1985_C10_Hitachi_Linear_IC_Data_Book 1985 C10 Hitachi Linear IC Data Book

User Manual: 1985_C10_Hitachi_Linear_IC_Data_Book

Open the PDF directly: View PDF PDF.
Page Count: 262

Download1985_C10_Hitachi_Linear_IC_Data_Book 1985 C10 Hitachi Linear IC Data Book
Open PDF In BrowserView PDF
· 20151 Bahama Street
Chatsworth, California 91311
(213) 644-7596
(818) 700-8700 (818) 341-441 1

LINEAR Ie DATA BOOK
• GENERAL INFORMATION
• DATA SHEETS

#C10

~HITACHI

NOTICE:

MEDICAL APPLICATIONS

The example of\m applied circuit or combination with other equipment shown
herein indicates Fharacteristics and performance of ,a semiconductor-applied
products. The Company shall assume no
responsibility for any problem involving a
patent caused when applying the descriptions in the example.

Hitachi's products are not authorized for
use in MEDICAL APPLICATIONS,
including, but not limited to, use in life
support devices without the written consent of the appropriate officer of Hitachi's
sales company. Buyers of Hitachi's products are requested to notify Hitachi's sales
offices when planning to use the products
in the MEDICAL APPLICATIONS.

When using this manual, the reader should keep the following in mind:
I. This manual may, wholly or partially, be subject to change without notice.
2. All rights reserved: No one is permitted to reproduce or duplicate, in any form, the whole or part
of this manual without Hitachi's permission.
3. Hitachi will not be responsible for any damage to the user that may result from accidents or any
other reasons during operation of his unit according to this manual.
4. This manual neither ensures the enforcement of any industrial properties or other rights, nor
sanctions the enforcement right thereof.
5. Circuitry and other examples described herein are meant merely to indicate characteristics and
performance of Hitachi semiconductor-applied products. Hitachi assumes no responsibility for
any patent infringements or other problems resulting from applications based on the examples
described herein.

August 1985

"Copyright 1985, Hitachi America Ltd.

Printed in U.S.A.

INDEX
•
•
•
•

GENERAL INFORMATION. . . . . . . . . . . . . .. 5
Reference Guide . . . . . . . .
. . . . . . . . . . .. 6
Package Informations . . . . .
9
. . . . . . . . . . . , 13
Reliability of Linear ICs . . . .

• DATA SHEET . . . . . . . . . . . . . . . . . . . . . . . 21
• Operational Ampl ifiers . . . . . . . . . . . . . .
21
HA 17080PS
J·FET Input. . . . . . . . . .
22
HA17082PS
Dual J·FET Input . . . . . .
22
HA17083P
Dual J·FET Input . . . . . .
22
HA 17084P
Quad. J·FET Input. . . . .
22
HA17080GS
J·FET Input. . . . . . . . .
22
Dual J·FET Input . . . . .
HA17082GS
22
HA17083G
Dual J·FET Input
22
HAl7741
General Purpose
28
HAl7741PS
General Purpose
28
HAl7741GS
General Purpose
28
HAl7741G
General Purpose
28
HAl7715G
High Slew Rate.
39
HAl7747
Dual
44
HAl7747P
Dual
44
HAl7747G
Dual
44
HA17458
Dual
46
Dual
HA17458PS
46
Dual
HA17458GS
46
. . . . . . . . 51
Dual
HA17558
HA17558PS
Dual
51
Dual
HA17558GS
51
HA17358
Dual
58
Dual
HA17904PS
58
HA17904GS
Dual
58
HA17301P
Quad.
60
HA17301G
Quad.
60
HA17324
Quad.
66
HA17324P
Quad.
66
Quad.
HA17324G
66
Quad.
HA17902
70
Quad.
HA17902P
70
Quad.
HA17902G
70
• Voltage Comparators
75
HA1813PS
Single
76
HA1812PS
Universal . . . .
84
Universal ..
HA1812GS
84
Dual
HA1807
76
HA17393
Dual
91
Dual
HA17903PS
91
Dual
HA17903GS
91
Quad.
HA17339
95
HA17901P
Quad.
95
Quad.
HA17901G
95
• Voltage Regulators . . . . .
99
HA 17723
Precision .. .
. 100
HA 17723G
Precision . . . .
. 100
HA 17805
1 A, 5V Fixed .
. 108
HA 17806
1A, 6V. Fixed .
. 108
HA 17807
1A, 7V Fixed .
.108
HA 17808
1A, 8V Fixed .
.108
HA17812
lA,12V Fixed
. . . . 108

HA17815
lA,15VFixed
· ......
HA17818
lA,18V Fixed
· ......
HA17824
lA,24V Fixed
..
HA17805P
lA, 5V Fixed . . . .
· ......
HA 17806P
1A, 6V Fixed . . . . · . . . . . . . . .
HA 17807P
1A, 7V Fixed . . . .
HA17808P
lA,8V Fixed ... .
HA17812P
lA,12V Fixed
HA17815P
lA,15V Fixed
HA17818P
lA,18V Fixed
· . . . . . . .
lA, 24V Fixed
· . . . . . . .
HA17824P
· ...
HA178M05
0.5A, 5V Fixed.
· ...
HA 178M06
0.5A,6V Fixed.
· ...
HA178M07
0.5A, 7V Fixed.
HA 178M08
0.5A, 8V Fixed.
· ...
HA178M12
0.5A, 12V Fixed
· ..
.
HA178M15
0.5A, 15V Fixed
· ..
HA178M18
0.5A, 18V Fixed
HA 178M20
0.5A, 20V Fixed
· ..
......
HA178M24
0.5A, 24V Fixed
........
HA 178M05P
0.5A, 5V Fixed.
HA 178M06P
0.5A, 6V Fixed.
HA 178M07P
0.5A, 7V Fixed.
HA 178M08P
0.5A,8V Fixed.
HA 178M12P
0.5A, 12V Fixed
HA 178M15P
0.5A, 15V Fixed
HA178M18P
0.5A, l8V Fixed
HA 178M20P
0.5A, 20V Fixed
HA178M24P
0.5A, 24V Fixed . . . . . . .
HA 17524P
Switching Regulator Controller.
HA 17524G
Switching Regulator Controller.
• AID, D/A Converters . . . . . . . . . . . . . . . .
HA 19202
4-bit AID Converter . . . . . . . .
4-bit. AID Converter . . . .
HA19203MP
8-bit Dual Slope Type AID
HA16613A
Converter . . . . . . . . . .
HA17008RP
8-bit Multiplying D/A Converter
HA17008RG
8-bit MUltiplying D/A Converter
HA17408P
8-bit Multiplying D/A Converter
HA17408G
8-bit Multiplying D/A Converter
HA 17012P
12-bit Multiplying DI A Converter
HA 17012G
12-bit Multiplying D/A Converter
• Microprocessor Peripheral. . . . . . . . . . . . . . .
HA 13007
Quad. Driver . . . . . . . . . . . .
Three-phase Motor Driver. . . . . . .
HA13406W
9-channel Power Driver ..
HA13408
Quad. Driver . . . . . . . .
HA13415
Dual Bridge Driver . . . . .
HA13421A/MP
Three-phase Motor Driver
HA13426
with Speed Discriminator .
Three-phase Motor Driver
HA13431
with Speed Discriminator .
Three-phase Motor Driver
HA13432/MP
with Speed Discriminator .
Thermal Head Driver . . . .
HC16701
DC Motor Controller (DAC)
HA16628P
DC Motor Controller (FVC)
HA16629P
Flexible Disk Read Amplifier.
HA16631P

~HITACHI

108
108
108
108
108
108
108
108
108
108
108
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
125
125
131
132
132
135
139
139
144
144
146
146
151
152
154
160
163
166
169
175
178
182

186
188
192

INDEX
HA16631MP
HA16632AP
HA16636P
HA16640NT

Flexible Disk Read Amplifier . . .
VFO IC for Flexible Disk Drive
Grou nd Fault Interrupter . . . . .
Write/Mechanism Controller
for Floppy Disk Drive . . .
Read/Write Fu nctions for
HA16642MP
Floppy Disk Drive . . . .
HA16642NT
Read/Write Functions for
Floppy Disk Drive . . . .
HA1835P
Voltage Regulator Control with
Fail Detector . . . . . . . . .
• Other Functions . . . . . . . . . . . . . . . . . . .
HA 17733
Differential Video Amplifier
HA17733P
Differential Video Amplifier . . ..
HA 17733G
Differential Video Amplifier
5 Transistor Arrays ..
HA1127
Precision Timer.
HA17555
HA17555PS
Precision Timer . . . .
Precision Timer . . . .
HA17555GS
Burner Controller ..
HA16605W
Fluorecent Display Driver.
HA16617P
Fluorecent Display Driver.
HA16619P
Fluorecent Display Driver.
HA16617PJ
HA16619P.J
Fluorecent Display Driver.

192
202
208
211
217
217
222
229
230
230
230
236
239
239
239
240
251
251
254
254

Hitachi Sales Offices Listing . . . . . . . . . . . . . . . . . . . . . 260

eHITACHI

GENERAL
INFORMATION

• REFERENCE GUIDE
• PACKAGE INFORMATIONS
• RELIABILITY OF LINEAR ICs

eHITACHI

5

REFERENCE GUIDE
Operating Temp. Range

Package
Plastic

SIP

Operational
Amplifier

Voltage
Comparator

Notes) 1. -30 to +80t

6

$

HITACHI

Plastic
Flat

REFERENCE GUIDE

Operating Temp. Range

Type No.

Function

o to

--20 to
+75'(:

+70°("

to
+S5°C
~40

HAI7723
HAI7723G

Precision

5V
6V
7V

Package

Plastic
DIP

Cerdip

Plastic

Plastic

SIP

Flat

14

Cross
reference

/IA723C

100

/IA7S05C
/IA7806C

100
lOS
lOS
108

14

HAI7805
HAI7S06
HAI7S07

3

3
3

Page

/IA7807C

---S~V'---+~H~A-1-7-S0-S---+------+------+------+-----~----'~~--3--~-----+--/I~A~7S'~0~SC---~
__'---_t_-----'I----'--~-~+--_+_-,-

12V

HAI7S12

-1__--+---+----+--,--.,--=--+--3
/IA7S12C
lOS

15V
HAI7S15
3
/IA7S15C
I---I-SV:-::--+-ccH'"'A-17-S-I-S--+-----+-,,-,,---t------+------I-------+---3--t------+-/-,AC""::7'SI8C
IA

24 V

r:!

HAI7S24

11

lOS
lOS

--r-;A7824C---rws

k~;:
3
/,A7S05
108
1--~6V:-::--+-ccH~A~17~8~Occ6P~+-----+f~'··'~;~,-~I------+------t------+---3--~-----+--/IA~7='S~06~----~

5V

HAI7S05P

7V

HAI7S07P

SV
12V

HAI7S0SP
HAI7S12P

I/c,(."

,"

3
3

/IA7S07 ----~

I-------+-------~------_+__+__+__+_------+_----_+------+_~~+------f------------~

~

1---1-5-V--+Hc-A-I-7-8-15-'P:-~-----

Voltage
Regulator

ISV

HAI7SISP

24V

HAI7S24P

.,

L ';<'i.;

II"

HAI78M07
HAI7SMOS
HA17SMI2
HAI7SMI5
HAI78MIS

20V

HAI7SM20

/,A7815

3

/IA7SIS

lOS

3>
3,.

/,A7824

\OS

/,A7SM05C
/IA78M06C

121
121

11 .... '

/IA7SMOSC
/,A78M12C
/,A78M15C
/IA78MISC

121
121
121
121
121

3,

/,A78MOS'I2l

3,' ':','
3'

/,A7SM06

r"}\;i,' 3
/IA7SM20C 121
f--~24~V~+H~A~I~7~SM~2~4-f----*f~-+-*-,i-+-~+---+---+--+~~~,-'-+:<---+~/-'A~7~8M~i=«:~
0.5A

5V

HAI7SM05P

6V
7V

HAI7SM06P
HAI78M07P

SV

HAI7SMOSP

I:'»'!':~-'

,03 ':
I,A7SMOS
121
-------+------+-------+---a--+------+-,-,A-7-8-M-I-2---1--12-1-

1--1-2-V---+-H-A-I-7-S-M-I-2P~-------

~

15V
ISV
20V
24V

121
121

3"

HAI7SMI5P,"-,:
HAI7SMISP
HAI7SM20P
HAI78M24P

3
3
:I

IIA7SMI5
IIA7SMIS
IIA7SM20
IIA78M24

121
121
121
121

SG3524

125

------+~H~A-,I~75~2~4P~+-----+-----f------+-~16~-t-----~--~--t------+-~SG~3=5:~24:-----lrl~2~5

Controller

HAI7524G

16

4-bit
HAI9202
Note 2
22
Original
132
AID High Speed I-:-:H~A-'-1':.:92~0-=-3M=P-t-------+-'-N':.:o..:.;te:...:.2+-----1f--=-=--+'----+------t---:-:
1S:-+--=OC--r.:'-ig'iCn-a--:-1--+-1~3-=-28--1il Dual Slop,

28

HAI6613A

Original

135

1--'I---~-+--H-A-17-0-0-SR-P~~~-----+-----,·-t------+----16--t----~-+------f------~'D~A~COS--~
---~_+_-----l---~--~-+~-'-'--l-----l--,--,~---+-----

Conver-

ter

8·bit

D/A
12-bit
~otes

HAI700SRG '
HAI740BP
HAI740SG
HAI7012P
HAI7012G

16
16

DACOS
MCI408

139
144
144

Am6012
Am6012

146
146

'---+-----f---1-6-~-----+-----+MCI408

20
':

20

'"

. to he contmued

2. -10 to ·75c

$

HITACHI

I

7

REFERENCE GUIDE

Operating Temp. Range

Function

Type No.

o to
+70·C

to
+75·C

~20

to
+85·C

~40

Package

Plastic
DIP

Cerdip

Micro

Plastic
SIP

Plastic
Flat

Cross
reference

Page

processor~--~~~---+~~~~~4-------+f~~~~------~-----4-------+-------+~~~~~~~~--~~

Peri
pheral

Controller

Floppy Disk
Controller

Other
Function

Fluorescent

Display Tube
Driver
Notes} 3. -20 to +70,,(:. 4. -20 to +80"C, 5.0 to +60"C, 6. -20 to +85t:. 7. -55 to +125"C

t

8

The chip product fer sale

~HITACHI

PACKAGE INFORMATION

HA 17741 P
T L - - - - - - - - - - - - - - - - - - - p a C k a g e Code; letters P: Plastic
letters G: Cerdip

i - - - - - - - - - - - - - - - - - - - - - - 1 7 X X X; Standard Linear IC

L

Circuit Description of 1 5t Vendor's Name

(Three Figures of l.ow Rank I
' - - - - - - - - - - - - - - - - - - - - - - O t h e r Circuit Description; Hitachi Original

L - - - - - - - - - - - - - - - - - - - - - - - - - - P r e f i x : HA ; Hitachi Linear (Analog)

• DIMENSIONAL OUTLINE

Ie

{Dimensions in mm)

• Plastic Dual-in-line Package

14Pin

SPin

~
~lj\l

(OP-I4)

(DP-B)

16Pin
16
15

14
13

12
II

10

6.2

2.Bmin.

6.9max.

3.6±O.20.51min.
5.""",,

(OP-16A)

(OP-I6)

~HITACHI

9

PACKAGE INFORMATION

22 Pin

(DP-22)

(DP-18)

24 Pin

28 Pin

(DP-28)

(DP-24TS)
.Plastic Single-in-line Package

3 Pin

8 Pin

(T-220AB)

10

(SP-8)

~HITACHI

PACKAGE INFORMATION

.Plastic Flat Package

18 Pin

7.62±O.31'1

•

28 Pin

_-t-_--t-'=1.5~4 ± !I.3k

•

·W.9.2±O.38

n.ti±o.2

(MP-28)

(MP-18)

44 Pin

r---"~'~.' "-"'--,

(MP-44)

eHITACHI

11

PACKAGE INFORMATION

eCerdip

14Pin

8Pin

-iM
S~~::"2_8.i"
".:.:;''''~

:

16Pin

;:;
+1

.1 ..

I~~
?;::Jo
-

+1

~

N

(DG-14l

(DG-8)

(DG-20)

12

•

HITACHI

(DG-16l

RELIABILITY OF LINEAR les
In the following we review the reliability of linear ICs. The
introduction of this linear IC series marks a big step forward
in reliability and meets the user's needs through their improved reliability resulting from Hitachi's mass production
technology and quality control.
1. CONCEPT OF QUALITY AND RELIABILITY
Hitachi's fundamental concept of product quality consists in
meeting the requirements of individual users and maintaining
a high quality of materials taking into consideration the marketability of the product from a broad and general aspect.
The quality of product required by a user is determined according to the specifications listed in the agreement; however, there are occasions when it is not specified. In either
case, our company makes every effort to ensure that the
delivered semiconductor devices are able to display their full
performance under the service environment in order to secure their reliability. Establishment of a quality control system in the process and enhanced quality, are keys to bringing
about such reliable product quality in the manufacturing
process. In the market of late, the user's requirements for
quality of semiconductor devices have become steadily more
stringent because the performance of electronic systems is
rapidly improving and their scale and applications are widening. In orderto cope with this trend, the following points have
been adopted as the basic policy in Hitachi's actual operations.
(1) In the design stage of developing n!!lw products, full
consideration is given to their reliability.
(2) The quality of product is made up at each step of the
manufacturing process.
(3) I nspection of finished products and confirmation of
their reliability are to be intensified.
(4) Field data should be fully utilized to improve the
quality of products.
Table 1 gives an example of the reliability programs
drawn up to the meet the user's requirements. Moreover. we are making efforts to firmly establish higher
quality and reliability of our semiconductor devices by
pooling the efforts of our research and manufacturing
departments. Based on the above concept and measures, our company is doing its utmost to meet the user's
demand for product quality.
2. RELIABILITY OF SEMICONDUCTOR DEVICES
2.1 RELlABLITY TARGET
Reliability target is an important factor along with the
function and price in the courses of manufacturing and
selling products. It is not practical to classify the reliability
target merely by the failure rate under a certain testing condition. Our company sets the reliability target by taking into
account the design, manufacture, quality control in the
process, screening, testing method, etc. with the contents
corresponding to the characteristic nature of each item of
equipment comprehensively considering the service environ-

ment of the equipment to which the device is applied, purpose design, operating, condition, maintenance, etc.
2.2 HOW TO CARRY FORWARD RELIABILITY DE·
SIGN:
I n order to achieve desired reliability based on the reliability
target, timely examinati,On and execution of such items as
design standardization. device design (including process
design and structural design), design review, reliability test
are required beforehand.
(1) Standardization of design:
Establishment of desi.gn rule and standardization of parts.
materials and processes are necessary. When establishing
respective rules of design concerning circuit design, element
design, layout design, critical items regarding the quality and
reliability are always examined. Accordingly, where standardized processes or materials are used, even newly developed
products can minimize risks affecting reliability unless special
functional requests are made.
(2) Device design:
It is important to carry out device design taking into consideration the total balance between circu it, layout, process
and structural designs. Particularly when using new processes
and materials, technical examinations prior to development
of the device are carried out to the full.
(3) Evaluation of reliability by TEG:
TEG (Test Element Group), sometimes called test pattern, is
an effective method to evaluate the reliability of design and
process of ICs and LSIs containing complicated functions.
For transisto;s, it is useful to increase the sensitivity of
detecting troubles caused when applying new processes. As
to TEG, further expalanation is provided in the following.
1. Purpose of use of TEG;
•
•
•
•

Clarifying the basic failure mode.
Grasping the relation between failure mode and manufacturing process condition.
Obtaining a clue to analysis of failure mechanism to analyze
the mechanism of failure.
Establishing OC point for manufacture.

2. Effectiveness of evaluation by TEG;
•

Possible to evaluate the basic failure mode and failure
mechanism common to each type of products.
• Possible to campa re the process having the failure with
the process having records of marketabilily by clarifying
the factors controlling the failure mode.
• Easy to grasp the connection between the cause of failure
and that of the manufacturing process.
• Easy to perform test.
Here described several concrete examples of reliability evaluation by TEG.

eHITACHI

13

.,..

:lI

Table.1 Example of Reliability Program

m
r

:;
OJ
Semiconductor maker
Mfg_ dept.

Sales. & Sales
!tech. dept.

Design dept

Insp. dept.

r

Semiconductor user

Design dept.

Mfg. dept.

Parts dept.

::::j

Product quality
assurance dept.

Service dept.

Customer
(end user)

Marlet Testarch

o----.. -~..::::::;.:;:..!!::!:::.::::...:!~

~

.~

Z
m

~

~~ p~ ~:~

6DD I" ....

l>
:lI

0-

OT(JeveloplI'IPnGlan

Determination

lI .. hlylowl. ..... ' .. rIIId

..1

_L_

Drllil 01 qUIIII, HCk"'t'tfl'IIr55pn

~

(2)Stand.rdIZltion

.:;

~

"
J:

Equlp.dulinttlll

1I1DUlgn 01 procen

olS

eJ:

o

'-00

fI)

0-

0--

...

""
.. .

If

--

(J)PI.nninll facilities

Duirn rtvlew

""'111-"'11"
" , ,.,

Dtnlo,

Imll1l'~"'rM\

,I

I QUllity .ppron
~Ivdltl

Comprehensive evaluation

11

I~trll

QC Within procm
QUalIty .pprova

Trial mfg. lest

fCfrj**

=~

,.~

,i..

1 Mil
11'11 "-:,. .,;5"

"-<>

Comprehensive evaluation

~

.".,..", ... 1.., ... 1.."••

i

'-0

1

.1

ProtfU __ ',..COIItol

A$Sembl

~

I

Failure .nal,s!s

I~l·

~"T"';"'I'I.o!"""'·"'"
I
I

Agin, &:

debu~

ShiplDtnl test

Puiodical

L--------tI

~

:i

"--0

1711

II

_ _ _t - _

~New process ,(Handled as
t,_"..I".~...
developed
article)

QafiiYIiifClrlllll(1II

1

"-<>

Comprehensive evaluation

"'(f".16,.rU".~

QC wliilln ,rocel!]

P.ro>rdal SamplE'

J

reliahililytut

~fliabilill Ml"lionl

r;;:

o"TI
r

~

0::

<

-...r

;:~::~~ ;:!i;~JUOft

1
Runnin£

L

RELIABILITY OF LINEAR ICs

Table.2 Standard for Design Review
XASA Space System Standard

Hitachi Standard for Design Review
Purpose

ltE'm of review
Subject of review

Time

Composition

Authority

Systematical and organic confirmation and
promotion of broad technical capacity.
Correction of defects in design.

t('chnicai capacity.

Corr('ction of d(>fects in dt'sign.
Contracted projPcts.

Designated types of products.

Preliminary Bf'fore mounting Before

3. QUALITY ASSURANCE STRUCTURE OF SEMICON·
DUCTOR DEVICES:

(1)

rejf·a~.;p

of drawing.

Designation of project manager.
i'f'rson in charge or highel' r"ank. and rf'liahiJity
technician.
Presentation of advice.

Collector of designs.
Helatf'cI responsiblt· !>('rson and reliability
technician.
Hecommendation of improvement.

2.3 DESIGN REVIEW:
Design review is a procedure to systematically check whether
the design satisfies the performance required by a user, the
designing work is performed according to the specified form,
and the items of technical improvement which have been
obtained from the accumulated experimental field data in
each specialized department are efficiently used. It is also
performed mainly for ensuring the quality and reliability of
the products in order to strengthen the competitive power of
our products. In Hitachi, new products and design-changed
products are subjected to design review from conceptional
stage. This method is extensively used by NASA. Table 2
shows the comparison between the standards for design
review of our company and NASA: The following are the
contents of the review.
(1) Description of the contents of products according to the
design document.
(2) The design document is reviewed from the standpoint of
each specialist who participates in the review. If any
unclear item is found, a sub·program for calculation,
experiment or investigation is drawn up and executed.
(3) The contents or method of a reliability test is deter·
mined according to the design document and the
contents of the drawing.
(4) Checking whether the process capacity of the manufac·
turing plant is sufficient to achieve the design goal.
(5) Conference for preparation of production.
(6) Planning and execution of a sub-program for test, or ex·
periment. calculation, etc. for change and confirmation
of the design proposed by each specialist.
(7) Reference to past failure examples of similar types of
articles and confirmation of preventive measures
against recurrence of such failures, and planning and
execution of a testing program for confirmation.
Careful discussions for the above made at the design review
are carried out according to the check list specially
device and prepared according to each subject.

3.1

Systematical and or-derly application of hroad

Conct'pt Intermediate design Final design.

I Chair,man
I Member

Design

Assuranc(> of performancE:' I"P'Iuired hy the
program.

Securing reliability required in the market.

Definition

{nl"

He\'i('w.

The problems of each process are to be settled within
the process concerned. Accordingly. in the stage of
finally finished products, latent defective factors are

el im inated.
In order to maintain the process capacity at a good level,
feedback of information is performed.
(3) Quality assurance aims at securing the desired reliability
obtained as a result of the above.
Device design, recognition of quality at the time of mass pro·
duction, quality control with the process inspection of
products and assurance test of reliability are described below.
(2)

3.2 QUALITY RECOGNITION:
In order to secure the desired quality and reliability, quality
of products recognition is carried out at the time of design
and trial; manufacture of devices and their mass production
according to the reliability design. The concept for recogni·
tion of the quality of products is described below.
(1) Performing an objective recognition putting the
company itself in its customer's place and by a third
party.
(2) Taking into full consideration past failure examples and
field information.
(3) Carrying out recognition of its quality, in case of change
of design or operation.
(4) I n the case of parts, materials and process. emphasis is
placed on the recognition of their quality.
(5) The process capacity and causes of variations are
examined. and the control points at the time of mass
production are established.
Quality recognition is performed by incorporating the above
concept.
3.3 QUALITY AND RELIABILITY CONTROL IN MASS
PRODUCTION
For quality assurance of mass production, the quality control
work is svstematically and functionally assigned to the manu·
facturing and inspection departments including the related
departments. The entire function is shown in the flow chart
of Fig. 1.

ACTIVE OF QUALITY ASSURANCE:

The general concept of Hitachi's overall quality assurance is
described below.

~HITACHI

15

RELIABILITY OF LINEAR ICs

Quality control

Process

Inspection of materials and

Samplin, lot

parts characteristics
necessary for semicorouctor
devices

acceptance
Confirmation of
quality level

Manufacturinl equipment,

Confirmation of
quality level

environllent, indirect lIaterials
and operator control

L-----.r---'

t---

Sampi ing lot
acceptance
Confirmation of
quality level

Quality control wihin p,ocess

Classification &
inspection

Sampling inspection of
appearance and electric
characteristics

Sampl ina 101

~------------~

quality level
Samp! ing lot
acceptance

I

II

~

l ~ _________
I

acceptance

___ _

I

~

Confirmation of

Reliability test

.~

L----,---Ji~-------------------~l

,..---------------,I
I
I
: Quality information

I

i

I (Claim. field work record.
I other quality information in
I general)

I

I
I
I
I
IL.. _______________ JI

Fig.1 Flow Chart of Quality Control in Manufacturing Process

4. SELECTION OF PACKAGE TYPE AND
RELIABILITY
4.1 SELECTION OF PACKAGE TYPE
Package types are generally classified into two; one is the
harmetic sealed type using metal or glass, and the other is the
plastic molded type. Selection of package types should be
done with considering the purpose of system, environment,
reliability cost etc. The reliability of plastic molded·type
semiconductor devices has been greatly improved. Recently,
their applications have also been expanded to automobiles,
measuring and control systems, and computer terminal equip·
ment operated under relatively severe conditions. Actually,
field application data has revealed that their trouble factors
under favorable indoor environme~tal conditions are
equivalent to those of the hermetically sealed type. How·
ever, in the view of the guaranteed reliability (specifically,

16

durability against environmental conditionsl, the hermetical·
Iy sealed type passes inspection on a leak test 100%. Due to
poor screening technology, the plastic molded type involves
problems of moisture absorption or pereation inherent to
their plastics materials. Therefore, Hitachi recommends users
employ hermetically sealed·type semiconductor devices for
certain types of systems which require high durability against
environmental conditions, long service life, and high reo
liability. On the other hand, it is obvious that production
output and applications of plastic molded-type semiconductor devices will be increased or expanded over the years that
lie ahead. To fulfill such demands, Hitachi has exerted
considerable efforts to improve moisture resistance, resistance against humidity cycles, operation stability, and
chips and plastics manufacturing process. At present, Hitachi
is confident that products featuring high durability against

~HITACHI

RELIABILITY OF LINEAR ICs

environmental conditions will be available in the near future.

0.1

4.2 RELIABILITY OF PLASTIC MOLDING TYPE IC

D.O!)

Open and intermittent open troubles are major causes of
reliability failure of the plastic-molded type IC. Fig. 2 indicates open fraction failure rate in terms of year. In recent
years, the reliability in this aspect has been remarkably improved. Fig. 3 shows the data of moisture resistance.

!!liH
D,U:!

(J.()I

dO

~

1!.lIW"1

.

c::

!l.OO:!

1"

(I,OIlI

U

O.OIHI:l

\06

'"
,,'"

wor
so

\

lOS

"

III

.

\

\

20

Il,OIJ02

\

\

O.IHJOj

III

Tf'm/,praTllfl'

Fig.2

( Yl'ars)

E

,

i=

J0 2

,::

5.1 CRITERIA OF FAILURES
Table 3 shows the failure criteria in linear IC reliability test.
The items of criteria and measuring conditions vary with the
types of products.

'"
III

'"'"
I
I

III

~

.:0

ii

~

2

~

,2

~ f f

Abs"luTP Stt'dm

Fig.3

Changes in Terms of lear of Open Failure
Rate in Temperature Cycle Test

Here, we describe the results of reliability tests, data of
failure rate, failure mode etc.

E

~

:;.'i"('-I-!:;i)"C-tLIi'C

5. RELIABILITY DATA

10:!

~

'.

I,(WO

10'

..

E

2()O

Time 'lllmmolr ... ,lSmmutf's,30mmules, ISmmuu's

~

.

!{)O

TI'st (;"nciil iqn.~( I Cycip) :

~

U

!io

\

di

-

:w

\

l'rI'S!'>IU'I'

(mmllgl

Moillture Resistance of Plasticencapuslated IC's

•

HITACHI

17

RELIABILITY OF LINEAR ICs

Table.3 Criteria for Failures of Linear ICs (Example)
Criteria of failure (Note)

Item

U-3
L XO.9

Voltage gain
Rated output

~

v

Total harmonic distortion

-

Output noise voltage

Input offset voltage

-

Input offset current

-

Input limitihg voltage

~

.;::

Power supply current

~

~

-e
.~

L xO.9
LXO.9

Max. output voltage swing

~

Common mode input voltage range

G3

~

C
~

-0

;0(;
~

Co
Co

.-.:

U+3
U X1.5

-

Slew rate

v-<'

-

-

Common mode rejection ratio

~
~
~

U Xl.5
UXl.5
U+3
U Xl.I
U Xl.5
UXl.5
U Xl.3
U Xl.I

Open & short

Open, Intermittent. Short, Half·short.
Including high & low temp. defects.

Airtight leak

Major leak & minor leak.

Appearance

According to limit sample.

dB
W

%
V Including pulse noise.
dBp
A
V
A
A
V
V
dB
Vips

Applied to airtight sealing type devices.

Rusting & discoloration

According to limit sample.

Solderability
Marking

According to limit sample.

-

According to limit sample.

-

Sott' , U: Initial limit max. \'alue.

Table.4 Results

of

I. : Initial limit min. \'alue.

Reliability Test on Linear ICs

Test hem

High temp.
Operating life

Remarks

Unit

-

-

Input current & input bias current

v

max
U+3

min

~o.

Test Condition

Plastic· molded Type
Total
~o. of

Hermetic sealed Type I Cerdip'

of

Total

~o.

, 1/1,,"

samples
(pes'

testing
time

failures
(pes

5

5.3xlO-'

2.345

2,424.600

0

3.8X!0-'

0
0
-

UX!O-'
1.8x 10-'
-

485
-

463.700

0
-

2.0x 10 •

-

793.000
509.000
-

3.110

2.727.000

0

3.4XW-'

376
-

376.000
-

0
-

2.4X 10 •
-

443

443.000

0

2.1 X10-'

-

-

-

-

of

samples
(pes'

testing
time

failures
(pes!

1,660

1.190.000

829
509

l'ailure
rate·

:0;0.

of

Failure
rate·
i

I/hr

Ta~125'C

Ve e= Vee MAX
Vu= VEf MU

I

Ta~150'C

Storage life

Ta~ -55'C
Ta~

Humidity
Bias humidity

-65'C

Ta~65·C.
Ta~85'C,

95%RH
85%RH

rrr=Vrr

.PIIH

V'u= ru ,!lAX
- 55'C - T 150'C
10 Cycles
- 55'C - -150'C
200 Cycles
O'C -100'C
10 Cycles
260'C. 10sec
1.500G.0.5ms.directions of
X, Y.and Z,each. 3 times
60Hz. 20G. directions of X. Y.
and Z. ea~h. 32hrs
100-2,000Hz,2OG,directions
of X. Y. and Z, each. 3 times
20.000G, directions of X. Y.
and Z. each. 1 minute
Ta~ 121'C. 2atoms

-

-

I

Temp. cycle
Temp. c~'c1e life

Thermal shock
Solder heat
Free

drop

Yibration fatigue
\'ariable freq. \'ibration
Constant acceleration

PCT
Solderability

I.ead bend

I ~60hrs

230'C. 5 sec
with rosin flux

225g,
90', 3 times

10.043

-

0

-

2,198

-

0

-

4.280

-

0

-

900

-

0

-

398

-

0

-

311

-

0

404

-

0

-

305

-

0

-

160

-

0

-

260

-

0

-

160

-

0

-

260

-

0

-

160

-

0

-

260

-

0

-

160

-

0

-

260

-

0

-

360

-

0

-

-

-

-

-

160

-

0

-

300

-

0

-

90

-

0

-

45

-

0

-

I

*Confldt'nct' level. 60""
18

~HITACHI

RELIABILITY OF LINEAR ICs

5.2 RELIABILITY TEST DATA OF LINEAR IC:
Table 4 is the results of linear Ie life test and environmental
test.
The reliability data concerning individual test results are
available as they have already been prepared.
6. FAILURE RATE AND DERATING
Fig. 4 indicates the relation between the failure rate and the
operating junction temperature obtained from various types
of reliability tests and field records. With respect to the
plastic·molded type and metal package type, the operating
junction temperature is selected as a stress factor, and then
the above relation is obtained from test data (mainly the high
temperature operating life test) and field data. In the case of
linear ·IC, it greatly depends on temperature on the average,
so that it is confidently anticipated that the reliability can be
effectively improved by temperature derating.

I x \0

1 X 10

~

"

1\ 1\1"'"'

c,

-,

.

::
~

MC)ldin~ Typl'

~

\X\O
(I,UOOFIT )

\ \

,

Ilermctir/
2
IXj!)

(

Seal inK

Type

,
,

I X 10 ~
( IOF[T

\\ \

~\

iOOF[T )

,

\

lOO

2.0X 10 -,

175151)

125

,

IOU

50

T ,'C)

-2 .. ) X I()

Operating JUIl('[ion--l/T I ('K
Tempt'rature

Oqo

from a current source.

During measurment, pay special

attention to miswiring and short·circuiting. When inspecting
a printed circuit board, confirm that no soldering bridges or
foreign matter is observed prior to turning the power switch
ON. As these precautions depend upon the types of semi·
conductor devices, please contact Hitachi for further details.
8. PRECAUTIONS FOR PHYSICAL HANDLING
There are considerable precautions to install semiconductor
devices to a printed circuit board. In order not to impaire
the reliability of a semiconductor device during installation,
cares should be taken when forming or cutting the leads,
soldering and removing surplus flux.
8.1 FORMING AND CUTTING LEADS
When forming and cutting the lead wires of semiconductor
devices, be careful of the following points:
(1) When bending the lead wires, hold the lead wires secure·
Iy between the package and the point to be bent with a
pair of pliers. Then. bend them, holding the open end
of the leads with your fingers, so that no bending'stress
is applied to the package. Do not bend the leads by
holding the package. The same consideration should be
paid when many devices the simultaneously bent using
lead forming machines.
(2) When bending the lead wires at right angles, make the
bend at least 3 mm away from the package end. Do not
bend them more than 90°. When they must be bent less
than 90° , allow a space of more than 1.5 mm.
(3) Do not repeatedly bend the leads.
(4) Do not bend them sideways.
(5) Do not pull the leads with excessive force, to prevent
the device from being broken. The prescribed tensile
strength depends on their crosHectional areas.
(6) Take care not to use any improper jig or pliers for bend·
ing, since the surfaces in contact with the plated sur·
faces of the lead wires may be damaged. It is advisable
to use a tool with a contact area of 0.5 mm radius.

\

c,

something which leaks current or has a static charge. Take
care not to allow curve tracers, synchroscopes, pulse genera·
tors, D.C. stabilizing power supply units etc. to leak current
through their terminals or housings. Especially, while the
devices are being tested, take care not to apply surge voltage
from the tester, or to attach a clamping circuit to the tester
or not -to apply any abnormal voltage through a bad contact

,

I)

Fig.4 Derating Characteristics of Linear IC
7. HANDLING FOR MEASUREMENTS
Special attention should be paid about static electricity, noise
of surge·voltage when semiconductor devices are measured.
It is possible to prevent device breakdown by shorting their
terminals to equalize electrical potential during transporta·
tion. However, when the devices are to be measured or
mounted, they have to be left with terminals open and there
is the possibility that they may be accidentally touched by a
worker, measuring instrument, work bench, soldering iron,
'belt conveyor, etc. The device will be broken if it touches

8.2 SOLDERING
It is not desirable in general to leave semiconductor devices at
high temperature for a long time. Regardless of the soldering
method, whether it may be a soldering iron or the flowing
solder method, soldering must be done in the shorter time
and at the lowest temperature possible. Your soldering work
must meet test conditions of soldering heat, tolerability,
namely, 260°C for 10 seconds and 350°C for 3 secondsata
point 1 to 1.5 mm away from the end of the device. Use of a
strong alkali or acid flux may corrode the lead wires, de·
teriorating device characteristics. The recommended soldering iron is the type that is operated with a secondary
voltage supplied by a transformer and grounded to prevent
current leads. Try to solder the lead wires at the farthest
point from the device surface.

~HITACHI

19

RELIABILITY OF LINEAR ICs

8.3 REMOVING RESIDUAL FLUX
To ensure the reliability and lifetime of electronic systems,
residual flux must be removed from circuit boards. Detergent or ultrasonic cleaning is usually applied. If cholorous
detergent is used lor the plastic molded devices, package
corrosion may OCCur. Since cleaning over extended periods
or at high temperatures will cause swollen chip coating due to
solvent permeation, pay special attention to these precau·
tions prior to dissolution and toxity. Do not use any
trichlorethylene solvent. For ultrasonic washing, the lollowing conditions are advisable:
Frequency: 28 to 29 kHz (to avoid device resonation)
Ultrasonic output: 15W/l (once)
Do not allow the devices to contact the generator source
directly.
Wash ing time: Less than 30 seconds

20

@HITACHI

DATA SHEETS
Operational Amplifiers

eHITACHI

21

HA17080PS, HA17082PS,HA17083P,
HA17084P,HA17080GS,HA17082GS,
HA17083G
eJ-FET Input Operational Amplifiers

J-FET Input Operational Amp. provides excellent charact·
eristics including high input impedance and low input bias
current, since its input differential amp. is constructed by
J-FET Pair Transistor. Accordingly it finds wide application
of general controlling instrument, medical instrument. Especially it is optimum in signal precessing from sensor of high
impedance. Hitachi prepares J-FET Input Operational Amp.
series of one monolithic bipolar chip, HA17080, HA17082,
HA17083, HA17084 .

HA17080PS, HA17082PS

•
,

• PRODUCT OUTLINE
J-FET Input Operational Amp. series provides single, dual,
quad, and they are all internal phase compensated type excepting HA 17080, and include condenser for phase com·
pensation use. And HA17080 and HA17083 are capable of
offset adjustment. Package provides two types of plastic
sealing and glass sealing, and "A" glade with rigid electrical
characteristic specification. Use satisfying uses.

(OP-8)

HA17083P, HA17084P

I

HA17080 HA17082 HA17083 HA17084
Item
The number
of Operational AmpSingle
Dual
Quad.
Iifier (the
. number of
channel)
Offset
Adjusting
Terminal
Phase Compensating
Method

Exist

External

Not exist

I

Exist

Not exist

(OP-14)
HA17080GS, HA17082GS

Internal

• FEATURES
•
•
•
•
•
•
•
•
•
•

±5 to ±18V
Wide operating supply voltage range
30pA
Low input bias current
5pA
Low input offset current
1012 0
High input impedance
13V/lJ,s
High slew rate
Wide common mode input voltage range
Operation. to input near supply voltage (Vee) is possible.
High voltage gain
l06dB
HA 17080, HA 17083 are capable of offset adjustment.
Pin for pin compatible with Texas TL080 series

~
(OG-8)
HA17083G

-NOTE
Since this Ie is high input impedance operational amp,
handling by hand may cause the input bias current and input
offset current to be rise due dirt. Care shealed be taken for
handling.

~
(OG-14)

22

eHITACHI

HA17080PS,HA17082PS,HA17083P,HA17084P, HA17080GS, HA1708 2GS,HA17083G

.PIN ARRANGEMENT
eHA17080

eHA17082

Offset
Null/Comp

V,.I-l
V•• I+I

Comp

V••ll

Vee

Vee

V,.I-II

V..,2

v••

V,.HI}

V,.I·-12

Offset

V,.c+12

Null
i

Top View

Top \'it'w

i

I

eHA17084

eHA17083
V,., 11

Offset
Null I

V,ololl

Vee

Offset

Vult
OM

V

V,.I.JI

Vu,l

Nulll

NC
Offset
Null2

V'''''I''

V("(

V,.",3

Vnl2

V,"(+l2

'"

V,n 114

Vee
Offset

V,"I-J2

Vo ..,2

Null2
I

Top View',

Top View

I

( Ta~25·C)
.ABSOLUTE MAXIMUM RATINGS
Item

Symbol

P,I'S series

G,GS series

Unit

+18
-18

V

V

:'\ote

Supply Voltage

Vf:t:

+18
-18

Djfferential Input Voltage

V,q,dlf/\

±30

±30

Input Voltage

V..

±15

±15

V

I

Power Dissipation

1',

625

625

mIl'

2

Operating Temperature

Tup.

·c

T"8

--20 to +75
- 55 to -t 125

-40 to +85

Storage Temperature

--65 to + 150

·C

Supply Voltage

:\Ott"5

VIC

1. If supply \"lJlta~t' IS le!>s than - 15\. input voltage IS tu sUJlI)I~' \"o\tagt'.
2. P and PS art' pl'rmi~5ihlt' \"alul"l> to 1'u = 50\.' , and bl'pmd that. derate \Iith 8.3m\\"!\'.
that, del"att' with 7.8mWr(· .

• ELECTRICAL CHARACTERISTICS
Item
Input Offset \'oltage

v,

Input Offset Current

1111

Input Bias Current

I,

Common

~lode

(Vcc~-VEE~15V,

Symbol

min

typ

Vew

Peak To Peak Output \'oltage

VOl'

Yoltage Gain

A\"li

Common l\lode Rejection Ratio

CMR

I'

1"u -70"(', and heyond

6

i\on A

200

A \'el'sion

100

Xon A

30

400

A \'ersion

30

200

:\'un A

±IO

A \'ersion

±Il

Unit

Xote

mV
pA
pA

1,2

V

R,--IOkO

24

27

R,.::-2kO
R,>2kO

20

24

:\on A

88

106

V,,~±IO\'

A version

94

106

:\on A

70

86

A version

80

86

R,::;IOkO

max

15

:\on A
A \'ersion

Ill! = III,., - I"

Input \'oltage

Range

tel

Ta~25·CI

Test Condition
R,~51Xl

(I

(; and (;S an' Ilermi~!>i!)le \"alul'~

V

V
dB
dB
to he continued

eHITACHI

23

HAI7080PS,HA17082PS,~A17083P,HA17084P,HA17080GS,HA17082GS,HA17083G

.ELECTRICAL CHARACTERISTICS (Continued)
Item

Symbol

Test Condition

Line Regulation

I'SRR

Rs~10kn

Supply Current

Band Width

Icc
BW

A \fI;= 1

Slew Rate

SR

Channel Separation

V.,I
V.L

I ;';on A
I A version

min

typ

70

86

max
-

80
-

86

-

1.4

-

13

-

VII's

A 'D~ 100

-

120

-

dB

0.1

-

#s

10

-

0/
/0

-

10"

-

-

35

V.. ~10V.

RL~2kn

•

Av{)=l

t.

V.. ~20mV.

RL~2kn.

V•..,

CL~100pF.

AVD=l

-

V.

:\otes!

3

MHz

Rise Time

R..

rnA

2.8
-

Overshoot

Input Resistance

1

3

C,.~100pF.

Rs~100n. f~lkHz

n
n\'/.Hz

1. :\on A IS the standard to HA170BO. HA17082. HA17083. HA17084.
A version is the standard to HA17080A. HA17082A, HAl7083A, HA17084A.
2. It's Gate Leak Current of J-FET, and depends on temperature.
At the time of measurement, it is necessary to keep junction temperature.
3. It's the \'alue per 1 channel.

• VOL TAGE OFFSET ADJUSTING CIRCUIT

N2

HA17083

.CIRCUIT SCHEMATIC

.. ,

~'

v.. ,

{ ~~I~e~omp
~~I~et,

NI

N2'

comp

HA17080
only

Vn.

6

Offset

Offset
!'>lulllNl

Null~N21

HA 11083 only

24

~HITACHI

:\ote

dB

-

-

Input Noise Voltage

Unit

HA17080

HA17080PS,HA17082PS,HA17083P,HA17084P,HA17080GS,HA17082GS,HA17083G
PEAK TO PEAK OUTPUT
VOLTAGE SWING VS FREQUENCY

PEAK TO PEAK OUTPUT VOL TAGE SWING
VS AMBIENT TEMPERATURE
30

30
R,. -10k U

:::.

--

25

,J,

20

:.:

15

-

2kQ

~

-·15V

Vu

10

t-- Ttl

25"('

o
100

~

,
"

10 k

1k

lOOk

1M

:.:;

15

8

10
t 15V
V"
Vu.~ 15V

01:

o

-50

10M

30

25 f-- Trl

30

15V

~

V

~

20

~

~

15

-

10

'""

1--'1--

25"C

-.-

75

100

Til ("C)

V

/

Ta

20

~

15

J

R,L 10k<>
25"C

V

10

/

~

II

!:;

50

25

,J,

V'

~

25

PEAK TO PEAK OUTPUT VOLTAGE
SWING VS SUPPLY VOLTAGE

Jv

v" I
Vu

-25

Amhll'!ll Tt'mpl'raturl'

PEAK TO PEAK OUTPUT VOL TAGE
SWING VS LOAD RESISTANCE

·n

2 kQ
20

~

\

t 15V

v((

01:

,

25

M

\\

~

~

RI. o\Ok U

::.

V

/

V

V

!:;

o
0.1

0.2

0.5
r.Ll a d

I{p s

o
10

1.0
i.,! a 111' P/{I

I

k~~

o

1-3

±6

"t9

±12

SupplY VO!1tagt' lif!, Vn

I

±15

(\"1

VOLTAGE GAIN VS AMBIENT
TEMPERATURE
150 r----,----,------,--,--,-----,

VOLTAGE GAIN VS FREQUENCY

1251---4---+---1--+--+--1

12 5

15 0

±18

J" ~

+J5V

Vu;-=--lSV

R,.~10kQ

-

Ta=2S'C
10 O r - - ~

100 I-----_+_--

;

751---4---+---1--+--+--1

5 ---

501---4---+---1--+--+--1

0

v( (
25 -

0::

~

i""

+ 15 V

I

Vu. ~ -15
R,. ~
kQ

v-4----+--+---+----j

OL---~--~--_L

-50

"~

- 25

25

5

__~__~__~
100
50
75

:\mblt'nt Tt'mp,'raturp l;1

"('

0
10

100

1k
Frt''lUf>IH'V

@HITACHI

10k

f

lOOk

'"

~

1M

10M

(llll

25

HA17080PS,HA17082PS, HA17083P, HA17084P, HA17080GS, HA1708 2GS,HA17083G

HA17080 VOL TAGE GAIN VS
FREQUENCY

SUPPL Y CURRENT VS AMBIENT
TEMPERATURE

150
Vcc=

2.4

,--.,-----,--,----r----,,---,

2.0

!----;--...,--+----j-----jr----;

I. 2

!----;--...,--+----j-----,r----;

0.8

I---f---+---t--t--i----i

115v

V":F.=-15V
CL~3pF

125

-

Ta=25"C

~

100

"

75

~

50

~

;

"-

+1

" '"
"-

"
<3

'\

25

o

10

1k

100

10k

r\

1M

lOOk

f

Frequency

>.

1

\

~()

Load
Per II Channell

OL-__
\OM

-50

V"

-"

0:

~ ~15V

2.4

I

-

i

,

25

-"+1

1.6

-

60

~

__

~

75

\00

Ta~i5"(:

i - -~

1.2

>.

