewhat arbitrary limits: 8i 1 min 0.110 max 8i 1 max 0.510 max Now that toff and 8i 1 have been determined, L can be calculated as follows: L = Eo X toff -~ 5x17.5x10 4 UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 From Figure 2e: ESR max In our example, 10 min = 2A, 10 max = 10A. Calculating 8i l = 2 10 min = 4A, which is acceptable since 8i 1 max = 0.5 x 10A = SA, and 8i 1 min ;= 0.1 x 10A = 1A. 6 21.9 jLH 8i , 8f8V, 8VESR 8i 1 100xlO- 3 4 0.025n With high frequency operation, capacitor ESR usually dominates, forcing the use of a C value much greater than C min in order not to exceed ESR max. Subsequent sections deal with designing the inductor and selecting the capacitor and other components of the switching regulator. 15-23 • U-68A APPLICATION NOTE V. Design of the Power Inductor This simplified nomographic method facilitates selecting the smallest core that will achieve the desired characteristics of the power inductor. This procedure is useful in selecting the proper core and determining wire size, number of turns, copper losses, and temperature rise. It also permits investigating the effects of change in assumed initial conditions and in "trimming" the design. A detailed analysis of this inductor design procedure is contained in Appendix B. Tables 1 and 2 give core parameters for a variety of commonly used ferrite pot cores and MO-Permalloy toroids. (Note: There is no significance to the selection of manufacturers, nor is any intended. Many manufacturers make roughly equivalent cores in these sizes, with similar magnetic properties.) Ferrite and Mo-Permalloy powder are excellent core materials for the switching regulator inductor. Since the rms AC current through the inductor is small compared to the DC current, AC losses in the winding and core losses will be negligible compared with DC winding losses. Selection of the proper core for a specific application is a process concerned with two factors: (1) The core must provide the desired inductance without saturating magnetically at the maximum peak overload current, h max. In this respect each core has a specific (Ll2)"t energy storage capability. (2) The core must have a window area for the winding which admits the number of turns necessary to obtain the required inductance with a wire size which .will result in acceptable DC losses in the winding at the full load output current, 10. Each core has a specific (Ll2)di" capability that will result in a specific power loss or temperature rise. The significant core parameters are primarily core size and the magnetic gap in series with the flux path. Consider a very small (for the application) ferrite pot core with no air gap. The effective permeability, ""., will be very large because there is no gap. Relatively lew turns will be required to achieve the desired inductance, and the power loss at 10 will be small, but the core cannot store the required energy L(il max)2 without saturating. If we introduce a gap into this core, the energy storage capability increases (the extra energy is actually stored in the gap, not in the ferrite material). However, the gap causes the effective permeability to drop, which requires more turns of finer wire to achieve the desired inductance. If the core is UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 too small, as the gap is increased to the point required to achieve the necessary energy storage capability without saturating, the DC resistance of the increased number of turns of finer wire has increased to the point where the power dissipation and temperature rise is too great. This conflict is resolved by going to a larger core with appropriate gap. To facilitate core selection, Tables 1 and 2 contain tabulated values of (Ll2)", energy storage capability (saturation limited) and (Ll2)25C capability (based on power dissipation resulting in 25°C temperature rise). These values have been calculated for various size cores with different gaps, by methods described in Appendix B. Also given in the tables are the power dissipation corresponding to a 25°C rise for each core size, and the effective window area for the winding, Aw'. Tabulated AL values relate to different gaps. (AL is the inductance index at a particular gap setting defined as the inductance in mH for 1000 turns.) The optimum cores for switching regulator inductor applications generally have quite large gaps, and consequent relatively low AL values. This is fortuitous, since the core properties are then dependent mostly on the gap itself, and variations in the magnetic materials of the core are swamped out, resulting in excellent stability and linearity. Note, however, that in the ferrite pot core table, many of the lower AL values are not supplied as stock items by the manufacturer, and the desired gap must be ground to size on a special order basis. Mo-Permalloy powder cores are effectively "gapped" by the manufacturer by means of varying the amount of non-magnetic binder that holds the Mo-Permalloy particles together within the core, and by the size and shape of the Mo-Permalloy particles. Thus, the "gap" is actually distributed throughout the core material. These cores are supplied with many different AL values in each size. One of the main advantages of ferrite pot cores and ferrite E-I cores (not tabulated, but worth considering) is that the winding is easily formed on a bobbin which is subsequently assembled within the two-piece core assembly. Ferrite toroids are not recommended because of the practical difficulty of introducing a gap. Mo-Permalloy toroids are not as convenient to wind, but this is not a serious problem as most switching regulator inductor designs require few turns of relatively heavy wire. 15-24 APPLICATION NOTE U-68A Example of Inductor Design Power loss in inductor; The example shown below will illustrate the method of solution, as drawn on the nomograph of Figure 11. Actual Pw Given: L 10 il max Eo x 10 21.9p,H 10A 14A (current limited) 50W (output of regulator) II 2 P25C X (lI 2 )25C 0.547 x 22;:8 W 0.524W Actual power loss in the inductor as a percentage of the power output of the switching regulator is: Copper losses not to exceed 1% of output power, and temperature rise of inductor not to exceed 25°C. Pw x 100% == Eo x 10 0.524 x 100% _ 1050;' 50 -. ° If power losses are not acceptable, then select a core with higher (LI2J,sc capability. Step 1: Draw line t o.5 0.02~ [50 20 1 o.~ 1 0.5 18 (11 i\l 0> 20 10 U2 (mJ) 1 AL .J 15 14 1.01 2 0.005-1 SOl 13 2.0-4 12 11 5.0-' .002--' I (Amp) L (mH) 100J N Aw' (em2) 10 WIRE GAGE c: en I Figure 11. Inductor Design Nomograph 00 » APPLICATION NOTE U-68A Table 1. Ferrite Pot Cores Power Dissipation Ferroxcube Dimensions (Inches) Part No. 1107·Al00-387 1107 -A 160-387 1408-A100-387 1408-A 160-387 1811-A 160-387 2213-A160-387 -387 26162616-A250-387 3019-387 3622-387 4229-387 · ·· · 2S°C rise (watts) Window Area 0.65 Aw (cm') Inductor Index Saturation Limit (mJ) Dissipation Limit 2S°C rise (mJ) (~O) (HT) (P"c) (Aw) (AL) «LI')..,) «LI')"c) 0.445 0.445 0.559 0.559 0.716 0.858 1.024 1.024 1.201 1.418 1.697 0.264 0.264 0.334 0.334 0.428 0.538 0.640 0.640 0.754 0.880 1.16 0.100 0.100 0.158 0.158 0.259 0.358 0.547 0.547 0.754 1.04 1.60 0.034 0.034 0.063 0.063 0.122 0.193 0.263 0.263 0.382 0.486 0.910 100 160 100 160 160 160 160' 250 200' 200' 200' 0.200 0.144 0.490 0.324 1.02 2.12 5.06 3.24 8.57 18.4 31.8 0.077 0.124 0.180 0.288 0.719 1.32 2.29 3.58 4.90 7.21 17.9 ',' " * Indicates not stock Item Gap must be ground to obtain desired AI Table 2. Mo-Permalloy Torolds Power Arnold Part No. A-307032-2 A-051 027-2 A-189043-2 A-059043-2 A-894075-2 A-291061-2 A-298028-2 A-085035-2 A-087059-2 Dimensions (inches) Dissipation 2S°C rise (walls) Window Area O.SAw (cm') Inductor Index Saturation Limit Dissipation Limit 25°C rise (mJ) (mJ) (00) (Hn (P"c) (Aw1 (AL) «LI')..,) ( (LI')"cl 0.425 0.530 0.710 0.930 1.09 1.33 1.33 1.60 1.875 0.180 0.217 0.280 0.330 0.472 0.457 0.457 0.605 0.745 0.072 0.125 0.209 0.346 0.520 0.708 0.708 1.04 148 0.082 0.192 0.319 0.703 0.781 1.47 1.47 2.14 2.14 32 27 43 43 75 61 28 35 59 0.180 0.296 0.782 1.55 3.40 4.54 9.90 20.1 40.2 0.065 0.199 0.659 2.06 4.32 8.97 4.12 8.65 16.0 III UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326·6509 • TELEX 95·1064 15-27 U-68A APPLICATION NOTE VI. Component Selection 1. Power Switching Components Voltage ratings of the power switching transistor and catch diode must be greater than the maximum input voltage, Ein, including any transient voltages that may appear at the input of the switching regulator. Low transistor VCb,t and diode VF at full load output current are important considerations to maintain high efficiency (Ref efficiency calculations - Appendix A). Fast switching diodes and transistors are required to maintain good efficiency in high frequency switching regulators. Transistor switching losses become significant when combined rise time plus fall time exceeds approximately 0.025 x 'T. Thus, for 50 kHz operation, t, + tf should be approximately 0.5 /Lsec or less. Transistor delay and storage times do not affect efficiency, but cause delays in turn on and turn off resulting in lowering the frequency of operation and increasing ripple. Combined td + t, should be less than 0.05 x 'T. Unitrode manufactures a broad variety of fast switching power transistors and Darlingtons, which are listed in the Power Transistor & Darlington Product Selection Guide. Their combinational high voltage, high current, low saturation voltage and medium to fast switching characteristics make them ideal for this application. '-.J The diode reverse recovery time must be no more than about half the current rise time through the transistor. If this requirement is not met, large amplitude reverse recovery current spikes will be drawn from the input power supply causing severe EMI probl.ems. Large transient currents through the transistor may cause degradation or second breakdown. Referring to Figure 1, Section II, during the time that the transistor is off, the catch diode is conducting the output current, 10, and the transistor VCE equals Ein. When base drive is applied to the transistor to turn it on, current through the transistor rises from 0 to 10. During this current rise time interval, t,;, the diode remains in forward conduction, but the diode current declines from 10 to 0, since the inductor maintains the total current at a constant value equal to 10. If the diode has recovered at the end of the t,; interval, the voltage across the transistor will start to decrease and the diode will go into the reverse direction. This period of time is the transistor voltage rise time interval, t,,, which is terminated when the transistor VCE reaches VCE"t and the diode VR reaches Ein. If the diode has not recovered at the end of the t,; interval, it will remain a low impedance instead of proceeding smoothly into the reverse direction. Transistor current will increase well above 10 until the diode UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326·6509 • TELEX 95-1064 recovers, pulling the additional current through the diode in the reverse direction. This problem has probably caused more grief in switching regulator applications than any other, and almost completely dominates diode selection. Diode switching losses will be completely negligible if the diode is fast enough to minimize the recovery problem, i.e., two to three times faster than the transistor turn-on rate. Unitrode UES rectifiers, listed in the Rectifier Product Selection Guide, are uniquely suited to this type of application. With low forward drop and typical recovery time of 20 nsec from forward currents as high as 50A, they cause no discernible recovery spike when used in conjunction with Unitrode's medium frequency switching transistors. Unitrode PIC600 Hybrid Power Switches summarized in the Switching Regulator Power Circuits Product Selection Guide combine in a single package the UES rectifier and power switching transistor with its associated drive transistor and bias resistors. Power transistor, drive transistor and rectifier are matched to optimize switching speeds and VCE sat. Available in NPN and PNP versions, the PIC600 series can operate at 50 kHz with only 2.5 percent loss of efficiency compared with operation at lower frequencies. Significant reduction of EMI can be achieved because of the reduction of circuit wiring. 2. Output Filter Capacitor. The most difficult component selection problem for high frequency switching regulator applications is to find and specify an output capacitor with suitably low ESR. Most tantalum and aluminum electrolytic capacitor types do not have ESR specifications (probably because ESR is not very good). In some cases, the dissipation factor, OF, is given in the specification. However, OF is usually specified at 60 Hz, which is more indicative of effective parallel resistance, and is virtually useless in determining ESR. When OF is specified at 1 kHz or higher, it may be used to determine ESR: ESR = OF (%) x 0.01 x Xc = OF (O;lf~ 0.01 The power circuit design example given in Section IV requires an output capacitor with Cm;n of 114 /Lfd and ESRm" of 0.0250. The capacitor which comes closest to meeting this requirement (after a limited search) is solid tantalum, Mallory THF, 120 /Lfd @ 10V. This capacitor has a max OF of 8% at 1 kHz, which defines ESRm" = 0.1060. ESR is typically 0.050. Two of 15-28 APPLICATION NOTE U-68A these capacitors in parallel are required, based on typical ESR, to achieve an ESR of 0.0250; four in parallel are required, based on ESR m" of the capacitor. The aluminum electrolytic which comes closest (again based on a limited search) is the Sprague 6720 series, 1000 /Lfd @ 12V, which has an ESR m " of 0.0650 @ 50 kHz. Typical ESR is 0.0250. In either case, a much larger C value is required in order to achieve the desired ESR. This does have the advantage of reducing transient voltage changes with sudden changes in load current. In the design example of Section IV, AeoRMs = 0.033V, which is less than the 0.05V max ripple rating of the 10V Mallory THF capacitor, and Ai RMs ::= 1.14A, which is less than the 2.47A max ripple current rating of the 1000 /Lfd, 12V Sprague 6720 capacitor. It is worth noting again that with the control circuits shown in Section III (unlike conventional switching regulator control circuits), the operating frequency will remain relatively constant, regardless of ESR, although the output ripple voltage will vary directly with ESR. In some cases, it may be economically advantageous to increase the value of L (and the size and cost of the inductor) in order to reduce ripple current, Ail = Ai 2 , and thereby increase the ESR m" requirement. 3. In addition to considering the C and ESR values and appropriate voltagje derating for the application, most capacitors have maximum RMS ripple current or max RMS ripple voltage ratings which should not be exceeded. Actual RMS ripple current and voltage in the application can be calculated as follows: AeoRMS Ai RMs = Series inductance of the capacitor is usually not significant compared to ESR at frequencies below 100 kHz. However, inductance can become dominant if good wiring practices are not followed. Specifically, the ground side of the catch diode should be returned directly and as close as possible to the ground side of the capacitor, and capacitor lead length including circuit wiring on both sides of the capacitor should be minimized. Aeo p-p/3.0 Ail p-p/3.5 Control Amplifier and Reference. Control circuits for switching regulators can be designed around IC operational amplifiers and separate voltage references, or around low power voltage regulator IC's which have built-in references. Voltage regulator IC's such as the LM304, LM305, and /LA723 have the added advantage that the output current they provide to drive the power switching transistor can be caused to diminish at higher temperatures, which conforms to the transistor drive requirements vs. temperature and helps to maintain optimum switching speeds over a range of temperatures. Amplifiers used in the control circuit should be uncompensated in order to obtain fast switching speeds, otherwise the delay times introduced will result in lower frequency operation and larger ripple amplitudes, and may cause circuit instability. III UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326·6509 • TELEX 95·1064 15·29 U-68A · APPLICATION NOTE Appendix A Analysis of Power Circuit The design equations for the switching regulator power circuit used throughout this design guide were based on several simplifying assumptions, which will now be dealt with. The simplified equations neglected the effect of "catch" diode forward drop, VF, transistor saturation voltage, V"" and the IR drops in the inductor and current sensing resistor, 10 Rx. If a design is implernented using the values of L, C, ESR, and ~i derived from the simplified equations, then too, toff , f, and ~eo will differ from the design values because of the effect of the simplifying assumptions as follows, from Figure 2b: Simplified : ~il (Ein - Eo)ton L (1 ) ~il (Ein - Eo - V"t - 10 Rx)ton' L (2) Eotoff -L- (3) Exact: Simplified: ~h Exact ~h (Eo + V + 10 RX)toff' D L (4) Note that ~il is fixed, because the control circuit controls this value directly. Instead of the original design values of ton and toff , actual values to: and toff' will be observed. Since ~il is fixed, we can equate Equations (1) to (2) and (3) to (4): UNITRODE CORPORATION. 5 FORBES ROAO LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 (Ein - Eo) (Ein - Eo - V"t - 10Rx) and Eo toff Eo + VD + 10Rx Although the actual toff' is less than the assumed toff, ton' is greater than the assumed ton, so that their net effect on the operating frequency is reduced. In the worst-case, when Eo is small (5V) and Ein is high (50V), the actual frequency will be 25 percent higher than the original assumed frequency, resulting in a very slight drop in efficiency. Output ripple component ~vc will be smaller because of the higher frequency, and ~VESR will not change because ~h is fixed. Component tolerances will result in larger deviations than those caused by the use of the simplified equations. The only other assumption that could have possible significance is that the transistor switching times are negligible at the highest frequency of operation. The validity of this assumption is normally assured by selecting appropriate devices (see Section VI). This also applies to the speed of the control circuit. If delay time through the control circuit in addition to transistor turn-on and turn-off times is significant with respect to the total period, 7', the consequent delay in turning the power circuit on and off will cause a proportional increase in ~il and ~eo, and a proportional decrease in frequency. 15-30 U-68A APPLICATION NOTE Efficiency Calculations: The efficiency of a switching regulator depends upon the factors given in the following equation: Ppout x 100% Efficiency = In Eo x 10 - + PT+ Po + PT + po + PL + PI + Pc + Pc Eo x 10 Note that the worst case for each factor does not necessarily occur under the same conditions. 1. DC Losses - Transistor. (Worst case when Ein is lowest because too is largest.) 4. Switching Losses - Diode. This is a very complex calculation if diode recovery time is not much smaller than the transistor rise time, because the diode will short-circuit the power supply prior to turn-off, affecting the transistor dissipation, possibly causing second breakdown, and generating intolerable EMI. By using a diode whose recovery time is not more than half the transistor rise time, all these problems become negligible. 5. PL = x 10 x ~ where: T where: 2. too = T Eo Ein 6. DC Losses - Diode. (Worst case when Ein is highest.) Po = V, x where: 3. toff - T - 10 x X Rs DC Losses - Current Sense Resistor. (AC losses negligible when ~il is small compared to 10.) 102 X RI 7. AC Losses - Capacitor. (Usually negligible.) 8. Control Circuit Losses. (Base drive to switching transistor is dominant, but usually negligible.) 1-~ PT = t, = t" 10 2 Rs is equal to effective series resistance of inductor. PI = Ein Switching Losses - Transistor. (Worst case when Ein is high. td + t, do not contribute to power losses.) where: DC Losses - Inductor. (AC losses are negligible when ~i 1 is small compared to 10.) Pc = Ein x 10 t, :,. tf + td , tf = t f, UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 + tf; where: 15-31 · Ib Xtoo EInX - = T Eox Ib APPLICATION NOTE U-68A Appendix B Analysis of Power Inductor Design This appendix describes the methods used to develop the core tables given in Section V and the nomographic method for design of the power inductor. Core parameters for any cores not listed in the tables can be derived from the equations given. The following equations provide the basis for this design approach. Equation (1 a) defines the value of inductance, L, in terms of basic core parameters and the total number of turns, N, wound on the core: N2 X 0.41T L f.L:,. x 10- 5 mH Core Saturation Limits. Any specific core has a maximum ampere-turn, NI, capability limited by magnetic saturation of the core material. (NI)", is listed in some core catalogs, in which case the maximum (Ll2)", capability of the core can be calculated from Equation (2). (NI)", is related to the saturation flux density, Bs." as follows: (Nl)sa' = 10 BS~LAe ampere-turns (3) Substituting Equation (3) into (2), (1a) B",2 Ae2 x 10-4 millijoules (4) AL Values of (Ll2)sa, are given for each core represented in Tables 1 and 2 of Section III. Equation (2) or (4) was employed, using values for either Bs.' or NI which would result in a reduction of AL (and L) of 20 percent under maximum overload conditions, according to the core manufacturer's data. The core selected for an application must have an (Ll2)", value greater than L(iJ max)2 to insure that the core will not saturate under maximum peak overload current conditions. (Ll2)sa, = effective permeability of core where: Re effective magnetic path lengthcm Ae = effective magnetic cross sectioncm2 For most standard cores, the above calculation has been simplified by listing the compound parameter AL, called the "inductor index", as follows: Power Dissipation and Temperature Rise Limits. L = where: AL N2AL X 10- 6 0.41T f.L~e x 10 mH (1b) mH for 1000 turns Multiplying both sides of Equation (1 b) by 12, Ll2 = (NI)2 AL X 10- 6 UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 millijoules (2) In switching regulator applications, the AC current component is small compared to the DC current through the power inductor. Power dissipation in the inductor is almost entirely DC losses in the winding. DC resistance of the winding, Rs. is calculated from the following: 15-32 U-68A APPLICATION NOTE Substituting for N from Equation (1 b), and rearranging: (5) ohms R, LJ2 = Pl ~l::' x 10-- 6 millijoules (9) mean length of turn - cm where: effective area of wire - cm 2 P resistivity of wi re - n-cm Core geometry provides a certain window area, Aw, for the winding, but only a fraction of this area can be occupied by the actual conductor. The effective window area, Aw' is taken as 0.5 Aw for toroids, and 0.65 Aw for pot cores. This allows for wasted area of uniformly wound round wire with HF insulation, allows for the fact that the central fourth of the window area of a toroid cannot practically be filled, and allows for a single section bobbin in the case of the pot core. The number of turns, area of wire, and effective window area of a fully wound core are related by: (6) Substituting Equation (6) into (5): ~N2 (7) ohms Multiplying both sides of Equation (7) by 12 , the power dissipation in the winding, P, , is: Watts UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95-1064 ,n where: aT = A, = A' - ~cm2 A, N PAw' Equation (9) shows that the LJ2 capability is directly related to, and is limited by the maximum permissible power dissipation. Using a value for P, that will result in a 25°C rise in the temperature of the inductor, values of (LJ2)25C are calculated for each core in Tables 1 and 2 of Section III. For these calculations, resistivity, P, is assumed to be 1.9 x 10- 6 n-cm, the resistivity of copper wire at 65°C. The power dissipation that will result in a 25°C rise is calculated and tabulated for each core as follows: = 850~ A, (10) temperature rise surface area of inductor- cm 2 The factor 850 in the above equation represents a temperature rise of 850°C for 1W power dissipation from 1 cm 2 surface area, empirically determined for natural convection cooling. The surface area, A" used in the calculation is taken as the top and sides of the inductor, ignoring the mounted bottom surface. Substituting a temperature rise of 25°C: 25 x A, 8sO (8) 15·33 Watts (11 ) U-68A APPLICATION NOTE Appendix C Analysis of Application Circuits The design equations for the critical components and operating parameters of Figure 3, Section III, are given below, for the following design objectives: Eo Ae o Ein 10 Current Limit +5V 100 mV pop 20V min, 40V max 2A min, 10A max 14A max peak Using the procedure described in Section IV, the following parameters were established: f toff L C ESR of capacitor Ait C2 R2 R1 + R2 R1 R2 R1 + R2 Vref Eo Rin = 1.B =:: 2 x C2 the nominal switching frequency. R4 is calculated from the threshold voltage of the LM305 drive current limiting circuit and the required base drive current. R4 = V threshold I drive 0.3V 0.03A = 10" .. Current sampling resistor RI is determined by the desired short circuit current limit and the VBE of 01. As described in Section III, under current overload conditions, current i l ranges between two values. The maximum instantaneous overload current is defined by: i l x RI = VBE + VRl' The minimum instantaneous overload current is defined by: i, x RI = VB,. Since Ait has been previously defined as 4A pop, if we assume a minimum value of 1OA for it under overload conditions, then the maximum peak overload value for i l will be 14A, and the average value of i 1 = 10 under overload conditions is 12A. R = I VBE i l (min overload) = 0.6V 10A = 0.060 5 Power dissipation in RI will be 6W under full load conditions, and B.64W under overload conditions. 2.4K R3 determines Ail under overload conditions as well as for normal operation of the switching regulator: The resulting values are R1 = 6.BK, R2 = 3.BK. R2 may be trimmed for precise setting of Eo. C1 and C2 function to provide negative and positive AC feedback, and should be large enough to result in small losses to the AC signals. Assuming that Rin = (R1 x R2)/(R1 + R2), the value of C1 should be twice the value of C2, so that the negative feedback will be dominant over positive feedback at all frequencies, thereby ensuring circuit stability. The following relationships satisfy these conditions: UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 = where: From the manufacturer's design data for the LM305, we know that: the internal reference voltage, Vee', is 1.BV, nominal; the impedance of the inverting input is very high; the threshold level of the drive-currentlimiting circuit is 0.30V; and the impedance of the noninverting input (Rin) is 2.4K, nominal. First, we may calculate the values R1 and R2 of the output divider. We will make the effective parallel resistance of R1 and R2 equal to 2.4K, so that the impedance at the inverting input will be approximately the same as the noninverting input of the LM305: C1 These equations are satisfied by C2 = 0.01 /LF and C1 = 0.02 /LF. Making C1 and C2 too large will have an adverse effect on transient recovery time of the switching regulator. 50 kHz (nominal) 17.5/Lsec 22/LH 120 /LF min 0.0250max 4A From the Unitrode data for the PIC625 Hybrid Power Switch, the drive current (I drive) required for 10 = 1OA is 30 mAo The VBE of 01 is taken as 0.6V. ~ RI x Ah R3 RI x Ait = ~ 0.06 x 4 0.030 = BO The value of R5 is determined empirically to optimize regulation versus changes in Ein. With R5 omitted, Eo changes approximately 70 mV when Ein is changed from 20V to 40V. With R5 = 1.2 MH, the change in Eo is reduced to less than 25 mV. 15-34 APPLICATION NOTE U-73A THE IMPORTANCE OF RECTIFIER CHARACTERISTICS IN SWITCHING POWER SUPPLY DESIGN With the increasing interest in switching regulated power supplies designers have directed much of their effort to selecting transistors with low switching losses and adequate power handling capability. While recognizing that they must use fast recovery rectifiers, less attention has been given to "how fast" or "what type of recovery characteristic" is desired. More detailed knowledge of rectifier behavior allows determination of the magnitude of increased losses and stress on the transistor by the non-ideal diode. By choosing the best available rectifier, transistor stress can be minimal, thereby resulting in higher reliability. Other benefits are: A. Improved power supply efficiency B. Lower noise C. Lower cost and/or D. Smaller size and weight The performance of fast recitifiers in the most popular switching circuits is discussed below. "Switcher" inputs use available DC voltages, rectifiers directly off the AC line. This DC "input" converted by semiconductor switches operating high frequency in circuits such as buck, flyback boost regulators and in pulse-width-modulated square wave inverters. or is at or or where T is the period. t is determined by the control circuit which senses output voltage and controls transistor base drive. Figure 1a In this regulator the inductor current is essentially constant as it flows alternately through the transistor or "catch" diode. The sum of the transistor current and diode current must always equal the current in the inductor, which cannot change instantaneously. At to the diode is conducting inductor current while the transistor is blocking the input voltage. --~ Inverter output rectifiers and regulator "catch" diodes are subjectto unusual stresses due to the fast switching rates and very low impedance seen by the diode during the reverse transient (diode turn-off) and a momentary high impedance during diode turn-on. --0 vT These new square wave switching supplies are limited in efficiency and frequency by transistor stress and switching losses, some of which is due to diode switching characteristics. Faster transistors and diodes are helping to increase efficiency and/or frequency. At low output voltages, and lower frequency the DC characteristics (VCE(sa') and V F) have the major influence on efficiency. However, as frequency and/or input voltage increase the switching characteristics become increasingly important. BUCK REGULATOR ANALYSIS Ideal Diode - For better understanding consider the buck regulator and resulting waveforms, using an ideal diode and assuming linear current rise and fall in the power transistor during switching. Similar considerations apply to other types of switching regulator circuits. The transistor "on" time, t controls the conversion such that, (1)Vo ="!'V; [X~ ,.... vo -0 1\ 1\ -"/ / / Figure 1b t, to t2 is the current rise time tr; of the transistor. Since inductor current is not changing, the diode current must decrease. The forward biased diode maintains full input voltage across the transistor. At t2 the transistor is conducting all the inductor current so the diode turns off and voltage across the transistor T UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 15-35 PRINTED IN U.S A. U-73A APPLICATION NOTE starts to decrease toward VCE (sal)' t2 to t3 is the voltage rise time, tN of the transistor. From t3 to 4 the transistor is saturated and conducting the inductor current iL . ti la' At 4 the transistor starts to turn off and VCE increases. io =-J,.:--A~=::::::=-\-'4-=::::::=-k- t. to ts is the voltage fall time tfv of the transistor. During this time the transistor must conduct the entire inductor current because the diode is still reverse biased. At ts the diode is forward biased and the transistor is blocking the full input voltage. Diode current starts to increase and the transistor current decreases, the sum equalling iL . iT - 0 -I''---''k-I--.f------1L--t---+ vT---!-+-H----JP--+----+vo-o-=l==~R'==~~=F==* ts to ts is the current fall time tli of the transistor. Diode current increases in a complementary manner. From ts to t1 the transistor is off and the diode is conducting all the inductor current. To simplify the illustration assume the inductor current constant and equal to 10 , Transistor dissipation PT is the sum of transient switching and DC losses. Neglecting losses due to DC leakages, which are generally negligible: (2) PT = Vi 10 2 (3) PT = (tri + tN + tfV + tfi ) + V CE (sal) T 10 (4 -t3) T Figure 1c TRANSISTOR TURN-ON BEHAVIOR T10 {Vi '2 (tri + tN + tfv + 4i)+V CE{Sal) (t4 -t3) } Practical diode - Now consider how the non-ideal diode with reverse recovery, junction capacitance, forward recovery and DC loss affects the circuit of Figure 1a. The transistor "turn-on transient", when the diode is switching from forward conduction to reverse blocking, results in the following transistor and diode waveforms: In Figure 1c the solid lines are the waveforms using a practical diode in a buck regulator circuit. Comparing them with the dotted lines of the ideal diode previously considered we see three significant differences during transient switching and one during DC conduction: - 0 -....:.!--¥~+~~r==t=_=- SWITCHING TRANSISTOR 1. The peak collector current increases (above 10 ) during a period of high dissipation t2 to t2 . 2. Rise times tri and tN are increased. (t2' - t1) > (t2 - t1) and (t3' - t2') > (t3 - t2)' 3. Maximum collector voltage peaks up above Vi briefly att s. 4. The diode has DC loss (from ts to t 1) and switching loss (principally from t 2' to t 3'). CATCH DIODE From the PT curve of Figure 1c it is obvious that transistor power dissipation increases above that of (3) due to the "real" diode, - see the hatched regions. The magnitude of these detrimental factors depends on the choice of rectifier. Before considering losses more fully let us examine the switching periods in greater detail. UNITRODE CORPORATION' 5 FORBES ROAD LEXINGTON, MA 02173· TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 Figure 2 Dashed lines show what the current and power would be if the diode were ideal to the extent of having no reverse recovery time or junction capacitance. (Dotted 15-36 PRINTED IN U.S.A. U·73A APPLICATION NOTE lines show the voltage for the ideal diode case.) The reverse diode current caused by diode capacitance and recovered charge is shown by the cross hatched area of the io curve. The transistor must conduct this reverse diode current as well as the inductor current. The grey area represents additional transistor dissipation due solely to the diode recovered charge and capacitance. Faster switching transistors will not necessarily result in reduced switching losses. Unless a diode with recovery time 2 or 3 times faster than the transistor current rise time is used, a faster transistor will increase the peak recovery current in the diode and thus increase overall switching losses. Furthermore, a diode with a "soft" recovery characteristic will cause more dissipation than an "abrupt" type with the same peak recovery current. The relationship of recovery characteristic to switching rate is discussed in Appendix B. With many switching transistors now available a 200 nS fastrecovery rectifier will have a peak recovery current IRM(REc) greater than shown in the io waveform of Figure 2, where it is about V3 of the forward current. This rather modest additional collector current (of 33% above that limited by an ideal diode) can cause increased transistor power dissipation of 100 to 150% during the tum-on period. Other serious problems can occur from high peak currents, such as noise transients in the line, the transistor coming-out of saturation and forward-biased second breakdown. Rectifiers are now available with recovery characteristics to keep these problems minimal. Their use is required for a switching supply of maximum reliability and efficiency. TRANSISTOR TURN·OFF BEHAVIOR: When the transistor turns off, the diode turn-on characteristic usually has little effect on power dissipation but may cause voltage spiking, with resulting noise and the iT 1'-../ /"-. io -0 .... ,' / -0 - '!:./ Vo 7 /', / Figure 3 UNITROOE CORPORATION. 5 FORBES ROAO LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 possibility of exceeding the transistor voltage ratings. Diode characteristics and conditions under which these transients occur are discussed in Appendix C. The voltage spike is due to the forward recovery characteristic and, when present, will occur as shown (dotted) in Figure 3. To correct it a snubber (series RC across the diode) may be needed. However, the choice of an optimum diode will minimize or eliminate this need. POWER LOSSES IN THE SEMICONDUCTOR DEVICES DC Losses in the buck regulator occur alternately when the diode is forward conducting and when the transistor is turned on. Referring to Figure 1 these intervals are ts to t, and t3 to t. respectively. During either interval the dissipation is independent of input voltage, V;, or output voltage, Vo, depending only on load current and device voltage drop. Total circuit DC losses are a function of VoN; because a) this ratio relates to "on" time and b) transistor VCE(.al) will probably not equal diode VF • Neglecting switching intervals the dissipation due to DC losses is: V;-Vo (4) Poc = VF 10 -V-;- Vo + VCE (.al) 10 V; Loss of efficiency due to DC losses is greatest when Vo is low, with diode loss being more significant when VI is relatively high and transistor loss dominating when Vi is close to Vo. Transient (switching) losses in the regulator vary considerably with voltage, being highest at "high line" V; (see Eq. 3). Furthermore, high voltage transistors and rectifiers generally have longer switching times than low voltage types. Speed and "recovery characteristic" (see Appendix B), and consequently losses, can vary greatly between different device types and manufacturing processes. A relationship for calculating approximate transient dissipation of practical devices during the transistor turn-on interval is given in Appendix B. The other component (turn-off interval) can be similarly developed but it is not significantly affected by diode selection. However, when transistors and/or drive techniques are chosen for shorter fall times overall losses are reduced and the benefits of optimum diode selection become more Significant. Proper diode (and transistor) selection is important in all switching supplies, but the higher the voltage (and frequency) the more significant will be the effect of selection on switching losses. OTHER SWITCHING CIRCUITS The pulse-width-modulated inverter (PWM) supply (Figure 4a) has much in common with the buck regulator. Output rectifiers also perform the catch diode function. Current waveforms are shown in Figure 4b, 15-37 PRINTED IN U.S A. APPLICATION NOTE U-73A with overshoot due to diode reverse recovery and capacitance. Here again slow diodes cause additional transistor stress, usually not reduced significantly by transformer impedance. Leakage reactance will often require the use of a snubber, to protect the transistor. Transistor "on" time t and the turns-ratio control the conversion such that Np D, N, EE - + T, The square wave inverter can be conSidered, in terms of device operation, a special case of the PWM where 2t approaches T. Regulation is achieved by varying Vi' EMI, RFI, NOISEGiven any inductance in a circuit "loop" of wiring, a rapid current change will generate a voltage transient, V = L dildt, and the energy in such a transient will vary with the square of the current, E = V2L12. The interference and voltage spiking 'will be easier to filter if the energy is low and has predominantly high frequency components. (5) V = 2t N, V. o T No I T, because they (0, and/or O2) are conducting the full cycle regardless of Vi to Vo ratio. Another difference is that here the diode recovery is from half, rather than full, load current. We can establish a priority of factors for reducing EMI: 1. IRM(REc) should be as low as possible, - accomplish by diode selection (see Appendix B and Fig. 7). 2. L (circuit loop) should be minimum, - accomplish by layout and interconnect geometry. (See Fig. 5). 3. Use a "soft recovery" diode (See Appendix B). However, this is an item of possible trade-off since such a device may have longer tm higher IRM(REc) and, thus, create much higher switching loss. D, Figure4a \ An ultra-fast device with moderate recovery (vs. abrupt or soft) will often be the best choice. ~iT1-0 REDUCE EMI BY LOWERING CIRCUIT WIRING INDUCTANCE: II -h 2 - o IA. - i 01 -O r-- 1'"-- Low L needed In loop shown In grey AVOid ground loop nOise by returmng Input capacitor directly to diode - i 02 - O - ~ I--- IY \ \ T \, \, \, Figure 5b \, Figure4b From t, to t2 transistor T, and diode 0, conduct, with diode current equal to inductor current iL. At t2 the transistor turns off and the inductor "pulls" iL equally through 0, and O2, At t3 transistor T2 turns on, driving full iL through O2 and causing 0, to be reversed biased. O2 current is increased by the recovery current of 0" and T2 current also increases proportionally. From t. to t, both transistors are again off and at t, the events of t3 occur on the opposite device pair. One difference between the inverter and the regulator is that here the DC diode losses are more significant UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 SELECTING THE BEST SWITCHING RECTIFIER Ratings and characteristics have different priorities and significance when they are to be applied to these power switching circuits. Selection should be based on the following: 1. Peak inverse voltage, PIV of "catch" diodes must at least equal the highest input voltage, while PIV of center-tap output rectifiers must be at least twice the maximum output voltage in a square wave inverter and much greater in the pulse width modulated inverter. More significant perhaps are the transient voltages in practical fast switching circuits partly due to wiring inductance and rectifier's own recovery. Unless these are intentionally clipped, damped, or "designed out" it is advisable to use a safety factor of 2 or 3. PIV selected 15-38 PRINTED IN U.S.A. APPLICATION NOTE U-73A should apply over a range from lowest ambient to the highest expected junction temperature. Unitrode UES series is closest to the Schottky, especially at expected operating conditions. 2. Reverse recovery time trr must be much lower than the rise time of the transistor with which it will be used, - preferably by at least 3 times when measured at conditions similar to circuit operation. Selection is complicated because rectifiers are normally specified at conditions less severe than in power switching circuits. Furthermore, correlation between test conditions is not always the same (see Table I of Appendix B). 4. Maximum average rectIfied output current at Following preliminary selection from available data the devices should be compared in a circuit developing the highest current, junction temperature and rate of current switching (- di/dt) expected. The desired goal is to minimize peak recovery current IRM(REc) and switching loss. Note that these are the same order of magnitude with Schottky rectifiers (due to high capacitance, principally) as with the fastest PN rectifiers. The figures below illustrate these points. Figure 6 shows the variation of peak current with switching rate, using the Unitrode UES 801 in a special test circuit. Figure 7 shows the difference in IRM(REc) and trr when representative fast recovery 00-5 devices are measured in a JEOEC test circuit at different temperatures. In Figure 8 the incremental collector current (the peak value in excess of 30 A) for a 30 A buck regulator using 50, 100, and 200 nS catch diodes is plotted as a function of transistor rise time (and resulting di/dt). Figures ga, b, and c show the loss of efficiency due to transistor turn-on dissipation as a function of operating frequency, with 3 transistor rise times and 3 diode recoverytimes, in a regulator operated with 40 Vin and 10 V out. Similar figures can be developed for other conditons using the model and assumptions in Appendix B. 3. Forward voltage should be as low as possible to optimize efficiency, especially for inverter output rectifiers and regulators with high V;/V o ratios. Loss of efficiency due to VF is most significant at low output Voltages. Fig!-lre 10, which relates this loss to device choice over the range of available forward voltages, applies to output rectifiers of inverter supplies with popular output Voltages. maximum expected case or ambient temperature must always be considered. Note however, that standard current rating is based on a half sine waveform. These square wave applications at average current equal to this rating will usually dissipate somewhat lower power, and, thus, be used conservatively. However, regulators with Vi :S 1.5 Vo should use a catch diode with a higher rating than the average current it conducts at full load. 5. Peak voltage VF(OYN) during forward recovery will be of significance when using transistors with fast fall times at close to the VCE rating. This is further discussed in Appendix C. See Table II for typical performance of representative devices. At lower values of di/dt the peak voltages will be lower. 6. Surge current (8.3 mS) is not of great significance because transistor saturation limits fault current. If the power supply is designed to provide rapid charging of a large output capacitor the "overload" requirement for the charge time (perhaps 0.1 to 2 seconds or so) must be considered. IRM (REC) CONDITIONS IFM 10A, UNEAR SLOPE = ---- ~ '\ l\ I ·0 I, l~ l~ ----- ~ ---- di dt vs UNITRODE UES 801 RECTIFIER ----- ----- ---- ---- "-& ----- & trr ~ A ..... ~~ ~~.::,: ---- ---- ----- 0- ~ ----- ----- ---- ---- Figure 6 IRM(REC) CONDITIONS. IFM &trr of 005 FAST RECTIFIERS = 3DA • (30V JEDEC) Schottky rectifiers have the lowest VF and are therefore widely used as output rectifiers for 5 V supplies. Their limitations in PIV, transient voltage capability and temperature must be considered when applying them in other applications. Selection should be based on conditions where losses are most significant, - at rated supply output current and anticipated junction temperature. The approximate range of VF , at rated current and 25°C, as well as at more typical operating conditions, is shown in Figure 11 for representative fast rectifier types. Note that the UNITRODE CORPORATION. 5 FORBES ROAD LEXI NGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 Figure7a 15-39 PRINTED IN U.S.A. APPLICATION NOTE U-73A 125C 2 3 *) INCREMENTAL COLLECTOR CURRENT (AT TURN·ON) .lIe VS 1.. (and Conditions: 30A buck regulator. -- - -- Lmsardlldt. 50 trr=2~ -- -'- """ V 1,,~100_ Figure7b ... ...... 25°C (A) 125°C (A) 25°C (nS) 125°C (nS) 1 2 3 4 0.6 1.0 1.3 1.0 50 86 72 95 50 1.7 2.9 3.7 5.4 86 142 185 296 100 200 1 2 3 4 Unitrode UES 803 Schottky rectifier. 100nS rectifier. 200nS rectifier. - - ===-- 20 1-- 5On~ .," I" MAX. AlLow Currenl Cond'ns. I" IRMIREC) DEVICE TYPE 40 30 I" ...- 50 ~ - 100 300 200 400 500 75 60 d,/dl (Np.S) 300 150 100 I" (nS) Figure 8 Figure7c LOSS OF EFFICIENCY DUE TO TRANSISTOR TURN·ON LOSS*- BUCK REGULATOR 20 30 40 20 I" 50 80 20 30 40 50 ~ 300 ns' I" ~ 150 nSI ....... ....... - -: .. . """ ..........: , ..,- ....-- ~, ....... ......-::;-" ",' ........ 1.0 - ....... V , . ..' ....- ,I--" -- = .......... 20 30 40 50 FREQUENCY (kHZ) 80 20 40 50 FREQUENCY (KHZ) ~ 60 'nS - - ..... ...... 100 nS diode - - - - ~50nSd,od.(UES803) - - - - - ~ IDEAL DIODE 0.2 50 80 100 ....1--- ' 20 .... .... _."" .... """ .. """..... ~ "" 200 nS diode - 40 ..... 1- ....... ""...".",., 0.5 t" ,.- .... ./ 30 - ........ 10 20 80 I ... ...- ...... "'~. .. ...... . ~ 40 50 FREQUENCY (KHZ) 100 • Calculations of total sWitching losses (diode and transistor) per model In Appendix B for a 30A buck regulator with V In = 40V and VOUT = 1OV. Figure 9 UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 15-40 PRINTED IN U.S.A. U-73A APPLICATION NOTE 20 ~ 15 V 10 1/ ...... ~ ...... ,/ 5V:= Vo i,...o i--'" ...... 10V ~ 12V [..,..0' ./ ~ i--'" ...... LOSS OF EFFICIENCY DUETO FORWARD VOLTAGE OF INVERTER OUTPUT RECTIFIERS. 24V- I-- ~ ..... ~ -'" ~ V ./ V 1/V ....J..... I- V V .6 0.4 I-- I-- 20V V ./ ./ I-- I-- ~ l,...oo 1/ V V .8 ~ 48V ~ V 1.0 1.2 1.4 1.8 1.6 V,(V) Figure 10 VI available (approximate range) for low to medium VRM applications VI in volts: .35 .45 .55 .75 .65 I, 2Ot040 { 12 20 1.35 1.55 1.75 150 1 13 11 1.15 I Max VI (spec'd @ rated IF and TJ=25C.) Typical VI @V2 Max current @ max TJ. .95 I "'12=--__1.:...,50""1 150 14 ,......-_ _--, 100.1501 13 400 1 KEY~ 1 ~ Schottky. 2 ~ Unitrode UES 150 V senes 3 == Other deVices for low forward voltage 4 ~ TYPical fast recovery (200 nS) deVices N ""' DeVice Class XY=V AW (Max at TJ noted above) S = Fast deVices to 800 V Figure 11 UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON. MA 02173 • TEL. (617) 861-6540 TWX (710) 326..jj509 • TELEX 95.. 