1985_D11_Hitachi_Power_MOSFET_Data_Book 1985 D11 Hitachi Power MOSFET Data Book

User Manual: 1985_D11_Hitachi_Power_MOSFET_Data_Book

Open the PDF directly: View PDF PDF.
Page Count: 362

Download1985_D11_Hitachi_Power_MOSFET_Data_Book 1985 D11 Hitachi Power MOSFET Data Book
Open PDF In BrowserView PDF
20151 Bahama Street
Chatsworth, California 91311
(213) 644-7596
(818) 700-8700 (818) 341-4411

POWER MOS FET
DATA BOOK
• GENERAL INFORMATION
• DATA SHEETS
• APPLICATIONS NOTES
• CROSS REFERENCE LIST

#011

~HITACHI

MEDICAL APPLICATIONS
Hitachi's products are not authorized for use in medical applications, including, but not limited to,
use in life support devices without the written consent of the appropriate officer of Hitachi's sales
company. Buyers of Hitachi's products are requested to notify Hitachi's sales offices when planning
to use the products in the applications which involves medical applications.

When using this manual, the reader should keep the following in mind:
l. This manual may, wholly or partially, be subject to change without notice.
2.

All rights reserved: No one is permitted to reproduce or duplicate, in any form, the whole or part
of this manual without Hitachi's permission.
3. Hitachi will not be responsible for any damage to the user that may result from accidents or any
other reasons during operation of his unit according to this manual.

4. This manual neither ensures the enforcement of any industrial properties or other rights, nor
sanctions the enforcement right thereof.
5. Circuitry and other examples described herein are meant merely to indicate characteristics and
performance of Hitachi semiconductor-applied products. Hitachi assumes no responsibility for
any patent infringements or other problems resulting from applications based on the examples
described herein.

August 1985

ii

@Copyright 1985, Hitachi America Ltd.

Printed in U.S.A.

INDEX
• GENERAL INFORMATION
1.
2.
3.
4.
5.

Introduction ........................ 7
Structure & Features ................. 7
Line up & Applications ................ 10
Precautions in Handling .............. 16
Characteristics of Power MOS FETs .... 26

• DATA SHEETS
• P-CHANNEL MOS FETS
2SJ48 ............. " ....... '" ... 51
2SJ49 ............................51
2SJ50 " ..........................51
2SJ55 ............................54
2SJ56 ............................54
2SJ56® ..........................57
2SJ76 .................. '" . " ., .. 59
2SJ77 ............................59
2SJ78 ............................59
2SJ79 ............. " .............59
2SJ77® ..........................61
2SJ79® ............. '" .......... 61
2SJ101 ...........................63
2SJ102 ...........................63
2SJ112 ...........................66
2SJ113 ...........................69
2SJ114 ...........................72
2SJ116 ........................... 75
2SJ117 ...........................78
2SJ118 ...........................81
2SJ119 ...........................81
2SJ 120 IO

1M

10"

typ

max

(S)

(ns)

(ns)

(MHz)

0.5/1.2

-0.8/1.5

0.4/0.25

25/35

35/40

25

0.5

0.7

0.8

1.0

0.9

35

50

5
10

Ros(on)(n)

j,

2SJ120

40

-

100

2SK430

150
300

1

10

2.5

4.0

0.4

20

70

2SK535

-

400

1.5

20

4.0

6.0

0.4

20

45

10

2SK384

-

500

0.3

10

25

50

0.1

20

20

40

2SK511

-

250

0.3

8

30

50

0.08

-

-

250

2SK345

2SJ101

40

2SK346

2SJI02

5

30

0.3

0.4

0.9

40/60

70/100

7

10

50

0.1/0.15

0.15/0.2

2.2

60/80

120/200

3

5

30

0.4

0.56

0.8

40

70

5

10

50

0.15

0.18

2.8

60

150

4

6

40

0.4

0.5

1.8

40

110

3

1

30

2.5

4.0

0.4

20

70

10

2.5/5.0

4/7

1.0/0.7

25/35

70/80

10

2.5

4.0

1.0

25

70

10

1.1

1.83

1.5

50

120

5

2SK375

3
±20

±9

60

2SK428

2SJ122

2SK294

-

2SK295

2SK440

-

200

2SK296

-

300

100

±20

2SK31O

2SJ117

400

-

450

2SK319

400

(2SK513)

-

2SK399

2SJ113

100

10

2SK413

2SJ1l8

140

2SK414

2SJ1l9

160

8

2SK400

2SJ1l4

200

10
-

40

5

50

500

2

30

2.5

4.0

0.7

25

70

10

800

3

60

5.0

6.0

0.7

50

120

5

0.2/0.25

0.25/0.35

2.0

50/70

110/160

3

0.4

0.5

2.0/1.8

50/70

110/160

3

0.5/0.6

0.7/0.8

1.8

40/50

110/160

3

0.3

0.4

2.5

65

180

3

1.1

1.75

1.7

50

120

5

0.67

0.9

2.5

70

200

3

450

-

250

2SK402

-

400

2SK403

-

450

2SK350

±20

800

2SK398

2SJ1l2

100

2SK308

120

2SK401

-

250

2SK298

2SJ1l6

400

2SK299

-

450

2SK312

-

400
450

2SK512

-

500

2SK351

-

800

100

8
!--

10

450

-

2SK313

-

400

2SK534

2SK415

3/2

a--

2SK412

2SK349

20

80

2SK311

2SK382

TO-3

VDSS

Electrical Characteristics

2SK429

2SK320

TO-3P

Absolute Max. Ratings

2SK416

2SK383
TO-

P-ch

Typical Characteristics of Power MOS FET D-Series

±20

3

80

5.0

6.0

0.7

50

120

5

5

100

3.0

4.0

1.2

75

220

4

0.2/0.25

0.25/0.35

2.0

50/70

110/160

3

10

100

0.2

0.3

2.8

60

160

4

0.3

0.4

2.5

65

180

3

100/125

1.1/1.75

1.75/2.25

1.7/1.6

50/60

120/220

5/3

100

1.1

1.75

1.7

50

120

5

0.67

0.9

2.5

70

200

3

0.55

0.65

3.5

75

300

-

1.7

3.0

2.0

100

300

2

8

12

125

5

125

Note: ( ): Under Development (The specifications subject to change without notice.)
0: Test Condition VDS > 10 X RD.{on). 10=\'1/2 10 max(DC)
'0. Value at Tc=25°C

•

HITACHI

11

LINE UP & A P P L I C A T I O N S - - - - - - - - - - - - - - - - - - - - - - Table 3-4 Typical Characteristics of Power MOS FET S-series
Type Number
Package

Voss
N-ch
2SK213

2SJ76

2SK214

2SJ77

TO-3

RFPAK

Note

*:

Ros(on)(fl)

2SK215

2SJ78

180·

2SK408,
2SK409

-

180

2SK216

2SJ79

200·
200·

-

160

2SK133

2SJ48

120·

2SK134

2SJ49

140·

2SK135

2SJ50

160·

2SK175

2SJ55

180·

2SK176

2SJ56

200·

2SK176® 2SJ56®

•••

Iy/,I

t~

t.1/

f,

(V)

(A)

(W)

typ

max

(S)

(nsl

(ns)

(MHz)

±15

0.5

30

8/10

-

0.15/0.1

20

30

40/30

±20

2.0

30

7

9

0.3

-

-

200

±15

0.5

30

8/10

-

0.15/0.1

20

30

40/30

±15

0.5

0.8

8

15

0.15

20

30

30

±14

7

100

1.0

1.7

1.0

180/230

60/110

3/2

±20

8

125

1.0

1.7

1.0

250/320

901t20

60

200

160·
160·

2SK196®

Pch··

10

140·

2SK214® 2SJ77®

2SK216® 2SJ79®
TO-39

Voss

P-ch
(V)

T0-22OA

Electrical Characteristics (typ)

Absolute Max. Ratings

200

2SK220®

-

160

2SK221®

200

2SK258®

-

2SK259®

-

350

2SK260®

400

2SK317

-

2SK318

-

180

2SK410

-

250

±20

±20

2/1

8

100

1.0

1.5

0.9

25

45

50

8

125

0.8

1.1

1.3

25

140

7

5

125

2.5

3.0

1.0

25

140

7

8

120

0.95

1.25

1.25

4

70

1.9

2.5

0.6

-

-

300

8

120

1.2

1.5

1.25

-

-

350

Vosx

**: Value at Tc=25°C
***: Test Conditions V",>I D X R..,(on),I"'I.....(DC)
( ): Under Development (The specifications subject to change without notice.)

• Power MOS FET 011 Series
Characteristics of DII New Series
Hitachi achieved development of high-performance new Power MOS FET DII series by
original technique. 15 types of DII series in
the below table are going to be in production.
DII series have the following features;
• high gain (gm is 2 - 3 times higher than that

12

•

of current D series.)
• low On Resistance (Ron is 30 - 50% lower
than that of current D series.)
The maximum rated current can be driven by
low input voltage: 7-8V do to high gm' Driving
power needs only 1/3 -1/4 of that of current D
series (at VGs=10 - 15V) so that this series
gives more energy saving in the circuit.

HITACHI

- - - - - - - - - - - - - - - - - - - - - - - L l N E UP & APPLICATIONS
Table 3-5

Typical Characteristics of Power MOS FET 011 Series

Type Number

Absolute Max. Rating

Package

Electrical Characteristics (typ)
Ros(on)(fl)

DPAK

(MHz)

1.0

28

48

15

(W)

±15

1.5

20

60

10

50

0.1

0.15

5.0

55

100

3

60

25

75

0.04

0.055

15

115

245

1.5

10

50

0.15/0.2

0.2/0.25

5/5

55/110

100/240

3

1.0

1.4

1.2

1.5

4.0

45

115

2

0.6

0.85

0.7

1.0

6.5

65

155

1.5

10

110

230

1

13

145

320

1

15

110

240

1.5

2SK579

-

450

2SK580

-

500

2SK549

-

2SK600

-

120
450

2SK553

-

500

2SK554

-

450

2SK555

-

500

2SK556

-

450

2SK557

-

500

2SK559

-

450

2SK560

-

500

(2SK561)

j,

(ns)

Pch*'

(A)

-

TO-3

toll

(ns)

ID

(V)

TO-220AB 2SK552

TO-3P

too

(S)

Vuss

(V)

P-ch

(2SK551) (2SJ127)

IYI,I*

VDSS

N-ch

100

±15

5

50

7

60

12

100

15

100

30

150

±15

±15

typo

max.

3.5

5.5

4.0

6.0

0.40

0.55

0.45

0.6

0.25

0.36

0.3

0.4

0.05

0.07

(

):Under Development (The specificatIOns subject to change Without notice)
*: Test Condition VD1' ~ In X Rns(on), ID=I/210 max (DC)
**: Value at Tc=25°C

• Power MOS FET Module
Nowadays, high power transistors tend to be
in module package especially in the field of
motor control. On the other hand, power MOS
FETs, because of their superior response, has
Table 3-6

begun to be applied to robots and manufacturing machines to improve their performance. In
order to meet these requirements Hitachi has
developed power MOS FET module. Table 3-6
shows their typical characteristics.

Typical Characteristics of Power MOS FET Modules
Electric Characteristics

Absolute Maximum Ratings
Package

B

toll

max

(S)

(ns)

(ns)

0.3

2.0

60

160

0.15

4.0

120

320

0.13

0.18

12

250

1000

0.12

0.16

18

550

1500

0.2

0.27

10

350

900

Pch**

(V)

(V)

(A)

(W)

typ

120

±20

10

50

0.2

120

±20

20

80

0.1

PM4550C

450

±20

50

300

(HS791O)

500

±20

50

300

(HS7920)

500

±20

30

150

PM1210B
PM1220B

F
Note

too

ID

VDSS

C

IYI,I

VGSS

Number

RDS(on) (n)

Equivalent
Circuit

1
2
2

..

):Under Development (The specifications subject to change Without notice.)
"': Per one transistor
.*: Value at T,=25c C

1)

(

2)

Internal equivalent circuit

$

HITACHI

13

LINE UP & A P P L I C A T I O N S - - - - - - - - - - - - - - - - - - - - - - -

•

PACKAGE OF POWER MOS FETS

•

Power MOS FET
Package
TO-3

Voss

10

Ros(on)

(V)

(A)

(0)

100-800

5-30

0.05-3.0

Package
TO-126

VDSS

10

Ros(on)

(V)

(A)

(Il)

250

0.3

30

4,8

0.95-1.9

@
TO-3P

TO·220

I

,

100-800

40-800

i
3-15

0.2-5.0

RFPAK

180

~
1-25

I

0.03-5

TO-39

160

~
DPAK

•

.,

I

0.5

I

8

m
0.3-3.0

0.5-25

~

Power MOS FET Module
Package
B

14

40-500

I

V DSS

Ros(on)

(A)

(Il)

120

10-20

0.1-0.2

•

Ros(on)

Package

(V)

c

HITACHI

(V)

(A)

(Il)

450-500

50

0.12-0.13

- - - - - - - - - - - - - - - - - - - - - - - L l N E UP & APPLICATIONS

3.2

Application of Power MOS FET

Table 3-7 shows the applications I;Ind re-

Table 3-7
AppJications

comended types of each power MOS FET

Applications

Function

Features
Power MOS FET
Bipolar transistor

DPAK

TO-126 TO-220

Linear power ampHfie

Audio
output

~CPO~'

'VtJ
Lo..
(Large)

~CPO'"

daJ
0 ~~ H nfU::leJ
Heal

PWM amplifier

PWM

,.,

High speed
power

0.

switching

~

"-

f=IOO-5OQkH7.

f=20-50kH1

Small Si7.e Light
Weight

~

~

~

.

AC200V

c

Input DC
12-24V

:c

!l

.~

f=200-SOOkH7.

t~:~;"r.""_

~
Motor
control

t~ t~

2SK535
2SK579
2SK580

~

8.

'"

f=I-2OkH7.

ACl00V

2SK429
2SK430

Input 48V

Clear'r

~r
. lZ!l

2SK319
2SK552
SK554

2SK402
2SK349
2SK556
2SK559

SK513

2SK415
2SK534

~mH

2SK399

SK440

2SK400
2SK412

2SK401

2SK350
2SK557
2SK560

2SK313
2SK512
2SK351

S'' ' 'A

Small Sire

Stepping motor

~~K346
~~JI22

2SK413
2SK1I8
2SK400
2SJ1l4

2SK312
2SJ1I6
2SK557

~~~g~~

2SK350
2SK557

2SK312
2SJ1l6
2SK557

Ultrasonic diagnostic 2SK375

Fi:hs~rn~er

=

Note

(HS791O)

~~~~~g

2SK535
2SK579
2SK580

2SK311
2SK382
2SJ1l7

2SK408
2SK409

short waves

EU'M'i'''",~

•

VideoBanl.tO-8OMHzH"~

@~!l]J
):Under development
Outline

MeA, Personal radiocommunication

PFOO02*

Tube Disnlav

2SK511

Coil drive

2SK416
2SJ120

Relay. analog switch

2SK384
2SK580

1)

(

2)

*:

3)

The types shown are used for the underlined applications in the table.

2SK176 2SK410
2SK221®
2SK258®
2SK260®
2SK317
2SK318
2SK41O

Power
Supply

display

PM4550C
(HS791O)

SK319

Inverter

FM. VHF band

Video Band 1O-20MHz

(2SK5611

2SK308
2SK401

~ ?,,~

,.\

" .. UnI

Others
Tubes and

2SK298
2SK312

2SK414
2SJ1I9
2SK412

2SJI02
2SK428

Module

2SK399
2SJ1l3
2SK413
2SJ1I8
2SK400
2SJ1l4

~SK383

Medium and
Power

/''':"I~

~SK31O

RFPAK

2SK134
2SJ49
2SK175
2SJ55

1..--

~

equipment

2SK413
2SJ1l8
2SK400
2SJ1I4

Servo· motor

Ultrasonic washer

Telecom-

munication

SK214
2SJ77
SK216
SJ79
2SK346
2SJI02
2SK428
2SJ122
2SK551
2SJ127)

Lat:;~a::;~~~h~ne

ability

Ultrasonic
application

Type Number
TO-3
TO-3P

~HITACHI

2SK549
2SK600

15

PRECAUTIONS IN HANDLING
Precautions in handling and quick check
methods of Power MOS FET are described here.

Table 4-1

4.1

Lead Arrangement

As shown in Table 4-1, the pin arrangement
is different between D-series and S-series.

Lead Arrangement
Lead Arrangement

Package

D Series
2

1

3

1

S Series
2

3

Gate

Drain
(Flange)

Source

-

-

-

Source

Drain
(Flange)

Gate

-

-

-

~

Gate

Drain
(Flange)

Source

Gate

Source
(Flange)

Drain

TO-39

~

-

-

-

Drain

Gate

Source
(Case)

T0-3P

~

Gate

Drain
(Flange)

Source

-

-

-

0

Gate

Source

Drain
(Case)

Gate

Drain

Source
(Case)

-

-

-

Source

Drain

Gate

ffi

DPAK

123

m

TO-126

123

TO-220AB

123

@)
@)I

123

o

TO-3

0

21

0

RFPAK

a
o

1

4.2

3

0

1

Avoiding Measurement of Breakdown Voltage VGSS

Avoid measuring V GSS (gate to source breakdown voltage). At breakdown, negative resistance characteristics are generated, leading to
oscillation and destruction.

4.3

Observation of IO-VOS Characteristics

When the 10- VOS characteristics (source common output characteristics) are observed, oscillation may be caused depending on the type of
curve tracer used (input capacity and resistance
differs). This can lead to destruction of the
16

•

device. Oscillation can be prevented effectively
by connecting an external series resistance of
about 10k!! to the gate.
When drawing an 'o-Vos curve on an X-V
recorder, also, oscillation can be prevented by
connecting the external series resistance of
about 10k!! to the gate or by inserting a
capacitor of about O.5j.!F between the gate and
the source.

4.4

How to Prevent Usual Oscillation

In performing circuits experimentally. it is
recommended to connect a resistance of 100!!2k!! to the gate in series. to prevent unusual
oscillation, until you get used to handling .

HITACHI

- - - - - - - - - - - - - - - - - - - - - - P R E C A U T I O N S IN HANDLING
In using the device as a source follower, it is
recommended to insert a 100llF capacitor
between the drain and the ground, to prevent
unusual oscillation.

4.5

Preventions When Handling Drain
Case Power MOS FETs

Hitachi Power MOS FET D-series is not GateProtected. When Handling Power MOS FETs, to
escape from damage or destruction by static
charge, it is good practice to adopt the following
procedures whenever possible.
(1) When handling power MOS FETs, the man
should be grounded. And Power MOS FETs
should be handled by the package, not by
the leads. An example of grounding ring is
shown in Fig. 4-1.
Resistor (5001& -IMQ)

\--t:;:;w.--_~';7----B Ground
Wire
{Metal ring (Cu, Fe, etc.)

Fig.4.' To prevent from electric shock, insert resistor
close to ring

(2) When handling or installing Power MOS
FETs into circuits, should use metal plates
that it grounded on Work Stations.
(3) When testing Power MOS FETs, Test Circuit
(Curve tracer, etc.) should be grounded.
(4) When using soldering irons, soldering irons
should be grounded. (It's better to use
battery operated soldering irons.)
(5) When shipping in circuit boards, they
should be placed in antistatic bags, unless
the gate and the source are connected by
resistors or inductors.
(6) Power MOS FETs should be placed not in
plastic cases or bags, but in antistatic bags,
conductive foam, or aluminum foil.

4.6

Beware of (Drain-Source) Voltage
Spikes Induced by High Speed
Switching

When power MOS FET is used for switching,
negative switching device may change to be
inductive load.
In this case, transient voltage spike will be
produced by the inductance in the circuit when
the device is switched off, since Power MOS
FET is very fast.
Precaution of drain-source voltage spikes is
described here.
Fig. 4-2 (a) shows switching operation about
inductive load without clamp diode.

$

In this case, there is the fear of permanent
device distortion if transient voltage determined
by Ldi/dt increase more than its dielectric
resistance.
Fig. 4-2 (b) shows the circuit with clamp
diode.
In practical circuit, inductance by circuit
layout is always present even though load is
clamped. This inductance exists in the circuit
layout between the anode of clamping diode
and the drain of Power MOS FET and the layout
up to power supply.
If the switching operation is applied at high
speed and high level of current, there is danger
of device distortion by applied Voltage. spike
more than its dielectric resistance, even though
you intend to clamp the voltage spike tightly.
Since the more the current flows, the more
voltage spike increases, the confirmation of
voltage waveform by high-speeded oscilloscope
is required in the worst condition of supply
voltage and negative current practically.
The improving methods about voltage spike
is specified to the next item.

tVcclL tVC~tVCCJLS~tVC]LS~
vos.r.
jI,

Ls

o

d

~
____
ID

VC:

(l)

!

Ls: Inductance of the Circuit
Oltage

Spike

Without Clamp
Diode

Voltage

-,

Ls

CRS"bber

Avalanche Diode for
Surge Absorption

It-SPlke

VC: JLlb
(b) With Clamp
Diode

v~JLt:v~c~
(e) (b)+ Avalanche Diode (dJ (cHeR Snubber

for Surge Absorption

Fig. 4·2 Inductive Load Switching Circuit

(1) Circuit layout is made as short as possible,
in order to control the rate of residual
inductance to a minimum.
(Current loop area is reduced to a minimum
using twisted pair wire as the lead of power
supply.)
(2) Voltage spike is absorbed by connection of
avalanche diode for surge absorption at the
bottom the drain-source terminal. (Fig. 4-2
(c)).

(3) CR snubber is connected between source
and drain as to limit the peak voltage. (Fig.
4-2 (d)).
(4) Voltage spike is also controlled by the gatedrive condition. The relation between gatedrive condition and voltage spike is shown
in Fig. 4-3 and Fig. 4-4.

HITACHI

'17

PRECAUTIONS IN H A N D L l N G - - - - - - - - - - - - - - - - - - - - - -

100
Current Probe

0

0"'-

,..-

......

... V

Y
"...

.-

"...
Measurement Circuit

0/

Waveform

--

,..- ,.....

80

2S 402

~K~

-

~ I-

m;JLI
o
, ,
Voltage

f- f- t-

+15

1-"---1-----

5 -----,
-10----"1

....

-]5----~

_---

15

10

-vGS

(V)

Fig. 4·3 Gate Bias Condition vs. Voltage Spike

100

100

80

80

I

,.t50V

1

60

.l!
~

.l!

;.%

~

,."

Vcs=lSV

~

~

1

Vcl.mp~4ooV-

~
",.

40

20

60

40

20

~ .........

"'--" :::::: ~
5
0

o

o

20

40

60

so

100

Gate Series Resistance R, (Q)

GareSeries Resistance R. (Q)

(a) 2SK402

(b)2SK349

Fig. 4-4 Gate Series Resistance vs. Voltage Spike

Another application which is also required
the caution in voltage spike is for motor control
circuit.
Fig. 4-5 shows the basic motor control circuit
and Fig. 4-6, its waveform at operation.

AC1ooV .......
and2OOV~

Fig. 4-5 Typical Motor Control Circuit

18

•

HITACHI

120

- - - - - - - - - - - - - - - - - - - - - - - P R E C A U T I O N S IN HANDLING



----'--ttt't==!="'-----'==

Vn.sl (Drain-source Voltage
Waveform of QI)

Forward Current of Ql Built-in Diode

V,.:
iDi (Drain Current Waveform

Forward Voltage Drop of Ql Built-in Diode

VOS1Gn ): Drain·Source Saturation Voltage OrQ2

ofQI)

-L-It-'rl-,---'--,----+......-ID2 (Drain Current Waveform
OfQ2)

.--+H;\=J=;:-'------l:b-. rIm (Drain-source Voltage
WaveformofQ21

tn:

Reverse Recovery Time of Q2 Built-in Diode

VLS :

Voltage Drop with Current Inductance Ls

iOt-:

Reverse Recovery Current of Q2 Built-in Diode
(Depends on the Drive Signal Source Impedance d'f/dt of QI. Circuit
Inductance L s , Supply Voltage Vee. and Electric Charge Qrr (or t,,) in the
Built-in Diode)

Vs;

Spike voltage
(Depends on the Inductance Ls. iOt• and (iinr/dt of the Circuit)

Fig. 4-6 Waveform for the Motor Control Operation

Fig. 4-6 shows the waveform that 0.. is keep
on switch-ON during OJ chopping, controlling
O2 and 0 3 switch-OFF, OJ and 0.. sWitch-ON in
the circuit, Fig. 4-5.
Voltage spike producing process is explained
by this waveform, gate drive signal is put into
G J, then OJ is switched on and iDJ flows. When
OJ current, i DJ is switched off, forward current,
iF flows through the built-in diode of O 2 by the
energy accumulated at the motor inductance. If
OJ is switched on in this condition, O 2 is into
on-state under the influence of reverse recovery
time, t" of built-in diode on O2, and high level of
reverse current (recovery current), iDr flows.
Next, during iDr recoverying time (oblique
lined part in Fig.) Voltage spike, which is determined by Ls diDr1dt, will be produced by the
stray inductance presence in the circuit.
This voltage spike should be limited as low as
possible.
The countermove, mentioned before, is as

follows.
(1) Residual inductance should be limited to
the lowest level, bewaring the circuit layout
fully. (Twisted pair wire will be used as lead
of power supply line in order to make
current loop area small. It is to be desired
that the layout of OJ source and 0, drain
should be connected directly not to exist the
inductance, and so is 0 3 source and 0..
drain. The same kind of care is required at
parallel connection.)
If it is hard to protect lead inductance from
remaining at power supply line, one of the
countermove is that a capacitor (C=O.11.0j.lF) is connected at the bottom of 0 3
drain and 0.. source terminals like OJ drain
and O 2 source terminals.
Photo from A to E in Fig. 4-7 shows the
waveform in various layout condition for
reference.
(2) Voltage peak is limited, connecting CR
snubber between drain and source.

~HITACHI

19

PRECAUTIONS IN H A N D L l N G - - - - - - - - - - - - - - - - - - - - - -

Test Conditions

[

1

Vee=IOOV. j=20kHz

+ 15V
GS- -lOY'

V

-

I -5A d'id -80AI
D-

•

I

t-

JlS

VDSl : 50V IDlY
(Drain-source Voltage Waveform
of QI)

Photo,

@

[Layout Conditions)

CD

iDI : IOA/DlV
(Drain Current Waveform of QI)

Vee-0I'S2:

Twisted Pair Wire
(Ls=n70nH)
@Leado[SI'02

Terminals:
lOem Lead Wire
(Ls=' IOOnH)

;D2 : IOA/DlV
(Drain Current Waveform of Q2)

VDS2 : 50V IDlV
(Drain-source Voltage Waveform
of Q2)

/:200ns/D1\'

Photo

rminals: Coppel' Plate (l.s~25nH)
C=O.22,uF is Connl'<1eU Into OJ-52 Terminal;;

Fig. 4-7 (b) FET Q, Voltage and Current Waveform. 2SK401 used

~HITACHI

21

PRECAUTIONS IN H A N D L l N G - - - - - - - - - - - - - - - - - - - - - -

4.7

Pay Attention to Circuit Layout

Stray inductance, in the circuit will cause
over-voltage on high speed switching, slowing
down of the switching speed (especially lead
inductance at the gate), unexpected current
unbalance among parallel connected devices,
and also cause abnormal oscillations.
In order to solve these problems, circuit
layout of power supply line and gate-source line
must be minimized. This is done, by minimizing
the area of current loops, by using twisted pairs
of lead, and local decoupling capacitors abbriviate the affects of any residual circuit inductance.
Circuit layout should be kept as symmetrical
as possible in order to maintain the current
balance in parallel connection.
When devices is in parallel connection, small
ferrite beads should be placed over the gate

connections, or resistors in series (50 - 150n)
should be placed into each gate, as to prevent
abnormal oscillations.

4.8

Current dispersion at parallel
connection in the high-speed
switching operation (Note for the
circuit arrangement and interconnection at parallel connection)

When the power MOS FET is used as an
arcing machine, multiple FETs are connected in
parallel to obtain high current. In this case,
because of high-speed operation (f= 200 to 500
kHz), floating inductance in the circuit may
cause in transient voltage spike and current
dispersion.
The former can be counteracted by shortening and thickening the wires as much as possible and as to the latter, some devices should

1.311H

1
'"

rec

Gate Terminal is Connected to the Copper Plate.

"Vclam p
rDS

o

Fig. 4-9 Interconnection (I)

H\lmmLeau
(¢4mml

Wa\'efu!'m in tilt' Experimental Circuit (i/J=:m.-\l
\,f)s=50\'/mr.IIl'='5A/lJI\",I=lOllns/Dl\'

Fig.4-10 Interconnection (II)

Fig. 4-8 Experimental Circuit Waveform

22

~HITACHI

- - - - - - - - - - - - - - - - - - - - - - P R E C A U T I O N S IN HANDLING
Table 4-2

Characteristics of sample 2SK313 and Current dispersion data
in the circuit arrangement and interconnection

K
No.

Electrical Characteristics
Y;SRID.'iS

(V)

In-lOrnA
V"s=O

IDss

VII!

(nA)
V Ds-360V
V(;s=O

(V)

V"s-IOV
I,,=lrnA

Current distribution

{l1II

(S)

V"s-IOV
In=6A

R""

(ll)

V"s-15V
In=6A

(i D =30A)

Interconnection Interconnection
(I)

(II)

Q,

502

9.0

2.98

3.31

0.66

iDl =;8.0A

6.0A

Q,

499

133

3.10

3.18

0.65

i m =':'6.5

6.0
5.8

Q,

502

27

:1.11

3.19

0.65

im=:=5.7

Q,

487

5.0

3.01

3.28

0.61

i",=;5.0

6.0

Q,

476

17

8.02

3.29

0.58

i O.I=:=4.8

6.2

be inquired in the circuit arrangement and
interconnection. As to 2-type interconnections
in Fig. 4-9 and Fig. 4-10, the current dispersion
at parallel connection is measured in Fig. 4-B
Experimental circuit.
Table 4-2 shows main characteristics of
used 5 FETs and current dispersion data in each
interconnection.
As shown in Table 4-2, in Fig. 4-9 interconnection (I), as to 0\ and O2, interconnection
inductances of drain and source are small. As to
current, 0\ is the largest, about B.OA, and 0,
which has the largest interconnection inductance has the smallest current, about 4.BA.

Current dispersion between devices is large.
(See Fig. 4-11 Waveform photograph) Therefore, in Fig. 4-10 interconnection (II), source
interconnection is equalized and interconnection inductance is balanced. In this method, as
shown in Table 4-2 and Fig. 4-12 Waveform
photograph, the current between devices is
almost balanced. If the characteristics such as
Vth, gm, and Ron are met, the current between
devices varies with circuit arrangement and
interconnection. Therefore, to reduce the current dispersion of the power MOS FETs in
parallel connection, circuit interconnection of
each device should be placed symmetrically.

~HITACHI

23

PRECAUTIONS IN H A N D L l N G - - - - - - - - - - - - - - - - - - - - - -

VDs=50V IDlV, ID=2A/DlV, t =IOOns/DlV

Ql iDl"'8.0A

Q2 iD2"T6.5A

Q3 iD3"T5.7A

Fig. 4-11

24

Current distribution in the 2SK313 L load switching parallel operation (Interconnection I)

•

HITACHI

- - - - - - - - - - - - - - - - - - - - - - P R E C A U T I O N S IN HANDLING

VDs=50V/DIV, ID=2A/DIV, t=IOOns/DIV

VDS

ID

QI iDI"'6.0A

Q. iD''''6,OA

Q, iD''''6,2A

Q, iD3"'5.8A

Fig. 4-12 Current distribution in the 2SK313 L load switching parallel operation (Interconnection II)

eHITACHI

25

CHARACTERISTICS OF POWER MOS FETS
5.1

Output Characteristics

Fig. 5-1 shows the output characteristics of
the 0 series 2SK413 and S series 2SK134,
which have the same specification. Whereas in
a small signal MOS FET the forward transconductance IY'sl is 10,..... 20 mS (milli-Siemens)
at best, in a power MOS FET it is 1.0 ,..... 15S.
Also, as is obvious from Fig. 5-1, they have what
is called pentodecharacteristics and excellent
linearity of IY'sl in relation to
P channel MOS FETs also have similar
chanicteristics. P channel and N channel types
have complementary characteristics.

'D.

The cut-off frequency of an intrinsic MOS
FET is defined by the ratio of the mutual
conductance and the input capacitance, and in
a typical MOS FET, it will be in the order of GHz.
In fact, however, the cut-off frequency is limited
by the parasitic resistance and the input capacitance of the gate.
Fig. 5-2 shows the equivalent circuit of MOS
FET in the saturation region.
In Fig. 5-2, the cut-off frequency (tc ), at which
the voltage gain falls to -3dB of its lowfrequency value, is given by the following equation.
r--------.
I

I

I
I

Il,t

10

0
15

- -

9 L

If 1\

8

'.

Tc=2Sl:

-

,

I
I

L _______ JI

R. : Gate Resistance
C,$ : Gate to Source Capacitance
Cd, : Drain to Source Capacitance
Cgd : Gate to Drain Capacitance
RL : Load Resistance

7

h

,"~g,4,~ I--

4,

,-

,

6: I--

r-- ?p..-

2

Fig. 5-2 Equivalent circuit of MOS FET

4V

10

20

30

Drain-Source Voltage

40
VDS

1

50 Vcs=O

tc= 271" • Rg{Cgs

(V)

(a) D Series 2SK413
0

Tc=2St

- 8-

6

4

,\10

-t 1

f/

I~

r. .....

,.-

7
,~

6

....~

,04<"-

5
4

'r---

3

2/

2
IV
10

20

Drain-Source Voltage

VDS

(V)

(b) S Series 2SK134

Fig. 5-1 Typical Output Characteristics

5.2

Frequency Response Characteristics

One of the outstanding features of the power
MOS FET is that it has excellent high speed and
high frequency characteristics. Therefore, they
can be applied in high-speed switching regulators, high-output broadcasting transmitters,
etc.

26

e'l

-

\

6

o"

8

RL

I
iyL
I
I

•

1

+ (1

- Al)Cgd} ..••... (1)
Here, Ao is the low-frequency voltage gain,
and Rg is the series resistance of the gate.
Fig. 5-3 shows the cut-off frequencies of the
vertical and the lateral structure devices, found
by substituting into equation (1) the parameters
(calculated values) of a power MOS FET which
has a silicon gate. In the lateral structure, Cgd is
much smaller than Cgs , and can be neglected.
In the vertical structure, as explained in
paragraph 2, Cgs is a function of the voltage gain
(Ao) in the low frequency region, because Cgd is
large.
We would like to summarize the above, as
follows.
(1) In the case of low voltage gain,
the cut-off frequencies of the vertical and
the lateral structures show the same level.
The input impedance ratio at tc depends on
Rg ratio, so the impedance of the vertical
structure is 1.5,..... 2 times lower than that of
the lateral structure.
(2) In the case of high gain amplifier circuits,
the frequency characteristics of the lateral
structure and better than that of the vertical
structure, because in the vertical structure
the feedback capacitance (Cgd) has a great
influence.

HITACHI

- - - - - - - - - - - - - - - - - - C H A R A C T E R I S T I C S OF POWER MOS FETS

II

500

IA,I
)

IrK)

V'N'!"

r-{I Aol =0,

I
2~)

H~Ir\DI>l()O. Lc=HtlmJ

'" ~

l.c=2,~m)'

I1111

Lateral

5.3

I

'"

\

'~

0

1\ \1\

0

1\ \ 1\\

\

Switching Characteristics

When using power MOS FETs for power
switching, such as in switching regulators, the

'~

1\

](Xl

I-

I I .I

Iii ~~ -

~)()

)

\P!~5~~/U
~'f)S =2{)V

. II

Comhuon

To further improve the frequency characteristics, the use of low resistance material
such as metal is required. This will improve the
cut-off frequency by 10- 100 times. Fig. 5-4
shows the frequency characteristics and the
test circuits of typical kinds of MOS FETs. In
2SK317 and 2SK221 ®, the gate material is
metal-gate.

I~

\

,~

5

1\

\

\

.,

\~

\ \
\ 1\
\

0

o. 5

o. 2

.,

l,()

(J"l

.,

10

_0

Chip Si#, I mm)

(b)

Fig. 6-3 Cut-off Frequency of Silicon Gate Power MOS
FETs

Fig. 6-6 Switching Circuit and Typical Output Characteristics & Load Curve

".,
-

I

0

1

~

.,

9
-l()

500k

2SK317

~;tl'f,I=Y"~
. W\r

S.ll

II III

5M

10M

20M

50M

100M

200M

Frequency (Hz)

Fig. 5-4 Frequency Response Characteristics of V's (Source Common)

•

HITACHI

500M

IG

load of the switching
device is usually inductive. Here, however,
we would like to assume a resistance
load, because it can
be treated easily.
Fig. 5-5 shows the
resistance load switching circuit (a), simplified current-voltage
characteristics, and
the load line (b). In
this figure, we suppose that the rising
curve of current vs.
voltage is shown by a
straight line, and
gm=O.
Therefore, in Fig.
5-5 (b), the point of
thedrainvoltage=VDS

27

CHARACTERISTICS OF POWER MOS F E T S - - - - - - - - - - - - - - - - (sat) is included in the non-saturation region,
and the region of Vos>VOS (sat) is the saturation region.
In the lateral structure, Cgd is much smaller
than Cgs and Cds. so it can be neglected. The
time constants are given by the following equations.

Then, the switching waveform is shown in
Fig. 5-6.
which is stored
The quantity of charge.
in the gate and shows how easily the device can
be driven, is given by the following equation.
oon=Cgs'VG max ..........•...•••. (4)
The transitional charge current (irush) is given
as follows.
Cgs,VG max
irush
_-=--____ ............... (5)

oon.

Ti=Rg • Cin=Rg·Cgs ................ (2)
To = RcCout=Rg'Cds, ............... (3)
Ti: input time constant
TO :

=

ton

output time constant

v,

v"·..·'TI
o

-,
rWm .. .>

v,

y'TH

rllD-

rDS( .. 1l

Tt
T2
T,
T4
Ts

VaSI-VrH,

/

"

\

/

~

<2SK260>
200ns/DIV

11mOl'>

/

I. 0

T,
TI

Turn-on Delay Time; td(on)
Rise Time; tr
On Time
Turn-off Delay Time; td(offJ
Fall Time; t,

\
T,

VGs=15V,ID=2A
RL=15Q

Switching Time
td(onl : 5ns

tr

: 25n5
60n5
: 60n,

id(of£) :

Ts

1/

-,
Ib)

(a)

Fig. 5·6 Switching Waveform of Lateral Power MOS FETs

In the vertical structure. the feedback capacitance (Cgd) is large and depends largely on the
drain voltage. so the operation analysis will be
more complicated. Fig. 5-7 shows the Cgd-drain
voltage dependency of the vertical and the
lateral structures (2SK312. 2SK260) under the
conditions of the same chip size and the same
400V breakdown voltage. With a depletion layer
spreading in the drain just under the gate
electrode, the value of Cgdwill decrease sharply.
Considering the above, we would like to
show the Cgd'" and 9m-drain voltage dependencies in Fig. 5-8 at VGs>Vos, Cgd is equal to
Cgdo. the oxide film capacitance just under the
drain electrode. When VGSVos (sat). the device is in
the saturation region. and in the region of Vos
(sat) <
10

L
20

30

40

50

60

70

80

VDS (Vl

Fig.5·7 Feedback Capacitance (Cgd)·Drain Voltage
Dependency

ing or discharging is given by the following
equations.
n= Rg·Cgs (Vos>VGs)
n' = Rg {Cgs

+ (1 + 9m'RLI}Cgd

(Vos (sat) 
200ns/DIV

II
~--+----- T"

l'c'i--=-15V, iv=2:\
RL--=15Q

---f--l-

Switching Time
fdlon) :
20ns
Ir
IdlotO:

tr

42ns
150n5
60n5

Ib)
L -_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

~

Fig. 5-9 Switching Waveform of Vertical Power MOS FET

means that we can explain the switching operation using the approximate values of the feed
back capacitance and gm shown in Fig. 5-8 (a).
and (b).

The quantity of stored charges, which shows
how easily the gate can be driven, is given by
the following equation.
Don = (C gs + Cgdo ) VG max' .......... (8)

~HITACHI

29

CHARACTERISTICS OF POWER MOS F E T S - - - - - - - - - - - - - - - - The transitional charge current (irush ) is given
as follows.

+ Cgdo)VG max

(Cgs
i,ush=

ton

In the vertical structure, t, and t, are faster
than those of the lateral one, because of the
small value of the gate resistance. The turn-off
delay time, however, is larger, so the value of
toff (= td(off) + t,) will be larger.
In an actual circuit, the output resistance (R)
of the drive circuit will be added to this gate
resistance (Rg ).
Therefore, in high speed operation, the vertical structure device should be designed so that
the output resistance of the drive circuit will be
as small as possible, by adding one or two
emitter follower circuits to the driver.
Fig. 5-10 and Fig. 5-11 show the turn off time
of the device with the drive circuit added and
that of the standard measuring circuit. Moreover, as shown in circuit (c), the operation speed
will be further improved by making the gate
potential negative at cut off time.
In power MOS FETs, in contrast with bipolar
transistors, the switching time is not influenced
by temperature, and the circuit design will be
easier. Fig. 5-12 shows the relation of the
switching time vs. temperature characteristics,
compared to that of bipolar transistors.

•..•.••.•. (9)

The following summarizes a comparison of
the switching operations of the vertical and the
lateral structures.
(1) The gate driving power required is determined by the ratio of the quantity of stored
charges in gate capacitance. The driving
power for the vertical structure device is
larger than that for the lateral structure
device by (C gs + Cgdo)D/(Cgs)S,
(2) When the device is driven by a high speed
pulse, the rise time (t,) and the fall time (t,),
for both structures, are given by the following equations.
t,

= Cgs Rg In ( VGmax - Vth ) •... (10)
VGSmax

t,=CgsRgln

tGSI)
V th

VGSI

..•••......• (11)

Here VGSI is the gate voltage for saturation.
We would like to show the gate resistance
(Rg) and the gate - source capacitance (C gs ) in
Table 5-1, for reference.
Table 5-1

Gate Resistance (Rg) and Gate-Source Capacitance of Each Device
Type Number

R.(n)

C,,(pF)

Package

/,.(MHz)
N-ch

P-ch

DPAK

2SK535

35

700

10

TO-126

2SK511

-

2

40

250

2SK346

2SJ102

3/3

650/1400

7

2SK294

-

3

900

5

TO-220AB

2SK296

2SK351

-

2SK213

2SJ76

2SK31O

D Series

2SK319
2SK308
TO-3

TO-220AB
TO-39

S Series

TO-3

RFPAK

30

VDs=lOV. VGs=5V. /=1 MHz

2SK298
2SK312

35

400

10

3

1200

10

8

2000

5

5

2300

4

3

2100

5

3

4100

3

3

6000
90/120

2

-

20/30
20

2SK134

2SJ49

40/40

600/900

3/2

2SK175

2SJ55

2/1
50

2SK196®

90

40/30
30

80/70

800/1200

2SK221®

-

2

600

2SK258®

-

20

800

7

2SK260®

-

20

800

7

2

600

300

2SK317

$

HITACHI

- - - - - - - - - - - - - - - - - C H A R A C T E R I S T I C S OF POWER MOS FETS

Vee

P.G.

r----------,I
I

P.G.

1-----1
I

I
I
I

I
I

I
I

I

I

I
I
I

I

I

I
I
I

I

I
I

I

I

L _________ .J

I

L _____ .JI

(a) Standard Circuit

(b) Circuit With Bufler
(Without reverse Bias)

(c) Circuit With Buffer
(With reverse Bias)

Fig.5-10 Drive Circuit

300"-r-,,-,,-,--,...,..,.....,-,-----,
1.0

.-.IOOllfll°::jttil""
rTl

Without Buffer Circuit

.;

j

0.5

ZSK26Oill1

I ••

30

~

0.2

2SK298

;::

lofl

!an:

510•

0.1
I..

•
0.05
12SK319i
0.02

15

10

~o

Reverse Gate Bias Voltage rGG (V)

26

W

26

~

~

Case Temperature Tc (t)

Fig. 5-11

5.4

Turn-Off Time vs. Reverse Gate Bias

Fig.5-12 Switching Time vs. Case Temperature

Input Dynamic Characteristics

Generally, when calculating the peak-rush
current necessary for charging drive loss and
gate input capacity in designing the power MOS
FET drive circuit, evaluate from the following
equations.
Drive loss
Pd= f·Cin'VGS .. , ... (12)
Peak rush current i(rush) - Cin,VGS ,. (13)

t

Where, input capacity Cin is generally the
value when the bias is fixed in the data sheet. If
using this value as it is, some problems occur.
This is because in the Cin, gate drain capacity
Cgd. which is a mirror capacity. exists. and is a
function of the drain-source voltage VOS. Also,
since the gate-source capacity. Cgs is a function
of VGS. it contains complicated elements. These
details are described in 5.3 Switching Characteristics. It is very complicated to design the
drive circuit. As a function of VGS and Vos. gate

$

charge load Q g should be regulated.
(1) Gate charge factor
Fig. 5-13 shows the measurement circuit of
the gate charge load. Qg. This measuring
theory is that when driving the gate with
constant current. Ig, the time axis. t is
multiplied by Ig and the time axis reads as
the load. Qg.
Fig. 5-14 snows Qg - V G5- Vos characteristics at Turn-on and Turn-off measured in
2SK299. The vertical axis represents the
drain-source voltage VOS. and the gatesource voltage V GS. The horizontal axis
represents the gate charge load Qg. In
waveforms (a) and (b). the stage rised from
zero shows the gate-source capacity Cgs
charging time. and the next flat stage shows
the gate-drain capacity Cgd charging time.
To the contrary. waveforms (c) and (d)
shows the discharging time. The loads
necessary for charging Cgs and Cgd are

HITACHI

31

CHARACTERISTICS OF POWER MaS F E T S - - - - - - - - - - - - - - - - different from each other.
Fig. 5-15 shows Q g. - VGS characteristics
when Vooo!o of 2SK299 is a parameter. In
Fig. 5-15-(b) waveform, the charge necessaryforflowing Voo= 100Vand!o= 1A is
16 nCo At this time, necessary V GS is about
5.2V. (This value changes by Vth. Um). However, in the actual switching operation, it is
generally used in the following conditions

that drain-source voltage is in "ON" (saturation) state, and a margin is added to reduce
the ON resistance, and the overdrive when
VGS = 10 to 15V. Therefore, when designingthedrivevoltageas!o= 1A, VGS= 10V,
the gate charge load is 28nC. Og is different
between Voo = 100V and Voo = 200V
because Cgd varies with VDS.

-VDD
rDD

-15V--20V

~~
lS2076 lO".

Qo

lk

10 Van,bl,

QI

f~'1'~ ~ ~r'"
sw.

L"

SW,.

sw, : ON/OFF Charge Changeover SW

Q,. Q, : 2SKI86

(JDSS

SW,. SW, : ON/OFF Charge Changeover SW
Q,. Q, : 2SJ68 (IDSS =2mA)
Q,: 2SK313

=2mA)

Q,: 2SK313

Unit R:Q

C:F

P-ch Measurement Circuit

N-ch Measurement Circuit

Fig. 5-13 Gate charge measurement circuit

32

•

HITACHI

- - - - - - - - - - - - - - - - - C H A R A C T E R I S T I C S OF POWER MOS FETS

TUrn-off

Turn-on

loO

16

160

120

12

I2U

, ;;~

~

3

80

~

~

HO

.0

40

40

Q~ (nC)

Ql (ne)

(a) VDD=lOOV,ID=5A

(e) VDD=lOOV,ID=5A

Turn-off

TIJl'n-nn

Q~ (nC)

Q6 (ne)

(b) VDD=lOOV, ID=lA

(d) VDD=lOOV,ID=lA

Fig,5-14 2SK299 Og - VGS'V DS Characteristics

$

HITACHI

33

CHARACTERISTICS OF POWER MOS F E T S - - - - - - - - - - - - - - - - -

q~ (nC)

Q" (nC)

(a)

VDD=50V,ID=lA

(J"

(d)

VDD=50V, ID=5A

(e)

VDD=100V, ID=5A

(J~ (nel

(nO

(b) VDD=lDOV, ID=lA

16

12

Hi

(f) VDD=200V,ID=5A

(0) VDD=200V, ID=lA

Fig, 5-15 2SK299 Og - V GS Characteristics

34

24

(J, (nC!

Q~ (ne)

eHITACHI

32

40

- - - - - - - - - - - - - - - - - C H A R A C T E R I S T I C S OF POWER MOS FETS
(2) Designing of drive circuit
The drive loss and necessary peak rush
current of the drive circuit are evaluated by
the following equations with the gate
charge load Og.
Drive loss
Pd = ('Og' VGS ••••• (14)
Peak rush current

i(rush)

= Og

....... (15)

t


Using the 2SK299, when (= 100kHz, VDO =
100V, V GS
15V, switching time ton
50 ns,
and 10 = 5A, what is the drive loss and necessary peak rush current?

Since Og in the above conditions is 39 nC in
Fig. 5-15 (e),

=

=

Pd

=('Og·VGS

= 100 X 103 X 39 X 10-9 X 15
=58.5 mW
.
_
Og _ 39 X 10-9 _
I(rush) -t- - 50 X 10-9 - 0.78A
As shown above, the answer can be obtained
with ease.
Fig. 5-16 shows the comparison between the
drive loss measured by the Fig. 5-17 Circuit and
the drive loss calculated using the equation
(14). The horizontal axis represents frequency.
As shown in this figure, calculated value and
measured value match well, which indicates
that determining the gate charge Og facilitates
designing the drive circuit accurately.

1.000

500

200

V

,.

VGs=15V
0

0

,

')9

,J{}

Vas-lOY

If

0

V

0

5

~
VDD = lOOV
ID=lA

Calculated. Value
PdI..

......,C-+tft=t=""'------"=

1/DSI

(Drain-source Voltage

Waveform of

Ql)

iF:

Forward Current of Ql Built-in Diode

V,:

Forward Voltage Drop of Q2 Built-in Diode

Current Waveform

V DS lonl : Drain-Source Saturation Voltage of Q2

t" :

Reverse Recovery Time of Q2 Built-in Diode

VLS:

Voltage Drop with Current Inductance Ls

it),:

Reverse Recovery Current of Q2 Built"in Diode
(Depends on the Drive Signal Source Impedance d,F/dt of QI. Circuit
Inductance L s, Supply Voltage Vee, and Electric Charge Q" (or t..) in the
Built"in Diode)

Vs:

Spike voltage
(Depends on the Inductance L s , i Dr, and di [kldt of the Circuit)

Fig.5-34 Waveform of the Motor Control Operation

~HITACHI

43

CHARACTERISTICS OF POWER MOS F E T S - - - - - - - - - - - - - - - - Table 5-2

Circuit Countermeasures against Built-in diode Destruction
Waveforms of the built-in diode

Classifi
cation

0

0

Countermeasures
Delay the turn-on time,
by inserting a resistor
and diode which are
connected in parallel
into the gate of the
Power MOS FET. This
controls di/dt and
dv/dt of the built-in
diode to restrict the
recovery current (in
this case, the turn-off
time does not have to
be delayed).
Insert an L and diode
connected in parallel
into the drain of the
Power MOS FET. This
controls di/dt to
restrict the recovery
current i Dr•

Circuit

Before
improvement

0

 G,

Lo G,

Short

~~~"
~~~d
~ ~~~

liz
o

Short

~V

~

~ro

M

.4!

G,

V!4

.

J

I

0

IIh

rf'

v

r

LoG,

'tth9
G. o-J

~~'

dildt

0

TO

"~K"
G,o-I

Insert a C or CR
snubber between the
drain and source of the
Power MOS FET to
restrict dv/dt and
voltage spike of
the built-in diode.

After
improvement

~.

~V

L=2I'H-2OI'H
0

~O

v
0

TO TO
.....r--

CR

v
0

~17:

TO TO
LV

G,

R=1O-47n
C=O.OlI'F-O.lI'F
Wiring of the
snubber be as short
as possible.

~c
0

Should be done
together with
countermeasures 0
to 0.

0

are restricted.

Connect the fast diode
to the external of the
Power MOS FET not
to flow the current in
the built-in diode.
(j)

]~
G.......

I

5.B

M

G,"""

Design of High Breakdown Voltage
Application (Series Operation)

(1) Totem pole connection
Fig. 5-35 shows a basic "totem pole" circuit.
in which power MOS FETs are connected in
series. This circuit has been used extensively as
a saturated logic circuit. the basic circuitry for

44

•

Lo G,
LoG,

TO
- IV

~
~r

0

0

0

TTL IC. Operation of this circuit will be explained.
When no bias is applied to QI, Q I is cut off
because power MOS FETs have enhancement
type transfer charac~eristics. thus the following
relationships hold;
VGI =O.ID =0

HITACHI

- - - - - - - - - - - - - - - - - C H A R A C T E R I S T I C S OF POWER MaS FETS

Drain

100

I
U
100

200

300

400

Drain to Source Voltage

So",,,,

VDS

500

(V)

Fig. 5-36 Breakdown Characteristics (Single Device)

Fig.5-35 Basic Totem Pole Circuit
5

Ves --Q-lOV(IV Step)

!hV ,,'Q.

4

Vo

= VG2 -

VGS2

J
Ib

3

= Y2VDD - Vth2

II

2

where Vth2 is the threshold voltage of 02.
Generally, V th2« VDD. Therefore Va = Y2 VDD·
And the voltage applied to 0 1 and 02 will be
about Y2 VDD.
Next, let us consider a transient state. When
the gate bias of 0 1 is increased gradually from
zero, 0 1 will become conductive and sowill O2 at
the same time. If load resistance ZL is inserted
between VDD and drain of 02, drain voltage will
be VD VDD-ZL'iD and Va (=Y2VD - VGS2) will
gradually decrease.
If VDD has a much larger value than VGS2 and
O2 is driven up to the saturation region, then the
characteristics of an equivalent MaS FETwould
be dependent on 0 1•
Generally, when devices are operated in
series, voltage unbalance due to switching time
difference presents a problem. This problem is
overcome in power MaS FETs because switching time can be made as short as several tens of
nanoseconds.
Fig. 5-36 and 5-37 show breakdown and
output characteristics where a single device is
used. When this device is used in the circuit
shown in Fig. 5-35, the breakdown and output
characteristics would be as shown in Figs. 5-38
and 5-39. Breakdown voltage in Fig. 5-38 is
twice as high as in Fig. 5-36. The disadvantage
is that on-resistance is also doubled, as is
obvious from Figs. 5-39 and 5-37. A method of
improving on-resistance is described in the
following section.

Wi--"

III
12

16

Drain to Source Voltage

VDS

20
(V)

Fig. 5-37 Output Characteristics (Single Device)

=

100
200
300
400
500
Drain to Source Voltage VDS (V)

Fig. 5-38

Breakdown Characteristics

VGS~O-IOVI1V

Step)

5
4

f

u

p'.,

~

3

~i--"

2
1

~

~

.....

~
12
Drain to Source Voltage

16
VDS

20
(V)

Fig. 5-39 Output Characteristics

•

HITACHI

45

CHARACTERISTICS OF POWER MOS F E T S - - - - - - - - - - - - - - - - -

(2) How to reduce on-resistance in basic
circuit
On-resistance (or saturation voltage) can be
reduced by performing level shift of the O2 gate
potential in the positive direction. This can be
accomplished, for instance, by the methods
shown in Fig. 5-40. Fig. 5-41 shows the output
characteristics for a case where the gate is
level-shifted to the positive side. (14V is the
maximum allowable gate-to-source voltage.)
In the circuit shown in Fig. 5-40, as in the
basic circuit, the equivalent drain to source
breakdown voltage is twice as high as when a
single device is used.

t +~~MJ:J
[

QI

I

J

Q.

I#ZV

W-

4

e-

~

1

12
Drain to Source Voltage

Fig. 5-41

16
VDS

20
(V)

Output Characteristics ((C) Circuit)

(3) Improvement of high frequency characteristics in totem pole connection
When the circuit shown in Fig. 5-35 is
modified for a source follower, becasue of the
different operation of 0 1 and O2 , a phase differential occurs under the influence of the power
MOS FET input capacitance (about 500 pF for
2SK134, 600 pF for 2SJ49, f=1 MHz). As a

G

So

V'Gs=O-IOV(lV Step)
5

OD

(A) Level Shift by Using of Diode

G

so

ttrihl
Q.

QI

'--_ _-+1" 1
0

o D
Load

(8) Level Shift by Using of Breakdown

CiIlI, Cill2 :

Voltage in External Transistor

Input Capacitance

RG : Signal-Source Resistance

Cg : Compensation Capacitance
R, : Gate Biasing Resistance
G

R.

R.

Fig.5-42 Improved Totem Pole Circuit

1

1:L

-'--

S

1

I
QI

1f I
Q.

D

(C) Level Shift by Using of External
Power Supply

Fig. 5-43 Passive Equivalent Circuit of Totem Pole

Fig. 5-40 How to Reduce ON-Resistance

46

$

HITACHI

- - - - - - - - - - - - - - - - - - C H A R A C T E R I S T I C S OF POWER MOS FETS

result, characteristics worsen, as high frequency gain drops and phase shift increases.
This is expressed in Fig. 5-42. The equivalent
circuit with passive devices alone is represented
in Fig. 5-43.
It has been verified experimentally that the
phase differential of VOl
and V02 can be
eliminated and driving in the same phase can be
achieved by equalizing Cg with Cin2 and that
phase shift as 100 kHz can be limited within
-90 degrees.

5.9


There have been many works on analysis of
oscillation in source follower circuits. The most
general analysis for source follower circuits is
about the case in which the real part of the input
impedance is negative and the imaginary part is
ZERO. An example is described as followers.
The sumplified equivalent circuit of source
follower is shown in Fig. 5-44.

_i,_
I
I
I
I

:fe,
I
I
I

l

RL

The condition for negative resistance is;

RL
Rs+rg+ 1+w2CL2RL2
CL RL2gm
2C. <0 ........... (3)
(1+ W 2CL2RL)
ISS
moreover, approximately,

Analysis of Oscillation in Source
Follower Circuits

e,,,

+ 1+W2CL2RL2
W2CLRL2gm
(1 +W2CL2RL 2)W2Ciss ... (2)

VO

Rs+rg+RL -

<0 ........ (4)

Therefore, to prevent oscillation, external
gate resistor RG should be inserted. Then the
following equation can be obtained.
C R 2

RG+Rs+rg+RL -

L/gm:?o
ISS

However, the insertion of external RG makes
Power MOS FETs frequency response worse.
Therefore, when selecting RG, a compromise
between stability against oscillation and amplifier's frequency response should be considered.
Voltage gain vs. frequency vs. RG is shown in
Fig. 5-45.

-.......

I

~

~i""

2

1\

3

Cb, : Input Resistance
g. : Transconductance
CL : CF (Capacitance Between Case and Heatsink)
+ CL (Leakage Capacitance)
r, : Gate Resistance
Rs : Signal-Source Resistance

C.

ISS

0

~

CLR/gm

I\.

