1986_General_Instruments_Optoelectronic_Products 1986 General Instruments Optoelectronic Products

User Manual: 1986_General_Instruments_Optoelectronic_Products

Open the PDF directly: View PDF PDF.
Page Count: 433

Download1986_General_Instruments_Optoelectronic_Products 1986 General Instruments Optoelectronic Products
Open PDF In BrowserView PDF
f
i

I
c

3

Io
_.

n

l
I
I

l. ~
.
~

I

Catalog of Optoelectronic Products 1986/87

Catalog
of Optoelectronic
Products
1986/87

Optoelectronics Division
3400 Hillview Avenue
Palo Alto, California 94304

GENERAL
INSfRUMENT

Copyright ©1986 by General Instrument Corporation.
All rights reserved. No parts of this book may be
reproduced w~hout the written permission
of General Instrument Corporation.

ALL SPECIFICATIONS SUBJECT TO CHANGE

Printed in USA

ii

About General Instrument
Optoelectronics
Experience
For the last seventeen years-first as Monsanto and now as General Instrument-we
have been a leading manufacturer of optoelectronic products. As a result of this
experience and our leadership in developing III-V materials technology, we have
contributed many firsts to the field of optoelectronics-in LED lamps, displays and
optocouplers.

Quality Control
Because we are one of the few vertically integrated optoelectronic manufacturers, we
exercise total control over each stage of production-through growing our own
crystals to epnaxial deposition and water manufacturing. This ensures quality and
reliability in our products.

Reliable Products
At both our manufacturing plants, in Palo Alto and Kuala Lumpur, extensive reliability
testing (see pg. xv) and advanced manufacturing techniques ensure the highest
standards of production. We are commmed to the concept of providing state-of-the-art
dependable products at competitive prices.

Broad Product Range
We offer high performance optoelectronic devices in four major categories;
optocouplers, displays, lamps, and light bars and bargraph arrays. This catalog
contains detailed specifications on our complete line of optoelectronic products.

Product Availability
A worldwide network of stocking distributors assures immediate availability of most
standard products. General Instrument authorized distributors are located worldwide.
In addition, four General Instrument Direct Sales Offices in the United States and
eleven International Sales Offices serving major world markets, provide a complete
range of all General Instrument Optoelectronic products. See how to order in the
following section.

Efficient Service
If you have a question or a problem, just pick up the phone and call the nearest
General Instrument Technical Representative. These highly qualified sales engineers
can offer assistance in design and product selection. The lists on pages 411 and 414
will enable you to locate one in your area.
In addition, our staff of factory product engineers can provide information, discuss
specific problems and offer applications assistance. The answer to your question is
only a phone call away.
You can depend on General Instrument.

iii

About This Catalog
This catalog describes in detail our complete line of optoelectronic products. For your
convenience, the catalog is divided into four major product groups-optocouplers,
displays, lamps, and light bars and bargraph arrays.
A selection guide will be found at the begining of each product section. This provides
brief basic information on the product line to assist you in selecting the device best
su~ed to your requirements.
Full specification sheets are located within each section.
For fast reference, an alphanumeric listing appears on page xi which lists all
products individually 'Nith the appropriate data sheet page number. An alphanumeric
listing also appears at the beginning of each product section.
Application notes starting on page 367 provide useful technical information to assist
you in selecting and testing optoelectronic devices.
DATA SHEET CLASSIFICATIONS
CLASSIFICATION

PRODUCT STAGE

DISCLAIMERS

Preview
DATA SHEET

Formative or Design

This document contains the design
specifications for product under development.
Specifications may be changed in any manner
without notice.

Advance Information
DATA SHEET

Sampling or
Pre-Production

This is advanced information, and
specifications are subject to change without
notice.

Preliminary
DATA SHEET

First Production

Supplementary data may be published at
a later date.

How to Order
All General Instrument Optoelectronic products may be ordered through any of the
International Sales Offices and Direct Sales Offices listed on the back cover. For
immediate delivery of General Instrument optoelectronic products, contact any of the
stocking distributors located in your area. See pages 412 and 414.

Warranties
Seller warrants all items against defects in material and workmanship under normal
use and service for a period of one (1) year from the date of shipment; provided,
however, that Seller's liability under said warranty shall be Iim~ed, at Seller's option, to
crediting Buyer's account or replacing or repairing items or parts thereof which Seller's
inspection shall have disclosed to its satisfaction to have been defective in the form in
which it was shipped by Seller, prior to its use in further manufacture or assembly.
This warranty shall not apply to items or parts thereof that have been (a) subjected to
misuse, neglect, accident, damage in transit, abuse or unusual hazard; (b) repaired,
altered or modified by anyone other than Seller; or (c) used in violation of instructions
furnished by Seller. All requests for return of items must receive the written
authorization of Seller.
Seller's warranties extend to the Buyer and to no other person or entity.
Seller's warranties as hereinabove set forth shall not be enlarged, diminished or
affected by, and no obligation or liability shall arise or grow out of, Seller's rendering of
technical advice or service in connection w~h Buyer's order of the goods furnished
hereunder.
THE FOREGOING ARE IN LIEU OF ALL WARRANTIES, EXPRESS, IMPLIED, OR
STATUTORY, INCLUDING, BUT NOT LIMITED TO, ANY IMPLIED WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE AND ANY
OTHER WARRANTY OBLIGATION ON THE PART OF THE SELLER.

iv

Table of Contents
ALPHANUMERIC PRODUCT LISTING .•..•...•.••••..•..•...•..••••••.
RELIABILITY RESULTS ••.••••••••.••••.•••••••.•..••••••••••••...•

Page

xi
xv

OPTOCOUPLERS

ALPHANUMERIC PRODUCT LISTING •••••••.•.•..•..•..•....•..•••••.
SELECTION GUIDE •••••••.•••••••.•••••.•.•.••.•...•.•.••••••..••
4N25, 4N26, 4N27, 4N28
Phototransistor Optocouplers ••.••.•••.•
Photodarlington Optocouplers ••.••.•••••
4N32,4N33
4N35, 4N36, 4N37
Phototransistor Optocouplers ••...•••••.
6N135, 6N136
High-Speed Transistor Optocouplers ••.•.
Very High-Speed Logic
6N137
Gate Optocoupler •..•..••••••.••.••
High Gain Split-Darlington Optocouplers ••.
6N138,6N139
High-Speed Logic-To-Logic
740L6000, 740L6001,
740L601 0, 740L6011
Optocouplers •••••••••••••••.•••••
Phototransistor Optocoupler .••....••..•
CNX35
VDE Approved Phototransistor
CNY17-1 Ill, CNY17-2/2l,
CNY17-3/3l, CNY17-4/4l
Optocouplers •.••••••••.•••.••.•••
CNY65
VDE Approved High-Voltage
Optocoupler •..•..••••..•.••••.•••
HllAl III
VDE Approved Transistor Output
Optocoupler ••.•.•••••.•..•.••.•••
HllAA1, HllAA2,
HllAA3, HllAA4
AC Input/Phototransistor Optocouplers •••
High-Voltage VDE Approved
Hl1Dl 11 l, Hl1D2/2l,
Hl1D3/3l
Phototransistor Optocouplers ••••••..•
Hl1Gl, HllG2,
High Voltage Photodarlington
HllG3
Optocouplers •.•.••••••••••••.••.•
HCPL-2502, HCPL-2503
High-Speed Transistor Optocouplers •••.•
HCPL-2530, HCPL-2531
Dual High-Speed Transistor
Optocouplers ••••••.••.••.•••.••.•
HCPL-2601
Very High-Speed Logic Gate
Optocoupler •.•.••••.••••••.••••••
HCPL-2630, HCPL-2631
Dual Very High-Speed Logic Gate
Optocouplers .••••••.•.•.••.••••••
HCPL-2730, HCPL-2731
Dual Split-Darlington Optocouplers ••.••.•
MCAllGl, MCAllG2,
High Voltage Photodarlington
MCAllG3
Optocouplers .•..••.••.•••••.••.••
MCA230, MCA231
MCA255
Photodarlington Optocouplers ••••••.••••
MCA2230l, MCA2231 l,
VDE Approved Photodarlington
MCA2255l
Optocouplers ••••••••••••.•••.••.•
MCL2501, MCL2502,
MCL2503
High-Speed Transistor Optocouplers .••.•
MCL2530, MCL2531
Dual High-Speed Transistor
Optocouplers ••••••••••.•.••..••••
MCL2601
Very High-Speed Logic Gate
Optocoupler •.•.••.•..•.••••..•••.
MCL2630, MCL2631
Dual Very High-Speed Logic Gate
Optocouplers ••.••.••••.••••••.•••
MCL2730, MCL2731
Dual Split-Darlington Optocouplers .••••••
MCP3009, MCP3010
MCP3011
Non-lero-Crossing Triacs ••.•••••.••••
MCP3012
Non-lero-Crossing Triac ••.••.•••.••.•

3
4
19
23
27
77
91
31
35
43
47
51
55
59
61
65
77
85
91
97
101
65
69
73

77
85
91
97
101
105
109

v

Page
MCP3020/0Z, MCP3021 /1 Z,
MCP3022/2Z
MCP3023
MCP3030, MCP3031
MCP3032, MCP3033
MCP3040/0Z, MCP3041 /1 Z
MCP3042, MCP3043
MCT2
MCT2E
MCT21 0
MCT2200/0Z, MCT2201 /1 Z
MCT2202/2Z
MCT26
MCT270
MCT271
MCT272
MCT274
MCT275
MCT276
MCT277
MCT4
MCT4R
MCT5200, MCT5201
MCT5210, MCT5211
MCT6, MCT61 , MCT62,
MCT66
MID400
OPTO PLUS
SMD OPTION 100
UL APPROVED OPTOCOUPLERS/
PACKAGE CODES
VDE DATA SHEET

VDE: Approvea Non-Zero-Crossing
Triacs •••••••••••••••••••••••••••
Non-Zero-Crossing Triac ••••••••••••••
VDE Approved Zero-Crossing Triacs •••••
Zero-Crossing Triacs •••••••••••••••••
VDE Approved Zero-Crossing Triacs •••••
Zero-Crossing Triacs •••••••••••••••••
Phototransistor Optocoupler ••••••••••••
Phototransistor Optocoupler ••••••••••••
Phototransistor Optocoup!er •••••••.••••
VDE Approved Phototransistor
Optocouplers •••••••••••••••••••••
Phototransistor Optocoupler ••••••••••••
Phototransistor Optocoupler ••••••••••••
Phototransistor Optocoupler ••••••••••••
Phototransistor Optocoupler ••••••••••••
Phototransistor Optocoupler ••••••••••••
Phototransistor Optocoupler ••••••••••••
Phototransistor Optocoupler ••••••••••••
Phototransistor Optocoupler ••••••••••••
Hermetic Phototransistor Optocoupler ••••
Reliability Conditioned Hermetic
Phototransistor Optocoupler ••••••••••
High-Performance AIGaAs
Phototransistor Optocouplers •••••••••
High-Performance AIGaAs
Phototransistor Optocouplers •••••••••
Dual Phototransistor Optocouplers •••••••
AC Line Monitor Logic-Out Device •••••••
Reliability Conditioned Optocouplers ••••••

.................................
.................................

VDE Approved
High-Voltage Optocouplers •••••••••••

DISPLAYS
ALPHANUMERIC PRODUCT LISTING •••••••••••••••••••••••••••••••••
SELECTION GUIDE •••••••••••••••••••••••••••••••••••••••••••••••
5082-7650,5082-7651,
5082-7653, 5082-7656,
5082-7750,5082-7751,
0.43-1 nch Seven Segment Displays ••••••
5082-7756,5082-7760
0.362-lnch Seven Segment Display ••••••
FND317
FND350, FND357,
0.362-lnch Seven Segment Displays •••••
FND360, FND367
0.27 -Inch Seven Segment Displays ••••••
MAN1A, MAN10A
0.32-lnch Alphanumeric Display. • • • • • • ••
MAN2A
MAN24, MAN27, MAN28
0.32-lnch Dot Matrix Displays. • • • • • • • • • •
MAN29
0.135-lnch 8 Character 14 Segment
MAN2815
Alphanumeric Display. • • • • • • • • • • • • • • • •
MAN3410A, MAN3420A,
0.300-lnch Seven Segment Displays •••••
MAN3440A

vi

113
109
117
121
117
121
125
129
133
137
141
143
147
151
155
159
163
167
171
173
175
181
187
191
15
17
11
13
199
200

205
209
213
217
219
221
225
229

MAN3480A
MAN3610A, MAN3620A,
MAN3630A, MAN3640A
MAN3680A
MAN3810A, MAN3820A,
MAN3840A
MAN3880A
MAN3910A, MAN3920A,
MAN3940A
MAN3980A
MAN4410A, MAN4440A,
MAN4610A, MAN4630A,
MAN4640A, MAN4705A,
MAN4710A, MAN4740A
MAN4910A, MAN4940A
MAN6110, MAN6130,
MAN6140, MAN6150,
MAN6160, MAN6175,
MAN6180, MAN6195
MAN6410, MAN6440,
MAN6460, MAN6480
MAN6610, MAN6630,
MAN6640, MAN6650,
MAN6660, MAN6675,
MAN6680, MAN6695
MAN6710, MAN6730,
MAN6740, MAN6750,
MAN6760, MAN6780
MAN6910, MAN6930,
MAN6940, MAN6950,
MAN6960, MAN6980
MAN71 A, MAN72A,
MAN73A, MAN74A
MAN78A
MAN8410, MAN8440
MAN8610, MAN8640
MAN8910, MAN8940
MMA54420, MMA56420,
MMA58420, MMA59420

0.300-lnch Seven Segment Display. • • . •.

Page
235

0.300-lnch Seven Segment Displays
0.300-lnch Seven Segment Display

229
235

0.300-lnch Seven Segment Displays
0.300-lnch Seven Segment Display

229
235

0.300-lnch Seven Segment Displays
241
0.300-lnch Seven Segment Display •••. 235,241

OAOO-Inch Seven Segment Displays
OAOO-Inch Seven Segment Displays

245
251

0.560-lnch Seven Segment Displays

255

0.560-lnch Seven Segment Displays

259

0.560-lnch High Performance Displays. • • •

263

0.560-lnch High Performance Displays. • •.

267

0.560-lnch Seven Segment Displays •••.•

271

0.300-lnch Seven Segment Displays •••••
0.300-lnch Seven Segment Display ••••••
0.800-lnch Seven Segment
High Performance Displays. . • . • . • . . .•
0.800-lnch High Performance Displays. • ..
0.800-lnch Seven Segment
High Performance Displays. • • • . . • • • .•
0.500-lnch High 16 Segment
High Performance
Alphanumeric Displays. • . . . • . • • . • . ••

229
235

LIGHT BARS AND BARGRAPH ARRAYS
ALPHANUMERIC PRODUCT LISTING. • • • • • • . . • • • • • • . • • . • • • • . • • • • • • . ••
SELECTION GtJlDE ••••••••••••••• '. • • • • • • • • • • • • • • • • • • . • • • • • . • • • • ••
HLMP-2300, HLMP-2350,
HLMP-2400, HLMP-2450,
HLMP-2500, HLMP-2550,
HLMP-2655, HLMP-2670,
HLMP-2685, HLMP-2755,
HLMP-2770, HLMP-2785,
HLMP-2855, HLMP-2870,
HLMP-2885
Led Light Bars ......... .. • .. • . .. .. ••

275
279
283

287

293
294

297

vii

Page
MP73
MV53124
MV53164
MV53173
MV54124
MV54164
MV54173
MV56124. MV57124
MV57164
MV57173

Panel Mounting Grommet for .500-lnch
Rectangular Indicator. • • • • • • • • • • • • • •
Rectangular Reflector Cap
Solid State Lamp. • • • • • • • • • • • • • • • • • •
Bargraph Display • • • • • • • • • • • • • • • • • • ••
Solid State Indicator. • • • • • • • • • • • • • • • ••
Rectangular Reflector Cap
Solid State Lamp. • • • • • • • • • • • • • • • • • •
Bargraph Display • • • • • • • • • • • • • • • • • • ••
Solid State Indicator. • • • • • • • • • • • • • . • • •
Rectangular Reflector Cap
Solid State Lamps. • • • • • • • • • • • • • • • • •
Bargraph Display • • • • • • • • • • • • • • • • • • ••
Solid State Indicator. • • • • • • • • • • • • • • • • •

302
303
309
305
303
309
305
303
309
305

LAMPS
ALPHANUMERIC PRODUCT LISTING ••••••••••••.•.••.•••.•••••••••••
SELECTION GUIDE •••••••••••••••••••••••••••••••••••••••••••••••
FLV110
Second Source T -1 % Solid State Lamp '"
HLMP-0300. HLMP-0301.
HLMP-0400. HLMP-0401,
HLMP-0503. HLMP-0504
Rectangular Solid State Lamps ••••••••••
HLMP-1300. HLMP-1301.
HLMP-1302
Diffused T -100 Solid State Lamps. • • • • • ••
HLMP-1320. HLMP-1321.
HLMP-1340. HLMP-1420.
HLMP-1440
Clear Lens T -100 Solid State Lamps •••••
HLMP-1503
Diffused T -100 Solid State Lamp ••••••••
HLMP-1520. HLMP-1521
Clear Lens T -100 Solid State Lamps •••••
HLMP-1523
Diffused T-100 Solid State Lamp ••••••••
HLMP-1540
Clear Lens T -1 00 Solid State Lamp ••••••
Low Current T-100 & T-1 %
HLMP-1700. HLMP-1719
Solid State Lamps •••••••.••••••••••
HLMP-3300. HLMP-3301.
HLMP-3315. HLMP-3316
Second Source T -1 % Solid State Lamps •••
HLMP-3750. HLMP-3850.
Ultrabright T -1 % Solid State Lamps •••••••
HLMP-3950
HLMP-4700. HLMP-4719
Low Current T -1 00 & T -1 %
Solid State Lamps ••••••••••••••••••
T-1% Panel Mounting Grommets ••••••.•
MP22. MP52
MV5X124 Panel Mounting Grommet ••••••
MP65
MV10B
TO-18 Solid State Lamp •••••••••••••••
Low CurrentT-1 00 & T-1 %
MV2454
Solid State Lamp •••••••••••••••••••
MV3350. MV3450.
Ultrabright T -1 % Solid State Lamps •••••••
MV3750
Rectangular Solid State Lamp •••••••••••
MV49124A
Subminiature T -% Solid State Lamp ••.•••
MV50B
Bullet Profile T -1 % Solid State Lamps •.•.•
MV50152. MV50154
MV5021. MV5022.
Tapered Package T -1 %
MV5023. MV5024.
Solid State Lamps ••••••••••••••••••
MV5025. MV5026
Standard Red T -1 % Solid State Lamps ••••
MV5052. MV5053
MV5054-1. MV5054-2.
Diffused T -1 % Solid State Lamps ••••••••
MV5054-3

viii

317
318
351

359
333

329
333
329
333
329
331
351
341
331
364
365
335
331
341
361
323
339

337
343
345

Page

MV5054A-1 , MV5054A-2,
MV5054A-3, MV5055
MV50640
MV5074C, MV5075C
MV5077C
MV5094A
MV5152
MV5153, MV5154A
MV53B
MV53123
MV53124A
MV53152, MV53154
MV5352
MV5353, MV5354A
MV5360, MV53621 ,
MV53622
MV53640, MV53641,
MV53642
MV5374C
MV5377C
MV54B
MV54123
MV54124A
MV54152, MV54154
MV5452
MV5453, MV5454A
MV5460, MV54624
tylV54643, MV54644
MV5474C
MV5477C
MV5491A
MV55AB, MV57B
MV57123
MV57124A
MV57152, MV57154
MV5752
MV5753, MV5754A
MV5760, MV57620,
MV57621 , MV57622
MV57640, MV57641 ,
MV57642
MV5774C
MV5777C
MV6053
MV6151
MV6152
MV6153, MV6154A
MV6351
MV6352
MV6353, MV6354A
MV64B
MV6451
MV64520, MV64521
MV64530, MV64531,
MV6454A

Standard Red T-1 % Solid State Lamps ••••
Diffused T-100 Solid State Lamp ••••••••
T-1 Solid State Lamps ••••••••••••.•••
Low Profile T-1 Solid State Lamp ••••••..
Bipolar T -1 % Solid State Lamp ••••••••••
Clear Lens T -1 % Solid State Lamp •••••••
Diffused T-1 % Solid State Lamps ••••••••
Subminiature T-% Solid State Lamp •••••.
Rectangular Solid State Lamp •••••••••••
Rectangular Solid State Lamp •••••••••••
Bullet Profile T -1 % Solid State Lamps •••••
Clear Lens T-1 % Solid State Lamp •••••••
Diffused T-1 % Solid State Lamps ••••....

343
333
327
325
355
347
349
323
357
361
339
347
349

Clear Lens T-1 00 Solid State Lamps .••••

329

Diffused T -100 Solid State Lamps ••••••••
T-1 Solid State Lamp •••••••••.••••••.
Low Profile T-1 Solid State Lamp ••••••••
Subminiature T-% Solid State Lamp •.•..•
Rectangular Solid State Lamp •••••..•.••
Rectangular Solid State Lamp ••••••.••••
Bullet Profile T-1 % Solid State Lamps .••••
Clear Lens T-1 % Solid State Lamp ••.••••
Diffused T-1 % Solid State Lamps ••••••••
Clear Lens T-100 Solid State Lamps ••••.
Diffused T-100 Solid State Lamps ••••••••
T-1 Solid State Lamp •••••••••...•••.•
Low Profile T -1 Solid State Lamp ••••••••
Bicolor T -1 % Solid State Lamp ••••••••••
Subminiature T-% Solid State Lamps •••••
Rectangular Solid State Lamp ••••••..•••
Rectangular Solid State Lamp •••••••••••
Bullet Profile T-1 % Solid State Lamps •••••
Clear Lens T-1 % Solid State Lamp •••••••
Diffused T-1 % Solid State Lamps •••.••••

333
327
325
323
357
361
339
347
349
329
333
327
325
355
323
357
361
339
347
349

Clear Lens T-1 00 Solid State Lamps •••••

329

Diffused T-100 Solid State Lamps .••.••••
T-1 Solid State Lamp •••••••.......•••
Low Profile T -1 Solid State Lamp •.••••••
Standard Red T-1 % Solid State Lamp ...••
High Contrast T-1 % Solid State Lamp ....•
Clear Lens T-1 % Solid State Lamp .•.••••
Diffused T-1 % Solid State Lamps ..••.•.•
High Contrast T-1 % Solid State Lamp •••••
Clear Lens T-1 % Solid State Lamp
Diffused T-1 % Solid State Lamps ••••••••
Subminiature T-% Solid State Lamp ••••••
High Contrast T-1 % Solid State Lamp •..••
Clear Lens T- n~ Solid State Lamps ••••••

333
327
325
343
353
347
349
353
347
349
323
353
347

Diffused T -1 % Solid State Lamps ••••••••

349

......

ix

Page

MV6752
MV6753, MV6754A
MV6951
TAPE AND REEL

Clear Lens T-1 % Solid State Lamp. • • • • ••
Diffused T-1 % Solid State Lamps ••••••••
High Contrast T-1 % Solid State Lamp. . • ••
•.••••.••••••••••••••••••••••.•••

347
349
353
363

APPLICATIONS

INDEX
AN601
AN603
AN1071
AN1074
AN1075
AN3000

The Photometry of LED's ••••••••••.•••
Improper Testing Methods
for LED Devices .••••••...••.•.••••
Optocoupler Input Drive Circuits
MCT270 Series ••••••••••••••••••••
Low Current Input Circuit Ideas
6N139/138 Series ............... ..
MID400 Power Line Monitor •.•••.••••••
Applications and Operation of Optologic •••

369
371
375
379
385
389
401

APPENDIX

North American Technical Representatives. • • • • • • • • • • • • • • • • • • . • • • • • . • •• 411
North American Franchised Distributors. • • • • . • • • • • • • • • • • • • • • . • • • . • . • • .• 412
International Stocking Distributors and
Technical Representatives. . • • . • • . • . • • • . • • • • • • • • . • • • • • • • • • • • • • • • • • 414
International Sales Offices and North American
Direct Sales Offices ••..•.••••.•••••..••••••••••••••.••.•••• Back Cover

x

Alphanumeric Product Listing
Product

Page

Product

Page

Product

Page

19
19
19
19
23

H11AA1
H11AA2
H11AA3
H11AM
H11D1/1Z

59
59
59
59
61

HLMP-2550
HLMP-2655
HLMP-2670
HLMP-2685
HLMP-2755

297
297
297
297
297

4N33
4N35
4N36
4N37
5082-7650

23
27
27
27
205

H11D2/2Z
H11 D3/3Z
H11G1
H11G2
H11G3

61
61
65
65
65

HLMP-2770
HLMP-2785
HLMP-2855
HLMP-2870
HLMP-2885

297
297
297
297
297

5082-7651
5082-7653
5082-7656
5082-7750
5082-7751

205
205
205
205
205

HCPL-2502
HCPL-2503
HCPL-2530
HCPL-2531
HCPL-2601

77
77
85
85
91

HLMP-3300
HLMP-3301
HLMP-3315
HLMP-3316
HLMP-3750

351
351
351
351
341

5082-7756
5082-7760
6N135
6N136
6N137

205
205
77
77
91

HCPL-2630
HCPL-2631
HCPL-2730
HCPL-2731
HLMP-0300

97
97
101
101
359

HLMP-3850
HLMP-3950
HLMP-4700
HLMP-4719
MAN1A

341
341
331
331
217

6N138
6N139
740L6000
740L6001
740L6010

31
31
35
35
35

HLMP-0301
HLMP-0400
HLMP-0401
HLMP-0503
HLMP-0504

359
359
359
359
359

MAN10A
MAN2A
MAN24
MAN27
MAN28

217
219
221
221
221

740L6011
AN601
AN603
AN1071
AN1074

35
371
375
379
385

HLMP-1300
HLMP-1301
HLMP-1302
HLMP-1320
HLMP-1321

333
333
333
329
329

MAN29
MAN2815
MAN3410A
MAN3420A
MAN3440A

221
225
229
229
229

AN1075
AN3000
CNX35
CNY17-1/1Z
CNY17-2/2Z

389
401
43
47
47

HLMP-1340
HLMP-1420
HLMP-1440
HLMP-1503
HLMP-1520

329
329
329
333
329

MAN3480A
MAN3610A
MAN3620A
MAN3630A
MAN3640A

235
229
229
229
229

CNY17-3/3Z
CNY17-4/4Z
CNY65
FLV110
FND317

47
47
51
351
209

HLMP-1521
HLMP-1523
HLMP-1540
HLMP-1700
HLMP-1719

329
333
329
331
331

MAN3680A
MAN3810A
MAN3820A
MAN3840A
MAN3880A

235
229
229
229
235

FND350
FND357
FND360
FND367
H11A1/1Z

213
213
213
213
55

HLMP-2300
HLMP-2350
HLMP-2400
HLMP-2450
HLMP-2500

297
297
297
297
297

MAN3910A
241
MAN3920A
241
MAN3940A
241
MAN3980A 235/241
MAN4410A
245

4N25
4N26
4N27
4N28
·4N32

xi

Alphanumeric Product Listing

xii

Product
MAN4440A
MAN4610A
MAN4630A
MAN4640A
MAN4705A

Page
245
245
245
245
245

Product
MAN78A
MAN8410
MAN8440
MAN8610
MAN8640

Page
235
275
275
279
279

MAN4710A
MAN4740A
MAN4910A
MAN4940A
MAN6110

245
245
251
251
255

MAN8910
MAN8940
MCA11 G1
iviCA11G2
MCA11 G3

283
283
65
65
65

MCT271
MCT272
MCT274
iviCT275
MCT276

MAN6130
MAN6140
MAN6150
MAN6160
MAN6175

255
255
255
255
255

MCA230
MCA231
MCA255
MCA2230Z
MCA2231Z

69
69
69
73
73

MCT277
MCT4
MCT4R
MCT5200
MCT5201

167
171
173
175
175

MAN6180
MAN6195
MAN6410
MAN6440
MAN6460

255
255
259
259
259

MCA2255Z
MCL2501
MCL2502
MCL2503
MCL2530

73
77
77
77
85

MCT5210
MCT5211
MCT6
MCT61
MCT62

181
181
187
187
187

MAN6480
MAN6610
MAN6630
MAN6640
MAN6650

259
263
263
263
263

MCL2531
MCL2601
MCL2630
MCL2631
MCL2730

85
91
97
97
101

MCT66
MID400
MMA54420
MMA56420
MMA58420

187
191
287
287
287

MAN6660
MAN6675
MAN6680
MAN6695
MAN6710

263
263
263
263
267

MCL2731
MCP3009
MCP3010
MCP3011
MCP3012

101
105
105
105
109

MMA59420
MP22
MP52
MP65
MP73

287
364
364
365
302

MAN6730
MAN6740
MAN6750
MAN6760
MAN6780

267
267
267
267
267

MCP3020/0Z
MCP3021/1Z
MCP3022/2Z
MCP3023
MCP3030

113
113
113
109
117

MV10B
MV2454
MV3350
MV3450
MV3750

335
331
341
341
341

MAN6910
MAN6930
MAN6940
MAN6950
MAN6960

271
271
271
271
271

MCP3031
MCP3032
MCP3033
MCP3040/0Z
MCP3041/1Z

117
121
121
117
117

MV49124A
MV50B
MV50152
MV50154
MV5021

361
323
339
339
337

MAN6980
MAN71A
MAN72A
MAN73A
MAN74A

271
229
229
229
229

MCP3042
MCP3043
MCT2
MCT2E
MCT21 0

121
121
125
129
133

MV5022
MV5023
MV5024
MV5025
MV5026

337
337
337
337
337

Product
MCT2200/0Z
MCT2201/1Z
MCT2202/2Z
MCT26
MCT270

Page
137
137
137
141
143
147
151
155

159
163

Alphanumeric Product Listing
Product

Page

Product

Page

Product

Page

MV5052
MV5053
MV5054-1
MV5054-2
MV5054-3

343
343
345
345
345

MV5377C
MV54B
MV54123
MV54124
MV54124A

325
323
357
303
361

MV57622
MV57640
MV57641
MV57642
MV5774C

329
333
333
333
327

MV5054A-1
MV5054A-2
MV5054A-3
MV5055
MV50640

343
343
343
343
333

MV54152
MV54154
MV54164
MV54173
MV5452

339
339
309
305
347

MV5777C
MV6053
MV6151
MV6152
MV6153

325
343
353
347
349

MV5074C
MV5075C
MV5077C
MV5094A
MV5152

327
327
325
355
347

MV5453
MV5454A
MV5460
MV54624
MV54643

349
349
329
329
333

MV6154A
MV6351
MV6352
MV6353
MV6354A

349
353
347
349
349

MV5153
MV5154A
MV53B
MV53123
MV53124

349
349
323
357
303

MV54644
MV5474C
MV5477C
MV5491A
MV55AB

333
327
325
355
323

MV64B
MV6451
MV64520
MV64521
MV64530

323
353
347
347
349

MV53124A
MV53152
MV53154
MV53164
MV53173

361
339
339
309
305

MV56124
MV57B
MV57123
MV57124
MV57124A

303
323
357
303
361

MV64531
MV6454A
MV6752
MV6753
MV6754A

349
349
347
349
349

MV5352
MV5353
MV5354A
MV5360
MV53621

347
349
349
329
329

MV57152
MV57154
MV57164
MV57173
MV5752

339
339
309
305
347

MV6951
353
OPTO PLUS
15
SMD OPTION 100 17
TAPE AND REEL 363
ULPACKAGE
CODES
11

MV53622
MV53640
MV53641
MV53642
MV5374C

329
333
333
333
327

MV5753
MV5754A
MV5760
MV57620
MV57621

349
349
329
329
329

VDE DATA SHEET 13

xiii

xiv

General I nstrument Reliability
At General Instrument, product dependability is assured through an active program which includes:

New Product
Qualification

All new products evolve through
an orderly design-to-manufacture
flow. At each stage reliability
engineering is present to ensure that
the defined reliability requirements
are met.
The reliability plan is implemented
in the development stage where
actual testing begins. Stress tests are
performed to show potential problem
areas and the reliability of the new
product is compared directly with
that of a previously qualified product
of a similar generic type.
During limited production, where
components must meet defined
reliability goals, samples from a
minimum of three lots are taken for
extensive testing. These samples
must meet or exceed defined goals
in order for the product to be
considered qualified and transferred
to the reliability monitoring program.

Quality Control
Quality control is a vital function at
General Instrument. To minimize
variations in the product and to
maintain quality and hence reliability,
the following in-process control
activities are routinely performed:
• Incoming inspection of all piece
parts and raw materials.
• Die-attach process control gate.
• Wire-bond control gate.
• Encapsulation control gate.
• Equipment monitors.
• Final QA gate of all lots.
• Finished goods stores monitor.
• Frequent process line audits for
conformance to specification.

Reliability monitoring consists of
the following tests.*
• D.C. Operating Life
TA = 250C or High Temperature
Time = 1000 hours
IF = max. rated
• High Temperature Storage
TA = 150°C or specified
Time = 1000 hours
• Low Temperature Storage
TA = -55°C or specified
Time = 1000 hours
• 85/85 No Bias
TA = 85°C
RH = 85%
Time = 1000 hours
• HTRB
TA = 100°C or specified
Voltage = 80% max. rated
Time = 1000 hours
• Thermal Shock per
MIL-STD-883C, Method 1011
TA = O°C to 100°C (Air to Air)
No. of cycles = 30
• Temperature Cycle per
MIL-STD-883C, Method 1010

Reliability Test Facilities

TA = per device based on storage
temperature (Air to Air)
No. of cycles = 50
• Pressure Pot pressure = 15 PSI
Time = 96 hours
TA = 121°C ± 1°C
• 85/85 and Pressure Pot tests are
not required per MIL-STD-883C
for Hermetic Products.
• Solder Heat Tests (visible
products only) per MIL-STD-883C
Method 2003.3
TA = 260°C ± 5°C
Duration = 10 sec.

Failure Analysis and
Qualitative Reliability

Both in Palo Alto and Kuala
Lumpur (Malaysia), test facilities are
equipped with:
• Automated Testing.
• Life test equipmentHigh and Low Temperature.
• Temperature/humidity chambers.
• High Temperature ovens.
• T/S and T/C equipment.
In addition, the failure analysis lab
facilities in Palo Alto and Kuala
Lumpur have the following
capabilities:
• Electrical testing and verification.
• Pin-to-pin measurements.
• Package dissection and crosssectioning.
• Chemical etching.
• Optical photomicroscopy.
• Micromanipulators.
• Access to scanning electron
microscope with X-ray
spectrometry.
• Access to Augur analysis.

When a reliability failure does
occur, a detailed analysis is per- .
formed to provide data for corrective
action, as well as guidelines for the
design of future new products .
This on-going activity and the
resulting feedback and action is
illustrated in the accompanying
diagram.

Monitor Program
To ensure that qualified products
continue to meet reliability targets, a
monitor program tests generic device
families on a periodic basis and
provides information for the reliability
data bank.
'Not all tests apply to all products.

xv

xvi

Optocouplers

1

2

Optocouplers
Alphanumeric Product Listing
Product

Page

Product

Page

Product

Page

UL Package Codes
VDE Data Sheet
OPTO PLUS
SMD Option 100
4N25

11
13
15
17
19

HCPL-2503
HCPL-2530
HCPL-2531
HCPL-2601
HCPL-2630

77
85
85
91
97

MCP3041/1Z
MCP3042
MCP3043
MCT2
MCT2E

117
121
121
125
129

4N26
4N27
4N28
4N32
4N33

19
19
19
23
23

HCPL-2631
HCPL-2730
HCPL-2731
MCA11G1
MCA11G2

97
101
101
65
65

MCT21 0
MCT2200/0Z
MCT2201/1Z
MCT2202/2Z
MCT26

133
137
137
137
141

4N35
4N36
4N37
6N135
6N136

27
27
27
77
77

MCA11G3
MCA230
MCA231
MCA255
MCA2230Z

65
69
69
69
73

MCT270
MCT271
MCT272
MCT274
MCT275

143
147
151
155
159

6N137
6N138
6N139
740L6000
740L6001

91
31
31
35
35

MCA2231Z
MCA2255Z
MCL2501
MCL2502
MCL2503

73
73
77
77
77

MCT276
MCT277
MCT4
MCT4R
MCT5200

163
167
171
173
175

740L6010
740L6011
CNX35
CNY17-1/1Z
CNY17-2/2Z

35
35
43
47
47

MCL2530
MCL2531
MCL2601
MCL2630
MCL2631

85
85
91
97
97

MCT5201
MCT5210
MCT5211
MCT6
MCT61

175
181
181
187
187

CNY17-3/3Z
CNY17-4/4Z
CNY65
H11A1/1Z
H11AA1

47
47
51
55
59

MCL2730
MCL2731
MCP3009
MCP3010
MCP3011

101
101
105
105
105

MCT62
MCT66
MID400

187
187
191

H11AA2
H11AA3
H11AA4
H11D1/1Z
H11 D2/2Z

59
59
59
61
61

MCP3012
MCP3020/0Z
MCP3021/1Z
MCP3022/2Z
MCP3023

109
113
113
113
109

H11 D3/3Z
H11G1
H11G2
H11G3
HCPL-2502

61
65
65
65
77

MCP3030
MCP3031
MCP3032
MCP3033
MCP3040/0Z

117
117
121
121
117

3

OPTOCOUPLERS HIGH SPEED ~
FAN-IN/FAN-OUT AND CTR AT 0-70° C; ALL WITHSTAND TEST VOLTAGES ARE 2500 VAC RMS 1 MIN.
EQUIVALENT
CIRCUIT

INPUT

OUPUT

VCCINcCO
OR
BVCEO

FAN·IN/FAN·OUT
ORCTRMIN.
@IF=mA

DATA
RATE
(NRZ)TYP.

CMR
TYP.

PAGE

COMMENT

740L6000

Logic
1 LSTTL
Load

Logic
10 TTL Loads
Totem Pole

5V/5V

0.4 mA/16 mA

15 MbiVs

15 kV/p.s

35

Buffer

740L6001

Logic
1 LSTIL
Load

Logic
10 TTL Loads
Totem Pole

5V/5V

0.4 mAl16 mA

15 MbiVs

15 kV/p.s

35

Inverter

740L6010

Logic
1 LSTIL
Load

Logic
10 TTL Loads
Open Call.

5 V/5-15 V

0.4 mAl16 mA

8 Mbills

15 kV/p.s

35

Buffer

740L6011

Logic
1 LSTTL
Load

Logic
10TTL Loads
Open Call.

5 V/5-15 V

0.4 mAl16 mA

8 MbiVs

15 kV/p.s

35

Inverter

6N137
MCL2601
HCPL-2601

LED

a TTL Loads

-15 V

5 mAl13 rnA
Recommended
IF = 6.3 mA

10 MbiVs

10 kVlp.s

91

MCL2630
MCL2631
HCPL-2630
HCPL-2631

Dual
LED

Dual
Logic
a TIL Loads
Open Call.

-/5V

5 mAl13mA
Recommended
IF = 6.3 mA

10 MbiVs

10 kV/p.s

97

MCL2501

LED

Transistor

t015V

14%@8mA
17%@16mA

1 MblVs

10 kV/p.s

6N136'

LED

Transistor

to 15V

15%@16mA

1 MbiVs

10 kVlp.s

MCL2502
HCPL-2502

LED

Transistor

to 15 V

15-22%@16mA

1 MbiVs

10 kV/p.s

MCL2503
HCPL-2503

LED

Transistor

to 15 V

9%@16mA

1 Mbills

10 kVlp.s

6N135

LED

Transistor

to 15V

5%@16mA

1 Mbills

10 kV/p.s

MCL2531
HCPL-2531

Dual
LED

Dual
Transistor

to 15V

15%@16mA

1 MbiVs

10 kV/p.s

PART
NUMBER

~

'f'Bl!~'"
IN

:

OUT

'

~~TA
5 OUT

:

~?ND
OUT

DATAl!
IN Z

- ':

GNO@
IN

CZOR6
NOISE

v,.'
IN [!: JID:~~CC
:
OUT
DATAI2
IN~

::

~:5 0Ul

GI~OlliJ) LL~~:w

-C2087
~

'f'B1I~~
~\""A
IN

DATAl!
1N2
GND@
IN

:

OUT

I

'

5 0Ul

:

~?ND
OUT
CZOR6

NOISE

VeN!:
IN

~~cc
OUT

":12 J)lt ~=
GNO@ J ) L L ~~NO
IN
OUT

C20R7

[!~!I1
1 SHI~L r - - 8 vee

;Ii~ '~21vE
:~

]lv.

I

@ ~B!lGNO
'-----

Open Call.

C2092

~"~~
..
~~:
~Va,
-~}t!tsl~V02

V':@'
+4

Logic

~[
5GND

-C19J9

·"~r

:Ii

I

~[!:
-~

~

~Vs

~vo

~GND

' - - - C1982

:"~r

VF!~
- 2

II

~~:

V,+4
.'@

I

]1
7 VOl

5GND
CI944

MCL2530
HCPL-2530

Dual
LED

'Inqulro About Base-less Version MCL/HCPL-4502

4

77

85

]lVo,

i!I'

Guaranteed
Switch Times
0-70°C

Dual
Transistor

to 15 V

5%@16mA

1 MbiVs

Recommended
IF is 20%
Above Rated IF

Recommended
IF is 20%
Above Rated IF

10 kVlp.s

Continued next page

OPTOCOUPLERS HIGH SPEED

%

Continued

FAN-IN/FAN-OUT AND CTR AT 0-70°C; ALL WITHSTAND TEST VOLTAGES ARE 2500 VAC RMS 1 MIN.
PART
NUMBEr.

EQUIVALENT
CIRCUIT

.IT~~t

V:~~
~

-

I

~:

6N139

INPUT

OUPUT

VCCI/VCCO
OR
BVCEO

FAN·IN/FAN·OUT
ORCTRMIN.
@IF=mA

DATA
RATE
(NRZ)TYP.

CMR
TYP.

LED

Darlington

to 18V

400%@0.5mA
500%@1.6mA

100 kbiVs

10 kVlps

~v.

~Vo

~GND

6N138

LED

Darlington

t07 V

300%@1.6mA

100 kbiVs

10 kVlps

MCL2731
HCPL-2731

LED

Darlington

!018V

400% @ 0.5 m!\
500%@1.6m"':

100 kbiVs

10 kV/pos

MCL2730
HCPL-2730

LED

PAGE

COMMENT

31

Low VCE(SAT)
010.4 V
Recommended
IF is 20%
Above Rated IF

CI9M

~[I~~\
v,~t~BVcC
~~:

Recommended
IF is 20%
Above Rated IF

~Vo'

:~'.J..'
@Vo,
V,:~~~GND
Cl943

OPTOCOUPLERS DUALS

Darlington

t07V

300%@1.6mA

100 kbiVs

10 kVlps

~
ALL WITHSTAND TEST VOLTAGE 2500 VAC RMS 1 MIN.

EQUIVALENT
CIRCUIT

~IT~~
~~
~I'o'
I

:~~~ ~Voz
~GNO

PART
NUMBER

OUPUT

VCCOR
BVCEO

CTRCE(SAT) MIN.
@ IF = mA or FI/FO

DATA RATE
(NRZ)TYP.

CMR
TYP.

PAGE

COMMENT

MCL2630
HCPL-2630
MCL2631
HCPL-2631

Logic

5V

5 mAl13 mA

10 Mbitls

10 kVlpos

97

See Also
High-Speed

MCL2530
HCPL-2530

Transistor

to 15V

5%@HimA

1 Mbitls

10 kVlpos
85

See Also
High-Speed

Vf;[!

-C1979

:IT~r'

v,~~
-2

I

i

~,
71'0,

I~~
v~

I

~Voz
~GND

4

I

CI944

~[I~~Vcc

", ~~.

v,:~~{? ~GND
:@

I

CATH.~

CATH.@
A.DDE~

Transistor

to 15V

15%@16mA

1 Mbitls

10 kVlpos

MCL2730
HCPL-2730

Split
Darlington

!07V

300%@1.6mA

100 kbitls

10 kV/pos
101

]]1'0,

~CI943

ANODE!!

MCL2531
HCPL-2531

~..C llCDLL

!IEMIT.

~70C IDEMIT.
!ICDLL

MCL2731
HCPL-2731

Split
Darlington

to18V

400%@0.5mA
500%@1.SmA

100 kbitls

MCTS2
MCTSl
MCT66
MCTS

Transistor

30V

12.5%@lSmA
12.5%@lSmA
5%@40mA
12.5%@lSmA

15 kbitls
10 kbiVs
5 kbiVs
1 kbiVs

10 kVlpos

187

CTRcE(MIN) = 100, 5 mAl5 V
CTRCE(MIN) = 50, 5 mAl5 V
Low Cos!
Low Cos!

C20SS

5

OPTOCOUPLERS TRANSISTOR-OUTPUT LOW SPEED
LISTED
EQUIVALENT
CIRCUIT

~~
CATH 2

PART
NUMBER

BY INCREASING IF AND

CTRcE(SAT)
MINr'--:@IF~
mA

0-70·C
CTR

~

DECREASING CTRCE(SAT)

CTRcEMIN.

CTRcB
MIN.

@IF~

mA

~IF

BVCEO
MIN.
VOLT.

CMR
TYP.

VDE'
AVAIL.

