1985_GE_Power_Transistors 1985 GE Power Transistors

User Manual: 1985_GE_Power_Transistors

Open the PDF directly: View PDF PDF.
Page Count: 866

Download1985_GE_Power_Transistors 1985 GE Power Transistors
Open PDF In BrowserView PDF
POWER
TRANSISTORS
POWER MOSFETs
IGT™ TRANSISTORS
POWER BIPOLAR TRANSISTORS
POWER DARLINGTONS

Power Electronics Semiconductor Department

General Electric Company
Electronics Park
Syracuse, New York 13221

•

SEMICONDUCTOR

INTRODUCTION

The Power Electronics Semiconductor Department of the
General Electric Company acknowledges the efforts of all
contributing authors and editors of all editions of the General
Electric Power Transistor Manual.

The circuit diagrams included in this manual are intended merely for illustration of
typical semiconductor applications and are not intended as constructional information. Although reasonable care has been taken in their preparation to assure their
technical correctness, in the absence of an express written agreement to the contrary,
no responsibility is assumed by the General Electric Company for any consequences
of their use.
The semiconductor products, circuits, and arrangements disclosed herein may be
covered by patents of General Electric Company or others. Neither the disclosure of
any information herein nor the sale of semiconductor products by General Electric
Company conveys any license under patent claims covering combinations of
semiconductor products with other products or elements. In the absence of an
express written agreement to the contrary, General Electric Company assumes no
liability for patent infringement arising out of any use of semiconductor products with
other products or elements by any purchaser of semiconductor products, or by
others.

Copyright® 1985
by the
General Electric Company, U.S.A.
Power Electronics Semiconductor Department
Syracuse, New York 13221

ii

TABLE OF CONTENTS
GE POWER MOSFETs &IGr M TRANSISTORS
PRODUCT MATRIX .................................................................................................... 2
POWER MOSFET SELECTOR GUIDE ................................................................................ 4
IGT'M SELECTOR GUIDE .............................................................................................. 13
POWER MOSFET CROSS REFERENCE ............................................................................. 14

GE BIPOLAR POWER TRANSISTORS
SELECTOR GUIDE ...................................................................................................... 32

POWER TRANSISTOR INDEX ................................................................................................. 45
1. POWER TRANSISTOR TERMS. SYMBOLS &DEFINITIONS
1.1 MOS-GA TED TRANSISTORS ..................................................................................
1.1.1 General Terms and Conditions .............................................................................
1.1.2 Letter Symbols, Terms and Definitions-MOSFETs ................................................... '. , ...
1.1.3 Letter Symbols, Terms and Definitions-IGT'M ................................................. : ........... :.
1.2 JUNCTION TRANSISTORS, MULTIJUNCTION TyPES ............................. ; ......................
1.2.1 General Terms and Definitions ........................................... , .................................

47
47
48
53
57
57

2. RATINGS AND CHARACTERISTICS
2.1 POWER DISSIPATION AND THERMAL RATINGS ........................................................
2.1.1 Power Dissipation vs Temperature .................... " ............. '......................................
2.1.2 Thermal Resistance .........................................................................................
2.1.3 Transient Thermal Response .................................................................................
2.1.4 Use of Thermal Compounds and Insulators ...............................................................
2.1.5 Surface Finish .................................................................................................

2.2 DIODES ......................... '.' : ..............................................................................
2.2.1 Diode Capacitances. '. :.................................. , ....................................................
2.2.2 Reverse Recovery Time .................................................................•..................
2.2.3 Forward Recovery Time ...................................................................................
2.2.4 Control of Minority Carrier Lifetime by Gold or Platinum Diffusion, or by Electron Irradiation ........
2.2.5 Epitaxial Growth of Silicon ................................................................................
2.3 BIPOLAR TRANSISTORS ......................................................................................
2.3.1 Voltage Ratings ............................................................................................
2.3.2 Current Ratings ............................................................................................
2.3.3 Cut-off Currents ............................................................................................
2.3.4 DC Current Gain ...........................................................................................
2.3.5 Saturation Voltages ........................................................................................
2.3.6 Switching Characteristics .... '...............................................................................
2.3.7 Forward Bias Safe Operating Area (FBSOA) ..............................................................
2.3.8 Reverse Bias Safe Operating Area (RBSOA) ..............................................................
2.4 MOSFET TRANSISTORS .......................................................................................
2.4.1 Power MOSFET Structure ................................................................................
2.4.2 Blocking Characteristics ....................................................................................
2.4.3 Transconductance (gfs) .....................................................................................
2.4.4 On Resistance rDS(on) ......................................................................................
2.4.5 Breakdown Voltage Vs rDS(ON) ............................................................................
2.4.6 Input and Output Capacitance .............................................................................
2.4.7 Gate Charge ................................................................................................
2.4.8 Switching Characteristics ...................................................................................
2.4.9 Rated Continuous Current and Peak Current ..................... i' ......................................
2.4.10 Ruggedness .................................................................................................
2.4.11 The Parasitic Diode ........................................................................................
2.4.12 Forward Bias Safe Operating Area (FBSOA) ..............................................................
2.4.13 Switching Safe Operating Area (SSOA) ...................................................................
2.4.14 Handling Considerations ...................................................................................
iii

71
71
72
72
73
73
73
74
74
75
77
78
78
79
79
79
79
80
81
81
82
84
85
86
86
86
87
87
88
89
89
89
91
91
91
91

2.5 INSULATED GATE BIPOLAR TRANSISTORS .............................................................
2.5.1 IGT'M Transistor Structure .................................................................................
2.5.2 Blocking Characteristics ................................................................................. , ..
2.5.3 Gate-to-Emitter Threshold Voltage ........................................................................
2.5.4 Transconductance (~s) .....................................................................................
2.5.5 On-State Voltage (VCE(sat») ....................•............................................................
2.5.6 Gate-to-Emitter Drive ......................................................................................
2.5.7 Switching Properties .......................................................................................
2.5.8 Equivalent Fall Time .......................................................................................
2.5.9 Controlling Current Fall Time .............................................................................
2.5.10 Forward Bias Safe Operating Area (FBSOA) ..............................................................
2.5.11 Turn-off Safe Operating Area ..............................................................................
2.5.12 Handling Considerations ...................................................................................

92
92
93
94
94
94
95
95
96
96
97
97
97

3. QUALITY AND RELIABILITY OF TRANSISTORS
3.1 QUALITy ......................................................................................................... 99
3.2 RELIABILITy ................................................................................................... 100
3.2.1 General Approach to Accelerated Testing ................................................................. 101
3.2.2 Reliability Prediction from Accelerated Tests to Application ............................................. 104
3.2.3 Plastic Encapsulated Power Transistors ................................................................... 106
3.2.4 Plastic Encapsulated Signal Transistors ................................................................... 114
3.3 RELATIVE HUMIDITy ........................................................................................ 115
3.4 STRESS SCREENING .......................................................................................... 117
3.5 TOTAL QUALITY CONTROL ................................................................................. 119
3.6 GENERAL CONCLUSIONS .................................................................................... 121

GE POWERMOS SPECIFICATIONS ........................................................................................... 125
IGrM TRANSISTOR SPECIFICATIONS ........................................................................................ 337
GE BIPOLAR SPECiFiCATiONS ........... .................................................................................... 371
MOUNTING AND HANDLING CONSIDERATIONS (For Surface Mounted Devices) ................................................... 840
MOUNTING AND ELECTRICAL TERMINATION PROCEDURES (For D66 &D67 Power Darlington Transistor Modules) ................. 845
GE POWER TRANSISTOR OUTLINE DRAWINGS ............................................................................... 846
PACKAGE ALTERNATIVES .................................................................................................. 855
GE REPRESENTATIVES SALES OFFICES ..................................................................................... 857

iv

GE
POWER MOSFET

&
IGT™ TRANSISTOR
PRODUCT MATRIX &
SELECTOR GUIDE

v

vi

HOW TO SPECIFY GE POWER MOS
DEVICES USING THIS MANUAL
Step 1: First, turn to the Product Matrix (next page). Look up the basic parameters of the device you want: its
voltage, current, RDSon and package. The Product Matrix Will supply the GE product number to look for in the
following Selector Guide tables. (How GE numbers its Power MOS devices is also explained in this section.)
Step 2: Now go to the Selector Guide Tables that immediately follow the Product Matrix. The Selector Guide tables are
arranged by package in ascending voltage. This will supply additional data about the device and the page number for the
corresponding spec sheet.
Step 3: Tum to the spec sheet; it's in the section that begins on Page 125. Here you will find complete performance and
rating information.

TO-220

TO-247

4 PIN DIP

TO-39

TO-237

TO-202

TO-204

GE POWER-MOS NUMBERING SYSTEM
EXAMPLE:
D
8
4

D

R

1

-~-!'-ITT'

~ELECTION

~----------VOLTAGE

i--------CHIP TYPE
PACKAGE (AND * POLARITY)
.....- - - POWER-MOS (8-FET. 9-IGT)
- - - - - - - - = G E POWER TRANSISTOR
*NOTE: EVEN NO'S N-CHANNEL, ODD NO'S P-CHANNEL

GE POWER-MOSFET PRODUCT MATRIX

~~

J::l:J

TYPE

MAX.
RATINGS
N-CHANNEL
BVDsS

4S0-S00
R14S0V
R2S00V
3S0-400
Q13S0V
Q2400V

ID

13A
8A
4.SA
2.SA
1SA
10A
S.SA
3.0A
1.SA
O.SA
30A

~

4 Pin DIP

TO-237

084EQ12
0840Q12
084CQ12
084BQ12

.SSO
1.00
1.80
3.60

084EM2
N2
0840M2
N2
084CM2
N2
084BM2
N2

2.5A

.4A

.8S0
1.S0
3.00

082CM2
N2
082BM2
N2
082AM2
N2

S.OO

080AM2
N2

.30

086FQ12
086EQ12
0860Q12

.30
.SSO
1.00

.40

086FM2
N2
086EM2
N2
0860M2
N2

.08S0

086FK2
L2
086EK2
L2
0860K2
L2

.OSSO

.180
.40

.80
1.S0

088FK2
L2
084EK2
L2
0840K2
L2
0840K2
L2
084BK2
L2

4.0A
082CK2
L2
082BK2
L2
082AK2
L2

.08S0

S.OO

8A

.SA

088FQ12

1.S0

14A

1A

.40
.8S0
1.S0

.80

27A

1.3A

086FR12
086ER12
0860R12

.180

40A

SO-100
K1S0V
K260V
L180V
L2100V

.40

088FM2
N2

SA

.8A

084ER12
0840R12
084CR12

TO-204

088FR12

082CQ1 2 1.8.0

9A

1.0A

TO-247

TO-220

18A

120-220
M1120V
M21S0V
N1180V
N2200V

~~ Q

.30
.60
2.40

080AK2
L2

2.40

.3A

2

.08S0
.180
.30
.60

.OSSO

.08S0
.180

GE INDUSTRY STANDARD POWER MOSFETs

~~
TYPE
MAX.
RATINGS
N-CHANNEL

10

BVoss

450-500

4 Pin DIP

~ ~P Q
~

TO-237

TO-39

TO-247

IRFP4S0

13A
SA
4.SA
2.SA

1.S0

IRFF430

IRFP3S0

1SA

350-400

IRFF330

1.00

1.SA

IRFF320

1.S0

9A
2.SA

D
E
F

H
VN
30,35
10,66,67
89
90,98,99

IRFD210

1.3A IRFD120
30V 1A IRFD110
60V .SA IRFD1Z0
80V .7A

90V

-

IRFS20

3.00

IRF740

IRF3S0
.SSO IRF340

1.S0

IRF710

3.60

IRF640

IRF2S0 .08S0
.1S0 IRF240 .1S0

IRF620

.SO

IRF610

IRFF210

1.S0

.30
.60
2.40 VN10KMA

IRFF130

.180

IRFF120

.30

IRFF110

.60

VN30ABA,AK* t
S.OO VN67ABA,AK* t

IVNSOOOANO 2.S0 VN89ABA* t
VN90,98,ABA,AK*t

*10 NOT APPLICABLE
t AVAILABLE IN TO-202 PACKAGE (AFA SUFFIX DESIGNATION)

3

0
1.00

IRF720

.400

IRFP1S0 O.OSSO

.30

1.00 IRF330
1.S0

IRFF230
IRFF220

40A
27A

40V 14A
60V
8A
80V
4A
100V

.SSO
1.S0

IRF630

SA

30-100
IVN

.401

IRFP2S0 O.OSSO

1SA

.6A

IRF4S0
.SSO IRF440
1.S0 IRF430

IRF730

3.0A

TO-204

IRFS40
IRFS30
0.30

10A
S.SA

30A

150-200

TO-220

0.40

.40 IRF230
.SO

.40

1.S0

IRF1S0 .OSSO
IRFS40 .08S0 IRF140 .08S0
IRFS30 .180 IRF130 .180
IRFS20
.30
IRFS10

.60

CASE STYLE

GEPOWER MOSFET SELECTOR GUIDE
10 (Amps)

VOS
(Volts)

25°C

100°C

ROS (ON)
(Ohms)

60
60
60
60
60

12.0
12.0
14.0
14.0
24.0

B.O
B.O

0.25
0.25

9.0
9.0
15.0

0.1B

60
60
60
60
60

27.0
27.0
31.0
33.0
40.0

17.0
17.0
20.0
20.0
25.0

0.OB5
0.OB5
O.OB
O.OB

60
100
100
100
100

40.0
12.0
14.0
14.0
14.0

25.0

B.O

0.055
0.25

9.0
9.0
9.0

0.1B
0.1B
0.1B

100
100
100
100
100

24.0
27.0
27.0
33.0
38.0

15.0
17.0
17.0
20.0
24.0

0.OB5
0.OB5
O.OB

100
100
150
150
150

40.0
40.0

25.0
25.0
5.0
5.0
6.0

150
150
150
150
150

9.0
16.0

B.O
B.O
9.0

1B.0
1B.0
25.0

150
150
150
200
200

25.0
30.0
30.0

200
200
200
200
200

9.0
9.0
16.0

B.O

6.0
10.0
11.0
11.0
16.0
16.0
19.0
19.0
5.0
6.0

0.18
0.11

0.055

0.11

0.055
0.055
0.055
0.60
0.60

0040

(Amps)

Po
(Watts)

GEType
Number

4B
25
56
56
96

75
75
75
75
125

IRF 133
2N6755
DB6DK2
IRF 131
IRF 143

127

1600
1600
3000
3000
3000

10B
10B

DB6EK2
IRF 141
2N6763
IRF 153
DB6FK2

129
129

60
132
160

125
125
150
150
150

3000

160
4B
56
56
30

150
75
75
75
75

IRF 151
IRF 132
DB6DL2
IRF 130
2N6756

133
127
125
125

132
70

125
125
125
150
150

IRF 142
IRF 140
DB6EL2
IRF 152
2N6764

131
129
129
135

160
160
32
12
36

150
150
75
75
75

IRF 150
DB6FL2
IRF 233
2N6757
DB6DM2

133
133
139

36
64
72
72
100

75
125
125
125
150

IRF 231
IRF 243
DB6EM2
IRF 241
IRF 253

137
143
141
141
147

50
120
120
32
15

150
150
150
75
75

2N6765
DB6FM2
IRF 251
IRF 232
2N675B

145
145
139
-

36
36
64
72
72

75
75
125
125
125

DB6DN2
IRF 230
IRF 242
DB6EN2
IRF 240

137
137
143
141
141

100
60
120
120
1B

150
150
150
150
75

IRF 252
2N6766
DB6FN2
IRF 250
IRF 333

147
145
145
151

7
22
22
32
40

75
75
75
125
125

2N6759
DB6DQ1
IRF 331
IRF 343
DB6EQ1

149
149
155
153

CISS
(pF)
BOO
BOO
BOO
BOO
1600

BOO
BOO
BOO
BOO
1600
1600
1600
3000
3000
3000
3000

BOO
BOO
800

0040

BOO

0.22

1600
1600
1600
3000

0.1B
0.1B
0.12
0.12

0.OB5
0.OB5

3000
3000
3000

0040

BOO
BOO

0040
0040

BOO
BOO

0.22

1B.0
1B.0

6.0
6.0
10.0
11.0
11.0

1600
1600
1600

200
200
200
200
350

25.0
30.0
30.0
30.0
4.5

16.0
19.0
19.0
19.0
3.0

0.12

1.5

BOO

350
350
350
350
350

4.5
5.5
5.5

3.0
3.5
3.5
5.0
6.0

1.5
1.0
1.0

BOO
BOO
BOO

O.BO

1600
1600

9.0

B.O
10.0

0.60

0.1B
0.1B
0.OB5
0.OB5
0.OB5

0.55

TO-204

3000
3000
3000
3000

Electrical characteristics @ 25°C unless otherwise specified.

4

10M

96

10B
10B

i

Page

125
125
131

135
133

-

-

137

-

-

CASE STYLE
TO-204

GE Power MOSFET Selector Guide (Cont.)
VOS
(Volts)

25°C

100°C

Ros (ON)
(Ohms)

CISS
(pF)

(Amps)

Po
(Watts)

GEType
Number

350
350
350
350
350

10.0
12.0
13.0
15.0
15.0

6.0
7.75
8.0
9.0
9.0

0.55
0.40
0.40
0.30
0.30

1600
3000
3000
3000
3000

40
20
52
60
60

125
150
150
150
150

IRF 341
2N6767
IRF353
D86FQ1
IRF 351

153

400
400
400
400
400

4.5
5.5
5.5
5.5
8.0

3.0
3.5
3.5
3.5
5.0

1.5
1.0
1.0
1.0
0.80

800
800
800
800
1600

18
22
22
8
32

75
75
75
75
125

IRF 332
D86DQ2
IRF330
2N6760
IRF342

151
149
149

400
400
400
400
400

10.0
10.0
13.0
14.0
15.0

6.0
6.0
8.0
9.0
9.0

0.55
0.55
0.40
0.30
0.30

1600
1600
3000
3000
3000

40
40
52
25
60

125
125
150
150
150

D86EQ2
IRF340
IRF 352
2N6768
D86FQ2

153
153
159

400
450
450
450
450

15.0
4.0
4.0
4.5
4.5

9.0
2.5
2.5
3.0
3.0

0.30
2.0
2.0
1.5
1.5

3000
800
800
800
800

60
16
6
18
18

150
75
75
75
75

IRF 350
IRF 433
2N6761
D86DR1
IRF 431

157
163

450
450
450
450
450

7.0
8.0
8.0
11.0
12.0

4.0
5.0
5.0
7.0
7.0

1.1
0.85
0.85
0.50
0.50

1600
1600
1600
3000
3000

28
32
32
20
48

125
125
125
150
150

IRF 443
D86ER1
IRF 441
2N6769
IRF 453

167
165
165

450
450
500
500
500

13.0
13.0
4.0
4.5
4.5

8.0
8.0
2.5
3.0
3.0

0.40
0.40
2.0
1.5
1.5

3000
3000
800
800
800

52
52
16
18
18

150
150
75
75
75

D86FR1
IRF 451
IRF 432
D86DR2
IRF 430

169
169
163
161
161

500
500
500
500
500

4.5
7.0
8.0
8.0
12.0

3.0
4.0
5.0
5.0
7.0

1.5
1.1
0.85
0.85
0.50

800
1600
1600
1600
3000

7
28
32
32
48

75
125
125
125
150

2N6762
IRF 442
D86ER2
IRF 440
IRF 452

167
165
165
171

500
500
500

12.0
13.0
13.0

7.75
8.0
8.0

0.40
0.40
0.40

3000
3000
3000

25
62
52

150
150
150

2N6770
D86FR2
IRF 450

169
169

10 (Amps)

10M

Electrical characteristics @ 25°C unless otherwise specified.

5

Page

159
157
157

155

-

157

161
161

-

171

-

-

CASE STYLE

GE Power MOSFET Selector Guide (Cont.)
Vos
(Volts)

10 (Amps)
25°C
100°C

TO-220

(Ohms)

C,ss
(pF)

10M
(Amps)

Po
(Watts)

GEType
Number

Page

ROS (ON)

60
60
60
60
60

3.5
4.0
4.0
7.0
8.0

2.0
2.5
2.5
4.0
5.0

0.80
0.60
0.60
0.40
0.30

150
150
150
400
400

14
16
16
28
32

20
20
20
40
40

IRF 513
D84BK2
IRF 511
IRF 523
D84CK2

175
173
173
179
177

60
60
60
60
60

8.0
12.0
14.0
14.0
24.0

5.0
8.0
9.0
9.0
15.0

0.30
0.25
0.18
0.18
0.11

400
800
800
800
1600

32
48
56
56
96

40
75
75
75
125

IRF 521
IRF 533
D84DK2
IRF 531
IRF 543

177
183
181
181
187

60
60
100
100
100

27.0
27.0
3.5
4.0
4.0

17.0
17.0
2.0
2.5
2.5

0.085
0.085
0.80
0.60
0.60

1600
1600
150
150
150

108
108
14
16
16

125
125
20
20
20

D84EK2
IRF 541
IRF 512
D84BL2
IRF 510

185
185
175
173
173

100
100
100
100
100

7.0
8.0
8.0
12.0
14.0

4.0
5.0
5.0
8.0
9.0

0.40
0.30
0.30
0.25
0.18

400
400
400
800
800

28
32
32
48
56

40
40
40
75
75

IRF 522
D84CL2
IRF 520
IRF 532
D84DL2

179
177
177
183
181

100
100
100
100
150

14.0
24.0
27.0
27.0
2.0

9.0
15.0
17.0
17.0
1.25

0.18
0.11
0.085
0.085
2.4

800
1600
1600
1600
150

56
96
108
108
8

75
125
125
125
20

IRF 530
IRF 542
D84EL2
IRF 540
IRF 613

181
187
185
185
191

150
150
150
150
150

2.5
2.5
4.0
5.0
5.0

1.5
1.5
2.5
3.0
3.0

1.5
1.5
1.2
0.80
0.80

150
150
400
400
400

10
10
16
20
20

20
20
40
40
40

D84BM2
IRF 611
IRF 623
D84CM2
IRF 621

189
189
195
193
193

150
150
150
150
150

8.0
9.0
9.0
16.0
18.0

5.0
6.0
6.0
10.0
11.0

0.60
0.40
0.40
0.22
0.18

800
800
800
1600
1600

32
36
36
64
72

75
75
75
125
125

IRF 633
D84DM2
IRF 631
IRF 643
D84EM2

199
197
197
203
201

150
200
200
200
200

18.0
2.0
2.5
2.5
4.0

11.0
1.25
1.5
1.5
2.5

0.18
2.4
1.5
1.5
1.2

1600
150
150
150
400

72
8
10
10
16

125
20
20
20
40

IRF 641
IRF 612
D84BN2
IRF 610
IRF 622

201
191
189
189
195

200
200
200
200
200

5.0
5.0
8.0
9.0
9.0

3.0
3.0
5.0
6.0
6.0

0.80
0.80
0.60
0.40
0.40

400
400
800
800
800

20
20
32
36
36

40
40
75
75
75

D84CN2
IRF 620
IRF 632
D84DN2
IRF 630

193
193
199
197
197

200
200
200

16.0
18.0
18.0

10.0
11.0
11.0

0.22
0.18
0.18

1600
1600
1600

64
72
72

125
125
125

IRF 642
D84EN2
IRF 640

203
201
201

Electrical characteristics@ 25°C unless otherwise specified.

6

CASE STYLE

TO-220

GE Power MOSFET Selector Guide (Cont.)
VOS
(Volts)

Ie (Amps)
25°C

100°C

RoS (ON)
(Ohms)

rOM
(Amps)

CISS
(pF)

Po
(Watts)

GE Type
Number

Page

350
350
350
350
350

1.3
1.5
1.5
2.5
3.0

0.8
1.0
1.0
1.5
2.0

5.0
3.6
3.6
2.5
1.8

150
150
150
400
400

5
6
6
10
12

20
20
20
40
40

IRF 713
084801
IRF 711
IRF 723
084C01

207
205
205
211
209

350
350
350
350
350

3.0
4.5
5.5
5.5
8.0

2.0
3.0
3.5
3.5
5.0

1.8
1.5
1.0
1.0
0.80

400
800
800
800
1600

12
18
22
22
32

40
75
75
75
125

IRF 721
IRF 733

084001
IRF 731
IRF 743

209
215
213
213
219

350
350
400
400
400

10.0
10.0
1.3
1.5
1.5

6.0
6.0
0.8
1.0
1.0

0.55
0.55
5.0
3.6
3.6

1600
1600
150
150
150

40
40
5
6
6

125
125
20
20
20

084E01
IRF 741
IRF 712
084802
IRF 710

217
217
207
205
205

400
400
400
400
400

2.5
3.0
3.0
4.5
5.5

1.5
2.0
2.0
3.0
3.5

2.5
1.8
1.8
1.5
1.0

400
400
400
800
800

10
12
12
18
22

40
40
40
75
75

IRF 722
084C02
IRF 720
IRF 732
084002

211
209
209
215
213

400
400
400
400
450

5.5
8.0
10.0
10.0
2.0

3.5
5.0
6.0
6.0
1.0

1.0
0.80
0.55
0.55
4.0

800
1600
1600
1600
400

22
32
40
40
8

75
125
125
125
40

IRF 730
IRF 742

084E02
IRF 740
IRF 823

213
219
217
217
223

450
450
450
450
450

2.5
2.5
4.0
4.5
4.5

1.5
1.5
2.5
3.0
3.0

3.0
3.0
2.0
1.5
1.5

400
400
800
800
800

10
10
16
18
18

40
40
75
75
75

084CR1
IRF 821
IRF 833
0840R1
IRF 831

221
221
227
225
225

450
450
450
500
500

7.0
8.0
8.0
2.0
2.5

4.0
5.0
5.0
1.0
1.5

1.1
0.85
0.85
4.0
3.0

1600
1600
1600
400
400

28
32
32
8
10

125
125
125
40
40

IRF 843
084ER1
IRF 841
IRF 822
084CR2

231
229
229
223
221

500
500
500
500
500

2.5
4.0
4.5
4.5
7.0

1.5
2.5
3.0
3.0
4.0

3.0
2.0
1.5
1.5
1.1

400
800
800
800
1600

10
16
18
18
28

40
75
75
75
125

IRF 820
IRF 832
0840R2
IRF 830
IRF 842

222
227
225
225
231

500
500

8.0
8.0

5.0
5.0

0.85
0.85

1600
1600

32
32

125
125

084ER2
IRF 840

229
229

Electrical characteristics @ 25°C unless otherwise specified.

7

CASE STYLE
TO-237

GE Power MOSFET Selector Guide (Cont.)
VOS
(Volts)

10 (Amps)
25°C

Ros (ON)
(Ohms)

CISS
(pF)

10M
(Amps)

Po
(Watts)

40
40
60
60
60
60
SO
SO
100
100
100
150
200

0.70
0.70
0.50
0.70
0.70
0.75
0.70
0.70
0.50
0.70
0.70
0.30
0.30

2.5
2.5
2.4
2.5
2.5
5.0
2.5
2.5
2.4
2.5
2.5
5.6
5.6

50
50
70
50
50
65
50
50
70
50
50
70
70

2.0
2.0
2.0
2.0
2.0
1.0
2.0
2.0
2.0
2.0
2.0
1.2
1.2

2.0
2.0
1.B
2.0
2.0
1.0
2.0
2.0
1.S
2.0
2.0
1.S
1.B

Electrical characteristics @ 25°C unless otherwise specified.

8

GEType
Number

Page

IVN5000AND
IVN5001AND
DBOAK2
IVN5OO0ANE
IVN5001ANE
VN10KMA
IVN5OO0ANF
IVN5OO1ANF
DSOAL2
IVN5000ANH
IVN5OO1ANH
DBOAM2
DBOAN2

321
321
317
321
321
325
321
321
317
321
321
319
319

CASE STYLE
TO-39

GE Power MOSFET Selector Guide (Cont.)
VOS
(Volts)

10 (Amps)

25°C

Ros (ON)
(Ohms)

CISS
(pF)

(Amps)

35
35
35
40
60

1.2
1.2
1.2
1.2
1.2

5.00
4.50
2.50
2.50
2.50

50
50
50
50
50

3
3
3
3
3

6.25
6.25
6.25
6.25
6.25

60
60
60
60
60

1.2
1.2
1.2
1.2
3.0

3.00
5.10
3.50
3.00
O.BO

50
50
50
50
200

3
3
3
3
12

60
60
60
60
60

3.5
5.0
6.0
7.0
8.0

0.60
0.40
0.30
0.25
0.18

200
400
400
BOO
800

BO
BO
90
90
90

1.2
1.2
1.2
1.2
1.2

2.50
5.10
6.00
4.00
4.00

90
100
100
100
100

1.2
1.2
3.0
3.5
5.0

100
100
100
150
150

10M

Po
(Watts)

GEType
Number

Page

VN30ABA
VN35ABA
VN35AK
IVN5OO0/1 TN 0
IVN5000/1TNE

327
327
329
323
323

6.25
6.25
6.25
6.25
15.00

VN66AK
VN67ABA
VN67AK
2N6660
IRFF 113

329
327
329
335
259

14
20
24
2B
32

15.00
20.00
20.00
25.00
25.00

IRFF 111
IRFF 123
IRFF 121
IRFF 133
IRFF 131

257
263
261
267
265

50
50
50
50
50

3
3
3
3
3

6.25
6.25
6.25
6.25
6.25

IVN5OO0/1 TN F
VN89ABA
VN90ABA
VN9BAK
2N6661

323
327
327
329
335

4.50
2.50
O.BO
0.60
0.40

50
50
200
200
400

3
3
12
14
20

6.25
6.25
15.00
15.00
20.00

VN99AK
IVN5000/1TNH
IRFF 112
IRFF 110
IRFF 122

329
323
259
257
263

6.0
7.0
B.O
1.B
2.2

0.30
0.25
0.18
2.40
1.50

400
BOO
BOO
200
200

24
2B
32

20.00
25.00
25.00
15.00
15.00

IRFF 120
IRFF 132
IRFF 130
IRFF 213
IRFF 211

261
267
265
271
269

150
150
150
150
200

3.0
3.5
4.5
5.5
1.B

1.20
0.80
0.60
0.40
2.40

400
400
800
BOO
200

-

20.00
20.00
25.00
25.00
15.00

IRFF 223
IRFF 221
IRFF233
IRFF 231
IRFF 212

275
273
279
277
271

200
200

2.2
3.0

1.50
1.20

200
400

15.00
20.00

IRFF 210
IRFF222

269
275

-

-

-

-

Electrical characteristics @ 25°C unless otherwise specified.

9

CASE STYLE
TO-39

GE Power MOSFET Selector Guide (Cont.)
VOS
(Volts)

10 (Amps)
25°C

Ros (ON)
(Ohms)

CISS
(pF)

200
200
200
350
350

3.50
4.50
5.50
1.15
1.35

0.8
0.6
0.4
5.0
3.6

400
800
800
200
200

350
350
350
350
400

2.00
2.50
3.00
3.50
1.15

2.5
1.8
1.5
1.0
5.0

400
400

400
400
400
400
400

1.35
2.00
2.50
3.00
3.50

3.6
2.5
1.8
1.5
1.0

450
450
450
450
500

1.40
1.60
2.25
2.75
1.40

4.0
3.0
2.0
1.5
4.0

400
400
800
800
400

500
500
500

1.60

3.0

2.25
2.75

2.0

400
800
800

1.5

YoM

Po
(Watts)

GEType
Number

Page

-

20
25
25
15
15

IRFF 220
IRFF 232
IRFF 230
IRFF 313
IRFF 311

273
279
277
283
281

20
20
25
25
15

IRFF .323
IRFF 321
IRFF 333
IRFF 331
IRFF 312

287
285
291
289
283

15
20
20
25
25

IRFF 310
IRFF 322
IRFF 320
IRFF 332
IRFF 330

281
287
285
291
289

20
20
25
25
20

IRFF 423
IRFF 421
IRFF 433
IRFF 431
IRFF 422

295
293
299
297
295

20
25
25

IRFF 420
IRFF 432
IRFF 430

293
299
297

(Amps)

-

800
800
200
200

400

-

400

-

800
800

-

-

Electrical characteristics @ 25°C unless otherwise specified.

10

CASE STYLE
4PIN DIP

GE Power MOSFET Selector Guide (Cont.)
'0 (Amps)
25°C

Ros(ON)
(Ohms)

CISS
(pF)

'OM
(Amps)

Po
(Watts)

GEType
Number

Page

60
60
60
60
60

0.40
0.50
0.50
0.80
1.00

3.20
2.40
2.40
0.80
0.60

70
70
70
200
200

1.5
2.0
2.0
3.0
4.0

1.0
1.0
1.0
1.0
1.0

IRFD1Z3
IRFD1Z1
D82AK2
IRFD113
D82BK2

243
241
241
235
233

60
60
60
60
100

1.00
1.10
1.30
1.30
0.40

0.60
0.40
0.30
0.30
3.20

200
400
400
400
70

4.0
4.4
5.2
5.2
1.5

1.0
1.0
1.0
1.0
1.0

IRFD111
IRFD123
D82CK2
IRFD121
IRFD1Z2

233
239
237
237
243

100
100
100
100
100

0.50
0.50
0.80
1.00
1.00

2.40
2.40
0.80
0.60
0.60

70
70
200
200
200

2.0
2.0
3.0
4.0
4.0

1.0
1.0
1.0
1.0
1.0

IRFD1Z0
D82AL2
IRFD112
D82BL2
IRFD110

241
241
235
233
233

100
100
100
150
150

1.10
1.30
1.30
0.60
0.45

0.40
0.30
0.30
1.50
2.40

400
400
400
200
200

4.4
5.2
5.2
2.5
1.8

1.0
1.0
1.0
1.0
1.0

IRFD122
D82CL2
IRFD120
IRFD211
IRFD213

239
237
237
245
247

150
150
150
150
150

0.30
0.30
0.60
0.80
0.80

5.60
5.60
1.50
0.80
0.80

70
70
200
400
400

1.2
1.2
2.5
3.2
3.2

1.0
1.0
1.0
1.0
1.0

D82AM2
IRFD2Z1
D82BM2
D82CM2
IRFD221

253
253
245
249
249

150
200
200
200
200

0.70
0.45
0.30
0.30
0.60

1.20
2.40
5.60
5.60
1.50

600
200
70
70
200

5.6
1.8
1.2
1.2
2.5

1.0
1.0
1.0
1.0
1.0

IRFD223
IRFD212
D82AN2
IRFD2Z0
D82BN2

251
247
253
253
245

200
200
200
200
350

0.60
0.70
0.80
0.80
0.40

1.50
1.2
0.80
0.80
2.50

200
600
400
400
400

2.5
5.6
3.2
3.2
1.6

1.0
1.0
1.0
1.0
1.0

IRFD210
IRFD222
D82CN2
IRFD220
IRFD323

245
251
249
249

2.0
2.0
1.6
2.0
2.0

1.0
1.0
1.0
1.0
1.0

IRFD321
D82C01
IRFD322
D82C02
IRFD320

255
255

Vos
(Volts)

350
350
400
400
400

0.50
0.50
0.40
0.50
0.50

1.80
1.80
2.50
1.80
1.80

400
400
400
400
400

Electrical characteristics @ 25° C unless otherwise specified.

11

-

255
255

CASE STYLE
TO-247

GE Power MOSFET Selector Guide (Cont.)
VOS
(Volts)

10 (Amps)
25°C
100°C

Ros (ON)
(Ohms)

CISS
(pF)

10M
(Amps)

Po
(Watts)

GEType
Number

Page

60
60
60
100
·100

33.0
40.0
40.0
33.0
40.0

20.0
25.0
25.0
20.0
25.0

0.08
0.055
0.055
0.08
0.055

3000
3000
3000
3000
3000

132
160
160
132
160

150
150
150
150
150

IRFP153
IRFP151
D88FK2
IRFP152
D88FL2

303
301
301
303
301

100
150
150
150
200

40.0
25.0
30.0
30.0
25.0

25.0
16.0
19.0
19.0
16.0

0.055
0.12
0.085
0.085
0.12

3000
3000
3000
3000
3000

160
100
120
120
100

150
150
150
150
150

IRFP150
IRF253
D88FM2
IRFP251
IRFP252

301
307
305
305
307

200
200
350
350
350

30.0
30.0
13.0
15.0
15.0 .

19.0
19.0
8.0
9.0
9.0

0.085
.0.085
0.4
0.3
0.3

3000
3000
3000
3000
3000

120
120
52
60
60

150
150
150
150
150

IRFP250
D88FN2
IRFP353
D88F01
IRFP351

305
305
311
309
309

400
400
400
450
450

13.0
15.0
15.0
12.0
13.0

8.0
9.0
9.0
7.0
8.0

0.4
0.3
0.3
0.5
0.4

3000
3000
3000
3000
3000

52
60
60
48
52

150
150
150
150
150

IRFP352
IRFP350
D88F02
IRFP453
IRFP451

311
309
309
315
313

450
500
500
500

13.0
12.0
13.0
13.0

8.0
7.0
8.0
8.0

0.4
0.5
0.4
0.4

3000
3000
3000
3000

52
48
52
52

150
150
150
150

D88FR1
IRFP452
D88FR2
IRFP450

313
315
313
313

Electrical characteristics @ 25°C unless otherwise specified.

CASE STYLE
TO-202

VOS
(Volts)
40
40
60
60
80
80

10 (Amps)
25°C
100°C
1.2
1.2
1.2
1.2
1.2
1.2

6.5
3.0
3.0
5.5
4.0
6.4

Ros(ON)
(Ohms)
5.0
3.0
3.0
3.5
4.0
4.5

CISS
(pF)
50
50
50
50
50
50

Electrical characteristics @ 25° C unless otherwise specified.

12

10M

(Amps)
3
3
3
3
3
3

Po
(Watts)
12
12
12
12
12
12

GEType
Number

Page

VN40AFA
VN46AFA
VN66AFA
VN67AFA
VN88AFA
V",89AFA

331
333
333
331
333
331

GENERAL ELECTRIC
INSULATED GATE TRANSISTORS
Ie (Amps)

VCES
Volts

100°C

VSAT
Volts

toll

25°C

400
400
500
500

18
18
18
18

10
10
10
10

2.5
2.5
2.5
2.5

4.5
0.8
4.5
0.8

J-LS

CASE STYLE
TO-220

Po
Watts
75
75
75
75

Type
IGT4D10
IGT4D11
IGT4E10
IGT4E11

Page
337
341
337
341

CASE STYLE
TO-247

Ie (Amps)

VCES
Volts

90°C

VSAT
Volts

toll

25°C

J-LS

Po
Watts

Type

400
400
500
500

32
32
32
32

22
20
22
20

2.2
2.5
2.2
2.5

4.5
0.8
4.5
0.8

125
125
125
125

IGT8D20
IGT8D21
IGT8E20
IGT8E21

Page
361
365
361
365

CASE STYLE
TO,..204

Ie (Amps)

VCES
Volts

100°C

VSAT
Volts

toll

25°C

J-Ls

Po
Watts

Type

Page

400
400
400
400
500
500
500
500

18
18
32
32
18
18
32
32

10
10
22
20
10
10
22
20

2.5
2.5
2.2
2.5
2.5
2.5
2.2
2.5

4.5
0.8
4.5
0.8
4.5
0.8
4.5
0.8

75
75
125
125
75
75
125
125

IGT6D10
IGT6D11
IGT6D20
IGT6D21
IGT6E10
IGT6E11
IGT6E20
IGT6E21

345
349
353
357
345
349
353
357

13

POWER MOSFET
CROSS REFERENCE
CASE STYLE
TO-204

GENERAL JEDEC TYPES
10
Competitive
Part Number

Vos
(Volts)

2N6755
2N6756
2N6757
2N6758
2N6759
2N6760
2N6761
2N6762
2N6763
2N6764
2N6765
2N6766
2N6767
2N6768
2N6769
2N6770

(Amps)

10
(Amps)

@2SoC

ROS(ON)
(Ohms)

Case
Style

GE Direct
Replacement

Vos
(Volts)

@2SoC

ROS(ON)
(Ohms)

Case
Style

60
100
150
200
350
400
450
500
60
100

12.0
14.0
8.0
9.0
4.5
5.5
4.0
4.5
31.0
38.0

0.25
0.18
0.60
0.40
1.5
1.0
2.0
1.5
0.080
0.055

TO-204AA
TO-204AA
TO-204AA
TO-204AA
TO-204AA
TO-204AA
TO-'204AA
TO-204AA
TO-204AE
TO-204AE

2N6755
2N6756
2N6757
2N6758
2N6759
2N6760
2N6761
2N6762
2N6763
2N6764

60
100
150
200
350
400
450
500
60
100

12.0
14.0
8.0
9.0
4.5
5.5
4.0
4.5
31.0
38.0

0.25
0.18
0.60
0.40
1.5
1.0
2.0
1.5
0.080
0.055

TO-204AA
TO-204AA
TO-204AA
TO-204AA
TO-204AA
TO-204AA
TO-204AA
TO-204AA
TO-204AE
TO-204AE

150
200
350
400
450
500

25.0
30.0
12.0
14.0
11.0
12.0

0.12
0.085
0.40
0.30
0.50
0.40

TO-204AE
TO-204AE
TO-204AA
TO-204AA
TO-204AA
TO-204AA

2N6765
2N6766
2N6767
2N6768
2N6769
2N6770

150
200
350
400
450
500

25.0
30.0
12.0
14.0
11.0
12.0

0.12
0.085
0.40
0.30
0.50
0.40

TO-204AE
TO-204AE
TO-204AA
TO-204AA
TO-204AA
TO-204AA

Vos
(Volts)

(Amps)

@2SoC

ROS(ON)
(Ohms)

Case
Style

INTERNATIONAL RECTIFIER
10

10
Competitive
Part Number

Vos
(Volts)

IRF130
IRF131
IRF132
IRF133
IRF140
IRF141

(Amps)

GE Direct
Replacement

@2SoC

Ros (ON)
(Ohms)

Case
Style

100
60
100
60
100
60

14.0
14.0
12.0
12.0
27.0
27.0

0.18
0.18
0.25
0.25
0.085
0.085

TO-204AA
TO-204AA
TO-204AA
TO-204AA
TO-204AE
TO-204AE

IRF130
IRF131
IRF132
IRF133
IRF140
IRF141

100
60
100
60
100
60

14.0
14.0
12.0
12.0
27.0
27.0

0.18
0.18
0.25
0.25
0.085
0.085

TO-204AA
TO-204AA
TO-204AA
TO-204AA
TO-204AE
TO-204AE

IRF142
IRF143
IRF150
IRF151
iRF152
IRF153

100
60
100
60
100
60

24.0
24.0
40.0
40.0
33.0
33.0

0.11
0.11
0.055
0.055
0.080
0.080

TO-204AE
TO-204AE
TO-204AE
TO-204AE
TO-204AE
TO-204AE

IRF142
IRF143
IRF150
IRF151
IRF152
IRF153

100
60
100
60
100
60

24.0
24.0
40.0
40.0
33.0
33.0

0.11
0.11
0.055
0.055
0.080
0.080

TO-204AE
TO-204AE
TO-204AE
TO-204AE
TO-204AE
TO-204AE

IRF230
IRF231
IRF232
IRF233
IRF240
IRF241
lRF242
IRF243
IRF250
IRF251

200
150
200
150
200
150
200
150
200
150

9.0
9.0
8.0
8.0
18.0
18.0
16.0
16.0
30.0
30.0

0.40
0.40
0.60
0.60
0.18
0.18
0.22
0.22
0.085
0.085

TO-204AA
TO-204AA
TO-204AA
TO-204AA
TO-204AE
TO-204AE
TO-204AE
TO-204AE
TO-204AE
TO-204AE

IRF230
IRF231
IRF232
IRF233
IRF240
IRF241
IRF242
IRF243
IRF250
IRF251

200
150
200
150
200
150
200
150
200
150

9.0
9.0
8.0
8.0
18.0
18.0
16.0
16.0
30.0
30.0

0.40
0.40
0.60
0.60
0.18
0.18
0.22
0.22
0.085
0.085

TO-204AA
TO-204AA
TO-204AA
TO-204AA
TO-204AE
TO-204AE
TO-204AE
TO-204AE
TO-204AE
TO-204AE

IRF252
IRF253

200
150

25.0
25.0

0.12
0.12

TO-204AE
TO-204AE

IRF252
IRF253

200
150

25.0
25.0

0.12
0.12

TO-204AE
TO-204AE

IRF330
IRF331
IRF332
IRF333

400
350
400
350

5.5
5.5
4.5
4.5

1.0
1.0
1.5
1.5

TO-204AA
TO-204AA
TO-204AA
TO-204AA

IRF330
IRF331
IRF332
IRF333

400
350
400
350

5.5
5.5
4.5
4.5

1.0
1.0
1.5
1.5

TO-204AA
TO-204AA
TO-204AA
TO-204AA

14

Power MOSFET
Cross-Reference (Cont.)
CASE STYLE
TO-204

International Rectifier (Cont.)

CASE STYLE
TO-220

10

10
Competitive
Part Number

Vos
(Volts)

(Amps)
@2SoC

Ros (ON)
(Ohms)

Case
Style

GE Direct
Replacement

Vos
(Volts)

(Amps)
@2SoC

ROS(ON)
(Ohms)

Case
Style

IRF340
IRF341
IRF342
IRF343
IRF350
IRF351
IRF352
IRF353

400
350
400
350
400
350
400
350

10.0
10.0
8.0
8.0
15.0
15.0
13.0
13.0

0.55
0.55
0.80
0.80
0.30
0.30
0.40
0.40

TO-204AA
TO-204AA
TO-204AA
TO-204AA
TO-204AA
TO-204AA
TO-204AA
TO-204AA

IRF340
IRF341
IRF342
IRF343
IRF350
IRF351
IRF352
IRF353

400
350
400
350
400
350
400
350

10.0
10.0
8.0
8.0
15.0
15.0
13.0
13.0

0.55
0.55
0.80
0.80
0.30
0.30
0.40
0.40

TO-204AA
TO-204AA
TO-204AA
TO-204AA
TO-204AA
TO-204AA
TO-204AA
TO-204AA

IRF430
IRF431
IRF432
IRF433
IRF440
IRF441
IRF442
IRF443

500
450
500
450
500
450
500
450

4.5
4.5
4.0
4.0
8.0
8.0
7.0
7.0

1.5
1.5
2.0
2.0
0.85
0.85
1.1
1.1

TO-204AA
TO-204AA
TO-204AA
TO-204AA
TO-204AA
TO-204AA
TO-204AA
TO-204AA

IRF430
IRF431
IRF432
IRF433
IRF440
IRF441
IRF442
IRF443

500
450
500
450
500
450
500
450

4.5
4.5
4.0
4.0
8.0
8.0
7.0
7.0

1.5
1.5
2.0
2.0
0.85
0.85
1.1
1.1

TO-204AA
TO-204AA
TO-204AA
TO-204AA
TO-204AA
TO-204AA
TO-204AA
TO-204AA

IRF450
IRF451
IRF452
IRF453
IRF510
IRF511
IRF512
IRF513
IRF520
IRF521

500
450
500
450
100
60
100
60
100
60

13.0
.13.0
12.0
12.0
4.0
4.0
3.5
3.5
8.0
8.0

0.40
0.40
0.50
0.50
0.60
0.60
0.80
0.80
0.30
0.30

TO-204AA
TO-204AA
TO-204AA
TO-204AA
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB

IRF450
IRF451
IRF452
IRF453
IRF510
IRF511
IRF512
IRF513
IRF520
IRF521

500
450
500
450
100
60
100
60
100
60

13.0
13.0
12.0
12.0
4.0
4.0
3.5
3.5
8.0
8.0

0.40
0.40
0.50
0.50
0.60
0.60
0.80
0.80
0.30
0.30

TO-204AA
TO-204AA
TO-204AA
TO-204AA
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB

IRF522
IRF523
IRF530
IRF531
IRF532
IRF533
IRF540
IRF541
IRF542
IRF543

100
60
100
60
100
60
100
60
100
60

7.0
7.0
14.0
14.0
12.0
12.0
27.0
27.0
24.0
24.0

0.40
0.40
0.18
0.18
0.25
0.25
0.085
0.085
0.11
0.11

TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB

IRF522
IRF523
IRF530
IRF531
IRF532
IRF533
IRF540
IRF541
IRF542
IRF543

100
60
100
60
100
60
100
60
100
60

7.0
7.0
14.0
14.0
12.0
12.0
27.0
27.0
24.0
24.0

0.40
0.40
0.18
0.18
0.25
0.25
0.085
0.085
0.11
0.11

TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB

IRF610
IRF611
IRF612
IRF613
IRF620
IRF621
IRF622
IRF623
IRF630
IRF631

200
150
200
150
200
150
200
150
200
150

2.5
2.5
2.0
2.0
5.0 '
.5.0
4.0
4.0
9.0
9.0

1.5
1.5
2.4
2.4
0.80
0.80
1.2
1.2
0.40
0.40

TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB

IRF610
IRF611
IRF612
IRF613
IRF620
IRF621
IRF622
IRF623
IRF630
IRF631

200
150
200
150
200
150
200
150
200
150

2.5
2.5
2.0
2.0
5.0
5.0
4.0
4.0
9.0
9.0

1.5
1.5
2.4
2.4
0.80
0.80
1.2
1.2
0.40
0.40

TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB

IRF632
IRF633
IRF640
IRF641
IRF642
IRF643

200
150
200
150
200
150

8.0
8.0
18.0
18.0
16.0
16.0

0.60
0.60
0.18
0.18
0.22
0.22

TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB

IRF632
IRF633
IRF640
IRF641
IRF642
IRF643

200
150
200
150
200
150

8.0
8.0
18.0
18.0
16.0
16.0

0.60
0.60
0.18
0.18
0.22
0.22

TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB

15

Power MOSFET
Cross-Reference (Cont.)
CASE STYLE
TO:'39

International Rectifier (Cont.)
Competitive
Part Number

Io
(Amps)
@25°C

Vos
(Volts)

Ros (ON)
(Ohms)

Case
Style

GE Direct
Replacement

CASE STyLE
4 PIN DIP

Vos
(Volts)

Io
(Amps)
@25°C

CASE STYLE
TO-220

Case
Style

ROS(ON)
(Ohms)

1.5
1.5
1.3
1.3

3.6
3.6
5.0
5.0

TO-220AB
TO"220AB
TO-220AB
TO-220AB

IRF710
IRF711
IRF712
IRF713

40P
350
400
350

1.5
1.5
1.3
1.3

3.6
3.6
5.0
5.0

TO-220AB
TO-220AB
TO-220AB
TO-220AB

3.0
3.0
2.5
2.5
5.5
5.5
4.5
4.5
10.0
10.0

1.8
1.8
2.5
2.5
1.0
1.0
1.5
1.5
0.55
0.55

TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB

IRF720
IRF721
IRF722
IRF723
IRF730
IRF731
IRF732
IRF733
IRF740
IRF741~··'

400
350
400
350
400
350
400
350
400
350

3.0
3.0
2.5
2.5
5.5
5.5
4.5
4.5
10.0
10.0

1.8
1.8
2.5
2.5
1.0
1.0
1.5
1.5
0.55
0.55

TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB

400
350
500
450
500
4S0
500
4S0
500
4S0

8.0
8.0
2.5
2.S
2.0
2.0
4.5
4.5
4.0
4.0

0.80
0.80
3.0
3.0
4.0
4.0
1.S
1.5
2.0
2.0

TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB

IRF742
IRF743
IRF820 ..
IRF821
IRF822
IRF823
IRF830
IRF831 .
IRF832
IRF833

400
350
500
450
SOO
450
SOO
450
SOO
4S0

8.0
8.0
2.5
2.S
2.0
2.0
4.5
4.5
4.0
4.0

0.80
0.80
3.0
3.0
4.0
4.0
1.S
1.5
2.0
2.0

TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB

IRF840
IRF841
IRF842
IRF843
IRFD1Z0
IRFD1Z1
IRFD1Z2
lRFD1Z3

500
450
SOO
4S0
100
60
100
60

8.0
8.0
7.0
7.0
0.50
O.SO
0.40
0.40

0.85
0.8S
1.1
1.1
2.4
2.4
3.2
3.2

TO-220AB
TO-220AB
TO-220AB
TO-220AB
4PIN DIP
4 PIN DIP
4PIN DIP
4PIN DIP

IRF840
IRF841
IRF842
IRF843
IRFDIZO
IRFDIZ1
IRFDIZ2
IRFDIZ3

500
4S0
SOO
4S0
100
60
100
60

' 8.0
8.0
7.0
7.0
0.50
O.SO
0.40
0.40

0.85
0.85
1.1
1.1
2.4
2.4
3.2
3.2

TO-220AB
TO-220AB
TO-220AB
TO-220AB
4PIN DIP
4PIN DIP
4 PIN DIP
4 PIN DIP

IRFD110
IRFD111
IRFD112
IRFD113

100
60
100
60

1.0
1.0
0.80
0.80

0.60
0.60
0.80
0.80

4PIN
4PIN
4PIN
4 PIN

DIP
DIP
DIP
DIP

IRFD110
IRFD111
IRFD112
IRFD113

100
60
100
60

1.0
1.0
0.80
0.80

0.60
0.60
0.80
0.80

4
4
4
4

IRFD120
IRFD123

100
60

1.3
1.1

0.30
0.40

4 PIN DIP
4PIN DIP

IRFD120
IRFD123

100
60

1.3
1.1

0.30
0.40

4 PIN DIP
4 PIN DIP

IRFD210
IRFD213

200
1S0

0.60
O.4S

1.S
2.5

4 PIN DIP
4PIN DIP

IRFD210
IRFD213

200
150

0.60
0.45

1.S
2.S

4PIN DIP
4PIN DIP

IRFF110
IRFF111
IRFF112
IRFF113

100
60
100
60

3.S
3.S
3.0
3.0

0.60
0.60
0.80
0.80

TO-39
TO-39
TO-39
TO-39

IRFF110
IRFF111
IRFF111
IRFF113

100
60
60
60

3.S
3.S
3.S
3.0

0.60
0.60
0.80
0.80

TO-39
TO-39
TO-39
TO-39

IRF710
IRF711
IRF712
IRF713

400
.3S0
400
350

IRF720
IRF721
IRF722
IRF723
IRF730
IRF731
IRF732
IRF733
IRF740
IRF741

400
350
400
350
400 .
350
400
350
400
350

IRF742
IRF743
IRF820
IRF821
IRF822
IRF823
IRF830
IRF831
IRF832
IRF833

.. ,

16

PIN
PIN
PIN
PIN

DIP
DIP
DIP
DIP

Power MOSFET
Cross-Reference (Cont.)
CASE STYLE

International Rectifier (Cont.)
Competitive
Part Number

VDS
(Volts)

IRFF120
IRFF121
IRFF122
IRFF123

ID
(Amps)

TO-39

Yo

(Amps)

@25°C

RDS(ON)
(Ohms)

Case
Style

GE Direct
Replacement

Vos
(Volts)

@25°C

RDS (ON)
(Ohms)

Case
Style

100
60
100
60

6.0
6.0
5.0
5.0

0.30
0.30
0.40
0.40

TO-39
TO-39
TO-39
TO-39

IRFF120
IRFF121
IRFF122
IRFF120

100
60
100
60

6.0
6.0
5.0
5.0

0.30
0.30
0.40
0.40

TO-39
TO-39
TO-39
TO-39

IRFF130
IRFF131
IRFF132
IRFF133

100
60
100
60

8.0
8.0
7.0
7.0

0.18
0.18
0.25
0.25

TO-39
TO-39
TO-39
TO-39

IRFF130
IRFF131
IRFF132
IRFF133

100
100
60

8.0
8.0
7.0
7.0

0.18
0.18
0.25
0.25

TO-39
TO-39
TO-39
TO-S9

IRFF210
IRFF211
IRFF212
IRFF213
IRFF220
IRFF221
IRFF222
IRFF223

200
150
200
150
200
150
200
150

2.2
2.2
1.8
1.8
3.5
3.5
3.0
3.0

1.5
1.5
2.4
2.4
0.80
0.80
1.2
1.2

TO-39
TO-39
TO-39
TO-39
TO-39
TO-39
TO-39
TO-39

IRFF210
IRFF211
IRFF212
IRFF213
IRFF220
IRFF221
IRFF222
IRFF223

200
150
200
150
200
150
200
150

2.2
2.2
1.8
1.8
3.5
3.5
3.0
3.0

1.5
1.5
2.4
2.4
0.80
0.80
1.2
1.2

TO-39
TO-39
TO-39
TO-39
TO-39
TO-39
TO-39
TO-39

IRFF230
IRFF231
IRFF232
IRFF233

200
150
200
150

5.5
5.5
4.5
4.5

0.40
0.40
0.60
0.60

TO-39
TO-39
TO-39
TO-39

IRFF230
IRFF231
IRFF232
IRFF233

200
150
200
150

5.5
5.5
4.5
4.5

0.40
0.40
0.60
0.60

TO-39
TO-39
TO-39
TO-39

IRFF310
IRFF311
IRFF312
IRFF313

200
150
200
150

1.35
1.35
1.15
1.15

3.6
3.6
5.0
5.0

TO-39
TO-39
TO-39
TO-39

IRFF310
IRFF311
IRFF312
IRFF313

200
150
200
150

1.35
1.35
1.15
1.15

3.6
3.6
5.0
5.0

TO-39
TO-39
TO-39
TO-39

IRFF320
IRFF321
IRFF322
IRFF323

400
350
400
350

2.5
2.5
2.0
2.0

1.8
1.8
2.5
2.5

TO-39
TO-39
TO-39
TO-39

IRFF320
IRFF321
IRFF322
IRFF323

400
350
400
350

2.5
2.5
2.0
2.0

1.8
1.8
2.5
2.5

TO-39
TO-39
TO-39
TO-39

IRFF330
IRFF331
IRFF332
IRFF333

400
350
400
350

3.5
3.5
3.0
3.0

1.0
1.0
1.5
1.5

TO-39
TO-39
TO-39
TO-39

IRFF330
IRFF331
IRFF332
IRFF333

400
350
400
350

3.5
3.5
3.0
3.0

1.0
1.0
1.5
1.5

TO-39
TO-39
TO-39
TO-39

IRFF420
IRFF421
IRFF422
IRFF423

500
450
500
450

1.6
1.6
1.4
1.4

3.0
3.0
4.0
4.0

TO-39
TO-39
TO-39
TO-39

IRFF420
IRFF421
IRFF422
IAFF423

500
450
500
450

1.6
1.6
1.4
1.4

3.0
3.0
4.0
4.0

TO-39
TO-39
TO-39
TO-39

IRFF430
IRFF431
IRFF432
IRFF433

500
450
500
450

2.75
2.75
2.25
2.25

1.5
1.5
2.0
2.0

TO-39
TO-39
TO-39
TO-39

IRFF430
IRFF431
IAFF432
IRFF433

500
450
500
450

2.75
2.75
2.25
2.25

1.5
1.5
2.0
2.0

TO-39
TO-39
TO-39
TO-39

17

60

Power MOSFET
Cross-Reference (Cont.)
CASE STYLE
TO-220

MOTOROLA
10
Competitive
Part Number

Vos
(Volts)

MTP2N50
MTP2N45
MTP2N40
MTP2N35
MTP2N20
MTP2N18

500
450
400
350
200
180

MTP3N40
MTP3N35
MTP3N15
MTP3N12
MTP4N50
MTP4N45
MTP5N40
MTP5N35

(Amps)

Nearest GE
Equivalent
Part Number

to

Case
Style

2.0
2.0
2.5
2.5
2.0
2.0

4.0
4.0
2.5
2.5
2.4
2.4

TO-220AB
TO-220AB
TO-220AB
TO-22DAB
TO-220AB
TO-220AB

400
350
150
150
500
450
400
350

2.5
2.5
2.5
2.5
4.0
4.0
4.5
4.5

2.5
2.5
1.5
1.5
2.0
2.0
1.5
1.5

TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB

D84CN2
D84CN2
D84BK2
D84BK2
IRF632
IRF632
IRF633
IRF633
IRF632
IRF632

200
200
60
60
200
200
150
150
200
200

5.0
5.0
4.0
4.0
8.0
8.0
8.0
8.0
8.0
8.0

0.80
0.80
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60

TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB

TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220

IRF633
IRF633
D84CL2
D84CL2
D84DM2
D84DM2
D84CL2
D84CL2
D84CK2
D84CK2

150
150
100
100
150
150
100
100
60
60

8.0
8.0
8.0
8.0
9.0
9.0
8.0
8.0
8.0
8.0

0.60
0.60
0.30
0.30
0.40
0.40
0.30
0.30
0.30
0.30

TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB

TO-220
TO-220
TO-220
TO-220
TO-220
TO-220

IRF532
IRF532
IRF533
IRF533
D84DK2
D84DK2

100
100
60
60
60
60

12.0
12.0
12.0
12.0
14.0
14.0

0.25
0.25
0.25
0.25
0.18
0.18

TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB

Case
Style

2.0
2.0
2.0
2.0
2.0
2.0

4.0
4.0
3.3
3.3
2.2
2.2

TO-220
TO-220
TO-220
TO-220
TO-220
TO-220

IRF822
IRF823
IRF722
IRF723
IRF612
IRF612

500
450
400
350
200
200

400
350
150
120
500
450
400
350

3.0
3.0
3.0
3.0
4.0
4.0
5.0
5.0

3.3
3.3
1.5
1.5
2.0
2.0
1.5
1.5

TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220

IRF722
IRF723
D84BM2
D84BM2
IRF832
IRF833
IRF732
IRF733

MTP5N20
MTP5N18
MTP5N06
MTP5N05
MTP7N20
MTP7N18
MTP7N15
MTP7N12
MTP8N20
MTP8N18

200
180
60
50
200
180
150
120
200
180

5.0
5.0
5.0
5.0
7.0
7.0
7.0
7.0
8.0
8.0

1.0
1.0
0.60
0.60
0.65
0.65
0.70
0.70
0.50
0.50

TO-220
TO-220.
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220

MTP8N15
MTP8M12
MTP8N10
MTP8N08
MTP10N15
MTP10N12
MTP10N10
MTP10N08
MTP10N06
MTP10N05

150
120
100
80
150
120
100
80
60
50

8.0
8.0
8.0
8.0
10.0
10.0
10.0
10.0
10.0
10.0

0.40
0.40
0.40
0.50
0.30
0.30
0.33
0.33
0.28
0.28

MTP12N10
MTP12N08
MTP12N06
MTP12N05
MTP15N06
MTP15N05

100
80
60
50
60
50

12.0
12.0
12.0
12.0
15.0
15.0

0.18
0.18
0.20
0.20
0.16
0.16

@25°C

(Amps)

. Ros (ON)
(Ohms)

ROS(ON)
(Ohms)

18

Vos
(Volts)

@25°C

Power MOSFET
Cross-Reference (Cont.)
CASE STYLE
TO-204

Motorola (Cont.)
10
Competitive
Part Number

Vos
(Valls)

MTM2N50
MTM2N45

500
450

MTM3N40
MTM3N35
MTM4N50
MTM4N45
MTM5N40
MTM5N35
MTM5N20
MTM5N18

(Amps)
@2SoC

Nearest GE
Equivalent
Part Number

CASE STYLE
TO-220

10

ROS(ON)
(Ohms)

Case
Style

2.0
2.0

4.0
4.0

TO-204
TO-204

IRF822
IRF823

500
450

400
350
500
450
400
350
200
180

3.0
3.0
4.0
4.0
5.0
5.0
5.0
5.0

3.3
3.3
2.0
2.0
1.5
1.5
1.0
1.0

TO-204
TO-204
TO-204
TO-204
TO-204
TO-204
TO-204
TO-204

IRF722
IRF723
IRF432
IRF433
IRF332
IRF333
D84CN2
D84CN2

MTM7N50
MTM7N45
MTM7N20
MTM7N18
MTM7N15
MTM7N12

500
450
200
180
150
120

7.0
7.0
7.0
7.0
7.0
7.0

1.2
1.2
0.65
0.65
0.70
0.70

TO-204
TO-204
TO-204
TO-204
TO-204
TO-204

MTM8N40
MTM8N35
MTM8N20
MTM8N18
MTMBN15
MTMBN12
MTMBN10
MTM8N08
MTM10N15
MTM10M12

400
350
200
1BO
150
120
100
80
150
120

8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
10.0
10.0

0.80
0.80
0.40
0.40
0.50
0.50
0.50
0.50
0.30
0.30

MTM10N10
MTM10NOB
MTM10NOB
MTM10N05
MTM12N20
MTM12N18
MTM12N15
MTM12N12
MTM12N10
MTM12NOB
MTM12N06
MTM12N05

100
80
BO
50
200
180
150
120
100
80
60
50

10.0
10.0
10.0
10.0
12.0
12.0
12.0
12.0
12.0
12.0
12.0
12.0

0.33
0.33
0.28
0.28
0.35
0.35
0.26
0.26
0.18
0.18
0.20
0.20

(Amps)
@2SoC

ROS(ON)
(Ohms)

Case
Style

2.0
2.0

4.0
4.0

TO-220AB
TO-220AB

400
350
500
450
400
350
200
200

2.5
2.5
4.0
4.0
4.5
4.5
5.0
5.0

2.5
2.5
2.0
2.0
1.5
1.5
0.80
0.80

TO-220AB
TO-220AB
TO-204AA
TO-204AA
TO-204AA
TO-204AA
TO-220AB
TO-220AB

IRF442
IRF443
IRF232
IRF232
IRF233
IRF233

500
450
200
200
150
150

7.0
7.0
B.O
B.O
B.O
B.O

1.1
1.1
0.60
0.60
0.60
O.BO

TO-204AA
TO-204AA
TO-204AA
TO-204AA
TO-204AA
TO-204AA

TO-204
TO-204
TO-204
TO-204
TO-204
TO-204
TO-204
TO-204
TO-204
TO-204

IRF342
IRF343
IRF232
IRF232
IRF233
IRF233
IRF132
IRF132
D8BDM2
D8BDM2

400
350
200
200
150
150
100
100
100
100

8.0
B.O
B.O
8.0
B.O
B.O
12.0
12.0
9.0
9.0

O.BO
O.BO
O.BO
O.BO
O.BO
O.BO
0.25
0.25
0.40
0.40

TO-204AA
TO-204AA
TO-204AA
TO-204AA
TO-204AA
TO-204AA
TO-204AA
TO-204AA
TO-204AA
TO-204AA

TO-204
TO-204
TO-204
TO-204
TO-204
TO-204
TO-204
TO-204
TO-204
TO-204
TO-204
TO-204

IRF132
IRF132
IRF133
IRF133
DB6DN2
D86DN2
D86DM2
DBBDM2
IRF132
IRF132
IRF133
IRF133

100
100
BO
60
200
200
150
150
100
100
60
BO

12.0
12.0
12.0
12.0
9.0
9.0
9.0
9.0
12.0
12.0
12.0
12.0

0.25
0.25
0.25
0.25
0.40
0.40
0.40
0.40
0.25
0.25
0.25
0.25

TO-204AA
TO-204AA
TO-204AA
TO-204AA
TO-204AA
TO-204AA
TO-204AA
TO-204AA
TO-204AA
TO-204AA
TO-204AA
TO-204AA

19

VOS
(Volts)

Power MOSFET
Cross-Reference (Cont.)
Motorola (Cont.)

CASE STYLE

CASE STYLE

CASE STYLE

CASE STYLE

TO-39

TO-204

TO-220

TO-247

Competitive
Part Number

VOS
(Volts)

(Amps)
@2SoC

ROS(ON)
(Ohms)

Case
Style

Nearest GE
Equivalent
Part Number

VOS
(Volts)

(Amps)
@25°C

RDS(ON)
(Ohms)

Case
Style

MTM15N50
MTM15N45

500
450

15.0
15.0

0.50
0.50

TO-204
TO-204

D86FR2
D86FR1

500
450

13.0
13.0

0.40
0.40

TO-204AA
TO-204AA

MTM15N40
MTM15N35
MTM15N20
MTM15N18
MTM15N15
MTM15N12
MTM15N06
MTM15N05

400
350
200
180

15.0
15.0
15.0
15.0
15.0
15.0
15.0
15.0

0.40
0.40
0.16
0.16

D86FQ2
D86FQ1
IRF242
IRF242
IRF243
IRF243
D86DK2
D86DK2

400
350
200
200

15.0
15.0
16.0

0.30
0.30
0.22

16.0

0.22
0.22

0.16

TO-204
TO-204
TO-204
TO-204
TO-204
TO-204
TO-204
TO-204

MTM20N14
MTM20N12
MTM20N10
MTM20N08
MTM25N10
MTM25N08
MTM25N06
MTM25N05
MTM35N06
MTM35N05

150
120
100
80
100
80
60
50
60
50

20.0
20.0
25.0
25.0
25.0
25.0
35.0
35.0

0.12
0.12
0.15
0.15
0.070
0.070
0.080
0.080
0.055
0.055

TO-204
TO-204
TO-204
TO-204
TO-204
TO-204
TO-204
TO-204
TO-204
TO-204

D86EM2
D86EM2
IRF142
IRF142
IRF142
IRF142
IRF143
IRF143
IRF153
IRF153

150
150
100
100
100
100
60
60
60
60

MTH7N50
MTH7N45
MTH8N40
MTH8N35
MTH15N20
MTH15M18
MTH15N15
MTH15N12

500
450
400
350
200
180
150
120

7.0
7.0
8.0
8.0
15.0
15.0
15.0
15.0

0.80
0.80
0.55
0.55
0.16
0.16
0.25
0.25

TO-218
TO-218
TO-218
TO-218
TO-218
TO-218
TO-218
TO-218

D88FR2
D88FR2
D88FQ2
D88FQ2
D88FN2
D88FN2
D88FM2
D88FM2

MTH20N15
MTH20N12
MTH25N10
MTH25N08
MTH35N06
MTH35N05

150
120
100
80
60
50

20.0
20.0
25.0
25.0
35.0
35.0

0.12
0.12
0.070
0.070
0.055
0.055

TO-218
TO-218
TO-218
TO-218
TO-218
TO-218

90
60
35
60

2.0
2.0
0.5

2.0
1.7
1.4
5.0

TO-39
TO-39
TO-39
TO-39

10

MFE990
MFE960
MFE930
MFE910

150
120
60
50

20.0
20.0

2.0

0.22
0.22
0.16

20

10

14.0

0.18

TO-204AA
TO-204AA
TO-204AE
TO-204AE
TO-204AE
TO-204AE
TO-220AA
TO-220AA

18.0
24.0
24.0
24.0
24.0
24.0
24.0
33.0
33.0

0.18
0.18
0.11
0.11
0.11
0.11
0.11
0.11
0.080
0.080

TO-204AE
TO-204AE
TO-204AE
TO-204AE
TO-204AE
TO-204AE
TO-204AE
TO-204AE
TO-204AE
TO-204AE

500
500
400
400
200
200
150
150

13.0
13.0
15.0
15.0
30.0
30.0
30.0
30.0

0.40
0.50
0.40
0.40
0.085
0.085
0.085
0.085

TO-247
TO-247
TO-247
TO-247
TO-247
TO-247
TO-247
TO-247

D88FM2
D88FM2
D88FL2
D88FL2
D88FK2
D88FK2

150
150
100
100
60
50

30.0
30.0
40.0
40.0
40.0
40.0

0.085
0.085
0.055
0.055
0.055
0.055

TO-247
TO-247
TO-247
TO-247
TO-247
TO-247

IRF112
IRF113
IRF113
IRF113

100
60
60
60

3.0
3.0
3.0
3.0

0.80
0.80
0.80
0.80

TO-39
TO-39
TO-39
TO-39

150
150
60
60

16.0
16.0
14.0

18.0

0.22
0.18

Power MOSFET
Cross-Reference (Cont.)
CASE STYLE
TO-39

R.C.A.

CASE STYLE
TO-204

CASE STYLE
TO-220

10

Nearest GE
Equivalent
Part Number

VOS
(Volts)

TO-39
TO-39
TO-39
TO-39
TO-39
TO-39
TO-39
TO-39
TO-39
TO-39

IRFF212
IRFF212
IRFF211
IRFF213
IRFF112
IRFF112
IRFF113
IRFF113
IRFF233
IRFF233

200
200
150
150
100
100
60
60
150
150

1.8
1.8
2.2
1.8
3.0
3.0
3.0
3.0
4.5
4.5

2.4
2.4
1.5
2.4
0.80
0.80
0.80
0.80
O.SO
O.SO

TO-39
TO-39
TO-39
TO-39
TO-39
TO-39
TO-39
TO-39
TO-39
TO-39

0.B5
0.85

TO-204
TO-204

D8SER2
D8SER1

500
450

8.0
8.0

0.85
0.85

TO-204AA
TO-204AA

25.0
25.0
30.0
30.0
35.0
35.0
45.0
45.0

0.15
0.15
0.085
0.085
O.OSO
O.OSO
0.040
0.040

TO-204
TO-204
TO-204
TO-204
TO-204
TO-204
TO-204
TO-204

IRF252
IRF252
D8SFM2
D8SFM2
IRF152
IRF152
DB6FK2
DBSFK2

200
200
150
150
100
100
SO
SO

25.0
25.0
30.0
30.0
33.0
33.0
40.0
40.0

0.12
0.12
0.085
0.085
0.080
0.080
0.055
0.055

TO-204AE
TO-204AE
TO-204AE
TO-204AE
TO-204AE
TO-204AE
TO-204AE
TO-204AE

500
450
200
1BO
500
450
150
120

3.0
3.0
8.0
8.0
10.0
10.0
10.0
10.0

3.0
3.0
0.50
0.50
0.85
0.85
0.30
0.30

TO-2D4
TO-204
TO-204
TO-204
TO-204
TO-204
TO-204
TO-204

.D84CR2
DB4CR1
IRF232
IRF232
DBSER2
D8SER1
D8SDM2
DBSDM2

500
450
200
200
500
450
150
150

2.5
2.5
8.0
8.0
8.0
8.0
9.0
9.0

3.0
3.0
O.SO
O.SO
0.85
0.85
0.40
0.40

TO-220AB
TO-220AB
TO-204AA
TO-204AA
TO-204AA
TO-204AA
TO-204AA
TO-204AA

RFM12N40
RFM12N35
RFM12N20
RFM12N18
RFM12N10
RFM12N08

400
350
200
1BO
100
BO

12.0
12.0
12.0
12.0
12.0
12.0

0.50
0.50
0.25
0.25
0.20 '
0.20

TO-204
TO-204
TO-204
TO-204
TO-204
TO-204

IRF352
IRF353
D8SDN2
D8SDN2
D8SDL2
D8SDL2

400
350
200
200
100
100

13.0
13.0
9.0
9.0
14.0
14.0

0.40
0.40
0.40
0.40
0.18
0.1B

TO-204AA
TO-204AA
TO-204AA
TO-204AA
TO-204AA
TO-204AA

RFM15N15
RFM15N12
RFM15N06
RFM15N05
RFM18N10
RFM18N08

150
120
SO
50
100
BO

15.0
15.0
15.0
15.0
1B.0

0.15
0.15
0.15
0.15
0.12
0.12

TO-204
TO-204
TO-204
TO-204
TO-2D4
TO-204

IRF243
IRF243
DBSDK2
D8SDK2
D8SDL2
DBSDL2

150
150
SO
SO
100
100

1S.0
1S.0
14.0
14.0
14.0
14.0

0.22
0.22
0.18
0.18
0.18
0.18

TO-204AE
TO-204AE

To
(Amps)
@2SoC

Competitive
Part Number

Vos
(Volts)

RFL1N20
RFL1N18
RFL1N15
RFL1N12
RFL1N10
RFL1N08
RFL2N06
RFL2N05
RFL4N15
RFL4N12

200
180
150
120
100
80
60
50
150
120

1.0
1.0
1.0
1.0
1.0
1.0
2.0
2.0
4.0
4.0

3.0
3.0
2.0
2.0
1.25
1.25
O.BO
0.80
0.30
0.30

RFK10N50
RFK10N45

500
450

10.0
10.0

RFK25N20
RFK25N18
RFK30N15
RFK30N12
RFK35N10
RFK35NOB
RFK45NOS
RFK45N05

200
180
150
120
100
80
SO
50

RFM3N50
RFM3N45
RFM8N20
RFM8N18
RFM10N50
RFM10N45
RFM10N15
RFM10N12

1B.0

ROS(ON)
(Ohms)

Case
Style

21

(Amps)
@2SoC

ROS(ON)
(Ohms)

Case
Style

TO-2q4AA
TO-204AA
TO-204AA
TO-204AA

Power MOSFET
Cross Reference (Cont.)
CASE STYLE

TO-220

R.C.A. (Cont.)
10
Competitive
Part Number

Vos
(Volts)

RFP2N20
RFP2N18
RFP2N15
RFP2N12
RFP2N10
RFP2N08

200
180
150
120
100
80

RFP3N50
RFP3N45
RFP4N06
RFP4N05

(Amps)
@25°C

Nearest GE
Equivalent
Part Number

Vos
(Volts)

Io
(Amps)
@25°C

Ros (ON)
(Ohms)

Case
Style

IRF612
IRF612
IRF613
IRF613
IRF512
IRF512

200
200
150
150
100
100

2.0
2.0
2.0
2.0
3.5
3.5

2.4
2.4
2.4
2.4
0.80
0.80

TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB

TO-220
TO-220
TO-220
TO-220

D85CR2
D84CR1
D84BK2
D84BK2

500
450
60
60

2.5
2.5
4.0
4.0

3.0
3.0
0.60
0.60

TO-220AB
TO-220AB
TO-220AB
TO-220AB

0.50
0.50
0.30
0.30
0.25
0.25
0.20
0.20

TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220

IRF632
IRF632
D84DM2
D84DM2
D84DN2
D84DN2
IRF532
IRF532

200
200
150
150
200
200
100
100

8.0
8.0
9.0
9.0
9.0
9.0
12.0
12.0

0.60
0.60
0.40
0.40
0.40
0.40
0.25
0.25

TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB

0.15
0.15
0.15
0.15
0.15
0.12

TO-220
TO-220
TO-220
TO-220
TO-220
TO-220

IRF643
IRF643
D84DK2
D84DK2
D84DL2
D84DL2

150
150
60
60
100
100

16.0
16.0
14.0
14.0
14.0
14.0

0.22
0.22
0.18
0.18
0.18
0.18

TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB

ROS(ON)
(Ohms)

Case
Style

2.0
2.0
2.0
2.0
2.0
2.0

3.0
3.0
2.0
2.0
1.25
1.25

TO-220
TO-220
TO-220
TO-220
TO-220
TO-220

500
450
60
50

3.0
3.0
4.0
4.0

3.0
3.0
0.80
0.80

RFP8N20
RFP8N18
RFP10N15
RFP10N12
RFP12N20
RFP12N18
RFP12N10
RFP12N08

200
180
150
120
200
180
100
80

8.0
8.0
10.0
10.0
12.0
12.0
12.0
12.0

RFP15N15
RFP15N12
RFP15N06
RFP15N05
RFP18N10
RFP18N08

150
120
60
50
100
80

15.0
15.0
15.0
15.0
18.0
18.0

22

Power MOSFET
Cross-Reference (Cant.)
CASE STYLE
TO-39

SIEMENS
10
(Amps)
@2SoC

Competitive
Part Number

VOS
(Volts)

B88B9
B8893
B88100
B88101

200
200
100
200

BUZ10
BUZ10A
BUZ10B
BUZ11
BUZ11A
BUZ14
BUZ14A
BUZ14B
BUZ14C
BUZ14D
BUZ15
BUZ20

50
50
50
50
50
50
50
50
50
50
50
100

12.0
12.0
12.0
30.0
25.0
39.0
33.0
2B.0
14.0
12.0
45.0
12.0

BUZ20A
BUZ20B
BUZ21
BUZ23
BUZ23A
BUZ23B
BUZ24
BUZ24B
BUZ25
BUZ30
BUZ31
BUZ32
BUZ32A

100
100
100
100
100
100
100
100
100
200
200
200
150

BUZ32B
BUZ32C
BUZ33
BUZ33A
BUZ33B
BUZ34
BUZ35
BUZ35A
BUZ36
BUZ41A
BUZ41B
BUZ42

200
150
200
200
150
200
200
150
200
500
450
500

ROS(ON)
(Ohms)

Case
Style

Nearest GE
Equivalent
Part Number

CASE STYLE
TO-204

CASE STYLE
TO-220

10
VOS
(Volts)

(Amps)
@2SoC

TO-92
TO-39
TO-92
TO-92

DBOAN2
IRFF212
DBOAL2
DBOAN2

200
200
100
200

0.3
1.B
0.5
0.3

0.10
0.12
0.25
0.040
0.060
0.040
0.055
O.OBO
0.1B
0.25
0.030
0.20

TO-220
TO-220
TO-220
TO-220
TO-220
TO-204
TO-204
TO-204
TO-204
TO-204
TO-204
TO-220

IRFF533
IRF533
IRF533
DB4EK2
IRF543
DB6FL2
IRF153
DB6EK2
DB6DK2
IRF133
D86FK2
IRF532

60
60
50
60
60
60
60
60
60
60
60
100

12.0
8.0
19.0
10.0
14.0
33.0
32.0
28.0
19.0
6.5
12.5
9.5
9.5

0.25
0.30
0.10
0.20
0.18
0.080
0.050
0.080
0.10
0.75
0.20
0.40
0.40

TO-220
TO-220
TO-220
TO-204
TO-204
TO-204
TO-204
TO-204
TO-204
TO-220
TO-220
TO-220
TO-220

IRF532
D84CL2
D84DL2
IRF132
D86DL2
IRF152
IRF152
D86EL2
D86DL2
DB4CN2
D84DN2
D84DN2
D84DM2

7.5
7.5
7.2
7.5
7.5
14.0
9.9
9.9
22.0
4.5
4.5
4.0

0.60
0.60
0.75
0.60
0.60
0.20
0.40
0.40
0.12
1.5
1.5
2.0

TO-220
TO-220
TO-204
TO-204
TO-204
TO-204
TO-204
TO-204
TO-204
TO-220
TO-220
TO-220

IRF632
IRF633
IRF232
IRF232
IRF233
IRF242
D86DN2
DB5DM2
DB5EN2
DB4DR2
D85DR1
IRFB32

0.30
0.50
0.23
0.16

5.0
6.0
6.0
12.0

23

CASE STYLE
TO-237

Ros (ON)
(Ohms)

Case
Style

5.6
204
204
5.6

TO-237
TO-39
TO-237
TO-237

12.0
12.0
12.0
27.0
24.0
40.0
33.0
27.0
14.0
12.0
40.0
12.0

0.25
0.25
0.25
0.OB5
0.11
0.055
O.OBO
0.OB5
0.1B
0.25
0.055
0.25

TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-204AE
TO-204AE
TO-204AE
TO-204AA
TO-204AA
TO-204AE
TO-220AB

100
100
100
100
100
100
100
100
100
200
200
200
150

12.0
8.0
14.0
12.0
14.0
33.0
33.0
27.0
14.0
5.0
9.0
9.0
9.0

0.25
0.30
0.18
0.25
0.18
O.OBO
0.080
0.085
0.18
0.80
0040
0.40
0040

TO-220AB
TO-220AB
TO-220AB
TO-204AA
TO-204AA
TO-204AE
TO-204AE
TO-204AE
TO-204AA
TO-220AB
TO-220AB
TO-220AB
TO-220AB

200
150
200
200
150
200
200
150
200
500
450
500

8.0
8.0
8.0
8.0
8.0
16.0
9.0
9.0
1B.0
4.5
4.5
4.0

0.60
0.60
0.50
0.60
0.50
0.22
0040
0040
0.1B
1.5
1.5
2.0

TO-220AB
TO-220AB
TO-204AA
TO-204AA
TO-204AA
TO-204AE
TO-204AA
TO-204AA
TO-204AE
TO-220AB
TO-220AB
TO-220AB

Power MOSFET
Cross-Reference (Cont.)
CASE STYLE

CASE STYLE

TO-204

TO-220

Siemens (Cont.)
Competitive
Part Number

VOS
(Volts)

(Amps)
@2SoC

ROS(ON)
(Ohms)

Case
Style

Nearest GE
Equivalent
Part Number

VDS
(Volts)

(Amps)
@2SoC

ROS(ON)
(Ohms)

Case
Style

BUZ42A
BUZ42B
BUZ42C
BUZ42D
BUZ44A
BUZ44B
BUZ45
BUZ45A
BUZ45B
BUZ45C

450
500
450
500
500
450
500
500
500
450

4.0
2.5
2.5
2.0
4.8
4.8
9.6
8.3
10.0
10.0

2.0
3.0
3.0
4.0
1.5
1.5
1.6
0.80
0.50
0.50

TO-220
TO-220
TO-220
TO-220
TO-204
TO-204
TO-204
TO-204
TO-204
TO-204

IRF833
D84CR2
D84CR1
IRF822
D86DR2
D86DR1
D86ER2
D86ER2
D86ER2
D86ER1

450
500
450
500
500
450
500
500
500
450

4.0
2.5
2.5
2.0
4.5
4.5
8.0
8.0
8.0
8.0

2.0
3.0
4.0
4.0
1.5
1.5
0.85
0.85
0.85
0.85

TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-204AA
TO-204AA
TO-204AA
TO-204AA
TO-204AA
TO-204AA

BUZ46
BUZ46A
BUZ46B
BUZ60
BUZ60A
BUZ60B
BUZ60C

500
450
500
400
350
400
350

4.2
4.2
2.4
5.5
5.5
4.5
4.5

2.0
2.0
3.0
1.0
1.0
1.5
1.5

TO-204
TO-204
TO-204
TO-220
TO-220
TO-220
TO-220

IRF432
IRF433
D84CR1
D84D02
D84D01
IRF732
IRF733

500
450
500
400
350
500
350

4.0
4.0
2.5
5.5
5.5
4.5
4.5

2.0
2.0
3.0
1.0
1.0
1.5
1.5

TO-204AA
TO-204AA
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB

BUZ60D
BUZ63
BUZ63A
.BUZ63B
BUZ63C
BUZ63D
BUZ64
BUZ64A
BUZ71
BUZ71A
BUZ72A
BUZ73A
BUZ74
BUZ74A
BUZ76
BUZ76A

400
400
350
400
350
400
400
350
50
50
100
200
500
500
400
400

3.0
5.9
5.9
4.5
4.5
3.0
10.0
10.0
12.0
12.0
9.0
5.8
2.4
2.0

1.8
1.0
1.0
1.5
1.5
1.8
0.40
0.40
0.10
0.12
0.25
0.60
3.0
4.0
1.8
2.5

TO-220
TO-204
TO-204
TO-204
TO-204
TO-204
TO-204
TO-204
TO-220
TO-220
TO-220
TO-220
TO-22O
TO-220
TO-220
TO-220

D84C02
D86D02
D86D01
IRF332
IRF333
D84D02
D86E02
D86E01
IRF533
IRF533
D84CL2
D84CN2
D84CR2
IRF822
D84C02
IRF722

400
400
350
400
350
400
400
350
60
60
100
200
500
500
400
400

3.0
5.5
5.5
4.5
4.5
3.0
10.0
10.0
12.0
12.0
8.0
5.0
2.5
2.0
3.0
2.5

1.8
1.0
1.0
1.5
1.5
1.8
0.55
0.55
0.25
0.25
0.30
0.80
3.0
4.0
1.8
2.5

TO-220AB
TO-204AA
TO-204AA
TO-204AA
TO-204AA
TO-220AB
TO-204AA
TO-204AA
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB

10

3~0

2.6

24

10

Power MOSFET
Cross-Reference
(Cont.)
SUPERTEX INC.

CASE STYLE
TO-39

CASE STYLE
TO-202

10
Competitive
Part Number

Vos
(Volts)

(Amps)
@2SoC

Ros (ON)
(Ohms)

Case
Style

CASE STYLE
TO-204

Nearest GE
Equivalent
Part Number

Vos
(Volts)

CASE STYLE
TO-220

CASE STYLE
TO-237

10
. (Amps)
@2SoC

Ros (ON)
(Ohms)

Case
Style

VN0104N2
VN0104N3
VN0104N4
VN0104N5
VN0106N2
VN0106N3

40
40
40
40
60
60

4.0
4.0
4.0
4.0
4.0
4.0

4.0
4.0
4.0
4.0
4.0
4.0

TO-39
TO-92
TO-202
TO-220
TO-39
TO-92

IRFF111
VN10KMA
VN40AFA
D84BK2
IRFF111
VN10KMA

60
60
40
60
60
60

3.5
0.75
1.3
4.0
3.5
0.75

0.60
5.0
5.0
0.60
0.60
5.0

TO-39
TO-237
TO-202
TO-220AB
TO-39
TO-237

VN0106N4
VN0106N5
VN0109N2
VN0109N3

60
60
90
90

4.0
4.0
4.0
4.0

4.0
4.0
4.0
4.0

TO-202
TO-220
TO-39
TO-92

VN67AFA
D84BK2
IRFF110
DBOAL2

60
60
100
100

1.6
4.0
3.5
0.50

3.5
0.60
0.60
2.4

TO-202
TO-220AB
TO-39
TO-237

VN0109N4
VN0109N5
VN0110N2
VN0110N3
VN0110N5
VN0114N2
VN0114N3
VN0114N5

90
90
100
100
100
140
140
140

4.0
4.0
3.0
3.0
3.0
3.0
3.0
3.0

4.0
4.0
8.0
8.0
8.0
B.O
8.0
8.0

TO-202
TO-220
TO-39
TO-92
TO-220
TO-39
TO-92
TO-220

IRFF112

BO

1.5

4.0

TO-202

IRFF112
DBOAL2
IRF512
IRFF223
D80AM2
D84BM2

100
100
100
150
150
150

3.0
0.50
3.5
3.0
0.30
2.5

O.BO
2.4
0.80
1.2
5.6
1.5

TO-39
TO-237
TO-220AB
TO-39
TO-237
TO-220AB

VN0116N2
VN0116N3
VN0116N5
VN0120N2
VN0120N3
VN0120N5

160
160
160
200
200
200

2.0
2.0
2.0
2.0
2.0
2.0

16.0
16.0
16.0
16.0
16.0
16.0

TO-39
TO-92
TO-220
TO-39
TO-92
TO-220

IRFF211
D80AM2
IRF613
IRFF210
DBOAN2
IRF612

150
150
150
200
200
200

2.2
0.30
2.0
2.2
0.30
2.0

1.5
5.6
2.4
1.5
5.6
2.4

TO-39
TO-237
TO-220AB
TO-39
TO-237
TO-220AB

VN0204N2
VN0204N5

40
40

10.0
10.0

2.0
2.0

TO-39
TO-220

IRFF131
D84CK2

60
60

8.0
B.O

0.1B
0.30

TO-39
TO-220AB

VN0206N2
VN0206N5
VN0210N2
VN0210N5
VN0215N2
VN0215N5
VN0220N2
VN0220N5

60
60
100
100
150
150
200
200

10.0
10.0
10.0
10.0
B.O
B.O
6.0
6.0

2.0
2.0
2.0
2.0
4.0
4.0
B.O
8.0

TO-39
TO-220
TO-39
TO-220
TO-39
TO-220
TO-39
TO-220

IRFF131
DB4CK2
IRFF130
D84CL2
IRFF231
IRF633
IRFF230
D84CN2

60
60
100
100
150
150
200
200

8.0
B.O
8.0
B.O
5.5
B.O
5.5
5.0

0.18
0.30
0.1B
0.30
0.40
0.60
0.40
O.BO

TO-39
TO-220AB
TO-39
TO-220AB
TO-39
TO-220AB
TO-39
TO-220AB

VN0330N1
VN0330N2

300
300

12.0
12.0

3.0
3.0

TO-204
TO-39

IRF353
IRFF331

350
350

13.0
3.5

0.40
1.0

TO-204AA
TO-39

VN0330N5
VN0335N1
VN0335N2
VN0335N5

300
350
350
350

12.0
12.0
12.0
12.0

3.0
3.0
3.0
3.0

TO-220
TO-204
TO-39
TO-220

D84EQ1
IRF353
IRFF331
D84EQ1

350
350
350
350

10.0
13.0
3.5
10.0

0.55
0.40
1.0
0.55

TO-220AB
TO-204AA
TO-39
TO-220AB

VN0340N1
VN0340N2
VN0340N5
VN0345N1
VN0345N2
VN0345N5
VN0350N1
VN0350N2
VN0350N5

400
400
400
450
450
450
500
500
500

12.0
12.0
12.0
12.0
12.0
12.0
B.O
B.O
B.O

3.0
3.0
3.0
3.0
3.0
3.0
6.0
6.0
6.0

TO-204
TO-39
TO-220
TO-204
TO-39
TO-220
TO-204
TO-39
TO-220

IRF352
IRFF330
DB4EQ2
IRF453
IRFF431
D84ER1
DB6ER2
IRFF430
DB4ER2

400
400
400
450
450
450
500
500
500

13.0
3.5
10.0
12.0
2.75
B.O
B.O
2.75
B.O

0.40
1.0
0.55
0.50
1.5
0.B5
0.B5
1.5
0.B5

TO-204AA
TO-39
TO-220AB
TO-204AA
TO-39
TO-220AB
TO-204AA
TO-39
TO-220AB

25

Power MOSFET
Cross-Reference (Cont.)
CASE STYLE
TO-39

Supertex Inc. (Cont.)
10
Competitive
Part Number

Vos
(Volts)

(Amps)
@2SoC

ROS(ON)
(Ohms)

Case
Style

VN0430N1
VN0435N1
VN0440N1
VN0445N1
VN0450N1

300
350
400
450
500

40.0
40.0
40.0
40.0
24.0

0.75
0.75
0.75
0.75
1.5

TO-204
TO-204
TO-204
TO-204
TO-204

VN0530N2
VN0530N3
VN0535N2
VN0535N3
VN0540N2
VN0540N3
VN0545N2
VN0545N3

300
300
350
350
400
400
450
450

50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0

VN1106N1
VN1106N2
VN1106NS
VN1110N1
VN1110N2
VN1110NS
VN115SN1
VN1156N2
VN115SNS
VN1120N1
VN1120N2
VN1120N5

60
SO
60
100
100
100
150
150
1S0
200
200
200

16.0
1S.0
16.0
16.0
16.0
16.0
12.0
12.0
12.0
8.0
8.0
8.0

VN1204N1
VN1204N2
VN1204N5
VN1206N1
VN120SN2
VN1206NS

40
40
40
SO
SO

Nearest GE
Equivalent
Part Number

CASE STYLE
TO-204

CASE STYLE
TO-220

CASE STYLE
TO-237

10
VOS
(Volts)

(Amps)
@2SoC

ROS(ON)
(Ohms)

Case
Style

D86FQ1
D86FQ1
D86FQ2
D86FR1
D86FR2

350
350
400
450
500

15.0
15.0
15.0
13.0
13.0

0.30
0.30
0.30
0.40
0.40

TO-204AA
TO-204AA
TO-204AA
TO-204AA
TO-204AA

TO-39
TO-92
TO-39
TO-92
TO-39
TO-92
TO-39
TO-92

IRFF313
D80AN2
IRFF313
D80AN2
IRFF312
D80AN2
IRFF423
D80AN2

350
200
350
200
400
200
450
200

5.0
5.6
5.0
5.6
5.0
5.6
4.0
S.6

TO-39
TO-237
TO-39
TO-237
TO-39
TO-237
TO-39
TO-237

1.0
1.0
1.0
1.0
1.0
1.0
2.0
2.0
2.0
4.0
4.0
4.0

TO-204
TO-39
TO-220
. TO-204
TO-39
TO-220
TO-204
TO-39
TO-220
TO-204
TO-39
TO-220

D86DK2
IRFF131
D84DK2
D86DL2
IRFF130
D84DL2
D8SDM2
IRFF231
D84DM2
IRF232
IRFF230
IRF632

60
60
SO
100
100
100
150
1S0
1S0
200
200
200

14.0
8.0
14.0
14.0
8.0
14.0
9.0
5.5
9.0
8.0
5.S
8.0

0.18
0.18
0.18
0.18
0.18
0.18
0.40
0.40
0.40
0.60
0.40
O.SO

TO-204AA
TO-39
TO-220AB
TO-204AA
TO-39
TO-220AB
TO-204AA
TO-39
TO-220AB
TO-204AA
TO-39
TO-220AB

60

24.0
24.0
24.0
24.0
24.0
24.0

0040
0040
0040
0040
0040
0040

TO-204
TO-39
TO-220
TO-204
TO-39
TO-220

IRF143
IRFF131
IRF543
IRF143
IRFF131
IRF543

60
SO
SO
60
SO
60

24.0
8.0
24.0
24.0
8.0
24.0

0.11
0.18
0.11
0.11
0.18
0.11

TO-204AE
TO-39
TO-220AB
TO-204AE
TO-39
TO-220AB

VN1210N1
VN1210N2
VN1210NS
VN1215N1
VN1215N2
VN1215N5
VN121SN1
VN1216N2
VN121SN5
VN1220N1

100
100
100
1S0
150
150
1S0
160
1S0
200

24.0
24.0
24.0
20.0
20.0
20.0
16.0
16.0
16.0
1S.0

0040
0040
0040
0.7S
0.75
0.75
2.0
2.0
2.0
2.0

TO-204
TO-39
TO-220
TO-204
TO-39
TO-220
TO-204
TO-39
TO-220
TO-204

IRF142
IRFF130
IRFS42
D86EM2
IRFF231
D84EM2
IRF243
IRFF231
IRF643
IRF242

100
100
100
150
150
150
150
150
150
200

24.0
8.0
24.0
18.0
5.5
18.0
1S.0
5.5
1S.0
16.0

0.11
0.18
0.11
0.18
0.40
0.18
0.22

TO-204AE
TO-39
TO-220AB
TO-204AE
TO"39
TO-220AB
TO-204AE
TO-39
TO-220AB
TO-204AE

VN1220N2
VN1220NS

200
200

1S.0
1S.0

2.0
2.0

TO-39
TO-220

IRFF230
IRF642

200
200

5.5
16.0

0040

0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20

26

1.15
0.30
1.15
0.30
1.15
0.30
1.4
0.30

0040
0.22
0.22
0.22

TO-39
TO-220AB

Power MOSFET
Cross-Reference (Cont.)
CASE STYLE
TO-39

SlUIpertex Inca (Cont.)
10

Nearest GE
Equivalent
Part Number

10

Competitive
Part Number

Vos
(Volts)

(Amps)
@2SoC

RoS (ON)
(Ohms)

VN1304N2
VN1304N3
VN1306N2
VN1306N3
VN1310N2
VN1310N3
VN1315N2
VN1315N3

40
40
60
60
100
100
150
150

2.0
2.0
2.0
2.0
2.0
2.0
1.5
1.5

10.0
10.0
10.0
10.0
10.0
10.0
20.0
20.0

TO-39
TO-92
TO-39
TO-92
TO-39
TO-92
TO-39
TO-92

IRFF113
VN10KMA
IRFF113
VN10KMA
IRFF112
OBOAL2
IRFF213
OBOAM2

60
60
60
60
100
100
150
150

VN1320N2
VN1320N3

200
200

1.0
1.0

40.0
40.0

TO-39
TO-92

IRFF212
OBOAN2

200
200

Competitive
Part Number

Vos
(Volts)

(Amps)
@2SoC

Ros (ON)
(Ohms)

Case
Style

80110280
801106AO
80110780
80111280
80111380

250
60
100
200
200

0.25
0.25
2.0
0.5
0.5

10.0
5.0
4.0
7.0
10.0

TO-92
TO-237
TO-92
TO-92
TO-92

80111780
80112280
80112480
80120280

60
200
60
200

2.0
0.5
1.0
0.04

2.5
10.0
5.0
250

TO-92
TO-92
TO-92
TO-92

Case
Style

10

Nearest GE
Equivalent
Part Number

CASE STYLE
TO-237

Vos
(Volts)

(Amps)
@2SoC

ROS(ON)
(Ohms)

Case
Style

3.0
0.75
3.0
0.75
3.0
0.50
1.B
0.30

0.6
5.0
0.6
5.0
0.6
2.4
2.4
5.6

TO-39
TO-237
TO-39
TO-237
TO-39
TO-237
TO-39
TO-237

1.B
0.30

2.4
5.6

TO-39
TO-237

10
Vos
(Volts)

(Amps)
@2SoC

ROS(ON)
(Ohms)

Case
Style

OBOAN2
OBOAK2
OBOAL2
OBOAN2
OBOAN2

200
60
100
200
200

0.30
0.50
0.50
0.30
0.30

5.6
2.4
2.4
5.6
5.6

TO-237
TO-237
TO-237
TO-237
TO-237

VN10KMA
OBOAN2
VN10KMA
OBOAN2

60
200
60
200

0.75
0.30
0.75
0.30

5.0
5.6
5.0
5.6

TO-237
TO-237
TO-237
TO-237

27

Power MOSFET
Cross-Reference
(Cont.)
CASE STYLE
TO-39

SILICONIX

CASE STYLE
TO-202

10

CASE STYLE
TO-204

Yo

RpS(ON)
(Ohms)

Case
Style

Nearest GE
Equivalent
Part Number

5.0
5.0
5.0
5.0
2.5
2.5
5.0
5.0
3.0
3.0

TO-52
TO-237
TO-52
TO-237
TO-204
TO-39
TO-220
TO-202
TO-220
TO-202

IRFF113
VN10KMA
D80AK2
D80AK2
IRF513
VN35AJ;lA
IRF513
VN40AFA
IRF513
VN46AFA

10.0
1.9
1.7
2.0
1.0
1.8
1.6
1.3
1.7
1.5

0.4
3.0
3.0
3.5
3.5
3.5
3.5
5.0
4.0
4.0

TO-204
TO-220
TO-202
TO-220
TO-39
TO-220
TO-202
TO-202
TO-220
TO-202

IRF133
IRF513
VN66AFA
IRF513
VN67ABA
IRF513
VN67AFA
VNBOAFA
DB4BL2
VN8BAFA

60
60
60
60
60
60
60
80
100
BO

BO
90
90
90
90
30
30
40
40
40

1.6
1.7
O.B
1.B
0.9
2.5
0.7
18.0
18.0
16.0

4.5
5.0
5.0
4.5
4.5
1.2
1.2
0.12
0.12
0.15

TO-220
TO-204
TO-39
TO-204
TO-39
TO-220
TO-237
TO-204
TO-220
TO-204

IRF512
IRF512
VN90ABA
IRF512
VN90ABA
IRF513
D80AK2
D86DK2
D84DK2
D86DK2

40
60
60
60
60
60
60
80
80
80

16.0
1B.0
18.0
16.0
16.0
0.4
0.2
14.0
14.0
12.0

0.15
0.12
0.12
0.15
0.15
3.0
5.0
0.18
0.18
0.25

TO-220
TO-204
TO-220
TO-204
TO-220
TO-237
TO-92
TO-204
TO-204
TO-204

DB4DK2
DB6DK2
DB4DK2
DB6DK2
DB4DK2
D80AK2
DBOAK2
D86DL2
D84DL2
D86DL2

Competitive
Part Number

Vos
(Volts)

VN10KE
VN10KM
VN10LE
VN10LM
VN35AA
VN35AB
VN40AD
VN40AF
VN46AD
VN46F

60
60
60
60
35
35
40
40
40
40

VN64GA
VN66AD
VN66AF
VN67AA
VN67AB
VN67AD
VN67AF
VNBOAF
VNB8AD
VNBBAF

60
60
60
60
60
60
60
BO
BO
BO

VNB9AD
VN90AA
VN90AB
VN99AA
VN99AB
VN0300D
VN0300M
VN0400A
VN0400D
VN0401A
VN0401 0
VN0600A
VN0600D
VN0601A
VN0601D
VN0606M
VN0610L
VNOBOOA
VNOBOOD
VN0801 A

(Amps)
@2SoC
0.2
0.75
0.3
0.3
2.0
1.2
1.5
1.3
1.9
1.6

28

CASE STYLE
TO-220

(Amps)
@25°C

CASE STYLE
TO-237

ROS(ON)
(Ohms)

Case
Style

O.B
5.0
O.B
2.4
0.8
2.5
0.8
5.0
O.B
3.0

TO-39
TO-237
TO-39
TO-237
TO-220AB
TO-39
TO-220AB
TO-202
TO-220AB
TO-202

12.0
3.5
1.7
3.5
1.0
3.5
1.6
1.3
4.0
1.5

0.25
O.B
3.0
O.B
3.5
0.8
3.5
5.0
0.6
4.0

TO-204M
TO-220AB
TO-202
TO-220AB
TO-39
TO-220AB
TO-202
TO-202
TO-220AB
TO-202

100
100
100
100
100
60
60
60
60
60

3.5
3.5
1.0
3.5
1.0
3.5
0.5
. 14.0
14.0
14.0

O.B
0.8
5.0
0.8
5.0
O.B
2.4
0.1B
0.1B
0.1B

TO-220AB
TO-220AB
TO-39
TO-220AB
TO-39
TO-220AB
TO-237
TO-204AA
TO-220AB
TO-204AA

60
60
60
60
60
60
60
100
100
100

14.0
14.0
14.0
14.0
14.0
0.5
0.5
14.0
14.0
14.0

0.1B
0.18
0.1B
0.18
0.18
2.4
2.4
0.18
0.18
0.1B

TO-220AB
TO-204AA
TO-220AB
TO-204AA
TO-220AB
TO-237
TO-237
TO-204AA
TO-220AB
TO-204AA

VOS
(Volts)
60

60
60
60
60
35
60
40
60
40

3.0
0.75
3.0
0.5
3.5
1.2
3.5
1.3
3.5
1.6

[pltQ)wcew M OSf'ET
Ct!"@$$ ... Re'fference (Cant)
CASE STYLE
TO-39

Io
Competitive
Part Number

(Ohms)

Case
Style

Nearest GE
Equivalent
Part Number

0.25
4.0
0.18
0.18
0.25
0.25
0.18
0.18
0.25
0.25

TO-220
TO-237
TO-204
TO-220
TO-204
TO-220
TO-204
TO-220
TO-204
TO-220

6.0
6.0
6.0
6.0
10.0
10.0
6.0
6.0
6.0
6.0

0.16
0.25
0.15
0.25
0.25
0.80
1.4
0.21
0.30
0.16
0.25
6.0
6.0
5.0
5.0
6.0
6.0
5.0
5.0
4.5
4.5
4.0
4.0
4.5
4.5
4.0
4.0
8.0
B.O
6.5

CASE STYLE
TO-220

CASE STYLE
TO-237

10
ROS(ON)

(Volts)

(Amps)
@25°C

(Ohms)

Case
Style

D84DL2
D80AL2
D86DL2
D84DL2
IRF132
IRF532
DB6DM2
DB4DM2
DB6DM2
DB4DM2

100
100
100
100
100
100
150
150
150
150

14.0
0.5
14.0
14.0
12.0
12.0
9.0
9.0
9.0
9.0

0.18
2.4
0.1B
0.1B
0.25
0.25
0.4
0.4
0.4
0.4

TO-220AB
TO-237
TO-204AA
TO-220AB
TO-204AA
TO-220AB
TO-204AA
TO-220AB
TO-204AA
TO-220AB

TO-39
TO-220
TO-92
TO-237
TO-92
TO-237
TO-39
TO-220
TO-92
TO-237

IRF213
IRF611
DOBAM2
DBOAM2
DBOAM2
DBOAM2
IRFF212
D84BN2
DBOAN2
DBOAN2

150
150
150
150
150
150
200
200
200
200

1.B
2.5
0.3
0.3
0.3
0.3
1.B
2.5
0.3
0.3

2.4
1.5
5.6
5.6
5.6
5.6
2.4
1.5
5.6
5.6

TO-39
TO-220AB
TO-237
TO-237
TO-237
TO-237
TO-39
TO-220AB
TO-237
TO-237

10.0
10.0
7.5
7.5
7.6
6.0
6.0
6.0
6.0
10.0

TO-92
TO-237
TO-92
TO-237
TO-237
TO-39
TO-220
TO-92
TO-237
TO-92

DBOAN2
DBOAN2
D80AK2
DBOAK2
DBOAK2
IRFF313
IRF713
D80AN2
DBOAN2
DBOAN2

200
200
60
60
60
350
350
200
200
200

0.3
0.3
0.5
0.5
0.5
1.1;,
1.3
0.3
0.3
0.3

5.6
5.6
2.4
2.4
2.4
5.0
5.0
5.6
5.6
5.6

TO-237
TO-237
TO-237
TO-237
TO-237
TO-39
TO-220AB
TO-237
TO-237
TO-237

10.0
1.0
1.0
1.5
1.5
1.0
1.0
1.5
1.5
1.5
1.5
2.0
2.0
1.5
1.5
2.0
2.0
1.0
1.0
1.5

TO-237
TO-204
TO-220
TO-204
TO-220
TO-204
TO-220
TO-204
TO-220
TO-204
TO-220
TO-204
TO-220
TO-204
TO-220
TO-204
TO-220
TO-204
TO-204
TO-204

DBOAN2
DB6D01
DB4D01
IRF333
IRF733
D86D02
D84D02
IRF332
IRF732
D86DR1
DB4DR1
IRF433
IRF833
DB6DR2
DB6DR2
IRF432
IRFB32
IRF343
IRF342
IRF443

200
350
350
350
350
400
400
400
400
450
450
450
450
500
500
500
500
350
400
450

0.3
5.5
5.5
4.5
4.5
5.5
5.5
4.5
4.5
4.5
4.5
4.0
4.0
4.5
4.5
4.0
4.0
B.O
B.O
7.0

5.6
1.0
1.0
1.5
1.5
1.0
1.0
1.5
1.5
1.5
1.5
2.0
2.0
1.5
1.5
2.0
2.0
O.B
0.8
1.1

TO-237
TO-204AA
TO-220AB
TO-204AA
TO-220AB
TO-204AA
TO-220AB
TO-204AA
TO-220AB
TO-204AA
TO-220AB
TO-204AA
TO-220AB
TO-204AA
TO-220AB
TO-204AA
TO-220AB
TO-204AA
TO-204AA
TO-204AA

Ros (ON)

(Volts)

(Amps)
@25°C

VN0801D
VN0808M
VN1000A
VN1000D
VN1001A
VN1001D
VN1200A
VN1200D
VN1201A
VN1201D

80
80
100
100
100
120
120
120
120
120

12.0
0.35
14.0
14.0
12.0
12.0
14.0
14.0
12.0
12.0

VN1206B
VN1206D
VN1206L
VN1206M
VN1210L
VN1210M
VN1706B
VN1706D
VN1706L
VN1706M

120
120
120
120
120
120
170
170
170
170

O.BO
1.4
0.21
0.3
0.16
0.25
0.80
1.4
0.21
0.30

VN1710L
VN1710M
VN2222L
VN2222KM
VN2222LM
VN2406B
VN2406D
VN2406L
VN2406M
VN2410L

170
170
60
60
60
240
240
240
240
240

VN2410M
VN3500A
VN3500D
VN3501A
VN3501D
VN4000A
VN4000D
VN4001A
VN4001D
VN4501A
VN4501D
VN4502A
VN4502D
VN5001A
VN5001D
VN5002A
VN5002D
VNL001A
VNM001A
VNN003A

240
350
350
350
350
400
400
400
400
450
450
450
450
500
500
500
500
350
400
450

Ves

CASE STYLE
TO-204

29

Ves

30

GE
BIPOLAR POWER
TRANSISTOR
SELECTOR GUIDE

31

POWER TRANSISTORS
COMPLEMENTARY PAIRS
Ie

CONT.
(A)

GE Device

Electrical Characteristics (@ Ta = 25°C)
VCEO
Volts Min .• Max.

hFE
@lC

Package
Outline

Page

500mA
500mA
500mA
500mA
500mA
500mA

SOmA
SOmA
SOmA
SOmA
SOmA
SOmA

6.25
6.25
6.25
6.25
6.25
6.25

TO-202
TO-202
TO-202
TO-202
TO-202
TO-202

375
375
375
375
375
37S

1.0A
1.0A
1.0A

0.1A
0.1A
0.1A

S.O
S.O
S.O

TO-202
TO-202
TO-202

3S3
3S3
3S3

0.5
O.S
0.5
0.5
O.S

1A 100mA
1A SOmA
1A SOmA
1A 100mA
1A SOmA

12.5
12.5
12.5
12.5
12.5

TO-202
TO-202
TO-202
TO-202
TO-202

399
399
399
399
399

1V
1V

0.5
0.5
O.S
O.S
O.S

1A SOmA
1A 100mA
1A SOmA
1A SOmA
1A 100mA

12.5
12.S
12.S
12.S
12.S

TO-202
TO-202
TO-202
TO-202
TO-202

399
399
399
399
399

1.0A

04001
04002
04004
04005
04007
0400S

04101
04102
04104
04105
04107
0410S

30
30
45
45
60
60

50
120
50
120
50
120

150
360
150
360
150
360

0.1A
0.1A
0.1A
0.1A
0.1A
0.1A

2.0V
2.0V
2.0V
2.0V
2.0V
2.0V

0.5
0.5
0.5
0.5
0.5
0.5

2.0A

040E1
040E5
040E7

041E1
041ES
041E7

30
60
SO

50
SO
50

-

0.1A
0.1A
0.1A

2.0V
2.0V
2.0V

1.0
1.0
1.0

3.0A

042C1
042C2
042C3
042C4
042CS

043C1
043C2
043C3
043C4
043C5

30
30
30
45
45

2S
100
40
25
100

-

200mA
200mA
200mA
200mA
200mA

1V
1V
1V
1V
1V

042C6
042C7
042CS
042C9
042C10

043C6
043C7
043CS
043C9
043C10

4S
60
60
60
SO

40
25
100
40
25

1V

042C11
042C12

043C11
043C12

SO
SO

100
40

044C1
044C2
044C3
044C4
044CS

045C1
04SC2
04SC3
045C4
04SCS

30
30
30
4S
4S

2S
100
40
2S
100

044C6
044C7
044CS
044C9
044C10

04SC6
045C7
04SCS
04SC9
04SC10

4S
60
60
60
SO

40
25
100
40
2S

044C11
044C12

04SC11
04SC12

SO'
SO

100
40

044VM1
044VM4
044VM7
044VM10

04SVM1
04SVM4
045VM7
04SVM10

30
45
60
SO

40
40
40
40

044H1
044H2
044H4
044HS
044H7

04SH1
04SH2
04SH4
04SHS
04SH7

30
30
4S
4S
60

044HS
044H10
044H11

04SHS
045H10
045H11

044VH1
044VH4
044VH7
044VH10

04SVH1
04SVH4
04SVH7
04SVH10

4.0A

S.OA

10.0A

15.0A

-

220
120

TO-220

Ie

PNP

220
120

CASE STYLE

TO-202

PD
TC = 25°C
Max. (W)

VCE(SAT)
Max. (V)
@IC

NPN

-

CASE STYLE

@VCE

-

200mA
200mA
200m A
200mA
200mA

220
120

200mA
200mA

1V
1V

O.S
O.S

1A SOmA
1A SOmA

12.S
12.S

TO-202
TO-202

399
399

-

200mA
200mA
200mA
200mA
200mA

1V

1V
1V

O.S
O.S
O.S
O.S
O.S

1A 100mA
1A SOmA
1A SOmA
1A 100mA
1A SOmA

30.0
30.0
30.0
30.0
30.0

TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB

407
407
407
407
407

-

200mA
200mA
200mA
200mA
200mA

1V
1V
1V
1V
1V

O.S
O.S
O.S
O.S
O.S

1A SOmA
1A 100mA
1A SOmA
1A SOmA
1A 100mA

30.0
30.0
30.0
30.0
30.0

TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB

407
407
407
407
407

220
120

200mA
200mA

1V

O.S
O.S

1A SOmA
1A SOmA

30.0
30.0

TO-220AB
TO-220AB

407
407

0.4
0.4
0.4
0.4

4A
4A
4A
4A

0.2A
0.2A
0.2A
0.2A

SO.O
SO.O
SO.O
SO.O

TO-220AB
TO-220AB
TO-220AB
TO-220AB

469
469
469
469

1.0
1.0
1.0
1.0
1.0

SA
SA
SA
SA
SA

O.SA
O.4A
O.SA
O.4A
O.SA

SO.O
SO.O
SO.O
SO.O
SO.O

TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB

431
431
431
431
431

1.0
1.0
1.0

SA
8A
SA

0.4A
0.8A
O.4A

SO.O
SO.O
SO.O

TO-220AB
TO-220AB
TO-220AB

431
431
431

0.4
0.4
0.4
0.4

8A
8A
8A
8A

O.4A
O.4A
O.4A
O.4A

S3.0
S3.0
83.0
S3.0

TO-220AB
TO-220AB
TO-220AB
TO-220AB

4S7
4S7
4S7
457

220
120

220
120

-

220
120

220
120

-

4A
4A
4A
4A

40
40
20
40
20

-

4A
4A
4A
4A
4A

60
SO
SO

40
20
40

-

4A
4A
4A

30
4S
60
80

20
20
20
20

-

4A
4A
4A
4A

-

-

1V
1V

1V
1V

1V
1V
1V
1V
1V
1V
1V
1V

1V
1V
1V
1V

1V
1V
1V
1V

1V

32

GENERAL PURPOSE
POWER
TRANSISTORS/DARIlJNGTONS
IC
CONT.
(A)

1
1
1
1
1
1
1
1
3
3
3
3
3
3
3
3
5
5
5
5
5
5
6
6
6
6
6
6
6
6
7
10
15
15
15
16
20
30

CASE STYLE
TO-247S

Electrical Cha.racteristics (@ Ta = 25°C)
GE Device

TIP30
TIP29
TIP30A
TIP29A
TIP30B
TIP29B
TIP30C
TIP29C
TIP31
TIP32
TIP31 A
TIP32A
TIP31B
TIP32B
TIP31C
TIP3~'C

TIP120
TIP125
TIP126
TIP121
TIP127
TIP122
TIP41
TIP42
TIP41 A
TIP42A
TIP41B
TIP42B
TIP41C
TIP42C
2N6292
GE3055P
2N3055
2N6487
2N6547
2N3773
2N3772
2N3771

Type

PNP
NPN
PNP
NPN
PNP
NPN

I NPN
PNP

NPN
PNP
NPN
PNP
NPN
PNP
NPN
PNP
NPND
PNPD
PNPD
NPND
PNPD
NPND
NPN
PNP
NPN
PNP
NPN
PNP
NPN
PNP
NPN
NPN
NPN
NPN
NPN
NPN
NPN
NPN

hFE
VCEO
Volts Min. - Max.
@IC

40
40
60
60
80
80
100
100
40
40
60
60
80
80
100
100
60
60
80
80
100
100
40
40
60
60
80
80
100
100
70
80
60
60
400
140
60
40

15
15
15
15
15
15
15
15
I 10
10
10
10
10
10
10
10
1000
1000
1000
1000
1000
1000
15
15
15
15
15
15
15
15
30
20
20
20
12
15
15
15

75
75
75
75
75
75
75
75
50
50
50
50
50
50
50
50

-

75
75
75
75
75
75
75
75
150
100
70
150
60
60
60
60

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
2.0
4.0
4.0
5.0
5.0
8.0
10.0
15.0

VCE(SAT)
@IC
@VCE Max. (V)

Is

0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2
2.0
2.0
2.0
2.0
2.0
2.0
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.0
1.1
1.1
1.3
1.5
1.4
1.4
2.0

0.125
0.125
0.125
0.125
0.125
0.125
0.125
0.125
0.375
0.375
0.375
0.375
0.375
0.375
0.375
0.375
0.012
0.012
0.012
0.012
0.012
0.012
0.600
0.600
0.600
0.600
0.600
0.600
0.600
0.600
0.200
0.400
0.400
0.500
2.0
0.800
1.0
1.5

4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
3.0
3.0
3.0
3.0
3.0
3.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
2.0
4.0
4.0
4.0

33

1
1
1
1
1
1
1
1
3
3
3
3
3
3
3
3
3
3
3
3
3
3
6
6
6
{)

6
6
6
6
2
4
4
5
10
8
10
15

CASE STYLE
TO-204

CASE STYLE
TO-220

Po
TC = 25°C Package
Malt. (W) Outline

30
30
30
30
30
30
30
.30
40
40
40
40
40
40
40
40
65
65
65
65
65
65
65
65
65
65
65
65
65
65
40
70
115
75
175
150
150
150

TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-247S
TO-204
TO-220AB
TO-204
TO-204
TO-204
TO-204

Page

775
771
775
771
775
771
775
771
779
783
779
783
779
783
779
783
759
765
765
759
765
759
787
791
787
791
187
791
787
791
811
693
795
815
819
807
803
799

HIGH VOLTAGE
POWER TRANSISTORS
IC
CONT.
(A)

CASE STYLE
TO-202

CASE STYLE
TO-204

Electrical Characteristics (@ Ta
GE Device

Type

VCEO
Volls Min. - Max.

hFE

@Ic

@VCE

= 25°C)

VCE(SAT)
Max. (V)
@IC

CASE STYLE
TO-218

CASE STYLE
TO-220

Po

Package
Outline

Page

Is

TC = 25°C
Max. (W)

TO-202
TO-202
TO-202
TO-202
TO-202

395
395
395
395
395

0.1
0.1
0.1
0.1
0.1

D40V1
D40V2
D40V3
D40V4
D40V5

NPN
NPN
NPN
NPN
NPN

250
250
300
300
350

30
60
30
60
30

90
180
90
180
90

0.02
0.02
0.02
0.02
0.02

10.0
10.0
10.0
10.0
10.0

1.0
1.0
1.0
1.0
1.0

0.020
0.020
0.020
0.020
0.020

0.002
0.002
0.002
0.002
0.002

9.0
9.0
9.0
9.0
9.0

0.1
2.0
2.0
2.0
2.0

D40V6
D44T1
D44T2
D44T3
D44T4

NPN
NPN
NPN
NPN
NPN

350
250
250
300
300

60
30
75
30
75

180

0.02
0.50
0.50
0.50
0.50

10.0
10.0
10.0
10.0
10.0

1.0
1.0
1.0
1.0
1.0

0.020
0.5
0.5
0.5
0.5

0.002
0.050
0.050
0.050
0.050

9.0
31.2
31.2
31.2
31.2

TO-202
TO-220AB
TO-220AB
TO-220AB
TO-220AB

395
443
443
443
443

2.0
2.0
2.0
4.0
4.0

D44TD3
D44TD4
D44TD5
D4401
D4403

NPN
NPN
NPN
NPN
NPN

300
350
400
125
175

5
5
5
20
20

-

2.0
2.0
2.0
2.0
2.0

3.0
3.0
3.0
10.0
10.0

1.0
1.0
1.0
1.0
1.0

2.0
2.0
2.0
2.0
2.0

00400
00400
00400
0.200
0.200

50.0
50.0
50.0
31.2
31.2

TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB

447
447
447
439
439

4.0
4.0
4.0
4.0
4.0

D4405
MJE13004
MJE13005
GE13070P
MJE13070

NPN
NPN
NPN
NPN
NPN

225
300
400
400
400

20
10
10
8
8

2.0
1.0
1.0
3.0
3.0

10.0
5.0
5.0
5.0
5.0

1.0
0.5
0.5
1.0
1.0

2.0
1.0
1.0
3.0
3.0

0.200
0.2
0.2
0.6
0.6

31.2
75.0
75.0
100.0
80.0

TO-220AB
TO-220AB
TO-220AB
TO-218
TO-220AB

439
715
719
681
747

4.0
4.0
8.0
8.0
8.0

MJE13071
GE13071P
MJE13006
GE13080T
MJE13007

NPN
NPN
NPN
NPN
NPN

450
450
300
400
400

8
8
8
8
8

3.0
3.0
2.0
5.0
2.0

5.0
5.0
5.0
3.0
5.0

1.0
1.0
1.0
1.0
1.0

3.0
3.0
2.0
5.0
2.0

0.6
0.6

004

80.0
100.0
80.0
90.0
80.0

TO-220AB
TO-218
TO-220
TO-220AB
TO-220

747
681
723
685
729

8.0
8.0
8.0
12.0
12.0

GE13080P
GE13081T
GE13081P
MJE13008
MJE13009

NPN
NPN
NPN
NPN
NPN

400
450
450
300
400

8
8
8
8
8

5.0
5.0
5.0
5.0
5.0

3.0
3.0
3.0
5.0
5.0

1.0
1.0
1.0
1.0
1.0

5.0
5.0
5.0
5.0
5.0

1.0
1.0
1.0
1.0
1.0

110.0
90.0
110.0
100.0
100.0

TO-218
TO-220AB
TO-218
TO-220AB
TO-220AB

683
685
683
735
741

12.0
12.0
12.0
12.0
15.0

D44T01
D46T01
D44T02
D46T02
D64VS3

NPN
NPN
NPN
NPN
NPN

400
400
450
450
300

8
8
8
8
10

40
40
40
40

5.0
5.0
5.0
5.0
10.0

5.0
5.0
5.0
5.0
2.0

1.0
1.0
1.0
1.0
1.0

5.0
5.0
5.0
5.0
15.0

1.0
1.0
1.0
1.0
2.5

100.0
110.0
100.0
110.0
195.0

TO-220AB
TO-218
TO-220AB
TO-218
TO-204

453
481
453
481
523

15.0
15.0
15.0
15.0
15.0

2N6676
2N6677
D64VS4
D64VS5
2N6678

NPN
NPN
NPN
NPN
NPN

300
350
350
400
400

8
8
10
10
8

-

15.0
15.0
10.0
10.0
15.0

3.0
3.0
2.0
2.0
3.0

1.5
1.5
1.0
1.0
1.5

15.0
15.0
15.0
15.0
15.0

3.0
3.0
2.5
2.5
3.0

175.0
175.0
195.0
195.0
175.0

TO-204
TO-204
TO-204
TO-204
TO-204

823
823
523
523
823

15.0
15.0
20.0
20.0

MJH13090
MJH13091
GE13100P
GE13101P

NPN
NPN
NPN
NPN

400
450
400
450

8
8
8
8

-

10.0
10.0
15.0
15.0

3.0
3.0
3.0
3.0

1.0
1.0
1.0
1.0

10.0
10.0
15.0
15.0

2.0
2.0
3.0
3.0

125.0
125.0
125.0
125.0

TO-218
TO-218
TO-218
TO-218

753
753
691
691

175

175

-

-

60
60

60

60

40
40

-

40
40

34

004
1.0

VERY tT-UGH
POWER
Ie

COM!PllEMrENTARY

CASE STYLE

CASE STYLE

TO-202

TO-220

[)ARl~NGl'ON TRANS~Sl'ORS

GE Device

CONT.
(A)

NPN

PNP

O.SA
0.5A
0.5A

040C1
040C4
040C7

-

2.0A

040Kl
040K2
040K3
040K4

6.0A

10.0A

GA~N

Electrical Characteristics (@ Ta
VCEO
Volts Min. - Max.

hFE
@IC

@VCE

=25°C)

VCE(SAT)
Max. (V)
@IC

Po

Is

TC =25°C
Max. (W)

Package
Outline

Page

6.2S
6.2S
6.2S

TO-202
TO-202
TO-202

371
371
371

200mA
200mA
200mA

SV
SV
SV

1.S
1.S
1.5

SOOmA
SOOmA
SOOmA

O.SmA
O.SmA
O.SmA

-

200mA
200mA
200mA
200mA

5V
SV
SV
SV

1.S
1.S
1.5
1.5

1.SA
1.SA
1.0A
1.0A

3.0mA
3.0mA
2.0mA
2.0mA

10.0
10.0
10.0
10.0

TO-202
TO-202
TO-202
TO-202

391
391
391
391

2K
2K
2K
2K
2K

-

1A
lA
1A
1A
1A

2V
2V
2V
2V
2V

1.S
1.S
1.S
1.5
1.S

3A
3A
3A
3A
3A

3.0mA
3.0mA
3.0mA
3.0mA
3.0mA

30.0
30.0
30.0
30.0
30.0

TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB

41S
415
41S
41S
41S

2K
1K
1K
1K

-

-

1A
SA
SA
5A

2V
5V
5V
SV

1.S
1.S
1.5
1.5

3A 3.0mA
SA 1O.0mA
SA 1O.0mA
5A 10.0mA

30.0
50.0
SO.O
SO.O

TO-220AB
TO-220AB
TO-220AB
TO-220AB

41S
423
423
423

30
40
50

10K
10K
10K

60K
60K
60K

041K1
041K2
041K3
041K4

30
SO
30
SO

10K
10K
10K
10K

-

04401
04402
04403
04404
0440S

Q4501
04502
04S03
04S04
04S0S

40
40
60
60
80

04406
044E1
044E2
044E3

04S06
045E1
04SE2
04SE3

80
40
60
80

-

35

HIGH VOLTAGE
POWER DARLINGTON TRANSISTORS
Ie

CONT.
(A)

10
10
10
10
10
10
10
20
20
20
20
20
26
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
40
40
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50

CASE STYLE CASE STYLE
0-66
TO-204

Electrical Characteristics (@ Ta = 25°C)
GE Device

GE10002
GE10006
GE10007
GE10003
GE6251
GE6252
GE6253
GE5060
GE5062
GE6060
GE10004
GE10000
0660S5
GE5061
GE6061
064ES5
GE10005
GE10001
0640S5
066ES5
GE10008
0660S6
0640S7
066ES6
GE6062
0640S6
064ES6
066ES7
GE10009
064ES7
0660S7
GE10022
GE10023
0660V5
064EV6
066GV5
064EV7
0640V5
064EV5
066EV5
GE10015
0660V6
066EV6
.064DV6
066GV6
066GV7
GE10016
066EV7
D66DV7
064DV7
066EW1
D66DW1
D660W2
D66EW2
D66EW3

Type

NPNO
NPNO
NPNO
NPNO
NPNO
NPNO
NPNO
NPNO
NPNO
NPNO
NPNO
NPNO
NPNO
NPNO
NPNO
NPNO
NPNO
NPNO
NPNO
NPNO
NPNO
NPNO
NPNO
NPNO
NPNO
NPNO
NPNO
NPNO
NPNO
NPNO
NPNO
NPNO
NPNO
NPNO
NPNO
NPNO
NPNO
NPNO
NPNO
NPNO
NPNO
NPND
NPNO
NPNO
NPNO
NPNO
NPNO
NPNO
NPNO
NPND
NPND
NPND
NPNO
NPNO
NPND

hFE
VCEO
Volts Min. - Max.
@IC

350
350
400
400
400
450
500
350
450
350
350
350
400
400
400
400
400
400
400
400
450
450
500
450
450
450
450
500
500
500
500
350
400
400
450
400
500
400
400
400
400
450
450
450
450
500
500
500
500
500
600
600
650
650
700

30
30
30
30
60
60
60
40
40
30
40
40
40
40
30
40
40
40
40
40
30
40
40
40
30
40
40
40
30
40
40
50
50
50
50
50
50
50
50
50
25
50
50
50
50
50
25
50
50
50
25
25
25
25
25

300
300
300
300

-

-

400
400

-

400
400

-

300

-

-

300

-

-

-

-

-

-

-

-

-

@VCE

5
5
5
5
3
3
3
15
15
15
10
10
20
15
15
20
10
10
20
20
10
20
20
20
15
20
20
20
10
20
20
10
10
50
50
50
50
50
50
50
20
50
50
50
50
50
20
50
50
50
50
50
50
50
50

5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5

5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5

36

VCE(SAT}
Max. (V)
@IC

2.9
2.9
2.9
2.9
2.0
2.0
2.0
2.0
2.0
2.0
3.0
3.0
2.5
2.0
2.0
2.0
3.0
3.0
2.5
2.5
3.5
2.5
2.5
2.5
2.0
2.5
2.5
2.5
3.5
2.5
2.5
2.2
2.2
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.2
2.0
2.0
2.0
2.5
2.5
2.5
2.5
2.5

10
10
10
10
5
5
5
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
50
50
50
50
50
50
50
20
50
50
50
50
50
20
50
50
50
50
50
50
50
50

Is
1.0
1.0
1.0
1.0
0.5
0.5
0.5
2.0
2.0
2.0
1.0
1.0
2.0
2.0
2.0
2.0
1.0
1.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
1.0
1.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
1.0
4.0
4.0
4.0
4.0
4.0
1.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0

PD
TC = 25°C
Max. (W)

150.0
150.0
150.0
150.0
125.0
125.0
125.0
125.0
125.0
125.0
175.0
175.0
62.5
125.0
125.0
125.0
175.0
175.0
125.0
62.5
175.0
62.5
125.0
62.5
125.0
125.0
125.0
62.5
175.0
125.0
62.5
250.0
250.0
125.0
180.0
125.0
180.0
180.0
180.0
125.0
250.0
125.0
125.0
180.0
125.0
125.0
250.0
125.0
125.0
180.0
167.0
167.0
156.0
167.0
167.0

Package
Outline

Page

TO-204
TO-204
TO-204
TO-204
TO-204
TO-204
TO-204
TO-204
TO-204
TO-204
TO-204
TO-204
066
TO-204
TO-204
TO-204
TO-204
TO-204
TO-204
066
TO-204
066
TO-204
066
TO-204
TO-204
TO-204
066
TO-204
TO-204
066
TO-204
TO-204
066
TO-204
066
TO-204
TO-204
TO-204
066
TO-204
066
066
TO-204
066
066
TO-204
066
066
TO-204
066
066
066
066
066

667
667
667
667
709
709
709
697
697
703
667
667
529
697
703
507
667
667
507
529
667
529
507
529
703
507
507
529
667
507
529
673
673
537
515
549
515
515
515
537
673
537
537
515
549
549
673
537
537
515
545
545
545
545
545

I

HiGH VOLTAGE

Power Darlington
Transisioll"s (Cant)
Ie

CONT.
(A)

50
60
60
100
100
100
100
100
100

CASE STYLE

0-67

Electrical Characteristics (@Ta = 25°C)
GE Device

D66DW3
GE10020
GE10021
D67DE5
D67FP5
D67DE6
D67FP6
D67DE7
D67FP7

Type

NPND
NPND
NPND
NPND
NPND
NPND
NPND
NPND
NPND

VCEO
Volts Min.- Max.

700
200
250
400
400
450
450
500
500

25
75
75
50
50
50
50
50
50

-

-

-

-

-

-

hFE
@IC

VCE(SAT)
@IC
@VCE Max. (V)

50
15
15
100
100
100
100
100
100

5
5
5
5
5
5
5
5
5

37

2.5
2.2
2.2
2.0
2.0
2.0
2.0
2.0
2.0

50
30
30
100
100
100
100
100
100

Is
4.0
1.2
1.2
8.0
8.0
8.0
8.0
8.0
8.0

CASE STYLE CASE STYLE
0-66
TO-204

PD
TC = 25°C Package
Max. (W) Outline

167.0
250.0
250.0
312.5
312.5
312.5
312.5
312.5
312.5

D66
TO-204
TO-204
D67
067
067
067
067
067

Page

545
673
673
553
559
553
559
553
559

POWER TRANSISTOR/
DARLINGTON ARRAYS
SINGLE INLINE PACKAGE
IC
CONT.
(A)

CASE STYLE
SIP 8 PIN

Electrical Characteristics (@Ta
GE Device Type

2
2
2
2
2

D74FI2D
D76FI2D
D76FY2D
D74FY2D
D76FY2T

NPND
NPND
NPN/PNPD
NPND
NPN

2
3
3
3
3
4
4
4
4
4

D75FY2D
D76FI3T
D78A3D1
D78A3D2
D76A3D
D76FI4D
D74FI4D
D7SFY4D
D74FY4D
D75FY4D

PNPD
NPN
NPND
NPND
NPND
NPND
NPND
NPN/PNPD
NPND
PNPD

4
5
5

D76FY4D
D76A5D
D74A5D

NPN/PNPD
NPND
NPND

hFE
VCEO
Volts Mln.- Max.
@Ie
60
60
80
80
80

2K
2K
2K
2K
500

80
60
100
100
100

2K
500
2K
2K
2K

60
80
80
80

2K
2K
2K
2K
2K

80
100
100

2K
1K
1K

60

8-PIN ARRAY CONFIGURATIONS

--

-

12K
12K
12K
15K
15K

-

-

=25°C)

VCE~AT)

@VCE Max. (V)

Ie,

Is

CASE STYLE
SIP 10 PIN

Po
TC =25°C Package
Max. (W) Outline

Array
Conflg. Page
Fig. 3
Fig. 6
Fig. 5
Fig. 1
Fig. 7

625
641
649
629
651

SIP 8PIN
SIP 10PIN
SIP 12PIN
SIP 12PIN
SIP 10PIN

Fig.
Fig.
Fig.
Fig.
Fig.

633
643
657
661
637

SIP 10PIN
SIP 8PIN
SIP 12PIN
SIP 8PIN
SIP SPIN
SIP 10PIN
SIP 10PIN
SIP 8PIN

Fig. 6
Fig. 3
Fig. 10
Fig. 1
Fig. 2
Fig. 5
Fig. 4
Fig. 1

1.0
1.0
1.0
1.0
0.4

2.0
2.0
1.0
2.0
1.0

1.5
1.5
1.5
1.5
0.5

1.0
1.0
1;0
1.0
0.3

0.001
0.001
0.001
0.001
0.001

3
4
4
3
4

SIP
SIP
SIP
SIP
SIP

1.0
0.4
1.5
1.5
1.5

2.0
1.0
2.0
2.0
2.0

1.5
1.0
1.5
1.5
1.5

1.0
2.0
1.5
1.5
1.5

0.001
0.050
0.003
0003
0.003

3
4
5
5
4

1.0
1.0
1.0
1.0
1.0
1.0
0.5
0.5

2.0
2.0
2.0
2.0
2.0
2.0
3.0
3.0

1.5
1.5
1.5
1.5
1.5

3.0
3.0
3.0
3.0
3.0

0.010
0.010
0.006
0.006
0.006

1.5
2.0
,2.0

3.0
3.0
3.0

0.006
0.012
0.012

4
3
5
3
3
4
4
3

10-PIN ARRAY CONFIGURATIONS

CASE STYLE
SIP 12 PIN

8PIN
10PIN
10PIN
8PIN
10PIN

FIG. 4

FIG. 2

FIG. 5

FIG. 3

FIG.6

FIG.7

38

645
627
665
631
635
655
639
623

12-PIN ARRAY CONFIGURATIONS
9

234

FIG. 1

2
7
8
9
4

FIG. 8

FIG. 9

FIG. 10

10

II

POWER TRANSISTORS/
DARLINGTONS SURFACE MOUNTED DEVICES
IC
CONT.
(A)

CASE STYLE
D-PAK

Electrical Characteristics (@ Ta = 25°C)
GE Oevlce

Type

0.05
0.05
0.8
0.8
1.5

D71G.05T1 PNP
D70G.OST1 NPN
D71Y.BT1
PNP
D70Y.BT1
NPN
D71Y1.5T1 PNP

1.5
1.5
2.0
2.0
3.0
3.0
4.0
4.0
5.0
5.0

D70Y1.5T1
D72Y1.5D1
D71F2T1
D70F2T1
D72K3D1
D73K3D1
D72FY4D1
D73FY4D1
D72F5T1
D73F5T1

NPN
NPND
PNP
NPN
NPND
PNPD
NPND
PNPD
NPN
PNP

hFE
VCEO
Volts Mln.- Max.
@Ie

VCE(SAT)
@1C
@VCE Max. (V)

Ie

Po
TC = 25°C Package
Max. (W) Outline

150
150
30
30
30

70
70
100
100
100

240
240
320
320
320

0.010
0.010
0.1
0.1
0.5

5
5
1
1
2

0.8
0.5
0.7
0.5
2.0

0.01
0.01
O.S
O.S
1.5

0.001
0.001
0.02
0.02
0.03

30
30
50
50
40
40
BO
80
50
50

100
4000
70
70
2000
2000
2000
2000
70
70

320

0.5
0.15
0.5
0.5
1.0
1.0
1.0
1.0
1.0
1.0

2
2
2
2
2
2
2
2
1
1

2.0
1.5
0.5
0.5
1.4
1.5
1.5
1.5
0.4
0.4

1.5
1.0
1.0
1.0
2.0
2.0
3.0
3.0
3.0
3.0

0.03
0.001
0.05
0.05
0.004
0.004
0.006
0.006
0.015
0.Q15 :

-

240
240

-

240
240

SOT-89
SOT-89
SOT-89
SOT-89
SOT-89

583
567
587
571
591

0.5
10.0
0.5
0.5
10.0
10.0
10.0
10.0
20.0
29·0

SOT-89
D-PAK
SOT-89
SOT-B9
D-PAK
D-PAK
D-PAK
D-PAK
D-PAK
D-PAK

575
607
579
563
603
619
599
615
595
611

CASE STYLE
TO-220lS

.Electrical Characteristics (@Ta = 25°C)
GEOevlce

7
7
7
7
6
6

D54FY7D
D55FY7D
D54A7D
D55A7D
D54H6D
D54D6D

Type
NPND
PNPD
NPND
PNPD
NPND
NPND

VCEO
Volts Mln.- Max.
80
80
100
100
250
400

2K
2K
2K
2K
2K
600

15K
15K
15K
15K

-

hFE
@IC
3
3
3
3
2
2

Page

0.5
0.5
0.5
0.5
0.5

POWER DARLINGTONS ISOLATED TO-220 PACKAGE
Ie
CONT.
(A)

CASE STYLE
SOT-89

VCE(SAT)
@IC
@VCE Max. (V)

Ie

1.5
1.5
1.5
1.5
2.0
2.0

0.006
0.006
0.006
0.006
0.040
0.040

3
3
3
3
2
2

39

3.0
3.0
3.0
3.0
4.0
4.0

Po
TC= 25°C Package
Max. (W) Oulllne
30
30
30
30
25
25

TO-220IS
. TO-220IS
TO-220IS
TO-220IS
TO-220IS
TO-220IS

Page
491
503
483
499
495
487

POWER TRANSISTORS/DARLINGTONS
TO-237 PACKAGE

CASE STYLE
TO-237

Electrical Characteristics (@ Ta = 25°C)
Ie
CONT.
(A)

GE Device

2
2
2
2
2

92GU01
2N6714
2N6726
92GU51
92GU01A

NPN
NPN
PNP
PNP
NPN

2
2
2
2
2

92GU51A
2N6715
2N6727
2N6724
92GU45

2
2
2
2
2
2
2
2
2
2

Type

VCEO
Volts Min.- Max.
30
30
30
30
. 40

60
60
60
60
60

PNP
NPN
PNP
NPND
NPND

40
40
40
40
40

60
60
60
25000
25000

92GU45A
2N6725
92GU05
2N6728
2N6716

NPND
NPND
NPN
PNP
NPN

50
50

25000
25000
20
50
50

92GU55
2N6717
92GU06
2N6729
92GU56

PNP
NPN
NPN
PNP
PNP

60
60
60

60
80
80
80
80

20
50
20
50
20

-

-

-

-

-

hFE
@Ie

VCE(SAT)
@lC
@VCE Max. (V)

Ie

PD
TC = 25°C
Max. (W)

Package
Outline

Page

0.100
0.100
0.100
0.100
0.100

1.0
1.0
1.0
1.0
1.0

0.5
0.5
0.5
0.5
0.5

1.0
1.0
1.0
1.0
1.0

0.100
0.100
0.100
0.100
0.100

1.2
1.2
1.2
1.2
1.2

TO-237
TO-237
TO-237
TO-237
TO-237

829
829
835
835
829

0.100
0.100
0.100
0.100
0.100

1.0
1.0
1.0
5.0
5.0

0.5
0.5
0.5
1.5
1.5

1.0
1.0
1.0
1.0
1.0

0.100
0.100
0.100
0.002
0.002

1.2
1.2
1.2
1.0
1.0

TO-237
TO-237
TO-237
TO-237
TO-237

835
829
835
833
833

0.100
0.100
0.500
0.250
0.250

5.0
5.0
1.0
1.0
1.0

1.5
1.5
0.35
0.5
0.5

0.002
1.0
0.002
1.0
0.25 0.025
0.25 0.010
0.25 0.010

1.0
1.0
1.2
1.2
1.2

TO-237
TO-237
TO-237
TO-237
TO-237

833
833
831
837
831

0.500
0.250
0.500
0.250
0.500

1.0
1.0
1.0
1.0
1.0

0.5
0.5
0.35
0.5
0.5

0.15
0.25
0.25
0.25
0.50

1.2
1.2
1.2
1.2
1.2

TO-237
TO-237
TO-237
TO-237
TO-237

837
831
831
837
837

40

0.050
0.010
0.025
0.010
0.050

GENERAL ELECTRIC
BIPOLAR POWER TRANSISTOR
PART NUMBERING KEY 1
(Applies to SOT-89, D-Pak, TO-220IS, & SIP-packaged devices)

D

00

XX

00

X

--

T

0

X

0

STANDARD TRANSISTOR = D: SPECIAL =X _ _ _ _ _

PACKAGE CODE (SEE TABLE 1) _ _ _ _ _ _ _ _ _ _....
EVEN = NPN; ODD = PNP
VOLTAGE CODE (SEE TABLE 2) - - - - - - - - - - - - CURRENT RATING
CONFIGURATION (T = TRANSISTOR; D = DARLINGTON)
OTHER DEVICE SPECIFICATION

---------..11

-==---"""""'==-----------.. . . .--....!I

OTHER DEVICE SPECIFICATION
OTHER DEVICE SPECIFICATION _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _.......0

Example:

0

7 2

T_J...a

STANDARD TRANSISTOR

_ _......._ _ _ _ _ _ _ _ _

D-PAK PACKAGE, NPN (SEE TABLE 1)

T
F Y

4

D

2

80-VOLT DEVICE (SEE TABLE 2)
4-AMP DEVICE
DARLINGTON
LEAD-FORMED VERSION, WIDE hFE

Table 1

Table 2
Package

Package Code

NPN

PNP

54

55

TO-2201S

70

71

SOT-89

72

73

D-PAK

74

75

SIP 8-PIN

76

77

SIP 10-PIN

78

79

SIP 12-PIN

VOLT.
VOLT.
CODe RATING
I
Q

J
U
Y
K
F
FI
FJ
FY
41

10
15
20
25
30
40
50
60
70
80

VOLT.
CODe

VOLT.
RATING

FK
A
G
B
BF
C
CF
D
DF
E

90
100
150
200
250
300
350
400
450
500

VOLT.
VOLT.
CODE RATING
EF
M
S
N
T
P
PA
PB

550
600
700
800
900
1000
1100
1200

GENERAL ELECTRIC
BIPOLAR POWER TRANSISTOR
PART NUMBERING KEY 2
(Applies to TO-202, TO-220AB, TO-218, TO-204, D66 & D67-packaged devices)

D
STANDARD TRANSISTOR

=D; SPECIAL =X

00

XXX

000

T

_ _ _ _ _ _ _ _ _.....

PACKAGE CODE (SEE TABLE 3) _ _ _ _ _ _ _ _ _ _ _ _ _~
EVEN =NPN; ODD = PNP
DEVICE TYPE

----------------------..01

TYPE NUMBER

-------------------------------~

Example 1:

D

STANDARD TRANSISTOR _ _ _ _ _ _ _ _ _ _ _ _ _ _ _T...I

T
4 4

T D

3

TO-220AB PACKAGE, NPN (SEE TABLE 3) - - - - - - - - - - - - ..
DEVICE TYPE
TYPE NUMBER - - - - - - - - - - - - - - - - - - - - - - - - -...

Example 2:

0

6 4

T__T_

STANDARD TRANSISTOR

___________

TO-204 PACKAGE, NPN (SEE TABLE 3)

-

J
V S

5

DEVICE TYPE
TYPE NUMBER - - - - - - - - - - - - - - - - - - - - - - - - - - - -...

Table 3
Package Code
NPN
PNP
41
40
42
43

Package
TO-202

44

45

TO-220AB

46

47

TO-218

64

65

TO-204 (TO-3)

66

D66 MODULE

67

D67 MODULE

42

CGlE~l2:lR1~lL [El[E(Cu~~~

5)[JJJ~~ffi\CClE=~tl(Q)[UJ~l' ~OW[E[FR 'f!R1ANS~STOR
[O)[EV~(C[E ~t\~~~~G ~[EV
(Applies to D-Pak-pacl

u
u
~

~

~

...z

'"a:a:

f\\..

VT1 ·100·C.......... I--'"

z

f\

~

./f

100

~.C

\\

'<><>"
o

~

\

...'"
'"

\

VeE' 5V

'"

\\'\

\\

\
VeE = IOV

10

I \\
1000

100

10

re. COLLECTOR

\\

\

II \
II \

\'

100

10

Ie .COLLECTOR CURRENT (AMPERES)

CURRENT (AMPERES)

(b) DC CURRENT GAIN (VCE= 10V)

(a) DC CURRENT GAIN (VCE= 5V)

FIGURE 2.8 GAIN VERSUS VCE

2.3.5 SATURA nON VOLTAGES

The saturation voltages must be specified as a function of base current, collector current and temperature.
Drive conditions determine the limits on minimum values. When the forced beta (f3F = Ic/IB) is high, saturation
voltages are high and vice versa. Gain hold-up is important if saturation voltages and consequential conductor
losses are kept low over the current range of interest.
Figure 2.9 shows typical values of VCE(SAT) as a function of Ic and IJr for junction temperatures of 25°C and
150°C for the General Electric D67DE Darlington transistor. Note that for TJ = 150°C and Ic = 100 amperes,
VCE(SAT) varies from 3 volts down to approximately 1.2 volts as f3F is varied from 100 to 10.

Iii

Iii

I...J

~
o

o

>

~ 10.0

~IO.O

'"



f-B F' re/ISI

z

o
;:



~

<>

~

;: o. I
u

1-- ....
1.0

o

~

.

F

~

UJ

':'

:

/ fJ.=25

7/ I
~fJFIO

~U>

::E

u

7 P=SO
F

~
a:
a:

'"t::

Iellsi

>
~

UJ

l-

P F100

10

100

200

U>

W
~

Ie. COLLECTOR CURRENT (AMPERES I

O. I

10

100

200

Ie. COLLECTOR CURRENT (AMPERES)
(bl VCE(SAT) VERSUS IC' TJ= 150°C

FIGURE 2.9. VCE(SAT) VERSUS i3F AND TEMPERATURE

The VBE(SAT) versus IC curves shown in Figure 2.10 provide information about the transconductance (i.e.,
gm =IciVBE with VCE constant) of the device. Transconductance is useful to equalize current sharing in parallel
operation of transistors. For single transistor applications these curves are useful in determining the required
clamping diode characteristic when using a Baker clamp for anti-saturation applications. In hard saturation
applications, VBE(SA T) maximum values enable optimization of the driver circuit.
80

1000

.,

~
'"
~

0;10.0

10

!:i
o

T:' 25° C
f1 Fa Iellel

~

!:i

g
z

o

fi
'":::>
!;(

.,
'"'"....
....

'"~

~f1FaIO
~,f1F'25

7: flflFF

!:i

o

TJ ·150·C

o

fl F'IelIel

>
z

fl F =5 n
'-flF a 100

~
§

1.0

.,!;(

L- I--~

~f
/P~

10
25
50
100

-I--:::: ~ J:::J::::

1.0

'"
....
....'"

i

:E

'",

'",

..'"
'"

'"~

en

III

5 o.
}.

~

I
10

100
:Ie. COLLECTOR

~

200

I

0'10

100

~

CURRENT(AMPE~ES)

200

Ie, COLLECTOR CURRENT (AMPERES)

la) VBE(SATI versus Ie. TJ = 25°C

Ib) VBE(SATI versus Ie. T J

=150·C

FIGURE 2.10. VBE(SAT) VERSUS IcAND TEMPERATURE

2.3.6 SWITCHING CHARACTERISTICS
The switching times (tON, ts and tf) of a device can be heavily influenced by the drive conditions .
• Turn-on time can be decreased by increasing base drive for a fixed value of collector current (low f3F);
• Both storage time and fall time can be reduced by providing negative base current during turn-off and use of
anti-saturation circuitry.
Consequently, it is important to define the drive conditions when specifying switching times. For the General
Electric D64VS power transistor, Figure 2.11 illustrates the effects on inductive switching times using negative base
drive (IB2). These times can be decreased even further by use of anti-saturation techniques.
2.0

UJ

:!!
l-

I

I

I

5 f-- Te ·25·C
1.7
1e "01'6
I-- CLAMPED INDUCTIVE
I. 5
LOAD,L' 200 l'h

..

,/

~~

t!>

Z

~

u

~

:;: 1.25

....

~

./

1.0

o

UJ
N

:::;
«

'z"
~

.75 e.--

-

.5 f - - t-

.25

--o

le· 2A .....,;:
le·4~::r
Ie 'BA
Ie '15A

4

.6

2. 5
UJ

'"

;:: 2.0 I-

~

t!>

Z

:;:
~

3'

'":::;

..

N

«

./

1.5

Z

--- f - - .
1.2

1.4

1.6

1.8

~

1.0

''"o"

10

Te ·25·C
Ie II 81'6
CLAMPED INDUCTIVE
LOAD, L' 200l'h

"'c

/

t--i--

.2

~~

lC' 15A
lc=BA
lC' 4A
le' 2A

2.0

le' 2A -

Ie'4A~

.5 I - - I- le' 8A
le' 15A

o

~~

l2~

I e'15A
I e '8A
I e '4A
I e ·2A

~

V

I
.2

.4

.6

.8

1.0

1.2

1.4

1.6

1.8

2.0

RATIO, I BI/IB2

la) STORAGE TIME VARIATION WITH

(b) FALL TIME VARIATION WITH IB2

182

FIGURE 2.11. EFFECT OF REVERSE DRIVE ON Is, If

2.3.7 FORWARD BIAS SAFE OPERATING AREA (FBSOA)
Depending on the transistor design, current in the collector region generally tends to concentrate under the emitter
periphery at turn-on. This reduces the total conducting area to a fraction of the total emitter area, as shown in Figure
2.12. When switching into a clamped inductive load (Figure 2.13), Ie must rise to the full value of IL before the
rectifier can turn-off, releasing the clamp. Consequently, the collector-emitter voltage equals Vee plus the forward
voltage of the diode during this time period.
Therefore, during the current rise time (tr ) the transistor sees simultaneously high voltage (VeE), high current, and
reduced active conducting area. Similar conditions can also exist under fault conditions of the circuit. Depending on
the rise time of the transistor or the duration of the fault condition, this can cause excessive localized heating that can
lead to thermal instability followed by thermal runaway and second breakdown.
81

n+

vlllllllm

c

FIGURE 2.12. CURRENT CONSTRICTION

FIGURE 2.13. CLAMPED INDUCTIVE LOAD

An important item of information for the power circuit designer is the locus of Ic - VCE, which marks the
boundary between stable and unstable operation, and defines the Forward Bias Safe Operating Area (FBSOA). A
typical FBSOA curve is shown in Figure 2.14. Note the limits of collector current and collector voltage.
IC

JL.s.
JL.S .
.........t - - f - - 50 JL. s.
5

~!-I---IO

..

IC (CONTI

VI

..........r-l--1OOJL.S.

~

.~
::J

1% DUTY
CYCLE

......,--+-- 1 M.S.
A

U

"¥-+---

5 M.S.

"¥-"'<:I----o.c.

VCEO (SUS)
O'----------'-------'------'-"'---------VCE

COLLECTOR VOLTAGE (VOLTS)

FIGURE 2.14. FBSOA

Collector current is permissible on it continuous basis in Regions A through C up to a maximum of Iqeont) in Region
A. Above the defined continuous current limits, the current may be applied on a pulsed basis up to the limit defined
by IC(max). Operation above IC(max) may result in melting or lifting of the bonding wires or internal damage to the
chip. Point (I) and the upper DC boundary of Region B represent the maximum dc power of the device at 25°C case
temperature in order to maintain the junction temperature at a temperature less than or equal to TJ(max). In Region
C, the second breakdown limit is defined by the onset of ISIB (Point 2). Currents greater than the maximum limits
defined for dc and pulsed duty (I %) may cause irreparable damage to the transistor as a result of localized heating.
Since energy (that is, a power-time product) destroys the power transistor, high peak powers above the average
power rating are permissible as long as the average power is less than that required to reach the maximum junction
temperature of the device. It must be emphasized that under pulsed operation the junction must be allowed to cool,
such that a temperature build-up does not occur within the device. Note that pulse ratings are specified with a 1%
duty cycle for convenience; however, again duty cycles greater than I % are permissible as long as the maximum
junction temperature of the device is not exceeded.
2.3.8 REVERSE BIAS SAFE OPERATING AREA (RBSOA)
In inductive switching, transistors are susceptible to second breakdown during turn-off. However, the mechanisms
that induce this type of breakdown are quite different from those of forward bias second breakdown. The values of
collector current and voltage at which second breakdown occur are found to vary with the values of the reverse base
drive. This is illustrated in Figure 2.15 for a lOA high voltage transistor. (The data was provided by the National
Bureau of Standards.)

82

The degree of this dependence varies with the type of emitter geometry and vertical structure of a transistor.
For high current inductive switching and with either no reverse bias or weak reverse base drive during turn-off, the
. second breakdown usually coincides with the breakdown sustaining voltage of the transistor. In an inductive circuit,
the energy that the transistor has to sustain following avalanche breakdown can be very large. It can cause the local
temperature to exceed the intrinsic temperature of silicon, resulting in thermal instability and second breakdown by
formation of meso plasmas.
Where a strong reverse base drive is present, second breakdown is initiated by a different mechanism. Reverse base
drive produces a strong localization of emitter current that can be an order of magnitude higher than that in the
forward biased case. It can create a high electric field at the N-N+ junction which triggers avalanche injection. This
lateral electrical instability leads to the formation of filamentary current and results in nucleation and, finally, meltthrough. In either the weak or the strong reverse base drive case, second breakdown is electric field-initiated and
thermally terminated. On the other hand, forward bias second breakdown is usually thermally initiated, as well as
thermally terminated.
It is interesting to note that when the reverse base current is increased to the point where it is equal to the collector
current, the emitter is effectively disconnected and the threshold for reverse bias second breakdown is substantially
increased. This is clearly shown in Figure 2.15. In this situation, a high "pinched in" current density cannot exist
(because IE = 0) and, therefore, there is no observable reverse bias second breakdown.

If an inductive load is used without a clamp and sufficient energy exists to avalanche the transistor during turn-off,
an Es/ B rating (U 2 / 2) is applicable. At turn-off, the collector-emitter voltage flies up due to inductive (di/ dt) kick
causing the transistor to avalanche. The maximum energy the transistor can sustain is determined by increasing the
inductor current prior to turn off until a subsequent device failure results. With increased reverse base drive, current
crowding decreases the transistor ES/B capability.

10

S

1\\

5

IZ

w

IBR=

0::
0::
::J
0
0::
0
I0

·O.lA
·0.2A
.lO.5A
,I.OA
·2.0A

w

..J
..J
0

~~ \~!

Ht--~

0

I~------~----~--~~~~~~

500

100

COLLECTOR- EMITTER VOLTAGE (V

FIGURE 2.15. THE VALUES OF COLLECTOR CURRENT AND VOLTAGE AT WHICH SECOND BREAKDOWN OCCURS FOR
DIFFERENT VALUES OF REVERSE BASE CURRENT. ONE DEVICE WAS USED FOR ALL THE MEASUREMENTS.

Most practical applications employ clamped loads. A typical clamped Reverse Bias Safe Operating Area (RBSOA)
curve is shown in Figure 2.16. The RBSOA curve represents the allowable worst-case turn-off load lines. RBSOA
applies whenever reverse base current flows during turn-off, even when the reverse base current is generated by a base
emitter resistor with no external reverse voltage source. RBSOA is essentially independent of temperature.
As indicated earlier, RBSOA performance varies considerably with reverse bias. Increasing levels of reverse bias
decrease turn-off switching times and hence turn-off switching losses but also increases turn-off current crowding.
These two phenomenom work against each other in relation to RBSOA performance. Hence, device design will
determine whether RBSOA performance improves or degrades with increasing reverse bias.
83

LI

IOOpoH
CLAM PEO RBSOA
25 ::Tc

:: 125°C

VSE '-5VOLTS,R s 'VARIABLE
VCLAMP

:r C (MAX)

!---------,....-T'\
-la=5A

I

I
-I'IOA_

I

S

I

VCC

~------------~I------~~~

I+-VCEO(S~

VCE

FIGURE 2.16. RBSOA TEST CIRCUIT

2.4 MOSFET TRANSISTORS
The MOSFET transistor is a three-terminal voltage controlled device. The drain-to-source current of the
MOSFET is controlled by a voltage applied between the gate and source.
The current gain of the device is extremely high (typically greater than 109), since the gate current consists only of
current required to charge the gate input capacitance and some small leakage through the gate oxide. Since current
gain is extremely high and the drain current is controlled by the voltage applied between gate and source, it is more
appropriate to specify transconductance (LlID/ Ll Vas) when using MOSFETs.
Figure 2.17 illustrates the common source voltage-current relationships of nand p-channel MOSFETs. In the
linear, or ohmic, region the slope represents the MOSFET on-resistance. In the transition region dynamic resistance
of the device is changing as channel pinch-off begins to occur. In the saturation, or active, region the MOSFET
characteristic is nearly flat due to pinch-off occurring in the channel. In this region the MOSFET makes an effective
constant current source.

l12"'°"
LINEAR
E ION

TRANSITION

I:

r

(DRAIN)

SATURATION REGION

I
in
D..

:.

a;

t-

J::

w

Il.

~

Z

0::

Ill:

S
(SOURCE)

I:
I:
al

N-channel MOSFET

r..l
(;

,

~

U.

U
Z

«

a;

0::

0

I:
I:
al

J::

I

Z

1

INCREASING
GATE
VOLTAGE

r..l

;: (;

.2 u.
+

....0

s
(SOURCE)

P-channel MOSFET

Vos ' DRAIN SOURCE VOLTAGE (VOLTS)
+ For N Channel

- For P Channel

FIGURE 2.17. MOSFET TRANSISTOR SYMBOLS AND OUTPUT CHARACTERISTICS

84

2.4.1 POWER MOSFET STRUCTURE
A double diffusion (OMOS) of P and N material into the top epitaxial layer of the substrate creates its channel
and source regions. See Figure 2.18. A thin oxide then covers them and polysilicon is deposited. This polysilicon
layer acts as the gate, providing the means for creating an electric field to invert the channel region. All the source
cells are then connected together with a single layer of metallization to form the source terminal, and the back of the
wafer is metallized to form the drain terminal.
An enhancement mode N channel MOSFET is turned on when the voltage applied to the gate creates an electric
field in the P-channel region. This field converts the channel from P-material to N-material, permitting current to
flow from the drain terminal vertically through the chip then horizontally through the channel into the source region.

SOURCE METAL

GATE OXIDE
PDLYSILICON GATE

FIGURE 2.18. POWER MOSFET STRUCTURE

1.2

en
en

1.1

Cl

>

Cl

w
!::!
....I

<>:
:2
0:

0

0.9

z
0.8
-40 -20

0

20

40

60

80 100 120140

TEMPERATURE-oC

FIGURE 2.19. BLOCKING CHARACTERISTIC

FIGURE 2.20. DRAIN-SOURCE BREAKDOWN VOLTAGE
VARIATION WITH TEMPERATURE

85

2.4.2 BLOCKING CHARACTERISTICS
BVoss is the maximum drain-to-source voltage at a specified junction temperature (usually TJ = 25°C) that can be
safely blocked without avalanching the device. This is illustrated in Figure 2.19. VoaR is the maximum allowable
drain-to-gate voltage that can be safely applied at a specified TJ and gate-to-source resistance (Rgs).
The temperature coefficient of Vos shows a strong temperature dependence, increasing as much as 16% between
+25°C and + 150°C, but decreasing as much as 8% between +25°C and -40°C. See Figure 2.20. The temperature
coefficient is approximately O.12%/oC.
BVoss is the maximum drain-to-source voltage at a specified drain current (10) with no gate-to-source signal
applied.
2.4.3 TRANSCONDUCTANCE (gfs)
Transconductance is defined as the ratio of the change of drain-to-source current brought about by a change in
gate voltage. That is:

Vos = constant
Transconductance is temperature dependent and the effect can best be seen in Figure 2.21. The temperature
coefficient of gfs is approximately 0.2%/°C.
9.0
1.5

is

ill

VGS = BV
1.4

N

:J

«
:;;

Vi
Q.

1.3

:.

~

a:
0

f-

6.0

a::
c:
::J
u

4.5

zw

~

w
u

PULSE TEST BO"sec 1% DUTY CYCLE

1.1

z

«

f-

z

u

<
a::

::J
Cl

Z
0

0

3.0

I

U

'"z

c:

«
c:

.!O

.E

f-

I
0;

0.5 L..-....1..---.JL--...L-~_.J-.--'----.J':--'-----L_~
-40 -20 0
20 40 60 80 100 120 140

0.5

FIGURE 2.21. TYPICAL TRANSCONDUCTANCE

1

1.5 2

2.5 3

3.5

4

4.5

5 5.5

VOS ' DRAIN SOURCE VOLTAGE (VOLTS)

TEMPERATURE -"C
VS.

TEMPERATURE

2.4.4 ON RESISTANCE (rOS(ON))

FIGURE 2.22. OUTPUT CHARACTERISTICS OF
MOSFET (AT LOWER VDS )

The static drain-source resistance ros is equal to Vos/Io at each point (ros is the small signal on resistance
1:1 Vos/ 1:110s at each point). This is illustrated in Figure 2.22.
The "on" resistance of a MOSFET consists of two components, the channel "on" resistance and the bulk resistance
of the device. The "on" resistance of low voltage devices «IOOv) consists primarily of the channel resistance, whereas
the "on" resistance of higher voltage devices is dominated by the resistance of the epi layer. That is,
rOS(ON) = Rch + Ro
Rch = channel resistance
Ro = extended drain resistance (epi layer)
In addition, channel resistance is controlled by the gate voltage and can be decreased by increasing Vas for a fixed
value of drain current. However, the maximum value of Vas must not be exceeded. Figure 2.23 shows typical
normalized "on"resistance. The temperature coefficient of rOS(ON) is positive and results in increased power losses at
higher junction temperature (see Figure 2.24).

86

The temperature coefficient of rDS(ON) ranges from +0.2% to +0.7%jOC depending on voltage (higher voltage
devices have higher temperature coefficients). The difference is caused by the competing effects of the positive
temperature coefficient of the silicon versus the negative temperature coefficient of the gate-to-source threhold
voltage VGS(th). Initially, the temperature coefficient of VGS(th) dominates, but as VDS is increased (with increased epi
thickness and resistivity), the temperature coefficient of the silicon becomes the dominating influence due to the epi
resistance and approaches +0.6 to +0.7%/ C.

w

40

U
Z

iii

~

~

0 20
~

iii

~

2.0

w

w

t!l

c(

f-

;:

'10
zw

o!::!

1.5

w...J
uc(

10

0

8

5

6

w
~
::J

4

o

1.0

rn

~

~
I

Z

~
c

...J

>

a::;
::Ja:

~~

f-

0.5

a:

VGS = 15V
10 = 5.5A

2

'ic

.2 1
en
~ .8

C
o
iii
a:

"

TJ - JUNCTION TEMPERATURE (OC)

TJ - JUNCTION TEMPERATURE (OC)

FIGURE 2.23 NORMALIZED TYPICAL ON-RESISTANCE

FIGURE 2.24. ON VOLTAGE vs TEMPERATURE

2.4.5 BREAKDOWN VOLTAGE VERSUS rDS(ON)
When the drain-to-source breakdown voltage of a MOSFET is increased, the "on" resistance for a fixed chip size
and process will increase exponentially by a factor of 2.3 to 2.7. If the breakdown voltage of a 100-volt device with an
rDS(ON) of one ohm is increased to 200 Volts, and the rDS(ON) of one ohm must remain constant, the area must be
increased five-fold. See Figure 2.25. That is, for a fixed chip size, the conduction losses increase as the breakdown
voltage is increased.

jj1t-1

T

D

r-

'OS(ONt 1ohm
VOS= 100V

--1

TO
2. 5

~

'OS(ONI=1ohm

vos=

200V

FIGURE 2.25. 100 VOLT CHIP SIZE vs 200 VOLT CHIP SIZE WITH CONSTANT ROS(ON)

2.4.6 INPUT AND OUTPUT CAPACITANCE
Capacitances of the MOSFET vary with voltage. The gate structure has capacitance to the source (C gs ) and to the
drain (Cdg)' The inherent reverse biased PN junction adds capacitance between the drain and source (Cds). This is
illustrated in Figure 2.26.
The data sheet specifies Ciss, Coss, and C rss . The relationship to C gs , Cds, and Cgd are defined below.
Ciss = Cgd II Cgs
Coss = Cds II Cgd
C rss = Cgd

87

2000

o

s
a. Device Capacitance

o

5

10

15

20

25

30

35

40

45

VDS-DRAIN-TO-SOURCE VOLTAGE (VOLTS)

b. Typical Data Sheet Values of Capacitance
FIGURE 2.26. TYPICAL CAPACITANCE VS. DRAIN-TO-SOURCE VOLTAGE

2.4.7 GATE CHARGE

The gate input capacitance is a nonlinear function of drain to source voltage. Therefore,switching time and drive
power calculations are based on the average input capacitance. Precise values are obtained from the gate charge as a
function of VGS. If the gate is driven from a current source and the current is integrated, the charge in the gate is
obtained (see Figure 2.27).
If gate capacitance is examined as a function of gate voltage, there are three areas with distinctly different
capacitances (see Figure 2.28). Between to and tJ, the device is practically off and the linearity of the slope indicates
constant capacitance. At time tJ, the drain-to-source voltage (Vos) begins to decrease until time t2. The slope of Vos
changes dramatically indicating a large increase in capacitance, a result of the Miller effect. At time t3, the device is
on. Between t2 and t3, the slope of VGS changes, due to the increase in Cgs as Vos decreases. The energy to turn the
device on is:

W = Y2 • VGS QG (Watt-Sec)
The power consumed is
P = QG. VGs. f

R

t

+

FIGURE 2.27. CIRCUIT FOR GATE CHARGE MEASUREMENTS

FIGURE 2.28. DYNAMIC GATE CHARACTERISTICS

88

2.4.8 SWITCHING CHARACTERISTICS
The MOSFET inherently has very fast switching speeds. Switching speed is primarily limited to the time it takes to
charge the gate input capacitance (Ciss). If it were possible to charge the gate instantaneously, the switching time
would consist only of the time it takes for the carriers to travel from source to drain (typically pico-seconds).
In addition to the pulse source impedance and input capacitance, other limiting factors at high switching speeds are
parasitic inductances in the wiring and connections to the package. Switching times for a MOSFET device change
very little as a function of temperature. A simple test circuit (Figure 2.29) can be used to evaluate switching times. It
consists of a pulse generator with known rise and fall times and known source impedance.
In most cases, switching speeds will be limited by the pulse generator source impedance, peak current capability,
and the parasitic inductances of the external package connections. Even the shortest connection will make an
undesirable contribution to switching time. The delay at turn-on is due to the time required for the gate voltage to
rise from zero volts to Vgs(th)' Once Vgs(th) is exceeded, the device will begin to conduct current. The delay at turn-off
is due to the over-drive of the gate to maintain minimum rDS(ON) (i.e., ON-voltage) while the device is conducting.
Vas must decrease significantly before rDS(ON) or VDS begins to rise. Switching waveforms of the input voltage and
the output voltage are shown in Figure 2.30. Note that these are idealized waveforms and actual waveforms may be
rounded or will have overshoot.
v
~

PULSE WIDTH

90%
TO SCOPE
TO SCOPE

D

Vg(t)

VOS(t)

0--~~~---------4~----------------~

ADJUST
FOR 10

VII
TO SCOPE

Zo

~

VOS (t)

If

--E--

iO(t)
LOW LSHUNT

.__________ J I
10%

FIGURE 2.29. SWITCHING TIME TEST CIRCUIT

FIGURE 2.30. SWITCHING WAVEFORMS OF INPUT
AND OUTPUT VOLTAGE

2.4.9 RATED CONTINUOUS CURRENT AND PEAK CURRENT
The rated drain current (ID) is the maximum de current a device can conduct without derating.
IDM -- the rated pulsed drain current -- is the maximum value of peak current the device can conduct at a
specified pulse width without derating. It is a function of pulse width, duty cycle, junction temperature, and
repetition rate. The maximum peak current may be limited by the diameter of the bonding wire, the mounting pad
area, or by the pellet surface metallization.
In a bipolar transistor, the rapidly decreasing hFE at high currents generally discourages operation in excess of
peak current ratings. In a MOSFET, the gain is not significantly reduced at high currents, but rDS(ON) may increase
if the gate-to-source voltage is not sufficiently high.
2.4.10 RUGGEDNESS
The ruggedness issue associated with Power MOSFETs is a result of the presence of a parasitic bipolar transistor
intrinsic in the structure of a vertical DMOS processed device. Figure 2.31 shows the equivalent circuit of this
parasitic element. This transistor has its base-emitter junction shorted by the source metallization, but "the
effectiveness of the short is dependent on design and process control. If carriers generated by high electric fields in the
drain region are allowed to cross the base region into the emitter region to cause bipolar transistor action, the

89

characteristic VCER breakdown shown in Figure 2.32 is observed. The locus of this breakdown is very much lower in
voltage than the V CBO (BVDSS) characteristic which would be observed if the transistor were completely suppressed.
Additionally, this locus shows a negative resistance characteristic as bipolar transistor gain increases with increasing
current. If the transistor is allowed to become active, the classic failure mechanism of the second breakdown can
occur, with current hogging taking place on both a macroscopic (amongst cells) and microscopic (within cells) level.
This causes local heating, thereby increasing bipolar gain, further constricting current and eventually leading to
failure.
The equivalent circuit of an NPN bipolar transistor in parallel with a MOSFET serves to explain the ruggedness
phenomenon from a circuit standpoint. The effectiveness of the base shorting resistor in preventing transistor action
determines the activity of the transistor when stressed by high voltages, or by high displacement currents through the
depletion region capacitance.
The transistor can be stressed in any or all of three ways. 1) High dv / dt impressed on the equivalent collector can
cause large displacement currents through the equivalent base shorting resistor which can cause the transistor to turn
on with predictable disastrous results if circuit conditions allow. 2) If the equivalent diode (transistor collector-base
junction) is caused to conduct in the forward direction, minority carriers left in the equivalent base region during
diode recovery can cause transistor action, again with destructive results if external circuit conditions allow. 3)
Finally, minority carriers crossing the base-emitter junction, generated as a result of avalanche conditions in the drain
region, can initiate transistor action, again resulting in failure of the device given sufficient external circuit energy.
Effective suppression of the parasitic bipolar transistor by design and strict process control is essential to
producing Power MOSFETs with the capability of operating under adverse stress conditions.
D

VCER
{J= 100

VGS= a

I

I

Q,
VCER
{J = 20

G
VDS
BVDSS

I.I
,I

II
~~====~~~~==~~/~I~vCE
VCBO

BIPOLAR TRANSISTOR

MOSFET TRANSISTOR

S

FIGURE 2.31. PARASITIC BIPOLAR CONTAINED
IN MOSFET STRUCTURE

FIGURE 2.32. MOSFET/TRANSISTOR BREAKDOWN

While the stress condition caused by avalanche breakdown is to be avoided on a repetitive basis, this stress can be
realized even in properly designed circuits when fault conditions arise. The Unclamped Inductive Switching (UIS)
test, performed using the circuit shown in Figures 2.33A and 2.33B, which stresses devices in the avalanche mode, has
been instituted as a process control in the GE Power MOSFET product line. The UIS test is an easily performed and
repeatable test, and devices shown to be rugged in avalanche breakdown also exhibit excellent characteristics in
dv / dt and diode recovery ruggedness. The converse, however, is not necessarily true - Power MOSFETs showing
good diode performance do not necessarily perform well in dv / dt capability or UIS.
VII
VGR(DS)

-+------------

E =10% VBR(DS)

E

WDSR = (

VBR(DS) \
VSR(DS)

-~)

(+

LIDS)

Tl
E

i= -

FIGURE 2.33A AVALANCHE ENERGY TEST CIRCUIT

I..

- - - -...·""I..-tAv---I
Ll
tAV= - VSR-E

FIGURE 2.33B AVALANCHE ENERGY TEST WAVEFORMS

90

2.4.11 THE PARASITIC DIODE
It has been shown in the previous discussion on ruggedness that the base-to-emitter junction of the parasitic NPN
transistor is practically a short circuit. Therefore, Figure 2.34 becomes the new equivalent circuit, that is, a MOSFET
in parallel with a diode.

If the drain-to-source is reverse biased, the diode will conduct. The forward current and reverse voltage ratings of
the diode are the same as the current and voltage ratings of the MOSFET. It may be used in inductive circuits as a
free-wheeling diode or as a clamp.

The internal diode is characterized for forward voltage drop and reverse recovery parameters like a discrete diode.

s
FIGURE 2.34. MOSFET WITH INTERNAL DIODE

2.4.12 FORWARD BIAS SAFE OPERATING AREA (FBSOA)
To achieve reliable operation for a power semiconductor, the FBSOA of the device must not be exceeded. Data
provided for this curve is at a case temperature of 25° C or at a specified junction temperature. This is shown in
Figure 2.35. The limits of the FBSOA curve are established by peak current, power dissipation at TJ(MAX) and
breakdown voltage.
2.4.13 SWITCHING SAFE OPERATING AREA
GE MOSFETs are rugged devices. The area that the load line can safely traverse is rectangular, limited by the
rated drain current (IDM), drain-to-source voltage (VDSS), and maximum permissible power dissipation within the
device.
The Switching Safe Operating Area, illustrated in Figure 2.36, is applicable to both turn-on and turn-off.
10M

,

10M
f-

~
~

::l

<.>

10

\,"

a:

,/

Q

_0

i'...

,

.........

.......

z

"

)<

~_

"

.........

I.........

i"'( [-.....1"-

OPERATION IN THIS AREA
MAY BE LIMITED BY ROS(ON)

["-....

.........

tIT

~

".........

"-~

, ."-

f-

"

"-

":!.

lOllS

ION'" IOFF:S lpsec
TJ,ul00°C

iila:

100,,5

a:

,L

::l

<.>

z
a:

"
Q

......... .........
SINGLE PULSE

Tc =25°C

cj

lOms

f!

lbo~,

i"'(
,

Oc
0

0

VDSS
Vas' DRAIN -SOURCE VOLTAGE

FIGURE 2.35. MAlCIMUM SAFE OPERATING AREA

VDSS
Vac, DRAIN-TO-SOURCE VOLTAGE (VOLTS)

FIGURE 2.36 MAXIMUM RATED CLAMPED SAFE OPERATING AREA

2.4.14 HANDLING CONSIDERATIONS
MOS integrated circuits are extremely sensitive to electrostatic discharge (ESD) or any other voltage transient
with sufficient energy content to break down the gate dielectric and do permanent damage.
Power MOSFET and IGT" transistor input capacitances are much higher than MOS IC's (many thousands of
cells in parallel), therefore more energy is required to charge the capacitance. This makes the device somewhat less
sensitive than integrated circuits. However, proper precautions must be taken in handling, packaging, and
installation of devices.
There is always the threat of a latent ESD failure! A latent failure can be defined as a time-dependent malfunction
that occurs under use conditions as a result of earlier exposure to electrostatic discharge that did not result in an
immediately detectable problem.
91

When devices arrive at their destination, it is recommended that they be left in the antistatic package until used.
They should be stored in conductive containers and only unpackaged on a static safe work station by persons
familiar with the ESD problem. Operator recommendations include use of: (1) static wrist straps, (2) static
controlled floor mats, (3) static controlled work surfaces, and (4) grounded soldering tips. All ground connections
should contain a 1 Megohm safety resistor-to-ground to protect personnel. Devices should not be picked up by their
terminals, and when inserted into electrical test equipment, voltages should only be applied after all terminals are
connected to the electrical circuit.

2.5 INSULATED GATE

~IPOLAR

TRANSISTORS

The IGT'" transistor is a three terminal device with the voltage controlled input of the MOSFET. The output
characteristic of the IGTM transistor is similar to that of the MOSFET, except that there is ,an approximate 1.0 volt
offset in collector emitter voltage before significant collector current flows. The effective on-resistance in the
saturation region is much lower for the IGTM transistor than the MOSFET. Understanding the IGTMtransistor
output characteristic is aided by the equivalent circuits shown in Figure 2.37.
When a gate-to-emitter voltage greater than the threshold voltage [VGE(th)] is applied to the device with the
collector positive with respect to the emitter, collector current flows. Current gain of the device (Ie! IG) is extremely
high and is typically greater than 109, since the gate current consists only of current required to charge the effective
input capacitance of the device and some small leakage through the gate oxide.
Since collector current is a function of gate-to-emitter voltage, it is more appropriate to specify transconductance
(Ale! AVGE) when using IGTMtransistors.
Figure 2.38 illustrates the common emitter voltage-current relationships of nand p-channel IGTM transistors.
Note that the definition of the linear and saturation regions is the same as the bipolar case.
N·IGT'· TRANSISTOR

P·IGT'" TRANSISTOR

J

J
FIGURE 2.37 IGr" TRANSISTOR EQUIVALENT CIRCUITS

2.5.1 IGTMTRANSISTOR STRUCTURE

The IGTM transistor is fabricated by starting with a heavily boron doped (P+) substrate and epitaxially growing a
high resistivity phosphorous doped (N-type) drift region. See Figure 2.39. The gate and emitter structure is then
formed in the epitaxial layer by using a high resolution, N-channel, DMOS process. Since the IGTM transistor
contains a parasitic pnpn thyristor structure, a P+ diffusion has been added to the basic power MOSFET structure in
the middle of each cell. This layer reduces the current gain of the upper NPN transistor and prevents latch up of the
parasitic thyristor. Without this feature, the IGT Mtransistor would latch up at high current levels causing loss of gate
control. In the GE IGTM transistor, the P+ region is introduced without additional processing in order to obtain high
yields and minimize wafer processing cost. The use of a separate P-base region allows independent control over the
gate turn-on threshold voltage. In these devices, the blocking voltage capability is controlled by the thickness and
resistivity of the N-drift region. This region has been optimized to simultaneously keep the forward drop as low as
possible.
92

(COLLECTOR)

i

INCREASING
GATE
VOLTAGE

(GATE'

(GATE)
o---~

G

G

(EMITTER)

VCE COLLECTOR-EMITTER VOLTAGE (VOLTS)
+ For N Channel

(COLLECTOR)

N-CHANNEL MOS IGr" TRANSISTOR

- For P Channel

(EMITTER)
P-CHANNEL MOS IGT '" TRANSISTOR

FIGURE 2_38 IGT'· TRANSISTOR SYMBOLS AND OUTPUT CHARACTERISTIC.

EMITTER METAL

POLYSILICON GATE

N - EPITAXIAL LAYER

FIGURE 2.39 IGT'· TRANSISTOR STRUCTURE

2.5.2 BLOCKING CHARACTERISTICS
The IGrM transistor has blocking characteristics similar to the Power MOSFET. That is VCER is the maximum
allowable voltage at a specified junction temperature (usually TJ = 25°C) that can be applied between the collector
and emitter terminals with a specified gate-to-emitter resistance (see Figure 2.40).
The temperature coefficient of VCER shows a strong temperature dependence, increasing as much as 15% between
25°C and + 150°C, but decreasing as much as 8% between 25°C and -40°C (see Figure 2.41). The temperature
coefficient is approximately O.12%/°C.
VCGR is the maximum allowable collector-to-gate voltage that can be safely applied at a specified TJ and gate-toemitter resistor (RGE).
VECR is the maximum emitter-to-collector voltage that can be applied in the reverse direction at the onset of
93

avalanche at a fixed collector current with the gate-to-emitter resistance specified at a minimum value. Increasing the
magnitude of VCE beyond this value will eventually lead to device destruction.

ACTIVE REGION

__- - - -

t

1.2

lNCREASING
GATE VOLTAGE

()

\\l

I_~
REVERS~

...E.QB.l!ffi£!.

CHARACTER ISTICS

CHARACTERISTICS

I
I

;;

0
t-

1.0

o

...

W
N

vF

:::i

'a:z""
0

;

0.8

Ic:: 1mA

VeER RATING

0.6
-100

-50

150

100

50
CASE TEMPERATURE"'C

FIGURE 2.40 COLLECTOR CHARACTERISTICS

FIGURE 2.41 NORMALIZED COLLECTOR-EMITTER BREAKDOWN
VOLTAGE VARIATION WITH TEMPERATURE

Although the IGT'M transistor inherently provides reverse blocking, special junction passivation techniques are
required to provide low leakage. Devices without this extra processing are not characterized for reverse blocking.
2.5.3 GATE-TO-EMITTER THRESHOLD VOLTAGE
If the gate-to-emitter voltage is increased from zero volts, the collector current does not increase significantly until
the gate-to-emitter threshold voltage (2-5V) has been exceeded. Gate-to-emitter threshold voltage is specified at
different current levels, depending on device current rating. Gate-to-emitter threshold voltage changes with
temperature. The temperature effect is shown in Figure 2.42 and VOS(th) has a coefficient of -6 mV JOC.

2.5.4 TRANS CONDUCT ANCE (gfs)
Transconductance is defined as the ratio of change of collector-to-emitter current brought about by a change in
gate voltage. That is:
_ AlcE
VCE = constant
gfs--AVOE
Transconductance is temperature dependent, and the effect can best be seen in Figure 2.43. The temperature
coefficient of gfs is approximately -0.3%jOC.

1.2

IC"'lmA
TYP. VALUE., 3.5V

"

oL-.L.--'-----'---'-~-L-L~~~~_~~

O.6'----'"------'-----'----'-----.L.-~

-100

-50

50

100

o

150

CASE TEMPERATURE"C

2

4

6

B

10
12 14
16
Ic(AMPERES)

18

20

22

24

26

FIGURE 2.43. NORMALIZED TRANSCONDUCTANCE
VS. COLLECTOR CURRENT.

FIGURE 2.42. NORMALIZED GATE-TO-EMITTER THRESHOLD
VOLTAGE VARIATION WITH TEMPERATURE

2.5.5 ON-STATE VOLTAGE [VCE(SAnJ
The on-state voltage characteristics of the IGT'M transistor are similar to a bipolar transistor. That is, VCE(SA n
decreases with increasing gate-to-emitter voltage and has a temperature coefficient that varies as a function of
collector current. This is shown in Figure 2.44 for a 10 amp device. It is observed that for collector currents from 0.5
Amps to 7 Amps the temperature coefficient of voltage [AVCE(SAnJ varies from -0.5 mV JOC to a zero temperature
coefficient at 7 Amps. For currents greater than 7 Amps, the temperature coefficient is positive. At 9 Amps, the
temperature coefficient is approximately +0.75 mVjOC.

94

2.5.6 GATE-TO-EMITTER DRIVE

The input characteristics of the IGT M transistor are similar to a Power MOSFET. That is, it has a gate-to-emitter
threshold voltage and a capacitive input impedance. In order to turn the device "on," the input capacitance must be
charged up to a value greater than VOE(th) before collector current can begin to flow. Typical VOE(th) is shown as a
function of temperature in Figure 2.45.
In order to turn the IGT M off, a resistor connected between gate and emitter is all that is required. This resistor
provides a path for the gate-to-emitter input capacitance to discharge. It must be emphasized that ROE has a lower
limit that cannot be reduced, and the value is indicated on individual device data sheets. The IGTM transistor has a
maximum controllable collector current that is dependent on the gate-to-emitter dv 1dt. That is, the higher the gateto-emitter turn-off dv 1dt, the lower the controllable collector current.
2.5.7 SWITCHING PROPERTIES

The IGTM transistor is designed such that the turn-on and turn-off times of the device can be controlled by the
gate-to-emitter source impedance. Its equivalent input capacitance is lower than a Power MOSFET with a
comparable current and voltage rating. The device is turned on by applying a positive voltage between the gate and
emitter terminals. When VOE is greater than VOE(th), collector current flows. In switching applications where
VOE > > VOE(th), the device saturates.
The IGTM transistor is similar to a Power MOSFET during turn-on and similar to Power Bipolars during turn-off.
However, during turn-off, it exhibits a fall time that consists of two distinct time intervals - designated hereafter as
tn and tf2. Typical switching waveforms for a resistive load are shown in Figure 2.46 using two types of IGTM
transistors. The two time intervals are very distinct for the slow device. The turn-off delay is caused by the discharge
time constant of the effective gate-to-emitter capacitance and ROE.
The IGTM transistor has a positive temperature coefficient associated with its fall time. It is approximately
0.27%/° C. The rise time of the IGTM transistor is relatively constant over temperature and is similar to a Power
MOSFET.
25,-----,------,-----,------,-----,
~

1.2

~

20 1-------t------+----"--rt-----r---tr--------1

""-"
~

15t------+------~_+--~~L-_+--------1

~

10

~
a

~

8

r------t--------v'---hL--f------+---------j
IC"lmA
TYP. VALUE"'3.5V

5 1-------t---7"-7I'q-----VGE"'·15V ------1----1
MAXIMUM PULSE WIDTH "'300 j.lsec
MAXIMUM DUTY CYCLE =2%

0.6 ' - - - - " - - - -........_ _--'-_ _---'_ _ _' - - _

-100

-50

CASe TEMPERATURE

~',

!

·;n'F"

,."

~

ilV
~l

I

t,

11

l1

I

I

11

g

I '.

til i~U
I

ISO

~C

FIGURE 2.45. NORMALIZED VGE(th) VS. TEMPERATURE

FIGURE 2.44. TYPICAL V CE(SAT) VS. ICE AND T J
FOR A 10 AMP DEVICE
o';\~'.'

100

50

COLLECTOR· EMITTER SATURATION VOLTAGE, VeE (SA TI',VOLTS

II

I

II

I

OilS I

TOP (leI VERT= 2A/cm BOTTOM (V GEl VERT= 5V/cm

FIGURE 2.46. RESISTIVE LOAD SWITCHING

95

II
II
I

~

1~ ~

1I

I

2.5.8 EQUIVALENT FALL TIME
The two distinct fall time intervals make it difficult to estimate power loss given the traditional 10-90% fall time.
The equivalent fall time, tf(eq), is the calculated linear fall time that yields the same area under the current curve as
the actual turn-off curve, see Figure 2.47. For inductive switching, turn-off losses can be estimated using
~ VCEIc f tf(eq»'

IF(eq)
i(l)dl

IF=

~
1

S~

i(l)dl

10

FIGURE 2.47. EQUIVALENT FALL TIME

2.5.9 CONTROLLING CURRENT FALL TIME
The current fall time of the IGT'M transistor can be controlled by use of external circuitry. tf) is directly controlled
by the value of RGE (Figure 2.48). This dependence is shown in Figures 2.49 and 2.50. tf2 is not controllable and is an
inherent characteristic of the type of IGT'M transistor that is selected. The control feature of tf) by a resistor (RGE)
can be an advantage. For example, in case of an inductive load, the fall time can be slowed to the extent that
snubberless operation is possible. Figures 2.49 and 2.50 are idealized representations of the two phases of the device
turn-off. That is, a slow device can be used for dc and low frequency applications with minimal gate turn-off current
or a fast device can be used with a nearly linear turn-off characteristic. [Figure 2.50]. For higher frequency operation,
a fast device with RGE I p.u. will minimize switching losses due to tn and tf2 per Figure 2.50.

=

'c
'CM-I---.........

III

VARIABLE

tf2~CONSTANT

1f2
CONSTANT

loon

470n

lK

80

10K

t(~s)

I\;E (UI

FIGURE 2.48. SWITCHING TIME VS. RGE

FIGURE 2.49. FALL TIME CONTROL FOR A SLOW DEVICE

96

,,~~- - - - - - - - - - - RGE=N

,

p.u.

I

I
I

'"

I
I

VARIABLE

I

'12
CQNSTMH

10 t(,..s)

FIGURE 2.50. FALL TIME CONTROL FOR A FAST DEVICE

2.5.10 FORWARD BIAS SAFE OPERATING AREA (FBSOA)
A typical Forward Biased Safe Operating Area curve is shown in Figure 2.51. The IGT'M transistor can conduct
peak currents beyond the controllable current limit of the device. The device is derated linearly due to thermal
limitations and has a peak pulse current rating limited by power dissipation and wire bond capability. There is no
second breakdown current derating for the IGT'M transistor.
2.5.11 TURN-OFF SAFE OPERATING AREA
The IGT'M transistor does not require a negative turn-off bias for high speed switching. The current fall time is
determined by the value of RGE. Therefore, the devices have been characterized as a function of RGE for a resistive,
as well as an inductive load. A typical clamped SOA for an inductive load is shown in Figure 2.52. The area that the
turn-off load line can safely traverse is rectangular-limited by the collector current, collector-emitter voltage (VCE),
and maximum permissible power dissipation within the device.

40

100
50

13a:

~

en
UJ

~

~

!i
UJ

"

20

r-.....
'I'

"i'..

10

'i'..

~ 30

~

::i

E

!i

5

."

a:
a:

i:l
a:

10psec

" f"'....

i'..

o

§ 05

"

SINGLE PULSE
IC;2r1

0.1

1

III
10

20

50

'forr

100

200

,-,

UJ

INDUCTIVE OR RESISTIVE LOAD

a:
a: 20

..I"

i:l

TJ - 150'C
RGE ~ 100 OHMS

a:

~
u

I'r......

1.0

:l

0.2

"

'" ""- LU

i'..~,

~

&1

UJ

~

o
U

."

lOmsec

10

Ul

lQOmsec

" rLll
500

o

°

VCE. COLLECTOR·EMITTER VOLTAGE. (VOLTS)

FIGURE 2.51. FORWARD BIAS SAFE OPERATING
AREA AND TURN-ON

100

200

300

400

500

PEAK COLLECTOR·EMITTER VOLTAGE, VCE, VOLTS

FIGURE 2.52. TURN-OFF SAFE OPERATING AREA

2.5.12 HANDLING CONSIDERATIONS
MOS integrated circuits are extremely sensitive to electrostatic discharge (ESD) or any other voltage transient
with sufficient energy content to break down the gate dielectric and do permanent damage.
Power MOSFET and IGT'M transistor input capacitances are much higher than MOS IC's (many thousands of
cells in parallel), therefore more energy is required to charge the capacitance. This makes the device somewhat less
sensitive than integrated circuits. However, proper precautions must be taken in handling, packaging, and installation
of devices.
97

There is always the threat of a latent ESD failure! A latent failure can be defined as a time-dependent malfunction
that occurs under use conditions as a result of earlier exposure to electrostatic discharge that did not result in an
immediately detectable problem.
When devices arrive at their destination, it is recommended that they be left in the antistatic package until used ..
They should be stored in conductive containers and only unpackaged on a static safe work station by persons
familiar with the ESD problem. Operator recommendations include use of: (1) static wrist straps, (2) static controlled
floor mats, (3) static controlled work surfaces, and (4) grounded soldering tips. All ground connections should
contain a I Megohm safety resistor-to-ground to protect personnel. Devices should not be picked up by their
terminals, and when inserted into electrical test equipment, voltages should only be applied after all terminals are
connected to the electrical circuit.

98

The increased need for electronic component quality and reliability has zoomed dramatically in recent years. One
of the primary reasons for this sudden change has been the rapid growth of complex industrial and consumer
electronic systems that require the use of large numbers of devices per system. This requires the defective levels of
incoming components be extremely low in order to successfully manufacture these systems at minimum costs. This
has resulted in the recent trend to measure component defective levels in Parts Per Million (PPM) instead of the
previous parts per hundred or percent. This quality measurement is 10,000 times more sensitive than the previous
measurement.
In addition, these systems are required to perform satisfactorily over long periods of time such as for 10 to 20
years. This means that accelerated reliability assessment techniques must be used to develop models for predicting
long life performance of these components. The accelerated component assessment must be made long before the
devices can be evaluated under application conditions. This is needed since testing at use conditions would require
stressing a large number of devices for years in order to prove that devices were reliable. In the meantime, the devices
and the systems would be obsolete. Accelerated testing techniques are also needed to give a rapid evaluation of
component product designs and design improvements to minimize costs.
A new method of predicting the reliability or product life of semiconductors under field conditions is described.
This includes the use of accelerated test results to obtain the quantitative multipliers for derating semiconductor
junction temperature, voltage and measurement conditions. The failure rate based on these multipliers is used with
the negative exponential distribution to predict the probability of survival (Ps) or reliability. The expression one
minus P s gives the probability of failure. The result of this method was confirmed with the accelerated testing of over
5,000 diodes and three years of field operation of over 770,000 diodes!.
The purpose of this chapter is to discuss some of the latest techniques used in the manufacture and assessment of
semiconductors to meet the new quality and reliability requirements. Results from the accelerated testing of our
signal and power bipolar transistors, Power-MaS transistors and our Insulated Gate Transistors (IGTs) will be
discussed.

3.1

OU~IUTY

Product quality can be defined as a result of the successful development, design, manufacture and shipment of a
product that meets customer expectations. It is recognized that this cycle from concept to customer acceptance can
only be accomplished with quality conscious personnel who are trained, motivated and dedicated to excellence. To
aid in achieving this product quality, a world class Computer Aided Manufacturing (CAM) facility was developed
and is operating in Syracuse, New York. This incorporates the latest in cleanroom technology, automated process
equipment and state-of-the-art integrated circuit processing environments to give consistent quality and reliability in
our products.
This Computer Aided Manufacturing (CAM) is supported by the latest Computer Aided Design (CAD) techniques
which includes device and package simulation. This system has taken years off the product development cycle which
enables us to tighten design specifications and produce higher quality products.
Computer Aided Design (CAD) and Computer Aided Manufacturing (CAM) are enhanced with a wide range of
quality and reliability assurance activities. The latest quality assurance techniques are being implemented on a
99

worldwide basis. For example, manufacturing personnel are being trained in the use of statistical process control.
Control charts are being used at critical manufacturing steps.
These control charts are used to graphically display the results of process measurements and identify variations
that are due to assignable causes. Corrective actions are taken to remove the assignable causes. The results from these
charts show when the assignable cause variations are removed and the measurement data variations return to random
or chance variation. This assures that the product is made under a uniform manufacturing process which is necessary
to meet the low outgoing defective levels in Parts Per Million (PPM).
The outgoing inspection gate is used to assure that only lots of devices that pass the inspection criteria are shipped
to customers. A random sample from each lot is submitted to inspection. The inspection criteria includes a section
for electrical parameters and another section on visual/mechanical parameters. If the sample passes inspection, the
lot is accepted for shipment. If the sample fails, the lot is returned for 100% screening to remove the defectives. A
defective is defined as any device that does not conform to a specification in some respect. The rescreened lot is again
submitted to outgoing inspection. The defective level in the accepted lots is summarized monthly and included in the
GE Quarterly Quality Report.
A worldwide quality organization is set up to meet the requirements of MIL Q 9858A for the signal and power
products on the MIL-S-19500 Qualified Products List (QPL). The quality system and product lines on the QPL are
audited periodically by the Defense Electronics Supply Center, Dayton, Ohio to assure compliance to MIL-S-19500.
In addition, regular contributions are being made to IEC Technical Committee TC47-Semiconductors, for the new
International Electrotechnical Commission Quality System (IECQ) on Semiconductors.
The quality System used to manufacture these devices includes documented procedures that are described under
the concept of "Total Quality Control".

3.2 RELIABILITY
In order to demonstrate the reliable performance of transistors, a number reliability evaluation stress programs
have been conducted. These programs were designed to evaluate and demonstrate device properites such as chip
surface stability, sealed junction integrity, thermally matched package materials, and long life stability. The devices
used in the testing programs were random samples from several production lots taken from different product lines,
and they received no special preconditioning or stress screening. They were submitted to accelerated levels of
environmental, thermal, and power stresses which usually exceeded the normal MIL-STD levels. The results of these
statistically significant programs have established the capability of the General Electric transistors to operate under
the extreme range of environmental conditions required in demanding consumer and industrial applications 2•
This chapter summarizes the results of accelerated testing of transistors, and includes a discussion of reliability
prediction. Calculations of expected reliability under normal application conditions are shown. An Arrhenius model
of response to stress shows the gain in reliability that can be expected by derating to operating levels below device
ratings. This chapter also discusses the probability of survival and failure of a device or system when using a given
MTBF and the negative exponential failure distribution.
Evaluating the reliability of discrete semiconductor devices was accelerated a number of years ago with the
Minuteman and other government-sponsored reliability improvement programs. This discussion will focus on some
important accelerated testing techniques and analytical methods that have been developed and show how they are
used to obtain reliability prediction models. These techniques can also be used to determine effective stress screens to
remove the early failures, especially for critical and costly applications. These early failures are normally due to
random manufacturing defects that usually occur in a small fraction of the device population. These early failures
usually cannot be detected with only conventional electrical measurements.

100

3.2.1 GENERAL APPROACH TO ACCELERATED TESTING
The accelerated tests have been evaluated on a number of reliability improvement programs. The chief advantage
of these tests is that they allow one to estimate, in a short period of time, the probability of successful operation of
electronic components in long-life systems. The test results are used I) to evaluate early designs of new products and
process changes, 2) to maintain process controls during the manufacture of the devices, and 3) to predict reliability,
failure rate, and mean time-to-failure over the useful life of devices in applications.
The usual failure pattern that can be anticipated for electronic components is shown in Figure 3.1. This pattern
includes the early failure period followed by the useful life (constant failure rate) period, and finally the wear-out
period which has not been established for well designed semiconductors. Failures that occur during the early failure
period are usually due to random manufacturing defects. A constant failure rate estimate after the early failure period
is quite conservative, since well designed semiconductors under test and in most applications have a slightly
decreasing failure rate.
The two types of accelerated tests to be discussed are the step-stress and the constant stress-in-time tests shown in
Figure 3.2. The step-stress test is usually used to explore the device capability in the stress domain. A sample size of
about 20 is sufficient for this evaluation. The devices are subjected to a stress for 72 to 100 hours, measured, and then
subjected to a higher stress level for the same time increment, and then measured. This sequence is continued until
about half of the total sample has failed. The stress level reached can be defined as the threshold of stress at which
devices fail in a short period of time, such as less than 100 hours. Stress levels below this threshold can be used for
the constant stress-in-time tests. The failures generated on these tests are usually valid candidates for failure analysis
and failure mechanism studies. The effectiveness of this type of testing can be greatly improved by using control
devices which are not stressed, but are measured at each readout point. These readouts provide data for the effective
assessment of device response to stress and afford an estimate of the precision of measurements. Furthermore, the
control devices are excellent candidates for analysis so that comparisons can be made with failed devices to determine
valid failure mechanisms. The step-stress is an excellent method for maintaining process control during the device
manufacture and for a quick comparison of new process changes to determine any adverse side effects. The stepstress results are not generally used in determining failure-in-time patterns because of the cumulative effect of the
several levels of stress on the device performance. However, failure-in-time patterns can be obtained from the
constant stress-in-time tests.

FAILURE RATE CURVE
w

le(

II:

w

II:

::l

....

...«

CONSTANT FAILURE
RATE CURVE

-EARLV--f-ol.o----OPERATING L l F E - - - ,I-WEAROUTFAILURE
PERIOD
PERIOD

FIGURE 3.1. ELECTRONIC COMPONENT FAILURE PATTERN

101

STEP STRESS

~~:t:=:;? "
100

200

II:

S2

t;

S,

300

.5 10 50

TIME·HOURS

CUMULATIVE % FAILURE

CONSTANT STRESS-IN-TIME

....
IU

S3

....

S2

>
IU

....

>
w

....

III
III
IU

II:
l-

/

S3

IU

I
S2

!l!
W

S,

S,

II:

t;

III

,
24 168

, 2

1000

500
TlME·HOURS

10

FAILURE RATE %/KHr

FIGURE 3.2. ACCELERATED TESTING

The objective of the constant stress-in-time tests is to determine the relationship of time, generally at three levels of
stress, on the device performance. Sample sizes of from 20 to 100 or more devices are usually used on these tests.
Each group of samples is subjected to each of the three levels of stress for a duration of at least 1000 hours. Failure
rates of about 0.5% to 10% per 1000 hours are usually obtained during this test. The test results from the three stress
levels SI, S2 and S3 can be used to verify the reliability prediction model for the type of devices under test.
The predominant failure mechanisms found in semiconductor devices are related to temperature and often fit the
Arrhenius Model of respon~e. The model is generally described by the equation:
A. = eA -B/T

=A'eE/(kTJ
A failure rate.
T absolute temperature (OKelvin).
A,B empirically derived constants from life test data.
A' exp(A).
k Boltzman's constant, 8.62 x 1O-5eV IK.
E activation energy, empirically derived from: E~ -kB. The slope B is negative.
The activation energy (E) can be obtained from the empirically derived Arrrhenius Model equation. For example,
from Figure 3.7.
E=-k B

E

=-(8.62 x 10-5) (-7289) =0.63eV

The slope (B) can also be obtained graphically from two coordinate points (At. TI), (A2, T2).
B =In Al - In A2
I

I

TI

T2

Since measurement readouts are usually made at 0, 24, 168,500 and 1000 hours during the constant stress-in-time
tests, a failure-in-time analysis can be made on a Weibull graph at shown in Figure 3.3. This graph shows whether an
increasing, a constant, or a decreasing failure rate is obtained. As seen in the graph of Figure 3.3, a f3 of less than one
was obtained, demonstrating that these devices had a decreasing failure rate.
102

WEIBULL CUMULATIVE PERCENT FAILURE·IN·TIME CURVE
TRANSISTOR 2N3605·7
99

w 90
a:

3

60

:t
II.

30

PT = 550mW
VCE = 7~V
T A = 25°C
(1.6 X ABSOLUTE MAX. RATING)

I-

Z
w

U

10

~

5
3

a:

w

>

WEIBULL PARAMETER ESTIMATES

..

SHAPE FACTOR (~) = 0.3
(OECREASING FAILURE RATE)

~

c(

~

:>

SCALE FACTOR (ciJ = 48.5 HRS.

.5

LOCATION FACTOR (~) = 7 HRS.

u

.1~---r~-r~Trrt---'--r-r~~+---~-r'-rrrrn

10

100

1000

10,000

FAILURE - AGE (IN HOURS)

FIGURE 3.3. WEIBULL CUMULATIVE PERCENT FAILURE-IN-TIME

In general the Weibull reliability function has been used effectively in evaluating the reliability of semiconductors3•
This function can be expressed as:

Ps =e -(t-")I).8
a

where

Ps is the probability of survival or reliability:
is the location parameter.
a is the scale parameter,
{3 is the shape parameter which is a measure of the rate of failure.
t is the operating time.
")I

The above parameters are usually determined graphically when specific test results are plotted on a special Weibull
graph. The most interesting parameter is beta ({3), When beta is greater than one the failure rate increases with time
and if it is less than one the failure rate decreases with time. When beta is equal to one the failure rate is constant and
the function reduces to the negative exponential case. Also in this case ")I is zero since failures can start at time zero.
This can be expressed as:
-t

-t

MTBF

a

Ps =e

=

e

Where a is a constant equal to the Mean Time Between Failure (MTBF).
If beta is greater than one this indicates the occurrence of an increasing failure rate, This is usually not desirable
from a reliability standpoint; for example, in the operation of an equipment. Also, it indicates that a test or stress is
destructive which identifies the need to lower the stress test level or to redesign the component tested.
It is also to be noted that when beta is less than one for a given stress the stress can be used as an effective screen
to remove early failures. Once the early failures are removed it is desirable to move into the constant failure rate
region where only infrequent random type of failures occur. This was demonstrated on several life tests on the signal
diode 4• Also a constant failure rate normally occurs under derated operating conditions in practical applications. This
assures that the negative exponential reliability function can be used with confidence in predicting the device
reliability.
103

3.2.2 RELIABILITY PREDICTION FROM ACCELERATED TESTS TO APPLICATION
The General Electric semiconductor signal diode with a Meta-Bond® construction was chosen as a model for this
analysis. This device was selected since it had been evaluated under extensive testing conditions as well as under three
years of monitored operation in the field l . Acceleration multipliers that quantitatively give the stress relations
between different levels of junction temperature, voltage and measurement under accelerated test and application
conditions are used. These multipliers enable the prediction of reliability at the application conditions.
• Application Conditions:
Type of Device: Similar to IN4148
No. of Devices in the System: 770,679
Reverse Voltage: 30 Volts
Peak Current: IF = 0.5 Ampere; 50% Duty Cycle
Ambient Temperature: 55°C
Junction Temperature: Average 70°C
Peak
80°C
Environment: Ground Fixed
Reliability Objective: Zero Functional Failures Per Year
• Accelerated Life Test Results:
Conditions: TA =25°C, f =60 Hz
10 =225mA, VR =70VPK
t = 1,000 Hours
Failure Criteria: IR @ 40V = 500nA (Max)
.6. VF> + 15MV @ IF 65mA
LTPD =3%
Failures/Samples Tested: 1/5,381
Best Estimate Failure Rate: 0.03%/K Hrs. '
• Acceleration Multipliers
To determine acceleration multipliers between tlte accelerated test and application conditions, reference is made
to the above operating life test data. 2
Voltage Multiplier (Mv):
From Figure 7 of GE Publication "Reliability Evaluation and "Prediction for Discrete Semiconductors", IEEE
Transactions on Reliability
tl at VR of 30V and TJ of 65°C =5000 Hours
t2 at VR of 70V and TJ of 65°C = 1220 Hours
5000
Mv = 1220 = 4.098

Measurement Multiplier (MM):
From Figure 8 of GE rublication "Reliability Evaluation and Prediction for Discrete Semiconductors", IEEE
Transactions on Reliability
IR at VR of 40V =70nA
IR at VR of 30V = 45nA
MM = 70 =1.56
45

104

Temperature Multiplier (MTJ:

From the above life test data there was one specification limit failure; however, there were zero non-functional
failures in 5,381,000 device operating hours. This give a best estimate failure rate of O.013%/KHRS at TJ =170D C.
Using this as a starting point and the same slope of the graph in Figure 4 of GE Publication2 the following is
obtained for non-functional failures:
15.197 _ 8656
A =e
TJ+273
:. AI =O.OI3%/KHRS at TJ =170D C
A2 =0.000043657%/KHRS at TJ =70D C
MT =~ =297.777
A2
The total multiplier (M) is
M= MyxMMXMT
M =(4.098)(1.56)(297.777) = 1903.82
Failure Rate at Application Conditions:
A3 = 0.013 = 0.000006828%/KHRS

1903.82
MTFB =__ = 1.464477 x 1010 hours
A3

• Reliability = Probability of Survival (Ps) for the negative exponential reliability function.
Ps

=e-t/MTBF

where t =operating time in hours.
MTBF = Mean Time Between Failure
The Probability of Failure (PF):
PF = 1- Ps
Results from the above equations:
Period in Year
1.5
15.0

Ps
99.9999103%
99.999103%

PF
0.0000897%
0.000897%

The expected failures = (0.897 x 10-6)(770,679) = 0.69 Failures

e Results: This method predicted that there would be 0.69 failures out of 770,679 devices or 0.0000897%
failures in an average operating time of 1.5 years. The actual field results showed that there were no failures out
of 770,679 devices operating in the field during this period. This demonstrates that the method is quite accurate
in predicting the failure rate under application conditions.

105

• Conclusions:
1. The use of the negative exponential distribution for the probability of survival and one minus this for the
probability of failure was very accurate in predicting less than one failure out of 770,000 diodes during a 3-year
operating period in the field. No failures actually occurred.

2. Quantitative acceleration mUltiplying factors for voltage, junction temperature and measurement levels can
be used to realistically predict low percent failures in years of operation in applications.
3. The determination and use of these mUltipliers enables realistic and timely reliability predictions on new
products with a minimum accelerated testing time and cost.
4. The Weibull reliability model provides an excellent method of evaluating the effectiveness of a burn-in
screen for removing early failures.
5. The use of these analysis techniques will accelerate the successful application of complex electronic systems
that use large numbers of semiconductor devices.
The general approach using accelerated testing results to predict the reliability of semiconductors was
described in the previous Sections 3.2.1 and 3.2.2. The validity of this prediction technique was demonstrated
on an extensive reliability evaluation program on signal diodes. This type of device was chosen since accelerated
test results were available as well as three years of field operation data. As seen in the previous section, the
prediction technique was very accurate. Therefore, these accelerated testing and analysis techniques were
extended to bipolar power transistors and the reliability prediction model is shown in Figure 3.7. These
accelerated testing techniques have also been extended to Power-MOSFETs and Power-MOS Insulated Gate
Transistors. The results of these tests are shown in the subsequent sections ..

3.2.3. PLASTIC ENCAPSULATED POWER TRANSISTORS
GE is a leader in the development and production of power semiconductors. This leadership was first established
in metal package type devices and in recent years has extended into the field of plastic encapsulated power devices.
The growth of the plastic power transistors is following a similar reliability improvement pattern as that of the signal
transistors. Presented are the reliability test results based on thousands of unit hours and cycles of power transistor
test data, which demonstrate the structural, thermal and chemical stability of these devices. This information
demonstrates the capability of these transistors to operate successfully under the wide range of environmental,
electrical and thermal stress levels required in the consumer and industrial applications.
The plastic power packages used with the two types of power transistors are:
- JEDEC TO-202 - 15 watt dissipation,
- JEDEC TO-220 - 60 watt dissipation.
The transistor is shown in Figure 3.4. Both plastic package structures are basically the same and share the
following construction features:
- excellent free air power dissipation capability.
- copper heat sink tabs and leads for high heat dissipation and conduction of current in small size packages.