,0J

4

.~

5
6

IW~

7

,\I,

9

1\

-I 0

10k

~~

1\

8

Fig. 5-44 Equivalent Circuit of Source Follower Circuit

""
UIS~

~'i'

c

VV

~~~... i-r-

/"'4.

- 20

III

~I

'/V

--

•

/

",-//

r,

/

,

n
-20

-50

-40

SWITCHING TIME VS. DRAIN CURRENT
500

/

,

/

...

/

I

200

/

¥

V /
1/ /

-30

Drain to Source Voltage Vns (V)

/'

)V

~
i

.... 1--

"II

100
0

'/ /

20

// /

"

--

, ,
2

I

J,y

~.

I-

(V)

VDS

I

Vns "'" - iOV

,:':/~
2S~

-

I II

/"

1/

"

I I 1111

-0. 2

/

-il! /-~ \ ,

••
~If'

"I'. .;~.,

Tc=25'C

~

I I
It/

~ ~~

:.f.('I....

]

'4~/:\,

"'~

~

~

I r.J5'C

~ /'

0

......

..... ~

~

5

-10

0.1

0.2

0.5

-

1.0

-

Iv (AI

Gate to Source Voltage Ves (V)

SWITCHING TIME TEST CIRCUIT
FORWARD TRANSFER ADMITTANCE
VS. FREQUENCY

§

()mpm

1.(I

-:iO\"

PW=[}O/IS
duty ratio

~

j

=1°"
100m

:Tr=:
\'v~

".IV

=-'1

WAVEFORMS

ilY•
input

1m

O.5m

2k

10k

lOOk
Frequency

58

1M

10M 20M
Output

f (Hz)

~HITACHI

III

2SJ76,2SJ77,
2SJ78,2SJ79
SILICON P-CHANNEL MOS FET
HIGH FREQUENCY AND lOW FREQUENCY POWER AMPLIFIER,
HIGH SPEED SWITCHING
Complementary Pair with 2SK213, 2SK214, 2SK215, 2SK216

•

FEATURES

•

Suitable for Direct Mounting.

•

High Forward Transfer Admittance.

•

Excellent Frequency Response.

•

Enhancement-Mode.

1. Gate
2. Source
(Flange)

(JEDEC TO-220AB)

a. Drain

(Dimensions in mm)

•

POWERVS.
TEMPERATURE DERATING

ABSOLUTE MAXIMUM RATINGS (Ta =25 0c)
Ratings

Symbol

Item

Unit

60

ZS.I76iZSJ77iZSJ7SizSJ79

Drain-Source Voltage

V DSX

Gate-Source Voltage

V(iSS

Drain Current
Body-Drain Diode
Reverse Drain Current
Channel Dissipation

V

-14°1-16°1-18°1-200
±15

V

In

-500

rnA

InR

-500

rnA

p.-,

1.75

W

30

W

150

'C

P("h*

Channel Temperature

T"

Storage Temperature

T,"K

"'0:-

.0

g

-45 - +150

1
is

]

20

"

~

"'-

........

'C
50

100

r-.....
150

Case Temperature Tc ("C)

•

ElECTRICAL CHARACTERISTICS (Ta =25
Symbol

Item
Drain-Source Breakdown
Voltage

°el
Test Condition

min.

typo

max. Unit

2S.)76

-140

-

-

V

2S.)77

-160

-

-

V

-180

-

V

-200

-

-

±15

-

-

V

-0.2

-

-1.5

V

2SJ78

V(BRIDSX

V".,=2V. I n=--lmA

2SJ79
lu=±lO~A.

V

Gate-Source Breakdown Voltage

V(BRIGSS

Gate-Source Voltage

VGSCan)

VnFO
[n=-10mA. V Ds=-10V*

Drain-Source Saturation Voltage

VDSI$QI)

1f)=-lOmA. V(;f)=O*

-

-

-2.0

Forward Transfer Admittance

IYf~

I,,=-lOmA. V,,_,=-20V*

20

35

mS

Input Capacitance

C/,.,
C,,_,

V DF-lOV. [,,=-10mA.

120

/=IMHz

-

-

4.8

-

pF

Reverse Transfer Capacitance

@HITACHI

V
pF

59

2SJ76, 2SJ77, 2SJ78, 2 S J 7 9 - - - - - - - - - - - - - - - - - - - - - - - - , - TYPICAL OUTPUT CHARACTERISTICS
-SOO

T, =2S"C
-~

I-'

-400

,I
-300

II

-200

/ /
'/ . /

./

,.."

-

-4.S

I--

-4 10

-----

~
~ i-"
3 1S_
~
~ r-:-1

I

3.0

~

_2 1S

~~

V-100

< .-

-4

-=

IiS-

-

-40

~
:; -30

j
.:: -20

/

VDs =-20V

-300

1/V

-3

-4

VDS

-60

-80
VDS

-100

(V)

1/ If)

= -20V

~lll

/ ~~: -r-"/
I 11/

ih

/j}/
~~

-

~ l1li""

"'"

-0.4

-0.8

-1.2

-1.6

-2.0

Gate to Source Voltage VGS (V)

FORWARD TRANSFER ADMITTANCE
VS. FREQUENCY

SOO

200
100

H

100

./

~

0

111111

~!c 2SC
20V
IOmA

I=Vo,
rIo

20
0

0
Tc 2S"C
V••
20V

S

O. I

II
-S

-10

-20

-so

-100

-200

0.05

Sk 10k

lOOk

1M
Frequency J (Hz)

Drain Current Iv (mA)

60

-40

-80

-S

FORWARD TRANSFER ADMITTANCE
VS" DRAIN CURRENT

2
-2

2

TYPICAL TRANSFER CHARACTERISTICS

Gate to Source Voltage Ves (V)

j

0.3

-20

-2

-

0.4

~

-40

~V
~~

-1

O.S

-60

IV V

...... ~

r-:::;;

-0.6

~

-20

-100

) I
VV

VJ V

-100

,..

~

-0.8

Drain to Source Voltage

V V,I

-200

U~

-20

t<
...! / W
.,

r//

-10

8::

----0.7-

"

~

,i/ . /

~

-16

 ~ ~

WAVEFORMS

-~/ 7' r--..: '=::
........
-k/
16

.3

ID=-lOA

VDS

-100

VoM1 Monitor

Ves

J

-so

0

VA""

J.,( L

, J

-40

16

24

32

40

20

Gate Charge Q. (ne)

68

Monitor

@HITACHI

2SJ113
\"l~.2±O.2

SILICON P-CHANNEL MOS FET
HIGH SPEED POWER SWITCHING,
HIGH FREQUENCY POWER AMPLIFIER
Complementary pair with 2SK399
•

2.K

FEATURES

•

Low On-Resistance.

•

High Speed Switching.

•

High Cutoff Frequency.

I"'(ttl-il'"
1

'I

Lll.+ o.~

1. Gate
2. Drain

•

No Secondary Breakdown.

•

Suitable for Switching Regulator, DC-DC Converter, Motor Control, and Ultrasonic Power Oscil-

(Flangel
3. Source
(Dimensions in mm)

lators.

(TO-3P)
POWERVS.
TEMPERATURE DERATING

ABSOLUTE MAXIMUM RATINGS (T.=25 0c)

•

Item

Symbol

Rating

Unit

Voss

-100

V

Gate-Source Voltage

Vass

10

±20
-10

V

Drain Current
Drain Peak Current

IDlPttlkJ

-15

A

Body-Drain Diode
Reverse Drain Current

lOR

-10

A

Drain-Source Voltage

Channel Dissipation

A

ISO

~

;:
a

100

i.

~

is

Channel Temperature

Pch·
T,h

Storage Temperature

Tstl

100

W

150

°C

-55 - +150

]
u

so

I"

.........

~

" "-

°C
50

•

ELECTRICAL CHARACTERISTICS (T.=25 0c)
Symbol

Item

Test Condition

Drain-Source Breakdown Voltage

V(BRIDSS

I D=-lOmA. V GFO

Gate-Source Leak Current

lass

VGF±20V. VDFO

min.

typo

'"

ISO

100

Case Temperature Tc (t)

max.

-

Unit

-

-

±l
-1

J"A
rnA

-100

V

Zero Gate Voltage Drain Current

lDss

Gate-Source Cutoff Voltage

VGSloff)

VDF-80V. V"FO
ID=-lmA. VnF-lOV

-2.0

-

-5.0

V

Static Drain-Source On State
Resistance

RDS(OR'

I D=-5A. Vc;F-15V'

-

0.25

0.35

n

Drain-Source Saturation Voltage

V DSlonl

I D=-5A. V(;s=-15V'

-

-1.25 -1.75

V

Forward Transfer Admittance

IYfJ
C...

I D=-5A. Vos==-10V'

1.5

llOO

Co ..
C..,
tdfonj

VDF-lOV. V"..=O.j=IMHz

-

90

t,
tdloffl
tf

ID=-2A. VGs=-15V
R,=15n

-

VDF

t.

Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Turn-on Time
Rise Time
Turn-off Delay Time
Fall Time
Body-Drain Diode
Forward Voltage
Body-Drain Diode
Reverse Recovery Time

-

70

-

IF-5A. Vc;s=O

-

-0.9

-

V

IF-5A. VGs=O
di Fldt=50AIJ"s

-

250

-

ns

2.0
650
20
50
90

S
pF
pF
pF
n~

ns
ns
ns

"Pulse Test

~HITACHI

69

2SJ113-------------------------------------------------------TYPICAL OUTPUT CHARACTERISTICS

MAXIMUM SAFE OPERATION AREA

-1 0

-5°p+m==I=l+mm==p~
I II
III
Ta-2S'C

f-~~i- r-tiLP
/1/ ~
''''",

f-',
-8

..::

II
IV, ~

-6

VGs=-8V

rl

~

o

Tc=25"C

~

''"'~
~

"

...

7V

-4

c

~

-6V
-2

lsv
-4

Drain to Source Voltage Vos (V)

TYPICAL TRANSFER CHARACTERISTICS
-10

Tc=-2S'CJ

3
~

1/

III

-4

,

co
-2

\

-J

I//. -75'~

~

0
'2

-20

(V)

I

-4

!J f-25'C

-6

VDS

VS. GATE-SOURCE VOLTAGE
5

i/!J

-8

-16

-12

DRAIN-SOURCE SATURATION VOLTAGE

I, rl

V"=~IOV

-8

Drain to Source Voltage

,,~

I\,

-2

1///

,-

Tr

'I"-

t

~
-S

-4

10
Gate to. Souree Voltage VGS (V)

1""-

'-

\

-1 _fulse

-SA

I-SA

j-

-

II)=-2A

-12

--

-16

-20

Gate to Source Voltage Ves (V)

FORWARD TRANSFER ADMITTANCE
VS. DRAIN CURRENT

STATIC DRAIN-SOURCE ON STATE
RESISTANCE VS. TEMPERATURE
0.5

r--

VGsL-IJV
[/l=-5A

0.4

,./

0.3

0.2
0.2

V V

,/

'l.l~~~.

O.05,~
-0.2
O.,j

l.(l

ltl

20

0.1

,
)

-40

40

80

Case Temperature Tc (t)

Drain Current 10 (A)

70

V

@HITACHI

120

160

-----------------------------------------------------------2SJl13
TYPICAL CAPACITANCE VS.
DRAIN·SOURCE VOLTAGE

FORWARD TRANSFER ADMITTANCE
VS. FREQUENCY
10

10000

0
IMHz

Ves

/

Te

~

loo

0·"

em

i'

c••
300

25"C
10V
2A

V"

I,

3000

1.0
1\

""

lClO

c..

0
0

-10

-30

-20

Drain to Source Voltage

VDS

"'

o. 1

-50

-40

~

O. 3

HlOk

100M

10M

1M

Frequency

(V)

J (Hz)

MAXIMUM BODY·DRAIN DIODE
FORWARD VOLTAGE

SWITCHING CHARACTERISTICS
-20

1000~_

~~

-16

~
~
E

j

'2"

"
10 _

-12

-8

j

_

-4

-IOV

-3

-l.O

VGs=O

i 1~
5
\
~

-0.3

'/

5'1

-10

~

0.4

Drain Current In (A)

0.8

VGSflOV

I
-1.2

Source to Drain Voltage

2.0

1.6
VSD

(V)

SWITCHING TIME TEST CIRCUIT

v,.

Monitor

DYNAMIC INPUT CHARACTERISTICS
01\

-20

t...-

\
f-- p(

~

~~

. /I'\. J...

"'-

1/

-60

V"

J

V

-80

o

-4

Von = -BOV

VD'

"-30V

-50
25

Ves

~~~
~~.( /' I"--... ~

WAVEFORMS
12

.......

-25/

16

~

~

V"

~

ID=-lOA

V"

-100

RL

J,( L

\ J

-4{)

V~~r Monitor

D.U.T

16

24

32

40

20

Gate Charge Q, (nc)

~HITACHI

71

2SJ114
SILICON P-CHANNEL MOS FET
HIGH SPEED POWER SWITCHING,
HIGH FREQUENCY POWER AMPLIFIER
2.R

•

FEATURES

•

Low On-Resistance.

•

High Speed Switching.

•
•

High Cutoff Frequency.
No Secondary Breakdown.

•

Suitable for Switching Regulator. DC-DC Converter. Motor Control. and Ultrasonic Power

O.6±(}.2

1. Gate
2. Drain
3. Source

Oscillators.

•

(Dimensions in rnm)

POWERVS.

ABSOLUTE MAXIMUM RATINGS (Ta=25 °C)
Item
Drain-Source Voltage

Symbol
Voss

Rating
-200

Unit
V

Gate-Source Voltage

V GSS

Drain Current

10

±20
-8

iD(peQk)

-12

Drain Peak Current
Body-Drain Diode
Reverse Drain Current

(TO-3P)

(Flangel

lOR

Channel Dissipation

P",'

Channel Temperature
Storage Temperature

T!llg

T,h

TEMPERATURE DERATING
ISO

V
A
A

-8

A

100

W

150

°C

-55-+150

°C

§

.:

100

1"'-

§

i
':
is

l

""- i'..

SO

"'

·Valueat Tc=25"C

"

100

SO

~

ISO

Case Temperature Tc (t)

ELECTRICAL CHARACTERISTICS (Ta=25 0c)

•

Item
Drain-Source Breakdown Voltage
Gate-Source Leak Current
Zero Gate Voltage Drain Current
Gate-Source Cutoff Voltage
Static Drain-Source On State
Resistance
Drain-Source Saturation Voltage
Forward Transfer Admittance
Input Capacitance

Symbol

Test Condition

min.

-200

~BR)DSS

lo=-lOmA. V G s==10V

lGSS

V G s==±20V. Vos==O

-

IDss

Vos=-160V. VGs=O

-

Vasco}))

lo=-lmA. Vos=-lOV

R DSlonl

lo=-4A. V Gs==-15V'

VDS(on)

-2.0

typo

-

max.

±l
-1
-5.0

I'A
rnA
V

-

0.6

0.8

n

-2.4

-3.2

V
S
pF
pF
pF

lo=-4A. VGs==-15V'

-

IYfJ
C,,,

lo=-4A. Vos==-10V'

1.0

Coss

Vos=-IOV. VGs=O,f=IMHz

1.8

-

-

1000
400

-

70
15

-

35

Output Capacitance
Reverse Transfer Capacitance
Turn-on Delay Time

tdlom

Rise Time

t.

lo=-2A. VGs=-15V

Turn-off Delay Time

t",oh)

R L=15n

-

Fall Time
Body-Drain Diode Forward Voltage
Body-Drain Diode
Reverse Recovery Time

tf
V OF

i.=-4A. VGs=O

-

-0.9

-

t"

Ip-4A. VGs=O
diddt=50A/ I's

-

300

-

72

C",

~HITACHI

Unit
V

100
60

ns
ns
ns
ns
V
ns

-----------------------------------------------------------2SJl14
MAXIMUM SAFE OPERATION AREA
-:It)

ill

,1,,111

'1'(1=-=25'(,

,-

~Flti!

-10

TYPICAL OUTPUT CHARACTERISTICS
-10

I

lOllS

r-'-

',,", 1-

i/)(1fIUI

~~(
('0.

~.-:?,..

.....""

('~.:.
",1'(\

'-J.0

,

~

10

. 2()
!lr'nin to

:10

. lOll

II

V(is=-4V

Drain to Source Voltlige

SOU!'!'!' Vl\1tUI\'l! ~'IJS (V)

I I

,I-III\'

f--;--'

rei ~

-R

I I

_:.!lrl'c

"

"

L 'I
,t;

DRAIN·SOURCE SATURATION VOLTAGE
VS, GATE·SOURCE VOLTAGE

J

"

•

-8

~

\

-6

~

•

1

W

\

--4

~

~

E

I{

""".,

E
~

/ll- -7~'('
III

.

-2 _!)ulse

Ter

c

'e
"
-6

Gate to Source Voltage

~

~~

iii
1.0

::;;-

,....

-5:\

iD=-2A

-12

-16

-20

Gate to Source Voltage VGS tV)

STATIC DRAIN·SOURCE ON STATE
RESISTANCE V5, TEMPERATURE

g

T'=-25'~_

Pulse Test

BAr-

"-

'-...

(V)

\.0
\/Ds=-lOV

-

" .....

-4

-10

-R
VGS

FORWARD TRANSFER ADMITTANCE
VS, DRAIN CURRENT

j

(V)

~

L-....~;l"t'

;

25'C-

~

75'C

~

"
£

r--

L

VGS -1JV
In=-4A

O,R

0,6

~

lUi

0,4
0.2

20

-Ie
V1JS

-10

I".s

'E

-'l~

--H

-II I

1

1'c=2S'{'

-5V

.!IlO

TYPICAL TRANSFER CHARACTERISTICS

::i!

-Iv

I(j
jV

~

'r..

-II, :l

" ""-

III V

-4

-2

j

-{q;lf'
-7V

'J

.3c

-

I~~f-- r--

11//

-6

-

" ....

//

:s

_,

I H~

I

-H

..e

0.-:,

~\.

~/

_/

f---

(~~I'

I,~ ?>

'§

¥/

/q,

"',

:l

r-- r--

.. /

V

/""

V

V

V

j

/

.~

"

n,l

0,2

.~

on
0,05
-0,2

-D,S

-\.O

-2

-5

-10

-20

o

-40

40

80

120

160

Case Temperature Tc (t)

Drain Current ID (A)

eHITACHI

73

2SJ114----------------------------------------------------------FORWARD TRANSFER ADMITIANCE

TYPICAL CAPACITANCE VS.

VS. FREQUENCY

DRAIN-SOURCE VOLTAGE
10

10m}

v,s
300

~

Tc
¥DS

1,-

I

}~
lOt

......

1.1 }

c••

,

I\,

0.5

"'

c".
1

25'C
lOY
2A

-

en

30

10

{}

IMHz

f
I

0.2

-20

-so

-60
Drain to Source Voltage

VDS

D.I

-100

HloM

10M

1M

lOOk

Frequency

(V)

f

(Hz)

MAXIMUM BODY-DRAIN DIODE

SWITCHING CHARACTERISTICS

FORWARD VOLTAGE

SO(}

-II}

r

I I
zoo
I.(all)

1

I

100

t-----tJ

50

-

,
_t,

}

"

Id(Q~)

.;-

-4

'(

-5V

-2
HJ

10'1

,

~

V

_115Y

-0.1

-(b

-0.2

-5

-2

-1.0

-10

-0.4

Drain Current In (A)

f~~~v

'

-0.8

I

-1.2

Source to Drain Voltage

-1.6
VSD

(V)

SWITCHING TIME TEST CIRCUIT
VI" Monitor

DYNAMIC INPUT CHARACTERISTICS

-40

~

~

-}20

:-7,;7

I(J If'-v,) =-I!OV

II

\ I
./ I
II

-80

;i!
~

r

f-~

~

'~"

0

1\
\

~

-100
50

"

~~

VGS

VDD=-150V~ ~

~~/

f--V

~

'"

1:

~

-160

12

~

16
VDS

-200

o

Iv=-8A

16

24

32

40

20

Gate Charge Q, (ne)

74

@HITACHI

WAVEFORMS

v..

-z.O

2SJ116
SILICON P-CHANNEL MOS FET
HIGH SPEED POWER SWITCHING.
HIGH FREQUENCY POWER AMPLIFIER
Complementary Pair with 2SK298, 2SK312
•

FEATURES

•
•

Low On-Resistance.
High Speed Switching.

•

High Cutoff Frequency.

•
•

No Secondary Breakdown.
Suitable for Switching Regulator, DC-DC Converter, RF Amplifiers, and Ultrasonic Power

I. Gate
2. Source
3. Drain

Oscillators.

(Dimensionlt in mml

ABSOLUTE MAXIMUM RATINGS (T.=25

•

Item

°e)

POWERVS.
TEMPERATURE DERATING

Symbol

Rating

Unit

Voss

-400

V

Gate-Source Voltage

VaNS

±20

V

Drain Current
Drain Peak Current
Body-Drain Diode
Reverse Drain Current

10

-8
-15

A
A

-8

A

Drain-Source Voltage

IDlJm>"
lOR

Channel Dissipation
Channel Temperature
Storage Temperature

IqO

~
o'!

100

:l•

is

p,.,"

125
150
-65-+150

T"
TNIR

(JEDEC TO-3)

(Case)

W

'C
'C

]

50

I"

'"

l~

·Value at T(,:::::25 °C
50

'"'"

100

150

Case Temperature Tc (t)

•

ELECTRICAL CHARACTERISTICS (T.=25 0c)
"

Item

Symbol

Test Condition

±l

V
p.A

-

-

-1

mA

-0.2

-

-5.01

V

-

1.75

2.25

!l

In=-4A. Vas=-15V·

-

-7.0

-9.0

V

ID=-4A, VDs=-20V·

1.0

1.6
1400

-

-

S
pF
pF

25
15

-

pF

-

45

-

ns
ns

160

-

ns

-

ns

-

60
-0.9

-

V

-

400

-

ns

lass

Vas=±20V, Vos=O

Zero Gate Voltage Drain Current
Gate-Source Cutoff Voltage

IDss

VDs=-320V, Vas=O

VGSloh)

lo=-lmA, VDs=-lOV

RDston}

ID=-4A. Vas=-15V·

Drain-Source Saturation Voltage

V DSfoll ,

Forward Transfer Admittance

IYfJ

Input Capacitance

Gin

Output Capacitance
Reverse Transfer Capacitance

C

Turn-on Delay Time

tdlon)

Rise Time

t,

lo=-2A, Vas=-15V

Turn-off Delay Time

tdl,ol/l

R,=15!l

Fall Time
Body-Drain Diode Forward Voltage

tf

Body-Drain Diode
Reverse Recovery Time

-

Vos=-lOV, Vas=O./=IMHz

C,§

t.

Unit

-

Gate-Source Leak Current

VDF

max.

-

10=-10mA, VaS=O

O$$

typo

-

V(BRIDSS

Static Drain-Source On State
Resistance

min.
-400

-

Drain-Source Breakdown Voltage

J.=-4A, VaS=O
IF-4A, V(;s=O
d i F/

J

c
'2 -4
Q

- -

...

1.

-6

~

~4.l'\
.~

/

~

Tc -25'C

3

S<

~

",

-

..o~~d'
~
~

30()

j

lOll

!

I.

U,

'"
~'s

c".

"

-

!.I I

.!'!

:m

!

'\.

0.5

'\

'E

c'"

111

lOV
2A

~

c:;
0.2

40

-120

-HO

Drain to Source Voltage

o. 1

-zoo

-160

lIHlk

Frequency

(V)

VDS

FORWARD VOLTAGE
-](I

lOOt I

I

-

td(~J/)

100M

J (Hz)

MAXIMUM BODY-DRAIN DIODE

SWITCHING CHARACTERISTICS

1mI

WM

1M

1/

-g

-r-.

=1,

-6

rl,
3( I

t-~O~)

-.\

I

J VGs=O

-5V

1
-0.2

-lO\:l I "L IGS~r
-- -l1'
J 'JI I
-0.5

-5

-2

-1.0

-10

-20

-0.4

-o.g

-1.6

-1.2

Source to Drain Voltage

Drain Current 10 (Al

VSD

-2.0

(V)

SWITCHING TIME TEST CIRCUIT
V,. Monitor

DYNAMIC INPUT CHARACTERISTICS
0

r;.
-100

:::
J!
!i,\

lJ /1

~

~

Iv=-5A

\ I
J+-- ~

-4

...... -100

-200

~
j

300V

VDS

..... -20.1

)

-300

~

VDD

~

V.,
VGS

-400

-500

L

-3JV-

-

I

/

200

./

-100

~

I

~

WAVEFORMS

16

~

'\~

o

20

40

60

80

100

Gate Charge Q, (nc)

~HITACHI

77

2SJ117
SILICON P-CHANNEL MOS FET
HIGH SPEED POWER SWITCHING,
HIGH FREQUENCY POWER AMPLIFIER
Complementary pair with 2SK31 0
•

FEATURES

•

High Breakdown Voltage.

•
•

High Speed Switching.
High Cutoff Frequency.

•
•

No Secondary Breakdown.
Suitable for Switching Regulator, DC-DC Converter, RF Amplifiers, and Ultrasonic Power

1. Gate
2. Drain
(Flange)
3. Source
I Dim('nsions in mmJ

Oscillators.

(JEDEC TO-220AB)
POWERVS.
TEMPERATURE DERATING

• ABSOLUTE MAXIMUM RATINGS (Ta=25 0c)
, Item
Drain-Source Voltage

Symbol
VDSS

Gate-Source Voltage

Voss

Drain Current
Drain Peak Current

1D
1__"

Body-Drain Diode
Reverse Drain Current

1DR

Channel Dissipation

Pch*

Channel Temperature
Storage Temperature

Rating

Unit

-400

V

±20
-2
-4

V
A
A

-2

A

W

40
150
-55 - +150

T"
Ts,g

"

~

""

J

'C
'C

I'-..

"-

50

"-

IIKl

""-

1:)/)

Case Temperature Tc ("C)

ELECTRICAL CHARACTERISTICS (Ta=25 0c)

•

Symbol

Item

1iF-lOrnA, V GFO

loss

VGF±20V, VDFO

lDss
VOSIoff)

VDF-320V. VGFO
1D=-lmA, VDF-10V

R D S(OI1)

l{)=-lA, VGF-15V'

Drain-Source Saturation Voltage

VDS(onl

Forward Transfer Admittance
Input Capacitance

ly,J

Output Capacitance
Reverse Transfer Capacitance

C,"

Gate-Source Leak Current
Zero Gate Voltage Drain Current
Gate-Source Cutoff Voltage
Static Drain-Source On State
Resistance

Turn-on Time

-

Unit
--

..

V

±l
-1

I'A
rnA

-5.0

V

1iF-1A, VGF-15V'

-

-5.0

-7.0

V

1iF-1A. V DF-20V'

0.4

0.7

-

520

,

/=lMHz

-

10

-

-

25

-

ns

-

35
-0.8

-

ns
V

-

300

-

ns

VDF-lOV, VGFO.

ID=-2A, V"F-15V

td{offl

RL =15!l

Fall Time
Body-Drain Diode Forward Voltage

t,
h=-lA, V"s=O
I,=-lA, VGFO
diF/dt=lOOA/l's

*Pulse Test

78

max .

n

ttl{olll

t.

-2.0

-

7

t,

VDF

-

typo

5

Rise Time
Turn-off Delay Time

Body-Drain Diode
Reverse Recovery Time

-400

-

G,,,

C,"

min.

Test Condition

V(BRIDSS

Drain-Source Breakdown Voltage

~HITACHI

110
15

45

S
pF
pF
pF
ns

ns

---------------------------------------------------------2SJ117
MAXIMUM SAFE OPERATION AREA

Ja~~W

-10

1m",.,)

-1.0

"'-.,.

c'l
~

'>.>,

Q

Tc

3
.::
c'l

~~

-0.3

"
~

3'(~,

-0. I

r,

-10

-30

100

Drain to Source Voltage

I
VGS -

-3V

12

-- 20

16

Drain to Source Voltage

(V)

(V)

VDS

DRAIN" SOURCE SATURATION VOLTAGE
VS. GATE-SOURCE VOLTAGE

TYPICAL TRANSFER CHARACTERISTICS

-s

1
-4V

I,O()O

-300

VDS

J.SV

V

III V
F.

,I

-0.03

1

h'l

-0.8

-0.4

-sv

1l~

-I. 2

~

..

~~
01')

..~

VI I,r

2S"C

I

6V

I

I.

-I.6

~Il'

-3

~Xl

-IS

lO.us

iOC,.. AI

~

TYPICAL OUTPUT CHARACTERISTICS
-2.0

-2()

~t=!2UV
""I

-4

~

~-ls"C

~

1-'"
~

I

~

)

I

....,~
-2

2S"C

""j

-

~

I-":i--

"",

7S"C

-12

......

§

a

'I-

-4

V

"

-8
VGS

-4

-10

-8

-16

-20

STATIC DRAIN-SOURCE ON STATE
RESISTANCE VS. TEMPERATURE
0

Vos--2(JV

t--

f-- Pulse Test

V''!-15~

IlJ=-lA

8

~

V
L

6

......V

7S"Ct--J 2S"C

o.S

-12

Gate to Source Voltage VGS {V}

(V)

S

0

-IA

-Tjst

FORWARD TRANSFER ADMITTANCE
VS. DRAIN CURRENT

2

A

lo~-O.\A

Pulse

~
-6

-

-8

j

Gate to Source Voltage

t-I-

.~

f

-4

-16

4

V

o. 2 /
2

o. I
0.0S
-0.2

0

-O.S

-1.0

-2

-S

-10

-40

-20

40

80

120

160

Case Temperature Tc ("C)

Drain Current ID (A)

•

HITACHI

79

2SJl17----------------------------------------------------------TYPICAL CAPACITANCE VS.

FORWARD TRANSFER ADMITTANCE
• VS. FREQUENCY

DRAIN-SOURCE VOLTAGE
10000

Vcs

f

3000

()
IMH,

;;;

"

1000

~

j

!

~

3(}{)

(J.2

'§

I\,
lOO

'I

f!

30
](I

0.5

f--

"E

"

c,,,

OJ

D.ns

~

f:==

'"

I \-0-'---l;40;;-.l--+&l;--.l--1~20;;-.l---;';16;;-0......L---;!200

om
n,oi
lOOk

10M

1M

Drain to Source Voltage Vos (V)

Frequency

f

100M

(Hz)

MAXIMUM BODY-DRAIN DIODE

SWITCHING CHARACTERISTICS

FORWARD VOLTAGE
-5

J(J{){ )

1---30()

I----fIll{)

:s

I

~

F= t J to/ J~

3()

t--

If

I--

I.

01==

!

-

tdl".1

-,
-3

8

'2

'"

-2

~

~
-1

-lOh.DJ ~VGS~O

VGs=lOV

3

I--

-1~

1

1
-0.2

-0.5

-1.0

-5

-2

-10

0.4

-20

-O,R

-1.2

Source to Drain Voltage

Drain Current In (A)

1.6
VSD

(V)

SWITCHING TIME TEST CIRCUIT

v,. Monitor
DYNAMIC INPUT CHARACTERISTICS
0

-100

1\
\

0

/

'J f'\vDl~-3~v

1Di-3A

-200
1\ II, HlO

-~ 1

-200

-300

I

-/

1../

v!s

I

~

'"

VVD=-300V

~~

2~J
100-

I
-.....;

~

~

~

12

F::S 0...

VGS
-400

S

~~

"

12

16

16

03

20 20

Gate Charge Q, (nc)

80

WAVEFORMS

~

~

~HITACHI

v..

-2.0

2SJ118,2SJ119
SILICON P-CHANNEL MOS FET
5.0max.
1.5

HIGH SPEED POWER SWITCHING,
HIGH FREQUENCY POWER AMPLIFIER
Complementary pair with 2SK413, 2SK414
•

FEATURES

•

Low On-Resistance.

•
•

High Speed Switching.
High Cutoff Frequency.

•
•

No Secondary Breakdown.
Suitable for Switching Regulator, DC-DC Converter, PWM Amplifiers, and Ultrasonic Power

1. Gate
2. Drain
(Flange)
3. Source
(Dimensions in mm)

Oscillators.

•

POWERVS.
TEMPERATURE DERATING

ABSOLUTE MAXIMUM RATINGS (Ta=25 °C)
Symbol

Item
Drain-Source Voltage

2SJ118

I

-140

I

VDSS

(TO-3P)

2SJ119
-160

Unit
ISO

V

Gate-Source Voltage

Voss

10

±20
-8

V

Drain Current

A

~

Drain Peak Current

ID{pfflk)

-12

A

0:

Body-Drain Diode
Reverse Drain Current

lOR

-8

A

Channel Dissipation

Pch*

100

W

Channel Temperature

T,h

150

'C

Storage Temperature

T s1g

-55-+150

100

i"
s

;;

"-

" "'
"-

SO

'C

'"

100

SO

Case Temperature Tc ('C)

•

ELECTRICAL CHARACTERISTICS (Ta=25 0c)
Symbol

Item
Drain-Source Breakdown
Voltage

I
I

2SJ118
2SJ119

Gate-Source Leak Current

Test Condition

min.
-140

-

-

-

~BRIDSS

lo=-lOmA, VGs=O

loss

-2.0

-

-160

Gate-Source Cutoff Voltage

VGS(olJ)

VuF±20V, VoFO
VoF-120V, VuFO
VoF-140V, VuFO
10=-lmA, VoF-lOV

Static Drain-Source On State
Resistance

RDS(on)

10=-4A, VGF-15V'

Drain-Source Saturation Voltage

VDS(on)

10=-4A, VuF-15V'

-

Forward Transfer Admittance

Iy,~

10=-4A, Vos=-10V'

1.0

Input Capacitance

G",
G,,,
G",

Zero Gate Voltage Drain
Current

I

2SJ118

I

2SJ119

Output Capacitance
Reverse Transfer Capacitance

loss

Vos=-lOV, VuFO,
/=IMHz

Rise Time

tdCon,
t,

Turn-off Delay Time

t~'ffI

Fall Time

t,
V OF

h=-4A, VGs=O

t"

I.=-4A, VGFO
di F/dt=50A/ p's

Turn-on Time

Body-Drain Diode Forward Voltage
Body-Drain Diode
Reverse Recovery Time
*PuIse Test

lo=-2A, VuF-15V
R,=2fl

$

HITACHI

typo

max.

-

'"

ISO

Unit
V
V

±l

p.A

-

-1

mA

-

-5.0

V

0.4

0.5

n

-1.6

-2.0

V

1.8

-

-

1050

-

-

450
80

-

pF

-

90

-

ns

70
-0.9

-

V

-

300

-

ns

20
50

S
pF
pF
ns
ns

ns

81

2SJ118,2SJ119--------------------------------------------------MAXIMUM SAFE OPERATION AREA
1111

-30

TYPICAL OUTPUT CHARACTERISTICS
-1 0

Ta~2S'C

L!Jg, r ,

-IS

-

_lOlllrT

8

3

..e

..e

j
c

-6

~

,- ,.

\

~-

-9V

"'

'"....

~

V''b,j<,

-- r--

-8V~

1--

"

VI

-4

c

'2
Q

-lOY

I J
II /
f!I. ~

j

3

I

-7V

V

Tc~25'C

-1.0

-6V

-2
8

r-

2 J119

1

-4

Drain to Source Voltage VDS (V)

V"

~ ·_lOIV

I,' ,
Tc~-2S'G-

.=:

j
c

"2

-5

\

-4

Q

Ii

I-- r-'
2

~

/

1\

'1/

2

~

1

"r--...

T~r

10

-8

1.0

9

Ta~-2S'C_

.,

25'C

2

~~
.A

0

-- t- t-SA

-12

-16
VGS

-20

(V)

STATIC DRAIN-SOURCE ON STATE
RESISTANCE VS. TEMPERATURE

5
--lOY

r--.: A ......

fD=-2A

Gate to Source Voltage

FORWARD TRANSFER ADMITTANCE
VS, DRAIN CURRENT

VDS

r-.... r--..

1\
r--.Pu se

Gate to Source Voltage VGS (V)

I-- Pulse Test

......

rtf

I/, iLwc

I-- r-

20

(V)

'\

I

25·~--J.. ~

-6

-16
VDS

DRAIN - SOURCE SATURATION VOLTAGE
VS. GATE-SOURCE VOLTAGE

//

-8

-12
Drain to Source Voltage

TYPICAL TRANSFER CHARACTERISTICS
-1 0

SV
4

:'GS

- O·:!.':-S.J....1..J.._J.J.
.
lO,----_--,2'::-0--L......I._..:'50........U_.100":-.&J-'::-2~OO,---~500

~
~

75'C

5

f--

VG'!-15~

ID=-4A

o.8

.:1
~

o. 6

"
j

o.4

IL
..,,/

u;

2/

~

V

b

"2

Q

1

"

o.2.

u;
0.05

-0.2

-0.5

-1.0

-2

-5

10

20

40

80

Case Temperature Tc (t)

Drain Current ID (A)

82

0

-40

eHITACHI

120

160

---------------------------------------------------2SJl18,2SJl19
TYPICAL CAPACITANCE VS.
DRAIN-SOURCE VOLTAGE

FORWARD TRANSFER ADMITTANCE
VS. FREQUENCY

lUOU! I

10

0

Ves

Tc

f lMH,

,

VDS

3O()(

I,

,~

-

\

c__

i'""-

1.0

I

0.5

c,o-

,

31

11

lOY
2A

C,~

,
100

2S'C

0.2

,o

I
-lO

-30

20

D.I
lOOk

-50

-40

10M

1M
Frequency

Drain to Source Voltage Vos (V)

100M

J (Hz)

MAXIMUM BODY-DRAIN DIODE
FORWARD VOLTAGE

SWITCHING CHARACTERISTICS

-1 0

(

H

~
~

tdlofJ)

-

100

~

~

If

~

;:

~

i

6

8

I,

.~

Id(n)

"

10

4

j
2

~

r--r--,lOV

+-Ves~O

-lSV

.JI.

~LO~.24-~-~0~.S~~-L1.LO----~2--L-L-~SLLU-LU10----~20

ieFr

I
~--"
0.4
0.8

Drain Current In (A)

1.2

Source to Drain Voltage

1.6
VSD

2.0

(V)

SWITCHING TIME TEST CIRCUIT
V,ft Monitor

DYNAMIC INPUT CHARACTERISTICS

v."' Monitor

0

1\

-40

I--

-80

I

/

V"I~-ldov

K b(

"

K II"--

-so

~

2:

I

25

\ 1/

~

i.,./
~

D.U.T

"

VDS

-120

.......

VDo--lOOV"""
, 50

//~~

12

16

o

16

24

32

j

WAVEFORMS

v..

B

.......

-160

-200

~

~~

:"'25

In=-8A

~

Ves

:-""':: .......

~

40 20

Gate Charge Q, (ne)

~HITACHI

83

2SJ120Cb),2SJ120(§)
SILICON P-CHANNEL MOS FET
HIGH SPEED POWER SWITCHING,
HIGH FREQUENCY POWER AMPUl
Complementary pair with 2SK416
•

FEATURES

•

Low On-Resistance.

•

High Speed Switching.

•

HighCutoff Frequency.

•

No Secondary Breakdown.

•

Suitable for Switching Regulator, DC-DC Con-

1.
Gate
2.. 4. Drain
3.
Source

verter, and Bubble Memory Driver.

(DPAK)

(Dimensions in mm I

ABSOLUTE MAXIMUM RATINGS (T.=25 DC)

•

Item
Drain-Source Voltage
Gate-Source Voltage

Symbol
VDSS

Vass

Drain Current
Drain Peak Current
Body-Drain Diode
Reverse Drain Current

10

Channel Dissipation

Pch *

Channel Temperature
Storage Temperature

T"

Rating
-40

Unit
V

±20
-2

V

ID/,peDk)

-4

A
A

lOR

-2

A

10

W

150

'C

-55-+150

TstB

'C

POWERVS.
TEMPERATURE DERATING
12

"-

"-

1

'""100

50
Case Temperature

~

150

Tc ('C)

ELECTRICAL CHARACTERISTICS (T.=25 D C)

•

Item
Drain-Source Breakdown Voltage
Gate-Source Leak Current
Zero Gate Voltage Drain Current
Gate-Source Cutoff Voltage

min.

typo

V(BR)DSS

Symbol

Io=-lOmA. VeFO

-40

lGSS

V G F±20V. VoFO

-

-

VG~Offl

V D F-35V. VeFO
Io=-lmA. VoF-lOV

RDS(oll)

Io=-lA. V GF-15V'

loss

Static Drain-Source On State
Resistance

Test Condition

-1.0

max.
-

±l
-1

Unit
V
p.A
rnA

-4.0

V

-

1.2

1.5

n

Drain-Source Saturation Voltage
Forward Transfer Admittance

VDS(on)

Io=-lA. VeF-15V'

-

-1.2

-1.5

V

IYfJ

Io=-lA. VoF-lOV'

0.1

0.25

-

Input Capacitance
Output Capacitance

C'o
CO$$

-

150

-

150

S
pF
pF

9

-

-

25

-

ns

Reverse Transfer Capacitance
Turn-on Delay Time

em

VoF-lOV. VeFO.
/=lMHz

td(OlI)

Rise Time
Turn-off Delay Time

t,

Io=-lA. VeF-15V

td(offi

R L =30n

Fall Time

tf

Body-Drain Diode Forward Voltage
Body-Drain Diode
Reverse Recovery Time

V DF
t.

IF-IA. Ves=O
IF-IA. VeFO
di F/dt=50A/ p's

*Pulse Test

84

~HITACHI

25

pF
ns

-

17

-

ns

-

23

-

ns

-

-0.8

-

V

-

70

-

ns

- - - - - - - - - - - - - - - - - - - - - - - - 2 S J 1 2 0 CD. 2SJ120®
MAXIMUM SAFE OPERATION AREA

TYPICAL OUTPUT CHARACTERISTICS
-4

-I 0

To
5

lO,lS

II}(~"".)

A

~, ~l<-

l

~ ~.

,.

2
l/I(",ud

ii

25'C

0(>

-1.()

j

~:

"-:;~',

~

~

0,,/

o

"'oil'/.

°o,

"2"

-

I\~ ,~/ .... .;;.f!::: - -~<=15\1 / / ",'"..... - -- - f-- -r12V1-~/
--I
i1'/IJ /
lV,- lrV ,..-

...-

lit

-2

V

'\~f~

"

~

p;: ~:

¢,,,-

-0. 5

13V

1ll'C=
-1-

!A

-9V

"<

<:O~
...

....

-0, 2

_"I
---.....

-0, 1

-2

-5

-lO

-too

-!iO

-20

-lOll

L-l5'C

I

~

W

"

l/

-,

\

-1

2S'C

\

:\

"
-10

Ti

j

~
25'C

!

~~

{j,l

~

~ ....

II>

20

2.(1

O,S

n.2

IIJ=-ot A

12

-

9

Pulse Tf'llt

~

--r- -

STATIC DRAIN-SOURCE ON STATE
RESISTANCE VS. TEMPERATURE

vl!sl~li)~

j

....... ..........

Gate to Source Voltage Ves (V)

FORWARD TRANSFER ADMITIANCE
VS. DRAIN CURRENT

~

""-

l""- I--.

-2n

Gate to Source Voltage Ves (V)

LI )

\

-2,\

-1

~

Puls!'
Test

I

-12

-K

\

75'C

J/j

/

-5

I(/}

!J ~

I

DRAIN TO SOURCE SATURATION VOLTAGE
VS, GATE-SOURCE VOLTAGE

I. r;

VfJS=-10!

-12

Drain to Source Voltage Vvs (V)

TYPICAL TRANSFER CHARACTERISTICS
-4

-K

-4

Drain to Source Voltage Vvs (V)

1::1-.-

til'
;;\'

r(;.'i -

~1

~

25'C

\:t;S!-lfJ
1/)·-=-1:\

L6

/'
L2

~

u;

........ ........

V

D.H

j

1.::: n.os

.5
~

"

11.4

j

(J.02
-0.2

-0,5

-LO

-2

-5

-10

-20

Drain Current ID (A)

Case Temperature

@HITACHI

Tc (t)

85



I,

i"""

r-- '1td(OT

0

0

-5Y

(IV \ JIJ

td(ul

5
-0.1 -0.2

-0.5

-1.0

I-- -~..IJ

-2

-0.4

Drain Current ID (A)

-0.8

Vas =0
Vas =lOV

I

-1.2

Source to Drain Voltage

-2.0

-1.6
VSD

(V)

SWITCHING TIME TEST CIRCUIT
ViR

Monitor

DYNAMIC INPUT CHARACTERISTICS

V"'" Monitor
0

\
-10

-20

.,/"

\

,/

\

-30

-40

I

RL

"I

"-

,1\ ' VDS

.........,..

D.U.T

ID=-2A

'VDD=-lOV

;!;

~

'\

~

-25

\V
\
VGS

j

12

0

~VDD-

lOY

16

'< \

\ \

~

10 20

Gate Charge Q, (nc)

86

VDD
"-30Y

~

'--25

•

HITACHI

WAVEFORMS

2SJ122
SILICONP-CHANNEL MOS FET

"

~

~Fi·

HIGH SPEED POWER SWITCHING,
HIGH FREQUENCY POWER AMPLIFIER
Complementary pair with 2SK428

•

FEATURES

•

Low On-Resistance.

•

High Speed Switching.

•

High Cutoff Frequency.

•

No Secondary Breakdown.

•

Suitable for Switching Regulator, DC-DC Con-

I. Gate
2. Drain
(Flange)
:l Source

verter, PWM Amplifiers, and Ultrasonic Power

(JEDEC TO-220AB)

(Dimensions in mm)

Oscillators.

•

ABSOLUTE MAXIMUM RATINGS (T =25 0c)

POWERVS.

Q

Symbol

Rating

Unit

Drain-Source Voltage

V DSS

-60

V

Gate-Source Voltage
Drain Current

VGSS

±20

V

ID

-10

A

Drain Peak Current

IDI,peak)

-15

A

Body-Drain Diode
Reverse Drain Current

IDR

-10

A

Channel Dissipation

Pch*

50

W

Channel Temperature
Storage Temperature

T"

150

°C
°C

Item

Tug

-55-+150

TEMPERATURE DERATING
u

0

1"-

I"

20

~

50

~

100

•

'"

150

Case Temperature Tc ("C)

ELECTRICAL CHARACTERISTICS (T =25 0c)
Q

Item
Drain-Source Breakdown Voltage

min.

typo

V(BR)DSS

I D=-10mA, VGs=O

-60

-

-

Gate-Source Leak Current

IGSS

V Gs=±20V, VDS=O

-

-

Zero Gate Voltage Drain Current

IDss

rnA

Symbol

Test Condition

max.

Unit
V

-

VGS(off)

V D,--50V, V",-O
ID=-lmA, VDs=-lOV

±l
-1

-2.0

-

-5.0

V

RDS/ oll )

ID=-5A, V"s=-15V'

-

0.15

0.2

n

Drain-Source Saturation Voltage

VDS(on)

ID=-5A, VGs=-15V'

-

-0.75

-1.0

V

Forward Transfer Admittance

IYfJ

ID=-5A, V Ds=-lOV'

1.5

Input Capacitance

Giss

Output Capacitance
Reverse Transfer Capacitance

C."

Gate-Source Cutoff Voltage
Static Drain-Source On State
Resistance

e,n

VDs=-lOV, VGs=O
J=lMHz

Turn-on Time

td(O"1

Rise Time

t,

I D=-2A, V Gs=-15V

Turn-off Delay Time

t~.ffI

R L=15n

Fall Time
Body-Drain Diode Forward Voltage

tf

Body-Drain Diode
Reverse Recovery Time

-

I'A

2.2

-

-

1200

-

1050

-

S
pF
pF

-

170

-

pF

-

20

-

ns

-

60

-

ns

-

100

-

-

100

-

ns
ns

VDF

I.=-5A, VGs=O

-

-0.9

-

V

t"

IF-5A, VGs=O
di F/dt=50A/ I'S

-

200

-

ns

"'Pulse Test

~HITACHI

87

2SJ122------------------------------------------------------MAXIMUM SAFE OPERATION AREA

TYPICAL OUTPUT CHARACTERISTICS

-50

I I
-20

3

-1 0

-11

II
ilJe,..-u*)

t:tr.

-~

~t1:~

~;~~

4'fi

5

'''~
~%"j

q,.. ..,. ..;,.

.5

,s

~t-I

-

'

~

]

Ta-25'C

II
lO#s

"-r,."

i:.'!

c~~~

-2

-6V .........

-1.0

fe' .2fc-1--

'I

2

I -5V

-0, 5

-3

UKI

-[(J

300

-12

-4

Drain to Source Voltage Vas (V)

Drain to Source Voltage

c--

vJ,

5

!JrI

_llOV

0

11/)

ij

4

r, ~ - 2S'C:---t VI

/I, !-25'C
Ijf

6

~

,

.)

~
-2

75'C
Pulse
-T\~st

VGS

{V}

J
i...
'E

-25'C'::;:;::-

.

J

INcl 7~'C

/

o.2
/

V

l/

."..,... ".

~ n.l 5

.•

j

,/

~

.::

1

~

o. 1

0,( )5

0

0.2

0.5

)'0

HI

20

40

40

80

Case Temperature Tc ("C)

Drain Current Iv (A)

88

VGs!-15~

hJ==-5A

~

o. 2

(J.U5

I-

~
~

o. 5

1 o.

20

STATIC DRAIN-SOURCE ON STATE
RESISTANCE VS. TEMPERATURE

I1f:j: h..

~~

- 16

12

Gate to Source Voltage VGS (V)

0.25
'fa:::

IOV
Pulse Test
l'vs -

~

J/J--2A

-4

10

5

0

I\,

1

-6

2

--5A

1

FORWARD TRANSFER ADMITTANCE
VS. DRAIN CURRENT

t-

'"- " ,-HA --

2

lL

Gate to Source Voltage

'"

,

\

3

I

2

"'

2()

(V)

DRAIN-SOURCE SATURATION VOLTAGE
VS. GATE-SOURCE VOLTAGE

TYPICAL TRANSFER CHARACTERISTICS
-I 0

16
VOl

~HITACHI

120

160

---------------------------------------------------------2SJ122
TYPICAL CAPACITANCE VS.

FORWARD TRANSFER ADMITTANCE

DRAIN-SOURCE VOLTAGE

VS, FREQUENCY

1CI00"~!~~!~~~
Ves

H1

0

Tc 25'C

f IMII,

VDS
JD

::\OllO

'"

1.0

0.5

~

0.2
10 ~o-"'---If::O-"'--~2:!::O-"'---3:':O--'----l;40:--'--!50
Drain to Source Voltage

VDS

0.1

IOV
2A

lOOk

10M

1M

Frequency

(V)

100M

J (Hz)

MAXIMUM BODY-DRAIN DIODE

SWITCHING CHARACTERISTICS

FORWARD VOLTAGE
-20

r

-I 6

:;.;

I,

5

IOD

.e

II'-='

~

ttl(.Jllr---

~

;::
1!'

:fi

j

-12

(l

'2

tt/(0I1

Q

10

-8

~

-5V

~

<:!

-10"1.

-4

i

~

IL-~-L~~~_~_"'__~-Luu"'--_~

-0.2

-0.5

-1.0

-2

-5

-10

l5V

-20

~

1

Vcs=O

t:5- t1 J[ 1
GS

~

~

0.4

Drain CUrrent Iv (A)

0.8

1OV

I

1.6

1.2

Source to Drain Voltage

VSD

2.0

(V)

SWITCHING TIME TEST CIRCUIT
V,~

Monitor

DYNAMIC INPUT CHARACTERISTICS
0

0

."".
-2

1\' ~ (\
1o v,.
\ II

ID=-lOA

o~

"

-40

25
-10

L

-80
VGS

-100

VDD=-50V-

'\ ~ /

.~

Q

WAVEFORMS

"- ~

Vo<

-60

-4

50V

o

20

I
-25

r--..\ V /-10
\ >(\

40
r.1ltP.

\' 0..
60

r--

-12

v..

16

80

100 20

Charge Q, (nc)

~HITACHI

89

2SJ127

15.0

2

SILICON P CHANNEL MOS FET

14.0

HIGH SPEED POWER SWITCHING

• Features:
1
• Low On-Resistance
• High Speed Switching
• Low Drive Current
• No Secondary Breakdown
• Suitable for Switching Regulator,
DC-DC Converter, Motor Controls, and
Ultrasonic Power Oscillators

1. Gate

2. Drain

(Flange)

3. Source

3

(Dimensions in mm)

(JEDEC TO-220AB)

• ABSOLUTE MAXIMUM RATINGS (Ta .. 25°C)
Item
Drain-Source Voltage
Gate-Source Voltage
Drain Current
Drain Peak Current
Body-Drain Diode
Reverse Drain Current
Channel Dissipation
Channel Temperature
Storage Temperature

Symbol
Voss
VGSS
10
10 (pulse)

Rating
-120
± 15
-10
-40

Unit
V
V
A
A

lOR

-10

A

Pch·
Tch
Tstg

50
150
-55 - +150

W

POWERVS.
TEMPERATURE DERATING

60 I

" "I'.

20

°C
°C

·Value at Tc = 25°C

o

50

"- ~

100
Tc lOCI

150

• ELECTRICAL CHARACTERISTICS (Ta .. 25°C)
Item
Drain-Source Breakdown Voltage
Gate-Source Breakdown Voltage
Gate-Source Leak Current
Zero Gate Voltage Drain Current
Gate-Source Cutoff Voltage
Static Drain-Source on State Resistance
Forward Transfer Admittance
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Body-Drain Diode Forward Voltage
Body-Drain Diode
Reverse Recovery Time

Symbol
V(Bfl) oss
VIBRIGSS
IGSS
loss
VGS 10m
ROSlonl
Iyfsl
Ciss
Coss
Crss
tdJon)
tr
td fom
tf
VOF
trr

Testing Condition
10 = -10mA, VGS .. 0
IG .. ± 100"A, VGS .. 0
VGS = ± 12V, Vos = 0
VOS .. -100V, VGS .. 0
10 = -1mA. VOS = -10V
10 = -5A. VGS = 10V •
10 = -5A. Vos .. -10V •

-2.0

-

Typ.

Max.

-

-

= -10A. VGS = 0

-

0.2
5.0
1500
1000
150
25
85
155
85
-1.0

IF .. -10A. VGS = 0
dlF/dt .. 50Alp.s

-

200

Vos .. -10V. VGS .. 0
f .. 1MHz

10 .. -5A. VGS .. -10V
RL = 60

3.0

-

-

IF

·Pulse Test
NOTE: The specifications of this device are subject to change without notice.
Please contact your nearest Hitachi Sales Department regarding specifications.

90

Min.
-120
±15

~HITACHI

± 10
-250
-4.0
0.25

-

-

-

Unit
V
V
p.A
"A
V
0
S
pF
pF
pF
ns
ns
ns
ns
V
ns

2SK133,2SK134,2SK135
SILICON N-CHANNEL MOS FET
11.:{5max. 11.6,,:O.:i

16Jlmax.

LOW FREQUENCY POWER AMPLIFIER
Complementary pair with 2SJ48, 2SJ49,
2SJ50
•

FEATURES

•

High Power Gain.

•

Excellent Frequency Response.

1O.9±(}.~

•

High Speed Switching.

•

Wide Area of Safe Operation.

•

Enhancement-Mode.

•

Good Complementary Characteristics.

•

Equipped with Gate Protection Diodes.

•

ABSOLUTE MAXIMUM RATINGS (Ta=25°C)

1. Gate
2. Drain
3. Source
(Casel
IDimemlions in mm)

POWERVS.
TEMPERATURE DERATING

Rating

Symbol

Item

(JEDEC TO-3)

Unit

150

2SK13312SK13412SK135

Drain-Source Voltage

V DSX

Gate-Source Voltage

Vass

Drain Current

120

I

140

I

V

160

±l4

V

~

ID

7

A

0:

Body-Drain Diode
Reverse Drain Current

IDR

7

A

Channel Dissipation

P h*

100

W

Channel Temperature

T,h

150

°C

Storage Temperature

T.ug

•

1U.i-;i;_.l-..J_'_;i"t-'-'t;"."-+-..1....'+J.,U.'I"

0.4

"""amBa

Tr"'ZS'C

.
.

--

~

INPUT CAPACITANCE VS GATE
SOURCE VOLTAGE

I

,

3llk

"

Dnin 10 Source Voltqe V~ IV}

~

2SK175,2SK176
SILICON N-CHANNEL MOS FET
LOW FREQUENCY POWER AMPLIFIER

1 J.:i5max. II 6 :to.S

26.0max.

~13.3JX'

Complementary pair with 2SJ55, 2SJ56

1O.!l±O.:!

(3.0typ.)

•

FEATURES

•

High Power Gain.

•

Excellent Frequency Response.

•

High Speed Switching.

•

Wide Area of Safe Operation.

c-Io--

"
5
~

,..

L.'--

•

Enhancement-Mode.

•

Good Complementary Characteristics.

•

Equipped with Gate Protection Diodes.

0

H=

I.G.le
2. Drain
3. Source

(JEDEC TO-3)

(Case)

(Dimensions in mm)

•

POWERVS,
TEMPERATURE DERATING

ABSOLUTE MAXIMUM RATINGS (Ta=25 0c)
Symbol

Item

Rating
2SK175

V DSX

Drain-Source Voltage
Gate-Source Voltage

Vess

Drain Current

10

180

I 2SK176

I

Unit

200

15

±20

V

8

A

~
0::
§

Body-Drain Diode
Reverse Drain Current

lOR

Channel Dissipation

Pch*

Channel Temperature

T"h

Storage Temperature

TSIK

8

A

125

W

150

°C

-55-+150

"

V
10

"

l
is

~

d

1"'-

"'-

"

°C

.Value at T(=25 °C

'"'"

I"::

too

Case Temperature Tc ("C)

•

ELECTRICAL CHARACTERISTICS (Ta=25 0c)
Symbol

Item
Drain-Source Breakdown
Voltage

I
I

2SK175

Test Condition

min.

typo

max.

Unit

180

-

-

V

200

-

V

-

V

V(BR)DSX

Io=lOmA, VGs=-lOV

Gate-Source Breakdown Voltage

V(BR)GSS

Ia=±lOOI'A, Vos=O

±20

-

Gate-Source Cutoff Voltage

VG~ohl

lo=100mA, Vos=lOV

0.15

-

1.45

V

Drain-Source Saturation Voltage

VDS(sQ/)

Io=8A, VGo=O'

-

-

12

V

Forward Transfer Admittance

IYIJ

lo=3A, Vo.s=lOV·

0.7

1.0

1.4

Input Capacitance

Ciss

-

800

-

pF

Output Capacitance

Co..
C",

Reverse Transfer Capacitance
Turn-on Time
Turn-off Time

2SK176

too
tou

VGs=-5V, Vo.s=10V,
/=lMHz

Voo=30V, Io=4A

S

-

600

-

pF

-

15

-

pF

-

250

-

ns

-

90

-

ns

·Pulse Test

@HITACHI

93

2SK175,2SK176--------------------------------------------------MAXIMUM SAFE OPERATION AREA
II
II

I III

~
~~>'

.,

"'4.

~

0..

I'.?!

1.II

r--r-

I'

'""

1(~J'0/

c

'2
Q

8

....ot
~
......,;" ~

4

'200V.O.62 Ai

(HWV,O.69AI
II. 5

1II12SKI75

2SKI76

III

,

0.:'"

211

III

50

100

,

J

TYPICAL OUTPUT CHARACTERISTICS
Ves

V

V

"

I

50

40
VDS

(V)

~~

r---

-

!

/

I

IV

'j

V

2

r-

I

/

"c V .kv r---I il /

4

10

~

~

1-- - t 10

(V)

Gate to Source Voltage Ves (V)

TYPICAL TRANSFER CHARACTERISTICS
1.0

II

Vns =lOV

FORWARD TRANSFER ADMITTANCE
VS. FREQUENCY
5

j

i

I

1.0

o.8

"/-.1 l- i-

II]

I

'"

'"

tttttt=
-

k'

V
IV
;VV
It

o.6

o.4

II. I

Te 25C
VDs-lOV
JD ' 211

1/ '/

0.0 I

b j/

o. 2

~V

0.00 I

~",
0.4

0.8

0.000 5

1.2

1.6

2.0

Gate to Source Voltage Ves (V)

94

30

I

6

2

VDS

-

I

3

Vr-

, ....

I

4

Drain to Source Voltage

"-

~
'.(;1
._-- 1/;-;
i'l ?L

VDs=lOV

5

I A ~ f..-

I~

"-

TYPICAL TRANSFER CHARACTERISTICS
0

=10~ ....

.d ~ V ..!-I -

~

20

~ ~V

~~ V
i~ ~ ~ f0- r-

~~

"4

2

10

9> ~~ /I!.

A

P.A=125W

,

Drain to Source Voltage

10

i

Tc='25'C

3

Drain to Source Voltage VDS (V)

Te =25'C

r,~~

rJV
'IIY
If

Soo

200

I

lit 7 )
II; \
fI ,..!- -"',
J'j
5
I I

, '0

~

j

Vr.s=lOV

q,

{ lS.6V.8AI
5

3

0

II JJ

D. .. ~ ,,:-ontlnuous

TYPICAL OUTPUT CHARACTERISTICS

@HITACHI

2k

10k

lOOk

1M

10M 20M

-----------------------------------------------------2SK175,2SK176
SWITCHING TIME TEST CIRCUIT

SWITCHING TIME VS. DRAIN CURRENT
5G(}

Output

I ..

-5

200

-

tol/

30V

PW=50J./s
duty ratio

=1%

~
f)

5
OJ

"

0.2

0.5

1.0

\0

RESPONSE WAVEFORM

Drain Current ID (A)

WAVEFORMS

[---:4----90%
Input

10%

-+1---

1,11

10%
Output

90?,;---"1;;:=~_ _,)

~HITACHI

95

2SK1768-------------SILICON N-CHANNEL MOS FET
11 35max Il.ti!.o.5

2ti.Omax.

HIGH SPEED POWER SWITCHING,
HIGH FREQUENCY POWER AMPLIFIER

1O.9±1l.2

•

FEATURES

•

High Speed Switching.

•

High Cutoff Frequency.

•
•

Enhancement-Mode.
Suitable for Switching Regulator, DC-DC Converter, RF Amplifiers, and Ultrasonic Power
J.Gate

Oscillators.

2. Drain
3. Source

(CaRel

(JEDEC TO-3)

(Dimensions in mml

•

ABSOLUTE MAXIMUM RATINGS (T.=25 0c)
Item

Symbol

Rating

POWERVS.
TEMPERATURE DERATING

Unit
IS( )

Drain-Source Voltage

VDSS

200

V

Gate-Source Voltage

Vass

±20

V

Drain Current

ID

8

A

Body-Drain Diode
Reverse Drain Current

IDR

8

A

Channel Dissipation

Po.·

125

W

Channel Temperature

T,.
T,,,

150

°C

Storage Temperature

)

-65-+150

)

°C

·Value at Tr=25 °C

'"""1"'fiO

•

~

'"

150

IOU

Case Temperature Tc (t:)

ELECTRICAL CHARACTERISTICS (T.=25 0c)

min.

typo

Drain-Source Breakdown Voltage

V(BR)DSS

I D=lOmA, VGs=O

200

Gate-Source Breakdown Voltage

VIBRIGSS

Io=±100I'A, V ns=0

±20

Zero Gate Voltage Drain Current

IDSs

V Ds=160V, VGs=O

-

-

3.0

rnA

Gate-Source Cutoff Voltage

V0510ffl

In=100mA, Vns=lOV

0.55

-

3.0

V

Static Drain-Source On State
Resistance

RD&.MI

In=4A, V Gs=15V·

-

1.0

1.5

0

Drain-Source Saturation Voltage

VD.S!OR)

In=4A, VGs=15V·

-

V

ly,J

In=3A, Vns=lOV·

0.7

-

6.0

Forward Transfer Admittance

1.4

Input Capacitance

Cw

-

800

S
pF

Output Capacitance

Co:ss

-

600

-

Turn-on Time

t••

60

-

ns

Turn-off Time

td{ofJ)

-

200

-

ns

Item

Symbol

Test Condition

VGs=-5V, V Ds=10V.j=IMHz
In=2A, V G s=15V,R L =150

·Pulse Test

96

~HITACHI

max.