@VCE~

MCT5211

75%

1.0

110%

1

0.25%

30

5 kV/p.s

5

2500VAC RMS

181

MCT5211

100%

1.6

150%

1.6

0.3 %

30

5 kVlp.s

5

2500 VAC RMS

181

5

2500 VAC RMS

181

2500VAC RMS

133

2500VAC RMS

175

2500VAC RMS

187

Also See Darlington
MCT5210

60%

3.0

70%

3.0

0.2 %

30

5 kVlp.s

MCT210

50%

3.2

150%

10

-

30

-

MCT5201

120%

5.0

TYP 300'*

5.0

0.28%

30

5 kVlp.s

4 EMIT.

C2O)9

,[!~~vcc

:'~~.
~vo

v:@. 1'@,

~GND

' - - - C1987

(MCT6)

'~M-

See Duals
14%

B.O

See High Speed

15

10 kVlp.s

2500 VAC RMS

77

MCL2503

11%

B.O

See High Speed

15

10 kV/p.s

2500VAC RMS

77

75%

10

TYP200%

See High Speed

(MCL2530/31) See Duals

40-160%

10

-

MCT2200

25%

10

20%

MCT2201

25%

10

MCT2202

25%

10

CNX35

CATH.2

10

0.2 %

15

10 kVlp.s

30

5 kVlp.s

85

7500 VAC PEAK

175

-

30

-

4400 VDC

43

10

-

30

-

@

7500 VAC PEAK

137

100%

10

-

30

-

30

~
~
~
~
~
~

137

10

-

7500 VAC PEAK

63-125%

7500 VAC PEAK

137

CNY17-1

25%

10

4()'80%

10

-

70

-

5 CDL

CNY17-2

25%

10

63-125%

10

-

70

-

4 EMIT.

CNY17-3

25%

10

100-200%

10

-

70

-

cm9

CNY17-4

25%

10

160-320%

10

-

70

-

MCT270

20%

10

50%

10

-

30

4N35

20%

10

340%

10

-

4N36

20%

10

340%

10

-

4-PIN

2500VAC RMS
5

-

~

3

5

MCL2501'

MCT~200

1ft
CATH.2

47

7500 VAC PEAK

47

7500 VAC PEAK

47
47

-

2500VAC RMS

143

30

-

2500VAC RMS

27

30

-

2500VAC RMS

27

2500VACRMS

27

4N37

20%

10

340%

10

10%

10

50%

10

-

30

CNY65

32

-

H11A1

5%

10

50%

10

-

30

-

~
~
~
~
~

11.6 kVDC

51

7500 VAC PEAK

55

2500 VAC RMS

59

H11D12

5%

10

20%

10

-

300

-

H11D22

5%

10

20%

10

-

300

-

H11D3 2

5%

10

20%

10

-

200

-

7500 VAC PEAK

61

MCT277

40%

16

100%

10

-

30

-

2500VAC RMS

167

7500 VAC PEAK

61

7500 VAC PEAK

61

MCT2

12.5%

16

20%

10

-

30

-

2500 VAC RMS

125

5 COL

MCT2E

12.5%

16

20%

10

-

30

-

2500 VAC RMS

129

4 EMIT.

MCT271

12.5%

16

45-90%

10

-

30

-

2500VAC RMS

147

C2019

MCT272

12.5%

16

75-150%

10

-

30

-

2500VAC RMS

151
155

-z.;

MCT274

12.5%

16

225-400%

10

-

30

-

2500VAC RMS

MCT275 2

12.5%

16

70-210%

10

-

80

-

2500VAC RMS

159

10

-

30

-

2500VAC RMS

163

10

-

30

-

2500VAC RMS

167
141

MCT276
MCT277
MCT26

12.5%
40%

16
20

15-60%
100%

1.25%

20

6%

10

-

30

-

2500VAC RMS

4%

50

20%

10

-

30

-

2500VAC RMS

19

-

2500VAC RMS

19

4N25
4N26

4%

50

20%

10

-

30

4N27

4%

50

10%

10

-

30

-

2500VAC RMS

19

4N28

4%

50

10%

10

-

30

-

2500VAC RMS

19

Guaranteed Switching Times Over 0-70· C
2 High Volt
3 At TA - -55 to +100·C

6

7500 VAC PEAK

7500 VAC PEAK

H11AA1, 2, 3. 4 See AC-Input

1

PAGE

5 COl.

7,;

3

3

WITHSTAND
TEST
VOLTAGE

, To Order VDE Device, Add Z Suffix To Part Number Except CNY65
"Inquire About Pending VDE Qualification

OPTOCOUPLERS NON-ZERO-CROSS TRIACS ~
PART
NUMBER

EQUIVALENT
CIRCUIT

.'f]-

1FT
MAX.

VDRM
MIN.

VDE'
AVAIL.

109
113

MCP3023

5,mA

400 V

2

MCP3022

10mA

400 V

MCP3021

15mA

400 V

MCP3020

30mA

400 V

Qt
Qt
Qt

MCP3012

5mA

250 V

MCP3011

10mA

250 V

MCP3010

15mA

250V

MCP3009

30mA

250V

TERM,

CATH.2

5 NC*

4~E~:,

3

ClOB1

WITHSTAND
TEST VOLTAGE

PAGE

113
7500 VAC PEAK

113

105

'To Order VDE Device, Add Z Suffix To Part Number
21nquire About Pending VDE Qualification.

OPTOCOUPLERS ZERO-CROSS TRIACS %
PART
NUMBER

EQUIVALENT
CIRCUIT

-w

TERM,

CATH.2

3

5 Nt·

o.x

4:::,
CZ080

1FT
MAX.

VDRM'
MIN.

VDE"
AVAIL.

WITHSTAND
TEST VOLTAGE

121

PAGE

MCP3043

5mA

400 V

3

MCP3042

10mA

400 V

3

121

MCP3041

15mA

400 V

30mA

400 V

Qt
Qt

117

MCP3040
MCP3033

5mA

250 V

121

MCP3032

10mA

250 V

121

7500 VAC PEAK

117

MCP3031

15mA

250 V

117

MCP3030

30mA

250 V

117

"
'InqUire About Availability
of New 600 V Triac Couplers.
2To Order VDE Device, Add Z Suffix To Part Number
31nquire About Pending VDE Qualification.

7

OPTOCOUPLERS DARLINGTON-OUTPUT

~

LISTED BY INCREASING IF AND DECREASING CTRcE(SAT) MIN.
EQUIVALENT
CIRCUIT

"~~"
~:

v~~

~v,

~vo

I

PART
NUMBER

CTRCE(SAT)
D-70"C
MIN.
CTR
@IF~
rnA VCE(SAT)

CTRcE
MIN..."....
@IF~ rnA

-

-

BVCEO
MIN.
VOLT.

CMR
TYP.

18

WITHSTAND
TEST
VOLTAGE

PAGE

COMMENTS

10 kV/p.s

2500 VAG RMS

31

Hi-Speed

10 kV/p.s

2500 VAG RMS

101

Hi-Speed

7500 VAG PEAK

73

2500 VAG RMS

69

VDE'
AVAIL.

6N139

400%

0.5

0.4 V

MGL2731

400%

0.5

0.4 V

See: Duals

MGA2231Z

200%

1.0

1.0V

500%

MGA231

200%

1.0

1.0V

(MGT5211)

75%

1.0

0.4 V

30

.5 kV/p.s

6N139

500%

1.6

0.4 V

18

10 kV/p.s

2500VAGRMS

31

Hi-Speed

MGL2731

500%

1.6

0.4 V

18

10 kV/p.s

2500 VAG RMS

101

Hi-Speed

6N13B

300%

1.6

0.4 V

7

10 kV/p.s

2500 VAG RMS

(MGT5211)

100%

1.6

0.4 V

30

5 kV/p.s

~GND

-@:

C1984

v:.·.G~~'
I ~ffr B Vee

"]~t
J~~

;@

~..,

I

V,:@

tsJGNO

~C'94J

"'i§1~
CATH. 2

""

3

5 COLL
4 EMIT.

200%

10
10

~

30
30

2

7500 VAG PEAK 181

CZOB4

"l'~ ."

'~3+I
21 v.
v~@:
!JVD
-@~!lGNO
•IT

See: Transistor
Output Couplers

C'984

:IT~!l'
v,~I~Bvee
~[!:
II VOl
!jv.,

_@b,.1

See: Duals

V'~@~~GND
CI943

.~~h=~vcc

:~~, I,Ir~v'
IJ~vO

V)

.@

Hi-Speed

:

~~GNO

- = mao

...

~w'

CATH. 2
3

""

5 COLl.

4 EMIT.

CZ084

~

lBl

MGA2231Z

200%

5.0

1.0 V

500%

10

30

-

7500 VAG PEAK

73

MGA231

200%

5.0

1.0 V

200%

10

30

-

2500 VAG RMS

69

4N33

25%

8.0

1.0 V

500%

10

30

-

2500 VAG RMS

4N32

25%

8.0

1.0 V

500%

10

30

-

2500 VAG RMS

'To Order VDE Device, Add Z Suffix To ParI Number
21nquire About Pending VDE Qualification

8

2

See: Transistor

Qulpul Couplers

23

Continued next page

OPTOCOUPLERS DARLINGTON-OUTPUT 9U

Continued

LISTED BY INCREASING IF AND DECREASING CTRcE(SAT) MIN.
EQUIVALENT
CIRCUIT

O'WCAlH. 2;?:

5 COLL

J

4 EMIT.

CTRCE(SAT)
CTRCE
0-70'C
PART
MIN.
Mlb
NUMBER @IF= mA VCE(SAT) CTR @IF=
mA

BVCEO
MIN.
VOLT.

CMR
TYP.

VDE'
AVAIL.

WITHSTAND
TEST
VOLTAGE

PAGE

COMMENTS

MCA11G1

1000% 10

1.0 V

500%

1.0

100

-

2500 VAC RMS

65

H11G1 Hi-Volt

MCA11G2

1000% 10

1.0V

500%

1.0

80

-

2500 VAC RMS

65

H11G2 Hi-Volt

MCA2231Z

500%

10

1.2V

500%

10

30

-

7500 VAC PEAK

73

MCA231

500%

10

1.2 V

200%

10

30

-

2500VAC RMS

69

MCA11G3

250%

20

1.2V

200%

1.0

55

-

2500 VAC RMS

65

MCA2255Z

100%

50

1.0 V

500%

10

55

-

7500 VAC PEAK

73

MCA255

100%

50

1.0 V

100%

10

55

-

2500VAC RMS

69

MCA2230Z

100%

50

1.0 V

500%

10

30

-

7500 VAC PEAK

73

MCA230

100%

50

1.0V

100%

10

30

-

2500VAC RMS

69

C2083

O"~~'
CATH 2

49

5 COLl

'Z;

J

4 EMIT.

C2084

°NCATH. 2

J

5 COlL

'"

H11G3 Hi-Volt

4 EMIT.
C208l

O'l§t
CATH 2

5 COLL

'Z;

3

49

4 EMIT.

C2084

®

'To Order VDE Device, Add Z Suffix To Part Number
'Inquire About Pending VDE Qualification

OPTOCOUPLERS Ae-INPUT LINE MONITORS \\\.
EQUIVALENT
CIRCUIT

~Ir
2

7AUX

J

6 VO

4

5 GNO

PART
NUMBER

OUTPUT

VCCOR
BVCEO MIN.

INPUT/OUTPUT
CURRENT
IN SATURATION

MID400

Logic
10TTL Loads

5V

4 rnA RMS/16 rnA
0-70'C

H11AA1
H11AA2
H11AA3
H11AA4

Transistor

30V

10 mA/0.5 rnA

CTRCE MIN.
@VCE=10V
@IF=10mA

PAGE

191

C2088

~
2

5 COLl

J

4 EMIT

20%
10%
50%
100%

59

C2089

9

10

UL APPROVED OPTOCOUPLERS
UL LISTING - YELLOW CARD

GENERAL

A UL yellow card may either specify the
optocoupler manufacturer's own device part
number or a package code. General Instrument's
optocouplers are listed as a lJackage code
consisting of a single capital letter.

All General Instrument's optocouplers are always
UL approved prior to introduction to the
marketplace. Devices which are approved by
both UL and VDE have a suffix "Z" following the
part number and are marked with both the UL
and VDE logos.

UL "YELLOW CARD"
FPOU2
March 27. 1986
Component - Optical laolator.
GENERAL INSTRUMENT CORP OPTOELECTRONICS DIV
3400 HILLVIEW AVE, PALO ALTO CA 94304

E60161 (S)

InaulMfon system In optlcall.aleted switch, Types Systems C. D. G. #L. M. P. R. S+. May ba

°GIO

CNY17-3Z

followed by fout digits and one letter.
#Preceeds whh 740 and system is prece.dad by numbers and one len.r.

+Model d••ignation: CNY followed by two digits.
Marking: Company nama or trademark "GI" and type designation.

See General Information Preceding These Recognitions.
For us. only in equipment where the acceptability of the combination i. determined by Underwrit.

.... lIIboratorias Inc.

8516R~

®

AepCllt April 2&. 1'72.

C2006
Replaces E50' 5' dated September 4, 1985.

Underwrite,. Laboratori•• Inc.-

678911001

01110027041

UL "yellow card" listing codes C, D, G, L, P, R, and S.

The UL code will be found following
the date code; in this case an "R".
VDE approved devices use "GIO",
while non-VDE parts use "GI" as the
logo for General Instrument
Optoelectronics Division.

UL CODE CONVERSION TO GI PART NUMBER
PACKAGE CODE

RATING

C
D
G

4.4 kVDC, 1 min.
2.5 kVAC RMS,1 min.
2.5 kVAC RMS,1 min.

L

2.5 kVAC RMS,1 min.

P or R

5.3 kVAC RMS, 5 sec.

®

5.3 kVAC RMS, 5 sec.

S

11.6 kVDC, 1 min.

R

GI DEVICE PART NUMBER
CNX36
MCL2XXX, 6NXXX, MID400, HCPL-2XXX
4NXX, H11 GX, MCA 11 GX, MCA2XX, MCT52XX,
MCT2, MCT2X, MCT2XX, MCT6, MCT6X
Optologic 740L6000, 740L6001,
740L6010, 740L6011
CNY17-X, H11AX, H11DX,
MCT22XX, MCP3XXX
CNY17-XZ, H11A1Z, H11DXZ,
MCA22XXZ, MCT22XXZ, MCP3020Z,
MCP3021Z, MCP3022Z, MCP3040Z,
MCP3041Z
CNY65
11

12

VDE RATINGS·

VDE APPROVED OPTOCOUPLERS

Ambient operating temperature
range ••••••••••••••••••• -55° C to +100° C
Storage temperature range ••••• -55° C to +150° C
Climatic test class ••••••..•••••••••• 55/150/21
DC isolation voltage (1 minute) ••••••• 4400 VDC
Nominal operating voltage for isolation
group C acc. to VDE 0110B ••• 500 VAC/SOO VDC
Isolation creepage path •••••••• 8.0 mm minimum
Isolation clearance/air path ••••• 8.0 mm minimum
Internal distance through
insulation •••••••••••••••• 0.4 mm minimum
Package tracking resistance index •••••• KB 275/A

General Instrument Optoelectronics Division's
optocouplers can be supplied with approval to
VDE component standard 0883/S.80 and
equipment standards DIN 57 804IVDE 0804/1.83
and DIN IEC 65IVDE 08S0/8.81.
Approved parts are denoted by a "z" suffix to the
part number.

Transistor Output

·Per approval certificate 39 419

• CNY17-1Z, CNY17-2Z, CNY17-3Z, CNY17-4Z
• MCT2200Z, MCT2201Z, MCT2202Z
• H11A1Z, H11D1Z, H11D2Z, H11D3Z

ELECTRICAL MAXIMUM RATINGS AND
CHARACTERISTICS

• MCA2230Z, MCA2231Z, MCA2255Z

Darlington Output

See standard product data sheet specifications, i.e.
CNY17-1Z see CNY17-1.

Triac, Non-Zero-Crosslng
• MCP3020Z, MCP3021Z, MCP3022Z

PACKAGE DIMENSIONS

Triac, Zero-Crossing
• MCP3040Z, MCP3041Z

o

J

t
6.86 (.270)

15' MAX

6.35 (.250)

0.36 (.014)

.-==~t::::ll 0.20 (.008)

~ 8.89 (.350) ~

-----I

7.62
(.300)
REF

8.38 (.330)

I----"

1.78 (.070) REF

-L

T

OPTIONW
The VDE 0883/S.80 calls for a minimum 8.0 mm
creepage dist& •• ce between any point on the
input terminals to any point on the output
terminals of an optocoupler.
This also applies to the creepage distance over
the PCB. The equipment designer may chose
to break up that creepage path by stamping a
slot in the PCB under the optocoupler or he
may use our lead bend option W.
(Continued next page)

1.78 (.070) TYP

,
I

:

:

I
I

I
I

I

I

---II0.56 (.022)
0.41 (.016)

3.94 (.155) 4.95 (.195)
3.68 (.145)! j MAX
I
I
I t 3.56 (.140) O.Jl (.020)
U3.05 (.120)
MIN

J:
:

1-1.27 (.050)
C2090
DIMENSIONS IN mm (INCHES)

MIN·· _ _ _ _..
~i
(.402)
I

,...'1--_ _ _ 10.2

:..

C2067

13

@

VDE APPROVED OPTOCOUPLERS

MARKING EXAMPLE

OPTION W (Continued)
When ordering a VDE-approved optocoupler
with 10 mm leadbend, then add the suffix W as
in MCT2200ZW. The W will not show on the
optocoupler marking, but on the shipping tube
label.
By making this option available, GIOD does
not assume any responsibility or liability for
meeting 8.0 mm creepage distance in any
customer's product.

OGIO

CNY17-3Z
8516R\u
~
.......

(

)

I

I

C2006

14

OPTO PLUS
DESCRIPTION
OPTO PLUS reliability conditioning is offered for any of General Instrument's 6-lead and 8-lead MCA or MCT optocouplers
with transistor or darlington output. This special conditioning is designed to reduce the infant mortality failures in
optocouplers.
• OPTO PLUS 1 offers 48 hour burn-in
• OPTO PLUS 2 offers 160 hour burn-in

ORDER INFORMATION
To order a MCAXXXX or MCTXXXX with OPTO PLUS 1 add Rl to part number, i.e., MCT5200Rl. To order OPTO PLUS 2 add
R2 to part number, i.e., MCT61 R2.

RELIABILITY CONDITIONING
The following flow outlines the 100% pre-conditioning testing.
TEST PERFORMED

CONDITION

Stabilization Bake

MIL-STD-883C Method 1008.1 Condition C. 150°C, 24 hours.

Temperature Cycle

MIL-STD-883C Method 1010.2 Condition B.
5 Cycles -55° C to 125° C, 30 min. at extremes

Burn-in
PLUS 1- 48 hrs. (+8)
PLUS 2-160 hrs. -0

MIL-STD-883C Method 1015.2 Condition C.
TA =25°C
IF = 10 rnA
VCE = 10 V

Hot Track Testing

TA = 100°C Functional Test

Final Test

TA = 25° C Electrical test per specification

Outgoing QA

0.25%AQL

o

GI
MCT2
PLUS2

86XXG~
Example of Opto Plus marking

C2093

15

16

PRELIMINARY DATA SHEET

PACKAGE DIMENSIONS

FEATURES
•
•
•
•
•
•

Surface mountable
Lead co-planarity with 0.1 mm or .004 inches
Compatible with vapor phase reflow soldering
All 6-pin and 8-pin optocouplers
All electrical specifications remain unchanged
Come in standard anti-static shipping tubes

ORDER INFORMATION

Al

'65(~r
3 .•

,,, TYP

C2075

r:CCII]i

L~-..l(·195)MAX

!I~ bd ,1L
TYP

lit

TIP

C2076A

DIMENSIONS IN mm (INCHES)

6-Pin Optocoupler

DESCRIPTION

~ ~~
889(350)

8

7

6

Option 100 is available for all 6-pin and a-pin
optocouplers in plastic package with certain
minimum quantity restrictions.
To order this SMD version of an optocoupler just
add -100 to the part number, for example:
740L6000-100
Optologic
MCT62-100
Dual Transistor Output
Dual Logic Output
HCPL-2631-100
Single Transistor Output
MCT2-1oo
MCP3041-100
Triac Output, Zero-Cross

5

C2075A

Option 100 is a standard DIP plastic package
optocoupler with the leads cut off at the standoff.
This provides a low cost SMD-version of a large
variety of optocouplers. Option 100, in many
cases, can be tested and handled by the same
equipment as a standard DIP package, which
eliminates costly duplication of testers and
handlers.
The distance from the bottom of the Option 100 to
the PCB is a minimum of 0.51 mm or .020 inches,
in order to accommodate PCB cleaning after
soldering. The height of the Option 100 over the
PCB is maximum 4.95 mm or .195 inches.

SPECIFICATIONS

C207BA

DIMENSIONS IN mm (INCHES)

The electrical specifications for optocouplers with
Option 100 remain unchanged. See applicable
datasheet. In addition, the device will withstand
standard vapor phase reflow soldering at 2150 C
for 30 seconds.

B-Pin Optocoupler

17

18

4N25
4N26
PACKAGE DIMENSIONS

DESCRIPTION
~

W
8.38 (.330)

:
I

I

I

I

I

--II0.56 (.022)
0.41 (.016)

J:

I

15° MAl(

6.35 (.250)

~'8.89 (.350) ~

I

J

t

6.86 (.270)

3.68 (.145) j

0.36 (.014)

-1---"",",,--;, 0.20 (.008)

~

7.62
(.300)
REF

j

f+--=

1.78 (.070) REF

....L
1

MAX

!

1--1.27 (.050)
.

FEATURES & APPLICATIONS
•
•
•
•
•

I t 3.56 (.140) o.~, (.020)

,1.....13.05(.120)

The 4N25, 4N26, 4N27, and 4N28 series of
optocouplers have an NPN silicon planar
phototransistor optically coupled to a
gallium arsenide diode.

MIN

C2090

DIMENSIONS IN mm (INCHES)

•
•
•
•
•
•

AC line/digital logic isolator
Digital logic/digital logic isolator
Telephone/telegraph line receiver
Twisted pair line receiver
High frequency power supply feedback
control
Relay contact monitor
Power supply monitor
Small package size and low cost
Excellent frequency response
UL recognized - File E50151
High isolation voltage
V,SO = 2500 V RMS - 1 minute

C2079

Equivalent Circuit

ABSOLUTE MAXIMUM RATINGS
*Storage temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . _55°C to 150°C
*Operating temperature at junction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . _55°C to 100°C
*Lead temperature (soldering, 10 sec) . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "
260° C
*Total package power dissipation at 25°C ambient (LED plus detector) . . . . . . . . . . . . . . . . . . . . . . . . . . 250 mW
*Derate linearly from 25°C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3 mWtC
Input diode
*Forward DC current continuous . . . . . . . . . 80 mA
* Reverse voltage . . . . . . . . . . . . . . . . . . . . . 3.0 V
*Peak forward current
(300 Jls, 2% duty cycle) . . . . . . . . . . . . . . 3.0 A
*Power disSipation at 25°C ambient . . . . . . 150 mW
*Derate linearly from 25°C . . . . . . . . . 2.0 mWtC

Output transistor
*Collector emitter voltage (BVCEO ) . • . . • . . . 30 V
*Collector base voltage (BV CBO )' . • • • • • . . . 70 V
*Emitter collector voltage (BVECO )' . . . . • • . • 7 V
*Power dissipation at 25°C ambient .•.•.. 150 mW
*Derate linearly from 25°C. . . . . . . . . . 2.0 mWtC

*1 ndicates JEDEC Registered Data.

19

4N25 4N26 4N27 4N28
ELECTRO·OPTICAL CHARACTERISTICS (25 0 C Free Air Temperature Unless Otherwise Specified)
CHARACTERISTICS

SYMBOL

I nput diode
*Forward voltage
Capacitance
*Reverse leakage current
Output transistor
DC forward current gain
. *Collector to emitter
breakdown voltage
*Collector to base
breakdown voltage
*Emitter to collector
breakdown voltage
*Collector to emitter leakage
current (4N25, 4N26, 4N27)
*r.ollector to emitter leakage
current (4N28)
*Collector to base
leakage current
Coupled
*Collector output current (a)
(4N25,4N26)
(4N27,4N28)

MIN.

VF
C

1.20
150
.05

UNITS

1.50

V
pF

100

"A

250

hFE

TEST
CONDITIONS
IF = 10 mA
V R = 0 V, f = 1 MHz
V R = 3.0 V, RL = 1.0 Mil
V CE = 5 V,lc = 500 "A

BVCEO

30

65

V

Ic = 1.0 mA, IB = 0

BVCBO

70

165

V

Ic = 100"A, IE = 0

BVECO

7

14

V

IE = 100 "A, IB = 0

50

nA

VCE = 10 V Base Open

100

nA

20

nA

V CB = 10 V Emitter Open

mA

VeE = 10V,I F = 10mA,IB =0

V
V
V
V

RMS, t = 1 minute
Peak
Peak
Peak
V = 500 VDC
Ic = 2.0 mA, IF = 50 mA
V = 0, f = 1.0 MHz
Ie = 2.0 mA, RL = 100 n
(Figure 13)

3.5

I CEO

0.1

ICBO

Isolation voltage (b)
(4N25, 4N26, 4N27, 4N28)
*(4N25)
*(4N26,4N27)
*(4N28)
Isolation resistance (b)
*Collector·emitter saturation
Isolation capacitance (b)
Bandwidth (c)
(also see note 2)

GUAR.
MAX.

TYP.

Ie

2.0
1.0

V,SO

2500
2500
1500
500

5.0
3.0

1011
0.2

VeElSAT)

1.3
300

Bw

n
0.5

V
pF
kHz

*Indlcates JEDEC Registered Data.
(a) Pulse Test: Pulse Width = 300 J.ls, Duty Cycle';;; 2.0%
(b) For this test LED pins I and 2 are common and Phototransistor pins 4,5 and 6 are common.
(c) If adjusted to Yield Ie = 2 mA and ic = 0.7 mA RMS; Bandwidth referenced to 10 kHz.
SWITCHING TIMES
Non·saturated
Collector
Delay time
Rise time
Fall time
N on-satu rated
Collector
Delay time
Rise time
Fall time
Saturated
ton (from 5 V to 0.8 V)
toff (from SAT to 2.0 V)
Saturated
ton (from 5 V to 0.8 V)
toff (from SAT to 2.0 V)
Non-saturated
Base - Collector photo diode
Rise time
Fall time

20

TYP.

UNITS

TEST CONDITIONS

td
tr
tf

0.5
2.5
2.6

J.ls
J.ls
J.ls

RL = lOOn, Ie'" 2 mA, Vcc = 10V
(Fig. 7 and 13)

td
tr
tf

2.0
15
15

J.ls
J.ls
J.ls

RL = Ikon. Ic 2 mA, Vec = 10 V
(Fig. 7 and 13)

ton (SAT)
toff (SAT)

5
25

J.ls
J.ls

RL = 2kil, IF = 15 mA, Vcc = 5 V
RB = Open (Circuit No.1)

ton (SAT)
toff (SAT)

5
18

J.ls
J.ls

RL = 2kil, IF = 20mA, Vcc = 5 V
RB = 100kil (Circuit No.1)

tr
tf

175
175

ns
ns

RL = lkil, V CB = 10V

4N25 4N26 4N27 4N28
TYPICAL ELECTRO-OPTICAL CHARACTERISTIC CURVES
(25 0 C Free Air Temperature Unless Otherwise Specified)

40

'E"
I

J'
I-

~

:>

"ex:

/'

35

I

30

~

10

~
./

/

I-

II

0

"

.

100.0

IF =40mA

i13

v

om1-

IF =

V

-

~

10

I - r15

20

25

3D

35

'.0

~<)~(:
40

20

20

1I "
I I "

I L

I'--..

-0\

R
L

'-...

1"'- r--

\

\

f--CTR:7;-

0.'
80

~C

v,. =10 VOLTS

-~- \

Vee = IOV

60

10 20 30 40 50 60 70 80 90 100

Fig. 3. Dark Current vs. Temperature

C1112

IF = IOmA

40

V

TA. - TEMPERATURE -

~-

10

60

a

.

-....;:: ~

LOW CURRENTTRANSFEA RATIO

~Ic

//

h·t~

10

\L
\"

VeE'"' 10 VOLTS

./

50~IF~

25V

I

1UJllIIL
111111111

.........
/'

I ...

C1113

Fig. 2. Collector Current vs.
Forward Current

........

70

.

10
-20

.01 L-.l...J..I.J.JJJJJL-J.....I..I.J.I.LW_J....J...J..JJLWI
.1
.5 1.0
5.0 10.0
50.0
FORWARD CURRENT (lFI- mA

40

-..... HIGH CURRENT TRANSFER RATIO

F::::-.

VCE '" SOV'" / /

VeE = 70V

o

Fig. 1. Collector Current vs.
Collector Voltage

./

,0~ v/
[/

,

;'0 ':: t-- VeE

Cl1l1

10

,

I

'F:t mj

COLLECTOR VOLTAGE (V) - VOLTS

90

'0

~ 10

V

30

v
l/~ ~~

'" ,

/

20
15

'F:

.: 10

25

0

J

V ~o ml

100

IK

10K

01

elliS

C1114

Fig. 4. Current Transfer Ratio vs.
Temperature

I I

= 470U

I RL· 100
I I III

lOOK

FREQUENCY (Hz)

AMBIENT TEMPERATURE (OC)

RL

.1'00~n
T

0.20.30.40.608 1 0
2 3 4 567810
COLLECTOR CURRENT Ie ImAo)
CIIIS

Fig. 6. Switching Time vs.
Collector Current
(see Fig. 13 for Circuit)

Fig. 5. Collector Current vs. Frequency
(see Fig. 12 for circuit)

Vee

..

RL

IF
~

)'00'

t..

.

OV
OV

~

t.I

VOUT

eHIO

Circuit 1

Cl117

Fig. 1. Pulse Test Definition
(Note 3)

21

4N25 4N2& 4N27 4N28
TYPICAL ELECTRO-OPTICAL CHARACTERISTIC CURVES (Cont'd)
(25 0 C Free Air Temperature Unless Otherwise Specified)

,

.J_~. FORWARD VOLTAGE vs
FORWARD CURRENT (VF YS IF I

5

B

~' 4r-vs. T,EiiililiTURE
o

6

1 _\

/

i'-... ~ ~

.,

/

t:;!~1

>

"a:

eTA .. 40%

T ...

I

.1

-125-C

0

1

~80
'"w
'"z 60
~

~

....

....
z

'F .15,,tml

1

.5

1

5

10

=

~
".~

20

1

50 100

If , 3 rnA

-

iiiii
1000

100

I

10,000

TIME

ClI20

Fig. 70. Lifetime vs.
Forward Current

Fig. 9. Forward Voltage vs.
Forward Current

24

20

\J~~

6

{

,

- 3td

--

_

25jJA

20,.,A _
1

-f-

-I-

10",A

liilll'5"C
lOOK

l-

I 18 1= 5"A

Vee = IOV

0

100,000

HOURS

1119

/

10K

,~;:~:

T.

15jJA

~20

~
I,'

IF - FORWARD CURRENT - rnA

I

II

a

~a:

2

~i

/1Jm
,;1.

j

~ 40

I,?"l.\

V

~

~
=

'0

V-

B

Fig. 8. Saturation Voltage vs.
Collector Current

~ 100

+100"

9/

.2
.5
10
Ie - COLLECTOR CURRENT (mAl
Cll18

o

:.i-

TA

IF'" 10Kl c

,

+2S"'C

, ,/

:ri ,

50

T~ ':~i~c

,
6'

/

\

4

> 3
w'

CJ

;!

Is =0

o
o

1M

12

16

20

Vc volts

Aae - BASE RESISTANCE - n

Fig. 11. Sensitivity vs. Base Resi~tance

24

C1122

Cl121

Fig. 12. Detector hfe Curves

OPERATING SCHEMATICS
MODULATION

1 F

>---ihl"",........

INPUT

LEO

--

CONSTANT

CURRENT

INPUT

4-

Vee = 10 VOLTS

PULSE
INPUT

4711

-,
I
-.l

DETECTOR

'----~~-. OUTPUT

-

~

V cc ·10VOLTS

DETECTOR
PULSE

'---~~--I" OUTPUT

I,

I,

IC (DC) ~ 2 rnA
ic == 0.7 rnA AMS

Cl124

C1123

Fig. 13. Modulation Circuit Used to Obtain
Output vs. Frequencv Plot

Fig. 14. Circuit Used to Obtain Switching
Time vs. Collector Current Plot

NOTES

22

1.

The current transfer ratio (IC/IF) is the ratio of the detector collector current to the LED input current with
VCE at 10 volts.

2.

The frequency at which ic is 3dB down from the 10 kHz value.

3.

Rise time (tt) is the time required for the collector current to increase from 10% of its final value to 90%.
Fall time (ttl is the time required for the collector current to decrease from 90% of its initial value to 10%.

PACKAGE DIMENSIONS

DESCRIPTION

~

The 4N32 and 4N33 have a gallium
arsenide infrared emitter optically coupled
to a silicon planar photo- darlington_

j
6.06 (.270)
6.35 (.250)

15'MAX
0.36 (.014)

''''=:=='==It:]1 0.20 (.OOO)

~10_09 (_3S0~ ~

-----I I--'"
1.70 (.070) REF

7.62
(.300)
REF

0.30 (.330)

--L
1

1.70 (.070) TVP

:
I
I
I

I
I
I
I

---l
~
0.56 (.022)
0.41 (.016)

J:
:

3.94 (.155) I 4.951,,95)
3.68 (.145) I j MAX

I

I 13.56 (_140)
'U3_0S (.120)

j

FEATURES & APPLICATIONS
•
•
•
•
•
•
•

High isolation resistance - 10" n
High dielectric strength, input to output
2500 V RMS - 1 minute
Low coupling capacitance - 1.0 pF
Convenient package - plastic dual-in-line
Long lifetime, solid state reliability
Low weight - 004 grams
UL recognized - File E50151

o_dl (.020)
MIN

1--1.27 (_050)
C2090
DIMENSIONS IN mm (INCHES)

Equivalent Circuit

ABSOLUTE MAXIMUM RATINGS (TA = 25°C Unless Otherwise Specified)
*Storage Temperature _ . _ .. _ . _ . __ .... _ ... _ . _ . . . . . ___ . _ . _ . . . . . . . . . _ .... ___ ... __ 55°C to IS00C
*Operating Temperature at Junction . . . . . . _ ... _ .. _ .. _ .. _ . _ . _ . __ . . . . . . . _ .. _ . _ -'. _ .. -SSoC to 100°C
*Lead Soldering time @ 260°C . _ ..... _ .. _ ... __ . ___ .. __ ..... _ ... _ .... _ .. _ . __ . ______ 10 seconds
*Total power dissipation @ 2SoC ambient. _ . _ .... _ . _ . __ . _ . _ .. _ . _ . __ .. _ .. __ . __ . ___ . ______ 2S0 mW
*Derate linearly from 25°C . _ . _ .. _ . _ . _ .. _ . _ . _ . _ .... _ ..... _ ... _ .. _ .. __ . __ . ______ . _ 3.3 mWI'C
LED (GaAs Diode)
*Power dissipation @ 25°C ambient. _ . . . . . . _ 150 mW
*Derate linearly from 55°C _. __ .... __ . _ . 2 mWI'C
*Continuous forward current .. _ .. _ . ___ .... 80 mA
Reverse current . ____ . _ . _ . ____ . __ ... _ . 10 mA
*Peak forward current (300 J.Lsec, 2% duty cycle) _ .3_0 A

DETECTOR (Silicon Photo Darlington Transistor)
*Power dissipation @ 25°C ambient _____ .. __ ISO mW
*Derate linearly from 2SoC _______ . ___ . 2_0 mWI'C
*Collector-emitter breakdown voltage (BVCEO ) _ . _. 30 V
*Collector-base breakdown voltage (BVCBO ) . ___ • _ 50 V
Emitter-base breakdown voltage (BVEBO ) ____ . __ 8.0 V
*Emitter-collector breakdown voltage (BVECO ) _ . ___ S V

'Indicated JEDEC Registered data.
23

4N324N33
ELECTRO-OPTICAL CHARACTERISTICS (TA = 25°C Unless Otherwise Specified)

CHARACTERISTIC

SYMBOL

LED CHARACTERISTICS
(TA = 25°C unless otherwise noted)
*Reverse leakage current
*Forward voltage
Ca pac i ta nce

MIN.

IR
VF
C

TYP.

MAX.

UNIT

0.05
1.2
150

100
1.5

/J.A
Volts
pF

VR =3".0 V
IF = 10 rnA
VR =0 V, f = 1.0 MHz

100

nA
Volts
Volts
Volts

VCE = 10 V, base open
Ic = 100/J.A, IE = 0
Ic = 100/J.A, IB = 0
IE = 100/J.A, IB = 0
VCE = 5.0 V, Ic = 500/J.A

TEST CONDITION

PHOTOTRANSISTOR CHARACTERISTICS
(TA = 25°C and IF =0 unless otherwise noted)
*Collector-emitter dark current
*Collector-base breakdown voltage
*Collector-emitter breakdown voltage
*EmiUer-coliector breakdown voltage
DC current gain

ICEO
BVCBO
BVCEO
BVECO
hFE

30
30
5.0

Ic

50

rnA

VISO

2500
2500
1500

V
V
V
Ohms

V RMS, t = 1 minute
VDC
VDC
V = 500 VDC

Volts
pF
kHz

(c = 2.0 rnA, IF = 8.0 rnA
V = 0, f = 1.0 MHz

5000

COUPLED CHARACTERISTICS
(TA = 25°C unless otherwise noted)
*Collector output current (Note 1)
4N32,4N33
Isolation voltage (Note 2)
4N32,4N33
*(4N32)
*(4N33)
Isolation capacitance (Note 2)
*Coliector-emiUer saturation voltage (1)
4N32,4N33
Isolation capacitance (Note 2)
Bandwidth (3) (Test Circuit # 1)

1011

R lso
VCE(SAT)

1.0
0.8
30

VCE

= 10 V, IF = 10 rnA, IB = 0

SWITCHING CHARACTERISTICS
(Test Circuit # 2)
Turn-on time

tON

0.6

5.0

Turn-off time
4N32,4N33

tOFF

45

100

/J.s

Ic '" 50 rnA, IF
Vec = 10 V
Vcc

= 200 rnA,

= 10 V

"'Indicates JEOEC Registered Data.
(1) !'!uls. test: pulse width
300 Ils, duty cycle'; 2.0%
(2) For this test LED pins 1 and 2 are common and phototranslstor'plns 4.5 and 6 are common.
(3) I F adjusted to IC 2.0 mA and Ic 0.7 mA RMS.

=

=

(4),

=

td and tr are Inversely proportional to the amplitude of IF; ts and tf are not significantly affected

CONSTANT CURRENT
INPUT

by

IF.

NC
N.C.

PULSE

MODULATION

INPUT

INPU~I---'V47V'n-+~....J;~..,
1.0.,

I PHOTO DARLINGTON
I TRANSISTOR

I

I
~5,--_"" OUTPUT

I ~o

--

o--Jot'VV--t---.

I
I

1

I

I
ILEa
I
I

I

21

o-_ _ _ _~;;:2..::_::.-:::.::T - - - - - _ _ ..J

'F

::M-~

Ie (DC) • 2.0 mA

Ie (AC SINE WAVEI"O.7 rnA RMS at 1KHz

C1098

-1.0m.

PULSE RATE .100pps

Note 2

FREQUENCY RESPONSE TEST CIRCUIT #1

24

SWITCHING TIME TEST CIRCUIT #2

Cl059

4N324N33
APPLICATION INFORMATION

T2L LOGIC ISOLATION

LATCH

r- - - - - -

]:---------i

I
I
I

I
I

L

I

.J

________

i-----~----..,

t-----1I....-'

I

:I

I/-

L _______
'F

~

:I
e1101

~--...J

R
-:-

GNO

Cl1QO

FORM C CONTACT

+Vee

TRIAC TRIGGER

R- vee -2.0 v
~

r
I
I

I

I
I

I
I
L

NO

~----------,

]

I

...J

I

:_________ !'J

r--------- .,
I

I

Ne

I

'GT

I
IL __________ JI

C1103

Cl102

GND

-:-

OPERATING A RELAY COIL

I l'e

+Vcc

Vee < 9 V
R<8MO
'c< 250mA
'F

'F<50mA

< 1.6mA

C1104

Vcc< 55V
'c<125mA

11--------:
JI _______-_-J.:.--'-:'F-

Cl104

25

4N324N33
TYPICAL ELECTRO-OPTICAL CHARACTERISTIC CURVES
(25 0 C Free Air Temperature Unless Otherwise Specified)

0

~O~M~\.'IZE bTb

if..,

ICO 5 nlA
VeE ~5V

0

1I

0

.t

r'\

I

1I

V"""

10

~

~I

o

01

10
Ie

FORWARD CURRENT If ImAI

10

100

COLLECTOR CURRENT rnA

C1106

Cl105

Fig. 2. Normalized Beta vs.
Collector Current

Fig. 1. Forward Voltage Drop vs.

Forward Current

120

10

/

10

10

,

V

0

1

V

1

:l!J

100

/

1,/

0.5

1./ V

80

V

1/

0.'

~

0.3

40

20

1[[ "121
;>0

rr-- 1/0" 0.6I II

75

T TfMPEAATURE ( C)

100

'2~

0

V

V

V
V

~

I--"
~

r

~

I-

... 1- .....
12
Vc,voits

Cl107

F,tl. 3. Dark Current vs. Temperature

O'fA 1-1~=O;.AI-

16

I
20

24
Cl108

Fig. 4. Detector Standard Transfer Curves

NOTES
1.
2.
3.

26

The current transfer ratio (lCI/F) is the ratio of the detector col/ector current to the LED input current with VCE at
10 volts.
The frequency at which ic is 3dB cfown from the 1 kHz value.
tON il:. .neasured from 10% of the leading edge of the input pulse to the 90% point on the leading edge of the
output pulse. tOFF is measured from 90% of the trailing edge of the input pulse to the 10% point on the trailing
edge of the output pulse.

PACKAGE DIMENSIONS

W
~18.89 (.350) ~
8.38 (.330)

:
I

I

I
I

I
I

--II0.56 (.022)
0.41 (.016)

J: I
I

DESCRIPTION

J

t

15° MAX

6.86 (.270)
6.35 (.250)

0.36 (.014)

.L....--"=-.t-'I 0.20 (.008)

~

7.62
(.300)
REF

3.68 (.145) t

t 3.56 (.140) 0.~1

.L13.05 (.120)

t--='

1.78 (.070) REF

MAX

t

The 4N35, 4N36, and 4N37 series of
optocouplers have an NPN silicon planar
phototransistor optically coupled to a
gallium arsenide infrared emitting diode.

!

(.020)
MIN

1-1.27 (.050)
C2090
DIMENSIONS IN mm (INCHES)

-L

T

FEATURES & APPLICATIONS
•
•
•
•
•
•
•
•
•
•
•

AC line/digital logic isolator
Digital logic/digital logic isolator
Telephoneltelegraph line receiver
Twisted pair line receiver
High frequency power supply feedback control
Relay contact monitor
Power supply monitor
I ndustrial controls
Covered under UL component recognition
program, reference File E50151
High DC current transfer ratio
High isolation voltage
V ISO = 2500 V RMS, 1 minute

C2079
Equivalent Circuit

ABSOLUTE MAXIMUM RATINGS

*Relative humidity 85% @ 85°C
*Storage temperature _55° C to 150° C
*Operating temperature _55°C to 100°C
*Lead temperature (soldering, 10 sec) 260° C
Input Diode
Output Transistor
*Forward DC current (continuous) ..... 60 mA
*Power dissipation at 25°C ambient . . . •. 300 mW
Reverse voltage . . . . . . . . . . . . . . . . . 6 volts
Derate linearly above 25°C . . . . . . • . . . . 4 mWrC
*Peak forward current
*Power dissipation at Tc = 25°C ..•... 500 mWtt
(IllS pulse, 300 pps) . . . . . . . . . . . . . . 3.0 A
(Tc indicates collector lead temp
*Power dissipation at TA = 25°C .... 100 mWt
1/32" from case)
*Power dissipation at Tc = 25°C ..•. 100 mWt
(TC indicates collector lead temp
1/32" from case)
*VCEO . . . . . • . . . . • • • . . . . • • • . • • . . . 30 volts
*VCBO . . . • . • . . . . • . • . . . . • • • . . . . • . 70 volts
* Indicates JEDEC legfstered v~lues
*VECO • • • • • • • • . • . • • . • . . • • . . • • • •• 7 volts
tDerate 1.33 mw/ C above 25 C.
ttDerate 6.7 mW/ C above 25°C.
*Collector current (continuous) . • . . . . . . . 100 mA

27

4N35 4N36 4N37
ELECTRO-OPTICAL CHARACTERISTICS (25°C Free Air Temperature Unless Otherwise Specified)
CHARACTERISTIC
Input Diode
*Forward voltage
*Forward voltage temp. coefficient
* Forward voltage
*Junction capacitance
* Reverse leakage current
Output Transistor
DC forward current gain
*Collector to emitter breakdown
voltage
*Collector to base breakdown
voltage
*Emitter to collector breakdown
voltage
Collector to emitter, leakage current
*Collector to emitter leakage
current (dark)
Capacitance collector to emitter
Capacitance collector to base
Capacitance base to emitter
Coupled
t*DC current transfer ratio
t*DC current transfer ratio
t*DC current transfer ratio
*Saturation voltage-collector
to emitter
Isolation voltage all devices
*Input to output isolation current
(pulse width = 8 msec)
(see Note 1)
*Input to output voltage =
3550 V (peak)
*1 nput to output voltage =
2500 V (peak)
*Input to output voltage =
1500 V (peak)
*Input to output resistance

VF
VF
VF

.8
.9
.7

CJ
.01

V
V
V

100
10

pF
/LA

250

hFE

TEST
CONDITIONS
IF = 10 mA
IF = 10 mA, TA = _55°C
IF = 10mA,
TA = +100o C
V F = 0 V, f = 1 mHz
V R = 6.0 V
VCE = 5 V, Ic = 100 /LA

BVCEO

30

65

V

Ic=10mA,IF=0

BVCBO

70

165

V

Ic = 100/LA

BVECO
I CEO

7

14
5

50

V
nA

TE = 100J.LA, IF = 0
VeE = 10 V, IF = 0

500

/LA

V cE =30V,I F =O,
TA = 100°C
VCE = 0
V CB = 10 V
V BE = 0

I CEO

pF
pF
pF

8
20
10

C BEO
CTR
CTR

100
40

%
%

CTR

40

%

VCE(SAT)
V ISO
2500
II'()

R I.o

.3

volts
volts

4N35

100

/JA

4N36

100

/LA

4N37
100

100

C I.O

*Turn on time-ton

tON

5

10

*Turn off time-t ott

tOFF

5

10

tPulse test: pulse width = 300J.LS,
duty cycle:::; 2.0%

UNITS

1.50
1.7
1.4

*Input to output capacitance

*Indicates JEDEC registered values

28

SYMBOL MIN. TYP. MAX.