106

The Power Darlington transistors, model D66DV and D67DE, are shown in Figure 3.5 and 3.6. These devices
range from 75 to 150 amperes peak and up to 500 volts. They also feature a single chip design with low thermal
resistance and a high isolation voltage. Reliability test results are shown in Figure 3.10.

FIGURE 3.4. PLASTIC ENCAPSULATED POWER TRANSISTORS

FIGURE 3.5. 75 AMP PEAK POWER DARLINGTON

FIGURE 3.6. 150 AMP PEAK POWER DARLINGTON

107

3.2.3.1 Reliability Prediction of Power Transistors
The predomiriant failure mechanisms found in plastic encapsulated power transistors during operation are related
to temperature and fit the Arrhenius Model of response as shown in Figure 3.7. The model is generally described by
the equation:
A = eA+B/T

= A'e -E/(kT)
failure rate.
T
absolute temperature (OKelvin)
A, B empirically derived constants from life test data.
A

A'

exp(A).

k
E

Boltzman's constant, 8.62 x 10-5 eV/ K.
activation energy, empirically derived from: E = - kB. The slope B is negative.

For example, the Arrhenius Model derived empirically for the power transistors of Figure 3.7 results in:
7289

15.6

-rJ + 273

A =e
Since:
B = -72'89K

E= -k(-7289)

= O.63eV

The activation energy associated with the Arrhenius Model can be used to determine the effect of a higher to a
lower operating junction temperature of devices under test. The model can be used to predict the reliability of
semiconductors under application conditions.
When the logarithm of A is ploUed against a linear reciprocal scale of T, the constants A and B represent the
intercept and slope respectively of the resultant straight line plot, as shown in Figure 3.7
ARR HEN IUS MODEL- PLASTIC ENCAPSULATED POWER
TRANSISTOR
OPERATING LIFE
~-'----r---.-----r-----'-----'-.r-------r--,104

CIl~

a:CIl
:::>a:
0:::>

10~

XO
OX
Of-

CIl
a:
:::>
0

2z

X

a::::>
ILl 0

Il.

o

10 6

~9

~~
ILl 0

f-o

c(0

a:-=
ILIa:
a: ILl
:::>11.
-'CIl
-ILl

). .. e 1~.6-

~

ILl
a:
:::>

-'
Ci
LL

TJ+273
107

0

f-

ILl

::E
j:

~~

ILI-'
c(~
a: "
ILl 0

I!)-

>-

z

FOR TJ = 100°C

c(

). = .02 °/. / 1000 HR

:IE

ILl

c(x

• -<
-<200

175

150

125

100

75

50

T J = JUNCTION TEMPERATURE _·C
FAILURE CRITERIA: leBO> 2 x SPEC. LIMITS. 6 hFE > :t30 %
FIGURE 3.7. RELIABILITY PREDICTION MODEL - PLASTIC ENCAPSULATED POWER TRANSISTORS

108

3.2.3.2 Power Transistor Thermal Characteristics
In power transistor applications it is often desirable to determine the expected reliability of a device operating in
free air with or without a heat dissipator attached. In either case it is necessary to determine the average operating
junction temperature which can be used with the Arrhenius graph of Figure 3.7 to find the expected level of
reliability.
For the free air dissipation case, the operating junction temperature is found using the same relationship.

For the case involving a heat dissipator, the relationship for finding the operating junction temperature is:
TJ =Po(ReJc + ResA) + T A
where ROJe and ROSA are the thermal resistances of the device junction to case, and the heat dissipator to ambient,
respectively and where TJ is the junction temperature; Pn is the power dissipation in the transistor and T A is the
ambient temperature.

NOTE: DURING LIFE TESTS THE TAB TEMPERATURE REFERENCE POINT INDICATED BELOW (Figure 3.8) IS USED FOR
MONITORING AND CONTROLLING THE TEMPERATURE OF THE DEVICE.

~

__1-______ TABTEMPERATURE
REFERENCE POINT

TO-202

TO-220

FIGURE 3.8. TAB TEMPERATURE REFERENCE POINT

General Electric publishes thermal resistance values, junction to ambient (ReJA) and junction to case (ReJd, for
its plastic encapsulated power transistors. When a heat dissipator is employed, the user can calculate or measure its
thermal resistance (ResA) unless it is a commercially available dissipator with specified thermal resistance. It is
assumed that thermal grease is used at the interface between the power transistor and attached heat dissipators so
that the interface thermal resistance can be neglected. If an electrical insulator is used between the power transistor
and heat dissipator, the thermal resistance of the insulator must be included in the value of ResA.
Using the Arrhenius Model, a calculation of the expected reliability can be made by considering the GE D44C
power transistor attached to a heat dissipator having a thermal resistance (ReSA) of 8°C/W. An example of such a
dissipator could be a painted aluminum fin with dimensions of 2-1 /2" x 2-1/2" x 1/32".
Thus, the operating junction temperature us:
TJ =5(4.2 + 8) + 25 =86°C
where TA is 25°C, Po is 5 watts, ReJc and ResA are 4.2 and 8°C/watt respectively.
The use ofthe curve or the model equation in Figure 3.7 yields a reliability prediction for this application of .015%
per thousand hours at a junction temperature of 86°C.
109

3.2.3.3 Power Transistor System Reliability
The electronic equipment designer is often required to predict the life of the equipment in field applications and to
relate the equipment requirements and environments to the component level to be used. An example of this is shown
for a plastiC encapsulated power transistor in a typical application:
Number of Devices/System: 5
VCEO: 50% to 70% of rating
Average Junction Temperature (TJ): 87°C
Environment: Normal Consumer or Industrial Application within Device Ratings.
Operating Time: 6,000 Hours/Year
Reliability Objective: :5 0.3% System Failures/Year
The system reliability objective of 0.3% per year for 6,000 hours is equivalent to a A of 0.05%/ K hours. this would
give a Mean Time Between Failure (MTBF) of:
MTBF = !.. =
= 2 x lO6 hours
A .05%/KHrs
The probability of survival (Ps) of the electronic system for a negative exponential failure distribution and a
constant failure rate would be:
-t

Ps = e MTBF
where t = operating time.
Also, the probability of failure is:

The following results are obtained:
Period

Probability of Survival (Ps)

Probability of Failure (PF)

1 Year
2 Years
3 Years
5 Years

99.7%
99.4%
99.1%
98.5%

0.3%
0.6%
0.9%
1.5%

In order to realize the above system reliability (0.05%/K hours), the reliability of each device must not exceed a
failure rate of 0.05/5 devices or O.OI%/K hours at TJ = 87°C.
Reference is made to Figure 3.7 to determine the multiplier for temperature (MT) when derating from the
accelerated test condition of TJ = 150°C to the application condition of TJ = 87°C.
7289
15.6 -TJ + 273

A=e
Al = 0.196%/K Hrs. at TJ = 150°C
A2 = .0096%/K Hrs. at TJ = 87°C
The multiplier for temperature derating (MT) is
A

MT=~=

20.4

A2

Failure Rate at Accelerated Test Conditions (TJ = 150°C)
A = (20.4) (0.01) = 0.204%/K Hrs.

110

Reliability Demonstration:
VCEO = 70% of Rating
TJ = 150°C
t 1000 hours
n = 350 devices
c 0 failures
'11.= 0.2%/K Hrs. at 50% confidence level.

=

=

A review of the power life test results from Figure 3.9 shows that the above reliability demonstration was
successful for 361,000 device hours which exceeds the 350,000 hours required. This assures that these .,ower
transistors would meet the system reliability objective of 0.3% system failures per year.

STRESS

STRESS
CONDITION

NUMBER
OF LOTS

TOTAL
DEVICES

DEVICE
HOURS

NUMBER OF
CATASTROPHIC
FAILURES

FAILURE
RATE*
BEST
ESTIMATE
% PER 1000
HOURS

Power Life

PT =19 to 32W
TJ =150°C

15

367

361,000

0

0.2

High
Temperature
Reverse Bias
(HTRB)

VCB =80% Rated
Voltage
TA =150°C

2

75

54,200

0

-

Back Bias
Life with
Humidity
(Wet
HTRB)

VCB =80% Rated
Voltage
TA =85°C
RH =85%
t =1,000 HRS.

I

50

50,000

0

-

Humidity
Life

TA =85°C
RH =85%
t =1000 HRS. (min)

24

595

595,000

0

0.11

Storage Life

TA =150°C
t =1000 HRS (min)

24

595

595,000

0

0.11

DEVICE
CYCLES

Temperature
Cycling

-55 to 150°C
15 Cycles

Temperature
Cycling
Power
Cycling

%PER
CYCLES

26

629

9,435

0

0.007

-55°C to +150°C
1,000 Cycles

I

76

76,000

0

0.0009

LlTJ =l30°C,
10,000 Cycles

3

78

795,600

0

0.00009

*Failure Definition - Opens or Shorts
FIGURE 3.9. RELIABILITY OF POWER TRANSISTORS

111

STRESS

STRESS
CONDITION

High Temperature
Reverse Bias
(HTRB)
Storage Life
Humidity Life

TOTAL
DEVICES

DEVICE
HOURS

NUMBER OF
CATASTROPHIC·
FAILURES

46

46,000

0

52

52,000

0

52

12,480

0

VCB =700V
TA =150°C
t =1000 HRS
TA =150°C
t =1000 HRS
TA =40°C
RH =90-95%
t =240 HRS

DEVICE CYCLES

Temperature
Cycling
Power Cycling

-40 to 125°C
20 Cycles
.iTJ =ll5°C
5,000 Cycles
*Failure Definition - Opens or Shorts

52

1,040

0

12

60,000

0

FIGURE 3.10. RELIABILITY OF POWER DARLINGTONS

3.2.3.4 Power MOSFETs
General Electric has incorporated its wide experience gained in the manufacture of bipolar signal and power
transistors with the latest MOS technology to manufacture a broad line of Power MOS Field Effect Transistors. The
latest Computer Aided Manufacturing (CAM) and Computer Aided Design (CAD) techniques are being utilized to
manufacture consistently high quality and high reliability types of devices. The computer system, PROcess
Management and Information System (PROMIS) is utilized to store all in-process data at key steps in the wafer
fabrication area. All outgoing lots are given a quality acceptance test. The reliability of the finished products is
assured by an on-going four-step reliability program. This program includes (1) wafer lot acceptance, (2) finished
product acceptance, (3) product qualification and requalification and (4) reliability modeling. In addition, the
product is subjected to stress-in-time monitoring tests as shown in Figure 3.11.
3.2.3.5 Power MOS Insulated Gate Transistor (IGT)
General Electric has developed a new type of MOS turn oni off power switching device called the Insulated Gate
Transistor (IGT). This combines the prime advantages of Power MOSFETs and bipolar transistors. This results in a
device that has the high input impedance of MOSFETs and the low on-state conduction losses found in bipolar
power transistors. These types of devices are manufactured under the same high technology conditions as described
earlier for Power MOSFETs. These IGT's are being evaluated under similar accelerated reliability tests as described
in the earlier sections of this chapter. An extensive reliability program has been designed and initiated that uses a
multi-level matrix of tests. These are to be used to quantitatively obtain stress mUltipliers for voltage (Mv) and
temperature (MT) as described earlier. These multipliers will be used to predict the long term reliability of the IGTs.
An example of a portion of this matrix is shown in Figure 3.12.

112

DEVICE·
TYPE

STRESS

High Temperature
Reverse Bias
Vos =80% Max Rating
VGS =OV (G =Shorted)
TJ =150°C
t =1240 Hours
same as above
same as above
Humidity Life
85°C, 85% RH
Vos =10V
VGS =OV (G =S)
same as above
same as above

ACTUAL
NO.OF*· DEVICEHRS
NO. OF
@150°C
DEVICES FAILURES

EQUIVALENT
DEVICE HRS.
@90 D C
EA = 1.0eV

RANDOM
FAILURE RATE
%/KHRS.
60%UCL

D84CQ2

39

0

4.84xl04

4.5x106

0.022

D84DQ2
D84ERI

40
40

0
1

4.96xl04
4.96xl04

4.6x106
4.6xl06

0.018
0.070

D84CG2

20

0

104

-

D84DQ2
D84ERI

20
20

0
0

104
104

-

-

-

-

-

DEVICE
CYCLES

Thermal Shock
-55 TO 150°C
tSOAK =15 Minutes
MIL-STD-202F
Method 107D
n =50 Cycles
same as above
same as above

D84CQ2

50

0

2500

-

-

D84DQ2
D84ERI

50
50

0
0

2500
2500

-

-

* TO-220 Package
** Non Functional Failures
FIGURE 3.11. RELIABILITY OF POWER MOSFETs

DEVICE
TYPE

NO. OF
DEVICES

NO. OF·
FAILURES

DEVICE
HOURS

N-IGT
MOXPKG.

20

0

10,000

VeE =200V TJ =100°C

N-IGT
MOXPKG.

20

1

10,000

VeE =100V TJ =150°C

N-IGT
MOXPKG.

20

0

10,000

Humidity Life
85°C, 85% RH

N-IGT
MOXPKG.

158

I

79,000

Temperature Cycle
-40 to 150°C
100 Cycles

N-IGT
MOXPKG

80

0

STRESS

High Temperature Bias
(Collector +), HTB(C+)
VeE =100V TJ =100°C

"'Non Functional Failures
FIGURE 3.12. RELIABILITY OF N-TYPE INSULATED GATE TRANSISTORS (IGTs)

113

3.2.4 PLASTIC ENCApSULATED SIGNAL TRANSISTORS
Another example of how accelerated-testing techniques are used is the assessment of the reliability of plastic
encapsulated signal transistors. A number of in-depth reliability evaluation stress programs have been conducted over
the years. The emphasis in the design of the programs was to evaluate and demonstrate device properties such as chip
surface stability. The devices were randomly sampled from several production lots taken from different product lines
and the devices received no special preconditioning or stress screening. These devices were usually subjected to three
constant stress-in-time tests described earlier. General Electric epoxy encapsulated signal transistors were evaluated
under these tests. A straight line Arrhenius graph and equation shown in Figure 3.13 was obtained from accelerated
operating life test data on non-stress screened devices.
ARRHENIUS MODEL - EPOXY ENCAPSULATED TRANSISTORS
1.07"".L....,1E""""'---'--'--'---'---'---'--------,- 10'

1.33 X 10' DEVICE HOURS
AT PD = 600mW

en

II:

0.1

10'

5J:
~
W

4.3 X 10' DEVICE HOURS
ATPD=360mW

II:

:3

:;:
u.

::?
10'

.01

w

::;;
f=

~

::;;

.001
.0005

A = 0.001% PER
1000 HOURS

10'

-'---,.-.,........,--'T""......,...-lL.--------'- 2 X 10'
600

400

200

100 50

PD = POWER DISSiPATION - mW
FAILURE CRiTERIA: ICSO> IpA, ahFE > ± 30%
aVCE(sat) > ± 25%, aVSE(sat)

> 100 mV

FIGURE 3.13. RELIABILITY PREDICTION MODEL - EPOXY ENCAPSULATES SIGNAL TRANSISTORS

Consider the requirement of determining the reliability of an epoxy encapsulated signal transistor such as the
2N6000 to 2N6017 family. The applied operating conditions of the transistor are such that the average power
dissipation (PD) is a maximum of 80 mW and the ambient temperature (TA) is 25°C. The anticipated failure rate (A)
can be directly calculated for these conditions in the model equation shown in Figure 3.13.
A = exp [17.48 - 38 300j(l490 + 80)] per 1000 hours
=0.0010% per 1000 hours

(1)

for the case where TA is greater than 25°C, such as 55°C, and PD = 80 mW, the following relationship can be used:
(2)

TJ junction temperature
PD power dissipation in the transistor
T A ambient temperature
R8JA thermal resistance, junction to ambient.
For the case where R8JA = 0.2°CjmW, (2) becomes:

114

The equivalent power dissipation at TA = 25°e is found by using (2) again. Thus,
TJ

=71°e =PD x 0.2°e/mW + 25°e

PD = 230mW.
A is found by substituting this equivalent power dissipation into the model equation of Figure 3.13.
A = exp [71.48 - 38300/(1490 + 230)] % per 1000 hours

= 0.0083% per 1000 hours:

3.3 RIELATI\lE

~UMIDlTV

The operating environment of a semiconductor can have an important effect on reliability that can often be greatly
diminished by the use of proper packaging. The effects of high relative humidity on plastic encapsulated devices have
been studied extensively in the industry.
The degradation rate of semiconductor devices by humidity depends in almost all cases on the extent of formation
of a continuous liquid film on the semiconductor surface or on the metal parts and contacts associated with the
device. The amount of surface water adsorption determines 1) surface ion mobility and 2) the rate of ion transfer
under the influence of electric fields or by liquid diffusion with concentration gradients.
The effect of temperature on water-film activated processes is complex. Temperature increases ion mobility and
the degree of ionization of water in a manner analogous to its effect on electron and hole carriers in a semiconductor.
This results in higher conductivities for equal densities of surface adsorbed films. However, temperature also
determines a more critical parameter, the effective relative humidity, RH, of the ambient vapor in equilibrium with the
adsorbed film. As shown in Table 3.2, the RH is the water vapor pressure divided by the theoretical saturated vapor
pressure at the temperature, PV(SAT)' The latter is very close to an Arrhenius type of increasing function (see Table
3.2) so that the effective RH decreases rapidly as the temperature increases. The degree of surface water adsorption is
determined by this relative humidity, not by the absolute value of the water vapor pressure existing at any time in the
air space above a semiconductor or in the pores and interface spacings in the plastic encapsulating the
semiconductor.
Normally, degradation processes are measurable between 103 to 104 hours at RH values exceeding 30% to 50%.
Thus when a semiconductor is powered during a humidity exposure or life test, the heat dissipation at the most
critical junction areas or resistive contacts results in water desorption and in drying of parts most susceptible to
degradation. This occurs even in a plastic encapsulated device where the plastic has a higher solubility for water at
increased temperature. Water from the warmest active device surface will transfer to the gas phase or dissolve into
the plastic bulk and might even condense out on cooler parts of a package enclosure. In Table 3.1, a constant
humidity of 95% RH at 40 o e, or 52.56 torr vapor pressure ambient surrounds a device permeable to water vapor.
Power dissipation results in increasing the dryness as surface temperatures increase near the junction of the
semiconductor. Then outward diffusion of water molecules will proceed as air pockets within the plastic, building up
higher vapor pressures than in the external ambients. Thus, for example, the relative humidity near the junction of
the semiconductor is 12.1 % instead of 95% when the device is operating at a power level which raises the junction
temperature to 85°e as shown in Table 3.1. This physical analysis helps to explain why well designed plastic
encapsulated devices in nonhermetic packages have performed extremely well for years under a range of humidity
and temperature environments.

115

Temperature outside the package = 40°C
Relative humidity outside the package = 95%
Device
Junction
Temperature

Relative Humidity
Near Junction

e)

(%)

40
50
55
65
75
85
100
125
150

(Reference)
95
56.8
44.5
28.0
18.2
12.1
6.92
3.02
1.47

TABLE 3.1: RELATIVE HUMIDITY NEAR SEMICONDUCTOR JUNCTION OF PLASTIC ENCAPSULATED DEVICES UNDER
OPERATING POWER

RH =
Pressure of Water Vapor Present
Pressure of Saturated Water Vapor at Same Temperature
= PRFF/ Pv(sat)

=52.56/ Pv(sat)

PRFF= 95% x 55.3 = 52.56 torr in the device and in the ambient (TA
Pv(sat) saturated vapor pressure at the specified temperature.

Vapor
Temperature

= 40°C, 95% RH) surrounding the device.

eq

Saturated Vapor
Pressure of H2O
In torr pv(sat)

40
50
55
65
75
85
100
125
150

55.3
92.5
1I8.0
187.5
289.1
433.6
760.0 (1 atm.)
1740.9
3570.5

TABLE 3.2. PRESSURE OF AQUEOUS VAPOR OVER WATER

116

3.4 STRESS SCREENING: "GE-XTRA. EXTRA RELIABILITY ASSURANCE PROGRAM"
Failure mechanism studies of field failures suggest that other types of failures occur which are not readily predicted by
the Arrhenius Model. A program4 was initiated to develop a practical, economical stress screen to remove the small
percentage of infant mortality failures from devices to be used for "Hi ReI" automotive applications. These were usually
bond-related or semiconductor chip type failures. These manufacturing type defects are random and usually involve less
than one percent of the popUlation of devices that have passed a series of the regular electrical parameter screens. This
new screen was first developed for improving the reliability of plastic encapsulated signal and power transistors for the
·automotive industry.
The following accelerated stress screen was developed and evaluated:
• Discrete Devices
• Electrical Classification
• 20 Temperature Cycl~s -55 to 150°C
e 12-Minute Soak At Temperature Extremes
• 3-Minute Dwell at TA = 25°C
• Special Electrical Screen at TA = 25°C.
The special electrical screen included the measurement of low voltage parameters such as hFE followed by leakage
currents, breakdown voltages and a repeat of hFE.
An evaluation of thousands of devices subjected to this screen showed that the fallout of potential device failures
from the screen ranged from one to three percent of the popUlation. A shape factor of f3 =0.16 for the Weibull Model
of response was obtained, indicating a decreasing device failure pattern as the number of temperature cycles was
increased. The effectiveness of the screen was demonstrated out to 800 temperature cycles.
Failure mechanism studies were performed on devices removed by this screen. The three most common bond
related failure modes detected by this stress screen occur when the lead breaks at the bond heel, the lead separates
from the metallization on the chip, and the lead separates from the header post. Another bond related failure mode
occurs when bonds are misplaced on the metallization. This results predominantly in emitter-base shorts and less
frequently in collector-base shorts. The stress screen also detects devices with defects such as cracks in the chip and
wire dress shorts.
Analysis of results of this study on stress screen effectiveness showed it was:
o Effective, efficient and economical in reducing automotive assembly-line fallout to 120 parts per million or less.
E> Very effective in reducing field failures during warranty and longer periods.
Over 1.2 million plastic encapsulated bipolar signal transistors have been SUbjected to this temperature cycle
screen. The average bond-related fallout from this stress screen was 1.7 percent.
An analysis was made of field application returns of bipolar transistors. These devices had been returned for
failure analysis and the resulting study showed that the primary failure modes were due to chip cracks, oxide defects,
and opens. These were the same types of failure modes found in the devices that were screened out in the temperature
cycle screen. Therefore, there is a very high probability that they would have been removed by the temperature cycle
stress screen previously described. This stress screen is included in the "GE-XTRA - Extra Reliability Assurance
Program" which follows.

117

POWER TRANSISTORS AND SWITCHES
(Also Applies to Signal Transistors)
GE-XTRA
EXTRA RELIABILITY ASSURANCE PROGRAM
GE-XTRA IS GENERAL ELECTRIC'S ANSWER TO
TRANSISTOR CUSTOMERS WHO ASK:
What can I do to • Reduce early failures?
• Lower warranty costs?
• Eliminate the need for incoming inspection?
• Improve the availability of products?
• Improve my productivity and product flow by reducing line fallout/ rework?
• Reduce my costs by achieving low PPM or AQL levels?
• Increase reliability?

IN ORDER TO ANSWER THESE QUESTIONS, GE-XTRA FEATURES:
•
•
•
•

100% temperature cycle stressing from -55 to +1500 C for 20 cycles!
A second 100% electrical screen test after temperature cycle stressing!
Electrical screen tests engineered for removal of infant mortality failure modes!
Optional 100% elevated temperature electrical screening!

THE GE-XTRA PROGRAM PROVIDES:
• Assured Quality levels of:
0.10% AQL for dc device parameters
0.065% AQL for device catastrophic limits
• Low additional cost!
The following flow chart illustrates the process flexibility which can be tailored to individual applications. Note
that marking is performed bejore the second 100% electrical screen in order to prevent any inadvertent product
mixing during the mark operation.
Also note the reference to the General Electric Publication No. 660.35. "Transistor High-Reliability Program" for
a detailed description of the effectiveness of this screen.
INCOMING DEVICES
100% ELECTRICAL SCREEN AT TA =25°C
PER CUSTOMER REQUIREMENTS

100% TWENTY TEMPERATURE CYCLES

-55° TO 150°C
(REF: GE SEMICONDUCTOR PUBLICATION 660.35)

100% MARK
(NO LEAD FORMING)

100% ELECTRICAL SCREEN AT
T A = 25°C OR TA = 100°C

QUALITY ASSURANCE
OUTGOING LOT ACCEPTANCE
0.1% AQL FOR DC PARAMETERS
0.065% AQL FOR CATASTROPHIC LIMITS
SHIP

118

In addition to these techniques for improving the reliability of power transistors, efforts continue to improve the
dynamic capabilities of these devices. An example of this is described in "Relating Power Transistor Failure Modes
to Post-Failure Characteristics."s This study included the failure of power transistors under controlled circuit
overload conditions, followed by failure analysis of the results. This information is directly applicable to the design
engineer interested in preventing circuit-induced type faults in applications.

3.5 TOTAL QUALlTV CONTROL
The Quality System being used in the manufacture of signal and power transistors is an example of the General
Electric concept of Total Quality Control6 . This concept provides, through established and documented procedures, a
system that assures that the quality needs are incorporated in the product planning, design, manufacturing and final
test phases of the products. The Total Quality Control Concept for these products includes the inspection of
incoming materials, chemicals, solvents, gases and process controls used in the manufacture of these transistors.
Three basic types of instructions are used to control processes. These are Engineering, Manufacturing and Quality
Control Instructions. The Engineering Instruction defines the important variables of the process and the applied
limits to control them. In order to implement the Engineering Instructions, a more specific document, the
Manufacturing Instruction, is generated. The Quality Control Instructions are written for Quality Control personnel
to perform the necessary inspections and tests. These instructions and procedures are implemented to assure that
reliability is built into these devices. The flow charts in Figures 3.14, 3.15 and 3.16 are examples of the major process
steps and the extensive inspections that each device receives during the fabrication and test cycle.
In addition to these inspections, reliability monitoring tests are conducted by Quality Control. The devices used in
these tests are randomly selected from production and do not receive any special preconditioning or stress screening.
This data is used to determine and control the quality of the manufacturing line. The tests include temperature cycling
and life tests. Life test data are collected on the basis of 1,000 hour tests of continuous operating life, high temperature
storage life and humidity life tests. Information from these tests is used to measure product line reliability.
As a complement to the regular monitoring tests several extensive accelerated reliability evaluation programs have
been performed. These programs are statistically designed to incorporate balance, random sampling and replication
in the devices tested so that product unformity, reproducibility and long life stability can be demonstrated. The
accelerated test results an: used to develop reliability models which establish the expected device reliability at application
levels based on performance under extreme ranges of environmental, mechanical, thermal and operating power
levels.

119

HEAT SINK 8
LEAO STRIP

o

SILICON
CHIP

SILICONE
RESIN

WIRE

HEAT SINK Ell
LEAD STRIP

o

PREFORM

SILICON
CHIP

WIRE

SILICONE
RESIN

OPERATION

OPERATION

I]]

~sA~t~~I~NTROL

QU AL ITY CONTROL

6

STORAGE

INSPECTION

6.

STORAGE

FINAL
INSPECTION

SHIP
S

F~~tE~ON
SHIP

FIGURE 3.14. TRANSISTOR ASSEMBLY (JEDEC TO-202)

FIGURE 3.15. TRANSISTOR ASSEMBLY (JEDEC TO-220)

PURCHASED MATERIAL

INCOMING INSPECTION

HEAT SINK
ASSEMBLY

} - - - - - SILICON CHIP
SUBSTRATE

VISUAL INSPECTION

ELECTRICAL CLASSIFICATION

ELECTRICAL ACCEPTANCE

o
O

OPERATION

QUALITY CONTROL
INSPECTION

VISUAL INSPECTION

FIGURE 3.16. POWER DARLINGTON ASSEMBLY

120

3.6 GENERAL CONCLUSIONS
The recent industry trend to improve quality and reliability of electronic components is continually being
reviewed. The general approach taken by General Electric Power Electronics Semiconductor Department (PESD) to
meet the new quality levels in the PPM range and long life requirements of 10 to 20 years is described. The major
conclusions of this approach include:
(l)

!/)

C)

The general quality and reliability of PESD semiconductors are being enhanced by investment in the latest
Computer Aided Design (CAD) and Computer Aided Manufacturing (CAM) equipment including the latest in
clean room facilities.
Quality Control activities are being enhanced with new quality awareness and motivation programs, training and
implementation of the latest statistical process control techniques.
The new Outgoing PPM Program was initiated in October 1982 and the results are reported in the GE Quarterly
Quality Reports. This program has shown an overall improvement of 84% on the combined electrical and
visual/mechanical parameters of products being supplied.

o A new method of predicting the reliability of product life of semiconductors under field use conditions is
described. This method was confirmed with accelerated tests and actual field results for 3 years.
€)

The general approach for obtaining reliability prediction models is given along with models for bipolar signal and
power transistors. Programs are underway to determine these models for the latest Insulated Gate Transistors
(lGT's).

o The technique is shown on how these reliability models are used to determine the acceleration multipliers for
multi-levels of stress voltage (Mv) and temperature (MT)'
o The general approach is given on how to start with a system reliability objective and determine the accelerated test
conditions to demonstrate that the components have the necessary reliability. This is a timely and cost effective
strategy for achieving this objective.
o Reliability performance data are shown for bipolar signal and power transistors, Power MOS transistors and
Insulated Gate Transistors (lGT's).
o The low relative humidity that occurs in a plastic package when the semiconductor is operating and dissipating
power is described. This gives reasons why plastic encapsulated devices have a long life performance.
o The effectiveness of the use of a temperature cycle stress screen for bipolar transistors is discussed in the "GEXTRA Program".
o The overall concept of "Total Quality Control" is used to define procedures in the quality and reliability system.
o The above concepts are being implemented to achieve the excellence required in electronic components to meet the
very low defective levels in PPM and long life performance.

REFERENCES
1. General Electric Meta-Bond™ Diodes. GE Pub. No. 95.46.
2. Erwin A. Herr, Alfred Poe and Albert Fox, "Reliability Evaluation and Prediction for Discrete Semiconductors",
IEEE Transactions on Reliability, Volume R-29, Number 3, August 1980. GE Pub. No. 300.1.
3. Adams, J.D., "Failure Time Distribution Estimation", Semiconductor Reliability, Volume 2, W.H. Von Alven,
pp. 41-52, Engineering Publishers, Elizabeth, NJ 1962.
4. Erwin A. Herr and Alfred Poe, "Transistor High Reliability Program", IEEE Applications Society, October 1977.
GE Pub. No. 660.35.
5. Marvin Smith and Alfred Poe, "Relating Power Transistor Failure Modes to Post Failure Characteristics",
POWER CON 3. April 27, 1981. GE Publication 300.6.
6. Feigenbaum, A.V., Total Quality Control, New York: McGraw Hill, Third Edition, 198.3.

121

122

GE
POWER MOSFET
SPECIFICATIONS

123

124

IRF130,131
D86DL2,K2

~D~~U

14.0 AMPERES
100, 60 VOLTS
RDS(ON) =0.18 0.

FIELD EFFECT POWER TRANSISTOR

This series of N-Channel Enhancement-mode Power
MOSFETs utilizes GE's advanced Power DMOS technology
to achieve low on-resistance with excellent device ruggedness and reliability.

N-CHANNEL

This design has been optimized to give superior performance
in most switching applications including: switching power
supplies, inverters, converters and solenoid/relay drivers.
Also, the extended safe operating area with good linear
transfer characteristics makes it well suited for many linear
applications such as audio amplifiers and servo motors.

CASE STYLE TO-204AA (TO-3)
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)
0.B45(21.47)

I:

MAX

~~'35B(9'09) MAX

0~~x65l~

--u--n=

T

Features
0.04311.09)
0.038(0.97)

• Polysilicon gate - Improved stability and reliability

DIA
.

-l L_

SEATING PLANE
.426(10.82) MIN.

r

• No secondary breakdown - Excellent ruggedness
• Ultra-fast switching - Independent of temperature
• Voltage controlled - High transconductance

~:;;R~NM~ ............,rf-t--IPOINT

• Low input capacitance - Reduced drive requirement

....-t-19J) 1"j[iJ,'-t--'-

.20(5.00)
SOURCE

• Excellent thermal stability - Ease of paralleling
0.162(4.09)
0.15(3.84)
2 HOLES

maximum ratings (T C = 25° C)
RATING
Drain-Source Voltage
Drain-Gate Voltage, RGS =1Mo.
Continuous Drain Current @ T C = 25°C
Pulsed Drain Current(1)
Gate-Source Voltage
Total Power Dissipation @ Tc
Derate Above 25° C
Operating and Storage
Junction Temperature Range

=25°C

DIA.
0.440(11.18)
0.420(10.67)

(unless otherwise specified)
SYMBOL
VOSS
VOGR

IRF130/086DL2
100
100

IRF131/D86DK2
60
60

UNITS
Volts
Volts

10

14

14

A

10M

VGS
Po

56
±20
75
0.6

56
±20
75
0.6

A
Volts
Watts

W/oC

TJ, TSTG

-55 to 150

-55 to 150

°C

ROJC
ROJA

1.67
30

1.67
30

°C/W
°C/W

TL

260

260

°C

thermal characteristics
Thermal Resistance, Junction to Case
Thermal Resistance, Junction to Ambient
Maximum Lead Temperature for Soldering
Purposes: Va" from Case for 5 Seconds

(1) Repetitive Rating: Pulse width limited by max. junction temperature.

125

electrical characteristics (T c = 25 0 C)

I

(unless otherwise specified)

I SYMBOL I .MIN

CHARACTERISTIC

TYP

MAX

UNIT

100
60

-

-

Volts

-

-

250
1000

/J.A

±100

nA

VGS(TH)

2.0

-

4.0

Volts

10(ON)

14

-

-

A

off characteristics
Drain-Source Breakdown Voltage
(VGS = OV, 10 = 250/J.A)

I RF130/DS6DL2
IRF131/DS6DK2

BVDSS

Zero Gate Voltage Drain Current
(VOS = Max Rating, VGS = OV; Tc = 25°C)
(VOS = Max Rating, x O.S, VGS = OV, Tc = 125°C)

loss

Gate-Source Leakage Current
(VGS = ±20V)

IGSS

on characteristics*
Tc = 25°C

Gate Threshold Voltage
(VOS = VGS, 10 = 250 ",A)
On-State Drain Current
(VGS = 10V, VOS = 10V)
Static Drain-Source On-State Resistance
(VGS = 10V, 10 = SA)

ROS(ON)

-

0.15

0.1S

Ohms

gfs

3.2

4.0

-

mhos

Ciss

650

SOO

pF

Coss
C rss

-

240

500

pF

55

150

pF

td(on)

-

15

-

10

-

ns

55

-

14

A

56

A

1.0

2.5

Volts

210
1.4

-

ns
/J.C

Forward Transconductance
(VOS = 10V, 10 = SA)

dynamic characteristics
Input Capacitance·

VGS = OV

Output Capacitance

VOS = 25V

Reverse Transfer Capacitance

f = 1 MHz

switching characteristics*
Turn-on Delay Time

VOS = 30V

Rise Time

ID = SA, VGS = 15V

Turn-off Delay Time

RGEN = 500, RGS = 12.50

Fall Time

tr
td(off)

(RGS (EQUIV.) = 100)

tf

30

ns
ns
ns

source-drain diode ratings and characteristics*
Pulsed Source Current

ISM

Diode Forward Voltage
(Tc = 25°C, VGS = OV, Is = 14A)

VSD

-

Reverse Recovery Time
(Is = 14A, dls/dt = 100A//J.sec, TC = 125°C)

trr
ORR

-

Continuous Source Current

Is

-

'Pulse Test: Pulse width:::; 300 /JS, duty cycle:::; 2%
2,4

100
BO
60

~

a:
w

20
10

4

!§

2

'<1"

!S
-

~ <:

y

'"

"
~
.........

~

......

~

'","'-

~

I"

i'

OPERATION IN THIS AREA
MAY BE LIMITED BY ROSIONI

10.,

fil

~ r-.. i'

~

~ 1.2
10ms

>'"

100m,

li

0,1
1

4

6

B 10

20

40

"...

/

~

O,B

r--

-- :::::::.
VGSITHI

0,4
0,2

~

60 BO 100

---- -r-.

1.0

. / /ROSIONI

/

1 -~
~ 0.6

a:

IRF130/DB6DL2 _
IRF131/DB6DK2+:

........

c

11

./

V

1.6

Z

SINGLE PULSE
1 Tc '2SoC,

0,2

1,B

~ 1.4

1m,

DC

C 0,6
0.4

CONDITIONS:

t--- _ROS(ON) CONOITIONS: '0 =B,O A, VGS =10V
VGS(TH) CONOITIONS: 10 =250.A, VOS =VGS

N

:;

":--....

1,0
O,B

2,0

i' 100.,

'" ~ "- ~i'

\

a:

u

".,
,,'

'L

1:
S;w

2,2

.......

40

o
200

400 600 1000

-40

o

40

BO

120

160

T J • JUNCTION TEMPERATURE ('C)

VOS' DRAIN-SOURCE VOLTAGE (VOLTS)

TYPICAL NORMALIZED RDstONI AND VGSITHI VS, TEMP.

MAXIMUM SAFE OPERATING AREA

126

~o~[F~

IRF132,133

FIELD EFFECT POWER TRANSISTOR

12.0 AMPERES
100, 60 VOLTS
RDS(ON) = 0.25 n

This series of N-Channel Enhancement-mode Power
MOSFETs utilizes GE's advanced Power DMOS technology
to achieve low on-resistance with excellent device ruggedness and reliability.

N-CHANNEL

This design has been optimized to give superior performance
in most switching applications including: switching power
supplies, inverters, converters and solenoid/relay drivers.
Also, the extended safe operating area with good linear
transfer characteristics makes it well suited for many linear
applications such as aud;o amplifiers and servo motors.

CASE STYLE TO-204AA (TO-3)
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)
0.645(21.471

I.. MAX
. ..J~.356(9.091 MAX
I.:..
DIA. ::l
MAX...l~

.065(1.651

f

Features
0.043(1.09)
0.036(0.97)

• Polysilicon gate - Improved stability and reliability

~

--..II-

DIA
.,

SEATING PLANE
.426(10.62) MIN.

• No secondary breakdown - Excellent ruggedness
• Ultra-fast switching - Independent of temperature
• Voltage controlled - High transconductance
• Low input capacitance - Reduced drive requirement
• Excellent thermal stability - Ease of paralleling
0.440(11.16)
0.420(10.67)

maximum ratings (T C = 25° C)
RATING
Drain-Source Voltage
Drain-Gate Voltage, RGS = 1Mn
Continuous Drain Current@Tc.= 25°C
@Tc = 100°C
Pulsed Drain Current(1)
Gate-Source Voltage
Total Power Dissipation @ Tc = 25°C
Derate Above 25° C
Operating and Storage
Junction Temperature Range

(unless otherwise specified)
IRF132
100
100
12

IRF133
60
60
12

8
48

8
48

VGS
Po

±20
75
0.6

±20
75
0.6

UNITS
Volts
Volts
A
A
A
Volts
Watts
W/oC

TJ, TSTG

-55 to 150

-55 to 150

°C

ROJC
ROJA

1.67
30

1,67
30

°CIW
°CIW

h

260

260

°C

SYMBOL
Voss
VOGR
10
10M

thermal characteristics
Thermal Resistance, Junction to Case
Thermal Resistance, Junction to Ambient
Maximum Lead Temperature for Soldering
Purposes: W' from Case for 5 Seconds

(1) Repetitive Rating: Pulse width limited by max. junction temperature.

127

electrical characteristics (T c = 25° C)

I

(unless otherwise specified)

CHARACTERISTIC

I SYMBOL I

MIN

BVDSS

I

TYP

MAX

100
60

-

-

-

250
1000

pA

-

IGSS

-

-

±100

nA

VGS(TH)

2.0

-

4.0

Volts

10(ON)

12

-

-

A

UNIT

off characteristics
Drain-Source Breakdown Voltage
(VGS = OV, 10 = 250 pA)

IRF132
IRF133

Zero Gate Voltage Drain Current
(Vo'S = Max Rating, VGS = OV, Tc = 25°C)
(VOS = Max Rating, x O.S, VGS = OV, TC = 125°C)

loss

Gate-Source Leakage Current
(VGS = ±20V)

-

Volts

on characteristics·
Gate Threshold Voltage
(VOS = VGS, 10 = 250 p.A)

Tc

=25°C

On-State Drain Current
(VGS = 10V, VOS = 10V)
Static Drain-Source On-State Resistance
(VGS = 10V, 10 = SA)

ROS(ON)

-

0.1S

0.25

Ohms

9fs

3.2

4.0

-

mhos

Ciss

-

650

SOO

pF

240

500

pF

55

150

pF

15

-

ns

55

ns

10

-

Forward Transconductance
(VOS = 10V, 10 = SA)

dynamic characteristics
Input Capacitance

VGS = OV

Output Capacitance

VOS = 25V

Reverse Transfer Capacitance

f = 1 MHz

Coss
C rss

switching characteristics·
Turn-on Delay Time

VOS = 30V

Rise Time

10 = SA, VGS = 15V

-

td(on)
tr

=12.50

Turn-off Delay Time

RGEN = 50n, RGS

Fall Time

(RGS (EQUIV.) = 100)

td(off)
tf

30

ns
ns

source-drain diode ratings and characteristics·
-

A

ISM

-

12

Pulsed Source Current

4S

A

Diode Forward Voltage
(Tc = 25°C, VGS = OV, Is = 12A)

VSO

-

1.0

2.3

Volts

trr

-

210
1.4

-

ns
pC

Continuous Source Current

Is

Reverse Recovery Time
(Is = 14A, dls/dt = 100A/psec, Tc = 125°C)

ORR

-

'Pulse Test: Pulse width:::; 300 ps, duty cycle:::; 2%
2.4

100
BO

60
40

ffi

..........

20

'\

a:
~

~

10

zw

: .'

gs

2

~...

"- IX

4

a:

<.>

z

OPERATION IN THIS AREA
MAY BE LIMITED BY ROSIONI

" 1.0
~ O.B
0 0 .6
- 0.4

1"-1'

"- 1'1'

"-

r"-i'

2.0

10"'5

S

4

6 B 10

20

1m•

z

~ 1.2

10m

>'G

1.0

c

lOOms

~ O.B

~

C

0.6

!'l

40

6080100

CONDITIONS:
RDS(ON) CONDITIONS: 10 8.0 A, VGS 10V
VGS(TH) CONDITIONS: 10 250pA. VOS VGS

=
=

=
=

1.8

V

~ 1.6
::;
~ 1.4

a: 0.4

:~m~,:;: H
1

I--

N

lOOps

SINGLE PULSE
Tc ·2S·C

0.2
0.1

"'"

2.2

""'- ""'.......... i'... "~ ,I"-

.1\

\

"'"

~

,

..........

-r--

--

./

.". , . "ROSIONI

[.../
~

~~

V

" r--- r--

-

VGSITHI_

r-

O. 2
200

-40

4006001000

o

40

80

12Q

160

T J • JUNCTION TEMPERATURE ('C)

VDS' DRAIN-SOURCE VOLTAGE (VOLTS)

TYPICAL NORMALIZED RDSIONI AND VGSITHI VS. TEMP.

MAXIMUM SAFE OPERATlNG AREA

128

IRF140,141
D86EL2,K2

~ffi1D~~

27 AMPERES
100,60 VOLTS
ROS(ON) = 0.085

FIELD EFFECT POWER TRANSISTOR

This series of N-Channel Enhancement-mode Power
MOSFETs utilizes GE's advanced Power DMOS technology
to achieve low on-resistance with excellent device ruggedness and reliability.

n

N-CHANNEL

This design has been optimized to give superior performance
in most switching applications including: switching power
supplies, inverters, converters and solenoid/relay drivers.
Also, the extended safe operating area with good linear
transfer characteristics makes it well suited for many linear
applications such as audio amplifiers and servo motors.

CASE STYLE TO-204AE (TO-3)
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

r:

0.845{21.47)
MAX. g.358(9.09) MAX

"~;.*~ "~"""~

Features

.0.063(1.60) DIA.-l
0.057{1.45)

• Polysilicon gate - Improved stability and reliability

L.

r

.426{10.82) MIN.

• No secondary breakdown - Excellent ruggedness
• Ultra-fast switching - Independent of temperature
CASE TEMP.
REFERENCE

• Voltage controlled - High transconductance

POINT
.20(5.00)

• Low input capacitance ---.,. Reduced drive requirement
• Excellent thermal stability - Ease of paralleling

0.162(4.09)
0.15{3.84)
2 HOLES

DIA.
0.440{11.18)
0.420{10.67)

maximum ratings (T C =25° C)
RATING
Drain-Source Voltage
Drain-Gate Voltage, RGS :;: 1Mn
Continuous Drain Current@Tc;:: 25°C
@TC =100°C
Pulsed Drain Current(1)
Gate-Source Voltage
Total Power Dissipation @ TC =25°C
Derate Above 25°C
Operating and Storage
Junction Temperature Range

(unless otherwise specified)
IRF140/086EL2
100
100
27
17
108
±20
125
1.0

IRF141/086EK2
60
60
27
17
108
±20
125
1.0

UNITS
Volts
Volts
A
A
A
Volts
Watts

TJ, TSTG

-55 to 150

-55 to 150

°C

R8JC
R8JA

1.00
30

1.00
30

°CIW
°CIW

·h

260

260

°C

SYMBOL
VOSS
VOGR
10
10M

VGS
Po

W/oC

thermal characteristics
Thermal Resistance, Junction to Case
Thermal Resistance, Junction to Ambient
Maximum Lead Temperature for Soldering
Purposes: Vs" from Case for 5 Seconds

..

(1) Repetitive Rating: Pulse Width limited by max. junction temperature.

129

electrical characteristics (T c = 25 0 C)

I

(unless otherwise specified)

CHARACTERISTIC

I SYMBOL I

MIN

TYP

MAX

UNIT

BVDSS

100
60

-

-

Volts

-

-

-

250
1000

IGSS

-

-

±100

nA

VGS(TH)

2.0

-

4.0

Volts

10(ON)

27

-

-

A

ROS(ON)

-

0.073

0.OB5

Ohms

gfs

5.4

7.0

-

mhos

Ciss

-

1400

1600

pF

550

BOO

pF

120

300

pF

-

20

-

ns

-

115

-

ns

50

-

ns

off characteristics
Drain-Source Breakdown Voltage
(VGS =OV, 10 =25011A)

IRF140lDB6EL2
IRF141/DB6EK2

Zero Gate Voltage Drain Current
(VOS =Max Rating, VGS =OV, Tc =25°C)
(VOS = Max Rating, x O.B, VGS = OV, Tc = 125°C)
Gate-Source Leakage Current
(VGS= ±20V)

loss

'-

-

I1A

'.

on characteristics*
Gate Threshold Voltage
(VOS =VGS, 10 = 250 p.A)

Tc

=25°C

On-State Drain Current
(VGS = 10V, VOS = 10V)
Static Drain-Source On-State Resistance
(VGS =10V, 10 = 15A)
Forward Transconductance
(VOS =10V, 10 =15A)

dynamic characteristics
Input Capacitance

VGS = OV

Output Capacitance

VOS = 25V

Reverse Transfer Capacitance

f = 1 MHz

Coss
C rss

switching characteristics*
=30V

Turn-on Delay Time

VOS

Rise Time

10 = 15A, VGS = 15V

td(on)
tr

=50n, RGS =12.5n

Turn-off Delay Time

RGEN

Fall Time

(RGS (EQUIV.) = 10n)

id(off)
tf

-

30

ns

source-drain diode ratings and characteristics*
Continuous Source Current

-

IS

Pulsed Source Current

ISM

Diode Forward Voltage
(Tc = 25°C, VGS =OV, Is = 27A)

VSO

Reverse Recovery Time
(Is =27A, dls/dt =100A/Jlsec, TC

trr
QRR

=125°C)

-

27

A

-

10B

A

1.2

2.5

Volts

250
2.0

-

I1C

ns

'Pulse Test: Pulse width:::; 300 IJS, duty cycle:::; 2%
1000
800
600
400

~

2.4

Q.

100
80
60

l2w

40

§

20

z

~

II:
C

_"

........

P'..
~

/'

"'-

v"... 1\
10
B

,

........

"- ,."....,
I' ,,,",

~

."

OPERATION IN THIS AREA "'"
6
,.........
4 MAY BE LIMITEO BY ROSION)

I

I1

~

1.8

~

1.6

:::;

II:

t.)

I

I

I

I

I

c

200

ffi
~

I

r---CONDITIONS:
ROS(ON) CONDITIONS: 10 = 15 A, VGS = 10V
2.0 r---- VGS(TH) CONDITIONS: 10 = 250"A, VOS = VGS
2.2

I

SINGLE PULSE
Tc=2SoC
I

I

4

"

fil

r-...:: " 10~s

r--

1.2

'"

1.0

~

lms

1.4

~

..

100~s

r-......

2

"

IRF141/086EK2
~
IRF140/086EL2

~

i'10ms

I'

r-- ;--r--

z

~ O.B

:--..

./

LV

II:

1--

~

~

--

~

V
r-- -........

0.6

II:

0.4
i'100ms

ROSIONI-

--

~GSITHI- I - -

....

0.2

I'
DC

6 8 10
20
40 60 80100
200
Vas' DRAIN-SOURCE VOLTAGE (VOL TSI

o

400 600 1000

MAXIMUM SAFE OPERATING AREA

-40

o

40

80

120

160

T J , JUNCTION TEMPERATURE (OC)

TYPICAL NORMALIZED ROSIONI AND VGSITHI VS. TEMP.

130

~[ffio~ [p~U

IRF142,143
24 AMPERES
100, 60 VOLTS
ROS(ON) =0.11 il

FIELD EFFECT POWER TRANSISTOR

This series of N~Channel Enhancement-mode Power
MOSFETs utilizes GE's advanced Power OM OS technology
to achieve low on-resistance with excellent device ruggedness and reliability.

N-CHANNEL

This design has been optimized to give superior performance
in most switching applications including: sWitching power
supplies, inverters, converters and solenoid/relay drivers.
Also, the extended safe operating area with good linear
transfer characteristics makes it well suited for many linear
applications such as audio amplifiers and servo motors.

CASE STYLE TO-204AE (TO-3)
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)
0.845(21.47)

t

0~~x65*~

Features
III

Polysilicon gate -

.~ DIA.---.l L_

Improved stability and reliability

• No secondary breakdown • Ultra-fast switching o Voltage controlled -

MAX. j~'358(9'09) MAX

0.057(1.45)

1""--

SEATiNG PLANE

.426(10.82) MIN.

Excellent ruggedness

Independent of temperature
High transconductance

CASE TEMP.
REFERENCE
POINT
.20(5.00)

• Low input capacitance - Reduced drive requirement
• Excellent thermal stability -

Ease of paralleling

0.162(4.09)
0.15(3.84)
2 HOLES

DIA.
0.440(11.18)
0.420(10.67)

maximum ratings (T C = 25 0 C)
RATING
Drain-Source Voltage
Drain-Gate Voltage, RGS =1Mil
Continuous Drain Current @ TC
@Tc
Pulsed Drain Current(1)

= 25°C
=100°C

Gate-Source Voltage
Total Power Dissipation @ T C =25° C
Derate Above 25° C
Operating and Storage
Junction Temperature Range

(unless otherwise specified)
IRF142
100
100
24
15
96
±20
125
1.0

IRF143
60
60
24
15
96
±20
125
1.0

UNITS
Volts
Volts
A
A
A
Volts
Watts

TJ, TSTG

-55 to 150

-55 to 150

°C

ROJC
ROJA

1.00
30

1.00
30

°CIW
°CIW

TL

260

260

°C

SYMBOL
Voss
VOGR
10
10M

VGS
Po

W/oC

thermal characteristics
Thermal Resistance, Junction to Case
Thermal Resistance, Junction to Ambient
Maximum Lead Temperature for Soldering
Purposes: Va" from Case for 5 Seconds

(1) Repetitive Rating: Pulse width limited by max. junction temperature.

131

electrical characteristics (T c

=25° C) (unless otherwise specified)
I SYMBOL I

MIN

TYP

MAX

BVDSS

100
60

-

-

-

250
1000

pA

IGSS

-

±100

nA

VGS(TH)

2.0

-

4.0

Volts

IO(ON)

24

-

-

A

ROS(ON)

-

0.09

0.11

Ohms

9fs

5.4

7.0

-

mhos

VGS = OV

Ciss

1400

1600

pF

. VOS= 25V
f = 1 MHz

Coss
C rss

-

550

BOO

pF

120

300

pF

20

ns

30

-

CHARACTERISTIC

UNIT

I

off characteristics
IRF142
IRF143

Drain-Source Breakdown Voltage
(VGS = OV, 10 = 250 pA)
Zero Gate Voltage Drain Current
(VOS = Max Rating, VGS = OV, Te = 25°C)
(VOS= Max Rating, x O.B, VGS = OV, Te = 125°C)

loss

Gate-Source Leakage Current
(VGS= ±20V)

Volts

on characteristics*
Gate Threshold Voltage
(VOS = VGS, 10 = 250 /LA)

Te = 25°C

On-State Drain Current
(VGS = 10V, VOS = 10V)
Static Drain-Source On-State Resistance
(VGS = 10V, 10 = 15A)
Forward Transconductance
(VOS = 10V, 10 = 15A)

dynamic characteristics
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance

switching characteristics*
Turn-on Delay Time

VOS = 30V

Rise Time

10 = 15A, VGS = 15V

-

td(on)
tr

Turn-off Delay Time

RGEN = 50n, RGS = 12.5n

Fall Time

(RGS (EQUIV.j = 10n)

td(off)
tf

115
50

ns
ns
ns

source-drain diode ratings and characteristics*
IS

-

-

24

A

ISM

-

-

96

A

1.1

2.3

Volts

250
2.0

-

ns
pC

Continuous Source Current
Pulsed Source Current
Diode Forward Voltage
(Te = 25°C, VGS = OV, Is = 24A)
Reverse Recovery Time
(Is = 27A, dls/dt = 100A/psec, Tc = 125°C)

VSO
trr
ORR

'Pulse Test: Pulse width :S 300 I1s, duty cycle :S 2%
2.4

1000
800
600
·400
0;
w

cw

200

a:
~

~
_
I-

100
BO
60

2
w

40

!5t.l

20

2
«
a:

10

a:

c

_0

'x'

"'\

~

r"- I'~

,/

.......

6 ~ OPERATION IN THIS AREA .......

1

~MAY

BE lIMITEO BY ReS(ON)

I

" I"...:

I

r-S;NGLE PULSE
Tc =2SoC
I
I
4

1.8

1.6

::;;
a:

" "'I'

"r--.." ~

//1\

N.

'"
C

1m.

1.2

~ 0.8

~l3

..... 10ms

a:

.......

-- ---- --

r-- r--- r--

1.0

.-

.-

V

~

2

........

r--....

IRF142

0
2

1'10#.
100#s

V
. . . . .V

1--

0.6
0.4

..... lOOms

ReS(ON)-

~GS(TH)

-

0.2

~ DC

20
40 60 SO 100
200
6 B 10
Vos. DRAIN-SOURCE VOLTAGE (VOLTS)

o
400 600 1000

MAXIMUM SAFE OPERATING AREA

-40

o

40

80

120

160

T J • JUNCTION TEMPERATURE ('C)

TYPICAL NORMALIZED ROSIONI AND VGSITHI VS. TEMP.

132

IRF150,151
D86FL2,K2

~D~~

40 AMPERES
100,60 VOLTS
ROS(ON) = 0.055 il

FIELD EFFECT POWER TRANSISTOR

This series of N:-Channel Enhancement-mode Power
MOSFETs utilizes GE's advanced Power DMOS technology
to achieve low on-resistance with excellent device ruggedness and reliability.
.

N-CHANNEL

This design has been optimized to give superior performance
in most switching applications including: switching power
supplies, inverters, converters and solenoid/relay drivers.
Also, the extended safe operating area with good linear
transfer characteristics makes it well suited for many linear
applications such as audio amplifiers and servo motors.

CASE STYLE TO-204AE (TO-3)
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

r:

0845(21.47)
MAX. H·35819.09J MAX

",;~."~~ ,~,~~-

Features

0.063(1.60) DIA . .....J L
0.057(1.45)
II

• Polysilicon gate - Improved stability and reliability

.426(10.82) MIN.

• No secondary breakdown - Excellent ruggedness
• Ultra-fast switching - Independent of temperature
• Voltage controlled - High transconductance

CASE TEMP.
REFERENCE
POINT
.20(5.00)

• Low input capacitance - Reduced drive requirement
• Excellent thermal stability - Ease of paralleling

0.162(4.09)
0.15(3.84)
2 HOLES

DIA.
0.440(11.18)

0.420110.67)

maximum ratings (TC = 25 0 C)
RATING
Drain-Source Voltage
Drain-Gate Voltage, RGS = 1Mil
Continuous Drain Current @ T C = 25° C
@TC= 100°C
Pulsed Drain 9urrent(1)
Gate-Source Voltage
Total Power Dissipation @TC = 25°C
Derate Above 25° C
Operating and Storage
Junction Temperature Range

(unless otherwise specified)
IRF150/086FL2
100
100
40
25
160
±20
150
1.2

IRF151/086FK2
60
60
40
25
160
±20
150
1.2

UNITS
Volts
Volts

TJ, TSTG

-55 to 150

-55 to 150

°C

R8JC
R8JA

0.83
30

0.83
30

°CIW
°CIW

TL

260

260

°C

SYMBOL
Voss
VOGR
10
10M

VGS
Po

A
A
A
Volts
Watts

WloC

thermal characteristics
Thermal Resistance, Junction to Case
Thermal Resistance, Junction to Ambient
Maximum Lead Temperature for Soldering
Purposes: Va" from Case for 5 Seconds

(1) Repetitive Rating: Pulse width limited by max. junction temperature.

133

electrical characteristics (T c

I

=25° C) (unless otherwise specified)

CHARACTERISTIC

I SYMBOL I

MIN

TYP

MAX

UNIT

BVDSS

100
60

-

-

Volts

-

-

250
1000

f.lA

IGSS

-

-

±100

nA

VGS(TH)

2.0

-

4.0

Volts

10(ON)

40

-

-

A

ROS(ON)

-

0.050

0.055

Ohms

9fs

8.1

10

-

mhos

-

2800

3000

pF

1000

1500

pF

225

500

pF

25

ns

75

-

-

40

A

ISM

-

160

A

VSO

-

1.3

2.5

Volts

trr
ORR

-

300
2.8

-

ns
JlC

off characteristics
Drain-Source Breakdown Voltage
(VGS =OV, 10 =250 JlA)

IRF150/D86FL2
IRF151/D86FK2

Zero Gate Voltage Drain Current
(Vos =Max Rating, VGS =OV, Tc =25°C)
(VOS =Max Rating, x 0.8, VGS =OV, TC =125°C)

loss

Gate-Source Leakage Current
(VGS =±20V)

on characteristics*
Gate Threshold Voltage
(VOS =VGS, 10 =250 p,A)

Tc

=25°C

On-State Drain Current
(VGS =10V, VOS =10V)
Static Drain-Source On-State Resistance
(VGS =10V, 10 =20A)
Forward Transconductance
(VOS =10V, 10 =20A)

dynamic characteristics
=OV
Ciss
Output Capacitance
VOS =25V
Coss
Reverse Transfer Capacitance
C rss
f =1 MHz
switching characteristics*
Turn-on Delay Time
VOS =30V
td(on)
Rise Time
10 =20A, VGS =15V
tr
Turn-off Delay Time
RGEN =50.0, RGS =12.5.0
td(off)
Fall Time
(RGS (EQUIV.) =10.0)
tf
source-drain diode ratings and characteristics*
Input Capacitance

VGS

Continuous Source Current

-

Is

Pulsed Source Current
Diode Forward Voltage
(Tc =25°C, VGS =OV, Is =40A)
Reverse Recovery Time
(Is =40A, dls/dt =100AlJlsec, TC

=125°C)

145
95

ns
ns
ns

'Pulse Test: Pulse width :5 300 /lS, duty cycle :5 2%
2.4

1000

BOO
600
400

~

III

~
w

II:

fS

.....

100

40

~

Q

_"

...... r-.... .......

;x~

Jt.

lOp.

, ,

""

",,/'

20

"-~

8 t- OPERATION IN THIS AREA
6 I- MAY BE LIMITED BY ROSION)

4

PUL~E

I- SINdLE
2
Tc =250C

j

I
4

.......

r----

........

1.4

~

!:: 1.2

"-

on

"

~
10ms

":. 0.8

z
o

a

lOOms

......

r-...

1.0

z

I......

......

1.6

~

.... 1m.

~

1.8

~
II:

lOOp •

~"-

'" "-

~

\

10

1

2.0

~

:::;

......

.......

tJ
II:

t--

I

I

I
I
1
CONDITIONS:
RD(ON) CONDITIONS: 10 =20 A, VGS = 10V
VGS(i'H) CONDITIONS: 10 = 250pA, VDS =VGS

Q

200

l :g

I

2.2

0.6

II:

IRFI51/D86FK2
~ IRF150/D86FL2

0.4

----.--- -r---

,..

V

".........

.--

:--- r--

~;-

-

0.2

DC

o
6 8 10
20
40 60 80100
200
VOS' DRAIN-SOURCE VOLTAGE (VOLTS)

ROSIO~

400 600 1000

MAXIMUM SAFE OPERATING AREA

-40

o

40

80

120

160

T J • JUNCTION TEMPERATURE (OC)

TYPICAL NORMALIZED RDSIONI AND VGSITHI VS. TEMP.

134

~[R1D~[P~

IRF152,153
33 AMPERES
100, 60 VOLTS
RDS(ON) =0.08 n

FIELD EFFECT POWER TRANSISTOR

This series of N-Channel Enhancement-mode Power
MOSFETs utilizes GE's advanced Power DMOS technology
to achieve low on-resistance with excellent device ruggedness and reliability.

N-CHANNEL

This design has been optimized to give superior performance
in most switching applications including: switching power
supplies, inverters, converters and solenoid/relay drivers.
Also, the extended safe operating area with good linear
transfer characteristics makes it well suited for many linear
applications such as audio amplifiers and servo motors.

CASE STYLE TO-204AE (TO-3)
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)
0.645121 471

I':

MAX

~~'35619'091 MAX

06~~X65l~

T

Features
.0.063(1.601

• Polysilicon gate - Improved stability and reliability

---u--n=

DIA.-.J

0.05711.451

L.

SEATING PLANE
.426110.821 MIN.

"

• No secondary breakdown - Excellent ruggedness
• Ultra-fast switching -

Independent of temperature

• Voltage controlled - High transconductance

CASE TEMP
REFERENCE
POINT
.2015.001

• Low input capacitance - Reduced drive requirement
•

E~cellent

thermal stability - Ease of paralleling

0.16214.091
0.1513.841
2 HOLES

DIA.
0.440111.161
0.420(10.671

maximum ratings (T C = 25 0 C)
RATING
Drain-Source Voltage
Drain-Gate Voltage, RGS = 1Mn
Continuous Drain Current@ TC = 25°C
@TC= 100°C
Pulsed Drain Current(')
Gate-Source Voltage
Total Power Dissipation @Tc = 25°C
Derate Above 25° C
Operating and Storage
Junction Temperature Range

(unless otherwise specified)
IRF152
100
100
33
20
132
±20
150
1.2

IRF153
60
60
33
20
132
±20
150
1.2

UNITS
Volts
Volts
A
A
A
Volts
Watts
W/oC

TJ, TSTG

-55 to 150

-55 to 150

°C

R8JC
R8JA

0.83
30

0.83
30

°C/W
°C/W

h

260

260

°C

SYMBOL
Voss
VOGR
10
10M
VGS
Po

thermal characteristics
Thermal Resistance, Junction to Case
Thermal Resistance, Junction to Ambient
Maximum Lead Temperature for Soldering
Purposes: Va" from Case for 5 Seconds

(1) Repetitive Rating: Pulse width limited by max. junction temperature.

135

electrical characteristics (T c

=25° C) (unless otherwise specified)

CHARA,CTERISTIC

I SYMBOL I

MIN

TYP

MAX

UNIT

BVDSS

100
60

-

-

-

Volts

-

250
1000

pA

IGSS

-

±100

nA

VGS(TH)

2.0

-

4.0

Volts

10(ON)

33

-

-

A

ROS(ON)

-

0.06

O.OB

Ohms

gfs

B.1

10

-

mhos

Ciss

-

2BOO

3000

pF

Coss
C rss

-

1000

1500

pF

-

225

500

pF

-

25

-

ns

145
95

-

ns

-

-

75

-

ns

-

-

33.

A

ISM

132

A

VSO

-

1.2

2.3

Volts

trr

-

300
2.B

-

off characteristics
Drain-Source Breakdown Voltage
(VGS =OV, 10 =250 pA)

IRF152
IRF153

Zero Gate Voltage Drain Current
(VOS =Max Rating, VGS =OV, Tc =25°C)
(VOS =Max Rating, x O.B, VGS =OV, Tc =125°C)

loSS

Gate-Source Leakage Current
(VGS =±20V)

on characteristics*
Gate Threshold Voltage
(VOS =VGS, 10 =250 ,.,.A)

Tc

=25°C

On-State Drain Current
(VGS =10V, VOS =10V)
Static Drain-Source On-State Resistance
(VGS =10V, 10 =20A)
Forward Transconductance
(VOS =10V, 10 =20A)

dynamic characteristics
=OV
VOS =25V
f =1 MHz

Input Capacitance

VGS

Output Capacitance
Reverse Transfer Capacitance

switching characteristics*
Turn-on Delay Time

VOS

=30V

td(on)

Rise Time

10 =20A, VGS = 15V

Turn-off Delay Time

RGEN = 500, RGS

Fall Time

(RGS (EQUIV.)

tr

=12.50

td(off)
tf

=100)

ns

source-drain diode ratings and characteristics*
Continuous Source Current

Is

Pulsed Source Current
Diode Forward Voltage
(Tc =25°C, VGS =OV, Is =33A)
Reverse Recovery Time
(IS = 40A, dls/dt =100Alpsec, Tc = 125°C)

ORR

ns
pC

'Pulse Test: Pulse width :5 300 f.l.S, duty cycle:5 2%
2.4

1000
800
600

400
_

~
a:

...
...

~

~

100
80
60
40

~

20

u
Z

"-

\V
/

10

a:

8
6

Q

_"

2
1

"

./

a:

;;:

I-

I

=

I

=
=

Q

200

!z...

I

I

I
I
CONDITIONS:
ROS(ON) CONOITIONS: 10 20 A. VGS 10V
2.0 r-VGS(TH) CONOITIONS: 10 = 250.A. VOS VGS
2.2

......

""~

1\

OPERATION IN THIS AREA
MAY 8E LIMITED BY ROSIONI

r- SINdLE PUJE
T =25.C

1

I
4

"

I"

::;
~
a:

10~s

~

100.,
.... 1m,

1.4

~

1.2

"

1.0

~

......

z
Z 08
.

..:

10ms

o

~ 0.6

lOOms

a:

IRF153

"-

~IRFI52

i'

R~V"

1.6

;:

'"'"

" ""-

1.8

0.4

--

- r--

l--- ~

V

~

f..--

r-- r-I-

~~

-

0.2

DC

6 8 10
20
40 60 80 100
200
V DS' DRAIN -SOURCE VOLTAGE (VOLTS)

-40

400 600 1000

o

40

80

120

160

T J. JUNCTION TEMPERATURE ('C)

MAXIMUM SAFE OPERATING AREA

TYPICAL NORMALIZED RDSIONI AND VGSITHI VS. TEMP.

136

IRF230,231
D86DN2,M2

~D~[?~

9.0 AMPERES
200,150 VOLTS
ROS(ON} = 0.4 n

FIELD EFFECT POWER TRANSISTOR

This series of N-Channel Enhancement-mode Power
MOSFETs utilizes GE's advanced Power OM OS technology
to achieve low on-resistance with excellent device ruggedness and reliability,

N-CHANNEL

This design has been optimized to give superior performance
in most switching applications including: switching power
supplies, inverters, converters and solenoid/relay drivers.
Also, the extended safe operating area with good linear
transfer characteristics makes it well suited for many linear
applications such as audio amplifiers and servo motors.

CASE STYLE TO-204AA (TO-3)
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

r:

0.845(21.47)

MAX

::l~.358(9.09) MAX

06~~X65l~
f~

Features
0.043(1.09)
0.038(0.97)

• Polysilicon gate - Improved stability and reliability

DlA.-II.I

SEATING PLANE

.426(10.82) MIN.

• No secondary breakdown - Excellent ruggedness
• Ultra-fast switching - Independent of temperature
• Voltage controlled - High transconductance
• Low input capacitance - Reduced drive requirement
• Excellent thermal stability - Ease of paralleling
0.162(4.09)
0.15(3.84)
2 HOLES

maximum ratings (T C =25° C)
RATING
Drain-Source Voltage
Drain-Gate Voltage, RGS = 1Mn
Continuous Drain Current @ T C = 25° C
@TC= 100°C
Pulsed Drain Current(l)
Gate-Source Voltage
Total Power Dissipation @Tc = 25°C
Derate Above 25° C
Operating and Storage
Junction Temperature Range

DIA.
0.440(11.18)
0.420(10.67)

(unless otherwise specified)
SYMBOL

IRF230/0860N2
200
200
9.0
6.0
36
±20
75
0.6

IRF231/0860M2
150
150
9.0
6.0
36
±20
75
0.6

UNITS
Volts
Volts
A
A
A
Volts
Watts

TJ, TSTG

-55 to 150

-55 to 150

°C

ReJc
ReJA

1.67
30

1.67
30

°CIW
°CIW

TL

260

260

°C

Voss
VOGR
10
10M

VGS
Po

W/oC

thermal characteristics
Thermal Resistance, Junction to Case
Thermal Resistance, Junction to Ambient
Maximum Lead Temperature for Soldering
Purposes: W' from Case for 5 Seconds

(1) Repetitive Rating: Pulse width limited by max. junction temperature.

137

electrical characteristics (T c = 25° C)

(unless otherwise specified)

CHARACTERISTIC

I SYMBOL I

MIN

BVDSS

I

TYP

MAX

UNIT

200
150

-

-

Volts

-

250
1000

pA

IGSS

-

-

±100

nA

VGS(TH)

2.0

-

4.0

Volts

10(ON)

9.0

-

-

A

-

0.34

0.4

Ohms

gfs

2.4

3.0

-

mhos

Ciss

-

650

800

pF

150

450

pF

30

150

pF

15

-

ns

off characteristics
Drain-Source Breakdown Voltage
(VGS = OV, 10 = 250 pA)

IRF230/D86DN2
IRF231/D86EM2

Zero Gate Voltage Drain Current
(VOS = Max Rating, VGS = OV, Tc = 25°C)
(VOS = Max Rating, x 0.8, VGS = OV, TC = 125°C)

loss

Gate-Source Leakage Current
(VGS = ±20V)

on characteristics*
Gate Threshold Voltage
(VOS = VGS, 10 = 250 p.A)

Tc = 25°C

On-State Drain Current
(VGS= 10V, Vps = 10V)
Static Drain-Source On-State Resistance
(VGS = 10V, 10 = 5.0A)

ROS(ON)

Forward Transconductance
(VOS = 10V, 10 = 5.0A)

dynamic characteristics
Input Capacitance

VGS = OV

Output Capacitance

VOS = 25V
f = 1 MHz

Reverse Transfer Capacitance

Coss
C rss

switching characteristics*
Turn-on Delay Time

VOS = 90V

Rise Time

10 = 5.0A, VGS = 15V

Turn-off Delay Time

RGEN = 500, RGS = 12.50

Fall Time

(RGS (EQUIV.) = 100)

-

td(on)
tr
td(off)
tf

25
30
20

ns
ns
ns

source-drain diode ratings and characteristics*
Continuous Source Current

Is

Pulsed Source Current

ISM

Diode Forward Voltage
(Tc = 25°C, VGS = OV, Is = 18A)

Vso

Reverse Recovery Time
(Is = 9.0A, dls/dt = 100Alpsec, Tc = 125°C)

trr
ORR

-

-

9.0

A

-

36.0

A

-

1.0

2.0

Volts

300
2.5

-

ns
pC

·Pulse Test: Pulse width :5 300 ps, duty cycle :5 2%
100
BO
60

2.4
2.2

CONDITIONS:

40

......

ffi

20

~

!

10

~

!;;w

4

!5u

2

'"
!5

1.0

a:

;;:

"" )<

\

a:

~/

.......

OPERATION IN THIS AREA
MAY BE LIMITED BY Ros ON

O.B

" 0.6

-

I

0.4

. . . . r--

c

w

10.,

N

100.,

........

.......

"

~

1.B

::;

1.6

~
a:

1.4

~

"
.........

~ 1.2

1m'

~

>

10ms

lOOms
DC

1.0

!i1

O.B

j

0.6

«

IRF230/OBBON2 ....,

STGLE,PULSE
Tc=2SoC

0.2

....... 1'

""-

"~

1\

ROS(ON) CONDITIONS: 10 = 5.0 A. VGS = 10V
VGS(TH) CONDITIONS: 10 = 250p. VOS = VGS

2.0

........

'" ""

.'
L

.......

/

/'

./"
r--

/AOS(ONI

-.....-- - . /V

...- ".........

./

V

r--

t----..

l"-

VGS\THI

I-

a:c 0.4

IRF231/0BBOM~ ~

0.2

o

0.1
1

4

6

B 10

20

40

60 BO 100

Vos. DRAIN-SOURCE VOLTAGE

200

400 600 1000

(VOLTS)

-40

40

BO

120

160

T J' JUNCTION TEMPERATURE ('C)

MAXIMUM SAFE OPERATING AREA

TYPICAL NORMALIZED ROSION) AND VGSITH) VS. TEMP.

138

~~D~[?~

IRF232,233
8.0 AMPERES
200, 150 VOLTS
ROS(ON) = 0.6 0

FIELD EFFECT POWER TRANSISTOR

This series. of N-Channel Enhancement-mode Power
MOSFETs utilizes GE's advanced Power DMOS technology
to achieve low on-resistance with excellent device ruggedness and reliability.

N-CHANNEL

This design has been optimized to give superior performance
in most switching applications including: switching power
supplies, inverters, converters and solenoid/relay drivers.
Also, the extended safe operating area with good linear
transfer characteristics makes it well suited for many linear
applications such as audio amplifiers and servo motors.

CASE STYLE TO-204AA (TO-3)
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)
0.845(21.47)

L. MAX . .J~.358(9.09) MAX

I=- orA. ::l

.065(1.65)
MAX.

Features

0.043(1.09)
0.038(0.97)

• Polysilicon gate - Improved stability and reliability

*~
OIA...J
.

L_

-li

SEATING PLANE
.426(10.82) MIN.

• No secondary breakdown - Excellent ruggedness
• Ultra-fast switching -

Independent of temperature

• Voltage controlled - High transconductance

~~~:Rr::c"E -'-if+t-iPOINT
.20(5.00)
SOURCE

• Low input capacitance - Reduced drive requirement

T~ff---''-

• Excellent thermal stability - Ease of paralleling
0.440(11.18)
0.420(10.67)

maximum ratings (T C = 25°C)
RATING
Drain-Source Voltage
Drain-Gate Voltage, RGS = 1MO
Continuous Drain Current @ Tc = 25°C
@Tc= 100°C
Pulsed Drain Current(11
Gate-Source Voltage
Total Power DiSSipation @ TC = 25°C
Derate Above 25° C
Operating and Storage
Junction Temperature Range

(unless otherwise specified)
IRF232
200
200
8.0
5.0
32
±20
75
0.6

IRF233
150
150
8.0
5.0
32
±20
75
0.6

UNITS
Volts
Volts
A
A
A
Volts
Watts

TJ, TSTG

-55 to 150

-55 to 150

°C

R(JJC
R(JJA

1.67
30

1.67
30

°C/W

TL

260

260

°C

SYMBOL
Voss
VOGR
10
10M
VGS
Po

W/oC

thermal characteristics
Thermal Resistance, Junction to Case
Thermal ReSistance, Junction to Ambient
Maximum Lead Temperature for Soldering
Purposes: W' from Case for 5 Seconds

(1) Repetitive Rating: Pulse width limited by max. junction temperature.

139

°CIW

electrical characteristics (Tc
CHARACTERISTIC

=25° C) (unless otherwise specified)
I SYMBOL I MIN

MAX

TYP

UNIT

off characteristics
Drain-Source Breakdown Voltage
(VGS = OV, 10 = 250 pA)

IRF232
IRF233

200
150

-

-

Volts

-

250
1000

pA

-

-

±100

nA

VGS{TH)

2.0

-

4.0

Volts

10{ON)

8.0

-

-

A

ROS(ON)

-

0.4

0.6

Ohms

gfs

2.4

3.0

-

mhos

-

650

800

pF

150

450

pF

30

150

pF

15

-

BVDSS

Zero Gate Voltage Drain Current
(VOS= Max Rating, VGS = OV, Tc = 25°C)
(VOS = Max Rating, x 0.8, VGS = OV, TC = 125°C)

loss

Gate-Source Leakage Current
(VGS = ±20V)

IGSS

on characteristics*
Gate Threshold Voltage
(V OS = VGS, 10 = 250 p.A)

Tc = 25°C

On-State Drain Current
(VGS = 10V, VOS = 10V)
Static Drain-Source On-State Resistance
(VGS = 10V, 10 = 5.0A)
Forward Transconductance
(VOS = 10V, 10 = 5.0A)

dynamic characteristics
Input Capacitance

VGS= OV

Ciss

Output Capacitance

VOS = 25V
f = 1 MHz

Coss
C rss

Reverse Transfer Capacitance

switching characteristics*
Turn-on Delay Time

VOS = 90V

Rise Time

10 = 5.0A, VGS = 15V

Turn-off Delay Time

RGEN = 500, RGS = 12.50

Fall Time

(RGS (EQUIV.) = 100)

td{on)
tr
td{off)
tf

-

30

-

20

-

-

8.0

A

32

A

1.0

1.8

Volts

-

300
2.5

-

25

ns
ns
ns
ns

source-drain diode ratings and characteristics*
Continuous Source Current

IS

Pulsed Source Current

ISM

Diode Forward Voltage
(Tc = 25°C, VGS = OV, Is = B.OA)

Vso

Reverse Recovery Time
(Is = 9.0A, dls/dt = 100Alj1sec, Tc = 125°C)

trr
ORR

ns

pC

·Pulse Test: Pulse width ::5 300 IlS, duty cycle::5 2%

2.4

100

I

BO

60
40

fa

2.2

20

II!

~

10

...z

6

:;;
:'!:
w

B

g;

u

\

\/

4

II!

2

z

~/

V

<

1.0
~ 0.8
Q 0.6
- 0.4

,

"

/~,

.~

",

..........

,

, ",
~ ';-..

"' "

.........

1\

OPERATION IN THIS AREA
MAY BE LlMITEO BY ROSfON)

o

;-.. ......... i '

i'~

w

101.!5

N

::;

I I

~

~_

i ' 1m,

~ 0.8
~ 0.6

DC

:~m~:;::

T c =2SoC

0.2

- r--V

1.2

t--

>

lOOms

a:.~

./

.LnOSIONI

1.6

1.4

E
~ 1.0

"- i'10m,

/

=



20

1.

."""

v"

~ .......

10
.......
.......
8
/
........
"6
"
OPERATION IN THIS AREA
4 MAY BE LIMITED BY RDSIONI

"

"

-;;:::

~~

:--.,

"-

r-.. ........

i

1.61---+--+--+--li----+--I--+-/-¥~1---+----l

Sl

1.41---+--+--+---l~-+-_t. /--,,;Io':""-+--I---+-_t

~

100~s

r-.. ....,

l.0I---+--+--+--=~~~--I--+---+--+--+----l

z
~ 0.81-_--+V--:P~+----iI---+--I-----"r-.......,j;;--;::--+~HIf-ooI I--IRF243
~IR1242

.~ 0.61-"""~--t--+----iI---+--I--t---+--+---P"'-I
a:

I-

10ms
2 -SINdLE PUL~E
Tc =2SoC
DC'
i
'- 'lOOms
1
1
2
4
6 8 10
20
40 60 80 100
200
400 600 1000
VOS' DRAIN-SOURCE VOLTAGE (VOLTS)

I I I

_V----

~ 1.2t--q=--t--+----i,---+-:7"'f/~-t--_t_-t__-+--I
~
r---r---r--./'/

10~s

lms

"- i' r-..

V

"-

MAXIMUM SAFE OPERATING AREA

0.41---+--+--+--lI---+~-I--+---+--+--+----l

0.2 t--t--t--_t_---il---+--+--t---+--+--_t_-l
O~--~40~~--~O~~--4~O--~~8~0--~~12~0--~~160
TJ. JUNCTION TEMPERATURE ('C)

TYPICAL NORMALIZED RDSIONI AND VGSITHI VS. TEMP.

144

IRF250,251
D86FN2,M2

~D~[P~

30 AMPERES
200, 150 VOLTS
ROS(ON) =Q.085 0

FIELD EFFECT POWER TRANSISTOR

This series of N-Channel Enhancement-mode Power
MOSFETs utilizes GE',s advanCed Power DMOS technology
to achieve low on-resistance with excellent device ruggedness and reliability.

N-CHANNEL

This design has been optimized to give superior performance
in most switching applications including: switching power
supplies, inverters, converters and solenoid/relay drivers.
Also, the extended safe operating area with good linear
transfer characteristics makes it well suited for many linear
applications such as audio amplifiers and servo motors.

CASE STYLE TO-204AE (TO-3)
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

r:

O.845t21.47~

MAX

-:i~'35B(9'09) MAX

O~~lx65l~

T

Features

-----u---n=
---.J I-

.0.063(1.60)
DIA
0057(145)1

• Polysilicon gate - Improved stability and reliability

SEATING PLANE
.426(10.82) MIN

• No secondary breakdown - Excellent ruggedness
• Ultra-fast switching - Independent of temperature
• Voltage controlled - High transconductance

CASE TEMP.
REFERENCE
POINT
20(5.00)

• Low input capacitance - Reduced drive requirement
• Excellent thermal stability - Ease of paralleling

0.162(4.09)
O. '5(3.B41
2 HOLES

DIA.
0.440(11.18)
0.420(10.67)

maximum ratings (TC =25° C)
RATING
Drain-Source Voltage
Drain-Gate Voltage, RGS = 1MO
Continuous Drain Current @ T C = 25° C
@TC= 100°C
Pulsed Drain Current(l)
Gate-Source Voltage
Total Power Dissipation @ Tc = 25°C
Derate Above 25° C
Operating and Storage
Junction Temperature Range

(unless otherwise specified)
IRF250/086FN2
200
200
30
19
120
±20
150
1.2

IRF251/086FM2
150
150
30
19
120
±20
150
1.2

UNITS
Volts
Volts
A
A
A
Volts
Watts
W/oC

TJ, TSTG

-55 to 150

-55 to 150

°C

ROJC
ROJA

0.83
30

0.83
30

°C/W
°C/W

h

260

260

°C

SYMBOL
Voss
VOGR
10
10M

VGS
Po

thermal characteristics
Thermal Resistance, Junction to Case
Thermal Resistance, Junction to Ambient
Maximum Lead Temperature for Soldering
Purposes: Va" from Case for 5 Seconds

(1) Repetitive Rating: Pulse width limited by max. junction temperature.

145

electrical characteristics (T c = 25° C)

(unless otherwise specified)

CHARACTERISTIC

I

1

SYMBOL

1

UNIT

MIN

TYP

MAX

200
150

-

-

-

250
1000

pA

±100

nA

off characteristics
Drain-Source Breakdown Voltage
(VGS = OV, 10 = 250 pA)

IRF250/D86FN2
IRF251/D86FM2

BVDSS

Zero Gate Voltage Drain Current
(VOS = Max Rating, VGS = OV, Tc = 25°C)
(VOS = Max Rating, x 0.8, VGS = OV, Tc = 125°C)

loss

-

Volts

IGSS

-

-

VGS(TH)

2.0

-

4.0

Volts

IO(ON)

30

-

-

A

ROS(ON)

-

0.075

0.085

Ohms

gfs

7.2

10

-

mhos

-

2800

3000

pF

520

1200

pF

-

120

500

pF

20

ns

65

-

-

30

A

120

A

1.3

2.0

Volts

345
4.5

-

ns
pC

Gate-Source Leakage Current
(VGS = ±20V)

on characteristics*
Tc = 25°C

Gate Threshold Voltage
'(VOS = VGS, 10 = 250 JJ.A)
On-Rtate Drain Current
(VGS 10V, VOS 10V)

=

=

Static Drain-Source On-State Resistance
(VGS 10V, 10 = 16A)

=

Forward Transconductance
(V OS = 10V, 10 = 16A)

dynamic characteristics
. Input Capacitance

VGS = OV

Clss

VOS = 25V
f = 1 MHz

Output Capacitance
Reverse Transfer Capacitance

Coss
C rss

switching characteristlcs*
Turn-on Delay Time

VOS

=90V

-

td(on)

Rise Time

10 =16A, VGS

Turn-off Delay Time

RGEN

=15V
tr
=500, RGS = 12.50 td(off)
Fall Time
tf
(RGS (EQUIV.t =100)
source-drain diode ratings and characteristics*
Continuous Source Current

=

=

=

=

-

ISM

Diode Forward Voltage
(Tc 25°C, VGS OV, Is 30A)
Reverse Recovery Time
(Is 30A, dls/dt 100Alps, Tc 125°C)

VSO

=

trr
ORR

=

90

-

Is

Pulsed Source Current

75

ns
ns
ns

·Pulse Test: Pulse width :s; 300 I1S, duty cycle:S; 2%
1000
800
600
400

iii
ffi

2.4
2.2 _
2.0 -

~

~

:::;
100

'(j,

c

1m.

1.0

2

~ 0.8

r......

I

4

I......

......
i'...

...........

PUL~E
T =2SOC
C1

......

.... r--...
......

~

a:

i'...

1.8

z

OPERATION IN THIS AREA
MAY BE LIMITED BY ROSIONI

I- SINGLE
1

I,

......

........

,/

40
20

/'

c

200

~ :g
~
a:

I
I
I
I
I
I
CONDITIONS:
ROS(ON) CONDITIONS: 10 =16 A. VGS =10V
VGS(TH) CONDITIONS: 10 =250pA. VOS =VGS

20

40

"

~

lams

a:

...... lOOms

0.6
0.4

....... ::::; .IRF251/D86FM2

0.2

IRF250/D86FN2

a

60 80 100

200

400 600 1000

--

-

-40

i-"'"

V

a

./

V

r--

40

V

ROSIONI-

--- ---VGSITHI_

80

120

r---

160

T J , JUNCTION TEMPERATURE ('CI

VOS' DRAIN-SOURCE VOL TAGE (VOLTS)

MAXIMUM SAFE OPERATING AREA

r-- r-- I--.

V

/

./

TYPICAL NORMALIZED RDSIONI AND VGSITHI VS. TEMP.

146

~o~[p~1J

IRF252,253

FIELD EFFECT POWER TRANSISTOR

25 AMPERES
200,150 VOLTS
ROS(ON) = 0.12 n

This series of N-Channel Enhancement-mode Power
MOSFETs utilizes GE's advanced Power DMOS technology
to achieve low on-resistance with excellent device ruggedness and reliability.

N-CHANNEL

This design has been optimized to give superior performance
in most switching applications including: switching power
supplies, inverters, converters and solenoid/rel·ay drivers.
Also, the extended safe operating area with good linear
transfer characteristics makes it well suited for many linear
applications such as audio amplifiers and servo motors.

CASE STYLE TO-204AE (TO-3)
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

r:

0.B45121.47)
MAX. g.35BI9.09) MAX

";:t"*~--=t '"' ' "'"

Features

.~ DIA.---..I

• Polysilicon gate - Improved stability and reliability

005711.451

L
"I r

.426110.B2) MIN.

• No secondary breakdown - Excellent ruggedness
• Ultra-fast switching - Independent of temperature
• Voltage controlled - High transconductance

CASE TEMP.
REFERENCE

POINT

• Low input capacitance - Reduced drive requirement

.2015.00)

• Excellent thermal stability - Ease of paralleling

0.16214.09)
0.1513.B4)
2 HOLES

DIA.
0.440111.18)
0.420110.67)

maximum ratings (T C = 25° C)
RATING
Drain-Source Voltage
Drain-Gate Voltage, RGS = 1Mn
Continuous Drain Current@ TC = 25°C
@TC= 100°C
Pulsed Drain Current(1)
Gate-Source Voltage
Total Power Dissipation @ TC = 25°C
Derate Above 25° C
Operating and Storage
Junction Temperature Range

(unless otherwise specified)
SYMBOL
Voss
VOGR

,

IRF252
200
200
25
16
100
±20
150
1.2

IRF253
150
150
25
16
100
±20
150
1.2

UNITS
Volts
Volts
A
A
A
Volts
Watts
W/oC

TJ, TSTG

-55 to 150

-55 to 150

°C

R8JC
R8JA

0.83
30

0.83
30

°C/W
°C/W

TL

260

260

°C

10
10M
VGS
Po

thermal characteristics
Thermal Resistance, Junction to Case
Thermal Resistance, Junction to Ambient
Maximum Lead Temperature for Soldering
Purposes: W' from Case for 5 Seconds

(1) Repetitive Rating: Pulse width limited by max. junction temperature.

147

electrical characteristics (T c

=25° C) (unless otherwise specified)

CHARACTERISTIC

I SYMBOL I

MIN

TYP

MAX

UNIT

BVDSS

200
150

-

-

-

Volts

-

-

250
1000

pA

IGSS

-

-

±100

nA

VGS(TH)

2.0

-

4.0

Volts

10(ON)

25

-

-

A

0.10

0.12

Ohms

-

mhos

·off characteristics
Drain-Source Breakdown Voltage
(VGS = OV, 10 = 250 pA)

IRF252
IRF253

Zero Gate Voltage D.rain Current
(VOS = Max Rating, VGS = OV, TC = 25°C)
(VOS = Max Rating, x 0.8, VGS = OV, TC = 125°C)

lOSS

Gate-Source Leakage Current
(VGS = ±20V)

on characteristics*
Gate Threshold Voltage
(VOS = VGS, 10 = 250 fJ.A)

Tc = 25°C

On-State Drain Current
(VGS = 10V, VOS = 10V)
Static Drain-Source On-State Resistance
(VGS = 10V, 10 = 16A)

-

ROS(ON)

Forward Transconductance.
(VOS = 10V, 10 = 16A)

gfs

7.2

10

-

2800

3000

pF

520

1200

pF

-

120

500

pF

-

20

-

ns

75

-

ns

-

90

-

ns

-

65

-

ns

'25
100

A
A
Volts

dynamic characteristics
Input Capacitance

VGS = OV

Ciss

Output Capacitance

VOS = 25V
f = 1 MHz

Coss
C rss

Reverse Transfer Capacitance

switching characteristics*
Turn-on Delay Time

VOS = 90V

Rise Time

10 = 16A, VGS = 15V

td(on)
tr

Turn-off Delay Time

RGEN = 500, RGS = 12.50

Fall Time

(RGS (EQUIV.) = 100)

td(off)
tf

source-drain diode ratings and characteristics'"
Pulsed Source Current

ISM

-

-

Diode Forward Voltage
(TC = 25°C, VGS = OV, IS = 25A)

VSO

-

1.2

1.8

trr

-

345
4.5

-

Continuous Source Current

IS

Reverse Recovery Time
(Is = 30A, dls/dt = 100Alps, Tc = 125°C)

QRR

ns

pC

'Pulse Test: Pulse width :5 300 f1S, duty cycle :5 2%
2.4

1000
800
600
400

m
ffi

D.

~
f-

iiia:

~

_Q

~

100
80
60
40

,"

'\
,/

10

/

1\

::;
~
a:

:-......

" ,'"'" i'o'""

\.

20

~

"-

'" "'""

~

.
"

10~s

"

~

100~s

~

..... lms

~

=
=

I

I
./

=

6 I- MAY BE LlMITEO BY ROSIONI

4

r-

SINdlE pUlle
T =2S'C

I

I

2

4

........

'" "
I'....

Dc-......

6

1.8

1.6
1.4
1.2

1.0

r--- r---

Z

-:. 0.8
z
o
0.6

8 ~ OPERATION IN THIS AREA

1

2.0

I

CONDITIONS:
ROS(ON) CONDITIONS: 10 16 A. VGS = 10V
VGS(TH) CONDITIONS: 10 250pA. VOS VGS

c

200

u

~
a:
c

~

I

I

I

2.2

is

10ms

a:

0.4

-------

.......

-

,,/'

./'

./

V

----I-

/

./'
ROSIONI-

",

r-~~ I--.

'" lOOms
-

0.2

,---IRF2S3
~IRF252

8 10
20
40 60 80100
200
VOS' DRAIN-SOURCE VOLTAGE (VOL TSI

o

400 600 1000

MAXIMUM SAFE OPERATING AREA

-40

o

40

80

120

160

T J • JUNCTION TEMPERATURE ('C)

TYPICAL NORMALIZED RDSIONI AND VGSITHI VS. TEMP.

148

IRF330,331
086002,01

~[RjD~~

5.5 AMPERES
400, 350 VOLTS
ROS(ON) = 1.0!l

FIELD EFFECT POWER TRANSISTOR

This series of N-Channel Enhancement-mode Power
MOSFETs utilizes GE's advanced Power DMOS technology
to achieve low on-resistance with excellent device ruggedness and reliability.

N-CHANNEL

This design has been optimized to give superior performance
in most switching applications including: switching power
supplies, inverters, converters and solenoid/relay drivers.
Also, the extended safe operating area with good linear
transfer characteristics makes it well suited for many linear
applications such as audio amplifiers and servo motors.

CASE STYLE TO-204AA (TO-3)
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)
0.845(21.47)

~ MAX ~~.358(9.09) MAX

0~~X65l~

T

Features
0.043(1.09)
0.038(0.97)

• Polysilicon gate - Improved stability and reliability

CIA

~

SEATING PLANE

-1 L
·11

.426(10.82) MIN.

• No secondary breakdown - Excellent ruggedness
• Ultra-fast switching - Independent of temperature
• Voltage controlled - High transconductance

~~;;RTE~~E --L...1f-+t-.f-+j['),LJ----'L..
POINT
.20(5.00)
SOURCE

• Low input capacitance - Reduced drive requirement
• Excellent thermal stabtJity - Ease of paralleling

DRAIN

0.162(4.09)
0.15(3.84)
2 HOLES

maximum ratings (TC =25° C)
RATING
Drain-Source Voltage
Drain-Gate Voltage, RGS = 1M!l
Continuous Drain Current@ Tc = 25°C
@Tc= 100°C
Pulsed Drain Current(1)
Gate-Source Voltage
Total Power Dissipation @ TC = 25°C
Derate Above 25° C
Operating and Storage
Junction Temperature Range

DRAIN
(CASE)

CIA.
0.440(11.18)
0.420(10.67)

(unless otherwise specified)
IRF330/D860Q2
400
400
5.5
3.5
22
±20
75
0.6

IRF331/0860Ql
350
350
5.5
3.5
22
±20
75
0.6

UNITS
Volts
Volts
A
A
A
Volts
Watts
WfOC

TJ, TSTG

-55 to 150

-55 to 150

°C

ROJC
ROJA

1.67
30

1.67
30.

°C/W
°C/W

TL

260

260

°C

SYMBOL
Voss
VOGR
10
10M

VGS
Po

thermal characteristics
Thermal Resistance, Junction to Case
Thermal Resistan<;:e, Junction to Ambient
Maximum Lead Temperature for Soldering
Purposes: W' from Case for 5 Seconds

(1) Repetitive Rating: Pulse width limited by max. junction temperature.

149

electrical characteristics (T c = 25° C)

I

(unless otherwise specified)

CHARACTERISTIC

I SYMBOL I

MIN

TYP

MAX

UNIT

BVDSS

400
350

-

-

Volts

-

250
1000

JlA

±100

nA

off characteristics
Drain-Source Breakdown Voltage
IRF330/DS6DQ2
IRF331/DS6DQ1
(VGS = OV, 10 = 250 JlA)
Zero Gate Voltage Drain Current
(VOS = Max Rating, VGS = OV, TC = 25°C)
(VOS = Max Rating, x O.S, VGS = OV, Tc = 125°C)
Gate-Source Leakage Current
(VGS = ±20V)

loss

-

IGSS

-

-

VGS(TH)

2.0

-

4.0

Volts

10(ON)

5.5

-

-

A

ROS(ON)

-

O.S

1.0

Ohms

gfs

2.1

2.5

-

mhos

Ciss
Coss
Crss

-

650
100
15

SOO
300
SO

pF
pF
pF

td(on)
tr

-

15
20

-

-

30
20

-

ns
ns
ns
ns

on characteristics*
Gate Threshold Voltage
(VOS = VGS, 10 = 250 p.A)

Tc = 25°C

On-State Drain Current
(VGS = 10V, VOS = 10V)
Static Drain-Source On-State Resistance
(VGS = 10V, 10 = 3A)
Forward Transconductance
(VOS = 10V, 10 = 3A)

dynamic characteristics
Input CapaCitance
Output Capacitance

VGS = OV
VOS = 25V
f = 1 MHz

Reverse Transfer Capacitance

switching characteristics*
Turn-on Delay Time
Rise Time
Turn-off Delay Time

VOS = 175V
10 = 3A, VGS = 15V
RGEN = 500, RGS = 12.50

Fall Time

(RGS (EQUIV.) = 100)

td(off)
tf

source-drain diode ratings and characteristics*
Continuous Source Current
Pulsed Source Current
Diode Forward Voltage
(Tc = 25°C, VGS = OV, Is = 5.5A)
Reverse Recovery Time
(Is = 5.5A, dls/dt = 100AIJls, Tc= 125°C)

-

5.5
22

A
A

VSO

-

1.0

1.6

Volts

trr
QRR

-

360
4.0

-

Is
ISM

ns
JlC

'Pulse Test: Pulse wldth::5 300 p.s, duty cycle::5 2%
100
BO
60
40

2.4
2.2

CONDITIONS:
ROSION) CONDITIONS: 10 3.0 A, VGS 10V
VGS(TH) CONDITIONS: 10 250~A, VOS VGS .,-

=
=

2.0

~

20

i'

II:

~

~

...2
w

10

:
4

"2

2

<
g;

1.0
O.B
C 0.6
- 0.4

1//

"

.......

.......

"

~

"~ " , .....
'r-. ."'.....

......

........

SINGLE PULSE
I Tc·2SoC I

.......

~

1.2

1~'

>"
o
2

1.0

..:

r-,/'

r---

V

V

--

-r--,
VG ITHI-

~

0.2

IRF330/0B6002~

6 B 10
20
40 60 BO 100
200
Vos' DRAIN-SOURCE VOLTAGE IVOLTSI

...-

--

L

. /.....

a: 0.4

DC

-+::::

/

V

..... V

Q

lOOt

"'"

O.B

~ 0.6 1 -

lams

"-

=
=

.,- /ROSONI

1.4

~

Z

IRF331/0B600~

4

1.6

100f'

..............
...........

1.8

~
II:

10.,

...........

..........

I I

~

::;

.........

OPERATION IN THIS AREA
MAY BE LIMITED BY ROSIONI

0.2

O. 1

~

)('I'

II:

~

I'

r--lX

o

400 600 1000

-40

0

40

BO

120

160

TJ , JUNCTION TEMPERATURE I'C)

MAXIMUM SAFE OPERATING AREA

TYPICAL NORMALIZED RDSIONI AND VGSITHI VS. TEMP.

150

~o~[p~

IRF332,333

FIELD EFFECT POWER TRANSISTOR

4.5 AMPERES
400, 350 VOLTS
ROS(ON) = 1.5 il

This series of N-Channel Enhancement-mode Power
MOSFETs utilizes GE's advanced Power DMOS technology
to achieve low on-resistance with excellent device ruggedness and reliability.

N-CHANNEL

This design has been optimized to give superior performance
in most switching applications including: switching power
supplies, inverters, converters and solenoid/relay drivers.
Also, the extended safe operating area with good linear
transfer characteristics makes it well suited for many linear
applications such as audio amplifiers and servo motors.

CASE STYLE TO-204AA (TO-3)
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

r

0.B45121.47)
MAX. g . 3 5 BI9.09) MAX

·:';"~~_=r~"oo"~'
f-

Features

0.04311.09)
0.03810.97)

• Polysilicon gate - Improved stability and reliability

DIA

"

--.l

.426110.82) MIN.

• No secondary breakdown - Excellent ruggedness
• Ultra-fast switching - Independent of temperature
• Voltage controlled - High transconductance

~~~;RTE~~ ~~...
@ i - I -.....

POINT

• Low input capacitance - Reduced drive requirement

.2015.00)
SOURCE

• Excellent thermal stability - Ease of paralleling
0.16214.091
0.15(3.84)
2 HOLES

maximum ratings (TC = 25° C)
RATING
Drain-Source Voltage
Drain-Gate Voltage, RGS =1Mil
Continuous Drain Current@Tc = 25°C
@TC =100°C
Pulsed Drain Current(1)
Gate-Source Voltage
Total Power Dissipation @ TC =25°C
Derate Above 25° C
Operating and Storage
Junction Temperature Range

DRAIN

DRAIN

DIA.

(CASE)
0.440111.1B)
0.420(10.67)

(unless otherwise specified)
IRF332
400
400
4.5
3.0
18
±20
75
0.6

IRF333
350
350
4.5
3.0
18
±20
75
0.6

UNITS
Volts
Volts
A
A
A
Volts
Watts

TJ, TSTG

-55 to 150

-55 to 150

°C

R8JC
R8JA

1.67
30

1.67
30

°C/W
°C/W

TL

260

260

°C

SYMBOL
Voss
VOGR
10
10M
VGS
Po

W/oC

thermal characteristics
Thermal Resistance, Junction to Case
Thermal Resistance, Junction to Ambient
Maximum Lead Temperature for Soldering
Purposes: W' from Case for 5 Seconds

(1) Repetitive Rating: Pulse width limited by max. junction temperature.

151

electrical characteristics (T c = 25° C)

(unless otherwise specified)

I SYMBOL I

CHARACTERISTIC

TYP

MIN

MAX

UNIT

off characteristics
Drain-Source Breakdown Voltage
(VGS = OV, 10 = 250/1A)

IRF332
IRF333

Zero Gate Voltage Drain Current
(VOS = Max Rating, VGS = OV, TC = 25°C)
(VOS = Max Rating, x 0.8, VGS = OV, Tc = 125°C)

BVDSS
loSS

400
350

-

-

250
1000

/1A

±100

nA

-

Volts

IGSS

-

-

VGS(TH)

2.0

-

4.0

Volts

10(ON)

4.5

-

-

A

ROS(ON)

-

1.2

1.5

Ohms

gfs

2.1

2.5

-

mhos

VGS = OV

Ciss

650

800

pF

Output Capacitance

VOS = 25V

300

pF

f = 1 MHz

Coss
C rss

100

Reverse Transfer Capacitance

-

15

80

pF

td(on)

-

15

tr

-

-

ns

20

-

Gate-Source Leakage Current
(VGS = ±20V)

on characteristics*
Gate Threshold Voltage
(V OS = VGS, 10 = 250 p.A)

Tc = 25°C

On-State Drain Current
(VGS = 10V, VOS = 10V)
Static Drain-Source On-State Resistance
(VGS = 10V, 10 = 3.0A)
Forward Transconductance
(VOS = 10V, 10 = 3.0A)

dynamic characteristics
Input Capacitance

switch i ng characteristics *
Turn-on Delay Time

VOS = 175V

Rise Time

10 = 3A, VGS = 15V

Turn-off Delay Time

RGEN = 500, RGS = 12.50

Fall Time

(RGS (EQUIV.) = 100)

td(off)
tf

30
20

ns
ns
ns

source-drain diode ratings and characteristics*
IS

-

Pulsed Source Current

ISM

-

Diode Forward Voltage
(Tc = 25°C, VGS = OV, IS = 4.5A)

VSO

-

Continuous Source Current

Reverse Recovery Time
(Is = 5.5A, dls/dt = 100Al/1s, Tc = 125°C)

trr
ORR

-

4.5

A

18

A

0.9

1.5

Volts

360
4.0

-

ns
/1C

'Pulse Test: Pulse width :5 300 Jls, duty cycle:5 2%
100
80
60
40

2.4

1

2.2

o

20

,~

a:
~

~....
zw

10

:
4

a:

~

2

u

z
"
o
z
..:

..............

"- "I'" l°~f

1.2

1.0
0.8

..,..V

-

I--- . /

./

,

,/'

V

- -- --./"

. VGSITH)- ~

0.4

DC

6 8 10
20
40 60 80 100
200
VOS' DRAIN-SOURCE VOLTAGE (VOL TSI

L

1.4

Z
~ 0.6 I o
a:

lams

./

...... /ROSONI

1.6

a:

100y

;,r

1.8

:::;

;i

0.2

:m~r~

o. 1

1

=
=

2.0

ffi

1

RDS(ON) CONDITIONS: 10 3.0 A. VGS 10V
VGS(TH) CONOITIONS: 10 250!H----''POINT

• Low input capacitance - Reduced drive requirement
• Excellent thermal stability -

.20(5.00)

SOURCE

Ease of paralleling

DRAIN
0:'62{4.09)
0.15(3.84)

2 HOLES

maximum ratings (T C = 25° C)
RATING
Drain-Source Voltage
Drain-Gate Voltage, RGS = 1Mn
Continuous Drain Current@Tc = 25°C
@Tc= 100°C
Pulsed Drain Current(l)
Gate-Source Voltage
Total Power Dissipation @ Tc = 25°C
Derate Above 25° C
Operating and Storage
Junction Temperature Range

DIA.
0.44011 1.18)
0.420(10.67)

(unless otherwise specified)
IRF342
400
400

IRF343
350
350

8

8

5
32
±20
125
1.0

5
32
±20
125
1.0

UNITS
Volts
Volts
A
A
A
Volts
Watts
W/oC

TJ, TSTG

-55 to 150

-55 to 150

°C

Rf)JC
Rf)JA

1.00
30

1.00
30

°C/W
°C/W

TL

260

260

°C

SYMBOL
VDSS
VOGR
10
10M

VGS
PD

thermal characteristics
Thermal Resistance, Junction to Case
Thermal Resistance, Junction to Ambient
Maximum Lead Temperature for Soldering
Purposes: W' from Case for 5 Seconds

(1) Repetitive Rating: Pulse width limited by max. junction temperature.

155

=25

electrical characteristics (T c

0

C)

(unless otherwise specified)

CHARACTERISTIC

I SYMBOL I

MIN

BVDSS

400
350

I

TYP

MAX

UNIT

-

-

Volts

off characteristics
Drain-Source Breakdown Voltage
(VGS:: OV, 10 = 250 pA)

IRF342
IRF343

Zero Gate Voltage Drain Current
(V OS = Max Rating, VGS = OV, Tc = 25°C)
(VOS = Max Rating, x 0.8, VGS = OV, Tc = 125°C)

loss

-

-

-

250
1000

pA

IGSS

-

±100

nA

VGS(TH)

2.0

-

4.0

Volts

10(ON)

8

-

-

A

ROS(ON)

-

0.70

0.80

Ohms

9fs

3.2

4.5

-

mhos

Ciss

-

1400

1600

pF

210

450

pF

37

150

pF

-

20

ns

70

-

30

-

ns

Gate-Source Leakage Current
(VGS = ±20V)

on characteristics*
Gate Threshold Voltage
(VOS = VGS, 10 = 250 p.A)

Tc = 25°C

On-State Drain Current
(VGS = 10V, VOS = 10V)
Static Drain-Source On-State Resistance
(VGS = 10V, 10 = 5A)
Forward Transconductance
(V OS = 10V, 10 = 5A)

dynamic characteristics
Input Capacitance

VGS = OV

Output Capacitance

VOS = 25V

Reverse Transfer Capacitance

f = 1 MHz

Coss
C rss

switching characteristics*
Turn-on Delay Time

VOS= 175V

Rise Time

10 = 5, VGS = 15V

Turn-off Delay Time

RGEN = 500, RGS = 12.50

Fall Time

(RGS (EQUIV.) = 100)

td(on)
tr
td(off)
tf

20

ns
ns

source-drain diode ratings and characteristics*
Pulsed Source Current

ISM

Diode Forward Voltage
(Tc = 25°C, VGS = OV, IS = SA)

VSO

-

Reverse Recovery Time
(Is = 10A, dls/dt = 100Alpsec, Tc = 125°C)

trr
ORR

-

Continuous Source Current

·Pulse Test: Pulse Width

~

IS

2.4
2.2

~

20

f~ ~

a:

r

10

~ ~
t15 4
~
z

2

;;:

1.0
0.8
0.6

is
1>

" I"

.\(

\

V/

OPERATION IN THIS AREA
MAY BE LIMITED BY ROSIONI

0.4
0.2

" 'r-.

.......

a:

u

f- SINdlE

PU'l~E

T =2SoC

'I

0.1
1

I
4

8

A

32

A

0.8

1.9

Volts

420
5.5

-

ns
pC

-

300 ps. duty cycle ~ 2%

100
80
60
40

ffi

-

r-...

" t'... "-

"

"~

2.0 -

I
bONDmONS:
ROS(ON) CONDITIONS: 10 5.0 A, VGS

I

=
=10V
VGS(TH) CONDITIONS: 10 =250~, VOS =VGS

/
ROS{ONI/

/

o

..........

"
"~['......

~

1.8

~
a:

1.6

:::;

10.,_
100.,

r-.

!il

1m, I-

~
~

~

"
"

1.4
1.2

0.8

lOOms

en
o

0.6

a:
DC

0.4

- --

r---

1.0

c:.z
o

"

,/'
f-.

...... . /

,V

z

10m1_

IRF343~

.......

V

V
t---.

~~

-

0.2

IRF34i--'l
6 8 10
20
40 60 80100
200
Vos. DRAIN-SOURCE VOL TAGE (VOL TSI

-

o

400 600 1000

-40

o

40

80

120

160

T J, JUNCTION TEMPERATURE (OC)

MAXIMUM SAFE OPERATING AREA

TYPICAL NORMALIZED ROSIONI AND VGSITHI VS. TEMP.

156

IRF350,351
D86FQ2,Q1

~D~[P~

15AMPERE5
400, 350 VOLT5
R05(ON) =0.3 il

FIELD EFFECT POWER TRANSISTOR

This series of N-Channel Enhancement-mode Power
MOSFETs utilizes GE's advanced Power DMOS technology
to achieve low on-resistance with excellent device ruggedness and reliability.

N-CHANNEL

This design has been optimized to give superior performance
in most switching applications including: switching power
supplies, inverters, converters and solenoid/relay drivers.
Also, the extended safe operating area with good linear
transfer characteristics makes it well suited for many linear
applications such as audio amplifiers and servo motors.

CASE STYLE TO-204AA (TO-3)
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)
0.845(21.47)

l- MAX . ..J~'35B(9'09) MAX

I=- DIA . .=l

.065(1.85)
MAX.

Features

*~
L_

0.043(1.09) DIA --.I
0.038(0.97)'
.'li

• Polysilicon gate - Improved stability and reliability

SEATING PLANE

.426(10.82) MIN.

• No secondary breakdown - Excellent ruggedness
• Ultra-fast switching - Independent of temperature
• Voltage controlled - High transconductance

~~~~RTE~M6E
=:::!t::~,
t.JiJJ,L+----'POINT
..

• Low input capacitance - Reduced drive requirement

.20(5.00)
SOURCE

• Excellent thermal stability - Ease of paralleling

maximum ratings (T C =25° C)
RATING
Drain-Source Voltage
Drain-Gate Voltage, RGS = 1Mil
Continuous Drain Current @Tc = 25°C
@Tc = 100°C
Pulsed Drain Current(1)
Gate-Source Voltage
Total Power Dissipation @ Tc = 25°C
Derate Above 25° C
Operating and Storage
Junction Temperature Range

0.162(4.09)
0.15(3.84)
2 HOLES

DIA.

0.440(11.18)
0.420(10.67)

(unless otherwise specified)
SYMBOL
Voss
VOGR

IRF350/086FQ2
400
400
15

IRF351/D86FQ1
350
350
15

9

9

60
±20
150
1.2

60
±20
150
1.2

UNITS
Volts
Volts
A
A
A
Volts
Watts
W/oC

-55 to 150

-55 to 150

°C

ROJC
ROJA

0.83
30

0.83
30

°CIW
°CIW

TL

260

260

°C

10
10M

VGS
Po

TJ, TSTG .

thermal characteristics
Thermal Resistance. Junction to Case
Thermal Resistance, Junction to Ambient
Maximum Lead Temperature for Soldering
Purposes: W' from Case for 5 Seconds

..

(1) Repetitive Rating: Pulse width limited by max. Junction temperature.

157

electrical characteristics (T c = 25 0 C)

I

(unless otherwise specified)

CHARACTERISTIC

I SYMBOL I

MIN

TYP

MAX

UNIT

BVDSS

400
350

-

-

Volts

-

250
1000

pA

±100

nA

off characteristics
Drain-Source Breakdown Voltage
(VGS =OV, 10 =250 pA)

I RF350/DB6FQ2
IRF351/DB6FQ1

Zero Gate Voltage Drain Current
(VOS =Max Rating, VGS =OV, TC =25°C)
(VOS =Max Rating, x O.B, VGS =OV, TC =125°C)

1055

Gate-Source Leakage Current
(VGS =±20V)

IGSS

-

-

VGS(TH)

2.0

-

4.0

Volts

10(ON)

15

-

-

A

on characteristics*
Gate Threshold Voltage
(VOS =VGS, 10 =250 p.A)

Tc

=25°C

On-State Drain Current
(VGS =10V, VOS =10V)
Static Drain-Source On-State Resistance
(VGS =10V, 10 =BA)

ROS(ON)

-

0.26

0.30

Ohms

gfs

5.6

B.O

-

mhos

-

2BOO

3000

pF

300

600

pF

60

200

pF

-

20

-

ns

110

-

ns

70

-

ns

15

A

60

A
Volts

Forward Transconductance
(VOS =10V, 10 =BA)

dynamic characteristics
=OV
Ciss
Output Capacitance
VOS =25V
Coss
Reverse Transfer Capacitance
f =1 MHz
C rss
switching characteristics*
Turn-on Delay Time
VOS =175V
td(on)
Rise Time
10 =BA, VGS =15V
tr
Turn-off Delay Time
RGEN =500, RGS =12.50
td(off)
Fall Time
tf
(RGS (EQUIV.) =100)
source-drain diode ratings and characteristics*
Input Capacitance

VGS

25

ns

15

-

Pulsed Source Current

15M

-

-

Diode Forward Voltage
(TC = 25°C, VGS =OV, 15 = 15A)

VSO

-

1.0

1.6

trr
QRR

-

500
6.5

-

Continuous Source Current

Reverse Recovery Time
(15 = 15A, dls/dt = 100Alpsec, Tc

=125°C)

-

ns

pC

·Pulse Test: Pulse Width :s 300 p.s. duty cycle :s 2%
2.4

100
BO
60
40

r-,../

w

IX

w

~

!zw
IX
!5
C)

..... 1-"

\.
'\

in 20

./

\

10

:

..........

........

./

:-.,. .......... r-,.
..........
r-,.

2.2

1'...1'...
r-.~

'r-.

.... ~

10.,lOOi'

..........

, "

lm,'--

........

./ 1\

4

\

2

z
Ci

f--

0.1
1

~

..........

.........

\

1.0
~ O.B I- OPERATION IN THIS AREA
C 0.6 I-MAY BE LIMITED BY ROSIONI
- 0.4
0.2

.......

SIN~LE
PU~SE
Tc =250C
I 1
4

..........

c

~

:;

~I':-...

1.2

"

1.0

Z

~ O.B

z

o

~

........
DC
IRF351/D86FOI

a:

0.6
0.4

~

- ---

./'

r--- r-V

./'

./1-'

r---

V

V

./

V

/'

ROSION)

,/

--

~G~ -

0.2

IIR7i/D86FOj ~

6 B 10
20
40 60 80 100
200
Vas' DRAIN-SOURCE VOLTAGE IVOL TS)

./

/l

1.8

~

~

100~'

.......

CONciITION~:

I
I
I
I
I
RoS(ON) CONDITIONS: 10 = B.O A, VGS = 10V

2.0 i - - VGS(TH) CONDITIONS: 10 = 250.A, VOS = VGS

~ 1.6
a:
~ 1.4
%

10m!

r--

o

400 600 1000

-40

o

40

80

120

160

TJ , JUNCTION TEMPERATURE I'C)

MAXIMUM SAFE OPERATING AREA

TYPICAL NORMALIZED RDSION) AND VGSITH) VS. TEMP.

15B

~o~~

IRF352,353
13 AMPERES
400, 350 VOLTS
ROS(ON) =0.4 n

.FIELD EFFECT POWER TRANSISTOR

This series of N-Channel Enhancement-mode Power
MOSFETs utilizes GE's advanced Power DMOS technology
to achieve low on-resistance with excellent device ruggedness and reliability.

N-CHANNEL

This design has been optimized to give superior performance
in most switching applications including: switching power
supplies, inverters, converters and solenoid/relay drivers.
Also, the extended safe operating area with good linear
transfer characteristics makes it well suited for many linear
applications such as audio amplifiers and servo motors.

CASE STYLE TO-204AA (TO-3)
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)
0.845(21.47)

l.. MAX . .-I~.358(9.09) MAX

I=- DIA. :l

.065(1.65)
MAX.

Features

*~

0.04311.09)
0.038(0.97)

• Polysilicon gate - Improved stability and reliability

DIA
"

--1\-

SEATING PLANE

.426(10.82) MIN.

• No secondary breakdown - Excellent ruggedness
• Ultra-fast switching - Independent of temperature
• Voltage controlled - High transconductance

~~~~R~~c"E
POINT

• Low input capacitance - Reduced drive requirement

SOURCE

• Excellent thermal stability - Ease of paralleling

maximum ratings (T c = 25° C)
RATING
Drain-Source Voltage
Drain-Gate Voltage, RGS = 1Mn
Continuous Drain Current@Tc = 25°C
@Tc= 100°C
Pulsed Drain Current(l)
Gate-Source Voltage
Total Power Dissipation @ TC = 25°C
Derate Above 25° C
Operating and Storage
Junction Temperature Range

-'--1r+t-f- ""'H--L..
'u,

.20(5.00)

0.162(4.09)
0.15(3.84)
2 HOLES

DIA.
0.440111.18)
0.420(10.67)

(unless otherwise specified)
IRF352
400
400
13
8
52
±20
150
1.2

IRF353
350
350
13
8
52
±20
150
1.2

UNITS
Volts
Volts
A
A
A
Volts
Watts

TJ, TSTG

-55 to 150

-55 to 150

°C

R8JC
R8JA

0.83
30

0.83
30

°C/W
°C/W

TL

260

260

°C

SYMBOL
Voss
VOGR
10
10M

VGS
Po

W/oC

thermal characteristics
Thermal Resistance, Junction to Case
Thermal ReSistance, Junction to Ambient
Maximum Lead Temperature for Soldering
Purposes: Va" from Case for 5 Seconds

(1) Repetitive Rating: Pulse width limited by max. junction temperature.

159

=25° C) (unless otherwise specified)

electrical characteristics (T c
. CHARACTERISTIC

I SYMBOL I

MIN

TYP

BVDSS

400
350

-.
-

MAX

UNIT

-

Volts

off characteristics
Drain-Source Breakdown Voltage
(VGS = OV, 10 = 250 pA)

IRF352
IRF353

Zero Gate Voltage Drain Current
(VOS = Max Rating, VGS = OV, TC = 25°C)
(VOS = Max Rating, x O.S, VGS = OV, TC = 125°C)

losS

-

-

250
1000

pA

IGSS

-

-

±100

nA

VGS(TH)

2.0

-

4.0

Volts

10(ON)

13

-

-

A

Gate-Source Leakage Current
(VGS = ±20V)

on characteristics*
Gate Threshold Voltage
(VOS = VGS, 10 = 250 p,A)

Tc = 25°C

On-State Drain Current
(VGS = 10V, VOS = 10V)
Static Drain-Source On-State Resistance
(VGS = 10V, 10 = SA)

ROS(ON)

-

0.35

0.40

Ohms

gfs

5.6

S.O

-

mhos

-

2SOO

3000

pF

300

600

pF

-

60

200

pF

td(on)

-

20

tr
td(off)

-

-

ns

25
110

-

ns

tf

-

70

-

ns

-

-

13

A

52

A

0.9

1.5

Volts

-

500
6.5

-

ns
pC

Forward Transconductance
(VOS = 10V, 10 = SA)

dynamic characteristics
Input Capacitance

VGS = OV

Ciss

Output Capacitance

VOS = 25V

Reverse Transfer Capacitance

f = 1 MHz

Coss
C rss

switching characteristics*
Turn-on Delay Time

VOS = 175V

Rise Time

10 = SA, VGS = 15V

Turn-off Delay Time

RGEN = 500, RGS = 12.50

Fall Time

(RGS (EQUIV.) = 100)

ns

source-drain diode ratings and characteristics*
Continuous Source Current

Is

Pulsed Source Current

ISM

Diode Forward Voltage
(Tc = 25°C, VGS = OV, Is = 13A)

VSO

Reverse Recovery Time
(Is = 15A, dls/dt = 100Alpsec, Tc = 125°C)

trr
ORR

'Pulse Test: Pulse width:::; 300 IJS, duty cycle:::; 2%

~

100

2.4

80
60
40

2.2

l

20

,-

II:

~

!....
zw

10

~

""

' .....

"

"""

",/

2

1\
\

0.2

...........

.......

"

"

r-......

~

2.0

c

......

........

1

1.6

II:

I

........

10mr

~

%

~

100~'

1.2

~

"

0.6

II:

DC -

0.4

I

I

I

I

=
=

- r---

z

~ 0.8

I

I

./

CONDITIONS:
ROS(ON) CONDITIONS: 10 8.0 A. VGS 10V
VGS(TH) CONDITIONS: 10 250I'A. Vos VGS

/"]

=
=

./

1.4

2

IRF3S3~

c-----

co·
~ 1.0

-

...-V

/

........

""

r--

~

./

./

./

V

/-

ROSIONI

V

~G~ -

IRF3S2---i1
0.2

I
4

~

lm,'-

o

SIN~LE PU~SE

I'

1.8

:::;

T =2SoC

0.1

~

10.!
100.,

........

~i'-.......

;;: 1.0
OPERATION IN THIS AREA
~ 0.8 0 0 .6 -MAY BE LIMITED BY ROSIONI
- 0.4
_

"

.......

.............

...........

4

II:

~
u
z

./

,,"'"

I
f----

6 8 10

20

40

60 80100

200

o

400 600 1000

V DS ' DRAIN-SOURCE VOLTAGE (VOLTSI

-40

o

40

80

120

160

T J. JUNCTION TEMPERATURE ('C)

MAXIMUM SAFE OPERATING AREA

TYPICAL NORMALIZED RDSIONI AND

160

VGSITHI VS.

TEMP.

IRF430,431
D86DR2,R1

~D~[P~U

4.SAMPERES
SOO, 4S0 VOLTS
ROS(ON) = 1.S!l

FIELD EFFECT POWER TRANSISTOR

This series of N-Channel Enhancement-mode Power
MOSFETs utilizes GE's advanced Power DMOS technology
to achieve low on-resistance with excellent device ruggedness and reliability.

N-CHANNEL

This design has been optimized to give superior performance
in most switching applications including: switching power
supplies, inverters, converters and solenoid/relay drivers.
Also, the extended safe operating area with good linear
transfer characteristics makes it well suited for many linear
applications such as audio amplifiers and servo motors.

CASE STYLE TO-204AA (TO-3)
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

r
T -u--u=
0.845121.47)
MAX

Features
• Polysilicon gate -

0.043(1.09)
0.03810.97)

Improved stability and reliability

• No secondary breakdown • Ultra-fast switching • Voltage controlled -

:1~.35819.09) MAX

0~~X65l~
DIA --'

.,

I-

SEATING PLANE

.

.426(10.82) MIN.

Excellent ruggedness

Independent of temperature
High transconductance

• Low input capacitance -

~~~~Rr:N~E
...L...:j4+-~-'""~----'L..
POINT

Reduced drive requirement

• Excellent thermal stability -

.2015.00)
SOURCE

Ease of paralleling
0.16214.09)
0.1513.84)
2 HOLES

maximum ratings (T C = 25° C)
RATING
Drain-Source Voltage
Drain-Gate Voltage, RGS = 1M!l
Continuous Drain Current@Tc = 25°C
@Tc= 100°C
Pulsed Drain Current(1)
Gate-Source Voltage
Total Power Dissipation@Tc = 25°C
Derate Above 25° C
Operating and Storage
Junction Temperature Range

DIA.

0.440111.18)
0.420(10.67)

(unless otherwise specified)
IRF430/0860R2
500
500
4.5
3.0
18
±20
75
0.6

IRF431/0860R1
450
450
4.5
3.0
18
±20
75
0.6

UNITS
Volts
Volts
A
A
A
Volts
Watts

TJ, TSTG

-55 to 150

-55 to 150

°C

ROJC
ROJA

1.67
30

1.67
30

°CIW
°CIW

TL

260

260

°C

SYMBOL
Voss
VOGR
10
10M

VGS
Po

W/oC

thermal characteristics
Thermal Resistance, Junction to Case
Thermal Resistance, Junction to Ambient
Maximum Lead Temperature for Soldering
Purposes: %" from Case for 5 Seconds

(1) Repetitive Rating: Pulse width limited by max. junction temperature.

161

electrical characteristics (T c

I

=25

C)

0

(unless otherwise specified)

CHARACTERISTIC

I SYMBOL I

MIN

TYP

MAX

UNIT

BVDSS

500
450

-

-

Volts

-

250
1000

jJA

±100

nA

off characteristics
Drain-Source Breakdown Voltage
(VGS = OV, 10 = 250 jJA)

IRF430/D86DR2
IRF4311D86DR1

Zero Gate Voltage Drain Current
(VOS = Max Rating, VGS = OV, Tc = 25°C)
(VOS = Max Rating, x 0.8, VGS = OV, TC = 125°C)

loss

-

IGSS

-

-

VGS(TH)

2.0

-

4.0

Volts

10(ON)

4.5

-

-

A

ROS(ON)

-

1.3

1.5

Ohms

gfs

1.75

2.2

-

mhos

Ciss

-

650 '

800

pF

90

200

pF

15

60

pF

-

15

-

ns

-

Gate-Source Leakage Current
(VGS = ±20V)

on characteristics*
Gate Threshold Voltage
(V OS = VGS, 10 = 250 p.A)

Tc = 25°C

On-State Drain Current
(VGS =10V, VOS = 10V)
Static Drain-Source On-State Resistance
(VGS = 10V, 10 = 2.5A)
Forward Transconductance
(VOS = 10V, 10 =2.5A)

dynamic characteristics
Output Capacitance

=OV
VOS =25V

Reverse Transfer Capacitance

f = 1 MHz

Input Capacitance

VGS

Coss
C rss

switching characteristics*
=225V

Turn-on Delay Time

VOS

Rise Time

10 = 2.5A, VGS

td(on)
tr

='15V

Turn-off Delay Time

RGEN = 500, RGS = 12.50

Fall Time

(RGS (EQUIV.) = 100)

td(off)
tf

10
40
25

ns
ns
ns

source-drain diode ratings and characteristics*
Continuous Source Current

Is

Pulsed Source Current

ISM

Diode Forward Voltage
(Tc = 25°C, VGS = OV, Is = 4.5A)

VSO

Reverse Recovery Time
(Is = 4.5A, dls/dt = 100AljJsec, Tc = 125°C)

trr
ORR

-

-

4.5

A

18

A

1.0

1.4

Volts

-

460
4.5

-

ns
JJC

-

'Pulse Test: Pulse width :5 300 ps, duty cycle :5 2%

100

2.4

/',

BO

60
40

2,2
2.0

en
w

20

i' ~ /'

a:
~

!

I-

10

~

iii

4

§

2

<
:5

1.0
O.B

C 0.6
-

"

"",r'

\

,/

"

OPERATION IN THIS AREA
MAY BE LIMITED BY ROSION)

10'"

I I

0.4

I'-.

.........
.........

..........

" "'-

"~~

0;2

I

..........
1

'"

IRF43110B60R~

6

8 10

20

40

60 BO 100

VOS' DRAIN -SOURCE VOLTAGE (VOL TSI

1.6
1.4

1

+-:

200

-

=
=

-

J,

>"

./

1.0
O.B

Z

~ 0,6

Q

1

a:

ants

-/'
.....

c

~

=
=

/'
./

/' VROSION)

~ 1.2

lOms

IRF430/0B60R2 --i

4

~

:5
z

lpO"1"

.......... ..........

0.1
1

1O,us

.......

SIr,GLE PULjE
Tc=2SoC

l.B

:;;

.......

.......

:n
N

.......

..........

a:

"z

r-.... . . . . .

i'..

CONOITIONS:
ROS(ON) CONOITIONS: 10 2.5 A, VGS 10V
VGS(TH) CONOITIONS: 10 250~A, VOS VGS

1-

..--V

---./

..."

V

V

~~

0.4

-

0.2

C

-40

400 600 1000

0

40

BO

120

160

T J • JUNCTION TEMPERATURE ('CI

MAXIMUM SAFE OPERATING AREA

TYPICAL NORMALIZED ROSIONI AND VGSITHI VS. TEMP.

162

~D~[P[gU

IRF432,433

FIELD EFFECT POWER TRANSISTOR

4.0 AMPERES
500, 450 VOLTS
ROS(ON) = 2.0 0

This series of N-Channel Enhancement-mode Power
MOSFETs utilizes GE's advanced Power DMOS technology
to achieve low on-resistance with excellent device ruggedness and reliability.

N-CHANNEL

This design has been optimized to give superior performance
in most switching applications including: switching power
supplies, inverters, converters and solenoid/relay drivers.
Also, the extended safe operating area with good linear
transfer characteristics makes it well suited for many linear
applications such as audio amplifiers and servo motors.

CASE STYLE TO-204AA (TO-3)
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)
0.845(21.47)

I- MAX . ..J~'358(9'09) MAX
DIA.
.065(1.65)
MAX . .l~

.::l

1::.

.

Features

T ----u--rr=

0.043(1.09)
0.038(0.97)

• Polysilicon gate - Improved stability and reliability

DIA....J
"

f-

SEATING PLANE
.426(10.82) MIN.

" No secondary breakdown - Excellent ruggedness
• Ultra-fast switching - Independent of temperature
• Voltage controlled - High transconductance

~~~;R~~~E
-'--14t-~-"""!JJ+---'POINT

• Low input capacitance - Reduced drive requirement

.20(5.00)
SOURCE

• Excellent thermal stability - Ease of paralleling

maximum ratings (T c = 25 0 C)
RATING
Drain-Source Voltage
Drain-Gate Voltage, RGS = 1MO
Continuous Drain Current @ Tc = 25°C
@Tc = 100°C
Pulsed Drain Current(1)
Gate-Source Voltage
Total Power Dissipation @ Tc = 25°C
Derate Above 25° C
Operating and Storage
Junction Temperature Range

0.162(4.09)
0.15(3.84)
2 HOLES

DIA.
0.440(11.18)
0.420(10.67)

(unless otherwise specified)
IRF432
500
500
4.0
2.5
16
±20
75
0.6

IRF433
450
450.
4.0
2.5
16
±20
75
0.6

UNITS
Volts
Volts
A
A
A
Volts
Watts

TJ, TSTG

-55 to 150

-55 to 150

°C

ROJC
ROJA

1.67
30

1.67
30

°C/W

TL

260

260

°C

SYMBOL
Voss
VOGR
10
10M
VGS
Po

W/oC

thermal characteristics
Thermal Resistance, Junction to Case
Thermal Resistance, Junction to Ambient
Maximum Lead Temperature for Soldering
Purposes: W' from Case for 5 Seconds

(1) Repetitive Rating: Pulse width limited by max. junction temperature.

163

°C/W

electrical characteristics (TC =25 0 C)

I

(unless otherwise specified)

CHARACTERISTIC

I SYMBOL I

MIN

BVDSS

I

TYP

MAX

UNIT

500
450

-

-

Volts

-

-

250
1000

pA

-

-

±100

nA

VGS(TH)

2.0

-

4.0

Volts

10(ON)

4.0

-

-

A

ROS(ON)

-

1.5

2.0

Ohms

2.2

-

mhos

-

650

800

pF

90

200

pF

-

15

60

pF

-

15

ns

40

-

25

-

-

4.0

A

16

A

off characteristics
Drain-Source Breakdown Voltage
(VGS = OV, 10 = 250 pA)

IRF432
IRF433

Zero Gate Voltage Drain Current
(V OS = Max Rating, VGS = OV, Tc = 25°C)
(VOS = Max Rating, x 0.8, VGS = OV, TC = 125°C)

loSS

Gate-Source Leakage Current
(VGS= ±20V)

IGSS

on characteristics*
Gate Threshold Voltage
(VOS = VGS, 10 = 250 p.A)

Tc = 25°C

On-State Drain Current
(VGS = 10V, VOS = 10V)
Static Drain-Source On-State Resistance
(VGS = 10V, 10 = 2.5A)
Forwa'rd Transconductance
(VOS = 10V, 10 = 2.5A)

1.75

9fs

dynamic characteristics
Input Capacitance

VGS = OV

Ciss

Output Capacitance

VOS = 25V
f= 1 MHz

Coss
C rss

Reverse Transfer Capacitance

switch i ng characteristics *
Turn-on Delay Time

VOS = 225V

Rise Time

10 = 2.5A, VGS = 15V

Turn-off Delay Time

RGEN = 500, RGS = 12.50

Fall Time

(RGS (EQUIV.) = 100)

td(on)
tr
td(off)
tf

10

ns
ns
ns

source-drain diode ratings and characteristics*
Pulsed Source Current

ISM

-

Diode Forward Voltage
(Tc = 25°C, VGS = OV, Is = 4.0A)

VSO

-

1.0

1.3

Volts

Reverse Recovery Time
(Is = 4.5A, dls/dt = 100Alpsec, Tc = 125°C)

trr
ORR

-

460
4.5

-

ns
pC

Continuous Source Current

'Pulse Test: Pulse Width

Is

::s 300 ps, duty cycle ::s 2%

100
80
60
40

2.4

20

a:
~

::;;

~

...Z
w

r-..

..\

10

B

6
4

!5

LY'

Z

<1

1.0
~ 0.8
Q 0.6
- 0.4

>"'
......
"

/'

2

"L-

Si~G~;;'~LSE

c, ,

0.1
1

4

i'..'i'..

Ii'...

..........

"'

.........

" ~, ~ "
....... .......

~

CONDITIONS:
ROS(ON) CONDITIONS: 10 = 2.5 A, vGS = 10V
VGS HI CONDITIONS: 10 = 250pA, VDS = VGS

-

1.8

N

.......

~ Ii'... i'

OPERATION IN THIS AREA
-MAY BE LIMITED BY RDSIONI

0.2

~

~'

i'...

~r

a:

~

1.0

o

Ills

~

.......

:--...
~

~

0.8

2'

~ 0.6

110~S

c

a:

I I

0.4

lOOms
0.2

I

/
./

-

........

-..-

r-- / '

/""

. /V

-

I"

t---

~T:;- ....

C

o

400 600 1000

-40

40

80

120

160

T J , JUNCTION TEMPERATURE I'CI

MAXIMUM SAFE OPERATING AREA

TYPICAL NORMALIZED ROSIONI AND VGSITHI VS, TEMP.

164

IRF440,441
D86ER2,R1

~D~I?~

SAMPERES
500, 450 VOLTS
ROS(ON) = 0.S5 il

FIELD EFFECT POWER TRANSISTOR

This series of N-Channel Enhancement-mode Power
MOSFETs utilizes GE's advanced Power DMOS technology
to achieve low on-resistance with excellent device ruggedness and reliability.

N-CHANNEL

This design has been optimized to give superior performance
in most switching applications including: switching power
supplies, inverters, converters and solenoid/relay drivers.
Also, the extended safe operating area with good linear
transfer characteristics makes it well suited for many linear
applications such as audio amplifiers and servo motors.

CASE STYLE TO-204AA (TO-3)
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

r t-f

0.645(21.47)
MAX.

-~·~~--=t,~"oo,~,

Features

0.043(1.09)
0.036(0.97)

• Polysilicon gate - Improved stability and reliability
• No secondary breakdown • Ultra-fast switching -

.356(9.09) MAX

DIA
.

-11I

.426(10.62) MIN.

Excellent ruggedness

Independent of temperature

• Voltage controlled - High transconductance

~~~~RTE~~E ...L...'Jf-++--f- ""I-+---L.
POINT
.20(5.00)
SOURCE

• Low input capacitance - Reduced drive requirement

'"
o

z

}001.

I

0.B

~

O. 6,...-

a:

I

C

r---

1.0

,.

<0:

ROSION)

./""

;:

I,

.........

I-

I

o

.......

I'-.

I
I-

-'

-

./

I--- . /

V
,/

,/

r--

~~ r-----

O. 4
O. 2

o

6 B 10
20
40 60 BO 100
200· 400 600 1000
VDS' DRAIN -SOURCE VOL TAGE (VOL TSI

-40

o

40

BO

120

160

T J • JUNCTION TEMPERATURE ('CI

MAXIMUM SAFE OPERATING AREA

TYPICAL NORMALIZED RDSIONI AND VGSITHI VS. TEMP.

170

~D~~lJ

IRF452,453
12 AMPERES
500, 450 VOLTS
ROS(ON) = 0.5 n

FIELD EFFECT POWER TRANSISTOR

This series of N-Channel Enhancement-mode Power
MOSFETs utilizes GE's advanced Power DMOS technology
to achieve low on-resistance with excellent device ruggedness and reliability.

N-CHANNEL

This design has been optimized to give superior performance
in most switching applications including: switching power
supplies, inverters, converters and solenoid/relay drivers.
Also, the extended safe operating area with good linear
transfer characteristics makes it well suited for many linear
applications such as audio amplifiers and servo motors.

CASE STYLE TO-204AA (TO-3)
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

r

0.845121.47)
MAX. H·35819.09) MAX

oo,;:,~*~_=r~"oo .,,'

Features
• Polysilicon gate -

0.04311.091
0.03610.97)

Improved stability and reliability

DIA

--1 '-_
'11

.426110.82) MIN.

• No secondary breakdown - Exce"ent ruggedness
• Ultra-fast switching • Voltage controlled -

Independent of temperature
High transconductance

~~~~RTE~~

-'-iH+--t(olH'--"-

POINT

• Low input capacitance - Reduced drive requirement

.2015.00)
SOURCE

• Exce"ent thermal stability - Ease of para"eling
0.16214.091
0.1513.84)
2 HOLES

maximum ratings (T C = 25°C)
RATING
Drain-Source Voltage
Drain-Gate Voltage, RGS = 1Mn
Continuous Drain Current @TC = 25°C
@TC = 100°C
Pulsed Drain Current(1)

Gate-Source Voltage
Total Power Dissipation @ TC = 25°C
Derate Above 25° e
Operating and Storage
Junction Temperature Range

DIA.
0.440111.16)
0.420(10.67)

(unless otherwise specified)
IRF452
500
500
12
7
48
±20
150
1.2

IRF453
450
450
12
7
48
±20
150
1.2

UNITS
Volts
Volts
A
A
A
Volts
Watts

TJ, TSTG

-55 to 150

-55 to 150

°e

ReJC
ReJA

0.83
30

0.83
30

°C/W
°C/W

TL

260

260

°C

SYMBOL
Voss
VOGR
10
10M

VGS
Po

w/oe

thermal characteristics
Thermal Resistance, Junction to Case
Thermal Resistance, Junction to Ambient
Maximum Lead Temperature for Soldering
Purposes: W' from Case for 5 Seconds

(1) Repetitive Rating: Pulse width limited by max. junction temperature.

171

electrical characteristics (Tc

I

=25° C) (unless otherwise specified)

CHARACTERISTIC

I SYMBOL I

MIN

TYP

MAX

UNIT

BVDSS

500
450

-

-

Volts

-

250
1000

p.A

IGSS

-

-

±100

nA

VGS(TH)

2.0

-

. 4.0

Volts

10(ON)

12

-

-

A

ROS(ON)

-

0.4

0.5

Ohms

gfs

4.8

7.0

-

mhos

-

2800

3000

pF

330

600

pF

55

200

pF

-

25

-

ns

20

ns

-

120

-

65

-

-

-

12

A

-

48

A

0.9

1.3

Volts

590
7.4

-

off characteristics
Drain-Source Breakdown Voltage
(VGS =OV, 10 =250 p.A)

IRF452
IRF453

Zero Gate Voltage Drain Current
(VOS =Max Rating, VGS =OV, Tc =25°C)
(VOS =Max Rating, x 0.8, VGS =OV, Tc =125°C)

loss

Gate-Source Leakage Current
(VGS =±20V)

on characteristics*
Gate Threshold Voltage
(V OS =VGS, 10 =250 p.A)

Tc

=25°C

On-State Drain Current
(VGS =10V, VOS =10V)
Static Drain-Source On-State Resistance
(VGS =10V, 10 =7A)
Forward Transconductance
(VOS =10V, 10'; 7A)

dynamic characteristics
=OV
Ciss
Output Capacitance
VOS =25V
Coss
Reverse Transfer Capacitance
f =1 MHz
C rss
switching characteristics*
Turn-on Delay Time
VOS =225V
td(on)
Rise Time
10 =7A, VGS =15V
tr
Turn-off Delay Time
RGEN =500, RGS =12.50
td(off)
Fall Time
tf
(RGS (EQUIV.) =100)
source-drain diode ratings and characteristics*
Input Capacitance

VGS

Continuous Source Current

Is

Pulsed Source Current

ISM

Diode Forward Voltage
(Tc =25°C, VGS =OV, Is

Reverse Recovery Time
(Is =13A, dls/dt =100A/p.sec, Tc

-

VSO

=12A)

trr

=125°C)

ORR

ns
ns

ns
p.C

'Pulse Test: Pulse width:::; 300 f-lS, duty cycle:::; 2%
2.4

100
80
60
40

f3
a:
w

k"'-

l

20

",-

\

10

i :
~

a:

!5u

-"

""", 1\
2

\

«
1.0
is 0.8 Q 0.6 -

-

OPERATION IN THIS AREA
MAY BE LIMITED BY ROSIONI

I', " ~

'"

"

4

z

"-

......
......

~

" ,"-

"-

.........

"-

0.4
_ SING'LE PULJE
0.2
T =2S"C

c1

0.1
1

I

4

'"

"- "IRF4S3~

o

~

lOllS

::;
~
a:

TOOps

+
l!ms._

!il

'"

1.0

z
o

~ 0.6

ROSIONI

/'

r---

t--

"""

r-

0.4

V

/"

./'"

~~ r--

0.2

IRF4j2--;

6 B 10
20
40 60 80100
200
Vas. DRAIN-SOURCE VOLTAGE (VOL TSI

/

- ------

1.4
1.2

a:

V

./
./

-:.. 0.8

I

I

I

/

Z

Db

I

1.6

~

~

I

I

1.B

;:

II
100ms

I

1--1

CONDITIONS:
ROS(ON) CONDITIONS: 10 = 7.0 A. VGS = 10V
2.0 t - - VGS(TH) CONDITIONS: 10 = 250pA. VOS = VGS

2.2

o

400 600 1000

-40

0

40

80

120

160

T J' JUNCTION TEMPERATURE ('C)

MAXIMUM SAFE OPERATING AREA

TYPICAL NORMALIZED RDSIONI AND VGSITHI VS. TEMP.

172

IRF510 9511
D84BL2,K2

~D~[F[g1F
FIELD EFFECT POVVER TRANSISTOR

The IRF510, 511 Series is an N-Channel Enhancement-mode
Power MOSFET utilizing GE's advanced Power DMOS technology to achieve low on-resistance with excellent device
ruggedness and reliability.

4.0 AMPERES
100, 60 VOLTS
ROS(ON) =0.6 0

N-CHANNEL

The IRF510, 511 design has been optimized to give superior
performance in most switching applications including:
switching power supplies, inverters, converters and solenoid/relay drivers. Also, the extended safe operating area with
good linear transfer characteristics makes it well suited for
many linear applications such as audio amplifiers and servo
motors.

DIMENSIDNS ARE IN INCHES AND (MILLIMETERS)
.404(10.26)
.380(9.65)

Features

I

+

TERM.l

.0331~.841

.02710.691

---:I59)

~51

.001(0.0251

.500(12.7)MIN.

.05511.39)
.04511. 14)

.11hJ--.l0512.67)
~ •. 095(2.41)

1--'
I--

.21015.331
.19014.821

~

.10712.721
.08712.21)

.021(0.53)
.01510.38)

(unless otherwise specified)
SYMBOL
Voss
VOGR

Operating and Storage
Junction Temperature Range

-IT "~III"';-;--,

.055(1.391-/
.04511.141

• Excellent thermal stability - Ease of paralleling

=25°C

.35519.02),/" POINT

TERM.3

• Low input capacitance - Reduced drive requirement

Total Power Dissipation @Tc
Derate Above 25° C

CASE
TEMPERATURE
REFERENCE

~
I

TERM.2

• Voltage controlled - High transconductance

Gate-Source Voltage

•

~"'-'

• Ultra-fast switching - Independent of temperature

= 25° C
=100°C

.--.

.32518.25)

• No secondary breakdown - Excellent ruggedness

Continuous Drain Current @ T C
@Tc
Pulsed Drain Current(1)

:i~g\!:~~\rt
.055(1.39)
I
.048(1.221

.'---+--I-------+tT-j---'-1

:i:~I~:~~IDIA.

• Polysilicon gate - Improved stability and reliability

RATING
Drain-Source Voltage
Drain-Gate Voltage, RGS = 1MO

.11612.951
91

.265(6.73)
.245(6.22:

/

maximum ratings (T C =25° C)

112.7

10

IRF510/084BL2
100
100
4.0
2.5

IRF511/084BK2
60
60
4.0
2.5

UNITS
Volts
Volts
A
A

10M

16

16

A

VGS

±20

±20

Volts

Po

20
0.16

20
0.16

Watts
W/oC

TJ, TSTG

-55 to 150

-55 to 150

°C

ROJC

6.4

6.4

°C/W

ROJA

80

80

°C/W

h

260

260

°C

thermal characteristics
Thermal Resistance, Junction to Case
Thermal Resistance, Junction to Ambient
Maximum Lead Temperature for Soldering
Purposes: W' from Case for 5 Seconds
(1) Repetitive

R~ting:

Pulse width limited by max. junction temperature.

173

electrical characteristics (Tc

I

=25° C) (unless otherwise specified)

CHARACTERISTIC

I SYMBOL I

MIN

BVDSS

I

TYP

MAX

UNIT

100
60

-

-

Volts

-

250
1000

JlA

IGSS

-

±500

nA

VGS(TH)

2.0

-

4.0

Volts

On-State Drain Current
(VGS = 10V, VOS = 10V)

VOS(ON)

4.0

-

-

Volts

Static Drain-Source On-State Resistance
(VGS = 10V, 10 = 2A)

ROS(ON)

-

-

0.6

Ohms

gfs

.8

1.1

-

mhos

VGS= OV

Ciss

-

145

200

pF

Output Capacitance

VOS = 25V

65

100

pF

f = 1 MHz

Coss
C rss

-

Reverse Transfer Capacitance

-

20

25

pF

off characteristics
Drain-Source Breakdown Voltage
(VGS = OV, 10 = 250 pA)

IRF510/D84BL2
IRF5111D84BK2

Zero Gate Voltage Drain Current
(VOS = Max Rating, VGS = OV, Tc = 25°C)
(VOS = Max Rating, x 0.8, VGS = OV, Tc = 125°C)

losS

Gate-Source Leakage Current
(VGS = ±20V)

-

on characteristics*
Gate Threshold Voltage
(VOS = VGS, 10 = 250 mA)

Tc = 25°C

Forward Transconductance
(10 = 2A)

dynamic characteristics
Input Capacitance

switching characteristics*
Turn-on Delay Time

VOS = 30V

15

-

ns

10 = 1.5A, VGS = 15V

tci(on)
tr

-

Rise Time

-

15

ns

Turn-off Delay Time

RGEN = 500, RGS = 12.50

td(off)

-

30

Fall Time

(RGS (EQUIV.)

tf

-

10

-

-

-

4.0

A

16

A

1.3

2.5

Volts

100
.3

-

=100)

ns
ns

source-drain diode ratings and characteristics*
Continuous Source Current

Is

Pulsed Source Current

ISM

Diode Forward Voltage
(Tc = 25°C, VGS =OV, Is = 4A)

VSO

Reverse Recovery Time
(Is = 4A, dis/dt = 100Alps, VOS

-

trr

=40V max., Tc = 125°C)

-

ORR

ns
pC

'Pulse Test: Pulse width $ 300 ps, duty cycle $ 2%
100
80
60
40

ffi

2.4
2.2

20

a:
~

10

Ii;
w

4

g;

2

~ ~

\

"

,,~

a:

'"

";;:z

1.0
~ 0.8
i:o 0.6

-

"-"

0.4

i-

/'

r-.-..

.......

101.15

"-

OPERATION IN THIS AREA
. MAY 8E LIMITED BY ROSIONI

0.2 I- SINGLE PULSE
Tc""2SoC

.... 1m,

'"'" ~I'
"

~~

~

I

1.8

~

1.6

!i

1.4

./

./

IRF511.=
IRF510

f=

~

1.2

>'"
o
z

1.0

- r--.... -,.,....,.. "

~ O.B

z

1~ 0.6

10ms

a:

100m,
DC

0.4

--

.."

--

,

ROSIONI

/"

a:

r.....

~~

1\

ICONDI~IONS: I

ROSION) CONDITIONS: 10" 2.0A. VGS" 10V

2.0 I - - - V
GSITH ) CONDITIONS: 10" 1 MA. VOS" VGS

~

::;
100",

........

~ ~~

o

I

-

V
~

r--

VGSITHI-

----

0.2
4

6 8 10
20
40 60 80 100
200
Vos. DRAIN-SOURCE VOLTAGE (VOL TSI

400 600 1000

o

MAXIMUM SAFE OPERATING AREA

-40

a

40

80

TJ.JUNCTION TEMPERATURE I'C)

174

120

160

~o~~u

IRF512,513

FIELD EFFECT POWER TRANSISTOR

The IRF512, 513 Series is an N-Channel Enhancement-mode
Power MOSFET utilizing GE's advanced Power DMOS technology to achieve low on-resistance with excellent device
ruggedness and reliability.

3.5 AMPERES
100, 60 VOLTS
ROS(ON) = 0.8 n

N-CHANNEL

The IRF512, 513 design has been optimized to give superior
performance in most switching applications including:
switching power supplies, inverters, converters and sole- .
noid/relay drivers. Also, the extended safe operating area with
good linear transfer characteristics makes it well suited for
many linear applications such as audio amplifiers and servo
motors.

CASE STYLE TO-220AB
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)
40411026) .11612.951
.. 38019.651112.791

.\~\:.~~
.05511.391
.
.
I
.048(1.22)

-.--.

.26516.731
.245(6.221

Features

:~:~:~:~~IDIA.

• Polysilicon gate - Improved stability and reliability

+

rt·
.355(9.021
325 (8.251

130(331

TERM.l
TERM.2

• Ultra-fast switching - Independent of temperature
• Voltage controlled - High transconductance

~591

.500(12.7IMIN.

TERM.3 .
.0331~.841
.02710.691

• Low input capacitance - Reduced drive requirement

.05511.39)
.045(1.14)

• Excellent thermal stability - Ease of paralleling

RATING
Drain-Source Voltage
Drain-Gate Voltage, RGS = 1Mn

CASE

TEMPERATURE
REFERENCE
OINT

.006(0.151
.00110.0261

~.

• No secondary breakdown - Excellent ruggedness

maximum ratings (T C = 25° C)

•

/f--+--+----Jfr-r-'-11S

.107(2.721
.087(2.211

.lhr.l0512.671
~ "009512.411

---l I+1+-.

.21015.33)
.19014.82)

.•0021511100..5336)1

(unless otherwise specified)
SYMBOL
VOSS
VOGR

IRF512
100
100

IRF513
60
60

UNITS
Volts
Volts
A
A

Continuous Drain Current @ Tc = 25 DC
@Tc= 100DC
Pulsed Drain Current(l)

10

3.5
2.0

3.5
2.0

10M

14

14

A

Gate-Source Voltage

VGS

±20

±20

Volts

Po

20
0.16

20
0.16

W/DC

TJ, TSTG

-55 to 150

-55 to 150

DC

Thermal Resistance, Junction to Case

R8JC

6.4

6.4

°C/W

Thermal Resistance, Junction to Ambient

R8JA

80

80

°C/W

Maximum Lead Temperature for Soldering
Purposes: W' from Case for 5 Seconds

TL

260

260

°C

Total Power Dissipation @Tc = 25 DC
Derate Above 25 DC
Operating and Storage
Junction Temperature Range

Watts

thermal characteristics

(1) Repetitive Rating: Pulse width limited by max. junction temperature.

175

electrical characteristics (T c

=25° C) (unless otherwise specified)
I SYMBOL I

MIN

TYP

MAX

UNIT

BVDSS

100
60

-

-

-

Volts

-

-

250
1000

pA

IGSS

-

-

±500

nA

VGS(TH)

2.0

-

4.0

Volts

On-State Drain Current
(VGS =10V, VOS =10V)

VOS(ON)

3.5

-

-

A

Static Drain-Source On-State Resistance
(VGS =10V, 10 =2A)

ROS(ON)

-

0.6

0.8

Ohms

gfs

.8

1.1

-

mhos

-

145

200

pF

65

100

pF

-

20

25

pF

-

15

-

ns

CHARACTERISTIC

off characteristics
Drain-Source Breakdown Voltage
(VGS =OV, 10 =250 pA)

IRF512
IRF513

Zero Gate Voltage Drain Current
(VOS =Max Rating, VGS =OV, Tc =25°C)
(VOS =Max Rating, x 0.8, VGS =OV, Tc =125°C)

loss

Gate-Source Leakage Current
(VGS =±20V)

on characteristics*
Gate Threshold Voltage
,(VOS =VGS, 10 =250 mAl

Tc

=25°C

Forward Transconductance
(10 =1.5A)

dynamic characteristics
=OV
Ciss
Output Capacitance
VOS =25V
Coss
C rss
Reverse Transfer Capacitance
f =1 MHz
switching characteristics*
Turn-on Delay Time
VOS =30V
td(on)
Rise Time
10 =2A, VGS =15V
tr
Turn-off Delay Time
RGEN =500, RGS =12.50
td(off)
Fall Time
(RGS (EQUIV.) =100)
tf
source-drain diode ratings and characteristics*
Input Capacitance

VGS

Continuous Source Current
Diode Forward Voltage
(Tc =25°C, VGS =OV, Is =3.5A)
Reverse Recovery Time
(Is =4A, dis/dt = 100A/ps, VOS = 40V max., Tc = 125°C)

-

ns
ns

10

-

ns

-

3.5

A

ISM

-

-

14

A

VSO

-

1.1

2.0

Volts

trr

-

100
.3

-

ns
pC

Is

Pulsed Source Current

15
30

-

ORR

'Pulse Test: Pulse width::; 300 ps, duty cycle::; 2%
100
BO
60
40

2.4
2.2

2.0

ffi
~

ffi

10

:

......
~

4

!5u

2
".

z

;;:
~
Q
-

1.0

".

1\

~
~~

"
"

0.8
0,6

0.4
0.2

.......

I-

OPERATION IN THIS AREA
MAY BE LIMITED BY ROSIONI

:::;
~
a:
~

100.,

..........

,,~

~

10JJs

~

i'o...

r. . . .

/'

II:

~

r- SINGLE PULSE

~

~

"

~

.... 1m,

-

IRF51~'=
IRF512,_

.~

a:

lOms

lOOms
DC

1

4

6

8 10

20

40

60 BO 100

200

/'"

./

1.6

1.4
1.2

-r---

1.0

-:.. O,B

z
o

I

VGSITHl CONDITIONS: 10 ' 1 MA, VOS' VGS

z

f::r-

ICONDI~IONS: I

ROSIONI CONDITIONS: 10'2.0A, VGs '10V

1.8

:;:

0.6

1 -~

~

"-

"V

. /V

ROSIONl

./

V

r-- r--

r-- I-....

VGSITHl-

0.4

-

0.2

Tc ::25°C

01

r-

c

.

......

II:

~

,

20

1
r-

400 600 1000

-40

VOS' DRAIN-SOURCE VOLTAGE (VOL TSI

40

80

120

160

T J , JUNCTION TEMPERATURE (OC)

MAXIMUM SAFE OPERATING AREA

TYPICAL NORMALIZED RDSIONI AND VGSITHI VS. TEMP.

176

IRF520,521
D84CL2,K2

~D~[P~U

8 AMPERES
100, 60 VOLTS
RDS(ON) =0.3 .0.

FIELD EFFECT POWER TRANSISTOR

This series of N-Channel Enhancement-mode Power
MOSFETs utilizes GE's advanced Power DMOS technology
to achieve low on-resistance with excellent device ruggedness and reliability.

N-CHANNEL

This design has been optimized to give superior performance
in most switching applications including: switching power
supplies, inverters, converters and solenoid/relay drivers.
Also, the extended safe operating area with good linear
transfer characteristics makes it well suited for many linear
applications such as audio amplifiers and servo motors.

DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

:~~g\!:~~\ffi
.055(1.39)
I
.04B(I.22)

,..-- .

•26S{6.73)
.245(6.22)

_

/I--+--+----lfl--r--..,'

Features
• Polysilicon gate - Improved stability and reliability

+

.'1144S,I{33.• 65BB))DlA.

• No secondary breakd.own - Excellent ruggedness

:~~~I~:~~:---'
.220{S.59)

~
130(33)

~.

• Ultra-fast switching - Independent of temperature
TERM.l

• Voltage controlled - High transconductance

-!f;"HIII4lr+-.

TEAM.2

• Low input capacitance - Reduced drive requirement

0

C)

RATING
Drain-Source Voltage
Drain-Gate Voltage, RGS = 1M.o.
Continuous Drain Current@ TC = 25°C
@TC= 100°C
Pulsed Drain Current(l)
Gate-Source Voltage
Total Power Dissipation @Tc = 25°C
Derate Above 25° C
Operating and Storage
Junction Temperature Range

~S)

.001(0.02SI

.S00{12. 7)M IN.

.0SS{1.39
.04S{1.14

.033(~.B4)
.027{0.691

.1~.'0S{2.67)
.09S{2.411

.055{1.39)
.1
.045{1.14)--'

=25

.

TEAM.3

• Excellent thermal stability - Ease of paralleling

maximum ratings (T C

CASE
TEMPERATURE
REFERENCE
/
POINT

\+-'
I---

.210(S.33)
.190{4.B2)

.107{2.72)
.087(2.211
.021{0.53)
.015(0.3B)

(unless otherwise specified)
IRF520/D84CL2
100
100
8
5
32
±20
40
0.32

IRF521/D84CK2
60
60
8
5
32
±20
40
0.32

UNITS
Volts
Volts
'A
A
A
Volts
Watts
W/oC

TJ, TSTG

-55 to 150

-55 to 150

°C

ROJC
ROJA

3.12
80

3.12
80

°CIW
°CIW

TL

260

260

°C

SYMBOL
Voss
VOGR
10
10M

VGS
Po

thermal characteristics
Thermal Resistance, Junction to Case
Thermal Resistance, Junction to Ambient
Maximum Lead Temperature for Soldering
Purposes: W' from Case for 5 Seconds

.. ,

(1) Repetitive Rating: Pulse width limited by max. junction temperature.

177

electrical characteristics (T c = 25° C)

I

(unless otherwise specified)

CHARACTERISTIC

I SYMBOL I

MIN

TYP

MAX

UNIT

BVDSS

100
60

-

-

Volts

-

250
1000

pA

IGSS

-

-

±500

nA

VGS(TH)

2.0

-

4.0

Volts

10(ON)

8.0

-

-

A

ROS(ON)

-

0.23

0.3

Ohms

off characteristics
Drain-Source Breakdown Voltage
(VGS = OV, 10 = 250 pA)

I RF520/D84CL2
I RF521 ID84CK2

Zero Gate Voltage Drain Current
(VOS = Max Rating, VGS = OV, Te = 25°C)
(VOS = Max Rating, x 0.8, VGS = OV, Te = 125°C)

losS

Gate-Source Leakage Current
(VGS = ±20V)

on characteristics*
Gate Threshold Voltage
(VOS = VGS, 10 = 250 p.A)

Te = 25°C

On-State Drain Current
(VGS = 10V, VOS = 10V)
Static Drain-Source On-State Resistance
(VGS = 10V, 10 = 4A)
Forward Transconductance
(VOS = 10V, 10 = 4A)

9fs

1.2

2.2

-

mhos

Ciss

-

410

600

pF

160

400

pF

40

100

pF

15

-

ns

30

-

ns

dynamic characteristics
Input Capacitance
Output Capacitance

VGS

=10V

VOS

=25V

Coss
C rss

=1 MHz
switching characteristics*
Reverse Transfer Capacitance

f

Turn-on Delay Time

VOS = 30V

Rise Time

10 = 4A, VGS

Turn-off Delay Time

-

td(on)

=15V

tr

RGEN = 500, RGS = 12.50

td(off)

tf
=100)
source-drain diode ratings and characteristics*
Fall Time

(RGS (EQUIV.)

-

25
10

ns
ns

IS

-

-

8

A

Pulsed Source Current

ISM

-

-

32

A

Diode Forward Voltage
(Te = 25°C, VGS = OV, Is = 8A)

VSO

-

1.0

2.5

Volts

trr

-

100
0.9

-

pC

Continuous Source Current

Reverse Recovery Time
(Is = 8A, dls/dt = 100Alpsec, Te = 125°C)

ORR

ns

'Pulse Test: Pulse width:::; 300 ps, duty cycle:::; 2%
2,4

100
80
60
40

en
w

2,2

'10-

20

a:
~

~ ~
m 4V

a:

!§
u

"

~

10

2

/'

fi

_0

"-

,

10-

2,0

\

1.0
0,8 I- OPERATION IN THIS AREA

"

0, 1

~

1.8

~
a:

1.6

::;

100/-15

~

i

i'

1m,

I~ ~

PUL~E

I

101-15

.......

0 ,6 r--MAY 8E LIMITED 8Y ROSIONI
0.4
IRF5211D84CK2- ~
SINdLE
IRF520/D84CL2
0,2
T ·25·C

r-

r-

I
I
I
I
I
ROS(ON) CONDITIONS: 10 =4,0 A. VGS =lOV
VGS(TH) CONDITIONS: 10 =250pA. VOS =VGS

c

!"S ~

1\

2

;;:

~

"'-

ciONDI~IONS:

I-

ROS(Oo/

1.4

Si

1.2

~"

1.0

2

~ 0,8

z

lOms
lOOms

~

DC

0,6

a:

-

- ---

,/""

....V
r--

~

V

r-- r--

-.::~ -

0.4

0,2

I
4

6

8 10

20

40

60 80100

200

400 600 1000

40

VOS' DRAIN-SOURCE VOL TAGE (VOLTS)

o

40

60

120

T J • JUNCTION TEMPERATURE ('C)

MAXIMUM SAFE OPERATING AREA

TYPICAL NORMALIZED RDSIONI AND VGSITHI VS. TEMP.

178

160

~[R1D~[F~u

IRF522,523

FIELD EFFECT POWER TRANSISTOR

7 AMPERES
100,60 VOLTS
ROS(ON) =0.4 n

This series of N-Channel Enhancement-mode Power
MOSFETs utilizes GE's advanced Power DMOS technology
to achieve low on-resistance with excellent device ruggedness and reliability.

N-CHANNEL

This design has been optimized to give superior performance
in most switching applications including: switching power
supplies, inverters, converters and solenoid/relay drivers.
Also, the extended safe operating area with good linear
transfer characteristics makes it well suited for many linear
applications such as audio amplifiers and servo motors.

:1~g\!·~~\rl·05511.391
.
I
.04811.221

.--

.26516.731
.24516.221

Features

/
.35519.021
.32518.251

• Ultra-fast switching - Independent of temperature
TERM.1

• Voltage.controlled - High transconductance

.1f'..~IIIIoo!H--,

POINT

-,-

.22015.591

-.-i.

.00610.15}
.001l0.025}

.500112.7}MIN.

TERM.2
TERM.3

• Low input capacitance - Reduced drive requirement

.0331~.84}

• Excellent thermal stability - Ease of paralleling

.02710.69}
.055 1.39
.04511.14

Gate-Source Voltage
Total Power Dissipation @Tc = 25°C
Derate Above 25° C
Operating and Storage
Junction Temperature Range

!

,~."

• No secondary breakdown - Excellent ruggedness

RATING
Drain-Source Voltage
Drain-Gate Voltage, RGS = 1Mil
Continuous Drain Current @Tc = 25°C
@TC = 100°C
Pulsed Drain Current(l)

CASE

•

I--+--+----Ifr--r-., TEMPERATURE
REFERENCE

• Polysilicon gate - Improved stability and reliability

maximum ratings (T C =25°C)

.

.10712.721
.08712.21}

.1ll::iJ--.10512.67}
~ •. 09512.41 1

--l

\:=.

.21015.33}
.19014.82}

(unless otherwise specified)
IRF522
100
100
7
4
28
±20
40
0.32

IRF523
60
60
7
4
28
±20
40
0.32

UNITS
Volts
Volts
A
A
A
Volts
Watts
W/oC

TJ, TSTG

-55 to 150

-55 to 150

°C

R8JC
R8JA

3.12
80

3.12
80

°C/W
°C/W

TL

260

260

°C

SYMBOL
Voss
VOGR
10
10M
VGS
Po

thermal characteristics
Thermal Resistance, Junction to Case
Thermal Resistance, Junction to Ambient
Maximum Lead Temperature for Soldering
Purposes: 1,4" from Case for 5 Seconds

(1) Repetitive Rating: Pulse width limited by max. junction temperature.

179

electrical characteristics (T c

=25° C) (unless otherwise specified)

CHARACTERISTIC

I

TYP'

MAX

UNIT

100
60

-

-

Volts

-

250
1000

pA

IGSS

-

±500

nA

VGS(TH)

2.0

-

4.0

Volts

10(ON)

7.0

-

-

A

ROS(ON)

-

0.3

0.4

Ohms

9fs

1.2

2.2

-

mhos

Ciss

-

410

600

pF

160

400

pF

40

100

pF

-

15

ns

10

-

1 SYMBOL 1

MIN

BVDSS

off characteristics
Drain-Source Breakdown Voltage
(VGS = OV, 10 = 250 pA)

IRF522
IRF523

Zero Gate Voltage Drain Current
(VOS = Max Rating, VGS = OV, Tc = 25°C)
(VOS = Max Rating, x 0.8, VGS = OV, Tc = 125°C)

loss

Gate-Source Leakage Current
(VGS = ±20V)

on characteristics*
Tc = 25°C

Gate Threshold Voltage
(VOS = VGS, 10 = 250 p.A)
On-State Drain Current
(VGS = 10V, VOS =·10V)
Static Drain-Source On-State Resistance
(VGS = 10V, 10 = 4A)
Forward Transconductance
(VOS = 10V, 10 = 4A)

dynamic characteristics
=10V

Input Capacitance

VGS

Output Capacitance

VOS =25V
f = 1 MHz

Reverse Transfer Capacitance

Coss
C rss

switching characteristics*
Turn-on Delay Time

VOS = 30V

td(on)

Rise Time

10 = 4.0A, VGS = 15V

Turn-off Delay Time

RGEN = 50n, RGS = 12.5n

Fall Time

(RGS (EQUIV.) = 100)

tr
td(off)
tf

30
25

ns
ns
ns

source-drain diode ratings and characteristics*
Is

-

-

7

A

Pulsed Source Current

ISM

28

A

VSO

-

-

Diode Forward Voltage
(Tc = 25°C, VGS = OV, Is = 7A)

1.0

2.3

Volts

-

100
.0.9

-

ns
pC

Continuous Source Current

Reverse Recovery Time
(Is = 8A, dls/dt = 100Alpsec, Tc = 125°C)

trr
ORR

'Pulse Test: Pulse width :5 300 Ils, duty cycle :5 2%
2.4

100

80
60
40

ffi

20

a::
~

~...

10

:

2w

4

~

2

a::

u

2.2

........

g;

C

-

........

I-0.6 I - 0.8

OPERATION IN THIS AREA
MAY BE LIMITED BY ROSIONI

0.4

I-- SIN~LE PU~SE
0.2
TC " 25°C

i

0.1
1

I
4

I'-

10.,

~

1.8

100.,

~
a::

1.6

:::;

II

........

~~
~ ::::-..

\

1.0

r-- VGS(TH) CONDITIONS: 10 =250pA, VOS = VGS

o

"-

0.-

2

;;:

,,-

'"
"'"
v,... 1\
~

\.

2.0

.........

CONDITIONS:

r-- ROS(ON) CONDITIONS: 10 =4.0 A, VGS = lOV

;:

1'-1m,

ROSIOY

1.4

~

1.2

"

1.0

~
2

':.. 0.8

z

10ms
lOOms
DC

~
a::

0.6
0.4

- ----

-

r---

..,V

./

V

r-- r--

-

~~ -

IIRF523+

0.2

IIRF522, H

6 8 10
20
40 60 80 100
200
Vos' DRAIN-SOURCE VOLTAGE (VOLTS)

o

400 600 1000

-40

o

40

80

120

160

T J , JUNOTION TEMPERATURE ('C)

MAXIMUM SAFE OPERATING AREA

TYPICAL NORMALIZED RDSIONI AND VGSITHI VS. TEMP.

180

IRF530,531
D84DL2,K2

~D~~

14.0 AMPERES
100, 60 VOLTS
RDS(ON) = 0.18 n

FIELD EFFECT POWER TRANSISTOR

This series of N-Channel Enhancement-mode Power
MOSFETs utilizes GE's advanced Power DMOS
technology to achieve low on-resistance with excellent
device ruggedness and reliability.

N-CHANNEL

This design has been optimized to give superior performance
in most switching applications including: switching power
supplies, inverters, converters and solenoid/relay drivers.
Also, the extended safe operating area with good linear
transfer characteristics makes it well suited for many linear
applications such as audio amplifiers and servo motors.

CASE STYLE TO-220AB
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

"~~~\:"~~\ffi
.055(1.39)
I
.04811.22)

-.--

.265(6.73)
.24516.22)

Features

/

• Polysilicon gate - Improved stability and reliability

:~:~:~:~~:DlA.

• No secondary breakdown - Excellent ruggedness

~-+--i-----ItE--

+

~
I

~."'
TERM.1

• Voltage controlled - High transconductance

(f;"~III""H---,

-:I591

~151

.00110.0251

.500112.7IMIN .

TERM.3

.0331~.841
.02710.691

• Excellent thermal stability - Ease of paralleling

.055 1.39
.0451.141

RATING
Drain-Source Voltage
Drain-Gate Voltage, RGS = 1Mil
Continuous Drain Current @TC = 25°C
@Tc= 100°C
Pulsed Drain Current(l)
Gate-Source Voltage
Total Power Dissipation @TC = 25°C
Derate Above 25° C
Operating and Storage
Junction Temperature Range

CASE
TEMPERATURE
REFERENCE

TERM.2

• Low input capacitance - Reduced drive requirement

= 25° C)

•

.355(9.021.,/' POINT
.325(8.251

• Ultra-fast switching - Independent of temperature

maximum ratings (TC

T

.

.1~.10512.671
.09512.411

---I j:::::

.10712.721
.08712.211

.21015.331
.19014.821

(unless otherwise specified)
SYMBOL
Voss
VOGR

IRF530/D84DL2
100
100
14

IRF531/D84DK2
60
60
14

9

9

VGS
Po

56
±20
75
0.6

56
±20
75
0.6

UNITS
Volts
Volts
A
A
A
Volts
Watts
W/oC

TJ, TSTG

-55 to 150

-55 to 150

°C

ROJC
ROJA

1.67
80

1.67
80

°CIW
°CIW

TL

260

260

°C

10
10M

thermal characteristics
Thermal Resistance, Junction to Case
Thermal Resistance, Junction to Ambient
Maximum Lead Temperature for Soldering
Purposes: Va" from Case for 5 Seconds

(1) Repetitive Rating: Pulse width limited by max. junction temperature.

181

electrical characteristics (T c = 25° C)

I

(unless otherwise specified)

CHARACTERISTIC

I SYMBOL I

MIN

TYP

MAX

BVDSS

100
60

-

-

-

250
1000

J1A

IGSS

-

±500

nA

VGS(TH)

2.0

-

4.0

Volts

10(ON)

14.0

-

-

UNIT

off characteristics
Drain";Source Breakdown Voltage
(VGS = OV, 10 = 250 J1A)

IRF530/DS4DL2
IRF531/DS4DK2

Zero Gate Voltage Drain Current
(Vos = Max Rating, VGS = OV, Tc = 25°C)
(VOS = Max Rating, x O.S, VGS = OV, Tc = 125°C)

loss

Gate-Source Leakage Current
(VGS = ±20V)

-

Volts

on characteristics*
Gate Threshold Voltage
(Vos = VGS, 10 = 250 p,A)

Tc = 25°C

On-State Drain Current
(VGS = 10V, Vos = 10V)
Static Drain-Source On-State Resistance
(VGS = 10V, 10 = SA)

-

0.15

0.1S

Ohms

gfs

3.2

4.0

-

mhos

-

650

SOO

pF

240

500

pF

55

150

pF

15

-

ns

55
30

-

ns

10

-

ns

ROS(ON)

Forward Transconductance
. (VOS = 10V, 10 = SA)

A

dynamic characteristics
Input Capacitance

VGS = OV

Ciss

Output Capacitance

VOS = 25V
f = 1 MHz

Coss
C rss

Reverse Transfer Capacitance

switching characteristics*
Turn-on Delay Time

VOS = 30V

Rise Time

10 = SA, VGS = 15V

Turn-off Delay Time

RGEN

Fall Time

(RGS (EQUIV.) = 100)

-

td(on)
tr

=500, RGS = 12.50

td(off)
tf

ns

source-drain diode ratings and characteristics*
Continuous Source Current

Is

Pulsed Source Current

ISM

Diode Forward Voltage
(Tc = 25°C, VGS = OV, Is = 14A)
Reverse Recovery Time
(Is = 14A, dls/dt = 100AIJ1sec, Tc = 125°C)

Vso
trr
ORR

-

-

14

A

56

A

1.0

2.5

Volts

-

210
1.4

-

ns
J1C

'Pulse Test: Pulse width :5 300 J1S. duty cycle :5 2%
100
80
60
40

~

20

2.4

.......

I~

II:

~

2w

4

!5

2

II:

"2

"""-,. ~ <

,

.......

.......

"""'-, ~

1"-

10

...~ ~

!'...

.......

" ,"

" r......~

I

'1'0
....... 1'0

10,us
100",

. OPERATION IN THIS AREA
MAY BE LIMITED BY ROSIONI

I"- 1'",

1.8

~

1.6

:;

:s

~ 1.2

10ms

>'"

100m,

~

rl

I

II:

:=~;~~~g::g~~.~ --l

O. 1
4

6 8 10
20
40 60 BO 100
200
V~s. DRAIN-SOURCE VOLTAGE (VOLTS)

I

=
=

V

-- r-- ....-.-

"""-

r--..

1.0
0.8

0.6

..,,-

~ VROSIONI

C

:i!

SINGLE PULSE
Tc "2S"C

0.2

=
=

1.4

2

OC

0.4

I

CONDITIONS:
ROS(ON) CONDITIONS: 10 8.0 A. VGS 10V
VGS(TH) CONDITIONS: 10 250pA. Vos VGS

N

1m,

r........ ~t-.

51

II

I

1

r-2.0 r-2.2

.......

1.0
:s" Q 0.6
O. 8
-

.....

.......

1-

~

~

~

~

L

l - I-VGSITHI_

r-

0.4
0.2

a

400 600 1000

-40

a

40

BO

120

160

TJ • JUNCTION TEMPERATURE ("C)

MAXIMUM SAFE OPERATING AREA

TYPICAL NORMALIZED RostONI AND VGStTHI VS. TEMP.

1S2

~o~[p~

IRF532,533

FIELD EFFECT POWER TRANSISTOR

12.0 AMPERES
100, 60 VOLTS
ROS(ON) = 0.25 n

This series of N-Channel Enhancement-mode Power
MOSFETs utilizes GE's advanced Power DMOS technology
to achieve low on-resistance with excellent device ruggedness and reliability.

N-CHANNEL

This design has been optimized to give superior performance
in most switching applications including: switching power
supplies, inverters, converters and solenoid/relay drivers.
Also, the extended safe operating area with good linear
transfer characteristics makes it well suited for many linear
applications such as audio amplifiers and servo motors.

CASE STYLE TO-220AB
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

:~~g\~·~;\rt
.055(1.39)
.
I
.048(1.22)

.--

. 265(6.73)
.24516.22)

Features

CASE
TEMPERATURE
REFERENCE

/

.35519.02)
.32518.25)

: ~1~l~:~~:DIA.

+"

• No secondary breakdown - Excellent ruggedness
• Ultra-fast switching - Independent of temperature
TERM.l

• Voltage controlled - High transconductance

TERM.2

POINT

--,

.22015.59)

---.i..

j

.006(0.15)
.001(0.025)

.500112.7)MIN .

.05511.39)
.04511.14)

TERM.3

• Low input capacitance - Reduced drive requirement

.033(~.84)

• Excellent thermal stability - Ease of paralleling

.02710.69)

.I~.10512.67)

.055(1.39)
.1
.045(1.14)---'

RATING
Drain-Source Voltage
Drain-Gate Voltage, RGS =1Mn
Continuous Drain Current @Tc = 25°C
@Tc =100°C
Pulsed Drain Current(l)
Gate-Source Voltage
Total Power Dissipation @ TC =25°C
Derate Above 25° C
Operating and Storage
Junction Temperature Range

•

I--+---I----+t-i--',I

• Polysilicon gate - Improved stability and reliability

maximum ratings (TC = 25°C)

.

.10712.72)
.08712.21)

~ ,.09512.41)

J.-'

I--

.21015.33)
.19014.82)

.021{0.53)
.01510.38)

(unless otherwise specified)
IRF532
100
100
12
8
48
±20
75
0.6

IRF533
60
60
12
8
48
±20
75
0.6

UNITS
Volts
Volts
A
A
A
Volts
Watts
W/oC

TJ, TSTG

-55 to 150

-55 to 150

°C

R8JC
R8JA

1.67
80

1.67
80

°C/W
°C/W

TL

260

260

°C

SYMBOL
VOSS
VOGR
10
10M

VGS
Po

thermal characteristics
Thermal Resistance, Junction to Case
Thermal Resistance, Junction to Ambient
Maximum Lead Temperature for Soldering
Purposes: W' from Case for 5 Seconds

(1) Repetitive Rating: Pulse width limited by max. junction temperature.

183

electrical characteristics (T c = 25° C)

I

(unless otherwise specified)

CHARACTERISTIC

I SYMBOL I

MIN

TYP

MAX

UNIT

BVDSS

100
60

-

-

Volts

-

-

250
1000

J1A

IGSS

-

-

±500

nA

VGS(TH)

2.0

-

4.0

Volts

10(ON)

12

-

-

off characteristics
Drain-Source Breakdown Voltage
(VGS =OV, 10 = 250 J1A)

IRF532
IRF533

Zero Gate Voltage Drain Current
(VOS = Max Rating, VGS =OV, Tc = 25°C)
(VOS = Max Rating, x 0.8, VGS =OV, Tc = 125°C)

loss

Gate-Source Leakage Current
(VGS = ±20V)

on characteristics*
Gate Threshold Voltage
(VOS =VGS, 10 =250 }J.A)

Tc

=25°C

On-State Drain Current
(VGS =10V, VOS = 10V)
Static Drain-Source On-State Resistance
(VGS = 10V, 10 =8A)

A

-

0.18

0.25

Ohms

gfs

3.2

4.0

-

mhos

Ciss

-

650

800

pF

240

500

pF

55

150

pF

15

ns

ROS(ON)

Forward Transconductance
(V OS =10V, 10 =8A)

dynamic characteristics
=OV
VOS = 25V
f = 1 MHz

Input Capacitance

VGS

Output Capacitance
Reverse Transfer Capacitance

Coss
C rss

switching characteristics*
=30V
=8A, VGS =15V
RGEN =50D, RGS = 12.5D
(RGS (EQUIV.) = 10D)

Turn-on Delay Time

VOS

Rise Time

10

Turn-off Delay Time
Fall Time

-

55

td(off)

-

30

tf

-

10

-

IS

-

A

ISM

-

12

-

48

A

VSO

-

1.0

2.3

Volts

trr

-

210
1.4

-

td(ori)
tr

ns
ns
ns

source-drain diode ratings and characteristics*
Continuous Source Current
Pulsed Source Current
Diode Forward Voltage
(Tc = 25°C, VGS =OV, Is

=12A)

Reverse Recovery Time
(Is = 14A, d Isldt = 1OOAIJ1sec, T C = 125° C)

ORR

ns
J1C

-

'Pulse Test: Pulse width::::: 300 fls, duty cycle::::: 2%
2.4

100
80
60
40
(i)

20

w

a:
~

10

~

6

:;;
~

4

::J
<.l
Z

2

a:
a:

;:( 1.0
~ 0.8
}lO.6
0.4

"

r-.....X

'\

B

f-

"" " "'"
,
.'

/I
~/

'"
........

\

f'. ....

"'-

2.0

,

r-... ....

~ 1.6
:;;
~ 1.4

"i"to 1.2

lOms

>fj 1.0

"~

100m,
DC

SINGLE PULSE
Tc"'25°C

~
<;;

0.8

0.6

o
a: 0.4

im~~:;:: H

0.2

I

I

I
./

/

N

1m'

.......

~ ........ f'.

OPERATION IN THIS AREA
MAY BE LIMITED BY ROSIONI

I

@ 1.8
.... 100",

,

I

CONDITIONS:
RDS(ON) CONDITIONS: ID =8.0 A. VGS =10V
VGS(TH) CONDITIONS: ID =250~A. VDS =VGS

lOps

I'

..........

I

I

2.2

-- --r--

~

L

..........

~

,..., V- L

-r---

::::::::::,

1-

/ROSIONI

--

VGSITHI_

I--

I-

0.2

O. 1
4

6 8 10
20
40 60 BO 100
200
Vas. DRAIN-SOURCE VOL TAGE (VOLTSI

-40

400 600 1000

o

40

80

120

160

T J • JUNCTION TEMPERATURE (OCI

MAXIMUM SAFE OPERATING AREA

TYPICAL NORMALIZED ROSION) AND VGSITH) VS. TEMP.

184

IRF540,541
D84EL2,K2

~D~[P~

27 AMPERES
100, 60 VOLTS
ROS(ON} = 0.085

FIELD EFFECT POWER TRANSISTOR

This series of N-Channel Enhancement-mode Power
MOSFETs utilizes GE's advanced Power DMOS technology
to achieve low on-resistance with excellent device ruggedness and reliability.

N-CHANNEL

This design has been optimized to give superior performance
in most switching applications including: switching power
supplies, inverters, converters and solenoid/relay drivers.
Also, the extended safe operating area with good linear
transfer characteristics makes it well suited for many linear
applications such as audio amplifiers and servo motors.

:~~~\!·~;\rt
.05511.391
.
1
.04811.221

-.--- -

.26516.731
.24516.221

Features
/

• Polysilicon gate - Improved stability and reliability

~
I

~51

~.31
TERM.l

• Voltage controlled - High transconductance

TERM.2

• Low input capacitance - Reduced drive requirement

TERM.3

.0331~.841

• Excellent thermal stability - Ease of paralleling

.02710.691

..fI ",~III\4i-i--,

.00110.0251

.500112.7IMIN.

.05511.391

:1i45iT.l4i
.10712.721
.OB712.211

.!lJ::If.l0512.671
~ ,"09512.411

.05511.391-----1
.04511.141

RATING
Drain-Source Voltage
Drain-Gate Voltage, RGS = 1M!)
Continuous Drain Current@Tc = 25°C
@TC = 100°C
Pulsed Drain Current(1)
Gate-Source Voltage
Total Power Dissipation @ T C = 25°C
Derate Above 25° C
Operating and Storage
Junction Temperature Range

CASE
TEMPERATURE
REFERENCE
/
POINT
.35519.021---r
.32518.251
.220~.591

+

• Ultra-fast switching - Independent of temperature

=25° C)

_

.,.r---+--I-----1f[--

: ~!~:~:~~:DIA.

• No secondary breakdown - Excellent ruggedness

maximum ratings (T C

n

i:=

.21015.331
.19014.821

.02110.531
.01510.361

(unless otherwise specified)
IRF540/084EL2
100
100
27
17
108
±20
125
1.0

IRF541/084EK2
60
60
27
17
108
±20
125
1.0

UNITS
Volts
Volts
A
A
A
Volts
Watts
W/oC

TJ, TSTG

-55 to 150

-55 to 150

°C

ROJC
ROJA

1.00
80

1.00
80

°CIW
°CIW

260

260

°C

SYMBOL
Voss
VOGR
10
10M

VGS
Po

thermal characteristics
Thermal Resistance, Junction to Case
Thermal Resistance, Junction to Ambient
Maximum Lead Temperature for Soldering
Purposes: %" from Case for 5 Seconds

h

-

(1) Repetitive Rating: Pulse width limited by max. junction temperature.

185

electrical characteristics (T c

I

=25

0

C)

(unless otherwise specified)

CHARACTERISTIC

I SYMBOL I

MIN

TYP

MAX

UNIT

BVDSS

100
60

-

-

Volts

-

-

250
1000

tJA

IGSS

-

-

±500

nA

VGS(TH)

2.0

-

4.0

Volts

10(ON)

27

-

-

A

ROS(ON)

-

0.073

0.OB5

Ohms

gfs

5.4

7.0

-

mhos

Ciss

-

1400

1600

pF

550

BOO

pF

120

300

pF

20

-

ns

I

off characteristics
Drain-Source Breakdown Voltage
(VGS = OV, 10 = 25011A)

IRF540/DB4EL2
IRF541/DB4EK2

Zero Gate Voltage Drain Current
(VOS = Max Rating, VGS':' OV, Tc = 25°C)
(VOS = Max Rating, x O.B, VGS = OV, Tc = 125°C)

loss

Gate-Source Leakage Current
(VGS = ±20V)

on characteristics*
Gate Threshold Voltage
(VOS= VGS, 10. = 250 p,A)

Tc = 25°C

On-State Drain Current
(VGS = 10V, VOS = 10V)
Static Drain-Source On-State Resistance
(VGS = 10V, 10 = 15A)
Forward Transconductance
(VOS = 10V, 10 = 15A)

dynamic characteristics
Input Capacitance

VGS = OV

Output Capacitance

VOS = 25V

Coss

Reverse Transfer Capacitance

f = 1 MHz

C rss

switching characteristics*
Turn-on Delay Time

VOS = 30V

Rise Time

10 = 15A, VGS = 15V

tr

-

115

td(off)

-

50

tf

-

30

td(on)

Turn-off Delay Time

RGEN = 50.0., RGS = 12.5.0.

Fall Time

(RGS (EQUIV.) = 10.0.)

ns
ns
ns

source-drain diode ratings and characteristics*
27

A

ISM

-

-

Pulsed Source Current

-

10B

A

Diode Forward Voltage
(TC = 25°C, VGS = OV, Is = 27A)

VSO

-

1.2

2.5

Volts

trr

-

250
2.0

-

ns
tJC

Continuous Source Current

Is

Reverse Recovery Time
(Is = 27A, dls/dt = 100A/I1sec, Tc = 125°C)
·Pulse Test: Pulse Width

2.4

600
400

2.2

200

a:

100

w

2

~
o

-"

.......

1.8

~

1.6

I'..
It

~

1.4

/

,,/'

......

\

19
6

' ....

' ....

~
................

'"

!":--. 10J.ls

r- SINdLE PUL~E

I IT

Tc =2SoC

."'-

1

4

6 8 10

20

~, 1.2

"

~

.... 1m,

"'-

-

. . . "'- '

IRF541/D84EK2
IRFS40/DB4EL2'

I

:;:

100",

........

OPERATION IN THIS AREA.......
.......
MAY 8E LIMITED BY ROSIONI
..........

I

a:

.......

20

1

~

:::;

40

CJ

I

-

=

=

o

a:

l5

I

I
I
I
I
I
CONDITIONS:
ROS(ON) CONDITIONS: 10 15 A, VGS = 10V
2.0 -VGS(TH) CONDITIONS: '0 = 250pA. VOS VGS

i :
t;

:s 300 ps, duty cycle :s 2%

1000
800

Bi

-

ORR

-

40



u

z
<1

a:
Q

j.

2.4

~

1.8

~

1.6

:::;
100
80
60

.......

I'-

I'x:

-I.

'\

/'

20

4

r--.""'I'"

r--..

""'-

I

I

I

I

I

TC'250C

j

I
4

j

JI

V
........V

0:

-...; "

f'.-

OPERATION IN THIS AREA"
......
MAY BE LIMITED BY ROSIONI
...................

I
I
I-SINGLE PULSE
1

I',

r--"'" .""'-

//
10
8
6

I

o

200

40

I

CONDITIONS:
r- ROS(ON) CONDITIONS:
10 =15 A, VGS =10V
2.0 r- VGS(TH) CONDITIONS: 10 =250.A, VOS =VGS
2.2

~

~

"

~

"

r-- r--

1.2
1.0

z

1m.

-0: 08
~ .

S

10m.

a:

" "I ' " "100m.

1--

0.6

--

~

~

-~ r--

0.4

/

ROSIONI1

-- -,I

~GSITHI

-

0.2

IRF543-.... " "
IRF542.- H
DC
6 8 10
20
40 60 SO 100
200
Vos. DRAIN-SOURCE VOLTAGE (VOLTS)

1.4

;:

10••
100••

o

400 600 1000

-40

o

40

80

120

160

TJ , JUNCTION TEMPERATURE ('C)

MAXIMUM SAFE OPERATING AREA

TYPICAL NORMALIZED ROSIONI AND VGSITHI VS. TEMP.

188

IRF610,611
D84BN2,M2

~D~~

2.5 AMPERES
200,150 VOLTS
ROS(ON) = 1.5 il

FIELD EFFECT POVVER TRANSISTOR

This series of N-Channel Enhancement-mode Power
MOSFETs utilizes GE's advanced Power DMOS technology
to achieve low on-resistance with excellent device ruggedness and reliability.

N-CHANNEL

This design has been optimized to give superior performance
in most switching applications including: switching power
supplies, inverters, converters and solenoid/relay drivers.
Also, the extended safe operating area with good linear
transfer characteristics makes it well suited for many linear
applications such as audio amplifiers and servo motors.

CASE STYLE TO-220AB
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

:~~g\::~;\rt
.055(1.39)
I
.048(1.22)

.--.

.265(6.73)
.245(6.221

• Polysilicon gate - Improved stability and reliability

:

~:~i~:~~:DIA.

TERM.l

• Voltage controlled - High transconductance

1f,...mll'!in-.

TERM.2

---:J.591

~51

.001(0.0251

.500(12.7)MIN .

.055(1.391
.045(1.141

TERM.3

• Low input capacitance - Reduced drive requirement

.0331~.841
.027(0.69)

• Excellent thermal stability - Ease of paralleling

RATING
Drain-Source Voltage
Drain-Gate Voltage, RGS = 1Mil
Continuous Drain Current @ T C = 25° C
@TC= 100°C
Pulsed Drain Current(1)
Gate-Source Voltage
Total Power Dissipation @ T C = 25° C
Derate Above 25° C
Operating and Storage
Junction Temperature Range

/ ' POINT

.325(8.251

~"'"'

• Ultra-fast switching - Independent of temperature

CASE
TEMPERATURE
REFERENCE

.355(9.02)

~
I

• No secondary breakdown - Excellent ruggedness

maximum ratings (TC = 25 0 C)

•

/t--+---I-----+t-i,--'.,I
r
+

Features

.1~.105(2.67)
.095(2.4 11

.055(1.391--/
.045(1.14)

\+-.

j.-

.210(5.33)
.190(4.82)

.107(2.721
.087(2.211
.021(0.53)
.015(0.381

(unless otherwise specified)
IRF610/084BN2
200
200
2.5
1.5
10
±20
20
0.16

IRF611/084BM2
150
150
2.5
1.5
10
±20
20
0.16

UNITS
Volts
Volts
A
A
A
Volts
Watts
WloC

TJ, TSTG

-55 to 150

-55 to 150

°C

ROJC
ROJA

6.4
80

6.4
80

°CIW
°CIW

h

260

260

°C

SYMBOL
Voss
VOGR
10
10M

VGS
Po

thermal characteristics
Thermal Resistance, Junction to Case
Thermal Resistance, Junction to Ambient
Maximum Lead Temperature for Soldering
Purposes: Va" from Case for 5 Seconds

(1) Repetitive Rating: Pulse width limited by max. junction temperature.

189

= 25° C)

electrical characteristics (T c

I

(unless otherwi~e specified)

CHARACTERISTIC

I SYMBOL I

MIN

BVDSS

I

TYP

MAX

UNIT

200
150

-

-

Volts

-

250
1000

p.A

IGSS

-

-

±500

nA

VGS(TH)

2.0

-

4.0

Volts

10(ON)

2.5

-

-

A

ROS(ON)

-

1.28

1.5

Ohms

off characteristics
Drain-Source Breakdown Voltage
IRF610/D84BN2
IRF611/D84BM2
(VGS =OV, 10 =250 p.A)
Zero Gate Voltage Drain Current
(V OS =Max Rating, VGS =OV, Tc =25°C)
(VOS =Max Rating, x 0.8, VGS =OV, Tc =125°C)
Gate-Source Leakage Current
(VGS =±20V)

loss

on characteristics*
Gate Threshold Voltage
(VOS =VGS, 10 =250 fJA)

Tc

=25°C

On-State Drain Current
(VGS =10V, VOS =10V)
Static Drain-Source On-State Resistance
(VGS =10V, 10 =1.25A)
Forward Transconductance
(VOS =10V, 10 =1.25A)

gfs

0.72

0.75

-

mhos

Ciss

-

120

150

pF

Coss
C rss

40

80

pF

10

25

pF

td(on)

-

5

ns

tr

-

15

td(off)

-

10

tf

-

10

-

-

2.5

A

10

A

Vso

-

0.9

2.0

Volts

trr
ORR

-

150
0.9

-

ns
p.C

dynamic characteristics

=OV

Input Capacitance

VGS

Output Capacitance

VOS =25V
f =1 MHz

Reverse Transfer Capacitance

switching characteristics*
Turn-on Delay Time

VOS

=90V

=1.25A, VGS =15V
=500, RGS =12.50
(RGS (EQUIV.) =100)

Rise Time

10

Turn-off Delay Time

RGEN

Fall Time

ns
ns
ns

source-drain diode ratings and characteristics*
Continuous Source Current

Is

Pulsed Source Current

ISM

Diode Forward Voltage
(Tc =25°C, VGS =OV, Is

=2.5A)

Reverse Recovery Time
(Is =2.5A, dls/dt =100A/p.sec, Tc

=125°C)

'Pulse Test: Pulse Width :5 300 ps, duty cycle :5 2%
2.4

100

1

80
60
40

i3
If

ia:

~

u

20

~

:;

10

~

,

4
2
1.0

:sc 0.8
-

I

I

2.0

r- VGS(TH) CONDITIONS: '0 = 250~A. VOS = VGS

.......

"

"

0.6
0.4

r-

0.2

f- SING'LE PUL~E J I

OPERATION IN THIS AREA
MAY BE LlMITEO BY RDSIONI

Tc =25°C
0.1
1

'"

r"~
~~

4

T

""

'"

I'

1.6

~

1.4

~

>

1'",

Q

~

~ O. 8

z

~

IRF611/084BM 2

........

" "'"

l. 2

1.0

Z

1m,

--'RFtjjBj
...... 10m,

~

g>gm'

6 8 10
20
40 60 60 100
200
VDS - DRAIN-SOURCE VOL TAGE (VOLTS)

a:

2

0.6
0.4

o. 2
o

I

400 600 1000

V
VRDSIONI

~

~

100",

/'

ROS(ON) CONDITIONS: 10 = 1.25 A. VGS = 10V

1.8

a:

I"-

"\

Z

;;:

~ONDI~ONS: I

I-

Q

a:

!

I

2.2

/'

- -- -------V

./

./

~

VGSITHI -

-40

o

40

80

120

~

160

TJ • JUNCTION TEMPERATURE ('C)

MAXIMUM SAFE OPERATING AREA

TYPICAL NORMALIZED RDSIONI AND VGSITHI VS. TEMP.

190

DO

D[]~[F~

IRF612,613
2.0 AMPERES
200, 150 VOLTS
ROS(ON) = 2.4 n

FIELD EFFECT POWER TRANSISTOR

This series of N-Channel Enhancement-mode Power
MOSFETs utilizes GE's advanced Power DMOS technology
to achieve low on-resistance with excellent device ruggedness and reliability.

N-CHANNEL

This design has been optimized to give superior performance
in most switching applications including: switching power
supplies, inverters, converters and solenoid/relay drivers.
Also, the extended safe operating area with good linear
transfer characteristics makes it well suited for many linear
applications such as audio amplifiers and servo motors.

.~~~\:.~~\~
.055(1.391
.
.
I
.04811.221

,.--,

.265(6.731

:24slif.22i

,

.L--t--;------:ft-.j-..,
.-

Features

.355(9.021
.325(8.251

• Polysilicon gate - Improved stability and reliability

'~"" j

• No secondary breakdown - Excellent ruggedness
• Ultra-fast switching - Independent of temperature

TERM.l

ifj.llll~i---1

CASE
TEMPERATURE
REFERENCE

~T

.220(5.591

---i.

.006(0.151
.001 (0.0251

.500(12.7IMIN.

TERM.2

• Voltage controlled - High transconductance

TERM.3

• Low input capacitance - Reduced drive requirement

.033(~.841
.027(0.691

• Excellent thermal stability - Ease of paralleling

maximum ratings (T C =25°C)
RATING
Drah..Source Voltage

. • 1~.105(2.671
.095(2.411

.05511.391-/
.045(1.141

\4-'
f.-

.210(5.331
.190(4.821

.107(2.721
.08712.211
.02110.531
.01510.381

(unless otherwise specified)
IRF612
200
200

IRF613
150
150

UNITS
Volts
Volts

10

2.0
1.25

2.0
1.25

A
A

10M

8

8

A

VGS

±20

±20

Volts

Po

20
0.16

20
0.16

Watts
W/oC

TJ, TSTG

-55 to 150

-55 to 150

°C

Thermal Resistance, Junction to Case

R8JC

6.4

6.4

°C/W

Thermal Resistance, Junction to Ambient

RBJA

80

80

°C/w'

Maximum Lead Temperature for Soldering
Purposes: W' from Case for 5 Seconds

TL

260

260

°C

Drain-Gate Voltage, RGS = 1M!l
Continuous Drain Current@Tc = 25°C
@TC= 100°C
Pulsed Drain Current")
Gate-Source Voltage
Total Power DiSSipation @TC = 25°C
Derate Above 25°C
Operating and Storage
Junction Temperature Range

SYMBOL
Voss
VOGR

thermal characteristics

(1) Repetitive Rating: Pulse width limited by max. junction temperature.

191

=25° C) (unless otherwise specified)

electrical characteristics (Tc

I

CHARACTERISTIC

I SYMBOL I

MIN

TYP

BVDSS

200
150

-

-

MAX

UNIT

off characteristics
Drain-Source Breakdown Voltage
(VGS =OV, 10 = 250 pA)

IRF612
IRF613

Zero Gate Voltage Drain Current
(VOS = Max Rating, VGS = OV, Tc = 25°C)
. (V OS = Max Rating, x 0.8, VGS =OV, Tc = 125°C)

loSS

Gate-Source Leakage Current
(VGS = ±20V)

-

Volts

-

250
1000

pA

-

IGSS

-

-

±500

nA

VGS(TH)

2.0

-

4.0

Volts

10(ON)

2.0

-

-

A

ROS(ON)

-

1.5

2.4

Ohms

gfs

0.72

0.75

-

mhos

150

pF

on characteristics*
Gate Threshold Voltage
(VOS = VGS, 10 = 250 J.LA)

Tc

=25°C

On-State Drain Current
(VGS = 10V, VOS = 10V)
Static Drain-Source On-State Resistance
(VGS = 10V, 10 = 1.25A)
Forward Transconductance
(V OS = 10V, 10 = 1.25A)

dynamic characteristics
Input Capacitance

VGS = OV

Ciss

-

120

Output Capacitance

VOS = 25V
f = 1 MHz

Coss
C rss

-

40

80

pF

10

25

pF

td(on)

-

5

-

ns

-

ns

10

-

2.0

A

ISM

-

8.0

A

VSO

-

0.8

1.8

Volts

trr

-

150
0.9

-

ns
pC

Reverse Transfer Capacitance

switching characteristics* .
Turn-on Delay Time

VOS = 90V

Rise Time

10 = 1.25A, VGS

Turn-off Delay Time

RGEN

Fall Time

(RGS (EQUIV.)

= 15V

=500., RGS = 12.50.
= 100.)

tr
td(off)
tf

15
10

ns
ns

source-drain diode ratings and characteristics*
Continuous Source Current

IS

Pulsed Source Current
Diode Forward Voltage
(Tc = 25°C, VGS = OV, Is = 2.0A)
Reverse Recovery Time
(Is = 2.5A, dls/dt = 100A/psec, Tc

= 125°C)

ORR

'Pulse Test: Pulse Width :s; 300 JJS, duty cycle :s; 2%
100
80
60

2.4

2.0 2.2

40

'" 1.0
c
z

1m,

~ O.B

z

"

IRF623~ ~

°

~

a:

10ms
100m,
OC

0.4

c-----

--

".........

V
//'
./

V

r--

i""'"""

--

~G~ -

0.2

IjF62Y--i

1

6 B 10
20
40 60 SO 100
200
Vos. DRAIN-SOURCE VOLTAGE IVOL TSI

0.6

r--

/'

o

400 600 1000

-40

o

40

80

120

160

T J • JUNCTION TEMPERATURE I'C)

MAXIMUM SAFE OPERATING AREA

TYPICAL NORMALIZED RDSIONI AND VGSITHI VS. TEMP.

196

IRF630,631
D84DN2,M2

~D~~U

9.0 AMPERES
200, 150 VOLTS
RDS(ON) = 0.4 n

FIELD EFFECT POWER TRANSISTOR

This series of N-Channel Enhancement-mode Power
MOSFETs utilizes GE's advanced Power DMOS technology
to achieve low on-resistance with excellent device ruggedness and reliability.

N-CHANNEL

This design has been optimized to give superior performance
in most switching applications including: switching power
supplies, inverters, converters and solenoid/relay drivers.
Also, the extended safe operating area with good linear
transfer characteristics makes it well suited for many linear
applications such as audio amplifiers and servo motors.

CASE STYLE TO-220AB
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)
.404110.26) • : :~\~.~~\
.38019.65)1· I ·

-L

__ +

• Polysilicon gate - Improved stability and reliability

+

.• 1'445,1133.·6588))OIA.

• No secondary breakdown - Excellent ruggedness

.----

.265(6.73)
.24516.221

TERM.l

• Voltage controlled - High transconductance

.05511.39)
.04811.221

_

CASE
TEMPERATURE
REFERENCE
/
POINT

:~~;\~:~;l----'

~

(33)
~•

• Ultra-fast switching - Independent of temperature

-tr...IllIIoolr+--,

~59)
.006(0.15)
.00110.025)·

.500112.7)MIN.

TERM.2
TERM.3

• Low input capacitance - Reduced drive requirement

.0331~.B4)
.027(0.69)

• Excellent thermal stability - Ease of paralleling

.1~.'0512.67)
.09512.41)

.055(1.39)--1
.045(1.14)

RATING
Drain-Source Voltage
Drain-Gate Voltage, RGS = 1MH
Continuous Drain Current @ Tc = 25°C
@Tc = 100°C
Pulsed Drain Current(1)
Gate-Source Voltage
Total Power Dissipation @ TC =25°C
Derate Above 25° C
Operating and Storage
Junction Temperature Range

.'701432)~
.
I
-

/I---+--+----lfr--

Features

maximum ratings (T C = 25° C)

f

.19014.83)

1:=

.210(5.33)
.19014.82)

.10712.72)
.087(2.21)
.02110.53)
.015(0.38)

(unless otherwise specified)
IRF630/D84DN2
200
200
9.0
6.0
36
±20
75
0.6

IRF631/D84DM2
150
150
9.0
6.0
36
±20
75
0.6

UNITS
Volts
Volts
A
A
A
Volts
Watts
W/oC

TJ, TSTG

-55 to 150

-55 to 150

°c

ROJC
ROJA

1.67
80

1.67
80

°C/W
°CIW

TL

260

260

°C

SYMBOL
Voss
VOGR
10
10M

VGS
Po

thermal characteristics
Thermal Resistance, Junction to Case
Thermal Resistance, Junction to Ambient
Maximum Lead Temperature for Soldering
Purposes: Va" from Case for 5 Seconds

(1) Repetitive Rating: Pulse width limited by max. junction temperature.

197

electrical characteristics (T c = 25° C)

I

(unless otherwise specified)

CHARACTERISTIC

I SYMBOL I

MIN

TYP

MAX

UNIT

BVDSS

200
150

-

-

Volts

250
1000

/.IA

±500

nA

off characteristics
Drain-Source Breakdown Voltage
(VGS = OV, 10 = 250/.lA)

IRF630/D84DN2
IRF631/D84DM2

Zero Gate Voltage Drain Current
(VOS = Max Rating, VGS = OV, Tc = 25°C)
(VOS = Max Rating, x 0.8, VGS = OV, TC = 125°C)

losS

Gate-Source Leakage Current
(VGS = ±20V)

IGSS

-

-

VGS(TH)

2.0

-

4.0

Volts

10(ON)

9.0

-

-

A

ROS(ON)

-

0.34

0.4

Ohms

gfs

2.4

3.0

-

mhos

-

on characteristics*
Gate Threshold Voltage
(VOS = VGS, 10 = 250 MA)

Tc = 25°C.

On-State Drain Current
(VGS = 10V, VOS = 10V)
Static Drain-Source On-State Resistance
(VGS = 10V, 10 = 5.0A)
Forward Transconductance
(VOS = 10V, 10 = 5.0A)

dynamic characteristics
Input Capacitance

VGS = OV

Ciss

-

650

800

pF

Output Capacitance

VOS = 25V
.f = 1 MHz

Coss
C rss

-

150

450

pF

30

150

pF

td(on)

-

15

-

ns .

-

ns

20

Reverse Transfer Capacitance

switching characteristics*
Turn-on Delay Time

VOS = 90V

Rise Time

10 = 5.0A, VGS = 15V

Turn-off Delay Time

RGEN = 500, RGS = 12.50

Fall Time

tr

(RGS (EQUIV.) = 100)

td(off)
tf

25
30

ns
ns

source-drain diode ratings and characteristics*
Is

-

A

ISM

-

-

9.0

Pulsed Source Current

36.0

A

Diode Forward Voltage
(Tc =25°C, VGS =OV, Is = 9.0A)

VSO

-

1.0

2.0

Volts

trr

-

300
2.5

-

ns
/.IC

Continuous Source Current

Reverse Recovery Time
(Is = 9.0A, dls/dt = 100AI/.Isec, Tc

=125°C)

ORR

·Pulse Test: Pulse width :5 300 /-IS, duty cycle :5 2%
100
SO
60
40

f3

2A

...... ;' ""'I'..

20

\

a:
~

10

~ ~
~

a:

~
(,)

I

2.2

4

~'
2

2

;;: 1.0
~ O.S
Q 0.6

" )< ""'- """

.'

:--...

""....~

1\

~
t-...

I"

.......

OPERATION IN THIS AREA
MAY BE LIMITEO SY RoS ON

w

N

100"s

r-...

1.6

~
a:

lA

I,

~

>

1.0



10ms

1.4

0.8

<.

~

CJ

;;:

./

,,~

."

10

8
6

OPERAT10N IN THIS AREA
MAY BE LIMITED BY ROSION)

2 -SINdLE

PUL~E I I I

Tc=2SoC
1

~

"-

"-

r.......

I'
pC

4

'"

~~ lOps

",
"
'"
"
"

."'- ~
......

-

1

I

I

I

I

t.B
1.6

II:

II:

II:

I

ROSION)

./

c

200

!Zw

I

CONDITIONS:
t--RDS(ON) CONDITIONS: 10' 10 A. VGS • 10V
2.0 t--- VGS(TH) CONOITIONS: 10' 2S0pA, VOS' VGS
2.2

600
400

........

~

1.2

"

1.0

~

.,

lOOp,

1.4

~ 0.8

z
o

1m,

I-0oI

-IRF643
~IRi642

r--. lOms
r--.

~ 0.6

-

II:

0.4

/

----------

V

./

../'

/

r--- r--

-

VGSITH'-

~

0.2

lOOms

20
40 60 80100
200
6 8 10'
Vos. DRAIN-SOURCE VOLTAGE (VOLTS)

V

o

400 600 1000

-40

o

40

80

120

160

T J • JUNCTION TEMPERATURE ('C)

MAXIMUM SAFE OPERATING AREA

TYPICAL NORMALIZED RDSIONI AND VGSITHI VS. TEMP.

204

IRF710,711

~o~~~LF

D84BQ2~BQ1

FIELD EFFECT POVVER TRANSISTOR

This series of N-Channel Enhancement-mode Power
MOSFETs utilizes GE's advanced Power DMOS technology
to achieve low on-resistance with excellent device ruggedness and reliability.

N-CHANNEL

This design has been optimized to give superior performance
in most switching applications including: switching power
supplies, inverters, converters and solenoid/relay drivers.
Also, the extended safe operating area with good linear
transfer characteristics makes it well suited for many linear
applications such as audio amplifiers and servo motors.

DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

:1~g\::~~\rt
.055(1.39)
I
.048(1.22)

-.---

.265(6.73)
.245(6.22)

Features
• Polysilicon gate -

1.5 AMPERES
400, 350 VOLTS
RDS(ON) =3.6 .0.

.
•

CASE

.L----+---l---~ftI

Improved stability and reliability

• No secondary breakdown - Excellent ruggedness

:1:m:~~:D1A.

• Ultra-fast switching - Independent of temperature
TERM.l

• Voltage controlled - High transconductance
• Low input capacitance -

TERM.2

Reduced drive requirement

+

; +"

.02710.69)

.220(5.59)

--.i..

.006(0.15)
.001 (0.0251

j

.500112.7IMIN.

.I~.10512.67)

~ _.09612.411

.05511.39)
.I!--"
.04511.141----'

I--

RATING
Drain-Source Voltage
Drain-Gate Voltage, RGS = 1M.o.
Continuous Drain Current @Tc = 25°C
@Tc= 100°C
Pulsed Drain Current(1)
Gate-Source Voltage
Total Power Dissipation @ TC = 25°C
Derate Above 25° C
Operating and Storage
Junction Temperature Range

--,

TERM.3

.0331~.84)

• Excellent thermal stability - Ease of paralleling

maximum ratings (T C = 25° C)

.35519.02)
.32518.251

TEMPERATURE
REFERENCE
/
POINT

.21015.331
.190(4.821

~

.10712.72)
.08712.21)

.02110.53)
.01510.381

(unless otherwise specified)
IRF710/D84BQ2
400
400

IRF711/D84BQ1
350
350

UNITS
Volts
Volts

1.5
1.0
6
±20
20
0.16

1.5
1.0
6
±20
20
0.16

A

W/oC

TJ, TSTG

-55 to 150

-55 to 150

°C

ROJC
ROJA

6.4
80

6.4
80

°CIW
°CIW

h

260

260

°C

SYMBOL
Voss
VOGR
10
10M

VGS
Po

A
Volts
Watts

thermal characteristics
Thermal Resistance, Junction to Case
Thermal Resistance, Junction to Ambient
Maximum Lead Temperature for Soldering
Purposes: W' from Case for 5 Seconds

(1) Repetitive Rating: Pulse width limited by max. junction temperature.