-

Unit
V

V

pF

----------------------------------------------------------2SK176®
TYPICAL OUTPUT CHARACTERISTICS

MAXIMUM SAFE OPERATION AREA
:w

II

10

rf;'~IIO\

'"

~

~

"~
G
'f

"

,

f'W -I- ~.
3
W/ I-- ,
,"'f""~ -{V"~<~;II
II
6

u

.~

1,0

4

y

'"

115

,

V

IV

Il.~

10

211

100

jlrain In Snurce Voltage

~'ns

200

10

!iO/!

111

,,,

rf:.~=()

.10

SWITCHING TIME VS. DRAIN CURRENT
1.

0110

_

K

~

.~lJ

Drain to Source Voltage Vvs (V)

1\')

TYPICAL TRANSFER CHARACTERISTICS

~

.... ........

_

"II
100 _

,;

~

_
In

E

G

I

.~

"

10 _

_

.,

ILO.~2...L...L~II.L5LL~IL.O--L--L-L-LLLLLILn-~2n

III
Gate to SOllrce Voltage

VGS

Drain Current Iv (A)

(V)

SWITCHING TIME TEST CIRCUIT

t'"", Monitor

FORWARD TRANSFER ADMITTANCE
VS. FREQUENCY
2.11 ,---r--rTTTT"m--'--T""T"T'TTTTr--r-r-'-'rTTTT1

lJ.r:r.

I.°EBlfBlII

;;;O.5~

0.21--t-t+1+t*-~:.~~~~~+++++1--+-++l-HH1

'"

1~O"~_.
Ii:

WAVEFORMS

lo=2A

v..

0.05

0.02

10%

~1O;:Ck-l.-l....LLl.J-'!IOO!!:::-k-l.-l....LLUJ.J,l:IM.,---...L..LI...Ll..!.l;!JIOM
Frequency

J

(Hz)

t~fJ

•

HITACHI

97

2SK196tj)
SILICON N·CHANNEL MOS FET
HIGH SPEED POWER SWITCHING,
HIGH FREQUENCY POWER AMPLIFIER
•

FEATURES

•

High Speed Switching.

•

High Cutoff Frequency.

•
•

Enhancement-Mode.
Suitable for Switching Regulator. DC-DC Converter. RF Amplifiers. and Ultrasonic Power

1. Drain
2. Gate

a.Source
(Case)

Oscillators.

(Dimensions in mm.

(JEDEC TO-39)

•

ABSOLUTE MAXIMUM RATINGS (Ta=25 0C)
Item
Drain-Source Voltage

Symbol
VDSS

Rating

Unit

160

V

Gate-Source Voltage

Vass

Drain Current
Body-Drain Diode
Reverse Drain Current

ID

±14
500

V
rnA

IDR

500

mA

0.8

W
cC
cC

POWERVS.
TEMPERATURE DERATING
1

X

Channel Dissipation

Pch*

Channel Temperature
Storage Temperature

To.

150
-65-+150

TSIIl

4

" ",

*Value at Tr=25 °C

"

IOO

50

min.

typo

Drain-Source Breakdown Voltage

ViBRIDSS

lo=l0mA. VaS=O

160

-

Gate-Source Breakdown Voltage

V(BR)GSS

Ic=±I0I'A. VDs=O

±14

-

-

Zero Gate Voltage Drain Current

loss

V Ds=120V. VGs=O

-

-

2.0

Gate-Source Cutoff Voltage
Static Drain-Source on State
Resistance

VG~olf)

lo=l0mA. VDs=lOV

0.2

-

Item

Symbol

RDS(on)

Test Condition

ID=200mA. Vas=lOV'

-

8

max.

ID=200mA. Vas=lOV'

-

-

3.0

lo=200mA. VDs=lOV'

50

-

-

90

-

V as-lOV.I,,-20mA

-

R L =150n

-

30

Turn-on Time
Turn-off Time

t••
t.u

V Ds=lOV.ID=10mA./=IMHz

·PulseTest

98

~HITACHI

60
20

V

n

V DSlIIII )

C."

V

15

ly,J
Gin

Unit

2.0

Forward Transfer Admittance
Input Capacitance

1;,0

mA
V

Drain-Source Saturation Voltage

Output Capacitance

~

Case Temperature Tc ("C)

ELECTRICAL CHARACTERISTICS (Ta=25 0c)

•

......

V
mS
pF
pF

-

ns

-

ns

-------------------------------------------------------2SK196®
MAXIMUM SAFE OPERATION AREA

TYPICAL OUTPUT CHARACTERISTICS

1

ZOO ,--,----,,--,--r--,..-r--,..-..--.---.

I.~A

IU

I--

3
~

~

Ta=2S'C

y r. ---t- - -c--- -+--+-+-1
II>" t- Kt-\-\-,+--il-+-I-+--+-+--l

J.()

0.1

~

u

'f

n,m

.~

Cl

Cl

n,m
.jl)

tf-+--,t-+-t-+-t--lrv-t---=r-"--1

(l,om

\'r;s . ().S\'
III

30

Drain to Source Voltage

100
VDS

Drain to Saurep Voltage Vvs (V)

SWITCHING CHARACTERISTICS

TYPICAL TRANSFER CHARACTERISTICS
)

rDS

t

Ifil )

1

l'-I I

==IOV
=

V

~25,(' II

f"-2S'C

I I- Hot

--

III
/1 /

12\ )

IIH)._~

,/
JjV

40

~

~

t.Jj

:-10

III 1/

81 1

16

12

(V)

to.
10 _

_

W
lO.L.
ll2:-'-......L':-}.O':-S.!....l..I...J..1".-1--0..L.2-'--'-,..L,.s,.w...J..L,L..
0 --='2.0
Gate to Source Voltage Ves (V)

Drain Current

ID (Al

SWITCHING TIME TEST CIRCUIT
FORWARD TRANSFER ADMITTANCE
VS. FREQUENCY

VOIII

2(\\ 1

Monitor

RI.

O.lJ.T.
\S'

;.00:0....

.$'4.

"vo->

J

./.5'4.

r/>
"

~<=2l·c

1\

~~~~

c:"'

~

10

T"=125'~

V1<'7

0t'

0...-

y

~.o
6

,"""~
, /00lt-

<$0/
1.0

5

k
k

0.5
2SK22()1D

2SK2211{l

"-~

4

3
2

III

0.2
5

10

20

50

0
200

100

Drain to Source Voltage

-

V[JS

10

500

20

30

50

40

Drain to Source Voltage Vvs (V)

(V)

TYPICAL TRANSFER CHARACTERISTICS

SWITCHING TIME VS. DRAIN CURRENT

10

1000
500

V;, 16v
c

~,......

/"'%7:':~

",f/./

~./V

1'...-

~V

.....

~

'to-.

100

-

50

b

20

<"

,,,

~

~

i;'

~
j

~V

~

200
~

10

~V

I

10
Gate to Source Voltage

VGS

0.2

(V)

0.5

1.0

10

20

Drain Current Iv (Al

SWITCHING TIME TEST CIRCUIT

FORWARD TRANSFER ADMITTANCE
VS. FREQUENCY

1.0

VI,'"

en

15V

'"

0.5

.~

Tc-2SC
0.2 f-- VDs=10V

~

~

:jl

WAVEFORMS

ID=2A

~

~

0.1

!

0.05

"E

0.02
100 k

1M

10M

100M

Frequency f (Hz)

@HITACHI

105

2SK25Stj)
SILICON N-CHANNEL MOS FET
11.35max. 11.6.:t1l.5

26.0max.

HIGH SPEED POWER SWITCHING,
HIGH FREQUENCY POWER AMPLIFIER

1II.9±t1.2

•

FEATURES

•

High Speed Switching.

•

High Cutoff Frequency.

•
•

Enhancement-Mode.
Suitable for Switching Regulator. DC-DC Converter. RF Amplifiers. and Ultrasonic Power
Oscillators.
1. Gate
2. Drain
3. Source
(Case)
(Dimensions in mml

•

POWERVS.
\
TEMPERATURE DERATING

ABSOLUTE MAXIMUM RATINGS (T.=25 0c)
Item
Drain-Source Voltage

Symbol

Rating

Unit

VDSS

250

V

ISO

Gate-Source Voltage

Voss

±20

V

Drain Current

ID

S

A

§

Body-Drain Diode
Reverse Drain Current

IDR

S

A

6

125

W

150

°C

Channel Temperature

Pelt·
T",

Storage Temperature

T s"

Channel Dissipation

(JEDEC TO-3)

-65-+150

°C

.:

100

:~

=

is

]

SO

*Value at T(=25 °C

'"'"
'"

I",

•

elECTRICAL CHARACTERISTICS (T.=25
Item

Symbol

°e)
Test Condition

min.

typo

'"

ISO

100

Case Temperature Tc (t:)

max.

Unit

~~-

Drain-Source Breakdown Voltage

V(BR)DSS

ID=10mA. VGs=O

250

-

-

Gate-Source Breakdown Voltage

V(BR)GSS

IG=±100I'A. VDs=O

±20

-

Zero Gate Voltage Drain Current

IDss

VDs=200V. VGs=O

-

-

Gate-Source Cutoff Voltage

VGs(oDl

Io=10mA. V Ds=10V

0.4

Static Drain-Source On State
Resistance

R Dl1011)

Io=4A. V Gs=15V'

I !

V

1.0

rnA

-

3.0

V

O.S

1.12

n
V

!

Drain-Source Saturation Voltage

VDS(olf)

Io=4A, V Gs=15V'

-

-

4.5

Forward Transfer Admittance

IYIJ

I D=3A, Vos=I0V'

0.9

1.3

Input Capacitance

C,,,

SOO

Output Capacitance

Con

Turn-on Time

ton

Turn-off Time

toll

-

-

VGs=-5V, V Ds=10V,f=IMHz

i D=2A, V Gs=15V

*Pulse Test

106

V

•

HITACHI

350
25
140

S
pF
pF
ns
ns

-------------------------------------------------------2SK258®
TYPICAL OUTPUT CHARACTERISTICS

MAXIMUM SAFE OPERATION AREA
20

(}

II

\0

'T,=2S'C

rGs=8V
8

~~

5

'4~'"

~

]

2

~~I

I.0

' /..-

4

[\

6

,

-,
,

5

J

-7-

.~

11'7

6

~.r Q .r4'~t:;-"''...q",
'
... "...
f-

<

Q

r-

~...

Tc=25°C

\

.<"'~~.

Ii

',"".

4

....

I-"'"

-

3

o. S

2
2

o. 2

I

20

III

21M)

IIlO

50

Drain to Source Voltage

VDS

30

20

III

Drain to Source Voltage

(V)

TYPICAL TRANSFER CHARACTERISTICS

~I

40
VDS

(V)

SWITCHING TIME VS. DRAIN CURRENT
1.000

I

I"L=IO'v
8

300

~
•o/V
I
It(;

'Ii

.<.'
6

4

to/J

.5

/

~

//

.:

'//

;:

~

~

! ..

0

!!'

/; L
r/

2

100

~
~

0

lb

3

I
0.2

10
Gate to Source Voltage

VGS

0.5

(V)

10

1.0

20

Drain Current 10 (A)

SWITCHING TIME TEST CIRCUIT
V..., Monitor

FORWARD TRANSFER ADMITTANCE
VS. FREQUENCY

"O~_

l>O.5~

D.U.T.

Vi'

VDD:6f30V

15V

r-~++~~-+-rrH*H--~-H~

WAVEFORMS

90%
Vi,

O.O~I.~,k-.L-J....LlJ..J-';I!!;()():;-k-L......L..J..J..J..U~IM,,--'--'-L..U..I.'t!IUM
Frequency

90%

J (Hz)

t.. --il-+OO-

~HITACHI

_+--+_t./1
107

2SK2S9tj),2SK260tj)
SILICON N-CHANNEL MOS FET
HIGH SPEED POWER SWITCHING,
HIGH FREQUENCY POWER AMPLIFIER
•

11.35max. ll.ti:!:O.5

:W.tlmax.
10.9.111.2

FEATURES

•

High Speed Switching.

•

High Cutoff Frequency.

•
•

High Breakdown Voltage.
Suitable for Switching Regulator. DC-DC Converter. RF Amplifiers. and Ultrasonic Power
Oscillators.
1. Gate
2. Drain
a.Source

IJEDEC TO-3)

(Case)

(Oimensions in mml

• ABSOLUTE MAXIMUM RATINGS (Ta=25 0C)
Item

Symbol

POWERVS.
TEMPERATURE DERATING

Rating

Unit

Drain-Source Voltage
Gate-Source Voltage

Voss

2SK259®/2SK260®
350 / 400

Vass

±20

V
V

Drain Current

ID

Drain Peak Current
Body-Drain Diode
Reverse Drain Current

I""""
IDR

5

A

10

A

5

A

125
150

W
°C
°C

150

~
0

pc,,·

Channel Dissipation
Channel Temperature

T"
Til,

Storage Temperature
·Val ue at

T(~25

0

-65-+150

C

0

'"'"

~

100

50

•

ELECTRICAL CHARACTERISTICS (Ta=25 0C)
Symbol

Item
Drain-Source Breakdown
Voltage

/ 2SK260®
Gate-Source Breakdown Voltage
Zero Gate Voltage Drain
Current

I
I

2SK259®
2SK260®

Gate-Source Cutoff Voltage
Static Drain-Source On State
Resistance
Drain-Source Saturation Voltage
Forward Transfer Admittance
Input Capacitance
Output Capacitance

ID=lOrnA. VGs=O

ViBRIDSS

Ia=±100"A. VDs=O
Vos=2S0V. VGs=O
VDs=320V, VGs=O
Ir lOmA. Vos=10V

VIBRlGS!

IDSs
V G.l1011l

min.

typo

350
400
±20

-

-

-

-

1.0

rnA

0.4

-

3.0

V

3.0

n

9.5

V
S
pF
pF

RD.l1_>

ID=3A. VGs=15V·

-

2.5

VDStOlll )

ID=3A. VGs=15V·
Ir 3A. Vos=20V·

0.6

IY/~
Gill

Cu

Turn-on Time

tM

Turn-off Time

toll

$

max.

Unit
V
V
V

-

7.5
1.0
SOO

-

350

-

VGr-5V,f=1MHz

-

ID=2A. VGs=15V

-

pF

-

15
25
140

-

ns

VGs=-5V. VDs=10V,f=1MHz

C~

Reverse Transfer Capacitance

108

Test Condition

/ 2SK259®

'"

150

Case Temperature Tc (t)

HITACHI

-

ns

------------------------------------------------2SK259@,2SK260@
TYPICAL OUTPUT CHARACTERISTICS

MAXIMUM SAFE OPERATION AREA

10

q'I~~/

\

8

\

V)/
bV ~

6

.~

j

"

Urain to Source Voltage

\'lIS

/
<"

V

V
1/v;. V
~ kY

~-

"L

...

6=

....

5....

4

,--20

,0

30
VDS

50

(V)

SWITCHING TIME VS. DRAIN CURRENT
2.0,--......",;m,--,......",rmr--r,..TTTTm

LO~III!.

/

~ O.5~
j r-r++H~-+~~~~H+Hffi

L

/

j

",

j
1

/

~~

8

'4~.?.s1t-

t-"

10

/

I

-

-

/>

Drain to Source Voltage

0

Tc=2S'C

~

TYPICAL TRANSFER CHARACTERISTICS

.u
kI

"

".

If

(V)

~'D.s=40V

1/

".

V

;
r++ttt-----j-+-+-H+t+t-2SK25!ilJ)
0.2 ~.LL';'lI!:-'----:t,,'",-l.-l.-;5~1I.J..J..w"1I!:::,,...:2"'S"'K2'ii:~,O~==';:!j"'.

,,"

\2~-~

,."

~.'

0.21--++++Htj+--++++H+It--+-++++tI-!i
Tc=2S'C
VDs=20V
iD=IA

0.1-

11

0.05

10

Gate to Source Voltage Ves tV)

Frequency

f

(Hz)

SWITCHING TIME TEST CIRCUIT
V ~ rr..s=o
If' L\'''i~-t"V

l~ ~

)

~

5
(J.I

U)

0.5

0.2

10

~ I-i-"'../

0.8

0.4

Drain Current ID (Al

1.6

1.2

Source to Drain Voltage

VSD

(V)

SWITCHING TIME TEST CIRCUIT
Vi8

Monitor

DYNAMIC INPUT CHARACTERISTICS

/, f/

Vas

rDS

/

V~

I;) ~

\
\

1I

/

~

D.U.T

W

I

t"-VDD="-80
'25

WAVEFORMS
8

'\ 1\

or-f \ Il/ 1\ kJ(
II

2S 295

I

50

I'{

0

r/J/J

=80V

2SK295

~;

4

25

ID=5A

~ I::::::: ::::,..
16

24

32

0

40

Gate Charge Q,. (nc)

112

V""I Monitor

2

100

~HITACHI

2.0

2SK29S
SILICON N-CHANNEL MOS FET
HIGH SPEED POWER SWITCHING,
HIGH FREQUENCY POWER AMPLIFIER

lS.3max.

12.7min.

t/l3.6±11.2 6.3min.

] ci+1

". f~

3 ~

1

•

FEATURES

•

Low On-Resistance.

•

High Speed Switching.

•

High Cutoff Frequency.

•

No Secondary Breakdown.

•

~

3.0max.J--.+--_---"'I''''.5d±~''·!L5_---111-1.27

Suitable for Switching Regulator, DC-DC Con-

1. Gate
2. Drain

verter, RF Amplifiers. and Ultrasonic Power

3. Source

~

(JEDEC TO-220AB)

(Flange)

(Dimensions in mm)

Osci lIators.

POWERVS.
TEMPERATURE DERATING

• ABSOLUTE MAXIMUM RATINGS (T.=25 0c)
Item

Symbol

Rating

Unit

30

VDSS

300

Gate-Source Voltage

Voss

±20

V

Drain Current

ID

I

A

§

Drain Peak Current

ID(pulk)

2

A

~

Drain-Source Voltage

V

20

§

Body-Drain Diode
Reverse Drain Current

ID'

I

A

Channel Dissipation

Pch*

30

W

Channel Temperature

T,h

150

°C

Storage Temperature

T,,,

-55- +150

°C

:~

'"

~

'\~

'\

is
"'ii

~

10

\.

'\

·VaJue at T c=25 °C

•

ELECTRICAL CHARACTERISTICS (T.=25°C)
Symbol

Item

Test Condition

Drain-Source Breakdown Voltage

ViBRIDSS

ID=lOmA. VGs=O

Gate-Source Leak Current

lass

VGF±20V. VDS=O

min.

typo

"
150

100

50

Case Temperature Tc ('C)

max.

Unit

300

-

-

-

-

±l

p.A

V

Zero Gate Voltage Drain Current

IDss

VDF240V. VDFO

-

-

I

rnA

Gate-Source Cutoff Voltage

VGS(off)

ID=lmA. VDFlOV

1.0

-

4.5

V

Static Drain-Source On State
Resistance

R Oll _)

ID=IA. V G FI5V'

-

2.5

4.0

n

Drain-Source Saturation Voltage

VD ,5loll)

ID=IA. V"FI5V'

V

Forward Transfer Admittance

Io=O.5A. VDFIOV'

Input Capacitance

ly,J
e,,,

Output Capacitance

CoS!

Reverse Transfer Capacitance

em

Turn-on Time

tdlon)

RiseTime
Fall Time

t,
tdiom
t,

Body-Drain Diode Forward Voltage

V DF

t.

-

Turn-off Delay Time

Body-Drain Diode
Reverse Recovery Time

-

2.5

4.0

0.2

0.4

-

140

-

23

-

6

ID=0.5A. V Gs=15V

-

14

R L=60n

-

40
30

IFIA. VGs=O

-

0.9

-

IFIA. VGFO
di Fldt= 100AI p's

-

250

-

VDFIOV. VGFO
f=IMH2

65

S
pF
pF
pF
ns
ns
ns
ns
V
ns

·Pulse Test

@HITACHI

113

2SK296--------------------------------------------------------MAXIMUM SAFE OPERATION AREA

TYPICAL OUTPUT CHARACTERISTICS
2.0

lSV/ lOV,/'

,

T. 2S'C

~O.us

I',

"

1.0

3

...o~ ~
~

.Q

.=:
~
e o.s

1:'

~

~~~

u

"

C',.;---,,~\L'

~

"1\

0.1

S

10

c

'\J

100

Drain to Source Voltage

1V

'1/
6V

j

II

Vcs-5V

VDS

I
12

16

Drain to Source Voltage

(V)

VDS

= lOY

1.6 I-- - Tc

I I ,/

DRAIN-SOURCE SATURATION VOLTAGE
VS. GATE-SOURCE VOLTAGE

..

L_ 2!·c

1.2

:!:

J

2S'C

~

,

]

.~

f/l--,7S'C

j

/I

0.8

~

1A
........ ~

~

-

g

0.4

.~

J

S:::

'"

~

12

16

ID =O.2A

12

20

Gate to Source Voltage Ves (V)

~

O.S

VD~ d16vI

i.l!

0.2

112

~uTslATesl

,

2S'C-

,."

Ilc

. /V

1

O.OS

0.1

0.2

O.S

o

1.0

40

40

80

Case Temperature Tc (t)

Drain Current 1D (A)

114

./

2S'C .~

0.0S

0.02
0.02

/

)"

V

~ O.1

/

' - - VGS!15V

T.

20

STATIC DRAIN-SOURCE ON STATE
RESISTANCE VS. TEMPERATURE

Pulse Test

1.0

16

Gate to Source Voltage Ves (V)

FORWARD TRANSFER ADMITTANCE
VS, DRAIN CURRENT

(JJ

--

~

"i

/rt-

3

ptse TLt

e

1/

2.0

20

(V)

10
\IDS

c

-~

WJ

0.8

-

Tc=2S'C

500

200

2.0

~

I, ,,'"

0.4

TYPICAL TRANSFER CHARACTERISTICS

.=:

I
1.2

I L'"
I
1--

IV"

so

20

.=:

]

0.2

O.OS

3

:'>J.s>+--r-

%,

"

/

rx tt

10n

°/
II

/

V

Y 'v V

l/

~V

\ V\"'·~~2":'V
"\ V::-~d

\

I

/

WAVEFORMS

Vr,s
8

4

1D'=2 . . .

i'.C .'l

0
10
Gate Charge

~

(nc)

@HITACHI

115

2SK29S,2SK299
SILICON N-CHANNEL MOS FET
HIGH SPEED POWER SWITCHING,
HIGH FREQUENCY POWER AMPLIFIER
•

FEATURES

•
•
•
•
•

Low On-Resistance.
High Speed Switching.
High Cutoff Frequency.
No Secondary Breakdown.
Suitable for Switching Regulator, DC-DC Converter, RF Amplifiers, and Ultrasonic Power

1. Gate
2. Source
3. Drain
(Case)
(Dimensions in mm)

Oscillators.

•

POWERVS.
TEMPERATURE DERATING

ABSOLUTE MAXIMUM RATINGS (T.=25 °C)
Symbol

Item
Drain-Source Voltage

VDSS

Gate-Source Voltage

Vass

Drain Current

ID

Drain Peak Current

/DlPtQk)

Rating
2SK298
400

I 2SK299
I 450

150

Unit
V

±20

V

~

8

A

12

A

0::
8

8

A

'i
~

]

Body-Drain Diode
Reverse Drain Current

IDR

Channel Dissipation

Pch*

100

W

Channel Temperature

T"
T!/

150

·C

Storage Temperature

-55-+150

100

50

" " ", "-

·C
50
100
Case Temperature Tc (t)

·Value at T(=25 °C

•

(JEDEC TO-31

ELECTRICAL CHARACTERISTICS (T.=25 0c)
Item
Drain-Source Breakdown
Voltage

Symbol

I

I 2SK299

Gate-Source Leak .Current
Zero Gate Voltage Drain
Current

Test Condition

2SK298

I 2SK298
I 2SK299

Gate-Source Cutoff Voltage
Static Drain-Source On State
Resistance

ViSRIDSS

1,,= lOrnA, V GS=O

less

VGs-±20V, VDs=O
VDs=320V, VGs=O

IDss
VGSloff)

RDSI,onl

min.

typo

max.

'"

150

Unit

450

-

-

V

-

-

±l

I'A

400

-

V

VDs=360V, VGs=O
I,,=lmA, VDs=10V

-

-

1

rnA

1.0

-

5.0

V

ID=4A, VGs=15V'

-

1.1

1.75

n
V

Drain-Source Saturation Voltage

V DSlon)

I,,=4A, VGs=15V'

-

4.4

7.0

Forward Transfer Admittance

iYIJ

I,,=4A, V ns=10V'

1.2

1.7

-

S

Input Capacitance

C••

-

800

-

pF

Output Capacitance

COM

-

180

-

pF

20

-

15

-

ns

35

-

ns

-

85

ns

Is=4A, VGs=O

-

0.85

-

Is=4A, VGs=O
diF/dt=100All's

-

400

-

ns

Reverse Transfer Capaci tance

e'M

Turn-on Time

tdCOII)

Rise Time

t,

Turn..,ff Delay Time

t~oDl

Fall Time

tl
VDF

Body-Drain Diode Forward Voltage
Body-Drain Diode
Reverse Recovery Time

Vns=IOV, VGs=O
/=IMHz

ID=2A, VGs=15V
R,=15n

t.

"'Pulse Test

116

$

HITACHI

35

pF

ns
V

-----------------------------------------------------2SK298,2SK299
MAXIMUM SAFE OPERATION AREA

TYPICAL OUTPUT CHARACTERISTICS

~, I

0

11~~/

Ta COks'c
21 )

11 )

.e

~

0

~

\.I )

I

'"<"sC,

D.S

2
2SK29M

0.1

2

0.05

\:~

\ 'i'.

,- - - - 7V

...

...

•
II

bV

-

v. . s

S V - I--

.:::

299
!O()

!O

-<.
\~"~

/

4

0.2

RV

fhV"
'I

6

~4ol'~

~I',..o
~,...~

Tc-2S'C

/I V,

.Q~~ Ff4~
6J- '"/0. ':':::,p
"
~,J' ,'J..
~,

3

"":.:7 9V

!\/

~o~s

- r--I-- -

lOY

lOoo

,,

VVI>=20V

J'c~~2S'C

R

25!C

30

Drain to Source Voltage

TYPICAL TRANSFER CHARACTERISTICS
()

2()

10

Drain to Source Voltage Vns (V)

I

VS. GATE-SOURCE VOLTAGE
21)

\

l'

1/
M

50

DRAIN-SOURCE SATURATION VOLTAGE

, .,

I ,

40
(V)

VDS

Puls~ Tesl

"'-

JA

r- r- I -

75"C

,;

12

11/
.~

4

\

J

co

?

jj
La ~

r--......

SA

rJ
\

Iv=2IA

10

12

16

20

Gate to Source Voltage Vas (V)

Gate to Source Voltage Vas (V)

STATIC DRAIN-SOURCE ON STATE

FORWARD TRANSFER ADMITTANCE

RESISTANCE VS. TEMPERATURE

VS. DRAIN CURRENT

2. ()

r-

V/)S
20\'
Pulse Test

1'a- -25'<.':

~

L<)

~~

:u

-

25'C-

1.6

/

VGsl15v

~~u7s!ATes~

I!s.c
1.2

./

0.5

n.R

V

V

0.2
0.4

0.1

n,IlS
0.2

0.5

1.0

10

20

Drain Current ID (A)

o

-40

40

RO

120

160

Case Temperature Tc (t)

~HITACHI

117

2SK298,2SK299--------------------------------------------------TYPICAL CAPACITANCE VS.

FORWARD TRANSFER ADMITIANCE
VS. FREQUENCY

DRAIN-SOURCE VOLTAGE
10

10000

Ves 0

f IMHz

CW

0

Tc

25"C

Vos

lOY
2A

ID

3000

=

-rI

'"
lOt)

0

"-

2

"

~

0

5

==

c,.

20

60

40

\00

80

Drain to Source Voltage

VDS

O. 1

lOOM

10M

1M

lOOk

Frequency

(V)

I

(Hz)

MAXIMUM BODY-DRAIN DIODE

SWITCHING CHARACTERISTICS

FORWARD VOLTAGE

50()

()

Pulse fest
20()

8
I

Id(oll)

]

lO0

.....

()

If

Or-- 7;-

1-15V

1.( .. 1

5

J

1O~~
r--- t--15V

()

-VGs=O
l"fs=,lOV

~~

0.1

1.0

0.5

0.2

10

0.4

Drain Current ID (A)

0.8

J

2.0

1.6

1.2

Source to Drain Voltage

VSD

(V)

SWITCHING TIME TEST CIRCUIT
Vi. Monitor

DYNAMIC INPUT CHARACTERISTICS

VOIIf Monitor
2{)

)

D.U.T

ID=5A
40()
VDD =300

3() ()

20()

10
()

J

Vos

200
100

1\

~V

L:t:. V

'\

WAVEFORMS

-

-

rD/J-=300V

200
100
16

24

Gate Charge Q,

118

Ves

1

1

~~

\

\ l'v
/ '\ K
1/ ~

)~

~

32
(ne)

~HITACHI

2SK30a
SILICON N-CHANNEL MOS FET
HIGH SPEED POWER SWITCHING,
HIGH FREQUENCY POWER AMPLIFIER
•

FEATURES

•

Low On-Resistance.

•

High Speed Switching.

•

High Cutoff Frequency.

•

No Secondary Breakdown.

•

Suitable for Switching Regulator, DC-DC Converter, RF Amplifiers, and Ultrasonic Power

1. Gate
2. Source

Oscillators.

(JEDEC TO-3)

3. Drain
(Case)

(Dimensions in mmJ

•

ABSOLUTE MAXIMUM RATINGS (Ta =25 °C)
Item
Drain-Source Voltage

Symbol

POWERVS.

Rating

Voss

120

Gate-Source Voltage

V GSS

±20

V

Drain Current

ID

10

A

Drain Peak Current

iD(peak)

15

A

Body-Drain Diode
Reverse Drain Current

TEMPERATURE DERATING

Unit
150

V

~

c:

100

§

10

IDR

A

'i
.~

Channel Dissipation

P,h*

100

W

Channel Temperature

T,h

150

°C

Storage Temperature

Til}:

-55 - +150

is

]

50

"" ""

i'-..
........

°C

~

"

"'Value at T r =25 °C
50

100

150

Case Temperature Tc ('C)

•

ELECTRICAL CHARACTERISTICS (Ta =25 °C)
Symbol

Item

Test Condition

-

±1

p.A

V Ds=100V, VGs=O

-

-

1

rnA

I D=lmA, V Ds=lOV

1.0

-

4.5

V

-

0,2

0.3

n

-

1.0

1.5

V

1.5

2,8

-

S

-

1130

-

pF

-

650

-

pF

-

80

-

pF

-

10

-

ns

IGSS

V Gs=±20V, VDS=O

Zero Gate Voltage Drain Current

I Dss

Gate-Source Cutoff Voltage

VGS(ojf)

Static Drain-Source On State
Resistance

RDS(on)

I D=5A, VGs=15V*

VDS(on)

I D=5A, VGs=15V*
I D=5A, VDS=10V*

Input Capacitance

C",
Co.,.,

Output Capacitance
Reverse Transfer Capacitance

Unit

-

Gate-Source Leak Current

IYf~

max.
-

I D=10mA, VGs=O

Forward Transfer Admittance

typo
-

V(BR)DSS

Drain-Source Saturation Voltage

min.
120

Drain-Source Breakdown Voltage

VDs=10V, VGs=O
f=lMHz

V

Turn-on Delay Time

C,."
td1or.)

Rise Time

I,

I D=2A, VGs=15V

-

50

-

ns

Turn-off Delay Time

td(ofj)

R L =15n

-

90

-

ns

Fall Time

If

-

70

-

ns

Body-Drain Diode Forward Voltage

V DF

IF5A, VGs=O

-

0.9

-

V

I"

IF5A, VGs=O
di F/dt= 100A/ I'S

-

200

-

ns

Body-Drain Diode
Reverse Recovery Time
"'Pulse Test

~HITACHI

119

2SK308----------------------------------------------------------MAXIMUM SAFE OPERATION AREA

TYPICAL OUTPUT CHARACTERISTICS

50

0

15V {lOV

To 25'C

, -. ,

20

-~-

3

!O

hi"~

~

/.

~rI
"q;

'E

~~1t

... ,-

4

6V

'I

I

1.0
0.5

r-,"q;
,'!<-

L.

!

~

~''''

'"

2

'I'
VGs=5V

50

20

10

S

100

Drain to Source Voltage

VDS

200

!

'j

1-4

~

(">~s~

2

1

1

[()

~

100

- --7V.-

r(;S

-1--

"-:'4~"0Jt;

....6V

V(;s=4V

1,000

.:100

"...,

5\'

Ir

mil 11

30

-

....

~ '/

J

2SK31O

0.02

~;

-!;!.;:.

~

1
O.llS

..-

~ ...

i"

III "/ I"

0.1

av

-

2~" IOV

T(.'~25·('

1\

11]2d'c
[()

16

12
Drain to Source Voltage

Drain to Source Voltage V[)s (V)

VDS

20

(V)

DRAIN-SOURCE SATURATION VOLTAGE

TYPICAL TRANSFER CHARACTERISTICS

VS. GATE-SOURCE VOLTAGE
5

H)

\'u}~20J

~ulse test

25'S.-

I

!,

'h~-25'C II

~

7~'C"""

f1 ""
-,XL

:l

2

I

\

Ii

......: ~

-

2A

1'-

J

1

.........

"

IA

1"~0'5A
10

16

12

Gate to Source Voltage Ves (V)

20

Gate to Source Voltage Ves (V)

FORWARD TRANSFER ADMITTANCE

STATIC DRAIN-SOURCE ON STATE

VS, DRAIN CURRENT

RESISTANCE VS. TEMPERATURE
5

5

r--

VDs-20V

r-

1 1

Pulse Test

,LUc

2

4

VC;sL15V
1"~?AI

Pulse Test

~r-

0

3
75'C
5

1" 25'C
,/
2

2

V

1/

IL

V

....-

I

0, 1

0.05
0.2

0.5

1.0

10

20

0

-40

40

80

120

160

Case Temperature Tc (t:)

Drain Current ID (A)

~HITACHI

123

2SK31Q,2SK311-------------------------------------------------

lUl.l(

TYPICAL CAPACITANCE VS.
DRAIN-SOURCE VOLTAGE

,

FORWARD TRANSFER ADMITIANCE
VS. FREQUENCY

,

1.(

c. r-- e-

-

v.,

Tc

10

O.S

,,\

2S'C
10V
O.SA

.......

0.2

t:::= C:=

c~

0.1

\

, "' .......

1

=

C,"

1~

VGS -0

O.OS

0,02

f~lMH,

I

1

IlO

611

40

20

Drain to Source Voltage

0,0}

IOO

lOOk

1M

(V)

YDS

toM

ltlOM

Frequency! (Hz)

MAXIMUM BODY-DRAIN DIODE
FORWARD VOLTAGE

SWITCHING CHARACTERISTICS
5(){)

2(){)

]:

,

lOt

I---

ttJ(GlJI

-

If

t:::::

V ...

0

,

I,

I;"

H

-

tll(o.)

5
0.1

O.S

0.2

1tI

1.0

Drain Current 1D (Al

0.4

O.B

1.6

1.2

Source to Drain Voltage

VSD

(V)

SWITCHING TIME TEST CIRCUIT
V,~

Monitor

DYNAMIC INPUT CHARACTERISTICS
2

SOlI

ID=3A

400

~nD

1.200

rDS

!

300

~
@
~

200

'\

1)

;.;:::

'\

/'
Ill(,

/
II

b:: ?

\

~ ~1

~V

WAVEFORMS

Ve,

\, VI"°r 3DO\'

/ \ 1\\

1/200,

100

~~

4

H

)6

12

Gale Charge Q.

124

1

,300\'

211

(nc)

~HITACHI

2.0

2SK312,2SK313
SILICON N-CHANNEL MOS FET
:0

x.

O.9tO.2

HIGH SPEED POWER SWITCHING.
HIGH FREQUENCY POWER AMPLIFIER
FEATURES

•
•

Low On-Resistance.

•

High Speed Switching.

•

High Cutoff Frequency.

•

No Secondary Breakdown.

•

Suitable for Switching Regulator. DC-DC Converter. Motor Control. and Ultrasonic Power

I. Gate
2. Source
3. Drain

Oscillators.

(JEDEC TO-3)

(Case)

(Dimensions in mml

• ABSOLUTE MAXIMUM RATINGS (T.=25 0c)
Symbol

Item
Drain-Source Voltage

VDSS

Gate-Source Voltage
Drain Current

2SK312
400

VGSS
ID
1__..

Drain Peak Current
Body-Drain Diode
Reverse Drain Current

IDR

Channel Dissipation
Channel Temperature

P~h*

Storage Temperature

T:;,g

POWERVS.
TEMPERATURE DERATING

Rating

I 2SK313
I 450

Unit
V
V

±20
12

A

18

A

12

A
W

125
150
-55- +150

T"

150

°C
°C

·Value at T(·=25 0 C

0

'"'"
50

'"'"
100

Case Temperature Tc (t:)

•

ELECTRICAL CHARACTERISTICS (T.=25 0c)
Item

Drain-Source Breakdown
Voltage

Symbol

I
I

2SK312
2SK313

Gate-Source Leak Current
Zero Gate Voltage Drain
Current

ViBR)DSS

IGSS

I

2SK312

I 2SK313

loss

Test Condition
Io=10mA. VGs=O
VGF±20V. VDFO
V DF320V. VGFO
V DF360V. VGFO

min.

typ.

400

-

max.

'"

150

Unit
V

450

-

-

-

-

±l

V
p.A

-

-

1

rnA

Io=lmA. Vos=lOV

1.0

-

5.0

V

RDS(on)

ID=6A. V GF15V'

-

0.67

0.9

n

Drain-Source Saturation Voltage

V rutOR )

ID=6A. VGFI5V'

-

4.0

5.4

V

Forward Transfer Admittance
Input Capacitance

IYfJ

ID=6A. Vos=lOV'

1.5

S
pF

Output Capacitance
Reverse Transfer Capacitance

Coas

0.9

-

400

-

ns

Gate-Source Cutoff Voltage
Static Drain-Source On State
Resistance

Turn-on Delay Time

VCs(oBl

Ci.!s
G,u

VDFlOV. VGFO

/=IMHz

td(OII)

RiseTime
Turn-off Delay Time

t,

Io=2A. V G F15V

td(oJj')

R,=15n

Fall Time
Body-Drain Diode Forward Voltage

tf

Body-Drain Diode
Reverse Recovery Time

VDF

IF6A. VGFO

t"

IF6A. VGFO
diF/dt=lOOA/ p's

-

2.5
1500
330
35
20
50
140
60

pF
pF
ns
ns
ns
ns
V

·Pulse Test

@HITACHI

125

2SK312,2SK313--------------------------------------------------MAXIMUM SAFE OPERATION AREA

TYPICAL OUTPUT CHARACTERISTICS
0

100

15V W:;IOV'

Ta 25"C

c30

1'""'

I'""~

~

~

II

O¢~ ~.

4'1t

0

Q

3

.

•

~ ~..

~4."

""

".
'<-a4<-

6

6V

-- .-

4

.....

"<',s.0/

L0

r-.~
2

o. 3

--

~ ~

\

I

"'1~<1' '~.1

Tc=2S'C

l- . ..;
rl-~
7V

5V

2SK312\/c;s=4V

lWi113-

o. I

10

100

30

Drain to Source Voltage

VDS

300

V~" ~Ii,v

rll

rr

A~-~s·c H

30

Drain to Source Voltage

(V)

50

40
VDS

(V)

DRAIN-SOURCE SATURATION VOLTAGE
VS. GATE-SOURCE VOLTAGE

TYPICAL TRANSFER CHARACTERISTICS
)

20

III

1000

20

2S·C

Pulse Test

M1--7S·C

I

\

II
4

8

j

//I

2

'-

4

l(f

-

lOA

SA
I.

~
10

12

2.0

0

g

~VDS

lOV
r-Pulse Test

III

1.0

i

o.5

e!::

1

o.2
O.

JI
0.1

~

-2S·C

i

Ta- S'C

2

~

~~

~

7S·C

VCS!15V
f-- In=6A
6

2

'/

i
~

o.8
/

~

.~

Ij

Cl

~

./

V i-""

O. 4

0

l
0

0,3

1.0

10

100

30

40

40

80

Case Temperature Tc (t)

Drain Current 1D (Al

126

20

STATIC DRAIN-SOURCE ON STATE
RESISTANCE VS. TEMPERATURE

FORWARD TRANSFER ADMITTANCE
VS. DRAIN CURRENT

~

2A-=

Gate to Source Voltage Ves (V)

Gate to Source Voltage Ves (V)

5

16

•

HITACHI

120

160

-----------------------------------------------------2SK312,2SK313
FORWARD TRANSFER ADMITTANCE

TYPICAL CAPACITANCE VS,

VS, FREQUENCY

DRAIN-SOURCE VOLTAGE
II

Vi

II

'"
~'6

-,

,

:i'

.=•

\.I )

"EO

~

c:

II.

"

0.;;
Frequency

14

,

r---

,

FORWARD VOLTAGE

f-I

]11{

A

i

!

r~!"I"lf'

12

f-~ ' - I '

,r-- - I ,

II
1//1

§

:"""

q

I

I

VGFisl:'

~rs

---;-

I

I

I
11.2

Ih,,=lsv,

I

I

~ rl
/) V

i{VGFOV
h'j=-io l'

..1:::: 'YJ

II

1.(1

Pu]"e Test

1/
II

./

-

,

W\J

(Hz)

II

--l--

lOl

f

MAXIMUM BODY-DRAIN DIODE

SWITCHING CHARACTERISTICS
jlJ(I( I

1M

toOk

lilk
Draw to Source VoltagE' V[)s (V)

1l.4

III

O.i:l

1.2

Source to Drain Voltage

Drain Current J/J (A)

1.0
VSI!

2.1)

(V)

SWITCHING TIME TEST CIRCUIT
V.. Monltor

DYNAMIC INPUT CHARACTERISTICS

so0

~

Vm;=30ol,

40a

200
]00

liDS

,100

~

1\

~

\

20()

to

a'/

2

I

.0'/

~

I

V,,;

I

8

WAVEFORMS

r'\\
10o

II

/

/

\\ ~VII=30jV

I[J=lOA

~~ V

f-----

4

~

20

40

60

80

100

0

Gate Charge (h (nc)

~HITACHI

127

2SK317
SILICON N-CHANNEL MOS FET
HF/VHF POWER AMPLIFIER
•

FEATURES

•
•
•

High Breakdown Voltage.
You Can Decrease Handling Current.
Gate is Protected by Zenner Diodes.

•
•

No Secondary-Breakdown.
Wide Area of Safe Operation.

•
•
•

Infinite VSWR.
No Thermal Runaway.
Simple Bias Circuitry.

1.2.3,4
l. Source
2. Source
3. Source

4. Source

(RF-PAK)

5. Drain

6. Gate
(Dimensions in mm)

POWERVS.

• ABSOLUTE MAX.IMUM RATINGS (T.=25 0c)

TEMPERATURE DERATING

Item
Drain-Source Voltage

Symbol

Rating

Unit

Voss

180

Gate·Source Voltage

VGas

±20

V

Drain Current

ID

8

A

Body-Drain Diode
Reverse Drain Current

ID'

8

A

Channel Dissipation

180

V

0

Channel Temperature

Pm'
T,.

Storage Temperature

Tltl

120

W

150

°C

-55-+150

°C

"

·Value at T c=25 °c

.........

'""-r-....

0

•

ELECTRICAL CHARACTERISTICS (T.=25 °C)
Item

Symbol

100

'r-....
I

Case Temperature Tc (t)

min.

typo

Power Output

Po

V Ds=80V.IDQ"'0.lA

120

-

-

W

Drain Efficiency

'I

Pin=8W./=lOOMHz

-

(80)

Drain-Source Breakdown Voltage

V(BRlDS!

1,,-10mA. VGs-O

180

-

%
V

Test Condition

max.

Unit

Gate·Source Breakdown Voltage

ViBRIGSS

IG=±lOOIlA. Vas=O

±20

-

Zero Gate Voltage Drain Current

loss

V Ds=140V. VGs=O

-

-

1.0

rnA

Gate·Source Cutoff Voltage

VC .J1o,Ol

I,,-lmA. VDs-lOV'

0.5

-

3.0

V

Static Drain-Source On State
Resistance

R DSl _>

lo=4A. VGs=lOV'

-

0.95

1.5

!l

Drain-Source Saturation Voltage

VDS(o,,)

ID=4A. VGs=lOV'

-

3.8

6.0

V

Forward Transfer Admittance

iy,J

Io=3A. V Ds=20V'

0.9

1.25

Input Capacitance

e,"

VGs=5V. V Ds=O./=lMHz

600

Output Capacitance

COBS

VGs=-5V. VD,=50V,f=lMHz

-

Reverse Transfer Capacitance

e".

VGD=-50V./=lMHz

-

0.5

-

90

V

S

pF
pF
pF

"'Pulse Test

CAUTION: OPERATING HAZARDS
Beryllium Oxide Ceramics have been employed in these products.
Since dust or fume of the material is highly poiso'1 tothe human body, please do not treat them mechanically
or chemically in the manner which might expose them to the air. And it should never be thrown out with
general industrial or domestic waste.

128

$

HITACHI

---------------------------------------------------------2SK317
MAXIMUM SAFE OPERATION AREA

TYPICAL OUTPUT CHARACTERISTICS
1

20 rTTTl.----r-'-'-'TTTT'r--.--..,-,

lO~~m
~
~('

L=I~Vk-.

Tc=25'C

/./

8V~,/,-r--

~..J.,""I

~/

~

H-I-H-t---+--'!'i. '-'/'-t:,..-H-H-++--f--l-+-I

~*..J..; r-

-;.-'

.& v..". .".....

~
~V
~

1

I.O.D1~

,

0.5

V
Drain to Source Voltage

VDS

6V

5\'
jI'

:w

"

:!\'

12
Drain to Source Voltage

(V)

TYPICAL TRANSFER CHARACTERISTICS

' ...

16
VDS

(V)

INPUT POWER VS. OUTPUT POWER (1)
2m 1

1
Vns

-

L10\'

-r--

Tc = 25'C

V

16(1

/

/

~

V

~§
~

121 1

l:§

>II1

I
V

V

i

815

./

4(1

I
I

-

I),,~!

II

~

.f

2

/

:/

.,..... h:

'I

I

.,.....
./'

V/)l!~~()V

!I

IlJQ=O.lA
j=100Mfl,-

I

I

\0

Gate to Source Voltage

VGS

III

(V)

Gate to Source Voltage

INPUT POWER VS. OUTPUT POWER (2)

VGS

(V)

OUTPUT POWER TEST CIRCUIT

200
I"IJI!

-

10;: HO\.i

ltI(J=O.l:\

/=li5Mllz
Hi 0

I'r"

0

..)..1....

V

1

-

~

Output

Input

,

I

;: .,.....

0

i--

CI=22pF. C2=33pF, C3=lOpF. C~=22pF
LI, L2i ID=6mm, d=lmm
j=lOOMHz; LI=3T, LF=6T
j=175MHz; LI=lT, Lt=3T

)
I
10
Drain Current ID (A)

~HITACHI

129

2SK318
SILICON N-CHANNEL MOS FET
HF/VHF POWER AMPLIFIER
•

FEATURES

•
•

High Breakdown Voltage.
You Can Decrease Handling Current.

•

Gate is Protected by Zenner Diodes.

•
•

No Secondary-Breakdown.
Wide Area of Safe Operation.

•
•
•

Infinite VSWR.
No Thermal Runaway.
Simple Bias Circuitry.

•

1.2,3.4

1. Source
2. Source
a.Source
4. Source

(RF-PAK)

6. Drain
6.G.1e
(Dimensions in mm)

ABSOLUTE MAXIMUM RATINGS (T.=25 0C)
Item

Symbol

Rating

Unit

V"",

180

Gate-Source Voltage

Voss

±20

V

Drain Current

10

4

A

Body-Drain Diode
Reverse Drain Current

lOR

4

A

70

W

Drain-Source Voltage

Channel Temperature

Pelt*
T",

Storage Temperature

Tsl,

Channel Dissipation

POWERVS.
TEMPERATURE DERATING
120

V

150

°C

-55-+150

°C

~

.,:

•
:~

80

~

=

is

l

40

~

~
..........

·Value at Tc=25 QC
50

•

Symbol

"'~
150

100

Case Temperature Tc ("C)

ELECTRICAL CHARACTERISTICS (Ta=25 0C)
Item

~

min.

typo

60

90

-

-

(80)

-

%

Io=lOmA. VGFO

180

-

-

V

IG=±IOOI'A. Vos=O

±20

-

-

1.0

rnA

0.5

-

3.0

V

-

1.9

3.0

n
V

Test Condition

Power Output

Po

Drain Efficiency

'1

VoF80V.Io(f=0.IA
Pin=4W,f=100MHz

Drain-Source Breakdown Voltage

V(BR)DSS

Gate-Source Breakdown Voltage

ViBR)OSS

Zero Gate Voltage Drain Current

loss

Gate-Source Cutoff Voltage

VOSCoff)

Vos=140V. VGFO
Io=lmA. Vos=lOV

Static Drain-Source On State
Resistance

RDstON )

Io=2A. VGFlOV'

Drain-Source Saturation Voltage

V DSCon)

Forward Transfer Admittance

IYfJ

Input Capacitance

C;"

Output Capacitance

CO!.!

Io=2A. VGFlOV'
Io=1.5A. Vos=20V'
VGF5V, Vos=O,f=lMHz
VGF-5V, Vo F50V,f=IMHz

Reverse Transfer Capacitance

C,"

VGo=-50V./=IMHz

max.

-

Unit
W

V

-

3.8

6.0

0.4

0.6

-

S

-

300

-

pF

-

45

-

pF

-

0.3

-

pF

·Pulse Test

CAUTION: OPERATING HAZARDS
Beryllium Oxide Ceramics have been employed in these products.
Since dust or fume of the material is highly poison tothe human body, please do not treat them mechanically
or chemically in the manner which might expose them to the air. And it should never be thrown out with
general industrial or domestic waste.

130

eHITACHI

---------------------------------------------------------2SK318
MAXIMUM SAFE OPERATION AREA

TYPICAL OUTPUT CHARACTERISTICS

20

VGS=lOV-<~ ~d-

"/V t-r,004"
.-;:

Tc=2S"C

10

~V
/'

0O

2

~

'%

~"">jI"'J~
~-"

to

o~

. ."3-.

0,

O. S

~

"

I

O. 2

Drain to Source Voltage

5V

'V
:lY
2V
16

12
Drain to Source Voltage

(V)

VDS

"",-

500

TYPICAL TRANSFER CHARACTERISTICS

VDS

20

(V)

INPUT POWER VS. OUTPUT POWER (1)
100

JDS=I~V

POM!

-Tc=2S"C

V

.......

O

V

V

Ii?

)

I

V

/

;

)""""

I

0

V

IL

~ t-

q

II"

.-V

j V
~

6V

IY

2(X)

lOO

50

20

10

7Vf-:::

....... r-~
/
.~ ~
r~

I

011

VDU =80V
Ioq=O.lA
J=]()()MH,

II

10
Gate to Source Voltage Ves (V)

Gate to Source Voltage

INPUT POWER VS. OUTPUT POWER (2)
100

VGS

(V)

OUTPUT POWER TEST CIRCUIT

VDD~80)

t-- ]VfJ.=O.lA

J=175Mllz
)

,
?
/

0

0

~

::.. rr:A.,

-

r-

'V

CI=22pF, C2=33pF. C3=2SpF. C4=50pF

LI, 1..2; /D=6mm. d=lmm

J
V

j=lOOMHz; LL=3T. u=5T
/=175MHz; LI=lT, u=3T

Drain Current ID (A)

~HITACHI

131

2SK319,2SK320
SILICON N-CHANNEL MOS FET

~

•

FEATURES

•

Low On-Resistance.

•

High Speed Switching.

•

High Cutoff Frequency.

•

No Secondary Breakdown.

•

Suitable for Switching Regulator, DC-DC Converter, RF Amplifiers, and Ultrasonic Power

1. Gate
2. Drain

(Dimensions in

ABSOLUTE MAXIMUM RATINGS (T.=25

(JEDEC TO-220AB)

(Flange)

3. Source

Osci lIators.

•

i

~r=i

HIGH SPEED POWER SWITCHING,
HIGH FREQUENCY POWER AMPLIFIER

mOl)

POWERVS .

°e)

TEMPERATURE DERATING

Symbol

Item
Drain-Source Voltage
Gate-Source Voltage

VDSS

Drain Current

10

Drain Peak Current

I D\jHak.~

Body-Drain Diode
Reverse Drain Current

lOR

Channel Dissipation

Pch*

Channel Temperature
Storage Temper!1ture

T"
Ts1g

Rating
2SK319
400

I 2SK320

I

450

V
V

±20

Vass

60

Unit

~

a:

10

A
A

5

A

is

W

u

5

50
150
-55-+150

"'"

40

§

t

]

20

'C
'C

"'Value at Tc=25 °C

•

'""'"

50

150

100

Case Temperature Tc ('C)

ELECTRICAL CHARACTERISTICS (T.=25 0c)
Item
Drain-Source Breakdown
Voltage

-Gate-Source Leak Current
Zero Gate Voltage Drain
Current

Symbol

I

I
I
I

2SK319
2SK320
2SK319
2SK320

Test Condition

VIBR)DSS

10=10mA. VGs=O

lass

VGs=±20V. Vos=O

~

loss

Vos=320V. VGs=O
Vos=360V. VGs=O

min.

typo

400
450

-

max.

-

Unit
V
V

-

-

±l

J'A

-

-

-1

rnA

Gate-Source Cutoff Voltage

VG~'1Jl

lo=lmA. Vos=10V

1.0

-

5.0

V

Static Drain-Source On State
Resistance

RDS(on)

lo=3A. V Gs=-15V'

-

1.1

1.83

!l

Drain-Source Saturation Voltage

VDSloII)

10=3A. V Gs=15V'

-

3.3

5.5

V

Forward Transfer Admittance
Input Capacitance
Output Capacitance

iYIJ

10=3A. Vos=lOV'

1.0

1.5

-

-

-

S
pF
pF
pF

-

C/ss

J=IMHz

-

800
180
20

10=2A. VGs=15V

-

15
35

td(ofj}

-

tl

-

85
35

Vos=I0V. VGs=O

Coss

Reverse Transfer Capacitance
Turn-on Delay Time

e",

Rise Time
Turn-off Delay Time
Fall Time

t,

Body-Drain Diode Forward Voltage
Body-Drain Diode
Reverse Recovery Time

V OF

1.=3A. VGs=O

-

too

1.=3A. VGs=O
di F/dt=100A/ J's

-

td(on)

R L=15!l

*PulseTest

132

eHITACHI

-

ns
ns
ns
ns

0.85

-

350

-

ns

V

---------------------------------------------------2SK319.2SK320
MAXIMUM SAFE OPERATION AREA

TYPICAL OUTPUT CHARACTERISTICS

, I,V,

I

flO
T"~25·C

20
III

/q,

3

1m .... )

c:

~~.

~

8

"

:'<"-'l~~:",;f'

...... 0(.

1.0

Q

~

U

,

'2

'"V't:

0.5

Q

0.2
O.l

I

~

-

\~,

r-

7l

--

-- -

"":1:"'"

Tc -25"('

~Sblf'

-F-

'~5V

2~~:l21)

III

lO{}

30

.-IO(J

Drain to Source Voltag.·

VDS

21)

10

I,OOt)

\

/ I.'