2.5

IF = 10 mA, VCE = 10 V
IF = 10 mA, VCE = 10 V,
TA=-55 u c
IF=10mA,VCE =10V,
TA = +lOO°C
IF = 10 mA, Ic = 0.5 mA
RMS, t = 1 minute

IlA
gigaohms I nput to output voltage =
500 V (see Note 1)
picofarads I nput to output voltage =
o V, f = 1 MHz
(see Note 1)
Ilsec
Vcc = 10 V, Ic = 2 mA,
R L = lOOn,
(see Fig. 15)
/Lsec
Vcc = 10V,Ic = 2 mA,
R L = lOOn,
(see Fig. 15)

4N35 4N36 4N37
TYPICAL ELECTRO-OPTICAL CHARACTERISTIC CURVES
(25°C Free Air Temperature Unless Otherwise Specified)

10

F" 15. mA

·

>-

10

V~ ~~

/-~ //
/

w

'";2 ,
~ 10
1

·,

o

;10
10

2.0

4.0

6.0

8.0

10

12

VeE - VOL T5

Fig. 1.

2. 0

~

,

111111111

I

•

111111111

\1

VeE -'0 VOLTS

I. 4

z

~ l. 2

a

I. 0

~

~

o.

,

\",
t,- ~

•

~ o.

\

o. 2
IK

25V

- 10

W15

;:

10

!'

\

:ia:
~

~

::;

'oa:"
"

0 'o
. 20 30 40 50 6o 70 BO 90 100
TA - TEMPERATURE - °C
Cl046

f-- 7of--

Z

5O:""'-'F-...

0.1

Fig. 4. Collector Current vs. Frequency

-eTA

t-

60

40

20
20
40 60
80 100
AMBIENT TEMPERATURE t"C) Cl047

Fig. 3. Current Transfer Ratio
vs. Temperature

tv. -

PULSE WIDTH TIME

~~TIM~
f.cI - DELAY TIME

"

FALL 1\~IE-

.! IRIU~W!

)

8

L·470n

6
4
3
2

IR~"0o

0.2 0.3 D.4 o.sG.8 1.0
2 3 4 567810
C1049
COLLECTOR CURRENT Ie (mA)

Fig. 5. Switching Time
vs. Collector Current

I.

lOrnA

Vee - IOV

o

,

I I II
I
C1048

I,

lC-

~ 1/'//

0

"\

304

f-V CE

o
~

ffi

I I II
I I II

"rf'
~

~

~cE,=7~
YCE r"" 5~V

Cl045

Collector Current vs. Collector Voltage

i'"

-20

14

~ HIGH CURRENT TRANSFER RATIO

1

·,

'"1 10

a~

.. 130

/

10K

• 6 BlOOK 2
4 6 81M
RB -BASE RESISTANCE - n CIOSO

Fig. 6. Switching Time

VB.

Base Resistance

0

>

~ICAl

E5'

~ 160

~
o

140

>

gz
~

12

1\

100

6

-

Ru

~

1

rt III

r--~VCE" vs. RBe
1

o TAl
o
40

lOOK 200K

II III
5001( 1M

'\
98% OF ALL UNITS

2M

5M

RBE - BASE EMITTER RESISTANCE -

10M

u

Cl051

Fig. 7. Collector-Emitter Breekdown
Voltage VI. Base Resistance
'o"20mA

TEST CIRCUIT

t..-Iw-.l
I
I

I

I
OUTPUT < .4

OV
OV--+-..."._

--l

Va

UT

Cl053

;:1052

Fig. 8. Test Pulse Definition (Note 3)

Fig. 9. Pulse Test Circuit for Fig. 7

29

4N35 4N36 4N37
TYPICAL ELECTRO·OPTICAL CHARACTERISTIC CURVES
(25 0 C Free Air Temperature Unless Otherwise Specified)
.50

>

..,
w

;

5

.45

~

IF = 10mA
Ie = 0.5 rnA

.40

;2

::>

.20

~

.15

--

I

~

~

13

~A "~'~~"c

;!

---

0

I-

" TllirliliTURE

o

..,=:

.35

0

> .30
z
>= .25

MCT2: FORWARD VOLTAGE VI.
FORWARD CURRENT (V F vs. IF)

1.4

'lIii';-

2
5"
>

o

'1'l"+25~

.

'" .""'~

0

.....-

I

.• 0

~

.05

o

10

20

30 40

50 60

70

80

.2

,5

TA - AMBIENT TEMPERATURE - ~C Cl054

.. '00 r -

IF -SOmA

I

V

>=

,...

0
6

lI-

Z

1

IF = 2 0 m n .

2'

,

0

<

E

~

1/

::>

>

20

o

10K

ClOSS

fo-

f

••

-r-

25~A

2O,A _ _
1

Vee = lOV

l~ilfrc

>=

~

50 100

15pA -

u

w

20

3U-

8

0
4

~

10

I

IF-lOrnA

/

II

5

Fig. 11. Forward Voltage
vs. Forward Current

;2 B0

'"
'"~

1

If - FORWARD CURRENT - rnA

Fig. 10. Saturation Voltage
vs. Temperature

o

"iJ~
III'

9.....B
.,

90 100

V-

TA = +100

~ 1.0

iO'j'B"'SjJA

IIIIII.M

I

'OOK
ReE - BASE RESISTANCE - II

18 :0

o

o

el057

12

16

20

24

VC,volts

Fig. 12. Sensitivity vs. Base Resistance

Fig. 13. Detector Standard Transfer Curves

OPERATING SCHEMATICS

HhI'V\f'-.

MODULATION

INPUT

1 F

47n

r

LEO

-

CONSTANT

CURRENT
INPUT

I
"'L __ _

-

Ie

l

I

Vee = 10 VOLTS

-

Ie

Vc'C -10VOLTS

DETECTOR

DETECTOR

-.J

'----~._-.OUTPUT

-

L -_ _...._

PULSE

.... OUTPUT

I,

I,

C1059

Fig. 14. Modulation Circuit Used to Obtain Output vs.
Frequency Plot (Fig. 41

4711

PULSE
INPUT

~

C1OS0

Fig. 15. Circuit Used to Obtain Switching Time vs.
Collector Current Plot (Fig. 51

NOTES
1. Tests of input to output isolation current resistance and capacitance are performed with the input terminals (diode)
shorted together and the output terminals (transistor) shorted together.
2. The current transfer ratio (lC/IF) is the ratio of the detector collector current to the LED input current with
VCE at 10 volts.
3. Rise time (tr) is the time required for the collector current to increase from 10% of its final value, to 90%.
Fall time (ttl is the time required for the collector current to decrease from 90% of its initial value to 10%.

30

FOR 6N135/6 SEE MCL2501 DATA SHEET
FOR 6N137 SEE MCL/HCPL-2601 DATA SHEET
PACKAGE DIMENSIONS

W
I~ 9.65 1.380)
9.14 (.360)

_I

DESCRIPTION

6.861·270)
6.35 (.250)

0.36 (.014)

.L----'-n---1, 0.20 1·008)

t-=.,
7.62
1·300)
REF

~

1.78 (.070) REF

-L

T

2.54 1.1001 TYP -11.0.89 1.035) TYP

-I
1I
'I 3.941·155) f
b-.=-'-=--'-=...-'R'
:

~~

:

: I:,

i

lJ :

11~~~

f

4.95 1.195)
3.681.145)1 : MfX

f 3.561·140) 0.51 (.020)

1~3.051.120)

1.6 mA 6N138
0.5 mA 6N139

MIN

1-0.89 (.035) TYP

0.561.022)

C2091

0.41 1.016)

DIMENSIONS IN mm (INCHES)

The 6N138/9 single channel optoeouplers
contain a 700 nm GaAsP LED emitter which is
optically coupled to a high gain detector in a split
Darlington configuration, providing extremely
high current transfer ratio.
The split darlington configuration separating the
input photodiode and the first stage gain from
the output transistor permits lower output
saturation voltage and higher speed operation
than possible with conventional darlington
phototransistor optocoupler.
The combination of a very low input current of
0.5 mA and a high current transfer ratio of 2000%
makes this family particularly useful for input
interface to MOS, CMOS, LSTTL and EIA
RS232C, while output compatibility is ensured to
CMOS as well as high fan-out TTL requirements.
An internal noise shield provides exceptional
common mode rejection of 10 kWfJ.s. An
improved package allows superior insulation
permitting a 480 V working voltage compared to
industry standard 220 V.

FEATURES
•
•
•
•
•
•
•

Low current - 0.5 mA
Superior CTR - 2000%
Superior CMR -10 kV/fJ.s
Double working voltage - 480 V RMS
CTR guaranteed 0-70°C
U.L. recognized (File #Es01s1)
Superior insulation; 2500 VAC RMS, 1 min

APPLICATIONS
•
•
•
•
•
•
Equivalent Circuit

Digital logic ground isolation
Telephone ring detector
EIA RS-232C line receiver
High common mode noise line receiver
fJ.P bus isolation
Current loop receiver

e1984

ABSOLUTE MAXIMUM RATINGS
Storage temperature .............. -55°C to +12SoC
Operating temperature ............... O°C to +70°C
Lead solder temperature .......... 260°C for 10 sec
Average input current ................... 20 mA (1)
Peak input current ......................... 40 mA
(50% duty cycle, 1 ms P.w.)
Peak transient input current - IF ............. 1.0 A
(S 1 fJ.sec P.w., 300 pps)

Reverse input voltage ......•.................. 5 V
Input power dissipation ................. 35 mW (2)
Output current (Pin 6) ................... 60 mA (3)
Emitter-base reverse voltage (Pin 5-7) ..•.........5 V
Supply and output voltage-Vee (Pin 8-5), Vo (Pin 6-5)
6N138 ............................... -0.5 to 7 V
6N139 ..................•........... -0.5 to 18 V
Output power dissipation ............... 100 mW (4)
31

6N138 6N139
ELECTRICAL SPECIFICATIONS (TA =ooe to +7ooe Unless Otherwise Specified)
PARAMETER
Current transfer ratio
(Notes 5, 6)

SYMBOL

DEVICE

MIN.

TYP..*

6N139

400500300-

2000
2000
2000

eTR
6N138
6N139

Logic low output
voltage (Note 6)

MAX.

UNITS
%
%

TEST CONDITIONS
IF = 0.5 rnA, Vo = 0.4 V, Vee = 4.5 V
~ = 1.6 rnA, Vo = 0.4 V, Vcc = 4.5 V
IF - 1.6 rnA, Vo - 0.4 V, Vee - 4.5 V

0.4
0.4
0.4
0.4

V

6N138

0.06
0.08
0.09
0.06

6N139
6N138

0.1
0.001

100250-

,.A
,.A

IF = /J rnA, Vo = Vee = 18 V
IF = 0 rnA, Vo = Vee = 7 V

VOL

V

IF = 1.6 rnA, 10 = 6.4 rnA, Vee = 4.5 V
IF = 5 rnA, 10 = 15 rnA, Vee = 4.5 V
IF = 12 rnA, 10 = 24 rnA, Vee = 4.5 V
IF = 1.6 rnA, 10 = 4.8 rnA, Vee - 4.5 V

Logic high output
current (Note 6)

10H

Logic low supply
current (Note 6)

ICCl

0.20

rnA

IF = 1.6 rnA, Vo = Open, Vee = 5 V

Logic high supply
current (Note 6)

ICCH

10.0

nA

IF = 0 mA, Vo = Open, Vee = 5 V

VF

1.45

Input forward voltage

1.7-

V

IF = 1.6 rnA, TA = 25°C

V

IR = 10,.A, TA = 25°C

Reverse breakdown
voltage

BVR

Temperature coefficient
of forward voltage

ilVF
ilTA

-1.8

mVFC

Input capacitance

Co

60

pF

f = 1 MHz, VF = 0

,.A

45% Relative Humidity, TA = 25°C
VI-O = 3000 V, td = 5 sec

Isolation leakage
(Input-Output) (Note 7)

5-

1.0-

11- 0

IF= 1.6mA

Withstand isolation
test voltage

VISO

Resistance (InputOutput) (Note 7)

RI_o

1012

n

VI-O = 500 Vdc

Capacitance (InputOutput) (Note 7)

CI-O

0.6

pF

f= 1 MHz

2500

VRMS

RH:5 50%, TA = 25°C, t = 1 min

SWITCHING SPECIFICATIONS (TA =25°C, Vee =5.0 V)
MAX.

UNITS

TEST CONDITIONS

6N139
6N139
6N138

5.0
0.2
1.0

25"
1"
10"

,.s
,.s
,.s

IF = 0.5 rnA, Rl = 4.7 k n
IF = 12 rnA, RL = 270 n
IF = 1.6 rnA, RL = 2.2 k n

6N139
6N139
6N138

1.0
1.0
4.0

SO-

,.s
,.s
,.s

IF = 0.5 rnA, RL = 4.7 k n
IF = 12 rnA, Rl = 270 n
IF = 1.6 rnA, Rl = 2.2 k n

SYMBOL

DEVICE

Propagation delay time to
logic low at output
(see Fig. 8; Notes 6, 8)

tpHl

Propagation delay time to
logic h·igh at output
(see Fig. 8; Notes 6, 8)

tplH

Common mode transient
immunity at logic high
level output
(see Fig. 9; Note 9)

CM H

1000

10,000

VI,.s

IF = 0 rnA, RL = 2.2 k n
1Veml = 10 Vp-p

Common mode transient
immunity at logic low
level output
(see Fig. 9; Note 9)

CM l

-1000

-10,000

VI,.s

IF = 1.6 rnA, RL =2.2 k n
1Veml = 10 Vp-p

"JEDEC registered data
"All typica/s at TA = 25°C and Vee

32

TYP;**

PARAMETER

=5 V

MIN.

735-

6N138 6N139
NOTES
1.
2.
3.
4.
5.
6.
7.
8.
9.

Derate linearly above 50'C free-air temperature at a rate of 0.4 mArC.
Derate linearly above 50'C free-air temperature at a rate of 0.7 mWrC.
Derate linearly above 25'C free-air temperature at a rate of 0.7 mArC.
Derate linearly above 25'C free-air temperature at a rate of 2.0 mWrC.
DC CURRENT TRANSFER RATIO is defined as the ratio of output col/ector current, 10, to the forward LED input current,
I", times 100%.
Pin 7 Open.
Device considered a two-terminal device: Pins 1, 2, 3, and 4 shorted together and Pins 5, 6, 7, and 8 shorted together.
Use of a resistor between pin 5 and 7 will decrease gain and delay time.
Common mode transient immunity in Logic High level is the maximum tolerable (positive) dVern/dt on the leading edge of the
common mode pulse, Vern' to assure that the output will remain in a Logic High state (i.e., Va > 2.0 V). Common mode
transient immunity in Logic Low level is the maximum tolerable (negative) dvern/dt on the trailing edge of the common mode
pulse signal, Vern, to assure that the output will remain in a Logic Low state (i.e., Vo < 0.8 V).

ELECTRICAL CHARACTERISTIC CURVES (TA = 25°C Unless Otherwise Specified)

_10.0

lOOr----------,----------,



T

VC~,

I

=)5 V
Vcco = 4.5 V
10H = -400p.A

I--

20

40

g

60

80

o

o

-40 -20

100
(' C)

0

20

740L6000/6001
VCCI = 5.5 V
Vcca = 5.5 V
40

60

80 100

TA - AMBIENT TEMPERATURE - (' C)

C2030

w

~
§2

3

0.4

flIO~~A

I:::J

:=

t-

0.3

:::J

2

o

.J
W

ijj O. 2

r-

llJ4ml

.J

~

o

-40
TA -

-20

0

20

40

60

80

AMBIENT TEMPERATURE -

C2031

Fig. 4. Output Current vs.
Ambient Temperature

~

ICCOH
ICyOl
ICqOH
I-ICCOl
.: ICqOH
ICr L
o

C!l

10H
(740LSOOO/6001 )

0

--740L6010/6011
VCCI = 5.5 V
Vcco=15V
••• 740LS010/S011
VCCI = 5.5 V
Vcco = 5.5 V

en

]

~t-

...::: ::::::::::r::::::r:=::::t::......

6

I-

o
I

~ r--

~

9

~ 0.5

J:

TA - AMBIENT TEMPERATURE -

a:

Fig. 3. Output Supply
Current VS. Ambient
Temperatura

E-20
-30
-40 -20

a

C2029

10L

ifi

-~I--

ifia:

Fig. 2. Input Supply Current
vs. Ambient
Temperature

5

I

100

TA - AMBIENT TEMPERATURE - (' C)

60

I 40

---- -'- -,
r-r-. r-r--

I:::J

C2028

50

12

~

16cIH 740l600i:6011
ICCll - 740L6000-601 0

Fig. 1. Input Current vs.
Ambient Temperature

l

I-

:::J

8

('C)

15

0..
0..

0..

~

«
.§.
I

.§. 14

100
(' C)

I

0.1
-40

vcdl = 4.J V
Vcca = 4.5 V
-20

20

40

60

C2032

Fig. 5. High-level Output
Voltage vs. Ambient
Temperature

80

TA - AMBIENT TEMPERATURE -

100
(' C)

C2033

Fig. 6. Low-Leval Output
Voltage VS. Ambient
Temperature

39

740L6000/01/10/11
TYPICAL CHARACTERISTIC CURVES (TA = 25°C Unless Otherwise Specified)
S
vcL=tv
vcco= 1SV
VOUT=1SV

4

<

.=,

15

I--

"S

"'

.s
w

3

2

I

10

0

§

en

SO

~

Ir=

0
l-

~

10

If~~
If=:::

S

1
-20

0

20

40

60

80

-40 -20

100

0

20

40

60

80 100

.s
I

12
IICC\

10

V

I-

-

vcco= SV
VCCI = SV
VaH = 2V
VOL = 0.8V
.= 470 0 (740LS010/S011)
RL

,

1

o

Z

SOO

,/

).....-

.....

-

~

w

8

0

S '.1-'
Vcco
RANGE FOR 740LSOOO/SOO1
4

II:
II:
::l

~

0..
0..

en
I

2000

SO

80 100

C203S

MAXIMUM ALLOWABL~ poWER
DISSIPATION @ TA = 25° C

h±;"

III

-

~!

-1---

r- r-

....-t"""..J..--r'

0

o

2S00

4

VCM - COMMON MODE TRANSIENT
AMPLITUDE -(VI
C2037

S 6

7

8

9 10 11 12 13 14 1S

~~cel = 4.5V

C2038

Fig. 10. Common Mode
Reiection VS.
Common Mode
Voltage

0
4

~.fA =15Sl c

...vet

-I---''@TA='1tC
-r@TA~s50C

III

III

S 6 7 8 9 1011 1213 1415

VCGa - OUTPUT SUPPLY VOLTAGE - (VI

Vcc - SUPPLY VOLTAGE - (V)

C2039

Fig. 12. Power Dissipation VS.
Ambient Temperature

Fig. 11. Supply Current VS.
Supply Voltage

~ 1.S

-

VCCI = 5.5 V ~

u

1S00

40

Fig. 9. 740L6010/11
Switching Times vs.
Ambient Temperature

.9

1000

20

I

::l

""""'-

0

TA - AMBIENT TEMPERATURE - (0 C)

C20~5

<

-

-40 -20

TA - AMBIENT TEMPERATURE - (0 C)

Fig. 8. 740L6000/01
Switching Times VS.
AmbIent Temperature

1

100

.........
1.5

(!)

...........

1.4

.........

.........

1.3

IZ

r.....

II:
II:

""'-

1.2

o

w

5 -100
I::l

II:

/

0..

1.1

I-

VCCI = S.O~_
VCClo= S'i V

~ 1.0
~

0.9
-40

~ -200
I

/

/

0

20

40

60

80

100

C2040

Fig. 13. Input Threshold
Voltage VS. Ambient
Temperature

/

~

VCCI= 4.S V
-300

-20

TA - AMBIENT TEMPERATURE - (0 C)

40

=

If

I-

C2034

i=

100

=
"S
----- ~ ~ ~~~

z

z
I

Fig. 7. 740L6010/11
Leakage Current vs.
Ambient Temperature

°~

200

RL = 4700
P.W= 200 ns
PERioD = 1
tpLHIPLH

(!)

TA - AMBIENT TEMPERATURE - (0 C)

~
~
o
..J

i=

(!)

_/

-40

w

w
::;

Ir

i=

/

o

"'

.s

tPLH
tPHL

SO

::;

II

~
Veeo=SV
::: --Veeo = 15 V
Veel =SV

VCCI = 5.0 V
Vcea = S.OV
P.W= 200 ns
200 PEII'0DI= 1
100

o

2

3

6

4

V,N - INPUT VOLTAGE - (V)
C2041

Fig. 14. Input Current VS.
Input Voltage

Fig. 15. Switching Time Test
Circuit

740L6000/01/10/11
TYPICAL CHARACTERISTIC CURVES (TA = 25°C Unless Otherwise Specified)

Vceo
-5V

T-

INPUT, VI

'NPUT'V'I~

3211

~

-----------13v

740L6010/1',

(140LG010)

OUPTUT,V,

OUPTUT,V,
(740L601',

OUTPUT, Vo

(740L6001,

::

h1ll\-i-'
___

I
v,.

-Lm

'·1 --tf ~:j

(470U

OUTPUT,Vo
(740L6000)

_____

:"

1~

"

l----" -- 1II" '"
~"~ -

[-"'". ~

C~04~

Fig. 16. Common Mode
Rejection Test
Circuit

Fig. 17. Switching
Parameters
740L6000/01

Fig. 18. Switching
Parameters
740LB010/11

PACKAGE DIMENSIONS
VOHI----__

~-

t

6.86 (.270)
6.35 (.250)

o

I.

'8.89 (.350)
8.38 (.330)

~

CM

- -Vo = 2.0 V

1\

15° MAX
0.36 (.014)

Vo

=0.8 V (MAX,)

VOL------~··

CML

--.--==~gl 0.20 (.008)
---I

7.62
(.300)
REF

i+--=

1.78 (.070) REF

C2046

".L
1

Fig. 19. Common Mods
Rejection Waveforms

INPUT I I

Vee II
BUS I I

I ,INPUT
I I GND
BUS

OUTPUT

I

GND
BUS

I
I

II

DATA
IN

0.41 (.016)

(MIN~)

OUTPUT

Vee
BUS

DATA
OUT

C2090
DIMENSIONS IN mm (INCHES)

!,

II

Fig. 20. Suggested PCB Lay-out

C2027

NOTES
1. The Vcca and VCCI supply voltages to the device must each be bypassed by a 0.1 Pof capacitor or larger. This can be either
a ceramic or solid tantalum capacitor with good high frequency characteristics. Its purpose is to stabilize the operation of
the high-gain amplifiers. Failure to provide the bypass will impair the DC and switching properrias. The total lead length
between capacitor and optocoupler should not exceed 1.5mm. See Fig. 20.
2. Device considered a two-terminal device: Pins 1, 2 and 3 shorted togetnef, and Pins 4, 5.and 6 shorted together.
3. For example, assuming a VCCI of 5.0 II, and an ambient temperature of 70·C, the maximum allowable Veca is 12.1 V.

41

740L60g0/0~/10/11
APPLICATION
PRSG
100 ns BIT
INTERVAL

75!1
TERMINATION
740L6000 BUFFER

Local area data communication
systems can greatly improve their
noise immunity by including
OPTOLOGIC gates in the design.
The Optologic input amplifier
offers t~e feature of very high
input impedance that permits
their use as bridged line receivers.
The system shown above
illustrates an optically isolated
transmitter and multidrop receiver
system. The network uses a
740L6000 and buffer (Figure D) to
isolate the transmitter and drive
the 75 n coax cable. This
application uses a 1000 ft. aerial
suspension 75 n CATV coax
cable with data taps at 250 ft.
intervals. The 740L6001s function
as bridged receivers, and as many
as 30 receivers could be placed
along the line with minimal signal

C2048
degradation. The communication
cable is terminated with a single
75 n load at the far end of
the line.
Signal ql!ality "Eye Pattern" is
shown in Figures A, Band C witr
a 10MBaud NRZ Psuedo-Random
Sequence(PRS). Traces 1-3 in
Figure A describes the transmitter
section. Traces 4-7 in Figure B
show the output of the four
Optologic briqged terminations.
Traces 8-11 in Figure C illustrate
"Eye Patte'rn" as seen at th~

output of a 74LS04 logic gate. The
data quality is well preserved in
that only a 30% Eye closure is
seen at the receiver located 1000
ft. from the transmitter.
The data communication system
is completely optically isolated
from all of the terminal
equipments. Power for the
transmitter (Veea) and
receivers (Veel) is taken from
an isolated power su'pply and
distributed through a drain or
messenger wire.

OPTOLOGIC
OUTPUT
740L6001

74LS04

PASG4+F

250 FT

250 FT.

8

OPTOLOGIC
DRIVER
740LBOOO

500FT.

500 FT.

9

6

750 FT. 10

BUFFER
OUTPUT

1000 FT. 7

1000 FT 11

750 FT

4

VERTICAL= 2 v/OIV

VERTICAL:. 2 VIOl V

Figure A

FigureB

NOTES
- All Optologic Gate Input and Output Amplifiers Bypassed With 0.1 ,.,.F Capacitors
- PRSG = Pseudo Random Sequence Generator
- 1 to 11 Refer To Testpoints; See Waveforms on Figs. A, Band C

ALL DIODES

lN6283
C2047

Figure D Buffer

42

DESCRIPTION

PACKAGE DIMENSIONS

t

6.86 (.270)
6.35 (.250)

o

I.

0.36 (.014)

=-===''"It""11 0.20 (.008)

~

18.89 (.350)
8.38 (.330)

15' MAX

~t----"'-L

7.62
(.300)
REF

1.78 (.070) REF

T

I

I

I

I

I
I

I

I

--II0.56 (.022)
0.41 (.016)

J: I
:
I

FEATURES
•
•
•

1.78 (.070) TYP

I=r-'=~,...;,t::!

The CNX 3X is a phototransistor-type optically
coupled isolator. An infrared emitting diode manufactured from specially grown gallium arsenide is
selectively coupled with an NPN silicon phototransistor. The device is supplied in a standard plastic
six-pin dual-in-line package.

t

3.94 (.155) t 4.95 195)
3.68 (.145) I t MAX

I

t 3.56 (.140) 0.~1 (.020)

,U3.o5 (.120)

MIN

1-1.27 (.050)
C2090
DIMENSIONS IN mm (INCHES)

High isolation voltage
4400V DC 1 min
Minimum saturation current transfer ratio of
CNX35-40%
Underwriters Laboratory (UL) recognized File
#E50151

APPLICATIONS
•
•
•
•
•

Power supply regulators
Digital logic inputs
Microprocessor inputs
Applicance sensor systems
Industrial controls

Equivalent Circuit

ABSOLUTE MAXIMUM RATINGS (TA =25°C Unless Otherwise Specified)
TOTAL PACKAGE

INPUT DIODE

Storage temperature . . . . . . • . • . . . . . . • • • .. -55° 0 to 150° 0
Operating temperature ••...••...••..•... -55°0 to 100°0
Lead temperature
(Soldering, 10 sec) .•••..•......•.....••••...•.. 260°0
Total package power dissipation at 25°0
(LED plus detector) ......................... 260 mlW
Derate linearly from 25° 0 ..•••....•.....•.•• 3.5 mWr 0

Forward DO current .....•...•..••••.••.••.•••..• 100 mA
Reverse voltage ••.••.•••.•••.••••••..•••.••..•••••. 6 V
Peak forward current
(1,.s pulse, 300 pps) .••..••..•...•..•....••..•••• 3.0 A
Power dissipation 25° 0 ambient •..••.••.•••••••.. 150 mV
Derate linearly from 25°0 •.•.•••••..••.•...• 1.8mWrO

OUTPUT TRANSISTOR
Power dissipation at 25°0 •..................... 150 mW
Derate linearly from 25° 0 •••••••••••••.•.•. 2.67 mWr 0
VCEO ....•.•...••...••••....•...•..•.••.•••••••••• 30V
Vcsa .....................•.............•........ 70V
VECO •...........•...••..•••.••.••...••••••••••••.• 7V
Collector Ourrent (continuous) .••.••.•••.••..•••. 100 mA

43

eNX35
ELECTRO-OPTICAL CHARACTERISTICS (TA = 25°C Unless Otherwise Specified)
TRANSFER CHARACTERISTICS
CHARACTERISTIC

SYMBOL

Current Transfer Ratio,
collector to emitter

CTR

40

ICEl

150

MIN.

TYP.

MAX.

160

ICE2

UNITS

%

IF = 10 mA, VCE = 0.4 V

".A

TA < 70DC, IF = 2 mA,
VCE = 0.4 V
TA < 70 DC, VF = 0.8 V,
VCE = 15 V

15

".A

.40

V

200

nA

Working voltage = 1500 Voc
Vcc = 10V,IF =0. see Fig. 16

100

".A

Working voltage = 1500 Voc
Vcc = 10 V. IF = O. T = 70DC
See Fig.16

0

c
Saturation voltage
Collector cut-oil
current (dark)

C!!
~CI)

J:w

VCE (SAT)

0.1

ICEW

TEST CONDITIONS

IF = 10 mA; Ic = 4 mA

Non-saturated
Turn-on
Turn-off time

ton
toff

2
2

Non-saturated
Turn-on
Turn-off time

ton
toft

300
300

Isolation voltage

VI SO

4400

VOC RMS

Relative humidity oS 50%
11-0 oS 10 ".A. 1 minute

VISO

3734

VAcRMS

Relative humidity oS 50%
11-0 oS 10 ".A, 1 second

Isolation resistance

Rlso

10"

Isolation capacitance

CISO

".s
".s

f

(VCE = 10 V. ICE = 2 mAo
RL =10011)
See Fig. 18

0::;;

1--

ilCI)

ns}
ns

Z

0

....~

0

~

ohms
0.5

pF

INDIVIDUAL COMPONENT
CHARACTERISTIC
Forward voltage

w

0

I-

Reverse voltage

VR

II.

Junction capacitance
Reverse leakage current

Q
::J

~

II:

0

I-

CI)

iii

z

<
II:

lI-

::J
II.

I-

::J

0

VI-O

=50 ".A,

=500 VDC

1= 1 MHz

TERISTICS

TYP.

MAX.

UNITS

1.1

1.50

V

TEST CONDITIONS
IF = 10 mA

mVlDC

-1.8
25

V

IR = 10".A

CJ

50
65

pF
pF

VF =0 V, I = 1 MHz
VF = 1 V, I = 1 MHz

IR

0.35

".A

VR

Breakdown voltage
Collector to emitter
Collector to base
Emitter to collector

BVCEO
BVCBO
BVECO

Leakage current
Collector to emitter
Collector to base

ICEO
ICBO

Capacitance
Collector to emitter
Collector to base
Emitter to base

MIN.

VF

Forward voltage temp
coefficient

c

44

SYMBOL

(Vcs =10 V. ICB
RL = 100 ll)
See Fig. 18

3.0

30
70
7

10

45
130
10
5

2
20
10

50
20

=3.0V

V
V
V

Ic =1.0 mA, IF
Ic =10Jl.A
IE = 100 ".A, IF

=0

nA
nA

VCE= 10V, IF=O
VCB = 10 V, IF = 0

pF
pF
pF

VCE = 10, I = 1 MHz
VCB = 5, I = 1 MHz
VEB = O. I = 1 MHz

=0

CNX35
ELECTRICAL CHARACTERISTIC CURVES (TA = 25° C Unless Otherwise Specified)
100
60
40

100

20

I

I

2.0

/ / j

1.0
.6
.4
.2

.§.
!:

20

2

rlill
'/

10

I

/

8

u+

.8

.9

/1/

1.0

1.1 1.2 1.3
VF-(Vo'ts)

1.4 1.5
C1285

0102

60

--

16

~

25/lA

i-"

:;t 12
.§ 10
I

5:

2

4 6 10

2
o

15/lA_

>"
m

i-"

;;

S

1:i

1

5:
50

~~

110

'">-

"

~::;

"~

90

C1244

z

50

120
I 110

,

~ 100
N

::;

"~

16mA--,

I

90

10,000

1.000

iii.
f

~

~

10

80

-50

+100

-25

I----\----+----+----+----l

.7
.6

1----1--+--+--+--1

;; .5

1_--+---+----+----+--7'1

~

1---+----1-

.4

1

" ""

+25

+50

+75

~

.3

~

.2

1-'!$p;."E_"""f-----+-

.1

+100

~

__- L__
+25

~

____

+50

~

1

;;
-"

;;;

~ O.ll-----7''f------,

"

___ • tr

1\',

,tpDIHL'-

\\

~RBE=100Kn r------ Vec = 5 V
RL"'2.7Kn

W,

''''

-"

',:...

1

w

~ ...' -

;::

U'

OOIL_~

____L_______L_____

.......

,~

.01 17":..,,---f-7~£:.--I_----___l

.

UNSATURATED AT _

~ RBE=50Kn

RBE = OPEN

~

~

+100

15

13

1

__

+75

C1248

10~------+--------r--~~~

r--

~

Fig. 9. Col/ector to Emitter
Saturation Voltage vs. Temperature

0

r--

__

-25

V~E

1'--15 ~_
-IOV_
....... -5 V

10Mn
C1246

...8
I.°EEE~~

VeE = 5 V

Fig. 8. Current Transfer Ratio
(unsaturated) vs. Temperature

r-~:30V-20V- r--

1Mn

Fig. 6. Saturated CTR vs.
Base to Emitter Resistance

IOOr-------r-------r-------,
~

100Kn
RBE - (n)

C1247

C1259

IF

10Kn

I Kn

C1245

~

~

'

TEMP - I"e)

5.0

lc=20mA

'\

'"tJ

Fig. 7. Current Transfer Ratio
(saturated) vs. Temperature

I

,) r""

~

'50

0

2.0

,<:IC =2mA

70

100,000

1.0
.6
.4

Fig. 5. Col/ector to Emitter Breakdown
Voltage vs. Base to Emitter Resistance

-tc=16mA

30
-50

100

1.0

130

=

IF = 4mA

.10

ABE -IMnl

VeE =04V

Ie

0

10
6.0
4.0
2.0

.01
.5

.2

'~~

70

,.

C1243

.02

5.0

'"

~

9 10

8

.04

Fig. 4. Col/ector Current vs.
Col/ector to Emitter Voltage
130

7

6

.06

45
VeE -V

5

.2

~-

5.01J.A

20

4

IF - (mA)

2.SpA

1.0

3

Fig. 3. Col/ector Current vs.
Forward Current

1\

lO;lA

1.2.3.4.5 .7

2

IC-1 rnA

-0

~
1

1

C1242

"3 55

20j.lA

~

p-

~

o

20 406010

1\

I-- I-"""

14

V

4

Fig. 2. Col/ector Current vs.
Col/ector to Emitter Voltage

I,
30j./A_

18

10

04

VeE - (Volts)

Fig. 1. Forward Voltage vs.
Forward Current
20

I

/

1

IA"
Vv~E .'4V

/.

6

/
/

IV

0

IF =2mA

1/ /

.1

I

I

4

IF =SmA

60
40

VVCE =5V

6

IF = lOrnA

'/

10

.Y

8

~~".1

20

:t

~'"~

. 1 Mn
Cl

..

20pf

C1625

Fig. 2. Switching Time Tsst Circuit

52

CONDITIONS

CNY65
TYPICAL ELECTRICAL CHARACTERISTIC CURVES (25 0 C Free Air Temperature Unless Otherwise Specified)

I

IIII
. VCI

'5V

1.0

~

100

:>

~ 50

T

a::

0.8

1=

t;

~ 0.6

.~~?~teri~g limit

0

~~L
~

j;-."

5

iii
5

0.1
C1626

J~

~

"II

V·
'F -(mAl

I

0.1
10
'c-(mA)

50
C1627

Fig. 4. VCE (SAT) vo.
Collector Current

'F = 20mA
11'Om~

~

~

rl

2m1

'/

k"
lmA

0.5

IL

r/
0.1

10
VCE (V)

C1628

Fig. 5. Collector Current
VO. Collector Voltage

NOTES
1. Creeping current resistance: Group //I (KB>600-KC>600) according to VDE 0110b/2.79 table 3 and DIN 53
480/VDE 0303 part 1/10.76.
2. According to VDE test certificate dated 3/19/82.
3. Related to standard climate 23/50 DIN 50 014.

53

54

PACKAGE DIMENSIONS

DESCRIPTION

~

The H11A1 is a phototransistor-type optically
coupled isolator. An infrared emitting diode
manufactured from specially grown gallium arsenide
is selectively coupled with an NPN silicon
phototransistor in a standard plastic six-pin dual-inline package.

t

6.86 (.270)
6.35 (.250)

~

I+-

:

I

I

I
I

I
I

---ll0.56 (.022)
0.41 (.016)

-L

1

J: I
I

FEATURES
•

1.18 (.070) TYP

•
•

3.94 (.155) 4.95 {.195}
3.68 (.145) I j MAX

•

I

:

i

r--=
1.78 (.070) REF

7.62
(.300)
REF

8.38 (.330)

-

0.36 (.014)

-'-------="'rt'"11 0.20 (.008)

~'8.89 (.350~ ~

2.54(.100)TYP";

15' MAX

I

I

! 3.56 (.140) O.J, (.020)
,L13.05 (.120)
MIN
1-,.27 (.050)
C2090
DIMENSIONS IN mm (INCHES)

High isolation voltage
5300 VAC RMS - 5 seconds
7500 VAC PEAK - 5 seconds
Minimum current transfer ratio of 50%
Underwriters Laboratory (UL) recognized
File #E50151
VDE approval Certificate 39 419 for H11A1Z

APPLICATIONS
•
•
•
•
•

Power supply regulators
Digital logic inputs
Microprocessor inputs
Appliance sensor systems
Industrial controls

Equivalent Circuit

ABSOLUTE MAXIMUM RATINGS (TA = 25°C Unless Otherwise Specified)
TOTAL PACKAGE

INPUT DIODE

Storage temperature ..................... -55° C to 150° C
Operating temperature ................... -55° C to 100° C
Lead temperature
(Soldering, 10 sec) ............................ 260° C
Total package power dissipation at 25°C
(LED plus detector) ......................... , 260 mW
Derate linearly from 25° C .................... 3.5 mW;o C

Forward DC current ........ ,' ..................... 60 rnA
Reverse voltage ..................................... 6 V
Peak forward current
(1 1'5 pulse, 300 pps) ............................ 3.0 A
Power dissipation 25° C ambient ................. 100 mW
Derate linearly from 25°C .................... 1.8 mW/oC
OUTPUT TRANSISTOR
Power dissipation at 25° C ....................... 150 mW
Derate linearly from 25°C ................... 2.67 mW/oC
VCEO ............................................. 30 V
Vcso ............................................. 70V
VECO ••..••.•••••••..••••........••..•••..•••..•.... 7 V

Collector current (continuous) ............•..... 100 rnA

55

HllAl HllA1Z
ELECTRO-OPTICAL CHARACTERISTICS (TA = 25°C Unless Otherwise Specified)

TRANSFER CHARACTERISTICS
CHARACTERISTIC

TYP.

MAX.

UNITS

VCEISATI

0.1

0.4

V

IF = 10 mA, Ic = 0.5 mA

Ion
toft

2
2

,.,S
,.,S

IVCE = V, ICE 2 mA,
RL = 100 III
See Figure 9

Non-saturated
Turn-on time
Turn-off time

ton
toff

300
300

ns
ns

I VCB = 10 V, ICB 50 ,.,A,
RL= 100 III
See Figure 9

Isolation voltage

Visa

Current Transfer Ratio
collector to emitter

U
0

Saturation voltage

Cl

Z

-(J)

Iw
u::;;
f-§:f(J)

Z
0

~-'

0

!!!

Non-saturated
Turn-on time
Turn-off time

Isolation resistance
Isolation capacitance

SYMBOL

MIN.

CTR

50

Rlso

IF = 10 mA, VCE = 10 V

5300

VAC RMS

7500

VAC PEAK

Relative humidity
1,-0 S 10 ,.,A, 5
Relative humidity
11-0 S 10 ,.,A, 5
VI-O ~ 500 VDC
f ~ 1 MHz

ohms
pF

10"
0.5

elso

TEST CONDITIONS

S 50%.
seconds
S 50%
seconds

INDIVIDUAL COMPONENT CHARACTERISTICS
CHARACTERISTIC

f-W
:JO
11.0
z-0

a:
f-O
:Jfa.!!!
f-(J)
:JZ

0<
a:
f-

56

SYMBOL

Forward voltage
Forward voltage temperature
coefficient
Reverse VOltage
Junction capacitance

VF

Reverse leakage current

IA

Breakdown voltage
Collector to emitter
Collector to base
Emitter to collector
Leakage current
Collector to emitter
Collector to base
Capacitance
Collector to emitter
Collector to base
Em itler to base

VA
CJ

BVCEO
BVCBO
BVECO
ICEO
ICBO

MIN.

3.0

30
70
7

TYP.

MAX.

UNITS

1.1

1.50

V

-1.8
25
50
65
0.35

mVrC
V
pF
pF
10

45
130
10
5

8
20
10

50
20

,.,A

TEST CONDITIONS
IF

~

10 mA

IA ~ 10,.,A
VF ~ 0 V, f
VF ~ 1 V, f
VA ~ 3.0 V

= 1 MHz
~

1 MHz

V
V
V

Ic = 10 mA, IF - 0
Ic = 100 ,.,A, IF = 0
IE = 100 ,.,A, IF = 0

nA
nA

VCE
VCB

pF
pF
pF

VCE
VCB
VEB

~

10V, IF
V, IF

= 10
~

~

=

0, f
5, f
0, f

~

~
~

~
~

0
0

1 MHz
1 MHz
1 MHz

H11A1 H11A1Z
ELECTRICAL CHARACTERISTIC CURVES (TA = 25°C Unless Otherwise Specified)
____
~" 1.25

100
60
40

-

~

75°C/25°C; -25°C

20

I

10
6.0
E 4.0

«
T
.!!, 2.0

0

rI 1.0

......9I
~

I I

0.75

U

fil

I / I

0.50

I

N

::J

«
~

J / /
.2
/
/ /
.1
.8

.9

1.0

/

0.25

a

1.1 1.2 1.3
VF-(Volts)

a

1.4 1.5
C1285

5

lJ
fil
N
::J

«

::<
a:
oz

_=_20-+m_n~21\o\-I-+-d---+_t--

V:~·~~~

0.8 f---'l---,/.t"I~
/'+--+-+--+-"1101-----1

15

20
C1679

1.0

L

...-:--..~Z 0.90 I

/

f---hF-+--+-+--+-+--+--I

F""'"

§

0.80
m
a:
U ~ 0.70
a:

a:

-....9-

0.60

1=U

0.50

~
«
::<
a:
~

0.40
0.30
0.20

~

llU

Vee = 5V

~

I-

fil

/ll
0.6

10
IF - (mA)

Fig. 2. Normalized Current
Transfer Ratio vs.
Forward Current

1.2 ,---,--,----.,--,----.,--,----.,---,
IF = 10mA-~
VeE = 0.3V
------I
"
IF = 5mAVee = 5.0V
F
1.0 f-I-I

1

'"

oZ

Fig. 1. Forward Voltage vs.
Forward Current

JJ

--....

V

UI-

I II

/

1.0
.6
.4

Vee = 0.3V
Vee = 5.0V

E

~

L ' / ./

20~l

V

I

[\IF =
IF = 10mA
IF =5mA

1/

I

J

II
II

0.10

o

0.4 L - - L _ - ' - - - - ' - _ . 1 - - ' - _ . 1 - - L - - - '
-75 -50 -25 0 +25 +50 +75 +100+125
TA - (OC)
C1680

10K

lOOK
RBe - BASE RESISTANCE -

1M
(0)
CI681

Fig. 3. Normalized Current
Transfer Ratio vs.
Ambient Temperature

Fig. 4. CTR vs. RaE

1.00

1.2

----~l';ffi 0.90 1/
'"
U!=a: 0.70 f'- r--...
w

III

J.;

Vee = 0.3V

cl Ii 0.80

I-

-....9-

0.60

1=
U

0.50

ow

0.40

:!

0.30

::<
a:

0.20

«

~

III

0.10

o

-;--,
z
m W

I

I

=
.9

0.9

0

w

::J

j

/

0.8
Vee = 10V
Ie = 2mA
RL = 1000

«

I

::<
a:
0

0.7

J~te F~illl

Z

I

0.6

lOOK
RBe -

""''''1

~1.0

N

10K

1.1

a: ..

~~

IF= 20mA
IF = 10mA
IF = 5mA

BASE RESISTANCE -

1M
(0)
CI682

Fig. 5. C TR vs. RaE

1~

lOOK

1M

RBe - BASE RESISTANCE -

~

(0)

CI683
Fig. 6. Normalized toll vs. RaE

57

HllAl HllA1Z
ELECTRICAL CHARACTERISTIC CURVES (TA = 25°C Unless Otherwise Specified)

1.2

1.2

-----a:WI

Z

~

gg
8
I

=
=

Vee 10V
RL 1000
(See Fig. 10)

[\

m w

1\

1.1

\ "-

c

..9

aw

N

::::;
<{

1.0

~

cr:

Vee = 10V
Ie = 2mA
RL = 100n
(See Fi~~

0

z
0.9
1UK
RBE -

100K
1M
BASE RESISTANCE -

0.4

co

5

Ifll

C1684
Fig. 7. Normalized ton vs. RBE

Vee =

o

1'-...

10
le-(mA)

15

C1685
Fig. 8. Normalized Switching
Time vs. Col/ector Current

10V

OUTPUT

PULSE WIDTH = 100 J-IS
DUTY CYCLE = 10%

INPUT

OV
OUTPUT .....~*"
I

I
10%

I

I I I
I
- t ton...-t toll I C1294

C1296A

Fig. 9. Switching Time Test
Circuit and Waveform

58

20

PRELIMINARY DATA SHEET

H11AA1 H11AA3
H11AA2 H11AA4
PACKAGE DIMENSIONS

DESCRIPTION
The Hl1AAX family of devices has two GaAs
emitters connected in inverse parallel driving a
single silicon phototransistor output.