J

40

0.8

0.4

0
-50

-25

25

50

75

100

o
o

AmbIent Temperature Tu ('e)

t 3

±6

±9

Supply Voltage

INPUT BIAS CURRENT VS
AMBIENT TEMPERATURE

± 12
~h·.

1:

15

120

Vnl='I~V

V,..,.::o-o -15V
100 t-Ta~25"<:

I-Vr(

+15V
15V
rVc.If=OV
f-Vf:f;~

I k

80

I

..:;

----

0
(J

/

V

100

10

-50

:t}8

h:t, (V)

INPUT BIAS CURRENT VS COMMON
MODE INPUT VOLTAGE

10k

- --25

0

~

V

20

25

50

75

100

Ambient Temperature Ttl ("C )

26

__

50

(J

20

iii

~

:;0

80

0':

1

__- L__

2.0

0

':is

~

SUPPL Y CURRENT VS SUPPLY
VOLTAGE

~o Load
Per lch.

[,;

__

Ambient Temperature Ta ('e)

\in:=- -15V
No Input

100

~

-25

(Hz)

POWER DISSIPATION VS AMBIENT
TEMPERATURE
120

Vee = +lSV
V,.:,.;=-15V
0.4 r-No Input

~HITACHI

o

-10

-5

10

HA17080PS,HA17082PS, HA17083P, HA17084P, HA17080GS, HA1708 2GS,HA17083G

POWER DISSIPATION VS SUPPLY
VOLTAGE

INPUT NOISE VOL TAGE VS
FREQUENCY
120

l~
';;

100

VL~' +'Il~

100

80

= 2S'C

Ta

1\

80

"

"

'-

~

3.

Ta~JS"C

r-~" Input
~Il Llad

Vn= -15V
R!> = 100Q

0::

60

60

.-

~

40

40

./

i5

,

r-

-

if.

./

20

20

/'
o

o

10

100

I k
Frt"IUI'IWY

10 k

f

100 k

±9

± IS

± 12

± 18

LINE REGULATION VS FREQUENCY

JlSV

-0-

VH=--I5V
Ta ·25'(,

]00

'" """

40

20

100

Ik

10k

"

'"

lOOk

4

'"

1M

~--

- 4

- 6

\

!\

!1-0""",

:

I

\

""-

/

if
i/

H

100

10

10M

I

Input -----'

,IISV
ISV
Vu
~ 2 kiblt' valu(> to Ta~45·C. and ill'},ond that. aHat!' I\ith 8.3m\\'j"C

the p,·rmlsslhh· valut· tu Tu

• ELECTRICAL CHARACTERISTlCS--l I VC<~·' VH~ i5V, Ta~25'C)
Symbol

Item

min

Test Condition

typ

Rs~ lOk!l

V/I!

Input Offset Voltage

6.0

m\'

18

200

nA

75

500

nA

30

150

p\,/V

30

150

p\'/\'

Input Offset Current

I,

Input Bias Current

Unit

1.0

Line Regulation
Voltage Gain

86

106

dB

Common Mode Rejection Hatio

70

90

dB

12

+J2

:tl3
+14

\'

+ 10

:± 13

~

Common Mode Input \'oltage Range
VOl'

Peak To Peak Output Voltage

/'

R,>IOkl1

V(}I'I'

Power Dissipation

P,.

at the time of no load

Slew Rate

SR

R,,' 2k!l

Hise Time

t.

100

65

mIl'
\'/ps

0.5
0.3
5.0

O\'ershoot

R..

Input Resistance

1.0

0.3

• ELECTRICAL CHARACTERISTlCS~2' Vcc~ - VHf. ~ is\'. Ta~ --20 10+75'C. howe\'er as for HAl774i. Ta~O 10+70'C '
Symbol

typ

max

Unit

Input Offset Voltage

9.0

m\'

Input Offset Current

400

nA

1100

nA

Item

Input Bias Current

I,

roltage Gain

AI"II

Test Condition

R,.,·2kl1, V""

~

min

'.IO\'

dB
\.

80
::': 10

Pt'ak To Peak Output rultage

INPUT OFFSET CURRENT VS.
SUPPLY VOLTAGE CHARACTERISTIC

• VOLTAGE OFFSET ADJUSTING CIRCUIT

"
J

R.

J

~"
16

R,

ViI

0";0%

t

•

0=-100%

VEE
:!:3

I

I

i

,
I

!

I

1

i

I

19

Supply Vultage

~HITACHI

i

:

!

±6

I

I

,

I

1
R,

1

:

I
I

I

± 12

± 15

I

± 18

VI"/. I/o. (Vi

29

HA17741G,HA17741GS,HA17741PS,HA17741

VOL TAGE GAIN VS
SUPPLY VOL TAGE

POWER DISSIPATION VS
SUPPLY VOL TAGE

120

101 I

No Load

---- I---~

d:

f

--

u f.----

60

lL
/

-0

V

°v

II 0

----

I

~

f---

./

- ---

/'
VI
RL ;:;2k,Q

80

7[I

I

±3

±6

±9

tl2

±15

±3

118

±6

±9

±12

Supply Voltage Vee.

Supply Vuitage V('/', Vn; (V)

t15
V~;f:

±18

(V)

INPUT OFFSET VOLTAGE VS
AMBIENT TEMPERATURE

PEAK TO PEAK OUTPUT VOL TAGE
VS SUPPLY VOL TAGE

~'cc '"' + IS\'
VEE"" -15\'._
RS~](ik11

;;

•

f----+--+---I--+-----+--{-- f--- t--- - --I

i

'
-t---

I--L~
!---l---+-----l-- f-r-Ir-i
2

I

[

r--+--- --+--

-- - -+--+-+--1

I

1

1--4--~--1--+-4---~--1--~~--

I

40

20
Supply Vultage Vcc, Vt:'F. (V)

INPUT BIAS CURRENT VS
AMBIENT TEMPERATURE

INPUT OFFSET CURRENT VS
AMBIENT TEMPERATURE

"
16

r-r-- r-t="
i

T

-

11(1

60

Ambient Temper.ature Ta ('e)

--+-

--

r- f......

lUU,

t

~

"'}-

I

2

I

.::;

80

<3

60

i

T
.......

r---..

f' ........

,...

iD

I---t
,

v'ce'" +15V
VEE:= - ISV

-

~'cc

20

40
Ambient Temperature Tn (OC)

30

!

1

,
tU

'u

60

'"

~HITACHI

-20

I
=+15V

V E£=-15V

20

.0

60

Ambient Temperature Ta (Oe)

80

HA17741G,HA17741GS,HA17741PS,HA17741

VOL TAGE GAIN VS
AMBIENT TEMPERATURE

POWER DISSIPATION VS
AMBIENT TEMPERATURE
1

i
I

,",

;

-"

70_

~

60

•

ci:

110

:;;

I

I

r- --k
--

Vcc=+15\"
r--~'H=-I5V-

Nfl l ..oad

-+-

0:

a

+--

.;;

r- r-- r-

---{- t--

t--

...

- t-- 1--

I100

J

-

90

~

;.;

\---

50

Vee'" + 15V
Vn -=-15V

80

RL

._f-4(1

.0

20

"'

70
-,0

""

60

Amlncnt Temoeratuf(, Tu ('C)

20

.0

~2kQ

80

60

Ta ('C)

Ambip.nt Temperature

OUTPUT SHORT-CIRCUIT CURRENT VS
AMBIENT TEMPERATURE

PEAK TO PEAK OUTPUT VOL TAGE VS
AMBIENT TEMPERATURE

Vo= Vee
VCC=+ISV-

12 J-HH-I-I-I-+-+-+--l
6

~

u

I

,

VU =-15V

-

l'"'- I--

-

I--

l"- I'"'- ~

.~

C

I----HH---j-+-+ vrc = +ISV
Vn =-15V

-4

~

J-HHH-I--tR /. = 10kO _
-, J-HH-I-I-+-+-+-+--l
HH--t-+-+-++- t---

•

-It':!~~±:j_
20

20

40

60

•

"

lIO

!(l

.0

PEAK TO PEAK OUTPUT VOL TAGE VS
LOAD RESISTANCE

•

~~S~~~5~',~~~;Qrrr-

!

1

2

80

OFFSET ADJUSTING CHARACTERISTIC
I.6

16

60

Ambient Temperature I'll ('C)

.A.mhient Tcmpl'ralure '1"1 ("CI

-fj

I. 2

:
J...

!AI

•

o.

V'

R:;c)OkQ

1+

,.•

./

c..1lII~

~
~v

~J

'\:OJ

0

·• "

-0.4

VCC=+ISV
VU:=-15V

-0.8

I/~

R=2OkU

rl:

Il/
/I

-I.2
-I 2

-I. 6
20U

.')00

Jk

2k

5k

10k

20

40

60

Hesislof Position

Load H.esistancl! HI. (~l J

$

HITACHI

80
Q

100

(%!

31

HA17741G,HA17741GS,HA17741PS,HA17741

PEAK TO PEAK OUTPUT VOL TAGE VS
FREQUENCY

INPUT RESISTANCE VS
FREQUENCY

28

I.' n-rT"l"TTmr-rr-r'TTTTTn-rr...,....rnTm-r""'-""-T"TTm

•

1.2 H+++tttHt-+++ftttftt+H-H+H1H++++++Hl

1\

20

1.0 H+++H+Hf...j.;j;::!-iftttftt+H-H+H1H++++++Hl
0.8 H+++tHH#-+H++++tfl-f-f~ki-!-ItII-++-I-t-WIll

6

2

£

0.6

H+++tHH#--t;H++++tfl-l++f-H-ItII-+~ttWIIl

-

0••

H++++tl-ltf--t1H++l-H1IHI++lf-H-ItII-++-1-t-1+Il1I

VCc.""+lSV

VEE =-15V

Rti'1i1

•

0.2 H+-Hftfttt-+H-ttttttt-t++H-l-lttlH+-t+t++lll

11I11
IIIII!

o
100 200

500

Ik

2k

Sir.

10k

201r.

J

(Hz)

Frequency

sOk lOOk 200k

01'~OO~20~0~S~0~OW'~k~2~k~~Sk.Lll'~Ok~2~Ok-L~SO~k~'~0~Ok~2~O~Ok~SOOLkUW'M

SOOk

Frequency

PHASE VS FREQUENCY
0

120

vcc=~:~~+
;;

0

"
J

-80

-120

:f

-160

vrc=+IAV"
VF.E=-15V

100

Open L()op

.w

(Hz)

VOL TAGE GAIN VS FREQUENCY

VU·=-15V ,

-.

f

~

Open /.(lOP

80
60

4•

20

-zoo
-240
50 100

200

500

Ik

2k

Sir.

10k

Fre'luenry

f

ZOIr.

SOk

lOOk 200k

SOOk I M 2M

-'0 ';;1O;"-;;,20:"'-';St;lOW':::OO~200;;-'-S~OO;;.u;'k~2t-k-'--';5ktw;I~Ok:-';;20k;:"-'t50~k~11IOk;;;:';2OOk!;;;i-t5OOk~'~M.-'::!'M
Frequency

(Hz)

VOL TAGE GAIN,PHASE ANGLE VS
FREQUENCY CHARACTERISTlC(1)

120 ,..,..rrrTTTnn-r-r-rrrTnrTT"T"TTTTTIT-rT-rTTTTTrrrrT"."m-n

H-H-HttHH+t-ttltttl-++-+++tttIt-H-Htt' ~~c = +IS V' "'
100H-t+HttHH+t+tttttt-++-ttttffit-tt-tt++~f!~s:d-~i~cuit
Gain 40dB r

Vu=+15V
Vn:"'"-15V

100

80

Clo~ed Circuit

Gain=60dB

I!,

0

~ 60

~

(Bll

VOL TAGE GAIN,PHASE ANGLE VS
FREQUENCY CHARACTERISTIC(2)

12.

~

J

60

.0

A~

~

i

-120]

20

~

H\O==:

-20 \;;1O'1~k-'-'<\5I)!"#;IOOr..
~-t5Ollf'l,1o:-k.L~i;;-'-l;!5k~I"~";:-'-\5Il~'0l~mW-1;;5OC>~,"[;-l;;i2M
Frequency

f

-'0 !;;1O.L,2!;;-0"-Y.SO"'*'00.-';;l200.-'-lS"'OOJJl!olk.L2k:!-'-',\Sk'-"'lIOk.-Y.20::-'k"S±!Ok"'fIO!f.;Ok;',,"'OO""kS~OO:!'k~IM!.-'::!'N

(Hz)

Frequency

32

$

HITACHI

f

(Hz)

HA17741G,HA17741GS,HA17741PS,HA17741

VOL TAGE GAIN, PHASE ANGLE VS
FREQUENCY CHARACTERISTIC(3)

VOL TAGE GAIN, PHASE ANGLE VS
FREQUENCY CHARACTERISTIC(4)

.~ VI'

- 120 f+f+I-ll+HH+,-+H-HlI-++++II+HlI-+i-+1m+1H+++++H+l--t1

~4() !o\O'-:;20~'t50i'f.!IOO;-'2oi;oo~5~OO~'k-',2:!ck-'-';:5k~'O:C-k~20:C-k~5~Ok~I~OOtk2;!;OO;;'ki51lO!;'ck"}'\;-M'-i"M
Fr(!{IUt'n(',v

f

1020

'>0

100 200

Fr<,qlH'nry

(1/1.)

TRANSIENT RESPONSE CHARACTERISTIC MEASURING CIRCUIT

10k

20h

J

(117.)

SOh lOOk 200k :'OOk 1M

2M

RISE TIME VS SUPPL Y VOL TAGE

0.8

vRL=2kQ.• =J...v
CL=IOOpF
0.6

'v,

~I(l "

r•.,

~

e

0.'

..::

",
r.""v;---+---0 \'•• ,

.

R,.

0.6

:..

'"
,~

0.'

~

v..

/"

~

,TT\

;;;
0.2

~

I-'

./

-

,.-

/'"

/
±3

to

±9

t12

t15

±l8

Supply Voltage Va. Vf;f: (V)

VOLTAGE FOLLOWER LARGE SINGNAL
PULSE RESPONSE CHARACTERISTIC
0

vc~= + I~V

VU':::-15V-

RL =2kal
CL=IOOpF-

r
I
I

11-

1\

()utPUI

1/

0

1/

I

\

Input - I
I
I

I

r-

L_

-10

.0
Time t

\

\

-- r- -

80

(IlS)

.AN APPLICATION OF Ie OPERATIONAL AMPLIFIER
1. Multivibrator
Multivibrator is the square wave generator utilizing the charge
and discharge phenomenon of CR. and is widely used in
power source of square wave, electromagnetic switch, etc,
Multivibrator is classified by Astable Multivibrator without
stable state, Monostable Multivibrator with one stable state,
Bistable Multivibrator with two stable states.

V nt

>---+---<:>-- -- ~

I

I

R,

R,

~"
I
I

I

I

,h
Fig.1

34

eHITACHI

Astable Multivibrator Operating Circuit

HA17741G,HA17741GS,HA17741PS,HA17741

Trigger Input

~', ..

+

0

0

V.. I-IO

v.. ,

axis of ordinates 5V IDlV
quadrature axis 2ms/DIV
circuit constant R,~10k!l.

axis of ordinates 5V IDlV
quadrature axis 2ms/DIV
circuit constant R, ~8k!l, R2 ~4k!l

1

R3~100k!l,

0

R3~40k!l.

C,~O.l#F
VEE~

RL~CO

-15V

Vee~15V.

Fig.2

C,~O.47#F

C2~O.0068,uF

RL~CO

Vee ~ 15V,

R2~2k!l

HA 17741 Astable Multivibrator Operating
Waveform

Fig.3 Monostable Multivibrator Operating Circuit

VEE - -15V

Fig.4 HA17741 Monostable Multivibrator Operating
Waveform

Fig.S Bistable Multivibrator Operating Circuit

eHITACHI

35

HA17741G,HA17741GS,HA17741PS,HA17741

"rr~~~~cmm--,,,~m---"Tn~

III!

10k

VIII''' 2V

I

~~.g.

~:Ij

----'-+-1' 1 il
I ,,:

Capacitance C l (F)

axis of ordinates 5V IDIV
quadrature axis 2m siD IV

Fig.8 HA17741 Wien bridge sine wave oscillator

circuit constant
RI~10kn.

~

f-c characteristic

R,~2kn

C~O.0068J.1F
R~ro

Vcc~15V.

VEE~

-15V

TT>\. ! /1\~ . "

Fig.6 HA17741 Bistable Multivibrator Operating
Waveform

lS20/4

'\

! (\

, \V,r·'V\;'
i,.

.~

V

U
R,
470kll

IMQ

axis of ordinates 5V IDIV
quadrature axis O.5ms/DIV
measuring circuit condition

S.JkQ

Vcc~15V.
R,~110kn.

r ...
~11J1l!J

k.
R,

C,
I'

R,~l1kn

C,~O.0015J.1F.

C,~O.015J.1F

Imeasurement result
f~929.7Hz.

SOkQ

VEE~-15V

T.H.D~O.06%

Fig.9 Operating Waveform of HA17741 Wien
bridge sine wave oscillator

R,

R,

Fig.7 Wien bridge sine wave oscillator

I

I

------H-~
1'"

Fig.10 Quadrature Sine Wave Oscillator

36

$

HITACHI

HA17741G,HA17741GS,HA17741PS,HA17741

(n

l'''21'Ft-+t+H't--t-tI·~''I.I_I'!'.'.''I5V 1 I

f"r! =!I!lpF
C,=106pF

RTI =t50kQ

Rn =15tlkU

R.=15I.2kQ
R,,-15kQ

R.. IOkQ

R.. -ISkQ
R.. IOkQ
Cn ,Cn ,C,-I,OClOpF J. '1

..... COli

Out

IlnG,,1

axis of ordinates 5V IDiV
quadrature axis O.2ms/DIV
circuit constant

C,~1000pF(990)

C T2 ~ 1000pF(990)
150kn
R, ~ 160kn

RII~15kn

R,,~10kn

R,,~16V

R .. ~10kn

Vcc~15V

VEE~-15V

CTl~1000pF(990)

RT2~

RTI ~150kn

Fig.11 HA17747 Quadrature Sine Wave Oscillator
f·ClI, Cn, C, characteristic

Fig.12 Output Waveform 'Of Sine, Cos

r-

--I;~;-a;-;);-----

---- -c--- - ---1

1

1

,

1

1

1

:
1

II,

IJ,

:
I

I

!,

1

1
1
I
1

:
1

A,

R.

[JI

+

>4---i-'- 0 \' " ..
r---

t

_L.. __ ,

-lm--mm-m,-J '"
_

v....

:1
I
1
I

1

1

i

I

II"".".", '1"1'" Comp... ,,,,

II,

/11, :

1L.. ___________________________ JI

Flg.13 Triangular Wave Generator Operating
Circuit

eHITACHI

37

HA17741G,HA17741GS,HA17741PS,HA17741

I.
~ •• 11

\

~

.. ,

....
axis of ordinates 5V IDiV
quadrature axis 2ms/DIV
circuit condition
Vcc~15V,

RI

~

VEE~~15V

tOOkO, CI ~O.l!' F

V,"~IOV

Fig.16 HAl 7741 Saw Tooth Generator Operating
Waveform

axis of ordinates lOY IDiV
quadrature axis IO';'s/DlV
measuring circuit condition
Vcc~15V,

V££~~15V

RI ~ IOkO,

R2~20kO

R3~tOOkO,

R,~200kO

C~O.lI'F

Fig.14 Operating Waveform of HA17741 Triangular
Wave Generator

R,
--------------~~---------------,

bk!..!

R,

v..

6kQ

V•• r

R.
JkQ

,j,

I?2~SCI106Qj)
C'II

R,
2.7kQ

R.
2.7kQ

Q,

SkQ

V.

Fig.15 Saw Tooth Generat\lr

38

$

HITACHI

H A17715G •

High Slew Rate Operational Amplifier

HA 17715 is an operational amplifier of high speed and high
gain, and it's application is possible in AID, DIA converter,
active filter, wide band width amplifier, comparator, sample
hold circuit, and general feedback circuit required wide band
width from DC.
•

FEATURE

•
•
•

Slew Rate
Fast Settling Time
Wide Band Width

1 OOV II's (typ)
300 ns (typ)
65MHz (typ)

(OG-14)

• PIN ARRANGEMENT

• CIRCUIT SCHEMAITIC

(Top View)

.ABSOLUTE MAXMUM RATINGS (Ta-25'C)
Item

Symbol

Supply Voltage

VCI

Supply Voltage

Unit

HAI7715G
~

V

Vu.

18
-·18

Power Dissipation

J'r··

625

mW

Common Mode Input Voltage

Vnt •
V," '/,1!

'r IS
,tiS

V

Ilillerential Input Voltage
Operating Temperature

~.,,,

20 to +75

Storage Temperature

7', IN

'c
'c

65 to

V

V

•

+ISO

III Ie lriuppl)' \,oltaMt" is It'sli than • lS\', input ~'(JltaKt' is to sUllply \'oltal(t' .
... • It's a pt'rmissiblt> \'.lut' to 1'" "70"C. and be~'tmd that, dt'ratt' with 7.6mW/'C

• ELECTRICAL CHARACTERISTICS-' (V",,-- V",,-15V, Tu=25'C)
Symbol

Item
Volta~e

V,,,

Input Ollset Current
Input Hias Currl:'nt

Input Ollset

Lint' F(,eguration

Voltage Gain
Commun
Common

min

typ

max

Unit
mV

2.0

7.5

I,,,

70

250

nA

I,

0.4

1.5

!lA

45

400

"V/V

AV,,,/AV,,

R,,;: 10kO

A V, ,,/ A V""
A~'II

R,': 2kO, V,,",
R,.: 10kO

~lode

Rejection Hatio

CMR

~1()de

Input VoltaMe HanMe

VI'.1f

Supply Current

Ml!asuring Condition

R" ~ 10kO

11'1"

eHITACHI

~

: 10V

10000

30000

74
" 10

92

...

V/V

1'12

..

5.5

10

V
V
mA

39

HA17715G

• ELECTRICAL CHARACTERISTICS-1 (Continued)
Symbol

Item

Power Dissipation

p.,

Band Width

BW

Measuring Condition

-

SR

Slew Rate

min

typ

max

Uuit

165
65

300
-

MHz

mW

Avu=l

-

ACI.~IOO

-

70

-

Vips

ACI.~IO

-

38

-

Vips

ACI.=I(positive phase)

10
-

18

-

Vips

100

-

Vips

-

800

-

ns

-

300

-

ns

Au.=I(negeative phase)
Ac,.~1

Transient Stable Time

tACO

V".,~5V.

Settling Time

t:sn

ACl.=l

Rise Time

t,

V,,~400mV.

Acr.=l

-

30

75

ns

Overshoot

V., ..

V,,~400mV.

ACI.=l

-

25

50

1.0

%
MO

Input Resistance

R"

-

Output Resistance

R"uI
6V,,/6T

-

Temperature Drift

.ELECTRICAL CHARACTERISTICS-2

(Vcc~

Item

Measuring Condition

iw

I,

Input Bias Current

-

750

nA

Ta~75'C

-

-

1.5

pA

Ta~O'C

-

-

7.5

pA

Ta~

-

-

10

7000

-

-

±IO

±13

-20'C
V•• ,~±IOV

4.0

I
I

"'

.."
c;:
~

I
I

~

i
2.0

I

I
I
I
I
I
I
I

I

I

I
I

I

Transient
Stahle Time

!

!

I

I

f - f--

I
I

IR.s=lOkQ-r-~

,:
I
:
I

!
I
+---

I

I

I
I
I

20

20

i

I

eHITACHI

I
I !
i-----+-+I
!

I

I 1
I I
I
I

i

i

ttl
40

Ambient Temperature Ta ("e)

40

V

i,

-

I

-

I
.'
I.
I
"CC=-IHCI5V_j

~

---

--~-------i
I

pA
V/V

INPUT OFFSET VOLTAGE VS.
AMBIENT TEMPERTURE

Settling Time

I

nA

-

-20'C

90%--:--------1

100%

mV

Ta~

DEFINITION OF TRANSIENT RESPONSE WAVEFORM

llO%--~-------:-I
I

Unit

10
250

R,.;;'2kO

I

max

-

VIlI'1'

I

typ
-

-

Peak To Peak Output Voltage Amplitude

I

min

Ta~75'C

R,.;;'2kO,

~

pV/'C

-

A.· v

I

-

R,';;lOkO

Voltage Gain

'~"

0

6

- VEE~15V, Ta~ -20 to +75"C)

V/ O

Input Offset Current

-

-

Symbol

Input Offset Voltage

-

75

60

80

HA17715G

PHASE COMPENSATED
CIRCUIT
--

c,

C,

C2

IU

,

CLOSED LOOP GAIN VS.
COMPENSATED CAPACITANCE

vmsv

c:!

--

10pF

1000
100

50pF

10

100pF

500pF

1000pF

I

500pF

2000pF

1000pF

11

250pF

c,
1.00U

c,

-

\

,

-

e,\

i--

c,

_c.

-

,

,
\
0
10

100

1,000

Chlsed"loop Gain ArKI.• (V/V)

LINE REGULATION VS.

INPUT BIAS CURRENT VS.

AMBIENT TEMPERATURE

AMBIENT TEMPERATURE
U.8

100

VCC~-VE;=15V

T

,
I

.;:,

0.6

<3

I

"" '"

0.'

iii

-

,

'\

-"

~~

~"'

"" ""
"" ~
,,"
~ ~

i

50

~o

~

0.'

l'--

f--

!

!

-+-.t

1---

f-+-I

I

i

i

I

i

I
.0

80

6U

4U

20

20

120

Ambient Temperature

Amhient Temperature Ttl ("C)

Ta

80

ee)

VOLTAGE GAIN VS.
AMBIENT TEMPERATURE

VOLTAGE GAIN VS. FREQUENCY

~

---e-

.Uk

"'

-

~-+--+--+-+--+--+-i--+--+-+-+--1
-f--+--+--+- j - - j - -

I

., 3Uk f--+-+-+-+-+--1-l--+-..j....j..~---j
C>
~

o

lk

10k

1M

lOOk
Frequency

J

\OM

100M

i

:>

'0' f--+-++-+--+--1-J.--+-++-+-

(Hz)

10k

e-+-+--+-+--+--i-+--+-+-+--+--I
-20

20

.0

Ambient Temperature

eHITACHI

50

80

Ta ("C)

41

HA17715G

COMMON MODE REJECTION RATIO VS.

PEAK TO PEAK OUTPUT VOLTAGE VS.

AMBIENT TEMPERATURE

AMBIENT TEMPERATURE
+16

130
Rs "10ks;!
0

+k-l-- ::+-

+1 2

VS"" ± 15V

0

~

•

100

-

o

,.....

£

90

~

80

"....

~

~

~
8

e

•
8•

-.
-8

"

"

70
0

0

20

- 10

10

20

30

40

50

60

70

- v,

-12
-16
-100

80

+100

Ambient Temperature Ta ("C)

Ambient Temperl:lture 'fi~ ("C)

.AN APPLICATION OF HA17715
I n case voltage gain is 10, it is allowable to insert capacitance
of C. to between terminal 1 and 12, replacing C, and C,
from the above figure. In that case, the value of C. is 200pF.
(3) I n case voltage gain is 100

HA 1]715 is an operational amplifier of high slew rate. and is
optimum for the application in the field requiring high speed
signal processing and wide band width. The following
describes an application of HA 17715.
1. Fundamental articles for using HA17715
1.1 Method of using phase compensated capacitance
Because HA 17715 is high speed and high gain, it is especially
necessary to notice the prevention of oscillation at the time
of using it. On account of this, capacitance value for phase
compensation is being recommended as shown in Fig. 1,
satisfying the largeness of closed loop gain for use.
(1) In case voltage gain is 1,

Fig.3 Phase Compensation in case voltage gain is 100
1>---4--- v•• ,

(4)

I n case voltage gain is 1000
I,OOOR

Fig.1 Phase Compensation in case voltage gain is 1
1>-"_ _ v...

In case of voltage follower, in order not to have latch up
occur at input stage even if output is increased, it is necessary
to insert diode to cascode terminal as shown in the figure.
(2) In case voltage gain is 10

Fig.4 Phase Compensation in case voltage gain is 1000

.R
IOOpF

v"

---''1Il10----4.----1

v.. ,

500,F")(

1.2 Offset Adjustment
The adjustment of voltage offset can be performed by apply·
ing volume etc. for offset adjustment use to input terminal.
I n case of HA 17715, it can be performed effectively by using
terminals 1 and 2 for phase compensation use to input
terminal. In case of HA17715, it can be performed effec·
tively by using terminals 1 and 2 for phase compensation use
as shown in Fig. 5

;'

Fig.2 Phase Compensation in case voltage gain is 10

42

eHITACHI

HA17715G
Vee

Table 1. Constant Table

50k

C,

Frequency Range

C,

10 to 100Hz

31'F

7.51'F

100 to 1000Hz

0.31'F

0.751'F

Ik to 10kHz
10k to 100kHz

0.031'F
0.0031'F

0.0751'F
0.00751'F

lOOk to 1000 kHz

300pF-t-l50n

750pF

Fig.5 Offset Adjustment of HA 17715
2. An application of HA17715
2.1 High Cycle Amplifier
Fig. 6 shows high cycle amplifier with progressed drive ability
of output by applying PNP and NPN transistor to HA 17715.
Voltage Gain Av of this amplifier can be.

tl!iV

-1'iV
Swing

~~t--~-~Ajust.
IOkQB

Vcr = +15V

v,. ~-,<5Mlo;::.Q_<-_1
R.,

750Q

IOkQ

2212

r

O.2f.lF

VF.E=~15V

Fig.6 High Cycle Amplifier

expressed by Av~20 log R,.
Rs -20 log

(l+~
Ro )

Fig. 7 shows frequency characteristic of voltage gain in the
circuit of Fig. 6.

"

,I

" "
~

-c

J
~

I
,

RL

i I.i!

!'!!'

~'" '" LSV

"=I

I Ii:

"'sua I

0.01

I II'
0.01

1:"1 1

',,1,'

,

I iii

iill ----t-

ill!

I

"

,: "
"

; ! : ii ~

I !li: 1
0

;

,

!i:l:

10

I"Mr----,.---,----.---~---,

--.--

:i

~j!:4~~~\'.t

sistance.

. Ii

Ii'

11I1

Fig.a Wide Band Width Oscillator
Note 1. By switching C. and C" it is capable of oscillating
the range of from 10 Hz to 1 MHz by 5 range.
2. As for output amplitude, about 3 Vpp is optimum.
3. The amplitude of each range is stabilized by the
fine turn ing of C•.
4. By the adjustment of VR, ' uniformalize amplitude
change during VR. ' VR, changes.
2.3 Waveform Shaping Circuit
Fig. 1 shows Waveform Shaping Circuit of Schmitt Trigger
method. At no signal, this circuit becomes Astable Multi,
since bias is put to it with the negative feedback type in order
to make high cycle waveform shaping good. Fig. 11 shows
the relation between minimum identification level and re-

\

-.,

-t-

l'll"k

;\

.::

ill:
Ii!
Fig.9 Oscillation Frequency
vs Capacitance

0.3

Frequency

J

(Mllz)

IOIL"'_'P-I-."LIl'_,p_,-J,l'--JlI;-

Fig.7 High Cycle Amplifier A d

(J.l,~

l.u

Hill

Capacitance C, 'FJ

Characteristic

'J>

::;:,:.:...+---<>,...

111,,1-

r.• o-~

2.2 Wide Band Width Oscillator
Fig. 8 shows oscillation circuit of wien bridge type theore·
tical equation

VR I
C,
A\~l+ VR, +c,~6

f~

fn. jT7fVR~·VR, ~C~·C2!

-,-'''pi

,t'~

Fig.10 Waveform Shaping(Slice)
Circuit Of Schmitt Trigger
Method

eHITACHI

R. lUI

Fig.11 Minimum Identi-

fieatlng Level

vs Resistance
43

HA17747G, HA17747P,
HA 17747 •
Dual Operational Amplifier

HA 17747 is an internal phase compensated type, high performance, dual operational amplifier, and its wide scope of
application is possible in ~he field of measuring and control
use .

HA17747G

• FEATURES
•
•
•
•
•
•
•

Industrial use
. HAI7747G, HAI7747P
Commercial use. .
. . . . . . . . . HAI7747
High Voltage Gain
. . . . _ . . . l06dB (typ)
Wide Output Amplitude . . . ±13V (typ) [at RL ~ 2kO)
Protected to Output Short
Capable of adjusting Offset Voltage
Internal Phase Compensated Type

(PG-14)
HAl7747P
HAl7747

• PIN ARRANGEMENT

(DP-14)

(Top View)

• CIRCUIT SCHEMATIC(1/2)

r, •• '
H,
25

..... . 0--+--+--+--'

v•••
H..

"

44

eHITACHI

HA17747G,HA17747P,HA17747

• ABSOLUTE MAXIMUM RATINGS (Ta ~ 25'C)
Symbol

Item

I' HAI7747G

2' HAI7747

2' HAI7747P

Unit

Vcc

+18

+18

+18

V':f:

--18

-18

-18

V

Power Dissipation

P r•

670

670

mW

Input Voltage

V"

tl5

670
t 15

tl5

V

Differential Input Voltage

V,",dol!'

±30

+30

±30

V

.i0.5

10.5

+75

0 to +70

V
·C

55 to I 125

·55 to +125

·c

Supply Voltage

Voltage between Offset Adjusting Terminal and V rf,

VUh" Vf• f :

Operating Temperature

T",,,

Storage Temperature

T..,

to.5
-20 to
--65 to

j

75

+150

- 20 to

V

*1: Yaiut' unut'r Tu' 65'C, In case of more than it, 7.6mW/"C derlltin~ ~hall lIt' done.
2: \"alul' under Tu' 45'C, In ('ase tlf more than it. 8.3m\\'/,C deratin~ shall bt, dune.
If hUI'ply \'oltagE' is lI's!> than 'IS\'. input \'uhuJW is til supply vlJltagt' .

**

• ELECTRICAL CHARACTERISTICS-1 I V«~

~ V,,,~

15V,

Ta~25'C)

typ

max

1.0

6.0

1/11

20

200

nA

J,

80

500

nA

2.8

rnA

85

mW

Symbol

Item

Input Offset Voltage

VIU

Input Offset CUrI'ent
Input Bias Current

Measuring Condition

min

R.,o;;;IOkfl

Voltage Gain

A 1'1)

R1."'2kfl, V.. ",~ i:IOV

Supply Current

1('(

Power Dissipation

P,.

at the time of no load
It's the value per 1 channel.

Input Resistance

R"

Input Capacitance

88

50

mV

dB

106
1.7

Unit

2.0

Mfl

C"

1.4

pF

Output Resistance

R"~I

75

fl

Slew Hate

SR

0.5

VII's

0.3

ps

0.3

R,..llrv

f

(liz i

VOLTAGE FOLLOWER LARGE
SIGNAL PULSE RESPONSE

1\
\

Output

/

II

\

r--r--

Input

Timp

50

_\_1-

:!lS

~HITACHI

HA17558GS,HA17558PS,
HA17558 •
Dual Operational Amplifier

HA 17558 is a dual operational amplifier which provides
internal Frequency compensation and high performance. It
can be applied widely to measuring control equipment and to
general use. The two amplifiers share a common bias network and power supply leads .
I ndustrial Use . .
. . HA17558GS. HA17558PS
. . . . . . . . . . . HA17558
Commercial Use

HA17558GS

.FEATURES
•
•
•
•
•

104dB (typ)
. . . . 1V//J.s

High Voltage Gain
High Speed . . . .
Continuous Short-circuit Protection
Low-noise operational amplifiers
Internal Frequency Compensation

(OG-8)

HA17558PS
HA17558

.PIN ARRANGEMENT

OutPUI A

Inv.
Input A
~on

lnv.
Input A

Inv.
Input H
'--_--'C~I

(OP-8)

Nnn-!nv.
Input B

(Top View)

• CIRCU(T SCHEMATlC(I/2)
r---~--~-~-..,...--"----O \/n

eHITACHI

51

HA17558GS, HA17558PS, HA17558

.ABSOLUTE MAXIMUM RATINGS

(Ta~25°C)

Symbol

Item

HA17558

HA17558PS

HA17558GS

+18
-18

+18
-18

V
V

Note

Unit

VEE

+18
-18

Common-mode Differential Voltage

V,n(d'ff)

±30

±30

±30

Common-mode Input Voltage

VCM

±15

±15

±15

V

1

Power Dissipation

PT

670 3)

670 3)

670 2)

mW

2,3

·c
·c

Vee

Power Supply

Operating Tempefature Range

Top.

0-+70

-20-+75

-20-+75

Storage Temperature' Range

T«'/f

-55-+125

-55-+125

-65-+150

~ote

V

1.) ror supply voltage less than ±15V, the absolute maximum Input voltage IS equal to the supply voltage.
Value under Ta~65·C. In case of more than it. 1.6mW/"C. derating shall be done.
3.) Value under Ta~45°C. In case of more than it. 8.3mW/"C. derating shall be done •

~ote 2.)
~ote

• ELECTRICAL CHARACTERISTICS (Ta~25°C, Vcc~+15V, VEE~-15V)
Symbol

Test Item
Input Offset Voltage

Min

Test Conditions

,-

R.,";10kf}

VII)

[10

Input Bias Current
Voltage Gain

I"
A.

Maximum Output Voltage

VIII'I'

Maximum Output Voltage

VIII'

Common-mode Input Voltage Range

VC.\.I

Common-mode Rejection Ratio

CMR

,.

V. ~±10V

mV
nA

104

500
-

dB

50
86

nA

R,,;;;;IOkO

±12

±14

-

V

R,,;;;;2kO

±IO

±12.4

-

V

±12

±14

-

70

100

n,;i;IOkO

V
dB

-

Supply Voltage Rejection Ratio

SVR

R,";IOkO

-

110

150

Power Dissipation

VI"

2-channe I. No Load

-

90

Slew Rate

SR

A,~I

-

1.0

170
--

Equivalent Input ;\/oise Voltage

V.VI
CS

R., ~ Ikn

-

f

.TYPICAL PERFORMANCE CHARACTERISTICS

~

--

1kHz

"

IU "I---

,

,

-

~;. :2±k!25V -

\

,

2(

\

16

\

12

'" '"
r-.....

,
III

lo()

dB

\'.J.\

,
Ik
Fr{'qut'nrv

52

-

lOS

MAXIMUM OUTPUT VOLTAGE VS.
FREQUENCY

"'-,
"'-!'\..

,

mW
Vips
pVp-p

R,.=;kU) -

~

"

6

pV/V

(Ta~25°C)

OPEN LOOP VOLTAGE GAIN VS.
FREQUENCY
12

Unit

6
200

5

-

R,,;;;;2kO,

Max

0.5

-

Input Offset Current

Channel Separation

~

Typ

luk

J

WOk

,

I'!'\..

1M

,

))(1

10\1

Ik

'~HITACHI

\

'--

10k
FrE'qUf'ncy

{illi

\

lOOk

J

(fh,

1M

HA17558GS,HA17558PS,HA17558

TRANSIENT RESPONSE
)

v' = ± IflV

,

,

~

\

/
II

)

\

,

I'

::10

20

10

40

POWER DISSIPATION VS.
AMBIENT TEMPERATURE

MAXIMUM OUTPUT VOLT AGE VS.
AMBIENT TEMPERATURE
III

r----,---,---..,---,..-----,

11III

V{"("=15V

VH"'" -ISV

;.:;

~
5

RI.=2k12
;~21---t---+---+---1_-~

0

21~==+==+==+==f==~

0

.~

I"r--~--_+--~--+--~

r--

Vcc:=15V

--- -- ---

Vu=-15V

RI..=co

'--.

70

is
1I

20

50

,"

20

20

xo

6['

:'\mbient Tpmperature Ta ('C)

,/
0

IJ

5

"'"

60

80

5

~

5

40

SUPPLY CURRENT VS. SUPPLY
VOLTAGE

MAXIMUM OUTPUT VOLTAGE VS.
LOAD RESISTANCE
1I

20

Ambient Temperature Ta ('e)

4

11cc=15V

:;:"

Vn:o;;;-15V

E

f""lkHz

31..---

II
2

V

I

1I

,II
100

20\

son

lk

2k

5k

±4

10k

±6

±9

±12

±15

±18

Supply Vnitage (V)

Load Resistance RL (Q)

eHITACHI

53

HA17558GS, HA17558PS, HA17558
INPUT BIAS CURRENT VS.
AMBIENT TEMPERATURE

COMMON-MODE INPUT VOLTAGE VS.
SUPPLY VOLTAGE

IUUr---r----,r---~--~--~

vellsV
VEE=-15V

801---t-----j-----t---I----.j
-

601---t-----j-----t---I----.j
'ol----+---I----j---I----l
2UI----t-----jI-----t---I----l

-ZO±c'":,--7
t !:-.--±~1""2--"'t~16""""""±18
Supply Voltage (V)

2U

2U

fiI'

41'

"U

Ambient Temperature Ta ('C)

INPUT OFFSET CURRENT VS.
AMBIENT TEMPERATURE

SLEW RATE VS. SUPPL Y VOLTAGE

1.2,--r---r---..---..----,

4I',---r---,----.----.--~

rnIls\'
rH=-15V

.

1.0

'"'"

U.8 1--+----+----+--- ~~·::i~·~F -

~

:>
~

~

-

j=lkllz
RI.=2kU
.4\"=1

~

Ui

zol---t-----j-----t----I.---l

§ -:w 1---t-----jI---l---l----1

0.6

0.'

t,

t6

t9

± 12

± 18

-4111---t-----j-----t---I----l

± 15

Supply Vultage (VI

--2ll

.W

01'

41'

Ambient TemperatIH(:

TIl

""

('e I

VOLTAGE GAIN VS.
SUPPL Y VOLTAGE

INPUT OFFSET VOLTAGE VS.
SUPP.LY VOLTAGE
120

:>

E

:0

lOll

..,
:j
~

;.;

-2~-~-~---~--~-~

""
'"I--+--+--+--\---.j
4I'L-_..L__-L_ _..L_ _L_.....I

-'u
L:--""7t l:9 --.,.±.L.,12:---""7±.L15:---±~1"
6 --""7t I::-

=-'

Supply Voltage (VI

54

j=lt)lh
R,- "= ~k~l

~HITACHI

,!o

::o:!l

:t l~

::: IX

HA17558GS,HA17558PS,HA17558

SHORT CIRCUIT CURRENT VS.
AMBIENT TEMPERATURE

SLEW RATE VS. AMBIENT
TEMPERATURE
1.4,---,---..,---..,---..,---.,

60

Vr)=15V
Vn:=- -lfiV

\'21---t---+---+--~;: :f~f:pF

-

:;::

•

.4.1"=\

~

I.Op==t---i--=*,=::;:::I::=::-i

~

o,al---+----+---+---+-----j

u;

I---

'I--.~

30

<3

,

(J.tjl---+---+---+--+---l

2(

II
-

""'II---:L---:'!;,II---,:LII---:,:LII--..,J.II

11.4.

50

Ambient Temperature 1'q (Oe)

'"

-------211

Vn·

l 15V

Vf:f;=-15V

Sink

S(~

40

---

60

80

Ambient Temperature To ("e)

INPUT NOISE VOLTAGE VS. FREQUENCY

II

HI

Rs

IOOQ

,
II

:l

I
III

.iIl

Ik

.:\00

lUll

:lk

10k

COMMON-MODE REJECTION RATIO
VS. AMBIENT TEMPERATURE

INPUT OFFSET VOLTAGE VS.
AMBIENT TEMPERATURE

140

1---t---+---+-_vn,I=::15V

-

~

Vee '5V
Vu;=-15V

'j;

VH=-ISV

~

c-.

E

12U

<..,

~

'----,----~--+---;-----

lUll

'"
~

.0

~

-'I---t---+---+---+---~

~

8

60

-41---1---r--+---1--~
40
-llJ

211

411

611

.11

2IJ

Ambient Temperature Ta (Oe)

211

40

60

80

Ambient Temperature Ta (OC)

•

HITACHI

55

HA17558GS,HA17558PS,HA17558

POWER SUPPL Y REJECTION RATIO VS.
AMBIENT TEMPERATURE

VOLTAGE GAIN VS. AMBIENT
TEMPERATURE
13()

~

v"Lv

I

11 {)

Vu,tsv
Vu"=-15V

~__-1_____+-----+---v-,-,-r--_1_5V__--l

120

~

00

~ 10°r---~----_+-----+----~---=i

"'

llO

J
~

gO~---1----_+----_+-----r----i

~

80~---1----_+----_+-----r----i

gO

70'~20----L---~2LO----~4LO----~6(~)--~RO·

80
-20

AmblE'nt Temperature

40

20

60

80

AmbIent Temperature Ta (OC)

Ta ("C)

COMMON-MODE REJECTION RATIO
VS. FREQUENCY

POWER SUPPLY REJECTION RATIO
VS. FREQUENCY

120

120 r-r-,-rnTrT-rr-rr-rT-m.,.".-,-r-rTTITTTrT'---TT,n,TTTl

H+I-+l-ttt-f!-t++t+HfIt-rH+tttttH ~~~: ~ ~~v

:;j

100

en
~

100 f-4"",,,I-H-++t-H-t++t+H~-+H+tt+ttH-t-t+H+fti

CO

25'"

100

'"

60

1-t-H--IfttHH-+-t-t+t+tH-++--l--l--l+++l-1-1V;, ~ IW I
H1-t+f'+.j;!±f-+t-rt+ltlt1_++H-J-l+I+l-~;;:;5:d5V

H+t+fttftt-f"I'"l-H-HiH+t+t+tttl

40 H+I-+lI-I+I-ll-++-H-+tH+t+H+H+tIH+'N-llittl

~

2oH~HH+HH-t++t+tt~-H-++tt+ttH+-I-H+H~

d:
100

300

Jk

3k

10k
Frequency

56

30k.

J

lOOk

300k

~

f
E
c3

1M

(Hz)

60

40

20

IUU

300

Ik

3k

10k

Frequency

@HITACHI

f

30k
(Hz)

lOOk

3(JOk

1M

HA17558GS, HA17558PS, HA17558

• CIRCUIT EXAMPLE
RIAA PRE-AMPLIFIER
+15V

lOOpF
36k~!

390H~

Output

2.2kQ

Input

IOkQ

IOO.uF
~15V

VOLTAGE GAIN VS. FREQUENCY
(RIAA PRE-AMP.)

T.H.D. VS. OUTPUT VOLTAGE
(RIAA PRE-AMP.)
0

6< )

o. 3

0

o. I

*ci

''-'"

~clcJllJII
Vn=-15V

t-

1\

0

20kHz

i'

31)

O.D :l

t-0.0 I

a.oo :l

10k!lz

)

1kHz

"

U/I

11)

20Hz

I

a.oo I
O.nl

0,03

O.l

0.3

1.0

o
10

10

30

100

300

lk

3k

10k

30k

lOOk

Frequency / (Hz)

Output V()ltage (Vrms)

•

HITACHI

57

HA17904GS, HA17904PS,
Amplifi~r
HA17358
.Dual Operational

HA17904 is a dual operational amplifier, which provides
internal phase compensation and high gain, and mono power
source oparation is possible. It can be widely applied to
control equipment and to general use.
Industrial Use .• '. .
. HA17904GS, HA17904PS
Commercial Use . . . . . . . . . . . • . . . . . . . HA17358

HA17904GS

• FEATURES
•
•

•

Wide Range of Operating Supply Voltage an,d Mono
Power Source Operation is possible.
Wide range of Comrrion Mode Input Voltage. Possible to
operate with an input around OV, and output around OV
is available.
Frequency Characteristics and Input Bias C\lrrent are tem·
perature compansated.

(OG-8)

HA17904PS
HAl7358

.CIRCUIT SCHEMATIC(1/2)

(OP-8)
Input +'0---+---+-----'

+---;--0

Output

• PIN ARRANGEMENT

(Tup View)

58

•

HITACHI

HA17904GS,HA17904PS,HA17358

.ABSOLUTE MAXIMUM RATINGS

(Ta~2S·C)

11 HAI7904GS

2) HAI79041'S

Supply VoltagE:'

VI'I

32

32

32

V

Output Sink Current

/"nA

50

50
570

50

rnA

570

mW

Symbul

Item

570

Powt"r Dissipation

}Jr·

Common Mode Input Voltag(·

VCM

Differential Input Voltage

V,n!d.,jil

Operating Temperature

Tap.

Storage Temperature

T"K

*

-0.3

to

0.3 to

V(,I

tV('('

-40 to H5
-65 (0 H50

2) HAI7358

-0.3 to

VI'I"

±V("("

·20
-55

(0

to

Unit

V

V(,.'("

±V("{

o (0

t75

V

·c
·c

t70

-55 to +125

H25

Valul' at Ta<1S"C. In ('asl' of mon' than it, 7.6mWI'C (!t'ratLn~ shall lit' don(' in HA17904C;S.
2); Valul' lit Tu<55"C. In ('ast' of mun' than it. 8.3mW/"C tit'ratinf{ shall ht' clune in HA179041'S and IIA17358 .
1):

• ELECTRICAL CHARACTERISTICS ( Vee ~ lSV.

Ta~

V'M~7.5V.

Input Offset Voltage

2S'C)
Test Condition

Symbol

Item

R.,

min

~50n. R,.~50kn

(yp

max

Input Offset CUI' rent

50
~7.5V

Input Bias Current

/,

V, ..