\,. = ~25·l' ~I

H

25'~" 1'1
1/

;

10

50

DRAIN-SOURCE SATURATION VOLTAGE
VS. GATE-SOURCE VOLTAGE
I

l'/).~ !;; 2()\'

.lO

Drain to Source Voltage Vos (V)

(V)

TYPICAL TRANSFER CHARACTERISTICS
I)

'/

II

2SK:Wl

O.():i

V(;s=8V

(IIi

~

rJI';

'~
t:'~.:J

.~

c:

V~)I,

-- .- - --

1L

3

~~~

ullic

5A

Tf!st

/J

1t/=2A

~,.

10
12
Gate to Source Voltage Vos (V)

IIJ
Gate to Source Voltage

VGS

(V)

FORWARD TRANSFER ADMITTANCE
VS. DRAIN CURRENT

,

STATIC DRAIN-SOURCE ON STATE
RESISTANCE VS. TEMPERATURE
I

VIJs-20V
t-- Pulst" TC'st

~

1'..

'\

W

°C

'\

°C

so

100

ISO

Case Temperature Tc (t;)

•

ELECTRICAL CHARACTERISTICS (Ta=25°C)
Item

Drain-Source Breakdown
Voltage
Gate-Source Leak Current

Symbol

I
I
I
I

2SKS45
2SKS46
2SK345
2SK346

Test Condition

min.

typo

-

max.

-

-

Unit

VjBRIDS$

Io=10mA. V"FO

40
60

V

IGSS

V(; ..=±20V. VoFO

-

-

±1

V
",A

Gate-Source Cutoff Voltage

Vo~'lfI)

Vos-SOV. V"s-O
Vos=50V. V" ..=O
Io=1mA. Vos=IOV

Static Drain-Source On State
Resistance

RDSlOlfi

Io=SA. VCiF15V'

-

O.S

0.4

n

Drain-Source Saturation Voltage
Forward Transfer Admittance
Input Capacitance

VDSlDn)

Io=SA. V(;F15V'
Ia-3A. Vru=10V'

0.5

0.9
0.9

1.2

IYIJ

-

V
S
pF

Zero Gate Voltage Drain
Current

Output Capacitance
Reverse Transfer Capacitance
Turn-on Delay Time

IDss

Ciss

Vos=10V. VCiFO

COli!!

/=1MHz
Cr!lJ
td(oll)

Rise Time
Turn-off Delay Time

t,

Fall Time

tl

Body-Drain Diode Forward Voltage
Body-Drain Diode
Reverse Recovery Time

V OF

IF3A. VGFO

t"

IF3A. VCiFO
di F/dt=500A/ "'s

t~olfl

Io=2A. VoF15V
R,=15n

-

-

1

rnA

2.0

-

5.0

V

-

-

350

-

290

-

80

0.85

-

V

-

160

-

ns

12
28
30
40

-

pF
pF
ns
ns
n.
n.

·Pulse Test

@HITACHI

135

2SK345.2SK346--------------------------------------------------MAXIMUM SAFE OPERATION AREA

TYPICAL OUTPUT CHARACTERISTICS

(I

ISV~

II :.

K

I

~

3
~

~

Iii,""

2

r-...

-, ----_.
\

Vas=l2'y"'-: :=

-=e.l!...b.:
- =
1I1v= =-=

;<;

V-

<.3

~

JTC-2S'C

.-

"-

4
1.0

-- I-- 9

~-'Ie.

,

K'

....

.....

II. S

7V

Jv

2SK34S·

r--

Vcs -!:iV

.,

L
Drain to Source Voltage

VDS

(V)

TYPICAL TRANSFER CHARACTERISTICS

"

r/JS=

?_II

16

Drain to Source Voltage

VDS

(V)

DRAIN-SOURCE SATURATION VOLTAGE
VS. GATE-SOURCE VOLTAGE

fl/I

lOV

Pulse Test

Tr=-25'C/ I

!~ t-25!C
~X' 7slc

.;

I

4

A

~

If
J

.,

~

rS,A
"
"~:;A r- t-

,

1I

I"

211

16

12

[/J=IA

r--

12

I"-

16

.,_0

Gate to Source Voltage Ves (V)

Gate to Source Voltage Ves (V)

FORWARD TRANSFER ADMITTANCE
VS. DRAIN CURRENT

STATIC DRAIN-SOURCE ON STATE
RESISTANCE VS. TEMPERATURE

- v" ~ !III' t++t---+--t-H-t-tII-t11+111t---t
Pulse Tf's!

Ta=-2S"C
~5'C

~

7S'C

I.II~MB~

().5~

(I.31-+-+--b""",V-t-t-+-+--+--i
,/'

O.2t--t--t--t--t--t--t--t-t--t-t
11.2

t-+++-+-+++t---t-+++-t+I-tt---t
11.1

O.050"'.2-L-J-,'''''.S,.LJ..J..J,I'''.II-.....,L-..J......J....-:'-'WoJU1:':1I----o:!20

411

40

80

Case Temperature Tc (t)

Drain Current 10 (Al

136

t--+--t---t-+-t---+-+--tr-+--t

@HITACHI

120

160

-----------------------------------------------------2SK345,2SK346
FORWARD TRANSFER ADMITTANCE
VS. FREQUENCY

TYPICAL CAPACITANCE VS.
DRAIN-SOURCE VOLTAGE
IOO( )

5tH)

~

"

~

:\

20(

res 0
IMHz

f

-

c..

......... r-.

(

WI

--

)

.... '-- -0.2

I-+-t++t+ttt--+-+-t+++tft--"l
"\rl-H-ttttl

(',,,

21 )

)

.m

20

III

O.021LOOC-k...L....LL.l.l.llJJ
c-.L.LJ.-LU.':-':'100M
I ML.....L..L.J..LLl.LjL10M

50

·10

Drain to Suurce Voltage Vvs (V)

Frequency

J

(Hz)

MAXIMUM BODY-DRAIN DIODE
FORWARD VOLTAGE

SWITCHING CHARACTERISTICS

,r

11)

W()( )

P~lse +e8t

3m)

:5
]:

W( )

~

-I,

)

~

<.'l

tdl~JJ)

0

c

'2

I

I,

Q

j

tdloof

~

~ VI

ISV

..,..;: ~.1 fj~GS =-10V

3

~ V'

I
0.2

to

0.5

III

20

~

0.4

Drain Current ID (A)

GS=O

I

n,B

1.2

2.0

1.6

Source to Drain Voltage VSD (V)

SWITCHING TIME TEST CIRCUIT
VI. Monitor

DYNAMIC INPUT CHARACTERISTICS
IIIII

V/, V
~V

)

Vas

~

0

~

~

L

4()

o
c

~

/; I'

Vvs

-::::;,
20

/

II

~

'tI

pVDD 1=5()V

16

~
:!:

~'Lm=5()V

12

2!i

""1Il-

Monitor

D.U.T

-- --

j'l'

~0

~

v.~,

211

1--

~

~
~

-- - -

WAVEFORMS

~
S

--

~

./25

'( VIO

lD=5A

~~
12

16

20

o

Gate Charge Q, (ne)

@HITACHI

137

2SK349,2SK350
SILICON N-CHANNEL MOS FET
HIGH SPEED POWER SWITCHING,
HIGH FREQUENCY POWER AMPLIFIER
•

FEATURES

•

Low On-Resistance.

•

High Speed Switching.

•

High Cutoff Frequency.

•

No Secondary Breakdown.

•

Suitable for Switching Regulator, DC-DC Converter, Motor Control, and Ultrasonic Power

1. Gate
2. Drain
(Flangel
3. Source

(TO-3P)

(Dimensiuns in mmt

OSCillators.

POWERVS.
TEMPERATURE DERATING

• ABSOLUTE MAXIMUM RATINGS (Ta =25 0C)
Item

Symbol

Drain-Source Voltage

Voss

Gate-Source Voltage

Vass

Drain Current

Rating
2SK349
400

I 2SK350

I

150

Unit
V

450

±20

V

~

ID

10

A

0:

Drain Peak Current

1-",

15

A

Body-Drain Diode
Reverse Drain Current

i

IDR

10

A

is

Channel Dissipation

P""

100

W

]

Channel Temperature

T"

150

'C

100

:;

.~

Storage Temperature

-55-+150

T!llg

50

"

........

"-......

.

"-

'C
50

·Value at Tc=25 °C

100

• ELECTRICAL CHARACTERISTICS (Ta=25 °C)
Item
Drain·Source Breakdown
Voltage
Gate-Source Leak Current
Zero Gate Voltage Drain
Current

Symbol

I

2SK349

I

2SK350

I

I

2SK349
2SK350

Test Condition

V(BRIDSS

Io=1OmA, VGFO

IGSS

VGF±20V, VoFO
VDF320V, VGFO

los,

VoF360V, VGFO

min.

typo

400

-

450

'"

150

Case Temperature Tc (t)

max.

Unit
V

-

-

±1

p.A

-

-

1

rnA

V

Gate-Source Cutoff Voltage

VGs(ohl

Io=1mA. Vos=10V

1.0

-

5.0

V

Static Drain-Source On State
Resistance

RDS(on)

ID=5A, VGF15V'

-

0.67

0.9

n

Drain·Source Saturation Voltage

VVSlon)

Io=5A. VGF15V'

-

3.3

4.5

V

Forward Transfer Admittance

IYfJ

Io=5A. V o,=1OV'

1.3

2.5

-

S

Input Capacitance

C,,,

-

pF

C...

Vos=10V. VGFO

1500

Output Capacitance

-

330
35
20

-

50

-

pF

-

140

/=1MHz

Reverse Transfer Capacitance

C'"

Turn-on Delay Time

tdiOll;

Rise Time

I.

Io=2A, VGF15V

Turn-off Delay Time

l~oJIl

R L =150

Fall Time

If

Body-Drain Diode Forward Voltage

VDF

I.=5A. VGFO

-

0.85

-

V

I"

IF5A. VGFO
di F/dl=100A/ p's

::....

400

-

ns

Body-Drain Diode
Reverse Recovery Time
*PulseTest

138

$

HITACHI

60

-

pF
ns
ns
ns
ns

---------------------------------------------------2SK349,2SK350
MAXIMUM SAFE OPERATION AREA

TYPICAL OUTPUT CHARACTERISTICS
0

f,

15Vrt;.~\

i\Tv

~-

.-

--

~-

\

\""-;.,\

6

'~,
~-

6y_

4

}C=2S\"
-~

2

5V

-

V(;S =4\'

.,_0

10

Drain to Source Voltage

Drain to Sourcp Voltage rvs (\')

(V)

VS. GATE-SOURCE VOLTAGE
2()

VlJs~HlV

T~=-\5'l' I-

"rr("
A_.,
I-

6

75'('

J

{;

2

If

Pulse
Test

8

J

r-- t--

III

OA

"-

l(J
lib

5A
I,

10

16

12

Gate to Source Voltage Ves (V)

2A
20

Gate to Source Vo1tqe Ves (V)

FORWARD TRANSFER ADMITTANCE
VS. DRAIN CURRENT

STATIC DRAIN-SOURCE ON STATE
RESISTANCE VS. TEMPERATURE

0

2.0
VIIS -

g

urv

Pulst! Test

~

-2S'C

A~

0

6

!

Ta=2S'C

2

VGS1 15V
I-- 1,=5A

'i

5

~

7S'C

Pulse
Test

.2

V

~



V

3

~

,~~

,

6V

,

~

]

I--

·s"

...

S.SV

"

1

I

SV

Vcs=4.5V

30

1000

300

100

Drain to Source Voltage

VDS

10

(V)

TYPICAL TRANSFER CHARACTERISTICS
S

20

30

Drain to Source Voltage

so

40
VDS

(V)

DRAIN-SOURCE SATURATION VOLTAGE
VS. GATE-SOURCE VOLTAGE
2()

VD,'~2()J

os,

Pulse
4

-

7S'Cf--

3

\

Tc=-2S'C
2

\

SA

2S'C2

2A

1

I.

~

iD1-1A
10

Gate to Source Voltage

VGS

16

12

(V)

20

Gate to Source Voltage Ves (V)

FORWARD TRANSFER ADMITTANCE
VS. DRAIN CURRENT

STATIC DRAIN-SOURCE ON STATE
RESISTANCE VS. TEMPERATURE

S

-

III

rD.s=lOV
Pulse Test

V

2

~

~ r--

1.0

Ves -15V
//)=3A

Ta- -2S'C

Its'c

/

r---.
l

7S'C

o.S

V

.,

1..1

...V
1

o. 1

o.S

1.0

10

20

o

Drain Current ID (Al

142

V

l/

o.2 /

0.0S
0.2

V

40

40

80

Case Temperature Tc (t)

~HITACHI

120

16()

---------------------------------------------------------2SK351
TYPICAL CAPACITANCE VS.
DRAIN-SOURCE VOLTAGE

FORWARD TRANSFER ADMITTANCE
VS. FREQUENCY
10

lOOOO
Ves

f
300n

~

100<)

~

300

J

('

0

Tc 2S'C
Vvs lOY
ID 2A

IMHz

..,

'"

..

,

2

........
lOU

J

--

~

10
0

~

CN ,

u. 5

'E

--

30

1.0

1

\

1l,2

C,"

40

120

&)

0. 1
lOUk

200

160

1M

Drain to Source Voltage Vvs (V)

10M

Frequency

lOUM

f (Hz)

MAXIMUM BODY-DRAIN DIODE
FORWARD VOLTAGE

SWITCHING CHARACTERISTICS

10

500 r--'T""-r-r'T""rrrrr'--r-"''T''"rrTTTl

r--- ...)/l--++-f+I-++--I-+-+-H-++ll
Pulse Test

3
100

~

I----

50

;:;

~

If

~

j

I.

c

Ii!

'2

'il

"

Id

]

j

20

10

51---0.2
0.1

0.5

1.0

_!OVI

-K'A

lSV~

-

VGS=O

Vr=iIOV

I

0.8

0.4

1.2

Souree to Drain Voltage

Drain Current ID (A)

1.6
VSD

2.0

(V)

SWITCHING TIME TEST CIRCUIT
Vin

Monitor

DYNAMIC INPUT CHARACTERISTICS

800

D.U.T

16

Vvv=600V,

tOO"

VD'
600

250"

\
\

400

20

V"'" Monitor

20

1.000

~~
~V

\ \

\\ ,.........r
ViO
1 l\ "

V

~
~

~

100

50

V

1\

/'

1/

/

rY V 7

~V

16

/'

1

/'

WAVEFORMS
VG'

11'\ r\

\V

VDID=200V
100

71\ 1\ ./5d
i'<' ~
II

ID=2A
(I

10
Gate Charge Q, (nc)

146

~HITACHI

2.0

2SK382
SILICON P-CHANNEL MOS FET
HIGH SPEED POWER SWITCHING,
HIGH FREQUENCY POWER AMPLIFIER
•

FEATURES

•

Low On-Resistance.

•

High Speed Switching.

•

High Cutoff Frequency.

•

No Secondary Breakdown.

•

Suitable for Switching Regulator, DC-DC Con-

•

verter, RF Amplifiers, and Ultrasonic Power

l.Gate
2. Drain
(Flange)
8. Source

Oscillators.

(Dimensions in mm)

(JEDEC TO-220AB)

ABSOLUTE MAXIMUM RATINGS (Ta=25 eC)
Item
Drain-Source Voltage

Symbol

Rating

V DSS

500

V

Gate-Source Voltage

Voss

±20

V

Drain Current

ID

2

A

Drain Peak Current

I D(p--r~
~
'~Oit·
/.~ ....
I:S

-

~

"'

,

"~'
!'~~

"

~ o. 1

\~"..,...

\
;

==
f=b0~
Gk.
'<>1=
- r-- . .
of...IO

Tcl=25'~

\

T. 25'C

~~~o. "~.p

,

3

=

lO.us

im".d)

TYPICAL OUTPUT CHARACTERISTICS

6l-

""1-

~V

0.

~

,l
",=

1-'V

U.O3

~,...

res
O.U 1

100

30

10

(V)

VDS

TYPICAL TRANSFER CHARACTERISTICS
5

Tc

~-25JC

I

r:
\/

:l

211

16

12
Drain to Source Voltage

(V)

VDS

DRAIN-SOURCE SATURATION VOLTAGE
VS, GATE-SOURCE VOLTAGE
II

Jc-:::
J:,:;. .

I
\

II

VDs=2()V

4

""

lUk

3k

lk

300

Drain to Source Voltage

,t-

Puls~ Test l

i5'C

....

"' t--+-

II~/

2:\

-

~/'

2

\.

j
1

~

..-<:

II

1,1

f'...

Ill-U.5:\

~V

10
Gate to Source Voltage

VGS

12

(V)

Gate to Source Voltage

16
VGS

20

(V)

FORWARD TRANSFER ADMITTANCE

STATIC DRAIN-SOURCE ON STATE

VS, DRAIN CURRENT

RESISTANCE VS. TEMPERATURE

\"/l5=IOV

1- Pulse T(>sti-H---+-++H-t+tt----""1

u;
;;

j

..
l....
"E

!
.;:

1/

ttl

25·C

'§

0.5

,/

f--++W'!'+t-tt---+-[J. 75'C+t++t----j

0.2 V V

I,;

0,05ITt111~1§
0.1

0.2

0.5

1.0

10

20

148

40

411

""

Case Temperature Tc ("C)

Drain Current 10 (A)

~HITACHI

120

l!j()

---------------------------------------------------------2SK382
FORWARD TRANSFER ADMITTANCE
VS. FREQUENCY

TYPICAL CAPACITANCE VS.
DRAIN-SOURCE VOLTAGE

,

J(XX

C••

l.°m_g
Tc

I--

~

VDS

300

'"

..

,~\.

j

lOY

0.2

.~

Co. I--

,\
, "......

25"C

In O.5A

0.5

:.l!

1

H

0.1

0.05

"E

c.• E':'

~

-

Ta~25"l'

II

--±

10

'"

9V

I

6

r--

~

".

~

'~~
.:.-.

BV

6

- r'- ....

4

7V

2

6V

1.0~~m

O.;)~
5
1O:W

,)(}

100

Drain to Source Voltage

200

VDS

VG's=5V

500

5

11

Tc=-25\'-

20

DRAIN-SOURCE SATURATION VOLTAGE
VS, GATE-SOURCE VOLTAGE

iL

=lIlr

16

Drain to Source Voltage VDS (V)

TYPICAL TRANSFER CHARACTERISTICS

\·fI.~

12

(V)

0

Tc=2S'C

4

fL

25·C

1
IL

4

I

2

::::::75\'-

i'

""""

"- ~A

"-

I

\

Pulse
Test

~

Gate to Source Voltage

\

2

J

--

12

(V)

r- r--

IIJ-2:\

10
VGS

SA

16

,

_0

Gate to Source Voltage Ves (V)

FORWARD TRANSFER ADMITTANCE
VS, DRAIN CURRENT

STATIC DRAIN-SOURCE ON STATE
RESISTANCE VS, TEMPERATURE
II. 5

~ VGsl15\'
ID~lA

O. 4

Pulse
Test

O. 3

-

II.2

_....... "'" V

O. I

0,05'0':-._::-,-'-....",,'-:.S.I...J.."""U::-,-~-'--'-7-'--'-'-';1~0--,7,2(J

0
40

Drain Current ID (A)

160

40

HO

Case Temperature Tc ('C)

eHITACHI

120

160

---------------------------------------------------------2SK399
TYPICAL CAPACITANCE VS.
DRAIN-SOURCE VOLTAGE

FORWARD TRANSFER ADMITTANCE
VS. FREQUENCY
III

T('

~

,=

loon

C..

-.......,,,

'-'

j
l
Ll

C•• -

30n

1.0

\

lOll

25'C

Vvs lOV
In 2A

30001--+-+--+-+--+-+--+-+--+---1

0.5

'\..

c...

:m

0.2

(J.I

10
II

10

~I

3(1

4(1

50

lOOk

1M

Drain to Source Voltage Vvs (V)

100M

10M

Frequency

f (Hz)

MAXIMUM BODY-DRAIN DIODE

SWITCHING CHARACTERISTICS

FORWARD VOLTAGE
(I

1I'"I~3()()~

Puls~ Test l

6

2

5(

IOV

4
15V

~

~

-

.J ~

'/

0.4

O.R

VGs=O
Vcs=-IOV

I

Source to Drain Voltage

Drain Current 10 (A)

1.6

1.2

VSD

2.0

(V)

SWITCHING TIME TEST CIRCUIT
V,. Monitor

DYNAMIC INPUT CHARACTERISTICS
100

2

Vov =80V

VDS

/1

80

'\

~

\

;§

!'p

60

~
~

Ji
Cl

\

'\.

40

E

'2"

V
2S~

50,

f
O-

/
V

/

"

'/'
"/
:..---

~

f.:?

I

WAVEFORMS

Vas

\
~

\

8
VVD

=80V

\ V SO
4

~S
r'r---..x-- r-...
16

10 =lOA

I
24

32

0

40

Gate Charge Q,. (nc)

~HITACHI

161

2SK400
SILICON N-CHANNEL MOS FET
di3.2±n.2

5.0max.
.5

HIGH SPEED POWER SWITCHING.
HIGH FREQUENCY POWER AMPLIFIER
Complementary pair with 2SJ114

'.8

•

FEATURES

•

Low On-Resistance.

•

High Speed Switching.

•

High Cutoff Frequency.

•

No Secondary Breakdown.

•

Suitable for Switching Regulator, DC-DC Converter, RF Amplifiers, and Ultrasonic Power

""'m'"''
1. Gate
2. Drain

(Flange)

(TO-3P)

3. Source
(Dimensions in mm)

Oscillators.

•

O.6±().2

o.,!-l-t·o±o.,

POWERVS.
TEMPERATURE DERATING

ABSOLUTE MAXIMUM RATINGS (T.=25 DC)
Item

Symbol

Rating

Unit
V

120

Drain-Source Voltage
Gate-Source Voltage

Voss

200

Voss

ID

±20
8
12

V

Drain Current
Drain Peak Current

A
A

§

8

A

i

100

W

ID(pHk)

Body-Drain Diode
Reverse Drain Current

IDR

Channel Dissipation

Pch*

Channel Temperature
Storage Temperature

T"

150
-55-+150

T",g

°C
°C

~

80

•

'5

Q

~

d

40

i~

'"

~

I""

*Val ue at T(=25 0 C

so

100

•

ELECTRICAL CHARACTERISTICS (T.=25 DC)

Item
Drain-Source Breakdown Voltage

Symbol

Test Condition

""

ISO

Case Temperature Tc (t)

min.

typo

200

±l

/loA

1
5.0

mA

max.

VoS(ob)

Io=1mA, Vos=10V

2.0

RDSf,tm)

Io=4A, V as=15V'

-

0.5

0.7

n

Drain-Source Saturation Voltage

VDS!IM)

Io=4A, VGs=15V'

-

2.0

2.8

Forward Transfer Admittance

IYfJ

Io-4A, Vas-lOV'

1.0

1.8

-

Input Capacitance
Output Capacitance
Reverse Transfer Capacitance

C'"
C...

Vos=10V, VGs=O

-

750
300
SO

-

V
S
pF
pF

Gate-Source Leak Current
Zero Gate Voltage Drain Current
Gate-Source Cutoff Voltage
Static Drain-Source On State
Resistance

Turn-on Delay Time

IGSS

VGs-±20V, Vas-O

-

loss

Vos=1S0V, VGs=O

-

/=IMHz

em
td(onl

-

15
25

-

Unit
V

-

Io=10mA, VGs=O

V(BR)DSS

-

V

pF
ns

Rise Time
Turn-off Delay Time

t,

I D=2A, V Gs=15V

-

t~ojJ)

R L=15n

-

Fall Time
Body-Drain Diode Forward Voltage
Body-Drain Diode
Reverse Recovery Time

tf
V D,

-

70
40

I.=4A, VGs=O

-

0.9

-

ns
V

t"

1.=4A, VGs=O
di,/dt=50A/ /lS

-

300

-

nB

*Pulse Test

162

•

HITACHI

-

ns
ns

---------------------------------------------------------2SK400
TYPICAL OUTPUT CHARACTERISTICS

MAXIMUM SAFE OPERATION AREA

,

"'1rTJ1TT-'
11111_.- --+-f-++++-H--Ft-=i'-l
-I"I-f.''ffi'r-,-t,r-1:1!'
rYI;(,."rI

- ~~ t=t(~2~

1

1111·,

Til =:"25'C

9V

f
1/V

f·::'

~

y,

'IJ

;

~

I--

.,LI--

~4.

7V

U

l"

'I
fi\,

ri\'

\"r;s=4V

Ii>

12

Drain to Source Voltage Vos (V)

Drain to Source Voltage Vos (V)

TYPICAL TRANSFER CHARACTERISTICS

"

\·I).~ l JO\'
F(-=--

,

"'cn

,..//J

,;

DRAIN-SOURCE SATURATION VOLTAGE
VS. GATE-SOURCE VOLTAGE

"',1
~lC

7:;'l'

J

I

>

~

~

.4
W

I

I

H,I

Ii>

I"

Gate to Source Voltage Ves (v)

20

Gate to Source Voltage Ves (V)

STATIC DRAIN-SOURCE ON STATE
RESISTANCE VS. TEMPERATURE

FORWARD TRANSFER ADMITTANCE
VS. DRAIN CURRENT

I

II

_

V(;5=15V

11/=4.4.

II.H _

Puls~

J

Test

/

/

II. 6

II.4

1l.2

/

/

V

V

t- V

112

1I.1~~~

OJ)5.~
0.2
O.S

1.0
Drain Current

If)

20

10 (A)

Il

-40

411

All

120

160

Case Temperature Tc (t)

@HITACHI

163

2SK400--------------------------------------------------------FORWARD TRANSFER ADMITTANCE
VS. FREQUENCY

TYPICAL CAPACITANCE VS.
DRAIN-SOURCE VOLTAGE

Hlm~~

lOOOOm_~
J IMII,
VGS

()

Tc

liDS

~

WOO

j

!:=

c,.

-

<)

j

25'C
lOY

ID 2A

3000

300

lOO\

('~

-

I,.

:·m

II.' f--++I-tttttl-++++tI+tt-H+t+tHi

lO

!O

20

30

O·\·':::o/~,k-'-....L..J...J....L=.IM-:-...L..LJ...J.J.J.JJI":OM-:-.L..J"-'-UJ.LJJ!OOM

50

40

Frequency

Drain to Source Voltage VDS (V)

f

(Hz)

MAXIMUM BODY-DRAIN DIODE
FORWARD VOLTAGE

SWITCHING CHARACTERISTICS

2001--t-++H-ttl+-+-+-t+l-+t-ti

I

I

t---t----t- 5V -lllJ-t--t-I-+---j--j
\()\'

III~I'~Mm1

5E.=E
0.1

().2

0.5

1.0

\

\'(;,~:..:()

1--+-1-I5\'':''A'rl-~-H-f+T' =11111"

10

0.4

Drain Current ID (Al

O.H

1.0

1.2

Source to Drain Voltage

VSD

(V)

SWITCHING TIME TEST CIRCUIT
Vi~

Monitor

DYNAMIC INPUT CHARACTERISTICS
20

200

~DS

160

'--

!

120

~
~

80

;g

!O~ "I'--

""

50

"
40

\\

/' \
- ~ 1\ ~
/ \'(
/

M~

A~

1\

B

~

VD;~150t

~

~

Vas

::v

~ 16
~
12

"'!
;g
~

~

/VDD=I50V

3

100
50

ID=BA

f\\

16

24

32

Gate Charge Q" (ne)

164

~HITACHI

WAVEFORMS

2.0

2SK401
SILICON N-CHANNEL MOS FET
.35111.

26:0max.
0.9±O.

1·6±l:

3.3l1li1.

(3~'ypl

HIGH SPEED POWER SWITCHING,
HIGH FREQUENCY POWER AMPLIFIER

.---+-...

51

"',

•

FEATURES

•
•

Low On-Resistance.
High Speed Switching.

•
•
•

High Cutoff Frequency.
No Secondary Breakdown.
Suitable for Switching Regulator. DC-DC Converter. Motor Control. and Ultrasonic Power
Oscillators.

•

ABSOLUTE MAXIMUM RATINGS (T.=25 DC)
Item

Symbol

1. Gate
2. Source
3. Drain
(Casel
(Dimensions in mmJ

Rating
250

V

Gate-Source Voltage

Voss

Drain Current
Drain Peak Current

ID

±20
10

A

15

A

Body-Drain Diode
Reverse Drain Current

iDltm'Ic)

I DR

POWERVS.
TEMPERATURE DERATING

Unit

Voss

Drain-Source Voltage

120

V

§
0:

A

'i

W

is

°C

]

10

80

6

.~

Channel Dissipation
Channel Temperature

Pc.·

Storage Temperature

TlIg

100
150
-55-+150

T"

(JEDEC TO-3)

40

""I""1"'-

I""

°C

1"'-

150

100

50

Case Temperature Tc (t)

•

ELECTRICAL CHARACTERISTICS (T.=25 DC)

Item
Drain-Source Breakdown Voltage

Symbol

Test Condition

min.
250

typo

-

V
pA

rnA

0.3

0.4

n

-

1.5

2.0

V

1.6

2.5

-

1400

-

S
pF

Gate-Source Leak Current
Zero Gate Voltage Drain Current

loss

VGs=±20V. Vos=O

loss

Vos=200V. VGFO

-

-

Gate-Source Cutoff Voltage

VOS(QUl

Io=lmA. Vos=10V

2.0

Static Drain-Source On State
Resistance

R MOIf)

ID=5A. VGF15V'

-

Drain-Source Saturation Voltage

V"" •• ,

Io=5A. VGF15V'

Forward Transfer Admittance

ly,J

ID=5A. Vos=1OV'

Input Capacitance

C,,,

Output Capacitance

C...

Vos=10V. VGFO

-

Reverse Transfer Capacitance
Turn."n Delay Time

Cn •

-

-

500
35

-

13

RiseTime
Turn-off Delay Time

t,

Io=2A. VGF15V

-

t~""

R L =15n

-

52
120

Fall Time
Body-Drain Diode Forward Voltage
Body-Drain Diode
Reverse Recovery Time

t,

tdlon )

Unit

±1
1
5.0

ID=10mA. VGFO

/=1MHz

max.

-

ViUIOS!

-

V DF

IF5A. VGFO

-

60
0.9

t.

!,=5A. VGFO
di,/dt=100A/ ps

-

400

V

pF
pF

-

ns

-

ns

ns

-

ns

-

V

-

ns

·Pulse Test

@HITACHI

165

2SK401--------------------------------------------------------TYPICAL OUTPUT CHARACTERISTICS

MAXIMUM SAFE OPERATION AREA

0

100

30

~i~'~

,f-

IV(.ul

~

~~

~~.
,.44 I,'

6

r1.~

4

,

"q,

1.0

Tc~25'C

-.

,0

"~'b~ f-- I-Vas

7.5) "

<"
2

o.3

6
5. Y
v

o. 1

10

100

30

Drain to Source Voltage

300

12

. 1000

r/ls

1'c:=-25'C-

5

1/

=~l)\'

-

!\

\

#-25j<'

P!J!se +est

\

J-

--

~

3

ItA

J

I

2

~

~

III

SA

I

1

A~
~~

'r--

In=2A

10

STATIC DRAIN-SOURCE ON STATE
RESISTANCE VS. TEMPERATURE

.,

~

)

~

L

o.5

-,

Ta~-25''k V
~:;-

20

Gate to Source Voltage Ves (V)

FORWARD TRANSFER ADMITTANCE
VS. DRAIN CURRENT
Vvs -lOV
-Pulse Test

16

12

Gate to Source Voltage Vas (V)

5

20

DRAIN-SOURCE SATURATION VOLTAGE
VS. GATE-SOURCE VOLTAGE

TYPICAL TRANSFER CHARACTERISTICS
)

16

Drain to Source Voltage VDS (V)

(V)

VDS

g

rl Jc-

~

2 ·C

.1

J

-

Vc;s=-15V
IsJ=5A

o. 4 _

Py.ls!Test

'f

e

n. 2

/
/
//

o. 3

]

o. 5

/

.J

V

V

Jl

0.2

6

'e
j

0

II. 1

0

OJ15

1l.2

0 ..)

}.O

10

~)

Drain Current I D (A)

166

n. 1

0

- ..0

40

"0

Case Temperature Tc (t)

@HITACHI

12iJ

160

---------------------------------------------------------2SK401
TYPICAL CAPACITANCE VS.
DRAIN-SOURCE VOLTAGE

FORWARD TRANSFER ADMITTANCE
VS. FREQUENCY
u
T,. 2S'C
V'IS lilY

I,

5

2A

C...

2

lIXlI' _ _ _

C•••

r-u. 5

100

3D

(I.-

C•• ,...-

o. I
0

'"

.,

.......

10
40

HO

120

Drain to Source Voltage

20()

i60
VDS

lOOk

0

2<

,

3()(

~
'i
'"

,

MAXIMUM BODY-DRAIN DIODE
FORWARD VOLTAGE

f

P~lse T1est

I'

f-- t ,Il_JJI

~

WOM

10M

Frequency / (Hz)

100

;:

1M

(V)

SWITCHING CHARACTERISTICS

1

r-.

,

:mo

0=,;
r,.

!O

12

0

0

Idt.Kl

r- _

:1

lOY
IS'.'

~
I

0.5

0.2

1.0

0.4

20

!O

VGs=O

S~

~'c;s=-lOV

b&
-!J
n.B

1.2

Source to Drain Voltage

Drain Current ID (A)

1.6
VSD

2.0

(V)

SWITCHING TIME TEST CIRCUIT
DYNAMIC INPUT CHARACTERISTICS
VoMI

200

Monitor

20

I
I

160

~

Vns

Vas

~~

A~

0

~~ ~

AV

0

r\
of-/.,

"

AV
V

16

~
;';

VDD

100

12

200V

r-- I--

e

50

~

E

V VD j-200Y

ID=10A

3

VI,,?

50
11\
I ~~
20

40

~

~

60

80

o

100

Gate Charge Q, (no)

$

HITACHI

167

2SK402,2SK403
SILICON N-CHANNEL MOS FET

16.0max.

t,63.2±O.2

5.0max.
1.5

1~=,=,L.J-!5_~::1

W.4~~---1~

HIGH SPEED POWER SWITCHING,
HIGH FREQUENCY POWER AMPLIFIER
•

FEATURES

2.8

•

Low On-Resistance.

•

High Speed Switching.

•

High Cutoff Frequency.

•
•

No Secondary Breakdown.
Suitable for Switching Regulator, DC-DC Converter, RF Amplifiers, and Ultrasonic Power

O.6±O.2

1. Gate
2. Drain
(Flange)
3. Source
(Dimensions in mm)

Oscillators.

POWERVS.
TEMPERATURE DERATING

ABSOLUTE MAXIMUM RATINGS (Ta=25 °C)

•

Symbol

Item

400

Drain-Source Voltage

Voss

Gate-Source Voltage

VGSS
10
ID(pu/<)

Drain Current
Drain Peak Current

Rating
2SK402

I 2SK403
I 450

Unit

120

V

±20

V

8

A

12

A

8

A

Body-Drain Diode
Reverse Drain Current

lOR

Channel Dissipation

Pch*

100

W

Channel Temperature

T"

150

°C

Storage Temperature

T!ltK

0

0

-55-+150

°C

"'Value at T,=25 DC

•

(TO-3P)

""""

~

so

I'"

100

Case Temperature Tc (t)

ELECTRICAL CHARACTERISTICS (T =25 0c)
Q

Symbol

Item
Drain-Source Breakdown
Voltage

I 2SK402
I

2SK403

Gate-Source Leak Current
Zero Gate Voltage Drain
Current

I 2SK402
I 2SK403

Test Condition

V(BRIDSS

10= lOrnA, VGs=O

loss

VGs=±20V, Vos=O
Vos=320V, VGs=O

min.

typo

400

-

450

-

-

max.

'"

ISO

Unit

-

V

±l

/loA

V

-

-

1

rnA

VG....m

Vos=360V, VGs=O
I0=1mA, Vos=lOV

2.0

-

5.0

V

RDS{on)

lo=4A, VGs=15V'

-

1.1

1.75

n

Drain-Source Saturation Voltage

VD.$tOll)

lo=4A, VGs=15V'

-

4.4

7.0

V

Forward Transfer Admittance

IYJJ

Io=4A, Vos=lOV'

1.2

1.7

-

S

Input Capacitance

G",

-

800

-

pF

Output Capacitance

-

180

-

pF

Reverse Transfer Capacitance

GOD
G,,,

-

20

-

pF

Turn-on Delay Time

trICon,

-

15

ns

Rise Time

t,

-

35

-

Turn-off Delay Time

tdioff)

-

85

-

ns

Fall Time

t,
VOF

-

35

-

ns

h=4A, VGs=O

-

0.85

-

V

h=4A, VGs=O
diFldt=lOOAI/los

-

400

-

ns

Gate-Source Cutoff Voltage
Static Drain-Source On State
Resistance

Body-Drain Diode Forward Voltage
Body-Drain Diode
Reverse Recovery Time

loss

t.

Vos=10V, VGs=O
J=1MHz

io=2A, VGs=15V
R L=15n

"Pulse Test

168

~HITACHI

ns

---------------------------------------------------2SK402,2SK403
MAXIMUM SAFE OPERATION AREA

TYPICAL OUTPUT CHARACTERISTICS
0

!itl

15V I
"/

Til -25\'_
20

,...

~(';!kl

1<)

...... ~:~s

1111", •• 1

~
~

.Q('

r~,

~

"

u

'2

~

§,'i

~

"',.

I.O

"'::~'(

u.s
0.2

r\',;

,\.,.
~

./

'.

~

'/

- -- - 7V

....

j

6V

......

2

"klltL

0.\

K'i

Ii
rtf

<3

'?r1'.

1'c~25'C

J11\

1;

~

I

'~"'I

0

41......

e

'"

«*

~-:l'
'\.-I/.~d'

/ij.

~v

K

-LJ .1

lOV
~9V

5 V - f--

~'GS

2SK·1O:i

,II

T

O.lJ!i

.m

Itt

woo

,mo

100

VIJ.'i=2(1\'

''h ~~25'C

DRAIN-SOURCE SATURATION VOLTAGE
VS. GATE-SOURCE VOLTAGE
2( )

If,
I

;g

H,\

0;;;;;::

-

12

:;

1

,

J

J

2

PulsJ Testl

"

~

75·C

II
4

\.,.

16

25'~ .1. if

!IJ

so

Drain to Source Voltage Vns (V)

TYPICAL TRANSFER CHARACTERISTICS
)

.m

10

Drain to Source Voltage Vvs (V)

\

"r-....

~

\

5:\

jll=2A

~~

10

STATIC DRAIN-SOURCE ON STATE
RESISTANCE VS. TEMPERATURE,

FORWARD TRANSFER ADMITTANCE
VS. DRAIN CURRENT

2.1)

-

r/ls-20'v'
Pulse 1

~

~

0,5

1

0.2

"E

~

1.0

j

_

Ta- -2G'('

"'

~~

J

j

2S C0

It.c

V".~!l!iV

In=4A

/

J

/

1.6._I?l,Its~Tesl

/

~

'"

~

1.2

/
O.H

,/

~

O

r--...

0.5

0.9

1.25

VGF5V, VoFO,f=lMHz

-

440

V GF-5V, Vos=50V,f=lMHz
VGo=-50V,f=lMHz
Vos-80V,f~28MHz
-V'=20kHz, IMD,.;-30dB

-

0.5

-

75
100
17

max.

Unit
%

-

V

3,0

V

1.0

rnA
V
S
pF
pF
pF

-

WPEI'

-

dB

·Pul~T..t

• CAUTION: OPERATING HAZARDS
Beryllium Oxide Ceramics have been employed in these products.
Since dust or fume ofthe material is highly poison to the human body, please do nottreat them mechanically
or chemically in the manner which might expose them to the air. And it should never be thrown out with
general industrial or domestic waste.

174

eHITACHI

-----------------------------------------------------------2SK410
MAXIMUM SAFE OPERATION AREA
:.!o

,

ill

111

TYPICAL OUTPUT CHARACTERISTICS
\

'/'('=25\'

fill,.",}

--

- - r-

,r,

-----.~

~:

~

h ~~~

.

<'';-.

I---

1.(1

1---

--

II.~

--0.::

111

~
So

'"

H

<;::;'-J-

//~ 7~~4

~~>'"I"I;t<

WI

~lH)

~
JV(:

.1

,

V
I--"

~V

:1
VG~

- 2\"

16

12
Drain to Source Voltage

Drain to Source Voltage Vns (V)

TYPICAL TRANSFER CHARACTERISTICS

6~

~

V ....... ~

Suo

.....
-

l.,. .......

~J
'<1";""

Vj. ~ ........ ~

- - /.Ir'

----- -

/

10/,J

VDS

211

(V)

FORWARD TRANSFER ADMITTANCE
VS. DRAIN CURRENT

,
I'll.,! wv --- h=2Ii"t'

--t--

!

-

L

;

,/

I

V

V

,/
J
O.21--+--+--+-++++IH---+--+-+-+-f-H-+!
,/
111
Gate to Source Voltage

VGS

O.\...,'.I--'...
1. 2---JL....J-O
"-.5......J..J.J.
I.'-,_--'---'---'-.L.L..U..u11l

(V)

Drain Current 1D (A)

OUTPUT CAPACITANCE VS.
GATE-SOURCE VOLTAGE

INPUT CAPACITANCE VS.
GATE-SOURCE VOLTAGE

,
4S1 ,

--

\'/JS1":(J\'
!~IMl',

,
\

....... 1'-

""~-

V

30()

2S()
-12

,

\ I
I

,

-6

30~

12

10 '-I--.J~-'-'J.LLIlJ()'----'--:3LO-LLLIlJIIL,,_L.l
30-0 LUJ.lJ1,{)OO

18

Gate to Source Voltage VGS (V)

Drain to Source Voltage

~HITACHI

VDS

(V)

175

2SK41 0----------------------------------------------------OUTPUT POWER. DRAIN EFFICIENCY
VS. INPUT POWER

OUTPUT POWER VS.
INPUT POWER (2 TONES)

,

2()(

201 I

J=28MHz
t-VDs=80V
IUQ= O.lA

r-JL28JHz
6J=20kHz

Pol----" ......

160

l
il

"..-

V

120

0:

,

L

r-

./

0

11

/

0

.3

oj

V

V

IIXl.=O.3A

/
0

./

16<'I- VDs=IlOV

/V'

lL

/

II

0,6

0.4

0.2
Input Power Pi. (W)

Input Power

0.1:1

1.0

Po. (WPEP)

INTER-MODULATION DISTORTION
VS. OUTPUT POWER
I

r-~ -It't--

'~"
§

JJ8MH!
LIf=2OkHz
VDS

:::::80V

II>Q=O.3A

-20

.~
is
.~

-3( I

i

vV'

L --40

!

I---' ~i"""

.."..

V

f'. V

-5II
211

40

611
Output

""

100

120

Power P. (WPEP)

28M Hz Pout TEST CIRCUIT

z,,=50Q

176

$

HITACHI

C lo Cs--50pF

Ll :1D-12mm. d-1.5mm, T-7T

CI. CS = -20pF

La :ID-12mm. d-1.5mm, T-5T
L) :ID-12mm. d=-=1.5mm. T-ST
RI-lkO
Rt. R3 -lOon
RFC.-FC 15~. d-lmm. T-3T
RFC.-FC 6~. d-Imm. T-H

C3t C4 -10pF
C1 =32pF
C.""'lSpF
C" Cn. en -O.lpF
ClO -4.7.uF
C U -22pF

2SK412
SILICON N-CHANNEL MOS FET
HIGH SPEED POWER SWITCHING,
HIGH FREQUENCY POWER AMPLIFIER
2.8

•

FEATURES

•

low On-Resistance.

•

High Speed Switching.

•

High Cutoff Frequency.

•

No Secondary Breakdown.

•

Suitable for Switching Regulator, DC-DC Converter, Motor Control. and Ultrasonic Power

I. Gate
2. Drain
(Flangel
3. Source
(Dimensions in mm)

(TO-3P)

Oscillators.

•

POWERVS.
TEMPERATURE DERATING

ABSOLUTE MAXIMUM RATINGS (Ta=25 0c)

Item
Drain-Source Voltage
Gate-Source Voltage
Drain Current
Drain Peak Current

Symbol
VDSS
VGSS

Rating

Unit

250

V

±20
10

V

IDI,Ptalr.1

15

A
A

Body-Drain Diode
Reverse Drain Current

IDR

10

A

Channel Dissipation

Pch*

Channel Temperature
Storage Temperature

T"
Tu ,

ID

120

W

100
150
-55-+150

0

°C
°C

""'"I""

:"" ~

.Value at T c=25 °C

so

ISO

100

Case Temperature Tc ("C)

•

ELECTRICAL CHARACTERISTICS (Ta=25 0c)
Item

Drain-Source Breakdown Voltage

Symbol

Test Condition

min.

typo

-

max.

-

Unit
V
p.A

I,,=1OmA, VGFO

250

lass

VoF±20V, VDFO

lDss

V DF200V, VGFO

-

-

±1
1

Gate-Source Cutoff Voltage

VGSloff)

I,,=lmA, Vru=10V

2.0

-

5.0

V

Static Drain-Source On State
Resistance

RDS(on)

I D=5A, V G FI5V'

-

0.3

0.4

n

Drain-Source Saturation Voltage

V DSlom

I,,=5A, VoF 15V'

-

1.5

2.0

V

Forward Transfer Admittance

IYIJ

I D=5A, V DF1OV'

1.6

2.5

Input Capacitance

C",

S
pF

Output Capacitance
Reverse Transfer Capacitance

C."

-

Gate-Source Leak Current
Zero Gate Voltage Drain Current

Turn-on Delay Time

V(BRIDSS

e",

1400

f=IMHz

-

52
120

V D FI0V, VGFO

tdf,on)

RiseTime
Turn-off Delay Time

t,

ID=2A, VGF15V

-

t~.ffl

R L=15n

FaIl Time
Body-Drain Diode Forward Voltage
Body-Drain Diode
Reverse Recovery Time

tl
V DF

-

t.

Ir 5A, VGFO
Ir 5A, VGFO
diF/dt=100A/p.s

-

500
35
13

-

rnA

pF
pF
ns
ns

-

ns
ns

0.9

-

400

-

ns

60

V

·Pulse Test

~HITACHI

177

2SK412----------------------------------------------------------MAXIMUM SAFE OPERATION AREA

TYPICAL OUTPUT CHARACTERISTICS

100

10

T,
30

3:

10

-'~p

~

4~li··

'J

1/0$'4.

(0",,,,,<,/

,

.-0

,~

.~

I

~J

7V,

~

0<,,/

.-;;~

"0"

0

-,

"'4. f-- r-7,5V

'I

01'(

)

, 1-1 ~cj5'C

8V

'I

1OJ,

,-

l/)( ..ul

15Vrrv

25'C

6L
6V

0.3

5,5V

'v

vO.
II, I

10

100

311

Drain to Source Voltage

300

VDS

1000

12

(V)

Drain to Source Voltage

\
\
\

I

!-+-+--+-+----r-+---+-H1J=7;,'C.;;

~-+-!,--+--+-+--Jr--t--'f-I-L-t--l--I
II

!

u

~

lOA

-l"'-

t- t--

I

/I

'-.

r/

5A

Pulse
Test

)!-+--t-+--+-+--H!IJ'H-t---I----i

' .....

i 1//

][)=2A

Gate to Source Voltage

FORWARD TRANSFER ADMITTANCE
VS, DRAIN CURRENT
:1

'f(j:::--25'~

'

~

'J

~

I

isle
II

~

20

(V)

STATIC DRAIN-SOURCE ON STATE
RESISTANCE VS, TEMPERATURE
~

I

hb-

~

r--

'/

0, 4

V

II, 3

~

'f'

/

I'G.'i!lOV
1{)=5A

j
~

0.5

0, 'J

V

./'

'"

~

~

0,21"

k

~

0,1

II, I

~
l050,2

VGS

II, 5

I

t-- -i::il,·~),:;,

1.0

16

12

!II
Gate to Source Voltage VGS (V)

~~;t

()

0,5

' LO

2

5

10

20

-40

411

80

Case Temperature Tc ('C)

Drain Current In (A)

178

20

(V)

DRAIN-SOURCE SATURATION VOLTAGE
VS, GATE-SOURCE VOLTAGE

TYPICAL TRANSFER CHARACTERISTICS

I

16
VDS

@HITACHI

120

160

---------------------------------------------------------2SK412
TYPICAL CAPACITANCE VS.
DRAIN-SOURCE VOLTAGE

FORWARD TRANSFER ADMITTANCE
VS, FREQUENCY

IOm. .mq

IOOOOm!&ft~
!

Tc 25"C

Vas ()
IMH,

Vns lOY
10 2A

3000

lOoO~_C'"
30()~

10oWWMC,"
30~

1--.

0.2

IO'--'-_J.....-'-_J.....-'---:"::--'--:"::--'--:;;
40

811

120

ISO

t--

0.5

c'"

o

f"'.

1.0

200

0.1
lOOk

1M

Drain to Source Voltage Vos (V)

10M

Frequency

,

MAXIMUM BODY-DRAIN DIODE
FORWARD VOLTAGE

SWITCHING CHARACTERISTICS
20

IOQO _

100M

f (Hz)

_

3lX)

Julse

16

."

-1'.1(0/11·

!
~

;:;

100

'f

I

~

~
~

2

1=',
30

td(o.l

10

[

~ ~IOV

t-- I--~
I.~~~~WL--~~-L~~~~
0.2
0.5
l.()
10
20
Drain Current ID (A)

0.4

5; i

VGS =0
VGs=-lOV

bJ
A
O.B

1.2

Source to Drain Voltage

1.6
VSD

2.0

(V)

SWITCHING TIME TEST CIRCUIT
v,"

DYNAMIC INPUT CHARACTERISTICS
200

~ tL

16<)

V~,

0

VGSI~

~

fA

"

A :L

0

1\

\ f/lOpI

~V"=200V

0'-1..

/

I

1\ \-

I~ V

16

V

L2 t2<:L~

\

VDO

100

Monitor

20

1

200V

r---r--

50

WAVEFORMS

Iv=IOA

50

~~
20

40
Gate Charge

60
~

80

o

100

(nc)

@HITACHI

179

2SK413,2SK414
SILICON N-CHANNEL MOS FET
HIGH SPEED POWER SWITCHING,
HIGH FREQUENCY POWER AMPLIFIER
Complementary pair with 2SJ118, 119
•

FEATURES

•

Low On-Resistance.

•

High Speed Switching.

•

High Cutoff Frequency.

•
•

No Secondary Breakdown.
Suitable for Switching Regulator. DC-DC Con-

1. Gate
2. Drain
(Flange)
3. Source

verter. PWM Amplifiers. and Ultrasonic Power

(Dimen!:lions in mm)

(TO-3P)

Oscillators.

ABSOLUTE MAXIMUM RATINGS (T.=25 0c)

•

Item

Symbol

Drain-Source Voltage

VDSS

Gate-Source Voltage

Voss

Drain Current

10

Drain Peak Current

ID{peak)

Body-Drain Diode
Reverse Drain Current

lOR

POWERVS.
TEMPERATURE DERATING

Rating
2SK413
140

I 2SK414
I 160

Unit

120

V

±20

V

8

A

~
0::

12

A

6

8

A
W

°C

Channel Dissipation

Pch'"

100

Channel Temperature

T"

150

Storage Temperature

T&IB

-55 - +150

80

"i
.~

is

~

e

40

'"'"

~

°C

"'Value at T c=25 DC

50

'"I'"

150

100

Case Temperature Tc (t)

•

ELECTRICAL CHARACTERISTICS (T.=25 0c)
Symbol

Item
Drain~Source Breakdown

2SK413

Voltage

2SK414

Gate-Source Leak Current

V(BR)DSS

Test Condition

Io=10mA. V(j,=O

min.

typo

140

-

V

-

-

±1

p.A

-

-

1

rnA

160

max.

-

Unit
V

Gate-Source Cutoff Voltage

VGS(oJJ')

Va,=±20V. Vos=O
Vos=120V. VaS=O
Vos=140V. VaS=O
Io=1mA. Vos=lOV

2.0

-

5.0

V

Static Drain-Source On State
Resistance

R DSlon )

ID=4A. Vas=15V'

-

0.4

0.5

n

Io=4A. VGs=15V'
Io-4A. Vos-IOV'

-

1.6

2.0

V

1.0

2.0

-

800

-

S
pF

330

-

pF

-

60

-

pF

15

-

ns

35

-

ns

-

60

-

ns

-

50

ns

0.9

-

-

250

-

ns

Zero Gate Voltage Drain
Current

lGSS

2SK413
2SK414

Drain-Source Saturation Voltage
Forward Transfer Admittance

IDss

VDS(on)

Input Capacitance

IYfJ
C,,'

Output Capacitance

Coss

Reverse Transfer Capacitance
Turn-on Delay Time
Rise Time
Turn-off Delay Time
Fall Time
Body-Drain Diode Forward Voltage
Body-Drain Diode
Reverse Recovery Time

C'"
tdton )

t.
tdlo//)
tf
VDF
t"

Vos=10V. VaS=O
/=1MHz

Io=2A. VGs=15V
R L=2n
h=4A, VGs=O

IF4A, VGs=O
diF/dt=50A/ p's

*PulseTest

180

@HITACHI

V

---------------------------------------------------2SK413,2SK414
TYPICAL OUTPUT CHARACTERISTICS

MAXIMUM SAFE OPERATION AREA

0

1111

o

lOy-f

H

~

<3
'2

'"

J\
HV

.<>

,~

,

"''i'. I-- !-7'11

....

Ifl

,

~

I

9V

,

II AV
rtIJ V

IOI ... d

~

,~I

'loV

Ta=2S'C

I'-

I(f

1

6V

/'
LI I

Tc-2S'C

)

5V

2SK41:l
I I I I

2SK414

:W

ItI

So

Vas -4V

T
1UO

12

SOl)

20()

(V)

,

0

~'/J.~ ~21)V

I ','

'F

H

jjl)

Tc --=-25'C
I;

j

'U/

I'·C

1\
f-

\

i

,I- t----!,·c

1

l"'- t-- i--

"

Pulse

J
11

2

....... ~A

\

)

'I

'"

Test

I'

I-

~

2

~~

0

F"

20

STATIC DRAIN-SOURCE ON STATE
RESISTANCE VS. TEMPERATURE
1.0

Ti,~~~J,·M-

ItIV
Pulse Test

16

Gate to Source Voltage VGS (V)

FORWARD TRANSFER ADMITTANCE
VS. DRAIN CURRENT
VI>S

10-2A

12

10
Gate to Source Voltage Vas (V)

5

SA

"-

....oIW

o.

VDS

DRAIN-SOURCE SATURATION VOLTAGE
VS. GATE-SOURCE VOLTAGE

TYPICAL TRANSFER CHARACTERISTICS

.~

211

16

Drain to Source Voltage

Drain to Source Voltage Vns (V)

lf

2'·C
75'C-

r--~

Vas!15V
IfJ=jA

o.R

r---

Pulsl
Test

II.6

,

~

OA

o.2
0.2

~i'"

1/

I---'" I---"

o. I
0.00

()

0.2

0.5

10

1.0
Drain Current

20

10 (Al

-40

40

80

120

166

Case Temperature Tc (t)

~HITACHI

181

2SK413,2SK414--------------------------------------------------TYPICAL CAPACITANCE VS.

FORWARD TRANSFER ADMITTANCE

DRAIN-SOURCE VOLTAGE

VS. FREQUENCY

1000Il

300Il

Ii

1000

I

Ves

I--

I~~'~~l;iv

0

J IMHz

ti,;~

5

~

~

'"

c."

:30

e.,

r-

1l \

~

1

IIIIl

..........

"§

II

~

O. 5

~

'"

f-

e

~

em r--

II

:.::

Il. 2

o. 1

Il

111

20

41l

30

Drain to Source Vol tage

VDS

lO()k

50

1M

(V)

10M
Frequency

f

100M

(Hz)

MAXIMUM BODY-DRAIN DIODE
SWITCHING CHARACTERISTICS

FORWARD VOLTAGE
)

1II1l1l~II~mfl~
300~

J

pllse fest

6

4
ld(an)

111 _

Ii

_

2

1(L,.2~~-IlL.5LLLW1.~Il--~--L-~JJJJl~Il--~21l

1Ol:f?'!

15V

~ ~ VI -i ~::~'_1IIV
r-- .J I
V
~
0.8

1l.4

1.2

Source to Drain Voltage

Drain Current III (Al

VSD

1.6
(V)

SWITCHING TIME TEST CIRCUIT
V,. Monitor

DYNAMIC INPUT CHARACTERISTICS
2

200

VJ=lOO I"",

160

50

~1

la: V

~ !6S
V"
~
.0.

25"
120
Vns

ldV

\

0

1

WAVEFORMS
8

(

\
Obi K. .x
I"-

II

I \

VVIJ=lOOV

4

50

ID=8A

25

~

16

24

32

0

40

Gate Charge Q, (nc)

182

@HITACHI

Z.O

2SK415
SILICON N-CHANNEL MOS FET

~3.2±O,2

5.0max .
.5

HIGH SPEED POWER SWITCHING,
HIGH FREQUENCY POWER AMPLIFIER
•

FEATURES

•

High Breakdown Voltage.

•

High Speed Switching.

•

High Cutoff Frequency.

•

No Secondary Breakdown.

•

Suitable for Switching Regulator. DC-DC Con-

I

545±~tt_ko1
(Flange)

3. Source
(Dimensions in mm)

(TO-3P)
POWER VS.
TEMPERATURE DERATING

ABSOLUTE MAXIMUM RATINGS (Ta=25 0c)
Item

Symbol

Unit

Rating

121 }

VDSS

800

V

Gate-Source Voltage

Voss

±20

V

Drain Current

10

3

A

§

Drain Peak Current

ICJf.Jntlk)

6

A

0::

Drain-Source Voltage

l.OtO.2

1. Gate
2. Drain

verter. and Ultrasonic Power Oscillators.

•

2

80

§

Body-Drain Diode
Reverse Drain Current

lOR

Channel Dissipation

Pch*

80

W

Channel Temperature

T,.

150

°C

Storage Temperature

Till

A

3

i

i'-

" "' "'-

.~

-55- +150

°C

is

l

i'..

40

·Value at T,=25 C

~

150

100

50

Ca.se Temperature Tc (t)

•

ELECTRICAL CHARACTERISTICS (Ta=25 0c)
Symbol

Item

Test Condition

min.

typo

Zero Gate Voltage Drain Current

IDss

V D s=640V. VGs=O

-

Gate-Source Cutoff Voltage

VGS(Off)

lo=lmA. Vos=lOV

2.0

-

Static Drain-Source On State
Resistance

RDS(on)

lo=2A. VGs=15V'

-

5.0

Drain-Source Breakdown Voltage

ViBRIDSS

lo=l0mA. VGs=O

Gate-Source Leak Current

less

V Gs=±20V, Vos=O

800

max.

Unit

-

V

±1

p.A

1

rnA

5.0

V

6.0

n

r

Drain-Source Saturation Voltage

VDS(on)

lo=2A, VGs=15V'

-

10.0

12.0

V

Forward Transfer Admittance

IYfJ

lo=2A, Vos=20V'

0.4

0.7

Input Capacitance

C,,,

-

470

-

pF

Output Capacitance

-

120

-

pF

Reverse Transfer Capacitance

Co ....
Cm

22

-

pF

Turn-on Delay Time

tdl,m)

-

15

-

ns

Rise Time

t,

lo=2A. V Gs=15V

35

td(fJfj)

R L =15n

Fall Time

tf

-

35

Body-Drain Diode Forward Voltage

V OF

IF2A, VCis=O

-

0.9

-

ns

Turn-off Delay Time

-

t"

IF2A. VGs=O
diF/dt=lOOA/ p's

-

700

-

ns

Body-Drain Diode
Reverse Recovery Time

V D s=10V. VGs=O

/=IMHz

85

S

ns
ns
V

"Pulse Test

eHITACHI

183

2SK415----------------------------------------------------------MAXIMUM SAFE OPERATION AREA

TYPICAL OUTPUT CHARACTERISTICS
5

10

\

lO,us

iDlp~Qi>

)'~25lC

/~

·'~~i
~~'"

11)("0%)

h tv-

~,

0,

if"

I

61' :.::

I

5\"

3\JO

IOon

20

10

25

Tc; -2s,L .,

J

Pul!e

20

,.1'

~t;

"

5

r

\

h ".-t:;
f/

0

---

\
.......

5

~,

~

.......

-

lU

g

j
'E

I

~I

/

I

r-Puise Test

/

j

Ta=-25'C

/'

~

25'C

,/

j

75'C

~

./

~

Pulse Test

V

~.

0.2/

.~

e

.::

16

VG~~15~.

r-iD~2A

j



0.5

I-

II>~11A

12

0

~

1f)-2.~

STATIC DRAIN-SOURCE ON STATE
RESISTANCE VS, TEMPERATURE

i'/lS :....20V

1.0

I:l.-I_

Gate to Source Voltage Vos (V)

FORWARD TRANSFER ADMITTANCE
VS. DRAIN CURRENT

~

Te~t

II>

",

Gate to Source Voltage Vas (V)

..

(V)

\

VVS!20V

1/

VDS

DRAIN-SOURCE SATURATION VOLTAGE
VS. GATE-SOURCE VOLTAGE

>

,

50

40

Drain to Source Voltage

TYPICAL TRANSFER CHARACTERISTICS

I

4V

r(;S

'Y

Drain to Source Voltage Vvs (V)

"

-+-

......

IF.

lUO

30

10

I

L

25'C

II

0.0 1

- --~

AV

o. 1

Ll

X;4'~
.~/i

"

"<$.

0.03

,\

',.

(.loS'

"'0.,?>~')

0,3

-.!!lY-;t-

Iy. ~.., I-

~

°0 '1~",

1.<)

-~

..,

\/

Q

n,l

j
(l,u5

0.2

n,s

lJ)

10

20

Drain Current ID (A)

184

o

-40

40

80

Case Temperature Tc (t)

@HITACHI

120

160

-----------------------------------------------------------2SK415
TYPICAL CAPACITANCE VS.

FORWARD TRANSFER ADMITTANCE

DRAIN-SOURCE VOLTAGE

VS. FREQUENCY
1.0

T"
VDS

(l.S

ID

~

1l.2

25'C
20V
IA

I'

O.l
C•• -

O.DS

0.02

O.Ql

I '-II-"--'-'-0-"--8-'-"--'--1-'-2'-'---'--1-'-6'-'---'----'lOU
Drain to Source Voltage

VDS

IOllk

1M

(V)

10M

Frequency

f

100M

(Hz)

MAXIMUM BODY-DRAIN DIODE

SWITCHING CHARACTERISTICS

FORWARD VOLTAGE
,00 '---'--'--'-Tl-n-rr--,--r-TlI"TrTTl

H

~

;:;

100

3
.!!

tdloffJ

]

50

..,.....

~

~

J

"2=

'}

Cl

-

20

I

td(ul

10

5

Pul~e TeJt

1/

200

'"

f--

I
0.1

0.2

lOY

LVGI~-r

1 5V

'--

--

J- ~

to

0.5

.f Vcs=O

V('s=15V

lO

0.8

0.4

Drain Current In (A)

1.2

Source to Drain Voltage

1.6
VSD

2.0

(V)

SWITCHING TIME TEST CIRCUIT

v,. Monitor
DYNAMIC INPUT CHARACTERISTICS
20

1,000

vL-=tioL

800

~

~

\

\

~

400

"2=

Cl

k;::: ~
::1""
"p''y ~

VDS

6"0

~

~

200

I

1"-

~

K-'

I - ~ F-

,\ V
/ '\ k-\-

H
II

~

-% ~

I

VG.~

8

WAVEFORMS

Vo/) =600V

4

400

In=3A

250

16

24

32

40

0

Gate Charge Q, (nc)

~HITACHI

185

2SK416Cb),2SK416(§)
SILICON N-CHANNEL MOS FET
2.4

HIGH SPEED POWER SWITCHING.
HIGH FREQUENCY POWER AMPLIFIER

IIt ,Iii c--' iiiH....I)
~

~..

@Type

Complementary pair with 2SJ120

•

FEATURES

•
•
•

Low On-Resistance.
High Speed Switching.
High Cutoff Frequency.

•
•

No Secondary Breakdown.
Suitable for Switching Regulator, DC-DC Converter, and Bubble Memory Driver.

l.G.te
2.• 4. Drain
3. Source
(Dimensions in mm)

(DPAK)
POWERVS.
TEMPERATURE DERATING

• ABSOLUTE MAXIMUM RATINGS (Ta=25 0c)
Item

Symbol

Unit

Rating

V
V

Drain-Source Voltage
Gate-Source Voltage

Voss

40

Voss

Drain Current
Drain Peak Current

ID
i DVnakl

±20
2
4

A

Body-Drain Diode
Reverse Drain Current

IDR

2

A

Channel Dissipation

P~h*

Channel Temperature
Storage Temperature

T"

A

10
150
-55-+150

TS/II

W

°C
·C

5

Il

"- ,
"

......

~

·Value at T c=25 °C
50

10(\

~

150

Case Temperature Tc ("C)

•

ELECTRICAL CHARACTERISTICS (Ta=25 0c)

Item
Drain-Source Breakdown Voltage
Gate-Source Leak Current

Symbol

Test Condition

ViBRIDSS

10= lOrnA. VGFO

loss

V GF±20V. VDFO

min.
40

max.

-

±1
1
4.0

rnA

Unit
V
p.A

loss

Vos=35V, VGFO

VoS!ohl

lo-lmA. V Ds-I0V

1.0

-

Static Drain-Source On State
Resistance

R osc "",

[o=1A, V GFI5V'

-

0.5

0.8

n

Drain-Source Saturation Voltage
Forward Transfer Admittance

1001A, VGF15V'
1001A, V DFI0V'

-

V

0.2

0.5
0.4

0.8

IYIJ

Input Capacitance

Ci,a

-

Output Capaci~ance
Reverse Transfer Capacitance
Turn-on Delay Time

Co's

S
pF
pF

Zero Gate Voltage Drain Current
Gate-Source Cutoff Voltage

VDS(on)

V DFlOV. VGFO

J=IMHz

em

-

-

t,

1001A. VGFI5V

tt/lo/fJ

R L =30n

Fall Time
Body-Drain Diode Forward Voltage
Body-Drain Diode
Reverse Recovery Time

tl

t.