U

6.86 (.270)
6.35 (.250)

0.36 (.014)

.1-.-=--'+--;1 0.20 (.008)

~18.89 (.350~~

~~-L

7.62
(.300)
REF

8.38 (.330)

1.78 (.070) REF

T

1.78 (.070) TVP

I

1

1

1

1

1

I

1

--II0.56 (.022)
0.41 (.016)

3.94 (.1551 t 4.95 h95)
:
3.68 (.1451 j t MAX
I
I
I t 3.56 (.140) o.ll (.020)
,U3.05 (.1201
MIN

J:

FEATURES
• Bi-polar emitter input
• Built-in reverse polarity input protection
• UL recognized (File #50151)

APPLICATIONS
• AC line monitor
• Unknown polarity DC sensor

1-1.27 (.050)
C2090
DIMENSIONS IN mm (INCHES)

C2089
Equivalent Circuit

ABSOLUTE MAXIMUM RATINGS
TOTAL PACKAGE
Storage temperature ..........•.... -55°C to 150°C
Operating temperature ...•...•..... -55°C to 100°C
Lead temperature (soldering, 10 sec.) ....... 260°C
INPUT DIODE
Forward current ...................... 60 mA RMS

Peak forward current (IllS pulse, 300 pps) ... ±1.0 A
Power dissipation ............•..•..•...• 100 mW
Derate linearly from 25°C ............. 1.33 mW/oC
OUTPUT TRANSISTOR
Power dissipation ............•..•.•..... 300 mW
Derate linearly from 25°C •............. 4.0 mW/oC

59

HllAAl HllAA2 HllAA3 HllAA4
ISOLATION AND INSOLATION (TA = 25°C Unless Otherwise Specified)
CHARACTERISTIC

SYMBOL

MIN.

TYP.

MAX.

UNITS

Package capacitance
input/output

CI·O

Withstand insulation
test voltage

VISO

2500

VAC(RMS)

Insulation resistance

Rlso

10"

Ohms

0.7

TEST CONDITIONS

pF

VI-O=O.f: 1 MHz
Relative humidity::; 50%
11•0 ::; 10 IJ.A 1 minute
VI_O: 500 V

INDIVIDUAL COMPONENT CHARACTERISTICS (TA = 25°C Unless Otherwise Specified)
CHARACTERISTIC

SYMBOL

DEVICE

TYP.

MAX.

UNITS

VF
VF

H11AA1,3,4
H11AA2

1.3

1.5
1.8

V
V

.:!..VF/.:!..TA

ALL

-1.9

mV/oC

~ Junction capacitance

CJ

ALL

18

pF

VF : 0 V, f: 1 MHz

a: Breakdown voltage
Collector to emitter
0
ICollector to base
II)
iii Emitter to base
Z

BVCEO
BVcso
BVESO

ALL

V
V
V

Ic: 10 mA, IF: 0
Ic: 100 IJ.A, IF: 0
Ic : 100/lA, IF : 0

ICEO
ICEO

H11AA1,3,4
H11AA2

nA
nA

VCE : 10 V, IF : 0
VCE : 10 V, IF: 0

pF
pF
pF

VCE : 0, f : 1 MHz
Vcs : 0, f : 1 MHz
VES : 0, f: 1 MHz

w
C

Q

Forward voltage

C
Forward voltage
Icoefficient
::I

MIN.

TEST CONDITIONS
IF :±10mA
IF :±10mA
IF: 2 mA

D.

o

5300

VAcRMS

*V.~o

7500

VAC PEAK

Isolation resistance

Rl!:.o

10"

Isolation capacitance

C'SO

Isolation Voltage

0

1=

«

..J

0

!!!

ohms
0.5

pF

Relative humidityoS50%
11-0:0 10 MA, 5 seconds
Relative humidity s 50%
11-0'" 10 MA.5 seconds
V, 0 = 500 VDC
f= 1 MHz

'Additional specifIcatIon for General Instrument devIces.

INDIVIDUAL COMPONENT CHARACTERISTICS
CHARACTERISTIC
Forward voltage

SYMBOL

0

Forward voltage temp.
coefficient

is

Reverse breakdown voltage

VA

Junction capacItance

CJ

Reverse leakage current

IA

UJ

0

I-

~

C1.

MIN.

VF

II:

0

I1/1

iii
Z

<
II:

II~

IL
I-

~

0

BVCBO

Emitter to base

BVEBO

H11D3

62

UNITS

1.50

V

TEST CONDITIONS
IF = 10 rnA

mV/oC

25

V

50
65
0.35

pF
pF
MA

VF=OV,f=IMHz
VF = 1 V, f = 1 MHz
VA = 3.0 V

300
200

V
V

Ic = 1 rnA; IF = 0,
RBE = 1 meg

300
200

V
V

Ic = 100MA; IF = 0

V

IE = 100MA, IF = 0

100
250

nA
MA

RBE = 1 meg.
VCE = 200V; IF = 0; TA=25° C
VCE = 200V; IF=O; TA= 100°C

100
250

nA
MA

VCE = l00V; IF = 0; TA=25° C
VCE= 100V; IF=0;TA=100° C

10

IA = 10 M A

BVCEH

Collector to base
H11Dl, Hl1D2,
H11D3
Leakage current
Collector to emiller
H11Dl, H11D2,

MAX.

1.1
-1.8
3.0

~

Breakdown voltage
Collector to emitter
Hl1Dl, Hl1D2,
Hl1D3

TYP.

5

7

ICER

ICEA

HllDl/1Z HllD2/2Z HllD3/3Z
TYPICAL CHARACTERISTICS

!zUJ

10

2.4

UJ

2.2
2.0
1.8

a:
a:

:::J
U

:::J
U

~

I-

~

I-

Z

a:
a:

1.0

I-

:::J

1.6

:::J

I-

"

0

1.4
1.2

I-

"-

o

:::J

UJ

NORMALIZED TO:
VeE-10 VOLTS
IF-1OmA

N

~

::;
a:

0.1

RSE-1 meg

o
z
I
ffi
!d 0.0 1

III

IIII

2
46810
20 406080100
IF-INPUT CURRENT-mA
C1770

"N
::;

1.0
.8
.6

0

.4

UJ

:::;

«

a:

z
I
ffi

1000
E

~

a:
a:

10

zUJ

/

:::J

~

1.0

~

O. 1

IF=20mA

t;:

..,..

II

IF-SmA

II
111
-55 -40 -20

0

+20 +40 +60 +80 +100

TA-AMBIENT TEMPERATURE-'C
C1771

Fig. 2. Output Current vs. Temperature

IF=10mA

I-

~

I-

:::J

o

fil

N

:::;

~

l

,....

IF-1OmA

u

/

a:

a:

-

I
I

I 10~~1I~1I~~1I~;;~~;;
~

, ,,'

100

RBE=1MIl. TA=2S'C

'\l
I

.2

!d

Fig. 1. Output Current vs. Input Current

«

N~~~~~1~6~T~~;F=10mA -

\

.01
.001

o

/

I

~
z
I
ffi
!d

1.0
1.5
2.0
VF-FORWARD VOLTAGE-VOLTS

.5

.1

«
::;

.01~~~~WA~LUwm-w~~~~

.01
.1
1
10
100
1000
VeE-COLLECTOR TO EMITTER VOLTAGE-VOLTS
C1773

C1772

Fig. 3. Input Characteristics

IUJ

:::J

u

"a:«

""
:::;

UJ
N

0

I

ffi

10'

~

800

I"

700 VeB=10V
IF=50mA

~600
:::J

~500

I

P-

VeB=200V
IF=10mA

~400 VeB=10V ~
a:

10'

a:
Z

VeE-200V
VeE-100V
VCE-50V

10'

«
::;

.

«

10'

Z

a:
a: 10'

Fig. 4. Output Characteristics

NORMALIZED TO: ~
VeE-200 VOLTS
IF=O
RBE-1meg _~
TA-+25°C

!d 10'

+50
+75
+125
+25
+100
TA-AMBIENT TEMPERATURE-' C
C1774

Fig. 5. Normalized Dark Current VS. Temperature

~300
:J

200

Y 100
f.l

!d

I

IF"'10mA

~

"'

......

VCB=10V
IF=5mA

~ -"".
1::': ~ ~~ ~
I

..........

~-

-50 -25 0 +25 +50 +75 +100
TA-AMBIENT TEMPERATURE_oC
C1775

Fig. 6. Col/ector Base Current vs. Temperature

63

64

MCAllGl (H11Gl)
MCAllG2 (HllG2)
MCAllG3 (HllG3)
PACKAGE DIMENSIONS

CJ

DESCRIPTION

I

6.86 (.270)
6.35 (.250)

0.36 (.014)

-'--------="'"'li-ll 0.20 (.008)

~18.89 (.350~~

~

7.62
(.300)
REF

8.38 (.330)

f----'=

1.78 (.070) REF

-L
"'1

I
I
I

I
I

•
•

I

I

---110.56 (.022)
0.41 (.016)

3.94 (.155) I 4.951.195)
3.68 (.145) j j MAX

:

J:

I

I

FEATURES
•

1.78 (.070) TYP

i

The MCA11G1 and MCA11G2 are photodarlingtontype optically coupled optoisolators. Both devices
have a gallium arsenide infrared emitting diode
coupled with a silicon darlington connected
phototransitor which has an integral base-emitter
resistor to optimize elevated temperature
characteristics.

I

13.56 (.140) O.JI (.020)
,U3.05 (.120)
MIN

•
•
•

High BVCEO
Minimum 100V for MCA11G1
Minimum 80V for MCA11G2
Pin for pin replacementforH11G1, H11G2, H11G3
High sensitivity to low input current-Minimum
500 percent CTR at IF = 1 mA
High isolation voltage
2500 VAC RMS-Steady State Rating
Low leakage current at elevated temperature
(maximum 100 p.A at 80°C).
Underwriters Laboratory (UL) recognized
File #50151

1-1.27 (.050)
C2090
DIMENSIONS IN mm (INCHES)

APPLICATIONS
•
•
•
•
•

CMOS logic interface
Telephone ring detector
Low input TTL interface
Power supply isolation
Replace pulse transformer

Equivalent Circuit

ABSOLUTE MAXIMUM RATINGS

TOTAL PACKAGE

INPUT DIODE

Storage temperature .......•.... -55°C to 150°C
Operating temperature ........... -55° C to 100° C
Lead temperature
(Soldering, 10 sec.) ...................... 260°C
Total package power dissipation @ 25° C
(LED plus detector) ................... 260 mW
Derate linearly from 25°C ............ 3.5 mW/oC
Isolation voltage ................... 2.5 kV RMS

Forward DC current ....................• 60 mA
Reverse voltage ............................ 6 V
Peak forward current (1 p's pulse, 300 pps) .. 3.0 A
Power dissipation 25° C ambient ........ 100 mW
Derate linearly from 25° C ............ 1.8 mW/o C

OUTPUT TRANSISTOR
Power dissipation @ 25°C ............. 200 mW
Derate linearly from 25° C ........... 2.67 mW/o C
Collector to emitter voltage
MCA11G1 ............................. 100 V
MCA11G2 .............................. 80 V
MCA11G3 .............................. 55 V

65

MCA11G1 MCA11G2 MCA11G3 (H11G1 H11G2 H11G3)
ELECTRO-OPTICAL CHARACTERISTICS (25°C Temperature Unless Otherwise Specified)

TRANSFER CHARACTERISTICS
CHARACTERISTIC
Current Transfer Ratio
collector to emitter
U

0

SYMBOL

TYP.

MAX.

TEST CONDITIONS

UNITS

CTR

MCA11G1I2
MCA11G1I3
MCA11G3
Saturation voltage

MIN.

%

IF = 10 mA; VCE = 1 V
IF = 1 mA; VCE = 5 V
IF = 1 mA; VCE = 5 V

V
V

IF
IF

IlS

RL = 100.11; IF = 10mA
VCE = 5V_
Pulse width';; 300 "sec,
f.;; 30 Hz

%
%

1000
500
200
VCE(SAT)

0.85
0.75

ton
toff

5
100

1.0
1.0

= 16 mA; Ic = 50 rnA
= 1 mA; Ic = 1 mA

el

~Ul

J:W

u::;:
1-3:1-

Turn-on time

Turn·off time

IlS

Ul

Surge isolation

Visa

Steady state isolation

Visa

I solation resistance

Rlso

Isolation capacitance

Clso

2

0
j:


o

0
I-

VI '>

E .100

\
1.0

\

1
'I\RL = 10 n ~OO n

::::>

\

Q.

~

V

.010

..!:!:

V' V"
-I-""
O°C 20°C 40°C

.001

60°C

80°C

100°C

TA - (OC)

Fig. 5. Dark Current vs.
Temperature

68

NORMALIZED
TO:IF = 10 mA
RL = 100 n
VeE = 5 V

0.1
0.1

I'.

~

1.0
tON

C1707

1K

+ tOFF

10

NORMALIZED TOTAL
SWITCHING SPEED
C1708
Fig. 6. Switching Speed

MCA230
MCA231
MCA255
PACKAGE DIMENSIONS

DESCRIPTION

t

6.86 (.270)
6.35 (.250)
.L.--''''"rIC"""""i,

WMAX
0.36 (.014)
0.20 (.008)

~ ~-L

7.62
(.300)
REF

The MCA230. MCA231 and MCA255 are
photodarlington optically coupled isolators. An
infrared emitting diode coupled with a silicon
photodarlington transistor. The device is supplied
in a standard plastic six-pin dual-in-line package.

1.78 (.070) REF

1

FEATURES
•
•

1.78 (.070) TYP

I , :
I

,

,

I
I

I

J:I

--II0.56 (.022)
0.41 (.016)

•

3.94 (.155) t 4.951.,95)
3.68(.145)1 t MAX

I

I

t 3.56 (.140) O.J, (.020)

U3.05 (.120)

MIN

1-,.27 (.050)

High current transfer ratio
MCA230/255 - 100% min.
MCA231 I
- 200% min.
Underwriters Laboratory (UL) recognized file
#E50151
55 volt BVCEO for MCA255

APPLICATIONS
•
•
•
•

C2090
DIMENSIONS IN mm (INCHES)
•

Replace reed relays for 50 mAo 55 V DC loads
Replace pulse transformers
Form multiple contact. NO/NC relays
Useful for telephone lines. SCR triggers. hospital
monitoring systems. airborne systems. remote
data gathering systems and remote control
systems.
Use a low-current alarm monitor for battery
powered supplies.

Equivalent Circuit

ABSOLUTE MAXIMUM RATINGS (TA = 25°C Unless Otherwise Specified)

TOTAL PACKAGE
Storage temperature ...•..•......•..•.• -55° C to 150· C
Operating temperatue .•.••.••......... _55· C to 100· C
Lead temperature (soldering. 10 sec.) ...•......•. 260· C
Total package power dissipation at 25· C
(LED plus detector) ....•...•..•..•...•..... 260 mW
Derate linearly from 25·C .•...•.........•.• 3.5 mWrC

DETECTOR
Power dissipation •..........••......•.•...•.. 210 mW
Derate linearly from 25·C .•.•...•....•..... 2.8 mWrC
Collector-emitter breakdown voltage (BVCEO)
MCA230 .•••.•••.•..•........••...•.•.....•••. 30V
MCA231 .•••..•...•........•.•.•...•....•...•. 30V
MCA255 •..•....•...•.•....•........••.••••.•. 55V

Collector-base breakdown voltage (BVCBO)
MCA230 ....•.•.....••..•.••...•.••.•••••••.•• 30V
MCA231 •.•••••..•••.••••••.•.•.•.•••.•••.•.•• 30V
MCA255 •..•..••...•...•.••.•.•..••.•..••••..• 55V
Emitter-collector breakdown voltage (BVeco) ••...•.• 7 V

INPUT DIODE
Forward DC Current. •••.•..•••..•.•••.••.••...• 60 rnA
Reverse voltage ••.•.•.•.•.••.••.•..••.••..•••...•• 6 V
Peak forward current (1 lIS pulse. 300 pps) •....•.•. 3.0 A
Power dissipation .•...•.••...••.••.•••••.•.•• 135 mW
Derate linearly from 25·C ..••.....•.••...•. 1.8 mWrC

69

MCA230 MCA231 MCA255
ELECTRO-OPTICAL CHARACTERISTICS (TA =25°C Unless Otherwise Specified)
TRANSFER CHARACTERISTICS
CHARACTERISTIC

U
Q

DC current transfer ratio
(Collector-emitter)
MCA230, MCA255
MCA231
Saturation voltage
MCA230, MCA255
MCA231

SYMBOL

MIN.

CTR
CTR

100
200

TYP.

MAX.

1.0
1.0
1.0
1.2

VCE(SAT)
VCE(SAT)

UNITS

TEST CONDITIONS

%
%

IF = 10 rnA, VCE = 5 V
IF = 10 rnA, VCE = 5 V

V
V
V
V

Ie = IF = 50 rnA
Ic = 2 rnA, IF = 1 rnA
Ic = 10 rnA,lF = 5 rnA
Ic=50rnA,IF=10mA

ItS
ItS

See switching time
Test circuit (Fig. 7)

CJ

z

-w
J::::E
gi=
~

No', saturated
·rurn-on time
Turn-off time

Ioff

Surge insulation voltage

Viso

3550

Dielectric withstand test voltage

Viso

2500
3150

fsolation resistance

Riso

2250
10"

Package capacitance
(input-output)

C'SO

CHARACTERISTIC

SYMBOL

10
100

Ion


©
a:

1

~
::;;

0.9

f-

N

10

10

1= "~

25

50

TA ("C)

75

o

100

25
50
75
100
T TEMPERATURE ("C)

C17l9

125
C893

Fig. 4. Normalized CTR vs. Temperature

Fig. 5. Normalized VeE
Temperature

Fig. 6. Dark Current vs. Temperature

VS.

10V

PULSE WIDTH ~ 100 liS
DUTY CYCLE = l00f0
INPUT

OV

1
I

1

I

OUTPUT~
1
1
50%
I

I

1

1 I

1

10%

I

I

I I I
I
~""~""J­
C1294

C86.

Fig. 7. Switching Time Test Circuit

71

72

MCA2230Z
MCA2231Z
MCA2255Z
DESCRIPTION

PACKAGE DIMENSIONS

6.86 (.270)
6.35 (.250)

o

I.

0.36 (.014)

-'-----='""It"-I 0.20 (.008)

~

8.89 (.350)
8.38 (.330)

The MCA2230, MCA2231 and MCA2255
are photodarlington optically coupled
isolators. An infrared emitting diode
coupled with a silicon photodarlington
transistor. The device is supplied in a
standard plastic six-pin dual-in-line
package.

~

7.62
(.300)
REF

I+--'"

1.78 (.070) REF

-L

t

FEATURES
•

High-isolation voltage
5300 VAC RMS - 5 seconds
7500 VAC PEAK - 5 seconds
• High current transfer ratio
MCA2230
-100% min
MCA2231, 2255-500% min
• Underwriters Laboratory (UL)
recognized file #E50151
• 55 volt BVCEO for MCA2255

1.78 (.070) TYP

:

I

I

I

I

I

I

I

--11-0.S6 (.022)
0.41 (.016)

J: I
:

3.94 (.155) I 4.95 !.t95)
3.68 (.145) t j MAX

I

j

13.56 (.140) o.JI (.020)
,Ll3.o5(.120)
MIN

1-1.27 (.OSO)
C2090
DIMENSIONS IN mm (INCHES)

APPLICATIONS
•
•
•
•

•

Replace reed relays for 50 mA,
55 V DC loads
Replace pulse transformers
Form multiple contact, NO/NC relays
Useful fortelephone lines, SCR triggers,
hospital monitoring systems, airborne
systems, remote data gathering systems
and remote control systems.
Use a low-current alarm monitor for
battery powered supplies.

Equivalent Circuit

ABSOLUTE MAXIMUM RATINGS (TA= 25° C Unless Otherwise Specified)
TOTAL PACKAGE
Storage temperature •••••.•••••••• -55°C to 150°C
Operating temperature •••••••••••• -55° C to 100° C
Lead temperature (Soldering, 10 sec) ••••••• 260°C
Total package power dissipation @ 25°C
(LED plus detector) •••••••••••••••••• 260 mW
Derate linearly from 25°C ••••••••••••• 3.5 mWrC
DETECTOR
Power diSSipation @25°C ambient •••••••• 210 mW
Derate linearly from 25°C ••••••.•••••• 2.8 mW/oC
Collector-emitter breakdown voltage (BVCEO )
MCA2230 ••••••••••••.••••••••••••••• 30 V
MCA2231 •••••••••••••••••••••••••••• 30 V
MCA2255 •••••••••••••••••••••••••••• 55 V

Collector-base breakdown voltage (BVCBO )
MCA2230 •••••••••••••••••••••••••••• 30 V
MCA2231 •••••••••••••••••••••••••••• 30 V
MCA2255 ••.•••••••••••••••••••••••••••••• 55 V
Emitter-base breakdown voltage (BVEBO) ••••••••• 6 V
INPUT DIODE
Forward DC Current •••••••••••••••••••.••• 60 mA
Reverse voltage •••••••••••••••••••••••••••••• 6 V
Peak forward current (1 I'S pulse, 300 pps) • • • •• 3.0 A
Power dissipation 25°C ambient •••••••••• 135 mW
Derate linearly from 25° C ••••••••••••• 1.8 mW/o C

73

MCA2230Z MCA2231 Z MCA2255Z
ELECTRO-OPTICAL CHARACTERISTICS (T A =25° C Unless Otherwise Specified)

TRANSFER CHARACTERISTICS
CHARACTERISTIC
DC current transfer ratio
( Collector-emitter)
MCA2230
MCA2231, MCA2255
U

c

Saturation voltage
MCA2230, MCA2255
MCA2231

Cl
Z

i w
u::E

!::i=
;;:

'lJon saturated
Turn-on time
Turn-off time

SYMBOL

MIN.

CTR
CTR

100
500
200

TYP.

MAX.

UNITS

1.0
1.0
1.0
1.2

VCE{SATI
VCE{SATI

10
100

Ion
toll

TEST CONDITIONS

%
%
%

IF = 10 rnA, VCE = 5 V
IF = lOrnA, VCE = 5 V
IF = lmA, VCE = 1 V

V
V
V
V

Ic = IF = 50 rnA

/lS
/lS

See Switching Time
Test Circuit (Fig. 7)

Ic = 2 rnA, IF = 1 rnA
Ic = 10 rnA, IF = 5 rnA
Ic = 50 rnA, IF = 10 rnA

t/)

Z
0

Isolation Voltage

~

V,SO

5300

VAcRMS

Visa

7500

VAcPEAK

...J

0

!!!

I,solation resistance
Isolation capacitance

Rrso
C'SO

10

ohms
pF

11

0.5

Relative·humidity 00 50%,
' 1•0 00 10 /lA, 5 seconds
Relative humidity 00 50%,
' 1- 0 S 10 /lA, 5 seconds
VI_O = 500 VDC
f= 1 MHz

INDIVIDUAL COMPONENT CHARACTERISTICS
CHARACTERISTIC

w

Q

0

Q
I-

:J

c.

g:

II:

0

IU

w
w

IQ

I-

:J

c.

I-

:J
0

74

Forward voltage
Forward voltage temp.
coefficient
Reverse VOltage
Junction capacitance

Breakdown voltage
Collector to emitter
MCA2230
MCA2231
MCA2255
Collector to base
MCA2230
MCA2231
MCA2255
Emitter to base
Collector dark current

SYMBOL

MIN.

VF

TYP.

MAX.

1.3

1.50

-1.8
25
50

UNITS

TEST CONDITIONS

V

'F = 20 mA

mV/oC
V
pF

IR = 10 /lA
VF=OV,t= 1 MHz

VR
CJ

3.0

BV CEO
BV CEO
BV CEO

30
30
55

V
V
V

Ic = 100 /lA, IF = 0
Ie = 100/lA,IF = 0
Ic = 100 /lA, IF = 0

BV CBO
BVCBO
BVCBO
BVEBO
ICEO

30
30
55
5

V
V
V
V
nA

Ic = 10 /lA, IF = 0
Ic = 10 /lA, IF = 0
Ie = 10 /lA, IF = 0
IE'= 10 /lA, IF 0
VCE = 10 V, IF = 0

100

=

MCA2230Z MCA2231 Z MCA2255Z
ELECTRICAL CHARACTERISTIC CURVES

--:t

100
~

20

75° C

-; II

f,:'!=

25° C /_250 C

60

./
0.6
./
-905
go 0.4

/ I
1 / I

.!: 2.0
0

LO

go

o

w

/

.2

/

,:1 /

12

1.3

1.4

0.1

'n

·t

IF' 10 rnA

U

1.1

TA' 25°C
IF' 10 rnA -

0.4

6 7 8 910

Fig. 2. Normalized CTR vs. IF

r-...

/

0.5

1.3

........

1"

5
IF (rnA)

1.3

1.1

~
o
z

/

V

a:

I

I

2

1

1.5

i

I
I

Fig. 1. Forward Voltage VS.
Forward Current

U

0.6

:::;

C1285

VF (Volts)

w

o

0.2

o

z
11

0.7

03

a:

I
10

.8

~

N

~
::;

/

0.8

..$

U

/'"

/V

@J

N

.6
.4

/'

"

~~ 0.9

f-

I

4.0

-

1.0
0.9

u~ 8·~

10

e(

~1.0

/1/

/Y/I

Unless Otherwise Specified)

2.0

E

60
40

g

(TA=25°C

-50

-25

0

25

50

TA (OC)

C1718

75

o

100

25
50
75
100
T TEMPERATURE (OC)

C1719

125
C893

Fig. 4. Normalized CTR VS. Temperature

--------

47"

:;~:~l~~=n:
I
1

~

Fig. 6. Dark Current vs. Temperatura

Fig. 5. Normalized VCE VS.
Temperature

lOV

!

PULSE WIDTH = 100 ~s

DUTY CYCLE = 10%
INPUT
100'1

1-- 6~~~~T

ov

I

---r------

I

OUT1'UT~1
I
I
90%
:

I

I
1 _____________ JI
L

I

I

''''
I I I
I I I
~~"~""

_I,lQnlA
CB68

I

II
I
f+el294

Fig. 7. Switching Time Test Circuit

75

76

M'CL2501 MCL2503 (HCPL-2503)
MCL2502 (HCPL-2502)
6N136 6N135
PROPAGATION DELAY COMPARISON

MINIMUM CTR SELECTION CHART

MCL2501
MCL/HCPL-2503
6N136
6N135
MCLlHCPL-2502

CTR@I F =8mA

CTR @ IF = 16 mA

0-70"C

25"C

0-70"C

2S"C

0-70"C

2S"C

0-70"C

2S"C

14%
11%

17%
15%

17%
9%
15%
5%

21%
12%
19%
7%
15%-22%
MAX

MCL2501

MCL/
HCPL-2503

MCL2501

MCL/
HCPL-2502
6N136
6N135

-

-

-

PACKAGE DIMENSIONS

W
I~

-I

6.35 (.250)

-I

1-

~ ~...L

7.62
(.JOO)
REF

1.78 (.070) REF

/.0.89 (.035) TYP
I

b-.=-,-=-",-="""",,II 3.94 (.155)+ 4.95 t195)
I
1
I' 3.68 (.145)/ I MAX
I
I
t
I

:~ :lJ :III

j~ (.1~~)

r

0.36 (.014)

"'---"~-'r 0.20 (.008)

_I

9.65 (,380)
9.14 (.360)

2.54 (.100) TYP

6.86 (.270)

I 3.56 (.140)
3.05 (.120)

O.~I (.020)
MIN

1-0.89 (.035) TYP

0,56 (.022)

C2091

0.41 (.016)

DIMENSIONS IN mm (INCHES)

Vee

VB

Vo

T

IF= 8 mA

IF= 16 mA

DESCRIPTION
The MCL2501, MCL/HCPL-2503/02 and 6N136/5
optocouplers contain a 700 nm GaAsP LED
emitter, which is optically coupled to a high
speed photodetector transistor.
A separate connection for the bias of the
photodiode improves the speed by several
orders of magnitude over conventional
phototransistor optocouplers by reducing the
base-collector capacitance of the input
transistor.
An internal noise shield provides superior
common mode rejection of 10 kVlp.s. An
improved package allows superior insulation
permitting a 480 V working voltage compared to
industry standard of 220 V.
The prime device in this family is MCL2501
which guarantees all DC parameters including
CTR as well as all switching parameters over
0-70° C at both 8 mA and 16 mA input current.

FEATURES
• MCL2501 completely guaranteed 0-70"C at 8
and 16 mA.
• High Speed - 1 MBit/s
• Superior CMR - 10 kVlp.s
• Superior insulation - 2500 V RMS 1 min
• Double working voltage - 480 V RMS
• eTR guaranteed 0-70° C
• U.L. recognized (File #E50151)

APPLICATIONS
•
•
•
•

Line receivers
Pulse transformer replacement
Output interfact to CMOS-LSTTL-TTL
Wide bandwidth analog coupling

GND

Equivalent Circuit

C1962

77

MCL2501 MCL2503/2 (HCPL-2503/2) 6N 136/5
ELECTRICAL CHARACTERISTICS (TA = ooe to 700 e Unless Otherwise Specified)
PARAMETER

Current transfer
ratio

SYMBOL

CTR

TEST CONDITIONS

MCL2501
MCLlHCPL-2503 MCL/HCPL-2502
MIN. TYP. MAX. MIN. TYP. MAX. MIN. TYP. MAX. UNITS

I F=16mA, Vo=0.4V, Vcc=4.5V,
TA =25°C

21

IF=16mA, Vo =0.5V, Vee =4.5V

17

IF=8mA, Vo =0.5V, Vce=4.5V,
TA =25°C

17

IF=8mA, Vo =0.5V, Vee =4.5V
Note 5, Fig. 1, 2

14

12

28

VOL

36

%

15
11

IF=16mA, 10=2.4mA, Vec =4.5V

0.1

0.4

IF=8mA, 10=0.7mA, Vee =4.5V

0.2

0.5

0.2

0.5

0.2

0.5

IF=OmA, Vo=Vce=5.5V,
TA =25°C
Logic high
output current

10H

0.01

IF=OmA, Vo=Vee=15V, TA=25°C
IF=OmA, Vo=Vee=15V
Fig. 7

leeL

Logic high
supply current

ICCH

Input forward
voltage

VF

Input reverse
breakdown
voltage

BVR

0.4

.003

.5

0.01

1

V

p.A

50
40
p.A

IF=8mA, Vo=Open, Vcc =5.5V

20

IF=OmA, Vo=Open, Vee=15V,
TA =25°C

0.02

20
1

0.02

2

1

p.A

2

IF=16mA, TA =25°C

1.5

1.7

1.5

1.7

IF=8mA, TA =25°C
Fig. 3

1.5

1.7

1.5

1.7

IF=10p.A, TA =25°C

0.1

50

IF=OmA, Vo=Open, Vcc=15V

1.5

1.7
V

5

5

V

5

Temp. coefficient
of forward
voltage

VF

IF=16mA

Input-Output
insulation
leakage

11-0

45% Relative Humidity t=5sec
VI_o =3000Voe , TA =25°C
Note 6

Withstand
insulation
test voltage

VISO

RH ~ 50% t = 1 min
TA =25°C
Notes 6, 11, 12

Resistance
(Input-Output)

RI_o

VI_o =500Voe
Note 6

1012

1012

1012

n

Capacitance
(Input-Output)

C I_O

F=1MHz
Note 6

0.6

0.6

0.6

pF

DC current gain

hFE

10=3mA, Vo=5V

150

150

150

-

All typical values are at TA=25°C

78

1

IF=16mA, Vo=Open, Vee=15V

Logic low
supply current

22

9

IF=16mA, 10=1.lmA, Vec =4.5V
Logic low
output voltage

15

18

-1.6

-1.6

-1.6

mvrc

-

-

-

p.A

2500

VRMS

2500

2500

MCL2501 MCL2503/2 (HCPL-2503/2) 6N 136/5
ELECTRICAL CHARACTERISTICS (TA =O·C 10 70·C Unless Otherwise Specified)
PARAMETER

Current transfer
ratio

SYMBOL

CTR

MIN.

6N136
TYP.

I F=16mA, Vo=0.4V, Vec=4.5V,
TA=25°C

'19

24

IF=16mA, Vo=O.SV, Vec=4.SV

15

TEST CONDITIONS

MAX.

MIN.

6N135
TYP.

'7

18

MAX.

UNITS

5

IF=8mA, Vo=O.SV, Vcc=4.SV,
TA=25°C

%

IF=8mA, Vo =0.5V, Vcc=4.SV
Note 5, Fig. 1.2
0.1

IF=16mA, 10=1.1mA, Vec =4.5V
Logic low
output voltage

VOL

IF=16mA.l o =2.4mA, Vec =4.5V

0.4

0.1

0.4

V

IF=OmA, Vo=Vee=5.5V,
TA=25°C

.003

'.5

.003

'.5

IF=OmA, Vo=Vee=1SV, TA=25°C

0.01

1

0.01

1

IF=8mA. 10=0.7mA, Vec =4.5V

Logic high
output current

10H

IF=OmA, Vo=Vcc=15V
Fig. 7
lecL

Logic high
supply current

ICCH

SO

SO

IF=16mA, Vo=Open, Vce=15V

Logic low
supply current

p.A

40

40

p.A

IF=8mA, Vo=Open, Vcc =5.5V
IF=OmA, Vo=Open, Vec=1SV,
TA=2SoC

0.02

IF=8mA. TA=25°C
Fig. 3

Input reverse
breakdown
voltage

BVR

IF=10p.A, TA=25°C

'1
p.A

IF=16mA, TA=2SoC
VF

0.02

2

IF=OmA, Vo=Open, Vec=15V
Input forward
voltage

'1

1.5

2

1.7

1.5

1.7
V

'5

'S

V

Temp. coefficient
of forward
voltage

VF

IF=16mA

Input-Output
insulation
leakage

11- 0

45% Relative Humidity t=Ssec
VI_o =3000Voc , TA=25°C
NoteS

Withstand
insulation
test voltage

VISO

RH:SSO%t=1min
TA=25°C
Notes 6, 11, 12

Resistance
(Input-Output)

RI_o

VI_o=SOOVoe
Note 6

1012

1012

n

Capacitance
(Input-Output)

CI_O

F=1MHz
Note 6

0.6

O.S

pF

DC current gain

hFE

10=3mA, Vo=5V

1SO

150

-

-1.6

-1.6

'1.0

2S00

mVI"C

'1.0

p.A

VRMS

2500

'JEDEC Registered Data
All typical values are at TA=25°C

79

MCL2501 MCL2503/2 (HCPL-2503/2) 6N 136/5
SWITCHING CHARACTERISTICS (TA = 25·C Unless Otherwise Specified) Vee = 5.0 V
PARAMETER

SYMBOL

TEST CONDITIONS

MCL2501
MCL/HCPL-2503 MCLlHCPL-2502
MIN. TYP. MAX. MIN. TYP. MAX. MIN. TYP. MAX. UNITS

I F=16mA, RL=4.1K
I F=16mA, RL=1.9K
Propogation delay
time to logic
low at output

.35

IF=16ma, RL=1.9l<, 0-700C
tpHL

.35

0.8

IF=16ma, RL=4.7K

0.4

1.5

I F=8mA, RL=7.5K

1.0

1.5

I F=8mA, RL=7.5K, 0-700C
Notes 8,9 Fig. 12

0.8

.8

1.5

.20

.35

"s

I F=16mA, RL=4.1K
I F=16mA, RL=1.9K
Propogation delay
time to logic
high at output

.25

I F=16ma, RL=1.9K, 0-70·C
tpLH

I F=16ma, RL=4.7K

1.5

2.5

1~8mA, RL=7.51<

1.5

2.5

IF=8mA, RL=7.5K, o-70·C
Notes 8, 9 Fig. 12

.80

0.8

"s

1.30

VcM =10Vp , RL=4.1K
Common mode
transient
immunity at
logic high
output level

10K

VCM =10Vp ' RL=1.9K
CM H

10K

VcM =10Vp ' RL=4.7K
VcM=50Vp ' RL=1.9K
Notes 7, 8, 9 Fig. 11

1K

VI"s

10K

VcM=10Vp ' RL=4.1K
Common mode
transient
immunity at
logic low
output level

CM L

Bandwidth

BW

-10K

VcM=10Vp , RL=1.9K
-10K

VcM=10Vp, RL=4.7K
VcM=50Vp' RL=1.9K
Notes 7, 8, 9 Fig. 11
RL=100
Note 10

Fig. 10

-1K

VI"s

-10K

3

2

2

MHz

*JEDEC Registered Data

ABSOLUTE MAXIMUM RATINGSt
Storage temperature ..............• -55·C to 125·C
Operating temperature ............. -55·C to 100·C
Lead solder temperature ....•........ 260·C for 10s
Average forward input current •.......•.. 25 rnA (1)
Peak forward input current .............. 50 rnA (2)
(50% duty cycle, 1ms P.W.)
Peak transient input current - IF .•..... .... ... 1.0 A
(:51 P.s P.W., 300 pps)

Reverse input voltage ........................• 5 V
Input power dissipation .......•........ 45 mW (3)
Average output current .....•..••........... 8 rnA
Peak output current •......•......••....... 16 rnA
Emitter-base reverse voltage .................. 5 V
Supply and output voltage ...•....... -0.5 V to 15 V
Base current ............................... 5 rnA
Output power dissipation .......•...... 100 mW(4)

t Absolute Maximum Ratings are JEDEC Registered Data for 6N136 and 6N135.
6N136 and 6N135 are the only JEDEC Registered Parts on this data sheet.

BO

MCL2501 MCL2503/2 (HCPL-2503/2) 6N 136/5
SWITCHING CHARACTERISTICS (TA = 25°C Unless Otherwise Specified)
PARAMETER

SYMBOL

TEST CONDITIONS

MIN.

6N136
TYP.

Vcc

MAX.

= 5.0 V
MIN.

IF=16mA, RL=4.1K
IF=16mA, RL=1.9K
Propogation delay
time to logic
low at output

0.35

6N135
TYP.

MAX.

0.5

*1.5

UNITS

'0.8

IF=16ma, RL=1.9K
tpHL

1~16ma,

RL=4.7K

1'5

IF=8mA, RL=7.5K
IF=8mA, RL=7.5K
Notes 8, 9 Fig. 12
IF=16mA, RL =4.1 K

0.4

IF=16mA, RL=1.9K
Propogation delay
time to logic
high at output

.25

*1.5

*0.8

IF=106ma, RL=1.9K
tpLH

IF=16ma, RL=4.7K

I'S

IF=8mA, RL=7.5K
IF=8mA, RL=7.5K
Notes 8, 9 Fig. 12
VcM=10Vp , RL=4.1K

Common mode
transient
immunity at
logic high
output level

VCM=10Vp , RL=1.9K
CM H

1K
1K

VCM=10Vp , RL=4.7K
VcM=50Vp ' RL=1.9K
Notes 7, 8, 9 Fig. 11

VII'S

1K

10K

-1K

-10K

VcM =10Vp ' RL=4.1K
Common mode
transient
immunity at
logic high
output level

CM L

Bandwidth

BW

10K

10K

VcM=10Vp ' RL=1.9K

-1K

-10K

VcM =10Vp , RL =4.7K
VcM=50Vp ' RL=1.9K
Notes 7, 8, 9 Fig. 11
RL=100
Note 10

Fig. 10

VII'S

-1K

-10K

2

2

MHz

*JEDEC Registered Data

NOTES:
1. Derate linearly above 70·C free-air temperature at a rate of O.B mA/·C.
2. Derate linearly above 70·C free-air temperature at a rate of 1.6 mA/·C.
3. Derate linearly above 70·C free-air temperature at a rate of 0.9 mW/·C.
4. Derate linearly above 70·C free-air temperature at a rate of 1.0 mW/·C.
5. CURRENT TRANSFER RATIO is defined as the ratio of output collector current, ' 0 , to the forward LED input current, 'F,
times 100%.

6. Device considered a two-terminal device: Pins 1, 2, 3, and 4 shorted together and Pins 5, 6, 7, and 8 shorted together.
Z Common mode transient immunity in Logic High level is the maximum tolerable (positive) dVCM/dt on the leading
edge of the common mode pulse VCM, to assure that the output will remain in a Logic High state (i.e., Vo > 2.0 V). Common
mode transient immunity in Logic Low level is the maximum tolerable (negative) dVCM/dt on the trailing edge of the common
mode pulse signal, VCM to assure that the output will remain in a Logic Low state (i.e., Vo < O.B V).
B. The 4.1 Kn load represents 1 LSTTL unit load of 0.36 mA and 6.1 KO.
9. The 1.9 KO load represents 1 TTL unit load of 1.6 mA and the 5.6 KO pull-up resistor.
10. The frequency at which the ac output voltage is 3 dB below the low frequency asymptote.
11. This is a proof test to validate the UL440 VAC rating.
12. The 2500 Vac/1 min capability is validated by a factory 3.1 K Vac (rms)/1 sec dielectric voltage withstand test.

81

MCL2501 MCL2503/2 (HCPL-2503/2) 6N 136/5
TYPICAL CHARACTERISTIC CURVES (TA = 25°C Unless Otherwise Specified)

20

..:

E

I
I-

---INDICATES
PULSED OPERATION
TA - 25°C
Vee = 5.0 V
_45 mA
_40 mil-~~~~
I-~ ~~
-~
35mA-

- - -- - -

r~-

Z

W

II:
II:

~~

-~

-- -

510

~~

I-

:::>
0..
:::>

~~

I-

o
I

1.6

I I

,....., 1.5

!z

~Q

~!;(

1i

1.4
1.3

~

Cffi@J@J 1.1

2?mf-

~ ~ ~ ~ 1.0

lTm~10mAI
I

}2

U a:.!: ~ 1.2

~~ ~!i
~

~

I=.l:'.l:'

0.9

bb

0.8

'---'

rimA

o

10
20
Va - OUTPUT VOLTAGE - V
C1945

_10.0

IZ

TA
1.0

= 25°C

U
I-

0..
~

C
II:

U.

,,;

-- r.....

/

.01
1.0

NORMALIZED TO:
1.5 Vee = 5.0 V
IF = 16 mA
1.4
RL = 4.1 K
U 1.3 TA = 25°C

!