Puwe-r Source Hejt'ction Ratio

I'SRR

J ~ 100Hz. R., ~ lkn. RI ~ 100kn

Voltagt' Gain

A~IJ

Cummo" Mulit, Ht·jt·(,tiun HaLin

CMR

30

Unit

mV

3

250

93

nA
nA
dB

-----------------+----+---~-----r----

75

90

dB

80

dB

V

13.5
Common Modt· Input Voltage

Hang-{~

-0.3
Peak-lu-pt'uk Output Voltage

V,,"

Output Sour<:c Cuncnt

/.'''"."

I'

J "100Hz. R,

.~

20kn. R., . lkn. RI

Output Sink Current

V'N ~IV. V'N' ~OV

Output Sink Curn'nl

v,.

~

I V. V'N'

~OV.

\I..• , ~ 200rnV

Supply Curn'nt
Power Dissipation at no Load

Slew

;\uh"

As fflr tht' ('hara('tf'ri!>ti(' ('un",',

100kO

V",IV",

J~ 1kHz

V

13.6

V

20

40

rnA

10

20

rnA

15

50

p.A

0.8

. rnA

12

Hatt~

Channel S('(laratiun

~

30

mW

0.6

V/"s

65

dB

th,' I1A17902.

~HITACHI

59

HA17301P,HA17301G
HA 17301 is a quad. operational amplifier which provides
internal phase compensation, and mono power source opera·
tional is possible. Generally, it can used for waveform gene·
rator, voltage regulator, logical operation circuit, voltage
control oscillator, etc .

.Quad. Operational Amplifier

HA17301P

• FEATURES
•
•
•
•

Wide range of Operating Temperature
Mono Poyver Source Operation is possible
Internal Phase Compensation
Small Input Bias Current

(Op·14)

HA17301G

(OG-14)

.CIRCUIT SCHEMATIC

~()tl'l

~:il!nt ('mitlt'I's

shiLll ht'

('0""('/'(1'<1 to pin

1,2,3,6,8.11.12 lind 13

r't·spt·(·ti",·l,\',

• PIN ARRANGEMENT

(Top Vi.wl

60

•

HITACHI

HA17301P,HA17301G

• ABSOLUTE MAXIMUM RATINGS (Ta

~

25"C)

Symbol

ItE'm

HAI730lP

IlA1730lG

Unit

Supply Voltag-(·

V,·,·

:lJon-in\'prtt'd Input Curn'nt

I,

Sink Curn'nt

/",,1.

50

Sour(,t' Curn'nt

50

50

Pow{'r I)issipation·

L .. "
1',

625

625

mA
mA
mA
mW

Operating T(·mlH'ratul"t·

'1:.,,,

20 to I 75

40 to I 85

"C

T"

55 to I 125

65 to I 150

"C

Stural-{l' T('mp(','atur('

*

28

V

28
50

In 11:\173011', it i!-. a ndu(' und('I' 7'11' SOC, In (',I~I' "f mUff' than It. 8.3m\\/(' d.·rating ~hilll h,· !lunp,
In 11:\17301(;, It ih a ridu(' lind,·!" 'I'll 70(', In en",' of mun' than it, 7.6mW/'(' !It'I'atlng hhidl 1J(' dom' .

• ELECTRICAL CHARACTERISTICS-1 (V'(~ f-l5V, H/~5.0k!l, Ta~25"C)
T('5t Condition

Symhol

Voitag<' Cain

:1\/,
\:00-

Supply Voltage

I,,,,

Input Bias ClInt'nl

II,
I,

Curr'ent

SOU("('('

L .. ".

Sin~ CUITt'nt

Output Vultage

typ

1400

i nn'rlt'd input: °lwn

:\00- in\"('I'l(' 1+. For normal operation, the reference voltage
should be more than VeE.

120kQ

Fig.4 . Triangular Wave Generator

v"

28
VCI'

2BV

24

V(II.

Fig.S

20

20

~16

15

~ 12

!=-=()

to

Operation of Triangular Wave Generator

TaL _

C, R, R, VOII ...................................... (9)
R,(V+-VBE )

TOH =

C,R 3 V',
.......................... ·(10)
R, (VOII _ V - VBE)
R2

• I VI

v..

R,

Fig.S

Under the conditions of R t =2R2' VOH=V', V' >VeE;

Operation Characteristics of
Positive Input Voltage Comparator (1)

TOH+To1.= 2C,R,R 3 ................................... (JJ)

R,

24r---r---'----'-----'----'---'I---r'---'---'

:!tlf--t--t--t--t--t--i--i--i-----1
r'=+15V
>=

r ••11

I
I
1 --+--+-__1
161----11----1--+--+--+--+-

~ 12~~t--tf-t--t-~t--~I-ij_-i-__1
I

>

:!H--*'-'__1+'~-+--·--+--+,~+!-+I-------tt-"----+r---1

II I
]0

V" IVI

Fig.6

64

Operation Waveform of Triangular
Wave Generator

$

Fig.9

HITACHI

12

"

Operation Characteristics of
Positive Input Voltage Comparator (2)

HA17301P,HA17301G

4.2 Negative Input Voltage Comparator

·4.3 Power Comparator
By adding a TRS externally, a load that requires a current
larger than the output current of HA 17301 can be connected
as shown below.

1"

/I,

/I,
lOflk~1

/I,

1'••

T

lOOHl

1" •••

/I,
VIIU

Fig.10

~.~ I I n.

j:

lookQ

Negative Input Voltage Comparator

VIN>R,

j VRf(l+.L)-l::..'.I
...................... Il21
R,
R,
R, r

VHu >R2\1

Fig.13

Vlif(.l+..l)
-JC.'.1····················1l31
R2
R,
R, r

24,--,--,----,---,----,---,---,----,---,

When using resistor R. and R3 which meet Equation (12)
and (13) respectively, negative values of VIN and VREF are
available. As same as in the positive input voltage comparator,
Vout is equal to V OH under 1-<1+ and Vout is equal to VOL
under 1->1+.

~4

s;

20f---+--+--+--+--f--+--+--+---J

10h=l:=+:::;::::f===1:=::j:::;=:j:::::::::::j=::,ti
:::

I

V'

Power Comparator

8

t1'1'_

H ~f__~--4-~-+---+----'3f--_+--~---~---­

:::

2(\
+20 ,~

'"

III

"

12

14

10

IX

Input Vciltage V,. (V)

Fig.14

Operation Characteristics of
Power Comparator Vee ~ 15V

Input Voltage V.. (V)

Fig.11

Operation Characteristics of
Negative Input Comparator (1)