205

electrical characteristics (T c = 25 0 C)

I

(unless otherwise specified)

CHARACTERISTIC

I SYMBOL I

MIN

TYP

MAX

UNIT

BVDSS

400
350

-

-

Volts

-

-

-

-

250
1000

I1A

IGSS

-

-

±500

nA

VGS(TH)

2.0

-

4.0

Volts

10(ON)

1.5

-

-

A

ROS(ON)

-

-

3.6

Ohms

gfs

.45

-

-

mhos

-

-

150

pF

-

50

pF

15

pF

-

10

-

ns

-

1.5

A

6

A

1.6

Volts

off characteristics
Drain-Source Breakdown Voltage
(VGS = OV, 10 = 25011A)

IRF710/D84B02
IRF7111D84B01

Zero Gate Voltage Drain Current
(VOS = Max Rating, VGS = OV, Tc = 25°C)
(VOS = Max Rating, x 0.8, VGS = OV, Tc = 125°C)

loss

Gate-Source Leakage Current
(VGS = ±20V)

-

on characteristics*
Gate Threshold Voltage
(VOS = VGS, 10 = 250 p.A)

Tc = 25°C

On-State Drain Current
(VGS = 10V, VOS = 10V)
Static Drain-Source On-State Resistance
(VGS = 10V, 10 = 1.5A)
Forward Transconductance
(VOS = 10V, 10 = 0.8A)

dynamic characteristics
Input Capacitance

VGS = OV

Ciss

Output Capacitance

VOS = 25V

Reverse Transfer Capacitance

f = 1 MHz

Coss
C rss

switching characteristics*
Turn-on Delay Time

VOS = 175V

td(on)

Rise Time

10 = 0.8A, VGS = 15V

Turn-off Delay Time

RGEN = 500, RGS = 12.50

Fall Time

tr
td(off)
tf

(RGS (EQUIV.) = 100)

15
10
10

ns
ns
ns

source-drain diode ratings and characteristics*
Pulsed Source Current

ISM

-

Diode Forward Voltage
(Tc = 25°C, VGS = OV, Is = 1.5A)

VSO

-

-

trr

-

200
1.5

Continuous Source Current

Is

Reverse Recovery Time
(Is = 1.5A, dls/dt = 100A/l1sec, Tc = 125°C)

-

ORR

-

ns
I1C

'Pulse Test: Pulse width:::; 300 ps, duty cycle:::; 2%
100
80
60
40

2.4

2.2

I

w

N

1.8


o

1001'

/

/
,/

1.4

r-- r--

1.2
1.0


(J

4

2

z
<1

1.3
1.0
~ O.B

" 0.6
- 0.4

2.0

-

CONDITIONS:
ROSION) CONDITIONS: 10 = 0.8 A. VGS = 10V
VGS(TH) CONDITIONS: 10 =250~. VOS = VGS _ ROSION}

I,

I/

V

1.6

~

........

~

~

~

.... ~

""

~..... OPERirlON IN THIS AREA
MAY BE LlMITEO BY ROSION}

0.2 I- SINGLE PULSE
Tc =2SoC
4

....

,
..........

,

10 p.S

"
>
Q

1.0

---

1,2

~

Z

~ 0.8

1m,

t-.............

:~ ~
~

6 8 10
20
40 60 80 100
200
Vos. DRAIN-SOURCE VOLTAGE IVOL TSI

1.4

x~

10",-

~

~

z
o

r-

eno

0.6

0:

IRF713

0.4

~}Rtt
TOms

V

/

1.8

V

0:

....

iii

t---

Q

20

0:

~

2.2

./
,/

"

r-- 1::::::::::"",

I-"""

.-

-----

V

-~

-

0.2

100';'s

o

400 600 1000

-40

o

40

80

120

160

T J. JUNCTION TEMPERATURE lOCI

MAXIMUM SAFE OPERATING AREA

TYPICAL NORMALIZED RDSIONI AND VGSITHI VS. TEMP.

20S

IRF720,721
D84CQ2,Q1

~D~~

3 AMPERES
400, 350 VOLTS
RDS(ON) =1.8 n

FIELD EFFECT POWER TRANSISTOR

This series of N-Channel Enhancement-mode Power
MOSFETs utilizes GE's advanced Power DMOS technology
to achieve low on-resistance with excellent device ruggedness and reliability.

N-CHANNEL

This design has been optimized to give superior performance
in most switching applications including: switching power
supplies, inverters, converters and solenoid/relay drivers.
Also, the extended safe operating area with good linear
transfer characteristics makes it well suited for many linear
applications such as audio amplifiers and servo motors.

:~~g\!·~;\rt
.05511.391
.
1
.04811.221

.-- .

.26516.731
.24516.221

Features

/

• Polysilicon gate - Improved stability and reliability

:~:~I~:~~:DIA.

• No secondary breakdown - Excellent ruggedness

+

• Ultra-fast switching - Independent of temperature
TERM.l

• Voltage controlled - High transconductance

Gate-Source Voltage
Total Power Dissipation @TC
Derate Above 25° C
Operating and Storage
Junction Temperature Range

=25°C

/

.32518.251

--:I591

POINT

.500112.7IMIN.

.05511.391
.04511.141

.1~.10512.671

.02710.69)
.05511.391
,I
.04511.141---1

RATING
Drain-Source Voltage
Drain-Gate Voltage, RGS =1Mn
Continuous Drain Current @ T C = 25° C
@TC =100°C
Pulsed Drain Current(1)

.35519.021

TERM.3

.0331~.B41

• Excellent thermal stability - Ease of paralleling

maximum ratings (T C =25° C)

CASE
TEMPERATURE
REFERENCE

.~
~i~1
-T"'"'
·1

.ffj.!lII~n--,

TERM.2

• Low input capacitance - Reduced drive requirement

•

,.'..---+--I---~t~l-"'"
T

.10712.721
.08712.211

~"'" ":o95i2.4ii

1--'

I+-

.2/015.331
.19014.821

.02110.531
.01510.38)

(unless otherwise specified)
IRF720/D84CQ2
400
400
3
2
12
±20
40
0.32

IRF721/D84CQ1
350
350
3
2
12
±20
40
0.32

UNITS
Volts
Volts
A
A
A
Volts
Watts
WloC

TJ, TSTG

-55 to 150

-55 to 150

°C

R8JC
ReJA

3.12
80

3.12
80

°C/W
°C/W

TL

260

260

°C

SYMBOL
Voss
VOGR
10
10M

VGS
Po

thermal characteristics
Thermal Resistance, Junction to Case
Thermal Resistance, Junction to Ambient
Maximum Lead Temperature for Soldering
Purposes: W' from Case for 5 Seconds

(1) Repetitive Rating: Pulse width limited by max. junction temperature.

209

electrical characteristics (T c

I

=25

0

C)

(unless otherwise specified)

CHARACTERISTIC

I SYMBOL I

MIN

TYP

MAX

UNIT

BVDSS

400
350

-

-

Volts

-

-

250
1000

/1A

IGSS

-

-

±500

nA

VGS(TH)

2.0

-

4.0

Volts

10(ON)

3.0

-

-

A

ROS(ON)

-

1.4

1.8

Ohms

gfs

0.9

1.S

-

mhos

Ciss
Coss
Crss

-

385
70
12

SOO
200
40

pF
pF
pF

td(on)
tr

-

td(off)
tf

-

-

15
10
25
15

-

ns
ns
ns
ns

-

3
12

A
A

1,0

1.S

Volts

280
2.0

-

ns
I1C

off characteristics
Drain-Source Breakdown Voltage
IRF720/D84CQ2
IRF721/D84CQ1
(VGS = OV, 10 = 25OI1A)
Zero Gate Voltage Drain Current
(VOS = Max Rating, VGS = OV, Tc = 25°C)
(VOS = Max Rating, x 0.8, VGS = OV, Tc = 125°C)
Gate-Source Leakage Current
(VGS = ±20V)

loSS

on characteristics*
Gate Threshold Voltage
\ (VOS = VGS, 10 = 250 p.A)
On~State Drain Current
(VGS = 10V, VOS = 10V)
Static Drain-Source On-State Resistance
(VGS = 10V, 10 = 1.5A)
Forward Transconductance
(VOS = 10V, 10 = 1.5A)

Tc = 25°C

dynamic characteristics
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance

VGS = 10V
VOS = 25V
f = 1 MHz

-

switching characteristics*
Turn-on Delay Time
Rise Time
Turn-off Delay Time
Fall Time

VOS = 175V
10 = 1.5A, VGS = 15V
RGcN = 50.0, RGS = 12.5.0
(RGS (cQUIV.)= 10.0)

-

source-drain diode ratings and characteristics*
Continuous Source Current
Pulsed Source Current
Diode Forward Voltage
(Tc = 25°C, VGS = OV, Is = 3A)
Reverse Recovery Time
(Is= 3A, dls/dt = 100AII1sec, Tc = 125°C)

-

IS
ISM
VSO

-

trr
QRR

-

·Pulse Test: Pulse width :S 300 liS, duty cycle :S 2%
100

2.4

80
60
40

2.2

I
I
I
I
I
I
CONDITIONS:
ROS(ON) CONDITIONS: 10 =1.5 A. Vas =10V
VaS(TH) CONDITIONS: 10 250~A. VOS V a s - ROSIONI

_

=

2.0 -

l1!

20

a:

il:!

~
ffi

a:

!§

...2
<1

is

10

:

0.4

~

. r--

"0.2
0.1

./

\

2
1.0

1

,

/
/~
..........

1\

4

0.8
C 0.6

-

.

./\
PU~SE

f

......

I
4

~

1.6

!il

1.4

a:

.......

.........

~~

SINGLE
Tc =260 C

1.8

:;

~

f- OPERATION IN THIS AREA
f-MAY BE LIMITED BY ROSIONI

o
~

.......

..........

r-.

10~~-

" '" ~
I

100~s-

;

I

~

~~

6 B 10
20
40 60 SO 100
200
Vos. DRAIN-SOURCE VOLTAGE IVOLTS)

1.2

'"

1.0

IRF7211
o84CQ1

2

IRF7201

a:

.

..:;; OB

o

~ 0.6

~t

0.4

=

V

-

-"

/

.I /

/

V
/'

r--- r-,......

V

V

./

r--- r-

-.::~ ft-- -

0.2

10m.
100':"s

~

~

I,

o

400 600 1000

-40

40

80

120

160

T J • JUNCTION TEMPERATURE I'C)

MAXIMUM SAFE OPERATING AREA

TYPICAL NORMALIZED RDSIONI AND VGSITHI VS. TEMP.

210

~D~CS~

IRF722,723
2.5 AMPERES
400, 350 VOLTS
ROS(ON) = 2.5 n

FIELD EFFECT POWER TRANSISTOR

This series of N-Channel Enhancement-mode Power
MOSFETs utilizes GE's advanced Power DMOS technology
to achieve low on-resistance with excellent device ruggedness and reliability.

N-CHANNEL

This design has been optimized to give superior performance
in most switching applications including: switching power
supplies, inverters, converters and solenoid/relay drivers.
Also, the extended safe operating area with good linear
transfer characteristics makes it well suited for many linear
applications such as audio amplifiers and servo motors.

::;g\!'~~\ft
.05511,39)
,
1
,04611.22)

...--.

,26516,73)
,24516,221

Features
It

• No secondary breakdown -

.35519,02)
,32516,25)

~

Excellent ruggedness

130133)
~,

Independent of temperature
TERM,l

e Voltage controlled -

High transconductance

• Low input capacitance -

;..t"I~~----,

,0331~,64)

,02710,69)

Gate-Source Voltage
Total Power Dissipation @Tc
Derate Above 25° C
Operating and Storage
Junction Temperature Range

= 25°C
=100°C

=25°C

,00610,15)
,001(0,025)

,500112,7)MIN,

al hr
,10512,67)
~ •• 09512,411

,065 1.39
.1
,0451,14 -..,

RATING
Drain-Source Voltage
Drain-Gate Voltage, RGS =1Mn
Continuous Drain Current @ Tc
@Tc
Pulsed Drain Current(l)

~59)

TERM,3

Ease of paralleling

maximum ratings (TC = 25° C)

~

TERM,2

Reduced drive requirement

• Excellent thermal stability -

CASE
TEMPE RATURE
REFERENCE
OINT

Polysilicon gate - Improved stability and reliability

• Ultra-fast switching -

•

1---+--I-------l,1-- i--..,

1--.
I+-

.10712,72)
,06712,21)

,21016,33)
,19014,62)

(unless otherwise specified)
SYMBOL
Voss
VOGR
10
10M
VGS
Po

IRF722
400
400
2.5
1.5
10
±20
40
0.32

IRF723
350
350
2.5
1.5
10
±20
40
0.32

UNITS
Volts
Volts
A
A
A
Volts
Watts
W/oC

TJ, TSTG

-55 to 150

-55 to 150

°C

ROJC
ROJA

3.12
80

3.12
80

°C/W
°C/W

TL

260

260

°C

thermal characteristics
Thermal Resistance, Junction to Case
Thermal Resistance, Junction to Ambient
Maximum Lead Temperature for Soldering
Purposes: Va" from Case for 5 Seconds

(1) Repetitive Rating: Pulse width limited by max. junction temperature.

211

= 25° C)

electrical characteristics (Tc

I

(unless otherwise specified)

CHARACTERISTIC

I SYMBOL I

MIN

TYP

MAX

UNIT

BVDSS

400
350

-

-

Volts

-

-

-

250
1000

jlA

-

-

±500

nA

VGS(TH)

2.0

-

4.0

Volts

10(ON)

2.5

-

-

A

-

2.0

2.5

Ohms

9fs

0.9

1.6

-

mhos

-

385

600

pF

-

70

200

pF

-

12

40

pF

. off characteristics
IRF722
IRF723

Drain-Source Breakdown Voltage
(VGS =OV, 10 =250 JJA)
Zero Gate Voltage Drain Current
(VOS =Max Rating, VGS =OV, TC =25°C)
(VOS =Max Rating, x 0.8, VGS =OV, Tc =125°C)

losS

Gate-Source Leakage Current
(VGS =±20V)

IGSS

-

-

on characteristics*
Gate Threshold Voltage
(VOS =VGS, 10 =250 IJA)

Tc

=25°C

On-State Drain Current
(VGS =10V, VOS =10V)
Static Drain-Source On-State Resistance
(VGS =10V, 10 =1.5A)
Forward Transconductance
(VOS = 10V, 10 =1.5A)

ROS(ON)

dynamic characteristics
Input Capacitance

VGS = 10V

Ciss

Output Capacitance

VOS = 25V
f = 1 MHz

Coss
C rss

Reverse Transfer Capacitance

switching characteristics*
=175V

Turn-on Delay Time

VOS

Rise Time

10 =1.5A, VGS

Turn-off Delay Time

RGEN = 500, RGS = 12.50

-

15

-

ns

-

10

-

ns

25

-

ns

-

2.5

A

ISM

-

10

A

VSO

-

0.9

1.5

Volts

trr

-

280
2.0

-

td(on)
tr

=15V

id(Off)

tf
=100)
source-drain diode ratings and characteristics*
Fall Time

(RGS (EQUIV.)

Continuous Source Current

Is

Pulsed Source Current
Diode Forward Voltage
(Tc = 25°C, VGS =OV, Is

=2.5A)

Reverse Recovery Time
(Is = 3.0A, dls/dt =100Aljlsec, Tc = 125°C)

ORR

15

ns

ns
J.lC

'Pulse Test: Pulse Width :s; 300 f../S, duty cycle :s; 2%
2.4

100
80
60
40

fa

I
I
I
CONDITIONS:
ROS(ON) CONDITIONS: 10 = 1.5 A. VGS = 10V
2.0 I - - VGS(TH) CONDITIONS: 10 = 250,.1\, VOS = VGS -

2.2 c - -

~

...z
w

~

,

:
4
2

:;( 1.0
0.8

" 0.6

-

0.4

T

0.2 0.1

I

......

,/

~
./

-.....;:

I..........

~

I'- OPERATION IN THIS AREA

I- MAY 8E LIMITED BY ROSIO'NJ

PU~SE

SINGLE
T =2S·C

f

......

......

~~

Y

z

IS

1.8

V

::i

10

a:

!5u

ROSIONJ

Q

20

a:
~

/
I,lL

I
4

............

............

.....

"

~
...........

~
a:

.....

10.,.-

"

%
~

I

1.6

1.4

r--- r---

1.2

" 1.0
>
Q

1001'

Z

-:.. 0.8

z

o

1m'
.-IRF723

l~ ~

~

a:

~Ilt
10m?
lOOms

~

6 8 10
20
40 60 80 100
200
Vos. DRAIN-SOURCE VOL TAGE (VOLTS)

~

0.6
0.4

-

/

r---

/'

/

V
/'
.",..- i-""

r-- r--

---

~GSITHJ

-

0.2

o

400 600 1000

-40

o

40

80

120

160

T J • JUNCTION TEMPERATURE ('C)

MAXIMUM SAFE OPERATING AREA

TYPICAL NORMALIZED RDstONI AND VGSITHI VS. TEMP.

212

IRF730,731
D84DQ2,Q1

~D~[¥~

5.5 AMPERES
400, 350 VOLTS
RDS(ON) = 1.0 n

FIELD EFFECT POWER TRANSISTOR

This series of N-Channel Enhancement-mode Power
MOSFETs utilizes GE's advanced Power DMOS technology
to achieve low on-resistance with excellent device ruggedness and reliability.

N-CHANNEL

This design has been optimized to give superior performance
in most switching applications including: switching power
supplies, inverters, converters and solenoid/relay drivers.
Also, the extended safe operating area with good linear
transfer characteristics makes it well suited for many linear
applications such as audio amplifiers and servo motors.

CASE STYLE TO-220AB
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)
404(1026) .116(2.95)
1-0-'.380(9.65) .j.ll0(2.79)

I

I I
I----I.--j-L.

--

Features
/

• Polysilicon gate - Improved stability and reliability

f

+

TERM.l

High transconductance

CASE
TEMPERATURE
REFERENCE

.355(9.02)

/

.325(8.25)

--:I59)

~
I

4;'~1I1\4n---'

.027(0.69)

POINT

~15)

.001(0.0251

.500(12.7)MIN.

.lll~.I05(2.67)

.055(1.39)-1
.045(1.14)

Gate-Source Voltage
Total Power Dissipation @ Tc = 25°C
Derate Above 25° C
Operating and Storage
Junction Temperature Range

_

TERM.3

.033(~.84)

• Excellent thermal stability - Ease of paralleling

RATING
Drain-Source Voltage
Drain-Gate Voltage, RGS = 1Mn
Continuous Drain Current @Tc = 25°C
@Tc = 100°C
Pulsed Drain Current(1)

_

TERM.2

• Low input capacitance - Reduced drive requirement

maximum ratings (TC =25° C)

.265(6,731
.245(6.22)

~.3)

• Ultra-fast switching - Independent of temperature
o Voltage controlled -

--j

--.----- -

I--+--+-----Jtl-T

:::~:~:~::DIA.

• No secondary breakdown - Excellent ruggedness

t

'190(4'83)ri .055(1.39)
.170(4.32)
.048(1.22)

.10712.72)
.087(2.21)

~ •.095(2.41)

1---'
I+-

.210(5.33)
.190(4.82)

.021(0.53)
.015(0.38)

(unless otherwise specified)
IRF730/D84DQ2
400
'400
5.5
3.5
22
±20
75
0.6

IRF731/D84DQ1
350
350
5.5
3.5
22
±20
75
Q.6

UNITS
Volts
Volts
A
A
A
Volts
Watts
W/oC

TJ, TSTG

-55 to 150

-55 to 150

°C

ROJC
ROJA

1.67
80

1.67
80

°CIW
°CIW

TL

260

260

°C

SYMBOL
Voss
VOGR
10
10M

VGS
Po

thermal characteristics
Thermal Resistance, Junction to Case
Thermal Resistance, Junction to Ambient
Maximum Lead Temperature for Soldering
Purposes: W' from Case for 5 Seconds

(1) Repetitive Rating: Pulse width limited by max. junction temperature.

213

electrical characteristics (T c= 25 0 C)

I

(unless otherwise specified)

CHARACTERISTIC

I SYMBOL I

MIN

TYP

MAX

UNIT

BVDSS

400
350

-

-

Volts

-

-

250
1000

JlA

·GSS

-

-

±500

nA

VGS(TH)

2.0

-

4.0

Volts

10(ON)

5.5

-

-

A

ROS(ON)

-

O.S

1.0

Ohms

9fs

2.1

2.5

-

mhos

Ciss

-

650

SOO

pF

Coss
C rss

-

100

300

pF

15

SO

pF

td(on)

-

off characteristics
Drain-Source Breakdown Voltage
(VGS = OV, 10 = 250 JlA)

IRF730/DS4DQ2
IRF731/DS4DQ1

Zero Gate Voltage Drain Current
(VOS = Max Rating, VGS = OV, Tc = 25°C)
(VOS = Max Rating, x O.S, VGS = OV, TC = 125°C)

loss

Gate-Source Leakage Current
(VGS = ±20V)

on characteristics*
Tc = 25°C

Gate Threshold Voltage
(VOS = VGS, 10 = 250 p.A)
On-State Drain Current
(VGS = 10V, VOS = 10V)
Static Drain-Source On-State Resistance
(VGS = 10V, 10 = 3A)
Forward Transconductance
(VOS = 10V, 10 = 3A)

dynamic characteristics
Input Capacitance

VGS = OV

Output Capacitance

VOS = 25V

Reverse Transfer Capacitance

f = 1 MHz

switching characteristics*
Turn-on Delay Time

VOS = 175V

Rise Time

10 = 3A, VGS = 15V

Turn-off Delay Time

RGEN = 500, RGS = 12.50

Fall Time

(RGS (EQUIV.) = 100)

tr
td(off)
tf

15

-

ns

20

-

ns

30

ns

20

-

-

ns

source-drain diode ratings and characteristics*
5.5

A

-

22

A

VSO

-

1.0

1.6

Volts

trr
QRR

-

360
4.0

-

ns
JlC

Continuous Source Current

IS

Pulsed Source Current

ISM

Diode Forward Voltage
(Tc = 25°C, VGS = OV, Is = 5.5A)
Reverse Recovery Time
(IS = 5.5A, dls/dt = 100AIJlsec, Tc = 125°C)
·Pulse Test: Pulse width::;; 300 p.s, duty cycle::;; 2%

2.4

100
80
60

I

2.2

40

r-....

10

l :
~

4

)('

II:

g;

";;:Z

2

:sc

1.0
0.8
0.6

-

0.4

I

I
./

Q

20

II:

w

I CONJlll0N!:

ROS(ON) CONDITIONS: 10 =·3.0A. VGS = 10V
VGS(TH) CONDITIONS: 10 = 250~A. VDS = VGS

2.0

ffi

I

L/'

A ",

'I'

........
....... I'-..

l'

::;
~

......... r-..,

,
,

IRF731/D84DQ~

lOaf'

~

l~S

>

~

Z

1

4

6

8 10

20

40

1.6

60 80100

200

VRDsaNI

V

1.4
1.2

- -- -"-

1.0
0.8

~ 0.6 [ -

..-V

./

,

..,/

V

--r--- ~
Vo ITHI-

a: 0.4

DC
+:- l°~f

0.2

.IRF730ID84DQ2':'"

0.1

/

Q

«
~

10ms

,"-'

SINGLE PULSE
I Tc=2S"C I

~

laps

~

..............
I' ""'"
.......... !'-.

I I

loB

a:

I~ ........ r-....
OPERATION IN THIS AREA
MAY BE LIMITED BY RDSIONI I"- ~

0.2

~

~

, /.

a
400 600 1000

V DS ' DRAIN-SOURCE VOLTAGE (VOL 1'51

-40

80
40
TJ • JUNCTION TEMPERATURE I'CI

120

160

TYPICAL NORMALIZED Roslo~1 AND VGSITHI VS. TEMP.

MAXIMUM SAFE OPERATING AREA

214

~ffi1D~[P~

IRF732,733
4.5 AMPERES
400, 350 VOLTS
ROS(ON) = 1.5 0

FIELD EFFECT POWER TRANSISTOR

This series of N-Channel Enhancement-mode Power
MOSFETs utilizes GE's advanced Power DMOS technology
to achieve low on-resistance with excellent device ruggedness and reliability.

N-CHANNEL

This design has been optimized to give superior performance
in most switching applications including: switching power
supplies, inverters, converters and solenoid/relay drivers.
Also, the extended safe operating area with good linear
transfer charac~ristics makes it well suited for many linear
applications such as audio amplifiers and servo motors.

:;~~\!·~;\rt
.055(1.391
•
I
.048(1.221

.--

.265(6.731
.245(6.221

Features
/

:~~;\~:~;:-,
.220(5.59)

~

~.3)
TERM.l

• Voltage controlled - High transconductance

.{f;'~IIIIooiH--..,

TERM.2

~51
.001(0.0251

.500(12.7)MIN.

.0~511.391

.0 5(1.141

• Low input capacitance - Reduced drive requirement

TERM.3

.033(~

• Excellent thermal stability - Ease of paralleling

Ilhr.

105(2.671

.0271~~ ".095(2.411
.05511.391----1
.045(1.141

RATING
Drain-Source Voltage
Drain-Gate Voltage, RGS =1MO
Continuous Drain Current@Tc = 25°C
@Tc =100°C
Pulsed Drain Current(l)
Gate-Source Voltage
Total Power Dissipation @Tc =25°C
Derate Above 25° C
Operating and Storage
Junction Temperature Range

CASE

/ ' " POINT

+

68
'.114
451((33·. 58)I DlA.

• Ultra-fast switching - Independent of temperature

maximum ratings (TC = 25° C)

•

.L--+--I-----ltr-;-.,I
TEMPERATURE
r
REFERENCE

• Polysilicon gate - Improved stability and reliability
• No secondary breakdown - Excellent ruggedness

.

1:=

.10712.721
.087(2.21)

.2105.33
.1 0(4.821

(unless otherwise specified)
IRF732
400
400
4.5
3.0
18
±20
75
0.6

IRF733
350
350
4.5
3.0
18
±20
75
0.6

UNITS
Volts
Volts
A
A
A
Volts
Watts

TJ, TSTG

-55 to 150

-55 to 150

°C

ROJC
ROJA

1.67
80

1.67
80

°CIW
°CIW

TL

260

260

°C

SYMBOL
Voss
VOGR
10
10M

VGS
Po

W/oC

thermal characteristics
Thermal Resistance, Junction to Case
Thermal Resistance, Junction to Ambient
Maximum Lead Temperature for Soldering
Purposes: Va" from Case for 5 Seconds
(1)

..
Repetitive Rating: Pulse width limited by max. junction temperature.

215

electrical characteristics (T c = 25° C)

I

(~nless otherwise specified)

CHARACTERISTIC

I SYMBOL I

MIN

TYP

BVDSS

400
350

-

-

-

250
1000

J1A

IGSS

-

-

±500

nA

VGS(TH)

2.0

-

4.0

Volts

10(ON)

4.5

-

-

A

ROS(ON)

-

1.2

1.5

Ohms

gfs

2.1

2.5

-

mhos

Ciss

-

650

800

pF

100

300

pF

-

15

80

pF

15

ns

20

-

MAX

UNIT

off characteristics
Drain-Source Breakdown Voltage
(VGS = OV, 10 = 250 J1A)

IRF732
IRF733

Zero Gate Voltage Drain Current
(VOS::;: Max Rating, VGS = OV, TC = 25°C)
(VOS = Max Rating, x 0.8, VGS = OV, TC = 125°C)

loss

Gate-Source Leakage Current
(VGS= ±20V)

-

-

Volts

on characteristics*
Gate Threshold Voltage
(VOS = VGS, 10 = 250 p,A)

Tc = 25°C

On-State Drain Current
(VGS = 10V, VOS = 10V)
Static Drain-Source On-State Resistance
(VGS = 10V, 10 = 3.OA)
Forward Transconductance
(VOS = 10V, 10 = 3.OA)

dynamic characteristics
Input Capacitance

VGS = OV

Output Capacitance

VOS = 25V

Reverse Transfer Capacitance

f = 1 MHz

Coss
C rss

switching characteristics*
Turn-on Delay Time

VOS = 175V

·RiseTime

10 = 3A, VGS = 15V

-

td(on)
tr

Turn-off Delay Time

RGEN = 500, RGS = 12.50

Fall Time

(RGS (EQUIV.) = 100)

~(off)

tf

20
30

ns
ns
ns

source-drain diode ratings and characteristics*
4.5

A

ISM

-

-

Pulsed Source Current

-

18

A

Diode Forward Voltage
(Tc = 25°C, VGS = OV, Is = 4.5A)

VSO

-

0.9

1.5

Volts

trr

-

360
4.0

-

Continuous Source Current

IS

Reverse Recovery Time
(Is = 5.5A, dls/dt = 100AIJ1sec, Tc = 125°C)

ORR

ns
J1C

'Pulse Test: Pulse width :5 300 Jls, duty cycle :5 2%
2.4

100
80
60
40

I

2.2

ffi

20

'x "-

a:
~

10

~ ~

't

"-

I-

"
w

a:

4

~

2

";;:

1.0

u

2i o.

_" o. ~r'

\

1-. OPERATION

"~i'-i'-. '" '"

IN THIS AREA

-MAY BE LlIMI~E? BY ROSIONI

0.4

SINGLE PULSE
Tc =25OC

o. 2

'"

'"

"-

"-

l°i'
f'.

4

1.6

~

1~'

6 8 10
20
40 60 80 100
200
Vos. DRAIN-SOURCE VOLTAGE {VOLTSI

1.4

~

1.2

/.

V

>'"

1.0

"./

"Z

~ 0.6 1 c
a:
0.4

DC

I

...... VROSIONI

C

'" l°~f

I

L/

"

0.4

/

- ---

r---

- --

V

. . .V

",.

...........

,.... .........-

r---f-

--

~GStTH)

-

-

0.2

10m~1.
lOOms

o

400 600 1000

-40

o

40

SO

120

160

TJ • JUNCTION TEMPERATURE ('C)

MAXIMUM SAFE OPERATING AREA

TYPICAL NORMALIZED RDSIONI AND VGSITHI VS. TEMP.

224

IRF830,831
D84DR2,R1

~D~~~LF

4.5 AMPERES
500, 450 VOLTS
~DS(ON) = 1.5.0.

FIELD EFFECT POWER TRANSISTOR

This series of N-Channel Enhancement-mode Power
MOSFETs utilizes GE's advanced Power DMOS technology
to achieve low on-resistance with excellent device ruggedness and reliability.

N-CHANNEL

This design has been optimized to give superior performance
in most switching applications including: switching power
supplies, inverters, converters and solenoid/relay drivers.
Also, the extended safe operating area with good linear
transfer characteristics makes it well suited for many linear
applications such as audio amplifiers and servo motors.

CASE STYLE TO-220AB
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

:~~~\!:~;\rt
.05511.39)
)
.048(1.22)

-.--- .

.26516.73)
.24516.22)

Features

• Polysilicon gate - Improved stability and reliability

/

+

'.11 :~1133..6588» 0 IA.

.35519.02);/' POINT

~
130(33)

~.

• Ultra-fast switching - Independent of temperature
TERM.l

.500112.7)MIN.

TERM.3

.03:i1~.84)

• Excellent thermal stability - Ease .of paralleling

.02710.69)

.10712.72)
.08712.21)

.11hJ--.l0512.67)
~ " .. 09512.411

.055(1.39)
.1
.04511. 14)--"

RATING
Drain-Source Voltage
Drain-Gate Voltage, RGS = 1M.o.
Continuous Drain Current @ TC = 25°C
@TC = 100°C
Pulsed Drain Current (1 )
Gate-Source Voltage
Total Power Dissipation @ TC =25°C
Derate Above 25° C
Operating and Storage
Junction Temperature Range

~5)
.001(0.025)

TERM.2

• Low input capacitance - Reduced drive requirement

maximum ratings (T C =25° C)

CASE
TEMPERATURE
REFERENCE

.32518.25)-----'
.22015.59)

• No secondary breakdown - Excellent ruggedness
• Voltage controlled - High transconductance

_

1--+---I-----tt-lr---l..,1
T

1+--'
J---

.21015.33)
.19014.82)

.021(0.53)
.01510.381

(unless otherwise specified)
IRF830/D84DR2
500
500
4.5
3.0
18
±20
75
0.6

IRF831/D84DR1
450
450
4.5
3.0
18
±20
75
0.6

UNITS
Volts
Volts
A
A
A
Volts
Watts
W/oC

TJ, TSTG

-55 to 150

-55 to 150

°C

R6JC
R6JA

1.67
80

1.67
80

°C/W
°C/W

TL

260

260

°C

SYMBOL
Voss
VOGR
10
10M

VGS
Po

thermal characteristics
Thermal Resistance, Junction to Case
Thermal Resistance, Junction to Ambient
Maximum Lead Temperature for Soldering
Purposes: VB" from Case for 5 Seconds

(1) Repetitive Rating: Pulse width limited by max. junction temperature.

225

electrical characteristics- (Tc = 25 0 C)

I

(unless otherwise specified)

CHARACTERISTIC

.

I SYMBOL I

MIN

TYP

MAX

UNIT.

BVDSS

500
450

-

-

Volts

-

250
1000

pA

IGSS

-

±500

nA

VGS(TH)

2.0

-

4.0

Volts

10(ON)

4.5

-

-

A

ROS(ON)

-

1.3

1.5

Ohms

9fs

1.75

2.2

-

mhos

-

650

800

pF

-

90

200

pF

-

15

60

pF

-

15

ns

25

-

-

4.5

A

off characteristics
Drain-Source Breakdown Voltage
. (VGS OV, 10 250 pA)

=

I RF830lD84DR2
IRF831/D84DR1

=

Zero Gate Voltage Drain Current
(VOS Max Rating, VGS OV, TC 25°C)
(VOS Max Rating, x 0.8, VGS OV, Tc 125°C)

=
=

=

=

=

loss

=

Gate-Source Leakage Current
(VGS ±20V)

=

on characteristics*
Gate Threshold Voltage
(VOS VGS, 10 250 p.A)

=

Tc

=

=25°C

On-State Drain Current
(VGS 10V, VOS 10V)

=

=

Static Drain-Source On-State Resistance
(VGS 10V, 10 2.5A)

=

=

Forward Transconductance
(VOS 10V, 10 2.5A)

=
=
dynamic characteristics

=OV
Ciss
VOS =25V
. Coss
Reverse Transfer Capacitance
f =1 MHz
C rss
switching characteristics*
Turn-on Delay Time
VOS =225V
td(on)
Rise Time
10 =2.5A, VGS =15V
tr
Turn-off Delay Time
RGEN =500, RGS =12.50
td(off)
Fall Time
tf
(RGS (EQUIV.) =100)
source-drain diode ratings and characteristics*
Input ,Capacitance

VGS

Output Capacitance

Continuous Source Current

=

=

=4.5A)

Reverse Recovery Time
(Is 4.5A, dls/dt 100Alpsec, Tc

=

=

=125°C)

ns
ns
ns

-

18

A

VSO

1.0

1.4

Volts

trr
ORR

-

460
4.5

-

pC

ISM

Diode Forward Voltage
(Tc 25°C, VGS OV, Is

40

-

Is

Pulsed Source Current

10

ns

·Pulse Test: Pulse Width :5 300 ps, duty cycle :5 2%
2.4

100
SO
60
40

iii
w
a:

20

~

10

S
...z
w

6

::;;

~ .'"

" ,

B

4

\

a:

g;
u

z
't!J

J,

1.0

c

11

:l

0.8

Z

~ 0,6

lams
1

/'

~ 1.2

pO"!,

1

c
a: 0.4

ojs

/

/
/'

./ VROSIONI

N

'-

OPERATION IN THIS AREA
MAY BE LIMITED BY ROSIONI

O.B

C 0.6
- 0.4

,

I
I
1
1
CONDITIONS:
ROS(ON) CONDITIONS: 10 2.5 A. VGS 10V
VGS(TH) CONDITIONS: 10 250pA. VOS VGS
I

r-2.0 r-2.2

-

-

V

./ -""

"-

.. /

.......V

- --

/"

-::r;- 1-0.

0.2

IRFS3l/0840R! ~
c
IRFS30/084DR2-l
4
6 S 10
20
40 60 80100
200
400 600 1000
Vas' DRAIN -SOURCE VOL TAGE (VOL TSI

-40

0

40

80

120

160

T J • JUNCTION TEMPERATURE ('CI

TYPICAL NORMALIZED ROSIONI AND VGSITHI VS. TEMP.

MAXIMUM SAFE OPERATING AREA

226

1-

~D~~~U

IRF832,833
4.0 AMPERES
500, 450 VOLTS
ROS(ON) = 2.0 .0.

FIELD EFFECT POWER TRANSISTOR

This series of N~Channel Enhancement-mode Power
MOSFETs utilizes GE's advanced Power DMOS technology
to achieve low on-resistance with excellent device ruggedness and reliability.

N-CHANNEL

This design has been optimized to give superior performance
in most switching applications including: switching power
supplies, inverters, converters and solenoid/relay drivers.
Also, the extended safe operating area with good linear
transfer characteristics makes it well suited for many linear
applications such as audio amplifiers and servo motors.

DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

CASE STYLE TO-220AB
"9014'B3)~
.170(4.32) '-1
:g~~g :~~I

.----

.266(6.731
.245(6.22)

Features
1:

• Polysilicon gate -Improved stability and reliability

/

--+--I-----lff--

.--

+

: ::~:~:~~:DIA.

• No secondary breakdown - Excellent ruggedness

TERM.l

)

.f1"":.I'III~:-----'

~

.220(5.59)

--i

.006(0.15) .
.001(0.0251

.500( 12. 7)M I N.

TERM.3

.0331~.B41

• Excellent thermal stability - Ease of paralleling

.027(0.691

.1~.'05(2.67)

.05511.39)
_I
.045(1.14)--'

RATING
Drain-Source Voltage
Drain-Gate Voltage, RGS = 1M.o.
Continuous Drain Current @Tc = 25°C
@Tc= 100°C
Pulsed Drain Current(1,
Gate-Source Voltage
Total Power Dissipation @ Tc = 25°C
Derate Above 25° C
Operating and Storage
Junction Temperature Range

CASE
TEMPERATURE
REFERENCE

TERM.2

• Low input capacitance - Reduced drive requirement

maximum ratings (T C = 25° C)

$"1

~3.3

• Voltage controlled - High transconductance

.

OINT

.355(9.021

.325(B.25)

• Ultra-fast switching - Independent of temperature

_

.107(2.721
.087(2.211

~ ".096(2.41)

1--"
I--

.210(5.331
.190(4.82)

.021(0.53)
.015(0.381

(unless otherwise specified)
IRF832
500
500
4.0
2.5
16
±20
75
0.6

IRF833
450
450
4.0
2.5
16
±20
75
0.6

UNITS
Volts
Volts
A
A
A
Volts
Watts
W/oC

TJ, TSTG

-55 to 150

-55 to 150

°C

R8JC
R8JA

1.67
80

1.67
80

°CIW
°CIW

h

260

260

°C

SYMBOL
Voss
VOGR
10
10M

VGS
Po

thermal characteristics
Thermal Resistance, Junction to Case
Thermal Resistance, Junction to Ambient
Maximum Lead Temperature for Soldering
. Purposes: W' from Case for 5 Seconds

(1) Repetitive Rating: Pulse width limited by max. junction temperature.

227

electrical characteristics (Tc =25° C)

1

(unless otherwise specified)

CHARACTERISTIC

I SYMBOL I

MIN

BVDSS

I

TYP

MAX

UNIT

500
450

-

-

Volts

-

250
1000

pA

±500

InA

off characteristics
Drain-Source Breakdown Voltage
(VGS = OV, 10 = 250 pA)

IRFS32
IRF833

Zero Gate Voltage Drain Current
(VOS = Max Rating, VGS = OV, Tc = 25°C)
(VOS = Max Rating, x 0.8, VGS = OV, Tc = 125°C)

loss

-

-

IGSS

-

-

VGS(TH)

2.0

-

4.0

Volts

10(ON)

4.0

-

-

A

-

1.5

2.0

Ohms

-

Gate-Source Leakage Current
(VGS = ±20V)

on characteristics*
Gate Threshold Voltage
(VOS = VGS, 10 = 250 ~A)

Tc = 25°C

On-State Drain Current
(VGS = 10V, VOS = 10V)
Static Drain-Source On-State Resistance
(VGS = 10V, 10 = 2.5A)

ROS(ON)

Forward Transconductance
(VOS = 10V, 10 = 2.5A)

gfs

1.75

2.2

-

mhos

Ciss

-

650

800

pF

90

200

pF

15

60

pF

-

15

-

ns

dynamic characteristics
Input Capacitance

VGS = OV

Output Capacitance

Vos = 25V
f = 1 MHz

Reverse Transfer Capacitance

Coss
C rss

switching characteristics*
Turn-on Delay Time

VOS = 225V

td(on)

Rise Time

10 = 2.5A, VGS = 15V

Turn-off Delay Time

RGEN = 500, RGS = 12.50

Fall Time

(RGS (EQUIV.) = 100)

tr
td(off)
tf

10
40
25

ns
ns
ns

source-drain diode ratings and characteristics*
Pulsed Source Current

ISM

-

Diode Forward Voltage
(Tc = 25°C, VGS = OV, Is = 4.0A)

VSO

-

1.0

1.3

-

460
4.5

-

Continuous Source Current

IS

Reverse Recovery Time
(Is =4.5A, dls/dt =100A/psec, Tc

trr

= 125°C)

-

ORR

-

4.0

A

16

A
Volts
ns
pC

'Pulse Test: Pulse Width $ 300 /JS, duty cycle $ 2%
2.4

lOa
BO
60
40

~

20

0;

~
liE

10

...z

6

:!
w

B

4

.\

0;

gs

u

2

z

:;;:

1.0
O.B

:scO. 6.,.L-

"-

..........

,

...
~

1\

. Y/
.

../

" .......

....

"'-

"

SI~G~;:o~LSE

11

:m~~~

...........

2.0

I--- r-

I

~

6 B 10
20
40 60 80 lOa
200
Vas' DRAIN-SOURCE VOLTAGE IVOL TSI

1.6

liE

~ 1.4

ioo!s

~ 1.2

I,l.

>'"
o

:l:

~

.1'0~S

i'l

I I

0;

--

1.0

,./

O.B

0.6

/

/
./

l.B

laps

.........

r-....
~

C

4

,

"

I--- r-

/ ' VRnSION)

N

"

0.4

O. 1

1'-, .......

""~ ,'""""- ~, ~ "

OPERATION IN THIS AREA
-MAY BE LIMITED BY RnSION)

O. 2

I'....

~

I
I
1
1
I
CONDITIONS:
ROS(ON) CONDITIONS: 10 = 2.5 A, VGS = 10V
VGS(TH) CONDITIONS: 10 = 250"A, VOS = VGS
I

2.2

......... V
1-

0.4

,

/'

V

---/

./'"

-:::r~

~

tOOms

r

0.2

a

400 600 1000

-40

a

40

80

120

160

T J , JUNCTION TEMPERATURE I'CI

MAXIMUM SAFE OPERATING AREA

TYPICAL NORMALIZED RDSIONI AND VGSITHI VS. TEMP.

228

IRF840,841
D84ER2,R1

~D·~~

SAMPERES
500, 450 VOLTS
ROS(ON) = 0.S5 n

FIELD EFFECT POWER TRANSISTOR

This series of N-:Channel Enhancement-mode Power
MOSFETs utilizes GE's advanced Power DMOS technology
to achieve low on-resistance with excellent device ruggedness and reliability.

N-CHANNEL

This design has been optimized to give superior performance
in most switching applications including: switching power
supplies, inverters, converters and solenoid/relay drivers.
Also, the extended safe operating area with good lin'ear
transfer characteristics makes it well suited for many linear
applications such as audio amplifiers and servo motors.

'19014'S3)rt
.17014.32)

-.----j

.26516.73)
.24516.22)

Features

+

/
: ::~g:~::DIA.

• No secondary breakdown - Excellent ruggedness

~

~.3
TERM.l

• Voltage controlled - High transconductance
• Low input capacitance - Reduced drive requirement

.220(5.59)

--.:....i.
.006(0.15) .
.001(0.025)

.500112.7)MIN.

.05511.39)
.04511.14)

.027(0.69)

.107(2.72)
.OS712.21)

.11hr.l05(2.67)
~ •. 09512.41)

.g55!1.39)--!
. 45(1.14)

Gate-Source Voltage
Total Power Dissipation @ Tc = 25°C
Derate Above 25° C
Operating and Storage
Junction Temperature Range

~

TERM.3

.0331~.S4)

• Excellent thermal stability - Ease of paralleling

RATING
Drain-Source Voltage
Drain-Gate Voltage, RGS = 1Mn
Continuous Drain Current @ T C = 25° C
@TC= 100°C
Pulsed Drain Current(l)

)

..jf'...~III,,"H--,

TERM.2

CASE
TEMPERATURE
REFERENCE
OINT

.35519.02)
.325IS.25)

• Ultra-fast switching - Independent of temperature

maximum ratings (T C = 25° C)

•

....-+---i.----fr- i--...,

• Polysilicon gate - Improved stability and reliability

:g~~g :~~\

.

1:=

.21015.33)
.19014.S2)

.021(0.53)
.01510.38)

(unless otherwise specified)
IRF840/084ER2
500
500
8
5
32
±20
125
1.0

IRFS41/0S4ER1
450
450
8
5
32
±20
125
1.0

UNITS
Volts
Volts
A
A
A
Volts
Watts
W/oC

TJ, TSTG

-55 to 150

-55 to 150

°C

ROJC
ROJA

1.00
80

1.00
80

°CIW
°CIW

TL

260

260

°C

SYMBOL
Voss
VOGR
10
10M

VGS
Po

thermal characteristics
Thermal Resistance, Junction to Case
Thermal Resistance, Junction to Ambient
Maximum Lead Temperature for Soldering
Purposes: W' from Case for 5 Seconds

(1) Repetitive Rating: Pulse width limited by max. junction temperature.

229

electrical characteristics (T c = 25° C)

I

(unless otherwise specified)

CHARACTERISTIC

I SYMBOL I

MIN

TYP

MAX

UNIT

BVDSS

500
450

-

-

-

Volts

-

250
1000

IlA

IGSS

-

±500

nA

VGS{TH)

2.0

-

4.0

Volts

10{ON)

B

-

-

A

off characteristics
Drain-Source Breakdown Voltage
(VGS = OV, 10 = 250 IlA)

IRFB40/DB4ER2
IRFB41/DB4ER1

Zero Gate Voltage Drain Current
(VOS =Max Rating, VGS =OV, Tc = 25°C)
(VOS = Max Rating, x 0.8, VGS = OV. TC = 125°C)

loss

Gate-Source Leakage Current
(VGS = ±20V)

on characteristics*
Gate Threshold Voltage
(VOS = VGS, 10 = 250 p,A)

Tc

=25°C

On-State Drain Current
(VGS = 10V, VOS = 10V)
Static Drain-Source On-State Resistance
(VGS = 10V, 10 = 4A)

ROS{ON)

-

0.75

0.85

Ohms

gfs

2.B

3.5

-

mhos

Ciss

-

1400

1600

pF

190

350

pF

28

150

pF

-

20

-

ns

20

-

ns

Forward Transconductance
(VOS = 10V, 10 =4A)

dynamic characteristics
Input Capacitance

VGS = OV

Output Capacitance

VOS = 25V

Reverse Transfer Capacitance

f = 1 MHz

Coss
C rss

switching characteristics*
Turn-on Delay Time

lei (on)

VOS = 225V

Rise Time

10 = 4A, VGS = 15V

Turn-off Delay Time

RGEN

Fall Time

(RGS (EQUIV.) = 100)

tr

=500, RGS =12.50

td{off)
tf

60
30

ns
ns

source-drain diode ratings and characteristics*
Continuous Source Current

Is

Pulsed Source Current

ISM

Diode Forward Voltage
(Tc = 25°C, VGS = OV, Is = BA)

VSO

Reverse Recovery Time
(Is = BA, dls/dt = 100A/llsec, Tc = 125°C)

trr
ORR

-

-

B

A

32

A

0.9

2.0

Volts

-

520
6.4

-

pC

ns

'Pulse Test: Pulse width::; 300 p.s, duty cycle::; 2%
2.4

100
BO
60
40

iii

,

20

II:

~

~
!Z...
II:
II:

::>
u

:
2

<1 1.0

15

v

4

z

A

\

10

v/

~\'

\

O. B r- OPERATION IN THIS AREA
6 r-MAY BE LIMITEO BY ROSIONI
O. 4

o.

2

O. 1

-

PU~SE

SINbLE
Tc=2SoC

r

~

~

1'-,

c

~

'"'-

I'-.

10.,
1 0.,

1

.......

..........

"- , "~I"
, ........

"

I
4

I"..
........

~

1.8

~
a:
~

1.6

:::;

X

..1

~

1m,

"

~

.....

cO.

-

,

~[/

1.4

1.2

~ O.B

z

lym'[_

~

l~O~'

0.6

II:

0.4

DlcT

O. 2

IRF841/D84ER~_

IRF8401D84ER2 ---i
6 8 10
20
40 60 80100
200
V OS ' DRAIN-SOURCE VOLTAGE (VOLTS)

o

400 600 1000

r---

1.0

z

1/

f-

CONDITIONS:
ROS(ON) CONDITIONS: 10 = 4.0 A, VGS = 10V
2.0 ~ VGS(TH) CONDITIONS: 10 = 250.A, VOS = VGS

2.2

-40

-- -

......... .......

./

/

~
ROSIONI

V

V

V

o

V

I'

40

r--

so

r--:::~

120

-

160

T J , JUNCTION TEMPERATURE ('C)

TYPICAL NORMALIZED RDSIONI AND VGSITHI VS. TEMP.

MAXIMUM SAFE OPERATING AREA

230

~D~~LF

IRF842,843
7 AMPERES
500, 450 VOL TS
ROS{ON) = 1.1 n

FIELD EFFECT POWER TRANSISTOR

This series of N-Channel Enhancement-mode Power
MOSFETs utilizes GE's advanced Power DMOS technology
to achieve low on-resistance with excellent device ruggedness and reliability.

N-CHANNEL

This design has been optimized to give superior performance
in most switching applications including: switching power
supplies, inverters, converters and solenoid/relay drivers.
Also, the extended safe operating area with good linear
transfer characteristics makes it well suited for many linear
applications such as audio amplifiers and servo motors.

CASE STYLE TO-220AB
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

r

.404(10.26)
.38019.65)

11

.116(2.95)
2. 79 )

:1;g\::~;\rt
.055(1.39)
.048(1.221
1

.--

.265(6.731
.24516.221

Features

CASE

S

REFERENCE
OINT

.35519.021
.32518.251

~

• No secondary breakdown - Excellent ruggedness

130133)
~.

• Ultra-fast switching - Independent of temperature
TERM.l

• Voltage controlled - High transconductance

TERM.2

• Low input capacitance - Reduced drive requirement

TERM.3

.0331~.841
.02710.691

• Excellent thermal stability - Ease of paralleling

.055(1.391

1f;'~IIII'!i+--,
.I!--'

~591
.00610.151
.00110.025)

'.""1"'' '

.1~.10512.671
.09512.41)

.045(1.141~ ~

RATING
Drain-Source Voltage
Drain-Gate Voltage, RGS = 1Mn
Continuous Drain Current @ Tc = 25°C
@Tc= 100°C
Pulsed Drain Current(l)
Gate-Source Voltage
Total Power Dissipation @ TC = 25°C
Derate Above 25° C
Operating and Storage
Junction Temperature Range

•

.t---+--I---..-."I--..........., TEMPERATURE

• Polysilicon gate - Improved stability and reliability

maximum ratings (TC =25°C)

.

.21015.33)
.19014.82)

.10712.72)
.087(2.21)
.021(0.531
.01510.381

(unless otherwise specified)
SYMBOL
Voss
VOGR

IRF842
500
500

IRF843
450
450

UNITS
Volts
Volts
A
A
A
Volts
Watts

7

7

4
28
±20
125
1.0

4
28
±20
125
1.0

TJ, TSTG

-55 to 150

-55 to 150

°C

R8JC
R8JA

1.00
80

1.00
80

°C/W
°C/W

TL

260

260

°C

10
10M

VGS
Po

W/oC

thermal characteristics
Thermal Resistance, Junction to Case
Thermal Resistance, Junction to Ambient
Maximum Lead Temperature for Soldering
Purposes: Va" from Case for 5 Seconds

(1) Repetitive Rating: Pulse width limited by max. junction temperature.

231

= 25° C) (unless otherwise specified)

electrical characteristics (T c
CHARACTERISTIC

I SYMBOL I

MIN

TYP

MAX

UNIT

BVDSS

500
450

-

-

Volts

off characteristics
Drain-Source Breakdown Voltage
(VGS =OV, 10 =250 pA)

IRF842
IRF843

Zero Gate Voltage Drain Current
(VOS =Max Rating, VGS =OV, Tc =25°C)
(VOS =Max Rating, x 0.8, VGS =OV, Tc =125°C)

loss

-

-

-

-

250
1000

pA

-

-

±500

nA

VGS(TH)

2.0

-

4.0

Volts

10(ON)

7

-

-

A

ROS(ON)

-

1.0

1.1

Ohms

gfs

2.8

3.5

-

mhos

Ciss

-

1400

1600

pF

190

350

pF

28

150

pF

-

20

ns

60

-

30

-

Is

-

-

7

A

ISM

-

-

28

A

VSO

-

0.8

1.9

Volts

trr

-

520
6.4

-

Gate-Source Leakage Current
(VGS =±20V)

IGSS

on characteristics*
Gate Threshold Voltage
(VOS =VGS, 10 =250 p.A)

Tc

=25°C

On-State Drain Current
(VGS = 10V, VOS =10V)
Static Drain-Source On-State Resistance
(VGS =10V, 10 =4A)
Forward Transconductance
(VOS = 10V, 10 =4A)

dynamic characteristics
Input Capacitance

VGS = OV

Output Capacitance

VOS

=25V

Coss
C rss

=1 MHz
switching characteristics*
Reverse Transfer Capacitance

f

'. Turn-on Delay Time

=225V
=4A, VGS =15V

VOS

Rise Time

10

td(on)
tr

=500, RGS =12.50 td(off)
Fall Time
tf
(RGS (EQUIV.) =100)
source-drain diode ratings and characteristics*
Turn-off Delay Time

RGEN

Continuous Source Current
Pulsed Source Current
Diode Forward Voltage
(Tc =25°C, VGS =OV, Is

=7A)

Reverse Recovery Time
(Is =8A, dls/dt =100AIJlsec, Tc

=125°C)

20

ORR

ns
ns
ns

ns

pC

'Pulse Test: Pulse Width :5 300 p.s, duty cycle :5 2%
2.4

100
80
80

2.2

40

" ::x

~ 20
II:

w

i...

I.

10

~

zw

4

§

2

II:

u

//

z

;;: 1.0

15

C

-

"

/

\/
\

'"""

..........

O. 2 ' O. 1

.......

I"-.

"
r.... r'-.

:-.".'"

'ro-

......

PU~SE

SINbLE
T =2S.C

J

J
4

B 10

20

40

~. 1.8

~

~

1

..........

.""
......

1.6

II:

~

%

1~'

1.4

$;

1.2

>'"
a

1.0

z


CJ
2

0.1

.......

f"'-..

"Y

cr:
cr:

<
cr:

,-

,-

\
\

.......

~

"

C

.F

OPERATION IN THIS AREA
MAY BE LIMITED BY RaSIONI
SINGLE PULSE

I

",
.,

I -1-

TA =25°C
.01
0.1

1.0

10.0

2.2

"

..........
.......

2.4

1

.....

1OO~S

,
,
,

c

~

:::;
~
cr:

1ms

~
1Oms

"

- I RFDll0/DB2BL2
IRFDlll/DB2BK2

-

r-.

1.4

"

1.0

~

cr:

I

I

I

I

I

I

CONDITIONS:
ROS(ON) CONDITIONS: 10 = 0.8 A, VGS = 10V
VGS(TH) CONDITIONS: 10 250~A, VDS VGS

=

=

. . . .V
. / .;' RaSIONI

1.6

1.2

<..z

I

1.8

2

1OOms

-

2.0 -

~
~

-

O.B

0.6
0.4

-- - -/'"

./

t-- . /V

~

V

--

r-.:... .

VGSITHI-

0.2

0C
-40

100

Vos. DRAIN-SOURCE VOLTAGE (VOLTS)

40

BO

120

160

T J. JUNCTION TEMPERATURE ('C)

MAXIMUM SAFE OPERATING AREA

TYPICAL NORMALIZED ROSIONI AND VGSITHI VS. TEMP.

234

~D~LS~

IRFD112,113

FIELD EFFECT POWER TRANSISTOR

This series of N-Channel Enhancement-mode Power
MOSFETs utilizes GE's advanced Power DMOS technology
to achieve low on-resistance with excellent device ruggedness and reliability.

N-CHANNEL

This design has been optimized to give superior performance
in most switching applications including: switching power
supplies, inverters, converters and solenoid/relay drivers.
Also, the extended safe operating area with good linear
transfer characteristics makes it well suited for many linear
applications such as audio amplifiers and servo motors.

CASE STYLE 4-PIN DIP
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

Features
• Polysilicon gate -

DRAIN

Improved stability and reliability

• No secondary breakdown • Ultra-fast switching • Voltage controlled -

W-'
A
I

'T

I-- ~51g:)--.I
I MAX. I

(3.04)
0.120

0.15

(3.81)

I-----j;
(o.~ ~

0.040 (1.02)

Reduced drive requirement
Ease of paralleling

0.15
(3.81)

maximum ratings (T A = 25 0 C)

SOURCE
GATE

-L

High transconductance

• Excellent thermal stability -

O
~0.245 (6.22)~

Excellent ruggedness

Independent of temperature

• Low input capacitance -

0.8 AMPERES
100,60 VOLTS
RDS(ON) = 0.8 il

~Ir--

0.300

I

0.022

r(7.62)'i

0.100

1(2.54)1

(unless otherwise specified)
IRFD112
100
100
0.80
0.54
6.4
±20
1.2
9.6

IRFD113
60
60
0.80
0.54
6.4
±20
1.2
9.6

UNITS
Volts
Volts
A
A
A
Volts
Watts
mW/oC

TJ, TSTG

-55 to 150

-55 to 150

°C

Thermal Resistance, Junction to Ambient(l)

R(JJA

105

105

°C/W

Maximum Lead Temperature for Soldering
Purposes: Va" from Case for 5 Seconds

TL

300

300

°C

RATING
Drain-Source Voltage
Drain-Gate Voltage, RGS = 1Mil
Continuous Drain Current @ TA = 25°Cll)
@ TA = 100°C(1)
Pulsed Drain Current l2)
Gate-Source Voltage
Total Power Dissipation @ T A = 25°C
Derate Above 25° C
Operating and Storage
Junction Temperature Range

SYMBOL
Voss
VOGR
10
10M
VGS
Po

thermal characteristics

(1) Oevice mounted to vertical pc board in free air with drain lead soldered to 0.20 in 2 minimum copper run area.
(2) Repetitive Rating: Pulse width limited by max. junction temperature.

235

electrical characteristics (T A = 25° C)

I

(unless otherwise.specified)

.CHARACTERISTIC

I SYMBOL I

MIN

TYP

MAX

UNIT

BVDSS

100
60

-

-

Volts

-

250
1000

pA

-

-

±500

nA

VGS(TH)

2.0

-

4.0

Volts

10(ON)

0.8

-

-

A

ROS(ON)

-

0.60

0.80

Ohms

9fs

0.56

0.75

-

mhos

Ciss

-

145

200

pF

65

100

pF

20

25

pF

-

15

-

ns

off characteristics
Drain-Source. Breakdown Voltage
(VGS =OV, 10 = 250 pA)

IRFD112
IRFD113

Zero Gate Voltage Drain Current
(VOS = Max Rating, VGS =OV, TA = 25°C)
(VOS = Max Rating, x 0.8, VGS =OV, TA = 125°C)

loss

Gate-Source Leakage Current
(VGS =±20V)

IGSS

on characteristics*
Gate Threshold Voltage
(VOS =VGS, 10 =250 J.LA)

TA

=25°C

On-State Drain Current
(VGS = 10V, VOS = 10V)
Static Drain-Source On-State Resistance
(VGS = 10V, 10 =0.8A)
Forward Transconductance
(VOS =10V, 10 =0.8A) .

dynamic characteristics
Input Capacitance

VGS

Output Capacitance

VOS

Reverse Transfer Capacitance

f

=OV
=25V

Coss
C rss

=1 MHz

switching characteristics*
Turn-on Delay Time

VOS

=30V

td(on)

=O.SA, VGS = 15V
=50n, RGS = 12.5n
(RGS (EQUIV.) = 10n)

Rise Time

10

Turn-off Delay Time

RGEN

Fall Time

tr
td(off)
tf

15
30
10

ns
ns
ns

source-drain diode ratings and characteristics*
IS

-

0.8

A

-

-

ISM

6.4

A

VSO

-

0.8

2.0

Volts

trr
ORR

-

90
0.2

-

ns
pC

Continuous Source Current
Pulsed Source Current
Diode Forward Voltage
(TA = 25°C, VGS =OV, Is

=O.SA)

Reverse Recovery Time
(IS = 1.0A, dis/dt = 10QAlps, TA

=125°C)

::s 300 Ils, duty cycle ::s 2%

'Pulse Test: Pulse width
10

2.4

,

13a:
~

~'" "

,

1

~

...z

"

w

a:
a:

"z 0.1
«
a:

","

c
_0

.....

,
......

.......

.........

' .....

I

I

cw

N

.....

::;

~ms

1.4

"

>
c
z

.....

«

lOOms

'-

Z
g
IRFD112
IAFD113

1!l

a:

,/ ,

-

1.2
1.0
O.B
0.6

.....
10.0

V

ROSIONI

.",.,

1 -~

0.4

..........

I

1.0

~

51

10ms

.01
0.1

1.6

%

-'

I.B



x..

251'5

-- -- -I--

..... ".,

_V

V

r---

VGS(TH)-

r--

0.2
DC

-40

100

o

40

80

120

160

T J • JUNCTION TEMPERATURE I'CI

VOS' DRAIN-SOURCE VOLTAGE (VOL TSI

MAXIMUM SAFE OPERATING AREA

TYPICAL NORMALIZED RDSIONI AND VOSITHI VS. TEMP.

236

IRFD120,121
D82CL2,K2

~D~[P~
FIELD EFFECT POWER TRANSISTOR

This series of N-Channel Enhancement-mode Power
MOSFETs utilizes GE's advanced Power DMOS technology
to achieve low on-resistance with excellent device ruggedness and reliability.

1.3 AMPERES
100,60 VOLTS
RDS(ON) = 0.3 n

N-CHANNEL

This design has been optimized to give superior performance
in most switching applications including: switching power
supplies, inverters, converters and solenoid/relay drivers.
Also, the extended safe operating area with good linear
transfer characteristics makes it well suited for many linear
applications such as audio amplifiers and servo motors.

CASE STYLE 4-PIN DIP

DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

Features

DRAIN

• Polysilicon gate - Improved stability and reliability

O
~0.245

• No secondary breakdown - Excellent ruggedness

SOURCE
GATE

1-'
A
(6.2211

I--f5~:I---l
I MAX. I

I

• Ultra-fast switching - Independent of temperature

~

• Voltage controlled - High transconductance

-T
(3.041
0.120

• Low input capacitance - Reduced drive requirement

0.15

(3.8,1

0.040 (1.021

• Excellent thermal stability - Ease of paralleling
0.15

~I

61
0.022(0.5-1

0.300---1

r-~ (7.62)

I---±

o.,oo~~

(2541
.

(3.81)

maximum ratings (TA = 25° C)

(unless otherwise specified)
IRFD120/D82CL2
100
100
1.3
0.85
5.2
±20
1.0
8

IRFD121/D82CK2
60
60
1.3
0.85
5.2
±20
1.0
8

UNITS
Volts
Volts
A
A
A
Volts
Watts
mW/oC

TJ, TSTG

-55 to 150

-55 to 150

°C

Thermal Resistance, Junction to Ambient(1)

R8JA

125

125

°CIW

Maximum Lead Temperature for Soldering
Purposes: 'h" from Case for 5 Seconds

TL

300

300

°C

RATING
Drain-Source Voltage
Drain-Gate Voltage, RGS = 1M!l
Continuous Drain Current @TA = 25°C(1)
@TA= 100°C(1)
Pulsed Drain Current(2)
Gate-Source Voltage
Total Power DiSSipation @ T A = 25°C
Derate Above 25° C
Operating and Storage
Junction Temperature Range

SYMBOL
Voss
VOGR
10
10M

VGS
Po

thermal characteristics

(1) Oevice mounted to vertical pc board in free air with drain lead soldered to 0.20 in 2 minimum copper run area.
(2) Repetitive Rating: Pulse width limited by max. junction temperature.

237

=25

electrical characteristics (TA

I

C)

0

(unless otherwise specified)

CHARACTERISTIC

I SYMBOL I

MIN

TYP

MAX

UNIT

BVDSS

100
60

-

-

Volts

off characteristics
Drain-Source Breakdown Voltage
(VGS = OV, 10 = 250 Jl.A)

IRFD120lD82CL2
IRFD121/D82CK2

Zero Gate Voltage Drain Current
(VOS = Max Rating, VGS = OV, TA = 25°C)
(VOS = Max Rating, x 0.8, VGS = OV, TA = 125°C)

loss

-

250
1000

Jl.A

IGSS

-

-

±500

nA

VGS(TH)

2.0

-

4.0

Volts

10(ON)

1.3

-

-

A

ROS(ON)

-

0.22

0.30

Ohms

9fs

.63

1.0

-

mhos

Gate-Source Leakage Current
(VGS = ±20V)

on characteristics*
Gate Threshold Voltage
(VOS = VGS, 10 = 250 J.LA)

TA = 25°C

On-State Drain Current
(VGS = 10V, VOS = 10V)
StatiC Drain-Source On-State Resistance
(VGS = 10V, 10 = 0.6A)
Forward Transconductance
'. (VOS = 10V, 10 = 0.6A)

dynamic characteristics
Input Capacitance

VGS = OV

Ciss

-

410

600

pF

Output Capacitance

VOS = 25V

-

160

400

pF

Reverse Transfer Capacitance

f = 1 MHz

Coss
C rss

-

40

100

pF

-

15

-

ns

30

-

ns

25

ns

10

-

switching characteristics*
Turn-on Delay Time

VOS = 30V

td(on)

Rise Time

10 = 0.6A, VGS = 15V

Turn-off Delay Time

RGEN = 500, RGS = 12.50

Fall Time

(RGS (EQUIV.) = 100)

tr
td(off)
tf

ns

source-drain diode ratings and characteristics*
Continuous Source Current
Pulsed Source Current
Diode Forward Voltage
(TA = 25°C, VGS = OV)

Is=1.3A

Reverse Recovery Time
(Is = 1.3A, dis/dt = 100AlJl.s, TA = 125°C)

Is

-

-

1.3

A

ISM

-

-

5.2

A

VSO

-

0.8

2.5

Volts

trr

-

75
0.7

-

ns
Jl.C

-

ORR

'Pulse Test: Pulse width::; 300 p.s, duty cycle::; 2%
10

""

~

Ii
~

~

Q

~

\
1

" "- "

I"

'r"\.

OPERA~~N

IN THIS AREA
MAY BE LIMITED BY ROS(ON)
TA =2S'C

0.2

0.4 0.60.81.0

1ms- r--

4

6 810

""
20

f--

2.0

f--

~

1.8

~
a:
~

1.6

:;

I'..

"
"

2.2

ROSIONY

1.4

;;

10ms

r-..

~

1.2

"

1.0

~

-

z

~ O.B

z

1'..-

....

CONDITIONS:
ROS(ON) CONDITIONS: 10 =0.6 A, VGS = 10V
VGS(TH) CONDITIONS: 10 = 250pA, VOS = VGS

c

lOOms

I
I I I
-SINGLE PULSE

.01 0.1

....

~

....

2.4

100"s

" i'...

=

0.1 -

-

10"S

i'

,
\

"

,

°S 0.6

i--IRF0120/082CL2
i--IRF0121/0 82CK2

a:

--- ....--- r-

~

1-

./

~GSITHI f - -

r--

~

0.4

0.2

IDe

40 6080100

r-

. . .V

200

o

400

VOS, ORAIN·SOURCE VOLTAGE (VOLTS)

-40

40

80

120

160

TJ,JUNCTION TEMPERATURE ('CI

MAXIMUM SAFE OPERATING AREA

TYPICAL NORMALIZED RDSIONI AND VGSITHI VS. TEMP.

238

~o~[F~

IRFD122,123

FIELD EFFECT POVVER TRANSISTOR

This series of N-Channel Enhancement-mode Power
MOSFETs utilizes GE's advanced Power DMOS technology
to achieve low on-resistance with excellent device ruggedness and reliability.

N-CHANNEL

This design has been optimized to give superior performance
in most switching applications including: switching power
supplies, inverters, converters and solenoid/relay drivers.
Also, the extended safe operating area with good linear
transfer characteristics makes it well suited for many linear
applications such as audio amplifiers and servo motors.

CASE STYLE 4-PIN DIP
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

Features

DRAIN

• Polysilicon gate - Improved stability and reliability

1

1-'
A
I-- ~51~:)---I

I

-----1-

• Voltage controlled - High transconductance

-T

MAX.

I

(3.04)
0.120

• Low input capacitance - Reduced drive requirement

0.15

(3.81)

0.040 (1.02)

• Excellent thermal stability - Ease of paralleling
0,15
(3.B1)

25° C)

(6.22)

SOURCE
GATE

I

• Ultra-fast switching - Independent of temperature

=:=

O
~O.245

• No secondary breakdown - Excellent ruggedness

maximum ratings (TA

1.1 AMPERES
100, 60 VOLTS
RDS(ON) = 0.4 n

~Ir--

0.300

I

0.022

r-(7,62)'i

(o,~

I--t

0,100

~

1(2,54)1

(unless otherwise specified)

VGS
Po

IRFD122
100
100
1.1
0.70
4.4
±20
1.0

IRFD123
60
60
1.1
0.70
4.4
±20
1.0

8

8

UNITS
Volts
Volts
A
A
A
Volts
Watts
mW/oC

TJ. TSTG

-55 to 150

-55 to 150

°C

Thermal Resistance, Junction to Ambient(')

R8JA

125

125

°CIW

Maximum Lead Temperature for Soldering
Purposes: Va" from Case for 5 Seconds

TL

300

300

°C

RATING
Drain-Source Voltage
Drain-Gate Voltage, RGS = 1Mn
Continuous Drain Current @ T A = 25° C(l)
@TA = 100°C(1)
Pulsed Drain Current(2)
Gate-Source Voltage
Total Power Dissipation @TA = 25°C
Derate Above 25° C
Operating and Storage
Junction Temperature Range

SYMBOL
VOSS
VOGR
10
10M

thermal characteristics

(1) Oevice mounted to vertical pc board in free air with drain lead soldered to 0.20 in 2 minimum copper run area.
(2) Repetitive Rating: Pulse width limited by max. junction temperature.

239

=25° C) (unless otherwise specified)

electrical characteristics (TA

I

CHARACTERISTIC

I SYMBOL I

MIN

TYP

MAX

UNIT

BVDSS

100
60

-

-

Volts

-

-

250
1000

JiA

-

-

±500

nA

VGS(TH)

2.0

-

4.0

Volts

10(ON)

1.1

-

-

A

ROS(ON)

-

0.30

0.40

Ohms

off characteristics
Drain-Source Breakdown Voltage
(VGS =OV, 10 =250 JiA)

IRFD122
IRFD123

Zero Gate Voltage Drain Current
(VOS = Max Rating, VGS =OV, TA =25°C)
(VOS = Max Rating, x 0.8, VGS =OV, TA = 125°C)

loSS

Gate-Source Leakage Current
(VGS =±20V)

IGSS

on characteristics*
Gate Threshold Voltage
(VOS =VGS, 10 =250 f.J.A)

TA

=25°C

On-State Drain Current
(VGS =10V, VOS =10V)
Static Drain-Source On-State Resistance
(VGS = 10V, 10 =0.6A)
Forward Transconductance
(VOS =10V, 10 =0.6A)

gfs

.63

1.0

-

mhos

Ciss

-

410

600

pF

160

400

pF

40

100

pF

-

15

-

ns

dynamic characteristics
Input Capacitance

VGS

Output Capacitance

VOS

Reverse Transfer Capacitance

f

=OV
=25V

Coss
C rss

=1 MHz

switching characteristics*
=30V

Turn-on Delay Time

VOS

Rise Time

10

Turn-off Delay Time

RGEN

Fall Time

(RGS (EQUIV.)

td(on)

=0.6A, VGS = 15V

tr

= 500, RGS = 12.50

30

ns

-

25

-

1.1

A

ISM

-

4.4

A

VSO

-

0.6

2.3

Volts

trr

-

75
0.7

-

ns
JiC

td(Off)

=100)

tf

10

ns
ns

source-drain diode ratings and characteristics*
Continuous Source Current

IS

Pulsed Source Current
Is = 1.1A

Diode Forward Voltage
(TA =25°C, VGS =OV)
Reverse Recovery Time
(Is = 1.3A, dis/dt =100AlJis, TA

= 125°C)

ORR

'Pulse Test: Pulse width:::; 300 I1S, duty cycle:::; 2%
10

2.4

k "'1
, ,

i

I
z
~o

\'

\

0.1

'"
l\

""

i'o,

"
"-

"

~

~

i'..

1m.

i'o

I

1

4

6

8 10

50

10ms

20

'" ,
40

I

I

I

I

I

CONDITIONS:
RDS(ON) CONDITIONS: ID = 0.6 A, Vas = 10V
VGS(TH) CONDITIONS: ID = 250pA, Vos = VGS

1.8
RoSI0o/

1.6
1.4

ti

1.2

"

1.0

~

t'-.

t-...

I

~
~

~

I

:::i
0:

"r-..

SINGLE PULSE
TA = 25°C

lOOps
Q

""'- i'..

2

100ms

OPERATION IN THIS AREA :~ IRF0122
MAY BE LIMITED BY ROS(ON)
IRFOI23_

9

.01

i'o

I

II2.0
2.2

~ O.B

z

~

0.6

0:

1- -- - -r--

_V

/""

V
r-~~ I-

0.4
0.2

~,
BO BO 100

o

200

-40

o

40

BO

120

160

T J • JUNCTION TEMPERATURE 1°C)

VDS. DRAIN-SOURCE VOLTAGE (VOLTS)

TYPICAL NORMALIZED RDSIONI AND VGSITHI VS. TEMP.

MAXIMUM SAFE OPERATING AREA

240

IRFD1Z0,1Z1
D82AL29K2

~[R3D~ [F~lr

0.5 AMPERES
100, 60 VOLTS
RDS(ON) = 2.4 !1

FIELD EFFECT POWER TRANSISTOR

This series of N-Channel Enhancement-mode Power
MOSFETs utilizes GE's advanced Power DMOS technology
to achieve low on-resistance with excellent device ruggedness and reliability.

N-CHANNEl

This design has been optimized to give superior performance
in most switching applications including: switching power
supplies, inverters, converters and solenoid/relay drivers.
Also, the extended safe operating area with good linear
transfer characteristics makes it well suited for many linear
applications such as audio amplifiers and servo motors.

CASE STYLE 4-PIN DIP

DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

Features

DRAIN

• Polysilicon gate - Improved stability and reliability

SOURCE

GATE

~0.245 ~

1--'
A

• No secondary breakdown - Excellent ruggedness

(6.22)

I
-L

• Ultra-fast switching - Independent of temperature
• Voltage controlled - High transconductance

-T

I-- f5'~~)-..J
I

MAX.

I

(3.04)
0.120

• Low input capacitance - Reduced drive requirement

0.15

(3.81)

I---j;
(O.~ ~

0.040(1.02)

• Excellent thermal stability - Ease of paralleling
0.15
(3.81)

maximum ratings (TA

O

~Ir-r--

I
)·i

0.300

C7 .62

0.022

0.100

1(2.54)1

=25° C) (unless otherwise specified)
IRFD1Z0/D82AL2

IRFD1Z1/D82AK2

100
100
0.50
0.31
4.0
±20
1.2
9.6

60
60
0.50
0.31
4.0
±20
1.2
9.6

UNITS
Volts
Volts
A
A
A
Volts
Watts
WIDe

TJ, TSTG

-55 to 150

-55 to 150

DC

Thermal Resistance, Junction to Ambient

RUJA

105

105

DCIW

Maximum Lead Temperature for Soldering
Purposes: Va" from Case for 5 Seconds

TL

300

300

DC

RATING
Drain-Source Voltage
Drain-Gate Voltage, RGS = 1M!1
Continuous Drain Current @ T A = 25 DC(1)
@TA= 100DC
Pulsed Drain Current(2)
Gate-Source Voltage
Total Power Dissipation @ T A = 25 DC
Derate Above 25DC
Operating and Storage
Junction Temperature Range

SYMBOL
Voss
VOGR
10
10M

VGS

Po

thermal characteristics

(1) Oevice mounted to vertical pc board in free air with drain lead soldered to 0.5 in. minimum copper run area.
(2) Repetitive Rating: Pulse width limited by max. junction temperature.

241

electrical characteristics(T c

=25° C) (unless otherwise specified)
ISYMBOL

MIN

TYP

MAX

UNIT

100
60

-

-

Volts

-

-250
1000

pA

IGSS

-

±500

nA

TA = 25°C

VGS(TH)

2.0

-

4.0

Volts

10 = 0.25A
10 = 0.50A
10 = 0.25A, TA = 125°C

VOS(ON)

-

0.6

Volts

-

0.55
1.10
0.90

ROS(ON)

-

2.2

2.4

Ohms

9fs

-

0.2

-

mhos

Ciss

-

36

70

pF

Coss
C rss

-

20

30

pF

-

7

10

pF

-

6

ns

7

-

CHARACTERISTIC

off characteristics
Drain-Source Breakdown Voltage
(VGS = OV, 10 = 250 pA)

BVDSS

IRFD1Z0/D82AL2
IRFD1Z1/D82AK2

Zero Gate Voltage Drain Current
(VOS = Max Rating, VGS = OV, TA = 25°C)
(VOS = Max Rating, x 0.8, VGS = OV, TA = 125°C)

loss

Gate-Source Leakage Current
(VGS = ±20V)

-

~

on characteristics*
Gate Threshold Voltage
\ (VOS = VGS, 10 = 250}LA)
Drain Source On-State Voltage
(VGS = 10V)

Static Drain-Source On-State Resistance
(VGS = 10V, 10 = 0.25A)
Forward Transconductance
(VOS = 10V, 10 = 0.25A)

-

dynamic characteristics
Input Capacitance

VGS = OV

Output Capacitance

VOS = 25V
f = 1 MHz

Reverse Transfer Capacitance

switching characteristics*
Turn-on Delay Time

VOS = 30V

Rise Time

10 = 0.25A, VGS = 15V

Turn-off Delay Time

RGEN = 50.0, RGS = 12.5.0

Fall Time

(RGS (EQUIV.l = 10.0)

td(on)
tr
td(off)

tf

6
12

ns
ns
ns

source-drain diode ratings and characteristics*
Continuous Source Current

Is

-

-

0.5

A

-

4.0

A

0.9

1.5

Volts

65

-

ns

Pulsed Source Current

ISM

-,

Diode Forward Voltage
(TA = 25°C, VGS = OV, Is = 0.5A)

VSO

-

Reverse Recovery Time
(Is = 0.5A, dls/dt = 100Alps, VOS = 40V Max., TA = 125°C)

trr

·Pulse Test: Pulse width ::5 300 p.s, duty cycle ::5 2%
10,1

f~

2-4

""

........

1,0

",,-

I
~
"

'-9

. .x...
....

"

"'-

~

i'o.

I"

"

"-

"

;

.""'-

"
" 1"- "

,
"-

"'-

"

OPERATION IN THIS AREA

,I- MAY BE LIMITED BY ROS(ON)
, "-SINGLE PULSE
'TA o 2S'C

J

]

"j

,01

1

10

20

50

"'-

J

1 ms

-

"

~

i'- IRF01Zl/082AK2

r2~

-

IRFrZO/082iL2 100ms

I-

I

I

I

I

I

CONDITIONS:
ROS(ON) CONOITIONS: 10 16 A. VGS = 10V
VGS(TH) CONOITIONS: 10 250~A, VOS VGS

=
=

=

ROS(ON)/, , /

",//

1,4

1-2
1,0

~

10ms

2,0

I

1,6

~

""'"

"-

u

i

lOO~S

"I'"
"'" "-"""'i'o.. 'i'o..

0,1

10~S

I

2,2

0,8

----

-r-- r--

I0,6

f-"

-

.... /"'"

--

....1--

r---

0,4

-

--

VGS(TH)

-....

0,2

DC

100

200

500

-40

VDS. DRAIN·SOURCE VOLTAGE (VOLTS)

o

40

80

120

160

TJ,JUNCTION TEMPERATURE ('C)

MAXIMUM SAFE OPERATING AREA

TYPICAL NORMALIZED ROS(ON) AND VGS(TH)VS, TEMP.

242

~D~·~~U

IRFD1Z2,1Z3
0.5 AMPERES
100, 60 VOL1S
ROS{ON) = 2.4 il

FIELD EFFECT POVVER TRANSISTOR

This series of N-Channel Enhancement-mode Power
MOSFETs utilizes GE's advanced Power DMOS technology
to achieve low on-resistance with excellent device ruggedness and reliability.

N-CHANNEL

This design has been optimized to give superior performance
in most switching applications including: switching power
supplies, inverters, converters and solenoid/relay drivers.
Also, the extended safe operating area with good linear
transfer characteristics makes it well suited for many linear
applications such as audio amplifiers and servo motors.

CASE STYLE 4-PIN DIP
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

Features

DRAIN

• Polysilicon gate - Improved stability and reliability

~0.245

• No secondary breakdown - Excellent ruggedness

SOURCE
GATE

~

W-.
A
(6.22)

,

I- ~5~g:)-..J

I

• Ultra-fast switching - Independent of temperature

I

----L-

• Voltage controlled - High transconductance

MAX.

I

0.120
(3.04)

-T

• Low input capacitance - Reduced drive requirement

0.15

13.81)

0.040(1.02)

• Excellent thermal stability - Ease of paralleling
0.15
(3.81)

maximum ratings (TA

O

~Ir--

0.300

I

0.022

10.~

I--X

0.100

~

.

1(2.54)1

r-(7.62)·,

=25° C) (unless otherwise specified)

RATING
Drain-Source Voltage
Drain-Gate Voltage, RGS = 1Mil
Continuous Drain Current@TA = 25°C(1)
@ T A = 100°C(1)
Pulsed Drain Current(2)
Gate-Source Voltage
Total Power Dissipation @ T A = 25° C
Derate Above 25° C
Operating and Storage
Junction Temperature Range

IRF01Z2
100
100
.40
.25
3.2
±20
1.0
9.6

IRF01Z3
60
60
.40
.25
3.2
±20
1.0
9.6

UNITS
Volts
Volts
A
A
A
Volts
Watts
W/oC

TJ, TSTG

-55 to 150

-55 to 150

°C

R8JA

105

105

°C/W

h

300

300

°C

SYMBOL
Voss
VOGR
10
10M

VGS
Po

thermal characteristics
Thermal Resistance, Junction to Ambient
Maximum Lead Temperature for Soldering
Purposes: %" from Case for 5 Seconds

(1) Oevlce mounted to vertical pc board in free air with drain lead soldered to 0.5 in. minimum copper run area.
(2) Repetitive Rating: Pulse width limited by max. junction temperature.

243

electrical characteristics (T c = 25° C)

I

(unless otherwise specified)

ISYMBOL I

MIN

TYP

MAX

UNIT

100
60

-

-

Volts

-

-

250
1000

f1A

IGSS

-

-

±500

nA

TA=25°C

VGS(TH)

2.0

-

4.0

Volts

10 = 0.25A
10 = 0.50A
10 = 0.25A, TA = 125°C

VOS(ON)

0.55
1.10
0.90

0.6

Volts

ROS(ON)

-

3.0

3.2

Ohms

9fs

-

0.2

-

mhos

-

36

70

pF

20

30

pF

7

10

pF

-

6

-

ns

CHARACTERISTIC

off characteristics
IRFD1Z2
IRFD1Z3

Drain-Source Breakdown Voltage
(VGS = OV, 10 = 250 f1A)

BVDSS

Zero Gate Voltage Drain Current
(VOS = Max Rating, VGS = OV, TA = 25°C)
(V OS = Max Rating, x 0.8, VGS = OV, T A = 125°C)

loss

Gate-Source Leakage Current
(VGS = ±20V)

-

on characteristics*
Gate Threshold Voltage
(V OS = VGS, 10 = 25OIlA)
Drain Source On-State Voltage
(VGS = 10V)

Static Drain-Source On-State Resistance
(VGS = 10V, 10 = 0.25A)
Forward Transconductance
(V OS = 10V, 10 = 0.25A)

-

dynamic characteristics
Input Capacitance

VGS = OV

Ciss

Output Capacitance

VOS = 25V
f = 1 MHz

Coss
C rss

Reverse Transfer Capacitance

switching characteristics*
Turn-on Delay Time

VOS = 30V

td(on)

Rise Time

10 = 0.25A, VGS = 15V

Turn-off Delay Time

RGEN = 500, RGS = 12.50

Fall Time

(RGS (EQUIV.) = 100)

tr
td(off)
tf

6

-

ns

12

-

ns

7

-

ns

-

-

0.5

A

-

3.2

A

-

0.9

1.5

Volts

65

-

source-drain diode ratings and characteristics*
Continuous Source Current

IS

Pulsed Source Current

ISM

Diode Forward Voltage
(TA = 25°C, VGS = OV, IS = 0.5A)

VSO

Reverse Recovery Time
(Is = 0.5A, dls/dt = 100A/f1s, VOS = 40V Max., TA = 125°C)
'Pulse Test: Pulse width

trr

:s 300 {1s, duty cycle:S 2%
2.4

10

2.2

_,

I

I COND~TIONS: I

ns

,

I

=15 A, VGS =10V
VGSITH) CONDITIONS: 10 =250"A, VOS =VGS

ROSION) CONDITIONS: 10
2.0 -

"

1.0

"'"

)<..

/'

0.1

-

"-

/'/'

/'

'-

'"

'""'"

"'"

'"

""-

Ty

I

"-

1.8

:i!

1.6

ROSION) . /

a:

0

1.4

Z

""-

~

1.2

:--r-- r-

0

1 ms

>
0

1.0

'"Z-

0.8

11

06

Z

,..........

"-

"-

,""-

.01

20

a:

'-IRF01Z3

"'- ""-

-i

0

10ms

50

IRF!'Z2
100ms

0.4

V

./'

::I;

100l1S

~

25°C

10

fil

N

'-

1'-

OPERATION IN THIS AREA
MAY BE LIMITED BY ROS(ON)

I- SINGLE PULSE

"'" "- "'"

/'

---

.--- V-

.....V

.....V

r--

-

t-

VGSITH)

r--

-

0.2
DC

100

200

-40

500

40

80

T J,JUNCTION TEMPERATURE

Vos. DRAIN·SOURCE VOLTAGE (VOLTS)

120

160

eC)

TYPICAL NORMALIZED ROS(ON) AND VaS(TH)VS, TEMP.

MAXIMUM SAFE OPERATING AREA

244

I RFD21 0,211
D82BN2,M2

~~D~[P~U
FIELD EFFECT POWER TRANSISTOR

This series of N-Channel Enhancement-mode Power
MOSFETs utilizes GE's advanced Power DMOS technology
to achieve low on-resistance with excellent device ruggedness and reliability.

N-CHANNEL

This design has been optimized to give superior performance
in most switching applications including: switching power
supplies, inverters, converters and solenoid/relay drivers.
Also, the extended safe operating area with good linear
transfer characteristics makes it well suited for many linear
applications such as audio amplifiers and servo motors.

CASE STYLE 4-PIN DIP
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

Features

DRAIN

• Polysilicon gate - Improved stability and reliability

GATE

1

1-'
A
(6.22)

1--~51~:)......(

I

~

• Voltage controlled - High transconductance

-T

MAX.

I

(3.04)
0.120

• Low input capacitance - Reduced drive requirement

0.15

(3.81)

0.040(1.02)

• Excellent thermal stability - Ease of paralleling
0.15
(3.81)

Drain-Gate Voltage, RGS =1Mil
Continuous Drain Current @ T A
@ TA
Pulsed Drain Current(2)

SOURCE

I

• Ultra-fast switching - Independent of temperature

RATING
Drain-Source Voltage

O
~0.245

• No secondary breakdown - Excellent ruggedness

maximum ratings (TA = 25 0 C)

0.6 AMPERES
200, 150 VOLTS
RDS(ON) = 1.5 il

~Ir--

0.300

I

0.022

(O.~

I--±

0.100

~

1(2.54)1

r--(7.62)·,

(unless otherwise specified)
SYMBOL
VOSS

IRFD210/D82BN2
200

IRFD211/D82BM2
150
150
0.6
0.35

UNITS
Volts
Volts

10M

200
0_6
0.35
2_5

VGS
Po

±20
1.0

2.5
±20
1.0

A
A
A
Volts
Watts

8

8

mW/oC

TJ, TSTG

-55 to 150

-55 to 150

°C

Thermal Resistance, Junction to Ambient(1)

ROJA

125

125

°CIW

Maximum Lead Temperature for Soldering
Purposes: Va" from Case for 5 Seconds

h

300

300

°C

= 25°C(1)
=100°C(1)

Gate-Source Voltage
Total Power Dissipation @ T A =25°C
Derate Above 25° C
Operating and Storage
Junction Temperature Range

VOGR
10

thermal characteristics

(1) Device mounted to vertical pc board in free air with drain lead soldered to 0.20 in 2 minimum copper run area.
(2) Repetitive Rating: Pulse width limited by max. junction temperature.

245

electrical characteristics (T A = 25° C)

(unless otherwise specified)

CHARACTERISTIC

1 SYMBOL 1

MIN

TYP

MAX

UNIT

BVDSS

200
150

-

-

Volts

-

250
1000

pA

IGSS

-

±500

nA

VGS(TH)

2.0

-

4.0

Volts

On-State Drain Current
(VGS = 10V, VOS = 10V)

10(ON)

0.6

-

-

A

Static Drain-Source On-State Resistance
(VGS = 10V, 10 = 0.3A)

ROS(ON)

-

1.1

1.5

Ohms

gfs

0.35

0.4

-

mhos

I

.1

off characteristics
Drain-Source Breakdown Voltage
(VGS = OV, 10 = 250/JA)

IRFD210/DS2BN2
IRFD211/DS2BM2

Zero Gate Voltage Drain Current
(VOS = Max Rating, VGS = OV, TA = 25°C)
(VOS = Max Rating, x O.S, VGS = OV, TA = 125°C)

loss

Gate-Source Leakage Current
(VGS = ±20V)

on characteristics*
Gate Threshold Voltage
(VOS = VGS, 10 = 250 J.l.A)

TA = 25°C

Forward Transconductance
(VOS = 10V, 10 = 0.3A)

dynamic characteristics
Input Capacitance

VGS = OV

Ciss

Output Capacitance

VOS = 25V

Reverse Transfer Capacitance

f = 1 MHz

Coss
C rss

-

120

150

pF

-

40

SO

pF

-

10

25

pF

-

5

ns

10

-

-

0.60

A

switching characteristics*
Turn-on Delay Time

VOS = 90V

td(on)

Rise Time

10 = 0.3A, VGS = 15V

Turn-off Delay Time

RGEN = 500, RGS = 12.50

Fall Time

(RGS (EQUIV.) = 100)

tr
td(off)
tf

15
10

ns
ns
ns

source-drain diode ratings and characteristics*
Continuous Source Current

Is

Pulsed Source Current

ISM

Diode Forward Voltage
(TA = 25°C, VGS = OV)

Is = O.60A

VSO

Reverse Recovery Time
(Is = 0.6A, dis/dt = 1OOAIps, T A = 1250 C)

trr
ORR

-

-

2.5

A

O.S

2.0

Volts

-

100
0.75

-

pC

ns

'Pulse Test: Pulse width :5 300 f,lS, duty cycle:5 2%
10

2.4
2.2 _
2.0 -

\,.

~.

I""'-

\~

........

~

=

4

6

6 10

1.6

""-

~
~

1.2

r-- I--

1.0

z

z
o

S 0.6

'" ~"

60 80 100

- ~:=~g~~~g:~~~

/'
ROSIONI

V

1.4

~ 0.8

,/

V

!3

10ms

100ms

40

1.8

~
~

......

20

~

II:

1m.

."00..

'" "

SINGLE PULSE
TA 25'C

c

100••

::;

r-..
i'

1"-"

I

1

......

.........

OPERATION IN THIS AREA
MAY BE LIMITED BY ROSIONI

.01

i'

""-

"'-

I'

CONDITIONS:
ROS(ON) CONDITIONS: 10 = 0.3 A, VGS = 10V
VGS(TH) CONDITIONS: 10 = 250~, VOS = VGS

-V

I"""

V

/'

,

-

/'
~~

-I--..-VGSITHI -

II:

r-

0.4
0.2

o

200

VDS, DRAIN·SOURCE VOLTAGE (VOLTS)

-40

o

40

80

120

160

T J • JUNCTION TEMPERATURE ('CI

MAXIMUM SAFE OPERATING AREA

TYPICAL NORMALIZED ROSION) AND VGSITHI VS. TEMP.

246

~~D~[F~

IRFD212,213

FIELD EFFECT POWER TRANSISTOR

This series ofN-Channel Enhancement-mode Power
MOSFETs utilizes GE's advanced Power DMOS technology
to achieve low on-resistance with excellent device ruggedness and reliability.

N-CHANNEL

This design has been optimized to give superior performance
in most switching applications including: switching power
. supplies, inverters, converters and solenoid/relay drivers.
Also, the extended safe operating area with good linear
transfer characteristics makes it well suited for many linear
applications such as audio amplifiers and servo motors.

CASE STYLE 4-PIN DIP
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

Features
• Polysilicon gate -

DRAIN

Improved stability and reliability

1-'
A

• Voltage controlled - High transconductance

.

• Low input capacitance - Reduced drive requirement

0.15
(3.81)

RATING
Drain-Source Voltage
Drain-Gate Voltage, RGS =1Mil
Continuous Drain Current @TA
@TA
Pulsed Drain Current(2)

0

C)

I--- ~5~~:)---I
I MAX. I

-T

(3.04)
0.120

0.15

(3.81)

f.-----j;
(0'5~6) ~~

0.040 (1.02)

• Excellent thermal stability - Ease of paralleling

= 25

SOURCE

GATE

I
---L

Independent of temperature

maximum ratings (TA

O
~0.245 (6.22)~

• No secondary breakdown - Excellent ruggedness
• Ultra-fast switching -

0.45 AMPERES
200, 150 VOLTS
RDS(ON) = 2.4 il

~Ir--

0.300

~t7.62)'

--j

0.022

I

0.100

(2.54)

(unless otherwise specified)
IRFD212
200
200
0.45
0.30
1.8
±20
1.0
8

IRFD213
150
150
0.45
0.30
1.8
±20
1.0
8

UNITS
Volts
Volts
A
A
A
Volts
Watts
mW/oC

TJ,TSTG

-55 to 150

-55 to 150

°C

Thermal Resistance, Junction to Ambient(1)

RUJA

125

125

°CIW

Maximum Lead Temperature for Soldering
Purposes: W' from Case for 5 Seconds

TL

300

300

°C

= 25°C(1)
=100°C(1)

Gate-Source Voltage
Total Power Dissipation @ T A =25° C
Derate Above 25° C
Operating and Storage
Junction Temperature Range

SYMBOL
Voss
VOGR
10
10M

VGS
Po

thermal characteristics

(1) Oevice mounted to vertical pc board in free air with drain lead soldered to 0.20
(2) Repetitive Rating: Pulse width limited by max. junction temperature.

247

in 2

minimum copper run area.

=25° C) (unless otherwise specified)

electrical characteristics (T A

I

CHARACTERISTIC

I SYMBOL I

MIN

TYP

MAX

UNIT

BVDSS

200
150

-

-

Volts

-

-

-

250
1000

JlA

IGSS

-

-

±500

nA

VGS(TH)

2.0

-

4.0

Volts

10(ON)

0.45

-

-

A

ROS(ON)

-

1.6

2.4

Ohms

gfs

0.35

0.4

-

mhos

off characteristics
Drain-Source Breakdown Voltage
(VGS = OV, 10 = 250 JlA)

IRFD212
IRFD213

Zero Gate Voltage Drain Current
(VOS = Max Rating, VGS = OV, TA = 25°C)
(VOS = Max Rating, x 0.8, VGS = OV, TA = .125°C)

lOSS

Gate-Source Leakage Current
(VGS = ±20V)

on characteristics*
Gate Threshold Voltage
(V OS = VGS, 10 = 250 p.A)

TA=25°C

On-State Drain CUrrent
(VGS = 10V, VOS = 10V)
Static Drain-Source On-State Resistance
(VGS = 10V, 10 = 0.3A)
Forward Transconductance
(VOS = 10V, 10 = O.3A)

dynamic characteristics
Input Capacitance

VGS = OV

Output Capacitance

VOS = 25V

Reverse Transfer Capacitance

f = 1 MHz

Ciss

-

120

150

pF

Coss
C rss

-

40

80

pF

-

10

25

pF

td(on)

-

5

-

ns

15

-

ns

switching characteristics*
Turn-on Delay Time

VOS = 90V

Rise Time

10 = 0.3A, VGS = 15V

Turn-off Delay Time

RGEN = 500, RGS = 12.50

Fall Time

(RGS (EQUIV.) = 100)

tr
td(off)
tf

10
10

ns
ns

source-drain diode ratings and characteristics*
IS

-

-

0.45

A

ISM

-

-

1.8

A

VSO

-

0.7

1.8

Volts

trr

-

100
0.75

Continuous Source Current
Pulsed Source Current
IS =0.45A

Diode Forward Voltage
(TA = 25°C, VGS = OV)
Reverse Recovery Time
(Is =0.6A, dis/dt = 100A/ps, TA = 125°C)

ORR

-

ns
JlC

-

·Pulse Test: Pulse width :5 300 JlS, duty cycle:5 2%
10

2.4

I

I

I

I

I

I

I

CONDITIONS:
ROS(ON) CONDITIONS: 10 = 0.3 A. VGS = 10V
2.0 I-- VGS(TH) CONDITIONS: 10 = 250I'A. VOS = VGS

2.2 I--

......

~

i'

I'...
.......

...........

~

'I'-...

4

"- r......
6

aw

1.4
1.2

"

1.0

~

z

'"

........

TA=2So C I

1.0

10ms

1.6

:c~
>
C
z

~

~

100ms

a:

0.6

IRFD212-_
IRFD213_

0.4

~

O. 2

8080~

~

o

_

V

1.8

-:. O. a

I- ~PERATION IN THIS AREA
I-MAV BE LIMITED BV RDS(ON) .......

.01

i'

..............

t-SING~E PULSJ

~

1m.

~.

1\ "-~

\

~
a:

.......

1'0.

'"

c
~
:::;

100",5

,/

-- - -

V
ROSIONI

V

V

/

~

~

-40

o

V

r--

40

-"-- ~
VGSITHI -

80

120

160

TJ • JUNCTION TEMPERATURE (OC)

Vos, DRAIN-SOURCE VOLTAGE (VOLTS)

TYPICAL NORMALIZED RDSIONI AND VOSITHI VS. TEMP.

MAXIMUM SAFE OPERATING AREA

248

IRFD220,221
D82CN2,M2

~D~~U
FIELD EFFECT POWER TRANSISTOR

This series of N-Channel Enhancement-mode Power
MOSFETs utilizes GE's advanced Power DMOS technology
to achieve low on-resistance with excellent device ruggedness and reliability.

0.8 AMPERES
200, 150 VOLTS
RDS(ON) = 0.8 il

N-CHANNEL

This design has been optimized to give superior performance
in most switching applications including: switching power
supplies, inverters, converters and solenoid/relay drivers.
Also, the extended safe operating area with good linear
transfer characteristics makes it well suited for many linear
applications such as audio amplifiers and servo motors.

CASE STYLE 4-PIN DIP
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

Features

DRAIN

• Polysilicon gate - Improved stability and reliability

O

SOURCE

GATE

~0.245 ~

• No secondary breakdown - Excellent ruggedness

I'A
(6.22)

I

------L-

• Voltage controlled - High transconductance

-T

MAX.

(3.04)
0.120

• Low input capacitance - Reduced drive requirement
• Excellent thermal stability - Ease of paralleling

~Ir-- ---1

0.15

I---j;;"
r-~

6
0.022 (0.5--1
)
0 100
.
(2.54)

0300

(3.61)

I

(3.611

0.040 (1.02)

~(7.62)·

0.15

maximum ratings (TA = 25 0 C)

I--f51g~)-..J

I

• Ultra-fast switching - Independent of temperature

I·

(unless otherwise specified)
IRFD220/D82CN2
200
200
0.80
0.48

IRFD221/D82CM2
150
150
0.80
0.48

VGS
Po

6.4
±20
1.0
8

6.4
±20
1.0
8

mW/oC

TJ, TSTG

-55 to 150

-55 to 150

°C

Thermal Resistance, Junction to Ambient(l)

ROJA

125

125

°C/W

Maximum Lead Temperature for Soldering
Purposes: W' from Case for 5 Second$

TL

300

30b

°C

RATING
Drain-Source Voltage
Drain-Gate Voltage, RGS = 1Mil
Continuous Drain Current @ T A = 25°C(1)
@ T A = 100°C(1)
Pulsed Drain Current(2)
Gate-Source Voltage
Total Power Dissipation @TA = 25°C
Derate Above 25° C
Operating and Storage
Junction Temperature Range

SYMBOL
VOSS
VOGR
10
10M

UNITS
Volts
Volts
A
A
A
Volts
Watts

thermal characteristics

..

(1) Oevlce mounted to vertical pc board in free air with drain lead soldered to 0.20 m2 minimum copper run area.
(2) Repetitive Rating: Pulse width limited by max. junction temperature.

249

electrical characteristics (TA = 25 0 C)

(unless otherwise specified)

CHARACTERISTIC

I SYMBOL I

MIN

BVDSS

I

TYP

MAX

UNIT

200
150

-

-

Volts

-

250
1000

pA

IGSS

-

±500

nA

VGS(TH)

2.0

-

4.0

Volts

10(ON)

O.S

-

-

A

ROS(ON)

-

0.6

O.S

Ohms

gfs

0.45

0.7

-

mhos

Clss

-

3S5

600

pF

SO

300

pF

15

SO

pF

ns

off characteristics
Drain-Source Breakdown Voltage
(VGS = OV, 10 = 250 pA)

IRFD220/DS2CN2
IRFD2211DS2CM2

Zero Gate Voltage Drain Current
(VOS = Max Rating, VGS = OV, TA = 25°C)
(VOS = Max Rating, x O.S, VGS = OV, TA = 125°C)

lOSS

Gate-Source Leakage Current
(VGS = ±20V)

_ on characteristics*
Gate Threshold Voltage
(VOS = VGS, 10 = 250 ,."A)

TA = 25°C

On-State Drain Current
(VGS = 10V, Vos = 10V)
Static Drain-Source On-State Resistance
(VGS = 10V, 10 = 0.4A)
Forward Transconductance
(Vos = 10V, 10 = OAA)

dynamic characteristics
Input Capacitance

VGS = OV

Output Capacitance

VOS = 25V

Reverse Transfer Capacitance

f = 1 MHz

Coss
C rss

switching characteristics*
Turn-on Delay Time

VOS = 90V

Rise Time

10 = OAA, VGS = 15V

Turn-off Delay Time

RGEN = 500, RGS = 12.50

Fall Time

(RGS (EQUIV.) = 100)

td(on)

-

15

tr

-

10

td(off)

-

30
10

-

tf

ns
ns
ns

source-drain diode ratings and characteristics*
-

A

ISM

-

O.S

Pulsed Source Current

604

A

Diode Forward Voltage
(TA = 25°C, VGS = OV, Is = O.SA)

VSO

-

O.S

1.S

Volts

trr

-

150
1.2

-

Continuous Source Current

IS

Reverse Recovery Time
(Is = O.SA, dls/dt = 100Alps, TA = 125°C)
~

ORR

ns

pC

·Pulse Test: Pulse width. S 300 /-IS, duty cycle S 2%
10

,

~

II
~

,,'

\

i

1

"
0.1

~/
r-:=::

"

I~

".~

2.4

.'

10",s

,~,

"-

" "'r-..

~

:::;

,

i'..

0.2

"

10ms

4

6 810

1.6

1.4

20

40 6080100

~

1.2

"

1.0

o
en
0.6
c
a:
0.4

~

200

I

I

I

I

/'

/]
/'

ROSIONI

/,V

z

~ 0.6

'''~Tf~ r-.

0.4 0.60.81.0

~

~

-

- -....- ..-

,../

/,"

./

./

r---

V

--

--!G~ -

0.2

~

0.1

f-

)

CONDITIONS:
ROS(ON) CONOITIONS: 10 = 0.4 A. VGS = 10V
VGS(TH) CONOITIONS: 10 = 250pA. VOS = VGS

1.8

II

::

~RF0221/?821M

I I I

2.0

c
lOOps

1m.

I'-

=

f-

a:

"-

SINGLE PULSE
TA 25'C

.01

"-

i'..

"'-

"

OPERATION IN THIS AREA
,MAY BE LIMITED BY ROS(ON)

'1

"-

'-..

)

)

2.2

400

o

-40

o

40

80

. 120

160

TJ • JUNCTION TEMPERATURE ('C)

VDS. DRAIN·SOURCE VOLTAGE (VOLTS)

TYPICAL NORMALIZED RDSIONI AND VGSITHI VS. TEMP.

MAXIMUM SAFE OPERATING AREA

250

~~D~~

IRFD222,223

FIELD EFFECT POWER TRANSISTOR

This series of N-Channel Enhancement-mode Power
MOSFETs utilizes GE's advanced Power DMOS technology
to achieve low on-resistance with excellent device ruggedness and reliability.

N-CHANNEL

This design has been optimized to give superior performance
in most switching applications including: switching power
supplies, inverters, converters and solenoid/relay drivers.
Also, the extended safe operating area with good linear
transfer characteristics makes it well suited for many linear
applications such as audio amplifiers and servo motors.

CASE STYLE 4-PIN DIP
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

Features

DRAIN

O

• Polysilicon gate - Improved stability and reliability

SOURCE

GATE

~0.24516.2211

A 1-'-

• No secondary breakdown - Excellent ruggedness

I.-- ~5'~~)--l
I MAX. I

. I
---l-

• Ultra-fast switching - Independent of temperature

"T
13.04)
0.120

• Voltage controlled - High transconductance

0.15

13.81)

0.040 (1.02)

• Low input capacitance - Reduced drive requirement

~1= 7.6n--,
II

• Excellent thermal stability - Ease of paralleling
0.15
13.81)

maximum ratings (TA = 25 0 C)

0.7 AMPERES
200, 150 VOLTS
RDS(ON) =.1.20

0.300

I

J.----j;

13.30)

1 6
)
0.022 0.5-1
o.,00L

1

12.54)1

(unless otherwise specified)
IRFD222
200
200
0.70
0.40
5.6
±20
1.0
8.0

IRFD223
150
150
0.70
0.40
5.6
±20
1.0
8.0

UNITS
Volts
Volts
A
A
A
Volts
Watts
mW/oC

TJ, TSTG

-55 to 150

-55 to 150

°C

Thermal Resistance, Junction to Ambient(1)

ROJA

125

125

°C/W

Maximum Lead Temperature for Soldering
Purposes: Va" from Case for 5 Seconds

TL

300

300

°C

RATING
Drain-Source Voltage
Drain-Gate Voltage, RGS = 1MO
Continuous Drain Current @ T A = 25° C(1)
@ TA = 100°C(1)
Pulsed Drain Current(2)
Gate-Source Voltage
Total Power Dissipation @ T A = 25° C
Derate Above 25° C
Operating and Storage
Junction Temperature Range

SYMBOL
Voss
VOGR
10
10M

VGS
Po

thermal characteristics

(1) Oevice mounted to vertical pc board in free air with drain lead soldered to 0.20 in 2 minimum copper run area.
(2) Repetitive Rating: Pulse width limited by max. junction temperature.

251

=25° C) (unless otherwise specified)

electrical characteristics (TA

I

I SYMBOL I

MIN

TYP

MAX

UNIT

BVDSS

200
150

-

-

Volts

-

250
1000

pA

-

-

±500

nA

VGS(TH)

2.0

-

4.0

Volts

IO(ON)

0.7

-

-

A

ROS(ON)

-

0.8

1.2

Ohms

gfs

0.45

0.7

-

mhos

VGS = OV

Ciss

385

600

pF

Output Capacitance

VOS = 25V

300

pF

f = 1 MHz

Coss
Crss

80

Reverse Transfer Capacitance

-

15

80

pF

td(on)

-

15

-

ns

tr

-

10

ns

30

-

CHARACTERISTIC

off characteristics
Drain-Source Breakdown Voltage
(VGS = OV, 10 = 250 pA)

IRFD222
IRFD223

Zero Gate Voltage Drain Current
(V OS = Max Rating, VGS = OV, TA = 25°C)
(VOS = Max Rating, x 0.8, VGS = OV, TA = 125°C)

loSS

-

Gate-Source Leakage Current
(VGS = ±20V}

IGSS

-

on characteristics*
Gate Threshold Voltage
(VOS = VGS, 10 = 250 /LA)

TA=25°C

On-State Drain Current
(VGS = 10V, VOS = 10V)
Static Drain-Source On-State Resistance
(VGS = 10V, 10 = O.4A)
Forward Transconductance
(VOS = 10V, 10 = 0.4A)

dynamic characteristics
Input Capacitance

switching characteristics*
Turn-on Delay Time

VOS = 90V

Rise Time

10 = O.4A, VGS = 15V

Turn-off Delay Time

RGEN = 50n, RGS = 12.5n

Fall Time

(RGS (EQUIV.) = 10n)

td(off)
tf

10

ns
ns

source-drain diode ratings and characteristics*
-

A

ISM

-

0.7

Pulsed Source Current

5.6

A

Diode Forward Voltage
(TA = 25°C, VGS = OV, Is = 0.7A)

VSO

-

0.7

1.8

Volts

trr

-

150
1.2

-

Continuous Source Current

Is

Reverse Recovery Time
(Is = 0.8A, dis/dt = 100A/ps, TA

=125°C)

-

ORR

ns

pC

'Pulse Test: Pulse Width :5 300 fJS, duty cycle:5 2%
10

2.4

.......

~
f

"
"

~

...z~

.

a:
a:
::I
u

,,; " l\

Z

~
Q

9

"

"

'"

.01

0.1

0.2

"- ,

,,~

'c;

"'-

o
l00~s

"

'"

...... ~

Q

r-.!.R~021231-

6 8 10

20

1.0
08

*

"~
4

--

1.2

Z .

a:

40 60 80100

I

I

I

I

(

1/
RoS1ONJ,/'

V

2



10ms

IRF0222

I

~
a:
~
~

........

I

1.8

~

I"-

(

t--

CONDITIONS:
ROS(ON) CONDITIONS: ID = 0.4 A. VGS = 10V
2.0 t-- VGS(TH) CONDITIONS: ID = 250"A. VDS = VGS

~

:;

1m•

PULSE

TA=125

.......

........

III

-~SINGLE

I

t'-...

"~

0.1 r--'OPERATION IN THIS AREA
'--MAY BE LIMITED BY ROS(ON)

-I

2.2

lOpS

~.....-

,..---

/'

V

V
I---

V

./

V"

r---

0.6

--

~~ -

0.4
0.2

o
200

-40

o

40

80

120

160

TJ• JUNCTION TEMPERATURE I'C)

VDS. DRAIN·SOURCE VOLTAGE (VOLTS)

TYPICAL NORMALIZED RDSIONI AND VGSITHI VS. TEMP.

MAXIMUM SAFE OPERATING AREA

252

IRFD2Z0,2Z1
D82AN2-,_M2

~ffi1DUYAOO ~
FIELD EFFECT POWER TRANSISTOR

This series of N-Channel Enhancement-mode Power
MOSFETs utilizes GE's advanced Power DMOS technology
to achieve low on-resistance with excellent device ruggedness and reliability.

N-CHANNEL

This design has been optimized to give superior performance
in most switching applications including: switching power
supplies, inverters, converters and solenoid/relay drivers.
Also, the extended safe operating area with good linear
transfer characteristics makes it well suited for many linear
applications such as audio amplifiers and servo motors.

.o

CASE STYLE 4-PIN DIP

DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

Features

SOURCE

DRAIN

• Polysilicon gate - Improved stability and reliability

(6.221

-L

• Voltage controlled - High transconductance

-T

.

0.15
(3.Bl1

I---j-;
0.022(0·~0.loo~
0.040 (1.02)

• Excellent thermal stability - Ease of paralleling

"
~q-f
r--

0.300

0.15
(3.Bl)

C)

I-- ~5~~~1--I
I MAX. I

(3.041
0.120

• Low input capacitance - Reduced drive requirement

0

1-'
A
I

• Ultra-fast switching - Independent of temperature

=25

GATE

~0.245 ~

• No secondary breakdown - Excellent ruggedness

maximum ratings (TA

0.32 AMPERES
200, 150 VOLTS
ROS(ON) = 5.0 .0.

I

7.62 ) · - - ,

1(2.54)1

(unless otherwise specified)
IRF02Z0/08~N2

VGS
Po

200
200
0.32
0.20
1.5
±20
1.0

IRF02Z1/082AM2
150
150
0.32
0_20
1.5
±20
1.0

8

8

W/oC

TJ, TSTG

-55 to 150

-55 to 150

°C

Thermal Resistance, Junction to Ambient(l)

R8JA

125

125

°CIW

Maximum Lead Temperature for Soldering
Purposes: Va" from Case for 5 Seconds

TL

260

260

°C

RATING
Drain-Source Voltage
Drain-Gate Voltage, RGS = 1M.o.
Continuous Drain Current @ TA = 25°C(l)
_
@ TA = 100°C(l)
Pulsed Drain Current(2)
Gate-Source Voltage
Total Power Dissipation @ T A = 25° C(l)
Derate Above 25° C
Operating and Storage
Junction Temperature Range

SYMBOL
Voss
VOGR
10
10M

UNITS
Volts
Volts
A
A
A
Volts
Watts

thermal characteristics

(1) Device mounted to vertical pc board in free air with drain lead soldered to 0.20 in 2 minimum copper run area.
(2) Repetitive Rating: Pulse width Limited by Max. Junction Temperature.

253

electrical characteristics (T c = 25 0 C)

I

(unless otherwise specified)

ISYMBOL I

CHARACTERISTIC

MIN

TYP

MAX

UNIT

200
150

-

-

-

Volts

IGSS

-

-

250
1000

JlA

±500

nA

TA = 25°C

VGS(TH)

2.0

-

4.0

Volts

10 = 0.15A
10 = 0.32A
10 = 0.15A, TA = 125°C

VOS(ON)

0.66
1.41
1.05

0.75

Volts

ROS(ON)

-

4.4

5.0

Ohms

9fs

-

0.11

-

mhos

-

37

70

pF

15

25

pF

-

4

8

pF

-

15

-

ns

10

-

ns

-

0.32

A

1.5

A

0.86

1.3

Volts

125

-

ns

off characteristics
Drain-Source Breakdown Voltage
(VGS = OV, 10 = 250 JlA)

IRFD2Z0/D82AN2
IRFD2Z1/D82AM2

BVDSS

Zero Gate Voltage Drain Current
(V OS = Max Rating, VGS = OV, TA = 25°C)
(VOS = Max Rating, x 0.8, VGS = OV, TA = 125°C)

loss

Gate-Source Leakage Current
(VGS= ±20V)

-

-

on characteristics*
Gate Threshold Voltage
(VOS = VGS, 10 = 1J.1A)
Drain Source On-State Voltage
(VGS = 10V)

Static Drain-Source On-State Resistance
(VGS = 10V, 10 = 0.15A)
Forward Transconductance
(Vos=-10V, 10 = 0.15A)

-

dynamic characteristics
Input Capacitance

VGS= OV

Ciss

Output Capacitance

VOS = 25V

Reverse Transfer Capacitance

f = 1 MHz

Coss
C rss

switching characteristics*
Turn-on Delay Time

VOS = 90V

Rise Time

10 = 0.15A, VGS = 15V

Turn-off Delay Time

RGEN = 500, RGS = 12.50

Fall Time

(RGS (EQUIV.) = 100)

td(on)
tr
td(off)
tf

22
28

ns
ns

source-drain diode ratings and characteristics*
Continuous Source Current

-

Is

Pulsed Source Current

ISM

Diode Forward Voltage
(TA = 25°C, VGS = OV, Is = 0.32A)

VSO

Reverse Recovery Time
(Is = 0.32A, dls/dt = 100A/Jls, VOS = 80V Max., TA = 125°C)

trr

'Pulse Test: Pulse width:::; 300 p.s, duty cycle:::; 2%
10
8

2.4

6

@
a:

~

1

....
is

0.4

:::l

0.2

Z
:;;:
~

0.1
.OB

~ ~:~
a:
a:
u

-'l

......
\

..........

1\

"

OPERATIO~

......

r-....
..........

~
.....
......
...............

SINGLE PULSE
TA =2SoC

1

~

:,

~

......

'""

10

20

~

-

r-....
'

......

SO

100., -

I--

CONDITIONS:
RDS(ON) CONDITIONS: ID = 15 A. VGS = 10V
VGS(TH) CONDITIONS: ID = 250~. VDS = VGS

1m,

ROStON}

1.6

1.2

"

1.0

z
«i

OB

.

~ 0.6

10m,

a:

-t-IRFD2Z1/D82AM2

0.4

...... '-IRFDJOID82Ar2
lOOms

0.2

100

200

SOO

o

1000

V DS ' DRAIN-SOURCE VOLTAGE IVOLTS)

_..........

1.4

o

,

"

1.8

~
~

I......

~
5

f--

Q

:::;
~
a:

10J.,ls

..........

r-....

......

IN THIS AREA
MAY BE LIMITED BY RDSIONI

.02

,

......

, ,

........

.06
.04

.01

........

i'...

2.2
2.0

:.....-

- ---

-40

.... ~

./

.,.

",.

~
VGStTH} -

o

40

80

120

~

160

T J • JUNCTION TEMPERATURE ('CI

MAXIMUM SAFE OPERATING AREA

TYPICAL NORMALIZED ROSIONI AND VOSITHI VS. TEMP.

254

IRFD320,321
D82CQ2.Q1

~o~~
FIELD EFFECT PO'NER TRANSISTOR

This series of N-Channel Enhancement-mode Power
MOSFETs utilizes GE's advanced Power DMOS technology
to achieve low on-resistance with excellent device ruggedness and reliability.

N-CHANNEL

This design has been optimized to give superior performance
in most switching applications including: switching power
supplies, inverters, converters and solenoid/relay drivers.
Also, the extended safe operating area with good linear
transfer characteristics makes it well suited for many linear
applications such as audio amplifiers and servo motors.

CASE STYLE 4·PIN DIP
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

Features

DRAIN

• Polysilicon gate - Improved stability and reliability

O
~0.245

SOURCE
GATE

~

W-,
A

• No secondary breakdown - Excellent ruggedness

(6.22)

1--~51;:)--I

I

• Ultra-fast switching - Independent of temperature

I

~

• Voltage controlled - High transconductance

MAX.

I

0.120
(3.04)

-T

• Low input capacitance - Reduced drive requirement

0.15

(3.B1)

I--j;;
(o·~o ~

0.040(1.02)

• Excellent thermal stability - Ease of paralleling
0.15
(3.B1)

maximum ratings (TA

0.5 AMPERES
400, 350 VOLTS
RDS(ON} = 1.8 0

~Ir--

0.300

I

0.022

~(7.62)---'

100

11~.54)1

=25° C) (unless otherwise specified)
IRFD321/D82CQ1
350
350
0.5
0.33
2.0
±20

SYMBOL
Voss

IRFD320/D82CQ2
400

VOGR

VGS
Po

400
0.5
0.33
2.0
±20
1.0

8

8

A
Volts
Watts
mW/oC

TJ, TSTG

-55 to 150

-55 to 150

°C

Thermal Resistance, Junction to Ambient(1)

ROJA

125

125

°CIW

Maximum Lead Temperature for Soldering
Purposes: Ve" from Case for 5 Seconds

TL

300

300

°C

RATING
Drain-Source Voltage
Drain-Gate Voltage, RGS = 1MO
Continuous Drain Current @TA = 25°C(1)
@TA = 100°C(1)
Pulsed Drain Current(2)
Gate-Source Voltage
Total Power DisSipation @ T A = 25°C
Derate Above 25° C
Operating and Storage
Junction Temperature Range

10
10M

1.0

UNITS
Volts
Volts
A
A

thermal characteristics

(1) Device mounted to vertical pc board in free air with drain lead soldered to 0.20
(2) Repetitive Rating: Pulse width limited by max. junction temperature.

255

in 2

minimum copper run area.

= 25° C)

electrical characteristics (TA

(unless otherwise specified)

CHARACTERISTIC

I

I· SYMBOL 1

MIN

TYP

. MAX

UNIT

BVDSS

400
350

-

-

Volts

-

-

250
1000

JlA

IGSS

-

-

±500

nA

VGS(TH)

2.0

-

4.0

Volts

10(ON)

0.5

-

-

A

ROS(ON)

-

1.4

1.8

Ohms

gfs

0.3

0.6

-

mhos

Ciss

-

385

600

pF

70

200

pF

12

40

pF

15

td(off)
tf

-

25

-

ns

tr

-

-

-

0.5

A

2.0

A

0.8

1.6

Volts

200
1.7

-

off characteristics
Drain-Source Breakdown Voltage
I RFD320/D82CQ2
IRFD321/D82CQ1
(VGS =OV, 10 =250 JlA)
. Zero Gate Voltage Drain Current
(VOS =Max Rating, VGS =OV, TA =25°C)
(VOS =Max Rating, x 0.8, VGS =OV, TA =125°C)

loss

Gate-Source Leakage Current
(VGS =±20V)

-

on characteristics*
Gate Threshold Voltage
(VOS =VGS, 10 =250 /-LA)

TA

=25°C

On-State Drain Current
(VGS ~ 10V, VOS =10V)
Static Drain-Source On-State Resistance
(VGS = 10V, 10 = 0.25A)
Forward Transconductance
(VOS =10V, 10 =0.25A)

dynamic characteristics
Input Capacitance

VGS

Output Capacitance

VOS

Reverse Transfer Capacitance

f

=OV
=25V

Coss
C rss

= 1 MHz

switching characteristics*
Turn-on Delay Time

VOS

=175V

td(on)

Rise Time

10 =0.25A, VGS

Turn-off Delay Time

RGEN

= 15V
=50n, RGS =12.50
(RGS (EQUIV.) =10n)

Fa" Time

10
15

ns
ns
ns

source-drain diode ratings and characteristics*
Continuous Source Current

Is

Pulsed Source Current

ISM

Diode Forward Voltage
(TA =25°C, VGS =OV, Is =0.5A)
Reverse Recovery Time
(Is =0.5A, dis/dt = 100AIJls, TA = 125°C)

VSO

-

trr
QRR

-

ns
JlC

'Pulse Test: Pulse width :5 300 /ls, duty cycle:5 2%
10
B
6

2.4
2,2
2,0

flia:
~

,/"

~

1

-'"
!... g:: F--i""
2 0.4
w

a:
a:

a

\

0.2

_0

0.1
.08
.06
.04

~

.......

" " "'" '"
"
.........

OPERA+ION IN THIS AREA
MAY BE LIMITED BY ROSIONI
SINGLE PULSE
TA =2SoC
1

10

.......

i'..

.......

~

20

50

100

N

::;
~

100",-

"

...........

.......

,02
,01

"'"

.~

fil

'l'-...

I~

2

;;:
~

'i'.,

200

a:
~

I

%

~ms

1.0

-

-:.. 0, B

bJIRF03211082COI
I11RF032l082C02

a:

/1

0,6

0.4

ROSIONI

/"

1.4

"
"~

/'

=
=

1.6

1.2

o

=

/

z

10m'-

I

I,B

~

~

I

r-r--

CONriITlON~:

I
I
I
ROS(ON) CONDITIONS: 10 0,25 A, VGS 10V
VGS(TH) CONDITIONS: 10 = 250pA, VOS VGS
I

"r

L

r--- -.....

,/""

L

V

/'"

r--- t--

......... ~

-

VGSITHI-

-j--.

r----

100ms

0, 2

I
500

1.000

-40

Vos' DRAIN-SOURCE VOLTAGE IVOL TSI

o

40

so

120

160

T J , JUNCTION TEMPERATURE I'CI

MAXIMUM SAFE OPERATING AREA

TYPICAL NORMALIZED RDSIONI AND VOSITHI VS. TEMP.

256

~D~[P~

IRFF110,111

FIELD EFFECT POWER TRANSISTOR

3.5 AMPERES
100, 60 VOLTS
ROS(ON) = 0.6 D.
Preliminary

This series of N-Channel Enhancement-mode Power
MOSFETs utilizes GE's advanced Power DMOS technology
to achieve low on-resistance with excellent device ruggedness and reliability.

N-CHANNEL

~

This design has been optimized to give superior performance
in most switching applications including: switching power
supplies, inverters, converters and solenoid/relay drivers.
Also, the extended safe operating area with good linear
transfer characteristics makes it well suited for many linear
applications such as audio amplifiers and servo motors.

CASE STYLE TO-20SAF (TO-39)
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)
0.350-0.370

(6.690-9.3961
0.315-0.335

(6.001-6.5091

Features
• Polysilicon gate - Improved stability and reliability

0 nU.....• U

~1
(0.229-0.4571

• No secondary breakdown - Excellent ruggedness

23
it-Il--GATE
SOURCE

-4
0..1.
50-0 -00."'01'6-0.019
(12.701
(0.406-0.4831

• Ultra-fast switching - Independent of temperature

.11--

MIN

0.190-0.210
(4.826-5.3341

• Voltage controlled - High transconductance
• Low input capacitance - Reduced drive requirement
• Excellent thermal stability -

Ease of paralleling

maximum ratings (TC =25° C)

(unless otherwise specified)
SYMBOL
Voss
VOGR

IRFF110
100
100

IRFF111
60
60

UNITS
Volts
Volts

10

3.5

3.5

A

Pulsed Drain Current(1)

10M

Gate-Source Voltage
Total Power Dissipation @Tc
Derate Above 25° C
Operating and Storage
Junction Temperature Range

VGS
Po

14
±20
15
0.12

14
±20
15
0.12

A
Volts
Watts

W/oC

TJ, TSTG

-55 to 150

-55 to 150

°C

ROJC
ROJA

8.33
175

8.33
175

°CIW
°CIW

TL

260

260

°C

RATING
Drain-Source Voltage
Drain-Gate Voltage, RGS = 1MD.
Continuous Drain Current @ T C = 25°C

=25°C

thermal characteristics
Thermal Resistance, Junction to Case
Thermal Resistance, Junction to Ambient
Maximum Lead Temperature for Soldering
Purposes: 1/16" from Case for 10 Seconds

(1) Repetitive Rating: Pulse width limited by max. junction temperature.

257

electrical characteristics (T c = 25 0 C)

I

(unless otherwise specified)

CHARACTERISTIC

I SYMBOL I

MIN

TYP

MAX

UNIT

BVDSS

100
60

-

-

Volts

-

250
1000

IlA

IGSS

-

-

±1OO

nA

VGS(TH)

2.0

-

4.0'

Volts

10(ON)

3.5

-

-

A

ROS(ON)

-

-

0.6

Ohms

gfs

0.7

-

-

mhos

-

-

200

pF

100

pF

25

pF

10

-

ns

15
15

-

ns

10

-

ns

off characteristics
Drain-Source Breakdown Voltage
(VGS =OV, 10 =2501lA)

IRFF110
IRFF111

Zero Gate Voltage Drain Current
(VOS =Max Rating, VGS =OV, Tc =25°C)
(VOS =Max Rating, x 0.8, VGS =OV, Tc =125°C)

loSS

Gate-Source Leakage Current
(VGS =±20V)

on characteristics *
. Gate Threshold Voltage
(VOS =VGS, 10 =250 p.A)

Tc

=25°C

On-State Drain Current
(VGS =10V, VOS =10V)
Static Drain-Source On-State Resistance
(VGS =10V, 10 =1.5A)
Forward Transconductance
(VOS =10V, 10 =1.5A)

dynamic characteristics

=OV
Ciss
Output Capacitance
VOS =25V
Coss
Reverse Transfer Capacitance
f =1 MHz
C rss
switching characteristics*
Turn-on Delay Time
VOS =30V
td(on)
Rise Time
10 =1.5A, VGS =15V
tr
Turn-off Delay Time
RGEN =500, RGS =12.50
td(off)
Fall Time
tf
(RGS (EQUIV.) =100)
source-drain diode ratings and characteristics*
Input Capacitance

VGS

Continuous Source Current

-'-

-

VSO

-

trr

-

IS

Pulsed Source Current

ISM

Diode Forward Voltage
(Tc =25°C, VGS =OV, Is =3.5A)
Reverse Recovery Time
(Is =3.5A, dls/dt =100A/llsec, Tc

=125°C)

-

3.5

A

-

14

A

-

2.5

Volts

-

ns
IlC

200
1.0

-

ORR

ns

-

'pulse Test: Pulse Width $ 300 I1S, duty cycle $ 2%
100
80
60

2.4
2.2

40

2.0

6

4

!§

~

a:

u

!

il
D
9

1.0
0.8
0.6

0.4
0.2 _

O. 1
1.0

~

'" " "-'" '" "

i '~
~

I

I

::;

10~s

...

....

/

.........

r-....

=
=

/

t'o.
TC= 25'C

"r-......' 1', .."
:-....

=

R'hJC 8.33 KN/
SINGLE PULSE
OPERAT'ON IN THIS
AREA IS LIMITED
BYRDS(on)
4

6

I"~

,

IRFF111_
IRFF1108 10

20

40

~

1.4

~

"

1m.

~

1.0

08
.

.~

10ms

I'

100ms

~

DC

a:

=
=

./

/'

-

1.2

:ii
o

"~

TJ = 150°C MAX.

1.6

:;:

100lJ s

I

I

1,8

~

a:

I'

I

CONDITIONS:
ROS(ON) CONDITIONS: 10 1.5 A, VGS 10V
VGS(TH) CONOITIONS: 10 250~A. Vas VGS

Q

20

m

I

0.6

,-~

- -"
I-.

~

V'

ROSION,

/

/

V

I"'"--

0.4

r--

--

VGSITH' -

0.2

60 80100

200

400 600

-40

VDS. DRAIN·TO·SOURCE VOLTAGE (VOLTSI

o

40

80

120

160

T J. JUNCTION TEMPERATURE ('C)

MAXIMUM SAFE OPERATING AREA

TYPICAL NORMALIZED ROSIONI AND VGSITHI VS. TEMP.

258

~D~~

IRFF112,113
3.0 AMPERES
100, 60 VOLTS
ROS(ON) = 0.8 0.

FIELD EFFECT ·POWER TRANSISTOR

Preliminary

This series of N-Channel Enhancement-mode Power
MOSFETs utilizes GE's advanced Power DMOS technology
to achieve low on-resistance with excellent device ruggedness and reliability.

N-CHANNEL

A$

This design has been optimized to give superior performance
in most switching applications including: switching power
supplies, inverters, converters and solenoid/relay drivers.
Also, the extended safe operating area with good linear
transfer characteristics makes it well suited for many linear
applications such as audio amplifiers and servo motors.

CASE STYLE TO-20SAF (TO-39)
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)
0.350-0.370
(8.890-9.398)

--r-----;-,.---;

0.315-0.335
(8.001-8.509)

Features

• Polysilicon gate - Improved stability and reliability
• No secondary breakdown - Excellent ruggedness
• Ultra-fast switching - Independent of temperature
• Voltage controlled - High transconductance
• Low input capacitance - Reduced drive requirement
• Excellent thermal stability - Ease of paralleling

maximum ratings (TC = 25° C)
RATING
Drain-Source Voltage

(unless otherwise specified)
IRFF112
100

IRFF113
60

100

60

UNITS
Volts
Volts

10

3.0

3.0

A

Pulsed Drain Current(1)

10M

Gate-Source Voltage

VGS
Po

12
±20

12
±20

A
Volts

15
0.12

15
0.12

Watts
W/oC

TJ, TSTG

-55 to 150

-55 to 150

°C

Thermal Resistance, Junction to Case
Thermal Resistance, Junction to Ambient

ReJC
ReJA

8_33
175

8.33
175

°C/W
°C/W

Maximum Lead Temperature for Soldering
Purposes: 1/16" from Case for 10 Seconds

h

260

260

°C

Drain-Gate Voltage, RGS = 1Mo.
Continuous Drain Current @ T C = 25°C

Total Power Dissipation @ T C = 25° C
Derate Above 25° C
Operating and Storage
Junction Temperature Range

SYMBOL
VOSS
VOGR

thermar characteristics

(1) Repetitive Rating: Pulse width limited by max. junction temperature_

259

electrical characteristics (Tc = 25° C)

I

(unless otherwise specified)

CHARACTERISTIC

I SYMBOL I

MIN

TYP

MAX

UNIT

BVDSS

100
60

-

-

Volts

off characteristics
Drain-Source Breakdown Voltage
(VGS OV, 10 250 pA)

=

IRFF112
IRFF113

=

Zero Gate Voltage Drain Current
(Vos Max Rating, VGS OV, TC 25°C)
(VOS Max Rating, x 0.8, VGS OV, TC 125°C)

=
=

=

=

=

lOSS

-

--

250
1000

pA

-

IGSS

-

-

±1oo

nA

VGS(TH)

2.0

-

4.0

Volts

10(ON)

3.0

-

-

A

ROS(ON)

-

-

0.8

Ohms

gfs

0.7

-

-

mhos

-

-

200

pF

100

pF

25

pF

-

10

ns

15

-

10

-

IS

-

-

3.0

A

ISM

-

12

A

VSO

-

-

2.0

Volts

trr

-

200
1.0

-

ns
pC

=

Gate-Source Leakage Current
(VGS ±20V)

=

on characteristics*
Gate Threshold Voltage
(VOS VGS, 10 250 p.A)

=

Tc

=

=25°C

On-State Drain Current
(VGS 10V, VOS 10V)

=

=

Static Drain-Source On-State Resistance
(VGS 10V, 10 1.5A)

=

=

Forward Transconductance
(V OS 10V, 10 1.5A)

=

=

dynamic characteristics
Input Capacitance

=OV

VGS

Ciss

=25V
Coss
=1 MHz
C rss
switching characteristics*
Turn-on Delay Time
VOS =30V
td(on)
Rise Time
10 =1.5A, VGS =15V
tr
Turn-off Delay Time
RGEN =50n, RGS =12.5n
td(off)
Fall Time
tf
(RGS (EQUIV.) =10n)
source-drain diode ratings and characteristics*
Output Capacitance

VOS

Reverse Transfer Capacitance

f

Continuous Source Current
Pulsed Source Current
Diode Forward Voltage
(Tc 25°C, VGS OV, Is

=

=

=3.5A)

Reverse Recovery Time
(Is 3.5A, d Is/dt 1OOAIpsec, T C

=

=

=125

0

C)

ORR

15

ns
ns
ns

-

'Pulse Test: Pulse width :5 300 liS, duty cycle:5 2%
2.4

'00
80
60

I

40

2.0

I

I

I

ROS(ON) CONDITIONS: '0
VGS(TH) CONDITIONS: '0

c

~

::;

10"s

.'

, ....

"

....
0
8

6
4

......

..........

~

,

~

I- ~~: :~!i: MAX.
I- R'hJC " 8.33 KJW

...........

o.

,

'.0

4

6

8 '0

20

40

=1.5 A, VGS =10V
=250pA, VOS =VGS
/"

./

1.6

i

~

1.2

"

1.0

~

r'-'ms

1.4

o
.Vi 0.6
c

10ms

L=-"' ~

-.....-

. / I-"""

'"

ROSIONI

/'

V

r-- ~

VGSITHIr-- I--

-

0:

0.4

100ms

0.2

DC

60 80 '00

-r--

z
z

IRFF112_
IRFF113_

AREA IS LIMITED
BY ROS(on)

~

100",5

~

I

1.8

-:.. 0.8

"

I

0:

....

"r........

SINGLE PULSE

02 ,...= OPERATION IN THIS

~

I

CONDITIONS:

2.2

200

400 600

-40

VDS, DRAIN-TD-SOURC~ VOLTAGE (VOLTS)

.0

40

80

120

160

T J • JUNCTION TEMPERATURE ('C)

MAXIMUM SAFE OPERATING AREA

TYPICAL NORMALIZED ROSIONI AND VGSITHI VS. TEMP.

260

~D~~

IRFF120,121
6.0 AMPERES
100, 60 VOLTS
ROS(ON) =0.3 .0.

FIELD EFFECT POVVER TRANSISTOR

Preliminary

This series of N-Channel Enhancement-mode Power
MOSFETs utilizes GE's advanced Power DMOS technology
to achieve low on-resistance with excellent device ruggedness and reliability.

N-CHANNEL

~

This design has been optimized to give superior performance
in most switching applications including: switching power
supplies, inverters, converters and solenoid/relay drivers.
Also, the extended safe operating area with good linear
transfer characteristics makes it well suited for many linear
applications such as audio amplifiers and servo motors.

CASE STYLE TO-205AF (TO-39)
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)
0.350-0.370
(8.890-9.398)

..---;-;.---..,

0.315-0.335
(8.001-8.509)

Features

• Polysilicon gate - Improved stability and reliability
• No secondary breakdown - Excellent ruggedness
• Ultra-fast switching - Independent of temperature
• Voltage controlled - High transconductance
• Low input capacitance - Reduced drive requirement
• Excellent thermal stability - Ease of paralleling

maxi mum rati ngs (T C = 25 0 C)
RATING
Drain-Source Voltage

(unless otherwise specified)

Voss
VOGR

IRFF120
100
100

IRFF121
60
60

UNITS
Volts
Volts

10

6

6

A

Pulsed Drain Current(1)

10M

Gate-Source Voltage
Total Power Dissipation @ T C =25° C
Derate Above 25° C
Operating and Storage
Junction Temperature Range

VGS
Po

24
±20
20
0.16

24
±20
20
0.16

A
Volts
Watts

W/oC

TJ, TSTG

-55 to 150

-55 to 150

°C

Thermal Resistance, Junction to Case
Thermal Resistance, Junction to Ambient

ROJC
ReJA

6.25
175

6.25
175

°CIW
°CIW

Maximum Lead Temperature for Soldering
Purposes: 1/16" from Case for 10 Seconds

TL

260

260

°C

Drain-Gate Voltage, RGS

SYMBOL

= 1M.o.

Continuous Drain Current@Tc

=

25°C

thermal characteristics

(1) Repetitive Rating: Pulse width limited by max. junction temperature.

261

=25

electrical characteristics (T c

I.

C)

0

(unless otherwise specified)

CHARACTERISTIC

I SYMBOL I

MIN

TYP

MAX

UNIT

BVDSS

100
BO

-

-

Volts

-

-

250
1000

p.A

IGSS

-

-

±100

nA

VGS(TH)

2.0

-

4.0

Volts

IO(ON)

B.O

-

-

A

ROS(ON)

-

-

0.3

Ohms

gfs

1.35

-

-

mhos·

-

BOO

pF

400

pF

100

pF

-

ns

off characteristics
Drain-Source Breakdown Voltage
(VGS = OV, 10 = 250 p.A)

IRFF120
IRFF121

Zero Gate Voltage Drain Current
(VOS = Max Rating, VGS =OV, Tc =25°C)
(VOS = Max Rating, x 0.8, VGS= OV, Tc = 125°C)

loss

Gate-Source Leakage Current
(VGS = ±20V)

-

on characteristics*
Gate Threshold Voltage
(VOS = VGS, 10 = 250 /JA)

Tc = 25°C

On-State Drain Current
(VGS = 10V, VOS = 10V)
Static Drain-Source On-State Resistance
(VGS:: 10V, 10 = 3A)
Forward Transconductance
(VOS = 10V, 10 = 3A)

dynamic characteristics
VGS

=10V
VOS =25V

Ciss

-

Output Capacitance
Reverse Transfer Capacitance

f = 1 MHz

Coss
C rss

-

td(on)
tr

-

20

-

-

B

A

24

A

2.5

Volts

-

230
1.2

-

ns
p.C

Input Capacitance

switching characteristics*
Turn-on Delay Time

VOS = 30V

Rise Time

10 = 3A, VGS = 15V

Turn-off Delay Time

RGEN

Fall Time

(RGS (EQUIV.) = 10n)

=50n, RGS =12.5n

td(off)
tf

35
50
35

ns
ns
ns

source-drain diode ratings and characteristics*
Continuous Source Current

IS

Pulsed Source Current

ISM

Diode Forward Voltage
(Tc =25°C, VGS =OV, Is =BA)
Reverse Recovery Time·
(Is = BA, dls/dt =100A/p.sec, Tc = 125°C)

VSO
trr
ORR

'Pulse Test: Pulse width:::; 300 JiS, duty cycle:::; 2%
2.4

100
80
60
40

I

2.2

r--

2.0

r--

I

I
I
I
I
CONDITIONS:
RDS(ON) CONDITIONS: 10 = 3 A. VGS = 10V
VGS(TH) CONOITIONS: 10 = 250pA. VOS = VGS

Q

20

i 1:
ia:
§
u
z

~

CI

9

4

2
1.0
0.8
0.6

~ .-'" r.....

,..

..........

r-.......
.......

I".

.....
~

" ""

~

TC = 25'C
TJ = 150'C MAX.
0.4
RthJC = 6.25 KIW
SINGLE PULSE
0.2 ~OPERATION IN THIS
AREA IS LIMITED
BY ROS(on)
O. 1
1.0
4.
6 8 10

.....

.......

~

lOps

::::;
~

100 po

~

.....
1 ms

1.4

~

1.2

'"
>
Q

1.0

In

'r--.

Z

~ 0.8

10ms

.....

2

o

Fi

100ms

0.6

0:

r--.
40

ROSIOy!/'
1.6

0:

IRFFl20_
IRFF12.1_
20

1.8

0.4

I--

DC

60 80 100

-- --

."...

r-- r-~

""..,

/

,...."

r- r--

~~ ....

I--

0.2
200

o

400 800

VDS. DRA'N-TO-SOURCE VOLTAGE (VOLTS)

MAXIMUM SAFE OPERATING AREA

- 40

o

40

80

120

160

T J • JUNCTION TEMPERATURE ('C)

TYPICAL NORMALIZED RDSIONI AND

2B2

VGSITHI VS.

TEMP.

~~o~[p~

IRFF122,123
5.0 AMPERES
100, 60 VOLTS
ROS(ON) = 0.4 n

FIELD EFFECT PatNER TRANSISTOR

Preliminary

This series of N-Channel Enhancement-mode Power
MOSFETs utilizes GE's advanced Power DMOS technology
to achieve low on-resistance with excellent device ruggedness and reliability.

N-CHANNEL

~

This design has been optimized to give superior performance
in most switching applications including: switching power
supplies, inverters, converters and solenoid/relay drivers.
Also, the extended safe operating area with good linear
transfer characteristics makes it well suited for many linear
applications such as audio amplifiers and servo motors.

CASE STYLE TO-20SAF (TO-39)
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)
0.350-0.370
(8.890-9.398)

...----;-"---;

Features

0.315-0.335
(8.001-8.509)

~

• Polysilicon gate - Improved stability and reliability
• No secondary breakdown - Excellent ruggedness
• Ultra-fast switching - Independent of temperature
• Voltage controlled - High transconductance
• Low input capacitance - Reduced drive requirement
• Excellent thermal stability - Ease of paralleling

maximum ratings (T C = 25° C)
RATING
Drain-Source Voltage
Drain-Gate Voltage, RGS = 1Mn

(unless otherwise specified)
SYMBOL
VOSS
VOGR

IRFF122
100
100

IRFF123
60
60

UNITS
Volts
Volts

10

5.0

5.0

A

Pulsed Drain Current(1)

10M

Gate-Source Voltage
Total Power Dissipation @ Tc = 25°C
Derate Above 25° C
Operating and Storage
Junction Temperature Range

VGS
Po

20
±20
20
0.16

20
±20
20
0.16

A
Volts
Watts
W/oC

TJ, TSTG

-55 to 150

-55 to 150

°C

Thermal Resistance, Junction to Case
Thermal Resistance, Junction to Ambient

R8JC
R8JA

6.25
175

6.25
175

°CIW
°CIW

Maximum Lead Temperature for Soldering
Purposes: 1/16" from Case for 10 Seconds

TL

260

260

°C

Continuous Drain Current @ T C = 25°,C

thermal characteristics

..

(1) RepetItIve RatIng: Pulse width limited by max. junction temperature.

263

electrical characteristics (Tc = 25° C)

I

(unless otherwise specified)

CHARACTERISTIC

I SYMBOL I

MIN

TYP

MAX

UNIT

BVDSS

100
60

-

-

Volts

-

250
1000

pA

IGSS

-

±100

nA

VGS(TH)

2.0

-

4.0

Volts

10(ON)

5.0

-

-

A

ROS(ON)

-

-

0.4

Ohms

off characteristics
Drain-Source Breakdown Voltage
(VGS = OV, 10 = 250 pA)

IRFF122
IRFF123

Zero Gate Voltage Drain Current
(VOS = Max Rating, VGS = OV, Tc = 25°C)
(V OS = Max Rating, x 0.8, VGS = OV, Tc = 125°C)

loss

Gate-Source Leakage Current
(VGS = ±20V)

on characteristics*
Gate Threshold Voltage
(VOS = VGS, 10 = 250 p.A)

Tc = 25°C

On-State Drain Current
(VGS = 10V, VOS = 10V)
Static Drain-Source On-State Resistance
(VGS = 10V, 10 = 3A)
Forward Transconductance
(VOS = 10V, 10 = 3A)

gfs

1.35

-

-

mhos

VGS = 10V

CisS

pF

Output Capacitance

VOS= 25V

Coss
C rss

400

pF

f = 1 MHz

-

600

Reverse Transfer Capacitance

-

100

pF

-

20

ns

35

-

-

5

A

20

A

-

2.3

Volts

230
1.2

-

ns
pC

dynamic characteristics
Input Capacitance

switching characteristics*
.Turn-on Delay Time

VOS = 30V

'RiseTime

10 = 3.0A, VGS = 15V

Turn-off Delay Time

RGEN = 500, RGS = 12.50

Fall Time

(RGS (EQUIV.) = 100)

td(on)
tr
td(off)
tf

35
50

ns
ns
ns

source-drain diode ratings and characteristics*
Pulsed Source Current

ISM

Diode Forward Voltage
(Tc = 25°C, VGS = OV, IS = 5A)

VSO

-

Reverse Recovery Time
(Is = 6A, dls/dt = 100A/psec, Tc = 125°C)

trr
ORR

-

Continuous Source Current

Is

'Pulse Test: Pulse width :5 300 /.IS, duty cycle :5 2%
100
80
60
40
20
(

~

ia:

!!i

U

1~

2.4
2.2

,

2.0 -

~

9

10ps

",

I'

6
4

l'.-.

1.0
0.8
0.6

TC= 25'C
TJ = lSO'C MAX.
0.4
RthJC = 6.25 KIW
SINGLE PULSE
02 --=OPERATION IN THIS
AREA IS LIMITED
BYRDS(on)

I

J

I

I

CONDITIONS:
ROS(ON) CONDITIONS: 10 = 3 A. VGS = lOV
VGS(TH) CONOITIONS: 10 = 250pA. VOS = VGS

4,

6

...........

r-..

1.6

ROS(ONY

~

1.2

~'"

1.0

z

'I"-

~ 0.8

z
o

10ms

"

~ 0.6
100ms

0:

,,/

---- :---

V

~

r---

0.4

r-..
40

1.4

;:
1 ms

IRFF1~_

20

~
~

I'

IRFFl23_

8 10

1.8

0:

......

'"

~

:::;

..... lOOps

" "" "

2

0.1
1.0

I

c

k''''

z
Q

I

-

-- --

~GS(THI I - - -

"-

0.2

DC

1-1"-

60 80100

....V

200

o

400 600

MAXIMUM SAFE OPERATING AREA

-40

o

40

80

120

160

T J • JUNCTION TEMPERATURE ('CI

VOs. ORAlN-TO-SOURCE VOLTAGE (VOLTS)

TYPICAL NORMALIZED RDSIONI AND VGSITHI VS. TEMP.

264

~D~[P~

IRFF130,131

FIELD EFFECT POWER TRANSISTOR

8.0 AMPERES
100, 60 VOLTS
ROS(ON) = 0.18!l
Preliminary

This series of N-Channel Enhancement-mode Power
MOSFETs utilizes GE's advanced Power DMOS technology
to achieve low on-resistance with excellent device ruggedness and reliability.

N-CHANNEL

A$

This design has been optimized to give superior performance
in most switching applications including: switching power
supplies, inverters, converters and solenoid/relay drivers.
Also, the extended safe operating area with good linear
transfer characteristics makes it well suited for many linear
applications such as audio amplifiers and servo motors.

CASE STYLE TO-20SAF (TO-39)
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)
0.350·0.370
(6.690·9.396)

-.-----;-i----j

0.315.().335
(8.001·6.509)

Features

• Polysilicon gate - Improved stability and reliability
• No secondary breakdown - Excellent ruggedness
• Ultra-fast switching - Independent of temperature
• Voltage controlled - High transconductance
• Low input capacitance - Reduced drive requirement
• Excellent thermal stability - Ease of paralleling

maximum ratings (T C = 25 0 C)

(unless otherwise specified)
SYMBOL
Voss
VOGR

IRFF130

IRFF131

100
100

60
60

UNITS
Volts
Volts

10

8

8

A

Pulsed Drain Current(1)

10M

Gate-Source Voltage
Total Power Dissipation @ Tc = 25DC
Derate Above 25 DC
Operating and Storage
Junction Temperature Range

VGS
Po

32
±20
25
0.2

32
±20
25
0.2

A
Volts
Watts
W/DC

TJ, TSTG

-55 to 150

-55 to 150

DC

ROJC
ROJA

5.0
175

5.0
175

DC/W
DC/W

h

260

260

DC

RATING
Drain-Source Voltage
Drain-Gate Voltage, RGS = 1M!l
Continuous Drain Current @ T C = 25 DC

thermal characteristics
Thermal Resistance, Junction to Case
Thermal Resistance, Junction to Ambient
Maximum Lead Temperature for Soldering
Purposes: 1/16" from Case for 10 Seconds

(1) Repetitive Rating: Pulse width limited by max. junction temperature.

265

electrical characteristics (T c

=25° C) (unless otherwise specified)

CHARACTERISTIC

I SYMBOL I

MIN

BVDSS

100
60

I

TYP

MAX

UNIT

-

-

Volts

off characteristics
.Drain-Source Breakdown Voltage
(VGS = OV, 10 = 25OI1A)

IRFF130
IRFF131

Zero Gate Voltage Drain Current
(VOS = Max Rating, VGS = OV, Tc = 25°C)
(VOS = Max Rating, x O.B, VGS = OV, Tc = 125°C)

loss

-

250
1000

I1A

-

±100

nA

-

IGSS

-

VGS(TH)

2.0

-

4.0

Volts

10(ON)

B.O

-

-

A

ROS(ON)

-

-

0.1B

Ohms

gfs

2.4

-

-

mhos

VGS = OV

Ciss

pF

VOS = 25V

500

pF

Reverse Transfer Capacitance

f = 1 MHz

Coss
C rss

-

BOO

Output Capacitance

-

-

150

pF

td(on)

-

30

ns

tr

-

BO

-

50

BO

-

Gate-Source Leakage Current
(VGS = ±20V)

on characteristics*
Gate Threshold Voltage
(VOS = VGS, 10 = 250 p,A)

Tc = 25°C

On-State Drain Current
(VGS = 10V, VOS = 10V)
Static Drain-Source On-State Resistance
(VGS =10V, 10 = 4.0A)
Forward Transconductance
(V OS = 10V, 10 = 4.0A)

dynamic characteristics
Input Capacitance

switching characteristics*
Turn-on Delay Time

VOS = 30V

Rise Time

10 = 4.0A, VGS = 15V

Turn-off Delay Time

RGEN = 500, RGS = 12.50

Fall Time

(RGS (EQUIV.) = 100)

td(off)
tf

ns
ns
ns

source-drain diode ratings and characteristics*
Is

-

A

ISM

-

-

B

Pulsed Source Current

32

A

Diode Forward Voltage
. (Tc = 25°C, VGS = OV, Is = BA)

VSO

-

-

2.5

Volts

trr

-

300
1.5

-

ns
I1 C

Continuous Source Current

Reverse Recovery Time
(Is = BA, dls/dt = 100All1sec, Tc = 125°C)

-

ORR

'Pulse Test: Pulse width:::; 300 p.s, duty cycle:::; 2%
100
80
60

2.4

40

;'><.:

(,: "/"'" " "" ""- "
20

r--.~

10~s

m4

a:

u

........

....

2

Z

~

c

g

1.0
0.8
0.6

"
"" "

1m.

40

1.6

1.4

~ O.B

~

100ms

rl

0:

DC

60 80 100

I

I

=
=

L

,,/

200

0.6

0.4

-r-- -.....-

-- -

. / VROSIONI

/

......V
-r--- r---

-

VGSITHI_

r-

O. 2

~:=~~~~
20

~

gs

>C) t.O
o

:-. 10m.

r--.

I

=
=

"~ 1.2 -""'-

........
.......

TC= 25°0
TJ = 1500 e MAX.
0.4
R'hJC • 5.0 K/W
SINGLE PULSE
0.2 r-=0PERATION IN THIS
AREA IS LIMITED
BYADS(on)
O. 1
4
6 8 10
1.0

I

CONDITIONS:
ROS(ON) CONDITIONS: 10 4.0 A. VGS 10V
VGS(TH) CONDITIONS: 10 250~A. VOS VGS

~ 1.8

:;;

"-

I'...

I

N

.... 100 ••

/

§

I

2.0 2.2

400 600

-40

VDS. DRAIN-TO-SOURCE VOLTAGE (VOLTS)

0

40

BO

120

160

T J' JUNCTION TEMPERATURE ('CI

MAXIMUM SAFE OPERATING AREA

TYPICAL NORMALIZED ROSIONI AND VGSITHI VS. TEMP.

266

~D~~~U

IRFF132,133
7.0 AMPERES
100, 60 VOLTS
ROS(ON) =0.25 .0.

FIELD EFFECT POVVER TRANSISTOR

Preliminary

This series of N-Channel Enhancement-mode Power
MOSFETs utilizes GE's advanced Power DMOS technology
to achieve low on-resistance with excellent device ruggedness and reliability.

N-CHANNEL

~

This design has been optimized to give superior performance
in most switching applications including: switching power
supplies, inverters, converters and solenoid/relay drivers.
Also, the extended safe operating area with good linear
transfer characteristics makes it well suited for many linear
applications such as audio amplifiers and servo motors.

CASE STYLE TO-205AF (TO-39)
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)
0.350-0.370
18.890-9.398)

...----++---i

0.315-0.335
18.001-8.509)

Features
• Polysilicon gate - Improved stability and reliability

~1
10.229-0.457)

• No secondary breakdown - Excellent ruggedness

0.500
(12.70)
MIN

• Ultra-fast switching - Independent of temperature

23
n Il"Hn'l--GATE
u- U- U
SOURCE
0.016-0.019 .11.-

10.406-0.483)

0.191J.0.210
14.826-5.334)

• Voltage controlled - High transconductance
0.029-0.045

• Low input capacitance - Reduced drive requirement
• Excellent thermal stability - Ease of paralleling

maximum ratings (TC

=25° C)

RATING
Drain-Source Voltage
Drain-Gate Voltage, RGS = 1M.o.
Continuous Drain Current @ T C = 25°C
Pulsed Drain Current(')
Gate-Source Voltage
Total Power Dissipation @ Tc = 25°C
Derate Above 25° C
Operating and Storage
Junction Temperature Range

(unless otherwise specified)

\(OGR

IRFF132
100
100

IRFF133
60
60

UNITS
Volts
Volts

10

7.0

7.0

A

10M
VGS
Po

28
±20
25
0.2

28
±20
25
0.2

A
Volts
Watts

W/oC

TJ, TSTG

-55 to 150

-55 to 150

°C

R8JC
R8JA

5.0
175

5.0
175

°C/W
°C/W

h

260

260

°C

SYMBOL
Voss

thermal characteristics
Thermal Resistance, Junction to Case
Thermal Resistance, Junction to Ambient
Maximum Lead Temperature for Soldering
Purposes: 1/16" from Case for 10 Seconds

(1) Repetitive Rating: Pulse width limited by max. junction temperature.

267

electrical characteristics (Tc

I

=25° C) (unless otherwise specified)

CHARACTERISTIC

I SYMBOL I

MIN

TYP

MAX

UNIT

BVDSS

100
60

-

-

Volts

-

250
1000

pA

IGSS

-

±100

nA

VGS(TH)

2.0

-

4.0

Volts

10(ON)

7.0

-

-

A

-

-

0.25

Ohms

gfs

2.4

-

-

mhos

Ciss

-

-

800

pF

500

pF

-

-

150

pF

30

tf

-

80

-

ns

td(off)

-

off characteristics
Drain-Source Breakdown Voltage
(VGS =OV, 10 = 250 pA)

IRFF132
IRFF133

Zero Gate Voltage Drain Current
(VOS = Max Rating, VGS =OV, Tc =25°C)
(VOS =Max Rating, x 0.8, VGS =OV, Tc =125°C)

lOSS

Gate-Source Leakage Current
(VGS =±20V)

on characteristics*
Gate Threshold Voltage
(VOS =VGS, 10 =250 p.A)

Tc

=25°C

On-State Drain Current
(VGS =10V, VOS =10V)
Static Drain-Source On-State Resistal1ce
(VGS = 10V, 10 =4.0A)

ROS(ON)

Forward Transconductance
(VOS =10V, 10 =4.0A)

dynamic characteristics
=OV
VOS =25V
f =1 MHz

Input Capacitance

VGS

Output Capacitance
Reverse Transfer Capacitance

Coss
C rss

switching characteristics*
=30V
=4A, VGS = 15V
RGEN =500, RGS = 12.50
(RGS (EQUIV.) =100)

Turn-on Delay Time

VOS

Rise Time

10

Turn-off Delay Time
Fall Time

td(on)
tr

eo
50

ns
ns
ns

source-drain diode ratings and characteristics*
7

A

ISM

-

-

Pulsed Source Current

-

28

A

Diode Forward Voltage
(Tc =25°C, VGS =OV, Is = 7A)

VSO

-

-

2.3

Volts

trr

-

-

ns
pC

Continuous Source Current

Is

Reverse Recovery Time
(IS =8A, dls/dt = 100A/psec, TC

= 125°C)

300
1.5

-

ORR

'Pulse Test: Pulse width? 300 ps, duty cycle:::; 2%
100

2.4

80

• 60
40

"-

20

/

ili

/

10

I:
!;;

w

2.0

r-,.

r"-~

.'" "

"'.......

r"-r-,.
2

i!i

~ ~:~
9

=

TC 25°C
TJ " 150'C MAX.
0.4
R'hJC " 5.0 KIW
SINGLE PULSE
0.2 -=OPERATION IN THIS

0.6

1.0

4

"

6

8 10

20

40

1.8

~

1.6

:;;
~ 1.4

1m.

'" " "'"

S

z

~ 1.2

>'tj 1.0
"

10 m.

c

:i

-

~ 0.6

c

a:

DC

V

200

0.4

....- /ROSIONI

-..

-r-- .---

-- -

....-/

......V
r--

-

-f----VGSITHI_

f::::-

0.2

i-!RFFI32
r-IRFFI33

60 80 100

0.8

2

100ms

:-.

./

N

100 ••

~

AREA IS LIMITED
BVROS(on)

0.1

"

10,..

.........

4

a:

!!i
u

I
I
I
I
I
J
J
CONDITIONS:
ROS(ON) CONDITIONS: 10 = 4.0 A, VGS = 10V
VGS(TH) CONDITIONS: 10 = 250pA. VOS = VGS

2.2

400 600

40

YO&' ORAIN-TO-SOURCE YOLTAGE (YOLTS)

o

40

80

120

160

TJ • JUNCTION TEMPERATURE ('C)

MAXIMUM SAFE OPERATING AREA

TYPICAL NORMALIZED ROSIONI AND VGSITHI VS. TEMP.

268

~D~~

IRFF210,211
2.2 AMPERES
200, 150 VOLTS
ROS(ON) =1.5 il

FIELD EFFECT POWER TRANSISTOR

Preliminary

This series of N-Channel Enhancement-mode' Power
MOSFETs utilizes GE's advanced Power DMOS technology
to achieve low on-resistance with excellent device ruggedness and reliability.

N-CHANNEL

~

This design has been optimized to give superior performance
in most switching applications including: switching power
supplies, inverters, converters and solenoid/relay drivers.
Also, the extended safe operating area with good linear
transfer characteristics makes it well suited for many linear
applications such as audio amplifiers and servo motors.

CASE STYLE TO-20SAF (TO-39)
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)
0.350-0.370
(8.890-9.398)

0.315-0.335
(8.001-8.509)

....-----7-..- -......

Features
• Polysilicon gate -

Improved stability and reliability

• No secondary breakdown - Excellent ruggedness
• Ultra-fast switching -

Independent of temperature

• Voltage controlled - High transconductance
• Low input capacitance - Reduced drive requirement
• Excellent thermal stability - Ease of paralleling

maximum ratings (T C = 25° C)
RATING
Drain-Source Voltage

(unless otherwise specified)
SYMBOL
VOSS
VOGR

Drain-Gate Voltage, RGS = 1Mil
Continuous Drain Current @ T C

= 25°C

10

IRFF210
200

UNITS
Volts

200

IRFF211
150
150

2.2

2.2

A

Volts

Pulsed Drain Current(1)

10M

9

9

Gate-Source Voltage

VGS
Po

±20

±20

15
.12

15
.12

A
Volts
Watts
W/oC

TJ, TSTG

-55 to 150

-55 to 150.

°C

Thermal Resistance, Junction to Case
Thermal Resistance, Junction to Ambient

ROJC
ROJA

8.33

8.33

175

175

°CIW
°CIW

Maximum Lead Temperature for Soldering
Purposes: 1/16" from Case for 10 Seconds

TL

260

260

°C

Total Power Dissipation @ TC
Derate Above 25° C
Operating and Storage
Junction Temperature Range

=25°C

thermal characteristics

(1) Repetitive Rating: Pulse width limited by max. junction temperature.

269

electrical characteristics (T c

I

=25

0

C)

(unless otherwise specified)

CHARACTERISTIC

I SYMBOL I

MIN

TYP

BVDSS

200
150

-

MAX

UNIT

off characteristics
Drain-Source Breakdown Voltage
(VGS = OV, 10 = 250 pA)

IRFF210
IRFF211

Zero Gate Voltage Drain Current
(VOS = Max Rating, VGS = OV, TC = 25°C)
(VOS = Max Rating, x 0.8, VGS = OV, TC = 125°C)

loss

-

-

Volts

-

-

250
1000

pA

-

IGSS

-

-

±100

nA

VGS(TH)

2.0

-

4.0

Volts

10(ON)

2.2

-

-

A

ROS(ON)

-

-

1.5

Ohms

9fs

.72

-

-

mhos

Ciss

-

-

150

pF

-

80

pF

25

pF

-

8

-

ns

15
10

-

ns

-

ns

-

8

-

ns

Gate-Source Leakage Current
(VGS = ±20V)

on characteristics*
Gate Threshold Voltage
(VOS = VGS, 10 = 250 IJ.A)

Tc = 25°C

On-State Drain Current
(VGS = 10V, VOS = 10V)
Static Drain-Source On-State Resistance
(VGS = 10V, 10 = 1.25A)
Forward Transconductance
(VOS = 10V, 10 = 1.25A)

dynamic characteristics
=OV

Input Capacitance

VGS

Output Capacitance

VOS= 25V
f = 1 MHz

Reverse Transfer Capacitance

Coss
C rss

switching characteristics*
Turn-on Delay Time

VOS = 90V

td(on)

Rise Time

10 = 1.25A, VGS = 15V

Turn-off Delay Time

RGEN = 500, RGS = 12.50

Fall Time

tr
td(off)
tf

(RGS (EQUIV.) = 100)

source-drain diode ratings and characteristics*
Is

-

-

2.2

A

Pulsed Source Current

ISM

-

-

9.0

A

Diode Forward Voltage
(Tc = 25°C, VGS = OV, IS = 2.SA)

VSO

-

-

2.0

Volts

290
2.0

-

ns
pC

Continuous Source Current

Reverse Recovery Time
(IS = 2.2A, dls/dt = 100A/psec, Tc

trr

=125°C)

-

ORR

'Pulse Test: Pulse width:::; 300/.ls, duty cycle ~ 2%
50
40

2.4

20

2.0

!'
15

l

i

o

'0
8
6

I........

'" ,'" ['..

I(

4

:--......"

2

/'

II:

a::

B

:--......

,/

1.0

.....

10"s

!

i',

'" "-

r;TC=25'C
J = 150'C MAX.
RlhJC =

0.2

8.33 KIW

SINGLE PULSE

r

1

O. 1 ""':OPERATION IN THIS AREA
_IS liMITED
1

4

!") I

6 8 10

20

40

~

1.4

~

1.2

"

1.0

~

r-...
i'~ I'.
i'~ i'

:=~~~:~:::;;

RiSI

1.6

z

1 ms

9

1.B

~

.... l00.s

,-" ~

0.8
0.6
.. 0.4

~

" 1.0

"
40

-

a;

..... 100"

-r-- -,.,......

/'

./

,/

-'"---

f--

VGSITH) -

r

0.2

:=~~~~~-=;: ""

20

I

-

o

400 600

YDS, DRAIN-TO·SDURCE YDLTAGE (VOLTS)

-40

o

40

80

120

160

T J' JUNCTION TEMPERATURE I·C)

MAXIMUM SAFE OPERATING AREA

TYPICAL NORMALIZED ROSIONI AND

272

VQSITHI VS.

TEMP.

~D~[P~U

IRFF220,221
3.5 AMPERES
200, 150 VOLTS
ROS(ON) =0.8 n

FIELD EFFECT POVVER TRANSISTOR

Preliminary

This series of N-Channel Enhancement-mode Power
MOSFETs utilizes GE's advanced Power DMOS technology
to achieve low on-resistance with excellent device ruggedness and reliability.

N-CHANNEL

A$.

This design has been optimized to give superior performance
in most switching applications including: switching power
supplies, inverters, converters and solenoid/relay drivers.
Also, the extended safe operating area with good linear
transfer characteristics makes it well suited for many linear
applica~ions such as audio amplifiers and servo motors.

CASE STYLE TO-20SAF (TO-39)
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)
0.350-0.370
(8.890·9.398)
0.315-0.335
(8.001-8.509)

Features

• Polysilicon gate - Improved stability and reliability
~1
(0.229-0.457)

23

n fr-tnl---GATE
U- U
SOURCE

• No secondary breakdown - Excellent ruggedness

...L-_~.U4
0.500
(12.70)
MIN

• Ultra-fast switching - Independent of temperature

0.016-0.019
(0.406-0.483)

.Il--

0.190-0.210
(4.826-5.334)

• Voltage controlled - High transconductance
• Low input capacitance - Reduced drive requirement
• Excellent thermal stability - Ease of paralleling

maximum ratings (T C =25° C)
RATING
Drain-Source Voltage
Drain-Gate Voltage, RGS = 1Mil
Continuous Drain Current @ T C = 25°C
Pulsed Drain Current(l)
Gate-Source Voltage
Total Power Dissipation @TC = 25°C
Derate Above 25° C
Operating and Storage
Junction Temperature Range

(unless otherwise specified)
SYMBOL
Voss
VOGR

IRFF220
200
200

IRFF221
150
150

UNITS
Volts
Volts

10

3.5

3.5

A

IDM
VGS
Po

14
±20
20
1.6

14
±20
20
1.6

A
Volts
Watts
W/oC

TJ, TSTG

-55 to 150

-55 to 150

°C

RUJC
ReJA

6.25
175

6.25
175

°elW
°CIW

TL

260

260

°C

thermal characteristics
Thermal Resistance, Junction to Case
Thermal Resistance, Junction to Ambient
Maximum Lead Temperature for Soldering
Purposes: 1116" from Case for 10 Seconds

(1) Repetitive Rating: Pulse width limited by max. junction temperature.

273

electrical characteristics (T c = 25° C)

I

(unless otherwise specified)

CHARACTERISTIC

I SYMBOL I

MIN

BVDSS

I

TYP

MAX

UNIT

200
150

-

-

Volts

-

250
1000

pA

±100

nA

off characteristics
Drain-Source Breakdown Voltage
(Vas = OV, 10 = 250 pA)

IRFF220
IRFF221

Zero Gate Voltage Drain Current
(Vos = Max Rating, Vas = OV, Tc = 25°C)
(Vos = Max Rating, x 0.8, VGS = OV, Tc = 125°C)

loss

-

IGSS

-

-

VGS(TH)

2.0

-

4.0

Volts

10(ON)

3.5

-

-

A

ROS(ON)

-

-

0.8

Ohms

gfs

1.2

-

-

mhos

-

-

600

pF

300

pF

-

80

pF

20

ns

30

-

-

3.5

A

-

14

A

VSO

-

-

2.0

Volts

trr

-

350
2.3

-

ns
pC

-

Gate-Source Leakage Current
(Vas = ±20V)

on characteristics·
Gate Threshold Voltage
(VOS = VGS, 10 = 250 p.A)

TC = 25°C

On-State Drain Current
(VGS = 10V, VOS = 10V)
Static Drain-Source On-State Resistance
(VGS = 10V, 10 = 2.OA)
Forward Transconductance
(VOS = 10V, 10 = 2.0A)

dynamic characteristics
Input Capacitance

Vas = 10V

Ciss

Output Capacitance

VOS = 25V
f = 1 MHz

Coss
C rss

Reverse Transfer Capacitance

switching characteristics·
Turn-on Delay Time

VDS = 90V

Rise Time

10 = 2.OA, Vas = 15V

Turn-off Delay Time

RGEN = 500, RGS = 12.50

Fall Time

(RGS (EQUIV.) = 100)

-

td(on)
tr
td(off)
tf

30
50

ns
ns
ns

source-drain diode ratings and characteristics·
Continuous Source Current

IS

Pulsed Source Current

ISM

Diode Forward Voltage
(Tc =25°C, VGS =OV, Is = 3.5A)
Reverse Recovery Time
(Is = 3.5A, dls/dt = 100A/psec, Tc = 125°C)

-

ORR

·Pulse Test: Pulse width :5 300 I1S, duty cycle :5 2%
50
40

2.4
2.2

20

2.0

I :
...

I

~

~

........

;I'
;I'

r-..

;I'

" "t'-....,,~

'"

1.0
0.8

0.6
0.4

........

r--..

4

IG
Z

........

........

10

Tc = 25°C

4

.... 1 ms

~

r-..

"

1.2
1.0

40

80 80100

0.8

0

~ 0.6

a:

100ms

200

./

0.4

r--

-

- -

... V

~

..,/'

I---

V

./"

./

'"

r----Io-.

~SITHI- f - -

r--

1-0..

0.2

DO

:~~;~~~::- fo.
20

~on

"

10ms

RDS1Oo/

1.8

>"
~

r--..

I

8 8 10

~
........

f-;rJ' 150'0 MAX.
RthJO • B.25K/W
SINGLE PULSE
O. 1 =OPERATION IN THIS AREA
_IS liMITED
R~S(r)

0.05 1

100 "B

........

I--

l/

CONDITIONS:
ROS(ON) CONOITIONS: 10' 2.0 A. VGS' 10V
VGS(TH) CONOITIONS: 10' 250,.A. VOS' VGS

'":::;
..:
:ea: 1.6
c 1.4
2

N

Q

0.2

r

,

"- r-...,i'

c

10 "B

I--

0

400 BOO

-40

40

80

120

160

TJ • JUNCTION TEMPERATURE ('C)

YDS. DRAIN·TO·SOURCE YDLTAGE (YOLTS)

TYPICAL NORMALIZED RDSIONI AND VGSITHI VS. TEMP.

MAXIMUM SAFE OPERATING AREA

274

~D~[¥~lf

IRFF222,223
3 AMPERES

FIELD EFFECT POVVER TRANSISTOR

200, 150 VOLTS
ROS(ON) = 1.2 n
Preliminary

This series of N-Channel Enhancement-mode Power
.MOSFETs utilizes GE's advanced Power DMOS technology
to achieve low on-resistance with excellent device ruggedness and reliability.

N-CHANNEL

~

This design has been optimized to give superior performance
in most switching applications including: switching power
supplies, inverters, converters and solenoid/relay drivers.
Also, the extended safe operating area with good linear
transfer characteristics makes it well suited for many linear
applications such as audio amplifiers and servo motors.

CASE STYLE TO-20SAF (TO-39)
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)
0.350-0.370
(8.890-9.398)

.---;-,.---;

Features
• Polysilicon gate -

0.315-0.335
(8.001-8.509)

~

Improved stability and reliability

• No secondary breakdown - Excellent ruggedness
• Ultra-fast switching -

Independent of temperature

• Voltage controlled - High transconductance
• Low input capacitance - Reduced drive requirement

0.029-0.045
(0.737-1.143)
0.028-0.034

• Excellent thermal stability - Ease of paralleling

maximum ratings (TC =25° C)

(0.711-0.884)

(unless otherwise specified)
SYMBOL
Voss
VOGR

IRFF222
200
200

IRFF223
150
150

UNITS
Volts
Volts

10

3.0

3.0

A

Pulsed Drain Current(1)

10M

Gate-Source Voltage
Total Power Dissipation @TC
Derate Above 25° C
Operating and Storage
Junction Temperature Range

VGS
Po

12
±20
20
0.16

12
±20
20
0.16

A
Volts
Watts
W/oC

TJ, TSTG

-55 to 150

-55 to 150

°C

Thermal Resistance, Junction to Case
Thermal Resistance, Junction to Ambient

ROJC
ROJA

6.25
175

6.25
175

°C/W
°C/W

Maximum Lead Temperature for Soldering
Purposes: 1/16" from Case for 10 Seconds

TL

260

260

°C

RATING
Drain-Source Voltage
Drain-Gate Voltage, RGS = 1M!l
Continuous Drain Current @ T C = 25°C

=25°C

thermal characteristics

(1) Repetitive Rating: Pulse width limited by max. junction temperature.

275

=25° C) (unless otherwise specified)

electrical characteristics (Tc

I

CHARACTERISTIC

I SYMBOL I

MIN

TYP

MAX

BVDSS

200
150

-

-

UNIT

off characteristics
Drain-Source Breakdown Voltage
(VGS. =OV, 10 = 250 JlA)
Zero Gate Voltage Drain Current
(VOS =Max Rating, VGS =OV, TC = 25°C)
(VOS = Max Rating, x 0.8, VGS =OV, TC = 125°C)

IRFF222
IRFF223

lOSS

-

-

Volts

-

250
1000

JlA

-

±100

nA

IGSS

-

VGS(TH)

2.0

-

4.0

Volts

10(ON)

3.0

-

-

A

-

-

1.2

Ohms

1.2

-

-

mhos

-

-

600

pF

-

300

pF

-

80

pF

-

20

-

ns

30

-

ns

50

-

ns

-

30

-

ns

-

3
12

A
A

1.8

Volts

350
2.3

-

JlC

Gate-Source Leakage Current
(VGS =±20V)

on characteristics*
Gate Threshold Voltage
(VOS =VGS, 10 = 250 f.lA)

Tc

=25°C

On-State Drain Current
(VGS =10V, VOS = 10V)
Static Drain-Source On-State Resistance
(VGS = 10V, 10 =2.0A)

ROS(ON)

Forward Transconductance
(VOS = 10V, 10 =2.0A)

gfs

dynamic characteristics
=10V
Ciss
VOS =25V
Coss
Reverse Transfer Capacitance
C rss
f =1 MHz
switching characteristics*
Turn-on Delay Time
VOS =90V
td(on)
Rise Time
10 =2.0A, VGS =15V
tr
Turn-off Delay Time
RGEN =50U, RGS = 12.5U
td(off}
Fall Time
tf
(RGS (EQUIV.) =10n)
source-drain diode ratings and characteristics*
Input Capacitance

VGS

Output Capacitance

Pulsed Source Current

ISM

Diode Forward Voltage
(Tc =25°C, VGS =OV, IS = 3.0A)

VSO

-

trr

-

Continuous Source Current

IS

Reverse Recovery Time
(Is =3.5A, dls/dt = 100A/Jlsec, Tc

=125°C)

-

ORR

ns

'Pulse Test: Pulse width :5 300 lIS, ,duty cycle :5 2%
50
40

2.4
2.2

I

-

20
2.0 -

i3
ili

!i

~

10

a
6
4

!Zw

2

~

1.0
O.B
0.6
0.4

"
1"- " ~ "

./

" ~ "'~ "

./

-"

"-

II:
II:

z

~

c

.9

TC =251>C
T J = 150D C MAX.
0.2
R'hJC =6.25 KIW
SINGLE PULSE
!:=OPERATION IN THIS AREA
O. 1
_ I S liMITED
RiS
I

r

0.05 I

4

""

~r-..

100"s

":::;

1.8

~

1.6

~

1.4

a:

"

~

~
:;

1 ms

>

:~~~~~~
40

"

50 BO 100

2

o

lOOms

::- ..

~

r- I-

a:

0.6

I

I

I

I

I

/

CONDITIONS:
ROS(ON) CONDITIONS: 10 2.0 A. VGS = 10V
VGS(TH) CONOITIONS: 10 250pA. VOS = VGS

ROSIONV

=
=

./

. . .V

-1 -f--

,/

r---

-

,.....,.

.;'/
...........

""

i--

--

~~ io-.

r---

004
0.2

DC

200

1.2
1.0

~ O.B

10ms

.....

" I'20

~

C
Z

(!")

6 B 10

10".

"-

I

o
400 BOO

-40

o

40

80

120

160

T J • JUNCTION TEMPERATURE ('C)

VOS. DRAIN·TO·SOURCE VOLTAGE (VOLTS)

TYPICAL NORMALIZED ROSIONI AND VGSITHI VS. TEMP.

MAXIMUM SAFE OPERATING AREA

276

~~D~[P~U

IRFF230,231

FIELD EFFECT POWER TRANSISTOR

5.5 AMPERES
200,150 VOLTS
ROS(ON) =0.4 n
Preliminary

This series of N-Channel Enhancement-mode Power
MOSFETs utilizes GE's advanced Power DMOS technology
to achieve low on-resistance with excellent device ruggedness and reliability.

N-CHANNEL

~

This design has been optimized to give superior performance
in most switching applications including: switching power
supplies, inverters, converters and solenoid/relay drivers.
Also, the extended safe operating area with good linear
transfer characteristics makes it well suited for many linear
applications such as audio amplifiers and servo motors.

CASE STYLE TO-205AF (TO-39)
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)
0.350-0.370
(8.890-9.398)

.-__+....__. . .

Features

0.315-0.335
(8.001-8.509)

(0.483-0.838)

;-.-=~:.e:n=;yr:::~~
_-.r --

• Polysilicon gate - Improved stability and reliability

SEATING
PLANE

DRAIN
-ft---GATE

• No secondary breakdown - Excellent ruggedness
• Ultra-fast switching - Independent of temperature
• Voltage controlled - High transconductance
• Low input capacitance - Reduced drive requirement
• Excellent thermal stability - Ease of paralleling

maximum ratings (T C = 25° C)

(unless otherwise specified)

RATING
Drain-Source Voltage
Drain-Gate Voltage, RGS = 1Mn
Continuous Drain Current @ T C = 25°C
Pulsed Drain Current(1)
Gate-Source Voltage
Total Power Dissipation @ TC
Derate Above 25° C
Operating and Storage
Junction Temperature Range

=25°C

-

SYMBOL
Voss
VOGR

IRFF230
200
200

IRFF231
150
150

UNITS
Volts
Volts

10

5.5

5.5

A

10M

VGS
Po

22
±20
25
0.2

22
±20
25
0.2

A
Volts
Watts
W/oC

TJ, TSTG

-55 to 150

-55 to 150

°C

ROJC
ROJA

5.0
175

5.0
175

°C/W
°C/W

h

260

260

°C

thermal characteristics
Thermal Resistance, Junction to Case
Thermal Resistance, Junction to Ambient
Maximum Lead Temperature for Soldering
Purposes: 1/16" from Case for 10 Seconds

(1) Repetitive Rating: Pulse width limited by max. junction temperature.

277

electrical characteristics (T c

I

=25° C) (unless otherwise specified)

CHARACTERISTIC

I SYMBOL I

MIN

TYP

MAX

UNIT

BVDSS

200
150

-

-

Volts

-

250
1000

J1A

±100

nA

off characteristics
Drain-Source Breakdown Voltage
(VGS =OV, 10 =250 J1A)
Zero Gate Voltage Drain Current
(V OS =Max Rating, VGS =OV, Tc = 25°C)
(VOS =Max Rating, x 0.8, VGS =OV, Tc =125°C)

IRFF230
IRFF231

losS

IGSS

-

-

VGS(TH)

2.0

-

4.0

Volts

10(ON)

5.5

-

-

A

ROS(ON)

-

-

0.4

Ohms

gfs

1.75

-

-

mhos

-

-

800

pF

-

450

pF

150

pF

-

ns

-

5.5

A

22

A

2.0

Volts

450
3.0

-

ns
pC

Gate-Source Leakage Current
(VGS =±20V)

on characteristics*
Gate Threshold Voltage
(VOS =VGS, 10 =250 p.A)

Tc

=25°C

On-State' Drain Current
(VGS =10V, VOS =10V)
Static Drain-Source On-State Resistance
(VGS =10V, 10 =3.0A)
Forward Transconductance
(VOS =10V, 10 =3.0A)

dynam ic characteristics
=OV
Ciss
Output Capacitance
VOS =25V
Coss
Reverse Transfer Capacitance
f =1 MHz
C rss
switching characteristics*
Turn-on Delay Time
VOS =90V
td(on)
Rise Time
10 =3.0A, VGS =15V
tr
Turn-off Delay Time
RGEN =50.0, RGS =12.5.0
td(off)
Fall Time
tf
(RGS (EQUIV.) =10n)
source-drain diode ratings and characteristics*
Input Capacitance

VGS

Continuous Source Current

ISM

Diode Forward Voltage
(Tc =25°C, VGS =OV, IS =5.5A)
Reverse Recovery Time
(Is =5.5A, dls/dt =100A/psec, Tc

VSO
trr
ORR

=125°C)

2.4

40

"- " "1'0..

1'1'0..

I,

..........

~ ........

i'.
...........

0.2

o.

,
'.0

~

8

"

c

......

w

N

:;

1.6

100".

'~"

1.4

~

~ 1.2

"

, ms

~ 1.0

>

r-.I'..

!i!

......
r"-I'..

8 10

ns
ns

20

40

60 80 100

f'

100m.
-IRFF230

I

DC IR F23'

200

~

1

=
=

=
=

./

1.8

10".

10m.

f- i~: 12:;~ MAX.
i-RlhJC' 5.0 KIW
SINGLE PULSE
=OPERATION IN THIS
AREA IS LIMITED
BYRDS(onl
4

20

ns

(
1
1
1
CONDITIONS:
ROS(ON) CONDITIONS: '0 3.0 A. VGS 10V
VGS(TH) CONDITIONS: 10 250~A, VOS VGS

2.0

......

30

I

2.2

..-

25

:s 300 p.s, duty cycle :s 2%

'00
80
60

'x,:

15

-

Is

Pulsed Source Current

·Pulse Test: Pulse width

-

0.8

'"~

0.6

rr,Q

0.4

-r-~

~

V

--

",. ~

V

/"

r--- I--

'"

,LRoSIONI I - -

V~

r-

0.2

o

400 800

VOl. DRAlN·TO-SOURCE VOLTAGE (VOLTS)

-40

o

40

80

120

160

TJ • JUNCTION TEMPERATURE ('C)

MAXIMUM SAFE OPERATING AREA

TYPICAL NORMALIZED RDSIONI AND VGSITHI VS. TEII/IP.

278

~~D~~

IRFF232,233
4.5 AMPERES
200, 150 VOLTS
ROS(ON) =0.6 n

FIELD EFFECT POYIER TRANSISTOR

Preliminary

This series of N-Channel Enhancement-mode Power
MOSFETs utilizes GE's advanced Power DMOS te'chnology
to achieve low on-resistance with excellent device ruggedness and reliability.

N-CHANNEL

~

This design has been optimized to give superior performance
in most switching applications including: switching power
supplies, inverters, converters and solenoid/relay drivers.
Also, the extended safe operating area with good linear
transfer characteristics makes it well suited for many linear
applications such as audio amplifiers and servo motors.

CASE STYLE TO-20SAF (TO-39)
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)
0,350-0,370
(8,890-9,398)

.-----;-r--.....;

0.3' 5-0,335
(8.00'-8,509)

Features

• Polysilicon gate - Improved stability and reliability
• No secondary breakdown - Excellent ruggedness
• Ultra-fast switching - Independent of temperature
• Voltage controlled - High transconductance
• Low input capacitance - Reduced drive requirement
• Excellent thermal stability - Ease of paralleling

maximum ratings (TC =25° C)
RATING
Drain-Source Voltage
Drain-Gate Voltage, RGS = 1Mil
Continuous Drain Current @ Tc = 25°C
Pulsed Drain Current(1)
Gate-Source Voltage
Total Power Dissipation @ T C = 25° C
Derate Above 25° C
Operating and Storage
Junction Temperature Range

(unless otherwise specified)
SYMBOL
Voss
VOGR

IRFF232
200
200

IRFF233
150
150

UNITS
Volts
Volts

10

4.5

4.5

A

10M
VGS
Po

18
±20
25
0.2

18
±20
25
0.2

A
Volts
Watts
W/oC

TJ,TSTG

-55 to 150

-55 to 150

°C

R8JC
R8JA

5.0
175

5.0
175

°CIW
°CIW

TL

260

260

°C

thermal characteristics
Thermal Resistance, Junction to Case
Thermal Resistance, Junction to Ambient
Maximum Lead Temperature for Soldering
Purposes: 1116" from Case for 10 Seconds

(1) Repetitive Rating: Pulse width limited by max_ junction temperature_

279

electrical characteristics (Tc = 25 0 C)

I

(unless otherwise specified)

CHARACTERISTIC

I SYMBOL I

MIN

TYP

BVDSS

200
150

-

-

250
1000

pA

-

-

-

±100

nA

VGS(TH)

2.0

-

4.0

Volts

10(ON)

4.5

-

-

A

-

-

0.6

Ohms

-

-

mhos

-

800

pF

450

pF

150

pF

15
25

-

ns

MAX

UNIT

-

Volts

off characteristics
Drain-Source Breakdown Voltage
(VGS = OV, 10 = 250 pA)

IRFF232
IRFF233

Zero Gate Voltage Drain Current
(VOS = Max Rating, VGS = OV, Tc = 25°C)
(V OS = Max Rating, x 0.8, VGS = OV, TC = 125°C)

losS

Gate-Source Leakage Current
(VGS = ±20V)

IGSS

-

-

-

on characteristics *
Gate Threshold Voltage
(V OS = VGS, 10 = 250 f.1.A)

Tc = 25°C

On-State Drain Current
(VGS = 10V, VOS = 10V)
Static Drain-Source On-State Resistance
(VGS = 10V, 10 = 3.0A)

ROS(ON)

Forward Transconductance
(VOS = 10V, 10 = 3.0A)

1.75

gfs

dynamic characteristics
Input Capacitance

VGS = OV

Ciss

-

Output Capacitance

VOS = 25V
f = 1 MHz

Coss
C rss

-

-

td(on)

-

tr

-

Reverse Transfer Capacitance

switching characteristics*
Turn-on Delay Time

VOS = 90V

Rise Time

10 = 3.0A, VGS = 15V

Turn-off Delay Time

RGEN = 500, RGS = 12.50

Fall Time

(RGS (EQUIV.) = 100)

td(off)
tf

30
20

ns
ns
ns

source-drain diode ratings and characteristics*
Is

-

A

Pulsed Source Current

ISM

-

4.5

-

18

A

Diode Forward Voltage
(Tc = 25°C, VGS = OV, Is = 4.5A)

VSO

-

-

1.8

Volts

trr

-

450
3.0

Continuous Source Current

Reverse Recovery Time
(Is = 5.5A, dls/dt = 100A/psec, Tc = 125°C)

ORR

ns
pC

-

-

'Pulse Test: Pulse width :S 300 JiS, duty cycle :S 2%
100

2.4

80
60

2.2

r-- -

2.0

r-- -

40
20

X

10

8
6

i"-

I"'"
..........

O. 6
0.4

TC = 25°C
TJ'" 150D C MAX.

I-AlhJC

0

SINGLE PULSE

IN THIS
o. 2 t-- OPERATION
AREA IS LIMITED

o. 1
1.0

i"-

r-...

6
VOS.

8 10

20

40

1.6

"~

1.4

2_

1.2

o

i:

1m,

§

10ms

1.0

~

0.8

"Z

0.6

Q

lOOms
IRFF232

k-"

DRAIN~TO-SOURCE

t

60 80100

DC
200

a:.'B. 0.4

-

0.2

IAT233
400 600

/'

./

1.8

::i

>

,"

BY ROS(on)

4

100",5

"- 'r-....
.......

5.0 KIW

I

N
10/-IS

"'" ""f'....

1.0

o8

~

""

i'..

I
I
ICONOlTIONJ:
ROS(ON CONDITIONS: 10 =3.0A. VGS =10V
VGS(TH) ONOITIONS: 10 =250pA. VOS =VGS
I

LROSjONI

/'

-

- -- - --r-./'

.."... V

:---

V

VGS(THI

-40

40

80

120

T J • JUNCTION TEMPERATURE (OCI

VOLTAGE (VOLTS)

MAXIMUM SAFE OPERATING AREA

TYPICAL NORMALIZED ROSION) AND VGSITHI VS. TEMP.

280

160

~~D~[F~

IRFF310,311
1.35 AMPERES
400, 350 VOLTS
ROS(ON) = 3.6 n

FIELD EFFECT POWER TRANSISTOR

Preliminary

This series of N-Channel Enhancement-mode Power
MOSFETs utilizes GE's advanced Power DMOS technology
to achieve low on-resistance with excellent device ruggedness and reliability.

N-CHANNEL

~

This design has been optimized to give superior performance
in most switching applications including: switching power
supplies, inverters, converters and solenoid/relay drivers.
Also, the extended safe operating area with good linear
transfer characteristics makes it well suited for many linear
applications such as audio amplifiers and servo motors.

CASE STYLE TO-20SAF (TO-39)
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)
0.350-0.370
(8.890-9.398)

-.----;-;.---;

0.315-0.335
(8.001-8.509)
0.019-0.033

Features

• Polysilicon gate - Improved stability and reliability
• No secondary breakdown - Excellent ruggedness
• Ultra-fast switching - Independent of temperature
• Voltage controlled - High transconductance
• Low input capacitance - Reduced drive requirement
• Excellent thermal stability - Ease of paralleling

maximum ratings (T C =25 0 C)
RATING
Drain-Source Voltage
Drain-Gate Voltage, RGS = 1Mn
Continuous Drain Current@ TC

=

25°C

Pulsed Drain Current(1)
Gate-Source Voltage
Total Power Dissipation @Tc
Derate Above 25° C
Operating and Storage
Junction Temperature Range

=25°C

(unless otherwise specified)
SYMBOL
Voss
VOGR

IRFF310
400
400

IRFF311
350
350

UNITS
Volts
Volts

10

1.35

1.35

A

10M

VGS
Po

5.5
±20
15
0.12

5.5
±20
15
0.12

A
Volts
Watts
W/oC

TJ. TSTG

-55 to 150

-55 to 150

°C

ROJC
ROJA

8.33
175

8.33
175

°C/W
°C/W

TL

260

260

°C

thermal characteristics
Thermal Resistance. Junction to Case
Thermal Resistance, Junction to Ambient
Maximum Lead Temperature for Soldering
Purposes: 1/16" from Case for 10 Seconds
(1)

..
Repetitive Ratmg: Pulse width limited by max. junction temperature.

281

electrical characteristics (T c = 25° C)

I

(unless otherwise specified)

CHARACTERISTIC

I SYMBOL I

MIN

TYP

MAX

UNIT

BVDSS

400
350

-

-

Volts

off characteristics
IRFF310
IRFF311

Drain-Source Breakdown Voltage
(VGS = OV, 10 = 250 J.lA)
Zero Gate Voltage Drain Current
(VOS = Max Rating, VGS = OV, Tc = 25°C)
(VOS = Max Rating, x 0.8, VGS =.OV, Tc = 125°C)

loss

-

-

250
1000

J.lA

-

-

±100

nA

VGS(TH)

2.0

-

4.0

Volts

10(ON)

1.35

-

-

Amp

Gate-Source Leakage Current
(VGS = ±20V)

IGSS

on characteristics*
Gate Threshold Voltage
(VOS = VGS, 10 = 250 J.l.A)

Tc = 25°C

On-State Drain Current
(VGS = 10V, VOS = 10V)
Static Drain-Source On-State Resistance
(VGS = 10V, 10 = 0.8A)

ROS(ON)

-

-

3.6

Ohms

9fs

0.4

-

-

mhos

VGS = OV

Ciss

pF

VOS = 25V

Coss

50

pF

Reverse Transfer Capacitance

f = 1 MHz

C rss

-

150

Output Capacitance

-

15

pF

3

-

ns

Forward Transconductance
(VOS = 10V, 10 = 0.8A)

dynamic characteristics
Input Capacitance

switching characteristics*
Turn-on Delay Time

VOS = 175V

Rise Time

10 = 0.8A, VGS = 15V

-

td(on)
tr

Turn-off Delay Time

RGEN = 50n, RGS = 12.sn

Fall Time

(RGS (EQUIV.) = 10n)

td(off)
tf

10
5
8

ns
ns
ns

source-drain diode ratings and characteristics*
Is

-

-

1.35

A

Pulsed Source Current

ISM

-

-

5.5

A

Diode Forward Voltage
(Tc = 25°C, VGS = OV, Is = 1.35A)

VSO

-

-

1.6

Volts

trr

-

-

ns

Continuous Source Current

Reverse Recovery Time
(IS = 1.35A, dis/dt = 100AlJ.lS" TC = 125°C)

380

·Pulse Test: Pulse Width :5 300 I1S, duty cycle:5 2%
10

2.4

8
6

.'

K", I'...

ifi

I'

~ ~:~

~ 0.6

IE
w
ill

a

0.4
0.2

z

~

Q

s?

"

"

........

i'r-...."

,

" ,"

"- "........

2.0

~

"" ,
"

"

c

100~

::;
~

~

1ml-

0.08
0.06

1.4
1.2

"

1.0

z
-:.. O.B
z
o

10J,_

~ 0.6

100ms

........

DC

a:

I'-

t

0.4

V
I,

1/

ROSIONI

/

/

1.6

:~
~

CONDITIONS:
ROS(ON CONDITIONS: 10 = O.SA, VGS = 10V
VGS(TH) ONDITIONS: 10 = 250pA, VOS = VGS -

1.8

a:

........

',,"- "-

TC =2S'C
TJ =IS0'C MAX.
0.04
I- RthJC =8.33 KIW
SINGLE PULSE
r-!=OPERATION IN THIS
0.0 2
AREA IS LIMITED
BVRDS(on)
0.0 1
4
6 8 10
1.0

10'1

~

.............

O. 1

2.2

I

- - -

/

/'

r---

",/

/

'"

r--

...-' I-""

-

--.,;:~ -

0.2
IRFF311IRFF310---<

20

40

60 80100

200

o
400 600

-40

o

40

80

120

160

T J , JUNCTION TEMPERATURE ('C)

VDS, DRAIN-TO-SOURCE VOLTAGE (VOLTS)

TYPICAL NORMALIZED RDSIONI AND VGSITHI VS. TEMP.

MAXIMUM SAFE OPERATING AREA

282

~D~[P~U

IRFF312,313
1.15 AMPERES
400, 350 VOLTS
ROS(ON) =5.0 !l

FIELD EFFECT POWER TRANSISTOR

Preliminary

This series of N-Channel Enhancement-mode Power
MOSFETs utilizes GE's advanced Power DMOS technology
to achieve low on-resistance with excellent device ruggedness and reliability.

N-CHANNEL

4

This design has been optimized to give superior performance
in most switching applications including: switching power
supplies, inverters, converters and solenoid/relay drivers.
Also, the extended safe operating area with good linear
transfer characteristics makes it well suited for many linear
applications such as audio amplifiers and servo motors.

CASE STYLE TO-20SAF (TO-39)
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)
0.350-0.370
(8.890-9.398)
0.3'5-0.335
(8.00'-8.509)

Features

• Polysilicon gate - Improved stability and reliability

~,

(0.229-0.457)

• No secondary breakdown - Excellent ruggedness

n

U~

23

n~~it-ft-U U
SOURCE

0-'-.50-0-"0.;;<0"6-0.0'9
('2.70)
(0.406-0.483)
MIN

• Ultra-fast switching - Independent of temperature

.I!.-

0.'90-0.2'0
(4.826-5.334)

• Voltage controlled - High transconductance
• Low input capacitance - Reduced drive requirement
• Excellent thermal stability - Ease of paralleling

maximum ratings (T C = 25° C)
RATING
Drain-Source Voltage
Drain-Gate Voltage. RGS = 1M!l
Continuous Drain Current @ TC = 25°C
Pulsed Drain Current(1)
Gate-Source Voltage
Total Power Dissipation @TC = 25°C
Derate Above 25° C
Operating and Storage
Junction Temperature Range

(unless otherwise specified)
SYMBOL
VOSS
VOGR

IRFF312
400
400

IRFF313
350
350

UNITS
Volts
Volts

10

1.15

1.15

A

10M

VGS
Po

4.5
±20
15
0.12

4.5
±20
15
0.12

A
Volts
Watts

W/oC

TJ. TSTG

-55 to 150

-55 to 150

°C

R8JC
R8JA

8.33
175

8.33
175

°C/W
°C/W

TL

260

260

°C

thermal characteristics
Thermal Resistance, Junction to Case
Thermal Resistance, Junction to Ambient
Maximum Lead Temperature for Soldering
Purposes: 1/16" from Case for 10 Seconds
,

.

(1) Repetitive Rating: Pulse width limited by max. junction temperature.

283

electrical chC!racteristics (T c = 25 0 C)

I

(unless otherwise specified)

CHARACTERISTIC

I SYMBOL I

MIN

TVP

MAX

UNIT

BVDSS

400
350

-

-

Volts

-

250
1000

pA

±100

nA

off characteristics
Drain-Source Breakdown Voltage
(VGS =OV, 10 = 250 pA)

IRFF312
IRFF313

Zero Gate Voltage Drain Current
(VOS = Max Rating, VGS =OV, TC = 25°C)
(VOS = Max Rating, x 0.8, VGS =OV, TC = 125°C)

lOSS

-

IGSS

-

-

VGS(TH)

2.0

-

4.0

Volts

10(ON)

1.15

-

-

Amp

ROS(ON)

-

-

5.0

Ohms

gfs

0.4

-

-

mhos

Ciss

-

385

600

pF

Coss
C rss

-

70

200

pF

-

12

40

pF

3

ns

5

-

8

-

ns

Gate-Source Leakage Current
(VGS =±20V)

on characteristics*
Gate Threshold Voltage
(VOS =VGS, 10 = 250 p.A)

Tc

=25°C

On-State Drain Current
(VGS = 10V, VOS = 10V)
Static Drain-Source On-State Resistance
(VGS = 10V, 10 =0.8A)
Forward Transconductance
(VOS = 10V, 10 =0.8A)

dynamic characteristics
Output Capacitance

=OV
VOS =25V

Reverse Transfer Capacitance

f

Input Capacitance

VGS

= 1 MHz

switching characteristics*
= 175V

Turn-on Delay Time

VOS

Rise Time

10 =0.8A, VGS

Turn-off Delay Time

RGEN

=15V
=50n, RGS = 12.50.
(RGS (EQUIV.) = 100.)

Fall Time

-

td(on)
tr
td(off)
tf

10

ns
ns

source-drain diode ratings and characteristics*
Continuous Source Current
Pulsed Source Current
Diode Forward Voltage
(Tc = 25°C, VGS =OV, Is

=1.15A)

Reverse Recovery Time
(Is = 1.35A, dis/dt =100A/JiS, Max., TC = 125°C)

IS

-

-

1.15

A

ISM

-

-

4.5

A

VSO

-

-

1.5

Volts

trr

-

-

380

ns

·Pulse Test: Pulse width :s; 300 f../S, duty cycle :s; 2%
10

2.4

B

6

,K" K. "~

Ie
~

i

".
1.0
0.8
0.6
0.4

a:

~

o
z

r--...",

I'

'"

!;'

0.2

~ O. 1
" 0.0B
§ 0.06

TC =25'C
TJ =150'C MAX.
0.04
RlhJC =8.33 KfW
SINGLE PULSE
0.02 -=OPERATION IN THIS
AREA IS LIMITED
BYRDS(on)
0.01
1.0
4
6 B 10

"-

"-

"

"'-'" "
I'...

,i'- r-...""I'~""-

:=~~~~~
20

40

60 80100

~

:::;

~
a:

!i!

r

/

1.6

~

10!S

r--- r--- I -

1.2

~ 0.8

z
o

~

100,ms

a:

I

0.6
0.4

L

V

1.4

>" 1.0
C
z

-

........... .....

/

./

"

/'

r--

~~ fr-- -

0.2

:::: I

200

/

=10V I,
1/
=VGS - ROSIONI

1.8

;;

lml-

DC

=
=

c

l00~_

"

r--

I

I

I

I

CONDITIONS:
ROS(ONbCONDITIONS: 10 O.SA, VGS
2.0 I-- VGS(TH) ONOITIONS: 10 250pA, VOS

10'1'

"
,"

I

2.2 I--

I

o

400 600

-40

o

40

60

120

160

T J , JUNCTION TEMPERATURE ('C)

VOS, ORAIN-T0-50URCE VOLTAGE (VOLTS)

TYPICAL NORMALIZED RDSIONI AND VGSITHI VS. TEMP.

MAXIMUM SAFE OPERATING AREA

284

~~D~~~

IRFF320,321
2.5 AMPERES
400, 350 VOL TS
RDS(ON) = 1.8 n

FIELD EFFECT POVVER TRANSISTOR

Preliminary

This series of N-Channel Enhancement-mode Power
MOSFETs utilizes GE's advanced Power DMOS technology
to achieve low on-resistance with excellent device ruggedness and reliability.

N-CHANNEL

~

This design has been optimized to give superior performance
in most switching applications including: switching power
supplies, inverters, converters and solenoid/relay drivers.
Also, the extended safe operating area with good linear
transfer characteristics makes it well suited for many linear
applications such as audio amplifiers and servo motors.

CASE STYLE TO-20SAF (TO-39)
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)
0.350-0.370
18.890-9.398)
0.315-0.335
(6.001-6.509)

Features

• Polysilicon gate - Improved stability and reliability
• No secondary breakdown - Excellent ruggedness
• Ultra-fast switching - Independent of temperature
• Voltage controlled - High transconductance
• Low input capacitance - Reduced drive requirement
• Excellent thermal stability - Ease of paralleling

maximum ratings (TC =25° C)

(unless otherwise specified)
SYMBOL
Voss
VOGR

IRFF320
400
400

IRFF321
350
350

UNITS
Volts
Volts

10

2.5

2.5

A

Pulsed Drain Current(l)

10M

Gate-Source Voltage
Total Power Dissipation @ TC = 25°C
Derate Above 25° C
Operating and Storage
Junction Temperature Range

VGS
Po

10
±20
20
0.16

10
±20
20
0.16

A
Volts
Watts
W/oC

TJ, TSTG

-55 to 150

-55 to 150

°C

ROJC
ROJA

6.25
175

6.25
175

°C/W
°C/W

260

260

°C

RATING
Drain-Source Voltage
Drain-Gate Voltage, RGS = 1Mn
Continuous Drain Current @ T C = 25°C

thermal characteristics
Thermal Resistance, Junction to Case
Thermal Resistance, Junction to Ambient
Maximum Lead Temperature for Soldering
Purposes: 1116" from Case for 10 Seconds

h
..
(1) Repetitive Ratmg: Pulse width limited by max. junction temperature.

285

electrical characteristics (T c

I

=25° C) (unless otherwise specified)

CHARACTERISTIC

I SYMBOL I

MIN

TYP

MAX

UNIT

BVDSS

400
350

-

-

Volts

-

-

250
1000

pA

-

±100

nA

off characteristics
Drain-Source Breakdown Voltage
(VGS = OV, 10 = 250 pA)

IRFF320
IRFF321

Zero Gate Voltage Drain Current
(VOS = Max Rating, VGS = OV, Tc = 25°C)
(VOS = Max Rating, x 0.8, VGS = OV, Tc = 125°C)

loSS

IGSS

-

VGS(TH)

2.0

-

4.0

Volts

10(ON)

2.5

-

-

A

ROS(ON)

-

-

1.8

Ohms

gfs

0.8

-

-

mhos

Ciss

-

-

600

pF

200

pF

40

pF

-

ns

-

ns

Gate-Source Leakage Current
(VGS = ±20V)

on characteristics*
Gate Threshold Voltage
(VOS = VGS, 10 = 250 p.A)

Tc = 25°C

On-State Drain Current
(VGS = 10V, VOS = 10V)
Static Drain-Source On-State Resistance
(VGS = 10V, 10 = 1.25A)
Forward Transconductance
(Vos= 10V,lo-';;-f.25Af---

dynamic characteristics
Input Capacitance

VGS = 10V

Output Capacitance

VOS = 25V
f = 1 MHz

Reverse Transfer Capacitance

Coss
C rss

-

switching characteristics*
Turn-on Delay Time

VOS = 175V

Rise Time

10 = 1.25A, VGS = 15V

Turn-off Delay Time

RGEN = 500, RGS = 12.50

Fall Time

(RGS (EQUIV.) = 100)

-

td(on)
tr
td(off)
tf

20
25
50
25

ns
ns

source-drain diode ratings and characteristics*
Continuous Source Current
Pulsed Source Current
Diode Forward Voltage
(Tc = 25°C, VGS = OV, Is = 2.5A)
Reverse Recovery Time
(Is = 2.5A, dls/dt = 100Alpsec, Tc = 125°C)

.

Pulse Test. Pulse width

iii

......

"- "

" ""

1-/'

0.8
0.6
0.4

0.1
_ 0.08
0.06
0.04

-

450
3.1

-

ns
pC

trr

r--......

-

TC=25'C
TJ =150'C MAX.
RthJC =6.25 KIW

""

.......

lm;-

........

" ""

............

SING~E PU~E

I

I I II
4

:d

l00~.

~

.......

6 8 10
20
40 50 80100
200
VOS, ORAIN·TO·SOURCE VOLTAGE (VOLTS)

.1

10Js

I

I

I

V

I

CONDITIONS:
ROS(ON) CONDITIONS: 10 1.25A, VGS =10V
VGS(TH) CONDITIONS: 10 250"A, Vos =VGS

_IROSION~ L

=
=

1.8

::l
~
a:

1.6

!i!

1.4

~

1.2

"

1.0

~
2

100~S

eCI

I

I

-

c

10p,s

OPERATION IN THIS AREA
0.02 - I S ~IMITEe BY ReS(on)
0.0 1

Volts

2.0 -

......

.......

~ 0.2

~

1.6

2.2

,/

a.

A

2.4

iir
1

10

:s 300 JAS, duty cycle :s 2%

8
8

2

A

-

-

2.5

ISM

ORR

10

~

-

VSO

20

I
I:

Is

«Z 08
.
o

!
a:

.

I-!:I~FF320

0.6
0.4

V

- ---

- -----

......

,../'

/

V
/
./

i-""

r--- :--

-

-.::~ -

0.2

t'-ljFFj21

o

400 600

-40

o

40

80

120

160

TJ , JUNCTION TEMPERATURE ('C)

MAXIMUM SAFE OPERATING AREA

TYPICAL NORMALIZED ROSIONI AND VGSITHI VS. TEMP.

286

~D~~

IRFF322,323

FIELD EFFECT PONER TRANSISTOR

2.0 AMPERES
400, 350 VOLTS
. ROS(ON) = 2.5 n
Preliminary

This series of N-Channel Enhancement-mode Power
MOSFETs utilizes GE's advanced Power DMOS technology
to achieve low on-resistance with excellent device ruggedness and reliability.

N-CHANNEL

A$

This design has been optimized to give superior performance
in most switching applications including: switching power
supplies, inverters, converters and solenoid/relay drivers.
Also, the extended safe operating area with good linear
transfer characteristics makes it well suited for many linear
applications such as audio amplifiers and servo motors.

CASE STYLE TO-205AF (TO-39)
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)
0.350-0.370
(B.B90-9.39B)
0.315-0.335
(8.oo1-B.509)

Features
• Polysilicon gate -

Improved stability and reliability

n Un..-"-tt-fl-U

~1
(0.229-0.457)

• No secondary breakdown - Excellent ruggedness

23

-L-_--;;-;,;....

• Ultra-fast switching -

Independent of temperature

0.500
'(12.70)
MIN

• Voltage controlled - High transconductance

0.016-0.019
(0.406-0.483)

.1 i--

GATE
SOURCE

0.190-0.210
(4.B26-5.334)

• Low input capacitance - Reduced drive requirement
• Excellent thermal stability - Ease of paralleling

maximum ratings (T C =25 0 C)
RATING
Drain-Source Voltage
Drain-Gate Voltage, RGS = 1M!l
Continuous Drain Current @ T C = 25°C

(unless otherwise specified)
SYMBOL
Voss
VOGR

IRFF322
400
400

IRFF323
350
350

UNITS
Volts
Volts

10

2.0

2.0

A

Pulsed Drain Current(l)

10M

8

8

Gate-Source Voltage
Total Power Dissipation @Tc = 25°C
Derate Above 25° C
Operating and Storage
Junction Temperature Range

VGS
Po

±20
20
0_16

±20
20
0.16

A
Volts
Watts
W/oC

TJ. TSTG

-55 to 150

-55 to 150

°C

ROJC
ROJA

6_25
175

6.25
175

°CIW
°CIW

TL

260

260

°C

thermal characteristics
Thermal Resistance, Junction to Case
Thermal Resistance, Junction to Ambient
Maximum Lead Temperature for Soldering
Purposes: 1/16" from Case for 10 Seconds

..

(1) Repetitive Rating: Pulse width limited by max. junction temperature.

287

electrical characteristics (T c

I

=25° C) (unless otherwise specified)

CHARACTERISTIC

I SYMBOL I

MIN

TYP

MAX

UNIT

BVDSS

400
350

-

-

Volts

250
1000

pA

-

-

±100

nA

VGS(TH)

2.0

-

4.0

Volts

10(ON)

2.0

-

-

A

ROS(ON)

-

-

2.5

Ohms

gfs

0.8

-

-

mhos

-

-

600

pF

200

pF

40

pF

-

20

-

ns

off characteristics
Drain-Source Breakdown Voltage
(VGS =OV, 10 =250 pA)

IRFF322
IRFF323

Zero Gate Voltage Drain Current
(V OS =Max Rating, VGS =OV, Tc =25°C)
(VOS =Max Rating, x 0.8, VGS =OV, Tc =125°C)

loss

Gate-Source Leakage Current
(VGS =±20V)

IGSS

-

on characteristics·
Gate Threshold Voltage
(VOS =VGS, 10 =250 JAA)

Tc

=25°C

On-State Drain Current
(VGS =10V, VOS =10V)
Static Drain-Source On-State Resistance
(VGS =10V, 10 =1.25A)
Forward Transconductance
(VOS =10V, 10 =1.25A)

dynamic characteristics

=10V
Ciss
VOS =25V
Coss
Reverse Transfer Capacitance
f =1 MHz
C rss
switching characteristics·
Turn-on Delay Time
VOS =175V
tel (on)
Rise Time
10 =1.25A, VGS =15V
tr
Turn-off Delay Time
RGEN =500, RGS =12.50
td(off)
Fall Time
tf
(RGS (EQUIV.) =100)
source-drain diode ratings and characteristics·
Input Capacitance

VGS

Output Capacitance

Continuous Source Current
Pulsed Source Current
Diode Forward Voltage
(Tc =25°C, VGS =OV, Is =2.0A)
Reverse Recovery Time
(Is =2.5A, dls/dt =100A/psec, Tc

=125°C)

25
50
25

ns
ns
ns

Is

-

A

-

-

2.0

ISM

8

A

VSO

-

-

1.5

Volts

trr

-

450
3.1

-

pC

ORR

ns

'Pulse Test: Pulse width::;; 300 I1s, duty cycle::;; 2%
2.4 r--~
I-'-'I-'I'---"-I-'--'I-""---''---'-V'-'

20

2.2

10
8
6

1'0.

