1985_C10_Hitachi_Linear_IC_Data_Book 1985 C10 Hitachi Linear IC Data Book
User Manual: 1985_C10_Hitachi_Linear_IC_Data_Book
Open the PDF directly: View PDF
.
Page Count: 262
| Download | |
| Open PDF In Browser | View PDF |
· 20151 Bahama Street
Chatsworth, California 91311
(213) 644-7596
(818) 700-8700 (818) 341-441 1
LINEAR Ie DATA BOOK
• GENERAL INFORMATION
• DATA SHEETS
#C10
~HITACHI
NOTICE:
MEDICAL APPLICATIONS
The example of\m applied circuit or combination with other equipment shown
herein indicates Fharacteristics and performance of ,a semiconductor-applied
products. The Company shall assume no
responsibility for any problem involving a
patent caused when applying the descriptions in the example.
Hitachi's products are not authorized for
use in MEDICAL APPLICATIONS,
including, but not limited to, use in life
support devices without the written consent of the appropriate officer of Hitachi's
sales company. Buyers of Hitachi's products are requested to notify Hitachi's sales
offices when planning to use the products
in the MEDICAL APPLICATIONS.
When using this manual, the reader should keep the following in mind:
I. This manual may, wholly or partially, be subject to change without notice.
2. All rights reserved: No one is permitted to reproduce or duplicate, in any form, the whole or part
of this manual without Hitachi's permission.
3. Hitachi will not be responsible for any damage to the user that may result from accidents or any
other reasons during operation of his unit according to this manual.
4. This manual neither ensures the enforcement of any industrial properties or other rights, nor
sanctions the enforcement right thereof.
5. Circuitry and other examples described herein are meant merely to indicate characteristics and
performance of Hitachi semiconductor-applied products. Hitachi assumes no responsibility for
any patent infringements or other problems resulting from applications based on the examples
described herein.
August 1985
"Copyright 1985, Hitachi America Ltd.
Printed in U.S.A.
INDEX
•
•
•
•
GENERAL INFORMATION. . . . . . . . . . . . . .. 5
Reference Guide . . . . . . . .
. . . . . . . . . . .. 6
Package Informations . . . . .
9
. . . . . . . . . . . , 13
Reliability of Linear ICs . . . .
• DATA SHEET . . . . . . . . . . . . . . . . . . . . . . . 21
• Operational Ampl ifiers . . . . . . . . . . . . . .
21
HA 17080PS
J·FET Input. . . . . . . . . .
22
HA17082PS
Dual J·FET Input . . . . . .
22
HA17083P
Dual J·FET Input . . . . . .
22
HA 17084P
Quad. J·FET Input. . . . .
22
HA17080GS
J·FET Input. . . . . . . . .
22
Dual J·FET Input . . . . .
HA17082GS
22
HA17083G
Dual J·FET Input
22
HAl7741
General Purpose
28
HAl7741PS
General Purpose
28
HAl7741GS
General Purpose
28
HAl7741G
General Purpose
28
HAl7715G
High Slew Rate.
39
HAl7747
Dual
44
HAl7747P
Dual
44
HAl7747G
Dual
44
HA17458
Dual
46
Dual
HA17458PS
46
Dual
HA17458GS
46
. . . . . . . . 51
Dual
HA17558
HA17558PS
Dual
51
Dual
HA17558GS
51
HA17358
Dual
58
Dual
HA17904PS
58
HA17904GS
Dual
58
HA17301P
Quad.
60
HA17301G
Quad.
60
HA17324
Quad.
66
HA17324P
Quad.
66
Quad.
HA17324G
66
Quad.
HA17902
70
Quad.
HA17902P
70
Quad.
HA17902G
70
• Voltage Comparators
75
HA1813PS
Single
76
HA1812PS
Universal . . . .
84
Universal ..
HA1812GS
84
Dual
HA1807
76
HA17393
Dual
91
Dual
HA17903PS
91
Dual
HA17903GS
91
Quad.
HA17339
95
HA17901P
Quad.
95
Quad.
HA17901G
95
• Voltage Regulators . . . . .
99
HA 17723
Precision .. .
. 100
HA 17723G
Precision . . . .
. 100
HA 17805
1 A, 5V Fixed .
. 108
HA 17806
1A, 6V. Fixed .
. 108
HA 17807
1A, 7V Fixed .
.108
HA 17808
1A, 8V Fixed .
.108
HA17812
lA,12V Fixed
. . . . 108
HA17815
lA,15VFixed
· ......
HA17818
lA,18V Fixed
· ......
HA17824
lA,24V Fixed
..
HA17805P
lA, 5V Fixed . . . .
· ......
HA 17806P
1A, 6V Fixed . . . . · . . . . . . . . .
HA 17807P
1A, 7V Fixed . . . .
HA17808P
lA,8V Fixed ... .
HA17812P
lA,12V Fixed
HA17815P
lA,15V Fixed
HA17818P
lA,18V Fixed
· . . . . . . .
lA, 24V Fixed
· . . . . . . .
HA17824P
· ...
HA178M05
0.5A, 5V Fixed.
· ...
HA 178M06
0.5A,6V Fixed.
· ...
HA178M07
0.5A, 7V Fixed.
HA 178M08
0.5A, 8V Fixed.
· ...
HA178M12
0.5A, 12V Fixed
· ..
.
HA178M15
0.5A, 15V Fixed
· ..
HA178M18
0.5A, 18V Fixed
HA 178M20
0.5A, 20V Fixed
· ..
......
HA178M24
0.5A, 24V Fixed
........
HA 178M05P
0.5A, 5V Fixed.
HA 178M06P
0.5A, 6V Fixed.
HA 178M07P
0.5A, 7V Fixed.
HA 178M08P
0.5A,8V Fixed.
HA 178M12P
0.5A, 12V Fixed
HA 178M15P
0.5A, 15V Fixed
HA178M18P
0.5A, l8V Fixed
HA 178M20P
0.5A, 20V Fixed
HA178M24P
0.5A, 24V Fixed . . . . . . .
HA 17524P
Switching Regulator Controller.
HA 17524G
Switching Regulator Controller.
• AID, D/A Converters . . . . . . . . . . . . . . . .
HA 19202
4-bit AID Converter . . . . . . . .
4-bit. AID Converter . . . .
HA19203MP
8-bit Dual Slope Type AID
HA16613A
Converter . . . . . . . . . .
HA17008RP
8-bit Multiplying D/A Converter
HA17008RG
8-bit MUltiplying D/A Converter
HA17408P
8-bit Multiplying D/A Converter
HA17408G
8-bit Multiplying D/A Converter
HA 17012P
12-bit Multiplying DI A Converter
HA 17012G
12-bit Multiplying D/A Converter
• Microprocessor Peripheral. . . . . . . . . . . . . . .
HA 13007
Quad. Driver . . . . . . . . . . . .
Three-phase Motor Driver. . . . . . .
HA13406W
9-channel Power Driver ..
HA13408
Quad. Driver . . . . . . . .
HA13415
Dual Bridge Driver . . . . .
HA13421A/MP
Three-phase Motor Driver
HA13426
with Speed Discriminator .
Three-phase Motor Driver
HA13431
with Speed Discriminator .
Three-phase Motor Driver
HA13432/MP
with Speed Discriminator .
Thermal Head Driver . . . .
HC16701
DC Motor Controller (DAC)
HA16628P
DC Motor Controller (FVC)
HA16629P
Flexible Disk Read Amplifier.
HA16631P
~HITACHI
108
108
108
108
108
108
108
108
108
108
108
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
125
125
131
132
132
135
139
139
144
144
146
146
151
152
154
160
163
166
169
175
178
182
186
188
192
INDEX
HA16631MP
HA16632AP
HA16636P
HA16640NT
Flexible Disk Read Amplifier . . .
VFO IC for Flexible Disk Drive
Grou nd Fault Interrupter . . . . .
Write/Mechanism Controller
for Floppy Disk Drive . . .
Read/Write Fu nctions for
HA16642MP
Floppy Disk Drive . . . .
HA16642NT
Read/Write Functions for
Floppy Disk Drive . . . .
HA1835P
Voltage Regulator Control with
Fail Detector . . . . . . . . .
• Other Functions . . . . . . . . . . . . . . . . . . .
HA 17733
Differential Video Amplifier
HA17733P
Differential Video Amplifier . . ..
HA 17733G
Differential Video Amplifier
5 Transistor Arrays ..
HA1127
Precision Timer.
HA17555
HA17555PS
Precision Timer . . . .
Precision Timer . . . .
HA17555GS
Burner Controller ..
HA16605W
Fluorecent Display Driver.
HA16617P
Fluorecent Display Driver.
HA16619P
Fluorecent Display Driver.
HA16617PJ
HA16619P.J
Fluorecent Display Driver.
192
202
208
211
217
217
222
229
230
230
230
236
239
239
239
240
251
251
254
254
Hitachi Sales Offices Listing . . . . . . . . . . . . . . . . . . . . . 260
eHITACHI
GENERAL
INFORMATION
• REFERENCE GUIDE
• PACKAGE INFORMATIONS
• RELIABILITY OF LINEAR ICs
eHITACHI
5
REFERENCE GUIDE
Operating Temp. Range
Package
Plastic
SIP
Operational
Amplifier
Voltage
Comparator
Notes) 1. -30 to +80t
6
$
HITACHI
Plastic
Flat
REFERENCE GUIDE
Operating Temp. Range
Type No.
Function
o to
--20 to
+75'(:
+70°("
to
+S5°C
~40
HAI7723
HAI7723G
Precision
5V
6V
7V
Package
Plastic
DIP
Cerdip
Plastic
Plastic
SIP
Flat
14
Cross
reference
/IA723C
100
/IA7S05C
/IA7806C
100
lOS
lOS
108
14
HAI7805
HAI7S06
HAI7S07
3
3
3
Page
/IA7807C
---S~V'---+~H~A-1-7-S0-S---+------+------+------+-----~----'~~--3--~-----+--/I~A~7S'~0~SC---~
__'---_t_-----'I----'--~-~+--_+_-,-
12V
HAI7S12
-1__--+---+----+--,--.,--=--+--3
/IA7S12C
lOS
15V
HAI7S15
3
/IA7S15C
I---I-SV:-::--+-ccH'"'A-17-S-I-S--+-----+-,,-,,---t------+------I-------+---3--t------+-/-,AC""::7'SI8C
IA
24 V
r:!
HAI7S24
11
lOS
lOS
--r-;A7824C---rws
k~;:
3
/,A7S05
108
1--~6V:-::--+-ccH~A~17~8~Occ6P~+-----+f~'··'~;~,-~I------+------t------+---3--~-----+--/IA~7='S~06~----~
5V
HAI7S05P
7V
HAI7S07P
SV
12V
HAI7S0SP
HAI7S12P
I/c,(."
,"
3
3
/IA7S07 ----~
I-------+-------~------_+__+__+__+_------+_----_+------+_~~+------f------------~
~
1---1-5-V--+Hc-A-I-7-8-15-'P:-~-----
Voltage
Regulator
ISV
HAI7SISP
24V
HAI7S24P
.,
L ';<'i.;
II"
HAI78M07
HAI7SMOS
HA17SMI2
HAI7SMI5
HAI78MIS
20V
HAI7SM20
/,A7815
3
/IA7SIS
lOS
3>
3,.
/,A7824
\OS
/,A7SM05C
/IA78M06C
121
121
11 .... '
/IA7SMOSC
/,A78M12C
/,A78M15C
/IA78MISC
121
121
121
121
121
3,
/,A78MOS'I2l
3,' ':','
3'
/,A7SM06
r"}\;i,' 3
/IA7SM20C 121
f--~24~V~+H~A~I~7~SM~2~4-f----*f~-+-*-,i-+-~+---+---+--+~~~,-'-+:<---+~/-'A~7~8M~i=«:~
0.5A
5V
HAI7SM05P
6V
7V
HAI7SM06P
HAI78M07P
SV
HAI7SMOSP
I:'»'!':~-'
,03 ':
I,A7SMOS
121
-------+------+-------+---a--+------+-,-,A-7-8-M-I-2---1--12-1-
1--1-2-V---+-H-A-I-7-S-M-I-2P~-------
~
15V
ISV
20V
24V
121
121
3"
HAI7SMI5P,"-,:
HAI7SMISP
HAI7SM20P
HAI78M24P
3
3
:I
IIA7SMI5
IIA7SMIS
IIA7SM20
IIA78M24
121
121
121
121
SG3524
125
------+~H~A-,I~75~2~4P~+-----+-----f------+-~16~-t-----~--~--t------+-~SG~3=5:~24:-----lrl~2~5
Controller
HAI7524G
16
4-bit
HAI9202
Note 2
22
Original
132
AID High Speed I-:-:H~A-'-1':.:92~0-=-3M=P-t-------+-'-N':.:o..:.;te:...:.2+-----1f--=-=--+'----+------t---:-:
1S:-+--=OC--r.:'-ig'iCn-a--:-1--+-1~3-=-28--1il Dual Slop,
28
HAI6613A
Original
135
1--'I---~-+--H-A-17-0-0-SR-P~~~-----+-----,·-t------+----16--t----~-+------f------~'D~A~COS--~
---~_+_-----l---~--~-+~-'-'--l-----l--,--,~---+-----
Conver-
ter
8·bit
D/A
12-bit
~otes
HAI700SRG '
HAI740BP
HAI740SG
HAI7012P
HAI7012G
16
16
DACOS
MCI408
139
144
144
Am6012
Am6012
146
146
'---+-----f---1-6-~-----+-----+MCI408
20
':
20
'"
. to he contmued
2. -10 to ·75c
$
HITACHI
I
7
REFERENCE GUIDE
Operating Temp. Range
Function
Type No.
o to
+70·C
to
+75·C
~20
to
+85·C
~40
Package
Plastic
DIP
Cerdip
Micro
Plastic
SIP
Plastic
Flat
Cross
reference
Page
processor~--~~~---+~~~~~4-------+f~~~~------~-----4-------+-------+~~~~~~~~--~~
Peri
pheral
Controller
Floppy Disk
Controller
Other
Function
Fluorescent
Display Tube
Driver
Notes} 3. -20 to +70,,(:. 4. -20 to +80"C, 5.0 to +60"C, 6. -20 to +85t:. 7. -55 to +125"C
t
8
The chip product fer sale
~HITACHI
PACKAGE INFORMATION
HA 17741 P
T L - - - - - - - - - - - - - - - - - - - p a C k a g e Code; letters P: Plastic
letters G: Cerdip
i - - - - - - - - - - - - - - - - - - - - - - 1 7 X X X; Standard Linear IC
L
Circuit Description of 1 5t Vendor's Name
(Three Figures of l.ow Rank I
' - - - - - - - - - - - - - - - - - - - - - - O t h e r Circuit Description; Hitachi Original
L - - - - - - - - - - - - - - - - - - - - - - - - - - P r e f i x : HA ; Hitachi Linear (Analog)
• DIMENSIONAL OUTLINE
Ie
{Dimensions in mm)
• Plastic Dual-in-line Package
14Pin
SPin
~
~lj\l
(OP-I4)
(DP-B)
16Pin
16
15
14
13
12
II
10
6.2
2.Bmin.
6.9max.
3.6±O.20.51min.
5.""",,
(OP-16A)
(OP-I6)
~HITACHI
9
PACKAGE INFORMATION
22 Pin
(DP-22)
(DP-18)
24 Pin
28 Pin
(DP-28)
(DP-24TS)
.Plastic Single-in-line Package
3 Pin
8 Pin
(T-220AB)
10
(SP-8)
~HITACHI
PACKAGE INFORMATION
.Plastic Flat Package
18 Pin
7.62±O.31'1
•
28 Pin
_-t-_--t-'=1.5~4 ± !I.3k
•
·W.9.2±O.38
n.ti±o.2
(MP-28)
(MP-18)
44 Pin
r---"~'~.' "-"'--,
(MP-44)
eHITACHI
11
PACKAGE INFORMATION
eCerdip
14Pin
8Pin
-iM
S~~::"2_8.i"
".:.:;''''~
:
16Pin
;:;
+1
.1 ..
I~~
?;::Jo
-
+1
~
N
(DG-14l
(DG-8)
(DG-20)
12
•
HITACHI
(DG-16l
RELIABILITY OF LINEAR les
In the following we review the reliability of linear ICs. The
introduction of this linear IC series marks a big step forward
in reliability and meets the user's needs through their improved reliability resulting from Hitachi's mass production
technology and quality control.
1. CONCEPT OF QUALITY AND RELIABILITY
Hitachi's fundamental concept of product quality consists in
meeting the requirements of individual users and maintaining
a high quality of materials taking into consideration the marketability of the product from a broad and general aspect.
The quality of product required by a user is determined according to the specifications listed in the agreement; however, there are occasions when it is not specified. In either
case, our company makes every effort to ensure that the
delivered semiconductor devices are able to display their full
performance under the service environment in order to secure their reliability. Establishment of a quality control system in the process and enhanced quality, are keys to bringing
about such reliable product quality in the manufacturing
process. In the market of late, the user's requirements for
quality of semiconductor devices have become steadily more
stringent because the performance of electronic systems is
rapidly improving and their scale and applications are widening. In orderto cope with this trend, the following points have
been adopted as the basic policy in Hitachi's actual operations.
(1) In the design stage of developing n!!lw products, full
consideration is given to their reliability.
(2) The quality of product is made up at each step of the
manufacturing process.
(3) I nspection of finished products and confirmation of
their reliability are to be intensified.
(4) Field data should be fully utilized to improve the
quality of products.
Table 1 gives an example of the reliability programs
drawn up to the meet the user's requirements. Moreover. we are making efforts to firmly establish higher
quality and reliability of our semiconductor devices by
pooling the efforts of our research and manufacturing
departments. Based on the above concept and measures, our company is doing its utmost to meet the user's
demand for product quality.
2. RELIABILITY OF SEMICONDUCTOR DEVICES
2.1 RELlABLITY TARGET
Reliability target is an important factor along with the
function and price in the courses of manufacturing and
selling products. It is not practical to classify the reliability
target merely by the failure rate under a certain testing condition. Our company sets the reliability target by taking into
account the design, manufacture, quality control in the
process, screening, testing method, etc. with the contents
corresponding to the characteristic nature of each item of
equipment comprehensively considering the service environ-
ment of the equipment to which the device is applied, purpose design, operating, condition, maintenance, etc.
2.2 HOW TO CARRY FORWARD RELIABILITY DE·
SIGN:
I n order to achieve desired reliability based on the reliability
target, timely examinati,On and execution of such items as
design standardization. device design (including process
design and structural design), design review, reliability test
are required beforehand.
(1) Standardization of design:
Establishment of desi.gn rule and standardization of parts.
materials and processes are necessary. When establishing
respective rules of design concerning circuit design, element
design, layout design, critical items regarding the quality and
reliability are always examined. Accordingly, where standardized processes or materials are used, even newly developed
products can minimize risks affecting reliability unless special
functional requests are made.
(2) Device design:
It is important to carry out device design taking into consideration the total balance between circu it, layout, process
and structural designs. Particularly when using new processes
and materials, technical examinations prior to development
of the device are carried out to the full.
(3) Evaluation of reliability by TEG:
TEG (Test Element Group), sometimes called test pattern, is
an effective method to evaluate the reliability of design and
process of ICs and LSIs containing complicated functions.
For transisto;s, it is useful to increase the sensitivity of
detecting troubles caused when applying new processes. As
to TEG, further expalanation is provided in the following.
1. Purpose of use of TEG;
•
•
•
•
Clarifying the basic failure mode.
Grasping the relation between failure mode and manufacturing process condition.
Obtaining a clue to analysis of failure mechanism to analyze
the mechanism of failure.
Establishing OC point for manufacture.
2. Effectiveness of evaluation by TEG;
•
Possible to evaluate the basic failure mode and failure
mechanism common to each type of products.
• Possible to campa re the process having the failure with
the process having records of marketabilily by clarifying
the factors controlling the failure mode.
• Easy to grasp the connection between the cause of failure
and that of the manufacturing process.
• Easy to perform test.
Here described several concrete examples of reliability evaluation by TEG.
eHITACHI
13
.,..
:lI
Table.1 Example of Reliability Program
m
r
:;
OJ
Semiconductor maker
Mfg_ dept.
Sales. & Sales
!tech. dept.
Design dept
Insp. dept.
r
Semiconductor user
Design dept.
Mfg. dept.
Parts dept.
::::j
Product quality
assurance dept.
Service dept.
Customer
(end user)
Marlet Testarch
o----.. -~..::::::;.:;:..!!::!:::.::::...:!~
~
.~
Z
m
~
~~ p~ ~:~
6DD I" ....
l>
:lI
0-
OT(JeveloplI'IPnGlan
Determination
lI .. hlylowl. ..... ' .. rIIId
..1
_L_
Drllil 01 qUIIII, HCk"'t'tfl'IIr55pn
~
(2)Stand.rdIZltion
.:;
~
"
J:
Equlp.dulinttlll
1I1DUlgn 01 procen
olS
eJ:
o
'-00
fI)
0-
0--
...
""
.. .
If
--
(J)PI.nninll facilities
Duirn rtvlew
""'111-"'11"
" , ,.,
Dtnlo,
Imll1l'~"'rM\
,I
I QUllity .ppron
~Ivdltl
Comprehensive evaluation
11
I~trll
QC Within procm
QUalIty .pprova
Trial mfg. lest
fCfrj**
=~
,.~
,i..
1 Mil
11'11 "-:,. .,;5"
"-<>
Comprehensive evaluation
~
.".,..", ... 1.., ... 1.."••
i
'-0
1
.1
ProtfU __ ',..COIItol
A$Sembl
~
I
Failure .nal,s!s
I~l·
~"T"';"'I'I.o!"""'·"'"
I
I
Agin, &:
debu~
ShiplDtnl test
Puiodical
L--------tI
~
:i
"--0
1711
II
_ _ _t - _
~New process ,(Handled as
t,_"..I".~...
developed
article)
QafiiYIiifClrlllll(1II
1
"-<>
Comprehensive evaluation
"'(f".16,.rU".~
QC wliilln ,rocel!]
P.ro>rdal SamplE'
J
reliahililytut
~fliabilill Ml"lionl
r;;:
o"TI
r
~
0::
<
-...r
;:~::~~ ;:!i;~JUOft
1
Runnin£
L
RELIABILITY OF LINEAR ICs
Table.2 Standard for Design Review
XASA Space System Standard
Hitachi Standard for Design Review
Purpose
ltE'm of review
Subject of review
Time
Composition
Authority
Systematical and organic confirmation and
promotion of broad technical capacity.
Correction of defects in design.
t('chnicai capacity.
Corr('ction of d(>fects in dt'sign.
Contracted projPcts.
Designated types of products.
Preliminary Bf'fore mounting Before
3. QUALITY ASSURANCE STRUCTURE OF SEMICON·
DUCTOR DEVICES:
(1)
rejf·a~.;p
of drawing.
Designation of project manager.
i'f'rson in charge or highel' r"ank. and rf'liahiJity
technician.
Presentation of advice.
Collector of designs.
Helatf'cI responsiblt· !>('rson and reliability
technician.
Hecommendation of improvement.
2.3 DESIGN REVIEW:
Design review is a procedure to systematically check whether
the design satisfies the performance required by a user, the
designing work is performed according to the specified form,
and the items of technical improvement which have been
obtained from the accumulated experimental field data in
each specialized department are efficiently used. It is also
performed mainly for ensuring the quality and reliability of
the products in order to strengthen the competitive power of
our products. In Hitachi, new products and design-changed
products are subjected to design review from conceptional
stage. This method is extensively used by NASA. Table 2
shows the comparison between the standards for design
review of our company and NASA: The following are the
contents of the review.
(1) Description of the contents of products according to the
design document.
(2) The design document is reviewed from the standpoint of
each specialist who participates in the review. If any
unclear item is found, a sub·program for calculation,
experiment or investigation is drawn up and executed.
(3) The contents or method of a reliability test is deter·
mined according to the design document and the
contents of the drawing.
(4) Checking whether the process capacity of the manufac·
turing plant is sufficient to achieve the design goal.
(5) Conference for preparation of production.
(6) Planning and execution of a sub-program for test, or ex·
periment. calculation, etc. for change and confirmation
of the design proposed by each specialist.
(7) Reference to past failure examples of similar types of
articles and confirmation of preventive measures
against recurrence of such failures, and planning and
execution of a testing program for confirmation.
Careful discussions for the above made at the design review
are carried out according to the check list specially
device and prepared according to each subject.
3.1
Systematical and or-derly application of hroad
Conct'pt Intermediate design Final design.
I Chair,man
I Member
Design
Assuranc(> of performancE:' I"P'Iuired hy the
program.
Securing reliability required in the market.
Definition
{nl"
He\'i('w.
The problems of each process are to be settled within
the process concerned. Accordingly. in the stage of
finally finished products, latent defective factors are
el im inated.
In order to maintain the process capacity at a good level,
feedback of information is performed.
(3) Quality assurance aims at securing the desired reliability
obtained as a result of the above.
Device design, recognition of quality at the time of mass pro·
duction, quality control with the process inspection of
products and assurance test of reliability are described below.
(2)
3.2 QUALITY RECOGNITION:
In order to secure the desired quality and reliability, quality
of products recognition is carried out at the time of design
and trial; manufacture of devices and their mass production
according to the reliability design. The concept for recogni·
tion of the quality of products is described below.
(1) Performing an objective recognition putting the
company itself in its customer's place and by a third
party.
(2) Taking into full consideration past failure examples and
field information.
(3) Carrying out recognition of its quality, in case of change
of design or operation.
(4) I n the case of parts, materials and process. emphasis is
placed on the recognition of their quality.
(5) The process capacity and causes of variations are
examined. and the control points at the time of mass
production are established.
Quality recognition is performed by incorporating the above
concept.
3.3 QUALITY AND RELIABILITY CONTROL IN MASS
PRODUCTION
For quality assurance of mass production, the quality control
work is svstematically and functionally assigned to the manu·
facturing and inspection departments including the related
departments. The entire function is shown in the flow chart
of Fig. 1.
ACTIVE OF QUALITY ASSURANCE:
The general concept of Hitachi's overall quality assurance is
described below.
~HITACHI
15
RELIABILITY OF LINEAR ICs
Quality control
Process
Inspection of materials and
Samplin, lot
parts characteristics
necessary for semicorouctor
devices
acceptance
Confirmation of
quality level
Manufacturinl equipment,
Confirmation of
quality level
environllent, indirect lIaterials
and operator control
L-----.r---'
t---
Sampi ing lot
acceptance
Confirmation of
quality level
Quality control wihin p,ocess
Classification &
inspection
Sampling inspection of
appearance and electric
characteristics
Sampl ina 101
~------------~
quality level
Samp! ing lot
acceptance
I
II
~
l ~ _________
I
acceptance
___ _
I
~
Confirmation of
Reliability test
.~
L----,---Ji~-------------------~l
,..---------------,I
I
I
: Quality information
I
i
I (Claim. field work record.
I other quality information in
I general)
I
I
I
I
I
IL.. _______________ JI
Fig.1 Flow Chart of Quality Control in Manufacturing Process
4. SELECTION OF PACKAGE TYPE AND
RELIABILITY
4.1 SELECTION OF PACKAGE TYPE
Package types are generally classified into two; one is the
harmetic sealed type using metal or glass, and the other is the
plastic molded type. Selection of package types should be
done with considering the purpose of system, environment,
reliability cost etc. The reliability of plastic molded·type
semiconductor devices has been greatly improved. Recently,
their applications have also been expanded to automobiles,
measuring and control systems, and computer terminal equip·
ment operated under relatively severe conditions. Actually,
field application data has revealed that their trouble factors
under favorable indoor environme~tal conditions are
equivalent to those of the hermetically sealed type. How·
ever, in the view of the guaranteed reliability (specifically,
16
durability against environmental conditionsl, the hermetical·
Iy sealed type passes inspection on a leak test 100%. Due to
poor screening technology, the plastic molded type involves
problems of moisture absorption or pereation inherent to
their plastics materials. Therefore, Hitachi recommends users
employ hermetically sealed·type semiconductor devices for
certain types of systems which require high durability against
environmental conditions, long service life, and high reo
liability. On the other hand, it is obvious that production
output and applications of plastic molded-type semiconductor devices will be increased or expanded over the years that
lie ahead. To fulfill such demands, Hitachi has exerted
considerable efforts to improve moisture resistance, resistance against humidity cycles, operation stability, and
chips and plastics manufacturing process. At present, Hitachi
is confident that products featuring high durability against
~HITACHI
RELIABILITY OF LINEAR ICs
environmental conditions will be available in the near future.
0.1
4.2 RELIABILITY OF PLASTIC MOLDING TYPE IC
D.O!)
Open and intermittent open troubles are major causes of
reliability failure of the plastic-molded type IC. Fig. 2 indicates open fraction failure rate in terms of year. In recent
years, the reliability in this aspect has been remarkably improved. Fig. 3 shows the data of moisture resistance.
!!liH
D,U:!
(J.()I
dO
~
1!.lIW"1
.
c::
!l.OO:!
1"
(I,OIlI
U
O.OIHI:l
\06
'"
,,'"
wor
so
\
lOS
"
III
.
\
\
20
Il,OIJ02
\
\
O.IHJOj
III
Tf'm/,praTllfl'
Fig.2
( Yl'ars)
E
,
i=
J0 2
,::
5.1 CRITERIA OF FAILURES
Table 3 shows the failure criteria in linear IC reliability test.
The items of criteria and measuring conditions vary with the
types of products.
'"
III
'"'"
I
I
III
~
.:0
ii
~
2
~
,2
~ f f
Abs"luTP Stt'dm
Fig.3
Changes in Terms of lear of Open Failure
Rate in Temperature Cycle Test
Here, we describe the results of reliability tests, data of
failure rate, failure mode etc.
E
~
:;.'i"('-I-!:;i)"C-tLIi'C
5. RELIABILITY DATA
10:!
~
'.
I,(WO
10'
..
E
2()O
Time 'lllmmolr ... ,lSmmutf's,30mmules, ISmmuu's
~
.
!{)O
TI'st (;"nciil iqn.~( I Cycip) :
~
U
!io
\
di
-
:w
\
l'rI'S!'>IU'I'
(mmllgl
Moillture Resistance of Plasticencapuslated IC's
•
HITACHI
17
RELIABILITY OF LINEAR ICs
Table.3 Criteria for Failures of Linear ICs (Example)
Criteria of failure (Note)
Item
U-3
L XO.9
Voltage gain
Rated output
~
v
Total harmonic distortion
-
Output noise voltage
Input offset voltage
-
Input offset current
-
Input limitihg voltage
~
.;::
Power supply current
~
~
-e
.~
L xO.9
LXO.9
Max. output voltage swing
~
Common mode input voltage range
G3
~
C
~
-0
;0(;
~
Co
Co
.-.:
U+3
U X1.5
-
Slew rate
v-<'
-
-
Common mode rejection ratio
~
~
~
U Xl.5
UXl.5
U+3
U Xl.I
U Xl.5
UXl.5
U Xl.3
U Xl.I
Open & short
Open, Intermittent. Short, Half·short.
Including high & low temp. defects.
Airtight leak
Major leak & minor leak.
Appearance
According to limit sample.
dB
W
%
V Including pulse noise.
dBp
A
V
A
A
V
V
dB
Vips
Applied to airtight sealing type devices.
Rusting & discoloration
According to limit sample.
Solderability
Marking
According to limit sample.
-
According to limit sample.
-
Sott' , U: Initial limit max. \'alue.
Table.4 Results
of
I. : Initial limit min. \'alue.
Reliability Test on Linear ICs
Test hem
High temp.
Operating life
Remarks
Unit
-
-
Input current & input bias current
v
max
U+3
min
~o.
Test Condition
Plastic· molded Type
Total
~o. of
Hermetic sealed Type I Cerdip'
of
Total
~o.
, 1/1,,"
samples
(pes'
testing
time
failures
(pes
5
5.3xlO-'
2.345
2,424.600
0
3.8X!0-'
0
0
-
UX!O-'
1.8x 10-'
-
485
-
463.700
0
-
2.0x 10 •
-
793.000
509.000
-
3.110
2.727.000
0
3.4XW-'
376
-
376.000
-
0
-
2.4X 10 •
-
443
443.000
0
2.1 X10-'
-
-
-
-
of
samples
(pes'
testing
time
failures
(pes!
1,660
1.190.000
829
509
l'ailure
rate·
:0;0.
of
Failure
rate·
i
I/hr
Ta~125'C
Ve e= Vee MAX
Vu= VEf MU
I
Ta~150'C
Storage life
Ta~ -55'C
Ta~
Humidity
Bias humidity
-65'C
Ta~65·C.
Ta~85'C,
95%RH
85%RH
rrr=Vrr
.PIIH
V'u= ru ,!lAX
- 55'C - T 150'C
10 Cycles
- 55'C - -150'C
200 Cycles
O'C -100'C
10 Cycles
260'C. 10sec
1.500G.0.5ms.directions of
X, Y.and Z,each. 3 times
60Hz. 20G. directions of X. Y.
and Z. ea~h. 32hrs
100-2,000Hz,2OG,directions
of X. Y. and Z, each. 3 times
20.000G, directions of X. Y.
and Z. each. 1 minute
Ta~ 121'C. 2atoms
-
-
I
Temp. cycle
Temp. c~'c1e life
Thermal shock
Solder heat
Free
drop
Yibration fatigue
\'ariable freq. \'ibration
Constant acceleration
PCT
Solderability
I.ead bend
I ~60hrs
230'C. 5 sec
with rosin flux
225g,
90', 3 times
10.043
-
0
-
2,198
-
0
-
4.280
-
0
-
900
-
0
-
398
-
0
-
311
-
0
404
-
0
-
305
-
0
-
160
-
0
-
260
-
0
-
160
-
0
-
260
-
0
-
160
-
0
-
260
-
0
-
160
-
0
-
260
-
0
-
360
-
0
-
-
-
-
-
160
-
0
-
300
-
0
-
90
-
0
-
45
-
0
-
I
*Confldt'nct' level. 60""
18
~HITACHI
RELIABILITY OF LINEAR ICs
5.2 RELIABILITY TEST DATA OF LINEAR IC:
Table 4 is the results of linear Ie life test and environmental
test.
The reliability data concerning individual test results are
available as they have already been prepared.
6. FAILURE RATE AND DERATING
Fig. 4 indicates the relation between the failure rate and the
operating junction temperature obtained from various types
of reliability tests and field records. With respect to the
plastic·molded type and metal package type, the operating
junction temperature is selected as a stress factor, and then
the above relation is obtained from test data (mainly the high
temperature operating life test) and field data. In the case of
linear ·IC, it greatly depends on temperature on the average,
so that it is confidently anticipated that the reliability can be
effectively improved by temperature derating.
I x \0
1 X 10
~
"
1\ 1\1"'"'
c,
-,
.
::
~
MC)ldin~ Typl'
~
\X\O
(I,UOOFIT )
\ \
,
Ilermctir/
2
IXj!)
(
Seal inK
Type
,
,
I X 10 ~
( IOF[T
\\ \
~\
iOOF[T )
,
\
lOO
2.0X 10 -,
175151)
125
,
IOU
50
T ,'C)
-2 .. ) X I()
Operating JUIl('[ion--l/T I ('K
Tempt'rature
Oqo
from a current source.
During measurment, pay special
attention to miswiring and short·circuiting. When inspecting
a printed circuit board, confirm that no soldering bridges or
foreign matter is observed prior to turning the power switch
ON. As these precautions depend upon the types of semi·
conductor devices, please contact Hitachi for further details.
8. PRECAUTIONS FOR PHYSICAL HANDLING
There are considerable precautions to install semiconductor
devices to a printed circuit board. In order not to impaire
the reliability of a semiconductor device during installation,
cares should be taken when forming or cutting the leads,
soldering and removing surplus flux.
8.1 FORMING AND CUTTING LEADS
When forming and cutting the lead wires of semiconductor
devices, be careful of the following points:
(1) When bending the lead wires, hold the lead wires secure·
Iy between the package and the point to be bent with a
pair of pliers. Then. bend them, holding the open end
of the leads with your fingers, so that no bending'stress
is applied to the package. Do not bend the leads by
holding the package. The same consideration should be
paid when many devices the simultaneously bent using
lead forming machines.
(2) When bending the lead wires at right angles, make the
bend at least 3 mm away from the package end. Do not
bend them more than 90°. When they must be bent less
than 90° , allow a space of more than 1.5 mm.
(3) Do not repeatedly bend the leads.
(4) Do not bend them sideways.
(5) Do not pull the leads with excessive force, to prevent
the device from being broken. The prescribed tensile
strength depends on their crosHectional areas.
(6) Take care not to use any improper jig or pliers for bend·
ing, since the surfaces in contact with the plated sur·
faces of the lead wires may be damaged. It is advisable
to use a tool with a contact area of 0.5 mm radius.
\
c,
something which leaks current or has a static charge. Take
care not to allow curve tracers, synchroscopes, pulse genera·
tors, D.C. stabilizing power supply units etc. to leak current
through their terminals or housings. Especially, while the
devices are being tested, take care not to apply surge voltage
from the tester, or to attach a clamping circuit to the tester
or not -to apply any abnormal voltage through a bad contact
,
I)
Fig.4 Derating Characteristics of Linear IC
7. HANDLING FOR MEASUREMENTS
Special attention should be paid about static electricity, noise
of surge·voltage when semiconductor devices are measured.
It is possible to prevent device breakdown by shorting their
terminals to equalize electrical potential during transporta·
tion. However, when the devices are to be measured or
mounted, they have to be left with terminals open and there
is the possibility that they may be accidentally touched by a
worker, measuring instrument, work bench, soldering iron,
'belt conveyor, etc. The device will be broken if it touches
8.2 SOLDERING
It is not desirable in general to leave semiconductor devices at
high temperature for a long time. Regardless of the soldering
method, whether it may be a soldering iron or the flowing
solder method, soldering must be done in the shorter time
and at the lowest temperature possible. Your soldering work
must meet test conditions of soldering heat, tolerability,
namely, 260°C for 10 seconds and 350°C for 3 secondsata
point 1 to 1.5 mm away from the end of the device. Use of a
strong alkali or acid flux may corrode the lead wires, de·
teriorating device characteristics. The recommended soldering iron is the type that is operated with a secondary
voltage supplied by a transformer and grounded to prevent
current leads. Try to solder the lead wires at the farthest
point from the device surface.
~HITACHI
19
RELIABILITY OF LINEAR ICs
8.3 REMOVING RESIDUAL FLUX
To ensure the reliability and lifetime of electronic systems,
residual flux must be removed from circuit boards. Detergent or ultrasonic cleaning is usually applied. If cholorous
detergent is used lor the plastic molded devices, package
corrosion may OCCur. Since cleaning over extended periods
or at high temperatures will cause swollen chip coating due to
solvent permeation, pay special attention to these precau·
tions prior to dissolution and toxity. Do not use any
trichlorethylene solvent. For ultrasonic washing, the lollowing conditions are advisable:
Frequency: 28 to 29 kHz (to avoid device resonation)
Ultrasonic output: 15W/l (once)
Do not allow the devices to contact the generator source
directly.
Wash ing time: Less than 30 seconds
20
@HITACHI
DATA SHEETS
Operational Amplifiers
eHITACHI
21
HA17080PS, HA17082PS,HA17083P,
HA17084P,HA17080GS,HA17082GS,
HA17083G
eJ-FET Input Operational Amplifiers
J-FET Input Operational Amp. provides excellent charact·
eristics including high input impedance and low input bias
current, since its input differential amp. is constructed by
J-FET Pair Transistor. Accordingly it finds wide application
of general controlling instrument, medical instrument. Especially it is optimum in signal precessing from sensor of high
impedance. Hitachi prepares J-FET Input Operational Amp.
series of one monolithic bipolar chip, HA17080, HA17082,
HA17083, HA17084 .
HA17080PS, HA17082PS
•
,
• PRODUCT OUTLINE
J-FET Input Operational Amp. series provides single, dual,
quad, and they are all internal phase compensated type excepting HA 17080, and include condenser for phase com·
pensation use. And HA17080 and HA17083 are capable of
offset adjustment. Package provides two types of plastic
sealing and glass sealing, and "A" glade with rigid electrical
characteristic specification. Use satisfying uses.
(OP-8)
HA17083P, HA17084P
I
HA17080 HA17082 HA17083 HA17084
Item
The number
of Operational AmpSingle
Dual
Quad.
Iifier (the
. number of
channel)
Offset
Adjusting
Terminal
Phase Compensating
Method
Exist
External
Not exist
I
Exist
Not exist
(OP-14)
HA17080GS, HA17082GS
Internal
• FEATURES
•
•
•
•
•
•
•
•
•
•
±5 to ±18V
Wide operating supply voltage range
30pA
Low input bias current
5pA
Low input offset current
1012 0
High input impedance
13V/lJ,s
High slew rate
Wide common mode input voltage range
Operation. to input near supply voltage (Vee) is possible.
High voltage gain
l06dB
HA 17080, HA 17083 are capable of offset adjustment.
Pin for pin compatible with Texas TL080 series
~
(OG-8)
HA17083G
-NOTE
Since this Ie is high input impedance operational amp,
handling by hand may cause the input bias current and input
offset current to be rise due dirt. Care shealed be taken for
handling.
~
(OG-14)
22
eHITACHI
HA17080PS,HA17082PS,HA17083P,HA17084P, HA17080GS, HA1708 2GS,HA17083G
.PIN ARRANGEMENT
eHA17080
eHA17082
Offset
Null/Comp
V,.I-l
V•• I+I
Comp
V••ll
Vee
Vee
V,.I-II
V..,2
v••
V,.HI}
V,.I·-12
Offset
V,.c+12
Null
i
Top View
Top \'it'w
i
I
eHA17084
eHA17083
V,., 11
Offset
Null I
V,ololl
Vee
Offset
Vult
OM
V
V,.I.JI
Vu,l
Nulll
NC
Offset
Null2
V'''''I''
V("(
V,.",3
Vnl2
V,"(+l2
'"
V,n 114
Vee
Offset
V,"I-J2
Vo ..,2
Null2
I
Top View',
Top View
I
( Ta~25·C)
.ABSOLUTE MAXIMUM RATINGS
Item
Symbol
P,I'S series
G,GS series
Unit
+18
-18
V
V
:'\ote
Supply Voltage
Vf:t:
+18
-18
Djfferential Input Voltage
V,q,dlf/\
±30
±30
Input Voltage
V..
±15
±15
V
I
Power Dissipation
1',
625
625
mIl'
2
Operating Temperature
Tup.
·c
T"8
--20 to +75
- 55 to -t 125
-40 to +85
Storage Temperature
--65 to + 150
·C
Supply Voltage
:\Ott"5
VIC
1. If supply \"lJlta~t' IS le!>s than - 15\. input voltage IS tu sUJlI)I~' \"o\tagt'.
2. P and PS art' pl'rmi~5ihlt' \"alul"l> to 1'u = 50\.' , and bl'pmd that. derate \Iith 8.3m\\"!\'.
that, del"att' with 7.8mWr(· .
• ELECTRICAL CHARACTERISTICS
Item
Input Offset \'oltage
v,
Input Offset Current
1111
Input Bias Current
I,
Common
~lode
(Vcc~-VEE~15V,
Symbol
min
typ
Vew
Peak To Peak Output \'oltage
VOl'
Yoltage Gain
A\"li
Common l\lode Rejection Ratio
CMR
I'
1"u -70"(', and heyond
6
i\on A
200
A \'el'sion
100
Xon A
30
400
A \'ersion
30
200
:\'un A
±IO
A \'ersion
±Il
Unit
Xote
mV
pA
pA
1,2
V
R,--IOkO
24
27
R,.::-2kO
R,>2kO
20
24
:\on A
88
106
V,,~±IO\'
A version
94
106
:\on A
70
86
A version
80
86
R,::;IOkO
max
15
:\on A
A \'ersion
Ill! = III,., - I"
Input \'oltage
Range
tel
Ta~25·CI
Test Condition
R,~51Xl
(I
(; and (;S an' Ilermi~!>i!)le \"alul'~
V
V
dB
dB
to he continued
eHITACHI
23
HAI7080PS,HA17082PS,~A17083P,HA17084P,HA17080GS,HA17082GS,HA17083G
.ELECTRICAL CHARACTERISTICS (Continued)
Item
Symbol
Test Condition
Line Regulation
I'SRR
Rs~10kn
Supply Current
Band Width
Icc
BW
A \fI;= 1
Slew Rate
SR
Channel Separation
V.,I
V.L
I ;';on A
I A version
min
typ
70
86
max
-
80
-
86
-
1.4
-
13
-
VII's
A 'D~ 100
-
120
-
dB
0.1
-
#s
10
-
0/
/0
-
10"
-
-
35
V.. ~10V.
RL~2kn
•
Av{)=l
t.
V.. ~20mV.
RL~2kn.
V•..,
CL~100pF.
AVD=l
-
V.
:\otes!
3
MHz
Rise Time
R..
rnA
2.8
-
Overshoot
Input Resistance
1
3
C,.~100pF.
Rs~100n. f~lkHz
n
n\'/.Hz
1. :\on A IS the standard to HA170BO. HA17082. HA17083. HA17084.
A version is the standard to HA17080A. HA17082A, HAl7083A, HA17084A.
2. It's Gate Leak Current of J-FET, and depends on temperature.
At the time of measurement, it is necessary to keep junction temperature.
3. It's the \'alue per 1 channel.
• VOL TAGE OFFSET ADJUSTING CIRCUIT
N2
HA17083
.CIRCUIT SCHEMATIC
.. ,
~'
v.. ,
{ ~~I~e~omp
~~I~et,
NI
N2'
comp
HA17080
only
Vn.
6
Offset
Offset
!'>lulllNl
Null~N21
HA 11083 only
24
~HITACHI
:\ote
dB
-
-
Input Noise Voltage
Unit
HA17080
HA17080PS,HA17082PS,HA17083P,HA17084P,HA17080GS,HA17082GS,HA17083G
PEAK TO PEAK OUTPUT
VOLTAGE SWING VS FREQUENCY
PEAK TO PEAK OUTPUT VOL TAGE SWING
VS AMBIENT TEMPERATURE
30
30
R,. -10k U
:::.
--
25
,J,
20
:.:
15
-
2kQ
~
-·15V
Vu
10
t-- Ttl
25"('
o
100
~
,
"
10 k
1k
lOOk
1M
:.:;
15
8
10
t 15V
V"
Vu.~ 15V
01:
o
-50
10M
30
25 f-- Trl
30
15V
~
V
~
20
~
~
15
-
10
'""
1--'1--
25"C
-.-
75
100
Til ("C)
V
/
Ta
20
~
15
J
R,L 10k<>
25"C
V
10
/
~
II
!:;
50
25
,J,
V'
~
25
PEAK TO PEAK OUTPUT VOLTAGE
SWING VS SUPPLY VOLTAGE
Jv
v" I
Vu
-25
Amhll'!ll Tt'mpl'raturl'
PEAK TO PEAK OUTPUT VOL TAGE
SWING VS LOAD RESISTANCE
·n
2 kQ
20
~
\
t 15V
v((
01:
,
25
M
\\
~
~
RI. o\Ok U
::.
V
/
V
V
!:;
o
0.1
0.2
0.5
r.Ll a d
I{p s
o
10
1.0
i.,! a 111' P/{I
I
k~~
o
1-3
±6
"t9
±12
SupplY VO!1tagt' lif!, Vn
I
±15
(\"1
VOLTAGE GAIN VS AMBIENT
TEMPERATURE
150 r----,----,------,--,--,-----,
VOLTAGE GAIN VS FREQUENCY
1251---4---+---1--+--+--1
12 5
15 0
±18
J" ~
+J5V
Vu;-=--lSV
R,.~10kQ
-
Ta=2S'C
10 O r - - ~
100 I-----_+_--
;
751---4---+---1--+--+--1
5 ---
501---4---+---1--+--+--1
0
v( (
25 -
0::
~
i""
+ 15 V
I
Vu. ~ -15
R,. ~
kQ
v-4----+--+---+----j
OL---~--~--_L
-50
"~
- 25
25
5
__~__~__~
100
50
75
:\mblt'nt Tt'mp,'raturp l;1
"('
0
10
100
1k
Frt''lUf>IH'V
@HITACHI
10k
f
lOOk
'"
~
1M
10M
(llll
25
HA17080PS,HA17082PS, HA17083P, HA17084P, HA17080GS, HA1708 2GS,HA17083G
HA17080 VOL TAGE GAIN VS
FREQUENCY
SUPPL Y CURRENT VS AMBIENT
TEMPERATURE
150
Vcc=
2.4
,--.,-----,--,----r----,,---,
2.0
!----;--...,--+----j-----jr----;
I. 2
!----;--...,--+----j-----,r----;
0.8
I---f---+---t--t--i----i
115v
V":F.=-15V
CL~3pF
125
-
Ta=25"C
~
100
"
75
~
50
~
;
"-
+1
" '"
"-
"
<3
'\
25
o
10
1k
100
10k
r\
1M
lOOk
f
Frequency
>.
1
\
~()
Load
Per II Channell
OL-__
\OM
-50
V"
-"
0:
~ ~15V
2.4
I
-
i
,
25
-"+1
1.6
-
60
~
__
~
75
\00
Ta~i5"(:
i - -~
1.2
>.
J
40
0.8
0.4
0
-50
-25
25
50
75
100
o
o
AmbIent Temperature Tu ('e)
t 3
±6
±9
Supply Voltage
INPUT BIAS CURRENT VS
AMBIENT TEMPERATURE
± 12
~h·.
1:
15
120
Vnl='I~V
V,..,.::o-o -15V
100 t-Ta~25"<:
I-Vr(
+15V
15V
rVc.If=OV
f-Vf:f;~
I k
80
I
..:;
----
0
(J
/
V
100
10
-50
:t}8
h:t, (V)
INPUT BIAS CURRENT VS COMMON
MODE INPUT VOLTAGE
10k
- --25
0
~
V
20
25
50
75
100
Ambient Temperature Ttl ("C )
26
__
50
(J
20
iii
~
:;0
80
0':
1
__- L__
2.0
0
':is
~
SUPPL Y CURRENT VS SUPPLY
VOLTAGE
~o Load
Per lch.