1064 15-41 PRINTED IN U.S.A. APPLICATION NOTE U-73A Appendix A "Off-Line" Supplies BASIC CIRCUIT TYPE FEATURES a) Buck Regulator Vo < V ln · Output non-isolated. Easy to filter output. Noisy input. w ~ ::J g FigureA-2 b) Flyback Regulator 6 c a: w ~ ~ w z Vo opposite polarity from V in . (Unless isolated). Output can be isolated. Output can be stepped up to HV. Noisy input and output. ::l Ii:c ci w u: FlgureA-3 ~a: c) Boost Regulator ::0 Vo > V ln · Output non-isolated. Hard to filter output. Quiet input. o ff' d) PWM (Variable Duty Cycle) Inverter. FlgureA-4 e) Square Wave Inverter (50% Duty) FlgureA-5 = Bridge. center-tap. or half-bndge inverter. ('J INV. UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 15-42 Used with single Vo' - also common for lab supplies. Provides isolation. Does not need separate catch diode, - rectifiers serve this function, possibly with small HV diodes in primary for magnetizing current. Regulation provided by previous input. Regulates one of (possible) multiple outputs. Uses high transistor count. Provides isolation. Does not need separate catch diode, - rectifiers serve this function, possibly with small HV diodes in primary for magnetizing current. PRINTED IN U.S.A. U-73A APPLICATION NOTE Appendix B Reverse Recovery Behavior and Dissipation 1. Waveforms and definition of terms: TOTAL AREA OF REVERSE CURRENT = ORIREel This area shown enlarged at ~--- right High d~ IRMI slope =.=QL dt JEDEC test - standard slope dt = Figure B-1 25AI p,S "ABRUPT" "SOFT' Figure B-2 Figure B-3 2. Discussion of Variables: Any PN junction diode operating in the forward direction contains stored charge in the form of excess minority carriers. The amount of stored charge is proportional to the forward current level. The diode or rectifier in a switching regulator is switched from forward conduction to reverse at a specific ramp rate (-dl/dt) determined by the external circuit, usually by the turn-on time of the associated switching transistor. During the first portion of the reverse recovery period, ta, charge stored in the diode is able to provide more current than the circuit demands, so that the device appears to be a short circuit. Transition from ta to tb occur~ when stored charge has been depleted to the point where it can no longer supply the increasing current demanded by the circuit. The device becomes a high impedance and during tb the reverse voltage is permitted to increase. Reverse current, no longer circuit determined, dwindles as excess stored charge depletes to zero. Stored charge is depleted by the reverse current flow and also by recombination within the device. At (-dl/dt) rates which are slow relative to the rate of recombination of the specific device relatively little stored charge is swept out. Recovery time, trr is determined mainly by the recombination rate, independent of (-dl/dt). Peak reverse recovery current IRM(REC)' and total charge associated with reverse current, OR(REC) are almost directly proportional to (-dl/dt) (Region I, Figure B-4). The recovery characteristic with slow (-dl/dt) rates tends to be soft. When the (-dl/dt) rate is fast compared to recombination rate (transistor turn-on faster than diode recovery time), trrdecreases as -dl/dtincreases, because more of the available stored charge is swept out sooner, UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 leaving little to be depleted by recombination. As (-dl/dt) increases, peak recovery current increases and can become much greater than the original forward current level. However, OR(REC) levels off as (-dll dt) increases because it can only approach but not exceed the total stored charge which is a function of the original forward current level (Region II, Figure B-4). Higher voltage devices have poorer recovery characteristics because they require thicker regions of higher resistivity, resulting in greater volume of stored charge and longer recombination rates. RECOVERY CHARACTERISTICS II dl/dt FlgureB-4 With a given IF and dl/dt the OR(REC), IRM(REC), and trr all increase with temperature. Recovery characteristic changes as well (generally becoming more abrupt if reverse current is not circuit limited, and softer if limited). Furthermore, OR(REC) increases and recovery generally softens if higher circuit voltage is applied to a given diode. 15-43 PRINTED IN U.S A. APPLICATION NOTE U-73A 3. Comparison of devices at popular test conditions: Table I, below, shows measured trr values (in nanoseconds) using ultra-fast and fast recovery 00-5 rectifiers. I, I. (A) (A) 0.5 1.0 1.0 1.0 1.0 1.0 30 30 30 30 - -di/dt T (AlILS) (OC) step step step UNITRODE UES803 IR(AEC) (I" Measured 10 (A» 25 25 125 (85V JEDEC circuit) 30 25 30 125 100 25 100 125 MANUFACTURER B C 0 42 50 122 - - 63 135 120 300 105 210 92 160 150 300 0.25 0.10 0.10 38 45 60 50 75 90 0 0 0 0 75 100 45 65 50 120 150 MAX t" per manufacturer's stated condition 85 140 72 66 114 106 50 to 100 E - 200 Table I 4. Turn-on switching losses, assuming linear V and I transitions: (S3) Pita I =V ln (Ic With an ideal diode, switching losses are entirely in the transistor as follows (from Eq. 2). (S4) (S1)P(trll =Vln a rl (IRMIRECI) Ie (S5) P = V. ( I + I RMIRECI) ( (tal ,n e 2 Ic trl '2'-:;: Vln trY (S2) P(t"l = 2 ' Ic' -:;: (S6) Pltal =Vln ,lRMIREcl ( I A practical diode with finite trr and IRM(RECI will cause additional switching losses as follows: + !!!T IRMIRECI ) Ie I RMIRECI) trl ~ -:;: If diode IRMIREcl is half of Ic (1.5:1 current overshoot in transistor) total transistor switching losses during current turn-on (trl + tal will be 2.25 times greater than with an ideal diode (Eq. S1). During diode recovery time component tb, the diode continues to conduct reverse current, but becomes a high impedance, permitting the transistor voltage transition, trY' to take place. Diode reverse current during tb causes increased switching losses in the transistor and/or the diode. It is difficult to quantify these losses in the diode and transistor separately, since transistor V CE is decreasing and diode VR is increasing during all or part of period tb' However, the total increase in losses in both diode and transistor during tb is: I, TRANSISTOR i, v. = V'N ( S7) PI I =V. ,lRMIREcl • ~ tb In 2 T (area S = IRMIREcl. t b) 1,=1, DIODE 2 v. FlgureB-5 Diode recovery time component ta effectively increases transistor rise time, and delays the voltage transition, trY' During time ta, the diode conducts reverse current but remains a low impedance. Transistor VCE remains equal to Vln while collector current continues to rise above Ic to Ic + IRM(REcl' The entire amount of charge shown in shaded area A results in increased switching loss in the transistoron/y (increase in diode loss is negligible): UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173. TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95·1064 t = t + IRM~RECI) ~ Note: Pltbl loss is in addition to the ideal diode case transistor losses, Pltryl (Eq. S2). With a very fast diode, tb will be much shorter than trY' and most of the P(tbl loss will occur in the transistor, although it will be negligible. With a slow diode, where tb is much longer than trY' Ptbl loss will be significant and will occur mostly in the diode. P(ta l is usually much greater than P(tb l ' Since all of P(tal is dissipated in the transistor, it can be seen that most of the increased switching losses caused by diode reverse recovery are borne by the switching transistor, not by the rectifier. 15-44 PRINTED IN U.S.A. APPLICATION NOTE U-73A AppendixC Forward Recovery Behavior and Characterization When used in some circuits, any diode may exhibit the phenomenon known as forward recovery. Under these conditions, the device has an impedance which, for a short time after initial application of forward current, is higher than its normal "on" value. The magnitude and duration of this transient impedance will depend on circuit conditions and device design, varying from no effect in many circuits to a few microseconds in the worst case. When present, the effect is generally less with fast-recovery rectifiers, and much less with "computer-type" switching diodes. Circuits with very fast current rise time, in the direction of forward conduction, will allow this phenomenon to appear. Generally, these will be low-inductance circuits which allow the current to rise from zero to rated forward current in less than the reverse recovery time for fast stud-mounted rectifiers, and in less than 0.1 x trr for lead mounted fast devices. When such a source has a high voltage, of at least 10 times VF, the forward recovery phenomenon exhibits an initial higher-than-steady-state forward voltage. The rise time of current is not limited by the diode and the peak voltage decays to the specified measurement level in the "forward recovery time" tfr . The peak voltage VF(OYN) will be strongly influenced by the current rise time di/dt, and current IF' When a fast-rise source has an open circuit (compliance) voltage of less than several times the diode VF, the forward recovery phenomenon may exhibit a delay in the rise of forward current. In this case the peak diode voltage is limited by the source, and the "turn-on" time is the rise time to 90% of IF' A comparison of the Unitrode UES 803 with a typical 200 nS rectifier is shown in Table II below. 005 Unitrode UES803 IF to1AlnBnS IF to 1A In 125nS and continuing to 50Awlth t, = 10JLS VF(OYN) t" (v) (nS) 20 12 300 - 2.B 350 (v) t" (nS) 1.2 09 VF(OYN} Test Condition 200nS TabJeJl III UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 15-45 PRINTED IN U.S.A. U-76 APPLICATION NOTE FLYBACK AND BOOST SWITCHING REGULATOR DESIGN GUIDE Section One - Flyback Regulator I. Definition A. Continuous Mode The flyback switching regulator described in this application note accepts a DC voltage input and provides a regulated output voltage of opposite polarity. This method of conversion, compared to a conventional DC to DC converter, provides advantages of high efficiency, low cost, circuit simplicity, and a rather wide, easily selectable choice of the regulated output voltage. The switching transistor is not stressed to second breakdown in either the forward or reverse bias modes. Thus, it provides a reliable method of converting the input voltage. The disadvantage of the flyback switching regulator described here is that it provides no isolation and requires a large output filter capacitor. Primary usage of this type of regulator is in low current and/or high voltage applications. In this mode of operation, a large inductor is required to insure that the inductor current never goes to zero. Although the current through the inductor flows continuously, the charging current to the filter capacitor is in the form of discontinuous current pulses. This large peak-to-peak current waveform requires a much larger filter capacitor than the buck regulator. Component cost is higher than with the discontinuous mode of operation because of the large inductance required, and transient response is worse. II. Design Approaches to Flyback Regulator B. Discontinuous Mode The output voltage can be regulated by varying the duty cycle of the transistor switch. Continuous Mode Discontinuous Mode Output current = I" m~x Transistor current iT h' -= - 10 I Output current ~ 10 ma~ T:I ~ +- _--L 1..:.--0 Air I D _-_ (see Figure 1b, 1c) In this mode, the regulator is designed such that at maximum output load current and minimum input voltage, the transistor starts conducting as soon as the catch diode stops conducting. At a lower output current or higher input voltage there is a dead time when neither device conducts. The principal difference between a flyback regulator and a buck regulator (Ref. Unitrode Design Guide U-68) is the manner in which energy is transferred to the output capacitor. In a buck regulator, energy is provided continuously, while in a flyback regulator, energy is pumped in a discontinuous fashion. The flyback regulator can be operated in two modes. Diode current (capacitor charging current & load current) (see Figure 1a) _ ID: ~ - lom .. - -.- . . - I . ~ - - - t --=. :.::.J-:::.·~O I ~I Inductor current ------Figure 1a Figure1b Figure 1. UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326-6509 • TELEX 95·1064 ~--c-~i-~o Figure1e Current Waveforms 15-46 PRINTED IN U.S.A. APPLICATION NOTE U-76 III. The Flyback Switching Regulator Described and Characterized 0, + I.. + o--E"_ - - * - _ - * - - 0 ' ] The basic circuit configuration and generalized current waveforms are shown in Figure 2. When transistor 0, is turned on, the supply voltage, E'N, is applied across power inductor L. The current through the inductor rises linearly to a peak current level Ip: I = E'N X lr D, Figure 2a. Flyback Switching Regulator A. PL' This results in an energy transfer from the input supply to the power inductor: W=.lLl' 2 p B. , I = Eo p PO"' = Eo x 10 1 =2 Lip , x f .. 0. The voltage induced in the inductor is such that Eo is opposite in polarity from E,N . The relationship between Eo and E'N is established by combining equations A and C, eliminating Ip' and L: E. DC output current 10 is equal to the average current through the diode: I o =lX~=~XtoXf 2 T 2 The output voltage can be regulated by operating at a fixed frequency and varying the transistor on time, t,. However, because of the inherent "pumping" action of the flyback regulator, the output voltage diminishes while the switching transistor is on, and UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 9!;-1064 I.. C. The power delivered to the load is equal to the peak energy stored in the inductor times the number of pump cycles per second: --0 I, 0 ~i Figure 2b_ X to L I I When the transistor turns off, a voltage is induced across inductor L which forces the current to flow through diode 0,. All of the energy stored in the inductor is transferred to the output capacitor and load RL , and the inductor current diminishes linearly from Ip to zero according to the relationship: t'-1 f--tD--i 1 '=j ~l Generalized Current Waveforms of a Flyback Switching Regulator increases when the transistor is off. This characteristic makes it difficult to control on a fixed frequency basis. The simplest approach to controlling the flyback regulator in the discontinuous mode is to establish a fixed peak current through the inductor, which determines a fixed diode conduction time, to. Frequency then varies directly with output current, and transistor on-time varies inversely with input voltage. This is the approach used in this application note, resulting in a simple and economical control circuit. IV. Worst Case Design Conditions Design equations based on the fixed peak current mode of operation are shown in Figure 3. The worst case condition exists when input voltage is low while output current is at maximum. Under these worst case conditions, frequency is maximum and t, is zero because the pass transistor turns on as soon as diode stops conducting. 15-47 PRINTED IN u.s A. • U-76 APPLICATION NOTE - - 'd 10 GIVEN: ErN (mini Eo 1 10 c 1" n WORST CASE: E'N = E'N Imi'l rE'N I = 10 10 (max) t,=O U-O o---------~----~~---------4-----'O I. .1, , I r- t1 - j - - tD ---"+- t, -.l I I I, I I (max) f max Ile o I I I ' Ip I =2 10 m" (Eo/E'N Imi,) + 1) =constant T a L _ tD X Eo _ tT X E'N - -I-p - --Ip - - 0-~-4- 1 10 f=-=fm"-I-0 (max) T C _ V L min a I v I I Eo I I I I I I ESRm" C~_I __ ~ -----t-_: --E I - T- - V ESR II - - - -: - - - ,-- • I I p 0 I , I I >---r-- ole, - - - -- - ] - - -1 _ _ = Illeo I: --r----0--1-"----' e o (worst case 10 ---'> 0 ) I I I = Ip2.le X tD I --1-E _ __ ~ ___ 1_ 0_ Figure 3. UNITRODE CORPORATION. 5 FORBES ROAD LEXI NGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 Flyback Regulator 15-48 PRINTED IN U.S.A. APPLICATION NOTE U-76 V. Circuit Design and Description In designing a flyback switching regulator power supply, the following parameters will normally be predefined. Numerical values are given and computed for the example shown in Figure 4. Eo .:leo lomax EINmin EINmax 5V output 100 mV output ripple voltage peak to peak 2.5A 9V (minimum) 15V (maximum) Since the output voltage is derived from pulses of current, it is desirable to keep the operating frequency as high as possible in order to obtain small size and lower cost of the filter inductor and capacitor. However, above 5-10 kHz, capacitor impedance is usually dominated by its equivalent series resistance, ESR, rather than C value. Since the ESR remains essentially constant regardless of operating frequency, operation at higher frequencies does not enable the size and cost of the capacitor to be further reduced. Also, at higher frequencies, transistor switching losses become significant. Thus, a maximum operating frequency of 25 kHz is chosen for this design. R, 016n + E'N O----.---P--'WIl"-1~_O_....- - , + l2V C'N, ----o - ~-+1IK1-o+-E-'W_~~_...... Eoo. -sv 500~T Co = lOOOI'! L=1651'H E'N = + l2V Eou' == - ± 25% 5V 10= 2.SA Load & Line Regulation Efficiency = 70% = .2% Ishortcm:u,t=3.0A INHIBIT CONTROL INPUT III Figure 4. UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95·1064 Flyback Regulator, +12V Input, -5V Output 15-49 PRINTED IN U.S.A. U-76 APPLICATION NOTE Referring to Figure 3, the design calculations are: Ip 2 lomax (Eo/E'Nmin + 1) = 2 x 2.5 (5/9 + 1) 7.8A (constant) . to f m.. (Eol E'Nmin + 1) 25 x 10 J (5/9 + 1) 25.7 p's (constant) L toXEo 25.7x10-'x5 - Ip- = 7.8 16.47 p.H The TL497 control circuit operates in the current limiting mode under normal operating condition. Thus, the peak current value, Ip, is determined by the current limiting resistor R5 • Capacitor C, is required to prevent the TL497 from terminating the transistor on-time prematurely. This causes an 8 P.s delay, once over -current is detected at the short circuit sense input (pin 13 of TL497) before the transistor switch turns off. The delay time is the time required to charge capacitor C, to the predetermined voltage level before drive current to the pass transistor is removed. The current limit threshold voltage is about 1.2 volts. Ip X to _ 7.8 X 25.7 x 10-' 2 ~eo 2 x 0.1 _ 1.2 - 7.8A 1002 p.F ESR m" = ~~o = ~:~ =0.153n = 0.0128 n The operating frequency will change in proportion to load current, 10: 0 f = f m.. X _11 o mo!lx The PIC625 hybrid power output stage incorporates a fast PNP quasi-darlington switching transistor and UES catch diode. The quasi-darlington switch requires 30 mA of drive current. This drive current is provided with diode 0, and Resistor R, in conjunction with the Integrated circuit TL497. (Refer to Figure 4) IOR'VE = Vb. = 0.65 R, R, :. R, = 22n The function of transistor 0" diode 0, and resistor R, and R. is to provide short circuit protection. The transistor 0, prevents turn-on of the pass transistor as long as the catch diode continues to conduct. Thus, it limits the maximum current and operating frequency under short circuit conditions. 0, and R. providing voltage isolation to transistor 0,. C, is required for circuit stabilization; capacitor C, provides AC coupling of ripple voltage to the control circuit. C'N and Co are filter capacitors. Ur,itrode Switching Regulator Design Guide U-68 covers the design of a buck regulator, and contains a section on power inductor design which is applicable to the flyback and boost regulators. The output voltage is preset by divider network R, and R" according to the relationship: Eo = where VREF = 1.22V. for R, = 1K, then: [1 + =: JV REF Assuming a nominal value R, = 320n R, may be trimmed to obtain the precise output voltage. UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 15-50 PRINTED IN U.S.A. APPLICATION NOTE U-76 Section Two- Boost Switching Regulator The boost switching regulator is described briefly in this application note. It accepts a DC voltage input and provides a regulated output voltage which must be greater than input voltage. conduction time is not fixed, but varies according to the input voltage: The basic circuit configuration of a boost regulator is shown in Figure 5. When the transistor switch is turned on, the supply voltage E'N is applied across power inductor L. The diode is reverse biased by voltage Eo. Energy is transferred from the input supply to the power inductor. When the transistor is turned off, the energy stored in the inductor L induces a voltage such that the diode conducts and transfers the energy to the load and the output capacitor. In addition to the energy stored in the inductor, additional energy is transferred from the input directly to the output during the diode conduction time. Output voltage is regulated by controlling the duty cycle: This pumping action, similar to the flyback regulator, also makes it desirable to operate the boost regulator in the discontinuous mode with a fixed peak current through the inductor. However, unlike the flyback regulator, in the boost regulator the diode UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326·6509 • TELEX 95-1064 tD=~ Eo - E'N ~=~+1 E'N tD Since the ripple voltage across the output capacitor is directly proportional to diode conduction time, tD, capacitor requirements are determined by the maximumtD: tD max = Lip Eo - E'N (max) The Figure 6 is a complete schematic diagram of a boost switching regulator. It accepts +12 V of DC input voltage and provides regulated +24V of output voltage. The design procedure and circuit description is similar to the flyback switching regulator. 15-51 PRINTED IN U.S.A. U-76 APPLICATION NOTE +0--------------------, GIVEN: EIN (max) E1N (min) Eo 10 (max) tim,,} tJ.e o WORST CASE: LOAD ErN = 10 = 10 ErN (mID) (max) t,=O 1 :.. :.- tT T=f I I i .. ; ~ tD ---'-- t, ---..I I, ! i I r T o i tD (mID) L= D =f 1 max (E 0 IE IN (min) ) tD (mIDI (Eo-ErN mID) Ip O-.......--+- Cmin o = Ip X tD (worst case 10 ~ L..-----'r Eo Ye i ; ; ESR m" = I ~--~~-Eo -+~------ ~ ~F =:- - , i I V max 2 tJ.eo 0) ~eo p r I I ESR I --t---O--!-~ e --- -- -J • I r I --i-E .leo - - - ~ -- - - 1- - Figure 5. UNrTRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173· TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 Boost Regulator 15-52 PRINTED IN U.S.A. APPLICATION NOTE U-76 E'N E, N= 14 = + 12V = + 24V 1,=2A A930·158 r---------.., 497 I TL 500 pI 220 18K lN914 lK +--_----.. . . +0--..... = 12V E'N 1001'1 SOp! Figure 6. Boost Switching Regulator m UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 954064 15-53 PRINTED IN U.S.A. APPLICATION NOTE U-76 Appendix A- Derivation of Design Equations The basic circuit configuration of the flyback switching regulator is shown in Figure 3. Assuming a fixed value of peak current, Ip, and output volts, Eo, the following equations are evident: + to + tx = T m;, . 2. 1/f . Worst case T = T m;" f = fm'" tx Substituting Equation 1a: d O m.. = 0, E'N = EIN min. = f:" = to (Eo/EIN min t 1 o - fm" (Eo/EIN min + 1) ........................................ 4. =~X~=~XtoXf 2 T 2 ..4a. -2- - The ripple voltage, resistance, ESR. ..... 2b. + 1) Ip X to - .. . em;, = 1'2 ~e~ ....................... ....... Ab. .2a. UESR . •• across the capacitor series UESR = Ip X ESR ................. 5. de -1-o .................. Sa. ESR max = p The frequency, f, will vary as a function of load current. Rearranging Equation 3: By inspection of Figure 3 output current waveforms: o dO C Substituting into Equation 4 and rearranging: Since in Equation 1, Eo, Ip and L are all constant values for a given application, to is also a constant value. I = The worst case net charge into the capacitor is equal to the area under the diode current waveform .. 1a. lr=tox Eo/E'N = tr dV e ...... 1. EIN lr = Eo to = Ip X L T The ripple voltage, dUe, across the output filter capacitor: ........... 3. ~ = -k- Taking worst case conditions and substituting Equation 2b: X to = 10 max/fm.. . .... 6. 0 .............................. 6a. f = fm" X _11 o max 10 max = .'. ~ X fm" X f m.. (Eo/EIN max Ip = 210 max (Eo/EIN max +1)' + 1) . and .. 3a. 10 m;, f min = f max X -1- .... 3b. o max Rearranging Equation 1: L=toXEo Ip UNITRODE CORPORATION. 5 FORBES ROAD LEXI NGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95-1064 .1 b. 15·54 PRINTED IN U.S.A. U-77 APPLICATION NOTE THERMAL DESIGN CONSIDERATIONS FOR OPERATING UNITRODE'S TO-92 TRANSISTORS AND DARLINGTONS IN PULSED-POWER APPLICATIONS Introduction Thermal Analysis Unitrode's power Darlingtons (U2TA506, U2TA508, U2TA51 0, U2TA606, U2TA608, U2TA610) and power transistors (UPTA510, UPTA520, UPTA530 and UPTB520, UPTB530, UPTB540, UPTB550) in economical TO-92 plastic packages are ideally suited for use in pulsed power applications, such as lamp driving or printer driving where the inrush or pulse drive current can be as high as several amperes. When compared with transistors or Darlingtons in conventional power packages, the Unitrode TO-92 devices offer cost savings of 50% or more, take up significantly less board space, and lend themselves to tape and reeling and automatic insertion. They also offer the advantage of a maximum operating junction temperature (TJlmax) of 175°C versus 150°C or 125°C for other plastic packaged devices. A detailed transient thermal analysis is required to determine the peak junction temperature and maximum allowable power dissipation since the junctions of the transistor or Darlington are subjected to temperature excursions due to the applied, periodic power pulses. Thermal considerations are of prime concern when the TO-92 power transistors and Darlingtons are used in pulsed power applications. This Design Guide provides a method for determining the junction temperature and maximum allowable peak power dissipation for the U2TA506, U2TA606 and the UPTA51 0 and UPTB520 series when they are operated at frequencies of 10kHz or less, where the switching losses are negligible and can be ignored. This method is valid for the vast majority of pulse applications. A) Effective Pulsed Thermal Impedance The effective pulsed thermal impedance (ep) of a device subjected to a periodic train of power pulses can be calculated as follows: ep=(e;'A)(O) + (1-D)(r(t+T))-r(T) + r(t) . . . (1) Applied Pulse I I ~ I I:-t Where: ~I EqUivalent Square Pulse T I I ~I L = pulse width = period D = th (Duty Cycle) r(t+T) = transient thermal impedance attimet + T r(t) = transient thermal impedance attimet e j • A = DC junction to ambient thermal impedance Ppk = The peak powerofa square power pulse with equivalent energy to that of the actual power pulse. T Figure 1. Power Pulses The DC junction to ,ambient thermal impedance (el-A) is 200°C/W maximum for the UPTA51 0 and UPTB520 series and is 155°C/W maximum for the U2TA506 and U2TA606 series. The transient thermal impedance for the U2TA506, U2TA606 and the UPTA51 0 and UPTB520 series can be obtained from the curves presented in Figure 2: UNITRODE CORPORATION. 5 FORBES ROAD LEXI NGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 15-55 PRINTED IN U.S.A. APPLICATION NOTE U-77 Allowable Peak Power Dissipation The allowable peak power dissipation can be derived from the following equation: Ppklm.. ) = T j Im.. ) - TAmblent· ... , . . . . . . . . . . ,. (4) Q) o c '" TI e Q) Q. E p Where Turnaxl is the maximum allowable junction temperature. Forthe U2TA506, U2TA606, UPTA51 Oand UPTB520 series the maximum junction temperature is 175°C. c;; E Q) .c l- e Q) en 1 0 r - - - r - - - - - r - - -....--""T'"--:~..., c £ .2 .5 1 10 100 Time (milliseconds) 1000 10,000 B ~ Figure 2. Junction to Ambient Transient Thermal Impedance e ~ :; 6 0 ~ ~ 0 B) Peak Junction Temperature The peak junction temperature of a device subjected to a periodic train of power pulses can be calculated using the previously derived effective pulsed thermal impedance as follows: T j Ipeak)= TAmblent + (PPk) (e p ) , (2) -" 2 25 e In the case of a single shot pulse the term for p reduces to p = r(t) and the equation used to calculate peak junction temperature becomes T j Ipeak) = TAmblent + (PPk) (r(t)) ... , . . . . . , , (3) e 4 0 VCElSATI - Saturation Voltage (V) Figure 4. UPTA510 Series. Maximum Saturation Voltage vs. Collector Current 5 4 ~ e ~ :; 3 0 .9 () Q) '5 2 0 -" VCElSAT) - Saturation Voltage (V) VCElSATi - Saturation Voltage (V) Figure 3. U2TA506 and U2TA606 Series. Maximum Saturation Voltage VI. Collector Current UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95-1064 15·56 Figure 5. UPTB520 Series Maximum Saturation Voltage vs. Collector Current PRINTED IN U.S.A. APPLICATION NOTE U-77 Peak Power The peak power can be expressed as follows: p.k=(VeE ISATI) (I.k) + (V.E ISATI) (I.) . Design Examples . (S) Where Ipk is the peak collector current of a square pulse of current equivalent to the applied current pulse, VCEISAT) is the transistor or Darlington saturation voltage at Ipk, VBEISATl is the base-to-emitter saturation voltage and IB is the base current. Figures 3, 4, and S are plots of VCEISATl for the U2TAS06, U2TA606, UPTAS1 0 and UPTBS20 series Darlingtons and transistors. Figures 6 and 7 are plots of the VBEISATl. These curves can be used in determining Ppk. 4~----~----+_--~~----~----~ ~ c ~ :; 3 () Using equations (3) and (S) a 1:3 .. (3) Where: TAmb,en! = 5SoC r (t) = r(SOmSec) = 175°C/W (from Figure 2) Ppk = (VeElsATI) (I.k) + (VBElSATI) (I.). . (5) = (1.SV) (3A) + (2.1SV) (30mA) (from Figures 3 and 6) =456W Therefore' T'I ... kI = SsoC + (4 56W) (17.5°C/W) = 135°C 2 (5 Problem: Calculate the peak junction temperature due to the inrush pulse and the steady-state junction temperature. Solution: The inrush current can be approximated by a square wave of 3A peak and SO milliseconds duration. The equivalent square pulse of current will have the same energy as the exponential pulse If the VeEiSATI of the Darlington is assumed to remain constant Since the VeEISATI will actually drop as the Inrush current exponentially decays, the result obtained from uSing the square wave approximation will be conservative. 5r----.-----.-----,-----.-----, .!!! 1. An incandescent lamp is controlled by a U2TAS06 Darlington operating from a 12V battery When switched on the lamp draws an inrush current of 3A which decays exponentially to a steady-state value of 300mA The time constant of the Inrush current is 50 milliseconds and the worst case ambient temperature is 5SoC The Darlington's base drive IS 30mA dc. () -" VBElSATI - Base-Emitter Saturation Voltage (V) Figure 6. U2TA506 and U2TA606 Series Maximum Base to Emitter Saturation Voltage vs. Collector Current 10r----,-----,-----,--,-,-----, Since 135°C IS 40°C less than the maximum operating junction temperature for the U2TA506 (Tj(m", = 175°C), the Darlington is operating well within its rating. The Steady-state junction temperature can be determined as follows: T,IOSI = (PIOSI ) (8,_A) + TAmb,en! = (( 3A)( 73V) + (03A)(1.60V)) (155°C/W) = 96°C + 5SoC ~ c ~ OJ () 2. A U2T AS08 is used to drive a solenoid load in an impact printer. The collector current waveform is as shown below along with the equivalent square pulse: 6 a 1:3 .!!! (5 Applied Pulse 4 () ~~ r- -" 100/Ls-j 14 10 16 8 12 VBElSATI - Base-Emitter Saturation Voltage (V) Figure 7. UPTA510, UPTB520 Series. Maximum Base to Emitter Saturation Voltage vs. Collector Current 6 UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173· TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 2ms' r--T I O~~~~LL~~~_J___L~_ _J_~ ~I 15-57 _I EqUivalent Pulse I L PRINTED IN U.S.A APPLICATION NOTE U-77 The Darlington is switching in a clamped mode so the energy stored in the solenoid inductance during the ontime is dissipated in the clamp and not in the Darlington. The maximum ambient temperature is BO"C and the base drive current is 20mA. 3. A UPTA530 is used to drive a high voltage DC motor in a display application the current waveform as is shown below: Applied Pulse O.BA Problem: Find the worst case junction temperature and determine if it is within the maximum rating of the U2TA60B. Solution: Use equation (1) to determine eo eo = (ej _A) (D) + (1-D)(r(t+T)) - r(T) + r(t) j _A= 155°C/W (from Figure 2) ........ (1) EqUivalent Pulse e L D = .1mSec = .05 2mSec r(t+T) = r(2.1 mSec) = 4.2"C/W (from Figure 2) r(T) = r(2mSec) = 4.1°C/W (from Figure 2) r(t) = r(.1 mSec) = 1.1°C/W (from Figure 2) Therefore: eo = (155°C/W) (.05) +1.1°C/W = 8.75°C/W Using equation (5) The base dnve is 200 mA and the worst case ambient temperature is 65°C. + (.95)(4.2°C/W) - 4.1°C/W Problem: Determine the junction temperature to insure it is within the maximum rating of 175°C for the UPTA530. ............. (5) 1.5A VeElSAT) + 2V (from Figure 3) (The VeElSAT) value at 3A was chosen to give a conservative answer. If Tj is found to be greater than 175°C it may be necessary to recompute using a closer approximation of the actual VeEISAT) which varies as the current increases from 0 to 3A.) IB= 20mA po. = (VeElSAT)) (10.) + (VBEISAn) (lB) 10 .= Solution: Using Equation (1) eo = (200°C/W) (.1) + (.9) (52°C/W) - 50°C/W + 21°C/W = 37.8°C/W From equation (5) and Figures 4 and 7. po. = (2.3V (.6A) + (1.2V)(.2A) = 1.6W (Again VeEISAT) and VBEISAT) values at .8A rather than .6A were used to insure a conservative answer). Therefore, from equation (2) Tj = 65°C + (1.6W) (37.BoC/W) = 12SOC VBEISAT) = 2.1 V (from Figure 6) (Again the VBEISAT) value at 3A was chosen to give a conservative result.) Therefore: po.= (2V) (1.5A) + (2.1V) (.02A) = 3.04W Now Tj can be determined from equation (2) Tj = Tambient + (Po.) (eo) ... .......... . ...... (2) = 80°C + (3.04W) (8.75°C/W) = 107°C This is ,well within the maximum rating of 175°C for the U2TA60B. UNITRODE CORPORATION· 5 FORBES ROAD LEXI NGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326·6509 • TELEX 95-1064 It becomes readily apparent from these examples that Unitrode's TO-92 transistors and Darlingtons can be operated with significant safety margin in a wide variety of pulsed-power applications. 15-58 PRINTED IN U.S.A. U-79 APPLICATION NOTE GUIDELINES FOR USING TRANSIENT VOLTAGE SUPPRESSORS 1.0 Introduction During transient periods, system voltages and currents are often many times greater than their steadystate values. These transients must be considered in overall electronic systems design to insure required circuit performance and reliability both during and after the transient. Transients may result from a variety of causes. The most common of these are: normal switching operations (power supply turn-on and turn-off cycles), routine AC line fluctuations, or abrupt circuit disturbances (faults, load switching, voltage dips, magnetic coupling by electro-mechanical devices, lightning surges, etc.). Voltage transients are a major cause of component failures in semiconductors. Random high voltage transient spikes can permanently damage these voltage sensitive devices and disrupt proper system operation. Catastrophic power supply conditions should not necessarily be the designer's prime concern, since lower level transients can cause improper operation of a system even though no component failures are caused. Normal power supply onoff cycles have the potential of emitting spikes with sufficient energy to destroy an entire semiconductor device chain. Any surviving devices are also suspect. Trouble shooting, isolating, and replacing damaged devices is time consuming and costly; especially when performed in the field. operating life. Unitrode has performed full power pulse life tests for 100,000 pulses with negligible change in characteristics. These devices are suitable for almost any equipment and environment. 2.0 Choosing the Correct Transient Voltage Suppressor for the Application Certain critical terms must be defined before any discussion of "how to" choose the correct TVS. 1. Stand-Off Voltage (VR) is the highest reverse voltage at which the TVS will be nonconducting. 2. Min. Breakdown Voltage (BVm,n) is the reverse voltage at which the TVS conducts 1 mA. This is the point where the TVS becomes a low impedance path for the transient. 3. Max. Clamping Voltage (Vemax) is the maximum voltage drop across the TVS while it is subjected to the peak pulse current, usually for1mS. Figure 1 graphically shows all three terms. Unitrode's TVS305 and TVS505 series of transient voltage suppressors (TVS) offer the designer significant price/performance advantages over other protection methods. Their miniature size permits simple "close-in" installation in applications where circuit boards are dispersed throughout one or more electronic racks. Dispersed usage aids system trouble shooting and affords transient voltage protection where internal system disturbances such as those caused by inductive load switching could occur. III J 1 mAf-----../1----L In spite of their small size, the TVS305 and TVS505 suppressor series can dissipate 500 watts and 150 watts (respectively) of peak pulse power for 1 millisecond. Response time to transients is just about instantaneous - about 1 x 10-12 seconds. These devices perform to their data sheet specifications without Significant degradation throughout their UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 +------------~~----==~+-~~--V VR BV Vc ( + Figure 1 - 15-59 TVS Characteristics PRINTED IN U.S.A. APPLICATION NOTE U-79 2.1 Determining Pulse Power Levels 2. Stand-off voltage (VA) - From the TVS series selected, choose the device with the stand-off voltage equal to or greater than your normal circuit operating Voltage. This insures that the TVS will draw a negligible amount of current from the circuit during normal circuit operation. The electrical specifications for the TVS505 series are shown in Figure 3. 3. Maximum Clamping Voltage (Vemax) - Determine the clamping voltage of the device chosen for the transient given and be sure it is below the voltage that might damage any components in the protected circuit. See Figure 3. Since a zener TVS has an almost constant clamping voltage throughout a transient pulse, the transient pulse power (Pp) equals the peak pulse current (Ipp) multiplied by the clamping voltage (Vc). 100.---.----,---.----,---, 2.2 Choosing the Appropriate Transient Voltage Suppressor 3: UJ UJ (f) ..J :::> CL 1. Pulse power (Pp) - Choose the TVS series that will handle the Transient Pulse Power. To determine Transient Pulse Power use the simple equation in section 2.1. If Ipp is not known or measurable, it can be calculated - see Sections 3 and 4. The pulse duration vs. pulse power graph on the Unitrode TVS305/ TVS505 data sheet can then be used to determine the TVS series that will handle the transient. This graph for the TVS505 series is shown in Figure 2. TVS Part No. TVS50S TVS51 0 TVS512 TVSS15 TVSS18 TVS524 TVSS28 Stand-off Voltage VA V 5.0 10.0 12.0 IS.0 18.0 24.0 28.0 Figure 3 - UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 Max. Leakage Current IA@ VR lolA 300 5 S 5 S S S 0.1 % 3: o CL The three most important factors in choosing the appropriate TVS for your application, in their order of importance are: Min. Breakdown Voltage BV(mln) @ 1mA V 6.0 11.1 13.8 16.7 20.4 28.4 30.7 MAX. DUTY CYCLE ~ a: ~ « UJ CL lOOnS llLS lOlLS 100ILS lmS 10mS PULSE TIME (tp) Figure 2 - Max. Clamping Voltage Ve@ lA V 7.4 13.2 16.5 19.7 23.8 32.4 3S.9 Peak Pulse Power vs. Pulse Duration Max. Clamping Voltage Ve@ 5A lOA V 7.9 14.4 18.S 22.2 26.0 37.0 41.0 Max. Peak Pulse Current Ipp A 53.7 30.3 23.8 19.8 16.3 11.9 10.7 Max. Clamping Voltage Ve @ Ipp V 9.3 16.5 21.0 25.2 30.S 42.0 46.S Electrical Specifications @ 25°C IS-60 PRINTED IN U.S.A. APPLICATION NOTE U-79 If the actual pulse power and pulse width are different from those listed on the data sheet, the clamping voltage can be calculated. The actual calculation method is beyond the scope of this note. Instead, we offer a graphical approximation using Figure 4. The approximation is based on the ratio of the actual and rated pulse power. 15 14 13 CR 12 11 10 0 / ----2 a. Calculate Pp (actual):::1.38Vm,n Ipp. b. For Pp (rated) use value from TVS data sheet curve (See Fig. 2 for example). c. Calculate Pp (actual)/Pp (rated). d. Use Fig. 4 to find corresponding value of C.R. e. Calculate Vc = C.R. x SVm,n. - ~ 6 4 The procedure is as follows: 8 2.3 Installation Considerations 10 1. Locate the TVS as close to the device or circuit to be protected as possible. p, (actual) p,(rated) C R :::: Clamping RatiO ::::: V, 2. Minimize the "common path" through the TVS to minimize voltage spikes produced by fast risetime transients in lead and wiring stray inductance. See Figure 5. VBmin Figure 4 - Graphical Approximation for the Clamping Ratio Undesired Transient Long / Common ~ Path i~ Input TranSient Vp = L.Ql where dt L" .02,..H/inch L ___f~~~~n.E.~ ___ .J r------------, I 1 I I I 1 1 I Short Common / ' Minimized TranSie~ V 1 - 1- - - Path~ I I I t ' IL__ ~ORRECT METHO~ _ _ ..JI Figure 5 - UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 Minimizing the Common Path 15-61 PRINTED IN U.S.A. U-79 APPLICATION NOTE 3.0 Transient Levels and Waveforms 3.1 Voltage, Current and Power Levels In addition to the magnitude of the voltage, current or power, the waveform or pulse width should be specified, as shown in Figure 7, for example. Since TVS tests and specs may be written in terms of voltage, current or power levels, the relationships are shown in Figure 6 for (a) field conditions and (b) test conditions. a) FIELD line impedance (wires. etc.) voltage source (Lightning. etc.) circuit being protected TVS ~f r I Vs TVS Rs series test resistor b) TEST test generator Figure 6 - instrument to measure clamping voltage (scope. etc) Equivalent Circuit for Field and Test Conditions 3.2 Typical Transient Levels Martzloff and Hahn in their paper on transients on 120 volt power lines* produced this table showing the surges recorded at a number of different locations over a two year period. The table indicates two primary causes of transients; load switching within the house and lightning storms. Table 1* Detailed Analysis of Recorded Surges Most Severe Surge Duration Average Surges per Hour Remarks 1 700 10,..s 007 A·'5 750 2 A·20 20 j..(s 014 fluorescent light 3 8-0 5 1 cycle 600 005 sWitching 4 8-0 5 400 2 cycles 02 640 5 C 10 total 5" 8-0 3 400 1 cycle 8-03 6 250 001 cycle 7 81 1800 1 cycle 810 1 cycle 800 003 Ilghtnmg storm 1200 10 j..(s 8 8-0 5 4 cycles 01 C 300 1 9 8-0 25 1500 1 cycle same as most severe all burner 02 10 25 2500 1 cycle 04 B 0 25 2000 all burner cycle water pump 11 , cycle same as most severe 8-0 2 1500 015 12 8-02 1700 1 cycte 8-0 2 1400 all burner 1 cycle 006 13 8-0 1 350 1 cycle too few to show typical 4 total house next to 12 14 800 1 total lightning C 15 ~s 15 8-025 800 3 cycles 8-025 600 rural area 005 13 16 8-015 400 151-1s 8-013 200 04 surges 30 tAS Street pole 8-05 4 cycles 5600 8-0 3 1000 1 cycle 01 lightning stroke nearby Hospital 2700 C 900 01 lightning storm C 9" 5" Hospital 1100 8-0 3 1 cycle too few to show typical 4 total Dept store , cycle 8-0 5 300 05 B05 300 cycle Street pole 1400 4 cycles 8-0 2 600 4 cycles 007 lightning storm B02 tA long OSCillation 8-damped OSCillation C-unldlrectlonal Number shows frequency In megahertz House Typet Crest (volts) Most Frequent Surge Duration , 5mHz Crest (~s or (volts) cycles) Typet A·15 300 10 lAs A-2 a 500 20,,",5 8-0 5 1 cycle 300 8-0 5 300 2 cycles too few to show tYPical (j..!sor cycles) l' a-a I I I' I cy~e, I 1 -I' "Reprinted from Surge Voltages In ReSidential and Industrial Power Circuits by Francois D. Martzloff. Member. IEEE. and Gerald J Hahn Reprinted by permission from IEEE Transactions on Power Apparatus and Systems. Vol. PAS·89. No 6. JulylAugust 1970. pp. 1049·1056 Copyright 1970. by the Institute of Electrical and Electronics Engineers. Inc. Printed in U.S.A UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 15-62 PRINTED IN U_S_A. U-79 APPLICATION NOTE 3.3 Commonly Used Test Waveforms Ipp as specified on data sheet. 1. The 10 x 1000p,S Test Waveform used by many TVS manufacturers, also by incoming inspection departments of users, represents some commonly encountered transients. (See Figure 7). 0----'-11--1 Figure 7 - 2. The IEEE Standard (ANSI C 37.90a -1974) for surge withstand capability. (See Figure 8). Commonly Used Test Waveform 2.5KV O---f 3.4 Surge Testing R = 150Q Figure 9 shows a typical test set used to produce an exponentially decaying current pulse of 1mS to 50% down. (10 x 1000p,S). The 1mS waveform is used by many manufacturers to test and characterize their TVS devices for pulse power and clamping voltage. 2K 5.0W 6p,S to 50% down. Figure 8 - 5.4Q 20W Reset ---L. + 12V Adjustable 1- Sprague 1112001 J + 350V P.S. 200mA More Complex Standard Waveform 250/-lf 350 WVDC Surge-i • Unitrode L1R05554F Unitrode 1N5550 Unitrode 1N5612 or1N5613 DurtE CVR 0.1Q Figure 9 - UNITROOE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (7l0) 326-6509 • TELEX 95-1064 Suggested Set-up for Surge Testing 15-63 PRINTED IN U.S.A. U-79 APPLICATION NOTE After the contacts switch at t 4.0 Examples 0, e di = - ldt' and when using a TVS the change in coil current 4.1 Relayand Solenoid Applications When the energy stored in the coil inductance of a relay or solenoid is released it can damage contacts or drive transistors. It can also produce EMI interference. A TVS used as shown in Figure 10 will provide reliable operation. Ql Vc Referring to Figure 10d, l 10 VcJRL Veel. Note that the higher t, dildt Veil RL Ve the Ve of the TVS, the shorter the cu rrent decay time. 'dt = = In order to select the proper TVS, determine: 1. Peak pulse power Pp = Ip x Ve, where Ip 2. Pulse time tp (@ 50% down point of iTvs) Just before the switch opens, the initial inductor cur· rent 10 = =1 0, = .!2... 2 3. These values of Pp and tp are used with graphs of pulse power vs. pulse duration provided on the TVS305 and TVS505 data sheet to select proper device. See example in Figure 2. = ~:. This is the worst case (maximum) current and assumes the switch was closed long enough for the circuit to reach steady-state. For TVS' 1. VR> Vee 2 V, VAcpeak Figure 1Dc, AC Coil and Contacts. UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 Figure 10d, Simplified Current Waveform in the TVS. 15-64 PRINTED IN U.S.A. U-79 APPLICATION NOTE NOTE: In some cases, because of accessibility, the TVS must be located across the coil; in that case a diode should be used in series with the TVS, connected back to back as shown in Figure 11. Sample Calculations: For example, using the circuit of Figure 10a, and sample values of: Vee = 14V, L = 1mH, and RL = 2Q; For Vee = 14V, the next higher VA is 15V. (Note that Ve = 22.2Vat 10A). STEP 1: Diode For diode: PIV .. Veo 10 = Pp = Ip X t = TVS STEP 2: 1 SO STEP 3: Figure 11 - Using TVS Across Coil Vee RL = ~ = 7A 2Q Ve Vee/RL \bIL tp = = 7.0A = X 22.2V 1412 22.2/10.3 0.3~ms = 155W = 0.32mS = 0.16mS = 160l-£S From Figure 2, Ppmax for tp = 160l-£S is 1200W, which is well above the circuit value of 155W. 4.2 Protecting Switching Power Supplies Transients can produce failures because of their own high energy level; and also they can cause improper operation and component failure. The designer needs to protect against: Figure 12 shows a simplified schematic of a typical switching power supply. 1. Load transients 2. Line transients 3. Internally generated transients including those produced by internal faults or failures. Referring to Figure 12, the TVS devices shown protect the following circuit components: 1. 2. 3. 4. the the the the rectifiers. HV switching transistors. output rectifiers. control circuitry. ,.' 110VAC 60 Hz Figure 12 - UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95·1064 Typical Switching Power Supply 15·65 PRINTED IN U.S.A. APPLICATION NOTE U-79 4.3 Protecting Microprocessor Based Systems While most microprocessor and Ie semiconductor manufacturers design some form of diode-resistive input clamping network on the chip itself, transient voltage protection offered is very minimal - on the order of a few watts of pulse power. Manufacturers are also reluctant to make device performance and reliability claims when power supply operation extends beyond the maximum rated level of the individual device for even relatively short durations such as those that may be encountered during on·off transitions. Therefore, there is a need for some external protective device to suppress voltage transients, as shown in Figu re 13. ~ T VS ~~ -::!:::- ~~ -== Address Bus I-- I Clock CPU '--- I-- .-- I r-------, '--- I-ROM .-- - -- '":::J aJ "2 c0 RAM '":::J ro'" _0 aJ 0 - - 1/0 ~ TVS~~ -:b ~~ -..=- l-'I.vv... TVS~~ -..=- Figure 13 - UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 - iJ.~ ~ ~ ~~ ~~ TVS --...!:- -- Protecting Microprocessors 15-66 PRINTED IN U.S,A. APPLICATION NOTE U-79 5.0 Alternative Protection Devices Other protective devices such as MOVs, spark gaps, and crowbars have one common disadvantage when compared to zener TVS products; the response time is from nanoseconds to as much as tens of microseconds as compared to 1 pS for an avalanche zener diode. Even 50nS is long enough to allow a transient to destroy the small junctions used in most integrated circuits, logic, fast transistors, etc. TVS products do not significantly degrade even after 100,000 transients. In many cases, the zener TVS and one of the alternative devices can complement each other. For example, when used with an SCR crowbar, the zener TVS will keep the voltage during a transient to an acceptable level until the crowbar, which may take 10l-'S to short the line, can protect the load circuits, and in the case of a heavy transient protect the smaller TVS as well. In circuits where transient pulses are fairly common, device degradation becomes a significant problem. UNITRODE CORPORATION. 