,,-

i[
~
:Ii

2

~

1

..

0.8
0.6

iii

,,-'

"

,

~ 0.4

G

I

.......... ..........
.......... ......1'.....

0.2

_ 0.1
90.08
0.06
0.04

-

0.02 0.0 1

I
4

Tn

6 8 10

'" '"

............ ........

...............

TC=2S'C
TJ=lSO'CMAX.
RthJC = 6.2SK/W
SINGLE PULSE
OPERATION IN THIS AREA
IS LIMITED BY ROS(on)

I

10",,_

'"

.......

.......

........

o

I
lOOi"
lms-

eo 80100

200

"

I/
DSIONI +--+---i
/

1.81---I--+---+--+--t---t---t--+V~+-I---i

1.61---+-+--+--t--t--+-+"'-7/9-__-_+____;

'"

;'/

'.21---I::_=--+r----+_--t--/-+V"~+--+-+---I--+----;

~

l.ol---+-+---+=~o:::::;..:;:1::::--+-+--+-+-l---l

~..

0.81---+l,....---"-+I--"""'--"'l'--I---I---f---f=-...._=-v~~

V

-r--

:i1 0.6 __
li!z 0.41---I--+---+--+--t---I--+---+--+--1----;
c
a:

-IJFF322
I-IrF3j3
40

IR

=

1.41---+-+--+--t--t--+.....".9--_+--t--1---i

;;

I
100ms

=

~

~

10ls

CONDITIONS:
RDS(ON) CONDITIONS: ID = 1.25 A. VGS = IOV
VGS(TH) CONDITIONS: ID 250,.A. VDS VGS -

::;
~
a:

DC

20

I---

2.0 -

400 600

0.21---+-+--+--t--t--+-+--+--t--1----l
T J. JUNCTION TEMPERATURE ('C)

VDS. DRAIN-TO-SOURCE VOLTAGE (VOLTS)

TYPICAL NORMALIZED ROSIONI AND VGSITHI VS. TEMP.

MAXIMUM SAFE OPERATING AREA

288

~D~~

IRFF330,331
3.5 AMPERES
400, 350 VOLTS
ROS(ON) == 1.0 !l

FIELD EFFECT POVVER TRANSISTOR

Preliminary

This series of N-Channel Enhancement-mode Power
MOSFETs utilizes GE's advanced Power DMOS technology
to achieve low on-resistance with excellent device ruggedness and reliability.

N-CHANNEL

~

This design has been optimized to give superior performance
in most switching applications including: switching power
supplies, inverters, converters and solenoid/relay drivers.
Also, the extended safe operating area with good linear
transfer characteristics makes it well suited for many linear
applications such as audio amplifiers and servo motors.

CASE STYLE TO-205AF (TO-39)
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)
0.350-0.370
IB.B90-9.39B)
0.315-0.335
IB.001-B.509)

Features

• Polysilicon gate - Improved stability and reliability
• No secondary breakdown - Excellent ruggedness
0.500
112.70)
MIN

• Ultra-fast switching - Independent of temperature
• Voltage controlled - High transconductance

0.029-0.045

• Low input capacitance - Reduced drive requirement
• Excellent thermal stability - Ease of paralleling

maximum ratings (TC

=25°C) (unless otherwise specified)

RATING
Drain-Source Voltage
Drain-Gate Voltage, RGS == 1Mll
Continuous Drain Current @ TC == 25°C
Pulsed Drain Current(l)
Gate-Source Voltage
Total Power Dissipation @TC = 25°C
Derate Above 25° C
Operating and Storage
Junction Temperature Range

SYMBOL
Voss
VOGR

IRFF330
400
400

IRFF331
350
350

UNITS
Volts
Volts

10

3.5

3_5

A

10M
VGS
Po

14
±20
25
0.2

14
±20
25
0_2

A
Volts
Watts
W/oC

TJ, TSTG

-55 to 150

-55 to 150

°C

ROJC
ROJA

5.0
175

5.0
175

°C/W
°C/W

TL

260

260

°C

thermal characteristics
Thermal Resistance, Junction to Case
Thermal Resistance, Junction to Ambient
Maximum Lead Temperature for Soldering
Purposes: 1/16" from Case for 10 Seconds

(1) Repetitive Rating: Pulse width limited by max. junction temperature.

289

electrical characteristics (T c = 25 0 C)

I

(unless otherwise specified)

CHARACTERISTIC

I SYMBOL I

MIN

TYP

MAX

UNIT

BVDSS

400
350

-

-

Volts

-

250
1000

pA

-

-

±100

nA

VGS(TH)

2.0

-

4.0

Volts

10(ON)

3.5

-

-

A

ROS(ON)

-

-

1.0

Ohms

1.S

-

-

mhos

-

-

900

pF

300

pF

80

pF

-

15
20

-

ns

30
20

-

ns

-

ns

off characteristics
Drain-Source Breakdown Voltage
(VGS =OV, 10 =250 pA)

IRFF330
IRFF331

Zero Gate Voltage Drain Current
(VOS =Max Rating, VGS =OV, Tc =25°C)
(VOS =Max Rating, x 0.8, VGS =OV, Tc =125°C)

loss

Gate-Source Leakage Current
(VGS =±20V)

IGSS

on characteristics*
Gate Threshold Voltage
(VOS =VGS, 10 =250 p.A)

Tc

=25°C

On-State Drain Current
(VGS =10V, VOS =10V)
Static Drain-Source On-State Resistance
(VGS =10V, 10 =2A)
Forward Transconductance
(VOS =10V, 10 =2A)

gfs

dynamic characteristics
=OV
Ciss
Output Capacitance
VOS =25V
Coss
Reverse Transfer Capacitance
f =1 MHz
C rss
switching characteristics*
Turn-on Delay Time
VOS =175V
td(on)
Rise Time
10 =2A, VGS =15V
tr
Turn-off Delay Time
RGEN =500, RGS =12.50
td(off)
Fall Time
tf
(RGS (EQUIV.) =100)
source-drain diode ratings and characteristics*
Input Capacitance

VGS

Continuous Source Current
Pulsed Source Current
Diode Forward Voltage
(Tc =25°C, VGS =OV, Is =3.5A)
Reverse Recovery Time
(IS =3.5A, dls/dt =100A/psec, Tc

=125°C)

-

ns

Is

-

-

3.5

A

ISM

-

-

14

A

VSO

-

1.0

1.S

Volts

trr

-

SOO
4.0

-

ORR

ns
pC

'Pulse Test: Pulse Width :5 300 p.s, duty cycle :5 2%
2.4
20

14

'"

~

'0

.....

8
6

iii
15

........

I'

i'...
..........

,I---'

a:
B

!

."'"

2

lIi
ill

........

0.8
0.6
0.4

"-

'" "'..... "
"" ""

~ O.
90.08
0.06

'=-

I

r-....

"

6 6'0

o

'OOj'

:::;

40

60 80'00

200

1.8

~

1.6

~

I

1.4

~

1.2

>"

1.0

o

z
«

DC -

~ 0.6
c
a:

;;

./.
./

V

/RDSONI

,oolms

0.8

0.4

_'~FF330
20

~

I

/V

0:

10ms

o-Ir F3

I III
4

2.0

;o-.i-

.........

""

Tc= 25°C

TJ= 150°C MAX.
R'hJC • 5.0 KIW
. SINGLE PULSE
OPERATION IN THIS AREA
0.02 - I S LIMITED BY RDSCon,

0.0,

........

' m,

.....

0.2

I
I
I
I
CONDITIONS:
ROS(ON) CONOITIONS: '0 = 2.0 A, VGS = 10V
VGS(TH) CONOITIONS: 10 = 250pA, VOS = VGS
I

2.2

........

I'...

-

-/

---

"..",.

. /V

-

./

",.

r--_
-to--VGSITHI-

~

0.2

j'

-40

400 600

VDS. DRAIN-TO-SOURCE VOLTAGE (VOLTS)

40
80
TJ • JUNCTION TEMPERATURE I'CI

120

160

TYPICAL NORMALIZED ROSION,I AND VGSITHI VS. TEMP.

MAXIMUM SAFE OPERATING AREA

290

~o~[f~

IRFF332,333
3.0 AMPERES
400, 350 VOLTS
ROS(ON) = 1.5!}

FIELD EFFECT POVVER TRANSISTOR

Preliminary

This series of N-Channel Enhancement-mode Power
MOSFETs utilizes GE's advanced Power DMOS technology
to achieve low on-resistance with excellent device ruggedness and reliability.

N-CHANNEL

~

This design has been optimized to give superior performance
in most switching applications including: switching power
supplies, inverters, converters and solenoid/relay drivers.
Also, the extended safe operating area with good linear
transfer characteristics makes it well suited for many linear
applications such as audio amplifiers and servo motors.

CASE STYLE TO-20SAF (TO-39)
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)
0.350-0.370
(8.890-9.398)
0.3'5-0.335
(8.001-8.509)
0.Q19-0.033

Features
• Polysilicon gate -

Improved stability and reliability

• No secondary breakdown - Excellent ruggedness
• Ultra-fast switching • Voltage controlled -

Independent of temperature
High transconductance

• Low input capacitance - Reduced drive requirement
• Excellent thermal stability - Ease of paralleling

maximum ratings (T C = 25°C)
RATING
Drain-Source Voltage
Drain-Gate Voltage, RGS = 1M!}
Continuous Drain Current @Tc = 25°C
Pulsed Drain Current!')
Gate-Source Voltage
Total Power Dissipation @ Tc = 25°C
Derate Above 25° C
Operating and Storage
Junction Temperature Range

(unless otherwise specified)
SYMBOL
Voss
VOGR

IRFF332
400
400

IRFF333
350
350

UNITS
Volts
Volts

10

3.0

3.0

A

10M

VGS
Po

12
±20
25
0.2

12
±20
25
0.2

A
Volts
Watts
W/oC

TJ, TSTG

-55 to 150

-55 to 150

°C

ROJC
ROJA

5.0
175

5.0
175

°C/W
°C/W

TL

260

260

°C

thermal characteristics
Thermal Resistance, Junction to Case
Thermal Resistance, Junction to Ambient
Maximum Lead Temperature for Soldering
Purposes: 1/16" from Case for 10 Seconds

(1) Repetitive Rating: Pulse width limited by max. junction temperature.

291

electrical characteristics (T c = 25 0 C)

I

(unless otherwise specified)

CHARACTERISTIC

I SYMBOL I

MIN

TYP

MAX

UNIT

BVDSS

400
350

-

-

Volts

-

-

250
1000

pA

IGSS

-

-

±100

nA

VGS(TH)

2.0

-

4.0

Volts

10(ON)

3.0

-

-

A

ROS(ON)

-

-

1.5

Ohms

gfs

1.S

-

-

mhos

Ciss

-

-

900

pF

.-

300

pF

80

pF

-

20

td(off)

-

tf

-

30
20

-

ns

tr

Is

-

-

3.0

A

ISM

-

-

12

A

VSO

-

-

1.5

Volts

off characteristics
Drain-Source Breakdown Voltage
(VGS =OV, 10 = 250 pA)

IRFF332
IRFF333

Zero Gate Voltage Drain Current
(VOS = Max Rating, VGS =OV, Te = 25°C)
(VOS = Max Rating, x 0.8, VGS =OV, Te = 125°C)

losS

Gate-Source Leakage Current
(VGS =±20V)

on characteristics*
Gate Threshold Voltage
(VOS = VGS, 10 = 250/LA)

Te

=25°C

On-State Drain Current
(VGS = 10V, VOS = 10V)
Static Drain-Source On-State Resistance
(VGS = 10V, 10 = 2.0A)
Forward Transconductance
(VOS = 10V, 10 =2.0A)

dynamic characteristics
=OV
VOS =25V
f = 1 MHz

Input Capacitance

VGS

Output Capacitance
Reverse Transfer Capacitance

Coss
C rss

switching characteristics*
=175V
=2.0A, VGS = 15V

Turn-on Delay Time

VOS

Rise Time

10

Turn-off Delay Time

RGEN

Fall Time

(RGS (EQUIV.)

td(on)

= 50n, RGS = 12.5!l

= 100)

15

ns
ns
ns

source-drain diode ratings and characteristics*
Continuous Source Current
Pulsed Source Current
Diode Forward Voltage
(Te = 25°C, VGS =OV, Is

=3.0A)

Reverse Recovery Time
(Is =3.5A, dls/dt =100A/psec, Te

trr

= 125°C)

ORR

-

SOO
4.0

ns
pC

'Pulse Test: Pulse width:::; 300 /IS, duty cycle :5 2%
2.4
20
12
10

"

8

6

r=
!

2

""'-

1

6

:-......

:.......
i"

~ 0.2

f~

TC= 25'C
TJ= 150'CMAX.
R'hJC = 5.0 KJW
0.04 f- SINGLE PULSE
OPERATION IN THIS AREA
0.02 r-IS LIMITED BY ROS{on)
0.0 1

.......

['....

t"-..
.......

0.4

~ 0.1
90.08
0'.06

........

i'

i'-....

5 ~::

I

"

........

I

1'0..

I

"'"

........

r-..

c

100('

::;

1m,

a:

~

~
~

.......

~

10ms

6 8 10
20
40 60 eo 100
200
YOS, DRAIN-TO·SOURCE VOLTAGE (YOLTS)

~

I

i'-....

I II I
4

10"s

>

ROS(ON) CONOITIONS: 10 = 2.0 A, VGS 10V
VGS(TH) CONOITIONS: 10 250~A, VOS = VGS

=

=

./

1.8

V

L'

/ROSIDNI

1.6
1.4

--

1.2
1.0

C

DC

~ 0.6
o
a:

-

,..............

........

0.8

"

1-

0.4

i--IJFF332

I

2.0

Z
"
C
z

I

.-

--.---

=

,

/

,/

V

r-- r--

,...,.....-

f"'"

./"

--

V

-'

r--I--

--..::~

0.4

-

~

0.2
JRFF420IRFF421 .......
20

40

60 80100

200

40

400 600

o

40

80

120

160

T J , JUNCTION TEMPERATURE ('C)

YDS. DRAIN-TO-SOURCE YOLTAGE (YOLTS)

TYPICAL NORMALIZED RDSIONI AND VGSITHI VS. TEMP.

MAXIMUM SAFE OPERATING AREA

294

~D~[?~

IRFF422,423

FIELD EFFECT POVVER TRANSISTOR

1.4 AMPERES
500, 450 VOLTS
RDS(ON) = 4.0 n
Preliminary

This series of N-Channel Enhancement-mode Power
MOSFETs utilizes GE's advanced Power DMOS technology
to achieve low on-resistance with excellent device ruggedness and reliability.

N-CHANNEL

~

This design has been optimized to give superior performance
in most switching applications including: switching power
supplies, inverters, converters and solenoid/relay drivers.
Also, the extended safe operating area with good linear
transfer characteristics makes it well suited for many linear
applications such as audio amplifiers and servo motors.

CASE STYLE TO-20SAF (TO-39)
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)
0.350·0.370
(8.890-9.398)

-.-----:-;.----i

0.315·0.335
(8.001-8.509)

Features
• Polysilicon gate - Improved stability and reliability
• No secondary breakdown - Excellent ruggedness
• Ultra-fast switching - Independent of temperature
• Voltage controlled - High transconductance
• Low input capacitance - Reduced drive requirement
• Excellent thermal stability - Ease of paralleling

maximum ratings (T C = 25° C)
RATING
Drain-Source Voltage
Drain-Gate Voltage, RGS = 1Mn
Continuous Drain Current @ T C = 25°C
Pulsed Drain Current(1)
Gate-Source Voltage
Total Power Dissipation @ Tc = 25°C
Derate Above 25° C
Operating and Storage
Junction Temperature Range

(unless otherwise specified)
SYMBOL
Voss
VOGR

IRFF422
500
500

IRFF423
450
450

UNITS
Volts
Volts

10

1.4

1.4

A

10M
VGS
Po

5.5
±20
20
.16

5.5
±20
20
.16

A
Volts
Watts

W/oC

TJ, TSTG

-55 to 150

-55 to 150

°C

ROJC
ROJA

6.25
175

6.25
175

°C/W

h

260

260

°C

thermal characteristics
Thermal Resistance, Junction to Case
Thermal Resistance, Junction to Ambient
Maximum Lead Temperature for Soldering
Purposes: 1116" from Case for 10 Seconds

(1) Repetitive Rating: Pulse width limited by max. junction temperature.

295

°C/W

electrical characteristics (Tc = 25° C)

(unless otherwise specified)

I SYMBOL I

MIN

TYP

MAX

UNIT

BVDSS

SOO
450

-

-

Volts

-

-

-

250
1000

pA

IGSS

-

-

±100

nA

VGS(TH)

2.0

-

4.0

Volts

10(ON)

1.4

-

-

ROS(ON)

-

-

4.0

Ohms

gfs

0.8

-

-

mhos

VGS = 10V

Ciss

-

400

pF

=25V

Coss
C rss

-

-

150

pF

-

40

pF

30

-

ns

tf

-

15

-

ns

td(off)

-

CHARACTERISTIC

off characteristics
Drain-Source Breakdown Voltage
(VGS = OV, 10 2S0 pA)

IRFF422
IRFF423

=

Zero Gate Voltage Drain Current
(VOS = Max Rating, VGS = OV, Tc = 25°C)
(VOS = Max Rating, x 0.8, VGS OV, Tc = 125°C)

loss

=

Gate-Source Leakage Current
(VGS = ±20V)

on characteristics*
Gate Threshold Voltage
(VOS = VGS, 10 = 2S0 p.A)

Tc = 25°C
"

On-State Drain Current
(VGS = 10V, VOS = 10V)
Static Drain-Source On-State Resistance
(VGS = 10V, 10 =1.0A)
Forward Transconductance
(VOS = 10V, 10 = 1.0A)

A

dynamic characteristics
Input Capacitance
Output Capacitance

VOS

Reverse Transfer Capacitance

f = 1 MHz

switching characteristics*
=225V

Turn-on Delay Time

VOS

Rise Time

10 = 1.0A, VGS = 15V

Turn-off Delay Time

RGEN

Fall Time

(RGS (EQUIV.) = 10n)

td(on)
tr

=son, RGS = 12.sn

25
30

ns
ns

source-drain diode ratings and characteristics*
Is

-

-

1.4

A

Pulsed Source Current

ISM

-

-

5.6

A

Diode Forward Voltage
(Tc = 25°C, VGS = OV, Is = 1.4A)

VSO

-

-

1.3

Volts

-

ns
pC

Continuous Source Current

Reverse Recovery Time
(Is = 1.6A, dls/dt = 100A/psec, Tc = 125°C)

trr

600
3.S

-

ORR

'Pulse Test: Pulse width :5 300 ps, duty cycle :5 2%
10
8
6

2,4

.'

/v
m 1.0

II!

""- "- "

"""
.......

0.8

~ 0,6

...

0,4

;)

0.2

Io
Z

~ 0.1
" 0,08
90,06

TC =2S'C
T J =1S0'C MAX,
0,04
RlhJC =6,2S KIW
SINGLE PULSE
I-"'OPERATION IN THIS
0,02
AREA IS LIMITED
BY RDSlon)
0,0 1
1,0
4
6 8 10

......

r-.

......

2,2

10",s

I I

" " TT
,
........

"

" ""
1""......

2,0

40

60 60 100

200

I

I

I

V

CONDITIONS:

r--

ROS(ON) CONDITIONS: 10 =1,0 A. VGS =10V
VGS(TH) CONDITIONS: 10 =250MA. VOS =VGS -

I,

I /

ROSIONI

c

~

1.8

~

1,6

::;

V

a:

tl

51

1.4

;:

I I
I I

~

1.2

"
c

1.0

>

10ms

-:. 0,8

lOOms

2

o

;; 0.6

"

a:

DC

0.4

--/

z

--

/

I--"'"

/

V

./

/

'"

V

r-- --

-:::~ .....

0,2

IRFF422IRFF423-20

I
_

o

400 600

-40

o

40

80

120

160

T J • JUNCTION TEMPERATURE ('C)

VDS. DRAIN-TO-SOURCE VOLTAGE (VOLTS)

TYPICAL NORMALIZED RDSIONI AND VGSITHI VS. TEMP.

MAXIMUM SAFE OPERATING AREA

296

~D~[F~

IRFF430,431
2.75 AMPERES
500, 450 VOLTS
ROS(ON) =1.5 n

FIELD EFFECT POVVER TRANSISTOR

Preliminary

This series of N-Channel Enhancement-mode Power
MOSFETs utilizes GE's advanced Power DMOS technology
to achieve low on-resistance with excellent device ruggedness and reliability.

N-CHANNEL

~

This design has been optimized to give superior performance
in most switching applications including: switching power
supplies, inverters, converters and solenoid/relay drivers.
Also, the extended safe operating area with good linear
transfer characteristics makes it well suited for many linear
applications such as audio amplifiers and servo motors.

CASE STYLE TO-20SAF (TO-39)
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)
0.35().().370
(8.890-9.398)

.----;-;..---.;

0.315-0.335
(8.001-8.509)

Features

• Polysilicon gate - Improved stability and reliability
• No secondary breakdown - Excellent ruggedness
• Ultra-fast switching - Independent of temperature
• Voltage controlled - High transconductance
• Low input capacitance - Reduced drive requirement
• Excellent thermal stability - Ease of paralleling

maximum ratings (T C

= 25

0

C)

RATING
Drain-Source Voltage
Drain-Gate Voltage, RGS = 1Mn
Continuous Drain Current @ T C = 25°C
Pulsed Drain Current(1)
Gate-Source Voltage
Total Power Dissipation @ TC = 25°C
Derate Above 25° C
Operating and Storage
Junction Temperature Range

(unless otherwise specified)

Voss

IRFF430
500

IRFF431
450

UNITS
Volts

VDGR

500

450

Volts

10

2.75

2.75

A

SYMBOL

10M

11

11

A

VGS

±20

±20

Volts

Po

25
0.2

25
0.2

Watts
W/oC

TJ, TSTG

-55 to 150

-55 to 150

°C

thermal characteristics
Thermal Resistance, Junction to Case

ROJC

5.0

5.0

°CIW

Thermal Resistance, Junction to Ambient

ROJA

175

175

°CIW

TL

260

260

°C

Maximum Lead Temperature for Soldering
Purposes: 1116" from Case for 10 Seconds

(1) Repetitive Rating: Pulse width limited by max. junction temperature.

297

electrical characteristics (T c = 25° C)

I

(unless otherwise specified)

CHARACTERISTIC

I SYMBOL I

MIN

. TYP

MAX

UNIT

BVDSS

500
450

-

-

Volts

-

-

250
1000

pA

IGSS

-

±100

nA

VGS(TH)

2.0

-

4.0

Volts

10(ON)

2.75

-

-

A

ROS(ON)

-

-

1.5

Ohms

-

-

mhos

-

-

800

pF

-

200

pF

60

pF

-

15

ns

10

-

40

-

ns

25

-

ns

-

-

2.75

A

11

A

-

1.4

Volts

-

800
4.6

-

ns
I1C

off characteristics
Drain-Source Breakdown Voltage
(VGS =OV, 10 =25OI1A)

IRFF430
IRFF431

Zero Gate Voltage Drain Current
(VOS =Max Rating, VGS =OV, TC =25°C)
(VOS =Max Rating, x 0.8, VGS =OV, TC =125°C)

loss

Gate-Source Leakage Current
(VGS =±20V)

on characteristics*
Gate Threshold Voltage
(VOS =VGS, 10 =250 p.A)

Tc

=25°C

On-State Drain Current
(VGS =10V, VDS =10V)
Static Drain-Source On-State Resistance
(VGS =10V, 10 =1.5A)
Forward Transconductance
. (VOS =1bv, 10 =1.5A)

1.35

gfs

dynamic characteristics
=OV
Ciss
VOS =25V
Coss
Reverse Transfer Capacitance
C rss
f =1 MHz
switching characteristics*
. Turn-on Delay Time
VOS =225V
td(on)
Rise Time
10 =1.5A, VGS =15V
tr
Turn-off Delay Time
RGEN =50.0., RGS =12.5.0.
td(off)
Fall Time
tf
(RGS (EQUIV.) =10.0.)
source-drain diode ratings and characteristics*
Input Capacitance

VGS

Output Capacitance

Continuous Source Current

Is

Pulsed Source Current

ISM

Diode Forward Voltage
(Tc =25°C, VGS =OV, Is

VSO

=4.5A)

Reverse Recovery Time
(Is =2.75A, dls/dt =100AII1sec, Tc

trr

=125°C)

ORR

ns

'Pulse Test: Pulse width :5 300 ps, duty cycle :5 2%
2.4
20

2.2
10
8

2.0

6

iii

~

15

2

I:
III

1
0.8
0.6

l

........

.....

........

.......

""

~

I

I"'r-,.

'"
.....

B 0.4
0:

.........

"-

, ,

'" rr

~

1'",

"

_ TC=25°C
T J = 150°C MAX.

RlhJC • 5.0K/W
- SINGLE PULSE
'-OPERATION IN THIS AREA
0.02 - I S LIMITED BY RDS(on)

i'...
t-...

I

0.01

1

IRFF430IRFf431-o

4

6

8 10

20

40

60 80 100

200

~

1.4

:i

~

lS
a:

DC

I I II

1.6

>"
o

I

100ms

0.04

-

I

I

I

./

I

r---.

1.0

0.8
0.6

V

/

/
./

./ "" ROSIONI

. / V'

~ 1.2

10ms

I

I

CONDITIONS:
ROS(ON) CONDITIONS: 10 = 1.5 A. VGS = 10V
VGS(TH) CONDITIONS: 10 = 250~A. VOS = VGS

1.8

~

:;;

........

........

I

N

1 ms

0.2

_ 0.1
90.08
0.06

til

10",s

I

-

1-

0.4

---

...-

V

- --

/1'

~T:7-

)0...

0.2

I

o

400 600

-40

40

80

120

160

Yos. ORAIN-TO-SOURCE YOLTAGE (YOLTS)

MAXIMUM SAFE OPERATING AREA

TYPICAL NORMALIZED ROSIONI AND VGSITHI VS. TEMP.

298

~[R30~~LF

IRFF432,433
2.25 AMPERES
500, 450 VOLTS
ROS(ON) =2.0 n

FIELD EFFECT POVVER TRANSISTOR

Preliminary

This series of N-Channel Enhancement-mode Power
MOSFETs utilizes GE's advanced Power DMOS technology
to achieve low on-resistance with excellent device ruggedness and reliability.

N-CHANNEL

~

This design has been optimized to give superior performance
in most switching applications including: switching power
supplies, inverters, converters and solenoid/relay drivers.
Also, the extended safe operating area with good linear
transfer characteristics makes it well suited for many linear
applications such as audio amplifiers and servo motors.

CASE STYLE TO-20SAF (TO-39)
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)
0.350-0.370
(8.890-9.398)

.....------;-;.---i

0.315-0.335
(8.001-8.5091

Features
• Polysilicon gate - Improved stability and reliability
• No secondary breakdown -

Excellent ruggedness

• Ultra-fast switching - Independent of temperature
• Voltage controlled - High transconductance
• Low input capacitance -

Reduced drive requirement

• Excellent thermal stability -

Ease of paralleling

maximum ratings (T C = 25 0 C)
RATING
Drain-Source Voltage
Drain-Gate Voltage, RGS = 1Mn
Continuous Drain Current @ T C = 25°C
Pulsed Drain Current(1)
Gate-Source,Voltage
Total Power Dissipation @Tc = 25°C
Derate Above 25° C
Operating and Storage
Junction Temperature Range

(unless otherwise specified)
IRFF433
450

VOGR

IRFF432
500
500

450

UNITS
Volts
Volts

10

2.25

2.25

A

10M
VGS
Po

9

9

±20
25
0.2

±20
25
0.2

A
Volts
Watts

W/oC

TJ, TSTG

-55 to 150

-55 to 150

°C

ReJC
R8JA

5.0
175

5.0
175

°C/W

TL

260

260

°C

SYMBOL
Voss

thermal characteristics
Thermal Resistance, Junction to Case
Thermal Resistance, Junction to Ambient
Maximum Lead Temperature for Soldering'
Purposes: 1116" from Case for 10 Seconds

(1) Repetitive Rating: Pulse width limited by max. junction temperature.

299

°C/W

.'

=25° C) (unless otherwise specified)

electrical characteristics (Tc

I

CHARACTERISTIC

I SYMBOL I

MIN

BVDSS

I

TYP

MAX

UNIT

500
450

-

-

Volts

-

-

250
1000

JJA

IGSS

-

-

±100

nA

VGS(TH)

2.0

-

4.0

Volts

10(ON)

2.25

-

-

A

ROS(ON)

-

-

2.0

Ohms

-

-

mhos

-

800

pF

200

pF

60

pF

-

15

ns

10

-

40

-

ns

25

-

ns

-

-

2.25

A

9

A

1.0

1.3

Volts

800
4.6

-

off characteristics
Drain-Source Breakdown Voltage
(VGS = OV, 10 = 250 JJA)

IRFF432
IRFF433

Zero Gate Voltage Drain C!-,rrent
(VOS = Max Rating, VGS = OV, TC = 25°C)
(VOS = Max Rating, x 0.8, VGS = OV, TC = 125°C)

loSS

-

Gate-Source Leakage Current
(VGS = ±20V)

on characteristics*
Gate Threshold Voltage
(VOS = VGS, 10 = 250 J.l.A)

Tc = 25°C

On-State Drain Current
(VGS = 10V, VOS = 10V)
Static Drain-Source On-State Resistance
(VGS = 10V, 10 = 1.5A)
Forward Transconductance
(VOS = 10V, 10 = 1.5A)

1.35

gfs

dynamic characteristics
Output Capacitance

=OV
VOS =25V

Reverse Transfer Capacitance

f = 1 MHz

Input Capacitance

Ciss

-

Coss
C rss

-

VGS

-

switching characteristics*
Turn-on Delay Time

VOS = 225V

Rise Time

10'= 1.5A, VGS = 15V

Turn-off Delay Time

RGEN = SOO, RGS = 12.SO

Fall Time

(RGS (EQUIV.) = 100)

td(on)
tr
td(off)
tf

ns

source-drain diode ratings and characteristics*
Continuous Source Current

IS

Pulsed Source Current

ISM

Diode Forward Voltage
(Tc = 2SOC, VGS = ov, Is = 2.25A)

VSO

Reverse Recovery Time
(Is = 2.7SA, dls/dt = 100AlJ.l.sec, TC = 125°C)

trr
ORR

·Pulse Test: Pulse Width

~

300 ps, duty cycle

~

-

-

2%
2.4

I

20

'0
B
6

iii

2

i

!5

1

a:
B

/~/

......... ~

g:
0.2

~

0.1

0.08
0.06
0.04

,
0.0

"-

-TC" 25'C
J = 150°C MAX.

.........

1'0..

""
"-

.....

~

b....
~"

I

I "II I
4

~o P~
l00"s

6 8 10
20
40 60 80 100
200
VOS. OAAlN·TO.sOUACE VOLT ADE (VOLTS)

-~

2.0

-

~

I

I

I

I

1.8

>CI 1.0
c

I

:i

100ms

~

rl

rrl

a:

0.8
0.6
0.4

I

/

./
./

./ ;rROStON I
./V

~ 1.2

I

I

CONDITIONS:
ROS(ON) CONDITIONS: '0 =1.5 A. VGS =lOV
VGS(TH) CONDITIONS: '0 =250pA. VOS =VGS

~ 1.6
::;;
.gj ,.4
z

I I

10ms

IAFF432IAFj'33_

2.2

N

.........

~

r-;RthJC ::: 5.0KIW

t-- IS LIMITEO BY AOSlon)

S

'1nS,

i-SINGLE PULSE
OPERATION IN THIS AREA

0.02

i"-..

.......

0.4

~

S

"" "-"" i '

."

iii

ns
JJC

- --

-../

.".-

.......

. /V

r-- r--

-::~

~

0.2

I

o

400 600

-40

40

80

120

160

T J • JUNCTION TEMPERATURE I'C)

TYPICAL NORMALIZED ROSIONI AND VGSITHI VS. TEMP.

MAXIMUM SAFE OPERATING AREA

300

~o~~~

IRFP150,151
D88FL2,K2
40 AMPERES
100, 60 VOLTS
ROS(ON) =0.055

FIELD EFFECT POWER TRANSISTOR

This series of N-Channel Enhancement-mode Power
MOSFETs utilizes GE's advanced Power DMOS technology
to achieve low on-resistance with excellent device ruggedness and reliability.

N-CHANNEL

This design has been optimized to give superior performance
in most switching applications including: switching power
supplies, inverters, converters and solenoid/relay drivers.
Also, the extended safe operating area with good linear
transfer characteristics makes it well suited for many linear
applications such as audio amplifiers and servo motors.

CASE STYLE TO-247
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

rcs<

r .6'5 ('5.62)y.'2S (3.25)

Features

• Polysilicon gate - Improved stability and reliability

(!':O)

• No secondary breakdown - Excellent ruggedness

2

• Low input capacitance - Reduced drive requirement
• Excellent thermal stability - Ease of paralleling

C)

RATING
Drain-Gate Voltage, RGS

= 1Mfl

Continuous Drain Current @ T C
@ TC

= 25°C
= 100°C

Pulsed Drain Current(l)
Gate-Source Voltage
Total Power Dissipation @ TC
Derate Above 25° C

= 25°C

Operating and Storage
Junction Temperature Range

~I ~~I~

3

~.,oo

(2.54)

.2'9

i5.56)

(unless otherwise specified)
IRFP150/088FL2

IRFP151/088FK2

UNIT

Voss

100

60

Volts

VOGR

100

60

Volts

10

40
25

40
25

A
A

SYMBOL

Drain-Source Voltage

J

.065 (,.65)"1

.00S ('.22)

0

I

.2'5

(5.46)

\. ------L

(LJ
If-'l-I ~-

• Voltage controlled - High transconductance

=25

If. -r

] - + "ll.

1,1

• Ultra-fast switching - Independent of temperature

maximum ratings (Tc

n

10M

160

160

A

VGS

±20

±20

Volts

Po

150
1.2

150
1.2

W/oC

TJ, TSTG

-55 to 150

-55 to 150

°C

ROJC

0.83

0.83

ROJA

40

40

°C/W
°C/W

TL

260

260

°C

Watts

thermal characteristics
Thermal Resistance, Junction to Case
Thermal Resistance, Junction to Ambient
Maximum Lead Temperature for Soldering
Purposes: Vs" from Case for 5 Seconds

(1) Repetitive Rating: Pulse width limited by max. junction temperature.

301

electrical characteristics (T c

=25

0

C)

(unless otherwise specified)

I SYMBOL I

CHARACTERISTIC

UNIT

MIN

TYP

MAX

60
100

-

-

-

250
1000

pA

IGSS

-

±100

nA

VGS(TH)

2.0

-

4.0

Volts

10(ON)

40

-

-

A

ROS(ON)

-

0.050

0.055

Ohms

gfs

8.1

10

-

mhos

-

2800

3000

pF

1000

1500

pF

-

225

500

pF

25
145

td(off)

-

95

tf

-

75

-

ns

tr

-

-

-

40

A

160

A

1.3

2.5

Volts

-

300
2.8

-

pC

off characteristics
Drain-Source Breakdown Voltage
IRFP151/D88FK2
(VGS = OV, 10 = 250 pA)
IRFP150/D88FL2
Zero Gate Voltage Drain Current
(VOS = Max Rating, VGS = OV, Tc = 25°C)
(VOS = Max Rating, x 0.8, VGS = OV, TC = 125°C)

BVDSS
loss

. Gate-Source Leakage Current
(VGS = ±20V)

Volts

on characteristics*
Gate Threshold Voltage
(VOS = VGS, 10 = 250 MA)

Tc = 25°C

On-State Drain Current
(VGS = 10V, VOS = 10V)
Static Drain-Source On-State Resistance
(VGS = 10V, 10 = 20A)
Forward Transconductance
(VOS = 10V, 10,= 20A)

dynamic characteristics
Input Capacitance

VGS = OV

Ciss

Output Capacitance

VOS = 25V

Reverse Transfer Capacitance

f = 1 MHz

Coss
Crss

switching characteristics*
Turn-on Delay Time

VOS = 30V

Rise Time

10 = 20A, VGS = 15V

Turn-off Delay Time

RGEN = 50.0, RGS = 12.5.0

Fall Time

(RGS (EQUIV.)

td(on)

= 10.0)

ns
ns
ns

source-drain diode ratings and characteristics*
Continuous Source Current

Is

Pulsed Source Current

ISM

Diode Forward Voltage
(Tc = 25°C, VGS = OV, IS = 40A)

VSO

Reverse Recovery Time
(Is = 40A, dls/dt = 100Alps, Tc = 125°C)

trr
ORR

ns

·Pulse Test: Pulse width:::; 300 p.s, duty cycle:::; 2%
1000

2.4

BOO
600

2.2

400
2.0

iii
ffi
...
~

!zw

a

/

z

~

Jl

....

r--...

100

BO

60
40
20

/\

\

" "'-"

OPERATION IN THIS AREA
MAY BE LIMITED BY ROSIONI

..........

"-

PUL~E

I'-

'-

=
=

I

" "-

r-...

~

1m,

6

8 10

20

40

1.4

r-- r-- t--

1.2

~

1.0

z

tOms

':.. O.B

~

lOOms

0.6

I-""

I-

-

-.

,/

V

_V

l-- ~

a:

IRFP15110B8FK2
k--IRFP150/088FL2

60 60 100

R:;~

1.6

!'l

t---

~~

~

0.4
0.2

DC

I
4

~
a:
~

=
=

1.8

z

Tc ""25OC
I

::;
100",

r-..
r-.. ..........

4

_ SINdLE

~

-"":r-..
10~s

"

/'

10

:

I

o

200

a:

I
I
I
I
CONDITIONS:
ROS(ON) CONDITIONS: 10 20 A, VGS l0V
VGS(TH) CONDITIONS: 10 260"A, VOS VGS

I

200

400 600 1000

-40

VOS' DRAIN-SOURCE VOL TAGE (VOL 151

o

40

BO

120

160

T J • JUNCTION TEMPERATURE ('C)

MAXIMUM SAFE OPERATING AREA

TYPICAL NORMALIZED ROSIONI AND VGSITHI VS. TEMP.

302

~D~~

IRFP152,153
33 AMPERES
100, 60 VOLTS
RDS(ON) = 0.08 n

FIELD EFFECT POWER TRANSISTOR

This series of N-Channel Enhancement-mode Power
MOSFETs utilizes GE's advanced Power DMOS technology
to achieve low on-resistance with excellent device ruggedness and reliability.

N-CHANNEL

This design has been optimized to give superior performance
in most switching applications including: switching power
supplies, inverters, converters and solenoid/relay drivers.
Also, the extended safe operating area with good linear
transfer characteristics makes it well suited for many linear
applications such as audio amplifiers and servo motors.

GATE

DRAIN

CASE STYLE TO-247
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

1--.

615 (15.62)-y.128 (3.25)

I- ] -<±1\1lII. -r'

Features

.215

• Polysilicon gate - Improved stability and reliability

(5.46)

(2~~;0)

\.

j,~ .~ )

• No secondary breakdown - Excellent ruggedness
• Ultra-fast switching - Independent of temperature

If''065(1'65JII~~l-I ~­~.10 (2.54)

(IJ

• Voltage controlled - High transconductance
• Low input capacitance - Reduced drive requirement
• Excellent thermal stability - Ease of paralleling

!t-.110 (2.79)
.018 (0.48)1,

--1.

23

I

.048(1.22)~j:.- ~:219

(5.56)

maximum ratings (TC =25° C)
RATING
Drain-Source Voltage
Drain-Gate Voltage, RGS = 1Mn
Continuous Drain Current @ TC = 25°C
@TC= 100°C
Pulsed Drain Current(1)
Gate-Source Voltage
Total Power Dissipation @Tc = 25°C
Derate Above 25° C
Operating and Storage
Junction Temperature Range

thermal

(unless otherwise specified)
SYMBOL
Voss
VOGR

IRFP152
100
100
33
20
132
±20
150
1.2

IRFP153
60
60
33
20
132
±20
150
1.2

UNITS
Volts
Volts
A
A
A
Volts
Watts
W/oC

TJ, TSTG

-55 to 150

-55 to 150

°C

ROJC
ROJA

0.83
40

0.83

40

°CIW
°CIW

TL

260

260

°C

10
10M

VGS
Po

character~stics

Thermal Resistance, Junction to Case
Thermal Resistance, Junction to Ambient
Maximum Lead Temperature for Soldering
Purposes: W' from Case for 5 Seconds

(1) Repetitive Rating: Pulse width limited by max. junction temperature.

303

=25° C) (unless otherwise specified)

electrical characteristics (T c

I

ISYMBOL I

CHARACTERISTIC

MIN

TYP

MAX

UNIT

100
60

-

-

Volts

-

250
1000

pA

±500

nA

off characteristics
Drain-Source Breakdown Voltage
(VGS =OV; 10 =250 pA)
Zero Gate Voltage Drain Current
(VOS =Max Rating, VGS =OV, Tc =25°C)
(VOS =Max Rating, x 0.8, VGS =OV, TC =125°C)

IRFP152
IRFP153

BVDSS
losS

IGSS

-

-

VGS(TH)

2.0

-

4.0

Volts

10(ON)

33

-

-

A

-

Gate-Source Leakage Current
(VGS =±20V)

on characteristicS*
Gate Threshold Voltage
(VOS =VGS, 10 =250 p.A)

Tc

=25°C

On-State Drain Current
(VGS =10V, "OS =3.0V)
Static Drain-Source On-State Resistance.
(VGS =10V, 10 =20A)

ROS(ON)

-

0.06

0.08

Ohms

9fs

8.1

10

-

mhos

Ciss

-

2800

3000

pF

1000

1500

pF

-

225

500

pF

-

25

ns

-

95
75

-

-

33

A

132

A

VSO

-

1.2

2.3

Volts

trr

-

300
2.8

-

ns
pC

I

~ONDI+IONS: I

Forward Transconductance
(VOS =2.7V, 10 =20A)

dynamic characteristics
=OV
VOS =25V
f =1 MHz

Input Capacitance

VGS

Output Capacitance
Reverse Transfer Capacitance

Coss
C rss

switching characteristics*
Turn-on Delay Time

VOS

=30V

Rise Time

10 =20A, VGS

td(on)
tr

Turn-off Delay Time

RGEN

td(off)

Fall Time

=15V
=500, RGS =12.50

(RGS (EQUIV.) = 100)

tf

145

ns
ns
ns

source-drain diode ratings and characteristics*
Continuous Source Current

IS

Pulsed Source Current

ISM

Diode Forward Voltage
(Tc = 25°C, VGS = OV, Is = 33A)
Reverse Recovery Time
(Is = 40A, dls/dt = 100A/psec, Tc = 125°C)

-

ORR

·Pulse Test: Pulse width:::; 300 JlS. duty cycle:::; 2%
1000
BOO
600
400
_

2.4

a:

l

!;;w

~

~g

:;;:

10

z

a:

c

_0

\.

\/
/

B

6

2_
1

'"

/

40
20

I

ROS(ON) CONDITIONS: 10 =20 A. VGS =10V
2.0 I--VGS(TH) CONDITIONS: 10 =250pA. VOS =VGS

10a

a:
~
u

I

c

200

III
W

w

I

2.2 I - -

......

OPERATION IN THIS AREA
MAY BE L1MITEO BY RDSIONI

SI~d~;;.~JE

1

I
4

'"

,

......... ...........

"-

\

......

10/Js

:;
~

lOOps

§!

......

"'"

i

1.4

~

1.2

6"

1.0

r--- I--

z

..z a.B

lOms

o

~

lOOms

""-

R:;~

1.6

a:

~ 1m,

r--..

1.8

I_i"'"

0.6

i,....--

---

V

__ i"'"
I--

r--

~~

a:

r-......

_

~

0.4

IRFPI53
IRFP152

~

-

0.2

DC

6 B 10
20
40 60 80 100
200
Vos. DRAIN-SOURCE VOLTAGE (VOL TSI

V

o

400 600 1000

-40

o

40

BO

120

T J. JUNCTION TEMPERATURE lOCI

MAXIMUM SAFE OPERATING AREA

TYPICAL NORMALIZED RDSIONI AND VGSITHI VS. TEMP.

304

160

IRF~250,251

~o~~LF

D88FN2!M2
30 AMPERES
200, 150 VOLTS
ROS(ON) =0.085 n

FIELD EFFECT POWER TRANSISTOR

This series of N-Channel Enhancement-mode Power
MOSFETs utilizes GE's advanced Power DMOS technology
to achieve low on-resistance with excellent device ruggedness and reliability.

N-CHANNEL

This design has been optimized to give superior performance
in most switching applications including: switching power
supplies, inverters, converters and solenoid/relay drivers.
Also, the. extended safe operating area with good linear
transfer characteristics makes it well suited for many linear
applications such as audio amplifiers and servo motors.

CASE STYLE TO-247

DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

Features
• Polysilicon gate - Improved stability and reliability
• No secondary breakdown - Excellent ruggedness
•. Ultra-fast switching - Independent of temperature
• Voltage controlled - High transconductance
• Low input capacitance - Reduced drive requirement
• Excellent thermal stability - Ease of paralleling
.018

maximum ratings (T c = 25° C)
RATING
Drain-Source Voltage
Drain-Gate Voltage, RGS = 1MH

J~'"' '

(0.46)11-

(unless otherwise specified)
SYMBOL

lI:iFP250/088FN2

UNIT

Voss

200

IRFP251/088FM2
150

VOGR

200

150

Volts

Volts

Continuous Drain Current @ T C = 25° C
@Tc = 100°C
Pulsed Drain Current(1)

10

30
19

30
19

A
A

10M

120

120

A

Gate-Source Voltage

VGS

±20

±20

Volts

Po

150
1.2

150
1.2

Watts
W/o·C

TJ, TSTG

-55 to 150

-55 to 150

°C

ROJC
ROJA

0.83
40

0.83
40

°C/W
°C/W

TL

260

260

°c

Total Power Dissipation @ T C = 25° C
Derate Above 25° C
Operating and Storage
Junction Temperature Range

thermal characteristics
Thermal Resistance, Junction to Case
Thermal Resistance, Junction to Ambient
Maximum Lead Temperature for Soldering
Purposes: W' from Case for 5 Seconds

(1) Repetitive Rating: Pulse width limited by max. junction temperature.

305

electrical characteristics (T c = 25° C)

(unless otherwise specified)

CHARACTERISTIC

I SYMBOL I

MIN

TYP

MAX

UNIT

BVDSS

150
200

-

-

Volts

-

250
1000

pA

IGSS

-

-

±500

nA

VGS(TH)

2.0

-

4.0

Volts

10(ON)

30

-

-

A

ROS(ON)

-

0.075

0.085

Ohms

9fs

7.2

10

-

mhos

Ciss

-

2800

3000

pF

520

1200

pF

120

500

pF

-

20

ns

65

-

off characteristics
Drain-Source Breakdown Voltage
(VGS =OV, 10 = 250 pA)

IRFP251/D88FM2
I RFP250/D88FN2

Zero Gate VoltaQe Drain Current
(VOS = Max Rating, VGS = OV, Tc = 25°C)
(VOS = Max Rating, x 0.8, VGS =OV, Tc =125°C)

loss

Gate-Source Leakage Current
(VGS = ±20V)

on characteristics*
Gate Threshold Voltage
(V OS = VGS, 10 = 250 J.lA)

Tc = 25°C

On-State Drain Current
(VGS = 10V, VOS = 10V)
Static Drain-Source On-State Resistance
(VGS = 10V, 10 = 16A)
Forward Transconductance
(V OS = 10V, 10 = 16A)

dynamic characteristics
Input Capacitance

VGS =OV

Output Capacitance

VOS = 25V

Reverse Transfer Capacitance

Coss
C rss

f = 1 MHz

switching characteristics*
Turn-on Delay Time

VOS = 90V

td(on)

Rise Time

10 = 16A, VGS = 15V

Turn-off Delay Time

RGEN = 500, RGS = 12.50

Fall Time

(RGS (EQUIV.) = 100)

tr
td(off)
tf

75
90

ns
ns
ns

source-drain diode ratings and characteristics*
-

30

A

-

120

A

Pulsed Source Current

ISM

-

Diode Forward Voltage
(Tc = 25°C, VGS = OV, IS = 40A)

VSO

-

1.3

2.0

Volts

Reverse Recovery Time
(Is = 30A, dls/dt = 100Alps, Tc = 125°C)

trr
ORR

-

345
4.5

-

pC

Continuous Source Current

Is

ns

·Pulse Test: Pulse width::;; 300 ps, duty cycle::;; 2%
1000
BOO
600
400

iii

2.4

cw

200

0:

l!!

~
...
~
0:
0:

tl

/

1>

'g

6_

\

t....

~

I.B
1.6

PUL~E

I

I
4

~

1.4

r-. ~~~:.

!i!l
~

I'"

>
c

1.0

:if

O.B

l3

1m.

Z

OPERATION IN THIS AREA
MAY BE LlMITEO BY ROSIONI

_ SINdLE
Tc ·25·C
1

'"
"
"
lJJ

ROS(ON) CONOITIONS: 10 16 A. Vas 10V
VaS(TH) CONOITIONS: 10 250pA. VOS Vas

I

I

=
=

=
=

0:

~

""" "'"
"""

/

20

2

~

"

/

'\

2.0

«

::;;

I

C~NDITI6NS:

N

::;

100
BO
60
40

I

2.2

9 0.6

10ms

"

1.2

!!l

r-~

--

/'

i--

.- V

./

V

r--

0:'

"-

0.4

i',00m.
i-oI-IRFP25110B8FM2
~ IRFP25010B8 FN2
DC'

6 B 10
20
40 60 BO 100
200
VDS' DRAIN-SOURCE VOLTAGE (VOLTS)

./

l/

./

/'

ROSIONI-

-- ----

VGSITHI_ I---

0.2
0

400 600 1000

-40

40

80

120

160

T J• JUNCTION TEMPERATURE ('CI

MAXIMUM SAFE OPERATING AREA

TYPICAL NORMALIZED RDslONI AND VGSITHI VS. TEMP.

306

~D~~

IRFP252,253

FIELD EFFECT POVVER TRANSISTOR

This series of N-Channel Enhancement-mode Power
MOSFETs utilizes GE's advanced Power DMOS technology
to achieve low on-resistance with excellent device ruggedness and reliability.

25 AMPERES
200, 150 VOLTS
ROS(ON) = 0.12 !l

N-CHANNEL

This design has been optimized to give superior performance
in most switching applications including: switching power
supplies, inverters, converters and solenoid/relay drivers.
Also, the extended safe operating area with good linear
transfer characteristics makes it well suited for many linear
applications such as audio amplifiers and servo motors.

GATE
DRAIN

CASE STYLE TO-247
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

Features

• Polysilicon gate - Improved stability and reliability
• No secondary breakdown - Excellent ruggedness
• Ultra-fast switching - Independent of temperature
• Voltage controlled - High transconductance
• Low input capacitance - Reduced drive requirement
• Excellent thermal stability - Ease of paralleling

maximum ratings (T C = 25° C)
RATING
Drain-Source Voltage
Drain-Gate Voltage, RGS = 1M!l
Continuous Drain Current @TC = 25DC
@Tc= 100DC
Pulsed Drain Current(')
Gate-Source Voltage
Total Power Dissipation @ Tc = 25DC
Derate Above 25 0 C
Operating and Storage
Junction Temperature Range

(unless otherwise specified)
IRFP252

IRFP253

200
200
25
16
100
±20
150
1.2

150
150
25
16
100
±20
150
1.2

UNITS
Volts
Volts
A
A
A
Volts
Watts
WIDC

TJ, TSTG

-55 to 150

-55 to 150

DC

ROJC
ROJA

0.83
40

0.83
40

DC/W
DC/W

TL

260

260

DC

SYMBOL
Voss
VOGR
10
10M
VGS
Po

thermal characteristics
Thermal ReSistance, Junction to Case
Thermal Resistance, Junction to Ambient
Maximum Lead Temperature for Soldering
Purposes: Va" from Case for 5 Seconds

(1) Repetitive Rating: Pulse width limited by max. junction temperature.

307

electrical characteristics (Tc = 25° C)

(unless otherwise specified)

CHARACTERISTIC

1 SYMBOL 1 MIN

·1 UNIT

TYP

MAX

200
150

-

-

Volts

-

250
1000

pA

±500

nA

off characteristics
Drain-Source Breakdown Voltage
(VGS = OV, 10 = 250 pA)

IRFP252
IRFP253

BVDSS

Zero Gate Voltage Drain Current
(VOS = Max Rating, VGS = OV, Tc = 25°C)
(VOS = Max Rating, x 0.8, VGS = OV, Tc = 125°C)

loss

IGSS

-

-

VGS(TH)

2.0

-

4.0

Volts

On-State Drain Current
(VGS = 10V, VOS = 3.4V)

·IO(ON)

25

-

-

A

Static Drain-Source On-State Resistance
(VGS = 10V, 10 = 16A)

ROS(ON)

-

0.10

0.12

Ohms

gfs

7.2

10

-

mhos

Ciss

-

2800

3000

pF

-

520

1200

pF

-

120

500

pF

20

-

ns

75
90

-

ns

65

-

ns

-

25

A

Gate-Source Leakage Current
(VGS = ±20V)

on characteristics*
Gate Threshold Voltage
(VOS = VGS, 10 = 250 p.A)

Tc = 25°C

Forward Transconductance
(VOS = 3.1V, 10 = 16A)

dynamic characteristics
Input Capacitance

VGS = OV

Output Capacitance

VOS = 25V
f = 1 MHz

Reverse Transfer Capacitance

Coss
C rss

switching characteristics*
Turn-on Delay Time

VOS= 90V

Rise Time

10 = 16A, VGS = 15V

Turn-off Delay Time

RGEN = 500, RGS = 12.50

Fall Time

(RGS (EQUIV.) = 100)

-

id(on)

tr
td(off)
tf

ns

source-drain diode ratings and characteristics*
Continuous Source Current

Is

Pulsed Source Current

ISM

Diode Forward Voltage
(Tc = 25°C, VGS = OV, Is = 25A)
. Reverse Recovery Time
(Is = 30A, dls/dt = 100A/ps, TC = 125°C)

VSO
trr
ORR

-

-

100

A

1.2

1.8

Volts

-

345
4.5

-

pC

ns

·Pulse Test: Pulse width $ 300 ps, duty cycle $ 2%
1000

2.4

600
400

2.2

ili

~

!zw
II:
!5
II:

Q

_0

BO

I

1.8

~

1.6

./

'\

20
/

10

B t!..
6-

"

1\

i'r......, " :~~:.

.................

'"

OPERATION IN THIS AREA
MAY BE LIMITED BY ROSION.

4

i - SINdLE PULkE

.........

20

5i

1.2

"

1.0

~

Im.

.........

.......

~

r-....

40

~

lDms

r-....
........

60 BO 100

:--

z

~ O.B

D~
6 B 10

1.4

:;:

z

I
4

r"-

......

T =2S·C

I

~

-......:

......

40

,,/

0.6

~

---

lL

ROSION'-

/'

II:

.........

60

I

~

::;

u

~

I

~

Q

200

ffi lao
..

I

I
I
I
I
CONDmONS:
ROS(ON) CONDITIONS: 10 = 16 A. VGS = 10V
2.0 f-:-VGS(TH) CONDITIONS: 10 = 250pA. VOS = VGS

BOO

~

t--

~

./

""

r-- t::-----

VGSITH._

:-r--- f--

II:

0.4

100ms

0.2

~:~~
200

o

400 600 1000

Vos. DRAIN-SOURCE VOLTAGE (VOLTS)

-40

o

40

80

120

T J • JUNCTION TEMPERATURE I'C)

MAXIMUM SAFE OPERATING AREA

TYPICAL NORMALIZED RDSIONI AND VOSITHI VS. TEMP.

308

160

~D~[P~lf

IRFP350,351
D88FQ2.Q1
15 AMPERES
400, 350 VOLTS
ROS(ON) = 0.3 n

FIELD EFFECT POWER TRANSISTOR

This series of N-Channel Enhancement-mode Power
MOSFETs utilizes GE's advanced Power DMOS technology
to achieve low on-resistance with excellent device ruggedness and reliability.

N-CHANNEL

This design has been optimized to give superior performance
in most switching applications including:-switching power
supplies, inverters, converters and solenoid/relay drivers.
Also, the extended safe operating area with good linear
transfer characteristics makes it well suited for many linear
applications such as audio amplifiers and servo motors.

CASE STYLE TO-247
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

r

Features

.~

/ II]-0"\1l
1!':0)
\. -.l..

• Polysilicon gate - Improved stability and reliability

.215
15.46)

-IlIlI~ ~.'0012.54)

j,~u
IfIIJ

• No secondary breakdown - Excellent ruggedness
• Ultra-fast switching - Independent of temperature
• Voltage controlled - High transconductance
• Low input capacitance - Reduced drive requirement

2

~~~

• Excellent thermal stability - Ease of paralleling

maximum ratings (T c

r.615 1,5.62) y . , 2 8 13.25)

.06511.65)"1
.04811.22)

3

.219

15.56)

= 25° C) (unless otherwise specified)
SYMBOL

IRFP350/088FQ2

IRFP351/088FQ1

UNIT

Voss

400

350

Volts

VOGR

400

350

Volts

10

15

15

9

9

A
A

10M

60

60

A

VGS

±20

±20

Volts

Po

150
1.2

150
1.2

Watts
. W/oC

TJ, TSTG

-55 to 150

-55 to 150

°C

Thermal Resistance, Junction to Case

ROJC

0.83

0.83

°C/W

Thermal Resistance, Junction to Ambient

ROJA

40

40

°C/W

TL

260

260

°C

RATING
Drain-Source Voltage
Drain-Gate Voltage, RGS = 1Mil
Continuous Drain Current @ T C
@ TC

= 25°C
= 100°C

Pulsed Drain Current(1)
Gate-Source Voltage
Total Power Dissipation @ T C
Derate Above 25° C

= 25° C

Operating and Storage
Junction Temperature Range

thermal characteristics

Maximum Lead Temperature for Soldering
Purposes: Va" from Case for 5 Seconds

(1) Repetitive Rating: Pulse width limited by max. junction temperature.

309

electrical characteristics (T c = 25 0 C)

(unless otherwise specified)

CHARACTERISTIC

I SYMBOL I

MIN

TYP

MAX

UNIT

BVDSS

350
400

-

-

Volts

-

250
1000

JiA

IGSS

-

±500

nA

VGS(TH)

2.0

-

4.0

Volts

10(ON)

15

-

-

A

-

0.2S

0.30

Ohms

5.S

S.O

-

mhos

-

2S00

3000

pF

300

SOO

pF

SO

200

pF

-

20

ns

110

-

70

-

ns

off characteristics
Drain-Source Breakdown Voltage
(VGS = OV, 10 = 250 JiA)

I RFP351 /DSSFQ1
IRFP350/DSSFQ2

Zero Gate Voltage Drain Current
(VOS = Max Rating, VGS = OV, TC = 25°C)
(VOS = Max Rating, x O.S, VGS = OV, Tc = 125°C)

loss

Gate-Source Leakage Current
(VGS = ±20V)

on characteristics*
. Gate Threshold Voltage
(VOS = VGS, 10 = 250 /LA)

Tc = 25°C

On-State Drain Current
(VGS = 10V, VOS = 10V)
Static Drain-Source On-State Resistance
(VGS = 10V, 10 = SA)

ROS(ON)

Forward Transconductance
(VOS = 10V, 10 = SA)

gfs

dynamic characteristics
Input Capacitance

VGS=OV

Ciss

Output Capacitance

VOS = 25V

Reverse Transfer Capacitance

f = 1 MHz

Coss
C rss

switching characteristics*
Turn-on Delay Time

VOS = 175V

td(on)

Rise Time

10 = SA, VGS = 15V

Turn-off Delay Time

RGEN = 500, RGS = 12.50

Fall Time

tr
td(off)
tf

(RGS (EQUIV.) = 100)

25

ns
ns

source-drain diode ratings and characteristics*
Continuous Source Current

IS

Pulsed Source Current

ISM

Diode Forward Voltage
(Tc = 25°C, VGS = OV, Is = 40A)

VSO

Reverse Recovery Time
(Is = 15A, dls/dt = 100AlJis, Tc = 125°C)

trr
ORR

-

-

15

A

SO

A

1.0

1.S

Volts

-

500
S.5

-

ns
JiC

·Pulse Test: Pulse Width :5 300 ps, duty cycle :5 2%
100

, .....

so

60
40

l

m 20
a:
"'

/

\

10

l... :
iii

/'

4

/

gj
z
<1

"

..........

1.0
I:sQ 0.8
0.6

I"-

\

""

-

0.4
0.2 0.1

I

N

1.8

Im,'--

:IE

'(J,

loo~,

c

~z
~

0
II:

IRFP351/088FQl ~
IRrpfl/088F~2-

I
4

"'::;

DC

T -2S·C

I

Q

IOOr'

........

SIN~LE PU~SE

f

10.,-

'I'-..

OPERATION IN THIS AREA
-MAY BE LIMITED BY ROSIONI

I

ROS(ON) CONDITIONS: 10 =8.0 A. VGS = 10V
2.0 t- VGS(TH) CONDITIONS: 10 =250"". VOS =VGS I---+--/---+:"~RO-SIO!-NI---I

,

"

..........

\

2

2.4 '2.2,

......................

r-, " ~
........
'r"-

"" "

\

II:

u

'

......

---

1.2
1.0
0.8
0.6

0.4

-

0.2

0~-_4~0--~-+0--~~40~~~SO~~~12~0--~~'60

400 600 1000

VDS' DRAIN-SOURCE VOLTAGE (VOL TSI
T J • JUNCTION TEMPERATURE I'C)

MAXIMUM SAFE OPERATING AREA

TYPICAL NORMALIZED RDSIONI AND VOSITHI VS. TEMP.

310

~D~~

IRFP352,353
13 AMPERES
400, 350 VOL TS
ROS(ON) = 0.4 il

FIELD EFFECT POVVER TRANSISTOR

This series of N-Channel Enhancement-mode Power
MOSFETs utilizes GE's advanced Power DMOS technology
to achieve low on-resistance with excellent device ruggedness and reliability.

N-CHANNEL

This design has been optimized to give superior performance
in most switching applications including: switching power
supplies, inverters, converters and solenoid/relay drivers.
Also, the extended safe operating area with good linear
transfer characteristics makes it well suited for many linear
applications such as audio amplifiers and servo motors.

GATE
DRAIN

CASE STYLE TO-247

DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

r

Features

1--.

615 (15.62)y.128 (3.25)

'-r
]- <±1\ II-It
.215
(5.46)

• Polysilicon gate - Improved stability and reliability

(2~1~0)

• No secondary breakdown - Excellent ruggedness

1'~lJ
Ff(IJ

• Ultra-fast switching -Independent of temperature
• Voltage controlled - High transconductance

2

• Low input capacitance - Reduced drive requirement

~~

• Excellent thermal stability - Ease of paralleling

maximum ratings (T C = 25 0 C)
RATING
Drain-Source Voltage
Drain-Gate Voltage, RGS = 1Mil
Continuous Drain Current @TC = 25°C
@TC= 100°C
Pulsed Drain Current(1)
Gate-Source Voltage
Total Power Dissipation @TC = 25°C
Derate Above 25°C
Operating and Storage
Junction Temperature Range

~

-IlIlI ~ I~ ~.100(2.54)
\.

.065 11.65)..,
.04811.22)

3

.219

15.56)

(unless otherwise specified)
IRFP352
400
400
13
8
52
±20
150
1.2

IRFP353
350
350
13
8
52
±20
150
1.2

UNITS
Volts
Volts
A
A
A
Volts
Watts
W/oC

TJ,TSTG

-55 to 150

-55 to 150

°C

R8JC
R8JA

0.83
40

0.83
40

°C/W
°C/W

TL

260

260

°C

SYMBOL
VOSS
VOGR
10
10M

VGS
Po

thermal characteristics
Thermal Resistance, Junction to Case
Thermal Resistance, Junction to Ambient
Maximum Lead Temperature for Soldering
Purposes: W' from Case for 5 Seconds

(1) Repetitive Rating: Pulse width limited by max. junction temperature.

311

=25

electrical characteristics (Tc

I

0

C)

(unless otherwise specified)

ISYMBOL

MIN

TYP

MAX

UNIT

400
350

-

-

Volts

-

-

250
1000

pA

-

-

±500

nA

VGS(TH)

2.0

-

4.0

Volts

=

10(ON)

13

-

-

A

Static Drain-Source On-State Resistance
(VGS = 10V, 10 BA)

ROS(ON)

-

0.35

0.40

Ohms

gfs

5.6

B.O

-

mhos

Ciss

2BOO

3000

pF

Coss
C rss

-

300

600

pF

60

200

pF

td(on)

-

20

-

ns

=BA, VGS =15V
tr
=50n, RGS = 12.5n td(off)
Fall Time
tf
(RGS (EQUIV.) =10n)
source-drain diode ratings and characteristics*

CHARACTERISTIC

off characteristics
Drain-Source Breakdown Voltage
(VGS OV, 10 250 pA)

=

IRFP352
IRFP353

=

. BVDSS

Zero Gate Voltage Drain Current
(VOS Max Rating, VGS = OV, Tc = 25°C)
(VOS Max Rating, x O.B, VGS = OV, Tc 125°C)

=
=

loss

=

Gate-Source Leakage Current
(VGS ±20V)

=

IGSS

on characteristics*
Gate Threshold Voltage
(VOS = VGS, 10 250 J.l.A)

Tc

=

=25°C

On-State Drain Current
(VGS 10V, VOS 5.BV)

=

=

Forward Transconductance
(VOS 5.3V, 10 = BA)

=
dynamic characteristics
Input Capacitance

VGS = OV

Output Capacitance

VOS = 25V

Reverse Transfer Capacitance

f = 1 MHz

switching characteristics*
Turn-on Delay Time

VOS

=175V

Rise Time

10

-

25

RGEN

-

110

-

ns

Turn-off Delay Time

-

70

-

ns

Is

-

-

13

A

ISM

-

-

52

A

VSO

-

0.9

1.5

Volts

trr

-

500
6.5

-

pC

Continuous Source Current
Pulsed Source Current
Diode Forward Voltage
(Tc 25°C, VGS = OV, IS

=

=13A)

Reverse Recovery Time
(Is 15A, dls/dt 100Alpsec, Tc

=

=

=125°C)

ORR

ns

ns

·Pulse Test: Pulse Width :5 300 IlS, duty cycle:5 2%
2.4

100
BO
60
40

ffi

/

II:

~

k. . . . .

~

20

\

10

.,-

~... ~
zw

4

II:

~
u
z

«

l!i

I"

-'

v"-

2
1.0
O.B

.,-

\

r-

"""""-

\

""" ,

~

'I"-

......

"-

"

.........

i'...

-

0.4
0.2

r---- SIN~LE pulSE

DC

I'

I

1.2

>"
c
z

1.0

§ OB.

I

I

/'

/l
./

-

-

II:

r-- ......

/

./

./

r--

----

iii 0.6
c

0.4

,,-

V

/

ROS(ONI

/'"

--

-..!G~ -

IRFP352~

0.2

I
4

1.4

~

..:

T "2S0C

0.1

1.6

;:

100~'

IRFP353~

:i
~

lomi

,

OPERATION IN THIS AREA
" 0.6 r--MAY BE L1MITEO BY RDSIONI

1,8

II:

1

"

~

:::;

Im,'-

i'...

"

t----

c
10$.15
100",

........

......

I

I
I
I
I
CONDITIONS:
RDS(ON) CONDITIONS: 10 • B.O A, VGS • IOV
2.0 f--- VGS(TH) CONDITIONS: 10' 250"". VDS' VGS

2.2

6 B 10
20
40 60 80 100
200
V DS ' DRAIN-SOURCE VOLTAGE IVOLTSI

o

400 600 1000

-40

40

BO

120

TJ • JUNCTION TEMPERATURE ('CI

MAXIMUM SAFE OPERATING AREA

TYPICAL NORMALIZED ROSIONI AND VaSITHI VS. TEMP.

312

160

~D~[P~U

IRFP451 ~450
D88FR1,R2

FIELD EFFECT POWER TRANSISTOR

This series of N-Channel Enhancement-mode Power
MOSFETs utilizes GE's advanced Power DMOS technology
to achieve low on-resistance with excellent device ruggedness and reliability.

13 AMPERES
450, 500 VOL TS
ROS(ON) =0.4 n

N-CHANNEL

This design has been optimized to give superior performance
in most switching applications including: switching power
supplies, inverters,· converters and solenoid/relay drivers.
Also, the extended safe operating area with good linear
transfer characteristics makes it well suited for many linear
applications such as audio amplifiers and servo motors.

CASE STYLE TO-247 .
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

Features

• Polysilicon gate - Improved stability and reliability
• No secondary breakdown - Excellent ruggedness
• Ultra-fast switching - Independent of temperature
• Voltage controlled - High transconductance
• Low input capacitance - Reduced drive requirement
• Excellent thermal stability - Ease of paralleling

maximum ratings (Tc = 25 0 C)
RATING

(unless otherwise specified)
SYMBOL

Drain-Source Voltage

Voss

Drain-Gate Voltage, RGS = 1MO

VOGR

Continuous Drain Current @ T C = 25°C
@TC = 100°C
Pulsed Drain Current(l)
Gate-Source Voltage
Total Power Dissipation @ TC = 25°C
Derate Above 25° C
Operating and Storage
Junction Temperature Range

10

IRFP451/088FR1
450
450

IRFP450/088FR2
500

UNIT

500

Volts

13
8

13
8

A
A

Volts

10M

52

52

A

VGS

±20

±20

Volts

Po

150
1.2

150
1.2

Watts
W/oC

TJ, TSTG

-55 to 150

-55 to 150

°C

ROJC
ROJA

0.83
40

0.83
40

°C/W
°C/W

TL

260

260

°C

thermal characteristics
Thermal Resistance, Junction to Case
Thermal Resistance, Junction to Ambient
Maximum Lead Temperature for Soldering
Purposes: Va" from Case for 5 Seconds

(1) Repetitive Rating: Pulse width limited by max. junction temperature.

313

=25° C) (unless otherwise specified)

electrical characteristics (T c

I

CHARACTERISTIC

, SYMBOL'

MIN

TYP

,.

MAX

UNIT

BVDSS

450
500

-

-

Volts

-

-

250
1000

pA

IGSS

-

-

±500

nA

VGS(TH)

2.0

-

4.0

Volts

10(ON)

13

-

-

A

ROS(ON)

-

0.3

0.4

Ohms

gfs

4.8

7.0

-

mhos

-

2800

3000

pF

330

600

pF

55

200

pF

-

25

ns

20

-

-

120

-

ns

65

-

ns

-

13

A

52

A
Volts

off characteristics
Drain-Source Breakdown Voltage
(VGS = OV, 10 = 250 pA)

IRFP451/D88FR1
I RFP450/D88FR2

Zero Gate Voltage Drain Current
(VOS = Max Rating, VGS = OV, TC = 25°C)
(VOS = Max Rating, x 0.8, VGS = OV, Tc = 125°C)

loss

Gate-Source Leakage Current
(VGS = ±20V)

on characteristics*
Tc = 25°C

Gate Threshold Voltage
(V OS = VGS, 10 = 250 J.l.A)
On-State Drain Current
(VGS = 10V, VOS = 10V)
Static Drain-Source On-State Resistance
(VGS = 10V, 10 = 7A)
Forward Transconductance
(VOS = 10V, 10 = 7A)

dynamic characteristics
Input Capacitance

VGS = OV

Ciss

Output Capacitance

VOS = 25V

Reverse Transfer Capacitance

f = 1 MHz

Coss
C rss

switching characteristics*
VOS = 225V

Turn-on Delay Time

td(on)

Rise Time

10 = 7A, VGS = 15V

Turn-off Delay Time

RGEN = 500, RGS = 12.50

Fall Time

tr
td(off)

(RGS (EQUIV.) = 100)

tf

ns

source-drain diode ratings and characteristics*
Pulsed Source Current

ISM

-

Diode Forward Voltage
(Tc = 25°C, VGS = OV, Is = 40A)

VSO

-

0.7

1.4

trr

-

590
7.4

-

Continuous Source Current

Is

Reverse Recovery Time
(Is = 13A, dls/dt = 100Alps, Tc = 125°C)

ORR

ns

-

pC

'Pulse Test: Pulse width $ 300 /ls, duty cycle $ 2%
100

2.4

BO
60
40

ffi

20

II:

~

~

...

iii
II:

~

u

".~ ..........

~
l

/

10

:

is

......

v". \
2

O.B

C 0.6
- 0.4

..........

:'-..

\

f- OPERATION IN THIS AREA
f- MAY BE LIMITED BY ROSIONI

0.2

f-- SIN~LE PU~SE

O. 1

T

Tc=2SDC

I
4

..........

"'-

OJ

N

10IJs
100.,

..........

..........

:;

CbNDITI~NS:

I

I

=
=

l/

=
=

./
/

«

:IE

1.6

0
2

1.4

~

l~mj

>'"

0
2

1'001.

«

Z
g

1"..........

IRFP451/0BBFRl . .
IRii450/0BrR2 -

1.8

/

l!l

1.2

O.B

II:

I

r--

1.0

0.6

,..-

.--

-..-

i-- . /

,/

'"

./

r--

0.4

C

ROSIONI

/"

II:

li't......

"-

6 8 10
20
40 60 BO 100
200
VOS' DRAIN-SOURCE VOLTAGE (VOL TSI

I

0

'

"-

I

-

ROS(ON) CONDITIONS: 10 7.0 A. VGS 10V
2.0 - VGS(TH) CONDITIONS: 10 250~A. VOS VGS

'r-,.' ~
,~

..........

......

4

1.0

,

/

2


C

/1'

1.4
1.2

r---

1.0

--

-:. O.B

z

I

a:

Dt

i

IRFP453~
0.2 I- SING1LE PUL1E
IRFP4S2 - - - ;
T =2SoC
C1
I
D. 1
4
6 B 10
20
40 60 BO 100
200
400 600 1000
Vas' DRAIN-SOURCE VOLTAGE IVOLTSI

0.6

ROS(ONI

L

1.6

Z

~o

/

1.B

CI

II
lOOms

/

,..-

0.4

~

L.
t-

/

/'

",

r-- r--

VGSITHI

-r--

-

0.2

I

-40

40

60

120

160

TJ , JUNCTION TEMPERATURE I'C)

MAXIMUM SAFE OPERATING AREA

TYPICAL NORMALIZED ROSIONI AND VGSITHI VS, TEMP.

316

~D~[P~lY

D80AK2,L2

FIELD EFFECT POWER TRANSISTOR

0.45 AMPERES
60, 100 VOLTS
RDS(ON) =2.4 n

This series of N-Channel Enhancement-mode Power
MOSFETs utilizes GE's advanced Power DMOS technology
to achieve low on-resistance with excellent device ruggedness and reliability.

N~:ANNE~

,

M"~ ~
fi

This design has been optimized to give superior performance
in most switching applications including: switching power
supplies, inverters, converters and solenoid/relay drivers.
Also, the extended safe operating area with good linear
transfer characteristics makes it well suited for many linear
applications' such as audio amplifiers and servo motors.

DRAIN

CASE STYLE TO-237

.S

DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

---.-----i-----;~
.105(2.671
.095(2.411

---r

Features

~71

• Polysilicon gate - Improved stability and reliability

SEATING
PLANE

• No secondary breakdown - Excellent ruggedness

.250(6.351

~

~or
.016(.41)

- L -_ _

• Ultra-fast switching - Independent of temperature

[

.016(.461 & .016(.411]
.016(.411
.014(.36)

D0O~or [
.016(.411

.0221.561 & .020(.511 ]
.016(.411
.014(.361

• Voltage controlled - High transconductance
• Low input capacitance - Reduced drive requirement
• Excellent thermal stability - Ease of paralleling

maximum ratings (TA

= 25

0

C)

RATING

(unless otherwise specified)
SYMBOL

D80AK2

D80AL2

UNIT

Voss

60

100

Volts

VOGR

60

100

Volts

10

0.45
0.60

0.45
0.60

A
A

Pulsed Drain Current(3)

10M

4.0

4.0

A

Gate-Source Voltage

VGS

±20

±20

Volts

Po

1.0

1.0

8

8

Watts
mW/oC

Po

2.0
40

2.0
40

Watts
mW;aC

TJ, TSTG

-55 to 150

-55 to 150

°c

ROJC
ROJA

25
125

25
125

°C/W
°C/W

h

300

300

°c

Drain-Source Voltage
Drain-Gate Voltage, RGS

=1Mn

Continuous Drain Current @ T A = 25 0 C(1)
@Tc =100°C(2)

Total Power DisSipation @ T A = 25 0 C(l)
Derate Above 25° C
Total Power Dissipation @ TC
Derate Above 100 0 C

=100°C(2)

Operating and Storage
Junction Temperature Range

thermal characteristics
Thermal Resistance, Junction to Case
Thermal Resistance, Junction to Ambient
Maximum Lead Temperature for Soldering
Purposes: Va" from Case for 5 Seconds
(1) Device Lead Mounted in Free Air, No Heatsink.

(2) Device Tab Soldered to Heatsink.

317

(3) Repetitive Rating: Pulse Width Limited by Max.
Junction Temperature

= 25° C)

electrical characteristics (TA

I

(unless otherwise specified)

I SYMBOL I

MIN

TVP

MAX

UNIT

BVOSS

60
100

-

-

Volts

Zero Gate Voltage Drain Current
(VOS =Max Rating, VGS =OV, TA =25°C)
(VOS =Max Rating, x 0.8, VGS =OV, TA =125°C)

loSS

-

-

250
1000

J.LA

Gate-Source Leakage Current
(VGS =±20V)

IGSS

-

-

±500

nA

25°C

VGS(TH)

2.0

-

4.0

Volts

=0.25A
=0.45A
=0.25A, TA =125°C

VOS(ON)

-

0.55
1.05
0.90

0.60

Volts

ROS(ON)

-

2.2

2.4

Ohms

gfs

-

0.2

-

mhos

Ciss

-

36

70

pF

Coss
C rss

-

20

30

pF

7

10

pF

td(on)

-

6

-

ns

6

-

ns

12

,-

ns

7

-

ns

A

CHARACTERISTIC

off characteristics
Drain-Source Breakdown Voltage
(VGS =OV, 10 =250 J.LA)

D80AK2
D80AL2

on characteristics*
Gate Threshold Voltage
=VGS, 10 =250 J.LA)
Drain-Source On-State Voltage
(VGS =10V)

TA

("os

10
10
10

=

Static Drain-Source On-State Resistance
(VGS =10V, 10 =0.25A)
Forward Transconductance
(VOS = 10V, 10 =0.25A)

-

-

dynamic characteristics
Input Capacitance

VGS

Output Capacitance

VOS

Reverse Transfer Capacitance

f

=OV
=25V

=1 MHz

switching characteristics*
=30V
=0.25A, VGS =15V
RGEN =50 n, RGS =12.5 n
(RGS (EQUIV.) =10n)

Turn-on Delay Time

VOS

Rise Time

10

Turn-off Delay Time
Fall Time

tr
tdloff)
tf

source-drain diode ratings and characteristics*
Pulsed Source Current

ISM

Diode Forward Voltage
(TA =25° C, VGS =OV, Is =0.45A)
Reverse Recovery Time
(Is =0.45A, dls/dt =100AlJ.Ls, VOS

VSO

-

trr

-

Continuous Source Current

IS

=45 V Max., TA =125°C)

-

0.45
4.0

A

0.9

1.4

Volts

65

-

ns

'Pulse Test: Pulse width::; 300 J.LS, duty cycle::; 2%
2.4

i"f
~

~~

5
~
9

""'

0,1

" "I"""~'"
" "" ~

.01

~

r

I

a:

1.2

O.B
0.6
0.4
0.2

TAl = 25°C
' " DC
_ _~_'--"""_ _
10
20
50
100

~--'

1

lOOms

""""'-"''='''''''_ _
200

=
=

I

=10V
=VGS

V

/V

-r--

1.0

-+---1

Ii"

I

.ROS(ON) CONDITIONS: 10 0.25 A. VGS
VGS(TH) CONDITIONS: 10 250pA. VOS

1.4

I- SINGLE PULSE +---t--+-----'k:f---f--+--I---c-i

I

I

RDS(ON)/,

J
"

I=t:+==+==!s;;;::~~=+~$);;;::t==:::j:==I
"
"
,,10ms

r-

!--

.

CONDITIONS

1.6

0
Z

1ms

OPERATION IN THIS AREA -+~~-Pk-+"-..;:;::. DBOAK2
MAY BE LIMITED BYRDS(ON)
" " .......... __ DBO:AL2

2.0

I

I

a:

"
"

I---

1.B

i

:-- //;NO, "'"
1,0 ~~/~S;;:::::"t:::S:k",,=~~~~:j:f~i1cl00iO,pS;st==+=:::j

!i1

"

lOpS

I

2.2

:-

I-"

---

,.~
I--

~

. . .V

r-- ~ r---

-r--

VGS(TH)

r-

J.-~

-40

500

40

BO

120

160

T J.JUNCTION TEMPERATURE eC)

Vos. DRAIN-SOURCE VOLTAGE (VOLTS)

TYPICAL NORMALIZED ROS(ON) AND VGS(TH)VS. TEMP.

MAXIMUM SAFE OPERATING AREA

318

~~o~~~u

D80AM2,N2
0.32 AMPERES
150,200 VOLTS
RDS(ON) = 5.0 n

FIELD EFFECT POWER TRANSISTOR

This series of N-Channel Enhancement-mode Power
MOSFETs utilizes GE's advanced Power DMOS technology
to achieve low on-resistance with excellent device ruggedness and reliability.

"
fi

N:::ANNE~

o"'~

~

DRAIN

This design has been optimized to give superior performance
in most switching applications including: switching power
supplies, inverters, converters and solenoid/relay drivers.
Also, the extended safe operating area with good linear
transfer characteristics makes it well suited for many linear
applications such as audio amplifiers and servo motors.

CASE STYLE TO-237·

S

DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

-.---i-----.;--.L
.105(2.67)
.095(2.41)

~

Features

~27)

'-n-TTTr-'

• Polysilicon gate -

Improved stability and reliability

SEATING
PLANE

• No secondary breakdown - Excellent ruggedness
• Ultra-fast switching • Voltage controlled -

[
-'--__ 00O~or [
~

~or
.016(.41)

Independent of temperature

.016(.41)

.018(.46) & .016(.41)]
.0161.41)
.014(.36)
.022(.56) & .020(.51) ]
.016(.41)
.014(.36)

High transconductance

• Low input capacitance -

Reduced drive requirement

• Excellent thermal stability -

maximum ratings (TA

Ease of paralleling

= 25° C)

RATING
Drain-Source Voltage
Drain-Gate Voltage, RGS

.250(6.35)

(unless otherwise specified)
SYMBOL

=1Mfl

Continuous Drain Current @ TA = 25°C(1)
@ TC =100°C(2)
Pulsed Drain Current(3)
Gate-Source Voltage

Voss
VOGR
10

D80AM2
150
150

D80AN2
200
200

UNITS
Volts
Volts

0.32
0.43

0.32
0.43

A
A

10M

1.5

1.5

A

±20

Volts

VGS

±20

Total Power Dissipation @ TA
Derate Above 25° C

=25°C(1)

Po

1.0

1.0

8

8

Watts
mWrC

Total Power Dissipation @TC
Derate Above 100° C

=100°C(2)

Po

2.0
40

2.0
40

Watts
mW/oC

TJ, TSTG

-55 to 150

-55 to 150

°c

Operating and Storage
Junction Temperature Range

thermal characteristics
Thermal Resistance, Junction to Case

ROJC

25

25

°C/W

Thermal Resistance, Junction to Ambient

ROJA

125

125

°C/W

Maximum Lead Temperature for Soldering
Purposes: Va" from Case for 5 Seconds

h

300

300

°c

(1) Device Lead Mounted in Free Air, No Heatsink. (2) Device Tab Soldered to Heatsink.
(3) Repetitive Rating: Pulse Width Limited by Max. Junction Temperature.

319

electrical characteristics (TA

=25° C) (unless otherwise specified)
ISYMBOL

CHARACTERISTIC

MIN

TYP

MAX

UNIT

150
200

-

-

Volts

-

250
1000

pA

-

±5oo

nA

off characteristics
Drain-Source Breakdown Voltage
(VGS =OV, 10 =250 pA)

D80AM2
D80AN2

BVDSS

-

-

Zero Gate Voltage Drain Current
(VOS = Max Rating, V~s =OV, T A =25°C)
(VOS = Max Rating, x .8, VGS =OV, TA =125°C)

loss

Gate-Source Leakage Current
(VGS =±20V)

IGSS

-

VGS(TH)

2.0

-

4.0

Volts

VOS{ON)

0.66
1.41
1.05

0.75

Volts

ROS{ON)

-

4.4

5.0

Ohms

gfs

-

0.11

-

mhos

Ciss

-

37

70

pF

15

25
8

pF
pF

15

-

ns

A

on characteristics*
Gate Threshold Voltage
(VOS =VGS, 10 =250 JlA)

TA

10 =0.15A
10 =0.32A
10 =0.15A, TA

Drain-Source On-State Voltage
(VGS =10V)

=25°C

=125°C

Static Drain-Source On-State Resistance
(VGS =10V, 10 =0.15A)
Forward Transconductance
(VOS =10V, 10 =0.15A)

-

dynamic characteristics
=OV
VOS =25V
f =1 MHz

Input Capacitance

VGS

Output Capacitance
Reverse Transfer Capacitance

Coss
C rss

4

switch i ng characteristics *
=90V

td(on)

Rise Time

10 =0.15A, VGS

tr

-

Turn-off Delay Time

RGEN

id(off)

-

22

tf

-

28

-

0.32

Turn-on Delay Time

VOS

=15V
=500, RGS =12.50
(RGS (EQUIV.) =100)

Fall Time

10

ns
ns
ns

source-drain diode ratings and characteristics*
Pulsed Source Current

ISM

-

1.5

A

Diode Forward Voltage
(TA =25°C, VGS =OV, Is

VSO

-

0.86

1.3

Volts

trr

-

125

-

Continuous Source Current

IS

=0.32A)

Reverse Recovery Time
(IS =0.32A, dis/dt =100Alps, VOS

=80V max., TA =125°C)

ns

Pulse Test: Pulse width:5 300 JlS, duty cycle:5 2%
2.4

10

I

8

6

2.2

I--

2.0 I - -

in
w

a;

~

~... ~:
ffi

"-

'\

0.4

a;
a;
~

u

0.2

O. 1
.08

jl

.06

"'-

I,

,

\

"

.04

.02

SINGLE PULSE
TA ;2S°C,
1

5

"'-

10

20

"

I'" "-

1.6

~

1.4

~

I

I

ROSIONI

"z

I"-

o

~
a;

...... 10m.
-D80AM2
-OBOAI2 ..... 100m.
200

500

O.B

~

. /~

-

--

V

-

~

r--0.6

. . .V
I--I--VGSITHI -

-

0.4

~-

100

1.2

>'" 1.0
c
z

...... 1m.

~
50

1.8

~

;:

100115

1'0..

~

"-

&1
::;

I

CONDITIONS
ROS(ON) CONDITIONS: 10; 0.15 A, VGS; 10V
VGS(TH) CONOITIONS: 10 = 250~P<, VOS = VGS

a;

'" r"...... "
"
" " b......
.....

OPERATIbN IN THIS AREA
MAY BE LIMITED BY ROSIONI

.01

"
"-

10~s

1'0..

z

:;;:
~

"-

"'-

1

N

I

I

0.2

o

1000

-40

40

BO

120

160

T J. JUNCTION TEMPERATURE ('CI

Vos. DRAIN-SOURCE VOLTAGE (VOLTSI

TYPICAL NORMALIZED RDSIONI AND

MAXIMUM SAFE OPERATING AREA

320

VGSITHI VS.

TEMP.

~VN5000~1

~D~~lf

AN Series

FIELD EFFECT POWER TRANSISTOR

This series of N-Channel Enhancement-mode Power MOSFETs
utilizes GE's advanced Power DMOS technology to achieve low
on-resistance with excellent device ruggedness and reliability.
This design has been optimized to give superior performance in
most switching applications including: switching power supplies,
inverters, converters and solenoid/relay drivers. Also, the extended
safe operating area with good linear transfer characteristics makes
it well suited for many linear applications such as audio amplifiers
and servo motors.

.7 AMPERES
40-100 VOLTS
ROS(ON) =2.5 n

~,,~

~

DRAIN

CASE STYLE TO-237

S

DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

-.---~-....;~
.10512.67)

Applications
•
•
•
•
•
•

"
fi

N::ANNE~

.09512.41)

~

LED and lamp drivers
High gain, wide-band amplifiers
High speed switches
Line drivers
Logic buffers
Pulse amplifiers

'-rr-TT'Tr
SEATING

PLANE

.250(6.35)

~7)

-----,

[
-'--__ D0O~or [
~

~or
.0161.41)

.0181.46) & .016(.41)]
.016(.41)
.0141.36)

.016(.41)

.022(.56) & .020(.51) ]
.0161.41)
.014(.36)

Features
•
•
•
•
•
•

High speed, high peak current switching
Inherent current sharing capability when paralleled
Directly interface to CMOS, DTL, TTL logic
Simple, straight-forward DC biasing
Inherent protection from thermal runaway
Reliable, low cost plastic package

maximum ratings (TA

= 25° C)

RATING
Drain-Source Voltage
Drain-Gate Voltage, RGS =1MCl
Continuous Drain Current @ T A = 25°C
Peak Drain Current(1)
Gate-Source Voltage
Total Power Dissipation @ TA =25°C
Derate Above 25° C
Operating and Storage
Junction Temperature Range

(unless otherwise specified)

Voss
VDGR

0
40
40

E
60
60

F
80
80

H
100
100

UNITS
Volts
Volts

10

0.7

0.7

0.7

0.7

A

10M
VGS
Po

2.0
±30
2.0
16

2.0
±30
2.0
16

2.0
±30
2.0
16

2.0
±30
2.0
16

A
Volts
Watts
mW/oC

SYMBOL

TJ, TSTG

-55 to 150 -55 to 150 -55 to 150 -55 to 150

°C

(1) Repetitive Rating: Pulse width limited by max. junction temperature.

thermal characteristics
Thermal Resistance, Junction to Ambient

ROJA

62.5

62.5

62.5

62.5

°CIW

Maximum Lead Temperature for Soldering
Purposes: 1/16" from Case for 10 Seconds

TL

300

300

300

300

°C

(1) Repetitive Rating: Pulse width limited by max. junction temperature.

321

electrical characteristics (TA

I

=25° C) (unless otherwise specified)
I SYMBOL I

CHARACTERISTIC

MIN

I

TYP

MAX

UNIT

off characteristics
Drain-Source Breakdown Voltage
(VGS = OV, 10 = 10 p.A)

IVN5000,1AND
IVN5000,1 ANE
IVN5000,1ANF
IVN5000,1 ANH

Zero Gate Voltage Drain Current
(VOS = Max Rating, VGS = OV)
(VOS = Max Rating, x 0.8, VGS = OV, TA = 125QC)
Gate-Source Leakage Current
(VGS = 15V, VOS = OV)
(VGS = 15V, VOS = OV - TA = 125 QC)

BVDSS

40
60
80
100

-

-

Volts

loss

-

-

10
500

p.A

-

-

-

10
50

nA
nA

.8
.8

-

2.0
3.6

Volts
Volts

-

-

2.0
1.9

2.5
2.5

Volts

-

2.0
1.9

2.5
2.5

Ohms
Ohms

10(ON)

1.0
1.0

-

Amp
Amp

gfs

.17

.28

-

mhos

-

40

50

pF

27

40

pF

6

10

pF

-

2

5

ns

2

5

ns

2

5

ns

2

5

ns

IGSS

on characteristics*
Gate Threshold Voltage
(VOS = VGS, 10 = 1 mA)
Drain-Source Saturation Voltage
(VGS = 10V, 10 = 1.0A)
(VGS = 12V, 10 = 1.0A)
Static Drain-Source On-State Resistance
(VGS = 10V, 10 = 1.0A)
(VGS = 12V, 10 = 1.0A)
On-State Drain Current
(VOS = 24V, VGS = 10V)
(V OS = 24V, VGS = 12V)
Forward Transconductance
(VOS = 24V, 10 = 0.5A, f = 1 KHz)

IVN5000
IVN5001
IVN5000
IVN5001
IVN5000
IVN5001
IVN5000
IVN5001

VGS(TH)
VOS(ON)

ROS(ON)

dynamic characteristics
Input Capacitance

VGS = OV

Ciss

Output Capacitance

VOS = 24V

Reverse Transfer Capacitance

f = 1 MHz

Coss
C rss

switching characteristics*
Turn-on Delay Time

td(on)

See switching times
waveform below

; Rise Time

tr

Turn-off Delay Time

td(off)

Fall Time

tf

'Pulse Test: Pulse width :5 300 ps, duty cycle :5 2%

INPUT

OUTPUT

50%
10%

}.-~1

10%~,,

Id~

~0%~~1~0%~

_ _ _ _ _V - , , 1

SWITCHING TIME TEST WAVEFORMS

322

~~D~[F~

IVN5000,1
TN Series

FIELD EFFECT POWER TRANSISTOR

1.2 AMPERES
40-100 VOLTS
ROS(ON) = 2.5 n

This series of N-Channel Enhancement-mode Power MOSFETs
utilizes GE's advanced Power DMOS technology to achieve low
on-resistance with excellent device ruggedness and reliability.

N-CHANNEL

4

This design has been optimized to give superior performance in
most switching applications including: switching power supplies,
inverters, converters and solenoid/relay drivers. Also, the extended
safe operati ng area with good Ii near transfer characteristics makes
it well suited for many linear applications such as audio amplifiers
and servo motors.

CASE STYLE TO-20SAD (TO-39)
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

Applications
•
•
•
•
•
•

0.350-0.370
(8.890-9.398)

LED and lamp drivers
High gain, wide-band amplifiers
High speed switches
Line drivers
Logic buffers
Pulse amplifiers

...---:-r---j

0.315-0.335
(8.00'-8.509)

SEATING
PLANE

Features
•
•
•
•
•
•

High speed, high peak current switching
Inherent current sharing capability when paralleled
Directly interface to CMOS, DTL, TTL logic
Simple, straight-forward DC biasing
Inherent protection from thermal runaway
Reliable, low cost plastic package

maximum ratings (TA = 25 0 C)

(unless otherwise specified)
SYMBOL
Voss
VOGR

40
40

E
60
60

F
80
80

H
100
100

UNITS
Volts
Volts

10

1.2

1.2

1.2

1.2

A

Peak Drain Current(1)

10M

Gate-Source Voltage
Total Power Dissipation @TA = 25°C
Derate Above 25°C
Operating and Storage
Junction Temperature Range

VGS
Po

3.0
±30
6.25
50

3.0
±30
6.25
50

3.0
±30
6.25
50

3.0
±30
6.25
50

A
Volts
Watts
mW/oC

RATING
Drain-Source Voltage
Drain-Gate Voltage, RGS = 1Mn
Continuous Drain Current @ T A = 25°C

TJ, TSTG

0

-55 to 150 -55 to 150 -55 to 150 -55 to 150

°C

thermal characteristics
Thermal Resistance, Junction to Ambient

R8JA

20

20

20

20

°C/W

Maximum Lead Temperature for Soldering
Purposes: 1/16" from Case for 10 Seconds

h

300

300

300

300

°C

(1) Repetitive Rating: Pulse width limited by max. junction temperature .

. 323

electrical characteristics· (TA

I

=25° C) (unless otherwise specified)
I SYMBOL

CHARACTERISTIC

MIN

TYP

MAX

UNIT

40
60
80
100

-

-

Volts

-

-

10
SOO

pA

-

-

-

10
SO

nA
nA

.8
.8

-

2.0
3.6

Volts
Volts

-

2.0
1.9

2.S
2.S

Volts

-

2.0
1.9

2.S
2.S

Ohms
Ohms

1.0
1.0

-

-

Amp
Amp

gfs

.17

.28

-

mhos

Ciss

-

40

SO

pF

Coss
C rss

-

27

40

pF

-

6

10

pF

td(on)

2

S

ns

tr

-

2

S

ns

td(off)

-

2

S

ns

tf

-

2

S

ns

off characteristics
Drain-Source Breakdown Voltage
(VGS OV, 10 10 pA)

=

D

=

F
H

Zero Gate Voltage Drain Current
(VOS Max Rating, VGS OV)
(VOS Max Rating, x 0.8, VGS OV, TA
Gate-Source Leakage Current
(VGS 1SV, VOS OV)
(VGS 1SV, VOS OV - TA 12S DC)

=
=

=

=
=

BVDSS

E

=
=

=

loSS

=12SDC)

IGSS

=

-

on characteristics*
Gate Threshold Voltage
(VOS VGS, 10 1 mAl
Drain-Source Saturation Voltage
(VGS 10V, 10 1.0A)
(VGS 12V, 10 1.0A)
Static Drain-Source On-State Resistance
(VGS 10V, 10 1.0A)
(VGS 12V, 10 1.0A)
On-State Drain Current
(VOS 24V, VGS 10V)
(VOS 24V, VGS 12V)
Forward Transconductance
(VOS 24V, 10 O.SA, f 1 KHz)

=

=

IVNSOOO
IVNS001

=
=

=
=

IVNSOOO
IVNS001

=
=

=
=

=
=
=

IVNSOOO
IVNS001

=
=

=

IVNSOOO
IVNS001

=

VGS(TH)
VOS(ON)

ROS(ON)

.IO(ON)

dynamic characteristics
Input Capacitance

=OV
VOS =24V
f =1 MHz
VGS

Output Capacitance
Reverse Transfer Capacitance

switching characteristics*
Turn-on Delay Time

See switching times
waveform below

Rise Time
Turn-off Delay Time
Fall Time

'Pulse Test: Pulse width::; 300 j1S, duty cycle::; 2%
rpULSEWIDTH4

50%

INPUT

OUTPUT

ITOO·/.

9on-I

10%

10%

-~~t~%~~;~·I . . ___td...,tt'~
SWITCHING TIME TEST WAVEFORMS

324

~ffi3D~ [F~u

VN10KMA

FIELD EFFECT POVVER TRANSISTOR

This series of N-Channel Enhancement-mode Power MOSFETs
utilizes GE's advanced Power DMOS technology to achieve low
on-resistance with excellent device ruggedness and reliability.
This design has been optimized to give superior performance in
most switching applications including: switching power supplies,
inverters, converters and solenoid/relay drivers. Also, the extended
safe operating area with good linear transfer characteristics makes
it well suited for many linear applications such as audio amplifiers
and servo motors.
Applications
•
•
•
•
•
•

0.5 AMPERES
60 VOLTS
RDS(ON) =5.0 0

""'~

~

DRAIN

CASE STYLE TO-237

s

DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

- x - - - i - - - - ; - - .105(2.67)
-L

--,

.095(2.41)

LED and lamp drivers
TTL and CMOS to high current interface
High speed switches
Line drivers
Relay drivers
Transformer drivers

~7)
--L-...-~.- L"TT""I'T"Tr'
SEATING
PLANE

.250(6.35)'

1....

~

--,-

~or
.016(.41)

[

.016(.46) & .016(.41) ]
.016(.41)
.014(.36)

__nnD~or [
.016(.41)

Features
•
•
•
•
•
•

"
fi

N::":ANNE~

.022(.561 & .020(.51) ]
.016(.41)
.014(.36)

Directly drives inductive loads
High speed, high peak current switching
Inherent current sharing capability when paralleled
Directly interfaces to CMOS, DTL, TTL logic
Simple straight-forward DC biasing
Inherently procection from thermal runaway

maximum ratings (TA =25° C)

(unless otherwise specified)

Voss
VOGR

VN10KMA
60
60

UNITS
Volts
Volts

10

0.5

A

10M

VGS
Po

1.0
±30
1.0

8

A
Volts
Watts
mW/oC

T.I, T!,;Tr,

-55 to 150

°C

Thermal Resistance, Junction to Ambient

ReJA

20

°CIW

Maximum Lead Temperature for Soldering
Purposes: 1/16" from Case for 10 Seconds

TL

300

°C

SYMBOL

RATING
Drain-Source Voltage
Drain-Gate Voltage, RGS = 1MO
Continuous Drain Current @ TA = 25°C
Peak Drain Current(1)
Gate-Source Voltage
Total Power Dissipation @TA
Derate Above 25° C
Operating and Storage
Junction Temperature Range

=25°C

thermal characteristics

(1) Repetitive Rating: Pulse width limited by max. junction temperature.

325

electrical characteristics (TA

I

=25° C) (unless otherwise specified)

CHARACTERISTIC

I

I SYMBOL I

MIN

BVDSS

60

-

-

loss

-

-

10

pA

IGSS

-

-

100

nA

VGS(TH)

0.8

-

2.5

Volts

VOS(ON)

-

-

2.5

V

10(ON)

0.25
0.50

-

A

9fs

.10

.20

-

TYP

MAX

UNIT

off characteristics
Drain-Source Breakdown Voltage
(VGS = OV. 10 = 100 pA)
Zero Gate Voltage Drain Current
(VOS = 40V. VGS = OV)
Gate-Source Leakage Current·
(VGS = 15V. VOS = OV)

Volts

on characteristics*
Gate Threshold Voltage
(VOS = VGS. 10 = 1 mAl
Drain-Source Saturation Voltage
(VGS = 10V. 10 = .5A)
On-State Drain Current
(Vos = 25V. VGS = 5V)
(VOS = 25V. VGS = 10V)
Forward Transconductance
(V OS = 15V. 10 = 0.5A) .

mhos

dynamic characteristics
Input Capacitance

VGS = OV

Ciss

-

48

Output Capacitance

VOS = 25V
f = 1 MHz

Coss
C rss

-

16

td(on)

-

5

td(off)

-

2

Reverse Transfer Capacitance

2

-

pF
pF.
pF

switching characteristics*
Turn-on Delay Time

See switching times
waveform below

Turn-off Delay Time

'Pulse Test: Pulse width:::;; 300 p.s. duty cycle:::;; 2%

50%

INPUT

OUTPUT

10%

10%

--~~t.......:~____td_tt'~
SWITCHING TIME TEST WAVEFORMS

326

-

ns
ns

VN30ABA
Series

~D~[?~

1.2 AMPERES
35-90 VOLTS
ROS(ON) = 2.S-S.0 il

FIELD EFFECT POVVER TRANSISTOR

This series of N-Channel Enhancement-mode Power MOSFETs
utilizes GE's advanced Power DMOS technology to achieve low
on-resistance with excellent device ruggedness and reliability.

N-CHANNEL

4

This design has been optimized to give superior performance in
most switching applications including: switching power supplies,
inverters, converters and solenoid/relay drivers. Also, the extended
safe operating area with good linear transfer characteristics makes
it well suited for many linear applications such as audio amplifiers
and servo motors.

CASE STYLE TO-20SAD (TO-39)
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)
0,350-0,370
(B,B90-9,39B)

Applications
•
•
•
•
•
•

0,315-0,335
(B,001-B,509)

Switching power supplies
DC to DC inverters
CMOS and TTL to high current interface
Line drivers
Logic buffers
Pulse amplifiers

Features
•
•
•
•
•
•

High speed, high current switching
Current sharing capability when paralleled
Directly interface to CMOS, DTL, TTL logic
Simple DC biasing
Extended safe operating area
Inherently temperature stable

maximum ratings (TA

=25° C) (unless otherwise specified)

RATING
Drain-Source Voltage
Drain-Gate Voltage, RGS = 1Mil
Continuous Drain Current @ T A = 25°C
Peak Drain Current(l)
Gate-Source Voltage
Total Power Dissipation @ T A = 25° C
Derate Above 25° C
Operating and Storage
Junction Temperature Range

Voss
VOGR

VN30ABAI
VN3SABA
35
35

VN67ABA
60
60

VN89ABA
80
80

VN90ABA
90
90

UNITS
Volts
Volts

10

1.2

1.2

1.2

1.2

A

10M
VGS
Po

3.0
±30
6.25
50
-55 to
150

3.0
±30
6.25
50
-55 to
150

3.0
±30
6.25
50
-55 to
150

A
Volts
Watts
mW/oC

TJ, TSTG

3.0
±30
6.25
50
-55 to
150

ReJA

20

20

20

20

°C/W

TL

300

300

300

300

°C

SYMBOL

I

°C

thermal characteristics
Thermal Resistance, Junction to Ambient
Maximum Lead Temperature for Soldering
Purposes: 1116" from Case for 10 Seconds

(1) Repetitive Rating: Pulse width limited by max. junction temperature.

327

electrical characteristics (TA

I

=25° C) (unless otherwise specified)
I SYMBOL

CHARACTERISTIC

MIN

TYP

MAX

UNIT

35
60
80
90

-

-

Volts

-

10

f.1A

IGSS

-

100

nA

VGS(TH)

0.8

1.2

-

Volts

ROS(ON)

-

-

6.0
4.5
5.1
5.1
6.0

Ohms

-

Ohms

-

5.0
2.5
3.5
4.5
5.0

off characteristics
Drain-Source Breakdown Voltage
(VGS = OV, 10 = 10 f.1A)

VN30ABA;VN35ABA
VN67ABA
VN89ABA
VN90ABA

BVDSS

Zero Gate Voltage Drain Current
(VOS = 25, VGS = OV)
Gate-Source Leakage Current
(VGS = 15V, VOS = OV)

loss

-

on characteristics*
Gate Threshold Voltage
(VOS = VGS, 10 = 1 mAl
Static Drain Source On-State Resistance
(VGS = 5V)
(10 = 0.3A)

VN30ABA
VN35ABA
VN67ABA
VN89ABA
VN90ABA
VN30ABA
VN35ABA
VN67ABA
VN89ABA
VN90ABA

Static Drain-Source On-State Resistance
(VGS = 10V, 10 = 1.0A)

ROS(ON)

On-State Drain Current
(VOS = 25V, VGS = 10V)
Forward Transconductance
(VOS = 25V, 10 = 0.5A)

-

-

10(ON)

1

-

-

Amp

gfs

-

.25

-

mhos

-

-

50

pF

-

40

pF

-

-

10

pF

-

-

10

ns

10

ns

dynamic characteristics
Input Capacitance

VGS = OV

Ciss

Output Capacitance

VOS = 24V
f = 1 MHz

Coss
C rss

Reverse Transfer Capacitance

switching characteristics *
Turn-on Delay Time

td(on)

See switching times
waveforms below

Turn-off Delay Time

td(off)

'Pulse Test: Pulse width :5 300 (.1S, duty cycle :5 2%

50%

INPUT

OUTPUT

10%

10%

X~1

1~~,-

loff=!
t_d.Jk~l~O~%-

____

SWITCHING TIME TEST WAVEFORMS

328

VN35AK
Series

~D~[f~

1.2 AMPERES
35-90 VOLTS
ROS(ON) =2.5-4.5 il

FIELD EFFECT POWER TRANSISTOR

This series of N-Channel Enhancement-mode Power MOSFETs
utilizes GE's advanced Power DMOS technology to achieve low
on-resistance with excellent device ruggedness and reliability.
This design has been optimized to give superior performance in
most switching applications including: switching power supplies,
inverters, converters and solenoid/relay drivers. Also, the extended
safe operati ng area with good Ii near transfer characteristics makes
it well suited for many linear applications such as audio amplifiers
and servo motors.

N-CHANNEl

~
CASE STYLE TO-20SAD (TO-39)
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)
0.35().Q.370
(8.890·9.398)

Applications
•
•
•
•
•
•

High current analog switches
RF power amplifiers
Laser diode pulsers
Line drivers
Logic buffers
Pulse amplifiers

......----+:0------;

0.315·0.335
(8.001-8.509)
0.019-0.033
SEATING
PLANE

Features
•
•
•
•
•
•

High speed, high current switching
High gain-bandwidth product
Inherently temperature stable
Extended safe operating area
Simple DC biasing
Requires almost zero current drive

0.029-0.045
(0.737-1.143)
0.028-0.034
(0.711-0.864)

TERM. 1
SOURCE

maximum ratings (TA =25°C)
RATING
Drain-Source Voltage
Drain-Gate Voltage, RGS = 1Mil
Continuous Drain Current @ TA = 25°C
Peak Drain Current(1)
Gate-Source Voltage
Total Power Dissipation @TA = 25°C
Derate Above 25° C
Operating and Storage
Junction Temperature Range

TERM. 2
GATE

(unless otherwise specified)
VN66AKl67AK VN98AK/99AK
60
90
60
90

SYMBOL
Voss
VOGR

VN35AK
, 35
35

UNITS
Volts
Volts

10

1.2

1.2

1.2

10M

VGS
Po

3.0
±30
6.25
50

3.0
±30
6.25
50

3.0
±30
6.25
50

TJ, TSTG

-55 to 150

-55 to 150

-55 to 150

°C

R8JA

20

20

20

°CIW

TL

300

300

300

°C

A

J

A
Volts
Watts
mW/oC

thermal characteristics
Thermal Resistance, Junction to Ambient
Maximum Lead Temperature for Soldering
Purposes: 1/16" from Case for 10 Seconds

(1) Repetitive Rating: Pulse width limited by max. junction temperature.

329

electrical characteristics (TA

=25

0

C)

(unless otherwise specified)

CHARACTERISTIC

SYMBOL

MIN

TYP

MAX

UNIT

BVDSS

35
60
90

-

-

Volts

loSS

-

-

10
500

IlA

100
500

nA
nA

VGS(TH)

0.8

2.0

Volts

VOS(ON)

3.0
4.0

Volts

VOS(ON)

-

-

2.5
3.5
4.5

Volts

10(ON)

1.0

-

-

Amps

gfs

.170

-

-

mhos

Ciss

-

-

50

pF

40

pF

-

10

pF

3

8

ns

3

8

ns

off characteristics
Drain-Source Breakdown Voltage
(VGS OV, 10 10 p.A)

=

VN35AK
VN66/67AK
VN98/99AK·

=

Zero Gate Voltage Drain Current
(VOS Max Rating, VGS == OV)
(VOS Max Rating, x 0.8, VGS OV, TA
Gate-Source Leakage Current
(VGS 15V, VOS OV)
(VGS 15V, VOS OV - TA 125 DC)

=
=

=

=
=

=
=

=125DC)

IGSS

=

on characteristics*
Gate Threshold Voltage
(VOS VGS, 10 1 mAl
Drain-Source Saturation Voltage
(VGS 10V, 10 1.0A)
Drain-Source Saturation Voltage
(VGS 10V, 10 1.0A)

=
=

=
=

=

=

VN66AK
VN98AK
VN35AK
VN67AK
VN99AK

On-State Drain Current
(VOS 25V, VGS 10V)
Forward Transconductance
(VOS 24V, 10 0.5A)

=

=

=

=

-

dynamic characteristics
Input Capacitance

VGS

Output Capacitance

VOS

Reverse Transfer Capacitance

f

=OV
=24V

Coss
C rss

=1 MHz

switching characteristics*
Turn-on Delay Time
Turn-off Delay Time

-

td(on)

See switching times
waveform below

td(off)

'Pulse Test: Pulse width :5 300 ps, duty cycle :5 2%

50%

INPUT

10%

10%

OUTPUT

SWITCHING TIME TEST WAVEFORMS

330

VN40AFA
Series

~D~[P~U

1.2 AMPERES
40-80 VOLTS
ROS{ON) = 3.5-5.0 0

FIELD EFFECT POVVER TRANSISTOR

This series of N-Channel Enhancement-mode Power MOSFETs
utilizes GE's advanced Power DMOS technology to achieve low
on-resistance with excellent device ruggedness and reliability.
This design has been optimized to give superior performance in
most switching applications including: switching power supplies,
inverters, converters and solenoid/relay drivers. Also, the extended
safe operating area with good linear transfer characteristics makes
it well suited for many linear applications such as audio amplifiers
and servo motors.

N-CHANNEL

DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

Applications
•
•
•
•
•
•

Switching power supplies
DC to DC inverters
CMOS and TTL to high current interface
Line drivers
Logic buffers
Pulse amplifiers

0.480-0.520
t 12.192-13,2081

0285-0.315
(7.237-8.001)

X 45"

\~~ :3~

Features
•
•
•
•
•
•

0.405-0.425
110.287-10.795)

High speed, high current switching
Current sharing capability when paralleled
Directly interface to CMOS, DTL, TTL logic
Simple DC biasing
Extended safe operating area
Inherently temperature stable

maximum ratings (TA

=25

0

C)

0.065-0075
(1.651-1905)

0050

CHAMFER

~

~

~

3
0095-0105
(2413-2667)
0026
(0 660)

~II_
+l
~0095-0 105

r:.-

l

~

(2413-2667)
~

0170-0190
;7(4:iii318i"i_4~82~6)
0019-0026
--(0483-0 660)

0095-0106
(2 413-2 667)

(unless otherwise specified)

Voss
VOGR

VN40AFA
40
40

VN67AFA
60
60

VN89AFA
80
80

UNITS
Volts
Volts

10

1.2

1.2

1.2

A

10M
VGS
Po

3.0
±30
12
96

3.0
±30
12
96

3.0
±30
12
96

Volts
Watts
mW/oC

TJ, TSTG

-40 to 150

-40 to 150

-40 to 150

°C

Thermal Resistance, Junction to Ambient

RSJA

10.4

10.4

10.4

°C/W

Maximum Lead Temperature for Soldering
Purposes: 1/16" from Case for 10 Seconds

TL

300

300

300

°C

RATING
Drain-Source Voltage
Drain-Gate Voltage, RGS = 1MO
Continuous Drain Current @ T A = 25°C
Peak Drain Current(1)
Gate-Source Voltage
Total Power Dissipation @ TA = 25°C
Derate Above 25° C
Operating and Storage
Junction Temperature Range

SYMBOL

A

thermal characteristics

(1) Repetitive Rating: Pulse width limited by max. junction temperature.

331

electrical characteristics (TA = 25° C)

(unless otherwise specified)

I SYMBOL I·

CHARACTERISTIC

I

TYP

MAX

40
60
BO

-

-

-

-

-

10
100

p.A

-

100
500

nA
nA

MIN

1

UNIT

off characteristics
Drain-Source Breakdown Voltage
(VGS = OV, 10 == 10 p.A)

VN40AFA
VN67AFA
VN89AFA

BVDSS

Zero Gate Voltage Drain Current
(VOS = Max Rating, VGS = OV)
(VOS = Max Rating, x O.B, VGS = OV, T A = 1250 C)
Gate-Source Leakage Current
(VGS = 15V, VOS = OV)
(VGS = 15V, VOS = OV - TA = 125 °C)

loss
IGSS

-

Volts

on characteristics'"
Gate Threshold Voltage
(VOS = VGS, 10 = 1 mAl

VN40AFA
VN67AFA
VNB9AFA
VN40AFA
VN67AFA
VNB9AFA
VN40AFA
VN67AFA
VNB9AFA·

Drain-Source Saturation Voltage
(VGS = 5V, 10 = O.3A)

0.6

VGS(TH)

O.B

O.B

1.2
1.2
1.2

-

-

-

-

Volts

V

-

2.0
1.7
1.9
5.0
3.5
4.5

1

-

-

A

9fs

-

.25

-

mhos

VGS= OV

Ciss

pF

Output Capacitance

VOS = 25V

Coss
C rss

50

pF

f = 1 MHz

-

50

Reverse Transfer Capacitance

-

10

pF

td(on)

-

2

5

ns

-.
-

2

5

ns

Drain-Source Saturation Voltage
(VGS = 10V, 10 = 1.0A)

VOS(ON)

VOS(ON)

On-State Drain Current
(VOS = 25V, VGS = 10V)
Forward Transconductance
(VOS = 24V, 10 = 0.5A, f = 1 KHz)

10(ON)

-

V

dynamic characteristics
Input Capacitance

switching characteristics'"
Turn-on Delay Time

See switching times
waveform below

Rise Time

Tr

Turn-off Delay Time

td(off)

Fall Time

tf

2

5

ns

2

5

ns

·Pulse Test: Pulse width:::; 300 ps, duty cycle:::; 2%

r:
;7

PULSE WIDTH

90%

INPUT

OUTPUT

I

9on-1S:'

50%.
10%

50%
10%

=t-~j

~ff=l

--~10o~:,~I· ...1I
...

Id

90%~

J

TIIt!~1~0%!""'!·¥900/o

SWITCHING TIME TEST WAVEFORMS

332

~D~[F~

VN46AFA
Series

FIELD EFFECT POWER TRANSISTOR

1.2 AMPERES
40-80 VOLTS
ROS(ON} = 3.0, 4.0 n

This series of N-Channel Enhancement-mode Power MOSFETs
utilizes GE's advanced Power DMOS technology to achieve low
on-resistance with excellent device ruggedness and reliability.
This design has been optimized to give superior performance in
most switching applications including: switching power supplies,
inverters, converters and solenoid/relay drivers. Also, the extended
safe operating area with good linear transfer characteristics makes
it well suited for many linear applications such as audio amplifiers
and servo motors.

N-CHANNEL

DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

Applications
•
•
•
•
•
•

Switching power supplies
DC to DC inverters
CMOS and TTL to high current interface
Line drivers
Logic buffers
Pulse amplifiers

0.480-0.520

(12.192-13.208)

0.285-0.315

X 45°

[30.734)

1

0.405-0.425

High speed, high current switching
Current sharing capability when paralleled
Directly interface to CMOS, DTL, TTL logic
Simple DC biaSing
Extended safe operating area
Inherently temperature stable

maximum ratings (TA = 25° C)

CHAMFER~

1.21 REF.

Features
•
•
•
•
•
•

0.065-0.075
[1.651-1.905)

[7.237-8.001)

2
3

(10.287-10.795)

0.095-0.105
I
[2.413-2.667) -l1:f.o--O.095-0.105
(2.413-2.667)
0.026
(0.660)
0.095-0.106
(2.413-2.667)

~

l

W

0.170-0.190

~

[4.318-4.826)
0019-0026
.
.
(0.483-0.660)

(unless otherwise specified)
SYMBOL
Voss
VDGR

VN46AFA
40
40

VN66AFA
60
60

VN88AFA
80
80

UNITS
Volts
Volts

10

1.2

1.2

1.2

A

10M

VGS
Po

3.0
±30
12
96

3.0
±30
12
96

3.0
±30
12
96

A
Volts
Watts
mW/oC

TJ, TSTG

-40 to 150

-40 to 150

-40 to 150

°C

Thermal Resistance, Junction to Ambient

R8JA

10.4

10.4

10.4

°C/W

Maximum Lead Temperature for Soldering
Purposes: Va" from Case for 5 Seconds

TL

300

300

300

°C

RATING
Drain-Source Voltage
Drain-Gate Voltage, RGS = 1Mn
Continuous Drain Current @ TA = 25°C
Peak Drain Current
Gate-Source Voltage
Total Power Dissipation @ TA = 25°C
Derate Above 25° C
Operating and Storage
Junction Temperature Range

thermal characteristics

333

electrical characteristics (TA = 25° C)

I

(unless otherwise specified)

CHARACTERISTIC

SYMBOL

MIN

TYP

BVDSS

40
60
BO

loss

-

VGS(TH)
VOS(ON)

·1

MAX

UNIT

-

-

Volts

-

0.01

10
100
10

-

100

O.B

1.7

-

Volts

-

-

3.0
4.0
3.0
4.0

A

9fs

.150

.25

-

mhos

Ciss

-

-

50

pF

-

50

pF

10

pF

2

5

ns

Tr

-

2

5

ns

td(off)

-

2

5

ns

tf

-

2

5

ns

off characteristics
Drain-Source Breakdown Voltage
(VGS =OV, 10 = 10 I1A)

VN46AFA
VN66AFA
VNBBAFA

Zero Gate Voltage Drain Current
(VOS = Max Rating, VGS =OV)
(VGS = Max Rating, x O.B, VGS =OV, TA
Gate-Source Leakage Current
(VGS = 10V, VOS =OV)
(VGS = 10V, VOS =OV - TA = 125 DC)

=125DC)

IGSS

-

-

I1A
I1A

on characteristics
Gate Threshold Voltage
(VOS = VGS, 10 = 1 mAl
Drain-Source Saturation Voltage
VN40AFA;VN66AFA
VN88AFA
(VGS = 10V, 10 = 1.0A)
Static Drain-Source On-State Resistance
(VGS = 10V, 10 = 1.0A)
Forward Transconductance
(VOS =24V, 10 =0.5A, f = 1 KHz)

ROS(ON)

Ohms

dynamic characteristics
Input Capacitance

=OV
VOS =25V
f = 1 MHz
VGS

Output Capacitance
Reverse Transfer Capacitance

Coss
C rss

switching characteristics
Turn-on Delay Time
Rise Time

td(on)

See switching times
waveform below

Turn-off Delay Time
Fall Time

50%

INPUT

OUTPUT

10%

~.,I:~%~___ tt'~
t_d

SWITCHING TIME TEST WAVEFORMS

334

I'

~D~[?~1f

2N6660,1

FIELD EFFECT POWER TRANSISTOR

This series of N-Channel Enhancement-mode Power MOSFETs
utilizes GE's advanced Power DMOS technology to achieve low
on-resistance with excellent device ruggedness and reliability.

N-CHANNEL

~

This design has been optimized to give superior performance in
most switching applications including: switching power supplies,
inverters, converters and solenoid/relay drivers. Also, the extended
safe operating area with good linear transfer characteristics makes
it well suited for many linear applications such as audio amplifiers
and servo motors.

CASE STYLE TO-20SAD (TO-39)

DIME~~~~_~~7:RE IN INCHES AND (MILLIMETERS)

Applications
•
•
•
•
•
•
•

1.2 AMPERES
60,90 VOLTS
ROS(ON) :: 3.0 n

(8.890-9.398)

.----;-,r----o

Switching power supplies
DC to DC inverters
CMOS and TTL to high current interface
Line drivers
Logic buffers
Pulse amplifiers
High frequency linear amplifiers

0.315-0.335
(8.001-8.509)
0.019-0.033
(0.483-0.838)

,1

r- SEATING

-t---==:O:~:n=:n=~i=-L:::=...-1."

PLANE

DRAIN
f-fi---GATE

Features
•
•
•
•

High speed, high current switching
Current sharing capability when paralleled
Directly interface to CMOS, DTL, TTL logic
Simple DC biasing
II Extended safe operating area
• Inherently temperature stable
• Typical ton and toff < 5ns

maximum ratings (TA = 25 0 C)

0.029-0.045
(0.737-1.143)
0.028-0.034
(0.711-0.864)

(unless otherwise specified)

Voss
VOGR

2N6660
60
60

2N6661
90
90

UNITS
Volts
Volts

10

1.2

1.2

A

10M
VGS
Po

3.0
±30
6.25
50

3.0
±30
6.25
50

A
Volts
Watts

mW/oC

TJ. TSTG

-55 to 150

-55 to 150

°C

Thermal Resistance, Junction to Ambient

ROJA

20°C

20xC

°CIW

Maximum Lead Temperature for Soldering
Purposes: 1116" from Case for 10 Seconds

TL

300

300

°C

RATING
Drain-Source Voltage
Drain-Gate Voltage, RGS :: 1Mn
Continuous Drain Current @ T A:: 25°C
Peak Drain Current(1)
Gate-Source Voltage
Total Power Dissipation @ T A :: 25° C
Derate Above 25° C
Operating and Storage
Junction Temperature Range

SYMBOL

thermal characteristics

(1) Repetitive Rating: Pulse width limited by max. junction temperature.

335

electrical characteristics (TA =25 0 C)

I

(unless otherwise specified)

I SYMBOL

CHARACTERISTIC

MIN

TVP

MAX

UNIT

90
60
90
60

-

-

Volts

-

-

-

loSS

-

-

10
500

fJA

IGSS

-

-

100
500

nA

VGS(TH)

0.8

-

2.0

Volts

VOS(ON)

-

-

1.5
1.6
3.0
4.0

Volts

off characteristics
Drain-Source Breakdown Voltage
(VGS =OV, 10 = 10 pA)
(VGS =OV, 10 = 2.5 MA)

2N6660
2N6661
2N6660
2N6661

Zero Gate Voltage Drain Current
(VOS =Max Rating, VGS =OV)
.
(VOS =Max Rating, x 0.8, VGS =OV, TA
Gate-Source Leakage Current
(VGS = 15V, VOS =OV)
(VGS = 15V, VOS =OV - TA =125°C)

BVDSS

= 125°C)

-

on characteristics*
Gate Threshold Voltage
(VOS = VGS, 10 = 1 mAl
Drain-Source Saturation Voltage
(VGS =5V, 10 =0.3A)
Drain-Source Saturation Voltage
(VGS = 10V, 10 = 1.0A)
On-State Drain Current
(VOS =25V, VGS = 10V)
Forward Transconductance
(VOS =24V, 10 =0.5A)

2N6660
2N6661
2N6660
2N6661

VOS(ON)

Volts

10(ON)

1.0

-

-

Amp

gfs

.17

.25

-

mhos

Ciss

-

-

50

pF

40

pF

10
35

pF
pF

td(on)
tr

-

td(off)
tf

-

2
2
2
2

5
5
5
5

ns
ns
ns
ns

dynamic characteristics
=OV, VOS =25V

Input Capacitance

VGS

Output Capacitance

f

Reverse Transfer Capacitance

VOS =OV, VGS
f = 1.0 MHz

= 1 MHz

Coss
C rss
C rss

=OV

-

switching characteristics*
Turn-on Delay Time
Rise Time
Turn-off Delay Time
Fall Time

See switching times
waveform below

-

'Pulse Test: Pulse width :5 300 Jls, duty cycle :5 2%

50%

INPUT

OUTPUT

10%

10%

-~~~I~~Jj____td_tt'~
SWITCHING TIME TEST WAVEFORMS

336

r

IGT4D1 O,E~ ~J

mTM1J~~~

10 AMPERES
400, 500 VOLTS
EQUIV. RDS(ON) = 0.27 il

Insulated Gate Bipolar Transistor

This IGT"" Transistor (Insulated Gate Bipolar Transistor) is a
new type of MOS-gate turn on/off power switching device
combining the best advantages of power MOSFETS and
bipolar transistors. The result is a device that has the high
input impedance of MOSFETS and the low on-state conduction losses similar to bipolar transistors. The device design
and gate characteristics of the IGT"M Transistor are also similar
to power MOSFETS. An important difference is the equivalent
RDS(ON) drain resistance which is modulated to a low value
(10 times lower) when the gate is turned on. The much lower
on-state voltage drop also varies only moderately between
25°C and 150°C offering extended power handling capability.

N-CHANNEl
c

.~
CASE STYLE TO-220AB
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

:1~g\::~~II~
I .05511.391
.04811.nl

.--.
-+--+---t.265(6.731
.24516.221

I-

CASE

_

r .........,

TEMPERATURE
REFERENCE
/
POINT

-,

The IGT"M Transistor is ideal for many high voltage switching
applications operating at low frequencies and where low
conduction losses are essential, such as; AC and DC motor
controls, power supplies and drivers for solenoids, relays and
contactors.

.22015.591

~

.00610.151
.00110.0251
TERM.l
TERM.2

Features:

TERM.3

.0331~

• Low VCE(SAT) - 2.5V typ @ 10A

.027

.05511.391
.1
.04511.141--"

• Ultra-fast turn-on -150 ns typical

.10712.721
.08712.211

1I!bf.l0512.671

~~ •.09512.411

1+-"
I+-

.21015.331
.19014.821

..0021511100..533811

• Polysilicon MOS gate - Voltage controlled turn on/off
• High current handling -10 amps @ 100°C

maximum ratings (TC =25°C)
RATING
Collector-Emitter Voltage, VGE = OV
Collector-Gate Voltage, RGE = 1Mil
Continuous Drain Current @ T C = 100° C
@Tc= 25°C
Pulsed Collector Current(l)
Gate-Emitter Voltage
Total Power Dissipation @Tc= 25°C
Derate Above 25° C
Operating and Storage
Junction Temperature Range

(unless otherwise specified)
IGT4D10
400
400
10
18
40
±25
75
0.6

IGT4E10
500
500
10
18
40
±25
75
0.6

UNITS
Volts
Volts
A
A
A
Volts
Watts

TJ, TSTG

-55 to 150

-55 to 150

°C

RSJC

1.67

1.67

°C/W

TL

260

260

DC

SYMBOL
VCES
VCGR
Ic
ICM
VGE

Po

W/oC

thermal characteristics
Thermal Resistance, Junction to Case
Maximum Lead Temperature for Soldering
Purposes: W' from Case for 5 Seconds
(1) Repetitive Rating: Pulse width limited

by max. junction temperature.

337

electrical characteristics (T c = 25° C)

I

(unless otherwise specified)

CHARACTERISTIC

I SYMBOL I

MIN

TYP

MAX

UNIT

BVCES

400
500

-

-

Volts

-

-

250
4.,0

JlA
mA

±500

nA

-

2

4.0
2.5

-

5

Volts

-

2.5
2.8
2.9

2.7

Volts

off characteristics
Collector-Emitter Breakdown Voltage
(Ic = 250JlA, VGE = OV)

IGT4D10
IGT4E10

Collector Cut-off Current
(VCE = Max Rating, VGE = OV, Tc = 25°C)
(VCE = Max Rating, x 0.8, VGE = OV, TC = 150°C)1

ICES

,

Gate-Emitter Leakage Current
(VGE = ±20V)

IGES

1 Applies for 3.3°C per watt maximum thermal resistance, case to ambient.

on characteristics*
Gate Threshold Voltage
(VCE = VGE, Ic = 250J..lA)

Tc = 25°C
Tc = 150°C

Collector-Emitter Saturation Voltage
Ic = 10 A, Tc = 25°C, VGE = 15V
IC = 10 A, TC = 150°C, VGE = 15V
IC = 10 A, TC = 25°C, VGE = 10V

VGE(TH)

VCE(SAT)

-

dynamic characteristics
Input Capacitance

VGE = OV

Cies

-

1050

-

pF

Output Capacitance

VCE = 25V

Coes

-

340

-

pF

Reverse Transfer
Capacitance

f = 1 MHz

Cres

-

10

-

pF

-

ns

J..Is

switching characteristics*

(see figures 8 & 9)

Turn-on Delay Time

Resistive Load, Tc = 150°C

td(on)

-

100

Rise Time

Ic = 10A, VCE = Rated VCES

tr

-

150

td(off)

-

0.5
1.0

1.5

p.s

4.5

6.5

p's

tf(eq)

-

3.5

5.0

p's

Ef

-

-

10
12.5

mJ

Turn-off Delay Time

VGE = 15V

Fall Time

RG(on) = 500., RGE = 1000.

Turn':off Delay Time

Inductive Load, Tc = 150°C,
L = 550p.H, Ic = 10A,

Fall Time

VCE(CLAMP) = Rated VCES

Equivalent
Fall Time

VGE = 15V

Turn-off
Switching Losses

RG(on) = 500. RGE = 1000.

tf
td(off)
tf

IGT4D10
IGT4E10

4

ns
~s

'Pulse test: Pulse width :5 300 J..Isec, duty cycle :5 2%. ,

40r-----~----~

__r_,,-----r----_r----_,
25r------,-------,--------r------~----~

VGE =12V
35~----+-----+_~~4-~L-~----~----~

I

TC =25'C

30

~----~----I-J-_+_----Af-- ~:~:~~~ ~~~~EC~~L~H:2~0 " .ec
_-i----I,VGP 10v

iii

y

2S~----+-----~~--~~--~----~----~

~ 20~____+-__~4l~~~~~~====~V~GE~=~9V~

B

IE

~ '5r-----+--+.~~--~~~--~-----r.V~GE~=7.eV~

~

8

10 1-----.,1-

VGE =7V
VGE =6V

4

6

e

m20r------;-------+--~
~

y 15~----~------~--_+_--~~~--+_----~

Ii
~
5

IE 10~----~------~~~~~------+_----~

I

O~0--~~~1------~------~------~4------~

10

COLLECTOR TO EMITTER VOLTAGE. VCE. VOLTS

COLLECTOR-EMITTER SATURATION VOLTAGE. VCE(SAT). VOLTS

FIGURE 1. TYPICAL OUTPUT
CHARACTERISTICS

FIGURE 2. TYPICAL COLLECTOR-EMITTER
SATURATION VOLTAGE
338

160

P 140

--....

1.4

I===:....
~

llf

~ 120

!i

100

U~

80

1.2 I-VGE(TH)

~

"~

"'\

I

~

~

e
~

0.8 f--BVCES

z

"' ,

VGE.rt'\

PARAMETER
VGE(TH)
VCE(SAT)
VCE(SAT)
BVCES

0.4

0.2

o
10

BVCES

-.....;;;

VCE(SAT)
@10A_

~

15

CONDITIONS
IC' 250~A
IC' lOA. VGE • 15V
IC' lA. VGE' 15V
IC" MA

-50

-100

20

~

VCE(SAT)
@1AVGE(TH)

0.6

:Ii
II:
0

~E-15V

20

o

--.........

0

~
~

"

rr-

@10A

U

40

o

@1A
VCE(SAT)

1.0

I·
:Ii

~ r--.....

VCE(SAT)

100

50

25' TYPICAL VALUE _
4.0V
2.5V
1.1V
VCESRATING

-

ISO

CASE TEMPERATURE, 'C

DC CDLLECTOR CURRENT, IC, AMPERES

FIGURE 4. TYPICAL TEMPERATURE
DEPENDENCE OF PARAMETERS

FIGURE 3. MAXIMUM ALLOWABLE CASE TEMPERATURE
VS. DC COLLECTOR CURRENT

40

to

"'

II:

"':Ii
0.

30

<

:Ii

$}

'"
z

"'II:II:
:::J
U

INDUCTIVE OR RESISTIVE LOAD

J

20

TJ' 150'C
RGE : 100 OHMS

II:

e
U

~

0

U

'"~

10

IGT4El0
IGT4010

0.

o

o

100

200

-

300

400

500

PEAK COLLECTOR-EMITTER VOLTAGE, VCE, VOLTS

FIGURE 5. TURN-OFF SAFE OPERATING AREA

100
50

......

........:

.......

1'" . . " " '"
...... .......

~

~

~

~ 2.0
u
~ 1.0

.....

r....

"'-.':t-..
I'o. .... ~

...........
...........

r-...

........

r....

10 ~sec

',Ori""

LJ.l

~

.....: ~

SINGLE PULSE

i i j'f
C

0.1
I

2

IGT4010
IGT4El0

III
10

20

50

100

200

:: ,..

I"

100msec

0.1

r-=.
F

...

-

I""Ir

~ 0.04 r--~I!: 0.02

,CIII
0.01
10,5

500

VCE, COLLECTOR-EMITTER VOLTAGE, (VOLTS)

-

f0.4

~ 0.2

10msec

0.2

I

>-

0=0.5
0.2

~1

--

l~ ,..-::~

~

0.02
0.01

ri1ftrE RfCT~1r~l~tR ~ulSf

.,"'

"'I fir10.3

n

10.2

PULSE WIDTH, SECONDS

FIGURE 6. TURN-ON SAFE OPERATING AREA

FIGURE 7. MAXIMUM TRANSIENT
THERMAL IMPEDANCE

339

L= 550"h

PULSE
GENERATOR

S1 (SWITCH POSITION) -1 CLAMPED INOUCTIVE LOAD
-2 RESISTIVE LOAD
RG10N )=

(RGEN+RS)(RGE)

L·IC1MAXIMUMI
,PULSE WIDTH;:o,60I'sec, VCC=---"''':'':;;:';'';';;~;';;;':'
PULSE WIDTH

RG EN+RS+RG E

FIGURE 8. BASIC SWITCHING TEST CIRCUIT

;¥

V GE

o
IC

J--10%

I
I

----r-I
I

I I
I I
I

I

-l----+---t-

I t,

I

I

~

I

1

Itd1off)1
I

•

"I'

t,

.

1"'
--------.
I

:~

I

I
I

~--90%

0---1'

I

1

o

le'"

V GE

I 1 1

I
I

I

I
"I

I I

VCEICLAMP'I-l---lITlI

I

1 I

I:

VCE

o

1 1t f I
~

I

I

td(off)
INDUCTIVE LOAD

RESISTIVE LOAD

(WAVEFORMS NOT TO SCALE)

FIGURE 9. SWITCHING WAVEFORMS

340

I

IGT4D11~E11

mTMlJ~~~~

10 AMPERES
400, 500 VOLTS
EQUIV. ROS(ON} = 0.27 il

Insulated Gate Bipolar Transistor

This IGT'M Transistor (Insulated Gate Bipolar Transistor) is a
new type of MOS-gate turn on/off power switching device
combining the best advantages of power MOSFETS and
bipolar transistors. The result is a device that has the high
input impedance of MOSFETS and the low on-state conduction losses similar to bipolartransistors. The device design
and gate characteristics of the IGT'M Transistor are also similar
to power MOSFETS. An important difference is the equivalent
RDS(ON) drain resistance which is modulated to a low value
(10 times lower) when the gate is turned on. The much lower
on-state voltage drop also varies only moderately between
25° C and 150° C offering extended power handling capability.

N-CHANNEL
c

o~
E

DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

:~~g\::~;\~
.05511.391
1
.04811.221

-.--.

.26516.731
.245(6.22:

1----I----I------!tE---

/

The IGT'M Transistor is ideal for many high voltage switching
applications operating at low frequencies and where low
conduction losses are essential, such as; AC and DC motor
controls, power supplies and drivers for solenoids, relays and
contactors.

+

. 1144511133.·65881IDIA.

T

rt

CASE
TEMPE RATURE
REFERENCE

.35519.021
/
POINT
.32518.251-'
.22015.591

1301331
~.
TERM.1

_

;'!1II'.n-~

~51
.00110.0251

.500(12.7IMIN.

TERM.2
TEAM.3

Features:

.0331~.841

.02710.691

• Low VCE(SAT) - 2.5V typ @ 10A

.1hJ--.10512.671
~ •. 09512.411

.0551.39
.1
.0451.141---'

• Ultra-fast turn-on - 100 ns typical

\+---'
\+---

.10712.721
.087(2.21}

.210(5.331
.19014.821

• Polysilicon MOS gate - Voltage controlled turn on/off
• High current handling - 10 amps @ 100°C

maximum ratings (TC

=25° C) (unless otherwise specified)

RATING
Collector-Emitter Voltage, VGE =OV
Collector-Gate Voltage, RGE =1Mil
Continuous Drain Current@Tc = 100°C
@Tc= 25°C
Pulsed Collector Current(l)
Gate-Emitter Voltage
Total Power Dissipation @ Tc = 25°C
Derate Above 25° C
Operating and Storage
Junction Temperature Range

SYMBOL
VCES
VCGR
Ic
ICM
VGE
Po

IGT4011
400
400
10
18
40
±25
75
0.6

IGT4E11
500
500
10
18
40
±25
75
0.6

UNITS
Volts
Volts
A
A
A
Volts
. Watts
W/oC

TJ, TSTG

-55 to 150

-55 to 150

°C

ROJC

1.67

1.67

°C/W

TL

260

260

°C

thermal characteristics
Thermal Resistance, Junction to Case
Maximum Lead Temperature for Soldering
Purposes: W' from Case for 5 Seconds

(1) Repetitive Rating: Pulse width limited by max. junction temperature.

341

electrical characteristics (T c

I

= 25° C)

(unless otherwise specified)

CHARACTERISTIC

I SYMBOL I

MIN

TYP

BVCES

400

-

MAX

UNIT

off characteristics
Collector-Emitter Breakdown Voltage .
VGE = OV, Ic. = 2S0pA)

IGT4D11
IGT4E11

-

Volts

-

-

-

-

2S0
4.0

pA
mA

-

-

±SOO

nA

-

2

4.0
2.S

-

S

Volts

VCE(SAT)

-

2.S
2.8
2.9

2.7

Volts

10S0

pF

340

-

Collector Cut-off Current
(VCE = Max Rating, VGE = OV, Tc = 2S°C)
(VCE = Max Rating, x 0.8, VGE = OV, Tc = 1S0°C)'

ICES

Gate-Emitter Leakage Current
(VGE = ±20V)
1

soo

IGES

Applies for 3.3°C per watt maximum thermal resistance, case to ambient.

on characteristics*
Tc = 2SOC
Tc = 1S0°C

Gate Threshold Voltage
(VCE = VGE, Ic = 2S0/-lA)

VGE(TH)

Collector-Emitter Saturation Voltage
IC = 10A, Tc = 2SoC, VGE = 1SV
IC = 10 A, Tc = 1S0°C, VGE = 1SV
Ic = 10 A, TC = 2SoC, VGE = 10V

-

dynamic characteristics
Input Capacitance

VGE = OV

Cies

Output Capacitance

VCE = 2SV

Coes

-

Reverse Transfer
Capacitance

f = 1 MHz

C res

-

10

-

pF

td(on)

100

td(off)

-

0.4

tf

-

2.5

-

ns

tr

-

td(off)

0.8

1.2

p,s

0.8

1.0

/-Is

tf(eq)

-

0.6

0.8

/-Is

Ef

-

1.3
1.6

1.6
2.0

mJ

switching characteristics*
Turn-on Delay Time
Rise Time

(see figures 8 & 9)

Resistive Load T C = 12So C
IC = 10A, VCE = Rated VCES

Turn-off Delay Time .VGE=1SV
Fall Time

RG(on) = SO~, RGE = 1000.

Turn-off Delay Time

Inductive Load, Tc= 12SoC,
L = 5S0/-lH, Ic = 10A,

Fall Time

VCE(CLAMP) = Rated VCES

Equivalent
Fall Time

VGE = 15V

Turn-off
Switching Losses

pF

RG(on) =500., RGE = 1000.

tf

IGT4D11
IGT4E11

100

ns
/-IS
/-Is

'Pulse test: Pulse width :5 300 ILsec, duty cycle :5 2%.

40r-----.-----~--~~~--~r-----~----,
25r------,-------.------~------~------~

VGE =12V
35r-----+------r~~1+~~~~----+_----~

m

20r------+--~---r---

~
~

§

'5~------r_----~r-~~~~~--~------~

ffi
a:
a:

il

VGE =BV

;
a:

10~----~r_----~~~~~------~------~

8

VGe=6V
o I~___~~~:;~;;;;;t~~;db;~~tV~G~E=~5~V~
VGE=4V
o
4
6
B
10

°0~--~~~,r-----~~----~3------~4------~

COLLECTOR TO EMITTER VOLTAGE. VCE. VOLTS

COLLECTOR·EMITTER SATURATION VOLTAGE. VCE(SAn. VOLTS

FIGURE 1. TYPICAL OUTPUT
CHARACTERISTICS

FIGURE 2. TYPICAL COLLECTOR-EMITTER
SATURATION VOLTAGE
342

160

1.4

'-0.... F=:b..
~

1.2 f-VGE(THI

~

""'" ~

"\

1.0

~
~

~
~

" "i'
\.

~

;;I

VCE(SATI
@10A_
VCE(SATI
@lAVGE(THI

:;;
II:

C
Z

"",=lSV

10

~

BVCES

0.6

PARAMETER
VGE(THI
VCE(SATI
VCE(SATI
BVCES

0.4

0.2

o
o

""'" '=:::: ~

~

0.8 f--BVCES

cOJ

VGE=to:'.:..

o

VCE(SATI
@10A

U

-

~ i'-...

VCE(SATI
@lA

-100

20

lS

CONDITIONS
IC = 2SO.A
IC = lOA. VGE = lSV
IC = lA. VGE = 15V
IC=l MA

50

-50

100

2S' TYPICAL VALUE _
4.0V
2.SV
1.1V
VCESRATING

lS0

CASE TEMPERATURE. 'C

DC COLLECTOR CURRENT.IC. AMPERES

FIGURE 4. TYPICAL TEMPERATURE
DEPENDENCE OF PARAMETERS

FIGURE 3. MAXIMUM ALLOWABLE CASE TEMPERATURE
VS. DC COLLECTOR CURRENT

40

OJ
OJ

..
II:
OJ

:;; 30

..:
:E

~

,.:
Z

OJ
II:
II:

INDUCTIVE OR RESISTIVE LOAD

J

20

::J
U

TJ -lS0'C
RGE ~ 100 OHMS

II:

0

I:;

......
0
OJ

U

10

..'"

..:
OJ

IGT4Ell
IGT4D11

o

o

100

200

400

300

SOO

PEAK COLLECTOR-EMITTER VOLTAGE. VCE. VOLTS

FIGURE 5. TURN-OF'F SAFE OPERATING AREA

100

so

......

......

......

i

r--....
I ' ~~

""",,-

I'.,

~

~ 2.0

P

r.....

......

.........

' ....

..........

"'-

I' ......

10 ~sec

liO

jjee

11

I

1.0 I--

0-0.5

I--

0.2

0.4

;;I 0.2

L.U

illOJ

0.1

j!:
!!! 0.04
SINGLE PULSE

0.2

IGT4Dll
IGT4Ell.

,Cirlill

0.1
1

10

20

so

100

200

~

--I

~

100msec

ICIII

-

r4'

!E

10msec

~
F

~

-I='-

~ 0.02

0.01

--

~}
.~~~~:;:

~

II

0.02
0.01

.;';"

r\~ft~E Rrcm1~I~tR ~U~Sf

IIII

II IIIII

II

10.5

500

PULSE WIDTH. SECONDS

VCE. COLLECTOR-EMITTER VOLTAGE. (VOLTS)

FIGURE 6. TURN-ON SAFE OPERATING AREA

FIGURE 7. MAXIMUM TRANSIENT
THERMAL IMPEDANCE

343

-

L= 550jth

PULSE
GENERATOR

Sl (SWITCH POSITION) -1 CLAMPED INDUCTIVE LOAD
-2 RESISTIVE LOAD
RG(ONI=

(RGEN+RSliRGE)
RGEN+RS+RGE

L·IC(MAXIMUMI
,PULSE WIDTH2!60jtsec, VCC=-::"'::":'~;';";';';~~
PULSE WIDTH

FIGURE 8. BASIC SWITCHING TEST CIRCUIT

VGE

~--90%

1"'--------

0---1'

I
~
o
I:
I I I

I

----t-I

o

I ,

, I
I

I I,

I

II

Id(of!)1 If

•

-90%

IC

I'

-1- --+I -iI
I I

r--r-1

I

10%

I

I I

I

·1· .,

VCEICLAMP',
VCE

o

I

+--lffi-I
I I I
I
I
I

Ilf I
~

I

I

Id(o",

RESISTIVE LOAD

INDUCTIVE LOAD

(WAVEFORMS NOT TO SCALE)

FIGURE 9. SWITCHING WAVEFORMS

344

I

Preliminary 26.4 4/85

mTMlJ~~~

IGT6D10,E10

Insulated Gate Bipolar Transistor

10 AMPERES
400, 500 VOLTS
EQUIV. RDS(ON) = 0.27 n

This IGT'II Transistor (Insulated Gate Bipolar Transistor) is a
new type of MOS·gate turn onloff power switching device
combining the best advantages of power MOSFETS and
bipolar transistors. The result is a device that has the high
input impedance of MOSFETS and the low on-state conduction losses similar to bipolar transistors. The device design
and gate characteristics of the IGT'II Transistor are also similar
to power MOSFETS. An important difference is the equivalent
RDS(ON) drain resistance which is modulated to a low value
(10 times lower) when the gate is turned on. The much lower
on-state voltage drop also varies only moderately between
25° C and 150° C offering extended power handling capability.

N-CHANNEL
c

.~
CASE STYLE TO-204AA (TO-3)
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)
0.845121.47)
M A X ' H .358(9.09) MAX

I:

~~~---t ~'''"''~"
O.043{1.09)
0.038(0.97)

The IGT'II Transistor is ideal for many high voltage switching
applications operating at low frequencies and where low
conduction losses are essential, such as; AC and DC motor
controls, power supplies and drivers for solenoids, relays and
contactors.

OIA.-I1-

.426110.82) MIN

CASE TEMP.
REFERENCE
POINT
.20(5.00)

Features:
• Low VCE(SAT) - 2.5V typ @ 10A

0.162(4.09)
0.15(3.84)

• Ultra-fast turn-on - 150 ns typical

2 HOLES

• Polysilicon MOS gate - Voltage controlled turn onloff

OIA.
0.440(11.18)
0.420(10.67)

• High current handling -10 amps @ 100°C

maximum ratings (T C = 25° C)
RATING
Collector-Emitter Voltage, VGE = OV
Collector-Gate Voltage. RGE = 1Mn
Continuous Drain Current@Tc = 100°C
@Tc= 25°C
Pulsed Collector Current(1)
Gate-Emitter Voltage
Total Power Dissipation @TC=25°C
Derate Above 25° C
Operating and Storage
Junction Temperature Range

(unless otherwise specified)
SYMBOL
VCES
VCGR
Ic

IGT6D10
400
400
10
18

IGT6E10
500
500
10
18

UNITS
Volts
Volts
A
A
A
Volts

40

40

±25
75
0.6

±25
75
0.6

TJ. TSTG

-55 to 150

-55 to 150

°C

R8JC

1.67

1.67

°CIW

TL

260

260

°C

ICM
VGE
Po

Watts
W/oC

thermal characteristics
Thermal Resistance. Junction to Case
Maximum Lead Temperature for Soldering
Purposes: %" from Case for 5 Seconds

..

(1) Repetitive Ratmg: Pulse Width limited by max. junction temperature .

345

electrical characteristics (T c

I

=25

0

C)

(unless otherwise specified)

CHARACTERISTIC

I SYMBOL I

MIN

TYP

BVCES

400
500

-

-

-

-

250
4.0

J.lA
mA

-

-

±500

nA

2

4.0
2.5

-

5

Volts

-

2.5
2.8
2.9

2.7

Volts

1050

pF

340

-

MAX

UNIT

off characteristics
Collector-Emitter Breakdown Voltage
(Ic = 250J.lA, VGE = OV)

IGT6D10
IGT6E10

Collector Cut-off Current
(VCE = Max Rating, VGE = OV, Tc = 25°C)
(VCE = Max Rating, x 0.8, VGE = OV, Tc = 150°C)1

ICES

Gate-Emitter Leakage Current
(VGE = ±20V)

IGES

Volts

1 Applies for 3.3°C per watt maximum thermal resistance, case to ambient.

on characteristics*
Gate Threshold Voltage
(VCE = VGE, IC = 250JotA)

Tc= 25°C
Tc = 150°C

VGE(TH)

Collector-Emitter Saturation Voltage
Ic = 10 A, Tc = 25°C, VGE = 15V
Ic = 10 A, TC = 150°C, VGE = 15V
Ic = 10 A, TC = 25°C, VGE = 10V

VCE(SAT)

-

-

dynamic characteristics
Input Capacitance

VGE = OV

Cies

Output Capacitance

VCE = 25V

Coes

-

Reverse Transfer
Capacitance

f = 1 MHz

C res

-

10

-

pF

Resistive Load, Tc = 150°C

td(on)

-

100

-

ns

tr

-

150
0.5

-

JotS

tf

-

tdoff

-

1.0

1.5

JotS

4.5

6.5

JotS

tf(eq)

-

3.5

5.0

JotS

Ef

-

-

10
12.5

mJ

switching characteristics*
Turn-on Delay Time

pF

(see figures 8 & 9)

Rise Time

Ic = 10A, VCE = Rated VCES

Turn-off Delay Time

VGE = 15V

Fall Time

RG(on) = 50.0., RGE = 100.0.

Turn-off Delay Time

Inductive Load, TC = 150°C,
L = 550JotH, Ie:; = 10A,

Fall Time

VCE(CLAMP) = Rated VCES

Equivalent
Fall Time

VGE = 15V

Tum-off
Switching Losses

RG(on) = 50.0., RGE = 100.0.

td(off)

tf

IGT6D10
IGT6E10

4

ns
JotS

.*Pulse test: Pulse width ::5 300 ~sec, duty cycle ::5 2%.
4D~----~----~--~~~--~~----~----~

25~----~,------,------~------~-------,

35r-----+------r~~~~~~r-----+_----~
~

i

2D~----~~----~----

~ 15~----~r-----~--~~-;~~--~------~

~

II:

a
II:

~8

1D~----~~----~~~~~------~------~

D~D--~~~------~------~------~----~
COLLECTOR TO EMITTER VOLTAGE. VCE. VOLTS

COLLECTOR·EMITTER SATURATION VOLTAGE. VCE(SAT). VOLTS

FIGURE 1. TYPICAL OUTPUT
CHARACTERISTICS

FIGURE 2. TYPICAL COLLECTOR-EMITTER
SATURATION VOLTAGE

346

160

1.4

~ F==:t..
~

~......

1.2 r-VGE(TH)

~

~

"-

f==::::: r--.-

~

BVCES
VCE(SAT)
@10A_

VCE(SAT)
@IAVGE(TH)

O.S

",,/E=15V

PARAMETER

0.4

"l'

VGE=rC\

10

.......;;

~

0.8 ~BVCES

'""

o

VCE(SAT)
@10A

"\

o

@IA

1.0

-

~ I'.....

VCE(SAT)

0.2

o
15

-50

-100

20

CONDITIONS
IC = 2S0"A
IC = IDA, VGE = ISV
IC = lA, VGE = ISV
IC=1 MA

VGE(TH)
VCE(SAT)
VCEISAT)
BVCES

50

25' TYPICAL VALUE _
4.0V
2.SV
1.IV
VCESRATING

100

-

150

CASE TEMPERATURE, 'C

DC COLLECTOR CURRENT,IC, AMPERES

FIGURE 4. TYPICAL TEMPERATURE
DEPENDENCE OF PARAMETERS

FIGURE 3. MAXIMUM ALLOWABLE CASE TEMPERATURE
VS. DC COLLECTOR CURRENT

40

III

:i~

30

~
~

INDUCTIVE OR RESISTIVE LOAD

II:

§

..I

20

TJ = 150'C
RGE ~ 100 OHMS

u

II:

~

o

10

U

~

IGTSE10
IGTSD10

o

o

100

200

t-----

300

400

500

PEAK COLLECTOR-EMITTER VOLTAGE. VCE. VOLTS

FIGURE 5. TURN-OFF SAFE OPERATING AREA

100
50

"

0

"'-

"'" ~'" "- "-

I"- ~

~

~ 2.0

10 psec

.......

"-

.........

r"-i'

~

TC

0.1

1

i j'f III
2

10

I"-

~

SINGLE PULSE

0.2

I'.

i"..

20

50

100

lrOIi""

" L~
"

!:'
:j

1.0 10- f-

~

t--

~ 0.4

l!l

~

ffi

~-

0.2

~..m
~

~~~

0.1

i!:

10msec

!i;

100m.eo

I!:

lil 0.04

IGT6Dl0
IGTSE10

C ~ lei II

200

500

~

0.02

~

0:

Irl

II

<; R~C

mft
II

RU •

10-3

10.2

PULSE WIDTH. SECONDS

VCE. COLLECTOR-EMITTER VOLTAGE. (VOLTS)

FIGURE 6. TURN-ON SAFE OPERATING AREA

FIGURE 7. MAXIMUM TRANSIENT

THERMAL IMPEDANCE

347

L= 550llh

PULSE
GENERATOR

Sl (SWITCH POSITION) -1 CLAMPED INDUCTIVE LOAD
-2 RESISTIVE LOAD
RG(ON)=

L·I C (MAX IMUM)
PULSE WIDTH

(RGEN+RSHRGE)
RGEN+RS+RGE ,PULSE WIDTH?:60Ilsec, VCC

FIGURE 8. BASIC SWITCHING TEST CIRCUIT

V. .

;r-----'K.:''''
I

0-f--10%

I

IC

II

o

----t--

I

I

I

I t,

I

I I
\

....- - - - -

I

_1 ____

r--r--I

v"

--

I

I

I

I

td (ofll

•

l

,I,

I .

~I
90%
I I

IC
0

I

I
tf

1'----

oJ

90%

+-_-1._

II

~--OO.

I

'I
VCE

td(on)

I I

10%

I I I
I I I
VCEICLAMP) +--I~I
I I I

I

I

o

I I tf I
~

I

I

td(off)

INDUCTIVE LOAD

RESISTIVE LOAD

(WAVEFORMS NOT TO SCALE)

FIGURE 9. SWITCHING WAVEFORMS

348

I

IGT6D11,E11

mTMlJ~~~

10 AMPERES
400, 500 VOLTS
EQUIV. ROS(ON) =0.27 il

Insulated Gate Bipolar Transistor

This IGT'II Transistor (Insulated Gate Bipolar Transistor) is a
new type of MOS-gate turn on/off power switching device
combining the best advantages of power MOSFETS and
bipolar transistors. The result is a device that has the high
input impedance of MOSFETS and the low on-state conduction losses similar to bipolar transistors. The device design
and gate characteristics of the IGT'II Transistor are also similar
to power MOSFETS. An important difference is the equivalent
RDS(ON) drain resistance which is modulated to a low value
(10 times lower) when the gate is turned on. The much lower
on-state voltage drop also varies only moderately between
25°C and 150°C offering extended power handling capability.

N-CHANNEL
c

.~
CASE STYLE TO-204AA (TO-3)
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)
0845(2147J

I'-- MAX ~~.35819.09) MAX

06~~lX65l~

T
a 043( 1 09)

The IGT'II Transistor is ideal for many high voltage switching
applications operating at low frequencies and where low
conduction losses are essential, such as; AC and DC motor
controls, power supplies and drivers for solenoids, relays and
co ntactors.

~

OIA ---'

I

0038(097)

I-

SEATING PLANE
426/10 82, MIN

CASE TEMP
REFERENCE
POINT
20(5001

Features:
• Low VCE(SAT) - 2.5V typ @ 10A

0.162(4 09/

• Ultra-fast turn-on -100 ns typical

DIA

015(3841

2 HOLES

• Polysilicon MOS gate - Voltage controlled turn on/off

0440(11 IBI

o 420{1067j

• High current handling - 10 amps @ 100°C

maximum ratings (T C =25° C)
RATING
Collector-Emitter Voltage, VGE = OV
Collector-Gate Voltage, RGE = 1Mil
Continuous Drain Current@Tc = 100°C
@Tc= 25°C
Pulsed Collector Current(1)
Gate-Emitter Voltage
Total Power DiSSipation @ Tc = 25°C
Derate Above 25° C
Operating and Storage
Junction Temperature Range

(unless otherwise specified)
IGT6011
400
400
10
18
40
±25
75
0.6

IGT6E11
500
500
10
18
40
±25
75
0.6

UNITS
Volts
Volts
A
A
A
Volts
Watts
W/oC

TJ, TSTG

-55 to 150

-55 to 150

°C

ROJC

1.67

1.67

°C/W

TL

260

260

°C

SYMBOL
VCES
VCGR
Ic
ICM
VGE
Po

thermal characteristics
Thermal Resistance, Junction to Case
Maximum Lead Temperature for Soldering
Purposes: W' from Case for 5 Seconds

(1) Repetitive Rating: Pulse width limited by max. junction temperature.

349

electrical characteristics (T c = 25° C)

I

(unless otherwise specified)

CHARACTERISTIC

I SYMBOL I

MIN

TYP

MAX

UNIT

BVCES

400
SOO

-

-

Volts

-

-

-

2S0
4.0

pA
mA

-

-

±SOO

nA

2

4.0
2.S

S

Volts

-

-

2.S

2.7

2.B

-

2.9

-

10S0

-

pF

340

-

pF

off characteristics
Collector-Emitter Breakdown Voltage
(VGE = OV, Ic = 2S0J.LA)

IGT6D11
IGT6E11

Collector Cut-off Current
(VCE = Max Rating, VGE = OV, Tc = 2S°C)
(VCE = Max Rating, x O.B, VGE = OV, Tc = 1S0°C)(2)

ICES

Gate-Emitter Leakage Current
(VGE = ±20V)

IGES

(2) Applies for 3.3°C per watt maximum thermal resistance, case to ambient.

on characteristics(3)
Tc= 2SOC
TC = 1S0°C

Gate Threshold Voltage
(VCE = VGE, IC = 2S0J.LA)
Collector-Emitter saturation Voltage
Ic = 10 A, Tc = 2SoC, VGE = 1SV
Ic = 10 A, Tc = 1S0°C, VGE = 1SV
Ic = 10 A, Tc = 2SoC, VGE = 10V

VGE(TH)

-

VCE(SAT)

Volts

dynamic characteristics
Input Capacitance

VGE = OV

Cies

Output Capacitance

VCE = 2SV

Coes

-

Reverse Transfer
Capacitance

f = 1 MHz

C res

-

10

-

pF

td(on)

-

100
100

tf

-

2.S

-

ns

tr

td(off)

-

O.B

1.2

J.LS

tf

-

O.B

1.0

J.Ls

tf(eq)

-

0.6

O.B

J.LS

Ef

-

1.3
1.6

1.6
2.0

mJ

switching characteristics(3)

(see figures 8 & 9)

Turn-on Delay Time

Resistive Load, T C= 12So C

Rise Time

IC = 10A, VCE = Rated VCES

Turn-off Delay Time

VGE = 1SV

Fall Time

RG(on) = son, RGE = 100n

Turn-off Delay Time

Inductive Load, Tc = 12SoC,
L = SSOJ.LH, Ic = 10A,

Fall Time

VCE(CLAMP) = Rated VCES

Equivalent
Fall Time

VGE = 1SV

Turn-off
Switching Losses

RG(on) = SOn,RGE = 100n

td(off)

IGT6D11
IGT6E11

0.4

ns
J.LS
J.Ls

(3) Pulse test: Pulse widths :5 300 ILsec, duty cycle :5 2%.
40r-----,-----~_=~_.~----r-----._----.
25r-----~r------.r------,-------,------_,

35r-----~----_r~~T+--,£--~----+_----~

VGE=7V
VGE = BV

°OL--~~~------~------~------~----~

10
COLLECTOR TO EMITTER VOLTAGE. VCE. VOLTS

COLLECTOR·EMITTER SATURATION VOLTAGE, VCE(SAT). VOLTS

FIGURE 1. TYPICAL OUTPUT
CHARACTERISTICS

FIGURE 2. TYPICAL COLLECTOR-EMITTER
SATURATION VOLTAGE

3S0

leo

!l

140

1.4

"'-0... r:=::::....
~

iii
a:

j:!

120

im
3

1.2 r-VGE(TH)

~

"'" ~

100

51

i

0.8

''""

10

~

~/E=15V

PARAMETER

0.4

"- 1'-

/\

20

""""

~

t-- BVCES

~r---..

BVCES
VCE(SAT)
@l0A_

VCE(SAT)
@lAVGE(TH)

0.6

VGP l0V

o

VCE(SAT)
@10A

40

o

@1A

1.0

"'"~
~

80

I·
II

~ r-....

VCE(SAT)

0.2

o
15

IC=1 MA

50

-50

-100

20

CONDITIONS
IC =250_A
IC =lOA, VGE = 15V
IC =lA, VGE =15V

VGE(TH)
VCE(SAT)
VCE(SAT)
BVCES

100

CASE TEMPERATURE,

DC COLLECTOR CURRENT,IC, AMPERES

25' TYPICAL VALUE _
4.0V
2.5V
1.W
VCESRATING

-

150

'c

FIGURE 4. TYPICAL TEMPERATURE
DEPENDENCE OF PARAMETERS

FIGURE 3. MAXIMUM ALLOWABLE CASE TEMPERATURE
VS. DC COLLECTOR CURRENT

40

!3II:
W

0.
:; 30

«

:Ii

!:}

...
Z

W

II:
II:

::>

INDUCTIVE OR RESISTIVE LOAD

J

20

TJ = l50'C
RGE ~ 100 OHMS

u

II:

0

t;

w
...0...
U

10

'"Ul

IGT6E11
IGT6D11

0.

o

o

100

200

300

r--400

500

PEAK COLLECTOR-EMITTER VOLTAGE, VCE, VOLTS

FIGURE 5. TURN-OFF SAFE OPERATING AREA

100
50

......
I""

......:

~

I'..

"'",,,,

"'"

t-...

l'

'"

~
10 ~sec
',Orr

f""-,.,

f'o..

" "'"

1'1''''

r-....

r-..

-.....:

SINGLE PULSE

r i j'f
C

0.1

1

2

I"
10

20

50

100

2.0

?

1.0

rJ
~W

r-=

... 0.2

~

ffi

l00msec

IGT6D11
IGT6El1

~ "'~" ,CIII

200

500

~ I-

I-

0.4

0.

2l

L.U
10msec

0.2

ffi

0.

=

-

0.1

i!:
!z!!! 0.04

.,

:i
i!: 0.02

~
r-

,.....

0-0.5
0.2

~lj

Hl -

-

L~~-.tt·
.. ~

-..

~

0.02
0.01

I--t-I<- rf\~ft~E Rn~~1~ITtR PIU~Sr

0.01
10"

11111
10-4

11111111
10.3

II
10-2

VCE, COLLECTOR-EMITTER VOLTAGE, (VOLTS)

PULSE WIDTH, SECONDS

FIGURE 6. TURN-ON SAFE OPERATING AREA

FIGURE 7. MAXIMUM TRANSIENT
THERMAL IMPEDANCE

351

L= 550"h

PULSE
GENERATOR

SI (SWITCH POSITION) -1 CLAMPED INDUCTIVE LOAD
-2 RESISTIVE LOAD
RGION )=

(RGEN+RS)(RGE)
RGEN+RS+RGE ,PULSE WIDTH2!:60I'sec, Vcc

L·ICIMAXIMUM)
PULSE WIDTH

FIGURE 8. BASIC SWITCHING TEST CIRCUIT

v'Jo

I

--10%

o

I
I I
I I

VGE

I

I

I

I

I

-I-----I--i-

Iltrl

~

I

1"'-------.
1

:~

I
----t-I

~--90%

o~

I

I

I
I

1C~

I I I

I
I

I

IldlOlflllfl

-

-I-

-I

I

1

VCEICLAMP'I-I--IVllI

I

VCE

I I

I:
I I I

o

If

~

I

I

t dlofl )
INDUCTIVE LOAD

RESISTIVE LOAD

(WAVEFORMS NOT TO SCALE)

FIGURE 9. SWITCHING WAVEFORMS

352

I

IGT6D20,E20

mTMIT~~~

20 AMPERES
400, 500 VOLTS
EQUIV. RDS(ON) = 0.12 n

insulated Gate Bipolar Transistor

This IGT'M Transistor (Insulated Gate Bipolar Transistor) is a
new type of MOS-gate turn on/off power switching device
combining the best advantages of power MOSFETS and
bipolar transistors. The result is a device that has the high
input impedance of MOSFETS and the low on-state conduction losses similar to bipolar transistors. The device design
and gate characteristics of the IGT'M Transistor are also similar
to power MOSFETS. An important difference is the equivalent
RDS(ON) drain resistance which is modulated to a low value
(10 times lower) when the gate is turned on. The much lower
on-state voltage drop also varies only moderately between
25° C and 150° C offering extended power handling capability.

N-CHANNEL
c

.~

a

CASE STYLE TO-204AA (TO-3)
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

r:

0.645(21.471
MAX·

0~~X65l~

t~
0.043(1.09)
0.03810.971

The IGT'M Transistor is ideal for many high voltage switching
applications operating at low frequencies and where low
conduction losses are essential, such as; AC and DC motor
controls, power supplies and drivers for solenoids, relays and
contactors.

DIA.---.I!--,

·35B(9.D9l MAX

SEATING PLANE

.426110.82) MIN.

CASE TEMP.
REFERENCE
POINT
.20(5.00)

Features:

• Low VCE(SAT) - 2.3V typ @ 20A
0.162(4.091
0.15(3.841
2 HOLES

" Ultra-fast turn-on - 200 ns typical
• Polysilicon MOS gate - Voltage controlled turn on/off
e High current handling -

DIA.
0.440(11.18)

0.420(10.671

20 amps @ 100°C

maximum ratings (TC = 25°C)
RATING
Collector-Emitter Voltage, VGE = OV
Collector-Gate Voltage, RGE = 1Mn
Continuous Drain Current@Te = 100°C
@Te= 25°C
Pulsed Collector Current(l)
Gate-Emitter Voltage
Total Power Dissipation @ Te = 25°C
Derate Above 25° C
Operating and Storage
Junction Temperature Range

(unless otherwise specified)
IGT6D20
400
400
20
32
80
±25
125
1.0

IGT6E20
500
500
20
32
80
±25
125
1.0

UNITS
Volts
Volts
A
A
A
Volts
Watts

TJ, TSTG

-55 to 150

-55 to 150

°C

R8JC

1.0

1.0

°C/W

h

260

260

°C

SYMBOL
VCES
VeGR
Ic
ICM
VGE
Po

W/oC

thermal characteristics
Thermal Resistance, Junction to Case
Maximum Lead Temperature for Soldering
Purposes: W' from Case for 5 Seconds

(1) Repetitive Rating: Pulse width limited by max. junction temperature.

353

electrical characteristics (T c

I

=25

0

C)

(unless otherwise specified)

CHARACTERISTIC

I SYMBOL I

MIN

TYP

MAX

UNIT

BVCES

400
500

-

-

Volts

-

-

250
4.0

f.lA
mA

-

±500.

nA

5

Volts

Volts

off characteristics
Collector-Emitter Breakdown Voltage
IGT6D20
IGT6E20
(VGE =OV, Ic =250~A)
Collector Cut-off Current
(VCE =Max Rating, VGE =OV, Tc =25°C)
(VCE =Max Rating, x 0.8, VGE =OV, Tc =125O C)(2)
Gate-Emitter Leakage Current
(VGE =±20V)

ICES

IGES

(2) Applies for 4°C per watt maximum thermal resistance, case to ambient.

on characteristics(3i
Gate Threshold Voltage
(VCE =VGE, Ic = 500~A)

Tc= 25°C
Tc = 150°C

Collector-Emitter Saturation Voltage
Ic = 20 A, TC =25°C, VGE = 15V
Ic =20 A, Tc = 150°C, VGE =15V
Ic =20 A, Tc =25°C, VGE = 10V

-

2

4
2

VCE(SAT)

-

2.3
2.4
2.8

2.4

2300

pF

700

-

10

-

pF

100

-

ns

VGE(TH)

-

dynamic characteristics
Input Capacitance

VGE = OV

Cies

Output Capacitance

VCE = 25V

Coes

-

Reverse Transfer
Capacitance

f = 1 MHz

C res

-

td(on)

-

pF

switching characteristics(3) (see figures 8 & 9)
Turn-on Delay Time

Resistive Load, Tc = 150°C

Rise Time

IC = 20A, VCE = Rated VCES

Turn-off Delay Time

VGE

Fall Time

RG(on) = 50n, RGE = 100n

Turn-off Delay Time

Inductive Load, Tc = 150°C,
L =550~H, Ic = 20A,

Fall Time

VCE(CLAMP)

Equivalent
Fall Time

VGE

=15V

td(off)
tf

IGT6D20
IGT6E20

ns

5.0

-

1.0

1.5

~s

0.65

~s

J.LS

4.5

6.5

~s

tf(eq)

3.5

5.0

J.Ls

Ef

-

14
17.5

20
25

mJ

tf

=15V

-

-

td(off)

=Rated VCES

Turn-off
RG(on) = 50n, RGE = 100n
Switching Losses
(3) Pulse test: Pulse widths::; 300 J.lsec, duty cycle::; 2%.

60r-----.------r__

tr

200

-r-.~----r-----._----.

50~----~~----~------~-------'-------'

ro~----+_----~~~~--~--~----+-----~

Iii 4O.1------II------II-~-7--=-j--=j;..=....--7=-=t------__i

I

~
g

~~-----II------II-+---~~----~------~

,.:

iii

~

tl~

VGE=7V
10~____~~=--b~

__~~====F=====~VG~E~=6~V~

;
o

u

20~----~------~~~~~-------+------~

10~----~~~~~-------1-------+------~
VGP 15V
MAXIMUM PULSE WIDTH 300 .sec
MAXIMUM DUTY CYCLE = 2%

=

O~--~~~----~------~------~------~

o

1

COLLECTOR TO EMITTER VOLTAGE. VCE. VOLTS

COLLECTOR-EMITTER SATURATION VOLTAGE. VCE(SAT). VOLTS

FIGURE 1. TYPICAL OUTPUT
CHARACTERISTICS

FIGURE 2. TYPICAL COLLECTOR-EMITTER
SATURATION VOLTAGE

354

5.

160

1.4

~
~ 140

S

.......

~

~120

~

1.2 -VGE(TH)

~

i

~ 100

B eo
~

60

~

C

40

2

~

u

~

'"
~

0.6 -BVCES

~
<>

.
.....
~

20

-r

...............

BVCES
VCE(SAT)
@20A_
VCE(SAT)
@2AVGE(TH)

0.6

0

z

PARAMETER

0.4

~

0.2

-so

·100

40

~

50

DC COLLECTOR CURRENT. IC. AMPERES

25" TYPICAL VALUE _
4.0V
2.3V
1.1V
VCESRATING

CONDITIONS
IC·5OOpA
IC· 20A. VGE· 15V
IC· 2A. VGE. 15V
IC· 1 MA

VGE(TH)
VCE(SAT)
VCE(SAT)
BVCES

o

W

-......

-.-:::::::::::::
r.:::::::- ~

::e
0:

"","VGE. 15V

VGf;ov\

o

VCE(SAT)
@20A

20

o

@2A

1.0

"~'\

m

!Ii!

~ ..........

VCE(SAT)

-

150

100

CASE TEMPERATURE. "C

FIGURE 3. MAXIMUM ALLOWABLE CASE TEMPERATURE
VS. DC COLLECTOR CURRENT

FIGURE 4. TYPICAL TEMPERATURE
DEPENDENCE OF PARAMETERS

60

.,..

.....::e

50

0:

~
!i

INDUCTIVE OR RESISTIVE LOAD
I
I
TJ= 150°C
RGE· 100 OHMS
40

.
0:
0:

=>

~

U
0:

........~

20

0

IGT6E20
IGT6D20-

u

"~

10

o

o

~

200

100
PEAK

COLLECTO~·EMITTER

400

500

600

VOLTAGE. VCE. VOLTS

FIGURE 5. TURN-OFF SAFE OPERATING AREA

100
50

i:
~

..........

r-...

5

§

"

"

r-...

......

u

~

"

'"I'-..'" ~

~

i

..........

::

1.0

8y

0.5

0.2

~

:--..

10 IJsec

100 p'sec

11

1.0

T'il

I..!Ii

0.4

r" lb~,!c

~

_ll°'1'OC
IGT6E20IGT6D20-

TriS'11

0.1

1

5

10

20

50

100

200

~

f-

~

0.2

~

0.1

us~

0.04

~

0.02

~

DC.

I-- I-- SIN~LE"PULSE

2.0

P

JJ

....

r-

11lllll IIIIIII

0.01

500

10-5

VCE. COLLECTOR·EMITTER VOLTAGE. (VOLTS)

"' .~ pULSE

~IN'~L

10'4

10-3

10-2

PULSE WIDTH. SECONDS

FIGURE 6. TURN-ON SAFE OPERATING AREA

FIGURE 7. MAXIMUM TRANSIENT

THERMAL IMPEDANCE

355

L= 550"h

PULSE
GENERATOR

S1 (SW)TCH POSITION) -1 CLAMPED INDUCTIVE LOAD
-2 RESISTIVE LOAD
RG(ONI=

(RGEN+RsHRGE)
RGEN+RS+RGE

L·l c (MAXIMUM I
,PULSE WIDTH<':60"sec, VCC=-:::~==~
PULSE WIDTH

FIGURE 8. BASIC SWITCHING TEST CIRCUIT

r

VGE

o

VGrtl--SO%

.

J--10%

1

o

.

I
Ic

o

I
I

I
I I
I I
I

\

1

I

I

-I----+-i-

I t,

I
I

r-r--t

I..

I

I
td (0111

"\.

t,

I

I

:~
+-lYTl
I

----r-I

I

I I I

I

I I I

II
"I

I

VCE(CLAMP')

VCE

I I

I:

o

\

\ t, I

I

I

\.-.1.,:.1
td(olt)

RESISTIVE LOAD

INDUCTIVE LOAD

(WAVEFORMS NOT TO SCALE)

FIGURE 9. SWITCHING WAVEFORMS

356

I

mTMlJ~~~

IGT6D21,E21

Insulated Gate Bipolar Transistor

20 AMPERES
400, 500 VOLTS
EQUIV. ROS(ON) = 0.145 0

This IGT'- Transistor (Insulated Gate Bipolar Transistor) is a
new type of MOS-gate turn on/off power switching device
combining the best advantages of power MOSFETS and
bipolar transistors. The result is a device that has the high
input impedance of MOSFETS and the low on-state conduction losses similar to bipolar transistors. The device design
and gate characteristics ofthe IGT'- Transistor are also similar
to power MOSFETS. An important difference is the equivalent
RDS(ON) drain resistance which is modulated to a low value
(10 times lower) when the gate is turned on. The much lower
on-state voltage drop also varies only moderately between
25°Cand 150°Cofferingextended power handling capability.

N-CHANNEl
c

o~
E

CASE STYLE TO-204AA (TO-3)
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

r

0845121.471

MAX

:l~'35B(9'09) MAX

0~~lx65l~

--u--n=

T
004311091

The IGT'- Transistor is ideal for many high voltage switching
applications operating at low frequencies and where low
conduction losses are essential, such as; AC and DC motor
controls, power supplies and drivers for solenoids, relays and
contactors.

DIA

--.I\-

SEATING PLANE

426[1082, MIN

I

0038(097)

CASE TEMP
REFERENCE

Features:

POINT

.20(5.001

• Low VCE(SAT) - 2.5Vtyp@20A

EMInER

• Ultra-fast turn-on -150 ns typical

0.16214.09,
0.15(3.B41
2 HOLES

• Polysilicon MOS gate - Voltage controlled turn on/off

DIA

o 440{1 1 18)
0420(10671

• High current handling - 20 amps @ 900 C

maximum ratings (TC = 25° C)
RATING
Collector-Emitter Voltage, VGE = OV
Collector-Gate Voltage, RGE = 1MO
Continuous Drain Current@Tc = gooC
@Tc=25°C
Pulsed Collector Current(1)
Gate-Emitter Voltage
Total Power DIsSipation @ T C = 25° C
Derate Above 25° C
Operating and Storage
Junction Temperature Range

(unless otherwise specified)
IGT6021
400
400
20
32
80
±25
125
1.0

IGT6E21
500
500
20
32
80
±25
125
1.0

UNITS
Volts
Volts
A
A
A
Volts
Watts

TJ, TSTG

-55 to 150

-55 to 150

°C

R9JC

1.0

1.0

°CIW

TL

260

260

DC

SYMBOL
VCES
VCGR
Ic
ICM
VGE
Po

WloC

therrmal characteristics
Thermal Resistance, Junction to Case
Maximum Lead Temperature for Soldering
Purposes: W' from Case for 5 Seconds

(1) Repetitive Rating: Pulse width limited by max. junction temperature.

357

electrical characteristics (T c

I

=25

0

C)

(unless otherwise specified)

CHARACTERISTIC

I SYMBOL I

MIN

TYP

MAX

UNIT

BVCES

400
500

-

-

Volts

-

-

250
4.0

IJA
mA

±500

nA

2

4
2

-

5

Volts

-

2.5
2.6
3.0

2.9

Volts

2300

pF

700

-

off characteristics
Collector-Emitter Breakdown Voltage
(VGE = OV, Ic = 250~A)

IGT6D21
IGT6E21

Collector Cut-off Current
(VCE = Max Rating, VGE = OV, Tc = 25°C)
(VCE = Max Rating, x 0.8, VGE = OV, Tc = 125O C)(2)
Gate-Emitter Leakage Current
(VGE = ±20V)

ICES

-

IGES

(2) Applies for 4°C per watt maximum thermal resistance, case to ambient.

on characteristics(3)
Gate Threshold Voltage
(VCE = VGE, Ic = 500~A)

Tc= 25°C
Tc = 150°C

Collector-Emitter Saturation Voltage
Ic = 20 A, Tc = 25°C, VGE = 15V
Ic = 20 A, Tc = 150°C, VGE = 15V
Ic = 20 A, Tc = 25°C, VGE = 10V

VGE(TH)

-

VCE(SAT)

-

-

dynamic characteristics
Input Capacitance

VGE = OV

Cies

Output Capacitance

VCE = 25V

Coes

-

Reverse Transfer
Capacitance

f = 1 MHz

C res

-

10

-

pF

td(on)

100

td(off)

-

0.60

tf

3.0

~s

0.8

1.4

~s

0.8

1.0

~s

tf(eq)

-

-

ns

tr

-

0.6

0.8

~s

Ef

-

2.6
3.2

3.2
4.0

mJ

pF

switching characteristics(3) (see figures 8 & 9)
Turn-on Delay Time

Resistive Load Tc:; 125°C

Rise Time

Ic = 20A, VCE = Rated VCES

Turn-off Delay Time

VGE =15V

Fall Time

RG(on) = 50n, RGE = 100n

Turn-off Delay Time

Inductive Load,TC= 125°C,
L = 550~H, IC = 20A,

Fall Time

VCE(CLAMP) = Rated VCES

Equivalent
Fall Time

VGE = 15V

Turn-off
Switching Losses

RG(on) = 50n, RGE = 100n

td(off)
tf

IGT6D21
IGT6E21

150

ns
~s

(3) Pulse test: Pulse widths :5 300 ILsec, duty cycle :5 2%.

60~----'------.---r~'-----.-----'-----'

50.----------,,-------,---------,--------,.----,

70~----+-----~~~f+~~--~----+-----~

IE 401-------1f--------f---

i

y 301-------1f--------f--~~~~~-_+---~

~

i
a

20

10 I--------l--~.......~-------

°O~-~~~---~---~---~--~
COLLECTOR TO EMITTER VOLTAGE, VCE. VOLTS

COLLECTOR·EMITTER SATURATION VOLTAGE. VCE(SAT). VOLTS

FIGURE 1. TYPICAL OUTPUT
CHARACTERISTICS

FIGURE 2. TYPICAL COLLECTOR-EMITTER
SATURATION VOLTAGE
358

1.4

IS0

O~ 100..
~~

0

1.2 t-VGE(TH)

~~

0

@2A

1.0

VCE(SAT)

u

~

.~ ~

~"\

VrE=~V
o

~
c

@20A

0.8 I---BVCES

:i

-......;;;:

~r----

BVCES
VCE(SAT)
@20A-

~

VCE(SAT)
@2AVGE(TH)

0.6

~

o

z

" ' " VGI/15V

\

~

PARAMETER

0.4

0.2

20

30

IC = 500pA
IC = 20A. VGE = 15V
IC = 2A. VGE = 15V
IC=1 MA

-50

CASE TEMPERATURE.

DC COLLECTOR CURRENT. 'C. AMPERES

I.TV
VCES RATING

100

50

40

25' TYPICAL VALUE _
4.0V
2.5V

CONDITIONS

VGE(TH)
VCE(SAT)
VCE(SAT)
BVCES

-100

10

V-

--::::

W
N

a
o

~ I"---...

VCE(SAT)

150

'c

FIGURE 4. TYPICAL TEMPERATURE
DEPENDENCE OF PARAMETERS

FIGURE 3. MAXIMUM ALLOWABLE CASE TEMPERATURE
VS. DC COLLECTOR CURRENT

0

fa

50

~

~
:i
Y

IN?UCTIVf OR RESISTIVE LOAD
TJ = 150'C
RGE = 100 OHMS
40

!i
I:!
~

30

~~

20

u

8
~..

IGTSE21
IGTSD2110

a

o

100

200

300

400

500

600

PEAK COLLECTOR-EMITTER VOLTAGE. VCE. VOLTS

FIGURE 5. TURN-OFF SAFE OPERATING AREA

100

50

......

"-.
.......

f'

........

"-

~~

" "~
i'...
l'-...

1',

i'o

10 ~sec
100 J.lsec

I"'-....

I'...

~

rl"l
,~Jslc

~
!:'

ui

1.0

~

0.4

~

l!!
~
LI.I

0.1

ffiUi

0.04

~

0.02

z
0.2

I-- I-- SIN~LE'pULSE

DC.

:~~:~~;+::I-

Trrlll

0.1

1

10

20

50

100

200

I

.."

0.2

II:

i!:
',00'l15eC

2.0

1--1-

SINGLE RECTANGULAR PULSE

11111111

0.01
TO-5

500

VCE. COLLECTOR-EMITTER VOLTAGE. (VOLTS)

10-3

10-2

11111111
TO-1

PULSE WIDTH. SECONDS

FIGURE 6. TURN-ON SAFE OPERATING AREA

359

FIGURE 7. MAXIMUM TRANSIENT
THERMAL IMPEDANCE

-

L= 550l'h

PULSE
GENERATOR

S1 (SWITCH POSITION) -1 CLAMPED INDUCTIVE LOAD
-2 RESISTIVE LOAD
(RGEN+RS)(RGE)
RGIONt

L·ICIMAXIMUM)
• PULSE WIDTH2!60I'sec, V CC =--::::7:-'::=::-=::::7"PULSE WIDTH

RG EN+RS+RG E

FIGURE 8. BASIC SWITCHING TEST CIRCUIT

r-

VGE

o

J--10%

I

o

I
I

I
I

_9_0%
___

I

I

Ic

--1\=.

I

:~

----1-I

I

I

-:----+-iI I
I
I I

I

I

I

I t,

I

H"1

':rL

,

Itdloff)1
•

"I,

If

I I I

,
I

I I ,

"I

VCEICLAMP")
VCE

+-IYTl'
I I I

I:

o

I Ilf

'

I

)

~
I

t dlolt )
RESISTIVE LOAD

INDUCTIVE LOAD

(WAVEFORMS NOT TO SCALE)

FIGURE 9. SWITCHING WAVEFORMS

360

mTMlJ~~~

IGT8D20,E20

Insulated Gate Bipolar Transistor

20 AMPERES
400, 500 VOLTS
EQUIV. ROS(ON) = 0.12 n

This IG"f'M Transistor (Insulated Gate Bipolar Transistor) is a
new type of MOS-gate turn on/off power switching device
combining the best advantages of power MOSFETS and
bipolar transistors. The result is a device that has the high
input impedance of MOSFETS and the low on-state conduction losses similar to bipolar transistors. The device design
and gate characteristics of the IGT'M Transistor are also similar
to power MOSFETS. An important difference is the equivalent
RDS(ON) drain resistance which is modulated to a low value
(10 times lower) when the gate is turned on. The much lower
on-state voltage drop also varies only moderately between
25° C and 150° C offering extended power handling capability.

N-CHANNEL
c

.~
CASE STYLE TO-247
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

The IGT'M Transistor is ideal for many high voltage switching
applications operating at low frequencies and where low
conduction losses are essential, such as; AC and DC motor
controls, power supplies and drivers for solenoids, relays and
contactors.
Features:

• Low VCE(SAT) - 2.3V typ @ 20A
• Ultra-fast turn-on - 200 ns typical
• Polysilicon MOS gate - Voltage controlled turn on/off
• High current handling - 20 amps @ 100°C

maximum ratings (TC = 25° C)
RATING
Collector-Emitter Voltage, VGE = OV
Collector-Gate Voltage, RGE = 1Mn
Continuous Drain Current@Tc= 100°C
@Tc= 25°C
Pulsed Collector Current(1)
Gate-Emitter Voltage
Total Power Dissipation @Tc = 25°C
Derate Above 25° C
Operating and Storage
Junctiol} Temperature Range

(unless otherwise specified)
IGT8020
400
400
20
32

IGT8E20
500
500

80

80

±25
125
1.0

±25
125
1.0

W/oC

TJ, TSTG

-55 to 150

-55 to 150

°C

ReJC

1.0

1.0

°CIW

TL

260

260

°C

SYMBOL
VCES
VCGR
Ic
ICM
VGE
Po

20
32

UNITS
Volts
Volts
A

A
A
Volts
Watts

thermal characteristics
Thermal ReSistance, Junction to Case
Maximum Lead Temperature for Soldering
Purposes: Va" from Case for 5 Seconds

(1) Repetitive Rating: Pulse width limited by max. junction temperature.

361

electrical characteristics (T c

I

=25

0

C)

(unless otherwise specified)

CHARACTERISTIC

I SYMBOL I

MIN

TYP

BVCES

400
500

-

-

-

250
4.0

J.lA
mA

-

±500

nA

-

2

4
2

-

5

Volts

VCE(SAT)

-

2.3
2.4
2.8

2.4

Volts

Cies

2300
700

-

pF

Coes

-

C res

-

10

-

pF

td(on)

-

100

-

200

td(off)

-

0.65

tf

-

5.0

-

ns

tr

td(off)

-

1.0

1.5

~s

4.5

6.5

~s

tf(eq)

-

3.5

5.0

~s

Ef

-

14
.17.5

20
25

mJ

MAX

I.

UNIT

off characteristics
Collector-Emitter Breakdown Voltage
(VGE =OV, Ic =250J.lA)

IGT8D20
IGT8E20

Collector Cut-off Current
(VCE =Max Rating, VGE =OV, Tc =25°C)
(VCE =Max Rating, x 0.8, VGE =OV, Tc =150°C)(2)

ICES

Gate-Emitter Leakage Current
(VGE =±20V)

IGES

-

Volts

-

(2) Applies for 4°C per watt maximum thermal reSistance, case to ambient.

on characteristics(3)
Tc = 25°C
Tc = 150°C

Gate Threshold Voltage
(VCE =VGE, Ic =500~A)
Collector-Emitter Saturation Voltage
Ic =20 A, Tc =25°C, VGE =15V
Ic =20 A, TC =150°C, VGE =15V
Ic =20 A, Tc =25°C, VGE = 10V

VGE(TH)

dynamic characteristics
Input Capacitance
VGE =OV
Output Capacitance VCE =25V
Reverse Transfer
Capacitance

f

=1 MHz

switching characteristics(3)

=150°C
=20A, VCE =Rated VCES

Resistive Load, Tc

Rise Time

IC

Turn-off Delay Time

VGE =15V

Fall Time

=50n, RGE =100n
Inductive Load, Tc =150°C,
L =550~H, Ic =20A,
VCE(CLAMP) =Rated VCES
VGE =15V
IGT8D20
RG(on) =50n,RGE =100n
RG(on)

Fall Time
Equivalent
Fall Time

pF

(see figures 8 & 9)

Turn-on Delay Time

Turn-off Delay Time

-

Turn-off
Switching Losses
(3) Pulse test: Pulse widths:::; 300 ~sec, duty cycle:::; 2%.

tf

IGT8E20

80.-----.------r--~-.,-----r-----._----,

ns
p.s
~s

50,------,,------,-------,-------,-------,

VGe =12V
70~----+_----~~~++--~~~----+_----~
TC =25·C
~ 60 t------i------l-"..-,,,..-,+t-- ~~~:~~~ :;~~~eC~~~:= =2~0" sec

en

1I
9

VGe =10v
50~----+_----~~~_7~~--~----+_----~

~ 40~----+_---J~~~~~~==~====tv~G~e~=9~v~

a

t
0:

30r-----~~~fY~--~~=---~----~VG~e-.=8~v~

~

8 20 ~----+-,
10
o

VGe=7V

1-____-J~~--b-~__~~===F====~~VG~e~=6~V~

~ 401------l1------l1-~_r.=.....f._,~_7,-------f

I
9

~
~

130:

201------l------~~~~~-------+------~

~U

10~----~--~~~------~------~------~

o

VGE =15V
MAXIMUM PULse WIDTH

VGe =4V
L__~~~~~~;;;;~~~~~~~~VG~e~=5~V~
10

o

4

30~----~~----~~+_--~~----~------~

oL-__
o

6

~~

______

~

______

~

=300 "sec

MAXIMUM DUTY CYCLE =2%
______
______
~

1

COLLECTOR TO EMITTER VOLTAGE, VCE, VOLTS

COLLECTOR·EMITTER SATURATION VOLTAGE, VCE(SAT), VOLTS

FIGURE 1. TYPICAL OUTPUT
CHARACTERISTICS

FIGURE 2. TYPICAL COLLECTOR-EMITTER
SATURATION VOLTAGE
362

~

160

1.4

~ ,....,
~

~

1.2 f-VGE(THI

~

'\

1.0

~

~

:;!

~

"\

::&
a:
0
Z
,"VGE=15V

"

VGErOV\

w

o

VCE(SAT)
@ooA

O.S f--BVCES

-......;;;

lr"

~~

~

0

"

o

@2A

0

---

-............ r.........

VCE(SAT,

@20A-

VCE(SAT)
@2AVGE(TH)

0.6

PARAMETER

0.4

o

-100

50

-50

40

25· TYPICAL VALUE _

CONDITIONS

4.0V

IC = 500pA
IC = ooA, VGE = 15V
IC = 2A, VGE = 15V
IC= 1 MA

VGE(TH)
VCE(SAT)
VCE(SAT)
BVCES

0.2

~

00

BVCES
VCE(SAT)

2.3V
I.W
VCESRATING

100

150

CASE TEMPERATURE, ·C

DC COLLECTOR CURRENT, IC, AMPERES

FIGURE 4. TYPICAL TEMPERATURE
DEPENDENCE OF PARAMETERS

FIGURE 3. MAXIMUM ALLOWABLE CASE TEMPERATURE
VS. DC COLLECTOR CURRENT

60

f3a:

50
INDUCTIVE OR RESISTIVE LOAD
I
I
TJ = 150·C
RGE = 100 OHMS

w
::&

a..

'i"

!:!

40

~

a:
a:

:::I

30

0

a:

~

-'
0
0

~a..

20
IGTSE20
IGT8D2010

o

o

100

000

300

400

500

600

PEAK COLLECTOR-EMITTER VOLTAGE, VCE, VOLTS

FIGURE 5. TURN-OFF SAFE OPERATING AREA

100

50

.......

.......

..........
r-....

......

"

,~

"

~~

l'..

""-""' """"'" ~ .....

10#£sec
100 ~sec

.........

In"1"

~

..... I~Jslc

"-

1,00r,ec

0.2 f - -

r-- SIN~LE.PULSE
Tri

0.1

1

5

IGTSE20
IGT6D20
10

20

50

100

200

~

ad 1.0

i

- II

0.4

:;l

0.2

'"

0.1

~

ffi
in 0.04

~

DC,

111

2.0

~

0.02

.....

-

SINGLE RECTANGULAR PULSE

0.01

500

10-5

VCE, COLLECTOR-EMITTER VOLTAGE, (VOLTS)

10,,3

IT 11111 I LIIUI
Hr2

PULSE WIDTH, SECONDS

FIGURE 6. TURN-ON SAFE OPERATING AREA

FIGURE 7. MAXIMUM TRANSIENT
THERMAL IMPEDANCE

363

-

L= 550jlh

PULSE
GENERATOR

Sl (SWITCH POSITION) -1 CLAMPED INDUCTIVE LOAD
-2 RESISTIVE LOAD
L·ICIMAXIMUM)
PULSE WIDTH

FIGURE 8. BASIC SWITCHING TEST CIRCUIT

V,'/
o

--10%

I
I

I
I

I
o

RESISTIVE LOAD
(WAVEFORMS NOT TO SCALE)

FIGURE 9. SWITCHING WAVEFORMS

364

mTM1J~~~
Insulated Gate Bipolar Transistor

This IG"f"I Transistor (Insulated Gate Bipolar Transistor) is a
new type of MOS-gate turn on/off power switching device
combining the best advantages of power MOSFETS and
bipolar transistors. The result is a device that has the high
input impedance of MOSFETS and the low on-state conduction losses similarto bipolar transistors. The device design
and gate characteristics ofthe IGT'II Transistor are also similar
to power MOSFETS. An important difference is the equivalent
RDS(ON) drain resistance which is modulated to a low value
(10 times lower) when the gate is turned on. The much lower
on-state voltage drop also varies only moderately between
25° C and 150° C offering extended power handling capability.

20AMPEFlES
400, 500 VOLTS
EQUIV. RDS(ON) =0.145 n.

N-CHANNfEl
c

o~
CASE STYLE TO-247
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

r

The IGT'II Transistor is ideal for many high voltage switching
applications operating at low frequencies and where low
conduction losses are essential, such as; AC and DC motor
controls, power supplies and drivers for solenoids, relays and
contactors.

.815
(20.70)

r.6'S ('S.62)Y.'28 (3.2S)

.r-

+/ II] _ C±J\~

I,~u

.2,S
(S.46)

--.l..

ff-'l-'l-

Features:

]~j

• Low VCE(SAT) - 2..5V typ @ 20A

:::

• Ultra-fast turn-on -150 ns typical
• Polysilicon MOS gate - Voltage controlled turn on/off

: .: :~ ~:;:,i:."""
2

3

• High current handling - 20 amps @ 90° C

maximum ratings (Tc = 25° C)
RATING
Collector-Emitter Voltage, VGe = OV
Collector-Gate Voltage, RGe = 1Mn.
Continuous Drain Current @ T C = 90° C
@TC=25°C
Pulsed Collector Current<')
Gate-Emitter Voltage
Total Power DisSipation @TC = 25°C
Derate Above 25° C
Operating and Storage
Junction Temperature Range

(unless otherwise specified)
IGT8D21
400
400
20
32
80
±25
125
1.0

IGT8E21
500
500
20
32
80
±25
125
1.0

UNITS
Volts
Volts

TJ, TSTG

-55 to 150

-55 to 150

°C

ReJC

1.0

1.0

°CIW

TL

260

260

°C

SYMBOL
VCES
VCGR
Ic
ICM
VGE
Po

A
A
A
Volts
Watts
W/oC

thermal characteristics
Thermal Resistance, Junction to Case
Maximum Lead Temperature for Soldering
Purposes: W' from Case for 5 Seconds

(1) Repetitive Rating: Pulse width limited by max. junction temperature.

365

electrical characteristics (T c = 25° C)

I

(unless otherwise specified)

CHARACTERISTIC

I SYMBOL I

MIN

TYP

MAX

BVCES

400
500

-

-

-

-

250
4.0

I1A
mA

-

±500

nA

2

4
2

5

Volts

-

VCE(SAT)

-

2.5
2.6
3.0

2.9

Volts

UNIT

off characteristics
Collector-Emitter Breakdown Voltage
(VGE = OV, IC = 25OILA)

IGTSD21
IGTSE21

Collector Cut-off Current
(VCE = Max Rating, VGE = OV, TC = 25°C)
(VCE = Max Rating, x O.S, VGE = OV, Tc = 125O C)(2)

ICES

Gate-Emitter Leakage Current
(VGE = ±20V)

IGES

. Volts

(2) Applies for 3.3 0 C per watt maximum thermal resistance, case to ambient.

on characteristics(3)
Gate Threshold Voltage
(VCE = VGE, Ic = 5OOILA)

TC= 25°C
TC = 150°C

VGE(TH)

Collector-Emitter Saturation Voltage
Ic = 20 A, Tc = 25°C, VGE = 15V
Ic = 20 A, Tc = 150°C, VGE = 15V
IC = 20 A, Tc = 25°C, VGE = 10V

-

dynamic characteristics
VGE = OV

Cies

-

pF

VCE = 25V

C oes

-

2300

Output Capacitance

700

-

pF

Reverse Transfer
Capacitance

f = 1 MHz

C res

-

10

-

pF

td(on)

100

ns

0.60

-

ILS

3.0

-

ILs

Input Capacitance

switching characteristics(3)

(see figures 8& 9)

Rise Time

IC = 20A, VCE = Rated VCES

Turn-off Delay Time

VGE = 15V

Fall Time

RG(on) = 50.0, RGE = 100.0

tf

-

Turn-off Delay Time

I nd uctive Load, T C = 125° C,
L = 550ILH, Ic = 20A,

tdoff

-

O.S

1.4

ILS

Fall Time

VCE(CLAMP) = Rated VCES

tf

-

O.S

1.0

ILS

Equivalent
Fall Time

VGE = 15V

tf(eq)

-

0.6

O.S

ILS

Turn-off
Switching Losses

RG(on) =50.0, RGE = 100n

Ef

-

2.6
3.2

3.2
4.0

mJ

Turn-on Delay Time

Resistive Load T C = 125° C

tr
td(off)

IGTSD21
IGTSE21

150

ns

(3) Pulse test: Pulse widths:S 300 psec, duty cycle:S 2%.

80r-----.------r~~-.,-----r-----._----,

50

VGE =12V

r-------,------~-------.-------.------_,

70r-----~----_r~~~--~--r-----+_----~

~

..ffi

40r------+------_r---

~

9 30r-----~------~--~~~~~---+------~

m
~

I
B
8
o

VGE =4V
L__~~~~;;~;;;;~~~;b~~;1~VG[E~=5[V~

o

4

6

8

20

10 f-------I--~<_::.~-------

°0~--~~1------~2------~3------~4------~

10

COLLECTOR TO EMITTER VOLTAGE, VCE, VOLTS

COLLECTOR·EMITTER SATURATION VOLTAGE, VCE(SAT), VOLTS

FIGURE 1. TYPICAL OUTPUT
CHARACTERISTICS

FIGURE 2. TYPICAL COLLECTOR-EMITTER
SATURATION VOLTAGE
366

160
~

140

~~

~~

8VCES

"

I~....,~i~b==~~;;;;;;..1II!!!9~~~=t===~VCE(SAT)
@20A

~

~~

,4----+----+---~'f'oo;;;:::_-__..,

'""
)

VGE(TH)

1\

i

IC= 500"A
IC = 20A. VGE = 15V
IC =2A. VGE =15V
'C=' MA

f'

0

100

50
20

10

25· TYPICAL VALUE
4.0V
2.5V
'.IV
VCESRATING

CONDITIONS

. " - VG/'5V

VGE =<:;V

VCE(SAT)
@2A

30

150

CASE TEMPERATURE. ·C

DC COLLECTOR CURRENT.IC. AMPERES

FIGURE 4. TYPICAL TEMPERATURE

FIGURE 3. MAXIMUM ALLOWABLE CASE TEMPERATURE
VS. DC COLLECTOR CURRENT

DEPENDENCE OF PARAMETERS

60

UI

w

50

,

,

0:

INDUCTIVE OR RESISTIVE LOAD

~

TJ =150·C
RGE =,00 OHMS

...
W

:i
Y

40

Iiw
0:
0:

:::I
U

30

0:

e
U

~

20

0

IGTBE2'
IGTBD2'-

u

!...

10

o

o

,00

200

300

400

500

600

PEAK COLLECTOR-EMITTER VOLTAGE. VCE. VOLTS

FIGURE 5. TURN-OFF SAFE OPERATING AREA

100

.,

50

.........

f:

~

~

1""

f'.""

~

l"'o..

" ~"

10.usee

100 ",sec

2

~

1.0

"

1"-

'n"!"

...... '~mlslc

~

'Ioor,ec

0.5

0.2

o.

,

W 1.0

~
~

"-

r-- r-- SINGLE PULSE

:tJIII

- II
DC,

IGTBE2'IGTBD2'10

20

50

100

200

~

2.0

~

5

I§

8
}}

r-...

i'

~

~

r-....

0.4

i!!
~

~j!:

".

0.2
0.1

F

ffi

iii 0.04

~

0.02

r-

U I1IU

0,01

lit'

500

""i" ''1 PULSE

S!N~L.E.

10-3

11111111

10- 2

PULSE WIDTH. SECONDS

VCE. COLLECTOR-EMITTER VOLTAGE. (VOLTSI

FIGURE 7. MAXIMUM TRANSIENT
THERMAL IMPEDANCE

FIGURE 6. TURN-ON SAFE OPERATING AREA

367

L= 550llh

PULSE
GENERATOR

SI (SWITCH POSITION) -1 CLAMPED INDUCTIVE LOAD
-2 RESISTIVE LOAD
RGIONt

L-I C (MAXIMUM)
PULSE WIDTH

(RGEN+RS)(RGE)
RGEN+RS+RGE ,PULSE W)DTH2:60Ilsec, VCC

FIGURE 8. BASIC SWITCHING TEST CIRCUIT

/'"-----1---

V GE

04-- 10%
I

Ic

o

iI

I

90%

V GE

r--r-t

i'----

1'-.-----.
oJ
I

-----~-I

I

I

I

•

"I,

IIldlOfll I

I

)~II
--I I
10%
I I I
I I I

0

I

If

90%

I

-1----+--+-

I I I
II II I, I

~--90%

II
"I

VCEICLAMP)

Idl on )

VCE

o

+-lYn-1
I I I

l

I

I I If I
~

I

I

Id loff)

RESISTIVE LOAD

INDUCTIVE LOAD

(WAVEFORMS NOT TO SCALE)

FIGURE 9. SWITCHING WAVEFORMS

368

I

GE
BIPOLAR
SPECIFICATIONS

369

370

VERY HIGH GAIN
D40C Series

NPN POWER DARLINGTON
TRANSISTORS

30-50 VOLTS
.5 AMP, 6.25 WATTS

Designed for driver, regulator, touch switch, I.e. driver, audio
output, relay substitute, oscillator, servo-amplifier, and
capacitor multiplier applications.
Features:

NPN
COLLECTOR

• hFE Min. - 10,000 and 40,000

EMITTER

CASE STYLE TO-202

• 1.33 Watt power dissipation at TA = 25°

DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

0.128-0.132
(3.251-3.353)
0.48(}-0.520
(12.192-13.208)

0.065-0.075
(1.651-1.905)

0.285-0.315
(7.237-8.001)

~ '~~"~

1.21 REF.
(30.734)
0.405-0.425
(10.287-10.795)

-'::-:0'0=-=95-0="05-~1
1_
(2.413-2.667) +l
'-0.095-0.105
.

0.026
(0.660)

maximum ratings (TA

~

~ (2.413-2.667)

0.095-0.106
(2.413-2.667)

l

I

-...j

0.170-0.190
(4.318-4.826)
00'9-0026
.
.
(0.483-0.660)

=25° C) (unless otherwise specified)

RATING
Collector-Emitter Voltage
Collector-Emitter Voltage
Emitter Base Voltage
Collector Current - Continuous
Peak(')
Base Current - Continuous
Total Power Dissipation @TA = 25°C
@TC=25°C
Operating and Storage
Junction Temperature Range

SYMBOL
VCEO
VCES
VESO
IC
ICM
Is
PD

D40C1
30
30
13
.5
1.0
0.1
1.33
6.25

D40C4
40
40
13
.5
1.0
0.1
1.33
6.25

D40C7
50
50
13
.5
1.0
0.1
1.33
6.25

UNITS
Volts
Volts
Volts
A

TJ, TSTG

-55 to +150

-55 to +150

-55 to +150

°C

R8JA
R8JC

75
20

75
20

75
20

°C/W
°C/W

TL

260

260

260

°C

A
Watts

thermal characteristics
Thermal Resistance, Junction to Ambient
Thermal Resistance, Junction to Case
Maximum Lead Temperature for Soldering
Purposes: W' from Case for 5 Seconds
(1) Pulse Test: Pulse Width

=300ms. Duty Cycle:S 2%.
371

=25° C) (unless otherwise specified)

electrical characteristics (Tc

I

I SYMBOL I

CHARACTERISTIC

MIN

TYP

MAX

UNIT

30
40
SO

-

Volts

-

-

off characteristics(1)
Collector-Emitter Voltage
(Ic = 10mA)

D40C1
D40C4
D40C7

VCEO

Collector Cut-off Current
(VCE = Rated VCES)

(TC =2S°C)
(TC = 1S0°C)

ICES
Icso

-

-

O.S
20

p,A

-

IESO

-

-

0.1

pA

Emitter Cutoff Current
(VES = 13V)

second breakdown

I

Second Breakdown with Base Forward Biased

FBSOA

SEE FIGURE 2

on characteristics
DC Current Gain
(IC = 200mA, VCE

hFE

=SV)

Collector-Emitter Saturation Voltage
(Ic =SOOmA, Is =O.SmA)
Base-Emitter Saturation Voltage
(IC =SOOmA, Is =O.SmA)

10K

-

60K

VCE(sat)

-

-

1.S

V

VSE(Sat)

-

-

2.0

Volts

CCSO

-

-

220

pF

fT

-

7S

-

MHz

td + tr

-

100

-

ns

3S0

-

800

-

dynamic characteristics
Collector Capacitance
(VCE = 10V, f =1MHz)
Current Gain - Bandwidth Product
(Ic = 20mA, VCE = 5V)

switching characteristics
Resistive Load

= 1A, IS1 = IS2 = 1mA
VCC =30V, tp = 2S p,sec

. Delay Time + Rise Time

Ic

Storage Time
Fal) Time

ts
tf

(1) Pulse Test: PW:5 300ms Duty Cycle:5 2%.
lOOK
BOK
60K
40K

V

20K

vi--'

10K
8K
6K . /

.......

.s::

-

.-

4K

V

/

IK
800
600

""-

--H

"

1'\
~

TJ " 25' C

I

V

2K

--.....

TJ '150'C

I

J.-+-

........

T • -55'C
J j
I I
PULSEO MEASUREMENT,
PULSE WIDTH· 2 MILLISEC
DUTY CYCLE ~ 2 %
tVCE =5 VOLTS
ttD40CI, 4, AND 7

400
200
100

I

2

4

6 8 10

20

d

40 6°8 oo

200

4°~o<¥°9000

VCE -COLLECTOR-TO-EMITTER VOLTAGE -VOLTS

IC-COLLECTOR CURRENT -MILLIAMPERES

FIG. 2 SAFE REGION OF OPERATION

FIG 1. TYPICAL hFE vs.IC

372

I II

3

J.W-'.!..~E!J

VCE' 20V
IC -200mA

2

---

WITHOUT TAB"

I

J"i.

f---I

JUNC~~'TO'~BIENT

;~

J
T -25°C
__

~J

.- -

TJ -150°C

- ---- 1---1-- 1----

-

T/-55°C

TJ -2S 0 C

WiTirL

"

T __Loc

T/150°C

JUNCTION·TO-TAB

"",,-,,

-

,..d-'- ~

--

~ 1}

~~~

F"

VCE (SAT)

r

rc Ira -1000

.2

I
10
O. I

TIME-SECONDS

10

40
60 80 100
200
400
rc-COLLECTOR CURRENT-MILLIAMPERES

20

FIG. 3 MAXIMUM TRANSIENT THERMAL IMPEDANCE

600 BOO 1000

FIG. 4 TYPICAL SATURATION VOLTAGES

10
B

\.

6

UI

g
I

2

ffl

'"~
o
>

.B

~

.6

~

.4

II:

TJ -25-C-

J

'" ~,J

4

~

J

r-----

1-.- I--

'"

____r C -0.5

!. ..I.

~MPERE

r C-0.25 AMPERE

rC -0.1 AMPERE

:::>

~

.2
O. I
10

20

40

80
200
600 1000
60
100
400
BOO
2000
ra-BASE CURRENT-MICROAMPERES

4000 BOOO
6000 10,000

FIG. 5 TYPICAL SATURATION VOLTAGES

1000
800
600
400

UI
C

./

./

200

!£
~

<

':'-

....z

W
II:
II:

:::J
0

100
80
60 ~TJ=l60'C.,
40

/

20

./

""
I.:

./

8

./

~

/

V

/

1.0
8
6

I

I

I

I

0.1
0.8

6

5

TJ = -55'C

if

~

----.:

.........

~ ......

IIJ

!Il
III

2

II:

t~

8I
12

.........

3

...J

10

- --

~ 4

I

I

1

r----

(3

I

w

8
8

tlz

/

/
TJ=25'C/

/

10
8
6

Ul

<
~
IF

V

./

~ 10

/

14

16

18

2.0

VBE' BASE·TO· EMITTER VOLTAGE· VOLTS

2.2

o

III

.y

I

2

3

45618910

20

304050

VCB -COLLECTOR-TO-BASE VOLTAGE -VOLTS

FIG. 7 TYPICAL CCBO VS. VOLTAGE

FIG. 6 TYPICAL INPUT CHARACTERISTICS

373

60

1090
80 100

374

040D Series

NPN POWER TRANSISTORS

30 - 60 VOLTS
1 AMP, 6.25 WATTS

COMPLEMENTARY TO THE D41D SERIES

The General Electric 0400 is a power transistor designed for
various specific and general purpose applications, such as:
output and driver stages of amplifiers operating at frequencies
from DC to greater than 1.0 MHz; series, shunt and switching
regulators; low and high frequency inverters/converters; and
many others.