[,;
__
Ambient Temperature Ta ('e)
\in:=- -15V
No Input
100
~
-25
(Hz)
POWER DISSIPATION VS AMBIENT
TEMPERATURE
120
Vee = +lSV
V,.:,.;=-15V
0.4 r-No Input
~HITACHI
o
-10
-5
10
HA17080PS,HA17082PS, HA17083P, HA17084P, HA17080GS, HA1708 2GS,HA17083G
POWER DISSIPATION VS SUPPLY
VOLTAGE
INPUT NOISE VOL TAGE VS
FREQUENCY
120
l~
';;
100
VL~' +'Il~
100
80
= 2S'C
Ta
1\
80
"
"
'-
~
3.
Ta~JS"C
r-~" Input
~Il Llad
Vn= -15V
R!> = 100Q
0::
60
60
.-
~
40
40
./
i5
,
r-
-
if.
./
20
20
/'
o
o
10
100
I k
Frt"IUI'IWY
10 k
f
100 k
±9
± IS
± 12
± 18
LINE REGULATION VS FREQUENCY
JlSV
-0-
VH=--I5V
Ta ·25'(,
]00
'" """
40
20
100
Ik
10k
"
'"
lOOk
4
'"
1M
~--
- 4
- 6
\
!\
!1-0""",
:
I
\
""-
/
if
i/
H
100
10
10M
I
Input -----'
,IISV
ISV
Vu
~ 2 kiblt' valu(> to Ta~45·C. and ill'},ond that. aHat!' I\ith 8.3m\\'j"C
the p,·rmlsslhh· valut· tu Tu
• ELECTRICAL CHARACTERISTlCS--l I VC<~·' VH~ i5V, Ta~25'C)
Symbol
Item
min
Test Condition
typ
Rs~ lOk!l
V/I!
Input Offset Voltage
6.0
m\'
18
200
nA
75
500
nA
30
150
p\,/V
30
150
p\'/\'
Input Offset Current
I,
Input Bias Current
Unit
1.0
Line Regulation
Voltage Gain
86
106
dB
Common Mode Rejection Hatio
70
90
dB
12
+J2
:tl3
+14
\'
+ 10
:± 13
~
Common Mode Input \'oltage Range
VOl'
Peak To Peak Output Voltage
/'
R,>IOkl1
V(}I'I'
Power Dissipation
P,.
at the time of no load
Slew Rate
SR
R,,' 2k!l
Hise Time
t.
100
65
mIl'
\'/ps
0.5
0.3
5.0
O\'ershoot
R..
Input Resistance
1.0
0.3
• ELECTRICAL CHARACTERISTlCS~2' Vcc~ - VHf. ~ is\'. Ta~ --20 10+75'C. howe\'er as for HAl774i. Ta~O 10+70'C '
Symbol
typ
max
Unit
Input Offset Voltage
9.0
m\'
Input Offset Current
400
nA
1100
nA
Item
Input Bias Current
I,
roltage Gain
AI"II
Test Condition
R,.,·2kl1, V""
~
min
'.IO\'
dB
\.
80
::': 10
Pt'ak To Peak Output rultage
INPUT OFFSET CURRENT VS.
SUPPLY VOLTAGE CHARACTERISTIC
• VOLTAGE OFFSET ADJUSTING CIRCUIT
"
J
R.
J
~"
16
R,
ViI
0";0%
t
•
0=-100%
VEE
:!:3
I
I
i
,
I
!
I
1
i
I
19
Supply Vultage
~HITACHI
i
:
!
±6
I
I
,
I
1
R,
1
:
I
I
I
± 12
± 15
I
± 18
VI"/. I/o. (Vi
29
HA17741G,HA17741GS,HA17741PS,HA17741
VOL TAGE GAIN VS
SUPPLY VOL TAGE
POWER DISSIPATION VS
SUPPLY VOL TAGE
120
101 I
No Load
---- I---~
d:
f
--
u f.----
60
lL
/
-0
V
°v
II 0
----
I
~
f---
./
- ---
/'
VI
RL ;:;2k,Q
80
7[I
I
±3
±6
±9
tl2
±15
±3
118
±6
±9
±12
Supply Voltage Vee.
Supply Vuitage V('/', Vn; (V)
t15
V~;f:
±18
(V)
INPUT OFFSET VOLTAGE VS
AMBIENT TEMPERATURE
PEAK TO PEAK OUTPUT VOL TAGE
VS SUPPLY VOL TAGE
~'cc '"' + IS\'
VEE"" -15\'._
RS~](ik11
;;
•
f----+--+---I--+-----+--{-- f--- t--- - --I
i
'
-t---
I--L~
!---l---+-----l-- f-r-Ir-i
2
I
[
r--+--- --+--
-- - -+--+-+--1
I
1
1--4--~--1--+-4---~--1--~~--
I
40
20
Supply Vultage Vcc, Vt:'F. (V)
INPUT BIAS CURRENT VS
AMBIENT TEMPERATURE
INPUT OFFSET CURRENT VS
AMBIENT TEMPERATURE
"
16
r-r-- r-t="
i
T
-
11(1
60
Ambient Temper.ature Ta ('e)
--+-
--
r- f......
lUU,
t
~
"'}-
I
2
I
.::;
80
<3
60
i
T
.......
r---..
f' ........
,...
iD
I---t
,
v'ce'" +15V
VEE:= - ISV
-
~'cc
20
40
Ambient Temperature Tn (OC)
30
!
1
,
tU
'u
60
'"
~HITACHI
-20
I
=+15V
V E£=-15V
20
.0
60
Ambient Temperature Ta (Oe)
80
HA17741G,HA17741GS,HA17741PS,HA17741
VOL TAGE GAIN VS
AMBIENT TEMPERATURE
POWER DISSIPATION VS
AMBIENT TEMPERATURE
1
i
I
,",
;
-"
70_
~
60
•
ci:
110
:;;
I
I
r- --k
--
Vcc=+15\"
r--~'H=-I5V-
Nfl l ..oad
-+-
0:
a
+--
.;;
r- r-- r-
---{- t--
t--
...
- t-- 1--
I100
J
-
90
~
;.;
\---
50
Vee'" + 15V
Vn -=-15V
80
RL
._f-4(1
.0
20
"'
70
-,0
""
60
Amlncnt Temoeratuf(, Tu ('C)
20
.0
~2kQ
80
60
Ta ('C)
Ambip.nt Temperature
OUTPUT SHORT-CIRCUIT CURRENT VS
AMBIENT TEMPERATURE
PEAK TO PEAK OUTPUT VOL TAGE VS
AMBIENT TEMPERATURE
Vo= Vee
VCC=+ISV-
12 J-HH-I-I-I-+-+-+--l
6
~
u
I
,
VU =-15V
-
l'"'- I--
-
I--
l"- I'"'- ~
.~
C
I----HH---j-+-+ vrc = +ISV
Vn =-15V
-4
~
J-HHH-I--tR /. = 10kO _
-, J-HH-I-I-+-+-+-+--l
HH--t-+-+-++- t---
•
-It':!~~±:j_
20
20
40
60
•
"
lIO
!(l
.0
PEAK TO PEAK OUTPUT VOL TAGE VS
LOAD RESISTANCE
•
~~S~~~5~',~~~;Qrrr-
!
1
2
80
OFFSET ADJUSTING CHARACTERISTIC
I.6
16
60
Ambient Temperature I'll ('C)
.A.mhient Tcmpl'ralure '1"1 ("CI
-fj
I. 2
:
J...
!AI
•
o.
V'
R:;c)OkQ
1+
,.•
./
c..1lII~
~
~v
~J
'\:OJ
0
·• "
-0.4
VCC=+ISV
VU:=-15V
-0.8
I/~
R=2OkU
rl:
Il/
/I
-I.2
-I 2
-I. 6
20U
.')00
Jk
2k
5k
10k
20
40
60
Hesislof Position
Load H.esistancl! HI. (~l J
$
HITACHI
80
Q
100
(%!
31
HA17741G,HA17741GS,HA17741PS,HA17741
PEAK TO PEAK OUTPUT VOL TAGE VS
FREQUENCY
INPUT RESISTANCE VS
FREQUENCY
28
I.' n-rT"l"TTmr-rr-r'TTTTTn-rr...,....rnTm-r""'-""-T"TTm
•
1.2 H+++tttHt-+++ftttftt+H-H+H1H++++++Hl
1\
20
1.0 H+++H+Hf...j.;j;::!-iftttftt+H-H+H1H++++++Hl
0.8 H+++tHH#-+H++++tfl-f-f~ki-!-ItII-++-I-t-WIll
6
2
£
0.6
H+++tHH#--t;H++++tfl-l++f-H-ItII-+~ttWIIl
-
0••
H++++tl-ltf--t1H++l-H1IHI++lf-H-ItII-++-1-t-1+Il1I
VCc.""+lSV
VEE =-15V
Rti'1i1
•
0.2 H+-Hftfttt-+H-ttttttt-t++H-l-lttlH+-t+t++lll
11I11
IIIII!
o
100 200
500
Ik
2k
Sir.
10k
201r.
J
(Hz)
Frequency
sOk lOOk 200k
01'~OO~20~0~S~0~OW'~k~2~k~~Sk.Lll'~Ok~2~Ok-L~SO~k~'~0~Ok~2~O~Ok~SOOLkUW'M
SOOk
Frequency
PHASE VS FREQUENCY
0
120
vcc=~:~~+
;;
0
"
J
-80
-120
:f
-160
vrc=+IAV"
VF.E=-15V
100
Open L()op
.w
(Hz)
VOL TAGE GAIN VS FREQUENCY
VU·=-15V ,
-.
f
~
Open /.(lOP
80
60
4•
20
-zoo
-240
50 100
200
500
Ik
2k
Sir.
10k
Fre'luenry
f
ZOIr.
SOk
lOOk 200k
SOOk I M 2M
-'0 ';;1O;"-;;,20:"'-';St;lOW':::OO~200;;-'-S~OO;;.u;'k~2t-k-'--';5ktw;I~Ok:-';;20k;:"-'t50~k~11IOk;;;:';2OOk!;;;i-t5OOk~'~M.-'::!'M
Frequency
(Hz)
VOL TAGE GAIN,PHASE ANGLE VS
FREQUENCY CHARACTERISTlC(1)
120 ,..,..rrrTTTnn-r-r-rrrTnrTT"T"TTTTTIT-rT-rTTTTTrrrrT"."m-n
H-H-HttHH+t-ttltttl-++-+++tttIt-H-Htt' ~~c = +IS V' "'
100H-t+HttHH+t+tttttt-++-ttttffit-tt-tt++~f!~s:d-~i~cuit
Gain 40dB r
Vu=+15V
Vn:"'"-15V
100
80
Clo~ed Circuit
Gain=60dB
I!,
0
~ 60
~
(Bll
VOL TAGE GAIN,PHASE ANGLE VS
FREQUENCY CHARACTERISTIC(2)
12.
~
J
60
.0
A~
~
i
-120]
20
~
H\O==:
-20 \;;1O'1~k-'-'<\5I)!"#;IOOr..
~-t5Ollf'l,1o:-k.L~i;;-'-l;!5k~I"~";:-'-\5Il~'0l~mW-1;;5OC>~,"[;-l;;i2M
Frequency
f
-'0 !;;1O.L,2!;;-0"-Y.SO"'*'00.-';;l200.-'-lS"'OOJJl!olk.L2k:!-'-',\Sk'-"'lIOk.-Y.20::-'k"S±!Ok"'fIO!f.;Ok;',,"'OO""kS~OO:!'k~IM!.-'::!'N
(Hz)
Frequency
32
$
HITACHI
f
(Hz)
HA17741G,HA17741GS,HA17741PS,HA17741
VOL TAGE GAIN, PHASE ANGLE VS
FREQUENCY CHARACTERISTIC(3)
VOL TAGE GAIN, PHASE ANGLE VS
FREQUENCY CHARACTERISTIC(4)
.~ VI'
- 120 f+f+I-ll+HH+,-+H-HlI-++++II+HlI-+i-+1m+1H+++++H+l--t1
~4() !o\O'-:;20~'t50i'f.!IOO;-'2oi;oo~5~OO~'k-',2:!ck-'-';:5k~'O:C-k~20:C-k~5~Ok~I~OOtk2;!;OO;;'ki51lO!;'ck"}'\;-M'-i"M
Fr(!{IUt'n(',v
f
1020
'>0
100 200
Fr<,qlH'nry
(1/1.)
TRANSIENT RESPONSE CHARACTERISTIC MEASURING CIRCUIT
10k
20h
J
(117.)
SOh lOOk 200k :'OOk 1M
2M
RISE TIME VS SUPPL Y VOL TAGE
0.8
vRL=2kQ.• =J...v
CL=IOOpF
0.6
'v,
~I(l "
r•.,
~
e
0.'
..::
",
r.""v;---+---0 \'•• ,
.
R,.
0.6
:..
'"
,~
0.'
~
v..
/"
~
,TT\
;;;
0.2
~
I-'
./
-
,.-
/'"
/
±3
to
±9
t12
t15
±l8
Supply Voltage Va. Vf;f: (V)
VOLTAGE FOLLOWER LARGE SINGNAL
PULSE RESPONSE CHARACTERISTIC
0
vc~= + I~V
VU':::-15V-
RL =2kal
CL=IOOpF-
r
I
I
11-
1\
()utPUI
1/
0
1/
I
\
Input - I
I
I
I
r-
L_
-10
.0
Time t
\
\
-- r- -
80
(IlS)
.AN APPLICATION OF Ie OPERATIONAL AMPLIFIER
1. Multivibrator
Multivibrator is the square wave generator utilizing the charge
and discharge phenomenon of CR. and is widely used in
power source of square wave, electromagnetic switch, etc,
Multivibrator is classified by Astable Multivibrator without
stable state, Monostable Multivibrator with one stable state,
Bistable Multivibrator with two stable states.
V nt
>---+---<:>-- -- ~
I
I
R,
R,
~"
I
I
I
I
,h
Fig.1
34
eHITACHI
Astable Multivibrator Operating Circuit
HA17741G,HA17741GS,HA17741PS,HA17741
Trigger Input
~', ..
+
0
0
V.. I-IO
v.. ,
axis of ordinates 5V IDlV
quadrature axis 2ms/DIV
circuit constant R,~10k!l.
axis of ordinates 5V IDlV
quadrature axis 2ms/DIV
circuit constant R, ~8k!l, R2 ~4k!l
1
R3~100k!l,
0
R3~40k!l.
C,~O.l#F
VEE~
RL~CO
-15V
Vee~15V.
Fig.2
C,~O.47#F
C2~O.0068,uF
RL~CO
Vee ~ 15V,
R2~2k!l
HA 17741 Astable Multivibrator Operating
Waveform
Fig.3 Monostable Multivibrator Operating Circuit
VEE - -15V
Fig.4 HA17741 Monostable Multivibrator Operating
Waveform
Fig.S Bistable Multivibrator Operating Circuit
eHITACHI
35
HA17741G,HA17741GS,HA17741PS,HA17741
"rr~~~~cmm--,,,~m---"Tn~
III!
10k
VIII''' 2V
I
~~.g.
~:Ij
----'-+-1' 1 il
I ,,:
Capacitance C l (F)
axis of ordinates 5V IDIV
quadrature axis 2m siD IV
Fig.8 HA17741 Wien bridge sine wave oscillator
circuit constant
RI~10kn.
~
f-c characteristic
R,~2kn
C~O.0068J.1F
R~ro
Vcc~15V.
VEE~
-15V
TT>\. ! /1\~ . "
Fig.6 HA17741 Bistable Multivibrator Operating
Waveform
lS20/4
'\
! (\
, \V,r·'V\;'
i,.
.~
V
U
R,
470kll
IMQ
axis of ordinates 5V IDIV
quadrature axis O.5ms/DIV
measuring circuit condition
S.JkQ
Vcc~15V.
R,~110kn.
r ...
~11J1l!J
k.
R,
C,
I'
R,~l1kn
C,~O.0015J.1F.
C,~O.015J.1F
Imeasurement result
f~929.7Hz.
SOkQ
VEE~-15V
T.H.D~O.06%
Fig.9 Operating Waveform of HA17741 Wien
bridge sine wave oscillator
R,
R,
Fig.7 Wien bridge sine wave oscillator
I
I
------H-~
1'"
Fig.10 Quadrature Sine Wave Oscillator
36
$
HITACHI
HA17741G,HA17741GS,HA17741PS,HA17741
(n
l'''21'Ft-+t+H't--t-tI·~''I.I_I'!'.'.''I5V 1 I
f"r! =!I!lpF
C,=106pF
RTI =t50kQ
Rn =15tlkU
R.=15I.2kQ
R,,-15kQ
R.. IOkQ
R.. -ISkQ
R.. IOkQ
Cn ,Cn ,C,-I,OClOpF J. '1
..... COli
Out
IlnG,,1
axis of ordinates 5V IDiV
quadrature axis O.2ms/DIV
circuit constant
C,~1000pF(990)
C T2 ~ 1000pF(990)
150kn
R, ~ 160kn
RII~15kn
R,,~10kn
R,,~16V
R .. ~10kn
Vcc~15V
VEE~-15V
CTl~1000pF(990)
RT2~
RTI ~150kn
Fig.11 HA17747 Quadrature Sine Wave Oscillator
f·ClI, Cn, C, characteristic
Fig.12 Output Waveform 'Of Sine, Cos
r-
--I;~;-a;-;);-----
---- -c--- - ---1
1
1
,
1
1
1
:
1
II,
IJ,
:
I
I
!,
1
1
1
I
1
:
1
A,
R.
[JI
+
>4---i-'- 0 \' " ..
r---
t
_L.. __ ,
-lm--mm-m,-J '"
_
v....
:1
I
1
I
1
1
i
I
II"".".", '1"1'" Comp... ,,,,
II,
/11, :
1L.. ___________________________ JI
Flg.13 Triangular Wave Generator Operating
Circuit
eHITACHI
37
HA17741G,HA17741GS,HA17741PS,HA17741
I.
~ •• 11
\
~
.. ,
....
axis of ordinates 5V IDiV
quadrature axis 2ms/DIV
circuit condition
Vcc~15V,
RI
~
VEE~~15V
tOOkO, CI ~O.l!' F
V,"~IOV
Fig.16 HAl 7741 Saw Tooth Generator Operating
Waveform
axis of ordinates lOY IDiV
quadrature axis IO';'s/DlV
measuring circuit condition
Vcc~15V,
V££~~15V
RI ~ IOkO,
R2~20kO
R3~tOOkO,
R,~200kO
C~O.lI'F
Fig.14 Operating Waveform of HA17741 Triangular
Wave Generator
R,
--------------~~---------------,
bk!..!
R,
v..
6kQ
V•• r
R.
JkQ
,j,
I?2~SCI106Qj)
C'II
R,
2.7kQ
R.
2.7kQ
Q,
SkQ
V.
Fig.15 Saw Tooth Generat\lr
38
$
HITACHI
H A17715G •
High Slew Rate Operational Amplifier
HA 17715 is an operational amplifier of high speed and high
gain, and it's application is possible in AID, DIA converter,
active filter, wide band width amplifier, comparator, sample
hold circuit, and general feedback circuit required wide band
width from DC.
•
FEATURE
•
•
•
Slew Rate
Fast Settling Time
Wide Band Width
1 OOV II's (typ)
300 ns (typ)
65MHz (typ)
(OG-14)
• PIN ARRANGEMENT
• CIRCUIT SCHEMAITIC
(Top View)
.ABSOLUTE MAXMUM RATINGS (Ta-25'C)
Item
Symbol
Supply Voltage
VCI
Supply Voltage
Unit
HAI7715G
~
V
Vu.
18
-·18
Power Dissipation
J'r··
625
mW
Common Mode Input Voltage
Vnt •
V," '/,1!
'r IS
,tiS
V
Ilillerential Input Voltage
Operating Temperature
~.,,,
20 to +75
Storage Temperature
7', IN
'c
'c
65 to
V
V
•
+ISO
III Ie lriuppl)' \,oltaMt" is It'sli than • lS\', input ~'(JltaKt' is to sUllply \'oltal(t' .
... • It's a pt'rmissiblt> \'.lut' to 1'" "70"C. and be~'tmd that, dt'ratt' with 7.6mW/'C
• ELECTRICAL CHARACTERISTICS-' (V",,-- V",,-15V, Tu=25'C)
Symbol
Item
Volta~e
V,,,
Input Ollset Current
Input Hias Currl:'nt
Input Ollset
Lint' F(,eguration
Voltage Gain
Commun
Common
min
typ
max
Unit
mV
2.0
7.5
I,,,
70
250
nA
I,
0.4
1.5
!lA
45
400
"V/V
AV,,,/AV,,
R,,;: 10kO
A V, ,,/ A V""
A~'II
R,': 2kO, V,,",
R,.: 10kO
~lode
Rejection Hatio
CMR
~1()de
Input VoltaMe HanMe
VI'.1f
Supply Current
Ml!asuring Condition
R" ~ 10kO
11'1"
eHITACHI
~
: 10V
10000
30000
74
" 10
92
...
V/V
1'12
..
5.5
10
V
V
mA
39
HA17715G
• ELECTRICAL CHARACTERISTICS-1 (Continued)
Symbol
Item
Power Dissipation
p.,
Band Width
BW
Measuring Condition
-
SR
Slew Rate
min
typ
max
Uuit
165
65
300
-
MHz
mW
Avu=l
-
ACI.~IOO
-
70
-
Vips
ACI.~IO
-
38
-
Vips
ACI.=I(positive phase)
10
-
18
-
Vips
100
-
Vips
-
800
-
ns
-
300
-
ns
Au.=I(negeative phase)
Ac,.~1
Transient Stable Time
tACO
V".,~5V.
Settling Time
t:sn
ACl.=l
Rise Time
t,
V,,~400mV.
Acr.=l
-
30
75
ns
Overshoot
V., ..
V,,~400mV.
ACI.=l
-
25
50
1.0
%
MO
Input Resistance
R"
-
Output Resistance
R"uI
6V,,/6T
-
Temperature Drift
.ELECTRICAL CHARACTERISTICS-2
(Vcc~
Item
Measuring Condition
iw
I,
Input Bias Current
-
750
nA
Ta~75'C
-
-
1.5
pA
Ta~O'C
-
-
7.5
pA
Ta~
-
-
10
7000
-
-
±IO
±13
-20'C
V•• ,~±IOV
4.0
I
I
"'
.."
c;:
~
I
I
~
i
2.0
I
I
I
I
I
I
I
I
I
I
I
I
I
Transient
Stahle Time
!
!
I
I
f - f--
I
I
IR.s=lOkQ-r-~
,:
I
:
I
!
I
+---
I
I
I
I
I
20
20
i
I
eHITACHI
I
I !
i-----+-+I
!
I
I 1
I I
I
I
i
i
ttl
40
Ambient Temperature Ta ("e)
40
V
i,
-
I
-
I
.'
I.
I
"CC=-IHCI5V_j
~
---
--~-------i
I
pA
V/V
INPUT OFFSET VOLTAGE VS.
AMBIENT TEMPERTURE
Settling Time
I
nA
-
-20'C
90%--:--------1
100%
mV
Ta~
DEFINITION OF TRANSIENT RESPONSE WAVEFORM
llO%--~-------:-I
I
Unit
10
250
R,.;;'2kO
I
max
-
VIlI'1'
I
typ
-
-
Peak To Peak Output Voltage Amplitude
I
min
Ta~75'C
R,.;;'2kO,
~
pV/'C
-
A.· v
I
-
R,';;lOkO
Voltage Gain
'~"
0
6
- VEE~15V, Ta~ -20 to +75"C)
V/ O
Input Offset Current
-
-
Symbol
Input Offset Voltage
-
75
60
80
HA17715G
PHASE COMPENSATED
CIRCUIT
--
c,
C,
C2
IU
,
CLOSED LOOP GAIN VS.
COMPENSATED CAPACITANCE
vmsv
c:!
--
10pF
1000
100
50pF
10
100pF
500pF
1000pF
I
500pF
2000pF
1000pF
11
250pF
c,
1.00U
c,
-
\
,
-
e,\
i--
c,
_c.
-
,
,
\
0
10
100
1,000
Chlsed"loop Gain ArKI.• (V/V)
LINE REGULATION VS.
INPUT BIAS CURRENT VS.
AMBIENT TEMPERATURE
AMBIENT TEMPERATURE
U.8
100
VCC~-VE;=15V
T
,
I
.;:,
0.6
<3
I
"" '"
0.'
iii
-
,
'\
-"
~~
~"'
"" ""
"" ~
,,"
~ ~
i
50
~o
~
0.'
l'--
f--
!
!
-+-.t
1---
f-+-I
I
i
i
I
i
I
.0
80
6U
4U
20
20
120
Ambient Temperature
Amhient Temperature Ttl ("C)
Ta
80
ee)
VOLTAGE GAIN VS.
AMBIENT TEMPERATURE
VOLTAGE GAIN VS. FREQUENCY
~
---e-
.Uk
"'
-
~-+--+--+-+--+--+-i--+--+-+-+--1
-f--+--+--+- j - - j - -
I
., 3Uk f--+-+-+-+-+--1-l--+-..j....j..~---j
C>
~
o
lk
10k
1M
lOOk
Frequency
J
\OM
100M
i
:>
'0' f--+-++-+--+--1-J.--+-++-+-
(Hz)
10k
e-+-+--+-+--+--i-+--+-+-+--+--I
-20
20
.0
Ambient Temperature
eHITACHI
50
80
Ta ("C)
41
HA17715G
COMMON MODE REJECTION RATIO VS.
PEAK TO PEAK OUTPUT VOLTAGE VS.
AMBIENT TEMPERATURE
AMBIENT TEMPERATURE
+16
130
Rs "10ks;!
0
+k-l-- ::+-
+1 2
VS"" ± 15V
0
~
•
100
-
o
,.....
£
90
~
80
"....
~
~
~
8
e
•
8•
-.
-8
"
"
70
0
0
20
- 10
10
20
30
40
50
60
70
- v,
-12
-16
-100
80
+100
Ambient Temperature Ta ("C)
Ambient Temperl:lture 'fi~ ("C)
.AN APPLICATION OF HA17715
I n case voltage gain is 10, it is allowable to insert capacitance
of C. to between terminal 1 and 12, replacing C, and C,
from the above figure. In that case, the value of C. is 200pF.
(3) I n case voltage gain is 100
HA 1]715 is an operational amplifier of high slew rate. and is
optimum for the application in the field requiring high speed
signal processing and wide band width. The following
describes an application of HA 17715.
1. Fundamental articles for using HA17715
1.1 Method of using phase compensated capacitance
Because HA 17715 is high speed and high gain, it is especially
necessary to notice the prevention of oscillation at the time
of using it. On account of this, capacitance value for phase
compensation is being recommended as shown in Fig. 1,
satisfying the largeness of closed loop gain for use.
(1) In case voltage gain is 1,
Fig.3 Phase Compensation in case voltage gain is 100
1>---4--- v•• ,
(4)
I n case voltage gain is 1000
I,OOOR
Fig.1 Phase Compensation in case voltage gain is 1
1>-"_ _ v...
In case of voltage follower, in order not to have latch up
occur at input stage even if output is increased, it is necessary
to insert diode to cascode terminal as shown in the figure.
(2) In case voltage gain is 10
Fig.4 Phase Compensation in case voltage gain is 1000
.R
IOOpF
v"
---''1Il10----4.----1
v.. ,
500,F")(
1.2 Offset Adjustment
The adjustment of voltage offset can be performed by apply·
ing volume etc. for offset adjustment use to input terminal.
I n case of HA 17715, it can be performed effectively by using
terminals 1 and 2 for phase compensation use to input
terminal. In case of HA17715, it can be performed effec·
tively by using terminals 1 and 2 for phase compensation use
as shown in Fig. 5
;'
Fig.2 Phase Compensation in case voltage gain is 10
42
eHITACHI
HA17715G
Vee
Table 1. Constant Table
50k
C,
Frequency Range
C,
10 to 100Hz
31'F
7.51'F
100 to 1000Hz
0.31'F
0.751'F
Ik to 10kHz
10k to 100kHz
0.031'F
0.0031'F
0.0751'F
0.00751'F
lOOk to 1000 kHz
300pF-t-l50n
750pF
Fig.5 Offset Adjustment of HA 17715
2. An application of HA17715
2.1 High Cycle Amplifier
Fig. 6 shows high cycle amplifier with progressed drive ability
of output by applying PNP and NPN transistor to HA 17715.
Voltage Gain Av of this amplifier can be.
tl!iV
-1'iV
Swing
~~t--~-~Ajust.
IOkQB
Vcr = +15V
v,. ~-,<5Mlo;::.Q_<-_1
R.,
750Q
IOkQ
2212
r
O.2f.lF
VF.E=~15V
Fig.6 High Cycle Amplifier
expressed by Av~20 log R,.
Rs -20 log
(l+~
Ro )
Fig. 7 shows frequency characteristic of voltage gain in the
circuit of Fig. 6.
"
,I
" "
~
-c
J
~
I
,
RL
i I.i!
!'!!'
~'" '" LSV
"=I
I Ii:
"'sua I
0.01
I II'
0.01
1:"1 1
',,1,'
,
I iii
iill ----t-
ill!
I
"
,: "
"
; ! : ii ~
I !li: 1
0
;
,
!i:l:
10
I"Mr----,.---,----.---~---,
--.--
:i
~j!:4~~~\'.t
sistance.
. Ii
Ii'
11I1
Fig.a Wide Band Width Oscillator
Note 1. By switching C. and C" it is capable of oscillating
the range of from 10 Hz to 1 MHz by 5 range.
2. As for output amplitude, about 3 Vpp is optimum.
3. The amplitude of each range is stabilized by the
fine turn ing of C•.
4. By the adjustment of VR, ' uniformalize amplitude
change during VR. ' VR, changes.
2.3 Waveform Shaping Circuit
Fig. 1 shows Waveform Shaping Circuit of Schmitt Trigger
method. At no signal, this circuit becomes Astable Multi,
since bias is put to it with the negative feedback type in order
to make high cycle waveform shaping good. Fig. 11 shows
the relation between minimum identification level and re-
\
-.,
-t-
l'll"k
;\
.::
ill:
Ii!
Fig.9 Oscillation Frequency
vs Capacitance
0.3
Frequency
J
(Mllz)
IOIL"'_'P-I-."LIl'_,p_,-J,l'--JlI;-
Fig.7 High Cycle Amplifier A d
(J.l,~
l.u
Hill
Capacitance C, 'FJ
Characteristic
'J>
::;:,:.:...+---<>,...
111,,1-
r.• o-~
2.2 Wide Band Width Oscillator
Fig. 8 shows oscillation circuit of wien bridge type theore·
tical equation
VR I
C,
A\~l+ VR, +c,~6
f~
fn. jT7fVR~·VR, ~C~·C2!
-,-'''pi
,t'~
Fig.10 Waveform Shaping(Slice)
Circuit Of Schmitt Trigger
Method
eHITACHI
R. lUI
Fig.11 Minimum Identi-
fieatlng Level
vs Resistance
43
HA17747G, HA17747P,
HA 17747 •
Dual Operational Amplifier
HA 17747 is an internal phase compensated type, high performance, dual operational amplifier, and its wide scope of
application is possible in ~he field of measuring and control
use .
HA17747G
• FEATURES
•
•
•
•
•
•
•
Industrial use
. HAI7747G, HAI7747P
Commercial use. .
. . . . . . . . . HAI7747
High Voltage Gain
. . . . _ . . . l06dB (typ)
Wide Output Amplitude . . . ±13V (typ) [at RL ~ 2kO)
Protected to Output Short
Capable of adjusting Offset Voltage
Internal Phase Compensated Type
(PG-14)
HAl7747P
HAl7747
• PIN ARRANGEMENT
(DP-14)
(Top View)
• CIRCUIT SCHEMATIC(1/2)
r, •• '
H,
25
..... . 0--+--+--+--'
v•••
H..
"
44
eHITACHI
HA17747G,HA17747P,HA17747
• ABSOLUTE MAXIMUM RATINGS (Ta ~ 25'C)
Symbol
Item
I' HAI7747G
2' HAI7747
2' HAI7747P
Unit
Vcc
+18
+18
+18
V':f:
--18
-18
-18
V
Power Dissipation
P r•
670
670
mW
Input Voltage
V"
tl5
670
t 15
tl5
V
Differential Input Voltage
V,",dol!'
±30
+30
±30
V
.i0.5
10.5
+75
0 to +70
V
·C
55 to I 125
·55 to +125
·c
Supply Voltage
Voltage between Offset Adjusting Terminal and V rf,
VUh" Vf• f :
Operating Temperature
T",,,
Storage Temperature
T..,
to.5
-20 to
--65 to
j
75
+150
- 20 to
V
*1: Yaiut' unut'r Tu' 65'C, In case of more than it, 7.6mW/"C derlltin~ ~hall lIt' done.
2: \"alul' under Tu' 45'C, In ('ase tlf more than it. 8.3m\\'/,C deratin~ shall bt, dune.
If hUI'ply \'oltagE' is lI's!> than 'IS\'. input \'uhuJW is til supply vlJltagt' .
**
• ELECTRICAL CHARACTERISTICS-1 I V«~
~ V,,,~
15V,
Ta~25'C)
typ
max
1.0
6.0
1/11
20
200
nA
J,
80
500
nA
2.8
rnA
85
mW
Symbol
Item
Input Offset Voltage
VIU
Input Offset CUrI'ent
Input Bias Current
Measuring Condition
min
R.,o;;;IOkfl
Voltage Gain
A 1'1)
R1."'2kfl, V.. ",~ i:IOV
Supply Current
1('(
Power Dissipation
P,.
at the time of no load
It's the value per 1 channel.
Input Resistance
R"
Input Capacitance
88
50
mV
dB
106
1.7
Unit
2.0
Mfl
C"
1.4
pF
Output Resistance
R"~I
75
fl
Slew Hate
SR
0.5
VII's
0.3
ps
0.3
R,..2kfl
Rise Time
I.
V,,~20mV.
Overshoot
V......
C,
Input Offset Voltage Adjusting Range
6VI '! ,,,I.
Output Short Current
I."
Channel Separation
VuIIV. 1 !
.ELECTRICAL CHARACTERISTICS-2
~
R,
~2kfl.
tOOpF
5.0
'r,;
+:is
mV
25
rnA
120
dB
(V'T~ ~ Vu~ 15V, Ta~ - 20 to +75'C,
however, as for HAl7747, Ta~O to +70'C)
Symbol
Item
Input Offset Voltage
VII.
Input Offset Current
Measuring Condition
min
R.,;510kfl
typ
max
Unit
1.0
9.0
mV
II"
20
400
nA
Input Bias Current
I,
80
lIOO
nA
30
150
"VI\,
Line Reguration
6 VII'/£':, V, r
6 VI .j6 Vf,l,
\'oltage Gain
A I'll
Common Mode Rejection Ratio
CMR
Common "-1ode Input Voltage Range
V!,\I
Peak To Peak Output Voltage Amplitude
Supply Current
Power Dissipation
V'J/'
R,o;;;lOkfl
R,.2kfl, Ie",
R,o;;;lOkfl
,.
I"
I',
t
10V
90
dB
+·12
Jl3
V
70
R,-?IOkfl
j
12
+ 14
\'
H,42kfl
t
10
' 13
V
at the time of no load
It's the value per 1 channel.
•
dB
80
HITACHI
2.1
3.7
rnA
65
lIO
m\\'
45
HA17458GS, HA17458PS,
HA17458
.Dual Operational Ampliiier
HA17458 is a dual operational amplifier which provides
internal phase compensation and high performance. It can be
applied widely to measuring control equipment and to
general use.
. . HA17458GS. HA17458PS
Industrial Use ..
. . . . . . . . . . • HA17458
Commercial Use
HAl77458GS
• FEATURES
•
•
•
•
High Voltage Gain . . . . . . . . . . . . . . . 100d8 (typ)
Wide Output Amplitude . . . ±13V (typ) [at RL ~ 2kn]
Protected from output shortcircuit
Internal Phase Compensation
(DG-8)
HAl7458PS
HA17458
• PIN ARRANGEMENT
(00-8)
(Top View)
.CIRCUIT SCHEMATIC(1/2)
46
$
HITACHI
HA17458GS,HA17458PS,HA17458
.ABSOLUTE MAXIMUM RATINGS
(Ta~25'C)
Symbol
I)HAI7458GS
2)HA17458PS
Vee
+18
+18
+18
Vf : E
-18
-18
-18
V
670
670
670
mW
Input Voltage
PT'
IC ••
±15
±15
±15
V
Differential Input Voltage
VU(/I.,lfl
±30
±30
±30
Operating Temperature
T~IJT
-20 to +75
-20 to +75
+70
V
·C
Storage Temperature
TSl8
-65 to + ISO
-55 to +125
-55 to +125
·c
Item
Supply Voltage
Power Dissipation
*
2)HA17458
o to
Unit
V
*ll;Value under Ta;;;6S·C. In case of more than it. 7.6mW/"C derating shall be done.
2);Value under Tu:!?4S·C. In case of more than it. 8.3mW/"C derating shall be done.
*If the Supply voltage is less than -±15V. input voltage shall be less than supply voltage .
• ELECTRICAL CHARACTERISTICS-1
(Vcc~ Vf:£~15V,
Symbol
Item
Ta~25'C)
Test Condition
R.;;;;IOkn
Typ
Max
2.0
6.0
mV
6
200
nA
-
30
500
nA
-
30
150
pV/V
pV/V
Min
-
Input Offset Voltage
V'O
Input Offset Current
lu)
-
Input Bias Current
II
V/o/.6. Vee
b.
Line Regulation
L:::. V,o/L:::.
Voltage Gain
Common Mode Rejection Ratio
A'D
CMR
Common Mode Input Voltage Range
VeAl
Peak-to-peak Output Voltage
V"p,
VEl-:
R.;;;;IOkn
.-
30
86
100
150
-
70
90
-
±12
±13
-
V
±12
--
±14
.-
V
-
0.6
1.0
-
Mn
6.0
--
pF
75
-
n
R,;;;;IOkn
RI.~2kn.
V•• ,~ ±IOV
R.;;;;IOkn
RL~IOkn
Power Dissipation
PT
No load
Slew Rate
SR
A.~I
Input Resistance
R ..
Input Capacitance
C..
0.3
-
Output Resistance
R"~I
-
• ELECTRICAL CHARACTERISTICS-2
(Vcc~-VEE~15V,
200
-
dB
mW
V/ps
to +75'C,
to +70'C)
Ta~O
Symbol
Test Condition
R.;;;;IOkn
Min
Input Offset Voltage
VIO
Input Offset Current
I/O
--
Input Bias Current
II
-
Voltage Gain
A,"
Peak· to· peak Output Voltage
Vo,
RI_~2kn.
p
90
dB
Ta~-20
For HA17458.
Item
Unit
--
IC, .. ~ ±IOV
RI_~2kn
eHITACHI
80
±IO
Typ
-
Max
Unit
9.0
mV
-
400
nA
-
1100
±13
-
-
nA
dB
V
47
HA17458GS, HA17458PS, HA17458
INPUT OFFSET VOLTAGE VS.
AMBIENT TEMPERATURE
INPUT BIAS CURRENT VS.
AMBIENT TEMPERATURE
HI U
V}.=+J5~_
Vcr=+15V
t--t--t--t---I--t--t-+- v~;~; = -15V
Vu=-15V
Rs~l(JkQ
U
6'
"
,
.........
4t
t'-....
,
2<
20
20
r-..... . . .
,0
60
2U
RO
-
......... '-
,
'"
Ambient Temperature To ('C)
60
INPUT OFFSET CURRENT VS.
POWER DISSIPATION VS.
AMBIENT TEMPERATURE
AMBIENT TEMPERATURE
RU
U
v,,), = +,Isv
Vee=' +15V
t--t--t--t---I--t--t- ru == -IS\"
\'f:/:'=~15V
~o
Load
Amplifiers
t--t--t--t---I--t--t-Huth
6
~
!
llrv
f
(liz i
VOLTAGE FOLLOWER LARGE
SIGNAL PULSE RESPONSE
1\
\
Output
/
II
\
r--r--
Input
Timp
50
_\_1-
:!lS
~HITACHI
HA17558GS,HA17558PS,
HA17558 •
Dual Operational Amplifier
HA 17558 is a dual operational amplifier which provides
internal Frequency compensation and high performance. It
can be applied widely to measuring control equipment and to
general use. The two amplifiers share a common bias network and power supply leads .
I ndustrial Use . .
. . HA17558GS. HA17558PS
. . . . . . . . . . . HA17558
Commercial Use
HA17558GS
.FEATURES
•
•
•
•
•
104dB (typ)
. . . . 1V//J.s
High Voltage Gain
High Speed . . . .
Continuous Short-circuit Protection
Low-noise operational amplifiers
Internal Frequency Compensation
(OG-8)
HA17558PS
HA17558
.PIN ARRANGEMENT
OutPUI A
Inv.
Input A
~on
lnv.
Input A
Inv.
Input H
'--_--'C~I
(OP-8)
Nnn-!nv.
Input B
(Top View)
• CIRCU(T SCHEMATlC(I/2)
r---~--~-~-..,...--"----O \/n
eHITACHI
51
HA17558GS, HA17558PS, HA17558
.ABSOLUTE MAXIMUM RATINGS
(Ta~25°C)
Symbol
Item
HA17558
HA17558PS
HA17558GS
+18
-18
+18
-18
V
V
Note
Unit
VEE
+18
-18
Common-mode Differential Voltage
V,n(d'ff)
±30
±30
±30
Common-mode Input Voltage
VCM
±15
±15
±15
V
1
Power Dissipation
PT
670 3)
670 3)
670 2)
mW
2,3
·c
·c
Vee
Power Supply
Operating Tempefature Range
Top.
0-+70
-20-+75
-20-+75
Storage Temperature' Range
T«'/f
-55-+125
-55-+125
-65-+150
~ote
V
1.) ror supply voltage less than ±15V, the absolute maximum Input voltage IS equal to the supply voltage.
Value under Ta~65·C. In case of more than it. 1.6mW/"C. derating shall be done.
3.) Value under Ta~45°C. In case of more than it. 8.3mW/"C. derating shall be done •
~ote 2.)
~ote
• ELECTRICAL CHARACTERISTICS (Ta~25°C, Vcc~+15V, VEE~-15V)
Symbol
Test Item
Input Offset Voltage
Min
Test Conditions
,-
R.,";10kf}
VII)
[10
Input Bias Current
Voltage Gain
I"
A.
Maximum Output Voltage
VIII'I'
Maximum Output Voltage
VIII'
Common-mode Input Voltage Range
VC.\.I
Common-mode Rejection Ratio
CMR
,.
V. ~±10V
mV
nA
104
500
-
dB
50
86
nA
R,,;;;;IOkO
±12
±14
-
V
R,,;;;;2kO
±IO
±12.4
-
V
±12
±14
-
70
100
n,;i;IOkO
V
dB
-
Supply Voltage Rejection Ratio
SVR
R,";IOkO
-
110
150
Power Dissipation
VI"
2-channe I. No Load
-
90
Slew Rate
SR
A,~I
-
1.0
170
--
Equivalent Input ;\/oise Voltage
V.VI
CS
R., ~ Ikn
-
f
.TYPICAL PERFORMANCE CHARACTERISTICS
~
--
1kHz
"
IU "I---
,
,
-
~;. :2±k!25V -
\
,
2(
\
16
\
12
'" '"
r-.....
,
III
lo()
dB
\'.J.\
,
Ik
Fr{'qut'nrv
52
-
lOS
MAXIMUM OUTPUT VOLTAGE VS.
FREQUENCY
"'-,
"'-!'\..
,
mW
Vips
pVp-p
R,.=;kU) -
~
"
6
pV/V
(Ta~25°C)
OPEN LOOP VOLTAGE GAIN VS.
FREQUENCY
12
Unit
6
200
5
-
R,,;;;;2kO,
Max
0.5
-
Input Offset Current
Channel Separation
~
Typ
luk
J
WOk
,
I'!'\..
1M
,
))(1
10\1
Ik
'~HITACHI
\
'--
10k
FrE'qUf'ncy
{illi
\
lOOk
J
(fh,
1M
HA17558GS,HA17558PS,HA17558
TRANSIENT RESPONSE
)
v' = ± IflV
,
,
~
\
/
II
)
\
,
I'
::10
20
10
40
POWER DISSIPATION VS.
AMBIENT TEMPERATURE
MAXIMUM OUTPUT VOLT AGE VS.
AMBIENT TEMPERATURE
III
r----,---,---..,---,..-----,
11III
V{"("=15V
VH"'" -ISV
;.:;
~
5
RI.=2k12
;~21---t---+---+---1_-~
0
21~==+==+==+==f==~
0
.~
I"r--~--_+--~--+--~
r--
Vcc:=15V
--- -- ---
Vu=-15V
RI..=co
'--.
70
is
1I
20
50
,"
20
20
xo
6['
:'\mbient Tpmperature Ta ('C)
,/
0
IJ
5
"'"
60
80
5
~
5
40
SUPPLY CURRENT VS. SUPPLY
VOLTAGE
MAXIMUM OUTPUT VOLTAGE VS.
LOAD RESISTANCE
1I
20
Ambient Temperature Ta ('e)
4
11cc=15V
:;:"
Vn:o;;;-15V
E
f""lkHz
31..---
II
2
V
I
1I
,II
100
20\
son
lk
2k
5k
±4
10k
±6
±9
±12
±15
±18
Supply Vnitage (V)
Load Resistance RL (Q)
eHITACHI
53
HA17558GS, HA17558PS, HA17558
INPUT BIAS CURRENT VS.
AMBIENT TEMPERATURE
COMMON-MODE INPUT VOLTAGE VS.
SUPPLY VOLTAGE
IUUr---r----,r---~--~--~
vellsV
VEE=-15V
801---t-----j-----t---I----.j
-
601---t-----j-----t---I----.j
'ol----+---I----j---I----l
2UI----t-----jI-----t---I----l
-ZO±c'":,--7
t !:-.--±~1""2--"'t~16""""""±18
Supply Voltage (V)
2U
2U
fiI'
41'
"U
Ambient Temperature Ta ('C)
INPUT OFFSET CURRENT VS.
AMBIENT TEMPERATURE
SLEW RATE VS. SUPPL Y VOLTAGE
1.2,--r---r---..---..----,
4I',---r---,----.----.--~
rnIls\'
rH=-15V
.
1.0
'"'"
U.8 1--+----+----+--- ~~·::i~·~F -
~
:>
~
~
-
j=lkllz
RI.=2kU
.4\"=1
~
Ui
zol---t-----j-----t----I.---l
§ -:w 1---t-----jI---l---l----1
0.6
0.'
t,
t6
t9
± 12
± 18
-4111---t-----j-----t---I----l
± 15
Supply Vultage (VI
--2ll
.W
01'
41'
Ambient TemperatIH(:
TIl
""
('e I
VOLTAGE GAIN VS.
SUPPL Y VOLTAGE
INPUT OFFSET VOLTAGE VS.
SUPP.LY VOLTAGE
120
:>
E
:0
lOll
..,
:j
~
;.;
-2~-~-~---~--~-~
""
'"I--+--+--+--\---.j
4I'L-_..L__-L_ _..L_ _L_.....I
-'u
L:--""7t l:9 --.,.±.L.,12:---""7±.L15:---±~1"
6 --""7t I::-
=-'
Supply Voltage (VI
54
j=lt)lh
R,- "= ~k~l
~HITACHI
,!o
::o:!l
:t l~
::: IX
HA17558GS,HA17558PS,HA17558
SHORT CIRCUIT CURRENT VS.
AMBIENT TEMPERATURE
SLEW RATE VS. AMBIENT
TEMPERATURE
1.4,---,---..,---..,---..,---.,
60
Vr)=15V
Vn:=- -lfiV
\'21---t---+---+--~;: :f~f:pF
-
:;::
•
.4.1"=\
~
I.Op==t---i--=*,=::;:::I::=::-i
~
o,al---+----+---+---+-----j
u;
I---
'I--.~
30
<3
,
(J.tjl---+---+---+--+---l
2(
II
-
""'II---:L---:'!;,II---,:LII---:,:LII--..,J.II
11.4.
50
Ambient Temperature 1'q (Oe)
'"
-------211
Vn·
l 15V
Vf:f;=-15V
Sink
S(~
40
---
60
80
Ambient Temperature To ("e)
INPUT NOISE VOLTAGE VS. FREQUENCY
II
HI
Rs
IOOQ
,
II
:l
I
III
.iIl
Ik
.:\00
lUll
:lk
10k
COMMON-MODE REJECTION RATIO
VS. AMBIENT TEMPERATURE
INPUT OFFSET VOLTAGE VS.
AMBIENT TEMPERATURE
140
1---t---+---+-_vn,I=::15V
-
~
Vee '5V
Vu;=-15V
'j;
VH=-ISV
~
c-.
E
12U
<..,
~
'----,----~--+---;-----
lUll
'"
~
.0
~
-'I---t---+---+---+---~
~
8
60
-41---1---r--+---1--~
40
-llJ
211
411
611
.11
2IJ
Ambient Temperature Ta (Oe)
211
40
60
80
Ambient Temperature Ta (OC)
•
HITACHI
55
HA17558GS,HA17558PS,HA17558
POWER SUPPL Y REJECTION RATIO VS.