5 FORBES ROAD LEXI NGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 15-67 PRINTED IN U.S.A. APPLICATION NOTE U-81 DETECTING IMPENDING CORE SATURATION IN SWITCHED-MODE POWER CONVERTERS· ABSTRACT A new low cost concept termed "mismatched flux" has been developed which not only prevents impending saturation of the core but also provides symmetrical switching current in power switches in Pulse Width Modulation switched-mode converters except at low flux density. The detecting signal is obtained by mismatching the flux in the outer legs of an E-E core configuration. INTRODUCTION Opposite polarity power pulses are applied to the power transformer in a PWM converter to transfer power from the primary to the secondary windings. The volt-second integral of these pulses averaged over one or more cycles should be zero to avoid any problems with transformer core saturation. In practice, however, imbalance occurs due to nonideal characteristics of power switches, mainly the switching times (including storage and delay times) and saturation voltage. Even though the imbalance in the pulse width of the drive current provided by a PWM control circuit is very small compared to power switches, it can drive the core into saturation. Core saturation in PWM switched-mode converters can cause problems such as secondary breakdown in switching transistors, exctssive voltage and current stress on the rectifiers, and EMI problems. The unique circuit described in this paper develops voltages proportional to the flux density in the core. When the maximum flux densities at the end of the positive and negative cycles.in the core are not the same, unequal voltages are produced during the positive and negative cycles. These voltages are fed back to the PWM control circuit which adjusts the widths of its output pulses until the amplitudes of these two voltages are equal. This technique, which can be applied in push-pull converters as well as bridge type converters, prevents core saturation and provides symmetrical primary current during the positive and negative cycles. It allows the most efficient use of the power transformer. In a buck type regulator, the current limiting function can be performed with this same technique. THE UNBALANCED PWM CONVERTER Figure 1 shows the typical push-pull converter and its associated current and voltage waveforms. Due to the difference in switching times and VCE (SAT) of transistors Q1 and Q2, the transtormer core IS driven into saturation. The volt-seconds applied by UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173. TEL (617) 861-6540 TWX (710) 326-6509. TELEX 95-1064 transistor Q2 is higher than Q1 as shown in Figure 1d, even though the secondary current is the same during on-times of transistors Q1 and Q2. Three important observations can be made from these figures: 1. Information concerning the magnitude of the imbalance of the flux can be derived by examining the current in the rectifier diodes (Figures 1e and 1f) during the dead-band period. 2. The slopes of the primary currents when Q 1 and Q2 are conducting are not the same. 3. The familiar equation IC1/ID1=N~/N1 is not applicable when the flux denSity in the transformer is not symmetrical during the positive and negative half-cycle. Under normal operating conditions and during dead-band period, the path for the current flowing in the output inductor L is provided by diodes D1 and D 2. The inductor current is divided between these two diodes. The magnetizing current I MS flows in the entire secondary winding. Note that the magnitude of IMS remains the same during the entire dead-band period because the voltage across the secondary winding is zero. The overall result is that one diode conducts more current than the other diode. The current flowing in these diodes is: iD1 =.i.. 2 + IMS iL iD2 =--IMS 2 Current in Rectifier (1 ) Diode D1 Current in Rectifier (2) Diode D2 Subtracting iD1 from iD2 and rearranging iD1 - iD2 I MS = (3) 2 Thus, the current flOWing in diode D, and D2 allows us to determine the exact amount of imbalance in the flux density during the positive and negative half-cycles. Figure 1g, which is calculated from diode current D1 and D 2, shows the operating flux density of a core in only the 1st quadrant of a B-H curve. When transistor Q, or Q2 turns on, this magnetizing current is reflected back into the primary winding according to the equation: I PM 15-68 - 2(N 2) N1 I MS (4) PRINTED IN U.S.A U-81 APPLICATION NOTE The dotted line in Figures lc and ld shows the reflected current in the primary winding. Since the flux density is not symmetrical around zero in the S·H curve, the collector current in Transistor Q 1 is lower than in Transistor Q2' When the magnetizing current (dotted line in ~igure lc) is added to the actual measured collector current (solid line) in Transistor Ql' it will produce a linear slope compared to the rounded slope of the measured collector current. The equation B+ 102 Figure la. I' --=.t =. N2 IDl (5) N1 It4 will hold true, where l'c1 is equal to the magnetizing current reflected into the primary winding plus the actual measured collector current IC1' ° Figure lb. Voltage Waveform at Collector of 02' O.8SAI.. Similarly, when Transistor Q 2 turns on, the transformer transfers energy from the input power source to the secondary. Some energy is also stored in the core due to the unsymmetrical flux density in the core. The magnetizing current (current level above dotted line in Figure 1d) is subtracted from the measured collector current. ! . . . >(1 ... O.7A -----V -;O.2SA ~------------- Figure lc. ICl Current Flowing in Transistor 01' 1.80A The equation I' tsrl--- L . - .- - - - - ' _ _ lolA O.8SA c2 ID2 N2 =N"1 (6) ~--o will hold true, where IC2 is equal to the actual measured collector current minus the magnetizing current reflected into the primary winding. Figure ld. IC2 Current Flowing in Transistor 02' 1.30A The imbalance in volt-seconds causes the flux density to drift towards one side of the hysteresis loop. This causes an imbalance in the collector currents of the transistor switches. The imbalance in volt-seconds will be compensated, to some extent, by an adjustment in the collector currents of the two transistor switches. As the collector current decreases the storage time increases and VCE(SAT) decreases as shown in Figures 2 and 3. This effectively increases the volt-seconds. The I R drop in the primary winding also helps to balance the voltseconds in the transformer. These collector currents will vary until the proper volt-second balance is obtained in the transformer. If no corrective scheme is provided to balance current in the switch, the following disadvantages are present: - - - - , .70A Figure le. Load Current in '01' ---, 1.30A ~==------~--~~====--o Figure If. Load Current in '02' O.S5A 1. The required current ratings ofthe transistors and rectifiers must be increased. ~"---Ims + 2. The VCE(SAT) losses will be increased. Furthermore switching losses will be even higher, especially in high voltage power converters. UNITRODE CORPORATION' 5 FORBES ROAD LEXINGTON, MA 02173' TEL. (617) 861-6540 TWX (710) 326-6509. TELEX 95-1064 1.2A ° Figure 19. Magnetizing Current in Secondary. Figure 1. Gallery of Waveforms of a Push Pull P.W.M. Switching Regulator 15·69 PRINTED IN U.S.A. U-81 APPLICATION NOTE 3. Losses in the core increase as a function of the square of the maximum operating flux density. As the core temperature goes up, the losses in the core also increase, thus, the potential exists for thermal runaway in the core. 4. The leakage inductance is proportional to the maximum operating flux density. The imbalance causes high leakage inductance, and excess voltage stress across the transistor and rectifier. 5. If the core goes into saturation, it creates excessive current in the power switches, can result in forward bias second breakdown, clamped reverse bias second breakdown, and increased radiated and conducted EMI. I Condition: IB1 = IB2 =TIi, VCE =200V 3 U E.'" '" E \ 2 " i= iI1 ~ E 0 ci) o o 2 R, 2~65~7 , 3 R, r-.. ..... 4 5 6 -r- 7 8 9 10 Ie - Collector Current (A) , Figure 2. Storage Tim'a vs Collector Current _ Ic Condition: IB1 -10 ~ 3 I '" 19'" BASIC PRINCIPLE An air gap in the E-E core can be used to prevent core saturation in PWM converters. The air gap reduces residual flux density in a square loop transformer and prevents core saturation during the start-up condition. However when there is a volt-second imbalance, the air gap does not prevent core saturation. If the air gap is placed in only one of the outer legs of an E-E or EC core configuration, as shown in Figure 4a, then it allows a means of detecting core saturation, and by using this signal, to provide symmetrical flux swing in the core. The primary winding and secondary winding are placed in the center leg of the E-E core, while the auxiliary winding is placed in the outer leg which contains the air gap. The peak output voltage of the auxiliary winding is detected with Diode 0" O2 and Capacitor C,. The Resistor in parallel witll Capacitor C, provides the reset for another cycle by discharging the capaand C, is citor. The voltage developed across proportional to the maximum rate of change in flux at the instant when the transistor switch turns on. The total amount of flux passing through the outer leg with the air gap is inversely proportional to the magnetic length of the opposite side of the leg. As the flux density in the center leg increases, a larger and larger area of the core at the point where the two E cores meet on the opposite side of the leg will become saturated. Note that only the edge of the core will saturate, while the rest of the core (leg with no air gap) will not saturate. As it satu'rates further, the reluctance of this leg increases, thus its effective magnetic length increases. This phenomenon forces more flux into the leg which has the air gap. The voltage developed in the auxiliary winding is expressed by Faraday's Law: I 2N6547 '0 d2] V -- N [dt- x 10-8 > c: 2 0 '';:; Where N is the number of turns. Thus the magnitude of developed voltage will depend upon the rate of change in flux with respect to time. Since the air gap is in only one leg of the E-E core, the term Id2/dtl changes continuously and depends upon the flux density in the center leg. Thus the output voltage from the auxiliary winding also varies with respect to time. The same results can be obtained with using a core as shown in Figure 4b. The advantage of using this core is that the leakage inductance will be less compared with the previous technique. E ai= ::l ~ w I U > o o I.- ~ 2 3 i--"" 4 / ", 5 6 7 8 9 10 Ic - Collector Current (A) Figure 3. VCE (SAT) vs Collector Current UNITRODE CORPORATION' 5 FORBES ROAD LEXINGTON, MA 02173' TEL, (617) 861-6540 TWX (710) 326-6509' TELEX 95-1064 15-70 PRINTED IN U,S,A APPLICATION NOTE U-81 Figure 4a. Air Gap in Only One Leg of E-E Core Figure 4b. Tapered Air Gap in One of the Outer Legs of the E-E Core Figure 5 shows the B-H curve (solid line) of an E-E core with an air gap in only one leg. It lies between the E-E core with an equal air gap in both sides of the outer legs and a core with no air gap. From this figure it is obvious that Idcp/dtl changes with the flux density and is a non linear function. Figure 6 shows variation in inductance with magneto-motive forces. be accomplished by gating the output voltage of the auxiliary winding with a pulse width of a few microseconds. Figures 7 through 9 show the voltage developed in the auxiliary winding at different values of the magnetizing current. The magnetizing current is directly proportional to the maximum flux level for a given transformer. I n these waveforms the initial flux density is set at zero and the allowed flux swing is in the 1st quadrant only. The magnitude of the error signal (when the transistor switch turns on) is the same in all three figures since dCP2/dt is the same. As the magnetizing current increases, the developed error signal due to dCP2/dt in the winding around the outer leg (with the air gap) also increases because dCP2/dt increases with flux density. From the shape of the collector current it is obvious that the core is not saturated. Figure 10 shows the voltage developed across Resistor R 1 from the auxiliary winding and also the current in the two transistors Ie, and IC2' The current waveforms show that there is no symmetry in the flux of the core. Figure 11 shows the same output voltage peak detected by paralleling Capacitor C 1 across Resistor R l' The voltages developed are not symmetrical during the alternative half period of the cycle. Figure 12 shows that when the developed voltage is fed back to the control circuit, it produces flux symmetry in the core. This can be seen by the equal magnitude of the collector currents. Figure 5. Effects on Hysteresis Curve with Air Gap in Only One Leg of E-E Core _H The initial amplitude of the voltage from the auxiliary winding (after the transistor turns on) can be used to further improve performance. This can UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173. TEL. (617) 861-6540 TWX (710) 326-6509. TELEX 95-1064 o H ~ Figure 6. Inductance vs Magnetomotive Force 15-71 PRINTED IN U.S.A III U-81 APPLICATION NOTE 2V 500mV 100mV r ~ 1 1 1 1 - ~ 1 ""',.~' Error Signal V Scale = .5V /div I- 100mV - fA .A -1 1 IC1 Collector f-' !-fl ~ 100mV 51lS Primary cur- .... ,.... :- ..... - ..I 200mV '5/lS - Current 1A/cm '-- Diode Current ID1,ID2 1A/cm .... L-: \. IA ..., 1 - 1 ... ~-' \. rent IC1' IC2 2A/cm . Voltage developed at Point A in Fig. 4, due to unequal volt-sec,C1 is removed 200mV 2V/cm. Figure 10. Without a Feedback 200mV 2V 500mV 100mV r1 .l J - r-J - ~ 5/lS 1 .I J 1,\ L ..., "I - r~ \'"! !-! [ 200mV I ,. fA A IC1 Collector 5/lS ~ I 100mV Primary cur· rent IC1 _ IC2 2A/cm. II 1 Voltage developed at Point A in Fig.4 due to unequal volt sec 2V/cm. Current 2A/cm - 1.0 H l Error Signal V Scale = .5V/div Diode Current ID1,ID2 1A/cm 200mV Figure 11. Without a Feedback 100mV 500mV r"' I\. 1 .I. - .... .., - ... "1. ~ I ... ., _ L.J- ... - 200mV 51lS I'" I\. .... ~ .., I ... k ~U -,...I- ~ 100mV I ....~- Error Signa I V Scale = .5V/div 2V IC1 Collector T 1 Current 2A!cm 5/lS Primary current IC1 _ IC2 2A/cm. :1 f1 Diode Current 1 Error Signal at Point A in a closed loop. ID1,ID2 1A/cm 200mV Figure 9. Error Signal Developed at Magnetizing Current = 700 mA Figure 12. With a Closed Loop CLOSING THE LOOP 2. Into the non-inverting input. This can be achieved by (a) lifting up 4.7K from ground in the N I circuit, (b) adding 100n in series with 4.7K and the other side of 100n returning to ground, and (c) adding a feedback signal at the junction of the 1000 and 4.7K resistors. The peak to peak amplitude of the signal fed into the N I input has to be less than the output ripple voltage fed into the I NV input. Feeding signals in the N I or I NV inputs will provide flux symmetry in only DC conditions. The developed voltage across R 1 and C 1 is fed back to the control circuit (UC3524). This voltage can be fed into the control circuit in one of three ways: 1. AC coupled into the output of the error amplifier. Since this amplifier is a transconductance design, the output has very high impedance (approximately 5 Mn). The feedback signal from the auxiliary winding is modulated at this point with the output voltage of the error amplifier. The output pulse width is corrected to provide symmetry as well as to prevent core saturation. UNITRODE CORPORATION' 5 FORBES ROAD LEXINGTON, MA 02173' TEL. (617) 861-6540 TWX (710) 326-6509' TELEX 95-1064 200mV 3. 15-72 Feeding the signal at the INV input. This requires an opposite polarity signal, which can be obtained by reversing the diodes in PRINTED IN U SA U-81 APPLICATION NOTE HALF BRIDGE CONVERTER Figure 4. The modifications required to change the circuit are the same as listed above. Also in this case the peak to peak amplitude of the signal fed into the INV input has to be lower than the peak to peak output ripple voltage fed into the INV input. The method described in this paper can be used for half bridge configurations as shown in Figure 14. It does not require a low ESR, high voltage capacitor in ~eries with the primary of the transformer. The DC balance is provided by Capacitors C1 and C2' Thus, this technique offers a low cost solution in preventing core saturation and in providing flux symmetry. To obtain adequate signal at very low input voltages may require a low V F diode. PWM PUSH-PULL CONVERTER BUCK REGULATOR A complete schematic of the PWM Push-Pull Converter using this technique is shown in Figure 13. The power switch is a Unitrode hybrid circuit, the PIC636, which is housed in a 4 pin electrically isolated TO-66 package. It provides the advantages of low RFI and ease in heat sinking due to the electrically isolated package. Constant base drive is provided by small signal transistors (2N2905). The output rectifier is a center tap TO-220 fast recovery (35nS) rectifier. The control chip is a UC3524 PWM voltage regulator. The soft start function is performed at the NI input by allowing the reference voltage to corne up slowly when the input power supply is turned on. The feedback signal from the auxiliary winding is fed into the compensation terminal (output of the error amplifier) with Resistors R2.' R3 and Capacitor C2' The steady state and transient response of the circuit was evaluated: it provides flux symmetry and prevents core saturation under these conditions. E m =25V 1,00 lN914 ~p, lN914 , 27n 914 ':1. , 1K 1K 'N .7K The circuit shown in Figure 15 is a high perform~ ance buck regulator. It utilizes the Unitrode power hybrid switching regulator circuit, PIC625. The high performance transistor chip and fast recovery (20nS) rectifier diode are mounted in an electrically isolated 4 pin TO-66 package. The control circuit is a Unitrode Corp. PWM voltage regulator chip. The inductor L utilizes the equal E-E core configuration with unequal air gaps in the side legs. The main winding is placed on the center leg while the two auxiliary windings are wound on the outer legs. The output voltage from these auxiliary windings are compared using Transistor Q3' The magnitude of the current limiting is adjusted with Resistor R l' When the current in the hybrid circuit, PIC625, exceeds the set current J27n r-----' 'N'9~: v ~~. ~N2905 4.7K In a buck regulator, the method described here can be used to provide the current limiting function without a current sense resistor. '7K I • 7K INV CA I Vm 4.7K NI ~ r< : PIC63SL _ _ _ D3 UC1524 lj: 1"'--- coo- R. ~f----< ~~ ro - I I I f-oVREF 22K R4 = lOOK C4=2~F Cs= Tp.F C6= 005p.F CT RT 8 • I Comp 51114 PIC636 18K R2 3JK Ferroxcube 782E272 l I -- E,"t=5V If "?I"T -r-~ I ~-U-<'-=l=~F ...J Ip' r r-, I ~ p' L 0, I ~ UES2401 I~N914 I ~ 5DO I OD N = 3eT I L. _ _ _ _ _ ..J C, 1p' C3 .005T N1 = lOT N2=8T C, RJ lOOK -.l ,05J.1FT R1 1K Figure 13. PWM Push-Pull Converter UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173. TEL. (617) 861-6540 TWX (710) 326-6509. TELEX 95-1064 15-73 PRINTED IN U.S.A APPLICATION NOTE U-81 limit, 03 turns on and the voltage developed across C1 and ~2 is fed into transistor switches 01 and 02. The transistor 02 removes tt\e drive current from the PIC625 instantaneously. It provides protection during the transient condition. The transistor switch 01. provides the function of cu~­ rent foldback by discharging the soft start capacItor C2 . The transient response o! this cir~ui~ is shown in Figure 16. The current In the sWitching transistor during short circuit and normal operation mode is shown in Figure 17. CONCLUSION The low cost circuit described in this paper prevents core saturation due to unsymmetrical flux, and provides equal collector current in the transistor switch and in the rectifier diodes. The power dissipation of these switches is kept in balance. Further advantages of this approach are: 1. a. In a push-pull converter, the need for an inductor is eliminated, thus, the size,cost and weight are reduced. b. Transient response time is improved. 2. In a bridge type converter, a capacitor (low ESR, high voltage) in series with the primary of the power transformer is not required. (In conventional designs even with this capacitor, there exists a danger that the core can be driven into saturation under transient conditions). 3. In a buck type converter, it allows the current limiting function to be performed without a current sense resistor, thus improving the performance. Ein = 350V To Control Circuit c, UMT1009 4. Storage time and V CE(SAT) matc~ing of the transistor switches are not reqUired. 5. More efficient use of the transformer, allowing smaller, lower cost magnetics is achieved. 6. In an off-line converter, isolation is maintained. The flux correction circuit eliminates the need for capacitor C3 in series with primary of the transformer Figure 14. Half Bridge Converter Ferroxcube 782E272 PIC625 r----'. Em = 26V 4.7K lK 220K 1 16 UK 2 120- UK ~ ~ b;;i~..... 13 -016 n H~ 2.2K 9 ,...,7 8 6 IL- .. lN914 Cin : ~: lOOn UC3524 I I I 4 5 11'0~ I-- 18K ~T TOO5/l I r ___ I I I F ( lK large airga 5T1.Tf'0T lN914 1 °2 IN914 °2 i, g0 I ~...J lK °1 Eout = 5V L I I I 4.7K lOT Ll Ir :~ Co °3 lpOn A, A2 lK lnFf 02. 03. 01 - 2N2905 ~ - 2N2222 Figure 15. High Performance Buck-Type Switching Regulator UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON. MA 02173' TEL. (617) 861-6540 TWX (710) 326-6509' TELEX 95-1064 15·74 PRINTED IN u.s A U-81 APPLICATION NOTE 5pS 5mS 2V Collector Current I.... ~ II 1/1 Short-circuit IL = 1A Collector Current I-- Output Voltage ~,.... ~ ~~ 50mV 50mV V = 2V/div, H = 5mS/div V = 1A/div, H = 50pS/div Figure 17. Collector currents, IL = 1A and under short circuit conditions. Figure 16. Collector currents for step change in load from 1A to 5A, to 1A. REFERENCES 1. Walter J. Hirschberg, "A New PWM Control Technique That Eliminates Transformer Unbalance Problems in Power Converters", ACDC Electronics Powercon 6, 1979. 2. John Bullinga, "Transformer with Means of Sensing Impending Saturation", Collins Radio, Powerconversion International, Sept/ Oct 1979. II UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173' TEL. (617) 861-6540 TWX (710) 326-6509' TELEX 95-1064 15-75 PRINTED IN U.S.A. U-82 APPLICATION NOTE HYBRID CIRCUITS FOR LOW VOLTAGE SWITCHED-MODE CONVERTERS printed onto the BeO substrate and then fired in high temperature furnaces. For optimum performance, the tolerances of the thick film resistors are maintained within 10% of their design values. The semiconductor devices used in the circuit are all silicon planar passivated devices and are gold eutectic mounted. Aluminum ultrasonic wire bonding is used for interconnections. In the second stage the BeO substrate is soft soldered to the header for good heat transfer. A copper slug is interfaced between the BeO substrate and nickel plated steel header. The copper slug is used to relieve mechanical stress between the BeO substrate and the header and to provide heat spreading resulting in lower thermal resistance. ABSTRACT Hybrid circuits offer many advantages over the conventional discrete approach in switched-mode converters. This paper deals with the construction of the hybrid circuit and its thermal considerations. It examines the efficiency of a buck regulator employing a saturated transistor versus the optimized darlington configuration. Also considered are the effects of reverse recovery of the rectifier and base spreading resistance of the transistor on the efficiency of a switching regulator. Finally, applications of standard hybrid circuits for switched-mode converters are discussed. I. INTRODUCTION Recently a rapid increase in the use of hybrid circuits in switched-mode power converters is evident due to their inherent advantages. Some of these advantages are: dc and high frequency electrical isolation, ease in heat sinking multiple power components within the single hybrid package, reduced stray parasitics, and finally, lower overall cost compared to the discrete approach. The hybrid circuit approach requires careful consideration of thermal design for maximum reliability and proper selection of silicon chips for best electrical performance. This paper provides an overview of the construction of a typical power hybrid switching regulator circuit and its thermal design considerations. Also considered are the effects of the reverse recovery time of the rectifier and the base spreading resistance rBB' ,of the power switching transistor on the efficiency of the switching regulator. Applications and advantages are also discussed for types of hybrid circuits which are designed for low voltage applications and other types designed for "off-line" switched mode converters. III. THERMAL CONSIDERATIONS The design of the power hybrid circuit requires careful consideration to optimize important thermal requirements; thermal cycling, resistance, and partitioning. To obtain maximum thermal resistance, overlapping heat flow should be avoided. As shown in Figure 2, heat flow from silicon chips #2 and #3 overlaps, thus reducing the thermal capability. No overlapping heat flow occurs from chip #1. Thermal resistance of the package can be calculated by the formu la: t RT = P"A where t is the thickness of material through which heat flows, P is the thermal resistivity of the material and A is the average area through which heat flows. In making a conservative calculation, it is assumed that heat flux diverges at approximately a 45° angle for all the materials except the copper slug (62.5°) due to high conductivity. The thermal resistance calcu lation of a hybrid circuit is shown in Figure 2. The copper slug between the BeO and header reduces the thermal resistance of the package (by about .32°CIW) by spreading the heat flow through a large area of the steel header. This calculation assumes that no voids are present at the interfaces. II. CONSTRUCTION The power hybrid circuit PIC600 is the power output stage of a buck type switching regulator as shown in Figure 1. It consists of a high speed darlington-connected transistor pair, a commutating diode and two thick film biasing resistors. These components are housed in a 4 pin electrically isolated TO-66 package. The manufacturing procedure for these devices is divided into two stages. First, a BeO substrate is chosen because of its excellent thermal conductivity, - - 70% as good as copper. The interconnection paths, pad areas for the wire bonds and the thick film resistors are screen UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173. TEL (617) 861-6540 TWX (710) 326-6509. TELEX 95-1064 IV. COMPONENT AND CIRCUIT SELECTION Achieving maximum efficiency in a buck-type regulator requires proper selection of electrical characteristics of the transistor switch and catch diode. Optimum efficiency can be obtained with a 15-76 PRINTED IN USA U-82 APPLICATION NOTE Q1 D1 Figure 1. Unitrode power hybrid circuit (PIC6001 Silicon Chip #2 , Silicon Chip #3 , D~~==~====~~========~'====~~~====~ F~~~=;e:============='~'~==========~'='==========;"~'~'==========( ,, , G/ ,, •• , ,," , , , / DEFINITION: Material t Temp. Coef. P Rest. °C-inNV Thickness in mils RT* of PIC625 4.2 14 6 23 16 23 11 .303 .182 .152 .8 .104 .8 .884 5 3 20 4 10 3 65 .214 .0718 .249 .187 .04614 .0836 1.043 10~oC A - Silicon B - Si Au Eut. C - BeO D - Solder E - Copper F - Solder G - Steel Total *RT=P (~I 1.8954 Figure 2. Heat Flux Line in a Hybrid Circuit UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173. TEL. (617) 861·6540 TWX (710) 326-6509. TELEX 95-1064 15·77 PRINTEO IN USA II APPLICATION NOTE U-82 Schottky rectifier because it has lower forward drop than most PN junction devices. The Schottky rectifier is a majority carrier device and has zero reverse recovery time. However, the Schottky's high junction capacitance (10 times greater than PN junction devices) produces the same effect as the trr of PN junction devices. Junction capacitance does not change appreciably with temperature, so the effective reverse recovery time remains the same with respect to temperature. Since commercially available Schottky rectifiers have only a 45V PIV rating, the absolute maximum input voltage of the buck type regulator is limited to only 45V. Ultra fast PN junction devices are available with the same effective reverse recovery as Schottky rectifiers with a higher (up to 400V) PIV capability. The somewhat higher forward drop of the PN junction devices does not degrade efficiency at higher voltages. The way in which a device recovers from forward conduction is also important. In high voltage (>1000V) power supplies, it is desirable to have abrupt reverse recovery time for optimum efficiency. In low voltage, high current power supplies a soft reverse recovery rectifier is better suited from the RFI viewpoint. duration in the active region. This significantly increases R F I and also increases the power dissipation in the transistor, and may cause second breakdown. Figure 3 shows the effect of a diode recovery time on transistor power dissipation. The reverse recovery time of the catch diode requires the transistor to conduct higher peak current for a longer 2. The base spreading resistance, rBB',of the device should be lower than the external biasing resistor. This will provide low storage time and fast fall time. For reliable circuit operation, trr should be much less than the current rise time of the transistor. This ensures minimum current overshoot in the transistor and also minimizes the amount of time the transistor spends in the active region during turn-on, resulting in lower power dissipation and increased efficiency. However, to obtain maximum efficiency, all switching times, (including current rise time) should be as fast as possible. The rectifier should be selected such that its trr is one third or less of the current rise time of the transistor. In switching regulator applications, it is also essential that the storage and fall times be as low as possible. When turn-off is achieved without the assistance of 182, it is important that the power output transistor have the following characteristics for best performance: 1. Larger emitter periphery area with a triple diffused or double diffused epitaxial construction to provide lowest effective collector series resistance to prevent forward biasing of the collector-base junction. 3.0 ~IC 2.6 'trr, V> ~0 -{ I. -1 tn ...J c 0 ~ ~ .:t: c... + ~ E c: c... 2.2 .: 5 I- a 1;; NOTE: 1.8 IRM _ trr 'in 1C-trj c i:' I- Figure 3b. 1.4 1.0 0 0.2 0.4 0.6 0.8 1.0 Diode trr Transistor tri Figure 3. Importance of Reverse Recovery Time of a Rectifier UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON. MA 02173. TEL. (617) 861-6540 TWX (710) 326-6509. TELEX 95-1064 15-78 PRINTED IN USA U-82 APPLICATION NOTE Emitter Base Base P T L 1 N A N+ Collector _ pL Ie X Rse drop - If: Figure 4. Effect of rBB'. on Switching Times and Dynamic Saturation The resistor turn-on biasing method works satisfactory up to 10A for a low voltage device without affecting the efficiency of the switching regulator. Another advantage of the resistive turn-off circuit is that it limits current crowding during turn-off thus increasing the reliability of the circuit. Since the driver transistor operates in a saturated mode, the device should have a high gain-bandwidth product to minimize overall storage time. The hybrid circuit PIC600 consists of two transistors connected in a darlington configuration. The internal biasing resistors of these transistors are sufficient for fast turn-off without requiring any 182. The table shown in Figure 5 compares the efficiency of a saturated transistor (2N4150) versus the hybrid darlington as the switching element in a 50 kHz buck regulator. In each case, the output device has the same size silicon chip. Efficiency Power Losses (Watts) Tj = 25°C Pass Transistor ~ = 0.5 Ein Eo = 0.2 ~ 2N4150 (Saturated) D.C. Losses ............... Switchi ng Losses ..... ,-" .... Drive Losses .............. Diode Losses .............. 0.7 2.27 0.13 4.76 84.79% 81.66% PIC625 (Darlington) D.C. Losses ............... Switchi ng Losses .......... Drive Losses .............. Diode Losses .............. 1.4 1.53 0.15 4.76 82.8% 81.69% Conditions: II f = 50KHz Eo = 5V 10 = 7A Same size output device for both cases. Figure 5. Comparison Between Saturated and Darlington Pass Transistors in a Buck Type Switching Regulator UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON. MA 02173. TEL. (617) 861-6540 TWX (710) 326-6509. TELEX 95-1064 15-79 PRINTED IN USA APPLICATION NOTE U-82 I n the saturated transistor approach, the transistor is driven with a forced Beta of 5 during turn-on and turn-off. However, in the darlington configuration, no turn-off base drive is employed. Typical measured switching times and saturation voltages are used to calculate losses. V. APPLICATIONS Different applications of power hybrid circuits are discussed in this section. Low Voltage Hybrid Circuits «100V) Some applications of low voltage hybrid circuits are: low and high current positive and negative buck-type regulators, bidirectional motor driver circuits, PWM push-pull and half bridge converters. Each is discussed briefly as follows: From the table in Figure 5, it is evident that the hybrid darlington approach provides best results in terms of efficiency when the ratio between the output and input voltage is less than 0.25. In a darlington configuration, if the output device is kept out of saturation, then the rise, fall and storage times will be reduced compared with the saturated transistor. Even at higher output/input voltage ratios the loss in efficiency because of higher VCE(SAT) is minimal compared to the complexity and cost of a drive circuit required for a saturated transistor. a. The plot in Figure 6 shows dc power dissipation of a PIC625 at various duty cycles and temperatures. The efficiency of the regulator depends heavily upon output voltage. Switching losses of the PIC625 under conditions shown in Figure 6 are: 25°C - 0.875W -55°C - 0.525W 125°C - 1.476W 13 ....co .,'" ::l ~ L ~Cl Eo =5V 80 10 70 ~ IS1 = 30mA - Independent of Load and Temperature I 9 >- I 60 _55°C DC Losses o~ ~U 90 V -/ 0 ., . 100 I .E o = 25V ~ 11 .90 I Iff' I E IClency: 12 ~->c:c .20 Buck Type Switching Regulator The schematic of the low cost, free running buck switching regulator is shown in Figure 7. When the output voltage is lower than the reference voltage, transistor 02 is off and transistor 01 is on and provides the base drive to the power hybrid circL'it PIC600. The current in inductor L 1 increases linearly and continues to charge the output capacitor Co. When the output voltage exceeds the zener voltage of diode D1 (plus some fixed . fraction of VBE of transistor 02) transistor 02 turns on and removes base drive current from transistor 01 and hybrid circuit PIC600. Resistor R6 and capacitor C1 are used to provide fast switching times. The output voltage is trimmed with resistor R3. 8 25°C DC Losses 7 125°C DC Losses "c: Qj 'u 50 ::: UJ 0- a.. 40 Conditions: - Ein = 25V 10 = 7A f = 25KHz 6 5 o 0.2 0.4 0.6 0.8 30 20 1.0 ton = Eo T Ein Figure 6. Losses and Efficiency - PIC625 UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON. MA 02173. TEL. (617) 861-6540 TWX (710) 326-6509. TELEX 95-1064 15-80 PRINTED IN USA APPLICATION NOTE U-82 680[2 1.5K 33K R2 = 180[2 R3 = 330[2 R4 = 220[2 01, 02 = 2N2222 "1= 80.3% Load Regulation = .2% Line Regulation (25 55V) = 2% Figure 7. Low Cost Buck Regulator The advantages of operating a buck regulator at higher frequencies are: Lower filter cost Reduced size and weight Improved transient response Output ripple voltage less dependent upon ESR of capacitor Simpler EMI and RFI filtering b. High Frequency Switching Regulator Low voltage hybrid circuits can be operated as high as 250 kHz due to their fast switching times. When these devices are used above 100 kHz, the storage time of the driver transistor must be reduced. This can be done by using a Baker clamp with resistor R 1 and diode D1 as shown in Figure 8. Ejn PIC600 r--- ---- = 25V o---.------.----~----~ r--_+~_+-----r~~--._~~o I I I I I IL __ Dl lN914 .002 F III 4.7K InvCH~~~--------------4-------------~ 4.7K UC3524 °1 4.7K 2N2222 2.2K 18K Figure 8. Operating a PWM Buck Regulator Above 100KHz UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON. MA 02173. TEL. (617) 861-6540 TWX (710) 326-6509. TELEX 95-1064 15-81 PRINTED IN USA U;.82 APPLICATION NOTE c) Extending Output Current Capability up to 20A regulators. In high current applications, careful consideration should be given to the drive circuit when the output device of the PIC740 is operated in the saturated mode. An increase of up to 5% in efficiency com: pared to the darlington can be realized at 15A output current. The output current capability of a buck regulator can be extended by (1) paralleling the output devices as shown in Figure 9 and (2) the use of a high current device as shown in Figure 10. PWM Push-Pull Converter The advantages of paralleling output devices are that it allows the device to operate with a relatively simple drive circuit and provides simplicity of heat sinking. On the other hand, proper current sharing during the ontime period and turn-off time is required. The circuit shown in Figure 9 provides the circuit technique to do just that. The only drawback is that it requires a dead-band period which must be greater than 0.1 L, where L is the inductance value of the common mode choke L 1. The circuit schematic shown in Figure 11 is a width modulated push-pull converter. It utilizes the Unitrode PIC636 power hybrid circuit. Flux symmetry5 in the transformer core is provided by introducing an air gap in only one leg of the EE core configuration. The voltage developed across resistor R1 and capacitor C1 is proportional to the flux density in the center leg of the E E core. This developed voltage is fed back into the control circuit at the output of the error amplifier. The output pulsewidth is corrected by the developed vo Itage across C 1 and R1, provid i ng flux symmetry in the power transformer. Another method is to use high current devices like the PIC740,. a power output hybrid circuit. It consists of a 25A power output transistor and Schottkv rectifier. The device is housed in a 3 pin TO-3 package with copper-core pins. The heat generation is kept to a minimum by using the Schottky rectifier and copper-core pins which allow the use of the TO-3 package for 25A buck type regulators. The limitation of these devices is that the maximum input voltage is only 40V. These devices can be used in high efficiency, high current buck switching Bidirectional Motor Drive Circuit These power hybrid circuits can be employed to drive inductive loads, such as DC motors, stepper motors, and hammer drivers. Small inductors L 1 and L2 limit cross-conduction current during switching times of the two hybrid circuits. The excellent switching properties of the hybrid circuit allow the circuit to be operated with high efficiency up to 100 kHz, improving transient response of the circuit. PIC625 r--------- ..I 768TI88/3E2A Nl =N2=1 Turn I I Ll Nl. Rl •-- I L- _ _ _ _ _ _ _ _ .JI • N2 R2 PIC625 ,---------, ...... '--- IDrive Figure 9. Current Sharing with a Common Mode Choke UNITRODE CORPORATION' 5 FORBES ROAD LEXINGTON, MA 02173' TEL (617) 861-6540 TWX (710) 326-6509' TELEX 95-1064 15·82 PRINTED IN USA APPLICATION NOTE U-82 r------- - PIC740 r-----' I I , I , I I IL _______ J 82!"! , I I I I I I I _________ _ I L Figure 10. Simplified Schematic of 20A Buck Type High Efficiency Switching Regulator -E", Figure 12. Bidirectional Motor Drive Circuit 100,uF Ferroxcube 4.7K 4.7K 8200 782E272 8200 Nl "" lOT N2=8T 'NV UES2401 Eo = 5V t.", \ \ \ III \ 200 pF 1---+-0 Cr E80-+---.., t---'lNv--1-0 Rr 2.2K >---If---1 N "'3CT C3'= .OO5,u.F Cs = .1p:F Ca = .OO5j.1F Figure 11. PWM Push·Pull Converter UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173. TEL. (617) 861-6540 TWX (710) 326-6509. TELEX 95-1064 15·83 PRINTED IN USA U-82 APPLICATION NOTE VI. CONCLUSION A wide variety of power hybrid circuits in standard packages for switched-mode converter applications have been developed by Unitrode. Power components were carefully selected for optimum electrical performance. I n many instances these hybrid circuits not only provide superior electrical performance but also reduce the overall cost of the power supply by reducing production labor and repair cost. UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95·1064 15-84 PRINTED IN U.S.A. U-83 APPLICATION NOTE INCORPORATE ACTIVE INRUSH CURRENT LIMITING TO IMPROVE RELIABILITY AND EFFICIENCY OF POWER SUPPLIES Active inrush-current limiters-unlike fuses and circuit breakersprevent dangerous situations instead of only reacting to them. Apply limiting techniques, and you need not employ extra-hefty rectifiers just to ensure rectifier survival during turn on. 40 nH The input filter capacitor employed in many power-supply designs creates a potential problemhigh inrush current. Fortunately, though, adding a few extra components can prevent inrush current and its associated circuit damage. How does the input capacitor cause such problems? I ntentionally chosen for high storage capacity and low equivalent series resistance (ESR), it behaves like a nearly perfect short circuit when the supply first turns on. The resulting short-duration peak inrush current can reach levels much greater than the tolerable single-cycle ratings of the supply's semiconductor rectifiers (thus destroying them) and still not contain sufficient total energy to open protective fuses or circuit breakers. Additionally, the supply's rapidly rising voltage and current levels could cause dv/dt- or di/dt-sensitive devices in neighboring hardware to fail or malfunction . ..,. M Output to Regulator I 0.1 Total t I I I I 200 ..,. c C Bl 82 83 B4 B5 B6 87 88 89 El ** * -: * * ,. * >I< 100 .c :; ..,. ~ I ECAP TRANSIENT ANALYSIS N u I -;- ..,. '"5 I Figure 1. Based upon this generalized model, analysis indicates the inrush-current problem's magnftude. Chosen for its low ESR, the input filter capacitor rC,) behaves like a nearly perfect short circuft when the supply first turns on. 300 S ; I ~ AC Line _ I - + - Power·Supply _ I I I Input Circuit I 0 * 0 -: * * * * * NIO,l), R =.1 N(1,2), L = 150E - 6 N(2,31, R =.1 N(3,0), C = 7000E -12 NI3Al, R = .001 N14,51, L = 40E - 9 NI5,6), R =.1 N(6,7), L = 10E - 6 NI7,0), C = 1000E - 6 (1),0,0,0, 160 TIME STEP = 100E - 6 FINISH TIME = 3E - 3 lERROR = 1 PRINT NV, CA PLOT, ISCALED), CAI6) BINARY, NV, CA co 0 -100 I I co « MI U , UJ a ~ 00 I I I 000 000 "'..,.." cicio I I I I I I I I I I I I I I 00000000000000 00000000000000 ...... OOO)O .... NM<;;;tLOC'O ...... QOO'lO OOO....:~....:.....:...:......:.....:.....:...:.....:N I I I I I I NMo::tLO 00 00 0)0 gggg NNNN ::: 0 UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173. TEL. (617) 861-6540 TWX (710) 326-6509. TELEX 95-1064 NM I 3 Time (msec) 15-85 Figure 2. Peaks greater than 200A are predicted by ECAP for the circuit model shown in Figure " PRINTED IN U S.A II APPLICATION NOTE U-83 Turn on an analysis before you turn on. a power supply Computer analysis proves useful To appreciate the inrush-current problem, consider an estimate of its magnitude before examining possible control techniques. Figure 1 depicts a model of the ac-input and rectifier/filter sections for a typical power supply. Although shown in a straight off-the-power-mains configuration, the model should be valid for any other design with the same output-power capability. An ECAP computer analysis performed for this circuit assumed worst-case conditions: switch closure at 160V (peak voltage). The results (Figure 3) of a typical design. The current pulse's high level and short duration could generate severe, localized hot spots in rectifier junctions or cause false triggering of rate-sensitive devices elsewhere in the circuit. A standard approach to current limiting is depicted in Figure 4a-a resistor. It's simple, reliable and easy to design in, but efficient it isn't. At any current level, it dissipates power that would otherwise be available to the load. The resistor does perform a surge-current-limiting function, however. (a) 50V >50V_ DC Out put Vol tage 50V(OIV Line 150 I L .. ~ II'". Volt age 2mS " t 1'\ OiV Inr ush Cur rent BOA(OIV ~ ./ V V ----- - \ '>50V 200mV Figure 3. Measured inrush current appears close to that predicted in Figure 2_ This large current inrush could cause junction hot spots and generate troublesome EM/, Alternatively, a thermistor-controlled current limiter (Figure 4b) alleviates the resistor's efficiency problems to some extent, but it aggravates the dropout-recovery problem. The same cold-tohot resistance variation that permits turn-on current limiting and high efficiency at low operating currents fails in dropout-recovery situations: The thermistor's long thermal time constant prohibits fast recovery. -,---0+ 117V AC line DC Output AC Line Vo (b) + DC Output AC Line NOTES Figure 4. Two common methods of inrush limiting employ either a resistor (a) or a thermistor (b). But if the resistor is /arge enough to effectively control surge currents, it also significantly reduces efficiency. The thermistor, while more efficient, offers little protection during dropout recovery because of its long thermal time constant. UNITROOE CORPORATION. 5 FORBES ROAl.> LEXINGTON, MA 02173. TEL (617) 861-6540 TWX (710) 326-6509. TELEX 95-1064 R1: 3,5W R2: 0.2, lOW R3: 3k, 5W R4: lk R5: lk, 2W RE!: 2k C1: 1000llF C2: 10llF 01 : L2R06254 02: UPT312 C3: 21lF 01: UZ4715 02: lN4245 03: UT680-4 Figure 5. SCR soft starting bypasses the current-limiting resistor (R,) only when the peak-detected voltage across 0, drops below the zener breakdown, i.e., becomes almost fully charged through when C, 15-86 R,. PRINTED IN U.S.A APPLICATION NOTE U-83 SCR spells efficiency In view of resistor and thermistor drawbacks, active soft-start designs offer a best-of-both-worlds solution-effective inrush limiting, fast recovery and high operating efficiency. This type of circuit, shown in Figure 5, essentially incorporates a current-limiting resistor (R,) and a bypass switch (Q,). At turn on, Q, is OF F, and the surge current (IS) develops a voltage across R,. This voltage . is peak detected by D2 and stored in C2. When the voltage exceeds D, 's zener breakdown-an event that should occur almost instantaneously-Q2 turns on, disabling Q, 's gate-triggering network (R3C3l. As the power supply's filter capacitor C, charges up, the inrush peaks diminish until the detected ISR1 voltage falls below Dfs zener breakdown. Q2 then turns off, and the R3C3 network charges up and fires Q1, bypassing R,. This circuit recovers rapidly enough to limit inrush currents that could occur as a result of even short line dropouts. When the ac input voltage goes to zero, the voltage across Q1 also goes to zero, and Q, turns off. When the input voltage reappears, Q2 keeps Qfs gate circuit OFF until R1 has allowed C1 to become almost fully charged. Figure 6 graphically depicts this design's inrushlimiting ability. Note how the ISR, voltage level (upper trace) tracks the diminishing inrush-current pulses (lower trace) for the first three cycles. At the 17-msec point (slightly after the thi rd current pulse), the peak detected voltage has dropped below the zener breakdown point, and Q1 switches on, bypassing R,. Then R2 limits inrush currents. 5mS, 50V VC2 .... ... .... .... ... .... .. .... ... , 50V IDiv "'~ .... Inru sh Cur rent 'l \ 20A OIV .... -\: ~.\ II " ~.. 5V ·t , ··l· ... .1\ ... ~ 50TV 5 msec/Div Figure 6. Inrush-current pulses of decreasing magnitude (bottom trace) lower the SCR's hold-off voltage (upper trace). After 17 msec, the SCR fires. After determining your design's maximum continuous dc output current (/0) and inrush limit (IS), you can select an appropriate SCR. (The major SCR considerations are the peak repetitive blocking voltages and the maximum average plus peak current levels.) Typical SCRs exhibit a gate-turnon voltage (VGT) of about O.6V; typical powersupply circuits exhibit a di/dt of about 1A/J1sectwo quantities required for calculating the values of the other critical components: R, =y2V AC/IS R2 = PR2/102 Vz = ISR2 C3;;;'(2y2 VACVZ)/(R3VGTR,(di/dt)). 0, TRIAC rHiil+J-. 117V AC line III + R5 10k C, l000!,F NOTES 0,: UZ471S 02: UT680-4 03: lN3612 0, : L7S08104 02: UPTA510 03: U2TA506 <4: 2N6027 T,: SPRAGUE l1Z2Ooo RS 3.9k lk lN914 Figure 7. Phase controlling a triac limits inrush-current pulses' amplitude and duration. CycJe-by-cycle triggering handled by the PUT comparator - ensures instant recovery from line dropouts. UNITROOE CORPORATION' 5 FORBES ROAO LEXINGTON, MA 02173' TEL. (617) 861-6540 TWX (710) 326-6509. TELEX 95-1064 15-87 PRINTED IN U.S.A U-83 APPLICATION NOTE Switch out the limiting resistor when the inrush is over In the second equation, specify PR2 as the maximum power your requirements allow across R2. Another effective Inrush-current limiter is the phase-controlled triac design shown in Figure 7, which operates by controlling the conduction time of the current surges. Initially, the dc voltage (Vo) across C1 builds up slowly because of R1's currentlimiting action. This dc voltage helps establish a reference (via R 11 and zener diode D 1) for the programmable unijunction transistor (PUT) 04 and charges the phase-control timing capacitor C2 (via R3). The PUT fires when its trigger point is reached, turning the triac on. Thus, when Vo is initially low, C2 charges slowly, and the triac triggers on late in the half cycle. As Vo rises 01 turns on earlier in each cycle until nearly 100% conduction is achieved. r5~V 500mV t ~ L ine Voltage I - I Ir-' ~}' E~ rL I 50 YOiV ~ If Ii " 50V uivalent Inr ush Cu rrent ~wA/Oiv II -, It ~ IJt. ~ ~ ""1. 