"'Pulse Test

$

HITACHI

-

-

21
0.9

-

90

-

-

IplA. VGFO
IpIA. VGFO
di Fldt=50A/ p's

V DF

170
160
30

-

-

td(on'

Rise Time
Turn-off Delay Time

186

-

typo

7
18
14

V

pF

ns

ns
ns
ns
ns
V

-------------------------2SK416
MAXIMUM SAFE OPERATION AREA

CD,

2SK416

®

TYPICAL OUTPUT CHARACTERISTICS
~

!'i
3

;~

2

~V-

\

f--=ao /.~,

-

J--t

t--

....

,'-'04'.'

V
1

'

0.2 1--++I-+++tt---+-HI-++t-t+t----1

t--

9J -

,- - --

\ 1-.

'1/

r--

-- --

: i)( -

II'if

-~=

1'('=25'C

VUV

,- t

J

..... ~

6V

Vcs=5V
0.1 L-...L.....L..L.L.LJ...U-_-'-_L......JLL..J....l-UL----,J
HI
20
50
W()
20D

16

Drain to Source Voltage Vns (V)

DRAIN-SOURCE SATURATION VOLTAGE

TYPICAL TRANSFER CHARACTERISTICS
4

~L~

0=

It\,

VS. GATE-SOURCE VOLTAGE
\

W

Puls~ TI>st

/'

:l

h·· -25'C~

>-2]"C

IJI-

.,

"

l

f-75 C

J

2

_"'2,\

I

1

~

V
16

12
VGS

20

-'25\'

1.0~~~

j

O.5~
0.2

~

\I

I"- t16

12
VGS

.,_II

(V)

STATIC DRAIN-SOURCE ON STATE
RESISTANCE VS. TEMPERATURE
0

T" _.

f'. r.....

Gate to Source Voltage

=lOV

PuIsI.' Test

J..\

,,1'-..l"'I"

(V)

FORWARD TRANSFER ADMITTANCE
VS. DRAIN CURRENT
rlJ.~

1[)=O.5.-\

1

Gate to Source Voltage

';>\

20

Drain to Source Voltage Vns (V)

~

r--L~l5V
l,v=l'i

o.H

25'C

f-"'+++~+H+t-_7+5'(_:+-t-t-t-ttt+-----!

II.6

O. ~

Pulse Test

---

~

~

O. 2

O.02(L,.2,---JLJ""0l:.S-LJ.-'-':'I.c,-O---':--L-'-!:...LJ-U1"'O--:!2U

II

-4U

40

80

120

160

Case Temperature Tc (t)

Drain Current In (A)

~HITACHI

187

2SK416 (9. 2SK416

®------------------------

TYPICAL CAPACITANCE VS.
DRAIN-SOURCE VOLTAGE

FORWARD TRANSFER ADMITTANCE
VS. FREQUENCY

1000
t'I;S

0

'"

:s.

200

......

....

1(' )

--

~

('m

j

c_

i....

10

50

'E

It,

C!JI

r--

20

-

I

I

0.2

0.1

0.05

tl:

VDS

\l.ll::!

~

40

30

Drain to Source Voltage

0,01
lOOk

50

100M

1M

Fnquenc,

(V)

f (Hz)

MAXIMUM BODY-DRAIN DIODE
FORWARD VOLTAGE

SWITCHING CHARACTERISTICS
50. I

r
PulJe Te!t

21M.)

!

lO')
l

I

I

50

--

~'f
2' )-W_m

t.
)

I--lJtoo)

5
0.1

0.5

0.2

i

>

i
lOV

1.0

Drain Current ID (A)

10

15\"

~ r

-:?-.:;/

~ -..)
0.4

O.M

os =(j

v," =i 101'

I
l.b

Source to Drain Voltage VSD (V)

SWITCHING TIME TEST CIRCUIT
v;~

Monitor

DYNAMIC INPUT CHARACTERISTICS
20

50

/ /
ID=2A

Ves

40

;!;

I"VDD=10

.30

e

20

r\ / /

10

!\ V

1\

c

'E

CO

/ A

VDS

~

~

1

1/

2:
j

7i'.

V

I

'25

WAVEFORMS

VDD=25V
4

\k1O

.....

.......
10

0

Gate Charge Q, (ne)

188

25·C
In\"
lA

~

.........
)

v"s

n.;;

..

.\

~

1.0gllllm
1'e

/-IMHz
500

~HITACHI

:w

2SK428
SILICON N-CHANNEL MOS FET
HIGH SPEED POWER SWITCHING,
HIGH FREQUENCY POWER AMPLIFIER
Complementary pair with 2SJ 122
•

FEATURES

•

Low On-Resistance.

•

High Speed Switching.

•

High Cutoff Frequency.

•

No Secondary Breakdown.

•

Suitable for Switching Regulator, DC-DC Con-

1. Gate
2.Drain
(Flange)

:i. Source
(Dimensions in

mm~

(JEDEC TO-220AB)

verter. PWM Amplifiers. and Ultrasonic Power
Oscillators.

•

POWER VS.

ABSOLUTE MAXIMUM RATINGS (T.=25 °C)

TEMPERATURE DERATING

Item
Drain-Source Voltage

Symbol

Rating

Unit

VDSS

60

Gate-Source Voltage

VGSS

±20

V

Drain Current

ID

10

A

Drain Peak Current

ID(peakl

15

A

Body-Drain Diode
Reverse Drain Current

IDR

10

A

Channel Dissipation

P,h*

50

W

Channel Temperature

T"

150

°C

Storage Temperature

-55 - +150

TSlk

6{ )

V

40

20

""-

~

°C

~

*Value at T c=25 °C
.100

50

~

150

Case Temperature Tc (t)

•

ELECTRICAL CHARACTERISTICS (T.=25 °C)
Symbol

Item

Test Condition

min.

typo

max.

Unit

Drain-Source Breakdown Voltage

~BR)DSS

ID=1OmA. Vc;s=O

60

-

-

V

Gate-Source Leak Current

lass

VGs=±20V. VDS=O

-

-

±1

p.A

-

Zero Gate Voltage Drain Current

lDss

V Ds=50V, VGs=O

rnA

VGSloff)

ID=lmA, VDs=1OV

2.0

-

1

Gate-Source Cutoff Voltage

5.0

V

Static Drain-Source On State
Resistance

RDS(on)

ID=5A, VGs=15V·

-

0.1

0.15

!l

Drain-Source Saturation Voltage

VOS(on)

Io=5A, VGs=15V·

-

0.5

0.75

V

Forward Transfer Admittance

IYfJ

I D=5A, V Ds=10V·

1.5

2.2

Input Capacitance

e,..

-

900

Output Capacitance

Co..

-

55

-

-

65

-

ns

h=5A, VGs=O

-

0.9

-

V

I,=5A. VGs=O
diF/dt=50A/p.s

-

300

-

ns

Vns=1OV, V(;s=O
f=lMHz

Reverse Transfer Capacitance

C...

Turn-on Delay Time

td(on)

Rise Time

t.

I D=2A, Vc;s=15V

Turn-off Delay Time

td(ofj)

R L =15!l

Fall Time

tf

Body-Drain Diode Forward Voltage

V DF
t"

Body-Drain Diode
Reverse Recovery Time

-

700

-

120

-

15
45

S
pF
pF
pF
ns
ns
ns

*Pulse Test

@HITACHI

189

2SK428-----------------------------------------------------TYPICAL OUTPUT CHARACTERISTICS

MAXIMUM SAFE OPERATION AREA
0

0

I
0

o

I

I

r!!1(!!f

,-1-1:
,
/q;

I

A;=E/,

a~~?04',..."

6

,

4

~?$' ,
C>

9V

HV

;y
-~

]\~

0

- r---

-- ---

r-'~O4'
" "- ...

.,Q

_~Qf/> t',
2

-1--

\\

1/

""<1'0..

16

24

32

0
40

Gate Charge Q, (ne)

~HITACHI

191

2SK429Cb),2SK429C§)
II I"

'SILICON N-CHANNEL MOS FET
2,4

h
"."

['-'
~..

1111)
...
~:J

HIGH SPEED POWER SWITCHING
HIGH FREQUENCY POWER AMPLIFIER
•

FEATURES

•

Low On-Resistance.

•

High Speed Switching.

•

High Cutoff Frequency.

•

No Secondary Breakdown.

•

Suitable for Switching Regulator and
DC-DC Converter.

•

12

1.
Gate
2.,4. Drain
3.
Source
(Dimensions in mm)

(DPAK)

POWERVS.
TEMPERATURE DERATING

ABSOLUTE MAXIMUM RATINGS (T.=25 0c)
Item

Symbol

Rating

Unit
30

Drain-Source Voltage

Voss

100

V

Gate-Source Voltage

VGSS
10

±20

V

Drain Current

3

A

~

Drain Peak Current

I,.,.."

6

A

c::

lOR

3

A

Body-Drain Diode
Reverse Drain Current
Channel Dissipation

Pch*

Channel Temperature

T"

Storage Temperature

T.tll

20

B

20

W

150

DC

-55-+150

i

"e

f'

"

is

0

DC

.......

"-

*Value at Tc=25°C
100

50

•

ELECTRICAL CHARACTERISTICS (T.=25 °C)
Symbol

Item

Test Condition

min.

typo

'"

150

Case Temperature Tc (t:)

max.

Unit

100

-

-

V

-

-

±l

poA

1

mA

4.0

V

0.5

0.7

n

1.0

1.4

V

Drain-Source Breakdown Voltage

V(BRIDSS

lo=l0mA. VGFO

C:;ate-Source Leak Current

IGSS

VGF±20V. VoFO

Zero Gate Voltage Drain Current

loss

VoFBOV. VGFO

Gate-Source Cutoff Voltage

VG~o1I1

lo=lmA. VoFI0V

1.0

Static Drain-Source On State Resistance

RDSf.tHt'

lo=2A. VGFI5V'

Drain-Source Saturation Voltage

VDS(onl

Io=2A. VGFI5V'

-

Io=2A. V oFI0V'

0.5

0.9

-

S

-

2BO

-

pF

150

-

pF

24

ns

30

-

20

-

ns

O.B

-

V

200

-

ns

Forward Transfer Admittance

IYIJ

Input Capacitance

C",

Output Capacitance

CO"

Reverse Transfer Capacitance

em

Turn-on Delay Time

tdCOIII

Rise Time

t,

Turn-off Delay Time

t~o1I1

Fall Time

tl
V OF

I.=2A. VGFO

-

t"

1,-2A. VGs-O
ditldt=50A/ pos

-

Body-Drain Diode Forward Voltage
Body-Drain Diode
Reverse Recovery Time
0

VoFI0V, VGFO,f=IMHz

Io=2A. VGFI5V. R L =15n

Pulse Test

192

•

HITACHI

10
25

pF
ns
ns

;

0.02

III

.~l()

IlK)

.~()

Drain to Source Voltage

VDS

5V

"'4\'

10

12

HHlIl

6V

20

Drain to Source Voltage Vvs (V)

(V)

DRAIN-SOURCE SATURATION VOLTAGE
VS. GATE-SOURCE VOLTAGE

TYPICAL TRANSFER CHARACTERISTICS

I

/I
h

= -- 2~"(' t---- ','/

Pulse Test

I

'(J
'""

,

I

",'C

__ "A

/J

__ 21

"- _1~=IA

-

~ ........
1<1

Gate to Source Voltage

VGS

(V)

1.11 r----,--,-----,--,----,--,----,--.,----,--,

0 ..\

t----

---

J
lr

J
-

~

n.1l

I

V
0.61---+-+---+--1--""""-+--+-+--+---1

~
il- 2

-i'~=2A,

,

25'C.'---7.1"('

vL=,l\' --+-!-+--+-t-+--t-----1

9

I

t--

_II

"

STATIC DRAIN-SOURCE ON STATE
RESISTANCE VS. TEMPERATURE

\ ~--IA_IIII
b~-__ -JI

Pulsl' ,Tt'si

I;

12

Gate to Source Voltage Ves (V)

FORWARD TRANSFER ADMITTANCE
VS. DRAIN CURRENT

\',;,=\III!

]-

~

/

f

o. I

Pulse Test

v
,//

.."./

0.4

f----1'::::"'+--+-+--+-+--+-+--+-"

11.2

f--+-+--+-+--+-+--+-+--+-"

~

:,

~

n.n5

.~

0.02

'"
0.2

0.5

1.0

10

20

Case Temperature Tc (t)

Drain Current III (A)

~HITACHI

193

2SK429 ©, 2SK429 ® - - - - - - - - - - - - - - - - - - - - - - TYPICAL CAPACITANCE VS.

FORWARD TRANSFER ADMITTANCE
VS. FREQUENCY

DRAIN-SOURCE VOLTAGE

0

W!X1t1

~~s

VGS-O

f IMHz

2m

~!J 2A

5

3(1)(1

'"

"
I

t;:: IOO/.1
.8
1

'\

........

II

r-. t--

2

c,.1--

j

c_

1
.... o.

0

5

'E

~

~

1

........

c_
II1

o

HI

211

411

30

Drain to Source Voltage

VDS

o.2
o. 1

&1

MAXIMUM BODY-DRAIN DIODE

5" 1

5

200

4

100

"r

)~td'.Jj)

2

~

I..-- f-""

I-"

I

tJ(~.)

II

A

ltV . . . 11ft
r- r- IOV I'---- HVcs=OV
5~-.., ~

#

~

~~

5
O.t

0.2

10

1.0

0.5

0.4

'(/

, Ves =-lOV

./

0.8

1.2

Source to Drain Voltage

Drain Current In (A)

PuIs! Test

J
II

3

Of-I,

J (Hz)

Frequency

SWITCHING CHARACTERISTICS

5

100M

10M

1M

lOOk

(V)

1.6
VSD

(V)

SWITCHING TIME TEST CIRCUIT
Vi. Monitor

DYNAMIC INPUT CHARACTERISTICS
100

V"

2:

VDD=SPV",-

~

~

:g

1\
\
\

60

i'!

JJ
0

"2"

Q

VGS

80

40

25

V

..,> ~

50

2

1

1

/. ~

/ '§

8

~

\\
o I 1\ \
X~
II "- ?S-.: t-.....
H

I~ ~
I/. ~
~

VDD=80V
4
iD=3A

12

16

0

20

Gate Charge Q, (nc)

194

eHITACHI

WAVEFORMS

2.0

2SK430CQ,2SK430C§)
SILICON N-CHANNEL MOS FET

•

til"
""}
ti
t:i

'.J
0.8

C

=(}

l'r=-r
I

5L'>< ~

v

I

1.6

1.2

Source to Drain Voltage

VSD

2.tJ

(V)

SWITCHING TIME TEST CIRCUIT

v.• Monitor

DYNAMIC INPUT CHARACTERISTICS
200

~

~

~V

res
160

~

:l:

~

80

'2

""\
'!'"

'"
40

N. \.

1 U-

1

~ >(- :::-1 DD=lOOV
~~5.0
ij: /
25

rlls

Jl

1

,I'

~,I'

120

~

2

~

WAVEFORMS

L. Y

Vvn=IOO
50

ID=3A

25

II ~ :a...
12

16

20

o

Gate Charge Q, (nc)

~HITACHI

197

2SK440
SILICON N-CHANNEL MOS FET
HIGH SPEED POWER SWITCHING
HIGH FREQUENCY POWER AMPLIFIER
•

FEATURES

•

Low On-Resistance.

•

High Speed Switching.

•

High Cutoff Frequency.

•

No Secondary Breakdown.

•

Suitable for Switching Regulator and
DC-DC Converter.

1. Gate
2. Drain
(Flange)
3. Source

(JEDEC TO-220AB)

(Dimensions in rom)

•

POWERVS.
TEMPERATURE DERATING

ABSOLUTE MAXIMUM RATINGS (T.=25 0c)

Item
Drain·Source Voltage

Symbol

Rating

Voss

200

Gate-Source Voltage

Vass

±20

Drain Current
Drain Peak Current
Body-Drain Diode
Reverse Drain Current

10
I""",,,

Unit
V

6
12

V
A
A

lOR

S

A

Channel Dissipation

Peh*

40

Channel Temperature
Storage Temperature

T"

W
°C
°C

0

~
.;:

4u

6

l
is

150
-55-+150

T.ug

0

'"

"- .....
........

r--.....

~

*Value at T c =25 °C

150

100

50

Case Temperature Te ('C)

•

ELECTRICAL CHARACTERISTICS (T.=25°C)

Item
Drain-Source Breakdown Voltage

VtSRIDSS

Symbol

Gate-Source Leak Current
Zero Gate Voltage Drain Current

loss

lass

Gate-Source Cutoff Voltage

VGSlofl)

Static Drain-Source On State Resistance
Drain-Source Saturation Voltage

R DS1 _>
VDStoll1

Forward Transfer Admittance

IYf.1

Input Capacitance
Output Capacitance

Ci.fS

Reverse Transfer Capacitance
Turn-on Delay Time

Cm

RiseTime
Turn-off Delay Time
Fan Time
Body-Drain Diode Forward Voltage
Body-Drain Diode
Reverse Recovery Time

Test Condition
Io=10mA. VGs=O
VGs=±20V. Vos=O
Vos=160V. VGs=O
Io=lmA. Vos=10V
Io=3A. VGs=15V'
Io=3A. VGs=15V'
Io=3A. Vos=I0V'

-

typo

max.

Unit
V

-

-

-

±1

IlA

-

1

rnA

V

2.0

-

5.0

-

0.4

0.5

.0

-

1.2

1.5

V

1.0

1.8

-

-

750

-

S
pF

-

300

-

pF

60

-

pF

td(OIII

-

15

t,

-

25

ns
ns

-

70

-

40

-

-

0.9

-

ns
V

-

300

-

ns

COD

tdtoffl
tf
Vo,
t.

Vos=lOV. VGs=O,f=IMHz

Io=2A. VGs=15V. R L=15.o

I,=3A, VGs=O
I,=3A, VGs=O
di,/dt=50A/ ""

*Pulse Test

198

min.
200

@HITACHI

ns

---------------------------------------------------------2SK440
TYPICAL OUTPUT CHARACTERISTICS

MAXIMUM SAFE OPERATION AREA

10

100

IIIV

Ta 25'C

-

.J~~~

10

=.!tH ..

~

~

Q

I~~~r/>

.~

c

1.0

"",

'"

'~""4' ~

V
A

IOlllrukl

12
20

lOR

12

Channel Dissipation
Channel Temperature

P""

125

Storage Temperature

T...

Drain Peak Current
Body-Drain Diode
Reverse Drain Current

T",

A

ISO

0

~

A

'"

i'"

W

150
-55-+150

°C

°C

·Val ue at T c=25 0 C

'"I'"

50
100
Case Temperature Tc (t;)

•

ELECTRICAL CHARACTERISTICS (T.=25°C)

Item
Drain·Source Breakdown Voltage
Gate-Source Leak Current
Zero Gate Voltage Drain Current
Gate·Source Cutoff Voltage
Static Drain-Source On State Resistance

Symbol

Test Condition

min.

typo

max.

Unit

VG$loff)

Vos=400V. VGFO
Io=lmA. VoFI0V

2.0

-

R DS1 • n,

Io=6A. VGFI5V'

-

0.55

0.65

n

V

Io=6A. VGs=15V'
I0=6A. Vos=lOV'

-

3.9

-

3.3
3.5
1800

V
S
pF

-

400

-

-

-

50
20
45

-

230
70

-

ViPIDS!

loss

loss

Drain·Source Saturation Voltage
Forward Transfer Admittance
Input Capacitance

ly,,1

Output Capacitance

Cou

Reverse Transfer Capacitance
Turn-on Delay Time
Rise Time

em

DJlOIJ '

Io=10mA. VGs=O
VG,=±20V. VoFO

C..
VoFlOV. VGFO./=IMHz

td(0II1

500

-

2.5

-

ISO

±1
1
4.0

-

V
p.A
rnA
V

pF
pF
ns
ns

Turn-off Delay Time

t.
tdjq[J)

Fall Time
Body-Drain Diode Forward Voltage

t,
V OF

Ip6A. VGFO

-

1.0

-

V

t"

Ip6A. VGs=O
di Fldt=100AI p.S

-

400

-

ns

Body-Drain Diode
Reverse Recovery Time

Io=2A. VGFI5V. R L=15n

~

·PulseTest

204

~HITACHI

ns
ns

---------------------------------------------------------2SK512
MAXIMUM SAFE OPERATION AREA

TYPICAL OUTPUT CHARACTERISTICS
()

15

\

TC~25'C

6

\

10_

\
~~

2

,-

~ ~ ".,

A.~

"
'~

..

;/. /"
/'

-

" ..."

~ ~~

8

-

_2

-

'I
......SlOJl)

ID=2A. VGs=15V*
1o=2A. VGs=15V*

-

10.0

12.0

V

Forward Transfer Admittance

IYf.1

ID=2A. Vos=20V'

0.4

0.7

Input Capacitance

C;:ss

470

COSI

-

pF

Output Capacitance
Reverse Transfer Capacitance

G,ss

-

Turn-

-

85

Fall Time

tf

-

35

Body-Drain Diode Forward Voltage

VDF

h=2A. VG,=O

-

t"

h=2A. VGs=O
di F/dt=lOOA/ p's

-

l'tBRIDSS

Gate-Source Leak Current

IGSS

Zero Gate Voltage Drain Current
Gate-Source Cutoff Voltage

Body-Drain Diode
Reverse Recovery Time

I D=lOmA. VGs=O

Vos=10V. VGs=O.j=IMHz

ID=2A. VGs=15V. R,=15n

800

120

-

Unit

-

Drain-Source Breakdown Voltage

V

±1

p.A

S
pF
pF

0.9

-

700

-

ns

22

ns
ns
ns
ns
V

·Pulse Test

@HITACHI

207

2SK513-------------------------------------------------------MAXIMUM SAFE OPERATION AREA

TYPICAL OUTPUT CHARACTERISTICS

Ta

0.01

25'C

L-L.L.Lll..L11L-J..-:'c-.LUIII.w.lIIIII::--'-:c'~
10
30
lOO
300
1000
Drain to Source Voltage

VDS

Drain to Source Voltage

25

,
"

3

it. L

;J
~

I- ~

\

0

~

\

\

(V)

:1-

r--

2_

-

10

111
VGS

VDS

r-....

5

~"
j:III'"

Gate to Source Voltage

4V

25'C

V/

1

Ves

411

"......

)

,"
2

_

\

Tc=~25"('....

!

___

DRAIN-SOURCE SATURATION VOLTAGE
VS. GATE-SOURCE VOLTAGE

V/J~ !20\'

u

_

30

20

10

(V)

TYPICAL TRANSFER CHARACTERISTICS
5

604-

I

1111111

0.03

111

--,-

~

o.IM_ _

15

Tc=2S'C

,,

IA

20

12

(V)

Gate to Source Voltage Ves (V)

FORWARD TRANSFER ADMITTANCE

STATIC DRAIN-SOURCE ON STATE

VS. DRAIN CURRENT

RESISTANCE VS. TEMPERATURE
0

VDS

VC}15V

-20V

t-/'= 2A

;;;

"~

.§
:\!

i
E--

J

IL
/

Ta=-2S'C

1.0

/

6

2S'C
(l.5

V

75'C

./

4

V

0.,/
2
0.1

0.05 0.2

0
0.5

l.{l

10

40

20

40

80

Case Temperature Tc (t)

Drain Current Iv (A)

208

J

Pul'se Trs!

8

@HITACHI

120

160

---------------------------------------------------------2SK513
TYPICAL CAPACITANCE VS.
DRAIN-SOURCE VOLTAGE

FORWARD TRANSFER ADMITTANCE
VS. FREQUENCY
1.0

10000
0

Ves

3000

0.5

I

1000

~

'"
~

!

C...

=

i\

300

!
j

I

\.

100
30

'\.

10

......

I
C.,::::

I
40

120
Drain to Source Voltage

100
VDS

o. 1
0.0S

1
....

o

"'- ['\

0.2

~

C., ___

1

Tc 2S'C
VDS 20V
ID lA

f IMHz

0.02

0.0 1
HlOk

200

Frequency

SOO "'--"'-'''''TT''TT1rr--''''''''''''''''''''''TTTI

/I

200

1<1(-111

1
1

l

;::
to

50

...,

i

20

-

t.

~

tI

tJlul

10

S

Pul~e Te~t

3
!

]

~

f (Hz)

MAXIMUM BODY-DRAIN DIODE
FORWARD VOLTAGE

SWITCHING CHARACTERISTICS

100

100M

10M

1M

(V)

Vcs=15V
1--

IOV

I

I SV

~

I

~~...JJVGS=O
I

LVT-r

J-VI
0.1

0.2

O.S

0.4

10

1.0

Drain Current 10 (A)

0.8

1.2

Source to Drain Voltage

1.6
VSD

2.0

(V)

SWITCHING TIME TEST CIRCUIT
V,~

Monitor

DYNAMIC INPUT CHARACTERISTICS
2

1.000

vtJv

800

I"

2:
;§:

~

~
1:;:

 Q

7

\
.0

,"~

''b''o

~

lU. ~t({11'4
~"""",.

E:

0 ...../

I"~

,IlL

~

10",,-,;.,

0.5

r" \
\

II
VII
if

6

....

c~

5-

<'", •

.e>

I

n.l
30

10

30()

IOU

Drain to Source Voltage

VDS

vL~20IV

1,000

10

~

J

30

40
VDS

50

(V)

DRAIN·SOURCE SATURATION VOLTAGE
VS. GATE-SOURCE VOLTAGE

"

r/"{
[A·C
/I

\,

I........

6

,

III

r-

5..1.

2

,

J
II

2

20

Drain to Source Voltage

lC~-25'1//

3

Vr.s -4V

(V)

TYPICAL TRANSFER CHARACTERISTICS

,

r-

I

0.2

0.0 5

...

2A

I'
4

I

1.1

["

JA

~,.

STATIC DRAIN-SOURCE ON STATE
RESISTANCE VS. TEMPERATURE

5

0

r--

I III

VYs=:WV

Pulse Test

r---

III
~-~rc
~

2

1. 0

.~

1

2

Vc;sLlOV
ID=3A

8

6

75'C

./1'"

25'C

:li! o. 5

j

:w

Gate to Source Voltage Vas (V)

FORWARD TRANSFER ADMITTANCE
VS. DRAIN CURRENT

j

16

12

10
Gate to Source Voltage Vas (V)

V

./

4

L

0

0.05
0.2

L

2

o. 1

0
(l,S

1.0

10

20

40

/"

IL'

V
40

80

120

160

Case Temperature Tc (t)

Drain Current ID (A)

~HITACHI

211

2SK534----------------------------------------------------------TYPICAL CAPACITANCE VS.
DRAIN-SOURCE VOLTAGE

FORWARD TRANSFER ADMITTANCE
VS. FREQUENCY
0

Ves
10000m_~
f 1M Hz

Tc 25'C

0

VDS 20V
I, 2A
3

3<)00

C; .. I--

1000

I

~

j

<.)

j

j

300

t

100

--

30

0

10

30

20

40

"

0.1

J

0.03

e...

Drain to Source Voltage

o. 3

j

...... 1c ...

10

0

0.01
lOOk

50

1M

10M

MAXIMUM BODY-DRAIN DIODE

SWITCHING CHARACTERISTICS

FORWARD VOLTAGE
10

500

-

Idl·JI)

200

I
II

~

1

,.

0

I

3

r- . . .

]: 10
0="

100M

Frequenoy J (Hz)

(V)

VDS

W

c

~
~

~

0
tdlo.l

A

II

5V
r- Vcs=lOV
15V

-~r

~'GS =0
Vcs=-lOV

rI

0

5
0.1

0.2

0.5

I.

k:7'

10

1.0

0.4

Drain Current ID (Al

1.2

Source to Drain Voltage

VSD

(V)

SWITCHING TIME TEST CIRCUIT
Vi~

Monitor

DYNAMIC INPUT CHARACTERISTICS
1.000

JV

VGS
800

~

VDS

600

0

200

AK

\

\
\tii'
II t-:

/,

~

~

2

I

I

r"VDv=600V

/.'1/ I~ 1"'-400

u.-

WAVEFORMS

250

VDD=600V
400

ID=5A

250

I..\.

0

20

40
Gate Charge

212

60

80

q,. (nc)

@HITACHI

2.0

2SKS3s(b),2SKS3S(§)
SILICON N-CHANNEL MOS FET
2.4

\. ltJ.

C:l

HIGH SPEED POWER SWITCHING
FEATURES

•

High Speed Switching.

•

High Cutoff Frequency.

•

No Secondary Breakdown.

•

Suitable for Switching Regulator and Ultrasonic

..,

'"
1.
Gate
2.• 4. Drain
3.
Source
(Dimensions in mm)

Power Oscillators.

(DPAK)

POWERVS.
TEMPERATURE DERATING

ABSOLUTE MAXIMUM RATINGS (Ta=25 0c)
Item

Symbol

Unit

Rating

Voss

400

Gate-Source Voltage

Voss

±20

V

Drain Current

ID

1.5

A

Drain Peak Current

ID(peQkl

3.0

A

Body-Drain Diode
Reverse Drain Current

ID•

1.5

A

Channel Dissipation

P"h'"

20

W

Channel Temperature

T"
Ts1g

Drain-Source Voltage

Storage Temperature
*Value at T('=25

I!)Type
2.3

•

•

llJ

0

V

DC

150
-55-+150

"

"-I'-...

"

DC

°c

" '"

100

50

150

Case Temperature Tc (t;)

•

ELECTRICAL CHARACTERISTICS (Ta=25°C)
Symbol

Item
Drain-Source Breakdown Voltage

VI.RIDSS

Gate-Source Leak Current

loss

Test Condition

ID=1OmA. Vas=O

min.

typo

400

-

-

-

-

±I
100

2.0

-

4.0

IJA
V

4.0

6.0

n
V

max.

Unit
V
IJA

Zero Gate Voltage Drain Current

loss

Gate-Source Cutoff Voltage

VGSlQbl

VGs=±20V. VDs=O
VDs=320V. VGs=O
ID=lmA. VDs=1OV'

Static Drain-Source On State
Resistance

RDS/,on,

ID=IA. VGs=15V'

-

ID=lA. VGs=15V'
ID=IA. VDs=20V'

-

4.0

6.0

0.2

0.4

-

S

-

250

-

pF

-

55

pF

1.0

-

-

400

-

ns

Drain-Source Saturation Voltage

VDSlonl

Forward Transfer Admittance

IYf,1

Input Capacitance

C,,,

Output Capacitance

C."

Reverse Transfer Capacitance

em

Turn-on Delay Time

td(OII)

Rise Time

t,

Turn-off Delay Time

t",oIfI

Fall Time

tf

Body-Drain Diode Forward Voltage

VDF

J.=IA. VaS=O

t"

IplA. VGs=O
di F/dt=100A/ IJS

Body-Drain Diode
Reverse Recovery Time

VDs=lOV. VGs=O
f=IMHz

ID=lA. VGs=15V
R,=30n

10

8

12
30
15

pF
ns
ns
ns
ns
V

·Pulse Test

~HITACHI

213

2SK535 (D,2SK535

@-----------------------TYPICAL OUTPUT CHARACTERISTICS

MAXIMUM SAFE OPERATION AREA

,.

0

_T,
3

1.0

.-

lOllS

--t,DlPU.\-1

~

I',

~

_~'I1""'-~:§;;'(;J4,

"<'

(J~~''''~

.~

6

11

Q

~

.!!

8

~.<:,

<

o. 1

'~. ~

I?

,~

<-- 6

J.

o. 8

<

:.-

~

~

~

8

II

,

3

l/oS'
~00.

o?"'/~

~ o. 3~';
~

,

15/'\

~"'"
.$'~t~<:>"e.

~

0

25'C

II

'S

Q

5
0.4
0.0

I

3

~'GS

II
0.0 1
10

300

100

30

Drain to Source Voltage

VDS

Drain to Source Voltage

TYPICAL TRANSFER CHARACTERISTICS

,.

0

vJ,=,Jv

Tc=-'5·C I

.!!

1.2

1

0.8

c

~

i/J. >-

,

'0
1-'5·7

I

\

75'Cl

IJ//

\

V

~-

I
II

,

o. 4

20

(V)

VDS

DRAIN-SOURCE SATURATION VOLTAGE
VS. GATE-SOURCE VOLTAGE

(/

II/.--

1.6

l'

1,000

(V)

4\'

16

,

-

I'-

-

1

\

J

-

Io=O.5A

~

""'"

12

10

Gate to Source Voltage

VGS

(V)

VGS

(V)

FORWARD TRANSFER ADMITTANCE
VS. DRAIN CURRENT

STATIC DRAIN-SOURCE ON STATE
RESISTANCE VS. TEMPERATURE

5

0

Vns~20V

2

j

16

Gate to Source Voltage

VGS!15V
ID=lA

8

/

/

1.0

T,

j

6

'5·<:,-

0.5

1l

0.2

. ..&;~

1\

~

/'

25'C

4

751C \

,

~

/

...... .......

o. 1
0.05
0.05

0

0.1

0.'

0.5

-40

1.0

214

40

80

Case Temperature Tc (t)

Drain CUrrent 10 (A)

~HITACHI

120

160

- - - - - - - - - - - - - - - - - - - - - - - - 2 S K 5 3 5 (0,2SK535
TYPICAL CAPACITANCE VS.
DRAIN-SOURCE VOLTAGE

~

FORWARD TRANSFER ADMITTANCE
VS. FREQUENCY

1000

Vcs 0
f IMHz

Tc

C,,'

300

2S"C

I--+-+t-++++++-+-+-++++++!--I-j:~o.~~v
§
1.0

~

o~
10

ii:

j

."

oi

\.

j

j

0.2

~

0.1

1

~

0

0.5

j

u

"\

0.05

1!

j

'"

3

0.02
0.01

I

0.005

20

III

.:10
VDS

lOOk

50

40

Drain to Source Voltage

J (Hz)

MAXIMUM BODY-DRAIN DIODE
FORWARD VOLTAGE
2. 0

100

-

50
t~Io1f)

20

;;::;

"

'I
~

6

r-....

r::::;;

I

2

,

II/(u)

"

I-0.'

I

1O~1,

-r t\
J

Vcs ~!V

YJ.
.J.-.I=:d!l ~
0.1

0.2

0.4

1.0

0.5

Drain Current ID (A)

I

/J

8

I
0.05

100M

10M
Frequency

SWITCHING CHARACTERISTICS

_

1M

(V)

L.---

0.8

VGs=O

VCSt -I~V

1.6

1.2

Source to Drain Voltage

VSD

2.0

(V)

SWITCHING TIME TEST CIRCUIT
V.R Monitor

DYNAMIC INPUT CHARACTERISTICS
500

~

vvv=1300V
400

200

100

~

a

l&:V
v

v
a
v
a

I

1\
h- ~ V

200

I

Vcs

~I'

v.,
300

2

WAVEFORMS
8

/\ \ .....-290
I \Y
'(\

.-- VDD~3OOV

100

4

ID=3A

100

II

I

12

16

0
20

Gate Charge Q, (nc)

~HITACHI

215

216

~HITACHI

@HITACHI

217

2SK549
SILICON N-CHANNEL MOS FET
HIGH SPEED POWER SWITCHING
•

FEATURES

•

Low On-Resistance.

•

High Speed Switching.

•

Low Drive Current.

•

No Secondary Breakdown.

2. Drain

•

Suitable for Switching Regulator,

3. Source

I. Gate

(Flange)

DC-DC Converter, Motor Controls, and Ultrasonic

(JEDEC TO-220AB)

(Dimensions in mm)

Power Oscillators.

•

POWERVS.
TEMPERATURE DERATING

ABSOLUTE MAXIMUM RATINGS (T.=25 °C)

Item
Drain-Source Voltage

Symbol

Rating

Unit
V

60

VDSS

Gate-Source Voltage

VGSS

Drain Current

ID

Drain Peak Current
Body·Drain Diode
Reverse Drain Current

iDl,pullt}*

Channel Dissipation

P ••

Channel Temperature
Storage Temperature

T"

60

V

±15
10

A

40

A

~

I

0:

40

§

10

IDR

"

T~rfl

50
150
-55-+150

A

1

W

1
6

°C

~

20

'"""

I'"

""I""

°C

·PWSlO.s, duty cycle$l%
·*Value at Tc=25 °C

100

50

150

Case Temperature Tc ("C)

•

ELECTRICAL CHARACTERISTICS (T.=25 0c)

Item
Drain-Source Breakdown Voltage
Gate-Source Breakdown Voltage
Gate-Source Leak Current

Symbol

Test Condition

min.

typo

60

-

IG=±lOOI'A, VoFO

±l5

VGF±12V. VDFO

-

-

Vi.R)DS$

I D=10mA, VGFO

VIBRIG!S

lass

max.

-

Unit
V
V
I'A

Zero Gate Voltage Drain Current

lDss

VDF50V. VGFO

-

-

±10
250

Gate-Source Cutoff Voltage

VG~o.D)

lo=lmA. VDS=lOV

2.0

-

4.0

I'A
V

Static Drain-Source On State
Resistance

RDSlofll

lo=5A. V Gs=lOV'

-

0.1

0.15

n

Forward Transfer Admittance
Input Capacitance

Iy/.!.

lo=5A. VoFlOV'

3.0

5.0

-

S
pF

Output Capacitance

C.P

700
400

Reverse Transfer Capacitance
Turn-on Delay Time

C'"

ns

28

td(on)

-

RiseTime
Turn-off Delay Time

t,

-

40
55

Fall Time

t/
V DF

IFlOA. VGFO

-

1.2

-

t"

IF10A, VGFO
diF/dt=50A/ I's

-

200

-

Body-Drain Diode Forward Voltage
Body-Drain Diode
Reverse Recovery Time

Ci.u

VoF10V. VGFO.j=lMHz

I D=5A, VGs=lOV R L=6n

td(ofj)

·PulseTest

218

~HITACHI

-

-

15

45

pF
pF
ns
ns
ns
ns
V

---------------------------------------------------------2SK549
MAXIMUM SAFE OPERATION AREA

TYPICAL OUTPUT CHARACTERISTICS

0

0

10

·h/o.1

,

0

"

0

'/CbJ~

,,

'V,

..G4:.',./0.s-

1~0,.~

Operationind\iSIAI~a
li

0

n, 5

,

r,--'

~'2.s.

Url bl

2

I

u

8

(I)

5

",'""

"-

4

r-T,=25"C

\'us

"

111

20

100

50

Drain to Suurce Voltage

rDS

20

12

,V)

\'/}S

20

DRAIN-SOURCE SATURATION VOLTAGE
VS. GATE-SOURCE VOLTAGE
2. 5

f/.~-J

lOY

16

Drain to Source Voil:aJle Vns (V)

rp{-"T~=25~

-15

4V

2(X)

TYPICAL TRANSFER CHARACTERISTICS

6

PulselTest

2

?'h...~~Q~

III

8

6

~Q~~'

5

61--

f..I.

'/,

Pulse Test
0

Pulse Test

2

I

I

>

~

I

\

S

'f

II/)
~W

[,

0.5

.i

\

Cl

2
12

10

Gate to Source Voltage

STATIC DRAIN-SOURCE ON STATE
RESISTANCE VS. DRAIN CURRENT

STATIC DRAIN-SOURCE ON STATE
RESISTANCE VS. TEMPERATURE

'",

n. 5

~

i

~ ...

~

20

(V)

.5

15

j

5

•

~

\y
~~

0,10

0.05

-

.-

~~

ld ~ \D=2A

j

'I

o
10

1.0

10

Pulse Test

0.1 5

J

1

0,0 2

ves lOY
0.20

'"

rr;s=lOV

2

0.0 1
0.5

~·cs

0.25

PJ!se~i

~

16

Gate to Source Voltage Vas (V)

0

2!

lOA

1. 0

j

A

4

\

.~

J

8

\

5

§

20

50

-40

40

80

120

160

Case Temperature Tc (t)

Drain Current ID (Al

@HITACHI

219

2SK549--------------------------------------------------------FORWARD TRANSFER ADMITTANCE
VS. DRAIN CURRENT

FORWARD TRANSFER ADMITTANCE
VS. FREQUENCY

50

50
I'os IOV
-ID-2A

r- I'Ds;!lOV
Pulse Test

§

§

20

Tc-25'C

20

Ta-- 21'C
0

0

25-

5

5

..-:::~

,&:; ~

P"
2

~

2

~jIIII

1.0

O. 5

0.1

0.5

0.2

o. 5

10

1.0

O.IM

O.2M

Frequency f

TYPICAL CAPACITANCE VS.
DRAIN·SOURCE VOLTAGE

2M

5M

100
res 0

f IMHl(

~

100

1'0..

30
10

o

80

.

~

60

>

c_

t-- t--

g

40

--

20
('~

r--

10

20

40

30

Drain to Source Voltage

VDS

,

hV

\/GS

8

/, ~

--{r\

v VDD =50

4

/ ~ ~;~I
I I<:S ~

ID'=lOA

16

50

24

REVERSE DRAIN CURRENT VS.
SOURCE· DRAIN VOLTAGE
20

500

Pulse est

--!PW~U ju~)L%
Vcs==lOV

200

,I

6

lI/

100

If

-

-

2

-

UCofll

..,......., ..,

~,

8

I,
UCOII!

~
0.5

1.0

10

h

lI:V

/
VVGS=O.

-lOY

/
0.4

20

l7:VI

/ VV

4

0.2

l/.W

10

0

5

32

Gate Charge Q, (nc)

(V)

SWITCHING CHARACTERISTICS

20

1

~V

.~

"

1//

Jo "'" ~

\iDS

~

Jl

1

I~~,
25

DD

~

('I••

--

2

f=

3,000

~ 1,000

10M

(H~.)

DYNAMIC INPUT CHARACTERISTICS

10,000

0.8

1.2

Source to Drain Voltage

Drain Current ID (Al

220

1M

O.5M

Drain Current ID (A)

]

'r--.

1.0

•

HITACHI

VSD

1.6

(V)

2.0

i2SK549
NORMALIZED TRANSIENT THERMAL
IMPEDANCE VS. PULSE WIDTH
3

I 1111

DL

()

1'c=25"C

: - ~O.5
3

~

.~

~

o.1 = =

§

"

I--I -

--

R:o"

== t:;/,\s"'fI'11
~\.~"L

~

~

-

0,2

,\.1

~

I:!:

1--..-::::; I!iiii'
~

8r~-r(tJ=y.(t)· 8010-<
8rh=2.5'C(W,1'c=25'C

fJDM

JrLJL
1=7'w

0.03 7 ~~~,.",

",0.0 1

III"

I'W
D=-r

I

lOOp

1m

10m

Pulse Width

}lj.A/

100m

10

(S)

SWITCHING TIME TEST CIRCUIT

WAVEFORMS

ViM Monitor
VOUI

Monitor

D.U.T

-

Vnn

-"30V

@HITACHI

221

2SK551

15.0

2

SILICON N CHANNEL MOS FET

14.0

HIGH SPEED POWER SWITCHING

•
•
•
•
•
•

Features:
Low On-Resistance
High Speed Switching
Low Drive Current
No Secondary Breakdown
Suitable for Switching Regulator,
DC-DC Converter, Motor Controls, and
Ultrasonic Power Oscillators

1. Gale

2. Drain

(Flange)
3. Source

3

(Dimensions in mm)

(JEDEC T0-220AB)

• ABSOLUTE MAXIMUM RATINGS (Ta = 25°C)
Item

Symbol

Rating

Unit

Voss
VGSS

120

V

± 15

V

10

10

A

10 (pulse)

40

A

Drain-Source Voltage
Gate-Source Voltage
Drain Current
Drain Peak Current
Body-Drain Diode
Reverse Drain Current

POWERVS.
TEMPERATURE DERATING
60

0

lOR

10

A

Channel Dissipation

Pch'

50

W

Channel Temperature

Tch

150

·C

Storage Temperature

Tstg

~

"

~

20

-55 -

·C

+150

~

0

• ELECTRICAL CHARACTERISTICS (Ta = 25°C)
Item

Symbol

Drain-Source Breakdown Voltage

V(BR1OSS

Gate-Source Breakdown Voltage

'l BR GSS

Gate-Source Leak Current
Zero Gate. Voltage Drain Current

IGSS
loss

Gate-Source Cutoff Voltage

VGslom

Static Drain-Source on State Resistance

ROSIOn)
Iyfsl
Ciss

Forward Transfer Admittance
Input Capacitance
Output Capacitance

Coss

Reverse Transfer Capacitance

Crss

Turn-On Delay Time

td(on)

Rise Time
Turn-Off Delay Time
Fall Time
Body-Drain Diode Forward Voltage
Body-Drain Diode
Reverse Recovery Time

I,-

Testing Condition

Min.

Typ.

Max.

Unit

= 10mA, VGS = 0
IG = ±100~, VGS = 0
VGS = ±12V, Vos = 0
Vos = 100V, VGS = 0
10 = lmA, Vos = 10V
10 = 5A, VGS = 10V '
10 = 5A, Vos = 10V '

120

-

-

V

±10

(LA

~
V

10

Vos

10

td 10m
tf
VOF

IF
IF

t"

= 10V, VGS = 0
f = lMHz

= 5A, VGS = 10V
RL = 60
= lOA, VGS = 0
= lOA, VGS = 0
dlF/dl = 50A/(Ls

'Pulse Test
NOTE: The specifications of this device are subject to change without notice.
Please contact your nearest Hitachi Sales Department regarding specifications.

222

"

150

'ValuQ at Tc = 2SoC

@HITACHI

±15

2.0

-

250

-

4.0

V

-

0.15

0.20

0

3.0

5.0

S

-

730

-

1.2

-

200

-

330
40
15

40
70
45

pF
pF
pF
ns
ns
ns
ns
V
ns

2SK552,2SK553
SILICON N-CHANNEL MOS FET
HIGH SPEED POWER SWITCHING
•

FEATURES

•

Low On-Resistance.

•

High Speed Switching.

•

Low Drive Current.

•

No Secondary Breakdown.

•

Suitable for Switching Regulator.

I. Gate
2. Drain

DC-DC Converter. Motor Controls. and Ultrasonic

(Flange)

3. Source

Power Oscillators.

(JEDEC TO-220AB)

(Dimensions in mm)

•

POWERVS.
TEMPERATURE DERATING

ABSOLUTE MAXIMUM RATINGS (T.=25 °C)
Item

Symbol 2SK552

Drain-Source Voltage
Gate-Source Voltage

Voss
Vcss

Drain Current
Drain Peak Current
Body-Drain Diode
Reverse Drain Current

10
iD(pul:re)*

lOR

Channel Dissipation
Channel Temperature

P ••

Storage Temperature

T stg

"

T,.,

450

I 2SK553
I 500

Unit

±15
5

V
A

20

A

5

A

50
150
-55-+150

0

V

0

W

20

°C
°C

*PW:SlOJ,ts. duty cycleSl%
..... Value at Tc=25 °c

'"I'"
'"'"
100

50

Case Temperature Tc (t)

•

ELECTRICAL CHARACTERISTICS (T.=25 °C)
Symbol

Item
Drain-Source Breakdown
Voltage

I 2SK552
I 2SK553

Te~t

Condition

min. typo
450
-

max.

-

'"

150

Unit
V

ViBR)DSS

I o=1OmA. VGs=O

Gate-Source Breakdown Voltage

V(BR)GSS

Ia=±100I'A. Vos=O

±15

-

-

Gate-Source Leak Current

less

V Gs=±12V. Vos=O

-

-

±10

I'A

Vos=360V. VGs=O

-

-

250

I'A

2.0

-

4.0

V

-

1.4
1.5

Zero Gate Voltage Drain
Current

l 2SK552

I 2SK553

Gate-Source Cutoff Voltage

loss
VGs(ohl

V Ds=400V. VGs=O
ID=lmA. Vos=10V

500

-

RDSjofl)

lo=2.5A. VGs=1OV'

-

1.2
1.2

Forward Transfer Admittance
Input Capacitance
Output Capacitance

IYI,I

1o=2.5A. Vos=1OV'

2.5

4.0

-

-

-

Reverse Transfer Capacitance
Turn-on Delay Time

Cm
td(OIl)

-

820
300

Rise'Time

t.

-

Static Drain-Source
On State Resistance

Turn-off Delay Time
Fall Time

Cis'
Co,"

Vos=10V. VGs=O,f=IMHz

ID=2.5A, VGs=10V, R l =12n

tdlo!})

tl

-

45
10

35
70

-

V

n
S
pF
pF
pF
ns

-

ns
ns

45

-

ns

Body-Drain Diode
Forward Voltage

V DF

IF5A. VGs=O

-

1.0

-

V

Body-Drain Diode
Reverse Recovery Time

t"

I,=5A. V"s=O. di,jdt=100A I's

-

300

-

ns

"Pulse Test

@HITACHI

223

2SK552,2SK553--------------------------------------------------TYPICAL OUTPUT CHARACTERISTICS

MAXIMUM SAFE OPERATION AREA
50

0

I I
...~)

- 17'

-~
0

./i'~

1:::= f-

~,¥""(:i':.

~

8

1-0

~

O. 5

~,~~,,&
.,;

8

~NJt~~~4
0.

,

it'"

II~K553

'1'(/::.25 •

oJ

4.5

j
4

c~

0.2

If

I

~F=:V

v·

15,0

I

6

,

'JJ~

,

\;:Iot,;;-

Pulse Test

5,5

/~.J'

:,..'...

h'D4----6.~

W
J.V

~.

51== I=~";'' -<-.-'
2

10,

I

I

4.0

V

r--

res 3.5V

KS52

0.05

III

1.0

100

.iO

Drain to Source \'oltallC

I'DS

1,000

300

Drain to

lO\"
Pul.seTest

,

8

V

,

6

Yoltage \'vs (V)

0

/' ~

rvs

50

40

30

$OUrt'e

DRAIN-SOURCE SATURATION VOLTAGE
VS, GATE-SOURCE VOLTAGE

TYPICAL TRANSFER CHARACTERISTICS
0

20

to

(\,I

PUIJTest

J-- f-rs -

-

8

75

6

Iv=5A

\".,

4

4

2

2

2

/J
I

I

VJJ

"

10

Gale to Source Voltage

rGS

20

16

12
Gate to Source Voltage res (V)

(V)

STATIC DRAIN-SOURCE ON STATE
RESISTANCE VS, DRAIN CURRENT

STATIC DRAIN-SOURCE ON STATE
RESISTANCE VS, TEMPERATURE
5

0

Pulse Test
5

lit

4

res-IOV

rcs'-lOV
Pulse Test

~

2

V"

3

ID=5A

15

0

/V

2

V ~ ~ ~I

o. 5
I

o. 2
0, I

0,5

10

20

0
-40

50

2

40

so

Case Temperature Tc ("C)

Drain Current ID (Al

224

i.--" ~ ~
~~ ~

$

HITACHI

120

160

---------------------------------------------------2SK552.2SK553
FORWARD TRANSFER ADMITTANCE

FORWARD TRANSFER ADMITTANCE

VS. DRAIN CURRENT

VS. FREQUENCY

50 r--.--r-rT"1""T'1CTT--.-.,--rrT'T'T'n

~''--'---'--'T'T--n''TT----'-.-,,-rT'TT1

'{"r-25'("

r---- 1'/)5 = 1O\'++-H-iI++--I--+-+-I-++++I
201---",J".:r~",,2:\'-r-++f--Hrtt--f-----t--f--JH-tt-H

20 1-,"1"~JI.~!j.''",rc","stl--H+I+I+-_+-+-++++tt1

,I

1
!~

1.1l~~

•.

n.s O,]

0.2

0.5

1.0

10

1II~"1I
~

"-

"
1.1l~~.
r-...

(l.5~
(UM
1),2M

o,SM

1M
Fn'ljllt'Il{',1'

Drain Current Iv (A)

TYPICAL CAPACITANCE VS.

5.000'==t=1~~=f==t:=t=t=~~~~
\'(;5

('".

,

sex

?tl
\'nlJ =

\'IIS

400

.1OO~

500

:~:\~~~~"~~'~~~c~_~~~~

,

20t--+--i-~
':--+--+-+---+-+--+-1

1O~'\.~~
5~10
20

,iO

DraintnSourt'e\'olt~e I'IJS

40

SO

1\

~

'I \

51l~

II)(

)j)

,I

lOOk.
16

'~'~\ .hV

\

~T-~,,~--r-T--r-7--r-T-~

j

10M

()

2,(X)()'l--+_+--+_+--+_+---!_-+-f-...:I.,M:.;;H,,--.-1
1.0()O~
~

£iM

DYNAMIC INPUT CHARACTERISTICS

DRAIN-SOURCE VOLTAGE
~

21\1

r 1111.1

\

~

V
.a
V

\'r;s

h

H

~

FDD

_,250

~

ID=5A

T)()V

:::..J'
24

16

(\'J

32

o
40

Gate Charge QH (nc)

REVERSE DRAIN CURRENTVS.

SWITCHING CHARACTERISTICS

SOURCE -

DRAIN VOLTAGE

0

Pulse

Yes-lOY

r- PW=2.us, duty< l%---ll--+-+-l-+++I+--~

'"

A

8

f1
:0

6

U

h

4

0

II

2

5.10

I--- I--- ~
0.4

"- >

0.8

"~Oi

Source to Drain Voltage

Drain Current In (A)

~HITACHI

-lOY
1.6

1.2
VSD

2.0

(V)

225

2SK552,2SK553------------------------------------------------NORMALIZED TRANSIENT THERMAL
IMPEDANCE VS. PULSE WIDTH
3

I
'Dt

0

J

JI
.=:
]

1
z

I
Tc=2st

r--

r-O.5
I--""""

o.3

0.2

b.l
o. I

t-;.:;;;;; Iiiiiiii'"

-

I-- I,......

0.0

r== f--'o.o~

liP""

rAt) . (j.~-.
O,,-,=2.5'C/W. Tc=25'C

e~~-~(t)=

PDM

IQdL

P'"~
0.03
0.0 I

ftr1
lOp

1m

10m

100m

Pulse Width PW (S)

SWITCHING TIME TEST CIRCUIT

WAVEFORMS

Vm Monitor
rout

Monitor

D.U.T

_

VDD

-"30V

226

eHITACHI

PW
D=r

10

------

'-

2SK554,2SK555
SILICON N-CHANNEL MOS FET
HIGH SPEED POWER SWITCHING
lS.3max.
~3.6±O.2~

•

FEATURES

•

Low On-Resistance.

•

High Speed Switching.

•

Low Drive Current.

•

No Secondary Breakdown.

•

IX,
1-1.27

Suitable for Switching Regulator.
DC-DC Converter. Motor Controls. and

3. Source

(Flangel
(JEDEC TO-220AB)

(Dimensions in mm)

ABSOLUTE MAXIMUM RATINGS (T.=25 0C)

Item
Drain-Source Voltage

111.5 + 11.5

3.0max.

1. Gate
2. Drain

Ultrasonic Power Oscillators.

•

r-'

~~.

Symbol 2SK554
450

Voss

Gate-Source Voltage

VGSS

Drain Current

ID

Drain Peak Current
Body-Drain Diode
Reverse Drain Current

IDCpuutj·

Channel Dissipation

Pch·

Channel Temperature
Storage Temperature

T,h

IDR

I 2SK555
I 500
±15

V

7

A

28

A

7

A

60
150
-55-+150

Tn,

Unit
V

0

0

POWERVS.
TEMPERATURE DERATING

'"

r\.

"

'\

W
°C
°C

I\.

'\

*PW-:510/Js. duty cycle$l%
·*Value at T("=25 °C

ELECTRICAL CHARACTERISTICS (T.=25 DC)
Item

Symbol

I

2SK554
2SK555
Gate-Source Breakdown Voltage
Drain-Source Breakdown
Voltage

I

Gate-Source Leak Current
Zero Gate Voltage Drain
Current

I

I

2SK554
2SK555

Gate-Source Cutoff Voltage

I

2SK554
2SK555
Forward Transfer Admittance

Static Drain-Source
On State Resistance

I

Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Turn-on Delay Time
Rise Time
Turn-off Delay Time
Fall Time
Body-Drain Diode
Forward Voltage
Body-Drain Diode
Reverse Recovery Time

Case Temperature Tc C'C)

Test Condition

min.

V(BR)DSS

I D=1OmA. VGFO

450
500

typo

"
150

100

50

•

max.

-

-

-

-

Unit
V

V(BRIGSS

Io=±100"A. VDFO

±15

-

-

V

IGSS

VGF±12V. VDFO

-

-

±10

"A

I Dss

V DF360V. V GFO
VDF400V. VGFO

-

-

250

"A

4.0
0.85

V

VGS!oDl

Io=lmA. V D FlOV

2.0

-

RoS!o",

ID=4A. VGFlOV'

-

0.6
0.7

Iy,'!

I D=4A, V DFI0V'

4.0

C;"

6.5
1300

-

-

pF
pF

-

ns

-

ns
ns

-

470

-

lellon)

-

65
15

t.

-

VDs=1OV. VGFO./=IMHz

!l

-

C'$$

C."

1.0
-

S
pF

ns

tdlom

-

50
100

I,

-

55

-

V DF

h=7A. VGFO

-

1.0

-

V

h=7A, VGFO, di F/dt=100A/"s

-

400

-

ns

I.

Io=4A, VGs=lOV, R,=7.5!l

·Pulse Test

~HITACHI

227

2SK554,2SK555--------------------------------------------------MAXIMUM SAFE OPERATION AREA

TYPICAL OUTPUT CHARACTERISTICS
20

h

6

11

7

6

~

PIIls!'T!'s!

~
2

I

!

!

..

u
.~

u

cs

'-

8

5

Cl

0.2f-++++ttttt----i---i+fttttt-+'I<-tff-ttttt

4

o·\~m~_

O.05~

I
if

10

I'Gs=-l\'

,_0

10

Drain to Source Voltage

\"DS

Drain

(V)

to

,m
Source \' nltage

~,

'"1

rllS (\'

DRAIN-SOURCE SATURATION VOLTAGE

TYPICAL TRANSFER CHARACTERISTICS

VS. GATE-SOURCE VOLTAGE

lOr--r---r--,.-,-...II..-,--,----,.-,--,
-25

1/

Pulse Test

1--"25

rDs-lOV
Pulse Te.sl

Tc=75'C

1/1""10:\

"i'!
Cl

12

\(J

Gate to Source Vol~

rGS

Drain to SOUl'et' \'oltagl'

(V)

STATIC DRAIN-SOURCE ON STATE
RESISTANCE VS. DRAIN CURRENT

\O~~m

~

'"~

\"(;S

2.0

~

'<5"
~

i'"
j

1.0

6

'"
~
IS

0.5

[/)=10..\"
2

/'"

~

/ ' ~ f"'- '5'2

'<5"

o. 8

~

o. 4

:::;-

-

~V

~

,.,

-

j
0.5

l.O

10

2()

50

Drain Current Iv (A)

228

~

~

j

0.2
0.1

r{;S
lOY
Pulse Tes!

'".,

~

lOY

~

j

IV \

STATIC DRAIN-SOURCE ON STATE
RESISTANCE VS. TEMPERATURE

~P\lISt"Test

'".,

II>
\'IlS

~HITACHI

0

'"

'"

'"

Case TemperalUrt' 1'c ttl

.,

LO

I(;()

---------------------------------------------------2SK554,2SK555
FORWARD TRANSFER ADMITTANCE
VS. DRAIN CURRENT

FORWARD TRANSFER ADMITTANCE
VS. FREQUENCY

50
rDS '--2()V

l-- Pul.sc Tt!St

;;;
,;;

.~

I

20

-251

i5
10

-Ii

10: _ _

""

1--+--1--1-+-++++t--:>lIIIi11lP
lI"'-+--tTa =- 7~)"C

..."*e

~

~

~

"-

1.0'~~.
O.5S

1.0

0.5

n,S

0.2

0.1

1.0

10

O.lM

f).2M

O.5M

TYPICAL CAPACITANCE VS.
DRAIN·SOURCE VOLTAGE

10M

20

{)

f lMHz-

~I--

C, ..

400

':::

h

'I)S-

-JJu=ILv
25(J~

~

......

0'

f

.......
"- I- c-

~

~

•

~

10

O

"-

0

III

e",

20

30

~

200

1

'II

~
~

4tX)

300

;...

50

5

5M

500
't·Tt'Sl

J-PU'=2,us. uutyf-++Hfftt---i-+-+-H-ttlt----l

6

IdlnllJ

100_

_

2

If

50

.--

8

H

4

r·l~

II

l-I- ~ t-- r(;s=o.,
004

0.8

L

-lOY

1.6

,•. 0

Soun."eloDrll.in\'o]tage rSD 1\"1

Drain Current Iv (A)

@HITACHI

229

--2SK554,2SK555--------------------------------------------------NORMALIZED TRANSIENT THERMAL
IMPEDANCE VS. PULSE WIDTH
3

I

U.

.0

f-- e.3

}.,j

l}.2

0.1
.1

..

O,On

I-- t::~

---

dOl!!

P'

O.A-.(t)=y,(t)·8d-<

0,,-,

~'!l

~

z~

I
Tc=25'C

0.031-~

~
0,(Jl

}li/l

JfkfL

\ S'1I)

-

25

-

Rise Time

I.