0..

f-

=>

o

1.6

I I

. - . 1.5

~Q ~
§t;;: II
o a:: .!!:~
o ffi @J@J

30mA_
I
I

2~mf-

~~~~

iH
f= d:' 0

~~

2?mf15mA_
I
I
l?mf-

I

~

!z

35mA-

~

~

Ii ~ ,mA

52

o

10
Vo - OUTPUT VOLTAGE - V

btl
..........

1.4

1/

1.3

V

1.2
1.1

V

1.0
0.9

1\
\

NORMALlZ~~ ~~:

0.8

Vo ~ 0.4 V
0.7 Vee =5 V
TA=25'C

20

I 1111

C1945

Fig. 2. Normalized Current
Transfer Ratio VS.
Forward Current

_10.0

1.3

<{

g

=>

/
TA

~

25'C

1.0

Z

I

f-

=>

I

0.1

:!! 1.1

fijffi

@J

~~ ~ ~ 0.9
ct:< ww
~ f= d:' d:' 0.8

Q.

0:

<{

~

~

0:

0
u..

E

~Q

~t;:
II
U a: ~~ 1.0

(,)

~
0

r-:;' 1.2

f-

Z

UJ
0:
0:

tt

!I
1.0

~

o
Z

~ I~

(!l

<'"

~J-II

NORMALIZED TO:
1.5 Vee = 5.0 V
IF ~ 16 mA
1.4
RL ~ 4.1 K
TA ~ 25'C
1.3
1.2

~UJUJ 1.1
0:::;:::;:

0..f=f=1.0

fij~~

09

~

0.8

N

::;:
0:

oZ

./

~I::""

'~

<{

,JPHL~ lL

"
~~
I:Z

~~ 10-1 b-l--.jf---1--+--+~'--I

V

(!l 0:

g13

1
TPlH

If-

"1r

-

52 f- 10-26-6....-1=-+--+-+----1

o=>

O. 7
-25

o
25
50
TA - TEMPERATURE - 'C

70

10-."50

-25
0
25
50
75
TA - TEMPERATURE - 'C

100
C1950

C1949

Fig. 5. Normalized
Propagation De/ay VS.
Temperature

88

~

Fig. 4. Normalized Current
Transfer Ratio VS.
Temperature

Fig.3. Forward Input
Current VS. Forward
Input Voltage

UJ

"\

-60 -40 -20 0 20 40 60 80 100
TA - TEMPERATURE - 'C
C1948

1.2
1.4
1.6
VF. FORWARD INPUT VOLTAGE (V)
C1600

...J

-- J'...

NORMALIZED TO:
IF ~ 16 mA
TA ~ 2S'C
Vee ~ 5.0 V
,\Vo = 0.4 V

"--'0.7

/

.i .01

\

l-rm

2
4 6 810
20
40
80
IF - FORWARD CURRENT - mA
C1946

Fig. 1. DC and Pulsed
Transfer Characteristics

f-

\;

IF= 16 mA

Fig. 6. Logic High Output
Current VS.
Temperature

MCL2530 (HCPL-2530) MCL2531 (HCPL-2531)
TYPICAL ELECTRO-OPTICAL CHARACTERISTICS (TA = 25° Unless Otherwise Specified)

w

~ 16 k

0':;;

~

IZ

Vcc = 5.0 V
iJH 16 rnA iJLO rnA
VOH 2.0
VOL 0.8 V RL = 1.9 k _
TA = 25'C

18 k

I 14 k

z'O 12 k
O~

!5 Q 2.0
u!;(
..Ja:


0

w

0
-1
TA" 25'C
-2 IF 16 rnA
-3
-4
-5
-6
-7
-8
-9

,....... ,
\.\.

\

\\
\

RL -1 K-\
RL=470l!' _\--\
RL = 220 II L\-V.\
RL = 100 l!

\\ 1\

~ -10

<

\
\

0

,\
\ \\

\

-11

~ -12

\

0-13

z

11111111

10 k
C1953

11111111

I

11111'

100 k
1M
F - FREQUENCY - Hz

10M
C1954

Fig. 9. Fraquency Response

f---~--O+5

V

VCM10V-~-tr.tf=8ns
90%
90%
OV 10%

10%
tr

Va

L -........--o

If

~----------------5V

Va

A

SWITCH AT A: IF = 0 rnA

Va'~~~~~~~~--~VOL

SWITCH AT B: IF -16 rnA

VCM
+

PULSE GEN.
C1955

Fig. 10. Test Circuit For Transient Immunity and Typical Waveforms

89

MCL2530 (HCPL-2530) MCL2531 (HCPL-2531)

PULSE
GEN.
Zo=50 0
Ir=5 ns

IF~

1 - - - - _ - 0 +5 V

0,

I
I

I

I
I
I

Vo
10% DUTY CYCLE

<--.....-_-
I

+5V

II
Vee =5.0V , _

8.0

w

7.0

«
:;"

6.0

TA = aO _7oDe

0

.1

>

RL

I'F

I-

5.0

~

~ 4.0
I:::>
0
I

Vo

f\=lK!l,\
3.0

L..

1\f\=350!l

-;j 2.0

W

1.0

C1980

"DJ..
1.0

.0

2.0

3.0

4.0

5.0

6.0

FORWARD INPUT CURRENT (IF. mAl

Fig. 3.

Fig. 4. Output Voltage

Input-Output
Schematic

1.0

1

1
Z

t--- Vee'" 5.5V

a:
a:

.2

t--- V, = 2.0V

~ 1.0
:::>

u

.1

I-

~

~

1

IF == 250l'A

:::>

:::> .06
i!::::> .04
0
.J .02

/

o

./
~

I-

,

u

./

Vo = 5.5V

~

I

TA '" 2SOC

w

~

17

V

w

.01
~ ,006

::I:

~.OO4

5'

.11-+----1-+-+-+-+----1

f

II

.0 1

1.4

10

1.6
C1600

20

30

40

Fig.6.

......

;::

~

4

!!i
g:

30

,

20

0

--......

RL = 4K!l_ 1--- 1--

0

~ 50

-

~

>«

.......

RL-1Kn

10

70

Fig. 7.

u:

RL ~ lK!l

IF =7.5m~_

tpLH

Vef = 5.~V

60

«

40

0

30

...

20

g:
,

20

30

40

50

TA - TEMPERATURE lOCI

Fig. 8.

Propegatlon Delay
VB. Temperature

60

70
C1604

RL =350!l,
r-,../' ,;,;
.RL =lK!l
RL=4K!l ...

30

----

......

RL =350!l

-~:1;n

~

..."

t--- - - -

tpLH_
--tpHL

o

f--- Vee

= 5.0V _

TA '" 25D C

10

15

IF - PULSED INPUT CURRENT ImAI

Fig. 9.

40

50

High Level Output
Current VB.
Temperature

10

o
10

......

RL -4KO

... ............

,;

z 50
0
;::

20

TA · TEMPERATURE lOCI

70

0

"~

RL = 4K!2

--'PHL

o

4::: ...

RL~~ ~ I--

-

or-- ---0

V

C1598

80

!

RL =1350!l

70

~w

60

Low Level Output
Voltage VB.
Temperatura

80

o

50

TEMPERATURE ITA. °CI

Forward Input
Current VB. Forward
Input Voltage

]

:t,002
0

1.2

Fig. 6.

:I:

-.001

VF. FORWARD INPUT VOLTAGE IVI

94

.6
.4

I-

f

I-

~rr

VB.

Forward Input
Current

10. 0

rr

C1602

Propegatlon Delay VB.
Pulse 1nput Current

20
C1603

60

70
C1613

61137 MCL2601 (HCPL-2601)
TYPICAL CHARACTERISTIC CURVES (TA = 25° C Unless Otherwise Specified)
PULSE
GEN.

"=II=5n8

Zo=50n

---I"7'5mA

t----r--t---o

I ________
~

INPUT

+5 V

-

(IF)

I ___ IF -3.5mA

I

J

I P1il - " ' :

- - : - : I PlH / _

:--

"::1

ou~~i

-~---1.5V

(Vol

INPUT
MONITOR o--t--I
(IF)

'------:;r-~--i~ OUTPUT

I

I
I

:;:; CL

I

.""

I

I

47

-r\-------z=-

O~~:~T

(Vo)

I

10%

I

:--

I

1

-----:~I~---~I~

n

C1597

':" C1981

Fig. 10.

Test Circuit and Waveforms for tpLH• tf' and

t,

INPUT
MONITOR
(lVE)

I
I

_]t~"L:_
OUTPUT

IVol

1

I
I

C1599

':" 01982

Fig. 11.

Tast Circuit tEHL and tELH

rll>........--------------II>...... ChanA
INPUT

Chan B

t-r---t-r-oO+5 V

)- t__
----_
1=
.=t=
r--t~t:

!w

300

"i= 200

-- --

'\ - 4Kn

....

;i
~

~
"'
ii:

100
80
60

=

Vee - 5.0~
I, • 7.5mA_

-- -- -- -

~'~K~

50
40 I\. - 350n

:=;::

--10--

0

o,A"4-

~
c
z

60

~

:t'"

~w

-'

'"

"1E,

'"

Z

• 5.0V
"'3.0V
VeL =oV

_yEH

40

10

~

4KH

0--.1.

30 Trlll •
20

f\

rlL

~ lK1}

0fIII'!.

v~v

- - T'"r '\ 1 "'1'
=

20

350

30

40

7K
6K

VOL =Dav
"- - 3500

TA = 25°C

~

-

IFH = 7.5mA
IFL =OmA
VOH 2.0V
'--

8K

f.-::: ~

K!l,

r"50

TA - TEMPERATURE (OCI

Fig. 14.

S.ov

1E

~

.

-

~

w

5K

3K
2K

I---

'"
''""
0

"'-

70

IFH '" 7.SmA

"'r-.....

1.0

r-

VeM = SOV

.9

">w

.8

:'iw

.7

'"

VeM - COMMON MODE TRANSIENT AMPLITUDE (V)

Enable Propagation
De/ayvs.
Temperature

~~~ : ~:~~ -

,., f""-..d-+-+----1 ~~: ~~

>=

100 200 300 400 500 600 700 800 900 1000

C1607

Vee = S.DV

1.2 f--f-+-+----1

0

'K

60

, 3

C

c
z

4K

TTELH • F\. = 350n

10

Vee ""

-

50
TE"LH'

:>

9K

IF'" 7.SmA

0

. ,.
..'"
>-

V~

Fig. 15.

0

10

Fig. 16.

Relative Common
Mode Transient
Immunity vs.
Common Mode
Transient Amplitude

20

30

40

50

TA - TEMPERATURE (OC)

60

70
Cl59S

Relative Common
Mode Transient
Immunity vs.
Temperature

j----,-r--o.5 V

5V

SWITCH POS. fAI, If = a

eM,

- - - - V o (MIN)

I\

~ _ _ _~
O.SV

- - - - VO IMAKI

SWITCH POS 18). IF = 7 5 mA

C1594
PULSE GEN.

Fig. 17.

01984

Test Circuit Common Mode Transient Immunity

NOTES
1. The Vcc supply voltage to each 6N137 isolator must be bypassed by a 0.1 p.F capacitor or larger. This can be either a
ceramic or solid tantalum capacitor with good high frequency characteristic and should be connected as close as
possible to the package Vcc and GND pins of each device.
2. tpHL - Propagation delay is measured from the 3.75 mA level on the LOW to HIGH transition of the input current pulse to
the 1.5 V level on the HIGH to LOW transition of the output voltage pulse.
3. tpHL - Propagation delay is measured from the 3.75 mA level on the LOW to HIGH transition of the input current pulse to
the 1.5 V level on the HIGH to LOW transition of the output voltage pulse.
- Fall time ;s measured from the 10% to the 90% levels of the HIGH to LOW transition on the output pulse.
4. t f
5. t,
- Rise time is measured from the 90% to the 10% levels of the LOW to HIGH transition on the output pulse.
6. tEHL - Enable input propagation delay is measured from the 1.5 V level on the LOW to HIGH transition of the input
voltage pulse to the 1.5 V level on the HIGH to LOW of the output voltage pulse.
7. tELH - Enable input propagation delay is measured from the 1.5 V level on the HIGH to LOW transition of the input
voltage pulse to the 1.5 V level on the LOW to HIGH transition of the output voltage pulse.
8, CML - The maximum tolerable rate of fall of the common mode voltage to ensure the output will remain in the low output
state (i.e., Vour < 0.8 V). Measured in volts per microsecond (Vlp.s).
9. CMH - The maximum tolerable rate of rise of the common mode voltage to ensure the output will remain in the high state
(i.e., Vour> 2.0 V). Measured in volts microsecond (V/p.s),
10.
- Device considered a two-terminal device: Pins 1, 2, 3 and 4 shorted together, and Pins 5, 6, 7 and 8 shorted together.
The 2500 VAcil minute capability guarantees 3000 VDc/5 sec. as registered with JEDEC and is validated by a
factory 3.1 K VAc /l second.
11. Enable Input - No pull up resistor required as the device has an internal pull up resistor.
12.
- DC current transfer ratio is defined as the ratio of the output collector current to the forward bias input current times
100%.

96

MCL2630 (HCPL-2630)
DUAL 10 MBil/s LOGIC GATE MCL2631 (HCPL-2631)
DESCRIPTION

PACKAGE DIMENSIONS

w

~ 9.65 (.380) - '
9.14 (.360)

2.54 (.100)lYP
-I

6.35 (.250)

0.36 (.014)

-'---""-rl-""11 0.20 (.008)

r-=.,
7.62
(.300)
REF

~

1.78 (.070) REF

...L
f

--I 1.0.89 (.035)lYP
I I
t
t
I 3.94 (.155) 4.95 (.195)

1- 11

I

I

I

I

; 3.68 (.145)/ t M~X

:~ :U:
I

I

t 3.56 (.140)

~~

6.86 (.270)

(.~~~)

I

\i 3.05 (.120)

t

0.~1 (.020)

FEATURES

MIN

•
•
•
•
•
•
•
•

/-0.89 (.035) TVP

0.56 (.022)

C2091

0.41 (.016)

DIMENSIONS IN mm (INCHES)

The MCL/HCPL-2630 and MCL/HCPL-2631 dual
channel optocouplers have two channels, each
consisting of a 700 nm GaAsP LED, optically
coupled to a very high speed integrated
photodetector logic gate. The outputs feature
open collectors, thereby permitting wired-OR
outputs. The coupled parameters are guaranteed
over the temperature range of 0-70°C. A
maximum input signal of 5 mA will provide a
minumum output sink current of 13 mA (fan-out
of 8).
An internal noise shield provides superior
common mode rejection of typically 10 kWp.s.
The MCL/HCPL 2631 has a minimum CMR of
1 kWp.s.
An improved double-molded package allows
superior insulation, permitting a 480 V working
voltage compared to industry standard 220 V.

Very high speed-10 MBiVs
Superior CMR - 10 kVlp.s
Superior insulation - 2500 V RMS 1 min.
Double working voltage - 480 V
Fan-out of 8 over 0-70° C
Logic gate output
Wired-OR - open collector
UL recognized (File#E50151)

APPLICATIONS
A 0.1 p.F bypass
capacitor must be
connected between
pins 8 and 5. (See
note 1)

•
•
•
•
•
•
•

Ground loop elimination
LSTTL to TTL, LSTTL or 5-volt CMOS
Line receiver, data transmission
Data ml,lltiplexing
Switching power supplies
Pulse transformer replacement
Computer-peripheral interface

e1979

Equivalent Circuit

ABSOLUTE MAXIMUM RATINGS
Storage temperature ....••••... -55° C to + 125° C
Operating temperature •.....••...• 0° C to + 70° C
Lead solder temperature .....•..•. 260°C for 10 s
DC/Average forward input current
(each channel) .....••...•.•....•...•••.. 15 mA
Peak forward input current
(each channel) .••... 30 mA (~1 msec duration)

Reverse input voltage (each channel) .......• 5.0 V
Reverse supply voltage (-Vee) .••....•... -500 mV
Supply voltage, (Vee) ... 7.0 V/1 minute maximum
Output current, (10) (each channel) •.•..... 16 mA
Output voltage, (Vo) (each channel) .•....... 7.0 V
Collector output power dissipation .••.•... 60 mW

97

MCL2630 (HCPL-2630) MCL2631 (HCPL-2631)
RECOMMENDED OPERATING CONDITIONS
SYMBOL

MIN.

MAX.

UNITS

IFL
IFH
Vcc
TA
N

0
6.3"
4.5
0

250
15
5.5
70
8

,.A
mA
V
°c

Input current. low level
Input current, high level
Supply voltage, output
Operating temperature
Fan out (TTL Load)

"6.3 rnA is a guard banded value which allows for at least 20%

SYMBOL

Initial input current threshold value is 5.0 rnA or Jess.

=0° C - 70° C Unless Otherwise Specified)

ELECTRICAL CHARACTERISTICS (TA
PARAMETER

eTR degradation.

MIN.

TYP.

UNITS

MAX.

TEST CONDITIONS

High level output current

10H

2

250

,.A

Vee =5.5 V, Vo =5.5 V
IF = 250 ,.A, Note 6

Low level output voltage

VOL

0.34

0.6

V

Vcc = 5.5 V. IF = 5 mA
Note 6,Iol = 13 mA

High level supply current

ICCH

14

30

mA

Vcc=5.5V,IF=OmA
(Both channels)

Low level supply current

ICCl

26

36

mA

Vcc -5.5 V,IF -10 mA
(Both channels)

1.55

1.75

V

IF = 10 mA, TA = 25°C

V

IR-l0,.A, TA=25°C
VF = O. f= 1 MHz

Input forward voltage

VF

Input reverse breakdown voltage

BVR

Input capacitance

CIN

60

pF

/j,VF//j,TA

-1.4

mVrC

h-I

0.005

,.A

Input diode temperature
coefficient
Input-input insulation
leakage current

5.0

IF=10mA
Relative humidity = 45%
t = 5 S, VI-I = 500 V, Note 7

Resistance (input-input)

Ai-I

1011

n

VI_I = 500 V, Note 7

Capacitance (Input-input)

CI-I

0.25

pF

f = 1 MHz, Note 7

,.A

Relative humidity = 45%
TA=25°C,t=5s
VI-O = 3000 V de
Note 10

Input-output
insulation leakage current

h-o

Resistance (Input to output)
Capacitance (input to output)

RI-O
CI-O

Withstand insulation test voltage

VISO

1.0

n

1012
0.6

VI-O = 500 V, Note 10
f = 1 MHz, Note 10

pF

2500

RH < 50%TA =25°C
t= 1 min

VRMS

"All typical values are at Vee = 5 V, TA 25° e (each channel).

SWITCHING CHARACTERISTICS (TA = 25° C. Vee
PARAMETER
Propagation delay time
(For output high level)

TYp.

MAX.

UNITS

tPlH

48

75

ns

tPHl

48

75

ns

SYMBOL DEVICE

MIN.

TEST CONDITIONS

tr

30

ns

Rl = 350 0
Cl=15pF
IF=7.5mA

Output fail time (90-10%)

tf

14

ns

Notes, 2, 3, 4 & 5. Fig. 8

Common mode transient
immunity
(At output high level)

CMH

Common mode transient
immunity
(At output low level)

CMl

Propagation delay time
(For output low level
Output rise time (10-90%)

98

= 5.0 V Unless Otherwise Specified)

2631
2630

1000

10,000
10,000

VII'S

2631
2630

-1000

-10,000

VII'S

-10,000

VCM - 50 V (peak)
IF = 0 mAo VOL (min) = 2.0 V
Rl = 350 0, Note 9, Fig. 12
VCM - 50 V (peak)
IF=7.5 mAo
VOL (max) = 0.8 V
RL = 350 0, Note 8, Fig. 12

MCL283D (HCPL-283D) MCL2831 (HCPL-2631)
TYPICAL CHARACTERISTIC CURVES (TA = 25° C Unless Otherwise Specified)

1.0

l' .6
. . . .4
z

.8

-

Vo -5.5V
~, .2 ---'- V, ·2.0V
II:
IF = 2501'11

a

/

w

5
5

!'!.004

"~.002 /'

'0 • I.SmA

10 -6.4mA~

~ .2

o
10

20

30

41}

50

60

o

70

5.0

\

RL = lKU

~ 3.0

L...

:J
0

i \ Rl=3501l

I 2.0
~ 1.0

1

oS.D01

i!..J

~

:J 4.0

~ .3

".006

- r--

6.0

I-

.i

w

oJ

TA = 25'C

I 7.0
1&1

10 = 1.8mA

'0 " 16mA"",-

VC~ =5.0~_

> B.O

.5
.4

oJ

/'

w
~ ,01

-

-

w
0

50

~

40

..
..

"c

/

RL -4KSl_

~......

z

0

I

0

30

I

20

.!-

I

/

.01

1.2

1.6

..
...-- -- I~:
~

--

c

~

40

0

30

..
..,
II:

.!-

I, "7.5m~_
V'f •

1IL'3son

.

RL-350n...
~L-1Kn

RL-4Kn ..

...

~

..

r-- ---

tpLH_
-tpHL

t - ~cc = 5.0V _
TA • 25°C

10

5.0,"

....L

20

o
o

010203040606070

20

15

10

'F - PULSED INPUT CURRENT (mAl

T. - TEMPERATURE I'CI

CI600

C1604

CI603

Fig. 7. Propagation Delay VS.
Pulse Input Current

Fig. 6. Propagation Dalay VS.
Temperature

+5

PULSE
GENERATOR

~

'

ZO=50n
1,=5n.

INPUT

(IFI

1-1---+--oVo
BYPASS

-

----IF=7.5mA
-------- ---IF = 3.5 mA

I

PHL=.J

I

1----

OU~

.1 "F
INPUT
MONITORING
MODE

z 50
;::

0

RL -IKn

"'RL -IKn

-

60

0

......RL -4Kn

VF • FORWARD INPUT VOLTAGE (VI

Fig. 5. Forward Input Current
vs. Forward Input
VOltage

5w

.-!

.... --" .,..,..",.-'" .... "'~:'1;:n
~'"",
RL"4Kn

>- 70

......

10 r-- ----t,LH

o
1.4

"'....-

RL..:'

~

II:

-

80

!

RL ,I3son

!

i··-11

(Vol

-~----1.5V

OUTPUT

K,:"--------;I

CL*
OUTPUT
MONITORING
NODE

'

~PI..I1

90%

(Vol

---10'110--

----It,,..-

:

----;tr:---C1790

'CL is approximately 15 pF. which
includes probe and stray wiring
capacitance

C19BO

Fig. 8. Test CircuitZ t pHL•
tpLH< t, and t,

99

MCL263D (HCPL-2&3D) MCL2&31 (HCPL-2631)
TYPICAL CHARACTERISTIC CURVES (TA = 25°C Unless Otherwise Specified)
~

,,----

~"

Vee - 5.0V=:
'F =7.5mA_

1

~10KrT'--r-'--r-.--.-'r-.--r-'

,.....

~ 9Krt+--r-1--t-~-+~L-~~-1

:;;

z

Vee = 5.0V
~ 8K~+--+~--t-4--1 IFH = 7.5mA f--

~ 7K~n--+~--t-4--1

~
~
z
~

....

::OmA
VOH 2.0V
VOL'"

O.BV

~

f--

~
Z

I--

'....a:"

TA = 25·C
5K~H--+~--t-4--+-'r-.--r-i

3Kr-~,,~r-+-4--+-+--r-+-~--1

~ 2K~+-~~--t-~-+~~+-~-1

:;;

8

,

1Kr-+--+~--t-4--+~r-+--r-i

:;;

<..>

TA - TEMPERATURE I·CI

100 200 300400 506 6.00 700 800 9001000
VCM

-

1.3
Vee = S.OV
VOH = 2.0V
O.BV t--'FH :: 7.5mA
'FL =OmA

,

1,1

VOL'"

......

w

0

a
:;; 1.0

1\

.9

<..>
w

.8

~

.7

= 350il

r--..... .......
r--..... r-.....

a

>

~

I---

VCM = 50V

r-....

z

a

:;;
:;;

0

10

COMMON MODE TRANSIENT AMPLITUDE IVI

20

30

40

50

60

C1595

Fig. 10. Relative Common Mode
Transient Immunity vs. Common
Mode Transient Complitude

Fig. 11. Relative Common Mode
Transient Immunity vs.
Temperature

R

+5 V
350n

VCM

ov

A

5V

SWITCH POS. IAI. IF = 0
- - - - V o IMIN.I

Vo

~

f \ - - - - - VO IMAX.I
Vo
O.5V
PULSE GEN.
Zo=50fl

_________J \

SWITCH POS.

181, 'F

= 7.5mA

C1594
C19B1

Fig. 12. Test Circuit for Transient Immunity and Typical Waveforms

NOTES:
1. The Vcc supply voltage to each MCL2630 isolator must be bypassed by a 0.1 pF capacitor or larger. This can be either a
ceramic or solid tantalum capacitor with good high frequency characteristic and should be connected as close as
possible to the package Vcc and GND pins of each device.
2. tpHL - Propagation delay is measured from the 3.75 mA level on the LOW to HIGH transition of the input current pulse to
the 1.5 V level on the HIGH to LOW transition of the output voltage pulse.
3. tpLH - Propagation delay is measured from the 3.75 mA level on the HIGH to LOW transition of the input current pulse to
the 1.5 V level on the Low to High transition of the output voltage pulse.
- Fall time is measured from the 10% to the 90% levels of the HIGH to LOW transition on the output pulse.
4. t f
5. t,
- Rise time is measured from the 90% to the 10% levels of the LOW to HIGH transition on the output pulse.
6. Each channel.
1. Measured between pins 1 and 2 shorted together, and pins 3 and 4 shorted together.
8. CML - The maximum tolerable rate of fall of the common mode voltage to ensure the output will remain in the low output
state (i.e., VOUT > 0.8 V). Measured in volts per microsecond (V/%s).
9. CMH - The maximum tolerable rate of rise of the common mode voltage to ensure the output will remain in the high state
(i.e., VOUT > 2.0 V). Measured in volts per microsecond (V/ps).
Volts/microsecond can be translated to sinusoidial voltages:
(dVCM)
VIps = - - Max. = rrf CM VCM (p.p.)
dt
Example:
10.

100

70

TA - TEMPERATURE I·CI

C1590

C1601

Fig. 9. Rise and Fall Time
vs. Temperature

;::

~ 1.2

~ 4Kr-~-r-1--t-~-+-1~+-~-1

a

1.4

....

'FL

6K~H--+~--t-4--1 RL '" 350n

Z

:::J

VCM = 318 V pp when feM = 1 MHz using CML and CMH = 1000 VIps.

-Device considered a two-terminal device: Pins 1, 2, 3 and 4 shorted together, and Pins 5,6,7 and 8 shorted
together.

1.6 mA DUAL MCL2730 (HCPL-2730)
0.5 mA DUAL MCL2731 (HCPL-2731)
PACKAGE DIMENSIONS

W

E _I
9.65 (.380)
9.14 (.360)

DESCRIPTION

6.86 (.270)
6.35 (.250)

0.36 (.014)

.L..-"'+....." 0.20 (.008)

~

7.62
(.300)
REF

to---'

1.78 (.070) REF

r.1.

-j rO.89 (.035) TYP

2.54 ~OO) TY~

,, ,,

\ HI'R'ruH
I

I

I'~

t 95)
3.94 (.155) t 4.95 (.1
I MtX

Irl 3.68 (.145)j

: t 3.56 (.140) O.~, (.02

j~(Ml,J U~... ""J '"
W :

3.05 (.120)

MIN

•

0.56 (.022)
C2091
0.41 (.016) DIMENSIONS IN mm (INCHES)

The MCUHCPL-2730/31 dual channel
optocouplers contain two completely separated
700nm GaAsP LED emitters. Each channel is
optically coupled to high gain detector in a
split Darlington Configuration, which provides
extremely high current transfer ratio.
The split darlington configuration separating
the input photodiode and the first stage gain
from the output transistor permits lower output
saturation voltage and higher speed operation
than possible with conventional darlington
phototransistor optocoupler. An integrated
emitter-base resistor provides superior stability
over temperature.
The combination of a very low input current of
0.5 mA and a high current transfer ratio of
2000% make this family particularly useful for
input interface to MOS, CMOS, LSTTL and EIA
RS232C, while output compatibility is ensured
to CMOS as well as high :an-out requirements.
An internal noise shield provides exceptional
common mode rejection of 10 kVl,..s. An
improved package allows superior insulation
permitting a 480 V working voltage compared to
industry standard 220 V.

FEATURES
•
•
•
•
•
•
•

Low current - 0.5 mA
Superior CTR - 2000%
Superior CMR - 10 kVl,..s
Double working voltage - 480 V RMS
CTR guaranteed 0-70°C
U.L. recognized (File #50151)
Superior insulation; 2500 VAC RMS, 1 min

APPLICATIONS

Equivalent Circuit

•
•
•
•

Digital logic ground isolation
Telephone ring detector
U.L. recognized (File #E50151)
High common-mode-noise line receiver

ABSOLUTE MAXIMUM RATINGS
Storage temperature ••.•..• '" -55°C to +125°C
Operating temperature. '" ...•• -40°C to +85°C
Lead solder temperature .••...•.•. 260° C for 10 s
DC/Average forward input current
(each channel) •.•.••••.•..••...•. 20 mA (1 )
Peak forward input current
(each channel) ••.••..•••.•..•.•.•..• 40 mA
(:5 1 msec duration, 50% duty cycle)(1)

Reverse input voltage (each channel) •...•. 5.0 V
Input power dissipation
(each channel) .•.. , ••.••..•••.•.. 35 mW (2)
Output current (each channel) .•.•... , 60 mA (3)
Supply and output voltage (Vee, Vol
MCL2730 (HCPL-2730) •••....•.•.. -0.5 to 7 V
MCL2731 (HCPL-2731) ••..•...... -0.5 to 18 V
Output power dissipation
(each channel) .•••.•.••••••....• 100 mW (4)
101

MCL2730 (HCPL-2730) MCL2731 (HCPL-2731)
ELECTRICAL CHARACTERISTICS (TA = O°C to 70°C Unless Otherwise Specified)
PARAMETER

SYM.

Current transfer
ratio

CTR

DEVICE

MIN.

TYp..

2730

300
400
500

2000
2000
2000

2731
2730

UNITS

TEST CONDITIONS

2

5.6

IF =
IF IF =
IF =
IF =

1

5

V
V
V
V
V

2730
2731

0.01
0.D1

100
100

p.A
p.A

IF = 0 mAo Vo = Vee = 7 V
IF = 0 mAo Vo = Vee = 18 V

leel

2730
2731

.4
.5

mA
mA

IFl -IF2 -1.6mA. Vee -7 V
VOl = V02 = Open. Vee = 18 V

leeH

2730
2731

4
5

nA
nA

IFl - IF2 - 0 mAo Vee - 7 V
VOl = V02 = Open. Vee = 18 V

Logic high
output current

10H

Logic low
supply current
Logic high
supply current
Input forward
voltage

VF

Input reverse
breakdown
voltage

BVR

Temperature
coefficient of
foward voltage

ATA

2731

1.5

5

1.7

NOTE

IF = 1.6 mA, Vo = 0.4 V. Vee = 4.5 V
IF - 0.5 mAo Vo - 0.4 V. Vee - 4.5 V
IF = 1.6 mAo Vo = 0.4 V. Vee = 4.5 V

0.4
0.4
0.4
0.4
0.4

VOL

FIG.

%
%
%

.1
.1
.1
.1
.2

Logic low
output voltage

1.6 mAo 10 = 4.8 mAo Vee = 4.5 V
0.5 mAo 10 - 2 mAo Vee - 4.5 V
1.6 mA.lo =8 mAo Vee =4.5 V
5 mA.lo = 15 mAo Vee =4.5V
12 mA.lo =24 mAo Vee =4.5V

5

4

V

IF = 1.6 mAo TA = 25'C

V

IR = 10p.A. TA = 25'C

5

IF=1.6mA

5

VF =0. f= 1 MHz

5

5

AVF
-1.6

mvrc

60

pF

Input capacitance

CIN

Withstand
insulation
test voltage

VISO

Resistance
(Input-Output)

RI-o

1012

{}

VI-O = 500 VDC

10

Capacitance
(Input-Output)

CI-O

0.6

pF

f= 1 MHz

10

Insulation
leakage
current
(Input-Input)

II-I

0.005

p.A

RHS50%.
VI-I = 500 VDC t = 5 sec

7

Resistance
(Input-Input)

RI-I

1011

{}

VI-I = 500 VDC

7

CapaCitance
(Input-Input)

CI-I

0.25

pF

f=1 MHz

7

•All typicals at TA

102

MAX.

= 25' C

2500

VRMS

RH S 50%. TA = 25'C
t= 1 min

10.11

MCL2730 (HCPL-2730) MCL2731 (HCPL-2731)
SWITCHING CHARACTERISTICS 'rA = 25°C, Vcc

= 5.0 V

TYP."

MAX.

UNITS

4

20
2

/-IS

0.5

/-IS

IF = 1.6 mA, RL = 2.2 kO
IF = 12 mA, RL = 2700

25

100

/-IS

IF = 0.5 mA, RL = 4.7 kO

12

35
10

/-IS

4

/-IS

IF -1.6 mA, RL - 2.2 kO
IF = 12 mA, RL = 2700

20

60

/-IS

IF = 0.5 mA, RL = 4.7 kO

PARAMETER

SYM.

Propagation delay
time
(For output
low level)

tPHL

Propagation delay
time
(For output
high level)

tpLH

Common mode
transient
Immunity at
logic high level
output

CMH

Common mode
transient
Immunity at
logic low level
output

CML

•All typicals at TA

DEVICE

MIN.

2730/1

2731
2730/1

2731

TEST CONDITIONS

FIG.

NOTE

6

5

6

5

10000

VI/-Is

iF = OmA, RL = 2.2 kO
VCM=10V p- p

7

5,9

-1000 -10000

VI/-IS

IF = 1.6 mA, RL = 2.2 kO
VCM = 10 Vp_p

7

5,8

1000

=25· C

NOTES:
1. Derate linearly above 70· C free-air temperature at a rate of 0.5 mA/" C.
2. Derate linearly above 70· C free-air temperature at a rate of 0.9 mAl· C.
3. Derate linearly above 70· C free-air temperature at a rate of 0.6 mWI· C.
4. Derate linearly above 35· C free-air temperature at a rate of 1.7 mW/" C.
Output power = (Col/ector output power) + (supply power).
5. Each channel.
6. CURRENT TRANSFER RATIO is defined as the ratio of output col/ector current, ' 0 , to the forward LED input current, 'F,
times 100%.
7. Measured between pins 1 and 2 shorted together, and pins 3 and 4 shorted together.
8. CML - The maximum tolerable rate ofthe common mode voltage to ensure the output will remain in the low output state (i.e.,
Your > 0.8 V). Measured in volts per microsecond (VI/-IS).
9. CMH - The maximum tolerable rate of rise of the common mode voltage to ensure the output will remain in the high state (i.e.,
Your > 2.0 V). Measured in volts per microsecond (VI/-IS).
dVCM
V//-Is=___ Max = trf eM VCM(p.p.)
dt
10. Device considered a two-terminal device: Pins " 2, 3 and 4 shorted together, and Pins 5,6, 7 and 8 shorted together.
". The 2.5 kV RMSI1 minute capability is validated by a factory 3.1 kV RMSI1 sec.

TYPICAL ELECTRO-OPTICAL CHARACTERISTICS (TA = 0° C to 70· C Unless Otherwise Specified)
100
90
E
I 80
!z 70

«

w

MCL2730
MCL2731 - - + - - - - - - - 1
Vee =5 V
TA=2S.C.--+----:~--=---l
IF = 0.5 mAisleg7£.....:,....."'5;__--!

~80r----7~~~~~~---i

a

10,000

Z

J...11 ~

~

1-;11.

!z11000
~~'

50

MCL273~1f

TA 8S·C

ffiu.

MCL2731
Vee - 5,0 V
Vo = 0.4 V

Ul

TA-O·C
TA=-40·C

~~
o

~

1\

~

I

a:

b

1.0
2.0
Vo-OUTPUTVOLTAGE-1V
C1957

Fig. 1.

DC Transfer
Characteristics

100
0.1

1.0
10
100
INPUT FORWARD CURRENT-rnA
C1958

Fig. 2.

Current Transfer
Ratio vs. Input
Forward Current

103

MCL2730 (HCPL-2730) MCL2731 (HCPL-2731)
TYPICAL ELECTRO-OPTICAL CHARACTERISTICS (TA = 25° C Unless Otherwise Specified)
_10.0

100

E

Z

W

.§.

10

a:
a:
::J

~
!5

r7

Ij1

I

l.u~

f-

f-

Q.

f-

::J

0

I
E

1.0

TA 'O'C
TA 40'C

..:

~~

~~
J:a:

~

~

e:.~

g~

~

~Vcc=5V

100
10
1.0
INPUT FORWARD CURRENT - mA
C1959

J£

Vee 18 V

Vee = 7 V
1.0

-::J

en

12

r-Ym~11t
0.1

II IIII

10

()a:
a:::J
W()

/

~ 0.1

I=MCL 2731

Fig. 3.

1.0

MCL2730/31 7V Vee
MCL2731 18. V Vee

:;E

/

()

§~CILI~j~o

0.1

,
TA =25'C

a:

()

::J

100

..:

TA·· B5'C
TA··25'C

..:

/

.01

1.0

0.1
0.1

1.2
1.4
1.6
VF, FORWARD INPUT VOLTAGE (V)
C1600

Output Current vs.
Input Forward
Current

Fig. 4.

1.0
5 10 2
100
IF - FORWARD INPUT CURRENT
C1995

Fig. 5.

Forward Input
Current VS. Forward
Input Voltage

Supply Current Per
Channel vs. Input
Forward Current

PULSE
GEN
Za=50n
tF

IF=r----,

:

0

I

I

"~J'F

l '''___

= 5ns

I!------I
I

1---4--t_-oVa
5V

IF MONITOR

:

loon

tPHL

Cl981

Fig. 6, Switching Test Circuit and Waveforms

+5V
10V---~~---~~

VCM
! - - - -.....--o va

If = Oms
vO----------~VaL

If = 1.6 mA

VFF

l-=VeM
PULSE GEN.

C1962

Fig. 7. Test Circuit for Common Mode Transient Immunity and Waveforms

104

30 mA MCP3009*
NON-lERO-CROSSING 15 mA MCP3010
10 mA MCP3011
DESCRIPTION

PACKAGE DIMENSIONS
}
15'MAX

1
6.86 (.270)

o

0.36 (.014)

6.35 (.250)

-'------"'-'+-'11 0.20 (.008)

~'8.89 (.350) ~

~

7.62
(.300)
REF

8.38 (.330)

t-=

1.78 (.070) REF

-L
T

t

1

I
1
I

1
I
I

--II0.56 (.022)
0.41 (.016)
ANOOE 1

J:I
:

3.94 (.155) t 4.95 195)
3.68 (.145) I I MAX

I

t 3.56 (.140)
ti3.05 (.120)

0.~1

FEATURES
•

1.78 (.070) TYP

:

The MCP3009, MCP3010 and MCP3011 are optically
isolated triac driver devices. These devices contain a
GaAs infrared emitting diode and a light activated
silicon bilateral switch, which functions like a triac.
This series is designed for interfacing between
electronic controls and power triacs to control
resistive and inductive loads for 120 VAC operations.

j

(.020)
MIN

Low input current required (typically 5mA MCP3011)
• Minimum commutating dv/dt is specified at 0.1 V /
fJsec
• Pin for pin replacement for the MOC3009, 3010
and 3011 devices
• High isolation voltage - minimum 7500 VAC peak
• Underwriters Laboratory (U L) recognized - File
E50151

1-1.27 (.050)
C2090
DIMENSIONS IN mm (INCHES)
6 MAIN
TERM.

4 MAIN
TERM.

APPLICATIONS
•
•
•
•
•
•

Triac driver
Industrial controls
Traffic lights
Vending machines
Motor control
Sol id state relay

Equivalent Circuit

* *00 NOT CONNECT C2081
(TRIAC SU8STRATE)

'Not Recommended
For New Designs

ABSOLUTE MAXIMUM RATINGS
TOTAL PACKAGE
Storage temperature ................... -SSO C to 1SO· C
Operating temperature ................. -40·C to 1OO·C
Lead temperature
(Soldering 10 sec ............................ 260·C
Total package power dissipation @ 2S· C
(LED plus detector) ......................... 330 mW
Derate linearly from 2S· C ................... 4.0 mW/· C
Withstand test voltage ........ 7S00 VAC Peak (S0-60 Hz)

INPUT DIODE
Forward DC current ............................ 60 mA
Reverse voltage ................................... 3 V
Peak forward current
(1 I'S pulse, 300 pps) .......................... 3.0 A
Power dissipation 2S·C ambient ................ 100 mW
Derate linearly from 2S·C .................. 1.33 mW/·C
OUTPUT DRIVER
Off-state output terminal voltage ............... 2S0 volts
On-state RMS current
TA; 2S·C .......... 100 mA
(Full cycle, 50 to 60 Hz) TA; 70·C ........... SO mA
Peak non repetitive surge current ................. 1.2 A
(PW; 10 ms, DC; 10%)
Total power dissipation @ TA; 2S·C ........... 300 mW
Derate above 2S·C ....................... 4.0 mWfOC
105

MCP3009 MCP3010 MCP3011
ELECTRO-OPTICAL CHARACTERISTICS (25°C Temperature Unless Otherwise Specified)
TRANSFER CHARACTERISTICS
CHARACTER ISTIC
LED Trigger Current
(Current Required MCP3009
to latch output) MCP3010
MCP3011

U

0

Cl

""-

~~
a:

TYP.

MAX.

UNITS

1FT

-

15.0
10.0
5.0

30
15
10

mA

Main terminal
volt. = 3.0V

200

"A

Either direction

V/"s

Static dv/dt
(see Figure 5)

VI"S

Commutating dv/dt
ILOAD = 15 mA
(see Figure 51

IH

Critical Rate of Rise of
Off-State Voltage

dv/dt

-

10.0

-

Critical Rate of Rise of
Commutating Voltage

dv/dt

0.1

0.2

-

Isolation Voltage

Vlso

5300

VAcRMS

Viso

7500

VACPEAK

Isolation resistance

Rlso

1011

Isolation capacitance

CISD

2
0

i=



"

50
25
75
100
TA - AMBIENT TEMPERATURE (DC)
C1B91

C1690

Fig. 5. dV/dt vs. Load Resistance

.

~
C!1

Fig. 6. dV/dt vs. Temperature

107

MCP3009 MCP3010 MCP3011
TYPICAL ELECTRICAL CHARACTERISTIC CURVES
(25°C Temperature Unless Otherwise Specified)

!f
dV/dl

'"

~"

2.0

!~I[ 2b ~~

:::;

V/~s

~

......

....

dV/dl 8.9 Vonf
RL 1 kfl

w

~

0.2

Test Circuit in Figure 5

~ 1.5

r--

II:
II:

100

::>

......

()

~

w 1.0

CJ

o

II:

w

::>

en
~

~1°11111

w

I

:>

1.0
10

f -

100

1000

10,000

.5

Q.

~

100,000

0

0.01

1.0

0.1

MAXIMUM OPERATING FREQUENCY 1HZ!

PW -

100

10

PULSE WIDTH Imsi

C1696

C1692

Fig, 7. Commutating dV/dt
vs Frequency

Fig. 8. Maximum Nonrepetitive
Surge Current

TYPICAL APPLICATION CIRCUITS

RL
Ron

180
MCP3009
MCP3010
MCP3011

180

120V
60 Hz

MCP3009
MCP3010
MCP3011

C1693

Fig. 10. Inductive Load With
Sensitive Gate Triac

6

180

120 V
60 Hz

MCP3009
MCP3010
MCP3011

0.2

~F

115 rnA < IGT < 50 rnA)

Fig. 11. Inductive Load With
Non-Sensitive Gate Triac

108

0.1 "F

IIGT" 15 mAl

Fifl. 9. Resistive Load

C1695

120 V
60 Hz

C1694

NON-ZERO-CROSSING 5 mA MCP3012
MCP3023

AIGaAs
PACKAGE DIMENSIONS

DESCRIPTION

t

6.86 (.270)

o

I.

6.35 (.250)

0.36 (.014)

-'------""""rl-ll 0.20 (.008)

(.350~ ~

~

'8.89
8.38 (.330)

7.62
(.300)
REF

t-=

1.78 (.070) REF

-L

T

The MCP3011A, MCP3012, MCP3022A and
MCP3023 are optically isolated triac driver devices.
These devices contain a very low degradation
Aluminum Gallium Arsenide (AIGaAs) infrared
emitting diode and a photosensitive silicon bilateral
switch, which functions like a triac. This series is
designed for interfacing between electronic controls
and power triacs to control resistive and inductive
loads for 240 VAC operations.

FEATURES
1.18 (.070) TYP

iii
I
I
I

-~

I
I

I--

I

J.,

J: I

3.94 (.155) t 4.95 95)
3.68 (.145) t I MAX

I

t 3.56 (.140)
,.L13.05 (.120)

I

O.Jl (.020)
MIN

1-1.27 (.050)

0.56 (.022)

C2090

0.41 (.016)

DIMENSIONS IN mm (INCHES)
6 MAIN
TERM.

4 MAIN
TERM.

.. Low input current, 1FT = 5 mA MCP3012,
MCP3023
" Minimum commutating dVldt is specified at 0.1
Vlllsec
" High isolation voltage-minimum 7500 VAC peak
.. Underwriters Laboratory (UL) recognized-File
E50151
" Excellent 1FT stability-IR emitting diode has very
low degradation.

APPLICATIONS
" European applications for 240 VAC
" Triac driver
" Industrial control
II Traffic lights
II Motor control
• Solid state relay

*00 NOT CONNECT

(TRIAC SUBSTRATE) C2U81
Equivalent Circuit

ABSOLUTE MAXIMUM RATINGS (TA = 25°C Unless Otherwise Specified)
TOTAL PACKAGE
Storage temperature ....•............ -55° C to 150° C
Operating temperature .........•..•.. -40°C to 100°C
Lead temperature (Soldering, 10 sec) ........... 260°C
Total package power dissipation
(LED plus detector) ...•.•.•..•.••..•...•.• 330 mW
Derate linearly from 25°C •.•.•.••.•.....• 4.0 mW/oC
Surge isolation voltage ...•....•...... 7500 VAC Peak
INPUT DIODE
Forward DC current .......................... 40 rnA
Reverse voltage .........•........••............. 3 V
Peak forward current (1 /-,s pulse, 300 pps) ...•... 3.0 A
Power dissipation ........................... 100 mW
Derate linearly from 25°C ...•.....•..... 1.33 mW/oC

OUTPUT DRIVER
Off-state output terminal voltage
MCP3012 .................................. 250 V
MCP3023 ................................ " 400 V
On-state RMS current
TA = 25°C ..•.•.•••. 100 rnA
(Full cycle, SO to 60 Hz) TA = 70°C •.•..•.••.• 50 rnA
Peak nonrepetitlve surge current
(PW = 10 ms, DC = 10%) .•...•.•.•.•.•••..••• 1.2 A
Total power dissipation .•••..•.••.•••..•.••• 300 mW
Derate above 25°C ...................... 4.0 mW/oC

109

MCP3012 MCP3023
ELECTRO-OPTICAL CHARACTERISTICS (TA = 25" C Unless Otherwise Specified)

TRANSFER CHARACTERISTICS

u

a

c:J

;;Z

:t~

II:

SYMBOL

LED trigger current (current
required to latch output)
MCP3012. MCP3023

1FT

Holding current

IH

200

,.A

dV/dt

15
10
0.2

VII'S
VII'S
VII'S

Critical rate of rise 01
off-state voltage
MCP3023
MCP3012
Critical rate of rise 01
com mutating voltage
Isolation Voltage

Z
0

S
0

!!!

TYP.

CHARACTERISTIC

Isolation resistance
Isolation capacitance

dVldt

MIN.

0.1

Viso

5300

Viso

7500

Riso
C,sa

10"

MAX.

UNITS

5

mA

TEST CONDITIONS

Main terminal voltage
Either direction

=

Static dv/dt, TA 85°C
(see Figure 6)
Commutatlng dv/dt
ILOAO 15mA
(see Figure 7)

=

VAcRMS

Relative humidity :5 50%,
1t-0:5 10 ,.A, 5 seconds
VAcPEAK Relative humidity :5 50%,
1t-0:5 10 ,.A, 5 seconds
ohms
V,-o = 500 VDC
pF
1= 1 MHz

0.5

INDIVIDUAL COMPONENT CHARACTERISTICS
CHARACTERISTIC

S~

ILO
Z-

-0

I-~
:::)1~u

:::)111

O~

Forward ¥oltage
Forward voltage tamperature
coefficient
Reverse voltage
Junction capacitance
Peak blocking current,
either direction
MCP3012
MCP3023
Peak on-state voltage,
either direction

SYMBOL

MIN.

VF

VR
CJ

3.0

110

TYP.

MAX.

UNITS

1.3

1.5

V
mVloC
V
pF

-1.8
25
50

IORM
IORM

10
10

100
100

nA
nA

VTM

2.0

3.0

V

Note 1. Test voltage must be applied within dVldt rating.

=3 V

TEST CONDITIONS
IF= 10mA

IR=10,.A
VF = 0 V, 1 = 1 MHz

VORM = 250 V, Note 1
VORM = 400 V, Note 1
ITM = 100 mA peak

MCP3012 MCP3023
TYPICAL ELECTRICAL CHARACTERISTIC CURVES (TA = 25°C Unless Otherwise Specified)

+800

II

;(

.s

a:
a:

w

0

!;(

f'.

(.)

ffjl.l

c

::i

+25

Fig. 2. Trigger Current vs.
Temperature

1000
::!

o

TEMPERATURE, TA - (OC) C1803A

C1711

u;

~

iii 0.7

1/

I

~

---r--

:::l

en

10

~

«

i:tiQ.