NPN
COLLECTOR

EMITTER

CASE STYLE TO-202

Features:

DIMENSIONS ARE IN INCHES AND (MILLIMETERS)·

• High free-air power dissipation
• NPN complement to 0410 PNP
• Low collector saturation voltage (O.SV typo @ 1.0A Ie)

0.480-0.520
(12.192-13.208)

• Excellent linearity
• Fast Switching

0.285-0.315
(7.237-8.001)

l

0.065-0.075
(1.651-1.905)
X 45°

CH;MFER~

1.21 REF.

(30.734)
0.405-0.425

(10.287-10.795)
0095-0105
(2413-2 :6::6

~I1_

-.J

(0660)

I

[

~~ ~~~:~ ~~;)

I

1+
0095-0 106

0.170-0.190

~ 0-';~~~~:~;:-:~~~""'~:2~6)

-.j

(0.483-0.660)

(2.413-2.667)

maximum ratings (TA

=25° C)

RATING
Collector-Emitter Voltage
Collector-Emitter Voltage
Emitter Base Voltage
Collector Current - Continuous
Peak(1)
Base Current - Continuous
Total Power Dissipation @ T A = 25° C
@Tc=25C
Operating and Storage Junction
Temperature Range

(unless otherwise specified)
SYMBOL

04001,2

04004,5

04007,8

UNITS

VCEO
VCES
VESO
IC
ICM
IS
PD

30
45

45
60

60
75

5
1
1.5
.5
1.67
6.25

5
1
1.5
.5

5
1
1.5
.5

Volts
Volts
Volts

1.67
6.25

1.67
6.25

Watts

TJ,Tstg

-55 to +150

-55 to +150

-55 to +150

°C

ROJA
ROJC

75
20

75
20

75
20

°C/W
°C/W

h

+260

+260

+260

°C

A
A

thermal characteristics
Thermal Resistance, Junction to Ambient
Thermal Resistance, Junction to Case
Maximum Lead Temperature for Soldering
Purposes: Va" from Case for 5 Seconds
(1) Pulse Test Pulse Width

=300ms Duty Cycle:::; 2%.

375

electrical characteristics (T c = 25° C)

I

(unless otherwise specified)

I SYMBOL I

CHARACTERISTIC

MIN

TYP

MAX

UNIT

30
45
60

-

-

Volts

off characteristics(1)
Collector-Emitter Sustaining Voltage
(Ic

04001,2
04004,5
04007,8

=10mA)

Collector Cutoff Current
(V CE =Rated VCEO)
(V CE =Rated VCES)
Emitter Cutoff Current
(VES =5V)

VCEO(sus)

Tc =25°C
TC =150°C

ICES
lEBO

-

-

-

-

0.1

1.0

-

J.lA

-

0.1

J.lA

second breakdown

ISecond Breakdown with Base Forward Biased

SEE FIGURE4

FBSOA

on characteristics
DC Current Gain
(IC =100mA, VCE
(Ic

=2V)

=1A, VCE =2V)

Collector-Emitter Saturation Voltage
(Ic =500mA, Is =50mA)

04001,4,7
04002,5,8

hFE

50
120

04001,4,7
04002
04005,8

hFE

10
20
10

04001 , 2, 4, 5
04007,8

150
360

-

-

-

-

-

-

-

0.5
1.0

Volts

VBE(sat)

-

1.5

Volts

CCBO

-

8

.-

pF

fT

-

200

-

MHz

t(j + tr

-

25

-

nS

ts
tf

-

-

200
50

-

VCE(sat)

Base-Emitter Saturation Voltage
(Ic =500mA, Is =50mA)

-

-

dynamic characteristics
Collector Capacitance
(VCS =10V, f =1MHz)
Current-Gain - Bandwidth Product
(Ic =20mA, VCE =10V)

switching characteristics
Resistive Load
OelayTime+
Rise Time

IC = 1A, IB1

Storage Time
Fall Time

VCC

= IB2 =O.1A

=30V, tp =25 ~sec

(1) Pulse Test PW = 300ms Duty Cycle:S 2%.

TJ.I~.C

200

VCE-2V
040DI,4.7

""--

TJ-ut

100
0

-

T.... "S.c
0

~

0

--

-

200

~
'-

.....

...........

" r\.

-

:r..

-,we:

--....

T.. e- as•c

~
l'\.

,1'1

I'

1'-.1\.

~,

r-.... f'.. I\~

0
10"

..........

-..

I'~
10

VeE- 2V

040Da.U.

-~

... ZI-C

0

10'

10 I

10"

Ie: - COLLECTOR CURREffT -iliA

FIG. 1

. FIG. 2
TYPICAL H FE VS IC

376

I.'

FORWARD BIASED OPERATION
DUTY CYCLE '!S 5O-t.
TC '!S 70·C

2000

I _SEC PULSE
S~
p.SEC PULSE
DCICURRE~ ~ 1/10 100
,.SEC PULSE

I

PEAK CURRENT LIMIT

2

Xc/l:.- 1O
_0

V~E(S"'T)

-

"I--- +--

t::;:;;- ~

l - t- I'\,

V

I- I-r-

E

V

I

I

i
'"

20 0

~

/1

8,
U

H

VII

MAK DC POWE~ - '
DISSIPATION AT

TEMPERATURE

100

o0

~------I

10 Z

TJ •

j5-j

/
~

~

l~ ~ I: I
",~- I
I~ ~'

0

VCES MAX: 04007,8

I--

I I I

0

f~G.

100

4

G

B 10

~NCTIONTO_

vtMBIENT T'THTAB

~

,......

JUNCTION TO TAB

L

V

/
I

I

V

VCE; 20V
Ic;200mA -

lfr'

I

1

20

_

J,. ~

t

40

I

I

1-0

I
60

eo 100

4 SAFE REGiON OF OPERATION

JUNCTION TO AMBIENT
WITHOUT TAB

lfr'

~-:.

MAXIMUM COLLECTOR TO EMITTER VOLTAGE - VOLTS

FIG.3 TYPICAL SATURATION
VOLTAGE CHARACTERISTICS

1

I
I

'\1 ~

VCES MAX' 04001,2 _
VCES MAX: 04004,5 _

ID 3

I
1 I

\~ ~

0

Xc·COLLECTOR CURRENT - mA

1

1000,.SEC PULSE
,.-50 ,SEC PULSE

0

VV

T.I·I~·C

10

/'
7Q-C CASE

u

1/1/
VeEtsAT)

I'\. \..'\:

LIMIT

60 0
40 0

1//

Z

MAX

0-

I

T", -15O-C

4

0

I--"'v

V

T oI - 25-C

..,

~

o
100
a
00

,

10-

I
10-

10

100

TIME IN SECONOS

FIG. 5 MAXIMUM TRANSIENT THERMAL IMPEDANCE

377

378

PNP POWER TRANSISTORS

0410 Series

COMPLEMENTARY TO THE 0400 SERIES

-30 - -60 VOLTS
-1 AMP, 6.25 WATTS

The General Electric 0410 is a power transistor designed for
various specific and general purpose applications, such as:
output and driver stages of amplifiers operating at frequencies
from DC to greater than 1.0 MHz; series, shunt and switching
regulators; low and high frequency inverters/converters; and
many others.

PNP
COLLECTOR

EMITTER

CASE STYLE TO-202

Features:

DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

• High free-air power dissipation
• PNP complement to 0400 NPN
• Low collector saturation voltage (-O.SV typo @ 1.0A Ie)
• Excellent linearity

0.480-0.520
(12.192-13.208)

• Fast Switching

0.285-0.315
(7.237-8.001)

0.065-0.075
(1.651-1.905)

1.21
REF.
(30.734)

+--L-...............

CHX3A~~;ER~

,-

0.095-0.105 ~I
,2.413.2.687)..j
t-0.095-o.105
(2.413-2.667)
0.026
(0.660)
0.095-0.108
(2.413-2.687)

~

maximum ratings (TA = 25° C)
RATING
Collector-Emitter Voltage
Collector-Emitter Voltage
Emitter Base Voltage
Collector Current - Continuous
Peak(1)
Base Current - Continuous
Total Power Dissipation @TA = 25°C
@TC=25C
Operating and Storage Junction
Temperature Range

l

W

0.405-0.425
(10.287-10.795)

I
+I

0.170-0.190
(4.318-4.826)
0019-{)026
.
.
(0.483-0.660)

(unless otherwise specified)
SYMBOL

UNITS
Volts
Volts
Volts
A

VCEO
VCES·
VESO
IC
ICM
IS
Po

04101,2
-30
-45
-5
-1
-1.5
-.5
1.67
6.25

04104,5
-45
-60
-5
-1
-1.5
-.5
1.67
6.25

04107,8
-60

TJ,Tstg

-55 to +150

-55 to +150

-55 to +150

°C

R8JA
R8JC

75
20

75
20

75
20

°C/W
°C/W

TL

+260

+260

+260

°C

-75
-5
-1
-1.5
-.5
1.67
6.25

A
Watts

thermal characteristics
Thermal Resistance, Junction to Ambient
Thermal Resistance, Junction to Case
Maximum Lead Temperature for Soldering
Purposes: Va" from Case for 5 Seconds
(1) Pulse Test Pulse Width = 300ms Duty Cycle:5 2%.

379

electrical characteristics (Tc = 25° C)

I

(unless otherwise specified)

I SYMBOL . I

CHARACTERISTIC

MIN

TYP

MAX

UNIT

-30
-45
-60

-

-

Volts

-

-

-0.1

-1

-

pA

-

-0.1

pA

off characteristics(1)
Collector-Emitter Sustaining Voltage
(Ic

04101,2
04104,5
04107,8

=10mA)

VCEO(sus)

Collector Cutoff Current
(VCE =Rated VCEO)
TC =25°C
(VCE =Rated VCES)
TC =150°C
Emitter Cutoff Current
(VEB =5V)

ICES
lEBO

-

second breakdown

ISecond Breakdown with Base Forward Biased

FBSOA

SEE FIGURE 7

on characteristics
OC Current Gain
(Ic =100mA, VCE
(Ic

04101,4,7
04102,5,8
04101,4,7
04102
04105,8

=2V)

=1A, VCE =2V)

Collector-Emitter Saturation Voltage
(Ic =-500mA, IB =-50mA)

-

-

150
360

-

-

-

-

-

0.5
1.0

Volts

VBE(sat)

-

1.5

Volts

CCBO

-

10

-

pF

for

-

150

-

MHz

td + tr

-

50

-

nS

ts
tf

-

75
40

-

hFE
hFE

04101,2,4,5
04107,8

VCE(sat)

Base-Emitter Saturation Voltage
(Ic =-500mA, IB =-50mA)

50
120
10
20
10

dynamic characteristics
Collector Capacitance
(VCB =10V, f =1MHz)
Current-Gain - Bandwidth Product
(Ic =-20mA, VCE =-10V)

switching characteristics
Resistive Load
OelayTime+
Rise Time

Ic =-1A, IB1

Storage Time
Fall Time

VCC

(1) Pulse Test PW

2..

..
.-

~".I2&.C

-

vcJ'_lvl

zoo

D4IDI,4

-....... .......

~.....c

-

--

TJ--IIO-C

zo

•

=-30V, tp =25 ~sec

=300ms Duty Cycle:5 2%.

'00

;

=IB2 =-0.1A

-..

-101

!'-"
'00

'"

""'........."

'" I'
l"-

:r,,·IZ5"C

:r·u-c

l..-c

- r-..

.

I.

-.0'

••-•

" '~

Ie -COLLECTOR CURRENT· "" ..

FIG_1

380

.......

~

~

'" "
i\ i\~
~

-10
1 c-CCLUCTCII CUIUIIIIT-_.

FIG. 2

TYPICAL hFE VS. IC

~
........

••

~,

~'-IV

....1,1

r--..

~

-lOS

~J.'.'Z5-C
1.

I ..

TJ

.

VeE

04101

~
--.....

2S-C

'00

.

T~

':10

•

-ss-c

r--

t""'

•

,.

, -,

•

.I_. v

-

-

r.....
T~--"·C

"'

...........
t--.

........

f'....'"

'l"

•

'" ....... 1",\'
r-.. ~

.
0

~

f'- ~r-,.I\

~~

'0

~~

.

04100

t-- f...t--,.

TJ-ZS-C

2. .

,.-,

-

10

'0

I C-COLLECTOR CURR[NT- _"

vc,-~v

TJ -IIS·C

-

~

-

FIG. 3

FIG. 4

TYPICAL hFE VS. IC

-I"

T
II

I
t---- Ic' IS· 10

r7

-1.2

~
~

-10

.,
VI

:: -0.8

!:i
o

>
z
~-O.6

.~
~

-0.4

---

TJ .2S"C

VCE(SAT.>

f..-- .....

V-- ......

~V
~(

/
~

II

ty. , /

-~"i

/

I

TJ " 12S"C
VCE(SATI

-

-Q2

I
7
I

./

/

\.......- ,/'

II

,

j
TJ" 2S"C-

/

I- ~ V

o

_10 2

-10 1

I:C - COLLECTOR CURRENT-mA

FIG.5 TYPICAL SATURATION VOLTAGE CHARACTERISTICS

FORWARD BIASED OPERATION

DUTY CYCLE"" 50%
TC""70·C
-2000

100
JUNCTION TO AMBIENT
WITHOUT TAB

L/

./"'"

""'-:.J..--"

-1000

!/.,UNCTION TO

-800

tTH TAB

-800

tMBIE~T
~

JUNCTION TO TAB

~

...!z

.....-

/

::;)

u

V

a:

-200

0

VCE=20V
Ic=200mA

/

1

-400

a:
a:

t

~
....

0

U

I

j}

-100

-80
-80

V

-40
1
10-'

10-'

10"'

10-'

10-'

10

100

TIME IN SECONDS

FIG. 6

-20

I----I---_+_-

MAXIMUM TRANSIENT THERMAL IMPEDANCE
-10L-____

~

-2

-1

____

L_~~L-L_

-4

-8

-8 -10

____

~

-20

____

~~~uu

-40

-80 -80 -100

MAXIMUM COLLECTOR TO EMITTER VOLTAGE -VOLTS

FIG. 7

381

SAFE REGION OF OPERATION

382

D40E Series

NPN POWER TRANSISTORS

30 - 80 VOLTS
2AMP, 8 WATTS

COMPLEMENTARY TO THE D41E SERIES

The General Electric D40E series are power transistors
designed for various specific and general purpose applications, such as: output and driver stages of amplifiers operating
at frequencies from DC to greater than 0.1 MHz; series, shunt
and switching regulators; low and high frequency inverters/
converters; and many others.

NPN
COLLECTOR

EMITTER

CASE STYLE TO-202

Features:

DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

• High free-air power dissipation
• NPN complement to D41E PNP
• Low collector saturation voltage (0.5V typo @ 1.0A Ie)

0.480-0.520
(12.192-13.208)

• Excellent linearity
• Fast switching

0.285-0.315
(7.237-8.001)

0.065-0.075
(1.651-1.905)
X45°

121 REF
(30734)
0.405-0.425
(10.287-10.795)

(~~i~)

0095-0 105
(2413-2667)

CH;MFER~

~I1_
-..J
~o 095-0 105

0026
(0 660)

1-

l

~

(2413-2667)

~

~

0170-0190
(4318-4826)

-;;;0:;;;;019",-0~02;;.6
(0 483-0 660)

0095-0106
(2 413-2 667)

maximum ratings (T A = 25° C)
RATING
Collector-Emitter Voltage
Collector-Emitter Voltage
Emitter Base Voltage
Collector Current - Continuous
Peak(1)
Base Current - Continuous
Total Power Dissipation @ TA = 25°C
@TC=25°C
Operating and Storage Junction
Temperature Range

(unless otherwise specified)
SYMBOL

D40E1

D40E5

D40E7

VCEO

30

VCES
VEBO
Ic
ICM
IB
PD

45
5
2
3
1

60
70

80
90

1.33
8

5
2
3
1
1.33
8

5
2
3
1
1.33
8

T J,Tstg

-55 to +150

-55 to +150

-55 to +150

°C

R8JA
R8JC

75
15.6

75
15.6

75
15.6

°C/W
°C/W

h

+260

+260

+260

°C

UNITS
Volts
Volts
Volts
A
A
Watts

thermal characteristics
Thermal Resistance, Junction to Ambient
Thermal Resistance, Junction to Case
Maximum Lead Temperature for Soldering
Purposes: Va" from Case for 5 Seconds
(1) Pulse Test Pulse Width

=300ms Duty Cycle:5 2%.

383

electrical characteristics (T c = 25° C)

I

(unless otherwise specified)

I SYMBOL I

CHARACTERISTIC

MIN

TYP

MAX

UNIT

30
60
80

--

Volts

0.1

/lA

0.1

/lA

off characteristics(1)
Collector-Emitter Sustaining Voltage
(IC

D40E1
D40E5
D40E7

=10mA)

ICES

-

-

lEBO

-

-

VCEO(sus)

Collector Cutoff Current
(VCE = Rated VCES)
Emitter Cutoff Current
(VEB =5V)

-

second breakdown

ISecond Breakdown with Base Forward Biased

SEE FIGURE 1

FBSOA

on characteristics
DC Current Gain
(Ic =100mA, VCE =2V)
(Ic =1A, VCE =2V)
Collector-Emitter Saturation Voltage
(Ic =1.0A, IB =0.1A)
Base-Emitter Saturation Voltage
(IC =1.0mA, IB =0.1A)

hFE
hFE

50
10

-

-

-

-

VCE(sat)

-

-

1.0

Volts

VBE(sat)

-

-

1.3

Volts

CCBO

-

9

-

pF

fT

-

230

-

MHz

ld + tr

-

130

-

nS

ts
tf

-

400
170

-

dynamic characteristics
Collector Capacitance
(VCB =10V, f =1MHz)
Current-Gain - Bandwidth Product
(Ic =100mA, VCE =10V)

switching characteristics
Resistive Load
Delay Time +
Rise Time

IC = 1A, IB1 = IB2 = 0.1A

Storage Time
Fall Time

VCC

=30V, tp =25ILsec

(1) Pulse Test PW = 300ms Duty Cycle:5 2%.

MAX. POWER DISSIPATION
TCASE :!: 70 0 C

PElK
'-CURRENT

r% -

MAX6c~ "-

CURRENT,,\:
IA

~~

PULSED OPERATION
DUTYI CYCL~ :!:

500
-~.

IC\~

TJ=2S 0 C

l,}~ loOms PULSE

" ~ "-

U
H

-r" ~

--

J J

TJ"-55°C

~----

'-

VCE=2V

MAX. VCEO D40EI

I

I

if
I

I

I
I I
MAX. VCEO D40E5

"cE~ D40E~

\"-- ....." ,\
"

MAX.
I
III
10V

I

I
!
I

l

~:~ l\1

\

~

i\ ~

N

~~

I

I
100V

~

\~

30

10
0.01

1.0

0.10
IC-AMPERES

VCE

FIG. 1

- 1\,

I\,\,

I

IV

100

~i ~

O.lA

...........

I

10ms PULSE1....

D.C.~

--....,-r --.......... ,
TJ=ISOOC

~f.--0.lm81 PULS~

FIG.2

SAFE REGION OF OPERATION
384

TYPICAL HFE VS IC

J

TC 12S0C

w
0

8

~

c

01
wI

TClsooc\

~ 6
TC rooc

!;i

,

;!:

lll.

4

'\.

$'1

on
w
0

x I

c

0Wi1

w
0

~I
XI

c

~I

0
wI
~I

~

41

"L

I
TC 100°C

I .............
I

............... !""'---II

I

I
I
I

I

2 '--TC 112S0C

I

10

J
30

20

eo

40

""

.i

~

xl
ctl
::EI
I

I'
I

I

70

60

80

FIG. 3 MAXIMUM PERMISSIBLE DC POWER DISSIPATION

JIC/IB=IO
I.
I

1.0

--

1
TJ=2S oC

=-- VBE(SATl
TJ"'ISO°C

-

/J '?

O. I

,~O~/

~

-;::.

~

"

f/

V/

~

~~

./

~
'l-~.C

~:I"I

VCE(SAT)

0.0I0 .01

0.1

1.0

IC-AMPERES

FIG. 4 TYPICAL SATURATION
VOLTAGE CHARACTERISTICS

100
JUNCTION TO AMBIENTnWITHOU,TTAB

I
AM~~~NC;I~~T~O~AB
10

i-'"""

/

,

-

V /
/ /

..,.......-JUNCTION TO CASE (TAB)

I
I
VCE= 20V
IC = 267 mA

V

/

.1

/
10'

/
10'

10'

10'

10'

10'

TIME IN SECONOS

FIG. 5 MAXIMUM TRANSIENT THERMAL IMPEDANCE

385

386

D41E Series

PNP POWER TRANSISTORS

-30 • -80 VOLTS
-2 AMP, 8 WATTS

COMPLEMENTARY TO THE D40E SERIES

The General Electric D41 E series are power transistors
designed for various specific and general purpose applications, such as: output and driver stages of amplifiers operating
at frequencies from DC to greater than 0.1 MHz; series, shunt
and switching regulators; low and high frequency inverters/
converters; and many others.

PNP
COLLECTOR

~'-EQ
EMITTER

CASE STYLE TO·202

Features:

•
•
•
•
•

DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

High free-air power dissipation
PNP complement to D40E NPN
Low collector saturation voltage (0.5V typo @ 1.0A Ie)
Excellent linearity
Fast Switching

0.360-0.410
(9.144-10.414)
.125 REF.
(3.175)

0.480-0.520
(12.192-13.208)

0.085-0.075
(1.651-1.905)

0.285-0.315
(7.237-8.001 )

X 45°

CHAMFER~

1.21 REF.
130.734)

1
2
3

0.405-0.425
(10.287-10.795)
0.095-0.105
(2.413-2.687)

)

~

0.095-0.108
(2.413-2.687)

maximum ratings (T A

=25

0

C)

RATING
Collector-Emitter Voltage
Collector-Emitter Voltage
Emitter Base Voltage
Collector Current - Continuous
Peak(1)
Base Current - Continuous
Total Power Dissipation@TA=25°C
@TC=25°C
Operating and Storage Junction
Temperature Range

W

+I~1+0'096-O'105
12.413-2.667)

0.026
(0.660)

l

I
+I

0.170-0.190
14.318-4.826)
0.019-0.026
10.483-0.680)

(unless otherwise specified)
SYMBOL

D41E1

VCEO
VCES
VE80
Ic
ICM
18
Po

-30
-45
-5
-2

-3
-1
1.33
8

D41ES
-60
-70
-5
-2
-3
-1

D41E7
-80
-90
-5

1.33
8

-2
-3
-1
1.33
8

UNITS
Volts
Volts
Volts
A
A
Watts

T J,Tstg

-55 to +150

-55 to +150

-55 to +150

°C

R8JA
R8JC

75
15.6

75
15.6

75
15.6

°C/W
°C/W

TL

+260

+260

+260

°C

thermal characteristics
Thermal Resistance, Junction to Ambient
Thermal Resistance, Junction to Case
Maximum Lead Temperature for Soldering
Purposes: Va" from Case for 5 Seconds
(1) Pulse Test Pulse Width = 300ms Duty Cycle::; 2%.

387

electrical characteristics (T c = 25° C)

I

(unless otherwise specified)

I SYMBOL I

CHARACTERISTIC

MIN

TYP

-30
-60
-80

-

MAX

UNIT

off characteristics(1)
Collector-Emitter Sustaining Voltage
D41E1
D41E5
D41E7

(IC = 10mA)
Collector Cutoff Current
(VCE = Rated V CES)
Emitter Cutoff Current
(VEe = 5V)

VCEO(sus)

ICES

-

-

IEeO

-

-

-

Volts

-0.1

pA

-0.1

fJ.A

-

second breakdown

ISecond Breakdown with Base Forward Biased

FBSOA

SEE FIGURE 1

on characteristics
DC Current Gain
(IC = -100mA, VCE = -2V)
(Ic -1A, VCE = -2V)

hFE
hFE

50
10

-

-

-

Collector-Emitter Saturation Voltage
(Ic = -1.0A, Ie -0.1A)

VCE(sat)

-

-

1.0

Volts

Base-Emitt!3r Saturation Voltage
(Ic = 1.0mA, 18 = O.1A)
.

VeE(sat)

-

-

-1.3

Volts

CC80

-

13

-

pF

fT

-

175

-

MHz

t(j + tr

-

180

-

nS

ts
tf

-

250
110

-

=

=

-

dynamic characteristics
Collector Capacitance
(Vce =-10V, f =1MHz)
Current-Gain Bandwidth Product
(IC =-100mA, VCE =-10V)

switching characteristics
Resistive Load
Delay Time-t
Rise Time

IC = -1A, 181 = 182 = -D.1A

Storage Time

VCC = 30V, tp = 25 pSec

Fall Time

-

(1) Pulse Test PW = 300ms Duty Cycle::; 2%.

I

MAX. POWER DISSIPATION
TCASE S 70·C

-_ PEAK
CURRENT

MAXDC~ "-

CURRENT,,\:
IA

~~
"

PUL.SED OPERATION
DUTY CYCL.E S 50% (-----

O.lA

:\..

~ 1.0ms PUL.SE

~~!I..

,

T~=-S~'c
------

1- ~

"

100

--...

,
,~

-

1\ '\.

......

VCE=2V

"'

~\

"

.,~\

\: ~

\.'\

MAX. VCEO D41EI

I
I

I
I

II'
I

I

I

MAX. VCEO D41E5
MAX. "cE!

I
IV

r- -,

TJ"2S"C

i'\~
~~

D.C.

--- --.....,-r

T.J=ISO·C

I

I
I
I( :,.-O.lms PUL.S~

10ms PUL.SE ....

500

I I',

D4IE~

10V

I

\1 .\1

I

\' ~

I
!
1

~

-:

1

30

'\ ~

~~

10
0.01

1.0

0.10
IC-AMPERES

100V

FIG. 2 TYPICAL HFE VS IC

VCE

FIG.1 SAFE REGION OF OPERATION

388

-'

I

TC 250C
8

.r'"0

01

TC1500C\

'\.

TC ro°c

on

"'I
$'1
)( I
"'I

'";;:0

~

I
TC 100·C

~I

I ..............

0

0

xI
~I

"'I
xl
"'I
:Ill

I

I

~I

............... ____ I

I

I

2 -TC'125 0C

.

""'";

01
",I

I

I

I

10

I

I

20

I

I

30

eo

40

I

60

80

70

FIG. 3 MAXIMUM PERMISSIBLE DC POWER DISSIPATION

1

I.

I

I
I TJ=25°C

IC/IB'"10
1.0

~

""

k--" r-

F-- VBE(SAT)

VL

TJ =150·C

/} ~

o. I

~

~~

•: /

\~o-;"/

-:::::: ~

~

..

~.c

~,,~ ~I

VCEISATI

I
0.00.01

0.1
;IC-AMPERES

1.0

FIG. 4 TYPICAL SATURATION
VOLTAGE CHARACTERISTICS

100
JUNCTION TO AMBIENT"77WITHOU{ TAB
/
/

I

AM~y~~;I~T~o.tAB

i--"""

/

-

./ /

~UNCTION TO CASE (TAB)

I
I

VCE =20V
IC =267 mA

V
I

L
.1

/
V.

10-

10

~,

10

~,

10

~,

,

10

10'

TIME IN SECONOS

FIG. 5 MAXIMUM TRANSIENT THERMAL IMPEDANCE

389

390

VERY HIGH GAIN

D40K Series

NPN POWER DARLINGTON
TRANSISTORS

30-50 VOLTS
2 AMP, 10 WATTS,

COMPLEMENTARY TO THE D41K SERIES

Applications:

•
•
•
•
•
•
•
•
•

NPN
COLLECTOR

Driver
Regulator
Touch Switch
I.C. Driver
Capacitor Multiplier
Audio Output
Relay Substitute
Oscillator
Servo-Amplifier

EMITTER

CASE STYLE TO-202
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

0.480-0.520
(12,192-13.208)

0.285-0.315
(7.237-8.001)

0.065-0.075
(1.651-1.905)

1.21 REF.
130.734)

Lrn--n-'r-'

0.405-0.425
(10.287-10,795)

10 5 - : l'-'::-:0.0:::!-:95-0:-=:.
1 "'-0,095-0.105
12.413-2.667)

+I

0.026
(0.660)

I'

lW

'~~"~

0.170-0.190
14.318-4.826)

(2,413-2.667)

0.019-0.026

~

J4

(0.483-0.660)

0.095-0.106
12.413-2.667)

maximum ratings (TA = 25° C)

(unless otherwise specified)

RATING
Collector-Emitter Voltage
Collector-Emitter Voltage
Emitter Base Voltage
Collector Current - Continuous
Peak(1)
Base Current - Continuous
Total Power Dissipation @ TA:: 25°C
@TC::25°C
Operating and Storage
Junction Temperature Range

SYMBOL

D40K1,3
30
30
13
2
3
_2

D40K2,4
50
50
13
2
3
_2

1_67
10

1_67
10

TJ, TSTG

-55 to +150

-55 to +150

°C

ReJA
ReJC

75
12_5

75
12_5

°CIW
°CIW

TL

260

260

°C

VCEO
VCES
VESO
IC
ICM
Is
PD

UNITS
Volts
Volts
Volts
A
A
A
Watts

thermal characteristics
Thermal Resistance, Junction to Ambient
Thermal Resistance, Junction to Case
Maximum Lead Temperature for Soldering
Purposes: W' from Case for 5 Seconds
(1) Pulse Test: Pulse Width = 300ms. Duty Cycle :5 2%.

391

=25° C) (unless otherwise speCified)

electrical characteristics (T c
CHARACTERISTIC

I SYMBOL I

MIN

VCEO

I

TYP

MAX

UNIT

30
50

-

-

Volts

ICES

-

-

.5

pA

IESO

-

-

.1

pA

off characteristics(1)
Collector-Emitter Sustaining Voltage
(Ic = 10mA)

D40K1,3
D40K2,4

Collector Cut-off Current
(VCE = Rated VCES)
Emitter Cutoff Current
(VES = 13V)

on characteristics
DC Current Gain
(Ic = 200mA, VCE
(Ie
(Ic

hFE

10K

-

-

D40K1,2
D40K3,4

hFE

1K
1K

-

-

-

-

D40K1,2
D40K3,4

VCE(sat)

-

-

-

-

1.5
1.5

V
V

D40K1,2
D40K3,4

VSE(sat)

-

-

2.5
2.5

V

CCSO

-

5·

10

pF

fT

-

75

-

MHz

=5V)

= 1.5A, VCE =5V)
= 1A, VCE =5V)

Collector-Emitter Saturation Voltage
(Ic = 1.5A, Is =3m A)
(Ic = 1A, 1s = 2mA)
Base-Emitter Saturation Voltage
(Ic = 1.5A, Is =3m A)
(Ic = 1A, Is = 2mA)

dynamic characteristics
Collector Capacitance
(ICE =10V, f =1MHz)
Current-Gain - Bandwidth Product
(Ic =20mA, VCE = 5V)
(1) Pulse Test: PW :5 300ms Duty Cycle:5 2%.
20

lOOK
80K

-

80K
40K

V

~

--

D40K

"

,

:
.c

BK

~~

~~

PULSE WIDTH - 2 MILLISEC.
DUTY CYCLE 2'11.

~~
u'"
u 3

I
.04

.06.oB.1

.2

. 4 . 6 .8 I

r--.....

4

2

'-

-

2

I

2

\

VCE- ev
T",.25-C
.02

.......... .....

OZ

1\

2K

..........

u~

\

.4K

K

6

.......

8

u'"

_1

6K

1.01

'" 0

CD~

~\

10K

10

III

\.

20 K

"'0
~:

4
6
8 10
40
20
VCB COLLECTOR-TO-BASE VOLTAGE-VOLTS

60

80 100

FIG. 2 TYPICAL CCBO vs. VOLTAGE
4

IC COLLECTOR CURRENT IAMPERES)
4.0

FIG. 1 TYPICAL hFE VS. IC

en 2.0

~

~~

-~/
I----r-r- -- -- --TJ-25-C

fo--1.0

FIG_ 3
TYPICAL
SATURATION
VOLTAGE

VCEISAT)

T",-25-C

z
~ 0.4

Ie/le-eoo

~

~

.. 0.2

o.1

.01

392

..J.....-

I

g

It

D401C

~

~

VBEI~r-

.02

.04

0.2
0.4
0.1
Ie COLLECTOR CURRENT - AMPERES

4

VERY HIGH GAIN

D41K Series

PNP POWER DARLINGTON
TRANSISTORS

-30 - (-50) VOLTS
-2 AMP, 10 WATTS

COMPLEMENTARY TO THE D40K SERIES

Applications:

PNP
COLLECTOR

•
•
•
•
•
•
•
•
•

Driver
Regulator
Touch Switch
I.C. Driver
Capacitor Multiplier
Audio Output
Relay Substitute
Oscillator
Servo-Amplifier

EMITTER

CASE STYLE TO-202

I.l

DIMENSIONS ARE IN INCHES AND (MILLIMETERS)
0.360-0.410
(9.144-10.414)
.125 REF.

Ir-jl=l-,~~~
0.128-0.132

(3.175)

(3.251-3.353)
0.480-0.520
(12.192-13.208)

0.285-0.315
(7.237-8.001)

0.065-0.075
(1.651-1.905)

'-r-r1rn-'....

1 21 REF

X 45"

":~;~~-':~~I,- '~"'~~~l
(2413-2 667)

0026
(0 660)

+l~

"'-0095-0105
(2413-2667)

~

0170-0190

(4318-4826)
0019-0026

~

~~;;;-

(0 483-0 660)

0095-0106
(2413-2667)

maximum ratings (TA

=25° C) (unless otherwise specified)

RATING
Collector-Emitter Voltage
Collector-Emitter Voltage
Emitter Base Voltage
Collector Current - Continuous
Peak(1)
Base Current - Continuous
Total Power Dissipation @ TA = 25° C
@TC=25°C
Operating and Storage
Junction Temperature Range

SYMBOL
VCEO
VCES
VESO
IC
ICM
Is
Po

D41K1,3
-30
-13
-30

D41K2.4
-50
-13
-50

-2
-3
.2
-1.67
-10

-2
-3
.2
-1.67
-10

TJ, TSTG

-55 to +150

-55 to +150

°C

RBJA
ROJC

75
12.5

75
12.5

°C/W
°C/W

TL

260

260

°C

UNITS
Volts
Volts
Volts
A
A
A
Watts

thermal characteristics
Thermal Resistance, Junction to Ambient
Thermal Resistance, Junction to Case
Maximum Lead Temperature for Soldering
Purposes: W' from Case for 5 Seconds
(1) Pulse Test: Pulse Width

=300ms. Duty Cycle:::; 2%.
393

electrical characteristics (Tc = 25° C)

I

(unless otherwise specified)

I SYMBOL I

MIN

TYP

MAX

UNIT

VCEO

-30
-SO

-

-

Volts

Collector Cut-off Current
(VCE = Rated VCES)

ICES

-

pA

lEBO

-

-

-.S

Emitter Cutoff Current
(VEB = -13V)

-0.1 .

pA

hFE

10K

D41K1,2
D41K3,4

hFE

1K
1K

D41K1,2
D41K3,4

VCE(sat)

D41K1,2
D41K3,4

VBE(sat)

CHARACTERISTIC

off characteristics(1)
Collector-Emitter Voltage
Ic = 10mA)

D41K1,3
D41K2,4

on characteristics
DC Current Gain
(Ic = -200mA, VCE = -SV)
(Ic = -1.SA, VCE = -SV)
(Ic = -1A, VCE = -SV)
Collector-Emitter Saturation Voltage
(Ic = -1.SA, IB = -3mA)
(Ic= -1.0A, 1B = -2mA)
Base-Emitter Saturation Voltage
(Ic = -1.SA, IB = -3mA)
(IC = -1A, IB = -2mA)

-

-

-

-

1.S
1.S

Volts
V

-_.

-

2.S
2.S

Volts

CCBO

-

9

15

pF

fT

-

100

-

MHz

-

-

-

-

dynamic characteristics
Collector Capacitance
(VCE = -10V, f = 1MHz)
Current-Gain - Bandwidth Product
(IC = -20mA, VCE = -SV)
(1) Pulse test: PW S; 300ms Duty Cycle S; 2%.

800
000

041K

--

i

2

1\

'PI
10K

,

0

T.- 2S·C

1\

,

0

-.04

/

Ie I 11-1500
T,.ZS·C
2

\
-.02

f-

'l

Yell.ATI

2K

-.01

l-

1III041K

I

Vel '!V

0

~

/

VII IIIIT I

200

'0

II

I II

-t

-.I
-.2
-,4
Ie COLL.ECTOR CURRENT (AMPS)

-2

\

.1

-.01

-.02

-.04

-J
-.2
-.4
Ie "COLLECTOR CURRENT CAMPS)

FIG. 2 TYPICAL CCBO

I-.... .........

I•

euo

1-1"-

041K

•
e

fIIn
f.IMHr

!

-2

-4

FIG. 1 TYPICAL hFE VS. IC
20

-I

..

·e

•

-10

-20

Vel COLLECTOIit-IASE VOLTAGE

-40-10
-VO~TS

FIG. 3 TYPICAL SATURATION VOLTAGE

394

VS.

VOLTAGE

-4

HIGH VOLTAGE VIDEO OUTPUT

D40V Series

NPN POWER TRANSISTORS
The D40V is an encapsulated power transistor for TV video
and color output stages. Other TV and general applications
include: (1) Drive for the TV horizontal output transistor; (2)
Audio output stage for portable TV sets; (3) High voltage
transistor regulator; (4) Video display drivers for oscilloscopes, electroluminescent displays and calculators; and,
(5) High voltage general usage.

250-300 VOLTS
.1 AMP, 9 WATTS

NPN
COLLECTOR

EMITTER

CASE STYLE TO-202
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

Features:

• Low CCB (2.0 pF typical at VCB = 20V)
• Excellent linearity
0.480-0.520
(12.192-13.208)

0.065-0.075
(1.651-1.905)

0.285-0.315
(7.237-8.001)
1.21 REF.
(30.734)

'-r-n--n-'roI

0.405-0.425
(10.287-10.795)

~~~~ ~

~0.095-o;-;-;;;;--.105
~I11_
(2.413-2.667)..j
0.095-0.105
0.026
(0.660)

~

maximum ratings (TA

~

(2.413-2.667)

I
0.095-0.106
(2.413-2.667)

l
0.170-0.190
(4.318-4.826)
0 019-0 026
.
.
(0.483-0.660)

~

=25° C) (unless otherwise_. specified)
D40V1,2
250
300

D40V3,4
300
350

5
.1

5
.1

PD

.1
9
1.7

.1
9
1.7

5
.1
.1
9
1.7

TJ, TSTG

-55 to +150

-55 to +150

-55 to +150

°C

Thermal Resistance, Junction to Ambient

ROJA

73.5

73.5

73.5

°CIW

Thermal Resistance, Junction to Case

ROJC

13.9

13.9

13.9

°CIW

TL

260

260

260

°C

RATING
Collector-Emitter Voltage
Collector-Emitter Voltage
Emitter Base Voltage
Collector Current - Continuous
Base Current - Continuous
Total Power Dissipation @ T A = 25° C
@TC=25°C
Operating and Storage
Junction Temperature Range

SYMBOL
VCEO
VCES
VESO

Ic
Is

D40V5,6
350
400

UNITS
Volts
Volts
Volts
A
A
Watts

thermal characteristics

Maximum Lead Temperature for Soldering
Purpose: W' from CaSe for 5 Seconds

395

electrical characteristics (Tc

I

=25° C) (unless otherwise specified)
I SYMBOL I

CHARACTERISTIC

MIN

TYP

MAX

UNIT

250
300
350

-

-

Volts

-

-

off characteristics(1)
Collector-Emitter Voltage
(lc =5mA)

D40V1,2
D40V3,4
D40V5,6

VCEO

Collector Cutoff Current
(VCE =300V)
(VCE =350V)
(VCE =400V)

D40V1,2
D40V3,4
D40V5,6

ICES

-

-

10
10
10

p.A
p.A
p.A

IEeO

-

-

10

p.A

Emitter Cutoff Current
(VEe =5V)

second breakdown

I

Second Breakdown with Base Forward Biased

FBSOA

SEE FIGURE6

on characteristics(1)
DC Current Gain
(IC =5mA, VCE =10V)
(Ic =20mA, VCE =10V)
(Ic =40mA, VCE =10V)
(lc =5mA, VCE =10V)
(Ic =20mA, VCE =10V)
(Ic =40mA, VCE =10V)

D40V1,3,5
D40V2,4,6.

-

-

-

-

-

1.0

V

Cce

-

2

3

pF

fT

50

-

-

MHz

hFE

Collector-Emitter Saturation Voltage
(IC =20mA, Ie =2mA) ,

20
30
20
30
60
30

180
-

hFE

VCE(sat)

90

-

dynamic characteristics
Collector Capacitance
(VCB =10V, f =1 MHz)
Current Gain Bandwidth Product
(IC =100mA, VCE =10V, ftest =1.0 MHz)
(1) Pulse Test: Pulse Width - 300,",s Duty Cycle:5 2%.

100

80
en 60
Q

:

:f

8
a:I

.
~

-

o

40 ~ CEIl Ic'O)

~
z

.....

f=I MHz

~

Q.

1&1

z

i!

U

~

10

f

8
6

~

4

c(

o

ti

.,~

I~~

4

~

4

6 8 10

r- .....
20

.... r--

40 60 80100

REVERSE BIAS VOLTAGE -

FIG. 1

~

.8
.6
.4

I-

.2

I&J

~

2

I

!Z

I'-..

I

~

:r

I-

ecB(IE"O)

VOLTS

-

200

CI·
It:

~

400

1000

JUNCTION
TO TAB

i""'"

2

It:
I&J

io"'

....

CI

:E

2
1.0

40

10
8
6

1&1

U

JUNCTION TO AMBIE~~

20

o

20

100
80
60

/

"

~

'\0""6

10-5

10-4

10-3

10-2

10- 1

10

100

TIME - SECONDS

JUNCTION CAPACITANCE VS. REVERSE
BIAS VOLTAGE

FIG.2

396

MAXIMUM TRANSIENT THERMAL IMPEDANCE

100
80
60
40

Ul

10

/

~

20

..J

VCE

10
8
6
4

:::!
~

I

Z

I

I

I
.8
.6
.4

u

II:

0

I-

u

T~ = 150

.2

UJ
..J
..J

:g~

I
I

cI

T~ =25°C/

T~

~

2

I

I

=-55°C

~

!5
IC(

Ul

I

I

.1

FIG. 3

/

.9

200

100

25°C

80
60

_55°C

i'\.

OJ

100
BO
Ul

D.

~
C(

:::i

"~

~

Ic/la

.~

~'

=10

I
I-

\.

r - - MAX DC

CURRENT LIMIT

M~X JOWE~
DC

40

~ I\.

20

UJ
II:
II:

~

a

10

25
Ild..J

6

DISSTTlO,

FORWARD BIAS OPE~ATlO~
Tc ~ 25°C

J

~

""

~

~~""
!!\

I)

VCEO MAX D40VI.2"-+i
VCEO MAX D40V3,4----t4

4

o

VCEO MAX D40V5,6

U

2

I
10

20
40
60
80 100
200
VCE - COLLECTOR TO EMITTER VOLTAGE - VOLTS

FIG. 6

TYPICAL hFE VS. Ie

397

!

I 1"1

I I !

Jl

60 80100

~

'\

8

..J
I

60 1\0 100

TYPICAL SATURATION VOLTAGES

60

Z

\
40
4
6
8 10
20
IC - COLLECTOR CURRENT - MILLIAMPS

4
6
8 10
20
40
Ic - COLLECTOR CURRENT - MILLIAMPS

:i

~

\
FIG. 5

-

7'

... --- --

..J

i""'o..

20

2

FIG. 4

I
VCE = 10V

~

...
.r= 40

-- I--

I

/

~
.-

VCE

.01 1

1.0

J

15J C

2

T

.OB
.06
.04

TYPICAL TRANCONDUCTANCE
CHARACTERISTICS

O

V
r--

I

.02

I

.3
.4
.5
.6
.7
.8
vaE - BASE TO EMITTER VOLTAGE - VOLTS

.2

.1

---- ._ J_

I

I

.2

I

.02

.4

o
>
z
o

250C

-- - ... A-

-

.6

~

11

VaE

.8

UJ
III

I

/

I

.04

Jl

0

J

o
>

L

=150°C

TJ

---T

Ul

I

/

I

.1

8I

/

I

2

:::>

I

/

=10V

IUJ
II:
II:

I

/

D.

:!

8
6
4 I--- -

/

I II

SAFE REGION OF OPERATION

400

398

D42C Series

NPN POWER TRANSISTORS

30-80 VOLTS
3 AMP, 12.5 WATTS

COMPLEMENTARY TO THE D43C SERIES

The General Electric D42C is a power transistor designed for
various specific and general purpose applications, such as:
output and driver stages of amplifiers operating at frequencies
from DC to greater than 1.0 MHz; series, shunt and switching
regulators; low and high frequency inverters/converters; and
many others.

NPN
COLLECTOR

EMITTER

CASE STYLE TO-202

Features:
•
•
•
•

DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

High free-air power dissipation
NPN complement to D43C PNP
Low collector saturation voltage (0.5V typo @ 3.0A Ie)
Excellent linearity

0.480-0.520
(12.192-13.2081

• Fast Switching

0.285-0.315
(7.237-8.0011

0.065-0.075
(1.651-1.9051

x 45°

121
REF
(30.7341
0.405-0.425
(10.287-10.7951

CHAMFER~

-rT

~

1
2
3

(1 2701

0095-0105
(2413-26671

~II.
+I
1-0.095-0.105

0026
(0.6601

~

RATING
Collector-Emitter Voltage
Collector-Emitter Voltage
Emitter Base Voltage
Collector Current - Continuous
Peak(1)
Base Current - Continuous
Total Power Dissipation @ TA = 25°C
@TC=25°C
Operating and Storage Junction
Temperature Range

~

(2.413-2.6671
0095-0106
(2413-26671

maximum ratings (T A = 25 0 C)

l

~

0170-0190
"""(4";;;318;"::-4"".82;;'-61
0019-0026

~~;;,-

(0.483-0.6601

(unless otherwise specified)
UNITS
Volts
Volts
Volts
A

SYMBOL

D42C1, 2, 3

D42C4, 5, 6

D42C7, 8, 9

D42C10, 11, 12

VCEO

30
40

60
70

5
3
5

45
55
5
3
5

2
2.1
12.5

2
2.1
12.5

2
2.1
12.5

80
90
5
3
5
2
2_1
12.5

T J,Tstg

-55 to +150

-55 to +150

-55 to +150

-55 to +150

°C

ROJA
ROJC

60
10

60
10

60
10

60
10

°C/W
°C/W

TL

+260

+260

+260

+260

°C

VCES
VEBO
Ic
ICM
IB
Po

5
3
5

A
Watts

thermal characteristics
Thermal Resistance, Junction to Ambient
Thermal Resistance, Junction to Case
Maximum Lead Temperature for Soldering
Purposes: W' from Case for 5 Seconds
(1) Pulse Test Pulse Width = 300ms Duty Cycle:5 2%_

399

electrical characteristics (T c = 25° C)

I

(unless otherwise specified)

I SYMBOL I

CHARACTERISTIC

MIN

TYP

MAX

UNIT

VCEO(sus)

30
45
60
80

-

-

Volts

ICES

-

-

10

pA

100

pA

off characteristics(1)
Collector-Emitter Sustaining Voltage
D42C1, 2, 3
D42C4, 5,6
D42C7, 8, 9
D42C10, 11, 12

(IC = 100mA)

Collector Cutoff Current
(VCE = Rated VCES)
Emitter Cutoff Current
(VEB = 5V)

lEBO

second breakdown

ISecond Breakdown with Base Forward Biased

SEE FIGURES 3 & 4

FBSOA

on characteristics(1)
DC Current Gain
(IC = 200mA, VCE = W)

D42C1,
D42C2,
D42C3,
D42C1,
D42C2,
D42C3,

(Ic = 1A, VCE = 1V)
(Ic = 2A, VCE = 1V)
Collector-Emitter Saturation Voltage
(Ic = 1A, IB = 50mA)
(Ic = 1A, Is = 100mA)

4,
5,
6,
4,
5,
6,

7,10
8, 11
9, 12
7, 10
8, 11
9, 12

D42C2, 5, 8, 11
D42C3, 6, 9, 12
D42C1, 4, 7, 10

Base-Emitter Saturation Voltage
(Ic = 1A, Is = 100mA)

-

-

-

-

25
100
40
10
20
20

-

0.5
0.5
0.5

Volts

VSE(sat)

-

1.3

Volts

CCSO

-

-

100

pF

fT

-

50

-

MHz

-

100

-

nS

-

500

-

hFE

hFE

VCE(sat)
VCE(satl

220
120

Volts

dynamic characteristics
Collector Capacitance
(VCB =10V, f =1MHz)
Current-Gain - Bandwidth Product
(Ic = 20mA, VCE =4V)

switching characteristics
Resistive Load
Delay Time +
Rise Time
Storage Time

Ic = 1A, IS1 = IS2 = 0.1A,

td + tr

VCC = 30V, tp = 25 ,",sec

ts

Fall Time

tf

(1) Pulse Test PW = 300ms Duty Cycle:5 2%.

400

75

1.6
-

1.4

100

- JCE ' I VOLTk

---

80

60

40

-I---

- - VeE" 2.5 VOLTS-

I

I

-

....... ~

......... ......

0

~,

" "'"',
1' ......

I

8

....
......

-- --

~

-

TJ -25·C

---~

.. -

~

\\

~ :...

'\
~,

i"Y"
"\. \\

o6

20

o

,01

i'...,~,

--

0,4

1,0

0.1

Ie - COLLECTOR CURRENT - AMPERES

0.2

FIG. 1

·2.5 VOLTS

~,

2

TJ s 25-C

;

YCE-'YOLT

- - vCE
I

TJ-I!!IO·C

TYPICAL hFE VS. Ie

"- [':~

TJ - -55-C

F~

~

~

...
i'

o

10

01

·01

.:Ie - COLLECTOR CURRENT - AMPERES

FIG.2

=
1-

~r:::::~~::::=+::~::~~::~::~~~~~==~=r.~
r
FORWARD BIASED OPERATION
6

~PEA~K~C~O:LL~E~C~TOSR~C~U~R~R~E~NT~-~t~_-t_-_+~-_-_--=
~~

rMAXDC

t-C:::U;::'R':'::R~E:'::NT~L~'M~';';T"""""""""'''''''
.... ~~

ffl
ffi

...

.......... C"': ~

DUTY CYCLE S 50%
TCS70'C

1

I

J,-,_

,6t------~r_----_t--_+--~_r,,~~~~~~~~~4r--t+~t+11

a ,41-----t----t--1--+--t--/':2--...~""~~~~:__+1
+-++
!+-I
~
~~ I
I
MAX DC CURRENT LlMIT/

II:

~

9

,04f---+---f
.02

I

.4

II:

...a

.2

..J
..J

.1
.08
.06

0

w

0

~
9

:

--+----~r_~~+H

I------~------_I :~:: :::: :::~:~~~:, -12~i'-=~-=~-=-=-~+~~-=t11A~'~tHl

"

"y

\

/ ' .........

/"

/'

/'~

.02

8

1

"1

be'\.

/1- ,\

1

!\ I

I~ N ~
~

~

D42Cl, 2, 3
D42C4, 5, 6
D42C7, 8, 9
D42Cl0, 11. 12

8

:

./

I

I I I

.01

1

I

1

<;,

VCES MAX
Vces MAX
Vces MAX
Vces MAX

VCE - COLLECTOR TO EMITTER VOLTAGE - VOLTS

FIG.3

......

/'~M

~

I

.04

.0117-----~~----~--~--~B~1~0----~2~0------~40~-~i~~~8~~Ljl00·

....... 1'....................

.............

MAX. DC POWER DISSIPATION
/'
1 MSEC PULSES ~
50 MSEC PULSes
10~ SEC PULSES
10~ SEC PULSES'
1~ SEC PULSES'

a

I

8~ '0'18~====~======~~::~~~;;~;;;;~~~~\I~fl~1
VCES MAX. D42C4, 5, 6

II:
II:

w

VCES MAX. D42Cl, 2, 3

t------~-------t

1
.8
.6

CURRENT LIMIT

::J

,2t------~r_----_t--_+--~_r------+_----~~~\"~~;~~1

.06

'"
...::;
...'!'z
W
II:
W

l00~SECPULSES

:l!
.... 1'-., I""'
~ .~~::::~~:::::t::=+::~~~~~~~::~c:~~~~
~

FORWARD BIASED OPERATION _
SINGLE PULSE TC < 25"C
_T

PEAK COLLECTOR CURRENT
MAX DC

10~SECPULSES
I .,,---- 1 MSEC PULSES
Z ~OMSECPULSES

~t---

10
B
6 -

TYPICAL NORMALIZED hFE VS. Ie

~
\!

.\1

10

20

40

80

80 100

VCE - COLLECTOR TO EMITTER VOLTAGE - VOLTS

FIG.4 SAFE REGION OF OPERATION

SAFE REGION OF OPERATION

-+-

10~--'---------"----.----r--r-,,----.----r--r-,,

I-I-14

!:;

gl.O

~

I
Z

...'"..

iii
Of

o

-

8

..

!:i

9

0

OJ

..

>

..
..,.

u

6

z

0

c

;::

x

...

0:

~

..'"

0:

'"~
,
......

..,
'"
:i!

10

~

2

H----t----+_+-++---+---Ir--t-t-I
H----t----+-t-++---+--~r--t-t-I

.,

III

!o

TJ • !SO'C

T • 2l5'C
J

I
I
i
FORWARD BIASED OPERATION

12

...

_1_

4

VCE(SATI'

~o.I

IctrB'2~~V~' f"
~

>u

10

30

40

50

90

100

veE- COLLECTOR TO EMITTER VOLTAGE - VOLT S
.01L-__-'--__----'_.l-.LJ1_ _ _...L__- - '__.l-.l-L-__-'--__- - '__

FIG.S

MAXIMUM PERMISSIBLE DC
POWER DISSIPATION

.01

.02

.04 .08.00.0.1
XC-

FIG. 6

401

.l-~

1.0

COLLECTOR CURRENT- AMPERES

TYPICAL SATURATION VOLTAGE
CHARACTERISTICS

10

100

~

I:

~

V

z

10

~

VeE-' VOLT

II!

1.0

o>~

.

JUNCTION TO CASE -

~

,

WITH TAB

""",~CTI~N TO AMJIENT'

W

0

2

WITHOlfTAB

0.8

TJ • 2S·C

V

~
II:

/

W

j!:

ffiiii

-

~

.L'

.1

lit'

10'"2

lit'

10"'

. 10

10'

10'

~Ol

.04 .06.08 0.1

.02

10

1.0

I B - BASE CURRENT .. mA

~
~

~

I

// / V / /

r--- ~g~~~:~~[TS

35

1

I

.'" ....

2

8~

1.5

9

1

15IL 1000

-

V

o

0.2

0.4

V

~

/

V
O.B

I

/

a:

il
i::

J
1.0

100

i

TJ --55'

J

/

...
::&

I
I

1/

/

0.5

o

J

~

il

1.2

.J IC~T~'FlCATll

,,~

/TJd3t 25'C ,

I

II:

TYPICAL INPUT CHARACTERISTICS

10.000

/1 1/ Ij
I if /1
J II

TJ-l50'C!

3
0~ 2.5

g

FIG.8

MAXIMUM .TRANSIENT THERMAL IMPEDANCE

I
4.5

1-1--'

1-1-'"

V

c,.-;

TIME - SECONDS

FIG. 7

l-

VCE-l0V
Ic-200mA

V
10-'

L.,..I--

1.-1-- I---

TJ'~ ~I--'

/

~

I--

TJ."SS-C

./

;!

...J

--f..-

i,....- ~I-- I-"""

1.4

10

'""

ISO

VBE - BASE TO EMITTER VOLTAGE - VOLTS

....

""
" ,
,

125

VOLTAGE

--ICEOAT a..ASSIFICATION VOLTAGE

'"'"

,,

'~ i',.,
eo

100

25

TEMPERATURE _·C

FIG. 9
TYPICAL TRANSCONDUCTANCE CHARACTERISTICS

402

FIG. 10
TYPICAL ICEO, ICES VS. TEMPERATURE

100

D43C Series

PNP POWER TRANSISTORS

-30 - -80 VOLTS
-3 AMP, 12.5 WATTS

COMPLEMENTARY TO THE D42C SERIES

The General Electric D43C is a power transistor designed for
various specific and general purpose applications, such as:
output and driver stages of amplifiers operating at frequencies
from DC to greater than 1.0 MHz; series, shunt and switching
regulators; low and high frequency inverters/converters; and
many others.

PNP
COLLECTOR

EMITTER

CASE STYLE TO-202

Features:

DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

• High free-air power dissipation
• PNP complement to D42C NPN
• Low collector saturation voltage (0.5V typo @ 3.0A Ie)

0.48(1.0.520
(12.192-13.208)

• Excellent linearity
• Fast Switching

l

0.065-0.075
(1.651-1.905)
X 45°

0.285-0.315
(7.237-8.001 )

CHAMFER~

1.21 REF.
(30.734)

1

0.405-0.425
110.287-10.795)

2
3

0.095-0.105
I
12.413-2.667) +11:1---0.095-0.,05
0.026
(2.413-2.667)
10,660)
0.095-0.106
(2.413'2.667)

I"
f4-

maximum ratings (TA = 25° C)
RATING
Collector-Emitter Voltage
Collector-Emitter Voltage
Emitter Base Voltage
Collector Current - Continuous
Peak(l)
Base Current - Continuous
Total Power DiSSipation @ TA = 25°C
@TC=25°C
Operating and Storage Junction
Temperature Range

0.170-0.190
[14.318-4.8261
0.019-0.028
~
10.483-0.660)

I+-

(unless otherwise specified)
D43C10, 11, 12 UNITS
-80
Volts
-90
Volts
-5
Volts
A
-3
-5
-2
A
2.1
Watts
12.5

VCEO
VCES
VE80
Ic
ICM
18
PD

D43C1, 2, 3
-30
-40
-5
-3
-5
-2
2.1
12.5

D43C4, 5, 6
-45
-55
-5

D43C7, 8, 9
-60
-70
-5

-3

-3

-5
-2
2.1
12.5

-5
-2
2.1
12.5

TJ,Tstg

-55 to +150

-55 to +150

-55 to +150

-55 to +150

°C

R8JA
R8JC

60
10

60
10

60
10

60
10

°C/W
°C/W.

TL

+260

+260

+260

+260

°C

SYMBOL

thermal characteristics
Thermal Resistance, Junction to Ambient
Thermal Resistance, Junction to Case
Maximum Lead Temperature for Soldering
Purposes: V8" from Case for 5 Seconds
(1) Pulse Test Pulse Width = 300ms Duty Cycle :5 2%.

403

electrical characteristics (T c

I

=25° C)

(unless otherwise specified)

I SYMBOL I

CHARACTERISTIC

MIN

TYP

MAX

UNIT

-30
-45
-60
-80

-

-

Volts

off characteristics(1)
Collector-Emitter Sustaining Voltage
(IC

D43C1, 2, 3
D43C4, 5, 6
D43C7, 8, 9
D43C10, 11, 12

=100mA)

Collector Cutoff Current
(V CE = Rated VCES)
Emitter Cutoff Current
(VES = 5V)

VCEO(sus)

-

-

ICES

-

-

-10

/lA

IESO

-

-

-100

/lA

second breakdown

ISecond Breakdown with Base Forward Biased

FBSOA

SEE FIGURE 3

on characteristics
DC Current Gain
(IC = -200mA, VeE = -1V)
(IC = -1A, VCE = -1V)
(Ic = -2A, VCE =-1V)
Collector-Emitter Saturation Voltage
(IC = -1A, Is = -50mA)
(IC = -1A, IS = -100mA)
Base-Emitter Saturation Voltage
(Ic = -1A, Is = -100mA)

'D43C1, 4, 7,10
D43C2, 5, 8, 11
D43C3, 6, 9, 12

hFE

D43C1, 4, 7,10
D43C2, 5, 8, 11
D43C3, 6, 9, 12

hFE

D43C2, 5, 8, 11
D43C3, 6, 9, 12
D43C1, 4, 7,10

VCE(sat)

25
40
40
10
20
20

-

-

-

120
120

-

-

-

-0.5
-0.5
-0.5

Volts

-1.3

Volts

-

VCE(sat)

-

VSE(sat)

-

-

CCSO

-

-

125

pF

fT

-

40

-

MHz

td + tr

-

50

-

nS

ts
tf

-

500

-

-

50

-

Volts

dynamic characteristics
Collector Capacitance
(VCS = -10V, f = 1MHz)
Current-Gain - Bandwidth Product
(IC = -20mA, VCE = -4V)

switching characteristics
Resistive Load
Delay Time +
Rise Time

Ie = -1A, IS1 = IS2 = -0.1A

Storage Time
Fall Time

VCC = 30V, tp = 25 /-Lsec

(1) Pulse Test PW = 300ms Duty Cycle:5 2%.

404

10

•

-

~

-!- TJ '

ISO'C

_1_ TJ '

25'C

- - VeE· 2.S VOL.TS

TJ-ISOeC
4

I-I--

VCE-'VOI..T

.........

t-

I
~

~,

2

-

TJ - 2S·C

0

----

~

•

I--

..

cr

\\

J,......o ~

d

//

~

'.// V

/~ v~/

~t....

~V t.. .
.so..

..

VCEISATI' IC/IO'~

I-

~,~,

~

1-

~~ rf;.Y


~::::, ...
z
o
t= -Q I
~- i""~
I"""
Y:e (SAT) :Ic/:Ia'IO
O!
-=--= =~~t-

~

'" .......

~ to,
I'

0

~- ( - -

....':'

-.-

"'E(SAT) : Ic/la' 1,\

-I .0

• 44C2.3.5",8

-1-0

~

0

.~

.02

.01

.01 .08 OJ

Ie - COLLECTON

FIG. 1

10

1.0
CURRENT - AMPERES

TYPICAL hFE VS. Ie .
-.0I

.,oz

-.01

-D4.,0&.08-0.1

- LO

-

10

IC- COLLECTOR CURRENT-AMPERES

FIG.2

-8
MAX DC CURRENT LlMIT~

-4

ffi

........

a:

-2

I-

-.8 I--.6

~
..
ffi

-1

a:
a:
::>
u

-.4

IX

~

-.2

9

-.04

I--

MAX. DC POWER DISSIPATION AT
70'CCAse

:-----

~ I:::,.. 1/

~ t::: ~
y

~~

~

I
"~ ~I
(~I

~

FORWARD BIASED OPERATION
DUTY CYCLE,; 50%
TC';70'C

I

1

1

"'~

1

./'

VCES MAX. D44Cl. 2. 3

o -.08
u -.06

,.-

VCES MAX. D44C7,8, 9

I

VCES MAX. D44Cl0, 11. 12

i
-4

-2

-6

-8 -10

-20

t"

I

-40

/

....... 'N

/j

-.01
-1

!

~~:r

VCES MAX. D44C4. 5. 6 --;---""

-.02

,

..........
~TION TO;MBIENT

11' SEC PULSES 's
.r-+-101' SEC PULSES
,-:--1001' SEC PULSES
v-1000I' SEC PULSES

I

I-

-

100

-t

PEAK COLLECTOR CURRENT

-6

%

~

L

~

:

lV.
10

-60 -80 -100

JUNCTION TO CASE

~

/

yg;:5~0~A

.

10

VCE - COLLECTOR TO EMITTER VOLTAGE - VOLTS

FIG.3

TYPICAL SATURATION VOLTAGE
CHARACTERISTICS

.,

10

,

10

.,

10

1

I

10

10'

-

10'

TIME - SECONDS

SAFE REGION OF OPERATION

FIG. 4

409

MAXIMUM TRANSIENT THERMAL IMPEDANCE

410

D45C Series

PNP POWER TRANSISTORS

-30 - -80 VOLTS
-4 AMP, 30 WATTS

COMPLEMENTARY TO THE D44C SERIES

The General Electric D45C is a power transistor designed for
various specific and general purpose applications, such as:
output and driver stages of amplifiers operating at frequencies
from DC to greater than 1.0 MHz; series, shunt and switching
regulators; low and high frequency inverters/converters; and
many others.

PNP
COLLECTOR

~'-EQ
EMITTER

DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

Features:
•
•
•
•

.~~g\!.~~\~
.OSS(1.39}
.
.
1
.04811.~2}

PNP complement to D44C NPN
Very Low collector saturation voltage (-0.5Vtyp. @-3.0AIe)
Excellent linearity
Fast Switching

.--.

.26516.731
.24516.221

<---+--+----,1-r
/

:~:m:~~:DIA.

+

rt
.35519.021

/

.32518.251

---::IS91

~.31
TERM.l

CASE
TEMPERATURE
REFERENCE

_

POINT

--L

.00610. lSI
.00110.0251

.SOOI12.7IMIN.

TERM.2

.05511.39
.04511.14

TERM.3

.0331~.841

.02710.691

.OSS!1.391---j
.04511.141

maximum ratings (TA = 25° C)
RATING
Collector-Emitter Voltage
Collector-Emitter Voltage
Emitter Base Voltage
Collector Current - Continuous
Peak(1)
Base Current - Continuous
Total Power Dissipation @ TA =25°C
@Tc =25°C
Operating and Storage Junction
Temperature Range

.10712.721
.08712.211

.!lbJ-.lOSI2.671
~ _.09512.411

J:=

.210IS.33}
.19014.821

.02110.531
.01510.381

(unless otherwise specified)
SYMBOL

D45C10, 11, 12 UNITS
-80
Volts
-90
Volts
-5
Volts
-4
A
-6
2
A
Watts
1.67
30

VCEO
VCES
VESO
Ic
ICM
Is
Po

D45C1, 2, 3
-30
-40
-5
-4
-6
2
1.67
30

D45C4, 5, 6
-45
-55
-5
-4
-6
2
1.67
30

D45C7, 8, 9
-60
-70
-5
-4
-6
2
1.67
30

TJ,Tstg

-55 to +150

-55 to +150

-55 to +150

-55 to +150

°C

ROJA
ROJC

75
4.2

75
4.2

75
4.2

75
4.2

°C/W
°C/W

h

+260

+260

+260

+260

°C

thermal characteristics
Thermal Resistance, Junction to Ambient
Thermal Resistance, Junction to Case
Maximum Lead Temperature for Soldering
Purposes: W' from Case for 5 Seconds
(1) Pulse Test Pulse Width

=300ms Duty Cycle:5 2%.

411

electrical characteristics (T c

I

=25° C)

(unless otherwise specified)

I SYMBOL

CHARACTERISTIC

MIN

TYP

MAX

UNIT

-30
-45
-60
-80

-

-

Volts

-10

IJA

-100

IJA

off characteristics(1)
Collector-Emitter Sustaining Voltage
(Ic

D45C1, 2, 3
D45C4, 5, 6
D45C7, 8, 9
D45C10, 11, 12

=-100mA)

Collector Cutoff Current
(VCE =Rated VCES)
Emitter Cutoff Current
(VES =5V)

VCEO(sus)

ICES

-

IESO

-

-

-

second breakdown

ISecond Breakdown with Base Forward Biased

SEE FIGURE3

FBSOA

on characteristics(1)
DC Current Gain
(IC =-0.2A, VCE
(Ic
(Ic

-

-

-

-

-

20

-

-

-

-0.5
-0.5
-0.5

Volts

-

-

VSE(sat)

-

-

-1.3

Volts

Ccso

-

-

125

pF

fT

-

40

-

MHz

=-1A, IS1 =IS2 =-0.1A,

td + tr

-

50

-

nS

=-1A, tp =25 }.Lsec

ts

-

500

-

D45C1, 4, 7,10
D45C2, 5, 8, 11
D45C3, 6, 9, 12

hFE

=-1A, VCE =-1V)

D45C1, 4,7,10
D45C2, 5, 8, 11

hFE

=-2A, VCE =-1V)

D45C3, 6, 9,12

hFE

D45C2, 5, 8, 11
D45C3, 6, 9, 12
D43C1, 4,7,10

VCE(sat)

=-1V)

Collector-Emitter Saturation Voltage
(Ic =-1A, Is =-50mA)
(Ic

=-1A, Is =-100mA)

Base-Emitter Saturation Voltage
(Ic =-1A, Is =-100mA)

25
40
40
10
20

-

-

120
120

dynamic characteristics
Collector Capacitance
(VCS =-10V, f = 1MHz)
Current-Gain - Bandwidth Product
(IC = -20mA, VCE =-4V)

switching characteristics
Resistive Load
Delay Time +
Rise Time
Storage Time
Fall Time

Ic

Vec

tf

(1) Pulse Test PW = 300ms Duty Cycle:S 2%.

412

50

-I0

~- TJ "150"C

I-- - -

100

-JC[ ... t.o. T

TJ -25-C

ao

,+

- - VCE--2..5 VOLTS

-~ .......

D45C2,3.5,6.8,9,11.12

""",
'\

~

i - - -1-

i-

o
~

.....

'\.

'\

"Elur) : :l:c/:ts" I~

-I.0

1"-1-,

'"

~

"

o
>
z
o

~

a

t:

-0.I

ill

--

I-

~

- .02

-

~

-.06.01
- -O. I

-10

-1.0

Ie-COLLECTOR CURRENT- AWPERES

-- "'=

"-

~E(s.vi::Ia~

..J

r\.

~.01

T,J ·2'·C

I,.....-

...

.~ ~

:;...-

I.-

./ I / / l '

V/ [/",

.-"

V~~V/~I""
~~/

k::-:~:::I '
- .....'""'- ....
~-

~r-

"'hlSAT):Zc/l:S"10

TYPICAL hFE VS. Ie

FIG. 1

-.0I
-.01

-.oz

_ _-0.1

-

- LO

10

IC- COLLECTOR CURRENT-AMPERES

FIG.2 TYPICAL SATURATION VOLTAGE
CHARACTERISTICS

t

-8
PEAK COLLECTOR CURRENT

-6
MAX DC CURRENT LlMIT-""";::

-4

en
w
a:
w

"::;

«

-, -

,:.

-.8

a:
a:

-.4

zw

::>

.........

-2

-.6

0

I-

-.2 -

U

w

:::l

-.1
-.08

U

-.06

9

-.04

0

~

III SEC PULSES S

. r -1--1011 SEC PULSES

~ ~ ~ 1/-'000"
~/
~~

T ............. '

I~TIONT01MBIENT

,--'00/1 SEC PULSES
SEC PULSES

~

'"'"'"~

'\..'\..~

I

u

a:

MAX. DC POWER DISSIPATION AT
70"CCASE

~~ ,/

100

~

I
FORWARD BIASED OPERATION
DUTY CYCLE S 50%
TCS70"C

: I

~I
~('ft.,

I
I

I

. / !~~,-

I

VCES MAX. D45Cl, 2, 3
VCES MAX. D45C4, 5, 6

-7---'
./

1

U..• 'i
I

%1

VCES MAX. D45Cl0, 11, 12

I

-.01
-1

-4

-2

-6

-8 -10

'7

Cl
~

~

~
..J

~

w

1

-20

-40

I :

Z
W

j

~

10-'

-60 -80 -100

SAFE REGION OF OPERATION

~;~~O~A
I
I

/
,V
10

~

'O~

.,

10

10

10'

TIME - SECONDS

VCE - COLLECTOR TO EMITTER VOLTAGE - VOLTS

FIG. 3

JUNCTION TO CASE

/

a:

j!:

....

I-

VCES MAX. D45C7, 8, 9

-.02

l/

10

z

FIG. 4 MAXIMUM TRANSIENT THERMAL IMPEDANCE

413

414

VERY HIGH GAIN

0440 Series

NPN POWER DARLINGTON
TRANSISTORS

40-80 VOLTS
6 AMP, 30 WATTS

COMPLEMENTARY TO THE 0450 SERIES

The General Electric 0440 is a Darlington power transistor. It
is designed for general purpose switching of mUlti-ampere
loads directly from low level logic circuitry. A monolithic bias
resistor is included for elevated temperature stability and
bypass diode for reduced dissipation under negative transient conditions.

NPN
COLLECTOR

EMITTER

CASE STYLE TO-220AB

Applications:

DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

:~~g\!·~~\rt
.05511.391
.
1
.04811.221

• Solenoid Driver

-.----

• Lamp Driver

.26516.731
.24516.221

• Relay Substitute

'-----+--I------ltt--

.-

/

• Switchingl Regulator

+

:~:m:~::DIA.

.
•

.35519.021
.32518.251

~
I

• Inverter/Converter

~.31
TERM.l

-If ;'~IIII4i-i--,

CASE
TEMPERATURE
REFERENCE

S

OINT

.22015.591

~151

.001(0.0251

.500112.7IMIN.

TERM.2
TERM.3

.0331~.841

.02710.691

.05511.391-/
.04511.141

maximum ratings (TA = 25° C)
RATING
Collector-Emitter Voltage
Collector-Emitter Voltage
Emitter Base Voltage
Collector Current - Continuous
Base Current - Continuous
Total Power Dissipation @TA = 25°C
@Tc=25°C
Operating and Storage
Junction Temperature Range

.10712.721
.08712.211

.lhJ+-.l0512.671
~ ".09512.41 1

1+-'
I--

.21015.331
.19014.821

.02110.531
.01510.381

(unless otherwise specified)
SYMBOL
VCEO
VCES
VESO
Ic
Is
Po

04401,2

04403,4

04405,6

40
50
5
6
.5
2.1
30

60
70
5
6
.5
2.1
30

80
90
5
6
.5
2.1
30

TJ, TSTG

-55 to +150

-55 to +150

-55 to +150

°C

ROJA
ROJC

60
4.2

60
4.2

60
4.2

°CIW
°CIW

h

260

260

260

°C

UNITS
Volts
Volts
Volts

A
A
Watts

thermal characteristics
Thermal Resistance, Junction to Ambient
Thermal Resistance, Junction to Case
Maximum Lead Temperature for Soldering
Purposes: Va" from Case for 5 Seconds

415

electrical characteristics (Tc = 25° C)

I

(unless otherwise specified)

I· SYMBOL I

CHARACTERISTIC

MIN

TYP

. MAX

UNIT

40
60
80

-

-

Volts

-

off characteristics(l)
Collector-Emitter Breakdown Voltage
Ic = SOmA)

04401,2
04403,4
0440S,6

Collector Cut-off Current
(VCE = Rated VCES)
(VCE = Rated VCES, VSE = O.4V)

VCEO(SR)

Tc = 2SoC
Tc = 12SoC

Emitter Cutoff Current
(VES = SV)

-

ICES
ICEV

-

-

10
S

p.A

-

IESO

-

-

10

J1A

-

second breakdown

I Second Breakdown with Base Forward Biased

SEE FIGURES

FBSOA

on characteristics
OC Current Gain
(Ic = 1A, VCE = 2V)
Collector-Emitter Saturation Voltage
(Ic = 3A, Is = 3mA)
(Ic = SA, 1s = SmA)

-

-

-

-

1.S
1.S

V
V

VSE(sat)

-

-

2.S

Volts

-

O.S

-

p.S

1.2

-

0.8

-

-

VCE(sat)
04402,4,6 only

Base-Emitter Saturation Voltage
(Ic = SA, Is = SmA)

S,OOO

2,000

hFE

dynamic characteristics
Collector Capacitance
(VCE = 10V, f = 1MHz)

switching characteristics
Resistive Load
Oelay Time + Rise Time

Ic = 3A, IS1 = IS2 = 3mA

td + tr

Storage Time

VCC = 40V, tp = 2S p'sec

ts

Fall Time

tf

(1) Pulse Test PW:5 300ms Duty Cycle :5 2%.

100

100

JUNCTION TO AMBIENT
~

1.00"'"

~

i.-'~

°IIII

i!§

10

III
IL

~

It"'"

"

"

j

JUNCTION TO CASE

j

u

VCE = IOV

Z

Xc=

.I

C

D:

.'I

0.10- 5

SOOmA

U
I

10- 4

10 3

10-2
10- 1
I
TIME - SECONDS

0.0I

o

10

=-ssoc

~

"

"'""
VCE :IOV

I
I

I
.1

'TJ

1

I

I

~

= 2s o cI

I

I

5 o. I

III1

I

I

j

III
..J

Z

I"

/

~

I

A

I

a:

:x

...

Z
....
a:

:>
u

iij

TJ

II
j

i.;o"" 17

,

I

a:

III

= ISoocl

.....

III

......

TJ

10

2i

l..-~

:I:

D:

I

J


UJ

~--1.0

'"4

0.8

0

0.6

I...J

>
z

0
~
4

~
~
-- .-

----- f-- ~-

~~
Fo""

..,

.

J.- --tl

""
/

V

.<::

VeE
0.4
1,000

:::>

~
0.2

0.4
0.6 0.8 I
2
Ie - COLLECTOR CURRENT - AMPS

4

6

100
.01

8 10

10
8 MAX DC CURRENT LIMIT
6
4
MAX DC POWER
DISSIPATION
2
AT 25°C CASEI

~

II:
II:

G

1.0
.B

it'

""'"

.4

.2

~ .10

FORWARD BIAS OPERATION
Tc S 25°C

5

.08
u .06
I

.!t

./

'\c'

~

,

\

;'

I

.02

.04 .06.08.1
.2
.4 .6.8 I
2
Ie - COLLECTOR CURRENT - AMPS

"

TYPICAL hFE VS. Ie

.5'_6\

<".

"~;o,
1

'"
E

r'\

~r~ .. L~",

:I!'1!-

2..;1 O
o21-- oOto
"'I "'~I"'~I

.02

~I ~oi~Oi
-2
-4
-6 -8 -10
-20
-40 -60 -80-100
VCE - COLLECTOR TO EMITTER VOLTAGE - VOLTS

FIG.5

V'

./

~
0,-'-

.04

.01_1

t\.

f"

);,.~o

II:

~

~r:-/

.........

}j~

FIG.4

.6

u

. /~

~~.

FIG. 3
TYPICAL SATURATION VOLTAGE CHARACTERISTICS

I-

~~

./

0.2

0.1
0.1

1.'!.Y
/:)-

./

lell8 = 1000

4

...-

':Jor:- . /

./

II:

'"

I.~

./

~~

10,000

--r-.,- ~

I-

= 2V

veE

SAFE REGION OF OPERATION

417

4

6 810

418

VERY HIGH GAIN

0450 Series

PNP POWER DARLINGTON
TRANSISTORS

-40 - (-80) VOLTS

-6 AMP, 30 WATTS

COMPLEMENTARY TO THE 0440 SERIES

The General ElectricD45D is a Darlington power transistor. It
is designed for general purpose switching of multi-ampere
loads directly from low level logic circuitry. A monolithic bias
resistor is included for elevated. temperature stability and
bypass diode for reduced dissipation under reverse transient
conditions.

PNP
COLLECTOR

EMITTER

CASE STYLE TO-220AB

Applications:

DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

• Solenoid Driver

::~g\::~;:ft
.055(1.39)
1
.04811.22)

.....--

• Lamp Driver
• Relay Substitute

.26516.73)
.2.4516.22)

''---j--i---~'t•

/

• Switching Regulator

:::~II~:~~))DIA.

+

• Inverter/Converter

•

CASE
TEMPERATURE
REFERENCE
/ " POINT

:~~~\~:~~l---'
~59)

~
1

~.3
TERM.!

.

)

-rr jt~III"'h--,

.00610.15) .
.00110.025)

.500112.7)MIN.

TERM.2

TERM.3

.0331~.84)

.02710.69)

.1~.!0512.67)

.055(1.39)
.1
.04511.14)--"

maximum ratings (TA

.10712.72)
.087(2.21)

~ •.. 09512.41)

\+-' .210(5.33)
\+- .. 19014.82)

.021(0.53)
.01510.38)

=25° C) (unless otherwise specified)

RATING
Collector-Emitter Voltage
Collector-Emitter Voltage
Emitter Base Voltage
Collector Current - Continuous
Base Current - Continuous
Total Power Dissipation @ TA = 25°C
@Tc=25°C
Operating and Storage
Junction Temperature Range

SYMBOL
VCEO
VCES
VESO
IC
Is
Po

045012

0450t.4

04505,6

-40
-50
-5
6
.5
2.1
30

-60
-70
-5
6
.5
2.1
30

-80
-90
-5
6

TJ, TSTG

-55 to +150

-55 to +150

-55 to +150

°C

ROJA
ROJC

60
4.2

60
4.2

60
4.2

°CIW
°CIW

TL

260

260

260

°C

.5
2.1
30

UNITS
Volts
Volts
Volts
A
A
Watts

thermal characteristics
Thermal Resistance, Junction to Ambient
Thermal ReSistance, Junction to Case
Maximum Lead Temperature for Soldering
Purposes: Va" from Case for 5 Seconds

419

electrical characteristics (Tc

I

=25° C) (unless otherwise specified)
I SYMBOL I

CHARACTERISTIC

MIN

TYP

MAX

UNIT

VCEO(8R)

-40
-60
-80

-

-

Volts

ICES
ICEV

-

-

-10
-5

J.LA

IE80

-

-

-10

p.A

off characteristics(1)
Collector-Emitter Breakdown Voltage
Ic =-50mA)
Collector Cut-off Current
(VCE =Rated VCES)
(VCE =Rated VCES, V8E

04501,2
04503,4
04505,6
TC =25°C
Tc = 125°C

=-0.4V)

Emitter Cutoff Current
(VE8 =-5V)

second breakdown

I

Second Breakdown with Base Forward Biased

FBSOA

SEE FIGURE 5

on characteristics
OC Current Gain
(Ic =':'1 A, VCE =-2V)
Collector-Emitter Saturation Voltage
(Ic =-3A, 18 = -3mA)
(IC =-5A, 18 =-5mA)

04502,4,6 only

Base-Emitter Saturation Voltage
(IC =-5A, 18 =-5mA)

-

hFE

2,000

5,000

VCE(sat)

-

-

';1.5
-2.0

V
V

VSE(Sat)

-

-

-2.5

Volts

td + tr

-

0.35

-

J.Ls

ts

-

0.4

-

~

dynamic characteristics
Collector Capacitance
(VCE =10V, f =1MHz)

switching characteristics
Resistive Load
Ic =-3A, IS1

Oelay Time + Rise Time
,

Storage Time

=IS2 =-3mA
'VCC =40V, tp =25 J.Lsec

Fall Time

tf

0.3

(1) Pulse Test: PW :5 300ms Duty Cycle :5 2%.

-100

100

.JUNCTION TO AMBIENT

~

.,..i"""

I

U
Z

~

10

IL

II'

!

..J

~"

C

2i

...:r:
II:

lI-

/

-40

...

CI

....

....

.JUNCTION TO CASE

VCE =10V
1:C=500IWA

)

.II

O. -5
10

-10

-s

I

-4

I-

Z

C

j
:iij

z

-2

cr
cr
~
o
cr

-I
-.S

III

III
10-2
10- 1
I
TIME - SECONDS

III
...J
...J

/

L

II

-. I

u

-

-.04
-.02

I
-.00

10

II

./

L L'

V

8 -.os
I

L
~V

/

/
I
-.4
TJ =150°<1 TJ= 25° ' i
~
o -.2

...iii
II:

L

VeE = -IOV

:IE -20

i.oo"'"

I

z

I-

CII

IL

o

...
...;§

-so
.

V~
1/ I

TJ =-55°C

I
~

1

1 11
II
L 1/
_.1 -.2 -.3 -.4 -.5 -.S -.7 -.8 -.9 -1.0 -1.1 -1.2 -1.3 -1.4 -1.5 -I.S -1.7 -I.B
VeE - BASE TO EMITTER VOLTAGE - VOLTS

FIG. 2
TYPICAL TRANSCONDUCTANCE CHARACTERISTICS

FIG. 1
MAXIMUM TRANSIENT THERMAL IMPEDANCE

420

-4.0

40,000
leIla = 1000

'"~
0

r----r- ____

>
I

IIJ

-1.0

 -0.6
z

0

~
II:

L

1--- ~ ~:
....

:::!±:--f::;~

;2,000

VCE

-

TJ = 150·C--...........

TJ = 25·C

~

L::..

4,000

f'

V

1,000
BOO
600

"'-.- TJ = 25·C
- - TJ =150·C

:::l

~I

~I

"

~i
~I
:t-

<\II

~I

I

10

I

~I
....
°1

\

II

:

I
I

Tc =1oc

~

1

r--

I
I

1

I

I

I

1

I
1

20
30
40
50
60
VCE -COLLECTOR TO EMITTER VOLTAGE -VOLTS

,-

70

1
80

FIG.4 MAXIMUM PERMISSIBLE DC POWER DISSIPATION

425

10

~

1...-1"""

/"

~

/

1.0

L
I

~

IZ
1&.1
II:
II:

o. I

II:

~

I

/

I

I

:::)

u

I

I

8

I
I

I

2
0.0 I

II

PULSED MEASUREMENT
PULSE WIDTH:!5300us
DUTY CYCLE :!5; 2%
VCE=2V

I

I

1&.1
..J

~

I /
/ /

I

:E
C
I

./

v

-

~ --:::::i'

I
I

_I

I

I

TJ'~SOC

TJ =ISO·C

I

0.00 I

o

FIG.5

0.4

TJ =-40·C

I

I

o.e
1.2
1.6
2.0
VeE-BASE TO EMITTER VOLTAGE-VOLTS

2.4

TYPICAL TRANSCONDUCTANCE CHARACTERISTICS

I

I
20

1&.1
II:
1&.1

I : I

!

I

10m,PULSES
I-- Ims PULSES
r-... f-/OO,.us PULSES

I
I

wI

II ;I

~I

ta I

.... S;~=l==~
L ~ I- O
~[E
r=cC~O~LL~E~C~TOER~C~U~R~RE~N!T~~al~
OI-Or
I---MAX DC POWER
.
DISSIPATION ---

C/I

I

~~I--

MAXIMUM DC

10

I

PEAK COLLECTOR CURRENT

IL

...
..... .....
~"'"
"'.......
"' I\.
"'"'\
.\ "\1"'

:E
C
I

\\

IZ
1&.1
II:
II:

)( r-)( e)(
~0I~
L.~C
1 01
~r ~I- >1

I:

1\",1

\\ \

~I

I

:::)

U
II:

eu

1.0

1&.1
..J
..J

DUTY CYCLE ~SO%
TC .,; 2S·C

0

U

I

t - - - t -......'\~'\-t--;-;--!--;
\ \I
t\ I

E

\1\

O.l'--_ _"'--_ _.L.---J'---'--'-_ _-'--_ _

1.0

1\1

~

-'--_-'-...JL.~

10
V CE - COLLECTOR TO EMITTER VOLTAGE - VOLTS

FIG.6

SAFE REGION OF OPERATION

426

80

VERY HIGH GAIN

D45E Series

PNP POWER DARLINGTON
TRANSISTORS

-40 - (-80) VOLTS
-10 AMP, 50 WATTS

COMPLEMENTARY TO THE D44E SERIES

Applications:
PNP

•
•
•
•
•
•
•
•
•
•

Driver
Regulator
Capacitor Multiplier
Solenoid Driver
Inverter Power Supply
Switch
Audio Output
Relay Substitute
Oscillator
Servo-Amplifier

COLLECTOR

BASE

EMITTER

CASE STYLE TO-220AB
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

'19014'83)~
.17014.32)
:g~g :~~l

-J

-.--- -

.26516.73)
.24516.22)

/I--+-I----ff-+

:::m:~~IDIA.

.35519.02)

~'32518'25)

_

CASE
TEMPERATURE
REFERENCE
OINT

S
~591

.00610.15)
.001(0.025)

~.3)
TERM.l
TERM.2

.500112.7)MIN.

TERM.3

.0331~.B4)
.02710.69)

_)
.055(1.39)
.04511.14)--"

maximum ratings (TA = 25°C)

.10712.721
.08712.21)

.llb-I_r-.l0512.67)
~ ".09512.41)

1--'

I--

.21015.33)
.19014.82)

.021(0.53)
.01510.38)

(unless otherwise specified)

RATING
Collector-Emitter Voltage
Collector-Emitter Voltage
Emitter Base Voltage
Collector Current - Continuous
Peak(1)
Base Current - Continuous
Total Power Dissipation @ TA = 25°C
@Tc=25°C
Operating and Storage
Junction Temperature Range

SYMBOL
VCEO
VCES
VESO
Ic
ICM
Is
PD

D45E1
-40
-40
-7
-10
-20
-1
1.67
50

D45E2
-60
-60
-7
-10
-20
-1
1.67
50

D45E3
-80
-80
-7
-10
-20
-1
1.67
50

UNITS
Volts
Volts
Volts
A

TJ, TSTG

-55 to +150

-55 to +150

-55 to +150

°C

ROJA
ROJC

75
2.5

75
2.5

75
2.5

°C/W
°C/W

TL

260

260

260

°C

A
Watts

thermal characteristics
Thermal Resistance, Junction to Ambient
Thermal Resistance, Junction to Case
Maximum Lead Temperature for Soldering
Purposes: Va" from Case for 5 Seconds
(1) Pulse Test: Pulse Width

=300ms. Duty Cycle:S 2%.

427

electrical characteristics (T c = 25° C)

I

(unless otherwise specified)

I SYMBOL I

CHARACTERISTIC

MIN

I

TYP

MAX

UNIT

off characteristics(1)
D45E1
D45E2
D45E3

Collector-Emitter Voltage
(IC = -100mA)
Collector Cut-off Current
(\iCE = Rated VCES)
Emitter Cutoff Current
(VEe = -7V)

VCEO

-40
-SO
-80

-

-

Volts

ICES

-

-10

!J.A

IESO

-

-

-1.0

p.A

second breakdown

I Second Breakdown with Base Forward Biased

FBSOA

SEE FIGURES

on characteristics
DC Current Gain
(Ic = -5A, VCE =-5V)

hFE

1,000

-

-

Collector-Emitter Saturation Voltage
(Ic =-5.0A, Ie =-10mA)
(Ic = -10.0A, 1s =-20mA)

VCE(sat)

-

-

-1.5
-2.0

V
V

Base-Emitter Saturation Voltage
(IC =-S.OA, Is =-10mA)

VSE(sat)

-

-

-2.5

Volts

td + tr

-

O.S

!J.S

ts

-

2.0

tf

-

0.5

-

-

dynamic characteristics
Collector Capacitance
(VCE =-10V, f =1MHz)

switching characteristics
Resistive Load

=IS2 =-20mA
VCC =-40V, tp =25!J.sec

Delay Time + Rise Time

Ic = -10A, IS1

Storage Time
Fall Time

(1) Pulse Test: PW $ 300ms Duty Cycle $ 2%.

I

4.0

I

Ic/le'SOO

-

V~,:!SAT)~ ~

- - --

,- - -

-r-- -1..:;:'2'S·c

-

TJ c-40·C
~

II I

IrJOISO·S_
TJ c -40.C

100-

i"'"i"'o'25-C

100TJ.IS~

2

--

I-~

-

.~

~ ~ ~",,""
,,-

~ ~ i-"
;:'1i ~ ..... ....
.....
v
~

.... ~

.....

'"

CE(SAT)

S

~

20

IC-COLLECTOR CURRENT-AMPERES

FIG.1

TYPICAL SATURATION VOLTAGE CHARACTERISTICS

428

~
./

10K

f.-"

TJ -1!lO°C

4K

1&.1
II.

.c

V
V

/"

V

V~

V

-

TJ o2 / (

100

/
/

'"

Vc~2V

'r\

./

. . . . r-.

./

r--..r-.

IK

400

.........

\

~,

PULSE WIDTH. 2 ml
DUTY CYCLE ° 2%

/'

\

}'"

TJ '-40°C
I

aool

I I "I
0.01

1.0

0.1

10.0

20

IC - COLLECTOR CURRENT - AMPERES

FIG.2

TYPICAL GAIN CHARACTERISTIC

100

....- JUNCTION TO
AMBIENT

./

....~

"

~ 10
I
ILl
U

JUNCTION TO CASE

Z

S

I--'"

I

IL

:!

ci

::E

II:
1&.1
:J:

V

I

V

l-

I-

z

1&.1

V

in

~.o I

I-

,v

V

V
10-4
TIME - SECONDS

FIG.3

50

u>

I-

40

lC=25OC

L50~

~
~
I

t:i

~
IL

30

I

Tc=B5°C

ILl

10

o

TC=125°C

°1
x
::EI

~~

~I

::PI

~I



II:

I

~I
WI

\

I
I
I

I

I

°20
,t-

:I

I

I

in

~

TRANSIENT THERMAL IMPEDANCE

60

70

80

VCE -COLLECTOR TO EMITTER VOLTAGE-\IOLTS

FIG.4 MAXIMUM PERMISSIBLE DC POWER DISSIPATION

429

20
10
i;'7

.- k::::== ~

/" V
,I'

/ /

/
l!l

15

/ /

/

1.0

~

I

I

1



I
I

~IOO

:

"-

10.0

@ ::J:I.... c:i
~
elI ~
"-..' ~ Ol~ ~

MAl( DC

0

TC'
0

...
1.0

FIG. 2 TYPICAL GAIN CHARACTERISTICS

!

'!'.i"e

JJI

0.1

MAX DC

TC' 70'e

"

Ie -COL.LECTOR CURRENT-AMPERES

0

I~

'r'r-

'I'-""C

FIG. 1 TYPICAL GAIN CHARACTERISTICS

or-

JII

0

Ie -COLLECTOR CURREN'-AIiIIP£RES

.I Tc.L

1'\ ,

1J'2.'·C

- - - - VCf"'V

"

ii

of----- I-

" " i\ \

iii

--VCf"'V

'1'2"C

0

I-

+~+-

0
--YQ"IY

111

D44H

....

I-

0

! '0","
TC 1

~

ro'c

I
~
I

80

VOLTAGE - VOLTS

FIG. 3 MAXIMUM PERMISSIBLE DC
POWER DISSIPATION

o.1

1.0

I
I

I

10

100

VeE - COLLECTOR TO EM'TTER VOLTAGE - VOLTS

FIG.4 SAFE REGION OF OPERATION

10.0
Tj • 150°C
- - - Tj • 25'C

044H

en

IOO _ _ _
~IO. _ _•

co

"

VaE (SATl: ICII a • 10

II)

I~ [)

!::;
o

~

1.0

V

.'"
o
>

VCE(SATl: IclIa • 2011;

z

ld

o

a:

l'
w

!::;

~

~

O. I

....

!

loll

!

~~

;;I

~

::>

..

II)

I

.00.1

VCE(SATl: Iclla • 10

E
;;
~

.....

0.01

10-4

1.0
10.0
lC - COLLECTOR CURRENT - AMPERES

FIG. 5

10-'
TIME - SECONDS

FIG. 6

TYPICAL SATURP.TION
VOLTAGE CHARACTERISTICS

433

TRANSIENT THERMAL IMPEDANCE

434

D45H Series

PNP POWER TRANSISTORS

-30 - -80 VOLTS
-10 AMP, 50 WATTS

COMPLEMENTARY TO THE D44H SERIES

The General Electric D45H is a power transistor designed for
various specific and general purpose applications, such as:
output and driver stages of amplifiers operating at frequencies
from DC to greater than 1.0 MHz; series, shunt and switching
regulators; low and high frequency inverters/converters; and
many others.

PNP
COlL.ECTOR

~'-EQ
EMITTER

DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

Features:
•
•
•
•

PNP complement to D44H NPN
Low collector saturation voltage
Excellent linearity
Fast switching

/

+

:~:m:~::DIA.

TERM.l

.35519.021
.32518.251

+1

1Tioillll!jf-.....,

TERM.2

.006(0.15}

.'filiTIO]'251

.500(12.7}MIN.

TERM.3

.0331~.841

.02710.69}

.1~'105(2.67}
~ •. :ii95i2.41i

.055!1.39}---!
.04511.14}

maximum ratings (T A = 25° C)
RATING
Collector-Emitter Voltage
Collector-Emitter Voltage
Emitter Base Voltage
Collector Current - Continuous
Peak(1)
Base Current - Continuous
Total Power Dissipation @TA = 25°C
@TC=25°C
Operating and Storage JunCtion
Temperature Range

1--'
I--

.2l016.33}
.190(4.82}

.107(2.72}
.08712.21}
.021(D.53}
.015ID.38}

(unless otherwise specified)
SYMBOL

D45H1,2

D45H4,5

D45H7,8

D45H10,11

VCEO
VCES
VESO
Ic
ICM
Is
Po

-30
-30
-5
-10
-20

-60

-80

-60
-5
-10
-20

-80.
-5
-10
-20

'-5
1.67
50

-45
-45
-5
-10
-20
-5
1.67
50

-5
1.67
50

-5
1.67
50

Watts

T J,Tstg

-55 to +150

-55 to +150'

-55 to +150

-55 to +150

°C

ROJA
ROJC

75
2.5

75
2.5

75
2.5

75
2.5

°C/W
°C/W

TL

+260

+260

+260

+260

°C

UNITS
Volts
Volts
Volts

A
A

thermal characteristics
Thermal Resistance, Junction to Ambient
Thermal Resistance, Junction to Case
Maximum Lead Temperature for Soldering
Purposes: Vs" from Case for 5 Seconds
(1) Pulse Test Pulse Width = 300ms Duty Cycle"; 2%.

435

electrical characteristics (T c = 25 0 C)

I

(unless otherwise specified)

CHARACTERISTIC

SYMBOL

MIN

TYP

MAX

UNIT

VCEO(sus)

-30
-4S
-60
-SO

-

-

Volts

ICBO

-

-10

IlA

lEBO

-

-

-100

IlA

off characteristics(1)
Collector-Emitter Sustaining Voltage
(Ic

D4SH1,2
D4SH4, S
D4SH7, S
D4SH10, 11

=100mA)

Collector Cutoff Current
(VCB =Rated VCBO)
Emitter Cutoff Current
(VES =-SV)

second breakdown

I Second Breakdown with Base Forward Biased

SEE FIGURE4

FBSOA

on characteristics
DC Current Gain
(Ic =-2A, VCE =-1V)
(Ic =-4A, VCE =-1V)

D4SH1,
D4SH2,
D4SH1,
D4SH2,

4,
S,
4,
S,

7,10
S, 11
7,10
S, 11

Collector-Emitter Saturation Voltage
(Ic =-SA, Is =-O.4A)
(Ic =-SA, Is =-O.SA)

D4SH1, 4; 7,10
D4SH2, S, S, 11

Base-Emitter Saturation Voltage
(Ic =-SA, Is =-O.SA)

hFE

3S
60
20
40

-

-

-

-

VCE(sat)

-

-

-

-1.0
-1.0

Volts

VSE(sat)

-

-

-1.S

Volts

CCSO

-

230

-

pF

fT

-

40

-

MHz

td + tr

-

13S

-

nS

ts
tf

-

SOO
100

-

dynamic characteristics
Collector Capacitance
(Vcs =-10V, f =1MHz)
Current-Gain - Bandwidth Product
. (Ic =-SOOmA, VCE =-10V)

switching characteristics
Resistive Load
Delay Time +
Rise Time
Storage Time
Fall Time

Ic

=-SA, IS1 =-O.SA

Ic

=-SA, IS1 =IS2 =-O.SA

(1) Pulse Test PW = 300ms Duty Cycle:E;; 2%.

436

..-

I

I

PARTS 1.... 1.10

TI

'I~O'C

..........

! 11

~

:--Vel"'''''
I _____

w·

iI

1'\'

--VeE'tV

\'

VaooO\o'

"°r--+---T---'T'""-j-·'t-'t+l+----'--i-H+1H-ff--+-I-\iI-:;..
'.t-t+tl
Tj'

Tt

I

T,'

"'

-~'li'C

2~'C

. "o~4==1=ffFfflF=t==+++mtj:~~-~:WI\Jl.-j.m

'2~'C

,,~,

......
....

- -.:.::

-~-

...

Ie· COLUCTOR CUflAtNT- "'IPIERU

.Zc- COLLECTOA CURRENT- AMPERES

FIG. 1 TYPICAL GAIN CHARACTERISTICS

FIG. 2 TYPICAL GAIN CHARACTERISTICS

-'0 rPE:.:;,; ;.,.:;c~: :";:;E~t-~T"i0':it: :" r"T'· ·T~T+t-r--+-+-++-t--H
Tc.,L
0

°

H

°

Te' 85'C

I
~

~
Te"'OO'C

°

'\

f'-.

°

"!I

:

:1

.u

: I

;1-- ~~ I---- "~ - - t--~ t---a
:

.......

~I

~i t-!~

r---N-

l-

:

;r--a

t.'

E
..J

S

-10

r--

t--...~u t
--

DUTYCTCLE
"$0","
TSTO"C

I
I
20

40

VeE - COLLECTOR TO EMITTER VOLTAGE - VOLTS

FIG. 3 MAXIMUM PERMISSIBLE DC
POWER DISSIPATION
VeE -COl.LECTOR TO UUTTER VOLTAGE- VOLTS

FIG. 4 SAFE REGION OF OPERATION

-10.0
T j

-T

=150 0

e

i =2SoC

045H

VOE(SATI' IC I IO"O"
U)

\1\

I-

..J

0

>

1.0

I

'f1'
~

U)

W

'"
~

I-

VCE(SATI'IC/IO'20~

..J

0

>
Z

0

0.1
>=
~
0:

"

I~

U)

...-

-.01
-0.1

~

~

VCE(SAT)' IC/IO"O

10-1
TIME - SECONDS

-1.0
-10.0
Ie-COLLECTOR eURRENT- AMPERES

10'

FIG. 6 TRANSIENT THERMAL IMPEDANCE

FIG. 5 TYPICAL SATURATION
VOLTAGE CHARACTERISTICS

437

438

HIGH VOLTAGE

D44Q Series

NPN POWER TRANSISTORS

125-225 VOLTS
4 AMP, 31.25 WATTS

The General Electric D44Q is an encapsulated power transistor designed for various specific and general purpose
applications such as: 120 V.A.C. line operated amplifiers;
series, shunt and switching regulators; low thru high frequency inverters/converters; t-v and other display tube
deflection; and many others.

NPN
COLLECTOR

EMITTER

CASE STYLE TO-220AB

Features:

DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

.404110.26]

• Very low collector saturation voltage

1·~ ~~~~.~~\

.19014.83)

f.. 38019.65)
I·
1701432)rt 05511.39)
I i . . I
.0481122)

• Excellent linearity

__ +

_ ----.

.--.

.26516.73)
24516.221

I

•

I----+---l-----+r-'...........,

• Fast switching

+

::1~:~:~~:DIA.

CASE
TEMPERATURE
REFERENCE
/
POINT

--,-

.22015.59)

------.i..

.00610.15)
.001(0.025)

TERM.l
TERM.2
TERM.3

.0331~.841

.02710.691

.05511.39)
.1
.04511.14)--"

maximum ratings (T A = 25° C)

.10712.72)
.08712.21)

.1h.J--.l0512.67)
~ _.09512.41)

1--.
I--

.21015.33)
.19014.82)

.021(0.53)
.01510.38)

(unless otherwise specified)
SYMBOL
VCEO
VCES

044Q1
125
200

044Q3
175
250

044Q5
225
300

UNITS
Volts
Volts

VESO
IC

7
4

7
4

7
4

Volts

IS
PD

2
31.25
1.67

2
31.25
1.67

2
31.25
1.67

Watts

TJ, TSTG

-55 to +150

-55 to +150

-55 to +150

°C

Thermal Resistance, Junction to Ambient

ReJA

75

75

75

°CIW

Thermal Resistance, Junction to Case

ReJC

4

4

4

°C/W

h

260

260

260

°C

RATING
Collector-Emitter Voltage
Collector-Emitter Voltage
Emitter Base Voltage
Collector Current - Continuous
Base Current - Continuous
Total Power Dissipation @ TC = 25°C
@TA=25°C
Operating and Storage
Junction Temperature Range

A
A

thermal characteristics

Maximum Lead Temperature for Soldering
Purpose: Va" from Case for 5 Seconds

439

electrical characteristics (Tc = 25° C)

I

(unless otherwise specified)

I SYMBOL I

CHARACTERISTIC

MIN

TYP

MAX

UNIT

VCEO(sus)

125
175
225

-

-

Volts

Icso

-

-

10

off characteristics(1)
Collector-Emitter Sustaining Voltage
(Ic = 10mA)

04401
04403
04405

Collector Cutoff Current
(VCE = Rated VCEO)

p.A

second breakdown

I Second Breakdown with Base Forward Biased

FBSOA

SEE FIGURE5

on characteristics(1)
DC Current Gain
(IC =2A, VCE =10V)
(Ic =200mA, VCE = 10V)

20
30

-

-

-

-

-

-

1

V

-

-

1.3

V

CCSO

-

40

-

pF

fT

-

50

-

MHz

td + tr

-

-

0.2

p's

ts

-

2.0

tf

-

-

hFE

Collector-Emitter Saturation Voltage
(IC =2A, Is = 200m A)
Base-Emitter Saturation Voltage
(IC = 2A, Is = 200mA)

VCE(sat)
VSE(sat)

dynamic characteristics
Collector Capacitance
(Vcs =10V, f = 1 MHz)
Current Gain - Bandwidth Product
(Ic =100mA, VCE = 10V)

switching characteristics
Resistive Load
Delay Time + Rise Time

Ic = 1.0A, IS1

= IS2 = 100mA
VCC =50V, tp =25 p'sec

Storage Time
Fall Time

1.7

(1) Pulse Test: Pulse Width - 300ILs Duty Cycle :5 2%.

32

T~5OC

28

,24
~

z

Q 20

i

~

VCE =10

c"O'Cl
\

- I

:1

16

is
0:

~

TJ;loo.C " "
12

~8

~

4

o

D~

LAX
LIMIT

20

........

CURRENT

...
1
a
~I

o I

g

~ 1

~I

0

I"- ~~l

:
l

.g-

..--

~
~

.

I

0

"x-

x

::I;

0

0

'"
>u

100 - - -

'"
>u

l

- r-r - -

W

.s::

lL.

I

10
200

~
!)Oe

i~

- - _1_--i.~_~!)Oe

~

V---

I

40
60
80
100
120
140
160
180
VCE -COLLECTOR-TO-EMITTER VOLTAGE - VOLTS

:..--

225

10

FIG. 1 MAXIMUM PERMISSIBLE DC
POWER DISSIPATION

i'.
~

r--

'-

'\

~

i'........ \

"

102
103
Ic-COLLECTOR CURRENT-MILL AMPERES

FIG. 2

440

.....

TYPICAL hFE VS. Ic

10.0

~--~-·-T

I
~-

IC/IS = 10

100

---T= 25·C

(/)

I--L-- ""'"

_I •\ I

~

- - Tj = 150·C

o
~IO
(/).

. ..,

......., f7
~SE fSATl"~' '

(!)

V

/

1

;:...J

o
,...>
z
VSE (SAT){
o
I
V
~ 0.1
~
«
.....
a:
:::;)
r--t' t'-~
,
~
f-(/)

-- -

~

I-"

1-1-+ 1-'-

w

I:

1

i

"'u

.'

V,

~

/

20

1--1;-

I.-'

40

10

V

~

2l
.~

I....

ffi

i;'

j:

~VCE

(SAT)

ffi

~

.4

V

I-

.2

.0 I
.01

.1

0.1
1.0
IC-COLLECTOR CURRENT-AMPERES

V

~I-

JUNCTION TO CASE·

!.IV

in

:---V CE (SAT)

~

JUNCTION TO AMBIENT

VCE' 50V

1-1-

IICr4rmAI

10- 1

10-2

10- 3

10-4

10~

10.0

1I

10'

10

MAXIMUM TRANSIENT THERMAL IMPEDANCE

FIG. 4

FIG.3 TYPICAL SATURATION
VOLTAGE CHARACTERISTICS
10.0

FORWARD BIASED OPERATI NDUTY CYCLE ~ 50%
TC ~ 70·C

0 r'\ 1\

\

MAX DC
COLLECTOR

(J)

III

a:

~ ~ K~

CURRfN~

III
Q.

~

10

-'-

MAXIDC I
POWER
DISSIPATION I mSEC PULSES
100 ~SEC PULSES
10 ~SEC PULSES
'j
I ~ SEC PULSES _--1

z
III

!W

fill V :\

a:
a:

:::l
U

a:

g
~

:::l
,

~""I

lr~

1\

\1J

0I

o

I

U

~

I

CEO MAX· 04401
VCEO MAX- 04403

I :I:

3
10
30
100
300
VCE -COLLECTOR EMITTER VOLTAGE-VOLTS

FIG.5

a,· lOr

10000

1 ~ I
-I ~

lm~AX'r415
I

FORWARD BIAS SAFE OPERATING AREA
1000

.A J

I

r Ir
I

1/1

~

-

oJ

-

~

:1000

I-TJ= 150·
TJ=25"C
1--. I- .. I-TJ o -55·C

I

I-

:IE

I{ P.

III
I!)

Bf =
5

~ :i

a:

III

lI-

I. . .

~ 100

III

I

B,=IO

a:

,....;...-

o

F-81!s~

~,

8.

a~
>===-

t~~

~oJ

u

10

~

10

'--.:

~
V

I-"
V
v,.(.'

V

L"' v

~V

i="'"

z
Ci
I!)

t-

J:-:;::

~

..

~

1\

100

-vCE-IOV

...... VCE·!W
VVCE =
10'1

~1iIi

I\V

l\

I'i~" l\

" I~",~\\I\

a:
a:

au

.~ (\:

': 10

~~

I:.'

~

.c

,

~

ITt

VeE,IOV-

ty
~~ vc~r
~v

'ICE"

III

if

t--I/r

p:- I';:. 1-. ~

'\

IZ

+-1-

"

I- TJ o l51 ·C
TJo 2lI°C

1--1--'

i--"i--"

Tr-YOI
1.0
10

100
1000
10000
lc, COLLECTOR CURRENT, MILLIAMPERES

FIG.6

t:.:t:
VCE'

~

Vu IJB,~l

~
g

>

1;::-

I!~,I
i I ,=5

"

1111

I\I~

III
V

HU

oI

10'

TIME - SECONDS

VCEISATI vs. IcTYPICAL

FIG. 7

441

100

1000

10000

Ie ,COLLECTOR CURRENT, MILLIAMPERES

DC CURRENT GAIN, TyPICAL

442

HIGH VOLTAGE

D44T Series

NPN POWER TRANSISTORS

250-300 VOLTS
2 AMP, 31.2 WATTS

The General Electric D44T is an encapsulated power transistor designed for various specific and general purpose
applications such as: 120 V.A.C. line operated amplifiers;
series, shunt and switching regulators; low thru high frequency inverters/converters; t-v and other display tube
deflection; and many others.

NPN
COLLECTOR

EMITTER

CASE STYLE TO-220AB

Features:

DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

.404110.26]

• Very low collector saturation voltage

. ~ ~~\~.~~\

I\.-.38019.65) .j~'
I

• Excellent linearity

- -t

• Fast switching

/
:

.
.--

.26516.73)
.24516.221

f

t

•

CASE
TEMPERATURE
REFERENCE

.35519.02)

/

.32518.25)

---:I59)

~
I

~.3)
TERM.1

.

T

+

~:~:~:~::OIA.

19014.83)
'1701432)rt 05511.39)
1
04811 ;12)

.

r-IIII~----'

POINT

~5)

.00110.025)

.500112.7)MIN.

TERM.2
TERM.3

.0331~.84)

.027(0.69)

.I~.10512.67)

.1
.055{1.39)
.04511.14)------"1

maximum ratings (TA

=25° C)

RATING
Collectl -Emitter Voltage
Collector-Emitter Voltage
Emitter Base Voltage

~

~ _009512.41)

I+I--

.10712.72)
.08712.21)

.02110.53)
.01510.38)

.21015.33)
.19014.82)

(unless otherwise specified)
SYMBOL
VCEO

D44T1,2
250

VCES
VESO

Collector Current - Continuous

UNITS
Volts

300

D44T3,4
300
400

5

5

Volts

Volts

2

2

A

0.5
2.1
31.2

0.5
2.1
31.2

A
Watts

TJ, TSTG

-55 to +150

-55 to +150

DC

Thermal Resistance, Junction to Ambient

ROJA

60

60

DCIW

Thermal Resistance, Junction to Case

ROJC

4

4

DCIW

TL

260

260

DC

Base Current - Continuous
Total Power Dissipation @TA = 25 DC
@TC=25C
Operating and Storage
Junction Temperature Range

Ic
Is
PD

thermal characteristics

Maximum Lead Temperature for Soldering
Purpose: Va" from Case for 5 Seconds

443

=25

electrical characteristics (T c

I

Q

C)

(unless otherwise specified)

I SYMBOL I

MIN

TYP

MAX

BVCES

300
400

-

-

Collector Cutoff Current
(VCE = Rated VECS)

ICES

-

-

10

/LA

Emitter Cutoff Current
(VEB = SV)

lEBO

-

-

10

p.A

CHARACTERISTIC

UNIT

off characteristics(1)
Collector-Emitter Breakdown Voltage
(Ic = 10 /LA)

D44T1,2
D44T3,4

Volts

second breakdown

I Second Breakdown with Base Forward Biased

SEE FIGURES

FBSOA

on characteristics(1)
DC Current Gain
(Ic =SOOmA, VCE = 10V)
(Ic =SOmA, VCE = 10V)
(Ic =SOOmA, VCE = 10V)
(Ic =SOmA, VCE = 10V)

30
40
75
40

-

175

-

-

1.0

V

-

-

1.2

V

Ccb

-

25

-

pF

fT

-

45

-

MHz

td + tr

-

0.2

-

p's

ts

-

3.3

-

0.6

-

D44T1,3

hFE

D44T2,4

Collector-Emitter Saturation Voltage
(Ic =SOOmA, IB =SOmA)

VCE(sat)

Base Emitter Saturation Voltage
(Ic =SOOmA, IB = SOmA)

VBE(sat)

-

-

-

-

dynamic characteristics
Collector Capacitance
(VCB =10V, f = 1 MHz)
Current Gain - Bandwidth Product
(IC = 100mA, VCE = 10V, ftest =1.0 MHz))

switching characteristics
Resistive Load
Delay Time + Rise Time

-

Ic =SOOmA, IB1 =IB2 =SOmA
Vce; =SOV, tp =2Sp.sec

Storage Time
Fall Time

tf

(1) Pulse Test: Pulse Width - 300/ls Duty Cycle::; 2%.

400

10
8

I I.

200

T1Jooc

.

Jt

6 I--- TJ
I--- - - - T J

veE·IOV
I I

100
80

t·Z!i

OC

60

IT}. -wc

~

40

4

...........

2

I

I
.8

"

~

~

\

...J

""
\

20

g
z

o
i=

~
\

.4
.6.8 I
.04 .06 .08 .1
.2
Ie - COLLECTOR CURRENT - AMPS

FIG. 1

~

III

\
.02

1/

CI)

g

~

10
.01

1

• ISOOC
• 2S 0 C

.6
.4

.1
~ .08

ct

\

.04

/

I.

I'

--- "'--- -

"
-'
./

~T
.~
V~EISATl

/
~,..

i

l

-/

f

/

.2

~ .06
CI)

-- --- - .-

VAEISATI

I

"

-

"",'"

Ie/IB • 10

.02
.01
.01

2

.02

FIG. 2

TYPICAL hFE VS. IC

444

.04 .06.08.1
.2
.4.6.8 I
Ie - COLLECTOR CURRENT - AMPS

TYPICAL SATURATION VOLTAGE
CHARACTERISTICS

2

,.
'-

100

100

...

en
o.q

JUNCTION TO AMBIENT

o

o

~

III

'"

~

ii:

~

10

f

r----......

III
U

z

!
..J

.~

~

It:

1!

JUNCTION TO CASE

.... -

o
~

Z

1/

III

"

u

Z
::I

VCE~ SOV

It:

IC

~
I
°io-S

FIG. 3

10-3

,
I

o
~

=40mA
I 1111 I

II
10-4

'-

10

z
o
f:

Z

...'"

.... ':0-

u

I

C;;

i""

= I MHz

.q

~

III

...

..... :"'-

I

IL

'"
:z:
...

......

u

o
Z

.......

II:

It
o

,~

I

10-2
10-1
I
TIME - SECONDS

u

I

100
10
Vca - COLLECTOR TO BASE VOLTAGE - VOLTS

10

MAXIMUM TRANSIENT THERMAL IMPEDANCE

FIG.4 COLLECTOR TO BASE JUNCTION CAPACITANCE
VS. REVERSE BIAS VOLTAGE

4

2
MAX DC CURREN, LtiT

en

a.

::!:
.q

I
.8

~

.6

~

.4

u

.2

II:
II:
::I

.....

MAX DC POWER-,
~ISSt~TION

~
/

::u

.1
~ .OB

;5

.06

~

.04

"\
%

~~,;.

,

,,~
~

-

~

.02
.01 I

......

1\
FORWARD BIAS OPERATION
Tc :S 2SoC

II:

2

VCEO MAX D44T1,2
I I
VCEO MAX D44T3.4
'f 'I I I
4
6 8 10
20
40 6080100
200
VCE - COLLECTOR TO EMITTER VOLTAGE - VOLTS

i

ti 400

FIG. 5

1000

SAFE REGION OF OPERATION

445

446

HIGH VOL TAGE/HIGH SPEED

D44TD Series

NPN POWER TRANSISTORS

300-400 VOLTS
2 AMP, 500 WATTS

The D44TD series of NPN Power Transistors is designed for
use in switching applications requiring high-voltage capability, fast switching speeds and low-saturation voltages.
They are particularly suited for off-line switching power
supplies, solid-state lighting ballast, invertes, solenoid/relay
drivers and deflection circuits.

NPN
COLLECTOR

EMITTER

CASE STYLE TO-220AB

Features:

DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

. 1~g\~.~;\~

• Performance information tailored for switching
applications

...--.

I

.26516.731
.24516.221

• 100°C maximum limits specified for:
• Switching times
• Saturation voltages
• Leakage currents

_

.0551'.391
.04811.221

CASE

I---+---I----+t
T_;--'-, TEMPERATURE
REFERENCE

+

:1:~g~~:DIA.

.35519.021
.32518.251

~

~.31

• 300 to 400V VCEO(sus) in a TO-220AB Package
TERM.l

• Very fast turn-qff, tf < 180 nsec (typ.) @ 1.SA

..f1' ;.,11114;;--.

/
POINT
- ,
.22015.591

~51
.001(0.0251

.5001'2.7IMIN.

TERM.2
TERM.3

.0331~.841

.02710.691

.1 ~.10512.671
.:595i2.41i

~

~

.055(1.39)
_I
.04511.141---'

1+-'

I---

.21015.331
.19014.821

.10712.721
.08712.211

.02110.531
.01510.381

maximum ratings (TA =25° C)
(unless otherwise specified)
D44TD3
300
300
400
7
2
4
.5
1
50
20

D44TD4
350
350
500
7
2
4
.5
1
50
20

.4
TJ, TSTG

Thermal Resistance, Junction to Case

RATING
Collector-Emitter Voltage
Collector-Emitter Voltage
Collector-Emitter Voltage
Emitter Base Voltage
Collector Current - Continuous
Peak(')

UNITS
Volts
Volts
Volts
Volts
A

.4

D44TD5
400
400
600
7
2
4
.5
1
50
20
.4

-55 to +150

-55 to +150

-55 to +150

°C

ROJC

2.5

2.5

2.5

°CIW

Thermal Resistance, Junction to Ambient

ROJA

75

75

75

°CIW

Maximum Lead Temperature for Soldering
Purpose: W' from Case for 5 Seconds

h

260

260

260

°C

Base Current - Continuous
Peak(')
Total Power Dissipation @ Tc = 25°C
@Tc= 100°C
Derate above 25° C
Operating and Storage
Junction Temperature Range

SYMBOL
VCEO
VCEX
VCEV
VEBO
IC
ICM
IB
IBM
Po

A
Watts

W/oC

thermal characteristics

(1) Pulse condition, tp:::; 5msec.

447

electrical characteristics (Tc

I

= 25

0

C)

(unless otherwise specified)

I

CHARACTERISTIC

SYMBOL

I

MIN

MAX

UNIT

-

. Volts

off characteristics(1)
Collector-Emitter Sustaining Voltage
(Ie =25mA, IB =0)

D44TD3
D44TD4
D44TD5

VeEO(sus)

300
350
400

Collector-Emitter Voltage
(Ie =2.0mA, IB1 =IB2 =.4A)
(VBE =-5V, L =200 jLh)

D44TD3
D44TD4
D44TD5

VeEX

300
350

Collector Cutoff Current
(VeEV = Rated Value, VBE(OFF)
(VeEV = Rated Value, VBE(OFF)

400
leEV

=-1.5V)
=-1.5V, Te =100°C)

Emitter Cutoff Current
(VEB =7V, Ie =0)

-

lEBO

Volts

rnA

-

0.1
1.0

-

1.0

mA

second breakdown
Second Breakdown with Base Forward Biased

FBSOA

SEE FIGURE 13

Clamped Inductive SOA with Base Reversed Bias

RBSOA

SEE FIGURE 14

on characteristics(1)
DC Current Gain
(Ie =1A, VeE =2V)
. (Ie =2A, VeE =3V)
Collector-Emitter Saturation Voltage
(Ie =1A, IB =.2A)
(Ie =2A, IB =.4A)
(Ie =lA, IB =.2A. Te =100°C)
Base-Emitter Saturation Voltage
(Ie =2A, IB =.4A)
(Ie =2A, IB =.4A, Te =100°C)

hFE

-

8

-

5
VeE(SAT)

Volts

-

-

0.6
1.0
1.0

-

1.2
1.2

fT

15

50

MHz

COB

10

25

pF

VBE(SAT)

Volts

dynamic characteristics
Current Gain - Bandwidth Product
(Ie =.25A, VeE = 10V, ftest =1.0 MHz)
Output Capacitance
(VeB =10V. IE =a, f =0.1 MHz)

switching characteristics

MAXIMUM

Resistive Load (See Figure 17 for Test Circuit)
Delay Time
Vee = 250V, Ie =1.5A
Rise Time

ld

25°C
.06

Te

=IB2 =0.3A. tp =25 p'sec

100°C

.08

p's

tr

0.6

0.8

p'sec

Storage Time

ts

2.5

3.0

p'sec

Fall Time

tf

0.5

0.8

p'sec

tsv
tf

3.0

3.5

p's

0.3

0.6

p'sec

ts

2.1

2.6

p'sec

tf

0.18

0.23

p'sec

IB1

Inductive Load, Clamped (See Figure 17 for Test Circuit)
Storage Time

VeLAMP =250V. Ie =1.5A.

Fall Time

IB1 =182 = O.3A, tp
VBE(OFF) =-5V

Storage Time

L

=25p.sec

TYPICAL

=200 p.h

Fall Time
(1) Pulse Duration

=300llS, Duty Factor::; 2%. Do not measure on a curve tracer.

448

TYPICAL DC CHARACTERISTICS
200
T1

100
80
60

z

Ci
CI)

"!50 C L-

TI'25°C

40 f- "-55 O C
T1

z

20 ~

u

10
8
6

~

III
II::
II::
:I
U
Q

Ii
x

-- r--:

0

Te=2S0C

III

~

0

>I

2.0

II

...
W

~

~
~~

0

1',

Ie· O.SA

1e"I.OA

le02·0A

1.6

>

II:

~,

r-.

le=O.IA

........w

1.2

1\

~

w

,

II:

~

\

.8

,

u
w

4
- ---VCE"OV
- - - VCE o 2V

2
1.0
.01

.05

.02

.2

.10

.5

-'
-'
0

f-

<.l,

.4

1Ill

1.0

2

o

5

.001

.005

.002

IC,COLLECTOR CURRENT-AMPERES

.01

.02

-

"-

-

'"
>"
.05

0.1

r0.5

0.2

1.0

I o,BASE CURRENT-AMPERES

FIGURE 2. COllECTOR SATURATION REGION

FIGURE 1. DC CURRENT GAIN

10.0

10.0

.8 f = I O -

.8, =10
.8, =8

~

2.0

~•

1.0
.8
.6

....

.4

g
III

.8(4 \f~

W

TC =25"C

.8' =IC/I O'

I§

~

w

~

.....

~~~

.2

~~

;V

0.1

0.2

0.1

,.

/I

g

/3t =Iell o•
1.0

':'II:

.6

9-'

.4

:E

./

/~./

0

~ ..... ~ """V

:::: ~"""

s

.8,=4 -

~~

.2

1.0

2.0

0.1

3.0

CI)

~

4.0 -

-

Tc "25°C

....
~

i
'll

III

~

-

~f'lc/IBI

2.0

2.0

3.0

= 100°C

TC=25°C

_~b

CI.

5>
II::
III

0.5

1,000

(/)

~

0.2

FIGURE 4. VCEISATI VS. Ic, Tc

10.0
8.0
6.0
0

-

Ie COLLECTOR CURRENT -AMPERES

FIGURE 3. VCEISATI VS. Ic, Tc = 25°C

III

8::==

0.1

'C,COLLEClOR CURRENT -AMPERES

!:j

V

..- ...... t::: ,.,..;
~

~~~
~ r::---

>"
0.5

V/

,/

./' .,/ I-""

-'

"'

.8,=6

//

0

u

VI;

Te = 100°C

........w

IP,=8_

f /

2.0

II:

./

.v

V

I

~

...w~

~

I

§

'Y,.

~III
CI)

I

.8 =6"\

!S

~f=2

1.0
0.8
0.6

~,"8

.:.,

-

U

Z

~

100

i3
~
~

--

0.2

0.2

0.5

1.0

2.0

3.0

10
0.1

1.0

1.0

VR,REVERSE VOLTAGE-VOLTS

IC ,COLLECTOR CURRENT-AMPERES

FIGURE 6. CAPACITANCE

FIGURE 5. VBEISATI VS, Ie

449

i'-- ....... i--

20

100

TYPICAL SWITCHING CHARACTERISTICS
1.0
.8
.6
.4

~.

.....

---~ --.....

-- - .- .....

1""-.2
.1
.08
.06

.'

~

i"-

"

trT-

i=
~
;:

/

,..,.. ~"

I-I-- - - - TC"IOO°C

lal"Ia2=lc /S
tp '20 I'SEC

-;---

;---

VCC '2S0V

I

I
0.2

.0 I
0.1

I

-

Q:
Q:

0.6

_-= --=
-

_--Tc=2'5=c--

:J

-

0.4

0.2

..J
..J

8

II

I

0.8

!;:l

1.0

O. I

2.0

-

...

~

SEEFIG.17 FOR TEST
CIRCUIT
-

0.5

Z

U
Q:

-

4.0

1.0

~

w

td_

TC=2SoC

-

6.0

2.0

1=
iUl

--

.04

.02

'"

~~

10
8.0

I
I

I ~
I \

I

L
1
I.

Is

,
I

VCE
lal

---

f-O

I
I
1
1

--

VCE(CLAMP

r--

w
Ul
::I.

10
8.0

,

6.0

w
::Ii

4.0

z
;:

1

1\

1=
i
Ul

1

7

u

t- ~

0.2

'\

1.0
0.8

Q:
Q:

0.6

~

'"

~O%lc

2.0

z

-

Q:

/'

-

r- - - -

Tc "IOO°C
VCE(CLAMP)=250V

1"-.........

VSE(Off) = -5V

-....

0.4

~

U
W
..J
..J

- -

I---

:J

u

-- --

If-

---

... 10- r0-

1.0

0.5

f- - - Tc=25°C

(!)

If

........
~

- -

----

0.1

i=

I

-

..... Is

2.0

FIGURE 8. TURN-OFF TIME RESISTIVE LOAD

COLLECTOR CURRENT

,

i"-.

r- t-

IC ,COLLECTOR CURRENT-AMPERES

FIGURE 7_ TURN-ON TIME RESISTIVE LOAD

-

-r--

Tc=IOO°C
VCC'2S0V
la"ls2' l c/S - r--'- SEE FIG. 17
Ip· 25 I'SEC - f - - FOR TEST
CIRCUIT

IC ,COLLECTOR CURRENT -AMPERES

90% IC

I"'-

-l-

r--

I-

t-- r-

lSI = IS2=lc 15
Ip' 251'SEC
L = 200 I'H

-- r-- - -

==--1=r-

....

........

-....

0.2

0

~

Is

1'--1-

---

----===

SEE FIG. 17
FOR TEST
CIRCUIT

-

--. -----

If-

U

0.2

la2

0.5

1.0

IC,COLLECTOR CURRENT-AMPERES

FIGURE 10. CLAMPED INDUCTIVE TURN-OFF TIME

FIGURE 9. INDUCTIVE TURN-OFF WAVEFORMS

1.8

1.6

'"i=

::Ii

1.4

(!)

!:

V CLAMP = 250V
Ial = Ic /5
L= 200l'H

'"i=:::E

Tc=25°C

z

:r
u

I.B

l-

IB,=lc/5

1.2

i

0

1.0

w

'"

1.0

N

::;

::i

REFER TO FIGURE 10
FOR NORMAL SWITCHING
TIME

.8

Q:

0

z

L= 200 I'H
Tc=25°C

Ul

N

~

1.4

z
;:

u

1.2

~

::Ii

VCLAMP =250V

(!)

Ul

0

1.6

Q:

.B

0

z

Ie =2A
Ic=IA;.~-~--r--+--;----r---+---i

.6

Ic=·5A

~

:::E

.6

Ie =.5A
.4 0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

.4

2.0

0

0.2

O.B

1.0

1.2

RATIO I al/1a2

FIGURE 12. FALL TIME VARIATION WITH 182

FIGURE 11. STORAGE TIME VARIATION WITH 182

450

2.0

In~~!§~j!fl~IiI!~~~~~~I!~~~~fl~~
...'"
2.o1--+-+-t-H-++~'Io...--Ihf.,.,;:"~1.:
,#~C'
...

6.0

f3

1-

4.0

.,[0

ftI :;e;

100

I-t-H-tti

I I'0r::?~~_.
I

...

0.6 ~
- -'. BONDING WIRE LIMIT
Q4 _ -------·THERMAL LIMIT

i3

" ' - - .- - SECOND BREAKDOWN
Q21---;--+ LIMIT
TCo 25"C

II:
II:
II:

g

I;l

"'.5'~C'

MAXoC"r-.

':::t"

"
""

I~~

.06

~

.04

D44TD3"'"

m I---+--++ir+++tt--+

D44TD4'/

o

u

Zll+-

D44T05

IOloIU2=IC/5

1-

1.6

II:

1.2

~II:

VUE =-5V

-

/./-1~+-+-Hf-+H+l

...
u

~

.8

...J
...J

5

2

10

20

50

~u

D44TD4
D44TD5

V

1

II

,

100

300

100
400
200
300
VCE ICLAMPEOI ,COLLECTOR-EMITTER VOLTAGE-VOLTS

1,000

VCE ,COLLECTOR-EMITTER VOLTAGE-VOLTS

10.0

100

;=

~

w

-

~

i-'

1.0

a.

...

;Ii

tf:

0

r::..::-

:::E

.05.....

a:

w

~

I~I'
_

w

-

iii

z
«

...-.

z

~

~

::::::;:::

60

~

-.02

-t~J

-.01
SINGLE PULSE

a:

40

~

30

w

10-4

10-5

IIIIIIII I IIIi IIli
10-3

E"04/(OOIVIII

~,,-£EF/04rIlliG

""

10-2

~4<

o~

'%
,"-

""

20

0

20

30

40

50

II-PULSE WIDTH-SECONDS

60

70

80

90

100 110

........

120

TC,CASE TEMPERATURE-'C

FIGURE 15. TRANSIENT THERMAL RESPONSE

r- .......

~4l'.

10
10-1

--

l'.

~~-il

0

a.

DUTY CYCLE = t II

.0 I

50

a:
w
c
a:

J

~~BFiI

C>

I-

10-6

70

U

tt

.1

'" "'-

80

I-

~ .2

!
...J
«
J:
lIZ

"" ~ r-..

90

....
DUTY CYC LE
.5

600

FIGURE 14, CLAMPED RG,VERSE BIAS
SAFE OPERATING AREA

FIGURE 13. FORWARD BIAS SAFE OPERATING AREA

~
w
u

--

I'..

D44TD3 ....

.01L--_~~~~~_-...J~L...J~~~~~~~~~~

I

\

L=200JolH

g

t
nl'!~~~~~!ib;~~5:-:::::~~~!I!§~i!~!11
1"
Y \\

...J
...J

\

TC ~IOO'C

a.

:::E

aa:

"

~./ ~

VALID UP TO RATED
VCEOISliSI

2.0

II:

I'-..

"

130 140 ISO

FIGURE 16. POWER DERATING CURVE

Vcc (AS SPECIFIED)
15Sl
IN914

L

56Sl
+IOV

~

WAVEFORMS
(RESISTIVE SWITCHING)
1 sl x 90%

Q::J ~s c.:.:...
MIN

IN5626
D.U.T.

" =C-B
=Y-x

I,'s

+

VCE (CLAMP)
(AS SPECIFIED)

'd=B-A

=z-y

-=

NOTE:
(2) VALUE OF L (INDUCTOR) IS
SPECIFIED ON RATING CURVES.
(3) SELECT Rc (RESISTIVE SWITCHING)
FOR DESIRED lc.
(4) ADJUS1. Va .. V a2 AND RB2 FOR
DESIRED IBI AND IB2 VALUEs.
(5) CIRCUIT LAYOUT AND COMPONENT
SELECTION IS CRITICAL DUE TO
FAST SWITCHING TIMEs TO BE
MEASURED.

NOTE:
TRANSITION TIME FROM 90"1. lSI TO 90%
lS2 (X-W) MUST BE LESS THAN 100 .SEC.

FIGURE 17. TEST CIRCUIT FOR SWITCHING TIMES AND RBSOA

451

452

D44TQ1
D44TQ2

HIGH SPEED

NPN POWER TRANSISTORS

400-450 VOLTS
12 AMP, 100 WATTS

The D44T01 and D44T02 are designed for high-voltage,
high-speed power switching inductive circuits where fall
time is critical. They are particularly suited for 115 and 220V
switch-mode applications such as switching regulators,
inverters, motor controls, solenoid/relay drivers and deflection circuits.

NPN
COLLECTOR

EMITTER

CASE STYLE TO-220AB

Features:

DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

::~~\!:~~\rt
.055(1.391
I
.04811.22)

• VCEO(sus) 400V and 450 V
• Reverse Bias SOA with inductive loads @ TC = 100°C

.--.

.265(6.73)
.24516.22)

/t-

CASE
TEMPERATURE
REFERENCE

•

-+--I----It -i-'--1

• 700 V blocking capability

:~:~:~:~::DIA.

• SOA and switching information.

T

+
+
1

TERM.l

.35519.02)

/

.32518.25)

-----::l59)

~
I

~.3)

-/f;.mll4ii+--,

POINT

-:ooof.15)
.00110.025)

.500112.7)MIN.

TERM.2
TERM.3

.033(~.84)

.02710.69)

.1~.'0512.67)

.055\1.39)--1
.04511.14)

maximum .ratings (TA

r*J

~ _.095(2.41)

J:=

.10712.72)
.08712.21)

.021(0.53)
.01510.38)

.21015.33)
•. 19014.82)

=25°C) (unless otherwise noted)

RATING
Collector-Emitter Voltage
Collector-Emitter Voltage
Emitter Base Voltage
Collector Current - Continuous
Peak (Repetitive)(I)
Base Current - Continuous
Peak (Non-Repetitive)(1)
Total Power Dissipation @Tc= 25°C
Derate above 25°C
Operating and Storage
Junction Temperature Range

SYMBOL
VCEO
VCEV
VEBO
Ic
ICM
IB
IBM

D44TQ1
400

650
6
12
24

D44TQ2
450
750

6

UNITS
Volts
Volts
Volts

PD

12
100
0.8

12
24
6
12
100
0.8

Watts
WIDC

TJ, TSTG

-65 to +150

-65 to +150

DC

R8JC

1.25

1.25

DCIW

TL

260

260

°C

6

A
A

thermal characteristics
Thermal Resistance, Junction to Case
Maximum Lead Temperature for Soldering
Purpose: W' from Case for 5 Seconds
(1) Pulse Test: Pulse Width = 5ms. Duty Cycle :510%.

453

electrical characteristics (T c = 25° C)

(unless otherwise specified)

CHARACTERISTIC

I SYMBOL I

MIN

VCEO(sus)

400
4S0

ICEV

-

-

IESO

-

-

TYP

MAX

. UNIT

-

-

Volts

1

mA

1

mA

off characteristics(1)
Collector-Emitter Sustaining Voltage
(Ic = 10mA, Is =0)
Collector Cutoff Current
(VCE = Rated Value, VSE(OFF)

D44TQ1
D44TQ2

=1.SV)

Emitter Cutoff Current
(VES =6V, IC =0)

second breakdown
Second Breakdown with Base Forward Biased

FBSOA

SEE FIGURE 1

Clamped Inductive SOA with Base Reversed Bias

RBSOA

SEE FIGURE2

on characteristics(1)
DC Current Gain
(IC =SA, VCE =SV)
(Ic =SA, VCE =SV)
Collector-Emitter Saturation Voltage
(Ic =SA, Is = 1A)
(Ic =SA, Is = 1.SA)
(Ic = 12A, Is =3A)

S
6

-

40
30

-

-

1
1.S
3

V

-

-

-

-

1.2
1.6

V

0.06

0.1

p's

0.4S

1

ts

-

1.3

3

tf

-

0.2

0.7

-

0.92

2.3

0.12

0.7

hFE
VCE(sat)

Base-Emitter Saturation Voltage
(Ic =SA, Is = 1A)
(Ic =SA, Is = 1.6A)

VSE(sat)

switching characteristics
Resistive Load (Table 1)
DelayTrme

= 12SV, Ic =SA
=IS2 = 1.6A, tp =2S P.s

. VCC

td

Rise Time

IS1

tr

Storage Time

Duty Cycle < 1%

Fall Time
I nductive Load, Clamped (Table 1, Figure 13)
Storage Time

(Ic

Crossover Time

(IS1

=SA, VCLAMP =300V)
=1.6A, VSE(OFF) =SV, Tc = 100°C

tsv
tc

p's

(1) Pulse Test: Pulse Width - 300ILs Duty Cycle::; 2%.

100
0

~

t-

10
5

Z

w

=
=
::::l

,-

-

0

6:'

-

'- --

-

2-

1 ms
TC = 25 0 C- -de

2

~

~

~

"

t-

...J
...J

oU

U

~

\

W

"

0.0

TC';; 1000 C
IBI = 2.5 A

8

U

......

c:

5

\

6:'1 0

~

......

1 ---T~~RMAL LIMIT
~ 0,5 - - - BONDING WIRE LIMIT
-SECOND BREAKDOWN LIMIT
G
w O. 2
CURVES APPLY BELOW RATED VCEO
...J
.1
0

0,0 2
0.0 1

10"s

100"s ...

U

~

--

14

\

4
2

~

VBE(off) = 9 V-

.........

~

~

D44TQ1
D44TQ2

I\.

~

D44TQ1" r-4....
....... D44TQ2-

~~

J. I

~

10

20

30

50

70

100

200

300

500

100

200

300

400

500

600

5 V
3 V15V
700
800

VCE. COLLECTOR - EMITTER VOLTAGE (VOLTS)

VCEV. COLLECTOR·EMITTER CLAMP VOLTAGE (VOLTS)

FIGURE 1 - FORWARD BIAS SAFE
OPERATING AREA

FIGURE 2 - REVERSE BIAS. SWITCHING SAFE
OPERATING AREA

The Safe Operating Area figures shown in Figures 1 and 2 are specified ratings for these devices under the test conditions shown.

4S4

I

'=' ---

"

O.B
a:

o

t;
~ 0.6

f"--

r- 1"'-1-0..
........

l'-.

z

~

r-- r- ....

THERMAL
DERATING

0.4

Q

r-

1-T1;;;L-r++im=rH*Wb-I'!!J;"".,9HtHtt+H-I+HttI-+-t-1+1tttH

ill·
i!:

i
r--....

140

60
80
100
120
TC. CASE TEMPERATURE (OC)

:ri

160

~

~-+:~FBI"/5I'i-t-+Hitit-t-H-+ DUTY CYCLE, D= 11/12'

I I t....

JlJl.""!"

0.02

~--bf9-l"HIt--H-t--tHtttt-t-t-t-t+l

111"""1 T
-.j 12 I- P(pk) 1HI-++-H+l+HI

0.01

t;rr iTmilli
0.02

0.05 0.1

E

0.2

0.5

1.0

2.0
5.0
TIME (ml)

:::.

'"r---C"r--

0

...<

25°C

a:
a:

~

::::l

u
u

-55°C

0

>

a:

7

~~

:!i
w

cr:
0

tU
w

......

~

VCE = 5V

0.7

I

I. 2

~

10

o. B

,

1

~

o.4

w

u

20

>

0
0.05 0.07 0.1

0.2

~

~

1\

~

0.3

I"O.S

0.7

1.4

I 1 1
1 II I

0.6

1.2

-os...-

<.:I

<
t-

...

~

ICIIB = 3
TJ = -550;" .........

-'

25

O.S

0

>
>0.6

,.....,. I---'"

-

0.40.2 0.3

.............

en
tc5

V

:::.
w

,I

V
.,. V l 50 0C

",

TJI = 1510dC

O.S
ICIIB

=3

If

0.4

(j

~ 0.3

...

~ 0.2

~

>-

I

1/1

t-

,...... 55°C

"

~ V2S oC

O. I

-I---' IO.S 0.7

'\ .....

1

0.7

0

'" -

1\

FIGURE 6 - COLLECTOR SATURATION REGION

FIGURE 5 -DC CURRENT GAIN

...

\
\

li
1

lB. BASE CURRENT (AMP,

IC. COLLECTOR CURRENT (AMP)

~
w

10k

1\12~

BA

1\

L\

1\

(..)

2

500

1

SA

3A

0

'1

en
t-

100 200

1\

,

1

IC = 1 A

w
tt-

t....

z:

II

t-

0

-t-

0.5

50

TJ = 2S 0 C
1. 6

<.:I

KI500C

~

0.3

20

II

...

w

5
0.2

10

1Ht-H-+-l+1-HH

0

z

...

D CURVES APPLY FOR POWER
RruC= 1.25·CIW
PULSE TRAIN
MAXSHOWN
READ TIME @t1
TJ(pk)" TC = P(pk) ZBJC(I)

FIGURE 4 TYPICAL THERMAL RESPONSE [(ZOJC(t)]

t-

0

W

ZOJC(I) = r(l) ROJC

0.03

en
tl""-

Q

L.oI

0.05

0.Q1

0

'"

f-'

~!;III~il~""~~
.LL

FIGURE 3 - FORWARD BIAS POWER DERATING

tZ
w

~

U

0.1

0.1

~ 0.07
005

1'..
40

HI41-+tHHl++H*ftHjt:.lo.r4Fbl~W~:..t-IH-I+HHlI-+t-11-H1tttH

0.2

~

........

H+t+I-tttIHI++tttttll-+++H:J,H1E~r~++tHtII-++I+HtttH

~

..
z

O. 2

20

0.5
0.3

0:

~

a

~
0:

ili

1"-

w

1'0~1III1iiD.

QO.7~

~

~

~

cc

~

-

"'-

<.:I

~

SECOND BREAKDOWN
DERATING
I--

10

o

0.2

20

0.3

0.5

0.7
IC. COLLECTOR CURRENT (AMP)

IC. COLLECTOR CURRENT (AMP,
FIGURE 7 - BASE-EMITTER SATURATION VOLTAGE

FIGURE 8 - COLLECTOR-EMITTER
SATURATION VOLTAGE

455

10

20

10K
=VCE = 250 V

-j

.3

77 7

-

-TJ= 1500 C

....z

1250 C

~ 100

or

:::>
u

.,.

0

....

7

7

./

7

/
I

T

./

7

I

2K

Cib

/

I---

- lK
~ 800
~ 600

/

z
~ 400

I

I

10

...u...
...

I
'7

TJ = 25 0C

7

1000e
7soe

or

1/ I

/

I

lK

C

I

4K

.........

U

I

«

~ 200

ROb

<.),

7

50 0 e

0

.......

/

u

~

iOO
80
60

25 0 e

Iio=

0.1
-04

=REVERSE

40

FORWARD

-0 2

0

+0.2

0.5

0.1 0.2

+0,6

+0.4

1

5

2

10

20

110

50

l JU

VR, REVERSE VOLTAGE (VOLTS)

VBE. BASE,EMITTER VOLTAGE (VOLTS)

FIGURE 10 - CAPACITANCE

FIGURE 9 - COLLECTOR CUTOFF'REGION

RESISTIVE SWITCHING PERFORMANCE

700

..,.:

~" ~

w

""

:Ii

[I

lK

I~

t'-.

.., 700

/

'

~

,/

.....
.....

I,

~

./

I I
0.5

0.7

500

300

"-

200

Id @ VBE(off) = 5V'

70

VCC = 125V
Ic/lB = 5
TJ = 25 0 C

.....

..............

100

0.3

-

Is

f-"

/

~_ 200

50
0.2

.-

VCC = 125 V
lC/lB = 5
TJ = 25 0C

i'.
500
·300

-

2K

lK

I

.....

'" "-

V
.............

.....

I

1

100
0.2

20

10

0.3

0.5

IC, COLLECTOR CURRENT (AMP)

-

l/~
If

----

0.7
IC, COLLECTOR CURRENT (AMP)

FIGURE 12 - TURN-OFF TIME

FIGURE 11 - TURN-ON TIME

,.--.4..

IC
90% VCEM
Isv

I,v

h

Vclamp -

I ~90"/~ l e i

+~lli'" !--lli-Ic-\

V

Vclamp

-- --\- - -- --- -~

-- -- I--

"

10"0 ..........
10%
VCEM- ICM- 2u· u _
IC

1 8 - ---, 90% IBI

"\

-

..-

---

-

--

TIME

FIGURE 13 - INDUCTIVE SWITCHING MEASUREMENTS

456

10

20

VERY HIGH SPEED

D44VH Series

NPN POWER TRANSISTORS

30-80 VOLTS
15 AMP, 83 WATTS

COMPLEMENTARY TO THE D45VH SERIES

The D44VH is an NPN power transistor especially designed for
use in switching circuits such as switching regulators, highfrequency inverters/converters and other applications where
very fast switching and low-saturation voltages are necessary.
This device complements the D45VH PNP power transistor
and is characterized with performance information which
relates directly to switching.

NPN
COLLECTOR

rt

EMITTER

CASE STYLE TO-220AB

DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

.404110.26) . ~ ~~\~.~~\
\'-.38019.651 -I' I '

Features:

I

• Fast Switching ts ~ 700 ns resistive
tf~ 200 ns

I-i..,

_ -t

.19014831
.17014.32I

...---

.26516 73)
.24516.221

f

I

_

CASE
TEMPERATURE
REFERENCE

f--+--I----t-t
T-r-'-,

• Low VCE(sat) ~ O.4V @ Ic = 8A

.35519.02)
.32518.251

/

~

1fr-~IIII-!r+--.

TERM.2

POINT

~

.22015.591

~15)
.001{O.0251

~.31
TERM.l

.05511 391
.04811.22)

.500112.7IMIN.

.05511.391
.04511.14)

TERM.3

.0331~.841

.1~.10512.671

~ ".09512.411

.02710.69)

.055(1.391-1
.04511.14)

maximum ratings (T A = 25° C)

I+I+-

.21015.331
.19014.821

~

.10712.721
.08712.21)

.021{0.53)
.01510.381

(unless otherwise specified)

RATING
Collector-Emitter Voltage
Collector-Emitter Voltage
Collector-Emitter Voltage
Emitter Base Voltage
Collector Current - Continuous
- Peak (1)
Base Current - Continuous
- Peak (1)
Total Power Dissipation @ Tc =25°C
@Tc =100°C
Derate above 25° C
Operating and Storage Junction
Temperature Range

SYMBOL
VCEO(sus)
VCEX
VCEV
VEB
Ic
ICM
IB
IBM
Po

TJ, TSTG

D44VH1
30
40
50

D44VH4
45
55
65

D44VH7
60
70
80

D44VH10
80
90
100

UNIT
V
V
V
V
A

7
15
·20
5
10
83
33
.67

W;oC

-55 to +150

°C

A
Watts

thermal characteristics
CHARACTERISTICS
Thermal Resistance, Junction to Case
Thermal Resistance, Junction to Ambient
Maximum Lead Temperature for Soldering
Purposes: 1/8" from Case for 5 Seconds

ROJC
ROJA

MAX
1.5
74

°C/W
°C/W

TL

235

°C

SYMBOL

(1) Pulse measurement condition PW';; 6.0 ms, See Figure 14.

457

UNIT

electrical characteristics (T c = 25° C)

I.

(unless otherwise specified)

I

CHARACTERISTICS'

SYMBOL

MIN

MAX

UNIT

off characteristics(1)
Collector-Emitter Sustaining Voltage(') (IC = 100mA, IS = 0)
D44VH1
D44VH4
D44VH7
D44VH10
Collector-Emitter Voltage(2)
(Ic = 1A, VCLAMP = Rated VCEX, Tc = 100°C)
D44VH1
D44VH4
D44VH7
D44VH10
Collector Cutoff Current
(VCEV = Rated Value, VSE(off) =4.0V)
(VCEV =Rated Value, VSE(off) = 4.0V, Tc = 100°C)
Collector Cutoff Current
(VCE =Rated VCEV, RSE =50 n, Tc =1000q
Emitter Cutoff Current (VES =7V, IC = 0)

VCEO(sus)

-

30
45
60
BO

V

VCEX

ICEV

ICER
IESO

V

40
55
65
90

-

-

10
100

pA

100

pA

10

pA

second breakdown
Second Breakdown with Base Forward Biased
Second Breakdown with Base Reverse Biased

SEE FIGURE7
SEE FIGURE B

FSSOA
RSSOA

on characteristics(1)
DC Current Gain
(Ic = 2 A, VCE = W)
(Ic = 4 A, VCE = 1V)
Collector-Emitter Saturation Voltage
. (Ic =BA, Is =O.4A)
. (Ic = BA, Is = O.4A, Tc = 100°C)
(IC = 15A, Is =3.0A, TC = 100°C)
Base-Emitter Saturation Voltage
(Ic = 8A, Is = O.4A)
(Ic =BA, Is = O.4A, TC = 100°C)

hFE

VCE(sat)

VSE(sat)

dynamic characteristics

Inductive Load, Clamped (See Figure 15 for Test Circuit)
Storage Time
VCC =20V, IC = 8A
Fall Time
VCLAMP = Rated VCEX

L

0.4
0.5
O.B

-

1.2
1.1

V

V

50

MHz

Cos

120

PF

Maximum

Resistive Load (See Figure 16 for Test Circuit)
Delay Time
VCC =20V, Ic =8A
Rise Time
IS1 = IS2 = 0,8A
Storage Time
tp = 25 J.Lsec
Fall Time

Fall Time

-

fT

switching characteristics

Storage Time

-

-

Typical

Current-Gain - Bandwidth Product
(IC =0.1A, VCE = 10V, ftest= 1 MHz)
Output Capacitance
(VCS =10V, IE =0, ftest =1 MHz)

IS1

-

35
20

TC
td
tr
ts
tf

25°C
50

200

-

ts
tf

800

-

=o.8A, VSE(off) =-5V
ts

=200 ph

tf

(1) Pulse Duration = 300 J.lSec, Duty Factor,;;; 2%.
(2) See Figure 15 for Test Circuit.

458

250
700

100°C

400
1BO
Typical
370
2BO
130
150

nsec
nsec
nsec
nsec
nsec
nsec
nsec
nsec

SAFE OPERATING AREA

----:s ..
---

...

J =150·c
200

2.0

~ •... r..

T =25·C
100
BO
"T:l= -55·C
60
50
40
30

-

.....

1.8

-

I

1.6

'"~

1.4

............

g
a:

1.2

::

'"

1.0

i
~
~
u

O.B

1""1

IOl:I!..

1"'"0

..

10
B

2

~

g

-

.20

6
S
4
3

TC"25"C

III

~

0.6

'"5 0.4

\

~ 0.2
>

---,VCj'IT
0.6 O.S I.
2.
4.
6.
Ie. COLLECTOR CURRENT-AMPERES

0.4

0.2

\

u

-vCE=IV

B.IO.

5 10-3

/

III

/
o

V

V

k::::!:===~

O.B

~

g

~ po-

0.6

Ii!!i

j

0.4

VCE(SAT)@ Ie/Ie' 10

tiIII

",IIIC

0.2

/

.1
.2
.3
VeE. BASE-EMITTER VOLTAGE - VOLTS

---,.....,..

o

.5

.4

0.1

.

--...

....

Tc "2!1"C

r--....

600
III
CI

:400

:o

-

.....

III

20

....

""'"- .........

(j

~

J /

g

CEiO

:J
..J

ooC . /

.5

:E

0ye FOR veE (SAT)

I

~

0

'"(jii:
'"uo

-.5

z

t.........

J

1.0

~

u

~
j!

le/lej 5

u

800

I

i

rVeE(sATI f---

4. SATURATION VOLTAGE

1000

'" 200

~!""'"

!f'

0.4 0.6 O.B I
2
4
6 B 10
Ie. COLLECTOR CURRENT - AMPERES

0.2

3. COLLECTOR CUTOFF REGION

ir

>-VeE(ONI@ VeE' IV

~

z
o

TJ= 2S·V

/

#

l:?'"

VBE(sATI@ le/le = lOl""-



/

/

/
I

Te =

/

V

100

1.2

/

/

TJ=IS0:7

S 10-2
5 10-1
5
Ie. BASE CURRENT - AMPERES

2. COLLECTOR SATURATION REGION

/

/

'--I-

--

r---

15.

1. DC CURRENT GAIN

VeE = 30V

Ie -15A

Ie -lOA

Ie' 5A

..J

I

~

Ie -I.OA

Ie" O.OIA

II.

r-.. r-- r-I'-

100

l:!

oC

-1.0

ti

ffi

-I.S

Q.

BO

-

:E

r-

.1

'";> -2.0

i

s

.2

.4

.6.8

I

~

2

4

6

8 10

.04

REVERSE BIAS VOLTAGE - VOLTS

5. CAPACITANCE

.06.0B.1

~

I-

V

- ~I

.2
.4.6.B I
2
Ie. COLLECTOR CURRENT - AMPERES

6. SATURATION VOLTAGE
TEMPERATURE COEFFICIENTS

459

L

-

?SoC

0YB FOR VBE
Ie leIS _

I-

60

... ?Soc't

_5SoC TO +?SoC

::>

~

~

4

6

B 10

50
40

I

~ 20

:Ii
C

"

I

10

a

8
6

I

g:

8j 2

"

"1'\

VCEX(MAX)

I

I

2

VeE. COLLECTOR-EM'TTER VOLTAGE - VOLTS

I~~

,

D44VHI
D44VH4
D44VH7
D44VHIO

I

"!-,-----:!!----1-+--'-~+~--~::----L--,40J"L..L..,60.I:-I-='801,-l-,l1OO

III

'oo·c

a:

!Z1&1

I

VeE (OFF) • -5V
TC~
L=200,.h

til 30
1&1'

3
4 5 6 78910
20
30 40 5060 80 100
VCE' COLLECTOR-EMITTER VOLTAGE - VOLTS

8. REVERSE BIAS SOA

7. FORWARD BIAS SOA

TYPICAL SWITCHING CHARACTERISTICS
0

1&1
til

c

1&1

:Ii

'000
800
600

-

400 f..-- Tc=25°C

ls_

I--- vCC'20V,VBE(OFF)=-5V
i=
C>
z 200 I--- IBI' I B2=Ic "0
:E
SEE FIGURE 16 FOR
~

TEST CIRCUIT

-~

j

til

I-

z

100
80

1&1

a:
a:

60

0

40

tr_

~

1,=

:::>

a:

td -

i0:?

1&1
...J
...J

20

0
0

~

4
6
B
Ic,COLLECTOR CURRENT (AMPERES)

2

~

9. RESISTIVE SWITCHING TIME

,..

800
-

600

.!

400

~

I-

-

- ----

t.
t.
t

0
0

0

Vee ~ IOV

l-

I

i",

-

1.0

I.

,.

t,.,A ~ ~
..!,~~

4

6
8
Ie' COLLECTOR CURRENT (AMPERES)

'0

~~

't.IOA

REfER TO F'GURE • FOR
NOR.AL SWITCH'NG TillES

ft',A

0.40

'5

V-

l /~

~

...,~
~

"",0: 7

0.'

t

2

---&

VII! IOf" • -!IV
Tc' 2!1'"C

1.2

i

Tc"'OO·C
- - T c o25·C
CLAMPEO 'NDUCTIVE LOAD I - IBole/I0.VBE(OFF)"-5V
Vee "20V, VCE(CLAMP)oeov
L o 200,.h
- I--SEE FIGURE '5 FOR
TEST CIRCUIT

l/

00

..,

I I

RESIST,vE LOAD
I .. ole/lO

1.4

!

-.1..- 1 - - - -

~

0
0

-- -.
--

0.2

0.4

0.'

0..

1.0

1.2

1.4

1.6

I..

RAT'O, 11,1112

10. CLAMPED INDUCTIVE SWITCHING TIME

11. SWITCHING TIME VARIATION WITH IB2

460

2.0

2.0

~

~
I

UJ

~
~

UJ
0.

~

.2

-'

.1

~ .OB
ff-

.06

J

II

b~? V I--'
~--:;
o·
~~~

~p'l.

~

~~

.........:
~

~

'"

80

n: 70
UJ

~

JLJL

0.
C
UJ

~I~J

,,":J~

~~~
o u"~

~ .04 fiii

":J'~

~

..........

~

60
50

""-,

.............

r--.....

'""'"

o

20

.02

BREAKDOWN
r--..... i"'---.SECOND
DERATING

r-.... i"--...

DERATING

o-e3Q

DUTY CYCLE = 1,11 2

..........

'~HERMAL

~ 40

z

:=
LJ
C!I

B10'

>
z

~
0

u

0

~

a:

:;)

~
CI)

I

111111

I

-1.0

-10.

j

I
I

VBE (SAT) @ IC/IB

=10

I, .II II!.! I

--I--::±:t
1

-.6

---

VeE (SAT! (q IC/IB =5,
-.4

I
I

1 1 I I LIL
1 I II ~.
VCE (SAT!@Ie/IB = 10 ___

-.2

o

-0.1

l'

I I
-0.2

-0.5
I C,

i'--..

I

I,
V

.> ".'"

~ ,.;"
I'--....

II
i-:::.-! ~
I L1""--:;::::::"
II

~

~~

-1.0
2.0
-5.0
-10.0
COLLECTOR' CURRENT, AMPS.

-20.0

4. SATURATION VOLTAGE

3. COLLECTOR CUTOFF REGION

TC :250 C

"-

600
~ 500

. . . t"-.C.bo

r-.

Go

400

"-

300

.......

~ ~CbO

r-.

CII

u

-5,A ;-

-.01
-.1
BASE CURRENT, AMPS

VBE (ONJ@VCE = -I~,,;:><
-.8

~

8

~

~fi,~

-1.4
VCE: -30V

i!

=-lOA

~

2. COLLECTOR SATURATION REGION

104

'"~

\

Ie

I'

-.2
>
0
-.0001

1. DC CURRENT GAIN

1,000
900
800
700

I'..

\

-.8

~

-.5

Ic "-15A

-1.0

- - - VeE"'OV

I
-.I

TC:250C

200

~
.5

1.0
2.0 3.0 5.0
10.
VR REVERSE VOLTAGE (VOLTS)

'"

t'- . . .
50

-.1
-.2 -.3
-1.0
3.0
Ic COLLECTOR CURRENT (AMPS)

80

5. CAPACITANCE

6. SATURATION VOLTAGE
TEMPERATURE COEFFICIENTS

465

-10.

-15.

SAFE OPERATING AREA
-SO
-30
-20
:

MAX DC
COLLECTOR CURRENT

10

~

8

io :

.' ... · . '. .......... . '. ,,
. ·. ................
'.
. ...... . . '.

.·

,

,

2 1 - - - - BONDING WIRE LIMITED

6

-.1

-I

-2

I

I


u

g
!rl
.J

~

200

600
400

f----

i=

60
40

20

8

III

200

:E

I

l-

i

- ---2

-

z

III

1_

II:
II:

60

u

40

:::>

20

.J

8

4
6
8
Ic,COLLECTOR CURRENT (AMPERES)

10

1.6

-

I I

I

~

4
6
B
Ie,COLLECTOR CURRENT (AMPERES)

2

15

9. RESISTIVE SWITCHING TIME

=
-

CLAMPED INDUCTIVE LOAD IB,=IeIlO,VBE(OFF)=SV
Vcc = 20V, VeE(CLAMP)=
RATED VCEX
L s 200fLh

~

!rl.J

-

Tc= 100·C
Tc =25·C

II:

Id

-

II_
II

100
BO

I-

,- .-

.-

Is

... ~ -

V-

u

Ul

IS

1---- -

:IE

III
Z

_ _I ! . - - -

100
BO

~

~

-=

f-----

lel"le2"leIi0
SEE FIGURE 16 FOR
TEST CIRCUIT

1000
_ 800

f----

VCC'-20V, VBE(OFF)= SV f----

......

:IE

III

If----

TC =2S"C

ffi

10. CLAMPED INDUCTIVE SWITCHING TIME

,--,---,---,---,---,,---r--,---,--"'---:;""

10
8
6
~
u 4

...
1.4 1---.j---+---+--+--I----~r_::..6-~+,......"'3

~

~ 2

III

:IE

Q)

i=

N

~ 1.2

III

'"lOA

:E

u

10 f- DUTY CYCLE = O.S

z 8
6

CI
0

~

~ 1.0 1--+--+---+-+---.::oI~--II___+-__+-+_---1

o

III

4

Q.

!
.J
CI

III

N

:J

:i O.B
II:

li!
0.6,

2

:IE

1----I---I--"7'1~41_-

I"IDA
I., lOA
I"IA

RESISTIVE LOAD - \ - - + - - - 1

la, "Ie liD, Vce" -IOV

ffi:z:
~
z

....~--+---+VBE(OFF)"5V,Te·25·C

III

0.2
0.1

~

~

]....0

10 0.0"
B
0.01
6
4 ~I- SINGLE PULSE

II:

Ilimrl'i 11111111

I-

11. SWITCHING TIME VARIATION WITH

j".~L

DUTY CYCLE D," 111t2
DUTY CYCLE CURVES APPLY
FOR POWER PULSE TRAINS.
TIME I, REPRESENTS PULSE

z
CI 2

0.4 '---O±l:2;----;0;'-..4:---=0l::.6-""0:t:.B;---;'L,;.0:---~I.2.-----;7-7;;---;I';;.B:---......;;2.0
RATlO,IBI/I BZ

...flSL

~~

in

I.,IA

~

10-6

10-5

10-4
10'3
I, TIME (SEC.)

10-2

12. TRANSIENT THERMAL RESPONSE

182

466

I II
10-1

100

~

90

~ ..........

-60

..........

"""-

BO

r-....

UI

"

...........
"~HERMAL

20
10
10

20

30 40

Ml

60

70

r-....

80

90

100

w
111 -40
::>
o

T C =2S·C

1\

0:

'" "

g

Iil

'" "'"

~

".,:z

........ ........

DERATING

~

00

~ -50

r---... r--.....

SECOND BREAKDOWN
DERATING

-30

1'\

-l
-l

oo

l.:

"-

" -20
w
11.

""

110 120 130 140 150

Tc, CASE TEMPERATURE,·C

-10

1.01.

0.1

13. POWER DERATING FACTOR

1.0
PULSE WIDTH, MSEC.

10.0

100.

14.· MAXIMUM SINGLE PULSE
COLLECTOR CURRENT

TEST CIRCUITS
+SV

-Vcc

+5V

-Vcc

01

RESISTIVE SWITCHING

1

L-200",H

i b2

t---K~I--oQ -VCECCLAIiIPI

RL

.5n

Rc

=~,

Rs

=- -0.5

NON-INDUCTIVE

Ic

VB

Ibl

RB
OUT

INDUCTIVE SWITCHING
VB

Rs

= i;

TRANSITION TIME 90"10 lSI
TO 90"1. I S2 LESS THAN
10 N.S.

.511

"ON" PULSE WIDTH AND Vcc
ADJUSTED FOR DESIRED PEAK Ic.

O2

r

TRANSITION TIME FROM
90"10 lSI TO 90"10 IS2 LESS
THAN 10 N.S.

bl

-=
-Va

16. RESISTIVE SWITCHING

15. INDUCTIVE SWITCHING AND VCEX

467

468

VERY HIGH SPEED

D44VM Series

NPN POWER TRANSISTORS

30- 80 VOLTS
8 AMP, 50 WATTS

COMPLEMENTARY TO THE D45VM SERIES

The D44VM is a NPN power transistor especially designed for
use in switching circuits such as switching regulators, highfrequency inverters/converters and other applications where
very fast switching and low-saturation voltages are n~cessary.
This device is characterized with performance information
which relates directly to switching, including 100° C maximum
limits specified for switching times, saturation voltages, and
leakage currents.

NPN
COLLECTOR

EMITIER

CASE STYLE TO-220AB
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

:1~g\!:~~\~
.05511.391
1
.04Bll.nl

.--- .

Features:

.26516.731
.24516.221

• Very Fast Switching ts :::;;; 500 ns resistive
tf:::;;; 75 ns

/

.T

:1:~:~:~:\DIA.

• Very Low VeE(sat):::;;; O.4V @ Ie = 4A

+

• High Gain HFE ~ 40@ Ie = 4A

~

.13013.31

'"

CASE
:rEMPERATURE

/E~5~~~CE

:;~;:~:~;\----,
.22015.591

-T
TERM.l

•

t--t--I-----tt-ir---'-l

ft~IIII"!rr-...,

~iJI

.500112.7IMIN.

TERM.2
TERM.3

.0331~.B41

.02710.691

.1~.10512.671

.05511.391-/
.04511.141

maximum ratings (TA

=25° C)

.10712.721
.08712.211

~ ".09512.411

1--'
I--

.21015.331
.19014.B21

'.°0215111°0..533811

(unless otherwise specified)

RATING
Collector-Emitter Voltage
Collector-Emitter Voltage
Collector-Emitter Voltage
Emitter Base Voltage
Collector Current - Continuous
- Peak (1)
Base Current - Continuous
- Peak (1)
Total Power Dissipation @TC = 25°C
@TC= 100°C
Derate above 25° C
Operating and Storage Junction
Temperature Range

SYMBOL
VCEO(sus)
VCEX
VCEV
VES
IC
ICM
18
IBM
Po

TJ, TSTG

D44VM1
30
30
50

D44VM4
45
45
70

D44VM7
60
60
80
7
8
20
2
5
50
20
0.4

D44VM10
80
80
100

UNIT
V
V
V
V
A
A
Watts
W/oC

-55 to +150

°C

thermal characteristics
SYMBOL

CHARACTERISTICS
Thermal Resistance, Junction to Case
Thermal Resistance, Junction to Ambient
Maximum Lead Temperature for Soldering
Purposes: 1/8" from Case for 5 Seconds
(1) Pulse measurement condition PW';; 6.0 ms.

469

R8JC
R8JA

MAX
2.5
74

UNIT
°C/W
°C/W

TL

235

°C

electrical characteristics (T c

I

=25° C)

(unless otherwise specified)

I

CHARACTERISTICS

SYMBOL

MIN

MAX

30
45
60
80

-

UNIT·

off characteristics(1)
Collector-Emitter Sustaining Voltage(1) (IC =100mA, Is
D44VM1
D44VM4
D44VM7
D44VM10
Collector-Emitter Voltage(2)
(Ic =3A, VCLAMP =Rated VCEX, Tc:S;; 100°C)
D44VM1
D44VM4
D44VM7
D44VM10
Collector Cutoff Current
(VCEV =Rated Value, VSE(off) =4.0V)
(VCEV =Rated Value, VSE(off) =4.0V, Tc =100°C)
Collector Cutoff Current
(VCE =Rated VCEV, RBE =50 n, Tc =100°C)
Emitter Cutoff Current (VES =7V, Ic =0)

=0)

VCEO(sus)

V

VCEX

-

30
45
60
80
ICEV

-

pA

-

10
100.

-

100

pA

10

pA

ICER
lEBO

V

second breakdown
Second Breakdown with Base Forward Biased
Second Breakdown with Base Reverse Biased

SEE FIGURE 7
SEE FIGURE 8

FSSOA
RSSOA

on characteristics(1)
DC Current Gain
(Ic =4A, VCE =1V)
(Ic =6A, VCE =1V)
Collector-Emitter Saturation Voltage
(Ic =4A, Is =0.2A)
(Ic =6A, Is =0.3A)
(Ic =8A, Is =0.8A, Tc =100°C)
Base-Emitter Saturation Voltage
(Ic =4A, Is =0.2A)
(Ic =4A, Is =0.2A, Tc =100°C)

hFE

VCE(sat)

VBE(sat)

dynamic characteristics

-

40
20

-

-

0.4
0.6
1.0

-

1.2
1.2

V

V

Typical

Current-Gain - Bandwidth Product
(Ic =0.1A, VCE =10V, ftest =1 MHz)
Output Capacitance
(VCS =10V, IE =0, ftest =1 MHz)

fT

50

MHz

Cos

70

PF

switching characteristics

Maximum

Resistive Load (See Figure 16 for Test Circuit)
Delay Time
VCC == 30V, IC =6A
Rise Time
IS1 =IS2 =0.6A
Storage Time
tp =25 psec
Fall Time

Tc
td
tr
ts
tf

Inductive Load, Clamped (See Figure 15 for Test Circuit)
Storage Time
VCE(CLAMP) =30V, Ic =6A
Fall Time
IS1 =IS2 =0.6A, VSE(OFF) =-5V

ts
tf

500
600
70
100
Typical

nsec
nsec

Storage Time
Fall Time

ts
tf

340
40

nsec
nsec

L

=200 ph

(1) Pulse Duration = 300 Jlsec, Duty Factor OS;; 2%.
(2) See Figure 15 for Test Circuit.

470

25°C
30
250
500
75

100°C
40
350
600
250

430
57

nsec
nsec
nsec
nsec

TYPICAL DC CHARACTERISTICS

"...

III

~

o

TJ "ISO'C

200 ' - -

II:
II:

::>

'-'

'-'
Q

.;.

...

-~

T~2S·~I.
J "-SSoC

Z

I/J

"' "'

2.6

400

z
C

,

2.B

1,000
800
600

100
80

::r
I/J

2.2

o
>

loB

"~

..........

~ ...........

II:

...
t:

I/J

:l!
I/J

60

a:

40

~

\

- - VCE =1.0V

:r

---VCE"S.OV

U

.4

'"

>
0.2

0.4

0.6

1.0

4.0

2.0

6.0

1.0

.6

U

10
0.10

\

1.2

.B

10

\

\

.2

o

.002

.004 .006 .01

......
2

1.0
0.8
0.6

.04

...'-'
...J
...J

0

'-'.

'"
>u

.s,. 40

,sf'lcllel

I/J

0

TC = 2SoC

4.0

1l,=Ic/iel

TC '2S oC

::/

2.0

.sf=20~ V

0.2

II:

I

.B"I~

~ ~f=IO

1.0
O.B

...........

~

.01
0.1

0.4

....-

...............

0.2

0.2

0.4

0.6

1.0

2.0

4.0

6.0

0.1
0.1

10

0.2

1,000
800

t

~

600

I

;!
U

..........

>
:;

C~b

~
«
'-'.

'-'

2.0

V

loS

...J

1.0

...

.S

II)

I/J

r--

U

;;:

...

oe

-;P

4>vc FOR VCE(SAT)
Ic/le= 10

Z

o

~

I-

_SSoC TO +2SoC_

-

I-

I/J

0

60

-....;,.

40

'-'

......

-.S

I/J

II:
:J

Cob

~

II:
11.

:l!

20

.1

III

1.0

...

4>ve FOR VeE

-loS

I/J

>

-&-

10.0

100

-2.0

-

0.4 .06 .OB .1

le~

I
.2

~

-

.4

.6

_SSoc TO +2So c

471

-

I
.B I

2

FIGURE 6. SATURATION VOLTAGE
TEMPERATURE COEFFICIENTS

FIGURE 5. CAPACITANCE

/

7.<;,oe

IC,COLLECTOR CURRENT-AMPERES

VR,REVERSE VOLTAGE-VOLTS

./

Ooe

-1.0

I/J

TC=2SoC

10

V

/

ooe

~

200

100
80

6.0 B.O 10

4.0

2.0

0

I/J

'-'
Z

0.6 O.B 1.0

FIGURE 4. VBE(SATI VS. IC

FIGURE 3. VCE(SATI VS. IC

F--::

0.4

IC,COLLECTOR CURRENT-AMPERES

IC ,COLLECTOR CURRENT-AMPERES

Q.

;;:

.B,=40~/

0.6

.02

400

1.0

6.0

-

0.4

.10
.08
.06

I/J

0.4 0.6

0.2

10

>

II:

0.1

ao

0

I/J

.04 .06

FIGURE 2. COLLECTOR SATURATION REGION

2.0

:r
"~

.02

le,BASE CURRENT-AMPERES

III

I/J

-- -

\

.001

FIGURE 1. DC CURRENT GAIN

~

1\

\

IC,COLLECTOR CURRENT·AMPERES

0

TC'2SoC

\
\

\

1.4

...J
...J

"'

- r
\

\

1.6

u

o

\

"

IT
IC=BA

2.0

I/J

20

\

1111
I
2.4 - I C ' IA r-IC'2 .SA r--IC=SA

4

·6

B 10

SAFE OPERATING AREA

....en
.......:IE
,
....
Z
....
II:
II:

~

-

u

....
~
~

0

-

.

D44VMI ~
D44VM4

A

D44VM7 - D44VMI0

t-- TC.a25"C

~

en
....
II:

10

~

B

.......

SECOND BREAKDOWN
\
LIMIT
VeEO(MAX).-'

1.0
.B
.6

'-!.

~

~

DC
~

_ -- BONDING WIRE LIMIT \. \.
_____ THERMAL LIMIT
I\.\.
2.0

DUTY CYCLE SI"I.

6

4

j!.

\.

~

~ 1'\
....-

II:

~
:.:

j

D44VM4

D44VM7

2

D44VMI0

1\1\\

40

20

D44VMI

8

\.

"~

4

~
~

1\

B 10

6

u

~

II

~

z
....
II:

r-

III

.2

2

TC'IOO'C
'BI='B2='c/10
VBE(OFF) =-5V
L-200 I'H
I p '75I'SEC

..... ..,.v-IO I'SEC

. . . . .1

4.0

::;)

~

~msEd~ 'j~~C

10
B.O
6.0

II:

U
II:

--........ 100l'SEC

. .1.1_~

20 f--

60 BO 100

10

VCE,COLLECTOR-EMITTER VOLTAGE-VOLTS

30

20

50

40

70

60

80

VCE(CLAMP),COLLECTOR-EMITTER CLAMP' VOLTAGE -VOLTS

FIGURE 7. FORWARD BIAS SOA

FIGURE 8. CLAMPED REVERSE BIAS SOA

TYPICAL SWITCHING CHARACTERISTICS
u

~

!Ii
1=

BOO
1,000
600

~~~~~~~~~~~~~~~~~~~~~~~
-

400 I -- -

--

~

% 200

~

__ Is

:.:

TC =100' -11-----t-----"'i-l~"'-:--It----"'-'-I--:::::-+-_t_-+---t
TC =25'
's - I - -

I'

_

-

I:::

~

60

U

40

::;)

~

~

~

....
::IE

j::

If----- - - - -

t--

--_-I--

--

~

8

~

1--1--

~

en

-

....Z

UJ

II:
II:

100
BO
60

___ -.!.d_-_-+-_---t---t--t--t--t--+-t-1 ~

rr:::::======~~~~:j::~~~~~~.-~~.~-~-~~
Vee=30V
Ip=25I'SEC
SEE FIG. 16 FOR
TEST CIRCUIT

U

UJ

2.0

4.0

6.0

~

20

...J
...J

--- ---

-

I--

o

U

10L------~~--~--~-~-~-~~~~

1.0

t---_

t-40 t-t--

U
II:

I

B.O

10

10

le=~

'"

i=

'":E

".-

1.25

z

u
....

1.0

~

0
....
N

Ie=BA/
.75

:::i

le.l4A /

-1-t-i %
200
-_
... j:..:::::::r':'-!--"

~ If

~ ~I ~
....
z
.... BO~_I!. __
II:
II:

en

1.0

1

1.2

1

1.4

1.6

I.B

FIGURE 12. FALL TIME VARIATION WITH 182

472

2.0

100

....~

10
8.0 ~
6.0
4.0

o

2.0 f-oUJY CYCLE

~
11.1
Z

4

o

11.1
0..

~

;;i
:::I!

a:

11.1
:l:

....
....
Z

'"inz
4

I=:=F

1.0

.8
.6
.4

.2

11.1

~60

-

0..

~

I~

.08

a:

....

III: 70

~

o

......

11.150

~

!i

-

-

105

10-2

10-3

r--....

DERATING

~

"'-

10

o
o

10-1

10

20

30 40

50

60

70

r-.... ............

~HERMAL

20

III rmr III
10-4

..........

"-

ae3Q

DUTY CYCLE -'I /12

.01
106

SECOND BREAKDOWN
............ ,DERATING

o

~J

.02

r-.....

~40

.JLJL

~~

..........

'"'" "

BO

...-

.06
.04

~~ I'--......

90

80

90

'"

r-....

"-

FIGURE 14. POWER DERATING FACTOR

FIGURE 13. TRANSIENT THERMAL RESPONSE

TEST CIRCUITS

L' 200f'H

+--t*--... ve~AMP
DI
DT230B

FOR SW. TIMES AND RBSOA
FOR SUSTAINING VOLTAGE

-5V

Rs' VaB
IBI
"ON" PULSE WIDTH AND Vee
ADJUSTED FOR DESIRED PEAK Ic.
TRANSITION TIME FROM
90% lal TO 90% la2 LESS
THAN IOnS.

FIGURE 15. INDUCTIVE SWITCHING AND VCEX

R~' ~~c
Ra'

, NON INDUCTIVE

Vas

1iiI- 0.5

TRANSITION TIME FROM
90% lSI TO 90% la2 LESS
THAN IOnS.

-5V

FIGURE 16. RESISTIVE SWITCHING

473

"

100 110 120 130 140 150
.

Tc, CASE TEMPERATURE,·C

'I-PULSE WIDTH-SECONDS

474

VERY HIGH SPEED

PNP POWER TRANSISTORS

D45VM Series
-30 - -80 VOLTS
-8 AMP, 50 WATTS

COMPLEMENTARY TO THE D44VM SERIES

The D45VM is an PNP power transistor especially designed for
use in switching circuits such as switching regulators, highfrequency inverters/converters and other applications where
very fast switching and low-saturation voltages are necessary.
This device is characterized with performance information
which relates directly to switching, including 100°C maximum
limits specified for switching times, saturation voltages, and
leakage currents.

PNP
COLLECTOR

~'-E9

EMITTER

:~~g\!:~~\rt
.05511.39)
I
.048I1.n)

....---

Features:

.26516.73)

:245i6.22i

• Very Fast Switching ts ~ 500 ns resistive
tf ~ 75 ns

t--+---+----lfr--

_

CASE
TEMPERATURE
REFERENCE

/ " POINT

:~~~\~:~~l

• Very Low VeE(sat) ~ O.4V @ Ie = 4A

~

• High Gain HFE ~ 40 @ Ie = 4A

....n+TT1r-'.13013.3)

--,.22015.59)

~i~)

-:t

TERM.l

-tf;'~IIII4n--,

TERM.2

.500112.7)MIN.

.055 1.39
.0451.1

TERM.3

.0331~

"~.10512.67)

.10712.72)
.08712.21)

.0271~~ ""09512.41)
.05511.39)
_I
.04511.14)--'

maximum ratings (T A = 25 0 C)

1+-.

I--

.21015.33)
.19014.82)

.021(0.53)
.01510.38)

(unless otherwise specified)

RATING
Collector-Emitter Voltage
Collector-Emitter Voltage
Collector-Emitter Voltage
Emitter Sase Voltage
Collector Current - Continuous
- Peak (1)
Base Current - Continuous
-Peak (1)
Total Power Dissipation @ Tc = 25°C
@Tc= 100°C
Derate above 25° C
Operating and Storage Junction
Temperature Range

SYMBOL
VCEO(sus)
VCEX
VCEV
VEBO
Ic
ICM
IB
IBM
Po

TJ, TSTG

D45VM1
-30
-30
-50

D45VM4
-45
-45
-70

D45VM7
-60
-60
-80
-7
-8
-20
-2
-5
50
20
0.4

D45VM10
-80
-80
-100

UNIT
V
V
V
V
A
A
Watts
W/oC

-55 to +150

°C

thermal characteristics
SYMBOL

CHARACTERISTICS
Thermal Resistance, Junction to Case
Thermal Resistance, Junction to Ambient
Maximum Lead Temperature for Soldering
Purposes: 1/8" from Case for 5 Seconds

ROJC
ROJA

h

(1) Pulse measurement condition PW"; 6.0 ms.

475

MAX
2_5
74

UNIT
°C/W
°C/W

235

°C

electrical characteristics (T c = 25° C)

I

(unless otherwise specified)

I

CHARACTERISTICS

SYMBOL

MIN

MAX

UNIT

off characteristics(1)
Collector-Emitter Sustaining Voltage(1) (IC =-100mA, Is =0)
D45VM1
D45VM4
D45VM7
D45VM10
Collector-Emitter Voltage(2)
(Ic =3A, VCLAMP =Rated VCEX, TC:S:;; 100°C)
D45VM1
D45VM4
D45VM7
D45VM10
Collector Cutoff Current
(VCEV =Rated Value, VSE(off) =-4.0V)
(VCEV = Rated Value, VSE(off) =-4.0V, TC = 100°C)
Collector Cutoff Current
(VCE =Rated VCEV, RSE =50 .11, Tc =100°C)
Emitter Cutoff Current (VES =7V, Ic =0)

VCEO(sus)

-

-30
-45
-60
-80

V

VCEX

ICEV

ICER
IESO

V

-30
-45
-60
-80

-

-

-10
-100

pA

-

-100

pA

-10

pA

second breakdown
Second Breakdown with Base Forward Biased
Second Breakdown with Base Reverse Biased

SEE FIGURE 7
SEE FIGURE 8

FSSOA
RSSOA

on characteristics(1)
DC Current Gain
(Ic =-4A, VCE =-1V)
(Ic =-6A, VCE =-1V)
Collector-Emitter Saturation Voltage
(IC =-4A, Is =-0.2A)
(IC =-6A, Is =-0.3A)
(IC =-8A, Is =-0.8A, Tc = 100°C)
Base-Emitter Saturation Voltage
(IC =-4A, Is =-0.2A)
(IC =-4A, Is =-0.2A, T C = 100o G)

hFE

VCE(sat)

VSE(sat)

40
20

-

-

-0.4
-0.6
-1.0

-

-1.2
-1.2

V

V

dynamic characteristics

Typical

Current-Gain - Bandwidth Product
(IC =-O.1A, VCE =-10V, ftest = 1 MHz)
Output Capacitance
(VCS =-10V, IE =0, ftest = 1 MHz)

fT

50

MHz

Cos

70

PF

switching characteristics

Maximum

Resistive Load (See Figure 16 for Test Circuit)
Delay Time
VCC =30V, Ic =6A
Rise Time
IS1 = IS2 =0.6A
Storage Time
tp =25 psec
Fall Time
Inductive Load, Clamped (See Figure 15 for Test Circuit)
Storage Time
Fall Time
Storage Time
Fall Time

tr
ts
tf

25°C
30
250
500
75

100°C
40
350
600
250

nsec
nsec
nsec
nsec

ts

500

600

nsec

tf

70

100

nsec

ts
tf

Typical
340
430
40
57

nsec

TC
td

=30V, IC =6A
IS1 = IS2 =0.6A, VSE(OFF) =-5V

VCE(CLAMP)

L

-

=200 ph

(1) Pulse Duration = 300 /lsec, Duty Factor';;; 2%.
(2) See Figure 15 for Test Circuit.

476

nsec

I

TYPICAL DC CHARACTERISTICS
2.B

I

2.6

rn

~

~
L&J

'"~

6>
a:

ci:

1.0

.8

-'

.6

u

.4

>

.2

o-'

...u

\
\

1.6

U
L&J

- TC' 2So C

\

I.B

1.2

-

,

2.0

::f

g

Ic· 8A

le' 2. 5 A -I c- SA'

II I

\

2.2

1.4

L&J

III
II

2.4 r---Ic- IA

L&J
l-

t::

,

III II

\

\
\

\
\

\

o

.001

.002

...........

.004 .006 .01'

.02

.04 .06

0.1

0.2

0.4 0.6

1.0

Ie .BASE CURRENT-AMPERES

Ie. COLLECTOR CURRENT-AMPERES

FIGURE 2. COLLECTOR SATURATION REGION
FIGURE 1. DC CURRENT GAIN

-10.0

10

ao
Ul

If-4

II

-1.0

~

~
L&J

B=20

'"
;!

IR=IC '--

~

/'V

I

..

~

;;;
u

> -.10

,/

TJ =25°C

i

0.6

~
rn


0.2

0.1
0.1

0.2

~

-..

Ul

600

.

D.

13

u

U

4.0

6.0 8.0 10

Ul

.5

I

1.0

13
ii:

...

0

0

-.5

~
~
"C
_S50C TO +25 _

I'

~oe,

4>vc FOR VCE (SAT)
Ic/le' IO

L&J

r--

./

o°e,

~

:.-

i--

l - i-

L&J

......

40

u

.........

L&J

a:

Cob

=>

lia:
L&J
II.

Tc= 25°C

::f

20

10

1.5

z

100
BO
60

2.0

2.0

~
0
>
:::;
-'

I-

Z

if
 -2.0

100

~

0.4 .06 .OB .1

le'~ ::;..;; ~

---·C
_SS"C TO +2~

I
.2

.4

.6

.8 I

I

I

2

46

IC.COLLECTOR CURRENT-AMPERES

VR.REVERSE VOLTAGE-VOLTS

FIGURE 6. SATURATION VOLTAGE
TEMPERATURE COEFFICIENTS

FIGURE 5. CAPACITANCE

477

./

'l.~oe,

4>ve FOR VeE

-1.5

L&J
I-

10.0

./

<:;o0e,

-1.0

-B 10

SAFE OPERATING AREA

20

en
a:
"-

10
S.O
6.0

«I

4.0

'"
'"::I
IZ

'"a:a:

2.0

r----

~msEd~

a:
0

I-

:.l
...J

...J

0
~

.!!

..... j

-':-.,

'"~a:

DC-"'"'"'

~

_ -- SONDING WIRE LIMIT \. \.
_ - - - - - THERMAL LIMIT
I
,,\

1.0
.S
.6

D45VMl
D45VM4

I- DUTY CYCLE SI"I.
.2

I

2

I

46

~

'"~

-

::;)

~

\

a:

~
u

'\.

'"

4

...J
...J

o

1,\

u.

1\

20

6

u

1\

SIO

8

t!.

z

~ 1\

D45VM7 - - D45VM10

i-- TC"2S"C

'BI"'B2='c"0
VBE (OFF)" -SV
L=200 /LH
I p "75/LSEC

10

:n

SECOND BREAKDOWN
\
LIMIT
VCEO(MAX)-,

.4

TC"IOO"C

...,-IO/LSEC

........ 100/LSEC

--t

::;)

u

.•l.l~~ r---.J{JEC

~I\

.!i

-

"

D45VM10

D45VM7

D45VM4

D45VMl

2

1\
10

406080100

VCE,COLLECTOR ·EMITTER VOLTAGE-VOLTS

50

40

30

20

80

70

60

VCE(CLAMP),COLLECTDR-EMITTER CLAMP VOLTAGE -VOLTS

FIGURE 7. FORWARD BIAS SOA

FIGURE 8. CLAMPED REVERSE BIAS SOA

TYPICAL SWITCHING CHARACTERISTICS

-

1,000
SOO
en 600

u

'"f

'"i=2
'"z
:;:
U
l-

ien
lZ

400

Tc=IOO·
TC =25"

--

~---100
so
60

u

40

::;)

:.l
...J

--

1----

-

200 ~If

'"a:a:

a:
~

--

I;:_I!.

t---

__

---- ----- -...
s

~

f
::E
'"i=

Oo
Oo

t-

'"

:;:

F,,:.::: ~, ~

20

I-

~

-Oo

100 to-80

IZ

'"a:a:

VCC=30V
'BI=I B2 =I e "0

...J

0

U

1.0

.-

-lIp=25/LSEC

I

2.0

60

t--40 t--t---

~

-- .-

u

'"

6.0

8.0

20

...J
...J

SEE FIG. 16 FOR
TEST CIRCUIT

4.0

--

1.50

~

1.0

i

Ie=8A_

en
Q

'":::;

.75

-/

~

~

N

')4A/

«

::E

a:

10

10

0

z

.2

.4

.6

'c/IBI=IO
VBE (OFF)=-5V
I p =25 /LSEC

1.0

If

-

-

'BI='B2=lc "0
L=200 /LH,VBE(OFF)=-5V
Ip =25 /LSEC

I--

I

I

2.0

4.0

6.0

8.0

I

10

~-

1.25

1.0

--

J

I

I

1.2

1.4

1.6

Ic=8A-

'":::;

.75

::E

.50

N

a:
0
z

r---

~

-;::;:r

/

I

FIGURE 11. STORAGE TIME VARIATION WITH 182

.2

.4

.6

.8

I

t-----

VBE(OFF)" -5V
I p =75 /LSEC

.25

o

'c"8A

I

'cIIBI=IO

REFER TO FIG. 10 FOR
NORMAL SWITCHING TIMES

2.0

~ r'""

INDUCTIVE LOAD
Tc =25"C
L "200 /LH
VCE(CLAMPEDI"3OV _

'c=4A/

«

-

1.8

ien
Q

/.

"...

'":;:z

VCE(CLAMPED) =30V _

.8

--

1.50

'"i=::E

A=sA

INDUCTIVE LOAD
Tc =25·C
L=200 /LH

.25

o

~

~

V

l-

REFER TO FIG. 10 FOR
NORMAL SWITCHING TIMES

..

1.75

u

.50

rOo

FIGURE 10. CLAMP INDUCTIVE TURN·OFF TIME

IC"5-

./

r--

Ie,COLLECTOR CURRENT-AMPERES

1.75

y

Is

----Te=IOO·C
Tc=25·C
VCE(CLAMP

o
U

FIGURE 9. RESISTIVE SWITCHING TIME

1.25

-----

--

le,COLLECTOR CURRENT -AMPERES

'"i=::E
'":;:z

--

200 t-- __

U

I-- f--

a:

-

..

400

::;)

'-

- -

600

z

Ir

__ ..!.d_

-

1,000
800

:.l

J Is

u
t-

10

-

- -- t-

1.0

1

1.2

1

1.4

1.6

1.8

FIGURE 12. FALL TIME VARIATION WITH 182

478

2.0

100
10
B.O
6.0
4.0

.06
.04

10-6

...

~

o

... 50

!ia:

rLIL

o

a-t 30
20

DUTY CYCLE-II/!2

10-3

10-2

"i'.

BREAKDOWN
........... r--...SECOND
DERATING

.............

...........
...........

",HERMAL
DERATING

10-1

o

o

10

20

30

40

"

SO 60 70 BO 90 100 110
Tc • CASE TEMPERATURE. ·C

i'..

~

FIGURE 14. POWER DERATING FACTOR

TEST CIRCUITS

Vee

Vee

L=200J1--+ VeLAMP
01
DT230B
FOR SW. TIMES AND RBSOA
FOR SUSTAINING VOLTAGE

Rs = Vae
lei
"ON" PULSE WIDTH AND Vee
ADJUSTED FOR DESIRED PEAK
TRANSITION TIME FROM
90% Ie, TO 90% le2 LESS
THAN IOn S.

-SV

FIGURE 15. INDUCTIVE SWITCHING AND VCEX

Vee

Vee

!

RL

Ie,

0.5.n

RL

,-

TRANSITION TIME FROM
90% Ie, TO 90% 182 LESS
THAN IOnS.

O.S.n
le2

• NONINDUCTIVE

Vee
Re="'iEi7 -0.5

Re

!

= ~~e

'::'

-5V

FIGURE 16. RESISTIVE SWITCHING

479

Ie.

~

120 130 140 150

'I-PULSE WIDTH-SECONDS

FIGURE 13. TRANSIENT THERMAL RESPONSE

...........

~

10

III

1111111
10-4

...........

'"

'" 40

~J

SINGLE
PULSE

10-S

.........

~60
Q.

.02

.0 I

a: 70

~

........
~

~
~02
.01

I~ 1=

.08

-

,

~~

BO

2.0 r-oUTY CYC LE
.S
1.0
.B
.6 - . 2
.4 - .1

.2

~

90

480

D46TQ1
D46TQ2

HIGH SPEED

NPN POWER TRANSISTORS

400-450 VOLTS
12 AMP, 110 WATTS

The D46TQ1 and D46TQ2 are designed for high-voltage,
high-speed power switching inductive circuits where fall
time is critical. They are particularly suited for 115 and 220V
switch-mode applications such as switching regulators,
inverters, motor controls, solenoid/relay drivers and deflection circuits.

NPN
COLLECTOR

EMITTER

CASE STYLE TO-218

Features:

DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

• VCEO(sus} 400V and 450 V
• 700 V blocking capability
• SOA and switching information.

.156(3.961
MIN.
.461(11.7091

---L

.14713.7341~~==;==;=;""
MAX.

~

1
.048(1.219)
NOM.

00+
.622(15.798)

2

3

~p

1

~...J
.205(5.207)

.450(11.4301
.410(10.414)

maximum ratings (TA = 25° C)

l

.018(.4571
NOM .
.095(2.413)
MIN .

(unless otherwise noted)

RATING
Collector-Emitter Voltage
Collector-Emitter Voltage
Emitter Base Voltage
Collector Current - Continuous
Peak (Repetitive)(l)
Base Current - Continuous
Peak (Non-Repetitive)(l)
Total Power Dissipation @Tc = 25°C
Derate above 25° C
Operating and Storage
Junction Temperature Range

D46TQ1
400
650
6
12
24
6
12
110
0.88

D46TQ2
450
750
6
12
24
6
12
110
0.88

UNITS
Volts
Volts
Volts
A

TJ, TSTG

-65 to +150

-65 to +150

DC

R8JC

1.1

1.1

°CIW

TL

275

275

DC

SYMBOL
VCEO
VCEV
VEBO
IC
ICM·
IB
IBM
PD

A
Watts
WIDC

thermal characteristics
Thermal Resistance, Junction to Case
Maximum Lead Temperature for Soldering
Purpose: W' from Case for 5 Seconds
(1) Pulse Test: Pulse Width

=5ms. Duty Cycle ~ 10%.

481

electrical characteristics (T c

=25° C) (unless otherwise specified)
I SYMBOL I

MIN

VCEO(sus)

400
450

Collector Cutoff Current
(VCE = Rated Value, V8E(OFF) = 1.5V)

ICEV

Emitter Cutoff Current
(VE8 = SV, IC = 0)

CHARACTERISTIC

I

TYP

MAX

UNIT

-

-

-

Volts

-

-

1

mA

IE80

-

-

1

mA

hFE

8
(5

-

40
30

-

1
1.5
3

V

off characteristics(1)
Collector-Emitter Sustaining Voltage
(IC = 10mA, 18 = 0)

04ST01
04ST02

on characteristics(1)
DC Current Gain
(IC = 5A, VCE = 5V)
(Ic = 8A, VCE = 5V)
Collector-Emitter Saturation Voltage
(Ic = 5A, 18 = 1A)
(Ic = 8A, 18 = 1.8A)
(Ic = 12A, 18 = 3A)

VCE(Sat)

Base-Emitter Saturation Voltage
(IC = 5A, 18 = 1A)
(Ic = 8A, 18 = 1.SA)

V8E(sat)

-

-

-

-

-

1.2
1.6

V

td

-

0.06

0.1

p's

-

0.45

1

1.3

3

0.2

0.7

-

0.92

2.3

0.12

0.7

switching characteristics
Resistive Load
Delay Time

VCC = 125V, Ic = 8A

Rise Time

181 = 182 = 1.SA, tp = 25 p's

tr

Storage Time

Duty Cycle < 1%

ts

Fall Time

tf

Inductive Load, Clamped
Storage Time

(Ic = 8A, VCLAMP = 300V)

tsv

Crossover Time

(181 = 1.SA, V8E(OFF) = 5V
TC = 100°C)

tc

(1) Pulse Test: Pulse Width - 300",s Duty Cycle:5 2%.

482

p's

D54A7D

NPN POWER DARLINGTON
TRANSISTORS

100 VOLTS
7 AMP, 30 WATTS

Designed for high power switching applications,
hammer drive, pulse motor drive applications.
Features:
• High DC Current Gain:
hFE = 2000 (Min.) (at VCE = 3V, IC =3A)
• Low Saturation Voltage:
VCE(sat) = 1.5\1 (Max.) (at IC

CASE STYLE TO-22D1S
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

.406110.31 MAX.

=3A)

• Complementary to D55A7D
• Isolated TO-220 package
-I--_\lnl7t1lr-·04711.21
.05511.4)
.03012.541 :

:gci~I~};1

.10012.541 ± .01010.251--1-+--+-.10012.541 ± .01010.25)

EQUIVALENT CIRCUIT
COLLECTOR

~--------------,
BASE

O---i-:-t-----i
I

I

'" 5kO

L _ _ _ _ _

_I-......J\f'~=-::'t-=-'.

EMITTER

maximum ratings (TA = 25° C)

(unless otherwise specified)
SYMBOL
VCEO
VC80
VE80

D54A7D
100
100
5

UNITS
Volts
Volts
Volts

Collector Current - Continuous

IC

7

A

Base Current - Continuous

18

0.2

A

Total Power Dissipation @TC = 25°C

PD

30

Watts

TJ, TSTG

-55 to +150

°C

RATING
Collector-Emitter Voltage
Collector-Base Voltage
Emitter Base Voltage

Operating and Storage
Junction Temperature Range

thermal characteristics
Maximum Lead Temperature for Soldering
Purposes: Va" from Case for 5 Seconds

260

483

electrical characteristics (Tc = 25° C)

I

(unless otherwise specified)

CHARACTERISTIC

SYMBOL

MIN

TYP

V(BR)CEO

100

-

-

ICBO

-

-

100

p.A

lEBO

-

-

3.0

mA

MAX

UNIT

off characteristics
Collector-Emitter Breakdown Voltage
(Ic =50mA)
Collector Cutoff Current
(VCB =100V)
Emitter Cutoff Current
(VEB =5V)

Volts

second breakdown

I Second Breakdown with Base Forward Biased

FBSOA

SEE FIGURE9

on characteristics
DC Current Gain
(Ie = 3A, VeE = 3V)
(Ie =7A, VeE = 3V)

hFE

2000
1000

-

15000

-

-

-

0.9
1.2

1.5
2.0

Volts

-

Collector-Emitter Saturation Voltage
(Ie = 3A, Is = 6mA)
(Ie =7A, Is =14mA)

VCE(sat)

Base-Emitter Saturation Voltage
(Ie = 3A, Is = 6mA)

VSE(sat)

-

1.5

2.5

Volts

ton

-

0.8
3.0

-

fJs

-

2.5

-

switching characteristics
Turn-on Time

Vce = 45V

Storage Time

IB1 = IB2 = 6p.A

Fall Time

Duty Cycle S; 1%

tstg
tf

10

10
COMMON EMITTER
Te=2S·C

COMMON EMITTER
Te= l00·C

8

8

~

.Y

!zw

./

6

~

II:
II:

::>

u

~

...-

;.....--

4

w

-'

-'
0

.Y

1.0

!zw

6

~

II:

0.6

~

I

~~

w

I
le= 0.2 mA

.....

0

u

0

I

10

2

o
12

J
o

0

4

6

8

COLLECTOR-EMITTER VOLTAGE VCE (V)

COLLECTOR-EMITTER VOLTAGE VCE (V)

FIG. 1

0.4

-'

le=0.2mA

4

~
0.6_ I -

~/

4

-'

0.4

I

0.8.......

I"

LY" -...-

::>

U

I

o

~

II:
II:

0.8

r

u

1.0

~

1.2

V
r

II:

u

1.4

Ie - VeE

FIG. 2

484

Ie - VCE

10

12

10

20,000
COMMON EMITIER
Te =-SO'C

10,000

""~ [II

i4.0

?
tzw
a:
a:
:>
0
a:
0
t-

-

C. ""'"

.Y
6

VI-"'"

f-

.;;...

w

I""""

..... 1

u.
.c

3.0

Z

;;:

2.5

3,000

Cl

f-

t-

2.0

Z

w

oW

1.5

0
0

Cl

0
0

J1

V I

a:
a:
:>

-'
-'

.~

"''A

5,000

.....

~(j

,
UJ
-'
-'
0
0

r- F
0.5

f-- f-

25
100

--

...-

=-SO'C

~

10'

"'~

I-

0.4

=-50'C
25

100

I

0.3

Te

--

I-- I--'

~

"'"

0.5

3

10

20

0.4

3

COLLECTOR CURRENT IC (A)

COLLECTOR CURRENT IC (A)

FIG. 5 VCE(sat) - IC

FIG.6 VBE(sat) -IC

485

10

20

I I

1/ II /

6

g
.9
~
W

II:
II:

1/
II

J

5

CURVES SHOULD BE APPLIED
IN THERMAL LIMITED AREA.
(SINGLE NONREPETITIVE PULSE)
(D INFINITE HEAT SINK
(j) NO HEAT SINK

COMMON EMITTER
VCE = 3V

I I
I I

4

p/ Ii]

:l
U
II:

~

t3w

~l

0

"

...J
...J

I

(j)

0

-

'?

~

I

0

U

/

II I
J
0.4

0.8

II

,/

/

L/

o

(j)

~

1.2

~

1.6

2.0

2.4

0.001

2.8

0.1

0.01

PULSE WIDTH tw (sec)

BASE EMITTER VOLTAGE VBE (V)

FIG. 7

FIG. 8 'th - tw

Ie - VBE

20

I

I I IIIIII
IC MAX (PULSED) ;£:;

10
ICMAX
(CONTINUOUS)

g

~?q,

N~
1:>
.>

"'~"%,
-lll: \ ..:

~
-"",

It..,....~~\

.9

~OC

IZ
W
II:
II:

••

i\\I\ \

~

(\~~~~~~~~
c ~
1\

:l
U

01-

II:

0

I-

U

W

...J
..J

0

U

0.5

""

0.3

1\"

x'
0.1

1\

SINGLE NON REPETITIVE PULSE
Tc = 25'C

-::
::;; @x

«

CURVES MUST BE DERATED LINEARLY
WITH INCREASE IN TEMPERATURE

0.05

}'

0.03

10

1

30

COLLECTOR·EMITTER VOLTAGE VCE (V)

FIG.9

SAFE OPERATING AREA

486

100

-

10

100

1000

D54D6D

NPN POWER DARLINGTON
TRANSISTORS

400 VOLTS
6 AMP, 25 WATTS

Designed for igniter applications, high voltage switching
appl ications.
Features:
• High DC Current Gain:
hFE =600 (Min.) (at VCE

=2V, IC =3A)

CASE STYLE TO-2201S

• Monolithic construction with built-in base-emitter shunt
resistor.

DIMENSIONS ARE IN INCHES AND (MILLIMETERS)
.406(10.3) MAX.

• Isolated TO-220 package.

.055(1.4)
.030(2.54)

~·gri~(~·~;i

.100(2.54) ± .010(0.25)-1--+-+-.100(2.54) ± .010(0.25)

EQUIVALENT CIRCUIT
BASE 0

maximum ratings (TA = 25° C)

(unless otherwise specified)
SYMBOL

054060

VCEO
VCSO
VESO

400
600
5

UNITS
Volts
Volts
Volts

Collector Current - Continuous

IC

6

A

Base Current - Continuous
Total Power Dissipation @TA = 25°C
@Tc= 25°C
Operating and Storage
Junction Temperature Range

Is
PD
PD

1
2.0
25

A
Watts

TJ, TSTG

-55 to +150

°C

RATING
Collector-Emitter Voltage
Collector-Base Voltage
Emitter Base Voltage

thermal characteristics
Maximum Lead Temperature for Soldering
Purposes: lis" from Case for 5 Seconds

260

487

=25° C) (unless otherwise specified)
CHARACTERISTIC
I SYMBOL I MIN

electrical characteristics (TA

I

TYP

MAX

UNIT

-

-

Volts

off characteristics
Collector-Emitter Breakdown Voltage
(IC = lOrnA)

400

V(BR)CEO

Collector Cutoff Current
(VCB = 600V)
Emitter Cutoff Current
(VEB = SV)

ICBO

-

-

0.5

mA

lEBO

-

-

3.0

mA

second breakdown

ISecond Breakdown with Base Forward Biased

FBSOA

SEE FIGURE 6

on characteristics
DC Current Gain
(Ic = 2A; VCE = 2V)
(Ic = 4A, VCE = 2V)
Collector-Emitter Saturation Voltage
(Ic = 4A, IB = 0.04A)
iEmitter-Coliector Forward Voltage
(IE = 4A, IB = 0)
Base-Emitter Saturation Voltage
(Ic = 4A, IB = 0.04A)

-

-

-

2.0

Volts

-

-

3.0

Volts

-

-

2.S

Volts

-

-

1.0

/ls

-

8.0

-

S.O

hFE

600
100

VCE(sat)

-

VECF
VBE(sat)

-

switching characteristics
Turn-on Time

VCC= 100V

Storage Time

181 = IB2

Fall Time

Duty Cycle:::; 1%

6
50

5

~
.9

...z

4

W

II:
II:

::J

0

II:

3

~

0

W
...J
...J

, /~

,.

V" ~
~ [/1'
I'"

l/
/ /
V/

'/. /

0
0

~ "".

I--'
I--'

"".

-

,,"'"

30

"". i-""""

20

"" .".

10
5

io-"'I'

-

tstg
tf

COMMON EMITTER
Tc = 25°C

w

IL

~

4

1.000

~oV

".,' X
.'<

CJ

500

ifiII:

300

...

%,j

::J

0
0

c

I

IB=0.5mA

~

100
COMMON EMITIER
VCE=2V

50

30
0.01
0

8

0.03

0.1

0.3

3

COLLECTOR CURRENT IC (A)
10

12

14

16

FIG. 2

COLLECTOR-EMITIER VOLTAGE VCE (V)

FIG. 1

~\

A
~I

II:

I

6

~\

Z

1

I I I
2

I

;;:

!

o
o

,

5.000
3.000

2

I--'"

"" -

-.".

......

ton

=0.04A

IC - VCE

488

hFE - IC

10

30

30

2V
UJ
l'l

COMMON EMITIER
ICIIS= 100

z

0

t=

~
~
z

-'

10

«a:_

~~
~;;

0

t=-

I

~<;.

5

a:.!l.

i=

UJ UJ

I:~
UJl'l

",

a:>
UJ

d:t!

I:

..... ~ 'I

Tc = -55'C

~

~

UJ

til

~

0.5

CD

0.5

25

I"

0.3
0.1

0.02

100
1

0.1

FIG. 4 VeE(sat) - Ie

COMMON EMITIER
VCE= 2V

10

'f

VI

3

0

""J I
/' J

I

1.2

1.6

.A
o

0.4

0.8

I

~

a:
a:
0

I
2.4

* *

\,-

'-

",\ 
0.5

~

2.0

"i>

.>

"t ~*

g
.9

SASE EMITIERVOLTAGEVSE (V)

FIG. 5

~

'%\~

::J

I I

0

'\.

~ ~-o

"

2

-'
0

~

3

~
'1- I~/~

a:

*

ICMAX
(CONTINUOUS)

5

IIJ I
AI 1/

4

o

IC MAX (PULSED)

-' 'I

0

!;i-'

20

VI

!zUJ

a:
a:
::;)

10

veE (sat) -Ie

6

.9

3

0.3
COLLECTOR CURRENT IC (A)

COLLECTOR CURRENT IC (A)

5

~25

100

10

3

1000'"

I I I

0.3
0.02

0.3

FIG.3

g

-

Tc = -55'C

jg

~:H

:~

"

~UJ.

0-'
1-0
0>
UJ
-'
-'
0
0

COMMON EMITIER
lells= 100

10

*

\

~\ \

SINGLE NONREPETITIVE PULSE
Tc = 25'C

0.03
CURVES MUST SE DERATED LINEARLY
WITH INCREASE IN TEMPERATURE
0.01
10

30

'" ~ ~
~

100

300

COLLECTOR-EMITIER VOLTAGE VCE (V)

FIG. 6 SAFE OPERATING AREA

489

x

«

::;

@
0

>

1000

490

D54FY7D

NPN POWER DARLINGTON
TRANSISTORS

80 VOLTS
7 AMP, 30 WATTS

Designed for high power switching applications,
hammer drive, pulse motor drive applications.
Features:
• High DC Current Gain:
hFE = 2000 (Min.) (at VCE = 3V, IC = 3A)

CASE STYLE TO-2201S

• Low Saturation Voltage:
VCE(sat) = 1.5V (Max.) (at IC = 3A)
• Complementary to D55FV7D

DIMENSIONS ARE IN INCHES AND (MILLIMETERS)
.406(10.3) MAX.

• Isolated TO-220 package

-t---\II\U~·047(1.2)

.055(1.4)
.030(254) ~ .g~(~·~:1
.100(2.54) ± .010(0.25)-1-+-1_.100(2.54) ± .010(0.25)

EQUIVALENT CIRCUIT
BASE o---""---1~---{

maximum ratings (TA

=25° C) (unless otherwise specified)
SYMBOL
VCEO
VCBO
VEBO

D54FY7D

80
80
5

UNITS
Volts
Volts
Volts

Collector Current - Continuous

Ic

7

A

Base Current - Continuous

18

0.2

A

Total Power Dissipation @Tc = 25DC

Po

1.0

Watts

TJ, TSTG

-55 to +150

DC

RATING
Collector-Emitter Voltage
Collector-Base Voltage
Emitter Base Voltage

Operating and Storage
Junction Temperature Range

thermal characteristics
Maximum Lead Temperature for Soldering
Purposes: %" from Case for 5 Seconds

260

491

electrical characteristics (TA

I

=25° C)

(unless otherwise specified)

I SYMBOL I

MIN

TYP

MAx

UNIT

V(BR)CEO

BO

-

-

Volts

Collector Cutoff Current
(VCB = BOV)

ICBO

-

-

100

I-'A

Emitter Cutoff Current
(VEB = SV)

lEBO

-

-

3.0

mA

CHARACTERISTIC

off characteristics
Collector-Emitter Breakdown Voltage
(Ic = SOmA)

second breakdown

I Second Breakdown with Base Forward Biased

FBSOA

SEE FIGURE 9

on characteristics
DC Current Gain
(Ic= 3A, VCE = 3V)
(Ic = 7A, VCE = 3V)
Collector-Emitter Saturation Voltage
(Ic = 3A, IB = 6mA)
(Ic = 7A, IB = 14mA)
Base-Emitter Saturation Voltage
(Ic = 3A, IB = 6mA)
,

-

lS000

0.9
1.2

1.S
2.0

V

VBE(sat)

-

1.S

2.S

Volts

ton

-

O.B

tstg

-

3.0

tf

-

2.S

-

hFE

2000
1000

VCE(Sat)

-

-

switching characteristics
Turn-on Time

Vee = 4SV

Storage Time

IB1 = IB2 = SmA

Fall Time

Duty Cycle::::; 1%

10

10
COMMON EMITTER
Tc= 100'C

COMMON EMITTER
Tc=2S'C

8

8

./~

.9
6

~

...J
...J

8

1'0/0.8

6

~~
~/
,,-

II:
II:
::J

0.8

0

II:

v:

4

!zw

1.0

~

0

.9

1.2

~V

II:
II:
::J
II:

~

1.4

~

!zw

I-'s

§w

0.6

4

~

...J
...J

r

0
0

0.4

2

.,

-

.........

...
0.6

-

0.4

I
IS = 0.2 mA

2

I
IS = 0.2mA

°o

J
2

4

6

8

I
10

°

o

12

o

J
2

4

6

8

°

COLLECTOR-EMITTER VOLTAGE VCE (V)

COLLECTOR-EMITTER VOLTAGE VCE (V)

FIG. 2

FIG. 1 IC - VCE

492

IC - VCE

10

12

10
COMMON EMITTER
Tc =-50·C

8

4.0

~
.9
lZ

t:.
V--

S

W

II:
II:

::l
tl
II:

12
tl

I-""'"

t:...
3.0

i"""

~

2.5

w

u.

.<:

Z

~

l-

3,000f-

~

2.0

vI

W

4

II:

~

1.5

w

tl
tl

..J
..J

Cl

0

,

tl

1.0

'r

IB

A

l'OO°mmJ~~~
COMMON EMITTER
VCE = 3V

500 1-..f-..f-+-l-+H----+-4--l

=0.5 rnA

a
8

6

10

12
COLLECTOR CURRENT IC (A)

COLLECTOR-EMITTER VOLTAGE VCE (V)

FIG. 4

Ie - VeE

FIG. 3

hFE - Ie

10
COMMON EMITTER
ICIIB 500

=

COMMON EMITTER
IC/IB 500

z

=

o
~
II:_

5

::l>

1--

« ::~ !

II

w w

1=,;'

:q\j

Tc

'\'«

II: I-

f:?6

u>
w

:::l
o

U

0.5

0.3

= =

25

- -

100

:.,... ~~~

=-50·C

I

--

....-:

......

r

Tc

=-50'C

25

~

100

-

--

....
~~

0.5

10

0.4

20

FIG. 5

0.4

3
COLLECTOR CURRENT IC (A)

COLLECTOR CURRENT IC (A)

VeE (sat) - Ie

FIG. 6

493

VBE(sat) - Ie

10

20

I I
I II I
I
/
I

g
.9

5

I I

~

a:
a:
~

4

I /

u

? '""'/

U

a:
0

!3w

CURVES SHOULD BE APPLIED
IN THERMAL LIMITED AREA.
(SINGLE NONREPETITIVE PULSE)
CD INFINITE HEAT SINK
CD NO HEAT SINK

COMMON EMITTER
VCE=3V

~

"
,5:/

3

..J
..J

CD
JJ

I
I I

0

U

I
o
o

/
0.4

0.8

/
I
1.2

/
1.6

2.4

2.0

2.8

o.

3.2

0.001

0.01

0.1

Ie - VBE

FIG. 8

20

I

I I I I I "I
IC MAX (PULSED)

lSi

10

~~ .

~o
'l>..
~"'~-i/:-

(CONTINUO~'"

IC MAX

5

-!j:-

"'-$"

g

<)

\\

.9

>zw
a:
a:

.IC..t:'O.o ' "

\

~

""
\*
\

,< ~ \\

"'.r"(.<'~
o ~Q

\

'l-

~

U

a:
0
>U
w

'\
0.5

..J
..J

0

U

10
PULSE WIDTH tw (sec)

BASE EMITTER VOLTAGE VBE (V)

FIG. 7

ill

~

\

0.3

i\

*
0.1

SINGLE NONREPETITIVE PULSE
To = 25"C

0==

X

~

CURVES MUST BE DERATED LINEARLY
WITH INCREASE IN TEMPERATURE

~-

>

0.05

0.03
3

10

30

100

COLLECTOR-EMITTER VOLTAGE VCE (V)

FIG.9

SAFE OPERATING AREA

494

-

-

rth - tw

100

1000

D54H6D

NPN POWER DARLINGTON
TRANSISTORS

250 VOLTS
6 AMP, 25 WATTS

Designed for igniter applications, high voltage switching
appl ications.
Features:
• High DC Current Gain:
hFE =2000 (Min.) (at VCE

=2V, IC =2A)

CASE STYLE TO-2201S

• Isolated TO-220 package.

DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

;---\11 \"lRllr-· 047 (1.2)
.055(1.4)
.030(2.54)

EQUIVALENT CIRCUIT

BASE 0

f-- ---- --

:I

w

S

~ .g~~(~};1

.100(2.54) ± .010(0.25)--1--+-+-.100(2.54) ± .010(0.25)

{T"'O'

L.. _ _ _ _ _ _ _ _ _ _

:

.J

EMITTER

maximum ratings (T A = 25° C)

(unless otherwise specified)
SYMBOL
VCEO
VCSO
VESO

D54H6D
250
300
5

UNITS
Volts
Volts
Volts

Collector Current - Continuous

Ic

6

A

Base Current - Continuous
Total Power Dissipation @ TA = 25°C
@TC=25°C

Is

A

Po
Po

1
2.0
25

Watts

TJ, TSTG

-55 to +150

°C

RATING
Collector-Emitter Voltage
Collector-Base Voltage
Emitter Base Voltage

Operating and Storage
Junction Temperature Range

thermal characteristics
Maximum Lead Temperature for Soldering
Purposes: Va" from Case for 5 Seconds

260

495

electrical characteristics (T A = 25° C)

I

(unless otherwise specified)

CHARACTERISTIC

SYMBOL

MIN

TYP

MAX

UNIT

VCEO(sus)

250

-

-

Volts

ICBO

-

-

0.5

mA

lEBO

-

-

0.5

mA

off characteristics
Collector-Emitter Sustaining Voltage
(Ic = 0.5A, L = 40mH)
Collector Cutoff Current
(VCB = 300V)
Emitter Cutoff Current
(VEB = 5V)

second breakdown

I Second Breakdown with Base Forward Biased

SEE FIGURE 4

FBSOA

on characteristics
DC Current Gain
(Ic = 2A, VCE = 2V)
(Ic = 4A, VCE = 2V)

hFE

2000
200

-

-

Collector-Emitter Saturation Voltage
(Ic = 4A, IB = 0.04A)

VCE(sat)

-

-

2.0

Volts

Base-Emitter Saturation Voltage
(Ic = 4A, IB = 0.04A)

VBE(sat)

-

-

2.5

Volts

ton

-

1

-

ps

8

-

-

switching characteristics
Turn-on Time

VCC = 100V

Storage Time

IB1 = IB2 = O.04A

tstg

Fall Time

Duty Cycle::; 1%

tf

7.0

I
20

6.0

~",

/

5.0

5:

,l

.9

...z

4.0

W

II:
II:
::J

0

'/

3.0

0
0

w

...J
...J

2.0

0
0

1.0

o
o

V
~

/

r/
JV'
I
Iv
~

1.0

......

""

."
10'

..-

-L-

2.0

10

I-'

COMMON

5

EMITIEFi:
Tc=25'C

.......,.......

......
~

i-"'"

"'"

3.0

10.000

-L

...... i.-"'"

,,/

V

'/ ....... I-'

II:

...

V

I

- -

5

orO

;/L<"'

5,000

3,000

2

u.

.<:

~

Z

~

1

.-,-

I-

zw

-

1,000

V

fl>.,..

II:
II:
::J

0.5

0
0

500

c

I

V

.........

COMMON EMITIER
VCE= 2V

100

0

0.03
6.0

7.0

0.1

0.3

3

B.O
COLLECTOR CURRENT IC (A)

COLLECTOR-EMITIER VOLTAGE VCE (V)

FIG. 1

\

"

I
5.0

--

300

18 =0.2mA

4.0

,

t\.\

/'

w

--r-

:......~



.A

FIG.2

IC - VCE

496

·hFE -IC

10

10

20

COMMON EMITTER
ICIIS= 100

I

I I I 11111
IC MAX (PULSED)

0

5

I

*

,'\
3

J......!!

Tc = -55'C

""

0.5

~

0.2..
0.05

r-

3

"\1\

I..C MAX .
(CONTINUOUS)

"-

--

~~
~

"'-*-

"

1

1>

[\~-.

'"

.>

: *
~
'12.

~

1\ #.-

o. 5

0.3

3

f\

" ,,\
"9:-

COLLECTOR CURRENT IC (A)

FIG.3 VCE(sat) - IC

~

I

o.1

*

0.05

_'\

~fil JR

SINGLE NONREPETITIVE PULSE
Tc = 25'C

>,

0.03
CURVES MUST SE DERATED LINEARLY
WITH INCREASE IN TEMPERATURE

0

0

COMMON EMITTER
ICIIS= 100

5

0.01
2

3

~

'-

1

10

30

100

~

FIG.4 SAFE OPERATING AREA

~

25

"

0.5

0.2
0.05

5

COLLECTOR-EMITTER VOLTAGE VCE (V)

L..oj,ol

Tc=-55'C

0.1

100

0.3

3

10

COLLECTOR CURRENT IC (A)

FIG. 5

VaE(sat) - IC

497

,

'\

<'"

0.3

10

'\

",. 0,,'C?c J\
<3-.,

I

-

"t.

25
100

I
0.1

~~

--

'\.'\.

5

-+-

300

498

D55A7D

PNP POWER DARLINGTON
TRANSISTORS

-100 VOLTS
-7 AMP, 30 WATTS

Designed for high power switching applications, hammer
drive, pulse motor drive applications.
Features:

• High DC Current Gain:
hFE = 2000 (Min.) (at VCE = -3V, IC = -3A)
• Low Saturation Voltage:
VCE(sat) =-1.5V (Max.) (at IC

CASE STYLE TO-2201S
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

.406(10.3) MAX.

=-3A)

• Complementary to D54A7D
• Isolated TO-220 package

.055(1.4)
.030(2.54) :
.100(2.54)

EQUIVALENT CIRCUIT

:g~~(~~;1

± .010(0.25)-+-~_.100(2.54) ± .010(0.25)

COLLECTOR

BASE

0--...:....._---1
L---JoII__~>__...J_ .J
EMITIER

maximum ratings (TA = 25° C)

(unless otherwise specified)

VCEO
Vcso
VESO

D55A7D
-100
-100
-5

UNITS
Volts
Volts
Volts

Collector Current - Continuous

IC

-7

A

Base Current - Continuous

Is

-0.2

A

Total Power Dissipation @ Tc = 25°C

Po

30

Watts

TJ. TSTG

-55 to +150

°C

RATING
Collector-Emitter Voltage
Collector-Base Voltage
Emitter Base Voltage

SYMBOL

Operating and Storage
Junction Temperature Range

thermal characteristics
Maximum Lead Temperature for Soldering
Purposes: Va" from Case for 5 Seconds

260

499

electrical characteristics (TA = 25 0 C)

(unless otherwise specified)

CHARACTERISTIC

TYP

MAX

UNIT

1 SYMBOL 1

MIN

V(BR)CEO

-100

-

Collector Cutoff Current
(VCB -100V)

ICBO

-

-

-100

p.A

Emitter Cutoff Current
(VEB -SV)

lEBO

-

-

-4.0

mA

I

off characteristics
Collector-Emitter Breakdown Voltage
(Ic -SOmA)

=

=

=

second breakdown

ISecond Breakdown with Base Forward Biased

FBSOA

'I

-

Volts

SEE FIGURE 9

on characteristics
DC Current Gain
(IC -3A, VCE -3V)
(Ic -7A, VCE -3V)

=
=

=
=

Collector-Emitter Saturation Voltage
(Ic -3A, IB -6mA)
(Ic -7A, IB -14mA)

=
=

VCE(sat)
VCE(sat)

Base-Emitter Saturation Voltage
(IC -3A, IB -6mA)

VBE(sat)

=
=
=

=

switching characteristics
Turn-on Time
VCC =-4SV
Storage Time
IB1 =IB2 =6mA

ton
tstg

Duty Cycle :5 1%

Fall Time

-

15000

-

-

-

-0.95
-1.3

-1.S
-2.0

Volts

-

-1.SS

-2.S

Volts

-

0.8

-

ps

2.0
2.S

-

2000
1000

hFE

tf

-

--10

-10

COMMON EMITTER
Te= loo·C

COMMON EMITTER
Te = 25·C

g

-e

-8

J?

!zw
IX:
IX:

-2.5

-6

0

IX:

..J
..J

"........-

-2.0

II ,/"

::>

~

~

I""

-2

15IX:

-;,,1:-

IX:

~

'/,

-4

..J
..J

8

-4

-6

-e

-12

V

)
o

0

-2

-6

-4

-e

COLLECTOR CURRENT IC (A)

COLLECTOR-EMITTER VOLTAGE VCE (V)

FIG. 1

I-

le=-o·5mA

-2

o
~O

../

."

'/

W

0

o

"

::>

Ie = -0.5mA

~

./"'-1.0_

IX:

0
~

-6

0

-

8

-2.sh ' l - , . 5

J?

....

1/ . /i--"'"'
V
/"

-4

-2.0

g

-1.5

IC - VCE

FIG. 2

SOO

IC • VeE

-10

-12

-10

10,000
COMMON EMITTER
Tc =-50·C
5,000

-8

I-4.5

~

SJ

z>-

UJ

'"'"
'"0>-

~ ::::-

::l
U

u..

UJ

-'
-'
0

(!l

-2

0:
0:
::l
U
U

-1.5

1,000

V
lI iI

'~

500
IS

J

./

=-0.5mA

I

-0.3

-6

-4

COMMON EMITTER
Vcc-3V

300

I

0
-2

~'o

c
-1.0

V
o

1/

UJ

-2.0

II

U

z>-

- r-

-2.5

."

~

1/

Z

«

-3.5

~,-3.0

~~

U

3,000

.<:

~ ~_I"'"'

-4

o

~

/

-6

UJ

-4.0

......

r- t=t+,~I:ffc.
r- <,c.'

-8

-10

-3

-1

-12

COLLECTOR-EMITTER VOLTAGE VCE CV)

FIG. 4

FIG. 3 IC - VCE

COMMON EMITTER
ICIIS SOO

COMMON EMITTER
Ielis =500

-3

=

UJ
(!l

0

"'::l>
>--

Tc

;:-

m
'"UJ W
I:::P

-1

>

'l'<

0

~2:

-'

Tc

0:
::l

!
~ w

25

-0.5

w

I:

'\ 25

~
en

U

<

III

-0.Q1
-0.3

-1

~

-0.3

-1

-3

-10

100
-0.5

-0.3
-0.3

-30

COLLECTOR CURRENT IC CA)

-t:: ~'"

=-so·c

~-+--I-" ""'"

'"

0:>

100

U>

UJ

-'
0

-3

z

=-50·C ~,.~

:q~

"'>0-'
>-0

-5

~
0

j::

<

<
en

hFE - IC

-10

-5

z

-30

-10

COLLECTOR CURRENT IC CA)

...1
~

-3

~O

COLLECTOR CURRENT IC CA)

FIG. 6

FIG.5 VCE(sat) -IC

501

VBE(sal) - IC

-30

-7

-6

~

II

I
I

I
COMMON EMITIER
VCE =-3 V

-5

w

II
Z

.9

~

<

§

~

II:

-'

0
II

-1

II'
-0.4

.{l.8

./
-1.2

(1)

-'~

Ii?

~ll

10

11:'
w-

j:'¥
zw

I
II J
I
) V I

-2

o
o

1{1

"

100

ffi

II:

~J

-3

§
~

Iii

II

-4

II:
II:

II

CURVES SHOULD BE APPLIED
IN THERMAL LIMITED AREA.
(SINGLE NONREPETITIVE PULSE)


'"

r\'

".r,,,,,~~

"

-1

~01-

II:
II:

~1\"

:::l

§w

.{l.S

-'

.{l.3

-'

0
II

'«,

\

"

II
II:

V.

~

"'-lil

Jo~"O~ ,

~

.9
fzw

*"

~~
(CONTINUO~",",
'* I\.. *
IcMAX

-3

1\

* TcSINGLE
NON REPETITIVE PULSE
=2S'C
.{l.1

CURVES MUST BE DERATED LINEARLY
WITH INCREASE IN TEMPERATURE

<
::

===
==
=
--

~

- r--

x

@ - r--

-0.05
-0.03

10

FIG. 8

-20

-10

111111111 I 11111111
0.1

PULSE WIDTH tw (sec)

BASE EMITIER VOLTAGE VBE.(V)

FIG. 7

j",.oo

i

i

I II

I

I

-30

-10

-3

I

-100

COLLECTOR-EMITIER VOLTAGE VCE (V)

FIG.9

SAFE OPERATING AREA

502

rth - tw

100

1000

D55FY7D

PNP POWER DARLINGTON
TRANSISTORS

-80 VOLTS
-7 AMP, 30 WATTS

Designed for high power switching applications, hammer
drive, pulse motor drive applications.
Features:
• High DC Current Gain:
hFE = 2000 (Min.) (at VCE

=-3V,

• Low Saturation Voltage:
VCE(sat) = -1.5V (Max.) (at IC

IC

=-3A)

CASE STYLE TO-2201S
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

=-3A)

.406(10.3) MAX.

• Complementary to D54FY7D
• Isolated TO-220 package

.055(1.41
+ .010(0.251

.030(2.54) _ .006(0.15)
.100(2.541

EQUIVALENT CIRCUIT

± .010(0.25)-.1-++-.100(2.541 ± .010(0.25)

COLLECTOR
BASE O---7-"---~

L-~_----<~_.....J_ .J

EMITIER

maximum ratings (TA = 25° C)

(unless otherwise specified)

VCEO
VC80
VE80

D55FY7D
-80
-80
-5

UNITS
Volts
Volts
Volts

Collector Current - Continuous

Ic

-7

A

Base Current - Continuous

18

-0.2

A

Po

30

Watts

TJ. TSTG

-55 to +150

°C

SYMBOL

RATING
Cqllector-Emitter Voltage
Collector-Base Voltage
Emitter Base Voltage

Total Power Dissipation @ Tc

=25°C

Operating and Storage
Junction Temperature Range

thermal characteristics
Maximum Lead Temperature for Soldering
Purposes: Va" from Case for 5 Seconds

260

503

electrical characteristics (TA = 25° C)

I

(unless otherwise specified)

I

I SYMBOL

CHARACTERISTIC

TYP

MIN

MAX

UNIT

off characteristics
Collector-Emitter Breakdown Voltage
(Ic =-50mA)

-80

-

-

Volts

ICBO

-

-

-100

p.A

lEBO

-

-

-4.0

mA

V(BR)CEO

Collector Cutoff Current
(VCB =-80V)
Emitter Cutoff Current
(VEB =-5V)

second breakdown

ISecond Breakdown with Base Forward Biased

FBSOA

SEE FIGURE 9

on characteristics
DC Current Gain
(Ic =-3A, VCE =-3V)
(Ic =-7A, VCE =-3V)

-

-

hFE

2000
1000

Collector-Emitter Saturation Voltage
(Ic =-3A, IB =-6mA)
(Ic =-7A, IB =-14mA)

VCE(sat)

-0.95
-1.3

-1.5
-2.0

Volts

Base-Emitter Saturation Voltage
(IC =-3A, IB =-6mA)

VBE(sat)

-

-1.55

-2.5

Volts

.ton

-

0.8

tstg

2.0

tf

-

2.5

-

JiS

-

switching characteristics
Turn-on Time
VCC =-45V
Storage Time
IB1 = IB2 =6mA
Fall Time

Duty Cycle:::; 1%

15000

-

-

-10

-10
COMMON EMITIER
Tc = 25'C

COMMON EMITIER
Tc= 100'C

~

-8

~
.9

!zw
II:
II:
:::l

-1.5

II:

11/

-4

. /~

~

:::l

~~

II:

~

18 =-0.5 rnA

'/-1.5

I/

-4

/

/~-1.0_

/

~

l18 =-0.5 rnA

'/
V
-2

0

0

o

-2.5l
fJ

8

V

-2

-6

()

~

V

...J
...J

0

()

-2.0

~

......--~

-2.0

II '/"

()

§w

V.

-2.5

-6

-8

.9

-2

-4

-6

-8

o
-10

-12

0
-2

-4

-6

-8

COLLECTOR-EMITIER VOLTAGE VCE (V)

COLLECTOR-EMITIER VOLTAGE VCE (V)

FIG. 1

1

FIG. 2

IC - VCE

504

IC - VCE

-10

-12

10,000

-10
COMMON EMITTER
Tc = -50'C

5,000

-8

!zw

-4

w

:l

.....

W

-2.5

IX:
IX:

::>

-2.0

'!-'"

V

~

1,000

1;'"

fjl
~

0
0
0

-1.5
-1.0

500
Ie = -O.5mA
COMMON EMITTER
VCE =-3V

300

J
o

....

I'"

~

;;:

V
0

-

3,000

fZ

rt/

-2

.....

~c/"

(!)

-3.0

~

0

.....

z

U --

0

8

.s::

-4.0
l - -3.5

~~~
~V

::>
IX:

LL.