85

-

ns

Turn-off Delay Time

fJ(l!jJl

-

145

-

ns

-

85

-

ns

V".s=lOV. V".s=O./=IMHz

I,,=6A. V"..=lOV. U,.=511

6

10

-

2050

S
pF
p~'

pF
ns

Fall Time

I,

Body-Drain Diode
Forward Voltage

V D,

I,=12A. V" ..=O

-

1.0

-

V

Body-Drain Diode
Reverse Recovery Time

I.

IFI2A. V".•=O. di,jdl=100A/"s

-

450

-

ns

/'

"'Pulse Test

$

HITACHI

231

2SK556,2SK557--------------------------------------------------TYPICAL OUTPUT CHARACTERISTICS

MAXIMUM SAFE OPERATION AREA

:W

l

16

'"

PuiSl.·Tt>:'!

(;,0

I:!

~

!

hll+-+--+-+--+-',II+--+-f--+--1

'-'

'E

'"
I----

~SI\;i;17

~U

fa

IV

coc'

II

ll.l

,I

l.0

W

30

ifr"'"
100

,l(jl)

1,000

II

,ill

:..'0

l>l'(lin to Suun'l' \'olt\

--il'lIb., ')'t'SI

Pul""'!'I'S!

I,';

+---f-+.f--+----+-+-f---I

I

12f--t-+-i-+-+-I'-l-+-f--t--j

III
1-1/1 ii:\

:."

III

~//

1(1

II>

STATIC DRAIN-SOURCE ON STATE
RESISTANCE VS. TEMPERATURE

STATIC DRAIN-SOURCE ON STATE
RESISTANCE VS. DRAIN CURRENT

(I

El

j ,

\·I;.~

-!O\'

iii

1)1I1St'TI,~t

ll.

/ r~

ti

/

,
II,2H-H-tt--+-+++I+H-I--+----+---+--I

-J

/ ~/

VV

l/

'"

11/-5,\

[...-:: t:/

"

II
Drain CUrl't>ni ID .-\

232

'"

,"

Cast.'Tempt'l'ature"Fe l't)

~HITACHI

120

I~)

----

--~

-----------------------------------------------------2SK556,2SK557
FORWARD TRANSFER ADMITIANCE

FORWARD TRANSFER ADMITTANCE

VS. DRAIN CURRENT

VS. FREOUENCY

50

\L~M

-

I I

t-;:!;:oV-t+++-t+t--+--j--jH+H+I

Tu=-2Sl:

Pulse Test

20 t-- Tc =25"C -++++++I---+---1---1H+1+H

2tJ
25

I'

10 _

_

7$5

V-

A"
2

"""~

0

0. 5

0.,)

0.2

1.0~iIB.

10

1.0

O.5~
O.IM O.2M

20

O.SM

Drain Current 10 (A)

TYPICAL CAPACITANCE VS.

500

2,000 I\'-.

>a

i

!

....

"-

1,000

rc;sLo

400

:::

f IMHz

~

5

\

I

rOO"
400"

300

j

""~

h

200

"e

10

I

I
II

III

20
Drain-Source Voltage

10
rDS

I

~

10

\"DD-4OO\'

'100

~

A 7"

Q

20

//,

A ~'GS

"

511

5

lOM

IrDD~lloov

,los

C

~

wo

5M

(Hz)

20

I

~

50()

200

2M

f

DYNAMIC INPUT CHARACTERISTICS

DRAIN·SOURCE VOLTAGE
5,(){X)

{

1M

Frequenl'Y

12A
1

~J"---l;~
i~b.
20

40

(V)

60

80

0
100

Gate Charge Qg (nc)

REVERSE DRAIN CURRENTVS.

SWITCHING CHARACTERISTICS

SOURCE -

500rrTTTT----,--r-rrr-rrTr--r-,...."

DRAIN VOLTAGE

0

PulseTesr

I

6

I
I

2

J

II

201+++H---j-++++++++-----11-++-I

I:~~m.
0.5

1.0

10

20

V
--P 'l (as -I' -liv
5'1 1\

50

0.4

A

0,8

1.2

Source-Drain Voltage

Drain Current 10 (A)

@HITACHI

VSD

(V)

1.6

2.0

233

2SK556,2SK557--------------------------------------------------NORMALIZED TRANSIENT THERMAL
IMPEDANCE VS. PULSE WIDTH
3

T~~2~t

J-I

0

1--.0.5
~

o.3

j

~ r;;:::E:::

!-

b.1
o. 1

~

~

8d-.(t)= r6(t) • 8 •• -.

8.h=1.2S"C/W, Tc=2St

r----- 0.02
~ .''''
"'" n

'i

1
z

0.2

POM

IrLJL

0.0 3p~

IV

0.0

lOp

I

~

lOOp

1m

10m

100m

10

Pulse Width PW (5)

SWITCHING TIME TEST CIRCUIT

WAVEFORMS

Vi. Monitor

234

D~P;-

~HITACHI

---2SK559,2SK560
.p3.2±O.2

SILICON N-CHANNEL MOS FET
HIGH SPEED POWER SWITCHING
•

FEATURES

•

Low On-Resistance.

•

High Speed Switching.

•

Low Drive Current.

2.'

m

•

No Secondary Breakdown.

•

Suitable for Switching Regulator.

S.(S!U.2 _-' __

I. Gate
2. Drain
(Flangel
a. Source

DC-DC Converter. Motor Controls. and Ultrasonic
Power Oscillators.

(Dimen~ion~

Item

Symbol

Drain-Source Voltage

Voss

Gate-Source Voltage
Drain Current

V GSS
10

Drain Peak Current

ID\pu/u)

Body-Drain Diode
Reverse Drain Current

lOR

Channel Dissipation

p,.,'

Channel Temperature

T"

Storage Temperature

2SK559
450

in mm)

POWERVS.

*

I 2SK560

I

500

TEMPERATURE DERATING
Unit

120

V

±l5

V

15

A

~

60

A

0:

15

A

i

100

W

150

°C

•

80

~

I""
I""

.~

is

-55-+150

T."R

5~5±U.2

(TO-3P)

ABSOLUTE MAXIMUM RATINGS (T.=25 DC)

•

O.6±O.2

}'(I±O'2

3

]

40

I'"

°C

·PW:slO~s.

duty cycJe:51%
."'Value at T(=25 °c

•

50
100
Case Temperat~re Tc (t)

~

150

ELECTRICAL CHARACTERISTICS (T.=25 DC)
Symbol

Item
Drai n-Source Breakdown
Voltage

I
I

2SK559

Test Condition

min.

typo

450

-

500

-

-

max.

Unit
V

ViBRIDSS

ID=10mA. V,;.,=O

Gate-Source Breakdown Voltage

VCBR)(;SS

ia=±lOO/AA. Vn,,=O

±15

Gate-Source Leak Current

I{;ss

VoF±12V. Vns=O

-

-

±10

/AA

-

-

250

/AA

ID=lmA. VDs=lOV

2.0

-

4.0

V

Rf).~("m

ID=8A. V,;FI0V'

-

0.25

0.36

O.:l

0.4

Io=8A. VDs=lOV'

13

Zero Gate Voltage Drain
Current

I
I

2SK560

Gate-Source Cutoff Voltage

Static Drain~Source
On State Resistance

V Ds-360V. Vos-O

2SK559
2SK560

loss
VGSt,!Ol

I

2SK559

I

2SK560

V oF400V, Vo,=O

-

V

!l

-

2950

-

140

-

80
115

-

tJl,f!Ol

-

200

-

ns

Fall Time

I)

-

120

-

ns

Body-Drain Diode
Forward Voltage

V OF

I,=15A. Vc;s=O

-

1.2

-

V

Body-Drain Diode
Reverse Rec(Wery Time

I"

I,=15A. VoFO. diF/dl=100A//As

-

500

-

ns

Forward Transfer Admittance

1!lf~

Input Capacitance

C;,.,

Output Capacitance

C,,,",

Reverse Transfer Capacitance

c.,.,

Turn-on Delay Time

i.!i.m)

Rise Tim

I,

Turn-off Delay Time

VDFlOV. Vc;.,=O,.f=IMHz

In=8A. Vc;.FI0V. R,.=3.75!l

8

1100

S
pF
pF
pF
ns
ns

·Pulse Test

~HITACHI

235

2SK559,2SK560--------------------------------------------------TYPICAL OUTPUT CHARACTERISTICS

MAXIMUM SAFE OPERATION AREA

20

100

30 ~

I--

- H:::~~',

%

~U'
,

~"'> ~r.,....J>

I-r.-",~'O'~

'~~

o~~..

§

F";

v,

,

~

10~

'/06

'

,

I

8

I

1

Tu=25"C

4.5

1.0

.m

10

2SK559
100

J$",/

0

6.0

jt"

2

Q

3

PuseTlt

!IA.5

1,000

II

4
VGs=3.5V

12

Drain to Source Yoltage \'ns (\')

20

16

Drain to Source Voltage

rDS

(V)

DRAIN·SOURCE SATURATION VOLTAGE
VS. GATE·SOURCE VOLTAGE

TYPICAL TRANSFER CHARACTERISTICS

0

l'Ds

l

PulJT~t

20\'

61--- Pulse Te!'1

8

2

6

\
8

4

10--25

Tc=o75"C

-

JD=15A

10

4

~

/1
~

~25

2

5

20

16

12

10

Gate to Source \' oltage res (V)

Gate to Source Voltage res (V)

STATIC DRAIN·SOURCE ON STATE
RESISTANCE VS. TEMPERATURE

STATIC DRAIN·SOURCE ON STATE
RESISTANCE VS. DRAIN CURRENT

.0

I

r-- r--

Pulse Test

]

\"GSllU\'
Pulse Test

o. 8

~

ltJ",,15.-\

~

J 1.0'~~~~!!~II~~~\~·I;~S-~'~O~\'II~

1Il.\

o. 6

~

f 1\'1

SWITCHING CHARACTERISTICS

REVERSE DRAIN CURRENT VS.
SOURCE· DRAIN VOLTAGE

DYNAMIC INPUT CHARACTERISTICS

",S<""..... \ uhll,ill'

"

Vcs-o,

lOY
Dr.inC.......n In (AI

Sourwto Drain VullBjIe

VSD

(V)

NORMALIZED TRANSIENT THERMAL
IMPEDANCE VS. PULSE WIDTH

1111

III
Tc=25't

SWITCHING TIME TEST CIRCUIT

WAVEFORMS

V.. Monitor
\'... Mnniwr

v..

Ill'.T

v.,

@HITACHI

237

2SK561

26.0max,

11 .35m3)!. 11.6tO.5
3.3max.
!3.0typ)

SILICON N CHANNEL MOS FET
HIGH SPEED POWER SWITCHING

• Features:
•
•
•
•
•

Low On-Resistance
High Speed Switching
Low Drive Current
No Secondary Breakdown
Suitable for Switching Regulator,
DC-DC Converter, Motor Controls, and
Ultrasonic Power Oscillators

1. Gate

2. Source
3. Drain

(Casel
(Dimensions in mml

(JEDEC TO-3)

• ABSOLUTE MAXIMUM RATINGS (Ta = 25°C)
Symbol
Item
Rating
Drain-Source Voltage
100
VDSS
Gate-Source Voltage
VGSS
±15
Drain Current
30
ID
Drain Peak Current
ID (pulse)
120
Body-Drain Diode
30
IDR
Reverse Drain Current
Channel Dissipation
Pch'
150
Tch
150
Channel Temperature
Storage Temperature
Tstg
-55 - + 150

POWERVS_
TEMPERATURE DERATING

Unit
V
V
A
A

150

~

\.
\.

100

'-

'"

,f

A

"\

50

W
·C
·C

'\

o

50

'Value at Tc = 25°C

• ELECTRICAL CHARACTERISTICS (Ta = 25°C)
Item
Symbol
Drain-Source Breakdown Voltage
VIBRIDSS
Gate-Source Breakdown Voltage
VIBR)GSS
Gate-Source Leak Current
IGSS
Zero Gate Voltage Drain Current
IDSS
Gate-Source Cutoff Voltage
VGSlolf)
Static Drain-Source on State Resistance
ROSlon)
Forward Transfer Admittance
Iyfsl
Input Capacitance
Ciss
Output Capacitance
Coss
Reverse Transfer Capacitance
Crss
Turn-On Delay Time
tdlon)
Rise Time
t,.
Turn-Off Delay Time
tdloffl
Fall Time
tf
Body-Drain Diode Forward Voltage
VDF
Body-Drain Diode
trr
Reverse Recovery Time

150

Testing Condition

Min_

Typ_

Max_

ID = 10mA, VGS = 0
IG = ± lOOp}., VGS = a
VGS = ±12V, VDS = 0
VDS = 80V, VGS = 0
ID = lmA, VDS = 10V
ID = 15A, VGS = 10V '
ID = 15A, VDS = 10V'

100
± 15

-

-

VDS

= 10V, VGS = 0
f

ID

= lMHz

= 15A, VGS = 10V
RL = 20

IF
IF

= 3OA, VGS = 0
= 3OA, VGS = 0
dlF/dl = 50A/p.s

• Pulse Test
NOTE: The specifications of this device are subject to change without notice.
Please contact your nearest Hitachi Sales Department regarding specifications.

238

""

100
Tc (OCI

eHITACHI

2_0

9

-

0_05
15
1900
950
60
28
95
160
115
1_2
350

± 10
250
4_0
0_07

-

Unit
V
V
p}.
p.A
V
0
S
pF
pF
pF
ns
ns
ns
ns
V
ns

---2SK579CQ,2SK580CQ,--2SK5 79C§), 2SK580C§)
SILICON N-CHANNEL MOS FET

IIt~{Iii
.....

2.4

ill~-:IJ
1-."

(--,
__•

2.3

HIGH SPEED POWER SWITCHING
•

FEATURES

•

Small Package.

•

High Speed Switching.

•
•

Low Drive Current.
Suitable for Switching Regulator,
DC-DC Converter, Motor Controls, and Ultrasonic

1. Gate
2. Drain
3. Source
4. Drain

Power Oscillators.

lOT,,,,
(DPAK)

(Dimensions in mm)

POWERVS .
TEMPERATURE DERATING

• ABSOLUTE MAXIMUM RATINGS (Ta=25 0C)
Item
Drain-Sour-ct· \'oltag't'

Symbol

2SK579

~·/}.\·s

450

(iatc-Soun:e Voltage

\'/.,H

Dl'ain CUl'I'cnt

I"

Dl'ain Pt'ak ('ul'I'enl

11111'''''''1

Body-Drain Diode
l{c\'cr'se Drain CUl"I't'nl

IDR

I 2SK580
I SOO

Unit
V

±l5

.

0

V

1.5

A

6

A

1.5

A

~

,;:

(I

.§

·1

is

('halllll·1 Tl'nllll'l'alun,'

Pd, **
T--

No.

Electrode
Source 1
Drain 1
Source 2
Drain 2
Gate 1
Source 1
Gate 2
Source 2

81
D1
82
D2
GI
81
G2
82

SI

Terminals
M5 Screw
M5 Screw
M5 Screw
M5 Screw

#110
#110
#110
#110

Remarks
Power terminals
Power terminals
Power terminals
Power terminals
Signal terminals"
Signal terminals
Signal terminals
Signal terminals

(Dimensions in mm)

POWERVS.
TEMPERATURE DERATING

·Value at Tl"=25 °c
**Base to Terminals AC 1 minute

600

0

6

1
o

]
u

200

""""-

-..........
........

50

100

Case Temperature Tc ('C)

•

"

150

Precaution in Handling
Be care not to dash water, acid, alkali and organic
solutions, such as trichloro-ethylene etc. over module.

~HITACHI

253

PM4550C-------------------------------------------------------• ELECTRICAL CHARACTERISTICS (T.=25 DC)
[Per FET chipl
Item

Symbol

Test Condition

Drain-Source Breakdown Voltage

V(BRIDSS

1,,-lOmA. VGs-O

Gate-Source Leak Current

loss

VGs=±20V. Vos=O

min.

typo

450

-

-

V

±I

pA

max.

Unit

Zero Gate Voltage Drain Current

loss

Vos-360V. VGs=O

-

I

mA

Gate-Source Threshold Voltage

VGSIII"

ID-ImA. VDs-IOV

2.0

-

4.0

V

Static Drain-Source On State
Resistance

RDSloII,

Io=25A. V Gs=15V'

-

0.13

O.IS

n

3.25

4.5

V

-

S
pF

Drain-Source Saturation Voltage

V OSlOII'

ID=25A. VGs=15V'

Forward Transfer Admittance

Iy"

1,,-25A. VDs-IOV'

Input Capacitance
Output Capacitance

C".
C.....

Reverse Transfer Capacitance

C..f.T

Turn-on Delay Time

fd!oll'

Rise Time

t,

Turn-off Delay Time

tdlolJ)

Fall Time

t,

Body-Drain Diode Forward Voltage

V D,

t.

Reverse Recovery Time
·Pulse Test

12

-

7500

-

1650

I r25A. VGs=O
Ir 25A. VGS=O. diF/dt=IOOA/ps

VDs=IOV. V,;..=O.j=lMHz

I D=20A. VGs=15V. R,=1.5!l

Body-Drain Diode

•

S

Symbol

Condition

Fixing Strength

-

Mounted into main-terminal with M5 screw
Mounted into heat sink with M5 screw

Weight

-

Typical value

pF

400

-

ns

800

-

ns

320

-

ns

-

0.9

-

V

-

1.2

-

/,s

\,,~

254

Rating

Monitor

$

HITACHI

Unit

15-20

kg·cm

20-30

kg·cm
g

300

WAVEFORMS

SWITCHING TIME TEST CIRCUIT

pF

50

MECHANICAL CHARACTERISTICS
Item

- ,
-

175

ns

--------------------------------------------------------PM4550C
MAXIMUM SAFE OPERATION AREA

-

100

1==1Dlm... l

50

'V~....

"~

9'~~

....

I

::"

"'

0(''\.:>$~
0

3

u

30

!

0

~

20

10

o. 3
11)

?ir 'i

.jO

Dl'uin tuSOlll'Cl'

Voltagc

l

JOO

---- - --

6.5

-

.¢

,,,,.~

6

~
.....
~/

'

*-

" -- -

-

......

:;,S

5

4

4.5

II'.

25

o. 1

~,

jJj i"""'"

u
I
I

k~2!"c

7

III/. / '
VI! r
V

I

U'f/
"'.10....J.

.

Ij-h 'I"

40

,

~J'

"~.

)

!

"

:'<>4'.

- ----~-

7.5

Y~I

VGS~11V

~~

/i;<:: ~

-60

~

-

.'

---- --

-

r-3ed H.D.

.........

.... ~

............

r--

P,.= lOOmW
\"IJl)=12.5V
IIVl.E
H:~l

"'-

-

2nd H.D.

-70

-80

40

10

1225mA
840

o
850

860

890

870

900

910

920

930

940

950

Frequency f (Hz)

•

HITACHI

259

260 .

~HITACHI

POWER MOS FET
APPLICATION NOTES

~HITACHI

261

262

~HITACHI

1.APPLICATION HINTS
1.1 Audio Power Amplifier

1.1.1 Linear Power Amplifier
(1)

Design of output stage (Design of power supply voltage VDD)
Fig. 1-1 shows an equivalent circuit of the output stage. RoN is
a drain-to-source equivalent resistance when the power MOS FET is
on, and according to the 2SK134/2SJ49 spec, it is;
RON =

VDsCaat)

I

12

-""""7 -

1. 7 1.0

,---_ _,...-_----<0 + VDD

D

2SK134

The peak current Ip flowing
through load RL=8n at
Po=lOOW is calculated from
mean current I,

,

l

\

IRON
,

2 SJ 49
Voo

'--_ _ _
- ' -_ _-<>0

Fig. 1-1 Equivalent Circuit of the
Output Stage
Therefore, if the transformer regulation is estimated at 20% and
the AC line regulation at ±15%, then the pow~r supply voltage VDD
is given as;
V DD = 1.2 x 1.1 5 {R L

+

(RoN + R. )
2

}

Ip

... 6l.8V

In Fig. 1-3, the power supply of power stage is common with that
of voltage amplifier stage, so the voltage is set at ±65V including
the gate-to-source ON voltage at Po=lOOW.
In the case of D series 2SK343/2SJ99, the RoN value is very small
(0.5n), the supply voltage required for the same output (lOOW) is
only 57.6V.

This enables us to make the transformer capacity and

the cooling fin smaller, resulting in cost reduction •

•

HITACHI

263

1.APPLICATION HINTS - - - - - - - - - - - - - - - - - - - - - - - - - - -

(2)

Design of voltage amplifier stage
A power MOS FET can be driven by a low driving power.

Fundamentally,

only power for charging and discharging the gate-to-source capacitance
is needed by the output stage, so that a class B driver stage is not
required.

The driving power varies with input frequency.

At lOOW

output and 100kHz frequency, it would be very small as follows.
Pin~ f,Ciss,Vas'=lOO x 10'x 900
Xl 0-12 X 6 2 ~

3.24.mW

nlerefore, an output stage power MOS FET can be driven directly
from a class A predriver (voltage amplifier stage) used in a bipolar
transistor amplifier.

By eliminating the class B driver, the

quantity of components can be reduced, and impairment of the
amplifier's performance by the driver itself can be avoided.
Moreover, the number of poles in the transfer function (open loop
gain vs. frequency characteristics) decreases, and the stagger can
easily be increased.

Consequently, the stability against oscil-

lation is improved.

Transistors for the voltage amplifier stage

are required to have a high breakdown voltage, low Cob (collector
output capacitance) and high fT (gain-bandwidth product).
(3)

Open loop. voltage gain
The transconductance
2.5S typo

IYfs I

of power MOS FETs is as large as 1.0

~

Yet it is only a fraction of that of bipolar transistors.

For example,

IYfs I

of bipolar transistors at IC (collector current)=

1.OA, is very large, as follows;
1

I.

1A

r.

KT/q

26mV

I Yio I - - - - - = - - - '=i
where re:

Emitter equivalent resistance

K:

Boltzmann constant

T:

Absolute temperature

q:

Electron charge

IE:

8 8 S

Emitter bias current

When the power device is used in the source follower (In bipolar
transistor circuit; it's called emitter follower), the relationship
between input and output is;

264

•

HITACHI

- - - - - - - - - - - - - - - - - - - - - - - - - - 1 . A P P L I C A T I O N HINTS

output:..
RL
input' RL+II IYfsl

I

Input
Voltage

1

(See Fig. 1-2)

Output

Voltage

~

Fig. 1-2 Source Follower Input & Output

Only the nonlinear component of this equation, I/IYfsl, causes
distortion, so that a larger IYfsl is of lower distortion.

In

other words, since a power MOS FET amplifier has a distortion
about 20dB larger than a bipolar transistor amplifier, it is
necessary to design for larger open loop gain and larger negative
feedback than in a bipolar transistor circuit.
(4)

Considerations for parasitic oscillation
Because power MOS FETs have excellent high-frequency characteristics, they are liable to cause oscillation, even in a simple
circuit.
For an analysis of stability in a source follower circuit, see
paragraph 5.9 (page 47). Here, we would like to show some precautions
in fabrication.
Minimize the wiring between the printed circuit board and the
power MOS FETs.

Direct connection is recommended.

Provide one-point grounding for the amplifier printed circuit,
power supply, and speaker terminals.

Make the wiring of power

supply line and ground line as big as possible.
The output coupling coil L has the effect of reducing distortion
in the high frequency range.

It also prevents oscillation which

might occur when the output is loaded by capacitance.
Its value should be determined experimentally.
Printed circuit layout should flow topographically from input to
output.

•

HITACHI

265

1.APPLICATION HINTS - - - - - - - - - - - - - - - - - - - - - - - - -

(5) Line up
Table 1-1 Line-up of
Output
Power
Parallel
Pulhpull

FET
NPN

in Audio Amplifier

Driver Stage
Bipolar
FET

Input Stage
Bipolar

Sia.le
Pushpul1

50-60

Dev~ces

(V. IX

2BKU3

( v. ox )

( VCR. )

)

P
PNP N
Channel Channel N.PN

-

Output Stage
FET

2BJU

(UOV)

(-UOV)

B8K2l4.

2SJ77

(160V)

( -160V)

2BD756
( lZOV)

P
PNP Channel Channel
N

2B8716
( -120V)

2BK138

2BHo8

( 120V)

( -120V)

2SK190

2BK186

60-80

2SD756A 28B716A

100-120
(UOv)

28K134.

B8Ho9

(UOV)

(-UOV)

2 S K413

2 S J llS
(-140V)

(-UOV)

"'i14OV)
28C1775
28C2855

-

28A872
28A1l90

120-UO

2SK215

28J78

( 180V)

( -180V)

2SD668A 28B64.8A
( l60V)

UD-200

-

2 S J ll9
(-160V)

28K216

28J79

28K175

1I8J55

(200V)

( -200V)

(180V)

(-180V)

2 S K400
(200V)
28K176
(BOOV)

2 S J ll4
(-200V)
28J56
(-1I00V)

2BC1775A 28A872A
28C2856

(BOOV)

-

118A1l91

Underline is D Series (Drain Case Type)

266

2 S K414

-movr

2SD758

-

lISJ50
( -l60V)

(-160V)

80-100

2SK135
( l60V)

_HITACHI

-

28Bn8
( -200V)

- - - - - - - - - - - - - - - - - - - - - - - - - - 1 . A P P L I C A T I O N HINTS

(6) Application Circuit
.100W Output THD'"oO.Ol%.

f~100kHz

,-----"f--"f---,.---'M""f--------<:+Vee =+55V

Qt. Q2
Q3
Q •• Q,
Q•• Q7

2SA872
2SB716A
2SD756A
2 SK134
Q•• Q. : 2SJ 49
-Vee~65V

Unit R :0
C
L

Fig. 1-3

0.0 2

i:i

0.0 1

: F

:H

Po =100W Power Amp. Circuit Diagram

200

0.0 5

~
A

:
:
:
:

I

I
t-

II I
Vee =·±65V
RL =80

100
80
RL
TIIJ) 0.01%

Iidle=I00,.,N

(Per each Device )f,

50

Vee

±65V

Iidle=100 mA(per

each Device)

f 100kHz

0.00 5

20

--.;;

i--

0.002

1~20kIlz
I f=lkH.

10

I II

0.001
2

10

20

50

100

200

5

Output Po(W)
Fig. 1-4

500

lk

2k

5k

10k

20k

50k

lOOk

Frequency f (Hz)

Total Harmonic Distortion
vs. Output Characteristics

•

Fig. 1-5

HITACHI

Power Band Width

267

1.APPLICATION HINTS - - - - - ' - - - - - - - - - - - - - - - - - - - - - - - •

1 DOW Output THO '=T 0.0 1 %. f

=

5 0 kHz

(All' FET DC Amplifier)

Input~~~~~ ~f-~~~----+-~~--------t_----_+--~~~--__,

16k

02
Q7' Qs : 2SK2Ho
Q.. QIO: 2 SKIS4
Q". Q12: 2SJ 49

Q,. Qz : 2SK190
Qs. Q. : 2SK186
Q •• Q6 : 2SJ77

Fig.1-6

C:F
L:H

Po=lOOW All FET Power Amp. Circuit Diagram

O,O~~'iJ)"1=u::::j:++mfl=l=I
I-Rr.
sO
11
~gg~~ 1 1 1.1.1 J

11_

200

0,02 Iidle=100mA (per each Device)

o""~

01
0'
0.005

z

f=OO

r-..

O'002~Uttm~-=r:t:~1f~o~ll~ktmn/~=1

100

,:e

5

10

20

50

50

...

=
=
- f=

t==
-

RL

TIID 0.01%
~c,=±60V
I-- CC2=±70V
I-- Iidle=lOOmA (per each Device)

Po.

o

200

lk

2k

Output Po (W)

268

....... r-"

sO

;:I

10
100

II

II

'i:l 20

I

Fig. 1-7

R: 0

,Unit

5k

10k

20k

Frequency f (Hz)

Total Harmonic Distortion
vs. Output Characteristics

Fig. 1-8

_HITACHI

Power Band Width

50k

lOOk

- - - - - - - - - - - - - - - - - - - - - - - - - - - 1 . A P P L I C A T I O N HINTS
1.1.2 PWM Amplifier

The PWM (Pulse Width Modulation) Amplifier is a signal reproducing system
in which a input signal is converted to a pulse signal whose width or duty
cycle is proportional to the input signals amplitude.

This variable duty

cycle but constant amplitude signal is amplified, low pass filtered, and
then applied to the load, losses are primarilly switching losses in the
output devices.

This allows a very high output power with very small

physical size.
The most important characteristic required for a output device in a
PWM amplifier is high switching speed.

The toff speed of a bipolar

transistor is slower than that of a power MOS FET of similar power
rating.
100

~

The toff (toff=tdCoff)+tf) value of a power MOS FET is only

200ns, giving it an advantage in PWM switching operation of several

hundred kHz.
(1)

Theory & Block Diagram of PWM Amplifier
Fig. 1-9 and Fig. 1-10 show the block diagram and the waveform of
a PWM amplifier.
/\ /\ 1\ 1\ 1\ I

(a)

CarrierV\lVV' VV'
(b)~

Input>
(a)+(b)

,

"'M~AM-A;r

(c)

LPHf=RH r

~lA ffii]
Fig. 1-9

PWA Amp. Block Diagram

(e) ...

~"

Output

Fig. 1-10

Waveform

In this PWM amplifier, the input signal (b) is added to the carrier
signal (a) (a triangular wave) through a comparator, and then that
signal «a) + (b»

is converted to a pulse signal whose pulse width

is proportional to the input signal level.

This means that the

pulse duty cycle is proportional to the input

•

HITACHI

sig~al

level •

269

1.APPLICATION HINTS - - - - - - - - - - - - - - - - - - - - - - - - - -

The pulse signal (c) drives the output power devices.

The power

devices switch the power supply, and the resulting output power is
passed to a low pass filter (hereinafter referred to as LPF).
The original signal input (b) is reproduced amplified (e) at the
output of the LPF.
When the frequency of carrier signal (a) is higher, the quantity
of information is more accurate and the distortion is lower.
According to information theory, if the frequency is more than
twice as high as the maximum transmission frequency, the original
frequency can be reproduced.

In the PWM amplifier, however, the

distortion will be worse, because the lower side band is mixed
into the audio signal.
frequency is 20
200
(2)

~

500kHz (5

Therefore, if the maximum transmission

~

50kHz, the carrier frequency should be normally

~

10 times).

Power Efficiency of PWM Amplifier
In a class-B amplifier, the amplification device operates as a
resistance, so the device loss is large.

On the other hand, in a

PWM amplifier, since the switch is connected directly to the power
supply, and the voltage-current product in a ideal switch is
always 0, there is no loss.

In fact, however, there is loss

proportional to the output, because of the ON resistance (RoN) of
the switch and the switching delay time.
Fig. 1-11 shows the efficiency vs. output power characteristics.
Compared with a class-B amplifier, the efficiency of a PWM
amplifier is better, under stated conditions.

100

f=1kUl
1&25

80
"...

"'"
...

40

....W

V

V

/'

V

V

VV

•::l

20

rs:I

0

....
....

V

0.5

'd'

~}~

toe 60

t'

z

Ri.=4

/

CLASS B AMP

V
5

1.0

10

20

50

100

Output Po (W)
Fig. 1-11
270

Efficiency vs. Output Characteristics
•

HITACHI

- - - - - - - - - - - - - - - - - - - - - - - - - - 1 . A P P L I C A T I O N HINTS
(3)

Relation between output power device and distortion
Distortion in a PWM amplifier occurs, under the influences of; 1)
frequency of carrier signal, 2) linearity of triangular wave and 3)
attenuation of LPF.

In this section, we would like to explain the

distortion that occurs at the output stage of the power switching
circuit.
Fig. 1-12 shows a PWM output circuit in which power MOS FET's are
used, and Fig. 1-13, the operating waveforms.
(a) shows driving voltage waveform (vi) and (b)
current waveform at each point.
instantaneously

~

(e), voltage and

The current can't be changed

because of the LPF's inductance, resulting in the

waveform shown in (e),

Examining the current more minutely, from

tl to t2, Ql is in ON state and forward current (il) flows.
As soon as the Ql turns OFF, a inverse voltage is generated by the
LPF's inductance and to absorb it, current (i2) flows through the
Q2 diode (t2 ~ t3).
flows (t3 ~ t4).
(t4

~

t5).

Then Q2 turns ON and forward current (i3)

Then current (i4) flows through the Ql diode

The current flows repeating the above operations.

Here, the important point is that the current can flow backward.
This means that a power MOS FET does not require an external
commutating diode because it has an equivalent backward diode.
On the other hand, if a bipolar transistor is used in the output
stage, an external diode is needed.

In

(a)

m

VI

I
r-H I
J~~~LJ

101

I

~

I,

Ihlt2 Itsl t .. hj
t

I-.J__
I

V

-~+v.

I

..

T

cc

VDS(OD)
I

iI

-l-

I

Fig. 1-12 Equivalent Circuit of PWM Output
Stage

(e)

Ie)

I

I
I

I

I

I

I

I

I '0

i
1

:

I
I

I:~~

V

'''V

"

Fig. 1-13 Waveform (Unmodulated)

_HITACHI

271

1.APPLICATION HINTS - - - - - - - - - - - - - - - - - - - - - - - - - -

As for the voltage waveform (vo), the remaining voltage VDS(on)
and the backward diode VF of power MOS FET cause amplitude
fluctuation of the output voltage.

Therefore the waveform as

shown in (b) is generated, instead of a correct square wave.
When a input signal is supplied, the pulse width is modulated and
power is provided to the speaker, the current flown to LPF is as
shown in Fig. 1-14. The output waveform is determined like this;
if the triangular current is positive, it is determined by the
forward current of P channel and the backward current of N channel,
and if the triangular current is negative, it is determinend by
the forward current of N channel and the backward current of P
channel.
As for the MOS FET output characteristics (VDS vs. ID characteristics), in the standard MOS FET, as shown by the dotted line in
Fig. 1-15, the diode characteristics are seen in the reverse area.
Because of this non-linear characteristics, the voltage drop of the
output pulse is non-linear and a distortion is caused.

Therefore a

device is required to have the same forward and backward
characteristics.

VGS= 10 V

"."'
1H1ID- : .:

P channel Forward Current

- . ' =:: ~'ftf

\

Current Voltage
waveform waveform
Fig. 1-14

-4

Bewr" VF

Output Waveform (Modulated)

IReverse \
Fig. 1-15

272

•

HITACHI

FET

ID-VnS Characteristics

- - - - - - - - - - - - - - - - - - - - - - - - - - 1 . A P P L I C A T I O N HINTS
(4)

Application and Line-up

15k

R Channel
24tt

1'1.u

J.-----4-~--~--o-\'CC2

I
I

L Channel

h
I

I

-Vcc.

I

~ _ _ _ _ _ _ _ _ _ _ _ ___'I
Unit

R:O

C:F

±VCCl=±lOV
±VCC2 =±25V
fosc

~

300kHz

(

1

4.Ci05· Ri05

RL=4!1

QI,Q~,Q5,Q6

2SC2308

Q2,Q3,Q7,Qe

2SAlO30

Q"QIO

2SD667

Qll,Q12

2SB647

)

QI3

2SK346,2SK428

QI~

2SJlO2,2SJl22

Note
1)

As the interference of linking between the switching power
MOS FET toward the modulator IC affects the Total Harmonic
Distortion and output noise, the electromagnetic shielding
over the power MOS FET, its driver circuit and demodulation
filter are required.
Fig. 1-16

Po=40-60w PWM Power Amp for Car Stereo

_HITACHI

273

1.APPLICATION HINTS - - - - - - - - - - - - - - - - - - - - - - - - - 100
2SK4ls/zJ122

i
""

so

.,.:;:.

...
;::I

§'

60

;f

H

.......
~

/

r::
~ 40

~

-

--~

2SK846/2SJ102

~

O~

-_..

_0

~.
.,"

,.

~ '"

,."'...
~.'"

7

'-'

.,.,~
.,.,
Qj

5,0

co

e_e

Voul

0-

=0=0

O=O~

:>. 50
~

.....
Qj

0

.....

()

:>

p.

~

()

..."'

.....

...::I
...::I

Ripple Waveform of Output
Voltage
(Vo u t=5V, In=15A)

,4,5

4-<
4-<

r.:I

25

0

I

L

20

10

Output Current
Fig. 1-21

276

:\0

Iou I ( A)

Output and Efficiency vs. Output Current Characteristics

•

HITACHI

- - - - - - - - - - - - - - - - - - - - - - - - - - - 1 . A P P L I C A T I O N HINTS
<

Circuit Description>
(1)

In rush current protection circuit
This circuit is to limit the charging current flowing to the
input capacitor when the power supply turns ON. When the subpower supply circuit turns ON and the main switching transistor
(power MOS FET) begins to operate, a voltage is generated at
the coil (N 3 ). By charging capacitor C by the time constant of
Rand C, the SCR gate is driven. This delay time prevents over
current.

r-----------------l

I

I

lS2074®

I
I

I
I

36

I

ISCR

I

~--

I

I
50 - - - - - - - - - - - - - ___ ...J

470.a

X3

E

T t :PQ32/30

Nt

'------------'--'--11____<>_ F. G.

= 26T,N, = 2.5T,N. =

3T

TI

0.0047.a

Fig. 1-22

(2)

Rush Current Protection Circuit
(in dotted line)

Sub Power Supply Circuit
The sub power supply circuit is a blocking oscillator whose
secondary output is stabilized by three-terminal regulators;
SV output for IC driving, and lSV output for power MOS FET
driving.

•

HITACHI

277

1.APPLICATION HINTS - - - - - - - - - - - - - - - - - - - - - - - - - - - -

To anode of smoothing capacitor

lOOk

_1+--...--o15veV2

)

220ft
W06A
GD2

T2

Nl1
NZI

GDl

Fig. 1-23
(3)

P Q 2 0/2 0
= 105 T,
=9T,

N. 2 =
N22 =

8T
16T

Sub Power Supply Circuit

Control Circuit
Since the switching frequency is very high (250kHz), the control
circuit is made by IC's as shown in Fig. 1-23.
The functions of the IC's are as follows.
ICI:

reference oscillation (500kHz)

IC2:

pulse width control

IC3:

2-phase division

IC4:

drive output • shut down

IC5:

voltage detection, detection of over current, detection
of over voltage

278

_HITACHI

- - - - - - - - - - - - - - - - - - - - - - - - - - - 1 . A P P L I C A T I O N HINTS
v,
VI

VI

33k

VI

@ Voltage control

output
Shut down
Remote control
detection
@ Over current
output
@ Over voltage
output
oo.. ~CD ® Drive output
(6J

o

lOOp

100

Fig. 1-24 Control Circuit
(4)

Drive circuit
The drive circuit is coupled by a pulse transformer for isolation.
When Trl is in the ON state, the input capacitance of the power
MOS FET is charged through the 330n resistance.

When Trl turns OFF,

Tr2 is turned ON by the flyback voltage and the input capacitance
is discharged by the SIn resistance.

5V

15V

r---~----,r--~to

Gate

51

Tn

.--------1~ 'SC138.1ij)

C---~-r-~~~--~to

Source

,.
Fig. 1-25

•

Drive Circuit

HITACHI

279

1.APPLICATION HINTS - - - - - - - - - - - - - - - - - - - - - - - - - < Noise >

(1)

Countermeasure to noise
In this circuit noise is produced by the high switching speed of
the power MOS FETs.
Normal mode noise will be reduced by adding capacitors to both
sides of the output, as shown in Fig. 1-26.
Common mode noise will be reduced by returning the noise to the
generation point, as shown in Fig. 1-26 (a). As shown in
Fig. 1-26 (b), if a choke coil is inserted for common mode
suppression, the noise will be further reduced.

36

lS20'.®

~OlJl

) Output

Normal Mode

(a)

Comnon Mode

A

'"i
I

LJ I

1

nL--:______Output
(b)

Fig. 1-26 Countermeasure to Noise

280

•

HITACHI

0

- - - - - - - - - - - - - - - - - - - - - - - - - - - 1.APPLICATION HINTS

(2)

Drive Circuit and Noise
As described in the preceding section (I), noise is generated
because of the high speed operation of the power MOS FETs.
Especially, the ON time has large influence on noise generation.
This means that noise can be reduced by improving the drive
circuit.
Table 1-3 Drive Circuit and Noise

I~
Circuit

CD R, J
~9
Rt~rg

Item

Parameter

R, = 5 In

Turn-On Time

Output Noise
(mV)p-p

®

DtJ

~9
Ct~300pF

R,= 551 n

R,=551n

R, = 55 In
R.~300n

80

1550

670

2

570

1 4. 0

13 5

1 10

100

7

3 O. 5

6.6

3.0

4.1 4

2.

Remarks

Cgd ~50pF
R, = 5 In

R,>rg

J ~J
R,
g
9

90

Switching Loss
(W)

::,

~

130

2

( n s )

R,

@

30

( n s )

Turn-Off Time

d

(2) Cgd
.~

90

1

2

80

2

80

0

Switching Loss.Smail Swi tching Loss ;Maximum switching Loss;Large Switching Loss;Small Switching Loss;S1I\8.U
Turn Off Time ;Large Turn Off Time ; Smal Turn Off Time ;Small
Switching Time;Small Switching Time;Large
;Small
; Small
; Small Noise
;Larg Noise
; Small Noise
Noise

Noise

~:!:~;!;n

Test Conditions

of s;Difficult

Input AC 100V, Output 5V • IDA,
Switching Frequency 100 kHz

•

HITACHI

281

1.APPLICATION HINTS - - - - - - - - - - - - - - - - - - - - - - - - - - -

•

ONE TRANSISTOR FORWARD SYSTEM, 500kHz, SOW (SV, IDA) SWITCHING
POWER SUPPLY
Fig. 1-27 and Fig. 1-28 respectively show the switching power supply

circuit block diagram and its waveforms.
10

t70p

10

880px Z

4'lOOp

F.G

Uni t

C

R:

F.G
D~~

__

~

-J"

________

E

Rt=2'T, R,=4T. na=18T. n,=lZT
R,=40T. n.=8T

B

Fig. 1-27

Block Diagram of One-Transistor Forward System,
500 kHz, SOW (SV, lOA).

Vns waveform of QI-------+

Waveform of capacitor

Fig. 1-28

282

n

C:F

C-------~.~

Waveforms (at SV, 9.IA)

•

HITACHI

A

- - - - - - - - - - - - - - - - - - - - - - - - - - - 1 . A P P L I C A T I O N HINTS
[High speed drive circuit]
To allow a higher frequency switching power, the most important thing
is to turn off the main switching device in high speed.

A control current

with a high peak value is necessary to turn a power MOS FET off.

Here, we

adopt a simple circuit by utilizing the main circuit to supply a high peak
current at turn-off.

This circuit operates as follows.

When the MOS FET Q3 turns on, a current flows via transformer TB to Ql
gate, and Ql is turned on.
coils nl and nR'
polarity.

In consequence, a voltage is induced in the

The black dot in the figure indicates the positive

Q2 is off with inverse bias by voltage drop in the diode D2'

Next, when Q3 is turned off, the current in TB flows through the gate
to source of QI and the source to gate of Q2 and turns Q2 on.

QI is still

on, right after Q2 turns on.
Therefore, the above mentioned voltage in the coils nl and nR still
remains. By Q2 turning on, current from nR flows to the source - gate of
Q2 and QI' the resistor R, and the diode DI and turns QI off. When QI
turns off, a reverse voltage to the dotted polarity is generated in nl and
nR'

This voltage is blocked by DI'
With the above operation, an inverted high peak gate current can be

generated from the main circuit to QI'
[Noise reduction]
The output noise is reduced by Land C in the circuit.

This controls

the voltage change rate by time of which voltage is supplied to the primary
coil at on or off of the main switching device.

The reactor L restrains

the current increase in the primary coil nl' when QI (main switching device)
turns on.

The capacitor C restrains the change rate of the voltage induced

in the primary coil nl' when QI turns off.
The part encircled by a dotted line in the figure is discharge circuit for the capacitor C which is charged with the polarity indicated in
the figure after QI was turned off.
This discharge circuit feeds the charged energy in C back to the
rectified DC supply in the primary part, while QI is on.
discharges C to OV until QI is turned off.

The circuit also

The constants of Land Care

determined by analyzing the harmonics in the voltage supplied to the

•

HITACHI

283

1.APPLICATION HINTS - - - - - - - - - - - - - - - - - - - - - - - - - -

primary coil nl, so that the resonant frequency of the equivalent highpass filter between primary and secondary coils is removed.
The output noise waveform from the above described circuit, and
without countermeasures, are shown in Fig. 1-29 and Fig. 1-30 respectively.
You can see in the figures that the output noise is significantly reduced.

r

5OmV/DIV

~0.5~S/DIV

Fig. 1-29

Output Noise Waveform with the Circuit Introduced
(Synchroscope 150 MHz, 5V, lOA)

r 5OmV/DIV
-0.5~S/DIV

Fig. 1-30

Output Noise Waveform without Countermeasures
(Synchroscope 150 MHz, 5V, lOA)

A comparison of the volume with main transformer, choke coil and
output smoothing capacitor in 50 kHz, SOW (5V, lOA) output switching
power supply made on an experimental basis in our company is shown in
Table 1-4.

In 500 kHz switching power supply, 26% of the main transformer

volume, 25% of the choke coil volume and 50% of the output smoothing
capacitor volume; i.e. 65% of the total volume were reduced, in comparison
with 50 kHz switching power supply.
Fig. 1-4

A Comparison of the Volume of Main Transformer, Choke Coil and
Output Smoothing Capa~itor in 5V, lOA Output Switching Power Supplys

Main transformer volume
Choke coil volume
Output smoothing capacitor volume

284

•

50kHz switching
power supply

500kHz switching
power supply

l6000mm 3

420Omm 3 (26%)

850Omm 3

2l00mm 3 (24%)

l6000mm 3

800Omm 3 (50%)

HITACHI

- - - - - - - - - - - - - - - - - - - - - - - - - - - 1 . A P P L I C A T I O N HINTS

eFour-transistor full-bridge type 100kHz, 400W switching regulator
Fig. 1-31 shows the circuit of four-transistor full-bridge type
switching regulator. This circuit has the following characteristics.
output;
input;

400W (48V, 8A)
AC 100V

operation frequency;
control IC;
isolation;

100kHz

HAl7524
photo coupler

efficienty;

at full load 80%
at 200W output 85%

P3

PC

Ll"H

IIO,uH

600,uF ...

Input

(IDO,uFX6)

ACIOOV

-

GNOZ

G4

-Vee

Vco
-Vee
Ok

V09i

c:J

22'1<. 10k
IkO,l,u

'"
GNOt GNOl

Ll:,L2::T type core s4'l.5mm. wire 13T
LIZH:EI50 core Cap O.3mm
~lmm wire 6 wh'u wound separately

Fig. 1-31

T:EI6Q core

1st side ;'1.5rmn Wire 7T
2nd side ~lmm wil'e 4T;
5 wires wound separately

C.T. :EI30 core
1st side
2nd side

~1.5mm
~O. Snun

wire IT
wire 2ST

Four-transistor Full Bridge System Switching Regulator

_HITACHI

285

1.APPLICATION HINTS - - - - - - - - - - - - - - - - - - - - - - - - - -

This circuit operates as a switching regulator (AC 100V, direct
rectification type), using N-channe1 & P-channe1 MOS FET's for fourtransistor full bridge.

To make good use of the high speed capability of

power MOS FETs, the switching cycle is set at 100kHz.

As a result, we

had 80% efficiency at full load and maximum 85% efficienty (at 200W output).

-r-

'--

I~

Vin

....

~

~h

I
,........-

l

I

,........-

...........

r

...........

fJ

I

IOOV/dlv

L

r

lin

.,

-

I CA/dlv

f.J

Fig. 1-32 Waveform (Full loaded)

'00

.

•

.

.

Vo

D

,III

200

Output Power Po (W)
Fig. 1-33

286

,..

..

Output Voltage and Efficiency vs. Output Power Characteristics

•

HITACHI

- - - - - - - - - - - - - - - - - - - - - - - - - - 1 . A P P L I C A T I O N HINTS

• One-transistor system 250kHz, 60W, low noise switching regulator
Fig. 1-34 shows the circuit of one-transistor system switching
regulator. It has the following characteristics.
output; 5V. l2A
• input; 48:!:.5V
operation frequency; 250kHz
efficiency; at full load 83%
at 20W output 87%
• spike noise voltage; 10mVp _ p
The noise reduction method used in this circuit is as follows:
(1)

Good use is made of the source connected case of the power MOS
FET.

(2)

Loose coupling of the output transformer.

(3)

Switching curve softened by mirror integration with the primary
circuit of transformer, connecting the capacitor between drain
and source.

With the above method, the spike components will be removed almost
completely.

Radiation to the outside can be prevented by shielding.

Output
DC SV

Input
DC

Amp.

Fig. 1-34

One-transistor type Switching Regulator (Block Diagram)

_HITACHI

287

1.APPLICATION HINTS - - - - - - - - - - - - - - - - - - - - - - - - 90

I

I I

I.

Input Voltage.,V

'-';::::

l~ V
/; V

~~

SlV

~

~

/1

0

r

II

0
10

Output Current 10 (A)
Fig. 1-35

Efficiency vs.Output Current Characteristics

\

V,,.

r\

f\

\

\

tsov/DIV

I

--

-~

I
t=l,us/DIV
Fig. 1-36 Waveform

288

_HITACHI

-

tZA/DIV

- - - - - - - - - - - - - - - - - - - - - - - - - - 1 . A P P L I C A T I O N HINTS

1.2.2 High-speed Drive Circuit
A switching regulator has two types of drive circuits; one is direct
type drive and the other is isolated type drive •

• Di rect type
(1)

Additional Buffer Circuit
Fig. 1-37 shows additional buffer Circuit.

In this circuit, the

output impedance of the drive circuit is lowered through NPN and
PNP complementary symmetry emittar follower, resulting in high
speed.
(2)

Positive Feedback type Circuit
Fig. 1-38 shows positive feedback type circuit, in which positive
feedback is applied by sub-coil (n3), resulting in high speed
switching.
i)

ii)

The operation theory is as follows.

FETI is driven by inverter and drain current flows.
Voltage is generated by n3 and the input capacitance (Ciss) is
charged through Rl.

iii)

According to turn ON process of FETl, a positive feedback is
applied to the gate.

iv)

When the FET2 turns ON and the gate of FETI is grounded,
resulting in discharge of Ciss, the FETI turns OFF.
Fig. 1-39 shows the waveform between drain and source.

n .=50T
n.=5T
R.=5H1

Fig. 1-37

Additional Buffer Circuit

Fig. 1-38 Positive Feedback Circuit

_HITACHI

289

1.APPLICATION

HI~TS

--------------------------

,

\

1\

1\

2oV/l)IV

\

I.)

\
\

\

'"

I,
VY

Wi thout n3

t=O,ltVDIV

(b)

with n3

Fig. 1-39 Drain-Source Waveform( lo=2A) (2SK298)
n.=50T. n,=5T.R.=5Hl

• Isolation Type
The following circuits operate by making use of the flyback
voltage which is generated during the OFF period.
(1)

Diode Switch Type
This circuit is the simplest.

In this circuit, the input

capacitance of FETI is forced to be discharged by the flyback
voltage which is generated when FET2 turns OFF, and high speed
switching is achieved.

This circuit has a problem in that the

turn off time of FETI is not constant because the flyback
energy depends on the ON time (pulse width).
Fig. 1-40 and Fig. 1-41 show the circuit and the waveform
respectively.
(2)

FET Switch Type (1)
The circuit in Fig. 1-42 is an improved one of the circuit in Fig.
1-40.

In this circuit, the charge stored in Giss is discharged

when FET2 is turned ON by the flyback voltage,
FETl is grounded.

and the gate of

In this case, the turn off time is constant in

spite of the pulse width fluctuations, because the effect of FET2
is larger than that of the flyback •

290

•

HITACHI

- - - - - - - - - - - - - - - - - - - - - - - - - - 1 . A P P L I C A T I O N HINTS
Fig. 1-43 shows the waveform between drain and source.
(3)

FET Switch Type (2)
The circuit shown in Fig. 1-44 yields even higher performance
than that of Fig. 1-42.

In this circuit, when FET2 is turned

ON by the flyback voltage, the voltage generated at nS will
discharge the FET's Ciss positively with the time constant
R·Ciss.

As obvious from the operation waveform of Fig. 1-45,

the turn on time and the turn off time are both less than 30ns.

n

- -

-f 1'"'"I

- - -

-

-- --

-O.lpa/DIV

Fig. 1-40 Diode Switch Type

Fig. 1-41 Drain-Source Waveform (1 0 = 2 A • 2 S K298)
n,:n,=1:1
R, =R.=50n

n,

FET.

f1

t--+-t--+--++If--+--t--+----j

(OV/DIV

1I
D

Fig. 1-42 FET Switch Type

-

O.I.v'OIV

Fig. 1-43 Drain-Source Waveform

= 2 A • 2 S K 298)
n,:n.=1:1 R=50n

( 10

_HITACHI

291

1.APPLICATION HINTS - - - - - - - - - - - - - - - - - - - - - - - - - - -

-

Vos 100V/DIV

I\,

a) Turn-On
Waveform

II

v

10

IV

I

5A/DIV

Vos 100V/oIV

J
b) Turn-Off
Waveform
10

5A/DIV

Altv.»,. I.A

rv
t

_

0.1 "./ DIV

Fig. 1-45 Waveform (2SK 298)
n,:n,=l: l,n,=n.=60T,n,=6T
R= lOn, D,. D,: 1 S2074<9

Fig. 1-44 FET Switch Type

1.3 High Frequency Power Amplifier
As for transmitter applications, transistorization of 5
medium wave broadcasting transmitters has been achieved.

~

lOkW

The bipolar

transistors used however, have some problems regarding thermal runaway,
frequency characteristic, modulation linearity, etc.

Transistorization

in short wave broadcasting has not yet been realized, because there is
not a suitable device.
We would like to show a fully-transistorized medium wave broadcasting
transmitter and a fully-transistorized short wave broadcasting transmitter, in which a high output is provided by parallel operation of power
MOS FETs.

292

•

HITACHI

- - - - - - - - - - - - - - - - - - - - - - - - - - 1 . A P P L I C A T I O N HINTS

1.3.1 1kW Medium Wave Broadcasting Transmitter *1)
Fig. 1-46 shows a block diagram of a 1kW medium wave broadcasting
transmitter.

This system has the following characteristics.

Frequency;
Output;

1197kHz

llOOW

Power supply;

AC 200V, Single phase 50Hz

Efficiency (without modulation)
Total efficiency;

61.9%

Efficiency at modulation part; 93.6%
Efficiency at non-modulation part;
Modulation System;

84.4%

pulse width modulation

Power MOS FETs used in the transmitter provide the following
features.
(1)

Low Power Consumption
Power MOS FET requires no pre-modulation because of its high
efficiency and high gain.

(2)

High Performance
The distortion introduced by the pulse width modulation stage is
very small because of its switching speed.

A high carrier

frequency can be used in the PWM modulator for extended overall
frequency response.
(3)

High Reliability
The power MOS FET is inherently rugged and may be connected in
parallel without any special considerations.

It is possible to

use many devices in parallel, and through their redundancy, high
reliability is realized.
(4)

Easy Thermal Design
The use on many parallel devices aids thermal dispersion, and
results in easy thermal design.

_HITACHI

293

1.APPLICATION HINTS - - - - - - - - - - - - - - - - - - - - - - - - - -

+ISOV
+ IOOV

Y

=12V
v

r-------------~---~-,

:

Exciter

1

----r--1HI++-:>1

:

1

1

1

1

:

~'

1

1

__~~~~~-~

L-

~--~__

ir~OutPut

:

l

1
1

l

. . ,sov
+IOOV
:t: ltv

o

0

Lt::f.;--------- -b:
o

Audi00---3~ .:~

0

~~-- r=f.---~fn---.Jt______I'~r__
----lh
L
__
P_F

'I

Input

0

1-----~>.---1---1Ij;:{ ~

~

~7~i~~~MOO

'------------'

-rISOV

Fig. 1-46 Block Diagram of 1kW Medium Wave Broadcasting Transmitter

,...,
(1) Frequency Characteristics
+1

=:
so

100

:
300

Ik

~-I
Jk

Sk

10k

ZOk

Frequency (Hz)
Fig. 1-47

294

I>-e
'-"

3

(2) Distortion

§
........ '

...""

0 '

.....'"
o

9S%MOD...... ' ....
.-_ ...... ;..

50

100

300

HITACHI

Ok

Frequency (Hz)

Main Characteristics

•

.

80%'-400

-,..,
.,...".
-=-..,.-=--::::.:,.~.---3k

5k

10k

2011

- - - - - - - - - - - - - - - - - - - - - - - - - - 1 . A P P L I C A T I O N HINTS

1.3.2 600W Short Wave Broadcasting Transmitter *2)
Fig. 1-48 shows the circuit of the power amplifier circuit. The
characteristics of this circuit are as follows:

1J T.
Tn
",Output

~

Input

"'

T,

2SKI76;1l·

.... 9QVDC

I

Fig. 1-48 Power Amplifier (200W Unit)

q

........

~

....
toe

g

QJ

t_O-~'.,

~

-I

,

100

1,000

10,000

Frequency (kHz)

·Z

0

~

I

is~

0

°___ ° _0 _ _ °-,0'/

~ 80

~-.-.
.___
-----e3.,70MHz

~

0-0_0

.~

(90% Mod.)·..
100

1.000

10,QoO -

Frequency (kHz)

"-..-

70

- - .. , DOShAHz

- 0 _ 0 _ _ 9 5J5MHz

60

'--7--=--=-:::-0'::--:-;:---

::::

~

20

aD

60

80

100

Modulation (%)

(1) Frequency Characteristics
(3) Power Efficiency
(2) Distortion Characteristics
Fig. 1-49 Main Characteristics

_HITACHI

295

1.APPLICATION HINTS - - - - - - - - - - - - - - - - - - - - - - - - - - o

Frequency;

o

Output;

3. 970MHz , 6.00SMHz, 9.S3MHz

o

Efficiency (without modulation); 81% at 3.970MHz

600W (four 200W units using 2SK221QYs)
77% at 6.00SMHz
70% at 9.S3SMHz

o

Modulation System;

PWM Modulation System (using a 2SK176QY)

This is the circuit of a short wave broadcasting transmitter with
600W output, in which the 2SK221QD is used.

By using four 200W output

units, the redundancy is increased and high reliability is achieved.
Also, a PWM modulation system is used, resulting in smaller size, lighter
weight and higher efficiency.

Modulation is performed at 100kHz

repetitive frequency, using the 2SK176QY.

1.3.3 VHF High Power Amplifier Circuit
Power MOS FETis applicable to higher voltage circuits, and necessary
output power can be obtained with a small current.
high power amplifier circuit using 2SK317.

Fig. 1-50 shows the VHF

The input capacitance is about

600pF, so the input impedance at 100MHz is small, (Zin=l-ljn) and the output
impedance is small too (it's about I.S-2Sjn at 100MHz).

Owing to the above

factors, the rotation to inductive area of the in-output circuit occurs
by using series inductance, then, these circuits are matched with
series and parallel capacitance.

son

by

180W output power, 80% drain efficiency

can be obtained with 80V supply voltage, '8W input power, 100MHz frequency.
120W output power, 60% drain efficiency can also be obtained at the
frequency of 17SMHz.

The current is as small as 2.8A, 2.SA respectively.

In the case of push-pull circuit which adopts a couple of 2SK317s, 270W
output power, 80% drain efficiency can be obtained with 90V supply voltage,
20W input power.

As for input circuits,

son

co-axial cable balun is

determined as 38.2cm so that the input signals can be applied with different phases.

The output circuit consists of balun and filter, and

the length of the output balun is determined as llcm, aiming at maximum
efficiency.

296

•

HITACHI

- - - - - - - - - - - - - - - - - - - - - - - - - - - 1 . A P P L I C A T I O N HINTS

~

,

; .... 100

E~

I

}!.. +-+-1--+-1

1/

hf-H--+-+-+--I><++--1

~J!

C,=Z2pF, C.=33pF. C,=tOpF, C,=Z2pF
L, .L. : 10=6"', d= I"""
f=IOOMHz: L, "'3T, L, .. 6T
j ..

~l

Vl.m-80V

If-HHH-+-IIIIt,"O.lA

l"'lOOMHz

t75MHz:L,=IT. L,=3T

,
Input Powe.:- Pin (W)

10

D-c1ass push-pull amplifier circuit
L.

tllEC.IOtin

c"c.

50pF.500V

C,.C,
Output

son

lOOpF,lOOOV

CH,.CH,

ItlEC.8,UfT

R, .R,
R•• R.

"n
lkll

L,
L,
L,

v,

v,

Fig. 1-50
(1)

c, .c.

2;EC.l0,UT
5><20XO.I_
:I,EC,IO;2T
ZOOpF,lDOOV

C,.C.

5ijpF.500V

VHF High Power Amplifier Circuit

900MHz 1W power amplifier circuit (PF0001)
The PF0001 is a high frequency power MOS FET amplifier and
the output power; 1W (typ.) can be obtained.
amplifier using the HS8709 chip.

It is single stage

Fig. 1-51 shows the internal

equivalent circuit and dimensional outline of the PFOOOl.

The

matching circuit is formed on the ceramic substrate by using
micro-strip line and chip condenser.

l.lW output power, 50%

total efficiency, power gain lOdB (typ.) can be obtained at lOOmW
input power.