:r-+

- - - - - r----

I

10

~~~t-

I

I
J,

.,

~~

I

,~-I

--

I

-- f - - ~II

I

f--

- I-

,

I

!

I

I

I
Input V"ltage

Fig.12

--

v..

(VI

Operation Characteristics of
Negative Input Comparator (2)

$

HITACHI

65

HA17324G, HA17324P,
HA17324
.Quad. Operational Amplifier

HA17324 is Quad. Operational Amplifier that provide high
gain and internal phase compensation, and mono power
source operation is possible. They can be widely used to
control equipments.
I ndustrial use . . .
. HA17324G, HA17324P
. • . . . . . . . HA17324
Commercial use; ..

HAI7324G

• FEATUERS
•

Wide range of supply voltage, and mono power source
operation is possible.
• I nternal Phase Compensation
• . Wide range of common mode voltage, and possible to operate with an input about OV.
• Frequency and input bias current are temperature compensated.

(DG-14)
HAI7324P
HA17324

~
(DP-14)

• PIN ARRANGEMENT

.CIRCUIT SCHEMATIC (1/4)

Vo,,14

VQ"t!

Va

1'•• (- 14
1'•• 1+ )4

GND

V"

V"I-I

1'••1+)3

1'••1+)2

V••I + 10--'-+--

'------+--oGND

(Top View)

66

eHITACHI

HA17324G,HA17324P,HA17324

.ABSOLUTE MAXIMUM RATING (Ta~25°C)
Symbol

I) HAI7324G

2) HAI7324P

Supply Voltage

Vr"1

32

32

32

V

Sink Current

[,,"'

50

50

50

rnA

625

mW

V"

V

Item

Power Dissipation

P,'

Common Mode Input Voltage

VI" I.!

Differential Input Voltage

V,",d.JI

Operating Temperature

Top,

Storage Temperature

T."

*

625
-0.3 to

625

V("(

-0.3 to Vcr

±VCI

tV!!

-20 to +75
-60 to H50

2) HAI7324

.. 20 to
-- 55

to

-0.3 to

±VC(

o to

~75
~

125

Unit

-55 to

V

·c
·c

+70
~

125

11, Valu(' under Ta<;'70"C, In ('asp of more than It. 7.6mWFC deratln,l!: <;hall ht'donf'.
21 Value under TII<-·50·C In C;}"P of morl' than It 83mwFc d,'ratlng <;hall hf'dotH' .

• ELECTRICAL CHARACTERISTICS
Item

(V('C~

Ta~25°C)

+15V,

Symbol

Test Conditions

min

typ

max

Input Offset Voltagf'

Unit

mV

Input Offset Current

50

nA

Input Bias Current

30

Power Source Rejection Ratio

93

dF!

90

dF!

75

Voltage Gain

Common Mode Rejection Ratio

CMR

R .•

~50n,

RJ

~5kn

-0.3

Pe-3k-to-peak Output Voltage

Output Source Current

20

1.."

V,,'~OV,

V"

~IV

10

Supply Current
Power Dissipation
Slew Hate

J~1.5kll!,

/",'

V"

V,,,

~7.5V,

R,

~'D

-OV. V,

-IV, V,,·200mV

~HITACHI

15

V

13.6

V

40

rnA

20

rnA

0.8

rnA

0.19

Channel St.'paration
Output Sink Curn'nt

13.5

12

SR

nA

dB

80

Common Mode Input Voltage Range

Output Sink Current

500

30

mW

V/"s

65

dB

50

}lA

67

HA17324G,HA17324P,HA17324

Input Bias Current vs Ambient Temperature.

Output Source Current vs Ambient Temperature
80

Vee = 15V
VOH=10V

70

';;(

80r-~--~~--~--r-~--~-v-ec-=--15=V~

70~-+__+--4__~__~-+__+-~v~e,~u_=~7~.5~V_~

~ 60

c

~ 50

-

u

'" 40

u

:;
ci5 30

~

C 50 ~-+--+--4--~--~-+--+--4--+------I

t

t-- t--

(5 40 ~-+--+--4---+---f--+--+-

-

-+---+---1

20

o"

10~-+--+--4---+---f--+--+--4--~-----I

10

o

o

-20

20

40

80

60

Ambient Temperature ('C 1

Ambient Temperature ('C 1

Input Bias Current vs Supply Voltage

Supply Current vs Supply Voltage.
80

4

T;=25 lC
';;(

Ta = 25'C

~ 60

3

E
c

c

'"

t

u"

8 40

2

'"
cD
1

o
o

" 20
~

-

o
8

16

24

Supply Voltage

o

40

32

-

--

V>

V

8

16

(vl

~

24

Supply Voltage

V

40

32

(vl

Maximum Output Voltage vs Frequency

11

20

Jcl1

Ta=25 C
RL =20k Q

Voltage Gain vs Supply Voltage
160

Q 16

T,-25'C
RL==

>"-

"

b1)

2 12

120

(5

'iIi'

>

~

80

:;
:;"o 8

40

-x"E
~ 4

0

o

c
-iii
C!J

<5
>

1\

1\
0

8

16

24

Supply Voltage

68

1\

E

""'"
~

32

40

1k

(vl

3k

10k

l'.

30k
Frequency (Hz)

eHITACHI

lOOk

300k

1M

HA17324G,HA17324P,HA17324

Voltage Gain vs Frequency
120

Vee = 15V
Ta=25°C
RL=OO
100

r-.
CD

80

I"--r--.. . . .

::',
c

·iii

'"'"

.........

60

...............

be

~
0
>

r-., r--

40

1"-- ....

........
20

I"--r--..
~

o
I

3

10

30

100

300

Ik

3k

10k

30k

lOOk

...... r-.,

"

300k

1M

Frequency (Hz)

Common Mode Rejection Ratio vs Frequency
120

Vcc= 15V
Ta=25'C
Rs=50Q
100

CD

::',

-

0

~ 80

r--. ....

0::;

c
0
:;:;

i"-.. . .

u

'"

.ii)
0::;

60

..........

'"

"0
0

::;;
c
0

r-......

40

r-..... ......

E
E
0

u

20

o

100

300 •

lk

3k

10k

30k

lOOk

300k

1M

Frequency (Hz)

~HITACHI

69

HA17902G,HA17902P,
HA17902
.Quad. Operational Amplifier

HA17902 is Quad. Operational Amplifier that provide high
gain and internal phase compensation, and mono power
source operation is possible. Thev can be widelv used to con·
trol equ ipments.
Industrial Use; HA17902G, HA17902P
Commercial Use; HA 17902

HA17902G

.FEATURES
•

Wide range of supplV voltage, and mono power source
operation is possible.
Internal Phase Compensation
Wide range of common mode voltage, and possible to
operate with an input about OV.
Frequencv and input bias current are temperature com·
pensated.

•
•
•

(DG·14)
HA17902P
HA17902

(Dp·14)

• PIN ARRANGEMENT

• CIRCUIT SCHEMATIC(I/4)

V••( -,
V••t +

.0----+-'------1-<> G~f)
(Top View)

.ABSOLUTE MAXIMUM RATINGS
Item

(Ta~25°C)
Symbol

IIAI7902(;

11..\179021'

HA17902

Unit

Supply Voltage

Vce

28

28

28

\"

Sink Current

I~,d

50

50

50

rnA

625

m\1"
\.

Power Dissipation
Common

!\'1()d~·

Input Voltag(·

PT·
V(.!J

l)iffeJ'pntial Input Voltage

V,",d,fl

Operatin~

T"pr

T emperalun'

Storagt" Tt>mperature

* 1); Value under

T."

625
~0.3

to

VI'/"

:tV("("
~40

-60

to
to

~85

+150

Ta~70·C.

In case of more than it. 7.6m\\'/"C !lpratinK shall he dont'o
2): Value under Ta~50·C. In ease of mort' than it, 8.3m\\'/"C dt'ratinK shall ht'dom',

70

$

HITACHI

625

-0.3

to VI"!

.tV"
-20 to +-75

-55 to

i

125

-0.3 to V"
:+: V,,·

o tn
-55 to

j

f70

\"
·C

125

·C

HA17902G, HA17902P,HA17902

• ELECTRICAL CHARACTERISTICS ( Vee ~ + 15V,
Symbol

Item

Ta~25'C)

Test Conditions

min

typ

max

Unit

8

mV

50

nA

Input Offset Voltage

VIO

Vc.~7.5V. R.,~50n. R/~50kn

Input Offset Current

III)

IJ()= II/

Input Bias Current

/,

V!".,,~7.5V

30

Power Source Rejection Ratio

PSRR

J~lOOHz. R,~lkn. R/~100kn

93

dB

90

dB

-1,'1.

Vc.~7.5V

Voltage Gain

AVIJ

Rs~lkn.

Rj

~lOOkn. RI,=m

Common Mode Rejection Ratio

CMR

Rs~50n.

R/

~5kn

Common Mode Input Voltage Range

VCM

Rs~lkn. R/~100kn. J~100Hz

Peak-lo-peak Output Voltage

V

J~

o"

p

100Hz.

R,·~

75

80

nn. R/ ~100kn. R,

~20kn

13.5

V

13.2

13.6

V

12

13.3

V

IIJII=

VU//2

1011= -lOrnA

VOl.]

IOI.=lmA

0.8

VI)I.~

JIJI.=lOmA

1.1

..

15

V
mA

9

mA

VIJII=10V

Output Sink Current

rH.'

VI!I.=lV

Supply Current

1("("

V.. ~GND.

R,,~m

0.8

Power Dissipation

P,

RI.='lO, V..

~GND

12

Slew Rate

SR

J~1.5kHz.

V',M

Channel Separatiun

\.I';)]/V()2

J~lkHz

RI.=IIO

V
1.8

40

/ ,,"

~7.5V.

V

13.6

V UH ]

-lmA

nA

dB

-0.3

Output Voltage

Output Source Current

500

mA
30

mW

0.6

Vips

65

dB

• TEST CIRCUIT
1.

Input Offset Voltage (V,o), Input Offset
Current (leo), Input Bias Current (I,)

I ~~:,

H, 5.lk

R.s,D

-~

R,51k

SW2

ON
OFF
ON

ON
OFF

(1)

V/O~

(2)

I/I)~

131

I,~

SW2

-----------

1
2.

Common Mode Input Rejection Ratio (CMR)

CMR ~ 20 lo~ V's R,
Vo oR"
0

3.

Vo
VOl

VOl

l+R,/Rs
V02

Vee

V()J

V04

(V)

-V(JI

(A)

R (1+R,/R s )
I

1

VCM~2

V02

OFF
ON

OFF

SI ::~:

~

SWI

Vo,-Vo,

1

2·R(1+R,/R s )

(A)

Supply Current (Icc)

(dB)
VI('

eHITACHI

71

HA 17902G, HA 17902 P, HA 17902

4. Voltage Gain (Avo), Slew Rate (S.R), Common
Mode Input Voltage Range (Veo), Peak-to-peak
Output Voltage Range (V.P - p )

5. Output Source Current (I •• " .. )

V~-T--~

10k

'R
51k

l
(1)

AVD:

6. Output Sink Current (I.",)
Rs~lkO,

VI

~

V,

R,~100kO,

[.'ok : Val,~IV

RL~CO.

}i Vee

~

Va

AVD~ 20 log VIN ' +40 (dB)

12) SR:

f~1.5kHz. Rl.~co.
~

VI

V,

~

}i Vee

13)

VeM: Ss ~ lkO, R, ~ 100kO, f~ 100Hz.
VI ~}i Vcc. RI. ~co. value of V, just before

14)

v;,p p:

the waveform changes.

V CM ' + I.

Rs~lkO. R,~100kO.

VCM ( -I

RI.~20kO,

f~100Hz. V,p-p~VoH"""'VOI.(Vp-pl

OUTPUT SOURCE CURRENT VS.
AMBIENT TEMPERATURE

II

v"

INPUT BIAS CURRENT VS.
AMBIENT TEMPERATURE
O'r--,--.-~--r-----,--,--,--

=15V

V"I/~IOV

II

j

60

o

_

0-- •

,

I

0

8

-

!---..

. : :;

--t--

:- ~
I

---i

--+---t--+- -l-

: ,

50'f---+---It---t'--~----;--+-----t----:---

iii

or--t--+--+---+,-i--+-,-l+--tl---

I

25

45

i

I

65

85

i

I

I

!

65

85

105

f---+--f--+--I---.:.....--L-.1-----

t--t--t--t---t-I
105

-t--

1+'-t-t---,

I

25

125

i

5

Ambient Temperature Ta ('C)

Ambient Temperature Ta Co)

72

ot----t--

,

!

10
5

1

j

I

15

j

711't---t---t---H--t---c--:--Jf---t-!~
;

20

- 55 - 35

1

IIcf-+--1I--1'--':

::i

0

•

HITACHI

125

HA17902G,HA17902P,HA17902

f------H+ ;

INPUT BIAS CURRENT VS.
SUPPLY VOLTAGE

II"

~

~

I

I

~:q--To=25'C

,

I

75

PEAK·T oEAK OUTPUT VOLTAGE
VS. FREQUENCY

'

__

I

--r'- ,i----

---l[-,

5111-t------__+_-,-,

'I

5

----+-----

I_+~~__!

III

I '

+

! I

10

I

I

~

251-----1-----

5

!

!i

111\

I

i

I

I

t

0
Ik

10
Supply Voltage Vee (V)

16H'r---r---~---,-----.------,------,

120

(

r--

100

~

120

----+----+-- - } - -

..;:

100

~

--t~t- 'f

80

~

60

.

80

I

I I;
II

i

II
i

-----r- -f

i

0

-~L

40

frequency

VOLTAGE GAIN VS. SUPPLY VOLTAGE
Ta=25'C

i;
I
i; :I I Ii
Ik

"
~

1M

Vee =15V
Ta=2S"C

1

R. =500

,

,I ' I
! IIi'

I!"II

t"-

,
l"-..

1'1'

1

:llHI

I

Uti

iI
10k

lOOk

J

1M

(Hz)

SUPPLY CURRENT VS,. SUPPLY VOLTAGE

,

i

i---

-j---

120

W-

(H2)

I

Frequency

160

J

jl

.1'

f (Hz)

~

lOOk

I I

Iii
I I

0
100

1M

il Itt
:! I I Ii,I
++-tP1
:1 i :1

I

I

--+ l-':-t

20

100

I

I ! I II
i I - I ,lj,
i

II I'
' I

20

10

i"""-

i

I~ Ij _Wl'

I

40

01

I
I

COMMON MODE REJECTION RATIO
VS.FREQUENCY

VOLTAGE GAIN VS. FREQUENCY

140

:

10k
Frequency

v~ =15V
TIl=25'C

I

I

I,\~

!

0--

I

1\

;;:
~

4-~

~

80

8

~
;g

----~ ---f----+- ~:,:'J~Ur---

31-------+--+--±

__

--

2~~-~t=- -~' ---f-----

~

oil

-- - ,

40

--

I

-10

20

0

J()

0

20

30

Supply Voltage Vee (V)

Supply Voltage Vee (V)

•

HITACHI

73

HA17902G,HA17902P,HA17902
.HA17902 APPLICATION

3. High Input Impedance DC Differential Amplifier

HA17902 is a Quad. Operational Amplifier, and it's consist·
ed of four operational amplifiers which operate independent·
Iy, and a bias circuit. It can be widely used with the features
such as wide range of operating temperature, mono power
source operation, internal compensation, wide ().cross band·
width, small input bias current, large open loop voltage gain,
etc. HA17e02 applications will be explained below.
1. Non·inverted Amplifier
Fig.l shows a non-inverted amplifier.
R2
Voltage gain of the circuit is; V,,,

Fig.3 shows a High Input Impedance DC Differential Amplifier wh ich is consisted of two non-inverted amplifiers connected in cascade. The common mode rejection ratio (CMR)
is depend on the matching of RI/R, and R./R,.
"
The output is;

'
:;cJ
R.

r--~--l

v;:;- = 1 + Ii;"

_'v ..

IOOk.Q

!

+
10k

+v~c~-------------

....---<:lrout

=>~

Fig.3

High Input Impedance DC
Differential Amplifier

4. Voltage Control Generator
1M

Fie.1

Non- inverted Amplifier

2. Adding & Subtracting Amplifier
In Fig.2, input +V1 and +V2 are applied to non-inversion
circuit and input +V3 and +V4 are to inversion circuit.
The output is; V"t~ VI V2 - V, - V.

+

R

lOOk

In Fig.4, Amp Al ,A, and TRS 01 operate as an integrator, a
comparator and a switch for control of oscillation frequency,
respectively.
When Vout l is in "LOW" level, TRS 01 is cut off. The
potential of inverted input of AI becomes higher than that
of non-inverted input, and the output of AI will be integrated to be the "LOW" level.
When the output of integrator AI becomes smaller than the
non-inverted input of comparator A, (V cc/2), output" of the
comparator will be "HIGH" level and TRS 0 1 will turn ON.
Then the output of Al will be integrated to be "HIGH"
level.
In this way, a square wave and a triangular wave are generated at Vout l and Vout, respectively.
(' (J,tl5JIF

R

-11

+ V2 o.-_-"looMk;.---.J
R

lOOk

+~~~--+-¥~~~
~_
5lk

R
lOOk

I

RI2

+VI~

SOk

~ie.2

Adding & Subtracting Amplifier

Q,\------~-..

Fig.4

74

~HITACHI

Voltage Control Oscillator

V•• ,I

Voltage Comparators

eHITACHI

75

HA1807,HA1813PS
HA1807, Dual Comparator, and HA18l3PS, Single Comparator, can be widely applied to control equipments, since they
operate with a single power source .

.Voltage Comparator

HA1807

• FEATURES
•
•
•

Operate with single power source.
Provide complementary outputs
(Vout and Vout) (HA1807)
Common mode input voltage range is wide.

• PIN ARRANGEMENT
HA1807

(OG-14)

HA1813PS

(Top View)

(OG-B)

HA1813PS

(Top View)

.CIRCUIT SCHEMATIC

r;:

~~5k

R,
15k

v...
t--+--I--I--. - - 0 v::

v.. i -)

GND

Comp

( V".r : Only for HAHW7)

76

$HITACHI

HA1807, HA1813PS

.ABSOLUTE MAXIMUM RATINGS (Ta~25°C)
Symbol

Item
Supply Voltag-e

Power Dissipation

VI"

Motif' Input Vo\tag<'

Common

HAI807

.

HAI813PS

VC'M

18

V

500

500

mW

Vcr'

V!I"

V

±IO

:tlO

V

20 to 1-75

·c
·c

))ifft','('nlial Input Voltagt'

V,~ (dill , ••

Opt· rating Tt'mp('ratun'

T",,,

-30 to +-80

T'(K

-65 to 1-150

Storagt· Tt'mp('rature
:\"u1("

* 11,\1807: Value at Tu' 70\:. In
HA1813PS : Valu!' at Tu':·50"C. In
* * Valul' at V,I -lO\'. In
of V"

('aM'

('(1::'1'

55 to f 125

case uf mort' than it, 8.3m\\' /"e clf"ratinll: shall he pf"rformt'd.
IOV, V,,,, ~,"
V,,..

itt,tl

(Ta~25°C

)

Symbol

Tt'st Conditiun

Vee

~6V,

V('.\/,=3V. R,

V(I"

·6V,

VI",II

A,

V"

~5,5V, J~101lz

/,

Vcc~6.5V,

Input Offsl'l \·oltag(·

V/(i

Input Offst't Current

l,t)

\'oltagt' (;ain
Input Bias CUlTent

V," II
~lod(·

~-

of murt' than it. 7.6mWf"C dt'ratinJ{ shall I:w pI·dormt·,!.

• ELECTRICAL CHARACTERISTICS

(;ommoll

Input \'oltagp

~6.5\',

FCI

lyp

~

~2V,

~50n

mV

75

100

dB

0.5

pA

5.5

6.4

V

~5.5V

V,!"",

10Hz
fun

Output \'oitagp

V,·,

~5.5V

V"

~6.5V,

J.)r

11f)w{'r I)issipatiull

-2mA

~lOmA

VIII

V,

.~3V,

V,

~

POWER DISSIPATION VS.
SUPPLY VOLTAGE

"

r--*~~t- -

._- f--

~

.. -

16 0 r - V••(+l=3V
V.-(-)=2V

'"

~

12 (I

~

<

(I

"., ~

~

0

~

IV

-

II

5

Supply

V"lla~"

i

L"n

V

0.2

0.4

V

36

48.8

mW

f:I~Hl
Te"t Cin"utl I

::.

~!·c- 1---

V

5.3

2\'. I/,

16

:.- 25'C

~~

(I

o

-t-t

~~

.-

0.6

COMMON MODE INPUT VOLTAGE
VS. SUPPLY VOLTAGE

/T'i- 30T

E

nA

150

I ~
I/",

VI/II

Unit

max

1.5V

V"

r

min

\/'"1

20 (I

Unit

18

V("(

Ta"='

12

~~

V eH

j----

./

..,

-30'C
2S'C

~~
~

-

-

8O'C

",

i-""""
E

E

,3
Jj

VeL

o

5

15

Ta- -30'C .2S"C .80"C
II

13

15

S\lpply Voltage Vee (V)

(\'1

~HITACHI

77

HA1807, HA1813PS

INPUT OFFSET VOL TAGE VS.
AMBIENT TEMPERATURE

INPUT OFFSET VOL TAGE VS. SIGNAL
SOURCE RESISTANCE
2

2.

II

II
:~~=~~ II

10

•

2.o

>E

Test Circuit 2

Hr

CC
VeAl =6
=3V

~'~eSs~~~~t:Uit 12

6

2

o

•
2

--

O.8

o.

~

•
0

0 50

100

200

500

lk

Sk

2k

10k

SiKrla) Source Resistance R,

20k

V+-+-+-I--+---+--+-+---j

~~5V
: Jl=2V-] .l.

i

,

n. .........

u

iii

•

8.

o.

.s

"
,
7

6

5

•

i

--

rr- r-

r-

OIl

90

I

'8

\

\ \ \

~

'I--+--+--+-+-+-+--+-+--r-+-I-+--I
1--1--1--1--1--1-+--+-+-+. -t-- .IOH=-2ml\

1\

i\ 1\

,

-5
[ON

!,

-- \ \

-I
Output Current

~*==-'==f=!=~=i==l=9=F*'I~o==IH

lI--..

\ \
\

2

78

10

I-

9

I

.10

OUTPUT VOL TAGE VS. AMBIENT
TEMPERATURE

r-fo..,.

IO

,

--

r-

~'rc-12V II

:

:

Ambient Temperature Ta ('C)

OUTPUT VOL TAGE VS. OUTPUT
CURRENT

S

-l
i

-30

!

---

i

Ambient Temperature Ta ("C)

10

--

r

[

o.2

o

,

r-

I·

-~r-+--+--+-t~-r-t-+--+--+-+-1

12

1 J_

8

~

I

I

t-+--

1.0 - V I 2 'Tesl)::CS.SV

.01-+-+-+---1-+-+--+-+-1-+---+--I

25 - 40 I-+-+-+---1-+--+--+-+-I--+---+--I

90

INPUT BIAS CURRENT VS. AMBIENT
TEMPERATURE
2

80 -

60

Ambient Temperature Ta ('e)

(~11

INPUT OFFSET CURRENT VS. AMBIENT
TEMPERATURE

V('(':=-6\'
V eM ~ l.5

30

-31)

SOk lOOk

~

l -I-

31)

.10

--++---

Ambient Temperature Ta ('e)

(mAl

~HITACHI

60

90

HA1807, HA1813PS

OUTPUT VOL TAGE VS. OUTPUT CURRENT

OUTPUT VOLTAGE VS. INPUT VOLTAGE

I.U

10r--r-'--.-~--.--r--r--r-'--'

V~c=6t
r---c- VeN =3v--+--+--1I--+--+--+--I

Vcc=5.:.\'

Rs =500

0.8

RL

5kQ

:;

I

.0

0.6
~

~

r.=BO·C - f--

U.,

. / V/~5;~·C

8
,/

0.2

,.,-::. ~ ~

I---" ~

~ ~ P"

r---

10

VOL TAGE GAIN VS. AMBIENT
TEMPERATURE

IveeL)I

I
:l

f= I~H'

1---I

~---t---l

II<,

1-1---!
I

,

I

90

----

2.0

1.6

120

I=IU~'

T'''(''"''
110

1.2

Input Voltage V,. (mV)

VOL TAGE GAIN VS. SUPPL Y VOL TAGE
120

0.8

0.'

20

16

12
Output Current [,n (rnA)

~+t
I

I

,

8C

IOU

-(---

i

i

II

13

Test Circuit

I

:~

I
I

I

r-r

9U

-.....

r-.....

I

I

'Ii .1U L

J

30

90

·\mlJl

R!.hr~. =1/10-

I

J

VC'(' =6.0V

v, =3.0V

Vcc=6.0V
V,=3.0V

8

RL =5kO

~=1/10

6r----+-~~----~-_+--~

6

4

I

I
I

2

0

I

I

I

I

\0

\0

V, (VI

V, (VI

Fig.4(b) Operation Waveform of
Schmitt Trigger Circuit
(V.. ,-V,)

Fig.4(a) Operation Waveform of
Schmitt Trigger Circuit
(Vo . , - V,)
3. Window Type Comparator
A window type comparator has two reference voltages. The
output voltage level is determined according to that whether
the voltage is smaller or larger than the two reference volt·
ages.
Fig. 5 shows a circuit of window type comparator, and Fig. 6
shows an example of the operation.
D,

6

f---+r-.....I---j~~~ ~~~~
VS/.

> .~-~~~~--~

VSH~---+-~

6

=2.SV

11

•
2--

v..
O~o-~~~~.~-~

v..

R,

Vsl.

~---......-~

Fig.5

I OkS!

v...

Fig.6

o
()

Reset

Set

o

v._,

v.;:,
V-axis: 5V/div

Fig.7

Bistable Circuit

Vn ==6,nV
V.~ =3.0V

Rs =IOkQ

X-axis: 2ms/div RF:::20kQ

Fig.8

82

•
(v)

Operation Wav-eform of Window Type
Comparator

Window Type Comparator

4. Bistable Circuit
Fig. 7 shows a Bistable Circuit (R·S Flip·Flop Circuit), and
Fig. 8 shows an example of the operation.

2

L.

(V)

~HITACHI

Operation Waveform of
Bistable Circuit

HA1807, HA1813PS

5. Parallel Comparing AID Converter
Fig. 9 and Fig. 10 show circuits of the parallel comparing
AID converters in which the comparator is applied. In this
case, the output is converted to BCD (Binary Coded Decimal). This AID converter can not be used suitably for a
precise converter, but it has the features such as high speed
conversion and a simple block diagram.
lnput~-r--I
~',

'1)\0'- 4\

,

j.

Input ~-r--+"'"
IOV-4V'

~--+----r-----uj,
~j.

'+------~ j"

+4.!lV

Vn =-S.OV
ru:·= -I.OV

.v"
+4.0V

( VEe: GND)

Fig.9 3Split & 2Bit AID Converter

==S.OV

Vu:=-1.0V

Fig.l0 4Split & 2Bit AID Converter

eHITACHI

83

HA1812GS,HA1812PS
HA1812 is general purpose IC, including comparator, buffer
amplifier, reference voltage and is designed to be used widely
as unit cell of circuit investigation and system designing .

• Universal Comparator

HA1812GS

• FEATURES
•
•

Large sink current of 200mA max.
Capable of becoming Schmitt Trigger (Hysteresis characteristic) Circuit without external resistance.
Includes reference voltage source.

•

(DG-SI

HA1812PS

(DP-8J

• PIN ARRANGEMENT

• CIRCUIT SCHEMATIC

T
Q'T,,--fll>

"L

~~
T

Q.

···hR,""K~, ~~
I

v,.,

V. )• •

'r.--.

,

•

I

~

I

''""~'~-_,-.

__-+"-'-t---R.Hd>-+-+-+-+--+--"
r.. •.

84

rpll rl'h

~HITACHI

Top \T it•w

HA1812GS,HA1812PS

.ABSOLUTE MAXIMUM RATINGS

(Ta~25'C)

Symhol

Item

HAIBI2GS

HAIBI2PS

Unit

Supply Voltage

Vee

Output Sink Curn'nt

l~'"k

Common Mode Input Voltage

VeAl

Difff'rential Input Voltag-t'

V",d'fJ'

-tV,"C'"

.tVcc'"

V

Hdf'rencf' I Source Curn'nt

/'''"'0''

2.0

2.0

mA

20

rpl, !,

20

V

200

200

rnA

Vre'

Vr'('

V

Output Transistor Voltage

V,,",

40

40

V

Ff'edhack Terminal Current

hR

±2.0

.t2.0

rnA

Power Dissipation

P ., ."'''

800

mW

Operating Temperature

T,,~,

-20 to +75

'c
'c

Storage Temperaturp
!\lolt·)

* At V ·15V.
* * In HA1812(;S.

V"

BOO
- 20 to +75
- 65 to l-!50

T'1I1

-55 to +125

.max
t 15V.
it is a valul' un(lpr th,' ('!In{lition of Ta<6S·C. Whl'n Ta is mOfl' than 55"C. 7.6mW/"C derating shall lw pf'rformed.
In IIAI812PS, it is a valut, undt'r th(' ('ondition of 1'1/'''45\:, Whl'n T(I is mort' than 4S"C. 8.3mW/"C derating shall bl' pf'rformed .
r-,

"Idf

• ELECTRICAL CHARACTERISTICS (Ta~25'C)
Item

Symhol

Mpasuring

Test Condition

Circuit

Supply Current

Icc

V"

Output Leakage Current

/"1.

V,",

~20V,
0,

t-i~O,

V,,",I

VOl.

V("(

=8V. t .. ,

Input Bias Current

fill

V"

~13.5V.

Input Offset CurTent

IUJ

V,·,~13.5V.

Input Offset Voltage

VII'

V,·e-13.5V. V,.

~6.

max
27

Unit
mA

~Ikn

V"

~B~20V, I,,~urc.
~13.5V.

V

100

nA

50

nA

15

mV

6.88

V

2.935

3.44

f~IOHz

80

V

15

mV

50

mV

100

dB

A

rer. I

~lkn.

0.5

5.87

terminal

I ref. 2 terminal
II
~O lIB
,

Ve,

R,

0.34

75V

I ref. I

Vla.1-"

3

0.3

~6. 75V

V,·.<~6.75V

V,·,~13.5V

A,

typ

18

~IOOmA

V"M

Vee ",,13.5V. R,

Voltage Gain

min

R, _.,.,

i'A

Heferenc(' Voitagf'

6.

~3V.

V,,", - 20V

.. 0" Level Output Voltage

VII I'. F

V"i-i

• TEST CIRCUIT
1. Input Offset Voltage V,o

2. Reference Voltage V"' I A

r - - - - . . . - - - - - Q \'r I'

v," •

0-------

reLHI-{-

Input Offset Voltage V,O is 1/1000 of the indication of
voltmeter V.

$

Measure difference voltage of ref. 1 terminal at the time of
inverting output with Vin(+), Vin(-) at 3V or OV.

HITACHI

85

HA1812GS,HA1812PS

3. Reference Voltage VREF 1B
In the same test circuit asVREF lA, with output established
at I level, changing supplV voltage Vee from 8V to 20V,
measure difference voltage of ref. I terminal.

4. Voltage Gain Ay

,---"""1""--,.---,---r----O \"..
2kQ

~;

2kQ

-Jr

~--.-~

330~1i"

Output

IIlOQ~r-1-+-+--t

100IkQi6
ATT J

IUtlkQ

SUPPLY CURRENT VS. SUPPLY VOLTAGE
RL

I I

_00

* Xn!e

4

,1'1

T.~-20·C

6

J;

2

8 - f--

II
l..-

~

25'C

"

~ Vi.( +1 =OV

.-

V"'( -J=3V

I
I

"i.

.0

,;!.

::.:

o. 3

:3

0.2

.,

o. 1

V

Supplv \'ohal!;c \'n l\'\

*:'\ote

~

V
80

40

7

200

l:¥.;-

·c
~I-""

_to'C~

.....

.....

l.t.\,cll'-+(

....
.........

- O'C

j

4

l

,

RL =lkQ

---_.

f-

25'C

v",.,

1

-

..vCII =Vcc I2
Rs =IOOQ

Ta=60'C'-l

1

Output

1-

160

REFERENCE VOLTAGE VS. SUPPLY VOLTAGE

~I-""

I

-- --

120

The broken line is the
characteristic at the time
or connecting each Input
Terminal to Vcr and G:'\D.

'r

•
-;...

~

Output Sink Curn-nl 1... 1 (mA)

INPUT OFFSET VOLTAGE VS. SUPPLY VOLTAGE

T.

)VJ
~

h ~60·C f).rV
W

0.4

20

16

12

25·C....,

-

I I 1-2:~ :2
~+T=3~-y"Ck
Iv..(-I=OV
60'C

n

lOHl

1.1. 'J

Ta:.o -20'C

o. 5r--

~ ",

,-:;; ~ f?'\O'C

I
I

Vrr-J3.5V
0.6

,
,,,

0

s(;,

OUTPUT VOLTAGE VS. OUTPUT SINK CURRENT
0.7

8

t

r---

Ta=60"C

V

-20"(:

25t

I I
/~,,/.2
1 "

o

II

5

10

15

20

12

Supply Voltage Va (V)

86

I
I
Supply Vnltali:f! Vrr

eHITACHI

16
(r!

20

HA1812GS,HA1812PS

REFERENCE VOLTAGE VS. SOURCE CURRENT

VOLTAGE GAIN VS. SUPPLY VOLTAGE
110 "'"T-;"'"T-,---,-,---,-.----,-,--r--,

::;

0
~

6

-Output MO" Level
1-.--+__t--+_+---+_+--_OutpU\ "1 I.evel

~

M

~

""

100

j
4 f--

;

Ji

~

I--+---!-+-- f-- --I---+---!f-+----J
0.8

0.4
SHUI'I'<'

I.2

'0~8-L-~1~0-L-~1~2-L-~lt.-L-~I6--L--1~8--L-~20

2.0

\.6

Supply Voltage Vee (V)

Current I ••• """, II {rnA)

OUTPUT VOLTAGE VS. DIFFERENTIAL
INPUT VOLTAGE
20,--,-,--,-,--,-,--r-,--r--,

I-~C =.l.5V'+_I--+_I--+_+--+---1

-VCM -6.7SV

16

_

RL '"

lOOQ -+-j---+-j---+-+---+---i

:.;

-

12

;.;

il.

8

II
I

10

Differential lnpllt Voltage V•• (mV)

• BASIC OPERATION DESCRIPTION
The following describes the circuit operation of HA1812.
1. Differential Amplifier and Output Terminal Vout
0" 0. and 0., 0, are Differential Amplifier of Darlington
Connection, and signals amplified at this stage are further
appl ied to the base of 0., through 0., 0.,
0 , 0 •• is the
open collector in order to be able to drive load directly, and
its sink current is designed largely with the maximum at
200mA when Ambient Temperature is 25"C.
0. and 0, are provides current mirror connection at the collector load of 0" 0. and 0, , 0. and the progress of voltage
gain are designed.

°.

•

2. Feedback Terminal
Feedback terminal is connected to the collector of 0. 0
through RIO and R ... The phase of this Feedback terminal
is the same phase as the collector of Output Transistor 0 .. ,
and used by feedback to positive input terminal at the time
of Schmitt Trigger connection. Further, since values of R u ,
R, affect hysteresis characteristic, its resistance value is
shown in the following.
RIO = lOOn ± 30%
R, = 470n ± 30%

HITACHI

87

HA1812GS, HA1812PS

3. Constant·Current-Circuit
The circuit formed through R,., R l l

,

a,., a,., a,

is

constant-current circuits, and attracts currents with a small
dependance on supply voltage from each circuit.

4. Reference Voltage
0", ZD, ' 0,4' a" are the circuits which produce reference
voltage, and have almost constant current flown with a small
dependance on supply voltage to ZD" and so stabilize
cathode voltage of Zener Diode ZD, .
014 and 01 s are diodes for temperature compensation of
Zener Diode. 013 is the transistor for supplying stabilized
voltage through ZD" to the two terminals of Reference 1
and Reference 2 .

• EXAMPLES OF APPLICATION CIRCUITS
1. Negative Input Comparator (When fundamental

OUTPUT VOLTAGE VS. INPUT VOLTAGE

voltage is set at Vref.2)
)

-J.R L~1!2k" I

\r"(,( =13.5\'-·~

---f
;J

12

HAI812
t'iotc)

V,,/2

-+-+

-+ .

--- f--

Li-l- -.--

.!

f-- I---

,

._++i

...

i

I

-

-----rI

I

I

II

-- - -

)

I» 3.27\',

I

j
Input Voltage

2. Positive Input Comparator (When reference

+_~i_

I

.

-

~-

V"

(\'I

OUTPUT VOLTAGE VS. INPUT VOLTAGE

voltage is set at Vref.2)

JI \(·c~I:;·5V
Lk'! _+-LI __ -- J.'L ce-

20r--r--r--r--r-~--~~--~-'--'

~
V..

tsJvcr
_

ref.2

re- )6

+

RL

+-- ~_
:

RL

VOkl

-

2

~

__

--t---+'

_'-;::+:::::j::::':j:::::j

--I---++I---+---f--

I---+--t-t-f-- . - - - - f--f-HAI812

:..:

2'

1\

f---+---j-- +---+--I--++-f--+--I---I
I
f--+--I--+-1--- - - -++--+--+--1

T-

, -+--+--

4,--

I

f--f--

Input Voltage

88

@HITACHI

\."" (VJ

HA1812GS,HA1812PS

3. Comparator when Vref.l is divided by resistance
at R" R, and set at Reference Voltage.

OUTPUT VOLTAGE VS. INPUT VOLTAGE
20.--.--,--,--,---,--.--,--,--,--.

HRI

H,

+----;f--+--+--+--+---f---I

v,"

V"o---+--I

J2kU+--+--+-t---t----t------i----1

Vee =13.5\'
161-- R\ =lOkll

HI.

\/".{ t

f--+--*---;f--++--+--+--++---f--tt-----l

II

HAIBI2
:-';"u-)

\;,

I I

Thrj>l!/i,,)J
rfll

I.~ h ..,):l\'.
V,,)tilgt·

~~l~

Vrll I.~ f"uud bv tIlt' following

6
{'qUUtl"ll.

~

Ol

H-~~

{VI

1

1-+'--1- -t+-- t-- r--

f--- - --U-i--+t

v..

Input y"ltll,l{t'

4. Comparator established reference voltage by
ref.2 and R,.

OUTPUT VOLTAGE VS. INPUT VOLTAGE

0

Vee

HL

r"/l

0--+--1

J

~--Jcc

-13.5V

I-- RL =1.2kQ

16

+
V••

(V)

12

R,
-0

HAIBI2

'"

8

a

111fe:-h"ld voltage Vrll IS f"und by Ill(' f"l!"win~ (~4uatiqI1.
VrH;"

8

0;

(V)

:ii/\l:~1

a

tt-- f-~

~()te)

I

1'1111 "I/{I; kll

1

v,.

Input Voltage

5. Schmitt Trigger Circuit 1.

(V)

OUTPUT VOLTAGE VS. INPUT VOLTAGE (1)

0

t--v~c =113.5V
RL =1.2kQ

6 r----RH =0

2

I

t
8

HAIBI2
.\o\el Thre!-.hold vol tag!' \in.. VTII are f"und by tilt'
f"llowlng ('quatl'ml>.

rTi.

~~.r

rTH

Vu.+

1'1\11

"I &:

•

2 't;n VI

/U;~(~.~X(\"I

4

k~!

10
Input Voltage

$

HITACHI

v,.

(V)

89

HA1812GS, HA1812PS

OUTPUT VOLTAGE VS. INPUT VOLTAGE (2)
0

I--!.cc

=113.SV
RI. =1.2kUI

61---

RH =5k!2

+--1--

,

21---- 1---

't-I
~.

+-+I

i

I

!

+- 1-_____L___f~

I

-1- ---,+--

I!

I
I

10
Input Voltage 11,. (V)

OUTPUT VOLTAGE VS. INPUT VOLTAGE

6. Schmitt Trigger Circuit.2.

0

,Icc =i3.SV
RI.

R1 =5kQ

,
;.:!

-I2--

--

I

--j--.L-~- I----

j-t~t-t=

v.. o--H
R,
HA1812

VTI.=

1+(6~;RJ)

VTH=

1+t&/~;~3+a

I

T

I

Input Voltag~

(V)

eHITACHI

-+-

'--

-

;--+~---+-r-f-

(V)

a=&/(570+RHl

90

I

I

--

Note} Threshold voltage Vn.VTH are found by the
following equation.

RH=16kQ

' i i

6

RI.

R,=20kQ

-r---r---r"'---r--

1.2kQ

v..

(V)

HA17903GS, HA17903PS,
HA17393 .Dual
Comparator.s

HA 17903 and HA 17393 are comparators designed for car use
and control system use.
They provide wide voltage range with single power source,
and the supply current is small, because it is independent of
the supply voltage.
They can be widely applied, such as limit comparator, simple
analog/digital converter, pulse/square wave/time delay genetor, wide range VCO, MOS clock timer, multivibrator, high
voltage logic gate, etc.
Industrial: ..
. .. HA17903GS, HA17903PS
Commercial: . . . . .
. . . . . . . . . . . . HA17393

HA17903GS

(DG- 8)

HA17903PS
HAl7393

.FEATURES
•
•
•
•
•
•
•

2 to 36V
Wide Supply Voltage.
O.SmA
Very Low Supply Current.
25nA
Small Input Bias . . . . . .
Small Input Offset Current
.. 3nA
Small Input Offset Voltage
. 2mV
Common Mode Input Voltage Range Including Ground.
Small Output Saturation Voltage . . . . . . . . 1 mV(5jLA)
70mV(1mA)

•

Output Voltage is Compatible with CMOS Logic System.

(DP- 8 )

• PIN ARRANGEMENT
Output 1

Input I

.CIRCUIT SCHEMATIC(l/2)
Input I'

v"
GND
(Top View)

Input"

Output

Input

eHITACHI

91

HA17903GS, HA17903PS, HA17393

• ABSOLUTE MAXIMUM RATINGS (Ta~ 25°C)
Symbol

Item

Supply Voltage

Vee

I)

2)

HAI7903GS
36

Differential Input Voltage

V,"Id,'J/l

Input Voltage

V.

Power Dissipation

Pr

Output Short-circuit Current

los

Operating Temperature

T",

Storage Temperature

T~/g

Vee

Vee

to +36

~0.3

570
Continuation possible
~40

~65

HAI7393

~0.3

V

Vee

V

to +36

~~

570

mW

570
Continuation possible
~20

to +85

~55

to +150

Note

Unit

36

36

to +36

~0.3

O

2)

HAI7903PS

I

2

Continuation possible

o to

to +75
~55

to +125

+70

'c

to +125

°C

Note) 1. 1): Value at Ta-g(i,75"C. In case of more than it, 7.6mW/"C derating shall be performed.
2): Value at Ta~55·C. In case of more than it. 8.3mWf"C derating shall be performed.
2. Short-circuit between the output and Vce will be a cause to destroy the circuit.
The maximum output current is about 20rnA for any supply voltage.

• ELECTRICAL CHARACTERISTlCS-1 (Vee ~ 5V, Ta~ 25°C)
Symbol

Item

Test Condition

Input Offset Voltage

VIO

Input Bias Current

hB

IIN{+)

Input Offset Current

flO

lIIN(+ )

or

I/N(-J

min

typ

max

Unit

-

2.0

5.0

mV

I

-

25

250

nA

2

3

50

nA

-

-l/N(-ll

VCM'

Common Mode Input Voltage
VCM

3.5

-

-

-

-

V
3
0

V

Supply Current

Icc

All Comparators: RL = co, All Channels ON

-

0.8

2.0

Voltage Gain

Avp

Vee ~ 15V, RI.;" 15k!}

-

200

-

V/mV

Response Time

In

VRL~5V, RL~5.lk!}

-

1.3

-

I's

Large Signal Response Time

IR/

VIN ~ TTL Threshold Width.

-

300

-

ns

Output Sink Current

l~'nk

VIN (- ,;';IV,

VIN(+l=O,

V,,;"1.5V

16

-

rnA

Output Saturation Voltage

VU\ .•

VIN (- ,;"IV,

VIN(+)=O,

I, .. ,~4mA

-

-

400

mV

Output Leak Current

ll.()

VIN ( -)=0,

-

0.1

-

nA

Note)

1.
2.
3.
4.

VIH/o"=1.4V and fl.s

U)

VREF~1.4V

VIN('I~IV, Vo~5V

6

mA

Undt'r Linear Opt'ratiun.
Common mode input \,(Ilta~e or each one of thE' input silo!;nal shouhl nlll hl' It'ss than -O.3V.
This is a value to 100mV Input Step VoltagE' wIth 5mV tJ\'t'r drin'.

Item

Symbol

Ta~-20 to

Test Condition

Input Offset Voltage

VIO

Input Offset Current

1'0

I IIN(+)

Input Bias Current

he

Output Linear Range

-liNt

,

Common Mode Input Voltage

typ

min

V(,(,

VCM '

Ta~O to

+75°C, HA17393;

I

VCM+

+70°C)

max

Unit

Note

I

-

9

15

mV

-

50

200

nA

-

200

500

nA

-

-

-2.0

-

-

V

0

V

Output Saturation Voltage

VOl,..!!

VINI -

-

400

700

mY'

Output Leak Current

ltu'

VU/I-l=O, VINl+l~lV. Vo~30V

-

-

1.0

I'A

V,nld'If'

All Inputs ~ OV

-

-

VI'I'

V

Differential Input Voltage

92

1.

4

50n, wht'n \/,,=1.4V at output SWitching point.

• ELECTRICAL CHARACTERISTICS- 2
(Vee~5V, HA17903GS; Ta~-40 to +85°C, HA17903PS;

:o.1ot(')

Note

VHf:I'~I.4V

)~lV, VINl'l=O,

I" .. "'4mA

and 1(,""'500. wht'n r,,'-"1.4V at the output swit('hing ptllnt.

~HITACHI

HA17903GS, HA17903PS, HA17393
SUPPL Y CURRENT VS.
AMBIENT TEMPERATURE

OUTPUT SINK CURRENT VS.
AMBIENT TEMPERATURE

I. 2~ r - - - , - - - - - , - - - - - , - - - - - - ,

20

I. 0 f-=:"-~+-

""
E

--

Vcc=36V

15

~

.i:

I

Vcc= 36V
15V
0.5 -

:

--T5V-~'f r4~<~t-------I

0.25

2V

·20

25

50

0

15V

e-10
r--

5V

-.::::

2V

.~

I-

8

2V

o

~~
I
I
I

1

A

50

-20

75

J;

50

25
:\mhl(~nl T!'mpt'rilIUrl'

I.5V

50

OUTPUT SATURATION VOL TAGE VS.
AMBIENT TEMPERATURE

OUTPUT SINK CURRENT VS.
OUTPUT VOL TAGE

..0

r----,-----,-----,-------,

:E

~

IS

W

10

-

75

1il (OC I

'mA
300

-~-~-----"~~--:c30--'-------'

ol ____ ~·_ _ _ _L __ _ _~_ _ _~
20

VOL TAGE GAIN VS.
AMBIENT TEMPERATURE
110

1I

V"

: sv

~

I 2V

2011

rl
•

70L..

V

:[--

\'"

36V

I
i

,
i

I

r., ,
;ml

.;.

~

I

1O'~~Ff?_L:
"20'~ 5()~ I ' l i ---20

75

AMBIENT TEMPERATURE

iSV

I

80

50

---~-.

~ :::~::53[VL=:

"

2S

INPUT OFFSET VOL TAGE VS.

::;; 100 __;:::
.. =_

j

0

~'I I

C

t-

-

II

.L.._ _

25
'\mbjl'n! Temperall.lrt:

-2

SO

-20

15

Ii, [ 'c I

~.

_ _ _ _- L_ _ _
25

~

___

5()

~

IS

Ambient Temperature TtJ (OC)

$

HITACHI

93

HA17903GS, HA17903PS, HA17393
INPUT BIAS CURRENT VS.
AMBIENT TEMPERATURE

RESPONSE TIME VS.
AMBIENT TEMPERATURE
i

V .

~

I

.

~

60

Vcc=36V

.
E

<

;::

~

a.
iii

10

0

-20

~
A
A

Sk

_

_

30k 50 120k

1

12V

-V

r-----r------t--

I
.

i

--+--1-I

__

[

O L - _ - J_ _ _~_ _~!

50

-20

75

25

__- - J

50

Ambient Temperature Ta (Oe)

Ambient Temperature Til (Oe)

94

2':pVV"~~V'
d"v~_
P_Gt rriYI
I

VR

-

+

IOOmV Input

Jsmv (Ne,-

•

HITACHI

75

HA17901G,HA17901P,
HA17339
.Ouadruple Comparators

HA 17901 and HA 17339 are comparators designed for car use
and control system use.
They provide wide operating voltage with single power
source, and the supply current is small because it is inde·
pendent of the supply voltage.
They can be widely applied, such as limit comparator, simple
analog/digital converter, pu Ise/square wave/time delay gene·
rator, wide range VCO, MOS clock timer, multivibrator, high
voltage logic gate, etc.
Industrial:
HA17901G, HA17901P
. . . . . . . . HA17339
Commercial: . . . . . .

HAI790IG

• FEATURES

HAI790lP
HAI7339

(DG·14)
2 to 36V
Wide Range of Supply Voltage
O.SmA
Very Small Supply Current
25nA
Small Input Bias Current .
Small Input Offset Current
.. 3nA
Small Input Offset Voltage
. 2mV
Common Mode Input Voltage Range Including Ground
Differential Input Voltage Range Equal to Supply Voltage.
Small Output Saturation Voltage . . . . . . . . 1 mV(5jlA)
70mV(1mA)
The output voltage is compatible with that of CMOS
Logic System

•
•
•
•
•
•
•
•
•

(DP·14)

• PIN ARRANGEMENT

.CIRCUIT SCHEMATlC(l/4)

Input'
(lUlput

(Tup View)

• ABSOLUTE MAXIMUM RATINGS (Ta~ 25"C)
Item

Symbol

Supply Voltage

Vr'(

Differential Input Voltage

V"

Input Voltage

V"

Power Dissipation

I, HAI790lG

2, HAI790lP

36

36

36

V

-tVr'('

·t Vc:e

± Vee:

V

~36

-0.3 to +36

-0.3 to +36

V

625

625

625

mW

20

rnA

+70

,d,!!

-0.3 to

2, HAI7339

Unit

Output Current

Pr •
I"ut··

Operating Temperature

T"I"

Storage Temperature

T~I~

-65 to +150

-55 to +125

-55 to +125

'c
·c

Output Voltage

V".,

36

36

36

V

:\ntt'

20
-40 to t·85

20
-20 to

~75

o to

. : 1 ; \',lIuI' at Trj',70C, In ('aSI' flf mort· than it. 7.6mWFC dt'ratin~ shall Ill;' IIt'rfeu'mt'd.
2 ; \'alul' at Tfl'"50C. In ('a!>!' of mMt' than It, 8.3mW/ C dl'ratinJ( shall 1Jt' pt'rfurmt'd.
ShClI·t-('II'('uit ht·tw!'t·n thl' output and V., will 1)tO a ('aust' to dt'!o.truy thl' <"Ir<'uil.
Thf' mll.~!mUm uutJlut ('urrt'nt I!. tht' IJI'rmisJo.lhll· valu,' fur ('ontinuuul' ul't'ratiun •

** :

•

HITACHI

95

HA 17901 G, HA 17901 P, HA 17.339

• ELECTRICAL CHARACTERISTICS (Vee ~ 5V, Ta~ 25"C)
Item

Test Condition

Symbol

Input Offset Voltage

VIU

VREF~J.4V

& Rs~On when
output switching point

Input Bias Current (Note 1)

liB

IIN(t)

or 11Nl -

Input Offset Current

110

I1N(~J

-/IN(--)

Common Mode Input Voltage (Note 2)

VeM

Supply Current

Icc

Voltage Gain

Response Time( Note 3)
Output Sink Current

at the

1

typ

max

Unit

-

2

7

mV

-

25

250

nA

-

5

SO

nA

0

-

RL=co

-

0.8

A,

RL~ISkn

-

200

-

tR

VRL~SV. RL~S.lkn

-

1.3

-

!,s

I" ••

VIN!

,~IV.

VlN ! . )=0. Vo;"l.SV

6

16

-

mA

,~IV.

VIN(-t

-

200

400

mV

-

0.1

-

nA

)=0, I .... ~3mA

Output Saturation Voltage

Vosa l

VIN (

Output Leak Current

fLo

V,N {+)=lV, VIN ( )=0,

Note)

min

VII~J.4V

Vo~SV

Vce-J.S

V

2

mA
V/mV

I. The input bias current is constant. because there is a reference line or input line wihtout any change of load,
2. Common mode input voltage or either of the input signal voltages should not be less than -O.3V.
3. This is a value to IOOmV input step voltage with SmV overdrive .

• TEST CIRCUIT
1. Input Offset Voltage (VIO), Input Offset Current (110)
Input Bias Current HIB)

SWI

SW2

V

ON

ON

V"

OFF

OFF

Yo,

Vel~I/2

ON

OFF

V03

VC2~1.4V

OFF

ON

Vu •

OU1

Vee

R.50
~'"

(11

VIO~~

(V)

1+&

R. 50

Rs

1

(2)

llO~

I VOZ - Val I

(A)

R(1+*)

v"

1""

(3)

IIB~

I Vol-V",I

(A)

2'R(1+*)

2. Output Saturation Voltage (VO sat), Output Sink Current
(lsink), Common Mode Input Voltage (VCM)
Vel

VC2

VC3

SWI

SW2

2V

OV

-

I

I

/",.

2V

OV

I

I

2

mA

VC.\.I

2V

-I-Vee

l.SV
-

2

l.21;1J~

3

V

Item

V"

96

$

sui

HITACHI

SW3
Unit
I at V'T~ 5\'
V
3 at V,,· ~ IS\'

HA17901G,HA17901P,HA17339

3. Supply Current (I CCI

4. Voltage Gain IAVI IR L = 15kOI
?+v

20k~
I

I

---0-----0

10k
VC{

r

i:--,.

20k~
II
6

_.Afof.r

30k

-v

IV...L

T

5. Response Time ItRI

tR:

RL=5.1kO.
100mV input with 5mV overdrive
Turn the SW OFF without applying VIN. and adjust the
VR to make Vo 1.4V approximately.
Apply VIN. and turn the SW ON.

'f'"

lL-__
INPUT BIAS CURRENT VS:

INPUT BIAS CURRENT VS.

AMBIENT TEMPERATURE

SUPPLY VOLTAGE

'"

1"-.--.+-----1

'"111-

ill

~

60

,

""

~H

G

411

'"

30

--4·- -:---

1i ----;-'-r:--t--.-+----

I-

i

I

I

~

.... -r------+---I---1

\u---

.-1---

-

3(1---

'
'" '" .... .... ----:--........::f"'"-=::::t::::::.:=-.-

- '"

-

1C;f----+---+----+--........J

'"
III

Ambient Temperature

Ta

20

30

411

Supply Voltage ~;, (V)
('e)

eHITACHI

97

HA17901G,HA17901P,HA17339
SUPPL Y CURRENT VS.
AMBIENT TEMPERATURE

SUPPL Y CURRENT VS.
SUPPL Y VOLTAGE

l.ti,----,----,---.,--,--------,
''[fI=25'C

R/

1.6f--+-+---+-+-I--+..c:.:..t---+--i

=00

1.41---+-+--+--+--1_-+-+--+-----1
:;;:

1.1---

1.2

E

1.11

-_.-

0.8
]

u.6

').K-

IIA

11.2

0

-55

IUS

-35

40

125

Ambient Temperalure Til ('C)

OUTPUT SINK CURRENT VS.
SUPPLY VOL TAGE
5
0

:;:
E

j

,

5
i

0

I

I

I

I,
5
I

,
i

I

35

i

I

I

,
5

!

i

i

I

I

i

i

- 15

2S

45

Ambient Temperature

i
i
i

65

Ta

85

'<
e
;§

110

i

~

V" -5V
R,.=15kQ

I

10

!

20

~I

40

1311,---------------,-------,

I
i
I

Ta=2S'C

R, =15kQ
120---------+-----,-----

I

100
95

!

90

I

i

55 -35

!
-15

901__-----

25

45

65

-~-------___I

~I--------I---------

·'-r----T-r-

Ambient T(lmperalure Ta ('C

98

\I

I

105

85

"

,

1-5

VOL TAGE GAIN VS. SUPPL Y VOL TAGE

120
115

I

('e)

130

~

,
I

VOL TAGE GAIN VS.
AMBIENT TEMPERATURE

125

I

5

I
I

------~--

i

:

105

i

!

i

I

i

~

0

I

I

!

,

,

I

I
55

I

!

I

I

,

0

5

5

I

i

!

II

r--

VOtdil.5V

,

30

0

+}=o

Vi,,(

,i

35

I

~i~(~5JV= I~

i

I

OUTPUT SINK CURRENT VS.
SUPPL Y VOL TAGE

70\;-0-------,JO,,---~20/;;------~~.,I--~40
85

105

125

I

eHITACHI

Voltage Regulators

eHITACHI

99

HA17723G,HA17723
HA 17723, high accuracy voltage regulator for general
purposes, features low stand-by current - quiescent current,
low temperature drift and high ripple rejection ratio.
Output current above 150mA is also available by adding PNP
or NPN transistors externally. This voltage regulator finds
wide application, using in series, parallel and as switches.
Industrial Use. .
HA 17723G
Commercial Use . . . : . . . . . . . . . . . . . .. HA 17723

.Voltage Regulator

HAl7723G

• CIRCUIT SCHEMATIC
(OG-14)

HAl7723

Il,
6.~V

v, ..
v,
I-------COMP

(OP-14)

.PIN ARRANGEMENT

(Top VieIV)

100

eHITACHI

HA17723G,HA17723

• ABSOLUTE MAXIMUM RATINGS

(Ta~25'C)

Symbol

Item

HAI7723G

HAI7723

Unit

Supply Voltage

Vec

40

40

V

Input/Output Voltage Differential

Va'lf,IS

40

40

V

Differential Input Voltage

V,",a'll'

±5

±5

V

Maximum Output Current

I . u!

150

150

rnA

Current from V IIU'

I RU'

Power Dissipation·

PT

'"

15

15

rnA

950'

830"

mW

Operating Temperature

Top,

-20 to+75

Storage Temperature

T"II

-65 to +150

o to

'c
'c

+70

-55 to +125

* Drratin~ anon' 25"<..: will hI;' 7.6mWI"C
* * Derating above 25'(: will be B.3mW/''C
.ELECTRICAL CHARACTERISTICS
Item

Line Regulation

(Ta~25'C)
min

typ

V .• ~ 12 to 15V

-

0.01

0.1

%

V,,~12

-

0.1

0.5

%

-

-

0.4

%

-

-

0.3

%

-

0.03

0.2

%

-

-

0.7

%

-

-

0.6

%

-

74

-

dB

0.003

0.018

%/'C

%rC

Symbol

crVo

Test Conditions

V,,~
I. '"~

12 to 15V,

Ta~-20
V,,~

O'Vo

I.oad

to ·+75'C

12 to 15V,

Ta~O

Load Regulation

to 40V

to +70'C

l,,",~

1 to 50mA

l..",~

1 to 50mA

Ta~

- 20 to + 75'C

.

l .. ,~ I to 50mA
Ta~O

Ripple Rejection
Average Temperature Coefficient of

Output Vol tage

to +70'C

f~50Hz
RR/:;,I

I CR"'~O
I CRF.F~5J.1F

to

1kHz
Ta~

cSV,,/cS T

-20 to +75'C

Ta~O

to +70'C

Reference Voltage

VI/H'

V,,~ Vcc~ Vc~12V,

Standby Current

I.H

V,,~30V,

Short Ci rcui t Current Limit

[sc

R.,,·~IOn.

h-O
V.. ,-O

VEI:-O

.

86

max

Unit

dB

-

0.003

0.015

6.80

7.15

7.50

V

-

-

4.0

rnA

65

-

rnA

*HA17723G Only

•

HITACHI

101

HA17723G,HA17723
------------------------------------------------------------------------------------~-/

• ELECTRICAL CHARACTERISTICS MEASURING CIRCUIT

v"

v..,
Rsc
CL

VUf'

R,

VU1

cs
V,.4./

C,EF

V,~=Vcc-Vc-12V. VEE*'O
V.u-S.OV, it.-lmA
Rsc-O. C,-lOOpF, CUf-O
Rz'=;'SkO. R J -R 1 Rd(Rl+Rzl

Ii>

Ii>

C,

LOAD REGULATION VS. OUTPUT CURRENT-l
.2

v! .. =+~V

I--V•• =+12V

Rs.c=O

/
Ta-1St:

V
1

V

;;.-V

V
V
./

V
./

V

~~ ~

.0

20

V- 20 V

-

V
j..--'

M
80

60

100

Output Current I •• t (rnA)

RELATIVE OUTPUT VS. OUTPUT CURRENT
VOLTAGE

LOAD· REGULATION VS. OUTPUT CURRENT-2
O. 2

v~.=+Jv

V.., = +5V

1-+-++-+-+-lf-+-+-+VRsc=IOQ
.. =+t2V-

I-V.. =-12V
Rsc =100

;::

1.°1-+-+-+-t.....,rllrt-+-+-+-+-

>
~

0.8

~
.1

Ta=1S'C

0.6

25

2

8

V

--

~

,...- I-10

Output Current

102

V V25

>

V

Ta=75

0.'

;ji

?

~

f-; =- i--"

20

30

1o., (rnA)

0:2

20

.0

60

Output Current

eHITACHI

80

1.", (mAl

100

120

HA17723G.HA17723

LINE REGULATION VS. INPUT/OUTPUT
VOL TAGE DIFFERENTIAL

STAND-BY CURRENT VS. INPUT VOL TAGE

0.2,,--,--,-.,....,.-,""""1-...- , - - ,
v.• , :+5V

.~::::~UF_
! .1

1--+--t--+-+--+-+--+?'.;:~mArV=+3V

'"
2

~

u

3

T(1=-20~

2

.... / /-' ~ ~

'"

kl.-- I -

0.1

e:;

~V / '

./

..:;

t/

0

,..... f0-

~

,/

0
10

20

30

\'Cllta~p

Input

15

5

50

40

0.2

(VI

"

o. 9
200

o.8

J••• =50mA

o. 7

/'

Slnse Volta,e

/

l"-

..

LImit Current

•