AMBIENT TEMPERATURE
VOLTAGE GAIN VS. AMBIENT
TEMPERATURE
13()
~
v"Lv
I
11 {)
Vu,tsv
Vu"=-15V
~__-1_____+-----+---v-,-,-r--_1_5V__--l
120
~
00
~ 10°r---~----_+-----+----~---=i
"'
llO
J
~
gO~---1----_+----_+-----r----i
~
80~---1----_+----_+-----r----i
gO
70'~20----L---~2LO----~4LO----~6(~)--~RO·
80
-20
AmblE'nt Temperature
40
20
60
80
AmbIent Temperature Ta (OC)
Ta ("C)
COMMON-MODE REJECTION RATIO
VS. FREQUENCY
POWER SUPPLY REJECTION RATIO
VS. FREQUENCY
120
120 r-r-,-rnTrT-rr-rr-rT-m.,.".-,-r-rTTITTTrT'---TT,n,TTTl
H+I-+l-ttt-f!-t++t+HfIt-rH+tttttH ~~~: ~ ~~v
:;j
100
en
~
100 f-4"",,,I-H-++t-H-t++t+H~-+H+tt+ttH-t-t+H+fti
CO
25'"
100
'"
60
1-t-H--IfttHH-+-t-t+t+tH-++--l--l--l+++l-1-1V;, ~ IW I
H1-t+f'+.j;!±f-+t-rt+ltlt1_++H-J-l+I+l-~;;:;5:d5V
H+t+fttftt-f"I'"l-H-HiH+t+t+tttl
40 H+I-+lI-I+I-ll-++-H-+tH+t+H+H+tIH+'N-llittl
~
2oH~HH+HH-t++t+tt~-H-++tt+ttH+-I-H+H~
d:
100
300
Jk
3k
10k
Frequency
56
30k.
J
lOOk
300k
~
f
E
c3
1M
(Hz)
60
40
20
IUU
300
Ik
3k
10k
Frequency
@HITACHI
f
30k
(Hz)
lOOk
3(JOk
1M
HA17558GS, HA17558PS, HA17558
• CIRCUIT EXAMPLE
RIAA PRE-AMPLIFIER
+15V
lOOpF
36k~!
390H~
Output
2.2kQ
Input
IOkQ
IOO.uF
~15V
VOLTAGE GAIN VS. FREQUENCY
(RIAA PRE-AMP.)
T.H.D. VS. OUTPUT VOLTAGE
(RIAA PRE-AMP.)
0
6< )
o. 3
0
o. I
*ci
''-'"
~clcJllJII
Vn=-15V
t-
1\
0
20kHz
i'
31)
O.D :l
t-0.0 I
a.oo :l
10k!lz
)
1kHz
"
U/I
11)
20Hz
I
a.oo I
O.nl
0,03
O.l
0.3
1.0
o
10
10
30
100
300
lk
3k
10k
30k
lOOk
Frequency / (Hz)
Output V()ltage (Vrms)
•
HITACHI
57
HA17904GS, HA17904PS,
Amplifi~r
HA17358
.Dual Operational
HA17904 is a dual operational amplifier, which provides
internal phase compensation and high gain, and mono power
source oparation is possible. It can be widely applied to
control equipment and to general use.
Industrial Use .• '. .
. HA17904GS, HA17904PS
Commercial Use . . . . . . . . . . . • . . . . . . . HA17358
HA17904GS
• FEATURES
•
•
•
Wide Range of Operating Supply Voltage an,d Mono
Power Source Operation is possible.
Wide range of Comrrion Mode Input Voltage. Possible to
operate with an input around OV, and output around OV
is available.
Frequency Characteristics and Input Bias C\lrrent are tem·
perature compansated.
(OG-8)
HA17904PS
HAl7358
.CIRCUIT SCHEMATIC(1/2)
(OP-8)
Input +'0---+---+-----'
+---;--0
Output
• PIN ARRANGEMENT
(Tup View)
58
•
HITACHI
HA17904GS,HA17904PS,HA17358
.ABSOLUTE MAXIMUM RATINGS
(Ta~2S·C)
11 HAI7904GS
2) HAI79041'S
Supply VoltagE:'
VI'I
32
32
32
V
Output Sink Current
/"nA
50
50
570
50
rnA
570
mW
Symbul
Item
570
Powt"r Dissipation
}Jr·
Common Mode Input Voltag(·
VCM
Differential Input Voltage
V,n!d.,jil
Operating Temperature
Tap.
Storage Temperature
T"K
*
-0.3
to
0.3 to
V(,I
tV('('
-40 to H5
-65 (0 H50
2) HAI7358
-0.3 to
VI'I"
±V("("
·20
-55
(0
to
Unit
V
V(,.'("
±V("{
o (0
t75
V
·c
·c
t70
-55 to +125
H25
Valul' at Ta<1S"C. In ('asl' of mon' than it, 7.6mWI'C (!t'ratLn~ shall lit' don(' in HA17904C;S.
2); Valul' lit Tu<55"C. In ('ast' of mun' than it. 8.3mW/"C tit'ratinf{ shall ht' clune in HA179041'S and IIA17358 .
1):
• ELECTRICAL CHARACTERISTICS ( Vee ~ lSV.
Ta~
V'M~7.5V.
Input Offset Voltage
2S'C)
Test Condition
Symbol
Item
R.,
min
~50n. R,.~50kn
(yp
max
Input Offset CUI' rent
50
~7.5V
Input Bias Current
/,
V, ..
Puwe-r Source Hejt'ction Ratio
I'SRR
J ~ 100Hz. R., ~ lkn. RI ~ 100kn
Voltagt' Gain
A~IJ
Cummo" Mulit, Ht·jt·(,tiun HaLin
CMR
30
Unit
mV
3
250
93
nA
nA
dB
-----------------+----+---~-----r----
75
90
dB
80
dB
V
13.5
Common Modt· Input Voltage
Hang-{~
-0.3
Peak-lu-pt'uk Output Voltage
V,,"
Output Sour<:c Cuncnt
/.'''"."
I'
J "100Hz. R,
.~
20kn. R., . lkn. RI
Output Sink Current
V'N ~IV. V'N' ~OV
Output Sink Curn'nl
v,.
~
I V. V'N'
~OV.
\I..• , ~ 200rnV
Supply Curn'nt
Power Dissipation at no Load
Slew
;\uh"
As fflr tht' ('hara('tf'ri!>ti(' ('un",',
100kO
V",IV",
J~ 1kHz
V
13.6
V
20
40
rnA
10
20
rnA
15
50
p.A
0.8
. rnA
12
Hatt~
Channel S('(laratiun
~
30
mW
0.6
V/"s
65
dB
th,' I1A17902.
~HITACHI
59
HA17301P,HA17301G
HA 17301 is a quad. operational amplifier which provides
internal phase compensation, and mono power source opera·
tional is possible. Generally, it can used for waveform gene·
rator, voltage regulator, logical operation circuit, voltage
control oscillator, etc .
.Quad. Operational Amplifier
HA17301P
• FEATURES
•
•
•
•
Wide range of Operating Temperature
Mono Poyver Source Operation is possible
Internal Phase Compensation
Small Input Bias Current
(Op·14)
HA17301G
(OG-14)
.CIRCUIT SCHEMATIC
~()tl'l
~:il!nt ('mitlt'I's
shiLll ht'
('0""('/'(1'<1 to pin
1,2,3,6,8.11.12 lind 13
r't·spt·(·ti",·l,\',
• PIN ARRANGEMENT
(Top Vi.wl
60
•
HITACHI
HA17301P,HA17301G
• ABSOLUTE MAXIMUM RATINGS (Ta
~
25"C)
Symbol
ItE'm
HAI730lP
IlA1730lG
Unit
Supply Voltag-(·
V,·,·
:lJon-in\'prtt'd Input Curn'nt
I,
Sink Curn'nt
/",,1.
50
Sour(,t' Curn'nt
50
50
Pow{'r I)issipation·
L .. "
1',
625
625
mA
mA
mA
mW
Operating T(·mlH'ratul"t·
'1:.,,,
20 to I 75
40 to I 85
"C
T"
55 to I 125
65 to I 150
"C
Stural-{l' T('mp(','atur('
*
28
V
28
50
In 11:\173011', it i!-. a ndu(' und('I' 7'11' SOC, In (',I~I' "f mUff' than It. 8.3m\\/(' d.·rating ~hilll h,· !lunp,
In 11:\17301(;, It ih a ridu(' lind,·!" 'I'll 70(', In en",' of mun' than it, 7.6mW/'(' !It'I'atlng hhidl 1J(' dom' .
• ELECTRICAL CHARACTERISTICS-1 (V'(~ f-l5V, H/~5.0k!l, Ta~25"C)
T('5t Condition
Symhol
Voitag<' Cain
:1\/,
\:00-
Supply Voltage
I,,,,
Input Bias ClInt'nl
II,
I,
Curr'ent
SOU("('('
L .. ".
Sin~ CUITt'nt
Output Vultage
typ
1400
i nn'rlt'd input: °lwn
:\00- in\"('I'l(' 1+. For normal operation, the reference voltage
should be more than VeE.
120kQ
Fig.4 . Triangular Wave Generator
v"
28
VCI'
2BV
24
V(II.
Fig.S
20
20
~16
15
~ 12
!=-=()
to
Operation of Triangular Wave Generator
TaL _
C, R, R, VOII ...................................... (9)
R,(V+-VBE )
TOH =
C,R 3 V',
.......................... ·(10)
R, (VOII _ V - VBE)
R2
• I VI
v..
R,
Fig.S
Under the conditions of R t =2R2' VOH=V', V' >VeE;
Operation Characteristics of
Positive Input Voltage Comparator (1)
TOH+To1.= 2C,R,R 3 ................................... (JJ)
R,
24r---r---'----'-----'----'---'I---r'---'---'
:!tlf--t--t--t--t--t--i--i--i-----1
r'=+15V
>=
r ••11
I
I
1 --+--+-__1
161----11----1--+--+--+--+-
~ 12~~t--tf-t--t-~t--~I-ij_-i-__1
I
>
:!H--*'-'__1+'~-+--·--+--+,~+!-+I-------tt-"----+r---1
II I
]0
V" IVI
Fig.6
64
Operation Waveform of Triangular
Wave Generator
$
Fig.9
HITACHI
12
"
Operation Characteristics of
Positive Input Voltage Comparator (2)
HA17301P,HA17301G
4.2 Negative Input Voltage Comparator
·4.3 Power Comparator
By adding a TRS externally, a load that requires a current
larger than the output current of HA 17301 can be connected
as shown below.
1"
/I,
/I,
lOflk~1
/I,
1'••
T
lOOHl
1" •••
/I,
VIIU
Fig.10
~.~ I I n.
j:
lookQ
Negative Input Voltage Comparator
VIN>R,
j VRf(l+.L)-l::..'.I
...................... Il21
R,
R,
R, r
VHu >R2\1
Fig.13
Vlif(.l+..l)
-JC.'.1····················1l31
R2
R,
R, r
24,--,--,----,---,----,---,---,----,---,
When using resistor R. and R3 which meet Equation (12)
and (13) respectively, negative values of VIN and VREF are
available. As same as in the positive input voltage comparator,
Vout is equal to V OH under 1-<1+ and Vout is equal to VOL
under 1->1+.
~4
s;
20f---+--+--+--+--f--+--+--+---J
10h=l:=+:::;::::f===1:=::j:::;=:j:::::::::::j=::,ti
:::
I
V'
Power Comparator
8
t1'1'_
H ~f__~--4-~-+---+----'3f--_+--~---~---
:::
2(\
+20 ,~
'"
III
"
12
14
10
IX
Input Vciltage V,. (V)
Fig.14
Operation Characteristics of
Power Comparator Vee ~ 15V
Input Voltage V.. (V)
Fig.11
Operation Characteristics of
Negative Input Comparator (1)
:r-+
- - - - - r----
I
10
~~~t-
I
I
J,
.,
~~
I
,~-I
--
I
-- f - - ~II
I
f--
- I-
,
I
!
I
I
I
Input V"ltage
Fig.12
--
v..
(VI
Operation Characteristics of
Negative Input Comparator (2)
$
HITACHI
65
HA17324G, HA17324P,
HA17324
.Quad. Operational Amplifier
HA17324 is Quad. Operational Amplifier that provide high
gain and internal phase compensation, and mono power
source operation is possible. They can be widely used to
control equipments.
I ndustrial use . . .
. HA17324G, HA17324P
. • . . . . . . . HA17324
Commercial use; ..
HAI7324G
• FEATUERS
•
Wide range of supply voltage, and mono power source
operation is possible.
• I nternal Phase Compensation
• . Wide range of common mode voltage, and possible to operate with an input about OV.
• Frequency and input bias current are temperature compensated.
(DG-14)
HAI7324P
HA17324
~
(DP-14)
• PIN ARRANGEMENT
.CIRCUIT SCHEMATIC (1/4)
Vo,,14
VQ"t!
Va
1'•• (- 14
1'•• 1+ )4
GND
V"
V"I-I
1'••1+)3
1'••1+)2
V••I + 10--'-+--
'------+--oGND
(Top View)
66
eHITACHI
HA17324G,HA17324P,HA17324
.ABSOLUTE MAXIMUM RATING (Ta~25°C)
Symbol
I) HAI7324G
2) HAI7324P
Supply Voltage
Vr"1
32
32
32
V
Sink Current
[,,"'
50
50
50
rnA
625
mW
V"
V
Item
Power Dissipation
P,'
Common Mode Input Voltage
VI" I.!
Differential Input Voltage
V,",d.JI
Operating Temperature
Top,
Storage Temperature
T."
*
625
-0.3 to
625
V("(
-0.3 to Vcr
±VCI
tV!!
-20 to +75
-60 to H50
2) HAI7324
.. 20 to
-- 55
to
-0.3 to
±VC(
o to
~75
~
125
Unit
-55 to
V
·c
·c
+70
~
125
11, Valu(' under Ta<;'70"C, In ('asp of more than It. 7.6mWFC deratln,l!: <;hall ht'donf'.
21 Value under TII<-·50·C In C;}"P of morl' than It 83mwFc d,'ratlng <;hall hf'dotH' .
• ELECTRICAL CHARACTERISTICS
Item
(V('C~
Ta~25°C)
+15V,
Symbol
Test Conditions
min
typ
max
Input Offset Voltagf'
Unit
mV
Input Offset Current
50
nA
Input Bias Current
30
Power Source Rejection Ratio
93
dF!
90
dF!
75
Voltage Gain
Common Mode Rejection Ratio
CMR
R .•
~50n,
RJ
~5kn
-0.3
Pe-3k-to-peak Output Voltage
Output Source Current
20
1.."
V,,'~OV,
V"
~IV
10
Supply Current
Power Dissipation
Slew Hate
J~1.5kll!,
/",'
V"
V,,,
~7.5V,
R,
~'D
-OV. V,
-IV, V,,·200mV
~HITACHI
15
V
13.6
V
40
rnA
20
rnA
0.8
rnA
0.19
Channel St.'paration
Output Sink Curn'nt
13.5
12
SR
nA
dB
80
Common Mode Input Voltage Range
Output Sink Current
500
30
mW
V/"s
65
dB
50
}lA
67
HA17324G,HA17324P,HA17324
Input Bias Current vs Ambient Temperature.
Output Source Current vs Ambient Temperature
80
Vee = 15V
VOH=10V
70
';;(
80r-~--~~--~--r-~--~-v-ec-=--15=V~
70~-+__+--4__~__~-+__+-~v~e,~u_=~7~.5~V_~
~ 60
c
~ 50
-
u
'" 40
u
:;
ci5 30
~
C 50 ~-+--+--4--~--~-+--+--4--+------I
t
t-- t--
(5 40 ~-+--+--4---+---f--+--+-
-
-+---+---1
20
o"
10~-+--+--4---+---f--+--+--4--~-----I
10
o
o
-20
20
40
80
60
Ambient Temperature ('C 1
Ambient Temperature ('C 1
Input Bias Current vs Supply Voltage
Supply Current vs Supply Voltage.
80
4
T;=25 lC
';;(
Ta = 25'C
~ 60
3
E
c
c
'"
t
u"
8 40
2
'"
cD
1
o
o
" 20
~
-
o
8
16
24
Supply Voltage
o
40
32
-
--
V>
V
8
16
(vl
~
24
Supply Voltage
V
40
32
(vl
Maximum Output Voltage vs Frequency
11
20
Jcl1
Ta=25 C
RL =20k Q
Voltage Gain vs Supply Voltage
160
Q 16
T,-25'C
RL==
>"-
"
b1)
2 12
120
(5
'iIi'
>
~
80
:;
:;"o 8
40
-x"E
~ 4
0
o
c
-iii
C!J
<5
>
1\
1\
0
8
16
24
Supply Voltage
68
1\
E
""'"
~
32
40
1k
(vl
3k
10k
l'.
30k
Frequency (Hz)
eHITACHI
lOOk
300k
1M
HA17324G,HA17324P,HA17324
Voltage Gain vs Frequency
120
Vee = 15V
Ta=25°C
RL=OO
100
r-.
CD
80
I"--r--.. . . .
::',
c
·iii
'"'"
.........
60
...............
be
~
0
>
r-., r--
40
1"-- ....
........
20
I"--r--..
~
o
I
3
10
30
100
300
Ik
3k
10k
30k
lOOk
...... r-.,
"
300k
1M
Frequency (Hz)
Common Mode Rejection Ratio vs Frequency
120
Vcc= 15V
Ta=25'C
Rs=50Q
100
CD
::',
-
0
~ 80
r--. ....
0::;
c
0
:;:;
i"-.. . .
u
'"
.ii)
0::;
60
..........
'"
"0
0
::;;
c
0
r-......
40
r-..... ......
E
E
0
u
20
o
100
300 •
lk
3k
10k
30k
lOOk
300k
1M
Frequency (Hz)
~HITACHI
69
HA17902G,HA17902P,
HA17902
.Quad. Operational Amplifier
HA17902 is Quad. Operational Amplifier that provide high
gain and internal phase compensation, and mono power
source operation is possible. Thev can be widelv used to con·
trol equ ipments.
Industrial Use; HA17902G, HA17902P
Commercial Use; HA 17902
HA17902G
.FEATURES
•
Wide range of supplV voltage, and mono power source
operation is possible.
Internal Phase Compensation
Wide range of common mode voltage, and possible to
operate with an input about OV.
Frequencv and input bias current are temperature com·
pensated.
•
•
•
(DG·14)
HA17902P
HA17902
(Dp·14)
• PIN ARRANGEMENT
• CIRCUIT SCHEMATIC(I/4)
V••( -,
V••t +
.0----+-'------1-<> G~f)
(Top View)
.ABSOLUTE MAXIMUM RATINGS
Item
(Ta~25°C)
Symbol
IIAI7902(;
11..\179021'
HA17902
Unit
Supply Voltage
Vce
28
28
28
\"
Sink Current
I~,d
50
50
50
rnA
625
m\1"
\.
Power Dissipation
Common
!\'1()d~·
Input Voltag(·
PT·
V(.!J
l)iffeJ'pntial Input Voltage
V,",d,fl
Operatin~
T"pr
T emperalun'
Storagt" Tt>mperature
* 1); Value under
T."
625
~0.3
to
VI'/"
:tV("("
~40
-60
to
to
~85
+150
Ta~70·C.
In case of more than it. 7.6m\\'/"C !lpratinK shall he dont'o
2): Value under Ta~50·C. In ease of mort' than it, 8.3m\\'/"C dt'ratinK shall ht'dom',
70
$
HITACHI
625
-0.3
to VI"!
.tV"
-20 to +-75
-55 to
i
125
-0.3 to V"
:+: V,,·
o tn
-55 to
j
f70
\"
·C
125
·C
HA17902G, HA17902P,HA17902
• ELECTRICAL CHARACTERISTICS ( Vee ~ + 15V,
Symbol
Item
Ta~25'C)
Test Conditions
min
typ
max
Unit
8
mV
50
nA
Input Offset Voltage
VIO
Vc.~7.5V. R.,~50n. R/~50kn
Input Offset Current
III)
IJ()= II/
Input Bias Current
/,
V!".,,~7.5V
30
Power Source Rejection Ratio
PSRR
J~lOOHz. R,~lkn. R/~100kn
93
dB
90
dB
-1,'1.
Vc.~7.5V
Voltage Gain
AVIJ
Rs~lkn.
Rj
~lOOkn. RI,=m
Common Mode Rejection Ratio
CMR
Rs~50n.
R/
~5kn
Common Mode Input Voltage Range
VCM
Rs~lkn. R/~100kn. J~100Hz
Peak-lo-peak Output Voltage
V
J~
o"
p
100Hz.
R,·~
75
80
nn. R/ ~100kn. R,
~20kn
13.5
V
13.2
13.6
V
12
13.3
V
IIJII=
VU//2
1011= -lOrnA
VOl.]
IOI.=lmA
0.8
VI)I.~
JIJI.=lOmA
1.1
..
15
V
mA
9
mA
VIJII=10V
Output Sink Current
rH.'
VI!I.=lV
Supply Current
1("("
V.. ~GND.
R,,~m
0.8
Power Dissipation
P,
RI.='lO, V..
~GND
12
Slew Rate
SR
J~1.5kHz.
V',M
Channel Separatiun
\.I';)]/V()2
J~lkHz
RI.=IIO
V
1.8
40
/ ,,"
~7.5V.
V
13.6
V UH ]
-lmA
nA
dB
-0.3
Output Voltage
Output Source Current
500
mA
30
mW
0.6
Vips
65
dB
• TEST CIRCUIT
1.
Input Offset Voltage (V,o), Input Offset
Current (leo), Input Bias Current (I,)
I ~~:,
H, 5.lk
R.s,D
-~
R,51k
SW2
ON
OFF
ON
ON
OFF
(1)
V/O~
(2)
I/I)~
131
I,~
SW2
-----------
1
2.
Common Mode Input Rejection Ratio (CMR)
CMR ~ 20 lo~ V's R,
Vo oR"
0
3.
Vo
VOl
VOl
l+R,/Rs
V02
Vee
V()J
V04
(V)
-V(JI
(A)
R (1+R,/R s )
I
1
VCM~2
V02
OFF
ON
OFF
SI ::~:
~
SWI
Vo,-Vo,
1
2·R(1+R,/R s )
(A)
Supply Current (Icc)
(dB)
VI('
eHITACHI
71
HA 17902G, HA 17902 P, HA 17902
4. Voltage Gain (Avo), Slew Rate (S.R), Common
Mode Input Voltage Range (Veo), Peak-to-peak
Output Voltage Range (V.P - p )
5. Output Source Current (I •• " .. )
V~-T--~
10k
'R
51k
l
(1)
AVD:
6. Output Sink Current (I.",)
Rs~lkO,
VI
~
V,
R,~100kO,
[.'ok : Val,~IV
RL~CO.
}i Vee
~
Va
AVD~ 20 log VIN ' +40 (dB)
12) SR:
f~1.5kHz. Rl.~co.
~
VI
V,
~
}i Vee
13)
VeM: Ss ~ lkO, R, ~ 100kO, f~ 100Hz.
VI ~}i Vcc. RI. ~co. value of V, just before
14)
v;,p p:
the waveform changes.
V CM ' + I.
Rs~lkO. R,~100kO.
VCM ( -I
RI.~20kO,
f~100Hz. V,p-p~VoH"""'VOI.(Vp-pl
OUTPUT SOURCE CURRENT VS.
AMBIENT TEMPERATURE
II
v"
INPUT BIAS CURRENT VS.
AMBIENT TEMPERATURE
O'r--,--.-~--r-----,--,--,--
=15V
V"I/~IOV
II
j
60
o
_
0-- •
,
I
0
8
-
!---..
. : :;
--t--
:- ~
I
---i
--+---t--+- -l-
: ,
50'f---+---It---t'--~----;--+-----t----:---
iii
or--t--+--+---+,-i--+-,-l+--tl---
I
25
45
i
I
65
85
i
I
I
!
65
85
105
f---+--f--+--I---.:.....--L-.1-----
t--t--t--t---t-I
105
-t--
1+'-t-t---,
I
25
125
i
5
Ambient Temperature Ta ('C)
Ambient Temperature Ta Co)
72
ot----t--
,
!
10
5
1
j
I
15
j
711't---t---t---H--t---c--:--Jf---t-!~
;
20
- 55 - 35
1
IIcf-+--1I--1'--':
::i
0
•
HITACHI
125
HA17902G,HA17902P,HA17902
f------H+ ;
INPUT BIAS CURRENT VS.
SUPPLY VOLTAGE
II"
~
~
I
I
~:q--To=25'C
,
I
75
PEAK·T oEAK OUTPUT VOLTAGE
VS. FREQUENCY
'
__
I
--r'- ,i----
---l[-,
5111-t------__+_-,-,
'I
5
----+-----
I_+~~__!
III
I '
+
! I
10
I
I
~
251-----1-----
5
!
!i
111\
I
i
I
I
t
0
Ik
10
Supply Voltage Vee (V)
16H'r---r---~---,-----.------,------,
120
(
r--
100
~
120
----+----+-- - } - -
..;:
100
~
--t~t- 'f
80
~
60
.
80
I
I I;
II
i
II
i
-----r- -f
i
0
-~L
40
frequency
VOLTAGE GAIN VS. SUPPLY VOLTAGE
Ta=25'C
i;
I
i; :I I Ii
Ik
"
~
1M
Vee =15V
Ta=2S"C
1
R. =500
,
,I ' I
! IIi'
I!"II
t"-
,
l"-..
1'1'
1
:llHI
I
Uti
iI
10k
lOOk
J
1M
(Hz)
SUPPLY CURRENT VS,. SUPPLY VOLTAGE
,
i
i---
-j---
120
W-
(H2)
I
Frequency
160
J
jl
.1'
f (Hz)
~
lOOk
I I
Iii
I I
0
100
1M
il Itt
:! I I Ii,I
++-tP1
:1 i :1
I
I
--+ l-':-t
20
100
I
I ! I II
i I - I ,lj,
i
II I'
' I
20
10
i"""-
i
I~ Ij _Wl'
I
40
01
I
I
COMMON MODE REJECTION RATIO
VS.FREQUENCY
VOLTAGE GAIN VS. FREQUENCY
140
:
10k
Frequency
v~ =15V
TIl=25'C
I
I
I,\~
!
0--
I
1\
;;:
~
4-~
~
80
8
~
;g
----~ ---f----+- ~:,:'J~Ur---
31-------+--+--±
__
--
2~~-~t=- -~' ---f-----
~
oil
-- - ,
40
--
I
-10
20
0
J()
0
20
30
Supply Voltage Vee (V)
Supply Voltage Vee (V)
•
HITACHI
73
HA17902G,HA17902P,HA17902
.HA17902 APPLICATION
3. High Input Impedance DC Differential Amplifier
HA17902 is a Quad. Operational Amplifier, and it's consist·
ed of four operational amplifiers which operate independent·
Iy, and a bias circuit. It can be widely used with the features
such as wide range of operating temperature, mono power
source operation, internal compensation, wide ().cross band·
width, small input bias current, large open loop voltage gain,
etc. HA17e02 applications will be explained below.
1. Non·inverted Amplifier
Fig.l shows a non-inverted amplifier.
R2
Voltage gain of the circuit is; V,,,
Fig.3 shows a High Input Impedance DC Differential Amplifier wh ich is consisted of two non-inverted amplifiers connected in cascade. The common mode rejection ratio (CMR)
is depend on the matching of RI/R, and R./R,.
"
The output is;
'
:;cJ
R.
r--~--l
v;:;- = 1 + Ii;"
_'v ..
IOOk.Q
!
+
10k
+v~c~-------------
....---<:lrout
=>~
Fig.3
High Input Impedance DC
Differential Amplifier
4. Voltage Control Generator
1M
Fie.1
Non- inverted Amplifier
2. Adding & Subtracting Amplifier
In Fig.2, input +V1 and +V2 are applied to non-inversion
circuit and input +V3 and +V4 are to inversion circuit.
The output is; V"t~ VI V2 - V, - V.
+
R
lOOk
In Fig.4, Amp Al ,A, and TRS 01 operate as an integrator, a
comparator and a switch for control of oscillation frequency,
respectively.
When Vout l is in "LOW" level, TRS 01 is cut off. The
potential of inverted input of AI becomes higher than that
of non-inverted input, and the output of AI will be integrated to be the "LOW" level.
When the output of integrator AI becomes smaller than the
non-inverted input of comparator A, (V cc/2), output" of the
comparator will be "HIGH" level and TRS 0 1 will turn ON.
Then the output of Al will be integrated to be "HIGH"
level.
In this way, a square wave and a triangular wave are generated at Vout l and Vout, respectively.
(' (J,tl5JIF
R
-11
+ V2 o.-_-"looMk;.---.J
R
lOOk
+~~~--+-¥~~~
~_
5lk
R
lOOk
I
RI2
+VI~
SOk
~ie.2
Adding & Subtracting Amplifier
Q,\------~-..
Fig.4
74
~HITACHI
Voltage Control Oscillator
V•• ,I
Voltage Comparators
eHITACHI
75
HA1807,HA1813PS
HA1807, Dual Comparator, and HA18l3PS, Single Comparator, can be widely applied to control equipments, since they
operate with a single power source .
.Voltage Comparator
HA1807
• FEATURES
•
•
•
Operate with single power source.
Provide complementary outputs
(Vout and Vout) (HA1807)
Common mode input voltage range is wide.
• PIN ARRANGEMENT
HA1807
(OG-14)
HA1813PS
(Top View)
(OG-B)
HA1813PS
(Top View)
.CIRCUIT SCHEMATIC
r;:
~~5k
R,
15k
v...
t--+--I--I--. - - 0 v::
v.. i -)
GND
Comp
( V".r : Only for HAHW7)
76
$HITACHI
HA1807, HA1813PS
.ABSOLUTE MAXIMUM RATINGS (Ta~25°C)
Symbol
Item
Supply Voltag-e
Power Dissipation
VI"
Motif' Input Vo\tag<'
Common
HAI807
.
HAI813PS
VC'M
18
V
500
500
mW
Vcr'
V!I"
V
±IO
:tlO
V
20 to 1-75
·c
·c
))ifft','('nlial Input Voltagt'
V,~ (dill , ••
Opt· rating Tt'mp('ratun'
T",,,
-30 to +-80
T'(K
-65 to 1-150
Storagt· Tt'mp('rature
:\"u1("
* 11,\1807: Value at Tu' 70\:. In
HA1813PS : Valu!' at Tu':·50"C. In
* * Valul' at V,I -lO\'. In
of V"
('aM'
('(1::'1'
55 to f 125
case uf mort' than it, 8.3m\\' /"e clf"ratinll: shall he pf"rformt'd.
IOV, V,,,, ~,"
V,,..
itt,tl
(Ta~25°C
)
Symbol
Tt'st Conditiun
Vee
~6V,
V('.\/,=3V. R,
V(I"
·6V,
VI",II
A,
V"
~5,5V, J~101lz
/,
Vcc~6.5V,
Input Offsl'l \·oltag(·
V/(i
Input Offst't Current
l,t)
\'oltagt' (;ain
Input Bias CUlTent
V," II
~lod(·
~-
of murt' than it. 7.6mWf"C dt'ratinJ{ shall I:w pI·dormt·,!.
• ELECTRICAL CHARACTERISTICS
(;ommoll
Input \'oltagp
~6.5\',
FCI
lyp
~
~2V,
~50n
mV
75
100
dB
0.5
pA
5.5
6.4
V
~5.5V
V,!"",
10Hz
fun
Output \'oitagp
V,·,
~5.5V
V"
~6.5V,
J.)r
11f)w{'r I)issipatiull
-2mA
~lOmA
VIII
V,
.~3V,
V,
~
POWER DISSIPATION VS.
SUPPLY VOLTAGE
"
r--*~~t- -
._- f--
~
.. -
16 0 r - V••(+l=3V
V.-(-)=2V
'"
~
12 (I
~
<
(I
"., ~
~
0
~
IV
-
II
5
Supply
V"lla~"
i
L"n
V
0.2
0.4
V
36
48.8
mW
f:I~Hl
Te"t Cin"utl I
::.
~!·c- 1---
V
5.3
2\'. I/,
16
:.- 25'C
~~
(I
o
-t-t
~~
.-
0.6
COMMON MODE INPUT VOLTAGE
VS. SUPPLY VOLTAGE
/T'i- 30T
E
nA
150
I ~
I/",
VI/II
Unit
max
1.5V
V"
r
min
\/'"1
20 (I
Unit
18
V("(
Ta"='
12
~~
V eH
j----
./
..,
-30'C
2S'C
~~
~
-
-
8O'C
",
i-""""
E
E
,3
Jj
VeL
o
5
15
Ta- -30'C .2S"C .80"C
II
13
15
S\lpply Voltage Vee (V)
(\'1
~HITACHI
77
HA1807, HA1813PS
INPUT OFFSET VOL TAGE VS.
AMBIENT TEMPERATURE
INPUT OFFSET VOL TAGE VS. SIGNAL
SOURCE RESISTANCE
2
2.
II
II
:~~=~~ II
10
•
2.o
>E
Test Circuit 2
Hr
CC
VeAl =6
=3V
~'~eSs~~~~t:Uit 12
6
2
o
•
2
--
O.8
o.
~
•
0
0 50
100
200
500
lk
Sk
2k
10k
SiKrla) Source Resistance R,
20k
V+-+-+-I--+---+--+-+---j
~~5V
: Jl=2V-] .l.
i
,
n. .........
u
iii
•
8.
o.
.s
"
,
7
6
5
•
i
--
rr- r-
r-
OIl
90
I
'8
\
\ \ \
~
'I--+--+--+-+-+-+--+-+--r-+-I-+--I
1--1--1--1--1--1-+--+-+-+. -t-- .IOH=-2ml\
1\
i\ 1\
,
-5
[ON
!,
-- \ \
-I
Output Current
~*==-'==f=!=~=i==l=9=F*'I~o==IH
lI--..
\ \
\
2
78
10
I-
9
I
.10
OUTPUT VOL TAGE VS. AMBIENT
TEMPERATURE
r-fo..,.
IO
,
--
r-
~'rc-12V II
:
:
Ambient Temperature Ta ('C)
OUTPUT VOL TAGE VS. OUTPUT
CURRENT
S
-l
i
-30
!
---
i
Ambient Temperature Ta ("C)
10
--
r
[
o.2
o
,
r-
I·
-~r-+--+--+-t~-r-t-+--+--+-+-1
12
1 J_
8
~
I
I
t-+--
1.0 - V I 2 'Tesl)::CS.SV
.01-+-+-+---1-+-+--+-+-1-+---+--I
25 - 40 I-+-+-+---1-+--+--+-+-I--+---+--I
90
INPUT BIAS CURRENT VS. AMBIENT
TEMPERATURE
2
80 -
60
Ambient Temperature Ta ('e)
(~11
INPUT OFFSET CURRENT VS. AMBIENT
TEMPERATURE
V('(':=-6\'
V eM ~ l.5
30
-31)
SOk lOOk
~
l -I-
31)
.10
--++---
Ambient Temperature Ta ('e)
(mAl
~HITACHI
60
90
HA1807, HA1813PS
OUTPUT VOL TAGE VS. OUTPUT CURRENT
OUTPUT VOLTAGE VS. INPUT VOLTAGE
I.U
10r--r-'--.-~--.--r--r--r-'--'
V~c=6t
r---c- VeN =3v--+--+--1I--+--+--+--I
Vcc=5.:.\'
Rs =500
0.8
RL
5kQ
:;
I
.0
0.6
~
~
r.=BO·C - f--
U.,
. / V/~5;~·C
8
,/
0.2
,.,-::. ~ ~
I---" ~
~ ~ P"
r---
10
VOL TAGE GAIN VS. AMBIENT
TEMPERATURE
IveeL)I
I
:l
f= I~H'
1---I
~---t---l
II<,
1-1---!
I
,
I
90
----
2.0
1.6
120
I=IU~'
T'''(''"''
110
1.2
Input Voltage V,. (mV)
VOL TAGE GAIN VS. SUPPL Y VOL TAGE
120
0.8
0.'
20
16
12
Output Current [,n (rnA)
~+t
I
I
,
8C
IOU
-(---
i
i
II
13
Test Circuit
I
:~
I
I
I
r-r
9U
-.....
r-.....
I
I
'Ii .1U L
J
30
90
·\mlJl
R!.hr~. =1/10-
I
J
VC'(' =6.0V
v, =3.0V
Vcc=6.0V
V,=3.0V
8
RL =5kO
~=1/10
6r----+-~~----~-_+--~
6
4
I
I
I
2
0
I
I
I
I
\0
\0
V, (VI
V, (VI
Fig.4(b) Operation Waveform of
Schmitt Trigger Circuit
(V.. ,-V,)
Fig.4(a) Operation Waveform of
Schmitt Trigger Circuit
(Vo . , - V,)
3. Window Type Comparator
A window type comparator has two reference voltages. The
output voltage level is determined according to that whether
the voltage is smaller or larger than the two reference volt·
ages.
Fig. 5 shows a circuit of window type comparator, and Fig. 6
shows an example of the operation.
D,
6
f---+r-.....I---j~~~ ~~~~
VS/.
> .~-~~~~--~
VSH~---+-~
6
=2.SV
11
•
2--
v..
O~o-~~~~.~-~
v..
R,
Vsl.
~---......-~
Fig.5
I OkS!
v...
Fig.6
o
()
Reset
Set
o
v._,
v.;:,
V-axis: 5V/div
Fig.7
Bistable Circuit
Vn ==6,nV
V.~ =3.0V
Rs =IOkQ
X-axis: 2ms/div RF:::20kQ
Fig.8
82
•
(v)
Operation Wav-eform of Window Type
Comparator
Window Type Comparator
4. Bistable Circuit
Fig. 7 shows a Bistable Circuit (R·S Flip·Flop Circuit), and
Fig. 8 shows an example of the operation.
2
L.
(V)
~HITACHI
Operation Waveform of
Bistable Circuit
HA1807, HA1813PS
5. Parallel Comparing AID Converter
Fig. 9 and Fig. 10 show circuits of the parallel comparing
AID converters in which the comparator is applied. In this
case, the output is converted to BCD (Binary Coded Decimal). This AID converter can not be used suitably for a
precise converter, but it has the features such as high speed
conversion and a simple block diagram.
lnput~-r--I
~',
'1)\0'- 4\
,
j.
Input ~-r--+"'"
IOV-4V'
~--+----r-----uj,
~j.
'+------~ j"
+4.!lV
Vn =-S.OV
ru:·= -I.OV
.v"
+4.0V
( VEe: GND)
Fig.9 3Split & 2Bit AID Converter
==S.OV
Vu:=-1.0V
Fig.l0 4Split & 2Bit AID Converter
eHITACHI
83
HA1812GS,HA1812PS
HA1812 is general purpose IC, including comparator, buffer
amplifier, reference voltage and is designed to be used widely
as unit cell of circuit investigation and system designing .
• Universal Comparator
HA1812GS
• FEATURES
•
•
Large sink current of 200mA max.
Capable of becoming Schmitt Trigger (Hysteresis characteristic) Circuit without external resistance.
Includes reference voltage source.
•
(DG-SI
HA1812PS
(DP-8J
• PIN ARRANGEMENT
• CIRCUIT SCHEMATIC
T
Q'T,,--fll>
"L
~~
T
Q.
···hR,""K~, ~~
I
v,.,
V. )• •
'r.--.
,
•
I
~
I
''""~'~-_,-.
__-+"-'-t---R.Hd>-+-+-+-+--+--"
r.. •.
84
rpll rl'h
~HITACHI
Top \T it•w
HA1812GS,HA1812PS
.ABSOLUTE MAXIMUM RATINGS
(Ta~25'C)
Symhol
Item
HAIBI2GS
HAIBI2PS
Unit
Supply Voltage
Vee
Output Sink Curn'nt
l~'"k
Common Mode Input Voltage
VeAl
Difff'rential Input Voltag-t'
V",d'fJ'
-tV,"C'"
.tVcc'"
V
Hdf'rencf' I Source Curn'nt
/'''"'0''
2.0
2.0
mA
20
rpl, !,
20
V
200
200
rnA
Vre'
Vr'('
V
Output Transistor Voltage
V,,",
40
40
V
Ff'edhack Terminal Current
hR
±2.0
.t2.0
rnA
Power Dissipation
P ., ."'''
800
mW
Operating Temperature
T,,~,
-20 to +75
'c
'c
Storage Temperaturp
!\lolt·)
* At V ·15V.
* * In HA1812(;S.
V"
BOO
- 20 to +75
- 65 to l-!50
T'1I1
-55 to +125
.max
t 15V.
it is a valul' un(lpr th,' ('!In{lition of Ta<6S·C. Whl'n Ta is mOfl' than 55"C. 7.6mW/"C derating shall lw pf'rformed.
In IIAI812PS, it is a valut, undt'r th(' ('ondition of 1'1/'''45\:, Whl'n T(I is mort' than 4S"C. 8.3mW/"C derating shall bl' pf'rformed .
r-,
"Idf
• ELECTRICAL CHARACTERISTICS (Ta~25'C)
Item
Symhol
Mpasuring
Test Condition
Circuit
Supply Current
Icc
V"
Output Leakage Current
/"1.
V,",
~20V,
0,
t-i~O,
V,,",I
VOl.
V("(
=8V. t .. ,
Input Bias Current
fill
V"
~13.5V.
Input Offset CurTent
IUJ
V,·,~13.5V.
Input Offset Voltage
VII'
V,·e-13.5V. V,.
~6.
max
27
Unit
mA
~Ikn
V"
~B~20V, I,,~urc.
~13.5V.
V
100
nA
50
nA
15
mV
6.88
V
2.935
3.44
f~IOHz
80
V
15
mV
50
mV
100
dB
A
rer. I
~lkn.
0.5
5.87
terminal
I ref. 2 terminal
II
~O lIB
,
Ve,
R,
0.34
75V
I ref. I
Vla.1-"
3
0.3
~6. 75V
V,·.<~6.75V
V,·,~13.5V
A,
typ
18
~IOOmA
V"M
Vee ",,13.5V. R,
Voltage Gain
min
R, _.,.,
i'A
Heferenc(' Voitagf'
6.
~3V.
V,,", - 20V
.. 0" Level Output Voltage
VII I'. F
V"i-i
• TEST CIRCUIT
1. Input Offset Voltage V,o
2. Reference Voltage V"' I A
r - - - - . . . - - - - - Q \'r I'
v," •
0-------
reLHI-{-
Input Offset Voltage V,O is 1/1000 of the indication of
voltmeter V.
$
Measure difference voltage of ref. 1 terminal at the time of
inverting output with Vin(+), Vin(-) at 3V or OV.
HITACHI
85
HA1812GS,HA1812PS
3. Reference Voltage VREF 1B
In the same test circuit asVREF lA, with output established
at I level, changing supplV voltage Vee from 8V to 20V,
measure difference voltage of ref. I terminal.
4. Voltage Gain Ay
,---"""1""--,.---,---r----O \"..
2kQ
~;
2kQ
-Jr
~--.-~
330~1i"
Output
IIlOQ~r-1-+-+--t
100IkQi6
ATT J
IUtlkQ
SUPPLY CURRENT VS. SUPPLY VOLTAGE
RL
I I
_00
* Xn!e
4
,1'1
T.~-20·C
6
J;
2
8 - f--
II
l..-
~
25'C
"
~ Vi.( +1 =OV
.-
V"'( -J=3V
I
I
"i.
.0
,;!.
::.:
o. 3
:3
0.2
.,
o. 1
V
Supplv \'ohal!;c \'n l\'\
*:'\ote
~
V
80
40
7
200
l:¥.;-
·c
~I-""
_to'C~
.....
.....
l.t.\,cll'-+(
....
.........
- O'C
j
4
l
,
RL =lkQ
---_.
f-
25'C
v",.,
1
-
..vCII =Vcc I2
Rs =IOOQ
Ta=60'C'-l
1
Output
1-
160
REFERENCE VOLTAGE VS. SUPPLY VOLTAGE
~I-""
I
-- --
120
The broken line is the
characteristic at the time
or connecting each Input
Terminal to Vcr and G:'\D.
'r
•
-;...
~
Output Sink Curn-nl 1... 1 (mA)
INPUT OFFSET VOLTAGE VS. SUPPLY VOLTAGE
T.
)VJ
~
h ~60·C f).rV
W
0.4
20
16
12
25·C....,
-
I I 1-2:~ :2
~+T=3~-y"Ck
Iv..(-I=OV
60'C
n
lOHl
1.1. 'J
Ta:.o -20'C
o. 5r--
~ ",
,-:;; ~ f?'\O'C
I
I
Vrr-J3.5V
0.6
,
,,,
0
s(;,
OUTPUT VOLTAGE VS. OUTPUT SINK CURRENT
0.7
8
t
r---
Ta=60"C
V
-20"(:
25t
I I
/~,,/.2
1 "
o
II
5
10
15
20
12
Supply Voltage Va (V)
86
I
I
Supply Vnltali:f! Vrr
eHITACHI
16
(r!
20
HA1812GS,HA1812PS
REFERENCE VOLTAGE VS. SOURCE CURRENT
VOLTAGE GAIN VS. SUPPLY VOLTAGE
110 "'"T-;"'"T-,---,-,---,-.----,-,--r--,
::;
0
~
6
-Output MO" Level
1-.--+__t--+_+---+_+--_OutpU\ "1 I.evel
~
M
~
""
100
j
4 f--
;
Ji
~
I--+---!-+-- f-- --I---+---!f-+----J
0.8
0.4
SHUI'I'<'
I.2
'0~8-L-~1~0-L-~1~2-L-~lt.-L-~I6--L--1~8--L-~20
2.0
\.6
Supply Voltage Vee (V)
Current I ••• """, II {rnA)
OUTPUT VOLTAGE VS. DIFFERENTIAL
INPUT VOLTAGE
20,--,-,--,-,--,-,--r-,--r--,
I-~C =.l.5V'+_I--+_I--+_+--+---1
-VCM -6.7SV
16
_
RL '"
lOOQ -+-j---+-j---+-+---+---i
:.;
-
12
;.;
il.
8
II
I
10
Differential lnpllt Voltage V•• (mV)
• BASIC OPERATION DESCRIPTION
The following describes the circuit operation of HA1812.
1. Differential Amplifier and Output Terminal Vout
0" 0. and 0., 0, are Differential Amplifier of Darlington
Connection, and signals amplified at this stage are further
appl ied to the base of 0., through 0., 0.,
0 , 0 •• is the
open collector in order to be able to drive load directly, and
its sink current is designed largely with the maximum at
200mA when Ambient Temperature is 25"C.
0. and 0, are provides current mirror connection at the collector load of 0" 0. and 0, , 0. and the progress of voltage
gain are designed.
°.
•
2. Feedback Terminal
Feedback terminal is connected to the collector of 0. 0
through RIO and R ... The phase of this Feedback terminal
is the same phase as the collector of Output Transistor 0 .. ,
and used by feedback to positive input terminal at the time
of Schmitt Trigger connection. Further, since values of R u ,
R, affect hysteresis characteristic, its resistance value is
shown in the following.
RIO = lOOn ± 30%
R, = 470n ± 30%
HITACHI
87
HA1812GS, HA1812PS
3. Constant·Current-Circuit
The circuit formed through R,., R l l
,
a,., a,., a,
is
constant-current circuits, and attracts currents with a small
dependance on supply voltage from each circuit.
4. Reference Voltage
0", ZD, ' 0,4' a" are the circuits which produce reference
voltage, and have almost constant current flown with a small
dependance on supply voltage to ZD" and so stabilize
cathode voltage of Zener Diode ZD, .
014 and 01 s are diodes for temperature compensation of
Zener Diode. 013 is the transistor for supplying stabilized
voltage through ZD" to the two terminals of Reference 1
and Reference 2 .
• EXAMPLES OF APPLICATION CIRCUITS
1. Negative Input Comparator (When fundamental
OUTPUT VOLTAGE VS. INPUT VOLTAGE
voltage is set at Vref.2)
)
-J.R L~1!2k" I
\r"(,( =13.5\'-·~
---f
;J
12
HAI812
t'iotc)
V,,/2
-+-+
-+ .
--- f--
Li-l- -.--
.!
f-- I---
,
._++i
...
i
I
-
-----rI
I
I
II
-- - -
)
I» 3.27\',
I
j
Input Voltage
2. Positive Input Comparator (When reference
+_~i_
I
.
-
~-
V"
(\'I
OUTPUT VOLTAGE VS. INPUT VOLTAGE
voltage is set at Vref.2)
JI \(·c~I:;·5V
Lk'! _+-LI __ -- J.'L ce-
20r--r--r--r--r-~--~~--~-'--'
~
V..
tsJvcr
_
ref.2
re- )6
+
RL
+-- ~_
:
RL
VOkl
-
2
~
__
--t---+'
_'-;::+:::::j::::':j:::::j
--I---++I---+---f--
I---+--t-t-f-- . - - - - f--f-HAI812
:..:
2'
1\
f---+---j-- +---+--I--++-f--+--I---I
I
f--+--I--+-1--- - - -++--+--+--1
T-
, -+--+--
4,--
I
f--f--
Input Voltage
88
@HITACHI
\."" (VJ
HA1812GS,HA1812PS
3. Comparator when Vref.l is divided by resistance
at R" R, and set at Reference Voltage.
OUTPUT VOLTAGE VS. INPUT VOLTAGE
20.--.--,--,--,---,--.--,--,--,--.
HRI
H,
+----;f--+--+--+--+---f---I
v,"
V"o---+--I
J2kU+--+--+-t---t----t------i----1
Vee =13.5\'
161-- R\ =lOkll
HI.
\/".{ t
f--+--*---;f--++--+--+--++---f--tt-----l
II
HAIBI2
:-';"u-)
\;,
I I
Thrj>l!/i,,)J
rfll
I.~ h ..,):l\'.
V,,)tilgt·
~~l~
Vrll I.~ f"uud bv tIlt' following
6
{'qUUtl"ll.
~
Ol
H-~~
{VI
1
1-+'--1- -t+-- t-- r--
f--- - --U-i--+t
v..
Input y"ltll,l{t'
4. Comparator established reference voltage by
ref.2 and R,.
OUTPUT VOLTAGE VS. INPUT VOLTAGE
0
Vee
HL
r"/l
0--+--1
J
~--Jcc
-13.5V
I-- RL =1.2kQ
16
+
V••
(V)
12
R,
-0
HAIBI2
'"
8
a
111fe:-h"ld voltage Vrll IS f"und by Ill(' f"l!"win~ (~4uatiqI1.
VrH;"
8
0;
(V)
:ii/\l:~1
a
tt-- f-~
~()te)
I
1'1111 "I/{I; kll
1
v,.
Input Voltage
5. Schmitt Trigger Circuit 1.
(V)
OUTPUT VOLTAGE VS. INPUT VOLTAGE (1)
0
t--v~c =113.5V
RL =1.2kQ
6 r----RH =0
2
I
t
8
HAIBI2
.\o\el Thre!-.hold vol tag!' \in.. VTII are f"und by tilt'
f"llowlng ('quatl'ml>.
rTi.