As for gain reduction value controlled variable

by the APC terminal, 5dB or more can be obtained by changing
the APC voltage from 8V to OV .

•

HITACHI

297

1.APPLICATION HINTS - - - - - - - - - - - - - - - - - - - - - - - - - -

r:

~

1.'

..?

1.2

I
1

V•••

0 .•

100

f .. 904 MHt
Pin "'l00rnW
Veo" 9.6 V

Input

:....::: -.... .:>

V

•

s:-

•
I

~T1

V

0.4

2

APe Voltage "APC (V)

0
8

l,tVoo
2

•

o.

r r r-j

t

~~

01111111111

o

::

Vi

0

I

•

~

V

..
}

---2

6

10

12

14

Supply Voltage VDD (V)

1 00

Poul
2

8;7
o.

.,-

""--a.

-.

'"

o

..?

4

50

Fig. 1-51

100

f-1.2

j

0.'

fr

0.'

.5

2

411

o

§

•0"J-

Voo-g.6V
•idle-50mA.

80

1.0

f-II04MHz

(2)

/'

/"

I

2.0

f

1L

~lloli

I

p~~ ~.o

"Is.ev)

o.4
o

J"I

/'''.0

100

, .. 904 MHO!;

Pin" l00mW
lidll" SOmA

.d'"

r--

-

CONDITION
VOI>=9.6V
1<41. = 5OI1IA

,.

_.,.

f"'904MHz
P,"""IQOmW

"

60

else TeUlperature Tc: ("C)

150

. J-i
"

]
~

20
~

"

900MHz lW Power Amplifier Circuit (PFOOOl)

900MHz 8W power amplifier circuit (PF0002)
The PF0002 is a high frequency power MOS FET amplifier.

It

is a two stage amplifier using HS8709 and HS87ll chips.

Fig. 1-52

shows the internal equivalent circuit and dimensional outline.
The applicable range of supply voltage is 7 to l6V, the frequency
range is 860 to 9l0MHz.

As for' gain reduction value controlled

variable by the APC terminal, 5dB or more can be obtained by
changing the APC voltage 8V to OV •

298

•

HITACHI

- - - - - - - - - - - - - - - - - - - - - - - - - - - 1 . A P P L I C A T I O N HINTS
TIM! I.II,unt fur 1III!3Surelllent (1'he glass epoxy dual-

Outpul

sided P.C,B., t-1.6111111)

36

~~ ~TI
~

--..j

Pin outs
"'Pln

2 "'V"'CI
3 "'+Voo

.. ···Pout
5 ",V,l.PCI
6 ,··OND

{Unit....,J

·• - .,

.,

I.

,I. ~.
.1

.If• ..

CONDITION:
VDD" 12.IV
IIdI.-22I5mA
'-104 MHz
100

,

-.
...

i"'r-='

·

P~.

L

/

CONal ION:
11ctIe-::t:IImA
f-IIMMMI

PI,,- ,GO_

o

APC Volta"e VAPCI-VAPC2(V)

"

5

..

/

,I-"

Input Power Pin (IIIW)

,

10

12

,..

-

,.

.
..
.

,.

•

Supply Voltage VDD (V)

.
'
r---..
'r-.
r---.. .
1 • ~ r-.. ......
r- .
•
..........

P•••

on

50

CONDITION
VDI)"12.5V

lioI •• -22S.A
f-i04MHz
PJ.-lOOIIW

•
e•
J•
j •

j

·

20

-20

2G

40

Fig. 1-52
(3)

60

_

80

--.

~~~;;;:;.IIcIe.22ImA_

rv

V

'e--

•

..
CONDITION:

K

_

_

"SWAt"'l

~
_ m _

i"'---t--.

J

- --I--'-

_

Fuquenc)' f

~

./
-

3.

•

........

•
1

-

(HRs)

... ...·

900MHz BW Power Amplifier Circuit (PF0002)

900MHz power amplifier circuit (HSB70B)
The HSB70B is power MOS FET and its applicable input power is 10
to 5OmW.

It is sealed into the chip carrier.

900MHz pre-drive circuit using this FET.

Fig. 1-53 shows the

400mW output power, 40%

efficiency can be obtained at 20mW input power, when Vnn=l2.5V.
The output power can be controlled from 300mW up to almost Omw by
changing the gate voltage from 2.0V to O•

•

HITAOHI

299

1.APPLICATION HINTS - - - - - - - - - - - - - - - - - - - - - - - - - -

v.:

+ VIOl>

':F'C~J.L~. R'~C'c11TPUT

0,: 33pF

L,
L.
L,
L.
L.

c.: 10pF
0, : 33pF
c.: 7pF

RFC

0,: 1pF

c.:

".47na(W""2JoII)
9.9'" (w=z-,)
9.94oR(W-2N)
9.&s-(W-tnm)
3nn(W=3-)

10000pF

R, :6IkO
RFC: 1Q.2wn Coppel' llire 15 Tu.. nlJ
In. ide O:l.a ;;1._
(with lkA Resistor)

L,

Glasa ePOIfJ clual-aUs P.C.B Ct-l . •>
A circle ind:l.eate• • through holl
{~~}

Parts Array

.

~~

I HSl70B S PARAMETER I

C,

,

'RFC

C

1

L,

C.

C.

Lo'C,

IN

C'ONDITI'ON
f=904MH.
1,.lo'"'Zs.A

...
!
]

j

;

8

+VPIl-I~

_

CONDITION

100

~
V I--

I

r

j

I.GV,...

/

I--

V

!
]

/

VIlIl-12.SV
P,o=IOIIIW
f-tOfMH:r

...

.....

SOO

...
...
...

V

I

7.2V
A

200

100

'"

--

V

/

J
I.'

'.5

10

20

to

SO

50

.-

60

APC Voltage

1.5

'&PC

2.0

(V)

CONDITION
''''I04MH,
1,.,.-251nA

I'

~

~

~

• J?

!
i
!

\VIIII"12.SV

},

II

,

-,
20

30

t.

/

-I

a

V

10

/

/

Input Powe... Pin (-.If)

10

OUT

/

........

/'

~

/

...

CONDITION
VDIJ-I2.5V

...

...

1.. ~2s..A
Pio .. tlhlW

V..equenc,. f

SO

'-

..0
(MHz)

."

60

Input Power Pin (d)

Fig, 1-53
(4)

900MHz Power Amplifier Circuit (HS8708)

900MHz power amplifier circuit (HS8709)
The HS8709 is power MOS FET of lOOmW input power.

The chip used

for the PFOOOl and the drive stage of PF0002, is sealed into the

chip carrier.
FET.

Fig. 1-54 shows the drive circuit by using this

The output power 1.5W, 50% efficiency can be obtained when

VDDFl2.5V, lOOmW input power •
300

•

HITACHI

- - - - - - - - - - - - - - - - - - - - - - - - - - 1 . A P P L I C A T I O N HINTS

RFe

0,: IpF

A, : (kG

C,: IOpF

C,: 8pF

R.: 68kn

C,: 33pF
C,: 6pF

0, : 33pF

0.: 6pF
C,: 2200pF

L, : 4.S... (W=2non)

L,: 1(lmI(W"l!""'l

L,: Jo-{W= ..... )
L,: 3nm(W=Z-)

L,: 9.7.... (W"'2nm)

. AFC : ~O. 2.... Copper Wtre

Inside Din ~ 1. SIma, 1S Turn.

v,:

The P.C.S pattern (10% cont1'4ction)

HSB709 S PARAMETER

Item

S PARAMETER

5"

O.06-G.06j

5"

IJ. 17-0. 23j

"'Z.=500. f=900MHz
Vus=12.SV, iUQ""50mA

Parts Arrny

~1

~~~t:Ji~L~,-~e~,-~L~.-~L,
~
OUT

Q!Jl

I--- ....

C, C,

.\

Glue apoxy dual-aide P.C.B (t ..l.6aa)
A cirele indieates a through boll
(tllmm)

60

VI~ 6V

~

.'

~

0

i'!
~

~

8

C, C,

e,

20

/

r

t::?

~12.5V

V~7V
CONDITION

1""9OOM"z
l,dl.=5OmA
50

100

150

200

Input Power Pin (fIIW)

100
ISO
Input POller Pin (IIIW)

Fig. 1-54
(5)

900MHz Power Amplifier Circuit (HS8709)

900MHz two stage power amplifier circuit
Fig. 1-55 shows a two stage power amplifier circuit using HS8708,
HS8709.

2.5W output power, 50% total efficiency can be obtained

when Vnn=l2.5V, 20mW input power.

The power control by using 1st

and 2nd gate voltages in the case of lOmW input power, the output
power can be controlled from 2.5W to almost 0, by changing the
gate voltage from 2V to O.

The gain reduction value is about

7dB with 30mW input power.

$

HITACHI

301

1,APPLICATION HINTS - - - - - - - - - - - - - - - - - - - - - - - - - -

C, ",pF
C,
C, IOOpF

I'"
c,

,,-

0, 33pF
C, 'pF
0,

"'D

R,

1
'.5

0000

tL..C1'~o

I!!I

I ~.....--

o

COUPLING
CIRCUIT

INPUT

CIRCUIT

o~~'
0:

o

IN':-.

...

~oX)'

L.

C,

L.

OUTPUT
CIRCUIT

IO.o-{W-2-)

~,c

L,

Co

ft,

C.
.

L.

R,

L.

OUT

c,

L,

L,

~

C,

+ Villi

Vm

IUnit _1

Cla••

I'

31.'

00

".s-(W-~)

L, 6 . . . (W-2 ....)
L, Z3.o-CW-1.S-)
L, 6.a-n(W·Z ....)
L, IS . • CW"Z.a-)
L, 23.QIIIII(W-I.S-)
L, 14 . • CW-Z ....)

'oF
0, 'oF

' - - - - - - -....-0() +VIII>

L,
L,

+ VDD

V,,!

dual_ide p.e.B (e-I.6a.)

A C!1rc1. ladiul:. . . tIlrollJb boll
(41_)

3.0

f.?::M~?N

I

1--1--+--+-+-;
~""tT+VDD"12.5V

e:
j

2••

L

I--f1f-----t--t-+-+--t--i

j
!81.OI+JYf-----t--t-+-+--t--i

•

.

10

"

.

"

Input Power 'in (d)

..

8

/

10

...

/D/}-12.5V

,

y.

;-..

, .• !--_-t-----:.....,~~_+fV--'IP:.::~'--,-+_--1..

}.L.-

/~
",

'"

J

1.1

If, -

_

.

o

0.5

...

r:;O:-H~

1\••

"

.

Input Power Ptn (aW)

Fig, 1-55

"

900MHz Two Stage Power Amplifier Circuit

_HITACHI

...

8

"
~

~~

30

=

20

~

- 10

I

1.5

APe Voltas_ VCI-VC2 (V)

Fl'equencJ f (MH.)

302

." .

/ /

20

10

~

~

•

2.'

.. 5

~

la

ArC Vo1ta~e Vct-YG2 (V)
3 .• , - - , - - - , - - - - , - - - , - - - ,

10

•

"

.. •.• !----¥J-t
-IL..f--+---+----I 20

I-INMH•
1••,.-75.0\

I5 "Y
j

50

V_

8 •. II1/'---+----t--+- ~~N.nIIi.~~N -

CONDITION

SO

" ..

e

rz "
j ... t---;--,..,,~-+
/
!
:/ /

i

..

.
. i"

P,,,...Pr-

l.dl.~1S.A

0

'3

- - - - - - - - - - - - - - - - - - - - - - - - - - 1 . A P P L I C A T I O N HINTS

(6)

900MHz power amplifier circuit (HS87ll)
The HS87ll is power MOS FET used for final stage of PF0002.
Fig. 1-56 shows the power amplifier circuit using this FET.
8W output power, 55% efficiency can be obtained when Vnn =12.5V,
1.6W input power.

In the case of 7V supply voltage, 3.5W output

power, 49% efficiency can also be obtained •

..
C, : IpF
O. : JOpF
C.: 1pF
C,: 2200pF

C.
O.
C.:
R,:

6pF
4pF
rOpF
SISkO

R, : IkQ

L,:~(W"~)

L.: 13IIIn(W-=3'IIIo)
L.,: l(J1M1(W-"")
L.: 311111(W-)nIo)
AFC: \fO.2""" Copper Wire
Inl!l1de Dla ~1.S-. 15 Tum.

v"

The P.C.B pattern (70% contraction)

·~·;r.:I
~
,. ..

HS8711 S PARAMTER

Itlllll

5 PARAMETER

5"

O.07+0.04j

5..

O.0I+lJ.02j

.Zo=50n. '''9ooMH.

' , ,

VDS= 12.SV. IDQ= I7S.. A

, ,

CluB epoxy d.ual-s1de P.C,B (t-l.~)
A circle indicate. II through hole

I

10.0

Parts Array

(,61.II1II)

VDo=J2.SV

CONDITION
f =900MHz

.

1••• =17S.. A

.... 1----1---+----,,.£+----1--1
j

•

1

50
.

VIIP IOV

L;: ~

'VDD=7V

.{f).-12.5V
CONDITION
f=900MH.

2.51---.f£.j....~--+~=--'-'-+---t_~

Ildl.= 17S.. A

500

'000

'500

"'.

Input Power Pin (mW)

500

'000

1500

2000

Input Power Pin (IIIW)

Fig. 1-56

900MHz Power Amplifier Circuit (HS8711)

•

HITACHI

303

1.APPLICATION HINTS - - - - - - - - - - - - - - - - - - - - - - - - - -

1.4 Motor Control
Formerly, bipolar transistors or thyristors have been used for speed
control of DC and AC motors.

Recently, however, power MOS FETs are used

for motor control, owing to their low RoN.

Power MOS FETs used for motor

control have the following features.
(1)

Since the switching speed of the power MOS FET is very fast, the
chopping frequency of the motor control can be increased to
10kHz

~

20kHz.

This is 10 times as high as conventionally used,

resulting in quick response, high efficiency, reduced noise, and
small size.
(2)

As for the electrical characteristics, the power MOS FET has a
negative temperature coefficient, so it has wide ASO (Area of
Safety Operation).

(3)

Since the power MOS FET is driven by voltage, it requires little
driving current, resulting in a simple drive circuit.

(4)

The power MOS FET has a parasitic diode between source and drain.
This diode has comparatively high switching speed and the current
rating is equal to that of the power MOS FET.
a f1y-whee1 diode.

It can be used as

Therefore, the external commutation diode can

be eliminated and the number of components can be reduced •

304

•

HITACHI

- - - - - - - - - - - - - - - - - - - - - - - - - - 1 . A P P L I C A T I O N HINTS
Table 1-4

The Characteristics of Power MOS FET
and Advantages in Motor Control

Features

Advantages in motor control

Switching speed is fast.

High efficiency, reduced noise and smallsized by high operating frequency

Voltage control

Little driving power, resulting in a
simple drive circuit

Negative temperature
coefficient of current

Easy to have higher current capability
with parallel connection due to no local
current concentration

Built-in diode between
drain and source

It can be used as a fly-wheel diode, and
the number of components can be reduced

pIN channel
complimentary

The number of components can be reduced
by the simple drive circuit

Fig. 1-57 shows inverter circuit in which 2SK.31.3 is used at Q1 - Q6.
The built-in diode between drain and source is relatively high speed and
can be used as a fly-wheel diode.

Therefore, external high-speed fly-

wheel diode is not required, the number of components can be reduced.
As for electrically short accident in the inverter circuit, Power MOS

FETs take longer time than bipolar transistor to breakdown, and overcurrent protection circuits can be easily designed.

Fig. 1-58 shows

the results of load short test.
Couvoerl:er

Fig. 1-57

ImU'tft

r -- --- ------------;

Power MOS FET Inverter

_HITACHI

305

1.APPLICATION HINTS - - - - - - - - - - - - - - - - - - - - - - - - - - --SSK818

.00

- - - - - ZSD1204

\

400

~

0\

0_-_0___ 0"
0,

>

Q",

800

'q,
.---r---"~

"-

"Q.." 0"",

Vee

'0,

200

~

~f

-':-'-"=:::::::;:!::;:=c--=
Sample Test c::ondition

I\.

0-4~ ~204

100

ZSK818

'0

IB=O.2A'

Vos=UV

o~~~------~~~~--~---

10

SO

50

100

200

t ll (lls)

Fig. 1-58
•

Destruction voltage at load short test

Gate Drive Circuit

Fig. 1-59 shows basic gate drive circuit in which Power MaS FET is
used.

There are several kinds of circuit.

The circuit needs less drive

power due to voltage control than the current control of bipolar transistor, and can compose by small signal transistors.
The comparison of driving power with bipolar transistor is shown

in Fig. 1-60.
This figure shows the characteristics of 1.2kW DC brushless motor
drive using the inverter circuit in which power MaS FET, 2SK3l3 (VDSS
450V,I D l2A) or darlington transistor 2SD1204 (VCEO 400V, Ie l5A) is
used. As for driving power, the total of the transformer loss at
driving circuit and the control circuit loss and the drive circuit loss
is measured as sub power supply input.

The drive power loss of Power

MaS FET, 2SK3l3, is less than that of darlington transistor.

Concerning

with inverter efficiency, Power MaS FET shows almost same level as
darlington transistor because of rather low driving frequency of 2.2kHz.

If Power MaS FET is used, power supply components for driving can
be simplified due to low drive power loss (Fig. 1-61).

Fig. 1-61 (a)

shows the method that obtains positive and negative power supply from
inverter input DC voltage uSing zener diode.

Fig. 1-61 (b) shows the

method that obtains positive and negative power supply using power
supply transformer.

The method using power supply transformer does

not need power stability due to voltage control gate drive.
The gate drive circuit can save energy and be minimize by using
Power MaS FET.
306

•

HITACHI

- - - - - - - - - - - - - - - - - - - - - - - - - - 1 . A P P L I C A T I O N HINTS

QI; Photo Coupler
Q2-QS; Drive Transistor
Q6; Power MOS FET
Fig. 1-59

Gate Drive Circuit of Power MOS FET
100

,,'
--aSK818
- - - - - ZSDU04

::

j

zo

\Va

0------0---5-0-----0----0
e--e----e
O.Z

Note: 1 pu=6,OOOrpm
Fig. 1-60

e---e--e

0.40
0.11
Revolution iii (pu)

0.8

1.0

Torque 20kg'cm

Comparison of Drive Power of 1.2 kW DC Brush1ess Motor Operation

D. ZD.

D. ZD.

(a)

QI, Q2;
Db D2;
ZDI,ZD2;
Tr ;
Fig. 1-61

(b)

Power MOS FET
Diode
Zener Diode
Power Supply Transformer

Structure of Drive Power Supply for
Power MOS FET on Upside Arm

_HITACHI

307

1.APPLICATION HINTS - - - - - - - - - - - - - - - - - - - - - - - - - -

•

Gate Drive Circuit with P,N Channel Complimentary Power MOS FET
As for bipolar transistor, the complimentary characteristics of

current gain and high breakdown voltage for PNP type is difficult to
design.

As for Power MOS FET, high breakdown voltage and high current

of P channel is rather easy.
The circuit with P and N channel complimentary Power MaS FET is
shown in Fig. 1-62.

If P channel devices are used in upside arm of

inverter and N channel devices are in the under arm, drive power supply
are needed only for each arm.

Table 1-5 shows comparison between PIN

channel and all N channel complimentaly components about the number of
The number of drive power supply for piN channel is as

components.

half as that of all N channel one and the number of components for PIN
channel is 24% less than that of all N channel.
The drive circuit can be thus significantly simplified.

Table 1-5

Comparison of the number of components between
pIN channel complementary circuit, all N channel
circuit

piN Channel Complementary Circuit
Upside Arm

All N Channel
Circuit

Under Arm

Upside Arm

Under Arm

Transistor

9

12

12

12

Resistor

9

15

15

15

Photo Coupler

3

3

3

3

Drive Power Supply

5

5

15

5

26

35

45

35

Total
61
Note; Unit (piece)

308

•

HITACHI

80

- - - - - - - - - - - - - - - - - - - - - - - - - - 1 . A P P L I C A T I O N HINTS

Ql , Q2 ;

Photo Coupler

Q3 - Q9 ; Drive Transistor
QIO - Q12; P Channel Power MOS FET (2SJ1l6)
Q13 - Q15; N Channel Power MOS FET (2SK313)

Fig. 1-62

Drive Circuit with P and N Channel
Complementary Power MOS FET

1.4.1 Precautions in Handling the Built-in Diode
An built-in diode of the power MOS FET is used as a commutating diode
in a motor control circuit.

In this case, if the reverse voltage is

charged immediately after a high current is supplied to the diode, it may
be destroyed depending on the circuit and the operating conditions.
Fig. 1-63 and Fig. 1-64 shows a basic motor control circuit and the waveform of the motor control operation.
and Ql and Q4 on.

These waveforms are at Q2 and Q3 off

Q4 is continuously on when Ql is chopping.

At gate drive signal entering Gl, Ql turns on and iDl flows.

When

the current iDl of Ql stops, the regenerative current iF flows through
the built-in diode of Q2, by energy stored in the inductance of the motor.
In this state, if Ql turns on, Q2 is shortened because of the reverse
recovery time trr of the built-in diode of Q2, and excess recovery current
iDr flows.
This excess recovery current may destroy the diode at a point in the
shaded area in the figure, which indicates the period in which the built-in
diode voltage recovers.

Therefore, restricting the recovery current iDr is

an effective method to prevent diode destruction.

Table 1-6 shows the

detailed circuit countermeasures •

•

HITACHI

309

1.APPLICATION HINTS - - - - - - - - - - - - - - - - - - - - - - - - - -

Fig. 1-63

Basic Motor Control Circuit

-L-l\1Ioh~.I.----I-"""'- iDa (Drain current 1I8vefarltl of QZ) .

r-tH;"=+~"---I,I.....

VOS2 (Dratn-i!Kl'lrce volt6Re " •."eform of QZ)


iF : Forward current of Qz built-in diode
VF : Forward voltage drop of QZ built-in diode
VDS(on): Drain-source saturation voltage of Qz
trr: Reverse recovery time of Qz built-in diode
VLS: Voltage drop with circuit inductance Ls
iDr: Reverse recovery current of Qz built-in diode
(depends on the drive signal 'source impedence diF!dt of Ql.
circuit inductance Ls. supply voltage VCC. and electric charge
Qrr (or trr) in the built-in diode)
Vs
Spike voltage
(depends on the inductance Ls, iDR' and diDR!dt of the circuit)
Fig. 1-64

310

Waveform of the Motor Control Operation

_HITACHI

Table 1-6 Circuit Countermeasures against Built-in Diode Destruction
Classifi-

Countermeasures

cation

CD

Delay the turn-on time, by inserting a
resistor and diode which are connected
in parallel into the gate of the Power
MOS FET. This controls di/dt and
dv / d t of the buil t-in diode to res tric t
the recovery current (in this case, the
turn-off time does not have to be delayed) •
Insert an L and diode connee ted in
parallel into the drain of the Power

@

•

®

MOS FET.

This controls di/dt to

restrict the recovery current tOr-

Insert a C or CR snubber between the
drain and source of the Power MOS FET
to restrict dv/dt and voltage spike
of the built-in diode.

::t

~

=

~

Wires between + , - terminals of the
power supply line and the drain/source
of each arm (in the case of N/N) should
be twisted C are also connected.
By directly attaching wires to the
upper and lower arms and minimizing
stray tJ:le inductance, the voltage
spike and dv/dt are restricted.
Connect the fast diode to the external
of the Power MOS FET not to flow the
current in the buil t-in diode.

®

Before improvement

After improvement

VOOI:8
41ft
.- 0
0
VOOr:B ,.0
voom r.0 r
,0
Voo orr-G.
"-'"' ' '
G,-9

&l!l.
RG,

G.09

0RG.

G,o-J

L.. G,

G,o-J

L.. G.

G,o-J

G,o-J

()

Waveforms of the built-in diode

Circuit

\~~

•

dVdt
F

~O

L.. G.

Directly

!Iattached
\",
~ LoG.
G, 1\;i. ted
W1res

V]jj
G,o-J

L.. G.

G•.,.J

L..G.

R=3300-8200
( di/dt=20-50A/ps)

in.!

i~

V

--=:'0
~

~O

.VO

CR

C

..=JII. o

~O

JIIV o

L=2pH-20pH

~O

L..G,

.~'
1

!F~O

Circuit constants,
etc.

I

R= 10-470
C=O.OlpF-O.lpF

!

Wiring of the snubber I
should be as short
as possible •

Should be done together with countermeasures CD to ®

,I

-=--0

y.0

~O
~

avO

-=--0
)..
"0
"0

r

£

5z

:::I:
t.)

.....

Z
~

1.APPLICATION HINTS - - - - - - - - - - - - - - - - - - - - - - - - - - -

1.5 Analog Switch
When two power MOS FET's are connected in series, they operate as a
two-way analog switch (Fig. 1-65).
Remember that the power MOS FET is made to have a diode between
drain and source.
source, the Vns vs.

When applying a positive bias between gate and
In characteristics are as shown in Fig. 1-66.

When the current is small, the current flows through the channel in
both FET's, therefore the Vns-In characteristics is shown by a straight
line of 2xR (R is ON resistance of one FET).

When the current is further

increased, it will flow through the diode of one FET and the Vns-In
characteristics approaches the diode characteristics.
Important characteristics of Power MOS FET for analog switch are
on-resistance (Ron) and off-resistance (Roff) mentioned below.

(1)

Ron
This is the remaining resistance at switch on.

Fig. 1-65

Analog Swi tch

-VDS

+VDS

Fig. 1-66
312

Vns-In Characteristics

•

HITACHI

The lower. the better.

- - - - - - - - - - - - - - - - - - - - - - - - - - - 1.APPLICATION HINTS

(2)

Roff
Roff is the resistance between the ends of the switch when
the switch is open and is equivalent to insulation resistance of
mechanical switch.
switch is.

The higher this resistance is, the better the

It means that leak current (I DSS ' I DSX ) is small.

(Several nA to several ten nA in general)
In low current area, Ron of the built-in diode of Power MOS
FET can be small, applying positive gate-source bias (Fig. 1-67).
It is superior to diode switch.

When the gate-source bias is 0

or negative, the characteristics are the same as that of general
diode.

As Power MOS FET has enhancement characteristics, leak

current remains unchanged when VGS is applied 0.5 - 1.0V positive
bias induced by, such as, external circuit noise.
Power MOS FET can show its ability to a bi-directional (it
can switch alternative current) analog switch which has good
linearity.
The characteristics of 2SK294 is shown in Fig. 1-68.

0

IJ

r;

8

IJJ

(//
6

III
VII

~

t-2-

5V~
10V

Wi

{VGS - 0

-::>' ~ f- VGS --lOV
~ ~ '../
15~

o

/

Ar

0.+

0.8

1.2

1.6

2.0

Source to Drain Voltage VSD (V)
Fig. 1-67

Characteristics of Built-in Diode (2SK294)

$

HITACHI

313

1.APPLICATION HINTS - - - - - - - - - - - - - - - - - - - - - - - - - -

o
--O.5V/DIV

Fig. 1-68

Characteristics of 2SK294

The switching circuits, in which 2SJ120 and 2SJ121 are used, are shown
in Fig. 1-69 and Fig. 1-70.

CMOS Output
OV Ql Switch ON
5V Ql Switch OFF'

Ql: 2SJ120

Q2: 2SAI052

Q3: 2SC2462
Fig. 1-69

Switching Circuit with 2SJ120

YCC-'Y~'k
Q\
CMOS Output

lkG

5Y Ql Switch ONo-:;:,J
OV Ql Switch OFF

l

Q,

-'V
Ql: 2SJ121
Q2: 2SK416

Fig. 1-70

314

Switching Circuit with 2SJ121

•

HITACHI

- - - - - - - - - - - - - - - - - - - - - - - - - - - 1 . A P P L I C A T I O N HINTS

1.6 Character Display
The recent increase in office automation has lead to the need for
higher resolution color and monochrome displays requiring bandwidths of
40 to 80 MHz.

To meet these requirements, the transistor used for video

output should have high breakdown voltage, small I/O capacitances and
excellent high frequency characteristics.
In a transistor, the breakdown voltage and the high frequency
characteristics are contrary to each other, so it is difficult to realize
40 to 80MHz bandwidth current bipclar transistors for video output,
because of their high frequency characteristics.

By using the 2SK352 in

high-resolution cathode-ray tube displays this bandwidth can be realized.

1.6.1 Features
Since the 2SK5ll is designed to have small I/O capacitance and high
gm, it can be used not only for video output but also for high-output,
wide-band, high-impedance amplifiers in measuring instruments, etc.
Table 1-7 and Table 1-8 show the absolute maximum ratings and the
electrical characteristics respectively.
Table 1-7

ABSOLUTE MAXIMUM RATINGS (Ta=25°C)

Item

Symbol

Rating

Drain to Source Voltage

VDSS

250

V

Gate to Source Voltage

VGSS

±9

V

0.3

A

Drain Current
Drain peak Current

ID
ID(peak)

Channel Dissipation

Pch*

Channel Temperature

Tch

Storage Temperature

Tstg

_HITACHI

Unit

0.5

A

8

W

150
-55'0+150

°c
°c

315

1.APPLICATION HINTS - - - - - - - - - - - - - - - - - - - - - - - - -

Table 1-8

ELECTRICAL CHARACTERISTICS (Ta=25°C)

Item

Test Condition

Symbol

Drain to Source
Breakdown Voltage
Gate to Source Leak
Current
Gate to Source Cut-off
Voltage
Drain to Source
Saturation Voltage
Forward Transfer
Admittance
Input Capacitance
Output Capacitance
Reverse Transfer
Capacitance

typo

max.

,

VGS=O

250

-

-

ICSS

VGS=±9V

,

VOS=O

-

± 1

lIlA

I DSS

VOS=200V

,

VGS=O

-

-

1

mA

VGS(off)

ID=lmA

,

VOS=lOV

1.0

-

5.0

V

VDS(ON)

ID=O.lA

,

VCS=9V

-

3.0

5.0

V

IYfsl

ID=0.15A

,

VDS=20V

50

80

-

mS

-

20

-

pF

-

10

-

pF

2.5

-

pF

Ciss
VDS=lOV, VGS=O, f-lMHz

Coss
Crss

1000

V D8=1 0 V, ID = 10 rnA

/

1./\

/

,/

100

Frequency f (MHz)
Fig. 1-71

316

Unit

ID=lmA

V(BR)DSS

Drain Current

min.

IYfsl -f Characteristics

•

HITACHI

1000

V

-----------------------------~

•

1.APPLICATION HINTS

Excellent high frequency characteristics
The 2SK511 has high cut-off frequency (fC), 250MHz (typ).

Compared

with that of bipolar transistors (fT=80MHz(typ); i.e. fC=5MHz), it is 50
times higher.
•

Fig. 1-71 shows I Yfs I vs. frequency characteristics.

Small I/O capacitances
In video amplifiers, the band width depends on the output

capacitance (Coss).

In the 2SK511, the output capacitance (Coss) is

reduced to 10pF, and the input capacitance (Ciss), 20pF.
With small I/O capacitances, a high amplification factor is
obtained, without reducing the mutual conductance(IYfs I =80mS(typ»).
•

ASO(Area of Safe Operation)
The 2SK511 has no secondary breakdown area.

The rating of Pch=8W

is guaranteed to the extent of VDS=250V.

1.6.2 Application Notes
We would like to describe the use of the 2SK511 in a video output
stage.
•

Wide Band Width
The I/O capacitances of the 2SK511 are small, and to further reduce

their effect,the common gate connection is recommended.

In this case,

the source will be driven by high speed TTL or a high speed switching
transistor (2SC3652 etc.)

•

HITACHI

317

1.APPLICATION HINTS - - - - - - - - - - - - - - - - - - - - - - - - - -

Series-parallel Peaking
CRT

r

Fig. 1-72

Video Output Circuit

Generally, the high cut-off frequency of a RC coupled amplifier is
determined by load resistance (RL), the output capacitance (Coss) of the
transistor and the cathode-ray tube's capacitance (C').

Therefore, to

take advantage of the high frequency characteristics of the 2SK511, we
recommend use of parallel, series, and emitter peaking.

When using the

2SK352 in the digital (switching) mode, use a speed-up capacitor.
The 2SC3025 and the 2SC3026 (VCBO=l500V, l700V, IC=5A, fall time
tf=O.5#s max.) are horizontal deflection output transistors for
television receivers.

318

_HITACHI

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 . A P P L I C A T I O N HINTS

1.7 Ultrasonic Equipment
We would like to describe the power MOS FETs use in ultrasonic wave
diagnostic equipment.

Formerly, bipolar transistors have been used for

high-voltage and high-speed switching devices used to generate pulse
voltage for ultrasonic wave diagnostic equipment.

Recently, as ultrasonic

wave diagnostic equipment is required to have higher performance and
higher operating frequency, the power MOS FETs small package, high breakdown voltage, and low ON resistance has LED to its use.
Fig. 1-73 shows the block diagram and Fig. 1-74 shows the high
voltage pulse generator circuit and the voltage waveform.
has the following functions.
possible

This circuit

1) The pulse voltage (Vp-p) is as large as

2) The frequency component of the pulse voltage oscillation

waveform is high.

The power MOS FET provides high switching speed and

excellent frequency characteristics.

By using power MOS FETs, ultrasonic

wave diagnostic equipment can operate with high frequency and meets the
conditions (1) and (2), resulting in clear pictures.

High Voltage
r - Pulse Gene-

CRT Monitor

rator

101g

f
lVibrator

~

Control
Circui t

00

I
-

High
Frequency
Amplifier

0000000

t

~----------~

Built in
Fig. 1-73 Block Diagram

•

HITACHI

319

1.APPLICATION H I N T S - - - - - - - - - - - - - - - - - - - - - - - - - ' - -

2SK37S@,®
2SK53S@,®
2SK382
2SK311
2SK580@,®

390n

(300V/lA, DPAK)
(400V/1.SA,DPAK)
(SOOV/2A,TO-220AB)
(4S0V/3A,TO-220AB)
(SOOV/1.SA,DPAK)

---n +tp~ltag.
Vp

!vibrator

100

-Power MOS FET
High Frequency
High Power
- - - - SCR or Bip. TRS

... -100

>

-200

I-- 50n!V1>IV
Fig. 1-74

1 __

High Voltage Pulse Generator & Waveform

1.8 Others

Power MOS FETs can be used for many applications, such as magnetic
bubble memory driver, electrical discharge machine, laser pu1ser,
actuator, relay driver, lamp driver, etc.

Reference Books
*1)

Kurisu, Yoshida, Kiyama, Fu11---transistorized
Medium Wave Broadcasting Transmitter Using Power MOS FET

*2)

Aoyagi, Inoue, "Short Wave Broadcasting Transmitter using FET" ,
Television Academy Technology Report, RE79-24

320

_HITACHI

POWER MOS FET
CROSS REFERNECE LIST

~HITACHI

321

Notes for use
1. In this booklet Hitachi devices are indicated as replacement of other manufacturers' prod-

ucts in maximum ratings, maj or electrical characteristics and applications.
2. Some subtle differences in characteristics and specifications may exist.

3. Definition of symbols.
Symbol
VDSS

The maximum dc voltage between the drain and
the source when the gate is dc shorted to the
source.

Gate to Source
voltage

VGSS

The maximum dc voltage between the gate and
the source when the drain is dc shorted to
the source.

Drain Current

ID

The maximum value of the dc current into the
drain within the maximum ratings of the power
dissipation.

Allowable Drain
Power Dissipation

Pd

Allowable drain dc power dissipation under
the defined thermal radiation condition.

Drain to Source
On resistance

322

Definition

Term
Drain to Source
Voltage

RDs(on)

On resistance between the drain and the source
in source common circuit.

Turn-on Time

ton

=

td(on) + tr (Turn-on delayed time + rise
time)

Turn-off Time

toff

= td (off) + t f (Turn-off delayed time +
fall time)

Cut-off Frequency

fc

The frequency which

IYfsl

becomes -6 dB decrease.

POWER

MOSFET

Cross

Reference

List

MANUFACTURE: INTERNATIONAL RECTIFIER(IR)-l
typ
Industry

Package

Part No.

IRF120
IRF121
IRF122
IRF123
IRF130
IRF131
IRF132
IRF133
IRF140
IRF141
IRF142
IRF143
IRF150
IRF151
IRF152
IRF153
IRF220
IRF221
IRF222
IRF223
IRF230
IRF231
IRF232
IRF233
IRF240
IRF241
IRF242
IRF243
IRF250
IRF251

TO- 3
TO-3
TO-3
TO-3
TO- 3
TO- 3
TO- 3
TO- 3
TO- 3
TO-3
TO-3
TO- 3
TO- 3
TO- 3
TO- 3
TO- 3
TO- 3
TO- 3
TO- 3
TO- 3
TO- 3
TO-3
TO- 3
TO- 3
TO- 3
TO- 3
TO- 3
TO- 3
TO- 3
TO- 3

Voss
(V)

I0
(A)

100
60
100
60
100
60
100
60
100
60
100
60
100
60
100
60
200
150
200
150
200
150
200
150
200
150
200
150
200
150

8.0
8.0
7.0
7.0
14.0
14. 0
12.0
12.0
27.0
27.0
24.0
24.0
40.0
40.0
33.0
33.0
5.0
5.0
4.0
4.0
9.0
9.0
8.0
8.0
18.0
18.0
16.0
16.0
30.0
30.0

typ

R DS (on)

HITACHI

(Q)

Equivalent

0.25
0.25
0.30
0.30
0.14
0.14
0.20
0.20
0.07
0.07
0.09
0.09
0.045
0.045
0.06
0.06
0.5
0.5
0.8
0.8
0.25
0.25
0.40
0.40
0.14
0.14
0.20
0.20
0.07
0.07

2SK398
2SK398
2SK398
2SK398
2SK308

Voss
(V)

I0
(A)

RDS(on)'
eQ)

100

10

0.2

-

-

-

100

10

0.2

-

-

-

120

10

0.2

-

-

120

10

-

-

-

0.2
-

-

-

-

-

-

2SK308

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

2SK561
2SK561
2SK561
2SK561

-

-

-

-

0.05
0.05
0.05
0.05

-

-

-

-

-

-

-

-

200
160
250

8
7
10

-

-

2SK176
2SK135
2SK401
-

2SK401

1.0
1.0
0.30
-

250

10

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

0.30

323

POWER

MOSFET

Cross

R 'eference

List

MANUFACTURE: INTERNATIONAL RECTIFIERCiR)-2

I ndust ry
Part No.
IRF252
IRF253
IRF320
IRF321
IRF322
IRF323
IRF330
IRF331
IRF332
IRF333
IRF340
IRF341
IRF342
IRF343
IRF350
IRF351
IRF352
IRF353
IRF420
IRF421
IRF422
IRF423
IRF430
IRF431
IRF432
IRF433
IRF440
IRF441
IRF442
IRF443

324

Package
TO-3
TO- 3
TO- 3
TO- 3
TO- 3
TO- 3
TO-3
TO- 3
TO- 3
TO-3
TO- 3
TO-3
TO-3
TO- 3
TO-3
TO-3
TO-3
TO- 3
TO- 3
TO- 3
TO- 3
TO- 3
TO- 3
TO- 3
TO- 3
TO- 3
TO- 3
TO- 3
TO- 3
TO- 3

V DSS
(V)
200
150
400
350
400
350
400
350
400
350
400
350
400
350
400
350
400
350
500
450
500
450
500
450
500
450
500
450
500
450

ID

typ
R DS (on)

(A)

(Q)

25.0
25.0
3.0
3.0
2.5
2.5
5.5
5.5
4.5
4.5
10.0
10.0
8.0
8.0
15.0
15.0
13.0
13.0
2.5
2.5
2.0
2.0
4.5
4.5
4.0
4.0
8.0
8.0
7.0
7.0

0.09
0.09
1.5
1.5
1.8
1.8
0.8
0.8
1.0
1.0
0.47
0.47
0.68
0.68
0.25
0.25
0.30
0.30
2.5
2.5
3.0
3.0
1.3
1.3
1.5
1.5
0.8
0.8
1.0
1.0

HITACHI
Equivalent

V DSS
(V)

ID

typ
RDs(on)

(A)

(Q)

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

2SK260®
2SK259®
2SK298
2SK298
2SK298
2SK298
2SK556
2SK556
2SK312
2SK312
2SK559
2SK559
2SK559
2SK559

-

5
5
8
8
8
8
12
12
12
12

2.5
2.5
1.1
1.1
1.1
1.1
0.4
0.4
0.6
0.6

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

2SK299

2SK299
2SK557
2SK313
2SK557
2SK299

400
350
400
400
400
400
400
400
400
400

450
-

8
-

450

8

-

-

450

12

-

-

450

8

1.1
1.1
0.45
0.6
0.45
1.1

POWER

MOSFET

Cross

Reference

List

MANUFACTURER: INTERNATIONAL RECTIFIER(IR)- 3

Industry
P art No.
IRF450
IRF451
IRF452
IRF453
2N6755
2N6756
2N6757
2N6758
2N6759
2N6760
2N6761
2N6762
2N6763
2N6764
2N6765
2N6766
2N6767
2N6768
2N6769
2N6770
IRF510
I RF511
IRF512
IRF513
IRF520
IRF521
IRF522
IRF523
IRF530
IRF531

Package
TO-3
TO-3
TO-3
TO-3
TO- 3
TO-3
TO- 3
TO- 3
TO- 3
TO- 3
TO- 3
TO- 3
TO- 3
TO-3
TO- 3
TO- 3
TO- 3
TO- 3
TO- 3
TO- 3
TO-220AB
TO-220AB
TO- 220AB
TO-220AB
TO-220AB
TO- 220AB
TO- 220AB
TO- 220AB
TO- 220AB
TO- 220AB

Voss
(V)

I0

typ
R DS (on)

(A)

(II)

500
450
500
450
60
100
150
200
350
400
450
500
60
100
150
200
350
400
450
500
100
60
100
60
100
60
100
60
100
60

13.0
13.0
12.0
12.0
12.0
14.0
8.0
9.0
4.5
5.5
4.0
4.5
31. a
38.0
25.0
30.0
12. a
14. a
11.0
12.0
4.0
4.0
3.5
3.5
8.0
8.0
7.0
7.0
14.0
14.0

0.3
0.3
0.4
0.4
0.2
0.14
0.40
0.25
1.0

0.8
1.5
1.3
0.06
O. 045
O. 09
0.07
O. 3
0.25
0.4
0.3
0.5
0.5
0.6
0.6
0.25
0.25
0.30
0.30
0.14
0.14

HITACHI
Equivalent
2SK560
2SK559
2SK560
2SK559

Voss
(V)

-

2SK308
2SK401
2SK298
2SK298
2SK298
2SK298
2SK561
2SK561
-

2SK559
2SK559
2SK559
2SK560
2SK295
2SK294
-

HS76021
2SK346
2SK551
2SK346
2SK383
2SK428

I

0

typ
RDS(on)

(A)

(Q)

500
450
500
450

15
15
15
15

0.3
0.25
0.3
0.25

-

-

120

10

-

-

250
400
400
400
400
100
100

10
8
8
8
8
30
30

-

-

-

-

450
450
450
500
100
80

15
15
15
15
5
5

-

-

-

-

120
60
120
60
100
60

10
5
10
5
10
10

-

0.2
-

0.3
1.1
1.1
1.1
1.1
0.05
0.05
-

0.25
0.25
0.25
0.30
0.4
0.4
-

-

0.15
0.3
0.15
0.3
O. 15
O. 1

325

POWER

MOSFET

Cross

Reference- List

MANUPACTURER: INTERNATIONAL RECTIPIER(iR)-4

Industry
Part No.
IRF532
IRF533
IRF540
IRF541
IRP542
IRF543
IRFSI0
IRFSll
IRFS12
IRFS13
IRF620
IRFS21
IRFS22
IRFS23
IRFS30
IRFS31
IRFS32
IRFS33
IRF640
IRFS41
IRFS42
IRFS43
IRF710
IRF711
IRF712
IRF713
IRF720
IRF721
IRF722
IRF723

326

Package
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO- 220AB
TO-220AB
TO- 220AB
TO- 220AB
TO-220AB
TO- 220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO- 220AB
TO-220AB

V DSS
(V)
100
SO
100
SO
100
SO
200
150
200
150
200
150
200
150
200
150
200
150
200
150
200
150
400
350
400
350
400
350
400
350

ID

typ
R DS (on)

(A)

(Q)

12.0
12.0
27.0
27. 0
24.0
24.0
2.5
2.5
2.0
2.0
5.0
5.0
4.0
4.0
9.0
9.0
8.0
8.0
18.0
18.0
lS.0
lS.0
1.5
1.5
1.3
1.3
3.0
3.0
2.5
2.5

0.20
0.20
0.07
0.07
0.09
0.09
1.0
1.0
1.5
-1.5
0.5
0.5
0.8
0.8
0.25
0.25
0.40
0.40
0.14
0.14
0.20
0.20
3.3
3.3
3.6
3.S
1.5
1.5
1.8
1.8

ID

typ
RDs (on)

(A)

(Q)

10
10

0.15
0.10

HITACHI
Equivalent
2SK383
2SK428

V DSS
(V)
100
SO

-

-

-

2SKSOO

-

SO

25

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

2SK440
2SK440

200
200

0.04

-

S
S

0.4
0.4

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

2SK440
2SK440

200
200

S
6

0.4
0.4

-

-

-

-

-

-

-

-

-

-

-

-

-

2SK579(DPAK)
2SK579(DPAK)
2SK310
2SK310
2SK319
2SK319
2SK310
2SK310

-

-

-

500
500
400
400
400
400
400
400

1.5
1.5
3
3
5
5
5
5

4.0
4.0
2.5
2.5
1.1
1.1
2.5
2.5

POWER

MOSFET

Cross

Reference

List

MANUFACTURER: INTERNATIONAL RECTIFIER(IR) - 5
typ

Industry
Part No.
IRF730
IRF731
IRF732
IRF733
IRF740
IRF741
IRF742
IRF743
IRF820
IRF821
IRF822
IRF823
IRF830
IRF831
IRF832
IRF833
IRF840
IRF841
IRF842
IRF843
IRFD1Z0
IRFDIZI
IRFD1Z2
IRFD1Z3
IRFDllO
IRFD111
IRFD112
IRFD113
IRFFll0
IRFF111

Package
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO- 220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
DIP
DIP
DIP
DIP
DIP
DIP
DIP
DIP
TO- 39
TO- 39

Voss
(V)
400
350
400
350
400
350
400
350
500
450
500
450
500
450
500
450
500
450
500
450
100
60
100
60
100
60
100
60
100
60

I0
(A)

5.5
5.5
4.5
4.5
10.0
10.0
8.0
8.0
2.5
2.5
2.0
2.0
4.5
4.5
4.0
4.0
8.0
8.0
7.0
7.0
0.5
0.5
0.4
0.4
1.0
1.0
0.8
0.8
3.5
3.5

RDs(on)
(Q)

0.8
0.8
1.0
1.0
0.47
0.47
0.68
0.68
2.5
2.5
3.0
3.0
1.3
1.3
1.5
1.5
0.8
0.8
1.0
1.0
2.2
2.2
2.8
2.8
0.5
0.5
0.6
0.6
0.5
0.5

typ

HITACHI
Equivalent
2SK319
2SK319
2SK319
2SK319

Voss
(V)
400
400
400
400

I0

RDS(on)

(A)

(Q)

5
5
5
5

1.1
1.1
1.1
1.1

-

-

-

-

-

-

-

-

2SK554
2SK554
2SK382
2SK311
2SK382
2SK311
2SK553
2SK320
2SK553
2SK320
2SK555
2SK554
2SK555
2SK554
-

450
450
500
450
500
450
500
450
500
450
500
450
500
450

7
7
2
3
2
3
5
5
5
5

7
7
7
7

0.6
0.6
2.5
2.5
2.5
2.5
1.2
1.1
1.2
1.1
0.7
0.6
O. 7
0.6

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

327

POWER

MOSFET

Cross

Reference

List

MANUFACTURER: INTERNATIONAL RECTIFIER(IR)-S
typ
Industry
P art No.
IRFF112
IRFF113
IRFF120
IRFF121
IRFF122
IRFF123
IRFF130
IRFF131
IRFF132
IRFF133
IRF9130
IRF9131
IRF9132
IRF9133
IRF9230
IRF9231
IRF9232
IRF9233
IRF9520
IRF9521
IRF9522
IRF9523
IRF9530
IRF9531
IRF9532
IRF9533
IRF9610
IRF9611
IRF9612
IRF9613

328

Package
TO- 39
TO- 39
TO- 39
TO- 39
TO- 39
TO- 39
TO- 39
TO- 39
TO- 39
TO- 39
TO- 3
TO- 3
TO- 3
TO- 3
TO- 3
TO- 3
TO- 3
TO- 3
TO-220AB
TO-220AB
TO- 220AB
TO-220AB

Voss
(V)
100
SO
100
SO
100
60
100
SO
100
60
- 100
- SO
-100
- SO
- 200
- 150
- 200
-150
- 100
- 60
- 100
- 60

TO-220AB
TO-220AB

- 100
- 60

TO- 220AB
TO-220AB

- 100
- 60
- 200

TO-220AB
TO-22oAB
TO- 220AB
TO-220AB

- 150
- 200
- 150

typ

0

Ros (on)

(A)

(Q)

3.0

O.S

-

-

-

-

3.0
S.O
S.O
5.0

O.S
0.25
0.25
0.30

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

0.30
0.14
0.14
0.20 .

-

-

-

-

0.20
0.25
0.25

I

5.0
8.0
8.0
7.0
7.0
- 12.0
- 12.0
- 10.0
-10.0
- 6. 5
- 6.5
- 5.5
- 5.5
- 6. 0
- 6.0
- 5. 0
- 5.0
- 12.0
- 12.0
- 10.0
- 10.0
-1. 75
-1. 75
-1.5
-1. 5

0.30
0.30
0.50
0.50
0.80
0.80
0.50
0.50
0.60
0.60
0.25
0.25
0.30
0.30
2.3
2.3
3.5
3.5

HITACHI
Equivalent

Voss
(V)

0

Ros (on)

(A)

(Q)

I

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

- 10
- 10
-10

0.30
0.30
0.30
0.30
0.60
0.50

2S] 112
2S] 112

- 100
- 100
2S] 112
- 100
2S]112
-100
2S] 11410- 31 - 200
2S] 119TO- 31 -lSo
2S]56
- 200
2S]50
- 160
-

2S]102
-

2S]127
2S]102
2S]127
2S]102

-

- 10
-8
-8
-8
-7

-

- 120
- 60
- 120
- 60

-

-

- 60

1.0
1.0

5
-

0.30
-

-

-

- 10

0.2
0.30
0.2
0.30

-5
-10
-5

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

POWER

MOSFET

Cross

Reference

List

MANUFACTURER: INTERNATIONAL RECTIFIER(IR)-7

Industry
Part No.
IRF9620
IRJ19621
IRF9622
IRF9623
IRF9630
IRF9631
IRF9632
IRF9633
IRFD9120
IRFD9121
IRFD9122
IRFD9123
IRF5522(N)
IRF5522(P)
IRF5523(N)
IRF5523(P)
IRF5532(N)
IRF5532(P)
IRF5533(N)
IRF5533(P)
IRFD120
IRFD123
IRFD210
IRFD213
IRFD9110
IRFD9113
IRFD9210
IRFD9213

Package
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
DIP
DIP
DIP
DIP
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
DIP
DIP
DIP
DIP
DIP
DIP
DIP
DIP

V DSS
(V)
- 200
- 150
- 200
- 150
- 200
-150
- 200
-150
- 100
- 60
-100
- 60
100
- 100
60
- 60
100
-100
60
- 60
100
60
200
150
- 100
- 60
- 200
- 150

ID

typ
RDs (on)

(A)

(Q)

- 3. 5
- 3.5
- 3. 0
- 3. 0
- 6. 5
- 6. 5
- 5.5
- 5. 5
-1. 0
-1. 0
- 0.8
- 0.8
4.0
- 3.5
4.0
- 3.5
8.0
- 6. 5
8.0
- 6.5
1.3
1.1
0.6
0.45
- 0.7
- 0.6
- 0.4
-0.3

1.0
1.0
1.5
1.5
0.5
0.5
0.8
0.8
0.5
0.5
0.6
0.6
0.3
0.6
0.3
0.6
0.2
0.3
0.2
0.3
0.3
0.4
2.4
1.5
1.2
1.6
3.0
4.5

ID

typ
RDS(on)

(A)

(Q)

HITACHI
Equivalent

VDSS
(V)

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

.-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

2SK346
-

2SK551
2S)127
2SK428
2S]102

60

5

0.3

-

-

-

120
-120
60
- 60

10
- 10
12
-5

0.15
0.2
0.1
0.3

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

329

POWER

MOSFET

Cross

Reference

List

MANUFACTURER: Siliconix-1

Industry
P art No.
VN35AA
2N6656
VN0401A
VN0400A
VN67AA
2N6657
IRF123
VN64GA
IRF121
IRF133
IRF131
VN0601A
VN0600A
IRF143
IRF141
IRF153
IRF151
VN0801A
VN0800A
VN90AA
VN99AA
2N6658
IRF122
IRF120
IRF132
VN1001A
IRF130
VN1000A
IRF 142
IRF140

330

Package
TO- 3
TO-3
TO-3
TO-3
TO-3
TO- 3
TO- 3
TO- 3
TO- 3
TO- 3
TO-3
TO- 3
TO- 3
TO- 3
TO-3
TO-3
TO- 3
TO- 3
TO-3
TO-3
TO- 3
TO- 3
TO-3
TO- 3
TO-3
TO- 3
TO-3
TO- 3
TO- 3
TO-3

-

Voss
(V)
35
35
40
40
60
60
60
60
60
60
60
60
60
60
60
60
60
80
80
90
90
90
100
100
100
100
100
100
100
100

I0

typ
Ros (on)

(A)

(Q)

2.0
2.0
16.0
18.0
2.0
2.0
7.0
10.0
8.0
12.0
14.0
16.0
18.0
24.0
27.0
33.0
40.0
12.0
14.0
1.7
1.8
1.9
7.0
8.0
12.0
12.0
14.0
14.0
24.0
27.0

2.0
1.5
0.12
0.10
3.0
2.5
0.3
0.3
0.25
0.20
0.14
0.12
0.10
0.09
0.07
0.06
0.045
0.20
0.14
4.5
4.0
3.5
0.3
0.25
0.20
0.20
0.14
0.14
0.09
0.07

HITACHI
Equivalent

Voss

I0

typ
Ros (on)

(V)

(A)

(Q)

-

-

-

-

-

-

-

-

-

-

--

.-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

2SK398

-

-

10

-

-

-

-

0.2
-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

100
100
100
120

30
30
10
10

0.05
0.05
0.2
0.2

2SK561
2SK561
2SK398
2SK308

100

-

-

-

-

-

-

-

-

-

-

-

-

-

100
100
100
100
120
120

10
10
10
10
10
10

0.2
0.2
0.2
0.2
0.2
0.2

-

-

-

-

-

-

-

-

2SK398
2SK398
2SK398
2SK398
2SK30B
2SK308

POWER

MOSFET

Cross

Reference

List

MANUFACTURER: Siliconix- 2

Industry
Part No.
IRF152
IRF150
VNl201A
VN1200A
IRF223
IRF221
IRF233
IRF231
IRF243
IRF241
IRF253
IRF251
IRF222
IRF220
IRF232
IRF230
IRF242
IRF240
IRF252
IRF250
IRF323
IRF321
IRF333
VN3501A
IRF331
VN3500A
VNLOOIA
IRF343
IRF341
IRF353

Package
TO- 3
TO- 3
TO-3
TO- 3
TO- 3
TO- 3
TO- 3
TO-3
TO- 3
TO-3
TO- 3
TO-3
TO-3
TO- 3
TO-3
TO-3
TO- 3
TO-3
TO- 3
TO- 3
TO- 3
TO- 3
TO-3
TO- 3
TO- 3
TO- 3
TO-3
TO- 3
TO-3
TO-3

ID

typ
RDs (on)

(V)

(A)

(Q)

100
100
120
120
150
150
150
150
150
150
150
150
200
200
200
200
200
200
200
200
350
350
350
350
350
350
350
350
350
350

33.0
40.0
12.0
14.0
4.0
5.0
8.0
9.0
16.0
18.0
25.0
30.0
4.0
5.0
8.0
9.0
16.0
18.0
25.0
30.0
2.5
3.0
4.5
5.0
5.5
6.0
8.0
8.0
10.0
13.0

0.06
0.045
0.20
0.14
0.8
0.5
0.4
0.25
0.20
0.14
0.09
0.07
0.8
0.5
0.4
0.25
0.20
0.14
0.09
0.07
1.8
1.5
1.0
1.0
0.8
0.8
0.8
0.68
0.47
0.30

V DSS

HITACHI
V DSS
(V)
Equivalent
2SK561
100
2SK561
100
2SK308
120
2SK308
120
2SK135
160
2SK414TO-3 160
2SK414T0- 3 160

ID

typ
Ros(on)

(A)

CQ)

30
30
10
10
7
8
8

0.05
0.05
0.2
0.2
1.0
0.4
0.4

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

2SK176
2SK400TO-3
2SK401
2SK401

200
200
250
250

8
8
10
10

-

1.0
0.5
0.3
0.3

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

2SK259®
2SK298
2SK298
2SK298
2SK298
2SK298
2SK298
2SK312
2SK556
2SK559

350
400
400
400
400
400
400
400
450
450

8
8
8
8
8
8
8
12
12
15

-

2.5
1.1
1.1
1.1
1.1
1.1
1.1
0.6
0.4
0.25

331

POWER

MOSFET

Cross

Reference

List

MANUFACTURER: Sl1lconlx-3
typ
Industry
Part No.
IRF351
IRF322
IRF320
IRF332
VN4001A
IRf'330
VN4000A
VNM001A
IRF342
IRF340
IRF352
IRF350
IRF423
IRF421
IRF433
VN4502A
IRF431
VN4501A
VNN002A
IRF443
IRF441
IRF453
IRF451
IRF422
IRF420
IRP432
VN5002A
IRP430
VN5001A
VNP002A

332

Package
TO- 3
TO-3
TO- 3
TO-3
TO- 3
TO- 3
TO- 3
TO- 3
TO- 3
TO- 3
TO- 3
TO- 3
TO-3
TO- 3
TO- 3
TO- 3
TO-3
TO- 3
TO-3
TO- 3
TO- 3
TO- 3
TO- 3
TO- 3
TO- 3
TO- 3
TO- 3
TO- 3
TO- 3
TO- 3

V DSS
(V)

350
400
400
400
400
400
400
400
400
400
400
400
450
450
450
450
450
450
450
450
450
450
450
500
500
500
500
500
500
500

I D
(A)

15.0
2.5
3.0
4.5
5.0
5.5
6.0
8.0
8.0
10.0
13.0
15.0
2.0
2.5
4.0
4.0
4.5
4.5
6.5
7.0
8.0
12.0
13.0
2.0
2.5
4.0
4.0
4.5
4.5
6.0

RDs

typ
(on)

(Q)

0.25
1.8
1.5
1.0
1.0
0.8
0.8
0.8
0.68
0.47
0.30
0.25
3.0
2.5
1.5
1.5
1.3
1.3
1.3
1.0
0.8
0.4
0.3
3.0
2.5
1.5
2.0
1.3
1.3
1.3

HITACHI
Equivalent
2SK559
2SK260®
2SK298
2SK298
2SK298
2SK298
2SK298
2SK298
2SK312
2SK312
2SK559
2SK559

V DSS
(V)

I D
(A)

450
400
400
400
400
400
400
400
400
400
450
450

15
5
8
8
8
8
8
8
12
12
15
15

0.25
2.5
1.1
1.1
1.1
1.1
1.1
1.1
0.6
0.6
0.25
0.25

-

-

-

-

-

-

-

450
450
450
450
450
450
450
450
450

8
8
8
8
8
8
12
12
15

1.1
1.1
1.1
1.1
1.1
1.1
0.6
0.4
0.25

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

2SK299
2SK299
2SK299
2SK299
2SK299
2SK299
2SK313
2SK556
2SK559

RDS

(on)

(Q)

POWER

MOSFET

Cross

Reference

List

MANUFACTURER: Si 1iconix - 4

Industry
Part No.
IRF442
IRF440
IRF452
IRF450
VNC003A
VNE003A
VNG004A
VNJ004A
VNL005A
VNM005A
VNN006A
VNP006A
VNS009A
VNS008A
VNT009A
VNT008A
VN0300D
VN40AD
VN46AD
VN0401D
VN0400D
VN67AD
VN66AD
IRF523
IRF521
IRF533
IRF531
VN0601D
VN0600D
IRF543

Package
TO- 3
TO-3
TO-3
TO- 3
TO- 3
TO- 3
TO- 3
TO-3
TO-3
TO- 3
TO- 3
TO- 3
TO- 3
TO- 3
TO-3
TO- 3
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB

Voss
(V)
500
500
500
500
60
100
150
200
350
400
450
500
600
600
650
650
30
40
40
40
40
60
60
60
60
60
60
60
60
60

I0

typ
Ros (on)

(A)

(Q)

7.0
8.0
12.0
13.0
60.0
60.0
45.0
45.0
25.0
25.0
20.0
20.0
5.0
5.0
5.7
5.7
2.5
1.5
1.9
16.0
18.0
1.8
1.9
7.0
8.0
12.0
14.0
16.0
18.0
24.0