t....

I 00

j''['

<3

•

;J

.3

V

:;0
c

5

/

I 50

1\

o.6

/

~

50

Rsc=IOIl

.2

-,

35
Vdl/III," OJ

CURRENT LIMITING CHARACTERISTICS

~;:w
1..,= lIlA to

V

25

Input/Output VlJllaKf' IJlfferentlal

V" (V)

LINE REGULATION VS. INPUT/OUTPUT
VOL TAGE DIFFERENTIAL

.~ 0, I

,,/

~

.1

0

]nplil/(huplil

3'

25

IS

Volta!':p Diffrrentlal

Vd.{(I/\

III

(\'/

"

LINE TRANSIENT RESPONSE

1 1
1 1

1
1

Input Voltal/:t'

- 100

100

200

JunctIon Temperature T! ('e)

LOAD TRANSIENT RESPONSE

v,. = +12V

V... =+5V
1..,=1~_ 4
Rsc=O

~

J

.

..

10
-2
Output Voltage

"
~

~

l

-,

.1

I'

~.~lJc~,p-c~'~V'~'I-,,+,,-t-t-t-r~-'

"

6
<3

~

II

-

-:5

-10

-10

I-H-f-f-+-+-+-+--t""i

5~s/dlv

T, .. (,.,1

eHITACHI

103

HA17723G,HA17723

OUTPUT IMPEDANCE VS. FREQUENCY
10

:;:;;:y••,-s

Thus output voltage Vout is:

V.ol ~ VREF
n

CL -0

=~,_+IZP

n ~ __
R_,_ ........................ ( 2)

R,+R 2

v..

-'L=50mA

-

C, I.F

1.0
I ...

V

R,
I,So!:!

o. I

100

10k

Ik

FreljUency

f

1M

lOOk
(liz)

Fig.2

High Voltage (7 to 37V) Regulator

• HA17723, APPLICATIONS
HA 17723 is high accuracy voltage regulator for general
purposes and may be used as voltage sources in various types.
1. Fixed Voltage Source in Series
1.1 Low Voltage, 2 to 7 volts, Regulator
Fig. 1 shows the construction of a basic low voltage regulator. The divider by resistors Ri and R. from VREF is to
make the reference voltage which will be provided to noninverted input of the error amplifier, be less than output
voltage. In the fixed voltage source where the output voltage
will be fed back to the error amplifier directly as shown in
Fig. 1. Output voltage will be divided VREF since the
output voltage is equal to the reference voltage.
Thus, the output voltage Vout is;

v,., ~ nV

REF,

n

1.3 Negative Voltage Regulator
Fig. 3 shows the construction of a so-called negative voltage
regulator which generates negative output voltage with regard
to the GND. Assuming that the output voltage, -Vout
increased in the negative directions. As the voltage across the
R I is larger than that across the R. wh ich provides the
reference voltage, output current of the error amplifier
increases. In the control circuit, the impedance decreases
with increasement of input current, wh ich makes the base
current of the external transistor Q approach to the potential
at GND. As the results, the output voltage returns to the
established value and stable output voltage is available.
The output voltage -Vout in this circuit is;

~ R'~R' ........................... ( 1 )
~.,.

Vee

Vc

I.;.

RI
2.ISkQ

l~.,

R,
4.99kQ

("I

cs

Fig.1

Low Voltage (2 to 7V) Regulator

VF.f:

" - -......- - " - - - - - - - +......._

1.2 Hi.9h Voltage, 7 to 37V, Regulator
Fig. 2 shows the construction of a regulator when output
voltage is higher than the reference voltage, VREF. The
VREF shall be added to the non-inverted input of the error
amplifier via a resistor, R •. The feedback voltage is available
by dividing the output voltage with resistors R I and R •.

104

@HITACHI

v....

Fig.3 Negative Voltage Regulator

HA17723G,HA17723

1.4 How to Increase the Output Current
It is necessary for increasement of output current to increase

the current capacitance in the control·circuit. Fig. 4 and Fig.
5 show examples, where transistors are externally added.
r,.

3. Switching Regulator
Fig. 7 shows the circuit of a switching regulator. The error
amplifier, control circuit and forward feedback circuit R.
and R3 operate in together as a comparator, and make the
external transistors O. and 0, operate as switching elements
to turn ON/OFF. In this Circuit, the self-oscillation stabilizes
the output voltage and the change in output is absorbed by
the changes of conducted period of switches.

v..

v.,~,

R,

~

2.lSkQ

Ilhm"

__.--+-+_v..,

C,
J'iOOpF

Fig.4

Method to Increase Output Current (1)

Fig.7

Positive Voltage Switching Requlator

Fig. 8 and Fig. 9 show the circuit of negative voltagll switching regulator and its characteristics.

v,

\""

::.J"k!!

1'],

"'fI

CS

I".

R'r

·,.II!..!!,

\"!

,

r.

R"

II.

l~:

- - ~;'"I

('1)\11'

!--t--'-T-- v.",

J>~I;

1

,,:,.
Fig.S

v..

r,",

VHI-I

Method to Increase Output Current (2)
Fig.8

2. Fixed Voltage Source in Parallel Control
Fig. 6 shows the circuit of fixed voltage source in parallel
control.

Negative Voltage Switching Regulator

24
20

r. -25'C

,1 6

I
v"
~

!v'rtU

]OIlQ

2
V"ur

v,
,

..

Ii,
::kll

/v

R,

Q,

\'l

4

Rl ]00\1

V

/

V

/

../'

C!.

/'

12

C~

16

20

24

28

.12

36

40

lnl'ut V,,[taJl;(' \1,. (V)

l' .. ' +

v.. -

(a)

Ii,
Skll

Fig.6

Fig.9

Input-Output Characteristic

Operating Characteristics of Negative
Voltage Switching Regulator

Fixed Voltage Source in Parallel Control

eHITACHI

105

HA17723G,HA17723

-15.360,--,.-----,--,---,

The output voltage Vout in the circuit, Fig. 10 is;

1."=n2~I

_15.340I-_+_==f=_~T':.;;=;.:;-~25"C~
;;:-15.320f-~+--j---t-----i

~-i5.3001--+-==f

Fig. 11 shows the circuit diagram of the negative fixed
voltage source in floating type.

__+-~25!d

~

~

Yo.

i-l5.280~=+=~==t~75j

8

-

Vc

Vee

-15.260f--+--j---t-----i

R.

V.. ,

VBEF

IOkC

VZ

-I5.2400!2".4---~2.;---.;.32;----=3t;6---::!-40
v;~

Input Voltage

Ih)

R.

97.6kQ

(V)

Q

CL

cs

Line Regulation

R.

R,
3.57kQ

VEE

3kQ

L-y_......_ ......_ _ _ _+_.+_ v•• ,

15.601)

v.• =Jsv

:; 15.500

J

:
~

>

I--::: ~ t;;;;

15.400

~ i="'""'

10=-25'C
5

15.300

75

e. 15.200

Fig.ll

Negative Voltage Floating Regulator

5. Other Applications
Other applications are follows.
5.1 Fixed Voltage Source with Reduction Type Current
Limiter

<5

15.100 0

0.2

0.4

0.6

0.11

1.0

1.2

1.4,

1.6

1.8

Output Current I .. , (Al

Ie)

Load Regulation
Rsc 30Q

Fig.9 Operating Characteristics of Negative
Voltage Switching Regulator
4. Fixed VoltafIB Source in Floating Tvpe
Voltage sources in floating type or boost type are typically
employed when high voltage output is required. Fig. 10
shows the circuit of a fixed voltage source in the floating
type. For considering the stabilization in this circuit,
assuming that the output voltage increased. At the input terminal of the error amplifier, non-inverted input will become
low compared with inverted input, and the output current of
the error amplifier decrease. Then, the current from the
terminal Vz in the control circuit decrease. As the results,
the base current of the external resistor Q, wi" decrease and
collector current will decrease, resulting to control increasement of the output voltage.

V REF

Vu l

Voul

R.
2.7kQ

~R.
2.lSkQ

CL
R.
S.6kQ

CS
Vin( -)

Vi,,(+)

R,
S.okQ

Fig.12

Fixed Voltage Source with Reduction
Type Current Limiter
0

0

;;:

Yo.

J

Rr. 6.2kg

Vee

Vir,.

Vc

2.0W

v•• ,
VZ

J

4. 0

J

0

Q

1

0

II

Rsc

[2

.0

R.

0

53.7kQ

.........' - - -......- - - - - j f -.....__ VO.l

100

200

Output Current 1", (mAl

Flg,10 Positive Voltage Floating Regulator

106

I

Fig.13 Current Control Characteristics of Fixed Voltage
Source with Reduction Type Current Limiter

eHITACHI

HA17723G,HA17723
5.2 Fixed Voltage
Control

Source

Turning ON/OFF

External

v'"

Rsc
Villi'

VREF

R,
2.ISkQ

so

Vo~1

Note

CL
Note) Insert when
V•• ,-~lOV

CS
VI1l( +)

Vln( -)

R,
4.99k2

R.
212

Fig.14

Control
Signal

Fixed Voltage Source Turning ON/OFF
External Control

Ta -=25"C

~

:\

:> 2 f--f-t+-+-+t-t----j-++--j---H--I

~

,5

Fig.15

Operating Characteristics of Fixed
Voltage Source Turning ON/OFF
External Control

•

HITACHI

107

.3-terminal Fixed Voltage
Regulators

HA17800P,HA17800 Ser:ies
HA 17800P and HA 17800 series, 3-terminal fixed voltage regulators provides 8 kinds of output voltage; 5, 6, 7,8, 12, 15,
18 and 24 volts_ When a heat sink is used, output current
above 1A is available, which enables wide applications are a
power sourc;e of various equipments_
For all devices in this series, three protection circuit; one to
limit current, another to limit temperature at chip junctions
and the other to limit internal power dissipation, are built-in
and elements are protected against the destructions.
Industrial Use. .
HA17800P Series
. HA 17800 Series
Commercial Use

(T-220AB)

.FEATURES
•
•

•
•
•
•
•

Output Current above 1 A is available.
8 kinds of output voltages, 5,6,7, 8,12,15,18and 24V
will be provided to offer wide applications as various
sources.
Eliminates external compensating circuit.
TO-220AB package enables easy mounting and radiation
design like transistors.
Built-in Current Limiter prevents elements from destruction when load is short circuited.
Built-in Chip Junctions Temperature Limiting Circuit protects elements against thermal destruction.
Built-in Internal Power Dissipation Limiting Circuit protects transistors at output driver .

• PIN ARRANGEMENT

I. Input
2. Common
3. Output

I 2 ,

• CIRCUIT SCHEMATIC
II Input

R"
J--r--+--J'--~'-.--"--o I 3 JOutput

,t

16
14

o

12

.;

l~

6

0,



l..,,~l.OA.

Output Resistance

Ro~'

j~lkHz

Output Short Circuit Current

los

Peak Output Current

IQ

5.2

V

100

mV

50

mV
mV

5

50

mV

4.2

B.O

mA

1.3
40

mA
mA
}-tV

7B

dB

0.5
62

T,~25'C

V

5.25

100

250mA <' [.,,"5, 750mA

10Hz -;;'j"5, 100kHz

Unit

15

5mASI,,,;;;1.0A

V.

aV,,,/aT,

max

5.0

v.." 25V

R HEJ

ped

typ

4.75

T,~25'C

Ripple Rejection Ratio

Output Voltage

4.B

V .. ": 20V. 5mA;:;; /,,,"5, I.OA.

Output Noise Voltage

Temperature Coefficient of

min

T,~25'C

Output Voltage

Quiescent Current Change

otherwise specified.)

Test Conditions

V

2.0
17

mO

T,~25'C

750

mA

T,~25'C

2.2

A

-1.1

mV(C

I,,,~5mA,

O'C ;S T, -;;. 125'C

• HA 17806P, HA 17806 ELECTRICAL CHARACTERISTICS
( V,,~ llV, L., = 500mA, O°C;;;; T j ;;;; 125°C, C,,~O. 33J.l F, Co., ~O.lJ.l F, unless otherwise specified.)
Symbol

Item

Test Conditions
T,~25'C

Output Voltage

Vo"

Line Regulation

avo "0'

T,~25'C

Load Hegula tion

OV;,'vad

T,~25'C

Quiescent Cunent

I,

BV;:;;

v..:;: 21 V. 5mA~ I .. ,~ l.OA.}'.,."" 151\,
BVo;

~~.S

9V$

v.,s 13V

6.0

5.7

5mASI.."o;;l.5A
250mA < I",,'; 750mA

T,~25'C

max

V

6.3

V

120

mV

1.5

60

mV

14

120

4
4,3

60
8,0

mV
m\'

l.3

5mA-;; 1..",-: I.OA

0.5

Output :\oise Voltage

V,

Tu~25'C.IOllz-::j::::100kHz
j~

Ripple Hejection Ratio

RI/u

Yoltage- Drop

Vl!}(UI'

Output Hesistance

R o.,

120Hz
1.. .. ~ l.OA. T,
J~ 1kHz

.output Short Circuit Current

I ".~

Peak Output Current

/" "uk

av.• ,/aT,

59
~

25'C

Unit

6.25

B\':: V.. :::. 25\'

aI,

Output \"oltage

typ

25V

Quiescent Current Change

Temperature Coefficient of

min

5.75

rnA
rnA
rnA

45

flV

75

dB

2.0

V

19

m!1

T,~25'C

550

mA

T,~25'C

2.2

A

I." -~ 5mA. O°C . T," 125'C

O.B

mV(C

eHITACHI

109

HA17800P, HA17800 Series

IIiHA17807P, HA17807 ELECTRICAL CHARACTERISTICS
(V•• =12.5V, I ... =500mA, O'C;;:;; T j ;;:;; 125'C, C •• =O.33,uF, Co.. =O.l,u F, unless otherwise specified.)
Symbol

Item

Vout

Output Voltage

 f ":100kHz

dB
V

Output Short Circuit Current

los

T,~2S'C

-

350

Peak Output Current

1"

T,~25'C

-

2.2

-

I, .. ~SmA. O'C": T,:;> 12S'C

-

-1.0

-

mV/'C

Unit

Temperature Coefficient of

Output Voltage

pu4

aV, .. ;tJT,

mn
rnA
A

• HA 17815P, HA17815 ELECTRICAL CHARACTERISTICS
(Vi.~ 23V, /0" ~500mA, O'C;;; T J ;;; 125'C, Ci,~O.331' F, Co., ~O.ll' F; unless otherwise specified.)
Item

Symbol

Test Conditions
T,~2S'C

Output Voltage

Line Regulation

YOM!

17 .SV":

aV, , ...

Load Regulation

oVv

Quiescent Current

I,

lou'

V..~

30V. SmA:;> /, .. ~ 1.0A. PT~ IS\\'

min

typ

max

14.4

IS.0

15.6

14.25

-

IS.7S

V

11

300

mV

17.5V"; V..":30V

-

20V"; V..2 26V

-

3

150

mV

SmA";/'.. ";l.SA

12

300

mV

4

ISO

mV

T,~2S'C

-

8.0

rnA

17.SV": V..";30V

-

4.4
-

1.0

rnA

5mA";I•• ,:d.OA

-

-

-

90

0.5
-

,.,V

S4
-

70

-

dB

2.0

-

19

T,~25'C

T,~25'C

Quiescent Current Change

aI,

Output :\'oise Voltage

V.

Ta~2S'C.

Ripple Rejection Ratio

R kU

J~120Hz

\'oltage Drop

V1JlWf'

/' .. ~1.0A.

Output Resistance

RQ"I

f~

2S0mA;:; /'.. ": 7S0mA

10Hz ~ f"" 100kHz

Output Short Circuit Current

/(!5

T,~2S'C

-

230

Peak Output Current

Ju

T,~2S'C

-

2.1

-

-

-1.0

-

Temperature Coefficient of
Output Yoltage

pod

aV•• ,/eST,

V

T,~25'C

1kHz

I".,~SmA.

O'C"" T,';; 12S'C

eHITACHI

rnA

V

m!l
rnA
A
mV/'C

111

HA17800P, HA17800 Series

.HA17818P,HA17818 ELECTRICAL CHARACTERISTICS
(V•• ~27V, I, .. ~500mA, O'C;::;; T j ;::;; 125'C, C •• -O.33pF, C .. t-O.lpF; unless otherwise specified.)
typ

max

T;~25'C

17.3

18.0

18.7

21V~ V;.~33V, 5mA~I. .. ~1.0A, PT~15W

17.1

-

18.9

V

-

15

360

mV

-

5.0

180

mV

12

360

mV

4.0

180

mV

4.5

8.0

rnA

1.0

rnA

Symbol

Item
Output Voltage

v".. ,

Line Regulation

tI'V.

t, ••

min

Test Conditions

2IV~Vi,,~33V

Tj~25'C

24V';;

V,.~30V

Load Regulation

OVala.d

T;~25'C

Quiescent Current

10

T,~2S'C

-

21V~ V;.~33V

-

5mA~/... ';;1.0A

-

-

Ta~2S'C,

-

110

Quiescent Current Change

;)

-::--".

--

15

t1

I

--~

--

10

I
i

~c

± -t- "
1

'

0

~
l'

I

- --

-4

ill

60

".1

I'

t-

-- r------

HA17805
V•• =lOV
V... =5V
I..-SOOrnA

111

80

,

I

I Iii

III

I

HAi7&J5

I

i.L ~

.0

.5

RIPPLE REJECTION VS. FREQUENCY RATIO

30

25

Voltage Drop V• ., (V)

OUTPUT VOLTAGE VS. JUNCTION TEMPERATURE
12-4

V,.~19V

'"

I
I

I

---

12.0

!

t---

---- bIJ
!

I

1

I

:

;
11 _4

25

50

-

-

--

t--

-

r-

t--~=O t'---

--

I
,

-- t=-=- h

2
~

1

150

-t ~

--1--- f---

r-- f----j -

r'

.J1lnction Temperature T, ('e)

i

10

Input Voltage

OUTPUT VOLTAGE VS. OUTPUT CURRENT

4

3

2

(V)

6_0

HAI7&J5
5

v,.

QUIESCENT CURRENT VS. INPUT VOLTAGE

6

I

H~178b5

V.. =SV

t--t==2~t

,

I

i

I

--

..l

.!!

I

V

5.0

I

I

-t- J

---- ---

1

j--

0.4

V

,.-

V

.0

+1- -f-b

!

lrY,.= IOV
V... =5V
T'7 25

-

V

/

-

I

-

-- --

1
1

125

--

r'-IA

t--~-

00

~ ~L~

3

1

75

_,nt"'" ---

HAI7&J5'

~r'-+~A ~

-- f--- t--

r-----l- 1--

~--

25

--

Lt::: r-.

,

,

1

- - I-- --

4

-,----

i

11 .6

T,~25't-

5

I

--~-

,

Vw=5V

,

I

I

6

H~178b

I

J

J

I..=5mA

12.2

I

I

I-- V"",=12V

OUTPUT VOLTAGE VS. INPUT VOLTAGE

~

V"'
0.8

\.2

\.6

2.0

3.0
5

24

Output Current I •• ! (Al

10

IS

eHITACHI

25

20

Input Voltage

Yo.

30

35

(V)

113

HA17800P, HA17800 Series

QUIESCENT CURRENT VS. JUNCTION
TEMPERATURE

OUTPUT IMPEDANCE VS. FREQUENCY
4.6

0

V.. =IOV

HAI7805

f-V.-IOV
3f-V.-SV

r---f~-25~
L=o.lp

_.

:

f--

~

;;:

!

,

~

I

E
~

4. 2

I

I

_.- --- -

..

I

I

I

I

---+-

..

f - .-

_-:-- r-.....

V

I.r=lOOmA

4.0

i

0. 1

i

i
i

I---"

L.......< V
---

Q.3

I

A

I

I

3.8

I

,
0.0 1
10

20

50

100

200

SOO

lk

2k

Frequency

5k

J

10k

20k

I'

sot

l(Kl;

zca

I--

HAI7805

Vu/=5V
1••• =0
4. 4

I

3.6
-25

50

25

'
"
---:-t:
I

i
100

75

125

Junction Temperature TJ ('e)

(Hz)

Input

.APPLICATION NOTE

o--....,.----....,-----t----,

In HA 17800P and HA 17800 Series, external compensating
circuits are eliminated and easy mounting and radiation
design like transistors are enabled by employing the
TO-220AB package. Output current above 1A is available
when using a heat sink. To protect devices from destruction,
three protection circuit; current limiter, one against load
short circuit and one to control the operating junction tem·
perature, are built·in. HA 17800P and HA 17800 series are
usable fixed voltage sources and the followings shall explain
some examples of circuit constructions and applications for
further use.

1. Circuit Constructions of HA17800P and HA17800 Saries
Fig. 1 shows the internal equivalent circuit and· Fig. 2 shows
its block diagram of HA 17800P and HA 17800 Series.

R"
~--J..~Output

L---~J.._ _ _ _ _+_----oG~[)

Fig.2

Block Diagram of HA17800P and
HA 1 7800 Series

(1) Reference Voltage Circuit
For examplaining the part generating the reference voltage,
the equivalent circuit shall be shown in Fig. 3. As this figure
shows clearly, the difference from the conventional method
using zener diodes is that the reference voltage is generated
by only the ba.se-emitter forward characteristics of transis·
tors. The reference voltage VREF is;
VREF~

VB£<+ VBE5+ VBE ,+ VBE'+R,[C2·········( 1 )
........................ ( 2)
VB£,~VBE2+R3IE2 .................................... ( 3)

RIIc,+VBE,~R,[c2+VBE'

VBE~kTtn!..s:..······························(4)
q

10

where, assuming that VBE1 ~ VBE3

h2~ kT 1.. tn fu ....................................... \ 5)
q R,
RI
VREF~

Fig.1

Internal Equivalent Circuit

kTfutnfu

of HA17800P and HA17800 Series

114

VB£,+ VB£<+ VBE 5+ VB £6 +

eHITACHI

q

R,

RI

.................................... ,61

HA17800P, HA17800 Series

Input o----~--------

,-----4----=S

5

i

~

2.0

,

,

/,

F-::--.I't:---

"

/

1.0

(hi

(

I

21lm-\

/",'

\nO

~

,

In

,

4

f-

HA17805

I

-L,+." I

,J,

fff

I
f§1
lOOmA

500mA
IA

"
,

}c." ...."

~

I

II

{c I

Output \'olta/{t'

",

I.J,..IoIII

\Otl

Ik
Frel\llli'ncy

10k

f

lOOk

Inpu! r,dta/.:(' \'''.' 1\'

1M

(liz.!

Frequency Characteristics of

Fig.10

Output Impedance

116

i'-..

25

'".,.-SIHlm·\

8

Fig.8

"

20

I

II
('8.r-SII ,/F

III

V•• ,~,V
r,~25·C

5

\',.= to\'
V"., =5\'
T\=2S"{'

.-1

-"

15

~

Peak Output Current vs Voltage Drop
6

HA17800P and HA17800 Series

10 1

I<.re

\',;lia.l((' Drop \d ..", {\",

Common

co

1-1-

I
w

1tJ2

" I'~T
"'S'C" "'-

5

C".,

Way to By-pass in

Output Current

\"5

0

~

Fig.7

1.6

1.2

Output Currf'nl /"., (AI

\"S

Input \'oitage

Operational Characteristics of
Fixed Output Regulator

~HITACHI

HA17800P, HA17800 Series

3.2 A Regulator with Increased Output Voltage
Fig. 11 shows the circuit diagram to increase output voltage
utilizing fixed output voltage. The output voltage V out is;

V.",~ (1+ ~:)

r"
R,

Vxx+IQR,
t .. ,

where, Vxx: Output voltage in HA17800P and HA17800
Series
10:
Ouiescent Current in HA17800P and
HA17800 Series

v.•

Fig.13

Fixed Current Regulator

The fixed current output, lout is;

Vxx
I .. ,~ Jf;""+I Q

v~.,

where,

R,

Vxx: Output Voltage of HA17800P and HA17800
Series
10:
Ouiescent Current of HA17800P and
HA 17800 Series

r

)

HIAI78II,
R, =24Q'- f-t ... '"' 0.504

,00
Fig.ll

I

Regulator with Increased Output Voltage

If the resistance ratio, R2/Rl are equal, adopting smaller Rl
and R2 value enables to ignore the voltage drop because of
quiescent current, IOR2.
However, as smaller resistance causes the larger power dissipa'
tion at the resistor, attention must be paid to the power capa·
citance of the resistor.

RI =~.2k
&=l.Ik

,

"

L

/

0

I.P'"
I.N"

10

"

HA17812

~
10

!O

HAJ7R12
Rl=lkQ I
1•• ,~17mA

I

Input Voltage

Fig.14

Rl =2.2k

I.Ik-

HAI780S

-~=nt-

Rl=20.1Q

Rl

=2(J.7~~-

Rr 'OI
'0

,0

.<0

v,.

(V)

Operational Characteristics of
Fixed Current Regulator

,=20.'U.R"r I0 '1 Q
R"

I

,.0

10

~;~17R2' P

-R, '10.92-

HA17fo5

I

HAI7824P

HA17~12

L

II

100

/! 1

3<)

I

300

I I

[o.,::::/l

Fig.12

..,-;

Q

Operational Characteristics of the
Regulator with Increased Voltage

3.3 Fixed Current Regulator
Fig. 13 shows the circuit of a fixed current regulator to pro·
vide a fixed current. This circuit utilizes the fixed output
voltage of HA 17800P and HA 17800 series to generate a fixed
current and is easily designed.

If the resistance of Rl is small and V xx /Rl is far larger than
10, lout is nearly equal to V xx /Rl. The maximum value of
the fixed current output, lout is maximum output current of
HA17800P and HA17800 Series, 1.5A. Then, the power of
the resistor R 1 and the maximum power dissipation of
HA 17800P and HA 17800 Series must be considered.
3.4 Variable Output Voltage (7 to 30V, 0.5 to 10V) Regula·
tor
Fig. 15 shows the circuit of a regulator whose output voltage
is variable from 7 to 30 volts and Fig. 17 shows that of a
regulator whose output voltage is variable from 0.5 to 1OV.
In each case, output voltage is controlled by an operational
amplifier and the output voltage is;

v.. ,~ (1 + ~:)
V

...

~HITACHI

~(Rl+R2)
R 3+R,

(In case of Fig. 15)

Vxx
X

R3 Vxx
Rl

(In case of Fig. 17)

117

HA17800P, HA17800 Series

0

The relationships of the adjusting point potential of the
variable resistor, R, VR and output voltage, Vout are shown
in Fig. 16 and Fig. 18. Operational amplifiers should be
selected considering supply voltage, common mode input
voltage range, output voltage range and so on. When oscilla·
tion happened, inserting a capacitor between Vin and
Common Terminal is an effective measure.

HA1780~

V.. =35V ....
1... r=O-1.0A

t--

40

:::

30

~,.....
I

./
10

V"""

......

/ 'V

-

,/

IS

10

-,

20

Adjusting Power Pilint Potentia! HI (\')

Fig.18

The Variable Output Voltage (0.5 to 10VI
Regulator-Adjusting Power Point
Potential, V. Characteristics

Fig.15

Variable Output Voltage
(7 to 30VI Regulator

I'

\~

HA17805
1••!=O-1.0A
V•• = +lSV
-V.. =-IOV

12

J

3.5 Regulator with Increased Output Current
In HA17800P and HA 17800 Series, output current above 1A
is available and larger current is available by exterAally adding
a transistor as shown in Fig. 19. Then, the relationship of the
current amplification factor, hFE of the transistor Q1 and
current in each parts must be

V

9

./'"

h FE (Q):?h
I
~ I REG

./

V
V

v..

o-~---.Q'r------------------,

V

1

./

R,

\'"

,'Q

.

I" ..

10
Adjusting Power Point Potential VII (V)

Fig.16

The Variable Output Voltage (7 to 30VI
j'legulator-Adjusting Power Point
Potential, V. Characteristics

Fig.19

Regulator with Increased
Output Current (1 I

v•• ,

I

hFE (1"'+1
-l+h
-h
FE

Variable Output Voltage
(0.5 to 10VI Regulator

I

118

I)
Q

FE

The output current decreases from lout to IOREG in appearance and the load regulation will be improved,
A circuit where a current limiter is added to the basic regulator with increased output current in Fig, 19 shall 'be shown in
Fig, 20, The limit value of the output current lout limit is
determined as;

-V.. =-IOV

Flg.17

r)R£(;~

•

Obi

HITACHI

I'1m}'t

-

VBE
,""
Rs('

HA17800P, HA17800 Series

Fig. 21 shows the operational characteristics of the circuit in
Fig. 20. On determining Rcs , line impedance and contact
resistance should be considered.
V,.

Fig. 23 shows the smooth ing capacitance C and ripple
characteristics at input and output when the transformer
K3-D69 is emploved.

Rsc

v•• , ur Cummun =GND

la)

Fig.20 Regulator with Increased Output Current (2)

llAl17805~

1I.}17HII5~\_
( ~'.""lOV\
I

),0

-t"--t--.
,,'-- I-],~~
I-

0/
I-.~!Z t'l
"<.::
-);;-

.K

I
I

,

I

I

I 1/

~~

,

,

",

"rO,21A-

Convn!)n -GND

II

~

>

E

~

.

0

1.0

f-- I--

,,:,,,

\

;

v... ,

\

}/

lIf)
Output Current I,,", (A)

100

,

I'--.
1.000

\0.000

rilt('r Capacitanc(! C (,(.I F)

Fig.21 Operational Characteristics of the Regulator
with Increased Output Current (2)
3.6 Positive and Negative Voltage Regulator
Fig. 22 shows the circuit of a regulator which provides both
positive and negative output, constructed by 2 devices of
HA 17800P and HA 17800 Series. The portion providing posi·
tive output is basically the same as in 3.1 the fixed output
regulator.
In the portion providing negative output, the input of
HA17800P and HA17800 series is floating state, output
terminal Vout is grounded and the negative voltage is taken
out of the common terminal.
Fig. 22 sho;"'s the circuit to get larger power than the com·
mercial source. Its ripple voltage at output will be determined by the characteristics of the smoothing circuit and
ripple rejection ratio in HA 17800P and HA17800 series - 78
dB typ: in case of 05P, 05.
v.. ,

Fig.22

2.0

Ii
>=

,1#
,,'
~

Fixed Output Regulator

Ib)
Fig.23

Input Output Ripple Characteristics

Characteristics of Fixed Output Regulator
with a Rectifier

3.7 Switching Regulator
Fig. 24 shows the circuit of a switching regulator. This
circuit stabilizes the output voltage with self-oscillating and
the change in output voltage will be absorbed by changing
the conducting period of the switching transistor O. The
minimum operational input voltage, Vin min is;

V" min

~

Vxx + Vz ( ZD,)+ VEB ( Q)

The zener diode, ZDl is to reduce the voltage applied to
HA 17800P and HA 17800 series. The period during the
switching element Q is ON becomes longer with the increasement of load current and the oscillation cycle is nearly proportional to the inductance L. The current capacitance of Q
must be twice as large as the load current.
Fig. 25 shows the operational characteristics of the circuit in
Fig. 24.

-v•..
Positive and Negative Voltage Regulator

~HITACHI

119

HA17800P, HA17800 Series

v••

v..

1:

V06E

-

Fig.24

Z.OOO.uF

Switching Regulator

~A178112

i .. ,'"2.3A- f-

20

:;

"

I

~

~

II

10

II

f

8

~v.( ZDI) =8.2V

V,( ZD,) =0

I

V

I

)
10

J

20

30

40

Input Voltage V,. (V)

Fig.25

120

Operational Characteristics
of the Switching Regulator

~HITACHI

A'178MOOP,HA178MOO S erles
·
H""

.3-terminal Fixed
Voltage Regulators

.FEATURES
•
•

Output Current more than 500mA
Possible to be widely used as power source with various
output voltage; 5V, 6V, 7V, 8V, 12V, 15V, 18V,.20V &
24V
No external compensation circuit required.
TO-220AB package and easy mounting & easy design for
heat sink, as same as a transistor.
Built-in current control circuit protects elements from destruction by short circuit.
Chip junction temperature limiting circuit built in protects elements from thermal destruction.
Internal power dissipation limiting circuit built in protects
transistors in output stage.
. . HA 178MOOP Series
Industrial Use; . . . . . . . . .
. . . HA178MOO Series
Commercial Use; . . . . . .

•
•
•
•
•
•
•

(T-220AB)

• PIN ARRANGEMENT

• CIRCUIT SCHEMATIC

o

r-~----"T----"---"---'r--~--o !npl:1

1<,

......~......

J-..,.....".-+~L----

--o()lJIPUl

I

2

3

. Top Vie\\'

Item

v'n*

Input Yoltag-t>

l( ••

PO\\"PI"

Dissipation

Operating Temperature

P r •••
To,.

Junction Temperature

T,

Storage Temperature
\ot(>

*

**
***

I

(Ta"~25°C)

Symbol

Input Voltagp

Input
Common

3. Output

[I.

.ABSOLUTE MAXIMUM RATINGS

1
2

T'I,f

H.ating

Unit

35

V

6

4

40

V

7.5

\\"

20 to I 75

'c

20 to I 125

'c
'c

55 to 1125

For IIA178~1051' -IIA178~1181). HA178M05 -- HA178M18
For HA178~120J>, IIAI78~1241'. HA178M20. HA178M24

2

@

;,
,

Cll

,
-

I

,
20

CD

@
40

60

--

80

(I'

-'120

Infinity heat sink

~ ~~~/)~\' h~::t s:~~k f ~::Ii~~:~c~ixed

FnHOI\" tht' df'ratinll' ('un'j' shown h('1u\\.

100

Ambll'nt Temperature Til ("C)

thermal

f4

:'\0 heat sink
thermal resistance
0" - 3.0·C/W 'l,p, ]
5.0·C/W I max!
[
8,. ""·62'C/W I typ)
72'e/W maxi

.STANDARD CONNECTING CIRCUIT

I

@HITACHI

121

140

\

HA178MOOP,HA178MOO Series

• HA178M05P,HA 178M05 ELECTRICAL CHARACTERISTICS
(Vi.-l0V, [",-350mA, O'C;;; T j ;;; lZ5'C, C,.-O.33p F, C,.,-O.lpF, unless otherwise specified.)
Symbol

Item
Output Voltage

VO"!

O'V.,,,.

Line Regulation

Load Regulation

O'V,,,,.

Quiescent Current

I.

Quiescent Current Change

0'10

Output Noise Voltage

V.

Ripple Rejection Ratio

RREJ

Drop Out Voltage

Vd •op

Test Condition
T,~25'C

7V~ V..~20V, PT~7.5W, 5mA~/.,,~350mA

7V~ v..~ 25V, I." ~ 200mA
SV~ Vi.~25V, 1... ~200mA
5mA~/, .. ~500mA

T,~25'C
T,~25'C

5mA~/.,,~200mA

-

-

Tj~25'C
SV~ Vi.~2SV,

1,.. ~200mA

10Hz~j~

j~120Hz,

100kHz

1... ~100mA
1... ~300mA

T,-2S'C

-

SmA~/... ~3S0mA

Ta~2S'C,

Output Short-circuit Current
los
Peak Output Current
[",II'"
Temperature Coefficient of Output Voltage O'V... /d'T,

min
4.S
4.75
-

1.. ,-3S0mA, T,-2S'C
T,-2S'C, V..-3SV

62
62

-

-

T,-2S'C
1.. ,-SmA, O'C

~ T,~

12S'C

-

typ
5.0

3

1
20
10
4.5

40
80
SO
2.0
300
700
1.0

max
5.2
5.25
100
50
100
50
6.0
O.S
0.5

-

-

Unit
V
mV
mV
mA
mA

J'V
dB
V
mA
mA
mV/'C

• HA178M06P,HA 178M06 ELECTRICAL CHARACTERISTICS
( Vi.-llV, [",-350mA, O'C;;; T j ;;; lZ5'C, Ci.-O.33p F, C,.,-O.lp F, unless otherwise specified.)
[tem

Symbol

Test Condition
T,~2S'C

Output \'oltage

,VONI

O'V, ...

Line Regulation
Load Regulation

crV/old

Quiescent Current

I.

quiescent Current Change

0'1.

SV~ V..~

21V, PT~7 .S\\', SmA~/... ~3S0mA
SV~ V..~ 2SV,I, .. -200mA
T,-2S·C.
9V~ V.. ~2SV,I .. ,~200mA
SmA ~ I •• , ~ SOOmA
T,~2S'C
SmA ~ I, .. ~ 200mA

V.

Ripple Rejection Ratio

RREF

Drop Out Voltage
Vd .,,!'
Output Short-circuit Current
Ivs
Peak Output Current
loptd
Temperature Coefficient of Output Voltage O'V.. '/O'T,

typ
6.0

-

5
1.5
20
10
4.5

-

-

T,~2S'C

Output r..oise Voltage

min
S.7S
5.7

9V~ V..~25V,

1... ~200mA

SmA~/.. ,~3S0mA

Ta-2S'C, 10Hz~j~ 100kHz
j-120Hz,
1,.. -100mA
T,-2S'C
1.. ,~300mA
1,.. -3S0mA, T,-2S'C
T,-2S'C, V..-3SV
T,-2S'C
1... -5mA, O'C s: T,S: 125'C

-

S9
59

-

-

-

max
6.25
6.3
100
50
120
60
6.0
O.S
0.5

45

-

80

-

80
2.0
270
700
-0.5

-

-

-

Unit
V
mV
mV
mA
rnA
J'V
dB
V
mA
rnA
mV/'C

• HA 178M07P,HA 178M07 ELECTRICAL CHARACTERISTICS
(Vi.-lZ.5V, L,-350mA, O'C;;; T j ;;; lZ5'C, Ci.-O.33p F, C", =O.lp F, unless otherwise specified.)
Symbol

Item

Output Voltage

Vnl

Line Regulation

O'V., ..,

Load Regulation
Quiescent Current

Test Condition
T,~25'C

9VS:

V..~

T,-2S'C

~Vo I~.d

T,~2S'C

I.

T,~25'C

7 .5\\'; SmAS:/... ~350mA
9V~ V..~ 25V, I .. , ~ 200mA
10V~ V..~2SV, 1... -200mA
SmA~/.. ,~SOOmA
5mA ~ I. .. ~ 200mA

22V,

10V~ V..~

PT~

25V, 1.,,-200mA

Quiescent Current Change

0'10

Output r..oise Voltage

V.

Ripple Rejection Ratio

RREF

Drop Out Voltage
Output Short~circuit Current

Vdrop
los

Peak Output Current

10 p,"

Ta-25'C, 10Hz ~j~ 100kHz
j-120Hz, 1/.,,-100mA
T,-2S'C 1/... ~300mA
I ... - 350mA, T, - 25'C
T,-2S'C, V..-3SV
T,-2S'C

Temperature Coefficient of Output Voltage

O'V.. ,/O'T,

1... -SmA, O'C ~ T,~ 125'C

122

5mA~/.. ,~350mA

~HITACHI

min

typ

6.72
6.65

7.0

-

5.5
1.7
23
10
4.6

-

57
57

-

-

-

4S.S
SO
SO
2.0
260
700
-0.5

max
7.2S
7.35
100
50
140
70
6.0
0.8
O.S

-

Unit
V
mV
mV
rnA
rnA

J'\'
dB

,.

mA
rnA
m\'/'C

HA178MOOP,HA178MOO Series

• HA 178M08P;HA 178M08 ELECTRICAL CHARACTERISTICS
(Vi'~ 14V, L .. ~350mA, O°C;:;:: Tj~ 125°C. C,,~O. 33Jl F. C".~O.lJl F. unless otherwise specified.)
Item

Symbol

Vo,,'

Line Regulation

oV. ,,,'

Load Regula tion

aVo

Quiescent Current

fQ

Quiescent Curre-nt Change

ofQ

/00"

min

IO.5\''' V.. "23\', Pr";7 .5\\', 5mA';;f.. , ,;;350mA
10.5V';; V.. ';;25V,f ... ~200mA
T,~25'C
llV,;; V.• ';;25V,f,.,~200mA
5mA'; f ....." 500mA
T,~25'C
5mA'S f .. ,';; 200mA

7.7
7.6

1O.5V';; V.. ,;; 25V, f ... ~200mA
5mA -e I..," 350mA
Ta~25'C, 10Hz" j-e 100kHz
j~120Hz,
f •• ,~IOOmA

V.

Ripple Rejection Ratio

RRF:f

T,~25'C

56
56

f ... ~300mA

VdrIJp

f .... ~350mA,

Vo s

T,~25'C,

T,~25'C

V.,~35V

/" put

T,~25'C

oV... /oT,

f .... ~5mA, O'C.;; T,o; 125'C

typ
8.0
6.0
2.0
25
10
4.6

T,~25'C

Output Noise Voltage

Drop Out Voltage
Output Short-circuit Current
Peak Output Current
Temperature Coefficient of Output Voltage

Test Condition
T,~25'C

Output Voltage

max
8.3
8.4
100
50
160
80
6.0
0.8
0.5

52
80
80
2.0
250
700
-0.5

Unit

V
mV
mV
rnA
rnA
JlV

dB

V
rnA
rnA
mV/'C

.HA178M12P,HA178M12 ELECTRICAL CHARACTERISTICS
(V,,~ 19V. I".~350mA, O°C ~ T,~ 125°C. Ci,~O.33Jl F. Co", ~O.lJl F. unless otherwise specified,)
Symbol

Item

Test Condition

min

T,~25'C

Output Voltage

VO"'
Line Regula tion

oV.. ,..,

I.oad Regulation

crv"

()uiescent Current

fQ

Quiescent Current Change

of"

Output :Xoise Voltage

V.

Ripple Rejection Ratio

RIlf.F

Drop Out Voltage

Vd,up

I"ad

14.5\''': V.. " 27\', Pr';; 7.5\\', 5mA,;; f ... ",350mA
14.5V';; V.. ::;:30V, f .. ,~200mA
T,~25·C
16V,;; V..::;:30V,f ... ~200mA
5mA::;: f ... ::;: 500mA
T,~25'C
5mA';; f ••• ';; 200mA

ll.5
11.4

8.0
2.0
25
10
4.8

T,~25·C

14.5V5 V.. "'30V, f,",~200mA
5mA -;;; /' .. ,,; 350mA
Ta~25'C, 10Hz,;;j::; 100kHz
j~120Hz, I f •• ,~IO.OmA
T,~25'C

I..,~350mA,

Output Short-circuit Current
Ius
Peak Output Current
/" p •• t
Temperature Coefficient of Output \'oltage oV.. ./oT,

T,~25'C,

55
55

I /".,~300mA
T,~25'C

v..~

35V

T,~25'C

f ... ,~5mA, O·C

0;

typ
12.0

T, « 125'C

max
12.5
12.6
100
50
240
120
6.0
0.8
0.5

75
80
80
2.0
440
700
-1.0

Unit
\(

mV
mV
rnA
rnA
JlV

dB

V
rnA
rnA
mV/'C

• HA 178M15P .HA 178M15 ELECTRICAL CHARACTERISTICS
( V,,~23V. I ••• ~350mA. O'C ~ T, ~ 125°C, C,,~O.33Jl F. Coo. ~O .1Jl F, unless otherwise specified.)
Symbol

Item

Test Condition

min

T,~25·c

Output Voltage

V .. ,

Line Regulation

oV. ,,,'

17 ,5\'-;; \'" <; 30\', Pr'" 7.5\\', 5mA;C f ... .,; 350mA
T,~25'C
T,~25'C

17.5V~

20Vo;.

V.. "30V,I.,,~200mA

v.. <; 30V, /."

I.oad Regulation

oVa
fo

T,~25'C

Quiescent Current Change

ofo

17 .5V'S V.. ~, 30\',
5mA~f ... ';;350mA

Output :\oise Yoltage

V.

Tu~25'C,

Ripple Hejectinn Ratio

RHH

T,~25'C

Drop Out Voltage
Output Short-circuit Current
Peak Output Current

Vd,,,p

f .. ,~350mA, T,~25·C
T,~25'C, V.. ~35V

/" p •• k

T,~25'C

Temperature Coefficient of Output \'oitage

oV.. ,/oT,

f .. ,~5mA, O'C

j~

["s

120Hz,

00

5mA ~ f.,,';; 200mA
L.,~200mA

10Hz~j~

100kHz

L,,~IOOmA

f" .. ~300m;\.

<;;

typ
15.0
10
3.0
25
10
4.8

200mA

5mA~f ... ::;500mA

Quiescent Current

lOAd

14.4
14.25

T,o; 125'C

~HITACHI

54
54

90
70
70
2.0
240
700
-1.0

max
15.6
15.75
100
50
300
150
6.0
0.8
0.5

Unit

V
mV
mV
rnA
rnA
pV
dB

V
rnA
rnA
mV/'C

123

HA178MOOP,HA178MOO Series

• HA 178M18P ,HA 178M 18 ELECTRICAL CHARACTERISTICS
(Vi.-27V, / ... -3S0mA, O'C;:i; Tj;:i; 12S'C, Ci.-O.33,uF, C".-O.l,uF, unless otherwise specified.)
Symbol

Item
Output Voltage

VOUI

Line Regulation

ov. ""

Load Regulation

8Vo1oltl

Quiescent Current

I.

Quiescent Current Change

01.

Output Noise Voltage

V.

Ripple Rejection Ratio

RREF'

Drop Out Voltage

Vdrap

Output Short-circuit Current

los

Peak Output Current

loped

Temperature Coefficient of Output Voltage <1V.. ./oT,

Test Condition

min

Tj -2S'C
21V;;; V,,;>; 33V. PT;>;7 .SW, SmA;;;I,",;;;3S0mA
21V;;; V..;;;33V, I".-200mA
Tj -2S'C
24V;;; v..;;; 33V, I.,. - 200mA
SmA;;; I ... ;;; SOOmA
T j -2S'C
SmA;>; I ... ;>; 200mA
T,-25'C
21;>; v..;>; 3SV, I ••• -200mA
SmA;;;I••• ;>;3S0rnA
Ta-2S'C, 10Hz;>;j;>; 100kHz
j-120Hz, II... -IOOrnA
T j -2S'C II ... -300rnA
I ••• -3S0mA, Tj -2S'C
T,-2S'C, V..-3SV
T j -2S'C
I ••• -SmA, O'C';; T j ';; 12S'C

17.3
17.1

-

typ
18.0

-

-

10
5.0
25
10
4.8

-

-

-

-

S3
53

-

-

110
70
70
2.0
240
700
-1.0

max
18.7
18.9
100
50
360
180
6.0
0.8
0.5

-

Unit

V
mV
mV
rnA
rnA
pV
dB
V
rnA
rnA
rnV/'C

.HA178M20P,HA178M20 ELECTRICAL CHARACTERISTICS
(V,,-29V, /".-3S0mA, O'C;:i; Tj;:i; 12S'C, Ci.-O.33,u F, C ... =O.l,uF, unless otherwise specified.)
Symbol

Item
Output Voltage

Valli

Line Regulation

OV•• ".
crVa

Load Regulation

la.d

Quiescent Current

I.

Quiescent Current

01.

Output Noise Voltage

V.

Ripple Rejection Ratio

RREF

Drop Out Voltage

VdToP

Output Short·circuit Current

los

Peak Output Current
10 p,d
Temperature Coefficient of Output Voltage oVoo./oT,

Test Condition

Tj -2S'C
23V';; Vi.;>;3SV, PT;>;7 .SW, SmA;>; I ••• ;>; 3S0mA
23V;>; v..';; 3SV, I ... - 200rnA
T j -2S'C
24V';; V,.';;3SV, I ... -200mA
SmA';; I ... ;>; SOOrnA
T,-2S'C
SrnA';;I ... ';;200rnA
T,-2S'C
23V;>; Vi.;>; 3SV, I ... -200rnA
SmA::;; I ... ::;; 3S0mA
"
Ta-2S'C, 10Hz::;;j::;; 100kHz
j-120Hz, II... -IOOmA
T,-2S'C II... -300mA
I ... -3S0mA, T,-2S'C
T,-2S'C, V..-3SV
T,-2S'C
I... -SmA, O'C::;; T j ';; 12S'C

min
19.2
19

typ
20

-

~I

-

10
S.O
30
10
4.9

100
50
400
200
6.0
0.8
0.5

-

-

-

53
53

-

-

110
70
70
2.0
240
700
-1.1

max
20.8

Unit
V
mV
mV
rnA
rnA

-

pV

-

dB

-

V
rnA
rnA
mV/'C

-

• HA178M24P,HA 178M24 ELECTRICAL CHARACTERISTICS
(Vi.-33V, /".-3S0mA, O'C;:i; Tj;:i; 12S'C, Ci.=O.33,uF, Coo. =O.l,uF, unless otherwise specified.)
Item
Output Voltage

Symbol
Vnl

Line Regulation

oV• •,"

Load Regulation

cS'Vo/qf;d

Quiescent Current

I.

Quiescent Current Change

01.

Output Noise Voltage

V.

Ripple Rejection Ratio

RREF

Drop Out Voltage

Vd.a,

Output Short-circuit Current

los
/Q ,elk

Peak Output Current
Temperature Coefficient of Output Voltage oVoo./oTj

124

Test Condition
T,-25'C
27V;>; V..::;;38V, PT::;; 7 .S\\', SmA::;; I ... ;>; 3S0mA
27V;>; V..::;;38V, I ... -200mA
Tj -2S'C
28V::;; V..;>;38V, I ... -200mA
SmA::;; I".';; SOOmA
T,-2S'C
SmA;>;I ... ';;200mA
T,-2S'C
27V';; V,,';; 38V, Ioo.-200mA
SmA';; I ... '" 3S0mA
Ta-2S'C, 10Hz;>;j::;; 100kHz
j-120Hz,
I ... -IOOmA
T,-2S'C
I ... -300mA
I ... -350mA, T,-2S'C
T.-2S'C, V.. -3SV
T,-2S'C
I ... -SmA, O'C '" T,;>; 12S'C

eHITACHI

min
23.0
22.8

typ
24.0

-

10
5.0
30
10
4.6

-

-

50
50

-

-

-

170
70
70
2.0
240
700
-1.2

max
25.0
25.2
100
50
480
240
8.0
0.8
0.5

-

-

-

Unit
V
mV
mV
rnA
rnA
J'V
dB
V
rnA
rnA
mV/'C

HA17524G,HA17524P
• FEATURES

IIAI7524(;

•
•
•
•

Pulse Width Modulation (PWM)
Wide Operating Frequency Range . . . . . 450kHz (typl
Low Quiecent Current . . . . . . . . . . . . . . . 5mA typ
Good Line Regulation (0.2% typ) and Load Regulation
(0.4% typ)

•

Provides independent output stage of 2 channels. Wide
external circuit application including single end method
and push-pull method.
Reference Power Source Output Stage and Switching
Output Stage include current limitting protection circuit.

•
•

.Switching Regulator Controller

(OG-1SI
HAI75241'

Compatible with SG3524

(OP-1SI

• BLOCK DIAGRAM
• PIN ARRANGEMENT
+5V to all
I--~I-----T\!

whule thl' illterual nrl'l.!I!ry

C,
(j{amp)

(Top View)

.ABSOLUTE MAXIMUM RATINGS:
(Unless otherwise specifieb,

Supply

\·o/tage

L

Reference Output Current

I H.f:1-

CUl'rent througn Cr Terminal

In

Total Power

7"'1"

Strorage Temt'pel'at- \ Cenlip

:\ote

DisSipation Derating Table

Rating

Gnit

I Plastic

40

\.

100

mA

50

mA

600

m\\'

75

'c

- 20 to

j

- 65 to ' 150

T",

:\utt'

.\'0

Package

Power
Ratin'

Derating
Factor

Above To

l'

600m\\'

8.3mll'/'C

52.7"<;

G

600m\\'

7.6m\\,/,C

71"<;

\,2

mA

}"

Dissipation
Operating Free-Air
Tem2erature Range
Hangl;'

+25"C)

V"

Collector Output Current

ContinnnU5

Ta~

Symbol

Item

. 55 to

~

'<;

125

I. \\ lth rt'SPt'ct to nt'twurk ~r(jund tf-'I'minal
2. Tht' rt·ft·rt'nn' \ollagt' ran ht, J,(iu'n hy cunnl:'ctlnj( til(' \"C(' and 5\' rl:'fl:'l'l:'nc{' output
pins hoth to thl:' SUJlJlI.Y \'oltagt·, In this nmfigul'ation, \"cc 6\'max,
3, HA17524P: Value at T,,~52,T(,. In case of more than it, 8.3mW''(: derating shall be performed.
HA17524G: Value at

T,,~7lt',

In case of more than it, 7.6mW 't' derating shall be performed.

~HITACHI

125

HA17524G,HA17524P

.ELECTRICAL CHARACTERISTICS (Vcc =20V, J=20kHz, Ta=25'C)
Symbol

Item

Regulator

VREF

Input Regulation

O'Vo LiRe

Ripple Rejection
Output Regulation

RREJ

f~120Hz

oVo Load

I .. ,~O to 20mA

Output Voltage Change \\ith Output
Temperature

VREr=O
Vlc~2.5V

Input Bias Current

IT

Vlc-2.SV

AVD

Common-Mode Rejection Ratio

VCM
CMR

Range

Unity-Gain Bandwidth

BW

Output Swing

Vop

ase.

f

Frequency

Standard Deviation of Frequency
Frequency Change with

Ta~2S'C

CT-O.OOlpF,

V cc~ S to 40V,

V

-

10

30

mV

66

-

dB

20

50

mV

0.3

1.0

%

0.4

1.36

%

100

-

rnA

2

10

2

10

mV
pA

60
-

-

dB

70

-

dB

-

MHz

3.S
-

kHz

3

0.5

-

-

450

-

V

V

-

%

1.0

5.0

10

%
%

-

5.0

13.6

3.5

-

V

C T~ O. OlpF, 3Pin

-

0.5

-

ps

-

-

%

V'h 0

duty~O

-

1.0

-

V

Vth"'~z

duty=max

-

3.5

-

-

-I

-

V
pA

rJf L, ..

v)

Ouput Pulse Width

Tp

Maximum Duty Cycle

D...

(penkl

100kClC~Const

Vcc-S to 40V
Ta~O

to +70'C

Ta~-20

to +7S'C

3Pin

45

I,

Input Voltage Range

VIS

Sense Voltage

Vs

-0.7

-

()/o

V

V(Pin9)~2V, Ta~25'C

V( Pin2)- V(PinJ) "'SOmV
Ta~-20

to +7S'C

Sense Vol tage Change with Temperature

rJVs/rSTa

Collector-Emitter Breakdown Vol tage

VCE

Collector Off-State Current

I

Collector-Emitter Saturation Voltage

VC£\U!I

Ic~20mA

Emitter Output Vol tage

V,

VC(·~20V, I,~

Turn-off Voltage Rise Time

/,

Turn-on Voltage Fall Time

If

L~d

VCE~40V

HITACHI

200

220

-

0.2
-

-

-250pA

V2

~2V,

0.01

mV
mW'C

50

V
pA

2

V

1
IS

-

V

-

0.2

-

ps

-

0.1

-

ps

-

5.0

10

rnA

17

Pins

1,4,7,S,9,.l1,14, grounded

Note) -DuratIOn of the short· circuit should not ex.(,E'ed one second.

ISO

40
-

Rc~2kCl

1sT

$

5

to+1.0

All other pi ns open.

126

5.4

-

RT-J.S to

Output Ampl i tude

Standby Current

Unit

5.0

-

I!;f

Vcc~40V,

Total Device

RT~2kCl

max

4.6

-

rJf/rJTa

Input Threshold Vol tage

typ

min

I.St03.4
-

p

Temperature

Input Bias Current

Output

to +75'C

VIO

Common-Mode Iuput Voltage

Limiter

to +70'C

Ta~-20

los

Open-Loop Voltage Gain

Current

Ta~O

to 40V

Input Offset Voltage

Amplifier

Comparator

rJVo/rSTa

VCC~S

Short-Circuit* Output Current

Error

Oscillator

Test Conditions

Output Voltage

HA17524G,HA17524P
.APPLICATION NOTE
•

Principal in HA 17524 Operation

+ 5 \"
I - - - - + - - to wh"l(' Iht' mtt'rna! circuitry

Fig. 1

HA17524 Block Diagram

HA 17524 is a switching regulator circuit using Pulsewidth
Modulating Method (P.W.M) constructed by the block shown
in Fig. 1.
Timing resistance, RT and timing capacitance, CT control the
oscillating frequency and the CT is charged by a constant
current generated by the RT. Lump signals (saw-teeth wave)
at CT terminal generated in this oscillator is available for
reference input signal to comparators which control the
pulse-wideth.
'1'"

POSitiVI'

OUljJ11I

Hl'guia!l'u

Commonly connected outputs from the error-amplifier, the
current limiter and the shut-down circuit is provided to the
comparator, \l\!hich enable to break output stage by input
signal in anyone of those circuits.
• Blocks Description
Oscillator; The oscillating frequency f is calculated from the
following equations. Fig.3 shows one example.

f""1.l5/(RT' C,)

IHff

R T~ 1. 8kO to 100kO
CT~O.OOl to O_l,uF
f ~ 140Hz to 500kHz

\",,1111,:<,

40uk 1-'"7-I---j-----j----j

(a

I

Forward Output
stahilizingSourc('

I

h

I

H{'\"t~rsl' Output

Stahi I i zing

j{)Okl--~I-","",

SOlll'CP

'C 10k I----''''''I---j--''
~ 10k I - - - I - - - j ,

"~

Fig.2

Biasing in Error-Amplifier

As shown in Fig. 2 the reference voltage connects to noninverted on inverted input terminal of error-amplifier via
resistance divider.
The output voltage from the error-amplifier is compared with
the lump signal of the Timing Capacitance CT, as shown in
Fig. 1 and comparator can provide a signal with modulated
pulse width.
This signal, then, control output transistors 01 and 02,
making an open loop to stabilize output Voltage.

eHITACHI

-

4k

Ik
4110

Fig. 3

Oscillating Frequency vs
Timing Resistance

127

HA17524G,HA17524P

Then the lump wave shown in Fig. 4 is available at pin 7, CT
Terminal since the CT is charged by the constant current I
generated by the RT.

Cr Terminal Waveform

J~ V.H'F- V£B(~:)- VES(Ql)

I!J.V- V H -

Vl.~3.8-0.9=2.9V

Current Limiter: Threshold Voltage (VS) of sense amplifier
for current limiter is calculated as follows;

VS=VBdQd+Il R,-VBE(Q')
=I,R,
=200mV typo
At Current limiter Sense Amp shown in the Fig. 6, when
V + - V _ ~ 200m V, Q1 turns "ON", Phase compensation