~~.r
rTH
Vu.+
1'1\11
"I &:
•
2 't;n VI
/U;~(~.~X(\"I
4
k~!
10
Input Voltage
$
HITACHI
v,.
(V)
89
HA1812GS, HA1812PS
OUTPUT VOLTAGE VS. INPUT VOLTAGE (2)
0
I--!.cc
=113.SV
RI. =1.2kUI
61---
RH =5k!2
+--1--
,
21---- 1---
't-I
~.
+-+I
i
I
!
+- 1-_____L___f~
I
-1- ---,+--
I!
I
I
10
Input Voltage 11,. (V)
OUTPUT VOLTAGE VS. INPUT VOLTAGE
6. Schmitt Trigger Circuit.2.
0
,Icc =i3.SV
RI.
R1 =5kQ
,
;.:!
-I2--
--
I
--j--.L-~- I----
j-t~t-t=
v.. o--H
R,
HA1812
VTI.=
1+(6~;RJ)
VTH=
1+t&/~;~3+a
I
T
I
Input Voltag~
(V)
eHITACHI
-+-
'--
-
;--+~---+-r-f-
(V)
a=&/(570+RHl
90
I
I
--
Note} Threshold voltage Vn.VTH are found by the
following equation.
RH=16kQ
' i i
6
RI.
R,=20kQ
-r---r---r"'---r--
1.2kQ
v..
(V)
HA17903GS, HA17903PS,
HA17393 .Dual
Comparator.s
HA 17903 and HA 17393 are comparators designed for car use
and control system use.
They provide wide voltage range with single power source,
and the supply current is small, because it is independent of
the supply voltage.
They can be widely applied, such as limit comparator, simple
analog/digital converter, pulse/square wave/time delay genetor, wide range VCO, MOS clock timer, multivibrator, high
voltage logic gate, etc.
Industrial: ..
. .. HA17903GS, HA17903PS
Commercial: . . . . .
. . . . . . . . . . . . HA17393
HA17903GS
(DG- 8)
HA17903PS
HAl7393
.FEATURES
•
•
•
•
•
•
•
2 to 36V
Wide Supply Voltage.
O.SmA
Very Low Supply Current.
25nA
Small Input Bias . . . . . .
Small Input Offset Current
.. 3nA
Small Input Offset Voltage
. 2mV
Common Mode Input Voltage Range Including Ground.
Small Output Saturation Voltage . . . . . . . . 1 mV(5jLA)
70mV(1mA)
•
Output Voltage is Compatible with CMOS Logic System.
(DP- 8 )
• PIN ARRANGEMENT
Output 1
Input I
.CIRCUIT SCHEMATIC(l/2)
Input I'
v"
GND
(Top View)
Input"
Output
Input
eHITACHI
91
HA17903GS, HA17903PS, HA17393
• ABSOLUTE MAXIMUM RATINGS (Ta~ 25°C)
Symbol
Item
Supply Voltage
Vee
I)
2)
HAI7903GS
36
Differential Input Voltage
V,"Id,'J/l
Input Voltage
V.
Power Dissipation
Pr
Output Short-circuit Current
los
Operating Temperature
T",
Storage Temperature
T~/g
Vee
Vee
to +36
~0.3
570
Continuation possible
~40
~65
HAI7393
~0.3
V
Vee
V
to +36
~~
570
mW
570
Continuation possible
~20
to +85
~55
to +150
Note
Unit
36
36
to +36
~0.3
O
2)
HAI7903PS
I
2
Continuation possible
o to
to +75
~55
to +125
+70
'c
to +125
°C
Note) 1. 1): Value at Ta-g(i,75"C. In case of more than it, 7.6mW/"C derating shall be performed.
2): Value at Ta~55·C. In case of more than it. 8.3mWf"C derating shall be performed.
2. Short-circuit between the output and Vce will be a cause to destroy the circuit.
The maximum output current is about 20rnA for any supply voltage.
• ELECTRICAL CHARACTERISTlCS-1 (Vee ~ 5V, Ta~ 25°C)
Symbol
Item
Test Condition
Input Offset Voltage
VIO
Input Bias Current
hB
IIN{+)
Input Offset Current
flO
lIIN(+ )
or
I/N(-J
min
typ
max
Unit
-
2.0
5.0
mV
I
-
25
250
nA
2
3
50
nA
-
-l/N(-ll
VCM'
Common Mode Input Voltage
VCM
3.5
-
-
-
-
V
3
0
V
Supply Current
Icc
All Comparators: RL = co, All Channels ON
-
0.8
2.0
Voltage Gain
Avp
Vee ~ 15V, RI.;" 15k!}
-
200
-
V/mV
Response Time
In
VRL~5V, RL~5.lk!}
-
1.3
-
I's
Large Signal Response Time
IR/
VIN ~ TTL Threshold Width.
-
300
-
ns
Output Sink Current
l~'nk
VIN (- ,;';IV,
VIN(+l=O,
V,,;"1.5V
16
-
rnA
Output Saturation Voltage
VU\ .•
VIN (- ,;"IV,
VIN(+)=O,
I, .. ,~4mA
-
-
400
mV
Output Leak Current
ll.()
VIN ( -)=0,
-
0.1
-
nA
Note)
1.
2.
3.
4.
VIH/o"=1.4V and fl.s
U)
VREF~1.4V
VIN('I~IV, Vo~5V
6
mA
Undt'r Linear Opt'ratiun.
Common mode input \,(Ilta~e or each one of thE' input silo!;nal shouhl nlll hl' It'ss than -O.3V.
This is a value to 100mV Input Step VoltagE' wIth 5mV tJ\'t'r drin'.
Item
Symbol
Ta~-20 to
Test Condition
Input Offset Voltage
VIO
Input Offset Current
1'0
I IIN(+)
Input Bias Current
he
Output Linear Range
-liNt
,
Common Mode Input Voltage
typ
min
V(,(,
VCM '
Ta~O to
+75°C, HA17393;
I
VCM+
+70°C)
max
Unit
Note
I
-
9
15
mV
-
50
200
nA
-
200
500
nA
-
-
-2.0
-
-
V
0
V
Output Saturation Voltage
VOl,..!!
VINI -
-
400
700
mY'
Output Leak Current
ltu'
VU/I-l=O, VINl+l~lV. Vo~30V
-
-
1.0
I'A
V,nld'If'
All Inputs ~ OV
-
-
VI'I'
V
Differential Input Voltage
92
1.
4
50n, wht'n \/,,=1.4V at output SWitching point.
• ELECTRICAL CHARACTERISTICS- 2
(Vee~5V, HA17903GS; Ta~-40 to +85°C, HA17903PS;
:o.1ot(')
Note
VHf:I'~I.4V
)~lV, VINl'l=O,
I" .. "'4mA
and 1(,""'500. wht'n r,,'-"1.4V at the output swit('hing ptllnt.
~HITACHI
HA17903GS, HA17903PS, HA17393
SUPPL Y CURRENT VS.
AMBIENT TEMPERATURE
OUTPUT SINK CURRENT VS.
AMBIENT TEMPERATURE
I. 2~ r - - - , - - - - - , - - - - - , - - - - - - ,
20
I. 0 f-=:"-~+-
""
E
--
Vcc=36V
15
~
.i:
I
Vcc= 36V
15V
0.5 -
:
--T5V-~'f r4~<~t-------I
0.25
2V
·20
25
50
0
15V
e-10
r--
5V
-.::::
2V
.~
I-
8
2V
o
~~
I
I
I
1
A
50
-20
75
J;
50
25
:\mhl(~nl T!'mpt'rilIUrl'
I.5V
50
OUTPUT SATURATION VOL TAGE VS.
AMBIENT TEMPERATURE
OUTPUT SINK CURRENT VS.
OUTPUT VOL TAGE
..0
r----,-----,-----,-------,
:E
~
IS
W
10
-
75
1il (OC I
'mA
300
-~-~-----"~~--:c30--'-------'
ol ____ ~·_ _ _ _L __ _ _~_ _ _~
20
VOL TAGE GAIN VS.
AMBIENT TEMPERATURE
110
1I
V"
: sv
~
I 2V
2011
rl
•
70L..
V
:[--
\'"
36V
I
i
,
i
I
r., ,
;ml
.;.
~
I
1O'~~Ff?_L:
"20'~ 5()~ I ' l i ---20
75
AMBIENT TEMPERATURE
iSV
I
80
50
---~-.
~ :::~::53[VL=:
"
2S
INPUT OFFSET VOL TAGE VS.
::;; 100 __;:::
.. =_
j
0
~'I I
C
t-
-
II
.L.._ _
25
'\mbjl'n! Temperall.lrt:
-2
SO
-20
15
Ii, [ 'c I
~.
_ _ _ _- L_ _ _
25
~
___
5()
~
IS
Ambient Temperature TtJ (OC)
$
HITACHI
93
HA17903GS, HA17903PS, HA17393
INPUT BIAS CURRENT VS.
AMBIENT TEMPERATURE
RESPONSE TIME VS.
AMBIENT TEMPERATURE
i
V .
~
I
.
~
60
Vcc=36V
.
E
<
;::
~
a.
iii
10
0
-20
~
A
A
Sk
_
_
30k 50 120k
1
12V
-V
r-----r------t--
I
.
i
--+--1-I
__
[
O L - _ - J_ _ _~_ _~!
50
-20
75
25
__- - J
50
Ambient Temperature Ta (Oe)
Ambient Temperature Til (Oe)
94
2':pVV"~~V'
d"v~_
P_Gt rriYI
I
VR
-
+
IOOmV Input
Jsmv (Ne,-
•
HITACHI
75
HA17901G,HA17901P,
HA17339
.Ouadruple Comparators
HA 17901 and HA 17339 are comparators designed for car use
and control system use.
They provide wide operating voltage with single power
source, and the supply current is small because it is inde·
pendent of the supply voltage.
They can be widely applied, such as limit comparator, simple
analog/digital converter, pu Ise/square wave/time delay gene·
rator, wide range VCO, MOS clock timer, multivibrator, high
voltage logic gate, etc.
Industrial:
HA17901G, HA17901P
. . . . . . . . HA17339
Commercial: . . . . . .
HAI790IG
• FEATURES
HAI790lP
HAI7339
(DG·14)
2 to 36V
Wide Range of Supply Voltage
O.SmA
Very Small Supply Current
25nA
Small Input Bias Current .
Small Input Offset Current
.. 3nA
Small Input Offset Voltage
. 2mV
Common Mode Input Voltage Range Including Ground
Differential Input Voltage Range Equal to Supply Voltage.
Small Output Saturation Voltage . . . . . . . . 1 mV(5jlA)
70mV(1mA)
The output voltage is compatible with that of CMOS
Logic System
•
•
•
•
•
•
•
•
•
(DP·14)
• PIN ARRANGEMENT
.CIRCUIT SCHEMATlC(l/4)
Input'
(lUlput
(Tup View)
• ABSOLUTE MAXIMUM RATINGS (Ta~ 25"C)
Item
Symbol
Supply Voltage
Vr'(
Differential Input Voltage
V"
Input Voltage
V"
Power Dissipation
I, HAI790lG
2, HAI790lP
36
36
36
V
-tVr'('
·t Vc:e
± Vee:
V
~36
-0.3 to +36
-0.3 to +36
V
625
625
625
mW
20
rnA
+70
,d,!!
-0.3 to
2, HAI7339
Unit
Output Current
Pr •
I"ut··
Operating Temperature
T"I"
Storage Temperature
T~I~
-65 to +150
-55 to +125
-55 to +125
'c
·c
Output Voltage
V".,
36
36
36
V
:\ntt'
20
-40 to t·85
20
-20 to
~75
o to
. : 1 ; \',lIuI' at Trj',70C, In ('aSI' flf mort· than it. 7.6mWFC dt'ratin~ shall Ill;' IIt'rfeu'mt'd.
2 ; \'alul' at Tfl'"50C. In ('a!>!' of mMt' than It, 8.3mW/ C dl'ratinJ( shall 1Jt' pt'rfurmt'd.
ShClI·t-('II'('uit ht·tw!'t·n thl' output and V., will 1)tO a ('aust' to dt'!o.truy thl' <"Ir<'uil.
Thf' mll.~!mUm uutJlut ('urrt'nt I!. tht' IJI'rmisJo.lhll· valu,' fur ('ontinuuul' ul't'ratiun •
** :
•
HITACHI
95
HA 17901 G, HA 17901 P, HA 17.339
• ELECTRICAL CHARACTERISTICS (Vee ~ 5V, Ta~ 25"C)
Item
Test Condition
Symbol
Input Offset Voltage
VIU
VREF~J.4V
& Rs~On when
output switching point
Input Bias Current (Note 1)
liB
IIN(t)
or 11Nl -
Input Offset Current
110
I1N(~J
-/IN(--)
Common Mode Input Voltage (Note 2)
VeM
Supply Current
Icc
Voltage Gain
Response Time( Note 3)
Output Sink Current
at the
1
typ
max
Unit
-
2
7
mV
-
25
250
nA
-
5
SO
nA
0
-
RL=co
-
0.8
A,
RL~ISkn
-
200
-
tR
VRL~SV. RL~S.lkn
-
1.3
-
!,s
I" ••
VIN!
,~IV.
VlN ! . )=0. Vo;"l.SV
6
16
-
mA
,~IV.
VIN(-t
-
200
400
mV
-
0.1
-
nA
)=0, I .... ~3mA
Output Saturation Voltage
Vosa l
VIN (
Output Leak Current
fLo
V,N {+)=lV, VIN ( )=0,
Note)
min
VII~J.4V
Vo~SV
Vce-J.S
V
2
mA
V/mV
I. The input bias current is constant. because there is a reference line or input line wihtout any change of load,
2. Common mode input voltage or either of the input signal voltages should not be less than -O.3V.
3. This is a value to IOOmV input step voltage with SmV overdrive .
• TEST CIRCUIT
1. Input Offset Voltage (VIO), Input Offset Current (110)
Input Bias Current HIB)
SWI
SW2
V
ON
ON
V"
OFF
OFF
Yo,
Vel~I/2
ON
OFF
V03
VC2~1.4V
OFF
ON
Vu •
OU1
Vee
R.50
~'"
(11
VIO~~
(V)
1+&
R. 50
Rs
1
(2)
llO~
I VOZ - Val I
(A)
R(1+*)
v"
1""
(3)
IIB~
I Vol-V",I
(A)
2'R(1+*)
2. Output Saturation Voltage (VO sat), Output Sink Current
(lsink), Common Mode Input Voltage (VCM)
Vel
VC2
VC3
SWI
SW2
2V
OV
-
I
I
/",.
2V
OV
I
I
2
mA
VC.\.I
2V
-I-Vee
l.SV
-
2
l.21;1J~
3
V
Item
V"
96
$
sui
HITACHI
SW3
Unit
I at V'T~ 5\'
V
3 at V,,· ~ IS\'
HA17901G,HA17901P,HA17339
3. Supply Current (I CCI
4. Voltage Gain IAVI IR L = 15kOI
?+v
20k~
I
I
---0-----0
10k
VC{
r
i:--,.
20k~
II
6
_.Afof.r
30k
-v
IV...L
T
5. Response Time ItRI
tR:
RL=5.1kO.
100mV input with 5mV overdrive
Turn the SW OFF without applying VIN. and adjust the
VR to make Vo 1.4V approximately.
Apply VIN. and turn the SW ON.
'f'"
lL-__
INPUT BIAS CURRENT VS:
INPUT BIAS CURRENT VS.
AMBIENT TEMPERATURE
SUPPLY VOLTAGE
'"
1"-.--.+-----1
'"111-
ill
~
60
,
""
~H
G
411
'"
30
--4·- -:---
1i ----;-'-r:--t--.-+----
I-
i
I
I
~
.... -r------+---I---1
\u---
.-1---
-
3(1---
'
'" '" .... .... ----:--........::f"'"-=::::t::::::.:=-.-
- '"
-
1C;f----+---+----+--........J
'"
III
Ambient Temperature
Ta
20
30
411
Supply Voltage ~;, (V)
('e)
eHITACHI
97
HA17901G,HA17901P,HA17339
SUPPL Y CURRENT VS.
AMBIENT TEMPERATURE
SUPPL Y CURRENT VS.
SUPPL Y VOLTAGE
l.ti,----,----,---.,--,--------,
''[fI=25'C
R/
1.6f--+-+---+-+-I--+..c:.:..t---+--i
=00
1.41---+-+--+--+--1_-+-+--+-----1
:;;:
1.1---
1.2
E
1.11
-_.-
0.8
]
u.6
').K-
IIA
11.2
0
-55
IUS
-35
40
125
Ambient Temperalure Til ('C)
OUTPUT SINK CURRENT VS.
SUPPLY VOL TAGE
5
0
:;:
E
j
,
5
i
0
I
I
I
I,
5
I
,
i
I
35
i
I
I
,
5
!
i
i
I
I
i
i
- 15
2S
45
Ambient Temperature
i
i
i
65
Ta
85
'<
e
;§
110
i
~
V" -5V
R,.=15kQ
I
10
!
20
~I
40
1311,---------------,-------,
I
i
I
Ta=2S'C
R, =15kQ
120---------+-----,-----
I
100
95
!
90
I
i
55 -35
!
-15
901__-----
25
45
65
-~-------___I
~I--------I---------
·'-r----T-r-
Ambient T(lmperalure Ta ('C
98
\I
I
105
85
"
,
1-5
VOL TAGE GAIN VS. SUPPL Y VOL TAGE
120
115
I
('e)
130
~
,
I
VOL TAGE GAIN VS.
AMBIENT TEMPERATURE
125
I
5
I
I
------~--
i
:
105
i
!
i
I
i
~
0
I
I
!
,
,
I
I
55
I
!
I
I
,
0
5
5
I
i
!
II
r--
VOtdil.5V
,
30
0
+}=o
Vi,,(
,i
35
I
~i~(~5JV= I~
i
I
OUTPUT SINK CURRENT VS.
SUPPL Y VOL TAGE
70\;-0-------,JO,,---~20/;;------~~.,I--~40
85
105
125
I
eHITACHI
Voltage Regulators
eHITACHI
99
HA17723G,HA17723
HA 17723, high accuracy voltage regulator for general
purposes, features low stand-by current - quiescent current,
low temperature drift and high ripple rejection ratio.
Output current above 150mA is also available by adding PNP
or NPN transistors externally. This voltage regulator finds
wide application, using in series, parallel and as switches.
Industrial Use. .
HA 17723G
Commercial Use . . . : . . . . . . . . . . . . . .. HA 17723
.Voltage Regulator
HAl7723G
• CIRCUIT SCHEMATIC
(OG-14)
HAl7723
Il,
6.~V
v, ..
v,
I-------COMP
(OP-14)
.PIN ARRANGEMENT
(Top VieIV)
100
eHITACHI
HA17723G,HA17723
• ABSOLUTE MAXIMUM RATINGS
(Ta~25'C)
Symbol
Item
HAI7723G
HAI7723
Unit
Supply Voltage
Vec
40
40
V
Input/Output Voltage Differential
Va'lf,IS
40
40
V
Differential Input Voltage
V,",a'll'
±5
±5
V
Maximum Output Current
I . u!
150
150
rnA
Current from V IIU'
I RU'
Power Dissipation·
PT
'"
15
15
rnA
950'
830"
mW
Operating Temperature
Top,
-20 to+75
Storage Temperature
T"II
-65 to +150
o to
'c
'c
+70
-55 to +125
* Drratin~ anon' 25"<..: will hI;' 7.6mWI"C
* * Derating above 25'(: will be B.3mW/''C
.ELECTRICAL CHARACTERISTICS
Item
Line Regulation
(Ta~25'C)
min
typ
V .• ~ 12 to 15V
-
0.01
0.1
%
V,,~12
-
0.1
0.5
%
-
-
0.4
%
-
-
0.3
%
-
0.03
0.2
%
-
-
0.7
%
-
-
0.6
%
-
74
-
dB
0.003
0.018
%/'C
%rC
Symbol
crVo
Test Conditions
V,,~
I. '"~
12 to 15V,
Ta~-20
V,,~
O'Vo
I.oad
to ·+75'C
12 to 15V,
Ta~O
Load Regulation
to 40V
to +70'C
l,,",~
1 to 50mA
l..",~
1 to 50mA
Ta~
- 20 to + 75'C
.
l .. ,~ I to 50mA
Ta~O
Ripple Rejection
Average Temperature Coefficient of
Output Vol tage
to +70'C
f~50Hz
RR/:;,I
I CR"'~O
I CRF.F~5J.1F
to
1kHz
Ta~
cSV,,/cS T
-20 to +75'C
Ta~O
to +70'C
Reference Voltage
VI/H'
V,,~ Vcc~ Vc~12V,
Standby Current
I.H
V,,~30V,
Short Ci rcui t Current Limit
[sc
R.,,·~IOn.
h-O
V.. ,-O
VEI:-O
.
86
max
Unit
dB
-
0.003
0.015
6.80
7.15
7.50
V
-
-
4.0
rnA
65
-
rnA
*HA17723G Only
•
HITACHI
101
HA17723G,HA17723
------------------------------------------------------------------------------------~-/
• ELECTRICAL CHARACTERISTICS MEASURING CIRCUIT
v"
v..,
Rsc
CL
VUf'
R,
VU1
cs
V,.4./
C,EF
V,~=Vcc-Vc-12V. VEE*'O
V.u-S.OV, it.-lmA
Rsc-O. C,-lOOpF, CUf-O
Rz'=;'SkO. R J -R 1 Rd(Rl+Rzl
Ii>
Ii>
C,
LOAD REGULATION VS. OUTPUT CURRENT-l
.2
v! .. =+~V
I--V•• =+12V
Rs.c=O
/
Ta-1St:
V
1
V
;;.-V
V
V
./
V
./
V
~~ ~
.0
20
V- 20 V
-
V
j..--'
M
80
60
100
Output Current I •• t (rnA)
RELATIVE OUTPUT VS. OUTPUT CURRENT
VOLTAGE
LOAD· REGULATION VS. OUTPUT CURRENT-2
O. 2
v~.=+Jv
V.., = +5V
1-+-++-+-+-lf-+-+-+VRsc=IOQ
.. =+t2V-
I-V.. =-12V
Rsc =100
;::
1.°1-+-+-+-t.....,rllrt-+-+-+-+-
>
~
0.8
~
.1
Ta=1S'C
0.6
25
2
8
V
--
~
,...- I-10
Output Current
102
V V25
>
V
Ta=75
0.'
;ji
?
~
f-; =- i--"
20
30
1o., (rnA)
0:2
20
.0
60
Output Current
eHITACHI
80
1.", (mAl
100
120
HA17723G.HA17723
LINE REGULATION VS. INPUT/OUTPUT
VOL TAGE DIFFERENTIAL
STAND-BY CURRENT VS. INPUT VOL TAGE
0.2,,--,--,-.,....,.-,""""1-...- , - - ,
v.• , :+5V
.~::::~UF_
! .1
1--+--t--+-+--+-+--+?'.;:~mArV=+3V
'"
2
~
u
3
T(1=-20~
2
.... / /-' ~ ~
'"
kl.-- I -
0.1
e:;
~V / '
./
..:;
t/
0
,..... f0-
~
,/
0
10
20
30
\'Cllta~p
Input
15
5
50
40
0.2
(VI
"
o. 9
200
o.8
J••• =50mA
o. 7
/'
Slnse Volta,e
/
l"-
..
LImit Current
•
t....
I 00
j''['
<3
•
;J
.3
V
:;0
c
5
/
I 50
1\
o.6
/
~
50
Rsc=IOIl
.2
-,
35
Vdl/III," OJ
CURRENT LIMITING CHARACTERISTICS
~;:w
1..,= lIlA to
V
25
Input/Output VlJllaKf' IJlfferentlal
V" (V)
LINE REGULATION VS. INPUT/OUTPUT
VOL TAGE DIFFERENTIAL
.~ 0, I
,,/
~
.1
0
]nplil/(huplil
3'
25
IS
Volta!':p Diffrrentlal
Vd.{(I/\
III
(\'/
"
LINE TRANSIENT RESPONSE
1 1
1 1
1
1
Input Voltal/:t'
- 100
100
200
JunctIon Temperature T! ('e)
LOAD TRANSIENT RESPONSE
v,. = +12V
V... =+5V
1..,=1~_ 4
Rsc=O
~
J
.
..
10
-2
Output Voltage
"
~
~
l
-,
.1
I'
~.~lJc~,p-c~'~V'~'I-,,+,,-t-t-t-r~-'
"
6
<3
~
II
-
-:5
-10
-10
I-H-f-f-+-+-+-+--t""i
5~s/dlv
T, .. (,.,1
eHITACHI
103
HA17723G,HA17723
OUTPUT IMPEDANCE VS. FREQUENCY
10
:;:;;:y••,-s
Thus output voltage Vout is:
V.ol ~ VREF
n
CL -0
=~,_+IZP
n ~ __
R_,_ ........................ ( 2)
R,+R 2
v..
-'L=50mA
-
C, I.F
1.0
I ...
V
R,
I,So!:!
o. I
100
10k
Ik
FreljUency
f
1M
lOOk
(liz)
Fig.2
High Voltage (7 to 37V) Regulator
• HA17723, APPLICATIONS
HA 17723 is high accuracy voltage regulator for general
purposes and may be used as voltage sources in various types.
1. Fixed Voltage Source in Series
1.1 Low Voltage, 2 to 7 volts, Regulator
Fig. 1 shows the construction of a basic low voltage regulator. The divider by resistors Ri and R. from VREF is to
make the reference voltage which will be provided to noninverted input of the error amplifier, be less than output
voltage. In the fixed voltage source where the output voltage
will be fed back to the error amplifier directly as shown in
Fig. 1. Output voltage will be divided VREF since the
output voltage is equal to the reference voltage.
Thus, the output voltage Vout is;
v,., ~ nV
REF,
n
1.3 Negative Voltage Regulator
Fig. 3 shows the construction of a so-called negative voltage
regulator which generates negative output voltage with regard
to the GND. Assuming that the output voltage, -Vout
increased in the negative directions. As the voltage across the
R I is larger than that across the R. wh ich provides the
reference voltage, output current of the error amplifier
increases. In the control circuit, the impedance decreases
with increasement of input current, wh ich makes the base
current of the external transistor Q approach to the potential
at GND. As the results, the output voltage returns to the
established value and stable output voltage is available.
The output voltage -Vout in this circuit is;
~ R'~R' ........................... ( 1 )
~.,.
Vee
Vc
I.;.
RI
2.ISkQ
l~.,
R,
4.99kQ
("I
cs
Fig.1
Low Voltage (2 to 7V) Regulator
VF.f:
" - -......- - " - - - - - - - +......._
1.2 Hi.9h Voltage, 7 to 37V, Regulator
Fig. 2 shows the construction of a regulator when output
voltage is higher than the reference voltage, VREF. The
VREF shall be added to the non-inverted input of the error
amplifier via a resistor, R •. The feedback voltage is available
by dividing the output voltage with resistors R I and R •.
104
@HITACHI
v....
Fig.3 Negative Voltage Regulator
HA17723G,HA17723
1.4 How to Increase the Output Current
It is necessary for increasement of output current to increase
the current capacitance in the control·circuit. Fig. 4 and Fig.
5 show examples, where transistors are externally added.
r,.
3. Switching Regulator
Fig. 7 shows the circuit of a switching regulator. The error
amplifier, control circuit and forward feedback circuit R.
and R3 operate in together as a comparator, and make the
external transistors O. and 0, operate as switching elements
to turn ON/OFF. In this Circuit, the self-oscillation stabilizes
the output voltage and the change in output is absorbed by
the changes of conducted period of switches.
v..
v.,~,
R,
~
2.lSkQ
Ilhm"
__.--+-+_v..,
C,
J'iOOpF
Fig.4
Method to Increase Output Current (1)
Fig.7
Positive Voltage Switching Requlator
Fig. 8 and Fig. 9 show the circuit of negative voltagll switching regulator and its characteristics.
v,
\""
::.J"k!!
1'],
"'fI
CS
I".
R'r
·,.II!..!!,
\"!
,
r.
R"
II.
l~:
- - ~;'"I
('1)\11'
!--t--'-T-- v.",
J>~I;
1
,,:,.
Fig.S
v..
r,",
VHI-I
Method to Increase Output Current (2)
Fig.8
2. Fixed Voltage Source in Parallel Control
Fig. 6 shows the circuit of fixed voltage source in parallel
control.
Negative Voltage Switching Regulator
24
20
r. -25'C
,1 6
I
v"
~
!v'rtU
]OIlQ
2
V"ur
v,
,
..
Ii,
::kll
/v
R,
Q,
\'l
4
Rl ]00\1
V
/
V
/
../'
C!.
/'
12
C~
16
20
24
28
.12
36
40
lnl'ut V,,[taJl;(' \1,. (V)
l' .. ' +
v.. -
(a)
Ii,
Skll
Fig.6
Fig.9
Input-Output Characteristic
Operating Characteristics of Negative
Voltage Switching Regulator
Fixed Voltage Source in Parallel Control
eHITACHI
105
HA17723G,HA17723
-15.360,--,.-----,--,---,
The output voltage Vout in the circuit, Fig. 10 is;
1."=n2~I
_15.340I-_+_==f=_~T':.;;=;.:;-~25"C~
;;:-15.320f-~+--j---t-----i
~-i5.3001--+-==f
Fig. 11 shows the circuit diagram of the negative fixed
voltage source in floating type.
__+-~25!d
~
~
Yo.
i-l5.280~=+=~==t~75j
8
-
Vc
Vee
-15.260f--+--j---t-----i
R.
V.. ,
VBEF
IOkC
VZ
-I5.2400!2".4---~2.;---.;.32;----=3t;6---::!-40
v;~
Input Voltage
Ih)
R.
97.6kQ
(V)
Q
CL
cs
Line Regulation
R.
R,
3.57kQ
VEE
3kQ
L-y_......_ ......_ _ _ _+_.+_ v•• ,
15.601)
v.• =Jsv
:; 15.500
J
:
~
>
I--::: ~ t;;;;
15.400
~ i="'""'
10=-25'C
5
15.300
75
e. 15.200
Fig.ll
Negative Voltage Floating Regulator
5. Other Applications
Other applications are follows.
5.1 Fixed Voltage Source with Reduction Type Current
Limiter
<5
15.100 0
0.2
0.4
0.6
0.11
1.0
1.2
1.4,
1.6
1.8
Output Current I .. , (Al
Ie)
Load Regulation
Rsc 30Q
Fig.9 Operating Characteristics of Negative
Voltage Switching Regulator
4. Fixed VoltafIB Source in Floating Tvpe
Voltage sources in floating type or boost type are typically
employed when high voltage output is required. Fig. 10
shows the circuit of a fixed voltage source in the floating
type. For considering the stabilization in this circuit,
assuming that the output voltage increased. At the input terminal of the error amplifier, non-inverted input will become
low compared with inverted input, and the output current of
the error amplifier decrease. Then, the current from the
terminal Vz in the control circuit decrease. As the results,
the base current of the external resistor Q, wi" decrease and
collector current will decrease, resulting to control increasement of the output voltage.
V REF
Vu l
Voul
R.
2.7kQ
~R.
2.lSkQ
CL
R.
S.6kQ
CS
Vin( -)
Vi,,(+)
R,
S.okQ
Fig.12
Fixed Voltage Source with Reduction
Type Current Limiter
0
0
;;:
Yo.
J
Rr. 6.2kg
Vee
Vir,.
Vc
2.0W
v•• ,
VZ
J
4. 0
J
0
Q
1
0
II
Rsc
[2
.0
R.
0
53.7kQ
.........' - - -......- - - - - j f -.....__ VO.l
100
200
Output Current 1", (mAl
Flg,10 Positive Voltage Floating Regulator
106
I
Fig.13 Current Control Characteristics of Fixed Voltage
Source with Reduction Type Current Limiter
eHITACHI
HA17723G,HA17723
5.2 Fixed Voltage
Control
Source
Turning ON/OFF
External
v'"
Rsc
Villi'
VREF
R,
2.ISkQ
so
Vo~1
Note
CL
Note) Insert when
V•• ,-~lOV
CS
VI1l( +)
Vln( -)
R,
4.99k2
R.
212
Fig.14
Control
Signal
Fixed Voltage Source Turning ON/OFF
External Control
Ta -=25"C
~
:\
:> 2 f--f-t+-+-+t-t----j-++--j---H--I
~
,5
Fig.15
Operating Characteristics of Fixed
Voltage Source Turning ON/OFF
External Control
•
HITACHI
107
.3-terminal Fixed Voltage
Regulators
HA17800P,HA17800 Ser:ies
HA 17800P and HA 17800 series, 3-terminal fixed voltage regulators provides 8 kinds of output voltage; 5, 6, 7,8, 12, 15,
18 and 24 volts_ When a heat sink is used, output current
above 1A is available, which enables wide applications are a
power sourc;e of various equipments_
For all devices in this series, three protection circuit; one to
limit current, another to limit temperature at chip junctions
and the other to limit internal power dissipation, are built-in
and elements are protected against the destructions.
Industrial Use. .
HA17800P Series
. HA 17800 Series
Commercial Use
(T-220AB)
.FEATURES
•
•
•
•
•
•
•
Output Current above 1 A is available.
8 kinds of output voltages, 5,6,7, 8,12,15,18and 24V
will be provided to offer wide applications as various
sources.
Eliminates external compensating circuit.
TO-220AB package enables easy mounting and radiation
design like transistors.
Built-in Current Limiter prevents elements from destruction when load is short circuited.
Built-in Chip Junctions Temperature Limiting Circuit protects elements against thermal destruction.
Built-in Internal Power Dissipation Limiting Circuit protects transistors at output driver .
• PIN ARRANGEMENT
I. Input
2. Common
3. Output
I 2 ,
• CIRCUIT SCHEMATIC
II Input
R"
J--r--+--J'--~'-.--"--o I 3 JOutput
,t
16
14
o
12
.;
l~
6
0,
l..,,~l.OA.
Output Resistance
Ro~'
j~lkHz
Output Short Circuit Current
los
Peak Output Current
IQ
5.2
V
100
mV
50
mV
mV
5
50
mV
4.2
B.O
mA
1.3
40
mA
mA
}-tV
7B
dB
0.5
62
T,~25'C
V
5.25
100
250mA <' [.,,"5, 750mA
10Hz -;;'j"5, 100kHz
Unit
15
5mASI,,,;;;1.0A
V.
aV,,,/aT,
max
5.0
v.." 25V
R HEJ
ped
typ
4.75
T,~25'C
Ripple Rejection Ratio
Output Voltage
4.B
V .. ": 20V. 5mA;:;; /,,,"5, I.OA.
Output Noise Voltage
Temperature Coefficient of
min
T,~25'C
Output Voltage
Quiescent Current Change
otherwise specified.)
Test Conditions
V
2.0
17
mO
T,~25'C
750
mA
T,~25'C
2.2
A
-1.1
mV(C
I,,,~5mA,
O'C ;S T, -;;. 125'C
• HA 17806P, HA 17806 ELECTRICAL CHARACTERISTICS
( V,,~ llV, L., = 500mA, O°C;;;; T j ;;;; 125°C, C,,~O. 33J.l F, Co., ~O.lJ.l F, unless otherwise specified.)
Symbol
Item
Test Conditions
T,~25'C
Output Voltage
Vo"
Line Regulation
avo "0'
T,~25'C
Load Hegula tion
OV;,'vad
T,~25'C
Quiescent Cunent
I,
BV;:;;
v..:;: 21 V. 5mA~ I .. ,~ l.OA.}'.,."" 151\,
BVo;
~~.S
9V$
v.,s 13V
6.0
5.7
5mASI.."o;;l.5A
250mA < I",,'; 750mA
T,~25'C
max
V
6.3
V
120
mV
1.5
60
mV
14
120
4
4,3
60
8,0
mV
m\'
l.3
5mA-;; 1..",-: I.OA
0.5
Output :\oise Voltage
V,
Tu~25'C.IOllz-::j::::100kHz
j~
Ripple Hejection Ratio
RI/u
Yoltage- Drop
Vl!}(UI'
Output Hesistance
R o.,
120Hz
1.. .. ~ l.OA. T,
J~ 1kHz
.output Short Circuit Current
I ".~
Peak Output Current
/" "uk
av.• ,/aT,
59
~
25'C
Unit
6.25
B\':: V.. :::. 25\'
aI,
Output \"oltage
typ
25V
Quiescent Current Change
Temperature Coefficient of
min
5.75
rnA
rnA
rnA
45
flV
75
dB
2.0
V
19
m!1
T,~25'C
550
mA
T,~25'C
2.2
A
I." -~ 5mA. O°C . T," 125'C
O.B
mV(C
eHITACHI
109
HA17800P, HA17800 Series
IIiHA17807P, HA17807 ELECTRICAL CHARACTERISTICS
(V•• =12.5V, I ... =500mA, O'C;;:;; T j ;;:;; 125'C, C •• =O.33,uF, Co.. =O.l,u F, unless otherwise specified.)
Symbol
Item
Vout
Output Voltage
f ":100kHz
dB
V
Output Short Circuit Current
los
T,~2S'C
-
350
Peak Output Current
1"
T,~25'C
-
2.2
-
I, .. ~SmA. O'C": T,:;> 12S'C
-
-1.0
-
mV/'C
Unit
Temperature Coefficient of
Output Voltage
pu4
aV, .. ;tJT,
mn
rnA
A
• HA 17815P, HA17815 ELECTRICAL CHARACTERISTICS
(Vi.~ 23V, /0" ~500mA, O'C;;; T J ;;; 125'C, Ci,~O.331' F, Co., ~O.ll' F; unless otherwise specified.)
Item
Symbol
Test Conditions
T,~2S'C
Output Voltage
Line Regulation
YOM!
17 .SV":
aV, , ...
Load Regulation
oVv
Quiescent Current
I,
lou'
V..~
30V. SmA:;> /, .. ~ 1.0A. PT~ IS\\'
min
typ
max
14.4
IS.0
15.6
14.25
-
IS.7S
V
11
300
mV
17.5V"; V..":30V
-
20V"; V..2 26V
-
3
150
mV
SmA";/'.. ";l.SA
12
300
mV
4
ISO
mV
T,~2S'C
-
8.0
rnA
17.SV": V..";30V
-
4.4
-
1.0
rnA
5mA";I•• ,:d.OA
-
-
-
90
0.5
-
,.,V
S4
-
70
-
dB
2.0
-
19
T,~25'C
T,~25'C
Quiescent Current Change
aI,
Output :\'oise Voltage
V.
Ta~2S'C.
Ripple Rejection Ratio
R kU
J~120Hz
\'oltage Drop
V1JlWf'
/' .. ~1.0A.
Output Resistance
RQ"I
f~
2S0mA;:; /'.. ": 7S0mA
10Hz ~ f"" 100kHz
Output Short Circuit Current
/(!5
T,~2S'C
-
230
Peak Output Current
Ju
T,~2S'C
-
2.1
-
-
-1.0
-
Temperature Coefficient of
Output Yoltage
pod
aV•• ,/eST,
V
T,~25'C
1kHz
I".,~SmA.
O'C"" T,';; 12S'C
eHITACHI
rnA
V
m!l
rnA
A
mV/'C
111
HA17800P, HA17800 Series
.HA17818P,HA17818 ELECTRICAL CHARACTERISTICS
(V•• ~27V, I, .. ~500mA, O'C;::;; T j ;::;; 125'C, C •• -O.33pF, C .. t-O.lpF; unless otherwise specified.)
typ
max
T;~25'C
17.3
18.0
18.7
21V~ V;.~33V, 5mA~I. .. ~1.0A, PT~15W
17.1
-
18.9
V
-
15
360
mV
-
5.0
180
mV
12
360
mV
4.0
180
mV
4.5
8.0
rnA
1.0
rnA
Symbol
Item
Output Voltage
v".. ,
Line Regulation
tI'V.
t, ••
min
Test Conditions
2IV~Vi,,~33V
Tj~25'C
24V';;
V,.~30V
Load Regulation
OVala.d
T;~25'C
Quiescent Current
10
T,~2S'C
-
21V~ V;.~33V
-
5mA~/... ';;1.0A
-
-
Ta~2S'C,
-
110
Quiescent Current Change
;)
-::--".
--
15
t1
I
--~
--
10
I
i
~c
± -t- "
1
'
0
~
l'
I
- --
-4
ill
60
".1
I'
t-
-- r------
HA17805
V•• =lOV
V... =5V
I..-SOOrnA
111
80
,
I
I Iii
III
I
HAi7&J5
I
i.L ~
.0
.5
RIPPLE REJECTION VS. FREQUENCY RATIO
30
25
Voltage Drop V• ., (V)
OUTPUT VOLTAGE VS. JUNCTION TEMPERATURE
12-4
V,.~19V
'"
I
I
I
---
12.0
!
t---
---- bIJ
!
I
1
I
:
;
11 _4
25
50
-
-
--
t--
-
r-
t--~=O t'---
--
I
,
-- t=-=- h
2
~
1
150
-t ~
--1--- f---
r-- f----j -
r'
.J1lnction Temperature T, ('e)
i
10
Input Voltage
OUTPUT VOLTAGE VS. OUTPUT CURRENT
4
3
2
(V)
6_0
HAI7&J5
5
v,.
QUIESCENT CURRENT VS. INPUT VOLTAGE
6
I
H~178b5
V.. =SV
t--t==2~t
,
I
i
I
--
..l
.!!
I
V
5.0
I
I
-t- J
---- ---
1
j--
0.4
V
,.-
V
.0
+1- -f-b
!
lrY,.= IOV
V... =5V
T'7 25
-
V
/
-
I
-
-- --
1
1
125
--
r'-IA
t--~-
00
~ ~L~
3
1
75
_,nt"'" ---
HAI7&J5'
~r'-+~A ~
-- f--- t--
r-----l- 1--
~--
25
--
Lt::: r-.
,
,
1
- - I-- --
4
-,----
i
11 .6
T,~25't-
5
I
--~-
,
Vw=5V
,
I
I
6
H~178b
I
J
J
I..=5mA
12.2
I
I
I-- V"",=12V
OUTPUT VOLTAGE VS. INPUT VOLTAGE
~
V"'
0.8
\.2
\.6
2.0
3.0
5
24
Output Current I •• ! (Al
10
IS
eHITACHI
25
20
Input Voltage
Yo.
30
35
(V)
113
HA17800P, HA17800 Series
QUIESCENT CURRENT VS. JUNCTION
TEMPERATURE
OUTPUT IMPEDANCE VS. FREQUENCY
4.6
0
V.. =IOV
HAI7805
f-V.-IOV
3f-V.-SV
r---f~-25~
L=o.lp
_.
:
f--
~
;;:
!
,
~
I
E
~
4. 2
I
I
_.- --- -
..
I
I
I
I
---+-
..
f - .-
_-:-- r-.....
V
I.r=lOOmA
4.0
i
0. 1
i
i
i
I---"
L.......< V
---
Q.3
I
A
I
I
3.8
I
,
0.0 1
10
20
50
100
200
SOO
lk
2k
Frequency
5k
J
10k
20k
I'
sot
l(Kl;
zca
I--
HAI7805
Vu/=5V
1••• =0
4. 4
I
3.6
-25
50
25
'
"
---:-t:
I
i
100
75
125
Junction Temperature TJ ('e)
(Hz)
Input
.APPLICATION NOTE
o--....,.----....,-----t----,
In HA 17800P and HA 17800 Series, external compensating
circuits are eliminated and easy mounting and radiation
design like transistors are enabled by employing the
TO-220AB package. Output current above 1A is available
when using a heat sink. To protect devices from destruction,
three protection circuit; current limiter, one against load
short circuit and one to control the operating junction tem·
perature, are built·in. HA 17800P and HA 17800 series are
usable fixed voltage sources and the followings shall explain
some examples of circuit constructions and applications for
further use.
1. Circuit Constructions of HA17800P and HA17800 Saries
Fig. 1 shows the internal equivalent circuit and· Fig. 2 shows
its block diagram of HA 17800P and HA 17800 Series.
R"
~--J..~Output
L---~J.._ _ _ _ _+_----oG~[)
Fig.2
Block Diagram of HA17800P and
HA 1 7800 Series
(1) Reference Voltage Circuit
For examplaining the part generating the reference voltage,
the equivalent circuit shall be shown in Fig. 3. As this figure
shows clearly, the difference from the conventional method
using zener diodes is that the reference voltage is generated
by only the ba.se-emitter forward characteristics of transis·
tors. The reference voltage VREF is;
VREF~
VB£<+ VBE5+ VBE ,+ VBE'+R,[C2·········( 1 )
........................ ( 2)
VB£,~VBE2+R3IE2 .................................... ( 3)
RIIc,+VBE,~R,[c2+VBE'
VBE~kTtn!..s:..······························(4)
q
10
where, assuming that VBE1 ~ VBE3
h2~ kT 1.. tn fu ....................................... \ 5)
q R,
RI
VREF~
Fig.1
Internal Equivalent Circuit
kTfutnfu
of HA17800P and HA17800 Series
114
VB£,+ VB£<+ VBE 5+ VB £6 +
eHITACHI
q
R,
RI
.................................... ,61
HA17800P, HA17800 Series
Input o----~--------
,-----4----=S
5
i
~
2.0
,
,
/,
F-::--.I't:---
"
/
1.0
(hi
(
I
21lm-\
/",'
\nO
~
,
In
,
4
f-
HA17805
I
-L,+." I
,J,
fff
I
f§1
lOOmA
500mA
IA
"
,
}c." ...."
~
I
II
{c I
Output \'olta/{t'
",
I.J,..IoIII
\Otl
Ik
Frel\llli'ncy
10k
f
lOOk
Inpu! r,dta/.:(' \'''.' 1\'
1M
(liz.!
Frequency Characteristics of
Fig.10
Output Impedance
116
i'-..
25
'".,.-SIHlm·\
8
Fig.8
"
20
I
II
('8.r-SII ,/F
III
V•• ,~,V
r,~25·C
5
\',.= to\'
V"., =5\'
T\=2S"{'
.-1
-"
15
~
Peak Output Current vs Voltage Drop
6
HA17800P and HA17800 Series
10 1
I<.re
\',;lia.l((' Drop \d ..", {\",
Common
co
1-1-
I
w
1tJ2
" I'~T
"'S'C" "'-
5
C".,
Way to By-pass in
Output Current
\"5
0
~
Fig.7
1.6
1.2
Output Currf'nl /"., (AI
\"S
Input \'oitage
Operational Characteristics of
Fixed Output Regulator
~HITACHI
HA17800P, HA17800 Series
3.2 A Regulator with Increased Output Voltage
Fig. 11 shows the circuit diagram to increase output voltage
utilizing fixed output voltage. The output voltage V out is;
V.",~ (1+ ~:)
r"
R,
Vxx+IQR,
t .. ,
where, Vxx: Output voltage in HA17800P and HA17800
Series
10:
Ouiescent Current in HA17800P and
HA17800 Series
v.•
Fig.13
Fixed Current Regulator
The fixed current output, lout is;
Vxx
I .. ,~ Jf;""+I Q
v~.,
where,
R,
Vxx: Output Voltage of HA17800P and HA17800
Series
10:
Ouiescent Current of HA17800P and
HA 17800 Series
r
)
HIAI78II,
R, =24Q'- f-t ... '"' 0.504
,00
Fig.ll
I
Regulator with Increased Output Voltage
If the resistance ratio, R2/Rl are equal, adopting smaller Rl
and R2 value enables to ignore the voltage drop because of
quiescent current, IOR2.
However, as smaller resistance causes the larger power dissipa'
tion at the resistor, attention must be paid to the power capa·
citance of the resistor.
RI =~.2k
&=l.Ik
,
"
L
/
0
I.P'"
I.N"
10
"
HA17812
~
10
!O
HAJ7R12
Rl=lkQ I
1•• ,~17mA
I
Input Voltage
Fig.14
Rl =2.2k
I.Ik-
HAI780S
-~=nt-
Rl=20.1Q
Rl
=2(J.7~~-
Rr 'OI
'0
,0
.<0
v,.
(V)
Operational Characteristics of
Fixed Current Regulator
,=20.'U.R"r I0 '1 Q
R"
I
,.0
10
~;~17R2' P
-R, '10.92-
HA17fo5
I
HAI7824P
HA17~12
L
II
100
/! 1
3<)
I
300
I I
[o.,::::/l
Fig.12
..,-;
Q
Operational Characteristics of the
Regulator with Increased Voltage
3.3 Fixed Current Regulator
Fig. 13 shows the circuit of a fixed current regulator to pro·
vide a fixed current. This circuit utilizes the fixed output
voltage of HA 17800P and HA 17800 series to generate a fixed
current and is easily designed.
If the resistance of Rl is small and V xx /Rl is far larger than
10, lout is nearly equal to V xx /Rl. The maximum value of
the fixed current output, lout is maximum output current of
HA17800P and HA17800 Series, 1.5A. Then, the power of
the resistor R 1 and the maximum power dissipation of
HA 17800P and HA 17800 Series must be considered.
3.4 Variable Output Voltage (7 to 30V, 0.5 to 10V) Regula·
tor
Fig. 15 shows the circuit of a regulator whose output voltage
is variable from 7 to 30 volts and Fig. 17 shows that of a
regulator whose output voltage is variable from 0.5 to 1OV.
In each case, output voltage is controlled by an operational
amplifier and the output voltage is;
v.. ,~ (1 + ~:)
V
...
~HITACHI
~(Rl+R2)
R 3+R,
(In case of Fig. 15)
Vxx
X
R3 Vxx
Rl
(In case of Fig. 17)
117
HA17800P, HA17800 Series
0
The relationships of the adjusting point potential of the
variable resistor, R, VR and output voltage, Vout are shown
in Fig. 16 and Fig. 18. Operational amplifiers should be
selected considering supply voltage, common mode input
voltage range, output voltage range and so on. When oscilla·
tion happened, inserting a capacitor between Vin and
Common Terminal is an effective measure.
HA1780~
V.. =35V ....
1... r=O-1.0A
t--
40
:::
30
~,.....
I
./
10
V"""
......