06 Ou tput Vo Itage 50 V/Oiv \'. 10 mSEC/OIV Figure 8. Triac conduction follows the gradually increasing dc output voltage, decreasing the would·be inrush current. When the output voltage reaches design level, the triac is bypassing the current limiter nearly 100% of the time. The remaining circuit components (D3, 02, 03, etc) discharge timing capacitor C2 on each half cycle, thereby assuring cycle-by-cycle current limiting and fast recovery from dropouts. Figure 8 depicts the relationship between the ac input voltage, the dc output voltage and the varying conduction arrgte of the triac. UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173. TEL. (617) 861-6540 TWX (710) 326-6509. TELEX 95-1064 15·88 PAINTED IN U.S.A. APPLICATION NOTE U-84 HYBRID CIRCUITS FOR OFF-LINE SWITCHING POWER SUPPLIES 1. Introduction switching speeds. This optimization and the specially interdigitated structure result in lower rbb' and uniform current injection. The PICBOO's rectifier diode, a gold-doped epitaxial device, was chosen for a typical reverse recovery time of 20nSec. This is less than one-third of the transistor's current rise time, to minimize transistor switching dissipation and the generation of spikes and RFI. These power hybrid circuits have the capability of switching up to BA at 400V and are designed for such applications as high voltage buck type regulators, bridge circuits, forward converters, deflection circuits and DC motor drives. Hybrid circuits offer many advantages over the conventional discrete approach for switching power supplies, which has resulted in a rapid increase in their use. These advantages include ease in heat sinking multiple power components, while maintaining DC and high frequency isolation, reduced stray parasitics and lower overall cost. This application note discusses one of the hybrid circuits built by Unitrode, its components and construction. and two applications in detail, a Forward Converter and a Half-Bridge Converter. 2. "Off Line" Hybrid Circuits 2.1 Advantages The Unitrode PICBOO series are "Off Line" hybrid circuits consisting of a high voltage power transistor and a fast recovery diode mounted in a 4 pin electrically isolated TO-66 package. The following advantages can be derived by using these power hybrid circuits: a) Reduced EMI because of 1. Lower capacitance (10pF instead of 1OOpF) between the case and active components compared to the conventional TO-66 package, and 2. faster recovery time of the rectifier (less than 40nSec). 3. the close proximity of the diode and transistor chip; this also results in reduced ringing. b) Heat sinking is simple because the package is isolated; devices can be mounted on the same heat sink without any precautions regarding isolation up to BOOV. c) Components are matched for better performance. Peak Output Type PICBOO PICB01 BA PICB10 PIC811 8A Fall Time On-State Input, Output Voltage Current Voltage In I (V) In I Voltage Polarity (n8) (n8) Package 350 400 Pos 350 400 Neg 200 200 15 5 (/I 4 PIN TO-66 Iisolated) 200 200 15 5 fa 4 PIN TO-66 Isolatptll FIG. 1a - PIC800 Series Hybrid Circuits TYPICAL INDUCTIVE SWITCHING TIMES ts tfv tfl Current Temp 1'8 nS nS 25°C .9 80 100 100°C 1.0 190 140 CONDITIONS Ie ~ 182 5 ~ 181 vcc=125V V(clamp) 350V FIG. 1b - Unitrode Transistor Switching Times 2.3 Construction The PICBOO series hybrid circuit is shown in Figure 2. It combines a transistor and a commutating diode in a 4 pin electrically isolated TO-66 package. Berillium oxide (BEO) is used for the substrate because of its excellent thermal conductivity, 70% as good as copper. The interconnection paths and pad areas for the wire bonds are screen printed on the BED substrate and fired in high temperature furnaces. The semiconductor devices used in the circuit are gold eutectic mounted, and aluminum ultrasonic wire bonding is used for interconnections. 2.2 Components In a high voltage "off line" hybrid circuit a large portion of the power dissipation in the transistor is due to switching losses. The PICBOO series hybrid circuits utilize a Unitrode high voltage transistor which has been computer optimized for fast UNITRODE CORPORATION. 5 fORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 Current 15-89 PRINTED IN U.S.A. APPLICATION NOTE U-84 storage time, and an RC snubber limits the turn-off power dissipation. The BEO substrate is soldered to the nickel plated steel header with a copper slug between them. The copper slug relieves mechanical stress between the BEO substrate and the header, and provides heat spreading for lower thermal resistance. 4 Plcaoo Plcao1 Section 4 of this application note discusses the design for an off-line half-bridge converter. Other Unitrode application notes discuss the design of buck, boost, flyback and H-bridge type switching power supplies. (Application Notes U68A, U80, U76 and Design Note DN-8). 3 TT 3.1 Description of Functional Circuits (see Fig. 3.3) Current limiting is performed by measuring the collector current of the power transistor 01 and cutting off the base drive of 01 instantaneously. Resistor R6 measures the emitter current in 01; when the voltage developed across R6 becomes greater than VeE of 04 (0.7V), 04 turns on and diverts 01 's base current. ,DRIVE 4 Plca10 Plca11 3 ~TT Soft start capacitor C11 is at zero volts when the power supply is turned on, and CR26 keeps pin 9 at 0.7V more positive than the voltage on C11, which is being charged slowly by R13. DRIVE OFF-LINE SWITCHING REGULATOR OUTPUT CIRCUIT PIC80()'811 The maximum pulse width is set by potentiometer R12 and CR24. Storage time of the power transistor 01 is reduced by using proportional base current drive and by providing large base turn-off current, using transformer T3 and the associated combination of diodes. Figure 2. PIC800 hybrid circuit 3. Off-Line Forward Converter Application This section discusses the design for an off-line Forward PWM Converter, 50 watts total to multiple outputs. The deSign employs such features as soft start, current limiting and protection from output short circuits. The Forward Converter design uses one PIC811 hybrid circuit. The power output transformer uses a demagnetizing winding to prevent core saturation, as does the base drive transformer. The PWM control circuit uses a UC3524 regulator chip. Proportional base drive reduces the power transistor 3.2 Specs: Input - 95 to 135V, 60Hz Outputs - 5V @ 3A, ±15V @ 1A Regulation - Line: 0.2% for specified AC input. - Load (20% to 100%): 5V output, 0.3%; ±15V output, 3%. Ripple & Noise - 50mV peak to peak for ±15V outputs, 1OOmV for 5V output. Frequency - 30KHz Efficiency - 78% Features: Short circuit protected Soft Start UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON. MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 15-90 PRINTED IN U.S.A. ... rc ):10 :E"'z x~=i F1 'S~~ VFB L1 Sti c ""CI ""CI +5V "'z'" ~. 0 ~3:0 ----1 ~,,~ "'°0 .~::o ):10 I R1 I I ....... " ","'''' '-·0 ~~z ",r'fI:"'V! ~"''' g~o -t 0 2 2 0 -t T1 + C1 I I I "'-AI oom C n ~rn CR13 ~i ~ CR15 = • +15V m '" "'AI ~~ 0 .... U1 c.O .... T4 r-cFiS:s---: X CR7 , 0 -15V VFB T I RS R9 R17 12 11 .Q13 R 15 C12 3.3 Schematic of Forward Converter c Co -!:=o iii APPLICATION NOTE U·84 3.4 Waveforms 200mNDiv IC - Driver Transistor 03 IS - Power Transistor 01 _ _ _ L -_ _ _ _--Io o 200mNDiv IC-01 o 200mNDiv o 130V/Div VCE-01 o 100mNDiv Current in Reset Winding of T1 Voltage Across 5V Secondary Winding O_~_---L~-~---- 20V/Div o 2NDiv Current in 5V Secondary Winding o 5pSec/div UNITROOE CORPORATION. 5 FORBES ROAO LEXINGTON. MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 15-92 PRINTED IN U.S.A. APPLICATION NOTE U-84 3.S Power Transformer Design for Forward Converter From (1) and (3) use 120 turns. Use an EC-41-3C8 EE core (Ferroxcube). N (min) = Ein(high) X 108 = p 2f 8 max Ae 2 140J2 x 25K X 108 x 3.3K x = 101 Turns (min) 1.21 (1 ) Current density in primary; design for 3000A/sq. in. (max) (4) 0.84/3000A/sq. in. = .00028 sq. in. (min) AWG*24 = .00032 sq. in. Aw = 2.5(Ap x Np) x 2 = 2.S(.00032 x 120) x 2 = 0.17 sq. in. needed. EC-41 has Aw = 0.21 sq. in. available on bobbin. For the SV winding: PoNtn = 50W/165V = 084A . = 'pro D.F. x Eff. 0.45 x 0.8 . For 15% current ramp in primary, I", = 0.15 x 0.84A = 0.14A Np(max) = Ein(low) - VCE(SAT) = 90J2 - 1 N. 2(Eo + VF + VRS) 2(S + 0.7 + 0.1) = 10.9 (max); use 9:1 Turns Ratio. Lm = Ein(high)/(di/dt) = 135VJ2/(0.14/15p.S) . A1 S + . + .1 N. X = 84 turns (min) 3.6 _ Np 90J2 - 1 _. . . -(max) - 2(1 07 0) - 4.3.1 (max), use 4.1 9)°5 _ (20 106)°5 2800 _ (Lm x 10 Np(mm) - For the 1SV Winding: (2) =20mH (3) Parts List - SOW Forward Converter IC1 - UC3524 01 02-3 04 - PIC811 - 2N2222 - UPT212 CR1-4 CR5-8 CR9 CR10 CR11 CR12 CR13-14 CR1S-16 CR17 CR18 CR19 CR20 CR21-23 CR24-26 - TI-4 LI-3 - See Magnetics Sheet - See Magnetics Sheet F1 - 2A AGC 697-4 673-1 UES1101 UES1101 UZ707 UES2401 UES1304 UES1304 UES1306 UES1101 UES1304 UES1101 UES1101 1 N914 UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 86J.6540 TWX (710) 326·6509 • TELEX 95-1064 15·93 C1 C2 C3 C4 CS C7 C8 C9 C10 C11 C12 - 600p.F, 250VDC 5000p.F, 10VDC 1000p.F, 25VDC 1000p.F, 2SVDC .001p.F, 1KV disc ceramic 47p.F, 3SV SOOp.F, SOVDC 0.1p.F, SOV .00Sp.F, SOV disc 100p.F, SOVDC .01p.F, SOVDC disc R1 R2 R3 R4 RS R6 R7 R8 R9 R10 R11 R12 R13 R14 R1S R16 R17 - 27K, 2W 2:2K, 2W 27 27 47 O.S 33 20K pot 4.7K 4.7K 4.7K 1K pot 100K 3.9K 22K 100 330 PRINTED IN U.S.A. APPLICATION NOTE U-84 3.7 Magnetic Components T1 - Power Transformer Core: EC-41-3C8 Core & Bobbin, Ferroxcube 120T *30 AWG 120T *24AWG (PRI) 13T 30T *20AWG *20AWG Proportional base drive and a special base drive circuit are used to reduce transistor storage time. 4.1 Circuit Description (see Fig. 4.3 The half-bridge type circuit was chosen for the 100 watt converter design, along with the PIC810 hybrid and fairly simple circuits. The half bridge circuit keeps the transistors' collector voltage, including inductive spikes, from exceeding the DC bus voltage, and the series capacitor C6 prevents core saturation. The base drive circuit is designed to minimize transistor storage time by essentially shorting the primary of the driver transformer T1 during transistor dead-time, providing a low impedance path for 162 of the transistors. This is accomplished by turning on both 021 and 022 during the deadband period. In addition proportional base drive is used. 30T *20AWG (RESET CORE) (5V SEC) (15V SEC) (-15VSEC) T2 - Base Drive Transformer Core: 376 B/U 250-3C8 (UI Core), Ferroxcube 60T *27 AWG 60T *30AWG *24AWG (PRI) (RESET CORE) (SEC) 15T T3 - Current Transformer Core: 846T250-3C8, Ferroxcube 6T *18AWG 6T *18 AWG 24T *24 AWG (PRI) (SEC) (SEC) T4 - Isolation Transformer Stancor PPC-2, 115V/15V, 0.1A Soft start capacitor C26 is at zero volts when the power supply is turned on, and CR24 keeps pin 9 at 0.7V more positive than the voltage on C26,which is being charged slowly by R27. The maximum pulse width is set by potentiometer R26 and CR23. L 1 - 5V Output Inductor Core: 1F31-3C8, Ferroxcube 40T *18 AWG 6 mil air gap in each of the 2 legs. L1 = 600l'H L2 & L3, 15V Output Inductor Core: 1F31-3C8, Ferroxcube L3 74T *18 AWG 4. 4.2 Specs for Half-Bridge Converter Input - 95V to 135V, 60Hz Outputs - 5V @ 15A, ±15V @ 1A Regulation - Line: 0.3% for specified AC input Load (20% to 100%): 5V output, 0.5%; ±15V, 2%. Ripple and Noise - 5V output, 80mV peak to peak. - ±15V output, 20mV peak to peak. Frequency - 30KHz Efficiency - 80% = L2 = 1.3mH 6 mil air gap in each of the legs .. Off-Line Half-Bridge Converter Application This portion of the application note discusses the design for an off-line half-bridge PWM converter supplying 100 watts to multiple outputs. Features include soft start and current limiting, and the PWM control circuit uses the i UC3524 chip. UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95-1064 15-94 PRINTED IN U.S.A. -:Ire > "'0 =<"'z xX --< -z", ~G)o 0-<" "'0 F1 ~o'" kLzo ~~~ I"I'Iw~ r· ~;... U1 .... 0 "'-" .... 0 ~.:::!::a colD \"(J) "'''' \l:~ 0» " _ 5VAC 11 _ .oil .:r. CR1&2 i---=' ~I!I+ I~ • R6 C11 ~ C5 _-...,.11 C3 + I... ~""::;II ~[ .~ ~ :'+ ~ C1 -::::: - R1 C2;;~ R2 - T2 'I 02 C6 -1 r-p - ~CR6~R5' 1I: .....~FIiIi-~ • r-...- I --- R5 =~ C7 - ..... U'I .0 U'I :i -rc::::r ~ R30 ~ I~Y~Yl T3 ~~ ~r ~ ~ LJli '-l ~r ! ~ ",,:~ ~CRV '" ,. I I L1 ,-- ,.---, : I C21 _J - C27 : R34 = .. R22 CR2alkR27lr~~ ,~ R26 CR24 ~I C25 '4+ C26-{ L 2 9 ~~ ~ 14 5 Ii) 6 ::> 1-'" + 'f'C8 ~ •. ~'1; ~ f1wl -r-+fiLJ ,0" f ~O CR8 '- • r-.2~---- __ -J +15V t"14! .':l -15V : I To pin 5 I if used ... 7 7: 1 5V C9 - -: CR26 G -~ JI I- + II I , ::" , 12 CR29-32 m I 1";~~2 I R31 ,.. '---- ____________~__~______~i~-:-=-~.:---~-~-~·-J' R23 CR9 ,--, • ~---~-------t---------------~---~~~~4~~+i---1 ~ o z z o-t I I~C!i4JCR3 __ J "'- i "0 -10 > -20 -30 \ Junction temperature 800 400 Since both IL and VF are temperature sensitive parameters, we can express IL and VFas functions of temperature in the above equation for thermal stability and obtain: 1200 time (ns) Figure 11 b - Voltage Across Rectifier With Snubber Network 100 - O.lpF 4.4 Thermal Stability Considerations The reverse leakage current of a Schottky rectifier is much higher than PN junction devices because of the Schottky's lower barrier height. The magnitude of this leakage current doubles approximately every ten degrees Centigrade. Since it is temperature sensitive, the thermal stability of the system should be checked over to avoid thermal runaway. In a PWM switched-mode converter (i.e. push-pull, halfbridge, etc.) the rectifier can be operated at 50% duty cycle in the reverse blocking state while the remaining 50% of the time it will operate in the forward conduction mode under worst case conditions. However, forward drop is also a temperature sensitive parameter and this should also be considered when thermal stability calculations are made. The criteria for thermal stability is defined as: "the rate of change in power pumped into a device with respect to temperature (dPm/dt) should be less than the rate of change in power removed (in the applicable thermal environment) in the form of heat from the device with respect to temperature (dPout/dt)". [I (T-ton ) (TJ-TAII -·V· I ·0 2 T R . Y I + < TJ-T A (412) - . Leakage current at room temperature Where: 10 VFo RaJA = Forward voltage drop at room temperature x Temperature coefficient for forward voltage at operating current y Temperature difference for which leakage current doubles. Differentiating the above equation: . -.1. Y ton 1 ·-·x<-T RaJ -A In 2 + IF [4.13) (TJ - TAl In a switched-mode converter, the power dissipated in the device and the power removed can be expressed by: Defining 10 • 2 Y as the critical current, IR(cn'l at maximum temperature, and solving for IR(culi we obtain: (4.11 ) [4.14) Design Example In the practical example previously discussed, the maximum reverse voltage across the rectifiers is 30V. Each rectifier is mounted on a heat sink. The Applied reverse voltage Leakage current at temperature Rectifier on-time UN ITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95-1064 15-109 PRINTED IN U.S.A. APPLICATION NOTE U·85 thermal resistance of the heat sink is 1°C/W. The Schottky rectifier, SD241, has a maximum thermal resistance of 1.40 C/W from case to junction. Its reverse leakage current doubles every ten degrees Centigrade, while the forward voltage at IF=20A decreased by 1mV/o C as the junction temperature increases. The designer desires to limit the maximum operating junction temperature of the Schottky rectifier to 125 0 C under worst case conditions Calculate the maximum reverse leakage current allowed for these rectifiers at 1250 C to prevent thermal instability Calculation: RaJA (ReH + RaJ-cl 0 C/W In switched-mode converter applications, current sharing can be accomplished by using separate windings for each rectifier and by matching forward drops. The series resistance of each winding acts as a current ballasting impedance. 10 C/W + 1.40 C/W 2.40 C/W ton T 16.611S toft 16.611S = ton + toft 33.2IJs 5. Guidelines for Selecting the SChottky Rectifier in Pulse Width Mode (PWM) Switched-Mode Converter Applications Using equation 4.14: IRlcrot) :5 10" C x [ 3) Smaller chip size will have less chance of voids in the chip bond to the package, thus, the reliability of the system is improved. The disadvantage of paralleling rectifiers is that some kind of circuit technique is required to share the current among the paralleled devices. Ifthe current is not shared equally, the junction temperature of the device which conducts the higher current will increase. The forward voltage of the device will decrease due to its increased temperature and will conduct an even larger share of the load current. If adequate matching is not provided, this regenerative process continues; and if not checked in time, the junction temperature will exceed the maximum rating and the device will be damaged. (33.2 x 10-6 )/(2.4°C/W) - (20A) (16.6 x 10-6) (-1 x 1O-3 V)] .693(33.2 x 10-6 sec - 16.6 x 10-6) (30V) :5 410mA From the SD241 specification, the maximum reverse leakage current at 1250 C is 1OOmA; therefore this system will be thermally stable. The minimum required dc blocking voltage of the Schottky rectifier and its maximum power dissipation can be calculated for different types of switchedmode power supplies summarized in Tables II and III. After calculating the maximum power dissipation, the designer can determine the required thermal resistance of the rectifier and the heat sink using the equation: RaH + Where: 4.5 Paralleling Rectifiers When the output current required is greater than the maximum rated forward current of commercial rectifiers, it becomes necessary to parallel the devices. In some instances, it may be preferable to parallel devices even when a single device of hi9.her current ratings is available. The advantages of paralleling these devices are: 1) Heat is easier to remove when com pared to a single device with a higher current rating because the heat is spread between two or more devices. 2) The transformer is easier to wind since the wire size is smaller, using a separate winding for each rectifier. UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 15-110 R eJC - Tjmax - TAmax Pmax [5.1] ReJc Thermal resistance of rectifier RaH Thermal resistance of heat sink TJmax Maximum operating junction temperature of device TAmax = Maximum ambient temperature When calculations are made for maximum power dissipation in a rectifier, the voltage drop VF and leakage current IR should be taken at the maximum operating junction temperature. During start up and for step changes in the output load current, the voltage across the rectifier should be limited to below its maximum dc blocking voltage to avoid failures due to transient voltage across the Schottky. PRINTED IN U.S.A. -Ire > "V TABLE 1 - GUIDELINES FOR DETERMINING THE RATING OF A RECTIFIER IN A PWM SWITCHED-MODE CONVERTER ~~2 X-=i -::::;Z:;o ,..."V ~~g -0", ~!!n '7'3: 0 TYPES OF SWITCHING REGULATORS gjl>!g OUTPUT VOLTAGE ~2° STEADY STATE - POWER DISSIPATION IN RECTIFIERS MINIMUM DC BLOCKING VOLTAGE REQUIRED BUCK REGULATOR r·o =p~ '1'- . -" ~"'''' 5::;;0 ",III "'m ';"en l21!l 0,. c ~'" ~I ~r~o,----.L ~ teo :~;:1Ti: - 2 2 Power dissipation In Diode 0, due to forward conduction: "'-12 Eo=E;nX~ Eo"EinX~ For Diode Ein max Power dissipation due to leakage current, IR' P01R ~ 'R x Eo· --.j \-toff.j o Emmax - Eo POl F :: lOmax x VF ~ o .~" -I .... ,. rrt W ::::!. n °1, -t m 1.2 x Ein max 'R@Ein max Ton PUSH-PULL CONVERTER (50'10 Duly Cycle) E~ ..... 'of ..... ..... ..... } N, Power dISsipation in Rectifier 0, or 02 due to forward conduction: lOmax D1 N2 '..cI;---, e>-- I I ~ I oo_~ru --;;'-;-1 n o_::'...L.J L I Eo = Eo + VF Eo = Ein For 0, or 02: POl F or P02F :: IOmax2 x VF N2 x'N'1 Power dissipation due to leakage current, 'R: 2.4 (Ein max ) x N2 N1 E,n P01A or P02R = 2.0 x Ein max x N2 N'1 x 'A 02 Power dissipation due to forward conduction in Rectifier 0 1: PWM FORWARD CONVERTER ~EIn 1 N2 'f :~ t· ·~ ~,. 0, N, ", 'om~x '0' ~ 0--- I °max '~2~- E~ N, =Eo+VF+lomaxxR P01F '" lOmax x VF N3 Eo :: Einmin N, + N2 N1 + N2 ForD,: Power dissipation in Rectifier 02: 1.2 Where' P 02F ,;:::. I 0max x V ~ - ~. N1 +N2 F ~ I Power dissipation due to reverse leakage current: N3 x N2 For 02: 1.2 Ein max x N3 dary Wmding When 01 IS conducting Ein max E lnmax ] E. . mmln Eo = de Output Voltage Eo '" Output of Secon- x P01R = Einmin N3 • IR • N1 + N2 N3 P02R = IR x N, ... N2 x Einmin ·N·1~ c: Co U1 iii .... re: ~"'Z X -x.... > ." "V" ..... TABLE II -Z;o ~Ci)o S(jg ~20 ~~O m>-!g g~o TYPES OF SWITCHING REGULATORS STEADY STATE - POWER DISSIPATION IN RECTIFIERS OUTPUT VOLTAGE ~!:::~ ITI""::! roo ", .... Z x", ro .. " MINIMUM DC BLOCKING VOLTAGE REQUIRED o-4 V::-UI ~ O~O IT1 ~.::::!A:f "'Ol ", ';"'en ~;o l>g c ~ o :2 :2 PWM PUSH-PULL CONVERTER . c=; T- Power diSSipation I ~~IC~_~"~ '0, L Ri Jomal' E~ '" In Rectifier 0lar D 2 due to forward conduction POl For P02F '" lOmax x (V; @ lOmax) x :rnm-.!O Eo .. VF + lOmax x A £ lOmax N, Eo" Emmrn x""N1 .lomax (VF @ JO~ax ) '--2--' For 01 or 24 (Eo Emmal( - Emmm < +- ° 2- VF .. R Emmax x lOmax) x Emmrn For Push-Pull and full Bridge Power diSSipation due to leakage current I Om" ...... <.11 ,:. ...... I\) ~,LTL~- PO IR or P02R " IA(E lnmm ) (N 1!N 2 1 ~ df~ NOTE IA@2(E o + VF +- 10 max x All x :mmax rn mln PWM FULL BRIDGE CONVERTER PWM HALF-BRIDGE CONVERTER I Eo :- Eo <.. , ".'. [ ' ~ '~ 00:~1LT~~ +- VF x Jomax x A tnfln x~ N, R SAME AS ABOVE SAME AS ABOVE Eo = E For Half~Bridg8 -:,LTt o c:: Co U1 U-85 APPLICATION NOTE 6 Conclusion Complete design guidelines for Schottky rectifiers used in switched-mode converters have been provided. The Schottky, when compared to a fast PN junction rectifier, offers the advantages of lower forward voltage and a faster reverse recovery time which is independent of temperature. Efficiency is improved at least 3 to 5% when Schottky rectifiers are used in place of PN junction devices for power rectification in switched-mode converters. Schottky rectifiers are available with a maximum reverse blocking voltage up to only 50 to 60V. Thus, applications of Schottky devices are limited to low output voltages (+5V) in PWM switched-mode converters (except for buck type and 50% duty cycle converters). When the rectifier requires voltage blocking capability of greater than 60V, fast PN junction devices like UES800 series rectifier offers the optimum choice without sacrificing speed and forward voltage. UNITRODE CORPORATION· 5 FORBES ROAD l.EXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95-1064 15·113 PRINTED IN U.S.A. -ire :;;"'2 X X.... ):0 - ." -2", ." 0 .... 0 -0", n ~"O r- ~:ZO ~ ~~~ ~2~ o .~'" z z ;;t~~ r·O ~~~ !~~ :.:::!:::a .,'" ';" 40V 45V TYPE VF IFSM SA SA 12A1 12A TO-220 16A 2 16A TO-220 PLASTIC TO-220 PLASTIC TO-220 PLASTIC PLASTIC TO-220 PLASTIC TO-220 PLASTIC (2-LEAD) (2-LEAD) (3-LEAD) (2-LEAD) (3-LEAD) (2-LEAD) USD620 55@6A 150A USD720 USD620C 65@ 12A 150A USD820 45 (i'il 12A 200A USD720C 65@16A 200A USD920 55@SA 200A 25A 00-4 STUD m 30A 00-4 STUD USD735 55@BA 200A USD635C 65@12A 150A USD835 45 (IV 12A 200A USD735C TYPE VF IFSM US0640 55@6A 150A USD740 55@BA 200A USD640C 65@ l2A 150A USD84Q 45 (iI' 12A USD740C 65@16A 200A USD94Q lN6096 20QA 50 ((I' l6A 250A 86 (w 78A 400A TYPE USD645 USD745 USD645C USDB45 USD745C USD945 VF IF5M 55@6A 150A 55@BA 2DDA 65@ l2A 15DA 45 ((I' 12A 200A 65@16A 2DOA 50 (II l6A 250A 50 (a l6A 00-5 DO-5F STUD DO-5F STUD 00-5 USD520 6@60A 400A 100CA USD335C 6 (cv 20A 400A 60DA 250A 75A USD320 6@20A USD435 55 @l30A US0935 USD635 55@6A 150A TO-3 STUD 60A BODA 400A TYPE VF IFSM 60A 3 lN6097 8601 157A lN6095 86 «ol8A 65@ l6A 200A 00-5 USD420 55 (@30A BODA 50 (a lSA 250A TYPE VF IFSM 50A USD535 6 (aJ 60A 100GA 1N6098 86 (a' lS7A BOOA USD445 5041 2 55 ((I' 30A BODA US0345C 50241 6 ({I) 20A 400A U5D545 5051 4 6@60A BOOA 6@60A 100UA CENTER-TAP 6A PER LEG CENTER-TAP, BA PER LEG CENTER-TAP. 30A PER LEG V R AT 25<'"C IS 45V, VA AT 150"C 1535V . '"z ;;: 0 z en » c: Co (J'I APPLICATION NOTE U·87 500W, 200kHz OFF-LINE POWER SUPPLY USING POWER MOSFETS Introduction The power supply design discussed in this application note uses a fairly common, straight-forward circuit. It is the judicious selection of the components used, and careful layout of the circuit, which gives it its performance. As the operating frequency of switching power supplies continues to increase above 100kHz, attention to high frequency considerations is a necessity. A knowledge of component and circuit parasitics is essential as well as an understanding of RLC circuits and transient response, particularly LC resonant tank circuits. Because of the resonance of parasitic circuit and component inductance and capacitance at these high frequencies, the use of damping and snubbing techniques becomes increasingly important. In the off-line converters some of these high frequency problem areas are aggravated by the large turns ratio of the step-down transformer, particularly for low voltage (5V) outputs. The use of Schottky rectifiers with their 5 to 10 times larger junction capacitance than PN junction rectifiers can cause additional difficulty with the design. At 200kHz these problems are manageable by careful component selection and circuit layout. Specifications Input - 115V or 220V ± 15%, 50Hz or 60Hz Output - 5V @ 100A Regulation - Line: 0.4% Load: 0.5% (10% to 100% load) Ripple: 100mV peak to peak Frequency - 200kHz Efficiency - 75% minimum T 1 . This provides the fast, high current turn-on and turn-off pulses needed for the MOSFET gates. In addition, the two ends of the primary winding are shorted to ground during deadtime, which prevents accidental turn-on of an output transistor by transients. Note that the current supplied by the UC3525A output drops to a small value when the gate capacitance has been charged or discharged to the desired gate voltage. Damping resistors R3 and R4, with series blocking capacitors C16 and C17, minimize ringing of the MOSFET gate capacitance with the inductance of T1 and lead inductance; particularly during deadtime. In this design, where the gates are driven directly from the control chip via the gate drive transformer at 200kHz, it is necessary to use a small heat sink for the control chip. A Thermalloy #6007 is sufficient. The output transformer uses a small E-E core, Ferroxcube EC52-3C8, operated at 1000 Gauss peak to reduce core loss at 200kHz. The primary is wound in 2 layers, 7 turns per layer, 2 #16 AWG wires in parallel. The secondaries are wound between the 2 primary layers to reduce leakage inductance, and are made of copper strap 10 mils thick by 0.8 inches wide, one turn on each side of the centertap. Ringing of the primary winding, at a frequency of approximately 4MHz due to leakage inductance resonating with the output capacitance of the MOSFETS, is controlled by damping resistor R18 and blocking capacitor C4. Circuit Description The schematic and parts list of a 50 OW switching power supply are shown in Figure 9. The description of the circuit is as follows. The input rectifier bridge is arranged for connection either to the 117 or the 220V AC line. The circuit uses a pair of Unitrode UFN441 power MOSFETs in a half-bridge configuration. The MOSFET gates are driven directly from a UC3525A control chip output through step down and isolation transformer T1. The UC3525A output terminals (pins 11 and 14) provide active pull-up and pull-down (dual source/ sink) for the primary of 15·115 Reverse voltage across Schottky rectifiers CR1 to CR4, due to ringing (at approximately 20MHz) of the LC circuit comprised of the Schottky rectifier capacitance with the leakage inductance of the transformer (transformed to the secondary by the square of the turns ratio), is controlled by damping resistors R7 to R10 with blocking capacitors C10 to C13. The output filter capacitor Cs is comprised of three 5J1F, 100V polypropylene capacitors in parallel. These are TRW type 35, with an ESR of 12 milliohms each. The inductor is made with a Ferroxcube IF30-3C8 core, wound with 4 turns of 5 #12 AWG wires in parallel. Current limiting is done with current transformer T 3 APPLICATION NOTE U-87 in the return lead of the transformer primary. The signal is rectified, threshold sensed and adjusted, and is fed to the shutdown terminal pin 10 of the UC3525A control chip. Performance A curve of efficiency versus power output is shown in Figure 8. Note that the efficiency decreases for increasing power output. This is primarily due to resistive losses, other than the Schottky rectifier losses, such as the Ros (on) losses of the MOSFETs and the copper losses of the output transformer and filter inductor. The switching losses of the MOSFETs are low; the measured current rise and fall times were 10ns and 20ns, respectively. When compared to a 25kHz switcher, the transient response of this circuit can be improved by a factor over 8 times since the LC output filter resonant frequency can be increased by this amount. There is an additional improvement factor, since polypropylene capaCitors rather than electrolytic are used for 200kHz operation. The value of capacitance can be reduced considerably, because of the improved ESR. However, in order to realize the improved frequency response, careful attention to control circuit layout and shielding is important to minimize parasitic capacitance and inductance. The use of a ground plane is a necessity. A dramatic reduction of the size of several major components is evident when comparing this 200kHz, 50 OW switcher to a 25kHz switcher. The power transformer, output filter inductor, and output filter capaCitor are about half the volume, and the drive circuits for the MOSFETs are considerably smaller than the drive circuits for bipolars at 25kHz. The auxilliary power supply is half the size. The parts count is less, primarily due to the reduced parts count of the drive circuits. Design Considerations The choice of operating frequency and the decision to use MOSFETs or bipolars depends upon a number of factors, including the required power output level, size, weight, cost, etc., and a rapidly changing technology which includes circuit topology, new components, control chips and high frequency techniques. There are some major advantages that are obtai nable by using MOSFETs in place of bipolars, other than those associated with higher operating frequency. One of these is in the area of potential gate drive circuits. In the power supply described in this application note, the power MOSFET gates are driven directly by the control chip through a small 15-116 step down isolation transformer. The feedback loop compensation is comprised of an RC network at the error amplifier of the UC3525A. The resonant frequency of the LC output filter is approximately 40kHz. Closing the loop at OdB at 100kHz, this network adds two zeros (phase lead) at approximately one half the LC resonant frequency, and gives a 40 0 phase margin up to 100kHz. Do's and Don'ts of High Frequency Switchers For the control chip circuit, the use of a ground plane construction is recommended. A double sided PC board, with one side used for the ground plane, is preferable. If a single sided board is used, use as much copper area as possible for the ground plane. Keep traces fairly wide to reduce inductance. The judicious use of a few wire jumps to reduce trace length is helpful. Power MOSFET gate drive circuits do not have to supply a continuous large current drive. MOSFET gates do require fairly large, fast current pulses to change the gate voltage rapidly because of the composite gate capacitance, including the Miller effect capaCitance. This means that the gate drive circuit and transformer should be designed to minimize lead inductance by reducing loop areas to a minimum. Remember that each inch of wire adds about 20 nanohenries of inductance. Using fairly large diameter wires twisted together helps, as well as designing the layout to reduce lead lengths to a minimum. The use of copper strapping in place of round wire is also helpful in reducing inductance. Use two closely spaced parallel strips if possible. Circuit by-passing with small high frequency capaCitors is important, especially around the control chip circuit area. Bypassing the fairly large electrolytic input energy storage capacitors is helpful, if the by-pass capacitors are located physically at the junction of the MOSFETs and the primary of the output transformer, as shown on the schematic. Bibliography 1. R. Mammano, R. Adair, "A Second-Generation IC Switch Mode Controller Optimized For High Frequency Power MOSFET Drive", Unitrode Application Note U-89. 2. Raoji Patel, "Power Schottky Rectifiers in a Switching Regulator", Unitrode Application Note U-85. Continued APPLICATION NOTE U·S7 3. Raoji Patel, "Operating Buck Regulator Above 100kHz", Unitrode Application Note U-80. MOSFET Gate Drive Circuitry," Unitrode Switching Power Supply Design Seminar Manual, Spring 1982. 4. Raoji Patel, "Design Considerations for Power WAVEFORMS AT 10 = 100A 100V/DIV 5VIDIV 10V/DIV 2A/DIV 500ns/DIV 500ns/DIV UPPER - VGS OF Q, LOWER - VOUT OF PIN 14, UC3525A UPPER - VDS OF Q, LOWER - 10 OF O. FIGURE 1. GATE DRIVE FIGURE 2. MOSFET SWITCHING 100V/DIV 100V/OIV 2A/OIV 2A/DIV 100ns/OlV 100ns/DIV UPPER - Vos OF 0, LOWER - 10 OF O. UPPER - VDS OF O. LOWER - ID OF 0, RGURE 3. RISE TIME FIGURE 4. FALL TIME 15-117 APPLICATION NOTE U-S7 5V/DiV 100V/DIV 100mV/DIV 5A/DIV 500ns/DIV ljJs/DIV UPPER - VPRIMARY LOWER - I.R'''ARY UPPER - XFMR SEC VOLTAGE LOWER - OUTPUT RIPPLE AGURE 5, TRANSFORMER PRIMARY WAVEFORMS AGURE 6, TRANSFORMER SECONDARY VOLTAGE, AND OUTPUT RIPPLE 100 80 SOOmV/DIV #. 200mV/DIV ~ I r- 60 15 13 § 40 25A/DIV 20 o o UPPER - 5V OUTPUT' MIDDLE - ERROR'AMPUFIER OUTPUT LOWER - LOAD CURRENT 100 200 300, POWER OUTPUT - WATIS SOI'S/DIV 400 • FIGURE 8, EFFICIENCY VS POWER OUTPUT FIGURE 7, TRANSIENT RESPONSE, 2SA LOAD CHANGE (LARGE SIGNAL CHANGE) 15-118 500 R, > ~ C" ~ B 6 z z T, ~ R, '" C, • ~OOA 220VAC 1l5VAC C, R, ..... '!' ..... ..... <0 j c: • FIGURE 9. SCHEMATIC OF 500W. 200kHz HALF-BRIDGE POWER SUPPLY ~ APPLICATION NOTE U·S7 Parts List U1 UC3525A 01, O2 CR1-CR4 CR5-CRB CR9-CR12 CR13, CR14 CR15 C1, C2 C3 C4 C5 Cs C7 CB C9 C10-C13 C14, C15 C1s, C17 C1B C19 C20 C21 UFN441 USD545 680-4 (Unitrode) 673-1 (Unitrode) UES1003 TVS31 0 600J,.LF,250V 1J,.LF,400V 500pF,1kV 3x5J,.LF, 100V (polypropy.) 500J,.LF,50V 1000pF,50V 1J,.LF,50V 50pF,50V 0.02J,.LF,50V 1pF,200V .002, J,.LF, 50V 0.2, J,.LF, 50V 0.1, J,.LF, 50V 300pF, 50V 220pF,50V R1, R2 R3, R4 R5 Rs R7 -R10 R11 33K,2W 470 100, %W 4.70 3.90,1/2W 10K R12 R13, R14 R15 R1S R17 R1B R19 R20 R21 R22 15·120 3.3K 2200 10K 10K 510 500,4W 100 27K 24K 33K T1 Core, Ferrox 486T250-3C8 Pri, 14T #22AWG Sec (2) 7T #22AWG T2 Core, Ferrox EC52-3C8 Pri, 14T, 2 layers, 2 #16 AWG in parallel. Sec, (2), each 2T, C.T., copper strap 0.01" x 0.8" see text. T3 Core, Ferrox 486T250-3C8 Pri,1T Sec, 20 turns CT #22AWG T4 220/117V, 25V, 0.15A L1 Core, Ferrox IF30-3C8, 4 turns, 5 #12AWG in parallel. APPLICATION NOTE U-88 DESIGN CONSIDERATIONS FOR POWER MOSFET GATE DRIVE CIRCUITRY 1_ Introduction The power MOSFET promises exciting performance advantages over the more conventional bipolar transistor_ However, much attention must be given to gate drive techniques to take full advantage of MOSFET characteristics. This application note develops simple, high performance gate drive circuits. This application note also provides design engineers with a basic understanding of the relationship between parasitic elements and switching times. In addition, a circuit is developed which controls the switching time of the power MOSFET to reduce rectifier reverse recovery spikes; thus, reducing RFI and switching loss. 2. Features The power MOSFET is becoming more and more popular in many applications due to its inherent features, such as: 2.a. Extremely Fast Switching Characteristics. A power MOSFET is capable of switching rapidly because it is a majority carrier device. The speed at which it can switch depends upon the rate at which gate charge is supplied or removed by the gate driving source. In a practical application the MOSFET can be made to switch in less than 10 nanoseconds. This feature allows operation at higher frequencies than with bipolar devices, resulting in improved electrical performance (transient response), reduced size and cost of the magnetic components, and decreased weight of the overall system. Other advantages derived from fast switching times are: • The losses in the snubber circuit, if employed, are minimized. • Switching times are independent of load and temperature variation. The variation in the frequency spectrum of conducted RFI is minimized. • The cross-conduction problem in a switched-mode converter (half bridge, full bridge, push-pull) is reduced because power MOSFETs have no storage time. • The problem of core saturation due to assymmetrical volt-seconds in circuits using a transformer is minimized because the major cause of this effect, differences in storage time is negligible for MOSFETs. • If a voltage feed-forward control is being used, the nonlinearity introduced by the storage time of the switching device is eliminated, thus reducing the gain requirement of the error amplifier. UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95·1064 15-121 PRINTED IN U.S.A U·88 APPLICATION NOTE 2.b. High Gate Input Impedance. The gate input impedance is a high resistance shunted by a capacitance. At high frequencies the capacitance completely dominates. This fact allows the design of a simple and efficient gate drive circuit. 2.c. No Forward or Reverse Biased Second Breakdown. Because of the positive temperature co-efficient of channel resistance, power MOSFETs do not have forward or reverse biased second breakdown characteristics like bipolar devices. Thus power MOSFETs improve the overall reliability of systems. Snubber networks for turn-off load lin6 shaping may be smaller and often eliminated. This reduces circuit complexity and cost. The voltage spikes due to stray inductance can be limited by simply controlling the switching times in many applications. 2.d. Integral Diode. There is a built-in diode across the source to drain. The reverse recovery time of the diode depends upon the drain to source breakdown voltage. Low voltage (lOOV) devices have reverse recovery times as low as 200 nanoseconds, while high voltage devices (400-5 OOV) have recovery times of about 600-700 nanoseconds. When a high speed diode is not required, the internal diode can be used effectively for free wheeling voltage damping. However, long recovery times might hinder the performance of the circuit in some applications, so this effect must be considered. 2.e. Current Sharing Capability Since the channel resistance of a power MOSFET has a positive temperature coefficient many devices can be paralleled with much less special design attention than with bipolar transistors. The power output capability can, thus, be extended. The Undesirable Features of the Power MOSFET are: 2.f. Temperature Dependence of Saturation Resistance. The saturation resistance (RDS(on» increases with temperature. It doubles approximately every 110°C. Thus, power dissipation will increase as the junction temperature increases. Consideration of the thermal stability of the system is required if a major part of the power losses occur in the on-state mode. (In a bipolar transistor "off line" converter, most of the power losses are due to switching. The switching losses increase with temperature, usually doubling every 100°C. In this respect, power MOSFETs will be more thermally stable than bipolar transistors, as switching the times of a power MOSFET do not change with temperature.) UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON. MA 02173 • TEL. (617) 861·6540 TWX (710) 326-6509 • TELEX 95·1064 15-122 PRINTED IN U.S.A. APPLICATION NOTE U·88 2.g. Silicon Chip Area. The silicon chip area of a power MOSFET is about 50% larger than an equivalent bipolar transistor. This has some impact on the cost of the device. 3. Construction The cross section of an N-channel vertical DMOS (double-diffused MOS) is shown in Figure 3.1. Sections of this structure affecting gate drive are discussed in the following sections. Silicon Dioxide Si0 2 Silicon Poly crystal Gate Source Metallization Ion Implanted P and N+ Regions N-Epi N+ N+ N+ Substrate Drain Figure 3.1 The Power MOSFET Physical Structure UNITROOE CORPORATION. 5 FORBES ROAO LEXI NGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95·1064 15·123 PRINTED IN U.S.A. APPLICATION NOTE U·88 4. Parasitic Elements and Switching Since MOSFETs are majority carrier devices, they are theoretically capable of switching in picoseconds. In practical devices, however, parasitic elements adversely affect switching capability. MOSFET parasitic capacitances are shown in Figure 4.1. Case, Drain Source Figure 4.1 Power MOSFET Parasitic Capacitance UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 15-124 PRINTED IN U.S.A APPLICATION NOTE U·88 The thickness and area of Si0 2 dielectric material between gate and source determines the value of the gate capacitance. In the off-state, the total gate-to-source capacitance is composed of a) capacitance C3 between the gate and the heavily doped N+ source region, b) capacitance C2 between the gate and the moderately doped P region and c) capacitance C I between the gate and the source metallization on the top of the gate (C I is much less than capacitances C3 and C2 and can be neglected). The gate capacitance is practically independent of gate voltage, as shown in Figure 4.2. 3000 UFN44C1 I, J f= 1 MHz Vgs =0 20 25 hgs =C1 +C2 +C3 2500 2000 t ~ 1500 8c .;u It 1000 t! ............ 500 '--. Cds Cdg o o 5 10 30 V DS - Volts Figure 4.2 Capacitance Vs. Drain to Source Voltage The Miller effect capacitance between drain and gate consists of a series combination of a space charge capacitance Cdg due to a depletion layer in the N-region and the dielectric capacitance C4 between the N-region and the gate, as shown in Figure 3.1. The capacitance Cdg is a function of drain voltage (as shown in Figure 4.2), while dielectric capacitance C4 is independent of the voltage. These drain capacitances effectively increase the input gate capacitance during switching transitions. The capacitance Cds between drain and source is a depletion capacitance and does not have a major effect on the switching behaviour of the device. It can be neglected in the switching analysis. UNITROOE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL, (617) 861·6540 TWX (710) 326·6509 • TELEX 95·1064 15·125 PRINTED IN USA. U-88 APPLICATION NOTE The tum-on and tum-off characteristics of a power MOSFET are shown in Figure 4.3_ VFinal / _V9S 1 td~On) .t t3 r + -Vds o~er-1 Drive Period Turn-on Time _ V ds Turn-off Time Figure 4_3 Power MOSFET Switching Waveforms UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 15-126 PRINTED IN U.S A. APPLICATION NOTE U·88 C(pl) I ('~ I ················1·12:SK· C4 C4 Cdg Cdg(lolol) = C Cro 4+ dg A " ,~ r,---.,I ----+-::=-+--~--~ I~ 7.5K C,I 1~4 I __ ~J Cgs + Cdg(IOIII) L Cgo 5.0K •..... 2.5K '\:::.._~~ •• • :: ..................................................................... Ciss Cgs Cdg(lotal) -1.5 -1.0 -.5 0 .5 1.0 1.5 Vdg(volts) Figure 4.4A C VI Vdg - Static Case Expanded 10 9 Vds(volls) VgS(volts) 4.3V 1 CI.S(pl) SOK 40K (1- dVdS) dVgs III 30K 20K Ciss(elfective) t(n.) CI•• (elfecllve)= C g • + Cdg (1- dVdS) (Iolal) dV gs .Figure 4.48 C VI t - Dynamic Case Figure 4.4 Input Capacitance and Conclltlona at Tum-on UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON. MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95-1064 15-127 PRINTED IN U.S A. APPLICATION NOTE U·88 4.a. Turn-on Delay Time - td(on) The effective gate input capacitance during this period is a parallel combination of capacitor C I' C2 and C3. While the gate voltage builds up toward the gate threshold voltage, the drain voltage remains the same. 4.b. Rise Time - tr When the drain voltage starts to drop, during current rise time the effective gate capacitance increases significantly due to the Miller effect capacitance (C dg), which absorbs nearly all the gate drive current. The rise time of the drain current is Inversely proportional to the gate drive current supplied, and transition rise time can be controlled accurately by controlling the gate current, a feature particularly useful to reduce current overshoot due to rectifier reverse recovery. Since the magnitude of the gate and drain capacitances are determined by the structure of the device, they are very consistent from device to device and are temperature independent. This allows optimization of snubber network designs. 4.c. Dynamic Saturation - t3 During this period, which follows the rise time; the drain voltage drops below the gate voltage. An inversion layer is established underneath the entire gate in the N- drain region. The gate capacitance is equal to the dielectric capacitance and is independent of voltage bias. At this pOint, the total drain to gate capacitance changes abruptly to a very high value. This can be seen in the gate voltage waveform of Figure 4.3 where effective gate capacitance is in the order of 50,000 pf and no further increase in gate voltage is noticed. 4.d. Overdrive Period The input gate capacitance is approximately twice the value expected from Figure 4.2 during over-drive conditions, as can be seen by comparing the slopes of the gate voltage during the period td(on) and overdrive (see Figure 4.3). This is because Cgs is measured with a greater voltage across the drain to source terminals than is present during this period. UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 15-128 PRINTED IN U.S.A APPLICATION NOTE U·88 Typical ClrcuR Wllvefonn. VDs. VeE = VIN I OVERSHOOT TRANSISTOR ---I--+lt" Figure 5.1A Transl.tor Current During Turn-On t" Losses vs - - Ratio 1,1 2.8 V 2.6 2.4 P(tn + In) P(t.,) 2.2 / 2.0 1.6 1 1.4 1.0 - 0 / / / 1.8 1.2 / Example: VeE / = 100V, Ie = lA, t'rI = 100nS I" IpK PAY E (ns) (AI (W/Cycle) (P,I) 0 6 300 30 30 7.8 390 51 50 9 450 68 100 12 600 12 ,.,/ L 0.2 0.4 0.6 0.8 1.0 III Figure 5.1 B Effect of ReverH Recovery on Lo.... Figure 5.1 Importance of Current RI.. Time In a Transistor and Reverse Recovery In a Rectifier UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173· TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 15-129 PRINTED IN U.S A APPLICATION NOTE o U·88 40 80 120 160 o 40 (nS) Figure 5.2A Schottky Rectifier (SD41) 80 120 160 (nS) Figure 5.28 un....'.' PH JuncUon (UES701) Figure 5.2 Reverse Recovery of Fa' RectlfI.... 5. Drive Circuit Considerations The power MOSFET is a charge driven device, and the switching times can be controlled by the external circuit rather than by the device itself. In a buck switching regulator application (or similarly behaving circuit), the rise time of a power MOSFET may be controlled to prevent excessive current spikes and power dissipation due to rectifier reverse recovery. Current spikes also produce unwanted ringing and RFI in the circuit. The relationship between reverse recovery time, current rise time and power dissipation in the power MOSFET is shown in Figure 5.l. The fastest available power PN junction rectifiers have recovery times on the order of 20 ns. To minimize the recovery current spikes, the current rise time of the power MOSFET should be made at least 3 times slower than the reverse recovery of the rectifier. Even though Schottky rectifiers are majority carrier devices, they have about the same effective reverse recovery time as very fast PN junction diodes due to high junction capacitance, as shown in Figure 5.2. In transformer coupled switching regulators, leakage inductance will reduce the large current spikes to some extent depending upon the transformer design. UNITROOE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95·1064 15·130 PRINTED IN U.S A. APPLICATION NOTE U·88 During turn-off time, voltage spikes will occur as a result of energy stored in the stray inductance of the drain circuit during the preceding on-time. The magnitude of these spikes directly depends upon the speed with which the device is turned off and upon lead inductance in the drain circuit. A snubber network in the drain may be required to limit these voltage spikes. The turn-off power dissipation can be optimized with a fast turn-off time along with the use of a snubber circuit. The drive circuit described in this section allows control of the rise time in a power MOSFET during turn-on while providing fast tum-off. 5.a. Low Cost Gate Drive Circuit A low cost power MOSFET gate drive circuit with isolation for off-line applications is shown in Figure 5.3. The circuit provides a controlled rate of increasing drain current to minimize spikes due to the reverse recovery of the output rectifier. The rise time of the power MOSFET is controlled by supplying a linearly increasing gate voltage. The relatively large capacitor C I (as compared with Cgs ) is placed in parallel with the gate and source to minimize the effect of variations or Cdg on the switching characteristic of the device. C I also prevents spurious oscillations due to high frequency voltage feedback from Cdg' C I is charged with a constant current from the drive circuit, providing linearly increasing voltage at the' gate of power MOSFET, Q2' The rise time of the MOSFET depends on the rate at which capacitor CI charges. The drive circuit described provides a rise time of around 70 ns and current fall time of about 40 ns. B+ RL UES1301 11--"-4---4 50n Figure 5.3 Low Cost Gate Drive Circuit with Isolation UNITROOE CORPORATION. 