terminal becomes low level and Output Switching element is
cut off.
Fig. 7 shows an example of detecting current limit. As the
range of Input Voltage is -O.7V to +1.0V; detection output
of current limit is provided from GND Line.

T.....l./·Il.V
C,

Fig.4

Oscillating Circuit and C,
Terminal Waveform

The output pulse signal at oscillator is used as elements in
Flip-flop circuit and (a synchronous signal of clock-pulse)
switching. The pulse-width which can be controlled by the
timing capacitor CT as shown in Fig. 5 provides function to
gain a dead time of output.
0

Fig.7

An Example of detecting current limit

Vcc=20V
T.~25·C

;::•

/

1.0

~

£

0.4

~
0.1
0.001

V

0.004

V

+ Fnn

I

R,

fl.-\17524

R,

-I

R,

l( V(8~Ut)+ Rl+R2
VoR,)

//

/o(mu!=lfs

Ios~~
Rs

v,,, ..,, =200mV
0.01

0.04

0.1

Timing Capacitance ('1 (/IF)

•

Operating waveform at every part
HA17524

Fig.5

Dead Time vs Timing Capacitance

+-----4--,.

Sk

Reference Voltag.e: The regulator (reference voltage: VREF
~ 5 ± O.4V) is built in Integrated Circuit. It can be used as reference power supply of error amplifier which determines
Output Voltage Output (V out ). And also, it is connected as
bias source of another circuit in IC.
Error Amplifier: Biasing in error amplifier is shown in the
Fig. 2. Input Applied Voltage is required to be set within the
range of common-mode Input Voltage (1.8V to 3.4VI. To
control gain of error amplifier, shunt resistor is inserted
between phase compensation terminal (Pin 9) and GND. If
resistor and capacitor are inserted between phase compensation terminal (Pin 9) and GND in series, phase compensation
is available.

Sk

""';'U..fIf1l'-4--<> Vo"
SV

(Dlnv

(2) Non In\'
HII-.....--l@Ref
H_-~@RT

~rT

3k

E, @I--......- -......
+CL@I------~-......
-CL@~----_<

0.001

SOk

Fig.8

Unit R: Q
C: ,uF
Rs

Breakdown Voltage types
Chopper Switching Regulator

Fig.6

128

eHITACHI

Sense Amplifier for Current Limiter

HA17524G,HA17524P

Fig. 9 shows operating waveform at every part, when the
circuit configuration of breakdown voltage type chopper
switching regulator (shown in the Fig. 81 is used. Operating
Conditions are as follows, f = 20kHz, VOUT = 5V. At
output section, two channels are connected in parallel. Operating waveform inside IC is shown at the same time.

• Circuit Applications
Simple polarity switching regulator: Fig. 10 shows the
circuit configuration of HA 17524 polarity switching regulator which has small current capacitance (VOUT = -5VI.
Vee = 15V

.CAUTIONS
Compared with the conventional series regulator, switching
regulator generates high frequency noise by switching current
quickly. To reduce noise, the following shall be followed.
11 As a general rule, insert line filter in order to reduce noise
at the side of Input.
21 To reduce noise at the side of output,
(al Output wiring should be twisted.
(bl Power Source and output wiring should not be
bundled.
(cl Capacitor should be inserted at the side of .Ioad.
(dl Power frame should be grounded.
31 When grounding frame, output (OVI and Shielding wire,
Only one of them should be grounded. Impedance must
be as low as possible. And also, Power frame should be
grounded. In case of choosing external parts-9xternal
switching transistor, diode, coil and etc. -, it is necessary
to consider their capacitance and characteristics.

5k

Your
E,
......-II-----jCT +C.L
0.01
8~~n -C.L

Ose Out

GNComp
Unit R: Q

c: "F
Fig. 1 0

Simple Type Polarity Conversion

Tracking switching regulator: The circuit configuration of
tracking regulator which uses transformer is shown in the Fig.
Fig. 11 (VOUT = ±5VI.

Cr Terminal

nsr Ol"r

Comparator
OUT

Fig.ll

Tracking Switching Regulator

Push-pull switching regulator: Fig. 12 shows the circuit
configuration of Push-pull switching regulator which uses
transformer. Th is system is su ited for large power. Output
transistors inside HA 17524 can drive external switching
transistors respectively.

'"
Sk

1m!!

(LUI

L - - - - - - - l - - - . - L - - -_ _---l----l-_ _ _ _---4

Fig.9

Operating Timing Chart of each part
Fig.12

$

Unit R: Q

(': "F

.,j,.

HITACHI

Push-pull Switching Regulator

129

HA17524G,HA17524P
OUTPUT SATURATION VOL TAGE VS.
COLLECTOR CURRENT

OUTPUT VOL TAGE VS. SUPPLY VOLTAGE

1. n

6. 0

~

V

):= ~f-j-

/V

5. 0
0

II

V

V

0

/

5

0

/

/

1. II

/

0

10

20

40

30

Supply Voltage \h (V)

,

10

.,.0

3n

40

5n

Collector Current 1(' (m':\)

OSCILLATING FREQUENCY VS.
TIMING RESISTANCE

OUTPUT VOL TAGE VS. FREE AIR
TEMPERATURE

5txlk "'-;"""''''T'TTTTTr-r1'',.
limn
11111"

f---N-++ttttt---+-+- 'V",cc;':ib\,
f--+-I'kHftl4l----l-+r = 25'C

5. I .-,-,-,---.--.-.-....-.-r-.-"II"-,

I--H-t-+-+-++--f-+-ilicc':'2!iv l(j= OmA

=- 4.9I-HH-+-+++++-+-HH---1

05

Timing Resistance Rr (k12

~

Frrt":\ir Tt'mpl'ratUrl' ('C,

DI;AD TIME VS. TIMING CAPACITANCE
ItI

~~c l~~~=

To 25'C-

3

L

.•

/'

~

;: 1. II

l
./

n. :,

O. 1
0.1101

./
~ I-""

0.003
Timing

130

0.01

0.03

CapRI'iIIl.IlCt' ('1' (/1

0,1

F)

~HITACHI

A/O,O/A Converters

•

HITACHI

131

HA19202, HA19203M P
With development of the digital electronic technique, AID
converters have been playing an important role of interfacing
analog-to-digital conversion_ Requirement for the high-speed,
high-performance and low cost AID converters is increasing
especially in color TV l!Pplications which need analog-todigital conversion for video signal processing_

e4-bit AID Converter

HA19202

The Hitachi AID Converter HA19202 has a 4-bit parallel
sampling system_ The HA 19202 is useful for video signal
processing .

• FUNCTIONS
•
•
•
•
•
•
•

4-bit Comparators
Gray Code Converter
ECl-to-TTl Converter
latch Circu its
Gray-to-binary Code Converter
Sampling Clock Pulse Shaper
Underflow Output Switch

(DP-22)
HA19203MP

.'

• FEATURES
•
•
•

•

•

Conversion Time
The sampling rate is 10 million sampleslsec (max).
Output Stages
Open-collector type, TTL compatible
Expansion to 5-bit AID Converter
Two HA19202's easily make a 5-bit AID converter, as
shown in Fig. 2. Table 1 shows the output patterns in the
4-bit application. The output patterns in the expanded 5bit AID converter is shown in Table 2. V L is the lowest
reference voltage and VH is the highest reference voltage.
High-performance
The comparator utilizes an ECl circuit. The output conversion to Gray code is achieved by an ANDIOR circuit.
The error at the middle converting point will not exceed
an lSB.
Reference Voltage of Comparator
The power supplies, Vl and VH, should have a low impedance to prevent the external influence.

• PIN ARRANGEMENT
HA19202

(V{"f'l

(MP-18)

HA19203MP

K Sampling C\IH'k
Ii L.atch ON/OFF
~1.l·nderflow,

02"

ITop Yit'Wl
(Top \'jew)

132

~HITACHI

HA19202,HA19203MP

I
I

L_____ ~_

~-__=-_~_-=-'_______ j

_=_-_

to Gnd or to Vet

\\, > I.lr
\'1I"\"\I-?\.!I
ruiiloU.,\"

\

\1I,11".itIJI'

hI

®----1""t_ "

=_----'---'--.,!

~.Jml,11111!

"\

Output
1)1)1'1: 1 111:

~-H-t_"

CI,,,·1..
1'111 ~"

r-

~!t.:n[tl---' " " - - - - - - - - - - - -

" . ,'

.

-

r-

\ IJ c'''U\','rh,tl 1)1111'111

Fig. 2

Fig. 1

Timing Chart

Expansion to 5-bit AID Converter

• ABSOLUTE MAXIMUM RATINGS

(Ta~25'C)
S ym bol

Item

V, ,

Hating

Unit

VI\

7.0
7.0

Output \'oltage at M. Q

V..

15.0

V

Power Dissipation

1',

350
10- +75
--55- + 150

mW

4.5-6.5

V

Supply Voltage
Input Voltage at

K.L

Operating Temperature Range

T. ,.,

Storage Temperature Range

T."
V,

Operating Supply Voltage Range

•

HITACHI

V
V

·c
·c

133

HA19202,HA19203MP

Table 1: Output Patterns (4-bit)
a) L: GND

b) L: Vee
Vs

Vs
V. V,· V, V, V. V. V. V, V. V,

VIO VII

Vl3

VIZ

@ L

L

H L

H

L

H

L

®

L

L

L

H

H L -L H H L

L

H H

L

L

H H

@ L

L

L

L

L

L

L

H H H H

H

L

H L

H L

H L

H H H H L

L

v,

Vo V,

VI. VIS

H

@ H L

H

L

L

H

L

H L

H L

H L

H

H

L

L

H H L

L

H H

L

L

H

H L

L

H

@ H L

L

L

H H

H H

L

L

L

L

®

® L L L L L L L L L H H H H H H H H
@ H H H H H H H H H H H H H H H H H

V. V, V. V9 VIO VlI VIZ V13 V14 VIS

V, V. V.
H
L

H L

H

H H H H

® H L L L L L L L L H H H H H H H H
@ L H H H H H H H H H H H H H H H H

Table 2: Output Patterns (5-bit)
Vs
VL

V.

Vo Vi

V, V,

V.

V.

V,

V.

V.

VIO Vll Vu VI3 V14

V.

Vo V, V, V, V. V. V, V, V. Yo VIO VII Vu V13 Va VIS

VIS

·2'

L

L

H

L

H

L

H

L

H

L

H

L

H

L

H

L

H

L

H

L

H

L

H

L

H

L

H

L

H

L

H

L

2'

L

L

L

H

H

L

L

H

H

L

L

H

H

L

L

H

H

L

L

H

H

L

L

H

H

L

L

H

H

L

L

H

H

2'

L

L

L

L

L

H

H

H

H

L

L

L

L

H

H

H

H

L

L

L

L

H

H

H

H

L

H

L

L

H

H

H

H

2'

L

L

L

L

L

L

L

L

L

H

H

H

H

H

H

H

H

L

L

L

L

L

L

L

L

H

H

H

H

H

H

H

H

2'

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

• ELECTRICAL CHARACTERISTICS (Ta~25·C)
Item

Test Conditions

Symbol

min
-

typ

max:

33
-

4B

Unit

Supply Current

Icc

Vee-5.0V; Input Clock Pulse-IOMHz

Maximum Sampi ing Frequency

Vce -5.0V; duty-50%

Pin·B Minimum Input Voltage

ise
ViN

B

Pin·F Maximum Input Voltage

ViN

F

1.1
-

-

Pin·A Maximum Input Voltage

Vi . .

A

-

-

Minimum Input Voltage Difference between
Pins E and F
Pins K and L Input Voltage("H"Level)

av"

1.0

-

-

V

V,H

-

-

V

Pins K and. L Input Voltage( "L" Level)

VIL

2.0
-

-

O.B

Pins K and L Input Current( "H"Level)

Vcc -5.25V; V,-2.7V

-

-

20

pA

Pins K and Input L Input Currentt "L"Level)

I'H
IlL

Vce -5.25V; V,-0.4V

-

-

-0.4

mA

Pin·K Input Clamp Voltage

V,K

-

-

-1.5

V

Pins M-Q Output Voltage

VOL

-

-

0.5

V

Pins M-Q Output Voltage

VOL

Vn ·-4.75V; [1.,- -IBmA
Vcc -4.75V;
Low Output Level; I"L -B.OmA
Vcc -4.75V,
Output Low Level; I"L-4.BmA
Vec -5.0V; VB -I.BV; V,-3.BV

-

-

A·to·D Switching Threshold Voltage

Vee-5.0V

10

-

MHz

-

V

Vee -0.7
Vee 0.7

-50

0

rnA

-

V
V

V

0.4

V

+50

mV

Resistance between Pins Band C

R. c

300

400

500

Resistance between Pins C and D

ReD

300

400

500

Resistance . between Pins D and E

RDE

300

400

500

Resistance between Pins E and F

REF

300

400

500

n
n
n
n

A·to·D Converter Frequency Response(lMHz)

i'H

Vcc -5.0V; Referred to i-100kHz

-1.1

0

+1.0

dB

A·to·D Converter Frequency Hesponse(3MHz)

i'H

VC(·-5.0V; Referred to i-100kHz

0

+1.0

dB

Pin-A Maximum Input Impedance

Z, • .s

Vc<·-5.0V;

-3.0
-

100

n

134

•

v.. ,-2.BVnc

HITACHI

-

HA16613A

eS-bit Dual Slope Type AID Converter

HA16613A is a 8-bit Dual Slope Type AID Converter, which
is bipolar II L structure a.nd is. designed for +5V mono power
source. It is suitable for microcomputer, home appliance,
industrial equipment, etc.
•

FEATURES

•
•

Two-channel analog input
Series count output and 4·bit parallel output as well as
8-bit parallel output are possible.
Oscillator and regulator are built in.

•

(DP-28)

• BLOCK DIAGRAM
6.8k

.PIN ARRANGEMENT

6.8k

2'
2'

2'
Analog
Input

2'

2'

CHS
INI
IN2

REF

OFS
IGI
IGO
GNOI

(Top View)

.ABSQLUTE MAXIMUM RATINGS
Item

(Ta~25°C)

Symbol

Supply Voltage

Rating
~O.3

Terminal Voltage

Unit

to Vn

V

.- 5

mA

±500
t200
to +75

I'A

v,·,

V

Standard Current of Power Source
Logic Output Current
Integrated Output Current

1,<,,,

Operating Temperature

T. ,,,

~20

~55

Storage Temperature

eHITACHI

I'A

to +125

135

HA16613A

.ELECTRICAL CHARACTERISTICS (Vee-SV, V FS ,:,2.0V, Vzs=O.SV, V,=2.4V constant,
Jose=10kHz, Ta=2S'C)
Item

Symbol

Test Condition

Resolution

T,-O-HO'C
N,;;;'16

Accuracy

Analog Input Voltage Range
Standard Voltage Tmprature Dependency

Il.Vs/ll.T.

between

T.--20-+7S·C
Vee -4-6V

Pin lS&16
R L-2.4kO

Standard Voltage Internal Resistance

Il.Vs/ll.h

1l.!..JIl.T.

Oscillation Frequency Voltage Dependency

1l.!..JIl.Ve ! ... -100kHz

Reference Voltage

VREF

Analog Input Current

I'N
lot.o.,ef)

1

0 ( •• >1.1;)

IlL
I/H

-

%

-

Vce-2

V

I., " ...,l - -SOOpA
h-l-SmA

! ... -100kHz, T.--20-+7S'C
Short circuit between Pin 15&16,

I., ...... ,=-SOOpA
V1N-OV
VOH- Vecl2
VoL -0.4V
V1N-OV
VIN""'" Vee

-

±SO
±100

-7

0

-

2.4

-

±0.3

-

ppm/'C

+7
S

%/'C
%/V

-

±1.8

-

1.20

1.340

-0.2

-

SOO
-20
-

-

-100

0

-

1.110

-

mV/V

-SO

-

-

-

-

-

20

V
pA
pA
pA
pA
pA

-

-

V

-

0.4

V
V

Ince"",.)

PT

136

0.39
0.39+
Istep

1.0

Power Dissipation

** :

-

-

Maximum Operating Frequency

IOL
ADE, & DOT.
Applied to ADS, TS, CRY, BIT, & CHS.

*. Applied to 2 -2',

ms
bit

v,.
Vce( opr)

Three·state Output Leak Current

-

V,L

Operating Supply Voltage Range

Note)

Unit

S.2
80r6

0
T.-O~HO'C

Dependency

Input Voltage"

T.--20-+7S'C

Short circuit

Oscillation Frequency Temperature

Logic Input Current·

max

-

VlNeep.)

Standard Voltage Spply Voltage Dependency Il.Vs/Il.Vee

Logic Output Current'

typ

min

-

! .. <,-200kHz

Conversion Time

T.--20-+7S'C

4
200

Vee-SV
v,-O- Vee

-

0

~HITACHI

-S

5 Vee max

-

-

30

-

60
S

kHz
mW
pA

HA16613A

• TERMINAL DESCRIPTION
Terminal

INl ·IN2
CHS
ADE
ADS
DOT
BIT

Description
Analog input voltage is applied.

eN 1 ...... 1 channel)
IN 2 ...... 2 channel

(01 :: 21 channel)
channel

For switching the analog input terminal.

AID Conversion end signal is applied. (0 : End

1 : under conversion

)

AID Conversion start signal is applied. When ADE-l. AID
conversion starts at negative edge of ADS input signal.

AID converted pulse is directly outputted between ADS and ADE.
( 3 state is impossible.)
For switching 6-bit or 8-bit full scale.

(~

: Sbit)
: 6bit

Digit switching at 4-bit parallel transfer.

CRY

(0 : 4 bit lower
1 : 4 bit upper

+ 4 bit upper)
+ 4 bit upper

Make 8-bit output terminal to 'be high impedance.

TS
2 0 -2'
OSlo OSC

(0 : Output
)
1 : High Impedance
Binary output terminal
During AID conversion, the previous data is available.
Oscillator external terminal.
When a clock is applied from external part, a resistor of

some hundred k
REFS, Vs

n shall

be added to OS!.

Regulator terminal

REF

Reference voltage for integrator is applied.

IGI· IGO

Input & output terminal of integrator

Generally connected to GND.
OFS

Terminal for offset adjustment, in case of small digital
output through AID conversion .

•

HITACHI

137

HA16613A

LINEARITY CHARACTERISTICS
(LEADING EDGE)

LINEARITY CHARACTERISTICS

l

300

I

VnL5.0)

250

f--

0

I-

f~,"'IOkH.

V

2channel

.

200

~

IS0

/

I-

~bilt Full scale

I-

V

I-J
I.-l
,J

1,-1

If"'
,-J

/

r

,

CUT" i A~E fluS

s
I

0.2

IJ

,

I- 1-1-

/

0

r

0

V

/

0

v)'Jo~ I

I- jos("=200kHz.
R,·=6.8kQ

USing a BUilt-in Regulator

0.4

0.6

0.8

Analog Input Voltage

1.0
VI.~

1.2

50

1.4

I

I
I

I
I
ISO

100

Analog Input Voltage VI.\' (m\')

(V)

CONSTANT VOLTAGE-TEMPERATURE

CONSTANT-VOLTAGE INTERNAL

DEPENDENCY

RESISTANCE

1.25

I-

V,.UoJ

-f-

RI.·-=2.4kQ

.. 1- -1-10

r-t-t-t-t--

1...... -

1-1-

-

1.150 I--+-l----+-+--+-+--+-+--+~

5

l.lOSo
Ambient Temperature

•

50
Ta ('C)

100
CUfl'l'nt of L'"nstant"v"ll"",·
}{"Kulllll·J j',lwI'r S"l/n't' II. \ m,\'

HINTS FOR USE

1. In the equation on the preceding page (Note 1), if R. = 0,
Vzs = OV (possible to convert from input of OVI. However, the linearity around VIN = OV will worsen.
It is recommended to use under condition Vzs is more
than 0.1V.
2. After Three State is applied, the time required for changing from digital output to high impedance and vice versa
is 4 - 8#s. The quantity of current flowing through
digital output terminal is equal to that of a LSTTL.
Therefore, when connecting digital output to a busJine
and reading it into a microprocessor in a high speed, a
three-state buffer is required for it.
3. If an analog input changes during AID conversion, there
may occur some troubles in the olltput data. In this case,
Sample & Hold is necessary.
4. Timing from CHS (Channel Switch) to ADS (AID Conversion Start) is more than or equal to 0 seconds. It may be
accepted that CHS and ADS are performed at the same
time.

138

•

When input analog voltage of ZS or less, input analog voltage
of ZS or more and AID conversion is done, after the maximum conversion time perform AID conversion.

HITACHI

HA17008 RP , HA17008R G .~:~~:~!~PIYing
HA17008R is a 8-bit monolithic D/A Converter, with a reference current amplifier, a ladder resistor of R-2R and eight
high speed current switches built in. By establishing a reference current and resistance, it is possible to change the
maximum output current according to the applications. And
it is pin-for-pin compatible with DAC08 and its power
dissipation is small and realizes high settling speed.
The reference current is divided into current value of each bit
by the ladder resistor of R-2R and maximum output current
will be 255/256 of the reference current. For example, the
maximum output current gained from reference input
current of 2.0mA will be 1.992mA.
HA 17008R provides a wide scope of application including
CRT display, control of step motor, programmable power

Digital-ta-Analog

HA17008RP

IDP·16)

source, audio instrument, attenuator, etc.
HA17008RG

•

FEATURES

•

Wide Operating Temperature range & a linearity of
±O.19% 1±1/2 LSB) is guaranteed.
Since the settling time is short, 85ns typ, and fast conversion is possible.
Low power dissipation, 135mW tyPo
Compatible with TTL, CMOS logic.
Reference Supply Voltage is;
VCC = +15V, VEE = -15V.
Output Voltage Range with Accuracy Guaranteed is wide;
-10V to +18.

•
•
•
•
•

IOG-16)

• BLOCK DIAGRAM

• PIN ARRANGEMENT

MSB

THe

LSU

Current Switches

..

10

2

I"

R-2R Ladder
Resistor

Vee
(Top View)

•

HITACHI

139

HA17008RP,HA17008RG

.ABSOLUTE MAXIMUM RATINGS

(Ta~25'C)

Item

Supply Voltage

Symbol

Rating

Unit

Vee

+18
-18
VEE to V,,+36V

V

VE-:E

Digtal Input Voltage

Vs V12

Reference Current

I"

Input Voltage Range of Reference Amplifier

VIo:Ef:

Power Dissipation

PT

Operating Temperature

T""
T",·

Storage Temperature

* : In

V
V
rnA

5
VEf~

500
-20 to +75

V
mW
·C

-55 to +125

·C

Vee.

HA17008RG;-65 to +150·C

• ELECTRICAL CHARACTERISTICS
Item

(Vcc~15V.

VEE~-15V. I"f~2mA.

Symbol

Relative Error

E,

Settling Time( ± 1/2LSB)

t,

Propagation Delay Time

11'I.11,tl'l.II

Maximum Output Current Drift

TO(J

Test Condition

Ta~25'C)

typ

min

All Bits DFF to ON

85
35
±IO

Cu~rent

(MSB)

Reft;rence Bias Current
Output Current ..... ith Accuracy Guaranteed
Output Current

III/
In

I.
1.,".. ,

Output Voltage with Accuracy Guaranteed

V,

Reference Current Slew Rate

SRI",

Supply Current

Supply Voltage

Full Scale Current Difference
Digital Input Scale
Threshold Control Voltage
Digital Input Threshold Voltage

140

ppm/"C
V
V

,..A
,..A
,..A

-3.0
0

2.0

,2.1

VH~

0

2.0

4.2

Ul4

1.99

2.04

rnA

0

2.0

,..A

-10

-8.0 to -18V

V",~IO.OOOV

R". R,,~5.000kn
All Bits Low
£'",0.19% V.,~ -15V
Ta~25'C

-10
4.0

V<,<,~+5V
V",~-5V

Icc

V,.,.~+5V

11-:1-:

VH~-15V

1("("

V",·~+15V

11-:1-:

V",,--15V

2.4
-6.4

3.S

-7.S

2.5
-6.5

3.S

-7.8
4.5
-IS

15
-15

IS
-4.0

33

4S

lOS

136

IH.u·=2mA

Vn·=+SV IH.f:r=lmA
Vuc~ -5\'
V'T~+5V

l1i1:F=2mA

V,.,,, -15V

PrJ

V,,.~+15V
Vu.~ -15\'

1f'SS

I fSI

--

VTII"~

IH.f.f=2mA

Jf'S2

-10 to+13.5V

VTII ("
Vnll.

-S.O
-10
-10

eHITACHI

V

3.S

135

174

±1.0

+S.O
HS
13.5

V1'/1I" +1.3

rnA

mA/,..s

-5.8
IH.o·=2mA

Vee

+IS
S.O
2.3
-4.3

/lI.f:,..=lmA

Vf: f:

VIS

0.8
10

%FS
ns
ns

VH~-5.0V

VII.~0.8V

If. f.:

p"

±50

Unit

0.002
-2.0
-1.0

In'

P1"l

Power Dissipation

V'H~5.0V

1\ ~
lOR

150
60

2.0

VII.

Digital Input

max
±0.19

V,H

Digital Input Level

VTHC~OV.

rnA

\'
\'

mW

!,A
\'
\.

\'

HA17008RP,HA17008RG

OUTPUT CURRENT VS. OUTPUT VOLTAGE

OUTPUT CURRENT VS. REFERENCE INPUT CURRENT

2.5

2,0

"
E

-

I

""O-IJ

'iu=-Sr

1.. r=i!mA

I

,/"

1.5

./

1

u

1.0

-

J"r=lmA

I

./

I

./

./

L

. / 1"-

Max. Value

at

/'

VHf-SV

Reference Input Currenl I... , (rnA.)

0.5

SUPPLY CURRENT VS. SUPPLY VOLTAGE (1)
o
-15

-5

-10

10

Output Vulta!!;"

~ill T

.15

(V)

OUTPUT CURRENT VS. DIGITAL INPUT VOLTAGE
:!.O

I I II

"-"

-

I I II
I
f-+-+-+-+---i
11-I1fj-1t-+I-II--+-+--+-+-+-+ 1"'~'=5V
I

I

-

'-

1,,= -lSI

HHH-=T-+(I",,-:C,+s'c-J·+:!s::-·c+·'-_2+'0·"'clt--t-HH-+-tr•.,=:!.OOOmA

>--

\.1)

Supply Voltage Vct (V)

oJ

'"

lu

SUPPLY CURRENT VS. SUPPLY VOLTAGE (2)

""

1.0

2,0

.1.0

'.0

hF.

SUPPLY CURRENT VS. AMBIENT TEMPERATURE

Icc

- 5

-10

-15

-2()

Suppl,v Vultage tj.:f. (\'J

-'0

-~o

20
:\mbirnt Temp('ratun'

IOM!l
IF's- hs

t.

+LSB
to - - 2 All bits ON,OFF
50% to 50%

Delay Time

IT'LI{, tPIIL

Output Capacitance

Co~,

Logic Input Voltage

V"
V,N

Logic Input Current

l,N

Ligic Input Voltage Range

V"

Reference Current Range

IRH

Bias Current at Reference Terminal

I"

3.935

12
12
12
- +0.025 -0.025
-0.1
+0.05
3.999

-5

±IO
-

-2.0
-

±0.4
-

-

250

-

25

-

20
-

-

12
-

Unit

12

bits

+Q.05

%FS

+0.1

%FS

3.871

3.999

4.127

rnA

-

-

+10

-5

±20
-

+10

+2.0

-4.0
-

±0.8
-

4.063

0.1

-

ppm(C

+4.0

V
pA

0.4

pA
ns

-

250

-

-

-

25

-

ns

-

-

20
-

-

pF

0.8

V

-

-

V

-

-

0.8
-

-5V:;> V,N :;>+15V

2.0
-60

-

-5V:;> Y'N:;> +15V

-5

-

0.2
-3
13.5V:;> V':;>16.5V

PSS·h,
V·

PSS·/'-s·

HAI7012C
typ
max

min

-

+20

2.0
-60

-

+20

+15

-5

-

+15

V

1.0
-

1.1

1.0

1.1

rnA

0

0.2
-3

0

/1A

-10

-

+10

-10

-

+10 ppmFS/% v

-16.5;> V-:;>-13.5V

-10

-

+10

-10

-

+10 ppmFS/% \"

V.",~OV

4.5
-18

-

18
-10.8

4.5
-18

-

5.2
-17.2

8.5
-

-23

336

473

-

-

pA

Supply Voltage Dependency

Supply Voltage Range
Supply Current
Power Dissipation

V
t·

V·~15V

t

V

Pr

V·~15V
V ~ -15V

~-15V

eHITACHI

-23

-

-

-

-

5.2

18
-10.8

-17.2

8.5
-

336

473

V
V
rnA
rnA
mW

147

HA17012P,HA17012G

FULLSCALE CURRENT VS.
SUPPLY VOLTAGE
4.00 r-,..---,-,----r-,--,--,

FULLSCALE CURRENT VS.
OUTPUT VOLTAGE RANGE
4.00

ro-r-,..--,-,---r--,--,

1l-orr~=15\"

V+=-V-=1.5V
[.,/=

f-+-+--II---+J..

ImA+--+--f--+--+-_--l

:;;:

•

,=

1m.'"

V+ Variable

/1
" ' - V- Variable

8 3.98 H--l--+---+-+--+-t---1

3.99 f--+---+-+--+-t-+---l

3.98 '--....L-..1._L--L--'_.L-....J
o
10
'8

3.966 '5:-'----"'---':---'--'---'---..1.-:10
Output Voltage Range

Vf)('

(VI

Supply Voltage V',V· (V)

SUPPLY CURRENT VS. SUPPLY VOLTAGE(1)

SUPPLY CURRENT VS. SUPPLY VOLTAGE(2)
-18

6.0

yy- =15V
lu/= l.rnA

All Bits"i"

10 =lo=GND

4'

~

:..
5.0
u

(

~

~

4.0

...-

1\

..-

V

,........ ..-

~-15J

t- I.. J=lmA
10 =1O=GND

{All Bits~Hh

-17

I

-16

o

18

10

10
Supply Voltage

Supply Voltage V' (V)

~~

18
(VI

SETTLING WAVEFORM(ALL BITS ON-OFF)
l

Input

IV:di~
To OscilloscHpe

lof--_--

/" .....~II--+--t--+--+--l--+--+---1

DUT
Slltel

Probe Capacitance
Test Circuit

t=50ns/di\'

148

eHITACHI

7pF

HA17012P,HA17012G

•

The full scale output current (I. + 1;; I is four times as large as
the reference input current (lREFI on account of the internal
circuit.

APPLICATION NOTES

1. Method to Apply a Reference Input
•

Positive Reference Voltage

IFS = I. +

r.; ~ 41REF

VREF is converted to the reference input current (lREFI by

R I •·

V'

VREF
IREF":--RIO

HI

10-

19

10-

To erase the input bias current error of the input operational
amplifier, R I • = Ru'
The phase correction capacitance Cc is 0.01 "F generally and
the minimum value can be found by;

Cc = 5

X

A IO (knl (pFI

For example, when AI. 0 5kn, the minimum value of Cc is;

22J/F(Tantalum)

Cc = 5 x 5 = 25 (pFI

O.I/~F

•

V'

Negative Reference Voltage
V'

2. Method to Connect Output Circuit
(1)

•

Resistor
Unipolar Negative Output Voltage
9th

10th

11th

t-~*,--,

I.OUOOkU.

-

22.uF(Tantaluml
0.111F

~'{)l"T

LSB

v-

10

[npul Code

MSB

j(j

LSB

1111111 11111
1 1 1 1 1 1 1 1 1 1 10
100000000000
000000000001
000000000000

I.O()(lOkQ

r;;;:
IIAI7012

["

["

V(J{;r

(V)

VOL'T

(V)

I rnA)

(rnA)

3.999
3.998
2.000
0.001
0.000

0.000
0.001
1.999
3.998
3.999

-3.999
-3.998
-2.000
-0.001
0.000

0.000
-0.001
-1.999
-3.998
-3.999

V(II"T

+:!.UlIIIIJ\'

•

Bipolar Output
[k,.,.~1.0000mA
~!h

Hlln

lith

LSH
Input Code
~[SB
1 .lIlK)llk~l

I"

Tn

~i'l

T

ron

LSB

1111111111 11
1 1 1 1 1 1 1 1 1 1 10
100000000001
100000000000
01 1 1 1 1 1 1 1 1 1 1
000000000001
000000000000

l..

["

Vof'r

ImA)

I rnA)

IV)

3.999
3.998
2.001
2.000
1.999
0.001
0.000

0.000
0.001
1.998
1.999
2.000
3.998
3.999

-1.999
-1.998
-0.001
0.000
+0.001
+1.999
+2.000

IV)
+2.000
+1.999
+0.002
+0.001
0.000
-1.998
-1.999

HAl701l

•

HITACHI

149

HA17012P,HA17012G

(21 Method to Connect-Output Buffer and Amplifier
• Unipolar Positive Output Voltage (Straight Binaryl

91b

10th

11th

LSB
IOV

- - - - - - - - - - - _----

Von
SV

Zs

MSB
Digital Input - - - _

HA17082

•

Unipolar

91b

10th

Positive

11th

Output

Voltage

(Complementary Binaryl

LSB

Von

J

5V

Fs
Digital l n p u t - - -

HA17082

•

Symmetrical Offset Outpat Voltage

91b

10th

11th

LSB

+lOV

--- - - - - - - - - -- - ...,..---

Zs

HA17012

Fs

-lOY

HA17082

~igital

150

•

HITACHI

Input _ _ __

Microprocessor Peripheral

•

HITACHI

151

HA13007

.Quad. Driver

HA13007 is a monolithic, bipolar, high voltage, high current
Quad. Driver especially designed for switching applications.
This device is recommended for the interfacing from low·
level logic to peripheral loads such as relays, solenoids,
stepping motors, LED, heaters and other similar high voltage,
high current loads .

• FEATURES
•
•
•
•
•

Guaranteed minimum output breakdown of 50V, and
maximum output current of O.7A.
Low output collector-emitter saturation voltage.
Compatible inputs with TTL, LSTTL and 5V CMOS.
Included integral transient suppression diodes for induc·
tive loads.
Less input current.

(DP·16A)

• TRUTH TABLE

• PIN ARRANGEMENT

ENABLE

IN

H

H

L

H

L

H

L

X

H

OUT

for each input:
H = High 11.'\'1.'1; 2.0V
L = Low It~\'t'l ; a.BV
x = Irrel('vant

(Top View)

.ABSOLUTE MAXIMUM RATINGS (Ta=25°C;
Item

Symbol

Rating

Unit

J It

~ote

2. 1

Supply Voltage

V{'(.'

7.0

o to

V

I

~

1.8

Input Voltage

VI."

Vee

V

d:; 1.5

Output Voltage

Vct:x

60

V

1.2

Output Current

lOfT

0.7

A

Power Dissipation

PT

1.85

W

Thermal
Resistance

IJunction-Case
IJunction-Ambient

0"

15

'C/W

0,.

60

'C/W

"J'\0

~~\

I

40

40

80

~

120

160

Ambient Temperature Ta (t)

150

'C

to +125

'c
'c

Junction Temperature

T,

Operating Junction Temperature Range

TjllJ'

~40

Stor.age Temperature Range

TS/I

-55 to +125

~otel

152

1. The derating curve is shuwn below.

$

HITACHI

*1

A maximum tht'l"mal reslstanct' Junctiun to amlHt'nt uf 35t;/\\'
with the de\"jC't' soldt·rt'd intI) a p.e. hoard is a('hit'\'ahlt'
provided thl:'re IS t'nuuJth ('opper on the p.e. huard.

HA13007

• ELECTRICAL CHARACTERISTICS
Item

(Ta~25°C. Vcc~5.5V)

Symbol

Output Leakage Current

leEK

Output Sustaining Voltage

VCf;(susl

Output Saturation Voltage

VCEIsal1

Input Low Voltage

VII,

Input Low Current

Ill.

Input High Voltage

VI}!

Test Condition
Ve,~60V.

VIN~0.8V

VIN~0.8V,

Vee

lc~IOmA

~4. 75V,

VIN~0.8V,

1/1/

lc~0.7AX4

Supply Current( All Output ON)

/,

Ie

~0.7AX4,

Supply Current (All Outputs OFF)

Iso

VIN~0.8V

I.

VN~50V

V,.

Clamp Diode Forward Voltage

I

V1N -2.0V

lc~0.7A

1e~0

Input High Current

Clamp Diode Leakage Current

IIc~0.4A

_

l VIN~2.0V

max

Unit

-

-

100

pA

60

-

-

-

0.3

0.5

-

0.5

0.7

V
V

-

-

0.8

V

-

-I

±IO

",A

2.0

-

-

0

V

±IO

pA

I VL,~5.0V

-

-

1.0

rnA

(All Inputs)

-

50

65

rnA

-

8.0

-

rnA

-

-

50

",A

1["~1.0A

-

1.2

1.6

V

I ["~1.5A

-

1,.3

2.0

VIN~5.5V

(All Inputs)

VIN~0.8V

typ

min

V

Turn-On Delay

11'1./1

-

1.0

-

",S

Turn-Off Delay

i'>III.

-

0.3

-

I's

•

O.h,-,-,-,--,,--,--,---,

0.

0. 6

/

S;
Ta=+85"C

2S'C

~

'- ~
•

"'

f---'=

~

~

d

I_,o'c

,

0.

0. 2
~

l/

.#
V

~

:;
;

~V W
>~ ~V

::;;

s:
.-

•

w

k% ~

V

0.2

__V

0.61--+--+--+--1--1--:;>1-"/'---1

<3

o.,I--I--I-----:I---j---j---+----I

~

0.21--+--+--+----1--1----1---1
'n

Vcc=4.75V
VI.v=2.0V
Ic=O.7A

Vcr=4.nv
VI .. =2.IlV
0.4

~~4I~)--~--~--~--~4~0--~--~"(~)--~

0.6

If (AJ

Ie

Ambient Temperature fa ,OC)

-VCf(SOI)

60

• APPLICATION
-Stepping Motor Drive

;;0

•

-

5.S\'{4.75-i.(}\'1

111

•. C>----j--u:h

U

l

M"illr Od

•• O---+---lm1

:w

Il.lJ!
·,Q-------jm

enable

Supply V"ltag(> ~·u (\"1

V" -I,

•

HITACHI

153

HA13406W

.Three-phase Brushless M~tor Driver

HA13406W is a power IC developed for use in the three
phase brushless motor driving.
This provides hall amp, logic part, output amp, control amp,
and forward and back rotation circuit functions in one chip.
As the maximum driving current and voltage is as much as 3A
x 12V per phase. Therefore, this finds best use in the spindle
motor driving of 5.25 inches HOD.

• FEATURES
•
•
•
•
•

3A Output Current Capability.
Low Output Saturation Voltage.
Hall Amp with Hvsteresis.
With Thermal Shutdown.
Low Thermal Resistance Package .

(SP-23T)

• ABSOLUTE MAXIMUM RATINGS (Ta=25'C)
Item

Ratings

Symbol

Unit

Veel

7

V

Output Stage Supply Voltage (Note 1)

Ven

15

V

Output Current

10

3

A

Power Dissipation (Note 2)

Pr

25

W

8j

_,

3.0

Dj _ a

40

Control Stage Supply Voltage (Note 1)

tJunction-Case

Thermal Resistance

IJunction-Ambient

'C/W

o to
o to
o to

Hall Amp Input Voltage

V.

Direction Voltage

VD

Control Voltage

Ven

Junction Temperature

Tj

Operating Junction Temperature Range

Tjop

-20 to +125

·c
·c

Storage Temperature Range

T,t.

-55 to +125

·C

Vee!

V

Vee

I

V

Vee

I

150

V

2. St!'t!' the del'atinM' tune of Fig. I

Notes) 1. Recommended Operating Voltage

min

typ

max

Unit

Vee 1

4.5

5.0

5.5

V

Vee,

10.2

12

13.8

V

§
.t:

]
.~

is
~

If

75"(;

25

20
10
2W

4.25

-20

25

50

70

Ambient Temperature Ta (t)

Fig.l

154

•

HITACHI

150·

HA13406W
• ELECTRICAL CHARACTERISTICS (Ta=25°C,
Item

Vee I =5V, Vee2=12V)
min

typ

max

Vee I

-

10

15

mA

3

10

15

mA

1
3
1

VCTL~OV

-

1.0

15

mA

VCC2

-

105

150

mA

-

150

-

°C

Input Bias Current

-

-

±50

p.A

18-23

Input Common-mode
Voltage Range

2.0

-

3.0

V

Ditto

mV

RL~Open

Thermal Shut- Down
Temperature

BuHer

VCTI.=

Vee I.

Io~O.IA

Hysteresis width

R,~220Q

15

-

30

Sustaining Voltage

Ic~20mA

15

-

-

V

Ditto
13.15.17

-

10

mA

Ditto

-

2.8

3.8

V

Ditto

Internal Reference
Voltage

2.35

2.5

2.65

V

6

Output Resistance
of Reference

-

2.5

-

kQ

Threshold Voltage

Io~20mA

-

100

-

mV

8

VCTL~5V

-

0

±10

p.A

Ditto
Ditto

VCE~15V

Saturating Voltage

Vcrr.= Vee 1,

Io~2.8A

VCTL~IV

-

-3

±10

p.A

Io~0.8A. f~500Hz

-

0

-

dB

11

Input Offset Voltage

Io~20mA

-

100

-

mV

12

-

0
_.

11

f~500Hz

-

dB

-

1.0

mA

1.0

1.5

V

Ditto

5

V

4

Voltage Gain

Io~0.8A.

Leak Current

VCE~15V

-

Saturation Voltage

Ic~20mA

-

2.0

-

0

Comparator

Voltage Range for
Forward Mode
Voltage Range for
Reverse Mode

3

2

-

0.7

V

Ditto

VD~GND

-

1.2

-

mA

Ditto

VD~5V

-

0

-

mA

Ditto

Input Current

2

Ditto

Voltage Gain
Control Amp

Note

1

-

Leak Current

Input Current

Direction

Terminal

VCC2
VCTI.=VCCI

Total

Output

Uilit

Veel

Quiescent Current

Han Amp to
Logic

Test

Test Conditions

Notes) 1, The specification indicates the temperature of the case.
2. The specification shows the sum of the upper and lower saturation voltage.
3. Reference to pin 6.

_HITACHI

155

HA13406W

• BLOCK DIAGRAM
W

VCCI

. U. v, W : Output Amp

Vee2

r--{D--~~~---~--,
I

B
CTL

: Buffer Amp
: Control Amp

D

: Direction

U-Hall

: Comparator
N

V-Hall

: Neutral Point Feed-back
: Protector

W-Hall

II Detecting Output Current

Direction
Hi ; Forward
Lo; Reverse

Control
Voltage

4

5

6

.>-t-----{ 7

Phase Compensation

>------{2

Comparator Out

Stabilizing Neutral Point

Determining

Threshold Voltage I

I
I
I

L--0------@---J
GND

GND

• APPLICATION

• LINEAR DRIVE
Veel

o-.,....-~---

__-,

,----...,..------00 Vcn

I
I

I
I

_

L--t-------cr-J

156

•

HITACHI

HA13406W

Description;
The output stage is saturated at starting and is not saturated
in usual. Therefore, the loss is comparatively large and heat
sink may be required.
Relationship between the current 10 which flows into the
motor coil and the control Voltage V CTL, the following is
given.

I - (R 106 +R lO7 ) VCTL-V R "
0-

RIO?

where

VCTL~

Here, the VRef is the voltage at pin 6 and determined to

Vcc,/2 internally.
Consequently, connecting the output of the servo IC to the
terminal 8, constructs the servo motor driving system.
Under the conditions of R106 = 0, R107 = ~ (i.e. Voltage
gain of the control amp is OdB), Equation (1) will be as
follows.

.................. (1)

RNF

V R .!

Io~ Vcn - V R • J

••••••••••••••••••••••••••••••••••••••••••••••••••••••

(2)

RNF

External Components
Parts No.
Riol.

Recommended Value

-

RI02

R lOl • RHl4. R los

100 (i/4W)

0.220 (2W)

CIOI

I,uF/16WV

CIOJ.

C104.

C105

For detecting output current

IOpF/16WV

For stabilizing the neutral point

For stability

O.I,uF

2

For power supply

100pF/16WV

C H)7

For phase compensation of control amp

10,uF/16WV

ClO6

:-..Iotes}

I

For determining the control amp gain

RNF

ClO2

Note

For stability

-

R 106. R 107

Purpose

For hall elements bias

by-passing

For power supply by-passing

1. Determine it so that the input voltaJte of hall amp (AC) will be more than lOOmVpp.
2. If the system will he adversely affected by the spike voltage at commutation. make it larger (max 22pFJ.

eHIGH EFFICIENCY DRIVE
Vcn

0-.,...---,.-------,

HAl34(~W

--------1

I
I

I
I

L__

y---~-

-20 to +125

Storage Temperature Range

T.tB

-55 to +125

Xote \ See the Derating Curve of Fig.t.

Thermal Resistance

40'C IW
8, ,;;; 3'C/W

(Jj,;;;;;

Fig.1

'"HITACHI

3

HA13415

5.5'11

3V

IN

R,.

Vee

3.~2

V,

OUT-I

CE

S.5V

OUT 2
IN

IN 1
<04

OUT-3

I7V
5.5V

OUT·4
56Qx3

OUT-l
4.5,12, l:i

ov

17V

Fig. 2 Output Short Test
•

Each unshorted output small turn ON and remain

•

On with IC = 300mA per channel.
Perform test for each output.

OC'!'-2 to·1

OV

5.5Y

R,.
27Q

Vcr
3V

CE

1;-';

IN·I
to4

OUT

IN
~'1.

I7V

C'I.
lO,OI"F

:i J
lOms

2.5V

~

IOms

\

/

17V,

OUT OV

4,5.12,1:'1

{

Fig. 3 Capacitive Load Test
•
•

OCSD shall not become enabled and limit IC or disable
the output being tested during the cycling.
Test each output, one ON at a time.

SV

VCf

3V

CE

R,.

LI.

560

250mH

Ie.;

OL'T 1----,\1\1\.,-'

OlT

4,5,12, B

{

"1 .
~'''\
or

toms

}
/

c:-

II"'"

r"

L

Fig. 4 Solenoid Survival Test
•
•

Each output "ON" and "OFF".
Test one output each time.

eHITACHI

165

HA13421 A,HA13421 AMP
HA13421A and HA1342AMP are monolithic power ICs.
dual bridge drivers. The maximum driving current and
voltage are O.33A x l2V per bridge. Therefore, this value
finds best use in the 2 phase bipolar stepping motor driving
to head actuater of 3 to 514 inch FDD.

• Dual Bridge Drivers

HA13421A

• FEATURES
•
•
•
•
•
•
•
•
•

330mA Output Current Capability
Dual Bridge Included
With Power Save
Single - Input Direction Control
Low Output Saturation Voltage
Low Supply Current
Low Input Current
Compatible with TTL. LSTTL & 5V CMOS
With Thermal Shutdown

IDP-16A)

HA13421AMP

• ABSOLUTE MAXIMUM RATINGS (Ta=25'C)
Item
Logic Stage Supply
Voltage
Seeking Supply
Voltage
Holding Supply
Voltage
Input Voltage
Peak Seeking

Symbol HA13421A HA13421AMP Unit Note

Current

(peak)

Vee

7

7

V

1

Vs

15

15

V

1

V

1

1

7

VS2
VI
[0

o to

Vee

500

mA

2

p,.

330
200
1.0

mA
mA
W

3

Tj

150

150

'C

Power Dissipation
Junction
Temperature
Operating Junction
Temperature Range

IOH

•

V

330
200
2.0

los

Temperature Range

7
Vee

500

Seeking Current(DC)
Holding Current (DC)

Storage

o to

Tj!Jp

-20to +125 -20to +125

'C

T6tfl

-55to +125 -55to +125

'C

IMP-1S)

• PIN ARRANGEMENT

eHA13421A

Notes 1) Recommended Operating Voltage

Vee

Vs

1

VS2

MIN
4.5
10.2
4.5

TYP
5.0
12.0
5.0

MAX
5.5
13.8
5.5

UNIT
V
V
V

2) t:iS ms·
3) See the Derating Curve below.
A: Soldered on a print circuit board. (8r,,-~60"C/W)
B : Soldered on a print circuit covered with copper suffieiently.
(Or,"35"C!W)
C : Soldered on pin 4, 5, 12, and 13 with al\ infinity heat sink.
(OJ-... 15"C!W)
D : Soldered on glass epoxy circuit hoad with 10% printing
(OJ-... 120"C!W)
E : Soldered on glass epoxy circuit boad with 30% printing
(8j-... l00'C!W)
F : Soldered on a metal based circuit board «(Jra :iSO"C!W)

eHA13421AMP

(Top View)

•

o

1-0:

,pt Out

,p2 Out

~

;:;
•

1

do

rcc

PS

_LW~0~2~5------~--~
Ambient Temperature

T(!

l'C)

Ambienl Temperalure T,us

IlXl,us

min.

D,

.,

-------------0

-

rSl

~,

168

rS2

•

HITACHI

HA13426

• Three-phase Motor Driver with Speed Discriminator

HA 13426 is a power Ie with a speed discriminator for the
three-phase brushless motor driving of 5 % inch-HDD (Hard
Disk Drivel. It is possible to construct a servo system with
quartz rp,sonator, requiring fewer external components.
Especially EM I noise from motor driver is depressed because
of a voltage drive system .

• FEATURES
•
•
•
•

•
•
•
•

ISP-23T)

Possible to construct a servo system on a single chip
Large output current (3A)
Require no adjustment because of digital servo systen,
The voltage drive system (not supply voltage control)
achieves almost rio spike voltage at commutating, caused
EMI (Electro-Magnetic Interference) conventionally.
The START/STOP terminal of TTL level is attached.
Load-short brake at STOP mode
Maximum current at starting is depressed by the built-in
current limiter.
Wide selection for quarts resonator is perm itted because
of frequency divider.

• PIN ARRANGEMENT
U Hall+In

o

U Hall-In

V Hall+In
V Hall-In
W Hall+In

W Hall-In
W Out
Open

V Out
Integrator Out

• BLOCK DIAGRAM

U Out

r---------------r------T-:--~Jr("("

Current Sense
Speed Discri. Out
Filter
8 Internal Reference

GND

o

Mode Select
, OSC In
Injector

"START/STOP
Vee

(Top View)

Hi : Stop
(Brakel

Lo: Start

1/6')

'" I"cc :
( Open
: 1/:J2
to C:\D: 1/16

10

\·cc

eHITACHI

169

HA13426

• ABSOLUTE MAXIMUM RATINGS (Ta=2S"C)
Item
Supply Voltage
Input Voltage

Symbol

Output Current

Vee
VI.V
fo

Power Dissipation

PT

Junction Temperature
Operating Junction
Temperature Range-Storage Temperature
Range

Tj

Ratings

Unit

Note

15

V
V
A

1
2

W

3

o to

Vee

r-__________________,75t
25

20

~

3
25
150

"C

:~

Tjro,

-2ll...1D +125

·c

Cl

Tat,:

-55 to +125

·C

d::
§

Note) 1. Recommended operating voltage

'0

.!!l

10

~
"-

U5
()

Vcc~12V±15% (I0.2V
13.8V)
2. Applied to HaU Amp, mode select input.
Maximum Input Voltage at start/stop is 6V.
3. See the derating curve.
8j-o';;3'C/W
8j-. "40"C IW

-20

25

150

Ambient Temperature Ta (t)

• ELECTRICAL CHARACTERISTICS (Ta=2S'C, Vcc=12V)
Symbol

Item
Supply Current
Total
Thermal Shutdown Temperature

Hall Amp

Input Bias Current
Input Common Mode Voltage Range
Voltage Gain

Integrator

Internal Ref. Voltage
Voltage Gain (CTL Amp

1. . 0

S/S~2.0V

Is
T,,/

S/S~O.8V.RI.~Open

-

Shutdown

.-

Th/J N

Hysteresis

-

VJI~6.0V

.-

VH

2.0
.-

Output)

max

Unit

50

70

55
150

75

mA
mA

-

·c

20
2

-

-

5.3

10
5.9

6Vo

-

-

VCr:(~alll

fo~2A

-

2.4

Ro

Io~O.4A

.-

0.2
3.2
24

3.0
21

GCTI.

-

10
10
-

6.5
±0.3
3.2
-

'C
V
dB
V
V
V

V

6G('1'/.

.-

III

-

-

Output Voltage Swing

A·
A

lo~0.3mA

-

0.7

.-

Io~-O.:imA

.-

0.7

.-

V
dB
dB

V
I to

•

HITACHI

I

Q

,ItA

Difference of Gain

Note

,ItA

3.4
27
±2
±O.I

Input Bias Current

Note) 1. Sum of upper and lower TRS saturation voltages

170

typ

GI'H
V(I

Vrt·fi

to

min
-

IHII

Quiescent Output Voltage
Difference Betw~en Phase
Output Stage
Saturation Voltage
Output Impedance
Control Amp

Test Condition

be contmued I

HA13426

• ELECTRICAL CHARACTERISTICS

(Ta~25'C.

Symbol

Item

Discriminator

Start/Stop

Current Limiter

Oscillator

min

6.1
-

-

-

VOl.

[o=-0.3mA

["fi

Charge Pump 011 State

Operating Frequency

leu

60

Count Number

N

_.

Input High Voltage

VIH

Stop

Input Low Voltage
Input High Current

VII.

Start

liH

VH=2.0V

Input Low Current

[II.

V1-=0.8V

Reference Voltage
VIII6

1/32 Division Input Voltage

VI/32

1164 Division Input Voltage
1/16 Division Input Current

VI/ti.'

Open

2.0
-

VI.,·=OV

1164 Division Input Current

/t/64

Vl.v=12V

Operating Frequency

I",,·

-

1024
-

max
-

0.2
±0.1
250
-

Unit

V
I.A
kHz
V

-0.15

0.8
-0.5

V
mA
mA

-

-0.2

-0.5

0.56
-

0.60

V
V

-

6.3
-

0.8
-

V
V

-

-0.63

-1.3

-

1.0
-

1.5

mA

8.0

MHz

-

Note

V

0.52
11.2

11/16

typ

5.8
-

Cutoff Current

1/16 Division Input Voltage
Mode
Select

Test Condition
[o=0.3mA

Vem

Output Voltage Swing
Speed

Vcc~12V)

mA

• TIMING CHART
u

w

Hall Amp Input

U Out

\' Out

W Out

eHITACHI

171

HA13426

• EXTERNAL COMPONENTS
Parts No.
RIOI

Recommended Value
1kQ

Function

Note

Han Elements Bias

1

RI02

6. Determine external components of Oscillator as shown below in
accordance with the frequency range.

1.0MHz';;;/IIse ';;;4.0MHz

4.0MHz';;;/IIse ';;;S.OMHz

f '

RI03

2.2Q(0.5W}

Stability

Rios

l.SkQ

OSC Bias

RI07

1.2kQ

Speed Deseri. bias

RIOS

470Q

Stability

RI.R,

See Application

RI04

~~O1

RIGS

Rs

~

6

lOp

Crystal

1±1%1

6

1.0k-1.8k

Integral Constant

470
4.70Op

Current Sense

3

Stability

2

(Ceramic)

llOH~~?
±l 01

'J;.

1.0k

m

CIOI

0.1/IF

CI02
CI03
CIO-1



KENo)
100

To control speed with stability, A(S) and 13(5) are required to
have a relationship shown in Fig. 3. That is, the angular
frequency of the cross point of A(S) and 13(5), w. should be
put between the angular frequency of an integrator, w, and

2.2 Resolution
In the Fig. 1, when

W,.

A(5)~--.KL·~ .................................... ( 3)
J'5 No

Zm(5)

·············································(9)

The GCTL and the R. are the internal constant of IC's.
Substituting the equations (5) to (11), to the equation (4),
13(5) is;

Fig. 1 Block Diagram

KT
/1(5)~---

CI1R2

(KI'·G, (5) ·G2 (5) -KE·No)
- - ... ( 4 )
100

1.000

the Fig. 1 can be shown as Fig. 2.

Load
Torque
(kg'em)

0--

+
A(S)

Error (%)

]

IOU

~
; wo/3
W3 ~ 3wo

r---------,
I

Ready Signal
I'R

Integrator

I

,I

L- _ _ _ _ _ _ _ _ ...J

Rg. 5 Producing the Ready Signal

where the R. is designed to be 2.2k ohms.

3. When Using the External Clock
As shown in Fig. 4, external clock can be provided at the
OSC input pin. But, applying too large input causes the missoperation of I C's, the following resistor, Rs must be con·
nected in series to control the currept.
(1) In HA13426
(kQ)
(kQ)

A speeding-up capacitor parallel to Rs should be considered.
(2) In HA13431/432/432MP

(kQ)
(kQ)

Then, the input current IIH and IlL are restricted as
follows and the external clock must have larger driving
capacity.

IIH= VIH-1.4
R,,+Ri

(rnA)

IlL = _1.4- VII.
. R,+ Ri

(rnA)

174

I

1',
2.8V

CI = I/WIR2
C2 = 1/ w2R,
C3 = 1/w3R3

VIH-1.7)-2
Rs;;>;1.00.7-V1I.)-2

I
I

1'.
3.5V

Output

(5) Designing C, , C.' C.
From the equations, (9), (10), (11),

Rs ~ 2.5( VIH-1.4) -1.5
Rs;;>; 7.5(1.4- V1I.) -1.5

+5V

HAl7903PS

Small R, increases the C, and C. and large R, will cause