~

/

-6

IX:
IX:

~

w

-4.5

~
9

- TI~c~

-

0

-6

-2

-0.3
-8

-10

-12

-1

COLLECTOR-EMITTER VOLTAGE VCE (V)

FIG. 3

-30

-10
COLLECTOR CURRENT IC (A)

FIG. 4

IC - VCE

hFE - IC

-10
-5

COMMON EMITTER
Ielle = 500

COMMON EMITTER
Ielle = 500

-3

w

(!)

~

z

0

;::

0

>

,L
~~

~i

IX:
W

Tc = -50'C
-1

z
a

~~

~~

d:~

f-O

-0.5

0>

Tc = -50'C

Cli~

w

0-'

-3

;::-

,

~I>

I:~

w

-5

-'

25

IX:

100

I:

-1

eli

-0.5

w

~ '\

:il
w
W
Ul

-0.3

-'
-'
0

0

-0.01

_kI

:...1.--- ~

iooo"

25
100

I

-0.03
-0.3

-1

-10

-0.3

-30

-1

-3
COLLECTOR CURRENT IC (A)

COLLECTOR CURRENT IC (A)

FIG. 6 VBE(sat) - IC

FIG. 5 VCE(sat) - IC

505

-10

-30

-7

I

I

I

1

-6

CURVES SHOULD BE APPLIED
IN THERMAL LIMITED AREA.
(SINGLE NONREPETITIVE PULSE)
(]) INFINITE HEAT SINK
(]) NO HEAT SINK

COMMON EMITIER
VCE = -3V

-5
(J

-4

§

-3

~

(])

I'"

I

-2

II

1

o

~

'"'"

"

)
o

-0.4

-0.8

(])

I

L,..o

I j
V I

~
-1.2

IJ

-1.6

-2.0

-2.8

-2.4

o. 1

-3.2

0.001

BASE EMITIER VOLTAGE VBE (V)

FIG. 7

PULSE WIDTH

Ie - VBE

FIG.8

-20

I

I I I I I "I

*'

IC MAX (PULSED)

-10

-5

~

ICMAX
(CONTINUOUS)

-3

~

~

~~ r\.,~ ~
-.>

'%.

"''''"

'11.'

r\" \

~~OOA).'\
"l\~'
':>.r,~~ ~I\

IZ
:l

~~.
~

~
.9
w
a:
a:

o

-1

~

0",

()

a:

~

{J

w

-0.5

..J
..J

0

()

1\1\

-0.3

r\~
-0.1

10

0.1

0.01

'"

r\
SINGLE NON REPETITIVE PULSE
Tc= 25'C

x

:!i= ~

CURVES MUST BE DERATED LINEARLY
WITH INCREASE IN TEMPERATURE

fi3

~- f--

-0.05
-0.03
-3

-10

-30

-100

COLLECTOR-EMITIER VOLTAGE VCE (V)

FIG.9

SAFE OPERATING AREA

506

-300

'w (sec)

rth tw

100

1000

HIGH SPEED

D64D85,6,7
D64ESS,6,7

NPN POWER DARLINGTON
TRANSISTORS

400-500 VOLTS
20 AMP, 125 WATTS

These devices are designed for use in high-speed switching
applications, such as off-line switching power supplies PWM
DC and AC motor control, UPS, ultrasonic equipment and
other high frequency power conversion equipment.
Features:
• High Speed: ts

< 3.0 J,Lsec., tr < 1.0 J,Lsec.

CASE STYLE TO-204AA (TO-3)
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

r:

0.845(21.47)

• High Voltage: 400-500 VCEO(SUS)
• High Gain: hFE 40 Minimum @ IC

MAX

~~.358(9.091 MAX

0~~lx65l~

=20A

T

• High Current: 30 Amperes, IC (Peak)

0043(1.09)
0.03B(0.97)

~

0,

DIA.--.I!-

SEATING PLANE
.426(10.82) MIN

CASE TEMP.
REFERENCE
POINT
.20(5.00)

BASE
0.162(4.09)

OIA.

0.15(3.B41
2 HOLES

D64ES

D64DS

0.440(11.181
0.420( 1067)

DEVICE CIRCUIT

maximum ratings (T C = 25° C)
RATING
Collector-Emitter Voltage
Collector-Emitter Voltage
Emitter Base Voltage

D64DS
D64ES

Collector Current - Continuous
Peak (Repetitive)
Peak (Non-Repetitive)
Base Current - Continuous
Peak (Non-Repetitive)
Total Power Dissipation @TC = 25°C
Operating and Storage
Junction Temperature Range

(unless otherwise noted)
D64DS5/ES5
500
400

D64DS6/ES6
600
450

D64DS7/ES7
700
500

8

8

8

IC
ICM
ICSM
IB
IBM
Po

5
20
30
50
5
10
125

5
20
30
50
5
10
125

5
20
30
50
5
10
125

Watts

TJ, TSTG

-65 to +150

-65 to +150

-65 to +150

°C

RSJC

1

1

1

°CIW

TL

300

300

300

°C

SYMBOL
VCEV
VCEO
VEBO

UNITS
Volts
Volts
Volts
A
A

thermal characteristics
Thermal Resistance, Junction to Case
Maximum Lead Temperature for Soldering
Purposes: Va" from Case for 5 Seconds

507

electrical characteristics (T c

I

=25° C) (unless otherwise specified)
I SYMBOL I

CHARACTERISTIC

MIN

I

TYP

I

_

MAX

UNIT

off characteristics
Collector-Emitter Sustaining Voltage
(IC = .5A)
(Vcl amp = VCEO Rated)
Collector Cutoff Current
(VCE = Rated Value, V8E = -1.5V)
Emitter Cutoff Current
(VE8 = 4.5V, IC = 0)
(VE8 = 1.5V, IC = 0)

D64DS5/ES5
D64DS6/ES6
D64DS7/ES7
TJ = 25 DC
TJ = 150DC

D64DS
D64ES

VCEO(sus)

400
450
500

ICEV

-

IE80

-

-

-

-

Volts

1.0
2.5

rnA

-

200
200

mA

second breakdown

I Second Breakdown with Base Forward Biased

FBSOA

SEE FIGURE 26

on characteristics
DC Current Gain
(IC = 30A, VCE = 5V)
(Ic = 20A, VCE =5V)
(lc =10A, VCE =5V)
Collector-Emitter Saturation Voltage
(IC = 30A, 18 =3A)
(IC = 20A, 18 =2A)
(IC = 10A, 18 =1A)

hFE

VCE(sat)

20
40
100

35
85
160

-

-

-

2.1
1.6
1.2

3.5
2.5
1.5

V

-

2.65
2.3
1.8 -

4
3
2.5

V

TYP.

MAX.

-

Base-Emitter Saturation Voltage
(IC = 30A, 18 =3A)
(Ic = 20A, 18 =2A)
(Ic =10A, 18 =1A)

V8E(sat)

-

switching characteristics
Resistive Load
Delay Time

VCC

=250V

td

Rise Time

=20A
181 =1A, 182 =2A
tp =50 #lsec

tr

Storage Time
Fall Time

IC

ts
tf

-

-

OS

ES

OS

ES

.05

.05

.5

.5

.4

.4

1

1

2.2

1.8

5

3

1.6

.45

3

1

#lS

emitter-collector diode characteristics
Power Dissipation
Forward Voltage

Reverse Recovery Time
(IF =25A, di/dt =15A/#lsec, R81E

(181
(IF =10A)
(Ip =25A)
(IF =25A, TJ

=0)

=150DC)

=.250)

-

-

-

1.95
2.80
2.75

125
3.20
4.00
4.00

Watts
Volts
Volts
Volts

Trr

-

3.85

10

#lSeC

TON

-

0.42

1.0

psec

-

-

50
1.0

Amps
DC/Watt

Po
VF
VF
VF

-

Forward Turn-On Time
(IF =25A, di/dt = 50A/#lsec)
Single Cycle Surge Current (60Hz)

IFSM

Thermal Resistance

R9JC

508

TYPICAL CHARACTERISTICS
1000

1000
VCE=2V

z

TJ=I!!O·C

to

~

;;:
>Z

w

~ '100

:;J

u

u

.L £

'"

/'

veE =5V

/

-

z

....

......

TJ=OoC

~

to

.......

u

.......

/Tr

TJ=150·Y

;;:

"TJ=IOO°C

>Z

w

a:
a: )00
:;J
u

·C

V

,\

I

5

10
Ic. COLLECTOR CURRENT {AMPERESI

FIGURE 1. DC CURRENT GAIN (VCE

= 2V)

/

>Z

w

a:
a:

10

:;J

\\ ~,

5
10
30
IC. COLLECTOR CURRENT {AMPERESI

.......- V

. . . .V

- TJ=25°C

u
u

'"

'"'"

~ TJ=O°C
~ I-""

~

~

t

)0

a:
w
>>-

8

~

\
\

\

W

...J
...J

~:\
~~,

8

4

-J1

1\

.

5

10

2

o

FIGURE 3_ DC CURRENT GAIN (VCE = 10V)

o
2:

j

a:
w
>>-

/

iw

a:
o
>u
W

...J
...J

8

10.0

.... .... 1-'

I

I

I

/

/

I

I

I

o
2:

/3=25

/.

/

a:
w
>>-

I

a:
o
>u

......

V

W
...J
...J

V

81.0

.: 1.0

/

I

!I

/3=25

J

/

1/1/

:;;
w

/!I=IO

OI c-f/3=50
I

iii
>...J

I

~V

/3= IC

TJ=IOO·C
(3 =Ic/Iel

/!I = 50

I

10

FIGURE 4. COLLECTOR SATURATION REGION

/!I=IOO
TJ= 25°C
/3= Ic/lal

,

...........
0.1
1.0
lB. BASE CURRENT (AMPERES)

.01

VCE ISAlI. COLLECTOR EMITTER {VOL TSI

10.0

1\

ui

'\\ ~
\',
r~\ ~\
30

I

iii
>...J

TJ =2S0C

IC' 2OA

6

u

~

/'

I

Ie=IOA

a:

....... TJ =-40°C

1.0

~

~

././
./
./
./

ui

.1 III

I
I c =5A

iii
>...J

..... i-"""
TJ=IOO·C

\~

FIGURE 2. DC CURRENT GAIN (VCE = SV)

12

TJ-I~

"'-'.

'\ ~\

I

VCE = 10V

to

~~"
,

10
100

14

z

.......

./

100

;;:

'-"J=O·C

V TJ=-40·C

~~

10

~

..-

./

~

V

..... V

./ ./

w'

t

'.\,\

TJ s I90 ·C

J=25

'"

~,

,~

,........-....... f--

.... ~~

/!I = 10

~

~

w

p-

-J1

10

10
30
Ie. COLLECTOR CURI'ENT IAMPERESI

30

Ie. COLLECTOR CURRENT (AMPERES)

FIGURE 6. VCE(SAT) VS. Ic. T J = 100°C

FIGURE 5. VCE(SAT) VS. IC' T J = 25°C

509

TYPICAL CHARACTERISTICS
10.0

o

TJ=25·C
Il=Ic/I BI

I

..J

o

/

~

a:

I

I

I

I JII

w

ff-

~

1/

w

a:

ofU

W
..J
..J

1/ 11

o
u

r::

10.0

11=25

1l=100/1l=5of-

TJ ·150·C
11 =Ie/III

. / i-'"

1.0

I.-'

...

iii

1/11=10

..J

IJ /

o

~

a:

......
w

~

:ii
w
«OJ

~

;::

~

w

- """

~

~

w

~

t:::::

11= 10
11=25
11-50
11=100

~

~

30

10

30

10
Ie. COLLECTOR CURRENT (AMPERES)

Ie. COLLEcrOR CURRENT (AMPERESI

FIGURE 7. VeE(SAT) VS. Ie. T J = 150°C

FIGURE 8. VBE(SAT) VS. Ie. T J = 25°C

)0.0

,

10.0
TJ=IOO·C
Il=Ie/ I BI

TJ= 150·C
11= Ie/IBI

...

iii
..J

iii

0
~

f-

..J

o

a:

w

......w

~

en

~

a:

:ii

ff-

w
w

w
w

V>

«OJ

~

;::

~

.

f..:::k: ~~
p..~

w

k::::: ~

>

V

~

«OJ

11=10
11=25

..........:

;::

B=50

~

11= 100

~~

..
w

)0

.---:::: ~ §

>

-=--

FIGURE 10. VBE(SAT) VS. Ie. T J = 150°C

1000

1.0
TJ=25·C

TJ=25°C
TJ= 100·C----TJ=1500C--

G
w

en
.3

r---... --.......
z
«

U

«
«

0-

/

I

I .1

1//

"iz
,.u

/ J

100

V- I,.-

w

a:
a:
OJ
u

r--.

u

~ -'" V v l...- 1--1../

a:

~

}-

Vce=250V
IeI=Ic/2O
la2=lc/10
VIE=-5V
t p =50,.SEC

/

,/ i.I l·

...~z

I'-- t-t--

~ r--........

f-

30

Ie. COLLECTOR CURRENT (AMPERESI

FIGURE 9. VBE(SAT) VS. Ie. T J = 100°C

U

~

;,.-

10

30

Ie. COLLECTOR CURRENT (AMPERES)

w

~ ~~

~

11=10
11=25
11=50
11= 100

~~

1.0

u

~~

w

en

O. I

-

I-

W

..J
..J

8
10

~-

I"'-

td
10

100

VeB. COLLECTOR BASE (VOLTS)

20

Ie. COLLECTOR CURRENT (AMPERESI

FIGURE 12..

FIGURE 11. CAPACITANCE (CeBO)

TURN-ON TIME (RESISTIVE LOAD)

(0640S ONLY)
510

TYPiCAL CHARACTERISTICS
10.0

1.0
TJ = 25·C
TJ=IOO·C---TJ=150·C--

G

.

w

III

/

//
l' ,

,

<.:J
Z

i

u

....

~

l,.' L'I.-

....

zw

~

'"::>'"
u

'"~

tr

/'

..... , - -

... '"

y

. '"

....

~

V

VCC=250V
lal= Ic/20
IB2=IC/10
Vap-5V
tp =5OI'SEC

w

-=<.:J
l:

u

a

~

I--'l.-'

V

1.0

'"

-

II:

::>

u

tf

~

II:

a

--

--:::.

u

.0 I

~

~

~

--

..J
..J

a

10:..

L--

u

td

1/

10

FIGURE 14.

TURN-OFF TIME (RESISTIVE)

(0640S ONLY)

10.0
TJ =2S·C
TJ = 100·CTJ =150·C

--

Vl

-=

r-

r-r-.

u

------J

~
:;;
;::

.............

I-

~

~

1.0

w

Ial = Icl20
Ial =Ic/40 - TJ=2S"C
Vee =2S0V
tp= 5Ol'SEC
VaE=OV

--

.~

i

5

~

a
~

u

-

a:

a

I-

u

W

..J
..J

....
1--

- ,...-

}tf

L-~

-

w

4

N

::;
~

./

".../

Vcc=2S0V
lal= Ic/2O
la2 =le/IO
VaE=-5V
tp =50,.SEC

~

a

u

2

II:

a
z

I

o

O. I

10

3

20

-- -

.....

I--

............ l--~
..
~

f-

....

~~'

~
~

--

~--

--

----:.::

I-

0.' ...... l-- -,- ....

i-- f-

I--

--.-

1--

?- -~ '""'
10

I

Ree=IKn
RSE=loon

I
Ra£=IKn
Rac loon
RaE = Ion
RaE=lon
RaC ln
RaE=ln

20

I

Ie. COLLECTOR CURRENT (AMPERESI

Ie. COLLECTOR CURRENT {AMPERESI

FIGURE 15.

NOTE' NORMALIZED TO
ts @l 2S"C FROM
FIGURE 14

--

_
_.......

w

II:

I-

'"a:::>

20

Ie. COLLECTOR CURRENT (AMPERESI

(064ES ONLY)

<.:J
Z

Vee = 250V
la,= le/2O
la2 =Ie/IO
VBE=-5V
tp =5OI'SEC

I

FIGURE 13. TURN-ON TIME (RESISTIVE)

w

,-

//

O. I
20

10

Ie. COLLECTOR CURRENT (AMPERESI

G

loy

".;

....

-

I-

-'::0.

..J
..J

,~

I-

w

-

.........

~

Z

/

o. I

W

-

G
III

TJ = 2S·C
TJ= IOO·C---TJ=ISO·C

FIGURE 16. NORMALIZED RESISTIVE
SWITCHING STORAGE TIME (RBE VARIATIONS)
VS. COLLECTOR CURRENT

TURN-OFF TIME (RESISTIVE)

(064ES ONLY)

(0640S ON L Y)
7

lei =le/20
lei =Ie/90 - - - TJ = 2S"C
Vee =2S0V
tp=SOI'SEC
VeE = OV

6

:g

5

>=

w

~

a:

~

N
..J

3



u

RaE= In
RBE= In

u

J..'

1.0

IZ

RaE=lon

V

I

l:

I-

---

~f--

ts

!----"

>=
u

r--_',::

,......1-

W

:;;

RaE'looon
RaE = loon

t-- __

--

ts

G
III

V

4

10.0

NOTE' NORMALIZED TO
t. @l2S"C FROM
FIGURE 15

'"a

I-

W

.........

..J
...J

a

---

[dr.;
.~

~

~/
tc

tf

--

//

TJ=25"C
TJ= 100·C----TJ=150·C--VCE(CI.AMP) = 250V
LolOOl'h
Ial o1 e/ 2O
Ia2=Ie/IO
Va£=-5V

1.0-

~I-

tf

~

7

u

10

O. I

20

'c. COLLECTOR CURRENT (AMPERESI

10

20

Ie. COLLECTOR CURRENT (AMPERESI

FIGURE 17. NORMALIZED RESISTIVE
SWITCHING STORAGE TIME (RBE VARIATIONS)
VS. COLLECTOR CURRENT

(064ES ONLY)
511

FIGURE 18. CLAMPED INDUCTIVE
TURN-OFF TIME

(0640S ONLY)

TYPICAL CHARACTERISTICS
1.6

10.0

- - ,-

G
w

'"-=w

r--

-...... J

r-

:::--

--- J

:;

i=
t!l
Z

:;:
U
I-

~

TJ=25°C--TJ= 100OC----ts TJ=1500C---

I-

Z

w

-

a:
a:

::>
u

~

a:

o

I::::..

IU

r-....

W
..J

...J

8
O. I

.........

--..

...........

-

r--

VCEICLAMP) =250 V
L=IOO"h

i-'ff-

~

I

:;

~ 1-""- ......

1.2

t!l

~

1.0

I-

'"w

Ie'IOA

a:
0

z

----

0.6

~

I c '5A

0.4

20

1.0

0.5

FIGURE 20.

(0640S ONLY)
1.6

1.6

w

i=

TJ =25°C
IclI el=20
VeE'-SV
CLAMPED INDUCTIVE
LOAD, L=IOO"h
VCEICLAMP)= 250 V

. /V

~V
V
~ ~V

1.2

w

t!l

«

a:
0

1.0

I-

'"

0

A~

W

N

::;

«

:;

a:

0

z

2.0

STORAGE TIME VARIATION
WITH 182

(064ES ON L Y)

-

1.5

Ie. COLLECTOR CURRENT (AMPERESI

FIGURE 19. CLAMPED INDUCTIVE
TURN-OFF TIME

:;

e;:;-'"

..4! ",
V
~

Ie. COLLECTOR CURRENT (AMPERESI

1.4

Ie=20A

-~

N
/
::; O.B
Ie=20A
«
V
:;

---- }f
---10

/. V
/.. ::;....-

i=

0

I

Ie"SA
Ie= IDA

V

w

a:

..,~

-w

«

Iel=Ic/20
Ie2=Icl10
tc VeE =-5V

-'"

1.0

1.4

~

TJ =25°C
IclI el=20
VeE=-5V
CLAMPED INDUCTIVE
LOAD, L=IOO"h
VCEICLAMP)= 250 V

0.8
e=20A
Ie=IOA
0.6 Ic'SA

V

~

~~
V

V
V

Ic=5A

i--""""

Ic=20A

Ic=IOA
1.4

-w

:;

",

TJ • 25°C
Ie/lei =20
VeE = -5 V
CLAMPED INDUCTIVE
LOAD, L=IOO"h
VCEICLAMP) = 250 V

1.2
~

..J

...J

«

u.

1.0

w

N

::;

«

:2

A W'
~

0:;

-

~~

i=
Ie=20A
Ie"IOA b
Ie' 5A

I-- I-"""

--

Ie'SA
Ie= lOA
Ic=20A

i:::=""

O.B

0

z
(1.6

0.4

0.4

1.0

0.5

1.5

0.5

2.0

1.5

1.0

2.0

RATIO, IBI IB2

FIGURE 21.

STORAGE TIME VARIATION
WITH 182

FIGURE 22.

1.6

-

w
:;

1.6
TJ ' 25°C
IclI el=20
VeE '-5V
CLAMPED INDUCTIVE
LOAD, L='IOO"h
VCEICLAMP!" 250 V

....-:::

~~

1.2

A.

i=
...J
...J

...0«

~

1.0

w

0

z

O.B
c=20A
Ie=IOA
0.6 I e =5A

0.4

~ ~ ......

Ic"SA
Ie= lOA
Ie=20A

~~

1.4

:2

i=

~",.

TJ = 25°C
Ie/l el=20
VeE= -5 V
CLAMPED INDUCTIVE
LOAD, L' 100"h
VeEICLAMP)' 250 V

1.2

0:;

w

>
0

",.

'"a:'"0
U
0

~

.....~

-

Ie' 2OA
1.0 Ic'IOA
Ie' SA

--

I e =5A
Ic=IO~
Ie=20

W

N

::; O.B

«

:;

~

0.5

~

w

V

;'

N

::;
«
:;
a:

182

(D64DS ONLY)

(064ES ONLY)

1.4

FALL TIME VARIATION WITH

0:;

0

z

1.0

1.5

0.6

0.4

2.0

0.5

RATIO, IBI IB2

FIGURE 23. FALL TIME VARIATION WITH

1.0

1.5

2.0

RATI0,IB1 1IB2

FIGURE 24.

182

(064ES ONLY)

CROSS-OVER TIME VARIATION
WITH 182

(D64DS ONLY)
512

-

TYPICAL CHARACTERISTICS
1.6

1.4

:Y

...:ll

;:

TJ z 25°C
Ic/ I el"20
VeEo-SV
CLAMPED INDUCTIVE
LOAD, LoIOO"h
VCE(CLAIIPI =250 V

....,.
,/'

1,2

...>
IX

0

en
en

1.0

~

0

IX

U

...

~

Q

N

:::i

«

:ll
IX

0

z

0.8
Ic"5A
Ic"IOA
0.6 I c "20A

0.4

~

~~

~

--

.../. ........ -::: ~

-:;:::.- ....

I C'20A
f-

iii

Ic=IDA
I c =5A I -

w

0:
W
0..

:ll
~
I-

Z

W

0:
0:

""\

:::J

U

a:
<:>

\

IoJ
oJ

o

V

LIMIT

u

I"
PART 5
1--+-I-t-Hf-Nl1-"-+-l-+NPART
;,
6

• LIMIT - - - - - TJ= 2SoC
0.1
DUTY CYCLE ~ 1%
1.0
10

2.0

1.5

1.0

--

~~~~~~~~~~~DOWN

U

0.5

1\

1.0~~~lBI
I ~~~:~ICII

~

lA 'f'

i\"

\

"\."'!:"=.

l\. \

.PART7
10)0

1,10

VeE. COLLECTOR EMITTER VOLTAGE IVOLTS)

RATI0.lal/ la2

FIGURE 26. FORWARD BIAS SAFE
OPERATING AREA

FIGURE 25. CROSS-OVER TIME VARIATION
WITH 182

(D64ES ONLY)
10

50

I

;::
I-

en
w

«

25

~
u

III:

...
W

...~
;:)

20

....
....

8
!:i

.1

w

DUTY CYCLE =.05

0..

~

Iii

DUTY CYCLE·.OI

oJ

«
::E

0

t;

DUTY CYCLE =.1

«
Q

II:
III

OUTY CYCLE=.2

z

w

z

II:

U

W
III:

u

DUTY CYCLE=.S

TJ"21i"C
-- i-L"IOO"h
f-V8Eo-IiVe.IiSl
5!alole/IO

100

lI-

Z

w

iii .001

"-

300

L

w

I

~

200

.01

0:

\
\

10

PARTIi
/T PART 6-=: '=:--

~P~RT7

400

z

«
0:
I-

~iGLE

.0001
.000001

500

-~ ~

-V

PULSj

.00001

.0001

VeE, COLLECTOR EMITTER VOLTAGE (VOLTS)

.001

.01

10

.1

PULSE WIDTH. TIME IN SECONDS

FIGURE 27. REVERSE BIAS SAFE
OPERATIN.G AREA

FIGURE 28. TRANSIENT THERMAL RESPONSE

DIODE CHARACTERISTICS
iii

20

w

TJ =2SoC
TJ=IOO·C----TJ=ISO'C--

0:

w

0..

:ll
~
IZ

~

W

0:
0::

:::J
U

Q
0:

~

~

10

~

/'

0:

~
III

/'

:::J

o

// J

z

'II

«
I20~4--+~f--+-~-4--~4-~-4--~~~-4--~

'~

101--+-+-+-+-+-+-+-+-+-+-+-+-+....300.l-~-+-l

°0~~~2~0~~4~0~L-~60~L-~80~L-1~0~0-L-1~2~0-L-1~4~0~~160

z
«

I

l-

V)

Z
>i'

....

I
0.0

Te. CASE TEMPERATURE rc)

FIGURE 29. POWER DERATING

'/

(,/II
1.0

2.0

3.0

4.0

VTM. INSTANTANEOUS FORWARD VOLTAGE (VOLTSI

FIGURE 30. FORWARD CHARACTERISTICS
513

5.0

TYPICAL CHARACTERISTICS
+250VOC

+6VOC

; 12.snRL
(NON INDUCTIVE 1
{IGj"

DUTY CYCLE)

+5V

~50~S

022

V

CLAMP
270

6 B

100

.. 'SELECT
RI FQR-+l ar = 1.0· AMP5

R2 FOR - lei' 2.0 AMPS' IS2

- 6VDC

FIGURE 31. SWITCHING TIME TEST CIRCUIT

514

HIGH SPEED

D64DV5,6,7
D64EV5,6,7

NPN POWER DARLINGTON
TRANSISTORS

400-500 VOLTS
50 AMP, 180 WATTS

These devices are designed for use in high-speed switching
applications, such as off-line switching power supplies, PWM
DC & AC motor control, UPS systems, ultrasonic equipment
and other high frequency power conversion equipment.
Features:
• High Speed: ts

< 5.0 f..Lsec., tr < 3.0 f..Lsec.

CASE STYLE TO-204AE (TO-3)

H

DiMENSIONS ARE IN INCHES AND (MILLIMETERS)

• High Voltage: 400-500 VCEO

0.845(21.47)
~ MAX.

.358(9.09) MAX

-.:;~~ ,~,,~~~

• High Gain: hFE 50 Minimum @ 50 Amperes, IC
• High Current: 75 Amperes, IC (Peak)

0.063(1.60) DIA.-\
0.057(1.45)

L
I

.426(10.82) MIN.

CASE TEMP.
REFERENCE
POINT
.20(5.00)

0.162(4.09)

D64DV

D64EV

0.15(3.84)
2 HOLES

maximum ratings (T C =25°C)
RATING
Collector-Emitter Voltage
Collector-Base Voltage
Emitter Base Voltage

(unless otherwise noted)
D64DV6/EV6
450
600
8
5
50
75
125
10
20
180

D64DV7/EV7
500
700
8
5
50
75
125
10
20
180

UNITS
Volts
Volts
Volts

IC
ICM
ICSM
Is
ISM
Po

D64DV5/EV5
400
500
8
5
50
75
125
10
20
180

TJ. TSTG

-65 to +150

-65 to +150

-65 to +150

°C

R8JC

0.7

0.7

0.7

°CIW

h

300

300

300

°C

SYMBOL

D64DV
D64EV

Collector Current - Continuous
Peak (Repetitive)
Peak (Non-Repetitive)
Base Current - Continuous
Peak (Non-Repetitive)
Total Power Dissipation @Tc = 25°C
Operating and Storage
Junction Temperature Range

0.440(11.18)
0.420(10.67)

DEVICE CIRCUIT

VCEO
VCSO
VESO

A

A
Watts

thermal characteristics
Thermal Resistance, Junction to Case
Maximum Lead Temperature for Soldering
Purposes: %" from Case for 5 Seconds

515

= 25° C)

electrical characteristics (T c

(unless otherwise specified)

I SYMBOL I

CHARACTERISTIC

MIN

TYP

MAX

UNIT

VCEO(sus)

400
450
500

-

--

Volts

ICEV

-

-

-

-

off characteristics
Collector-Emitter Sustaining Voltage
(Ic = .5A)
(Vclamp = VCEO Rated)
Collector Cutoff Current
(VCE = Rated Value, VSE = -1.5V)
Emitter Cutoff Current
(VES = 4.5V, IC = 0)
(VES = 1.5V, IC = 0)

D64DV5/EV5
D64DV6/EV6
D64DV6/EV7
TJ = 25°C
TJ = 150°C
D64DV
D64EV

IESO

-

-

1.0
2.5

mA

-

350
350

mA

second breakdown

I Second Breakdown with Base Forward Biased

SEE FIGURE 23

FBSOA

on characteristics
DC Current Gain
(Ic = 75A, VCE = 5V)
(Ic = 50A, VCE = 5V)
(Ic = 20A, VCE = 5V)
Collector-Emitter Saturation Voltage
(Ic = 75A, Is = 5A)
(Ic = 50A, Is =4A)
(Ic =20A, Is =2A)

hFE

VCE(sat)

Base-Emitter Saturation Voltage
(Ic = 75A, Is =5A)
(Ic =50A, Is = 4A)
(Ic =20A, Is =2A)

VSE(sat)

25
50
100

60
135
250

-

-

-

2.2
1.7
1.15

3.0
2.0
1.5

V

-

2.8
2.45
1.95

3.5
3.0
2.5

V

TYP.

MAX.

switching characteristics
Resistive Load
Delay Time

VCC = 250V

Rise Time

IC =50A

Storage Ti me

IS1

Fall Time

tp = 50 ,",sec

=2.5A, IS2 = 5A

DV

EV

DV

EV

td

-

0.09

.09

.5

.5

tr

-

.5

.5

1

1

ts

2.55

2

5

3

tf

-

1.4

.64

3

1

Po
VF
VF
VF

-

Trr
TON

,",S

emitter-collector diode characteristics
Power Dissipation
Forward Voltage

Reverse Recovery Time
(IF = 50A, dildt = 25A/,",sec, RS1E
Forward Turn-On Time
(IF =100A, di/dt =100A/llsec)
Single Cycle Surge Current (60Hz)

(IS1
(IF
(Ip
(IF

=0)

=25A)
=50A)
=50A, TJ =150°C)

=.250.)

IFSM

Thermal Resistance

ROJC

516

1.95
2.60
2.30

125
3.20
3.80
3.50

Watts
Volts
Volts
Volts

-

3.85

10.0

,",sec

-

0.75

1.5

,",sec

-

150

Amps

1.0

°C/Watt

TYPICAL CHARACTERISTICS
1000

1000

v-

"'-

,/

TJ =ISO°C/ V

z

~
to

IZ

ILl
0:
0:
::l
U

/

/

/

100

~

rr-

.

C

...-

IZ

VeE' SV

ILl
0:
0:
::l
U


I~ .'51'

iii

~

W
10.0
to

Ie = IDA
Ie = 25A

g

"~

B

11

6

u

4

...J
...J

3

\
\
\

:E

1\

2

,

ILl

>

0

I0
ILl
...J

0

"

II

.01

-

a::

...J

Ll

u

Is,

1.0

u

;:

0.1

1.0

...u-

BASE CURRENT (AMPERES)

V

~

V V
~
F-"

--

;;l 0.7

10

J

..L

0:
ILl

l-

TJ' 25'C

0

..

L

V

I-

5

u.

~
rr: 5.0

et
en

7

I/Pf=50

J

I-

Ii:

ILl

II

0

::l

9

0:
ILl
II-

f'!

/

>
z

\

10

g
:E
1&1

~

0

1\

1&1

J /9f'IOO l - I--

TJ =2S 0 C
Pf=Ie/l sl

et

"
I II
Ie • SOA

>

I--Pf=IO

~

75

50

10

I/Pf=20

Ie, COLLECTOR CURRENT, (AMPERES)

FIGURE 3. COLLECTOR SATURATION REGION

FIGURE 4. VeE (SAT) VS Ie, TJ = 25°C

Iii
~

Iii

0

~ 10.0
TJ = 150'C
~
/I
1/=le

~

1/=100J..

sl

0

>
z

fi0:

5.0

il

::l

~
(I)

:Ii

ILl
I

rr:

~~

0
I0

1&1

0

1.0

~ 0.7
..

id

~

~

...J

o
>

z
o

1/'25

~rr:

::l

!i

/

'"

0:
ILl

V V ~V

!:::

...J
...J

V

T;r=25°C

p, = leI ISI

~

/

/

0:
ILl

I-

0

L

10.0

~

~

1

j

0

~

1/=SO

I

",P'IO

l-

I:::
:E

ILl

,

~

~

ILl

'"et

CD

~

~ t:::

~ ~ I::::-

--

~

1/, =IO~_
i-,8,=25
f-P"SO
Pf=IOO

~
~

10

50

~

>

75

Ie, COLLECTOR CURRENT, (AMPERES)

1.0

50

10

IC.COLLECTOR CURRENT (AMPERES)

FIGURE 5. VeE (SAT) VS Ie, TJ = 150°C

FIGURE 6. VSE

517

(SAT)

VS Ie, TJ = 25°C

7S

TYPICAL CHARACTERISTICS
~IO.O

10000

~
'"

TJ=ISO°C
f3=IelrBI

J=25°C

(l)

~

-

o

> 5.0
z
o

Go

~

/f3=10

!c
'"ffi

.... f3=25
.... f3=SO
.... f3=100

~

:E

'",

'"~
1;
.,

;;; 1.0
~
1.0

::::::
~
~ ....~
--==

-

(l)

z

0
l-

i

'"
'"a::::>a:

= 150°C

;"

.
.=."

.'

'"

z
X

o

I-

-

-

Id

~

b

td:

o

I0

'"

~

'"
..J
oJ

0.0 I

0.0 I

10

S

(l)

z

FIGURE 10. TURN-ON TIME (RESISTIVE LOAD)
(D64EV ONLY)

u

-

TJ=2S D C
- - - - TJ= 100°C
- . - . - TJ= 150°C {
Vee = 2S0V_ _ 1- t
1 8 ,=1 c /20
5
i-'"
182 = 1e"O-1-VSE=-'SV
Ip = SO fL -See

'"~:E

SO

_10.0

10.0

:::

10

Ie. COLL.ECTOR CURRENT (AMPERES)

FIGURE 9. TURN-ON TIME (RESISTIVE LOAD)
(D64DV ONLY)

...

5

I

SO

I:c. COLLECTOR CURRENT (AMPERES)

-- -

/~

.,"

1.0

/

TJ =2S·C
- - - - - TJ=IOO·C
TJ=IIIO·C
-Vee = 2S0V
:tel = :te 120
Ie2' le liO
VeE =-5V
tp = 50fLsee

.=.

...
;>"...;

'":Ej:
(l)

?

/
/

::

z
X

V

~

,/

I- +1-

----

........ I

- ......

II:
II:

:::>

/

a:
a:

a
~u
w

..J

0.1
I

If

.'"

'Il'

i--"

o
a:

~

~

l'f

~

o

"

r:..:: ....; }ts

en 1.0

'"

w

--:- ........

i

IZ

'"...z

6
u

I

-- -

a::

0

i

~

/

/

/

I-i-- .-.-1.-"

:::>
u

a:

:;:
~

~

O. I

'=

/
~/

,/

I-

II:

0

/
~

ffia:

0

0

tr
~.

Vee=250V
Iet=1e/2O
1!J2=le/60
VBE=-SV
'p'SOfL sec

(l)

~

Z

TJ=2SoC
-----TJ=IOO°C
TJ=150·C

-

:E
j:

/;~ / .

I-

1.0

u

//'

::::::.

o. I

100

FIGURE 8. CAPACITANCE (CcBO)

Ir

'p'IIO,. .. c

%

10

I

Vea. COLLECTOR-BASE VOLTAGE (VOLTS)

- -

III

- - -

o

CURRENT (AMPERES)

TJ=25°C
TJ=IOO°C
- . - . - TJ=ISOoC
Vee - 250V
:til' = :Ie 120
III2 - :tell 0
VBE --SV

:E
j:

r--

r--

1.0

::I..

~

1000

100

FIGURE 7. VBE ISAT) VS Ie, TJ

::

z
~

75

50

Ie. COLLECTOR

-;;

'"

o

a:

:::>

'"o
oJ

..J

o

5

10

O. I

SO

5

10

50

Ie. COLLECTa:! CURRENT (AMPERES)

Ie. COLLECTOR CURRENT (AMPERES)

FIGURE 12. TURN-OFF TIME (RESISTIVE LOAD)
(D64EV ONLY)

FIGURE 11. TURN-OFF TIME (RESISTIVE LOAD)
(D64DV ONLY)

518

TYPICAL CHARACTERISTICS

..
III

::Ii

i=

Tj

I

T7"ZSOC'
- - II, "Ie 120
-----IB'·Ie/SO
Vee" 2S0V
5 Ip "50,. •• e
VBE" OV

III
I!>

c

!!i
....

4

v~
,-

m

Q

III

3

N

~~

::i

c

::Ii

a:
Q
z

2
NOTE'
I NORMALIZED TO
's(Q)ZSoc (REF. FIG. 10)

I

I I

" 1-,-f-'"

~~~

RlIE'loon

r-R

~~
'/

" Ion

BE
""::::. ....... RBE=looon

....

--

-

V--

.....RSE=loon
RBE=lon
RBE = In

NOTE:
NORMALIZED TO Is

~ 25°C

RBE=ln-

f-

:,....1'"

I1111

TF

'"

'"....!
I!>

Z

:;:

/,.

U

....

~

,,""

/

".... ....
~

1.0

Ic

~

....::

u

III

~

.;"

~p

w
:;

t=

'"

z
:;:

"....

~

t=

::>
o

....
u
0, I

5

50

w

'"a:
C

0

....

~

1.0

/'

\I)

Q

w

N

~

::Ii

0.6 Ic"50A
Ic"ZOA
0.6 Ic"IOA

~TJ

0

z

./

1.- ....

......

....

~..;

............-

'e

~

}f

#

~.

>....

i.--"

~

10

50

1.6

Ie=IOA
Ie =20A
Ic=50A

-w

::;

i

~

1.4

#

1.2

>=

i

w

"«a:

CLAMPED INDUCTIVE LOAD
L = 100iLh
VCE ICLAMP' = 250V

II::

t-

I ....

FIGURE 16. CLAMPING INDUCTIVE TURN-OFF TIME
(D64EV ON L Y)

Ic l IB' = 20
VBE= -SV

~

~"

:I.e' COLLECTOR CURRENT (AMPERES)

~
=ZSoC

......---

""""P: r-..

o

10

-

-

a:

o

...---:::::

1.2

-rT11T

,-

w

FIGURE 15. CLAMPING INDUCTIVE TURN-OFF TIME
(D64DV ONLY)

w
:;

:--"BE" lon'RaE" In

-- -- '- :: }s

-

a:
a:

W

1.4

-- .-

1.0

..J
..J

1.6

1'- .....

100

TJ= 2SOC
- - - - - TJ=IOO°C
TJ= 150°C
veE (CLAMPED) =2S0V
IL=IOO,.h
IB,=Ic /2O
XB2= Ie liO
VBE = -SV

Ie, COLLECTOR CURRENT (AMPERES)

.

"1000
'R;'loon

....
z

u

s

Vf..---

!::

I"-"

O. I

....

u

V

/

-- -

..

-

~

V

:l
o
u

/ ...... "

u

r

~

//

...
.....

-..::: ~ :::--~BE"lo.nJ

10

::

V'"

....z

'"a:a:
a
a:

~

~ RBE"1OO0Q
RaE "loon

;:...

FIGURE 14. NORMALIZED RESISTIVE SWITCHING
STORAGE TIME (RBE VARATIONS) VS
COLLECTOR CURRENT (D64EV ONLY)

- fs
l

://'

~-

:/1....

FllOi

I

_10.0

-

I"l'\

xc' COLLECTOR aJRRENT

10.0
TJ=25°C
- - - - - TJ'IOOOC
.- TJ = 1500 e
VCE (CLAMPED) = 250V
L ' 'OOiLh
18,'le /2O
I B2 ' le liO
VBE = -SV.

/f.'

V

o

100

10

FIGURE 13. NORMALIZED RESISTIVE SWITCHING
STORAGE TIME (RBE VARATIONS) VS
COLLECTOR CURRENT (D64DV ONLY)

u

V
,/

Ie, COLLECTOR CURRENT (AMPERES)

-.

V/ S;: t"'-.

~IRBE'looon

---- -

~

II

T;r" 25°C
6 - - - I B , " l e /ZO
- - - - 11l,"Xe/5O
Vee" 2S0V
I
tp " 50,. IIC
VBE "0 V

1.0

....0til

0.8 Xc'SO

'"

0.6

W

N

:::;

::;
a:

:tc' 5OA-

T;r' 25"C

Xc/:t.,· 20
vl l ·-5V

~c'2?~

CLAMPED INDUCTIVE LOAD
L' 100,.. h
VeEICLAIIII'" 2!10V

~c'IOA

«

0.4

~

~

::::::--

Xc"'OAXc' 2OA

0.4

0

z

0.2

0

O.S

1.0

I.S

2.0

i

0.2

0

0.5

1.0

1.5

Z.O

RATIO, IB,IIB2

FIGURE 17. STORAGE TIME VARIATION WITH IB2
(D64DV ONL YI

FIGURE 18. STORAGE TIME VARIATION WITH IB2
(D64EV ONLY)

519

TYPICAL CHARACTERISTICS
1.4.----.----,-----,-----:-------,
Ie=IOA
Ie' 20A
I(;=SOA

1.4

-III

1.2

::IE

;:::

~

...J
...J

~
c

1.0 Ie=SOA

III


aVI

~

I.Of--+-----:::~----+-----I------l

~

TJ =2So C
Ie/IBI= 20

~



100

""

120

TC ,CASE TEMPERATURE (·C)

FIGURE 25. TRANSIENT THERMAL RESPONSE
'iii
~

80

60

40

20

~
140

FIGURE 26. POWER DERATING

100

~
::IE

90

eo

'"

.... ~

70

I-

~

/:~

60

.~7

II:

~

50

717

u

Ii!

40

~

30

;

/

'1

fI)

S
z

///

20

~
z

!

v//
V

!I
V;'II

j!
fI)

1S
::I

~

10 0

- - TJ =25°C
- - - - - TJ =100·C

-- I

TJ =150·C

2

4

3

VTM , INSTANTANEOUS FORWARD VOLTAGE (VOLTS)

FIGURE 27. FORWARD CHARACTERISTICS

+6VDC

+250VDC

33

;SUR L
(NON INDUCTIVE)

(1"10 DUTY CYCLE)

+sv

NOTE' JUM~ER
I TO 2 (RESISTIVE)
2 TO 3 UNDUCTIVE
612

~SOI'-'"
4.7

r-----------,
.022

V

CLAM~

..----

~
II>

Ei
>

!i

6.0

~ ~ 2.0
/3f=IO
/3f=8

-

........-

0.2

=

f--~

~

4.0

8,

~

0.2

0.1

15

----

,-

"/' . /

.......-:: V

./

~y
~/
~

""

-~ ~

:;....--

2

4
6
8
10.0
Ie, COLLECTOR CURRENT (AMPERES)

15

FIGURE 4. VCElsatl vs Ic. Tc = 100°C

--~-Te=IOO°C

.....

- - Te =2S oC
.8, =lc/ISI

Tc=2S0C

CEBO

Q.

UJ
U

~

Z

0

> 2.0
Ir

1.0
0.8

ID
> 0.6

Q4

f-=-=-- : - 1.0

2

-- -- -

---

~ :::: "

4
6
8
10
Ic,COLLECTOR CURRENT (AMPERES)

-

--

~ 1000

.8,=2

~

1.5

2!

UJ

.

./

0.4

~
II>

~

,

,8,=6

j>

~ ;:;::::-

UJ

UJ
VI
e{
III

.8,=10

~V' ~ ,8,=8
V

10,000

6.0 f - - I---

....UJ

/

0.8
0 0.6

UJ

~ I--::

2
4
6
8 10.0
Ie, COLLECTOR CURRENT (AMPERES)

8.0

!:=

/

Te=IOO·C
.8f=lc IIsl

~ [lII.O

10.0

0

.8f ol5

a~

FIGURE 3. VCE lsatl vs Ic. T C = 25°C

In

S.O 7.010.0

~ ~

~ ~~
0.1
1.0

2.0

I

.... :.J

./

/

4.0

VI

Ir_

,8f=6

0.4

.OS

10.0
8.0

~

/

~ [lI 0.6

Ire{

1.0

Ir

/3f= IS

UJ~

:: g

Z

o

Ir

~_

.S

CURRENT (AMPERES)

FIGURE 2. COLLECTOR SATURATION REGION

10.0
8.0
4.0

.2

la' BASE

FIGURE 1. DC CURRENT GAIN

~

.1

.OS

IC ,COLLECTOR CURRENT (AMPERES)

!i

"'

..........

t- Tc '25°C

VCE=IOV - - -

I

:::l
o
u,

1-

Ic=ISA

-- -- -

(3

~
e{
u

U

,8,=10

.......

100

IS

I

2

S

r-10

~
20

-

VR,REVERSE VOLTAGE (VOLTS)

FIGURE 6. CAPACITANCE

FIGURE 5. VBE Isatl vs IC

525

.......

~

50

100

1.0

.8
.6
1&1
~

TC"IOO'C
TC=25'C
VCC '250V (20QVI,
lal =IC /6 (Ic15)

.4

j:


Z

:i:

I:!
~
I-

z

II!
a:
B
a:
~
~

..J
..J

.2

I
.08
.06

--""'-

10.0
8.0
6.0

...

4.0

II>
~

/tr

vL

t p '50"SEC

~

~::l

SEE FIGURE 17 FOR
TEST CIRCUIT

~-

'-::::: ;::.

~

j:

z

i:

0
l-

==

i
II>

td

1.0 '---.8

I-

z

.6 r--.4

1&1

'd

a:
a:

:::>

.04

0

.02

I0

a:

....

0

...

.2

..J
..J

8

8

.0 I1.0

2

4
6
8
IC,COLLECTOR CURRENT (AMPERES)

10

15

~ts

I

-0

----

I

/'

~
II>
::l

~
j:

~

:i:

1\

7'

-- - -- --

_-

~.

~

.~

..... 'r-.

--

--~

IBI"le /6 ,IB2=le /S (I a ,=Ia2 :Ie/5 I
'p'SO"SEC (tp :20p.SEC)
SEE FIGURE 17 FOR
TEST CIRCUIT

I

----=::t---

_'L f-4

2

--

f-'

f--

~

6

-----I-"
10

8

IS

FIGURE 8. TURN-OFF TIME RESISTIVE LOAD

I \
I \,,
I

I

181

--

IC,COLLECTOR CURRENT (AMPERES)

VCE(CLAMPED)

90%lC

I
I

VCE

Is

- -

10.0

COLLECTOR CURRENT

I
I

f-.

Vec=2S0V (200V)

.1
1.0

FIGURE 7. TURN-ON TIME RESISTIVE LOAD

I

-

---Tc=IOO'C
2.0 r - - - - - Tc =2S 0 C

Cl>

~V

-

I:!

'\

iII>

10% Ie

!iii

...a:

a:
:::>
o
a:

~

~

~

182

-- -'---

5.0

--

- - - Te=IOO'C
2.0 - - - T e = 2 5 ' C (V ee :200VI
VCE(eLAMP)' 250V (V CEX I
1.0
~ IBI =lc /6 ,la2=Ic/S (IBI :r B2 =I c /51

=

.S

==
=

1,-

'p=SO "SEC,VaE(OFF)=-6V (tp :20j.L SEC) (VBE(OFFp':'6vI=

L=200"h
: - - SEE FIGURE 17 FOR
.2
~E:: CIRCUIT

t,.!.,,"

I
.05

:l

.02

8

.0 I

1.0

2

4

8

6

10

IS

le,COLLECTOR CURRENT (AMPERES)

FIGURE 9. INDUCTIVE TURN-OFF WAVEFORMS

2.0
1.7S

....
~

I

...

CLAMPED INDUCTIVE
I.S ;-- LOAO,L=200 "h (SO,u.h)

::;

II

1.0

Ic=2A""-::;:

.75

Ic=4~7

~

0

..&:

~

~

.5

~

TC =25'C
Jell BI =6 (5)
~
CLAMPED INDUCTIVE
i= 2.0 '- LOAD, L = 200"h (50j.L hI

SEE FIGURE 17 FOR
Z
TEST CIRCUIT
i:

...

I:!
i

Q

Ic=2A-

c(

~

a:

o
z

REFER TO FIGURE 10 FOR
NORMAL SWITCHING TlMES-

1
.4

~

1.0

.6

.8

1.0

1.2

1
1.4

I I

1.6

1.8

Ic=4A~

.S

Ic=4A
Ic=2A

~~

~

REFER TO FIGURE 10 FOR
NORMAL SWITCHING TIMES

I c =8A
Ic=ISA

o

2.0

~~

I c =15A
I c '8A

./
V

1.5

1&1

.25

.2

~

II>

~

z

o

~

~~

2.5

c
Ic=4A
le=2A

I e =8A
Ic =ISA

c(

a:

,

SEE FIGURE 17 FOR
TEST CIRCUIT

Q

N

...- Ic=ISA
I =8A

I c l l al =6 (5)

I:!
~

I

I

I-- Tc =25'C

li:i:1.25 I--

FIGURE 10. CLAMPED INDUCTIVE TURN-OFF TIME

.2

L

.4

.6

.8

1.0

1.2

1.4

1.6

1.8

RATIO, I BI' IB2

FIGURE 12. FALL TIME VARIATION WITH 182

FIGURE 11. STORAGE TIME VARIATION WITH 182

526

2.0

100

--

30 r-- I IS
10

-

r--- r--

-- I-- a

-~

",

,

-

BONDING WIRE
LIMIT
THERMAL LIMIT
SECOND BREAKDOWN
LIMIT
Tc=2SoC

- -1.0

,",0
,.......f'

16
15
14

Iii
IU
a:

1,\~ -

IU
Q.

~

IS2=Ie/5

fZ

~~
~
~

10

IU

a:
a:

VlJ
~
(">---(">

f0

\

"" "

III N"
100

10

VCEXIMAXI
D64VS3

6

IU
..J
...J

200300400

4

.!i

2

o

1000

D64VS4
D64VSS

o

VeE,COLLECTOR-EMITTER VOLTAGE (VOLTS)

FIGURE 13. FORWARD BIAS
SAFE OPERATING AREA

~
~

l.°t~~]IE~lllisil~a~;I~E~I!

100

0.3~-L~~~~~~~~~~~~~~~~H4+ffi~~~~~

z
0.2
~
~ ~2~~~~~~~~~~~~~~~~~~~~~~~

II

. . . ~~

i~ O'I~mO'i1111;;;'mJlSL
--l 1~2 I
-l
l0.07

0.05

ffi
iii.ill
f-

i11.0~ SINGLE
PULSE

"

a: 70
0
f0

et

60

'"~

50

~7~~

'o~1

"""~fi~/"'G

,.... r-.... t'-..

~~

t"-..

~6'

et

a: 40

IU

1',

Q

a: 30

IU
~

DUTY CYCLE 0,' 11"2
DUTY CYCLE CURVES APPLY FOR
POWER PULSE TRAINS.
TIME I, REPRESENTS PULSE
WITH II'

~ 0 .02 """'.......Ir'7'..L.LJL.LLL-t-~+tttffi

a:

",r---. ~E'CO~o J
4~Oo..,,,,
'" ~
j

80

I-

II

0.03
J 71'tK-fHl-++-t-+t1ft!l
0.031-'1'9--F-t

~
II.

~O.OS

f-

~ t'-..

90

D=O.S

~+1II~~~-H~m-~~~~~~++H#~+1~~



<.J
<.J

'"
./

o

./

w

i

VCE=SV

V

......

~

...... r-TJ=O·C

TJ=ISO·y

'"

~

I-

Z

w

" "'-"

/'

FIGURE 2. DC CURRENT GAIN (VCE = 5V)

(4

12

a:
a:

10

:::>

/

". .... TJ=O·C

,/~ ...... .....

LL'

/'

~

="

w

~~

L

l-

t::

\

w

ci:

t
"tI

...J
...J

~A

8

\'1\\

4

1\

w'

~

'\\ ' .

1\

2

~\

o

30

10

\
\

6

w

~~\

/'

5

B

:;;

,/

I

10

a:

...... TJ=-40·C
I

1.0

FIGURE 3. DC CURRENT GAIN (VCE

10.0

a:
w

/

:il
w
Ii:

w

8
;::: 1.0

10.0

/

1-" ....
~~

/

/

~

13=25

a:
lI-

iw

ci:

'/

L

I

13=25

J

II

/

VI V/

w

J '/ I

~

J

o

/

HfJ· 5O

'I

iii
~

,,=)0

f-'"

13=1001

TJoIOO·C
(j ·lc/IBI

I

/

1=

...J
...J

fiGURE 4. COLLECTOR SATURATION REGION

I

L

~

t

=10V)

,,"50

". le/Ial

)0

1.0

la, BASE CURRENT (AMPERES)

,,-100
TJ -25"C

\

...........
0.1

.01

IC, COLLECTOR CURRENT (AMPERES)

~

TJ =25·C

IC' 2OA

...J

<.J
<.J

:t

III
Ic·IOA

I-

.........
/"

- TJ o 25·C

0
w'

I
Ic=5A

iii

...... .........

Z

\\ ~\

5
)0
30
IC, COLLECTOR CURRENT (AMPERES)

I

VCE=IOV

w

'\ \'~

(0

(00

100

I-

\~

/"

FIGURE 1. DC CURRENT GAIN (VCE = 2V)

"

~~\..

I""

./

...... TJ=-40·C

~ l\

S
10
IC. COLLECTOR CURRENT (AMPERES)

TJ=IOO·C

J

./

/./

.\

10

;{

~

I--'

./~ ""4- =O·C

<.J

o

".\.\~

V

z

-

TJ·IOO·C

~ )00 TJ=2S u C

:::>

V"

TJ=15~

V ......

u

./TJ=-40·C

I

z

«

I1"J=IOO·C

o
t;
W

...J
...J

/"

81.0

10'11
::::=:;;~

13=10

~

~

w

r--

~

10

10

30

30

IC, COLLECTOR CURRENT (AMPERES)

IC, COLLECTOR CURRENT (AMPERES)

fiGURE 6. VCE(SAT) VS. Ic. T J = 100°C

FIGURE 5. VCE(SAT) VS. IC' T J = 25°C
531

TYPICAL CHARACTERISTICS
10.0

10.0

13 =100JI:I=5Of-- ~ /:1-25

T~OI.50-C

I
J

13 " Ie/lal

P-Ic/IBI

I

I

I

/
I

/'"

~~
i-':

T~'25"C

I

I

//

1/13=10

II /

~

~

10

30

10
Ie. COLLECTOR CURRENT (AMPERES)

30

Ie. COLLECTOR CURRENT (AMPERES)

=150°C

FIGURE 7. VeE(SAT) VS. Ie. T J

FIGURE 8. VBE{SAT) VS. Ie, T J = 25°C

10.0

10.0
TJoIOO"C
p-Ic/IBI

J
T~·150·C

pOle/IBI

en
~

en

0
~

~

o

a:

a:

I:

~

w

w

:IE
w

I:

w

:E
w

~
'"

~

~

W
III

>

~

;;;-:

~~

~

~

en

<
CD

/:1=10

13-25

.........:::

;=

13 0 50
/:1-100

>

~

~~

=100°C

o
z
<
f-

<

~

,,

T~-25·C

TJ-'OO·C-"",,-TJ 0 150·C---

//

/' /"

0
f-

~

1'-..1--0

100

./

w

a:
a:

::l

0

a:
0

f0

O. I

0
0

10

-

"""";:-0

-

100

-= td
(0

Vea. COLLECTOR·BASE (VOLTS)

FIGURE 11. CAPACITANCE (CeBO)

~.

~ -' V" ". .... .... '"

W

...J
...J

Vcc "250 V
1a1"lc/20
Ia-Ie/IO
VlEa-5V
t p o 150,.SEC

/

~.~

fZ

........

tr

,/

"zX

~ ............

U

30

1.0

........... ........

/:1"100

FIGURE 10. VBE(SAT) VS.le, TJ :;: 150°C

crw
'"3
w

;:~5

13"50

~

10

TJ o 25"C

~

~

Ie. COLLECTOR CURRENT (AMPERES)

1000

~

::::: Oo'!"

30

10
Ie. COLLECTOR CURRENT (AMPERES)

FIGURE 9. VBE(SAT) VS. Ie. T J

~

~

W
III

1.0

o

~ §§§

....

13-10
/:1-25
/:I-50
/:1-100

20

Ie. COLLECTOR CURRENT (AMPERES)

FIGURE 12..
532

TURN-ON TIME (RESISTIVE LOAD)
(De8DS ONLY)

TYPICAL CHARACTERISTICS
1.0

10.0
TJ ·25·C
TJ=IOO·C---TJ=150·C---

u
w
Vl

/

L' ,

"

z
I

~

...u
~
...

V

~; L; ,

Vl

Z

w
c::
c::
::J
U

c::

0

t,

//

-=

...u

~.

Vee=250V
IBI= Ie/2O
1B2=le/10
VBE=-5V
t p '50,.SEC

o.I

~
...... _--

",,'"

-'
-

W

..J
..J

---:..

0

""""'=I

U

.0 I

~ ,,' i-""~

-

u
w
Vl

-=

"z
I
...u
~
...z

/

~

.........

~

~
1.0

cr
cr

r-

cr

I-

::J
U

...u0

-

tf

-

"'"'

-

--

W

..J
..J

0

-

U

td

-

-

"Iz

~.

r-.

~

-....
--. .

~
~

1.0

::J
U

c::

o
t;
W
..J
..J

- - .....-- -

...........

TJ =25·C
TJ= 100·C
TJ=150·C

-

J

:!

w
:;:

5

w

~

4

o
Iii
o

3

c::

w

~

~
... "

a:

2

.'

~~

Z

I

o

20

5

4

...o
::i

..:

~

o
z

2
I

L

f--

I

I

-::::: RBE=IKn
RBE'loon

--'-

-1-

--~
~---

10

-- ~

I

0

-"
::::::.....,-- - -~~.::..:- V;
f-

o ~I

~-

~

---

~

f-

--

-

RBE=looon
RaE"loon
RBE=lon

te

--.-

cr

::J
U

cr

o
t;

RBE= In
RBE= In

~4~"~
te

w

W

..J
..J

'" "'/

I

1.0

a:

RBE=lon

ts

~

i=

"rz
u
...
~
...
z

RBE = lOll
RBE'lOll
RBClll
RBE'ln

20

I

l.o::::~

-""

~/

----

lBI"le/2O
IB2=Ic/10
VBE=-5V

t~,
tf

-~

i-':

TJ=25'C
TJ= 100'C
TJ=150'C--VeE (CLAMP) =250 V
L-IOO,.h

..

,~

~

-~

tf

.".,-

--t;

8
O. I

10

.....

f-.:= Frs

W

I-- _ _

--

--

ts

~'

-=
:;:

RBE=looon
RBE=loon

_10-

..-... e:: ..-.- f--_'.:::::
~~

/.--:.
.....-

u
w
Vl

~

3

",,-

1--

....

FIGURE 16. NORMALIZED RESISTIVE
SWITCHING STORAGE TIME (RBE VARIATIONS)
VS. COLLECTOR CURRENT
(D66DS ONLY)

NOTE- NORMALIZED TO
t.@ 25°C FROM
FIGURE 15

,.......

w

Vl

I---

Ie, COLLECTOR CURRENT (AMPERES)

TURN-OFF TIME (RESISTIVE)
(D66ES ONLY)

Jal=le/2O
IBI"lc/40 - - - TJ=25°C
Vce=250V
tp=50,.SEC
VaE=OV

6

w

...

------- ---

RBE=IKn
RBE=loon

10.0

7

N

~~

,"" ~

Ie, COLLECTOR CURRENT (AMPERESI

c::

~

NOTE, NORMALIZED TO
ts @ 25'C FROM
FIGURE 14

..
"'~ --- --

::i

~
o

Vee=250V
1BI= 1e/2O
1B2 = Ie/IO
VBE=-5V
t p =50,.SEC

10

TURN-OFF TIME (RESISTIVE)
(D66DS ONLY)

i=

..,/

....

20

IBI'JC/20
lBI=le/4D - - - TJ = 25·C
Vce' 25OV
t p =50,.SEC
VBE"OV

N

I

~

Vee' 25OV
IBI' Ie/2O
1B2=1c110
VBE '-5V
tp '5OI'SEC
10

FIGURE 14..

}tf

0, I

~
i=

V

Ie. COLLECTOR CURRENT (AMPERES)

8

FIGURE 15.

""

""

I

20

10.0

w
c::
c::

//

0.1
10

FIGURE 13. TURN-ON TIME (RESISTIVE)
(D66ES ONLY)

"-

I~
,,-

..... 1'"

V

Vl

Ie, COLLECTOR CURRENT (AMPERES)

Vl

--

w

I

u
w

TJ ·25·C
TJ·IOO·CTJ =150·C

20

Ie. COLLECTOR CURRENT (AMPERESI

10

20

Ie. COLLECTOR CURRENT (AMPERES)

FIGURE 17. NORMALIZED RESISTIVE
SWITCHING STORAGE TIME (RBE VARIATIONS)
VS. COLLECTOR CURRENT
(066ES ONLY)

FIGURE 18. CLAMPED INDUCTIVE
TURN-OFF TIME
(D66DS ONLY)

533

TYPICAL CHARACTERISTICS
10.0

G

1.6

-

-

w

til

.;!
W

::;:

.- '-

--

----

to--

;::
Cl
Z

:;:
U
....

~
....z

r;.::

~w

~

r-....

..J
..J

oU

O. I

-

.......

'- """'-

....-

1-

}

TJ=25°C--TJ= 100oC----ts TJ=150oC--VCE (CLI>.MP) = 250 V
L=IOo,.h

}

....

1.0

w

a:
a:
::>
u
a:

...

1.4

tc

IBI=Ic/20
IB2=Ic/10
VBE=-5V

w

;::

......

....0

1.0

W
N

~

:::;

::;:
a:

/ ' ~V
0.8 IC=20A
V
IC=IOA ~

0

z

Ic=5A

0.4
0.5

1.0

;::

FIGURE 20.

.,/ Ie=5A
./

~V
~~

,
~ 1/

1.2

Cl

«

0

....
til

1.0

0

A~

w

N

:::;

«

::;:
a:
0

z

O.B
c=20A
IC'IOA
0.6 Ic'5A

STORAGE TIME VARIATION
WITH IS2
(D66DS ONLY)

A
~

~

~

'" ......

, / ' Ic=IOA
1.4
IC"20A

V V

-::;:
w

TJ = 25°C
I c/IBI=20
VBE=-5V
CLAMPED INDUCTIVE
LOAD, L=IOOl'h
VCE(CLAMP)'250V

1.2

~

..J
..J

~

""':

1.0

w

N

:::;

«
.::;:
O.B
a:

W

Ic'20A
Ic'IOA
Ic'5A

b:::=

-;P

0.6

0.5

1.5-

1.0

0.5

2.0

1.0

.....-::

1.2
~

;::

...0«

1.0

w

N

:::;

«

::;:
a:
0

Z

0.8
c'20A
Ic·IOA
0.6 I c '5A

0.4

~

~

~

V

~

~

~

..,~ ~

~ :;;.::: f-'

.,.,

Ic'5A
Ic'IOA
Ic'20A

FIGURE 22.

1.4

~

w

::;:

;::
a:

FALL TIME VARIATION WITH I S2
(D66DS ONLY)

TJ=25°C
Ie/I BI·20
VBE '-5V
CLAMPED INDUCTIVE
LOAD, L=IOOl'h
Ve'E(CLAMP)' 250 V

1.2

w

>

0

til
til

0

a:

u

,..-

IC'20A
1.0 IC' IOA
I c'5A

--

~

...... Ic=5A
IC'IOA
I c ·20A

0

W

N

:::; O.B

«

:;;
a:

t7

0.5

2.0

1.6

TJ= 25°C
IclIBI=20
VBE'-5V.,
CLAMPED INDUCTIVE
LOAD, L= 10O,.h
VCE(CLI>.MP)" 250 V

..J
..J

1.5
RATIO, 191/182

STORAGE TIME VARIATION
WITH IS2
(D66ES ONLY)

1.6

w

Ic=20A

z

FIGURE 21.

E

Ie' 5A
Ic' IOA

0

RATIO. 1811182

::;:

---- ~

;::

0.4

0.4

1.4

2.0

1.6
TJ=25°C
IclIBI=20
VBE'-5V
CLAMPED INDUCTIVE
LOAD, L=IOO,.h
VCE(CLI>.MP) =250 V

w

a:

1.5

RATIO, 181/182

1.6

~

...... I C'20A

0.6

20

FIGURE 19. CLAMPED INDUCTIVE
TURN-OFF TIME
(D66ES ONLY)

w
::;:

IC'5A
Ic= lOA

~

IC. COLLECTOR CURRENT (AMPERES)

1.4

/. t/
~~V
~ ~-

w

«

10

./ .,/

l?

«a:

~

""---- t--

I

.,/

1.2

til

r--":- }f

~

-::;:

TJ=25°C
IclIBI=20
VBP-5V
CLAMPED INDUCTIVE
LOAD, L=IOOl'h
VCE(CLI>.MP) =250 V

0

Z

1.0

1.5

0.6

0,4

2.0

0.5

RATIO. 181 IR2

1.5

1.0

2.0

RATIO, 181/182

FIGURE 23. FALL TIME VARIATION WITH 182
(D66ES ONLY)

FIGURE 24 ..

534

CROSS-OVER TIME VARIATION
WITH IS2
(D66DS ONLY)

-

TYPICAL CHARACTERISTICS
1.6

1.4

:i>
w

:E

;::

100

TJ = 25"C
I C/I BI =20
VBE=-5V
CLAMPED INOUCTIVE
LOAD, L=IODl'h
VCE(CLAMP) =250 V

,,/

1.2

/. ~

II:

w

1.0

0

II:

U

0

w

N

:::i
..:
::;;
II:

0

z

0.8

V . / ' -;: ~

A

~
IC'5A lh

Ic'IOA
0.6 Ic=20A

~

"'~; ):S20~SEC~ ~~

~I

rr-

~ Ic=IOA
I--' Ic=5A

iii

1"
:~"

w

II:
W

"-

~

~I-"'"

10

1,,\

u

II:

o

t;

U

u'

O. I
1.5

1.0

,.0

2.0

-w

DUTY CYCLE =. I

z
..:

0

.1

w

DUTY CYCLE=.05

"-

~

15

DUTY CYCLE·.OI_

...J

10
TJ=25°C

t - - I-L-IOO I'h
St--

200

i

.01

II:

w

/

J:

....
....z

r\

l-.YaE=-Sv@.sn
lal'lc/IO

100

..:

,

....

!j

DUTY CYCLE=.2

U

20

0

...J
...J

10JO

DUTY CYCLE =.5

~
u

II:

0

~:

I

;::
....
..:

w

U

)0

10

w
II:
w

u
w

1\.\

10

FIGURE 26. FORWARD BIAS SAFE
OPERATING AREA

iii 25

=>

~5

I\,

VeE. COLLECTOR EMITTER VOLTAGE IVOLTSI

30

u

It

--

Ic OR rCM LIMIT
THERMAL LIMIT SECOND BREAKDOWN
LIMIT
TJ =25"C
DUTY CYCLE S I %

o

~

\

r\

1.0

~

...J

RATIO. I Bl- IS2

....
z

.. c: .. ,.

~

\

\

"',1\

:::>

FIGURE 25. CROSS-OVER TIME VARIATION
WITH 182
(D66ES ONLY)

II:
II:

~MSEC

W

II:

II:

~

0.5

5

OOMSEC'-~,

~
1

z

0.4

...:E

11"101

....

~~

>

0

III
III

IC=20A

V

w

"'-

300

.001

iii

z

PART 5

..:
II:

/T PART6-~

....

~P~RT7

400

I

/rLEPULSj

.000
.000001

500

.00001

.0001

VCE. COLLECTOR EMITTER VOLTAGE (VOLTSI

g
II:

0
....
u

..:
u.
Cl
Z

;::

..:

BO
70

r...... ~oo\'lll
-~4.te.o...o\'
I"

"

IV~

60
50

II:

w
0

40

;:

llE"/i.

~~""G

I

~-i!

..........

~ o~
~~

K

II:

w

30

0

Co.

20

"- ......
't'\,.

10

o

o

20

.1

FIGURE 28. TRANSiENT THERMAL RESPONSE

~~
~

90

.001

PULSE WIDTH. TIME IN SECONDS

FIGURE 27. REVERSE BIAS SAFE
OPERATING AREA

100

/

--~

~

40

60

80

~
100

120

Te. CASE TEMPERATURE I'C)

FIGURE 29. POWER DERATING

535

140

160

10

TYPICAL CHARACTERISTICS

DIODE CHARACTERISTICS
20

lIT
a:

TJ'2S"C
.TJ=IOO"C----TJ"ISO·C--

w

Q.

~

IZ

t-

w

a:
a:

:>

u

o

~

a:

~

10

a:

~

V

o

u.
II)

"

:>

o

/' I

z

'/1

~
z

.11 /

~
~

.

~

.!:-

I

0.0

// V
1.0

3.0

2.0

S.O

4.0

VTM. INSTANTANEOUS FORWARD VOLTAGE (VOLTS)

FIGURE 30. FORWAR.D CHARACTERISTICS

+6VDC

+250VDC

33

; 12.S0RL
(NON INDUCTIVE)

(1"10 DUlY CYCLE)
NOTE' JUMPER
I TO 2 (RESISTIVE)
2 TO 3 (INDUCTlVE

+5V

;3"l::-

50" .•
4.7

6r2
,-----------,

.022

V
CLAMP

270
j-IBI '!a2

+~ I

DEVICE UNDER TEST

I
66

I
I

L------J--J

D44VHI

100

* =SELECT ,
RI FOR+I BI = 1.0 AMP
R2 FOR - IBI =2.0 AMPS

=IB2

-6VDC

FIGURE 31. SWITCHING TIME TEST CIRCUIT

536

HIGH POWER

D66DV5,6,1

NPN POWER DARLINGTON
TRANSISTORS
The General Electric D66DV and EV are high current power
Darlingtons. They feature collector isolation from the heat
sink, and internal construction designed for stress-free
operation at temperature extremes and quick connect electrical terminals. They are designed to meet UL creep, strike
and isolation voltage. Major applications are for motor
controls, switching power supplies, and UPS systems.
Features:
• High Voltage: 400-500 VCEO(SUS); 50D-700 VCEV

D66EV5,6,7
500-700 VOLTS
50 AMP, 125 WATTS

~:lT~

!ILu' +1!0~®'~
~
f
i -.

I

@

E

T~P~:

l

I

IT.

~

R

CASE STYLE D66

DIMENSIONS ARE IN INCHES
AND (MILLIMETERS)
ORIENTATION OF THE
FLAT IS NOT CONTROLLED

0

~1

x
:
AA1I--AB~,' .. .L
.I
~
1 -r=¥==FTII ~tt~ n~-.L
K2

t

• High Current: 75 Amperes, IC (Peak)

1
Hr-I

• High Gain: hFE 50 Minimum @ 50 Amperes, IC
(hFE = 135, typical)

I
A~

X2

~I.:
S

D66DV

AC

D66EV

INCHES

METRIC

S

INCHES

MM
MIN MAX

Y
M

MIN

Y
Pot

MIN

A

1.505 1.540 38.22 39.12

F

.120

G

.605

H

.940

MAX

....
.132

.9IlO

l
MM
MIN -,-MAX

.510

12.57 12.95

S.495

AD

METRIC

I MAX

a35

T

.150

.170

15.36 lMO

U

.985

1.015 25.01 25.80

2aB7 24.19

V

.450

REF.

3.04

lIT

3.81

4.32

1'.43 REF .

J

.00'

-

'.80

-

W

.HIO

'1

.120

.132

3.04

;1.35

X

.050

.058

'2

,171

.184

4.34

.005

.073

1.65

1.85

.184

.192

4.57

4."
4.88

1."'-

L

Y

.157

.117

3.99

4.50

"

.484

.484 11.78 12.30

Z

1.180 1.192 29.97 30.30

N

.247

.255

6.27

6.48

AA. 130

.165

3.30

P

.210

230

5.33

5.84

AB.684

.704

17.37 17.90

a

.275

REF.

7.00

REF.

AC

.031

.035

.78

.90

R

.970

REF. 24.64 REF.

AD

.100

REF.

2.54

REf.

4.57
1.27

1.47

4.30

DEVICE CIRCUIT

maximum ratings (T C = '25°C)
RATING
Collector-Emitter Voltage
Collector-Emitter Voltage
Emitter Base Voltage

D66DV
D66EV

Collector Current - Continuous
Peak (Repetitive)
Peak (Non-Repetitive)
Base Current - Continuous
Peak (Non-Repetitive)
Total Power Dissipation @TC=25°C
Operating and Storage
Junction Temperature Range

(unless otherwise noted)
SYMBOL
VCEV
VCEO
VEBO

D66DV5/EV5
500
400

D66DV6/EV6
600
450

D66DV7/EV7
700
500

UNITS
Volts
Volts
Volts

8

8

8

Ic
ICM
ICSM
IB
IBM
Po

5
50
75
125
10
20
125

5
50
75
125
10
20
125

5
50
75
125
10
20
125

TJ, TSTG

-40 to +150

-40 to +150

-40 to +150

°C

VISOL

2500

2500

2500

V(rms)

4

4

4

Isolation Voltage

thermal characteristics
Thermal Resistance, Junction to Case
See page 845 for mounting and handling considerations.

537

A
A
Watts

electrical characteristics (T c = 25 0 C)
I
CHARACTERISTIC

(unless otherwise specified)

I SYMBOL I

MIN

TYP

VCEO(sus)

400
450
500

ICEV

-

-

MAX

UNIT

-

Volts

10
2.5

mA

350
350

mA

off characteristics
Collector-Emitter Sustaining Voltage
(Ic = 1A)
(Vclamp =VCEO Rated)
Collector Cutoff Current
(VCE = Rated Value, VSE = -1.5V)

D66DV5/EV5
D66DV6/EV6
D66DV7/EV7
TJ = 25 DC
TJ = 150DC

Emitter Cutoff Current
(VES =4.5V, Ic =0)
(VES = 1.5V, Ic = 0)

D66DV
D66EV

IESO

-

-

-

second breakdown

I Second Breakdown with Base Forward Biased

FBSOA

SEE FIGURE 23

on characteristics
DC Current Gain
(Ic =75A, VCE = 5V)
(Ic =50A, VCE =5V)
(Ic = 20A, VCE = 5V)

hFE

Coliector:"Emitter Saturation Voltage
(Ic =75A, Is = 5A)
(Ic =SOA, Is = 4A)
(Ic = 20A, Is = 2A)

VCE(sat)

Base-Emitter Saturation Voltage
(Ic = 75A, Is = 5A)
(Ic = 50A, Is = 4A)
(Ic = 20A, Is = 2A)

VSE(sat)

25
50
100

60
135
250

-

-

-

2.2
1.7
1.15

3.0
2.0
1.5

V

-

2.8
2.45
1.95

3.5
3.0
2.5

V

switching characteristics

TYP.

Resistive Load

=250V

Delay Time

VCC

Rise Time

=50A
IS1 =2.5A, IS2 =5A
tp =50 J.lsec

Storage Time
Fall Time

tei

IC

tr
ts
tf

-

MAX

DV

EV

DV

EV

.09

.09

.5

.5

.5

.5

1

1

2.55

2

5

3

1.4

.64

3

1

J.ls

emitter-collector diode characteristics
Power Dissipation
Forward Voltage

Reverse Recovery Time
(IF = SOA, di/dt =25A/J.lsec, RS1E

(IS1 = 0)
(IF = 25A)
(IF = 50A)
(IF =50A, TJ

=150DC)

=.250)

Forward Turn-On Time
(IF = SOA, di/dt = 100AlJ.lsec)
Single Cycle Surge Current (60Hz)

125
3.20
3.80
3.50

Watts
Volts
Volts
Volts

Trr

-

3.85

10.0

J.lsec

TON

-

0.75

1.5

J.lsec

-

150

-

1.0

Amps
DC/Watt

ROJC

538

1.95
2.60
2.30

IFSM

Thermal Resistance

-

Po
VF
VF
VF

TYPICAL CHARACTERISTICS
1000

1000

..

I-'

v
z

TJ '150 0 C

;;:

'"

fZ

t.J
0::
0::

100

::>
u
u

/

.;

...

25 °;'

1\

/ - ~\.

V

~
/

/V

:r---r 100°C

r--

0

~

/'

~

-

z
;;:

~~

fZ

VeE '5V

~

I'---

W

0::
0::

100
::>

0
0

/

...

11'1\ \
10

100

/"

/

- I"--t-."

VeE=IOV

y/

~

10
1.0

V
~
'Aloooc
*25°J

.;
.c

7h

~
/' ~

V

n/

0

//

:r

TJ • 150°C

'"

,\

1

\\

\\\\

\1;\
\\ \~

VlC
10
1.0

1000

10

100

1000

Ie, COLLECTOR CURRENT (AMPERES)

Ie, COLLECTOR CURRENT (AMPERES)

FIGURE 1. DC CURRENT GAIN (VeE = 5V)

FIGURE 2. DC CURRENT GAIN (VeE= 10V)

Cii
~

0

>

i;J 10.0

en

I~

!:i
0

Ie = 25A

~

~
~

9

0::
III
ff-

B

7

t.J

6

&:

5

~

~

u
-'
-'
0
u.

III

I

TJ ' 25°C

/:If' IelIsl

0

0

fi

I

f-



.01

/

i

w

TJ • 25°C

1.0

0

0.1

1.0

~
u
'"
>

10

Is, BASE CURRENT (AMPERES)

V

/

0::

w

ff-

\

3

I

V

UI

4

//:If '50

/

5.0

::>

\
\
\

r-r-

:;

0::

\

Pf'IOO

I

>
z

\
\

III
c:I

10

'"':i

!«UI

I

0::
III
ffI

0::

o

f-

u
III
-'

I.0

~ 0.7

is
~

/

V VI

I V~V
~

i

III

6o

II

~
10

~

~

I

/

J

10.0

~

/:1'50

/:1=100/

~o
>
z
o

/:1'25

I

~

~
~

UI
0::
W
ff-

" /:1'10

/:If 0 10__

i

w

~

I

~~

W

UI

 5.0
z
o

Q.

w

fi

It:

VP=IO

:::>

!cen
It:
W

~
::E
':'
w

-

en

;j!

~j;j'

~

---=

1.0

~
~~
~~

::::""0-.

~

CI

z

FIGURE 8. CAPACITANCE (CcBO)

5:
u

....

I::::..

l-

o. I

z

'":::>

CI

/.

z

%
u
l-

It:
It:

...

i

--

Id

~

o.I

t-.....

I-

~

/

/

"

,/~

V

L

....... 1--'

I

-- -

Z

'"
:::>

td:

u

It:

0

It:

ti

0
I-

11.1
..J

U

5u

~

..J

0.0 I

5

0.0 I

50

10

:Ie. COLLECTOR CURRENT

.
u

on

~

w
::E
;::
CI
Z

'"

-

./

... /'"
.t'

UJ

/

/

...

w

;::

'7

CI

V
./

./

I

5

%
~

~

-

---=

- )Is
-- .-~!

........

r-

.~

~

~

i'"

It:

~

~

50

-~

1.0

a
o
'-'

10

-

-

U
11.1
..J
..J

'Il-'~
0.1

z

IZ
11.1
It:
It:

i-"

w

TJ =25°C
TJ"IOO"C
TJ"150"C
Vee = 250V
181 = l:e 120
Iez' Xe llO
V BE "-5V
'p' 50/,S8C

::E

....

~

./

If

---

..:!-

......

i-"

~u

I-...

'-I~

./

It:
It:

a

•.u

....

1.0

IZ

FIGURE 10. TURN-ON TIME (RESISTIVE LOAD)
(D66EV ONL V)

~IO.O

-

X

50

1e. COLLECTOR CURRENT (AMPERES)

10.0
TJ=Z5'C
- - - - - TJ= 100'C
_ . _ .• TJ"150·C {
Vee' 250V_ _ """ I
IB,"Ie /20
5
IBZ'Ie"O-rVB[=-5V
Ip = 50 /L 'See

10

5

I

lAMPERES)

FIGURE 9. TURN-ON TIME (RESISTIVE LOAD)
(D66DV ONL V)

d
'-'

/

,

It:
It:

u

i~

I

Vee=Z50V
Iat"Xe/ZO
J:e2'Xe/60
V8["-5V
I,' 50/, sec

I-

~

-

I-

'"~

V

1;=

.L

-

..:!-

/.'
V~/

TJ=ZSOC
-----TJ=IOO"C
TJ"I500 C

u

••

Ir

/;-

100

Vea. COLLECTOR-BASE VOLTAGE (VOLTS)

= 150°C

---

w
2
j:

r-t--

10

I

CURRENT (AMPERES)

1.0
TJ=ZSOC
TJ"IOO'C
- . - . - TJ=150'C
vee' 250V
Xa," Xe /ZO
xaz'Xe /lO
VaE '-5V
I p ' 50 I'SlC

:l

'-'

r---

'-'

1.0

:

0

~

75

50

FIGURE 7. VBE (SAT) VS Ie, TJ

ien

z

~ 1000

100
1.0

Ie. COLLECTOR

u

~P=Z5
~P=50
~P=IOO

'-'

O. I

5

~-

....-

.t'

L

10

50

Ie. COLLECTOR CURRENT (AMPERES)

Ie. COLLECTOR CURRENT (AMPERES)

FIGURE 11. TURN-ON TIME (RESISTIVE LOAD)
(D66DV ONL V)

FIGURE 12. TURN-ON TIME (RESISTIVE LOAD)
(D66EV ONLV)
.

540

TYPICAL CHARACTERISTICS

'r 1

=
...
Z

j:

...

"!5
«

Vi-"
,/

~

3

N

t.-'~I>'

::i

'"a:Z

2

z

NOTE'
I NORMALIZED TO
t s(o)25·C (REF FIG.ID)

I

I I

~~

~

-.--- -

,-

V

0

V

1--

...Z

;::

'~IRBE=looon
RBE-IOon

....

V-

IIIII

10

'"

,/

0

3

::i

'"::IE

~

2

a:

z

tV

2S·C

TF

I

.:!w

~
~

":x:
z

,,"

u

//

f-

~

1.0

fZ

W
0::
0::

:::>
u

Ic

j
o
u

l--

/./
./

......V

....-::~

u
w

V

~
~

!t
:x:
u

,~
V

~

f;

L

b:::::::::

0::

o
u

F=!=-

W

o

U

w

"a:«
0

1.0

./'

~
Cf)

c

!oJ
N

~

::IE

0.8 Ie·SOA
I c '20A
0.6 Ie" lOA

~
~TJ-25.C

S

z

I e-50A

-w

::;:

;::
w

'"«a:

Is

t-

V

./

L---"

......-

"'~

fo" I .....

~

~

....A

te

}.
I.....-

V

10

so

0

1.2

N

0.6

::;:
0::

d ~
~

l:c' IOA l:c' 2OA
l:c' SOA-

T;r" 2S"C

1.0
0.8 [IC"50

::;
..:

0.4

~

1.4

f-

'"w0

CLAMPED INDUCTIVE LOAO
L - 100,.h
VeE(CLAMPI - 2S0V

a:

0

1.6

:Ic/I BI " 20
VBE=-5V

~

I-

FIGURE 16. CLAMPING INDUCTIVE TURN-OFF TIME
(D66EV ONLV)

Ic-IOA

1.2

'-

Ie. COLLECTOR CURRENT (AMPERES)

~ I e -20A

~

p--

I'""'-

0, I

50

1.6
1.4

~

1--" ....

~

FIGURE 15. CLAMPING INDUCTIVE TURN-OFF TIME
ID66DV ONL V)

j:

-~rrIT

~

~
a:
a:

Ie. COLLECTOR CURRENT (AMPERES)

w
::IE

:---r:'lon
r---:RIE' In

~

:::>
<.>

10

--.- .-

r-

1.0

..J
..J

~

-- '-

!::

!5

.......

100

-

w

V
O. I

TJ= 25·C
- - - - - TJ=IOO·C
TJ=ISO·C
VCE(CLAMPED) =2S0V
L=IOO,.h
I BI -Ic/ 2O
I82' leI 10
VBE = -SV

:

fsJt

...... . /

j..oo

a:

~

/"

-~

FIGURE 14. NORMALIZED RESISTIVE SWITCHING
STORAGE TIME (R BE VARIATIONS) VS
COLLECTOR CURRENT (D66EV ONL V)

u

/"

"100011

"'R'IOO~

Ie' COLLECTOR CURRENT

r--

.....

~

RaE "loon

10

_10.0

~

FllOi

-,.....--

I'

~RBE'1OO0
-..:::: ~ b~IE",o.nl

o

100

10.0

"

~

. . .y
::::1. . .

NOTE:
NORMALIZED TO Is

0

FIGURE 13. NORMALIZED RESISTIVE SWITCHING
STORAGE TIME (R BE VARIATIONS) VS
COLLECTOR CURRENT ID66DV ONL V)

TJ-2S·C
--Tr IOO • C
_._.- TJ- 150·C I
VCE (CLAMPED) - 250V
L - 100l'-h
181- Ie / 2O
182 - leI 10
VBE --5V

~

'"

::..

/-

~

Ie. COLLECTOR CURRENT (AMPER ES)

u

/
L'/

4

RBE-In-

'--'1-I---"

~ ~ ""-

N

-

,-

~
a:

...c'"

-RBE-Ion
-::::. -:::::.RBE-Iooon
RBE-loon
RBE-Ion
RBE-In

1

T;r'25.CJ
6 - - - I a , " Ic/20
- - - - I al 'Ie/5O
Vee' 250V
I
5 'p • 50,. ••e
VBE'O V

=.

4

Ul

...c

1

TJ"25·C I
- - - Ial "Ic /20
- - - - - IBI - Ic /50
Vcc " 250V
5 'p = 50,. •• e
VBE = OV

~

~c'2?i~

lIe" lOA

Ic / 1:a," 20

VI£"-5V
CLAMPED INDUcnVE LOAD
L" 100,. h
VCEICLANPI " 2S0V

0.4

0

z

0.2
0

0.5

1.0

1.5

2.0

J

0.2
0

0.5

1.0

2.0

RATIO. IBI/I82

FIGURE 18. STORAGE TIME VARIATION WITH IB2
(D66EV ONL V)

FIGURE 17. STORAGE TIME VARIATION WITH IB2
ID66DV ONL V)

541

TYPICAL CHARACTERISTICS
1.4.---....-----r-----~----,....---_.,

1.4

~
1&.1

1.2

:::E

i=

~

...J
...J

~

V

1.0 Ic=50A

Q

1&.1
N

c

Ic"IOA

:::E

z

1.21---+-----+------,r'So-&o.£...---r------I
w

:;

;::

Ic= 20A
I c '50A

..J
..J

~
w

T.r"25°C
Ic /1 81=20
V8E=-SV
CLAMPED INDUCTIVE LOAD
L'I00l'h
VCE ICLAIilPED) = 250V

l C=20

:J

II:
0

~

IC=IOA_

0.8

N

::;

<

:;
II:

oZ

I

O.S

I.S

1.0

0.5

1.01---+-------,rF-----+-----r------I
T.ra2S0C
Ic1181=20
V8E"-SV
CLAMPED INDUCTIVE LOAD
~~---+-----+- Lal00l'h
VCE ICLAIIIP)" 2S0V
Ic=IOA
0.6L---'-----....L..-----'::------:~---........

O.S

2.0

FIGURE 19. FALL TIME VARIATION WITH IB2
(D66DV ONL V)

1.0

loS

2.0

FIGURE 20. FALL TIME VARIATION WITH 182
(D66EV ONLV)

1.4

1.4.---....----~----,....----~----,
Ic a 50A
lc= 20A

~
1&.1

:::E

i=

~
~

1.2

II:
1&.1

~

II)
II)

0

II:

~

1.0 IC'SOA

~

IC=20~7

U
C

1&.1

N

:J

II:
W

>

~~

c

:I 0.8
0:
0

z

T.r=2S"C
IclIal " 20
VaE =-5V
~ 0 . 8 1 - - - ¥ - h - - - + - - - - - + _ CLAMPED INDUCTIVE LOAD
o
L =I00l'h
z
VCEICLAMPED)"2S0V
Ic,20
0.6L---:'::---_-':-_ _ _ _"':-_ _ _ _. i -_ _ _- - '
O.S
1.0
I.S
2.0

0.6
0.5

1.0

2.0

1.5

FIGURE 21. CROSSOVER TIME VARIATION WITH IB2
(D66DV ONL V)

FIGURE 22. CROSSOVER TIME VARIATION WITH
(D66EV ONL V)

7sll--~ N~~~PETITlV~}~~P~20I'S.e.
I~~
12S~~l~-~
Lll~~
LJill~
1~~I-~~~L~JEllftlL~
.iJia~II~"~"
t!
__

1.01---+-----::;;rfF-----t--~--1-----I

~
~
~

T.r= 2S"C
IclIal=20
VBE=-SV
CLAMPEO INDUCTIVE LOAD_
L'I00l'h
VCEICLAIIIP) =rov

Ic=IOA

1.21---+----+----"7"''17'''"-::."...''--1-----1

;::

IC=IOA
1C=20A
IC=SOA

\

_

70
80

~~

60

~ 10.0~~lliill~-~\~M1s.~el·
iil~~~~liIIO.O
~~
~
~

~

~

~:I

W~

100~··

s_.t-e.-'\\-ft't'~~~t~~

'--_+--+--t-pt,dti..p.
......-+_....-f"I+.U.H,,
r
10MSee ,r___

~'"

DC

C

00

r- I M~te.

',I

S
o

0:

~

!!lo:

U

_

T.r"25"C
DUTY CYCLE S 1"10

\

"

1\

I§

I\.

G

~ l.°r~~~~~~~~~~~~~ttlg~~~I;III.O is~
j

&
t!t

Ic OR ICIII LIMIT
--------THERMAL LIMIT
SECOND BREAKDOWN LIMIT

II!II

I

PART 5
PlART 6
~ART 7

"""t

u

HU

I

0\L.0-...-.J.-L....J-L..J....L.L1J.10--L-....L...L.JL.L.L.J...J1.L0-0.....30.-A...-.J.-1..JLL.JL.U.10.J.J0%1

VCE • COLLECTOR - EMITTER VOLTAGE (VOLTS)

182

--,

,
,,
\ ,
\ ,
\\
I

I

50

I

T.r =2S"C
30 - L alOOl'h
V."-SV, Rs . 0 . 5 n - 20 -:III a 1:ellO
VBE a OV'IRIE 047Q7--10

I

\

~;{RT S.
PARTS
~ART7

300
400
100
200
500
VCE ' COLLECTOR EMITTER VOLTAGE, CLAMPED (VOLTS)

FIGURE 24. REVERSE BIAS SAFE OPERATING AREA
(CLAMPED)

FIGURE 23. FORWARD BIAS SAFE OPERATING AREA
542

TYPICAL CHARACTERISTICS
I

100

i

~ ~l)NJ

90

.

~ ~~J
lrOO~

"-

c.>

LJ

c.>
~

...o

i!

SIN GLE PULSE

~

CL

oJ


Ii!

;

e

40

Itlj
/:/

.' V

30

/;1
/j

II>

z~

t!
z
t!

20

7

/1
;;/1

II)

is
II

H

10 0

- - TJ c 2SOC

--I

----·TJ-IOOOC

2

T;r'lsooc

3

V Tl1 , INSTANTANEOUS FORWARD VOLTAGE (VOLTS)

FIGURE 27, DIODE FORWARD CHARACTERISTICS

~nOYDe

'5n AL

L"IDO,.1I

(HON INDUCTI"t!

(1% OUf"rCYCl£ I

.·UL[eT
AI rO'U"I"

A2

rO"~lal"

2''''loIpsiPKI
.... PS. J II2

tPKl

-IiYDC

FIGURE 28. SWITCHING TIME TEST CIRCUIT

543

4

'" '"

120

FIGURE 26. POWER DERATING

'iii

II!

100

TC ,CASE TEMPERATURE ('C)

FIGURE 25. TRANSIENT THERMAL RESPONSE

~

~

140

160

544

HIGH VOLTAGE

D66DW1,2,3
D66EW1,2,3

NPN POWER DARLINGTON
TRANSISTORS
The D66DW/EW is a high voltage NPN high current power
Darlington especially designed for applications requiring
high blocking voltage capability such as: 460VAC line motor
controls, power supplies and UPS systems as well as
European 380 VAC line operated systems. This device
utilizes GE's latest advances in bipolar technology and
features the 066 package offering: collector isolation from
heat sink, TO-3 mounting compatibility and quick-connect
terminals.
The D66DW/EW also features a discrete fast recovery antiparallel high power diode which eliminates the need for an
external flyback diode in most inverter applications.
Features:
• Very high blocking voltage - VCEV 800 to 900 Volts
• High current - IC(Peak) 75 Amps
• Discrete high power flyback diode
• UL recognized industrial package
• Two versions - with or without speedup diode

~:lr~

!1lu:~:l!e~,.tj
~
1
~....

@

D66EW

D66DW

I

If.

'E'

w

TYP'""1

~

I
R

IF· I

AND (MILLIMETERS)

K2

l-

AA1II

AS

n

•t

MEmlC

I
S

INCHES

MIN

METRIC

Y
IA

MM
lAIN ..... MIN MAX

Y
IA

A

1.505 1.540 38.22 39.12

S.485

.510

120$7 12.15

T

.170

aB'

F

MM

I......... 1.....

.120

.132

3.04

G

.6Q5

.645

15.30 16.40

U.985 1.D15 25.01 25.80

H
J

.!MO

.307

.880 23.87 24.'9
7m
-

V.45O REf. 11.43 REF.
W .160
_
4.57

.120
,'71

.164

,132

3.04
4.34

3.35

.150

3.35

)(,.05O.D58

1.27

tA7

~.085.Q73

US

1.85

3..

".SO

L

.184

.In

4.57

M

.484

.484

11.78 12,30

N

.247

.255

6.27

8.48

M

P

.210

.230

5.33

5.84

AD.684

Q

.275 REF. 7.00 REF.
.970 REF. .... REF.

R

4.32

4.64
4.88

AC

! II

A----ooI

INCHES

::::t
-1'.....

l

I;"

\.
S

CASE STYLE 066

DIMENSIONS ARE IN INCHES
ORIENTATION OF THE
FLAT IS NOT];JCONTROLLJEO

'..L

1 1 .-=i==ft nHh T

j.

l

a

x:

~1t

K,

The collector-emitter diode is
a discrete high power diode.

VeER = 600-700 VOLTS
VeEV =800-900 VOLTS
50 AMP, 167 WATTS

Y

.157

Z

1.180 1.182 2a.g7 30.30

N;

AD

.130
.031
.100

.177

.155

3.30

UO

.11M 17.37 17.90
.Q35

REF.

.78
.eo
... REF.

L __-======--=====~_.-J

DEVICE CIRCUIT

maximum ratings (T C =25 0 C)
RATING
Collector-Emitter Voltage
Collector-Emitter Voltage
Emitter Base Voltage

(unless otherwise noted)
D66DW1/EW1
800
600
8
5
50
75
125
10
20
167
1.33

D66DW2IEW2
850
650
8
5
50
75
125
10
20
167
1.33

D66DW3/EW3
900
700
8
5
50
75
125
10
20
167
1.33

UNITS
Volts
Volts
Volts

TJ, TSTG

-40 to +150
2500

-40 to +150
2500

°C

VISOL

-40 to +150
2500

.75
4

.75
4

.75

SYMBOL
VCEV
VCER
VESO

D66DW
D66EW

Collector Current - Continuous
Peak (Repetitive)
Peak (Non-Repetitive)
Base Current - Continuous
Peak (Non-Repetitive)
Total Power Dissipation @ TC = 25°C
Derate above 25° C
Operating and Storage
Junction Temperature Range
Isolation Voltage

Ic
ICM
ICSM
Is
ISM

Po

thermal characteristics
Thermal Resistance, (transistor)
(diode)
See page 845 for mounting and handling considerations.

545

4

A
A
Watts
W/oC

V(rms)

electrical characteristics (T c

=25

0

C)

(unless otherwise specified)

CHARACTERISTIC

I·

SYMBOL 1

MIN

TYP

MAX

UNIT

VCER(sus)

600
650
700

-

Volts

ICEV

-

-

1.0
2.5

mA

-

-

350

rnA

off characteristics
Collector-Emitter Sustaining Voltage
(Ic =5A, Vcl amp =VCE (Rated), RSE
Collector Cutoff Current
(VCE =Rated VCEV, VSE(off)
Emitter Cutoff Current
(VES =4.5V, IC =0)
(VES =1.5V, IC =0)

D66DW1/EW1
D66DW2/EW2
D66DW3/EW3

=10.0)

TJ
TJ

=1.5V)

= 25°C
=150°C

IESO

D66DW
D66EW

-

second breakdown

I Second Breakdown with Base Forward Biased

FBSOA

SEE FIGURE3

on characteristics
DC Current Gain
(Ic =50A, VCE =5V)
(Ic =75A, VCE =10V)

hFE

Collector-Emitter Saturation Voltage
(Ic =50A, Is =4A)
(Ic =20A, Is =2A)

VCE(sat)

Base-Emitter Saturation Voltage
(Ic =50A, Is =4A)
(Ic =20A, Is =2A)

VSE(sat)

25
15

-

-

-

-

-

-

-

2.5
2.0

V

-

-

3.5
3.0

V

TYP.

MAX.

switching characteristics

OW EW OW EW

Resistive Load

=500V

Delay Time

VCE

Rise Time

=50A
=4A, IS2 =6A
tp =50 J.f,sec
IC

Storage Time

IS1

Fall Time

Reverse Recovery Time
(IF =50A, di/dt =25A/J.f,sec, RS1E

-

tr

tf

-

VF
VF

-

-

2.0
2.5

Volts
Volts

Trr

-

2.0

-

J.f,sec

ts

emitter-collector diode characteristics
Forward Voltage
(IF =25A)
(IF =50A)
=.25.0)

-

td

0.75

0.5

.3

1.0

1

5

10

15

1

2

4

.5

J.f,S

TYPICAL CHARACTERISTICS
70

1000
800
600

60

400

in·
w

ffi

z

;(

...
C>

200

Z

~

w


u

...
.r:
w

v-

V

/'

40

/

20

2

4

6

8 10

20

50

40

w



u

'\.

VeE= 5V

10
1

"""

":;:
~
~

40

o
t;

\

~
60

~

D66DW/EWI

I

20

\\\

-"

8
10

a

80 100

COLLECTOR CURRENT (AMPERES)

FIGURE 1. TYPICAL CURRENT GAIN

30

l- -Isl '182 +1.81

,I

I
I
DEVICE UNDER TEST

I
I

U'

,I
I
I

L-------b-:--J
100

* 'SELECT'
RI FOR +I BI
R2 FOR-I BI

-6VDC

FIG.4 SWITCHING TIME TEST CIRCUIT

547

V
CLAMP

548

HIGH SPEED

D66GV5,6,7

NPN POWER DARLINGTON
TRANSISTORS
The D66GV is a high voltage NPN high current power
darlington especially designed for use in PWM applications
where fast and efficient switching is required. This device
utilizes GE's latest advances in bipolar technology and
features the D66 Package offering: collector isolation from
heat sink, TO-3 mounting compatibility and quick-connect
terminals.
.
The D66GV also features a discrete fast recovery anti parallel
high power diode which eliminates the need for an external
flyback diode in motor control and other inverter applications
such as power supplies and UPS systems.
Features:
•
•
•
•
•
•

Fast switching - tf{TVP) 0.5 f.LS
High blocking voltage - VCEV 500 to 700 Volts
High current - IC(Peak) 75 Amps
High gain - hFE{MIN) 50 @ 50 Amps
Discrete high power fast recovery diode
UL recognized isolated base package

maximum ratings (T C

= 25

0

C)

1 t.... J

@

I

IT.

It:.

I
~
~p~:
R

l

CASE STYLE 066

DIMENSIONS ARE IN INCHES
AND (MILLIMETERS)
ORIENTATION OF THE
FLAT IS NOT CONTROLLED

a

1 t-~I;tt~ M1r:l~ I
J

l~ ,I
S

"NOTE: The
collectoremitter diode
is a discrete
fast-recovery
high power
diode.

8

tu:lT
~
1lu' .\!0~®.tl ~
I:~

!

A------/

I.

c

DEVICE
--eIRCUIT

400-500 VOLTS
50 AMP, 125 WATTS

INCHES

METRIC

~

MIN

A

1.505 1.540 38.22 38.12

F

.120

.132

3.04

G

.605

.645

15.36 16.40

MAX

MINMMMAX
3.35

.9EIO 23.87 24.19

I
S

INCHES

~

MIN

I MAX

MINM1MMAX

S.495

.510

12.57 12.95

.110

3.81

T

.150

METRIC

4.32

U.985

1.015 25.01 25.80

V.45O

REF. 11.43 REF.

H

.940

J

.307

-

7.80

-

W

.180

K

.120

.132

31M

3.35

X

.050

.058

1.27

1.47

K

.171

.1&4

4.34

4.&4

I~

.Q65

.073

US

1.85

L

.184

Y

.157

.177

3.98

Z

1.180 1.192 29.97 30.30

,192

4.57

tot

.0464

,484

11.78 12.30

N

.247

.255

8.21

4.88
6.48

II

AA

.130

4.51

.165

3.30

4.50
4.30

P

.210

.230

5.33

5.84

AS.684.704

Q

.275

REF.

7.00

REF.

AC

.031

.ms

.78

.90

R

.970

REF. 24.64 REF.

AD

.100

REF.

2.54

REF.

17.37 17.90

(unless otherwise noted)

RATING
Collector-Emitter Voltage
Collector-Emitter Voltage
Emitter Base Voltage
Collector Current - Continuous
Peak (Repetitive)
Peak (Non-Repetitive)
Base Current - Continuous
Peak (Non-Repetitive)
Total Power Dissipation @Tc =25°C
Derate above 25° C
Operating and Storage
Junction Temperature Range
Isolation Voltage

D66GV5
500
400
7
50
75
125

D66GV6
600
450
7

D66GV7
700

50
75
125

A

10
20
125
1.0

50
75
125
10
20
125
1.0

10
20
125
1.0

A

TJ. TSTG

-40 to +150

-40 to +150

VISOL

2500

2500

-40 to +150
2500

1.0
2.5

1.0
2.5

1.0
2.5

SYMBOL
VCEV
VCER
VESO
IC
ICM
ICSM
IS
ISM
Po

500
7

thermal characteristics
Thermal ReSistance, (transistor)
(diode)
(1) Pulse Test: Pulse Width = 300 ms. Duty Cycle:5 2%.
See page 845 for mounting and handling considerations.
549

UNITS
Volts
Volts
Volts

Watts
W/oC
°C
V(rms)

electrical characteristics (T c = 25 0 C)

I

(unless otherwise specified)

I SYMBOL I

CHARACTERISTIC

MIN

I

TYP

MAX

UNIT

-

Volts

off characteristics
Col/ector-Emitter Sustaining Voltage
(IC 1A, RSE 100)

=

=

Col/ector Cutoff Current
(VCE Rated VCEV, VSE{off) = 1.5V)
Emitter Cutoff Current
(VES = 5V, Ic = 0)

=

D66GV5
D66GV6
D66GV7

=

TJ
25°C
TJ = 150°C

VCEO(sus)

ICEV
IESO.

400
450
550
~

-

~

-

-

1.0
2.5

mA

10

mA

second breakdown

I

Second Breakdown with Base Forward Biased

FBSOA

SEE FIGURE 24

on characteristics
DC Current Gain
(IC = 75A, VCE = 5V)
(Ic = 50A, VCE = 5V)
(Ic = 20A, VCE = 5V)
Col/ector-Emitter Saturation Voltage
(IC = 75A, Is = 5A)
(Ic = 50A, Is = 4A)
(Ic = 20A, Is = 2A)
Base-Emitter Saturation Voltage
(IC = 75A, Is = 5A)
(IC = 50A, Is = 4A)
(IC = 20A, Is = 2A)

hFE

VCE(sat)

VSE(sat)

25
50
100

150
300
350

-

-

-

-

1.6
1.3
1.0

3.0
2.0
1.5

V

-

2.2
2.0

V

-

3.5
3.0
2.5

V

p.s

switching characteristics
Resistive Load
Delay Time

VCE = 250V

td

-

0.1

O.S

Rise Time

le= SOA

tr

-

6.S

1.0

Storage Time

IS1 = 2.5A, IS2 = 5A

ts

-

2.5

3.0

Fall Time

PW = 50 p'sec

tf

-

0.6

0.75

Vp
Vp

-

1.3
1.3

2.0
2.S

Volts
Volts

Trr

-

O.S

1.0

p'sec

emitter-collector diode characteristics
Forward Voltage
@TJ = 2SoC
@TJ = 1S0°C

(IF = 25A

Reverse Recovery Time
(IF = 50A, di/dt = 100Alp.sec, VSE(off) = 1.5V)

550

TVPICAl CHARACTERISTICS
1000
800

1000
BOO

600
400

TJ= 125°C

~2S0C

2

«
..,

600

TJ= lSOoC

200

~

400

~ t--...

2

W

tJ
tJ

C

I

«

100

'TJ = 2S"C

U

c

l\

40

I
w

"'

\\~}'\25°C

10
10

40

20

Ac

J:

60

,'TJ-125°C
'-+/= \SO°C

40

20

80 100

10
10

400

200

w

W

6

"::;

5

"'_
Will

I=s
-0

B,= 20

::;>
w-

~'"
!;;:::J

!a~

"-

400

200

~

ir1

60

II:
II:

50

c

II

=

5V),

II

70

I2

OJ
U

It
rl

40

II:

«

B, = 10

~

io!or-~'

r-

s:

II:

a

30

u.
I/)

OJ

aw

TJ = lSO'C

0.4

2

«

20

TJ=15~

I-

~1Il

>

80 100

100
90
80

W

~

.....

60

FIGURE 2. DC CURRENT GAIN (VeE
TYPICAL

II:

IW

40

20

IC - COLLECTOR CURRENT (AMPERES)

iii

TJ = 25°C

r'-,rrc
Vcc = 5V

°

10
8

1
- ' 2 0.8
00
t J - 0.6
I!;(

~~

60

FIGURE 1. DC CURRENT GAIN (VCE = 2V),
TYPICAL

t;~
~g

~ l'-

100
80

IC - COLLECTOR CURRENT (AMPERES)

~~

"-

VCE = 2V

nrc

\ I I_I

20

"" .:.-L.. ......

~5oJ

w

'"'"::J
tJ

\'

60

200

I2

,\

80

w

i

(!l

~ \ l\.

I-

'"::J'"

2

TJ = 150°C

2

«

>-- T J = 25°C

l-

0.2

I/)

~

-TJ = 125°C

I

I

~

0.1
10

40

20

80

60

100

FIGURE 3. VCE(SAT) vs. IC' TYPICAL

i_LilLLIII

II!III

FIGURE 4. DIODE FORWARD CHARACTERISTICS

I II I

I _I III III

'7255~~jN~0~N~-~R~E~PE~T!(T~I~VE~~IC~S~"~'
'~P~~~2~0~!"~s~e~c~~i~\~~~~'7050
I-- --~

~-.:..:~-

1..-'"

r--+-+""". . .H-J>H:I---t''":,:+--H.L-.11-.1H1f\+.';':';:

~
2

DC

c(

~

Sec.\' Soc

100~ ..

f--- ,..

\ 10MS.c
00"

20H

-1I"W-H-i-t-H

r-

U

T:' 25"C
DUTY CYCLE S 1%

\

~

~

1.0

-

Ie OR Ic .. LIMIT

-------- THERMAL LIMIT
SECOND BREAKDOWN LIMIT

50

II:

lIE

r-IM~'C

I-

_\

T;r·2!1°C
LoIOO!"h
VBEIOFFI =-5V, Rs=0.5,n

\
\\

:ta, • LeliO

Ci

II:
II:

II

30

::>
tJ

""-

II:

0

I-

'"

~o-' f~~~~~~~~~~t~lm~~~~lliILO
IIII
I "''t I
o
~



III
1111

I!!
oJ
0

~
III
III

i!oJ

10

>

9

0

II:
III

8

!::

7

I-

:E

III

a::0

t;
III

oJ
oJ
0

..

CJ

u

;;;10.0

I II
Ic=25A...,
'" I I
I III
l V--1c· 5~AI
III
:tc' IOOA
l"c' IOA

ClI

"
o

I-

'PI'IOO

..J

T;r' 25"C
- Bf' :tc IIIIII

>

z

/

/

0

i=

"::I
II:

II

"'"a:

--:::

1.0

-

....,=25-

UJ

6

l-

5

2:

t::

.

III

4

3

a:

0
I0

~T;r·25·C

2

r....

>

0.1

.01

"

III
..J
..J

I'

&
1.0

10.0

0c O. I10

100

!!

...u

I8' BASE CURRENT (AMPERES)

Ie. COLLECTOR CURRENT (AMPERES)

>

FIGURE 3: COLLECTOR SATURATION REGION

iii
~

o

210.0
III

T;r·150·C

~

,9f'Ie/I81

~

o
>

,9= 100

J

o

~
II:

~

...... ~~

II)

a:

1.0

T,," 25'C
III
III

,,9'1 50

I

z

III

~

..

~ \,

tlf'5~

""----tlf " 100

::I

!c

1.0

II)

15

~

l-

I-

.

i

i

III
III

:.!
III

o

I,)

~

~~f'25

ti
a:

~

...

~;f'IO

z

o

!::

!!!

tlf" IelIBI

g

,9=25

I-

~

~f=50

~:Bf'IO

1--"' .....

I-

1\

/

~
.. o. I

O. I

10

100

200

}

Ic. COLLECTOR CURRENT (AMPERES)

10

100

200

:Ic. COLLECTOR CURRENT(AMPERESI

FIGURE 5: VCE(SATI VS Ie. TJ=150o~

FIGURE 6: VBE(SATI VS Ie, T J=25°C

555

200

TYPICAL CHARACTERISTICS
010.0

10000

!:;

. 'or~-

~
1&1

~
!:;

/loiO -

.......::~"25 _

g
!

1'--0..

..

... ~ ~~g:~

Tor"ISo-C
/loIclIl'

....:

.........

i'"......... r--

A

-......

ij

a: 1.0

5
a:

I!!
t:

:I

1&1
I

!
Ii... o.I

~
~

100
~

IC' COLLECTOR CURRENT (AMPERES)

~

200

I

100

10
Vea. COLLECTOR-BASE VOLTAGE (VOLTS)

FIGURE 8: CAPACITANCE (CCBO)

.•

10.0

U 1.0
TJ"25"C
------ TJ= 10o-C
- - - Tor= ISOoC

1&1

:I

i=

I
Z
VCC 02!1OV
~
u
I8," IC/ 2O
!:
Ie,o ICIIO
~ 0.1 VaEloFF'o -5V
Itp 050,. ..c

~

I.....

10'

ell

./'
~,.....

~~

-~

~

V

r

--

'iIn
~
::Ii!

..... ~ i-'"

i=

"

!:
%
U

~t d t: 1.0

II:

L

.,.... ,

a:
a:
:;)

~

e

.....

uI

a:

~

1&1
..I
..I

1

8 0 .1 1.0

100

10
Ic,COLLECTOR CURRENT (AMPERES)

1

.!'
6

5

02st
- - X a,o IC/ 2O
- - - - X8," IC/!IO

4

VCC" 2S0V
tp" so,. sec
V.IOF" 0 - 5 V

i=
II:
0
IIn

":i:z

I:!

~

l-#
IV ,....

1;.1-'"
2

NOTE:
NORMALIZED TO ts
i- (iii 25·C(REF. FIG. 10)

:::;
C

:I<

II:
0
Z

~~

o

I

,....

1;-'

1/
~ i-'

I I J ~I"

~

i-'

1--

.....

::::r:::: ~tl

-

L

./

V
100

10

Idn
.,.;:1-

::IE

i=

.- -

!il

1-11-1-

~

iIn

rr

fe {

I-

Z
1&1

a:

0.1

~

:;)

U
I

III:

100

~8

Ie,COLC.ECTOR CURRENT (AMPERES)

0 •0 I1.0

......
/'

ff. {

II:

In

10

~ I""

1.0

:i:

~~

//

--

f~J
1&1

1'!2~ ::.. I~~
-Ion
:---1.
~

,......,.

10

.....

FIGURE 10: TURN-OFF TIME (RESISTIVE LOAD)

I

.0;;;::::

~t"

3

iIn

0
1&1
N

~

,

C

V- I/ V

Ic,COLLECTOR CURRENT (AMPERES)

FIGURE 9: TURN-ON TIME (RESISTIVE LOAD)

III

"

f'{t".

t

8 0.01

-1I

1&1

:;)

"

t~ 1-1-

IZ

a:

:I<

r-r-

-

~

Z

1&1

1&1

~

TJ·ISO·C

Vee=2S0V
Ia,"Ie/2O
-III"leIlO
VaEloFF, = -5V
fp=50!, sec

III

-r--

~:~:~

10

TJ o 2SoC - TJ"IOO·C----T;roISo-C--VeElcL ••PI250V
LolOO!,h
IiI,oIe/2O
-11,olcIlO
VIE/OFF," - IV
100

1 COLLECTOR CURRENT (AMPERES)

FIGURE 11: NORMALIZED RESISTIVE SWITCHING

FIGURE 12: CLAMPED INDUCTIVE TURN-OFF TIME

STORAGE TIME (R SE VARIATIONS) VS
COLLECTOR CURRENT

556

TYPICAL CHARACTERISTICS

-.

1.6

~

1.4

'"
~

1.6

-

a: 1.2

1''")

1.0 f---Ic"OOA
Ic'SOA
0
a:
f - - - I c'20A ~
0 0.8
Ie"OA
0
Ul
Ul

!

Ic'IOA

--::::

.&

1.4

Ilol

:::!;

...

I-

I c"20,.
IC'5O
Ic=IOOA

1.2

(!)

f

c

a:

1.0

0
IUl

~~~~~:~~ - S V " -

'"
N

::; 0.6
~~CLE ~t%
\
10
f;- -- Ic OR ICII LIMIT

~
o
a:

g

O.S

0.1

_0 70

-'
o

0_

u
H

I.S

2.0

"-

1.0

130

"0

~
L

-

'"
II:

~

80
70
60

~

50 -

-'
-'

40

8

30

j

20

~ 6=12 1
~D·.I

(5

90

~

.1

U
Z

-

!z

I- 0'.5

ui

::!: 100



-;-

250 1---"-NCi'N':'iiEPETITIVE

:::!;

T;r' 2S"C
Xc/XB1 ' 20

I

0.2

-

Ic" OA
~-

'"a:
~

I- 0'.05

W
0..

II

~ .01

-

1-25"CS T;rSIOOoC
L"OOJAoh
I-VBEIOFF)' 5 V,Rs'·S.Il
I-X BI ' Xc /lO

D67DE5

10

D67DE6
100

200

;J.

/'

~D •. OI

::;:
II:
W

:I:

\

l-

SINGLE PULSE

I-

ill

\

_\

Z

u
u

100

c
,;,

80

0,::
~

r-

~

=--~

~

600
400

~

-~ ~I"

z

«
...I!lz

~~5OC

w

a:
a:

::>
u
u

~"
\.\. \

60

c

w

:r.~

~

100

~

~C

~

-

.-~

-- ~

~

~

~ ~5'C

T =125"C
)J

)

I

T~=1~"t

80

~

V

\

60

:r.

40

T J =125'C\
T J =150'C

Vee=2V

40
Vee=5V

20

20

10
10

200

T J =1SO"C

40

60

80

100

200

Ie. COLLECTOR CURRENT (AMPERES)

10
10

20

40

60

SO

100

200

Ie. COLLECTOR CURRENT (AMPERES)

FIGURE 1. DC CURRENT GAIN (VCE = 2V), TYPICAL

FIGURE 2. DC CURRENT GAIN (VCE = SV), TYPICAL
560

TYPICAL CHARACTERISTICS
10.0

200

u;
w
a:

8.0
6.0

iii
a:

w

w

::;;

:!

::;;

I-

zw

a:
a:
::>
u
a:

a

u

w

0.6

a

0.4

u

•

1.0

P,f

:;;.-

. ..",.. ~....-

60

1//1
~I

«

~

40

II:

,f

~
V>

::>

aw
z

«

20

IZ

rY,so'c

-y

80

Cl
II:

8f=10

-

a:

::>
u

II:

~8f=20

Tjf'C

I-

w

8,=20
.-,::: 8,=10

2.0

0.8

-'
-'

100

IZ

Q.

:!

I1/

w

Q.

4.0

TJ=ISO'C

«l-

J

~

I

~

10

0.1
20

10

40

30

50

60 70 8090100

3

It

100 ~ __ ,

• ~ L...,J
,t. flV";

T __ •• :

tp~

,- -_ ...

in 130 1 - a: 120
a.. 110 f -

I" _••

""5M!.:,'·~;:+::,,;·.;;-~

"":I!
ct.

c

I-

z

w

a:

/I:
::J

u

a:
0

--

.....

..-

I-.

- ... - I - -

""

'"l

:IE

•..

~-

f--

100
90

.-t-- . - r-

-

-- f---- I - --

80
70
60 I - - f-2S-Cs. T;rSI OO"C

-

L'IOO,.h

I-

50 I - - f-Va[IOl'''I- 5V,Rs=·S{l
.J
f-III'":Z:c 110
40
.J
0
u. 30
u
H
20
U

w

\
'\

--

D67:P5~ ~

-

10
100

1000

D67FP6.~

........ '"'- ~D67FP7- -

400

200

FIGURE 6. REVERSE BIAS SAFE OPERATING
AREA (CLAMPED)

FIGURE 5. FORWARD BIAS SAFE OPERATING
AREA

+ 250VDC

+6VDC

=2.5GR L

L=IOO,..h.

(NON INDUCTIVE)
(1% DUTY CYCLE)
GE
AI39E

+5V

~50,. .•.

10;;:;------ ---,
I
I
I

.OZZ

.-~--~~~

I
I
I

I
I

I
II

6.S

100

* = SELECT ,
RI FOR +I BI = 5 AMPS
RZ FOR-I BI = 10AMPS
R3 FOR-I BZ = 10 AMPS
WITH SI CLOSED

500

vel' COLLECTOR EMITTER VOLTAfilE (VOL Tsl

veE, COLLECTOR - EMITTER VOLTAGE I VOLTS)

Z70

5

FIGURE 4. DIODE FORWARD CHARACTERISTICS
150
140

v" ."'

4

VF.INSTANTANEOUS FORWARD VOLTAGE (VOLTS)

FIGURE 3. VCE(SAT) vs. Ic. TYPICAL

/I:

*1

o

200

VCE(SA n. COLLECTOR - EMITTER SATURATION VOLTAGE (VOLTS)

Ei 250 f--~-- ....n..
_ .•

...... T J=2S'C
,.". T J=12S"C

~

V>

0.2

-6VOC

NOTE' UTILIZING SECOND BASE CONNECTION DURING TURN-OFF (51 CLOSED). TYPICAL
REDUCTIONS IN TURN-OFF TIMES (t,.I,.'el RANGE FROM 2'1 TO 10'1.
REDUCTION IS PROPORTIONAL TO - Isz .

FIGURE 7. SWITCHING TIME TEST CIRCUIT
561

V
CLAMP

562

SURFACE-MOUNT

D70F2T1

NPN POWER TRANSISTORS

50 VOLTS
2 AMP, 500 mWATTS

Designed for power amplifier applications, power switching
appl ications.
Features:
• Low saturation voltage
: VCE(sat) = 0.5V (Max.) (IC = 1A)

NPN
COLLECTOR

EMITTER

CASE STYLE SOT-89

DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

• High speed switching time: tstg = 1.0J,Ls (Typ.)

.181
(4.6 MAX.)

• PD=1 ~ 2W (Mounted on ceramic substrate)
• Small flat package
• Complementary to D71 F2T1
• See page 840 for mounting and handling considerations.

Wif

MARKING SYSTEM
TVPENAME

.016· .002 +.003
(0.4 -O.OS) ('O.OB)

M1 .

hFE
.OS9 ± .004 -oi+---+-~- .OS9 ± .004
(l.S±O.l)
(l.S±O.l)

DESIGNATION

hFE DESIGNATION

1) 711-240
2)70·140
3)120·240

maximum ratings(T A = 25° C)

(unless otherwise specified)
SYMBOL

RATING
Collector-Emitter Voltage
Collector-Base Voltage
Emitter Base Voltage
Collector Current -

VCEO
VC80
VE80

Continuous

IC

Base Current - Continuous
Total Power Dissipation @ Tc = 25 DC
Derate above 25 DC
@ Tc = 25DC(1)
Operating and Storage
Junction Temperature Range

thermal characteristics(2)
(1) Mounted on ceramic substrate (250mm 2 x O.Bt).
(2) See page 841 for thermal considerations.

563

D70F2T1
50
50
5

UNITS
Volts
Volts
Volts

2

A
A
mWatts

18

0.4

PD

500
1000

TJ. TSTG

-55 to +150

DC

electrical characteristics (TA

I

=25

0

C)

CHARACTERISTIC

(unless otherwise specified)

I SYMBOL I

MIN

TYP

MAX

UNIT

V(BR)CEO

50

-

-

Volts

off characteristics
Collector-Emitter Breakdown Voltage
(Ic =10mA, IE =0)
Collector Cutoff Current
(VCB =SOV, IE =0)

ICBO

-

-

0.1

p.A

Emitter Cutoff Current
(VEB =SV, IC =0)

lEBO

-

-

0.1

p.A

hFE

70

-

240

-

-

0.5

V

1.2

Volts

on characteristics
DC Current Gain(3)
(Ic =O.SA, VCE =2V)
(Ic =2.0A, VCE =2V)

20

Collector-Emitter Saturation Voltage
(Ic =1A, IB =O.OSA)
Base-Emitter Saturation Voltage
(Ic =1A, IB =O.OSA)

VCE(sat)

-

VSE(sat)

-

ton

0.1

tstg

-

1.0

-

tf

-

0.1

-

switching characteristics
Turn-on Time
Vcc =30V
Storage Time
IS1 =-IS2 =O.OSA
Fall Time

-

Duty Cycle;:2; 1%

p's

(3) See page 44. for hFE ranges.

COMMON EMITIER
Ta =100'C

1.2

w

~

OUTPUT

~

II:

~~I

I
0.8

r-- -

II:

"w~

IL'-'V'V\.-4~JV'u_
____ _

~

0(

E

~ ~
'l'>

..--1
162
I

r-- -

'"

"
J!l

0.4

:l

8

m

o

FIG. 1 SWITCHING TIME TEST CIRCUIT

~
o

r- '"

I--

J

1
V

~

~v

30
~

~

~

..... 40
50

0.8

1.2

COLLECTOR CURRENT Ie (A)

FIG.2 VCE -IC

564

J

J

I

VL II L
v:

0.4

!iI

:?

1.6

2.0

COMMON EMITTER
Ta = 25°C

1.2

~

~
0

:?
w

Cl

>
a:

~~UJ
~~
a:

UJ

I
'"

"
.!P

...J
...J

0.4

0

J

II

V

)

0

I/':
o

o

0.4

----

1.6

1.2

I--

I--

«

'--

I:

~

~

~

E
'\'

>
c::
w

I

"
.!!',

I-- l-

7

w

ci:

0.4

0
I0

1/

)

W
...J
...J

40

0.8

0.8

0

V L

~

II

Cl

i!..J

I--

/

«

E

1
V _

~J

0.8

0

!d

COMMON EMITTER
Ta =-55·C

1.2

UJ

.-

./

0
0
2.0

0.8

0.4

COLLECTOR CURRENT IC (Al

~

./

glJ-

&

50

1.6

1.2

2.0

COLLECTOR CURRENT IC (A)

FIG. 3 VCE - IC

FIG.4 VCE -Ic

1000
COMMON EMITTER
VCE= 2V
500

UJ

300

LL

Ta= 100·C

.t::

Z

;;:

~
........,

Cl
I-

Z

w
a:
a:

25

100

:J

0
0

Q

-55
50

20
100

30

10

1000

300

3000

COLLECTOR CURRENT IC (rnA)

FIG. 5

hFE - IC

10
COMMON EMITTER
leilB 20

COMMON EMITTER
ICIIB 20

=

=

UJ

Cl

5

0.5

~

...J

0

0.3

>

/

Z

0

I

~
a:_
~ ~.

:Jij

0.1

dofu
.~

a: -

!
0
0

I-

Ta = -55·C
1

..... .A
Y.L.JI'
~~.A"

UJ UJ

I::?

~

0.05

::::;...<' "
"'

0.03

UJ

...... 25

0.5

100
25

0.3

-55

...J
...J

0
0

0.1

0.01
10

30

100

300

1000

3000

10

30

100

300

COLLECTOR CURRENT IC (rnA)

COLLECTOR CURRENT IC (rnA)

FIG. 7

FIG. 6 VCE(sat) - IC

565

VSE(satl - IC

1000

3000

1.0

5000
'C MAX. (PULSE)'

COMMON EMITTER
VCE= 2V

3000

IC MAX. (CONTINUOUS)

0.8

g

"-

1000

g

ffi

0.6

::::I
0

a:

f:!

.....

0

~

a:
a:

l-

"

~

0.4

300

-55

8

g

....
Z

50

a:

30

0.6

f:!0

0.8

1.0

1.2

:l

1.6

1.4

0

0

10

*
3

0.1
1.2

~

iii
c

!
a:

~

...J

8

*

\-

"'

FIG. 8 Ie - VBE

i=

:.

w

BASE-EMITTER VOLTAGE VBE (V)

~

~

100

a:
a:

::::I
0

Jll J

0
10.2

,p

'"

I\. 1c

L

w

0.2

I

~

1111"\ 1~
'\ l

~01-'II~

~

~

I

III

-~ ~
~~~~
~;,
"'

500
-.... 25

I--.

m

*

1.0


100

SURFACE-MOUNT

D70G.05T1

NPN POWER TRANSISTORS

150 VOLTS
50 mAMP, 500 mWATTS

Designed for high voltage switching applications.

NPN
COLLECTOR

Features:
• High voltage: VCEO = 150V

~'(Q

= 120MHz

• High transition frequency: fT

CASE STYLE SOT-89

• PO=1 - 2W (Mounted on ceramic substrate)

EMITTER

DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

• Small flat package

.181

14.6 MAX.)

• Complementary to 071 G.05T1
• See page 840 for mounting and handling considerations.

Wf

.018 - .002 '.003
(0.45 - 0.05) ('0.08)

MARKING SYSTEM

A1

U , I 'I

I

TYPENAME

.0'6 - .002 •. 0 0 3 '
(0.4 - 0.05) ('0.08)

hFE
DESIGNATION

.059 ± .004
('.5±0.')

I
I

I

-I~

l:l ~
.Q16 - .002 '.003
(0.4 -0.05) ('0.08)

_+----+_+!+-_ .059 ± .004
(1.5±0.')

hFE DESIGNATION

n

1) 70·240
2) 70-140
3) 120·240

maximum ratings (TA

I

I

=25°C) (unless otherwise specified)
SYMBOL
VCEO
VC80
VE80

D70G.05T1
150
200
5

UNITS
Volts
Volts
Volts

Collector Current - Continuous

IC

50

mA

Base Current - Continuous
Total Power Dissipation @ Tc = 25°C(1)
@Tc=25°C
Operating and Storage
Junction Temperature Range

18
Po

10
800
500

mA
mWatts

TJ. TSTG

-55 to +150

°C

RATING
Collector-Emitter Voltage
Collector-Base Voltage
Emitter Base Voltage

thermal characteristics(2)
(1) Mounted on ceramic substrate (250mm 2 x 0.8t).
(2) See page 841 for thermal considerations.

567

electrical characteristics (TA = 25° C)

I

CHARACTERISTIC

(unless otherwise specified)

I SYMBOL I

MIN

TYP

MAX

UNIT

VCEO(sus)

150

-

-

Volts

off characteristics
Collector-Emitter Sustaining Voltage
(Ic = 10mA, 18 =0)
Collector Cut-off Current
(VCB = 200V, IE =0)

ICBO

-

-

0.1

p.A

Emitter Cutoff Current
(VEB =5V, Ic = 0)

lEBO

-

-

0.1

p.A

hFE

70

-

240

-

VCE(sat)

-

-

0.5

V

VBE(on)

-

-

1

V

on characteristics
DC Current Gain(3)
(Ic = 10mA, VCE = 5V)
Collector-Emitter Saturation Voltage
(Ic = 10mA, IB = 1mA)
Base-Emitter Voltage
(VCE = 5V, IC = 30mA)
(3) See page 44 for hFE ranges.

50

VI

~~ ~~V- ~

-

I

40

S
.9

ffi

30

a:
a:

G
a:
12

20

&l

:l

8

I/ / /
I J '/
I
V/ V .....

./ /

'"

.......

COMMON EMITTER
Ta = 25°C

300

10
W

IL

<:

z

20D/JA

I

V

~

I

i!-

a:
a:

0

U

30

o

rt V

'\.

:::l
U

18 = 100",A

~

~

100

~

i-'"""

S

~."
'~'\.
\.

-

COMMON EMITTER
Ta = 25°C

~

o

500
300 AI

'/
./

Iii
10

~

~

,/

,II V V/

;(


-'
o
u

"

30

.<6> /

O.S

,cl''C

V

~./

0.3

J.,.."'"

I---

~

V

SI"""""

I"'"

!.-'

l.---"'"
0.1

0.05

10

O.S

30

10

3

O.S

100

FIG. 3

10

30

hFE - IC

FIG. 4 VCE(satl - IC

0

3

0

,

.s

.Y

~

~O

L

~:::l

~

20

t)l

1

I
I I I

8
0

0
30

((lr--

a:

/~

10

po-

U

100

COLLECTOR CURRENT IC (mA)

FIG.5

j!

0

:::J

0.05

3

I

a:
a:

/~~~

O.S

J

I

I §~ I

;r:

,~

I

COMMON EMITIER
VCE = SV

COMMON EMITIER
ICIIB = 10

--

100

COLLECTOR CURRENT IC (mA)

COLLECTOR CURRENT IC (mA)

o

.J
0.2

0.4

'IV

0.6

0.8

BASE-EMITIER VOLTAGE VBE (V)

VCE(sat) - IC

FIG. 6

569

IC - VeE

1.0

1.2

500

I

COMMON EMITTER
Ta 25°C

J:

U

zw

......::::::

z

50

./

0

i=

en

z
«c:

~

J

\
,

10

2

5

"

*

-

1

3

10

1200
-

-3

•

ICMAX. (CONTINUOUS)

\

-1

I1III

~

~

--'

30

10
-0.6

I

50

1\

~

0

w
c:
u.

=30V

100

::J

I

100
VCE

N

~

I

Ie MAX. (PULSE)

=

300

.,t>

200

I I

~

-...

r-....

200

0

"" " r"
r--.. J-......

-... !-.....

I" l"
1'""" ~

i

o

20

40

60

80

100

120

AMBIENT TEMPERATURE Ta (0G)

FIG. 9

570

Pc -Ta

140

160

SAFE OPERATING AREA

SURFACE-MOUNT

D70Y.8T1

NPN POWER TRANSISTORS

30 VOLTS
800 mAMP, 500 mWATTS

Designed for audio frequency amplifier applications.

NPN
COLLECTOR

Features:

• High DC current: hFE = 100 - 320
• Suitable for output stage of 1-Watt amplifier

EMITTER

CASE STYLE SOT-89

• PD=1 - 2W (Mounted on ceramic substrate)

DIMENSIONS ARE IN INCHES AND (MILLIMETERS)
.181
(4.6 MAX.)

• Small flat package
-Complementary to D71Y.8T1
- See page 840 for mounting and handling considerations.

@

.018 - .002

MARKING SYSTEM

~

TYPENAME

P1

'.003

(0.45 ~ 0.05) (+0.08)

'.003
(0.4 - 0.05) (·0.08)

hFE

.059 ± .004
(1.S±O.I)

DESIGNATION

I

I
,

q

to

e.

*" ",.0",,'
6-,;;,-.0~02,-:-,'~.00?i;-3
(0.4 -0.05) ('0.08)

-++II

--t---+--+-- .059
± .004
(1.5±O.1)

hFE DESIGNATION

n

1) 70-240
2) 70-140
3) 120-240

maximum ratings (TA = 25° C)

;;;I~

U
I II' I 'I

(unless otherwise specified)

RATING
Collector-Emitter Voltage
Collector-Base Voltage
Emitter Base Voltage

SYMBOL
VCEO
VeBO
VEBO

D70Y.8T1
30
35
5

UNITS
Volts
Volts
Volts

Collector Current - Continuous

Ie

800

mA

Base Current - Continuous
Total Power Dissipation @ Te = 25°C
@ Te = 25°C(1)
Operating and Storage
Junction Temperature Range

IB
Po

160
500
1000

mA
mWatts

TJ, TSTG

-55 to +150

°C

thermal characteristics(2)
(1) Mounted on ceramic substrate (250mm 2 x O.Bt).
(2) See page B41 for thermal considerations.

571

electrical characteristics (TA = 25° C)

(unless otherwise specified)

I SYMBOL I

MIN

V(BR)CEO

Collector Cut-off Current
(VCB =35V. IE =0)
Emitter Cutoff Current
(VEB =5V. Ic =0)

CHARACTERISTIC

I

TYP

MAX

UNIT

30

-

-

Volts

ICBO

-

-

100

nA

lEBO

-

-

100

nA

hFE

100

-

320

-

0.5

V

-

0.8

V

off characteristics
Collector-Emitter Breakdown Voltage
(Ic =10mA. IB =0)

on characteristics
DC Current Gain(3)
(Ic =100mA. VCE =1V)
(Ic =700mA. VCE =1V)
Collector-Emitter Saturation Voltage
(Ic =500mA. IB =20m A)
Base-Emitter Voltage
(VCE =1V. Ic =10mA)

35
VCE(sat)

-

VBE(on)

0.5

-

(3) See page 44 for hFE range.

1000

1000
COMMON EMITTER
Tc=25'C

8

1
.9
I-

z

W
II:
II:

800

/

400

4

w
Ii.
.c

3

~(!j
ffi

I

:l

200

Ta= 100'C

300

...

25

r-

-25

100

II:
II:

::>

2

u

y-

u
w
0
U

5

""

::>

f?

~ . / i"""

COMMON EMITTER
VCE= 1V

500

6

~ ~ .....
e~ ~
~V...... i.--'"

600

u

II:

7

50

U
Q

V

IB=1mA

30

I
10

0
0

o

3
2

4

5

6

7

COLLECTOR-EMITTER VOLTAGE VCE (V)

FIG. 1

10

30

100

COLLECTOR CURRENT IC (rnA)

FIG. 2 hFE - IC

IC· VCE

572

300

1000

,

BOO

z
o

0.5

0:_

0.3

~

V CE " 1V

<'

§.
-9

::J>
1-..:

0

~ !w
w

r:}'
~~

d:;!

::J

j

0.03

~:::l

:..l-

o
o

o
o

, " 25
-25
0.0 1
1

10

30

100

300

25
-25

?
"

~
200

) ))

0

1000

--

U

400

0:

"/

Ta" 100·C

i'-

I-

w

0:
0:

o
0.05

600

IZ

~~

o. 1

0-'
0>

1-0

COMMON EMITTER

COMMON EMITTER
leilB - 25

O.B

0.4

1.6

1.2

2.0

COLLECTOR CURRENT IC (rnA)

3000
IC MAX (PULSE)

<'

§.
-9

IZ
W
0:
0:
::J

.

,~

300

~~'2

U

~o 1111
~'"

100

0

1.2

*
'-

z

I-

,

i=

..:
Q.

l'..

u;

0.8

*

0

10

!20

"'

30
SINGLE NONREPETITIVE PULSE
Ta" 25·C

~

CD Ta"

SUBSTRATE (250mm 2 x 0.8t)

I"

0.6

w

"-

I"'- r-...

0.4

...

0

CURVES MUST BE OERATED LINEARLY
WITH INCREASE IN TEMPERATURE.

.......

CD

-'
-'

U

25·C

~

0

0:

w

CD MOUNTED ON CERAMIC

0:-

~~
oQ.Q.U

Ie - VBE

-

!!l

50

0

-'
-'
0

-

1.0

0

-~

0:

0

I
CD

'%

'? ~

~00 ~~~'

500

FIG. 4

I I
I 1111
* .'\s
.. I
-0

IC MAX. (CONTINUOUS)

1000

BASE-EMITTER VOLTAGE VBE (V)

veE (sat) -Ie

FIG. 3

"'"

.........

0.2

o

o

20

40

60

60

1"r--.

"

"'~

r-....

100

120

AMBIENT TEMPERATURE Ta (·C)

3
0.1

0.3

3

10

30

100

FIG. 6

COLLECTOR-EMITTER VOLTAGE VCE (V)

FIG. 5

SAFE OPERATING AREA

573

Pe- Ta

i'-..
i""-- ~
140

160

574

SURFACE-MOUNT

D70Y1.5T1

NPN POWER TRANSISTORS

30 VOLTS
1.5 AMP, 500 mWATTS

Oesigned for audio frequency amplifier applications.

NPN
COLLECTOR

.Features:

--(Q

• Suitable for output stage of 3-Watt amplifier
• PO:::1 -- 2W (Mounted on ceramic substrate)

CASE STYLE SOT-89

• Small flat package

EMITTER

DIMENSIONS ARE IN INCHES AND (MILLIMETERS)
.181

(4.6i;iAXT

• Complementary to 071Y1.5T1
• See page 840 for mounting and handling considerations.

81~.e.,

MARKING SYSTEM

~
G1

TYPENAME

.016·.002 +.003

(0.4 -0.051 (+0.08)

hFE

~---Oof--+_-+-_.059 ±.004

DESIGNATION

(1:5±o:iT

(1.5±0.1)

hFE DESIGNATION
1170-240
2170·140
31120-240

maximum ratings (TA

=25° C) (unless otherwise specified)
VCEO
VeBo
VEBO

D70Y1.5T
30
30
5

UNITS
Volts

Collector Current - Continuous

Ie

1.5

A

Base Current - Continuous
Total Power Dissipation @ T e
@Te
Operating and Storage
Junction Temperature Range

IB
Po

0.3
500
1000

A
mWatts

TJ. TSTG

-55 to +150

°C

RATING
Collector-Emitter Voltage
Collector-Base Voltage
Emitter Base Voltage

SYMBOL

=25° C
=25°C(1)

thermal characteristics(2)
(1) Mounted on ceramic substrate (250mm 2 x D.Bt).
(2) See page 841 for thermal considerations.

575

Volts
Volts

electrical characteristics (TA = 25 0 C)

I

(unless otherwise specified)

I SYMBOL I

MIN

TYP

V(BR)CEO

30

-

Collector Cut-off Current
(Vcs = 30V, IE = 0)

Icso

-

-

100

nA

Emitter Cutoff Current
(VES = 5V, Ic = 0)

IESO

-

-

100

nA

hFE

100

-

320

-

CHARACTERISTIC

MAX

UNIT

off characteristics
Collector-Emitter Breakdown Voltage
(Ic = 10 rnA, Is = 0)

Volts

-

on characteristics
DC Current Gain(3)
(Ic = 500mA, VCE = 2V)
Collector-Emitter Saturation Voltage
(Ic = 1.5A, Is = 0.03A)
Base-Emitter Voltage
(VCE = 2V, Ic = 500mA)

VCE(sat)

-

-

2.0

V

VSE(on)

-

-

1.0

V

(3) See page 44 for hFE range.

1.6
10,

$

fI V

1.2

.9

f/

IZ

w
a:
a:
:>

()

0.8

a:
0

t;

W
..J
..J

0

~

1000

I--

-

6.

f-

t--

COMMON EMITTER
Ta" 25"C

500

Lo--

-

w

5

~

V

IL

s:::

Z

:;;:.

4

C)

-

I/'

100

V

I-t-

I-

Z

w
a:
a:

3

V

Ta"1oo"C

300

F=:

~25

-25

50

:>
()
()

2

30

COMMON EMITTER
VCE" 2V

Cl

0.4

()

IB"1 mA

,,'

10

,3
0

0

o·

4

8

30

100

COLLECTOR CURRENT IC (mA)
12

16

FIG. 2 hFE - Ie

20

COLLECTOR-EMITTER VOLTAGE VCE (V)

FIG. 1

10

Ie - VeE

576

300

1000

1.6
COMMON EMITTER
ICIIB= 50

z

°i=

0.5

~-

~2:.

VCE = 2V

0.3

I

< :en

!

w

W

II:

0.1

'1'<

0.05

°0
G>
w

IZ
W

II:
II:

0.8

:::>

U

U

,

0.03

f2

u
W

-25

..J

10

1

U

100

30

'"

'l'

J

J

1000

300

1(J

0.4

5

1 f fill!

0.01

§
{!"

II:

"\ 25

:l

°u

1.2

.Y

Ta = 100·C

~tll

1I:!:i

<"
§.

l/

-r

I:~

COMMON EMITTER

COLLECTOR CURRENT IC (rnA)

o

FIG.3 VeE (sat) -Ie

) ))
o

0.4

0.8

1.2

1.6

2.0

BASE-EMITTER VOLTAGE VBE (V)

FIG. 4 Ie - VeE

* IIII I I
'c-""""'''''''''' ~.II
~~ ~*
'0."
. '.

5000

ICMAX (PULSE)

3000

>

~'.w.-

1000

<"
§.
.Y
IzW

500

,,"

"' <>om
"-0,,,
...-?,. 1

300

II:
II:

~~

:::>

U

II:

°
IU

'" .w.-.'

100

'.

'"

1.2

'\

1.0

z

°~

-'

°
U

30

*

SINGLE NONREPETITIVE PULSE
Ta = 2S·C

"-

0.8

0

~!

50

'" ~

f--



Cl

w

~
0

Cl

~

>

II:

~~

0

>

-O.B

w

:i ~

~

'l'>

:i
W
r/:

II:

0

I-

u
w

0

-0.4

...J
...J

-0.8

II:

-0.4

I-

u

W

0

...J
...J

U

0

U

0

0
0

-O.B

-0.4

-1.6

-1.2

-2.0

-0.4

0

-0.8

-1.2

-1.6

COLLECTOR CURRENT IC (A)

COLLECTOR CURRENT IC (A)

FIG. 3 VCE -IC

FIG. 4 VCE-IC

1000
COMMON EMITTER
VCE: 2V

500
Ta: l00·C

w

"-

300

J::

I"-

25

Z

;;:

~

Cl
I-

Z

-55

W

100

II:
II:

:J

U

u

"'

50

0

30

10
-10

-100

-30

-300

-1000

-3000

COLLECTOR CURRENT IC (rnA)

FIG.5 hFE -IC

-10

-1
COMMON EMITTER
Iclle =20

w

Cl

«

1--

-0.5

~

COMMON EMITTER
leile: 20

-5

0

>

z

-0.3

0

~

"'i=?~

=

« ill
(/)
II:

w iiJ

Ta: -55·C

dfU

-0.1

/1..9'1"

-0.05

0

I-

U

w

...J
...J

0

1

~~.~

~}'

:i

~

-3

/

~

-0.03
~

U

-0.01
-10

-

.-

.... ~
~p

r\
-100

S'

-0.5

V"~

-0.3

25

"' 25
100

-55

I I

-1000

-0. 1
-10

-3000

-30

-100

-300

COLLECTOR CURRENT IC (rnA)

COLLECTOR CURRENT IC (rnA)

FIG. 6 VCE(sat) - Ie

FIG. 7 VBE(sat) - IC

581

-1000

-2.0

-2.0

-5000

'*"l.

IC MAX. (PULSED)
COMMON EMITTER
VCr:=-2V

-3000

-1.6

$

I"-

-1000

ffi

~:l

8

-500

0

a:
a:

~
~"

:l
0

-0.8

~

l(li-

<-g
~

-100

a:

-so

bl

-30

~

J 1j

o
o

-0.4

~O", II~

a:
a:

:l
0

-0.4

111

II
-1.2

-0.8

-1.6

-2.0

-10

liE

FIG. 8 Ie - VeE
-5 I-

.

-1

-0.1

-0.3

•

-1

-3

1\

:::::l::

SINGLE NONREPETlTIvr: PULSE .
TA= 25°C

=~

CURVES MUST BE DERATED LINEARLY
WITH INCREASE IN TEMPERATURE.

-3

I

=~

i

~I-

~

~I-

"

-10

-30

COLLECTOR-EMITTER VOLTAGE VCE (V)
I
1-0

o MOUNTED ON CERAMIC

l - i--

FIG.9 SAFE OPERATING AREA

SUBSTRATE (25Omm 2 • 0.8t)

1.0
0Ta= 25°C

~

i'...

o. 8

.......
.......

0.6

~

" '"

8

-2.4

I~I~

"-

~
~

COLLECTOR-EMITTER VOLTAGE VBE (V)

1.2

..

~)\ TfRl

.9

, I.

l. l.
~'*.

II

" <>00

-300

'b

.
~~.~ ~

'"

.9
-1.2

IIII\.

IC MAX. (CONTINUOUS)

(i)

.......
0.4

"'-

'"

.......

0.2

20

40

60

~

....... 1-0...
80

.......
......

..... r--...

100

120

"r...;

~

140

160

AMBIENT TEMPERATURE Ta ("C)

FIG.10

PC· Ta

582

0
w

SURFACE-MOUNT

D71G.05T1

PNP POWER TRANSISTORS

-150 VOLTS
-50 mAMP, 500 mWATTS

Designed for high voltage switching applications.

PNP
COLLECTOR

F~atures:

• High voltage: VCEO = -150V
• High transition frequency: fT = 120MHz

EMITTER

CASE STYLE SOT-89

• PD=1 ~ 2W (Mounted on ceramic substrate)

DIMENSIONS ARE IN INCHES AND (MILLIMETERS)
.181

• Small flat package

14.6MAxT

• Complementary to D70G.05T1
• See page 840 for mounting and handling considerations.

Wf

al~..,

MARKING SYSTEM

B1

9.

TYPENAME

.Q16· .002 +.003
(0.4 ·0.05) (.0.08)

hFE
DESIGNATION

.059 ± .004 _ot+--+-o--Oo/+-_.059 ± .004
(1.5±0.1)
(1.5±0.1)

hFE DESIGNAnON

1) 70·240
2) 70·140
3) 120·240

maximum ratings (TA

=25° C) (unless otherwise specified)
SYMBOL
VeEO
Ve80
VE80

D71G.05T1
-150
-150
-5

UNITS
Volts
Volts
Volts

Collector Current - Continuous

Ie

-50

mA

Base Current - Continuous
Total Power Dissipation @ Te = 25°C
@Te= 25°C(I)

18
Po

-10
500
800

mA
Watts

TJ. TSTG

-55 to +150

°C

RATING
Collector-Emitter Voltage
Collector-Base Voltage
Emitter Base Voltage

Operating and Storage
Junction Temperature Range

thermal characteristics(2)
(1) Mounted on ceramic substrate (250mm 2 x O.8t).
(2) See page 841 for thermal considerations.

583

electrical characteristics (TA

I

= 25° C)

CHARACTERISTIC

(unless otherwise specified)

I SYMBOL I

MIN

TYP

VCEO(sus)

150

-

-

Volts

MAX

UNIT

off characteristics
Collector-Emitter Sustaining Voltage
(Ic =-10mA, IB =0)
Collector Cut-off Current
(VCB =-150V, IE =0)

ICBO

-

-

-0.1

nA

Emitter Cutoff Current
(VEB =-5V, IC =0)

lEBO

-

-

-0.1

nA

hFE

70

-

240

-

VCE(sat)

-

-

-0.8

V

VSE(on)

-

-

-0.9

V

on characteristics
DC Current Gain(3)
(IC =-10mA, VCE =-5V)
Collector-Emitter Saturation Voltage
(Ic =-10mA, IB =-1mA)
Base-Emitter Voltage
(VCE =-5V, Ic =-30mA)
(3) See page 44 for hFE range.

-50

'~ZL
~~~
;Y~f-

-40

-10

I

/ / V
./
/ J
-~
V V/ V

-30

-20

500

/ 1/V

COMMON EMITTER

COMMON EMITTER
Ta = 25°C

Ta = 25°C

300

I

-3OOpA

u.

I

;;:

......

100

.....

(!)

I-

-2OOjlA

,,-

I

fJ. ~V

I

50

()
()

30

1\

~

-0.5

-1

-3

-10

COLLECTOR CURRENT IC (rnA)
-2

-4

-6

-8

-10

-12

FIG. 2

COLLECTOR-EMITTER VOLTAGE VCE (V)

FIG. 1

IC - VCE

584

-5

-2

10

0

,

\

0

-

IB= 100pA

~V

Z
w
a:
a:

::>

I

-

VCE = -10V

w
.r:
Z

hFE - Ie

-30

-100

-5
500

I

I

COMMON EMITTER
Ta =2S'C

I I I

il

COMMON EMITTER
VCE= -5V

300

II ,I

Ta = 100'C

-1

w
u.

"'

25

.r=
Z

«
Cl

-25

100

....z
W
0:
0:

=>

"rtT

~

-D.S

50

\

30

-

\

/ V

/'

io--''''''

~ .... 1-"

-D. 1

.,

j

-D.3

'\

0
0

[)

~

'):-'?J

,0

J
I

-D.05
10

-D.03
-1

-D.5

-10

-3

-30

-100

-D.6

-3

-1

COLLECTOR CURRENT IC (mA)

FIG. 3 hFE - IC

-50
COMMON EMITTER
IC/IS= 10

-3

J

~

Z

-1

0

~

-

:::-

~
!
w w
/:;}l
::E
w

-0.5

b

oO'C

~

ci:

0

13w

-0.1

...J
...J

0
0

=>

0

0:

8

0

~/
V

~

~

W
...J
...J

I
/

0

0

-10

-25

-D.05

I
-1

-3

I

o
-10

-30

-100

o

-300

tq

~)

-20

0

25

-D.03
-D.6

-30

0:
0:

IJ

-0.3

I

<
§.
.9
....z
w

0:_

....=»
..:

I

-40

1~'1

0

>

-300

1

COMMON EMITTER
VCE = -5V

II

Cl

-100

FIG. 4 VCE(sat) - IC

-5

w

-30

-10

COLLECTOR CURRENT IC (mA)

J
-D.2

-D.4

on

'l'

J J

II

-D.6

-D.B

BASE-EMITTER VOLTAGE VSE (V)

COLLECTOR CURRENT IC (mA)

FIG. 6

FIG.5 VCE(sat) -IC

585

IC - VeE

-1.0

-1.2

-300

I

I I

1200

II II
I 11111_

IC MAX. (PULSE)

~

*

.§.
U

-100

II.

CD

Z

f--

IC MAX. (CONTINUOUS)
-SO

::>

I

-10

12
U

w

0

'" Tot-.:;-i-

-5

U

-3

*

'!.-

\.

SINGLE NONREPETITIVE PULSE
Ta =25°C

II.

1\
,

a:

800

r---.,
T

600

CD

.......
400

0

I-

U

'""

I'....

"""- .......
r-....

..........

-'
-'

0

200

U

0 0

40

60

60

-30

-100

-300

COLLECTOR-EMITTER VOLTAGE VCE (V)

FIG. 7

100

120

AMBIENT TEMPERATURE Ta (OC)

-1

-10

...... ......

...... ....... :".
~~

20

FIG.8

-3

......

.......
....... ......

W

""

CURVES MUST BE DERATED LINEARLY
WITH INCREASE IN TEMPERATURE.

CDTa = 25°C

- -

0

«'~;,",
/Q

Z

-'
-'

iii
en
is
a:
w
3:

0""

w
a:
a:
a:

~">"'.;ji

~

~ ---t-

°0

-30

I-

u

~

" "-

<

.§.

.9

f--

0

CD MOUNTED ON CERAMIC
SUBSTRATE (2SOmm 2 x 0.81)

1000

SAFE OPERATING AREA

586

PC-Ta

140

160

SURFACE-MOUNT

D71Y.8T1

PNP POWER TRANSISTORS

-30 VOLTS
-800 mAMP, 500 mWATTS

Designed for audio frequency amplifier applications.

PNP
COLLECTOR

Features:
• High DC current gain: hFE = 100 - 320
• Suitable for output stage of 1-Watt amplifier
CASE STYLE SOT-89

• PD=1 - 2W (Mounted on ceramic substrate)

EMITTER

DIMENSIONS ARE IN INCHES AND (MILLIMETERS)
.181
(4.6 MAX.)

• Small flat package
• Complementary to D70Y.8T1
• See page 840 for mounting and handling considerations.

MARKING SYSTEM

~
R1

TYPENAME

hFE
DESIGNATION

hFE DESIGNATION

1) 70·240
2) 70-140
3) 120-240

maximum ratings (TA =25 0 C)

(unless otherwise specified)
SYMBOL
VCEO
VCBO
VEBO

D71Y.8T1
-30
-35
-5

UNITS
Volts
Volts
Volts

Collector Current - Continuous

Ic

-800

mA

Base Current - Continuous
Total Power Dissipation @Tc = 25°C
@Tc= 25°C(1)

18
Po

-160
500
1000

rnA
mWatts

TJ, TSTG

-55 to +150

°C

RATING
Collector-Emitter Voltage
Collector-Base Voltage
Emitter Base Voltage

Operating and Storage
Junction Temperature Range

thermal characteristics(2)
(1) Mounted on ceramic substrate (250mm 2 x O.Bt).
(2) See page B41 for thermal considerations.

587

electrical characteristics (TA = 25° C)

I

(unless otherwise specified)

I SYMBOL I

MIN

TYP

MAX

UNIT

V(BR)CEO

-30

-

-

Volts

Collector Cut-off Current
(VCS =-3SV, IE =0)

ICSO

-

-

-100

nA

Emitter Cutoff Current
(VES =-SV, IC =0)

IESO

-

-

-100

nA

hFE

100

320

-

-0.7

V

-0.8

V

CHARACTERISTIC

off characteristics
Collector-Emitter Breakdown Voltage
(Ic =-10mA, Is =0)

on characteristics
DC Current Gain(3)
(IC =-100mA, VCE =-1V)
(Ic =-700mA, VCE =-1V)
Collector-Emitter Saturation Voltage
(Ic =-SOOmA, Is =-20m A)
Base-Emitter Voltage
(VCE =-1V, Ic =-10mA)

VCE(Sat)

-

-

VSE(on)

-O.S

-

3S

-

(3) See page 44 for hFE range.

-600

<"

.s

-600

.!:l

...z

w
a:
a:

::J

-400

r/

Y

a:

§w
--'
--'
0

I

'I' ~

(,)

-200

(,)

1000

",L /-1~
.L.~
~ ...-!...- -4
~V
~

-3

COMMON EMITTER
Ta=25'C

500
Ta = l00'C

-

w
Ii.

25

.l:

-25

(!l

...z

w
a:
a:
::J
(,)
(,)

I

c

IB= 1 mA

100
50
30

COMMON EMITTER
VCE= 1V

I
10

0

0
-2

-4

f:::; ~1IIf

Z

;;(

-2

Y
r

-

300

-6

-8

-1

-10

-3

-10

-100

COLLECTOR CURRENT IC (mA)
COLLECTOR-EMITTER VOLTAGE VCE (V)

FIG. 2

FIG. 1 Ie - VCE

588

hFE - Ic

-1000

-1

z

-O.S

~

-0.3

-BOO
COMMON EMITTER
lellB - 25

COMMON EMITTER

0

0::_

VCE

,

~~

"

en ;:ill
0::
w iii

j:~

_1~c:§f0 .4~1I

::E~

O...J

>-0
tl>

w
...J

-0.05
-0.03

.9
z>-

W

0::
0::

~

tl
0::

...J

fl"

-400

0
>tl
w

-25

0
tl

-600

.§.

"'rz

-0.1

,\,,,
0::>-

<"

-200

-3

-10

-30

-100

-300

-1000

J

I

COLLECTOR CURRENT IC (rnA)

II

)

FIG.3 VeE (sat) - Ie
o

-O.B

-0.4
-3000

'"

<"
.§.

-"

~

*
\

"'

FIG. 4 Ie - VBE

I
-;

"'"#
'.

is'"*-

1.2

0.. ~

O.o~

""-2

1.0

~

Z
0

;::

'"'1r,.0"

"ina.

'It

-100

en

tl
0::

O.B

is

~

-50

w
...J

-30

tl
...J

CD MOUNTED ON CERAMIC
SUBSTRATE
(250mm 2 x O.BI)

CD

)'10

~b "' I

-300

0
tl

*

w~
~-

PULS~" '

oa. a.tl

0.6

CD

0::
0

t3w

CURVES MUST BE DERATED LINEARLY
WITH INCREASE IN TEMPERATURE.

CDTa

"

j'-.... ......

0.4

...J
...J

-10

0
tl

=25°C

"

0::-

SINGLE NONREPETITIVE
Ta = 25°C

......

".............

-3

",

...... .......

0.2

-5
-0.3

-1.6

-1.2

BASE-EMITTER VOLTAGE VBE (V)

ICMAX
~
(CONTINUOUS)

.9
z>W
0::
0::

IC MAX (PULSE)

;..~

-500

~

"

0
tl

-1000

-

~I

...J
...J

-0.Q1
-1

=lV

......

...... ......

-1

-3

-10

-30

-100

-300

20

COLLECTOR-EMITTER VOLTAGE VCE (V)

FIG.5

40

60

60

100

AMBIENT TEMPERATURE Ta (0G)

FIG. 6

SAFE OPERATING AREA

589

I'-..

I" ~

0

Pc - Ta

120

140

160

590

SURFACE-MOUNT

PNP POWER TRANSISTORS

D71Y1.5T1
-30 VOLTS
-1.5mAMP,500mWATTS

Oesigned for audio frequency amplifier applications.

PNP
COLLECTOR

Features:
• Suitable for output stage of 3 watt amplifier
• PO=1 ~ 2W (Mounted on ceramic substrate)

EMITTER

CASE STYLE SOT-89

• Small flat package

DIMENSIONS ARE IN INCHES AND (MILLIMETERS)
.181
(4.6 MAX.)

• Complementary to D70Y1.5T1
• See page 840 for mounting and handling considerations.

@

MARKING SYSTEM
TYPENAME

H1

.016· .002 +.003
(0.4 -0.05) (+0.08)

hFE
DESIGNATION

.~~:! o~~: -+-"-i--+-- .~~~ ; o~~

hFE DESIGNATION

1170-240
2) 70-140
3) 120-240

maximum ratings (TA = 25 0 C)

(unless otherwise specified)
SYMBOL
VCEO
VCBO
VEBO

D71Y1.ST1
-30
-30
-5

UNITS
Volts
Volts
Volts

Collector Current - Continuous

IC

-1.5

A

Base Current - Continuous
Total Power Dissipation @TC
@ TC
Operating and Storage
Junction Temperature Range

IB
Po

-0.3
500
1000

mWatts

TJ. TSTG

-55 to +150

°C

RATING
Collector-Emitter Voltage
Collector-Base Voltage
Emitter Base Voltage

=25°C
=25°C(1)

thermal characteristics(2)
(1) Mounted on ceramic substrate (250mm 2 x 0.8t).
(2) See page 841 for mounting and thermal considerations.

591

A

electrical characteristics (TA = 25° C)

I

(unless otherwise specified)

I SYMBOL I

MIN

TYP

MAX

UNIT

Collector-Emitter Breakdown Voltage
(Ic =-10mA, IB =0)

V(BR)CEO

-30

-

-

Volts

Emitter Base Breakdown Voltage
(IE =-1mA, Ic =0)

V(BR)EBO

-5

-

-

V

Collector Cutoff Current
(VCB =-30V, IE =0)

ICBO

-

-

-100

nA

Emitter Cutoff Current
(VEB =-5V, IC =0)

lEBO

-

-

-100

nA

hFE

100

-

320

-

VCE(sat)

-

-

-2.0

V

VBE(on)

-

-

-1.0

V

CHARACTERISTIC

off characteristics

on characteristics
DC Current Gain (3)
(IC =-500mA, VCE

=-2V)

Collector-Emitter Saturation Voltage
(Ic =-1.5mA, IB =-0.03A)
Base-Emitter Voltage
(VCE =-2V, Ic =-500mA)
(3) See page 44 for hFE range.

1000

.y:~

-1.2

$
..9
fZ

w
a:
a:

:>

u

-0.8

::..

...,. ~

1/V
If
/'

/

~

'/

COMMON EMITTER
Ta = 25'C

-~

0

f-

U

W
..J
..J

--

/'

0

~

-0.4

Ta = 100'C

500

w
u.

.<=
Z

300
25

;;:

~

fZ

r- 1"-,..

-25

C!l

100

a:
a:

-3

:>

50

Cl

30

u
u

. -2

COMMON EMITTER
VCE = 2V

I
IB= 1 rnA

10

-1

I

~

-4

-8

-10

-30

-100

FIG. 2 hFE - IC
-12

-16

COLLECTOR-EMITTER VOLTAGE VCE (V)

FIG. 1

-3

COLLECTOR CURRENT IC (rnA)

0

o

~

w

f / ~ i,....-- ~-

a:

u

-/~

IC - VCE

592

-300

-1000

-3000

-1.8
COMMON EMITTER

I

-3
COMMON EMITTER
ICIIB = 50

z

0

VCC-2V

-1

-1.2

;::

«

a:_

~~

« ""

-0.3

51l\l
'\'«

-0.1

~ !w
w
~~

a:tO..J
t-O

u>
w
..J

..J
0

~
.9

- 0.5

U

t-

§

i'5
a:

~

a:

::J

f!"

-0.8

U

Ta -l00'C

-0.03

W

U

\\_~:

IJ

-10

-30

-100

-300

-1000

-3000

o

FIG.3 VCE(sat) -IC
IC MAX (PULSE)
-3000

"

IC MAX.

1\tT

-1000

g
z

w

~

-100

*'\
h..;" ,\

CD

"q,~...... ~

z
0
;::
~

• "'..*"-'
,,-'

~

en

*

-30

"-

.SINGLE NONREPETITIVE PULSE
Ta = 25'C

!li;:-

0.8

I\..

U

-1

-3

-10

-30

-100

CDTa= 25°C

" "I\... ,
'-

.... r-..,

r---.. ........

0.2

0

-0.3

1"'-0. .......

0.4

..J
..J
0

-5
-0.1

CD

a:

§w

CURVES MUST BE DERATED LINEARLY
WITH INCREASE IN TEMPERATURE.

-10

0.8

d\

~

U

..J
..J
0

FIG. 4

~~'*

~i' II

"'<,::"
,~~

::J

-1.6

IN. \ ...

t\..~00"
'"

-300

-1.2

-0.8

BASE-EMITTER VOLTAGE VBE (V)

'l

a:
a:

a:
0

......

-500

.9
t-

-0.4

III

*

(CONTINUOUS)

;(

/ /)

o

COLLECTOR CURRENT IC (rnA)

J

T7

-0.4

-0.01
-1

1)1

U

..J
..J
0

-0.05

U

lIJ

a:
0
t-

o

20

40

60

80

""

...........

100

120

AMBIENT TEMPERATURE Ta (0 C)

COLLECTOR-EMITTER VOLTAGE VCE (V)

FIG.5 SAFE OPERATING AREA

FIG. 6

593

Pc-Ta

I\...

:--...
1"'~
140

180

594

SURFACE-MOUNT

D72F5T1,2

NPN POWER TRANSISTORS

d!P.
~
BASE1?\

Designed for high current switching applications.

=3A)

• High Speed Switching Time: tstg

= 1.0f..Ls (Typ.)

NPN

~

Features:
• Low Collector Saturation Voltage
: VCE(sat) =O.4V (Max.) (at IC

50 VOLTS
5 AMP, 20 WATTS

COLLECTOR

CASE STYLE D-PAK

I;

~

DIMENSIONS ARE IN INCHES AND (MILLIMETERS)
.26
(6.8 MAX.)

~I:

~

• Complementary to D73F5T1,2

(S.2

± 0.2)

~~

C\i
-

EMITTER

.098
(2.S MAX.)

--I

.24
(0.6 MAX.)

• Suffix "2" designates lead formed version
• See page 840 for mounting and handling considerations.

.043 ± .008

.037

(1.1 ±0.2)

(O.9SMAX.)

maximum ratings (TA = 25° C)

(unless otherwise specified)
SYMBOL
Vceo
VCBO
Veso

D72F5T1,2
50
60
5

UNITS
Volts
Volts
Volts

Collector Current - Continuous

IC

5

A

Base Current - Continuous
Total Power Dissipation @ TA = 25°C
@Tc=25°C
Operating and Storage
Junction Temperature Range

Is
Po

1
1.0
20

A
Watts

TJ. TSTG

-55 to +150

°C

RATING
Collector-Emitter Voltage
Collector-Base Voltage
Emitter Base Voltage

thermal characteristics(1)
Maximum Lead Temperature for Soldering
Purposes: W' from Case for 5 Seconds

260

(1) See page 841 for thermal considerations.

595

electrical characteristics (TA = 25° C)

I

(unless otherwise specified)

CHARACTERISTIC

I SYMBOL I

MIN

TYP

MAX

UNIT

V(BR)CEO

SO

-

-

Volts

off characteristics
Collector-Emitter Breakdown Voltage
(Ic = 10mA. Is = 0)
Collector Cut-off Current
(Vcs = SOV, IE::;: 0)

Icso

-

-

1

}LA

Emitter Cutoff Current
(VES = SV, Ic = 0)

IESO

-

-

1

}LA

second breakdown

I Second Breakdown with Base Forward Biased

FBSOA

SEE FIGURE 11

on characteristics
DC Current Gain(2)
(Ic = 1A, VCE ::;: 1V)
(Ic = 3A, VCE = 1V)
Collector-Emitter Saturation Voltage
(Ic = 3A, Is::;: 0.1SA)
Base-Emitter Saturation Voltage
(Ic = 3A, Is = 0.1SA)

-

240

-

0.2

0.4

V

0.9

1.2

Volts

-

0.1

-

1.0

-

0.1

-

hFE

70

hFE

30

VCE(sat)
VSE(sat)

-

-

switching characteristics
Turn-on Time

Vcc = 30V

ton

Storage Time

IS1 = -IS2 = 0.1SA

Fall Time

Duty Cycle

~

tstg

1%

tf

}LS

(2) See page 43 for hFE ranges.

100

90

1--__t_----:::oP::::.....".

80
70

eo

t---:1fiI5t'5oo"'"E::::;~ 50
~_--.40

I-ar..~'=-"-+--f 30

OUTPUT

~_""--20

lOll
200

8

100
COLLECTOR EMITTER
VOLTAGEVCE (V)

BASE CURRENT
IB(mA)

FIG. 1 SWITCHING TIME TEST CIRCUIT
VCE = 1 V

FIG.2

S96

COMMON
EMITTER
Tc = 2S'C

STATIC CHARACTERISTICS

1.2
COMMON EMITIER
Tc: 25·C
1.0

COMMON EMITIER
Tc: loo·C

1.0

w

~

UJ

~~.

::E

~

0.6

'l'>
a:

e
&l...J

Cl

0.8

~

-

~f ~f

«

E

:2

I

"

-

_rtl

0.4

I

...J

o
o

,)

0.2

a

~

~

J

J

I

j

1/ 1/

J

II / /.

V V l/

~ ~ ~~

~~ ~ r-

0.6

w
::E
UJ 0

200

a:>
0
>0

300

~ ~ ~J

i - I---

>
a:

~~

j

J

0

I

.

0.8

~

&1 1~/!§1

-

r-- I--r-- I--- _rtl"
0

0.4

UJ

500

...J
...J

j

0
0

0.2

1

I
1

I

/

~ ~~

~~
4

a~
a

7

&/ &1 -I -glli/

I---

II I I /

I
L

V

.1.
~~

I/,L

v:. ~ ~ ~

V

lS0
.200
SOO

~
3

COLLECTOR CURRENT Ic (A)

FIG.3

~

~~

I---

4

COLLECTOR CURRENT IC (A)

VCE - IC

FIG. 4

VCE -IC

1.2
COMMON EMITIER
Tc: ·SS·C
1.0

w

,

Cl

~

0.8

0

>
a:

I--

~~

w
::E
w 0

0.6

a:.>

0

'"

"
.!!l

0.4

UJ

)

...J
...J

0
0

0.2

1I
&1- ~~
~~
j
"1

E

t-t--

~

«

~t- t--

I--

V~

2S0

300

~~

500

1/

)

~~

IP""
a

./

V
1 1
V/ 1/ .JI'
II

""'"
3

4

7

6

COLLECTOR CURRENT IC (A)

FIG. 5

VCE - IC

1,000
COMMON EMITIER
VCE: lV

SOO

UJ

300

u.

Tc: loo·C

0.3

Cl

a:
a:

/

~~

;;:
UJ

COMMON EMITIER
IC/I B·2O

O.S

.r=
Z

>z

1

25

~~

f""'ooo. ~

100

~c'

a. 1

~~

::J

0
0
0

·S5

50

~

30

"

'"""

,<::fl

0.05
0.03

I •

10
. 0.03

~;

0.0 1
0.05

0.1

0.3

O.S

3

5

0.02

10

0.05

0.1

0.3

0.5

COLLECTOR CURRENT IC (A)

COLLECTOR CURRENT Ic (A)

FIG. 7 V CE(sat) - Ie

FIG. 6 hFE - IC
597

3

10

10

5
COMMON EMITIER
ICIIB= 20

COMMON EMITIER
Vee = 1V

5
4

3

3
Te = -55'C

u

~
"

\

25
100

o. 1

. 0.03

0.05

0.1

0.3

5

3

0.5

o

10

o

I

I

.111

'I
0.8

0.4

COLLECTOR CURRENT IC (A)

ct
iii

(D

I-- r-

20

IC MAX (PULSED)

(DTe=Ta
INFINITE HEAT SINK

5

(DSO' SO, O.B mm I
CERAMIC

3

IC MAX (CONTINUOUS)

'" '"'

16

~~

fr.t'
0:

12

~

...J
...J

......

",

2.4

®

""

®
20

40

60

80

~

0.3

100

120

8

"

140

" "~ ,

0.1

F
*
I--

0.03 I -

160

III
SINGLE NONREPETITIVE PULSE
Te= 25'C

AMBIENT TEMPERATURE Ta ('C)

0.0 t
0.1

1'1'

~f-

"

f--

I-

1=
l-

CURVES MUST BE DERATED LINEARLY
WITH INCREASE IN TEMPERATURE

I-

I--

l-

FIG. 10 Pe - Ta

\~

u

0.05 I-I--

~

'-

-if.- -if.-

~

0.5

I

.......

0

U

o
o

0,,\
.

~

a

r--..

~~
t-\'\:'

. . -=-

I\,

n

~!
w w

Te: -55'C

I=:?

~

~~

;.--

d:~
~6

VI""

~

0>

w

'\ \

:l

500

-.LL

300

0.1

8

COMMON EMITTER
vCE: 2V

0.3

0.5

3

5

0.5

0.3
0.2

10

r:;;:;:; ~

~

~
25

100

COMMON EMITTER
IC/18: 500
I

0,5
COLLECTOR CURRENT IC (A)

COLLECTOR CURRENT IC (A)

FIG. 6 hFE - IC

FIG. 7 VCE(sat) - IC
601

I

I

5

I
COMMON EMITIER
IC/IB = 500

5

I""-

~

1=

3

~

12

flj
I----

Tc--55'C

25

I---I----

c:.---

CDTc=Ta
INFINITE HEAT SINK

16 rCD

'"' "-

i5

CD NO HEAT SINK

'\

~!

f;:::== ~

~
a:

n.t)

I\-

'\
8

'\

~

100

""

...J

5

0

4 rCD

r--.

rCD

l"'- t:::-

0.5
0.2

CD CERAMIC SUBSTRATE
50 x 50 x 0.8 mm t

0.5

40

3

COLLECTOR CURRENT IC (A)

*

IC MAX (PULSED)

I
3

I I
)..

ICMAX
(CONTINUOUS)

:;:

'"

.~
~*

~

.Y

>zw
a:
a:

,.,.0"o~

::l

0,\

~, ~ \.

0.5

0

t;

w
...J
...J

160

FIG.9 Pe-Ta

10

0

l'\

AMBIENT TEMPERATURE Ta ('C)

FIG. 8 VBE(sat) - Ie

a:

"""

12\1

80

I

0.3

II

0

t)

0.1

t
~

0.05

ttt-

*

\.

" '"'9v\. 1\
1\

\

SINGLE NONREPETITIVE PULSE
Tc = 25'C

,

I\~

,,'

><==
:Ii

CURVES MUST BE DERATED LIN EARL V
WITH INCREASE IN TEMPERATURE

~1'1

0.03
3

5

10

30

50

COLLECTOR-EMITIER VOLTAGE VeE (V)

FIG.10 SAFE OPERATING AREA

602

=

@-

100

-

200

180

200

SURFACE-MOUNT

D72K3D1,2

NPN POWER DARLINGTON
TRANSISTORS

1JjJdJ/J.

Designed for switching applications, hammer drive, pulse
motor drive applications, power amplifier applications.
Features:
• High DC Current Gain
: hFE(1) = 2000(Min.) (VCE

40 VOLTS
3 AMP, 15 WATTS

CASE STYLE D-PAK

=2V,

• Low Saturation Voltage
: VCE(sat) = 1.SV (Max.) (lc

DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

IC = 1A)

ml~
~~

.09B
(2.5 MAX.)

.24

£!.

(0.6 MAX.)

=2A)

• Complementary to D73K3D1,2
• Suffix "2" designates lead formed version
• See page 840 for mounting and handling considerations.
.043

.037

± .OOB

(1.1 ±0.2)

(0.95 MAX.)

.024
(0.6 MAX.)

J~

EQUIVALENT CIRCUIT
COLLECTOR

BASE

o---:--+-----{

j

(0.95 MAX)

.024

(0.6 MAX.)

.063 ± .00B

~"":-T-=---,-_~-,-_--,-_--.:(~1.6 ± 0.2)
EMITTER

maximum ratings (TA

=25° C) (unless otherwise specified)
SYMBOL

RATING
Collector-Emitter Voltage
Collector-Base Voltage
Emitter Base Voltage

VCEO
VCSO
VESO

Collector Current - Continuous
Base Current - Continuous
Total Power Dissipation @TA = 25°C
@Tc=25°C
. Operating and Storage
Junction Temperature Range

D72K3D
40
60
5

Volts
Volts

IC

3

A

IS
Po

0.3
1.0
15

Watts

TJ. TSTG

-55 to +150

°C

thermal characteristics(1)
Maximum Lead Temperature for Soldering
Purposes: W' from Case for 5 Seconds

235

(1) See P!lge 841 for thermal considerations.

603

UNITS
Volts

A

electrical characteristics (TA

I

=25

0

C)

(unless otherwise specified)

I SYMBOL I

MIN

TYP

MAX

UNIT

V(BR)CEO

40

-

-

Volts

Collector Cutoff Current
(VeB =60V, IE =0)

ICBO

-

-

20

p.A

Emitter Cutoff Current
(VEB =SV, Ic =0)

lEBO

-

-

2.S

mA

CHARACTERISTIC

off characteristics
. Collector-Emitter Breakdown Voltage
(Ic = 2SmA, IB =0)

second breakdown

I Second Breakdown with Base Forward Biased

FBSOA

SEE FIGURE 10

on characteristics
-

hFE

2000

-

-

hFE

1000

-

VCE(Sat)

-

-

1.S

V

VBE(sat)

-

-

2.0

Volts

VCC

ton

-

0.1

Duty Cycle ~ 1%

-

1.0

Fall Time

tstg
tf

-

p's

Storage Time

=30V
IB1 =-IB2 =6mA

DC Current Gain(2)
(Ie = 1A, VCE = 2V)
(Ic =3A, VCE = 2V)
Collector-Emitter Saturation Voltage
(Ie = 2A, IB = 4mA)
Base-Emitter Saturation Voltage
(Ie = 2A, IB = 4mA)

switching characteristics
Turn-on Time

0.2

(3) See page 43 for hFE ranges.

4

I

COMMON EMITIER
T~ =2S"C

'·'rFti

~

OUTPUT

201'5

3

lZw

........: ~

a:
a:

13

.....--1
)82
I

2

~~

a:

~

&l

8

~

'rt

::l

IIJ\IV\,oo<....,.vv._
L ____ _

--

..... ~ ~

J:l

1

m
o

o

)

~

I

-

200

Ie = 175 /AA

".

0

2

3

FIG. 2 IC - VCE

604

250_
225

COLLECTOR-EMITIER VOLTAGE VCE (V)

FIG. 1 SWITCHING TIME TEST CIRCUIT

~

4

5

4

-,

4
COMMON EMITIER
Tc= 100'C

~

COMMON EMITIER
Tc = -55'C

3

~

"...... ~

a:

aa:a:

2

~

~

~/
iV

-'

-'

8

o

~

200

.Y

o

t

V
r-

~

-

~

I--

----

~

.Y
zw

...

,,-1-"

a:
a:

aa:
~

150_

--r

125

/

2

~

-'

I

-

-

I--

~
500

...-

I

1

I

"..

COLLECTOR-EMITIER VOLTAGE VCE (V)

FIG. 3

o,

9

5

1

-

'B= 300~A

'B= 1oo~A

0

-

400

V

-'

8

-

I

COLLECTOR-EMITIER VOLTAGE VCE (V)

IC - VCE

FIG. 4

IC - VCE

4
COMMON EMITIER
VCE = 2V

~

3

'/

.Y

~a:

a

1/

a:

2

§h

a:

~
o

U

1

0

~

J

u

'"

'

'"

III

J ~"

!I

~ rJ..I V

o

0.8

1.6

j
4.0

3.2

2.4

BASE EMITIER VOLTAGE VBE (V)

FIG. 5

IC - VBE

10,000
~

5,000

~

.Y
zw

...

"-\

o
~

\

1

/

~

...0
1,000

COMMON EMITIER
leI'B = SOO

z

~~

« z(/) lJl

",,""

a:

-'
-'
0

'I

3,000

:::l
U

w

1/

,Co J

.~"./1

,,-"

a:
a:

U

.1

Y
V

ffiw
1::,;'

""

::ill!

'\'«
a:f-

Tc = -SS'C

0-'

... 0

u>
w

u

1

:l

300
'0.1

0.3

O. ~

0.2

i.--'
100

--

O.S
COLLECTOR CURRENT 'C (A)

COLLECTOR CURRENT 'C (A)

FIG.6

2S

.'

I-10

O.S

I--

8

COMMON EMITIER
VCE = 2V

soo

~~

hFE -IC

FIG. 7 VCE(sal) - IC

605

S

10

I
COMMON EMITTER
ICIIB = 500

16

0Tc=Ta
INFINITE HEAT SINK

0

r--~

o CERAMIC SUBSTRATE
50 -50 - 0.8mm I

I\.
'\~
Tc = -55'C

I

1

'\

5'C

~~

25
100

r-

'\
1-0

r--

t"-0
0.5
0.1

o NO HEAT SINK

0.3

0.5

o

3

1

o

r- t -

40

80

COLLECTOR CURRENT IC (A)

IC MAX (PULSED)

'-l
IC MAX
(CONTINUOUS)

~~~+~~~-r--r-+-~-rHH
\
~

~~o

g

or.-

.9

~

a:
a:

::::>

u

a:

0.3

0.1

""'"

120

l\.
160

FIG.9 Pe-Ta

h
*
10~~~

0.5

~

AMBIENT TEMPERATURE Ta ('C)

FIG. 8 VS.E(sat) - Ie

~
8

,"-

\

I----+-+-+-t-hl

~.1

I
~
~-..L--l-...L..JL...L-.;I-J-LJL-_Urt\~,t--'--'-ttt1

*

I

1\

SINGLE NONREPETITIVE PULSE

~=~~

~

t- CURVES MUST BE DERATED LINEARLY

rr-WITH INCREASE IN TEMPERATURE

=
---

x<{
::.
0

w
u
>

0.05
1

3

10

30

50

COLLECTOR-EMITTER VOLTAGE VCE (V)

FIG. 10 SAFE OPERATING AREA

606

100

180

200

SURFACE-MOUNT

NPN POWER DARLINGTON
TRANSISTORS
Designed for pulse motor drive, hammer drive applications,
switching applications, power amplifier applications.
Features:

D72Y1.5D1,2
30 VOLTS
1.5 AMP, 10 WATTS

:/2JJ ZJi!)J
CASE STYLE D-PAK

• High DC Current Gain
: hFE = 4000(Min.) (VCE = 2V, IC = 150mA)

DIMENSIONS ARE IN INCHES AND (MILLIMETERS)
.098

sli

(2.5 MAX.)

·0

• Low Saturation Voltage
: VCE(sat) = 1.5V (Max.) (lc = 1A, IS = 1mA)

.24

~

(0.8 MAX.)

• Suffix "2" designates lead formed version
• See page 840 for mounting and handling considerations.
.037
(0.95 MAX.)

.043 ± .008

o

11.1 ±0.2)

-l '-to.6~~X.)

~ ;~~

EQUIVALENT CIRCUIT
r _ _ _ _ _ _~__C~LLECTOR

BASE Of----::-th:

1060~ x.)

JJ

.:

IL- _ _ _ _ _ _ _ JI
EMITTER

063± .008
(1.6 ± 0.2)

~--'---~-----r---'----~

maximum ratings (TA = 25° C)

(unless otherwise specified)
SYMBOL
VCEO
VCBO
VEBO

D72Y1.5D1,2
30
30
10

UNITS
Volts
Volts
Volts

Collector Current - Continuous

IC

1.5

A

Base Current - Continuous
Total Power Dissipation @ T A = 25° C
@Tc=25°C
Operating and Storage
Junction Temperature Range

IB
PD

0.15
1.0
10

A
Watts

TJ. TSTG

-55 to +150

°C

RATING
Collector-Emitter Voltage
Collector-Base Voltage
Emitter Base Voltage

thermal characteristics(1)
Maximum Lead Temperature for Soldering
Purposes: W' from Case for 5 Seconds

235

(1) See page 841 for thermal considerations.