5 FORBES ROAO LEXI NGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 15-131 PRINTED IN USA APPLICATION NOTE U·88 The operation of the circuit can be described as follows: When drive transistor Q I turns on, the current transformer provides constant drive current into the secondary circuit. The constant drive current is determined by resistor R I and will charge capacitor C I linearly through diode D2. Zener diode· DI limits Q2 gate to source voltage. When the voltage across the secondary winding drops due to primary time constant Lp/RI, the zener diode D2 becomes reverse biased and prevents the discharge of capacitor CI' Whiie transistor Ql is on, the energy will be stored in the transformer core. When transistor QI subsequently turns off, current will flow in the secondary side due to energy stored in the core of transformer T l' The amount of energy stored must be greater than that stored in the capacitor Cl in order to ensure complete discharge of the capacitor. Capacitor Cl discharges through zener diode D 2. Diode Dl prevents any negative voltage swing across gate to source and provides a current path for discharge of the secondary inductance. UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 15-132 PRINTED IN U S.A u·ss APPLICATION NOTE The circuit shown in Figure 5.4 improves the fall time compared to the previous circuit. The operation of the circuit is the same as that described above except during turn off. During 01 turn-off, capacitor CI discharges through winding N3 and diode D2. The discharge current will be 4 times greater than in the previous circuit because the current now flows through only one quarter of the winding, while the ampereturns remain unchanged. Diode D I prevents current flow from the winding N2 during turn off. L 300l-lH Co 01 100l-lf UZ8710 1811 PLOO3B7 N3= 2.5 10V °11 UZ8710 °2 1000 01 °1 III Figure 5.4 Fall Time Enhancement Drive Circuit 5.b. Pulse Drive Circuit In some applications, as in a line driver, it is essential that power MOSFETs switch rapidly both during turn-on and turn-off. The drive circuit shown in Figure 5.5 provides these fast switching times while conserving drive power from the low voltage supply. The circuit is capable of switching a device with a high (2500 pi) gate input capacitance in 12 to 15 nanoseconds. During off time, low impedance is maintained across gate to source. This prevenfs turn-on of the power MOSFET due to dv/dt or noise at the drain terminal. The drive circuit can be operated from 1KHz to 100 KHZ without any changes. For low cost, it utilizes an inexpensive ferrite bead as a current transformer. UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 86J.6540 TWX (710) 326-6509 • TELEX 95-1064 15-133 PRINTED IN u.s A APPLICATION NOTE U·88 The drive circuit operates from a 25V power supply. The transformer is driven by a Unitrode UCl524A pulse width modulator control chip. With 03 off when the output transistor of the UCl524A turns on, the voltage VCl is impressed across the primary of current transformer T l' The energy stored in the capacitor Cl is, thereby, transferred to the T 1 secondary. Secondary current flows through capacitor C2 , winding N2 , diode D3 , diode D4 , small signal MOSFET 02 and back to capacitor C2. The secondary current discharges the initially charged capacitor C2. MOSFET 02 turns off when the voltage across C2 drops below the gate threshold voltage of 02' The negative voltage across the gate to source of 02 is clamped to a safe value by diode Dl' Now the secondary current starts to flow into the input gate capacitance of the output power MOSFET 03' When the gate voltage reaches the gate threshold voltage, 03 will begin to turn on. The gate voltage will continue to rise until the current transformer saturates and the current in the secondary ceases. The voltage across winding N2 drops to zero. Charge stored in the gate capacitance of 03 is maintained because diode D4 is back biased by the resulting gate voltage. The rate at which the gate capacitance discharges depends upon the leakage current of D4 and the IDSS of 02' For 1.0 fJ.A total leakage current, it will require about 25 milliseconds to discharge a device with a 2500 pf input capacitance. When the output transistor of the UCl524A turns off, the magnetizing energy stored in the current transformer is transferred by current flow to the secondary circuit. The current will flow in the loop which consists of diode D2, winding N2, and capacitance C2 in parallel with the input capacitance of 02' When the voltage on the gate reaches the threshold voltage, 02 turns on and discharges the gate capacitance of 03 with a low impedance, resulting in fast turn-off. Capacitor C2 remains charged because it has no discharge path. This keeps 02 on and 03 is held off. This prevents turn-on of 03 due to any dv/dt present at the drain terminal of 03' which is particularly useful in PWM half-bridge switching regulator circuits. UNITROOE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95-1064 15-134 PRINTED IN u.s A APPLICATION NOTE U·88 +25V 470n Stack Pole Ferrite Bead #571552 Current Transformer C, ·...'1 T,3:3 V Z =6.B ~N' I~D3------"'~ UC '524A -- Figure 5.5 Pulse Drive Circuit The power drawn from the drive circuit power supply is minimized by using this current pulse drive circuit, especially when operating at a low frequency for fast switching applications. The switching times of a Unitrode power MOSFET are compared with those of a competitive device in Figure 5.6. The circuit described above was used. The devices have the same voltage and current ratings and comparable RDS(on). The Unitrode UFN44CI switches faster, due to its 20 percent lower gate-to-drain and gate-to-source capacitances, than the competitive device. UNITROOE CORPORATION. 5 FORBES ROAD LEXI NGTON. MA 02173 • TEL. (617) 861·6540 TWX (710) 326-6509 • TELEX 95-1064 15-135 PRINTED IN U.S.A. U·88 APPLICATION NOTE Unitrode UFN44C1 Unitrode UFN44C1 - Turn-on Time - Competitive Device - Turn-off Time - Competitive Device Figure 5.6 Switching Times of Unitrode UFN44C1 Power MOSFET vs Competitive Device with Same Voltage and Current Ratings Conclusion The use of power MOSFETs in switching regulated power supplies is advantageous due to their fast switching capability with simple drive circuits. The overall system cost can be further reduced by operating these power MOSFETs at a high frequency. The reliability of the switching power supply is improved due to lack of forward or reverse bias second breakdown in the device and due to reduced parts count. UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95·1064 15·136 PRINTED IN U.S.A. APPLICATION NOTE U-89 A SECOND-GENERATION IC SWITCH MODE CONTROLLER OPTIMIZED FOR HIGH FREQUENCY POWER MOSFET DRIVE Introduction Since the introduction of the SG1524 in 1976, integrated circuit controllers have played an important role in the rapid development and exploitation of high-efficiency switching power supply technology. The 1524 soon became an industry standard and was widely secondsourced (it is available from Unitrode as the UC1524). Although this device, as well as the MC3420 and TL494 which followed it, contained all the basic control elements required for switching regulator design; practical power supplies still required other functions which had to be implemented with additional external discrete circuitry. An additional development within the semiconductor industry was the introduction of practical power FETs which offered the potential of higher efficiencies at higher speeds with resultant lower overall system costs. In order to be able to take full advantage of the speed Y'N 15 capabilities of power FETs, it was necessary to provide high peak currents to the gate during turn-on and turnoff to quickly charge and discharge the gate capacitances of 800 to 2000pF present in higher current units. The development of a second-generation regulating PWM IC, the UC1525A, and its complimentary output version, the UC1527A, was a direct result of the desire to add more power supply elements to the controllC, as well as to optimize the interfacing of high current power devices. Integrating More Power Supply Functions Having achieved the greatest level of acceptance among users of first generation control chips, the 1524 became the starting point for expanding IC controller capabilities. This early device, shown in Figure 1, contains a fixed-voltage reference source, an oscillator which generates both a clock signal and a linear ramp AEFFERENCE '~----~------------------------------~------~16 REGULATOR VREF +5V OSCOUT +5V TO ALL INTERNAL CIRCUITRY 3 +5V F\ FLIP FLOP 6 c,. OSCILLATOR (Ramp) +5V COMP 9 +5V +5V INV,INPUT 1 N.I.INPUT 2 1K GROUND~ \,------------------------------1.'0 SHUTDOWN Figure 1. The UC1524 Regulating PWM Block Diagram. This design was the first complete IC control chip for switch mode power supplies. UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173· TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95-1064 15-137 PRINTED IN USA U.89 APPLICATION NOTE waveform, a PWM comparator, and a toggle flip-flop with output gating to switch the PWM signal alternately between the two outputs. With this circuitry already defined, a two pronged development effort was initiated: 1) to add additional features required by most power supply designs and 2) to impro~e the utility of features already included within the 1524. The resultant block diagram for the UC1525A is shown in Figure 2. Two general comments should be made relative to the overall block diagram. First, in optimizing the output stage for bi-directional, low impedance switching, commitments had to be made as to whether the output should be high or low during the active, or ON state. Since this is application defined there are needs for both output states, so both were developed with the UC1525A device defined by an output configuration which is high during the ON pulse, and the UC 1527A configured to remain high during the OFF state. This difference is implemented by a mask option which eliminates inverter 0 4 (see Figure 3) for the UC1527A. In all other respects, the 1525A and 1527A are identical and any description of the 1525A characteristics apply equally to the 1527A. Second, a major difference between this new controller and the earlier 1524 is the deletion of the current limit amplifier. There are so many system considerations in providing current control that it is preferable to leave this as a user-defined external option and allocate the package pins to other, more universally requested functions. Current limiting possibilities are discussed further under shutdown options. r----------, SYNC 3)-----~ OSCILLATOR OUTPUT 4 R,- DISCHARGE 6}---__I } -_ _--I0SCILLATORI--~---I :L~ r-+-+-~~~ NOR 7 UC1525A OUTPUT STAGE -i I INV.INPUT 1 N.I.INPUT 2 SOFT-START 8 } - - - - - - - 4 1 - - . . . l 50",A SHUTDOWN 101---~r-.~----4""'L L UC1527A OUTPUT STAGE .J Figure 2. The UC1525A family represents a "second generation" of IC controllers. UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON. MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 15-138 PRINTED IN USA APPLICATION NOTE U-89 "Totem-Pole" Output Stage One of the most significant benefits in using the UC1525A is its output configuration. For the first time it has been recognized in an IC controller that it is more difficult to turn a power switch off than turn it on. With the UC1525A, a high-current, fast transition, low impedance drive is provided for both turn-on arid turn-off of an external power transistor or FET. The circuit schematic of one of the two output stages contained within the device is shown in Figure 3. This is a two-state output, either 0 8 is on, forming a low saturation voltage pull-down, or 0 7 is on, pulling the output up to Vc. Note that Vc is a separate terminal from the VIN supply to the rest of the device. This offers the benefits of potentially operating the output drive from a lower supply than the rest of the circuit for power efficiencies, decoupling of drive transients from more sensitive circuits, and a third terminal for extracting a drive signal. Note that even though Vc can be set either higher or lower than VIN' the output cannot rise higher than approximately 1'/2 volts below VIN' the control power by a 0.1 mfd capacitor from Vc to ground but it should not, otherwise, cause a problem unless very high frequency operation is contemplated where it will contribute to overall device power dissipation, by becoming a significant portion of the total duty cycle. OUTPUT A. 10V/DIV CURRENT INTOVc ' SOOmA/DIV HORIZONTAL = SOOns/DIV Figure 4. Current "spiking" on the Vc terminal caused by conduction overlap between source and sink is minimized by high-speed design techniques. 4 ~ UJ PWM OSC ~ ~ a > z a ;::: F/F V,N = 20V TA = 25°C I 3 ~ 2 .,---V~ ..: Q: :J Figure 3. One of two power output stages contained within the UC1525A which conduct alternately due to the internal flip-flop. During the transition between states, there is a slight conduction overlap between source and sink which results in a pulse of current flowing from Vc to ground. However, due to the high-speed design configuration of this stage, this current spike lasts for only about 100ns. A typical current waveform at Vc is shown in Figure 4. This transient will normally be decoupled from the rest of UNITROOE CORPORATION. 5 FORBES ROAD LEXINGTON. MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 ~ ~ o ,.............. ~ i--" .01 V ~ ~URCE ~ ~ SAT. Vc VOH A i'--i sT.t vOlI INK .02 .03 .04.05.07 .10 .2 .3.4.5 .7 1A OUTPUT CURRENT. SOURCE OR SINK (Al Figure 5. The ouput saturation characteristics of the UC1525A provide both high drive current and low hold-off voltage. 15-139 PRINTED IN USA APPLICATION NOTE U·89 The output saturation characteristics of this stage are shown in Figure 5. The source transistor,07' is a straight forward Darlington and its saturation voltage remains between 1 and 2V out to 400mA under the assumption that VIN .2 Vcc. The sink transistor, 0 8, however, has a non-uniform characteristic which needs explanation. At low sink currents, the 1mA current source through 0 5 insures a very low saturation voltage at the output. As load current increases .past 50mA, 0 8 begins to come out of saturation for lack of base drive but only up to about 2V. Here diode O2 becomes forward biased shunting a portion of the load current through 0 5 to boost the base current into 0 8 • With this circuit,the sink transistor can both support high peak discharge currents from a capacitive load, as well as insure the low' static hold-off voltage required for bipolar transistors. v" - Vc - 20V OUTPUT A. 5V/OIV a, BASE CURRENT 200mAlDIV HORIZONTAL A typical output configuration for a push-pull, bipolar transistor power stage is shown in Figure 6. With a steady state base drive current from the UC1525A of 100mA, this stage should be able to switch 1 to 5A of transformer primary current, depending upon the choice of transistors. The sum of R, and R2 determine the maximum steady state output current of the UC1525A while their ratio defines the voltage across C2 which, at turn off, becomes the reverse VBe for 0 ,. With the values given, the output current and voltage waveforms are = SOOnsiDIV . Figure 7. Base current waveforms (Figure 6 circuit) show the enhanced turn-on and turn-off current possible with the UC1525A. . shown in Figure 7 for a one microsecond pulse. If power FETs are used for the output switches as shown in Figure 8, the interfacing circuitry can become even simpler with only a small series gate resistor potentially required to damp spurious oscillations within the FET. +SUPP~~--~------------~ +SUPPLYLr__ ~ ______________________ ~ 20V c, O.1 1 T, II 12 RETURN RETURN, Figure 6. A typical push-pull converter power stage using external bipolar power transistor switches. UNITROOE CORPORATION. 5 FORBES ROAO LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326·6509 • TELEX 95·1064 Figure 8. Replacing bipolar transistors with POWER MOSFETs provides even greater simplicity due to the low driving impedances of the UC1525A in each transition. 15·140 PRINTED IN USA APPLICATION NOTE U-89 Push-pull direct transformer drive is also particularly advantageous with UC1525A as shown in Figure 9. A version of this configuration is required for isolation when the control circuit is referenced to the secondary side of an off-line power system, and to provide level shifting of drive signals for 1/2 bridge and full bridge switching. The configuration of Figure 9 has a couple of important advantages. First, by connecting the drive transformer primary directly between the outputs of the UC1525A, no center-tap is needed and the full primary is driven with opposite polarities. Secondly, between each output pulse, both outputs are pulled to ground which effectively shorts the two ends of the primary winding together coupling a low-impedance turn-off signal to the switching transistors. + SUPPLY TO ~--- OUTPUT FILTER 13 UC1525A 12 RETURN O-------'-------J Figure 10. A single-ended, ground-referenced power stage for a flyback or boost regulator. + SUPPLY u---...--------_------. Controlling Power Supply Start-Up 0, c, C2 • RETURN L)---+---------------' Figure 9. The UC1525A is ideally suited for driving a lowpower base drive transformer and eliminates the need for a primary centertap. A useful single-ended configuration, typical of buck regulators, is shown in Figure 10. Here the UC1525A outputs are grounded and the PWM signal is taken from the Vc terminal which switches close to ground during each clock period as the internal source transistors are alternately sequenced. UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95·1064 Although the advantages of the UC1525A's output stage will often be reason enough for its selection, there are several other important and useful features incorporated within this product. One problem previously overlooked in PWM circuits is keeping the output under control as the supply voltage is turned on and off. Undefined states, particularly the possibility of turning on an output before the oscillator is running, can be quite awkward, if not catastrophic. To prevent this, the UC1525A has incorporated an under-voltage lockout circuit which effectively clamps the outputs to the off state with as little as 21/2V of supply voltage which is less than the voltage required to turn the outputs on. This clamp is maintained until the supply reaches approximately 8V insuring that all the remaining UC1525A Circuitry is fully operational prior to enabling the outputs. The clamp reactivates when the supply is lowered to approximately 7.5V. There is about SOOmV of hysteresis built in to eliminate clamp oscillation at threshold. Another important aspect of power sequencing is restraining the outputs from immediately commanding a 100% duty cycle when they are activated. This is accomplished by a slow turn on (soft-start) which is defined by an internal SO/LA current source in conjunction with an externally applied capacitor. The details of this power sequencing system are shown in Figure 11. 15·141 PRINTED IN U S.A APPLICATION NOTE U-89 Power Supply Shutdown 0 3 and 0 4 are the output gates normally driven by the oscillator through O2 to provide output blanking between pulses. (One of these transistors is shown as O2 in Figure 3.) At low supply voltages, O2 conducts with base drive from the 20p.A current source. O2 provides three functions. First, current through R4 activates the output gates with minimum voltage drop. Second, current through As activates the shutdown transistor 0 5 holding the soft-start capacitor, Css , discharged. Third, R2 provides a small bucking voltage across R3 for hysteresis at the switch point. An important part of any PWM controller is the ability to shut it down at any time for a variety of reasons, including system sequencing requirements or fault protection. Several options are available to the user of the UC1525A, which require an understanding of the capability of the shutdown terminal, pin 10. Referring to Figure 11, the base of 0 5 is turned on by a signal which is clamped to approximately 1.4V by the action of 0, and the VBE of gates 0 3 and 0 4- This holds the outputs off and keeps C ss discharged by 0 5 which, with R9, becomes a 100p.A net current sink. When the input voltage becomes high enough to provide a little more than one volt at the base of 0" that transistor turns on. This turns off O2, activating the outputs and allowing Css to begin to charge from the internal 50p.A current source. The time to reach approximately 50% duty cycle will be If, during normal operation, pin 10 is pulled high, three things happen. First, the outputs are turned off within 200ns through 0,. Second, the PWM latch is set by 0 6 so that even if the signal at pin 10 were to disappear, the outputs would stay off for the duration of that period, being reset by the next clock pulse. Third, 0 5 is activated commencing a 100p.A discharge of Css . However, if the activation pulse on pin 10 has a duration shorter than V3 of the clock period, the voltage on Css will remain high and soft-start will not be reactivated. Naturally, a fixed signal on pin 10 will eventually discharge Css , recycling soft-start. Thus, the shutdown pin provides both sequencing capability as well as a convenient port for protective functions, including pulse-by-pulse current limiting. 2 volts ) t = ( --Css 50p.A Regulating PWM Performance Improvements The UC1525A also offers significant performance and application improvements in almost all of the additional basic functions of a PWM over those obtainable with earlier devices_ A general description of these features is outlined below: Reference Regulator: The output voltage of this regulator is internally trimmed to 5.1 V ± 1% during manufacture, eliminating the need for adjusting potentiomenters in most applications. '0 Error Amplifier: The UC1525A uses the same basic transconductance amplifier as the UC1524 with an important difference: it is powered by VIN rather than VREF • Now the input common-mode range includes VREF eliminating the need for a voltage divider with its attendant tolerances. An additional feature relative to the error amplifier is that the shutdown circuitry feeds into a separate input to the PWM comparator allowing pulse termination without affecting the output of the error amplifier which might have a slow recovery, depending upon the external compensation network selected. An SHUTDOWN R, TOPWM LATCH Figure 11. The internal power turn-on, soft-start, and shutdown circuitry of the UC1525A. UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON. MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95-1064 15-142 i PRINTED IN USA APPLICATION NOTE U-89 important benefit of a transconductance amplifier is the ease with which its current mode output can be over-ridden by other external controlling signals. Oscillator: The functions of the oscillator within the UC1525A have been broadened in two important aspects. One is the addition of a synchronization terminal, pin 3, allowing much easier interfacing to an external clock signal or to synchronize multiple UC1525A's together. The other is the separation of the oscillator's discharge network from its charging current source for deadtime control. Reference should be made to the schematic of Figure 12 for an understanding of the operation of this circuit. The heart of this oscillator is a double-threshold comparator, Q7 and Qs, which allows the timing capacitor to charge to an upper threshold by means of the current source defined by RT and mirrored by Q, and Q2.The comparator then switches to a lower threshold by turning on QlO and discharges CT through Q3 and Q4 with a rate defined by RD. As long as CT is discharging, the clock output is high, blanking the outputs. Since the overall oscillator frequency is defined by the sum of the charge and discharge times, there are three elements now in the frequency equation which is approximately: PWM Comparator: The significant benefit of the UC1525A's PWM comparator is in its following latch. A common problem with earlier devices was that any noise or ringing on the output of the error amplifier would affect multiple crossings of the oscillator ramp signal resulting in multiple pulsing at the comparator's output. The UC1525A's latch terminates the output pulse with the first signal from the comparator, insuring that there can be only a single pulse per period, removing all jitter or threshold oscillation from the system. Another important advantage of this latch is the ability to easily implement digital or pulse-by-pulse current limiting by merely momentarily activating the shutdown circuitry within the UC1525A. This could be as simple as connecting pin 10 to a ground-referenced current sensing resistor. For greater accuracy, some added gain may be advantageous. Once a current signal causes shutdown, the output will remain terminated for the duration of the period, even though the current signal is now gone. An oscillator clock signal resets the latch to start each period anew. f""-----CT (.07RT + 3Ro) VREF ----<..------<_-~r----_..,.------____, 7.4K 6 5 14K RAMP L-----~---~----t---r-_t-~TOPWM 3 SYNC 25K 2K BLANKING 25K TO OUTPUT 1K Q" 250 4 CLOCK OUT Figure 12. A simplified schematic of the UC1525A's oscillator Circuitry. UNITROOE CORPORATION. 5 FORBES ROAD LEXINGTON. MA 02173 • TEL. (617) 861-6540 TWX (710) 326·6509 • TELEX 95-1064 15-143 PRINTED IN USA. III APPLICATION NQTE U-89 External synchronization can easily be accomplished with a 2.BV positive pulse at pin 3. This will turn on 0 9 , lowering the comparator threshold below wherever the voltage on e,. may happen to be. Two factors should be considered: First, the voltage on CT determines the amplitude of the PWM ramp, and if the sync occurs too early, the loop gain will be higher and the resolution may be worse. Second, the sync circuit is regenerative within 2oons; and, while a wider pulse can be used, e,. will not begin to recharge as long as the sync pin is high. For synchronizing multiple UC1525A devices together, one need only to define a master with the correct RTCT time constant, connect its output pin to the slave sync pins, and set each slave RTe,. for a time constant 10-20% longer than the master. A 200 Watt, Off-Line, Forward Converter The ease of interfacing the UC3525A into a practical power supply system can be illustrated by the off-line, power converter shown in Figure 13. This 200W supply places the control circuitry on the primary side of the power transformer where direct coupling can be used to drive the power switch. While simplifying the drive electronics, this configuration usually requires an isolated voltage feedback signal which is most easily accomplished by an optocoupler driven by some type of voltage regulator IC such as a SG723 or LM305. One other undefined block in Figure 13 is the auxilliary power supply which suppplies the low voltage, low current bias supply for the UC1525A and the drive for 0" the power switch. The choice of the UFN44C2 POWER MOSFET 6974 120VAC 200 10K 10K 1. UC 1525A 1nF 220 13 12 11 3.9K 100 .1p.F 100 10 Figure 13. 2ooW, Off-Une Forward Converter. UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95-1064 15·144 PRINTED IN USA APPLICATION NOTE U-89 for this switch keeps the total power requirements from the auxiliary supply at less than 1W; readily implemented with a small, line-driven transformer. This converter is designed to operate at 150kHz which is accomplished by running the UC1525A at 300kHz and using only one of the outputs. This also automatically insures that the duty cycle can never be greater than 50%, a requirement of the power transformer in this configuration. The high operating frequency allows the output filter's roll-off to be set at 12kHz, greatly simplifying the overall loop stability considerations as adequate response can be achieved with only the single-pole compensation of the error amplifier provided by the .05JLF capaCitor on pin 9. The totem-pole output of the UC1525A is used to advantage to drive 0 1 by providing a 400mA peak current to charge and discharge the MOSFET's gate capacitance while keeping overall power dissipation low. Waveform io 2A/div 0- iG 0.5A/div 0- vG 10V/div 0- photographs of this operation are shown in Figure 14. When operating at full load, the efficiency of this converter is 73% with by far the greatest power losses occurring in the output rectifiers-even though Schottky devices have been selected. Switching losses have been minimized by the fast current transitions, primarily defined by the leakage inductance of the transformer. Although this switching time could probably be even further reduced, there could be problems with current spikes during rise time due to Schottky rectifier capacitance. Current limiting for this converter is provided by measuring the current in UF!'I44C2 with the D.W resistor in series with the source and using this voltage to activate the shutdown circuitry within the UC1525A. While this will provide a fast-acting short circuit protection on a pulse-by-pulse basis, a comparator may need to be added for a more accurate current limit threshold. l/-----1 3.3K 1~ 200 S 100 UC 13 3525A 12 _ 4.70 .1J.tF 6 11 7 10 8 9 TSV31 0 10V o.l 220 10K·'1 - ,....1'-- .2p,F T·F '"w t- 3 t- ~ w 6tel: 0 tU W j 0 u 50 100 150 200 250 OUTPUT COLLECTOR CURRENT (rnA) FIGURE 9 -Output Saturation Characteristics for Each of the UC1524A's Outputs. As with the 1524, synchronization to an external clock should be done with the RTC T time constant set approximately 10 to 20% greater than that determined for the required clock frequency, taking into consideration the expected tolerances ofthe components. For synchronizing multiple UC1524A devices, all RT, CT, and OSC output terminals should be individually connected together and a Single RT and CT used. When considering blanking, the pulse on pin 3 may be extended somewhat by the addition of a capacitor of up to 1OOpF from pin 3 to ground. If narrower blanking pulses are required, adding a resistive load from pin 3 to ground of 1 kohm minimum will reduce the pulse width. The best way to guarantee a large dead time is still to use a diode to clamp the peak output from the error amplifier to a divider from VREF. This technique is quite accurate due to the accuracy of V REF and the 1OOJLA fixed current available from the amplifier. FIGURE 10 - The addition of C, and Q 2 Uses the Collector Signal of the UC1524A to Generate an Enhanced Turn-off Command for Q 3 A Simple Buck Regulator Circuit The application of Figure 12 demonstrates the utility of the UC1524A used with a Unitrode PIC600 hybrid switch_ This combination greatly simplifies the design of switching regulators, since the only other active device required is a small-signal2N2222 which serves to provide a constant drive current to the output switch, regardless of the input voltage level. With the UC1524A, current sensing does not have to be done in the ground line, but will still function when the regulator output is shorted to ground. UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173· TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 15-153 PRINTED IN USA APPLICATION NOTE U-90 OSC OUT FIGURE 11 - The Oscillator Circuit of the UC1524A Allows Both High Frequency Operation and Ease of External Synchronization. CORE: 2616PA 1003B7 N: 33TAWG 19 Y,N Your 10-40V SV,SA UC1S24A Y,N REF VAEF OSC 01 01 CT 47K Rr Cl(+) Cl(-) SHUTDOWN 3.3K 68K COMP .OOS FIGURE 12 - The UC1524A Combines With the PIC 600 Hybrid Switch to Form A Simple But Powerful Buck Regulator. UNITRODE CORPORATION. 5 FORBES ROAD lEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 15-154 PRINTED IN USA APPLICATION NOTE U·90 The waveforms of Figure 13 demonstrate the performance of the current limiting comparator, showing that from the onset of current limiting to a complete short circuit, the peak input current increases from 5.2A to only 5.9A. A Complete DC-DC Converter with the UC1524A 4W DC-DC converter operating from a common 28V bus with no additional output transistors. The schematic of Figure 14 uses a push-pull configuration which imposes a voltage of twice the supply across the "OFF" transistor. This is now within the rating of the UC1524A and, thus, with a 28:7 turns ratio in the transformer, a 5V, 3/4 A output is achieved with 78% efficiency at a significant minimum parts count. An important attribute of the new UC1524A family is the higher voltage rating on the output transistors. This now makes it possible to implement a practical The fast response of the current limit amplifier within the UC1524A again keeps the device well protected as shown in the waveforms of Figure 15. A B c Upper trace is Comp terminal (pin 9), 2 V/div Lower trace is input current through power switch, O.2A/div Time base is 10 I-'sec/div. A B ~ ~ C ~ Onset of current limiting, Ip ~ 5.2A Into current limiting, Compterminal held low until inductorcurrentfalls below threshold, Ip ~ 5.9A Output shorted to ground. Pulse width reduced to 21-'s. Ip still 5.9A. FIGURE 13 - Performance Data for Figure 14's Regulator Shows the Tight Control of Peak Current, Even Under Shorted Output Conditions. III UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON. MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95·1064 15·155 PRINTED IN USA APPLICATION NOTE U-90 20-28V Input ~ 500p,F V,N Gnd Core: 2213P-A400-387 N: 281; AWG22 c. UES2401 300p,H 2.2k R, 100 /-If I UC1524A .005 C. C, Core: 2213 PL00388 Prim: 28 CT 4 AWG32 Sec: 7 CT 8 AWG32 0.1 a.} 0.80 Comp 33k FIGURE 14 - .005 4.7k With Higher Output Voltage Capability, the UC1524A can Implement a Complete 4 Watt DC to DC Converter with no Additional Switching Transistors. UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509· TELEX 95-1064 15-156 PRINTED IN USA APPLICATION NOTE U-90 0- 0- 0- Circuit at Threshold of Current limiting Circuit Under Normal Load -0 0- -0 0- -0 0- Circuit Under Short Circuit Conditions Circuit Under Full Current Limit FIGURE 15 - Operating waveforms for the PWM DC-DC converter (Figure 14) Upper trace = Primary current at 0.1 Aldivision Middle trace = Pin 9 voltage at 5Vldlvlslon Lower trace = Load current at O.5Aldlvlsion Time base = 5J1.Sldivlslon UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95·1064 15-157 PRINTED IN USA APPLICATION NOTE U-90 An Off-line Forward Converter drive power coming from winding N2. The low-current start-up characteristics ofthe UC1524A allow starting energy to be developed in C 2 with only approximately 8mA required through R 1. For low to medium power applications, a single-elided flybac~ or forward converter with all the control on.the primary side ofthe isolation step-down transformer is usually the most economical solution, However there are two complications with this approach. The first is that although the control circuitry can easily be driven from a low-voltage winding on the power transformer, starting energy must be taken from the high-voltage rectified line where, at 170VDC, every 10mA represents a 1.7W loss. The second complication is in obtaining adequate regulation of the output while still meeting isolation requirements from output back to the line. The problem of isolated feedback control is solved in this application by sampling the 5V output level at the switching frequency by means of the 2N2222 transistor and transformer T 2' With every switching cycle, the output voltage is transferred from N1 to N2 where it is peak detected to generate a primary-rElferenced signal to drive the PWM error amplifier. Diode D2 is used to temperature compensate for the loss in the rectifier, D1 and the net result is better than 1% regulation with the main added cost that of a very inexpensive signal transformer. The 50W forward converter of Figure 16 offers innovative solutions to both these problems. In this circuit, the UC1524A provides all the control with its operating Some of the other features of this application include a duty-cycle clamp on the PWM formed by diode D3 D' lN914 ,---+-____ "--!INV IN O",F "h 1 1'N- D' lN914 "~Ef D3 IN914 ~" COMP RF '" L1 COUPLED INDUCTOR CORE: A 438281-2 MPP Nl: 13T, 18AWG N2: 29T, 18AWG T1 POWER TRANSFORMER CORE: EC3S-3C8 EE Nl: 124T, 24AWG N2: 16T. 28AWG N3: 14T, 20AWG N4: 28T, 22AWG RSC-OT eLI I T2 FEEDBACK TRANSFORMER CORE: 204T 250-3C8 Nl: 14T, 36AWG N2: 14T, 36AWG N3: 17T. 36AWG '00 ,F FIGURE 16 - This 50W Off-Line Forward Converter Features Both High Efficiency and Good Regulation while Maintaining Input-Output Isolation. UNITROOE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEl. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 15-158 PRINTED IN USA APPLICATION NOTE and the 10k -1.5k divider from VREF• This method of clamping is more effective with the UC1524A since the UV lockout keeps the outputs off until the reference, error amplifier, and oscillator are all operating within specification. U·90 0- 100macm 0- .5acm Drive for the UMT13005 high-voltage switch is accomplished by using the emitters of the UC1524A's output transistors for turn-on and the 2N2222 in conjunction with the 1JLfd base capacitor to provide a negative base voltage for rapid turn-off as described in Figure 10. The resultant drive Signal is shown in Figure 17. Operating at 40kHz, this regulator provides an isolated 50W of power with an efficiency of 83%, a high degree of regulation, and fast overload protection. Conclusion Although there are now many new integrated circuits from which to choose in attempting to build more costeffective power supplies, it always helps to review well established ideas. In the case of the UC1524A, updating and improving an earlier product has resulted in a significant advancement: providing greater performance and versatility while reducing system costs. at Full Load (50W) FIGURE 17 - Base Current (Upper Trace) and Collector Current for the UMT 13005 of Figure 16. The Time Base is 5J-tS per Division. III UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 15-159 PRINTED IN USA APPLICATION NOTE U-91· APPLYING THE UC1840 TO PROVIDE TOTAL CONTROL FOR LOW COST, PRIMARY REFERENCED SWITCHING POWER SYSTEMS 1. Introduction There are many potential approaches to be oonsidered in switch mode power supply design; however, the contradictory requirements of minimum cost and compatibility with ever more demanding line isolation specifications make primary control very attractive. Application of the UC1840 as a primary-side, off-line controller presents an extremely cost-effective approach to supplying isolated power from a widely varying input line while maintaining a high degree of efficiency. control and power switch. This eliminates many of the transitions across the isolation boundary which significantly increase the cost of the magnetics portion of the power supply's budget. There are two disadvantages to primary control: (1) operating or at least starting, the control electronics from the line voltage (typically 300 VDC), and (2) providing adequate regulation (which requires feedback from the secondary across the isolation boundary). The capability of the UC1840 Control IC to solve these problems while providing all of the regulating, sequencing, monit9ring, and protection functions referenced to the primary side. makes this device very attractive . Primary control means referencing all of the control electronics along with the power switching device on the input line side of an isolation transformer. An obvious advantage to this approach is the simplified interface between the .---------------{ll ~~NSE f - - - 1 r - - - - - - - - - - - { 1 0 RAMP RdC r 9>---------G~J;:==~===:::;_t----1 VI" SUPPLY DRIVER BIAS PWM OUTPUT 50V REF GROUND L=====:::::;:---,-{8 SLOW STARTI DUTY CYCLE CLAMP OR -"""-~-'---J 7 CURRENT SENSE 400mV FIGURE 1. THE OVERALL BLOCK DIAGRAM OF THE UC1840. AN INTEGRATED CIRCUIT OPTIMIZED FOR PRIMARY-SIDE CONTROL OF OFF-LINE SWITCHING POWER SUPPLIES UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON. MA 02173 • TEL (6171 861·6540 TWX (710) 326·6509 • TELEX 95·1064 15-160 PRINTED IN U.S.A APPLICATION NOTE 2. U·91 The UC1840 Controller (7) The overall block diagram of the UC1840, shown in Figure 1, includes the following features: (1) (2) (3) (4) (5) (6) Fixed-frequency operation set by userselected components A variable-slope ramp generator for constant volt-second operation providing open-loop line regulation and minimizing, or in some cases even eliminating, the need for feedback control A drive switch for low current start-up off the high-voltage line A precision reference generator with internal over-voltage protection Complete under-voltage, over-voltage, and over-current protection including progrllmmable shutdown and restart A high-current, single-ended PWM output optimized for fast turn-off of an external power switch Logic control for pulse-commandable or DC power sequencing For an understanding of how these individual blocks work together in a typical, mediumpower, flyback power supply, reference should be made to Figure 2 and the functional description which follows. 3. UC1840 Functional Description 3. 1 Power Sequencing A simplified schematic of the UC1840's internal power turn-on circuitry is shown in Figure 3. The key elements of this function are: (1) the Driver Bias Switch, Q3, which keeps the loading on the control voltage line, Vc, to a minimum during start up; (2) the Under-voltage Comparator which also functions as a Start Threshold Detector with programmable hysteresis; and (3) an auxiliary, primary-referenced, low-voltage winding on the main power transformer which provides normal control power after turn-on. The sequence of events is as follows: DC INPUT LINE AC INPUT A1 A2 A3 FIGURE 2. A FULLY PROTECTED. ISOLATED FLYBACK POWER SUPPLY CAN BE IMPLEMENTED WITH THE UC1840. A HIGH-VOLTAGE POWER SWITCH. THE TRANSFORMER. AND A SMALL HANDFUL OF PASSIVE COMPONENTS. UNITROOE CORPORATION. 5 FORBES ROAO LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326·6509 • TELEX 95·1064 15-161 PRINTED IN U.S.A . U·91 APPLICATION NOTE DC INPUT LINE R1 01 CONTROL VOLTAGE Vc r---------------I UC1840 I INTERNAL . CHIP SUPPLY 15--,I FEEDBACK WINDING II . Q3 I I R2 POWER TRANSFORMER TO PWMDRIVE I I + ·5v CIN R3 Rs TOPWM COMP SLOW 8 TURN ONI Q2 = I IL _______ I I ~ ___________ I ~ r FIGURE 3. THE UC1840's START CIRCUITRY REQUIRES LOW STARTING CURRENT FROM THE DC INPUT . LINE WITH NORMAL OPERATING CURRENT SUPPLIED FROM A LOW-VOLTAGE FEEDBACK WINDING ON THE POWER TRANSFORMER (1) While the control voltage, Vc, is low enough so that the voltage on pin 2 is less than 3V, the StartlUV Comparator does the following: Comparator then does the following: (a) Turns off 01, eliminating the 200J.lA hysteresis current. This allows the voltage on Vc to drop before reaching the under-voltage fault level defined by: A 200J.lA hysteresis current is flowing into pin 2 through 01 causing an added drop across R2. (b) The drive switch is holding the Driver Bias transistor, 03, OFF. This insures thatthe only current required through R1 is the start-up current of the UCl840, plus external dividers (R2, R3, Rs, etc.). (c) The Slow Turn-on transistor, Q2, is ON, holding pin 8 and Cs low. (d) The Start Latch keeps the undervoltage signal from being defined as a fault. The start level is defined by: (a) (2) Vc (start) = 3 (R2:3 R3) Vc (U.V. fault) = 3 (R2 :3 R3) (b) (c) (d) (3) + 0.2 R2. When Vc rises to this level, the Start/UV UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 15-162 Sets the Start Latch to monitor for an under-voltage fault. Activates 03 providing Driver Bias to the power switch, pulling the added current out of Cin. Turns off 02 allowing for programmed slow turn-on defined by Rs and CS. A normal start-up occurs with the control voltage, Vc, following the path shown in Figure 4. If the power supply does not start, Vc will fall to an under-voltage fault which will then either initiate a restart attempt or hold fhe power switch off, depending upon PRINHO IN lJ S A U-91 APPLICATION NOTE the status of the Reset terminal as defined under Fault Sequencing (Para. 3.4.2). If start-up does not occur because of some fault in the Driver Bias line, Vc will continue to rise until the 40V zener across the reference circuit conducts. This will then clamp Vc to that level, protecting the control chip. 3_2 Slow Turn-on Circuit The PWM comparator input connected to pin 8 accommodates several programming functions, shown in Figure 6. Since this comparator will only follow the lowest positive input, holding pin 8 low will effectively eliminate a PWM signal, regardless of the status of the Error Amplifier output. Prior to turn-on, and at all times when a fault has been sensed, 01 is ON, holding pin 8 low. After start-up occurs, current will continue to flow in R1 providing a power loss of: (Vline - VC)2 R1 Pd = I I I Vc B 8 D C A 5 VAEF OR DC INPUT LINE I UC1840 - - - ..-- .....-- UV VIN 3',1 W 0 HYSTERESIS (UV FAUL n FAULT -) SHUTDOWN 01 811 CHIP INTELLIGENT " - - - - - - - - - - - _ TIME FIGURE 4 UNDER A NORMAL TURN-ON. THfO SUPPLY VOL TAGE TO THE UC1840. Ve. WOULD RISE LIGHTLY LOADED TO THE START LEVEL. FALL UNDER THE TURN-ON LOAD. AND THEN REGULATE AT SOME INTERMEDIATE LEVEL Note that where starting energy is stored in an input capacitor, the time for PWM turn-on must be less than the time required for the added Driver Bias load current to discharge the input capacitor to the under-voltage fault level. In other words, referring back to Figure 4, the slow turn-on must be faster than the time required for Vc to fall from level B to level E. RI UES1001 POWE:.A TRANSFORMER fEEDBACK WINDING Another function of pin 8 is to establish a maximum duty cycle limit. This is achieved by clamping the voltage on pin 8 with a divider formed by adding Rdc to ground. If Rs is taken to the SV reference, the clamp voltage will be fixed, which is desirable if the ramp slope is also fixed. If the ramp slope is varied with the input line-for constant volt-second operation-then the clamp voltage on pin 8 must also vary. This is readily accomplished by connecting Rs to the DC input line. The divider II FIGURE 5. THE ADDITION OF 01 AND 02 CAN ELIMINATE THE STEADY-STATE CURRENT THROUGH R1 AFTER TURN-ON 02 IS SELECTED TO PASS ALL CONTROL CURRENT THROUGH ITS BASEEMITTER JUNCTION. UNITROOE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173· TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 r~-}oc When 01 turns off, allowing pin 8 to rise with a controlled rate will cause the output pulses to increase from zero to nominal widths at the same rate. This is accomplished by the addition of Cs and a charging source, such as Rs, to the SV reference_ DC INPUT LINE 01 I I -.J FIGURE 6 PIN 8 ON THE UC1840 CAN BE USED FOR BOTH SLOW TURN-ON AND DUTY-CYCLE LIMITING AS WELL AS A PWM SHUTDOWN PORT If this loss is objectionable, it can be reduced more than an order of magnitude by the addition of a two-transistor switch shown in Figure 5. In this circuit, 01 is initially driven on by current through R2. When the feedback winding starts to conduct through D1, however, 02 turns on leaving only R2 conducting from the input line. R2 I A·. voltage: 15-163 VPin 8 = (RS :d~dC) V DC input PRINTED IN U.S.A APPLICATION NOTE U·91 r UC1840 I I VREF L.:.JI ----------, RA ..--' OSCILLATOR I--_C_LO_C.,K_ _-.,._ _ _...::R:..j GE::R~OR I I I I 12 SENSE ____R, vv-e----i Vo VREF _---'NY., I I I I PWM LATCH CURRENT LIMITING .--J ~ ____ .SLOW TURN-ON CA 6Z~PUT I FIGURE 7. THE PULSE-WIDTH MODULATOR WITHIN THE UC1840 SEPARATES THE RAMP FUNCTION FROM THE FIXED-FREQUENCY OSCILLATOR. +5v should be equal to the ramp voltage level that yields the desired maximum duty cycle, at the same DC input level. RT 3.3 PWM Control Puls6-Width Modulation within the UC1840 consists of the blocks shown in Figure 7. This architecture, with the possible exception of the separation between the time-base and ramp functions, is fairly conventional. It is described in greater detail in the paragraphs which follow. TO PINg C~CT POSITIVE -------J CLOCK ------, 3.3.1 Oscillator A constant clock frequency is established by connecting Rt from pin 9 to the 5V reference and Ct from pin 9 to ground. The frequency is approximated by: 51 OHMS FIGURE 8. SYNCHRONIZATION TO AN EXTERNAL TIME BASE CAN BE ACCOMPLISHED BY ADDING A 510 RESISTOR IN SERIES WITH CT. where the value of Rt can range from 1kn to 100kn and Ct from 300pF to O.1J.lF. The best temperature coefficients occur with Ct in the range of 1000 to 3OOOpF. Although the clock output pulse is not available external to the UC1840, synchronization to an external clock can still be accomplished with the circuit of Figure 8, where R1 and C1 are selected to provide a O.5V, 200ns pulse across the 51 n resistor, and Rt and Ct define a frequency slightly lower than the synchronizing source. UNITROOE CORPORATION. 