speed error by the cutoff current of the speed discriminator and the input bias current of the integrator.
Values of 10k ohms to 56k ohms are recommended.
(4) Determining w,' w. and w.
Will be determined as follows

Rs~3.7(

_ _O_SC
_ _- ,

•

HITACHI

HA13431

.Three-phase Motor Driver with Speed Discriminator

HA13431 is a monolithic power 'IC with a speed discriminator for the three-phase brush less DC motor driving of
5}4 inch FDD. It is possible to construct a servo system
with quartz or ceramic resonator by fewer external components. Especially EM I noise from motor driver is depressed because of a voltage drive system .

• FEATURES
•
•
•

•
•
•

Possible to construct a servo system on a single chip
Require no adjustment because of digital servo system
The voltage drive system (not supply voltage control)
achieves almost no spike voltage at commutating, caused
EM I conventionally.
The Enable terminal of TTL level is attached, and the
current at the stop mode is less than O.5mA
Maximum current at starting is depressed by the built-in
current lim iter.
Wide selection for quartz & ceram ic resonator is perm itted because of frequency divider

(SP-23T)

• PIN ARRANGEMENT
• BLOCK DIAGRAM
R10t

o

OutpUt

Hall Amp

U HaU+
U HallV HaU+
V Hall-

W Hall+
W Out

14 Current Sense

U Out
Integrator Out

Integrator in

Speed Discri. Out

o

6

G~D

Mode Select
injector
En!lble
2 FG Amp+ln
FG Amp-In

4

(Top View)

• ABSOLUTE MAXIMUM RATINGS (Ta=25°C)
Item
Supply Voltage

Symbol

Vee

Input Voltage

VIX

Output Peak Current

III (peak

Output Current

III

I

Ratings

Unit

20

V

1

0 to Vee

V

2

1.5

A
A

1.0

Power Dissipation

p.,.

10

W

Junction Temperature

T,

150

Operating Junction
Temperature Range
Storage Temperature Range

Till,>

-20 to +125

·c
·c

T.IJ:

-55 to +125

·C

Notes) 1. Recommended operating voltage
Vn-=12V±15'J'Q(lO.2V to 13.8V)
2. Applied to Han Amp, start 'stop and mode select input.
3. See the derating curve.

e"

0>3"(; W
0) ~ ~ 40'C W

Note

;:

10

ct
.§

~

.~
5
i5 4.25

3

~

0':
Ambient Temperature Ta C'C)

A!tt.
•

HITACHI

175

HA13431

• ELECTRICAL CHARACTERISTICS (Ta=25'C. Vcc=12V)
Item
Quiescent Current

Total

Over Voltage Shutdown
Thermal Shutdown

Hall Amp

Control Amp

Integrator

Enable~O.

BV, RL : Open

Shutdown Voltage

Vhy .•

Hysteresis

Current Limiter

Unit

0.5

mA
mA

-

24

31

15

16

17

V

O.B

V

Shutdown

150

Thys

Hysteresis

-

25

-

-

1.0
-

IHH

Quiescent Output Voltage

VH
GrH
VQ

VH~6.0V

1.5
5.1
-

10

5
10.5
-

5.7
6.3
±0.3

I/A
V
dB
V

Difference of Quiescent Voltage

L-VQ
VCf:lsull

Io~0.7A

-

2.0

2.B

V

Output Impedance

Ro

Io~0.2A

-

0.3

-

Q

V

Internal Ref. Voltage

VREFI

-

3.15

-

V

Voltage Gain (CTL Amp to Output)

GCTL

-

24

-

dB

Difference of Gain

L'::::..GCTI.

-

Internal Ref. Voltage

VREF2

-

Input Bias Current

1m

-

A+
A-

Io~+0.25mA

-

Output Voltage Swing

Io~-0.25mA

-

-0.65

-

V

BW

Br~OdB

-

0.3
0.9

-

Vj

Ij~6mA

Output High Voltage

VOH

Io~0.25mA

Output Low Voltage

V(n

Io~-0.25mA

Cutoff Current

1"11

Charge Pump Off State

Input High Voltage

VIH

Stop

Input Low Voltage

1'1/.

Start

Input High Current

IIH

VH~2.0V

Input Low Current

III.

V/.~0.8V

Reference Voltage

VRf:F3

Input Voltage

VI.\' 1

(b;J:: (r:)~.:~t :StoJ

("Openr'T :: 114)
1/2
to

GND: IIi

• ABSOLUTE MAXIMUM RATINGS (Ta=25°C)
Symbol

Item
Supply Voltage

Vee

Input Voltage

VI',\'

HAI3432

HAI3432MP

Unit

Note

20

20

V

0 to Vee

V

1
2

A

o to

Vee

Output Peak Current

If)(JI('fI/;)

0.75

0.75

Output Current

I"

0.5

0.5

A

Pow~r Dis~ipation

PT

2.5

1.5

Junction Temperature

T,

150

Operating Junction Temperature Range

Tjf'P

150
-20 to +125

W
·C

Storage Temperature Range

T..I~

-55 to +125

-20 to +125
-55 to +125

3

·C

t

Notes} 1. Recommended operating voltage
Vn:=12V±15% (lO.2 to 13.8V)
2. Applied to Han Amp, start/stop and mode select input
3. See the derating curves.
The right below figure shows the relationship between Pr and To (the derating curve) in the case that HA13432MP is mounted on the surface of a metal
base substrate.

.HA13432MP

• HA13432

'.51-.;:U"C"'·,-______""\
3Ot:

uL-~

-20

__L-________
25

~

____

~

100

:\mbient Temperatu~ I'll (t)

•

HITACHI

Ambient Temperature Tn (t)

179

HA 13432,HA13432M P

• ELECTRICAL CHARACTERISTICS (Ta=25'C,
. Vcc=12V)
Item
Quiescent Current

Total

Over Voltage Shutdown
Thermal Shutdown

Hall Amp

Integrator

Speed
Discriminator

V..I
Vll y.•

Hysteresis

T ..,/

III

mA

15

16

17

V

0.8

Shutdown

ISO

1.2
-

·c

-

25

Input Common Mode Voltage Range

VH
GrH

1.5
-

1.0
-

V"
f'..V"

5.1
-

5.7

Difference of Quiescent Voltage
Saturation Voltage

Vc/';I$ fllI

Jo~0.35A

-

2.0

Output Impedance

Ro

Io~O.IA

-

0.45

-

3.15

VRI-:I-'\

Gr

Difference of Gain

f'..Gr

15
-

Internal Ref. Voltage

VRf;,..2

-

Input Bias Current

IHI

-

A,

Jo~+0.25mA

-

A-

[o~-0.25mA

-

Unity Gain Band Width
Injection Voltage

BW

Gr~OdB

-

[,~6mA

-

Output High Voltage

Vou

[o~0.25mA

Output Low Voltage

VOl,

[o~-0.25mA

Cutoff Current

[""

Charge Pump Off State

Output Voltage Swing

V,

VtU

Input Low Voltage

VII.
[III

Reference Voltage

VR/~'F:!

FG Amp

Input Voltage

V'NI/-'(;)

OSC

Oscillation Frequency

t··..

No Division Input Voltage

V, ,

1/2 Division Input Voltage
1/4 Division Input Voltage

VI2

No Division Input Current

Tt,
Tt,

1 '4 Division Input Current

VI.~O.8V

t~200Hz

4.4
-

VIS~OV

Vls~12V

Sum of upper and lower TRS saturation voltages

~HITACHI

18
2.5
-

t
5

,ItA

10.5
-

dB

V

6.3

V

±0.3

V

2.8
-

V
Q

-

V
dB

21
±2
-

dB

±0.1
-

,ItA

-

V

V

-

MHz
V

4.7

-

V

0.1
--

0.2

V

±O.I
-

,ItA

1024
-

-

V

-

0.8

V

±IO

,ItA

--

-

Enable 2

.-

50

120

,ItA

Enable 1

-

.-

±10

,ItA

Enable 2

-

--

±40

,ItA

0.36

0.4

0.44

V

2.0

.-

20

mVpp

0.1

.-

1.0

MHz

--

-

0.8
-

V

10
-

6.3
-

Note

V

Enable 1

Open

V, ,

-

0.3
0.9

2.0
VH~2.0V

10

1.3
-0.65

-

Input High Voltage

Current Limiter

180

24

-

III.

*)

19

-

Input Low Current

Note

mA

VH~6.0V

Voltage Gain (CTL Amp to Output)

Unit

0.5

Hysteresis

Internal Ref. Voltage

max

0.2

ThYR

Input High Current

Mode Select

-

typ

0.5
-

Count Number

Enable

min
-

IHu

Quiescent Output Voltage

Control Amp

Test Condition

Enable I & 2 Open
Enable 1~0.8V
R,. Open
Shutdown Voltage

Input Bias Current
Voltage Gain

Output Stage

Symbol

-

V
V

-

-1.0

mA

-

1.0

mA

*

------HA13432,HA13432MP

• External Components
Parts No.

Recommended Value

Function

-

RIOl,RlO2

Hall Elements Bias

-

Rs

Current Sense

See Application

R"R,

O.l,uF

CIOl,Cl02, eI03

3

Integral Constant

4

Stability

2

CI04

;;;:O,l,uF

Cws

lO,uF

ClO6

47pF

AC Coupling OSC

CI07

lO,uF

Stability

;;;:O.Ol,uF

Stability

ClOS,CI09,CUO

1

Stability

2.2Q

RI03, RI04, RIDs

Note

V cc By-passing
AC Coupling FG

C"C,

See Application

Integral Constant

4

C3

See Application

Filter Constant

4

X'tal

See Application

Resonator

4

Note 1. Set RIOI. and RI02 at which output voltage of 30 to 100 mVpp
Note 2. Use CIGl to C103 which cause no 2nd resonance.
Note 3. Output current is limited as shown below by Rs value.
I limit = VR~~"3

Note 4

See HA13426 .

• TIMING CHART
+

w

Hall Amp
Input

UOut

V Out

WOut

•

HITACHI

181

·HC16701

.Thermal Head Drivet

HC16701 has a function of serial-in-parallel-out plus 32ch
driver, bi-directional shift register, two stage latches, strobe
gate and large current driver.
Logic circuits are composed of "L and output 32ch driver

has a capability of driving large current_ HC16701 is suitable
for applications of thermal head driver and LED display
driver.

.FEATURES
•
•
•

Each driver of built-in 32ch drivers (NPN Open Collector)
has a capability of driving 7OmA.
Enable to shift the shift register in right and left directions by mode select terminals.
Every channel has two stage latches and is available with
controlling output pulse width in the unit of channel.

•

Enable to prohibit driver output by Dis terminal.
Available with prohibition against driver output at power

•

Built-in D-F/F for selecting chip is available with the
application of chip selector in the system of using some
HC16701 IC·s.

"ON".

• BLOCK DIAGRAM

• MAXIMUM RATINGS (Ta~ + 25°C)
Item

Symbol

Rating

Unit

Remarks

Supply Voltage

Vee

7

V

Output Sink Current

10L

100

inA

1

Output Terminal Voltage

VaH

+25

V

2

Power Dissipation

Pe

--

.T,." ~ 125°C

Ta .. op

-20 to +70

°C

Operating Junction Temperature Range

T,-op

-20 to +100

'C

Storage Temperature Range

TSTG

-35 to +125

°C

Operating Temperature Range

Notes 1 1. Applied to output drh'er terminal Qo to QSI when output dri\'er transistor "OX",
2. Applied to output drher terminal Qo to Qll. when output drh'er terminal "OFF",

182

•

HITACHI

HC16701

.ELECTRICAL CHARACTERISTICS

(T)~+25°C)

Symbol

Item

Test Condition

min

typ

max

Applicable

Unit

Terminals

Operating Supply Voltage

v;.cup

Vcc~5.0V,

Quiescent Current

Icc

Vcc=5.0V, Driver: 0]'\ Duty 50%

Iinj Operating Voltage (Note 5)

V,",

Injection Current

L,

Vec~5.0V

Input High Voltage

VIlIl

Vcc~5.0V

3.0

V

S", PWC. C", Co

Input High Voltage

V/I/2

Vcc~5.0V

2.5

V

C" [\, I". DATA

Input High Voltage

V1H3

Vce~5.0V

3.0

V

DO'. R!L

Input Low Voltage

Va

I

Vcc~5.0V

0.3

V

S", PWC. C". Co

Input Low Voltage

V11 .2

Vcc~5.0V

0.8

V

C"h.[II,DATA

Driver:ON Duty 50%

V,,,,

~5.0V

V1L3

Kc~5.0V

1111 I

Vcc=5.0V,

Input High Current

IIJ/2

Vcc=5.0V DATA

Input High Current

IIHJ

Vcc~5.0V

D ..

Input High Current

1/114

V,·c~5.0V

R L

Input High Current

IUf5

V"

Input Low Current

IlL

I

Vcc~5.5V,

C,-II

fIL2

V",·~5.5V,

DATA " GND

~5.0\',

C~

·11

III

-=

V

Vee

160

mA

Vee

Vee

V

LIlI

mA

I.llJ

5 OV

5.0V

3.5V
3.5V

5,·, PWC' C,' ·C, ·3.5V
III ·GND

Input Low Current

lit}

V,·e~5.5V,

Input Lo\\" Current

11L4

Vcc~5.5\',

(Xote 1)

VOI.l

Vcc=S.OV,

Output Low Voltage 2 (:\ote 2)

VOL2

Vcc=S.OV, [III. =O.6mA

Output Low Voltage 3 (:\ote 2)

VOL]

Vrc~5.0V, ['u, ~

Output Current 1 (:\ote 3)

IshII

Vrc~4.5V,

Output Current 2 (:\ote 3)

Ishl2

V,,~4.5V,

Output Leak Current (.\'ote 4)

/1 ... 1

Vc c=S.5V. QII to

;\ote-s

5.5

120

30

Input High Current

Output Lo\\" Voltage

5.0

3.0

Input Lo\\' Voltage

Input Low Current

4.5

D,.

GND

R L

5,,· PWC~C,·
JIlL =

'C,~GND

120

Q .. ""

2.7V
Q31

D,.,R!L

I'A

C-..I\.III

150

I'A

DATA

150

I'A

DO'

150

I'A

R!L

180

I'A

S". PWC, C". C,
C:-;,h.III

-400

I'A

-600

-400

I'A

DATA

I'A

D, .. R!L

I'A

S", PWC, C", C,

-20
-20

1. 2mA
2.7V

V

150

-600

lOrnA

D.. ,,,

0.8

0.3

V

Qu to Q'll

0.5

V

Q .. ,,,

V

D"III

0.6
300

500

I'A

D"""

150

250

I'A

Q"UI

I'A

QII to Q'jl

·25V

500

I. \rhen setting the measuring output dri\er transistor "0:\" and other thirty one output dnrer transistors "OFF"
2. \rhen

~('tting

the state of output "LO\\""

3. \\'hen setting the state of output "HICJi"
4 \\"hen output transistor i., "OFF",
5 Iinj is pin for IlL iogi(' power supply.

eHITACHI

183

HC16701

• PACKAGE (the chip product for sale)
•
•
•

Chip size; 5.5 x 3.7mm
The number of pads; 56 pes. (output driver; 32 pcs. Vee;
3 pes. GND; 8 pes. others; 13 pes.)
Pad Arrangement; See the following figure. (an outlinel
3.7mm

r--

Q15QI6

---1

I

i--

I

I

I
I
I
I
I

I
I

Ji
.,;

I

I
-

------

I

Q.

I"

Output Drivers
(Included 7 GND pads)

I

I

-Q"
I/O Interface

(Included Vee 3 and GND 1 pads)

~ ------

• DICE DIMENSION
1350

2255

1715

Origin(O,O)

3085

2680

3425

3765

4145

4485

135--~~~~~t.~~~=-=-=-=--~~1iJE3f~~~~=f~~~~~~~lf~$H~~~3£~~~~~-=-=-=-=~-=jF~13~5--r1851

355
525

400
600

695
865

1550

1850

3,700

2180

2835
3005

:mso

3220

3175
3345

3390

3565 __"'35"'15'-1-'-1""'-'=_____

+t-+-------t<-H-++-+t+lf-3565

1350

1715

2490

2065

2900

3240

3ssn

4900

Pad Size
130,11 m X 130.u m

5.500
Unit: J.lm

184

•

HITACHI

HC16701

.INPUT INTERFACE CIRCUIT
eC.,I.,I.
Vee

es"C"C"PWC

0-----0--.......,.---,

[::>0---

12L Inverter

eOATA
Vee

vc('D-----,

o---t"-----,

V,.\, D---'WI.....--i.

V,,\,

.OUTPUT INTERFACE CIRCUIT
eO~"Q."
Va
Vee

0-------,

VUI

•

HITACHI

185

HA16628P

eS-bit D/A Converter and Position Amplifier

The HA16628P is a monolithic integrated circuit designed for
use with the HA 16629P to DC motor positioning system for
applications such as carriage/daisy-wheel position Control in
Typewrites .

• FUNCTIONS
•
•
•

5 bit 0/A Converter
Error Amplifier
Position Amplifier

.FEATURES
•
•
•

(DP-16)

Single Supply Voltage 10V DC to 20V DC
Compatible with TTL, LSTTL & C-MOS
Low Input Current (O/A Converter)
I

• PIN ARRANGEMENT
.ABSOLUTE MAXIMUM RATINGS (Ta-2S'C)
Symbol

Item

Rating

Vee

Supply Voltage

Unit

Note

V

20

Common Voltage"

VB

0.55Vce

V

Power Dissipation

PT

450

mW

6

V

1

±5

rnA

2

+70

'c
·c

Input Voltage

V,

Output Current

10

Operating Temperature Range

Top.

o to

Storage Temperature Range

T. "

-50 to +125

Sotes' 1. Apply to DAo-DA4. Sign, E;\:ABLE, STROBE
2. Apply to Pos·Out, ERR·Out

• BLOCK DIAGRAM

(TnI' View)

Strobe 9)---+--------ir-----'

Vee

186

G~D

$

HITACHI

HA16628P

(Ta~25·C. Vcc~12V. V8~5V)

.ELECTRICAL CHARACTERISTICS

Symbol

Item

Test Conditions

Supply Voltage

Vee

Supply Current

lee

No Loads

Supply Current of VB (Pin 14)

IB

No Loads

~,Unit

min

typ

max

10

-

20

V

10

rnA

1

mA

-

.O/A Converter
Item

Symbol

Test Conditions

Current Reference Input Range (Pin 15)

IDAIN

all inputs rLJ

Current Reference Off· set Voltage (Pin 15 to 14)

VIa

IDAlN~0.3

IDAul (\)

1",,~O.516mA.Sign~-H,

Output Current

typ

min

-20

-

Other input allrL_

0.96

Other input aWLj

-1.00

0.3

to 0.7mA

IDAUI

(2)

1","~O.516mA. Sign~ 'L,

IDAO,,1

(3)

Sign~ 'L" Enable - 'L" Other input allrH_

-1

[DAn!

(4)

Sign~'H, Enable.~rLj

-1

max

Unit

1

mA

20

mV

0.98

1.00

rnA

-0.98

-0.96

rnA

1

pA

Low Level Input Voltage (Digital Inputs)

VlL

-

-

High Level Input Voltage (Digital Inputs)

VIH

2.0

-

-

V

Low Level Input Current (Digital Inputs)

IlL

YJL-OV

-1

-

pA

High Level Input Current (Digital Inputs)

IIH

YJH~5V

-

-

20

pA

Output Current (Output Offset Current)

Other input aUrHj

1

pA

0.8

V

• Error Amplifier
Item

Symbol

Test Conditions

Input Offset Voltage

YJo

All inputs rHJ DA·out to ERR-out

Output Voltage Swing

Vo""

1£ R Ro~1 = ImA

typ

min

'Unit

max

-5

-

5

mV

VB-3.3

-

V.+3.3

V

min

typ

max

.Position Amplifier
Symbol

Item

Test Conditions

Low Level Input Voltage (Pin 9)

VlL

-

High Level Input Voltage (Pin 9)

VIH

2.0

Input Offset Voltage

\lion)

Strobe ~rLJ POS·IN to POS-out

-10

VJO(Z)

Strobe ~rHJ

-10

Input Bias Current (Pin 10)

II.

Strobe~rLJ

-1

Output Voltage Swing

VOIII

/pos-olI,=lmA. Strobe='"L J

VB-3.3

-

0.8

10

Unit
V
V
mV

10

mV

-

pA

V.+3.3

V

.O/A CONVERTER LOGIC FUNCTION
Digital word

Sign

DM

*
*

H

H

H

H

H

L

H

H

H

L

L

L

L

H

H

H

H

L

L

H
Xotesl

*

* -indifferent

DA3

*

L-Lo\\" level
+min. +max-Source Current
-min, -max=Sink Current

DA2

DAI

*

E:'>ABLE

*

H

DAout~Zero

L

DAout~Zero

H

L

L

DAout=+min

L

L

L

DAout~+max

H

L

L

DAout=-min

L

L

L

DAout=-max

*

L
H~High

Commands

DAO

level

eHITACHI

187

HA16629P

.Tachometer Converter (FlY Converter)

<&

The HA 16629P is a monolithic integrated circuit designed for
use with the HA16628P to DC motor positioning System for
applications such as carriage/daisy·wheel position control in
Typewrites .

• FUNCTIONS
•
•
•

Tacho Voltage Generator (F /V converter)
Reference Voltage Generator
Position pu lse Generator

• FEATURES
•
•

Single Supply Voltage 10V DC to 20V DC
Position pulse output is open collector

(OP·1S)

.ABSOLUTE MAXIMUM RATINGS (Ta=2S'C)
Item

Symbol

Supply Voltage

Vee

Common Voltage

V.

• PIN ARRANGEMENT

Rating

Note
20

V

0.55Vee

V

Input Voltage (Pin 4,10,13,14)

VICI)

Vee

V

Input Voltage I Pin 6,7)

Vt {! I

V.±5

V

Output Voltage (Pin 11, 12, 15)

Vo..,

Output Current (Pin 11,12,15)

Inl

til

Output Current I Pin 2, 3, 5)

10M'

Output Current I Pin 9)

IIIYI

Power Dissipation

PT

20

V

5

mA

(2)

±I

mA

(3)

-1.5

mA

450

mW

+70

'c
'c

Operating Temperature Range

Top.

o to

Storage Temperature Range

T".

-50 to +125

.BLOCK DIAGRAM

188

•

HITACHI

(Top View)

---HA16629P

.ELECTRICAL CHARACTERISTICS (Ta~25·C, Vcc~12V, VB~5V)
Item

Symbol

Test Conditions

Supply Voltage

Vee

Supply Current

Icc

no Loads

Supply Current of VB (Pin 1)

IB

no Loads

min

typ

min

10

-

20

V

-

-

20

mA

-2

-

2

rnA

Unit

eComparators with Hysteresis (C I, C. and C,)
min

typ

min

Unit

V£ ...x= VE .,,,- VEcos=5V

-2

-

-

pA

C, IPin 10)

7.2

7.5

7.8

V

C"C, I Pin 14,13)

5.1

5.3

5.5

V

C,

5.7

6.0

6.3

V

C"C,

4.5

4.7

4.9

V

Symbol

Item
Input Bias Current

lIB

Test Conditions

VTHH

Input rHJ Level Threshold Voltage

Input r LJ Level Threshold Voltage

VTHL"

Output r LJ Level Voltage

VOL

IOL~2.5mA

-

-

0.4

V

Output Leak Current

IOH

VOH~5V

-

-

2

pA

min

typ

max

Unit

eAmplifiers (AI, -A"A, and -A,)
Item

Symbol

Test Conditions

VB±2.5

-

D'R~L

-30

-

-

Input 'LJ Level Voltage IPin 4)

Vn

-

Input rHJ Level Voltage IPin 4)

VIH

2.0

Common Mode Input Voltage Range

VeN

Output Offset Voltage I A, and A,)

VaS{+)

Output Offset Voltage I-A, and -A,)

Vas(·· )

D,R-H

-50

Voltage gain I A, and A,)

AVD(.

I

D'R~L

-

I

AVD( -

,

D'R~H

-

-I

Voltage gain

(-AI

and -A,)

Vnl

Output Voltage Swing

0.8

V

-

V

VB±3.5

V

30

mV

50

mV

-

V/V

-

V/V

VB-3.3

-

VB+3.3

min

typ

max

Unit

V

e Reference Generator
Symbol

Item

Test Conditions

VREFl

IRH~

-0.5mA, ;\jote 111

7.5

8.0

8.5

V

VREF2

IRf:F~

-0.5mA :'I:ote 121

6.7

7.5

8.3

V

DC Reference Voltage I Pin 91
:'I:ote 121

:'I:ote III

Test Conditions

Test Conditions

Unit

:'1:0.

E sin'
I

3V8+-

Vo+_3-

2

3V8+-

3_
V. _ _

/2

i2

3

VH--3-

V.+_3_

/2

}2

4

3VR--

VB--3-

}2

!2

:'1:0.

E cos

[2

!2

E sin

E cos

Unit

VDl.'

I

V.+3

VB

Voe

Vo,

2

V.

VB+3

Voe

Voc

V/j-5 \'

Vvc

•

HITACHI

189

HA16629P

eFIY Converter
Symbol

Item

DC Output Voltage (Pin 5)

VTACHOI

VJfs1n -V""co.=5V
Note (11

VTACHOZ

Note (21

Output Voltage Swing

VOUI

Output Offset Voltage (Pin 5)

Vio

Note (21

8.0
V8-3.3

-80

M .,"~M ••• - V8

Esin

E cos

M sin

VH

VH

2
3

VH

VL

V+
V_

VL

VL

V_

V+

4

VL

VH

V+

5

VH

VH

V+
V_

V+

6

VH

VL

V+

V~

7
8

VL

VL

V_

VL

VH

V+
V_

1.6 (V)
V_ ~ V8- .{2

V_

V8-5 IV)

CUND.

M cos
V_
V_

VH~V8+1 (V)

VL-V8-1 (V)
V+-V8+

~

• WAVEFORMS
eClock Wise Direction

Esin

Ecos

Dsin

±ov
±ov

DiR

- ______-J'- ___________.

±ov

ISTS)

ISTC)

Msin

VB

Meos

VB

VB

TACHO

190

min
-

1.5

1

No.

Note (11

Test Conditions

118

Input Bias Current

VB

• . HITACHI

(V)

typ
5

~

-

max
15

2.0
8.5

Unit
pA'

Voe
Voe

V8+3.3

V

80

mV

---HA16629P
.APPLICATION

v.

Vcr

GNV

Einx

From

Encoder

Esin

Eros

Msin

Mcos

R,
4.7k

R.
4.7k

Rs
4.7k

C.

II.I~

R.
5k

DA-In

VA

Cs
11.22\1-

Ou!

HAI662KP

Motor Drive Signal

Enable
VA 4
VA 3

DA 2
From

VA I

Microprocessor

DA ()
Sign

Storohe

•

HITACHI

)91

HA16631P,HA16631MP
The HA16631P and the HA16631MP are monolithic read
amplifiers for flexible disk drive, and provide wave-shaped
output signals. The amplified signals from the magnetic head
generate data pulses by differentiator, zero-volt comparator
and waveform shaper section .

.Flexible Disk Read Amplifier

HA16631P

• FEATURES
•
•

Combined all the active circu it to perform the flexible
disk read amplifier function in one chip.
Direct connection with TTL's.

(OP-18)
HA16631MP

.'
(MP-1S)

• PIN ARRANGEMENT

• BLOCK DIAGRAM

eHA16631P

Amp. {
Input

Ven

1
2
3

Offset

Decoupling

{

4

GND
One-

{

6

{

8

Shot 1

0.,,-

Data

Shot 2
L -_ _- '

Output

(Top View)

Gain Select

One Shot I

eHA16631MP
Amp Amp
Input Input
2

Vec2
18

1

Amp
Output

17

o

Offset
Decoupling
Offset

16 Amp Output

15 Diff. Input

Decoupling
GND 5

14 Dirf. Input

One Shot I 6

13

Dm.

Comp.

One-Shot I 7

12

Dm.

Compo

8

One-

10

One-

Data

Shot 2 Shot 2 Output

(Top View)

192

•

HITACHI

11

Ven

HA16631P,HA16631MP

.MAXIMUM RATINGS (Ta=25'C)
Symbol

Item

Rating

Unit

Power Supply Voltage (Pin 11)

Veel

7.0

V

Power Supply Voltage (Pin IS)

Vccz

16

V

Input Voltage (Pins 1 and 2)

VIN

-0.2 to +7.0

V

Output Voltage (Pin 10)

Vo

-0.2 to +7.0

V

Differential Input Voltage (Pins 1 and 2)

ViN(d'/fl

Operating Temperature

ToPT

o to +5.0
o to +70

·c

Storage Temperature

T.IB

-55 to +125

·C

V

• ELECTRICAL CHARACTERISTICS
e Operating Power Supply Voltage Range (Ta= 25'C)
min

typ

max

Unit

Power Supply Voltage Range

Symbol
VCC1R

4.75

5.00

5.25

V

Power Supply Voltage Haoge

VCC2R

10.0

12.0

14.0

V

Item

Test Condition

Test Circuit

eAmplifier Section (Ta=25'C, Veel =5.0V, Vee, =12.0V: unless otherwise specified)
Symbol

Item
Differential Voltage Gain

Avo

Input Bias Current

It.

Common Mode Voltage

Range

Output Distortion Ratio

Differential Output Voltage
Swing

Output Source Current
Output Sink Current

(Pins 16 and 17)

Test Condition

I-250kHz, VIN-5mVrms
VCCIR

VCC2R

Veo-12V, VeM -4V

VeM

THD

I-1kHz, V,N-25mVp-p
VCC1R

VCC2R

Voo

Vee

Veca

I II.

10

los

Veel II. Vec2R

,

min

typ

max

Unit

Test Circuit

SO

110

140

V/V

2

-

9

pA

4

6.2

V

2

5

%

2

-

Vp-p

2

S.O

-

mA

8

2.S

4

-

mA

9

5

1

1.S5

-

-

1.5

3.0

4.2

-

Input Resistance

TIN

30

120

-

kn

Output Resistance

T.

-

15

n

6

Common Mode Rejection Ratio

CMRR

I-100kHz, VIN-200mVp-p

50

-

-

dB

11

PSRR,

Vee -12.0V
4.75V'" Ve e ,"'5.25V

50

-

-

dB

10

PSRR,

Vee,-5.0V
10.0V'" Vee,'" 14.0V

60

-

-

dB

10

Power Supply Rejection Ratio

Ve el
Power Supply Rejection Ratio
VCC2

,

Differential Output Offset
Voltage

Voo

-

-

0.4

V

7

Common Mode Output Voltage

Veo

-

3.1

-

V

7

370

570

770

n

3

Effective Differential Emitter
Resistance (Pins 3 and 4)

R£FF

ePeak Detector Section (Ta=25'C, Vcel =5.0V, Vee ,=12.0V:unless otherwise specified)
Item

Symbol

Sink Current (Pins 12 and 13)

Iso

Peak Shift

Ps

Input Resistance

Tlo

Output Resistance

Top

Test Condition

I-250kHz, VIN-l.OVp-p

•

HITACHI

min

typ

max

Unit

Test Circuit

1.0

1.5

-

mA

12

-

-

-

30
40

5

-

%

13

kn

17

n

193

HA16631~HA16631MP

• Waveform Shaper Section

(Ta~ 25°C,

Item

Vee I

R,

Vee,", unless otherwise specified)

Symbol

min

typ

max

2.7

-

-

V

15

-

-

0.5

V

16

-

-

25

ns

14

-

-

25

ns

14

f~125kHz

600

-

2000

ns

f~250kHz

600

-

1000

ns

850

1000

1150

ns

14

Test Condition

Output Voltage H (Pin 10)

VaH

Vee.
Vce,

~4.

Output Voltage L (Pin 10)

VOL

Vee.
VCCl

~4.

Rising Time (Pin 10)

t

~

75V
12.0V, faL ~8mA

Vce,~5.0V, VeC2~12.0V
TLH

V.o,~0.5V~2.

Vee,

Falling Time (Pin 10)

tTHL

Timing Range # 1

tlA, B

~ 5. OV,

7V

Vee.,

~

12. OV

V.,,~2.7V~0.5V

t,

t,

Timing Accuracy #1

75V
~ 12.0V, faH~ -0.4mA

~0.625e,R,

+ 150

e, ~200pF, R, ~6.8kn

Unit

Test Circuit

Timing Capacitance # 1

e,

150

-

680

pF

14

Timing Resistance # 1

R,

1.5

-

10

kn

14

125kHz

150

-

1000

ns

f~250kHz

150

-

750

ns

170

200

230

ns

14

f~

Timing Range # 2

tZA, B

t,

~0.625e,R,

Timing Accuracy;;: 2

t,

Timing Capacitance # 2

e2

100

-

800

pI"

14

Timing Resistance #: 2

R2

1.5

-

10

kn

14

e, ~ 200pF, R, ~ 1. 6kn

• TIMING CHART
Ddferentiator Input
(PIns 12 and 13)

Dtfferentiator Output

I
C4,75kV

10

II>

l.tikQ

1.6kQ

0.4 k~2

6.4k!.l

3. Pre-Amplifier Section Effective Emitter
Resistance (Pins 3 and 4)

4. Input Bias Current

-

1/11/

~r----~-;---~I;,I-----o12\,
1 7 1 - - - - - 0 Vo" R
16

4 .- Volti-Vn17
.,----V..

r;----;I~"~---~ 12V
17

(0 1

16

15

15

4V

I'

14

1::1

13

12

12

111--+---05V
10

1I1--+---o5V
I"

V,.=5mVrm.s
j=250kHz
1.6 k~l

1.6k~

ti.4kU

Measure

I/Hl

in Ihe same way.

r. -rR.= _ _R_,_.

A",
-;;;;;- -I

50U

=

~·.:,:r,(~

-1

R•• =5lJ(l!~

•

HITACHI

195

HA1~631P,HA16631MP

I

5. Input Resistance

f

6. Output Resistance

2'5·tF~V;_'"t"""LW\o-4-vL-r;---~:;~t~~~~~~~: r~';

-

2.5p F

51Q

R

16

15

f
",'

I.

'V

2.S~F

l--,------fi--1Bl-t-------------::-r-<>-0 ~~.~ R
v..

(00)

2.5,uF

,v

13

13
12

12
11

11 1--1---0 5V

/--+---0 5V

10

10

1.6k2

1.6k2

6.• kQ

6.41&

VnIR'Ri~J:

V'N= V..,O VOM' R

R...
= V.. fO -I
VurR"
R... -5002
R... -IOOk2

7. Differential Output Offset Voltage. Common

8. Output Source Current

Mode Output Voltage

'V

18

L-~

17
16

3

~

1

,v o----1"--I1-i8l-----o

12V
VI7

v"

15

4
5

I'

6

13

7

12/--

8

11

13
12
5V

11

10

9

1.6kQ

1.6k2

6..4k2

6.'kQ

Measure Pin16 in the same way.

196

/--+---0

10

_HITACHI

Rco : VU I " 1

5V

HA16631P,HA16631MP

10. Power Supply Rejection Ratio

9. Output Sink Current
r-------~------1~81--------012V

r~~5~OQ~~~----~118 ______-o VCCI

::I-__

17

.s...3_kQ_

5V

16

.V

~

15

15

I'
13

I.

12
11 1 - - + - - ' " 5V

12
111---+----,.-0 Vee]

10

'0

13

6.4k~!

Fluke 8375A
Digital Multimeter

Measure Pin12 in the same way.

12. Differentiator Output Sink Current

11. Common Mode Rejection Ratio

2'5"~F~~--:1-18- - - < l 1 2 V

r

5~'Q

.V

o-----r---r;:------;1~8~------.., 1.2V

17!-----oV""

17

15

15

14

14

161-----oV~16

2.S.u

,v

16

13

V,. =200m Vp-p

5V

12

J= -l.IlMHz

CMRR=201Ilg

10

12

11 1--+---0 5V

11

10

10

1.6kQ

1.5kQ

6.4kQ

6.4kQ

~'''~~~\':17

1---.,----0 5V

Measure Pinl2 in the same way.

Measurement IS perfllrmed using Vector Voltmeter hp~405A. or equivalent .

•

HITACHI

197

HA16631P,HA16631MP

13. Peak Shift

4Vo---~---f~----~1;8~-------o12V
17

f~250kH,

16
V,~=I.OVp-p

15

14

c,
200pF

13

-,;;-------1

IkQ

121----'1/11..---;
II

~~I-~---lL..f-_--'_,.::.:.··'===1~~t-=-'=p__,-__-__-....J-·IL

5V Vur

10

R2 1.6kQ
;,;,15PF

t"I-I,.2

PS=I/2' ---XIOO%
1,.I+t,.2

RI 6.4kQ

14. Timing Accuracy, Rising Time, Falling Time
4Vo---~---f;-----~1;8~-------o12V
17
16
15

14

c,..r::-=---i

13

200pF ....-------f

IkQ

12 t-------WIr----1
II

5V

VUI

10

R2 L6k!l

J:

lSpF

R\ 6.8kQ

tTLH

= tTHL

IOns

j=250kHz

50% Duty

0.4",-----,
v.•

0.2V

OV

V~.J

PintO

EtIA=

198

l.~~~ns

xIOO%

Ells=

l.~~~ns

XIOO%

eHITACHI

Vut

n.SV

PintO

ET2= - " - XIOO%
200ns

HA16631P,HA16631MP

15. Output Voltage H (Pin 10)

16. Output Voltage L (Pin 10)

.vo---1----r~----1188~------_o12V

e..__

.v

IS

17

17

16

16

i5

15

I.

14

13

13

12

12

11

11

~IOj-I-,--<>

v•• ,

12V

jsmA

10

V."I

, 400,u A

1.6k!2

1.6kD

" .. kQ

6.'kQ

17. Input Resistance

18
17
16

Other Pins Open

-I

15

1.1----.T

O.sv

13
12
11

R=

1~:A)

(kQ)

III

.CIRCUIT EXAMPLE

Vee!

JLJL

•

HITACHI

199

HA16631P, HA16631MP

TIMING ACCURACY VS.
AMBIENT TEMPERATURE

COMMON-MODE INPUT VOLTAGE
VS. AMBIENT TEMPERATURE

vee.~L _

Vee. R I

Vcc2R f=125kHz
Vin=O.4Vp_p

10

20

30

40

50

60

70

-- -- ----

Vee! =12V

r--

80

r-

10

20

50

40

Ambient Temperature Ta IC)

60

70

VOLTAGE GAIN VS. FREQUENCY

1. 8

~l

Vcco
V
Ven =12V-

1.2

:E

~

1.4

-...

1.0

~

.;:

1.2

.~

0.8

<>

}

1.0

,g

0.6

""

"'

0.4

0.8

0.6

80

re)

Ambient Temperature Ta

COMMON-MODE INPUT VOLTAGE
VS. AMBIENT TEMPERATURE

1.6

I'--.

0.2

o

10

20

30

40

50

Ambient Temperature Ta

60

70

lOOk

80

200k

1M

500k

2M

5M

10M

Frequency f (Hz)

rel

SUPPLY CURRENT VS.
AMBIENT TEMPERATURE (1)

SUPPLY CURRENT VS.
AMBIENT TEMPERATURE (2)

1.05

VcctR

1.05

V{"oR

~

r---

~

~

1

e

1.00

~

j

0.95

1.00

0.95

10

20

30

40

50

60

70

80

10

20

30

--

40

..............

eHITACHI

-......
60

50

Ambient Temperature Ta

Ambient Temperature Ta ("0

200

:---

rel

70

80

HA16631P. HA16631MP
VOLTAGE GAIN VS.
AMBIENT TEMPERATURE

nMING ACCURACY VS.
AMBIENT TEMPERATURE
VCCIR
VCCIR

1.05

VcczR I - - -

1.05

I

1-'---t---+----JI-'---t--+---+~~c::skHz

-

Vin=O.4Vp_p

r--

~

-

:;

-- -

I.~

1.00

....

0.95

0.95

10

20

30

40

50

60

10

80

10

20

30

40

50

60

10

80

Ambient Temperature Ta(t)

Ambient Temperature Ta fe)

•

HITACHI

201

HA16632AP

eVFO IC for Flexible Disk Drive

The HA16632AP is a monolithic VFO IC for floppy disk
interface. It is designed to accept the read out data from
floppy disk drive, which includes jitter caused by the wow
and flutter of the disk revolution. or peak shift by the magnetic effect on the disk. And it generates "Window" signals
which are necessary to separate data pulse from clock pulse .

• FEATURES
•

•

•

•

Applicable to both the.8 inch disk and the 5.25 inch disk
by changing the voltage level "high" or "low" on the
control pin.
Applicable to both the single density record format and
the double density record format by changing the voltage
level "high" or "low" on the control pin.
Applicable to verious floppy disk controllers such as
FD1791, "PD765 by changing the voltage level "high" or
"Iow" on the control pin.
Gate units in the IC chip are constructed by Low power
schottky TTL circuits.

(OP-28)

• MAXIMUM' RATINGS (Ta= 25'C)
Item

Symbol

Rating

Unit

Power Supply Voltage 1

Vee

7

Power Supply Voltage 2

V LNR

7

V

Power Dissipation

Pr

750

mW

Operating Temperature Range

Ta-op

+60

'c

~torage

T. 18

-55 to +125

'C

Temperature Range

o to

V

• ELECTRICAL CHARACTERISTICS (Ta=25'C)
Item

Symbol

Test Conditions

min

typ

max

Application

Unit

Terminal

Vee. VLNR

Operating Power Supply Voltage

VCC ~~!}-----~LO:LA~T"CH!!....j-.....~~-el:...J-~

STAND BY

TRACK 00
WRITE PROTECT
READ DATA
HV

WRITE GATE
ERASE ON DELAY
ERASE OFF DELAY
WP

W

!if

M ON
HV TIME
WRITE DATA
I READ DATA
DRIVE SELECT

:

L ______________________________ oJ

1NiiSE

INDEX INTERVAL
INDEX PULSE WIDTH
DISK IN
MOTOR ON

In the WRITE CIRCUIT, power supply monitor circuits
are includ'ed to watch the hne voltage' of 5V and 12V.
When the line voltage goes down to abnormal value, the
COMMON, WRITE, ERASE drivers are all inhibited
rapidly.

(Top View)

•

HITACHI

211

HA16640NT
•

ABSOLUTE MAXIMUM RATINGS (Ta = 25DC)
Item
Supply Voltage
Supply Voltage
Interface Input Voltage
Interface Input Voltage
Interface Output Current
IU Terminal Output Current
HV Terminal Output Current
MON Terminal Output Current
H L Terminal Output Current
STEP Terminal Output Current
COMMON Drive Current (WRITE MODE)
COMMON Drive Current (READ MODE)
WRITE Drive Current
ERASE Drive Current
Input Current on the WR ITE Current Set Terminal

VOO7
VOO2
VIN7
V,N2
IOL7
IOL2
'OL3
IOL4
'OH5
'OH6
IOew
IOCR
IOWW
'OEW
'WC

Po

Power Dissipation

Ratings
-0.3, +7.0
-0.3, +14.0

Symbol

-0.3 to VOO7
-0.3 to VOO2
50
20
15
5
10
5
100
5
10
85
2.5
850
(0 to 50·C)

Unit
V
V
V
V
mA
mA
mA
mA
mA
mA
mA

Applicable Terminal
VOO7
VOO2

Note 1
Note 2
Note 3
IU
HV
MON
HL
1 2 3 4
COMMON 0, 1
COMMON 0, 1
WRITEa,b
ERASE
WRITE CURRENT

mA
mA
mA
mA
mW

·C
Operating Temperature Range
o to +70
TOp
DC
Storage Temperature Range
-55
to
+125
Tstg
Notes 1. Applicable TermmaI. SIDE SELECT, WRITE DATA, "STEP; DIRECTION, IN"'USE; MOTOR ON, HEAD LOAD,
.
STAND BY, WRITE GATE, DRIVE SELECT, I READ DATA
2. Applicable Terminal: TOO, DISK IN, 'WP", IX and also Terminals from MM circuit connecting with the external C,R
time constant.
3. Except for ro, JIv, !JUN, HL, 1 2 3 4 •
•. ELECTRICAL CHARACTERISTICS (Ta = 25"C)
Circuit Block

.~

a
'"
~
~

WRITE
Driver

ERASE
Driver
Lower Line
Voltage
Protector

Test Condition

Symbol

Item

Supply Voltage Range
Supply Voltage
Supply Voltage Range
Output Voltage at
Selected WRITE Mode
Output Voltage at
Unselected WRITE Mode
COMMON
Output Voltage at
Driver
Selected READ Mode
Output Voltage at
Unselected READ Mode
Output Current Range
Input Current Range on the
WRITE Current Set Terminal

VDDl
VDD2
Vocw
Vocwu
VOCR
VOCRU

VDD2= 12V
locw=-100mA
VDD2= 12V
Unselected
VDD2= 12V
ICOR= -SmA
VDD2= 12V
Unselected

ICOM

min

typ

max

Unit

4.5
10.8

5.0
12.0

5.5
13.2

V
V

-

10.7

-

V

-

-

0.7

V

-

4.7

-

V

-

-

0.7

V

100

mA

2.S

mA

4.4

mA

0

Iwc

WRITE Current Accuracy

loww

WRITE Current Temperature
Coefficient

TClow

WRITE Current Symmetry

/:Jow

Output Leak Current

hKW

Output Low
Voltage

VOLER

Output Leak Current

ILKER

12V Detection Voltage
SV Detection Voltage

VPRV12
VPRV5

WRITE Driver output
voltage = 10V
Iwc= ImA
Iwc- 1mA
To = 0 to 70DC
VDDl = SV,
VDD2 = 12V
lowo-Iowb
VDDl = SV,
V DD2 = 12V
Vow = 20V
VDDl =4.SV
10E= SOmA
VDDl = S.SV
VOER= 20V

3.6

4.0

-

±O.OS

-

%fC

-1

-

+1

%

-

-

100

"A

-

-

0.6

V

-

-

200

"A

-

V
V

S.1
3.8

-

(to be continued)

212

~HITACHI

HA16640NT

Circuit Block
Signal
Interface
(Note 1)
Signal
Interface
. (Note I)

Sensor
Interface
(Note 2)

Item

oS

IU Output

u

a
]

c::

0

u

-

HVOutput

.~

.
..c:
u

"
:::i!

MON Output

HLOutput

STEP
Output

ERASE
Timer
INDEX,
READY
Circuit
12V Hold
Timer

Unit

2.4

-

-

V

VD D1 = S.OV

VILI

-

-

0.8

V

IHI

-

-

10

,.A

IlLl

VlH= S.SV
VDDI = S.SV
VIL = OV
VDDI = S.OV
VDDI = S.OV
VDDI = S.SV
VlH = S.SV
VDDI = S.SV
VIL =OV
VDDl=SV
VDDI = S"
VDD1=SV
VDDI =4.SV
VlH = 2.6V
VDDI =4.SV
IOL=4SmA
VDDI = S.SV
V OH = S.SV
VDDI =4.SV
10L = 10mA
V DD1 = S.SV
VOH= S.SV
VDDI = 4.SV
10L = ISmA
VD D1 = S.SV
VOH= 13.2V
VDDI =4.SV
10L= SmA
VDDI = S.SV
VOH= S.SV
VDDl=SV
10H= -IOmA
VDDI = S.SV
VOL = OV
VDDl=SY
10H= -SmA
VDDl = S.SV
VOL=OV

Low Level Input Current
High Level Jnpu t Voltage
Low Level Input Voltage·
High Level Input Current

Higher Threshold Voltage
Lower Threshold Voltage
Hysterisis
Input Current

Signal
Output
Interface

max

VJH]

VDDI = S.SV

Low Level Input Current
Index
Input
Interface

typ

V DD1 = S.OV

Test Condition

High Level Input Voltage
Low Level Input
Voltage
High Level Input Current

Low Level Output
Voltage
High Level
Output Current
Low Level Output
Voltage
High Level
Output Current
Low Level Output
Voltage
High Level
Output Current
Low Level Output
Voltage
High Level
Output Current
High Level
Output Voltage
Low Level Output
Current
High Level
Output Voltage
Low Level Output
Current

Cex - 0.033,.F
Rex = 33kn
Cex - 0.069,.F
Rex = 33kn
Cex = 0.033,.F
Rex = 220kn
Cex = O.22,.F
Rex = 390kn
Cex - 2.3,.F
Rex = S6kn
VDDI = S.SV,
VDD2= 13.2V
No Load
VDDI = S.SV,
VDD2= 13.2V
No Load

ERASE ON DELAY
ERASE OFF DELAY
Index Output Pulse
Width
Index Detection
Period
Hold Period
at 12V
Supply Current I

Dissipation
Current
Supply Current 2

•

HITACHI

Symbol

min

-10

-

-

,.A

VIHS
VlLS

3.3

-

1.7

V
V

IlHS

-

10

,.A

IlLS

-10

,.A

2.0
1.5

-

VTH+IX

-

-

-

3.S

V
V
V

VHYS

-

IrHIX

-SO

-

SO

,.A

VOLl

-

-

0.4

V

10HI

-

-

2S0

,.A

VOLIU

-

-

O.S

V

'IOHIU

-

-

100

,.A

VOLHV

-

-

O.S

V

10HHV

-

-

100

,.A

VO LMN

-

-

0.4

V

10HMN

-

-

SO

,.A

VOHHL

3.6

-

-

V

-20

-

-

,.A

3.6

-

-

V

10LSTP

-20

-

-

,.A

tEN

0.44

0.S2

0.60

ms

tEF

0.91

1.07

1.23

ms

tIXW

2.61

3.08

3.SS

ms

tixi

31.1

36.6

42.1

ms

tHY

47.1

SS.S

63.9

ms

IDDI

-

-

6S

mA

IDD2

-

-

10

mA

~H-LX

10LHL
VOHSTP

213

. HA16640NT

•

Pin Description

Symbol
COMO

Name
Common
Driver 0

COMl
SIDE
SELECT
WRITE
a, b

Common
Driver 1
Side
Select
Write Driver
a, b

ERASE

Erase Driver

WRITE·
CURRENT

Write
Current

WRITE
DATA
WRITE
GATE

Write Data
Input
Write Gate

WP

Write
Protect
Input
Erase ON
Timer

ERASE ON
DELAY
ERASE OFF
DELAY
STEP
D1RECTlON

Erase OFF
Timer
Step Signal
Input
Direction
Input

4>.,4>,,4>,
4>.

4 Phase
Stepper
Drive
Output

HV

Voltage
Change
Timer

HVTlME

HVTimer

WRITE
PROTECT

Wriie Protect Output

Description
Output terminal of Common Driver (SIDE 0). During the Head Select signal is selecting SIDE 0, a
common voltage appears on this terminal. The voltage value at WRITE Mode and that READ Mode
are shown in the Electrical Characteristics. This terminal supplies a current which equals to write
current + erase current. When the SIDE 0 is unselected, a common voltage doesn't appear, and this
terminal is pulled down to ground by a internal resistor with high resistance.
Output terminal of Common Driver. (SIDE 1).
The function is as same as that of SIDE O.
Input terminal for Head Select signal.
This signal selects the SIDE 0 or SIDE 1 of the common driver.
Output terminal of Write Driver.
The current multiplied by 4 with the determined current at the WRITE CURRENT terminal is sinked.
WRITE a and WRITE b turn on alternately according to the Write Data "1" or "0".
Output terminal of Erase Driver.
The drive transistor turns on during the period of Erase Gate signal keeping low, and the Erase Gate
timing is generated by write Gate signal in IC circuit.
This terminal has open collector NPN transistor, and erase current must be determined by an external
resistor.
The terminal to determine the Write Current.
The Write current is determined with connecting an external resistor to +5V supply.
The Write Current on the WRITE a, b terminals is multiplied by 4 with the current on the WRITE
CURRENT terminal, as follow equation.
IOWW = 3.38 x 4 (mA)
Rex
where, IOWW: WRITE CURRENT on the WRITE a, b terminals.
Rex:
External pull up resistor on the WRITE CURRENT terminal, and use the value in kn
unit.
Write Data input terminal ..
The signal is devided through the F IF circuit in IC, and drives the Write Driver.
Input terminal for Write Gate signal.
The write gate is enable at input Low, and allows data writing.
Erase Gate signal is generated with the determined delay from the negative and positive edge of Write
Gate signal, and drives an erase driver.
Input terminal for the detected write protect signal from the Disk.
Common, Write, Erase drivers are all inhibited at input low, and WRITE PROTECT driver turns ON.
Terminal for connecting the external time contact Cex, Rex of internal Mono Multi circuit to determine the delay time between the both negative edge of write Gate and Erase Gate signal.
It is necessary to determine the delay time for the fittest value according to the kind of FDD and
HEAD component.
As same as above, but the delay time is determined between the both positive edge of Write Gate signal
and Erase Gate signal.
Terminal for step pulse input to drive the stepping motor to seek tracks.
With each one step pulse input, the driver outputs 14>. ,4>,,4>,,4>. change sequentialy.
Input terminal for Direction signal to determine the direction of stepping motor revolution.
Output drivers change with the direction of 4>. -+ 4>, -+ 4>, -+ 4>. at the input low, and 4>. -+ 4>. -+ 4>, -+
4>, -+ 4>. at the iaput High.
Output terminals to drive the stepping motor coil. With each step pulse input, outputs change with
the direction determined by Direction signal.
Output driver has emitter follower construction, but the driver cannot drive the stepping motor coil
directly.
It is necessary to have external driver devices such as discrete transistors.
Timer output terminal to drive an external transistors which switches supply voltage 12V to 5V each
otherlfor stepping motor coil.
With each step pulse input or each head load execution, the output turns ON during the determined
period.
It is enable to switch supply voltage 12V to 5V alternately and to supply 12V for the stepping motor
coil during the period of Low level on this terminal.
Terminal for connecting the external time constant of internal Mono Multi circuit to determine the
period of keeping the HV output Low level.
When the input level ofWP turns Low and the drive select is executed, this output turns ON.
(to be contmued)

214

eHITACHI

HA16640NT
Symbol
TOO
TRACK 00
IX

Name
Track 00
Input
Track 00
Output
Index Input

INDEX

Index
Output

INDEX
PULSE
WIDTH
READY

Index Pulse
Width Set

INDEX
INTERVAL

Ready
Output

Index
Interval

Description
Input terminal for 00 track detection.
High level input makes the 00 track detection.
Output terminal for 00 track detection.
When the input level of TOO is High, and the both output <1>., <1>. are High, this output turns ON.
Input terminal for the detected Index hole signal from the DISK.
Input Low shows the hole detection.
Output for the Index pulse.
With each input of the detected Index pulse at the IX terminal, the width formed pulse appears on this
terminal as a Index pulse.
Terminal for connecting the external time constant of the internal Mono Multi circuit to determine the
output pulse width on INDEX.
It is enable to adjust the pulse width independently to the diameter of the DISK hole.
Output of the Ready signal.
When the disk revolution gets to the normal, after counting three index pulses, the output on this
terminal turns ON, and shows FDD has gone into READY state.
If the revolution goes down under the normal value, the output turns OFF rapidly and shows NOT
READY state.
And also the output shows High level continuously when Drive unit is not selected.
Terminal for connecting the external time constant of the internal Mono Multi circuit to determine
the reference index period corresponding to the standard revolution number of the DISK.
In case of the FDD equipment having another revolution number, it is easier to adjust reference period

DRIVE
SELECT
STAND BY

Drive
Select
Input
Stand by
Input

by changing the time constant.
Input terminal for Drive select signal.
Input low makes the selected operation, and Write function, output interfa~e,

moutput are all enable.

Input terminal for Power Save Signal to reduce the power consumption in FDD equipment and LSI.
Input high inhibits all output terminals in Write and Mechanism control circuit except common driver,
so power consumption in external circuit is reduced and this LSI makes itself into sleep mode.
At the same time, common driver turns the READ mode.

HEAD
LOAD

Head Load

HL

Head Load
Output

IN USE

In Use
Input

IV

In Use
Output
Read Data
Input
Read Data
Output
Disk in
Input

I READ
DATA
READ
DATA
DISK IN

MOTOR ON

Motor On

MON

Motor On
Output

VDDI

SV Power
Supply
12V Power
Supply
Ground

VDD2
GND

Input terminal for Head Load signal.
When READY is low and operation is under the not stand-by mode, head load is enable at the input
low.
Terminal for Head Load output.
Circuit has a emitter follower construction.
But this terminal cannot drive the coil of head load solenoid directly.
It is necessary to have an external driving transistor.
Input terminal for IN USE signal.
When the DISK is chJ!!ged and the DRIVE equipment is selected, and also the operation is under the
not stand-by mode, IV output is enable with the input low.
In Use Output.
Circuit has a open collector NPN transistor, and can drive LED directly.
Input terminal for Read Data from READ circuit such as HA16631P/MP. When both DRIVE SELECT
and STAND BY are Low, inverted read data pulses appear on the READ DATA terminal.
Output terminal for Read Data.
Circuit has an open collector driver, and negative data pulses appear on this terminal.