/ 'V
-
,/
IS
10
-,
20
Adjusting Power Pilint Potentia! HI (\')
Fig.18
The Variable Output Voltage (0.5 to 10VI
Regulator-Adjusting Power Point
Potential, V. Characteristics
Fig.15
Variable Output Voltage
(7 to 30VI Regulator
I'
\~
HA17805
1••!=O-1.0A
V•• = +lSV
-V.. =-IOV
12
J
3.5 Regulator with Increased Output Current
In HA17800P and HA 17800 Series, output current above 1A
is available and larger current is available by exterAally adding
a transistor as shown in Fig. 19. Then, the relationship of the
current amplification factor, hFE of the transistor Q1 and
current in each parts must be
V
9
./'"
h FE (Q):?h
I
~ I REG
./
V
V
v..
o-~---.Q'r------------------,
V
1
./
R,
\'"
,'Q
.
I" ..
10
Adjusting Power Point Potential VII (V)
Fig.16
The Variable Output Voltage (7 to 30VI
j'legulator-Adjusting Power Point
Potential, V. Characteristics
Fig.19
Regulator with Increased
Output Current (1 I
v•• ,
I
hFE (1"'+1
-l+h
-h
FE
Variable Output Voltage
(0.5 to 10VI Regulator
I
118
I)
Q
FE
The output current decreases from lout to IOREG in appearance and the load regulation will be improved,
A circuit where a current limiter is added to the basic regulator with increased output current in Fig, 19 shall 'be shown in
Fig, 20, The limit value of the output current lout limit is
determined as;
-V.. =-IOV
Flg.17
r)R£(;~
•
Obi
HITACHI
I'1m}'t
-
VBE
,""
Rs('
HA17800P, HA17800 Series
Fig. 21 shows the operational characteristics of the circuit in
Fig. 20. On determining Rcs , line impedance and contact
resistance should be considered.
V,.
Fig. 23 shows the smooth ing capacitance C and ripple
characteristics at input and output when the transformer
K3-D69 is emploved.
Rsc
v•• , ur Cummun =GND
la)
Fig.20 Regulator with Increased Output Current (2)
llAl17805~
1I.}17HII5~\_
( ~'.""lOV\
I
),0
-t"--t--.
,,'-- I-],~~
I-
0/
I-.~!Z t'l
"<.::
-);;-
.K
I
I
,
I
I
I 1/
~~
,
,
",
"rO,21A-
Convn!)n -GND
II
~
>
E
~
.
0
1.0
f-- I--
,,:,,,
\
;
v... ,
\
}/
lIf)
Output Current I,,", (A)
100
,
I'--.
1.000
\0.000
rilt('r Capacitanc(! C (,(.I F)
Fig.21 Operational Characteristics of the Regulator
with Increased Output Current (2)
3.6 Positive and Negative Voltage Regulator
Fig. 22 shows the circuit of a regulator which provides both
positive and negative output, constructed by 2 devices of
HA 17800P and HA 17800 Series. The portion providing posi·
tive output is basically the same as in 3.1 the fixed output
regulator.
In the portion providing negative output, the input of
HA17800P and HA17800 series is floating state, output
terminal Vout is grounded and the negative voltage is taken
out of the common terminal.
Fig. 22 sho;"'s the circuit to get larger power than the com·
mercial source. Its ripple voltage at output will be determined by the characteristics of the smoothing circuit and
ripple rejection ratio in HA 17800P and HA17800 series - 78
dB typ: in case of 05P, 05.
v.. ,
Fig.22
2.0
Ii
>=
,1#
,,'
~
Fixed Output Regulator
Ib)
Fig.23
Input Output Ripple Characteristics
Characteristics of Fixed Output Regulator
with a Rectifier
3.7 Switching Regulator
Fig. 24 shows the circuit of a switching regulator. This
circuit stabilizes the output voltage with self-oscillating and
the change in output voltage will be absorbed by changing
the conducting period of the switching transistor O. The
minimum operational input voltage, Vin min is;
V" min
~
Vxx + Vz ( ZD,)+ VEB ( Q)
The zener diode, ZDl is to reduce the voltage applied to
HA 17800P and HA 17800 series. The period during the
switching element Q is ON becomes longer with the increasement of load current and the oscillation cycle is nearly proportional to the inductance L. The current capacitance of Q
must be twice as large as the load current.
Fig. 25 shows the operational characteristics of the circuit in
Fig. 24.
-v•..
Positive and Negative Voltage Regulator
~HITACHI
119
HA17800P, HA17800 Series
v••
v..
1:
V06E
-
Fig.24
Z.OOO.uF
Switching Regulator
~A178112
i .. ,'"2.3A- f-
20
:;
"
I
~
~
II
10
II
f
8
~v.( ZDI) =8.2V
V,( ZD,) =0
I
V
I
)
10
J
20
30
40
Input Voltage V,. (V)
Fig.25
120
Operational Characteristics
of the Switching Regulator
~HITACHI
A'178MOOP,HA178MOO S erles
·
H""
.3-terminal Fixed
Voltage Regulators
.FEATURES
•
•
Output Current more than 500mA
Possible to be widely used as power source with various
output voltage; 5V, 6V, 7V, 8V, 12V, 15V, 18V,.20V &
24V
No external compensation circuit required.
TO-220AB package and easy mounting & easy design for
heat sink, as same as a transistor.
Built-in current control circuit protects elements from destruction by short circuit.
Chip junction temperature limiting circuit built in protects elements from thermal destruction.
Internal power dissipation limiting circuit built in protects
transistors in output stage.
. . HA 178MOOP Series
Industrial Use; . . . . . . . . .
. . . HA178MOO Series
Commercial Use; . . . . . .
•
•
•
•
•
•
•
(T-220AB)
• PIN ARRANGEMENT
• CIRCUIT SCHEMATIC
o
r-~----"T----"---"---'r--~--o !npl:1
1<,
......~......
J-..,.....".-+~L----
--o()lJIPUl
I
2
3
. Top Vie\\'
Item
v'n*
Input Yoltag-t>
l( ••
PO\\"PI"
Dissipation
Operating Temperature
P r •••
To,.
Junction Temperature
T,
Storage Temperature
\ot(>
*
**
***
I
(Ta"~25°C)
Symbol
Input Voltagp
Input
Common
3. Output
[I.
.ABSOLUTE MAXIMUM RATINGS
1
2
T'I,f
H.ating
Unit
35
V
6
4
40
V
7.5
\\"
20 to I 75
'c
20 to I 125
'c
'c
55 to 1125
For IIA178~1051' -IIA178~1181). HA178M05 -- HA178M18
For HA178~120J>, IIAI78~1241'. HA178M20. HA178M24
2
@
;,
,
Cll
,
-
I
,
20
CD
@
40
60
--
80
(I'
-'120
Infinity heat sink
~ ~~~/)~\' h~::t s:~~k f ~::Ii~~:~c~ixed
FnHOI\" tht' df'ratinll' ('un'j' shown h('1u\\.
100
Ambll'nt Temperature Til ("C)
thermal
f4
:'\0 heat sink
thermal resistance
0" - 3.0·C/W 'l,p, ]
5.0·C/W I max!
[
8,. ""·62'C/W I typ)
72'e/W maxi
.STANDARD CONNECTING CIRCUIT
I
@HITACHI
121
140
\
HA178MOOP,HA178MOO Series
• HA178M05P,HA 178M05 ELECTRICAL CHARACTERISTICS
(Vi.-l0V, [",-350mA, O'C;;; T j ;;; lZ5'C, C,.-O.33p F, C,.,-O.lpF, unless otherwise specified.)
Symbol
Item
Output Voltage
VO"!
O'V.,,,.
Line Regulation
Load Regulation
O'V,,,,.
Quiescent Current
I.
Quiescent Current Change
0'10
Output Noise Voltage
V.
Ripple Rejection Ratio
RREJ
Drop Out Voltage
Vd •op
Test Condition
T,~25'C
7V~ V..~20V, PT~7.5W, 5mA~/.,,~350mA
7V~ v..~ 25V, I." ~ 200mA
SV~ Vi.~25V, 1... ~200mA
5mA~/, .. ~500mA
T,~25'C
T,~25'C
5mA~/.,,~200mA
-
-
Tj~25'C
SV~ Vi.~2SV,
1,.. ~200mA
10Hz~j~
j~120Hz,
100kHz
1... ~100mA
1... ~300mA
T,-2S'C
-
SmA~/... ~3S0mA
Ta~2S'C,
Output Short-circuit Current
los
Peak Output Current
[",II'"
Temperature Coefficient of Output Voltage O'V... /d'T,
min
4.S
4.75
-
1.. ,-3S0mA, T,-2S'C
T,-2S'C, V..-3SV
62
62
-
-
T,-2S'C
1.. ,-SmA, O'C
~ T,~
12S'C
-
typ
5.0
3
1
20
10
4.5
40
80
SO
2.0
300
700
1.0
max
5.2
5.25
100
50
100
50
6.0
O.S
0.5
-
-
Unit
V
mV
mV
mA
mA
J'V
dB
V
mA
mA
mV/'C
• HA178M06P,HA 178M06 ELECTRICAL CHARACTERISTICS
( Vi.-llV, [",-350mA, O'C;;; T j ;;; lZ5'C, Ci.-O.33p F, C,.,-O.lp F, unless otherwise specified.)
[tem
Symbol
Test Condition
T,~2S'C
Output \'oltage
,VONI
O'V, ...
Line Regulation
Load Regulation
crV/old
Quiescent Current
I.
quiescent Current Change
0'1.
SV~ V..~
21V, PT~7 .S\\', SmA~/... ~3S0mA
SV~ V..~ 2SV,I, .. -200mA
T,-2S·C.
9V~ V.. ~2SV,I .. ,~200mA
SmA ~ I •• , ~ SOOmA
T,~2S'C
SmA ~ I, .. ~ 200mA
V.
Ripple Rejection Ratio
RREF
Drop Out Voltage
Vd .,,!'
Output Short-circuit Current
Ivs
Peak Output Current
loptd
Temperature Coefficient of Output Voltage O'V.. '/O'T,
typ
6.0
-
5
1.5
20
10
4.5
-
-
T,~2S'C
Output r..oise Voltage
min
S.7S
5.7
9V~ V..~25V,
1... ~200mA
SmA~/.. ,~3S0mA
Ta-2S'C, 10Hz~j~ 100kHz
j-120Hz,
1,.. -100mA
T,-2S'C
1.. ,~300mA
1,.. -3S0mA, T,-2S'C
T,-2S'C, V..-3SV
T,-2S'C
1... -5mA, O'C s: T,S: 125'C
-
S9
59
-
-
-
max
6.25
6.3
100
50
120
60
6.0
O.S
0.5
45
-
80
-
80
2.0
270
700
-0.5
-
-
-
Unit
V
mV
mV
mA
rnA
J'V
dB
V
mA
rnA
mV/'C
• HA 178M07P,HA 178M07 ELECTRICAL CHARACTERISTICS
(Vi.-lZ.5V, L,-350mA, O'C;;; T j ;;; lZ5'C, Ci.-O.33p F, C", =O.lp F, unless otherwise specified.)
Symbol
Item
Output Voltage
Vnl
Line Regulation
O'V., ..,
Load Regulation
Quiescent Current
Test Condition
T,~25'C
9VS:
V..~
T,-2S'C
~Vo I~.d
T,~2S'C
I.
T,~25'C
7 .5\\'; SmAS:/... ~350mA
9V~ V..~ 25V, I .. , ~ 200mA
10V~ V..~2SV, 1... -200mA
SmA~/.. ,~SOOmA
5mA ~ I. .. ~ 200mA
22V,
10V~ V..~
PT~
25V, 1.,,-200mA
Quiescent Current Change
0'10
Output r..oise Voltage
V.
Ripple Rejection Ratio
RREF
Drop Out Voltage
Output Short~circuit Current
Vdrop
los
Peak Output Current
10 p,"
Ta-25'C, 10Hz ~j~ 100kHz
j-120Hz, 1/.,,-100mA
T,-2S'C 1/... ~300mA
I ... - 350mA, T, - 25'C
T,-2S'C, V..-3SV
T,-2S'C
Temperature Coefficient of Output Voltage
O'V.. ,/O'T,
1... -SmA, O'C ~ T,~ 125'C
122
5mA~/.. ,~350mA
~HITACHI
min
typ
6.72
6.65
7.0
-
5.5
1.7
23
10
4.6
-
57
57
-
-
-
4S.S
SO
SO
2.0
260
700
-0.5
max
7.2S
7.35
100
50
140
70
6.0
0.8
O.S
-
Unit
V
mV
mV
rnA
rnA
J'\'
dB
,.
mA
rnA
m\'/'C
HA178MOOP,HA178MOO Series
• HA 178M08P;HA 178M08 ELECTRICAL CHARACTERISTICS
(Vi'~ 14V, L .. ~350mA, O°C;:;:: Tj~ 125°C. C,,~O. 33Jl F. C".~O.lJl F. unless otherwise specified.)
Item
Symbol
Vo,,'
Line Regulation
oV. ,,,'
Load Regula tion
aVo
Quiescent Current
fQ
Quiescent Curre-nt Change
ofQ
/00"
min
IO.5\''' V.. "23\', Pr";7 .5\\', 5mA';;f.. , ,;;350mA
10.5V';; V.. ';;25V,f ... ~200mA
T,~25'C
llV,;; V.• ';;25V,f,.,~200mA
5mA'; f ....." 500mA
T,~25'C
5mA'S f .. ,';; 200mA
7.7
7.6
1O.5V';; V.. ,;; 25V, f ... ~200mA
5mA -e I..," 350mA
Ta~25'C, 10Hz" j-e 100kHz
j~120Hz,
f •• ,~IOOmA
V.
Ripple Rejection Ratio
RRF:f
T,~25'C
56
56
f ... ~300mA
VdrIJp
f .... ~350mA,
Vo s
T,~25'C,
T,~25'C
V.,~35V
/" put
T,~25'C
oV... /oT,
f .... ~5mA, O'C.;; T,o; 125'C
typ
8.0
6.0
2.0
25
10
4.6
T,~25'C
Output Noise Voltage
Drop Out Voltage
Output Short-circuit Current
Peak Output Current
Temperature Coefficient of Output Voltage
Test Condition
T,~25'C
Output Voltage
max
8.3
8.4
100
50
160
80
6.0
0.8
0.5
52
80
80
2.0
250
700
-0.5
Unit
V
mV
mV
rnA
rnA
JlV
dB
V
rnA
rnA
mV/'C
.HA178M12P,HA178M12 ELECTRICAL CHARACTERISTICS
(V,,~ 19V. I".~350mA, O°C ~ T,~ 125°C. Ci,~O.33Jl F. Co", ~O.lJl F. unless otherwise specified,)
Symbol
Item
Test Condition
min
T,~25'C
Output Voltage
VO"'
Line Regula tion
oV.. ,..,
I.oad Regulation
crv"
()uiescent Current
fQ
Quiescent Current Change
of"
Output :Xoise Voltage
V.
Ripple Rejection Ratio
RIlf.F
Drop Out Voltage
Vd,up
I"ad
14.5\''': V.. " 27\', Pr';; 7.5\\', 5mA,;; f ... ",350mA
14.5V';; V.. ::;:30V, f .. ,~200mA
T,~25·C
16V,;; V..::;:30V,f ... ~200mA
5mA::;: f ... ::;: 500mA
T,~25'C
5mA';; f ••• ';; 200mA
ll.5
11.4
8.0
2.0
25
10
4.8
T,~25·C
14.5V5 V.. "'30V, f,",~200mA
5mA -;;; /' .. ,,; 350mA
Ta~25'C, 10Hz,;;j::; 100kHz
j~120Hz, I f •• ,~IO.OmA
T,~25'C
I..,~350mA,
Output Short-circuit Current
Ius
Peak Output Current
/" p •• t
Temperature Coefficient of Output \'oltage oV.. ./oT,
T,~25'C,
55
55
I /".,~300mA
T,~25'C
v..~
35V
T,~25'C
f ... ,~5mA, O·C
0;
typ
12.0
T, « 125'C
max
12.5
12.6
100
50
240
120
6.0
0.8
0.5
75
80
80
2.0
440
700
-1.0
Unit
\(
mV
mV
rnA
rnA
JlV
dB
V
rnA
rnA
mV/'C
• HA 178M15P .HA 178M15 ELECTRICAL CHARACTERISTICS
( V,,~23V. I ••• ~350mA. O'C ~ T, ~ 125°C, C,,~O.33Jl F. Coo. ~O .1Jl F, unless otherwise specified.)
Symbol
Item
Test Condition
min
T,~25·c
Output Voltage
V .. ,
Line Regulation
oV. ,,,'
17 ,5\'-;; \'" <; 30\', Pr'" 7.5\\', 5mA;C f ... .,; 350mA
T,~25'C
T,~25'C
17.5V~
20Vo;.
V.. "30V,I.,,~200mA
v.. <; 30V, /."
I.oad Regulation
oVa
fo
T,~25'C
Quiescent Current Change
ofo
17 .5V'S V.. ~, 30\',
5mA~f ... ';;350mA
Output :\oise Yoltage
V.
Tu~25'C,
Ripple Hejectinn Ratio
RHH
T,~25'C
Drop Out Voltage
Output Short-circuit Current
Peak Output Current
Vd,,,p
f .. ,~350mA, T,~25·C
T,~25'C, V.. ~35V
/" p •• k
T,~25'C
Temperature Coefficient of Output \'oitage
oV.. ,/oT,
f .. ,~5mA, O'C
j~
["s
120Hz,
00
5mA ~ f.,,';; 200mA
L.,~200mA
10Hz~j~
100kHz
L,,~IOOmA
f" .. ~300m;\.
<;;
typ
15.0
10
3.0
25
10
4.8
200mA
5mA~f ... ::;500mA
Quiescent Current
lOAd
14.4
14.25
T,o; 125'C
~HITACHI
54
54
90
70
70
2.0
240
700
-1.0
max
15.6
15.75
100
50
300
150
6.0
0.8
0.5
Unit
V
mV
mV
rnA
rnA
pV
dB
V
rnA
rnA
mV/'C
123
HA178MOOP,HA178MOO Series
• HA 178M18P ,HA 178M 18 ELECTRICAL CHARACTERISTICS
(Vi.-27V, / ... -3S0mA, O'C;:i; Tj;:i; 12S'C, Ci.-O.33,uF, C".-O.l,uF, unless otherwise specified.)
Symbol
Item
Output Voltage
VOUI
Line Regulation
ov. ""
Load Regulation
8Vo1oltl
Quiescent Current
I.
Quiescent Current Change
01.
Output Noise Voltage
V.
Ripple Rejection Ratio
RREF'
Drop Out Voltage
Vdrap
Output Short-circuit Current
los
Peak Output Current
loped
Temperature Coefficient of Output Voltage <1V.. ./oT,
Test Condition
min
Tj -2S'C
21V;;; V,,;>; 33V. PT;>;7 .SW, SmA;;;I,",;;;3S0mA
21V;;; V..;;;33V, I".-200mA
Tj -2S'C
24V;;; v..;;; 33V, I.,. - 200mA
SmA;;; I ... ;;; SOOmA
T j -2S'C
SmA;>; I ... ;>; 200mA
T,-25'C
21;>; v..;>; 3SV, I ••• -200mA
SmA;;;I••• ;>;3S0rnA
Ta-2S'C, 10Hz;>;j;>; 100kHz
j-120Hz, II... -IOOrnA
T j -2S'C II ... -300rnA
I ••• -3S0mA, Tj -2S'C
T,-2S'C, V..-3SV
T j -2S'C
I ••• -SmA, O'C';; T j ';; 12S'C
17.3
17.1
-
typ
18.0
-
-
10
5.0
25
10
4.8
-
-
-
-
S3
53
-
-
110
70
70
2.0
240
700
-1.0
max
18.7
18.9
100
50
360
180
6.0
0.8
0.5
-
Unit
V
mV
mV
rnA
rnA
pV
dB
V
rnA
rnA
rnV/'C
.HA178M20P,HA178M20 ELECTRICAL CHARACTERISTICS
(V,,-29V, /".-3S0mA, O'C;:i; Tj;:i; 12S'C, Ci.-O.33,u F, C ... =O.l,uF, unless otherwise specified.)
Symbol
Item
Output Voltage
Valli
Line Regulation
OV•• ".
crVa
Load Regulation
la.d
Quiescent Current
I.
Quiescent Current
01.
Output Noise Voltage
V.
Ripple Rejection Ratio
RREF
Drop Out Voltage
VdToP
Output Short·circuit Current
los
Peak Output Current
10 p,d
Temperature Coefficient of Output Voltage oVoo./oT,
Test Condition
Tj -2S'C
23V';; Vi.;>;3SV, PT;>;7 .SW, SmA;>; I ••• ;>; 3S0mA
23V;>; v..';; 3SV, I ... - 200rnA
T j -2S'C
24V';; V,.';;3SV, I ... -200mA
SmA';; I ... ;>; SOOrnA
T,-2S'C
SrnA';;I ... ';;200rnA
T,-2S'C
23V;>; Vi.;>; 3SV, I ... -200rnA
SmA::;; I ... ::;; 3S0mA
"
Ta-2S'C, 10Hz::;;j::;; 100kHz
j-120Hz, II... -IOOmA
T,-2S'C II... -300mA
I ... -3S0mA, T,-2S'C
T,-2S'C, V..-3SV
T,-2S'C
I... -SmA, O'C::;; T j ';; 12S'C
min
19.2
19
typ
20
-
~I
-
10
S.O
30
10
4.9
100
50
400
200
6.0
0.8
0.5
-
-
-
53
53
-
-
110
70
70
2.0
240
700
-1.1
max
20.8
Unit
V
mV
mV
rnA
rnA
-
pV
-
dB
-
V
rnA
rnA
mV/'C
-
• HA178M24P,HA 178M24 ELECTRICAL CHARACTERISTICS
(Vi.-33V, /".-3S0mA, O'C;:i; Tj;:i; 12S'C, Ci.=O.33,uF, Coo. =O.l,uF, unless otherwise specified.)
Item
Output Voltage
Symbol
Vnl
Line Regulation
oV• •,"
Load Regulation
cS'Vo/qf;d
Quiescent Current
I.
Quiescent Current Change
01.
Output Noise Voltage
V.
Ripple Rejection Ratio
RREF
Drop Out Voltage
Vd.a,
Output Short-circuit Current
los
/Q ,elk
Peak Output Current
Temperature Coefficient of Output Voltage oVoo./oTj
124
Test Condition
T,-25'C
27V;>; V..::;;38V, PT::;; 7 .S\\', SmA::;; I ... ;>; 3S0mA
27V;>; V..::;;38V, I ... -200mA
Tj -2S'C
28V::;; V..;>;38V, I ... -200mA
SmA::;; I".';; SOOmA
T,-2S'C
SmA;>;I ... ';;200mA
T,-2S'C
27V';; V,,';; 38V, Ioo.-200mA
SmA';; I ... '" 3S0mA
Ta-2S'C, 10Hz;>;j::;; 100kHz
j-120Hz,
I ... -IOOmA
T,-2S'C
I ... -300mA
I ... -350mA, T,-2S'C
T.-2S'C, V.. -3SV
T,-2S'C
I ... -SmA, O'C '" T,;>; 12S'C
eHITACHI
min
23.0
22.8
typ
24.0
-
10
5.0
30
10
4.6
-
-
50
50
-
-
-
170
70
70
2.0
240
700
-1.2
max
25.0
25.2
100
50
480
240
8.0
0.8
0.5
-
-
-
Unit
V
mV
mV
rnA
rnA
J'V
dB
V
rnA
rnA
mV/'C
HA17524G,HA17524P
• FEATURES
IIAI7524(;
•
•
•
•
Pulse Width Modulation (PWM)
Wide Operating Frequency Range . . . . . 450kHz (typl
Low Quiecent Current . . . . . . . . . . . . . . . 5mA typ
Good Line Regulation (0.2% typ) and Load Regulation
(0.4% typ)
•
Provides independent output stage of 2 channels. Wide
external circuit application including single end method
and push-pull method.
Reference Power Source Output Stage and Switching
Output Stage include current limitting protection circuit.
•
•
.Switching Regulator Controller
(OG-1SI
HAI75241'
Compatible with SG3524
(OP-1SI
• BLOCK DIAGRAM
• PIN ARRANGEMENT
+5V to all
I--~I-----T\!
whule thl' illterual nrl'l.!I!ry
C,
(j{amp)
(Top View)
.ABSOLUTE MAXIMUM RATINGS:
(Unless otherwise specifieb,
Supply
\·o/tage
L
Reference Output Current
I H.f:1-
CUl'rent througn Cr Terminal
In
Total Power
7"'1"
Strorage Temt'pel'at- \ Cenlip
:\ote
DisSipation Derating Table
Rating
Gnit
I Plastic
40
\.
100
mA
50
mA
600
m\\'
75
'c
- 20 to
j
- 65 to ' 150
T",
:\utt'
.\'0
Package
Power
Ratin'
Derating
Factor
Above To
l'
600m\\'
8.3mll'/'C
52.7"<;
G
600m\\'
7.6m\\,/,C
71"<;
\,2
mA
}"
Dissipation
Operating Free-Air
Tem2erature Range
Hangl;'
+25"C)
V"
Collector Output Current
ContinnnU5
Ta~
Symbol
Item
. 55 to
~
'<;
125
I. \\ lth rt'SPt'ct to nt'twurk ~r(jund tf-'I'minal
2. Tht' rt·ft·rt'nn' \ollagt' ran ht, J,(iu'n hy cunnl:'ctlnj( til(' \"C(' and 5\' rl:'fl:'l'l:'nc{' output
pins hoth to thl:' SUJlJlI.Y \'oltagt·, In this nmfigul'ation, \"cc 6\'max,
3, HA17524P: Value at T,,~52,T(,. In case of more than it, 8.3mW''(: derating shall be performed.
HA17524G: Value at
T,,~7lt',
In case of more than it, 7.6mW 't' derating shall be performed.
~HITACHI
125
HA17524G,HA17524P
.ELECTRICAL CHARACTERISTICS (Vcc =20V, J=20kHz, Ta=25'C)
Symbol
Item
Regulator
VREF
Input Regulation
O'Vo LiRe
Ripple Rejection
Output Regulation
RREJ
f~120Hz
oVo Load
I .. ,~O to 20mA
Output Voltage Change \\ith Output
Temperature
VREr=O
Vlc~2.5V
Input Bias Current
IT
Vlc-2.SV
AVD
Common-Mode Rejection Ratio
VCM
CMR
Range
Unity-Gain Bandwidth
BW
Output Swing
Vop
ase.
f
Frequency
Standard Deviation of Frequency
Frequency Change with
Ta~2S'C
CT-O.OOlpF,
V cc~ S to 40V,
V
-
10
30
mV
66
-
dB
20
50
mV
0.3
1.0
%
0.4
1.36
%
100
-
rnA
2
10
2
10
mV
pA
60
-
-
dB
70
-
dB
-
MHz
3.S
-
kHz
3
0.5
-
-
450
-
V
V
-
%
1.0
5.0
10
%
%
-
5.0
13.6
3.5
-
V
C T~ O. OlpF, 3Pin
-
0.5
-
ps
-
-
%
V'h 0
duty~O
-
1.0
-
V
Vth"'~z
duty=max
-
3.5
-
-
-I
-
V
pA
rJf L, ..
v)
Ouput Pulse Width
Tp
Maximum Duty Cycle
D...
(penkl
100kClC~Const
Vcc-S to 40V
Ta~O
to +70'C
Ta~-20
to +7S'C
3Pin
45
I,
Input Voltage Range
VIS
Sense Voltage
Vs
-0.7
-
()/o
V
V(Pin9)~2V, Ta~25'C
V( Pin2)- V(PinJ) "'SOmV
Ta~-20
to +7S'C
Sense Vol tage Change with Temperature
rJVs/rSTa
Collector-Emitter Breakdown Vol tage
VCE
Collector Off-State Current
I
Collector-Emitter Saturation Voltage
VC£\U!I
Ic~20mA
Emitter Output Vol tage
V,
VC(·~20V, I,~
Turn-off Voltage Rise Time
/,
Turn-on Voltage Fall Time
If
L~d
VCE~40V
HITACHI
200
220
-
0.2
-
-
-250pA
V2
~2V,
0.01
mV
mW'C
50
V
pA
2
V
1
IS
-
V
-
0.2
-
ps
-
0.1
-
ps
-
5.0
10
rnA
17
Pins
1,4,7,S,9,.l1,14, grounded
Note) -DuratIOn of the short· circuit should not ex.(,E'ed one second.
ISO
40
-
Rc~2kCl
1sT
$
5
to+1.0
All other pi ns open.
126
5.4
-
RT-J.S to
Output Ampl i tude
Standby Current
Unit
5.0
-
I!;f
Vcc~40V,
Total Device
RT~2kCl
max
4.6
-
rJf/rJTa
Input Threshold Vol tage
typ
min
I.St03.4
-
p
Temperature
Input Bias Current
Output
to +75'C
VIO
Common-Mode Iuput Voltage
Limiter
to +70'C
Ta~-20
los
Open-Loop Voltage Gain
Current
Ta~O
to 40V
Input Offset Voltage
Amplifier
Comparator
rJVo/rSTa
VCC~S
Short-Circuit* Output Current
Error
Oscillator
Test Conditions
Output Voltage
HA17524G,HA17524P
.APPLICATION NOTE
•
Principal in HA 17524 Operation
+ 5 \"
I - - - - + - - to wh"l(' Iht' mtt'rna! circuitry
Fig. 1
HA17524 Block Diagram
HA 17524 is a switching regulator circuit using Pulsewidth
Modulating Method (P.W.M) constructed by the block shown
in Fig. 1.
Timing resistance, RT and timing capacitance, CT control the
oscillating frequency and the CT is charged by a constant
current generated by the RT. Lump signals (saw-teeth wave)
at CT terminal generated in this oscillator is available for
reference input signal to comparators which control the
pulse-wideth.
'1'"
POSitiVI'
OUljJ11I
Hl'guia!l'u
Commonly connected outputs from the error-amplifier, the
current limiter and the shut-down circuit is provided to the
comparator, \l\!hich enable to break output stage by input
signal in anyone of those circuits.
• Blocks Description
Oscillator; The oscillating frequency f is calculated from the
following equations. Fig.3 shows one example.
f""1.l5/(RT' C,)
IHff
R T~ 1. 8kO to 100kO
CT~O.OOl to O_l,uF
f ~ 140Hz to 500kHz
\",,1111,:<,
40uk 1-'"7-I---j-----j----j
(a
I
Forward Output
stahilizingSourc('
I
h
I
H{'\"t~rsl' Output
Stahi I i zing
j{)Okl--~I-","",
SOlll'CP
'C 10k I----''''''I---j--''
~ 10k I - - - I - - - j ,
"~
Fig.2
Biasing in Error-Amplifier
As shown in Fig. 2 the reference voltage connects to noninverted on inverted input terminal of error-amplifier via
resistance divider.
The output voltage from the error-amplifier is compared with
the lump signal of the Timing Capacitance CT, as shown in
Fig. 1 and comparator can provide a signal with modulated
pulse width.
This signal, then, control output transistors 01 and 02,
making an open loop to stabilize output Voltage.
eHITACHI
-
4k
Ik
4110
Fig. 3
Oscillating Frequency vs
Timing Resistance
127
HA17524G,HA17524P
Then the lump wave shown in Fig. 4 is available at pin 7, CT
Terminal since the CT is charged by the constant current I
generated by the RT.
Cr Terminal Waveform
J~ V.H'F- V£B(~:)- VES(Ql)
I!J.V- V H -
Vl.~3.8-0.9=2.9V
Current Limiter: Threshold Voltage (VS) of sense amplifier
for current limiter is calculated as follows;
VS=VBdQd+Il R,-VBE(Q')
=I,R,
=200mV typo
At Current limiter Sense Amp shown in the Fig. 6, when
V + - V _ ~ 200m V, Q1 turns "ON", Phase compensation
terminal becomes low level and Output Switching element is
cut off.
Fig. 7 shows an example of detecting current limit. As the
range of Input Voltage is -O.7V to +1.0V; detection output
of current limit is provided from GND Line.
T.....l./·Il.V
C,
Fig.4
Oscillating Circuit and C,
Terminal Waveform
The output pulse signal at oscillator is used as elements in
Flip-flop circuit and (a synchronous signal of clock-pulse)
switching. The pulse-width which can be controlled by the
timing capacitor CT as shown in Fig. 5 provides function to
gain a dead time of output.
0
Fig.7
An Example of detecting current limit
Vcc=20V
T.~25·C
;::•
/
1.0
~
£
0.4
~
0.1
0.001
V
0.004
V
+ Fnn
I
R,
fl.-\17524
R,
-I
R,
l( V(8~Ut)+ Rl+R2
VoR,)
//
/o(mu!=lfs
Ios~~
Rs
v,,, ..,, =200mV
0.01
0.04
0.1
Timing Capacitance ('1 (/IF)
•
Operating waveform at every part
HA17524
Fig.5
Dead Time vs Timing Capacitance
+-----4--,.
Sk
Reference Voltag.e: The regulator (reference voltage: VREF
~ 5 ± O.4V) is built in Integrated Circuit. It can be used as reference power supply of error amplifier which determines
Output Voltage Output (V out ). And also, it is connected as
bias source of another circuit in IC.
Error Amplifier: Biasing in error amplifier is shown in the
Fig. 2. Input Applied Voltage is required to be set within the
range of common-mode Input Voltage (1.8V to 3.4VI. To
control gain of error amplifier, shunt resistor is inserted
between phase compensation terminal (Pin 9) and GND. If
resistor and capacitor are inserted between phase compensation terminal (Pin 9) and GND in series, phase compensation
is available.
Sk
""';'U..fIf1l'-4--<> Vo"
SV
(Dlnv
(2) Non In\'
HII-.....--l@Ref
H_-~@RT
~rT
3k
E, @I--......- -......
+CL@I------~-......
-CL@~----_<
0.001
SOk
Fig.8
Unit R: Q
C: ,uF
Rs
Breakdown Voltage types
Chopper Switching Regulator
Fig.6
128
eHITACHI
Sense Amplifier for Current Limiter
HA17524G,HA17524P
Fig. 9 shows operating waveform at every part, when the
circuit configuration of breakdown voltage type chopper
switching regulator (shown in the Fig. 81 is used. Operating
Conditions are as follows, f = 20kHz, VOUT = 5V. At
output section, two channels are connected in parallel. Operating waveform inside IC is shown at the same time.
• Circuit Applications
Simple polarity switching regulator: Fig. 10 shows the
circuit configuration of HA 17524 polarity switching regulator which has small current capacitance (VOUT = -5VI.
Vee = 15V
.CAUTIONS
Compared with the conventional series regulator, switching
regulator generates high frequency noise by switching current
quickly. To reduce noise, the following shall be followed.
11 As a general rule, insert line filter in order to reduce noise
at the side of Input.
21 To reduce noise at the side of output,
(al Output wiring should be twisted.
(bl Power Source and output wiring should not be
bundled.
(cl Capacitor should be inserted at the side of .Ioad.
(dl Power frame should be grounded.
31 When grounding frame, output (OVI and Shielding wire,
Only one of them should be grounded. Impedance must
be as low as possible. And also, Power frame should be
grounded. In case of choosing external parts-9xternal
switching transistor, diode, coil and etc. -, it is necessary
to consider their capacitance and characteristics.
5k
Your
E,
......-II-----jCT +C.L
0.01
8~~n -C.L
Ose Out
GNComp
Unit R: Q
c: "F
Fig. 1 0
Simple Type Polarity Conversion
Tracking switching regulator: The circuit configuration of
tracking regulator which uses transformer is shown in the Fig.
Fig. 11 (VOUT = ±5VI.
Cr Terminal
nsr Ol"r
Comparator
OUT
Fig.ll
Tracking Switching Regulator
Push-pull switching regulator: Fig. 12 shows the circuit
configuration of Push-pull switching regulator which uses
transformer. Th is system is su ited for large power. Output
transistors inside HA 17524 can drive external switching
transistors respectively.
'"
Sk
1m!!
(LUI
L - - - - - - - l - - - . - L - - -_ _---l----l-_ _ _ _---4
Fig.9
Operating Timing Chart of each part
Fig.12
$
Unit R: Q
(': "F
.,j,.
HITACHI
Push-pull Switching Regulator
129
HA17524G,HA17524P
OUTPUT SATURATION VOL TAGE VS.
COLLECTOR CURRENT
OUTPUT VOL TAGE VS. SUPPLY VOLTAGE
1. n
6. 0
~
V
):= ~f-j-
/V
5. 0
0
II
V
V
0
/
5
0
/
/
1. II
/
0
10
20
40
30
Supply Voltage \h (V)
,
10
.,.0
3n
40
5n
Collector Current 1(' (m':\)
OSCILLATING FREQUENCY VS.
TIMING RESISTANCE
OUTPUT VOL TAGE VS. FREE AIR
TEMPERATURE
5txlk "'-;"""''''T'TTTTTr-r1'',.
limn
11111"
f---N-++ttttt---+-+- 'V",cc;':ib\,
f--+-I'kHftl4l----l-+r = 25'C
5. I .-,-,-,---.--.-.-....-.-r-.-"II"-,
I--H-t-+-+-++--f-+-ilicc':'2!iv l(j= OmA
=- 4.9I-HH-+-+++++-+-HH---1
05
Timing Resistance Rr (k12
~
Frrt":\ir Tt'mpl'ratUrl' ('C,
DI;AD TIME VS. TIMING CAPACITANCE
ItI
~~c l~~~=
To 25'C-
3
L
.•
/'
~
;: 1. II
l
./
n. :,
O. 1
0.1101
./
~ I-""
0.003
Timing
130
0.01
0.03
CapRI'iIIl.IlCt' ('1' (/1
0,1
F)
~HITACHI
A/O,O/A Converters
•
HITACHI
131
HA19202, HA19203M P
With development of the digital electronic technique, AID
converters have been playing an important role of interfacing
analog-to-digital conversion_ Requirement for the high-speed,
high-performance and low cost AID converters is increasing
especially in color TV l!Pplications which need analog-todigital conversion for video signal processing_
e4-bit AID Converter
HA19202
The Hitachi AID Converter HA19202 has a 4-bit parallel
sampling system_ The HA 19202 is useful for video signal
processing .
• FUNCTIONS
•
•
•
•
•
•
•
4-bit Comparators
Gray Code Converter
ECl-to-TTl Converter
latch Circu its
Gray-to-binary Code Converter
Sampling Clock Pulse Shaper
Underflow Output Switch
(DP-22)
HA19203MP
.'
• FEATURES
•
•
•
•
•
Conversion Time
The sampling rate is 10 million sampleslsec (max).
Output Stages
Open-collector type, TTL compatible
Expansion to 5-bit AID Converter
Two HA19202's easily make a 5-bit AID converter, as
shown in Fig. 2. Table 1 shows the output patterns in the
4-bit application. The output patterns in the expanded 5bit AID converter is shown in Table 2. V L is the lowest
reference voltage and VH is the highest reference voltage.
High-performance
The comparator utilizes an ECl circuit. The output conversion to Gray code is achieved by an ANDIOR circuit.
The error at the middle converting point will not exceed
an lSB.
Reference Voltage of Comparator
The power supplies, Vl and VH, should have a low impedance to prevent the external influence.
• PIN ARRANGEMENT
HA19202
(V{"f'l
(MP-18)
HA19203MP
K Sampling C\IH'k
Ii L.atch ON/OFF
~1.l·nderflow,
02"
ITop Yit'Wl
(Top \'jew)
132
~HITACHI
HA19202,HA19203MP
I
I
L_____ ~_
~-__=-_~_-=-'_______ j
_=_-_
to Gnd or to Vet
\\, > I.lr
\'1I"\"\I-?\.!I
ruiiloU.,\"
\
\1I,11".itIJI'
hI
®----1""t_ "
=_----'---'--.,!
~.Jml,11111!
"\
Output
1)1)1'1: 1 111:
~-H-t_"
CI,,,·1..
1'111 ~"
r-
~!t.:n[tl---' " " - - - - - - - - - - - -
" . ,'
.
-
r-
\ IJ c'''U\','rh,tl 1)1111'111
Fig. 2
Fig. 1
Timing Chart
Expansion to 5-bit AID Converter
• ABSOLUTE MAXIMUM RATINGS
(Ta~25'C)
S ym bol
Item
V, ,
Hating
Unit
VI\
7.0
7.0
Output \'oltage at M. Q
V..
15.0
V
Power Dissipation
1',
350
10- +75
--55- + 150
mW
4.5-6.5
V
Supply Voltage
Input Voltage at
K.L
Operating Temperature Range
T. ,.,
Storage Temperature Range
T."
V,
Operating Supply Voltage Range
•
HITACHI
V
V
·c
·c
133
HA19202,HA19203MP
Table 1: Output Patterns (4-bit)
a) L: GND
b) L: Vee
Vs
Vs
V. V,· V, V, V. V. V. V, V. V,
VIO VII
Vl3
VIZ
@ L
L
H L
H
L
H
L
®
L
L
L
H
H L -L H H L
L
H H
L
L
H H
@ L
L
L
L
L
L
L
H H H H
H
L
H L
H L
H L
H H H H L
L
v,
Vo V,
VI. VIS
H
@ H L
H
L
L
H
L
H L
H L
H L
H
H
L
L
H H L
L
H H
L
L
H
H L
L
H
@ H L
L
L
H H
H H
L
L
L
L
®
® L L L L L L L L L H H H H H H H H
@ H H H H H H H H H H H H H H H H H
V. V, V. V9 VIO VlI VIZ V13 V14 VIS
V, V. V.
H
L
H L
H
H H H H
® H L L L L L L L L H H H H H H H H
@ L H H H H H H H H H H H H H H H H
Table 2: Output Patterns (5-bit)
Vs
VL
V.
Vo Vi
V, V,
V.
V.
V,
V.
V.
VIO Vll Vu VI3 V14
V.
Vo V, V, V, V. V. V, V, V. Yo VIO VII Vu V13 Va VIS
VIS
·2'
L
L
H
L
H
L
H
L
H
L
H
L
H
L
H
L
H
L
H
L
H
L
H
L
H
L
H
L
H
L
H
L
2'
L
L
L
H
H
L
L
H
H
L
L
H
H
L
L
H
H
L
L
H
H
L
L
H
H
L
L
H
H
L
L
H
H
2'
L
L
L
L
L
H
H
H
H
L
L
L
L
H
H
H
H
L
L
L
L
H
H
H
H
L
H
L
L
H
H
H
H
2'
L
L
L
L
L
L
L
L
L
H
H
H
H
H
H
H
H
L
L
L
L
L
L
L
L
H
H
H
H
H
H
H
H
2'
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
• ELECTRICAL CHARACTERISTICS (Ta~25·C)
Item
Test Conditions
Symbol
min
-
typ
max:
33
-
4B
Unit
Supply Current
Icc
Vee-5.0V; Input Clock Pulse-IOMHz
Maximum Sampi ing Frequency
Vce -5.0V; duty-50%
Pin·B Minimum Input Voltage
ise
ViN
B
Pin·F Maximum Input Voltage
ViN
F
1.1
-
-
Pin·A Maximum Input Voltage
Vi . .
A
-
-
Minimum Input Voltage Difference between
Pins E and F
Pins K and L Input Voltage("H"Level)
av"
1.0
-
-
V
V,H
-
-
V
Pins K and. L Input Voltage( "L" Level)
VIL
2.0
-
-
O.B
Pins K and L Input Current( "H"Level)
Vcc -5.25V; V,-2.7V
-
-
20
pA
Pins K and Input L Input Currentt "L"Level)
I'H
IlL
Vce -5.25V; V,-0.4V
-
-
-0.4
mA
Pin·K Input Clamp Voltage
V,K
-
-
-1.5
V
Pins M-Q Output Voltage
VOL
-
-
0.5
V
Pins M-Q Output Voltage
VOL
Vn ·-4.75V; [1.,- -IBmA
Vcc -4.75V;
Low Output Level; I"L -B.OmA
Vcc -4.75V,
Output Low Level; I"L-4.BmA
Vec -5.0V; VB -I.BV; V,-3.BV
-
-
A·to·D Switching Threshold Voltage
Vee-5.0V
10
-
MHz
-
V
Vee -0.7
Vee 0.7
-50
0
rnA
-
V
V
V
0.4
V
+50
mV
Resistance between Pins Band C
R. c
300
400
500
Resistance between Pins C and D
ReD
300
400
500
Resistance . between Pins D and E
RDE
300
400
500
Resistance between Pins E and F
REF
300
400
500
n
n
n
n
A·to·D Converter Frequency Response(lMHz)
i'H
Vcc -5.0V; Referred to i-100kHz
-1.1
0
+1.0
dB
A·to·D Converter Frequency Hesponse(3MHz)
i'H
VC(·-5.0V; Referred to i-100kHz
0
+1.0
dB
Pin-A Maximum Input Impedance
Z, • .s
Vc<·-5.0V;
-3.0
-
100
n
134
•
v.. ,-2.BVnc
HITACHI
-
HA16613A
eS-bit Dual Slope Type AID Converter
HA16613A is a 8-bit Dual Slope Type AID Converter, which
is bipolar II L structure a.nd is. designed for +5V mono power
source. It is suitable for microcomputer, home appliance,
industrial equipment, etc.
•
FEATURES
•
•
Two-channel analog input
Series count output and 4·bit parallel output as well as
8-bit parallel output are possible.
Oscillator and regulator are built in.
•
(DP-28)
• BLOCK DIAGRAM
6.8k
.PIN ARRANGEMENT
6.8k
2'
2'
2'
Analog
Input
2'
2'
CHS
INI
IN2
REF
OFS
IGI
IGO
GNOI
(Top View)
.ABSQLUTE MAXIMUM RATINGS
Item
(Ta~25°C)
Symbol
Supply Voltage
Rating
~O.3
Terminal Voltage
Unit
to Vn
V
.- 5
mA
±500
t200
to +75
I'A
v,·,
V
Standard Current of Power Source
Logic Output Current
Integrated Output Current
1,<,,,
Operating Temperature
T. ,,,
~20
~55
Storage Temperature
eHITACHI
I'A
to +125
135
HA16613A
.ELECTRICAL CHARACTERISTICS (Vee-SV, V FS ,:,2.0V, Vzs=O.SV, V,=2.4V constant,
Jose=10kHz, Ta=2S'C)
Item
Symbol
Test Condition
Resolution
T,-O-HO'C
N,;;;'16
Accuracy
Analog Input Voltage Range
Standard Voltage Tmprature Dependency
Il.Vs/ll.T.
between
T.--20-+7S·C
Vee -4-6V
Pin lS&16
R L-2.4kO
Standard Voltage Internal Resistance
Il.Vs/ll.h
1l.!..JIl.T.
Oscillation Frequency Voltage Dependency
1l.!..JIl.Ve ! ... -100kHz
Reference Voltage
VREF
Analog Input Current
I'N
lot.o.,ef)
1
0 ( •• >1.1;)
IlL
I/H
-
%
-
Vce-2
V
I., " ...,l - -SOOpA
h-l-SmA
! ... -100kHz, T.--20-+7S'C
Short circuit between Pin 15&16,
I., ...... ,=-SOOpA
V1N-OV
VOH- Vecl2
VoL -0.4V
V1N-OV
VIN""'" Vee
-
±SO
±100
-7
0
-
2.4
-
±0.3
-
ppm/'C
+7
S
%/'C
%/V
-
±1.8
-
1.20
1.340
-0.2
-
SOO
-20
-
-
-100
0
-
1.110
-
mV/V
-SO
-
-
-
-
-
20
V
pA
pA
pA
pA
pA
-
-
V
-
0.4
V
V
Ince"",.)
PT
136
0.39
0.39+
Istep
1.0
Power Dissipation
** :
-
-
Maximum Operating Frequency
IOL
ADE, & DOT.
Applied to ADS, TS, CRY, BIT, & CHS.
*. Applied to 2 -2',
ms
bit
v,.
Vce( opr)
Three·state Output Leak Current
-
V,L
Operating Supply Voltage Range
Note)
Unit
S.2
80r6
0
T.-O~HO'C
Dependency
Input Voltage"
T.--20-+7S'C
Short circuit
Oscillation Frequency Temperature
Logic Input Current·
max
-
VlNeep.)
Standard Voltage Spply Voltage Dependency Il.Vs/Il.Vee
Logic Output Current'
typ
min
-
! .. <,-200kHz
Conversion Time
T.--20-+7S'C
4
200
Vee-SV
v,-O- Vee
-
0
~HITACHI
-S
5 Vee max
-
-
30
-
60
S
kHz
mW
pA
HA16613A
• TERMINAL DESCRIPTION
Terminal
INl ·IN2
CHS
ADE
ADS
DOT
BIT
Description
Analog input voltage is applied.
eN 1 ...... 1 channel)
IN 2 ...... 2 channel
(01 :: 21 channel)
channel
For switching the analog input terminal.
AID Conversion end signal is applied. (0 : End
1 : under conversion
)
AID Conversion start signal is applied. When ADE-l. AID
conversion starts at negative edge of ADS input signal.
AID converted pulse is directly outputted between ADS and ADE.
( 3 state is impossible.)
For switching 6-bit or 8-bit full scale.
(~
: Sbit)
: 6bit
Digit switching at 4-bit parallel transfer.
CRY
(0 : 4 bit lower
1 : 4 bit upper
+ 4 bit upper)
+ 4 bit upper
Make 8-bit output terminal to 'be high impedance.
TS
2 0 -2'
OSlo OSC
(0 : Output
)
1 : High Impedance
Binary output terminal
During AID conversion, the previous data is available.
Oscillator external terminal.
When a clock is applied from external part, a resistor of
some hundred k
REFS, Vs
n shall
be added to OS!.
Regulator terminal
REF
Reference voltage for integrator is applied.
IGI· IGO
Input & output terminal of integrator
Generally connected to GND.
OFS
Terminal for offset adjustment, in case of small digital
output through AID conversion .
•
HITACHI
137
HA16613A
LINEARITY CHARACTERISTICS
(LEADING EDGE)
LINEARITY CHARACTERISTICS
l
300
I
VnL5.0)
250
f--
0
I-
f~,"'IOkH.
V
2channel
.