5 FORBES ROAO LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326-6509 • TELEX 95·1064 R1 To achieve minimum start-up current, the oscillator is not activated until the input voltage is high enough to give a start command to the drive switch. 3.3.2. Ramp Generator The ramp generator function of the UC1840 is shown in simplified form in Figure 9. 15-164 PRINTED IN U.S.A. APPLICATION NOTE TO DC LINE U-91 r-------l I I UC1840 . . , - -.....- _ 5 VREF 5 VREF TOPWM COMPARATOR R, I 01 1 COMPENSATION FIGURE 9. CURRENT MIRRORS 0,-04 ARE USED TO MAKE THE RAMP CHARG ING CURRENT ;2. LINEARLY PROPORTIONAL TO THE DC INPUT LINE FIGURE '0. THE OUTPUT OF THE ERROR AMPLIFIER OPERATES CLASS A TO 300I'A. BUT CAN SOURCE AND SINK MORE THAN, mA FOR FAST RESPONSE The small signal, open-lOOp gain characteristics are shown in Figure 11. The amplifier is unity-gain stable and has a maximum slew rate of just under 1V/f1S. The NPN and PNP current mirrors provide a charging current to Cr of: i2= il = Vline - 0.7V Rr Vline Rr 3.3.4 PWM Comparator and Latch This comparator (see Figure 7) generates the output pulse which starts at the termination of the clock pulse and ends when the ramp waveform crosses the lowest of the three positive inputs. The clock forms a blanking pulse which keeps the maximum duty cycle less than 100"10. The PWM latch insures there will be only one pulse per period and eliminates oscillation at comparator cross-over. The current mirrors are useful over a current range of 1/1A to 1mA, but optimum tracking occurs between 30/1A and 300/1A. Since the voltage across 01 is very small, i2 accurately represents the input line voltage. The ramp slope, therefore, is: dv Vline -d-t-= RrCr The peak voltage across Cr is clamped to approximately 4.2V while the valley, or low voltage, is determined by the on-voltage of the discharge network, 01 and 05. This is typically 0.7V. If line sensing is not required, Rr should be connected to the 5V reference for constant ramp slope. 60 "'w ~ 8'"0 3.3.3 Error Amplifier This is a voltage-mode operational amplifier with an uncommitted NPN differential input stage and an output configuration as shown in Figure 10. UNITRODE CORPORATION. 5 FORBES ROAO LEXINGTON. MA 02173 • TEL. (617) 861-6540 TWX (710) 326·6509 • TELEX 95·1064 50 I 40 " 30 ~ "- 20 ~ z ;;: "0 0 The 1kCl output resistor, Ro, is used both for short circuit protection and to limit the peak output voltage to less than 4.0V so it cannot rise above the clamped ramp waveform. At sink currents less than 3OO/1A, the low output level will be within 200mV of ground but it rises to 1Vat higher current levels. The input common mode range is from 1V to within 2V of the input supply voltage, Vin, and thus either input can be connected directly to the 5V reference. ---....., 70 0 '"'\ PHASE "'- 10 i'\.AIN 160 \. \. ~ 225 "'ww 270 0 315 "''J:" a: "\' f3 I w "- 360 \ ·10 100 " 100K 1M FREQUENCY - HERTZ FIGURE" 15-165 THE UC'840 ERROR AMPLIFIER HAS A DC GAIN OF 67 db. A 2 MEGAHERTZ BANDWIDTH. AND PHASE MARGIN OF APPROXIMATELY 45° PRINTED IN USA III U-9! APPLICATION NOTE 3.3.5 PWM Output Stage I n addition to the PWM output signal on pin 12, the UC1840 also includes an output gating, or arming function as Driver Bias on pin 14. Both functions should be considered together in interfacing to the external high-voltage power switch. These are illustrated in simplified form iri Figure 12. d!fferent ways to meet varying system requirements. One obvious application is when the use of II bipolar transistor switch requires more drive current than the Driver Bias output can provide. Figure 13 shows a more typical bipolar drive scheme where 05 has been added to boost the turn-on current with the UC1840 still providing the highspeed turn-off. The circuit now serves as a more efficient ''totem-pole'' driver since 05 turns off when 04 conducts. It also illustrates the use of a Baker Clamp to minimize storage time in 06 and the capacitors for rapid turn-on and high-current pulse turn-off. At very low input voltages (Vin < 3V), both 02 and 04 are OFF. This may necessitate the use of R2, but its value can be high since it does not have to turn the output switch off. It merely holds it in the off state during the early portion of start-up. Between Vin = 3V and the start threshold (pin 2 = 3V with hysteresis on), 02 is OFF and 04 is ON, clamping the power switch off with a low impedance. A start command (UV high) turns on 02, applying (Vin - 2V) to R1. This provides a source for power switch activation; however, since 04 is still conducting, the current through R1 is shunted to ground and the power switch remains held off. F- - J-, At tOO DAIVEA 02~A405 BIAS -22, t. UC1S40 At the same time 02 turns on, the clamping transistor at the slow-start terminal, pin 8, turns off allowing the voltage on pin 8 to rise according to the external slow-start time constant described earlier. This allows PWM pulses to begin to activate 04narrow at first and widening to the pOint where the error amplifier takes command. I I I . 06 A2 FIGURE 13. ADDING 05 AS A SWITCHED. DRIVE-BOOST TRANSISTOR PROVIDES ADDED BASE DRIVE FOR OS WHILE REDUCING THE STEADY-STATE CURRENT THROUGH BOTH 02 AND 04. The interface between the UC1840 and the primary power switch may be implemented in several -, UC1840 I VIN BIPOLAA MOSFET 01 STAAT S I G N A L _ - - - - - i DRIVE BIAS A1 CLOCK BLANKING PWM COMMAND A2 h 1- FIGURE 12. INTERFACING THE UC1840 PWM OUTPUT STAGE TO EITHER BIPOLAR OR POWER MOSFET SWITCHES. UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 15-166 PRINTED IN U.S.A U·91 APPLICATION NOTE 5v REF Another application is the two-transistor, off-line, forward converter topology shown in Figure 14. This circuit uses proportional base drive where the UC1840 neE!d only supply a short, turn-off current pulse with transformer regeneration through T1 providing the steady-state drive. The magnetizing current is controlled by R1, with 05 added to rapidly recharge C1 from which the turn-off current is supplied. Rl liMITING CURRENT SHUTDOWN +V LINE 400mV ire I I R2 Rsc ~ FIGURE 15. CURRENT LIMITING AND OVERCURRENT SHUTDOWN ARE IMPLEMENTED WITH COMPARATORS OF DIFFERENT THRESHOLDS AND A SINGLE CURRENT SENSE RESISTOR. voltage, it is activated when the voltage across Rsc equals that across R2. Comparator A2, with an offset voltage of 400mV, will activate for overcurrent shutdown when the voltage across Rsc rises to 400mV higher than the voltage across R2. Since the input bias to both comparators is less than 5JlA, a low-pass filter for noise rejection may be inserted I)etween Rsc and the sense inputs. Activation of comparator A2 is defined as an overcurrent fault and it triggers the Error Latch. Its operation follows. FIGURE 14 INTERFACING THE UC1840 SINGLE PWM OUTPUT TO A TWO-TRANSISTOR OFF-LINE FORWARD CONVERTER WHICH USES PROPORTIONAL BASE DRIVE. 3.4.2 Fault Sequencing The fault sequencing logic of the UC1840 is shown in Figure 16. Since a fault is defined by this device as an activation of the Error Latch, it makes sense to start here in an attempt to understand this portion of the circuitry. Setting the Error Latch immediately turns on 01 and 02, discharging the slow-start capacitor and terminating the PWM output. Note that there is an additional path from the inverted output of the Start/UV comparator through OR2 which keeps pin 8 low. This is to keep the slow-start low during initial turn-on which is not intended to be classified as a fault. 3.4 Fault Protection A significant benefit in using the UC1840 is the multi-faceted fault-sensing and programming capability built into the device. With the intent to provide complete control to the power system under all types of potential malfunctions, faultsensing circuitry has been included to sense overvoltage, under-voltage, or over-current conditions. Additionally, high-speed, pulse-by-pulse digital current limiting is included as a separate function. The operation of these circuits is described below. 3.4.1 Current Limiting The current limit comparators have differential inputs for noise rejection but are intended to be used with ground-referenced current sensing as in Figure 15. Comparator A1 is delegated to pulseby-pulse current limiting. The output of this comparator drives the PWM comparator, where it activates the PWM latch, terminating each pulse when the current sensed by Rsc reaches a threshold defined by divider R1, R2, and the 5V reference. Since Vc is intended to track the supply's output voltage, the addition of a resistor from pin 6 to Vc will provide some foldback to the current limit characteristic. Since comparator A1 has zero offset UNITROOE CORPORATION· 5 FORBES ROAD LEXI NGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95·1064 POWER SWITCH PULSE BY PULSE The input to the Error Latch is from OR1 which triggers on signals resulting from four possible events: (1) A voltage less than 3V (after prior turn-on) at the Start/UV sense terminal, pin 2 (2) A voltage greater than 3V at the OverVoltage Sense terminal, pin 3 (3) A voltage of less than 3V on the Ext. Stop terminal, pin 4 (4) An over-current signal resulting in a differential voltage between pins 7 and 6 of greater than 400mV 15-167 PRINTED IN u.s A U-91 APPLICATION NOTE To PWM .......: - - - - - . . . . , . . . - - - - - - - ; - - , - - _ T O DRIVE SWITCH COMPARATOR SLOW START -----1"-1' 5. FIGURE 16. FAULT SEQUENCE LOGIC IS DESIGNED TO INSURE A COMPLETE SHUTDOWN AND FULLY CONTROLLED RESTART UPON ANY OF FOUR POSSIBLE FAULT CONDITIONS. Any of these inputs need only be momentary to set the Error Latch. Transient protection may be necessary to eliminate false triggering, but it can be readily accomplished as all the comparator inputs are high impedances requiring less than 2p.A of input current, and the 3.0V reference yields a high noise immunity. the Error Latch, the Reset Latch is free to take the state commanded by pin 5: high if pin 5 is low and vice-versa. The latch allows merely a pulse to set the Reset Latch; the voltage on pin 5 need not be steady state. With a high Reset Latch output, the Error Latch still does not reset until a low signal is sensed on the StartlUV sense terminal. At that point, AND1 then resets both the Error Latch and the Start Latch, reestablishing the initial conditions for a normal start after fully charging the input capacitor. Of course, if the fault is still present, when the StartlUV input reaches the start level terminating the Error Latch reset signal, this latch will immediately set again. The Start Latch can be understood by recognizing that at initial turn-on it is reset with a low output. This prevents AND2 from transmitting a UV fault signal from the StartlUV non-inverting output to the Error Latch. At the start voltage level, defined by a high level on the Start/UV non-inverting ouput, the Start Latch sets but AND2 still provides no output. Only when tl:te Start/UV input goes low again, with the Start Latch output held high, will AND2 yield an output into the Error Latch. To aid in the understanding of this logic, Figure 17 gives a pictorial representation of its operation with both steady-state and momentary signals on both the Ext. Stop and Reset terminals. The status of the ReSet terminal, pin 5, determines what happens after the Error Latch is set. The choices are: (1) (2) (3) (4) If Driver Bias turn-on is used to pump an increment of charge into an integrating capacitor, and that capacitor voltage is applied to the Reset Terminal, some number of retrys could be programmed to take place before the Reset voltage rises to 3V, which would then lock the output OFF. Since Driver Bias continues to cycle in the latched-off state, the Reset terminal will remain high until it is either remotely pulled low or the input voltage to the controller is interrupted .. Latch off and require a recycle of input voltage to restart Continuously attempt to restart Attempt some number of restarts and then latch off Latch off and await a momentary reset pulse to restart To examine the operation of the Reset Latch; note that prior to setting the Error Latch, its low output is inverted to hold the reset input to the Reset Latch high. This forces the Reset Latch's ouput low, regardless of the voltage on pin 5, and, thus, insures no signal out of AND1. With the setting of UNITROOE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326·6509 • TELEX 95·1064 Note that an important element in any restart after a shutdown is the lowering of the voltage at the Start/UV terminal below its UV threshold. While this will occur normally in bootstrap-driven applications, this device can also be used with a con- 15-168 PRINTED IN U.S.A APPLICATION NOTE U·91 stant driving voltage by externally applying a momentary pull-down signal to the Start/UV input after a fault shutdown. 4. Conclusion With the UC1840, power supply designers now have a device specifically developed for off-line, primary control and one which has addressed the problems of operation under less than "ideal" or normal conditions. Not only does this device make it easier to comply with stringent isolation requirements by requiring a minimum of communication between primary and secondary, but it is also ideally suited for powering systems in remote locations where only a simple transmitted pulse is available for power sequencing. Be Of f G HI! 1\ L I I I I III I I I I !.INO I I I P I OR'> I I I T 1I V I I I A B C o E F PWMou~~Iill EVENT TIME G H I J mmmmll U K L M N ~------~--~~ 6~t~~:~ ~~6~bk~ o p a R s NOTE 1 Vc REPRESENTS AN ANALOG OF THE SUPPLY OUTPUT VOL TAGE GENERATED BY A PAIMARY·REFERENCED SECONDARY WINDING ON THE POWER TRANSFORMER IT IS THE VOLTAGE MONITORED BY THE START/UV COMPARATOR AND, IN MOST CASES, IS THE SUPPLY VOLTAGE, VIN. FOR THE UC1840 T U V INITIAL TURN-ON Vc RISES WITH LIGHT LOAD START THRESHOLD DRIVER BIAS LOADS Vc OPERATING PWM REGULATES Vc STOP INPUT seTS ERROR LATCH TURNING OFF PWM uv LOW THRESHOLD ERROR LATCH REMAINS seT START TURNS ON DRIVER BIAS BUT ERROR LATCH STill seT Vc AND DRIVER BIAS CONTINUE TO CYCLE STOP COMMAND REMOVED ERROR LATCH RESET AT UV LOW THRESHOLD START THRESHOLD NOW REMOVES SLOW·START CLAMP RETURN TO NORMAL RUN STATE RESET LATCH SET SIGNAL REMOVED ERROR LATCH SET WITH MOMENTARY FAULT ERROR LATCH DOES NOT RESET AS RESET LATCH IS REseT vc AND DRIVER BIAS RECYCLE WITH NO TURN·ON RESET LATCH IS SET WITH MOMENTARY RESET SIGNAL Vc MUST COMPLETE CYCLE TO TURN ON $T ART AND ERROR LATCHES RESET NORMAL START INITIATED RETURN TO NORMAL RUN STATE FIGURE 17. THE INTERRELATIONSHIP BETWEEN THE FUNCTIONS CONTROLLED BY THE FAULT SEQUENCE LOGIC IS ILLUSTRATED WITH BOTH STATIC AND PULSE COMMANDS ON THE EXT. STOP AND RESET TERMINALS. III UNITROOE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95·1064 15·169 PRINTED IN U S.A U-93 APPLICATION NOTE A NEW INTEGRATED CIRCUIT FOR CURRENT-MODE CONTROL Abstract The inherent advantages of current-mode control over conventional PWM approaches to switching power converters read like a wish list from a frustrated power supply design engineer. Features such as automatic feed forward, automatic symmetry correction, inherent current limiting, simple loop compensation, enhanced load response, and the capability for parallel operation all are characteristics of current-mode conversion. This paper introduces the first control integrated circuit specifically designed for this topology, defines its operation and describes practical examples illustrating its use and benefits. 1.0 Introduction Figure 1 illustrates a simplified block diagram of a fixed frequency buck regulator employing currentmode control. As shown, the error signal, Ve , is controlling peak switch current which, to a good approximation, is proportional to average inductor current. Since the average inductor current can change only if the error signal changes, the inductor may be replaced by a current source, and the order of the system reduced by one. This results in a number of performance advantages including improved transient response, a simpler, more easily designed control loop, and line regulation comparable to conventional feed-forward schemes. Peak current sensing will automatically provide flux balancing thereby eliminating the need for complex balance schemes in push-pull systems. Additionally, by simply limiting the peak swing of the error voltage Ve , instantaneous peak current limiting is accomplished. Lastly, by feeding identical power stages with a common error signal, outputs may be paralleled while maintaining equal current sharing. Over the past several years an increased interest in current-mode control of switching inverters has surfaced in the literature. Originally invented in the late 1960s, this scheme was not publicly reported until 1977(1) and has seen rapid development by many authors to date.(2-6) In short, current-mode control uses an inner or secondary loop to directly control peak inductor current with the error signal rather than controlling duty ratio of the pulse width modulator as in conventional converters. Practically, this means that instead of comparing the error voltage to a voltage ramp, it is compared to an analogue of the inductor current forcing the peak current to follow the error voltage. Although the advantages of current-mode control are abundant, wide acceptance of this technique has been hampered by a lack of suitable integrated circuits to perform the associated control functions. This paper introduces a new integrated circuit designed specifically for control of current-mode converters. Circuit function and features are described in detail, and a comparative deSign example is used to illustrate the numerous advantages of this approach. CLOCK - - ' ' - - - - ' - _ - ' -_ _ ::J[([([ LATCH OUTPUT n -.J W n n L..J L. FIGURE 1. A FIXED FREQUENCY CURRENT -MODE CONTROLLED REGULATOR. UN(TRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 2.0 UC1846 Chip Architecture In addition to all the functions required of conventional PWM controllers, a current-mode controller 15-170 PRINTED IN USA APPLICATION NOTE U·93 } - - - - - - - - - - - - - 1 2 VREF t-+----f11 A OUT.JL UC1846 OUTPUT STAGE ,--t---t------------i1 C~~J~~t FIGURE 2 UC1846 BLOCK DIAGRAM must be able to sense switch or inductor current and compare it on a pulse-by-pulse basis with the output of the error amplifier. As may be seen in the block diagram of Figure 2, this is accomplished in the UC1846 by using a differential current sense amplifier with a fixed gain of 3. The amplifier allows sensing of low level voltages while maintaining high noise immunity. A list of other features, while not unique to current-mode conversion, demonstrates the advanced, state-of-the-art architecture of the UC1846: • Under-voltage lockout with hysteresis to guarantee outputs will stay "off" until reference is in regulation. • Double pulse suppression logic to eliminate the possibility of consecutively pulsing either output. • Totem pole output stages capable of sinking or sourcing 100mA continuous, 400mA peak currents. These various features, along with their interrelationships and applications to switched-mode regulators, will be further discussed in the following sections. • A ± 1%, 5.1 V trimmed bandgap reference used both as an external voltage reference and internal regulated power source to drive low level circuitry. 3.0 • A fixed frequency sawtooth oscillator with variable deadtime control and external synchronization capability. Circuitry features an all NPN design capable of producing low distortion waveforms well in excess of 1 MHz. • An error amplifier with common mode range from ground to Vcc-2V. • Current limiting through clamping of the error signal at a user-programmed level. • A shutdown function with built in 350mV threshold. May be used in either a latching, or nonlatching mode. Also capable of initiating a "hiccup" mode of operation. UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON. MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 15-171 UC1846 Functional Description 3.1 Current Sense Amplifier The current sense amplifier may be used in a variety of ways to sense peak switch current for comparison with an error voltage. Referring to Figure 2, maximum swing on the inverting input of the PWM comparator is limited to approximately 3.5V by the internal regulated supply. Accordingly, for a fixed gain of 3, maximum differential voltages must be kept below 1 .2V at the current sense inputs. Figure 3 depicts several methods of configuring sense schemes. Direct resistive sensing is simplest, however, a lower peak voltage may be required to minimize power loss in the sense resistor. Transformer coupling can provide isolation and increase effi- PRINTED IN U.S A U-93 APPLICATION NOTE ciency at the cost of added complexity. Regardless of scheme, the largest sense voltage consistent with low power losses should be chosen for noise immunity. Typically, this will range from several hundred millivolts in some resistive sense circuits to the maximum of 1.2V in transformer coupled circuits. series with the input is generally all that is required to reduce the spike to an acceptable level. lk / / 500pf // / I ""n / I I / / FIGURE 4. RC FILTER FOR REDUCING SWITCH TRANSIENTS A) RESISTIVE SENSING WITH GROUND REFERENCE 3.2 Oscillator Although many data sheets tout 300 to 500kHz operation, virtually all PWM control chips suffer from both poor temperature characteristics and waveform distortions at these frequencies. Practical usage is generally limited to the 100 to 200kHz range. This is a direct consequence of having slow (f t = 2MHz) PNP transistors in the oscillator signal path. 8y implementing the oscillator using all NPN transistors, the UG1846 achieves excellent temperature stabillity and waveform clarity at frequencies in excess of 1MHz. ~ENSE I B) RESISTIVE SENSING ABOVE GROUNO CURRENT XFORMER ~L---6--}~~lllt,~ C.) ISOLATED CURRENT SENSING RT FIGURE 3. VARIOUS CURRENT SENSE SCHEMES In addition, caution should be exercised when using a configuration that senses switch current (Figure 3A) instead of inductor current (Figure 38). As the switch is turned on, a large instantaneous current spike can be generated in the sense resistor as the collector capacitance of the switch is discharged. This spike will often be of sufficient magnitude and duration to trip the current sense latch and result in erratic ope'ration of the PWM circuit, particularly at lower duty cycles. A small RG filter (Figure 4) in UNITRODE CORPORATION. 5 FORBES\ROAD LEXINGTON. MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 15-172 SYNC OSCILLATOR (PINS) / ./\ /""\ ~ /"\ \ ~ SYNC (PIN 10) - I 1 - OUTPUT DEADTIME (rd) FIGURE 5. OSCILLATOR CIRCUIT Referring to Figure 5, an external resistor RT is used to generate a constant current into a capacitor GTto PRINTED IN U.S A U·93 APPLICATION NOTE A plot of output deadtime versus CTfor two values of RT is given in Figure 7. produce a linear sawtooth waveform. Oscillator frequency may be approximated by selecting RT and CT such that: 2.2 fose= - - RT CT Although timing capacitors as small as 1OOpF can be used successfully in low noise environments, it is generally recommended that CT be kept above 1OOOpF to minimize noise effects on the oscillator frequency (see Section 4.0). (1 ) Where RT can range from 1K to 500K and CT is above 100pF. For quick reference a plot of frequency versus RT and CT is given in Figure 6. Synchronization of one or more devices to either an external time base or another UC1846 is accomplished via the bi-directional SYNC pin. To synchronize devices, first, CT must be grounded to disable the internal oscillator on all slaved devices. Second, an external synchronization pulse must be applied to the SYNC terminal. This pulse can come directly from the SYNC terminal of a master UC1846 or, alternatively, from an external time base as shown in Figure 8. FREQUENCY - KILOHERTZ .n FIGURE 6. OSCILLATOR FREQUENCY AS A FUNCTION OF RT AND T c Jlov 2.0 Again referring to Figure 5, the oscillator generates an internal clock pulse used, among other things, to blank both outputs and prevent simultaneous cross conduction during switching transitions. This output "deadtime" is controlled by the oscillator fall time. Fall time, in turn, is controlled by CT according to the formula: rd = 145 CT [12 - 3.~~RT(kQ;J ' ......- - 1 - - - FIGURE 8. SYNCHRONIZING THE 1846 TO AN EXTERNAL TIME BASE 3.3 Current Limit One of the most attractive features of a currentmode converter is its ability to limit peak switch currents on a pulse-by-pulse basis by simply limiting the error voltage to a maximum value. Referring to Figure 9, peak current limiting in the UC1846 is accomplished using a divider network, Rl and R2 , to set a pre-determined voltage at pin 1. (2) For large values of RT: rd=145CT (3) 1000.------,-------,------, i~ II lOOb-----4------+.7S~--~ , i; ::! ~ 10b----~·~~~---+----~ ~ ~ ;; " 1.0 10 100 OUTPUT DEAD TIME, T d - MICROSECONDS FIGURE 7. OUTPUT DEAD TIME AS A FUNCTION OF TIMING CAPACITOR CT UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEl. (617) 861-6540 TWX (710) 326·6509 • TELEX 95-1064 FIGURE 9. PEAK CURRENT LIMIT SET UP 15-173 PRINTED IN U.S.A. APPLICATION NOTE U·93 This voltage, in conjunction with 01,acts to clamp the output of the error amplifier at a maximum value. Since the base emitter drop of 0 1 and the forward drop of diode D1 very nearly cancel, the negative input of the comparator will be clamped atthevalue VPIN 1 -O.SV. Following this through to the input of the current sense amplifier yields: VPIN 1 -O.S Vcs = 3 (4) Where Vee is the differential input voltage of the current sense amplifier. Using this relationship, a value for maximum switch current in terms of external programming resistors can be derived, resulting in: R2 (VREF) - O.S ICL = R1 + R2 -'------=:.-- 3R s (S) While still on the subject of resistor selection, it should be pointed out that R1 also supplies holding current for the shutdown circuit, and therefore should be selected prior to selecting R2 as outlined in the next section. One last word on the current limit circuit. As may be seen from equation S, any signal less than O.SV at the current limit input will guarantee both outputs to be off, making pin 1 a convenient point for both shutting down and slow starting the PWM circuit. For example, both the under-voltage lockout and shutdown functions are connected internally to this point. If a capacitor is used to hold pin 1 low (Figure 10) then as the input voltage increases above the under-voltage lockout level, the capacitor will charge and gradually increase the PWM duty cycle to its operating point. In a similar manner if the shutdown amplifier is pulsed, the shutdown SCR will 'be fired and the capacitor discharged, guaranteeing a shutdown and soft restart cycle independent of input pulse width. TO UNDER· VOLTAGE LOCKOUT FIGURE 11. SHUTDOWN CIRCUITRY For example, the shutdown circuit of Figure 12, operating in a non latched mode, will protect the supply from overcurrent fault conditions. Many times, if the output of a supply is shorted, circulating currents in the output inductor will build to dangerous levels. Pulse-by-pulse current limiting with its inherent time delay, will in general not be able to limit these currents to acceptable levels. Figure 12 details a circuit which will provide shutdown and soft-restart if the overcurrent threshold set by R3 and R4 is exceeded. This level should be greater than the peak current limit value determined by R1 and R2 (see equation 5). Sometimes called a "hiccup mode", this overcurrent function will limit both power and peak current in the output stages until the fault is removed. TO PWM COMPARATOR r FIGURE 10. USING UNDER-VOLTAGE LOCKOUT AND SHUTDOWN TO INITIATE A SLOW START. UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON. MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 3.4 Shutdown The shutdown circuit, shown in Figure 11, was designed to provide a fast acting general purpose shutdown port for use in implementing both protection circuitry and remote shutdown functions. The circuit may be divided into an input section consisting of a comparator with a 3S0mV temperature compensated offset, and an output section consisting of a three transistor latch. Shutdown is accomplished by applying a signal greater than 3S0mV to pin 16, causing the output latch to fire, and setting the PWM latch to provide an immediate signaltothe outputs. At this pOint, several things can happen. 0 1 requires a minimum holding current, IH, of approximately 1.SmA to remain in the latched state. Therefore, if R1 is chosen greater than SkQ, 01 will discharge any capacitance, Cs, on pin 1 to ground and commutate the output latch, allowing C s to recharge. If R1 is chosen less than 2.SkQ, 0 1 will discharge Cs and remain in the latched state until power is externally cycled off. In either case, Cs is required only if a soft-start or soft-restart function is desired. 15-174 PRINTED IN USA U-93 APPLICATION NOTE placed in the feedback loop to reduce high frequency gain and allow the output capacitor (low ESR) to roll off loop gain to OdB at 3kHz. While not demonstrated in Figure 13, fixed frequency current-mode converters are known to be unstable above 50% duty cycle without some form of slope compensation C4-61. By injecting a small current from the sawtooth oscillator into the positive terminal of the current sense amplifier, slope compensation is accomplished, and the converter can be operated in excess of 50% duty cycle. An alternate, but just as effective, scheme would be to inject the signal into the negative terminal of the error amplifier. R, FIGURE 12. OVER CURRENT SENSING WITH THE SHUTDOWN CIRCUIT PRODUCES A SHUTDOWN - SOFT RESTART CYCLE TO PROTECT OUTPUT DRIVERS As may be seen, a similar parts count for both supplies was encountered. Topologically, using the UC1525A shutdown terminal provided only a crude current limit in contrast to the UC1846. Furthermore, internal double pulse suppression circuitry of the UC1846 gave an added level of protection against core saturation - important if your regulator is prone to subharmonic oscillations. Since both regulators were over-designed to withstand a short circuit on the output with resultant high peak currents, the shutdown-restart mode of the UC1846 was not used. 4.0 Noise Immunity As in all PWM circuits, some simple precautions should be observed to prevent switching noise from prematurely triggering the oscillator as it approaches its upper threshold. This is most evident when large capacitive loads - such as the gates of power FETS - are directly driven from outputs A and B. As the duty cycle approaches 100%, the current spike associated with this output capacitance can cause the oscillator to prematurely trigger with a resulting shift upward in frequency. By separating high current ground paths from low level analog grounds, using Cr values greater than 1000pF grounded directly to pin 12, and decoupling both VIN and VREF with good quality bypass capacitors, noise problems can be avoided. It should be pointed out at this time that one of the main features of a current-mode converter of this type is its ability to be paralleled with similar units. By disabling the oscillator and error amplifiers (CT grounded, +E/ A to VREF, -E/ A grounded) of one or more slave modules, and connecting SYNC and COMP pins of the slave(s) respectively, the outputs may be connected together to provide a modular approach to power supply design. 5.0 Comparative Design Example To more vividly illustrate the advantages of currentmode control, a relatively simple push-pull forward converter was designed using two interchangeable control sections, as shown in Figure 13. The control modules consist of (a) a UC1846 current-mode controller with associated circuitry, and (b) a conventional UC1525A PWM controller with its support circuitry. Loop compensation of the UC1525A was implemented by placing a zero in the feedback loop to cancel one of the polEls in the output stage, resulting in a unity gain bandwidth of approximately 3kHz - a commonly used technique. Compensating the current-mode converter requires somewhat of a different approach. Since the output stage contains only a single pole, in theory closing the loop will produce a stable system with no additional compensation. In practice, however, it has been shown that subharmonic oscillation will result from excess gain at half the switching frequencyC51. Therefore, a pole-zero combination has been UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 Starting with Figure 14, a comparison of line and load step responses is made between the two converters. As a result of the feed-forward effect of the current-mode converter, response to a step input change shows more than an order of magnitude improvement (Figure 14a) when compared to the conventional converter (Figure 14b). Although not as pronounced, response to a step load change leaves the UC1846 converter (Figure 15) with a clear advantage in·output response - 40mV as compared to 70mV for the UC1525A. Virtually all conventional push-pull converters are prone to flux imbalance caused by mismatched storage delays, etc., in the output stage. Figure 16 shows both converters operating with the same power stage. No effort was made to match output devices. As may be seen, there is little noticeable 15-175 PRINTED IN U.S.A III APPLICATION NOTE U·93 difference between switch currents of the UC1846. However, the UC1525A - with identical output IsDn 15 1"' transistors - shows phase B driving the core close to saturation with 50% more current than phase A. 2w VR[. 5k 11 AOUT ·r 005J,1f Cr +T, UC1846 +E/A B<'Ul " 3.2k lk ......._______' o-- .... -+----_--<~-__ The driver outputs on the UC1901 are emitter followers which are biased at 700J.lA. Therefore, if the drivers are operated without additional bias current the peak current through the transformer's primary winding cannot exceed this value. Figure Sa illustrates the relationship of the magnetizing current to the voltage across the transformer's input. If the reflected load currents are neglected, it can be seen that the minimum magnetizing inductance required for linear transfer of the modulator squarewave is given by: (1 ) Where: vp fc Ip the magnetizing inductance, the peak carrier voltage across transformer inputs, the UC1901 operating frequency, the bias current ofthe UC1901 drivers. FIGURE 5: TheUC1901 Driver Outputs Followthe Modulator Output Square WIllIe, (a.), Sourcing and Sinking Current Levels Dependent on Transformer Inductance, Carrier Frequenc~ and MlIIage Level. When the Bias Level of the Driver Outputs, I,., is Reached, (b.), a 1H-slate WIIlIeform is Coupled Across the Transformer, the Peak MlIIage Level Though, Remains AJ; proximately the Same. The Re"ecfed Load Currents are Assumed Negligible. As an example, consider the case where Vp is equal to 2V, fc is 100kHz, and the drivers are operating at their internal bias levels. Using equation 1, the inductance looking into the primary winding with no secondary load must be greater than 7.1 mHo Alternatively, if the carrier frequency is raised to 1MHz and the bias levels of the UC1901 drivers are increased to 3.SmA, then LM can be as low as 1S0J.lH. Using high permeability ferrite material, this level of magnetizing inductance can be realized with as little as 10 turns on a small toroid core. form. Actually, the amplitude information is still coupled even when the inductance is less than this minimum. In this case, the UC1901 drivers will support the voltage across the coil until the peak current is reached. The result, illustrated in Figure Sb, is a tri-state waveform at the transformer's input and output. Peak detection of this waveform yields the same amplitude information as the linear transfer case, although detection ripple will increase. Another situation which results in a tri-state waveform exists when the carrier duty cycle is not SO%. In this case, the volt-seconds across the transformer will be balanced by an "imbalancing" of the driver Equation 1 sets a minimum limit on the magnetizing inductance for linear transfer of the carrier wave- UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON. MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95·1064 15-183 PRINTED IN U.S Po. III U-94 APPLICATION NOTE bias levels. The imbalance will be sufficient to cause the peak current to be reached during the > 50% portion of the carrier waveform. When the resulting ramp reaches the comparator's lower threshold, the current is switched back to 0 11 and the ramp reverses until the upper threshold is reached and the process begins again. This results in a triangle waveform at Cr and a squarewave . signal at 0 1 and O2 , 5. The High Frequency Oscillator The oscillator circuit on the UC1901 is designed to operate at frequencies of up to 5MHz. To achieve this operating range the circuit shown in Figure 6 uses only NPN transistors. in those parts of circuit which are dynamically involved in the actual oscillation. The standard bipolar process used to produce the UC1901 characteristically yields high fT' typically 250M Hz, NPN devices. Conversely, the same process has PNP structures with fr's of only 1 to 2MHz. In the oscillator, PNP's are used only in determining quiescent operating points of the circuit. The magnitude of the charging current is controlled by the external resistor, RT and the internally generated voltage across it. This voltage is compensated to track variations in the comparator hysteresis. The tracking characteristics of this voltage stabilize the oscillation frequency over temperature and enhance the initial frequency tolerance. Typically, repeatability and temperature stability of the operating frequency are both better than 5%. The oscillator circuit has been optimized for a nominal RT of 1Okn. A desired operating frequency is obtained by choosing the correct value for Cr. As shown in Figure 7, the oscillator frequency is give by the relation: The latched comparator formed by OC04' diodes 0 1 and O2 , and resistors R1 and R2· hasa ~ontrolled input hysteresis which determines the peak to peak voltage swing on the timing capacitor Cr. The timing capacitor Cr is referenced to V1N since this is the reference point for the latched comparator's thresholds. The comparator's outputs at 0 1 and O2 switch the 2X current source through 0 10 changing the net current into the timing capacitor from positive to negative, reversing the capacitor voltage's dv/dt. fosc. (2) = 1.24, RTCT for frequencies below 500kHz. Above 500kHz, the solid line indicates appropriate Crvalues. There is UCI901 OSCILLATOR CT AT (10K) 21 0 EXTERNAL ~~¥R5~~__-4__~C=LO~C~K~IN~P~UT 2 OUTPUT TO MODULATOR RGURE 6: UC1901 High Frequency Oscillator Simplified Schematic. UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON. MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 15-184 PRINTED IN U.S.A U·94 APPLICATION NOTE latched comparator via the input device 0 9, and the differential pair 0 7 and Os. As the clock input goes high, 0 9 turns Os off and 0 7 on, creating an offset across R3 that is sufficient to switch the comparator. The comparator then, as before, drives the modulator. When the clock input returns low, the process is reversed. Using the external clock input, both the frequency and duty cycle of the modulator outputs are controlled. no upper limit on the size of the capacitor used, thus allowing the oscillator to have an arbitrarily long period if desired. 108 10 ,J // , ~ '", ~ i5 ~ § , 10 J/ Vv,N=lOV _ 6. A Status Output is More Than Just a Green Light R,~IOKO T, = 25"C V ,v 10' - R,C,'-..../ " , V is l u " / 10' 10' 10' Many systems today require a monitoring function on the supply output. The status output on the UC1901 can fill this need, a green light function, and can also be used to fill some more "sophisticated" needs. The circuit in Figure 8 takes advantage ofthe status output in the start-up of an off-line forward converter. The UC1901 is being used in an application where the switching supply must be synchronized to a system clock. The clock signal is generated on the secondary or output side of the supply. To allow start-up, the PWM oscillator is free-running when the line voltage is applied. As the supply voltage rises, the UC1901 's external clock input is driven at the switching frequency rate through resistors Rl and R2. When the supply output 10 CT VALUE - PICOFARADS RGURE 7: UC1901 OscillalOr Frequenc}( To allow operation of the modulator with a carrier frequency that is driven from a system operating frequency or clock, the oscillator can be over-ridden. Tying Cr to the input supply voltage disables the oscillator. The modulator circuit can now be switched in synchronization with a signal at the external clock input. Internally, the clock signal is applied to the RECTIFIED LINE VOLTAGE OUTPUT FILTER SUPPLY POWER TRANSFORMER OUTPUT PWM OUTPUT SYNC PULSE TOPWM OSCILLATOR JL TO PWM ERROR AMP A8 <>---+--+-_...r' COUPLING TRANSFORMER -:- MASTER CLOCK SIGNAL RGURE 8: The Status Output on the UC1901 is used in the Start-Up of a Power Supply Synchronized 10 a Secondary Referenced Master Clock. The Coupling 1Iansformer Carries the Feedback and Clock Signals. The Status Output is used 10 Sequence Clock Signals 10 the UC1901 External Clock Input During Start-Up. UNITRODE CORPORATION. 5 FORBES ROAO LEXINGTON. MA 02173 • TEL. (617) 861-6540 TWX (710) 326·6509 • TELEX 95-1064 15-185 PRINTED IN U.S A ... rc ):II :::"'z X x- - ." ... -z", ." r- .... "0 n ~ o z b-40 -0", ~~O ~S::l>g '" ... goo R11 10K(2W) ~~~ 50 0 • UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326·6509 • TELEX 95-1064 This material appeared in ~DN, October 13, 1983, in an edited version. 15-190 PRINTED IN U.S A Dl DESIGN DATA PROPORTIONAL BASE DRIVE OF BIPOLAR POWER TRANSISTORS IN SWITCHING POWER SUPPLIES Proportional basa drive is a simple and effective method of achieving improved performance with high voLtage bipolar power switching transistors in off-line applications. As shown in Figure 1, a current transformer provides regenerative base drive current whose amplitude is proportional to the collector current being switched. The drive current ratio is established by the turns ratio of the collector and base windings. The proportional drive method may be employed with any power swi tching ci rcuit topo logy. Advantages over conventi ona l fi xed base current drive methods include: 1. Fixed base drive current must be large enough to handle the fu II load (0 r sho rt-ci rcuit load J co llecto r cu rrent. Under lightly loaded conditions, the switching transistors are severely overdriven, resulting in long storage and fall times and more difficult turn-off. Proportional drive provides optimal performance under varying load current conditions. 2. Proportional base drive requires less drive power from the control circuit. During the "on" time of the switching transistor, base drive is provided regeneratively from the collector circuit through the current transformer. The control drive circuit is not required to provide sustaining base drive current. It must only provide short pulses of drive current to initiate turn-on and turn-off. The amplitude of these drive current pulses can easily be made large enough to obtain good switching performance from high voltage bipolar devices in off-line applications. III Figure 1. UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 Proportional Base Drive Circuit 15-191 PRINTED IN U.S.A DESIGN DATA Dl Referring to Figures 1 and 2, when driver transistor Q1 is on, power switch Q2 is off. Magnetizing current Id1 in the control drive winding Nd approachas a steady-state value equal to the drive circuit supply voltage Vdd divided by R1. Capacitor C1 is discharged and there is zero voltage across aLL windings of T1.· When the output of the control circuit turns on, driver Q1 turns off and primary current Id1 must cease. Energy stored in T1 causes the voltage at the dotted ends of aLL windings to fLyback in the positive direction. Id1 multiplied by turns ratio Nd/Nb becomes Ib1, the turn-on base drive current pulse to Q2. Collector current Ie starting to flow in winding Nc causes a regenerative increase in base drive to Q2 until it is switched fully on. The final value of Ie induces a proportional base drive current, Ib, according to the turns ratio Nb/Nc. During the time that Q2 is on and Q1 is off, capacitor C1 charges through R1 to supply voltage Vdd. At the end of this "on" period, driver transistor Q1 is turned on again, applying the voltage on capacitor C1 to the drive transformer primary. This drives the voltage on the base of Q2 sharply negative. The turn-off base current pulse, Ib2, can be made larger than Q2 collector current, resulting in very rapid turn-off of Q2. After Q2 is off and Ib2 ceases, any remaining voltage on C1 across the drive transformer primary heLps to rebuild the magnetizing current. Diode 01 prevents the possibility of any underdamped ringing from driving the upper end of Nd negative. At t~e end of the "off" period, magnetizing current Id1 has been re-estabUshed and the cycle repeats. UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 Ie I I -I b -Ibl I I -I Figure 2. 15-192 Waveforms PRI"ITED IN U.S.A Dl DESIGN DATA It is quite feasible to operate high voltage bipolar transistors at frequencies above 50 KHz with reasonable efficiency because of the large amplitude base drive pulses obtainable with this method. However, the circuit of Figure 1, as just described, is not capable of operation at frequencies ebove a few kilohertz. This is because capacitor C must charge to V dd during the "on" period of (12, and the R1 C1 charging time constant is far too long for this to be accomplished at 50 KHz. This probLem is solved by the addition of a rapid recharge circuit as shown in Figure 3. During the time that (12 is on and (11 is off, current through R1 is multiplied by the current gain of (13, which significantly reduces the charging time of C1. When (11 turns on, C1 discharges through 02. The base-emitter of (13 is reverse biased, holding it off during the entire (12 "off" time. Figure 3. Improved Proportional Base Drive Circuit DESIGN PROCEDURE: Application parameter vaLues must be defined, incLuding drive requirements for the power switching transistors: Ic Ib1 Ic/Ib Ib2 Vbb2 t2 Vdd f Maximum collector current Initial turn-on base drive current Sustaining proportional base drive ratio Turn-off base drive current at max. Ic Turn-off bese drive sourca voltage at max. Ie Maximum transistor turn-off time Drive circuit supply voltage Operating frequency Drive transformer base/collector turns ratio is equaL to the desired proportionaL base drive ratio: Nb/Nc UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 = Ic/Ib (1 15-193 J PRINTED IN U.S A. DESIGN DATA 01 Drive transformer driver/base turns ratio is established by the desired turn-off base source voltage and the drive circuit supply voltage, minus 1 volt diode drop: ( 2) When 0.1 turns off, primary magnetizing current, Id1, transferred to the base windin~ must provide the required turn-on base drive, Ib1 • (3) The R1 value required to obtain this magnetizing current is: RI = Vdd/ldl (4) During initial turn-off, driver primary current Id2 must absorb the proportional base drive current and transformer magnetizing current Id1 in addition to the turn-off base drive current: (5) Id2 Capacitor C1 is designed to supply the worst-case energy required to turn off 0.2: w I -CI(Vdd-IP 2 (Vdd-l)Id2 t2 CI (6) When 0.2 is operated at very low duty cycle (such as immediately after a sudden decrease in load current), C1 may not have time to fully charge to V dd during the very short "on" time, in spite of the assistance provided by 0.3' This will probably not be a problem, because 0.2 will also not have time to store much charge and will be much easier to turn off. The time required for 0.2 to reach equilibrium charge storage i'5 comparabl~ to the time required to remove this charge during turn-off. The C1 charging time constant (reduced according to the gain, Hfe, of 0.3) will generally be adquate if it is less than 1/2 the 0.2 turn off time, t2' TCI UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 (7) RICI/Ute 15-194 PRINTED IN U.S A DESIGN DATA 01 DRIVE TRANSFORMER DESIGN: Turns ratios for tha drive transformer ware established in equations [1) and [2). Only certain integral number of turns are parmissible for each winding. For example, if Nd/Nc is 25, the permissible number of drive winding turns are 25, 50, 75, atc., corresponding to 1, 2, and 3 collector turns. Winding 12R losses are usually negligible. The drive transformer design is based on the following two considerations: 1. Magnetizing current Ib1 is required for initial turn-on of the power switching transistor. During the time Q2 is on, the magnetizing current wiLL decrease due to voltage Vbe across the base winding. The magnetizing current must not be allowed to decrease to less than z era, or it wiLL cause premature turnoff under light load conditions by overcoming the smaLL proportional drive current lb' Referred to the primary, the drive winding inductance must be large enough to prevent Id1 [Equation 3) from reaching zero with voltage Vbe[Nd/Nb) during the longest possible "on" time [usuaLLy half the switching period, 1/2f): 2. Under light load conditions, relatively little charge is required to turn off Q2. C1 will then have substantial voltage remaining which wiLL be applied to the drive winding during the remainder of the "off" period. This will cause the magnetizing current [and its associated energy storage) to become much larger than desired. The problem is solved by designing the drive winding to saturate at a current level slightly greater than the desired value of magnetizing current, Id1. This will result in dumping any excess energy remaining in C1 and establishing a consistent starting point on the B-H characteristic at the beginning of each "on" period. Figure 4 shows the B-H characteristic of the core as seen from the drive winding. For the vertical axiS, B times core area Ae and Nd equals IVddt [Faraday's Law). For the horizontal aXiS, H times effective core length, l, and divided by Nd equals the magnetizing current ld' [Ampere's Law}. The characteristic slope equals the drive winding inductance, Ld' and the area to the left equals the energy stored. UNITROOE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173· TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 Figure 4. 