Input terminal for Disk charge detection signal.
Input High shows the ffiarged state. When lhe charged Disk is detected, MON output turns ON and the
motor starts, and also IV output turns ON too.
This function does not depend on the input level of MOTOR ON and IN USE. When the Disk revolution gets to normal state, after counting eight Index pulses, both MON and IU outputs turns OFF, so
the motor stops and IN USE LED tU!"ill OFF.
___
After this operation, both MON and IV outpulLdepend on the input level of MOTOR ON and IN USE.
If the Disk is discharged, the motor stops and IV output is inhibited rapidly.
Input terminal for the motor ON, OFF, control signal. MON is enable at the input Low.
Under the condition of the charged Disk and not-stand by, MON output turns ON with the MOTOR ON
input Low.
Output terminal for the motor ON, OFF, control signal.
Circuit has an open collector NPN driving transistor.
Output Low makes the motor ON and High makes OFF.
Also this terminal is able to connect to the motor control IC, such as HA13431 and HA13432/MP.
SV Power Supply.
12V Power Supply.
System ground

eHITACHI

215

HA16640NT

•

EXAMPLE OF APPLICATION CIRCUIT

+12V

+5V

HA16640NT

@Input terminals from FOe
@Output terminals for FOe

GND

•

TIME CHART
IIU OUTPUT

IHEAD OUTPUT I
SIDE! SELECT

I

1NlJSE-----:l
DRIVE SELECT

WRITE GATE
WRITE DATA

: '------.,----'

ID--~----~L_

______~

COMMON 0

COMMON
WRITE.
WRITE b
ERASE

I

ISTEP OUTPUT
TOO
DIRECTION

I

IREAD DATA OUTPUT
1 READ DATA
READ DATA

I

STEP

I

H
p2
IHV OUTPUT

,,3

HL(OutPut)-=~==~:~~====!====

~

fl4

TRACK 00
IDISK IN STARTING I
DISK

IN----1~lst
2nd 3r.d

IX

M;=i

__

216

I

tlXl

~tlJII

u1

.~

7th 8th

---~
~

=i

•

HITACHI

~~

~

HA16642MP ,HA16642NT
This Ie can provide READ and WRITE functions in one chip
for Floppy Disk Drive .

e Read/Write Functions

for Floppy Disk Drive

HA16642MP

• FEATURES
•
•

•

•

•

•

•
•

•

Read Amplifier has a differential voltage gain of 200 typ.,
which is avairable to adjust by gain select terminal.
READ Circuit can be applied for the signal amplitude of
0.5mVpp to 10mVpp which is read out from HEAD
COl L, so that this IC has superior capability to apply for
a FDD less than 5 inches.
In the read circuit, the peak shift is less than 1% for the
signal amplitude, 0.5mVpp to 10mVpp, at the Amp
input.
In the WRITE circuit, the COMMON DRIVER, the
WRITE DRIVER, and the ERASE DRIVER can provide a
large current capability, so that can be applied to various
kinds of FDD's.
Write current can be established at any value according to
the external resistor. The write current is independent of
the supply voltage drift and temperature drift, with the
built·in stabilizing circuit.
This IC provides a function to reduce the write current at
the inner track on the disk with a external switching
signal. The reduce ratio of the write current can be
established at any value with the external resistor.
The WRITE GATE signal and the ERASE GATE signal
can be applied independently each other.
A dual·mode supply voltage monitor circuit is built·in, to
inhibit a miss writing and a miss erasing at the power
supply timing, ON and OFF, and the abnormal supply
voltage.
READ and WR ITE functions are integrated in one chip,
resulting in broad reduction of external components.

• PIN ARRANGEMENT
eHA16642MP

(MP·44)
HA16642NT

(DP.42S)

eHA16642NT

d"

o

RC H
C B

IK.A,
~.c.

3

OlFF (vi
DlFF (pi
[)IfF In
OIFF In

DlFF Cpl
DlFF In
DlFF In

(Top View)

(Top View)

eHITACHI

217

HA 16642MP,HA 16642NT

• BLOK DIAGRAM AND APPLICATION CIRCUIT
+5\'

R,

c;

RD Data Out

I
I

I
I

~G'D:l

o _-@_J
011

D.
D.

R.
Ecoil
D,

+ 12Y

:.......... ;.:
RK. R9:
RIO:
R 11 :

Ol!

Side 0

Integrated Blocks
To determine a bias current for read mode
To determine the increa~se ratio of a write current at the inner track.
To determine a write current at the outer track.
(Write current at the inner track is a summation of the currents determined by

Rill

and Hil respectively.)

.ABSOLUTE MAXIMUM RATINGS (Ta=25°C)
Symbol

Item

Ratings

Unit

Applicable Terminal

Supply Voltage

Ve(']

7.0

V

Supply Voltage

Vc{':!

16.0

V

VCT:!

Input Voltage

V/.\"

-0.2 to t 7.0

V

AMP IN

t 5.0

V

AMP IN

-0.2 to t 7.0

V

RD DATA OUT

150

mA

COM O. COM 1

o to

VC(,1

--

Differential Input Voltage

VIXe,JI/"/I

Output Voltage

VII'"

Common Drive Current

/l'tJ.\l

Write Drive Current

III"/'

15

rnA

WT 1. WT 2

Erase Drive Current
Power Dissipation

hH

120

mA

EO

Pr

800

mW

Vn'l.

Operating Temperature Range

T",,,

Storage Temperature Range

T~II!

218

•

HITACHI

o to

t 70

·55 to t 125

t:
l:

VCTt.

Vt;t:

HA16642MP,HA16642NT

.ELECTRICAL CHARACTERISTICS (Ta=2S"C)
Circuit Block

Item

Symbol

Test Condition

min

V(,C;

typ

max

Unit

4.5

5.0

5.5

10.5

12.0

13.5

V

-

200

-

V/V
I,A

Supply Voltage Range
Ven,2
r~250kHz. V,,~5mVrms

Differential Voltage Gain

Al't)

Input Bias Current

1m

Common Mode Input Voltage Range

Vew

Output Harmonic' Distortion

THD

f~lkHz.

Vi ..

Peak Shift

PS

f~250kH,.

V,. ~O.5 to IOmVpp

VOH

Vee ~4. 75V. IOH~-400~A

V

-

-

15

2.0

2.7

3.4

V

-

-

5

%

Pre Amp.

Peak Detector

~10mVpp

Output Voltage

Read Data

%

-

V

-

0.4

VOl.

Vee ~4. 75V. IOI.~4mA

t"l'/.II

Vr;r;~5V. V",,~O.4

-

30

-

Falling Time

tTHt.

Vee~5V.

-

15

-

f~125kHz

1.3

-

4

f~250kHz

1.3

-

2

f~125kHz

0.15

-

1.5

f~250kHz

0.15

-

0.75

t1.H~

Timing Range #2

Erase Driver

2.5

Rising Time

Timing Range #1

Common

-

-

.. Processor

Driver

-

2.7

to 2.7V

V"., ~2. 7 to OAV .

t2Ali

V
ns
ns
J.lS

J.lS

Output Voltage at selected Write Mode

VIITMS

VC'C2 ~ 12V. leo .• ~120mA

-

11

-

V

Output Voltage at unselected Write Mode

VlfC.Wl'S

Ven =12V. at unselected

-

-

0.7

V

Output Voltage at selected Read Mode

VRC.WS

VeC2 ~12V. Ic() .• ~lmA

-

2.7

-

V

VCC2 ~12V. at unselected

-

-

0.75

V

-

-

150

rnA

Output Voltage at unselected Read Mode

VRC.\WS

Output Current Range

/co,w

.

Output Low Voltage

You:

VGG ~5V. [Ot ~100mA

-

-

0.5

V

Output Leak Current

IOHi-:

VOH~12V. V"G~5V

-

-

100

I,A

-

-

120

rnA

-7

-

+7

Erase Current Range

If:H

W rite Current Accuracy

ACllr

VGG~5V. VCC2~12V

Write Current-Supply Voltage Sensitivity

!?SJII'

VGG~5V. VCC2~IO.8

Write Current-Temperature Coefficient

Telll'

Vcc ~5V. Vc,,~ l2V, Ta~O to+70t

W rite Current Symmetry

61,,'1'

Vcc~5V, VCC2~12V.IK'Tl-lm

W rite Current Range

[liT

VGG~5V. VCC2~12V

Leak Current at Off Driver

["hId

Vcc~5V, Vc,,~12V. V"T~20V

Supply Voltage

Detection Voltage for 5V Supply

V,WO,\'!

VC'C2~12V

3.5

·3.9

Monitor

Detection Voltage for 12V Supply

V,W'O.\'2

VGG~5V

8.0

9.0

9.8

V

Logic Input
Gate

Input High Voltage

VIH

VGG~5V

2.0.

-

-

V

Input Low Voltage

VII.

WG. EG

-

-

0.8

V

Input High Voltage

VIHS

VGG~5V

2.0

-

-

V

Input Low Voltage

VII.S

HS. WD

-

-

0.5

V

Read

-

25

40

Write

-

16

-

Read

-

36

60

Write

-

33

-

to 13.2V

-

±1.5

-

±0.05

Write Driver

Schmitt Type
Logic Input Gate

12V Supply

Icc

Vc('~13.5V

Dissipation
Current

5V Supply

IcG

VGG~5.5V

eHITACHI

%

-

%/V

-

%/'C

-1

-

+1

%

1

-

10

rnA

50

I,A

4.3

V

-

-

rnA

rnA

219

HA18842MP,HA18842NT
• PIN DESCRIPTION
Symbol
AMP IN
OD
AMP OUT
DIFF IN
DIFFCPL
DIFFOUT
COMPIN

MMI
MM2
RDDATA
OUT
COMO

COM I
HS
R/WSW
WSO

LWS
SWS

ITS

WD

Name
Pre Amp Input

Description
Terminal for differential input of pre amplifier in read circuit. A signal voltage picked up
through R/W coil is applied.
Gain Select
Terminal for DC offset compensation of pre amp, and for gain selection. The amp gain
is available to be changed by connecting a resistor to the compensation capacitor in
series.
Pre Amp Output Terminal for differential output of the pre amp in read circuit. A low pass filter is
. connected between the input terminal of differentiator and this terminal.
Differentiator
Input terminal of differentiator in read circuit.
Input
Output voltage from the pre amp is applied to this terminal through the low pass filter.
Differential
Terminal for connecting a capacitor for differentiation. RF, CF and LF are connected in
Coupling
series, as shown in the block diagram.
Differentia tor
Output terminal of the differentia tor. The differentiated signal is appeared on this
Output
terminal with the phase shifted by 90·. The output is coupled through the capacitor and
is applied to the comparator input.
Comparator
Input terminal of the comparator in read circuit.
Input
A signal with the phase shifted by 90· through the differentiator is applied, and the zerocrossing point is detected. This teTminal is pulled up to the bias source by the external
resistor.
Mono Multi I
A capacitor and a resistor are connected to these terminals. The capacitance and the
resistance determine the output pulse width of the Pre Mono Multi Vibrator in the Time
Domain Filter Circuit.
Mono Multi 2
A capacitor and a resistor are connected these terminals. The capacitance and the
resistance determine the output pulse width of the Post Mono Multi Vibrator in the Time
Domain Filter Circuit.
Output terminal of the read circuit. A pulse which is synchronized to the peak position of
READ Output
the read out signal from head coil is obtained.
The output pulse width is determined by the external capacitor and resistor of MM 2.
The signal output level is TTL compatible.
Common
Output terminal of Common Driver (SIDE 0).
Driver 0
During the Head Select signal is selecting SIDE 0, a common voltage is appeared on this
terminal. The voltage.value at Write Mode and that at Read Mode are shown in the
Electrical Characteristics.
A current which equals to Write Current + Erase Current flows out from this terminal.
When the SIDE 0 is unselected, a common voltage is not appeared, and this terminal is
pulled down to ground by a high resistance in the IC.
Common
Output terminal of Common Driver (SIDE I). The function is as same as that of COM
Driver 1
o.
Head Select
Input terminal for Head Select signal. This signal selects the SIDE 0 or SIDE I of the
common driver. This terminal is consisted of Schmitt type input circuits. Input Low
selects COM l.
R/WSwitch
A transistor output for switching the bias state in head coil and in diode SW circuit,
according to READ/WRITE switching. This terminal is pulled down to ground level in
READ Mode, and it is pulled up to 12V in WRITE Mode.
WRITE
Output from regulated supply source in Write Current Setting Circuit.
Regulated
Voltage
Output
Low Current
Terminal to set a low level write current.
Set
The current is determined by connecting an external resistor RII between terminal WSO
and this terminal.
Difference
Terminal to set the current difference (IWOF) between high level write current and low
Current Set
level write current. The difference current is determined by connecting an external
resistor RIO between terminal WHO and this terminal.
IWDF = (High Level Write Current - Low Level Write Current)
~H = If,L + IWPF
ere; WH is hIgh level write current, and IWL is low level write current.
IWH-to-IwL current ratio is;
IWH/IWL = I + I)r,DF/IWL
It can be set at any value y R to and R 11.
Current Switch
Input terminal for Write Current SW signal at inner & outer tracks. High Level Write
Signal Input
Current is selected at input Low, and Low Level Write Current at input High.
Write Data Input Terminal.
Write Data
Input
The signal is devided through the F IF circuit in the IC, and drives the Write Driver.
(to be contmued)

220

eHITACHI

HA16642MP,HA16642NT

Symbol
WT I, 2

Name
Write Driver
1,2

WG

Write Gate

EG

Erase Gate

EO

Erase Driver

PSM

Power Supply
Monitor

VCCI
VCC2
VGG
GND 1
GND 2
GND 3

Amp Voltage
Voltage for 12V
Voltage for 5V
AmpGND

Description
Output terminal of Write Driver. The current determined by external resistors at terminal
SWS and terminal MWS is sinked. WT I and WT 2 turns on alternately, according to
the Write Data "I" or "0".
Input terminal for Write Gate signal.
The write gate is enable at input Low, and allows data writing.
Input terminal for Erase Gate signal.
The erase gate is enable at input Low, and allows erasing.
Output termiti.al of Erase Driver. It turns on at erase gate input WW. The output on
this terminal is an open collector output of NPN transistor, and the erase current is
determined by external resistor R 12.
The monitor circuit monitors the VG~ (+5V) and VC~? (+12V), and will inhibit the
common driver, the write driver and t e erase driver w en the supply voltage becomes
abnormally low, and the FLAG signal will appear on this terminal PSM. The Driver
Inhibit is released only when both VGG and VCC2 are more that the specified voltages,
regardless of the supply sequence.
Voltage for Pre Amp in read circuit.
Another Voltage (Excepting for Pre Amp.)
GND for Pre Amp read circuit.
GND for read circuit. (Excepting for Pre Amp.)
GND for write circuit.

_HITACHI

221

HA1835 P •

Voltage Regulator Control with Fail Detector for Digital System

The HA1835P is a monolithic voltage regulator control
designed for microcomputer system. In addition to voltage
regulator, it includes watch dog timer function and power on
reset function.
In various microcomputer system, this IC's every function
'can operate with a few external parts .

• FEATURES
•

•

•

5V Regulated power supply control circuit
o Voltage drop can minimize with external PNP-type
transistor.
o Internal over current protection circuit for external
PNP-type transistor.
Watch dog timer
o Internal Digital band pass filter control circuit of pulse
width detect type and Oscillation control circuit of
constant current charge-discharge type, so Watch dog
timer function controled by microcomputer's software.
o Band pass filter characteristic and Oscillation characteristic can also set up at will with external circuit.
Power on automatic RESET pulse generator

(DP-14)

• PIN ARRANGEMENT

.BLOCK DIAGRAM

v,.

v, ..

Q

O----~~-.JIfI.I\---~---,

r--~------O

v•• ,

(Top View)

HA1835P

-----,

I
I
I
I

I
I
5kll

I
I
I
I

'------+------{ 9
'-------------l-----~ 8

Camp
V4DJ

2kQ

RESET

eLK

Fail Detector

Power on Reset Detector

(Band Pass Filter)

Reset Signal Oscdlator

I

I
I

I
I

1

I

I

____ JI

174

lo.olPF
C,

GND

222

eHITACHI

HA1835P

• ABSOLUTE MAXIMUM RATINGS

(Ta~25'C)

Symbol

Item

Supply Voltage

Rating

Unit
30

V

-0.3 to Vout

V

VRESET

17.5

V

VRESET

17.5

V

I RESET

2

rnA

2

rnA

Vee

Input Voltage

VCLK

Output Voltage

Output Current

I"iiESET
Control Terminal Voltage

Veo.\"/'

Control Terminal Current

leOl'fT

Vee

V

20

rnA

Power Dissipation

PT*

400

rnW

Operating Temperature Range

T.,.

-40 to +85

·C

Storage Temperature Range

TAl.

-50 to +125

·C

Operating Supply Voltage

Veccop,)

6 to +17.5

V

260 (T---j

E

d:~

0~50~k--~~--~~---~~--~--~
Resistor RR (Q)

Fig. 5

226

eHITACHI

R.-ton Characteristics

HA1835P

20

5kr-----~r-----_+------_+------~~~~+___1

System

k '

.....

10 k

2k

k

lk

k

"

~

~

~

( Ta-2S'Cl

's.--

~,
~r-

k

~

Normal
Operation Region

,

;;:

Permission Operational

200

20

~

"-

A~B

"""-

100
Duty=

50 0

""-

Clock Pulse Duty

;;:
U

~r-

500

0::

o~

"-

"-

10o

40

60

80

~-'

R""-'~

20k

30
20

I~

or--Sy".m
o
S'""I R.g''" 1

"-

50

0

kun-awaJ

Sense Region

100

SOk

lOOk

~

200k

SOOk

1M

Resistor Rf (fJ)

Clock Pulse Duty (%)

Fig.6

Permission Operational Colck Pulse

Fig.7

Clock Pulse Frequency Input RangeVS. R.

Duty VS. Freqency

•

HITACHI

227

228

•

HITACHI

Other Functions

~HITACHI

229

HA17733G,HA17733P,HA17733
HA 17733 is a video amplifier for wide band with small phasedelay and excellent gain stability. This amplifier eliminates
external phase compensation and can fix the gain 10, 100 or
400 without using external elements. If some external
elements are used, any gain from 10 to 400 is available.
It finds main application in terminal units of computers,
interface or video amplifiers.
Industrial Use: .
. HA17733G, HA17733P
Commercial Use:
. . . . . . . . . HA17733

.Differential Video
Amplifier

HAI7733G

• FEATURES
•
•
•
•

Wide Band Width . . . . . . . . . . . . . . . . "
120MHz
Good Response
Gain is Easily Adjusted in the Range of 10 to 400
Eliminates External Phase Compensation

(DG-14)

HA17733P, HA17733

• CIRCUIT SCHEMATIC

(DP-14)
'--t-~v.;;..-+---t---(l'VOUTI

e::---+------i,.---{!)7 OUT2

• PIN ARRANGEMENT

,l----'-r'''-----ifc-''Q,'--*Q''''''-'--l(IQu
I

Rit

4nu

VF.£

(Top View)

• ABSOLUTE MAXIMUM RATINGS (Ta~ 2S'C)
Symbol

Item
Supply Voltage

+8
-8

Vill(CM)

±6
±5
10

±6
±5
10

±6
±5
10

625 *1
-20 to +75
-65 to +150

. 625 *2
-20 to +75
-65 to +150

625 *2
+70
-55 to +125

Vin(diffl

Power Dissipation

PT

Operating Temperature

T".

Storage Temperature

T",

230

deratln~
deratin~

HA17733

+8
-8

1o",

*

HAI7733P

+8
-8

Common Mode Input Voltage
DiHerential Input Voltage
Output Current

*1 "hen Ta IS 70C or more. the
2 When Ta is 50~C or more. thE'

HAI7733G

Vee
VEE

..

cur\'e \\".11 be 7.6m\\/ C.
curve will be 8.3mWI"C.

eHITACHI

o to

Unit
V
V
V
V
rnA
mW

"C
"C

HA 17733G,HA17733P,HA17733

(Ta~25°C)

• RECOMMENDED OPERATING CONDITIONS

Symbol

Item

Supply Voltage

Typ

Min

Max

Unit

Vee

5.0

6.0

7.0

V

VEE

-5.0

-6.0

-7.0

V

• ELECTRICAL CHARACTERISTICS-1 (Vcc~ - VEE~6.0V, Ta~25°C)
Vee

8

V

-3

-

-8

V

Note 2

250

400

600

VEF.
Gain2

Note 3

80

100

120

Note 4

8

10
40

12
-

-

90

-

-

120

-

-

10.5

-

-

4.5

-

2.5

12
-

-

7.5

-

6.0

-

3.6

10
-

-

Test Conditions

Note I

Gain I
Differential Voltage Gain

Typ
-

Max

3

Symbol

[tern
Operating Supply Voltage Range

A~'D

Gain3

-

Gain 1
Band\\' idth

Gain2

R.~50

BW

n

Gain3
Gain 1
Rise Time

Gain2

R,~50

t.

n, VOk/=lV,

p

Gain3
Gain 1
Propagation Delay Time

Gain2

R.~50

t,

n.

V~",=l

Vp _ p

Gain3
Gain 1
Input Resistance

Gain2

R"

Gain3
Input Capacitance

Gain2

C"

Input Offset Current

I/o

Input Bias Current

I,

Input Noise Voltage

V~(

Input Voltage Range

V,

i"l

R.~50

n. BW

~lkHz

to 10MHz

Gain2

CMR

Vc .• ~±IV

Power Supply Rejection Ratio

Gain 2

PSRR

11 VCC~ ±O.SV. 11 VF.E~ ±O.SV

Input Offset Voltage

V~( of/l

Unit

MHz

ns

ns

-

4.0

10
-

30

-

250

-

-

2.0

-

0.4

5.0

pF
pA

-

9.0

30
-

,.,Vrms

±1.0

I f~IOOkHz
I f~5MHz

Common Mode Rejection Ratio

Gain 1

Min

12i-

-

50
-

70

-

0.6

1.5

60
-

86
60

kn

pA
V
dB
dB
V

-

0.35

1.5

Output Common Mode Voltage

V.(CMI

2.4

2.9

Peak to Peak Output Voltage

V~p

3.0

4.0

3.4
-

Output Sink Current

I" ••

2.5

3.6

-

Output Resistance

R"u'

-

20

-

n

Supply Curhnt

Icc

-

18

24

mA

Gain2.3

p

eHITACHI

V
Vp·p
mA

231

HA17733G,HA17733P,HA17733

.ELECTRICAL CHARACTERISTlCS-2 (VCC =-VEE =1i.OV; Ta=O to +70'C)
Gain 1

Differential Voltage Gain

Typ

Max

Note 2

250

-

600

Note 3

80

-

120

Note 4

8

-

12

Test Conditions

Symbol

Item
Gain 2

AHl

Gain 3

Min

Unit

Input Offset Current

I/o

-

-

6.0

pA

Input Bias Current

I,

-

-

pA

Input Voltage Range

V,

40
-

-

dB

±1.0

-

50

-

V

Power Supply Rejection Ratio

Gain 2

CMR
PSRR

50

-

Inpu' Offset Vol tage

All Gain

V",

nfl'

-

-

Peak to Peak Output Voltage

V"'

p

2.8

-

Output Sink. Current

1m'
Icc

2.5
-

-

-

mA

-

27

mA

R..

8.0

-

-

Common Mode ,Rejection Ratio

Gain 2

Supply Current

Input Resistance

Gain 2

Vc..~

±IV. f;>; 100kHz

t>. Vcc~ ±0.5V. t>. V,,;~ ±0.5V

1.5
-

dB
V
Vp-p

Cl

.ELECTRICAL CHARACTERISTICS-3 (Vcc= - VEE=6.0V. Ta= -20 to +75'C)
Item

Symbol
Gain I

Differential Voltage Gain

Gain 2

Ar/J

Gain 3

200

Typ
-

Max

Note 2
Note 3

70

-

130

Note 4

7

-

13

Test Conditions

Min

Unit

700

Input Ollset Current

[10

-

-

7

pA

Input Bias Current

I,

-

-

pA

Input Vol tage Range

V,

Power Supply Rejection Ratio

Gain 2

CMR
PSRR

Output Offset Voltage

All Gain

V""jj'

Common Mode Rejection Ratio

Gain 2

V:.,

Peak to Peak Output Voltage

±1.0

-

50
-

Vc .• ~ ±IV. f;>; 100kHz

46

-

-

dB

t>.VcI·~±0.5V. t>.VH~±0.5V

46
-

-

-

dB

-

2.8

-

1.5
-

p

V

V
Vp-p

Output S ink Current

l~'d

2.5

-

-

mA

Supply Current

l("c

-

-

29

mA

R..

7.0

-

-

kCl

Input Resistance
:'\otel1.
2.
3.
4.

232

Gain 2

In this I·an~e. the apmlifiel' can be ope!"atin~.
Connt'ct G, \ and G, I',
Connt"ct G, \ and (;:1',
Opt>n all of the terminals (or ~ain select.

~HITACHI

HA17733G,HA 17733P,HAl7733

PHASE VS. FREQUENCY (2)

PHASE VS. FREQUENCY (1)

0
-

..

~H

.~

"

-50

\/~,

V"

-6V

To:.2S'C-

0;'"
.... ....
~

I

-100
:

I
,

-15 0

n-f--;-- .,";+

f---l- ~r++7I
I

-300

-35 0 1
Frequency

f

v"I~~lv;"~~v

~-tt5',tl

o--H
J.'
o-J-

I

1
I

:

i

,

U

.....,.....

, III

:l
GIInJ II

-f

~+
0

'

r-4I, '

II

i

10

~

'i!

E
E

J

, 1
0

0

i

I

I

I

[Ii

I II i

li:1
30k

lOOk

300k

10M

3M

f

I

I

1M

llM

100M

(Hz)

1,000

300

(MHz)

SINGLE ENDED VOLTAGE GAIN VS.
FREQUENCY

PEAK- TO-PEAK OUTPUT VOLTAGE VS.
FREQUENCY
~

I--..

I- I-

,

'I

Frequency

100

f

I

10k

I I, II

-

I

I
-T

Ii

30

Frequency

~

:

----i--

"

"

0

i

I

1.000

,

J' ..

i

:

:

300

(MHz)

~

o-

I

100

f

H-I

-

""H-;.

30

COMMON MODE REJECTION RATIO VS.
FREQUENCY

I

t N

",,;,
I

I

10

Coo,,
III
Vce = - VEt =6V ITa =2S'C

-s,

-

Frequency

I

I

I

~lt;~Hi
~q~

(MHz)

SINGLE ENDED VOL TAGE GAIN VS.
FREQUENCY
II

1 1\

iTt:'

-250

l\

,

t--~---1 ~.'

-200

II
r'r-rm+--+4-1H-1H+l.J+-+-++.l...HffiI

V(co:;-VH=6V
T, = ,,'C

Rr -lkQ

Rr = lkl2

sof-----

:I
I

j

i!

II

GI1U2'r+-H+l-l+---++--+++j-++!l--++-+--+++l-~

4oH++++++++i----HH++++!iH+++-Hi-ffi

~ 3O,H+++~~+H~~~~~~~

1\\

~

I

!

]

Til"" -;20'C

I!

-;j
~

r

Ii
IH--f-ii-+tt-f+r---HH+t++t1H+-H-++14
"

10H+++++!++i---+H++++!iH~ +25'C

I

+7!i'C

I
100
Frequency

f

300

1.000

(Hz)

100
Frequency

~HITACHI

f

300

1.000

(Hz)

233

HA17733G,HA17733P,HA17733

RELATIVE VOLTAGE GAIN VS.
SUPPLY VOLTAGE

PEAK-TO-PEAK OUTPUT VOLTAGE, OUTPUT
SINK CURRENT VS. SUPPLY VOLTAGE

..

7

TII=25\:

T.=is"C
1=200MH'.I.

v.. = l.5mVrml

.Z

.S

 (mA)

$

HITACHI

1.,d: (rnA)

241

HA17555GS, HA555PS, HA17555
OUTPUT VOL TAGE(Vod VS.
SINK CURRENT (3)

OUTPUT VOL TAGE(Vod VS.
SINK CURRENT (2)
JO

0

Lee

,

I

i

!

,

..

To-7S'C

i

ISV

!

I

"
!

I

0 .I

__~

1-3

I

.0

~

JOV

:

, I

I ~

I

.

:

t~-20:C'

-

'T'-75'C~V

~

i I

1:1.
ih'

o.3

~

o.I

25'C

25'C

~

HI

0.0

0.0 3,....::

' .......
A
V

I

0.0 I

10

30

:

V

I

100

0.

~

0.99 5

+--

I

r-

r-

0.99 5

-

i
- I - - I--

:

I

--

I

I

I

0.99 0

0.991I
I

-:-- I-0.98 5

0.985

'0

-20

15

10

10

Ambient Temperature

Supply Voltage Vee (V)

(0(,1

PROPAGATION DELAY TIME VS.
LOW LEVEL TRIGGER VOL TAGE

MINIMUM TRIGGER PULSE WIDTH VS.
LOW LEVEL TRIGGER VOL TAGE
20

Tu

300

"

r---,---.---,----,-----,--,---.-,----,

-

0

E ,uo

,:

8

0

-

Ta=-20'C .........

~
~

tl -I - 25'C

O

r--

l--

100

ci:

!--:::: ~ :...75'C

(1,1

0.1

0.2

0.3

Low Level Trigger Voltage (x

242

0.'

Low Lev,,] Tri~ger Level (X 1,'re)

Vet'!

$

HITACHI

HA17555GS,HA17555PS,HA17555

.DESCRIPTION OF HA17555 OPERATION
HA 17555 is an Integrated circuit which can provide accurate
a time delay and oscillation. As for time delay or mono
multi operation, output pulse width can be determined by an
external resistor and a capacitor. At astable operation,
oscillation frequency and duty cycle can be controlled by
two external resistors and an external capacitor separately.
It is possible to attract and induce 200mA current by output.
And also, operating voltage can be used at a wide range of
supply voltage, 5 to 15V. Particularly when supply voltage is
5V, output level is compatible with TTL input.
.
HA17555 consists of reference voltage circuit, two kinds of
comparators, flip-flop, output circuit, reset and discharge
circuits.

5. Output Circuit
Output circuit consists of 0'0 through 0'4' R" through
R 15' Output level is determined, according to the state of
output transistor 0" of flip-flop. When 0" is "ON",
output level is "Higg", and when 0" is "OFF", it is "Low".

6. Reset
By making reset terminal "Low" level, prior to any other
input, the reset function can make it "Low" level and starting point of a new cycle.
7. Discharge Circuit
Discharge circuit can discharge or charge timing constant connected to the both edges, by "ON" or "OFF" of 4 , 0'4 is
turned "ON" and discharged at "Low" level or when the
above reset is made.

°.

1_ Reference Voltage Circuit
Supply voltage is divided into three by 5kn resistance of R"
R. and R.. The edge of (2/3) Vcc is connected to comparator A, the edge of (1/3) Vcc is connected to comparator B.
And (2/3) Vcc is drown out as a control terminal. By impressing bias at (2/3) Vcc from the outside, it is possible to
change threshold level and trigger level of comparator.

2. Comparator A
Comparator A consists of 0. and 0" R., R" R3 and Rs.
The base of 04 is connected to reference voltage (2/3) Vcc.
It switches when voltage of threshold terminal switches (2/3)
Vcc off. In other words, when voltage of threshold terminal
is beyond (2/3) Vcc, 0. and 0, which have been cut off is
turned "ON", and 0. and 04 are turned "OFF". 50,0. is
turned "ON" and resets flip-flop.

3. Comparator B
Comparator B consists of 0. through 0 .. , R. and R •. The
base of 0 .. is connected to reference voltage (1/3) Vcc, it
switches when voltage of trigger terminal cuts (1/3) Vcc off.
In other words, when voltage of trigger terminal decreased to
less than (1/3) Vcc, 0'0 and 0" which have been cut off are
turned "ON". 012 and 013 are turned "OFF". So, trigger is
supplied to the set side of flip-flop from the collector of 0" '
and flip-flop is set.

4. Flipflop
P5 flip-flop consists of 015 through 0 .. , R. o and R II . It is
stabilized when 0 •• is turned "ON" and 0" "OFF", by
reset signal from comparator A. On the other hand, it is
stabilized when 0'6 is turned "OFF" and 0., "ON", by set
signal from comparator A.

•

HITACHI

243

HA17555GS, HA17555PS, HA17555

• AN EXAMPLE OF OPERATING CIRCUIT

.!;-;;,,----!---+---oOutput
Input

(2) Trigger
Di scharge (7)
(5) Control
Voltage
Threshold (6)

GND

Fig.1 Mono Multi Circuit

2. Astable Operation

{)()

If the second resistor RB is added to the circuit shown in Fig.
1 and threshold terminal is connected to trigger terminal,
HA 17555 operates as an astable circuit. Fig. 4 shows the
circuit construction of HA 17555.
Capacitor e is charged through RA and RB, discharged
through R B in th is circu it. Therefore, duty cycle can be controlled by RA and RB. In Fig. 4, capacitor e charges and discharges between threshold voltage (about 0.67 Vee) and
trigger voltage level (about 0.33 Vee). Fig. 5 shows a typical
example of astable operation. In this figure, time (tH) when
output is "High" level, time (tl) when output is "low",
oscillation frequency (f) and duty cycle (D) are calculated as
follows;

V

]

100m

/.

Om

V

V

V

'Y

V

;"

~

~

V

"

V

V

~

V

Im

100

= RAe. When voltage at both edges of capacitor e reach
threshold voltage of comparator A, flip-flop is reset and
is conducted, capacitor e is discharged. So, output is returned to "Low". Mono multi operation is occurred when·
negative-going input pulse reaches trigger level. When once
mono multi operation is occurred, re-trigger could be made,
even if re-trigger signal is added during this period.
According to Fig. 1 and Fig. 2, output pulse width is determined to be tw = 1.1 RAe. If negative-going pulseis added to
reset and trigger terminals at the same time during mono
multi operation, capacitor e is discharged and mono multi
operation is occurred again at positive edge of reset pulse.
Output remains "low" as long as reset terminal is "low".
When the reset terminal is not used, it is better to connect
reset terminal to Vcc in order to prevent miss operation.
Fig. ·2 shows the characteristics of output pulse width when
the values of RA and e are changed. Operating waveform is
shown in Fig. 3. If the reset terminal is connected to mono
multi circuit subordinately, it is possible to make sequential
timer.

0,.

1. Mono Multi Operation

"

o"V
O.lIUl

tH=O.693(RA + RB)C
t/.=O.693RB· C

V

f

Duty Cycle

I,.;'
.JI·

Timing Capacitance {' ({J.Fl

Fig.2 Output Pulse Width vs. Timing Capacitacne

Fig. 1 shows a mono multi circuit using HA 17555. It is
assumed that the external capacitor e is discharged by dis·
charge transistor
inside Ie in the beginning.
By adding trigger terminal to negative-going input trigger
pulse, flip-flop is set and
us turned "OFF". Output is
driven to "High".
Capacitor e is charged through resistor RA at time constant T

0,.

0,.

244

1.44
(RA+2RB)C

eHITACHI

D

HA17555GS, HA17555PS, HA17555

5V

5V

Input

- r.- I-Output

RL=lkQ

Output

Output at

I

Terminal C F---+-->--"-¥=--f- --'~-""""'-j-+--'>+-,,'1

f-

: j i
l.-1 --:1
Vi

,

Output at
Terminal C
(6pin)

RA=19kS2
RB =l2kQ
C =O.l.uF
Rl.=lka

RA=8kQ
C=O.OI,uF

oV1

(6pin)

IJ~s

5V

5V

(5V/div)

lal Vcc=5V

l W-i-+-~-

0

I

h

1--1--

h

I

!

(IOV/div) .

RA =SkU
C=O.Ol.uF

I

I

lOY

i

+

(Spin)

!

:-++

:
:

RA =3.9110
R,I=3.21&
C=O.lJlF

I

Rl.=lkQ

!

I

~ ~~
i
I
0

I

5V

100,115

I

i

I

0
Output at
Terminal C

,

~

I

Output

RL=lkQ

I /l

V1

/1

(IOV/div)

,.......,

,,

Output

Output at
Terminal
(6pin)

~V

I

lOY

Input

I,

It

faJ Vee =5V

'"

,/

.......- -'\
200.,

(b) Vee =15V

(b) Vee =15V

Fig.3 Operation Waveform of Mono multi circuit

Fig.5 Operation Waveform of Astable Circuit

3. Cautions in Use
Such integrated circuit for tinier as HA 17555 type may
produce switching noise on power supply and GND line during usage. In this case, abnormal output waveform may be
produced by impedance inside power supply or impedance
between power supply and GND. So, please take consideration in order to make impedance of each wiring less than the
following value at packaging.

(411

(81

V"

Reset

Output

121

fll'

II.

(Jutput

R2I

(31

,

Ib,

'---- Triuer

Discharge

~r

0,.

O.I.uF

r

Control
Voltage

II,

T7I
II.

Threshold
GND

~

(61

I'
II"

Fig.4 Astable Circuit

R, :

Power supply output impedance

R,

~ 5OmO

Lead wiring resistor

R.. + R .. ~ l00mO
Substrate wiring resistor
R .. +R •• ~2OmO

•

HITACHI

245

HA16605W

.Burner Controller

Recently bumer control equipment has been improved and
required to obtain small outline, high performance and multi
functions. And now, electronic burner controller is going to
become more popular to save energy and to have better
safety functions ..
The HA1660SW is a one chip monolithic IC, integrated of
the sequential control pert in the bumer 'control equipment.
This IC has four sequence control modas, so that it can
provide functions for various bumer systems.
In each mode, fail-.afe functions are provided. And this IC
has capability of driva relays directly .
• FEATURES
• Four kinds of fixad control sequance
• Commercial frequency 5O/60Hz can b8used for the clock
pulse of intemal timer.
• Transistors wh ich can drive the power relay directly are
builtin.
• Comperators are built in.
• Provides safety functions.
• BLOCK DIAGRAM

r----------------,

Input
Terminal

e
o
o
@>

I
I

----"I

:

I

I

I
I

I
I

I

I

I

I

I
I

I

: .~

.

Ifill
\!.I

i3

(is)
@
@

:i

®

.1

I

I

I
I

I

I

I

I

I

r-~------~~~:
I

I

Output

Terminal

I
I

I

I

I

I

I

I
I

I

I

.!i

n---"

u

~

:

Symbol

1

p

2

NC

3

S

4

Vee

5

EV*

6

IG*

7

RUN*

8

M*

8

I

I

I
L__________________________.-_!.II

• PIN ARRANGEMANT

Description
Decoder input to discriminate four
kinds of control sequence.
Non Connect
Decoder input to discriminate four
kinds of control sequence.
Power Supply
Power transistor output for driving
the magnetic-valve.
Power transistor output for driving
the ignition equipment
Power transistor output for driving
the operation lamp
Power transistor output for driving
the blower motor
Power transistor output for driving
the alarm lamp

9

ALM*

10

GND

GND

11

CP

Clock signa\{50/50Hz)input

12
13

NC
EM

Emergency stop signal input

14

WTe

15

WT

Output of the water temperature
detection signal
Input of the water thermo signal

16

T

Input of the reference voltage for the
water thermo and for the safety thermo

I

Input Cbeck I
Terminal :
I

Pin No.

I

I

i

I

• PIN DESCRIPTION

I

.!i

:!
I

(DP-20)

Non connect

17

ST

Input of the safety thermo signal

18

I'D ..

Output of the flame detection signal

19

FDe

20

FDEf

Input of the f1a~e detection signal
Input of the reference signal for the
flame detection

*Open collector output of ;\;P:\ transistor

(Top View)

246

•

HITACHI

HA16605W

.ABSOLUTE MAXIMUM RATINGS

(Ta~25°C)

Symbol

Item

Supply Voltage

Rating

V

-0.5 to Vce +5.0
Input Voltage

V

FDe, T, ST, WT

FDEP,

-0.5 to Vee +3.0

FDc, WTc

I

V
-0.5 to +25

IG, EV, RUN, M, ALM

75

lout

2

FDc, WTc

2
Output Current

P, S

-0.5 to Vee +3.0
Vo~r

Output Voltage

Note

Vee

CP, EM

-0.5 to Vee+1.0

VIN

Applied Terminal

Unit

7.0

Vee

rnA

IG, EV, M, ALM
3
RUN

100

PT

500

mW

Operating Temperature Range

To"

-20 to +75

°C

Storage Temperature Range

Tal,

-55 to +125

°C

Power Dissipation

Notes \ 1. Internal impedance of the drive source should be more than lkn.
2. Allowable value ..... hen the output transistor is in OFF state.
3. Allowable \'alue when the output transistor is in ON state .

• ELECTRICAL CHARACTERISTICS
Symbol

Item

Input Voltage

Test Condition

max

ViL

-

0.6

IHigh

VIH

2.B

-

-1.5

Input Clamp Voltage

ViC

Output Voltage (Low Level)

he--12mA

ILow

I High

Output Current (High Level)

V

CP,EM

-

V

CP,EM

0.3

V

FDc, WTc

VOL

Vee-4.5V, IOL-75mA

-

0.7

V

IG, EV, M, ALM

-

0.7

V

RUN

IlL

Vec-5.5V, ViL-OV

I/H

Vcc-5.5V, ViH-5.5V

IOH

-

pA

-

100

pA

Vcc-5.5V, VOH-B.5V

-

0.2

pA

FDc, WTc

Vcc -5.5V, VoH -20V

-

50

pA

IG.EV,RUN,M

Vec-5.5V, VoH -25V

-

1.0

rnA

ALM

-200

liB

Vee-5.5V, VI-OV

Comparator Input Offset Voltage

Vio

Vee-5.0V, V"j-I.4V

-

Vee-5.0V

-

Compara,tor Common Mode Input Voltage

VCM

Supply Current

Icc

CP,EM

-250

0

I

-

-

-

nA

2

10

mV

3

Vcc1.6

V

3

70

rnA

Power Supply Voltage

Vee

4.5

5.5

Maximum Clock Frequency

je,

10

-

I

Note

Application Terminal

-

Comparator Input Bias Current

:'\otes

Unit

Vee-4.5V, IOL-2mA

Vec -4.5V, IOL-IOOmA
Input Current

min

I Low

V
kHz

1. Low and High signal le\'els applied to terminals CP and EM.
2. This item is applied to the inputs of comparators. FD+. FD-, T. ST and WT.
3. These items are applif'd to FD+-FD-, T-ST and T-WT of the comparators .

•

HITACHI

247

HA16605W

• SIGNAL STATES AND LEVELS OF 110 INTERFACE
Interface Block

Terminal Name

p

Signal State

Signal Level

Connect to Vee at '"1 n level input, and to GND at "0"
level input.

Decoder
S
Clock Interface

CP

Emergency Input

EM

Emergency state is detected at Low level input on this
terminal, and ALM output turns ON.

FDEB

High level on this terminal turns the sequence to the flame
detected state.

Cpmparator

Driver

ST

Low level on the inverting input turns the ALM output ON.

WT

Low level on the inverting input turns the all sequence
Reset.

EV,IG,
RUN, M, ALM

Output OFF equals to "I" level.'
Output ON equals to "0" level.

.SYSTEM CONNECTION
VII

Vee

'----_e.

*1
• 2

*3
*4
*5

248

Emergency Stop
Signal

LED for alarm lamp.

LED for operation monitor lamp.
Relay coils to dr-h'e the electromagnetic,\·ah·e. the ignition equipment and the blower motor.
De\'ice for flame detection 'e. g. Cds'
Thermistors for detection of water temperature.

•

HITACHI

VlH;:;:4.0V
Vn";2.0V
VlH;:;:2.8V
ViL";0.6V

0"; Ve."; Vee-1.6V

HA16605W

• SEQUENCE TIME TABLE

~e

Pre-purge Timing

0
PJ
0
sl
8 sec

Ignition Timing ·1

9 MAX

Item

-

Post-ignition Timing

pi

1
0

PI
sl

0
1
Sl
17 sec

pi

1

SI

1

4 MAX
-

8 MAX

68 sec
-

17

170

17 sec

Safety Switch Timing

9

4

8

-

Ignition Return

None

None

Possible

-

Pre-purge Return

Provided

Provided

Provided

-

Note}

* 1 Ignition should be turned off at the same time of flame ON.
*2 All values shown in this table are measured under the condition of that:
clock input: f= 60Hz

(commercial frequency)

• SEQUENCE CHART

ep:1, S:O

ep:o, S:O
F'AN
VALVE
IGN

RUN

~

-g

,

17

0
FAN

E

-.r-;

VALVE

.,,~

.e

-r----"

IGN
RUN

.-:::";::GI
c " 0

':~i

TH
ALM

:i!"'"
Reset to

FAN

1;...'=---:==~17========::::::::initial
...1_
i
~

IGN

==:::J--; i

VALVE
RUN

F'D
TH
ALM

i

re~purge

FAN

VALVE
IGN

RUN
Fo[)

:::=
L--

~~

L--

return

.

E •

17

c •

~~

.s.~

8

.~

-

11

ej ....

---,

~

::;:~g~
; -55V
Vee~60V, Vo;>;3V

IlL

HA16617P
typ
max

VOH

0.4
0.22
0.45

VOL

-1.2
57

3.0

hE(ON)

Vee --60V,AII Circuit V.;--4V

eHA16617P

eHA16619P
+551'

ov

252

-3

V..--4V,lo~-40rnA

.APPLICATIONS

ov

58.5

Vee~60V, V..~O.4V

/CC( ON)

JEE ( OF'F)

Quiescent Current

•

rnA

-2.6

V•• --60V, V..--1.5V
Vee~60V, all Circuit V.. -0.4V
VEE~-60V,AIICircuit V..--1.5V
Vcc=60V, One Circuit V.. ~2.4V

/CC( OFF)

pA
pA

80

Vee~60V, V..~2.4V,1o~-40mA

HITACHI

-55
0.04

V

rnA
-280

V,.~-1.5V

Vee-60V, V,.-0.4V
V•• ~-60V, V,.~-4V

Unit

V

-4

Vee~60V, V,.~5V

V•• --60V,

HA16619P
typ
max
-1.5

V•• --60V, V..--7V

Output Voltage

min

2.4

V•• ~-60V, Vo6-3V
Vee-60V, V,.-2.4V
V•• ~-60V,

Input Current

min

0.4
-1.3
4.0
-12

-1.5

V
V
rnA
rnA

HA16617P,HA16619P
.BASIC CIRCUIT

Use as the
Segment Driver
I

Use as the
Segment Driver

Vee

BAl66}?!',

(b) Dynamic Type

(a) Stalic Type

eHITACHI

253

HA16617 PJ , HA16619 PJ •

Fluorescent Display Drivers

HA16617PJ and HA16619PJ are fluorescent display drivers
operating' in high voltage which use positive and negative
power source, respectively .

• FEi\TURES
•

•
•

Capable of driving fluorescent display tube directly
because of the built·in 8 circuits and the built·in pull
down resistors at output,
For the inputs, CMOS or TTL accepted,
The output pulse is non-inverted or inverted from the
input pulse in 16617PJ or HA16619PJ, respectively.
(OP-181

.CIRCUIT SCHEMATIC (l/S)

• PIN ARRANGEMENT

eHA16617PJ

eHA16617PJ

"HI

----0

Vee

l~tEL.
".. '.. ·L.'~...R ~Q+'----oOl'1'
QI

R2

R7

I
----0 G~IJ

eHA16619PJ
(Top View)

eHA16619PJ

'--.Iw--+----o

1)[,1'

(Top View)

254

•

HITACHI

HA16617PJ,HA16619PJ

.ABSOLUTE MAXIMUM RATINGS

(Ta~25°C)

Symbol

Item

Supply Voltage

VFf:

Input Voltage

V.,

Output Current

HA16617PJ

!C,.,

Output Voltage

*

L.,

HA16619PJ
+0.3 to -65

Unit

-0.3 to +65
-0.5 to +10

+0.5 to -10

V

-0.3 to +65
-45

+0.3 to -65
-45

rnA

V
V

Power Dissipation ••

Pr

625

625

mW

Operating Temperature

Top,

-40 to +85

-45 to +85

·c

Storage Temperature

T'ig

-55 to + 125

-55 to +125

·C

HA16619PJ
Typ
Max

Uuit

* When only one circuit

* *Value

when

Ta~50·C.

turns ON
Derating curve ahove Ta=50"C shall be 8.3m\\'/'C.

• ELECTRICAL CHARACTERISTICS

(Ta~

Symbol

Item

V1J/

Input Voltage

-45to +S5°C)

Test Conditions

Vcc 060V, Vo"'57V
VE£~ -60V, Vo~ -55V
VC<"~60V,

V"

/'H

V.,~2.5V
V,,~5V

-60V,

CC( UFF)

i EE ( OFF,
Quiescent Current

1cc ( Vi';)

I Er , In.,

rnA

0.45
-280

V.,~0.4V

-280
p.A

80

V.,~-4.3V

-1.2

VEE~

-60V,

V.,~-7V

-2.6

V.,~2.5V

VH~-60V,

57

rnA

58.5
V

V.,~-4.3V

--3

-40mA

Vcc "'-.60V,

I

0.22

V.,~-1.4V

--40mA

V
V

-4.3

-60V,

lo~
VOL

-1.4

VEE~

Vcc~60V,

Output Voltage

Min

0.4

Vcc~60V,

lo~
V(JH

Max

2.5

Vo~3V

Vcc~60V,

Vcc~60V,
IlL

Typ

VEE - -60V, Va"? -3V

VEE~

Input Current

HA16617PJ
Min

V.,~0.4V

3.0

-60V, V.,~ -1.4V
V, c~60V, All
Circuit V.,-0.4V
VEE~ - 60V, All
Circuit V.,- -1.4V
Vu ·-60V, One
Circuit V.,-2.5V
Vcc - -60V, All
Circuit V.,- -4.3V

'-55

VEE~

0.04

-1.5
V

0.4
rnA
-1.3
4.0
rnA
-12

• APPLICATIONS
eHA16617PJ

eHA16619PJ

Input voltage within 0 to +7V shall be used with regard to
GND.

Input voltage within 0 to -7V shall be used with. regard to
GND,

uv

$

HITACHI

255

HA16617PJ,HA16619PJ
.SASIC CIRCUIT

'al.1rlnlnH.1rIr' ~::mae~tthDriver

Use as the
$egment Driver

Vee

(HA16617P) :

,(L----(.) Static Type

256

(b) Dynamic Type

•

HITACHI

MEMO

~HITACHI

257

MEMO

258

•

HITACHI

MEMO

eHITACHI

259

HITACHI AMERICA, LTD.
SEMICONDUCTOR AND IC DIVISION
HEADQUARTERS
Hitachi, Ltd.
New Marunouchi Bldg., 5-1,
Marunouchi 1 chrome
Chiyoda-ku, Tokyo 100, Japan
Tel: Tokyo (03) 212-1111
Telex: J22395, J22432, J24491,
J26375 (HITACHY)
Cable: HITACHY TOKYO

REGIONAL OFFICES
NORTHEAST REGION
Hitachi America, Ltd.
5 Burlington Woods Drive
Burlington, MA 01803
617/229-2150

U.S. SALES OFFICE
Hitachi America, Ltd.
Semiconductor and IC Division
2210 O'Toole Avenue
San Jose, CA 95131
Tel: 408-942-1500
Telex: 17-1581
Twx: 910-338-2103
Fax: 408-942-8225
Fax: 408-942-8880

DISTRICT OFFICES
•

Hitachi America, Ltd.
1700 Galloping Hill Rd.
Kenilworth, NJ 07033
201/245-6400

•

Hitachi America, Ltd.
3500 W. 80th Street, Suite 660
Bloomington, MN 55431
612/831-0408

•

Hitachi America, Ltd.
80 Washington St., Suite 302
Poughkeepsie, NY 12601
914/485-3400

•

Hitachi America, Ltd.
6 Parklane Blvd., #558
Dearborn, MI 48126
313/271-4410

•

Hitachi America, Ltd.
6161 Savoy Dr., Suite 850
Houston, TX 77036
713/974-0534

•

Hitachi America, Ltd.
5775 Peachtree-Dunwoody Rd.
Suite 270C
Atlanta, GA 30342
404/843-3445

•

Hitachi America, Ltd.
18300 Von Karman Avenue, Suite 730
Irvine, CA 92715
714/553-8500

•

Hitachi America, Ltd.
10300 S.w. Greenburg Rd., Suite 480
Portland, OR 97223
503/245-1825

•

Hitachi (Canadian) Ltd.
2625 Queensview Dr.
Ottawa, Ontario, Canada K2A 3Y4
613/596-2777

SOUTH CENTRAL REGION
Hitachi America, Ltd.
Two Lincoln Centre, Suite 865
5420 LBJ Freeway
Dallas, TX 75240
214/991-4510
NORTH CENTRAL REGION
Hitachi America, Ltd.
500 Park Blvd., Suite 415
Itasca, IL 60143
312/773-4864
NORTHWEST REGION
Hitachi America, Ltd.
2099 Gateway Place, Suite 550
San Jose, CA 95110
408/277-0712
SOUTHWEST REGION
Hitachi America, Ltd.
21600 Oxnard St., Suite 600
Woodland Hills, CA 91367
818/704-6500
SOUTHEAST REGION
Hitachi America, Ltd.
4901 N.W. 17th Way, Suite 302
Fort Lauderdale, FL 33309
305/491-6154



Source Exif Data:
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
PDF Version                     : 1.3
Linearized                      : No
XMP Toolkit                     : Adobe XMP Core 4.2.1-c041 52.342996, 2008/05/07-21:37:19
Create Date                     : 2017:09:04 14:32:16-08:00
Modify Date                     : 2017:09:04 15:24:25-07:00
Metadata Date                   : 2017:09:04 15:24:25-07:00
Producer                        : Adobe Acrobat 9.0 Paper Capture Plug-in
Format                          : application/pdf
Document ID                     : uuid:0e81322c-9098-0e4d-9c8e-8238b61031c8
Instance ID                     : uuid:73270da8-65fc-eb4d-a614-66773ef24c91
Page Layout                     : SinglePage
Page Mode                       : UseNone
Page Count                      : 262
EXIF Metadata provided by EXIF.tools

Navigation menu