I

.5

I

S
1.0
10
100
1000
10,000 100,000
I - MAXIMUM OPERATING FREQUENCY (Hz)

~

o
0.01

0.1
1.0
10
100
PW - PULSE WIDTH (ms)
C1696

C1692A

Fig. 3. Com mutating dVldt
VB. Frequency

Fig. 4. Maximum Nonrepetftive
Surge Current

111

MCP3012 MCP3023
TEST CIRCUITS FOR dV/dt MEASUREMENTS
VCC

.------.6

~--..,

~~--------,

,....-_ _2~MCP3012

2 MCP3012
MCP3023

,....----,6

Rin

~--~~----~

MCP3023

1.-_ _....J4

...J4

L..-_ _

dV = WVpack = 2rrf .1.414 Vrms
Cit

dV

dt = 8.88 f

= 8.88 f Vrms

Vrms
C1689A

Fig. 6. Commutating dV/dt

Fig. 5. Static dV/dt

RL
180

120 V
120 V

60 Hz

60 Hz

MCP3012

MCP3012

MCP3023

MCP3023

IIGT :515 mAl

Cl693A

Fig. 7. Resistiva Load

Fig. B. Inductive Load With
Sensitive Gate Triac

120 V

60 Hz
MCP3012
MCP3023

(15 rnA < IGT < 50 rnA)

Fig. g. Inductive Load With
Non-Sensitive Gata Triac

112

C1695A

Cl694A

30 mA MCP3020/0l*
NON-lERO-CROSING 15 mA MCP3021 III
10 mA MCP3022/2l
PACKAGE DIMENSIONS

DESCRIPTION

~

The MGP3020. MGP3021 and MGP3022 are optically
isolated triac driver devices. These devices contain a
GaAs infrared emitting diode and a light activated
silicon bilateral switch. which functions like a triac.
This series is designed for interfacing between
electronic controls and power triacs to control
resistive and inductive loads for 240 VAG operations.

-I-

)
15 MAX
0

6.86 (.270)
6.35 (.250)

0.36 (.014)

..l...-~"'"1t-'1 0.20 (.008)

~18.89 (.350~~

~~...L
7.62
(.300)
REF

8.38 (.330)

1.78 (.070) REF

I

FEATURES
•
•

1.78 (.070) TYP

•

b--c="",=-'--=l 3.94 (.155) I 4.95 1.195)
I I
3.68 (.145) I j MAX
I
I
I
I
I
I
I I 3.56 (.140) O.Jl (.020)
I
I
.J.......13.05(.120)
MIN

•
•

I:

---II0.56 (.022)

1-1.27 (.050)

0.41 (.016)

DIMENSIONS IN mm (INCHES)

ANODE 1

Minimum com mutating dv/dt is specified at
0.1 Vlp.sec
Excellent 1FT stability-IR emitting diode has low
degradation
Pin for pin replacement for the MOG3020.
MOG3021 and MOG3022
High isolation voltage-minimum 7500 VAG peak
Underwriters laboaratory (Ull recognizedFile #E50151

APPLICATIONS
C2090

6 MAIN
TERM.

•
•
•
•
•
"
•

European applications for 240 VAG
Triac driver
Industrial controls
Traffic lights
Vending machines
Motor control
Solid state relay

4 MAIN
TERM.
*DO NOT CONNECT
(TRIAC SUBSTRATE)

C2081

'Not Recommended
For New Designs

Equivalent Circuit

ABSOLUTE MAXIMUM RATINGS
TOTAL PACKAGE
Storage temperature . . . . . . . . . . -55°C to 150°C
Operating temperature ......... _40°C to 100°C
lead temperature
(Soldering. 10 sec) . . . . . . . . . . . . . . . . . . 260°C
Total package power dissipation @ 25°C
(lED plus detector) . . . . . . . . . . . . . . . . 330 mW
Derate linearly from 25°C . . . . . . . . . . 4.0 mW/oC
Surge Isolation voltage. . . . . . . .. 7500 VAC Peak

INPUT DIODE
Forward DC current . . . . . . . . . . . . . . . . . 60 mA
Reverse voltage . . . . . . . . . . . . . . . . . . . . . . 3 V
Peak forward current
(1 I1S pulse. 300 pps) . . . . . . . . . . . . . . . .. 3.0 A
Power dissipation 25°C ambient . . . . . . . . 100 mW
Derate linearly from 25°C . . . . . . . . . 1.33 mW/oC
OUTPUT DRIVER
Off-State Output Terminal Voltage ..... 400 Volts
On·State RMS Current
TA = 25°C ... 100 mA
(Full Cycle. 50 to 60 Hz) TA = 70°C .... 50 mA
Peak Nonrepetitive Surge Current . . . . . . . . 1.2 A
(PW = 10 ms. DC = "10%)
Total Power Dissipation @ TA = 25°C ..... 300 mW
Derate above 25°C . . . . . . . . . . . . . 4.0 mW/oC
113

MCP3020/0Z MCP3021/1Z MCP3022/2Z
ELECTRO-OPTICAL CHARACTERISTICS (250 C Temperature Unless Otherwise Specified)

TRANSFER CHARACTERISTICS
CHARACTERISTIC

u
0

CI

,,~z

~I-

,,«

II:

SYMBOL

MIN.

TYP.

MAX.

UNITS

LED Trigger Current
(Current Required MCP3020
to latch output) MCP3021
MCP3022

1FT

-

Holding Current

15
8
5

30
15
10

mA

Main terminel
voltaga - 3.0 V

IH

-

200

p.A

Either direction

Critical Rate of Rise of
Off-&tate Voltage

dv/dt

-

15

-

V/p.s

Static dv/dt, TA = 85"C
(see Figure 4)

Critical Rate of Rise of
Commutating Voltage

dv/dt

0.1

0.2

-

V/p.S

Com mutating dv/dt
ILOAD = 15mA
(see Figure 5)

Isolation Voltage

V lso

5300

VAc RMS

Visa

7500

VACPEAK

Isolation resistance

Rlso

10"

Isolation capacitance

Ciso

Z

0
j:

...«0

!!!

TEST CONDITIONS

ohms
pF

0.5

Relative humidity .:; 50%,
11.0" 10 p.A, 5 seconds
Relativa humidity .:; 50%,
11.0" 10 p.A, 5 seconds
VI.O = 500 VDC
f= 1 MHz

INDIVIDUAL COMPONENT CHARACTERISTICS
CHARACTERISTIC

SYMBOL

MIN.

MAX.

UNITS

1.3

1.50

V

-1.8
25
50
65
.35

10

mV/"C
V
pF
pF
p.A

I:J

:!:

Reverse leakage current

IR

Peak Blocking Current,
Either Direction

IORM

-

10

100

nA

Peak On-&tate Voltage,
Either Direction

VTM

-

2.0

3.0

Volts

w

0

0
Q

...
II:

1-0

:JI"'u
I-w
:JIOw

VF

BVR
CJ

3.0

Q

Note 1. Test voltage must be applied within dv/dt rating.

114

TYP.

Forward voltage
Forward voltage temp.
coefficient
Reverse breakdown voltage
Junction capacitance

TEST CONDITIONS
IF=30 mA

IR = 10p.A
VF=OV,f=IMHz
VF = 1 V, f = 1 MHz
VR =3.0V
VORM = 400 V, Note 1
ITM = 100 mA Peak

MCP3020/0Z MCP3021 /1 Z MCP3022/2Z
TYPICAL ELECTRICAL CHARACTERISTIC CURVES (25 0 C Free Air Temperature Unless Otherwise Specified)

+800

«E
U

w

~
z

/

0-400

a:
a:

1.0

U

0.9

~

0.8

"~

I

1:"

1.1

a:

/

I
~

I-

:::l

I

I

1.2

zw

/

0

o
z
I

j

:::l

1.3

a:

J

a:
a:

1.4

«
~

:J

/

!z+400
w

o
~

I

-800

~

-3.0 -2.0 -1.0
0
1.0 2.0 3.0
VTM - ON-STATE VOLTAGE (VOLTS)
C1711

"

"

["

I'\.

"

.......
.......

r-.

.......

r--. ...... r--

0.7

0.6
-40

-20
o 20 40 60 80 100
AMBIENT TEMPERATURE (OC)

TA -

C1712

Fig. 1 On-State Characteristics

Fig. 2 Trigger Current vs.
Temperature

TEST CIRCUITS FOR dV/dt MEASUREMENTS
,...-----.6

~{

1----....,

2

MCP3020
MCP3021
MCP3022

L...-----I4
dV
dt = WVpack

= 8.88 f

RL

= 21ff x1.414 Vrms

Vrms

Fig. 3. Static dV/dt

Vee

6
2 MCP3020
,...----1 MCP3021
MCP3022 1--.JvVv----'
L...-_ _- ' 4
RL

dV
dt = 8.88 f Vrms
C1689A
Fig. 4. Commutating dV/dt

115

116

ZERO CROSSING 30 mA MCP3030* MCP3040/0Z*
15 mA MCP3031 MCP3041/1Z
PACKAGE DIMENSIONS

5.-

o

t
6.86 (.270)

)
WMAX

6.35 (.250)

0.36 (.014)

.L.--=--===-nr-I 0.20 (.008)

~18.89 (.350~j

~

7.62
(.300)
REF

8.38 (.330)

I+---"

1.78 (.070) REF

-L

1

DESCRIPTION
These devices are optically isolated zerocrossing triac drivers. They consist of a
Gallium Arsenide infrared emitting diode
optically coupled to a photosensitive silicon detector which functions as a zero
voltage crossing bilateral triac driver. This
series is designed for interfacing between
electronic controls, motors, solenoids and
consumer appliances, etc.

FEATURES
Logic control for 110 VAG or
220 VAG Power
a High isolation voltage - minimum
7500 VAG peak
a Underwriters Laboratory (UL)
recognized File #E50151
• Pin for pin replacement for the
MOG3030, MOG3031, MOG3040,
MOG3041
• Excellent 1FT stability -IR emitting
diode has low degradation.
D

1.18 (.070) TYP

:
I
I
I

--110.56 (.022)
0.41 (.016)

:

J: I

3.94 (.155) t 4.95 1.,95)
3.68 (.145) j t MAX

I

I

t 3.56 (.140)
,l..l.3.05 (.120)

O.~' (.020)
MIN

1-,.27 (.050)
C2090
DIMENSIONS IN mm (INCHES)

6 MAIN

TERM.

APPLICATIONS
•
•
•
•
•
"

Triac driver
Industrial controls
Solid state relay
Traffic lights
Motor controls
Home appliances

4 MAIN
TERM.
* *DO NOT CONNECT
(TRIAC SUBSTRATE)

C2080

'Not Recommended
For New Designs

Equivalent Circuit

ABSOLUTE MAXIMUM RATINGS (TA = 25°G Unless Otherwise Specified)
TOTAL PACKAGE
Storage temperature •••••••••••••• -55°C to 150°C
Operating temperature ••••••••••••• -40° C to 100° C
Lead temperature (Soldering, 10 sec) •••••••• 260° C
Total package power dissipation
@ 25°C (LED plus detector) •••••••••••• 330 mW
Derate linearly from 25° C • • • • • • • • • • • • •• 4.0 mW/o C
Surge Isolation voltage • • • • • • • • • • • •• 7500 VAC Peak
Withstand test voltage ••••• 7500 VAC Peak (50-60Hz)
INPUT DIODE
Forward DC current • • • • • • • • • • • • • • • • • • • •• 60 mA
Reverse voltage ••••••••••••••••••••••••••• 6 V
Peak forward current (1 ,..s pulse, 300 pps) ••••• 3.0 A
Power dissipation 25°C ambient. • • • • • • • • •• 100 mW
Derate linearly from 25° C • • • • • • • • • • • •• 1.33 mW/o C

OUTPUT DRIVER
Off-State Output Terminal Voltage
MCP303O, MCP3031 •••••••••••••••••••• 250 V
MCP3040, MCP3041 •••••••••••••••••••• 400 V
TA = 25°C ••••••• 100 mA
On-State RMS Current
(Full Cycle, 50 to 60 Hz) TA = 70°C ••••••• 50 mA
Peak Nonrepetitive Surge Current
(PW=10ms,DC=10%) ••••••••••••••••• 1.2A
Total Power Dissipation @TA = 25°C ••••••• 300 mW
Derate above 25° C ••••••••••••••••• 4.0 mW/o C

117

MCP3030/31 MCP3040/0Z MCP3041/1Z
ELETRO-OPTICAL CHARACTERISTICS

(TA

=25°C Unless Otherwise Specified)

TRANSFER CHARACTERISTICS
CHARACTERISTIC

(.)

C

CJ

z

iii
VI

0

a:

(.)

0

a:

III

N

z

LED trigger current
(current required to
latch output)
MCP303O. MCP3040
MCP3031. MCP3041
Holding current
Inhibit voltage
(MT1-MT2 voltage
above which device
will not trigger)
Leakage in inhibited
state
MCP3030. MCP3031
MCP3040. MCP3041
Isolation Voltage

SYMBOL

MIN.

1FT
1FT
IH

TYP.

MAX.

UNITS

16

30
15

mA
mA
p.A

25

V

IF

200

p.A
p.A

IF Rated 1FT.
VDRM 250 V
VDRM 400 V

7
200

15

V'H

....~

!!!

Isolation resistance
Isolation capacitance

Main terminal
voltage 3.0 V
Either direction

=

=Rated 1FT
=

100
100

IDRM2
IDRM2

300

VISO

5300

VAcRMS

ViSO

7500

VAcPEAK

RiSO

10"

0

0

TEST CONDITIONS

ohms
pF

0.5

elsa

=
=

Relative humidity,,; 50%.
1,.0"; 10 iJA. 5 seconds
Relative humidity,,; 50%.
1'.0"; 10 p.A. 5 seconds
V,.o 500 VDC
1 1 MHz

=

=

INDIVIDUAL COMPONENT CHARACTERISTICS

...c
0

...a
;:)

A-

!

CHARACTERISTIC
Forward vDltage
Forward voltage temp.
coefficient
Reverse voltage
Junction capacitance

SYMBOL

MIN.

VF

VR
CJ

3.0

...
......
...c
...
...

0

Nota 1. Test voltage must be applied within dV/dt rating.

(.)

;:)

A-

;:)

MAX.

UNITS

1.3

1.50

V

=
=
=

V
pF
pF

IR 10 p.A
VF 0 V. 1 1 MHz
VF 1 V. 1
MHz

VDRM
VDRM

IDRM1
IDRM1

2
2

100
100

nA
nA

VTM

1.8

3.0

Volts

dV/dt

1000

CAUTION: Normal anti-static precautions are required when handling this product.

118

TEST CONDITIONS

IF = 30 rnA

mVioC

-1.8
25
50

65
Peak Blocking Current.
Either Direction
MCP3030. MCP3031
MCP3040. MCP3041
Peak On-State Voltage •
Either Direction
Critical rate 01 rise
01 off-state voltage

a:

0

TYP.

Vlp.s

ITM

=
=,

=250 V. Note 1
=400 V. Note 1

=100 mA Peak

MCP3030/31 MCP3040/0Z MCP3041 /1 Z
TYPICAL ELECTRICAL CHARACTERISTIC CURVES (TA

=25°C Unless Otherwise Specified)
o

+800

a:
a:

:J
U

w
!;(

1.1

~

1.2

1"1'\

1.1

~

1.0

a:

:J

ffi

Cl
Cl

II

1'\

I-

t)

I

1

1.3

z

V

~0-400

~
I

I

0

1.4

a:

I

!Z+400
w

~

::i

II

<"
§.

"r--.

-3.0 -2.0 -1.0
0
1.0 2.0 3.0
VTM - ON-STATE VOLTAGE (VOLTS)
C1711

I"r-. l"'- I"--

-40 -20
0
20
40 60
80 100
TA - AMBIENT TEMPERATURE (0C)

~

Fig. 2.

1.3

Trigger Current vs.
Temperature

1.3
1.2

1.2

TYPICAL @ +25° C = 100 ,..A

TYPICAL @ +25° C = 15V

~ 1.1
~ 1.0

~

~0.9

:::i;

---

'" 1.1

::;:
a:

E 1.0

o

i"'---

~

~ 0.9
::i

1FT = 15mA

0.8

~

a:

0.8

~ 0.7

0.7
0.6
0.5

""

0.8

Fig. 1
On-State Characteristics

:sz

t'-

0.9

~ 0.7
I 0.6
I-

V
-800

o

r-...

0.5
25

85

........

"""-

1FT - 15mA
@ Rated VORM

0.6

o

"-

o

85
C1722

25

C1721
Fig. 3. Normalized Inhibit Voltage (V/H)
Temperature

Fig. 4. Normalized IDRM2
Temperature

VS.

VS.

6
4

<"
oS
:ia:

~

0

w

N

::i

TYPICAL @ +25° C = 2 nA

2

/

10
8
6

«
:::i;

4

0

2

/
LV

a:
Z

1

/

/@
o°

25°

rATED VORM
850
C1723

Fig. 5. Normalized IDRMI vs. Temperature

119

MCP3030/31 MCP3040/0Z MCP3041 /1 Z
APPLICATIONS
Typical TTL Logic - AC Power Interface
I.

LED Trigger Current Requirements
DEVICE
MCP30Xl
MCP30Xl
MCP30XO
MCP30XO

III.

Vcc
5V
12V
5V
12V

RF (MAX)
160!!
560!!
8611
290!!

II.

Device/Line Voltage/Load Selection
DEVICE

Vp
(RMS)

LOAD
TYPE

SNUBBER
REQUIREMENT

MCP303X
MCP304X
MCP303X
MCP304X

';l20V
,;240V
';l20V
O;240V

Resistive
Resistive
Inductive
Inductive

No
No
Yes
Yes

1FT
l5mA
15mA
30mA
30mA

Typical Circuits@TA9'O°C
Vee
A.C.
LOAD

1------,~7I:7:.".,.....

LOGIC

: tK

N.C.
N.C.

Ct73'

Figure 6 For Load Current IL ·~50mA RMS - Direct Load Interface

Vee

C1732

Figure 7 For Load Current IL . 50mA RMS • Interface Via External Tflac (TEXr )
• RG Ik!! optional for sensitive gate TEXT' IG .. 10mA
" RT 180!! for IG· IOOmA
RT=86!! for lOOmA·· IG·· 200mA
0

0

Typical Snubber Values TEXT

Fig. 7. Circuit Driving Inductive Load:

RMS LOAD CURRENT IL (A)

%dt(Vll's)

100mA

500mA

1A

3.3Yn0.15

2A

LEGEND: RslllCs (I'F)
5A

10A

50A

56
~y
lk/n
5Yr
0.22
0.68
1.5

1

33X
56~
0.015
0.068

2

5~
0.0033

86
5.6~
3.3~
82~
56~
8·X
0.022
0.033
0.068
0.22
0.33

5

no snubber

3~
0.0033

10

33Yn
6.Ya
3.~
lk/n
l°Xc
0.005
0.01
0.02
0.05
0.33

no snubber no snubber 3Yn
0.0022

1~
0.0033

6.%
0.015
0.0068 3 X

6~
0.068

NOTES
I. MCP304X and TEXT VORM '" 400 V recommended for 120 V Inductive Loads - Fig. 7
2. Capacitor Working Voltage'" 2X RMS Line Voltage (Vp )

120

~8

h 2.20

Given:
1. RMS Load Current
2. ::0:240 V (RMS) Line
3. Commutating 
o

r-.... t--:l1.0

0

w

w

N

r----

<

:;
a:

o

1FT = 10mA
VOAM = 400 V

Zo 1

0

a: 0.9

r--

+25

1.2
1.1

::::;
< 1.0
:;
0

z

I
-40

"'

+75

TEMPERATURE. TA-('C)

0.8
0.7
0.6
0.5
-40

C1B01

Fig. 3. Normalized Inhibit Vol/age (V,H) VB.
Temperature

1FT -5 mA
VOA = 400 V

~

"'

r--

1"\

"- I"\.

"

...........

-

0
25
50
75 100
TEMPERATURE. TA-(OC)
Typical @+25'C41 fJA
C1802

Fig. 4. Normalized 'ORM2 VB.
Temperature

6
4

i

a:

E

2

/

0

w

10

::::;
<
:;

8
6

0
Z

4

N

a:

/

/
/

2

fi ~ATED
0'

25'

VOAM

50'

,

85

TEMPERATURE. TA-(OC)
C1723

Fig. 5. Normalized lOR"" VB. Temperature

123

MCP3032/33 MCP3042/43
APPLICATIONS
Typical TTL Logic - AC Power Interface
I.

LED Trigger Current Requirements
DEVICE
MCP30X2
MCP30X2
MCP30X3
MCP30X3

III.

Vcc
5V
12V
5V
12V

RF
3301!
10001!
6201!
20001!

II.

Device/Line Voltage/Load Selection

vp

DEVICE

(RMS)

LOAD
TYPE

SNUBBER
REQUIREMENT

MCP303X
MCP304X
MCP303X
MCP304X

-S120V
s240V
S120V
s240V

Resistive
Resistive
Inductive
Inductive

No
No
Yes
Yes

1FT
lOrnA
lOrnA
5 rnA
5mA

Typical Circuits @ T AS70° C
Vee
AC.
LOAD

1------:.,..".,.,.",.,,.,,....
LOGiC

N.C.
N.C
C1731

Figure 6 For Load Current IL ,;SOmA RMS • Direct Load Interface

Vee

AC.
AT"

LOAD

NC

AG'

C1732

Figure 7 For Load Current IL

>

SOmA RMS • Interface Via External Triac (TEXT)

• RG = 1 kll optional for sensitive gate
•• RT = 1801l for IG < 100mA
RT=86Jl for 1OOmA < IG < 200mA

Typical Snubber Values -

hx T .

Fig. 7. Circuit Driving Inductive Load:

RMS LOAD CURRENT IL (A)

TEXT

%dl(V/l's)

100mA

500mA

IG " 10mA

lA

2A

LEGEND: Rs!l/Cs (I'F)
SA

lOA

3.3Yn0.15 l k / n0.22 S Y r0.68 33y1.S 56

1

5.~
3~
0.015
0.068

2

5~
0.0033

S.6~
3.3~
82Yr
S6Yn
8·X
0.022
0.033
0.068
0.22
0.33 86

S

no snubber

3~
0.0033

6.Ya
3.Yr
lOX
0.02
O.OOS
0.01

no snubber no snubber 3~
0.0022

10

1~
0.0033

lk~

0.05

A8

~20

33Yn0.33

6.%
6Yo
3X
0.015
0.068
0.0068

NOTES
1. MCP304X and TEXT VORM ~ 400 V recommended for 120 V Inductive Loads - Fig. 7
2. Capacitor Working Voltage ~ 2X RMS Line Voltage (Vp )

124

50A

Given:
1. RMS Load Current
2. "5240 V (RMS) Line
3. Com mutating gy
rating of TexT

MCT2
PACKAGE DIMENSIONS

DESCRIPTION
The MCT2 is a NPN silicon planar phototransistor
optically coupled to a gallium arsenide infrared
emitting diode.

FEATURES AND APPLICATIONS

1.78 (.070) TYP

b

1=.7.=.,,='-.=I 3.941·155) t 4.95 95)
:

:

I
I

I
I

I

I

-II-0.56 (.022)
0.41 (.016)

:

3.681.145)\ I MAX
I
I
t 3.561.140) 0.~1 1·020)
,Ll3.051.120)
MIN

J: I

ANODE~6
CATH.2

1-1.27 (.050)
C2090
DIMENSIONS IN mm (INCHES)

BASE

•
•
•
•
•
•
•
•

AC line/digital logic isolator
Digital logic/digital logic isolator
Telephone/telegraph line receiver
Twisted pair line receiver
High frequency power supply feedback control
Relay contact monitor
Power supply monitor
UL recognized - File E50151

5 COL
2.:

3

4 EMIT.

C2079
Equivalent Circuit

Power dissipation at 25° C ambient ........... 200 mW
Derate linearly from 25°C ................ 2.6 mWI"C

ABSOLUTE MAXIMUM RATINGS
Storage temperature ................... -55°C to 150°C
Operating temperature ................. -55°C to 100°C
Lead soldering temperature (10 sec) ............. 260°C

Output Transistor
Power dissipation at 25° C ambient ........... 200 mW
Derate linearly from 25° C ................ 2.6 mW/o C
Input to output voltage isolation .............. 1500 VDC
Total package power dissipation at 25° C ambient
(LED plus detector) ........................ 250 mW
Derate linearly from 25°C ................... 3.3 mW/oC
Collector-Emiller Current (ICE) .................. 50 mA

Input Diode
Forward current. . . . . . . . . . . . . . . . . . . . . . . . . . . .. 60 mA
Reverse voltage .............................. 3.0 V
Peak forward current
(1 ~s pulse. 300 pps) ....................... 3.0 A

ELECTRO-OPTICAL CHARACTERISTICS
CHARACTERISTIC

(25 0

SYMBOL

C Free Air Temperature

Unless Otherwise Specified)

MIN.

TYP.

MAX.

UNITS

1.25
25
50

1.50

3.0

V
V
pF

10

!J.A

TEST CONDITIONS

Input DIode
Forward Voltage
Reverse Voltage
Junction Capacitance

Reverse Leakage Current
Output TranSistor

VF
VR
CJ

.01

IR

IF = 20 rnA
I R "IOj1A
VF"OV
VR"3.0 V
V cE "5 V. Ic"IOO!J.A

250

DC Forward Current Gain

hFE

Collector To Emitter Break·
down Volt.

BV CEO

30

85

V

IC"I.O rnA. IF"O

BV cBO

70

165

V

Ic"IO j1A

Collector To 'Base Break-

down Voltage
EmItter to Collector Break·
down Voltage
Collector To Emitter. Leakage Current

Collector To Base Leak.lge Current

BV ECO

14

V

IE; lOOJlA, IF; 0

'CEO

5

50

nA

VcE=IOV,IF=O

'eBo

0.1

20

nA

VCB~IO

V, IF"O
125

MCT2
ELECTRO-OPTICAL CHARACTERISTICS (25°C Free Air Temperature Unless Otherwise Specified)
CHARACTERISTIC

SYMBOL

Capacitance Collector To
Emiller
Capacitance Collector To
Base
Capacitance Emiller To Base

MIN.

MAX.

TYP.

UNITS

TEST CONDITIONS

CeEo
CeBo

e ESO

Coupled
DC Collector Current Transfer
Ratio
DC Base Current Transfer Ratio
Isolation Voltage

CTRcE

20

CTRcB

pF

VeE=O

20
10

pF
pF

Ves=IO V
VSE=O

60

%

VeE=IOV. IF=IOmA. Note I

%

Ves=lO V. IF·lO mA

.35
3500
2500
lO"

Isolation Resistance
Isolation Capacitance
Coliector·Emiller. Saturation
Voltage

8

VDC
VRMS

Vedsal)

0.24

Bw

150

Bandwidlh (see note 2)

pF

f=60 Hz
V ,. o =500 V
f=IMH r

V

IC = 2.0 mA, IF = 16 mA

H

10 12
.5
0.4

Ie =2 rnA. VeE=IO V, RL ~IOO

KHz

n

(Circuit No. I)

SWITCHING TIMES

TYP.

Saturated
t on (from 5 V to 0.8 V)
I off (from SAT to 2.0 V)
Saturated
I on (from 5 V to 0.8 V)
t off (from SAT 10 2.0 V)
Non·Saturated
Rise Time
Base
Fall Time

TEST CONDITIONS

UNITS

Ion (SAT)
lOft (SAT)

10
30

/ls

RL =2 KH. I F =15 rnA. Vee=5 V
Rs=open (Circuil No.2)

Ion (SAT)
loft (SAT)

10
27

I'S

RL =2 KH, I F =20 rnA, Vee=5 V
Rs= 100 KSl (Circuil No.2)

I,
If

300
300

ns
ns

RL =1 KSl, VeB=lO V

TYPICAL ELECTRO-OPTICAL CHARACTERISTIC CURVES
(25° C Free Air Temperature Unless Otherwise Specified)

Vee

I,

---

I,

---

vee

)-..

]~

]~

,

)VOUI

Circuit 1

126

-

Circuit 2

MCT2
TYPICAL ELECTRO-OPTICAL CHARACTERISTIC CURVES (Cont'd)
(25 0 C Free Air Temperature Unless Otherwise Specified)

,.

,0

0

"

,30

III

"0%

i= 11 o
!~,
~ 100l--V cc • s.ov

9o!.

~

120

~

*
a:

~

0
0

S0

::J

0
0

a:

"

V

II'iR

/

1/

0.,

.2

::,.....

'111
,II
iii

I---"'

.4.6,B'.0 2 4 6B'0 20 4060BO
IF - FORWARD CURRENT - mA
CB11

Fig. 1. Current Transfer Ratio vs.
Forward Current

4
3
2

u

~ 10
I

B

6

>=
z

r'"
~

~ 10

~ee, 1~V;

Vee "SOV;

't::,0 9
-20

t- Vc~

I",

leei'0 0

t

25V

~ /'
/' ~

V

r'"

,0 20 30 40 50 60 70 BO 90 100
C812

TA, - TEMPERATURE - "C

Fig. 2. Dark Current vs. Temperature

1... - PULSE WIDTH TIME

6

~

,

30~
20%

~h

~~ ~~
/. ~ vV

6

Vs~~

60

iiia:

I

.,

LSol
.;t;.,

of-- T•• 2S·C

.

.
•

,

lOmA

DELAY TIME

4

3
2

l1mA

~TIM~
"

FALL TIME-

,!

UHWJ

H+*-H-Tt-'r*+ti

9.0m""

B
6
4

3
2

eTR
"

'OK
As

6 BtOCK 2

50%
4

6

a 1M

BASE RESISTANCE -!!

20
C816

Fig. 3. Switching Time vs. Base
Resistance

C819

Fig. 5. Circuit for Figure 3

SO

IF - FORWARD CURRENT - mA

100
C818

Fig. 4. Saturation Voltage vs.
Forward Current

C870

Fig. 6. Waveforms for Figure 3

127

MCT2
TYPICAL ELECTRO-OPTICAL CHARACTERISTIC CURVES (Cont'd)
(25°C Free Air Temperature Unless Otherwise Specified)

5

1

I

/

\

\

"

/
eTR

200",

I
CTR 40""

j

>

;0

c:

/

FORWARD CURRENT {V" vs IF J

'" 1

~I

1/

'"

~ 1. 0

IF

10xlc

9

+25'C

"i:.f-

V

V

,

,:

,/

~·I."00'

~

TA (" C

RE

~~ II~I~~ C
IIll";;'-

1. 2

>
o

V

4-"nlmr
3

w
<.:>

/

\

~o "

MeT2. FORWARD VOLTAGE vs

"iJ~
I IVI'

V

1
,1

.5
1(. - COLLECTOR CURRENT (mAl

10
C822

5
.IF

Fig, 7, Saturation Voltage vs,
Collector Current

100

I,

~
~

on

Z

~
'"Zw

'"'"::>
u
w

>

;;:

B0

01/

/

6

20m~
I~

20

V

f-'

16

12

/

20

o

I

lOOK

10K

A!H

-

C823

3U
.... - -

-

f

V

.-

25,.,A

20"A_ f - -

I

15;-

f--

10"A _ _
"

I

IIIII

BASE AESISTANC~

50 100

B ,

IOV
TA'" 25 C
v(.(.

20

I I
I I

10 mA

V

10

CURRENT - rnA

Fig. 8. Forward Voltage vs.
Forward Current

40

:s

:i'

I,

VV

g
'"w

50 mA

~ FORWARD

I I

I

S, ,

"

Il
0

1M

"

12
C825

Fig. 9. Sensitivity vs. Base Resistance

Vc

volt~

16

20

201

ca26

Fig. TO. Detector Typical hfe Curves

NOTES
I, The current transfer ratio (lCll F) is the ratio of the detector collector current to the LED input current with VCE at 10 volts.
2. The frequency at which ic is 3 dB down from the 1 kHz value.
3. Rise time (tr ) is the time required for the collector current to increase from 10% of its final value, to 90%.
Fall time (td is the time required for the collector current to decrease from 90% of its initial value, to 10%.

128

MCT2E
PACKAGE DIMENSIONS

a

DESCRIPTION

t
6.86 (.210)

WMAX

6.35 (.250)

0.36 (.014)

The MCT2E is a NPN silicon planar phototransislor
optically coupled 10 a gallium arsenide infrared
emitting diode.

-'----"'''""rI-"-; 0.20 (.008)

~~-L
1.18 (.010) REF "1

~'8.89 (.350) ~

FEATURES & APPLICATIONS

1.62
(.300)
REF

8.38 (.330)

•
•
•
•
•
•
•
•
•
•

1.18 (.010) TYP

I
I
I
I

I
I
I

--II--

I

0.56 (.022)
0.41 (.016)

:

J: I

3.94 (.155) t 4.95 1.195)
3.68 (.145) I j MAX

I

t 3.56 (.14O)

I

O.JI (.020)
'L.i3.05 (.120)
MIN

Utility/economy isolator
AC line/digital logic isolator
Digital logic/digital logic isolator
Telephone/telegraph line receiver
Twisted pair line receiver
High frequency power supply feedback control
Relay contact monitor
Power supply monitor
UL recognized - File E50151
High isolation voltage
V,SO = 2500 V RMS, 1 minute

1-1.21 (.050)
C2090
DIMENSIONS IN mm (INCHES)

C2019
Equivalent Circuit

ABSOLUTE MAXIMUM RATINGS

Power dissipation at 25° C ambient ......... " 200 mW
Derate linearly from 25° C ................ 2.6 mW/o C
Output Transistor
Power dissipation at 25° C ambienl ........... 200 mW
Derale linearly from 25°C ................ 2.6 mW/oC
Input to output voltage isolation .............. 3550 VDC
Total package power dissipation at 25° C ambient
(LED plus detector) ........................ 250 mW
Derate linearly from 25° C ................... 3.3 mWI" C
COllector-Emiller Current (ICE) .................. 50 mA

Storage temperature ................... -55°C to 150°C
Operating temperature ................. -55° C to 100° C
Lead soldering temperature (10 sec) ............. 260°C
Input Diode
Forward current. . . . . . . . . . . . . . . . . . . . . . . . . . . .. 60 mA
Reverse voltage .............................. 3.0 V
Peak forward current
(1 j.ts pulse. 300 pps) ....................... 3.0 A

ELECTRO·OPTICAL CHARACTERISTICS (25 0 C Free Air Temperature Unless Otherwise Specified)
CHARACTERISTIC

Input Diode
Forward Voltage
Reverse Voltage
Junction Capacitance
Reverse Leakage Current
Output TranSistor
DC Forward Current Gain
Collector To Emiller Break·
down Volt.
Collector To Base Break·
down Voltage
Emiller to COllector Break·
down Voltage
Collector To Em/ller. Leak·

age Current
Collector To Base Leak·

age Current

SYMBOL

VF
VR
CJ

MIN.

TYP.

1.25
3.0

1.50

UNITS

V
V
pF

25
50
.01

'R

MAX.

10

/1 A

TEST CONDITIONS

'F = 20 mA
IR=IO /1 A
VF=OV
V R =3.0 V
V cE =5 V, Ic=IOO/1A

hFE

100

250

BV CEO

30

85

V

BV CBO

70

165

V

Ic=IO /1A

BV ECO

7

14

V

IE =

'CEO

5

50

leBO

0.1

20

nA
nA

Ic=1.0 mA, IF=O

lOO)..!A,

IF =

0

VcE=IOV.I,=O
VCB~IO

V, IF=O

129

MCT2E
ELECTRO·OPTICAL CHARACTERISTICS (25°C Free Air Temperature Unless Otherwise Specified)
CHARACTERISTIC

Capacitance Collector To
Emitter
Capacitance Collector To
Base
Capacitance Emitter To Base
Coupled
DC Collector Current Transfer
Ratio
DC Base Current Transfer Ratio

SYMBOL

GUAR.
MIN.

TYP.

GUAR.
MAX.

UNITS

TEST CONDITIONS

CeEO

8

pF

VeE=O

20
In

pF
pF

Ves=IO V
VSE=O

60

%

VeE=IOV.IF=IOmA. Note I

.35

%

Ves=IO V. IF-IO rnA

CeBo
CESO
CTRcE

20

CTRcB

Surge isolation voltage

Visa

4000

VDC

Visa

3000
3500

VAc~rms

Steady state isolation voltage

VDC

Relative humidity 50 50%
TA=+25°C.I'_050 1OI'A

1 second
Relative humidity

~

50%,

T A = +25° C. 11_0.s: 10 I'A

VAC·rms

12500
Bv(l·O)
1solation Resistance
Isolation Capacitance
Collector-Emitter. Saturation
Voltage
Bandwidth (see note 2)

veE (sat)
Bw

3500
lO"

1 minute

VDC

II

10 12
.5
0.24
150

pF

V,.o=500 V
f=IMH r

V

'c = 2.0 rnA, 'F = 16 rnA

0.4

KH2

Ie =2 rnA. VeE=IO V. RL =100 n
(Circuit No.1)

SWITCHING TIMES

Non-Saturated
Collector

Non·Saturated
Collector

TYP.

Delay Time
Rise Time
Storage T ,me
Fall Time

td
t,
ts
tf

0.5

Delay Time
Rise Time
Storage Time
Fall Time

td
t,
ts
If

Saturaled
Ion (from 5 V to 0.8 V)
t off (from SAT to 2.0 V)
Saturated
Ion (from 5 V to 0.8 V)
t off (from SAT to 2.0 V)
Non-Saturated
Rise Time
Base
Fall T,me

UNITS

TEST CONDITIONS

P'

RL=100ll.le=2mA.Vee=IOV
(Circuit No. I)

2.0
15
0.1
15

ps

RL=I K!!.le=2mA. Vee=IOV
(Circuit No. I)

Ion (SAT)
toff (SAT)

5
25

ps

RL =2 K!!. ' F=15 rnA. Vee=5 V
RB=open (Circuil No.2)

Ion (SAT)
toff (SAT)

5
)8

1"

RL =2 K!!. I F =2D rnA. Vee =5 V
R B = 100 K!! (Circu,1 No.2)

I,
If

175
175

ns
ns

RL =1 Kn. VeB=IO V

2.5
0.1
2.6

Vee

130

C808

Circuit 2

CB09

MCT2E
TYPICAL ELECTRO-OPTICAL CHARACTERISTIC CURVES
(25°C Free Air Temperature Unless Otherwise Specified)

.

l..~

o

10-

51--;0

",

!..-

5

---

..

~

~;;..

.,

/.

,

/.~ ~~

~~ ~V

.,

0

Vee,7OV;
vee',sciv...

If _20mA

'I::-

IF .. 'lamA

5

r-Vce '", 25V~
I

10

15

20

10·
-20

0

25

Fig. 1 Collector Current VI.
Collector Voltage
(for Typical crR 309M

Fig. 2 Current Transfer Ratio VI.
Forward Current

.....

0

C810

2.•

HIGH CURRENT TRANSFER RATIO

0

I.

II 111111
cl.• VeE·
10 VOLTS

r--...
~

/'
./

r-:: ~

~

~ I.

I.

O~

I

I

~Ij
~
-:. ~s

o'r-

2

IOmA

I,

t-

t-CTR

o. •
8o.•
~

10V

V"

4

u

40

20

20

40

60

80

AMBIENT TEMPERATURE (C)

100

lK

4

I

w

l!
...
j!
;:
~

~ 10

Vr "'0VOLTS

I L

'1"'-.
0

~

R,.I,°1"
11

.........

•.r~
•

10K
lOOK
FREQUENCY (H'I

I
C814

0,1

l.·470U

r-

JR:'

1001

I I II
Q,2Q,30AUQ.81.Q
2: 34567810
COLLECTOR CURRENT Ie (mA)
C8tS

Fig. 6 Switching Time VI. Col/ector
Current

I

3
2

~ 10

\1

Fig. 5 Collector Current vs.
Frequency

Fig. 4 Current Transfer Ratio v..
Temperature

u

I I II
I I II

\

C813

CB12

Fig. 3 Oark Current v.. Temperature

1\

o. 2

I

10 20 30 40 50 60 70 BO 90 100

1
1\ I

;:~

aa: 0
eo,•

LOW CURRENT TRANSFER RATIO

~ VV
~

TA - TEMPERATURE - ~C

.
'!t.- \
~\
,

•
•

!.1.

./

0

IIIlIllll

•

.......

10 0

cel'

" - FORWARD CURRENT -mA

I

tiT

,

5

VeE COLLECTOR VOLTAGE DETECTOR jVOLTSl

I

.
B
6

I... PULSE WIDTH TIME

>

~TIM~

W

I, - FALL

.

~11~;e-

I! -b,~l ~!llJ

I·

~

g

- DELAV TIM

4

3
2

I

!
~

..

TyplCAIL

laot-'-'-' fo

ES'

100
12

. :t-~;'" fsl ii'

i

4

3
2

eTR

10K

01

AI

6 atOQK:2

50%
4

BASE RESISTANCE

6 81M

11

'"

lOOK 200K

C816

Fig. 7 SWitching Time vs. Base
Resistance

Ru

I~

MCT2

I

a

.-

1\

100

a:

8

6

IIII

500K 1M

~

*'rt-t+~'0mA

.7

-:;:~ ttt-lt-t1I\t''I-N:ffi &.Om.

~ ,5Hfttl+-+l-++-!fIHtHli+~H:Hiltll8.0mA
~ 4
~ ,

7.0mA

,3

,OmA

,OmA
,OmA

.2f.+.J.#fI---l~~~Wf:~j2:!:+-H=~2:g~~
>
98% OF ALL UNITS

2M

SM

126102050100

10M
C817

Fig. 8 Collector - Emitter Breakdown
Voltage v,. Base Resistllnce

Fig. 10 Circuit for Figure 7

~

~ .6

'\

Rill . BASE EMITTER RESISTANCE - 11

CS19

llmA

w

I~ - FORWAADCUARENT - mA

C81S

Fig. 9 SIIturetion Voltage ....
Forward Current

CB2a

Fig. 11 Waveform, for Figure 7

131

MCT2E
TYPICAL ELECTRO-OPTICAL CHARACTERISTIC CURVES (Cont'd)
(25°C Free Air Temperature Unless Otherwise Specified)

>
I

~

"~

,

50
.'5r--'
.,or- --

I,

lamA

8

'mA

6

.L
/

35f--

0

>
z

.30

;:

I~

;i

r:

;\

10

l- f- I--

I!l

•

--

0

\

,

IOI-+-+--I-+--+-+--I-I+---+--I

\
/
~ ~/
140"
eTR

I

10

20

30 40

50 60

70

80

TAo ~ AMBIENT TEMPERATURE -

90 100
C

I

I
"

C821

Fig. 12. Saturation Voltage vs.
Temperature

a
0

&0""

If

50 rnA

T.

25::~:

1000

1
II

'F

II

2'

J.J.

0

/

II

I

HOURS

a
100 000
CRN

10K

6

,

3U

f-

If

TLlliL' e

lOOK
RBl

Fig. 15. Lifetime vs. Forward Curren<
(Note 41

25/JA
20 IJ A\_

10,JA

18

0

1M
!!

r-

I 18 I-SolA

Uilli

BASE RESISTANCE

t-trr-

B

Vee'" IOV

J

C823

.1

10 rnA

l~A

a

10000

TIME

IF - FORWARD CURRENT - rnA

Fig. 14. Forward Voltage vs.
Forward CUrrent

a

1111

,,
00

10

C822

If-20m~

lL

)m"'_

,"

5

Fig. 13. Saturation Voltage vs.
Collector Current

a

,

,

COLLECTOR CURRENT (rnA)

100.---

a

IOxic

I,

T", (5 C

'"I-+-+-j--I-+-+-i~+-+-l

o

II
/

\

12

C825

Ve.