15-195 PRINTED IN U.S.A Dl DESIGN DATA The operating pOint shown wiLL satisfy the two requirements above 0 nth e h 0 ri z 0 n tal a xis and i f i t e xc e e d s Vbe(Nd/Nbll2f on the vertical axis under worst case conditions at high temperature. ProceduraLLy, use Faraday's Law with B close to saturation at high temperature and with the area, Ae , of the core selected. Solve for Nd: i f it e xc e e d sId 1 = BANd (8) 1£ ' Use the smaLLest permissible Nd equal to or greater than the value calculated above. An Nd value larger than the calculated amount simply means that the change in flux density will be less than the maximum permitted. Vb, (Nd/Nb) Next, use Ampere's law with a value for H correspo!1ding to the B value chosen before, the smaLLest permissible Nd fr'om above, and I equal to Id1. Solve for the magnetic path length, l. ( 9) Ndldl = HI Compare the actual le value for the core selected with the value calculated above. If the actual le of the core is significantly larger than the calculated l, it wiLL be necessary to use either a smaLLer core, or use a larger permissible number of turns, Nd. Otherwise, the operating point will not be close enough to saturation, and the Band H levels will both be too low to prevent the magnetizing current from becoming negative at the end of the "off" period. If the actual core le is smaLLer than the calculated l, the core wiLL be too heavily saturated, and wiLL not store enough energy to provide the desired Ib1. Either go to a larger core, or introduce a smaLL gap, 19, according to the relationship: 1 = U, + I1a1g}, wher, l1a = BIH (10) Driving Two Transistors. Two power switching transistors are often used in series in order to halve their high voltage V ce rating requirements. It is usually desirable to drive these two transistors from a single drive circuit. This can be accomplished by means of two identical base winc'ings in the transformer. Nb/Nc must be halved and Nd/Nb doubled from thl:l values calculated in Eq. (1) and (2) because the total base current is twice as much as with a single transistor. As shown in Figure 5, it is also necessary to add a small amount of resistance in series with each base in order to ensure current sharing. A resistor which drops 0.5 volts at maximum sustaining base drive, Ib, should be adequate. The added resistance does not affect the calculation of Nd in Equation (8) because its voltage drop is negligible compared to Vbe under light load conditions, when the sustaining base drive is smaLL. However, during turn-off, each series base resistor must be shunted by a UNITRODE CORPORATION. 5 FORBES ROAO LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 15-196 PRINTED IN U.S A Dl DESIGN DATA small diode. Otherwise, a very large Vbb2 value would be required in order to pull the desired Ib2 out of each base. The forward drop of this diode must be added to the Vbb2 requirement in Equation (2). Vdd~-""--"" 03 Figure 5. Two-Transistor Driver Line-side ys Output-side Control Circuit, The base and collector windings of the drive transformer are normally on the input, or line side, of the power supply. When the controVdriver circuits are located. on the output side of the supply, high voltage insulation is required between the drive winding and the base and collector windings. This high voltage insulation, usually greater than 3000 volts, will impair the coupling between lineside and output-side windings. This results in high leakage inductance, causing voltage spikes during turn-on and turn-off which may necessitate additional snubbing or clamping the drive transistor collector and the power switching transistor base. When the control and driver circuits side, the drive transformer does insulation. Leakage reactance can especially if multifilar windings are are are located on the line not require high voltage be made almost negligible, employed. REFERENCES: (1) J. Gregorich and W. Hazen, "Designing Switched-Mode Converters with a New Proportional Drive Technique," Proceedings of PDWERCDN 5, May 1978, pp. E2(1-8). (2) P. Wood, "High Efficiency, Cost Effective Off-line Switching Converters," TRW Applications Note 143, April 1978, pp. 3-4 (3) R. Severns, "A New Improved and Simplified Proportional 8ase Drive Circuit," Proceedings of PO WERCO N 6, May 1979, pp. 82(1-12). UNITROOE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEl. (617) 861·6540 TWX (710) 326·6509 • TELEX 95·1064 15·197 PRINTED IN U.S.A. T1 DESIGN DATA 250 WATT OFF-LINE FORWARD CONVERTER DESIGN REVIEW by Raoj i Patel This paper gives a practical exampl e of the design of an off-line switching power supply with forwerd converter topology. Topics include transformer and fil ter inductor design, proportional base drive, component selection, output filter design, and closing the control loop using the new Unitrode UC1524A control circuit. POWER SUPPLY SPECIFICATIONS: TOPOLOGY: Forward Converter with Proportional Base Drive LINE INPUT: 117 Volts +/- 15% 230 Volts +/- 15% OUTPUT: Voltage: Current: Current Limit: Ripple Voltage: Li ne Regul ati on: Load Regul ati on: OTHER FEATURES: Effi ci ency : 75% Line Isolation: 3750 Volts Switching Frequency: 40KHz 230V OR 117V AC - ,.. . INPUT ACTO DC CONVERSION DC . . .. 0- (99-135V), 60Hz (195-265V),50Hz 5 Volts 5 to 50 Amperes 60 Amperes Short Circuit 100mV p-p maximum +/- 1% +/- 1% SWITCHING ISOLATION, AND STEP DOWN ~ ~ RECTIFIER AND OUTPUT FILTER ...- CONTROL CIRCUIT Figure 1. Block Diagram of the Switching Power Supply UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON. MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 15-198 PRINTED IN U.S.A -<,.-c m is ::; x... z X --< -z", l.0015 ~G')o 0-<0 ~.?!o ~~~ ITl W ::! ,.-·0 ~~~ ~~~ O~O ~~::o colD 5000 N ( i ) p a a Via(aip) AB Ae f From Equstion 3. a _ !!2 _ 0.9 Ns > 5000 200 0.15 1.83 40,000 > 91 turas the primary to secondary turns ratio is: D [Vip(aip) -VCB(aat)] .. 0.45(200-2) ... 15.36 Vo+VF 5+0.8 Secondary tnrns from Equation 4: Ns ... Inte,er(Np/a) .. Iate,er(91/15.36) a 6 turns Recalcula te the primary turns: Np .. 6 x 15.36 .. 92 turas RMS primary current from Equation 6: I p ... Ii ( )/Kt... Pia(max) a max Via(mia) Kt 333 200 0.71 ... 2.34 A From Equation 7. the maximum current density for this size core is: Imax .. 450 AP-·13' ... 450(5.71)-·13' .. 362 Diems The minimum primary wire area. Axp. is: Axp .. Ip(aax)/lmax = 2.34/362 .... 0065 emS From the Wire Table in Section M2 under 'AREA. Copper'. AWG 19 is appropriate. The maximum RMS secondary current. Is. occurs at 50% duty cycle: Is(max) .. Io(max)/l.414 - 50/1.414 ... 35.3 A Minimum secondary wire area. Axs. is:. Axs - Is(aax)/1aax - 35.31362 - .0975 ems From the Wire Table. this calls for AWG 7 to 8. Ten AWG 18 wires in parallel wUl carry the required secondary cnrreat and provide a smooth windin, with less leakage inductance and acceptable eddy curent losses. Copper strip 2.5x.04 em could also be used. Th number of turns required for the auxiliary winding is: Na. Vd4 Np Via(aia) ...!!-!! _ 7 200 turns This will provide enough volt-seconds during flyback to reset the core (back to zero flux density) at 50.. maximum duty cycle. A WG 32 wire is adqua te to carry the Vdd supply current. This windin, should be tightly coupled to the primary. UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 15-212 PRINTED IN U.S.A. DESIGN DATA T1 Double-check the wire fit in the window (ne glect Na). The total copper area of all windings should be less than 40 .. of the total window area of the core (0.40x3.l2 = 1.25 cm J max). Aw' > NpAzp + N.A:u = 92( .0065) + 6dO( .00823) = 1.09 cm l Calculate Lo •• e. and TlRperature Ri.e The total losses in the windings is calculated from Equation 12. The mean length per turn, It, for the EC52 core is 7.3 cm, and AWG 19 wire is .000353 nlcm from the Wire Table at 100 0 C. P" = 2 Ipl Np It (O/cm) = 2(2.34) 1:I92z7 .3x.000353 = 2.59 watts The total core losses for 3C8 ferrite are obtained from Figure 1 in Section M3. The flux density axis of this graph assumes the transformer is operating with a symmetrical flux swing about the or1g1n. The forward converter operates asymmetrically, so enter the graph with AB/2, or .075 T. The resulting 0.1 WI cm 3 must be muI tiplied by the core volume to obtain the total core loss, Pc. Pc = .01x18.7 = .187 watts Total transformer losses are: P t ... P" + Pc ... 2.59+ .187 The temperature rise of the calulated from Equation 14: Ae core 2.78 watts for natural convection cooling is = 850 Pt ... 850(2.78) As 91 Summarizing the transformer design: Core: Np: Na: Ns: Ferroxcube EC52, 3C8 Ferrite E-E core 92 turns AWG19 7 turns AWG32 6 turns 10xAWG18 (10 wires paralleled) The primary and auxiliary windings are tightly coupled. The secondary is insulated with 2mil mylar tape to provide 3750 volt line isolation capabili ty. Filter Indpctor De.iln The design of the filter inductor is covered extensively in UPi trode Application Note U6 8 A, in the Uni trode Da tabook. Using this approach, the inductor design is summarized as follows: Core: Winding: Losses: Temperature Rise: UNITROOE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95·1064 Ferroxcube 4229-3C8 Ferrite Pot Core 7 turns 10xAWG17 (10 wires paralleled) 2.2 watts 35 0 C 15·213 PRINTED IN u.s A DESIGN NOTE DETERMINING THE CHANGE IN ZENER VOLTAGE WHEN THE CURRENT IS CHANGED A common question concerning zener diodes is "what will be the zener voltage at a current different from the current now specified?" The difficulty is that the impedance of a zener is not a constant, and 'changes with'the current, so the zener voltage is a non-linear function of current. Here is a useful equation that gives a good approximation to the change in zener voltage when the current is changed from one value to another value. where kz = I z x Zz and I z is chosen approximately midway between I, and I, The equation does not include the effect of pulse or dc-heating on the zener voltage. If appreciable junction heating is involved the thermal model must also be used. ' Here is an example of how the equation is used. Question: If the voltage of a UZS733 is specified as 33V at 40mA, what will be its voltage when measured at SmA? Using the graph of Zz versus Iz on the data sheet for this device, and choosing a value of Iz at 20mA, Zz = 100 So kz = I z A.V z x Z~ == k z = 20mA x 100 = 0.20V IJi)= \1,' 0 20 x In (smA \ = 0.20 40mAj Thus the zener voltage at SmA will be 33V ~ x 0.42V In (0.12S) = 0.20V (-2.08) = -0.42V =32.6V UZ5706 Series Typical Zener Impedance 'vs Zener Current ZENER OURRENT (rnA) UNITRODE CORPORATION. 5 FORBES ROAD LEXI NGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326·6509 • TELEX 95-1064 15-214 PRINTED IN' U.S.A. DN-3 DESIGN NOTE MINIMIZING STORAGE TIME WHEN USING UNITRODE SWITCHING REGULATOR POWER OUTPUT CIRCUITS (PIC600 SERIES) In some applications (such as a reversing motor drive, for example: stepper motor) where storage time is an important consideration in the design, the normal storage time of PIC600 series (approximately 600ns) can be reduced to acceptable level. At lower output currents, the excess storage time is a result of the driver stage operating well under saturation, while at higher output currents it is a result of the output transistor operating into quasisaturation region. The storage time can be reduced to less than lOOns by utilizing a Baker Clamp technique as shown in the circuit below: r---- Baker Clamp r-, 1 I Drive--'" 31 I I I I 1 1 1 positive supply 1 I 11N9141 --'4 I LP~6~5 _ _ _ _..J 2 I I Drive 12 I I I 1 _...J 4 negative supply The Baker Clamp will increase the VCE(sat) losses but this disadvantage will be more than offset by the improved switching speed. The Baker Clamp circuit varies the drive current of the PIC600 series for optimum switching speed at any given load current. The drive current required to the Baker Clamp can be unregulated, as long as it is greater than 30mA. The small value of the inductor Ll and L2 (5 to 10 ~H) stops cross conduction during the switching of PIC600 series. UNITRODE CORPORATION. 5 FORBES ROAD LEXINOTON, MA 02173 • TEL. (817) 881·85-40 TWX (710) 328·8509 • TELEX 95-1084 15·215 PRINTED IN U.S.A. III DESIGN NOTE DN-4 AVOIDING SPURIOUS OSCILLATION WHEN USING UNITRODE SWITCHING REGULATOR POWER OUTPUT CIRCUITS (PIC600 SERIES) Avoid spurious oscillation due to ground loops and RFI when using a Unitrode Switching Regulator Power Output Circuit (PIC600 Series) in a switching regulator. The Unitrode switching regulator power output stage (PIC600 Series) is a high frequency fast switching device. Its control circuitry must also operate at high frequency and high gain. Therefore, it is necessary to avoid any ground loops and RFI for stable circuit operation. The high frequency roll-off of the control circuit should be adjusted properly with a compensation network. The typical layout of the power circuit is shown in the figure below. COPPER PATTERN EIN TO CURRENT SENSE L J 3 2 CIRCUIT DIAGRAM Capacitor C I (0.2 /If) reduces the RFI generated due to the reverse recovery current spike of the catch diode, and should be physically located near pin 4 and pin 2 of the PIC625. The capacitor should be a high frequency by-pass capacitor, such as Polystyrene. The current sense resistor R3 should be a non-inductive (carbon) type. The current sense signal should be picked up right across this resistor. If the switching regulator is operated at the higher end of the input voltage, the inductor should be shielded with an electrostatic shield, grounded to Point A. The case of PIC625 should also be connected to Point A. UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 15-216 PRINTED IN U.S.A. DESIGN NOTE DN-S· HOW TO SAFELY CHECK SUSTAINING VOLTAGE ON POWER TRANSISTORS One of the most important parameters for any power transistor, particularly in switching applications with inductive loads, is the sustaining voltage. Many manufacturers specify only open base sustaining voltage (VCEO(SUS)) at a low current level (10 to 200mA); and, even where sustaining voltage with resistive bias (V CER(SUS)) or voltage bias (VCEX(SUS)) is specified on a data sheet, the chances are that it will not be specified under the exact conditions that will be required by a specific application. Because of this, many designers select a transistor based on its VCEO(SUS) rating, since VCER or VCEX will always be greater than VCEO (see Figure I for a graphical explanation of the relationship among VCEO, VCER and VCEX)' By choosing a transistor based upon its VCEO rating, the designer may be using a higher voltage device than necessary. If he could determine the voltage under the actual conditions of his application, it is possible that a lower voltage device could be used, resulting in considerable cost savings. Figure 2 presents a test circuit that can be used to safely measure sustaining voltage under any bias condition at collector currents up to SA. PLEASE NOTE: SUSTAINING VOLTAGE SHOULD NEVER BE READ ON A CURVE TRACER, EVEN AT LOW CURRENT LEVELS, SINCE POWER RATING OR REVERSE-BIASED SECOND-BREAKDOWN RATING (ES/b) MAY BE EXCEEDED, RESULTING IN PERMANENT DAMAGE TO THE TRANSISTOR. The test circuit of Figure 2 may also be used to check a transistor's ES/b rating if the zener clamp is removed. ES/b, under a specified bias condition of RBB and VBB, is related to collector current and inductance as follows: ES/b (joules) ~ 1/2Li2 Where i is the peak collector current flowing at the time the transistor is turned-off. It should be noted, however, that the transistor is not protected without the zener clamp, and the device may be damaged or destroyed if it does not meet its ES/b rating. III UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 15-217 PRINTED IN U.S.A. DN-S DESIGN NOTE 5A------------------~~~~-------------------- '----'..,-- V CE R2 RBE2 < RBEl 100mA------------------~--------~~~+------------ VCE - COLLECTOR TO EMITTER VOLTAGE Fig. I. Relationship among VCEO(SUS). VCER(SUS). VCEX(SUS) (Not to Scale) UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326-6509 • TELEX 95·1064 15-218 PRINTED IN U.S.A. DN-S DESIGN NOTE + 10V -=- r"l ov-l L= VCC ",10Vdc I~ o-~VV~~~~ PUSH I'TOTEST INPUT PULSE REP. RATE 60 +L--<~_..J OSCILLOSCOPE VERTICAL INPUT ·ZENER CLAMP VOLTAGE SHOULD BE EQUAL TO THE MINIMUM SPECIFIED VALUE OF THE VCEO. V CER OR V CEX VOLTAGE BEING CHECKED. VOLTAGE RATING (VCEO. V CER • VCEX) 1. 250mA TEST CURRENT (lc)1 INDUCTOR (L) CURRENT SENSE (RS) IB INPUT PULSE WIDTH ';;;SOV ';;;50mA 50mA-200mA 200mA-1.0A 1.0A-S.OA SOmH 20mH 2mH 0.5mH 100 SO 10 0.20 0.1(1c) 0.1(1c) 0.1(1c) 0.1(1c) 350ILSec 525ILSec 250ILSec 32SILSec SOV-200V ';;;SOmA SOmA-200mA 200mA-1.0A 1.0A-S.OA 100mH 40mH 4mH 1mH JOO 50 10 0.20 0.1(1c) 0.1(1c) 0.1(1c) 0.2(1c) SOOILSec 1.0mSec 550ILSec 650ILSec :>200V ';;;50mA 50mA-200mA 200mA-1.0A 1.0A-5.0A 200mH 80mH 10mH 2mH 100 50 10 0.20 0.1(1c) 0.1(1c) 0.2(1c) 0.2(1c) 1.SmSec 2.0mSec 1.25mSec 1.25mSec THE ZENER CLAMP SHOULD ALWAYS BE USED WHEN TESTING AT COLLECTOR CURRENT VALUES ABOVE 200mA SINCE THE REVERSE-BIASED SECOND-BREAKDOWN (ES/b) RATING OF THE TRANSISTOR UNDER TEST MAY BE EXCEEDED. PASS 250mA PASS. VOLTAGE CLAMPED TEST POINT 100mA.200V FAIL TEST POINT 100mA.200V ....- -......-~-VCE REPRESENTATIVE SCOPE TRACE FOR UNCLAMPED TEST AT IC = 100mA REPRESENTATIVE SCOPE TRACE FOR CLAMPED TEST AT Ie = 100mA Fig. 2_ Test Circuit for VCEO(SUS)' VCER(SUS)' VCEX(SUS) UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 15-219 PRINTED IN U.S.A. DN-6 DESIGN NOTE OPERATING THE SWITCHING REGULATOR OUTPUT CIRCUIT (PIC600 SERIES) AT LOW FREQUENCIES The Unitrode switching regulator power output circuit consists basically of a power transistor switch and a catch diode. The appropriate data sheets in the Unitrode Semiconductor Databook provide the necessary information for determining junction temperature and power dissipation at frequencies above 10 kHz. This Design Note provides a method for determining the junction temperature and maximum allowable power dissipation for the transistor switch and catch diode when the switching regulator is operated at frequencies under 10 kHz, where the switching losses are negligible and can be safely ignored. The method of determining safe power dissipation requires a detailed transient thermal analysis, since the junctions of the transistor and diode are subjected to temperature excursions due to the applied pulse power. When the device is subjected to a train of periodical power pulses, the maximum power dissipation and junction temperature can be calculated from the effective pulse thermal resistance (0 ) as follows: p 0p ~ x D + (I-D) r(t + T) - r(T) + r(t) where: pulse width t T = period Duty cycle D = Tt Peak Power, Ppk is peak of an equivalent square power pulse r (t + T) = transient resistance at time t + T ._--T--.. I1-0 Figure 1. ·~I r(t) = transient thermal resistance at time t Power Pulses UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 = DC thermal resistance (from data sheets) ~ 15-220 PRINTED IN U.S.A. DESIGN NOTE 1. DN-6 Calculating the Junction Temperatures (Pulse Train) A. Power Transistor Switch The peak junction temperature of the transistor switch under repetitive peak power pulse conditions is calculated as follows: Tj(peak) Tj (peak) The transient thermal impedances r(t T + T), reT), r(tT) are obtained from the transient thermal impedance plot for the transistor (see Figure 2), tT B. = transistor on-time Catch Diode The peak junction temperature of the catch diode under repetitive peak power pulse condition is calculated as follows: T j (peak) TCASE + IF x VF [R.r x T + (1 - t~ ) r (t D+ DII T) - reT) + r(t D)] UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326·6509 • TELEX 95-1064 15·221 PRINTED IN U.S.A. DN-6 DESIGN NOTE where: tD diode on-time The Transient thermal impedances r(t n + T). r(T). r(t D). are obtained from the transient thermal impedance plot for the catch diode (see Figure 2). C. Power Dissipation The maximum allowable power dissipation in either the transistor or the diode is determined by the maximum junction temperature of 150°C: 2. Calculating the Junction Temperature (Single Shot Power Pulse) For a non-repetitive power pulse. the rise of junction temperature can be calculated as follows: Tj = For a pulse with less than 100 mi11isec. the case temperature is assumed to remain at ambient temperature. UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95·1064 15-222 PRINTED IN U.S.A. DESIGN NOTE DN-6 5.0 t 4.0 ~ u 0 3.0 r.1 ~ ~ til H 2.0 til ~ ~ 1.0 r.1 ~ 0.0 0.01 0.1 10 1 100 1000 TIME (millisec) Figure 2. Transient Thermal Resistance - Power Transistor or Catch Diode III UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 15-223 PRINTED IN U.S.A. DESIGN NOTE DN-8 A 350 WATT SWITCHING REGULATED OUTPUT POWER SUPPLY FOR MULTIPLE OUTPUTS UTILIZING UNITRODE SEMICONDUCTOR COMPONENTS There are many ways a switching power supply can be designed to obtain regulated output voltages. When multiple outputs are desired, such as ±5 volts and ±12 volts, the circuit described below provides the basis for an efficient, economical, and reliable power supply. It consists of a pulse width modulated buck regulator and a synchronized "H" (full bridge) inverter, each leg of which operates at 50% duty cycle. The block diagram of the power supply is shown in Figure 1. AC INPUT RECTIFIER AND FILTER BUCK REGULATOR CONTROL CIRCUIT Figure l. Block Diagram The advantages of this design approach are as follows: 1. Numerous inductors (normally needed when pulse-width modulating an inverter) are not required. No filter inductor is required in the output which lowers costs. Minimum load bleeder resistors are not needed, thus improving efficiency and excessive heat generation. These features result from the "H" inverter operating at 100% duty cycle. 2. A high voltage, low ESR capacitor in series with the power transformer is not required. The problem of excessive collector current in an "H" inverter stage due to "walking of core flux" on a saturated B-H curve is eliminated. 3. There is no possibility of high current or forward-biased second breakdown in the inverter bridge transistors when they are simultaneously on during switching periods. The "cross-current" is limited by the inductor, Ll, (the buck regulator acts as a constant current source) which increases reliability, Furthermore, the transistors are in saturation during cross conduction again improving efficiency. and reducing heat generation. UNITRODE CORPORATION· 5 FORBES ROAD LEXI NGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326·6509 • TELEX 95-1064 15-224 PRINTED IN U.S.A. DESIGN NOTE DN-8 4. Only one high voltage switching transistor is required for either 110 or 220V input. 5. There is no possibility of forward-biased second breakdown in the bridge transistor during initial turn-on ("start-up"). 6. No expensive high voltage filter capacitor is needed. Filtering is achieved with a low voltage output capacitor. Description of the Circuit: The buck regulator, "H" inverter and control circuit is described in brief in this section. The detailed schematic of the circuit is shown in Figure 2. A. Buck Regulator: The output stage of a buck regulator consists of a Unitrode Barrier transistor™ UMTI 009 and a fast recovery (50 nanoseconds) high voltage catch diode, the Unitrode UES 1306. The buck regulator is operated at 50 kHz, twice the operating frequency of the "H" inverter, with very low switching losses. Operating the buck regulator at higher frequency reduces the cost of the filtering inductor, L I . The output voltage is regulated in this stage by employing a pulse-width modulation technique using a UC1524. The output of the filter inductor is clamped below the BVCEO of transistors used in an "H" bridge with a Unitrode zener diode UZ4212. This diode absorbs the energy stored in inductor L I during the period when energy is not coupled into the secondary due to the leakage inductance of power transformer T3., Notice that there is no output filter capacitor in the buck regulator. This design feature limits excessive cross conduction collector current in the transistors of the "H" inverter. The base drive current to the pass transistor is provided with a unique transformer coupled drive circuit. It provides base drive current up to 100% duty cycle if required. Furthermore, a small amount of energy stored in a ferrite bead in the base drive circuit provides assistance in turning off the high voltage pass transistor. B. "H" Inverter: The "H" inverter operates at 25 kHz, with a 50% duty cycle in each leg, synchronized with the buck regulator. It utilizes four low voltage 2N6354 transistors. Low voltage transistors offer low VCE(SAT), high gain and fast switching times. Due to high gain, the base drive current required is low, • The switching losses are kept to a minimum by switching the transistors when inductor, L I , current is at a minimum. The storage time of the transistor is kept to a minimum by reducing th'e base drive just prior to transistor turn-off. (The base drive current is highest when transistor is turned on and reducing linearly.) The diodes DI - D4 provide the path for magnetizing current at lower output current as well as the path for energy stored in the leakage inductance of the power output transformer. UNITRODE CORPORATION· 5 FORBES ROAD LEXI NGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326·6509 • TELEX 95·1064 15·225 PRINTED IN u.s A. DN-8 DESIGN NOTE e h-~ ~ • ~ 1 E h~ ;' § • UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326·6509 • TELEX 95-1064 15-226 I' PRINTED IN U.S.A. DN-8 DESIGN NOTE Current limiting is obtained with a current transformer. The level of the current limit is maintained constant regardless of temperature by effectively using two diodes in series with an 8.2 volt zener (Z2) UZ708. Only one driver transformer is used for all four transistors. The transistor turn-on and turn-off is enhanced with a ferrite bead in the drive circuit. The output is rectified with Unitrode USD545 Schottky Rectifiers which provide the advantages of low VF at high current and minimum change in leakage current with temperature. The snubber network across the Schottky diodes prevent reverse bias breakdown from the large voltage spikes due to leakage inductance in the power transformer, and reduces RFI. C. Control and Drive Circuits: The regulation function is achieved with a UCl524 P. W.M. monolithic integrated circuit. The synchronizing pulses from the integrated circuit drive the D-Flip Flop, SN7474. The output of this D-Flip Flop drives the logic circuit 75450P which provides drive current to low cost 2N30 19 NPN transistors. Line isolation is maintaind with a driver transformer. The control circuit (UCIS24) is inhibited in a slow start mode to prevent large current and voltage transients. The circuit described herein provides conversion efficiency up to 85%. This design approach achieves an efficient and economical switching-regulated power supply when multiple outputs are desired. The output filter capacitor is smaller in size because each leg of the "H" inverter operates at 50% duty cycle. UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 15-227 PRINTED IN U.S.A. DESIGN NOTE DN-8 VOLTS~O VOLTS L n :JI_----J~_ 0 CT - CLAMP VOLTAGE SG1524 OSCILLATOR OUTPUT SG1524 V CE - PASS TRANSISTOR UMTlOO9 IC - PASS TRANSISTOR UMT1009 IS o IZ '0 J Lo i-Lro !\ ------------------------0 IS - SASE DRIVE TO UMTl009 I Z - ZENER CURRENT UZ4212 SUPPLY VOLTAGE TO "H" INVERTER INDUCTOR CURRENT OR INPUT CURRENT TO "H" INVERTER IS o o ~ SASE DRIVES TO "H" INVERTER Ip - PRIMARY CURRENT TRANSFORMER T3 10 - DIODE CURRENT SCHOTTKY RECTIFIER USD545 Figure 3. Basic Waveforms UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 15·228 PRINTED IN U.S.A. DESIGN NOTE DN-S TRANSFORMER AND INDUCTOR DETAILS Filter Inductor; core: Ferroxcube IF-19 N = 198 turns, wire size AWG # 16 Air gap = 0.2 inches L2' Ferrite Bead; Stackpole #57-1552 Ferrite Bead core: N I = 2 turns, wire size #32 N2 = 2 turns, wire size #32 T I' "Roo Inverter Driver Transformer; core: JII!§(c: Np C6 Ferroxcube 376U250-3C8, 376UB250-3C8 Np = 90 turns, wire size AWG #32 NS = 15 turns, wire size AWG #32 GROUND SHIELD T2' Buck Regulator Driver Transformer; core: ~llps ~~ Ferroxcube 78E272-3C8, 782B272-3C8 Np = 90 turns, wire size AWG #34 N S = 15 turns, wrie size AWG #28 Two transformers wound on same core, over outside legs of E-I core. GROUND SHIELD T3 . Power Output Transformer; core: jl~" GROUND SHIELD Ferroxcube EC-52 Np = 32 turns, wire size #16 NS ~ 4 turns, wire size #26, 36 wires twisted together NOTE: Secondary is designed for +12 volts output. For multiple output total copper area of secondary should be 0.30 x Total Window Area. T4' Current Transformer; core: Ferroxcube 376U250-3C8, 376B250-3C8 911[, C Np = 2 turns, wire size AWG #16 NS = 60 turns, wire size AWG #32 NOTE: The information presented in this bulletin is believed to be accurate and reliable. However, no responsibility is assumed by Unitrode Corporation for its use. Unitrode Corporation makes no representation that the use or interconnection of the circuits described herein will not infringe on existing or future patent rights, nor do the descriptions contained herein imply the granting of licenses to make, use or sell equipment constructed in accordance therewith. UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95·1064 15-229 PRINTED IN U.S.A. DESIGN NOTE DN·10 SQUIB·FIRING CIRCUIT PROVIDES FOR RELIABLE FIRING, FROM LOW LEVEL INPUTS The design of reliable squib-firing circuitry often presents particular problems. Squib functions are typically quite critical, and the initial triggering source for these systems is, by nature, usually minute. Conventional transistor squib-firing circuits usually require several gain stages, together with a power transistor to handle the squib-firing current. Mechanical squib switches, on the other hand, cannot be operated repetitively to allow for complete testing of the device and associated circuitry during check-out. The high sensitivity planar Silicon Controlled Rectifier (SCR) can be triggered directly from low-level input circuitry, with significant reduction in circuit complexity and size. Reliability is thus considerably enhanced. The unique characteristics of the planar SCR have resulted in wide usage of this semiconductor component in squib-firing circuits for rocket engine ignition, detonation, and explosive bolt applications. Compared with conventional transistor techniques or mechanical squib switches, this proven approach has significant reliability advantages, with circuit simplicity, size reduction, mechanical ruggedness and elimination of electrical contacts. An SCR, with surge current ratings at 100°C of 5 amperes-50 milliseconds or 20 amperes-l millisecond can easily handle the current required for firing most squibs. Input circuits can be designed to trigger reliably at levels below 100 microamperes and 1.0 Volt, making the SCR particularly well-suited for direct drive from low level control logic circuits and simple RC time delay networks. In addition, the bistable properties of the SCR enable it to be triggered on by a pulse input-remaining in the "ON" state until reset. This inherent "memory" is frequently used to advantage in arming circuits. Two circuits typical of squib firing applications are shown in Figures 1 and 2. Both will operate from - 65°C to over 125°C. In Figure 1, Capacitor C, is charged to +28 Volts through R, and stores energy for firing the squib. A positive pulse of 1 rnA applied to the gate of SCR, will cause it to conduct, discharging C, into the squib load X,. With the load in the cathode circuit, the cathode rises immediately to +28 Volts as soon as the SCR is triggered on. Diode D, decouples the gate from the gate trigger source, allowing the gate to rise in potential along with the cathode so that the negative gate-to-cathode voltage rating is not exceeded. This circuit will reset itself after test firing, since the available current through R, is less than the holding current of the SCR. After C, has been discharged, the SCR automatically turns off-allowing C, to recharge. R, +28V JAN 2N3028 100K D, -AINPUT C, JAN1N41411 200~f FIGURE 1 UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95·1064 15·230 PRINTED IN U.S A. DESIGN NOTE DN·10 In Figure 2, energy for firing the squib is supplied directly from the + 28 Volt supply. Caution must be exercised when arming this type of circuit. If anode voltage is applied too rapidly, the SCR may fire. This dv/dt effect acts through the SCR anode-gate capacitance (15 pt), which couples current to the SCR gate (in proportion to anode dV/dt). The effect is negligible if dv/dt is under 1 Volt/j.lS-as in Figure I, where it is limited by the charging of C,. Faster rates of rise can be safely handled by increasing the SCR gate bias. L, +28V~~~nr~~--~r----------------, 10n c, c, 0.11'1 FIGURE 2 In Figure 2, the LRC input network limits the anode dv/dt to a safe value-below 30 VoIts/j.lS. R, provides critical damping to prevent voltage overshoot. While a simple RC filter section could be used, the high current required by the squib would dictate a small value of resistance and a much larger capacitor. Resistor R, provides DC bias stabilization, while C, provides stiff gate bias during the transient interval when anode voltage is applied. In this circuit the SCR is fired one second after arming by means of the simple R, C, Z, time delay network. R. provides a load for the SCR for testing the circuit with the squib disconnected-limiting the current to a level well within the continuous rating of the SCR. The circuit can be reset by opening the + 28 Volt supply and then re-arming. UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON. MA 02173 • TEL. (617) 861·6540 TWX (710) 376·6509 • TELEX 95·1064 15·231 PRINTED IN USA DESIGN NOTE DN·11 COMBINED AC·DC LOAD CONTROL SIMPLIFIES SCR RESET Silicon Controlled Rectifiers (SCRs) are finding increased use in a wide variety of control circuit and power switching applications. They offer an economical way to achieve high switching gain, efficiency and blocking voltage. When the inherent memory or "latching" feature is not desired, AC anode supply is often used, allowing the SCR to turn off automatically upon removal of the gate control signal. With an AC anode supply, an additional benefit is derived-the SCR doubles in function as a rectifying element. Thus, it is possible to operate DC loads directly from an AC power source, often eliminating the need for separate bulky and expensive DC power sources. When SCR latching action is desired, DC anode supply is commonly employed. Here, however, reset can be a problem, since "brute force" reset techniques must normally be used. This involves an additional switching element, to either open or shunt the load voltage, and current from the SCR. The circuit of Figure 1 retains the advantages of operating loads directly from an AC power source. Latching action is provided with no need for brute force reset techniques. The DC source needs to provide only a few milliamps of SCR holding current, since load power is drawn from the AC source. CONTROL INPUT FIGURE 1 UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON. MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95·1064 15·232 PRINTED IN U.S.A DN·11 DESIGN NOTE When the SCR is on, a half-wave rectified voltage waveform is applied to the load. During each positive half-cycle of the AC source, diode (or rectifier) D, and the SCR conduct the load current as well as the DC holding current provided through R,. During each negative half-cycle, D, blocks the negative voltage from the AC supply, allowing the SCR to remain in conduction. Resistive loads such as heaters and incandescent lamps are driven satisfactorily with the half-wave rectified output of this circuit. DC loads that are less tolerant of this waveform can easily be operated by using shunt capacitors or other filtering methods. Shunt free-wheeling diodes should be employed across inductive loads. Reset is simply accomplished by interrupting the holding current provided from the DC supply through R,. The reset interval must, of course, be longer than one half-cycle of the AC line frequency, or it must be timed to occur during the negative half-cycle, since load current will keep the SCR latched on during the entire positive half-cycle. The reset interval must exceed the device gate recovery time which ranges from less than 0.5 lois for the higher speed SCRs to 50 /JS for the slower SCRs. The DC supply voltage level is not critical and can be less than equal to, or greater than the peak AC supply voltage. When it is less than the peak AC, however, D, will conduct for a portion of each half-cycle when the SCR is off, causing a current pulse to flow from the AC to the DC supply through R,. D, must have a blocking voltage capability greater than the sum of the peak AC voltage plus the DC supply voltage. The SCR voltage rating must be at least equal to the peak AC or DC supply voltage, whichever of these is greater. When many identical or similar circuits are used in a single system (as in a band of SCR incandescent lamp drivers), multiple reset is easily accomplished by simultaneously interrupting the DC source and resetting all circuits connected to that source. III UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON. MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 15-233 PRINTED IN USA DN·13 DESIGN NOTE TURN·OFF METHOD FOR SCRs MINIMIZES EFFECT OF DVIDT SCRs can be turned off by reducing the magnitude of the anode current to a level below that of the holding current, either by opening the anode circuit or by driving the anode negative. Forward blocking voltage cannot be reapplied until after the minority carrier charge stored in the device as a result of previous forward conduction has been dissipate.d to a level that can be controlled by the gate bias, otherwise the SCR will self-trigger on again. In addition, even after the SCRs have recovered, reapplication of anode supply voltage may cause selftriggering due to dv I dt. Self-triggering of a SCR due to dv/dt is caused by a capacitive current equal to the product of the anodegate (CAG ) capacitance of the SCR and the rate of rise (dv/dt) of applied anode voltage. Sensitivity of a SCR to dv/dt effects can be controlled by the use of a gate-cathode resistor or a current bias. The SCR will self-trigger only if the capacitive current is too large to be controlled by the bias resistor. The smaller the bias resistor, the higher will be the critical rate of rise of anode voltage. However, if the anode-gate capacitance is fully charged befor~ the supply voltage is reapplied across the SCR, the device will be immune to dv/dt effects. A simple SCR switching circuit is shown in Figure 1. When switch SI (which can be a relay or a transistor) is in the closed position, the SCR will fire upon the application of a gate trigger pulse of the appropriate magnitude and duration. Switch S\, when opened, will turn off the SCR. After switch SI is opened, the anodegate capacitance will charge through the load resistor and the lOOK between gate and ground. When the SCR has recovered, SI can be closed, and no capacitive current will flow since C AG is already charged to the full anode supply voltage. 1K r---I _.1._ D, R.. 1K 100K FIGURE 1 UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 15-234 PRINTED IN U.S.A DN·13 DESIGN NOTE When the cathode circuit of a conducting SCR is initially opened, a large reverse gate current can flow which may damage the gate-cathode junction of the device. Reverse gate current should be limited to 3 rna for safe operation of most SCRs. The bias resistors shown in Figure I accomplish this objective, while affording bias stabilization over the operating temperature range. Bias resistor RGK removes all of the internally supplied gate current out through the gate terminal. Under this condition, the internal gate current cannot flow across the gate junction; the device is cut-off, and self-triggering cannot occur. If RaK was connected to the ground side of the switch, when the switch opened the reverse gate current would be about 15 rnA - far exceeding the maximum reverse current rating for most SCRs. RGG takes over from RGK when the switch is opened, limiting the reverse gate current to less than 0.3 rnA. Diode D[ decouples the gate trigger source from the SCR when the cathode switch is opened. This prevents a low impedance supply from drawing excessive reverse gate current. For the situation where the anode supply voltage may be subjected to transient pulses or voltage spikes, a small capacitor CGK , connected in parallel with RGK will absorb the transient charging current. If we assume CAG is 100 pf then a CGK of 0.002 /-If will form a 20:1 voltage divider requiring a 10V pulse on the anode to result in the required 0.5V (at 25°C) to trigger the SCR. UNIT,ROOE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95-1064 15-235 PRINTED IN u.s A, DESIGN NOTE DN·14 NANOSECOND SCR SWITCH FOR RELIABLE HIGH CURRENT PULSE GENERATORS AND MODULATORS The design of reliable modulator and pulse generator circuitry often presents the design engineer with seemingly conflicting requirements. In order to obtain fast rise times, "hard tubes" or hydrogen thyratrons are often used. This results in a large system which consumes considerable power and has relatively low conversion efficiency. Reliability, jitter, and stability are also common problems in these systems. To improve reliability, as well as decrease standby power consumption and improve conversion efficiency, semiconductor devices are a natural choice. However, at the voltage and current levels most often encountered in these applications, conventional semiconductors are usually too slow. The nanosecond SCR switch developed by Unitrode allows the designer to upgrade high current, high voltage modulator and pulse generator circuitry. A single device (GA201 or GA301 *) is capable of operating in circuits with supply voltages up to 100 Volts DC and pulsed load currents in excess of 50 Amperes. It can be triggered directly from logic level signals (I Volt, 200 microamps) and exhibits a rise time of less than 10 nanoseconds to 1 Ampere with only 10 milliamps of drive signal. Single switches operated in this mode can be used as high current replacements for avalanche transistors, modulators, and harmonic wave form generators. Special circuity has been developed to apply these nanosecond switches in applications where supply voltages exceed the .forward blocking capability of a single device. The simplest of these is shown in Figure I. The 1 meg-ohm resistors act as a voltage-sharing network to insure that no single device is overvoltaged because of unequal leakage currents. Turn-on is accomplished by applying a trigger signal to the primary of the pulse transformer, Tl. The capacitor, which has been charged to the supply voltage through Rc, discharges through RLo and the string of SCRs. This circuit is useful until the number of stages used requires a pulse transformer that becomes objectionably bulky. Beyond that point the circuit of Figure 2 or 3 is used. Figure 2 illustrates an approach that uses a pulse transformer to trigger only part of the string, while the rest of the devices in the string are supplied with gate drive through the zener diodes. With a supply voltage of 360 Volts DC, a 95 Volt ± 5OJo zener diode across each SCR in the string prevents unequal voltage distribution. When SCR, and SCR. are triggered, 360 Volts appear across SCR, and SCR, causing zener diodes Z, and Z, to conduct. Since D, and D, are back-biased, the current must flow through the gate-to-cathode junctions of SCR, and SCR" thus driving them on. Up to eight stages can be stacked in this manner using a pulse transformer to drive only the bottom two SCRs in the string. Driving three SCRs with a pulse transformer allows stacking sixteen stages, which can switch a 1440 Volt load using a pulse transformer that needs to have a dielectric isolation rating of less than 300 Volts. Figure 3 uses no pulse transformer and can be extended to virtually any number of stages. When SCR, is triggered, the cathode of SCR, drops from + 100 to essentially 0 Volts. Capacitor C, discharges into the gate of SCR, causing it to conduct, and this process is repeated for SCR, and SCR•. This circuit has the added feature of providing negative bias to the SCRs during recharge of the load in order to minimize the effect of dv/dt. As the voltage rises on the anode of SCR., current flows through the path consisting of C., R., C" R" C" R" etc. This provides negative bias for the gate-to-cathode junctions of the SCR in the string, making them less sensitive to dv/dt triggering. This allows the use of rapid recharge circuits which permits operation at higher repetition rates. Either resonant recharge or active (SCR) rapid recharge techniques may be used with these circuits. *GA201 recommended for military, GA301 for commercial applications. UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON. MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 15·236 PRINTED IN U.S A. DESIGN NOTE DN·14 J+300V DC Rc FIGURE 1 FIGURE 2 DC FIGURE 3 If the energy storage element(s) and load consist only of Rand C components, the charging resistor must be large enough to limit the DC current to a value less than the minimum holding current of the SCRs in the string. When the load contains an inductive component, as is usually the case in modulator circuits, the network can be designed to "ring" in order to reverse-bias the SCR string momentarily. permitting the SCRs to regain their forward blocking capability even though Rc allows more than the minimum holding current to flow. Diode DR may be used in all circuits so that the recharge current will not flow through the output element. In Figures 2 and 3, DR shunts the reverse "ringing" current around the output element. Diode Dc must be used in circuits that contain inductive elements to protect the string from being excessively back-biased due to circuit ringing. UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 15-237 PRINTED IN USA • DESIGN NOTE DN·15 NANOSECOND SCR FOR LASER DIODE PULSE DRIVER The use of pulsed gallium-arsenide lasers reql!ires a reliable high speed, high current switch to drive these devices. In the past the only solid state devices that could be used in this application were avalanche transistors and fast medium power transistors. Avalanche transistors presented reliability problems, while the standard medium power transistors available were too slow. The GA200 series "Nanosecond SCR" with a rise time capability of 10 nsec to I Amp or 20 nsec to 30 Amps provides a solution to both the reliability and the speed problems and appears to be ideal for this type of application. The circuit shown in Figure 1 utilizes a GA201 device along with a lumped constant delay line to generate the desired square current pulse. For simplicity, a single capacitor could be used instead of the delay line. The delay line, however, has the advantage of producing a square pulse that provides sharp turn-off, which limits the excess power dissipation that would occur in the laser diode if the pulse fell exponentially. The impedance of the delay line (= ~) is chosen to produce a slight mismatch, which produces overshoot on the trailing edge of the pulse. This overshoot acts as a reverse bias on the anode of the SCR, assisting in turning it off. A typical value for the delay line impedance would be 1 to 2 ohms, which approximates the impedance of the load formed by the SCR and laser diode in series. The time duration of the pulse ( = ~ per section) can be made as short as desired with a value of 50 to 100 nsec being typical. With the SCR in the off state, the delay line will charge to the supply voltage (100 Volts with GA201). A gate current at the input of as little as 200 IJA. will trigger the SCR. The delay line will then discharge, producing a square current pulse through the gallium-arsenide laser diode. R, and ROK are chosen so that the current, after the delay line discharges, will be less than the holding current of the GA201 (= 3 rnA with ROK = 100 ohms.) C, should be about .001,n and is necessary to prevent false triggering through noise or through dv/dt commutation. D, provides a charging path for the delay line, while R, ~ 50K provides a stable ground reference. Diode D, insures that the reverse breakover voltage of the GA201 will not be exceeded during the turn-off period. The forward current level will depend upon the total impedance of the GA201 and the laser diode and the charging voltage used. With a 100 Volt device and a practical minimum circuit impedance of about 1 ohm, it is possible to develop peak currents of up to 100 Amps. (See Figure 2 for Time vs Current curve for GA2oo/GB2oo Series.) Pulse of 60 Amps with rise times of approximately 30 nsec have actually been achieved. For improved performance at high current levels, the SCRs may be operated in parallel or in series. Parallel operation is achieved by providing equal series resistors to the gates of the devices and driving them from the same source. By overdriving the gates with 50 to 100 rnA, simultaneous turn-on is guaranteed. Parallel operation results in lower forward voltage drop and faster rise time at high current levels. Series stringing techniques can be used in circuits with a higher total impedance where higher voltages are needed to obtain the desired current levels. For a description of series operation see Design Note 14. UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326·6509 • TELEX 95·1064 15·238 Printed in U.S.A. DESIGN NOTE DN·15 + 100V L ----~ T '--_--'-_ _--'-_C.... _ _ _ _ % C R2 :.