607

electrical characteristics (TA = 25 0 C)

(unless otherwise specified)

CHARACTERISTIC

I SYMBOL I

MIN

TYP

MAX

UNIT

V(SR)CEO

30

-

-

Volts

off characteristics
Collector-Emitter Breakdown Voltage
(IC = 10mA, Is = 0)
Collector Cutoff Current
(VCS = 30V, IE =0)

Icso

-

-

10

p.A

Emitter Cutoff Current
(VES = 10V, IC = 0)

IESO

-

-

-10

p.A

second breakdown

I Second Breakdown with Base Forward Biased

FBSOA

SEE FIGURE 10

on characteristics
DC Current Gain
(IC = 150mA, VCE = 2V)

4000

hFE

Collector-Emitter Saturation Voltage
(Ic = 1A, Is = 1mA)
Base-Emitter Saturation Voltage
(Ic = 1A, Is = 1mA)

-

-

-

VCE(sat)

-

-

1.5

V

VSE(sat)

-

-

2.2

Volts

-

0.18

p's

switching characteristics
Turn-on Time

VCC = 15V

ton

Storage Time

IS1 = -IS2 = 1mA
Duty Cycle ~ 1%

tstg

-

0.6

-

tf

-

0.3

-

Fall Time

600

II

COMMON EMITTER
TC=25'C

OUTPUT
500

<
.§.
150

60

r

50

400

J:l

I

fZ

I1J
0::
0::

:::J

U

40

300

I

0::

0

30

f-

U

I1J
..J
..J

0

FIG. 1 SWITCHING TIME TEST CIRCUIT

J

200

U

20

I
100

o

IS= lOIlA

)
o

0
2

3

4

COLLECTOR-EMITTER VOLTAGE VCE (V)

FIG. 2 IC - VCE
608

5

6

eoo

30

'100

I,)

<"
oS

I

l-

I

I-

Z

300

w
a:
a:

20

::I

15

200

It"'"

120

r

100

U

/'

~

r

a:

fd

140

300

:J

f:!

r
400

J:l

25

a:

8

160

500

35

I""'"

I

COMMON EMITTER
Tc" 50'C

I

eoo

iJ:l

600

I

COMMON EMITTER
TC" l00'C

200

.J
.J

60

60

0

I

U

10

40
100

100

le"5~

0 0

I)

18"

)

0
0

3

5

4

20~A

0

0

6

234

6

COLLECTOR-EMITTER VOLTAGE VCE (VI

COLLECTOR-EMITTER VOLTAGE VCE (V)

FIG. 4 IC - VCE

FIG.3 IC· VCE

COMMON EMITTER
VCE" 2V

1.0

I

0.8

u

§

g
J:l
ii)
a:

l-

"

Xl

I
I

I

0.6

~

0

'I'

a:

:;)

U

a:

0.4

~
~

.J

0

U

0.2

o

~'1
o

I

~I

/

1.2

0.8

0.4

J

1.6

2.0

2.4

eASE EMITTER VOLTAGE VeE (VI

FIG. 5

IC - VSE

20.000

10
Tc" lOO'C

~

25

'"z

5.000

I-

3.000

-50

1--

3

COMMON EMITTER
Ielle" 1000

ffiw
I:~
:qlj

~

'1'<
~~

tg
w

COMMON EMITTER
VCE" 2V

500
0.002

5

~>

1.000

30Q

~

;Iii

~

:;)
I,)

g

0

10.000

.~

t

z

.J
.J

0.5
\

100

0

0.03

0.1

0.3

3

FIG. 6

I I "I

0.1

COLLECTOR CURRENT IC (AI

25

0.3

I,)

0.01

-

Tc"50'C

0.002

0.01

0.03

0.1

0.3

COLLECTOR CURRENT IC (AI

hFE - IC

FIG. 7 VCE(sal)· IC

609

3

30


~

:;

w

0.5

~

0.3

W

==
f=

~

TC=-55°C

\


a:

-0.6

~ lj
w>
a:

-0.4

>

a:

~

~~

l?
~...J

-0.6

Ul

~

U;iS

a:-

....a

Ul

-0.4

0
0>
W
...J
..J

a

-0.2

0

-0.2

0

0

0
-7

-2
COLLECTOR CURRENT IC (Al

COLLECTOR CURRENT IC (Al

FIG. 3 VCE - IC

-1.0

w
CJ

-

g
a:

~~

-0.6

0

-0.4

1000

I
I

-O.B

«

!:i

fjl

COMMON EMITTER
Tc -55·C

=

-

«

E

'if

I? r"

J JJ

I If

@
0

-0.2

0

.~

i

~
)

V....V
JI'

~~~

COMMON EMITTER
VCE 1V
500

II ~-

w

Ie

.c
Z

;;:

Tc

....Z

::J

V

,..,.
~~

.;"

0
0

-400

=1oo·C

I

a:
a:

. -300

100

-.... ........

r

25

-

Cl

-55

-500

50

I#" I""'"

o

300

CJ

Ul

V

'("

J lh ~ ~ ~

...J
...J

0

I~

J!l

~

lj
~>

VCE -Ie

FIG.4

I~

20

-2

-1

-5

-4

-3

-7

·6

-0.03

FIG.5

-0.3

-0.1

-0.5

-1

-3-5

-10

COLLECTOR CURRENT IC (Al

COLLECTOR CURRENT IC (Al

FIG. 6 hFE - Ie

VCE - IC

-10
COMMON EMITTER
IC/IB - 20

-2
w

COMMON EMITTER

CJ

~

Ul

leils = 20

-1

Cl

«

0

>

!:i

0

Z

>

0

t=

,L
::»
.... ;a j
ffi

"LAI

-0.3

t:~

Tc = 1oo·C

~

~

0

/

..

...L.....,..

-0.1

a:

::> 10

~rI

.... .e
« w
ID

:!

-0.05

I

0

I
-0.03

-0.1

-0.3

"

Tc

-1

=-55°C

'"a:>

~~

Ul

~

-0.5

~~25

:::;
Ul

W

tiw

0

-3

z
a
~~

-0.5

iii

-5

-0.3

"

«
'"
ID

25
-55

100

-1l.1
-0.5

·1

-3

-5

-10

COLLECTOR CURRENT IC (Al

-0.03

-0.1

-0.3

-0.5

-1

COLLECTOR CURRENT IC (AJ

FIG. 8

FIG. 7 VCE(sat) - IC

613

VBE(sat) - IC

-3

-5

-10

28

CD Tc = Ta

COMMON EMITTER
VCE= 1V

-5

[

g
.P

~
z

-4

::1

-3

(J

J

a:

~

...J
...J

I

-2

8

l- f-

G

f-- t -1

o

.....
i'..

g

r-....
........

...J

I

-0.4

I'

12

a:

-55

"

JJ
o

~

0

~

'-- ~

......

16

11.

I-.:

50 X 50 X 0.8 mml

CD NO HEAT SINK

""i'o..

15
a:
w

I- t-25

CD CERAMIC SUBSTRATE

I - "-

CD

20

iiii

ffi

a:
a:

INFINITE HEAT SINK

24

8

I

-0.8

-1.2

-2.4

-2.0

-1.6

""

CD
CD

I
0 0

20

BASE-EMITTER VOLTAGE VBE (V)

80

40

80

100

120

AMBIENT TEMPERATURE Ta (OC)

FIG. 9

Ie - VBE

FIG. 10

-10
~

IC MAX (PULSED)

-5

IC MAX (CONTINUOUS)

,

*
~"\~~
~
.. ~



'3-0 ~

-1

-0.5

"\.

::1
(J

a:

~

-0.3

(J

~
...J
0

(J

-0.1

~*

II

l'

III

I'

~

l-

PULSE Tc = 25°C

I--0.03 I-

I-0.01
-0.1

ff--f-

CURVES MUST BE DERATED
LINEARLY WITH INCREASE
IN TEMPERATURE

-0.3

-0.5

1=
~

1-' SINGLE NON REPETITIVE
-0.05

'.

-3

-1

f--I-5

-10

-30--50

COLLECTOR·EMITTER VOLTAGE VCE (V)

FIG. 11 SAFE OPERATING AREA

614

x

~
0

w

~
-100

Pc - Ta

"'-

i'...

140

180

SURFACE-MOUNT

PNP POWER DARLINGTON
TRANSISTORS
Designed for switching applications, hammer drive, pulse
motor drive applications, power amplifier applications.
Features:

• High DC Current Gain
: hFE(1) =2000 (Min.) (VCE
• Low Saturation Voltage
: VCE(sat) =-1.5 (Max.)

D73FY4D1,2
-80 VOLTS
-4 AMP, 15 WATTS

1J)J g!{]}J
CASE STYLE D-PAK
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

=-2V, IC =-1A)

(IC

.096
12.5 MAX.)

,26
16.8 MAX.)
.205 ± .006

~t;15.2±D2f

=3A)

.24

(0.6 MAX.)

• Complementary to D72FY4D1
• Suffix "2" designates lead formed version
• See page 840 for mounting and handling considerations.
.043± .008
('.' ±0.2)

.037
10.95 MAX.)

.024
(0.6 MAX.)

.. ._.- !I~

Wf,1

EQUIVALENT CIRCUIT
COLLECTOR

r------------,

JJ

BASE

.024
(0.8 MAX.)
.063 ± .006
,..-_,....-_---r_ _--.--_--.-_ _(-.'.6 ± 0.2)

'EMITTER

maximum ratings (T A = 25° C)

(unless otherwise specified)
SYMBOL
VCEO
VCBO
VEBO

D73FY4D1,2
-80
-100
-5

UNITS
Volts
Volts
Volts

Collector Current - Continuous

Ic

-4

A

Base Current - Continuous
Total Power Dissipation @ T A = 25° C
@Tc=25°C
Operating and Storage
Junction Temperature Range

IB
Po

-0.4
1.0
15

Watts

TJ. TSTG

-55 to +150

°C

RATING
Collector-Emitter Voltage
Collector-Base Voltage
Emitter Base Voltage

thermal characteristics(1)
Maximum Lead Temperature for Soldering
Purposes: Va" from Case for 5 Seconds

235

(1) See page 841 for thermal considerations.

615

A

electrical characteristics (TA

I

=25

0

C)

(unless otherwise specified)

I SYMBOL I

MIN

TYP

MAX

UNIT

V(BR)CEO

-80

-

-

Volts

Collector Cutoff Current
(VCB = -100V, IE = 0)

ICBO

-

-

-20

Jl.A

Emitter Cutoff Current
(VEB = -5V, IC = 0)

lEBO

-

-

-2.5

mA

CHARACTERISTIC

off characteristics
Collector-Emitter Breakdown Voltage
(Ic = -10mA, IB =0)

second breakdown

I Second Breakdown with Base Forward Biased

SEE FIGURE 9

FBSOA

on characteristics
DC Current Gain(2)
(IC = -1A, VCE = -2V)
(Ic = -3A, VCE = -2V)
Collector-Emitter Saturation Voltage
(Ic = -3A, IB = -6mA)
Base-Emitter Saturation Voltage
(Ic = -3A, IB = -6mA)

VCE(sat)

-

-

VBE(sat)

-

-

ton
tstg

-

0.15

-

-

0.80

tf

-

0.40

-

hFE

2000

hFE

1000

-

-

-1.5

V

-2.0

Volts

switching characteristics
Turn-on Time

VCC = -30V

Storage Time

-IB1 = IB2 = 6mA
Duty Cycle;§; 1%

Fall Time

Jl.s

(2) See page 43 for hFE ranges.

-5
COMMON EMITTER
Tc =25·C

OUTPUT

-4

I

?
.9

!zw

-+-1
IS1
I

-3

~

a:
a:

"~

::;)

10n

o

k::: E:::=
·IbV ~

a:

~:l

IL-VVV-<_VV'o"-'
____ _

-2

~

8

m

-1

~

--::::::

~~

o

o

-1

~

-

-400

-350
-300
-250

Ie

-2

-3

=-200~A

~

I.

-4

-5

COLLECTOR-EMITTER VOLTAGE VCE (V)

FIG. 2 IC - VeE

616

-450

i""'"

~

FIG. 1 SWITCHING TIME TEST CIRCUIT

-500

0

-6

-s

-5
COMMON EMITTER
Te= 100"C

COMMON EMITTER
Te = -SS"C

-4

-4

~

J)

~

-3

~

:l

0

a:

f:!

I

~

-2

/. ~

0

~

....

~

~

~ ....-

8

~

-1

---- ---- -

a:
a:

--

-800

-3

:l

0

-250

ff- f-

a:
0

1.,......0-0

,
o

!zw
-300

I---- i---

~V

0

J)

bw

-200

L

kr'"

-2

-'

-'
0

-175

-600
-500

V

·0

-1

-150

Ie = -125 ~A

-700

~

Ta =-400 ~A

-

0

0
I

-2

-1

-3

-S

-4

o

-1

COLLECTOR-EMITTER VOLTAGE VCE (V)

-3

-2

-5

-4

COLLECTOR-EMITTER VOLTAGE VCE (V)

FIG. 4

FIG. 3 IC - VCE

IC - VCE

S
COMMON EMITTER
VCE=-2V

-4

'/
J

3

I
I

-2

~/~1

-1

o

0

~
"
~

Jill
lL ~ I

o

-0.8

-1.6

-2.4

-3.2

-4.0

-4.8

eASE EMITTER VOLTAGE VeE (V)

FIG. 5 IC - VeE

10,000

-S

QSV

,~

5,000

...w

'"

3,000

~

I!J

:l

0
0

V"

V

!zw
a:
a:

",-v'A

r

~

v

Y V

- "'"

0

~
a:_

~

COMMON EMITTER
Iclle= SOO
-3

,...->

.:l

II

ca~

a: w
w

"'

~I"

V

1,000

z

-'-

I=~
Siljj
'11<
a: I-

Te
.25

b~

r

w

-'
-'
0

COMMON EMITTER
VCE: -2V

500

0

300

-0.1

-0.3

-0.5

-1

-3

-5

""~
100

-O.S

-0.3
-0.1

-10

-0.3

-0.5

-1

COLLECTOR CURRENT IC (A)

COLLECTOR CURRENT IC (A)

FIG. 6 hFE - IC

FIG. 7 VCE(sat) - IC
617

~

-1

0-'

c

~

=-SS"C

-3

-5

20

-1 0
COMMON EMITTER
IdIB=500

-5

16

z

0

~

-3

iii

-

Tc = -55'C

25

~

I\.

~w

U

4

-0.5

--

o

-0.3

-3

-1

-5

'\

(i)
(i)

-0.5

I\.

'\

0

-0.3

,

(i)NOHEATSINK

a:

...J
...J

-0.1

so so

~

~ri:'

100

-1

-

(i) CERAMIC SUBSTRATE
x x 0.8 mm t

(i)

12

C
a:w;;:
;;:-

....

~

(i)Tc=Ta
INFINITE HEAT SINK

I

o

~

\.

r- r60

40

"-"

120

I\.
160

AMBIENT TEMPERATURE Ta ('C)

COLLECTOR CURRENT IC (A)

FIG.9 Pe-Ta

FIG. 8 VBE(sat) - Ie

-1 0

*

IC MAX (PULSED)

~

-5
ICMAX
(CONTINUOUS)

-3

~

...

1>
r\~.

~

"%.

7f..

'*
'.

-,0\\

1

,,0

~,' '-

, ,

I

~

" 

-

-

-

II

-0.03

1

\.1\

\

-3

-5

-10

-30

-so

-100

COLLECTOR-EMITTER VOLTAGE VCE (V)

FIG.10 SAFE OPERATING AREA

618

-200

160

200

·SURFACE-MOUNT

D73K3D1,2

PNP POWER DARLINGTON
TRANSISTORS
Designed for switching applications, hammer drive, pulse
motor drive applications, power amplifier applications.

:fJ)J~

Features:
• High DC Current Gain
: hFE(1) =2000 (Min.) (VCE

-40 VOLTS
-3 AMP, 15 WATTS

CASE STYLE D-PAK

DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

=-2V, IC =-1A)

"'I~

.098
(2.5 MAX.)

~~

• Low Saturation Voltage
: VCE(sat) = -1.5V (Max.) (IC = -2A)

~

.24
(0.6 MAX.)

• Complementary to D72K3D1,2
• Suffix "2" designates lead formed version
• See page 840 for mounting and handling considerations.
.043 ± .008
(1.1 ±0.2)

.037
(0.95 MAX.)

J~

EQUIVALENT CIRCUIT
COLLECTOR

r -

BASE

-

-

-

-

I
0--....--..----;

-

-

-

-

--

--,

I
I

j

I

L

L..-_ _~---1""_-'_

-l

~~.-~-.~---rT~ER-M.-3'---~

EMITTER

maximum ratings (TA = 25°C)

.024

(0.6MAK)

.063 ± .008
(1.6 ± 0.2)

(unless otherwise specified)

VCEO
VC80
VE80

D73K3D1,2
-40
-60
-5

UNITS
Volts
Volts
Volts

Collector Current - Continuous

IC

-3

A

Base Current - Continuous
Total Power Dissipation @ TA = 25°C
@Tc=25°C
Operating and Storage
Junction Temperature Range

18
Po

-0.3
1.0
15

Watts

TJ, TSTG

-55 to +150

°C

RATING
Collector-Emitter Voltage
Collector-Base Voltage
Emitter Base Voltage

SYMBOL

thermal characteristics(1)
Maximum Lead Temperature for Soldering
Purposes: W' from Case for 5 Seconds

235

(1) See page 841 for thermal considerations.

619

A

electrical characteristics (TA = 25° C)

(unless otherwise specified)

CHARACTERISTIC

TYP

MAX

UNIT

-40

-

-

Volts

ICBO

-

-

-20

p.A

lEBO

-

-

-2.5

mA

1 .SYMBOL .1

MIN

V(BR)CEO

Collector Cutoff Current
(VCB = -60V, IE = 0)
Emitter Cutoff Current
(VEB = -5V, IC = 0)

1

off characteristics
Collector-Emitter Breakdown Voltage
(IC = -25mA, Is = 0)

second breakdown

I

Second Breakdown with Base Forward Biased

FBSOA

SEE FIGURE 10

on characteristics
DC Current Gain(2)
(IC = -1A, VCE = -2V)
(Ic = -3A, VCE = -2V)

hFE

2000

hFE

1000

Collector-Emitter Saturation Voltage
(Ic = -2A, IB = -4mA)

VCE(sat)

Base-Emitter Saturation Voltage
(Ie = -2A, IB = -4mA)

VBE(sat)

-

-

-

-

-

-1.5

V

-

-2.0

Volts

0.30

-

p's

switching characteristics
Turn-on Time

VCC = -30V

Storage Time

-IS1 = IS2 = SmA
Duty Cycle ~ 1%

Fall Time

-

ton
tstg
tf

O.SO
0.25

(2) See page 43 for hFE ranges.

·5
COMMON EMITIER
Tc=25'C

OUTPUT
IS2
INPUT

.-------,

-4

-I

~

1

....9

......--1
IS1
I

~

a:
a:
::J
u
a:

IL'-'V'1fV-4--'iIV'I<_
____ _

~

&l..J

m

·3

.L! ~

·2

~~

8

~

r..

·1

---

..--

.--~ ~
I"'""

o

-

r

0
-1

-2

-4

COLLECTOR-EMITIER VOLTAGE VCE (V)

FIG. 2

620

-250
-225

18 = -175 "A

)
o

-300
-275

-200

I

FIG. 1 SWITCHING TIME TEST CIRCUIT

--

IC - VCE

-5

-6

S

-5

COMMON EMITTER
Tc; -SS'C

COMMON EMITTER
Tc; l00'C
-4

-4

I

$
},)

w

a:
a:

-3

~I -

::l
U

a:
~

U

w

'-" ~ ~

-2

-

k::: ~ ~ I--I--

-'

-'
0
U

~~

-1

o

~

L
o

,~ V

....

I"""

W

-600

-3

a:
a:

-17S

::l
U

-lS0

§

-2

V-

~

8

I

i.-'"

o

-S

o

0

-1

-3

-2

-4

-6

-S

COLLECTOR-EMITTER VOLTAGE VCE (V)

COLLECTOR-EMITTER VOLTAGE VCE (V)

FIG.3

-400

IB ; -300 ~A

0

-4

i--

II"

1

I

-soo

V
,/

a:

-12S

-3

-2

Z

-'

I

-1

/-

-200

18 = -100 ~A

- - --

},)

I

IZ

I

$

IC - VCE

FIG. 4

IC - VCE

-4
COMMON EMITTER
VCE; -2V

If/
/ II

-3

$
},)
IZ

w
a:
a:

::l
U

-2

a:

~

H!7"/!

U
w
-'
-'

0

U

-1

I II
J V.J r

o

-0.8

-1.6

-2.4

-3.2

-4.0

BASE EMITTER VOLTAGE VBE (V)

FIG. 5

IC - VeE

10,000

-S

,0

"If'

S,OOO

A

"C:

W

LL

/

~

3,000

1,000

COMMON EMITTER
lellB; SOO
3

~~
~ !
w w


W
..J

COMMON·EMITTER
VCE; -2V

SOO

-'

o
u

300
-D.l

-D.3

-D.S

-1

-3

-5

I;;;

100

-D.3

-D.S

-1

COLLECTOR CURRENT IC (A)

COLLECTOR CURRENT IC (A)

FIG.6

~

-D. S

-D. 3
-0.1

-10

~

Tc - -sS'C
1

hFE -IC

FIG. 7
621

VCE(sat) - IC

-3

-S

-'0
COMMON EMITTER
ICIIB = 500

III

~

~
z

Q
::J

z

III

~

~

~,p

Tc = -55'C

~V

25

100

'\

8

'\

II:

~

&l...J
...J

-1

I\.

4 r(i)

8

~

r-(i)

~.3

-0.5

~r--

.1

~.5
·~.1

-3

-1

so -0.8mm I

(i)NOHEATSINK

'\

ffi~

~[[

ill

50 -

~

12

~c

-3

11

11:>

~

(i)CERAMIC SUBSTRATE

i=

~

1-II:
o!-

~-

~~ ~

::>

04--- 1
182 1

~

w

Cl

,:!-'

"

0,1

60.08

~

~=
g-

0

~-

0,06

m

0,04

0,6

FIG. 1 SWITCHING TIME TEST CIRCUIT

II:
III

·SINGLE NONREPETITIVE PULSE Ta' 25"C
CURVES MUST BE DERATED LINEARLY WITH
INCREASE IN TEMPERATURE,

0,8

2

4

6

8 10

20

40

60 80'00

COLLECTOR-EMITTER VOLTAGE VCE (V)

FIG. 2

626

SAFE OPERATING AREA

D74FI4D

NPN POWER DARLINGTON
TRANSISTOR ARRAY

60 VOLTS
4 AMP, 3 WATTS

Designed for high power switching applications, hammer
drive, pulse motor drive and inductive load drive applications.
Features:
• High reliability small;,.sized available (3 in 1)
• Epoxy single-in line package (8 pin)
CASE STYLE SIP-8 PIN

• Zener diode included between collector and base
• High collector power dissipation: PD
(Three device action)

DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

=3W @ TA =25°C

• High collector current: IC = 4A (Max.)
• High DC current gain:
hFE = 2000 (Min.) @ VCE

=2V, IC = 1A

ARRAY CONFIGURATION

:.1.1 J§l$1 ..
3

maximum ratings (T A = 25 0 C)

5

7

(unless otherwise specified)

RATING
Collector-Emitter Voltage
Collector-Base Voltage

SYMBOL
VCEO
VC80

D74F14D
60± 10
60 ± 10

UNITS
Volts
Volts

Emitter Base Voltage
Collector Current - Continuous
Peak
Base Current - Continuous
Collector Power Dissipation
(One Device Action, TA = 25°C)

VE80
IC
ICM
18

6
4
6
0.5

Volts
A

Po

1.8

Watts

Po

3.0

Watts

TJ, TSTG

-55 to +150

°C

I ReJA

41.7

°C/W

TL

260

°C

Collector Power Dissipation
(Three Device Action, TA =25° C)
Operating and Storage
Junction Temperature Range

A

thermal characteristics
Thermal Resistance, Junction to Ambient
(Three Device Action)
Maximum Lead Temperature for Soldering
Purpose: Va" from Case for 5 Seconds

627

electrical characteristics (TA = 25° C)

(unless otherwise specified)

CHARACTERISTIC

I

1

SYMBOL 1

MIN

TVP

MAX

I·

UNIT

off characteristics
Collector-Emitter Breakdown Voltage
(Ic = 10mA, IB = 0)

VBR(CEO)

50

SO

70

Volts

Collector-Base Breakdown Voltage
(Ic = 10mA, IE = 0)

VBR(CBO)

50

SO

70

Volts

Collector Cutoff Current
(VCB = 45V, IE = 0)

ICBO

-

-

10

/LA

Collector Cutoff Current
(VCE = 45V, IB = 0)

ICEO

-

-

10

/LA

Emitter Cutoff Current
(VEB = SV, IC = 0)

lEBO

O.S

-

2.0

mA

2000
1000

-

-

15000

-

on characteristics
DC Current Gain
(Ic = 1A, VCE = 2V)
(Ic = 3A, VCE = 2V)

hFE

-

Collector-Emitter Saturation Voltage
(Ic = 3A, 18 = 10mA)

VCE(sat)

-

-

1.5

Volts

Base-Emitter Saturation Voltage
(Ic = 3A, IB = 10mA)

VBE(sat)

-

-

2.0

Volts

ton

-

0.2

switching characteristics
Turn-on Time
Storage Time
Fall Time

VCC = 30V
181 = -IB2 = 10mA
Duty Cycle = 1%

tstg
tf

OUTPUT

201'5

'''~

IB1

j"" - - - -

---.

-I

...--1
IB2

I

I""""""""~",,,"",,,,
L
____ _

m
FIG.1 SWITCHING TIME TEST CIRCUIT

628

3.0

-

0.5

-

/LS

D74FY2D

NPN POWER DARLINGTON
TRANSISTOR ARRAY

80 VOLTS
2 AMP, 3 WATTS

. Designed for high power switching applications, hammer
drive, pulse motor drive and inductive load drive applications.
Features:

• High reliability small-sized available (3 in 1)
• Epoxy single-inline package (8 pin)
• High collector power dissipation: Po
(Three device action)

=3W @ TA =25° C

CASE STYLE SIP-8 PIN
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

• High collector current: IC = 2A (Max.)
• High DC current gain:
hFE =2000 (Min.) @ VCE =2V,

IC= 1A

ARRAY CONFIGURATION

maximum ratings (TA

=25

0

C)

(unless otherwise specified)

RATING
Collector-Emitter Voltage
Collector-Base Voltage

SYMBOL
VCEO
VCBO

D74FV2D
80

Emitter Base Voltage
Collector Current - Continuous
Peak
Base Current - Continuous
Collector Power Dissipation
(One Device Action, T A = 25° C)

VEBO
IC
ICM
Is

8
2
3
0.5

Volts
A

Po

1.8

Watts

Po

3.0

Watts

TJ, TSTG

-55 to +150

°C

Thermal Resistance, Junction to Ambient

!R8JA

41.7

°CIW

Maximum Lead Temperature for Soldering
Purpose: W' from Case for 5 Seconds

TL

260

°C

Collector Power Dissipation
(Three Device Action, T A = 25° C)
Operating anq Storage
Junction Temperature Range

80

UNITS
Volts
Volts

A

thermal characteristics

629

electrical characteristics (TA = 25° C)

I

(unless otherwise specified)

I SYMBOL I

MIN

TYP

MAX

UNIT

Collector-Emitter Breakdown Voltage
(IC = 10mA, IB = 0) .

VBR(CEO)

80

-

-

Volts

Collector-Base Breakdown Voltage
(Ic = 1mA, IE = 0)

VBR(CBO)

80

-

-

Volts

ICBO

-

-

10

p.A

ICEO

-

-

20

p.A

lEBO

-

-

4

mA

2000

-

-

-

CHARACTERISTIC

off characteristics

Collector Cutoff Current
(VCB = 80V, IE = 0)
Collector Cutoff Current
(VCE = 80V, IB = 0)
Emitter Cutoff Current
(VEB = 8V, IC = 0)

on characteristics
DC Current Gain
(Ic = 1A, VCE = 2V)

hFE

Collector-Emitter Saturation Voltage
(Ic = 1A, IB = 1mA)

VCE(sat)

-

-

1.5

Volts

Base-Emitter Saturation Voltage
(Ic = 1A, IB = 1mA)

VBE(Sat)

-

-

2.5

Volts

ton

-

0.4

-

p's

4.0

-

switching characteristics
Turn-on Time
Storage Time
Fall Time

VCC = 30V
IB1 = -IB2 = 1mA
Duty Cycle = 1%

tstg
tf

OUTPUT

201'5

H

f-

'B'~
'"
.!!l

...--1
IS2 I

I '-'V''''-'4-V'V'ol-_
L
____ _

m
FIG. 1 SWITCHING TIME TEST CIRCUIT

630

0.6

-

D74FY4D

NPN POWER DARLINGTON
TRANSISTOR ARRAY

80 VOLTS
4 AMP, 3 WATTS

Designed for high power switching applications, hammer
drive, pulse motor drive and inductive load drive applications.
Features:
• High reliability small-sized available (3 in 1)

• Epoxy single-inline package (8 pin)
• High collector power dissipation: Po
(Three device action)

=3W @ TA =25°C

CASE STYLE SIP-8 PIN
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

• High collector current: IC =4A (Max.)
• High DC current gain:
hFE = 2000 (Min.) @ VCE = 2V, IC = 1A

ARRAY CONFIGURATION
.OS9R

(Of5f

maximum ratings (TA

=25

0

C)

'ilr-----\I

(unless otherwise specified)

RATING
Collector-Emitter Voltage
Collector-Base Voltage

SYMBOL
VCEO
VC80

D74FY4D

80
100

UNITS
Volts
Volts

Emitter Base Voltage
Collector Current - Continuous
Peak
Base Current - Continuous
Collector Power Dissipation
(One Device Action, T A =25° C)

VE80
Ic
ICM
18

5
4

Volts
A

0.4

A

Po

1.8

Watts

Po

3.0

Watts

TJ, TSTG

-55 to +150

°C

Thermal Resistance, Junction to Ambient

I ROJA

41.7

°CIW

Maximum Lead Temperature for Soldering
Purpose: W' from Case for 5 Seconds

TL

260

°C

Collector POWer Dissipation
(Three Device Action, TA =25° C)
Operating and Storage
Junction Temperature Range

6

thermal characteristics

631

electrical characteristics (TA = 25° C)

I

(unless otherwise specified)

I SYMBOL I

MIN

TYP

MAX

UNIT

Collector-Emitter Breakdown Voltage
(Ie = 10mA. IB = 0)

VBR(CEO)

80

-

-

Volts

Collector-Base Breakdown Voltage
(Ic = 1mA, IE'= 0)

VBR{CBO)

100

-

-

Volts

?O

Jl.A

20

Jl.A

CHARACTERISTIC

off characteristics

--

Colle,ctor Cutoff Current
(VeB = 100V, IE = 0)

ICBO

Collector Cutoff Current
(VCE = 80V, IB = 0)

ICED

-

-

Emitter Cutoff Current
(VEB = 5V, Ic = 0)

lEBO

-

-

2.5

mA

2000
1000

-

-

-

-

---

~

on characteristics
DC Current Gain
(IC = 1A, VCE = 2V)
(Ic == 3A, VCE = 2V)

hFE

Collector-Emitter Saturation Voltage
(Ic = 3A, IB = 6mA)

VCE(sat)

-

-

1.5

Volts

Base-Emitter Saturation Voltage
(Ic = 3A, IB = 6mA)

VBE(sat)

-

-

2.0

Volts

ton

-

0.2

-

Jl.S

1.5
0.6

-

switching characteristics
Turn-on Time

VCC = 30V
IB1 = -IB2 = 6mA
Duty Cycle = 1%

Storage Time
Fall Time

tstg
t1

CURVES SHOULD BE APPLIED IN THERMAL LIMITED AREA
(SINIG~E{ION~EPEITI1 PULSE, NO HEAT SINK)

O~o~_

100

-

I. ONE CIRCUIT ACTION
2, TWO CIRCUIT ACTION

3. THREE CIRCUIT ACTION +-+-t+r-t-HiZ=.!!!::i~F""'f+tt---t---t-tii

OUTPUT
161

+--+-+++--+--+-++<

!III

,------..,

po'

-I
I

..--1
162

c:
o

1

L ____ _

11J\j1V\l.....JV\tv-...

m
FIG. 1 SWITCHING TIME TEST CIRCUIT
0.001

0,01

100

10

0.1

1000

PULSE WIDTH tw (sec)

FIG. 2 TRANSIENT THERMAL RESISTANCE VI.
PULSE WIDTH
~

tr
Z

~- 1 0 0 f - - - f - - - f w

a:

~

o

~

CONDITION: NO HEAT SINK

~
i5

ffi

c..
::;

~ 50~--~~~~~--~--+---+---+---+---+--4

§
~

CONDITION: NO HEAT SIN,I

4

ffi

w

>-

z

5

~

f--+'~--!----!----!---~~ ~II~~~I~
THREE CIRCUIT.

l:PC

~::~

1ito

~

2

ON~ CIII

8

3.0W

o
COLLECTOR POWER DISSIPATION Pc (W)

Clf!
CUlr

~
~~

o

t;

NUMBERS OF ACTIONED CIRCUIT

rJ.tIl~~

3

a:

o

25

Ir-'l

'11/
cr,Oiy

CU'T

50

--

75

r-....
~

100

AMBIENT TEMPERATURE Ta

FIG. 3 COLLECTOR POWER DISSIPATION vs.
JUNCTION TEMPERATURE

--- f'...
125

150

=(OC)

FIG. 4 TOTAL COLLECTOR POWER DISSIPATION

632

175

D75FY2D

PNP POWER DARLINGTON
TRANSISTOR ARRAY

-80 VOLTS
-2 AMP, 3 WATTS

Designed for high power switching applications, hammer
drive, pulse motor drive and inductive load drive applications.
Features:

• High reliability small-sized available (3 in 1)
• Epoxy single-inline package (8 pin)
• High collector power dissipation:
(Three device action)

Po = 3W @ T A = 25° C

CASE STYLE SIP-8 PIN
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

• High collector current: IC =-2A (Max.)
• High DC current gain:
hFE = 2000 (Min.) @ VCE = -2V, IC = -1A

ARRAY CONFIGURATION

3

5

7

~jl5$Ij@I1$¥I ..
maximum ratings (TA = 25° C)

(unless otherwise specified)

RATING
Collector-Emitter Voltage
Collector-Base Voltage

SYMBOL

D75FV2D

VCEO
VCBO

Emitter Base Voltage
Collector Current - Continuous
Peak
Base Current - Continuous
Collector Power Dissipation
(One Device Action, T A = 25° C)

VEBO
Ic
leM
18

-so
-so
-s
-2
-3
-0.5

A

Po

1.S

Watts

Po

3.0

Watts

TJ, TSTG

-55 to +150

°C

Thermal Resistance, Junction to Ambient

1:ROJA

41.7

°CIW

Maximum Lead Temperature for Soldering
Purpose: W' from Case for 5 Seconds

TL

260

°C

Collector Power Dissipation
(Three Device Action, T A = 25° C)
Operating and Storage
Junction Temperature Range

UNITS
Volts
Volts
Volts
A

thermal characteristics

633

electrical characteristics (TA = 25° C)
I
CHARACTERISTIC

(unless otherwise specified)

I SYMBOL I

MIN

TYP

MAX

UNIT

VBR(CEO)

-80

-

-

Volts

VBR(CBO)

-80

-

-

Volts

ICBO

-

:-10

p.A

ICEO

-

-

-10

p.A

lEBO

-

-

-4

mA

2000

-

-

-

off characteristics
Collector-Emitter Breakdown Voltage
(Ic = 1mA, IB =0)
Collector-Base Breakdown Voltage
(Ic =-10mA,JE =0)
Collector Cutoff Current
(Vcs =-80V, IE =0)
Collector Cutoff Current
(VCE =-80V, Is =0)
Emitter Cutoff Current
(VES =-8V, IC =0)

---- - -- -- -

on characteristics
DC Current Gain
(Ic =-1A, VCE =-2V)

hFE

Collector-Emitter Saturation Voltage
(Ic =-1A, 'S =-1mA)

VCE(sat)

-

-

-1.5

Volts

Base-Emitter Saturation Voltage
(Ic =-1A, Is =-1mA)

VSE(sat)

-

-

-2.0

Volts

ton

-

0.4

p's

tstg

-

2.0

-

switching characteristics
Turn-on Time
Storage Time
Fall Time

VCC =30V
IS1 =-IS2 = 1mA
Duty Cycle = 1%

tf

0.4

OUTPUT

....-1
162

I

____ _....
IL'-""'''''"'1-'\1''''''

m
FIG. 1 SWITCHING TIME TEST CIRCUIT

634

PNP POWER DARUNGTON

D75FY4D

TRANSISTOR ARRAY

-80 VOLTS
-4 AMP, 3 WATTS

Designed for high power switching applications, hammer
drive, pulse motor drive and inductive load drive applications.
Features:
• High reliability small-sized available (3 in 1)
• Epoxy single-inline package (8 pin)
• High collector power dissipation: PD
(Three device action)
• High collector current: IC

=3W @ T A =25° C

CASE STYLE SIP-8 PIN
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

Ir

=-4A (Max.)

• High DC current gain:
hFE =2000 (Min.) @ VCE

.795 ± .008 ~
(20.2 ± 0.2)

.

(;533~)~

=-2V, IC =-1A

ARRAY CONFIGURATION

3

5

7

.059R

:j@rj@rJ15$1
maximum ratings (TA

j01.5)

.8

=25° C) (unless otherwise specified)

RATING
Collector-Emitter Voltage
Collector-Base Voltage

SYMBOL
VCEO
VC80

D75FY4D
-80
-100

UNITS
Volts
Volts

Emitter Base Voltage
Collector Current - Continuous
Peak
Base Current - Continuous
Collector Power Dissipation
(One Device Action, TA =25° C)

VE80
IC
ICM
18

-5
-4
-6
-0.4

Volts
A

PD

1.8

Watts

PD

3.0

Watts

TJ, TSTG

-55 to +150

°C

Thermal Resistance, Junction to Ambient

I R8JA

41.7

°CIW

Maximum Lead Temperature for Soldering
Purpose: W' from Case for 5 Seconds

h

260

°C

Collector Power Dissipation
(Three Device Action, TA =25° C)
Operating and Storage
Junction Temperature Range

A

thermal characteristics

635

electrical characteristics (T c = 25° C)

I

(unless otherwise specified)

I SYMBOL I

MIN

TYP

MAX

UNIT

Collector-Emitter Breakdown Voltage
(Ic =-10mA, IB =0)

VBR(CEO)

-SO

-

-

Volts

Collector-Base Breakdown Voltage
(Ic =-1mA, IE =0)

VBR(CBO)

-100

-

-

Volts

ICBO

-

-

-20

p.A

ICEO

-

-

-20

p.A

lEBO

-

-

-2.5

rnA

2000
1000

-

-

-

-

CHARACTERISTIC

off characteristics

Collector Cutoff Current
(VCB =-100V, IE =0)
Collector Cutoff Current
(VCE =-SOV, IB =0)
Emitter Cutoff Current
(VEB =-5V, IC =)

on characteristics
DC Current Gain
(IC =-1A, VCE =-2V)
(Ic =-3A, VCE =-2V)

hFE

-

Collector-Emitter Saturation Voltage
(Ic =-3A, IB =-6mA)

VCE(sat)

-

-

-1.5

Volts

Base-Emitter Saturation Voltage
(Ic =-3A, IB =-6mA)

VBE(sat)

-

-

-2.0

Volts

switching characteristics
Turn-on Time

Fall Time

0.15

ton

VCC =-30V
IB1 =-IB2 = 6mA
Duty Cycle =1%

Storage Time

tst9
tf

-

O.SO
0.40

p's

-

CONDITION: NO HEAT SINK

OUTPUT

.....-1
182

I

IL'-'V~~IV\I_
____ _

m

NUMBERS OF ACTIONED CIRCUIT

f--H.?L--t---t--t-- ~~~I~~~I~
THREE CIRCUIT

FIG. 1 SWITCHING TIME TEST CIRCUIT

COLLECTOR POWER DISSIPATION Pc (WI

FIG. 2 POWER DISSIPATION VI.
JUNCTION TEMPERATURE

636

:rPc

~:::
3.OW

D76A3D

NPN POWER DARLINGTON
TRANSISTOR ARRAY

100 VOLTS
3 AMP, 4.0 WATTS

Designed for high power switching applications, hammer
drive, pulse motor drive and inductive load drive applications.
Features:
• High reliability small-sized available (4 in 1)
• Epoxy single-inline package (10 pin)
• High collector power dissipation: PD

=4W @ T A = 25°C

CASE STYLE SIP-10 PIN

(Four device action)

DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

• High collector current: IC = 3A (Max.)
• High DC current gain:
hFE = 2000 (Min.) @ VCE

=2V, IC =1.5A

ARRAY CONFIGURATION

maximum ratings (TA = 25° C)

(unless otherwise specified)

RATING
Coliector~Emitter Voltage

Collector-Base Voltage
Emitter Base Voltage
Collector Current - Continuous
Peak
Base Current - Continuous
Collector Power Dissipation
(One Device Action, T A = 25° C)
Collector Power Dissipation
(Four Device Action, TA = 25° C)

D76A3D
100
120

UNITS
Volts
Volts

VESO
IC
ICM
Is

6
3
6
0.5

Volts
A

PD

2.0

Watts

4.0

Watts

TJ, TSTG

-55 to +150

°c

l: R8JA

31.3

°C/W

TL

260

°c

PD

Operating and Storage
Junction Temperature Range

therm~1

SYMBOL
VCEO
VCSO

A

-

characteristics

Thermal ReSistance, Junction to Ambient
(Four Device Action)
Maximum Lead Temperature for Soldering
Purpose: W' from Case for 5 Seconds

637

electrical characteristics (TA = 25° C)

I

(unless otherwise specified)

I SYMBOL I

MIN

TYP

MAX

UNIT

Collector-Emitter Breakdown Voltage
(lc = 10mA, Is = 0)

VSR(CEO)

100

-

-

Volts

Collector-Base Breakdown Voltage
(IC = 1mA, IE = 0)

VSR(CSO)

120

-

-

Volts

Collector Cutoff Current
(VCS = 120V, IE = 0)

ICSO

-

-

10

J.LA

Collector Cutoff Current
(VCE = 100V, Is = 0)

ICED

-

-

10

J.LA

Emitter Cutoff Current
(VES = 6V, Ic = 0)

IESO

-

-

2.5

mA

-

12000

CHARACTERISTIC

off characteristics

on characteristics
DC Current Gain
(Ic = 1.5A, VCE = 2V)
(Ic = 3A, VCE = 2V)

hFE

2000
1000

-

-

Collector-Emitter Saturation Voltage
(Ic = 1.5A, Is = 3mA)

VCE(sat)

-

-

1.5

Volts

Base-Emitter Saturation Voltage
(IC = 1.5A, Is = 3mA)

VSE(sat)

-

-

2.0

Volts

ton

-

0.3

-

2

-

0.4

-

switching characteristics
Turn-on Time

VCC = 30V
IS1 = -IS2 = 3mA
Duty Cycle = 1%

Storage Time
Fall Time

tstg
tf

J.Ls

CONDITION: NO HEAT SINK

H

~

OUTPUT

20"s
I-

'''~

IB1

~
~

,-------,

~ 4~--~~~----+----+----~--~--~

a

..--1
IB2

5r---~--~----+----+----r----r--~

i

-I

ffi
~ 3~;;:;;;;;~'

I

IL'-'I/'V\r4t-J\IV'v--4
____ _

II:

o
t;
~

m

2

I-----+-.;::::,-..:!:!

5o
°O~--~25~--~50~--~75----1~OO--~~~~--~1~

FIG. 1. SWITCHING TIME TEST CIRCUIT

AMBIENT TEMPERATURE Ta

FIG.2

638

=(OC)

TOTAL COLLECTOR POWER DISSIPATION

D76ASD

NPN POWER DARLINGTON
TRANSISTOR ARRAY

100 VOLTS
5 AMP, 4 WATTS

Designed for high power switching applications, hammer
drive, pulse motor drive and inductive load drive applications.
Features:

• High reliability small-sized available (4 in 1)
• Epoxy single-inline package (10 pin)
• High collector power dissipation: Po = 4W @ TA = 25°C
(Four device action)

CASE STYLE SIP-10 PIN
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

• High collector current: IC = 5A (Max.)
• High DC current gain:
hFE = 2000 (Min.) @ VCE = 3V, IC =3A

ARRAY CONFIGURATION

maximum ratings (TA =25°C)

(unless otherwise specifiec)

RATING
Collector-Emitter Voltage
Collector-Base Voltage

SYMBOL
VCEO
VCBO

D76A5D
100
100

UNITS
Volts
Volts

Emitter Base Voltage
Collector Current - Continuous
Peak
Base Current - Continuous
Collector Power Dissipation
(One Device Action, TA =25° C)

VEBO
IC
ICM
IB

5
5

Volts
A

0.1

A

Po

2.0

Watts

Po

4.0

Watts

TJ, TSTG

-55 to +150

°C

I ROJA

31.3

°CIW

TL

260

°C

Collector Power Dissipation
(Four Device Action, TA =25°C)
Operating and Storage
Junction Temperature Range

8

thermal characteristics
Thermal Resistance, Junction to Ambient
(Four Device Action)
Maximum Lead Temperature for Soldering
Purpose: W' from Case for 5 Seconds

639

electrical characteristics (TA

=25

0

C)

(unless otherwise specified)

CHARACTERISTIC

I

1 SYMBOL 1

MIN

TYP

MAX

UNIT

VaR(CEO)

100

-

-

Volts

ICEO

-

-

0.5

mA

Icao

-

-

200

J.l.A

IEao

-

-

2

mA

1000
1000

-

-

-

-

-

2
4

Volts

VaE(on)

-

-

2.5

Volts

ton

-

1.5

-

I·

off characteristics
Collector-Emitter Breakdown Voltage
(Ic =30mA, la =0)
Collector Cutoff Current
(VCE =50V, la =0)
Collector Cutoff Current
(Vca =100V, IE =0)
Emitter Cutoff Current
(VEa =5V, Ic =0)

on characteristics
DC Current Gain
(Ic = .5A, VCE =3V)
(Ic =3a, VCE =3V)·

hFE

Collector-Emitter Saturation Voltage
(Ic =3A, la = 12mA)
(Ic =SA, la = 20mA)

VCE(sat)

Base-Emitter Voltage
(Ic =3V, la =3A)

switching characteristics
Turn-on Time
Fall Time

Ic =3A, la1 =-la2 =12mA
VaE(off) =-5V, RL =10.0

tf

8.5

OUTPUT

+--'
IB2

,

____ _
IL'-'V\"""'~V\r'"

m
FIG.1 SWITCHING TIME TEST CIRCUIT

640

J.l.s

NPN POWER DARLINGTON

D76FI2D

TRANSISTOR ARRAY

60 VOLTS
2 AMP, 4 WATTS

Designed for high power switching applications, hammer
drive, pulse motor drive and inductive load drive applications.
Features:

• High reliability small-sized available (4 in 1)
• Epoxy single-inline package (10 pin)
• Zener diode included between collector and base

CASE STYLE SIP-10 PIN

• High co.llector power dissipation: PD = 4W @ TA = 25°C
(Four device action)

DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

• High collector current: IC = 2A (Max.)
• High DC current gain:
hFE = 2000 (Min.) @ VCE'= 2V, IC = 1A

ARRAY CONFIGURATION

3

5

7

9

:j§$I~I~IJtWI
maximum ratings(TA = 25°C)

000

(unless otherwise specified)

RATING
Collector-Emitter Voltage
Collector-Base Voltage

SYMBOL
VCEO
VCSO

D76FI2D
6O± 10
6O±10

UNITS
Volts
Volts

Emitter Base Voltage
Collector Current - Continuous
Peak
Base Current - Continuous
Collector Power Dissipation
(One Device Action, TA = 25°C)

VESO
IC
ICM
Is

8
2
3
0.5

Volts
A

Po

2.0

Watts

Po

4.0

Watts

TJ,TSTG

-55 to +150

°C

R8JA

31.3

°C/W

TL

260

°C

Collector Power Dissipation
(Four Device Action, T A = 25° C)
Operating and Storage
Junction Temperature Range

A

thermal characteristics
Thermal Resistance, Junction to Ambient
Maximum Lead Temperature for Soldering
Purpose: %" from Case for 5 Seconds

641

electrical characteristics (TA = 25° C)

I

(unless otherwise specified)

I SYMBOL I

MIN

TYP

MAX

UNIT

Collector-Emitter Breakdown Voltage
(Ic = 10mA, Is = 0)

VSR(CEO)

50

60

70

Volts

Collector-Base Breakdown Voltage
(Ic = 10mA, IE = 0)

VSR(CSO)

50

60

70

Volts

Collector Cutoff Current
(VCS = 45V, IE = 0)

Icso

-

-

10

JJ.A

Collector Cutoff Current
(VCE = 45V, Is = 0)

ICEO

-

-

10

JJ.A

Emitter Cutoff Current
(VES = 8V, Ic = 0)

IESO

0.8

-

4.0

mA

2000

-

-

-

CHARACTERISTIC

off characteristics

on characteristics
DC Current Gain
(Ic = 1A, VCE = 2V)

hFE

Collector-Emitter Saturation Voltage
(Ic = 1A, Is = 1mA)

VCE(sat)

-

-

1.5

Volts

Base-Emitter Saturation Voltage
(IC = 1A, Is = 1mA)

VSE(sat)

-

-

2.0

Volts

ton

-

0.4

-

JJ.s

switching characteristics
Turn-on Time
Storage Time
Fall Time

VCC = 30V
IS1 = -IS2 = 1mA
Duty Cycle = 1%

tstg
tf

4.0
0.6

OUTPUT

..--1
162

I

IL'-'V'1I'Ir4""",,,1V'v--4I
____ _

m
FIG. 1 SWITCHING TIME TEST CIRCUIT

642

D76FI3T

NPN POWER
TRANSISTOR ARRAY

60 VOLTS
3 AMP, 4.0 WATTS

Designed for high power switching applications, hammer
drive, pulse motor drive and inductive load drive applications.
Features:

• High reliability small-sized available (4 in 1)
• Epoxy single-inline package (10 pin)
• High collector power dissipation:
(Four device action)

Po =4.0W @ T A =25° C

CASE STYLE SIP-10 PIN
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

• High collector current: IC = ±3A (Max.)
• High DC current gain:
hFE = 500 (Min.) @ VCE = ±1V, IC = ±.4A

ARRAY CONFIGURATION

:3

5

7

9

::§J~~~olO
maximum ratings (TA = 25° C)

.059A

'iOf5i

8\0[
.0

5'

5'

-H-H

~~

(unless otherwise specified)

RATING
Collector-Emitter Voltage
Collector-Base Voltage

SYMBOL
VCEO
Vcso

D76F13T
60
60

UNITS
Volts
Volts

Emitter Base Voltage
Collector Current - Continuous
Peak
Base Current - Continuous
Collector Power Dissipation
(One Device Action, TA = 25° C)

VESO
IC
ICM
Is

6
3
5
0.5

Volts

Po

2.0

Watts

Po

4.0

Watts

TJ, TSTG

-55 to +150

°C

I R8JA

31.3

°C/W

TL

260

°C

Collector Power Dissipation
(Four Device Action, TA = 25°C)
Operating and Storage
Junction Temperature Range

A
A

thermal characteristics
Thermal Resistance, Junction to Ambient
(Four Device Action)
Maximum Lead Temperature for Soldering
Purpose: Va" from Case for 5 Seconds

643

electrical characteristics (T A = 25° C)

(unless otherwise specified)

I

I SYMBOL I

MIN

TYP

MAX

Collector-Emitter Breakdown Voltage
(Ic = 10mA, IB = 0)

VBR(CEO)

60

-

Volts

Collector-Base Breakdown Voltage
(Ic = 1mA, IE = 0)

VBR(CBO)

60

-

-

Collector Cutoff Current
(VCB = 60V, IE = 0)

ICBO

-

-

10

p.A

Collector Cutoff Current
(VCE = 60V, IB = 0)

ICEO

-

10

p.A

Emitter Cutoff Current
(VEB = 6V, IC = 0)

lEBO

-

-

1

A

500

-

-

-

CHARACTERISTIC

UNIT

off characteristics
Volts

on characteristics
DC Current Gain
(Ic = 0.4A, VCE = 1V)

hFE

Collector-Emitter Saturation Voltage
(Ie = 2A, IB = 50mA)

VCE(sat)

-

-

1.0

Volts

Base-Emitter Saturation Voltage
(Ie = 2A, IB = 50mA)

VBE(Sat)

-

-

1.5

Volts

-

2.0

-

p's

5.0

-

2.0

-

switching characteristics
Turn-on Time

Vee = 30V

ton

Storage Time

IBl = -IB2 = SOmA

tstg

Fall Time

Duty Cycle =1%

tf

OUTPUT
r - - -r---....-O

INPUT

20jJS

t-t

IB1~IB2

I!!,. I
I
_I
IB2

L___ J

FIG. 1 SWITCHING TIME TEST CIRCUIT

D76FI4D

NPN POWER DARLINGTON
TRANSISTOR ARRAY

60 VOLTS
4 AMP, 4 WATTS

Designed for high power switching applications, hammer
drive, pulse motor drive and inductive load drive applications.
Features:
• High reliability small-sized available (4 in 1)

• Epoxy single-inline package (10 pin)
• High collector power dissipation: PD
(Four device action)

=4W @ TA =25° C

CASE STYLE SIP-10 PIN
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

• High collector current: IC =4A (Max.)
• High DC current gain:
hFE = 2000 (Min.) @ VCE = 2V, IC = 1A

ARRAY CONFIGURATION.

maximum ratings (TA = 25 0 C)

(unless otherwise specified)

RATING
Collector-Emitter Voltage
Collector-Base Voltage

SYMBOL
VCEO
VCBO

D76FI4D
60± 10
60± 10

UNITS
Volts
Volts

Emitter Base Voltage
Collector Current - Continuous
Peak
Base Current - Continuous
Collector Power Dissipation
(One Device Action, TA =25°C)

VEBO
IC
ICM
IB

6
4
6
.5

Volts
A

PD

2.0

Watts

PD

4.0

Watts

TJ, TSTG

-55 to +150

°C

I ReJA

31.3

°C/W

TL

260

°C

Collector Power Dissipation
(Four Device Action, T A =25° C)
Operating and Storage
Junction Temperature Range

A

thermal characteristics
Thermal Resistance, Junction to Ambient
(Four Device Action)
Maximum Lead Temperature for Soldering
Purpose: W' from Case for 5 Seconds

645

electrical characteristics (TA

I

=25

0

C)

(unless otherwise specified)

I SYMBOL I

MIN

TYP

MAX

UNIT

Collector-Emitter Breakdown Voltage
(IC = 10mA, Ie = 0)

VeR(CEO)

50

60

70

Volts

Collector-Base Breakdown Voltage
(IC = 10mA, IE = 0)

VeR(CeO)

50

60

70

Volts

Collector Cutoff Current
(Vce = 45V, IE = 0)

Iceo

-

-

10

p,A

Collector Cutoff Current
(VCE = 45V, Ie = 0)

ICEO

-

-

10

p,A

Emitter Cutoff Current
(VEe = 6V, IC = 0)

IEeo

0.6

-

2.0

mA

CHARACTERISTIC

off characteristics

second breakdown

I

FBSOA

Second Breakdown with Base Foward Biased

SEE FIGURE 13

on characteristics
DC Current Gain
(IC = 1A, VCE = 2V)
(Ic = 3A, VCE = 2V)

hFE

2000
1000

-

15000

-

-

Collector-Emitter Saturation Voltage
(Ic = 3, Ie = 10mA)

VCE(sat)

-

-

1.5

Volts

Base-Emitter Saturation Voltage
(IC = 3A, Ie = 10mA)

VeE(sat)

-

-

2.0

Volts

ton

-

0.2

-

p,s

switching characteristics
Turn-on Time

VCC= 30V
le1 = -le2 = 10mA
Duty Cycle = 1%

Storage Time
Fall Time

tstg
tf

3.0
0.5

... 300

OUTPUT

201'5

~

g
9

I-

'8'~

~or:

4r----r--.A~~~---+----+---_+--~
200

B 3 r----r-H~--~"'F_---+---=;j;;;o._175 +---1

+--1
182 I

~

1'-'V~_I'I/'tw-4
L
____ _

~ 2r----H~~~~~---+----+---_+--~

8

m
°0~--~~--~2~--~--~4----~--~--~

FIG. 1 SWITCHING TIME TEST CIRCUIT

COLLECTOR-EMITTER VOLTAGE VCE (VI

FIG.2

646

IC - VCE

,

",

...
~

350

4

9

....z

~

200

w

9

....z

150

II:
II:

::>

300

II:
II:

::>

3

u

4

w

u

II:

e

275

3

II:

0

....

U

U

w
-'
-'
0

w

IB = 100"A

2

:l
0

u

2
IB= 250~

u

0 0

0~0------~L-------~2---------~------~4~------~-------7------~

2
COLLECTOR-EMITTER VOLTAGE VCE IV)

FIG. 3

COLLECTOR-EMITTER VOLTAGE VCE (V)

IC - VC:;:E

FIG. 4

IC-VCE

30,000
COMMON EMITTER
Ta= 2S'C

20,000

10,000
~

8,000

";;:z

4,000

!Z'w"

2,000

::J

1,000

I'

()
()

. V/
~
~~(j

,,~

a:
a:

./

VL ~v

o

BOO

V

~

\

I.......

.\\

./

r-

IC=6A -

I'

--..

54_

\

3
2

~.3
0.1

\
~

V

300

a
0.06 0.08 0.1

0.2

0.4

0.6 0.8 1

6

8

a

10

0.1

0.2

0.4 0.6 O.B 1

COLLECTOR CURRENT IC (A)

FIG. 5

w

~

r-

"J-

25

200

400

18 - VCE

""'""

25
100-

4

0.4

0.6

O.B

~

1

p>-- :::--

_

-

O. B
0.6
O. 4

4

6

8

O.3

10

0.1

COLLECTOR CURRENT IC (A)

FIG. 7

-

Ta-5S'C

100

1

-- -

B

0.2

40 BO BO 100

IcJlB = 500

1 r-Ta = 55°C

0.1

4 6. 8 10
20
BASE CURRENT IB (mA)

COMMO~ EMITTER

COMMON EMITTER
IcJlB -500

6

2

FIG. 6

hFE - IC

w

.3

1\

\

"'

1

\\

L

400

I,

-~

\

1\

\
\

_1 \\

L

...-

L

600

-

V ./

I'

V !/

~~
./

\

1 1\

0.2

0.4

0.6

O.B

1

COL.LECTOR CURRENT IC (A)

VCE{sat) - IC

FIG. 8

647

V8E(sat) - IC

8

10

=

~

9

15or----.-----r----.----,r----.-----r-----r----.----,----~

III
rJl
I. 'I
1/'

- - COMMONiEMITTER
VCE 2V

4

&

w

e.

~- 1001----t----+---,

1/,

ffia:

w

a:

~

II / I
,,:1 ~/ fi/

a:
::J
o

I

a:

w
"',1
1'Z'
a:

"- ~

~

en
y

?;"'~C.

0.2

I-

'\b.
><-~@~w
a:e>

\

" "-

~ ~-

:!!
0
w,,:_

0

100

~ 0.1
o 0.08

80

d:~_

~ ~-

0

60

00

~ ~-

0.06
40
0.04

'SINGLE NON REPETITIVE PULSE Ta

oOen
a:

=25'C

CURVES MUST BE DERATED LINEARLY WITH

INCREASE IN TEMPERATURE.
0.4

20

0.6 O.B 1

40

60

BO

0.6

PULSE WIDTH Iw (mSECI

FIG. 12

6

O.B

B 10

20

40

80 BO 100

COLLECTOR-EMITTER VOLTAGE VCE (V)

ICBO VERSUS tw

FIG. 13

648

SAFE OPERATING AREA

NPN/PNP

D76FY2D

POWER DARLINGTON
TRANSISTOR ARRAY

80 VOLTS
2 AMP, 4.0 WATTS

Designed for high power switching applications, hammer
drive, pulse motor drive and inductive load drive applications.
Features:

• High reliability small-sized available (4 in 1)
• Epoxy single-inline package (10 pin)
• Zener diode included between collector and base
• High collector power dissipation:
(Four device action)

Po =4.0W @ T A =25° C

CASE STYLE SIP-10 PIN
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

• High collector current: IC = ±2A (Max.)
• High DC current gain:
hFE = 2000 (Min.) @ VCE = +2V, IC = +1A

ARRAY CONFIGURATION

maximum ratings (TA

=25° C) (unless otherwise specified)

RATING
Collector-Emitter Voltage
Collector-Base Voltage

SYMBOL
VCEO
VC80

D76FY2D
80
80

UNITS
Volts
Volts

Emitter Base Voltage
Collector Current - Continuous
Peak
Base Current - Continuous
Collector Power Dissipation
(One Device Action, TA =25°C)

VE80
IC
ICM
18

8
2
3
0.5

Volts
A

PD

2.0

Watts

PD

4.0

Watts

TJ,TSTG

-55 to +150

°C

IR8JA

31.3

°C/W

TL

260

°C

Collector Power Dissipation
(Four Device Action, TA =25°C)
Operating and Storage
Junction Temperature Range

A

thermal characteristics
Thermal ReSistance, Junction to Ambient
(Four Device Action)
Maximum Lead Temperature for Soldering
Purpose: W' from Case for 5 Seconds

649

electrical characteristics (T A = 25° C)

I

(unless otherwise specified)

I SYMBOL I

MIN

TYP

Collector-Emitter Breakdown Voltage
(IC = 10mA. Is = 0)

VSR(CEO)

80

-

-

Volts

Collector-Base Breakdown Voltage
(Ic = 1mA. IE = 0)

VSR(CSO)

80

-

-

Volts

IcsO

-

-

10

p.A

ICEO

-

-

50

p.A

IESO

-

-

4

mA

-

-

-

CHARACTERISTIC

MAX

UNIT

off characteristics

Collector Cutoff Current
(VCS = 80V. IE = 0)
Collector Cutoff Current
(VCE = 80V, Is = 0)
Emitter Cutoff Current
(VES = 8V. IC = 0)

on characteristics
DC Current Gain
(IC = 1A. VCE = 1V)

hFE

2000

Collector-Emitter Saturation Voltage
(Ic = 1A. Is = 1mA)

VCE(sat)

-

-

1.5

Volts

Base-Emitter Saturation Voltage
(Ic = 1A. Is = 1mA)

VSE(sat)

-

-

2.0

Volts

ton

-

0.4

-

p's

switching characteristics
Turn-on Time
Storage Time
Fall Time

VCC = 30V
IS1 = -IS2 = 1mA
Duty Cycle = 1%

tstg
tf

OUTPUT

201'5

1++1

4.0
0.6

I-

"'~ +--,
182

I

ILWV\J\...tI~\I\I-""
____ _

m
FIG.1 SWITCHING TIME TEST CIRCUIT

650

D76FV2T

NPN POWER
TRANSISTOR ARRAY

80 VOLTS
2 AMP, 4.0 WATTS

Designed for switching applications, solenoid drive applications.
Features:

• Epoxy single-inline package (10 pin)
• High DC current gain: hFE

=500 (Min.) (lc =400mA)

• Low saturation voltage:
VCE(sat) = 0.5V (Max.) (lc = 300mA)

CASE STYLE SIP-10 PIN
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

ARRAY CONFIGURATION

3

5

7

9

::E¢ i§J ~ ~
maximum ratings (T A

010

=25° C) (unless otherwise specified)

RATING
Collector-Emitter Voltage
Collector-Base Voltage
Emitter Base Voltage

SYMBOL

D76FY2T

VCEO
VCSO
VESO

80
80
7

UNITS
Volts
Volts
Volts

Collector Current - Continuous

Ic

2

A

Base Current - Continuous

Is

0.5

A

Collector Power Dissipation

Po

4.0

Watts

TJ, TSTG

-55 to +150

°C

Thermal Resistance, Junction to Ambient

IR8JA

31.3

°CIW

Maximum Lead Temperature for Soldering
Purpose: Va" from Case for 5 Seconds

h

260

°C

Operating and Storage
Junction Temperature Range

thermal characteristics

651

electrical characteristics (TA

I

=25° C) (unless otherwise specified)
I SYMBOL I

MIN

VeR(CEO)

I

TVP

MAX

UNIT

80

-

-

Volts

Iceo

-

-

1

JAA

IEeO

-

-

1

JAA

hFE

500

-

-

-

Collector-Emitter Saturation Voltage
(Ic = 300mA, Ie = 1mA)

VCE(sat)

-

0.3

0.5

Volts

Base-Emitter Saturation Voltage
(Ic~ 300mA, Ie = 1mA)

VBE(sat)

-

-

1.1

Volts

ton

-

2.0

-

p's

CHARACTERISTIC

off characteristics
Collector-Emitter Breakdown Voltage
(Ic =10mA, Ie =0)
Collector Cutoff Current
(Vce =80V, IE =0)
Emitter Cutoff Current
(VEe 7V, Ic 0)

=

=

on characteristics
DC Current Gain
(Ic 400mA, VCE

=

=1V)

switching characteristics
Turn-on Time

Vcc= 30V
le1 = -le2 = 1mA
Duty Cycle ~ 1%

Storage Time
Fall Time

-

tstg
tf

-

5.0

-

2.0

2.0

'., fAliI
v

IB2

I-

'''''oT--,\:N1

OUTPUT
1.6

~

~

\rH

IB2

COMMON EMITTER
TC= 25'C

.9

loon

~

~ ;'
",
~~
~ ~ ",.
~ I""'"

1.2

~

::I

o

a:

~ 0.8

::l
o

FIG. 1 SWITCHING TIME TEST CIRCUIT

o

0.4

o

~-

~
o

2

2.0

./
",

1~6

,. .....,
..

~

-

1.2

1
.-

"...

-

0.8

•

0.6

O~4
Ie = o.2 lmA

I..

0
4

6

8

COLLECTOR-EMITTER VOLTAGE VCE (V)

FIG. 2

652

IC - VCE

10

12

2.0

~§?

~ /-1 "'I

I-- t-- E
I-- t-

1.2

~

~

n II

~J


w

il

0.4

8
o

h

j

I/~

J 1/

J

rl V V v: U

~~

~

o

0.4

0.8

1.6

1.2

2.4

2.0

COLLECTOR CURRENT IC (A)

COLLECTOR CURRENT IC (A)

FIG. 3

VCE - IC

FIG. 4 VCE - IC

2.0
COMMON EMITIER _
TC=-55'C

~

w

Cl

I--

~

...J

g

~
~

«

E

~

I-- .!P
"

1.2

0.8

a:

§. J~

J

0.4

v~

8
o

L. ~
o

I

-

~ 1.6

w

I

.. / .)/ ~/%

~

I

I

j

J

1

II~

I I II j
/ J J / / v
I
I
/ / I) '/ J
I / ) ) '/ /~ ~
J
I

~

~

./ ~ ~~ ~ ~ ~ ~
~

0.4

0.8

1.2

2.4

2.0

1.6

COLLECTOR CURRENT IC (A)

FIG. 5 VCE - IC

w

5000

I

3000

Tcl=l~.J

~
~
~

::::l

o

1000

500

~ .....

~

§?

f

"L

VI

~

::::l

-55

~~
a:

300

1,\

100

~~

~o

:,~

0.5

...~

0.3

. / l/

!

0.3

~

II

~ ~
~

a:

o
0.1

~

~>
-

\

g

0.03

C-;MMON EMITIER
IC/IB = 300

o

~

25

~

0.01

II-

~

z

~

""z

~

COMMON EMITIER
VCE= 1V

I I

0.1
0.05
0.D1

0.03

0.1

0.3

COLLECTOR CURRENT IC (A)

COLLECTOR CURRENT IC (A)

FIG. 6 hFE - IC

FIG. 7 VCE(sat) - IC

653

5
2.0

COMMON EMITTER Ielle = 300

-

I
...

I

I

I

I

COMMON EMITTER

I I I
I II

... VCE = 1V

w

III

>0
9

1.6

....

1==

~

Ir
Ir

TC=-55'C

1.2

~

Ir

~

100

j

0

0.1

[I

0.4

0.1

0.03

0.3

COLLECTOR CURRENT IC (A)

FIG. 8

I

V
o

2

II

II

0
0.Q1

I

I

0.8

..J
..J

U

w"

,..0

U

25

0.2

0.4

0.6

II

J
0.8

1.0

eASE-EMITTER VOLTAGE VeE (V)

VBE(sat) - Ie

FIG. 9 Ie • VBE

654

1.2

1.4

NPN/PNP

D76FY4D

POWER DARLINGTON
TRANSISTOR ARRAY

80 VOLTS
4 AMP, 4.0 WATTS

Designed for high power switching applications, hammer
drive, pulse motor drive and inductive load drive applications.
Features:
• High reliability small-sized available (4 in 1)
• Epoxy single-inline package (10 pin)
• High collector power dissipation: Po = 4.0W @ T A = 25° C
(Four device action)

CASE STYLE SIP-10 PIN
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

• High collector current: IC = ±4A (Max.)
• High DC current gain:
hFE = 2000 (Min.) @ VCE = ±2V, IC = ±1A

ARRAY CONFIGURATION

::§bIJ@I1T5$lml
maximum ratings (TA

010

=25° C) (unless otherwise specified)

RATING
Collector-Emitter Voltage
Collector-Base Voltage

SYMBOL
VCEO
VCBO

D76FY4D
80
100

UNITS
Volts
Volts

Emitter Base Voltage
Collector Current - Continuous
Peak
Base Current - Continuous
Collector Power Dissipation
(One Device Action, TA =25° C)

VEBO
Ic
ICM
IB

5
4

Volts
A

0.4

A

Po

2.0

Watts

Po

4.0

Watts

TJ,TSTG

-55 to +150

I ROJA

31.3

°CIW

TL

260

°C

Collector Power Dissipation
(Four Device Action, T A =25° C)
Operating and Storage
Junction Temperature Range

6

°C'

thermal characteristics
Thermal Resistance, Junction to Ambient
(Four Device Action)
Maximum Lead Temperature for Soldering
Purpose: Va" from Case for 5 Seconds

655

electrical characteristics (TA

I

=25

0

C)

(unless otherwise specified)

I SYMBOL I

MIN

TYP

MAX

UNIT

Collector-Emitter Breakdown Voltage
(Ic = 10mA, Is = 0)

VSR(CEO)

80

-

-

Volts

Collector-Base Breakdown Voltage
(Ic = 1mA, IE = 0)

VSR(CSO)

100

-

-

Volts

CHARACTERISTIC

off characteristics

Collector Cutoff Current
(VCS = 100V, IE = 0)

IcsO

-

-

20

J.LA

Collector Cutoff Current
(VCE = 80V, Is = 0)

ICED

-

-

20

J.LA

Emitter Cutoff Current
(VES = 5V, Ic = 0)

IESO

-

-

2.5

mA

2000
1000

-

-

-

hFE(2)

Collector-Emitter Saturation Voltage
(Ic = 3A, Is = 6mA)

VCE(sat)

-

-

1.5

Volts

Base-Emitter Saturation Voltage
(Ic = 3A, Is = 6mA)

VSE(sat)

-

-

2.0

Volts

ton

-

0.2

J.Ls

1.5

-

0.6

-

on characteristics
DC Current Gain
(IC = 1A, VCE = 2V)
(Ic = 3A, VCE = 2V)

hFE(1)

-

switching characteristics
Turn-on Time
Storage Time
Fall Time

Vcc = 30V
IS1 = -IS2 = 6mA
Duty Cycle = 1%

tstg
tf

OUTPUT

...-1
IB2 I
1,""",.J\.-4I~V\.-_
L
____ _

m
FIG. 1 SWITCHING TIME TEST CIRCUIT

656

D78A3D1

NPN POWER DARLINGTON
TRANSISTOR ARRAY

100 VOLTS
3 AMP, 25 WATTS

Designed for high power switching applications, hammer
drive, pulse motor drive and inductive load drive applications.
Features:
• High reliability small-sized available (4 in 1)
• Epoxy single-inline package with heat sink (12 pin)

CASE STYLE SIP-12 PIN
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

• High collector power dissipation: Po = 25W @ TA = 25°C
(Four device action)
• High collector current: IC = 3A (Max.)

,039A

Toil

.126Dia
(03.2)

• High DC current gain:
hFE = 2000 (Min.) @ VCE = 2V, IC = 1.5A

,100
(2,54)

ARRAY CONFIGURATION

3

2

9

4

=25

0

"

L----~_

60-----4------'

maximum ratings (TA

10

C)

_o7

(unless otherwise specified)
D78A3D1
100
120

UNITS
Volts
Volts

6

Volts
A

RATING
Collector-Emitter Voltage
Collector-Base Voltage

SYMBOL
VCEO
VC80

Emitter Base Voltage
Collector Current - Continuous
Peak
Base Current - Continuous
Maximum Forward Current
Surge Current (1 sec)

VE80
Ic
ICM
18
IFM
IFSM
VR

6

A
A
A

100

A

Po

3.0

Watts

Po

5.0
25

Watts

Visol

1000

Volts

TJ,TSTG

-55 to +150

°C

Reverse Voltage
Collector Power Dissipation
(One Device Action, TA = 25° C)
Collector Power Dissipation
(Four Device Action)

TA,25°C
Tc = 25°C

Isolation Voltage
(Between Fin to 1 -12 pin)
Operating and Storage
Junction Temperature Range

657

3

6
0.5
3

thermal characteristics
R8JC

5

°CIW

Thermal Resistance, Junction to Ambient

R8JA

25

°CIW

Maximum Lead Temperature for Soldering
Purpose: %" from Case for 5 Seconds

TL

260

. °C

Thermal Resistance, Junction to Case

electrical characteristics (TA = 25 0 C)

I

(unless otherwise specified)

I SYMBOL I

MIN

TYP

MAX

UNIT

VSR(CEO)

100

-

-

Volts

VSR(CSO)

120

-

-

Volts

Icso

-

-

10

p.A

Collector Cutoff Current
(VCE = 100V, Is = 0)

ICEO

-

-

10

p.A

Emitter Cutoff Current
(VEB = 6V, IC = 0)

IESO

0.5

-

2.5

mA

CHARACTERISTIC

off characteristics
Collector-Emitter Breakdown Voltage
(Ic = 10mA, Is = 0)
Collector-Base Breakdown Voltage
(Ic = 1mA, IE = 0)
Collector Cutoff Current
(VCS = 120V, IE = 0)

second breakdown

I Second Breakdown with Base Foward Biased

SEE FIGURE 13

FBSOA

on characteristics
DC Current Gain
(Ic = 1.5A, VCE = 2V)
(Ic = 3A, VCE = 2V)

hFE

2000
1000

-

12000

-

-

-

Collector-Emitter Saturation Voltage
(Ic = 1.5A, Is = 3mA)

VCE(sat)

-

-

1.5

Volts

Base-Emitter Saturation Voltage
(Ic = 1.5A, Is = 3mA)

VSE(sat)

-

-

2.0

Volts

ton

-

0.3

tstg

-

2

tf

-

0.4

-

switching characteristics
Turn-on Time

VCC = 30V
IS1 = -IS2 =3mA
Duty Cycle =1%

Storage Time
Fall Time

COMMON EMITTER

p's

700
600

TA = 25'C

~--~--~----+----+-=~~~~-~

OUTPUT

201'8

\+-+I

I-

'B1~

..-1
182

I

IL'-'V'1I\ro4~1V'v
____ ___

m
FIG. 1 SWITCHING TIME TEST CIRCUIT

COLLECTOR-EMITTER VOLTAGE VCE (V)

FIG.2 IC - VCE

658

COMMON EMITTER
TA =100°C

f!:

SOD
500
400

4

9

600
550
SOO
4S0

!zw

350

w

a:

200

:>

3

;

2

U

300

a:

0

2

0

4

.!z

300

a:
a:
:> 3
u
a:

!;
w
....
....

400

f!:

9

0

u

Ie = 25O.A

u

oOL-----~======2~=====3~=====4~====:bS======~-----l

°0~~==~====~======~====~4======~====~~--~

COLLECTOR·EMITTER VOLTAGE VeE (V)

COLLECTOR·EMITTER VOLTAGE VCE (V)

FIG.4

FIG.3 IC - VCE

IC - VCE

20000

\

JOJMON EMIT)ER
VCE = 2V

V-./

10000

~

;;:

,;'

V V
v L
,~
,/ V
~,.,,/

4000

"!z
w

c:
a:
u
u

2000

"

i"'"

./

6000

Z

1000

.,;'

800

\

\\1\
\ 1\\

./

\

\

\ \\

/'

/ /7

C

\

\.

"

.......

--

.4

.S

FIG. 5

.8

3_

1

0.1-

0.2

2

0.4 0.6 0.81

10

I--

4

10

20

40

60 80 100

200

400

eASE CURRENT Ie (rnA)

10

iE:

COJMON EMITTE'R
Iclle = 500

COMMO~ EMITTER
IClle" SOD

!

w

'"
"~
>

w

~

z

~c:

"!.

I

\ ........

~

./

SOD

iE:

Ta = 25°C

\

\

,... ~
"

co'M~O~ EMITiER

\

\

100-

0.4
0.2

>
Z

0

../V

0.4

O.S

0.8

1

:::>

25

!.<
en

100

c:
w

I:

0.8

:l:

0.6

'"

0.4

:l

--

~

--

.-

~

2

8

10

0.1

COLLECTOR CURRENT IC (A)

FIG. 7

Ta = 55°C

~c:

...... ~

25

0.1

0

0.2

0.4

0.6

0.8

1

COLLECTOR CURRENT IC (A)

VCE(sat) - IC

FIe;;. 8 VBE(sat) - IC

659

8

10

PI

t-- COMMONIEMITTER

11 IL
11

VCE=2V

i§
o

~
:l

8

....~
w
0

ill

2

1

/
L

0

0.5

iii0:
ffi

4

~

...i!:z

~

w

(ij

Z

...<
0:

IL

0.1

1.5

2.0

2.5

0.001

3.0

0.1

0.01

BASE-EMITTER VOLTAGE VBE (V)

FIG. 9

........

I""

<

:::E

/ I

1.0

1
2

3

~ F'"

10

....

/ / I
/
I
/ / I
L

=
-

CURVES SHOULD B_E_APPUED IN THERMAL LlMITEu AREA
(SINGLE NONREPETITIVE PULSE. NO HEAT SINK)
1. ONE CIRCUIT ACTION
2. TWO CIRCUIT ACTION
3. THREE CIRCUIT ACTION
4. FOUR CIRCUIT ACTION

:::::

~

iiii
.::'1 ~ If!L

3

100

~

//1

},} 4

-

10

100

1000

PULSE WIDTH Iw (SEC)

FIG. 10 rth - tw

Ie - VBE

150r---'---~---;r---'---~----r----r~-.----r---'

NUMBERS OF ACTIONED CIRCUIT I Pc
ONE CIRCUIT
3W

~--b~~~-+--t-- TWO CIRCUIT

4.2W

THREE CIRCUIT
FOUR CIRCUIT

2

4.5W
5.OW

5

3

COLLECTOR POWER DISSIPATION Pc (W)

FIG. 11

10

8

IC MAX. (PULSED)'

6
4

~I\\
~~~r- ~h

ICMAX.
(CONTINUOUS)

g

0.

~~

'C.;.~
''It,

},} 0.6
0.6
~ 0.4

i

O

~
~ '"
J

U

O~/O~
7J.voo~
"I07'/oN

~

TOES Acrl N

o

o

25

50

75

125

0.04

150

175

!=

~~-

0 ..

'SINGLE NONREPETITIVE PULSE TC = 25"C
CURVES MUST BE DERATED LINEARLY WITH
INCREASE IN TEMPERATURE.
0.6

2

4

8

8 10

20

40

80 80100

FIG. 13 SAFE OPERATING AREA

660

~~-

i1jg
~§00:

COLLECTOR-EMITTER VOLTAGE Vee (V)

Pc - Ta

~-

W

~

0.6

AMBIENT TEMPERATURE Ta = ('C)

FIG.12

~

O. 1

0.06

~

100

~

0.2

0

SAOTION

FO
UROEV

1\

8 .06

10~S

~=
g-

-.:'I

~

13
0:
0

'

1\

D78A3D2

NPN POWER DARLINGTON
TRANSISTOR ARRAY

100 VOLTS
3 AMP, 25 WATTS

Designed for high power switching applications, hammer
drive, pulse motor drive and inductive load drive applications.
Features:
• High reliability small-sized available (4 in 1)
CASE STYLE SIP-12 PIN

• Epoxy single-inline package with heat sink (12 pin)

DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

• High collector power dissipation: PD = 25W @ TA = 25° C
(Four device action)
.039R

• High collector current: IC = 3A (Max.)

(Off"""
.126 Cia
(03.2)

• High DC current gain: hFE = 2000 (Min.) @ VCE = 2V,
IC = 1.5A

.100
(2.54)

ARRAY CONFIGURATION

maximum ratings (TA = 25° C)

(unless otherwise specified)

RATING
Collector-Emitter Voltage
Collector-Base Voltage

SYMBOL
VCEO
VCBO

D78A3D2
100
120

UNITS
Volts
Volts

Emitter Base Voltage
Collector Current - Continuous
Peak
Base Current - Continuous
Maximum Forward Current
Surge Current (1 sec)

VEBO
Ic
ICM
IB
IFM
IFSM
VA

6

Volts
A

6

A
A
A

100

A

Po

3.0

Watts

Po

5.0
25

Watts

Visol

1000

Volts

TJ, TSTG

-55 to +150

°C

Reverse Voltage
Collector Power Dissipation
(One Device Action, TA =25° C)
Collector Power Dissipation
(Four Device Action)

TA =25°C
Tc =25°C

Isolation Voltage
(Between Fin to 1 -12 pin)
Operating and Storage
Junction Temperature Range

661

3

6
0.5
3

thermal characteristics
Thermal Resistance, Junction to Case

R8JC

5

°CIW

Thermal Resistance, Junction to Ambient

R8JA

25

°elW

Maximum Lead Temperature for Soldering
Purpose: %" from Case for 5 Seconds

TL

260

°C

electrical characteristics (Tc

I

=25° C) (unless otherwise specified)
I SYMBOL I

MIN

Collector-Emitter Breakdown Voltage
(IC = 10mA, Ie = 0)

VeR(CEO)

Collector-Base Breakdown Voltage
(Ic = 1mA, IE = 0)

VeR(CeO)

CHARACTERISTIC

I

TYP

MAX

UNIT

100

-

Volts

120

10

IJ.A

off characteristics

Collector Cutoff Current
(Vce = 120V, IE = 0)

Iceo

-

-

Collector Cutoff Current
(VCE = 100V, Ie = 0)

ICEO

-

-

10

IlA

Emitter Cutoff Current
(VEe = 6V, IC = 0)

IEeo

0.5

-

2.5

mA

Volts

second breakdown

I Second Breakdown with Base Foward Biased

FBSOA

SEE FIGURE 13

on characteristics
DC Current Gain
(Ic = 1.5A, VCE = 2V)
(Ic = 3A, VCE = 2V)

hFE

2000
1000

-

12000

-

-

-

Collector-Emitter Saturation Voltage
(IC = 1.5A, Ie = 3mA)

VCE(sat)

-

-

1.5

Volts

Base-Emitter Saturation Voltage
(Ic = 1.5A, Ie = 3mA)

VeE(Sat)

-

-

2.0

Volts

ton

-

0.3

-

,-,s

switching characteristics
Turn-on Time

VCC = 30V
le1 = -le2 = 3mA
Duty Cycle = 1%

Storage Time
Fall Time

tstg
tf

-

2
0.4

-

6r---.----,----,---~----~--_r--~

OUTPUT

20l'S

1++1

I-

I.'~

...--1
182
I

IL~V\r<-t/VI;
____ _......

m
O~O~~----~2----~3----~4----~5----~--~

FIG. 1 SWITCHING TIME TEST CIRCUIT

COUECTOR-EliITTER VOLTAGE VCE (V)

FIG. 2

662

IC - VCE

COMMON EMITTER
TA = l00'C

600
560
500
450

600
500
400

~

.

~
9

z

300

..z

:>

200

:>

!} 4

w
a:
a:

"a:
~
"......w
0

3

400
4

350

w
a:
a:

"a:0
t;
......w
0
"

2

"

300

3

Ie = 260.A
2

00~~==d:====~======~====d4======~====~~--~
COLLECTOR-EMITTER VOLTAGE VCE (V)

FIG. 3

COLLECTOR-EMITTER VOLTAGE VCE (V)

IC-VCE

FIG. 4

20000

\

JOJMON EMIT)ER
VeE" 2V

v----

10000

w
~

./

./

6000

z
~

4000

./

v. V

2000

\
I"

V

g
1000

\.

_\\I~
\)\\

./

600

~

\ \\

~

r-.

-

,

\

1\
1\

~

\

I'

n--\

V/.,- ~

lJ

,

\
~

V V
~-' ...~' / /
!$f

~a:
§

Co

./

IC - VCE

1"-

""'" r-.

COMMON EMITTER
Ta = 25 C1 C

I

1\

- "'"

r-

IC=6A

I-

5
4
3

2
1

"0.10.5

./

600

V

400

.2

.06 0.1

.6

.4

.6

1

0.1

10

0.2

0.4 0.6 0.81

10

20

40

6060.100

200

.400

BASE CURRENT IB (mA)
COLLECTOR CURRENT IC (A)

FIG. 5

~

FIG. 6

hFE - IC

10

10

!
w

-



W

COJMON
lellB = 500

EMITT~R

~

z

0

~
a:

::>

rn

a:

w

~

lJ

-T.

-55'C

-

0.6
25
0.6

W

C!l

;!
..J

§Z

100-

~

0

0.2

0.4

0.6

I:

r--p -

I"'""

100

6

10

0.8

51
w

0.6

'"

0.4


\(

0.4
0.1

~

Z

l../V

\(

0

>

~

>

...~...

ICIIB = 500

<,,0.
~I~

II I I
ICMAX.
(CONTINUOUS)

g

~ 10-

IC MAX. (PULSED)'

"

r:::-,l' 1\
~ ~

~~

O. 1
0 .08

8

.
iii

z

C\

1\

0.04

0.1
0.001

0,01

0.1

10

100

FIG. 12

O::(lI

~~-

~~-

~~-

~~-

0.8

6

FIG.13

664

~-

C,)ID

810

20

40

80 80 100

COLLECTOR-EMITTER VOLTAGE VCE (V)

rth - tw

@-

.

00::

'SINGLE NONREPETITIVE PULSE TC • 25·C
CURVES MUST BE DERATED LINEARLY WITH
INCREASE IN TEMPERATURE.

0.6

1000

PULSE WIDTH tw (SEC)

~-

t> 8-

0.06

a:

I-

>i-

SAFE OPERATING AREA

NPN/PNP

D78FY4D

POWER DARLINGTON
TRANSISTOR ARRAY

80 VOLTS
4 AMP, 25 WATTS

Designed for high power switching applications, hammer
drive, pulse motor drive and inductive load drive applications.

Features:
• High reliability small-sized available (4 in 1)
CASE STYLE SIP-12 PIN

• Epoxy single-in line package with heat sink (12 pin)
• High collector power dissipation:
(Four device action)

DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

Po =5W @TA =25°C
~

• High collector current: Ie = ±4A (Max.)

(011

.1260ia
(03.21

• High DC current gain:
hFE = 2000 (Min.) @ VeE = +2V, Ie = ±1A

.100

(2.541

ARRAY CONFIGURATION

j~}1 JT5i$1 ~rtEkl.7
maximum ratings (TA

=25° C) (unless otherwise specified)

RATING
Collector-Emitter Voltage
Collector-Base Voltage
Emitter BaSe Voltage
Collector Current - Continuous
Peak
Base Current - Continuous
Maximum Forward Current
Surge Current (1 sec)
Reverse Voltage
Collector Power Dissipation
(One Device Action, TA =25°C)
Collector Power Dissipation
(Four Device Action)
Isolation Voltage
(Between Fin to 1 -12 pin)
Operating and Storage
Junction Temperature Range

TA,25°C
TC =25°C'

665

SYMBOL
VCEO
VC80
VE80
Ic
ICM
18
IFM
IFSM
VR

D78FY4D
80
100
5
4
0.4
3
6
80

A
A
A
A

Po

3.0

Watts

Po

5.0
25

Watts

Visol

1000

Volts

TJ. TSTG

-55 to +150

°C

6

UNITS
Volts
Volts
Volts
A

thermal characteristics
Thermal Resistance, Junction to Case
(Four Device Action)

1: ReJC

5.0

°CIW

Thermal Resistance, Junction to Ambient
(Four Device Action)

1: ReJA

25

°elW

TL

260

°C

Maximum Lead Temperature for Soldering
Purpose: W' from Case for 5 Seconds

electrical characteristics (T c = 25 0 C)
I
CHARACTERISTIC

(unless otherwise specified)

I SYMBOL I

MIN

Collector-Emitter Breakdown Voltage
(IC = 10mA, Ie = 0)

VeR(CeO)

Collector-Base Breakdown Voltage
(Ic = 1mA, Ie = 0)

I

TYP

MAX

UNIT

80

-

-

Volts

VeR(CeO)

100

-

Volts

Collector Cutoff Current
(Vce = 100V, Ie = 0)

Iceo

-

-

20

p,A

Collector Cutoff Current
(VCE= 80V, Ie = 0)

Iceo

-

-

20

p,A

Emitter Cutoff Current
(Vee = 5V, Ic = 0)

leeo

-

-

2.5

mA

2000
1000

-

-

-

off characteristics

on characteristics
DC Current Gain
(IC = 1A, Vce = 2V)
(Ic = 3A, Vce = 2V)

hFE

Collector-Emitter Saturation Voltage
(IC = 3A, Ie = 6mA)

Vce(sat)

-

-

1.5

Volts

Base-Emitter Saturation Voltage
(IC = 3A, Ie = 6mA)

Vee(sat)

-

-

2.0

Volts

ton

-

0.2

-

p,s

switching characteristics
Turn-on Time
Storage Time
Fall Time

Vcc = 30V
le1 = -le2 = 6mA
Duty Cycle = 1%

tstg
tf

OUTPUT

~I
IS2

I

____ _
IL,""",1V4'-'VV'Y-~

m
FIG. 1 SWITCHING TIME TEST CIRCUIT

666

1.5
0.6

HIGH SPEED

GE10000GE10009

NPN POWER DARLINGTON
TRANSISTORS

500 VOLTS
10-20 AMPS, 175 WATTS

These devices are designed for use in high speed switching
applications, such as off-line switching power supplies, AC &
DC motor control, UPS systems, ultrasonic equipment and
other high frequency power conversion equipment.

CASE STYLE TO-204AA (TO-3)
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

GE10000 THRU GE10003

r:

0.845121 471

GE 10004 THRU GE10009

MAX

::l~'35819'091 MAX

0~~1x65l~

T
0043(1091

0.03810971

--u--u=
L
-l r

OlA.-J

SEATING PLANE

426(10.82) MIN

CASE TEMP
REFERENCE
POINT

.2015.00)

DEVICE CIRCUIT

0.162(4,09)

o 15f3,84)
2 HOLES

0440111.18)
0420(1067)

absolute maximum ratings (25 0 C)
(unless otherwise specified)
Voltages
VCEO(SUS)
VCEX, (TC

= 100°C)

VCEV
VEBO
Currents
IC
ICM
IB
IBM

Power DIssipation
PO(TC = 25°C)
Po(Tc = 100°C)
Derate above 25° C
Temperatures
Tstg and TJ
TLI
Thermal Resistance

GE

GE

GE

GE

GE

GE

GE

GE

10000

10001

10002

10003

10004

10005

10006

10007

10008

10009

350
400
450
8

400
450
500
8

350
400
450
8

400
450
500
8

350
400
450
8

400
450
500
8

350
400
450
8

400
450
500
8

450
450
650
8

500
500
700
8

20
30
2.5
5.0

20
30
2.5
5.0

10
20
2.5
5.0

10
20
2.5
5.0

20
30
2.5
5.0

20
30
2.5
5.0

10
20
2.5
5.0

10
20
2.5
5.0

20
30
2.5
5.0

20
30
2.5
5.0

Amps
Amps
Amps
Amps

175
100
1.0

175
100
1.0

150
85
.86

150
85
.86

175
100
1.0

175
100
1.0

150
85
.86

150
85
.86

175
100
1.0

175
100
1.0

Watts
Watts
W/oC

-65 to
+200
+275
1.0

-65 to
+200
+275
1.17

-65 to
+200
+275
1.17

-65 to
+200
+275
1.0

-65 to
+2QO
+275
1.0

-65 to
+200
+275
1.17

-65 to
+200
+275
1.17

-65 to
+200
+275
1.0

-65 to
+200
+275
1.0

1) Max. Lead Temperature for soldering purposes 1/8" from case for 5 seconds.

667

GE

GE
Units
Volts
Volts
Volts

-65 to
°C
+200
+275
°C
1.0 °C/Watt

device electrical characteristics
(Test Conditions in Next Section; TC = 25°C Except as Notes)

(1) VCEO(SUS)
(2) VCEX(SUS),
(TC = 100°C)
(3) VCEX(SUS),
(TC = 100°C)

GE

GE

GE

GE

10001

10002

10003

10004

10005

10006

10007

10008

10009

Units

350

400

350

400

350

400

350

400

450

500

Volts

400

450

400

450

400

450

400

450

450

500

Volts

295
2.5

345

315

345
2.5

365
2.5

295
2.5

345
2.5

Volts

2.5

295
2.5

315

5.0

2.5
5.0

365
2.5
5.0

5.0

5.0

5.0

5.0

5.0
200
16

5.0

5.0
200
16

200
16

5.0
200
17

5.0
5.0

200
15

5.0
200
15

5.0
5.0

GE

10000
Min.
Min.

STATIC

5.0
200
15

5.0
200
15

50
600

Min.
Max.
Max.

(10) VCE(SAT)
(11) VCElSAT)
(12) VCE(SAT),
(Tr. = 100°C)
(13) VBE(SAT)
VBE(SAT),
(Tc = 100°C)
(14) DIODE VF

GE

GE

GE

Min.

Max.
(4) 'CEV
'CEV, (Tc = 150°C) Max.
(5) ICER, (Tc= 100°C) Max.
Max.
(6) lEBO
See Figure
(7) Islb
Min.
(8) hFE
Max.
(9) hFE

-

GE

GE

5.0
5.0

2.5

40
500

50
600

50
600

40
500

40
500

40
400

40
400
1.9

50
600
40
400
1.9

200
16
40
500
30
300
1.9

30
300
1.9

40
400
1.9

40
400
1.9

30
300
1.9

30
300
2.0

Max.

3.0

3.0

2.9

2.9

3.0

3.0

30
300
1.9
2.9

2.9

Max.
Max.

2.0

2.0
2.5

2.0
2.5

2.0
2.5

2.0

2.5

2.5

2.0
2.5

2.0
2.5

Max.
Typ.
Max.

2.5
1.95
5.0

2.5
1.95
5.0

2.5

2.5
1.5
5.0

2.5
1.95
5.0

2.5

2.5

1.5
5.0

1.95
5.0

175

175

175

175

175

325

325

325

325

.045
.200

.045
.200

.23
.60
1.7
3.5
.85
2.4

.23
.60

4.4
6.5

.045
.200
.14
.40
1.5
3.0
.40
1.5
4.2
6.0

.54
1.5
1.7
3.0

DYNAMIC
Output Capacitance Typ.
(VCB = 10V, IE = 0,
Max.
tTEST = 1MHz)
SWITCHING
(1) Resistive
t(j
Typ.
Max.
Typ.
tr
Max.
Typ.
ts
Max.
Typ.
tf
Max.
(2) Inductive
Typ.
ts
Max.
(TC = 100°C)
Typ.
tf
Max.
Typ.
te
Max.
(3) Inductive
Typ.
ts
Typ.
tf
Typ.
te

4.4
6.5
.54
1.5
1.7
3.0
2.2

1.7
3.5
.85
2.4

200
17
40
400

rnA
rnA
rnA
rnA

3.5

30
300
2.0
3.5

Volts
Volts

2.0
2.5

2.5
2.5

2.5
2.5

Volts

2.5
1.5
5.0

2.5

2.5

Volts

1.5
5.0

1.95
5.0

1.95
5.0

Volts
Volts

175

175

175

175

175

pF

325

325

325

325

325

325

pF

.045
.200

.045
.200

.045
.200

.045
.200

.04
.25

.04
.25

~s
~s

.14
.40
1.5
3.0
.40
1.5

.22
.60

.22
.60
1.2
1.5

.11
.40
1.3
1.5
.15
.50

.045
.200
.11
.40
1.3
1.5
.15
.50

.18
1.0

.18
1.0

~s
~s

1.2
2.0
.20
.60

1.2
2.0
.20
.60

~s
~s

2.9
4.0
.19
1.0
.62
1.5

3.0
4.0

3.0
4.0
.20
1.0

~s
~s

.39
1.5
1.0
2.5

4.2
6.0
.39
1.5
1.0
2.5

.60
1.5

~s
~s

1.2
1.5
.25
.50

.25
.50
2.9
4.0

3.2
4.0

.19
1.0
.62
1.5

.18
1.0
.46
1.5

3.2
4.0
.18
1.0
.46
1.5

1.5
.10

1.5
.10

1.5

~

.10

.10

~s

.22

.22

.30

.30

~s

2.2

2.0

2.0

1.5

1.5

.30

.30
1.0

.20
.50

.10

1.0

.20
.50

.10
.30

.30

Volts

.20
1.0
.60
1.5
1.5

~
~s

~s
~s

STATIC TEST CONDITIONS·
(1) VCEX(SUS)
a) Ie = 250mA, Ie = 0,
VCLAMP = VeEO Rated
b) Ic = l00mA, Ie = 0,
VCLAMP = VCEO Rated

APPLIES TO
GE10000 Thru
GE10007
GE10008,9

(2) VCEX(SUS)
a) IC=2A,
VCLAMP = VCEX Rated
b) Ic= lA,
VCLAMP = VCEX Rated

APPLIES TO
GE10000, 1,4,5,8,9

(3) VCEX(SUS)
a) Ic= lOA,
VCLAMP = VCEX Rated
b) Ic=5A,
VCLAMP = VCEX Rated

APPLIES TO
GE10000, 1,4,5,8,9

(4) ICEV
VCEV = Rated Valve,
VeE = 1.5V

GE10002,3, 6, 7

GE10002, 3, 6, 7
APPLIES TO
All

(5) ICER
VCE = Rated Valve, ReE = 50n
(6) IEeo

APPLIES TO
All
APPLIES TO
GE10000, 1, 2, 3
GE10004, 5, 6, 7, 8, 9

VEe = BV, Ic = 0
VEe = 2V, Ie = 0

(7) Islb SEE APPROPRIATE FORWARD BIAS
SECOND BREAKDOWN FIGURE
(8) hFE
(a) Ic = SA, VCE = 5V
(b) Ic = 2.5A, VCE = 5V

APPLIES TO
GE10000, 1, 4, 5, 8, 9
GE10002, 3, 6, 7

(9) hFE
Ic = lOA, VCE = 5V
Ic = 5A, VCE = 5V

APPLIES TO
GE10000, 4, 5, 8, 9
GE10002, 3, 6, 7

(10) VCE(SAT)
a) Ic = lOA, Ie = .4A
b) IC = SA, Ie = .25A
c) Ic = SA, Ie = .5A

APPLIES TO
GE10000, 1, 4, 5
GE10002, 3, 6, 7
GE1000B,9

668

(11) VCE(SAT)
a) Ic = 2OA, Ie = lA
b) Ic = lOA, Ie = lA
c) Ic = 2OA, Ie = 2A

APPLIES TO
GE10000, 1, 4, 5
.GE10002, 3, 6, 7
GE1000B,9

(12) VCE(SAT)
SAME AS (10) BUT Tc = l00·C
(13) VeE(SAT)
a) Ic = lOA, Ie = .4A
b) Ic = 5A, Ie = .25A
c) Ic = lOA, Ie = .5A
(14) DIODE VF
a) IF = lOA
b) IF= SA

APPLIES TO
GE10000, 1,4,5
GE10002, 3, 6, 7
GE10008,9
APPLIES TO
GE10000, 4, 5, 8, 9
GE10002, 3, 6, 7

SWITCHING TEST CONDITIONS
(1) RESISTIVE
Vee=250V, tp=50"s, Duty s; 2%
a) Ie = lOA, IBI = .4A,

APPLIES TO
GE10000, 1,4, 5

(2) INDUCTIVE
APPLIES TO
(3) INDUCTIVE
VeLAMP = 250V, L = 100"h, Te = 100°C
SAME AS (2), BUT Te = 25° C
a) Ie = lOA, IBI = .4A,
GEl 0000, 1,4,5
NOTE: See FIGURE 24 for Switching Time
IB2 = 1.6A
Test Circuil.
b) Ie = 5A, IB = .25A,
GE10002, 3, 6, 7
IB2 = lA
c) Ie = lOA, IB = .5A,
GE10008,9
IB2 = 2A

IB2 = 1.6A
b) Ie = 5A, IBI = .25A,

GE10002, 3, 6, 7

IB2= lA
c) Ie = lOA, IBI = .5A,
IB2 = 2A

GEl 0008, 9

TYPICAL CHARACTERISTICS
TJ.t5~...... ~

~ 100

CI

~/V

....
15
I

VCE' 5V
ALL DEVICES

r-~

TJ=2S 0 C

~

~

UI
!J

g, 101---+++H-~++H--~--IH-+*++H--r_~~rrrrM
ffi 91---+++H-+i++H---+~H-+~+H--t_++r+rHH

~ 81----++-I-tr+i~H---+~\~-+~+H--t_+;_r+rHH
~ 71----++-I-tr++t+H---+~\~_++ttH--t_+;_r+rHH
~ 61----++-I-ir+++tH--_+-\~;_t+~H_-_+~~_I_trHH
u

'\.
~\ \.

/TJ'25°C

a
u

\\ \

\\

c,

~
..J

\

~

~

~

~1

10
S
Ic ,COLLECTOR CURRENT- AMPERES

30

5~-++~~~~H---+~~-+++~--~~~r+~H
\
Ic·3DA

8

\

10
I

1---+++I+#++H---4--1H4III-+++1 ALL DEVICES ,EXCEPT
1---++-I--I-1I-+-I++tl---R-+++++I+I OMIT IC'30A CURVE
FOR GEI0002,3,6,7

.41----++-I-~+++tH---+-~~~~~-r_+;_r+trH

w 3~~~;_~~~T7~~-I-\~Icr'r20rAn+~~~-t_r+++HH

~

IVc'5A i'!c· IOA

Ic·IA

.......

r-

2~~I~~~Nl~1~~~~~*W~~ii~1
I
I I III
I

\

FIGURE 1. DC CURRENT GAIN (VeE = 5V)

10

0.1
1.0
Ia,BASE CURRENT- AMPERES

.01

FIGURE 2. COLLECTOR SATURATION REGION

10
~,=2S

/3,=10

GE10000,I,4,5

GE10002,3,6,7,8,9

I

IL

TJ =2S·C
TJ=IOO·C

1.0

V

~

TJ=ISO·C\.

g,
II:
....
....

V/

~,
II:

~
~
,

UI

!J

II

UI

!J

TJ'IOO°C~

~

I::
::IE

~ 1.0
II:
o

~'2S·C

....

II:

~

U

IIJ
..J
..J

TJ =150·C

~o

o

,

U

..

u.

i=

~

en
'j;j'

c

~

O. I

0.10
I

FIGURE 3. VeE

~T,.J"
;

g
.:: 1.0

:x::-- ~

TJ'150·C

~

(SAT)

S
10
Ic,COLLECTOR CURRENT-AMPERES

20

30

FIGURE 4. Ie COLLECTOR CURRENT (AMPERES)

VS Ie
...-!!!J

I_TJ.IOOOC

UI

!J

I

S
10
20
30
Ic,COLLECTOR CURRENT-AMPERES

-

~

TJ=2S·C
TJ=IOO·C

UI

!J
o

>,

ffi....

....
....i

!::

....::IE,
....

1.0

~

::;:;.- ~

TJ=150·C

I

IIJ

i

UI

~

I

I

i

..5

J

.;:
O. I
I

.'

GE 10000,1,4,5

GE 10002,3,6,7,8,9

~,=2S

~,=IO

5
10
20
Ie,COLLECTOR CURRENT-AMPERES

FIGURE 5. VBE

(SAT)

o.I

30

VS Ie

5
10
20
Ic,COLLECTOR CURRENT-AMPERES

FIGURE 6. VBE

669

(SAT)

VS Ie

30

TYPICAL CHARACTERISTICS

--'S.
I

r-. r--- ....

-:><

t.

~

u 1.0

""I
"l
C!)

~ """- ........

100

lO

g

---

~.

""~

UI

~

~

""II! 0.1

u

f

::::I

U

~

a:

-tf '

td

...APPLIES TO,

""

~

FIGURE 7. CAPACITANCE (CeBO)

-

1.0

t.

~

----

I

tf

I-"

h

~

_r-

t,

.0 I

20

-

./

I

~

./'

t.

I

,~
~.

/

I....

............
.0 I
I

te

.L

.......

...... 1

-' 1..

./

VCE (CLAMP) =250 V
VaE o -5V
L=IOO,.h

--

t;"'

~

IBI=Ic/20} GEI0002,3
IB2=Ic/5

.I

---=:.::::

r-I-'

tf

I

.0 I
I

10
20
Ic,COLLECTOR CURRENT-AMPERES

FIGURE 11. INDUCTIVE SWITCHING PERFORMANCE
(CLAMPED)

'- ,-

20

---

t.

--- --

./

tf

-

TJ= 100°C - - - - - -

1al oIc/ 25 }GEIOOOO I
1B2 =Ic/6.25
'

.Y

10

FIGURE 10. RESISTIVE SWITCHING PERFORMANCE

,APPLIES TO,

te

5

Ic,COLLECTOR CURRENT-AMPERES

TJ=25°C
t.
I

.

,APPLIES TO,
GEI0006,7,B,9

I

FIGURE 9. RESISTIVE SWITCHING PERFORMANCE

~1::::.-

TJ =25°C
Vcc=250V
VaE= -5V
tp= 50,.SEC
IB1=Ic/2O
IB2=Ic/5

GE10004.5

_.

-'"

~

td

10
Ic,COLLECTOR CURRENT-AMPERES

I

...... i-""

",...

t,

APPLIES TOJ
,

Ial"Ic /25
Ia2=Ic/6.25

.0 I

"'--

I

.... ....

tf

td

TJ '25°C
Vee = 250V
VaE =-5V
tp = 50,.SEC

20

FIGURE 8. RESISTIVE SWITCHING PERFORMANCE

r---

t.

I B1 =Ic/20 }GE100023
Ia2=I c/5
•

10
I c , COLLECTOR CURRENT - AMPERES

Vca - COLLECTOR - BASE - VOLTS

1.0

Ial oI c/25 }GEIOOOO I
IB2 =Ic/6.25
•

TJ =25°C
Vee = 250V
VBE =-5V
tp=50,.SEC

100

10

-

~

t,

~

ALL DEVICES
TJ '25°C

"

./

V

-

te

~f-

....... ~

-- -

--

~te

tf_ _

TJ=25°C
TJ = 1000C - - - - - VCE(CLAMP)=250V tPPLIES Tq
VBE=-5V
GEIOO04,5
L=IOO,.h
IBI=Ic /25
Ia2=Ic/6.25

10
Ic,COLLECTOR CURRENT-AMPERES

20

FIGURE 12. INDUCTIVE SWITCHING PERFORMANCE

670

TYPICAL CHARACTERISTICS

,- --

'- t-

•

,- '-

---

- --- - r-t.

---.::::
I

t.

f- I-""

t,

-------

..-

[-

tj"

.-

TJ =25°C
TJ=IOOoC - - - - - -

VCE(CLAMP)=250V ~
VBE=-5V
L=IOOl'h
GEI0006,7,B,9
.lBI=Ic/2O
IB2=IC/5
5
10
20
Ic, COLLECTOR CURRENT - AMPERES

.0I
I

FIGURE 14. INDUCTIVE SWITCHING TURN·OFF
WAVEFORMS

FIGURE 13. INDUCTIVE SWITCHING PERFORMANCE
.
(CLAMPED)

Ll J11

1

20l'SEC

1---+--+-+-I-H+M---t--I-+t-j'-t'+tt-',OO,..s'EC\

[3

\ ,~ ~J~cll\ I MSEC'

I

"

DC

2Ol'SEC

~

[3

~ 10~~Bg~~\ii\m'II\§~m

ffi

[\

w

Q.

II!

\

a~

\

..

a

\

~

.J

8

Ic OR ICM LIMIT
- - - - - - THERMAL UMIT
'" GE10000,4
- - - SECOND BREAKDOWN 1-+-+-H-ftH'~
'\.
LIMIT
~ "EJ"OO~
GE10000,I,4,5
0.1.L---,-_ _ _ _ _--:-=-_...J----L---L-'-..L..I.""-7::~-~-...LIL....L..I
I
10
100
VCE' COLLECTOR -EMITTER VOLTAGE - VOLTS

,

-

Vl

1\

''\

w

ffi

10

1'.1

Q.

~,

DC

~

ffia:
a:
a
a:
I'!

o

10MSEC

\
1.0

j

8

I
0'1

\

\

GE10008,9

Vl

w
a:
w
Q.

24

.

20

a:
a:

16

Z
W

GE10000,4

..

12

0

B

a:

0

0
W
.J
.J

'\.

\..

GEIOOOI,5

::::t

0

TJ =25°C
DUTY CYCLE S 1.0 %
- - Ie OR IeM LIMIT
- - - - - - THERMAL LIMIT
SECOND BREAKDOWN
LIMIT

~

2B

I

\

I-

FIGURE 16. FORWARD BIAS SAFE OPERATING AREA

,

Q.

:::E

«I

24

0

W
t!>

~

20

I-

20

GEI0008

0

Z

w

a:
a:

>
a:

16

a:

\

12

0

I-

TJ "'100°C
L= 100 "h
Vs C- 5V @.5n
ISI=le/IO

8

0

u

.il

4

G~10~02'f,6'j

lI-

,

,

~

w,

\GEI0003,7

GE10002,6 \

U
W

...J
...J

16

w

::>

u

\

100

\

0
I-

U

8

w

TJ "'100°C
L=IOO"h
VSE = -5V@.5n
ISI=lc/IO
GE10008,9

...J
...J

\

300

200

,

12

a:

0

u_

i"""- t- """- t-

I

400

4

....

I.)

..

100

w
u
z
w
a
w
a.

~

-

O.Z:

V

""'~

I

a:

u. 50
t!>

Z

!ia:

./

a:

40

,,~

w
o 30
w

~ 20
Q.

z
«

10

a:

>-

o

/

.00 1

10 4
PULSE

10'6

10 3
10 2
10 '
WIDTH, TIME IN SECONDS

10

ALL DEVICES

o

20

40

""" r-.... .....

" "-

a:

>z
w
iii

C~-9.

:q~1'.qT ~
~""~

~

w
~ .01

-tCO/f--t

1'",.

~ 60

0.01

'9~4

~

';;! 70

~

«
::;;

60

80

100

120

140

160

TJ=150°C

Q.

/}

:::E

«

~ 10

-+250VDC

/

ALL DEVICES

fil

a:

*RL

~J=IOOOC

(NON INDUCTIVE I
(1"10 DUl'!' CYCLE I
NOTE JUMPER

TJ =25°C

I TO 2 (RESISTIVE)
2 TO 3 tiNDUCTIVE

z

w

a:
a:
::>
u
o
a:

'/ /
022

V

CLAMP

If I

270

Ii.' /

..,.o

~
+181

0-

I

tt'd
1.0

3.0

4.0

5.0

FIGURE 2~. FORWARD CHARACTERISTICS

* =SELECT "
RI FOR+I S1 =
R2 FOR-lSI =

l SEE

SWITCHING

J TEST

CONDITIONS

-6110e

FIGURE 24. SWITCHING TIME TEST CIRCUIT

672

,

L------~r---l

100

~O

DEVICE UNDER TEST

I
I

,

VTM ,INSTANTANEOUS FORWARD VOLTAGE - VOLTS

I

I

I

.

ir'j

~

....

6Y2

r-------1---t

// /

~
a:

200

FIGURE 22. POWER DERATING

+6VOC

w

'"

180

Te- CASE TEMPERATURE - °C

FIGURE 21. TRANSIENT THERMAL RESPONSE

FLY BACK DIODE

500

~~c

80

~

0.05

...J

400

300

~~

90

.-

01J

~

FIGURE 20. REVERSE BIAS SAFE OPERATING AREA
(CLAMPED)

_.
DUTY CYCLE 0.5

200

I\:

veE' COLLECTOR - EMITTER VOLTAGE - VOLTS

FIGURE 19. REVERSE BIAS SAFE OPERATING AREA
(CLAMPED)

f=

I\:

100

500

VCE , COLLECTOR - EMITTER VOLTAGE - VOLTS

''C/W
I

GEIOO09

HIGH SPEED

GE10015,16,

NPN POWER DARLINGTON
TRANSISTORS

20,21,22,23
500 VOLTS
40-60 AMPS, 250 WATTS

These devices are designed for use in highspeed switching
applications, such as off-line switching power supplies, AC &
DC motor control, UPS systems, ultra sonic equipment and
other high frequency power conversion equipment.

CASE STYLE TO-204AE (TO-3)
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

.065(1.65)
MAX.

0.845(21.47)
I- MAX . .-l~.358(9.09) MAX
OIA . .=l

r::.

*~

~ OIA.---' L
0.057(1.45)

SEATING PLANE

.426(10.82) MIN.

II

CASE TEMP.
REFERENCE
POINT
.20(5.00)

0.162(4.09)
0.15(3.64)
2 HOLES

BASE
OIA.
0.440(11.18)

DEVICE CIRCUIT

absolute maximum ratings (25 0 C)
Voltages
Collector Emitter
Collector Emitter
Emitter Base
Currents
Collector Current (continuous)
Collector Current (peak)
Base Current (continuous)
Base Current (peak)
Power DIssipation
Power Dissipation
Power Dissipation

(unless otherwise specified)

GE

GE

GE

GE

GE

10015
400
600

10016
500
700

10020
200
300

10021
250
350

10022
350
450

10023
400
600

VESO

B.O

B.O

B.O

B.O

B.O

B.O

Units
Volts
Volts
Volts

Ic

50
75
10
15

50
75
10
15

60
100

60
100
20

40
60

40
60
20

Amps
Amps
Amps

30

Amps

250
143

250
143

1.43

1.43

-65 to
+200
+275
0.7

Symbol
VCEOlSUSl
VCEV

ICM
Is
ISM
Po(Tc = 25°C)
Po(Tc = 100°C)
Derate above 25° C

Temperatures
Storage and Junction

Tstg and TJ

Soldering 1

TLl

Thermal Resistance

0.420(10.67)

ROJC

30

20
30

250
143
1.43

250
143
1.43

250
143
1.43

250
143

Watts

1.43

W/oC

-65 to
+200
+275

-65 to
+200
+275

-65 to
+200
+275

-65 to
+200
+275

-65 to
+200'
+275

0.7

0.7

0.7

0.7

0.7

1) Max. lead temperature for soldering purposes 1/8" from case for 5 seconds.

673

20
30

GE

Watts

. °C
°C
°ClWatt

device electrical characteristics
(Test Conditions in Next Section; TC = 25°C Except as Notes)

STATIC
Min.
Max.
Max.
Max.
See Figure
Min.
Max.
Min.
Max.

(1) VCEO(SUS)
(2) ICEV
ICEV (Tc = 150°C)
(3) lEBO
(4) Isib
(5) hFE
(6) hFE
(7) VCE{SAT)
(8) VCE{SAT)
(9)
(10)
(11)
(12)

VCEISAT
VBE{SAT
VBE{SAT), (TC = 100°C)
DIODE VF

DYNAMIC
OUTPUT CAPACITANCE
(VCB =10V, IE =0, fTEST =1MHz)
SWITCHING
(1) Resistive
tel
tr

ts
tf
(2) Inductive
(Tc = 100°C)

ts
tf

tc
(3) Inductive
(Tc = 25°C)

ts
tf
tc

Max.
Max.
Max.
Max.
Max.
Typ.
Max.

Typ.
Max.
Typ.
Max.
Typ.
Max.
Typ.
Max.
Typ.
Max.
Typ.
Max.
Typ.
Max.
Typ.
Max.
Typ.
Max.
Typ.
Max.

GE

GE

GE

GE

10015

10016

10020

10021

10022

10023

Units

400
.25
5.00
350
13
25

500
.25
5.00

200
.25
5.00
175
14
75
1000

250
.25
5.00
175
14
75
1000

350
.25
5.00

400
.25
5.00
175
15

Volts

10

10

-

-

-

-

-

2.2
5

2.2
5

2.2
4

2.2
4

2.5
2.75

2.5
2.75

2.4
3.00

2.2
5
2.5
2.5

1.9
5.0

1.9
5.0

2.4
3.00
3.5
2.1
5.0

3.5
2.1
5.0

2.2
5
2.5
2.5
2.5
1.9
5.0

2.5
1.9
5.0

Volts
Volts
Volts
Volts
Volts
Volts
Volts

.09
.30

.09
.30
.20
1.00
1.45
2.5

.095
.20
.32
1.00
1.50
3.5
.30
.50
2.7
4.5
.30
1.0
.85
2.0
1.8

.095
.20

.09
.25

.09
.25

p's
p's

.32
1.00
1.50
3.5
.30
.50
2.7
4.5

.20
1.00
1.45
2.5

.30
1.0

.20
1.00
1.45
2.5
.25
.90
2.8
5.0
.21
1.0

.85
2.0
1.8

.68
2.0
1.6

.68
2.0
1.6

p's
p's
p's
p's
p's
p's
p's
p's
p's
p's
p's
p's
p's
p's

.12

.12

.10

.10

.40

.40

.30

.30

-

.20
1.00
1.45
2.5
.25
1.0
2.8

-

350
13
25

-

.25
1.0
2.8

-

.21

.21

.68

.68

1.6
3.0

1.6
3.0
.10
.50

-

.10
.50
.30
1.0

674

-

-

.30
1.0

-

-

-

-

GE

175
15
50
600

-

-

-

GE

rnA
rnA
rnA

50
600

.25
.90
2.8
5.0
.21
1.0

-

-

-

p's
p's
p's
p's

TEST CONDITIONS
STATIC

SWITCHING

(1) VCEO(SUS)
IC = 100mA, .
VCLAMP = VCEO Rated

APPLIES TO
All

(2) ICEV
VCEV = Rated Valve,
VSE = -1.5V

APPLIES TO
All

(3) lEBO
IES = 2.0 Volts

APPLIES TO
All

(4) Islb
SEE APPROPRIATE FORWARD BIAS SECOND
BREAKDOWN FIGURE
(5) hFE
(a) Ic = 10A, VCE = 5V
(b) Ic =15A, VCE =5V
(c) Ic = 20A, VCE = 5V

APPLIES TO
GE10022,23
GE10020, 21
GE10015,16

(6) hFE
Ic =40A, VCE

APPLIES TO
GE10015,16

=5V

(9) VCE(SAT)
(a) Ic =20A, Is =1A
(b) Ic =30A, Is =1.2A

APPLIES TO
GE10015, 16,22,23
GE10020,21

(10) VSE(SAT)
(a) Ic = 20A, Is = 1A
(b) Ic =30A, Is =1.2A

APPLIES TO
GE10015, 16,22,23
GE10020, 21

(12) DIODE VF
a) IF = 20A
b) IF =30A

GE10015, 16, 22, 23
GE10020, 21

(3) INDUCTIVE
SAME AS (2), BUT TC = 25°C
NOTE: See FIGURE 22 for Switching Time
Test Circuit.

APPLIES TO
GE10022,23
GE10015,16
GE10020, 21

(8) VCE(SAT)
(a) Ic =40A, VCE =5V
(b) Ic =50A, VCE =10V
(c) Ic =60A, VCE =5V

APPLIES TO

(2) INDUCTIVE
APPLIES TO
L = 100~h, IB1 = 1A, IB2 = 4A, Tc = 100°C
a) IC = 20A, VCLAMP = 250V
GE10015, 16,22,23
b) IC =30A, VCLAMP =175V
GE10020, 21

APPLIES TO
GE10015, 16,22,23
GE10020,21

(7) VCE(SAT)
a) Ic =20A, Is =1A
b) Ic =30A, Is =1.2A

(11) VSE(SAT)
SAME AS (10) BUT Tc

(1) RESISTIVE
tp = 50~s, Duty Cycle :5 2%
a) VCC =250V, Ic =20A,
IS1 = 1A, IS2 =4A
b) VCC =175V, Ic =30A,
IS1 = 1A, IS2 = 4A

=100°C
APPLIES TO
GE10015, 16,22,23
GE10020, 21

675

TYPICAL CHARACTERISTICS

'!lUll
,
Ic -lOA

TJ"ISOOC

,

~

".
TJ-IOOoC

~

.",.-

!

""-~

.....-

TJ=2SoC

lZ

VCE" S V

I I

ALL DEVICES

g
,

~

II:

c::

9
8
7

t

6

o

,

tJ

c,

..

~

S

TJ'2SoC

8

4

1~=IDDoc

~ 3

~,

III

.<::

TJ'ISD"
10

..J

C~

1\
r-..

o

.01

0.1

g,

I

!:i

P=2S
GEI0020,21

'"....
,

If/J'2S0C

II:

TJ'ISO"C

'tJ:!~

t::
~ 1.0

o

!:i

A.. TJ·IOO·C

~

~~

g,

TJ =2S"C

I

%

,-TJ '2S"C

II:

(TJ~O~ ~

'"
1=

~ 1.0

~~

TJ·IOO·C
TJ =2S·C

,

II:

TJ = ISO·C

....o

t
'":lo

tJ

'"..J..J

otJ

,

tJ

,

S
!!!

S
!!!
'"
~

III

~

O. I

O. I
10

100
Ic,COLLECTOR CURRENT-AMPERES

FIGURE 3. VeE

;=TJ'2S0~
, ITJ=IOOoC

Ul

!:i
o
>,

..,

(SAT)

100
Ic,COLLECTOR CURRENT-AMPERES

I

VS Ie

FIGURE 4. VeE (SAT) VS Ie

TJ=ISO"C
.. TJ'IOO"C
~ ... 'T;'= 2S °C

T~=I~b"h
..,. III! TJ=IOOOC

- TJ =2S·C
tcTJ=IOOOC
In

!:i

~

II:

'"~

10

T~"ISO·C

Ul

TJ'ISO°C

II:

1.0

Ia. BASE CURRENT - AMPERES
FIGURE 2. COLLECTOR SATURATION REGrON

13'10
GE 100lS,I6,22,23

Ic"SOA

,

I
\

FIGURE 1. DC CURRENT GAIN (VeE = 5V)

Ul

TJ "2SoC
ALL DEVICES

/I I

1\

2

100
Ie - COLLECTOR CURRENT GAIN - VCE • S V

10

"

10

~

a

IC' 2SA

Ie'SA

Ul

III ,
I I

!:i

~

~ 100

I

o
>

.::: 1.0

TJ=2S0C

I.--:::::: :;::::::~o.c

'"....t::
:IE
'",
'"~

1.0

:IE

'",
~CD

CD

I

I

S
rn

~

!!!

i;j

;

~

p-2S
GEI0020,21

13=10
GE 100lS,I6,22,23

O. I
10

O. I
100
Ic,COLLECTOR CURRENT-AMPERES

100
Ic ,COLLECTOR CURRENT - AMPERES

FIGURE 5. VSE (SAT) VS Ie

FIGURE 6. VBE (SAT) VS Ie

676

TYPICAL CHARACTERISTICS
r--

TJ'25°C
ALL DEVICES

[il

1000

------

........

t.

1.0

rn

TJ =25°C
Vcc=250V
I B1 =20
la2=5
VaE =-5V
tp= 5Ol'SEC
GEI0015,I6,22,23

,

'l

t-.....

'"

z
:;:

.....

~

/ ' '7

rn

...........

V

I-

...z

CcaO"'- .......

I"----

~

tf

~

~ O. I
=>

Id

U

...........

0:

g

...
U

...J
...J

o

U

100 I

10
Vca- COLLECTOR - BASE-VOLTS

.0 I I

100

5

10

100

Ic, COLLECTOR CURRENT - AMPERES

FIGURE 7. CAPACITANCE (CcSO)

FIGURE 8. RESISTIVE SWITCHING PERFORMANCE

ts

t.

-r- ...

-1-

Is

...urn

r-~

,'lI.O

'"z
:;:

~
tf

-. /tr

I

Ie

U
l-

irn

V"

I-

...z

i"

...

0:

~ 0.1

td

u

.0 I
I

TJ=IOOoC - - - TJ =25°C
VCE (CLAMP)= 250 V
Ial=Ic/20
la2=lc/5
VaE=-5V
L=IOOl'h

...
U

...J
...J

GEI0020,21

o

U

.0 I
10
100
Ic, COLLECTOR CURRENT - AMPERES

;I"

... "'tf V

~I"

GE lOOI5,'6i22'12~

10
100
Ic ,COLLECTOR CURRENT -AMPERES

I

FIGURE 9. RESISTIVE SWITCHING PERFORMANCE

....,.,

If

0:

g

TJ =25°C
Vce=250V
lal=20 ---la2· l c/ 25
veE = -5V
tp =5Ol'SEC

-Ie

FIGURE 10. INDUCTIVE SWITCHING PERFORMANCE
(CLAMPED)

VCE(CLAMP)

IC
90% VCE(CLAMP) -"'Ho:-

I.
t,

II-'

te

,.,. I......
,,"
V

Ie

-' -

~
If

TJ=IOOoC - - - TJ =25°C VCE (CI.AMP) = 250 V
lal=Ie/3O
Ie2=lc/25
VaE'-5V
GEI0020,21
L=IOOl'h

.0 I
I

10% VCE(CLAMP)

10

10% Ic

~~
lal _ _- ,

100

Ic ,COLLECTOR CURRENT - AMPERES

ALL DEVICES

FIGURE 12. INDUCTIVE SWITCHING TURN-OFF
WAVEFORMS

FIGURE 11. INDUCTIVE SWITCHING PERFORMANCE
(CLAMPED)
677

TYPICAL CHARACTERISTICS
100

100

III

~

20,. SEC

\

100,.SEC

~C\ 10MSEC

:Ii

~ 10

Ll

100,.SEC"

III

~

~

W

D~\

Q.

~ {

I MSEC

10MSEC _

:Ii


\

o
a:

~ 1.0

j

8

~

TJ=2SoC
DUTY CYCLE :5 1"10

::>

l:t:

~ 1.0
j

8

"

"

i\

t-

GEI00IS,I6

"\. GEIOOIS
- Ic OR ICM LIMIT
- - - - - - THERMAL LIMIT
SECOND BREAKDOWN
LIMIT
O. I
10
100
I
VCE,COLLECTOR-EMITTER VOLTAGE-VOLTS

"

\

o

o

"-

r\

~

a:
a:

""\.

\

TJ=2S oC
DUTY CYCLE :5 1"10

u

GEI0020

GEI0020,21

GEI0021

H

GEl 0016

- IC OR ICM LIMIT
- - - - - - THERMAL LIMIT
SECOND BREAKDOWN
LIMIT
O. I
I
10
100
VeE, COLLECTOR -EMITTER VOLTAGE - VOLTS

'\

'\."ll II II

1000

1000

FIGURE 13. FORWARD BIAS SAFE OPERATING AREA

FIGURE 14. FORWARD BIAS SAFE OPERATING AREA

100~~§II§~
~

100

20,.SEC
t--+--+++-++tot:t---+---if-H-+++l-ttIOO,.SEC\-Rio-:-:::""",;';"TT-rH

::l
~

III

\

;ji

110§!IR*IIHlII
a
\
"I MSEC

·\'OMSEC

!r
w

DC

a:

"'\
~
r'.
fO~~=~~~II§'!!11
\

-

TJ=2SoC
GE10022,23
DUTY CYCLE:!! 1"10

.!:l

"GE10022

90

w
a:
w
80
Q.
:Ii
C(

I

70

t-

Z

w
a:
a:

:::J
0

50

\
\

a:
0

to

W
..J
..J

0

40
30

U

- Ic OR rCM LIMIT
"
I
11111
- - - - - - THERMAl. LIMIT
"
- - - SECOND BREAKDOWN
1'\ \l
0.1 '--_ _ _ _L_'M_'T_ _ _ _ _-'--'-........LJ..J..J.I..-'
"\..........J...l
l\."""""..LL...L..JL-L.JL-L.I
I
10
100
1000
VCE,COLLECTOR-EMITTER VOLTAGE-VOLTS

....

II II

20 I ~

,0 I ~

00

FIGURE 15. FORWARD BIAS SAFE OPERATING AREA

i\
\

\.

0

GEI0023

GE10016

GE'OO'S

60

TJ!100°C
1m"lc/'0

"\..

.....

VBE"-SV(j).~O

......

L= 'OO!'h
r--..
GE100'5 161
'00
200
300
400
VCE, COLLECTOR- EMITTER VOLTAGE-VOLTS

I'...

......
500

FIGURE 16. FORWARD BIAS SAFE OPERATING AREA
(CLAMPED)

100

100
90

90

III

W

a:
w
Q.
:Ii
C(

I

III

80

w
a:
w

80

70

:Ii

70

Q.

C(

tZ

w
II::
a:

60

:::J
0

50

a:

~

1\
\
\

\
\

40

0
W
..J
..J

I

GE10021

GE10020

20

::>

SO

a:

0

t;
w

0

....U

z

60

w
a:
a:

r-

f10 ff-

TJS,OOoC

1\

GEI0022\

..J
..J

40

,\

1\
\

30

0

-

0

.; 20
>

L "'OO!'h
la,"Ic/'O
I\.
VaE"-5V(jI.sfi
GE.'0020,2'
,00
200
300
400
VCE, COLLECTOR - EMITTER VOLTAGE -VOLTS

'0

"

500

FIGURE 17. REVERSE BIAS SAFE OPERATING AREA

678

GE'0023

\

0

30

0

t-

-

-

\

TJs 100°C
IB,"IC/IO
"\.
'\
VBE"-5V@.5O
r-....
L=IOO!,h
....... r-..
GEI002223
100
200
300
400
VCE, COLLECTOR - EMITTER VOLTAGE-VOLTS

r-..

FIGURE 18. REVERSE BIAS SAFE OPERATING AREA
(CLAMPED)

500

TYPICAL CHARACTER ISTles

1.0
DUTY CyciLE = .5

I-

~
~

}-

• .2

O. I

= .1
• . 05

0
I

UJ
0

2

ct
C
UJ

" .01

.0 I

~

~

.00 I

UJ

:r
lI-

2

~?"

'If!
I

~

'"

70

II:

0
I0

s. ~

'\

BO

"'~"o~o

"

50

II:
UJ
C

40

II:
UJ

30

2

~
~

Il.

ALL' DEVICES

e-ll

~
~

60

'1'0

~-ll

«'-jl

~

'V

.0000 I
.000001

11

l'

90

/sINGLE PULSE

~ .000

~
I-

.....

V
/
VI

Il.

~
II:

-- ??/- ~

100

'\ 1
I,\O~

~1t6'

D!,1>1';,

~1-6'
r\.

r...

20
10 I- ALL DEVICES

I~

1 1 1
.00001

.01
0.1
.0001
.001
PULSE WIDTH - TIME IN SECONDS

1.0

10

I.....

00

20

40

60

BO 100 120

140 160

1,\

IBO 200

Tc- CASE TEMPERATURE _·c

FIGURE 19. TRANSIENT THERMAL RESPONSE

FIGURE 20. POWER DERATING

40

A

3D

ffl

II:
UJ

/'

20

Il.

TJ =150·C

::0
ct
I

10

UJ

9
8

!z
~

7

o

6
5

~

4

i3

II:

j

I

~f.>=IOO.C
TJ =25·C

I

iLl

11/

1/

II:

~

FLYBACK DIODE
ALL DEVICES

3

JJL
I I

::£

::; 2

li

I

1.0

2.0
3.0
4.0
5.0
VTM, INSTANTANEOUS FORWARD VOLTAGE-VOLTS

FIGURE 21. FORWARD CHARACTERISTICS

+250VDC

33

RL
(NON INDUCTIVE)

(.% DUTY CYCLE)
+5V

~50".

.022

V

FIGURE 22.
SWITCHING TIME

CLAMP

~- 0.1

0.5 0.7

~

""'iO;1-

"

...

N\

I'
\

"

I\.

8

l\

10 A

~

5.0 A'

07
; 05
o
t;
~ O.l
02

1\

=25°C

\
7.5 A

!:
~

7.0
0.3

TJ
~

1\

''X

~ 10

1\[\1

,

,
~

o
>

10

5.0
0.15 0.2

\

>

"1\1\

= 2S a C

CI

~

~ 5.0

'"
r-....

~

TJ

iii 7.0

~

u
u

...

10

.....

~100oC

2.0

~

~ 1.0
a:
~ 0.7
2 0.5
ai:
0.3

...
ti

---

r-jJl = 5.0

- TJ = 25°C

~ 0.2

:3
~ 0.1
>0.07
0.05
0.1

~

TJ = 25 a

c

~

~

-~

"

-

~~

r--I-

looac

-

100 a C
0.2

0.3

0.5 07

10

2.0

0.3
0.1

5.0 7.0 10

lO

10K

TJ-lSOOC

""

125~C

;:;;1000
u
z

/

~

......

lOOOC

w::e>.
,/

C

If

-

TJ

C

u

75°C
FORWARD

lO

25 a C

Cob

/
/ VCE -250V=

25°C

I

I

I

10- 1

-0.2

0

+0.2

5.0 7.0 10

r-

u 100

REVERSE

20

,... ......

u

...

1

./

0.5 0.7 1.0

Cib

1
1

1/

.J'

0l

FIGURE 4 - BASE-EMITTER VOLTAGE

/ [/' 1
V ~ /

/

02

Ie. COLLECTOR CURRENT lAMPS)

IC. COLLECTOR CURRENT (AMPS)
FIGURE 3 - COLLECTOR-EMITTER
SATURATION VOLTAGE

-0.4

""~

+Q.4

"'"

I

r

10
1.0

~0.6

10

100

VR. REVERSE VOLTAGE (VOLTS)

VIE. BASE·EMITTER VOLTAGE (VOLTS)

FIGURE 6 - CAPACITANCE

FIGURE 5 - COLLECTOR CUTOFF REGION

687

1000

8,0

I

IC Pk _

....". VCE(pk)

90% VCE(pk) ~

./
IC/

"'-I..

1'\

..,./' V

Isv

I,vlf

_ 7,0

'"c-

1\ 90% IC(pk)

~ 5,0

"

l S - I - 90% lSI

-- --\-, - -- --- - -

::>

10"" ........
Ie pk -

-

2""



u

J1SL--1..

0.01

Iii -1,0 V

.... r-_

....

IZ

ReJc111 ~ rll) ReJC
ReJC ~ 1,t7'C/W MAX
D CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME @11
TJlpk) - TC ~ Plpk) ZOJcll)
DUTY CYCLE, D~ 11il2

0,05

~

,- ,- -

I-I-

TC = 25°C

"-

:Ii
~ 2,0

t...-

w

-

iii"

I---

i.--'" I-""'""

3,0
5,0
7,0
IC. COLLECTOR CURRENT (AMPSI

5,0

0.3

-'

12

I
I

~

2,0

.

i--'"

FIGURE 10 - CROSSOVER AND FALL TIMES

D- 0.5

~

'"
"

I--- ---IIi

0,3
1,5

...... ......."""" ...............

5,0 V

I'-

0,7

-

~

f.::'i::"- t-....

+-

w
0:

~

'e-1,OV

I
0, 7 r-- {3f = 5,0
r-- TJ = 75°C

........

:;;
t-.
;:: 1,0

'"
w

o
~~

,,<5>

'l'«
a: ....
0-'
.... 0

z

A
o0,f . .

1-.

U

0.05

0.02

~ !ill

Tc = -55°C

I:l!l
:E;:
w-'
~~
«

.....o!l ~
::;iiI"'"

~"

3

rn
a:>
Ww

--

-'
-'
0

COMMON EMITIER
ICIIS=5

I".

..

0.5

III

-...

~

--

25
100

0.3
0.3

0.1

0.03

10

0.3

0.1

0.03

100

30

FIG.3 VeE(sat) - Ie

20

I

FIG. 4

I I I IIIII

I

IC MAX (PULSED)
10
ICMAX
(CONTINUOUS)

r,,,

5

.9

~~

3

!zw

(\,\ 90

~O,

:::>

10

30

II III
~ir~
.. ~~_I' '''"1;

'"

"'a> ",

-

VeE(sat) - Ie

~-

II-

"

-i~:

1>

"

u

a:

~:::l

8

3

" ~'61- "". "'" I"

-

a:
a:

1

COl_LECTOR CURRENT IC (A)

COLLECTOR CURRENT IC (A)

1-0.5

0.3

-I

--'-

'>.:

~

N

SINGLE NON REPETITIVE PULSE
Tc = 25°C

~

CURVES MUST SE DERATED LINEARLY
WITI-IINCREASE IN TEMPERATURE

x

«

:;
0

w

U

>

-

-

f---

I-I--

f--I--

I

0.1
10

30

100

300

COLLECTOR-EMITIER VOLTAGE VCE (V)

FIG.5

10

~

~

11/

8

.9

~

~

aa:

6

ti
~

4

80

COMMON EMITIER
VCE = 4V

"

r-.... ........

J

if

o

8

SAFE OPERATING AREA

i-!!"
f--

J ,..

-

-55

/ I

0.4

0.8

'" """

25

». I

o
o

-

- f--

"" I"'"

.........

~

-- 0.1

1.2

1.6

2.0

2.4

2.8

3.2

20

SASF. EMITIER VOLTAGE VSE (V)

FIG. 6

40

60

80

100

CASE TEMPERATURE Tc (OC)

Ie - VeE

FIG.7

695

Pe-Tc

120

......

........

140

160

696

HIGH SPEED

GES060,1,2

NPN POWER DARLINGTON
TRANSISTORS

400-500 VOLTS
20 AMP, 125 WATTS

These devices are designed for use .in high speed switching
applications, such as off-line switching power supplies, AC &
DC motor control, UPS systems, ultrasonic equipment and
other high frequency power conversion equipment.

CASE STYLE TO-204AA (TO-3)
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

r:

0.845121.47)

M A X ' H .358(9.09) MAX

"'"'~~~ ~""""'"'

~ DIA.-II-

.426(10.82) MIN

0.038r097)

CASE TEMP
REFERENCE
POINT
2015.00)

~DIA
0.15r3.84)
2 HOLES

DEVICE CIRCUIT

maximum ratings (TC = 25° C)
RATING
Collector-Base Voltage
Collector-Emitter Voltage
Emitter Base Voltage
Collector Current - Continuous
Peak (Repetitive)
Peak (Non-Repetitive)
Base Current - Continuous
Peak (Non-Repetitive)
Total Power Dissipation @Tc = 25°C
Operating and Storage
Junction Temperature Range

~
0.420(10.67)

(unless otherwise noted)
GE5061
450
400

SYMBOL
Vcso
VCEO
VESO
Ic
ICM
ICSM
IS
ISM
PD

GE5060
400
350

GE5062
500
450

8

8

8

20
25
42.5
4
6
125

20
25
42.5
4
6
125

20
25
42.5
4
6
125

TJ. TSTG

-65 to +150

-65 to +150

-65 to +150

°C

ROJC

1

1

1

°C/W

TL

300

300

300

°C

UNITS
Volts
Volts
Volts
A

A
Watts

thermal characteristics
Thermal Resistance, Junction to Case
Maximum Lead Temperature for Soldering
Purposes: Va" from Case for 5 Seconds

697

electrical characteristics (T c = 25° C)

I

(unless otherwise specified)

I SYMBOL I

CHARACTERISTIC

MIN

TYP

MAX

UNIT

-

-

Volts

-

.2S

mA

200

mA

off characteristics(1)
Collector-Emitter Sustaining Voltage
(~= .SmA)
( clamp = VCEO Rated)
Collector-Base Voltage
(IC = 0.2SmA)

GES060
GES061
GES062

VCEO(sus)

3S0
400
4S0

GES060
GES061
GES062

VCSO

400
4S0
SOD

Icso

-

IESO

-

Collector Cutoff Current
(Vcs = Vcso Rated)
Emitter Cutoff Current
(VES = 4.SV, IC = 0)

Volts

second breakdown
Second Breakdown with Base Forward Biased

SEE FIGURE 16

Clamped Inductive soa with Base Reversed Bias

SEE FIGURE 17

on characteristics
DC Current Gain
(IC = 10A, VCE =SV)
(Ic = 1SA, VCE = SV)
(Ic = 20A, VCE = SV)
Collector-Emitter Saturation Voltage
(IC = 10A, Is = 1A)
(IC = 10A, Is = 2A)
(IC = 20A, Is = 2.0A)
Base-Emitter Voltage
(Ic = 10A, Is = 1A)
(Ic = 20A, Is = 2A)

hFE

VCE(sat)

VSE(sat)

100
40
1S

160
11S
6S

-

-

-

1.20
US
1.6

1.S
1.4
2.0

-

1.95
2.3

2.S
3.S

V

-

0.3

-

p's

p's

Volts

""-

-

V

switching characteristics
Resistive Load
Rise Time
Storage Time

= 1SA, IS1 = .75A, IS2 = 1.5A
VCC = 300V, tp =SO p'sec
IC

tr

Fall Time

ts

-

2.7

tf

-

1.1S

ts

-

3.3

0.4

-

-

1.9
2.8

-

Inductive Load, Clamped
Storage Time
Crossover Time

=100 p.H
IC = 1SA, IS1 = .7SA, IS2 = 1.SA

VCC = 300V, L

tc

Fall Time·

tf

1.7

emitter-collector diode characteristics
Forward Voltage
IF = 10A
IF = 25A

VF

698

TYPICAL CHARACTERISTICS
1000

100
IICE=5V

VCE=IOV

.- ~
z

T~'150y

V ........ !--

t!l

~

T~'IOOoC


u
u

. . . . . .V

~=ZD

o

/./

'w'

...


u
u
o

l~\'

./

./

~

t!l

./

:r

TJ=15~

z

o,4 I

10

30

10

lB. BASE CURRENT (AMPE_RES}

Ie. COLLECTOR CURRENT (AMPERESI

FIGURE 3. COLLECTOR SATURATION REGION

10.0

(J =Ie/IBI
Vi

/

I-

..J

o

7

~

a:

...
w

1/

~

w

a:

vV'

U

I--" ~ I::;;~

W

..J
..J

81.0

TJ=25°C
(J=le/lsl

/

Ul

I-

..J

17j V/

I-

oI-

10.0

(J=lool H(J=50
I
I
I
I
(J=25
I
I

T~=IOO°C

o

(J=IO

~

a:
w

~

lI-

~

w

W


1//

%

/

Z

0
....

~

en

....
Z
w

a:
a:

a:
0

t;

1/
_
V
~
....

:J
0

.",

O. I

~

-

'"

~~

w

-'
-'

0
0

}

f

"'II

/

FIGURE 8. CAPACITANCE (CeBO)
10.0

Vce=2S0V
IeI=lc/20
le2=le/IO
VBE=-5V
t p =50,.SEC

-

u
w
en

.;;


i
~

..........

~
a:
a:

!.or

v'"

~

1.0

b. tf
.....

:J

o

a:

""'"

§w

-

-'

8

~

~

o

w

W

~

N

:;
~
a:
o
z

2
I

a

~

_-... ---_.

.............,. ~ .-- ~

v:. --'"-- "'~ --- -~- ....

.'

~!"" _

,

.... V

...

1-1'""'
1-- I-I-

-- ....::::
..

----

RBE" loon

I
RaE=IKn
RBE"loon
RBE'lon
RaE=lon
Ra£,Ul
RBE"ln

~:::-:

I

10

20

I

-ts

z
i

ts

,~:~~

~te

\.0

te

IZ

w

a:

r" _ _

~-

:J

o

a:

o
....
o
w

-'
-'

8
O. I
I

Ie. COLLECTOR CURRENT (AMPERES)

-- --

~/
te

t1

a:

TJ=25·C
TJ=IOO·C----TJ=150·C
VCE (CLAMP) =250 V
L"IOOl'h
lal"Xc/20
la2=Ic/10
VBE'-5V

-

~/

~

~

~

~

ts

~

i=
RBE=IKn

3

w

Ul

w

a:

--

(;

Cl

4

20

10

FIGURE 10. TURN-OFF TIME (RESISTIVE)

.;;

i=
~

Vec=250V
lal= Ic/2O
IB2=lc/10
VaE =·5V
t p =5OI'SEC

10.0
NOTE' NORMALIZED TO
ts@ 25°C FROM
FIGURE II

IaI"Ic!40---Td"25"C
Vec"2110V
tpollO,.sEC
VBE-OY

II

i--'"

IC, COLLECTOR CURRENT (AMPERES)

TURN-ON TIME (RESISTIVE LOAD)

III " Ic/20

~

/L

... ...

I

Ie. COLLECTOR CURRENT (AMPERES)

FIGURE 9.

~
.,.

O. I

20

10

-

v~

----

-'

:.= td

-

~

~

w

TJ=2S·C
TJ=IOO·C-TJ=ISO·C

~

~

Z

/

r--

100

VCB. COLLECTOR·BASE (VOLTS)

FIGURE 7. VBE(SAT) VS. Ie. T J = 100°C
1.0

r--....

10

30

10

Ie, COLLECTOR CURRENT (AMPERES)

(;
w
en

r--b

~;

.

r..;::::::

tf

./

k;"
..... 1"""""'

10

20

Ie. COLLECTOR CURRENT (AMPERES)

FIGURE 11. NORMALIZED RESISTIVE
SWITCHING STORAGE TIME (RBE VARIATIONS)
VS. COLLECTOR CURRENT

FIGURE 12. CLAMPED INDUCTIVE
TURN-OFF TIME

700

TYPICAL CHARACTERBSTDCS
1.6

1.4

~

w

::;;
~

1.6
TJ =2S0 C
I c /IBI=20
VeE '-SV
CLAMPED INDUCTIVE
LOAD, L'IOOl'h
VCE(CLAMPI =250 V

. / v.....V

....-: ~ /

1.2

«

....

1.0

'"0

w

N

::::;
«
::;;
II:

0

z

1.4

V

-

w

::;;

~ 1::/""-



1.2

'"'"0

IC'20A
1.0 Ic'IOA
IC'5A

0

II:

<>

l -I--

~
I-- I--

Ic'SA
Ic'IOA
I c '20A

0

w

N

::::; 0.8

«

::;;
II:

0

z

0.6

0.4

I.S

1.0

0.5

2.0
VeE. COLLECTOR EMITTER VOLTAGE (VOLTS)

RATIO. 161/162

FIGURE 15.

CROSS-OVER TIME VARIATION
WITH 182

FIGURE 16. FORWARD B!AS Sl~Fr::
OPERAT!NG t:W'tEl\

25

u; 20

w
w
0..
::;;

II:

~

....Z

IS

w

a:

a:

~

<>
II:

0

10

....

<>
W

...J
...J

0

<>

9

S

1\
\

TJ • 2So C
L·IOO,.h
VBE ,-sv@.sSl
ISl'lclIO

I

I

i"

I
200

100

300

GE5060/6060
GE,J061/6061
~GE50621
6062

V

400

SOO
10

VCE, COLLECTOR EMITTER VOLTAGE, CLAMPED, (VOLTS)

FIGURE 18. TRANSllEl\lT THlER~'UlAl Rk:St'O~\~SiE

REVERSE BIAS SAFE
OPERATING AREA

FIGURE 17.

701

TYPICAL CHARACTERISTICS
100

f\: ..........

90

~

a:
0

70

f-

U

«

"-

60

'>=z"

50

«

r--.... ~oo\'OI

""

80

.......~kO

"'- V'1!

w

'~~a

w

..........

~Of./>."'6'

40

'" "'-

a:

:;:

-.....;::~o\'G

~1l

a:
0

~"'o\' D"R.

I

30

0

Il.

20

'r'\..

10

o
o

20

40

60

80

100

~

120

140

160

Te. CASE TEMPERATURE I'C)

FIGURE 19.

POWER DERATING

DIODE CHARACTERISTICS
+2!10VOC

t6VQC

l % Ol,.Y", C'1'CLE 1

iii
w
a:

20

w
a..

(NON INDUCTIVE)

TJ=IOO·C----TJ=150·C--

::;;
~
fZ

::J

u

o

~

a:

~

10

~

V

.

..,.--'->

.I sl

/'

//

z
«f-

':ii'

.!:

F.o

.11 /

tii
z
I
0.0

1/II
1.0

,

I

DEVICE UNDER TEST

I

'II

z
«

V
CLA-.P

,
I
I

"-

::J

o

A139£

r------I-- --,
022

o

III

G'

NOTE JUMPER
I TO 2 (RESISTivE)
2 T031INDUCTIVE~92

47

l,-

w

a:
a:

a:

1..: IDa,. n

RL

TJ=25·C

B

Q44VHI

100

,

L------~r--~
R L '30ll. FOR GE6251, 2, 3
RL'2o.n. FOR GE5060, 1,2

-6VOC

2.0

3.0

4.0

5.0

a

GE6060, 1,2

* = SELECT
RI FOR +111 1 18EE IWITCMING
RZ FOR -.ra, • TEST CONDITIONI

J

VTM. INSTANTANEOUS FORWARO VOLTAGE (VOLTSI

FIGURE 20. FORWARD CHARACTERISTICS

FIGURE 21. SWITCHING TIME TEST CIRCUIT

702

HIGH SPEED

GE6060,1,2

NPN POWER DARLINGTON
TRANSISTORS

400-500 VOLTS
20 AMP, 125 WATTS

These devices are designed for use in high speed switching
applications, such as off-line switching power supplies, AC &
DC motor control, UPS systems, ultrasonic equipment and
other high frequency power conversion equipment.

CASE STYLE TO-204AA (TO-3)
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

r: H
"':'.*~--=t; ""n~~"
0.845121 471
MAX.

0.04311091

DIA....J

0.03810971

I

I-

.358(9.09) MAX

426110.821 MIN

CASE TEMP
REFERENCE
POINT
.2015.001

0.16214.09}
0.1513.841
2 HOLES

DEVICE CIRCUIT

maximum ratings (T C = 25° C)
RATING
Collector-Base Voltage
Collector-Emitter Voltage
Emitter Base Voltage
Collector Current - Continuous
Peak (Repetitive)
Peak (Non-Repetitive)
Base Current - Continuous
Peak (Non-Repetitive)
Total Power Dissipation @ Tc = 25°C
Operating and Storage
Junction Temperature Range

0440(11.18)
0.420110.671

(unless otherwise noted)
SYMBOL
VCBO
VCEO
VEBO
Ic
ICM
ICSM
IB
IBM
Po

GE6060
400
350
5
20
25
42.5
4
6
125

GE6061
450
400
5
20
25
42.5
4
6
125

GE6062
500
450
5
20
25
42.5
4
6
125

UNITS
Volts
Volts
Volts

TJ, TSTG

-65 to +150

-65 to +150

-65 to +150

°C

R8JC

1

1

1

°CIW

TL

300

300

300

°C

A
A
Watts

thermal characteristics
Thermal Resistance, Junction to Case
Maximum Lead Temperature for Soldering
Purposes: W' from Case for 5 Seconds

703

electrical characteristics (Tc

I

==

25° C)

(unless otherwise specified) .

I SYMBOL I

CHARACTERISTIC

MIN

off characteristics
Collector-Emitter Sustaining Voltage
(Ic = .5mA)
(Vclamp = VCEO Rated)
Collector-Base Voltage
(Ic = 0.25mA)

I

TYP

MAX

UNIT·

--

Volts

GE6000
GE6061
GE6062

VCEO(sus)

350
400
450

GE6060
GE6061
GE6062

VCBO

400
450
500

-

-

ICBO

-

-

0.25

mA

lEBO

-

-

200

mA

Collector Cutoff Current
(VCB = VCBO Rated)
Emitter Cutoff Current
(VEB = 1.5V, IC = 0)

Volts

second breakdown
Second Breakdown with Base Forward Biased

SEE FIGURE 14

. Clamped Inductive soa with Base Reversed Bias

SEE FIGURE 17

on characteristics
DC Current Gain
(Ic = 10A, VCE = 5V)
(Ic = 15A, VCE = 5V)
(Ic = 20A, VCE = 5V)
Collector-Emitter Saturation Voltage
(Ic = 10A, IB = 1A)
(Ic = 10A, IB = 2A)
(Ic = 20A, IB = 2A)
Base-Emitter Voltage
(Ic = SA, IB = .5A)
(Ic = 20A, Is = 2A)

hFE

40
30
10

160
115
65

-

-

-

1.2
1.15
1.6

1.5
1.4
2

V

-

1.95
2.3

2.5
3.5

V

tr

-

0.3

0.4

p,s

ts

-

2.3

2.5

tf

0.5

1.0

ts

-

2.6

p,s

tc

-

0.5

tf

-

0.12

-

-

1.9
2.8

-

Volts

VCE(sat)

VBE(sat)

-

sWltchmg characteristics
Resistive Load
RiseTime

VCC = 300V, tp = 50 p,s

Storage Time

Ic

=15A, IS1 =1.5A, IS2 = 2.25A

Fall Time
Inductive Load, Clamped
Storage Time

VCC

Crossover Time

Ic

=300V, L =100 p,H

=15A, IS1 = 1.5A, IB2= 2.25A

Fall Time

emitter-collector diode characteristics
Forward Voltage
IF = 10A
IF = 25A

VF

-

704

-

TYPICAL CHARACTERISTICS
1000

100
V,cE'5V

z
:;;:

veE'lOV

TJ o I50·Y ...............

~

t:J

....Z
w

........

/

~ 100
J=
::;)
o
o
o
. / ../
'w
./
~

-

TJ"IOO·C

...... V

~J'O°C

t:J

/

....Z
W

'"'"

10

::;)

./

'\ ('\

1.0

5
10
30
Ie. COLLECTOR CURRENT (AMPERES)

.1 III

Ic· 5A

Ie=IOA

/3=100
TJ = 25·C
/3= leilBI

TJ =25°C

Ie' 2OA

I

......J

0
~

10

'"
I-

'"w
....

/

I-

8

\

iw

\
\

6

W

..J
..J

ri:.

.... ..... 1-"

0
....
0
W

..J

/

/

I

/

i

/
/3=25

L

I

/3=10

d-' /

..J

4

~

..........

I"-

o

0

1\

1\

2

0

1.0

w

~

"

0.1

.01

30
10
Ie. COLLECTOR CURRENT (AMPERES)

)0

1.0

lB. BASE CURRENT lAMPE RES)

FIGURE 3. COLLECTOR SATURATION REGION

10.0

TJ =25°C
/3=le/ I BI

1

I

in
I-

..J

/

~

::'"
w

/

I

I

/3=25

J

'"o
I-

o

~

~

..... ~
.:::iii

in

/

Vj V/

iw

8 1.0

10.0

,

o

W
..J

FIGURE 4. VCE(SAT) VS. 'c. T J = 25°C

/3=)001 -//3=50

TJ=IOO·C
/3 =Ie/IBI

ui

/3=50

I

iii

w

r~\ ~\

FIGURE 2. DC CURRENT GAIN (V CE = 10V)

w

~

30

10

VeE (SATI. COLLECTOR· EMITTER (VOLTS)

....in
..J

8

5

)

10.0

12

'"o~

'\\ ~.
\ ~ \~

\\ ~\

I

'=

~A
~;\,

VTJ=-40·C

14

:;;

'"tl

./

/'

./

FIGURE 1. DC CURRENT GAIN (VCE = 2V)

~

~~

i--'" .... TJ'O·C
....../ i--'" -I"'"

./ /'

tf'
:I:

\~

I

~

V

- TJ=25·C

0

~,

V TJ e -40·C

,/

TJ=IOO·C

0
0

,~'\.

/'

/"

10

TJ=I~

:;;:

~

I-

z

~

o

/3=10

~

'"
W

lI-

~

iw

~~

w

en

.-:
ID

-

r-

r-'

10
30
Ie. COLLECTOR CURRENT (AMPERES)

-

-:: ::::: ~

/3= 10
/3=25
/3=50
/3=100

p-

30

10
Ie. COLLECTOR CURRENT (AMPERES)

FIGURE 6. VBE(SAT) VS. Ie. T J

FIGURE 5. VCE(SAT) VS. Ic. T J = 100°C

705

=25°C

TYPICAL CHARACTERISTICS
10.0

1000

I

TJ o 25'C

TJ"IOO"C
lI'Ic/lal

iii

......J

I---

o

~

:e

te
W

....
....
:E
w

w

U
Z

w

'"«

~

'";::
~

.,

V

k:::: ~~~

w

>

~

-... t"---

1i'10
11=25
11'50
11'100

~ r---..

U
~

<5

100

30

10

FIGURE 8. CAPACITANCE (CeBO)

1.0

10.0
TJ-25"C
TJ"IOO"C---TJ o I 5 0 ' C - - -

G
w

'"~

/

,

u

....

.' if

~

~. L"

....

....... ~
~
' .... .

te

....

u

tr

L' ,

'"

te
0

,,.

f

/"

z
:;:

__

a:

O.I

....

W
..J
..J

-

...-:=..,

.........

0

U

.01

",'

~

V

Vcc=250V
Ial,Ic/2O
III-Ic/IO
VaE --5V
t p '50"SEC

G
w

-

~

'"

~

/

~

~

w
te

a:
u

...-

te·

t

-

w

..J
..J

O. I
10

20

~w
N

3

:;

«
~
o

2

z

I

./

NOTE- NORMAUZED TO
t.@ 25"C FROM
FIGURE 12

I

~ ~ t:::

-

o ~I

...

-

I--

}tf

-

~

...
10

I

Vcc=250V
Ial'Ic/2O
182 =Ic/IO
VaE=-5V
t p =50"SEC

I-

'

I-~

-

t-"

-

---

-10

10.0

G

.- - f·

w

'"~w

1--

~

:;;
i=

'"iz
....

1-1. 1---',,::

t-

20

FIGURE 10. TURN-OFF TIME (RESISTIVE)

u

I-- _ _

1-1--l - I-

~~ I-~ 1-'"
~....---

10-

RaE"looon
RaE"loon

I--" 1--1--

.... I- l-

~

......~ "/::::

J

Ie. COLLECTOR CURRENT (AMPERES)

TURN-ON TIME (RESISTIVE)

1.,..0-- l-

4

1..--

-

8

w

a:

I..~

TJ=25'C
TJ"IOO'C--TJ o I50·C

td

>=
~

-.....
""'"

1.0

:::l

Ial=Ic/20
IaI"Ic/90 - - - TJ o 25"C
VCC"250V
tp=50"SEC
VaEoOV

5

"I"-

Ie. COLLECTOR CURRENT (AMPERES)

6

-......

f=
~

-

FIGURE 9.

'""

'"

z
i

~ ....

I

7

100

10

FIGURE 7. VBE(SAT) VS. Ie. T J = 100°C

:::l
U

r-....

Vee. COLLECTOR·BASE (VOL TSI

Ie. COLLECTOR CURRENT (AMPERES)

zw

r---t--.

~

RaE"looon
RaE"loon
RaE"lon

~

....z
w

a:
a:

RaE=ln
RaE"ln

~

a:

o
t;

~

I":

W

..J
..J

8
O. I

20

Ie. COLLECTOR CURRENT (AMPERES)

-

....

U

---

.. }

.......

1.0

:::l

RaE"lon

--

t--.

I

-- r----

........

-.....;.....

}

TJ=25"C--TJ= 100·C----ts TJ=150.C--VCE (CLAMP) =250 V
L=IOO"h
lal"lc/20
Ia2=Ic/10
tc VSE=-5V

~

1--

~

I-L...-

--'":"1..--

.....

L.---10

}f

20

Ie. COLLECTOR CURRENT (AMPERES)

FIGURE 11. NORMALIZED RESISTIVE
SWITCHING STORAGE TIME (R BE VARIATIONS)
VS. COLLECTOR CURRENT

FIGURE 12. CLAMPED INDUCTIVE
TURN-OFF TIME

706

TYPICAL CHARACTERISTICS
1.6
TJ=25°C
1.4

-::;
w

Ic·5A

Ic/I BI=20
VSE=-SV
CLAMPED INDUCTIVE
LOAD, L=IOO"h
VCE(CLAMP)= 250 V

/" IC=IOA

/" :,./

1.2

w

a:
0

1.0

en
w

./ ~

N



le·2OA

V

1.2

w

;'

O.S

Ic/IBI=20
VBE=-SV
CLAMPED INDUCTIVE
LOAD, L=IOO"h
VCE(eLAMP)= 250 V

1.4

0.4

2.0

O.S

1.0

I.S

2.0

RATIO,IS1/1S2

FIGURE 15. FALL TIME VARIATION WITH

FIGURE 16. CROSS-OVER TIME VARIATION
WITH 182

182

25

>="
I-

·C/W
1

~


u

oa:
~
o
LL

a:

~

10

III

Non ,JUMPER
I TO 2 (RESISTive)
, TO , (INOUCTlVE~92

-

.7

r------I- - --,

~

v

022

I

'/1

Ii II

-"I
I

..:

Iii
z
I

0.0

/1

D44VHI

.00

I
I

•

L------~r--~
RL =2M FOR GE6060, I, 2

·6VDC

1.0

B

r -......-~-O--!: DEVICE UNDER TEST
.I BI
I

270

N

....
z

CLAMP

GE
AII5f

//

::>

o
z
..:

:i
.t'

"250VDC

OLoTT CYCLE I

2.0

3.0

4.0

5.0

* =SELECT
RI FOR +ZI. r: }SEE SWITCHING
Rt FOR -%8..

VTM. INSTANTANEOUS FORWARO VOLTAGE (VOLTS)

TE&T CONDITIONS

FIGURE 21. SWITCHING TIME TEST CIRCUIT

FIGURE 20. FORWARD CHARACTERISTICS

708

HIGH SPEED

GE6251,2,3

NPN POWER DARLINGTON
TRANSISTORS

450-55G VOLTS
10 AMP, 125 WATTS

These devices are designed for use in high speed switching
applications, such as off-line switching power supplies, AC &
DC motor control, UPS systems, ultrasonic equipment and
other high frequency power conversion equipment.

CASE STYLE TO-204AA (TO-3)

r: H
.':'.~#----=t 'W"" ,,~,

DIMENSIONS ARE IN INCHES AND (MILLIMETERS)
0.845(21.47)
MAX

0043{1.09)
00381097)

DIA.-lI~

.358(9.09) MAX

426(10.821 MIN

,-

CASE TEMP
REFERENCE
POINT
.20(5.00)

0.162(4.09)
Q.1S{3.84J

2 HOLES

DEVICE CIRCUIT

maximum ratings (T C =25°C)
RATING
Collector-Base Voltage
Collector-Emitter Voltage
Emitter Base Voltage
Collector Current - Continuous
Peak (Repetitive)
Peak (Non-Repetitive)
Base Current - Continuous
Peak (Non-Repetitive)
Total Power Dissipation @Tc = 25°C
Operating and Storage
Junction Temperature Range

0.440(11.18)

0.420110.67,

(unless otherwise noted)
SYMBOL
VCSO
VCEO
VESO
IC
ICM
ICSM
Is
ISM
Po

GE6251
450
400
5
10
15
25
3
5
125

GE6252
500
450
5
10
15
25

GE6253
550
500
5
10
15
25

UNITS
Volts
Volts
Volts

3

3

A

5
125

5
125

Watts

TJ, TSTG

-65 to +150

-65 to +150

-65 to +150

°C

R8JC

1.0

1.0

1.0

°C/W

TL

300

300

300

°C

A

thermal characteristics
, Thermal Resistance, Junction to Case
Maximum Lead Temperature for Soldering
Purposes: Ye"from Case for 5 Seconds

.

".

)n~.

.. ~

~.~.

709

electrical characteristics (T c

I

=25° C) (unless otherwise specified)
I SYMBOL I

CHARACTERISTIC

MIN

I

TYP

MAX

UNIT

-

-

Volts

-

1

mA

200

mA

off characteristics
Collector-Emitter Sustaining Voltage
= .5A)
( clarno = VCEO Rated)
Collector-Base Voltage
(IC = 1.0mA)

(!);

GE6251
GE6252
GE6253

VCEO{sus)

400
450
500

GE6251
GE6252
GE6253

VC80

450
500
550

IC80

-

IE80

-

Collector Cutoff Current
(VC8 = VC80 Rated)
Emitter Cutoff Current
(VE8 = 1.5V, Ic = 0)

Volts

second breakdown
Second Breakdown with Base Forward Biased

SEE FIGURE 16

Clamped Inductive SOA with Base Reversed Biased

SEE FIGURE 19

on characteristics
DC Current Gain
(lc = 3A, VCE = 5V)
(Ic = 5A, VCE = 5V)
(Ic = 10A, VCE = 5V)

hFE

Collector-Emitter Saturation Voltage
(Ic = 5A, 18 = .5A)
(Ic = 10A, 18 = 2A)

VCE(sat)

Base-Emitter Voltage
(Ic = 5A, 18 = .5A)

V8E{sat)

60
50
30

125
170
160

-

-

-

1.0
1.15

1.5
2.0

V

-

1.75

2.5

V

-

0.2

.25

ILs

2.1

2.5

.2

1.0

2.35

.09

-

switching characteristics
Resistive Load
Rise Time

VCC = 300V, tp = 50 ILsec

tr

Storage Time

Ic = 10A, 181 = 1A, 182 = 2A

ts

Fall Time

tf

Inductive Load, Clamped
Storage Time

VCC = 300V, L = 100 ILH

ts

Crossover Time

Ic = 10A, 181 = 1A, 182 = 2A

tc

-

tf

-

Fall Time

.28

ILS

emitter-collector diode characteristics
Forward Voltage
IF = 10A

1.9

710

Volts

TYPICAL CHARACTERISTICS
100

1000

vc£"sv

VeE=IOV

...... i-""'"

z

TJoI50·Y ,.........

Cl

~

C

~
w

~ 100

L-o-;-J=O·C

g
'w
...
:J:

/

I-

Z

w
0:
0:

10

I-

...... .....-

0

~~"

....V

/'

:I:

5

I

10

1.0

30

5

I

(J=so

I

.L

~

/

..J

o

10

0:
W

\

,

~

w

\

0:

~ ·6
~

..J
..J

4

~
o

.01

ci:

o

~
8

..........

I-'"

v~

.... 1-::

..J
..J

1\

1\

2

V

lI-

.1.

I

L

f

~

W

B

r~\ ~\

(J=IOO
TJ = 2S O C
(J= leilSI

TJ =25°C

IC' 2OA

0:.

8

30

10

)0.0

..J

:ii
w

'\\ I'

FIGURE 2. DC CURRENT GAIN (VCE = 10V)

tii

lI-

~~,

VeE (SAT!. COLLECTOR· EMITTER (VOLTS)

,I III
Ie=IOA

~~

, l'~

\\ I~\

I-

~

..

/

VTJ=-40·C

FIGURE 1. DC CURRENT GAIN (VCE = 2V)

12

~~

...... f-""

/'

Ie. COLLECTOR CURRENT (AMPERES)

Ie=SA

~

./

'\ ~,~

I

...... .... TJ=O°C

TJ=2S"C

./ ./

~.

"'\""

TJ o-40"C

(4

/'

L

TJ'IOO"C

U

.........

/"

10

Cl

::J
V

//'
/'
J'
V

TJ=I~

C

~

. . . . .V I-"'"

TJ o 2!1"'

::J
V

~

TJoIOO·C

z

/

(J=2S

'/

I

(J= 10

~V

po-

1.0

w'

fl

"

O. 4 I

10

1.0

0.1

10
30
Ie. COLLECTOR CURRENT (AMPERES)

lB. BASE CURRENT lAMPE RES)

FIGURE 3. COLLECTOR SATURATION REGION

FIGURE 4. VCE(SAT) VS. Ic. T J

= 25°C

10.0

10.0
(J=IOOI --!(J=SO

TJ=IOO°C
(J =Ie/lsi

I

tii

I-

..J

a

/

~

0:
W

lI-

:ii
w
0:

a

l-

.,,1

v

_i--'"" ~ ~;;

W

..J
..J

81.0

---

/

TJ =2S 0 C
(J=le/Isl

I

I

I

I

(J=25

J

Vi

/

I l I/,
~

I-

..J

o

(J=IO

>
a:

w

lI-

~
W
W

Vl

«co

..-,,::::: Iliii= P'"'

t=

~
w

~

10
30
Ie. COLLECTOR CURRENT (AMPERES)

-

~~

~
~ 1-:1":

~

~

10

(J=IO
(J=2S
(J=so
(J= 100

30

Ie. COLLECTOR CURRENT (AMPERES)

FIGURE 5. veE (SAT) VS. Ie. T J = 100°C

FIGURE 6. VBE(SAT) VS. Ie. T J = 25°C
711

TYPICAL CHARACTERISTICS
10.0

1000

I

TJ "2S0 C

TJ.IOO°C
(j=IC/iBI

iii

...

1-

-............ -...
r-.... ...... 1"'-

o

:::

:ew

D:

w

........

U
Z

~

w
w

~

~

'";:

~
w

P

I-::

I

>'"

.... 1::;::: ;;.-:""
,

~

10

~

(j=10
P=2S
P=SO
(j= 100

~ I"'---

~

<5

100

10

30

VSE(SAT)

\(S. Ic. T J = 100°C

1.0
TJ=25"C
TJ= 100°C - - - TJ=150"C---

G
w
en

L

LL

/'

.3
Cl
z

,

'.' /,'

~
en

1/ ,'"

....

Z

w

=>
U

'-.

D:

0
....

...w

V

FIGURE 8. CAPACITANCE (CCBO)

10.0
Vee=2S0V
IBI=Ic/20
IB2 =le/IO
VBE=-SV
tp=SO,.SEC

L

O. I

_-

I-

r--

.3
Cl
z

r

~
~
w

1.0

U

U

o

\:j

- ... -

~-

..J

"!:,::;~

..J

-- ..

td

i

r:~GURE

~
f=

~
0:

~w

N

::;

..:
::;;

D:

o
Z

4

~
~ ...

/

.

3

1--"

.....

_

o

I/.~
2.:----,....G"::

-

...- ..
~:-:;~

.,......

FROM

FIGURE 12

10

....

r.:

l - I--

..

10.0

-l-----

:-

RBE"loon
RaE" Ion
RaJ;:=lon
RBE" In
RBE'lll

I

::;;

.-

.-~-

f=

-......

~

z
:;:

~
....
z

.......

1.0

W

=>
U

~

D:

§

~

r--...

W

..J
..J

8

20

TJ=25"C--TJ= 100·C----ts TJ=1500C--VCE(CLAMP)=250V
L=IOO,.h

}

tc

D:
D:

Ie. COLLECTOR CURRENT (AMPERES)

}

~

Cl

O. I
10

I

--

w

1-

----

I-

G
w

.3

U

;---',:: RBE"looon

........

~~r-

RBE'lOOon
RBE"loon

---

,.....1-

20

. FIGURE 10. TURN-OFF TIME (RESISTIVE)

en

I

i!........ V'
,.. 1-11-1~

2~Vl-.....
I

to@) 2S"C

[..-- I--'i-'

w

Vce=2S0V
IBI= Ic/20
IB2=Ic/10
VaE=-5V
t p =50,.SEC

Ie. COLLECTOR CURRENT (AMPERES)

NOTE' NORMAUZED TO

IBI"Ic/gO - - - - TJ=25 c C
Vcc=250V
tp=50"SEC
VBE=OV

5

../"
I-f-

20

9. TURN-ON TIME (RESISTIVE)

1m' Ic/20

6

_t""

o.1
10

Ie. COLLECTOR CURRENT (AMPERES)

7

~

8

!::..-"

.0 I

J
}tt

....-

D:

w

0

-

::;)

.-

...---~,

--.....
r--.. -- ..
-........

TJ=2S0C
TJ=IOO·C---TJ =150"C

D:
D:

;'

~1E'

..J

'---

G
w

en

~

i~ " ...1/ '" !--'" i-"I-"

D:
D:

u

},

L' ,

r
u
....

100

VCB. COLLECTOR·BASE (VOLTS)

Ie. COLLECTOR CURRENT (AMPERES)

FiGURE 7.

r--...

I

- ...-

-- -

~

............

I"- I"---

...-

....

~

1-::.--

~---

~
10

!BI=lc/2O
la2=lc/10
VaE=-5V

}t

20

Ie. COLLECTOR CURRENT (AMPERES)

fiGURE 11.

NORMALIZED RESISTIVE
TIME· (R Be VARIATIONS)
'IS. COlLECTOPl CURRENT

FIGURE 12. CLAMPED INDUCTIVE
TURN-OFF TIME

SW!1iCH~~~G BTCAfl.G~=:

712

TYPICAL CHARACTERISTICS
1.6

1.6
TJ=25°C
Ic/Isl=20
VSE=-5V
CLAMPED INDUCTIVE
LOAD, L=IOOl'h
VCE(CLAMP) =250 V

1.4

£w

... V

i=
w

~~

(!J

<{

a:

1.0

0

....

w

:::i 0.8
IC' 2OA
<{
IC'IOA
a:

- V" I-""'

~

,;'

I-- IC=20A

E

w
::;;

~

<{

u.

,

1.0

0

w
N

:::i
<{
::;;
a:
0

z

0.4

1.0

0.5

1.5

0.8
c=20A
Ic=IOA
0.6 I c =5A

0.4

2.0

~

IC'SA
Ic· IOA

o
~ :.:::: ....... Xc 20A

&: ~ I--"'"

1.2

...J
...J

I C=5A

0.6

TJ=25°C
Ic/I SI=20
VBE=-5V
CLAMPED INDUCTIVE
LOAD, L=IOOl'h
VCE(CLAMP)=250 V

i=

V. V

::;;
0

1.4

..,- ~ '7

N

z

~

...4 ~

til

-

VV

1.2

::;;

IC'SA
IC=IOA

~

~

Ae:-'

~

AW

~

0.5

2.0

1.5

1.0

IC. COLLECTOR CURRENT (AMPERES)

FIGURE 13. STORAGE TIME VARIATION
WITH 182

FIGURE 14. FALL TIME VARIATION WITH 182

1.6

1.4

~
w

::;;

TJ=25°C
Ic/I SI=20
VSE=-5V
CLAMPED INDUCTIVE
LOAD, L=IOOl'h
VCE(CLAMP)= 250 V

./

./. ........... ::::::

1.2

i=

..,-~ ~

a:

w

>
0

,p;

1.0

til
til

N

:::i

<{

::;;

a:
0

z

~

Ic=20A

Ic=IOA
Ie=5A

100 _

rr-

~

0.8
Ic'5A
Ic'IOA
0.6 Ic'20A

__

iii
w
a:

w
c..

::;;

:!

....2
w

a:
a:
=>
u
a:

~

0

a:

u

0
w

--~

?'

0
....
u

~~

1.0

W

...J
...J

IcORICM L I M I T - - - THERMAL UMIT-- - - SECOND BREAKDOWN
LIMIT-----·25·C

0

V

U

jj

0.4

1.0

0.5

1.5

2.0
VCE. COLLECTOR EMITTER VOLTAGE IVOLTS)

FIGURE 15. CROSS-OVER TIME VARIATION
WITH 182

FIGURE 16. FORWARD BIAS SAFE

OPERATING AREA
DIODE CHARACTERISTICS

·C/W
1

-



\

w
0

II:
W

U

W

...J
...J

\

0

s/

5

~

0

200

300

1"'.:;"'..., DE'~
~~""G

):1

7~~

.... ~~a

..........

~;q~

~

40
30

0.

20

"~~251
"

100

........~/f90

a:

10

f-

u

70

u.

\

i"'-- ~co""ol

"" "'

80

U

w

a:
a:
::J
u
a:

~ ..........

90

~~2
;92

153

400

10

_

o
o

500

20

40

60

80

FIGURE 20. POWER DERATING

FIGURE 19. REVERSE BIAS SAFE
OPERATING AREA

'SliDe

-+Z50VDC

, % D!"TY CYCLE 1

R,

L:l00~

h

(NON INDUCTIVE)

Non

JUMPER

G'

AI39E

I Hl 2 (RESISTivE)
2 lO :5 (INDUCTtVE~?2

r------I-----,
022

V
CLAMP

i

-IS, '

-- I
B

Iaz

,
I

DEVICE UNOER TEST

+I81

I
I

I
I) S

044VHI

,

L------~r--~
R L' 30.11. FOR GE6251, 2, 3
RL' 2o.n. FOR GE5060, I, 2 B GE6060, I, 2

-slice

120

Te. CASE TEMPERATURE I'C)

veE, COLLECTOR EMITTER VOLTAGE, CLAMPED,(VOLTS)

270

100

" '~

*::: SELECT
RI FOR +%81' }SEE SWITCHING
R2 FOR -I'BI. TEST CONDITIONS

FIGURE 21. SWITCHING TIME TEST CIRCUIT

714

"

140

160

MJE13004

NPN POWER TRANSISTORS

300 VOLTS
4 AMP, 75 WATTS

Designed for switching regulator, DC-DC converter, AC-DC
inverter, high voltage, high speed switching applications.

NPN
COLLECTOR

Features:
• VCEO(sus)

=300V (Min).
EMITTER

• VCEV = 600V blocking capability

CASE STYLE TO-220AB
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

• Excellent switching time: tr = 0.7 J.LS (Max.),
tf = 0.9 J.LS (Max.)

.404(10.261
.38019.651

. ~ ~~:~.~~\

..j~'
I

.

,

- -t

-.
1

/t-

.19014.831

'17014'321~
1

.---.

.26516.731
.24516.221

•

-+--I-----1f[--+-.....,

CASE
TEMPERATURE
REFERENCE
/
POINT

:~~~:~:~;\----,

+

.. 1144511133·.6588110IA.

~

~591

.gg~l~di~1

. I 3013.31
TERM.l

t

1ffi-llllr!Ti---,

TERM.2

.05511.391
.04811.221

.500112.7IMIN.

.05511.391
.045(1.141

TERM.3

.0331~.841

.02710.691

.1~.10512.671

.055(1.391-/
.04511.141

maximum ratings (TA

.10712.721
.08712.211

~ •. 09512.411

\+-'

I--

.21015.331
.19014.821

.021(0.531
.01510.381

=25° C) (unless otherwise specified)

RATING
Collector-Emitter Voltage
Collector-Emitter Voltage

SYMBOL
VCEO
VCEV

MJE13004
300
600

UNITS
Volts
Volts

Emitter Base Voltage
Collector Current - Continuous
Pulse

VESO
Ic
ICp

9

Volts

4
8

A
A

Base Current - Continuous
Pulse

Is
Isp

2

Emitter Current - Continuous
Pulse
Collector Power Dissipation
Derate above 25° C

TA=25°C

'E
IEP
Pc

6
12
2
16

Watts
mW/oC

Tc = 25°C

Pc

75
600

Watts
mW/oC

TJ, TSTG

-65 to +150

°C

Col/ector Power Dissipation
Derate above 25° C
Operating and Storage
Junction Temperature Range

715

4

A

thermal characteristics
Thermal Resistance, Junction to Case

R8JC

1.67

°C/W

Thermal Resistance, Junction to Ambient

R8JA

62.5

°C/W

Maximum Lead Temperature for Soldering
Purpose: W' from Case for 5 Seconds

TL

275

°C

electrical characteristics (T c

=25

0

C)

(unless otherwise specified)

CHARACTERISTIC

I SYMBOL I

MIN

VCEO(sus)

I

TYP

MAX

UNIT

300

-

-

Volts

'CEV

-

-

1
5

mA

lEBO

-

-

1

mA

off characteristics(1)
Collector-Emitter Voltage
(Ic =10mA, IB =0)
Collector Cutoff Current
(VCE =600V, VBE =-1.5V)
(VCE =600V, VBE =-1.5V, Tc =100°C)
Emitter Cutoff Current
(VEB =9V, Ic =0)

second breakdown
Second Breakdown with Base Forward Biased

FBSOA

SEE FIGURE 11

Clamped Inductive SOA with Base Reversed Bias

RBSOA

SEE FIGURE 12

on characteristics(1)
DC Current Gain
(IC =lA, VCE =5V)
(Ic =2A, VCE =5V)
Collector-Emitter Saturation Voltage
(IC =lA, IB =0.2A)
(Ic =2A, IB =0.5A)
(Ic =4A, IB =lA)
(Ic =2A, IB =0.5A, Tc 100°C)
Base-Emitter Saturation Voltage
(IC =lA, IB =0.2A)
(Ic =2A, IB =0.5A)
(Ic =2A, IB 0.5A, Tc =100°C)

8

-

60
40

-

-

-

V

-

0.5
0.6
1
1

-

1.2
1.6
1.5

V

-

-

Cob

-

55

-

pF

fT

4

--.

-

MHz

td

-

-

0.1

p's

-

0.9

-

4

tc

-

0.9

tf

-

0.16

-

hFE
VCE(sat)

10

-

=

VBE(sat)

=
dynamic characteristics

Output Capacitance
(VCB =10V, IE =0, f =0.1 MHz)
Current Gain - Bandwidth Product
(IC =500mA, VCE =10V, ftest =1.0 MHz)

switching characteristics
Resistive Load
Delay Time
Rise Time
Storage Time

=125V, IC =2A
IB1 = -IB2 =0.4A, tp =25p.s
Duty Cycle < 1%)
(VCC

tr
t---·ts

Fall Time

tf

0.7
4

Inductive Load, Clamped
Storage Time
Crossover Time

=2A, \tclamp =300V
IB1 =O.4A, VBE(off) =-5V, Tc =100°C)

(IC

Fall Time
(1) Pulse Test: Pulse Width - 300JLs Duty .Cycle :5 2%.

716

tsv

p's

en
t-

100
TJ

10

~

50

z

--

=12SoC

t:I

t-

z

30

::::l

20

w
a:
a:

<.:I
<.:I

2:-

~~

...W

10

=2 V
~ I 1"'7 I ~fE = 5 ~
5
I I I III
I
0.04

0.06

0.1

.....
:i
~
o

I'" t:::. ~ ~

VCE

'"-

0.4

t-

"

:::: 0.4
o
<.:I

W

<.:I

.

0.6

0.8

>

0.03

I I I II'I

~ 1. 1

I- -

-

'.

~

>

0.9

w
t-

25°C

0.7

...

W

en

.2;;'C_

h
I

<

150 C

:. 0.5

'"

>

0.3
0.04 0.06

1

0.1

0.2

~

V CI.:
I--"' ~ 'J
I-'"

-

V

I
~ I-

-

I-I -

/

V

->
::;;-

V

a::~

TJ = -55°C

WW

~ !:i 0.25

250

'"'0

~>
.....
o

...

0.15

>
0.6

0.05
0.04

4

2k

t-

I---TJ = 150°C

Z

w
a:
a:

100

::::l

<.:I

125°C

a:

100°C

t-

1~OC

Q

u
w

....
....

ID

Q

510°C

u
~

2Soc
0.1
-0.4

V- i /
./

1/

I

I
I

I

I
'11

I

1k
LL 700

---

..e

'----

I
1. 1.

I
II

0.1

'"'~
13

;t
<

I

-

0.4

0.2

lS00C

4

0.6

Cib

500
300
200

~Ob

;::- 100
70
50

I

30
20
0.3

REVERSE

FORWARD
-0.2
0
+0.2
+0.4
VBE. SASE·EMITTER VOLTAGE (VOLTS)

-

w

J

1/

./
/

~

FIGURE 4 - COLLECTOR-EMITTER SATURATION VOLTAGE

10 k

I

j
/
~/ ~ V

I-- ~ r- k:::: I:=::~
0.06

h t'l
W

IC. COllECTOR CURRENT (AMP)

FIGURE 3 - BASE-EMITTER VOLTAGE

1k

3

~
~!J

Ie. COLLECTOR CURRENT (AMP)

<
.3

2

0.1

~ ~ 0.35

V./

..

1/

0.5

"'~~

<.:I

/
1/

0.3

ICIIB = 4

w
u

~VCE=250V

0.2

0.45

~

l- I--'I-'

0.4

1'1.

r--..

r-.

;::
<

./

J

~

[\..

0.1

0.05

0.55

o

TJ ='-5S C

a:

iw

""

.'

I

t:I

1\

FIGURE 2 - COLLECTOR SATURATION REGION

VBE(sat) @ IC/IB = 4
VBE(on) @ VCE = 2 V

w

~

'.

,

\

1\
\

lB. BASE CURRENT (AMP)

FIGURE 1 - DC CURRENT GAIN

~
.....

4A

0

4

IC. COllECTOR CURRENT (AMP)

1.3

3A

1 1\

.\

'"'w

::.....
0.2

1

w
t-

~~

-5SoC

2A

\ IC = 1 A

o
;. 1.2

r-..

Q

.s=

'"<~

r-I'-

TJ = 25°C

\

\

1.6

w

I...

........ ~

lsoc

:;(

\

.....

o

+0.6

-""'"

0.5

-3

5

10

r--.
30

50

VR. REVERSE VOLTAGE (VOLTS)

FIGURE 5 - COLLECTOR CUTOFF REGION

FIGURE 6 - CAPACITANCE

717

--

100

to-300

./

-""'"

0.5

90% Vel amp ~ 90%IC

!sv

IC/

VCC= 12SV= F
Ic/la= S
TJ=25 0 C ~ t -

.- Vel amp

" '"

V

=t2

'.

ICp~

!rvfl

~Ifi- f-!!i-

I~ J-!e --\ f-

V
VCE

'"

' a -I - 90%lal

... 0.1
-" 0.05

./

.......

1/

Id@ VBE(olf) = 5 V

,........

-- --\-, --- --- --- --- -

0.02

-

~

"-"'"

Ir

........

"'"

:E
j:

10%.........
~
2%IC
IC pK -

10% Velamp

~

0.2

'Or

3

0.01
0.04

0.1

TIME
FIGURE 7 - INDUCTIVE SWITCHING MEASUREMENTS

0.4
0.2
IC. COLLECTOR CURRENT (AMP)

4

2

FIGURE 8 - TURN-ON TIME

RESISTIVE
SWITCHING
PERFORMANCE
.
.

_

10
VCC = 12S V
Ic/la = 5
TJ = 2SoC

Is

5

r--.....

,
2

......

'Or

...
-" O.S

3

,,0mIlllEEIIII

0.7

~ 0.5 D= 0.05

~~i

0.3

H 1 It+HtftHH--H+HHI-+++I-HoWtt:~~F+-I+HHlH-Hl-Hf.HHI

r!

0.2

~.J
~
H)T-+
l+HfflF=t+++H-HbIo~~~=lUI~~~um...w.+lf.I.UUI

....iii

0.1

Ii!

0.05

!
......

:E
j:

+

r....

ZlIJc(11 = r(11 RIIJC

~~0~"~lli~~I~""~~RIIJC="67'CIWMAX

D CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME @II
TJ(pk) - TC = P(pkl ZeJc(11

:;j 0.07 1-0.05

I'

i

~

If

0.2
0.1

JUl.-'-

r I L..

I::: ~-I'""iq..TT~H-mmnE-PII-i'Lil-'E+-+I-l+J.~-I-1-+-U ~Il:~ P~I

0.3

0.1
0.04

L~

1-o.~-HbIoI1mJool!;jq--l-~-Il#--1-~-I- DUTY CYCLE. D= 11112 H-I--++-H+IH

j!:

~

0.01 0.02

4

0.2
0.5
IC. COLLECTOR CURRENT (AMP)

0.03

0.05 0.1

FIGURE 10

FIGURE 9 - TURN-OFF TIME

0.2

0.5

1.0

2.0
5.0
TIME (ml)

10

20

1tIt-+++t-ttttlt

50 100 200

500 10k

TYPICAL THERMAL RESPONSE [(Z8JC(t)]

The Safe Operating Area Figures 11 and 12 are
. specified ratings for the. devices under the test conditions shown.
10
it'

4
::IE

:E

S

....

...acz

2
de

....

"'

!\.

I" 500"s I-- f'Iol

I\."\.

0.5

lms

...

0.2

I"Smn, I\.

Q

0.1

u

ac

Q
....
u

..J
..J

S
I-

...zoc

3

:::>
u

" "- ."'"\."\

u
~0.05

"

oc
0
....
u

\ \'
\' ~,

2

........

\

.....

0

u

MJEI3DD4-

0.02
0.01
S

10

20

30

50

70

I
100

I

I
200

...
.e

"

MJE13004

o
o

VCE. COLLECTOR·EMITTER VOLTAGE (VOLTS)

100

200

300

'"

'-

u

300 400 500

Te ';lbo oc_
lal =2.0 A

1\.'

oc

ac

::I

\.
~\\
~' I\.

it'

5

400

,

~ VaE(off) =9 V

~

"'-

~

f"....

500

SV
3V
I.S V

600

700

VCEV. COLLECTOR·EMITTER CLAMP VOLTAGE (VOL TS)

FIGURE 12- REVERSE BIAS SWITCHING

FIGURE 11 - FORWARD BIAS SAFE OPERATING AREA

SAFE OPERATING AREA

718

800

MJE13005

NPN POWER TRANSISTORS

400 VOLTS

4 AMP, 75 WATTS

Designed for switching regulator, DC-DC converter, AC-DC
inverter, high voltage, high speed switching applications.

NPN
COLLECTOR

~'-EQ

Features:
• VCEO(sus} = 400V (Min).

EMITTER

• VCEV = 700V blocking capability

=

• Excellent switching time: tr 0.7 J.l.S (Max.),
tf = 0.9 J.l.s (Max.)

.404110.26J . ~ ~~\~.;~II
.38019.651.t· I '

.19014.831
.17014321ft .05511.391
.
1
.04811.~21

.--.
f
I---+--I-----+r-'.......,
I-L.

__ +

.

.26516.731
.24516.221

•

.35519.021
.32518.251

~

.-tr;'~III)o1>i+--,

~

OINT

.22015.591

~51
.00110.0251

~.31
TERM.l

CASE
TEMPERATURE
REFERENCE

.500112.7IMIN.

TERM.2
TERM.3

.0331~.841

.02710.691

.055(1.391
.1
.04511.141---'

maximum ratings (TA = 25 0 C)

_ .10712.721
.08712.211

.1ih.J--.l0512.671
~ •. 09512.411

1+-"
j.-

.21015.331
.19014.821

.021(0.531
.01510.381

(unless otherwise specified)

RATING
Collector-Emitter Voltage
Collector-Emitter Voltage

SYMBOL
VCEO
VCEV

MJE13005
400
700

UNITS
Volts
Volts

Emitter Base Voltage
Collector Current - Continuous
Pulse

VESO
Ic
Icp

9
4

Volts

Base Current - Continuous
Pulse

Is
Isp

2
4

A

Emitter Current - Continuous
Pulse
Collector Power Dissipation
Derate above 25° C

6
12
2
16

A

TA =25°C

IE
IEP
Pc

Watts
mW/oC

=25°C

Pc

75
600

Watts
mW/oC

TJ. TSTG

-65 to +150

DC

Collector Power Dissipation
Derate above 25° C

Tc

Operating and Storage
Junction Temperature Range

719

8

A

thermal characteristics
ROJC

1.67

°CIW

Thermal Resistance, Junction to Ambient

ROJA

62.5

°CIW

Maximum Lead Temperature for Soldering
Purpose: W' from Case for 5 Seconds

TL

275

°C

Thermal Resistance, Junction to Case

electrical characteristics (Tc= 25° C)

(unless otherwise specified)

I SYMBOL I

MIN

VCEO(sus)

Collector Cutoff Current
(VCE = 700V, VSE = -1.5V)
(VCE = 700V, VSE = -1.5V, Tc = 100°C)
Emitter Cutoff Current
(VEB = 9V, Ic = 0)

CHARACTERISTIC

I

TYP

MAX

UNIT

400

-

-

Volts

ICEV

-

-

1
5

mA

lEBO

-

-

1

mA

off characteristics(1)
Collector-Emitter Voltage
(IC = 10mA, 18 = 0)

second breakdown
Second Breakdown with Base Forward Biased

SEE FIGURE 11

Clamped Inductive SOA with Base Reversed Bias

SEE FIGURE 12

on characteristics(1)
DC Current Gain
(IC = 1A, VCE = 5V)
(Ic = 2A, VCE= 5V)
Collector-Emitter Saturation Voltage
(IC = 1A, Is = 0.2A)
(Ie = 2A, Is = 0.5A)
(Ie = 4A, Is =1A)
(Ie = 2A, IB = 0.5A, Te = 100°C)
Base-Emitter Saturation Voltage
(Ie = 1A, Is = .2A)
(Ie = 2A, IB = .5A)
(Ie = 2A, Is = .5A, Te = 100°C)

hFE
VCE(sat)

10

8

-

-

60
40

-

-

0.5
0.6
1
1

V

-

-

-

-

-

1.2
1.6
1.5

V

Cob

-

55

-

pF

fT

4

-

-

MHz

-

-

0.1

,...s

-

0.7

-

0.9

-

-

0.9

0.16

-

VSE(sat)

-

dynamic characteristics
Output Capacitance
(VCS = 10V, IE = 0)
Current Gain - Bandwidth Product
(Ie = 500mA, VeE = 10V, ftest = 1.0 MHz)

switch i ngcharacteristics
Resistive Load
Delay Time .

(Vee = 125V. Ie = 2A

td

Rise Time

IS1 = -IS2 = OAA, tp = 25 ,...s

tr

Storage Time

Duty Cycle < 1%)

ts

Fall Time

tf

4

Inductive Load, Clamped
, Storage Time.
Crossover Time

-

(IC= 2A, Vcl amp = 300V

tsv

IB1 = O.4A, VSE(off) = -5V, TC = 100°C)

Fall Time

tc
tf

'.

(1) Pulse Test: Pulse Width - 300~s Duty eyc,le :5 2%.

720

4

,...s

v;

100
TJ = 12SoC

70

~

50

z

«
'"z

lsoc

I-

...

30

::>
u
u

20

.c

10

-a:
a:

......

.......

-

2!

r- I ...
~

bo

........

(}.D4

0.06

i

~ ~,

~
o

~ ~~

.........

VCE=2V
VCE=SV

I I I III

......

0.4

(.)

I'

W

u

>
0.4

"

t.)

LU

o

0.2

0.6

4

...
~
...

-

-

I
I
I
VSE(sat) @llc/le ; 4
VSE(on) @l VCE = 2 V

1. 1

'"«

I

I-

~

>

2SoC

LU

~ 0.7

-L... _

...en
w

2~_

ISD~C

«

:. O.S

-

.......

V

l - I-

>

0.3
0.04 0.0&

~~
~ c::

V

cC

V "'"

~~
~

~ ~

~ !;

0.1

O.OS

Z

I"

::>

0.4

0.&

4

1

4

~

I-

/1//
0.2sI-H++++----lI--+----lr-+-+-H-+++----:
~p..r~
/V~+--I
I

25 0 C. . / V .....

FIGURE 4 - COLLECTOR-EMITTER SATURATION VOLTAGE

w

~
~

0.1
-0.4

"'"

-

12SOC

7~OC

/

I

./

I

/

-

REVERSE

FORWARD
0

1

J

I

I

/

25°C

-0.2

/

J.
Cib

1k

I

u::- 700

500 C

~

I

J

/

/

Q

u

J

/

100°C
10

/ j II

t-H-t-t+t--1r-t--1'--t-t-t-t-+ TJ = -S50C

Ie. COLLECTOR CURRENT (AMP)

I

/

I

Q

3

0.3SI-H-I-H-+--1I--+--lr-+-+-H-+t+---I-+---:/N.,l+i

2k

100

0.7

O.OS Ll..-I-L..u...l---JI--.l.---JI--.l.--'-:LJ..-U...l-__'---:--__L..-..J
0.04 0.06
0.1
0.2
0.4 0.6
2
4

>

0.2

I---TJ; IS00C

I-

O.S

0

~VCE=2S0V

3

0.3

U

10k

...a:
a:
...a:
...

0.2

_~+-~C~B~=T---~+---~~~+4~4-__+-1-__+-~

IC. COllECTOR CURRENT (AMP)

1k

:'\,.

r--...

_ UJ

FIGURE 3 - BASE-EMITTER VOLTAGE

C

~

~

8.; 0.'SI-I-+++++--+-+--t--::::J1oo--t4"":J;.""-t".P""'~~+-+--+-I
L--!----~ I,,:::I::=~
IS0 C

i--'" r--""

I
0.1

~

0.45I-H-I-H-~-l--+--l--+-HH-+t+--""I-+---il-i~

~ '.L

I

II>

~

cl

cn _

... ""./

~-

I-

~

k....- C6

~

I

II:

I-



u

a:

0.5

" , ,,500
" 'I..

......

"

"

0

....
u
w

...J
...J

0

~s

r--

....
w
a:
a:

a:
o

....
e..>

.~

" I'.. :'\.,

0.1

\ \\
\ \ r\.'"

:::>
u

,,5 ms ,,:'\.

0.2

\\\i\.

z

1 ms

w

...J
...J

\

o

u

e..>

~ 0.05

TC <; lOODC_
lSI < 2,0 A

,\\

~

-

I

\.

a:
:;;

..:..

0.02

MJEI300~-

0.01

5

10

20

30

50

70

I
100

I~ -

a
a

I
200

300400500

VCE, COLLECTOR EMITTER VOLTAGE (VOLTS)

M~E

100

200

300

13005

,'"
''""

400

~~(Off)=9V

~

~~
-....,... 5 V

f'....

SOD

.......

600

3V
1.5 V
100
800

VCEV, COLLECTOR EMITTER CLAMP VOLTAGE (VOLTS)

FIGURE 12- REVERSE BIAS SWITCHING

FIGURE 11 - FORWARD BIAS SAFE OPERATING AREA

SAFE OPERATING AREA

722

MJE13006

NPN POWER TRANSISTORS

300 VOLTS
8 AMP, 80 WATTS

Designed for switching regulator, DC-DC converter, AC-DC
inverter, high voltage, high speed switching applications.

NPN
COLLECTOR

Features:
• VCEO(sus)
• VCEV

=300V (Min).
EMITTER

=600V blocking capability

CASE STYLE TO-220AB
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

• Excellent switching time: tr = 1.5 j.LS (Max.),
tf = 0.7 j.LS (Max.)

.404(10.26)

. ~ ~~\~~~\
I·
I-L

.190(4.831
.170(4.32Irt .055(1.391
1
.04811.221

.38019.651~·

__ +

.--.

_ -.

.265(6.731
.245(S.221

1

•

J---t---i-----l,[--.i--~
.

+

: ::~:~:~~:DIA.

CASE
TEMPERATURE
REFERENCE
, . / POINT

:~~~\~.g~:----,

~

~591

.gg~l~diJI

.130(3.31

t

TERM.l

r.l111114T+--,

TERM.2'/
TERM.3

.0331~.841

.027(0.S91

.!h.-r--.

.107(2.721
.087(2.211

105 (2.S7 1
~ .:o95i2.4f1

.055(1.391
.1
.04511.141 ---.,

maximum ratings (TA = 25° 9)

.500(12.7JMIN.

.Q55(1.391
.045(1.141

1--.
I+-

.210(5.331
.190(4.821

.021 (0.531
.01510.381

(unless otherwise specified)
MJE13006
300
600

UNITS
Volts
Volts

9

Volts
A

RATING
Collector-Emitter Voltage
Collector-Emitter Voltage

SYMBOL
VCEO

Emitter Base Voltage
Collector Current - Continuous
Pulse

VESO
IC
ICp

8
16

Base Current - Continuous
Pulse

Is
Isp

4
8

A

Emitter Current - Continuous
Pulse
Collector Power Dissipation
Derate above 25° C

12
24
2
16

A

TA=25°C

IE
IEP
Pc

Watts
mW/oC

Tc = 25°C

Pc

80
640

Watts
mW/oC

TJ, TSTG

-65 to +150

°C

Collector Power Dissipation
Derate above 25° C

VCEV

Operating and Storage
Junction Temperature Range

723

thermal characteristics
ROJe

1.S6

°CIW

Thermal Resistance, Junction to Ambient

RBJA

62.S

°CIW

Maximum Lead Temperature for Soldering
Purpose: W' from Case for S Seconds

TL

27S

°C

Thermal Resistance, Junction to Case

electrical characteristics (T c

I

=25° C) (unless otherwise specified)
I SYMBOL I

MIN

VeEO(sus)

Collector Cutoff Current
(VCE = 600V, V8E = -1.SV)
(VCE = 600V, V8E = -1.SV, Te = 100°C)
Emitter Cutoff Current
(VE8 = 9V, Ie =0)

CHARACTERISTIC

I

TYP

MAX

UNIT

300

-

-

Volts

leEV

-

-

1
S

mA

IE80

-

-

1

mA

off characteristics(1)
Collector-Emitter Voltage
(Ie = 10mA, 18 = 0)

second breakdown
Second Breakdown with Base Forward Biased

SEE FIGURE 1

Clamped Inductive SOA with Base Reversed Bias

SEE FIGURE 2

on characteristics(1)
DC Current Gain
(Ie = 2A, VeE = SV)
(Ie =SA, VeE = SV)
Collector-Emitter Saturation Voltage
(Ie = 2A, 18 = O.4A)
(Ic = SA, 18 = 1A)
(Ie = 8A, 18 = 2A)
(Ie = SA, 18 = 1A, Tc = 100°C)
Base-Emitter Saturation Voltage
(Ie = 2A, 18 = O.4A)
(Ic =SA, 18 = 1A)
(Ic = SA, 18 = 1A, Tc = 100°C)

8
S

-

60
30

-

-

1
2
3
3

V

-

-

1.2
1.6
1.S

V

Cob

-

90

-

pF

fT

4

-

-

MHz

tel

-

-

0.1

,.,.s

-

1.S
0.7

-

2.3

-

0.7

hFE
VeE(sat)

VSE(sat)

-

dynamic characteristics
Output Capacitance
(VC8 = 10V, IE =0, f = 0.1 MHz)
Current Gain - Bandwidth Product
(Ie = SOOmA, VeE = 10V, ftest = 1.0 MHz)

switching characteristics
Resistive Load
Delay Time

(Vee

=12SV, Ie =SA

Rise Time

181 = -182 = 1A, tp = 2S ,.,.s

tr

Storage Time

Duty Cycle < 1%)

ts

Fall Time

tf

3

Inductive Load, Clamped
Storage Time
Crossover Time

Inductive Load (Ie = SA,
Vcl amp = 300V, 181 =1A,

tsv

V8E(Off) = -SV, Tc = 100°C)

tc

(1) Pulse Test: Pulse Width -300l's Duly eycle :5 2%.

724

-

,.,.S

20

l-

I--

I--

.+-~

I--

10

a:
::E

$

ex:
ex:

8

1 ms

I-

ffi

101~ ~

')..
100,,5

5
DC 1"" ......

2

r-...

1"-

$

"-

i'.

::>

ex:

"

- -

::

0.05

I\\.

~~

TC';; 1000 C
I---IBI = 2.5 A

\\' ~
'\ ."-.
.'\.. '"
MJE13006

w

-"
-"
0

"'

4

t.>

THERIMAL LIMIT
........
- - - BONDING WIRE LIMIT
SECOND BREAKDOWN LIMIT
CURVES APPLY BELDW RATED VCED
MJE13006
I
I I I
I I
I
I
200
10
20
30
50 70 100

~0.1

6

0
le..>

TC = 25 0 C

o

~

a:
::;;

t.>

:5 0.5
t;
j 0.2

10

.~_-l

~J. I

c.3

2

I

300

500

100

VCE. COLLECTOR - EMITTER VOLTAGE (VOLTS)

300

200

400

'"

~VBE(off) = 9 V -

~
-............: 3.

5. V
V
1.5 V
700
600

500

800

VCEV. COLLECTOR·EMITTER CLAMP VOLTAGE (VOLTS)

FIGURE 2 - REVERSE BIAS SWITCHING SAFE OPERATING AREA

FIGURE 1 - FORWARD BIAS SAFE OPERATING AREA

The Safe Operating Area figures shown in Figures 1 and 2

a~e

specified ratiflgs for these devices under the test conditions shown.

1.0

-..;~

ex:

rf".,

0.8

~

o

l-

t.>

«

u..
C>

C
w

r- ............

0.6

--- ---

"-

THERMAL
DERATING

~ 0.4

o

ex:
w

;;:

a..

-r--.

......

~

'"~
o

SECOND BREAKODWN
DERATING

"i"-.

0.2

........

FIGURE 3 -FORWARD BIAS POWER DERATING

T1J 1- 1500

<

0

t--

w
ex:
ex:

l'-.

K

OC

t.>

W

~

10

-55 0 C
I

8

'"

FIGURE 4 TYPICAL THERMAL RESPONSE [(ZOJC(t)]

0.3

0.5 0.7

-,

~

w

C>

\

~

"

C>

>

a:

I'-- '\ f\
r-

IC= 1 A

5 A

3 A

w

ci:
o

-

\

~

t.>.

w

j
o

'"
5

\

O.B

l-

~

0.4

\

BA

\

w

'"

2 ., ,,3

1.2

lI-

:E

TJ = 25 0 C

-\

1.6

«

·1
0.2

0.3

C>

VCE = 5V .

4

0.5

160

I--...

6

0.1

0
~

b

::>

2:.

a:

'2!

t.......
z

C>
IZ

:IE

......

140

.100
120
60
80
TC. CASE TEMPERATURE (DC)

40

-

,
""-

40

..

N

::;

0.7

,

,

\

""-

~
,.

t.>

f\

,f"... f....

t-- I -

W
t.>

>
10

°

0.050.0l 0.1

IC. CDLLECTOR CURRENT (AMP)

0.2

0.3,.

0.,5

0.,7

2,

3

IS. BASE CURRENT (AMP)

, FIGURE 6 - COLLECTOR SATURATION REGION'

FIGURE 5 -DC CURRENT GAIN

725

1.8

0.7

!

1.6

0.6

c;:; 1.4

~ 0.5

Ic/la=3

I....I

~ 1.2
u.o

TJ = -55°C

S
0

1--"250C' - ' "

'"
>' 0.8
0.6

!--'-

0.4
0.1

0.2

--0.3

0.5

.....
......

t:::Jo:c

---

,.......

i..-' ......

V

~ 0.4
u.o

'"~

"'"

TJ = - 55°

0.3

o

..... r-""

>
>' 0.2

V

3

0.2

10

_

_

.....

r--TJ = 1500C

Z

100°C
75°C

a:

:=u

25°C

0.7

2

3

10

FIGURE B - COLLECTOR·EMITTER SATURATION VOLTAGE

I

,

I

.e

u.o
~ 500

u

I

I
./

125°C

~ 100

1/ I I
1/ 1 I V
/

I

lK

I-

150°C

~

10K

~ VCIE = 250 lV



0
.....

0
.....

c{

r-tc-' I---

>

M

"!

I"
--

VeE

>

rt I--\-t li .....!-tti.....

/10%

Vclamp
IS-

trv

1\90% ICM

0
III

~

~

10% ........
ICM - 2%~
Ie

W

Z

Cl

a:
a:

~

w

--- - --- -

c{

oJ

a

:J

u

>

....- ~

Ie
veE

TIME
FIGURE 13 - INDUCTIVE SWITCHING MEASUREMENTS

TIME

20 ns/DIV

FIGURE 14 - TYPICAL INDUCTIVE SWITCHING WAVEFORMS
lat 300 V and SA with ISl = 1 .SA and-VSEloffl = 5 VI

727

---

728

MJE13007

NPN POWER TRANSISTORS

400 VOLTS
8 AMP, 80 WATTS

Designed for switching regulator, DC-DC converter, AC-OC
inverter, high voltage, high speed switching applications.

NPN
COLLECTOR

Features:
• VCEO(sus)
• VCEV

=400V (Min).
EMITTER

=700V blocking capability

CASE STYLE TO-220AB
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

• Excellent switching time: tr = 1.5,.,.s (Max.),
tf = 0.7 ,.,.s (Max.)

.35519.021
.32518.251

:::~I~:~:iD'A.

rt

TERM.l

ii>l11I14rT-,

TERM.2

.00610.151
.00110.0251

.500112.7IMIN.

.05511.391
.04511.141

TERM.3

.0331~.841

.02710.691

.I~r-. 10512.671
~ _.09512.411

.05511.391
.1
.04511.14'---"

maximum ratings (TA = 25° C)

I->-I--

.21015.331
190(4.821

.

rHJ

.10712.721
.087(2.21)

.02110.53)
.01510.381

(unless otherwise specified)

RAT,NG
Collector-Emitter Voltage
Collector-Emitter Voltage

SYMBOL
VCEO
VCEV

MJE13007
400
700

UNITS
Volts
Volts

Emitter Base Voltage
Collector Current - Continuous
Pulse

VESO
IC
Icp

9
8
16

Volts
A

Base Current - Continuous
Pulse

IS
Isp

4
8

A

Emitter Current - Continuous
Pulse
Collector Power Dissipation
Derate above 25° C

12
24
2
16

A

TA = 25°C

IE
IEP
Pc

Tc=2SoC

Pc

Collector Power Dissipation
Derate above 25° C
Operating and Storage
Junction Temperature Range

TJ, TSTG

729

80

Watts
mW/oC

640

. Watts
mW/oC

-65 to +150

°C

thermal characteristics
Thermal Resistance, Junction to Case
Thermal Resistance, Junction to Ambient
Maximum Lead Temperature for Soldering
Purpose: Va" from Case for 5 Seconds

electrical characteristics (T c

=25

0

C)

ReJC

1.56

°CIW

ReJA

62.5

°CIW

TL

275

°C

(unless otherwise specified)

1 SYMBOL 1 MIN

CHARACTERISTIC

H-TYP . ·1.· MAX

UNIT

off characteristics(1)
Collector-Emitter Voltage
(Ic = 10mA, Is =0)
Collector Cutoff Current
(VCE =700V, VSE =-1.5V)
(VCE =700V, VSE =-1.5V, Tc

=100°C)

Emitter Cutoff Current
(VES =9V, IC =0)

VCEO(sus)

400

-

-

ICEV

-

-

1
5

mA

IESO

-

-

1

mA

Volts

second breakdown
Second Breakdown with Base Forward Biased

SEE FIGURE 1

Clamped Inductive SOA with Base Reversed Bias

SEE FIGURE2

on· characteristics(1)
DC Current Gain
(Ic =2A, VCE =5V)
(Ic =5A, VCE =5V)
Collector-Emitter Saturation Voltage
(Ic =2A, Is =O.4A)
(Ic =5A, Is = 1A)
(Ic =8A, Is =2A)
(Ic =5A, Is =1A, Tc = 100°C)
Base-Emitter Saturation Voltage
(Ic =2A, Is =O.4A)
(Ic =5A, Is = 1A)
(Ic =5A, Is = 1A, Tc =100°C)

8
5

-

60
30

-

-

-

1
2
3
3

V

-

-

V

-

1.2
1.6
1.5

-

90

-

pF

fT

4

-

-

MHz

td

-

-

0.1

p's

tr

-

-

1.5

ts

-

-

3

tf

-

-

0.7

tsv

-

-

2.3

-

0.7

hFE
VCE(sat)

VSE(sat)

-

dynamic characteristics
Output Capacitance
(VCS = 10V, IE =0, f =0.1 MHz)
Current Gain - Bandwidth Product
(IC =500mA, VCE = 10V, ftest =1.0 MHz)

Cob

switching characteristics
Resistive Load
Delay Time
Rise Time
Storage Time

=125V, IC =2A
IS1 =-IS2 =O.4A, tp =25 p's
Duty Cycle < 1%)
(VCC

Fall Time
Inductive Load, Clamped
Storage Time
Crossover Time

Inductive Load (IC =5A,
Vcl amp =300V, IS1 = 1A,
VSE(off)

=-5V, TC =100°C)

tc

(1) Pulse Test: Pulse Width - 300l-ls Duty Cycle:5 2%.

730

p's

20

I-

-

-

~

10
Ci::
:IE

:!

-

10

, j..."....l---L.

1-.. 1011'~

lms

.......

DC

2

a:
a:

II

1001's

5

I-

ffi

.....

~J.

'"'g; 0.5

TC

t;
w
o

~

0.05
10

:!
a:

...J
...J

"

I

I I

30

50

\' ,'\..."

'-'

!::?

200

100

300

"""

I-

'"'«
~

'"

0.6

'"z>=

100

r--....

i'--.

w

;;:

i'

........

~ 0.2

a~e

--.... -

~

0.5 H+-HtHttI--H-I--t+IItHIH+-I+f:WKl.....
7.II1IF-t+1+flftt-+++t+iftttl

a:

0.3

L-+tffiHtt-++-++++Htt-::::PoI""'F-HoI'BtF12- H-++H-ittt-Hc-+-t+Htt1
I-tI-t

~

0.2

1-i1:;';IM-++f:!:ItA+-++mHb..l4~~HI+Hl4-l-l+I+IifH-+++H1fl.Hl

~

TIJ 1=

iiia:~

0.1
0.07
a: 005
~ .
...
!Z 0.03

0.05

t-~00-L2~~~~~t-H+HH-r+~
~"

DUTY CYCLE, 0= tl1tIH2H+-++++TIH

~

0.02

~-1.
~--bfl+H&+H-+++H1H--1H--H-+l111j.-1 T
-.j t2 ~ P(pk)

1=

0.01

tJf iTmr(ir
0.05 0.1

0.2

0.5

1.0

2.0
5,0
TIME (m.)

10

20

,



a:

0.3

0.5

0.7

IC = 1 A

5A

~

UJ

c:C

\

'-'
UJ
...J
...J

r-.

\

\

0.8

0
I-

~

1\
r-....

0.4

I"-

0

'-'

w

'-'

>
10

8A

\

lI-

I

3
IC. COLLECTOR CURRENT (AMP)

1.2

3 A

UJ

.............

VCE = 5V
0.2

\
\

I-

I'--.... '\
55 0C

1.6

'"
'-'
u

500

400

FIGURE 2 - REVERSE BIAS SWITCHING SAFE OPERATING AREA

"r--....

'"Z

300

200

VCEV. COLLECTOR·EMITTER CLAMP VOLTAGE (VOLTS)

SECONO BREAKDOWN
DERATING
-

r- r-,...

..

THERMAL
DERATING



= 25 0 C

20

I~ \

::E

THERIMAL LIMIT
- - - BONDING WIRE LIMIT
........
SECOND BREAKDOWN LIMIT
CURVES APPL Y BELOW RATED VCEO

'"'.0.1

~

Ci::

:"'-.

--

j 0.2

8

I........

" '-

:::>

==

00.050.07 0.1

0.2

0.3

-

-

0.5

\
"\....,

r-

0.7

1

)B. BASE CURRENT (AMP)

FIGURE 6 - COLLECTOR SATURATION REGION

FIGURE 5 -DC CURRENT GAIN

731

10k

en
...

....

1.8

0.7

1.6

0.6

1.4

...en....

IC/IS = 3

0

~ 1.2

TJ= -55 0 C

w

c:t

-

",

I--"""

~
....

>
>' 0.8

-

0.6

-

l -I-"

j..---

0.40.1

0.2

0.5 OJ

0.3

.

""

0

>

:>

~

ac:

...ac:
...e....

I
I--TJ

10

I
!

0.2

~

,......
0.5

0.3

I-"'"

/ ' lbf
d 25°C

OJ

I

10

3

IC. COllECTOR CURRENT (AMP)

1/ I
'1/ J I

I

.- .....

= 1500 C

I

FIGURE 8 - COLLECTOR·EMITTER SATURATION V.OLTAGE

I

1

I

./

u:.e
....

II

I

;t
~

50 0 C

-

t-

10 O
Cob

~ FREVERSE

FORWARD

-0.2

0

+0.2

100.1 0..2

It5

0.5

+0.6

+0.4

t=

-

20

25 0 C
0.1
·0.4

20 0

I

i

50

/

1

Cib

lK

~ 50 0

...«
;:;

1

I

10

~

2K

I

J

=FTJ = 25 DC

5K

I
I

I

-"

1000 C
75 0 C

....
....

~

~

--

0.1

/

125 0 C

100

:;)

o..,

0.2

~

13

A

~lb 150 0 C

0.3

IC. COLLECTOR CURRENT (AMP)

~VCE =250 V
'j
I

lK

...z

TJ =. 55°'i/.

&

~ ~

10K

10K

.3

=3

c:t

.......«

FIGURE 7 - BASE-EMfTTER .SATURATION VOLTAGE

;(

ICIIS

0

'"

~oC V V

0.5

~ 0.4
w

..,. "'1/ '"

'-"":'15 0 C' ......... I-"'"

0

I

..

10

20

50

-'-'---

IOU 200

II

500 1000

VR. REVERSE VOLTAGE (VOLTS)

VBE. BASE·EMITTER·'VO LTAGE (VO LTS)

FIGURE 10 - CAPACITANCE

FIGURE 9 - COLLECTOR CUTOFF REGION

RESISTIVE SWITCHING PERFORMANCE
2K

lK
700
500

'WI'

..s

" '\."

300

w
::Ii 200

VCC = 125 V
ICIIB = 5
TJ = 25 0 C

~

" """

/
.......

"

::Ii

--

-

"

i=

300

"

0.3

0.5 0.7

20 0

1

2

3

5

100
0.1

10

r-- i'- .....

~

t--..
0.2

VCC = 125V
ICIIS = 5
TJ = 25°C

!'It..

i'i'

0

50
0.1

700
~
W 500

V

.....

Id@ VBE(off) = 5V

100

lK

/

"-

i=

/

IS

0.2

"
0.3

i'
0.5

0.7

1

-

2

IC. COllECTOR CURRENT (AMP)

IC. COLLECTOR CURRENT (AMP)

FIGURE 11 - TURN·ON TIME

FIGURE 12 - TURN-OFF TIME

732

:.-- ....

V

t- If

3

10

-

~

Ie

90% VCEM

-+--~

--Isv

--J--,

IL -----fI"
10%

18-

r-

-- --".,-

- -- ---

\

~

.

.-- ~i

I
I

VeE

=::

c
....

i
-1-- f--

>

c
....

<{
M

>

-

i

I"!

0%' .......

VCEM

90% lSI

Ie

t~fj-- 1'-11'-r-Ic~ l -

h

Vclamp

r--

I,v

- ---

Vcl amp -

\90% ICM

ICM- 2%_
Ie

0

10

fZ
w

(!)

:J

a

w
<{

a:
a:

-- -

f-

..J

u

>
Ie
veE

TIME

TIME

FIGURE 13 - INDUCTIVE SWITCHING MEASUREMENTS

20 ns/DIV

FIGURE 14 - TYPICAL INDUCTIVE SWITCHING WAVEFORMS
(at 300 V and 8A~i1h IB1= 1.6Aand VBE(off) = 5 VI

733

734

MJE13008

NPN POWER TRANSISTORS

300 VOLTS
12 AMP, 100 WATTS

Designed for switching regulator, DC-DC converter, AC-DC
inverter, high voltage, high speed switching applications.

NPN
COLLECTOR

Features:
• VCEO(sus) = 300V (Min).
• VCEV

EMITTER

=600V blocking capability

CASE STYLE TO-220AB
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

• Excellent switching time: tr = 1 P.s (Max.),
tf = 0.7 P.s (Max.)

.404110.261 . ~ ~g\~~~11
.38019.651.j· I '

I-L

,
_ -t

.19014.831

'17014'321~

..-----.

t

1

.26516.731
.24516.221

•

/t--+--I----t--r
+

.. 1144511133·.65881IDIA.

.05511.391
.048(1.221

CASE

--'-1

TEMPERATURE
REFERENCE
/ ' " POINT

:~~~\~:~;I--'

~

~591
.00610.151
.001(0.0251

~.31
TERM.l

.500112.7IMIN.

TERM.2

.05511.39
.045 1.14

TERM.3
.03310.841
.02710.691
.055(1.391
_,
.04511.141--"

maximum ratings (TA = 25° C)

1--"
f.-

.21015.331
.19014.821

.021(0.531
.01510.381

(unless otherwise specified)

RATING
Collector-Emitter Voltage
Collector-Emitter Voltage

SYMBOL
VCEO
VCEV

Emitter Base Voltage
Collector Current - Continuous
Pulse
Base Current - Continuous
Pulse
Emitter Current - Continuous
Pulse
Collector Power Dissipation
Derate above 25° C

VEBO
Ic
ICp
18
IBP
IE
IEP
Pc

Collector Power Dissipation
Derate above 25° C

.10712.721
.087(2.21,

hr.l0512.671
~ •. 09512.41 1

TA = 25°C
Tc

=25°C

Operating and Storage
Junction Temperature Range

735

MJE13008
300
600

UNITS
Volts
Volts

9

Volts

12
24
6
12
18
36
2
16

A

Watts
mW/oC

Pc

100
800

Watts
mW/oC

TJ. TSTG

-65 to +150

°C

A
A

thermal characteristics
Thermal Resistance, Junction to Case

RBJC

1.25

°CIW

Thermal Resistance, Junction to Ambient

RBJA

62.5

°CIW

Maximum Lead Temperature for Soldering
Purpose: %" from Case for 5 Seconds

TL

275

°C

electrical characteristics (Tc = 25° C)

(unless otherwise specified)

I SYMBOL I

MIN

VCEO(sus)

Collector Cutoff Current
(VCE = 600V, VeE = -1.5V)
(VCE = 600V, VeE = -1.5V,TC·= 100°C)
Emitter Cutoff Current
(VEe = 9V, Ic = 0)

CHARACTERISTIC

I

TYP

MAX

300

-

-

ICEV

-

-

1
5

mA

IEeO

-

-

1

mA

UNIT

off characteristics(1)
Collector-Emitter Voltage
(Ic = 10mA, Ie = 0)

Volts

second breakdown
Second Breakdown with Base Forward Biased

SEE FIGURE 1

Clamped Inductive SOA with Base Reversed Bias

SEE FIGURE 2

on characteristics(1)
DC Current Gain
(IC = SA, VCE = SV)
(Ic = SA, VCE = SV)
Collector-Emitter $aturation Voltage
(Ic = SA, Ie = 1A)
(Ic = SA, Ie = 1.6A)
(IC = 12A, Ie = 3A)
(Ic = SA, Ie = 1.6A, Tc = 100°C)
Base-Emitter Saturation Voltage
(IC = SA, Ie = 1A)
(IC = SA, Ie = 1.6A)
(Ic = SA, Ie = 1.6A, Tc = 100°C)

S
6

-

40
30

-

-

-

1
1.S
3
2

V

-

-

1.2
1.6
1.S

V

-

130

-

pF

fT

4.

-

-

MHz

0.1

p's

2.3

hFE
VCE(sat)

VeE(sat)

dynamic characteristics
Output Capacitance
(Vce = 10V, IE = 0, f = 0.1 MHz)

Cob

Current Gain - Bandwidth Product
(IC = SOOmA, VCE = 10V, ftest = 1.0 MHz)

switching characteristics
Resistive Load
Delay Time

(VCC = 12SV, IC = SA

td

-

Rise Time

le1 = -le2 = 1.6A, tp = 2S P.s

tr

-

Storage Time

Duty Cycle < 1%)

ts

-

-

-

-

Fall Time

tf

1
3
0.7

Inductive Load, Clamped
Storage Time

(Ic = SA, Vcl amp = 300V

tsv

Crossover Time

le1 = 1.6A, VSE(off) = -SV, Tc = 100°C)

tc

(1) Pulse Test: Pulse Width - 300ps Duty Cycle::; 2%.

736

0.7

p's

4

100
S0

a::
:::E

...z~
w
oc
oc

-

20

-

-

0....

1001's

lOI's

..

2

a::

1 ms

S

r-

TC = 2S oC- I-dc

21-

.......