Fig. 16. Sensitivirv vs. Base Resistance

20

16

~

0

24

e826

vnlt~

Fig. 17. Detector Tvpical hfe Curves

OPERATING SCHEMATICS
~~~~LATION

'/IF

47l!

>-l hlVv--.-.
r-

LED

--

CONSTANT

CURRENT
INPUT

-

I,

Vee'" 10 VOLTS

I
'L __ _

>-----

PULSE

4111

Vee

=

10 VOLTS

INPUT

DEHCTOR
PULSE
OUTPUT

L _ _ _. . ._ - . OUTPUT

I,

Rl = lOO!!

C827

Modulation Circuit Used to Obtain Output vs Frequency Plot

Circuit Used to Obtain Switching Time vs Collector Current Plot

NOTES
1. The current transfer ratio Ii CII FI is the ratio of the detector collector current to the LED input current with VCE at 10 volts.
2. The frequenev at which ic is 3 dB down from the 1 kHz value.
3. Rise time (trl is the time required for the collector current to increase from 10% of its final value, to 90%.
Fall time (tfl is the time required for the collector current to decrease from 90% of its initial value, to 10%.

132

0-70°C MCT210
PACKAGE DIMENSIONS

DESCRIPTION

J-J

t

15° MAl(

6.86 (.270)
6.35 (.250)

The MCT210 incorporales a NPN silicon planar
phototransistor optically coupled to a galium
arsenide infrared emitting diode. The MCT210 has a
specified minimum CTR of 50%, saturated, and
150%, unsaturated.

0.36 (.014)

-'------""""r!--il 0.20 (.008)

~

7.62
(.300)
REF

i----='

1.78 (.070) REF

-L
T

•
•

1.18 (.070) TVP

b-,=~"";""'=I
:
I
I

I
I

:

J: I

3.94 (.155) t 4.951.,95)
3.68 (.145) I I MAX

I

•

TTL compatible 1-10 gate loads
High CTR with transistor output
MCT210-150% min.
Specified CTR over temperature range
Good logic load characteristics
VOL = 0.4 V @ 1.6 mA to 16 mA
output sinking (lOL)
UL recognized (File #50151)

j

t 3.56 (.140) 0.51 (.020)
,U3.05 (.120)
MIN

-J
I- I-- 1.27 (.050)
0.56 (.022)
0.41 (.016)

;

FEATURES
•
•

C2090

DIMENSIONS IN mm (INCHES)

APPLICATIONS
•
•
•
•

Digital logic isolation
line receivers
Feedback control circuits
Monitoring circuits

Equivalent Circuit

ABSOLUTE MAXIMUM RATINGS
TOTAL PACKAGE
<;torage temperature . . . . . . . . . . . -SSoC to IS00C
Operating temperature . . . . . . . . . -SSoC to 100°C
I.ead temperature
(Soldering, 10 sec) . . . . . . . . . . . . . . . . . . . 260°C
Total package power disSipation @ 25°C
(LED plus detector) . . . . . . . . . . . . . . . . 260 mW
Derate linearly from 2SoC . . . . . . . . . . 3.4 mW/c
Surge isolation . . . . . . . . . . . . . . . . . . 4000 VDC
3000 VRMS
Steady state isolation . . . . . . . . . . . . . 3S00 VDC
2S00 VRMS

INPUT DIODE
Forward current . . . . . . . . . . . . . . . . . . . 60 mA
Reverse voltage . . . . . . . . . . . . . . . . . . . . . 3.0 V
Peak forward current
(1 ps pulse, 300 pps) . . . . . . . . . . . . . . . . . . 3.0 A
Power dissipation 2SoC to 70°C ambient ... 90 mW
Derate linearly from +70 oC . . . . . . . . . . 2.0 mW/C
OUTPUT TRANSISTOR
Power dissipation @ 25°C . . . . . . . . . . . . 200 mW
Derate linearly from 25°C . . . . . . . . . 2.67 mW/C

133

MCT210
ELECTRO-OPTICAL CHARACTERISTICS (DOC to +7DoC Temperature Unless Otherwise Specified)
INDIVIDUAL COMPONENT CHARACTERISTICS
w
0
0

is
I-

...

;:)

~

CHARACTERISTIC

SYMBOL

Forward voltage
Forward voltage temp.
coefficient
Reverse breakdown voltage
Junction capacitance

VF

Reverse leakage current

II:

0

Iii

iii
2

c(

II:

DC forward current gain
Breakdown voltage
Collector to emitter
Collector to base
Emitter to collector
Leakage current
Collector to emitter

MIN.

MAX.

UNITS

1.25
-1.8

1.50

V
mV/C

IR

15
50
65
.01

hFE

400

BVR
CJ

BVCEO
BVCBO
BVECO

6.0

TYP.

30
30
6

V
V
V

8

...
;:)

!50

Capacitance
Collector to em itter
Collector to base
Em itter to base

Ic = 1.0 mA, IF = 0
Ic = 10J.LA
IE = 100J.LA, IF = 0

50

nA

30

J.LA

VCE = 5 V, IF = 0,
TA = +25°C
VCE = 5 V, IF = 0,

pF
pF
pF

V CE = 0, f = 1 MHz
V CB = 5, f = 1 MHz
V EB = 0, f = 1 MHz

lI-

I R =10pA
V F =OV,f=IMHz
V F = 1 V, f = 1 MHz
V R =6.0V
VCE = 5 V, Ic = 10 mA

45

5

ICEO

10

V
pF
pF
pA

TEST CONDITIONS
IF = 40 mA

8
20
10
TRANSFER CHARACTERISTICS

CHARACTERISTIC

SYMBOL

Current transfer ratio,
collector to emitter
MCT210 (a)

IcE/IF

Current transfer ratio,
collector to base
Saturation voltage
collector to emitter
MCT210

ICB/IF

u
0

~

j:

MIN.

TYP.

50

70

%

150

225
0.6

%
%

-'
0

III

w

UNITS

CI

2

i
~

i

134

VCE = 0.4 V, IF = 3.2 mA
to 32 mA
VCE = 5.0 V, IF = 10 mA
V CB = 5.0 V, IF = 10 mA

V

Ic = 16 mA, IF = 32 mA

Surge isolation

Visa

4000

0.2

VDC

Steady state isolation

ViSO

3000
3500

VAC-rms
VDC

I solation resistance

R lso

2500
lOll

Isolation capacitance

Relative humidity
50%,
TA = +25°C, I I.e 510 J.LA
1 second
Relative humidity
50%,
TA = +25°C, I I.e 510 J.LA
1 minute
VI.e = 500 VDC,
TA = +25°C
f = 1 MHz

Non-saturated
Rise time

0.4

Fall time
Saturated
Rise time
Fall time
Propagation delay
High to low
Low to high

<
<

5xl0 12

VAC-rms
ohms

Ciso

1.0

pF

tr

4

J.Ls

t,

5

!.Is

RL = lOOn, Ic = 2 mA,
Vcc = 5 V
See Figures 17 and 18

tf

tr

2.5
25

!.Is
!.Is

RL = 560 n, IF = 16 mA
See Figures 17 and 18

TpD(HL)
TpD(LH)

2
10

J.Ls
!.Is

RL = 2.7K, IF = 16 mA
See Figures 17 and 18

:I

1=

TEST CONDITIONS

VCE(SAT)

c(

!!

MAX.

MCT21 0
TYPICAL ELECTRICAL CHARACTERISTIC CURVES (25 C Free Air Temperature Unless Otherwise Specified)
0

100

100
60
40
20
0
6
4
2

1/1

"

2=

Vee'" 5 V

~

"

-tpDIHU

IF '" 3

dtJ~ 16 mA

Vee

5V

RL=2.7KH

50

.~

40

1

~~

O!

;:

~SATURATED AT

RBE"';50Kll

30
20

.~

~

tPDILH)

- --

I

10
1

3,2 4

16

12
IF - (mAl

1M

500K
Rg~

C1252

50K

lOOK

C1253

- Ill!

Fig. 13. Switch-on Time vs.

Fig. 14. Switch-off Time vs. Base to

I F Drive (saturated)

Emitter Resistance (saturated)

8

----vee

0"-'

28

I. 11tLl~I

~1···nIT

4

0

5

24

- - Vcc=20V
Ic=2mA

-Vee" 20V
_,

Ie

=

2 mA

6

b~1

8

0

-JJ ~

20

-

l-rrrr

2

">=

/

500K

f-"
50K

lOOK

L

. t !RL '"
500K

II

l~~
lOOB

1M

RBE - (n)

C1255

Fig. 15. Rise Time VS. Base to Emitter
Resistance (non-saturated)

'"'"' JI

....y

o

1M

RBE - (H)

>f-"

p, ,,410\1

V

RL" lOOl!

lOOK

JI

~

12

~

d70

/

-:{(

'1-'

16

w

~~. ,100<1

4

0
50K

II

- - Vee = 5V

VIII I

b~l. 11~:
~I

~

60

1
RBE=QPEN

1\.,

w

70~

RL - 2.7 K!l

100 KIl

\

"'

80

1

C1254

Fig. 16. Fall Time vs. Base to Emitter

Resistance (non-saturated)

VCC: 1 ,

Vee

f-----

TPDHL - .

,--

! :

I

I

- : :--

TPDl.H

R,

OUTPUT
~'
: '
5V
(SATURATED),:
\
15V-L
_:_15V

r

I

------ SAT

,.(,
rANQUTQF
1 TO 10 TTL LOADS

C1257

INPUT

"t'

"t'

I

I

~

C1258

Fig. 17. Switching Time Waveforms

136

Fig. 18. Switching Time Test Circuits

Fig. 19. Typical TTL Interface at
Operating Temperatures of rf to trf C

GENERAL
INSTRUMENT

VDE APPROVED
PHOTOTRANSISTOR OPTOCOUPLERS
MCT2200/0Z
MCT2201/1Z
MCT2202/2Z

PACKAGE DIMENSIONS

DESCRIPTION

CJ

The MCT2200, MCT2201 and MCT2202 are
opto-isolators with phototransistor output. A
gallium arsenide infrared emitting diode is
selectively coupled with an NPN silicon
phototransistor.

6.35 (.250)

L.l.

~18.89 (.350~~

~

7.62
(.300)
REF

8.38 (.330)

0.36 (.014)
I 0.20 (.008)

t------=-L
1

1.78 (.070) REF

1.78 (.070) TYP
:
:
I
I

I

I

---II0.56 (.022)
0.41 (.016)

:

J:

3.94 (.155) I 4.951.,95)
3.68 (.145) j j MAX

I

I t 3.56 (.140)

,L13.05(.120)

I

o.J 1 (.020)
MIN

FEATURES
• High isolation voltage:
5300 VAC RMS-5 seconds
7500 VAC PEAK-5 seconds
• Minimum current transfer ratio of 100%
• Maximum turn-on, turn-off time:
MCT2200-20 Jl.s
MCT2201-10 Jl.s
MCT2201-10 Jl.s
• Underwriters Laboratory (UL) recognized
File #350151

1-,.27 (.050)
C2090
DIMENSIONS IN mm (INCHES)

APPLICATIONS
•
•
•
•

Power supply regulators
Digital logic inputs
Appliance sensor systems
Industrial controls

Equivalent Circuit

ABSOLUTE MAXIMUM RATINGS
TOTAL PACKAGE
Storage temperature .......•...... -55° C to 150° C
Operating temperature ............ -55° C to 100° C
Lead soldering temperature (10 sec.) ........ 260°C
Total package power dissipation at 25°C ambient
(LED) plus detector) ................... 260 mW
Derate linearly from 25° ............... 3.5 mW/o C

INPUT DIODE
Forward current ........................... 60 mA
Reverse voltage ............................ 3.0 V
Peak forward current (1 Jl.s pulse, 300 pps) .... 3.0 A
Power disipation at 25°C ambient ......... 135 mW
Derate linearly from 25° C ............. 1.8 mW/o C
OUTPUT TRANSISTOR
Power dissipation at 25°C ambient ........ 200 mW
Derate linearly from 25° C ............ 2.67 mW/o C

137

MCT2200/0Z MCT2201/1Z MCT2202/2Z
ELECTRO-OPTICAL CHARACTERISTICS (25°C Unless Otherwise Specified)
TRANSFER CHARACTERISTICS
CHARACTERISTIC

0

c

Current Transfer Ratio,
collector to emitter
MCT2200
MCT2201
MCT2202
Saturation voltage

Cl

~In

:I:W

u:;
t-§:t-

SYMBOL

MIN.

TYP.

MAX.

UNITS

TEST CONDITIONS

200
95

IF= 10 mA;VCE =5 V

125

%
%
%

.21

.40

V

IF = 10 mA; Ic = 2.5 mA

,.

,,8
,,5

,CTR

20
100

63
VCE(SATI

60

Non-saturated
Turn-on time
Turn-off time

ton

6.0

toft

~.5

Isolation voltage

Viso

5300

VAcRMS

Visa

7500

VAcPEAK

Isolation resistance

Aiso

10"

Isolation capacitance

eisa

10
10

{ RL = 100'±; Ic =
VCC = 10V
See Figure 10.

2mA;

In

z

0

~

--} hJV'\I'-e

r

LEO

CONSTANT

CURRENT
IN'tlT

IL __' _
-

'e

Vee -10VOLTS

NUl
INPUT

.70

DETECTOR

>-_.__--J
"

C838

C837

Modulation Circuit Used to Obtain Output VI. Frequency Plot

Circuit Used to Obtein Switching Time VI. Collector Current Plot

NOTES
1. The current transfer ratio (lCII F) is the ratio of the detector collector current to the LED input current with
VCE at 10 volts.
2. The frequency at which ic is 3 dB down from the 7 kHz value.
3. Rise time (tr) is the time required for the collector current to inc,."". from 70'J(, of its final value to SO'J(,.
Fall time (tf) is the time required for the collector current to dec,."". from 90% of its initial value to 10'J(,.

142

MCT270
PACKAGE DIMENSIONS

D

DESCRIPTION

J

t

15° MAX

6.86 (.270)
6.35 (.250)

~'8.89 (.350) ~

(.008)

!+---"

-L
T

7.62
(.300)
REF

8.38 (.330)

0.36 (.014)

-'-----=:""-.1--:1 0.20

~

The MCT270 is a phototransistor-type optically
coupled isolator. A gallium arsenide infrared
emitting diode is selectively coupled with an NPN
silicon phototransistor.

1.18 (.070) REF

FEATURES
•

•

Ii

1.18 (.070) TYP
/:::'-',=~Ad 3.94 (.155) 4.95 (.195)
I
3.68 (.145)! t MfX

......j I-

0.56 (.022)
0.41 (.016)

-

:I t 3.56 (.140)
I,l.J.3.05 (.120)

•

I solation voltage
2500VAC RMS - Steady State Rating
3000VAC RMS - Surge Rating
Minimum current transfer ratio of 50%
Maximum turn-on, turn-off time 10J,l seconds
specified
Underwriters Laboratory (UL) recognized
File E50151

O.~'

(.020)
MIN

1-1.27 (.050)
C2090
DIMENSIONS IN mm (INCHES)

APPLICATIONS
•
•
•
•
•
•

Power supply regulators
Digital logic inputs
Microprocessor inputs
Appliance sensor systems
Power supply regulators
I ndustrial controls

Equivalent Circuit

ABSOLUTE MAXIMUM RATINGS
TOTAL PACKAGE
Storage temperature . . . . . . . . . . _55°C to 150°C
Operating temperature ......... -55°C to 100°C
Lead temperature
(Soldering, 10 sec) . . . . . . . . . . . . . . . . . . 260°C
Total package power dissipation @ 25°C
(LED plus detector! . . . . . . . . . . . . . . . . 260 mW
Derate linearly from 25°C . . . . . . . . . . 3.5 mWtC

INPUT DIODE
Forward DC current ., . . . . . . . . . . . . . . . 90 mA
Reverse voltage . . . . . . . . . . . . . . . . . . . . . . 3 V
Peak forward current
(1 J,lS pulse, 300 pps) . . . . . . . . . . . . . . . . . 3.0 A
Power dissipation 25°C ambient . . . . . . . . 135 mW
Derate linearly from 25°C . . . . . . . . . . 1.8 mW/oC
OUTPUT TRANSISTOR
Power dissipation @ 25°C . . . . . . . . . . . . . 200 mW
Derate linearly from 25°C . . . . . . . . . 2.67 mWtC

143

MCT270
ELECTRO-OPTICAL CHARACTERISTICS (25°C Free Air Temperature Unless Otherwise Specified)
TRANSFER CHARACTERISTICS
CHARACTERISTIC

SYMBOL

MIN.

TYP.

CTRcE

50

115

CTRce

0.045

0.15

MAX.

UNITS

TEST CONDITIONS

Current Transfer Ratio,

u
C

collector to emitter

%

IF= lOrnA; VCE= 10V

Current Transfer Ratio,

collector to base
Saturation voltage

VCE(SATI

.21

ton
toft

6.0
5.5

ton

.40

%

IF

V

IF

= 16 mA; Vce = 10 V
= 10 mA; Ie = 2 mA

Non-saturated

en
w

::;:
j:::
~

2

i

u

I-

~
en

Turn-on time
Turn-off time

j:::

Turn-on time
Turn-off time

toff

3.9
48

IlS
IlS

{IF = 16 mA; RL = 1.9 Kn
See ligures 12, 14

3.9
110

IlS
IlS

{ IF = 16 mA; RL = 4.7 Kn
See figures 12, 14

(Approximates a typical TTL interfacel

Turn-on time

ton

Turn-off time
toft
(Approximates a typical low power TTL interface)

Surge isolation

VISO

4000

VDC

Relative humidity'; 50%,
11_ 0 ,; 10 IlA

Steady state isolation

Visa

3000
3500

VAC·rms
VDC

2500

Isolation resistance

R iso

VAC·rms
ohms

1 second
Relative humiditY .; 50%,
11_ 0 ,; 10 IlA
1 minute
V 1. 0 = 500 VDC

Isolation capacitance

elsa

«
..J
0

!!!

{RL = lOOn; le= 2 mA;
VCC= 5 V
See ligures 11, 13

Saturated

2

0

IlS
IlS

10
10

10 11

pF

0.5

1=1 MHz

INDIVIDUAL COMPONENT CHARACTERISTICS
CHARACTERISTIC

w

C
C

e
I-

::J
I>.

~

II:

0

I-

en

iii
2

«
II:
lI-

::J
I>.

I-

::J

0

144

Forward vol tagc

SYMBOL

MIN.

VF

TYP.

MAX.

UNITS

1.3

1.50

V

TEST CONDITIONS
IF = 20 mA

Forward voltage temp.
coefficient

Reverse vOllage
Junction capncitance

VA

3.0

CJ

-1.8
25
50
65
0.35

Reverse IC>-

I,A
T0

r-

'" 120

3,A-

7

.Y

I.-"i"'""
VeE" 5V

V

I

5,A-

.1 2 3.4 5

10

o
IS,..A-

10

0204

" 160

2a.A-

I,;

10

Fig. 2. Collector Current vs.
Collector to Emitter Voltage

2SJlA

D

f

Hl

VeE - (Volts)

200

V

12

III

III

'/

J

C1285

Fig. 1. Forward Voltage vs.
Forward Current

2a

;{

IF" SmA

,

VF - IVolts)

I.

III

I

,

J J

/

14

ill

I

•

·,II

16

lJI
IF -,OmA

60
40

I

+-,

F

/

I.

18

.,' .;am~

/

20

25° C /-25" C

:ii



w

:;

i=
Cl

2
~

U
I-

~

2
0

i=

Turn·off time
toff
Saturated
Turn-on time
ton
Turn-off time
toff
(Approximates a typical TTL interlace I
Turn-on time
ton
Turn-off time
toff
(Approximates a typical low power TTL interlace I

3.9
48

"s

".

,,5

3.9
110

"s

Surge isolation

Visa

4000

VDC

Steady state isolation

Visa

3000
3500

VAC·rms
VDC

Isolation resistance

Aiso

2500
10"

VAC·rms
ohms

Isolation capacitance

Ciso



iJj

2
 l00mW

If"'" I
TA',~'C

60
-50

-25

+25

+50

+75

TEMP -I'CI

Fig. 7. Current Transfer Ratio
(unsaturated) vs. Temperature

+100
C1301

0
100

1000

10.000

100.000

OPERATING TIME - (Hours)

Fig. 8. CurrtJnt Transfer Ratio
Operating Time

C1251

VS.

153

MCT272
TYPICAL SWITCHING CHARACTERISTICS'

40

6
RL
14

=

I F =32to16mA

1.9 Kn

Vee

=

5V

ABE

=

0

Vee

Al

=

=

5V

1.9 Kn

30

12
0

~

8

w

r--...

~

tj.....

20

""

";::
I----

10
'on

o

2

10
IF - (mAl

Fig. 9. Switch-on Time vs.
'F Drive (saturatedl

14

10M

1M

lor

lOOK

ABE - (n)

C1302

f',~

10K

C1303

Fig. 70. Switch-off Time vs. Base to
Emitter Resistance (saturatedl

INPUT

OV

I

I
I

I

:
~
90%

I

OUTPUT

I

I

10%

I
I

I

I
I

I
I

-.ton~ toff

C1293

Fig. 77.

I
I

t--

C1294

Fig. 72.

VCC=50V

}

OUTPUT

C1295

Fig. 13.

154

e1296

Fig. 14.

MCT274
DESCRIPTION

PACKAGE DIMENSIONS

6.86 (.270)
6.35 (.250)

o

I.

'8.89 (.350)
8.38 (.330)

~

The MCT274 is a phototransistor-type optically
coupled isolator. A gallium arsenide infrared
emitting diode is selectively coupled with an NPN
high-gain silicon phototransistor.

0.36 (.014)

-'-----"'........-,1 0.20 (.008)
~~-L

7.62
(.300)
REF

1.78 (.070) REF

l'

FEATURES
• Controlled Current Transfer Ratio - 225% to 400%
(specified conditions)
• Maximum Turn-on time - 25 tlseconds
(specified condition)
• Maximum Turn-off time - 25 tlseconds
(specified condition)
• Surge Isolation Rating 4000 volts DC
3000 volts AC, rms
• Steady-state Isolation Rating 3500 volts DC
2500 volts AC, rms
• Underwriters Laboratory (U.L.) recognized
- File E50151

DIMENSIONS IN nun (INCHES)

APPLICATIONS
•
•
•
•
•

Control Relays
Digital controls
Microprocessor controls
Replace slow photodarlington types with better
switching speeds and equivalent gain devices
Multiple gate interlace

Equivalent Circuit

ABSOLUTE MAXIMUM RATINGS
TOTAL PACKAGE
Storage temperature .. . . . . . . .. -55°C to 150°C
Operating temperature ......... _55°C to 100°C
Lead temperature
(Soldering, 10 sec) . . . . . . . . . . . . . . . . . . 260°C
Total package power dissipation @ 25°C
(LED plus detector) . . . . . . . . . . . . . . . . 260 mW
Derate linearly from 25°C .......... 3_5 mWtC

INPUT DIODE
Forward DC current . . . . . . . . . . . . . . . . . 60 mA
Reverse voltage . . . . . . . . . . . . . . . . . . . ... 3 V
Peak forward current
(1 tis pulse, 300 pps) . . . . . . . . . . . . . . . .. 3.0 A
Power dissipation 25°C ambient ........ 90 mW
Derate linearly from 25°C .......... 1-2 mWtC
OUTPUT TRANSISTOR
Power dissipation @ 25°C ............. 200 mW
Derate linearly from 25°C ......... 2.67 mW/oC

155

MCT274
ELECTRO-OPTICAL CHARACTERISTICS (25° C Temperature Unless Otherwise Specified)
TRANSFER CHARACTERISTICS
CHARACTERISTIC

SYMBOL

MIN.

TYP.

MAX.

UNITS

TEST CONDITIONS

CTRcE

225
12.5

305

400

%
%

IF= 10mA;V CE = 10V
IF= 16 mA; V CE = 0.4 V·

0.15
0.16

.40

%
V

IF=10mA;VCB=10V
I F =16mA;I C =2mA

ton

9.1

25

lOS

toff

7.9

25

lOS

RL = lOOn; Ic= 2 rnA;
VCC= 5 V
See figures 11,13

Turn-on time
ton
Turn·off time
toff
(Approximates a typical TTL interlace)

3.0
95

".
".

IF=16mA;R L =I.9Kn
See figure. 12, 14

Turn-on time
Turn-off time

3.0
185

".
".

IF=16mA;R L =4.7Kn
See figure. 12, 14

Current Transfer Ratio,
U

collector to emitter (al

c

Current Transfer Ratio,

collector to base
Saturation voltage

Non·satu rated
Turn·on time
III

CTRcB
VCEISAT)

w

::E

f=

(!J

Z

~

U
I-

~

Turn-off time
Saturated

'on
toff
(Approximate. a typical low power TTL interface)

Surge isolation

Viso

4000

VDC

Steady state isolation

Visa

3000
3500

VAC·rm.
VDC

Relative humidity" 50%,
11- 0 " 10pA
t = 1 second
Relative humidity .. 50%,

Isolation resistance

Riso

2500
10"

VAC·rms
ohms

11_0" 10"A
t = 1 minute
VI.O = 500 VDC

Isolation capacitance

Ciso

Z

0

f=

«..J
0

!!!

pF

0.5

f = 1 MHz

INDIVIDUAL COMPONENT CHARACTERISTICS
CHARACTERISTIC

w

0

Forward voltage
Forward voltage temp.

I::l

Reverse voltage

~

Junction capacitance

Q

0

...

VR
CJ

hFE

0

Collector to emitter

III

Collector to base

BVCEO
BVCBO
BVEBO

I-

iii
Z

Emitter to base

«
IZ:

Leakage current

...

Capacitance

lI::J

I::l

0

Collector to emitter

Collector to emitter

Collector to base
Emitter to base

3.0

IR

DC forward current gain
Breakdown voltage

IZ:

MIN.

VF

coefficient

Reverse leakage current

156

SYMBOL

ICEO

TYP.

MAX.

UNITS

1.20

1.50

V

-1.8
25
50
65
0.35

mvl"c
V
pF
pF
10

"A

360
30
70
5

45
7

8
20
10

IR = 10"A
VF=OV,I=l MHz
VF = 1 V, 1= 1 MHz
VR= 3.0 V
VCE=5V,IC=100"A

130

5

TEST CONDITIONS
IF = 20mA

50

V
V
V

Ic = 1.0 mA, IF = 0
IC= 10"A
IE=100"A,I F =0

nA

VCE = 10 V, IF = 0

pF
pF
pF

VCE = 0, 1=1 MHz
VCB=5,1= 1 MHz
VEB = 0, I = 1 MHz

MCT274
TYPICAL ELECTRICAL CHARACTERISTIC CURVES (250 C Free Air Temperature Unless Otherwise Specified)
60
0

I
75°

:;t 60
I

_~

0
40

,j{

20

.5

/Y/I
c

e' /

25'

;;{

0

60
40

.5
I

.y

..

1.0

1.4

15

01

--

20

14

iI

.02

04

10

2

4

IS 10

2

a

4

VeE - (Volts)

a 60

o

"

i" IV
g200

50mf\
lOrnA

".5

/'"

z

_1O.A_

... 1-

5

6

7

8

9

10

11

C1310

veE ·O.4V

'F

10
6.0
4.0

20m~

300

.-15jlA

4

20

-,....

I 400

3

Fig. 3. Col/ector Current vs.
Forward Current

100
60
40

z
a
>=

2

'F - (rnA)

500

12
..§. 10

1

CI309

2"5 . A _

:t

V

Fig. 2. Col/ector Current vs.
Col/ector to Emitter Voltage

.... 20.A

/

V

o
10

VvCE"SV

V

8

I
I

I

C1285

/

2 rnA

D

II/

,
1.3

./
4

6
'F

I

Fig. 1. Forward Voltage vs.
Forward Current

18

~A

I

10

"
12
V F - (Volts)

2

II I

20

I I I
,II I /

20rnA

==t7o~~

'/

0

/ I
J j J

20

'F

20

e

-25'

1

40

16

0

'00

100

-"

16mA

'F - 8 rnA

2.0

VI

1.0
.6
4

III

I-

~

5.A

~ lOa

1.A
1,2345./1020
VCI

II

a

3.A

Vee = IOV

10K

lOOK

C 1288

01
1 KU

1M

ABE - BASE RESISTANCE -

Fig. 4. Col1c,cror Current vs.
Col/ector to Emitter Voltage

02

TA=25D C

50

V

10
06
.04

n

100

veE - 5 V

i--

~

socI

80

100Kn

1M!!

RBE - In)

Fig. 5. Sensitivity vs. Base Resistance

600

10Kll

C1334

10MQ
C1311

Fig. 6. Saturated CTR vs.
Base to Emitter Resistance

".IJm~ -

'"

t;

40 0 -

~

I

300

- '-- r--....

"

............

200

i= 60
~

'c=2rnA

a

-...::....

w

N

40

::;

«
~
az

100

0

o
-50

-25

+25
TEMP -

+50
!~C)

+75

+100
C1312

Fig. 7. Current Transfer Ratio
(unsaturated) vs. Temperature

Ponr·'T~~;~CC
OOT

100

1000

10,000

OPERA]"ING TIME - (Hours)

100,000
C1251

Fig. B. Current Transfer Ratio vs.
Operating Time

157

MCT274
TYPICAL SWITCHING CHARACTERISTICS

160
IF =3.2to l6mA

R L "'1.9Kn
140

Vee = 5 V
ABE'" 0

"-...

t on -

R L =1.9Kn

120

:! 100

I\.

Vee = 5 V

w

80

">=

60

--

r-toff

....

40
20

12

3.2 4
IF - (rnA)

Fig. 9. Switch-on Time vs.
IF Drive (saturated)

16
C1313

500K

1M

RBE - (m

100K

50 K
C1314

Fig. 10. Switch·off Time vs. Base to
Emitter Resistance (saturated)

INPUT

OV

(OUTPUT

Cl293

Fig. 11.

C1294

Fig. 12.

V CC =5.0V

V CC =5.0V

}

158

OUTPUT

C1295

C1296

Fig. 13.

Fig. 14.

MCT275
PACKAGE DIMENSIONS

DESCRIPTION

~

The MCT275 is a phototransistor-type optically
coupled isolator. A gallium arsenide infrared
emitting diode is selectively coupled with a high
voltage NPN silicon phototransistor.

6.86 (.270)
6.35 (.250)

0.36 (.014)

====~_II 0.20 (.008)

~'8.89 (.350) ~

~

7.62
(.lOO)
REF

8.38 (.330)

i-=

1.18 (.070) REF

--L

1

I

I

---110.56 (.022)
0.41 (.016)

J: I

•

j

•

MIN

•

t l.56 (.140) 0.~1 (.020)

'iL1l.05 (.120)

High voltage output - 80 volts, BVCEO
Controlled Current Transfer Ratio - 70% to 210%
(specified conditions)
Maximum Turn-on time - 15 /.Iseconds
(specified condition)
Maximum Turn-off time - 15 /.Iseconds
(specified condition)
Surge Isolation Rating 4000 volts DC
3000 volts AC, rms
Steady·state Isolation Rating 3500 volts DC
2500 volts AC, rms
Underwriters Laboratory (U.L.) recognized
- File E50151

•

I=-i-o::::ri-I'="-.=1 l.94 (.155) t 4.951.195)
:
:
3.68 (.145) t t MAX
I

•
•
•

1.78 (.070) lYP

I
I

FEATURES

I- 1.27 (.050)

C2090
DIMENSIONS IN mm (INCHES)

APPLICATIONS
•
•
•
•

Telephone circuits
Digital input to telecommunications
I ndustrial control of high DC voltage
Telephone relay driver

Equivalent Circuit

ABSOLUTE MAXIMUM RATINGS
TOTAL PACKAGE
Storage temperature ... . . . . . .. _55°C to 150°C
Operating temperature ......... -55°C to 100°C
Lead temperature
(Soldering, 10 sec) . . . . . . . . . . . . . . . . . . 260° C
Total package power dissipation @ 25°C
(LED plus detector) . . . . . . . . . . . . . . . . 260 mW
Derate linearly from 25°C . . . . . . . . . . 3.5 mWtC

INPUT DIODE
Forward current . . . . . . . . . . . . . . . . . . . . 60 mA
Reverse voltage . . . . . . . . . . . . . . . . . . . . . . 3 V
Peak forward current
(1 /.Is pulse, 300 pps) . . . . . . . . . . . . . . . .. 3.0 A
Power dissipation 25°C ambient ........ 90 mW
Derate linearly from 25°C . . . . . . . . . . 1.2 mWtC
OUTPUT TRANSISTOR
Pbwer dissipation @ 25°C . . . . . . . . . . . . . 200 mW
Derate linearly from 25°C . . . . . . . . . 2.67 mW/oC

159

MCT275
ELECTRO-OPTICAL CHARACTERISTICS (25°C Temperature Unless Otherwise Specified)

TRANSFER CHARACTERISTICS
CHARACTERISTIC

U

SYMBOL

MIN.

TYP.

MAX.

UNITS

Current Transfer Ratio,
collector to emitter (e)

CTRcE

70
12.5

125

210

%
%

'F=10mA;VCE=10V
'F= 16 mA; VCE= 0.4 V

Current Transfer Ratio,
collector to base
Saturation voltage

CTRcB
VCE(SAT)

0.15
0.25

.40

%
V

'F= 10mA;V CB = 10V
' F =16mA;l c =2mA

4.5

15

IlS

3.5

15

3.2
50

""
""IlS

RL = loon; Ic= 2mA;
Vcc=5V
See figures 11,13

3.1
90

IlS
IlS

' F = 16 mA; RL = 4.7 Kn
See figures 12, 14
Relative humidity < 50%,

Q

Non-saturated
Turn-on time
III

w
::!E
j:
CI

Z

:t

r=
~

Turn-off time
toff
Saturated
Turn-on time
ton
Turn·off time
toff
(Approximates a typical TTL interface)
Turn-on time
ton
Turn-off time
toff
(Approximates a typical low power TTL interface)
Surge isolation

Z
0
j:

ton

Viso

4000

VDC

Steady state isolation

Viso

3000
3500

VAC·rms
VOC

Isolation resistance

Rlso

2500
10"

VAC-rms
ohms

Isolation capacitance

ClIo

...0
c(

!!!

pF

0.5

TEST CONDITIONS

'F= 16mA;R L = 1.9Kn
See figures 12, 14

' 1- 0 <101lA
t = 1 second
Relative humidity < 50%,
'1-0 <101lA
t = 1 minute
V I •O = 500 VOC
f = 1 MHz

INDIVIDUAL COMPONENT CHARACTERISTICS
CHARACTERISTIC
w

Q

0

e
I:::l

"~

II:

0

IIII

iii

z

c(
II:

lI:::l

"-

I:::l

0

160

Forward voltage
Forward voltage temp.
coefficient
Reverse voltage

SYMBOL

MIN.

VF

TYP.

MAX.

UNITS

1.20

1.50

V

10

mVI"C
V
pF
pF
IlA

Reverse leakage current

IR

-1.8
25
50
65
0.35

DC forward current gain

hFE

170

Junction capacitance

Breakdown voltage
Collector to emitter
Collector to base
Emitter to base
Leakage current
Collector to emitter
Capacitance
Collector to emitter
Collector to base
Emitter to base

VR
CJ

BVCEO
BVCBO
BVEBO
'CEO

3.0

80
100
5

8
20
10

IR = 10llA
VF = 0 V, f = 1 MHz
VF= 1 V,f= 1 MHz
VR = 3.0 V
VCE=5V,IC=100 IlA

85
150
7
5

TEST CONDITIONS
'F = 20mA

50

V
V
V

Ic = 1.0 mA, 'F = 0
Ic= 10llA
'E = 100llA, 'F = 0

nA

VCE=10V,IF=0

pF
pF
pF

VCE = 0, f = 1 MHz
Vce=5,f= 1 MHz
VEe = 0, f = 1 MHz

MeT27S
TYPICAL ElECTR ICAl CHARACTERISTIC CURVES (25 0 C Free Air Temperature Unless Otherwise Specified)

..
00

!

••

/Y/l
75·0

...••
'.0

20

26' C/-25'C

..•
....

I I

/I
I

I

I

I

,8

.9

I
1,0

1.1

1.3

t.:Z

CI285

Gi

_

"I
z

5

RBE

g140

.02.04

/

V

1/

/

IF'"' 2 mA

:"-'-1

.10

.2

./

J lL

.4 6 1.0

4-

~

180

~

~ 120

/~

z

.....

~ 80

180

lOmA

J

Vee ·,0V

VCE

~5V

175

100

~

9 10 "
C1316

,',6 ~l

I'F=8mA

iF" 4mA

1//

lOKn

lOOK!}

1M!}

RBE :. 1m

10Mn
C1317

Fig. 6. Saturated CTR vs.
Sase to Emitter Resistance

IF'4L~

80

/I

1 KSl

lOOK
1M
ABe - BASE RESISTANCE - n C133S

Fig. 5. Sensitivity vs. Base Resistance

200

8

.02
.01

~~.25·C

o

Fig. 4. ColIsctor·Emitter Breakdown
Voltage vs. Base Resistance

7

I,I~

1.0
.6
.Y .4

~

10K

6

I

.2

1l

TA;2~'~ 1111

5

II I II

!

.10
.06
.04

40

4

VCE'O.4V

20
10
6.0
4.0
;( 2.0

20m~

""
/V

3

Fig. 3. ColIsctor Current vs.
Forward Current

50mA

-~

2

IF - (rnA)

ff-

40
lOOK 200K some: 1M 2M
5M 10M
RBe - BASE EMITTER RESISTANCE - n C1330

1

<;1315

ill
BVCEX VS. Rae

,/

o
o

2.0 4.06.0 10

100
60
40

o

120

"~ 100

10

_u

200

6

160

:;

~

12

Fig. 2. Collector Current vs.
Collector to Emitter Voltage

180

~

VCE - 6V

J LL

VeE -(Volts)

Fig. t. Forward Voltage·vs.
Forward Current

g

14

IF· 5 rnA

[1 I

•.01

1.5

1.4

VF -(Voltsl

~

16

/

/

.1/ /

w

18

~O~J.
-

J I

2.0

'F- 2OmA

~)

/

•

/

I

.:!-

50

I/I/

20

e

20

lDO

.DO

-

a:
150

t;

-...........

~

-'

..........

I 125

...ua:

100

"

i'-.

;:::
~
0

'C"2mA

~ 40

:;

"'a:"
0

75

z

50
-50

-25

+25
TEMP -I'C)

+50

60

+75

+100

cm8

Fig. 7. Current Transfer Ratio
(unsaturated) VB. Temperature

20

Po (TOTAL) ., 100 mW

o
100

fn~A:;:r,c
1000

I

10,000

OPERATING TIME - (Hours)

100.000
e12S1

Fig. 8. Current Transfer Ratio vs.
Operating Time

161

MCT275
TYPICAL SWITCHING CHARACTERISTICS

16

80

RL -1.9Kn
Vee"" 5 V
R Be = 0

14

Vee'" 5V
RL "'1.9Kn

60

12

~

'F"3.2to16mA

10

10

I\.

];

50

w

40

"
~

""-

ton-

r-Itoff

30
20
10

12

3.2 4

IF - (mAl

16

50aK

1M

Fig. 9. Switch·on Time vs.
IF Drive (saturated)

n

OV

I
I
I

OUTPUT

C1293

50 K
C1320

Fig. 70. Switch·off Time vs. Base to
Emitter Resistance (saturated)

~

INPUT

lOOK

RBE - (ill

C1319

PULSE WIDTH

=

l00~s

, DUTY CYCLE"' 10%

I
I
I
I
I
I

C1294

Fig. 72.

Fig. 77.

VC C =5.0V

VCC=50V

}

OUTPUT

OUTPUT

loon

162

CI295

CI296

Fig. 73.

Fig. 74.

MCT276
PACKAGE DIMENSIONS

~

I.

6.86 (.2701
6.35 (.2501

The MCT276 is a phototransistor-type optically
coupled isolator. A gallium arsenide infrared
emitting diode is selectively coupled with a high
speed NPN silicon phototransistor.

0.36 (.0141

~--="""1I""11 0.20 (.0081

~

'8.89 (.3501
al8 (.3301

DESCRIPTION

~

i--=

1.78 (.0701 REF

7.62
(.3001
REF

...L

T

•
•

1.78 (.070) TYP

!:::r;,,=,+=r-.::::I 194 (.1551 t 4.95 1.,951
I
:
3.68 (.1451 t t MAX

I
I

I

I

I
I

I

I0.56 (.0221
0.41 (.016)

J: I
I

~ 1.27 (.0501

•

!

•

MIN

•

t 156 (.1401 O.~' (.0201

'Li105(.1201

FEATURES
•
•

Highest speed discrete phototransistor optoisolator
Controlled Current Transfer Ratio - 15% to 60%
(specified conditionsl
Maximum Turn-on time - 3.5 ~seconds
(specified condition I
Maximum Turn-off time - 3.5 ~seconds
(specified condition I
Surge Isolation Rating 4000 volts DC
3000 volts AC, rms
Steady-state Isolation Rating 3500 volts DC
2500 volts AC, rms
Underwriters Laboratory (U.L.I recognized
- File E50151

C2090
DIMENSIONS IN nun (INCHES)

APPLICATIONS
•
•
•
•
•

Data communications
Digital ground isolation
Digital logic inputs
Microprocessor inputs
Appliance sensor systems

C2079
Equivalent Circuit

ABSOLUTE MAXIMUM RATINGS
TOTAL PACKAGE
Storage temperature .......... _55°C to 150°C
Operating temperature ......... _55°C to 100°C
Lead temperature
(Soldering, 10 secl . . . . . . . . . . . . . . . . . . 260°C
Total package power dissipation @ 25°C
(LED plus detector) . . . . . . . . . . . . . . . . 260 mW
Derate linearly from 25°C .......... 3.5 mWtC

INPUT DIODE
Forward DC current . . . . . . . . . . . . . . . . . 60 mA
Reverse voltage . . . . . . . . . . . . . . . . . . . . . . 3 V
Peak forward current
(1 ~s pulse, 300 pps) . . . . . . . . . . . . . . . .. 3.0 A
Power dissipation 25°C ambient ........ 90 mW
Derate linearly from 25°C .......... 1.2 mW/oC
OUTPUT TRANSISTOR
Power dissipation @ 25°C . . . . . . . . . . . . . 200 mW
Derate linearly from 25°C ......... 2.67 mW/oC
163

MCT276
ELECTRO-OPTICAL CHARACTERISTICS (25°C Temperature Unless Otherwise Specified)

TRANSFER CHARACTERISTICS
CHARACTERISTIC

SYMBOL

MIN.

TYP.

MAX.

UNITS

CTRcE

15
12.5

30

60

%
%

I F =10mA;V CE =10V
IF= 16mA;V CE =0.4V

0.15
0.24

.40

%
V

I F =10mA;V CB =10V
IF = 16 mA; Ic = 2 mA

2.4

3.5

IlS

2.2

3.5

IlS

R L = 100n;I C =2mA;
VCC = 5 V
See ligures 11, 13

TEST CONDITIONS

Current Transfer Ratio,

u

collector to emitter (a'

C

Current Transfer Ratio,
collector to base
Saturation voltage

CTRcB
VCEISAT)

Non-saturated
Turn-on time
III

ton

w

~

i=
e"
Z

:ru
~

~

III

Z
0

i=

Turn-off time
toft
Saturated
Turn-on time
ton
Turn·off time
toff
(Approximates a typical TTL interface I
Turn-on time
ton
Turn-off time
toff
(Approximates a typical low power TTL interface)

IlS

5.4
32

IlS

IlS

IlS

Surge isolation

Visa

4000

VDC

Steady state isolation

Visa

3000
3500

VAC·rms
VDC

Riso

2500
10"

VAC·rms

Isolation resistance
Isolation capacitance

C iso

«
...
0

!!l

6.8
16

ohms

pF

0.5

I F =16mA;R L =1.9Kn
See ligures 12, 14
IF= 16mA; RL = 4.7 Kn
See ligures 12, 14
Relative humidity .; 50%,
11-0'; 10llA
t : 1 second
Relative humidity.; 50%,
11_0';1 0 IlA
t = 1 minute
VI_O = 500 VDC
1=1 MHz

INDIVIDUAL COMPONENT CHARACTERISTICS
CHARACTERISTIC
w
C

0

E
~

Forward voltage
Forward voltage temp.
Reverse voltage

~

Junction capacitance

II:

0

~

III

iii
Z

«
II:
~

MIN,

VF

coefficient

:::l

Il.

SYMBOL

VR
CJ

Reverse leakage current

IR

DC forward current gain

hFE

Breakdown voltage
Collector to emitter
Collector to base
Emitter to base
Leakage current
Collector to emitter

BV CEO
BVCBO
BVEBO
ICEO

3.0

TYP.

MAX.

UNITS

1.20

1.50

V

10

mV/oC
V
pF
pF
IlA

-1.8
25
50
65
0.35

45
130

5

7
5

IR= 10llA
VF=OV,f=lMHz
V F = 1 V, I = 1 MHz
V R =3.0V
VCE = 5 V, Ic = 100llA

90
30
70

TEST CONDITIONS
IF = 20mA

50

V
V
V

Ic=1.0mA,I F =0
Ic= 10llA
IE': 1001lA, IF=O

nA

VCE=10V,IF=0

pF
pF
pF

VCE = 0, I = 1 MHz
VCB=5,1= 1 MHz
VEB = 0, I = 1 MHz

~

:::l

Il.
~

:::l

0

164

Capacitance
Collector to emitter
Collector to base
Emitter to base

8
20
10

MCT276
TYPICAL ELECTRICAL CHARACTERISTIC CURVES (25°C Free Air Temperature Unless Otherwise Specified)
100

IIlO
60

!/Yll

20

;(
~

,

.!f-

60
'0

.If/I/

••

....nI.
I

.2

..

1.1

12

1.3

1.4

1.5

.01

02

04

10

2

4

610

,/

I I
s

2 rnA

o

'z",

__ 75,A

12

100
60
40

so ,A

60

~
~

:i....

::;

1SpA

20

:>

u

7

1.0

2.0

5.0

VeE - v

lOOK

!!,80

40

'"
t;
:;i

60

w

40

~c"'2mA

..............

20

;::
~
o

J'...

N

~

IX

!il

o

-25

+25

TEMP - 1°C)

+50

10K!}:

l00K[l

lMQ

RBe - In)

IOMQ
C1324

Fig. 6. Saturated CTR vs.
Base to Emitter Resistance

IFd~

-

:;

10

-so

'F;o16mA

'"

C1336

Fig. 5. Sensitivity vs. Base Resistance

50

....
u

11

Cl322

'F -4mA

.0 1
lKSl

1M

Aae - BASE RESISTANCE - n

100

r-

10

j

.1 0
.06
.04

60

a: 30

9

.02

10K

C1323

Fig. 4. Col/ector Current vs.
Col/ector to Emitter Voltage

8

IF -8 rnA

2

10mA

II

1QpA

.1.2.3.4.5

~~

/~

~

30IJA

7

~f-

';i 2. 0
1.0
6
.Y 4

,

40

....

6

S,

50mA
20mA

z

~f-

5

VeE - 0.4 V

6. 0
4. 0

'"

4

,

80

w

4Sp.A_

3

20
0

0

10

2

Fig. 3. Col/ector Current vs.
Forward Current

;::

:i

L

'F - (rnA)

100

_I--"' ....

1

C1321

Fig. 2. Col/ector Current vs.
Col/ector to Emitter Voltage

'.

V

V

204.06010

VeE - (Volts)

eo,A_

iI'

'F

';

I

C12es

20

16

'F - SmA

II

V F -(Volts)

18

~l

I

I
1.0

' F -10mA

/I

10

Fig. T. Forward Voltage vs.
Forward Current

14

I

9 20

J I

III I

veE· 5 V

,/

,

I I
/ I I

2.•

....

-

WA

10

~ :.~

I

l .•

1

'F',507A

20

2f>"C' /-25' C

75° C

+75

+100

C132S

Fig. 7. Cu"ent Transfer Ratio
(unsaturated) vs. Temperature

20

""nr"'TA'O!;WCOT

0
100

1000

I
'0.000

OPERATING TIME - (Hours)

100,000
C1251

Fig. 8. Current Transfer Ratio vs.
Operating Time

165

MCT276
TYPICAL SWITCHING CHARACTERISTICS

20

16

IF '" 3.2 to 16 mA
Vee "" 5 V
Rl=-1.9Kn

RL'" 1.9Kn
Vee'" 5 V

14

Roe =0

15

12

!
'"

10

I'.

"
;::

--

'"

Ion

";::

12

3.2 4

16

........

VI.

IF Drive (saturated}

lOOK

500K
ROE - (HI

1M

C1326

Fig. 9. Switch-on Time

),

r--.

10

Fig. 10. Switch·off Time

VS.

50 K
C1327

Bass to

Emitter Resistance (saturated}

INPUT

OV

C1293

C1294

Fig. 12.

Fig. 71.

Vee· 5.0 V
VCC=5.0V

}

OUTPUT

OUTPUT

loon

166

C1295

C1296

Fig. 13.

Fig. 14.

MCT277
DESCRIPTION

PACKAGE DIMENSIONS

~

J

t

6.86 (.270)

15'MAX

6.35 (.250)

0.36 (.014)

-'----="'"rf-'I 0.20 (.008)

~'8.89 (.350~ ~

~
7.62
(.300)
REF

8.38 (.330)

i+---=

1.78 (.070) REF

-L

l'

(-1.78 (.070) TYP

::~:;::~~1-3.94 (.155) 1
I

I
I
I

I
I
I
I

----II0.56 (.022)
0.41 (.016)

:

J: I

3.68 (.145) t

I

13.56 (.140)
,U3.05 (.120)

4.951.,95)
j MAX

O.~,

The MCT277 is a phototransistor-type optically
coupled isolator. A gallium arsenide infrared
emitting diode is selectively coupled with an NPN
silicon phototransistor.

I

(.020)
MIN

1-,.27 (.050)

FEATURES
40% Transfer ratio at VCE(SAT) of 0.4 volts for
multiple gate interface
EI Temperature - stable from O°C to 25°C
IS Maximum Turn-on time - 15 ,useconds
(specified condition)
II Maximum Turn-off time - 15 ,useconds
(specified condition)
EI Surge Isolation Rating 4000 volts DC
3000 volts AC, rms
'" Steady-state Isolation Rating3500 volts DC
2500 volts AC, rms
II Underwriters Laboratory (U.L.) recognized
- File E50151

C2090
DIMENSIONS IN mm (INCHES)

APPLICATIONS
Digital to digital system interface
Sensor to many gates
'" Ground loop isolation
III Power supply regulation
III
EI

Equivalent Circuit

ABSOLUTE MAXIMUM RATINGS
TOTAL PACKAGE
Storage temperature . . . . . . . . . . _55°C to 150°C
Operating temperature . . . . . . . . . -55°C to 100°C
Lead temperature
(Soldering, 10 sec) . . . . . . . . . . . . . . . . . . 260°C
Total package power dissipation @ 25°C
(LED plus detector) . . . . . . . . . . . . . . . . 260 mW
Derate linearly from 25°C . . . . . . . . . . 3.5 mWtC

INPUT DIODE
Forward DC current . . . . . . . . . . . . . . . . . 60 mA
Reverse voltage . . . . . . . . . . . . . . . . . . . . . . 3 V
Peak forward current
(1 ,us pulse, 300 pps) . . . . . . . . . . . . . . . .. 3.0 A
Power dissipation 25°C .... . . . . . . . . .. 90 mW
Derate linearly from 25°C . . . . . . . . . . 0.8 mWtC
OUTPUT TRANSISTOR
Power dissipation @ 25°C . . . . . . . . . . . . . 200 mW
Derate linearly from 25°C . . . . . . . . . 2.67 mW/oC

167

MCT277
ELECTRO-OPTICAL CHARACTERISTICS (25°C Temperature Unless Otherwise Specified)

TRANSFER CHARACTERISTICS
CHARACTERISTICS

SYMBOL

MIN.

CTRcE

100
40

TYP.

MAX.

UNITS

TEST CONDITIONS

Current Transfer Ratio,

tJ
C

coli ector to emitter (ai
Current Transfer Ratio,
coli ector to base

CTRcB

0.4

%
%

IF = 10mA;VCE = 10V
IF = IS rnA; VCE = 0.4 V

%

IF = 10mA;VCB = 10V

Non·saturated
III

w

Turn-on time

ton

15

"s

Turn-off time
Saturated

toft

15

:e
j:

CI

Z

:i:
tJ

I-

~

III

Z
0
j:

Turn-on time

ton
Turn·off time
toll
(Approximates a typical TTL interface I
Turn-on time
ton
Turn·off time
toft
(Approximates a typical low power TTL interfacel

3.8
90

"s
"s

IF = 1SmA;RL = 1.9 K!1
See figures 16, 18

3.7
190

/lS

'"

IF = 1SmA;RL =4.7 KO
See figures IS, 18
Relative humidity" 50%,
11- 0 " 10/lA
t = 1 second
Relative humidity" 50%,
11_0 " 10 /lA
t = 1 minute
V I .O = 500 VDC

Surge isolation

Viso

4000

VDC

Steady state isolation

Viso

3000
3500

VAC·rms
VDC

Isolation resistance

Rlso

2500
lOll

VAC-rms
ohms

Isolation capacitance

Ciso

<
...I

0

!!l

"s

RL = 1000; Ic= 2mA;
VCC = 5 V
See figures I 5, 17

1.0

pF

f = I MHz

INDIVIDUAL COMPONENT CHARACTERISTICS
CHARACTERISTIC
w

0

Forward voltage
Forward voltage temp.

I::l

Reverse voltege

~

Junction capacitance

C

E
I>.

II:

0

IIII

iii
Z

<
II:

lI::l
I>.
I::l

0

168

SYMBOL

MIN.

VF

TYP.

MAX.

UNITS

1.20

1.50

V

10

mVI"C
V
pF
pF
/lA

Reverse leakage current

IR

-1.8
25
50
65
0.35

DC forward current gain
Breakdown voltage

hFE

420

Coliector to emitter
Coliector to base
Emitter to base

BV CEO

coefficient

VR
CJ

BVCBO
BVEBO

3.0

30
70

5

TEST CONDITIONS
IF=20mA

IR = 10"A
VF = 0 V, f = 1 MHz
VF = 1 V, f = 1 MHz
VR=3.0V
VCE = 5 V,lc = 100/lA

45
130
7

V
V
V

Ic= 1.0mA,IF = 0
Ic= 1O/lA
IE = 100"A, IF = 0

nA

VCE=10V,IF=0

pF
pF
pF

VCE=O,f= I MHz
V CB = 5, f = I MHz
VEB=O,f= I MHz

Leakage current

Coli ector to emitter

ICEO

5

50

Capacitance

Collector to emitter
Coliector to base
Emitter to base

8
20
10

MCT277
TYPICAL ELECTRICAL CHARACTERISTIC CURVES (25°C Free Air Temperature Unless Otherwise Specified)
.00

100

eo

60

40

40

I

0

/Y/I

wc

0

/

0

I

/

'F'" SmA

/I

'I/lf

;: 2.0

r

.4

J J /
,I J /
.8

.9

1.0

2
1,1

1.2

1.3

1.4

VF - (Voltsl

j

1

1.5

'F' j jA

j
VeE - (Volts)

.8

.6
14
12

~

E

10

O!

8

..... ~

~

o
a ,

--

\

..

"

"<

i\

.s

?;;
'" 50

5.01JA

130

110

~

90

C1244

-,

t

VeE =O.4V

~

lX '

,~

~

-50

o

10

+50

TEMP -I'C)

+100

C1259

Fig. 7. Current Transfer Ratio
(saturated) vs. Temperature

11

C1243

~F=I'6~~
'F' 4mA

'(I

1 KG

90

10Mn
C1246

Base to Emitter Resistance

.9
'.0~~~
.8

VeE'" 5 V

.6 I--t---+-+---+--I

!

'\.

a
z

80

-25

lMn

Fig. 6. Saturated CTR vs.

"

N

-50

lOOKn

.7

'\.

100

10KO

RBE-In)

~'c=20mA

::;

~
a:

10

IF"" SmA

1.0

C1245

~

70

30

5.0

I 110

Ie = 16 mA'

50

2.0

c =2mA

120

fa

9

VeE'" 0.4 V

10
6.0
4 .0
2. 0

Fig. 5. Collector to Emitter Breakdown
Voltage VS. Base to Emitter Resistance

'~
,,
,
,

70

1.0
RBE - (Mol

130

~'.6mA
.........

a:•

.5

.2

Fig. 4. Collector Current vs.
Collector to Emitter Voltage

8

.02
.0 1

45

5.0

VeE - V

7

.2
.10
.06
.04

......... r-..

2.5IJ.A

2:0

6

;: :46

U

>

10 lolA

1.0

5

IF - (rnA)

80
40
20

55

I

~-

4

Fig. 3. Collector Current vs.
Forward Current

Ie = 1 rnA

~

15,A_

3

~

100

~

20j.!A

~
2

~

C1242

60

'.

251'A

.1.2.3.45.7

/

I
//

Fig. 2. Collector Current vs.
Collector to Emitter Voltage

3O~A_

~

10

01020410246102.0406010

C1285

Fig. 1. Forward Voltage v••
Forward Current

20

12

!

~~E·I.4V

IF'" 2 rnA

III

2

';{

VI'

J

14

•
u

I

..

10

••

/VCE·5V

IF'" IOmA

I'r

1 :~

I

I

0

y

18
'6

20

25' C' /-25' C
10

0

20

"'~

'~~~Effi
;;::p",~

0

+25
TEMP - fOC)

+50

"

H5

+100

C1247

Fig. B. Current Transfer Ratio
(unsawrated) vs. Temperature

.51--t---+-+---+-~
.4

~

.3

~

.2

I--+--+-

I:::$~$--f---t-

.1 ~--~--~----~--~--~
+25
+50
-25
+75
+100
TEMP - (OC)

C1248

Fig. 9. Collector to Emitter
SaWration Voltage vs. Temperature

169

MCT277
TYPICAL ELECTRiCAL CHARACTERISTIC CURVES (25°C Free Air Temperature Unless Otherwise Specified)
100

100,000

100

IF = 0
VeE'" 5 V

IF =0

10,000

10

'Fdm~

80

-

t,aoo

1,

"

I

I

f,

a:

~
S' 0.1

10

60

!

i

100

l-

u

40

.01

20

Po (TOT ALI = 100 mW
TA71~'C I
Til;"""

o
+25

+50

+75

+100 +125 +150

TEMP - lOCI

+50

C1249

+75

TEMPERATURE

100

+100

tOe)

1000

Fig. 10. Col/ector to Emitter Leakage

Fig. 11. Col/ector to Emitter Leakage

Current vs. Temperature

Current vs. Temperature

40

16

10

IF =3.2to 16mA

RL = 1.9 KG

Vee = 5 V

Vee = 5 V

ABe = OPEN

RL ='.9KO

30

12

I-

~
w

'"

20

"

~

;:

~

10

...... t----,.,
t on-

32 4

12
IF - (mAl

Fig. 13. Switch·on Time vs.
f F Drive (saturated)

16
C1328

1M

tOOK

500K

RBe - 1m

ov

I
I
I

I

:
~
90%

I

10%

I
I

..-.t

I

I

I
I

I
I

.

I
I

on ~ toff

I

r-

C1294

C1293

Fig. 16.

Fig. 15.

VCC=5.0V
VCC=50V

}

OUTPUT

OUTPUT

loon

C1295

Cl296

Fig. 17.

170

50 K
C1329

Fig. 14. Switch·off Time vs. Base to
Emitter Resistance (saturated)

INPUT

OUTPUT

100.000

el251

Fig. 12. Current Transfer Ratio vs.
Operating Time

TYPICAL SWITCHING CHARACTERISTICS
14

10,000

OPERATING TIME - (Hours)

C1250

Fig. 18.

MCT4
PACKAGE DIMENSIONS r~~
r:lt

~

I- .I
•210

:iiiO