& 50K Q1-GA201/GB201, GA301lGB301 0 1 -Gallium-Arsenide Laser Diode D2 -JAN 1N5802 or 1N5807* (Alternative: UES1101 or UES1301) D3 -JAN 1N5804 or 1N5809* (Alternative: UES1102 or UES1302) Note: Heavy lines indicate braided connections for reduced inductance and resistance_ Figure 1 SURGE RATING-GA200, GB200-PEAK REPETITIVE PULSE 1000 500 en w 100 w 50 a: a.. ~lGA200 SERIES GB200 SERIES IA (avg) IA (avg) 350mA max, TA 25°C 100°C 6A max, Te ~ « i'... -< ........ 10 5 III 1.0 .1ps 1ps lOps lOOps PULSE WIDTH 1ms lOms Note: For MIL and high Rei series applications, use GA/GB 200/201 and JAN Diodes. For high rep rate (high average current), use GB series with 1N5809 or UES1302 rectifiers. GA300 and UES series are intended for commercial applications. Figure 2 UNITROOE CORPORATION. 5 FORBES ROAO LEXINGTON. MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95·1064 15-239 PRINTED IN U S.A DESIGN NOTE DN·19 A SIMPLE ISOLATION AMPLIFIER USING THE UC1901 The VCl901 Isolated Feedback Generator has other applications besides providing isolated feedback in switching power supplies. This IC's amplitude modulation system and error amplifier can be used to implement a very low cost, high bandwidth, isolation amplifier. Isolation amplifiers of this type find use in switching power supplies, motor controls, instrumentation, industrial controls and medical systems. The VCl901 generates a p·rogrammable high frequency carrier signal (up to 5MHz) with an amplitude that is controlled by a high gain error amplifier. In a typical feedback application, this amplifier and modulator are used, in conjunction with the VC1901's 1.5V reference and a small signal coupling transformer, to provide precision regulation for an isolated switching power supply. Capacitively coupled feedback around the VCl901 error amplifier determines the device's small signal AC response, but the D<;:: operating point is determined by the requirements of the overall power supply loop. By adding an additional winding on the coupling transformer and a demodulator circuit for this winding, local DC feedback can be provided to the VC1901's error amplifier. In this mode very accurate DC, as well as small signal AC, transfer functions can be established across the isolation boundary. ISOLATION :/BOUNDARY +V'N (5·40V) 14 UC1901 10 12 R, R, E'l - -osc. 4 R, DRIVERS (10k) -- -= A Low Cost, High Bandwidth, Isolation Amplifier: An additional feedback winding linearizes the transfer function of the amplifier by matching the coupling characteristics to the isolated output. UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 15-240 PRINTED IN U.S.A DN-19 DESIGN NOTE The configuration of an isolation amplifier using the UCl901 is shown in the figure below. The drivers on the UC1901 couple an amplitude modulated carrier to two matched windings (W2 and W3) on a small signal transformer. The demodulated signal from winding W2 is used to provide feedback to the UCI90l's error amplifier while the demodulated signal from W3 is the isolated output signal. The use of the feedback winding linearizes the transfer function of the overall amplifier and allows DC signals to be accurately transferred. Matching of the two demodulator windings and demodulator circuits is important to maximize linearity and minimize DC offsets. An optional output buffer and filter will reduce residual carrier ripple and isolate the output demodulator from its load. The internal gain compensation on the UCl901 is sufficient for stable operation with overall gains down to 12dB. This circuit requires a supply voltage to the UC1901 that, if not available in the system already, can be generated using a second similar circuit operating in the reverse direction. The primary features of this circuit are: I. Good Signal Linearity 2. Wide Bandwidth (3dB Bandwidths > 500kHz) UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON. MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95·1064 3. High Isolation Capability 4. Low Cost 15·241 PRINTED IN U.S A 15·242 HI·REl SCREENING 16-1 II 16-2 HR201 HI·REL SCREENING Unitrode semiconductors are inherently high-reliability devices, manufactured with a quality control system that complies to MILQ-9858A. Some users, however, want the ultimate assurance of reliability. 4. Reverse Bias Clamp Test, VCEO = Rated VIN, Ic = 5A, f = 25KHz, EouT = 5V, T c = 25°C. 5. Power Stress, T c = 125°C, P = 2.0W, t = 40 hrs. 6. High Temperature Reverse Bias, T A = 125°C, t = 16 hrs., V,= 80% of rating. In addition to those devices qualified and tested to JANTX and JANTXV specifications we can supply our broad product line of hermetically sealed devices screened to various requirements. For applications where full MIL-S-19500 Table II is not required we have our own screening specifications as follows: For discrete semiconductor devices we can screen to Table II of MIL-S-19500. Our linear integrated circuits can be screened to MIL-STD-883 METHOD 5004.6. Our switching regulator (PIC) series is not covered by a MIL specification and for this series we recommend our own ULlOl or ULl02 screening program. This includes: PRODUCT SPECIFICATION SPECIFICATION WITH DELTA'S HR201-D Rectifiers HR201 Zeners HR20lZ HR201Z-D 2. High Temperature Storage, MIL-STD-750 Method 1032.l. Surge Suppressors HR201S HR201S-D 3. Temperature Cycling, MIL-STD-202 Method 107. Transistors HR20lT HR201T-D 1. Hermetic Seal: Fine and Gross leaks MIL-STD-750 Method 1071. 16-3 ~UNITRDDE 16-4 THERMAL, MOUNTING & MECHANICAL SPECIFICATIONS 17-1 II UNITRODE CORPORATION· 5 FORBES ROAD LEXI NGTON, MA 02173 • TEl.. (617) 861-6540 TWX (710) 326-6509 • TELEX 95·1064 17·2 PRINTED IN USA MOUNTING AND THERMAL CONSIDERATIONS TO·220 Package The figures show the typical device and hardware recommended. Several typical configurations of lead forming are illustrated. The leads of the TO·220 transistors, SCRs, rectifiers and Schottky diodes may be formed, but they are not intended to be flexible or ductile enough for unrestrained lead wrapping. The advantages of mounting the flange to the printed circuit board is that improved thermal heat transfer allows operating at higher levels of power dissipation. The individual specification sheets give the safe operating area as a function of a case temperature. The TO·220 is generally considered as the economic replacement for the TO·66 power package. Unlike the TO·66, the leads of the TO·220 may be formed if the following considerations are met. OPTIONAL RECTANGULAR i-SCREW 4-40 @ __ B BUSHING ~ TRANSISTOR HEADER / .......... MICA WASHER ;~ R- @_SHOULDER BUSHING B - HEATSINK PRINTED CIRCUIT BOARD SCREW 6-32 NOT SUPPliED WITH DEVICE ~ ------- NOT SUPPLIED ~ / WITH DEVICE Figure A. Device and Hardware for Insulated Mounting. i-SCREW 4-40 METAL WASHER SHOULDER / TRANSISTOR HEADER ~:::::: ©..,/ NOT SUPPLIED WITH DEVICE Figure B. Two Alternative Configurations for Axial Strain Relief and Electrical Isolation. BENDING THE LEADS Whenever the leads of the T·220 are to be formed, whether by a special fixture or by the use of long-nosed pliers, several important considerations must be followed. Internal damage to the device or lead damage may result if anyorall of these precautions are not considered. 7. Forming fixtures or pliers should not touch the plastic case because axial strain of'" .005" could cause irreversible internal damage. S. The leads must be fully restrained during the lead forming operation to prevent relative movement between the body and the leads. 1. Minimum bend distance between the plastic body and the bend is 'Is inch. 2. The minimum radius of the bend is '/18 inch. SOLDERING INTO THE CIRCUIT 3. Avoid repeating bending at the same flexure point. The leads on the TO-220 are solderable; however, there are a few precautions that must be observed. 4. Whenever possible, use one of the lead forming configurations which relieve strain induced by mechanical or thermal loads. 1. Soldering temperature must not exceed 270·C. 5. Leads should not be bent greater than 90 degrees. 2. Maximum soldering temperature must not be applied for more than 5 seconds. 6. Avoid axial pulling or bending that would induce axial strain. The maximum axial component is 4 pounds. 3. Maximum soldering temperature should not be applied closer than 'Is inch from the plastic body of the device. 17-3 ~UNITRODE III MOUNTING AND THERMAL CONSIDERATIONS TO·220 Package MOUNTING THE FLANGE Flange mounting is recommended for maximum power handling applications. A 6-32 machine screw is recommended. Eyeletting (hollow rivet) is acceptable if care is taken nottodistortthe flange. For insulated mount, a 4-40 screw and a shoulder bushing is recommended (see figure). Suggested material for bushings are: Diallphthalate, fiber-glass-filled nylon, or fiber-glass-filled polycarbonate. Note unfilled nylon should be avoided. The flange should not be directly soldered because the use of lead-tin could produce temperatures in excessofthe maximum storage temperature. See the individual specification for the device. 2. Always fasten the flange prior to lead soldering. 3. Do not allow the forming tool to come in contact with the plastic body. 4. Maximum mounting torque is 8 inch-pounds. 5. Avoid modifying the flange by machining and do not use oversized screws. 6. Provide axial and transverse strain relief of the leads. 7. Use recommended insulation bushings. Avoid materials that exhibit hot-creep problems. Check list and summary for flange mounting: 1. Use recommended hardware. Thermal Considerations TO·220 Power Transistors Ic A Thermal Resistance, Case to Ambient; Free Air, No Heatsink ............ 60'C/W typical Thermal Capacitance of Package ................. 4.8 watt-secondsrC Thermal Time Constant .............. 305 seconds Device Type Continuous Peak Po_r Dissipation W Thermal Po_r Resistance Derating Junction Case mW'C 'C/W UMT/MJE 13004 UMT/MJE 13005 4 8 75 600 1.67 UMTIMJE 13006 UMTIMJE 13007 8 16 80 640 1.56 UMT/MJE 13008 UMTIMJE 13009 12 24 100 800 1.25 UFN732 4.5 18 75 600 1.67 UFN742 8.0 32 125 1000 1.00 Note: When using a 2 mil MICA washer for electrical isolation, add O.4'C/W to heatsink thermal resistance. Thermal jOint compound should be used at the interface of the TO-220 flange and the heatsink to which it is attached. pated in the circuit. The table below shows junction temperature resulting from 50W of dissipation when mounted on an infinite heatsink at 25'C with different methods of interfacing. Consider a TO-220 power transistor with a thermal resistance junction to case of 1.25'C/W. The junction temperature produced depends upon the mounting conditions and power dissi- Thermal Resistance Case·Heatsink Interface Condition Between Case and Heatsink Assumed direct, ideal metallic contact (no interference) Junction Temperature 'C/W 'c 0.0 87.5 1.2 147.5 Thermal compound; Tab screw torqued at 8 inch-pound 0.09 92 2 mil mica washer with thermal compound applied to both surfaces; tab screw torqued at 8 inch pound 0.58 116.5 1 mil air gap· ..In length has the thermal resistance of ~ 1.2'C/W. • A film of arr one mil 18'C/W rated sink and thermal compound as above the device will have a junction temperature of 122'Cwhen operating at 5W in an ambient of 25'C free air. When using a small heat sink in free air one must consider the additional thermal resistance of the heat sink to ambient and operate at an appropriate power level. For example with an UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1054 17-4 PRINTED IN U.S.A THERMAL DESIGN CONSIDERATIONS FOR LEADED DEVICES For Lead Mounted Rectifiers and Zeners, for 5 types of mounting. Determining The Power Rating for Your Application. The information given in this section is presented for straight·forward use by the designer. The value given in this table is R8JA, the "Total" thermal resistance of the diode and mounting together~ no other graphs or tables are needed. Pmo, TJmo, - TA...., RSJA Where: Pmox is the maximum power that can be dissipated in the device reliably. TJmox is the maximum of the operating temperature range, usually 175'C, unless derated for a military or hi rei application. TAmo, is the max temp that the ambient reference (air below the device) will reach during operation. Alternately, Junction Temp Rise PR SJA t ,060"' TYPE 1 + o \"'.OIA, 11/2" PC BOARD, LIGHT 0 l/a" ~I CJI 1'/,.---1 ~'12" ~I. I R r-"2. e az",..OIA, TYPE 2 PC BOARD, MEDIUM TYPE 3 PC BOARD, HEAVY = = ~,,,.~ ,060" ~~ponce ~ \ ...-- and solder rzzzzlZl[)uLLLL .060 Epoxy Glass .060" dia. x S/8" high Terminals are per MS 17122·7 TYPE 4 PC BOARD WITH CHESSMEN TERMINALS ~ '1>" ~ #16 Hook Up ~ "e Wrap once ===dSOlder ,060 Epoxy Glass .125" dia. x W' high Terminals are per MS 17122-8 TYPE 5 TERMINALS AND HOOK-UP WIRES UNITROOE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 PRINTED IN U 5.A 17-5 RaJA Total Thermal Resistance in Degrees C/Walt Mounting Type Type 1N3611-3614 1N4245-4249 1N4461-4489 1N4736-4764 1N4942-4946 1N4954-4996 1N5063-5117 1N5186-5189 1N5186-5190 1N5550-5553 1N5614-5622 1N5802-5806 1N5807-5811 TVS 505-528 UES1101-1106 UES1301-1306 UR105-125 UR205-225 UT236-347 UT249-363 UT251-364 UT261-268 UT2005-2060 UT3005-3060 UT4005-4060 UTROl-61 UTR02-62 UTR10-60 UTR2305-2360 UTR3305-3360 UTR4305-4360 UTXI05-125 UTX205-225 UTX3105-3120 UTX4105-4120 UZ706-140 UZ4706-4120 UZ5706-5140 UZ7706L-7710L UZ8706-8120 UZS306·440 1 2 3 4 5 105 105 105 140 98 75 94 75 92 92 92 127 85 62 81 62 59. 62 80 81 62 62 81 62 129 85 114 97 92 85 84 75 75 75 110 68 45 64 45 42 45 63 64 45 45 64 45 112 68 97 80 75 68 67 55 50 97 68 146 67 55 50 112 68 55 50 64 45 45 43 110 64 97 97 97 132 90 67 86 67 64 67 85 86 67 67 86 67 134 90 119 102 97 90 89 77 73 119 90 168 89 77 65 65 65 100 58 35 54 35 32 35 53 54 35 35 54 35 102 58 87 70 65 58 57 45 40 87 58 136 57 45 40 102 58 45 40 54 35 35 33 100 54 72 75 93 94 75 75 94 75 142 98 127 110 105 98 97 85 80 127 98 176 97 85 80 142 98 85 80 94 75 75 73 140 94 72 67 114 85 163 84 72 67 129 85 72 67 81 62 62 60 127 81 UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 72 134 90 77 72 86 67 67 65 132 86 PRINTED IN USA. 17·6 LEAD MATERIALS Unitrode offers a wide choice of lead materials for soldering or welding because the leads are attached to the pins outside the glass seal. Since the leads do not pass through a glass-to-metal seal, there is no need to match the thermal coefficient of expansion of the leads to the glass. Solderable Leads - Silver plated copper meets the solderability requirements of MIL-STD 202C Method 208A. Solid silver leads meeting the requirements of MIL-S-13282 Grade A are available on special order. Weldable Leads - Three types are available to meet the welding requirements of MIL-STD-1276A. The pure grade A nickle leads meet the requirements of type N-l. The gold-plated nickle leads meet the requirements of type N-2. Gold-plating is in accordance with MIL-G-45204, Type l. The copper leads (tin-coated) are the standard lead materials. These leads meet the requirements of type C. Types N-2 and Care solderable as well as weldable. The following table lists standard lead lengths and materials. Weights of the diodes with various leads are also shown. In the event other lead materials are required, please consult Unitrode. Body Material Usage ins mm ins mm Suffix Letter Typical Weight Body Plus Leads (mg) Silver plated Copper Solderable 1.0 25.4 .020 .51 None .030 Silver plated dumet Solderable or weldable 1.0 25.4 .014 .36. . - Silver plated Copper Solderable 1.0 25.4 .028 .71 H 260 Lead Length A .045 B .090 and C .125 .. Dia - Silver Solderable 0.7 1.24 .028 .71 M 215 Copper, tinned (standard) Solderable or weldable 1.0 25.4 .028 .71 None 260 Silver plated Copper Solderable 1.0 25.4 .040 1.02 J 740 Silver Solderable 1.0 25.4 .040 1.02 P 740 Copper, tinned (standard) Solderable or weldable 1.0 25.4 .040 1.02 None 740 " Available on lN5767 and lNS957 only, UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 17-7 PRINTED IN U.S.A. INSULATED STUD PACKAGES Unitrode's three stud-mounted devices, lOW high-surge zener diodes, l2A standard recovery' rectifiers, and 9A fastrecovery rectifiers, are also available as shown here with insulated studs having the same high ratings as the standard non-insulated devices. MECHANICAL SPECIFICATIONS lt 3 Style W GOld Plated Nickel Ribbon (2 Places) Beryllia Insulating Full thread to within Disc .060 of shoulder j... 125" TYP 012" TYP . ..j 30mm I I J?~~~~XRf11-jUIHSilflHlIHf-""'H"It--=-=-..!b~=.\=:0:tI~m ... 6-32 x 240"'.010" T 6.10mm±.25mm Copper, Gold Plated .005" l~~';' RAD. ~ I 385 MAX .I 978mm"'1 '\lsmm 10 16mm ~ -'-- 750" MIN 19.05mm '\ y 250" HEX 635mm Dimensions in inches. Style V 6-32 x .240"'.010" 6.10mm±.25mm Copper, Gold Plated .005" MAX . . 13mm Dimensions in inches. Part Identification: Style W: Part number printed on ribbon lead. Style V: Part number printed on body. Numerals are unique and indicate lOW Zener Series (UZ), l2A rectifier series (UT), or 9A fast-recovery rectifier series (UTR). Polarity: Cathode to stud end. Max. Weight: Styles W & V: 2.3 grams. Installation Precautions: Maximum unlubricated stud torque: 36 inch-ounces. Note: Do not use a screwdriver in turret slot for installation purposes, or damage may result. OROERING INFORMATION The type numbers that apply to the standard studs also apply to the insulated studs with the addition of suffix W or V for style W or V (see outline drawings). For example, to specify insulated stud style W for a 6.SV zener, order UZ7S06W; for a 50V l2A rectifier, order UTSl05W; and for a lOOV 9A fast-recovery rectifier, order UTR64l0W. UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 17-8 PRINTED IN U.S.A MECHANICAL SPECIFICATIONS A B 1 Band ,nd,cateJ" ~ 155 141m 0 ( j . t LI :) 0 TYP 3 9mm cathode end 055 TVP .111 B~~~h=~a~~S\~.l!~~~~P_ 028" ... 001 0 7lmm .:t. 03 h08:m1 t 085 MAX 21'r m 115TYP "im DC"'-- ~ I- 700' MIN 1711mm --1 - 1--2S:~5~~- V "Tm i 105"TVP 27mm t-- .975" MIN. 1---30~~2~A~ _ 24.8mm 2.30"MIN. 58.4mm 1625' MIN 413mm A1 ~(]'145JMAX ~ TVP 22mm i~~~ ~o~3 I B1 !Ti504~1~ I Of28 ± 001 071mm % ! oj:!: 1.Omm t i 03 i I _254mm 085 max 216mm j 4 001 I02mm;t 03 l_g~~~x_1 ASA ~ ! 145 max 368mm I ! l-~~~-I ASB r CATHODE BAND r-K~ ~ LK-ilA A B 0 K INCHES MAX MIN 0160 0260 0110 0120 0030 0034 1.0 - ~ <=0 CATHODE K, =~ ~-.l rn 11B 2 MilLIMETERS MIN MAX 406 660 2.79 305 076 0.86 25.4 A B 0 K LA-LKJl UB INCHES MIN MAX 0.370 0380 0.190 0.210 0048 0.052 1072 1.0 MilLIMETERS MIN MAX 940 9.65 483 533 122 1.32 25.4 AA,BB,CCL O~A rrf. ~ UNITROOE CORPORATION· 5 FORBES ROAD LEXI NGTON, MA 02173 • TEL. (617) 861.6540 TWX (710) 326·6509 • TELEX 95-1064 1 tfol ..., BB AA mm A 450 MAX 1143 MAX C 08!iMAX 275TYP 028:t.OOI 216MAX 699T'1'P • , 0 700M!N 17·9 07ltOOJ 1778MIN '" 500 MAX 145 MAX 325TYP 040:tOOI 975MIN CCl mm 1270 MAX 368 MAX 1M 600 MAX 185 MAX mm 1524 MAl( 4JOMAX 826TYP 4]OTYP 1092TYP I02tOD3 040tOOl 102;!:00 2350MIN 2477 MIN 925 MIN PRINTED IN U.S.A. MECHANICAL SPECIFICATIONS BE A B C D E C in •• mm. 1.140 MAX. 2.985-3.015 2.110-2.140 .740-.770 .720 .750 28.96 MAX. 75.82-76.58 53.59 54.36 18.80-19.56 18.29-19.05 CL #4·40 x :~~:: ~~:~~~: LONG THREAD DE, OF DD ~:I THREAD RELIEF TO 0121 OUT TO OIA ,M.AX .",0, I --1 MINOR OIA FROM I TO 3 I B THOS TERMINAL 2 ..,-----.L1 4·28 X '4 020 MIN CHAM 6SJmm ~ 45' DG . Llr DE c -", LI, j ~]O"OI~ MAX DF 255mm A ", OD OD, UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON. MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 17-10 NOTES 8 C, 0 1020" MAX 2542rnm ;n . .200 ,6.10) .265 16.73) 1.15 .57 (lU., 2.' ".!II O,menslons In .nches wIth metriC:: In PoIrentheses Minimum MaXimum .970 (24.M) 1.020 (25.91) equivalents Imm NOTES .O"'~ • 1 .10) I. ) .4SO (17.63) .•5 (24,13) .317 (I~OS) .400 (10.16) 3650 192.11) 1.250 (31.75) 3 5. PRINTED IN USA MECHANICAL SPECIFICATIONS OH OIL·4 At! 10.~-~ TMRD I-- 8 -l A B C 0 E 1 ., 10-32 J~~.~a ~_ ~Ff---, ltiSIQ~£G ~~~~£ " U 5.84-5.97 24.89-2794 0.51-1.02 8.13-8.38 24.64-25.40 i • I /, \,J"_,.l II mm. ins. .230-.235 .980-1.10 .020-.040 .320-.330 .97-1.00 " -H:~~l- '1lIDOIDI ,"fi2,6iMDI -~-- 0 OJ' ... I"~ ,.jj' . J ~ 1\ , _- 1 jl"~ llllDUlI1 ~ DSlllI02S) ~;::~~:;t-ll- CD t---151~,D_)(III_ ~~:m~ IJIIISO 112,OOifi ZP(f)iS ~:~!~~:II N(lTES 0)APPI.IUrOSPRiAOOFlEAInPRIORTOINSTAll""ON r-- Ir.olOIOIlI NOMIHAl 0 . .""'ESIO'"£TAlliDLE"-OCEN1US Nominal DimenSions in Milhmet8J'$ and /Inches) OIL·S J ,9, B C 0 E F !-F---! G H H A!ItrmT BL~~H~ ~ -I J INCHES MIN. MAX. .200 .014 .023 .030 .070 .008 .015 - .390 .220 .310 .290 .320 .100 BSC .125 .200 .150 .015 .060 .045 .005 0' IS' MILLIMETERS MIN. MAX. - 5.08 0.36 0.58 0.76 1.78 0.20 0.38 - 9.91 5.59 7.87 7.37 8.13 2.54 BSC 3.18 5.08 3.81 0.38 1.52 1.14 0.13 0' IS' INCHES MIN. MAX. .115 .125 .015 .021 .030 .070 .010 .015 .360 .400 .240 .260 .290 .310 .090 .110 .120 .135 .140 .165 .020 .030 .025 .050 .005 0' IS' MILLIMETERS MIN. MAX. 2.92 3.17 0.38 0.53 0.76 1.78 0.25 0.38 9.14 10.16 6.09 6.60 7.37 7.87 2.29 2.79 3.05 3.43 3.56 4.18 0.51 0.75 0.64 1.27 0.13 0" IS' AJ K L M o--\\.- P N P OIL·S N ,9, A!IllmT BL~~H~ ~ J A B C 0 E F !-F---! G H Jt~~ J K L M N P OIL·14 N S, f.l 1tA A A A ;1t b b, t/)13 12 11 10 9 8 c 1/234567 0 E E, j..-E-I ~ E, A SYMBOL S ~\.- C (Mj~~\j~'d'd r1 tt ~ -i - >~ -: -:- ~:t~ 0 SEATING - TQ~L' PLANE ~il.-i ..j ~ ~il=b' e UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95·1064 17-11 E:! E3 e L L, Q Q1 S S, 50 INCHES MIN. MAX. .200 .014 .023 .030 .070 .008 .015 .785 .220 .310 .290 .320 .100 .050 .100 BSC .125 .200 .150 .015 .060 .020 .098 .005 .005 - MILLIMETERS MIN. MAX. 5.08 0.36 0.58 0.76 1.78 0.20 0.38 19.94 5.59 7.87 7.37 8.13 2.54 1.27 2.54 esc 3.18 5.08 3.81 0.38 1.52 0.51 2.49 0.13 0.13 - NOTES 8 2,8 8 4 4 7 5,9 3 6 6 PRINTED IN U.S.A. MECHANICAL SPECIFICATIONS OIL·16 J I-- 0785 (200)---1 I 0755 (19 1) I °""·""""0 g - C D 1117mm AC AC _~ "., Ql1mm 127mm Tinned Copper Lead mm. In•. 100 Typ-.ll.254mm A B .75 MIN. .50 MAX. 19.05 MIN. 12.70 MAX. C D .028 DIA. .187 MAX. 4.75 MAX. .71 DIA. Dimensions in inches and millimeters SB SC I.-- A B C D A c::=:J -+----.1 Ie UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95·1064 ~ A~ L A B MIN. MAX. DIA. C D MAX . 17-18 1.25 MIN. 1.125 MAX. .032 DIA. .187 MAX. 0 -H- C D mm. Ins. mm. 31.75 21.59 .81 4.75 B D B Inl. 1.25 MIN. 0.85 MAX. .032 DIA. . 187 MAX. ~ 0 -<1>- 31.75 28.58 .81 4.75 MIN. MAX. DIA. MAX PRINTED IN U.S.A MECHANICAL SPECIFICATIONS so SE D MOLDEO-1 EPOXY j- r- B D I !....,.I-tl=]-1--1 -m, ---r ~I A ,- ' 1--1 E C D E 1.25 MIN. 875 MAX 032 DIA. .250 MAX. .375 MAX 31.75 22.23 .81 6.35 9.53 A B MIN. MAX DIA. MAX MAX C D E D SF Ins. 1.25 MIN 1.375 MAX. 032 DIA. .250 MAX. 375 MAX. .078 3175 34.93 .81 6.35 9.53 1.98 ,r , ~ EPOXY? c mm. ins. A B MOLOE01 , ---r F MIN. MAX DIA. MAX MAX. SJ. SK. SL. SM. SN D II A --+-I B I -----1 I MOLOEO EPOXV\J 'II" ~ ~=[I==:JI=~~ J?~ A B C D D ins. 125 MIN. 1.75 MAX. .032 DIA. .400 MAX. 400 MAX. .078 o (2) mm. 31.75 MIN 4445 MAX. .81 DIA. 10.16 MAX. 10.16 MAX 198 MAX . D Dimensions in inches and (millimeters) SK SJ A Ins. 031 , .002 Ins. MM 0.79' 0.05 031 , .002 0.79,0.05 5.08,0.13 28.4 B 1 12 284 C .410, 005 10.41,0.13 1 12 200 , 005 D 140::,;; 005 3.57'0.13 100:t 005 Ins. MM MM Ins. MM .040, 003 1 016 ± 076 Ins. .093, 003 2.36,076 020 ± .001 0.51 ± 0.03 SL A MM 2.54 ::t 0.13 SN SM B 40 10.16 40 1016 .60 15.24 C 400:t 015 1016 ± 381 375 ± 015 1500±015 38.1 ± .381 D 300, 015 762, 500 ± .015 9.52' 381 12.7 ± 381 235 ± .005 5.97,0.13 381 TG A B C D ..)NITROOE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95·1064 17-19 INCHES 020 ± 002 10 MIN 285 ± 015 095 ± 01 &II MILLIMETERS 508 ± 051 254 MIN 7239 ± 381 2413 ± 254 PRINTED IN U.S A. MECHANICAL SPECIFICATIONS TM INCHES 025 ± 003 10 MIN 405 ± 015 14 ± 015 A B c D MILLIMETERS 635 ± .076 254 MIN 10287 ± 381 3556 ± 381 TO·3 (3 PIN) (See TO·204AA for 2 PIN TO·3) mm. Inl. A B C D E F G H J K L M N P .875 MAX. .135 MAX. .250-.450 .312 MIN. .205-.225 .420-.440 .145-.165 .395 .405 151-.161 DIA. .188 MAX. RAD. .525 MAX. RAD. .708-.728 1.177-1.197 .Q38-.043 DIA. 22.23 MAX . 3.43 MAX. 6.35-11.43 7.92 MIN. 5.21-5.72 10.67-11.18 3.68-4.19 10.03-10.29 3.84-4.09 DIA. 4.78 MAX. RAD. 13.34 MAX. RAD 17.98-18.49 29.90-30.40 0.97-1.09 DIA . TO·5 un~ --- -- • B 0 '-F - A B C D ±~K "or P1EtTj-· E F G G H ~ J K L 1111. .335-.370 .305-.335 .240-.260 1.5 MIN. .010-.030 017 ± :88~ .200 100 .028-.034 .029 .045 .100 mm . 8.51-9.40 7.75-8.51 6.09-6.60 38.10 MIN. .254-.762 .432 ± :8~~ 5.08 2.54 .711-.864 .736-1.14 2.54 TO·5 Pancake A B C D ,A"jl '~ I" --1 ::;~¥5; I L I' [}:~~'~ A .l......- E ___ E • •: .= F .017 ± .88~ G .200 100 .028-.034 .029- 045 .100 H J -L K L UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 17-20 Ins. .335-.370 305-.335 .165-.185 1.5 MIN. 010-.030 mm. 8.51 9.40 7.75-8.51 4.19-4.70 38.10 MIN .254-.762 432 ±·m 5.08 2.54 .711-.86~_ .736-1.14 2.54 PRINTED IN U.S.A. MECHANICAL SPECIFICATIONS TO·9 r Bl C 1fE D l ~~. - --~ - -- --.- -- ---- F A • G \ ' + ins. 275 .335 .290-.370 .200-.260 1.5 MIN. .010-.030 A B C D E -- , F .017' H J 200 100 .100 G -IJ- :gg~ mm 6.99-7.75 7.37-9.40 5.08 6.60 3810 MIN. .25-76 432. .051 .025 5.08 2.54 2.54 TO·IS G1+t. = ~Bt~ J : '.--.+> , .L 90·' 5"' ~a=--' --L~j A D --.\~F A B C D 45·::'::5- ~ 5 E \'~:~I V E " .. gy H F G ~J H J INCHES .178-.195 DIA. .170-.210 .5 MIN. .209-.230 DIA. 017 •.002 DIA. ' .001 DIA, ,020 MAX. .100'.010 DIA. .041>.005 .028-,048 MILLIMETERS 4.52-4.95 DIA. 4.31-5.33 12.70 MIN . 5,31-5,84 DIA. .432. :~~ .508 MAX. 2.54'.254 DIA. 1.04'.127 .711-122 I'i TO·33 A B C ' " , ·--=~'=1~~'11 ~I A D E F G H J K ~- L L TO·59 r ., fl(' A ''1: 'C- ~-I 111' - ~: __ 1 ~F 10· 32. 2A THREAD UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON. MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 I E r- -+I • I.. , H 17·21 .017. :gg~ 1.5 MIN, .018 MAX . .031 ± .003 .200 .100 .029-.045 .100 mm 7.75-8.51 8.51-9.40 6.10-6.60 0.43' :g~ 38.10 MIN. 0.46 MAX. 0.79' .08 1.02 2.54 0.74-1.14 2.54 B C D E INCHES .400- 455 .090-.150 .320-.468 .570-.763 .318 .380 MILLIMETERS 10,16-11.56 2.28-3.81 8.13 11.88 14.48-19.38 8.07-9.65 F .055.g}g G H .424-.437 .185-.215 1.40 ± :~~ 10 77-11.10 4.70 5.46 A G ins. 305-.335 ,335-.370 ,240-.260 II PRINTED IN U.S.A. MECHANICAL SPECIFICATIONS TO-66 H)cJ A B rtJ' r~+~, t M- ~r c D .E F -K L G H J K L M ins. .620 MAX. .050-.075 .250-.340 .360 MIN. .028-.034 DIA. .958-.962 .570-.590 . 145 MAX. RAD. .142-.152 DIA. .350 MAX. RAD. .190-.210 .093-.107 mm. 15.75 MAX. 1.27-1.90 6.35-8.63 9.14 MIN . .7U-0.863 24.33-24.43 14.47-14.98 3.68 MAX. RAD . 3.60-.386 DIA . 8.89 MAX. RAD . 4.82-5.33 2.36-2.72 TO-66 (3 PIN) ins. . A B C I~' '~, ~~ C ,~ F D E F 1 ....... 1 1 "' G H J K K L M mm. .250-.340 .620 MAX. .050-.075 .028-.034 .360 MIN. .958-.962 .190-.210 .190-.210 350 MAX. RAD. .570-.590 .142-.152 .145 MAX. RAD. 6.35-8.64 15.75 MAX . 1.27-1.91 0.71-0.86 9.14 MIN. 24.33-24.43 4.83-5.33 4.83-5.33 8.89 MAX. RAD. 14.48-14.99 3.61-3.86 3.68 MAX. RAD . ins. .620 MAX. 050-.075 .028-.034 .958-.962 .190-.210 .190-.210 .350 MAX. RAD. .570-.590 . 142-.152 DIA. .360 MIN. .250-.340 15.75 MAX . 1.27-1.91 0.71-0.86 24.33-24.43 4.82-5.33 4.82-5.33 8.89 MAX. RAD. 14.48-14.99 3.61-3.86 DIA. 9.14 MIN . 6.35-8.64 TO-66 (4 PIN) B --lI- A F .~. B C CD : I, it -.., r , L - G E or- -.l '~I D D 1 F H G CD H J J K L mm. TO-92 D -r~d, = ~" = ~- ~-I -I ~G ; t A j ---- B C I~ UNITRODE CORPORATION - 5 FORBES ROAD LEXINGTON, MA 02173 - TEL. (617) 861·6540 TWX (710) 326-6509 • TELEX 95-1064 A B C D E F G H J 17-22 tnl. .135 MIN. .170-.210 .500 MIN. .016-.019 .175-.205 .125-.165 .080-.105 .095-.105 .045-.055 mm. 3.42 MIN . 4.31-5.33 12.70 MIN. .406-.482 4.44-5.~1 3.17-4.19 2.03-2.66 2.41-2.66 1.14-1.40 PRINTED IN d .J u.S; MECHANICAL SPECIFICATIONS TO·111 inl. B~ :~1 \ 10-32- NF-2A THREAD B c 0 E F G e: ~~ rr- t .400-.455 .090-.250 .320-.468 .570-.763 .065-.090 .313-.318 .070-.090 .423-.438 .135 .215 A [] '- H J mm. 10.16-11.55 2.28-6.35 8.13-11.88 14.48-19.38 1.65-2.28 7.95-8.07 1.77-2.28 10.74-11.12 3.43-5.46 G/ TO·204AA (TO·3) A F~M ~t1b' C B C 0 E F G !~I~~ j I~ H I 0 H L J~~ J K L M I-- D K TO·204AE (TO·3 MODIFIED) inl. .875 MAX. . 135 MAX. .250-.450 .312 MIN. .038-.043 DIA.• . 188 MAX. RAD. 1.177-1.197 .655 .675 .205-.225 .420-.440 .525 MAX. RAD. .151-.161DIA. mm. 22.23 MAX . 3.43 MAX . 6.35-11.43 7.92 MIN . 0.97-1.09 DIA.' 4.78 MAX. RAD. 29.90-30.40 16.64-17.15 5.21-5.72 10.67-11.18 13.34 MAX. RAD. 3.84-4.09 DIA. 22.22\0.815) 3.42 lB~ !g.;~ !. I::::::l . MAX. CIA. 1O.13SI MAX ~~-lEATING T PLANE :::~:g:::~:DIA -11- :f:a:&Ug: TWO FLACES TWO PLACES 26.61 1-!I.050lMAX. lil IK:!iI CIA " r----,.:: TWO PlACES 1c~~SOURce v- -.\ IHlllml'J 39." ;$I p<""V\ . TlOAD 11.19"11.",)"". BE1f.l7'I1 ~ GATE -H - Dimensions in inches and (millimeters) J I r~.~:mi3~t r-IU~m1mt t MEASURED AT SEATING PLANE TO·205AD (TO·39) "Jl E_ ~ 45° .( . .017' G .200 .100 .031±.003 .029-.045 .100 H ~L 'NITRODE CORPORATION· 5 FORBES ROAD EXINGTON, MA 02173 • TEL. (617) 861·6540 'WX (710) 326-6509 • TELEX 95-1064 F B ,.j1 ';cit I --1, ---~ ~H~'.:JlL~=~EErj: A C 0 E Ins. 350 .370 .315- 335 .240-.260 mO-.Q30 .5 MIN. A J K L 17-23 :88f mm. 8.89-9.39 800 8.51 6.35-6.60 .25-.76 12.70 MIN. .432' II :~~ 5.08 2.54 .79'.08 .74-1.14 2.54 PRINTED IN U.S.A. MECHANICAL SPECIFICATIONS TO-220AB SEATING PLANE DIM A B C o F G MILLIMETERS MIN MAX 1423 966 J 56 051 3531 229 H J 038 I< l 1270 II. N 483 Q 254 R S T 204 114 585 INCHES MIN MAX 1587 0560 1066 482 114 3733 279 filS 064 1427 177 53J 304 292 1]9 685 0380 0140 0020 0139 0090 0625 0420 019(' 0045 0147 0110 0250 001S 0025 0500 0045 0562 0070 0190 02'10 0100 0120 0080 0045 0230 0055 0270 0115 TO-220AC DIM A • C 0 F G H J K L N Q R S T .... ....3." .... '.310 ..... ..... ..... .... ..... ..... '.31 ... ..... ..... ..... '.120 ....'.54 ....3." ..... ..... ..... .m MIL.LlMITIR. MIH MAX l'U3 15." INCHII MIH 0.5&0 ' 10.66 Uta 0,140 0.51 3.531 1.14 3.733 0.045 0139 0.147 O.UO 2.79 6.35 0.015 12.70 14.27 1.14 1.71 4.13 5,33 0.045 0.110 I '~70 UIO 0.100 o.U5 1.14 5.15 1.39 0.0" 6.15 V (15 PIN SIP) 220 2185 'f '1J'10 ~ ~ rr;-775 C'\J ~ ~ ~ I ~lI'_f _ ; ± ...... Il'l ~1 175 I I ...... I it 28 !_,1V378-382 lAY I DimenSions UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95-1064 17-24 In mIllimeters PRINTED IN U.,S .• SALES OFFICES 18-1 18-2 SALES OFFICES [11J UNITRDDE UNITRODE REGIONAL OFFICES Eastern Area Office, Door 8 - Lakeside Office Park, North Avenue, Wakefield, MA 01880, Tel. (617) 245-3010, TWX 710-348-1733 Metropolitan New York Office, 150 Broadhollow Road, Suite 210A, Melville, NY 11747, Tel. (516) 271-3110, 11, TWX 510-226-6997 Southeast Office, 8001 North Dale Mabry Highway, Suite 80lD, Tampa, FL 33614, Tel. (813) 932-5807, TWX 810-876-0886 Mid-America Area Office, 121 South Wilke Road, Suite 103, Arlington Heights, IL 60005, Tel. (312) 394-5240, TWX 910-233-0168 South Central Office, 13999 Goldmark, Suite 460, Dallas, TX 75240, Tel. (214) 231-8700, TWX 910-867-4738 North Central Office, 3131 S. Dixie Drive, Suite 507, Dayton, OH 45439, Tel. (513) 294-1364, TWX 810-450-2645 Western Area Office, 5530 Corbin Avenue, Suite 328, Tarzana, CA 91356, Tel. (818) 705-8085, TWX 910-494-5964 Southwest Office, 15011 Parkway Loop, Suite F, Tustin, CA 92680, Tel. (714) 730-1077, TWX 910-595-1999 Northwest Office, 2444 Moorpark Avenue, Suite 314, San Jose, CA 95128, Tel. (408) 294-4210, TWX 910-338-0126 DOMESTIC REPRESENTATIVES ALABAMA Conley & Associates, Inc. Huntsville 205-882-0316 ARIZONA Compass Mktg. & Sales, Inc. Phoenix 602-266-5400 ARKANSAS See Texas CALIFORNIA - NORTHERN 12 Inc. Santa Clara 408-988-3400 CALIFORNIA - SOUTHERN Centaur Corp. Irvine 714-261-2123 Centaur Corp. San Diego 619-571-7871 Centaur Corp. Woodland Hills 818-704-1655 COLORADO Component Sales, Inc. Denver 303-759-1666 CONNECTICUT Kanan Associates Yalesville 203-265-2404 DELAWARE See Pennsylvania-Eastern DISTRICT OF COLUMBIA :;ee Maryland FLORIDA Conley & Associates, Inc. Oviedo 305-365-3283 Conley & Associates, Inc. BQ(;a Raton 305-395-6108 Conley & Associates, Inc. Tampa 813-885-7658 GEORGIA Conley & Associates, Inc. Doraville . 404-447-6992 IDAHO See Washington ILLINOIS - NORTHERN Oasis Sales Corp. Elk Grove Village 312-640-1850 ILLINOIS - SOUTHERN See Missouri INDIANA Shamrock Associates Carmel 317-848-5265 IOWA See Minnesota MAINE See Massachusetts MARYLAND New Era Sales, Inc. Severna Park 301-544-4100 MASSACHUSETTS Kanan Associates Reading 617-944-8484 Byrne Associates, (DEC only) Marard 61 -897-3131 MICHIGAN Miltimore Sales, Inc. Novi 313-349-0260 Miltimore Sales, Inc. Grand Racids 616-942- 721 MINNESOTA Aldridge Associates Eden Prairie 612-944-8433 MISSISSIPPI See Alabama MISSOURI Rush & West Associates Ballwin 314-394-7271 KANSAS Rush & West Associates Olathe 913-764-2700 MONTANA See Colorado KENTUCKY See Ohio NEBRASKA See Missouri LOUISIANA See Texas UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173. TEL. (617) 861-6540 TWX (710) 326-6509. TELEX 95-1064 18-3 II SALES OFFICES DOMESTIC REPRESENTATIVES (Continued) NEVADA - NORTHERN OHIO VERMONT See California - Northern Baehr, Greenleaf & Associates, Inc. Dayton See Massachusetts NEVADA - SOUTHERN See Arizona NEW HAMPSHIRE 513·439·0724 Baehr, Greenleaf & Associates, Inc. Cleveland VIRGINIA . See Maryland WASHINGTON See Massachusetts 216·221·9030 Jas. J. Backer Company Seattle NEW JERSEY - NORTHERN Baehr, Greenleaf & Associates, Inc. Columbus WEST VIRGINIA T.A.M., Inc. Fairfield 201·575·4390 614-486·4046 NEW JERSEY - SOUTHERN OKLAHOMA See Pennsylvania - Eastern See Ohio WISCONSIN See Texas Oasis Sales Corp. Brookfield NEW MEXICO OREGON Compass Mktg. & Sales, Inc. Albuquerque Jas. J. Backer Company Portland 505·292·7377 NEW YORK - METROPOLITAN AND LONG ISLAND 206·285·1300. 414·782·6660 503·297·8744 WYOMING See Colorado Jas. J. Backer Company Salem 503·362·0717 CANADA Kaytronics Limited Quebec T.A.M., Inc. South Hauppauge PENNSYLVANIA - EASTERN 516·348·0800 Omni Sales Erdenheim NEW YORK - UPSTATE 215·233-4600 Reagan/Compar Albany, Inc. Albany PENNSYLVANIA - WESTERN 518·489·7408 See Ohio Reagan/Compar Albany, Inc. New Hartford 604·581·7611 RHODE ISLAND 315· 732 ·3775 See Massachusetts Kaytronics Limited. Kanata, Ontario Reagan/Compar Albany, Inc. Fairport SOUTH CAROLINA 716·271·2230 See North Carolina Reagan/Compar Albany, Inc. Endwell SOUTH DAKOTA 607·723·8743 See Minnesota Kaytronics Limited Concord, Ontario 416·669·2262 Reagan/Compar Albany, h'lc. Endwell TENNESSEE 607·754·8946 See Georgia NORTH CAROLINA TEXAS Conley & Associates, Inc. Raleigh Sundance Sales, Inc. Dallas 919·876·9862 NORTH DAKOTA See Minnesota 514·367·0101 Kaytronics Limited Surrey 613·592·6606 214·699·0451 Sundance Sales, Inc. Austin 512·250·0284 512·250·0320 UTAH Component Sales, Inc. Salt Lake City 801-466·8623 UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173. TEL. (617) 861·6540 TWX (710) 326·6509. TELEX 95·1064 18·4 SALES OFFICES DOMESTIC DISTRIBUTORS ALABAMA Hall-Mark/Huntsville COLORADO Arrow Electronics/Aurora 205-837-8700 303-696-1111 Hamilton/ AvnetiHuntsville Hamilton/ AvnetiEnglewood 205-837-7210 ARIZONA Hamilton/ AvnetiTempe 602-275-5100 Wyle Distribution/Phoenix 301-247-5200 303-740-1000 Wyle Distribution/Thornton 303-457-9953 CONNECTICUT Arrow Electronics/Wallingford 203-265-7741 CALIFORNIA - NORTHERN Arrow Electronics/Sunnyvale 203-797-2800 408-745-6010 FLORIDA Arrow Electronics/Palm Bay 408-734-3020 Hamilton/ AvnetiSacramento 916-920-3150 Hamilton/ AvnetiSunnyvale 408-743-3355 Hall-Mark/Columbia 301-988-9800 602-249-2232 Capsco Sales/Sunnyvale MARYLAND Arrow Electronics/Baltimore Hamilton/ Avnet/Danbury Hamilton/ AvnetiColumbia 301-995-5000 301-995-3500 MASSACHUSETTS Arrow Electronics/Woburn 617-933-8130 HamiltonlAvnetiWoburn 305-725-1480 617-935-9700 Lionex Corporation/Burlington 617-272-9400 Zeus Components/Burlington Arrow Electronics/Ft. Lauderdale 617-273-0750 Hall-Mark/Ft. Lauderdale 305-971-9280 MICHIGAN Arrow Electronics/Ann Arbor 305-776-7790 Hall-Mark/Orlando 313-971-8220 408-727-2500 305-855-4020 Hamilton/ AvnetiGrand Rapids Zeus Components/Sant Clara Hamilton/ AvnetiFt. Lauderdale 616-243-8805 Wyle Distribution/Santa Clara 408-727-0714 305-971-2900 Hamilton/AvnetiLivonia CALIFORNIA - SOUTHERN Arrow Electronics/Chatsworth Hamilton/ AvnetiSt. Petersburg 313-522-4700 813-576-3930 MINNESOTA Arrow Electronics/Edina 213-701-7500 Arrow Electronics/Newport Beach GEORGIA Arrow Electronics/Norcross 612-830-1800 714-838-5422 404-447-7500 Hall-Mark/Bloomington Arrow Electronics/San Diego Hall-Mark/Norcross 612-854-3223 619-565-4800 404-447-8000 Hamilton/AvnetiMinnitonka Avnet Electronics/Costa Mesa Hamilton/ AvnetiNorcross 612-932-0600 714-754-6111 404-447-7500 Avnet Electronics/Chatsworth ILLINOIS Arrow Electronics/Schaumburg 213-700-6271 Hamilton/ AvnetiSan Diego 619-571-7510 Hamilton Electro Sales/Costa Mesa 714-641-4152 Hamilton Electro Sales/Culver City 213-558-2121 Wyle Distribution/EI Segundo 213-322-8100 MISSOURI Arrow Electronics/St. Louis 314-567-6888 312-893-9420 Hall-Mark/Earth City Hall-Mark/Bensenville 314-291-5350 312-860-3800 Hamilton/ AvnetiEarth City Ha m iIton/ Avnetl Bensenvi lie 314-344-1200 312-860-8523 INDIANA Arrow Electronics/Indianapolis NEW HAMPSHIRE Arrow Electronics/Manchester 603-668-6968 Wyle Distribution/Irvine 317-243-9353 Wyle-MIL-Irvine 317 -844-9333 NEW JERSEY - NORTHERN Arrow Electronics/Fairfield KANSAS Hall-Mark/Lenexa 201-575-3390 913-888-4747 Lionex Corporation/Fairfield Hamilton/ AvnetiOverland Park 201-227-7960 714-863-9953 714-851-9958 Wyle Distribution/San Diego 619-565-9171 Zeus Components/Anaheim 714-632-6880 Hamilton/Avnet/Carmel 201-797-5800 Hamilton/ AvnetiFairfield 913-888-8900 UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173. TEL. (617) 861-6540 TWX (710) 326-6509. TELEX 95-1064 18-5 III SALES OFFICES DOMESTIC DISTRIBUTORS (Continued) NEW JERSEY - SOUTHERN Arrow Electmnics/Moorestown Hamilton/AvnetiDayton 215-928-1800 513-433-0610 Hall-Mark/Cherry Hill Hamilton/ AvnetiWestervilie 609-424-7300 WISCONSIN Arrow Electronics/Oak Creek 414-764-6600 Hall-Mark/Oak Creek 614-436-5851 414-761-3000 609-424-0110 OKLAHOMA Hall-Mark/Tulsa 414-784-4510 NEW MEXICO Arrow Electronics/ Alburquerque 918-665-3200 Hamilton/ AvnetiCherry Hill 505-243-4566 Hamilton/ Avnetl Alburquerque 505-765-1500 NEW YORK Arrow Electronics/Melville 516-391-1300 Arrow Electronics/Hauppauge OREGON Hamilton/ AvnetiLake Oswego 503-635-6626 . 604-438-5545 Hamilton/AvnetiMontreal TEXAS Arrow Electronics/Austin Hamiiton/AvnetiMelville 512-835-4180 516-454-6060 Arrow Electronics/Dallas Hamilton/ AvnetiRochester 214-386-7500 Arrow Electronics/Houston Hamilton/Avnet/Syracuse 713-530-4700 Lionex Corporation/Hauppauge 512-258-8848 Arrow Electronics/Winston-Salem 919-725-8711 Hall-Mark/Raleigh 919-872-0712 Ha m ilton/ AvnetiRaleigh 919-829-8030 OHIO Arrow Electronics/Centerville 513-435-5563 Arrow Electronics/Solon 216-248-3990 Hall-Mark/Cincinnati 513-563-5980 Hall-Mark/Cleveland 216-473-2907 Hall-Mark/Dallas 214-343-5000 Hall-Mark/Houston 713-781-6100 Hamilton/ Avnetl Austin 512-837-8911 Hamilton/ AvnetiHouston 713-780-1771 Hamilton/Avnetllrving 214-659-4111 Lenert Co" Inc'/Houston 713-225-1465 Zeus Components/Dallas 214-783-7010 UTAH Hamilton/AvnetiSalt Lake City 801-972-2800 Wyle Distribution/Salt Lake City 801-974-9953 WASHINGTON Arrow Electronics, Inc'/Bellevue 206-643-4800 Hamilton/ AvnetiCleveland 206-643-3950 216-831-3500 416-677-7432 Hal'-Mark/ Austin Hall-Mark/Westerville 614-891-4555 Hamilton/AvnetiNepean 613-226-1700 Hamilton/AvnetiToronto 716-475-9130 919-876-3132 Hamilton/AvnetiCalgary 514-331-6443 Arrow Electronics/Rochester NORTH CAROLINA Arrow Electronics/Raleigh Future Electronics/Vancouver 403-230-3586 Lionex/Horsham 716-275-0300 914-937-7400 Future Electronics/Point Claire PENNSYLVANIA Arrow Electronics/Monroeville 215-443-5150 516-273-1660 Future Electronics/Ottawa 514-694-7710 Arrow Electronics/Liverpool Zeus Components/Port Chester 416-663-5563 503-640-6000 412-856-7000 315-437-2641 CANADA Future Electronics/Downsview 613-820-8313 Wyle Distribution/Hillsboro 516-231-1000 315-652-1000 Hamilton/ AvnetiNew Berlin Hamilton/ AvnetiBelievue Wyle Distribution/Bellevue 206-453-8300 UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL (617) 861-6540 TWX (710) 326·6509 • TELEX 95·1064 18-6 SALES OFFICES ~UNITRDDE UNITRODE SALES OFFICES Corporate International and Asian Regional Sales Office, 5 Forbes Road, Lexington, MA 02173 Tel. (617) 861-6540, Telex 95-1064 Unitrode Electronics GmbH, Hauptstrasse 68, 8025 Unterhaching, West Germany Tel. 089/619004/05/06, Telex 841-05-22-109 Unitrode (U.K.) Limited, 6 Cresswell Park, Blackheath, London SE3 9RD, United Kingdom Tel. 01-318-1431/4, Telex 896270 Unitrode S.R.L., Via Dei Carracci, 5,20149 Milano, Italy Tel. 431 831,434604, Telex 310085 UNITRD I Unitrode·lreland, Ltd., Industrial Estate, Shannon, County Clare, Ireland Tel. 353-61-62377, Telex 26233 INTERNATIONAL AGENTS - DISTRIBUTORS AUSTRALIA VSI Electronics (Australia) Pty. Ltd. P.O. Box 578 Crows Nest N.SW. 2056 Tel: 439-4655 TELEX: 22846 AUSTRIA Dahms Elektronik Gumpendorfer Strasse 16122 A-1060 Vienna Tel: (0222) 57-25-77 TELEX: 134583 Dahms Elektronik Wienerstrasse, 287 1-8051 Graz Tel: (0316) 64.0.30 TELEX: 031099 BELGIUM J.P. Lemaire Limburg Stirum 243 1810 Wemmel Tel: 478 73-08 TELEX: 846-24610 BRAZIL Cosele Ltda. Rua Da Consolacao, 867-Cj. 22 01301 Sao Paulo Tel: 255-1733, 259-3719 TELEX: 30869, CSEL BR DENMARK Ditz Schweitzer A/S Vallensbaekvej 41 DK-2600 Glostrup Tel: 2-45 30 44 TELEX: 855-33257 EASTERN EUROPE Dahms Elektronik Wienerstrasse, 287 1-8051 Graz rei: (0316) 64.0.30 TELEX: 031099 'INLAND urion Oy Iynikintie 5K )0710 Helsinki 71 ,I: 80-372144 LEX: 124388 FRANCE C.C.I. Zone Industrielle 5, Rue Marcelin Berthelot 92160 Antony Cedex Tel: (01) 666 21-82 TELEX: LORESOL 203 881F 203 141F C.C.I. 67, Rue Bataille 69008 Lyon Tel: (07) 874 44-56 Spetelec Tour Europa 111 94532 Rungis Cedex Tel: (1) 686.56.65 TELEX: 842-250801 GERMANY Unitrode Electronics GmbH Hauptstrasse 68 8025 Unterhaching Tel: 089/6190 04105/06 TELEX: 841-05-22-109 EBV Elektronik GmbH Oberweg 6 8025 Unterhaching Tel: (089) 611051 TELEX: 524535 EBV Elektronik GmbH Oststrasse 129 4000 Duesseldorf Tel: 0211-84-84-6/7 TELEX: 08587267 EBV Elektronik GmbH Schenckstrasse 99 6 Frankfurt/Main 90 Tel: 0611 785037 TELEX: 413590 EBV Elektronik GmbH Kiebitzrain 18 3006 Burgwedel 1 Tel: 05139/5038 TELEX: 0923694 Metronik GmbH Kapellenstrasse 9 8025 Unterhaching Tel: 089-6114063 TELEX: 0529524 Metronik GmbH Siemenstr. 4-6 6805 Heddesheim Tel: 06203-4701 TELEX: 465035 Metronik GmbH Vogelsgarten 1 8500 Nuremberg Tel: 0911/46 80 66-67 Frehsdorf KG Postfach 1244 Carl-Zeiss-Strasse 3 Tel: 04106-71058 TELEX: 0213693 HONG KONG CET, Ltd. 1402 Tung Wah Mansion 199-203 Hennessy Road Wanchai Tel: 5-729376 TELEX: 85148 CET HX INDIA Sujata Sales and Exports Ltd. 112 Bajaj Bhavan 11th Floor Nariman Point Bombay 400 021 Tel: 234658 TELEX: 011-3855 IRELAND New England Technical Sales Ltd. Stonehaven, Dublin Road Malahide, Co. Dublin Tel: (01) 450-635 TELEX: 31407 EBV Elektronik GmbH Alexanderstrasse 42 7000 Stuttgart 1 Tel: 0711124 74 81 TELEX: 0722271 UNITROOE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173. TEL. (617) 861·6540 TWX (710) 326-6509 • TELEX 95-1064 18-7 SALES OFFICES INTERNATIONAL AGENTS-DISTRIBUTORS ISRAEL NEW ZEALAND UNITED KINGDOM S.T.G. International, Ltd. 10 Huberman Street P.O. Box 1276 Tel-Aviv 61012 Tel: 03-248231 TELEX: 922-342229 Professional Electronics 22 A Milford Road Auckland Tel: 493-029, 499-048 TELEX: NZ21084 Unitrode (U.K.) Limited 6 Cresswell Park Blackheath London SE3 9RD Tel: 01-318-1431/4 TELEX: 896270 The House of Power Electron House Cray Avenue, St. Mary Cray Orpington, Kent BR5 3QJ Tel: 0689 7153117 TELEX: 896141 Candy Electronic Components Old Mill Lane Aylesford Maidstone, Kent ME20 TDT Tel: 0622-70774/5 TELEX: 965998 Thame Components Ltd. Thame Park Road Thame, Oxon OX9 3XD Tel: 084-421-4561 TELEX: 837917 Nortronic Associates, Ltd. Gateway, Crewe Gates Industrial Estate Crewe CW1 1YY Tel: 0270 586161 TELEX: 36509 NORWAY ITALY Unitrode S.R.L. Via Dei Carracci, 5 20149 Milano Tel. 431-831 Tel. 434-604 TELEX: 310085 UNITRO I Microelit, S.R.L. Via Paolo Uccello 8 20148 Milano Tel. (02) 469 0444 TELEX: 334-284 MICROIT Microelit, S.R.L. Via Nicola Marchese 10 Int. F1 00100 Roma Tel. (06) 898243 TELEX: 616104 JAPAN Hamilton/Avnet Electronics Japan Ltd. Yu & You Building 1-5-7 Horidome-Cho, Nihonbashi Chuo-Ku, Tokyo 103 Tel: 03-662-9911 TELEX: 252-3774 HAELTK J Hamiiton/Avnet Electronics Japan Ltd. Ana Building 1-10-10 Nishi-Honcho, Nishi-Ku Osaka 550 Tel: 06-533-5855 Rikei Corporation Shinjuku Nomura Bldg. 1-26-2 Nishi-Shinjuku Shinjuku-Ku Tokyo 160 Tel: Tokyo (03) 345-1411 TELEX: J24208, J23772 . Cable Address: "RIKEIGOOO" Tokyo KOREA R.O.K. Duksung Trading Co. P.O. Box 31 Nam-Seoul, Room 301 Jinwon Bldg. 507-30 Sinrim 4-Dong. Gwanak-Ku Tel: 854-5047 TELEX: K23459 Duksung Seoul NETHERLANDS Koning en Hartman Elektrotechniek B.V. 2544 En The Hague 30 Koperwerf Tel: 70-210101 TELEX: 31528 Neco A/S P.O. Box 81, Kaldbakken Oslo 9 Tel: (02) 25-93-10 TELEX: 856-19247 SINGAPORE Oynamar International Ltd. Suite 05-11 12, Lorong Bakar Batu Kolam Ayer Industrial Estate Singapore 1334 Tel: 7476188 TELEX: RS26283 Dynama SOUTH AFRICA Electrolink (Pty) Ltd. Fleetway House Martin Hammerschlag Way Foreshore, Capetown Tel: 215350 TELEX: 57-27320 SPAIN Monolithic SA Corcega, 167 Barcelona - 36 Tel: 321-7347 TELEX: 51990 SWEDEN AB Betoma Box 3005 S-l71 03 Solna Tel: 08 820280 TELEX: 854-19389 Fertronic AB Snoermakarvaegen 35 Box 56 161 26 Bromma Tel: 08252610 TELEX: 11181 SWITZERLAND Elkom AG Oorfstrasse 12 CH-5624 Buenzen Tel:57-362191 TELEX: 57302 TAIWAN Dynamar International Ltd. 3rd FI., No. 43, Yih Chiang St. Taipei, R.O.C. Tel: (02) 541-8251 TELEX: 11064 UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173. TEL (617) 861-6540 TWX (710) 326·6509 •. TELEX 95-1064 18-8 NOTES ;ITRODE CORPORATION. 5 FORBES ROAD '-INGTON, MA 02173 • TEL, (617) 861-6540 ,( (710) 326-6509 • TELEX 95-1064 PRINTED IN U.S.A. To ensure receiving a copy of Unitrodes's 1985/1986 Semiconductor Databook, please fill in the information below. Name ______________________________________________ Title 0 Design Engineer o Components Engi neer o Purchasing Agent o Quality Assurance Engineer o Other_-:::-_ _-::--_ _ __ Please specify Company __________Division ___________ Address :::,--,,-_ _ _ _ _ _Mail Stop/Dept. _ _ _ _ __ (Street) (C,ty) (State) (Country) (Z,p) Telephone-.,.,__=-:-,--___________________________ (Area Code) Which of the following most accurately describes your company's business: o Industrial Controls o Radio Communications o Military o Data Processing o Telecommunications Instrumentation o o Other _ _--=:----:--::-_ _ Please Specify Can you list names and job titles of other persons in your organization who would use copies of our Databook? Name Company DIVISion Street Mail Stop City State Country Name Title Company DivisIOn Mall Stop Street State Country MAIL TO: Unitrode Corporation 5 Forbes Road Lexington, MA 02173 U.S.A. Attn: Advertising Manager UNITRODE CORPORATION" 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95·1064 I', '! PRINTED IN U 5 ~

Source Exif Data:
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
PDF Version                     : 1.3
Linearized                      : No
XMP Toolkit                     : Adobe XMP Core 4.2.1-c041 52.342996, 2008/05/07-21:37:19
Create Date                     : 2017:06:15 15:43:39-08:00
Modify Date                     : 2017:06:15 16:43:40-07:00
Metadata Date                   : 2017:06:15 16:43:40-07:00
Producer                        : Adobe Acrobat 9.0 Paper Capture Plug-in
Format                          : application/pdf
Document ID                     : uuid:8f90bea1-a554-0649-88e2-a90ee1ddc71e
Instance ID                     : uuid:be589c42-949a-1c4c-bdb4-c85d1d8807bc
Page Layout                     : SinglePage
Page Mode                       : UseNone
Page Count                      : 1532
EXIF Metadata provided by EXIF.tools

Navigation menu