200
~
IS0
/
I-
~bilt Full scale
I-
V
I-J
I.-l
,J
1,-1
If"'
,-J
/
r
,
CUT" i A~E fluS
s
I
0.2
IJ
,
I- 1-1-
/
0
r
0
V
/
0
v)'Jo~ I
I- jos("=200kHz.
R,·=6.8kQ
USing a BUilt-in Regulator
0.4
0.6
0.8
Analog Input Voltage
1.0
VI.~
1.2
50
1.4
I
I
I
I
I
ISO
100
Analog Input Voltage VI.\' (m\')
(V)
CONSTANT VOLTAGE-TEMPERATURE
CONSTANT-VOLTAGE INTERNAL
DEPENDENCY
RESISTANCE
1.25
I-
V,.UoJ
-f-
RI.·-=2.4kQ
.. 1- -1-10
r-t-t-t-t--
1...... -
1-1-
-
1.150 I--+-l----+-+--+-+--+-+--+~
5
l.lOSo
Ambient Temperature
•
50
Ta ('C)
100
CUfl'l'nt of L'"nstant"v"ll"",·
}{"Kulllll·J j',lwI'r S"l/n't' II. \ m,\'
HINTS FOR USE
1. In the equation on the preceding page (Note 1), if R. = 0,
Vzs = OV (possible to convert from input of OVI. However, the linearity around VIN = OV will worsen.
It is recommended to use under condition Vzs is more
than 0.1V.
2. After Three State is applied, the time required for changing from digital output to high impedance and vice versa
is 4 - 8#s. The quantity of current flowing through
digital output terminal is equal to that of a LSTTL.
Therefore, when connecting digital output to a busJine
and reading it into a microprocessor in a high speed, a
three-state buffer is required for it.
3. If an analog input changes during AID conversion, there
may occur some troubles in the olltput data. In this case,
Sample & Hold is necessary.
4. Timing from CHS (Channel Switch) to ADS (AID Conversion Start) is more than or equal to 0 seconds. It may be
accepted that CHS and ADS are performed at the same
time.
138
•
When input analog voltage of ZS or less, input analog voltage
of ZS or more and AID conversion is done, after the maximum conversion time perform AID conversion.
HITACHI
HA17008 RP , HA17008R G .~:~~:~!~PIYing
HA17008R is a 8-bit monolithic D/A Converter, with a reference current amplifier, a ladder resistor of R-2R and eight
high speed current switches built in. By establishing a reference current and resistance, it is possible to change the
maximum output current according to the applications. And
it is pin-for-pin compatible with DAC08 and its power
dissipation is small and realizes high settling speed.
The reference current is divided into current value of each bit
by the ladder resistor of R-2R and maximum output current
will be 255/256 of the reference current. For example, the
maximum output current gained from reference input
current of 2.0mA will be 1.992mA.
HA 17008R provides a wide scope of application including
CRT display, control of step motor, programmable power
Digital-ta-Analog
HA17008RP
IDP·16)
source, audio instrument, attenuator, etc.
HA17008RG
•
FEATURES
•
Wide Operating Temperature range & a linearity of
±O.19% 1±1/2 LSB) is guaranteed.
Since the settling time is short, 85ns typ, and fast conversion is possible.
Low power dissipation, 135mW tyPo
Compatible with TTL, CMOS logic.
Reference Supply Voltage is;
VCC = +15V, VEE = -15V.
Output Voltage Range with Accuracy Guaranteed is wide;
-10V to +18.
•
•
•
•
•
IOG-16)
• BLOCK DIAGRAM
• PIN ARRANGEMENT
MSB
THe
LSU
Current Switches
..
10
2
I"
R-2R Ladder
Resistor
Vee
(Top View)
•
HITACHI
139
HA17008RP,HA17008RG
.ABSOLUTE MAXIMUM RATINGS
(Ta~25'C)
Item
Supply Voltage
Symbol
Rating
Unit
Vee
+18
-18
VEE to V,,+36V
V
VE-:E
Digtal Input Voltage
Vs V12
Reference Current
I"
Input Voltage Range of Reference Amplifier
VIo:Ef:
Power Dissipation
PT
Operating Temperature
T""
T",·
Storage Temperature
* : In
V
V
rnA
5
VEf~
500
-20 to +75
V
mW
·C
-55 to +125
·C
Vee.
HA17008RG;-65 to +150·C
• ELECTRICAL CHARACTERISTICS
Item
(Vcc~15V.
VEE~-15V. I"f~2mA.
Symbol
Relative Error
E,
Settling Time( ± 1/2LSB)
t,
Propagation Delay Time
11'I.11,tl'l.II
Maximum Output Current Drift
TO(J
Test Condition
Ta~25'C)
typ
min
All Bits DFF to ON
85
35
±IO
Cu~rent
(MSB)
Reft;rence Bias Current
Output Current ..... ith Accuracy Guaranteed
Output Current
III/
In
I.
1.,".. ,
Output Voltage with Accuracy Guaranteed
V,
Reference Current Slew Rate
SRI",
Supply Current
Supply Voltage
Full Scale Current Difference
Digital Input Scale
Threshold Control Voltage
Digital Input Threshold Voltage
140
ppm/"C
V
V
,..A
,..A
,..A
-3.0
0
2.0
,2.1
VH~
0
2.0
4.2
Ul4
1.99
2.04
rnA
0
2.0
,..A
-10
-8.0 to -18V
V",~IO.OOOV
R". R,,~5.000kn
All Bits Low
£'",0.19% V.,~ -15V
Ta~25'C
-10
4.0
V<,<,~+5V
V",~-5V
Icc
V,.,.~+5V
11-:1-:
VH~-15V
1("("
V",·~+15V
11-:1-:
V",,--15V
2.4
-6.4
3.S
-7.S
2.5
-6.5
3.S
-7.8
4.5
-IS
15
-15
IS
-4.0
33
4S
lOS
136
IH.u·=2mA
Vn·=+SV IH.f:r=lmA
Vuc~ -5\'
V'T~+5V
l1i1:F=2mA
V,.,,, -15V
PrJ
V,,.~+15V
Vu.~ -15\'
1f'SS
I fSI
--
VTII"~
IH.f.f=2mA
Jf'S2
-10 to+13.5V
VTII ("
Vnll.
-S.O
-10
-10
eHITACHI
V
3.S
135
174
±1.0
+S.O
HS
13.5
V1'/1I" +1.3
rnA
mA/,..s
-5.8
IH.o·=2mA
Vee
+IS
S.O
2.3
-4.3
/lI.f:,..=lmA
Vf: f:
VIS
0.8
10
%FS
ns
ns
VH~-5.0V
VII.~0.8V
If. f.:
p"
±50
Unit
0.002
-2.0
-1.0
In'
P1"l
Power Dissipation
V'H~5.0V
1\ ~
lOR
150
60
2.0
VII.
Digital Input
max
±0.19
V,H
Digital Input Level
VTHC~OV.
rnA
\'
\'
mW
!,A
\'
\.
\'
HA17008RP,HA17008RG
OUTPUT CURRENT VS. OUTPUT VOLTAGE
OUTPUT CURRENT VS. REFERENCE INPUT CURRENT
2.5
2,0
"
E
-
I
""O-IJ
'iu=-Sr
1.. r=i!mA
I
,/"
1.5
./
1
u
1.0
-
J"r=lmA
I
./
I
./
./
L
. / 1"-
Max. Value
at
/'
VHf-SV
Reference Input Currenl I... , (rnA.)
0.5
SUPPLY CURRENT VS. SUPPLY VOLTAGE (1)
o
-15
-5
-10
10
Output Vulta!!;"
~ill T
.15
(V)
OUTPUT CURRENT VS. DIGITAL INPUT VOLTAGE
:!.O
I I II
"-"
-
I I II
I
f-+-+-+-+---i
11-I1fj-1t-+I-II--+-+--+-+-+-+ 1"'~'=5V
I
I
-
'-
1,,= -lSI
HHH-=T-+(I",,-:C,+s'c-J·+:!s::-·c+·'-_2+'0·"'clt--t-HH-+-tr•.,=:!.OOOmA
>--
\.1)
Supply Voltage Vct (V)
oJ
'"
lu
SUPPLY CURRENT VS. SUPPLY VOLTAGE (2)
""
1.0
2,0
.1.0
'.0
hF.
SUPPLY CURRENT VS. AMBIENT TEMPERATURE
Icc
- 5
-10
-15
-2()
Suppl,v Vultage tj.:f. (\'J
-'0
-~o
20
:\mbirnt Temp('ratun'
IOM!l
IF's- hs
t.
+LSB
to - - 2 All bits ON,OFF
50% to 50%
Delay Time
IT'LI{, tPIIL
Output Capacitance
Co~,
Logic Input Voltage
V"
V,N
Logic Input Current
l,N
Ligic Input Voltage Range
V"
Reference Current Range
IRH
Bias Current at Reference Terminal
I"
3.935
12
12
12
- +0.025 -0.025
-0.1
+0.05
3.999
-5
±IO
-
-2.0
-
±0.4
-
-
250
-
25
-
20
-
-
12
-
Unit
12
bits
+Q.05
%FS
+0.1
%FS
3.871
3.999
4.127
rnA
-
-
+10
-5
±20
-
+10
+2.0
-4.0
-
±0.8
-
4.063
0.1
-
ppm(C
+4.0
V
pA
0.4
pA
ns
-
250
-
-
-
25
-
ns
-
-
20
-
-
pF
0.8
V
-
-
V
-
-
0.8
-
-5V:;> V,N :;>+15V
2.0
-60
-
-5V:;> Y'N:;> +15V
-5
-
0.2
-3
13.5V:;> V':;>16.5V
PSS·h,
V·
PSS·/'-s·
HAI7012C
typ
max
min
-
+20
2.0
-60
-
+20
+15
-5
-
+15
V
1.0
-
1.1
1.0
1.1
rnA
0
0.2
-3
0
/1A
-10
-
+10
-10
-
+10 ppmFS/% v
-16.5;> V-:;>-13.5V
-10
-
+10
-10
-
+10 ppmFS/% \"
V.",~OV
4.5
-18
-
18
-10.8
4.5
-18
-
5.2
-17.2
8.5
-
-23
336
473
-
-
pA
Supply Voltage Dependency
Supply Voltage Range
Supply Current
Power Dissipation
V
t·
V·~15V
t
V
Pr
V·~15V
V ~ -15V
~-15V
eHITACHI
-23
-
-
-
-
5.2
18
-10.8
-17.2
8.5
-
336
473
V
V
rnA
rnA
mW
147
HA17012P,HA17012G
FULLSCALE CURRENT VS.
SUPPLY VOLTAGE
4.00 r-,..---,-,----r-,--,--,
FULLSCALE CURRENT VS.
OUTPUT VOLTAGE RANGE
4.00
ro-r-,..--,-,---r--,--,
1l-orr~=15\"
V+=-V-=1.5V
[.,/=
f-+-+--II---+J..
ImA+--+--f--+--+-_--l
:;;:
•
,=
1m.'"
V+ Variable
/1
" ' - V- Variable
8 3.98 H--l--+---+-+--+-t---1
3.99 f--+---+-+--+-t-+---l
3.98 '--....L-..1._L--L--'_.L-....J
o
10
'8
3.966 '5:-'----"'---':---'--'---'---..1.-:10
Output Voltage Range
Vf)('
(VI
Supply Voltage V',V· (V)
SUPPLY CURRENT VS. SUPPLY VOLTAGE(1)
SUPPLY CURRENT VS. SUPPLY VOLTAGE(2)
-18
6.0
yy- =15V
lu/= l.rnA
All Bits"i"
10 =lo=GND
4'
~
:..
5.0
u
(
~
~
4.0
...-
1\
..-
V
,........ ..-
~-15J
t- I.. J=lmA
10 =1O=GND
{All Bits~Hh
-17
I
-16
o
18
10
10
Supply Voltage
Supply Voltage V' (V)
~~
18
(VI
SETTLING WAVEFORM(ALL BITS ON-OFF)
l
Input
IV:di~
To OscilloscHpe
lof--_--
/" .....~II--+--t--+--+--l--+--+---1
DUT
Slltel
Probe Capacitance
Test Circuit
t=50ns/di\'
148
eHITACHI
7pF
HA17012P,HA17012G
•
The full scale output current (I. + 1;; I is four times as large as
the reference input current (lREFI on account of the internal
circuit.
APPLICATION NOTES
1. Method to Apply a Reference Input
•
Positive Reference Voltage
IFS = I. +
r.; ~ 41REF
VREF is converted to the reference input current (lREFI by
R I •·
V'
VREF
IREF":--RIO
HI
10-
19
10-
To erase the input bias current error of the input operational
amplifier, R I • = Ru'
The phase correction capacitance Cc is 0.01 "F generally and
the minimum value can be found by;
Cc = 5
X
A IO (knl (pFI
For example, when AI. 0 5kn, the minimum value of Cc is;
22J/F(Tantalum)
Cc = 5 x 5 = 25 (pFI
O.I/~F
•
V'
Negative Reference Voltage
V'
2. Method to Connect Output Circuit
(1)
•
Resistor
Unipolar Negative Output Voltage
9th
10th
11th
t-~*,--,
I.OUOOkU.
-
22.uF(Tantaluml
0.111F
~'{)l"T
LSB
v-
10
[npul Code
MSB
j(j
LSB
1111111 11111
1 1 1 1 1 1 1 1 1 1 10
100000000000
000000000001
000000000000
I.O()(lOkQ
r;;;:
IIAI7012
["
["
V(J{;r
(V)
VOL'T
(V)
I rnA)
(rnA)
3.999
3.998
2.000
0.001
0.000
0.000
0.001
1.999
3.998
3.999
-3.999
-3.998
-2.000
-0.001
0.000
0.000
-0.001
-1.999
-3.998
-3.999
V(II"T
+:!.UlIIIIJ\'
•
Bipolar Output
[k,.,.~1.0000mA
~!h
Hlln
lith
LSH
Input Code
~[SB
1 .lIlK)llk~l
I"
Tn
~i'l
T
ron
LSB
1111111111 11
1 1 1 1 1 1 1 1 1 1 10
100000000001
100000000000
01 1 1 1 1 1 1 1 1 1 1
000000000001
000000000000
l..
["
Vof'r
ImA)
I rnA)
IV)
3.999
3.998
2.001
2.000
1.999
0.001
0.000
0.000
0.001
1.998
1.999
2.000
3.998
3.999
-1.999
-1.998
-0.001
0.000
+0.001
+1.999
+2.000
IV)
+2.000
+1.999
+0.002
+0.001
0.000
-1.998
-1.999
HAl701l
•
HITACHI
149
HA17012P,HA17012G
(21 Method to Connect-Output Buffer and Amplifier
• Unipolar Positive Output Voltage (Straight Binaryl
91b
10th
11th
LSB
IOV
- - - - - - - - - - - _----
Von
SV
Zs
MSB
Digital Input - - - _
HA17082
•
Unipolar
91b
10th
Positive
11th
Output
Voltage
(Complementary Binaryl
LSB
Von
J
5V
Fs
Digital l n p u t - - -
HA17082
•
Symmetrical Offset Outpat Voltage
91b
10th
11th
LSB
+lOV
--- - - - - - - - - -- - ...,..---
Zs
HA17012
Fs
-lOY
HA17082
~igital
150
•
HITACHI
Input _ _ __
Microprocessor Peripheral
•
HITACHI
151
HA13007
.Quad. Driver
HA13007 is a monolithic, bipolar, high voltage, high current
Quad. Driver especially designed for switching applications.
This device is recommended for the interfacing from low·
level logic to peripheral loads such as relays, solenoids,
stepping motors, LED, heaters and other similar high voltage,
high current loads .
• FEATURES
•
•
•
•
•
Guaranteed minimum output breakdown of 50V, and
maximum output current of O.7A.
Low output collector-emitter saturation voltage.
Compatible inputs with TTL, LSTTL and 5V CMOS.
Included integral transient suppression diodes for induc·
tive loads.
Less input current.
(DP·16A)
• TRUTH TABLE
• PIN ARRANGEMENT
ENABLE
IN
H
H
L
H
L
H
L
X
H
OUT
for each input:
H = High 11.'\'1.'1; 2.0V
L = Low It~\'t'l ; a.BV
x = Irrel('vant
(Top View)
.ABSOLUTE MAXIMUM RATINGS (Ta=25°C;
Item
Symbol
Rating
Unit
J It
~ote
2. 1
Supply Voltage
V{'(.'
7.0
o to
V
I
~
1.8
Input Voltage
VI."
Vee
V
d:; 1.5
Output Voltage
Vct:x
60
V
1.2
Output Current
lOfT
0.7
A
Power Dissipation
PT
1.85
W
Thermal
Resistance
IJunction-Case
IJunction-Ambient
0"
15
'C/W
0,.
60
'C/W
"J'\0
~~\
I
40
40
80
~
120
160
Ambient Temperature Ta (t)
150
'C
to +125
'c
'c
Junction Temperature
T,
Operating Junction Temperature Range
TjllJ'
~40
Stor.age Temperature Range
TS/I
-55 to +125
~otel
152
1. The derating curve is shuwn below.
$
HITACHI
*1
A maximum tht'l"mal reslstanct' Junctiun to amlHt'nt uf 35t;/\\'
with the de\"jC't' soldt·rt'd intI) a p.e. hoard is a('hit'\'ahlt'
provided thl:'re IS t'nuuJth ('opper on the p.e. huard.
HA13007
• ELECTRICAL CHARACTERISTICS
Item
(Ta~25°C. Vcc~5.5V)
Symbol
Output Leakage Current
leEK
Output Sustaining Voltage
VCf;(susl
Output Saturation Voltage
VCEIsal1
Input Low Voltage
VII,
Input Low Current
Ill.
Input High Voltage
VI}!
Test Condition
Ve,~60V.
VIN~0.8V
VIN~0.8V,
Vee
lc~IOmA
~4. 75V,
VIN~0.8V,
1/1/
lc~0.7AX4
Supply Current( All Output ON)
/,
Ie
~0.7AX4,
Supply Current (All Outputs OFF)
Iso
VIN~0.8V
I.
VN~50V
V,.
Clamp Diode Forward Voltage
I
V1N -2.0V
lc~0.7A
1e~0
Input High Current
Clamp Diode Leakage Current
IIc~0.4A
_
l VIN~2.0V
max
Unit
-
-
100
pA
60
-
-
-
0.3
0.5
-
0.5
0.7
V
V
-
-
0.8
V
-
-I
±IO
",A
2.0
-
-
0
V
±IO
pA
I VL,~5.0V
-
-
1.0
rnA
(All Inputs)
-
50
65
rnA
-
8.0
-
rnA
-
-
50
",A
1["~1.0A
-
1.2
1.6
V
I ["~1.5A
-
1,.3
2.0
VIN~5.5V
(All Inputs)
VIN~0.8V
typ
min
V
Turn-On Delay
11'1./1
-
1.0
-
",S
Turn-Off Delay
i'>III.
-
0.3
-
I's
•
O.h,-,-,-,--,,--,--,---,
0.
0. 6
/
S;
Ta=+85"C
2S'C
~
'- ~
•
"'
f---'=
~
~
d
I_,o'c
,
0.
0. 2
~
l/
.#
V
~
:;
;
~V W
>~ ~V
::;;
s:
.-
•
w
k% ~
V
0.2
__V
0.61--+--+--+--1--1--:;>1-"/'---1
<3
o.,I--I--I-----:I---j---j---+----I
~
0.21--+--+--+----1--1----1---1
'n
Vcc=4.75V
VI.v=2.0V
Ic=O.7A
Vcr=4.nv
VI .. =2.IlV
0.4
~~4I~)--~--~--~--~4~0--~--~"(~)--~
0.6
If (AJ
Ie
Ambient Temperature fa ,OC)
-VCf(SOI)
60
• APPLICATION
-Stepping Motor Drive
;;0
•
-
5.S\'{4.75-i.(}\'1
111
•. C>----j--u:h
U
l
M"illr Od
•• O---+---lm1
:w
Il.lJ!
·,Q-------jm
enable
Supply V"ltag(> ~·u (\"1
V" -I,
•
HITACHI
153
HA13406W
.Three-phase Brushless M~tor Driver
HA13406W is a power IC developed for use in the three
phase brushless motor driving.
This provides hall amp, logic part, output amp, control amp,
and forward and back rotation circuit functions in one chip.
As the maximum driving current and voltage is as much as 3A
x 12V per phase. Therefore, this finds best use in the spindle
motor driving of 5.25 inches HOD.
• FEATURES
•
•
•
•
•
3A Output Current Capability.
Low Output Saturation Voltage.
Hall Amp with Hvsteresis.
With Thermal Shutdown.
Low Thermal Resistance Package .
(SP-23T)
• ABSOLUTE MAXIMUM RATINGS (Ta=25'C)
Item
Ratings
Symbol
Unit
Veel
7
V
Output Stage Supply Voltage (Note 1)
Ven
15
V
Output Current
10
3
A
Power Dissipation (Note 2)
Pr
25
W
8j
_,
3.0
Dj _ a
40
Control Stage Supply Voltage (Note 1)
tJunction-Case
Thermal Resistance
IJunction-Ambient
'C/W
o to
o to
o to
Hall Amp Input Voltage
V.
Direction Voltage
VD
Control Voltage
Ven
Junction Temperature
Tj
Operating Junction Temperature Range
Tjop
-20 to +125
·c
·c
Storage Temperature Range
T,t.
-55 to +125
·C
Vee!
V
Vee
I
V
Vee
I
150
V
2. St!'t!' the del'atinM' tune of Fig. I
Notes) 1. Recommended Operating Voltage
min
typ
max
Unit
Vee 1
4.5
5.0
5.5
V
Vee,
10.2
12
13.8
V
§
.t:
]
.~
is
~
If
75"(;
25
20
10
2W
4.25
-20
25
50
70
Ambient Temperature Ta (t)
Fig.l
154
•
HITACHI
150·
HA13406W
• ELECTRICAL CHARACTERISTICS (Ta=25°C,
Item
Vee I =5V, Vee2=12V)
min
typ
max
Vee I
-
10
15
mA
3
10
15
mA
1
3
1
VCTL~OV
-
1.0
15
mA
VCC2
-
105
150
mA
-
150
-
°C
Input Bias Current
-
-
±50
p.A
18-23
Input Common-mode
Voltage Range
2.0
-
3.0
V
Ditto
mV
RL~Open
Thermal Shut- Down
Temperature
BuHer
VCTI.=
Vee I.
Io~O.IA
Hysteresis width
R,~220Q
15
-
30
Sustaining Voltage
Ic~20mA
15
-
-
V
Ditto
13.15.17
-
10
mA
Ditto
-
2.8
3.8
V
Ditto
Internal Reference
Voltage
2.35
2.5
2.65
V
6
Output Resistance
of Reference
-
2.5
-
kQ
Threshold Voltage
Io~20mA
-
100
-
mV
8
VCTL~5V
-
0
±10
p.A
Ditto
Ditto
VCE~15V
Saturating Voltage
Vcrr.= Vee 1,
Io~2.8A
VCTL~IV
-
-3
±10
p.A
Io~0.8A. f~500Hz
-
0
-
dB
11
Input Offset Voltage
Io~20mA
-
100
-
mV
12
-
0
_.
11
f~500Hz
-
dB
-
1.0
mA
1.0
1.5
V
Ditto
5
V
4
Voltage Gain
Io~0.8A.
Leak Current
VCE~15V
-
Saturation Voltage
Ic~20mA
-
2.0
-
0
Comparator
Voltage Range for
Forward Mode
Voltage Range for
Reverse Mode
3
2
-
0.7
V
Ditto
VD~GND
-
1.2
-
mA
Ditto
VD~5V
-
0
-
mA
Ditto
Input Current
2
Ditto
Voltage Gain
Control Amp
Note
1
-
Leak Current
Input Current
Direction
Terminal
VCC2
VCTI.=VCCI
Total
Output
Uilit
Veel
Quiescent Current
Han Amp to
Logic
Test
Test Conditions
Notes) 1, The specification indicates the temperature of the case.
2. The specification shows the sum of the upper and lower saturation voltage.
3. Reference to pin 6.
_HITACHI
155
HA13406W
• BLOCK DIAGRAM
W
VCCI
. U. v, W : Output Amp
Vee2
r--{D--~~~---~--,
I
B
CTL
: Buffer Amp
: Control Amp
D
: Direction
U-Hall
: Comparator
N
V-Hall
: Neutral Point Feed-back
: Protector
W-Hall
II Detecting Output Current
Direction
Hi ; Forward
Lo; Reverse
Control
Voltage
4
5
6
.>-t-----{ 7
Phase Compensation
>------{2
Comparator Out
Stabilizing Neutral Point
Determining
Threshold Voltage I
I
I
I
L--0------@---J
GND
GND
• APPLICATION
• LINEAR DRIVE
Veel
o-.,....-~---
__-,
,----...,..------00 Vcn
I
I
I
I
_
L--t-------cr-J
156
•
HITACHI
HA13406W
Description;
The output stage is saturated at starting and is not saturated
in usual. Therefore, the loss is comparatively large and heat
sink may be required.
Relationship between the current 10 which flows into the
motor coil and the control Voltage V CTL, the following is
given.
I - (R 106 +R lO7 ) VCTL-V R "
0-
RIO?
where
VCTL~
Here, the VRef is the voltage at pin 6 and determined to
Vcc,/2 internally.
Consequently, connecting the output of the servo IC to the
terminal 8, constructs the servo motor driving system.
Under the conditions of R106 = 0, R107 = ~ (i.e. Voltage
gain of the control amp is OdB), Equation (1) will be as
follows.
.................. (1)
RNF
V R .!
Io~ Vcn - V R • J
••••••••••••••••••••••••••••••••••••••••••••••••••••••
(2)
RNF
External Components
Parts No.
Riol.
Recommended Value
-
RI02
R lOl • RHl4. R los
100 (i/4W)
0.220 (2W)
CIOI
I,uF/16WV
CIOJ.
C104.
C105
For detecting output current
IOpF/16WV
For stabilizing the neutral point
For stability
O.I,uF
2
For power supply
100pF/16WV
C H)7
For phase compensation of control amp
10,uF/16WV
ClO6
:-..Iotes}
I
For determining the control amp gain
RNF
ClO2
Note
For stability
-
R 106. R 107
Purpose
For hall elements bias
by-passing
For power supply by-passing
1. Determine it so that the input voltaJte of hall amp (AC) will be more than lOOmVpp.
2. If the system will he adversely affected by the spike voltage at commutation. make it larger (max 22pFJ.
eHIGH EFFICIENCY DRIVE
Vcn
0-.,...---,.-------,
HAl34(~W
--------1
I
I
I
I
L__
y---~-
-20 to +125
Storage Temperature Range
T.tB
-55 to +125
Xote \ See the Derating Curve of Fig.t.
Thermal Resistance
40'C IW
8, ,;;; 3'C/W
(Jj,;;;;;
Fig.1
'"HITACHI
3
HA13415
5.5'11
3V
IN
R,.
Vee
3.~2
V,
OUT-I
CE
S.5V
OUT 2
IN
IN 1
<04
OUT-3
I7V
5.5V
OUT·4
56Qx3
OUT-l
4.5,12, l:i
ov
17V
Fig. 2 Output Short Test
•
Each unshorted output small turn ON and remain
•
On with IC = 300mA per channel.
Perform test for each output.
OC'!'-2 to·1
OV
5.5Y
R,.
27Q
Vcr
3V
CE
1;-';
IN·I
to4
OUT
IN
~'1.
I7V
C'I.
lO,OI"F
:i J
lOms
2.5V
~
IOms
\
/
17V,
OUT OV
4,5.12,1:'1
{
Fig. 3 Capacitive Load Test
•
•
OCSD shall not become enabled and limit IC or disable
the output being tested during the cycling.
Test each output, one ON at a time.
SV
VCf
3V
CE
R,.
LI.
560
250mH
Ie.;
OL'T 1----,\1\1\.,-'
OlT
4,5,12, B
{
"1 .
~'''\
or
toms
}
/
c:-
II"'"
r"
L
Fig. 4 Solenoid Survival Test
•
•
Each output "ON" and "OFF".
Test one output each time.
eHITACHI
165
HA13421 A,HA13421 AMP
HA13421A and HA1342AMP are monolithic power ICs.
dual bridge drivers. The maximum driving current and
voltage are O.33A x l2V per bridge. Therefore, this value
finds best use in the 2 phase bipolar stepping motor driving
to head actuater of 3 to 514 inch FDD.
• Dual Bridge Drivers
HA13421A
• FEATURES
•
•
•
•
•
•
•
•
•
330mA Output Current Capability
Dual Bridge Included
With Power Save
Single - Input Direction Control
Low Output Saturation Voltage
Low Supply Current
Low Input Current
Compatible with TTL. LSTTL & 5V CMOS
With Thermal Shutdown
IDP-16A)
HA13421AMP
• ABSOLUTE MAXIMUM RATINGS (Ta=25'C)
Item
Logic Stage Supply
Voltage
Seeking Supply
Voltage
Holding Supply
Voltage
Input Voltage
Peak Seeking
Symbol HA13421A HA13421AMP Unit Note
Current
(peak)
Vee
7
7
V
1
Vs
15
15
V
1
V
1
1
7
VS2
VI
[0
o to
Vee
500
mA
2
p,.
330
200
1.0
mA
mA
W
3
Tj
150
150
'C
Power Dissipation
Junction
Temperature
Operating Junction
Temperature Range
IOH
•
V
330
200
2.0
los
Temperature Range
7
Vee
500
Seeking Current(DC)
Holding Current (DC)
Storage
o to
Tj!Jp
-20to +125 -20to +125
'C
T6tfl
-55to +125 -55to +125
'C
IMP-1S)
• PIN ARRANGEMENT
eHA13421A
Notes 1) Recommended Operating Voltage
Vee
Vs
1
VS2
MIN
4.5
10.2
4.5
TYP
5.0
12.0
5.0
MAX
5.5
13.8
5.5
UNIT
V
V
V
2) t:iS ms·
3) See the Derating Curve below.
A: Soldered on a print circuit board. (8r,,-~60"C/W)
B : Soldered on a print circuit covered with copper suffieiently.
(Or,"35"C!W)
C : Soldered on pin 4, 5, 12, and 13 with al\ infinity heat sink.
(OJ-... 15"C!W)
D : Soldered on glass epoxy circuit hoad with 10% printing
(OJ-... 120"C!W)
E : Soldered on glass epoxy circuit boad with 30% printing
(8j-... l00'C!W)
F : Soldered on a metal based circuit board «(Jra :iSO"C!W)
eHA13421AMP
(Top View)
•
o
1-0:
,pt Out
,p2 Out
~
;:;
•
1
do
rcc
PS
_LW~0~2~5------~--~
Ambient Temperature
T(!
l'C)
Ambienl Temperalure T,us
IlXl,us
min.
D,
.,
-------------0
-
rSl
~,
168
rS2
•
HITACHI
HA13426
• Three-phase Motor Driver with Speed Discriminator
HA 13426 is a power Ie with a speed discriminator for the
three-phase brushless motor driving of 5 % inch-HDD (Hard
Disk Drivel. It is possible to construct a servo system with
quartz rp,sonator, requiring fewer external components.
Especially EM I noise from motor driver is depressed because
of a voltage drive system .
• FEATURES
•
•
•
•
•
•
•
•
ISP-23T)
Possible to construct a servo system on a single chip
Large output current (3A)
Require no adjustment because of digital servo systen,
The voltage drive system (not supply voltage control)
achieves almost rio spike voltage at commutating, caused
EMI (Electro-Magnetic Interference) conventionally.
The START/STOP terminal of TTL level is attached.
Load-short brake at STOP mode
Maximum current at starting is depressed by the built-in
current limiter.
Wide selection for quarts resonator is perm itted because
of frequency divider.
• PIN ARRANGEMENT
U Hall+In
o
U Hall-In
V Hall+In
V Hall-In
W Hall+In
W Hall-In
W Out
Open
V Out
Integrator Out
• BLOCK DIAGRAM
U Out
r---------------r------T-:--~Jr("("
Current Sense
Speed Discri. Out
Filter
8 Internal Reference
GND
o
Mode Select
, OSC In
Injector
"START/STOP
Vee
(Top View)
Hi : Stop
(Brakel
Lo: Start
1/6')
'" I"cc :
( Open
: 1/:J2
to C:\D: 1/16
10
\·cc
eHITACHI
169
HA13426
• ABSOLUTE MAXIMUM RATINGS (Ta=2S"C)
Item
Supply Voltage
Input Voltage
Symbol
Output Current
Vee
VI.V
fo
Power Dissipation
PT
Junction Temperature
Operating Junction
Temperature Range-Storage Temperature
Range
Tj
Ratings
Unit
Note
15
V
V
A
1
2
W
3
o to
Vee
r-__________________,75t
25
20
~
3
25
150
"C
:~
Tjro,
-2ll...1D +125
·c
Cl
Tat,:
-55 to +125
·C
d::
§
Note) 1. Recommended operating voltage
'0
.!!l
10
~
"-
U5
()
Vcc~12V±15% (I0.2V
13.8V)
2. Applied to HaU Amp, mode select input.
Maximum Input Voltage at start/stop is 6V.
3. See the derating curve.
8j-o';;3'C/W
8j-. "40"C IW
-20
25
150
Ambient Temperature Ta (t)
• ELECTRICAL CHARACTERISTICS (Ta=2S'C, Vcc=12V)
Symbol
Item
Supply Current
Total
Thermal Shutdown Temperature
Hall Amp
Input Bias Current
Input Common Mode Voltage Range
Voltage Gain
Integrator
Internal Ref. Voltage
Voltage Gain (CTL Amp
1. . 0
S/S~2.0V
Is
T,,/
S/S~O.8V.RI.~Open
-
Shutdown
.-
Th/J N
Hysteresis
-
VJI~6.0V
.-
VH
2.0
.-
Output)
max
Unit
50
70
55
150
75
mA
mA
-
·c
20
2
-
-
5.3
10
5.9
6Vo
-
-
VCr:(~alll
fo~2A
-
2.4
Ro
Io~O.4A
.-
0.2
3.2
24
3.0
21
GCTI.
-
10
10
-
6.5
±0.3
3.2
-
'C
V
dB
V
V
V
V
6G('1'/.
.-
III
-
-
Output Voltage Swing
A·
A
lo~0.3mA
-
0.7
.-
Io~-O.:imA
.-
0.7
.-
V
dB
dB
V
I to
•
HITACHI
I
Q
,ItA
Difference of Gain
Note
,ItA
3.4
27
±2
±O.I
Input Bias Current
Note) 1. Sum of upper and lower TRS saturation voltages
170
typ
GI'H
V(I
Vrt·fi
to
min
-
IHII
Quiescent Output Voltage
Difference Betw~en Phase
Output Stage
Saturation Voltage
Output Impedance
Control Amp
Test Condition
be contmued I
HA13426
• ELECTRICAL CHARACTERISTICS
(Ta~25'C.
Symbol
Item
Discriminator
Start/Stop
Current Limiter
Oscillator
min
6.1
-
-
-
VOl.
[o=-0.3mA
["fi
Charge Pump 011 State
Operating Frequency
leu
60
Count Number
N
_.
Input High Voltage
VIH
Stop
Input Low Voltage
Input High Current
VII.
Start
liH
VH=2.0V
Input Low Current
[II.
V1-=0.8V
Reference Voltage
VIII6
1/32 Division Input Voltage
VI/32
1164 Division Input Voltage
1/16 Division Input Current
VI/ti.'
Open
2.0
-
VI.,·=OV
1164 Division Input Current
/t/64
Vl.v=12V
Operating Frequency
I",,·
-
1024
-
max
-
0.2
±0.1
250
-
Unit
V
I.A
kHz
V
-0.15
0.8
-0.5
V
mA
mA
-
-0.2
-0.5
0.56
-
0.60
V
V
-
6.3
-
0.8
-
V
V
-
-0.63
-1.3
-
1.0
-
1.5
mA
8.0
MHz
-
Note
V
0.52
11.2
11/16
typ
5.8
-
Cutoff Current
1/16 Division Input Voltage
Mode
Select
Test Condition
[o=0.3mA
Vem
Output Voltage Swing
Speed
Vcc~12V)
mA
• TIMING CHART
u
w
Hall Amp Input
U Out
\' Out
W Out
eHITACHI
171
HA13426
• EXTERNAL COMPONENTS
Parts No.
RIOI
Recommended Value
1kQ
Function
Note
Han Elements Bias
1
RI02
6. Determine external components of Oscillator as shown below in
accordance with the frequency range.
1.0MHz';;;/IIse ';;;4.0MHz
4.0MHz';;;/IIse ';;;S.OMHz
f '
RI03
2.2Q(0.5W}
Stability
Rios
l.SkQ
OSC Bias
RI07
1.2kQ
Speed Deseri. bias
RIOS
470Q
Stability
RI.R,
See Application
RI04
~~O1
RIGS
Rs
~
6
lOp
Crystal
1±1%1
6
1.0k-1.8k
Integral Constant
470
4.70Op
Current Sense
3
Stability
2
(Ceramic)
llOH~~?
±l 01
'J;.
1.0k
m
CIOI
0.1/IF
CI02
CI03
CIO-1
KENo)
100
To control speed with stability, A(S) and 13(5) are required to
have a relationship shown in Fig. 3. That is, the angular
frequency of the cross point of A(S) and 13(5), w. should be
put between the angular frequency of an integrator, w, and
2.2 Resolution
In the Fig. 1, when
W,.
A(5)~--.KL·~ .................................... ( 3)
J'5 No
Zm(5)
·············································(9)
The GCTL and the R. are the internal constant of IC's.
Substituting the equations (5) to (11), to the equation (4),
13(5) is;
Fig. 1 Block Diagram
KT
/1(5)~---
CI1R2
(KI'·G, (5) ·G2 (5) -KE·No)
- - ... ( 4 )
100
1.000
the Fig. 1 can be shown as Fig. 2.
Load
Torque
(kg'em)
0--
+
A(S)
Error (%)
]
IOU
~
; wo/3
W3 ~ 3wo
r---------,
I
Ready Signal
I'R
Integrator
I
,I
L- _ _ _ _ _ _ _ _ ...J
Rg. 5 Producing the Ready Signal
where the R. is designed to be 2.2k ohms.
3. When Using the External Clock
As shown in Fig. 4, external clock can be provided at the
OSC input pin. But, applying too large input causes the missoperation of I C's, the following resistor, Rs must be con·
nected in series to control the currept.
(1) In HA13426
(kQ)
(kQ)
A speeding-up capacitor parallel to Rs should be considered.
(2) In HA13431/432/432MP
(kQ)
(kQ)
Then, the input current IIH and IlL are restricted as
follows and the external clock must have larger driving
capacity.
IIH= VIH-1.4
R,,+Ri
(rnA)
IlL = _1.4- VII.
. R,+ Ri
(rnA)
174
I
1',
2.8V
CI = I/WIR2
C2 = 1/ w2R,
C3 = 1/w3R3
VIH-1.7)-2
Rs;;>;1.00.7-V1I.)-2
I
I
1'.
3.5V
Output
(5) Designing C, , C.' C.
From the equations, (9), (10), (11),
Rs ~ 2.5( VIH-1.4) -1.5
Rs;;>; 7.5(1.4- V1I.) -1.5
+5V
HAl7903PS
Small R, increases the C, and C. and large R, will cause
speed error by the cutoff current of the speed discriminator and the input bias current of the integrator.
Values of 10k ohms to 56k ohms are recommended.
(4) Determining w,' w. and w.
Will be determined as follows
Rs~3.7(
_ _O_SC
_ _- ,
•
HITACHI
HA13431
.Three-phase Motor Driver with Speed Discriminator
HA13431 is a monolithic power 'IC with a speed discriminator for the three-phase brush less DC motor driving of
5}4 inch FDD. It is possible to construct a servo system
with quartz or ceramic resonator by fewer external components. Especially EM I noise from motor driver is depressed because of a voltage drive system .
• FEATURES
•
•
•
•
•
•
Possible to construct a servo system on a single chip
Require no adjustment because of digital servo system
The voltage drive system (not supply voltage control)
achieves almost no spike voltage at commutating, caused
EM I conventionally.
The Enable terminal of TTL level is attached, and the
current at the stop mode is less than O.5mA
Maximum current at starting is depressed by the built-in
current lim iter.
Wide selection for quartz & ceram ic resonator is perm itted because of frequency divider
(SP-23T)
• PIN ARRANGEMENT
• BLOCK DIAGRAM
R10t
o
OutpUt
Hall Amp
U HaU+
U HallV HaU+
V Hall-
W Hall+
W Out
14 Current Sense
U Out
Integrator Out
Integrator in
Speed Discri. Out
o
6
G~D
Mode Select
injector
En!lble
2 FG Amp+ln
FG Amp-In
4
(Top View)
• ABSOLUTE MAXIMUM RATINGS (Ta=25°C)
Item
Supply Voltage
Symbol
Vee
Input Voltage
VIX
Output Peak Current
III (peak
Output Current
III
I
Ratings
Unit
20
V
1
0 to Vee
V
2
1.5
A
A
1.0
Power Dissipation
p.,.
10
W
Junction Temperature
T,
150
Operating Junction
Temperature Range
Storage Temperature Range
Till,>
-20 to +125
·c
·c
T.IJ:
-55 to +125
·C
Notes) 1. Recommended operating voltage
Vn-=12V±15'J'Q(lO.2V to 13.8V)
2. Applied to Han Amp, start 'stop and mode select input.
3. See the derating curve.
e"
0>3"(; W
0) ~ ~ 40'C W
Note
;:
10
ct
.§
~
.~
5
i5 4.25
3
~
0':
Ambient Temperature Ta C'C)
A!tt.
•
HITACHI
175
HA13431
• ELECTRICAL CHARACTERISTICS (Ta=25'C. Vcc=12V)
Item
Quiescent Current
Total
Over Voltage Shutdown
Thermal Shutdown
Hall Amp
Control Amp
Integrator
Enable~O.
BV, RL : Open
Shutdown Voltage
Vhy .•
Hysteresis
Current Limiter
Unit
0.5
mA
mA
-
24
31
15
16
17
V
O.B
V
Shutdown
150
Thys
Hysteresis
-
25
-
-
1.0
-
IHH
Quiescent Output Voltage
VH
GrH
VQ
VH~6.0V
1.5
5.1
-
10
5
10.5
-
5.7
6.3
±0.3
I/A
V
dB
V
Difference of Quiescent Voltage
L-VQ
VCf:lsull
Io~0.7A
-
2.0
2.B
V
Output Impedance
Ro
Io~0.2A
-
0.3
-
Q
V
Internal Ref. Voltage
VREFI
-
3.15
-
V
Voltage Gain (CTL Amp to Output)
GCTL
-
24
-
dB
Difference of Gain
L'::::..GCTI.
-
Internal Ref. Voltage
VREF2
-
Input Bias Current
1m
-
A+
A-
Io~+0.25mA
-
Output Voltage Swing
Io~-0.25mA
-
-0.65
-
V
BW
Br~OdB
-
0.3
0.9
-
Vj
Ij~6mA
Output High Voltage
VOH
Io~0.25mA
Output Low Voltage
V(n
Io~-0.25mA
Cutoff Current
1"11
Charge Pump Off State
Input High Voltage
VIH
Stop
Input Low Voltage
1'1/.
Start
Input High Current
IIH
VH~2.0V
Input Low Current
III.
V/.~0.8V
Reference Voltage
VRf:F3
Input Voltage
VI.\' 1
(b;J:: (r:)~.:~t :StoJ
("Openr'T :: 114)
1/2
to
GND: IIi
• ABSOLUTE MAXIMUM RATINGS (Ta=25°C)
Symbol
Item
Supply Voltage
Vee
Input Voltage
VI',\'
HAI3432
HAI3432MP
Unit
Note
20
20
V
0 to Vee
V
1
2
A
o to
Vee
Output Peak Current
If)(JI('fI/;)
0.75
0.75
Output Current
I"
0.5
0.5
A
Pow~r Dis~ipation
PT
2.5
1.5
Junction Temperature
T,
150
Operating Junction Temperature Range
Tjf'P
150
-20 to +125
W
·C
Storage Temperature Range
T..I~
-55 to +125
-20 to +125
-55 to +125
3
·C
t
Notes} 1. Recommended operating voltage
Vn:=12V±15% (lO.2 to 13.8V)
2. Applied to Han Amp, start/stop and mode select input
3. See the derating curves.
The right below figure shows the relationship between Pr and To (the derating curve) in the case that HA13432MP is mounted on the surface of a metal
base substrate.
.HA13432MP
• HA13432
'.51-.;:U"C"'·,-______""\
3Ot:
uL-~
-20
__L-________
25
~
____
~
100
:\mbient Temperatu~ I'll (t)
•
HITACHI
Ambient Temperature Tn (t)
179
HA 13432,HA13432M P
• ELECTRICAL CHARACTERISTICS (Ta=25'C,
. Vcc=12V)
Item
Quiescent Current
Total
Over Voltage Shutdown
Thermal Shutdown
Hall Amp
Integrator
Speed
Discriminator
V..I
Vll y.•
Hysteresis
T ..,/
III
mA
15
16
17
V
0.8
Shutdown
ISO
1.2
-
·c
-
25
Input Common Mode Voltage Range
VH
GrH
1.5
-
1.0
-
V"
f'..V"
5.1
-
5.7
Difference of Quiescent Voltage
Saturation Voltage
Vc/';I$ fllI
Jo~0.35A
-
2.0
Output Impedance
Ro
Io~O.IA
-
0.45
-
3.15
VRI-:I-'\
Gr
Difference of Gain
f'..Gr
15
-
Internal Ref. Voltage
VRf;,..2
-
Input Bias Current
IHI
-
A,
Jo~+0.25mA
-
A-
[o~-0.25mA
-
Unity Gain Band Width
Injection Voltage
BW
Gr~OdB
-
[,~6mA
-
Output High Voltage
Vou
[o~0.25mA
Output Low Voltage
VOl,
[o~-0.25mA
Cutoff Current
[""
Charge Pump Off State
Output Voltage Swing
V,
VtU
Input Low Voltage
VII.
[III
Reference Voltage
VR/~'F:!
FG Amp
Input Voltage
V'NI/-'(;)
OSC
Oscillation Frequency
t··..
No Division Input Voltage
V, ,
1/2 Division Input Voltage
1/4 Division Input Voltage
VI2
No Division Input Current
Tt,
Tt,
1 '4 Division Input Current
VI.~O.8V
t~200Hz
4.4
-
VIS~OV
Vls~12V
Sum of upper and lower TRS saturation voltages
~HITACHI
18
2.5
-
t
5
,ItA
10.5
-
dB
V
6.3
V
±0.3
V
2.8
-
V
Q
-
V
dB
21
±2
-
dB
±0.1
-
,ItA
-
V
V
-
MHz
V
4.7
-
V
0.1
--
0.2
V
±O.I
-
,ItA
1024
-
-
V
-
0.8
V
±IO
,ItA
--
-
Enable 2
.-
50
120
,ItA
Enable 1
-
.-
±10
,ItA
Enable 2
-
--
±40
,ItA
0.36
0.4
0.44
V
2.0
.-
20
mVpp
0.1
.-
1.0
MHz
--
-
0.8
-
V
10
-
6.3
-
Note
V
Enable 1
Open
V, ,
-
0.3
0.9
2.0
VH~2.0V
10
1.3
-0.65
-
Input High Voltage
Current Limiter
180
24
-
III.
*)
19
-
Input Low Current
Note
mA
VH~6.0V
Voltage Gain (CTL Amp to Output)
Unit
0.5
Hysteresis
Internal Ref. Voltage
max
0.2
ThYR
Input High Current
Mode Select
-
typ
0.5
-
Count Number
Enable
min
-
IHu
Quiescent Output Voltage
Control Amp
Test Condition
Enable I & 2 Open
Enable 1~0.8V
R,. Open
Shutdown Voltage
Input Bias Current
Voltage Gain
Output Stage
Symbol
-
V
V
-
-1.0
mA
-
1.0
mA
*
------HA13432,HA13432MP
• External Components
Parts No.
Recommended Value
Function
-
RIOl,RlO2
Hall Elements Bias
-
Rs
Current Sense
See Application
R"R,
O.l,uF
CIOl,Cl02, eI03
3
Integral Constant
4
Stability
2
CI04
;;;:O,l,uF
Cws
lO,uF
ClO6
47pF
AC Coupling OSC
CI07
lO,uF
Stability
;;;:O.Ol,uF
Stability
ClOS,CI09,CUO
1
Stability
2.2Q
RI03, RI04, RIDs
Note
V cc By-passing
AC Coupling FG
C"C,
See Application
Integral Constant
4
C3
See Application
Filter Constant
4
X'tal
See Application
Resonator
4
Note 1. Set RIOI. and RI02 at which output voltage of 30 to 100 mVpp
Note 2. Use CIGl to C103 which cause no 2nd resonance.
Note 3. Output current is limited as shown below by Rs value.
I limit = VR~~"3
Note 4
See HA13426 .
• TIMING CHART
+
w
Hall Amp
Input
UOut
V Out
WOut
•
HITACHI
181
·HC16701
.Thermal Head Drivet
HC16701 has a function of serial-in-parallel-out plus 32ch
driver, bi-directional shift register, two stage latches, strobe
gate and large current driver.
Logic circuits are composed of "L and output 32ch driver
has a capability of driving large current_ HC16701 is suitable
for applications of thermal head driver and LED display
driver.
.FEATURES
•
•
•
Each driver of built-in 32ch drivers (NPN Open Collector)
has a capability of driving 7OmA.
Enable to shift the shift register in right and left directions by mode select terminals.
Every channel has two stage latches and is available with
controlling output pulse width in the unit of channel.
•
Enable to prohibit driver output by Dis terminal.
Available with prohibition against driver output at power
•
Built-in D-F/F for selecting chip is available with the
application of chip selector in the system of using some
HC16701 IC·s.
"ON".