"-

...

"

1 ---T~~RMAL LIMIT
~ O. SI:--- BONOING WIRE LIMIT
--SECONO BREAKOOWN LIMIT
t;
w
CURVES APPLY BELOW RATEO VCEO
.... O. 2
~ O. 1
~O.O S
::>

20

SO

30

70

8

I-

w

I\.

....
....
o

6

,

c.3

4

.......

100

200

300

l\.

1\ I\.
~

""-

"

I

SV
~ f......
3 V
I"' r-;:: I.S
V

I--

0

o

SOO

VBE(oll) = 9 V-

MJEI300S-

~

2

. MJE13008

\.

1\

(.)

~

10

\
TC'; 1000C
IBI = 2.S A

(.)

.......

...

0.02
0.0 1
S

1\

0

:::E
~
a:
o

100
200
300
SOD
400
600
700
VCEV. COLLECTOR·EMITTER CLAMP VOLTAGE (VOLTS)

VeE. COLLECTOR - EMITTER VOLTAGE (VOLTS)

800

FIGURE 2 - REVERSE BIAS SWITCHING SAFE
OPERATING AREA

FIGURE 1 - FORWARD BIAS SAFE
OPERATING AREA

The Safe Operating Area figures shown in Figures 1 and 2 are specified ratings for these devices under the test conditions shown.

1

~

O.8

1'0~_

r-

~

a:
o

t;
~ O. 6

~

"'-

t:I
Z

~
ffi

CI

........
~

"',

0.4

i'-..

a:
w

~ O. 2
...

20

40

i

SECONO BREAKOOWN
f-OERATING

"

Na:

-

1""-"

0.5
0.3

~
~

........ r-....

r--...

THERMAL
DERATING

o

_•

is 0.7~

0.2

,
I'..

R/lJC = 1.2S·C/W MAX
D CURVES APPLY FOR POWER

=

I- 0.05

;:

I- J.~

~

140

1-i1~1-++H#It=+R-I++Hl~~~~rn+m+H-H+lHH+-t+.J-H.1ll

~

i

60
80
100
120
Te. CASE TEMPERATURE (DC)

~

~

h.J

0.1

::!

"-

II

~ ~~O;'I~II~i~ml~~~tZaJC(I) rll) RaJc

ill

0.07
~ 0.05

.........

1--l+-I-I+H-IH--I-I-++l-J.Hl.I-++H+J:I,~,IfIIF~++If.IHIf.++-H++I-Hl

~

0.03
0.02
0.01

160

~~~ETT:J~~HOWN

TJlpk) -TC Plpk) ZaJcll)
=

'?

DUTY CYCLE. D= 11/12

SLJL--L

L.-=+-1.MFH.M~+-H~fH-+++HI

""1-1"'1
1

WTmrn
~-

0.01 0.02

0.05 0.1

T

1111--1

~ 12 ~

E

0.2

0.5

1.0

2.0
5.0
TIMEI,n.)

10

1ttt-+t-+++1tIH

PIPk) 1ttt-++-H+t+11+1

20

50

100 200

SOD

10k

FIGURE 4 TYPICAL THERMAL RESPONSE [(ZeJc(t)]

FIGURE 3 - FORWARD BIAS POWER DERATING

50

en

I-

-'

30



(.)

u

...
..:;

1.6



a:

IC = 1 A

1. 2

UJ
l-

I-

~~p..

:g
UJ

ci:

O. 8

0
I-

,

1

\

....
.... o.4

UJ

~

0

I'

S

10

..:;
(.)
>

20

0
O.OS 0.07 0.1

1\

\

0.2

\
\

"
" r-.... -'\

f'...

r--....

(.)

I'

1\12':

1\

1\

1\

(.)

!'.....

1\
8A

SA

\3A

0.3

O.S

0.7

1

lB. BASE CURRENT (AMP)

IC. COLLECTOR CURRENT (AMP)

FIGURE 6 - COLLECTOR SATURATION REGION

FIGURE 5-DC CURRENT GAIN

737

"- r--..
S

1.4

O. 7

I II I
" I I.
TJ = 150 0 C I

0.6
1.2
ICIIS = 3

en
....
.....

--

Q

:::.

~

UJ

c:>

«
....

..... 0.8
Q
>
>'
0.6

25°s,...

--

.-'

~

.s., .......
~ ......

V

~

Q

:::.

,I

/

0.3

~

~ 0.3

~~

~ .....25 0 C

Q

> 0.2
>'

~

o. 1

0.5 0.7

2

5

3

1

7

o

0.2

20

0.3

0.5

4K
=VCE = 2S0 V

'j

I

/

/

/

V1 J

L1

I

I---

Cib

2K

I

......

~

-TJ= ISOoC

TJ =25 0 C

I
./

12S oC

~ 100

a:
=>
u
a:

...
""...

_

I

lK

...z

...

I

I

/

-

lK
~ 800
~ 600

/

I

./

7S u C

I

10
sooc

/

~ 400
i3
~
~ 200

I

/
FORWARO

0

+0.2

~

100
8a
60

2S oc
0.1 ~ F REVERSE
,04
·0.2

~Ob

t.;

'f'

Q

""~

-

z

100 0 C

0

4 0.1 0.2

+0.4

0.5

+0.6

2

1

10

5

VBE. SASE·EMITTER VOL TAGE (VOLTS)

RESISTIVE SWITCHING PERFORMANCE
2K

300
';

..s

'""

VCC= 12SV
Ic/lS = 5
TJ = 2S oC

"~ r-. . .

~.20 0

II

30 01'..

20 0

III
0.3

O.S

0.7

1

r-....

.......

I

10

100
0.2

20

"

" -

0.3

.......

V

......

O.S

If

...-

......~

0.7

IC. COLLECTOR CURRENT (AMP)

IC. COLLECTOR CURRENT (AMP)

FIGURE 12 - TURN·OFF TIME

FIGURE 11 - TURN·ON TIME

738

i'...
VCC = 12SV
Ic/lS = S
TJ = 2S oC

0

V

Id@VSE(off) = 5V

a

--

Is

70 0

""-

a

50
0.2

lK

'/

....

::E

-

I-"

"

/

~

UJ

10

~

~uu

FIGURE 10 - CAPACITANCE

lK
700

1 JU

SO

20

VR. REVERSE VOLTAGE (VOLTS)

FIGURE 9 - COLLECTOR CUTOFF 'REGION

500

20

FIGURE 8 - COLLECTOR·EMITTER
SATURATION VOLTAGE

10K

u

10

3

IC. COLLECTOR CURRENT (AMP)

FIGURE 7 - BASE·EMITTER SATURATION VOL TAGE

Q

2

0.7

IC. COLLECTOR CURRENT (AMP)

;(

--S5 0 C

~

:;

-I-

0."1.2

IclIs = 3

0.4

UJ

...... V150 0 C

.......

~
/J
/

O. S

II

TJ = -55 0

10

20

-

I

Ie

90% VCEM

I

I 1\90%1 Ie

10%

10%"

VCEM -----'

90% 181

---

ICM-

-- --\- - -- --- -- -- ............

I

..--

veE ~

>
o

trv

Vclamp

\

Ie

Vclamp -

ff, -.\:tti'" ..... ttif-tc~ r~
;/
I'\.

tsv

1 8 -f -

I

,--l

o
......

~

>

o

N

III
W

IZ

Cl

w

2%~

<{

a:
a:

I-

U

>

..J

o

:J

Ie

Ie
veE

TIME

TIME 20 ns/DIV

FIGURE 13 - INDUCTIVE SWITCHING MEASUREMENTS

FIGURE 14 - TYPICAL INDUCTIVE SWITCHING WAVEFORMS
(at 300 V and 12 A with IB1 = 2.4 A and VBE(offl =5 VI

739

740

MJE13009

NPN POWER TRANSISTORS

400 VOLTS
12 AMP, 100 WATTS

Designed for switching regulator, DC-DC converter, AC-DC
inverter, high voltage, high speed switching applications.

NPN
COLLECTOR

Features:
• VCEO(sus)

=400V (Min).
EMITTER

• VCEV = 700V blocking capability·

CASE STYLE TO-220AB
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

• Excellent switching time: tr = 1 J.LS (Max.),
tf

.404{10.261 . ~ ~~\~.~~\
.38019.651.j· I ·

=0.7 J.LS (Max.)

I-i..

.

_ -t

.

---.
I

.19014.831
.17014.32Irt .05511.391
I
.04811.221

.--.
f

.26516.731
.24516.221

•

CASE
TEMPERATURE
REFERENCE
/
POINT

----,

.22015.591

~

.00610.151·
.00110.0251
TERM.l
TERM.2
TERM.3

.0331~.B41

.1~.10512.671.

.05511.391--/
.04511.141

maximum ratings (TA

I-- .21015.331
I-- _ .19014.821

=25° C) (unless otherwise specified)

RATING
Collector-Emitter Voltage
Collector-Emitter Voltage

SYMBOL
VCEO(sus)
VCEV

Emitter Base Voltage
Collector Current - Continuous
Pulse
Base Current - Continuous
Pulse
Emitter Current - Continuous
Pulse
Collector Power DiSSipation
Derate above 25° C

VEBO
IC
ICp
18
IBP
IE
IEP
Pc

Collector Power Dissipation
Derate above 25° C

.10712.721
.08712.211

~" " ".09512.4 11

.02710.691

TA = 25°C
TC

=25°C

Operating and Storage
Junction Temperature Range

741

MJE13009
400
700

UNITS
Volts
Volts

9

Volts

12
24
6
12
18
36
2
16

A

Watts
mW/oC

Pc

100
800

Watts
mW/oC

TJ, TSTG

-65 to +150

°C

A
A

thermal characteristics
Thermal Resistance, Junction to Case

ROJC

1.25

°C/W

Thermal Resistance, Junction to Ambient

ROJA

62.5

°C/W

Maximum Lead Temperature for Soldering
Purpose: W' from Case for 5 Seconds

TL

275

°C

electrical characteristics (T c = 25° C)

I

(unless otherwise specified)

CHARACTERISTIC

I SYMBOL I

MIN

VCEO(sus)

ICEV

I

TYP

MAX

UNIT

400

-

-

Volts

-

-

1
5

mA

1

mA

off characteristics(1)
Collector-Emitter Voltage
(Ic =10mA, Is =0)
Collector Cutoff Current
(VCE =700V, VSE =-1.5V)
(VCE =700V, VSE =-1.5V, Tc
Emitter Cutoff Current
(VES =9V, Ic =0)

=100°C)

IESO

second breakdown
Second Breakdown with Base Forward Biased

SEE FIGURE 1

Clamped Inductive soa with Base Reversed Bias

SEE FIGURE 2

on characteristics(1)
DC Current Gain
(lc =5A, VCE =5V)
(Ic =BA, VCE =5V)
Collector-Emitter Saturation Voltage
(Ic =5A, Is =1A)
(Ic =BA, Is =1.6A)
(lc =12A, Is =3A)
(Ic =BA, Is =1.6A, Tc =100°C)
Base-Emitter Saturation Voltage
(Ic =5A, Is =1A)
(lc =BA, Is =1.6A)
(Ic =BA, Is =1.6A, Tc =100°C)

B
6

-

40
30

-

-

-

1
1.5
3
2

V

-

-

1.2
1.6
1.5

V

Cob

-

130

-

pF

fT

4

-

-

MHz

td

-

0.1

fJs

tr

-

-

1

fJs

ts

-

3

tf

-

-

tsv

-

tc

-

hFE
VCE(sat)

VSE(sat)

dynamic characteristics
Output Capacitance
(VCS =10V. IE =0, f

=0.1

MHz

Current Gain - Bandwidth Product
(Ic =500mA, VCE =10V, ftest =1.0 MHz)

switching characteristics
Resistive Load
Delay Time
Rise Time

=125V, Ic =BA
IS1 =-IS2 =1.6A, tp =25 fJs

Storage Time

Duty Cycle < 1%)

(Vcc

Fall Time

.7

Inductive Load, Clamped
Storage Time
Crossover Time

=BA, Vcl amp =300V
IS1 =1.6A, VSE(off) =5V, Tc =100°C)
(Ic

(1) Pulse Test: Pulse Width - 300 /-IS Duty Cycle:5 2%.

742

-

2.3
0.7

fJS

100
50

20

ii:'

~
....
zW

_. -

--

-

II:
II:

1 ms

-

TC = 25 DC- r-dc

u

g;

2

II:

......

0.5 : - - - BONDING WIRE LIMIT

G
w
..... 0.2

i5 o. I
u

--SECOND BREAKDOWN LIMIT
CURVES APPLY BELOW RATED VCEO

\
TC';;; 100DC
IBI =2.5 A

oj

4

1\
\.
\
\ \.

2

~

20

10

50

30

70

\.

6

'"

100

VBE(Dlfl

I'--..

~

~E1300 t -

-

~ I-...

-......

200

300

=9 V -

........ .....

5 V
3V1.5 V
IDa
BOO
200
300
400
500
600
700
VCEV. COLLECTOR·EMITTER CLAMP VOLTAGE (VOLTSI

MJEI3009

5

I\.

....o
e..>
w
....
....
o

B

u

'"

:} 0.05
0.02
0.0 I

1\

10

ii:'
:;;

:!

'"

1 §---T~~RMAL LIMIT

::l

10"s

100"s ...

10

5

--

14

500

VCE. COLLECTOR - EMITTER VOLTAGE (VOLTSI

FIGURE 2 - REVERSE BIAS SWITCHING SAFE
OPERATING AREA

FIGURE 1 - FORWARD BIAS SAFE
OPERATING AREA

The Safe Operating Area figures shown in Figures 1 and 2 are specified ratings for these devices under the test conditions shown.

1

~

1'0~1III1mID.

s:- r--

~

O. B
II:
.0

' ....
u

QO.7~

"""-

~

r-

.........1'-,

~ 0.6
UI
z

~

ffi

o

SECONO BREAKOOWN
DERATING
+-

~

THERMAL
DERATING

W

lI:

o. 2
o

20

0.3

~ 0.2

~

0.1
0.07

ffi

0.05

.'"

.........

,
"-

~

"

140

~

~

L..

J1..fL""!"

0.03

1 I

~--boI'l-tHtt+H-tt+t+It-I-++-l-tl111"'1

0.01

tAr iTmil Tr

160

0.02

0.05 0.1

Ittr+l-++tttttl

T

7.1 12 I- P(Pk) 1Hl-+++I+tt1H

0.2

0.5

1.0

2.0
5.0
TIME (ml)

10

20

50

100 200

500 10k

FIGURE 4 - TYPICAL THERMAL RESPONSE [(ZOJC(t)]

u;

....
....

w

-2S DC

20

W

II:

a:

::>
t.)
t.)

o

r-..2'~

j'-..

-

5S DC

10

.:

VCE tSV
0.3

O.S

0.7

1

TJ = 2S 0 C
1.6

'"<....
....

......... K'SODC

z

SO.2

READ TIME @II
TJ(pk)·TC=P(pk)ZoJC(I)
DUTY CYCLE. D= 11/12

0.02

o
~

30

W
....

ZOJC(I) = r(l) R8JC

11

am

I"- ......

0

~

D CURVES APPLY FOR POWER
~~8Ie~~~ml~~tROJC=
1.25'CIWMAX
r- 0.05
PULSE TRAIN SHOWN
f-~

i

~

I-

0.1

i!:

so

....
'"z

II

~

FIGURE 3 - FORWARD BIAS POWER DERATING

<

H+++++I-Hl-+++-ttlfttfjf--t+-I-+I:J;I.IH6~~+ttl-tHl+r-H-ttHffi
~.J
....
~

H I-fI-t-tHHIt--l-H-t+Httbl;","",FbW1'JIfi:::::'-t-H-ttHttt-+-t-t+ttHltt

:E

60
80
100
120
TC. CASE TEMPERATURE (DCI

40

05

a:

iii
W

II:

f

;

~

"""- r-

t"-.

0.4

-

"""- """-~

>

a:

1. 2

w

....

t:

~~

a5 o. B
II:

o

\
Ie = 1 A

\

\

,

\

\

t.)

w

j

~

O. 4

o

t.)

2

3

"

10

W

e..>

>

20

IC. COLLECTOR CURRENT (AMPI

o

0.05 0.07 0.1

0.2

1\
\

\

\

....
I-...

BA

5A

\3A

\

\

\

~
0.3

\

\12A

\
\

--

I'0.5

0.7

1

I\.

~

lB. BASE CURRENT (AMPI

FIGURE 5 -DC CURRENT GAIN

FIGURE 6 - COLLECTOR SATURATION REGION

743

"- ......

1.4

0.7

I I

1.2

...en....

-

1

Q

:::

WI

(:J

......
<

~

ICIIO = 3

i-' ~

2S°s..

D. 8

V

Q

>
>-

-

O. 6

l-

I-'"
O.

"d.2

0.3

~

0.5 0.7

1

'/

~

~

;

.......~ 0.3

...... V ,S00C

~

~ ~250e

~ 0.2

~

>-

o. 1
2

1

7

fo·

3

~VCE = 250 V

o

20

0.2

0.3

0.1

0.5

2

3

10

5

20

IC. COLLECTOR CURRENT (AMP)

-i

'1·

L

V /

I

I

II' j

J

/

j
/

FIGURE 8 - COLLECTOR-EMITTER
SATURATION VOLTAGE

•. ~ J

/

.1

4K

I

2K

Cib

r--TJ = 2soe

...z..3
~

f--ssoe

~

FIGURE 7 - BASE-EMITTER SATURATION VOLTAGE

C(

IJ

:::...

IC. COLLECTOR CURRENT (AMP)

lK

IJ

lelle = 3

;:: 0.4

~

.-....: ~

i""'~

ddI

TJ' = "510

o.s

V

TJ = -55°':'- ~ ....

..

III

0.6

I--TJ = 1500C

-~ . /

125°C

100

-'-I

:e.- 80lK0

.1

lj 600
~ 40 0

II:

::>
u

100°C
75 u e

II:

./

I

<

~ 20 0
u
u-

u

....

WI

sooe

oJ
Q

V
/

u

~

+0.2

1"-

80
60

FORWARD

D'"

~Ob

100

25 0 C
0.1 F= 1= REVERSE
-04
-02

--

<:i

I

J

:: 10

I-

0
4 0.1 0.2

1

0.5

+0.6

+0.4

10

5

2

50 ·luu

20

~uu

VR. REVERSE VOLTAGE (VOLTS)

VeE. eASE·EMITT.ER .VOL TAGE IvOl TS)

FIGURE 10 - CAPACITANCE

FIGURE 9 - COLLECTOR CUTOFF'REGION

RESISTIVE SWITCHING PERFORMANCE
2K

IK
70 0

SO O~,
300

""

Vee.= 125\i
leliB =!;
TJ = 250 e

"~'i'.,

;:
300

"

50

0. 2

0.3

0.5

"

200

111

1 I

0.7 . 1

2

r-....
3

.......

V

r-....
""'i'

......
5

t10

100
0.2

20

0.3

0.5

II

i-"

I-"

0.7
Ie. COLLECTOR CURRENT (AMP)

IC. COLLECTOR CURREN.T (AMP)

FIGURE 11 - TURN-Ollj'TiME

fiGURE 12 - TURN-OFF TIME

744

"-

VCC = 12SV
IcllB =5
TJ =25°C

~ 500

V

Id @l VBE(olf) =5V

0

"

700

0

100

~

~

~
Ir

....

--

Is

lK

/

' ....

--

10

20

I ,--..:.

Ie

~90%

90% VCEM
Isv

I,v

h

I-tc~

-- --\- --- --- -\

.............

---

~

rI'\.

-

-- -

,5
>

;

\'
,

:

..

~

........ 1

t

~.,

, 'IJ

'-.-r-....L .. .
..\.:
. .. . ., , I
!

'

t

veE ~

....o

<

>

oIt)

N

IZ

leM- 2%-

VeEM -

Ie

I

10%""-

10%
90% 181

Ie

I-\-Ifi ..... I - ' t i -

/

Vclamp

18

ft

I
Vclamp -

Ie

w
Cl

w

<1:

It
It
:J
CJ

I-l

o

>
Ie

veE

TIME
TIME 20 ns/DIV

FIGURE 13 - INDUCTIVE SWITCHING MEASUREMENTS

FIGURE 14 - TYPICAL INDUCTIVESWITCHINGWAVEFORMS
lat 300 V and 12 A with IBl = 2.4 It.. and VBEloffl = 5 VI

745

746

MJE13070
MJE13071

. HIGH VOLTAGE/HIGH SPEED

NPN POWER TRANSISTORS

400-450 VOLTS
5 AMP, 80 WATTS

The MJE13070 and MJE13071 are high-voltage, high-speed
power switching transistors, designed for use with inductive
circuits, including: switching regulators, inverters, solenoid
and relay drivers, motor controls, deflection circuits and
other line-operated switching applications.

NPN
COLLECTOR

EMITTER

Features:

CASE STYLt: TO-220AB
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

• Fast Turn-Off Times:
100 ns inductive fall time @ 25°C (Typ)
150 ns inductive crossover time @ 25°C (Typ)
400 ns inductive storage time @ 25°C (Typ)

:~~g\!:~~\~
I

.--.

.26516.731
.24516.221

t---+---I----ll--

• Operating temperature range -65 to +150°C

+

~:~:~~~:DIA.

• 100° C Performance Specified for:
Switching times with inductive loads 50 ns inductive fall time (Typ)
Saturation voltages
Leakage currents

M

TERM.l
4To~IIII4n--'
TERM.2/
.05511.391
.04511.141
TERM.3

.0331~.841

.02710.691

1--.
I+-

CASE
TEMPERATURE
REFERENCE
/
POINT

----,-

.22015.591

-----.i.
.00610.151
.00110.0251

.500112.7IMIN.

.10712.721
.08712.211

.1hJ--.l0512.671
~" .09512.411

.1
.05511.391
.04511.141--'

maximum ratings (T A = 25° C)

.35519.021
.32518.251

•

.05511.391
.04811.221

.02110.531
.01510.381

.21015.331
.19014.821

(unless otherwise specified)

RATING
Collector-Emitter Voltage
Collector-Emitter Voltage
Emitter Base Voltage
Collector Current - Continuous
Peak (Repetitive)!1)
Base Current - Continuous
Peak (Non-Repetitive)(1)
Total Power Dissipation @ Tc = 25° C
@Tc= 100°C
Derate above 25° C
Operating and Storage
Junction Temperature Range

MJE13070
400
650
6.0
5.0
8.0
2.0
4.0
80
32
0.64

MJE13071
450
750
6.0
5.0
8.0
2.0
4.0
80
32
0.64

UNITS
Volts
Volts
Volts
A

TJ, TSTG

-65 to +150

-65 to +150

°C

ROJC

1.56

1.56

°CIW

TL

260

260

°C

SYMBOL
VCEO
VCEV
VEB
Ic
ICM
18
IBM
Po

A
Watts
W/oC

thermal characteristics
Thermal Resistance, Junction to Case
Maximum Lead Temperature for Soldering
Purpose: Va" from Case for 5 Seconds
(1) Pulse Test: Pulse Width

=5ms. Duty Cycle :510%.
747

electrical characteristics (Tc = 25° C)

I

(unless otherwise specified)

CHARACTERISTIC

I SYMBOL I

MIN

VCEO(sus)

I

TYP

MAX

UNIT

400
450

-

-

Volts

-

0.5
2.5

mA

3.0

mA

1.0

mA

off characteristics(l)
Collector-Emitter Sustaining Voltage·
(Ic =100mA, Is =0)
Collector Cutoff Current
(VCEV =Rated Value, VSE(off)
(VCEV =Rated Value, VSE(off)

MJE13070
MJE13071

ICEV

Collector Cutoff Current
(VCE =Rated VCEV, RSE =50n, Tc =100°C)

ICER

-

-

Emitter Cutoff Current
(VES =6.0V, Ic = 0)

lEBO

-

-

=1.5V)
=1.5V, Tc =100°C)

second breakdown
Second Breakdown with Base Forward Biased

SEE FIGURE 12

Clamped Inductive SOA with Base Reversed Bias

SEE FIGURE 13

on characteristics(1)
DC Current Gain
(Ic =3.0A, VCE

=5.0V)

hFE

Collector-Emitter Saturation Voltage
(Ic =3.0A, Is =0.6A)
(IC =5.0A, Is =1.0A)
(Ie =3.0A, 18 =0.6A, Te =100°C)
Base-Emitter Saturation Voltage
(Ic =3.0A, Is =0;6A)
(Ic =3.0A, Is =0.6A, Tc =100°C)

VCE{sat)

~.O

-

-

-

-

-

V

-

1.0
3.0
2.0

-

-

1.5
1.5

V

p's

-

VSE{sat)

-

dynamic characteristics
Output Capacitance
(VCS =10V, IE =OA, ftest

=1.0 kHz)

switch i ng characteristics
Resistive Load
Delay Time

(VCC

td

Rise Time

IS1

tr

Storage Time

Duty Cycle < 2%, VSE{OFF)

=250V, Ic =3.0A
=O.4A, tp =30 p's
=5.0V)

Fall Time

0.03

0.05

0.10

0.40

ts

-

0.40

1.50

tf

-

.175

0.50

tsv
tc
tfi

-

0.70

2.0

0.28
0.15

0.50
0.30

0.40

-

0.15

-

Inductive Load, Clamped
Storage Time
Crossover Time
Fall Time

IC{pk) =3.0A
IS1 =0.4A
VSE{Off) =5.0V

Storage Time

VCE{PK)

(TJ

=100°C)

=250V

Crossover Time

tsv
(TJ = 25°C)

Fall Time

tc
tfi

(1) Pulse Test: Pulse Width - 300~ Duty Cycle :5 2%.

748

0.10

p's

3.0

30

--... r-..... ~

TJ = 25'C

C

"!Z

"'"

w

'"

20
VCE = 5.0V

U

D

~

~

~

1.0

w

1\

\

0

i'..

z

a:
a:
u

iii
!:;

10~'C

........

,

\

2.0

"~

5.0A-

D

\,

>

0.5

l:::Ii

0.3

a:
w

'\l\

"-

\

IC=1.0A

~

"-

2.SA

0.2

0

5

10

...0~

-

\.

"""".......

I"-.

0.1

U

ui

7.0

I - - I-- TJ = 25'C

u

>

5.0
O.OB 0.1

0.2

0.3

0.5

1.0

2.0

0.03

8.0

5.0

3.0

0.05

I
0.02

I

0.03

0.1

0.05

FIGURE 2 -

FIGURE 1 - DC CURRENT GAIN

iii
!:;
0

~

0.30

"!:;

p, = 5.0

C

0

>
a:

/

0.20

w

100'

l:::Ii

......
0
w

0.10

U

ui

J:

V/

~

1I

V

2.0

1.0

0.5

COLLECTOR SATURATION REGION

O.OS

0.2

0.1

0.3

~
~

1.0

w

I100'C

0.5

.:.

.
~

ui

:

0.5

1.0

2.0

3.0

0.3

0.2
0.05

5.0

0.2

0.1

IC COLLECTOR CURRENT (AMPS)

0.3

0.5

. 1.0

2.0

3.0

5.0

IC COLLECTOR CURRENT (AMPS)

FIGURE 3 - COLLECTOR-EMITTER
SATURATION VOLTAGE

FIGURE 4 - BASE-EMITTER VOLTAGE

104

10K

V

103
TJ

=150°C

/

V

/

/

V L .L

/

~ 1000

/

w

U

125°C

Z

~

I

./

100 0 e

101

",

I

I

7S'C

r.i 100

REVERSE

FORWARD

100

/
/

VCE = 250 V

=

--Cib

Cob

TJ = 25'C

t-

I

25'C

I

1
-0.2

r--

I

/

./

./
./

102

-0.4

~
1.00'"

I-"""

.... I-

TJ=25°C

0.7

::t.l
w

/TJ=25'C

-- --

p,=5.0

o

~g
'~"

~

0.07

0.05

V

~

~

0

Ij

0.3

2.0

0.50

w

0.2

IB BASE CURRENT (AMPS)

IC COLLECTOR CURRENT (AMPS)

0

-1-0.2

+0.4

10
1.0

+0.6

3.0

5.0

10

- - -30

50

100

VBE. BASE·EMITTER VOLTAGE (VOLTS)

VR. REVERSE VOLTAGE (VOLTS)

FIGURE 5 - COLLECTOR CUTOFF REGION

FIGURE 6 - CAPACITANCE

749

300

500

1000

~

../""

~

I~

190% VCE(pk)

7.0

f

9041C(Pk)

I,

l./

I

VCE

10%· .........

10% VCE(pk)

ICPkIB

_IC=3.0A
Pf = 5.0

0:m
i3 4.0
~.. 3.0

-.-

~

2%IC-

Ie 2.0

-

............

FIGURE 8 -

Pf = 5.0

TJ=75'C

./

~

--... .......

......

~

/'

~

J

--....

..-

2.0

~BE(Off)= 1.0V

...

.;;
w
:&
F

~

VBE(off) =

ro

~~
I'

....

'

1-++-l-H-I+IH-I-I-++H+IH--+l-I-++l:JIoI1E,.jjiIF-+I+t1I1#-t++t-HtHl

0.2

b.J
.... '"
1-i1;;;1~-++i'mA+++H+Hhol"t~..9lf-H+Hf-l-+-H-II-Hl#-H-+l-HiHt

0.1
0.07

?

~~O~'lmll~~~II~~~
0.05

ZeJc(l) = r(l) ReJC

~U~~~VT~A~~~~V;~: POWER

ReJC=1.56'CIWMAX
READ TIME@l1
TJ(pk) - TC = P(pk) ZeJC(I)

~

0.05

~

0.03

1-'i"=F
I J....~KHlIf++-+-tHttH---H-+++i

JlJL--L

0.02

~-

111~1

..

I
~

0.01

.

J';;j;..oo
0~-+::IoP+1'BI"5I"t-IH-I-ttttt-H-++
DUTY CYCLE, D= 11/12
I

~

0.01

0.02

'iTmilTi
0.05 0.1

0.2

0.5

1.0

2.0
5.0
TIME (ml)

10

20

'.

1--VeE(off

-'>-.

-

...........

.;r-~

=~.o V

"

~

.......

1"- ....

VBE(off) =rv

0.7

1.0

3.0

2.0

5.0

++-I-++1f+Hl

i
~

100 200

de
2.0

~

8

0.2

10ps

1.0ms

'-

"'

"\.

1.0

-

,

TC = 25'C

-=
- -- --

MJE13070
MJE13071
BONDING WIRE LIMIT
THERMAL LIMIT
SECOND BREAKDOWN LIMIT

.....

0.02
0.01

10k

JJU
5.0

7.0 10

I

I

I

I I

I

20

30

50

70

100

=

i"""..

200

300

VeE. COLLECTDR-EMITTER VOLTAGE'(yOLTS)

FIGURE 11 TYPICAL THERMAL RESPONSE [(ZOJC(t))

FIGURE 12

750

~

"'

III

0.1

Y 0.05

600

..

0:
B
0.5

T 1Hf--+-I-+++1it+!
60

CROSSOVER AND FALL TIMES

5.0

~ 12 ~ P(pk) 1IH-+-I--+-Hf+H+I

E

---

' ...

10

D=0.5

~

...

FIGURE 10 -

0.5

;

VBE(off)=1.0V

IC COLLECTOR CURRENT (AMPS)

;0:

Iiiiii

VeE(Off) = 5.0 V

~

.... ....

".

0.15
0.5

5.0

6'

:1i

8.0

T75;C ff=r o

1,0m_ _1111

~rJ

............
I--'" ~

1'.

FIGURE 9 - STORAGE TIME

II

....

0.2

V

3.0

2.0
1.0
IC COLLECTOR CURRENT (AMPS)

I- ..

0.3

0.5
0.7

0.5

oJ

~

~

7.0

I
- - - III

--

0.7

0.7

0.7

6.0

_ _ Ie

1.0

.........,

1.0

0.5

5.0

PEAK REVERSE CURRENT

1.5

3.0

4.0

BASE-EMITTER YOLTAGE (YOLTS)

INDUCTIVE SWITCHING
MEASUREMENTS

5.0

~

3.0

YBE(ol~

TIME

!w

2.0

1.0

~

FIGURE 7 -

~

1.0

.-" ~

\

./

,.V

V

~

TJ=25'C

.. 5.0

9O%IBI

-- --\- -- --- - - - -

6.0

~

Irv:f~I\'- ~III""
--j -Ie~ I--

Isv

IC/

,CE(Pk)

"\

./

8.0

I..

IC pk

M4XIMUM FORWARD BIAS SAFE
OPERATING AREA

450

,, \
1\,

8.0
7.0

f

~

5.0

0::

a

4.0

0::

~
~

p,;;'4.0

3.0

0

u

!:} 2.0

---

-

,

MJ1~071

\

\

200

300

"'"

400

500

0.6

Cl

~0::
W
Q

II:

1"--",,-

THERMAL
OERATING

0.4

w

3:
0
a.

~

1""-

0.2

-=:::-:600

-,

1
700

o

750

VCE COLLECTOR-EMITTER VOLTAGE (VOLTS)

20

40

BO

60

"I'-. "',

100

120

FIGURE 14 -

751

I--

r-

""-

140

TC CASE TEMPERATURE ('C)

FIGURE 13 - MAXIMUM RATED REVERSE BIAS SAFE
OPERATING AREA

-

"'",

z

VBE90ff) = 1.0105.0 V

MJ13070

1.0

100

I:i
:1:

IBREA~DOW~

SEboNO
OERATING

1""-

0::

0

\\ \
,,
,~
,
\ ..

r-- TJ<;1OO'C

--""- -- ---"I'-.
I"--

O.B

., VBE(ofl)1= 0

,y

8.0

~

~
0::

... ~

POWER DERATING

160

752

MJH13090
MJH13091

. HIGH SPEED

NPN POWER TRANSISTORS

400 & 450 VOLTS
15 AMPS, 125 WATTS

The MJH13090 and MJH13091 transistors are designed for
high-voltage, high-speed power switching in inductive circuits where fall time is criticaL They are particularly suited for
line operated switch-mode applications such as:

NPN
COLLECTOR

Features:
EMITTER

• Switching regulators

J

CASE STYLE TO-218
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

• Inverters

[

• Solenoid and Relay drivers
• Motor Controls.

:::::,'::1

1t

1======1

II

.1~'=Fi-=;==r=;r=r-I '46~~t1:09)

100 C Performance Specified for:
Reverse-Biased SOA with inductive loads
Switching times With inductive loads50 ns inductive.fall time (Typ)
Saturation voltages
Leakage currents
0

::~g :~~:!

T

1

.606(15.392)
M
.

MAX.

-r1
.048(1.219)
NOM.

.622(15.798)

2

3

1

~~ :~~~:~;~~!

.450(11.430)
.410(10.414)

maximum ratings (TA

-j

--

.156(3.96)
MIN.

• Deflection circuits

:~~;:~~:~;~!

-1

.018(.457)
NOM.
.095(2.413)
MIN.

=25° C) (unless otherwise noted)

RATING
Collector-Emitter Voltage
Collector-Emitter Voltage
Emitter Base Voltage
Collector Current -Continuous
Peak (Repetitive)(1)
Base Current - Continuous
Peak (Non-Repetitive)(1)
Total Power Dissipation @Tc= 25°C
@Tc= 100°C
Derate above 25° C
Operating and Storage
Junction Temperature Range

SYMBOL
VCEO
VCEV
VEBO
Ic
ICM
IB
IBM
Po

MJH13090
400
650
6
15
20
5
10
125
50
1

MJH13091
450
750
6
15
20
5
10
125
50
1

UNITS
Volts
Volts
Volts

TJ, TSTG

-55 to +150

-55 to +150

°C

ROJC

1.0

1.0

°C/W

h

275

275

°C

A
A
Watts
W/oC

thermal characteristics
Thermal Resistance, Junction to Case
Maximum Lead Temperature for Soldering
Purpose: W' from Case for 5 Seconds
(1) Pulse Test: Pulse Width

=5ms. Duty Cycle $10%.
753

electrical characteristics (T c = 25 0 C)

I

(unless otherwise specified)

CHARACTERISTIC

I SYMBOL I

MIN

VCEO(sus)

I

TYP

MAX

UNIT

400
450

-

-

Volts

-

0.5
2.5

rnA

3

rnA

-

1

rnA

off characteristics(1)
Collector-Emitter Sustaining Voltage
(Ic = 100mA, IB = 0)

MJH13090
MJH13091

Collector Cutoff Current
(VCEV = Rated Value, VeE(OFF) = 1.5V)
(VCEV = Rated Value, VBE(OFF)) = 1.5V, Tc = 100° C)

ICEV

Collector Cutoff Current
(VCE = Rate VCEV, RBE = 50.0., TC = 100°C)

ICER

-

Emitter Cutoff Current
(VEB = 6V, IC = 0)

IEeO

-

second breakdown
Second Breakdown with Base Forward Biased

SEE FIGURE 12

Clamped Inductive SOA with Base Reversed Bias

SEE FIGURE 13

on characteristics
DC Current Gain
(Ic = 10A, VCE = 3V)

hFE

8.0

-

-

-

Collector-Emitter Saturation Voltage
(Ic = 10A, IB = 2A)
(Ic = 15A, Ie = 3A)
(Ic = 10A, Ie = 2A, Tc = 100°C)

VCE(sat)

-

-

V

-

1
3
2

Base-Emitter Saturation Voltage
(Ic = 10A, Ie = 2A)
(Ic = 10A, IB = 2A, Tc = 100°C)

VeE(sat)

-

-

1.5
1.5

V

-

0.03

0.05

p's

0.13

0.5

-

switching characteristics
Resistive Load
Delay Time

VCC = 250V, Ic = 10A

td

Rise Time

IB1 = IB2 = 1.25A,

tr

Storage Time

tp = 30 p.sec

ts

Fall Time

tf

0.55

2.5

0.10

0.5

Inductive Load, Clamped
Storage Time

ICC(PK) = 10A
IB1 = 1.25A

tsv
(TJ = 100°C)

Crossover Time
Fall Time .,

VBE(OFF) = 5V

tfi

Storage Time

VCE(PK) = 250V

tsv

Crossover Time

(TJ = 25°C)

Fall Time

tc

tc
tfj

(1) Pulse Test: Pulse Width - 300,.,.s Duly Cycle:5 2.%

754

-

0.8

3

.175
.15

.4
.3

.50

-

.15

-

.10

-

p's

TYPICAL ELECTRICAL CHARACTERISTICS
50

I I

r---..

100°C
30

'" I'

:2

<

"">-:2

20

.......

TJ = 25°C

...a:a:

=>

@"

...

r--." I'

'"~

~

10

u..

.r::

\

1\

2.0

o
>

1'-"

t.)

.,:,

,

25°C

o
~ 3.0

VCE = 5.0 V

t.)

Q

10
7.0
5.0 f- TJ

IC = 5.0 A

ffi 1.0

\

7.5 A

~ 0.7
"\' 0.5
a:
o
t; 0.3

I"
1'-

...g 02

7.0

'"

t.)

tJ 0.10.05 0.07

5.0
0.2 0.3

0.5 0.7 1.0
2.0 3.0
5.0 7.0
IC. COLLECTOR CURRENT (AMPS)

10

20

FIGURE 1 - DC CURRENT GAIN

iii' 3.0
0
2.0
~

!:;

""

...

iii' 2.0
o

1.0

> 0.7
a: 0.5

-

{Jf

'l

TJ

=100°C

..,

~
o 0.1
~0.D7

......

",.

./
~~

~

"'""

TJ

TJ = 25°C

......::e
~ 0.5

=25°C

~

~

~

-~
TJ - 100°C

~

co

10

0.3
0.2

20

/

J
TJ= 150 DC

w

1/

a:

100De

0
....
e..>

..... 101
.....

w

./

1/

/

0.5 0.7 1.0
2.0 3.0
5.0 7.0 10
IC. COLLECTOR CURRENT (AMPS)
FIGURE 4 - BASE·EMITTER VOLTAGE

20

...1000

.....

f

....So

tiiii

t.)

7

j

:2

~

1/

/

75D'C

I--- l- f- Cib

I

/

j

"

~

125 De

102

I

/

/

.3 103

....
z

0.3

10K

~ VeE = 250V

;(

Cob

t.)

~ 100

0

5

e..>

100

5.0

..:.

0.5 0.7 1.0
2.0 3.0
5.0 7.0
IC. COLLECTOR CURRENT (AMPS)

_1

~

3.0

-~

0.7

FIGURE 3 - COLLECTOR·EMITTER
SATURATION VOLTAGE

e..>

2.0

.If

;:;>0.05
0.2 0.3

:::>

).....

{Jf = 5.0

~ 1.0
a:

i;'

~ 0.2
t;

a:
a:

"'""'

f--

0.2 0.3
0.5 0.7 1.0
lB. BASE CURRENT (AMPS)

'"~

=5.0

0.3

104

"" l"-" r--....

~

0

~
...::e

15 A t-- r-

~

3.0

!:;

!:;

0.1

\

\

FIGURE 2 - COLLECTOR SATURATION REGION

5.0

.....:

10 A

/

1*= pREVERSE
D

TJ = 25 °C

"'"

c..S

FORWARD

25 C

10·1
·0.4

1

1
·0.2

o

+0.2

+0.4

10
1.0

+0.6

VBE. BASE·EMITTER VOLTAGE (VOLTS)

FIGURE 5 - COLLECTOR CUTOFF REGION

10
100
VR. REVERSE VOLTAGE (VOLTS)

FIGURE 6 - CAPACITANCE

755

1000

./'" V

~E(Pk)

"

/

10

I

IC pk _

Isv

If I-Jt

I,v

...

V

i3

4.0

10''\,.........
ICpk -

90,.101

P--

2 3.0

2',IC

~

, ; 2.0

-- --\-'\ --- --- -- -- -

-

~

~

-;;;

5.0

g

I'

10% VCE(pk)

18

~ 6.0.
a::
a::

!-Ic~ f--

h

VCE

....

f--II'-

Iii -

T

"
iii' B.O I--IC= lOA_ f- TJ = 25°C
~f = 5.0
::IE
~ 7.0

90% VCE(pk) 1\901(,IC(Pk)

IC/

~

9.0

./

/""

V

V

/

V

V

1.0

I

o

1.0

2.0
3.0
4.0
5.0
6.0
VBE(off). BASE·EMITTER VOLTAGE (VOLTS)

7.0

B.o

TIME

FIGURE 8 - PEAK REVERSE CURRENT

FIGURE 7 - INDUCTIVE SWITCHING MEASUREMENTS

INDUCTIVE SWITCHING
1.0

5.0

i--/3fJ 5.0
TJ

.

_ 3.0

~

2.0

C[

a::

o

lii

_~

0.7
VBE(off) = 1.0 V

3

....
c.o

=75°C

1.0
0.7
0.5

.....--

-2.0

1.0 V

'sv

0.5

"-

VBE(off) = 5.0 V

i

3.0

--

I

1

1

;:::

"

0.2

0.1
15

20

2.0

~

ill

~
rl

.

0.5
0.3

0.2

~

~

0.1

~

0.07

~

f5
~

0.05
0.03

~

0.02

ie 5.0
:i

1-,,"
11+H+tttI==R=++++Wb~I:'~ruHH--I-l-++I-I.mJ.-I-l~~J.ml

0.05

i2.0

Z8JC(I) = r(l) R8JC

!§

~~~~~~~~~"o"~~ POWER

~Tmli(lr
0.01
0.01 0.02

0.05 0.1

0.2

-oj
0.5

1.0

2.0
5.0
TIME(...)

,,\
10

12

,~

5.0
7.0
10
IC. COLLECTOR CURRENT (AMPS)

!-

TC = 25°C

~

L

15

20

l.om.~

."

~ 0.2 I- --- BONDING WIRE LIMIT
!-

~O.I ~

0.05 1=

T 1Ht-++-HH+lfHl
50 100 200

I

1.0

o

I- P(pk)
20

~

. .
c-..; \.~
~~
~BE(Oi)= j'O

MJH13090
MJHl3091

t;

..fl.JL-*-

KJ,,--boI'H1I#1--H-I-H+I#I--t-t-l-Hl1tll-l

r,

I

~ 0.5

R8JC=I ..0·CIWMAX
READ TIME @II
TJ(pk),TC= P(pk) Z8JC(I)

~-t:bP+Il'Bt'~SI't-l-!++I#I--t-t-++ DUTY CYCLE, 0= 1111~2H+-JI-I-I+I-IIl

I I J..,.

!l!
:1i

I--tI-t1t-H~IH-t-I-H+t+H:::J""'Fl:::Iot5If!::::'-H-++Hittt-H-++I-IH+f1
~.J
I~'"

.1 ft~

..... r'-

~

.

0=0.5

~~O;";II~ill"~~

~.~

,,' ,,"

The Safe ()pentting Ar.. fieur. sIlown in Figur. 12 and 13 ar.
specified for these devices und.rthe test conditions shown.
20
I-15
10 "~,,
10

1-++-H-l~H-++-I-H+l+H-I-+-H-H:Ioi'IF..oIII'I"""~++I-+H+-H-I-~f++II
r....

3.0

. ..

/
~'

FIGURE 10 - CROSSOVER AND FALL TIMES

',Om_ __

0.7

10...

-Ie
--Iii

5.0
7.0
10
IC. COLLECTOR CURRENT (AMPS)

-"

<::::.:: ~- -.. ..... 1\
- - ............
1\ \

u;

..",-

~

'.r---.. ......

5.0 V
I

VBE(ol" ..= I.O~

~

FIGURE 9 - STORAGE TIME

g

TJ = 75°C

....30.3 ........
:!:
~

'Sy -

t:=~f~5.0
i---

--THERMAL LIMIT
(SINGLE PULSE)
- SECOND BREAKOOWN LIMIT

I'iiiO:

......

0.02
500 10k

5.0

FIGURE 11 TYPICAL THERMAL RESPONSE [(ZOJC(t))

10

20
50
100
200
VCE. COLLECTOR·EMITTER VOLTAGE (VOLTS)

450

FIGURE 1 Z - FORWARD81AS SAFE OPERATING AREA

756

100

~

24
22
0

f

20
~ 18

--MJH13090
-MJH13091

ii 16

~ 14
~ 12

lOoDC
pi;;': 4.0

a::

~ 10
;;! 8.0

86.0
.!i>4.o

~
"z

~

r

VSE(offl

2.0

100

I

200

\

\

a

\ ,\

Q

\ \\

=0 i'..

_\

'"
'"

"'\

VSE(offl

~JCOND

40

THERMAL

r-.....

BRLKDOWN !ERATING

........

20

DERAT~

f'-......
~
""'r-...

~~

~,

300
400
500
600
700
VCE. COLLECTOR· EMITTER VOLTAGE (VoLTSI

o
800

o

40

80
TC CASE TEMPERATURE (OCI

120

FIGURE 14 - POWER DERATING

FIGURE 13 - REVERSE BIAS SAFE OPERATING AREA

757

-

t'-....

"r-....

~

=1.0 10 5.0 V -

r-....

60

a:

1\
~V

............

"" '"

la:

\
~TJ';;;

,

r--....

,
'"

160

758

TIP120,121,
TIP122

NPN POWER DARLINGTON
TRANSISTORS

60-100 VOLTS
5 AMP, 65 WATTS

COMPLEMENTARY TO THE TIP125, TIP126, TIP127

High power switching applications, designed for hammer
drive, pulse motor drive and inductive load drive applications.
Features:

• High collector power dissipation:
PD=65W@TC=25°C
CASE STYLE TO-220AB

• High collector current: IC(DC) = 5A (Max.)

DIMENSIONS ARE IN INCHES AND (MILLIMETERS)
.404110.26)
.38019. 651

• High DC current gain:
hFE = 1000 (Min.) @ VCE = 3V, IC = 3A

-

+

TERM.1
COLLECTOR

.35519.021
.32518.251

~

{f;'IIII~n-,

TERM.2

---,

_

CASE
TEMPERATURE
REFERENCE
/

POINT

-r

.22015.591

~51
.001(0.0251

.500112.7IMIN.

.05511.391
.04511.141

TERM.3

.0331~.841

I

=5kO

.---

.26516.731
.24516.221

~.31

EQUIVALENT CIRCUIT

_______ _

-.

.19014.831
.17014.32Irl .05511.391
I
.04811.221

I--+--I----ti--f-""'-,
T

:~:~:~:~~:DIA

I

I·

1

• Complementary to TIP125, TIP126, TIP127

I
L

.

.

_ -t

BASE o-...;..-.~--r

~ ~~\~~~II
1.-L

.02710.691

I
I
I
I
__ ..JI

.IIL~.10512.671

~

~ •. 09512.411

.1
.05511.391
.04511.141---"

1+-.

I---

.21015.331
.19014.821

.10712.721
.08712.211

.02110.531
.01510.381

EMITIER

maximum ratings (T A = 25° C)
RATING
Collector-Emitter Voltage

(unless otherwise specified)
SYMBOL
VCEO

TIP120
60
60

TIP121
80
80

TIP122
100
100

UNITS
Volts
Volts
Volts
A

Collector-Base Voltage

Vcso

Emitter Base Voltage
Collector Current - Continuous
Peak
Base Current - Continuous
Total Power Dissipation @TA = 25°C
@TC= 25°C
Operating and Storage
Junction Temperature Range

VESO
IC
ICM
Is
Po

5
5
8
0.1
2
65

5
5
8
0.1
2
65

5
5
8
0.1
2
65

TJ, TSTG

-65 to +150

-65 to +150

-65 to +150

°C

Thermal Resistance, Junction to Ambient

ROJA

62.5

62.5

62.5

°CIW

Thermal Resistance, Junction to Case

ROJC

1.92

1.92

1.92

°CIW

TL

260

260

260

°C

A
Watts

thermal characteristics

Maximum Lead Temperature for Soldering
Purpose: Va" from Case for 5 Seconds

759

electrical characteristics (Tc

I

=25

0

C)

(unless otherwise specified)

I SYMBOL I

CHARACTERISTIC

MIN

TYP

MAX

UNIT

60
80
100

-

-

-

Volts

-

200

/-I A

0.5

mA

2

mA

off characteristics
Collector-Emitter Breakdown Voltage
(lc = 30mA)

TIP120
TIP121
TIP122

V8R(CEO}

Collector Cutoff Current
(VC8 = 80V)

IC80

-

Collector Cutoff Current
(VeE = 40V)

ICEO

-

Emitter Cutoff Current
(VE8 = 5V)

IE80

-

-

.~-----

-

"

-

second breakdown

I Second Breakdown with Base Forward Biased

FBSOA

SEE FIGURE 13

on characteristics
DC Current Gain
(Ic = 0.5A, VCE = 3V)
(Ic = 3A, VCE = 3V)

hFE

1000
1000

Collector-Emitter Saturation Voltpge
(Ic = 3A, 18 = 12mA)
(Ic = SA, 18 = 20mA)

VCE(sat}

Base-Emitter Voltage
(Ic = 3A, VCE = 3V)

V8E(on}

-

-

-

-

-

-

-

2
4

V
V

-

-

2.5

V

ton

-

1.5

/-Is

toff

-

8.5

-

switching characteristics
Ic = 3A, RL = 10n
181 = -182 = 12mA
V8E(off) = -5V

Turn-on Time
Turn-off Time

6

6
1.4

5

...

4

if/'

ffi
0::

3

0::

0

r/

!d
..l
..l

~

8

0.8

-

0.6

0.5

..:--

~

,..-

g

f-- f--

.9

~

IV

4

::I
U

3

2

r .......I -

.,.",.. i""'"

0::

0

tiw

I

:!

IS=0.2mA

I"

0

.u

4

6

8

10

0.6_

.- .-

!"""'"

.-!!

--- -- ~
,!;

.- .-

I

IS=O.lmA

1

I

I

0

0

o
12

o

14

2

4

6

8

10

COLLECTOR-EMITTER VOLTAGE VCE (V)

IC - VCE

FIG. 2

760

I-- I--

0.2

I

COLLECTOR-EMITTER VOLTAGE VCE (V)

FIG. 1

.......

.- .- .- .~

' / /~
~ , /~

ffi

0::
0::

0.4

o J
o

f-- f -

0.3

I--"

COMMON EMITTER
TC= 100'C

0.8

5

.....l-

-I- ~
fo""'"
I--I-- f -

--

/
(,. "...

0::

::I
U

1.0

1.2

'/ 10' ~ l - I--"
/''/ ..-l - I-"

g
.9

COMMON EMITTER
TC=25'C

IC - VCE

12

14

6
5.0

4.5

~ ~ V .......
~ i-'"2.5
~~
i-"""
It~ V
V
-~ 2.0
j..--"
f/l..--'"
........ ~
l- I-"
1.4

~

.9

ffiCC

VI- I-'"

CC

G
cc

~

:J

2

r...... l-

I-"

~ I--

I"""

I-- I-"

I--l - I--

~

I-- I--

<
Cl
!Z
w

cc

I

-<.u

3,0002 I-

0
0
0

I-- l I-- I--

0.4

/
/

1,000

V

0
10

12

200
0.03

14

"

w

0.3

10

3

COLLECTOR CURRENT IC (A)

FIG. 4

10

hFE - IC

5
COMMON EMITTER
IC/IB = 250

~

~
z
o

~
cc_

--

TC=-S5'C

i='>

V

Ie - VCE

Cl

i

v

0.1

COLLECTOR-EMITTER VOLTAGE VCE (V)

FIG. 3

",'> .JI'

./ 'I

500

IB = 0.2mA

6

.. ..s:,u

5,000

a:
::>

0.6

o

i,...oo-

w
u. 10,000

.r=
Z

1.0

o

COMMON EMITTER
VCE=3V

30,000

I-- I--

....

I-'"

I-- I--

8

50,000

COMMON EMITTER
TC=55'C

4.0

I'

0.3

~

3

COMMON EMITTER
ICIIB = 250

i-'"
0.5
0.3

TC = -55'C

' " 25
100

i.- 10-'''''

~ I-"

0.1

,...

25

0.1

0.05

100

0.03

0.05

0.03

0.1

0.3

1

3

10

0.03

30

0.1

COLLECTOR CURRENT IC (A)

FIG. 5

3

0.3

10

COLLECTOR CURRENT IC (A)

VCE(sat) - IC

FIG. 6 VBE(sat) -

Ie

10
COMMON EMITTER
VCE=3V

~

4

I

,

I-

I

3

cc
::>
0
cc

I

"

~

~

0

W

...J
...J

l

I

0
0

V
0

0.4

0.8

II
1.2

~

5

Z
0

3

~

i=

iL
~~

r-

~
~

1

Ie = 2OmA,IC = SA

.i'" 1--112
2

0.5

f-

3

I--

f-

1

I--

I--

...J
...J

0

1/
1.6

't---..



........

UJ

(!l

~
g

2.4

3

.........

a:
UJ

!=

.......... f::::- r::::: :::-r-

--

1.6

:;
UJ

W
~
III

-

'C=SA

r- t:" r- r-

.6'0

.....

"""-

I'-

II

II

I

"'r--." ..... ro-.

I'-

r- r-

0.8

~"e I

..

3
1
O.S

o

0.3

-80

-40

40

80

120

160

FIG. 9

30

10

CASE TEMPERATURE Tc ('C)

100

UNCLAMPED INDUCTIVE LOAD L (mH)

FIG. 10

VBE - Tc

IC - L (UNCLAMPED INDUCTIVE LOAD)

70
RthO-c)'; 1.92'CIW

'"

60

a:
0

I-

&l~

50

..J..J U

00.

U

'" '"

z

000

5~

40

'" '"

:::>0.

z-

~~

0 0

30

'" "'"'-

ua:

:!i~
;;!lr

"'-

20

X

<
:;
10

'" "

0

o

20

40

60

80

100

120

"

I'

140

160

CASE TEMPERATURE Tc ('C)

Pc - Tc

FIG. 11

20

I I 1111111

10

3.S

'iI!

'C MAX. (PULSED)·

Rth(j-a) ,; 62.S' CIW

-

'C MAX. (CONTINUOUS)
3.0

~

u
UJ;:

~
.9

2.S

..J..J U

z

"'0
:::>-

g~
z-00
1-00
zOO

UJ

~

........

1.S

;;!lr

(\ 01-

\

§UJ

t"--

..J
..J

0

...... r-.,.

1.0

U

.........

X

~

0.5

iI!
SINGLE NONREPETITIVE PULSE
Tc = 2S'C

0.3

.........

O.S

........

CURVES MUST BE DERATED LINEARLY
WITH INCREASE IN TEMPERATURE.

I'....

0

o

20

40

60

80

100

120

140

-111-

'\~'.\
~o ~

Z

ua:

:!i~

3

a:
a:
:::>
u
a:

2.0

t: ~~

----f

_______ _

---:l591

TERM.2

---,
I
IL

/

.325{B.251

~
I

TERM.l
COLLECTOR

TEMPERATURE
REFERENCE

.355{9.021

~.31

EQUIVALENT CIRCUIT

CASE

_

.1~.105{2.671

.107{2.721
.OB712.211

~ _.095{2.41 1

--.j 1+-'

I+-:-

.210{5.331
.190{4.B21

.021{0.531
.015{0.JBI

I
__ .JI

EMITTER

maximum ratings (TA = 25° C)

(unless otherwise specified)
TIP125
-60
-60

TIP126
-80
-80

TIP127
-100
-100

UNITS
Volts
Volts

-5
-5

-5
-5
-8
-0.1
2
65

Volts
A

2
65

-5
-5
-8
-0.1
2
65

TJ, TSTG

-65 to +150

-65 to +150

-65 to +150

°C

Thermal Resistance, Junction to Ambient

ROJA

62.5

62.5

62.5

.oC/w

Thermal Resistance, Junction to Case

ROJC

1.92

1.92

1.92

°C/w

TL

260

260

260

°C

RATING
Collector-Emitter Voltage

SYMBOL
VCEO

Collector-Base Voltage

VC80

Emitter Base Voltage
Collector Current - Continuous
Peak
Base Current - Continuous
Total Power Dissipation @ TA = 25°C
@Tc=25°C
Operating and Storage
Junction Temperature Range

VE80
IC
ICM
18
Po

-8
-0.1

A
Watts

thermal characteristics

Maximum Lead Temperature for Soldering
Purpose: Va" from Case for 5 Seconds

765

electrical characteristics (T c = 25° C)

I

(unless otherwise specified)

I SYMBOL I

CHARACTERISTIC

MIN

TYP

MAX

UNIT

VBR(CEO)

-60
-80
-100

-

-

-

V91ts

Collector Cutoff Current
(VCS =-80V)

ICBO

-

-

-200

ILA

Collector Cutoff Current
(VCE =-40V)

ICEO

-

-

-O.S

rnA

Emitter Cutoff Current
(VES =-SV)

IESO

-

-

-2

rnA

off characteristics
Collector-Emitter Breakdown Voltage
(Ic =-30mA)

TIP12S
TIP126
TIP127

second breakdown

I Second Breakdown with Base Forward Biased

FBSOA

SEE FIGURE 13

on characteristics
DC Current Gain
(Ic = -O.SA, VCE =-3V)
(Ic =-3A, VCE =-3V)

hFE

1000
1000

-

-

-

-

-

-

-2
-4

V
V

-

-

-2.5

V

ton

-

1.S

toff

-

8.5

Collector-Emitter Saturation Voltage
(Ic =-3A, Is =-12mA)
(Ic =-SA, Is =-20mA)

VCE(sat)

Base-Emitter Voltage
(Ic =-3A, VCE =-3V)

VSE(on)

switching characteristics
Ic =-3A, RL = 100
IS1 = -IS2 =-12mA
VSE(Off) =SV

Turn-on Time
Turn-off Time

/. ~ ........

~
Z

w
a::
a::
=>
0
a::

V~

1// " .

~ .......

-3

0

I"""'"

-

-2

"..

~

,/"

I-

0
W
--'
--'
0
0

".

...-

-4

COMMON EMITTER
TC'2S'C
__ t""'
-2.0

-2.S

-3.0

-s
9

ILS

-6

-6

I-

-

---- -I"""'"

..-

t"""

-

-

t""'"

-1

-5

I
~

-1.0

I

I-

-0.6

a::
=>
0
a::

-0.3

15
a::

-

~

-

[~

-3

~ "

;t ~,.

-2

r

--'

--'

8

V

-1

Ie' -o.2mA

0
-2

.."

-4

9

0

0

o

~2.0
:::.- r...~
I-'
~ ; / ...- ...-

........:

-l.S

-0.4

-8

-4

-10

-12

o

-14

"

l- i - I"""'"

.",...

--

-

-

-----

r-

-1.5

~

-1.0

r.-

766

-

-0.4

I
-0.2
le,-o.l mA

J

o
-2

-10

FIG. 2

IC - VCE

I
-0.6

t""'"

COLLECTOR-EMITTER VOLTAGE VCE (V)

COLLECTOR-EMITTER VOLTAGE VCE (V)

FIG. 1

COMMON EMITTER
TC'loo'C

-2.S

IC - VeE

I

-12

-14

10.000

-6

COMMON EMITTER
T C '-55'C

-6.0

-5

~
..9

-4

Z

w

a:
a:

;:)

V I--"" ~ ~ ..--~ ~ ~

-4.0

~ ~ L,...oo ~ 10-.-

L..- I-

-3.0

",,'"

~ i"""

-2.0

.c

·-1.4

«
C1

-3

0

I-

a:

~

1d

- l -I -

~ 10-

I

-

I

8

IS ·-0.6mA
-1

5,000

~I ,uL'

3,000

. . o~

>Z
w
a:
a:
;:)

0
0

-

c

~

,,<§l

/

V

w

IL

Z

-1.0

10-'"

-2

:l

-

~~

V.V

>-

COMMON EMITTER
VCe=3V

V

1,000

I

'" ~

f"(

V

-

Ig,

~

["'..

~

500

300

"'I..

....

I

1/

/

V

0

0

o

-2

-8

-10

-12

-0.1

COLLECTOR-EMITTER VOLTAGE VCE (V)

FIG. 3

\

100

-14

-0.3

-3

-1

-10

COLLECTOR CURRENT IC (A)

IC - VCE

FIG. 4

hFE - IC

-20

w
C1

COMMON EMITTER
lellS' 250

-10

i5...J

-20

~

w

C1

Z

0

~

-5

i=

iL
~:!.

...J

~
-3

iJii
a: -

-

w w

I:~
iw
rI:

-1

~
..J

-0.5

-

25

-

100

~~

-5

~~
-

-3

;:)

~i
a:>

W

-1

'"~
-1

-0.3

25

r==

-0.3

-6

w
C1

COMMON EMITTER
VCE=-3V

~
...J

WII

Z

,CJ

0

i=

a:

-2

/

..J
..J

8

I

-1

0

./
o

-0.4

-0.8

I

/
-1.2

IC= -sA

Is=-20mA

I:~

-2

-1

~

-

I-- I--

-3
-1

-12

w w

I

I-- I--

-1

F= F=

rI:

0

>-

-0.5

1d

:l

V

1/

I

i=~

II

J

-3

iJi i
a:-

~I flJ

~
"
...." J

0

I

iL

1/ V 1/
-3

COMMON EMITTER
-5

~

1/ J
J / I

-4

~

~

VBE{sat) - IC

-10

-5

;:)

-10

-3

-1

FIG. 6

FIG. 5 VCE{sat) - IC

a:
a:

~

COLLECTOR CURRENT IC (A)

COLLECTOR CURRENT IC (A)

~
..9

~

:...

100

-0.5
-0.1

-10

-3

OO!!I,;;~

TC' -55'C

~

iw

-0.3
-0.1

Z

Q

;

~

TC =-55'C

§
0
0

COMMON EMITTER
lellS= 250

-10

0

I

0

-0.2

IJ
-1.6

-80
-2.0

-2.4

-2.8

-40

o

40

80

120

CASE TEMPERATURE Tc ('C)

SASE-EMITTER VOLTAGE VSE (V)

FIG. 8

FIG. 7 IC - VBE

767

VCE{sat) - Tc

160

200

-20
-4.0
COMMON EMITTER
VCE = -3V

~
w
In
>

~

.9
z
w

-3.2

I-

~

-2.4

g
a:
w

~

-1;6

....

~

'"«

-0.8

U

~

-3

a:

I-

'" So"",

U

W

-3

-'
-'
0

-

-1

1

1·1 I

i~>e.

0

-

::;;

In

=>

IC=-5A

I'--..

r-...

-5

a:
a:

W

CI

VC=-20V
RBB2 = 10011
To = 25"C
SEE FIGURE 2

-10

r-- I-

u

I-

::;;
X

r"--r--r..

::;;

-1

=>

«
::;;

-0.5

o

-0.3

o

-40

-80

40

120

80

160

30

10

3

CASE TEMPERATURE To ("C)

100

UNCLAMPED INDUCTIVE LOAD L (mH)

FIG. 9 VBE - Tc

FIG. 10 IC - L (UNCLAMPED INDUCTIVE LOAD)
70

-...

Rth(j-o) S 1.92"CIW

60

"-

50

" "-

40

"

30

""

20

'\

""I"

10

o

o

20

40

60

80

100

120

I'\.

140

160

CASE TEMPERATURE Tc ("C)

Pc - Tc

FIG. 11

-20

I I IIIIIII *

-10

3.5
Rthu-.a) S6.25"CIW

-5

a:

~[
z

"'0

5~

z-

"

1.5

OO

ua:

~~

::;;0
_a.

w
a:
a:

=>

.......

I"-

a:
0

"'"

~-'
U

t-.....
20

40

60

80

100

'*

SINGLE NONREPETITIVE PULSE
Tc = 25"C

-0.3
CURVES MUST BE DERATED LINEARLY
WITH INCREASE IN TEMPERATURE.

r" "-

120

AMBIENT (FREE-AIR) TEMPERATURE Ta ("C)

FIG.12

-0.5

-'

0

l'

0.5

o

,,9t, \

-1

U

1.0

o

-a-"?

~

=>0.

-'"
z-

1-",

~

 10.MQ, Cin ~ 11.5pF.

=

=

D. Resistors must be noninductive types.

E. The d·c power supplies may require additional bypassing in order to minimize ringing.

FIGURE 1.

RESISTlVE·LOAD SWITCHING

772

I

-:LJVOLTAGE WAVEFORMS

ADJUST FOR
Von =8.5VAT

-

STATIC FORWARD CURRENT TRANSFER RATIO
vs
COLLECTOR CURRENT
o

lk
VCE=4V
TC = 25°C
See Notes 5 and 6

.~

': 400

-=l!!c

1-100

l:
~

8

40

./

'E

~o

LL

10
4

1

0.001

0.004 0.01
0.04 0.1
0.4
Ic-Collector Current-A

NOTES: 5. These parameters must be measured using pulse techniques. tw = 300 "s. duty cycle" 2%.
6. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts.

FIGURE 2. TYPICAL CHARACTERISTICS

FORWARD-BIAS SAFE OPERATING AREA
"w= 300lls, d= 0.1 =
1009l~~
40
= 1 ms, = 0.1 = 10%
lD'l1>

d
-10ms,d-0.l = 10%

1 1:~~IIIII!'/~;D~Ciiii~~Sie~ejNiMiem7m

_g'_

c
2!

:;

r:~

.!!

8I
9

I::~:A

0.4 r-r--

Tlr.,n ..

~=='Eli·nllillill

0.1
0.04/=

11111

1111111

0.01

L-...L-I....LUil.I.L---L--LJL..L.LIWUL.llJ-L..LJ.J..uu

1

4

10

40

100
400
Voltage-V

lk

VCE-Collector~Emitter

FIGURE 3

MA}(IMUM SAFE OPERATING AREA

NOTE 7. This combination of maximum voltage and current may be achieved only
when switching from saturation to cutoff with a clamped inductive load.

DISSIPATION DERATING CURVE

~
c

40

.
.

.g
~

is

30

fl

';:
.,
C

.",

D...

~

5::s

20

"

c
'w
c

<3

§

"-"

10

E

'i

~

.t oo

25

"

"

50
75
100
125
Tc-Case Temperature-oC

FIGURE 4 THERMAL INFORMATION

773

150

774

TIP 30 Series

PNP POWER TRANSISTORS

-40 - -100 VOLTS
-1 AMP, 30 WATTS

COMPLEMENTARY TO THE TIP29 SERIES

The TIP30 Series power transistors are designed for use in
general purpose amplifier and switching applications.

PNP
COLLECTOR

Features:
• Designed for complementary use with TI P29 series
EMITTER

• 30W at 25° C case temperature

CASE STYLE TO-220AB
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

• -1A continuous collector current

:~~g\:·~~\rt
.OS511.39)
.
I
.04811.~21

.--

• -3A peak collector current

.26516.731
.24516.22)

• Minimum fT of 3 MHz at 10V, O.02A

/I---+--I.---....,fl--

• Customer-specified selections available
• Designed for power amplifier and high-speed switching
applications

~

~.3)
TERM.1

-tf;"~IIII-i+--,

TERM.2

CASE

_

.:~~~\~:~;\

+

. 1144S11133.·6S881IDIA.

.
TEMPERATURE
REFERENCE
/
POINT

-,

.220IS.S91

~SI
.001(0.0251

.SOOI12.7IMIN.

.OSSI1.391
.04SI1.141

TERM.3

.0331~.841

.02710.691

.1~.10SI2.671

.05S(1.391
.1
.04SI1.141--"

maximum ratings (T C = 25° C)
RATING
Collector-Emitter Voltage
Collector-Base Voltage
Emitter Base Voltage
Collector Current - Continuous
Peak
Base Cu'rrent - Continuous
Total PowerDissipation@ TA = 25°C
@Tc=25°C
Operating and Storage
Junction Temperature Range

~ ,009512.4 11

1+-.
I+-

.210IS.331
.19014.821

~

.10712.721
.08712.211

.02110.531
.01SI0.381

(unless otherwise noted)
SYMBOL
VCEO
Vcso
VESO
Ic
ICM
Is
Po

TIP30
-40
-80
-5
-1
-3
-0.4
2
30

TIP30A
-60
-100
-5
-1
-3
-0.4
2
30

TIP30B
-80
-120
-5
-1
-3
-0.4
2
30

TIP30C
-100
-140
-5
-1
-3
-0.4
2
30

UNITS
Volts
Volts
Volts

TJ, TSTG

-65 to +150

-65 to +150

-65 to +150

-65 to +150

°C

ROJC

4.17

4.17

4.17

4.17

°C/W

h

250

250

250

250

°C

A
A
Watts

thermal characteristics
Thermal Resistance, Junction to Case
Maximum Lead Temperature for Soldering
Purposes: W' from Case for 5 Seconds

775

electrical characteristics (T c

=25

0

C)

(unless otherwise specified)

CHARACTERISTIC

SYMBOL

MIN

TYP

MAX

UNIT

VCEO

-40
-60
-80
-100

-

-

Volts

-

-

-0.3
-0.3

mA

-

-0.2
-0.2
-0.2
-0.2

mA

-

-

-

-

-1

mA

off characteristics
Collector-Emitter Breakdown Voltage
(Ic = -30mA)

TIP30
TIP30A
TIP30B
TIP30C

Collector Cutoff Current
(VCE =-30V)
(VCE = -60V)

TIP30, TIP30A
TIP30B, TIP30C

Collector Cutoff Current
(VCE = -80V)
(VCE = -100V)
(VCE = -120V)
(VCE = -140V)

TIP30
TIP30A
TIP30B
TIP30C

Emitter Cutoff Current
(VES = -5V, ·IC = 0)

ICEO

ICES

IESO

second breakdown

I Second Breakdown with Base Forward Biased

SEE FIGURE 3

FBSOA

on characteristics
DC Current Gain
(Ic = -0.2A, VCE = -4V)
(Ic = 1A, VCE = 4V)

hFE

Collector-Emitter Saturation Voltage
(Ic = -1A, Is = -125mA)
Base-Emitter Voltage
(Ic = -1A, VCE = -4V)

VCE(Sat)
VSE(On)

20
15

-

75

-

-

-

-

-0.7

V

-

-

-1.3

V

-

0.3

-

switching cha·racteristics
RL = 300, Ic = -1A
IS1 = IS2 = 0.1A
VSE(off) = 4.3V

Turn-on Time
Turn-off Time

ton
toft

1

f.1.s

INPUT
MONITOR
OUTPUT
MONITOR
1N914

RBB1 - 36

n

MO~~;~~ 4.~~ --l~;J-

2N4301
56n

1N914

1N914

V on --8.5V

1N914

--~

1 9 0%
I

I

I

I
ton-+ol

RBB2-S6 n

270pF
30 n

VBB1" 10V
ADJUST FOR
Von =-B.5VAT
INPUT MONITOR

VBB2 = 4.3 V

-r::---I

......

I
......toff-+1

rr--:L
I

=-+

OUTPUT
MONITOR

VOLTAGE WAVEFORMS

+

TEST CIRCUIT

NOTES: A. Vgen is a 30·V pulse into a 50 Q termination.
B. The V gen waveform is supplied by the following characteristics: tr < '5 ns, tf < '5 ns, Zout = 50 Q, tw = 20 ~s,
duty cycle < 2 %.
C. Waveforms are monitored on an oscilloscope with the following characteristics: tr < , 5 ns, Rin ;. '0 MQ, Cin < , '.5 pF.
D. Resistors must be noninductive types.
E. The d·c power supplies may require additional bypassing in order to minimize ringing.

FIGURE 1.

RESISTIVE·LOAD SWITCHING

776

I

STATIC FORWARD CURRENT TRANSFER RATIO
vs
COLLECTOR CURRENT

~~~~\?=l3II~iHII

VCE =-4V
.,.
0;; 1k
IX: 400 Tc = 25DC
~

See Notes 5 and 6 t-H-t+lHtt--t-+-l-HttH

]

.

~

100

c

~ 40
u=

"Eto

!
.f

10

u

~

w
II.
.c

4

1
- 0.001

-0.1
-0.01
Ic-Collector Current-A

-1

FIGURE 2. TYPICAL CHARACTERISTICS
NOTES:

5. These parameters must be measured using pulse techniques. tw = 300 ~s. duty cycle .. 2%.
6. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts.

FORWARD-BIAS SAFE OPERATING AREA
100
"tw = 300 lIS. d =" 0.1 - 10%
tw = 1 ms, d = 0.1 = 10%
tw = 10 ms, d = 0.1 = 10%
DC Operation, See Note 7

40

1

10
4

~

u=

~bJl

~

ts

TlP30
"0 0.4 i==
I-- TIP30A
u
~
I
TIP30B
~ 0.1 i::=
r:TIP30C
0.04
..!!!

§

LIIIIIII

0.01
1

4
10
40 100
400 1000
VCE-Collector·Emitter Voltage-V

FIGURE 3

MAXIMUM SAFE OPERATING AREA

NOTE 7: This combina"tion of maximum voltage and current values may be achieved only
when switching from saturation to cutoff with a clamped inductive load.

DISSIPATION DERATING CURVE
":r.40
c
o

:1
..
.,
..6

is 30

I"

u
.;;

Q

c
=

20

""- ~
"

.~

8

~ 10

'2
=f

~

o

o

25

"r-...

"

E

.~

50
75
100
125
Tc-Case Temperature-DC

FIGURE 4

150

THERMAL INFORMATION

777

778

TIP 31 Series

NPN POWER TRANSISTORS

40-100 VOLTS
3 AMP, 40 WATTS

COMPLEMENTARY TO THE TIP32 SERIES

The TIP31 Series power transistors are designed for use in
general purpose amplifier and switching applications.

NPN
COL.L.ECTOR

Features:

• 40W at 2SoC case temperature
EMITTER

• 3A continuous collector current

-_·-rt

CASE STYLE TO-220AB

DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

• SA peak collector current

.404110.261

.11612951

f...'380196511.11012.791
I
.
-.l.

• Minimum fT of 3 MHz at 10V, O.SA

__ +

• Customer-specified selections available

_

t

19014831

--j

.----

.17014.321

.26516.731
24516.221

t

-

_

.35519.021

:~:~:~:~::DIA.

+32518.251

~
I

~.31
TERM.l

CASE
TEMPERATURE
REFERENCE

T

/

-!f;"~IIII4n----'

TERM.2

05511.391
.04811.:221

/

POINT

--:J.591

~51

.00110.0251

.500112. 71M IN.

.05511.391
.04511.141

TERM.3

.0331~.841

.02710.691

.!IH_j--.l0512.671
~ _ .09512.411

.055(1.391
.1
.04511.141-"

maximum ratings (T C =25° C)
RATING
Collector-Emitter Voltage
Collector-Base Voltage
Emitter Base Voltage
Collector Current -:- Continuous
Peak
Base Current - Continuous
Total Power Dissipation @ TA = 25°C
@Tc=25°C
Operating and Storage
Junction Temperature Range

I-I--

.21015.331
19014.821

.

~

.10712.721
.08712.211

.02110.531
.01510.381

(unless otherwise noted)

VCEO
Vcso
VESO
IC
ICM
Is
PD

TIP31
40
80
5
3
5
1
2
40

TIP31A
60
100
5
3
5
1
2
40

TIP31B
80
120
5
3
5
1
2
40

TIP31C
100
140
5
3
5
1
2
40

UNITS
Volts
Volts
Volts

TJ, TSTG

-65 to +150

-65 to +150

-65 to +150

-65 to +150

°C

ReJC

3.125

3.125

3.125

3.125

°CIW

TL

250

250

250

250

°C

SYMBOL

A
A
Watts

thermal characteristics
Thermal Resistance, Junction to Case
Maximum Lead Temperature for Soldering
Purposes: W' from Case for 5 Seconds

779

electrical characteristics (Tc = 25° C)

I

(unless otherwise specified)

I SYMBOL I

CHARACTERISTle

I

TYP

MAX

UNIT

40
60
SO
100

-

-

Volts

-

-

-

0.3
0.3

mA

-

-

0.2
0.2
0.2
0.2

mA

-

-

1

mA

MIN

off characteristics
Collector-EmJtter Breakdown Voltage
(Ic = 30mA)

tlP31
TIP31A
TIP31B
TIP31C

Collector Cutoff Current
(VCE= -30V)
(VCE= 60V)

TIP31, TlP31A
TIP31B, TIP31C

Cullr,ctor Cutoff Current
(\CE= SOV)
(VCE= 100V)
(VCE= 120V)
(VCE= 140V)

TIP31
TIP31A
TIP31B
TIP31C

Emitter Cutoff Current
(VEB =SV, IC =0)

VCEO

ICEO

ICES

lEBO

second breakdown

.I Second Breakdown with Base Forward Biased

FBSOA

SEE FIGURE 3

on characteristics
DC Current Gain
(Ic = 1A, VCE= 4V)
(Ic = 3A, VCE = 4V)
Collector-Emitter Saturation Voltage
(Ic = 3A, Is = 375mA)
B?se-Emitter Voltage
(Ic = 3A, VCE = 4V)

hFE

VCE(sat)
VBE(on)

25
10

--

50

-

-

-

-

1.2

V

-

-

1.S

V

-

0.5

-

Jls

switching characteristics
RL = 30n, Ic =1A
IS1 = IS2 = O.1A
VSE(off) = -4.3V

Turn-on Time
Turn-off Time

ton
tott

2

INPUT
MONITOR
OUTPUT
MONITOR
tN9t4

56n

ABBt =36 n

;!N53B5
1N9t4

tN9'4

von=a.5v--;;r;:-~D%

1N914

INPUT
OV-- ---10%
MONITOR - 4.3 V
I
I

RSS2=56n

270pF

30n

VBB2=4.t

~tDnt+

v-=:

I -I
I

~ toff

I

+

+
.=Vcc=30V

~----------------------~----.+
VSSt .. tOV

OUTPUT
MONITOR

ADJUSTF.OR
Von =9.5VAT
I.NPUT MONITOR

\l

I
1D%r-

90%'t-.r~

VOLTAGE WAVEFORMS
TEST CIRC!)IT

NOTES: A. Vgenisa ~.30.vpulseinIDa50QlerminaliDn.
B. TheV gen wayeform is su.pplied by Ihe following charaClerislics: t r '" 15 ns, II'" 150s, Zout = 50Q,Iw = 20~s,
duty cycle", 2%.
C. Waveforms are monitored on an oscilloscope with Iheloltowing characteristics: t r '" 15ns, Rin i> 10 MQ, Cin '" 11.5 pF.
D. Resislors must be nonlnciuciive Iypes.
E•. The d~c po'wer su.pPI.ie~ ma'y require' ~dditional byp~ssing j'n order to minimize ringing.

FIGURE 1.

RESISTIVe:LOAD SWITCHING

7S0

----

STATIC FORWARD CURRENT TRANSFER RATIO
vs

COLLECTOR CURRENT
..,

~o

J!!

400
lk

j

~s~~~~~l~~II~~1
VCE =4V
TC = 25°C
See Notes 5 and 6

;: 'OO~IIIIII
~

8

40

•••

"E!

~

~,o~n
~ 4p
w
II.
z:

'~~~WL~~UW~~~WL~~~

0.1
0.01
Ic-Collector Current-A

0.001

10

FIGURE 2. TYPICAL CHARACTERISTICS

=300 ~s. duty cycle" 2%.

NOTES: 5. These parameters must be measured using pulse techniques. tw

6. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts.

100
40


.!

SI
E

0.1
0.04

VCE-Coliector.Emitter Voltage-V

FIGURE 3

MAXIMUM SAFE OPERATING AREA

NOTE 7: This combination of maximum voltage and current may be achieved only
when switching from saturation to cutoff with a clamped

inductive load.

DISSIPA TION DERATING CURVE
, 50
c

'I

.;:; 40

I'\.

£5
.~

~

..

30

.~

20

::r
o
::r
c

"

8

E

~ 10

!

"

\..

""

'I\.

o

o

25

FIGURE 4

75
50
100
125
Tc-Case Temperature-oC

"

150

THERMAL INFORMATION

781

782

TIP 32 Series

PNP POWER TRANSISTORS

-40 - -100 VOLTS
-3 AMP, 40 WATTS

COMPLEMENTARY TO THE TIP31 SERIES

The TIP32 Series power transistors are designed for use in
general purpose amplifier and switching applications.

PNP
COLLECTOR

Features:
• Designed for complementary use with TIP31 series
• 40W at 25° C case temperature

EMITTER

CASE STYLE TO-220AB
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

• 3A continuous collector current

.404(10.26) . ~ ~~\~.~~II
.380(9.651.j· I '

• SA peak collector current

I--..L

__ +

• Minimum fT of 3 MHz at 10V, O.SA

t

.190(4.831

'170(4'321~

.-----

.265(6.731
.245(6.22:

I

_

t--+----1I--------,fl--i-.....,

• Customer-specified selections available

+

:~:~g~~IDIA.
TERM.l

.355(9.021
.325(8.251

~

-tr;',III~r+--,

.055(1.391
.048(1.221

.
CASE
TEMPERATURE
REFERENCE
/ " POINT

---,

.220(5.591

---..t...

.00610.151
.001 (0.0251

.500(12.7IMIN.

TERM.2
TERM.3

.033(~.841

.027(0.691

.11tiJ--.

.055(1.391---1
.045( 1.141

maximum ratings (Tc

105 (2.671
~ •. 095(2.411

1---'

I---

.210(5.331
.190(4.821

r=*-l

.107(2.721
.08712.211

.021 (0.531
.015(0.381

=25° C) (unless otherwise noted)

RATING
Collector-Emitter Voltage
Collector-Base Voltage
Emitter Base Voltage
Collector Current - Continuous
Peak
Base Current - Continuous
Total Power Dissipation @ TA = 25°C
@Tc=25°C
Operating and Storage
Junction Temperature Range

VCEO
VCSO
VESO
IC
ICM
Is
PD

TIP32
-40
-80
-5
-3
-5
-1
2
40

TIP32A
-60
-100
-5
-3
-5
-1
2
40

TIP32B
-80
-120
-5
-3
-5
-1
2
40

TIP32C
-100
-140
-5
-3
-5
-1

UNITS
Volts
Volts
Volts

2
40

Watts

TJ, TSTG

-65 to +150

-65 to +150

-65 to +150

-65 to +150

°C

ReJC

3.125

3.125

3.125

3.125

°CIW

TL

250

250

250

250

°C

SYMBOL

A
A

thermal characteristics
Thermal Resistance, Junction to Case
Maximum Lead Temperature for Soldering
Purposes: W' from Case for 5 Seconds

783

electrical characteristics (T c

I

=25° C) (unless otherwise specified)
I SYMBOL I

CHARACTERISTIC

MIN

TYP

-40
-60
-80
-100

-

-

-

-

-0.3
-0.3

mA

-

-

-0.2
-0.2
-0.2
-0.2

mA

-

-

-

-

-1

mA

MAX

UNIT

off characteristics
Collector-Emitter Breakdown Voltage
(Ic = -30mA)

TIP32
TIP32A
TIP32B
TIP32C

Collector Cutoff Current
(VCE = -30V)
(VCE = -60V)

TIP32, TIP32A
TIP32B, TIP32C

Collector Cutoff Current
(VCE = -80V)
(VCE = -100V)
(VCE = -120V)
(VCE = -140V)

TIP32
TIP32A
TIP32B
TIP32C

VCEO

ICEO

ICES

Emitter Cutoff Current
(VES = -5V, Ic = 0)

IESO

-

Volts

second breakdown

I Second Breakdown with Base Forward Biased

FBSOA

SEE FIGURE 3

on characteristics
DC Current Gain
(Ie = -4A, VCE = -1V)
(Ie = -3A. VCE = -4V)
Collector-Emitter Saturation Voltage
(Ic = -3A. Is = -375mA)
Base-Emitter Voltage
(Ic = -3A, VCE = -4V)

hFE

25
10

-

50

-

-

-

-

-1.2

V

-

-

-1.8

V

ton

-

0.3

toff

-

1

-

VCE(sat)
VSE(on)

switching characteristics
RL = 300, Ic = 1A
IS1 = IS2 = 0.1A
VSE(off) = 4.3V

Turn-on Time
Turn-off Time

JlS

INPUT
MONITOR
OUTPUT
MONITOR
lN914

RBBI = 36

.MO~~~t~~ --!~;J--~---

n

v o=-85V
n·

2N4301

56n

lN914

lN914

--_

1
I

lN914

I
I

I
1

270 pF

RBB2 = 56

RL = 30

n

n

ton

+
30

n

VBBI '" 10V
ADJUST FOR
V on =-8.5VAT
INPUT MONITOR

VBB2 = 4.3 V.=.

OUTPUT
MONITOR

I,.F

-=

VCC=30V

+

-+-I

I

I·

....
I

10%

VOLTAGE WAVEFORMS

NOTES: A. Vgen is a 30-V pulse inlo a 50Q lerminalion.
B. The Vgen wavelorm is supplied bylhe following characterislics: Ir'; 15ns,II'; 15ns.Zoul = 50Q,l w = 20,.s,
duty cycle'; 2 %.
C. Waveforms are monitored on an oscilloscope with the following characteristics: tr.l!it 15 ns, Rin ~ 10 MQ, Cin ~ 11.5 pF.
D. Resistors must be noninductive types.
E. The doc power supplies may require additional bypassing in order to minimize ringing.

784

I

I;:

TEST CIRCUIT

RESISTIVE-LOAD SWITCHING

Io4-loff ~

90%.f----1~10%L
-.-J

+

FIGURE 1.

90%

STATIC FORWARD CURRENT TRANSFER RATIO
vs
COLLECTOR CURRENT
1k
.2
VCE=-4V
1;;
TC = 25°C
': 400
See Notes 5 and 6

~

~

': 100

§
~
40 rr-

~
d
1!

I-

!
If

10

u

~...

4

w

.c

1

-0.01
-0.1
-1
IC-Collector Current-A

-0.001

-10

FIGURE 2. TYPICAL CHARACTERISTICS

=

NOTES: 5. These parameters must be measured using pulse techniques. tw
300,.... duty cycle'; 2%.
6. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts.

FORWARD-BIAS SAFE OPERATING AREA

100

tw -

300ps, d = 0.1 = 10%
tw = 1 ms, d = 0.1 = 10%
tw = 10 ms, d = 0.1 = 10%
,/ D.C. Operation, See Note'

40

'C1

10
4

~

:;

u

~

~

F= ~

r= r-

TI P32
TI P32A
I-- I- TI
P32B
0.1
~ ~ TI P32C

.!!

0.4

'0

u

I

E

.

0.04

\ 1111\

0.01

11111 I

40 100
400
4
10
VCE-Coliector·Emitter Voltage-V

1

FIGURE 3

1k

MAXIMUM SAFE OPERATING AREA

NOTE 7: This combination of maximum voltage and current may be achieved only
when switching from saturation to cutoff with a clamped inductive load.

ifc

DISSIPATION DERATING CURVE

50

.
i5
..

.g

.~ 40

"-

.!:!

~

.

"co
"

.~

" .~

30

"

20

'\

o

u
E

E 10

.~

~
.t'

0

o

25

FIGURE 4

'"

r-...

75
50
100
125
Tc-Case Temperature-oC

'"

THERMAL INFORMATION

785

150

786

TIP 41 Series

NPN POWER TRANSISTORS

40-100 VOLTS
6 AMP, 65 WATTS

COMPLEMENTARY TO THE TIP42 SERIES

The TIP41 Series power transistors are designed for use in
general purpose amplifier and switching applications.

NPN
COLLECTOR

Features:
• Designed for complementary use with TIP42 series
EMITTER

• 6SW at 25° C case temperature

_·-rt

CASE STYLE TO-220AB

DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

• 6A continuous collector current

.404110.26)

1161295)

1f...38019.65)-eoI·11012.79)
1-.1.

• 10A peak collector current

I-""""'"--i

__ + _

• Minimum fT of 3 MHz at 10V, O.SA

'1

.-- -

f

.26516.73)
.24516.22)

t

:~:~:~:~~:DIA.

_

.35519.02)

+

.32518.25)

~
I

~.3)
TERM.1

~11I14ri'---,

05511.39)
.04811.22)

.

CASE
TEMPERATURE
REFERENCE

T

/

• Customer-specified selections available

1901483)
-'
.17014.32)

/

POINT

~59)

~5)

.00110.025)

.500112.7)MIN.

TERM.2
TERM.3

.0331~.84)

.02710.69)
.055 1.39
.045 1.14)

maximum ratings (TC =25° C)
RATING
Collector-Emitter Voltage
Collector-Base Voltage
Emitter Base Voltage
Collector Current - Continuous
Peak
Base Current - Continuous
Total Power Dissipation @ T A = 25° C
@Tc= 25°C
Operating and Storage
Junction Temperature Range

.10712.72)
.08712.21)

.!h.J--.,0512.67)
~ •. 09512.41)

--l

1:=

.21015.33)
.19014.82)

.02110.53)
.01510.38)

(unless otherwise noted)
TIP41
40
80
5
6
10

TIP41A
60
100
5
6
10

TIP41B
80
120
5
6
10

TIP41C
100
140
5
6
10

3

3

3

3

A

2
65

2
65

2
65

2
65

Watts

TJ, TSTG

-65 to +150

-65 to +150

-65 to +150

-65 to +150

°C

ROJC

1.92

1.92

1.92

1.92

°C/W

TL

250

250

250

250

°C

SYMBOL
VCEO
VCBO
VEBO
IC
ICM
IB
Po

UNITS
Volts
Volts
Volts

A

thermal characteristics
Thermal Resistance, Junction to Case
Maximum Lead Temperature for Soldering
Purposes: W' from Case for 5 Seconds

787

electrical characteristics (T c = 25 0 C)

I

(Unless otherwise specified)

CHARACTERISTIC

SYMBOL

MIN

TYP

MAX

UNIT

VCEO

40
60
80
100

-

-

Volts

-

-

0.7
0.7

mA

-

-

0.4
0.4
0.4
0.4

mA

-

-

1

mA

off characteristics
Collector-Emitter Breakdown Voltage
(Ic = 30mA)

TIP41
TIP41A
TIP41B
TIP41C

Collector Cutoff Current
(VCE=30V)
(VCE = 60V)

TIP41, TIP41A
TIP41B, TIP41C

Collector Cutoff Current
(VCE = 80V)
(VCE= 100V)
(VCE = 120V)
(VCE= 140V)

TIP41
TIP41A
TIP41B
TIP41C

ICEO

ICES

Emitter Cutoff Current
(VES = 5V, Ic = 0)

IESO

-

second breakdown

I Second Breakdown with Base Forward Biased

SEE FIGURE '3

FBSOA

on characteristics
DC Current Gain
(Ic = .3A, VCE = 4V)'
(Ic = 3A, VCE = 4V)
Collector-Emitter Saturation Voltage
(Ic = 6A, Is = .6A)
Base-Emitter Voltage
(Ic = 6A, VCE = 4V)

hFE

30
15

-

-

-

ton

-

0.6

toft

-

1

VCE(sat)
VSE(on)

-

-

1.5

V'

2.0

V

-

p's

75

switching characteristics
Ic =6A, RL = 50
IS1 = IS2 = 0.6A
VSE(otf) = -4V

Turn-on Time
Turn-off Time

INPUT
MONITOR
OUTPUT
MONITOR
tN9t4

S6n

RSSt ~ 10 n

~o"

VOn = 1 4 V - J : : INPUT
OV - MONITOR - 4 V

2NS38S
lN9t4

tN914

lN914

I
I

----- --10%
:
I

._

....., ton,
RBS2~

270pF
Vuen

tl'F

VSB2=4V,=

30n

OUTPUT
MONITOR

+

~----------------------~~-•• +
VSS,"'6V

TEST CIRCUIT

NOTES: A. V gen is a - 30-V pulse into a 50 12 termination.
B. The V gen waveform is supplied by a generator with the following characteristics: t r .. 15 ns. tf." 15 ns. Zout = 50 g,
tw
201'5, duty cycle .. 2%.
C. Waveforms are monitored onan.oscilloscope with the following chiuacteristics: t r .. 15 ns, Rin ;lo 10 Mg, Cin .. 11.5 pF.
D. Resistors must be noninductive types.
E. The doc power supplies may require additional bypassing in order to minimize ringing.

=

FIGURE 1.

RESISTIVE-LOAD SWITCHING

788

II

.

--Lf
VOLTAGE WAVEFORMS

AOJUST FOR
Von=t4VAT
INPUT MONITOR

•

!-I-..;- toff

I

10n

----

STATIC FORWARD CURRENT TRANSFER RATIO
vs
COLLECTOR CURRENT

o

VCE=4V
1000r~~~~~~~~I1~~~~
TC = 25°C

.~

400 See Notes 5 and 6 +-~I-HI#l+--I--++++HIl

a:

0.04 0.1
0.4
Ic-Collector Current-A
FIGURE 2.
NOTES: 5.
6.

10

4

TYPICAL CHARACTERISTICS

These parameters must be measured using pulse techniques. tw = 300 ~s. duty cycle .. 2%.
These parameters are measured with voltage~sensin9 contacts separate from the current·carrying contacts.

FORWARD-BIAS SAFE OPERATING AREA

~~I~~tw~";~
300~,d~='~01"~'1"'~'1i~)%
tw = 1 ms, d = 0.1 = 10%

100
40 ~

f--++-I4+IA+.I-, tw = 10 ms, d = 0.1 = 10%

«

10

/ D.C. Operation See Note 7

~4 I=:

~.m.

• •

I!!

8

i
8~ 0.4 !~~IIII~~~III!~~~~~III
t~:~:~A;
0.04

iiiiiil;T1P4~1B'llliil

O.Ot

1111
L-...l-L..LUllll...--.l.......LJL.ll.IllL....LL.......L..J....LllJIJ

_uO.1
I

IIr

1.0

4
10
400 1000
40
100
VCE - Collector - Emitter Voltage - V

FIGURE 3
NOTES: 7.

MAXIMUM SAFE OPERATING AREA

This combination of maximum voltage and current may be achieved only
when switching from saturation to cutoff with a clamped inductive load.

DISSIPA TION DERATING CURVE

3f

80

c

o

l

.s:

70

~

is 60
8

'g;

"

""

50

..S 40

Q

·s"c
8

30

~

!1:

'" '"

'\

E 20

o

25

FIGURE4

t'-.

"-

""

50
75
100
125
Tc-Case Temperature-oC

THERMAL INFORMATION

789

150

790

TIP 42 Series

PNP POWER TRANSISTORS

-40 - -100 VOLTS
-6 AMP, 65 WATTS

COMPLEMENTARY TO THE TIP41 SERIES

The TIP42 Series power transistors are designed for use in
general purpose amplifier and switching applications.

PNP

Features:

• 65W at 25° C case temperature
EMITTER

• 6A continuous collector current
• 10A peak collector current

-'--1. I

404(1026)

.1161295)
110 (2.79)

If.--'
.380(9.65)

• Minimum fT of 3 MHz at 10V, O.5A

-L

_ _+

• Customer-specified selections available

f

'190(483)rt 0551139)
170(4.32)
:04611' 22)

--j

-.--- __
.265(6 73)
.245(6.221

_

rL.--l---+---~f1--r"""

:~:ig:~~:DIA.

+

CASE
TEMPERATURE
REFERENCE
/
POINT

:~~~\~'.~~:-------r

~

.130(3.3)

f

TERM.I

~59)
•

.gg~(~rii~)

.500(12.7)MIN.

TERM.2
TERM.3

.0331~.84)

.027(0.69)

.1~~.105(2.67)

.055(1.39)
.1 \--'
.045(1.14)---"

.210(5.33)
.190(4.62)

f---

maximum ratings (TC

~

~".095(2.41)

.107(2.72)
.067(2.21)

.021 (0.53)
.015(0.36)

=25° C) (unless otherwise noted)

RATING
Collector-Emitter Voltage
Collector-Base Voltage
Emitter Base Voltage
Collector Current - Continuous
Peak
Base Current - Continuous
Total Power Dissipation @ TA = 25°C
@Tc=25°C
Operating and Storage
Junction Temperature Range

SYMBOL
VCEO
VC80
VE80
IC
ICM
18
Po

TIP42
-40
-80
-5
-6
-10

TIP42A
-60
-100
-5
-6
-10

TIP42B
-80
-120
-5
-6
-10

TIP42C
-100
-140
-5
-6
-10

-3

-3

-3

-3

A

2
65

2
65

2
65

2
65

Watts

TJ, TSTG

-65 to +150

-65 to +150

-65 to +150

-65 to +150

°C

ROJC

1.92

1.92

1.92

1.92

°C/W

TL

250

250

250

250

°C

UNITS
Volts
Volts
Volts

A

thermal characteristics
Thermal Resistance, Junction to Case
Maximum Lead Temperature for Soldering
Purposes: %" from Case for 5 Seconds

791

electrical characteristics (T c = 25 0 C)

I

(unless otherwise specified)
SYMBOL

CHARACTERISTIC

MIN

TYP

MAX

UNIT

-40

-

Volts

-80
-100

-

-

-

-

-0.7
-0.7

mA

-

-

mA

-

-0.4
-0.4
-0.4
-0.4

-

-

-1

mA

off characteristics
Collector-Emitter Breakdown Voltage
(Ic =30mA)

TIP42
TIP42A
TIP42B
TIP42C

Collector Cutoff Current
(VCE =-30V)
(VCE =-SOV)

TIP42, TIP42A
TIP42B, TIP42C

Collector Cutoff Current
(VCE =-80V)
(VCE =-100V)
(VCE =-120V)
(VCE =-140V)

TIP42
TIP42A
TIP42B
TIP42C

VCEO

-so

ICED

ICES

Emitter Cutoff Current
(VES =-5V, IC =0)

IESO

-

second breakdown

I

FBSOA

Second Breakdown with Base Forward Biased

SEE FIGURE 3

on characteristics
DC Current Gain
(Ic =-.3A, VCE =-4V)
(Ic =-3A, VCE =-4V)
Collector-Emitter Saturation Voltage
(Ic =-SA, Is =-.SA)
Base-Emitter Voltage
(Ic =-SA, VCE =-4V)

hFE

30
15

-

75

-

-

-

-

-1.5

V

-

-

-2

V

ton

-

0.4

J.Ls

toft

-

0.7

-

VCE(sat)
VSE(on)

switching characteristics
RL =5!l, Ic =-SA
IS1 = IS2 =O.SA
VSE(off) = 4V

Turn-on Time
Turn-off Time

INPUT
MONITOR
OUTPUT
MONITOR
lN914

Reel ~ 10 n
INPUT
MONITOR

56

n

2N4301
lN914

lN914

~~ --"KI!.%;I--~--I

V on --14V

lN914

--1I

I
I

I

I
Ree2 = 10

270 pF

I

n

ton.....

90%

I

14--

I

104- toff -+1

I

Vee2=4V =.

30n

veel ~ 16V
ADJUST FOR
Von' -14 V AT
INPUT MONITOR

OUTPUT
MONITOR

1 "F

-=

VCC =30V

+

y~
VOLTAGE WAVEFORMS

+

TEST CIRCUIT

NOTES: A. V gen is a 30·V pulse into a 50 Q termination.
B. The V gen waveform is supplied by a generator with the following characteristics: tr ~ 15 n5, tf ~ 15 n5, Zout = 50 Q,
tw = 20JJs. dutycycJe~ 2%.
C. Waveforms are monitored on an oscilloscope with the following characteristics: tr ~ 15 ns, Rin ~ 10 MQ. Cin ~ 11.5 pF.
D. Resistors must be noninductive types.
E. The d·c power supplies may require additional bypassing in order to minimize ringing.

FIGURE 1.

RESISTIVE-LOAD SWITCHING

792

I

STATIC FORWARD CURRENT TRANSFER RATIO
vs

COLLECTOR CURRENT

1~~~~ll-~~~W-~~~~

-0,4 -1
'-4 -10
-0.01 -0.04 '-()of
Ic-Collector Current-A

FIGURE 2.

TYPICAL CHARACTERISTICS

FORWARD-BIAS SAFE OPERATING AREA

VCE - Collector·Emitter Voltage - V

FIGURE 3 MAXIMUM SAFE OPERATiNG AREA
NOTE 7: This combination of maximum voltage and current may be achieved only
when switching from saturatio.~ to cutoff with 0 clamped inductive.load.

DISSIPATION OERA TING CURVI:
~ 80
c

.~ 70
a.

~

r--60

.~

it 50

Q

""-

~ 40

=

c

""- ~.

",

~ 30

B
§

20

S
.;

'i

10

J:

0

o

25

"'\
,

'"

..

50
75· 100 '125
TC-CaSe TemperatUre-OC

FIGURE 4 THERMAL INFORMATION

793

150'

794

2N3055

NPN POWER TRANSISTORS

60 VOLTS
15 AMP, 115 WATTS

General purpose power transistor designed for power regulator, switching and solenoid drive applications.

NPN
COLLECTOR

Features:
• High gain at high current
• Low saturation voltage: VCE(sat)

< 1.1V,

@IC=4A,
IS =O.4A

• Excellent safe area of operation.

EMITTER

CASE STYLE TO-204AA (TO-3)
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

r:

0.B45121.47)
M A X ' g .35BI9.o9) MAX

'~"~~'W"O~~'
0.04311.09)
0.03BI0.97)

DIA.-.J

I

I-

.42611O.B2) MIN.

CASE TEMP.
REFERENCE
POINT
.2015.00)

0.162(409)
a 15(3.B4)
2 HOLES

0.44o(11.1B)
0.420(10.67)

maximum ratings (T A = 25° C)

(unless otherwise specified)

7

UNITS
Volts
Volts
Volts

15

A

7
115
0.66

A
Watts
W/oC

TJ, TSTG

-65 to +200

°C

R8JA
R8JC

1.52

°C/W
°C/W

h

260

°C

RATING
Collector-Emitter Voltage
Collector-Base Voltage
Emitter Base Voltage

SYMBOL

Collector Current - Continuous

IC

Base Current - Continuous
Total Power Dissipation@TC=25°C
Derate Linearly Above 25°C
Operating and Storage
Junction Temperature Range

IS
Po

VCEO
Vcso
VESO

2N3055
60
100

thermal characteristics
Thermal Resistance, Junction to Ambient
Thermal Resistance, Junction to Case
Maximum Lead Temperature for Soldering
Purposes: W' from Case for 5 Seconds

795

electrical characteristics (T c = 25° C)

I

(unless otherwise specified)

I SYMBOL I

MIN

TYP

MAX

UNIT

Collector-Emitter Sustaining Voltage
(Ic = 200mA)

VCEO(sus)

60

-

-

Volts

Collector-Emitter Sustaining Voltage
(Ic = 200mA, RBE = 100.0)

VCER(sus)

70

-

-

Volts

CHARACTERISTIC

off characteristics

Collector Cutoff Current
(VCE = 30V)

ICED

-

-

0.7

mA

Collector Cutoff Current
(VCE = 100V, VEB(off) =-1.5V)
(VCE = 100V, VBE(off) = -1.5V, TC = 150°C)

ICEX

-

-

5
30

mA

-

Emitter Cutoff Current
(VEB = 7V)

lEBO

-

-

5

mA

second breakdown

I Second Breakdown with Base Forward Biased

SEE FIGURE5

FBSOA

on characteristics
DC Current Gain
(Ic = 4A, VCE = 4V)
(Ic = 10A, VCE = 4V)

hFE

Collector-Emitter Saturation Voltage
(Ic = 4A, IB = .4A)
(IC = 10A, IB = 3.3A)

VCE(sat)

Base-Emitter Voltage
(Ic = 4A, VCE = 4V)

VBE(on)

20
5

-

-

70

-

-

-

-

1.1
8

V
V

-

-

1.8

V

500
Te= l00'C

300

w

LL

s;

Z

;;:

~

~

25

100

C1

fZ

COMMON EMITTER

:l

g
.9
fa:
a:

~t/:

::J

a:

0

8

l3
w
....
....
0

0

4

~r

~

0.01

0.3

0.1

0.4

10

3

FIG. 2

hFE - IC

0.3
0.2

0

~
a:_

0.03
.

8

10

COLLECTOR-EMITTER VOLTAGE VCE (V)

FIG. 1

IC - VCE

0.5

~~

0.3

:i~
'1'<
a:f-

0.1

< ;::~!
w w
J:~

1]

6

I

z

0.05

4

II

COMMON EMITTER
IC/IB= 10

0.1

2

0.03

COLLECTOR CURRENT IC (A)

.IB = 0.01 A

o

~

5

0.6

~

o

I

10

0.8

--

-55

COMMON EMITTER
VCE=4V

1.0

~~ ......-

w

,

C

I

~

IV ,.

12

Z

0

1.5

V'"

50

30

0
0

16
2

w

::J

a:
a:

Tc = 25'C

0""

l3§1
w
....
....

$

o

I,
IT.

~~~1:

-

0.05

~

0.03

0

()

~

0.01

0.D1

0.03

0.1

....
3

0.3

COLLECTOR CURRENT IC (A)

FIG. 3
796

VCE(sat) - IC

10

30

~~.

10

10

~

l1b.

COMMON EMITTER
ICIIS= 10

0" "

IW

0:
0:

3

"

:;)

U

~

I ' '·25

0

0.2

CURVES MUST BE DERATED LINEARLY
WITH INCREASE IN TEMPERATURE.

U

0.01

0.3

0.1

0.03

3

10

., '

\ 1\

\\,

I

SINGLE NONREPETITIVE PULSE
Tc = 25'C

*

w
....
....

100

G'

1

0:

0.5

\

<".1', ~1<:'\.

Z

*

..l

'o~"'~'?," \

.Y
Tc = 55'C

~*

~

~

3

\

~"%.* ~ \

(CONTINUOUS)

5

II

*

IC MAX. (PULSED)

'"
~

COLLECTOR CURRENT IC (A)

FIG. 4

VBE(sat) - Ie

x
«

:::;

0

w
U
>

0.5

3

10

100

30

COLLECTOR·EMITTER VOLTAGE VCE (V)

FIG. 5

SAFE OPERATING AREA

16
~

~
.Y

~

If.i"·

ll

0.5 0.7

1.0

2.0

3.0

5.0

7.0

10

20

O.B

30

0.4

,

"

\
~

0
0.01

IC. COLLECTOR CURRENT (AMP)

I' ""'"

0.02

0.05

0.1

0.2

0.5

1.0

2.0

5.0

IC. COLLECTOR CURRENT (AMP)

FIGURE 8 - DC CURRENT GAIN

FIGURE 9 - COLLECTOR SATURATION REGION

802

10

HIGH POWER

2N3772

NPN POWER TRANSISTORS

60 VOLTS
20 AMP, 150 WATTS

These high power NPN power transistors are designed for
linear amplifiers, series pass regulators, and inductive switching applications.

NPN
COLLECTOR

Features:
• Forward biased second breakdown current capability
ISlb = 2.SA@VeE=60V

EMITTER

CASE STYLE TO-204AA (TO-3)
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

r:

if

0.845121.471
MAX.

.35819.09) MAX

":"~#----=t ~"" ,~"'
0.043(109)

DIA

0.03810971

---..I\-

426(10.821 MIN

I

CASE TEMP
REFERENCE
POINT

.2015.001
EMITTER
0.1621409)
0.1513.84)

2 HOLES

0.440(11.18,
O.420r 10.67)

maximum ratings (TA = 25° C)

(unless otherwise specified)
2N3772
60
100

UNITS
Volts
Volts

7
20
30
5
15
150
0.855

Volts

Watts
W/oC

TJ, TSTG

-65 to +200

°C

ROJC

1.17

°C/W

h

260

°C

SYMBOL

RATING
Collector-Emitter Voltage
Collector-Base Voltage

VCEO
Vcso
VESO
Ic
ICM
Is

Emitter Base Voltage
Collector Current - Continuous
Peak
Base Current - Continuous
Total Power Dissipation @ T C =25° C
Derate above 25° C
Operating and Storage
Junction Temperature Range

Po

A
A

thermal characteristics
Thermal Resistance, Junction to Case
Maximum Lead Temperature for Soldering
Purposes: Va" from Case for 5 Seconds

803

electrical characteristics (Tc =25° C)

(unless otherwise specifi~d)

I SYMBOL I

MIN

VCEO(sus)

Collector-Emitter Sustaining Voltage
(Ic =.2A, VEB(off) = -1.5V, RBE = 100 Ohms)

I

TYP

MAX

UNIT

60

-

-

Volts

VCEX

80

-

-

Volts

Collector Cutoff Current
(VCB = 100V)

ICBO

-

-

5

rnA

Collector Cutoff Current
(VCE = 50V)

ICEO

-

10

Emitter Cutoff Current
(VEB = 7V)

lEBO

-

-

CHARACTERISTIC

off characteristics
Collector-Emitter Sustaining Voltage
(IC = .2A)

5

rnA

second breakdown'

I Seoond Breakdown with Base Forward Biased

FBSOA

SEEFIGURE3

on characteristics
DC Current Gain
(Ic = 10A, VCE = 4V)
(Ic = 20A, VCE = 4V)

hFE

Collector-Emitter Saturation Voltage
(Ic = 10A, IB = 1.0A)
(Ic = 20A, IB = 4A)

VCE(sat)

Base-Emitter Voltage
(Ic = 10A, VCE = 4V)

VSE(on)

i
I

~

150
125

100

0.3

'=
"

0,2

"'

...~
...........

i'-..

III

0.1

.......

.........

'1i

0,03

I!:

V
V

-

2.2

V

-

0,2

....

~
0.05

::::

....
~
BJC(I) = r(l) BJC
BJC = 0.875'C/W MAX
D CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME @II
TJ(pk) - TC = P(pk) BJC(I)

125

150

0,01

~

"1

DUTY CYCLE. D= 11/12

~~~LE PUL

E

..nJL.-'-

~tl"'~p~)

0.02

i3
~

...........
100

0.05

!;!

i'-..
75

!z

'"in

25
50

1.4
4

II:

50

25

-

~0.07 .... 0.02

..........

75

o
o

~

2i
II:

-

-

d ~'b~5

f-

!.

175

-

-

1.0
0.7

a:: 0.5

5

60

-

o

200

-

15
5

0.01
'"
0.02

175 200

!

0.05 0.1

0.2

0.5

1.0

2.0

5.0

1111

'II~ ·1 I 111111

10

20

50

100 200

TIME (ma)

TC. CASE TEMPERATURE (OCI

FIGURE 2- THERMAL RESPONSE

FIGURE 1 - POWER DERATING

804

500 1000 2000

40

~

:E

5

30

I I

20

I J

I1

2N3772

IZ

a:

g;

o

'"'c3
-

10
7.0

-

- - - - - -

5.0
3.0
2.0

2.0

I,D

I'

dc' ~{q;

-?)",

" ."
,

1L

5.0

7.0

1

1.0ms

"

51

100 ms

-" 1\

-=

1"lf$10ns
DUTY CYCLE = 1.0%

,r\

I'
20

50

30

-=

-4 V
RB ANO RC ARE VARIED TO. OBTAIN DESIRED CURRENT LEVELS
01 MUST BE FAST RECOVERY TYPE, ego
MBD5300 USED ABOVE IB .,,100 mA
MS06100 USEO BELOW IB ~IOO mA

2N3772 I

10

SCOPE

RB

'11'1

TC = 25°C
BONDING WIRE LIMITED
THERMALLY LIMITED I
(SINGLE PULSE)
SECOND BREAKDOWN LIMITED I' ..
CURVES APPLY BELOW RATED VCEO

3.0

RC

200 fJS

,

I

I I

II

1',
I'

PULSE CURVES APPL Y
FOR ALL DEVICES

40jlS

,,"
1.0

IC = 2.0 A

o

!'.... "
0,5 0.7

II

~

i

......... i'..

10
7.0
5.0
0.3

1.6

...

......

r--

...

ell

-55 DC

~

2.0

~
o

30

IC. COLLECTOR CURRENT (AMP)

1\

t 1-00

0

om

0.02

0.05

0.1

0.2

0.5

1.0

2.0

5.0

IC. COLLECTOR CURRENT (AMP)
FIGURE 9 - COLLECTOR SATURATION REGION

FIGURE 8 - DC CURRENT GAIN

806

10

2N3773

NPN POWER TRANSISTORS

140 VOLTS
16 AMP, 150 WATTS

The 2N3773 is a power transistor designed for high power
audio, disk head positioners and other linear applications. The
device can also be used in power switching circuits such as
relay or solenoid drivers, dc to dc converters or inverters.

NPN
COLLECTOR

Features:
EMITTER

• High safe operating area: 150 W @ 100 V

CASE STYLE TO-204AA (TO-3)

• Completely characterized for linear operation

DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

H
'~~"*~ 'W'" "M'
r:

0.B45121.47)
MAX.

• High DC current gain and low saturation voltage
hfe = 15 (Min) @ 8 A, 4 V
VCE(sat) =1.4 V (Max) @ IC =8 A, IS =0.8 A

0.04311.09)
0.03BI0.97)

• For low distortion complementary designs

DIA.-II-

.358(9.09) MAX

426110.82) MIN

CASE TEMP.
REFERENCE
POINT

.20(5.00)

0.16214.09)
0.1513.84)
2 HOLES

0.440(11.18)
0.420(10.67)

maximum ratings (TA

=25

0

C)

(unless otherwise specified)

RATING
Collector-Emitter Voltage
Collector-Base Voltage
Emitter Base Voltage
Collector Current - Continuous
Peak
Base Current - Continuous
Peak
Total Power Dissipation @Tc= 25°C
Derate above 25° C
Operating and Storage
Junction Temperature Range

2N3773
140
160
7
16
30
4
15
150
0.855

UNITS
Volts
Volts
Volts

TJ, TSTG

-65 to +200

°C

ROJC

1.17

°C/W

h

260

°C

SYMBOL
VCEO
VCSO
VESO
IC
ICM
Is
Po

A
A
Watts
W/oC

thermal characteristics
Thermal Resistance, Junction to Case
Maximum Lead Temperature for Soldering
Purposes: Va" from Case for 5 Seconds

807

electrical characteristics (T c

I

=25° C) (unless otherwise specified)
I SYMBOL I

MIN

TYP

MAX

UNIT

VCEO(sus)

140

-

-

Volts

VCEX

160

-

-

Volts

ICEO

-

-

10

mA

Collector Cutoff Current
(VCE =140V, VSE =-1.5V)
(VCE = 140V, VSE =-1.5V, Tc =150°C)

ICEX

-

-

2
10

mA

Emitter Cutoff Current
(VES =7V)

IESO

-

-

5

mA

CHARACTERISTIC

off characteristics
Collector-Emitter Sustaining Voltage
(IC =.2A)
Collector-Emitter Sustaining Voltage
(Ic = .1mA, VES(off) =1.5V, RSE = 100 Ohms)
Collector Cutoff Current
(VCE =120V)

second breakdown

I Second Breakdown with Base Forward Biased

SEE FIGURE 4

FBSOA

on characteristics
DC Current Gain
(IC =8V, VCE = 4V)
(Ic = 16A, VCE =4V)
Collector-Emitter Saturation Voltage
(Ic = 8A, Is =800mA)
(IC = 16A, Is =3.2A)

hFE

VCE(Sat)

Base-Emitter Voltage
(IC =8A, VCE =4V)

300
200

CI

::::::-550 C

~

a:
a:
=>
.....

.....
CI

W

70
50

60

-

-

-

-

1.4
4

V
V

-

-

2.2

V

-

...

0

?!

250 C'-- '-

~

zw

-

~ 2.0
150°C

z

;;: 100

VSE(on)

15
5

w

r--; ~ r--......

CI

«

1.6

~
0

>

a:
w

1.2

~

VeE = 4 V

~
w

~

20

ci: 0.8
0

~
.....
w

LL

.c:

10
7.0
5.0
0.2

......

0.4

>

0

0
.....
w
.....

0.3

0.5 0.7

1.0

2.0

3.0

5.0 7.0

10

20

I\,

IC = 8 A

~

30

IC = 4A

,

\
...

--

- TC = 25°C
I I I II
0.05 0.07 0.1

IC = 16 A

.....,
I""--

0.2

0.3

......r--

-

0.5 0.7

1.0

2.0

3.0

lB. BASE CURRENT (AMPS)

IC. COLLECTOR CURRENT (AMPSI

FIGURE 2 - COLLECTOR SATURATION REGION

FIGURE 1 - DC CURRENT GAIN

808

~

2.0

u;

f)
leila = 10

1.6

l'

II V

I-

-'

'f'

0

~
w

1.2

'"«

I-

VBE(sad

-'

0

> 0.8
>'

250 e

'/

VCE(sad

150°C I-"

~

::::: ~

0.2

0.3

0.5 0.7

1.0

2.0

25°C

I J10

I

a

J
://

t;::,

1--"""

Isooe

-

0.4

-

~

3.0

5.0 7.0

20

IC. COLLECTOR CURRENT (AMPS)

FIGURE 3 - "ON" VOLTAGE

30
20

.....

-'-

. .....

.......... .....

de

.. ......

.

........... ~ ....

10

-

1"'"... 1' ........ ......

Ii:'

5.0
~ 3.0
~
2.0
2:
~

w
a:
a:

;:)

....
1'00

...

- ....... ll0J,l~.....

....

.....40J,ls_
....

~

...

~
.... 1"" ...

~-

100J,ls=
200 J,lS=
1.0 ms,
_100 ms

1\.'-

1.0

500 ms

c.:I

a:
0

~

c.:I

w

-I
-I

0

c.:I

0.5
0.3
0.2

BONDING WIRE LIMIT
- THERMAL LIMIT
@ TCASE = 25 0 C, SINGLE PULSE
SECOND BREAKDOWN W IT

--,.-

0.1

i)

0.05
0.03

5.0 7.0

3.0

10

20

30

50

70

200

100

VCE, COLLECTOR·EMITTER VOLTAGE (VOLTS)
FIGURE 4 - FORWARD BIAS SAFE OPERATING AREA

100

~ 80
rr

0
I-

<.>

...«

~

""- l'...
"-

60

THERMAL
DERATING

'"
z
;::

«
rr 40
w

t'-...

c
rr
w

;;:

c
a.

20

40

" "-

"

.......

'" "'"

80
120
160
TC. CASE TEMPERATURE (OC)

FIGURE 5 - POWER DERATING

809

'"

200

300

810

2N6292

NPN POWER TRANSISTORS

70 VOLTS
7 AMP, 40 WATTS

. These general-purpose medium-power transistors are intended for a wide variety of medium-power switching and
amplifier applications, such as series and shunt regulators and
driver and output stages of high-fidelity amplifiers.

NPN
COLLECTOR

Features:

EMITTER

CASE STYLE TO-220AB

• Low saturation voltages

DIMENSIONS ARE IN INCHES AND (MILLIMETERS)
.404110.26] . ~ ~~\;.~~\
.38019.651 .j. I ·

• Thermal-cycling ratings
• Maximum safe-area-of-operation curves specified for dc
operation.

I-.i.

__ + _ -.-

.

I

.19014.831
.17014 321~ .05511.391
.
1
.04811.221

.---.

.26516.731
.24516.221

+

:~:m~~:DIA.

.35519.021

/

.32518.251

--:J.591

~
I

.rrrloWI~:+---,

POINT

~51

~.31
TERM.l

CASE
TEMPERATURE
REFERENCE

•

~-+--I-----tl-T
/.-

.001(0.0251

.500112.71MIN.

TERM.2
TERM.3

.0331~.841

.02710.691

.05511.39)
.I
.04511.141---'

maximum ratings (TA = 25° C)

.10712.721
.08712.211

.11hJ--.l0512.671
~ _.09512.411

1+-.
I+-

.21015.33)
.19014.82)

.021(0.53)
.01510.38)

(unless otherwise specified)

RATING
Collector-Emitter Voltage
Collector-Base Voltage
Emitter Base Voltage
Collector Current - Continuous
Peak
Base Current - Continuous
Total Power Dissipation@TA = 25°C
@TC=25°C
Operating and Storage
Junction Temperature Range

SYMBOL
VCEO
VCSO
VESO
Ic
ICM
IS
PD

2N6292
70
80
5
7

UNITS
Volts
Volts
Volts
A

3
1.8
40

A
Watts
W/oC

TJ, TSTG

-65 to +150

°C

ROJA
ROJC

70
3.125

°C/W
°C/W

h

235

°C

thermal characteristics
Thermal Resistance, Junction to Ambient
Thermal Resistance, Junction to Case
Maximum Lead Temperature for Soldering
Purposes: W' from Case for 5 Seconds

811

= 25° C)

electrical characteristics (Tc

(unless otherwise specified)
A~"._""'.
;;'TIVIDVL

t''''ADA'''~I:D'~~''''
.............. ,,~ • . . . . . ...,.IV

II

M--'-t.,;
n

MAX

UNIT

off characteristics
Collector-Emitter Sustaining Voltage
(Ic =.1mA)

VCEO(Sus)

70

-

-

Volts

Collector-Emitter Sustaining Voltage
(Ic =.1mA, Ie =1.5V)

VCER(sus)

80

-

-

Volts

Collector Cutoff Current
(VCE =60V)

ICEO

-

-

1

rnA

Collector Cutoff Current
(VCE =75V, VEe =1.5V)

ICEX

-

-

0.1

rnA

Emitter Cutoff Current
(VEe =5V)

IEeO

-

-

1

rnA

second breakdown

I Second Breakdown with Base Forward Biased

FBSOA

SEE FIGURE2

on characteristics
DC Current Gain
·(Ic =2A, VCE =4V)
(Ic =7A, VCE =4V)
Collector-Emitter Saturation Voltage
(Ic =2.5A, Ie =.25A)
(Ic =7A, Ie =3A)
Base-Emitter Voltage
(Ic =2A, VCE =4V)
(Ic =7A, VCE = 4V)

hFE
VCE(sat)

VSE(on)

COLLEJTOR-TO-E~lriER Ivo~TAGE (vc!) =4V

CASE TEMPERATURE (TC)

30
2.3

-

150

-

-

-

1
3.5

V
V

-

-

1.5
3

V

10
CASEITEMPErTrE (TCI

= 2S"C

10

-

=2S"C

IC MAX (CONTINUOUS)

L.ooJ...-"

V

V

<>~

~

I'-

~

1\

g

•I

!Z

I\.

\

'10

4

M!

a:
:::l
o
a:

~: :

1\

8

2

~

'1--

(~

~~¢

"-

1

0.8
0.6
0.4

=
=
=
lI-- VCEO MAX. =70V
VCEO MAX. 30V
VCEO MAX. 25V
VCEI MAX. SOV _

0.2

l~

I

o

Islb • LIMITED

V

0.1

4

0.0

6

8 0.1

4

6

8

1

1

4

FIG. 1

6

8 10

20

40

80 100

200

400

COLLECTOR·TO-EMITTER VOLTAGE (VCE) - V

COLLECTOR CURRENT (IC)-A

FIG. 2

TYPICAL GAIN-BANDWIDTH

812

MAXIMUM OPERATING AREA

1000

10

8 I- IC MAX. (CONTINUOUS) - CASE TEMPERATURE (TC) = l00·C

400

COLLECTOR-TO-EMITTER VOLTAGE (VCE)

iii
IL
;.

I

II:

~

~

II:

lIZ
W
II:
II:

I

~

~

UI

I

I

-~

=125·C

-~

-

80

-40°C

eo

~

40

:>

:-1'--

~

oo

0.02

0.04

0.1

0.2

0.4

0.6 0.8 1

......

I"

0.6

~

VCEO MAX. = 70V
(2N6292 & 2N6293)

o. 1

6 8 10

Islb - LIMITED

\/

0.2

4

2

COLLECTOR CURRENT MT (IC) - A

FIG. 3

.........

0.4

6
0,01

~O

:>

~~
"~~

10

i'~

a:
a:
1
o
ex: 0.8

~
"
""-

20

"S:-9J>.o,\<

~

~'"

0
0

0%-/,0

g

~

i!2

"",01

'!'

r--- ......... r--

~

100

=4V

•

CASE TEMPERATURE (TC)
200

0

I

6

8 10

20

40

60

COLLECTOR TO EMITTER VOLTAGE (VCE)-V

TYPICAL CHARACTERISTICS

FIG. 4

MAXIMUM OPERATING AREA

COL~ECTOR-T~-EMITT~ VOLTA~E (VCE) ~ 4V

CASE TEMPERATURE (TC)

=125.~,

II'

25"/-40·C
~/

V

V/ V/ V
/ V/ V

0.2

V ~V

0.4

0.6

0.8

1

1.2

SASE-TO-EMITTER VOLTAGE (VSE) -

FIG.S

1.4

1.6

V

TYPICAL TRANSFER CHARACTERISTICS

CAS~ TEMPERhuRE (T~l = 25·C

COLLECTOR-TO-EMITTER VOLTAGE (VCEI - 4V

300
0

<

~

250

200

:>

II:

w

"::;

150

w

I-

w

en

<
OJ

I-

a:

W

0

w

~

Z

a:
a:

W

en
<

100

0

I

SO

o

'f

t:.
a:

I-

:>

b

~

0"

E

~

"

0

0

0.1

.J 1)./

~

~ 4

I
I

a:

a
~

~
8

I
I

3

2

SASE CURRENT (Is) = 250 rnA
200mA

,

~
~

,

15,!!!!!

-,

100mA
'",

SOmA

V

1.

'..=.. _ !2,W.
20 rnA

10mA

f"'"

4

SASE-TO-EMITTER VOLTAGE (VsEI - V

FIG. 6

.

10

12

14

16

COLLECTOR-TO-EMITTER VOLTAGE (VCE) - V

TYPICAL INPUT CHARACTERISTICS

FIG. 7

813

TYPICAL OUTPUT CHARACTERISTICS

80100

814

2N6487

NPN POWER TRANSISTORS

60 VOLTS
15 AMP, 75 WATTS

These are designed for use in general-purpose amplifier and
switching applications.

NPN
COLLECTOR

--©

Features:
• DC Current Gain specified to 15 Amperes
hFE = 20-150 @ IC = 5.0 A
5.0 (Min) @ IC = 15A

EMITTER

=

CASE STYLE TO-220AB
DIMENSIONS ARE IN INCHES AND (MILLIMETERSI

.::~I~.~~ '19014'831~
17014321 '-I
.055(1.391

• Collector-Emitter Sustaining VoltageVCEO(sus) = 60 V (Min)

.404110.26]
.38019.651 -I.J..' .

I

__ +

• TO-220AB Compact Package

-.

.

1

...----,

..

I

.26516.731
.24516.221

,

.L--+--I-----Ifr-;-.,
r
.35519.021
.32518.251

~
f
'

.04811.221

CASE
TEMPERATURE
REFERENCE

~

OINT

~591

.g~I~~;ll

.13013.31

TERM.l
TERM.2
TERM.3

.033~

-tr~~lIIio!i+-,

' ' 'r"''

111tiJ-.l0612.671

.027!~~ .,.09 512.411
.0551.39
,I
. 51.14 - . ,

maximum ratings (TA = 25° C)

1--'
j.-

.2106.33
.1804.821

(unless otherwise specified)
SYMBOL
VCEO
VeBO
VEBO

2N6487
60
70
5

UNITS
Volts
Volts
Volts

Collector Current - Continuous

Ie

15

A

Base Current - Continuous
Total Power DiSSipation @TC = 25°C
Derate above 25° C
Operating and Storage
Junction Temperature Range

IB
Po

5
75
0.6

A
Watts
W/oC

TJ, TSTG

-65 to +150

°C

RBJA
RBJe

70
1.67

°C/W
°C/W

TL

260

°C

RATING
Collector-Emitter Voltage
Collector-Base Voltage
Emitter Base Voltage

thermal characteristics
Thermal Resistance, Junction to Ambient
Thermal Resistance, Junction to Case
Maximum Lead Temperature for Soldering
Purposes: W' from Case for 5 Seconds

815

electrical characteristics (Tc

I

=25° C) (unless otherwise specified)
I SYMBOL I

MIN

TYP

MAX

UNIT

Collector-Emitter Sustaining Voltage
(Ic = 200mA, IB = 0)

VCEO(sus)

60

-

-

Volts

Collector-Emitter Sustaining Voltage
(IC = 200mA, VBE = -1.5V)

VCEX

70

-

-

Volts

Collector Cutoff Current
(VCE = 30V, IB = 0)

ICEO

-

-

1

mA

Collector Cutoff Current
(VCE = 60V, VEB(OFF) =-1.5V, Tc = 150°C)

ICEX

-

-

5

mA

Emitter Cutoff Current
(VEB = 5V, Ic = 0)

lEBO

-

-

1

mA

CHARACTERISTIC

off characteristics

second breakdown

I Second Breakdown with Base Forward Biased

FBSOA

SEE FIGURE5

on characteristics
DC Current Gain
(Ic = 5A, VCE = 4V)
(Ic = 15A, VCE = 4V)
Collector-Emitter Saturation Voltage
(IC = 5A, IB = .5A)
(IC = 15A, IB = 5A)
Base-Emitter Voltage
(IC = 5A, VCE = 4V)
(Ic = 15A, VCE = 4V)

-

-

1.3
3.5

V
V

-

-

1.3
3.5

V

-

VCC
+30 V

.........
3.0

"

60

125 1'5
r---..

i=

«

"-

2.0

40

..........

a:
w

s:
1.0

TA

20

........

'"

~

~
...............

o

20

40

60

80

Scope

Re

51

""
..............

o

__

--1:V-O

Te

"-

o

1

+1:~O

"

..........

0

C

-

-

80

z

"-

150

Te

0

i5

VBE(on)

-

4.0

en
f-

en
en

VCE(sat)

20
5

TA

!;;:

~

hFE

100

Duty Cycle = 1.0%

~

~~

120

140

D1

-4 V

Re and RC varied to obtain desired current levels.
For PNP reverse all polarities.

160

TC. CASE TEMPERATURE lOCI

D1 must be fast recovery type. e.g.;
M eD5300 used above Ie'" 1 00 mA
MSD6100 used below Ie '" 100 mA

FIGURE 2 - SWITCHING TIME TEST CIRCUIT

FIGURE 1 - POWER DERATING

816

500

"

:§

~....

200
100
50

mmEII

6" 1
0.7 , 0 m
. .

1000

I~

,

-NPN
- -PNP
TC = 25 0 C
20 VCC =30 V
ICIIB = 10
I
ill
10
0.5
0.2

.....

-

......

-

Id@VBE (off) '" 5.0 V

-...:

20

~

10

w

5.0

....z
a:
a:

::l
(,,)

a:

....
Q

(,,)

w

......
.....

=

D=0.5

"

HI-I-I+H-l1ft1l-#--1-H-l1ft1l--I--I---1-~~~i.IfII!~H+-IHI-+l-+++l-HH

III

O_~t;

0.2

H:;-++++tltF=R++l-lffH1i..1'~~fHj!ll-+++I-H.JHt+Hl+l+HfIl

~

0.1

CURVES APPLY FOR POWER
~~§i9~~~il~Mj R8JC= D1.67·CIWMAX

~.J

.... ~

-

~IO~.II~-I-tH*r+-I--~Mtffi7~~~
_
•
ZsJC(I) = r(l) RSJC
~

a 0.07 - 0.05

~~~ET;~~I:I~HOWN

LL

~ 0.05
~

TJ(pk)- TC = P(pk) ZsJC(I)

-~,I

i

0.03 ...~
1 L..~-i.I'FHI'F-++--I-+I-HI~++--I--141

~

0.02

~
10

0.5
0.3

~

--

1.0
2.0
5.0
IC. COLLECTOR CURRENt (AMP)
FfGURE 3 -TURN-ON TIME

iii:'
:;;

-

10-

~

~
~

20

DUTY CYCLE. D= 11/12

-tr,-

Ijf i'ioli(II

0.01
0.01

0.02

0.05 0.1

11110-1

0.2

II
0.5

11

.....

"

_

100"s
500"s=

"-

\. 1.0 mS-I
11

5.0ms=

Q

~

0.2
0.1
2.0

-.j

E

..:

1.0

2.0
5.0
TIME (ma)

10

12

2N6487

I

I

4.0
10
20
40
60
VCE. COLlECTOR·EMITTER VOLTAGE (VOLTS)

de-

II
80

FIGURE 5 - ACTIVE-REGION SAFE OPERATING AREA

817

H+-t+HtiIH

T

I- P(pk)
20

50

FIGURE 4 - THERMAL RESPONSE

TJ = 1500 C
2.0 -SECOND BREAKDOWN LIMITED .....
---BONDING WIRE LIMITED
1.0 - --THERMALl Y LIMITED @TC = 25 0 C
CURVES APPL Y BELOW RATED VCEO
0.5

(,,)

.J1JL-1.

100 200

SOD 10k

5000

1000

--

700

1000
~ 500

- ...
-

~ts
w

~

-

200 t--

-

If

ioo-.I.

f=

_i"""

-

--NPN

~ 300

~

~

--

c.i

100 t:::: Iclla = 10

1=

50
0.2

lal = la2
TJ = 25°C

....

r-

- - NPN

--

r-.. .....

'::::::

-- --

Cob

-

100

-

-~

(.)

f- VCC=30V

1=

~ ~ ::.....

...

...<~ 200

.1
.. Cob

...

...

r-

TJ = 25°C

70

2.0
5.0
1.0
0.5
IC. COLLECTOR CURRENT (AMP)

10

I

50
0.5

20

I

1.0

2.0
5.0
10
VR. REVERSE VOLTAGE (VOLTS)

FIGURE 6 - TURN·OFF TIME

500

r-- f--

III TJ=1150 0 C

~r--..
rrr---.. r-... ~

~ 100
w

a:
a:

·55 0 C
50

r-...

......

::>

(.)

(.)

c

20

..... r-.

.... t-.
["\..

....W

.c:

so

20

FIGURE 7 - CAPACITANCES

200

t!I
IZ

-

...... .....

~

VCE=2.0V
10
5.0
0.2

0.5

1.0

2.0

5.0

10

20

IC. COLLECTOR CURRENT (AMP)

FIGURE 8 - DC CURRENT GAIN

~ 2.0
...J

c

1.8

~

1.6

2:.

I-

...J

IC = 1.0 A

ii'

4.0 A

t; 0.6
w

...J

0.4

(.)

0.2

(.)

>

0
5.0

10

-

20

w

f- T~ = 25 0 C

2.0

/

t!I

//
"/

1.6

<

I-

1\

~ 0.8
c

2:.

\

w

-

C

i\

:: 1.0

u:.

2.4
ti;

~ 1.4
c
;;; 1.2

5

2.8

J

TJ = 25°C I-

...J

c

1\ I

>

8.0 A

:>

.... 10'

1.2
VaE(sat) = IC/IB = 10

0.8

I\..

~.

'11

.... ~

VCE(sat) @Ic/la = 10

o
1000

2000

5000

0.2

0.5

/

.... i-""

5.0
1.0
2.0
IC. COLLECTOR CURRENT (AMP)

FIGURE 10 - "ON" VOLTAGES

FIGURE 9 - COLLECTOR SATURATION REGION

818

/

,.,

VaE@VCE=2.0V
0.4

50
100
200
500
lB. BASE CURRENT (rnA)

-::: ~

~

10

20

2N6547

NPN POWER TRANSISTORS

400 VOLTS
15 AMP, 175 WATTS

The 2N6547 transistor is designed for high-voltage, highspeed power switching in inductive circuits where fall time is
critical. It is particularly suited for 115 and 220 volt line
operated switch-mode applications such as: switching regulators, PWM inverters and motor controls, solenoid and relay
drivers, and deflection circuits.
Features:

NPN
COLLECTOR

EMITTER

CASE STYLE TO-204AA (TO-3)
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

r: t-f
-::;.~~-t """'" .~,

• High temperature performance specified

0.845121.471
MAX

• Reversed biased SOA with inductive loads
• Switching times with inductive loads

Q.043{1.09)

• Saturation Voltages

OIA

0.03810971

---..J L_
I r

.358(9.09) MAX

426{10.82) MIN

• Leakage currents
CASE TEMP
REFERENCE
POINT
2015.001

0.16214.091
0.1513.841
2 HOLES

0.440(11.18)
0420110.671

maximum ratings (TA = 25° C)

(unless otherwise specified)

RATING
Collector-Emitter Voltage

SYMBOL

Collector-Emitter Voltage
Emitter Base Voltage
Collector Current Base Current -

Continuous
Peak

Continuous
Peak

Total Power Dissipation @TC = 100°C
@TC= 25°C
Derate above 25° C
Operating and Storage
Junction Temperature Range

VCEO

2N6547
400

UNITS
Volts

VCEX

450

Volts

VEBO

9.0

Volts

IC
ICM

15
30

A

IB
IBM
Po

10
20

A

100
175
1.0

Watts
W/oC

TJ, TSTG

-65 to +200

°C

R8JC

1.0

°C/W

TL

275

°C

thermal characteristics
Thermal ReSistance, Junction to Case
Maximum Lead Temperature for Soldering
Purposes: Va" from Case for 5 Seconds

819

electrical characteristics (Tc

=25

0

C)

(unless otherwise specified)

CHARACTERISTIC

off characteristics
Collector-Emitter Sustaining Voltage
(Ic = 100mA)

VCEO(sus)

400

-

-

Volts

Collector-Emitter Sustaining Voltage
, (IC = 8.0mA, Vclamp = Rated VCEX, Tc = 100°C)
(Ic = 15A, Vcl amp = Rated VCEO -100V, Tc = 100°C)

VCEX

450
300

-

-

Volts
Volts

Collector Cutoff Current
(VCEV = Rated Value, VBE(off) = -1.5V)
(VCEV = Rated Value, VBE(off) = -1.5V, TC = 100°C)

ICEV

-

-

1.0
4.0

mA

-

Collector Cutoff Current
(VCE = Rated VCEV, RBE = 50n., Tc = 100°C)

ICER

-

-

5.0

mA

Emitter Cutoff Current
(VE8 = 9.0V)

IE80

-

-

1.0

mA

second breakdown
Second Breakdown with Base Forward Biased
Clamped Inductive SOA with Base Reversed Bias

SEE FIGURE7
SEE FIGURE8

on characteristics
DC Current Gain
(IC = 5A, VCE = 2V)
(Ic = 10A, VCE = 2V)

hFE

Collector-Emitter Saturation Voltage
(IC = 10A, 18 = 2A)
(IC = 15A, 18 = 3A)
(Ic = 10A, 18 = 2A, Tc = 100°C)
Base-Emitter Saturation Voltage
(Ic = 10A, 18 = 2.0A)
(Ic = 10A, 18 = 2.0A, Tc = 100°C)

VCE(Sat)

VBE(sat)

12
6

-

60
30

-

-

-

1.5
5.0
2.5

V

-

-

1.6
1.6

V

-

-

-

.05

P.s

switching characteristics
Resistive Load
Delay Time

VCC = 250V, Ic = 10A

td

Rise Time

IB1 = 182 = 2A, tp = 100p.s

tr

Storage Time

Duty Cycle

< 2.0%

ts

Fall Time

tf

100

SO

-1_

....z

30

2~DC

::>

20

t:I

a::
a::

e.>
e.>

"~

_.... - -

10

~
~

- r-.....
-

-SSDC

"I 1 1 1 1
0.3

O.S

1.0

1

I

-f

I

.2.0

3.0

I I

TJ= 25 0 C_

1.6

~
o

I .....

~

....~

1\

"~

...

~

1.2

l\~

,

~

10A-I- 15A

,

t-

....

~ 0.4
W

~
20

1.

1

e.>

e.>

~
10

1

0.8

c

o

5.0. 7.0

5.0A

IC = 2.0 A

~

i

vCP 2.0V
- - - VCE=10V

7.0

S.O
0.2

0.7

c

...;..:::

c
W

...
.c

-

-'

--,.......

;;:

t-

1.0
4.0

~ 2.0

TJ = lS0DC

70

z

-

"

"or---

\.

r-

0
0.07 0.1

0.2

0.3

0.5 0.7

1.0

2.0

3.0

5.0 7.0

IC. COLLECTOR CURRENT (AMP)

Ic. COLLECTOR CURRENT (AMP)

FIGURE 1 - DC CURRENT GAIN

FIGURE 2 - COLLECTOR SATURATION REGION

820

1.4

.1.

I

-TJ =25°C

1.2

en
I-

1.0

-'

VBE(sal)@ Ic/lB =5.0

-

0

Z- o.s
w

'"<

I-

-'

--

0.6

VBE(on)@VCE =11
2.0 V

-

r--:

--

~
I--'"

I I I

0.2

1.0

0.5

0.3

2.0

!!:!

1.0

~
w

0.5

c..>

0

I I I fr

1

-0.5
<
!:j -1.0

3.0

5.0 7.0

10

-2.0
-2.5
0.2

20

'1'

0.3

0.5 0.7

vJ_

~

1.0k r--

-..
~

2:

"

300

100
70
50

---

0.1

0.2

c..>

0::

o

t; 0.2
~ O. 1~
0.0 5~

8

"-

I"""

~

........

:-1.0 k

....

2:

i= 700
~ 500

II

"-

300

0.5

1.0

2.0

5.0

10

100
0.02

20

0.05

0.1

.....

0.2

V
0.5

1.0

2.0

5.0

FIGURE 6 - TURN-OFF TIME

.,..
1.0ms

.....
1001'S

~

3

::E

5

12

VCEX(su;)--

0:

o

20

-

SbA

t; B.O

'"

""-

'1

LU

-'
-'

I
VBE(off) .. 5 V
_ VCEO(sus)
U 4.0 !--TC" lOooCI
I
I
VctsUS)

o

u

2N6547
100

~

=>

u

~

0.02
0.0 1 CURVES APPLY BELOW RATED VCEO
0.005
20
30
50 70
5.0 7.0 10

Z
LU

......

TC = 25°C
BONDING WIRE LIMIT
THERMAL LIMIT
(SINGLE PULSE)
SECOND BREAKDOWN LIMIT

16

...

de ......

.....

10

20

10 ns

-,..,

5.0 ms

---

......

FIGURE 5 - TURN-ON TIME

I

7.0

10

VCC = 250 V
ICIIB = 5.0
IBI = IB2
TJ = 25°C

IC. COLLECTOR CURRENT (AMP)

I-

2.0
1.0
0.5

5.0 7.0

IC. COLLECTOR CURRENT (AMP)

20
~
10
::E
~ 5.0
~

3.0k

Id@VBE(off) =5.0 V

0.5

I

3.0

-..c

50

0::
0::
:::l

-

200

30
0.02

2.0

ts

2.0k

i= 200

--

10 k
7.0 k
5.0 k

.-

700
500

1.0

-"

-550C 10 250C

FIGURE 4 - TEMPERATURE COEFFICIENTS

Vec =250
IcllB =5.0
TJ =25°C

Ir

-

IC. COLLECTOR CURRENT (AMP)

FIGURE 3 - "ON" VOL TAGE

'\

-I-- r-

I I ,

IC.COLLECTOR CURRENT (AMP)

3.0 k
2.0 k

J..,t'

0VB lor VBE

::E
~ -1.5 I - -

i

/

/

25 0lCto '150bC

IL

--

J-l-f-

-55 0e to 25°C

1:!

i-"

V

2rCrr~

'OVC lor VCE (sal)

W
0::

J

/
VCE(sal)@ Ic/lB =5

1.5

o

>
>- 0.4

o

~

~

0

0.2 -

e..
~

L

i-'
i-'

.' '.'.' ".'

2. 5
lor ICIIB" hFE/3
-'
2.0 f-- 'Applies

G

l&'

h

-

200

o

300 400

o

100

200

300

400

VCE. COLLECTOR·EMITIER VOLTAGE (VOLTS)

VCE. COLLECTOR·EMITTER VOLTAGE IVOLTS)

FIGURE 7 - FORWARD BIAS SAFE OPERATING AREA

FIGURE 8 - REVERSE BIAS SAFE
OPERATING AREA

821

500

1.0

100

I

~t-.....

"- ..............

~ BO

"

==
o

t;

THERMAL
DERATING

~ 60

C!I

!!:

.......

~

ffi

f'--..
I'..

40

==

~

.......

~

.....

40

80

I
a!

I'..

120

160

~.J

200

Z9JC(I) = r(l) R9JC
RBJC = 1.0·CIW MAX
CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READTIME@ll
TJ(pk) • TC = P(pk) Z9JC(I)

o

0.07 1-0.05

0.03

~

0.02

rJ!,

~ "
tjf rmiinr

1
0.00.01

TC. CASE TEMPERATURE (OC)

"'I:""
~

0.1

iii

~

I-

II
0.1

..

Ii

II'"

II

0.2

~ 0.05

"

0=0.5

~

...........

'"
o

I:

..............

0

0

I

SECOND BREAKDOWN
OERATING-

~

~

CI

r---....

I

0.02

0.05 0.1

0.2

DUTY CYCLE. 0= 11112

JlSl...J..
~Il~~ pT
(pk)
"I 12
0.5

1.0

2.0

5.0

10

20

50

TIME (ml)

FIGURE 9 - POWER DERATING

FIGURE 10 - THERMAL RESPONSE

822

100 200

500

10

HIGH VOLTAGE/HIGH SPEED

2N6676,77,78

NPN POWER TRANSISTORS

300-400 VOLTS
15 AMP, 175 WATTS

GE EQUIVALENT D64VS3, 4, 5

The 2N6676, 2N6677 and 2N6678 series of NPN power
transistots is designed for use in power switching applications requiring high-voltage capability, fast switching speeds
and low-saturation voltages. These devices are optimized to
provide a unique combination of ultra-low switching losses
and high safe-operating area (SOA), ideally suited for off-line
Switching Power Supplies, converter circuits and pulse width
modulated regulators.

NPN

Q

COL.LECTOR

~()

-.-

EMITTER

CASE. STYLE TO-204AA (TO-3)
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)
0.845(21.471

I-""~~'.""
.0~~X65l~

Features:

T

• 100°C maximum limits specified for:
• Switching times
• Saturation voltages
• Leakage currents
• RBSOA (VCEX

0.043(1.091
0.03810.971

DIA.-j

f.-

[.,
MAX.

1

= 350 to 450V) at rated IC continuous.

• Very fast turn-off: tf

SEATING PLANE

< 100 nsec (typ.)

!

426110.82) MIN

0.675(17.15)
0.650(16.51)

re

,...t-~ 1197~30401

CASE TEMP.
REFERENCE ~~)+
~
o~o~
POINT
.20(5.00)"

@ 15A -Inductive Load

EMITTE:

~ \.@.;

BA5~./
0.162(4.09)

DIA.

0.1513.841
2 HOLES

...j

1.177129.90)
1'.573139.96)
MfX

0.22515.72i'-COLLECTOR
1-'0.20515.21)
ICASEI

0.440(1118)
0.420110.67)

maximum ratings
RATING
Collector-Emitter Voltage
Collector-Emitter Voltage
Collector-Emitter Voltage
Emitter Base Voltage
Collector C~rrent - Continuous
Peak(1)
Base Current - Continuous
Peak(1)
Emitter Current - Continuous
Peak(1)
Total Power Dissipation @Tc= 25°C
@Tc= 100°C
Derate above 25° C
Operating and Storage
Junction Temperature Range

2N6676
300
350
450
8
15
20
5
10
20
30
178
111
1.0

2N6677
350
400
550
8
15
20
5
10
20
30
178
111
1.0

2N6678
400
450
650
8
15
20
5
10
20
30
178
111
1.0

UNITS
Volts
Volts
Volts
Volts
A

TJ, TSTG

-65 to +200

-65 to +200

-65 to +200

°C

R8JC

1.0

1.0

1.0

°CIW

h

235

235

235

°C

SYMBOL
VCEO
VCEX
VCEV
VESO
Ic
leM
Is
IBM
IE
IEM
PD

A
A

Watts
WloC

thermal characteristics
Thermal Resistance, Junction to Case
Maximum Lead Temperature for Soldering
Purpose: W' from Case for 5 Seconds
(1) Pulse Test: Pulse Width

=5ms. Duty Cycle S; 10%.
823

electrical characteristics (T c

I

=25

0

C)

(unless otherwise specified)

CHARACTERiSTiC

SYMBOL

MiN

iviAX

UNii

-

Volts

off characteristics
Collector-Emitter Sustaining Voltage(1)
(Ic = 100mA, Is = 0)

2N6676
2N6677
2N6678

VCEO(sus)

300
350
400

Collector-Emitter Voltage
, (Ic = 15A, IS1 = 3A, IS2 = 3.0A)
(VSE(OFF) = -6V, L = 50 JLh)

2N6676
2N6677
2N6678

VCEX

350
400
450

Collector Cutoff Current
(VCEV = Rated Value, VSE(off) = -1.5V)
(VCEV = Rated Value, VSE(off) = -1.5V, Tc = 100°C)

ICEV

Emitter Cutoff Current
(VES = 8V, Ic = 0)

IESO

Volts

mA

-

0.1
1.0

-

2.0

mA

second breakdown
Second Breakdown with Base Forward Biased

FBSOA

SEE FIGURE 13

Clamped Inductive SOA with Base Reversed Bias

RBSOA

SEE FIGURE 14

on characteristics
DC Current Gain
(Ic = 10A, VCE = 2V)
(Ic = 15A, VCE = 3V)

hFE

-

10
8

-

-

0.7
1.5
2.0

-

1.5
1.5

fT

15

50

Small Signal Current Gain
(lc = 2.0A, VCE = 10V, ftest = 5 MHz)

hFE

3

10

-

Output Capacitance
(VCS = 10V, IE = 0, f = 0.1 MHz)

Cos

150

500

pF

Tc
td

25°C
0.1

100°C
0.2

JLs

tr

0.6

1.0

JLsec

ts

2.5

4.0

JLsec

tf

0.5

1.0

JLsec

Collector-Emitter Saturation Voltage
(Ic = 10A, Is = 2.0A)
(Ic = 15A, Is = 3.0A)
(lc = 15A, Is = 3.0A, Tc = 100°C)
Base-Emitter Saturation Voltage
(lc = 15A, Is = 3.0A)
(lc = 15A, Is = 3.0A, Tc = 100°C)

VCE(SAT)

VSE(SAT)

Volts

Volts

dynamic characteristics
Current Gain - Bandwidth Product
(Ic = 1.0A, VCE = 10V, ftest = 1.0 MHz)

switching characteristics

MAXIMUM

Resistive Load (See Figure 17 for Test Circuit)
Delay Time
VCC = 200V, IC = 15A
Rise Time
Storage Time

MHz

IS1 = IS2 = 3A, VSE = -6V
tp = 20 JLsec

Fall Time
Inductive Load, Clamped (See Figure 17 for Test Circuit)
Storage Time

Vcc = 200V, Ic = 15A

ts

3.0

4.5

Fall Time

VCLAMP = Rated VCEX

tf

0.3

0.6

JLS
JLsec

tc

0.5

0.8

JLsec

Switch Time

IS2 =3.0A, VS~OFF~ = -6V
L = 50JLh, Rc _ 13. n tp = 20 JLsec

(1) Pulse Duration =300j.Ls, Duty Factor :52%. Do not measure on a curve tracer.
• In accordance with JEDEC Registered Data.

824

TYPICAL DC CHARACTERISTICS
3

100
TJo+ISO·C
80

60
I-

40

-

..:::-. ""'C.;

-

-

TJ.... 2S·C

-_or

~

""""':::::

z

~

-

_
__
TJI·-6S·C

20

~

z

UJ
0:
0:

1--

II

.....

f:::: ::--

......

I ' ....
I--.

r-... r-....

......

2

~~
I'"'=~>'
\

\

4

:J:

\

-

VCE =2V

2

I

I

1.0

...........

rTc ·2S·C

VCE'IOV - - -

2

4

6

8

10

15

.02

.05

IC ,COLLECTOR CURRENT (AMPERES)

~

6.0
4.0

~_

2.0

Tc '2SoC

V

/3,= lellBI

0:1/)

!i

6.0

g0.4

-

...-

~>

0:_

0.2

~ :....-::::: ~
0.1

~ ~ 2.0

=

/3,=8
/3,=6 _

2.0

S.O 7.0 10.0

/3,'15

I

/

Te=IOOoC

/

/3f=l e /IBI

~~

V

e~ ~

l!l1.0
0.8

~ 50.6

::J>
8, 0.4

k:::; ~ .......

ii.,

iii
~

OJ
1.0

1.0

I- ::::; .

/3,=10

~ 1--:::1"'"

./"'"

4.0

'"

~ 0.6

.05

10.0
8.0

~

/

UJUJ

...J

.5

0:

/3f= 15

~~
~ ~ 1.0
:iii - 0.8

~

Z

o

_

.2

FIGURE 2. COLLECTOR SATURATION REGION

10.0
8.0

!i0:

--

.1

"'-

IS' BASE CURRENT (AMPERES)

FIGURE 1. DC CURRENT GAIN

S
u,
ii.,

1IC=ISA

I

~

~

I

8
6

u
c,

a:

I

"

II

~'5A r- r- Ic'IOA

r - - -1~'211l

10

a

I

2
4
6
8 10.0
Ie, COLLECTOR CURRENT (AMPERES)

15

0.2

...-...-

0.1

~
2

FIGURE 3. VCE(satl vs IC. TC = 25°C

~

V.

,..

...............
~ :/"
~ ~ .......

4
6
8 10.0
Ic ,COLLECTOR CURRENT (AMPERES)

10.000

8.0

Cii

~
0
~ 4.0

f---- ----TC=IOO°C
r - - - --Tc=2S·C
f---- /3, =Ic/ISI

...a.

~
~
~

Tc=2S0C

CEBO

UJ
CI

0:
UJ

15

FIGURE 4. VCE(satl vs Ic. Tc = 100°C

10.0

6.0

/3,'10
/3f=8
/3,.6

:;; . /

../

../

/d

UJ

U

Z

2.0

!::

1.5

UJ

~

1.0

c:t

ID

0.8

j

0.6

:::!:

~

I/)

0.4

---:..;
1.0

--- -- - 2

4

........ ~>

-

6

8

10
Ie,COLLECTOR CURRENT(AMPERES)

FIGURE 5. VSE (satl

VS

U

/3,=10

13•
u

~
.... '

-

~

~ 1000

/3f=2

--- --

~

100

15

I

2

r-.. ....

5

--

r-- r-

10
20
VR,REVERSE VOLTAGE (VOLTS)

FIGURE 6. CAPACITANCE

IC

825

:-

~

50

100

TYPICAL SWITCHING CHARACTERISTICS
1.0

.8
.6
L&I

::Ii
j:

z
3:
~

.2

_-

z

II!

~

"'Ir

v~

I p .50p.sEC

!. . . .08I ~ =::.......

SEE FIGURE 17 FOR
TEST CIRCUIT

.-:::; ~ ~

.06
.04

6

4

8

10

I---

.4

15

--r---=:t---

.2

I

I

-0

VCE(CLAMPEDI

90% Ic

1rl
II)

~

I

~I.

--

I

~

;,7

/

-

L...-

2

5.0

::l.
L&I

4

-

f--

6

I-

10

8

-

Tc"IOO'C

::Ii
j:

2.0 I--- - - TC"25'C CVce:2OOVI

If

~

1.0

1\

~

3:

'\

10% Ie

~

15

.....

-- -Is -

VCE(CLAMP)=250V (V CEX )

(lBI=rB2~Ic/5)

IBI=I c /6,II2=I C/5
I p o 50 p.sEC,VBE(OFF)·-6V(1 p

=26~ SEC)

IV BE COFF)::"6VS::

L"200p.h
SEE FIGURE 17 FOR
.2 ~
~EsT CIRCUIT

.05

oJ

.02

8

IB2

~

II:
II:
::I
U
II:

~

~

~

.5 ~

i

II)

L&I

-- - -- C'--

-----

l~~

FIGURE 8. TURN·OFF TIME RESISTIVE LOAD

I \

I

IBI

-'!-, 1--

10.0

I

I

I-

I

IC,COLLECTOR CURRENT (AMPERES)

COLLECTOR CURRENT

VCE

----......

1"-

TEST CIRCUIT

I
1.0

FIGURE 7. TURN·ON TIME RESISTIVE LOAD

I

t--- ,....

1==

IC,COLLECTOR CURRENT (AMPERES)

,:

,.....

IBI"'c/6"12"lc/5 CIBI :IB2 :le/5)
~
.8
'p'50p.sEC Itp =20p.sECI
.6 I - - SEE FIGURE 17 FOR

8
2

t-

1.0

oJ
oJ

.0 I1.0

---Tc'IOO"C
- - Tc 'z5"C
Vcc '250V (200V)

§

.02

I---

2.0

II:
II:
::I
U
II:

~

8

z

ffi

Id

-- -

-f--

Is

j:
+
\"T- -

I-

--

::>

u

II:

-- -

0;:::1-

,

-

--

LU
II:
II:

-- -

I-

16
15

30

"

~

0

IL

20
10

50 100 200 5001.0l<

o

w

~

~

00

~

~

~

"'- ,

~

~

Te - CASE TEMPERATURE (·C)

FIGURE 15. TRANSIENT THERMAL RESPONSE

"

~

FIGURE 16. POWER DERATING

VCC (AS SPECIFIED)

L

+IOV

----12ci'l-

O.:l;s L-MIN

NOTE:
(2) VALUE OF L (INDUCTOR) IS
SPECIFIED ON RATING CURVES.

WAVEFORMS
(RESISTIVE SWITCHING)

IN5626

ISI-r---.....,.X~90%

D.U.T.
+
VCE (CLAMP)
(AS SPECIFIED)

A !E~___
I
90"1.
IS2 __ I_____

___

'!

-':'

(3) SELECT RC (RESISTIVE SWITCHING)

IC-:C~90%

~IO%

FOR DESIRED IC'
(4) ADJUST VSI' VS2 AND RS2 FOR
TIME DESIRED lSI AND IS2 VALUES.
(5) CIRCUIT LAYOUT AND COMPONENT
SELECTION IS CRITICAL DUE TO
FAST SWITCHING TIMES TO BE
MEASURED.

Id=A-B
I, =A-C
I =X-Y
I:=V-Z

Z~

NOTE:
TRANSITION TIME FROM 90"1. lSI TO 90"1.
182 (X-W) MUST BE LESS THAN 100 .SEC.

FIGURE 17. TEST CIRCUIT FOR SWITCHING TIMES AND RBSOA

827

828

92GU01,01A
2N6714,15

NPN POWER TRANSISTORS

30-40 VOLTS
2 AMP, 1.2 WATTS

COMPLEMENTARY TO THE
2N6726, 27/92GU51, 51A SERIES

Applications:

NPN

~

• Class "8" audio outputs/drivers
• General purpose switching and lamp drive in industrial
and automotive circuits.

COLLECTOR

BASE~

EMITTER

COLLECTOR

EMITTER

CASE STYLE TO-237
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

.105(2.67)
.095(2.41)

.050(1.27)

~. .La-~Tn.r---L
SEATING
PLANE

.250(6.35)

~

~or[
.016(.41)

.018(.46).L.016(.41)]
.016(.41)
.014(.36)

~__ O0O~or [022(.561
.016(.41)

maxhnum ratings (TA = 25 0 C)
RATING
Collector-Emitter Voltage
Collector-Base Voltage

.016(.41)

& .020(.511 ]

.014(.36)

(unless otherwise specified)

VCEO
VCB

92GU01/2N6714
30
40

92GU01A/2N6715
40
50

UNITS
Volts
Volts

Emitter Base Voltage
Collector Current - Continuous

VEB
IC

5
2.0

5
2.0

Volts
A

Total Power Dissipation @ T A = 25° C
Operating and Storage
Junction Temperature Range

PDP'

1.2

1.2

Watts

TJ, TSTG

-55 to +150

-55 to +150

°C

ROJA
ROJC

167

167

50

50

SYMBOL

thermal characteristics
Thermal Resistance, Junction to Ambient
Thermal Resistance, Junction to Case

'POP =Practical Power Dissipation, i.e., that power which can be dissipated with the device installed in a typical manner on a printed circuit board
with total copper run area equal to 1.0 in.2 minimum.

829

electrical characteristics (TA = 25° C)

(unless otherwise specified)

I SYMBOL I

MIN

TYP

MAX

UNIT

VCEO(sus)

30
40

-

Volts

Collector Cut-off Current (Vcs =40V, IE =0)92GU01,2N6714
(VCB =50V, IE =0) 92GU01A,2N6715

ICBO

-

-

0.1

/J.A

Emitter Cutoff Current
(VES =5V, IC =0)

lEBO

-

-

0.1

/J.A

55
60
50

-

-

-

-

CHARACTERISTIC

off characteristics
Collector-Emitter Sustaining Voltage
(Ic = 10mA, Is =OA)

92GU01,2N6714
92GU01A,2N6715

on characteristics
DC Current Gain
(Ic = 10mA, VCE = 1.0V)
(Ic = 100mA, VCE = 1.0V)
(Ic = 1000mA, VCE = 1.0V)

hFE

-

Base-Emitter On Voltage
(Ic = 1.0A, VCE = 1V

VSE(on)

-

-

1.2

V

Collector-Emitter Saaturation Voltage
(Ic = 1.0A, IB = 100mA)

VCE(sat)

-

-

.5

Volts

CSO

-

-

30

pF

50

-

-

MHz

dynamic characteristics
Collector Capacitance
(VCS = 10V, IE =0, f = 1MHz)
Current-Gain Bandwidth Product
(IC =50mA, VCE = 10V, f =1MHz)

fT

830

NPN POWER TRANSISTORS

92GU05,06
2N6716,17
60-80 VOLTS
2 AMPS, 1.2 WATTS

COMPLEMENTARY TO THE
2N6728, 29/92GU55, 56 SERIES

Applications:

NPN
COLLECTOR

• High VCE ratings:
92GU05 = 60V min. VCEO
92GU06 = 80V min. VCEO

EMITTER
BASE

~~~~~:::::-

COLLECTOR
EMITTER

• Exceptional power-to-price ratio

CASE STYLE TO-237

DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

-r---i---"';~
.105(2.67)
.095(2.41)

-r

.050(1.27)

-.-L

maximum ratings (TA

=25

0

C)

RATING
Collector-Emitter Voltage
Collector-Base Voltage

(unless otherwise specified)
SYMBOL
VCEO
VCB

Emitter Base Voltage

92GUOS/2N6716
60
60

92GU06A12N6717
80
80

UNITS
Volts
Volts
Volts

VEB

4.0

4.0

IC

2.0

2.0

A

PDP'

1.2

1.2

Watts

TJ. TSTG

-55 to +150

-55 to +150

°C

Thermal Resistance, Junction to Ambient

R8JA

167

167

Thermal Resistance, Junction to Case

R8JC

50

50

Collector Current -

Continuous

Total Power DiSSipation @ TA
Operating and Storage
Junction Temperature Range

=25°C

thermal characteristics

'POP =Practical Power Dissipation, i.e., that power which can be dissipated with the device installed in a typical manner on a printed circuit board
with total copper run area equal to 1.0 in. 2 minimum.

831

electrical characteristics (TA = 25° C)

(unless otherwise specified)

CHARACTERISTIC

I SYMBOL I

MIN

TYP

MAX

UNIT

VCEO(sus)

60
80

-

Volts

ICBO

-

-

0.1
0.1

IlA

-

100

IlA

80
SO
20

-

-

-

-

-

. 1.2

V

-

-

-

.S
.3S

Volts

CSO

-

-

30

pF

fT

SO

-

-

MHz

off characteristics
Collector-Emitter Sustaining Voltage
(IC = 10mA, IB = OA)
Collector Cut-off Current

92G UOS,2N6716
92GU06,2N6717
(VCB = 40V, IE = OA)
(VCB = SOV, IE = OA)

Emitter Cutoff Current
(VEB = 4V, Ic = OA)

lEBO

on characteristics
DC Current Gain
(IC = SOmA, VCE = 1V)
(Ic = 2S0mA, VCE = 1V)
(Ic = SOOmA, VCE = 1V)

hFE

Base-Emitter On Voltage
(IC = 2S0mA, VCE = 1V)

VSE(on)

Base-Emitter Saturation Voltage
(Ic = 2S0mA, Is = 10mA)
(Ic = 2S0mA, IB = 2SmA)

VBE(Sat)

dynamic characteristics
Collector Capacitance
(VCB = 10V, IE = 0, f = 1MHz)
Current-Gain Bandwidth Product
(Ic = 200mA, VCE = SV, f = 100MHz)

832

92GU45,45A
2N6724,25

NPN POWER DARLINGTON
TRANSISTORS

40-50 VOLTS
2 AMPS, 1 WATTS

Features:

NPN

~

• Lamp driver

BASE~

• Digit driver

EMITTER

• Directly compatible with bipolar and MOS lie drive

COLLECTOR

COLLECTOR

EMITTER

CASE STYLE TO-237

DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

..,.----r------i~
.105(2.67)
.095(2.41)

---r

.050(1.27)

----L
SEATING
PLANE

.250(6.35)

1-

~or[
.016(.41)

....1..-_ _

00D~or [
.016(.41)

maximum ratings (TA

.018(.46).& .016(.41)]
.016(.41)
.014(.36)
.022(.56) & .020(.51) ]
.016(.41)
.014(.36)

=25° C) (unless otherwise specified)

RATING
Collector-Emitter Voltage
Collector-Emitter Voltage

SYMBOL
VCEO
VCES

92GU45/2N6724
40
50

92GU45A12N6725
50
60

UNITS
Volts
Volts

Emitter Base Voltage
Collector Current - Continuous

VEBO

Ic

12
2.0

12
2.0

Volts
A

Total Power Dissipation @TA = 25°C
Operating and Storage
Junction Temperature Range

PDp·

1.0

1.0

Watts

TJ, TSTG

-55 to +150

-55 to +150

°C

thermal characteristics
Thermal Resistance, Junction to Ambient
200
200
°CIW
ROJA
Thermal Resistance, Junction to Case
62.5
62.5
ROJC
• Pop = Practical Power Dissipation, i.e., that power which can be dissipated with the device installed in a typical manner on a printed circuit
board with total copper run area equal to 1.0 in.2 minimum.

833

electrical characteristics (T c

I

=25° C) (unless otherwise specified)

CHARACTERiSTiC

I sYMBOl I

MIN

TYP

MAX

UNIT

BVCES

40
50

-

-

Volts

-

-

100

nA

lEBO

-

-

100

pA

hFE

25,000

-

-

-

-

1.5
1.0

V

VBE(sat)

-

2.0

Volts

VBE(on)

-

-

2.0

Volts

off characteristics
Collector-Emitter Breakdown Voltage
(Ic = 1.0mA, VBE'; DV)

92G U45,2N6724
92G U45A,2N6725

Collector Cutoff Current
(VCB = 30V, IE =OA)
(VCB = 40V, IE =OA)

92G U45,2N6724
92GU45A,2N6725

Emitter Cutoff Current
(VEB = 10V, Ic =0)

ICBO

on characteristics
DC Current Gain
(Ic = 1mA, VCE = 5V)
(Ic =500mA, VCE =5V)
(Ic = 1000mA, VCE =5V)
Collector-Emitter Saturation Voltage
(Ic = 1000mA, IB = 2m A)
(Ic = 200mA, IB = 2mA)
Base-Emitter Saturation Voltage
(Ic = 1000mA, VCE = 2mA)

15,000
4,000
VCE(sat)

Base-Emitter On Voltage
(IC = 1000mA, VCE =5V)

834

-

92GU51,51A
2N6726~27

PNP POWER TRANSISTORS

-30-(-40) VOLTS
2 AMPS, 1.2 WATTS

COMPLEMENTARY TO THE
2N6714, 15/92GU01, 01A SERIES

Applications:

PNP

~

• Class "B" audio outputs/drivers .
• General purpose switching and lamp drive in industrial
and automotive circuits.

BASE~

EMITTER

COLLECTOR

COLLECTOR

--EO

EMITTER

CASE STYLE TO-237

DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

-...---i-----i~
.105(2.67)
.095(2.41)

-r

.050(1.27)

J-~J-.-~~~~
SEATING
PLANE

.250(6.35)

1--

~or [ .018(.461.&~]
.016(.41)

.016(.41)

"",,--__ 00O~o, [
.016(.41)

maximum ratings (TA = 25 0 C)
RATING
Collector-Emitter Voltage
Collector-Base Voltage

Total Power Dissipation @TA
Operating and Storage
Junction Temperature Range

(unless otherwise specified)

VCEO
Vcs

92GU51/2N6726
-30
-40

92GU51A/2N6727
-40
-50

UNITS
Volts
Volts

VES
Ic

-5
-2.0

-5
-2.0

Volts
A

PDP'

1.2

1.2

Watts

TJ, TSTG

-55 to +150

-55 to +150

°C

ReJA
ReJC

167

167

50

50

°CIW
°CIW

SYMBOL

Emitter Base Voltage
Collector Current - Continuous

=25°C

.014(.36)

.022(.56) & .020(.51) ]
.016(.41)
.014(.36)

thermal characteristics
Thermal Resistance, Junction to Ambient
Thermal Resistance, Junction to Case

'PDP= Practical Power Dissipation, i.e., that power which can be dissipated with the device installed in a typical manner on a printed circuit board
with total copper run area equal to 1.0 in. 2 minimum.

835

electrical characteristics (TA = 25 0 C)

(unless otherwise specified)

CHARACTERISTIC

I SYMBOL I

MIN

TYP

MAX

UNIT

VCEO(sus)

-30
-40

-

Volts

ICBO

-

-

-

-.1
-.1

IlA

lEBO

-

-

-.1

IlA

-55
-60
-50

--

-

-

off characteristics
Collector-Emitter Sustaining Voltage
(Ic = -10mA, IB = OA)
Collector Cut-off Current

92GU51,2N6726
92GU51A,2N6727
(VCB = -40V, IE = OA)
(VCB = -50V, IE = OA)

Emitter Cutoff Current
(VEB = -5V, Ic = OA)

on characteristics
DC Current Gain
(Ic = -10mA, VCE = -1V)
(Ic = -100A, VCE = -1V)
(Ic = -100A, VCE = -1V)

hFE

Collector-Emitter Saturation Voltage
(Ic = -1A, IB = -100mA)

VCE{sat)

-

-

-.5

V

Base-Emitter On Voltage
(Ic = -1A, VCE = -1V)

VBE{on)

-

-

-1.2

Volts

CBO

-

-

30

pF

50

-

-

MHz

dynamic characteristics
Collector Capacitance
(VCB = -10V, IE = 0, f = 1MHz)
Current-Gain Bandwidth Product
(Ic = -50mA, VCE = -10V, f = 1MHz)

fT

836

92GU55,56

2N6728,29

PNP POWER TRANSISTORS

-60-(-80) VOLTS
2 AMPS, 1.2 WATTS

COMPLEMENTARY TO THE
2N6716, 17/92GU05, 06 SERIES

Applications:

PNP

• High VCE ratings:
92GU55 = 60V min. VCEO
92GU56 = 80V min. VCEO

COLLECTOR

~

BASE~

EMITTER

COLLECTOR

EMITTER

• Exceptional power-to-price ratio

CASE STYLE TO-237
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

.105(2.67)
.095(2.41)

.050(1.27)

-'---:rr-'-..---'-rr-lT"Tr' - - L
SEATING
PLANE

.250(6.35)

~

~or[
.Q16(.41)

-,-__ 00O~or
.016(.41)

.018(.461.& .. 016(.41)]
.016(.41)
.014(.36)
[022(.56) & .020(.51) ]
.016(.41)
.014(.36)

.105(2.67)
.080(2.03)

t

maximum ratings (TA = 25° C)

(unless otherwise specified)

VCEO
VCB

92GU55/2N6728
-60
-60

92GU56/2N6729
-80
-80

UNITS
Volts
Volts

Emitter Base Voltage
Collector Current - Continuous

VEB
IC

-4.0
-2.0

-4.0
-2.0

Volts
A

Total Power Dissipation @ T A = 25° C
Operating and Storage
Junction Temperature Range

PDP'

1.2

1.2

Watts

TJ, TSTG

-55 to +150

-55 to +150

°C

ROJA
ROJC

167
50

167
50

°C/W

RATING
Collector-Emitter Voltage
Collector-Base Voltage

SYMBOL

thermal characteristics
Thermal Resistance, Junction to Ambient
Thermal Resistance, Junction to Case

°C/W

'PDP = Practical Power DisSipation, i.e., that power which can be dissipated with the device installed in a typical manner on a printed circuit board
with total copper run area equal to 1.0 in.2 minimum.

837

electrical characteristics (T A = 25° C)

(unless otherwise specified)

I SYMBOL I

CHARACTERISTIC

MIN

TYP

MAX

UNIT

-SO
-80

.-

-

Volts

off characteristics
Collector-Emitter Sustaining Voltage
(Ic = -1.0mA. Is = OA)

92GU55.2NS728 VCEO(sus)
92GU5S.2NS729

-

Collector Cut-off Current (Vcs = -40V. IE = 0)92GU55.2N6728
(Vcs = -50V. Ie =0) 92GU5S.2NS729

Icso

-

-

-.1
-.1

pA

-

Emitter Cutoff Current
(VES = -4V. Ic = 0)

IESO

-

-

-100

pA

-80
-50
-20

-

-

-

-

-

-

-1.2

V

-

-

-

-.5
-.35

Volts

CSO

-

-

30

pF

fT

50

-

-

MHz

on characteristics
DC Current Gain
(IC = -50mA, VCE = -1V)
(Ic = -250mA. VCE = -1V)
(Ic = -500mA. VCE = -1V)

hFE

Base-Emitter On Voltage
(Ic = -250mA. VCE = -1V)

VSE(on)

Base-Emitter Saturation Voltage
(Ic = -250mA. Is = -10mA)
(Ic = -250mA. Is = -25mA)

VSE(sat)

dynamic characteristics
Collector Capacitance
(VCS = -10V. IE = O. f = 1MHz)
Current-Gain Bandwidth Product
(Ic = -200mA. VCE = -5V, f = 100MHz)

838

MOUNTING & HANDLING
CONSIDERATIONS

839

MOUNTING AND HANDLING
CONSIDERATIONS
For Surface-Mounted Devices
Surface-mounted devices are packaged and assembled with different methods than conventional transistors, and
require special consideration during mounting and handling to insure optimum performance. This section describes
these considerations for two types of surface-mounted devices:

;{]/J seJJ
CASE STYLE D-PAK

DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

CASE STYLE SOT-89

.098
(2.5 MAX.)

DIMENSIONS ARE IN INCHES AND (MILLIMETERS)
.24
(0.6 MAX.)

.181
(4.6 MAX.)

.043 ± .008
(1.1 ±0.2)

.037
(0.95 MAX.)

II

.024

-+j t+---j0.6 MAX.)

.016 - .002 +.003
10.4 -0.05) (+0.08)
.059 ± .004 _
(1.5±0.1)

....._

. . ._

....._.059 ± .004
11.5±0.1)

o

.024
(0.6 MAX.)
.063± .008
p.6±0.2)
r---~--'----r---r---~

FIGURE 1. OUTLINE DRAWING OF SOT-B9 PACKAGE

FIGURE 2. OUTLINE DRAWING OF D-PAK PACKAGE

Figure 1 shows the dimensions of the SOT-89
transistor package. The small size (2.5 x 4.5 x 1.5mm)
and flat package design allows the transistor to be
mounted directly to a ceramic substrate. Flat emitter,
base, a.nd collector leads are flush-mounted to the
connector runs of the substrate; while a flat collector
tab (soldered to the substrate) increases ability of the
device to dissipate power.

Figure 2 shows the dimensions of the D-Pak
transistor package. The epoxy portion of the device (5.5
x 6.5 x 2.3mm) is smaller than an equivalent TO-220packaged device. Collector power dissipation is
increased by directly soldering the collector tab to the
ceramic substrate.

840

HANDLING CONSIDERATIONS
General - Since the external epoxy portions of the surface-mounted devices are much smaller than on
conventional transistor packages, these devices are often more susceptible to high-temperature/high-humidity
conditions. Thus, these surface-mounted devices should be coated or encapsulated when used in hightemperature! high-humidity environment.
Flux removal - After surface-mounted devices have been soldered to the circuit board/substrate, excess flux must
be removed to prevent corrosion of the device and lead wires. Organic flux may be removed by rinsing; but inorganic
flux must be cleaned with an olefin cleaner such as Freon TE or Di-Freon Solvent S3-E.

Both SOT-89 and D-Pak transistors must be preheated prior to being mounted on circuit boards.
There are several methods of preheating, including use of an infrared heat panel, parabolic infrared lamp, or hot air
circulation. Preheat the devices at 100-150°C for two minutes, raising the temperature as gradually as possible, since
the device pellets may be damaged by an abrupt thermal shock.
Preheating -

SOLDERING CONSIDERATIONS
Both SOT-89 and D-Pak transistors are specified for 250°C solder temperature for 20 seconds duration. It is
important to use a solder with a melting temperature of 190°C or lower. In general, soldering conditions range from
220-240°C for 3-5 seconds.
When using molten solder in the metal mask method, avoid uneven printing and deformation. Recommended
uniform solder printing thickness is at least 200}Lm to ensure lead wire solderability.
When using a soldering iron to mount a device to the circuit board, care should be taken to avoid damage and! or
dislocation of the device. (For this reason, soldering irons are recommended only for experimental or repair work.)
For proper bonding, the soldering iron tip should be lmm or less in diameter, and 250°C for 3 seconds or less. Never
touch the epoxy package with the soldering iron.
Figures 3 and 4 show the relationship between soldering temperature and preheating time for various device
mounting procedures.

Preheating

Soldering

300

Gradual cooling
(in the atmosphere)

Preheating

Soldering

300

Gradual cooling
(in the atmosphere)

250

P 200

P

QI

QI

'":::s 150

...~
QI

t:l.

100

...'":::s~

50

E
~

QI

t:l.

E

~

0

2 min. or more

2 min. or more

20 sec.
or less

20 sec. or less
FIGURE 4. REFLOW SOLDER METHOD

FIGURE 3. SOLDER DIP METHOD

841

POWER DISSIPATION CONSIDERATIONS
Maximum power dissipation for surface-mount transistor packages is different for individual devices than for
those mounted to a circuit board or substrate. For example:
SOT-89 transistor - Since this transistor package is so small, the maximum power dissipation of a device in
free air is 500 mW. However, the same device mounted directly to a circuit board has a maximum power
dissipation of 1-2W because of additional thermal diffusion to the circuit board from the collector tab.
Figure 5 illustrates the maximum power dissipation for two GE SOT-89-packaged transistors mounted to a
ceramic substrate.

, ,I.

.1

40 x SO x O.Bmmt

Conditions:
I piece per board
Reflow soldering
method

\.

'-

20X30XO.B

"-

\

.... ~

ISXlSXO.B

i~

,

"~ ~

,

I\.

""'- t"o..
Single unit
of transistor
:::"'

I

1

" ~ ~ ~!
~~
r---.. ~~ ~
...............

.Q20

0

20

40

60

BO

~

""

100 120 140 160

Ambient temperature

FIGURE 5. Po (MAX) VS. T A CHARACTERISTICS OF D70F2T1 and 071 F2T1
TRANSISTORS MOUNTED ON CERAMIC SUBSTRATE

D-Pak transistor - Maximum power dissipation for the straight-lead version is 1W; however, when the leadformed version is mounted directly to a ceramic substrate, the power dissipation is increased to 2-3W. Figure 6
illustrates the maximum power dissipation for two GE D-Pak-packaged transistors mounted to a ceramic substrate.

I piece per board
T A = 25°C Mounted
on ceramic substrate

4

s::

0

:;:;
as

.tlJ9-

3

x 50XO.BlDIDt

5

I
I

:a,..'"
0

s:l.

~

0

~

~

I

2

.......

30X30XO.B

I

Q)

:0
as

l""'-

I

Q)

~

......

I

I I

I I

.......

.......

~

I"
r- r- to-

20

f"'.

....... ~

Single unit
of transistor

o
o

......

r-- .....

40

r-....

-r- I'--.. 1000...

......
I"

......

....... J--..

l"- t-

60
BO
100
Ambient temperature

r-....
r.......

r-

-

:--- to.. I......
120.

....... 1:'
r""!IIIo.

140

FIGURE 6. PO(MAX) VS. T A CHARACTERISTICS OF D72F5T1 and D73F5T1
TRANSISTORS MOUNTED ON CERAMIC SUBSTRATE

842

160

MAXIMUM POWER DISSIPATION (TRANSIENT CONDITIONS)
Certain circuit designs (such as motor drives and flash circuits) require devices to be rated for transient conditions
as well as for their overall power dissipation capability. The relationship between maximum power dissipation and
pulse width under transient conditions for both SOT-89 and D-Pak transistors is shown in Figures 7 and 8,
respectively.

Single non repetitive pulse
50~~--------~r ----------r--------~-r----------_.----------~
30t-t-~--""'_..:_----t_

10~r-------~~----~~~~---------_+--~r_----+_--------_4

511-------i--:~--~r_~~~~--~--~~~~~

311----~--~~~--~1'~~~~=!:j

0.5

.....----~

Pc(max) is a value within the area with restricted -1--=:::~~~*
thermal resistance

0.3'-:'10:-m-------:-l~00~m------:l:------1::-';0:------~:--------:l~000

Pulse width (sec)
FIGURE 7. Po VS. TA CHARACTERISTICS OF D70F2T1 and D71F2T1 UNDER TRANSIENT CONDITIONS

1---HH-l++H+--+-I-Hf-H-Hfl----l-l-H-t-lffl----l-t+1-tttH

Sinl'll' unit
or Single pulse
Ta

... X-4-t- .
f--+++t+I-ttl---'~-A'f'Itk:-++++tt+it- ':--+-Ht! i

25'(

--,-

I

!

Ceramic substrate
50X50xO.8t

3 _

f--

--t I"+--= t t ~ngle~~it

.30x30
I I, _ I ~ftransistorl
1 E Pc(max) is a value within an area with restricted
: thermal resistance

,il

I!

,

. III II

II illill
II 11111
10m

100m

I

I 1'111111

I I

III

I ilill

II 11111

i Illill

j 1IIIIi

11111111

Ii 1111

10

100

1000

Pulse width (SEC)

FIGURE 8. Po VS. T A CHARACTERISTICS OF D72F5T1 and D73F5T1 UNDER TRANSIENT CONDITIONS

NOTE: Power dissipation (PD) is a value inside the area of restricted thermal resistance; and both Figures 7 and 8
depict power dissipation under a single non-repetitive pulse.

843

MINIMUM MOUNTING PAD AREA
Figure 9 shows the lead mounting locations and minimum pad size for SOT-89 transistors. Since the maximum
power dissipation is affected substantially by the collector connecting area, a large pad area is recommended .

.079(2.0)
.035(0.9)

FIGURE 9. MINIMUM RECOMMENDED PAD SIZE FOR SOT-89 TRANSISTORS

Figure to shows the minimum pad area for a D-Pak transistor. Since the thermal radiation of D-Pak transistors is
dependent on the collector tab connection to the circuit board, an increased board area will also increase the device's
maximum power dissipation. Thus, the collector area should be as large as possible.

r

O

236(So O)-l

~

.236(6.0)

~~
4(2
r;l

[il'

0063(10s

-rt..
4

.090(2.3)

0

0)

.118(3.0)

~t

~-+--+---.063(1.6)

...
--.090(2.3)

FIGURE 10. MINIMUM RECOMMENDED PAD SIZE FOR D-PAK TRANSISTORS

844

MOUNTING AND ELECTRICAL
TERMINATION PROCEDURES
For D66 & D67 Power
Darlington Transistor Modules

\tf

EMITTER
STEEL

i;;;'R

STEEL
LO;KWASHER
STEEL
WASHER

MOUNTING
HOLE

MOUNTING
SLOT
BASE 1 BASE2

ALL 066 DEVICES

ALL 067 DEVICES

MOUNTING

MOUNTING

HARDWARE: Standard #10 or M5

HARDWARE:

7/16"-1/2" 00
(11" 13mm) 00

Screws - Standard #6 or M3
Washers - 00 = 5/16"-3/8" (8-9 mm)

TORQUE: 19-25 lb.-in. (2-3 NM)

TORQUE: 6-8 lb.-in. (0.7-0.9 NM)

ELECTRICAL TERMINATION

ELECTRICAL TERMINATION

COLLECTOR & EMITTER:

COLLECTOR & EMITTER:

Screw: M5 x 8mm
Lockwasher: 9.2-13mm 00
Torque: 25-28 lb.-in.
(2.8-3.2 NM)

FASTON - AMP #41450
(or equivalent)

BASE:
FASTON - AMP #61339-1
(or equivalent)

BASE:
Base 1: FASTON-AMP #640917-1
Base 2: FASTON-AMP #640903-1
(or equivalents)

HEAT SINK FLATNESS
Heat sink surfaces must be flat within ±1.5 mils/inch (0.015mm/cm) over the mounting area and
must have a surface finish of < 64 micro inches (1.62 microns).

THERMAL COMPOUND
To minimize the effects of flatness differential and/or voids between the base plate and the heat
sink, apply a very thin layer of GE #6644 or Dow Corning #4 thermal compound to the back of
the base plate and the heat sink. NOTE: excessive thermal compound will not squeeze out from
underneath the device during mountdown. After applying thermal compound to the device and
the heat sink, place the device on the heat sink and rotate slowly to distribute grease. Check both
surfaces for uniform coverage before applying torque to mounting screws.

WARNING
THESE MODULES SHOULD BE HANDLED WITH CARE. THE CERAMIC
PORTION (INTERNAL ISOLATION) OFTHIS PRODUCT MAY CONTAIN
BERYLLIUM OXIDE AS A MAJOR INGREDIENT.
DO NOT CRUSH, GRIND, OR ABRADE THESE PORTIONS OF THE PRODUCT.
THE DUST RESULTING FROM SUCH ACTION MAY BE HAZARDOUS IF
INHALED.

845

GE
POWER TRANSISTOR
OUTLINE DRAWINGS

846

POWER TRANSISTOR OUTLINE DRAWINGS
POWER MOS DRAWINGS
N-CHANNEL

N-CHANNEL

CASE STYLE TO-247
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

--I
.05711.451--1

I-- .182 14.62)
1-1

r·6151,5.62)y.,281:i.251

~
r~
~ + "\ IfII
.815

.215
(5.4S1

-

120)0)

j,~

TERM.l

--L

.[!

N-1lIIJ

TERM.2

1 [-

TERM.3

.U33I~.841
.02710.691

\.

.1~.'0512.671
.09512.411

.gS5 P.391
_I
. 4511.141----'

\4-.

1-0-

2

.21015.331
.19014.821

.065 11.65)""\
.04811.221

N-CHANNEL

CASE STYLE TO-204AA (TO-3)
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

r:

0.845(21.47)
MAX. :!~'35819'09) MAX

0~~X65l~

T
0.043(1.09)
0.03810.97)

--u--n=

DIA .......!

I

L

SEATING PLANE

.426(10.82) MIN.

r

CASE TEMP.
REFERENCE
POINT

.2015.00)
SOURCE

0.16214.09)
0.1513.84)
2 HOLES

3

~I ~~I~ ~.'00

.10712.721
.08712.211

0.440(11.18)
0.420(10.67)

847

:219
15.561

(2.541

Power MOS Drawings (Cont.)
N-CHANNEL

N-CHANNEL

CASE STYLE TO-204AE (TO-3)
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

CASE STYLE TO-20SAP (TO-39)

r:

0.845(21.47)
M A X . H ·358 (9.09) MAX

DIMENSIONS ARE IN INCHES AND (MILLIMETERS)
0.350-0.370
(8.890-9.398)

OO.%"'~~---t ,~,,~~,
0.063(1.60)

0.057(1.45)

DIA.-.l1-

0.315-0.335
(8.001-8.509)

f

0.240-0.260

.426(10.82) MIN.

~~

I

0.019-0.033
(0.483-0.838)
,SEATING
PLANE

i.
T----

DRAIN
>--fI---GATE

0.500
(12.70)
MIN

CASE TEMP.
REFERENCE
POINT
.20(5.00)

0.162(4.09)
0.15(3.84)
2 HOLES

0.440(11.18)
0.420(10.67)

N-CHANNEL

CASE STYLE TO-20SAF (TO-39)
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)
0.350-0.370
(8.89G-9.398)
0.315-0.335
(8.001-8.509)

~
(0.483-0.838)

L=~ •.e;rr=:n==n::~ ~
SEATING
_ l-PLANE

-I

0.009-0.018
(0.229-0.457)
0.500
(12.70)

1

2

n n" ft
u- U .1U\..-

0.016-0.019
(0.406-0.483)

MIN

DRAIN
GATE
SOURCE

0.190-0.210
(4.826-5.334)

0.029-0.045
(0.737-1.143)
0.028-0.034
(0.711-0.864)

848

Power MOS Drawings (ConI.)
N-CHANNEL

N-CHANNEL

,~;~
CASE STYLE TO-237

DIMENSIDNS ARE IN INCHES ANb (MILLIMETERS)

CASE STYLE TO-202
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

-r---i----;----L

0.360-0.410
(9.144-10.414)

.105(2.67)
.095(2.41)

.125 REF.

-r

~

.050(1.27)

--'-~-'-...- L-rr-n-rr----.L

0.480-0.520
(12.192-13.208)

l

0.065-0.075

0.285-0.315
(7.237-8.001)

~
X 45'

CHAMFER~

1.21 REF.

~

1

0.405-0.425
(10.287-10.795)

2

0.095-0.105
(2.413-2.667)
0.026
(0.660)

+l~I--O'095-O
105
(2.413-2667)
)

~

~
~

----,

[
D~or [

SEATING
PLANE

~or
.016(.41)

.016(.41)

0.170-0.190
(4.318-4.826)
0019-0026
.
.
(0.483-0.660)

0.095-0.106

(2.413-2.667)

N-CHANNEL

CASE STYLE 4-PIN DIP
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

DRAIN

O

SOURCE
GATE

~O.245 ~
(6.22)

A
.

II

0.15
(3.81)

~

0.300

0.198

~

r~~)-l

~-.-

(3.04)
0.120
-,

0.15
(3.81)

I---±
(0'5~6)
L

0.040(1.02)

(3.30)

I

0.022

~~ (7.62)',

0.100

(2.54)1

849

.018(.46) & .016(.41)]
.016(.41)
.014(.38)
.0221.56) & .020(.51) ]
.016(.41)
.014(.36)

IGT DRAWINGS

CASE STYLE TO-204AA (TO-3)

CASE STYLE TO-204AE (TO-3)

DIMENSIDNS ARE IN INCHES AND (MILLIMETERS)

DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

r:
-:~~~t~4 -,,~ .,,'

r:
06~~X65l~

0.845(21.47)
MAX. H·35819.09) MAX

0.845121.47)

MAX ~~'358(9'09) MAX

T
0.043(1.09)
0.038(097)

--u--rr=

DIA

~

I-

SEATING PLANE

0.063(1.60) OIA . ...J
0.057(1.45)
.....,

426(1082) MIN

----..,

I- .

.426110.821 MIN.

CASE TEMP.

CASE TEMP.

REFERENCE
POINT
.2015.00)

REFERENCE

POINT
.20(5.00)

0.16214.09)
0.1513.84)
2 HOLES

0.162(4.09)
0.1513.B4)
2 HOLES

0.440(11.181

O.440{11.18)

0.420(10.67)

0.420(10.67)

CASE STYLE TO-220AB
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

.404(10.261 . ~ ~~\~.~~\
.38019.65)..j· I '

1--1...

.

t

CASE STYLE TO-247

.190(4.831

170(4'32)~

-.----.
1

.265(6.73)
.245(6.221

•

DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

.055(139)
.048(1.22)

--l
.057 (1.45)-1

CASE

/f---~--~----------l---~-J, ~

TEMPERATURE
REFERENCE

+

68
'.',4
4 5, «33.· S8))OIA.

rt
.355(9.02)
.325(8.25)

.130(3.3)

OINT

.ggfl~.~;~)

TERM.3

.027(0.69)

r .615 (15.62)y.,2B (3.25)

'-r
-~Il
.215
(5.46)

'c~

W1l-1l(LJ
::::::~~~;::,i:" ".,

.500(12.7)MIN.

TERM.2

.033(~.84)

r

:t.L

~59)

f

TERM.l

\--.182 (4.62)

1-/

2

.1~.'05(2.67)

.055(1.39)--1
.045(1.14)

.10712.72)
.08712.21)

~ •. 095(2.411

1:=

.210(5.33)
.190(4.82)

.021(0.53)
.015(0.38)

850

3

BIPOLAR DRAWINGS

CASE STYLE TO-220AB *

CASE STYLE TO-202 *

DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

/

0.480-0.520
(12.192-13.2081

:~:~!~:~:!DIA.
.006(0.151
.001(0.0251

0.285-0.315
(7.237-8.0011
1.21 REF.
(30.734)

TERM.l
TERM.2

0.405-0.425
(10.287-10.7951

TERM.3

.033(~.84)

.1~.'05(2.671

_I 1--'
.045(1.141~ I--

.055(1.39'1

r H
O~:;"t~4 '~HOO"'"
DIA.---.I!-

0.845(21.47)

L.. MAX ...J~'358(9'09) MAX
I':' DIA . .:l
MAX.l~

.358(9.091 MAX

.065(1.651

T

--u--n=

0.063(1.60) DIA.---.l10.057(1.451
I

.426(10.821 MIN

I

CASE TEMP.
REFERENCE
POINT
.20(5.001

CASE TEMP.
REFERENCE
POINT

.20(5.001

0.162(4.091

0.162(4.091
0.15(3.841
2 HOLES

.021(0.531
.015(0.381

DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

0.043(1.091
0.038(0.97)

.21015.331
.190(4.821

CASE STYLE TO-204AE (TO-3)

CASE STYLE TO-204AA (TO-3)
0845(21.471
MAX.

.107(2.72 1
.087(2.21)

~ •.. 095(2.411

.027(0.69)

0.15(3.841
2 HOLES

0.440(11.181

0.440(11.181
0.420(10.671

0.420(10.671

'Indicates additional lead-formed options available.

851

SEATING PLANE
.426(10.82) MIN.

Bipolar Drawings (Cont.)

CASE STYLE TO-218 *
DIMENSIONS ARE IN INCHES ANO (MILLIMETERS)

CASE STYLE TO-247
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

1--.

615 (15.62)y.128 (3.25)

-r+/ r. -r
I )1~lL (±J"\.~

.156(3.96)
MIN.

.815
(20.70)

.461(11.709)

....L

.147(3.734)I.;='For='F'F'i'"
MAX.

,-1

.046(1.219)
NOM.

t1

3

2

1~~...J
.205(5.207)

l-Il-

l,~! J
If
(LJ

.622(15.798)

2

(5.46)

--L.

.018(.457)
NOM.

-(

!t-.ll0 (2.79)
.018 (0.46)1,

.095(2.413)

.450(11.4301
.410(10.414)

MIN•

CASE STYLE TO-247S

3

::::~~~,:J-"'M'

CASE STYLE TO-220IS

DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

DIMENSIONS ARE IN INCHES AND (MILLIMETERS)
.408(10.3) MAX.

,

.531 ± .020
(13.5£0.5)

.215 ± .008
(5.45 ± 0.2).,

030(2 54) + .010(0.25)
.
.
•.006(0.15)

~

.100(2.54) ± .010(0.25)_H-+O>-.loo(2.54) ± .010(0.25)

;:

~ ~.

•

-

"''''-'
~

f f

"Indicates additional lead-formed options available.

852

~-')«'
~.

:Ii

Bipolar Drawings (Cont.)

tr~tr ~~

~

!L1-+1 •J1,1).::1 ~

BASE~

EMITTER

COLLECTOR

CASE STYLE TO-237

1

DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

E

@

I

,T,

I
~
T~P"*1:

-.-----i----i~
.105(2.67)

R·

1

" X,

.050(1.27)

~~~_,~~---L

.I.

H

[
--'---_00 D~or [

.01B(.461.& •.016(.41)]
.016(.41)
.014(.36)

.016(.41)

INCHES

v

A
F

1.50S 1.540 30.22 39.12
.'20 .'32 3.04 3.35

G

.605

.645

15.36

1040

H

.940

.900

23.87 24.19

f

+

J

.307

K,

.120

K

.171

l

.'92
.... ....

M

S

v

DIMENSIONS ARE IN INCHES AND
(MILLIMETERS)

INCHES

1.785 1.815 45.33 46,10
.6'5 .1i85 15.62 17.40

D
E

F
G

11.48 11.98 29.15
1.215 1.270 30.86
1.470
.245
.20
.335
'.50
1.190 29.71
.325 7.50

30.43
32.36

REF. 13.16
.290 '.60
REF. 3.81
REF. '.60
REF. '.30
320 7.60

AEF.
7.37
REF.
REF.
REF.
013

.390

•.90

.03'

.510

12.57 '~95

.'50

.170

3.81

U

·... 11.015 25.01 25.80

V

.450

4.32

REF . 11.43 REF.

7.00

-

W

.'00

-

4.57

-

3.Q4

3.35

X,

.050

.050

1.27

1.47

4.34

4.64

X

.065

.073

~S7

4.00

V

.157

.Tn

11.78 12.30

Z

1.180 1.192

'.os ,.os
a.. 4.50

N

.,.7

.255

6.27

'.40

AA

.'30 .'00

29.97 30.30
3.30 4.30

P

2'0

.230

5.33

5.M

AB

.604

17.37 17.90

a

.275

REF.

7.00

REF.

AC

.03'

.035

.70

.90

R

.970

REF. 24.64

REF.

AD

. '00

REF .

2.54

REF.

.704

9.40

CASE STYLE SIP-8 PIN
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

Ir =11

37.34

.795 ± .OOB
(20.2 ± 0.2)
.531 - - I
(13.5)
~ I

30.23

'.26

.312 REF. 7.90 REF.
M5 (MED FlnMS IMEO Fin
.'M ,192 4.67 4.90
.119
.050
.065
.204
.365
.235

.495

T

METRIC

MIN

A

B

.104

S

V

MM
MIN MAX

M

C

MAX

.'32
.,M

METRIC

MM
MIN IMAX

M

.OBO(2.03)

.125(3.1B)

INCHES

MIN I MAX

S

.105(2.67)

.105(2.67)
.080(2.03) .165(4.23)

MAX

:

METflIC

MIN

CASE STYLE 067

~2

MM
MIN MAX

M

-,

ORIENTATION OF THE
FLAT IS NOT CONTROLLED

a

X2

S

.022(.56) & .020(.51) ]
.016(.41)
.014(.36)

.016(.41)

t

CASE STYLE 066

DIMENSIONS ARE IN INCHES
AND (MILLIMETERS)

41.'1,~

--r

~or

l

AA1 !-AB-=1!r- AC
1 ~-rttll HT~ n ~-L
1r--III

.095(2.41)

SEATING
PLANE

~....

,OS9A
(01.5)

...

.034
.132

.70
3.02

3.35

.060

1.27

1.52

5.36

....

.075
.211

.,

.305

9.27

.265
.125

5."

1.65

'.90

6.73
3.20

853

I'"

Bipolar Drawings (Cont.)

CASE STYLE SIP-12 PIN
DIMENSIONS ARE IN INCHj:S AND (MILLIMETERS)

CASE STYLE SIP-10 PIN
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)
.039R

(Oi)
.126Dia
(03.2)

.100
(2.54)

:I!)J etJ)
CASE STYLE D-PAK
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

.

CASE STYLE SOT.,.89
DIMENSIONS ARE IN INCHES AND (MILLIMETERS)

.037

(0.95 MAX.)

~Ii

.098
(2.5 MAX.)
.24
(0.6 MAlt)

.043± .008
(1.1 ±0.2)

.024
(0.6 MAX.)

~ 1~~
JJ (0.6~!x.J
.D63±.008

'r-=~'"T""=""":'--r--::=-:-"'T'"=:-:-:"""T_=,.-'-(1,.6±0.2)

854

PACKAGE ALTERNATIVES
TO-202

H

OTHERWISE
SAME

=k

o

NOTE: NOT
BASIC FORM.
FOR REF. USE.

K
OTHERWISE
SAME
ASE

F

Me

OTHERWISE
SAMEASE

OTHERWISE
SAME
ASJ

.465
REF.

I--.L
c

J/

TERM.
REMOVED

• = CRITICAL DIM.
MAKE FROM
TYPE A

E

MAKE FROM
TYPEB

B

OTHERWISE SAME
AS TYPEC OR 0

• = ENDS OF BOTTOM
LEADS TO BE PARALLEL
WITHIN .020 TOTAL
ON A GIVEN PART.

OTHERWISE SAME
ASG

~&K

G&H

E&F

C&D

• = ENDS OF BOTTOM
LEADS TO BE PARALLEL
WITHIN .020 TOTAL
ON A GIVEN PART.

OTHERWISE SAME
AS TYPE C

• = ENDS OF BOTTOM
LEADS TO BE
PARALLEL WITHIN
.020 TOTAL ON A
GIVEN PART.

.485

-1. 250 I+-

REF.

IREF·I-..l

±.OO5
.020R
TYP.
MAKE FROM
TYPE A

w\

-..L

~
r

±.030

.3~

CENT'R~ ~5

LEAD
MAKE FROM TYPE A

L

.020R

OTHERWISE SAME
ASTYPEN

MAKE FROM
TYPE A

MAKE FROM
TYPE A

u

p

N

.080
(INSIDE)

w

T

TO-218
• = ENDS OF BOTTOM
LEADS TO BE
PARALLEL WITHIN
.020 TOTAL ON A
GIVEN PART.

FIG. A

FIG.C '

FIG.S

,gL~_

rSEATING

I _ PLANE

ttl

1~.~

~
.020R

'OO5tI

11.270)

i

I'

'f TER~.l

TERM. 3

MAKE FROM
TYPE A

x

-, .145)

7.925~ c:i iii

V ..

I

(111.

r.'3121~~~
n_

I

0.048(1.219)
NOM.

LC~~ . ~-~75 j '\::~
0.420-0.44"
(10.888-11.176)

1-

0.05

±.010
.125

CENT'R
LEAD

TERM. I

TeRM. 2

'I~
H
3~

00

:::::.

NOTES:
1. POSITION OF LEAD TO BE MEASURED 4.699-4.828.
2. POSITION OF LEAD TO BE MEASURED 1.27G-l.397 BELOW
.
SEATING PLANE.
3. TAB OUTLINE OPTIONAL WITH BOUNDARIES OF
OVERALL TAB WIDTH AND TAB MOUNTING HOLE
DIAMETER.

y

855

Package Alternatives (Cont.)
TO-220
.172 - .202
(4.36 - 5.13)

1

.570

.120 - .130

.~~~4l:==::=3--7Lt(3:::::.04
-3.30)
.:.,020
- .030
(.50 - .76)

~~
t

.040 - .060
(1.01 - 1.52)

o 0
c

B

o

.231 REF.
(5.86 REF)

oj"

mooi

9.67 REF.), 0,. ';"
....
.... .r

LQt

.025 - .035
(.63 - .89)
TERM. 2
.120- .130
(3.04 -3.30)
.120 - .130
(3.04 -3.30)

E

G

F

.025 - .035
(.63 - .89)
TERM~ 2
TERM. 1
&3

.025- .035
(.63- .89)
TERM. 1
&3

TERM. 1
&3

.190 - .210
(4.82 - 5.33)

.140 - .160
(3.55 - 4.06)

H

J

856

K

SALES REPRESENTATIVES
DOMESTIC
ALABAMA
CSR Electronics, Huntsville
(205) 533-2444

ARIZONA
Shefler-Kahn, Phoenix
(602) 257-9015

CALIFORNIA
Addem, San Diego
(619) 729-9216
Ewing-Foley, Inc.
Los Altos
(415) 941-4525
Ewing-Foley, Inc.
Roseville
(916) 969-2672
H-Technical Sales II, Inc., Canoga Park
(818) 999-1222
H-Technical Sales 1I,lnc. Orange County
(714) 740-7161

INDIANA
Giesting & Assoc., Fort Wayne
(219) 486-1912
Giesting & Assoc., Indianapolis
(317) 844-5222

IOWA

NORTH CAROLINA
CSR Electronics, Raleigh
(919) 878-9200

OHIO
Giesting & Assoc., Cincinnati
(513) 385-1105

J.R. Sales, Cedar Rapids
(319) 393-2232

Giesting & Assoc., Cleveland
(216) 261-9705

KANSAS

Giesting & Assoc., Dayton
(513) 433-5832

KEBCO, Kansas City
(913) 541-8341

OKLAHOMA

KEBCO, Wichita
(316) 733-1301-

Bonser-Philhower Sales, Tulsa
(918) 744-9964

MARYLAND

OREGON

Robert Electronic Sales, Columbia
(301) 995-1900

LD Electronics, Beaverton
(503) 649-8556 + (503) 649-6177

MASSACHUSETTS

PENNSYLVANIA (East)

Advanced Tech. Sales, Burlington
(617) 272-0100

COMTEK, Mt. Laurel (N.J.)
(609) 235-8505

MICHIGAN
Giesting & Assoc., Farmington Hills

PENNSYLVANIA (West)

COLORADO
Thorson Rocky Mountain, Englewood
(303) 779-0666

(313) 478-8106

CONNECTICUT
Advanced Component Sales, Meriden
(203) 238-6891

DISTRICT OF COLUMBIA
Robert Electronic Sales
(301) 982-1177

FLORIDA

Giesting & Assoc., Coloma
(616) 468-4200

MINNESOTA
PSI, Minneapolis
(612) 944-8545

MISSOURI

Giesting & Assoc., Pittsburgh
(412) 963-0727

TENNESSEE
CSR Electronics, Knoxville
(615) 673-0222

TEXAS
Bonser-Philhower Sales, Richardson
(214) 234-8438

EIR, Maitland
1057 Maitland Center Commons
(305) 660-9600

KEBCO, St. Louis
(314) 576-4111

Bonser-Philhower Sales, Austin
(512) 346-9186

NEW JERSEY (North)

GEORGIA

S-J Assoc., Jamaica (N.Y.)
(718) 291-3232

Bonser-Philhower Sales, Houston
(713) 531-4144

CSR Electronics, Atlanta
(404) 396-3720

UTAH

LD Electronics, Spokane (WA)
(509) 922-4883

COMTEK, Mt. Laurel
(609) 235-8505

Thorson Rocky Mountain,
West Valley City
(801) 973-7969

NEW MEXICO

WASHINGTON

IDAHO (South)
Thorson Rocky Mountain, (UT)
(801) 973-7969

Shefler-Kahn, Albuquerque
(505) 345-3591

LD Electronics, Snohomish
(206) 568-0511

NEW YORK

ILLINOIS

Ossmann Component Sales, Rochester
(716) 424-4460

LD Electronics, Spokane
(509) 922-4883

IDAHO (North)

D. Dolin Sales, Chicago
(312) 498-6770

NEW JERSEY (South)

Ossmann Component Sales, Syracuse
(315) 437-7052
Ossmann Component Sales, Vestal
(607) 754-3264
S-J Assoc., Jamaica
(718) 291-3232
857

WISCONSIN
D. Dolin Sales, Milwaukee
(414) 482-1111

SALES REPRESENTATIVES
INTERNATIONAL
ARGENTINA

HONG KONG

S'PORE/MALAYSIA

Gerieral Electric Argentina S.A.
Santo Domingo 3220
Buenos Aires, Argentina
Tel: (541) 281472

GE Semiconductor HK, Ltd.
Room 1603
Perfect Commercial Bldg.
20 Austin Ave., Tsimshatsui
Kowloon, Hong Kong
Tel: 3-7214286

NIE Electronics (S) PTE Ltd.
605B Macpherson Road NBR 04-11
Citimac Industrial Complex
S'pore 1336
Tel: 2850111
TLX: RS21633 Niesin
FAX: 2879207

AUSTRALIA
GEC Automation N Control
2 Giffnock Ave.
North Ryde, N.SW. 2113
Australia
Tel: NBR (02) 887 6111
TLX: AA 26080

BELGIUM
General Electric Company (USA)
Chaussee de la Hulpe 150
B-1170 Brussels
Tel: 660-20-10

BRAZIL
Applicacoes Electronicas .A.
Artimar Ltd.
Caixa Postal 5881
Sao Paulo
Tel: 231-0277
CANADA
Gidden-Morton Assoc., Inc.
7548 Bath Road
Mississauga, Ontario L4T 1L2
Tel: (416) 671-8111
Access Electronics
Ste.101
3570 E. Hastings St.
Vancouver, BC
Canada V5K 2A7
Tel: (604) 299-3556

CHILE
Electromat S.A. Fabrica
De Materiales Electricos
Casilla 2103
Santiago, Chile
Tel: (562) 53031

FRANCE
General Electric Semiconductor
337 Bureaux de la Colline
92213 Saint Cloud
Cedex, France
Tel: 602-5898

GERMANY
General Electric Company
Postfach 2963
Praunheimer Landstrasse 50
6000 FrankfurVMain, Germany
Tel: 760-7333
GE Semiconductor GMBH
Bavariaring 8
Concordiahaus
D-8000 Munich 2
West Germany
Tel: 089-51490-0
TLX: 521-8295 gesm d
FAX: 089-51490-40

INDIA
IGE (India) Ltd.
Nirmal, 17th Floor
Nariman Point, Bombay 400 021
Tel: 233075
IGE (India) Ltd.
Archana Office Complex
Greater Kailashil
New Delhi 11048
Tel: 645230

ITALY
GE Semiconductor
Via del Missaglia 113/A1
20142 Milano Italy
Tel: 2/8229709

JAPAN
General Electric (USA) Semi K.K.
Meiji Seimei
Gotanda Bldg.
3rd FI.
2-27-4 Nishi Gotanda
Shinagawa-Ku, Toyko 141
Tel: 03-779-0401

KOREA
General Electric (USA) Korea Co.
10th Floor, Hanmi Bldg.
1 Kongpyung-Dong,
Chongro-Ku
Seoul, Korea 110
Tel: 725-8651/6

MEXICO
Proveedora Electronica S.A.
Apdo. Postal 21-139
Mexico 21, D.F.
Tel: 5-54-8300

NEW ZEALAND
Delphi Industries Limited
27 Ben Lomond Crescent
Pakuranga, Auckland
New Zealand
Tel: 563-259
TLX: NZ21992

SINGAPORE
PTE Ltd.
105 Boon Keng Rd. #03-01
Singapore, 1233
Tel: 298-3522
FAX: 2960677
TLX: RS35582 ECOGE

858

SOUTH AFRICA
South African
General Electric Co. (PTY), Ltd.
1 Van Dyk Road
Benoni, South Africa
Tel: 52-8111/52-3692

SPAIN
GETSCO Division Internacional
Juan Bravo No. 3C
Madrid 6
Tel: 276-7062

SWEDEN
International General Electric, AB
(Kistagangen 19)
Box 1203
163 13 Spanga
Stockholm, Sweden
Tel: 46-8-793-9612/9500

TAIWAN
President Enterprises Corp.
11 FL, 560 Chung Hsiao E. Road, Sec. 4
Taipei, Taiwan 105, R.O.C.
Tel: (02) 700 2866
TLX: 12200 Precortpe
Leadtorn Industrial Inc.
B1, 6FL, No. 126
Nanking E Road, Sec. 4
Taipei, Taiwan 105, R.O.C.
Tel: 2-7732200-3
TLX: 21795

THAILAND
Grawinner Company Limited
226/27 Phahonyothin Road
Phyathai, Bangkok 10400
Thailand
Tel: 278-3411
TLX: 87155 GWN TH

UNITED KINGDOM
General Electric-Intersil
Belgrave House
Basing View
Basingstoke, Hampshire RG21 2YS
Tel: 256-57361

VENEZUELA
General Electric De Venezuela S.A.
Sabana Grande
Caracas



Navigation menu