1.0
0.8
0.4
0.3
0.025
0.025
0.045
0.045
0.18
0.18
0.28
0.28
1.7
1.2
1.7
1.2
1.0
4.0
2.5
0.12
0.09
3.0
2.5
0.3
0.25
0.20
0.14
0.12
0.09
0.09

HITACHI
Equivalent
2SK557
2SK557
2SK560
2SK560

Voss
(V)
500
500
500
500

I0

typ
Ros (on)

(A)

(Q)

12
12
15
15

0.45
0.45
0.3
0.3

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

450
500
600
600

15
15
5.0
5.0

0.25
0.3
1.8
1.8

2SK559
2SK560

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

60
60

10
10

0.10
0.10

-

-

-

-

-

60
60
60
'60
60
60

5
5
10
10
10
10

0.3
0.3
0.10
0.10
0.10
0.10

-

-

2SK428
2SK428

2SK346
2SK346
2SK428
2SK428
2SK428
2SK428
-

-

-

333

POWER

MOSFET

Cross

Reference

List

MANUFACTURER: Siliconix- 5
typ

typ

Package
I ndustrr
Part No.
IRF541
TO-220AB
VN89AD
TO-220AB
VN88AD
TO-220AB
VN0801D
TO- 220AB
VN0800D
TO-220AB
IRF522
TO-220AB
---IRF520
TO-220AB
IRF532
TO-220AB
VN1001D
TO-220AB
IRF530
TO-220AB
VN1000D
TO-220AB
IRF542
TO-220AB
IRF540
TO-220AB
VN1206D
TO-220AB
VN1201D
TO-220AB
VN1200D
TO-220AB
lRF623
TO-220AB
IRF621
TO-220AB
IRF633
TO-220AB
IRF631
TO-220AB
IRF643
TO-220AB
IRFS41
TO-220AB
VN1706D
TO-220AB
IRF622
TO-220AB
IRF620
TO-220AB
IRFS32
TO-220AB
IRF630
TO-220AB
IRF642
TO-220AB
IRFS40
TO-220AB
VN2406D
TO-220AB

334

Voss
(V)
60
80
80
80
80
100
100
100
100
100
100
100
100
120
120
120
150
150
150
150
150
150
170
200
200
200
200
200
200
240

I0

Ros (on)

(A)

(Q)

27. 0
1.6
J.7
12.0
14.0
7.0
8.0
12.0
12.0
14.0
14.0
24.0
27.0
1.4
12.0
14.0
4.0
5.0
8.0
9.0
lS.0
18.0
1.4
4.0
5.0
8.0
9.0
1S.0
18.0
1.4

0.07
3.5
3.0
0.2
0.14
0.30
0.25
0.20
0.20
0.14
0.14
0.09
0.07
5.0
0.2
0.14
0.8
0.5
0.4
0.25
0.20
0.14
5.0
0.8
0.5
0.4
0.25
0.20
0.18
5.0

HITACHI
Equivalent

Voss
(V)

I0

Ros (on)

(A)

(Q)

-

-

-

-

-

-

-

-

--

-

-

-

120
120
100
120
100
100
100
100

10
10
5.0
10
10
10
10
10

-

-

2SK551
2SK551
2SK295
2SK551
2SK383
2SK383
2SK383
2SK383
-

0.15
0.15
0.40
0.15
0.15
0.15
0.15
0.15
-

-

-

-

-

-

-

-

-

100
100

10
10

0.15
0.15

2SK383
2SK383
-

-

-

200
200

6.0
6.0

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

200
200

6.0
6.0

2SK440
2SK440

2SK440
2SK440

-

0.4
0.4

-

0.4
0.4

-

-

-

-

-

-

-

-

-

-

-

-

2SK296

300

1

2.5

POWER

MOSFET

Cross

Reference

List

MANUFACTURER: Sil iconi x- 6

Industry
Part No.
IRF723
IRF721
IRF733
VN3501D
IRF731
VN3500D
IRF743
IRF741
IRF722
IRF720
IRF732
VN4001D
IRF730
VN4000D
IRF742
IRF740
IRF823
IRF821
IRF833
VN4502D
IRF831
VN4501D
IRF843
IRF841
IRF822
IRF820
IRF832
VN5002D
IRF830
VN5001D

Package
TO- 220AB
TO- 220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO- 220AB
TO-220AB
TO-220AB
TO-220AB

Voss
(V)

I0

typ
RDS (on)

(A)

(Q)

350
350
350
350
350
350
350
350
400
400
400
400
400
400
400
400
450
450
450
450
450
450
450
450
500
500
500
500
500
500

2.5
3.0
4.5
5.0
5.5
6.0
8.0
10.0
2.5
3.0
4.5
5.0
5.5
6.0
8.0
10.0
2.0
2.5
4.0
4.0
4.5
4.5
7.0
8.0
2.0
2.5
4.0
4.0
4.5
4.5

1.8
1.5
1.0
1.0
0.8
0.8
0.68
0.47
1.8
1.5
1.0
1.0
0.8
0.8
0.68
0.47
3.0
2.5
1.5
1.5
1.3
1.3
1.0
0.8
3.0
2.5
1.5
1.5
1.3
1.3

HITACHI
Equivalent
2SK3l0
2SK319
2SK319
2SK319
2SK319
2SK319
2SK554
2SK554
2SK310
2SK319
2SK319
2SK319
2SK319
2SK319
2SK554
2SK554
2SK311
2SK311
2SK320
2SK320
2SK320
2SK320
2SK320
2SK320
2SK382
2SK382
2SK553
2SK553
2SK553
2SK553

Voss
(V)

I0

typ
R DS (on)

(A)

(Q)

400
400
400
400
400
400
450

3.0
5.0
5.0
5.0
5.0
5.0
8.0

2.5
1.1
1.1
1.1
1.1
1.1
0.65

-

-

-

400
400
400
400
400
400
450
450
450
450
450
450
450
450
450
450
500
500
500
500
500
500

3.0
5.0
5.0
5.0
5.0
5.0
7.0
7.0
3.0
3.0
5.0
5.0
5.0
5.0
5.0
5.0
2.0
2.0
5.0
5.0
5.0
5.0

2.5
1.1
1.1
1.1
1.1
1.1
0.6
0.6
2.5
2.5
1.1
1.1
1.1
1.1
1.1
1.1
2.5
2.5
1.5
1.2
1.2
1.2

335

POWER

MOSFET

Cross

Reference

List

MANUFACTURER: Siliconix-7

Industry
Part No.
IRFB42
IRFB40
VNS009D
VNSOOBD
VNT009D
VNT008D
VN40AF
VN46AF
VN67AF
VN66AF
VN80AF
VN89AF
VN88AF
VN35AB
2N6659
VN67 AB
2N6660
IRFF123
IRFF121
VN90AB
VN99AB
2N6661
IRFF122
IRFF120
VN1206B
VN1706B
VN2406B
VN10LE
VN10KE
VN0300M

336

Package
TO-220AB
TO-220AB
TO- 220AB
TO-220AB
TO-220AB
TO-220AB
TO- 220AA
TO-220AA
TO-220AA
TO-220AA
TO-220AA
TO- 220AA
TO- 220AA
TO- 39
TO- 39
TO-39
TO- 39
TO- 39
TO- 39
TO- 39
TO- 39
TO- 39
TO- 39
TO- 39
TO- 39
TO- 39
TO- 3.9
TO- 52
TO- 52
TO-237

V DSS
(V)

500
500
600
600
650
650
40
40
60
60
80
80
80
35
35
60
60
60
60
90
90
90
100
100
120
170
240
60
60
30

ID

typ
RDs (on)

(A)

eQ)

7.0
B.O
5.0
5.7
5.0
5.7
1.3
1.6
1.6
1.7
1.3
1.4
1.5
1.2
1.4
1.0
1.1
5.0
6.0
0.8
0.9
0.9
5.0
6.0
0.8
0.8
0.8
0.2
0.2
0.7

1.0
0.8
1.7
1.2
1.7
1.2
4.0
2.5
3.0
2.5
4.0
3.5
3.0
2.0
1.4
3.0
2.5
0.3
0.25
4.0
3.5
3.0
0.3
0.25
5.0
5.0
5.0
4.0
4.0
1.0

HITACHI
Equivalent
2SK555
2SK555

V DSS
eV)

ID

typ
RDs (on)

eA)

eQ)

500
500

7.0
7.0

0.7
0.7

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

2SK 19 66

160

0.5

-

-

-

8.0

-

-

-

-

-

-

-

-

-

-

-

-

-

POWER

MOSFET

Cross

Reference

List

MANUFACTURER: Siliconix--B

I ndustrr
Part No.
VN2222LM
VN2222KM
VN10LM
VN10KM
VNOSOSM

VNOBOBM
VN1210M
VN120SM
VN1710M
VN170SM
VN2410M
VN240SM
VN2222L
VNOS10L
VN1210L
VN120SL
VN1710L
VN170SL
VN2410L
VN240SL
VQ1001P
VQ1000P
VQ1004P
VQ100SP
VQ1001J
VQ1000J
VQ1004J
VQ100SJ

Package
TO- 237
TO- 237
TO- 237
TO- 237
TO- 237
TO-237
TO- 237
TO- 237
TO- 237
TO-237
TO- 237
TO- 237
TO- 92
TO-92
TO-92
10-92
TO- 92
TO- 92
TO- 92
TO- 92
DIL 14-Pin
(Side Braze)
/I
/I
/I

DIL 14-Pin
(Plastic)
/I

/I
/I

Voss
(V)
60
60
SO
SO
SO

I 0
(A)

typ
Ros(on)

I0

typ
Ros (on)

(A)

(Q)

HITACHI
Equivalent

Voss
(V)

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

B.O

-

-

-

-

5.0

-

-

-

-

B.O

-

-

-

-

5.0

-

-

-

-

(Q)

120
120
170
170
240
240
SO
SO
120
120
170
170
240
240
30

0.25
0.25
0.3
0.3
0.4
0.35
0.25
0.3
0.25
0.3
0.25
0.3
0.15
0.2
o.1S
0.21
o.1S
0.21
O.lS
0.21
0.85

B.O

-

-

-

-

5.0
S.O
4.0
8.0
5.0
8.0
5.0
.8.0
5.0
0.8

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

60
60
90
30

0.22
0.4S
0.40
0.85

4.5
3.0
3.5
0.8

-

-

-

-

-

-

-

-

-

-

-

-

SO
60
90

0.22
0.46
0.40

4.5
3.0
3.5

-

-

-

-

-

-

-

-

-

-

-

-

BO

6.0
6.0
4.0
4.0
2.5
3.0

-

.- _ -

-

337

POWER

MOSFET

Cross

Reference

List

MANUF ACTURER: MOTOROLA - 1

I ndust ry
P art No.
MntlN100
MTld1N95
Mnt2N90
MTM2N85
MTM2NSO
Mnt2P50
MTM2N45
MTM2P45
MTM3N60
MTM3N55
IRF432
IRF433
MTM3N40
MTM3N35
IRF332
IRF333
MTM4NSO
MTM4N45
MTMSN40
MTM5N35
MTM5N20
MTM5N18
MTMSNSO
MTMSN55
MTM7N50
MTM7N45
MTM7N20
MTM7N18
Mnt7N15
MTM7N12

338

Package

TO- 3
TO-3
TO- 3
TO-3
TO-3
TO-3
TO-3
TO- 3
TO-3
TO-3
TO-3
TO-3
TO-3
TO-3
TO- 3
TO-3
TO- 3
TO-3
TO-3
TO- 3
TO-3
TO-3
TO-3
TO-3
TO-3
TO-3
TO-3
TO-3
TO-3
TO-3

Voss
(V)
1000
950
900
850
500
- 500
450
- 450
SOO
550
500
450
400
350
400
350
500
450
400
350
200
180
SOO
550
500
450
200
180
150
120

I0

typ
R os (on)

(A)

(Q)

1.0
1.0
2.0
2.0
2.0
- 2.0
2.0
- 2.0
3.0
3.0
3.0
3.0
3.0
3.0
3.5
3.5
4.0
4.0
5.0
5.0
5.0
5.0
S.O
6.0
7.0
7.0
7.0
7.0
7.0
7.0

8.0
8.0
6.0
6.0
3.0
4.5
3.0
4.5
2.0
2.0
1.S
1.S
2.5
2.5
1.0
1.0
1.5
1.5
1.0
1.0
0.8
0.8
1.0
1.0
0.8
0.8
0.55
0.55
0.5
0.5

HITACHI
Equivalent

Voss
(V)

I0

typ
Ros (on)

(A)

(Q)

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

SOO
SOO

5.0
S.O

1.8
1.8

2SK299
-

2SK298
2SK298
-

2SK299
2SK298
2SK298
2SK17S
2SK175

-

-

-

-

-

450

8.0

1.1

-

-

-

-

-

-

400
400

8.0
8.0

1.1
1.1

-

-

-

450
400
400
200
180

8.0
8.0
8.0
8.0
8.0

1.1
1.1
1.1
1.0
1.0
-

-

-

-

-

-

-

-

500
4S0
200
200
ISO
140

12.0
12.S
8.0
8.0
8.0
8.0

0.55
0.6
0.5
0.5
0.4
0.4

2SK512
2SK313
2SK400TO- 3F
2SK400TO- 3F
2SK414TO- 3F
2SK.413TO- 31

POWER

MOSFET

Cross

Reference

List

MANUF ACTURER: MOTOROLA - 2

typ
Industry

Package

Part No.

VOSS

(V)

MTMBN40

TO-3

400

MTMBN35

TO-3

350

typ

)11

0

R DS (on)

(A)

(~2)

I

HITACHI

Voss

I

II

. Equivalent

(V)

Ros(on)
(Q)

0

(A)

8.0
0.65
2SK312
400
12.0
0.6
---+-----B.O
0.65
2SK312
400
12.0
0.6
f-------+---- ----+---- r----- - - - - --------- - - - - - - - - - - - - -

---+-------+---

I-:-~-:-::-~-~--+--~-~-:_~____+-__ ~ ~ ~

: :~

~ :~

2SK 4

~

~O

2

1

~ 0 t-~-~-~

f------+_-----------+---------+------+---~---

1-------+------MTMBN15
MTMBN12

TO-3
TO-3

150
8.0
0.4
----+-----+-------120
8.0
0.4

MTMBNI0

TO-3

100

8.0

0.4

MTM8NOB

TO-3

BO

8.0

0.4

--

f------+-------+---+------- ---------

1------+---------+---+---+-------1--MTMBN08
TO-3
I
80
8~._:0.3
MTMBP08
TO-3
-80
-8.0
0.3
r-------+------+-----+-.-MTMI0N15
TO- 3
150
10.0
0.25

I

-

-~-

----

-

- - -

----

-

-

-

-------

-

-

I

2SK398 __ 100
2S]112
-100
-

-

---

10.0
-10.0

1

0.20

0.25

-

-

MTM10N12

TO-3

120

10.0

0.25

2SK308

120

10.0!

0.2

MTMI0N10

TO-3

100

10.0

0.28

2SK30B

120

10.0

0.2

I--------+----+---

I

~---_+__----_+--_+---------r----~--~--~~---4

IRF132

TO-3

100

10.0

0.20

2SK308

120

10.0

0.2

MTMI0N08

TO-3

80

10.0

0.28

2SK398

100

10.0

0.2

IRF133

TO-3

60

10.0

0.20

2SK398

100

10.0

0.2

MTM12N20

TO-3

200

12.0

0.30

--

~-----+----------_4--_4---~-----+_---+_--+_--~
I------+------__j--~-----

MTM12N18

- - - - - ! - - - - - - -----1------+------ ------+----~

--

+-----+------+----- - - - - -------1-------+---+------1
TO- 3

180

12.0

0.30

MTM12N15

TO-3

150

12.0

0.20

--

MTM12N12

TO-3

120

12.0

0.20

2SK308

120

10.0

I

0.2

MTM12N10

TO-3

100

12.0

0.14

2SK308

120

10.0

I

0.2

MTM12N08

TO-3

BO

12.0

0.14

120

10.0

I

0.2

MTM12N06

TO-3

60

12.0

0.15

-

MTM12N05

TO- 3

50

12.0

0.15

-_

--t--~

----j--------

- -- ------+-- -_+__---+_---1
-t------+---+-----+----~

12SK308

I

------I-------+-----+---- - - - - --------+---1------1----1

3_________5_0_0-+-_1_5._0
f-M_T_M_l_5N_5_0_I-T
_0__-_
MTM15N45
TO-3
450
15.0
MTM15N40

TO-3

MTM15N35
MTM15N15
MTM15N12

I-

-

- - - L _ _ _-I--_ _~

O. 4~_~~_~______ ~E~~ __
0.40
2SK559
450
I 15.0

r--~~
0.25

----- - - - - - - ----- - - - + - - - - ]
15.0
0.30
2SK559
450
O. 25
-----+---+----]

400

15.0

TO-3

350

15.0

TO- 3

150

15.0

0.20

TO-3

120

15.0

0.20

-------+-------~----

---I-----~-__j---_1

0.30

450
15. 0
0.25
----+---+---+----]

2SK559
-

--+------1---1----+--·- ---1----- - - 2SK308

120

10.0

----

0.2

339

POWER

MOSFET

Cross

Reference

List

MANUFACTURER: MOTOROLA - 3

Industry
Part No.
MTM15N06
MTM15N05
MTP1N100
MTP1N95
MTP2N90
MTP2N85
MTP2N50
MTP2P50
MTP2N45
MTP2P45
MTP2N40
MTP2N35
MTP2N20
MTP2N18
MTP3N60
MTP3N55
IRF832
IRF833
MTP3N40
IRF732
MTP3N35
IRF733
MTP3N15
MTP3N12
MTP4N50
MTP4N45
MTP5N40
MTP5N35
MTP5N20
MTP5N18

340

P acka&e
TO- 3
TO-3
TO- 220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO- 220AB
TO- 220AB
TO-220AB
TO-220AB
TO- 220AB
TO-220AB
TO- 220AB
TO-220AB
TO- 220AB
TO-220AB
TO-220AB
TO- 220AB
TO-220AB
TO- 220AB
TO-220AB

Voss
(V)
60
50
1000
950
900
850
500
- 500
450
- 450
400
350
200
180
600
550
500
450
400
400
350
350
150
120
500
450
400
350
200
180

I0
(A)

15.0
15.0
1.0
1.0
2.0
2.0
2.0
- 2.0
2.0
- 2.0
2.0
2.0
2.0
2.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
4.0
4.0
5.0
5.0
5.0
5.0

typ
RDs (on)
(Q)

0.12
0.12
8.0
8.0
6.0
6.0
3.0
5.0
3.0
5.0
2.5
2.5
1.5
1.5
2.0
2.0
1.5
1.5
2.5
1.0
2.5
1.0
1.0
1.0
1.5
1.5
1.0
1.0
0.8
0.8

HITACHI
Equivalent

Voss
(V)

I0

typ
RDs (on)

(A)

(Q)

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

800
500

3.0
2.0

5.0
2.5

-

-

-

2SK513
2SK382
-

2SK311
2SJ 117
2SK310
2SK310
-

450
-400
400
400
-

3.0
- 2.0
3.0
3.0

2.5
5.0
2.5
2.5

-

-

-

-

-

-

-

-

-

-

-

-

-

-

500
450
400
400
400
350

5.0
5.0
3.0
5.0
3.0
5.0

1.2
1.1
2.5
1.1
2.5
1.1

2SK553
2SK320
2SK310
2SK319
2SK310
2SK319
-

-

-

-

-

-

-

-

500
450
400
400

5.0
5.0
5.0
5.0

1.2
1.1
1.1
1.1

-

-

-

-

-

-

-

-

2SK553
2SK320
2SK319
2SK319

POWER

MOSFET

Cross

Reference

List

MANUF ACTURER: MOTOROLA - 4

Industry
Part No.
MTP5N06
MTP5N05
MTP7N20
MTP7N18
MTP7N15
MTP7N12
MTP8N20
MTP8N18
MTP8N15
MTP8N12
MTP8N10
MTP8P10
IRF532
f--MTP8N08
MTP8P08
IRF533
MTP10N15
MTPlON12
MTP10NlO
MTP10N08
MTPlON06
MTPlON05
MTP12N10
MTP12N08
MTP12N06
MTP12N05
MTP15N06
MTP15N05

Package
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO- 220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB

V DSS
(V)
60
50
200
180
150
120
200
180
150
120
100
- 100
100
80
- 80
80
150
120
100
80
60
50
100
80
60
50
60
50

ID

typ
RDs(on)

(A)

(Q)

5.0
5.0
7.0
7.0
7.0
7.0
8.0
8.0
8.0
8.0
8.0
-8.0
8.0
8.0
- 8.0
8.0
10.0
10.0
10.0
10.0
10.0
10.0
12.0
12.0
12.0
12.0
15.0
15.0

0.4
0.4
0.55
0.55
0.60
0.60
0.40
0.40
0.30
0.30
0.30
0.30
0.20
0.40
0.30
0.20
0.25
0.25
0.28
0.28
0.22
0.2~

0.14
0.14
0.15
0.15
0.12
0.12

HITACHI
Equivalent
2SK346
2SK346
2SK440
2SK440

VDSS
(V)
60
60
200
200

-

-

2SK295
2SK440
2SK440

100
200
180

-

-

2SK551
2SK295
2S]127
2SK383
2SK294
2S]127
2SK551

120
100
-120
100
80
- 120
120

ID

typ
RDs (on)

(A)

(Q)

5.0
5.0
6.0
6.0

0.3
0.3
0.4
0.4

5.0
6.0
6.0

0.4
0.4
0.4

-

-

10.0
5.0
-10.0
10.0
5.0
- 10.0
10.0

0.15
0.4
0.2
O. 15
0.4
0.2
0.15

-

-

-

-

2SK551
2SK383
2SK383
2SK549
2SK549
2SK383
2SK551
2SK428
2SK428
2SK428
2SK428

120
100
100
60
60
100
120
60
60
60
60

10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0

0.15
0.2
0.. 2
0.1
0.1
0.15
0.15
0.10
O. 10
0.10
O. 10

341

POWER

MOSFET

Cross

Reference

List

MANUFACTURER: INTERSIL-l

Industry
Part No.
IVN5000AND
IVN5001AND
IVN5201CND
IVN5200HND
IVNS201HND
IVNSOOOSND
IVN5001SND
IVN5200TND
IVN520lTND
IVNSOOOTND
IVN5001TND
IVNS200KND
IVN5201KND
IVN5000ANE
IVN500lANE
IVN5201CNE
IVNS200HNE
IVNS201HNE
IVN5000SNE
IVNSOOlSNE
IVNS200TNE
IVN520lTNE
IVNSOOOTNE
IVN500lTNE
IVN5200KNE
IVN5201KNE
IVN5000ANF
IVN500lANF
IVNS201CNF
IVN5200HNF

342

Package
TO- 237
TO- 237
TO-220AB
TO- 66
TO- 66
TO-52
TO-52
TO- 39
TO-39
TO- 39
TO-39
TO-3
TO-3
TO- 237
TO- 237
TO-220AB
TO-66
TO-66
TO- 52
TO-52
TO-39
TO-39
TO-39
TO-39
TO- 3
TO-3
TO- 237
TO- 23~
TO-220AB
TO-66

V DSS
(V)

40
40
40
40
40
40
40
40
40
40
40
40
40
60
60
60
60
60
60
60
60
60
60
60
60
60
80
80
80
80

ID
(A)

0.7
0.7
5.0
S.O
5.0
0.9
0.9
4.0
4.0
1.2
1.2
5;0
5.0
0.7
0.7
S.O
5.0
5.0
0.9
0.9
4.0
4.0
1.2
1.2
5.0
5.0
0.7
0.7
S.O
5.0

typ
RDs (on)
(Q)

2.0
2.0
0.4
0.4
0.4
2.0
2.0
0.4
0.4
2.0
2.0
0.4
0.4
2.0
2.0
0.4
0.4
0.4
2.0
2.0
0.4
0.4
2.0
2.0
0.4
0.4
2.0
2.0
0.4
0.4

ID

typ
RDS (on)

(A)

(Q)

HITACHI
Equivalent

V DSS
(V)

-

-

-

-

-

-

-

-

2SK345

40

S.O

0.3

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-'

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

60

5.0

0.3

-

-

-

-

-

-

-

-

-

2SK346

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

80

5.0

0.4

-

-

-

2SK294
-

POWER

MOSFET

Cross

Reference

List

MANUFACTURER: INTERSIL- 2
typ
Industry
Package
R
I0
DS (on)
Voss
(Q)
(A)
(V)
Part No.
IVNS201HNF TO- 66
80
S.O
0.4
IVNSOOOSNF TO- 52
80
0.9
2.0
IVNSOOlSNF TO- 52
80
0.9
2.0
IVN5200TNF TO- 39
80
4.0
0.4
IVN5201TNF TO- 39
80
4.0
0.4
,,---- r---"
IVN5000TNF TO- 39
80
1.2
2.0
IVN500lTNF TO- 39 ..
80
1.2
2.0
IVN5200KNF TO- 3
80
5.0
0.4
IVN5201KNF TO- 3
80
5.0
0.4
IVN5000TNG TO- 39
90
2.0
1.2
IVN500lTNG TO- 39
90
1.2
2.0
IVN5000ANH TO·237
100
0.7
---.---:-1-----..- r - - - --.-- --2.0
IVN5000SNH TO-52
100
0.9
-----_.--------2.0
IVN5000TNH TO- 39
100
1.2
2.0
-IVN5001ANH TO·237
100
0.7
2.0
IVN5001SNH TO- 52
100
0.9
2.0
IVN5001TNH TO- 39
100
2.0
1.2
IVN5200HNH TO· 66
100
5.0
0.4
IVN5200TNH TO· 39
100
4.0
0.4
IVN5201CNH TO-220AB
100
5.0
0.4
IVN520lHNH TO- 66
100
5.0
0.4
IVN5201KNH TO· 3
100
5.0
0.4
IVN520lTNH TO· 39
100
4.0
0.4
IVN5201TNH TO- 39
100
4.0
0.4
IVN6000KNR TO· 3
3S0
2.25 2.5
IVN6000KNS TO-3
400
2.25 2.5
IVN6000CNS TO-220AB
400
2.0
2.5
IVN6000TNS TO-39
400
1.0
2.S
IVN6l00TNS TO- 39
400
0.5
8.0
-IVN6000KNT TO-3
4S0
2.25 2.5
IVN6000CNT TO-220AB
4S0
2.0
2.5

HITACHI
Equivalent

Voss
(V)

-

-

_.

.-

-

OL>O

_.

_.-

-.

-

-_.

2SK295
-

-

2SK3l0

I 0
(A)

-

-

-

typ
RDs(on)
(Q)

-

-

- - ------ ---.":_..
_.
-- ----.- -_.
--.-

-

-

100

5.0

0.4

-

-

-

-

-

-

-

-

--

-

-

--

-

400

3.0

2.5

-

-

-

-

-

-

-

-

-

-

-

-

450

3.0

2.5

2SK311

--

343

POWER

MOSFET

Cross

Reference

List

MANUFACTURER: INTERSIL- 3

Industry
Part No.
IVN6000TNT
IVN6100TNT
IVN6000KNU
IVN6000CNU
IVN6000TNU
IVN6100TNU
IVN6200CND
IVN6200CNE
IVN6200CNF
IVN6200CNH
IVN6200CNM
IVN6200CNP
IVN6200CNR
IVN6200CNS
IVN6200CNT
IVN6200CNU
IVN6200KND
IVN6200KNE
IVN6200KNF
IVN6200KNH
IVN6200KNM
IVN6200KNP
IVN6200KNS
IVN6200KNT
IVN6200KNU
IVN6300ANE
IVN6300ANF
IVN6300ANH
IVN6300ANM
IVN6300ANP

344

Package
TO- 39
TO- 39
TO-3
TO-220
TO- 39
TO-39
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-3
TO- 3
TO-3
TO-3
TO-3
TO- 3
TO- 3
TO- 3
TO- 3
TO- 237
TO- 237
TO- 237
TO- 237
TO- 237

Voss
(V)
450
450
500
500
500
500
40
60
80
100
200
250
395
400
450
500
40
60
80
100
200
250
400
450
500
60
80
100
200
250

I0

typ
RDS (on)

(A)

(0)

1.0
0.5
2.25
1.75
0.87
0.5

2.5
8.0
2.5
3.0
2.5
10.0
0.3
0.2
0.2
0.2
0.4
0.4
2.0
1.2
1.2
1.5
0.2
0.2
0.2
0.2
0.4
0.4
1.2
1.2
1.5
5.0
5.0
5.0
15.0
15.0

HITACHI
Equivalent

Voss
(V)

I0

typ
RDs (on)

(A)

(0)

-

-

-

-

2SK579

500

1.5

3.5

-

-

-

500

2.0

2.5

-

-

-

-

2SK382

-

2SK345
2SK346
2SK551
2SK551
2SK440

-

-

40
60
120
120
200

5.0
5.0
10.0
10.0
6.0

0.3
0.3
0.15
0.15
0.4

-

-

-

400
400
450
500

3.0
5.0
5.0
5.0

2.5
1.1
1.1
1.2

-

-

-

-

-

-

-

-

2SK310
2SK319
2SK320
2SK553

2SK398
2SK398
2SK401
2SK401
2SK298
2SK299

100
100
250
250
400
450

10.0
10.0
10.0
10.0
8.0
8.0

0.2
0.2
0.3
0.3
1.1
1.1

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

POWER

MOSFET

Cross

Reference

List

MANUFACTURER: INTERSIL- 4

Industry
Part No.
IVN6300ANS
IVN6300ANT
IVN6300ANU
IVN6300SNE
IVN6300SNF
IVN6300SNH
IVN6300SNM
IVN6300SNP
IVN6300SNS
IVN6300SNT
IVN6300SNU

Package
TO- 237
TO- 237
TO- 237
TO-52
TO- 52
TO- 52
TO- 52
TO- 52
TO- 52
TO- 52
TO- 52

V DSS
(V)

400
450
500
60
80
100
200
250
400
450
500

ID

typ
RDs (on)

(A)

(Q)

50.0
50.0
50.0
5.0
5.0
5.0
15.0
15.0
50.0
50.0
50.0

ID

typ
RDs (on)

(A)

(Q)

HITACHI
Equivalent

V DSS
(V)

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

345

POWER

MOSFET

Cross

Reference

List

MANUFACTURER: SUPERTEX - 1

Industry
P art No.
VNOI04Nl
VNOI06Nl
VNOI08Nl
VNOI09Nl
VNOI04N2
VNOI06N2
VNOI08N2
VNOI09N2
VNOl04N3
VNOl06N3
VNOI08N3
VNOI09N3
VNOI04N4
VNOl06N4
VNOl08N4
VNOl09N4
VNOl04N5
VNOl06N5
VNOl08N5
VNOI09N5
VNOl04N6
VNOI06N6
VNOl08N6
VNOI09N6
VPOI04Nl
VPOI06Nl
VPOI08Nl
VPOI09Nl
VPOI04N2
VPOI06N2

346

Package
TO- 3
TO- 3
TO- 3
TO- 3
TO- 39
TO- 39
TO-39
TO- 39
TO- 92
TO- 92
TO- 92
TO- 92
TO- 202
TO-202
TO- 202
TO- 202
TO-220AB
TO-220AB
TO- 220AB
TO- 220AB
DIP-l4Pin
DIP-14Pin
DIP-14Pin
DIP-14Pin
TO- 3
TO- 3
TO- 3
TO- 3
TO-39
TO- 39

V DSS
(V)

40
60
80
90
40
60
80
90
40
60
80
90
40
60
80
90
40
60
80
90
40
60
80
90
-40
- 60
-80
-90
- 40
- 60

I0

typ
R os (on)

(A)

(Q)

3
3
3

3
3
3
3
3
1
1
1
1

2
2
2

2
3
3
3

3
1
1
1

1
-3
-3
-3
-3
-3
-3

2.0
2.5
3.0
3.5
2.0
2.5
3.0
3.5
2.0
2.5
3.0
3.5
2.0
2.5
3.0
3.5
2.0
2.5
3.0
3.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
4.0
4.5

HITACHI
Equivalent

V DSS
(V)

-

-

-

-

I0

typ
Ros (on)

(A)

(Q)

-

-

-

-

-

-

-

- -

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

POWER

MOSFET

Cross

Reference

List

MANUF ACTURER: SUPERTEX - 2

Industry
Part No.
VPOI08N2
VPOI09N2
VPOI04N3
VPOI06N3
VPOI08N3
VPOI09N3
VPOI04NS
VPOI06NS
VPOI08NS
VPOI09NS
VPOI04N6
VPOI06N6
VPOI08N6
VPOI09N6
VN0204Nl
VN0206Nl
VN0208Nl
VN0209Nl
VN0204N2
VN0206N2
VN0208N2
VN0209N2
VN0204N5
VN0206NS
VN0208NS
VN0209N5
VN0204N6
VN0206N6
VN0208N6
VN0209N6

Package
TO- 39
TO- 39
TO- 92
TO- 92
TO- 92
TO- 92
TO-220AB
TO-220AB
TO-220AB
TO-220AB
DIP-14Pin
DIP-14Pin
DIP-14Pin
DIP-14Pin
TO- 3
TO- 3
TO- 3
TO- 3
TO- 39
TO-39
TO- 39
TO- 39
TO-220AB
TO-220AB
TO-220AB
TO-220AB
DIP-14Pin
DIP-14Pin
DIP-14Pin
DIP-14Pin

Voss
(V)
- 80
- 90
- 40
- 60
- 80
- 90
-40
- 60
-80
-90
- 40
- 60
- 80
-90
40
60
80
90
40
60
80
90
40
60
80
90
40
60
80
90

I 0
(A)

-3
-3
-1
-1
-1
-1
-3
-3
-3
-3
-2
-2
-2
-2
6
6
6
6
4
4
4
4
4
4
4

4
3
3
3
3

typ
RDs (on)
(0)

S.O
S.S
4.0
4. S
S.O
S.S
4.0
4. S
S.O
S.S
4.0
4.S
S.O
5.5
1.2
1.4
1.6
1.8
1.2
1.4
1.6
1.8
1.2
1.4
1.6
1.8
1.2
1.4
1.6
1.8

I0

typ
RDs (on)

(A)

(0)

HITACHI
Equivalent

Voss
(V)

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

347

POWER

Cross

MOSFET

Reference List

MANUF ACTURER: SUPERTEX - 3

I ndust ry
Part No.
VP0204Nl
VP0206Nl
VP0208Nl
VP0209Nl
VP0204N2
VP0206N2
VP0208N2
VP0209N2
VP0204NS
VP0206N5
VP0208N5
VP0209N5
VP0204N6
VP0206N6
VP0208N6
VP0209N6
VN0330Nl
VN0335Nl
VN0340Nl
VN0345Nl
VN0330N2
VN0335N2
VN0340N2
VN0345N2
VN0330NS
VN0335N5
VN0340NS
VN0345N5
VN1204Nl
VN1206N1

348

Package
TO- 3
TO- 3
TO- 3
TO- 3
TO- 39
TO- 39
TO- 39
TO-39
TO- 220AB
TO-220AB
TO-220AB
TO-220AB
DIP-14Pin
DIP-14Pin
DIP-14Pin
DIP-14Pin
TO-3
TO-3
TO-3
TO-3
TO-39
TO- 39
TO-39
TO- 39
TO-220AB
TO-220AB
TO-220AB
TO- 2Z0AB
TO-3
TO- 3

V DSS
(V)

- 40
- 60
-80
-90
- 40
- 60
-80
-90
-40
- 60
-80
-90
- 40
- 60
-80
- 90
300
350
400
450
300
350
400
450
300
350
400
450
40
60

ID

typ
RDs (on)

(A)

(Q)

-6

2.0
2.5
3.0
3.5
2.0
2.5
3.0
3.S
2.0
2. S
3.0
3.5
2.0
2.5
3.0
3.5
2.0
2.2
2.4
2.6
2.0
2.2
2.4
2.6
2.0
2.2
2.4
2.4
0.25
0.25

-6

-6
-6
-4
-4
-4
-4

-4
-4
-4
-4
-3
-3
-3
-3
6
6
6
6
6
6
6
6
6
6
6
6

16
16

HITACHI
Equivalent

V DSS
(V)

-

-

-

-

ID

typ
RDs (on)

(A)

(Q)

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

2SK310
2SK310
2SK311

400
400
450

2SK398

-

-

3
3
3

-

-,

100

10

2.5
2.5
2.5
-

0.20

POWER

Cross

MOSFET

Reference

List

MANUF ACTURER: SUPERTEX - 4

Industry
Package
P art No.
VN1208Nl
TO-3
VN1209Nl
TO- 3
VN1204N2
TO- 39
VN1206N2
TO- 39
VN1208N2
TO- 39
VN1209N2
TO- 39
VN1204N5
TO- 220AB
VN1206N5
TO- 220AB
VN1208N5
TO-220AB
VP1209N5
TO-220AB
VP1204N1
TO- 3
VP120SNI
TO- 3
VP1208N1
TO- 3
VP1209N1
TO- 3
VP1204N2
TO- 39
.
TO- 39
VP120SN2
VP1208N2
TO- 39
VP1209N2
TO- 39
VP1204N5
TO-220AB
VP120SN5
TO-220AB
VP1208N5
TO-220AB
VN1209N5
TO-220AB
VN1304N2
TO- 39
VN1306N2
TO- 39
VN1308N2
TO- 39
VN1309N2
TO-39
VN1304N3
TO- 92
VN130SN3
TO- 92
VN1308N3
TO- 92
VN1309N3
TO- 92

Voss
(V)
80
90
40
60
80
90
40
60
80
90
-40
- SO
- 80
-90
-40
- SO
- 80
-90
-40
- SO
- 80
- 90
40
60
80
90
40
SO
80
90

I0

typ
Ros (on)

(A)

(Q)

16
16
8
8
8
8
16
16
IS
lS
-12
-12
-12
-12
-S
-S
-S
-S
-12
- 12
- 12
- 12
1.5
1.5
1.5
1.5
1.0
1.0
1.0
1.0

0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.5
0.5
O.S
O.S
0.5
0.5
O.S
O.S
0.5
0.5
O.S
O.S
4.0
5.0
S.O
7.0
4.0
5.0
S.O
7.0

typ
R os (on)

HITACHI
Equivalent
2SK398
2SK398

Voss
(V)
100
100

-

-

-

-

-

-

-

-

-

-

-

-

-

-

2SK345
2SK346

I0
(A)

(Q)

10
10

0.20
0.20

40
SO

-

5
5

0.30
0.30

-

-

-

-

-

-

-

-

-

-

-

-

-

-

- 10
-10

0.30
0.30

2S]112
2SJ 112
-

- 100
- 100
-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-5
-5

0.30
0.30

2SJ101
2SJ102

-

- 40
- SO
-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

349

POWER

MOSFET

Cross

Reference

List

MANUFACTURER: SUPERTEX - 5

Industry
P art No.
VN1304N6
VN1306N6
VN1308N6
VN1309N6
VP1304N2
VP1306N2
VP1308N2
VP1309N2
VP1304N3
VP1306N3
VP1308N3
VP1309N3
VP1304NS
VP130SNS
VP1308NS
VP1309NS
VN0430N1
VN0435N1
VN0440N1
VN0445N1
VN0450N1
VN0455N1
VN230SNl
VN2310N1
VN2315N1
VN2320N1
VN2330N1
VN2330N1
VN2340N1
VN2345N1

350

Package
DIP-14Pin
DIP-14Pin
DIP-14Pin
DIP-14Pin
TO- 39
TO- 39
TO- 39
TO-39
TO-92
TO-92
TO- 92
TO- 92
DIP-14Pin
DIP-14Pin
DIP-14Pin
DIP-14Pin
TO-3
TO- 3
TO- 3
TO- 3
TO- 3
TO- 3
TO-3
TO- 3
TO-3
TO- 3
TO- 3
TO- 3
TO- 3
TO- 3

Voss
(V)
40
60
80
90
40
60
80
90
40
60
80
90
40
SO
80
90
300
350
400
450
500
550
60
100
150
200
300
300
400
450

I0

typ
Ros (on)

(A)

(Q)

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0

4.0
5.0
6.0
7.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
0.5
0.5
0.6
0.6
1.0
1.2
0.05
0.07
0.14
0.25
0.40
0.40
0.50
0.50

1.0

1.0

1.0
1.0
1.0
1.0
1.0

I0

typ
R os (on)

(A)

(Q)

HITACHI
Equivalent

Voss
(V)

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

'-

400
400
450
500

12
12
12
12

O.S
O.S
O.S
0.45
-

2SK312
2SK312
2SK313
2SK55 7TO -3F
-

-

-

-

-

-

-

-

-

-

-

-

-

-

2SK401

250

10

0.3

-

-

-

400
450

12
12

0.6
O.S

-

2SK312
2SK313

POWER

MOSFET

Cross

Reference

List

MANUF ACTURER: SUPERTEX - 6
typ
Industry
P art No.
VN2350N1
VN2355N1
VP0430N1
VP0435N1
VP0440N1
VP0445N1
VP0450N1
VP0455N1

Package
TO- 3
TO- 3
TO- 3
TO- 3
TO-3
TO- 3
TO- 3
TO- 3

V DSS
(V)

500
550
- 300
- 350
- 400
- 450
- 500
- 550

ID

RDs (on)

(A)

(Q)

0.8
1.0
1.0
1.0
1.2
1.2
2.0
2.5

typ
RDs (on)

HITACHI
Equivalent
2SK512

V DSS
(V)

(A)

(Q)

500

12

0.55

-

-

-

-

-

-

-

-

-

-

-

-

2SJ 116
2SJ116

ID

400
400

8
8

1. 75
1. 75

-

-

-

-

-

-

-

-

351

POWER

MOSFET

Cross

Reference

List

MANUP ACTURER: RCA

Industry
P art No.
RCA9196A
RCA9196B
RCA9213A
RCA9213B
RCA9192A
RCA9192B
RCA9212A
RCA9212B
RCA9195A
RCA9195B
RCA9230A
RCA9230B
TA9193A
TA9193B
TA9232A
TA9232B

352

Package
TO- 39
TO-39
TO-220AB
TO-220AB
TO-3
TO- 3
TO-220AB
TO-220AB
TO- 3
TO- 3
TO-220AB
TO-220AB
TO-3
TO- 3
TO-220AB
TO-220AB

Voss
(V)
100
150
100
150
100
150
100
150
100
150
100
150
450
500
450
500

10

typ
Ros (on)

(A)
1.0
1.0
1.0
1.0
5.0
5.0
5.0
5.0
10
10
10
10
2.0
2.0
2.0
2.0

2.0
2.0
2.0
2.0
0.25
0.25
0.25
0.25
0".1
0.1
1.1
0.1
1.5
1.5
1.5
1.5

(0)

HITACHI
Equivalent

Voss
(V)

10

typ
Ros (on)

(A)

(0)

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

100

10

0.20

-

-

-

100

10

0.15

-

-

-

120

10

0.20

-

-

-

100

10

0.15

-

-

2SK398
-

2SK383
-

2SK308
-

2SK383

2SK299

450

-

-

2SK320
2SK553

450
500

-

8

5
5

1.1
-

1.1
1.2

POWER

MOSFET

Cross

Reference

List

MANUFACTURER: SI EMENS - 1

I ndust ry
Package
P art No.
BUZ10
TO-220AB
BUZ10A
TO-220AB
BUZll
TO-220AB
BUZllA
TO-220AB
BUZ14
TO- 3
BUZ15
TO- 3
BUZ17
TO-238
BUZ18
TO- 238
BUZ71
TO-220AB
BUZ71A
TO-220AB
BSSllO
TO- 92
BUZ20
TO-220AB
BUZ21
TO-220AB
BUZ23
TO- 3
BUZ24
TO- 3
BUZ25
TO-3
BUZ27
TO-238
BUZ28
TO- 238
BUZ72
TO-220AB
BSS100
TO- 92
BSS87
SOT89
BSS89
TO-92
BSS91
TO-18
BSS93
TO- 39
BSS95
TO-202AB
BSS97
TO- 202AB
BSS101
TO- 92
BSS92
TO-92
BUZ30
TO-220AB
BUZ31
TO-220AB

V DSS
(V)
50
50
50
50
50
50
50
50
50
50
- 50
100
100
100
100
100
100
100
100
100
200
200
200
200
200
200
200
- 200
200
200

ID

typ
RDS(on)

(A)

(Q)

12
12
30
25
39
45
32
37
12
12
- 0.17
12
19
10
32
19
26
18
9
0.23
0.5
0.3
0.35
0.5
0.8
1.5
0.16
- 0.15
7.0
12.5

0.08
0.10
0.03
0.05
0.03
0.025
0.03
0.025
0.08
0.10
8.0
0.16
0.08
0.16
0.055
0.08
0.055
0.08
0.20
5.0
5.0
5.0
5.0
5.0
5.0
1.5
10.0
15.0
0.5
0.16

HITACHI
Equivalent

VDSS
(V)

ID

typ
RDs (on)

(A)

(Q)

-

-

-

-

60
60
60

12
25
25

0.10
0.04
0.04
-

2SK428
2SK600
2SK600
-

-

-

-

-

-

-

-

-

-

-

-

-

2SK428
-

2SK383
-

2SK398
2SK561

-

-

-

-

60

10

0.10

-

-

-

100

10

0.20

-

-

-

100
100

10
30

0.20
0.05
-

-

-

-

-

-

-

-

-

-

-

-

2SK383

100

10

0.20

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

6.0

0.40

-

-

2SK440
-

200
-

-

353

POWER

MOSFET

Cross

Reference

List

MANUFACTURER: SEMENS- 2

Industry
Part No.
BUZ32
BUZ33
BUZ34
BUZ35
BUZ36
BUZ37
BUZ38
BUZ73A
BUZ60
BUZ60B
BUZ63
BUZ63B
BUZ64
BUZ67
BUZ76
BUZ76A
BUZ45C
BUZ48C
BUZ40
BUZ41
BUZ41A
BUZ42
BUZ43
BUZ44
BUZHA
BUZ45
BUZ45A
BUZ45B
BUZ46
BUZ47

354

Package
TO-220AB
TO- 3
TO- 3
TO- 3
TO- 3
TO-238
TO- 238
TO-220AB
TO-220AB
TO-220AB
TO- 3
TO- 3
TO- 3
TO- 238
TO-220AB
TO-220AB
TO-3
TO-238
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO- 3
TO-3
TO- 3
TO- 3
TO- 3
TO- 3
TO-3
TO-238

Voss
(V)
200
200
200
200
200
200
200
200
400
400
400
400
400
400
400
400
450
450
500
500
500
500
500
500
500
500
500
500
500
500

I 0
(A)

9.5
7.2
17.0
9.9
22.0
14.0
18.0
5.8
5.5
4.5
5.9
4.5
10.5
9.6
3.0
2.6
10.0
8.5
2.5
5.5
4.5
4.0
2.8
5.6
4.8
9.6
8.3
10.0
4.2
4.5

typ
Ros (on)
(0)

0.35
0.50
0.16
0.35
0.10
0.16
0.10
0.50
0.8
1.2
0.8
1.2
0.35
0.35
1.5
2.0
0.4
0.4
3.0
0.9
1.4
1.8
3.0
0.9
1.4
0.55
0.7
0.4
1.8
0.9

HITACHI
Voss
Equivalent (V)
2SK440
200
2SK400TO- 3 200

I 0
(A)

6.0
8.0

typ
Ros (on)
(0)

0.4
0.5

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

2SK440
2SK319
2SK319
2SK298
2SK298
2SK559TO- 3

200
400
400
400
400
450

-

6.0
5.0
5.0
8.0
8.0
15.0

-

-

2SK319
2SK310
2SK559TO-3

400
400
450

-

-

-

-

500
500
500
500

2.0
7.0
5.0
5.0

2.5
0.7
1.2
1.2
-

2SK382
2SK555
2SK553
2SK553

-

0.4
1.1
1.1
1.1
1.1
0.25

5.0
3.0
15.0

-

1.1
2.5
0.25

-

-

-

-

-

-

-

-

-

-

2SK512
2SK512
2SK512

500
500
500

12
12
12

0.55
0.55
0.55

-

-

-

-

-

-

POWER

MOSFET

-,

Cross

R efefence

List

-

MANUFACTURER: SI EMENS-~ 3
typ

Industry

Pac kage

Part No.

BUZ48
BUZ48A
r-------~~
BUZ74
BUZ74A
BUZ80
BUZ80A
BUZ83
BUZ83A
BUZ84
BUZ84A
BUZ88
BUZ88A
BUZ50
BUZ50A
BUZ50B
BUZ53
BUZ53A
f-------BUZ53B
BUZ54
BUZ54A
BUZ57
BUZ57A
BUZ58
BUZ58A
BUZ211

Voss
(V)

typ

0

Ros(on)

HITACHI

(A)

(Q)

Equivalent

I

TO-238
500
7.8
TO- 238
500
6.8
TO-220AB
500
2.4
TO-220AB
500
2.0
TO-220AB
800
2.6
-TO-220AB
800
3.0
800
TO- 3
2.9
-800
TO- 3
3.4
TO- 3
800
5.3
TO- 3
800
6.0
TO- 238
800
4.3
800
TO- 238
5.0
1000
TO-220AB
3.0
TO-220AB
1000
2.5
TO-220AB
1000
2.0
1000
TO- 3
3.0
TO- 3
1000
2.6
TO- 3
1000
2.0
1000
TO-3
5.3
1----TO-3
1000 I 4.6
-I-100
TO- 238
TO- 238
1000 I 2.1
--1000
TO-238
4.3
TO- 238
1000
3.7
500
9.0
TO-3

------~--

f+2.S-

0.55
O. 70
2. 5
2SK382
3.0
2SK382
3.0
2SK513
---2.5
3.0
2.5
2SK351
1.8
2SK351
1.4
2SK351
-1.8
-1.4
3.0
4. a
7.0
3.0
HS78013
4.0
HS78013
-7.0
1.8
HS78007
2.0
HS78007
1-3.0
4.0
I
1.8
2. 0
O. 7
2SK512

-----

~------

Voss
(V)
-

-

1-----

-

500
500
800
--

-~

-

-

(Q)
-

~~-

2.0
2.0
3.0

r---------

2.5
2.5- 5.-0 -

-

--

-

-

-

-

5.0
5.0
5.0

1.7
1.7
1.7

-

-

-

-

-

-

-

-

-

-

-

-

-

-

800
800
800
I

Ros(on)

I 0
(A)

--

-~

~~

1000
1000
-

3.0
3.0

3.0
3.0
---

-

-

5.0
5.0

-1.6
1.6

-

-

-

-

-

-

-

--

--

-

-

-

-

--

500

12.0

1000
1000

-~-

-~

--

0.55

~~

-- - - - - - - ~-

+---~-

I

355

POWER

MOSFET

Cross

Reference

List

MANUFACTURER: TO S HI BA

I ndustrr
P art No.
2SK324
2SK325
2SK355
2SK356
2SK357
2SK358
2SK385
2SK386
2SK387
2SK388
2SH05
2SK417
2SK418
2SH19
2SK420
2SK421
2SK422
2SK423
2SK442
2SK447
2SK532
2S]124
2S] 115
2S]123
2SK537
2SK538
2SK539

356

Package
TO- 3
TO- 3
TO- 3
TO- 3
TO-220AB
TO-220AB
TO-3P(L)
TO-3P(L)
TO-3P(L)
TO-3P(L)
TO-3P
TO-220BS
TO-220BS
TO-220BS
TO-220BS
TO-220BS
TO-92M
TO-92M
TO-220AB
TO-3P(L)
TO-220BS
TO-220AB
TO- 3P
TO-220AB
TO-220B5
TO-3P
TO-3PL

V DSS
(V)
400
450
150
250
150
250
400
450
150
250
160
60
400
450
400
450
60
100
70
250
60
-60
-160
-70
900
900
900

ID
(A)
10
10
12
12
5
5
10
10
12
12
8
10
2
2
5
5
0.7
0.5
10
15
12
-10
-8
-10
1
3
5

typ
RDs (on)
(Q)

0.45
0.5
0.12
0.2
0.55
0.7
0.45
0.5
0.12
0.2
0.5
0.1
2.2
2.6
1.0
1.1
1.4
2.4
0.2
0.18
0.06
(

0.7
0.2
7.0
3.7
1.9

V DSS
(V)
400
450

ID
(A)
12
12

-

-

-

-

2SH01

(Q)

0.6
0.6

250

10

0.3

-

-

-

-

-

-

-

-

400
450

10
10

0.6
0.6

-

-

-

10
8
10
3
3
5
5

0.3
0.4
0.1
2.5
2.5
1.1
1.1

-

2SK349
2SK350
-

2SK412
2SH14
2SH28
2SK310
2SK311
2SK319
2SK320

2SK428

)

typ
R DS (on)

HITACHI
Equivalent
2SK312
2SK313

2SK600
2S]122
2S]119
2S]122
25K513
H578013
H578009

250
160
60
400
450
400
450

-

-

-

60

10

0.1

-

-

-

60
-60
-160
- 60
800
1000
1000

25
-10
-8
-10
3
3
5

-

0.04
0.15
0.4
0.1
5.0
3.0
1.6

POWER

MOSFET

Cross

Reference

List

MANUF ACTURER: NEe - 1

I ndustn
P art No.
2SK277
2SK278
2SK293(A)
2SK337
2SK338
2SK339
2SK424
2SK432
2SK446
2SK448
2SK449
2SK450
2SK458
2SK459
2SK462
2SK463
2SK464
2SK465
2SK466
2SK468
2SK470
2SK471
2SK472
2SK477
2SK478
2SK479
2SK481
2SK482
2SK483
2SK484

Package
TO- 3
TO-3
TO- 3
TO-126
TO- 220AB
TO-220AB
TO- 3
TO- 3
MP- 3
TO- 3
TO-3
TO-3
TO- 39
TO-220AB
MP- 3
TO-220AB
TO-220AB
TO-3P
TO-3P
MP- 3
TO- 220AB
TO-3P
TO-3P
TO-220AB
TO-3P
TO- 3P
TO-220AB
TO-220AB
TO- 3P
TO-3P

V DSS
(V)
350
400
300
500
400
100
600
250
20
250
450
450
150
200
60
60
60
60
60
100
100
100
100
250
250
250
450
450
450
450

ID

typ
RDs (on)

(A)

(Q)

7
7
7
0.1
5
5
3
10
2
10
8
10
1
10
2
5
8
10
15
2
8
10
15
8
10
15
3
5
6
10

1.0
1.1
0.9
70
1.15
0.4
1. 35
0.3
0.25
0.3
0.8
0.8
1.0
0.4
0.4
0.25
0.15
0.15
0.07
0.5
0.2
0.2
0.1
0.55
0.55
0.3
3.0
1.6
1.5
0.8

HITACHI
Equivalent
2SK2599
2SK2609

V DSS
(V)
350
400

-

2SK384
2SK319
2SK295
2SK4019
-

2SK401
2SK313
2SK313
-

2SK440
2SK429
2SK346
2SK428

ID

typ
RDs (on)

(A)

(Q)

5
5

2.5
2.5

-

-

-

500
400
100
600
250

0.3
5
5
5
10

2.5
1.1
0.4
1.8
0.3

-

250
450
450

-

10
12
12

-

0.3
0.6
0.6

-

-

-

200
100
60
60

6
3
5
10

0.4
0.5
0.3
0.1

-

-

-

-

-

-

-

-

100
100
100

3
10
10

0.5
0.15
0.2

-

-

-

-

-

-

-

-

250
250
450
450
450
450

10
10
3
5
8
10

0.3
0.3
2.5
1.1
1.1
0.6

2SK429
2SK383
2SK399

2SK412
2SK412
2SK311
2SK320
2SK403
2SK350

357

POWER

MOSFET

Cross

Reference

List

MANUP ACTURER: N E C - 2

Industry
Part No.
2SK489
2SK490
2SK487
2SK451
2SK452
2SK591
2SK611
2SK612

358

Package
TO-3P
TO-3P
TO-220AB
TO-3
TO-3
TO-220AB
MP-3
MP-3

V DSS
(V)
400
400
500
850
1000
60
100
100

ID
(A)

6
10
3
4
3
12
1
2

typ
RDs (on)
(0)

1.15
0.6
3.5
2.5
3.5
0.045
4
0.3

HITACHI
Equivalent
2SK402
2SK349
2SK382
2SK534
HS78013
2SK600

V DSS
(V)
400
400
500
800
1000
60

ID

typ
RDs (on)

(A)

(0)

8
10
2
5
3
25

1.1
0.6
2.5
3.0
3.0
0.04

POWER

MOSFET

Cross

Reference

List

MANUFACTURER: MA T SUS HIT A

Industry
Part No.
2SK379
2SK380
2SK495
2SK496
2SK497
2SK498
2SK499
2SK500
2SK501
2SK502
2SK503

Package
TO- 3
TO- 3
TO- 220
Full-Pack
TO-220
N Pack
Full-Pack
TO-3P(NC)
TO- 3P(NC)
TO- 220
Full-Pack

Voss
(V)

400
450
60
60
50
50
50
60
400
400
400

I

0

(A)
8
8
5
5
5
5
5
10
8
3
3

typ
RDS(on)
(Q)

1.5
1.5
0.2
0.2
0.18
0.18
0.18
0.08
0.8
2.5
2.5

HITACHI
Equivalent
2SK298
2SK299
2SK346

Voss
(V)

-

-

400
450
60

0

-

60
60

2SK428
2SK547

I

(A)
8
8
5
10
10

typ
RDs(on)
(Q)

1.1
1.1
0.3
-

0.1
0.1

-

-

-

-

-

-

-

-

400
400

10
3

-

-

2SK349
2SK310
-

0.6
2.5
-

359

HITACHI AMERICA, LTD.
SEMICONDUCTOR AND IC DIVISION
HEADQUARTERS
Hitachi, Ltd.
New Marunouchi Bldg., 5-1,
Marunouchi 1-chome
Chiyoda-ku, Tokyo 100, Japan
Tel: Tokyo (03) 212-1111
Telex: J22395, J22432, J24491 ,
J26375 (HITACHY)
Cable: HITACHY TOKYO

REGIONAL OFFICES
NORTHEAST REGION
Hitachi America, Ltd.
5 Burlington Woods Drive
Burlington, MA 01803
617/229-2150

U.S. SALES OFFICE
Hitachi America, Ltd.
Semiconductor and IC Division
2210 O'Toole Avenue
San Jose, CA 95131
Tel: 408-942-1500
Telex: 17-1581
Twx: 910-338-2103
Fax: 408-942-8225
Fax: 408-942·8880

DISTRICT OFFICES
•

Hitachi America, Ltd.
1700 Galloping Hill Rd.
Kenilworth, NJ 07033
201/245-6400

•

Hitachi America, Ltd.
3500 W. 80th Street, Suite 660
Bloomington, MN 55431
6121831-0408

•

Hitachi America, Ltd.
80 Washington St., Suite 302
Poughkeepsie, NY 12601
914/485-3400

•

Hitachi America, Ltd.
6 Parklane Blvd., #558
Dearborn, MI 48126
313/271-4410

•

Hitachi America, Ltd.
6161 Savoy Dr., Suite 850
Houston, TX 77036
713/974-0534

•

Hitachi America, Ltd.
5775 Peachtree-Dunwoody Rd.
Suite 270C
Atlanta, GA 30342
404/843-3445

•

Hitachi America, Ltd.
18300 Von Karman Avenue, Suite 730
Irvine, CA 92715
714/553-8500

•

Hitachi America, Ltd.
10300 S.w. Greenburg Rd., Suite 480
Portland, OR 97223
503/245-1825

•

Hitachi (Canadian) Ltd.
2625 Queensview Dr.
Ottawa, Ontario, Canada K2A 3Y4
613/596-2777

SOUTH CENTRAL REGION
Hitachi America, Ltd.
Two Lincoln Centre, Suite 865
5420 LBJ Freeway
Dallas, TX 75240
2141991-4510

NORTH CENTRAL REGION
Hitachi America, Ltd.
500 Park Blvd., Suite 415
Itasca, IL 60143
3121773-4864

NORTHWEST REGION
Hitachi America, Ltd.
2099 Gateway Place, Suite 550
San Jose, CA 95110
408/277-0712

SOUTHWEST REGION
Hitachi America, Ltd.
21600 Oxnard St., Suite 600
Woodland Hills, CA 91367
8181704-6500

SOUTHEAST REGION
Hitachi America, Ltd.
4901 N.W. 17th Way, Suite 302
Fort Lauderdale, FL 33309
305/491-6154

360



Source Exif Data:
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
PDF Version                     : 1.3
Linearized                      : No
XMP Toolkit                     : Adobe XMP Core 4.2.1-c041 52.342996, 2008/05/07-21:37:19
Create Date                     : 2017:09:04 14:30:02-08:00
Modify Date                     : 2017:09:04 15:14:56-07:00
Metadata Date                   : 2017:09:04 15:14:56-07:00
Producer                        : Adobe Acrobat 9.0 Paper Capture Plug-in
Format                          : application/pdf
Document ID                     : uuid:7fccf946-50ad-2149-b55a-ef57159976c1
Instance ID                     : uuid:dd26853a-c1c4-404a-9d87-c26b7738980a
Page Layout                     : SinglePage
Page Mode                       : UseNone
Page Count                      : 362
EXIF Metadata provided by EXIF.tools

Navigation menu