• BLOCK DIAGRAM
• MAXIMUM RATINGS (Ta~ + 25°C)
Item
Symbol
Rating
Unit
Remarks
Supply Voltage
Vee
7
V
Output Sink Current
10L
100
inA
1
Output Terminal Voltage
VaH
+25
V
2
Power Dissipation
Pe
--
.T,." ~ 125°C
Ta .. op
-20 to +70
°C
Operating Junction Temperature Range
T,-op
-20 to +100
'C
Storage Temperature Range
TSTG
-35 to +125
°C
Operating Temperature Range
Notes 1 1. Applied to output drh'er terminal Qo to QSI when output dri\'er transistor "OX",
2. Applied to output drher terminal Qo to Qll. when output drh'er terminal "OFF",
182
•
HITACHI
HC16701
.ELECTRICAL CHARACTERISTICS
(T)~+25°C)
Symbol
Item
Test Condition
min
typ
max
Applicable
Unit
Terminals
Operating Supply Voltage
v;.cup
Vcc~5.0V,
Quiescent Current
Icc
Vcc=5.0V, Driver: 0]'\ Duty 50%
Iinj Operating Voltage (Note 5)
V,",
Injection Current
L,
Vec~5.0V
Input High Voltage
VIlIl
Vcc~5.0V
3.0
V
S", PWC. C", Co
Input High Voltage
V/I/2
Vcc~5.0V
2.5
V
C" [\, I". DATA
Input High Voltage
V1H3
Vce~5.0V
3.0
V
DO'. R!L
Input Low Voltage
Va
I
Vcc~5.0V
0.3
V
S", PWC. C". Co
Input Low Voltage
V11 .2
Vcc~5.0V
0.8
V
C"h.[II,DATA
Driver:ON Duty 50%
V,,,,
~5.0V
V1L3
Kc~5.0V
1111 I
Vcc=5.0V,
Input High Current
IIJ/2
Vcc=5.0V DATA
Input High Current
IIHJ
Vcc~5.0V
D ..
Input High Current
1/114
V,·c~5.0V
R L
Input High Current
IUf5
V"
Input Low Current
IlL
I
Vcc~5.5V,
C,-II
fIL2
V",·~5.5V,
DATA " GND
~5.0\',
C~
·11
III
-=
V
Vee
160
mA
Vee
Vee
V
LIlI
mA
I.llJ
5 OV
5.0V
3.5V
3.5V
5,·, PWC' C,' ·C, ·3.5V
III ·GND
Input Low Current
lit}
V,·e~5.5V,
Input Lo\\" Current
11L4
Vcc~5.5\',
(Xote 1)
VOI.l
Vcc=S.OV,
Output Low Voltage 2 (:\ote 2)
VOL2
Vcc=S.OV, [III. =O.6mA
Output Low Voltage 3 (:\ote 2)
VOL]
Vrc~5.0V, ['u, ~
Output Current 1 (:\ote 3)
IshII
Vrc~4.5V,
Output Current 2 (:\ote 3)
Ishl2
V,,~4.5V,
Output Leak Current (.\'ote 4)
/1 ... 1
Vc c=S.5V. QII to
;\ote-s
5.5
120
30
Input High Current
Output Lo\\" Voltage
5.0
3.0
Input Lo\\' Voltage
Input Low Current
4.5
D,.
GND
R L
5,,· PWC~C,·
JIlL =
'C,~GND
120
Q .. ""
2.7V
Q31
D,.,R!L
I'A
C-..I\.III
150
I'A
DATA
150
I'A
DO'
150
I'A
R!L
180
I'A
S". PWC, C". C,
C:-;,h.III
-400
I'A
-600
-400
I'A
DATA
I'A
D, .. R!L
I'A
S", PWC, C", C,
-20
-20
1. 2mA
2.7V
V
150
-600
lOrnA
D.. ,,,
0.8
0.3
V
Qu to Q'll
0.5
V
Q .. ,,,
V
D"III
0.6
300
500
I'A
D"""
150
250
I'A
Q"UI
I'A
QII to Q'jl
·25V
500
I. \rhen setting the measuring output dri\er transistor "0:\" and other thirty one output dnrer transistors "OFF"
2. \rhen
~('tting
the state of output "LO\\""
3. \\'hen setting the state of output "HICJi"
4 \\"hen output transistor i., "OFF",
5 Iinj is pin for IlL iogi(' power supply.
eHITACHI
183
HC16701
• PACKAGE (the chip product for sale)
•
•
•
Chip size; 5.5 x 3.7mm
The number of pads; 56 pes. (output driver; 32 pcs. Vee;
3 pes. GND; 8 pes. others; 13 pes.)
Pad Arrangement; See the following figure. (an outlinel
3.7mm
r--
Q15QI6
---1
I
i--
I
I
I
I
I
I
I
I
I
Ji
.,;
I
I
-
------
I
Q.
I"
Output Drivers
(Included 7 GND pads)
I
I
-Q"
I/O Interface
(Included Vee 3 and GND 1 pads)
~ ------
• DICE DIMENSION
1350
2255
1715
Origin(O,O)
3085
2680
3425
3765
4145
4485
135--~~~~~t.~~~=-=-=-=--~~1iJE3f~~~~=f~~~~~~~lf~$H~~~3£~~~~~-=-=-=-=~-=jF~13~5--r1851
355
525
400
600
695
865
1550
1850
3,700
2180
2835
3005
:mso
3220
3175
3345
3390
3565 __"'35"'15'-1-'-1""'-'=_____
+t-+-------t<-H-++-+t+lf-3565
1350
1715
2490
2065
2900
3240
3ssn
4900
Pad Size
130,11 m X 130.u m
5.500
Unit: J.lm
184
•
HITACHI
HC16701
.INPUT INTERFACE CIRCUIT
eC.,I.,I.
Vee
es"C"C"PWC
0-----0--.......,.---,
[::>0---
12L Inverter
eOATA
Vee
vc('D-----,
o---t"-----,
V,.\, D---'WI.....--i.
V,,\,
.OUTPUT INTERFACE CIRCUIT
eO~"Q."
Va
Vee
0-------,
VUI
•
HITACHI
185
HA16628P
eS-bit D/A Converter and Position Amplifier
The HA16628P is a monolithic integrated circuit designed for
use with the HA 16629P to DC motor positioning system for
applications such as carriage/daisy-wheel position Control in
Typewrites .
• FUNCTIONS
•
•
•
5 bit 0/A Converter
Error Amplifier
Position Amplifier
.FEATURES
•
•
•
(DP-16)
Single Supply Voltage 10V DC to 20V DC
Compatible with TTL, LSTTL & C-MOS
Low Input Current (O/A Converter)
I
• PIN ARRANGEMENT
.ABSOLUTE MAXIMUM RATINGS (Ta-2S'C)
Symbol
Item
Rating
Vee
Supply Voltage
Unit
Note
V
20
Common Voltage"
VB
0.55Vce
V
Power Dissipation
PT
450
mW
6
V
1
±5
rnA
2
+70
'c
·c
Input Voltage
V,
Output Current
10
Operating Temperature Range
Top.
o to
Storage Temperature Range
T. "
-50 to +125
Sotes' 1. Apply to DAo-DA4. Sign, E;\:ABLE, STROBE
2. Apply to Pos·Out, ERR·Out
• BLOCK DIAGRAM
(TnI' View)
Strobe 9)---+--------ir-----'
Vee
186
G~D
$
HITACHI
HA16628P
(Ta~25·C. Vcc~12V. V8~5V)
.ELECTRICAL CHARACTERISTICS
Symbol
Item
Test Conditions
Supply Voltage
Vee
Supply Current
lee
No Loads
Supply Current of VB (Pin 14)
IB
No Loads
~,Unit
min
typ
max
10
-
20
V
10
rnA
1
mA
-
.O/A Converter
Item
Symbol
Test Conditions
Current Reference Input Range (Pin 15)
IDAIN
all inputs rLJ
Current Reference Off· set Voltage (Pin 15 to 14)
VIa
IDAlN~0.3
IDAul (\)
1",,~O.516mA.Sign~-H,
Output Current
typ
min
-20
-
Other input allrL_
0.96
Other input aWLj
-1.00
0.3
to 0.7mA
IDAUI
(2)
1","~O.516mA. Sign~ 'L,
IDAO,,1
(3)
Sign~ 'L" Enable - 'L" Other input allrH_
-1
[DAn!
(4)
Sign~'H, Enable.~rLj
-1
max
Unit
1
mA
20
mV
0.98
1.00
rnA
-0.98
-0.96
rnA
1
pA
Low Level Input Voltage (Digital Inputs)
VlL
-
-
High Level Input Voltage (Digital Inputs)
VIH
2.0
-
-
V
Low Level Input Current (Digital Inputs)
IlL
YJL-OV
-1
-
pA
High Level Input Current (Digital Inputs)
IIH
YJH~5V
-
-
20
pA
Output Current (Output Offset Current)
Other input aUrHj
1
pA
0.8
V
• Error Amplifier
Item
Symbol
Test Conditions
Input Offset Voltage
YJo
All inputs rHJ DA·out to ERR-out
Output Voltage Swing
Vo""
1£ R Ro~1 = ImA
typ
min
'Unit
max
-5
-
5
mV
VB-3.3
-
V.+3.3
V
min
typ
max
.Position Amplifier
Symbol
Item
Test Conditions
Low Level Input Voltage (Pin 9)
VlL
-
High Level Input Voltage (Pin 9)
VIH
2.0
Input Offset Voltage
\lion)
Strobe ~rLJ POS·IN to POS-out
-10
VJO(Z)
Strobe ~rHJ
-10
Input Bias Current (Pin 10)
II.
Strobe~rLJ
-1
Output Voltage Swing
VOIII
/pos-olI,=lmA. Strobe='"L J
VB-3.3
-
0.8
10
Unit
V
V
mV
10
mV
-
pA
V.+3.3
V
.O/A CONVERTER LOGIC FUNCTION
Digital word
Sign
DM
*
*
H
H
H
H
H
L
H
H
H
L
L
L
L
H
H
H
H
L
L
H
Xotesl
*
* -indifferent
DA3
*
L-Lo\\" level
+min. +max-Source Current
-min, -max=Sink Current
DA2
DAI
*
E:'>ABLE
*
H
DAout~Zero
L
DAout~Zero
H
L
L
DAout=+min
L
L
L
DAout~+max
H
L
L
DAout=-min
L
L
L
DAout=-max
*
L
H~High
Commands
DAO
level
eHITACHI
187
HA16629P
.Tachometer Converter (FlY Converter)
<&
The HA 16629P is a monolithic integrated circuit designed for
use with the HA16628P to DC motor positioning System for
applications such as carriage/daisy·wheel position control in
Typewrites .
• FUNCTIONS
•
•
•
Tacho Voltage Generator (F /V converter)
Reference Voltage Generator
Position pu lse Generator
• FEATURES
•
•
Single Supply Voltage 10V DC to 20V DC
Position pulse output is open collector
(OP·1S)
.ABSOLUTE MAXIMUM RATINGS (Ta=2S'C)
Item
Symbol
Supply Voltage
Vee
Common Voltage
V.
• PIN ARRANGEMENT
Rating
Note
20
V
0.55Vee
V
Input Voltage (Pin 4,10,13,14)
VICI)
Vee
V
Input Voltage I Pin 6,7)
Vt {! I
V.±5
V
Output Voltage (Pin 11, 12, 15)
Vo..,
Output Current (Pin 11,12,15)
Inl
til
Output Current I Pin 2, 3, 5)
10M'
Output Current I Pin 9)
IIIYI
Power Dissipation
PT
20
V
5
mA
(2)
±I
mA
(3)
-1.5
mA
450
mW
+70
'c
'c
Operating Temperature Range
Top.
o to
Storage Temperature Range
T".
-50 to +125
.BLOCK DIAGRAM
188
•
HITACHI
(Top View)
---HA16629P
.ELECTRICAL CHARACTERISTICS (Ta~25·C, Vcc~12V, VB~5V)
Item
Symbol
Test Conditions
Supply Voltage
Vee
Supply Current
Icc
no Loads
Supply Current of VB (Pin 1)
IB
no Loads
min
typ
min
10
-
20
V
-
-
20
mA
-2
-
2
rnA
Unit
eComparators with Hysteresis (C I, C. and C,)
min
typ
min
Unit
V£ ...x= VE .,,,- VEcos=5V
-2
-
-
pA
C, IPin 10)
7.2
7.5
7.8
V
C"C, I Pin 14,13)
5.1
5.3
5.5
V
C,
5.7
6.0
6.3
V
C"C,
4.5
4.7
4.9
V
Symbol
Item
Input Bias Current
lIB
Test Conditions
VTHH
Input rHJ Level Threshold Voltage
Input r LJ Level Threshold Voltage
VTHL"
Output r LJ Level Voltage
VOL
IOL~2.5mA
-
-
0.4
V
Output Leak Current
IOH
VOH~5V
-
-
2
pA
min
typ
max
Unit
eAmplifiers (AI, -A"A, and -A,)
Item
Symbol
Test Conditions
VB±2.5
-
D'R~L
-30
-
-
Input 'LJ Level Voltage IPin 4)
Vn
-
Input rHJ Level Voltage IPin 4)
VIH
2.0
Common Mode Input Voltage Range
VeN
Output Offset Voltage I A, and A,)
VaS{+)
Output Offset Voltage I-A, and -A,)
Vas(·· )
D,R-H
-50
Voltage gain I A, and A,)
AVD(.
I
D'R~L
-
I
AVD( -
,
D'R~H
-
-I
Voltage gain
(-AI
and -A,)
Vnl
Output Voltage Swing
0.8
V
-
V
VB±3.5
V
30
mV
50
mV
-
V/V
-
V/V
VB-3.3
-
VB+3.3
min
typ
max
Unit
V
e Reference Generator
Symbol
Item
Test Conditions
VREFl
IRH~
-0.5mA, ;\jote 111
7.5
8.0
8.5
V
VREF2
IRf:F~
-0.5mA :'I:ote 121
6.7
7.5
8.3
V
DC Reference Voltage I Pin 91
:'I:ote 121
:'I:ote III
Test Conditions
Test Conditions
Unit
:'1:0.
E sin'
I
3V8+-
Vo+_3-
2
3V8+-
3_
V. _ _
/2
i2
3
VH--3-
V.+_3_
/2
}2
4
3VR--
VB--3-
}2
!2
:'1:0.
E cos
[2
!2
E sin
E cos
Unit
VDl.'
I
V.+3
VB
Voe
Vo,
2
V.
VB+3
Voe
Voc
V/j-5 \'
Vvc
•
HITACHI
189
HA16629P
eFIY Converter
Symbol
Item
DC Output Voltage (Pin 5)
VTACHOI
VJfs1n -V""co.=5V
Note (11
VTACHOZ
Note (21
Output Voltage Swing
VOUI
Output Offset Voltage (Pin 5)
Vio
Note (21
8.0
V8-3.3
-80
M .,"~M ••• - V8
Esin
E cos
M sin
VH
VH
2
3
VH
VL
V+
V_
VL
VL
V_
V+
4
VL
VH
V+
5
VH
VH
V+
V_
V+
6
VH
VL
V+
V~
7
8
VL
VL
V_
VL
VH
V+
V_
1.6 (V)
V_ ~ V8- .{2
V_
V8-5 IV)
CUND.
M cos
V_
V_
VH~V8+1 (V)
VL-V8-1 (V)
V+-V8+
~
• WAVEFORMS
eClock Wise Direction
Esin
Ecos
Dsin
±ov
±ov
DiR
- ______-J'- ___________.
±ov
ISTS)
ISTC)
Msin
VB
Meos
VB
VB
TACHO
190
min
-
1.5
1
No.
Note (11
Test Conditions
118
Input Bias Current
VB
• . HITACHI
(V)
typ
5
~
-
max
15
2.0
8.5
Unit
pA'
Voe
Voe
V8+3.3
V
80
mV
---HA16629P
.APPLICATION
v.
Vcr
GNV
Einx
From
Encoder
Esin
Eros
Msin
Mcos
R,
4.7k
R.
4.7k
Rs
4.7k
C.
II.I~
R.
5k
DA-In
VA
Cs
11.22\1-
Ou!
HAI662KP
Motor Drive Signal
Enable
VA 4
VA 3
DA 2
From
VA I
Microprocessor
DA ()
Sign
Storohe
•
HITACHI
)91
HA16631P,HA16631MP
The HA16631P and the HA16631MP are monolithic read
amplifiers for flexible disk drive, and provide wave-shaped
output signals. The amplified signals from the magnetic head
generate data pulses by differentiator, zero-volt comparator
and waveform shaper section .
.Flexible Disk Read Amplifier
HA16631P
• FEATURES
•
•
Combined all the active circu it to perform the flexible
disk read amplifier function in one chip.
Direct connection with TTL's.
(OP-18)
HA16631MP
.'
(MP-1S)
• PIN ARRANGEMENT
• BLOCK DIAGRAM
eHA16631P
Amp. {
Input
Ven
1
2
3
Offset
Decoupling
{
4
GND
One-
{
6
{
8
Shot 1
0.,,-
Data
Shot 2
L -_ _- '
Output
(Top View)
Gain Select
One Shot I
eHA16631MP
Amp Amp
Input Input
2
Vec2
18
1
Amp
Output
17
o
Offset
Decoupling
Offset
16 Amp Output
15 Diff. Input
Decoupling
GND 5
14 Dirf. Input
One Shot I 6
13
Dm.
Comp.
One-Shot I 7
12
Dm.
Compo
8
One-
10
One-
Data
Shot 2 Shot 2 Output
(Top View)
192
•
HITACHI
11
Ven
HA16631P,HA16631MP
.MAXIMUM RATINGS (Ta=25'C)
Symbol
Item
Rating
Unit
Power Supply Voltage (Pin 11)
Veel
7.0
V
Power Supply Voltage (Pin IS)
Vccz
16
V
Input Voltage (Pins 1 and 2)
VIN
-0.2 to +7.0
V
Output Voltage (Pin 10)
Vo
-0.2 to +7.0
V
Differential Input Voltage (Pins 1 and 2)
ViN(d'/fl
Operating Temperature
ToPT
o to +5.0
o to +70
·c
Storage Temperature
T.IB
-55 to +125
·C
V
• ELECTRICAL CHARACTERISTICS
e Operating Power Supply Voltage Range (Ta= 25'C)
min
typ
max
Unit
Power Supply Voltage Range
Symbol
VCC1R
4.75
5.00
5.25
V
Power Supply Voltage Haoge
VCC2R
10.0
12.0
14.0
V
Item
Test Condition
Test Circuit
eAmplifier Section (Ta=25'C, Veel =5.0V, Vee, =12.0V: unless otherwise specified)
Symbol
Item
Differential Voltage Gain
Avo
Input Bias Current
It.
Common Mode Voltage
Range
Output Distortion Ratio
Differential Output Voltage
Swing
Output Source Current
Output Sink Current
(Pins 16 and 17)
Test Condition
I-250kHz, VIN-5mVrms
VCCIR
VCC2R
Veo-12V, VeM -4V
VeM
THD
I-1kHz, V,N-25mVp-p
VCC1R
VCC2R
Voo
Vee
Veca
I II.
10
los
Veel II. Vec2R
,
min
typ
max
Unit
Test Circuit
SO
110
140
V/V
2
-
9
pA
4
6.2
V
2
5
%
2
-
Vp-p
2
S.O
-
mA
8
2.S
4
-
mA
9
5
1
1.S5
-
-
1.5
3.0
4.2
-
Input Resistance
TIN
30
120
-
kn
Output Resistance
T.
-
15
n
6
Common Mode Rejection Ratio
CMRR
I-100kHz, VIN-200mVp-p
50
-
-
dB
11
PSRR,
Vee -12.0V
4.75V'" Ve e ,"'5.25V
50
-
-
dB
10
PSRR,
Vee,-5.0V
10.0V'" Vee,'" 14.0V
60
-
-
dB
10
Power Supply Rejection Ratio
Ve el
Power Supply Rejection Ratio
VCC2
,
Differential Output Offset
Voltage
Voo
-
-
0.4
V
7
Common Mode Output Voltage
Veo
-
3.1
-
V
7
370
570
770
n
3
Effective Differential Emitter
Resistance (Pins 3 and 4)
R£FF
ePeak Detector Section (Ta=25'C, Vcel =5.0V, Vee ,=12.0V:unless otherwise specified)
Item
Symbol
Sink Current (Pins 12 and 13)
Iso
Peak Shift
Ps
Input Resistance
Tlo
Output Resistance
Top
Test Condition
I-250kHz, VIN-l.OVp-p
•
HITACHI
min
typ
max
Unit
Test Circuit
1.0
1.5
-
mA
12
-
-
-
30
40
5
-
%
13
kn
17
n
193
HA16631~HA16631MP
• Waveform Shaper Section
(Ta~ 25°C,
Item
Vee I
R,
Vee,", unless otherwise specified)
Symbol
min
typ
max
2.7
-
-
V
15
-
-
0.5
V
16
-
-
25
ns
14
-
-
25
ns
14
f~125kHz
600
-
2000
ns
f~250kHz
600
-
1000
ns
850
1000
1150
ns
14
Test Condition
Output Voltage H (Pin 10)
VaH
Vee.
Vce,
~4.
Output Voltage L (Pin 10)
VOL
Vee.
VCCl
~4.
Rising Time (Pin 10)
t
~
75V
12.0V, faL ~8mA
Vce,~5.0V, VeC2~12.0V
TLH
V.o,~0.5V~2.
Vee,
Falling Time (Pin 10)
tTHL
Timing Range # 1
tlA, B
~ 5. OV,
7V
Vee.,
~
12. OV
V.,,~2.7V~0.5V
t,
t,
Timing Accuracy #1
75V
~ 12.0V, faH~ -0.4mA
~0.625e,R,
+ 150
e, ~200pF, R, ~6.8kn
Unit
Test Circuit
Timing Capacitance # 1
e,
150
-
680
pF
14
Timing Resistance # 1
R,
1.5
-
10
kn
14
125kHz
150
-
1000
ns
f~250kHz
150
-
750
ns
170
200
230
ns
14
f~
Timing Range # 2
tZA, B
t,
~0.625e,R,
Timing Accuracy;;: 2
t,
Timing Capacitance # 2
e2
100
-
800
pI"
14
Timing Resistance #: 2
R2
1.5
-
10
kn
14
e, ~ 200pF, R, ~ 1. 6kn
• TIMING CHART
Ddferentiator Input
(PIns 12 and 13)
Dtfferentiator Output
I
C4,75kV
10
II>
l.tikQ
1.6kQ
0.4 k~2
6.4k!.l
3. Pre-Amplifier Section Effective Emitter
Resistance (Pins 3 and 4)
4. Input Bias Current
-
1/11/
~r----~-;---~I;,I-----o12\,
1 7 1 - - - - - 0 Vo" R
16
4 .- Volti-Vn17
.,----V..
r;----;I~"~---~ 12V
17
(0 1
16
15
15
4V
I'
14
1::1
13
12
12
111--+---05V
10
1I1--+---o5V
I"
V,.=5mVrm.s
j=250kHz
1.6 k~l
1.6k~
ti.4kU
Measure
I/Hl
in Ihe same way.
r. -rR.= _ _R_,_.
A",
-;;;;;- -I
50U
=
~·.:,:r,(~
-1
R•• =5lJ(l!~
•
HITACHI
195
HA1~631P,HA16631MP
I
5. Input Resistance
f
6. Output Resistance
2'5·tF~V;_'"t"""LW\o-4-vL-r;---~:;~t~~~~~~~: r~';
-
2.5p F
51Q
R
16
15
f
",'
I.
'V
2.S~F
l--,------fi--1Bl-t-------------::-r-<>-0 ~~.~ R
v..
(00)
2.5,uF
,v
13
13
12
12
11
11 1--1---0 5V
/--+---0 5V
10
10
1.6k2
1.6k2
6.• kQ
6.41&
VnIR'Ri~J:
V'N= V..,O VOM' R
R...
= V.. fO -I
VurR"
R... -5002
R... -IOOk2
7. Differential Output Offset Voltage. Common
8. Output Source Current
Mode Output Voltage
'V
18
L-~
17
16
3
~
1
,v o----1"--I1-i8l-----o
12V
VI7
v"
15
4
5
I'
6
13
7
12/--
8
11
13
12
5V
11
10
9
1.6kQ
1.6k2
6..4k2
6.'kQ
Measure Pin16 in the same way.
196
/--+---0
10
_HITACHI
Rco : VU I " 1
5V
HA16631P,HA16631MP
10. Power Supply Rejection Ratio
9. Output Sink Current
r-------~------1~81--------012V
r~~5~OQ~~~----~118 ______-o VCCI
::I-__
17
.s...3_kQ_
5V
16
.V
~
15
15
I'
13
I.
12
11 1 - - + - - ' " 5V
12
111---+----,.-0 Vee]
10
'0
13
6.4k~!
Fluke 8375A
Digital Multimeter
Measure Pin12 in the same way.
12. Differentiator Output Sink Current
11. Common Mode Rejection Ratio
2'5"~F~~--:1-18- - - < l 1 2 V
r
5~'Q
.V
o-----r---r;:------;1~8~------.., 1.2V
17!-----oV""
17
15
15
14
14
161-----oV~16
2.S.u
,v
16
13
V,. =200m Vp-p
5V
12
J= -l.IlMHz
CMRR=201Ilg
10
12
11 1--+---0 5V
11
10
10
1.6kQ
1.5kQ
6.4kQ
6.4kQ
~'''~~~\':17
1---.,----0 5V
Measure Pinl2 in the same way.
Measurement IS perfllrmed using Vector Voltmeter hp~405A. or equivalent .
•
HITACHI
197
HA16631P,HA16631MP
13. Peak Shift
4Vo---~---f~----~1;8~-------o12V
17
f~250kH,
16
V,~=I.OVp-p
15
14
c,
200pF
13
-,;;-------1
IkQ
121----'1/11..---;
II
~~I-~---lL..f-_--'_,.::.:.··'===1~~t-=-'=p__,-__-__-....J-·IL
5V Vur
10
R2 1.6kQ
;,;,15PF
t"I-I,.2
PS=I/2' ---XIOO%
1,.I+t,.2
RI 6.4kQ
14. Timing Accuracy, Rising Time, Falling Time
4Vo---~---f;-----~1;8~-------o12V
17
16
15
14
c,..r::-=---i
13
200pF ....-------f
IkQ
12 t-------WIr----1
II
5V
VUI
10
R2 L6k!l
J:
lSpF
R\ 6.8kQ
tTLH
= tTHL
IOns
j=250kHz
50% Duty
0.4",-----,
v.•
0.2V
OV
V~.J
PintO
EtIA=
198
l.~~~ns
xIOO%
Ells=
l.~~~ns
XIOO%
eHITACHI
Vut
n.SV
PintO
ET2= - " - XIOO%
200ns
HA16631P,HA16631MP
15. Output Voltage H (Pin 10)
16. Output Voltage L (Pin 10)
.vo---1----r~----1188~------_o12V
e..__
.v
IS
17
17
16
16
i5
15
I.
14
13
13
12
12
11
11
~IOj-I-,--<>
v•• ,
12V
jsmA
10
V."I
, 400,u A
1.6k!2
1.6kD
" .. kQ
6.'kQ
17. Input Resistance
18
17
16
Other Pins Open
-I
15
1.1----.T
O.sv
13
12
11
R=
1~:A)
(kQ)
III
.CIRCUIT EXAMPLE
Vee!
JLJL
•
HITACHI
199
HA16631P, HA16631MP
TIMING ACCURACY VS.
AMBIENT TEMPERATURE
COMMON-MODE INPUT VOLTAGE
VS. AMBIENT TEMPERATURE
vee.~L _
Vee. R I
Vcc2R f=125kHz
Vin=O.4Vp_p
10
20
30
40
50
60
70
-- -- ----
Vee! =12V
r--
80
r-
10
20
50
40
Ambient Temperature Ta IC)
60
70
VOLTAGE GAIN VS. FREQUENCY
1. 8
~l
Vcco
V
Ven =12V-
1.2
:E
~
1.4
-...
1.0
~
.;:
1.2
.~
0.8
<>
}
1.0
,g
0.6
""
"'
0.4
0.8
0.6
80
re)
Ambient Temperature Ta
COMMON-MODE INPUT VOLTAGE
VS. AMBIENT TEMPERATURE
1.6
I'--.
0.2
o
10
20
30
40
50
Ambient Temperature Ta
60
70
lOOk
80
200k
1M
500k
2M
5M
10M
Frequency f (Hz)
rel
SUPPLY CURRENT VS.
AMBIENT TEMPERATURE (1)
SUPPLY CURRENT VS.
AMBIENT TEMPERATURE (2)
1.05
VcctR
1.05
V{"oR
~
r---
~
~
1
e
1.00
~
j
0.95
1.00
0.95
10
20
30
40
50
60
70
80
10
20
30
--
40
..............
eHITACHI
-......
60
50
Ambient Temperature Ta
Ambient Temperature Ta ("0
200
:---
rel
70
80
HA16631P. HA16631MP
VOLTAGE GAIN VS.
AMBIENT TEMPERATURE
nMING ACCURACY VS.
AMBIENT TEMPERATURE
VCCIR
VCCIR
1.05
VcczR I - - -
1.05
I
1-'---t---+----JI-'---t--+---+~~c::skHz
-
Vin=O.4Vp_p
r--
~
-
:;
-- -
I.~
1.00
....
0.95
0.95
10
20
30
40
50
60
10
80
10
20
30
40
50
60
10
80
Ambient Temperature Ta(t)
Ambient Temperature Ta fe)
•
HITACHI
201
HA16632AP
eVFO IC for Flexible Disk Drive
The HA16632AP is a monolithic VFO IC for floppy disk
interface. It is designed to accept the read out data from
floppy disk drive, which includes jitter caused by the wow
and flutter of the disk revolution. or peak shift by the magnetic effect on the disk. And it generates "Window" signals
which are necessary to separate data pulse from clock pulse .
• FEATURES
•
•
•
•
Applicable to both the.8 inch disk and the 5.25 inch disk
by changing the voltage level "high" or "low" on the
control pin.
Applicable to both the single density record format and
the double density record format by changing the voltage
level "high" or "low" on the control pin.
Applicable to verious floppy disk controllers such as
FD1791, "PD765 by changing the voltage level "high" or
"Iow" on the control pin.
Gate units in the IC chip are constructed by Low power
schottky TTL circuits.
(OP-28)
• MAXIMUM' RATINGS (Ta= 25'C)
Item
Symbol
Rating
Unit
Power Supply Voltage 1
Vee
7
Power Supply Voltage 2
V LNR
7
V
Power Dissipation
Pr
750
mW
Operating Temperature Range
Ta-op
+60
'c
~torage
T. 18
-55 to +125
'C
Temperature Range
o to
V
• ELECTRICAL CHARACTERISTICS (Ta=25'C)
Item
Symbol
Test Conditions
min
typ
max
Application
Unit
Terminal
Vee. VLNR
Operating Power Supply Voltage
VCC ~~!}-----~LO:LA~T"CH!!....j-.....~~-el:...J-~
STAND BY
TRACK 00
WRITE PROTECT
READ DATA
HV
WRITE GATE
ERASE ON DELAY
ERASE OFF DELAY
WP
W
!if
M ON
HV TIME
WRITE DATA
I READ DATA
DRIVE SELECT
:
L ______________________________ oJ
1NiiSE
INDEX INTERVAL
INDEX PULSE WIDTH
DISK IN
MOTOR ON
In the WRITE CIRCUIT, power supply monitor circuits
are includ'ed to watch the hne voltage' of 5V and 12V.
When the line voltage goes down to abnormal value, the
COMMON, WRITE, ERASE drivers are all inhibited
rapidly.
(Top View)
•
HITACHI
211
HA16640NT
•
ABSOLUTE MAXIMUM RATINGS (Ta = 25DC)
Item
Supply Voltage
Supply Voltage
Interface Input Voltage
Interface Input Voltage
Interface Output Current
IU Terminal Output Current
HV Terminal Output Current
MON Terminal Output Current
H L Terminal Output Current
STEP Terminal Output Current
COMMON Drive Current (WRITE MODE)
COMMON Drive Current (READ MODE)
WRITE Drive Current
ERASE Drive Current
Input Current on the WR ITE Current Set Terminal
VOO7
VOO2
VIN7
V,N2
IOL7
IOL2
'OL3
IOL4
'OH5
'OH6
IOew
IOCR
IOWW
'OEW
'WC
Po
Power Dissipation
Ratings
-0.3, +7.0
-0.3, +14.0
Symbol
-0.3 to VOO7
-0.3 to VOO2
50
20
15
5
10
5
100
5
10
85
2.5
850
(0 to 50·C)
Unit
V
V
V
V
mA
mA
mA
mA
mA
mA
mA
Applicable Terminal
VOO7
VOO2
Note 1
Note 2
Note 3
IU
HV
MON
HL
>1 >2 >3 >4
COMMON 0, 1
COMMON 0, 1
WRITEa,b
ERASE
WRITE CURRENT
mA
mA
mA
mA
mW
·C
Operating Temperature Range
o to +70
TOp
DC
Storage Temperature Range
-55
to
+125
Tstg
Notes 1. Applicable TermmaI. SIDE SELECT, WRITE DATA, "STEP; DIRECTION, IN"'USE; MOTOR ON, HEAD LOAD,
.
STAND BY, WRITE GATE, DRIVE SELECT, I READ DATA
2. Applicable Terminal: TOO, DISK IN, 'WP", IX and also Terminals from MM circuit connecting with the external C,R
time constant.
3. Except for ro, JIv, !JUN, HL, >1 >2 >3 >4 •
•. ELECTRICAL CHARACTERISTICS (Ta = 25"C)
Circuit Block
.~
a
'"
~
~
WRITE
Driver
ERASE
Driver
Lower Line
Voltage
Protector
Test Condition
Symbol
Item
Supply Voltage Range
Supply Voltage
Supply Voltage Range
Output Voltage at
Selected WRITE Mode
Output Voltage at
Unselected WRITE Mode
COMMON
Output Voltage at
Driver
Selected READ Mode
Output Voltage at
Unselected READ Mode
Output Current Range
Input Current Range on the
WRITE Current Set Terminal
VDDl
VDD2
Vocw
Vocwu
VOCR
VOCRU
VDD2= 12V
locw=-100mA
VDD2= 12V
Unselected
VDD2= 12V
ICOR= -SmA
VDD2= 12V
Unselected
ICOM
min
typ
max
Unit
4.5
10.8
5.0
12.0
5.5
13.2
V
V
-
10.7
-
V
-
-
0.7
V
-
4.7
-
V
-
-
0.7
V
100
mA
2.S
mA
4.4
mA
0
Iwc
WRITE Current Accuracy
loww
WRITE Current Temperature
Coefficient
TClow
WRITE Current Symmetry
/:Jow
Output Leak Current
hKW
Output Low
Voltage
VOLER
Output Leak Current
ILKER
12V Detection Voltage
SV Detection Voltage
VPRV12
VPRV5
WRITE Driver output
voltage = 10V
Iwc= ImA
Iwc- 1mA
To = 0 to 70DC
VDDl = SV,
VDD2 = 12V
lowo-Iowb
VDDl = SV,
V DD2 = 12V
Vow = 20V
VDDl =4.SV
10E= SOmA
VDDl = S.SV
VOER= 20V
3.6
4.0
-
±O.OS
-
%fC
-1
-
+1
%
-
-
100
"A
-
-
0.6
V
-
-
200
"A
-
V
V
S.1
3.8
-
(to be continued)
212
~HITACHI
HA16640NT
Circuit Block
Signal
Interface
(Note 1)
Signal
Interface
. (Note I)
Sensor
Interface
(Note 2)
Item
oS
IU Output
u
a
]
c::
0
u
-
HVOutput
.~
.
..c:
u
"
:::i!
MON Output
HLOutput
STEP
Output
ERASE
Timer
INDEX,
READY
Circuit
12V Hold
Timer
Unit
2.4
-
-
V
VD D1 = S.OV
VILI
-
-
0.8
V
IHI
-
-
10
,.A
IlLl
VlH= S.SV
VDDI = S.SV
VIL = OV
VDDI = S.OV
VDDI = S.OV
VDDI = S.SV
VlH = S.SV
VDDI = S.SV
VIL =OV
VDDl=SV
VDDI = S"
VDD1=SV
VDDI =4.SV
VlH = 2.6V
VDDI =4.SV
IOL=4SmA
VDDI = S.SV
V OH = S.SV
VDDI =4.SV
10L = 10mA
V DD1 = S.SV
VOH= S.SV
VDDI = 4.SV
10L = ISmA
VD D1 = S.SV
VOH= 13.2V
VDDI =4.SV
10L= SmA
VDDI = S.SV
VOH= S.SV
VDDl=SV
10H= -IOmA
VDDI = S.SV
VOL = OV
VDDl=SY
10H= -SmA
VDDl = S.SV
VOL=OV
Low Level Input Current
High Level Jnpu t Voltage
Low Level Input Voltage·
High Level Input Current
Higher Threshold Voltage
Lower Threshold Voltage
Hysterisis
Input Current
Signal
Output
Interface
max
VJH]
VDDI = S.SV
Low Level Input Current
Index
Input
Interface
typ
V DD1 = S.OV
Test Condition
High Level Input Voltage
Low Level Input
Voltage
High Level Input Current
Low Level Output
Voltage
High Level
Output Current
Low Level Output
Voltage
High Level
Output Current
Low Level Output
Voltage
High Level
Output Current
Low Level Output
Voltage
High Level
Output Current
High Level
Output Voltage
Low Level Output
Current
High Level
Output Voltage
Low Level Output
Current
Cex - 0.033,.F
Rex = 33kn
Cex - 0.069,.F
Rex = 33kn
Cex = 0.033,.F
Rex = 220kn
Cex = O.22,.F
Rex = 390kn
Cex - 2.3,.F
Rex = S6kn
VDDI = S.SV,
VDD2= 13.2V
No Load
VDDI = S.SV,
VDD2= 13.2V
No Load
ERASE ON DELAY
ERASE OFF DELAY
Index Output Pulse
Width
Index Detection
Period
Hold Period
at 12V
Supply Current I
Dissipation
Current
Supply Current 2
•
HITACHI
Symbol
min
-10
-
-
,.A
VIHS
VlLS
3.3
-
1.7
V
V
IlHS
-
10
,.A
IlLS
-10
,.A
2.0
1.5
-
VTH+IX
-
-
-
3.S
V
V
V
VHYS
-
IrHIX
-SO
-
SO
,.A
VOLl
-
-
0.4
V
10HI
-
-
2S0
,.A
VOLIU
-
-
O.S
V
'IOHIU
-
-
100
,.A
VOLHV
-
-
O.S
V
10HHV
-
-
100
,.A
VO LMN
-
-
0.4
V
10HMN
-
-
SO
,.A
VOHHL
3.6
-
-
V
-20
-
-
,.A
3.6
-
-
V
10LSTP
-20
-
-
,.A
tEN
0.44
0.S2
0.60
ms
tEF
0.91
1.07
1.23
ms
tIXW
2.61
3.08
3.SS
ms
tixi
31.1
36.6
42.1
ms
tHY
47.1
SS.S
63.9
ms
IDDI
-
-
6S
mA
IDD2
-
-
10
mA
~H-LX
10LHL
VOHSTP
213
. HA16640NT
•
Pin Description
Symbol
COMO
Name
Common
Driver 0
COMl
SIDE
SELECT
WRITE
a, b
Common
Driver 1
Side
Select
Write Driver
a, b
ERASE
Erase Driver
WRITE·
CURRENT
Write
Current
WRITE
DATA
WRITE
GATE
Write Data
Input
Write Gate
WP
Write
Protect
Input
Erase ON
Timer
ERASE ON
DELAY
ERASE OFF
DELAY
STEP
D1RECTlON
Erase OFF
Timer
Step Signal
Input
Direction
Input
4>.,4>,,4>,
4>.
4 Phase
Stepper
Drive
Output
HV
Voltage
Change
Timer
HVTlME
HVTimer
WRITE
PROTECT
Wriie Protect Output
Description
Output terminal of Common Driver (SIDE 0). During the Head Select signal is selecting SIDE 0, a
common voltage appears on this terminal. The voltage value at WRITE Mode and that READ Mode
are shown in the Electrical Characteristics. This terminal supplies a current which equals to write
current + erase current. When the SIDE 0 is unselected, a common voltage doesn't appear, and this
terminal is pulled down to ground by a internal resistor with high resistance.
Output terminal of Common Driver. (SIDE 1).
The function is as same as that of SIDE O.
Input terminal for Head Select signal.
This signal selects the SIDE 0 or SIDE 1 of the common driver.
Output terminal of Write Driver.
The current multiplied by 4 with the determined current at the WRITE CURRENT terminal is sinked.
WRITE a and WRITE b turn on alternately according to the Write Data "1" or "0".
Output terminal of Erase Driver.
The drive transistor turns on during the period of Erase Gate signal keeping low, and the Erase Gate
timing is generated by write Gate signal in IC circuit.
This terminal has open collector NPN transistor, and erase current must be determined by an external
resistor.
The terminal to determine the Write Current.
The Write current is determined with connecting an external resistor to +5V supply.
The Write Current on the WRITE a, b terminals is multiplied by 4 with the current on the WRITE
CURRENT terminal, as follow equation.
IOWW = 3.38 x 4 (mA)
Rex
where, IOWW: WRITE CURRENT on the WRITE a, b terminals.
Rex:
External pull up resistor on the WRITE CURRENT terminal, and use the value in kn
unit.
Write Data input terminal ..
The signal is devided through the F IF circuit in IC, and drives the Write Driver.
Input terminal for Write Gate signal.
The write gate is enable at input Low, and allows data writing.
Erase Gate signal is generated with the determined delay from the negative and positive edge of Write
Gate signal, and drives an erase driver.
Input terminal for the detected write protect signal from the Disk.
Common, Write, Erase drivers are all inhibited at input low, and WRITE PROTECT driver turns ON.
Terminal for connecting the external time contact Cex, Rex of internal Mono Multi circuit to determine the delay time between the both negative edge of write Gate and Erase Gate signal.
It is necessary to determine the delay time for the fittest value according to the kind of FDD and
HEAD component.
As same as above, but the delay time is determined between the both positive edge of Write Gate signal
and Erase Gate signal.
Terminal for step pulse input to drive the stepping motor to seek tracks.
With each one step pulse input, the driver outputs 14>. ,4>,,4>,,4>. change sequentialy.
Input terminal for Direction signal to determine the direction of stepping motor revolution.
Output drivers change with the direction of 4>. -+ 4>, -+ 4>, -+ 4>. at the input low, and 4>. -+ 4>. -+ 4>, -+
4>, -+ 4>. at the iaput High.
Output terminals to drive the stepping motor coil. With each step pulse input, outputs change with
the direction determined by Direction signal.
Output driver has emitter follower construction, but the driver cannot drive the stepping motor coil
directly.
It is necessary to have external driver devices such as discrete transistors.
Timer output terminal to drive an external transistors which switches supply voltage 12V to 5V each
otherlfor stepping motor coil.
With each step pulse input or each head load execution, the output turns ON during the determined
period.
It is enable to switch supply voltage 12V to 5V alternately and to supply 12V for the stepping motor
coil during the period of Low level on this terminal.
Terminal for connecting the external time constant of internal Mono Multi circuit to determine the
period of keeping the HV output Low level.
When the input level ofWP turns Low and the drive select is executed, this output turns ON.
(to be contmued)
214
eHITACHI
HA16640NT
Symbol
TOO
TRACK 00
IX
Name
Track 00
Input
Track 00
Output
Index Input
INDEX
Index
Output
INDEX
PULSE
WIDTH
READY
Index Pulse
Width Set
INDEX
INTERVAL
Ready
Output
Index
Interval
Description
Input terminal for 00 track detection.
High level input makes the 00 track detection.
Output terminal for 00 track detection.
When the input level of TOO is High, and the both output <1>., <1>. are High, this output turns ON.
Input terminal for the detected Index hole signal from the DISK.
Input Low shows the hole detection.
Output for the Index pulse.
With each input of the detected Index pulse at the IX terminal, the width formed pulse appears on this
terminal as a Index pulse.
Terminal for connecting the external time constant of the internal Mono Multi circuit to determine the
output pulse width on INDEX.
It is enable to adjust the pulse width independently to the diameter of the DISK hole.
Output of the Ready signal.
When the disk revolution gets to the normal, after counting three index pulses, the output on this
terminal turns ON, and shows FDD has gone into READY state.
If the revolution goes down under the normal value, the output turns OFF rapidly and shows NOT
READY state.
And also the output shows High level continuously when Drive unit is not selected.
Terminal for connecting the external time constant of the internal Mono Multi circuit to determine
the reference index period corresponding to the standard revolution number of the DISK.
In case of the FDD equipment having another revolution number, it is easier to adjust reference period
DRIVE
SELECT
STAND BY
Drive
Select
Input
Stand by
Input
by changing the time constant.
Input terminal for Drive select signal.
Input low makes the selected operation, and Write function, output interfa~e,
moutput are all enable.
Input terminal for Power Save Signal to reduce the power consumption in FDD equipment and LSI.
Input high inhibits all output terminals in Write and Mechanism control circuit except common driver,
so power consumption in external circuit is reduced and this LSI makes itself into sleep mode.
At the same time, common driver turns the READ mode.
HEAD
LOAD
Head Load
HL
Head Load
Output
IN USE
In Use
Input
IV
In Use
Output
Read Data
Input
Read Data
Output
Disk in
Input
I READ
DATA
READ
DATA
DISK IN
MOTOR ON
Motor On
MON
Motor On
Output
VDDI
SV Power
Supply
12V Power
Supply
Ground
VDD2
GND
Input terminal for Head Load signal.
When READY is low and operation is under the not stand-by mode, head load is enable at the input
low.
Terminal for Head Load output.
Circuit has a emitter follower construction.
But this terminal cannot drive the coil of head load solenoid directly.
It is necessary to have an external driving transistor.
Input terminal for IN USE signal.
When the DISK is chJ!!ged and the DRIVE equipment is selected, and also the operation is under the
not stand-by mode, IV output is enable with the input low.
In Use Output.
Circuit has a open collector NPN transistor, and can drive LED directly.
Input terminal for Read Data from READ circuit such as HA16631P/MP. When both DRIVE SELECT
and STAND BY are Low, inverted read data pulses appear on the READ DATA terminal.
Output terminal for Read Data.
Circuit has an open collector driver, and negative data pulses appear on this terminal.
Input terminal for Disk charge detection signal.
Input High shows the ffiarged state. When lhe charged Disk is detected, MON output turns ON and the
motor starts, and also IV output turns ON too.
This function does not depend on the input level of MOTOR ON and IN USE. When the Disk revolution gets to normal state, after counting eight Index pulses, both MON and IU outputs turns OFF, so
the motor stops and IN USE LED tU!"ill OFF.
___
After this operation, both MON and IV outpulLdepend on the input level of MOTOR ON and IN USE.
If the Disk is discharged, the motor stops and IV output is inhibited rapidly.
Input terminal for the motor ON, OFF, control signal. MON is enable at the input Low.
Under the condition of the charged Disk and not-stand by, MON output turns ON with the MOTOR ON
input Low.
Output terminal for the motor ON, OFF, control signal.
Circuit has an open collector NPN driving transistor.
Output Low makes the motor ON and High makes OFF.
Also this terminal is able to connect to the motor control IC, such as HA13431 and HA13432/MP.
SV Power Supply.
12V Power Supply.
System ground
eHITACHI
215
HA16640NT
•
EXAMPLE OF APPLICATION CIRCUIT
+12V
+5V
HA16640NT
@Input terminals from FOe
@Output terminals for FOe
GND
•
TIME CHART
IIU OUTPUT
IHEAD OUTPUT I
SIDE! SELECT
I
1NlJSE-----:l
DRIVE SELECT
WRITE GATE
WRITE DATA
: '------.,----'
ID--~----~L_
______~
COMMON 0
COMMON
WRITE.
WRITE b
ERASE
I
ISTEP OUTPUT
TOO
DIRECTION
I
IREAD DATA OUTPUT
1 READ DATA
READ DATA
I
STEP
I
H
p2
IHV OUTPUT
,,3
HL(OutPut)-=~==~:~~====!====
~
fl4
TRACK 00
IDISK IN STARTING I
DISK
IN----1~lst
2nd 3r.d
IX
M;=i
__
216
I
tlXl
~tlJII
u1
.~
7th 8th
---~
~
=i
•
HITACHI
~~
~
HA16642MP ,HA16642NT
This Ie can provide READ and WRITE functions in one chip
for Floppy Disk Drive .
e Read/Write Functions
for Floppy Disk Drive
HA16642MP
• FEATURES
•
•
•
•
•
•
•
•
•
Read Amplifier has a differential voltage gain of 200 typ.,
which is avairable to adjust by gain select terminal.
READ Circuit can be applied for the signal amplitude of
0.5mVpp to 10mVpp which is read out from HEAD
COl L, so that this IC has superior capability to apply for
a FDD less than 5 inches.
In the read circuit, the peak shift is less than 1% for the
signal amplitude, 0.5mVpp to 10mVpp, at the Amp
input.
In the WRITE circuit, the COMMON DRIVER, the
WRITE DRIVER, and the ERASE DRIVER can provide a
large current capability, so that can be applied to various
kinds of FDD's.
Write current can be established at any value according to
the external resistor. The write current is independent of
the supply voltage drift and temperature drift, with the
built·in stabilizing circuit.
This IC provides a function to reduce the write current at
the inner track on the disk with a external switching
signal. The reduce ratio of the write current can be
established at any value with the external resistor.
The WRITE GATE signal and the ERASE GATE signal
can be applied independently each other.
A dual·mode supply voltage monitor circuit is built·in, to
inhibit a miss writing and a miss erasing at the power
supply timing, ON and OFF, and the abnormal supply
voltage.
READ and WR ITE functions are integrated in one chip,
resulting in broad reduction of external components.
• PIN ARRANGEMENT
eHA16642MP
(MP·44)
HA16642NT
(DP.42S)
eHA16642NT
d"
o
RC H
C B
IK.A,
~.c.
3
OlFF (vi
DlFF (pi
[)IfF In
OIFF In
DlFF Cpl
DlFF In
DlFF In
(Top View)
(Top View)
eHITACHI
217
HA 16642MP,HA 16642NT
• BLOK DIAGRAM AND APPLICATION CIRCUIT
+5\'
R,
c;
RD Data Out
I
I
I
I
~G'D:l
o _-@_J
011
D.
D.
R.
Ecoil
D,
+ 12Y
:.......... ;.:
RK. R9:
RIO:
R 11 :
Ol!
Side 0
Integrated Blocks
To determine a bias current for read mode
To determine the increa~se ratio of a write current at the inner track.
To determine a write current at the outer track.
(Write current at the inner track is a summation of the currents determined by
Rill
and Hil respectively.)
.ABSOLUTE MAXIMUM RATINGS (Ta=25°C)
Symbol
Item
Ratings
Unit
Applicable Terminal
Supply Voltage
Ve(']
7.0
V
Supply Voltage
Vc{':!
16.0
V
VCT:!
Input Voltage
V/.\"
-0.2 to t 7.0
V
AMP IN
t 5.0
V
AMP IN
-0.2 to t 7.0
V
RD DATA OUT
150
mA
COM O. COM 1
o to
VC(,1
--
Differential Input Voltage
VIXe,JI/"/I
Output Voltage
VII'"
Common Drive Current
/l'tJ.\l
Write Drive Current
III"/'
15
rnA
WT 1. WT 2
Erase Drive Current
Power Dissipation
hH
120
mA
EO
Pr
800
mW
Vn'l.
Operating Temperature Range
T",,,
Storage Temperature Range
T~II!
218
•
HITACHI
o to
t 70
·55 to t 125
t:
l:
VCTt.
Vt;t:
HA16642MP,HA16642NT
.ELECTRICAL CHARACTERISTICS (Ta=2S"C)
Circuit Block
Item
Symbol
Test Condition
min
V(,C;
typ
max
Unit
4.5
5.0
5.5
10.5
12.0
13.5
V
-
200
-
V/V
I,A
Supply Voltage Range
Ven,2
r~250kHz. V,,~5mVrms
Differential Voltage Gain
Al't)
Input Bias Current
1m
Common Mode Input Voltage Range
Vew
Output Harmonic' Distortion
THD
f~lkHz.
Vi ..
Peak Shift
PS
f~250kH,.
V,. ~O.5 to IOmVpp
VOH
Vee ~4. 75V. IOH~-400~A
V
-
-
15
2.0
2.7
3.4
V
-
-
5
%
Pre Amp.
Peak Detector
~10mVpp
Output Voltage
Read Data
%
-
V
-
0.4
VOl.
Vee ~4. 75V. IOI.~4mA
t"l'/.II
Vr;r;~5V. V",,~O.4
-
30
-
Falling Time
tTHt.
Vee~5V.
-
15
-
f~125kHz
1.3
-
4
f~250kHz
1.3
-
2
f~125kHz
0.15
-
1.5
f~250kHz
0.15
-
0.75
t1.H~
Timing Range #2
Erase Driver
2.5
Rising Time
Timing Range #1
Common
-
-
.. Processor
Driver
-
2.7
to 2.7V
V"., ~2. 7 to OAV .
t2Ali
V
ns
ns
J.lS
J.lS
Output Voltage at selected Write Mode
VIITMS
VC'C2 ~ 12V. leo .• ~120mA
-
11
-
V
Output Voltage at unselected Write Mode
VlfC.Wl'S
Ven =12V. at unselected
-
-
0.7
V
Output Voltage at selected Read Mode
VRC.WS
VeC2 ~12V. Ic() .• ~lmA
-
2.7
-
V
VCC2 ~12V. at unselected
-
-
0.75
V
-
-
150
rnA
Output Voltage at unselected Read Mode
VRC.\WS
Output Current Range
/co,w
.
Output Low Voltage
You:
VGG ~5V. [Ot ~100mA
-
-
0.5
V
Output Leak Current
IOHi-:
VOH~12V. V"G~5V
-
-
100
I,A
-
-
120
rnA
-7
-
+7
Erase Current Range
If:H
W rite Current Accuracy
ACllr
VGG~5V. VCC2~12V
Write Current-Supply Voltage Sensitivity
!?SJII'
VGG~5V. VCC2~IO.8
Write Current-Temperature Coefficient
Telll'
Vcc ~5V. Vc,,~ l2V, Ta~O to+70t
W rite Current Symmetry
61,,'1'
Vcc~5V, VCC2~12V.IK'Tl-lm
W rite Current Range
[liT
VGG~5V. VCC2~12V
Leak Current at Off Driver
["hId
Vcc~5V, Vc,,~12V. V"T~20V
Supply Voltage
Detection Voltage for 5V Supply
V,WO,\'!
VC'C2~12V
3.5
·3.9
Monitor
Detection Voltage for 12V Supply
V,W'O.\'2
VGG~5V
8.0
9.0
9.8
V
Logic Input
Gate
Input High Voltage
VIH
VGG~5V
2.0.
-
-
V
Input Low Voltage
VII.
WG. EG
-
-
0.8
V
Input High Voltage
VIHS
VGG~5V
2.0
-
-
V
Input Low Voltage
VII.S
HS. WD
-
-
0.5
V
Read
-
25
40
Write
-
16
-
Read
-
36
60
Write
-
33
-
to 13.2V
-
±1.5
-
±0.05
Write Driver
Schmitt Type
Logic Input Gate
12V Supply
Icc
Vc('~13.5V
Dissipation
Current
5V Supply
IcG
VGG~5.5V
eHITACHI
%
-
%/V
-
%/'C
-1
-
+1
%
1
-
10
rnA
50
I,A
4.3
V
-
-
rnA
rnA
219
HA18842MP,HA18842NT
• PIN DESCRIPTION
Symbol
AMP IN
OD
AMP OUT
DIFF IN
DIFFCPL
DIFFOUT
COMPIN
MMI
MM2
RDDATA
OUT
COMO
COM I
HS
R/WSW
WSO
LWS
SWS
ITS
WD
Name
Pre Amp Input
Description
Terminal for differential input of pre amplifier in read circuit. A signal voltage picked up
through R/W coil is applied.
Gain Select
Terminal for DC offset compensation of pre amp, and for gain selection. The amp gain
is available to be changed by connecting a resistor to the compensation capacitor in
series.
Pre Amp Output Terminal for differential output of the pre amp in read circuit. A low pass filter is
. connected between the input terminal of differentiator and this terminal.
Differentiator
Input terminal of differentiator in read circuit.
Input
Output voltage from the pre amp is applied to this terminal through the low pass filter.
Differential
Terminal for connecting a capacitor for differentiation. RF, CF and LF are connected in
Coupling
series, as shown in the block diagram.
Differentia tor
Output terminal of the differentia tor. The differentiated signal is appeared on this
Output
terminal with the phase shifted by 90·. The output is coupled through the capacitor and
is applied to the comparator input.
Comparator
Input terminal of the comparator in read circuit.
Input
A signal with the phase shifted by 90· through the differentiator is applied, and the zerocrossing point is detected. This teTminal is pulled up to the bias source by the external
resistor.
Mono Multi I
A capacitor and a resistor are connected to these terminals. The capacitance and the
resistance determine the output pulse width of the Pre Mono Multi Vibrator in the Time
Domain Filter Circuit.
Mono Multi 2
A capacitor and a resistor are connected these terminals. The capacitance and the
resistance determine the output pulse width of the Post Mono Multi Vibrator in the Time
Domain Filter Circuit.
Output terminal of the read circuit. A pulse which is synchronized to the peak position of
READ Output
the read out signal from head coil is obtained.
The output pulse width is determined by the external capacitor and resistor of MM 2.
The signal output level is TTL compatible.
Common
Output terminal of Common Driver (SIDE 0).
Driver 0
During the Head Select signal is selecting SIDE 0, a common voltage is appeared on this
terminal. The voltage.value at Write Mode and that at Read Mode are shown in the
Electrical Characteristics.
A current which equals to Write Current + Erase Current flows out from this terminal.
When the SIDE 0 is unselected, a common voltage is not appeared, and this terminal is
pulled down to ground by a high resistance in the IC.
Common
Output terminal of Common Driver (SIDE I). The function is as same as that of COM
Driver 1
o.
Head Select
Input terminal for Head Select signal. This signal selects the SIDE 0 or SIDE I of the
common driver. This terminal is consisted of Schmitt type input circuits. Input Low
selects COM l.
R/WSwitch
A transistor output for switching the bias state in head coil and in diode SW circuit,
according to READ/WRITE switching. This terminal is pulled down to ground level in
READ Mode, and it is pulled up to 12V in WRITE Mode.
WRITE
Output from regulated supply source in Write Current Setting Circuit.
Regulated
Voltage
Output
Low Current
Terminal to set a low level write current.
Set
The current is determined by connecting an external resistor RII between terminal WSO
and this terminal.
Difference
Terminal to set the current difference (IWOF) between high level write current and low
Current Set
level write current. The difference current is determined by connecting an external
resistor RIO between terminal WHO and this terminal.
IWDF = (High Level Write Current - Low Level Write Current)
~H = If,L + IWPF
ere; WH is hIgh level write current, and IWL is low level write current.
IWH-to-IwL current ratio is;
IWH/IWL = I + I)r,DF/IWL
It can be set at any value y R to and R 11.
Current Switch
Input terminal for Write Current SW signal at inner & outer tracks. High Level Write
Signal Input
Current is selected at input Low, and Low Level Write Current at input High.
Write Data Input Terminal.
Write Data
Input
The signal is devided through the F IF circuit in the IC, and drives the Write Driver.
(to be contmued)
220
eHITACHI
HA16642MP,HA16642NT
Symbol
WT I, 2
Name
Write Driver
1,2
WG
Write Gate
EG
Erase Gate
EO
Erase Driver
PSM
Power Supply
Monitor
VCCI
VCC2
VGG
GND 1
GND 2
GND 3
Amp Voltage
Voltage for 12V
Voltage for 5V
AmpGND
Description
Output terminal of Write Driver. The current determined by external resistors at terminal
SWS and terminal MWS is sinked. WT I and WT 2 turns on alternately, according to
the Write Data "I" or "0".
Input terminal for Write Gate signal.
The write gate is enable at input Low, and allows data writing.
Input terminal for Erase Gate signal.
The erase gate is enable at input Low, and allows erasing.
Output termiti.al of Erase Driver. It turns on at erase gate input WW. The output on
this terminal is an open collector output of NPN transistor, and the erase current is
determined by external resistor R 12.
The monitor circuit monitors the VG~ (+5V) and VC~? (+12V), and will inhibit the
common driver, the write driver and t e erase driver w en the supply voltage becomes
abnormally low, and the FLAG signal will appear on this terminal PSM. The Driver
Inhibit is released only when both VGG and VCC2 are more that the specified voltages,
regardless of the supply sequence.
Voltage for Pre Amp in read circuit.
Another Voltage (Excepting for Pre Amp.)
GND for Pre Amp read circuit.
GND for read circuit. (Excepting for Pre Amp.)
GND for write circuit.
_HITACHI
221
HA1835 P •
Voltage Regulator Control with Fail Detector for Digital System
The HA1835P is a monolithic voltage regulator control
designed for microcomputer system. In addition to voltage
regulator, it includes watch dog timer function and power on
reset function.
In various microcomputer system, this IC's every function
'can operate with a few external parts .
• FEATURES
•
•
•
5V Regulated power supply control circuit
o Voltage drop can minimize with external PNP-type
transistor.
o Internal over current protection circuit for external
PNP-type transistor.
Watch dog timer
o Internal Digital band pass filter control circuit of pulse
width detect type and Oscillation control circuit of
constant current charge-discharge type, so Watch dog
timer function controled by microcomputer's software.
o Band pass filter characteristic and Oscillation characteristic can also set up at will with external circuit.
Power on automatic RESET pulse generator
(DP-14)
• PIN ARRANGEMENT
.BLOCK DIAGRAM
v,.
v, ..
Q
O----~~-.JIfI.I\---~---,
r--~------O
v•• ,
(Top View)
HA1835P
-----,
I
I
I
I
I
I
5kll
I
I
I
I
'------+------{ 9
'-------------l-----~ 8
Camp
V4DJ
2kQ
RESET
eLK
Fail Detector
Power on Reset Detector
(Band Pass Filter)
Reset Signal Oscdlator
I
I
I
I
I
1
I
I
____ JI
174
lo.olPF
C,
GND
222
eHITACHI
HA1835P
• ABSOLUTE MAXIMUM RATINGS
(Ta~25'C)
Symbol
Item
Supply Voltage
Rating
Unit
30
V
-0.3 to Vout
V
VRESET
17.5
V
VRESET
17.5
V
I RESET
2
rnA
2
rnA
Vee
Input Voltage
VCLK
Output Voltage
Output Current
I"iiESET
Control Terminal Voltage
Veo.\"/'
Control Terminal Current
leOl'fT
Vee
V
20
rnA
Power Dissipation
PT*
400
rnW
Operating Temperature Range
T.,.
-40 to +85
·C
Storage Temperature Range
TAl.
-50 to +125
·C
Operating Supply Voltage
Veccop,)
6 to +17.5
V
260 (T---j
E
d:~
0~50~k--~~--~~---~~--~--~
Resistor RR (Q)
Fig. 5
226
eHITACHI
R.-ton Characteristics
HA1835P
20
5kr-----~r-----_+------_+------~~~~+___1
System
k '
.....
10 k
2k
k
lk
k
"
~
~
~
( Ta-2S'Cl
's.--
~,
~r-
k
~
Normal
Operation Region
,
;;:
Permission Operational
200
20
~
"-
A~B
"""-
100
Duty=
50 0
""-
Clock Pulse Duty
;;:
U
~r-
500
0::
o~
"-
"-
10o
40
60
80
~-'
R""-'~
20k
30
20
I~
or--Sy".m
o
S'""I R.g''" 1
"-
50
0
kun-awaJ
Sense Region
100
SOk
lOOk
~
200k
SOOk
1M
Resistor Rf (fJ)
Clock Pulse Duty (%)
Fig.6
Permission Operational Colck Pulse
Fig.7
Clock Pulse Frequency Input RangeVS. R.
Duty VS. Freqency
•
HITACHI
227
228
•
HITACHI
Other Functions
~HITACHI
229
HA17733G,HA17733P,HA17733
HA 17733 is a video amplifier for wide band with small phasedelay and excellent gain stability. This amplifier eliminates
external phase compensation and can fix the gain 10, 100 or
400 without using external elements. If some external
elements are used, any gain from 10 to 400 is available.
It finds main application in terminal units of computers,
interface or video amplifiers.
Industrial Use: .
. HA17733G, HA17733P
Commercial Use:
. . . . . . . . . HA17733
.Differential Video
Amplifier
HAI7733G
• FEATURES
•
•
•
•
Wide Band Width . . . . . . . . . . . . . . . . "
120MHz
Good Response
Gain is Easily Adjusted in the Range of 10 to 400
Eliminates External Phase Compensation
(DG-14)
HA17733P, HA17733
• CIRCUIT SCHEMATIC
(DP-14)
'--t-~v.;;..-+---t---(l'VOUTI
e::---+------i,.---{!)7 OUT2
• PIN ARRANGEMENT
,l----'-r'''-----ifc-''Q,'--*Q''''''-'--l(IQu
I
Rit
4nu
VF.£
(Top View)
• ABSOLUTE MAXIMUM RATINGS (Ta~ 2S'C)
Symbol
Item
Supply Voltage
+8
-8
Vill(CM)
±6
±5
10
±6
±5
10
±6
±5
10
625 *1
-20 to +75
-65 to +150
. 625 *2
-20 to +75
-65 to +150
625 *2
+70
-55 to +125
Vin(diffl
Power Dissipation
PT
Operating Temperature
T".
Storage Temperature
T",
230
deratln~
deratin~
HA17733
+8
-8
1o",
*
HAI7733P
+8
-8
Common Mode Input Voltage
DiHerential Input Voltage
Output Current
*1 "hen Ta IS 70C or more. the
2 When Ta is 50~C or more. thE'
HAI7733G
Vee
VEE
..
cur\'e \\".11 be 7.6m\\/ C.
curve will be 8.3mWI"C.
eHITACHI
o to
Unit
V
V
V
V
rnA
mW
"C
"C
HA 17733G,HA17733P,HA17733
(Ta~25°C)
• RECOMMENDED OPERATING CONDITIONS
Symbol
Item
Supply Voltage
Typ
Min
Max
Unit
Vee
5.0
6.0
7.0
V
VEE
-5.0
-6.0
-7.0
V
• ELECTRICAL CHARACTERISTICS-1 (Vcc~ - VEE~6.0V, Ta~25°C)
Vee
8
V
-3
-
-8
V
Note 2
250
400
600
VEF.
Gain2
Note 3
80
100
120
Note 4
8
10
40
12
-
-
90
-
-
120
-
-
10.5
-
-
4.5
-
2.5
12
-
-
7.5
-
6.0
-
3.6
10
-
-
Test Conditions
Note I
Gain I
Differential Voltage Gain
Typ
-
Max
3
Symbol
[tern
Operating Supply Voltage Range
A~'D
Gain3
-
Gain 1
Band\\' idth
Gain2
R.~50
BW
n
Gain3
Gain 1
Rise Time
Gain2
R,~50
t.
n, VOk/=lV,
p
Gain3
Gain 1
Propagation Delay Time
Gain2
R.~50
t,
n.
V~",=l
Vp _ p
Gain3
Gain 1
Input Resistance
Gain2
R"
Gain3
Input Capacitance
Gain2
C"
Input Offset Current
I/o
Input Bias Current
I,
Input Noise Voltage
V~(
Input Voltage Range
V,
i"l
R.~50
n. BW
~lkHz
to 10MHz
Gain2
CMR
Vc .• ~±IV
Power Supply Rejection Ratio
Gain 2
PSRR
11 VCC~ ±O.SV. 11 VF.E~ ±O.SV
Input Offset Voltage
V~( of/l
Unit
MHz
ns
ns
-
4.0
10
-
30
-
250
-
-
2.0
-
0.4
5.0
pF
pA
-
9.0
30
-
,.,Vrms
±1.0
I f~IOOkHz
I f~5MHz
Common Mode Rejection Ratio
Gain 1
Min
12i-
-
50
-
70
-
0.6
1.5
60
-
86
60
kn
pA
V
dB
dB
V
-
0.35
1.5
Output Common Mode Voltage
V.(CMI
2.4
2.9
Peak to Peak Output Voltage
V~p
3.0
4.0
3.4
-
Output Sink Current
I" ••
2.5
3.6
-
Output Resistance
R"u'
-
20
-
n
Supply Curhnt
Icc
-
18
24
mA
Gain2.3
p
eHITACHI
V
Vp·p
mA
231
HA17733G,HA17733P,HA17733
.ELECTRICAL CHARACTERISTlCS-2 (VCC =-VEE =1i.OV; Ta=O to +70'C)
Gain 1
Differential Voltage Gain
Typ
Max
Note 2
250
-
600
Note 3
80
-
120
Note 4
8
-
12
Test Conditions
Symbol
Item
Gain 2
AHl
Gain 3
Min
Unit
Input Offset Current
I/o
-
-
6.0
pA
Input Bias Current
I,
-
-
pA
Input Voltage Range
V,
40
-
-
dB
±1.0
-
50
-
V
Power Supply Rejection Ratio
Gain 2
CMR
PSRR
50
-
Inpu' Offset Vol tage
All Gain
V",
nfl'
-
-
Peak to Peak Output Voltage
V"'
p
2.8
-
Output Sink. Current
1m'
Icc
2.5
-
-
-
mA
-
27
mA
R..
8.0
-
-
Common Mode ,Rejection Ratio
Gain 2
Supply Current
Input Resistance
Gain 2
Vc..~
±IV. f;>; 100kHz
t>. Vcc~ ±0.5V. t>. V,,;~ ±0.5V
1.5
-
dB
V
Vp-p
Cl
.ELECTRICAL CHARACTERISTICS-3 (Vcc= - VEE=6.0V. Ta= -20 to +75'C)
Item
Symbol
Gain I
Differential Voltage Gain
Gain 2
Ar/J
Gain 3
200
Typ
-
Max
Note 2
Note 3
70
-
130
Note 4
7
-
13
Test Conditions
Min
Unit
700
Input Ollset Current
[10
-
-
7
pA
Input Bias Current
I,
-
-
pA
Input Vol tage Range
V,
Power Supply Rejection Ratio
Gain 2
CMR
PSRR
Output Offset Voltage
All Gain
V""jj'
Common Mode Rejection Ratio
Gain 2
V:.,
Peak to Peak Output Voltage
±1.0
-
50
-
Vc .• ~ ±IV. f;>; 100kHz
46
-
-
dB
t>.VcI·~±0.5V. t>.VH~±0.5V
46
-
-
-
dB
-
2.8
-
1.5
-
p
V
V
Vp-p
Output S ink Current
l~'d
2.5
-
-
mA
Supply Current
l("c
-
-
29
mA
R..
7.0
-
-
kCl
Input Resistance
:'\otel1.
2.
3.
4.
232
Gain 2
In this I·an~e. the apmlifiel' can be ope!"atin~.
Connt'ct G, \ and G, I',
Connt"ct G, \ and (;:1',
Opt>n all of the terminals (or ~ain select.
~HITACHI
HA17733G,HA 17733P,HAl7733
PHASE VS. FREQUENCY (2)
PHASE VS. FREQUENCY (1)
0
-
..
~H
.~
"
-50
\/~,
V"
-6V
To:.2S'C-
0;'"
.... ....
~
I
-100
:
I
,
-15 0
n-f--;-- .,";+
f---l- ~r++7I
I
-300
-35 0 1
Frequency
f
v"I~~lv;"~~v
~-tt5',tl
o--H
J.'
o-J-
I
1
I
:
i
,
U
.....,.....
, III
:l
GIInJ II
-f
~+
0
'
r-4I, '
II
i
10
~
'i!
E
E
J
, 1
0
0
i
I
I
I
[Ii
I II i
li:1
30k
lOOk
300k
10M
3M
f
I
I
1M
llM
100M
(Hz)
1,000
300
(MHz)
SINGLE ENDED VOLTAGE GAIN VS.
FREQUENCY
PEAK- TO-PEAK OUTPUT VOLTAGE VS.
FREQUENCY
~
I--..
I- I-
,
'I
Frequency
100
f
I
10k
I I, II
-
I
I
-T
Ii
30
Frequency
~
:
----i--
"
"
0
i
I
1.000
,
J' ..
i
:
:
300
(MHz)
~
o-
I
100
f
H-I
-
""H-;.
30
COMMON MODE REJECTION RATIO VS.
FREQUENCY
I
t N
",,;,
I
I
10
Coo,,
III
Vce = - VEt =6V ITa =2S'C
-s,
-
Frequency
I
I
I
~lt;~Hi
~q~
(MHz)
SINGLE ENDED VOL TAGE GAIN VS.
FREQUENCY
II
1 1\
iTt:'
-250
l\
,
t--~---1 ~.'
-200
II
r'r-rm+--+4-1H-1H+l.J+-+-++.l...HffiI
V(co:;-VH=6V
T, = ,,'C
Rr -lkQ
Rr = lkl2
sof-----
:I
I
j
i!
II
GI1U2'r+-H+l-l+---++--+++j-++!l--++-+--+++l-~
4oH++++++++i----HH++++!iH+++-Hi-ffi
~ 3O,H+++~~+H~~~~~~~
1\\
~
I
!
]
Til"" -;20'C
I!
-;j
~
r
Ii
IH--f-ii-+tt-f+r---HH+t++t1H+-H-++14
"
10H+++++!++i---+H++++!iH~ +25'C
I
+7!i'C
I
100
Frequency
f
300
1.000
(Hz)
100
Frequency
~HITACHI
f
300
1.000
(Hz)
233
HA17733G,HA17733P,HA17733
RELATIVE VOLTAGE GAIN VS.
SUPPLY VOLTAGE
PEAK-TO-PEAK OUTPUT VOLTAGE, OUTPUT
SINK CURRENT VS. SUPPLY VOLTAGE
..
7
TII=25\:
T.=is"C
1=200MH'.I.
v.. = l.5mVrml
.Z
.S
(mA)
$
HITACHI
1.,d: (rnA)
241
HA17555GS, HA555PS, HA17555
OUTPUT VOL TAGE(Vod VS.
SINK CURRENT (3)
OUTPUT VOL TAGE(Vod VS.
SINK CURRENT (2)
JO
0
Lee
,
I
i
!
,
..
To-7S'C
i
ISV
!
I
"
!
I
0 .I
__~
1-3
I
.0
~
JOV
:
, I
I ~
I
.
:
t~-20:C'
-
'T'-75'C~V
~
i I
1:1.
ih'
o.3
~
o.I
25'C
25'C
~
HI
0.0
0.0 3,....::
' .......
A
V
I
0.0 I
10
30
:
V
I
100
0.
~
0.99 5
+--
I
r-
r-
0.99 5
-
i
- I - - I--
:
I
--
I
I
I
0.99 0
0.991I
I
-:-- I-0.98 5
0.985
'0
-20
15
10
10
Ambient Temperature
Supply Voltage Vee (V)
(0(,1
PROPAGATION DELAY TIME VS.
LOW LEVEL TRIGGER VOL TAGE
MINIMUM TRIGGER PULSE WIDTH VS.
LOW LEVEL TRIGGER VOL TAGE
20
Tu
300
"
r---,---.---,----,-----,--,---.-,----,
-
0
E ,uo
,:
8
0
-
Ta=-20'C .........
~
~
tl -I - 25'C
O
r--
l--
100
ci:
!--:::: ~ :...75'C
(1,1
0.1
0.2
0.3
Low Level Trigger Voltage (x
242
0.'
Low Lev,,] Tri~ger Level (X 1,'re)
Vet'!
$
HITACHI
HA17555GS,HA17555PS,HA17555
.DESCRIPTION OF HA17555 OPERATION
HA 17555 is an Integrated circuit which can provide accurate
a time delay and oscillation. As for time delay or mono
multi operation, output pulse width can be determined by an
external resistor and a capacitor. At astable operation,
oscillation frequency and duty cycle can be controlled by
two external resistors and an external capacitor separately.
It is possible to attract and induce 200mA current by output.
And also, operating voltage can be used at a wide range of
supply voltage, 5 to 15V. Particularly when supply voltage is
5V, output level is compatible with TTL input.
.
HA17555 consists of reference voltage circuit, two kinds of
comparators, flip-flop, output circuit, reset and discharge
circuits.
5. Output Circuit
Output circuit consists of 0'0 through 0'4' R" through
R 15' Output level is determined, according to the state of
output transistor 0" of flip-flop. When 0" is "ON",
output level is "Higg", and when 0" is "OFF", it is "Low".
6. Reset
By making reset terminal "Low" level, prior to any other
input, the reset function can make it "Low" level and starting point of a new cycle.
7. Discharge Circuit
Discharge circuit can discharge or charge timing constant connected to the both edges, by "ON" or "OFF" of 4 , 0'4 is
turned "ON" and discharged at "Low" level or when the
above reset is made.
°.
1_ Reference Voltage Circuit
Supply voltage is divided into three by 5kn resistance of R"
R. and R.. The edge of (2/3) Vcc is connected to comparator A, the edge of (1/3) Vcc is connected to comparator B.
And (2/3) Vcc is drown out as a control terminal. By impressing bias at (2/3) Vcc from the outside, it is possible to
change threshold level and trigger level of comparator.
2. Comparator A
Comparator A consists of 0. and 0" R., R" R3 and Rs.
The base of 04 is connected to reference voltage (2/3) Vcc.
It switches when voltage of threshold terminal switches (2/3)
Vcc off. In other words, when voltage of threshold terminal
is beyond (2/3) Vcc, 0. and 0, which have been cut off is
turned "ON", and 0. and 04 are turned "OFF". 50,0. is
turned "ON" and resets flip-flop.
3. Comparator B
Comparator B consists of 0. through 0 .. , R. and R •. The
base of 0 .. is connected to reference voltage (1/3) Vcc, it
switches when voltage of trigger terminal cuts (1/3) Vcc off.
In other words, when voltage of trigger terminal decreased to
less than (1/3) Vcc, 0'0 and 0" which have been cut off are
turned "ON". 012 and 013 are turned "OFF". So, trigger is
supplied to the set side of flip-flop from the collector of 0" '
and flip-flop is set.
4. Flipflop
P5 flip-flop consists of 015 through 0 .. , R. o and R II . It is
stabilized when 0 •• is turned "ON" and 0" "OFF", by
reset signal from comparator A. On the other hand, it is
stabilized when 0'6 is turned "OFF" and 0., "ON", by set
signal from comparator A.
•
HITACHI
243
HA17555GS, HA17555PS, HA17555
• AN EXAMPLE OF OPERATING CIRCUIT
.!;-;;,,----!---+---oOutput
Input
(2) Trigger
Di scharge (7)
(5) Control
Voltage
Threshold (6)
GND
Fig.1 Mono Multi Circuit
2. Astable Operation
{)()
If the second resistor RB is added to the circuit shown in Fig.
1 and threshold terminal is connected to trigger terminal,
HA 17555 operates as an astable circuit. Fig. 4 shows the
circuit construction of HA 17555.
Capacitor e is charged through RA and RB, discharged
through R B in th is circu it. Therefore, duty cycle can be controlled by RA and RB. In Fig. 4, capacitor e charges and discharges between threshold voltage (about 0.67 Vee) and
trigger voltage level (about 0.33 Vee). Fig. 5 shows a typical
example of astable operation. In this figure, time (tH) when
output is "High" level, time (tl) when output is "low",
oscillation frequency (f) and duty cycle (D) are calculated as
follows;
V
]
100m
/.
Om
V
V
V
'Y
V
;"
~
~
V
"
V
V
~
V
Im
100
= RAe. When voltage at both edges of capacitor e reach
threshold voltage of comparator A, flip-flop is reset and
is conducted, capacitor e is discharged. So, output is returned to "Low". Mono multi operation is occurred when·
negative-going input pulse reaches trigger level. When once
mono multi operation is occurred, re-trigger could be made,
even if re-trigger signal is added during this period.
According to Fig. 1 and Fig. 2, output pulse width is determined to be tw = 1.1 RAe. If negative-going pulseis added to
reset and trigger terminals at the same time during mono
multi operation, capacitor e is discharged and mono multi
operation is occurred again at positive edge of reset pulse.
Output remains "low" as long as reset terminal is "low".
When the reset terminal is not used, it is better to connect
reset terminal to Vcc in order to prevent miss operation.
Fig. ·2 shows the characteristics of output pulse width when
the values of RA and e are changed. Operating waveform is
shown in Fig. 3. If the reset terminal is connected to mono
multi circuit subordinately, it is possible to make sequential
timer.
0,.
1. Mono Multi Operation
"
o"V
O.lIUl
tH=O.693(RA + RB)C
t/.=O.693RB· C
V
f
Duty Cycle
I,.;'
.JI·
Timing Capacitance {' ({J.Fl
Fig.2 Output Pulse Width vs. Timing Capacitacne
Fig. 1 shows a mono multi circuit using HA 17555. It is
assumed that the external capacitor e is discharged by dis·
charge transistor
inside Ie in the beginning.
By adding trigger terminal to negative-going input trigger
pulse, flip-flop is set and
us turned "OFF". Output is
driven to "High".
Capacitor e is charged through resistor RA at time constant T
0,.
0,.
244
1.44
(RA+2RB)C
eHITACHI
D
HA17555GS, HA17555PS, HA17555
5V
5V
Input
- r.- I-Output
RL=lkQ
Output
Output at
I
Terminal C F---+-->--"-¥=--f- --'~-""""'-j-+--'>+-,,'1
f-
: j i
l.-1 --:1
Vi
,
Output at
Terminal C
(6pin)
RA=19kS2
RB =l2kQ
C =O.l.uF
Rl.=lka
RA=8kQ
C=O.OI,uF
oV1
(6pin)
IJ~s
5V
5V
(5V/div)
lal Vcc=5V
l W-i-+-~-
0
I
h
1--1--
h
I
!
(IOV/div) .
RA =SkU
C=O.Ol.uF
I
I
lOY
i
+
(Spin)
!
:-++
:
:
RA =3.9110
R,I=3.21&
C=O.lJlF
I
Rl.=lkQ
!
I
~ ~~
i
I
0
I
5V
100,115
I
i
I
0
Output at
Terminal C
,
~
I
Output
RL=lkQ
I /l
V1
/1
(IOV/div)
,.......,
,,
Output
Output at
Terminal
(6pin)
~V
I
lOY
Input
I,
It
faJ Vee =5V
'"
,/
.......- -'\
200.,
(b) Vee =15V
(b) Vee =15V
Fig.3 Operation Waveform of Mono multi circuit
Fig.5 Operation Waveform of Astable Circuit
3. Cautions in Use
Such integrated circuit for tinier as HA 17555 type may
produce switching noise on power supply and GND line during usage. In this case, abnormal output waveform may be
produced by impedance inside power supply or impedance
between power supply and GND. So, please take consideration in order to make impedance of each wiring less than the
following value at packaging.
(411
(81
V"
Reset
Output
121
fll'
II.
(Jutput
R2I
(31
,
Ib,
'---- Triuer
Discharge
~r
0,.
O.I.uF
r
Control
Voltage
II,
T7I
II.
Threshold
GND
~
(61
I'
II"
Fig.4 Astable Circuit
R, :
Power supply output impedance
R,
~ 5OmO
Lead wiring resistor
R.. + R .. ~ l00mO
Substrate wiring resistor
R .. +R •• ~2OmO
•
HITACHI
245
HA16605W
.Burner Controller
Recently bumer control equipment has been improved and
required to obtain small outline, high performance and multi
functions. And now, electronic burner controller is going to
become more popular to save energy and to have better
safety functions ..
The HA1660SW is a one chip monolithic IC, integrated of
the sequential control pert in the bumer 'control equipment.
This IC has four sequence control modas, so that it can
provide functions for various bumer systems.
In each mode, fail-.afe functions are provided. And this IC
has capability of driva relays directly .
• FEATURES
• Four kinds of fixad control sequance
• Commercial frequency 5O/60Hz can b8used for the clock
pulse of intemal timer.
• Transistors wh ich can drive the power relay directly are
builtin.
• Comperators are built in.
• Provides safety functions.
• BLOCK DIAGRAM
r----------------,
Input
Terminal
e
o
o
@>
I
I
----"I
:
I
I
I
I
I
I
I
I
I
I
I
I
I
: .~
.
Ifill
\!.I
i3
(is)
@
@
:i
®
.1
I
I
I
I
I
I
I
I
I
r-~------~~~:
I
I
Output
Terminal
I
I
I
I
I
I
I
I
I
I
I
.!i
n---"
u
~
:
Symbol
1
p
2
NC
3
S
4
Vee
5
EV*
6
IG*
7
RUN*
8
M*
8
I
I
I
L__________________________.-_!.II
• PIN ARRANGEMANT
Description
Decoder input to discriminate four
kinds of control sequence.
Non Connect
Decoder input to discriminate four
kinds of control sequence.
Power Supply
Power transistor output for driving
the magnetic-valve.
Power transistor output for driving
the ignition equipment
Power transistor output for driving
the operation lamp
Power transistor output for driving
the blower motor
Power transistor output for driving
the alarm lamp
9
ALM*
10
GND
GND
11
CP
Clock signa\{50/50Hz)input
12
13
NC
EM
Emergency stop signal input
14
WTe
15
WT
Output of the water temperature
detection signal
Input of the water thermo signal
16
T
Input of the reference voltage for the
water thermo and for the safety thermo
I
Input Cbeck I
Terminal :
I
Pin No.
I
I
i
I
• PIN DESCRIPTION
I
.!i
:!
I
(DP-20)
Non connect
17
ST
Input of the safety thermo signal
18
I'D ..
Output of the flame detection signal
19
FDe
20
FDEf
Input of the f1a~e detection signal
Input of the reference signal for the
flame detection
*Open collector output of ;\;P:\ transistor
(Top View)
246
•
HITACHI
HA16605W
.ABSOLUTE MAXIMUM RATINGS
(Ta~25°C)
Symbol
Item
Supply Voltage
Rating
V
-0.5 to Vce +5.0
Input Voltage
V
FDe, T, ST, WT
FDEP,
-0.5 to Vee +3.0
FDc, WTc
I
V
-0.5 to +25
IG, EV, RUN, M, ALM
75
lout
2
FDc, WTc
2
Output Current
P, S
-0.5 to Vee +3.0
Vo~r
Output Voltage
Note
Vee
CP, EM
-0.5 to Vee+1.0
VIN
Applied Terminal
Unit
7.0
Vee
rnA
IG, EV, M, ALM
3
RUN
100
PT
500
mW
Operating Temperature Range
To"
-20 to +75
°C
Storage Temperature Range
Tal,
-55 to +125
°C
Power Dissipation
Notes \ 1. Internal impedance of the drive source should be more than lkn.
2. Allowable value ..... hen the output transistor is in OFF state.
3. Allowable \'alue when the output transistor is in ON state .
• ELECTRICAL CHARACTERISTICS
Symbol
Item
Input Voltage
Test Condition
max
ViL
-
0.6
IHigh
VIH
2.B
-
-1.5
Input Clamp Voltage
ViC
Output Voltage (Low Level)
he--12mA
ILow
I High
Output Current (High Level)
V
CP,EM
-
V
CP,EM
0.3
V
FDc, WTc
VOL
Vee-4.5V, IOL-75mA
-
0.7
V
IG, EV, M, ALM
-
0.7
V
RUN
IlL
Vec-5.5V, ViL-OV
I/H
Vcc-5.5V, ViH-5.5V
IOH
-
pA
-
100
pA
Vcc-5.5V, VOH-B.5V
-
0.2
pA
FDc, WTc
Vcc -5.5V, VoH -20V
-
50
pA
IG.EV,RUN,M
Vec-5.5V, VoH -25V
-
1.0
rnA
ALM
-200
liB
Vee-5.5V, VI-OV
Comparator Input Offset Voltage
Vio
Vee-5.0V, V"j-I.4V
-
Vee-5.0V
-
Compara,tor Common Mode Input Voltage
VCM
Supply Current
Icc
CP,EM
-250
0
I
-
-
-
nA
2
10
mV
3
Vcc1.6
V
3
70
rnA
Power Supply Voltage
Vee
4.5
5.5
Maximum Clock Frequency
je,
10
-
I
Note
Application Terminal
-
Comparator Input Bias Current
:'\otes
Unit
Vee-4.5V, IOL-2mA
Vec -4.5V, IOL-IOOmA
Input Current
min
I Low
V
kHz
1. Low and High signal le\'els applied to terminals CP and EM.
2. This item is applied to the inputs of comparators. FD+. FD-, T. ST and WT.
3. These items are applif'd to FD+-FD-, T-ST and T-WT of the comparators .
•
HITACHI
247
HA16605W
• SIGNAL STATES AND LEVELS OF 110 INTERFACE
Interface Block
Terminal Name
p
Signal State
Signal Level
Connect to Vee at '"1 n level input, and to GND at "0"
level input.
Decoder
S
Clock Interface
CP
Emergency Input
EM
Emergency state is detected at Low level input on this
terminal, and ALM output turns ON.
FDEB
High level on this terminal turns the sequence to the flame
detected state.
Cpmparator
Driver
ST
Low level on the inverting input turns the ALM output ON.
WT
Low level on the inverting input turns the all sequence
Reset.
EV,IG,
RUN, M, ALM
Output OFF equals to "I" level.'
Output ON equals to "0" level.
.SYSTEM CONNECTION
VII
Vee
'----_e.
*1
• 2
*3
*4
*5
248
Emergency Stop
Signal
LED for alarm lamp.
LED for operation monitor lamp.
Relay coils to dr-h'e the electromagnetic,\·ah·e. the ignition equipment and the blower motor.
De\'ice for flame detection 'e. g. Cds'
Thermistors for detection of water temperature.
•
HITACHI
VlH;:;:4.0V
Vn";2.0V
VlH;:;:2.8V
ViL";0.6V
0"; Ve."; Vee-1.6V
HA16605W
• SEQUENCE TIME TABLE
~e
Pre-purge Timing
0
PJ
0
sl
8 sec
Ignition Timing ·1
9 MAX
Item
-
Post-ignition Timing
pi
1
0
PI
sl
0
1
Sl
17 sec
pi
1
SI
1
4 MAX
-
8 MAX
68 sec
-
17
170
17 sec
Safety Switch Timing
9
4
8
-
Ignition Return
None
None
Possible
-
Pre-purge Return
Provided
Provided
Provided
-
Note}
* 1 Ignition should be turned off at the same time of flame ON.
*2 All values shown in this table are measured under the condition of that:
clock input: f= 60Hz
(commercial frequency)
• SEQUENCE CHART
ep:1, S:O
ep:o, S:O
F'AN
VALVE
IGN
RUN
~
-g
,
17
0
FAN
E
-.r-;
VALVE
.,,~
.e
-r----"
IGN
RUN
.-:::";::GI
c " 0
':~i
TH
ALM
:i!"'"
Reset to
FAN
1;...'=---:==~17========::::::::initial
...1_
i
~
IGN
==:::J--; i
VALVE
RUN
F'D
TH
ALM
i
re~purge
FAN
VALVE
IGN
RUN
Fo[)
:::=
L--
~~
L--
return
.
E •
17
c •
~~
.s.~
8
.~
-
11
ej ....
---,
~
::;:~g~
; -55V
Vee~60V, Vo;>;3V
IlL
HA16617P
typ
max
VOH
0.4
0.22
0.45
VOL
-1.2
57
3.0
hE(ON)
Vee --60V,AII Circuit V.;--4V
eHA16617P
eHA16619P
+551'
ov
252
-3
V..--4V,lo~-40rnA
.APPLICATIONS
ov
58.5
Vee~60V, V..~O.4V
/CC( ON)
JEE ( OF'F)
Quiescent Current
•
rnA
-2.6
V•• --60V, V..--1.5V
Vee~60V, all Circuit V.. -0.4V
VEE~-60V,AIICircuit V..--1.5V
Vcc=60V, One Circuit V.. ~2.4V
/CC( OFF)
pA
pA
80
Vee~60V, V..~2.4V,1o~-40mA
HITACHI
-55
0.04
V
rnA
-280
V,.~-1.5V
Vee-60V, V,.-0.4V
V•• ~-60V, V,.~-4V
Unit
V
-4
Vee~60V, V,.~5V
V•• --60V,
HA16619P
typ
max
-1.5
V•• --60V, V..--7V
Output Voltage
min
2.4
V•• ~-60V, Vo6-3V
Vee-60V, V,.-2.4V
V•• ~-60V,
Input Current
min
0.4
-1.3
4.0
-12
-1.5
V
V
rnA
rnA
HA16617P,HA16619P
.BASIC CIRCUIT
Use as the
Segment Driver
I
Use as the
Segment Driver
Vee
BAl66}?!',
(b) Dynamic Type
(a) Stalic Type
eHITACHI
253
HA16617 PJ , HA16619 PJ •
Fluorescent Display Drivers
HA16617PJ and HA16619PJ are fluorescent display drivers
operating' in high voltage which use positive and negative
power source, respectively .
• FEi\TURES
•
•
•
Capable of driving fluorescent display tube directly
because of the built·in 8 circuits and the built·in pull
down resistors at output,
For the inputs, CMOS or TTL accepted,
The output pulse is non-inverted or inverted from the
input pulse in 16617PJ or HA16619PJ, respectively.
(OP-181
.CIRCUIT SCHEMATIC (l/S)
• PIN ARRANGEMENT
eHA16617PJ
eHA16617PJ
"HI
----0
Vee
l~tEL.
".. '.. ·L.'~...R ~Q+'----oOl'1'
QI
R2
R7
I
----0 G~IJ
eHA16619PJ
(Top View)
eHA16619PJ
'--.Iw--+----o
1)[,1'
(Top View)
254
•
HITACHI
HA16617PJ,HA16619PJ
.ABSOLUTE MAXIMUM RATINGS
(Ta~25°C)
Symbol
Item
Supply Voltage
VFf:
Input Voltage
V.,
Output Current
HA16617PJ
!C,.,
Output Voltage
*
L.,
HA16619PJ
+0.3 to -65
Unit
-0.3 to +65
-0.5 to +10
+0.5 to -10
V
-0.3 to +65
-45
+0.3 to -65
-45
rnA
V
V
Power Dissipation ••
Pr
625
625
mW
Operating Temperature
Top,
-40 to +85
-45 to +85
·c
Storage Temperature
T'ig
-55 to + 125
-55 to +125
·C
HA16619PJ
Typ
Max
Uuit
* When only one circuit
* *Value
when
Ta~50·C.
turns ON
Derating curve ahove Ta=50"C shall be 8.3m\\'/'C.
• ELECTRICAL CHARACTERISTICS
(Ta~
Symbol
Item
V1J/
Input Voltage
-45to +S5°C)
Test Conditions
Vcc 060V, Vo"'57V
VE£~ -60V, Vo~ -55V
VC<"~60V,
V"
/'H
V.,~2.5V
V,,~5V
-60V,
CC( UFF)
i EE ( OFF,
Quiescent Current
1cc ( Vi';)
I Er , In.,
rnA
0.45
-280
V.,~0.4V
-280
p.A
80
V.,~-4.3V
-1.2
VEE~
-60V,
V.,~-7V
-2.6
V.,~2.5V
VH~-60V,
57
rnA
58.5
V
V.,~-4.3V
--3
-40mA
Vcc "'-.60V,
I
0.22
V.,~-1.4V
--40mA
V
V
-4.3
-60V,
lo~
VOL
-1.4
VEE~
Vcc~60V,
Output Voltage
Min
0.4
Vcc~60V,
lo~
V(JH
Max
2.5
Vo~3V
Vcc~60V,
Vcc~60V,
IlL
Typ
VEE - -60V, Va"? -3V
VEE~
Input Current
HA16617PJ
Min
V.,~0.4V
3.0
-60V, V.,~ -1.4V
V, c~60V, All
Circuit V.,-0.4V
VEE~ - 60V, All
Circuit V.,- -1.4V
Vu ·-60V, One
Circuit V.,-2.5V
Vcc - -60V, All
Circuit V.,- -4.3V
'-55
VEE~
0.04
-1.5
V
0.4
rnA
-1.3
4.0
rnA
-12
• APPLICATIONS
eHA16617PJ
eHA16619PJ
Input voltage within 0 to +7V shall be used with regard to
GND.
Input voltage within 0 to -7V shall be used with. regard to
GND,
uv
$
HITACHI
255
HA16617PJ,HA16619PJ
.SASIC CIRCUIT
'al.1rlnlnH.1rIr' ~::mae~tthDriver
Use as the
$egment Driver
Vee
(HA16617P) :
,(L----(.) Static Type
256
(b) Dynamic Type
•
HITACHI
MEMO
~HITACHI
257
MEMO
258
•
HITACHI
MEMO
eHITACHI
259
HITACHI AMERICA, LTD.
SEMICONDUCTOR AND IC DIVISION
HEADQUARTERS
Hitachi, Ltd.
New Marunouchi Bldg., 5-1,
Marunouchi 1 chrome
Chiyoda-ku, Tokyo 100, Japan
Tel: Tokyo (03) 212-1111
Telex: J22395, J22432, J24491,
J26375 (HITACHY)
Cable: HITACHY TOKYO
REGIONAL OFFICES
NORTHEAST REGION
Hitachi America, Ltd.
5 Burlington Woods Drive
Burlington, MA 01803
617/229-2150
U.S. SALES OFFICE
Hitachi America, Ltd.
Semiconductor and IC Division
2210 O'Toole Avenue
San Jose, CA 95131
Tel: 408-942-1500
Telex: 17-1581
Twx: 910-338-2103
Fax: 408-942-8225
Fax: 408-942-8880
DISTRICT OFFICES
•
Hitachi America, Ltd.
1700 Galloping Hill Rd.
Kenilworth, NJ 07033
201/245-6400
•
Hitachi America, Ltd.
3500 W. 80th Street, Suite 660
Bloomington, MN 55431
612/831-0408
•
Hitachi America, Ltd.
80 Washington St., Suite 302
Poughkeepsie, NY 12601
914/485-3400
•
Hitachi America, Ltd.
6 Parklane Blvd., #558
Dearborn, MI 48126
313/271-4410
•
Hitachi America, Ltd.
6161 Savoy Dr., Suite 850
Houston, TX 77036
713/974-0534
•
Hitachi America, Ltd.
5775 Peachtree-Dunwoody Rd.
Suite 270C
Atlanta, GA 30342
404/843-3445
•
Hitachi America, Ltd.
18300 Von Karman Avenue, Suite 730
Irvine, CA 92715
714/553-8500
•
Hitachi America, Ltd.
10300 S.w. Greenburg Rd., Suite 480
Portland, OR 97223
503/245-1825
•
Hitachi (Canadian) Ltd.
2625 Queensview Dr.
Ottawa, Ontario, Canada K2A 3Y4
613/596-2777
SOUTH CENTRAL REGION
Hitachi America, Ltd.
Two Lincoln Centre, Suite 865
5420 LBJ Freeway
Dallas, TX 75240
214/991-4510
NORTH CENTRAL REGION
Hitachi America, Ltd.
500 Park Blvd., Suite 415
Itasca, IL 60143
312/773-4864
NORTHWEST REGION
Hitachi America, Ltd.
2099 Gateway Place, Suite 550
San Jose, CA 95110
408/277-0712
SOUTHWEST REGION
Hitachi America, Ltd.
21600 Oxnard St., Suite 600
Woodland Hills, CA 91367
818/704-6500
SOUTHEAST REGION
Hitachi America, Ltd.
4901 N.W. 17th Way, Suite 302
Fort Lauderdale, FL 33309
305/491-6154
Source Exif Data:
File Type : PDF File Type Extension : pdf MIME Type : application/pdf PDF Version : 1.3 Linearized : No XMP Toolkit : Adobe XMP Core 4.2.1-c041 52.342996, 2008/05/07-21:37:19 Create Date : 2017:09:04 14:32:16-08:00 Modify Date : 2017:09:04 15:24:25-07:00 Metadata Date : 2017:09:04 15:24:25-07:00 Producer : Adobe Acrobat 9.0 Paper Capture Plug-in Format : application/pdf Document ID : uuid:0e81322c-9098-0e4d-9c8e-8238b61031c8 Instance ID : uuid:73270da8-65fc-eb4d-a614-66773ef24c91 Page Layout : SinglePage Page Mode : UseNone Page Count : 262EXIF Metadata provided by EXIF.tools