~~~DE

DESCRIPTION

"'...,""

The MCT4 is a standard four-lead, TO-18 package
containing a GaAs infrared emitting diode optically
coupled to an NPN silicon planar phototransistor.

J~:g.,~:"'TI'

D

V

~II .."~

P'T COLLECTOR
(ELECTRfCALLYCONNECTED

--1

-:Oti"~
4&".1M6

TO CASE I

r~

FEATURES

Q

~
~~"'-r

•
•
•
•

,l!!!.
028

PfTEMITTER

Hermetic package
High current transfer ratio; typically 35%
High isolation resistance; 10'1 ohms at 500 volts
High voltage isolation emitter to detector

C950

ABSOLUTE MAXIMUM RATINGS
Peak forward current (1 /loS pulse, 300 pps) ....•.... 3.0 A
Total power dissipation ........................ 250 mW
Derate linearly from 25' C ...........•....... 3.3 mW/' C
DETECTOR (Silicon phototransistor)
Power dissipation at 25' C ambient .............. 200 mW
Derate linearly from 25'C .•................ 2.67 mW/'C
Collector-emitter breakdown voltage (BVCEO) ....... 30 V
Emltter-collector breakdown voltage (BVECO) ...... 7.0 V
ISOLATION VOLTAGE ...•...............•.. 1000 VDC

Storage temperature ............•..•... -65' C to 150' C
Operating temperature ................. -55'C to 125'C
Lead soldering temperature (10 sec) ..•.......•.. 260' C
LED (GaAs Diode)
Power dissipation at 25' C ambient ....•.•...•.... 90 mW
Derate linearly from 25'C ........•.......... 1.2 mW/'C
Continuous forward current .....•.•.••...•.•.•.. 40 mA
Reverse voltage ....................•.......•..•. 3.0 V

ELECTRO-OPTICAL CHARACTERISTICS (250 C Free Air Temperature Unless Otherwise Specified)
CHARACTERISTICS

Emitter
Forward voltage
Reverse current
Capacitance
Detector
BV CEO
BV ECO
ICEO(Dark)
Capacitance collector-emitter
Coupled
DC current transfer ratio
Breakdown voltage
Resistance emitter-detector
VCE(SAT)
Capacitance LED to detector
Bandwidth (see figu re 5)
Rise time and fall time
(see operating schematic)

MIN.

TYP.

MAX.

1.3
.15
150

1.5
10

30

7

15
1000
1011

12
5
2
35
1500
10 12
0.1
0.2
1.8
300
2

50

0.5

UNITS

TEST CONDITIONS

V
p.A
pF

I F =40 rnA
V R =3.0 V
V=O

V
V
nA
pF

Ic=1.0 rnA, IF=O
IE=100,.A,IF=0
VcE=lO V, IF=O
VCE=O

%
VDC
ohms
V
V
pF
kHz
p.s

I F =10 rnA, V cE =10 V
t = 1 second
V = 500 VDC
I c =500p.A, IF= 10 rnA
Ic=2 rnA, I F =50 mA
Note 2
Ic=2 rnA, V CE =10 V
Note 3

171

MCT4
TYPICAL ELECTRO-OPTICAL CHARACTERISTIC CURVES
(250 C Free Air Temperature Uniess Otherwise Specified)
0

j~

o

E

;;.5

~-,

5!"'-

10-4
10-5

vc~ -lOvelLTS

§
1l,..
15,
5
a:

/

a:

,..,
:J

u

IF =20rnA

5

IF .. llOrnA

10

15

20

25

/

0

~:J
o

/

5

/

/

~. 0

f--~;'

5

II

;(

Ie

"5

/

/

/
/
20

30

40

50

IF INPUT CURRENT LED (rnA)

60

V
--60 -40 -20

Figure 2 Input Current vs. Output Current

,

•

2.

111111111

8

/

/

7

•
5

c!<

•

VeE "IOVOLTS

aa: •
go.

~\

I.

8

~

o. 6

·20

0

20

40

60

80

AMBIENT TEMPERATURE (0C)

60 80 100 120 140

2

IK

100
c954

Figure 4 Current Output vs. Temperature

10K
lOOK
FREQUENCY (Hz)

C953

Figure 3 Dark Current VB.
Temperature roC}

I I II
I I II

.

v,. -.OVOLTS

"

I I

2~

•

RL

."
•

1\
\

8 o.•

..

\
)~~

a:

/
-40

20 40

I
\1
';,-

~ I. 2

V

·60

111111111

I .6

!,.

LED CURRENT·IOmA
VeE-IO VOLTS
FREE STANDING DEVICE

4
3

a

C952
AMBIENT TEMPERATURE (OC)

Figure 1 Detector Output Characteristics

9

J

/

C95'

8

.VeE'" 10 VOL IS/

J

10-12

10

-

V

"" ./

30

VeE COLLECTOR VOLTAGE DETECTOR (VOLTS)

-

10-6

I I

RL -470n

."-... i""

I R~ - I '

2

,

0.1

C955

.l,oo~n

I I I
0.2 0.3 OA Q.6081.0
2 3 . 567810
COLLECTOR CURRENT Ie (mA)
C968

Figure 6 Switching Time
VB. Collector Current

Figure 5 Output Vs. Frequency

For additional characteristic curves, see MCT2

OPERATING SCHEMATICS
MODULATION
INPUT

H

'IolF

47n

CONSfANT

CURRENT
INPUT

r

LED

-

--z.. ).

I
L ___ _

)----'

Ie

Vee -'DVOLTS

.... OUTPUT

~ :c..--

-

I

L

Ie

~
I

":" ___ 1

Vee. 'OVOLTI

DETECTOR

PUL8&

' - - -....---t~ OUTPUT

I,

I,

C957

Modulation Circuit Used to Obtain Output

47n

LED

DETECTOR
' - - -....-

PULBE
INPUT

VB.

Frequency Plot

C958

Circuit Used to Obtllin Switr:hlng Tim" vs. ColIlICtor Current Plot

NOTES
1.
2.
3.

172

The current transfer ratio (lcil F) is the ratio of- the detector collector current to the LED input cummt with
V CE at 10 volts.
The frequency at which ic is 3 dB down from the 1 kHz value.
Rise time (tr ) is the time required for the collector current to increase from 10% of its final value, to 9O'J6. Fall
time Itf) is the time required for the collector current to decrease from 90% of its initial value to 1M.

MCT4R
DESCRIPTION

PACKAGE DIMENSIONS

The MCT4R is a standard four-lead, TO-18 package
containing a GaAs infrared emitting diode optically
coupled to a silicon planar phototransistor.

Let:- .;~: :'"
~

LED

f

ooV

--j 1-~::3

ANODE

~~LLECT

r .~

>

FEATURES
• Hermetic package
• High current transfer ratio; typically 35%
• High isolation resistance, 10" ohms at 500 volts
• High voltage isolation emitter to detector
• Screened to MIL-STD-883 Class B

APPLICATIONS

//\-

::

The General Instrument MCT4R is designed and
manufactured to conform to the requirements of
military systems. Reliability testing has proven the
product capable of conforming to the screening and
quality conformance requirements of MIL-STD883C Class B devices.

~:
BOTTOM VIEW

PTEMITTER

C950

SCREEN -

100%

Characteristic

Method

Internal Visual
Stabilization Bake
Temperature Cycle
Centrifuge
Hermeticity
Critical Electrical
Burn In

2010 - Characteristics applicable to device
1008 - 150°C. for 48 hours
1010 -10 cycles; -55°C., 25°C., 1500 ., 25°C.
2001 - Test Condition E
1014 - Fine and Gross
Data Sheet
1015 - 160 hours@ 125°C

Final Electrical
Group A Sample I nspeC'tio::m
External Visl,al

5005
2009

-

-

Data Sheet
Table I Subgroups

173

MCT4R
LOT QUALIFICATION TESTS
Characteristic

Method

Subgroup I
Visual Mechanical
Marking Permanency
Physical Dimensions

LTPD

2008

15%

Subgroup II
Solderability

2003

15%

Subgroup III
Thermal Shock
Temperature Cycle
Moisture Resistance
Critical Electrical

1011 -15 cycles; 150°C. to -65°C.
1010 -10 cycles; -55°C., 25°C., 150°C., 25°C.
1004
Data Sheet

Subgroup IV
Mechanical Shock
Vibration Fatigue
Vibration Variable Frequency
Constant Acceleration
Critical Electrical
Subgroup V
Lead Fatigue
Hermeticity

Subgroup VI
Salt Atmosphere

2002
2005
2007
2001

-

Condition B
Condition A
Condition A
Condition E
Data Sheets

15%

15%

2004 - Condition B2
1014 - Fine Condition A
Gross Condition C

15%

1009 - Condition A

15%

LIFE TESTING 7% LTPD
Subgroup VII
High Temperature Storage
Critical Electrical

1008 - 150°C. for 1000 hours
Data Sheet

7%

Subgroup V III
Operating Life
Critical Electrical

1005 - Condition B
Data Sheets

7%

Subgroup IX
Steady State Reverse Bias

1015 - Condition A; 72 hours at 150°C.

7%

Subgroup X
Bond Strength

2001 -Condition C; 10 devices only

Reference:

174

MIL-STD-883C Test Methods and Procedures for Microelectronics.

AIGaAs

10 mA MCT5200
5 mA MCT5201

PACKAGE DIMENSIONS

DESCRIPTION

CJ

The MCT520X are high performance logic
compatible phototransistor type optically coupled
isolator products. They are ponstructed using a very
low degradation and high-efficiency AIGaAs, 890 nm
infrared emitter, coupled to a high speed NPN
phototransistor, in a high insulation double molded
six-pin dual-in-line package. They provide a very
high current transfer ratio (CTR), high switching
speed and 2500 VAC withstand test voltage
performance. The critical circuit design parameters
of CTRcE and CTRcB are guaranteed over a
temperature range of o-70·C resulting in guaranteed
switching propagation delays when interfaced to
LSTTL logic.

).-

t

6.86 (.270)
6.35 (.250)

~

7.62
(.300)
REF

8.38 (.330)

:
:
I

I

I
I

--II0.56 (.022)
0.41 (.016)

1
:

0.36 (.014)

-'---=~_'I 0.20 (.008)

I '8.89 (.350) ~
2.54(.100)TYP

}
15" MAX

t---"

1.78 (.070) REF

-L

'1

1.78 (.070) TYP

t

J: I

3.94 (.155) t 4.95 195)
3.68 (.145) I t MAX

I

I

t 3.56 (.140) O.J, (.020)

U3.05 (.120)

MIN

1-,.27 (.050)
C2090
DIMENSIONS IN mm (INCHES)

The MCT5201 has a minimum saturated CTR of
120% for a LED input current of 5 mAo Maximum
LSTTL interface propagation delays of 30 ,.s are
guaranteed with the use of an external 330K resistor
between the base and emitter. The MCT5200 is
specified for a minimum saturated CTR of 75% for
an input current of 10 mAo

FEATURES
•
•
•
•
•
•
•

High CTRcE (SAD comparable to Darlingtons
Guaranteed switching speed with LSTTL load
Performance guaranteed over O· C to 70· C
High withstand test voltage
2500 VAC
High common mode rejection-5 kVl,.s
Data rates up to 150 kbits/s (NRZ)
Underwriters Laboratory (UL) recognized file
#E50151

APPLICATIONS

Equivalent Circuit

•
•
•
•
•

LSTTL digital logic isolation
IEEE 488 isolated inputs
Switching power supply
High speed industrial interfaces
Isolated microprocessor inputs

ABSOLUTE MAXIMUM RATINGS
TOTAL PACKAGE
Storage temperature ..•.•••••..•.••..••. -55°C to 150°C
Operating temperature .•.•••••••••.•..•. -55° C to 100° C
Lead temperature (soldering, 10 sec) ••.•.•.•.••.•• 260°C
Total package, power dissipation
(LED plus detector) .•.••..••..•..••••..••.••. 260 mW
Derate linearly from 25° C ••.•...•...•.•.•.•.• 3.5 mW/· C

INPUT DIODE
Forward DC current ••••••••••••••••••.•.••••••••• 40 mA
Reverse voltage ••••.•••••.••••••••••••••••••••••••• 6 V
Peak forward current (1 "s pulse, 300 pps) ••••••••••• 1.0 A
Power dissipation ••••••••••••••••••••••••••••••• 54 mW
Derate linearly from 25°C •••••.••••••••••••• 0.7 mWrC
OUTPUT TRANSISTOR
Power dissipation .••••••.•••••••••••••••••••••• 200 mW
Derate linearly from 25°C •••••••••••••••••• 2.67 mW/oC

175

MCT52DD MCT52D1
TRANSFER CHARACTERISTICS (Over Recommended Temperature, TA =0· C 1070· C Unless Otherwise Specified)
CHARACTERISTIC
Saturated current
transfer ratio
(collector to emitter)
Current Iransfer ratio
(colleclor to emitter)
Currenl transfer ratio
(collector to base)
Saturation voltage
(collector 10 emitter)

SYMBOL
CTRCE(SAT)
CTR(CE)
CTRcB
VCEISAT)

DEVICE

MIN.

TYP."

MCT-52oo

75

150

MCT-5201

120

225

0.2
0.28

200
300
0.3
O.S
0.2
0.2

MCT-52oo
MCT-5201
MCT-52oo
MCT-5201
MCT-5200
MCT-5201

MAX.

UNITS
%
%
%

0.4
0.4

V

TEST CONDITIONS

FIG.

IF = 10 rnA, VCE = 0.4V

2,3,4

IF = 5.0 rnA, VCE = 0.4 V

2,3,5

IF = 10 rnA VeF = 5.0 V
IF = 5 rnA Vc~ - 5.0 V
IF = 10 rnA VCB = 4.3V
IF = S.O rnA V"R - 4.3 V
IF - 10 rnA, ICE - 7.5 rnA
IF = 5 rnA, ICE = 6 rnA

NDTE
1
1
2

6,7

•All typicals TA = 2So C

SWITCHING CHARACTERISTICS (Over Recommended Temperature TA = O· C 10 70· C Unless Otherwise Specified)
TYP."
3
2
12

MAX.
7
6
18

If

17

30

IPHL
IPLH

5
13

12
20

Delay lime
Rise lime
Slorage lime

Id
Ir
Is

7
6
8

15
20
13

Fall lime

If

19

30

IPHL
IPLH

12
8

30
13

CHARA~TERISTIC

SYMBOL

Delay time
Rise lime
Slorage lime

Id
Ir
Is

Fall lime
Propagation delay H-L
Propagalion delay L-H

Propagalion delay H-L
Propagalion delay L-H

DEVICE

MCT-5200

MCT-5201

MIN.

UNITS

,,8

TEST CONDITIONS
IF = 10 rnA, VCE = 0.4 V
RL = 1.0 K, RBE = 330 K
VCC= 5.0V

FIG.

NOTE

15,18

3,4
5,6

-

IF = 10 rnA, VCE = 0.4 V
Vcc = 5.0 V, RL = (Fig. 18)
RBE = 330 K

"s

IF = 5 rnA, VCE = 0.4 V
RL = 1.0 K, RBE = 330 K
Vcc =5.0V
IF = 5 rnA, VCE = 0.4 V
Vcc = 5.0 V, RL = (Fig. 18)
RBF = 330 K

7

13,18

3,4
5,6
I---

7

·Alltypica/s TA =2SoC

NOTES
1. DC current transfer ratio (CTRcE ) is defined as the transistor collector current (ICE) divided by input LED current (IF) x 100%, at a specified
voltage collector to emitter (VCE).
Current transfer ratio is defined as the collector to base photocurrent (tcs) divided by the input LED current (IF) times 100%.
Switching delay time (td) is measured for SO% of LED current to 90% falling edge of Vo.
Rise time (tr) is measured from the 90% to 10% of Vo falling edge.
Storage time (Is) is measured from SO% of falling edge of LED current to 10% of rise edge of Vo.
Fall time (t,) is measured from the 10% to 90% of the rising edge of Vo.
The tpLH propagation delay is measured from 50% point on the falling edge of the input pulse to the 1.3 V point on the rising edge of the
output pulse. The tpHL propagation delay is measured from SO% point on the rising edge of input to 1.3 V point on failing edge of output pulse.
B. Device considered a two terminal device: Pins I, 2, and 3 are shorted together. Pins 4, S, and 6 are shorted together.
2.
3.
4.
S.
6.
7.

176

MCT5200 MCT5201
ISOLATION AND INSULATION
CHARACTERISTIC

SYMBOL

(TA = 25° C Unless Otherwise Specified)
DEVICE

MIN.

TYP.

MAX.

UNITS

TEST CONDITIONS

Common mode
rejectionoutput high

CMH

SOOO

v/!-,s

VCM = SO Vp_p
RL = 1 KIl. IF = 0

Common mode
rejectionoutput low

CML

SOOO

v/!-,s

VCM = SO Vp_p
RL = 1 KIl. IF = SmA

Common mode coupling
capacitor

Cern

0.2

pF

Package capacitance
input/output

CI-O

0.7

pF

MCTS200
&
MCTS201

--VI-O

= 0, f = 1 MHz

VIsa

2S00

VAC RMS

Relative humidity s SO%

VIsa

3S00

VAC

Ii 0< 10 pA, 1 minute

Insulation resistance

Rlso

10"

INDIVIDUAL COMPONENT CHARACTERISTICS
CHARACTERISTIC

SYMBOL

Forward vollaae

VF

0

is

Forward voltage
coefficient

j,VFI j,TA

I-

Reverse voltaQe

VR

Junction
capacitance

CJ

DC forward
current gain

hFEfSATI

Q

;:)

IL

!

a:
0

I1/1

iii
Z
C

a:

lI;:)

IL
I-

;:)

0

Breakdown voltage
Colleclor to em iller
Collector to base
Emiller 10 base
Leakage
Collector to emiller
Capacitance
Collector to emiller
Collector to base
Emiller to base

BVCEO
BVCBO
BVEBO

DEVICE

MCT5200
&
MCTS201

MIN.

10

8

FIG.

NOTE

VI-O = SOO V

TYP.

MAX.

UNITS

1.3

1.S

V

IF = S mA

1

mV/oC

IF = 2 mA

1

V

IR = 10 jJ.A

-1.9

18

30
30
5

9

(TA = 25°C Unless Otherwise Specified)

6

MCT5200
&
MCTS201

Peak

Ohms

pF

112

MCTS200
&
MCT5201

NOTE

17

8

Withstand insulation
lest voltage

w

FIG.

TEST CONDITIONS

VF = 0 V, f = 1 MHz
VF = 1 V, f = 1 MHz

400

-

VCE = 0.4 V, ICE = 6 mA

45
70
7

V
V
V

Ic = 1.0 mA, IF = 0
Ic= 10!-,A
IE= 10!-,A

nA

VCE = 10 V, IF = 0,
RBE = 1 Mil

11

pF
pF
pF

VCE = 0, f = 1 MHz
VCB = 5, f = 1 MHz
VEB = 0, f = 1 MHz

12

ICER

5

C

8
20
7

100

8,9

177

MCT5200 MCT5201
TYPICAL ELECTRO-OPTICAL CHARACTERISTICS (TA = 25° C Unless Otherwise Specified)
100

1.3
1.2
1. 1

11.3

«

YS~

1

~

10

~>

2
~ ~ 1. 1
~ ff 1. 0
o ~ o. 9

·o·c
2S·C
so·c

E

7S·C

5

~ 1.0

~ 0.9

/

I ~:

~

~

~l. 0

1

7
6

S
o.4

rt-

o. 1

I ~:

NOTE:
Dotted line segment
indlic~te~ p~ISrdlo~er~tion

1.S

1.0

2.0

.

C1804

1.0
10
IF-Forward Current-mA

-20

100

o-

1--9

C1806

Fig. 3. Normalized CTR VB.
Temperature

6

~

3S

F
(rnA)

I.- 1- 10

-

I-

f-9

~ l- I- ~ I- 8It ...... l- I- l- I- 1--'7

30
2S

fY

~

~ 2o j

S

,-

6
S
4

~ 1SIU

o

4

f":

40

~

7

lv
Ji

«

~

_8

U

3

t

IlL

1 10
2 ·5 V

-~

1

1

01234S6789
Vee-Collection Emitter-v

VeE-Collection Emltter-V

C180e

C1807

Fig. 4. MCT5200 Col/ector Current VS.
Col/ector to Emitter Voltage

Fig. 5. MCT 5201 Col/ector Current vs.
Col/ector to Emitter Voltage

10
iF" 20 mA_

/

10mA=

Mb~2011/

0
0
0
0

./ MCTS200

V

0
0

I~

/'

1/
f.7 1/

I I

4

8 10 12 14 16 18 20

-20

2S

I
so

70

100

TA-Ambient Temperalure-oC

IF-Forward Current-rnA

C1809

Fig. 6. Col/ector Base Photocurrent
vs. Forward Current

178

1.0mA

ieB@iF SmA
TA = 2S·C
1
.0 VeB = 4.3 V

VeB=4.3V

6

~

-I---

1

Normalized to

I
2

S~A===

I-~
~

V

/

100

70

Cl80S

IF
(mA)

I--

so

2S

TA-Ambient Temperature-OC

Fig. 2. Normalized Current Transfer
Ratio VS. Forward Current

Fig. 1. Forward Voltage VB.
Forward Current

f.-

""r--.

Tt

3
2

0.1

VF-Forward VoJtage-V

~~

b

"'

f-I-

1.6mA

I"'IS
0.8 I--~
O. 7
i 0.6 r-+- f- IF = 10 mA
~ 0.5
I
E 0.4
~ 0.3 t-~~~m:~~Z~d
0.2
r-iF =S mA
I
O. 1 f-VCE, = 0.4 V, 1

o. 1

~

N.,.....

t- dm~ t"-;I!'-

/i.

" o. 8

<.J

N

C1810

Fig. 7 Normal/zed Col/ector Base
Photocurrent VB. Ambient Temperature

MCT5200 MCT5201
TYPICAL ELECTRO-OPTICAL CHARACTERISTICS (TA = 25°C Unless Otherwise Specified)
b

35

~

30

l

/--

E
w

0

I

£

~i::::::

5

~

<;

r- 50.

1 6 rnnn--'-T'Tn::t:I'IF="v"'e::~=5;:-...::....c"'07:lV

45.
_40
35'
_30

14

::::-- -

--:::: :::.

5

~

-- -f::::

I--I--

I--

I-- f--

~

; ;~

2
_1

~v

'."-\l--+-++J+f!I.---l

~

~

0.8

,

r--

~

VeE

= Q4V

10

12

100

.-

E

i
u

E

~
<;

0.3

10

14

10
Ib-Base

C1811

w

50

I I I III

I 1000

1lc

1/

100

VeE

10

10 V

--

8

01

S

II

~

w

.il!

10

,I

10

~

50

75

5 rnA

RL

RBE
Vee

I

1K

!

Fig. 12. Base Emitter Capacitance vs.
Base Emitter Voltage

1/

U)
~

I

20

~

E

V

,::

1-"""

'"c

'"

B
~

10

I-

U)

.I.

IF -10 mAJ
RL = 1 K
RBE = 330 K
Vee = 5 0 V

tPHL

100 K
50V

/

/

V

~i-"'"
"" ..... F-

I'~

-

/

I

U)

t

20

E

t,

,::
~ 15

-~

'Bi"
U)

tPlH

10

... -

.I.

25

50

70

100

TA-Amblent TemperaturE"-oC
C1817

Fig. 14. Switching Speed vs. Temperature
IF=5 mA RaE = 100 K

~
./

IP;;'"

I-

K

PLH

::::::-

J;...-

25

20

~ 15

IF 10 mA
Al - 1 K
RBE 100 K
Vee 50 V

50

I-

0

-~

~

tPlH

ItI~

25
50
70
0
100
TA-Ambient Temperature-OC
C1818

Fig. 15. Switching Speed vs. Temperature
IF=5 mA RBE = 330 K

100

70

Refer to figure 18 for
sWitching tet' Circuit

i

-l- I-

E

,:: 10

tPLH

g>

I,

~

~_f-

~

tPHl

Ul

.I.

r-

1'1
-20

Refer to figure 18 for
sWltchmg test circuit

Fig. 13. Switching Time vs. Temperature
'F=5 mA ReE =330 K

Refer to figure 18 for

1--' .....

I,

TA-Amblent Temperature-OC
C1816

sWitching test circuit

Irl=

~;~~hti~~I~~:~cll~cf~~ - ,-+- 1,[-20

"I-""

I--'

I,

-20

-0.4 -0.2
o 0.2 0.4 0.6 0.8
VBE-Base Emitter Voltage-V
C1815

TA-Amblenl Temperature-OC
C1814

30 IF

./

1.0

100

Fig. 11. Col/ector to Emitter Leakage Current
vs. Temperature

L

I;: r-r-T

U

25

80

l-

In

1

75

5 rnA
RL 1 K
RBE 330 K
Vee 5.0 V

100

'E

70

IF

-

s
g

IFO~

iT

65

Fig. 10. Col/ector Current (I GE) vs.
Base Emitter Voltage (VBE)

30
c.

60

Vse - Base Emitter Voltage
C1813

1000
u.

55

C1941

Fig. 9 Normalizec hFE vs. Base Current

50V-

VeE

/

I

100

Current-~A

-.

1

l!

J

-

w

UJ.illL----'--'--L.1l.lllL---1.....l.J...llIllL"-~

o6

J

10

~

::

u
I

,

Fig. 8. Col/ector Current vs.
Col/ector to Emlller Voltage

..

~o~~~~~edl \~ItH+--++1~ttlf-----l
~.~ T.= 25"C I I

1

VeE-Collector Emttter-V

f--

t-I-'Htt-l-;------l

0.7

5

'

I-Htttt-¥t+t.!+IIt----1-+-Plffilt-----l

1.1 rn'f>H'-- ---f--t+t+tHt--IH+++HIt-\---l
1.0
ttttt--+1\-\t-I-HHtt!·\--\-t
09
\

'0

25

0

U

15~~r-+~~~r-f~'11

..... 1-

-r-

....

'-

...
Id

=If

I

-20

25
50
70
100
TA-Amblent Temperature-OC
C1819

Fig. 16. Switching Speed vs. Temperature
IF=5 mA RBE = 100 K

179

MCT5200 MCT5201
TYPICAL ELECTRO-OPTICAL CHARACTERISTICS (TA = 25°C Unless Otherwise Specified)
7000 r----,--,--,--,----,r---r---,
(f)

~

6000I--H---+-+-+

~ 5000
'll

E

~~

f~
:~ :~~a

= 5L -

~~:~5~C
IIH = 5 rnA

-

IlL = 0 rnA
VOH = 2.0 V
VOL = 0.8 V

~

"8'c
:!

vel

4000

3

4

~20ns

___________

5V~

Va

Switch at A /

30001--t--1--+-+-+--1---+----I

Va

/ Switch at B
r-o
1000 II-"'-"t;;;;:+=:j::=~=t=:j

Pulse Gen

C1821

1000 2000 3000 4000 5000 6000
VCM-Common Mode

Fig. 17. Text Circuit for Transient
Immunity and Typical Waveforms

Transient Amplitude-V C1820

Fig. 17. Common Mode Transient Rejection vs.
Common Mode Transient Voltage

Vee = 5.0 V
Pulse Gen

Pulse Gen
Zo = 50 II
f = 10 KHz

Za = 50 II
f=10KHz
10% D.F.

o
>

10% D.F.
D2

IF monitor

IF monitor

D3

100 II

D4

Ir. h, tdo ts
TEST CIRCUIT

tpHL, tPLH

TEST CIRCUIT

C1822

Vee1

= 5.0 V

VCC2 = 5.0 V

1.3V

IF
rnA

10%

t,
C1823

RF
II

1.6 2K
3.0 1.1 K
5.0 620
10.0 330
10.0 330

RL

n

RBE

tPHl

II

"s

15
10 K
4.7 K 470K 10
1 K 330K 12
1 K 100K 7
2K 47 K 3
~

tPLH DATA'

"5

RATE

Nnz
12 37 K
10 50 K
8 50 K
11 56 K
4 140 K

~~~Z= _ _1 _ _
tpLH + tPHL

Fig. 18. Switching Circuit Waveforms

C1824

Fig. 19. Typicaf Non-Inverting LSTTL
to LSTTL fnterface

180

AIGaAs
PACKAGE DIMENSIONS

W
I.

~

18.89 (.350)
8.38 (.330)

DESCRIPTION

1

15'MAX

-'::---=~_II

0.36 (.014)
0.20 (.008)

6.86 (.270)
6.35 (.250)

~t+-----=-L

7.62
(.300)
REF

1.78 (.070) REF

T

1.78 (.070) TYP

I=r-;"""-i-I=""":"'::/ 3.94 (.155) t 4.95 1.195)

I

I

I

I

I
I

I
I

--II0.56 (.022)
0.41 (.016)

J: I
:
I

3.68 (.145)+

t 3.56 (.140)
ti3.0S (.120)

3 mA MCT5210
1 mA MCT5211

t MAX

*
o.llMIN(.020)

1-1.27 (.050)
C2090
DIMENSIONS IN mm (INCHF.S)

The MCT-S21X are high performance CMOS/LSTTL
logic compatible phototransistor type optically
coupled isolator products. They are constructed
using a very low degradation and high-efficiency
AIGaAs, infrared emitter, coupled to a photoefficient
high gain NPN phototransistor in a high insulation
double molded six pin dual-in-line package. This
package provides a minimum of 2S00VAC Withstand Test Insulation, and SOOO VII's common mode
transient rejection.
The MCT-S211 is well suited for CMOS to
LSTTLITTL interfaces, for it offers 2S0% CTRcE(SAT)
with 1 mA of LED input current. When an LED input
current of 1.6 mA is supplied data rates to 20K bits/s
are possible.
The MCT-S210 can easily interface LSTTL to
LSTTLmL, and with use of an external base to
emitter resistor data rates of 100 K bits/s can be
achieved.

FEATURES
• High CTRcE (SAT) comparable to Darlingtons
• CTR guaranteed O· C to 70· C
• High withstand test voltage
2S00VAC
• High common mode transient rejection-S kV/p.s
• Data rates up to SO kbits/s (NRZ)
• Underwriters Laboratory (UL) recognized file
#ES01S1

APPLICATIONS
•

Equivalent Circuit

•
•
•

CMOS to CMOS/LSTTL logic isolation
LSTTL to CMOS/LSTTL logic isolation
RS-232 line receiver
Telephone ring detector
AC line voltage sensing

ABSOLUTE MAXIMUM RATINGS
TOTAL PACKAGE
Storage temperatu re . • . . . . . . . . . . -55· C to 150" C
Operating temperature . . . . . . . . . . . -55°C to 100"C
Lead temperature (soldering, 10 sec.) . . . . • . . . . 260" C
Total package power dissipation at 25° C
(LED plus detector) . . . . • . . . . . . . . . . • . 260 mW
Derate linearly from 25°C . . . . . . . . . . . . 3.5 mwrc

INPUT DIODE
Forward DC current . . . . . . . . . . . . . . . . . .. 40 mA
Reverse voltage • . . . . . . . . . . . . • . . . . • . . . • 6 V
Peak forward current (1 I'S pulse, 300 pps) . . . . ... 1.0 A
Power dissipation . . . . . . . . . . . . . . . . . . . 54 mW
Derate linearly from 25°C . . . • . . . . . . • . 0.7 mwrc
OUTPUT TRANSISTOR
Power dissipation . . . . . • . . • • . . . . • • . • . 200 mW
Derate linearly from 25°C . . . . . . . . . • . 2.67 mwrc

181

IMCT5210 MCT5211
TRANSFER CHARACTERISTICS OVER RECOMMENDED TEMPERATURE
(TA =O°Cto70°C Unless Otherwise Specified)
CHARACTERISTIC

SYMBOL

Saturated current
Transfer ratio

CTRcE

SAT

MIN

TYP'

MCT-5210

60

350

MCT-5211

100

300

75

250

DEVICE

(Coliector to Emitter)
Current transfer ratio
(Coliector to Emitter)

CTRcE

Current transfer ratio
(Coliector to Base)

CTRcB

Saturation voltage

VCE

(Coliector to Emitter)

SAT

MCT-5210

70

400

MCT-5211

150

350

110

300

MCT-5210

0.2

0.9

MCT-5211

0.3

0.75

0.25

0.6

MAX

UNITS

TEST CONDITIONS

FIG.

NOTE

IF = 3.0 rnA. VCE = 0.4 V

2
3

1

IF = 1.6 rnA. VCE = 0.4 V

%

IF = 1.0 rnA. VCE = 0.4 V
IF = 3.0 rnA. VCE = 5.0 V
IF = 1.6 rnA. VCE = 5.0 V

%

5
1

4

IF = 1.0 rnA. VCE = 5.0 V
IF = 3.0 rnA. VCB = 4.3 V
IF = 1.6 rnA. VCB = 4.3 V

%

6
7

2

IF = 1.0 rnA. VCB = 4.3 V

MCT-5210

0.2

0.4

MCT-5211

0.2

0.4

IF = 3.0 rnA. ICE = 1.8 rnA

V

IF = 1.6 rnA. ICE = 1.6 rnA

'AII typica/s TA = 25° C

SWITCHING CHARACTERISTICS (TA = 25°C Unless Otherwise Specified)
I CHARACTERISTIC

SYMBOL

DEVICE

MCT-5210
Propagation delay H-LI

r-

tpHL

MCT-5211

I

MCT-5210

MIN

TYP MAX

UNITS

I

tPLH

MCT-5211

n.

NOTE

IF = 1.6mA

12

3

Vce = 5.0 V

13

00

IF = 3.0 rnA

12

RL = 3.3 K. RBE = 39 K

Vce = 5.0 V

20

RL = 750

25

I'S

RBE =

FIG.

RL = 330

n. RBE = ..

RL = 4.7 K. RBE = 91 K

40

RL = 1.5 K. RBE = ..

IF= 1.0mA

45

RL = 10K. RBE = 160K

Vee = 5.0 V

10

RL = 330

12

RL = 3.3 K. RBE = 39 K
RL = 750

20

Propagation delay L-H I

TEST CONDITIONS

10

n.
n.

RBE = ..

RBE =

00

IF = 3.0 rnA
Vee = 5.0 V
IF=1.6mA

RL = 4.7 K. RBE = 91 K

Vce = 5.0 V

12

40

RL = 1.5 K. RBE =

IF = 1.0 rnA

13

45

RL = 10K. RBE = 160 K

25

I'S

00

4

Vee = 5.0 V

NOTES:
1. DC Current Transfer Ratio (CTR cE ) is defined as the transistor col/ector current (ICE) divided by the input LED current (IF) x 100%.
at a specified voltage between the collector and emitter (VCE )'
2. The col/ector base Current Transfer Ratio (C TRcs) is defined as the collector base photocurrent (lCB) divided by the input LED
current (IF) time 100%.
3. Referring to Figure 13 the tpHL propagation delay is measured from the rising edge of the data input (A) to the rising edge of the rising
edge of the data output (B).
4. Referring to Figure 13 the t pLH propagation delay is measured from the falling edge of data input (A) to the falling edge of the data
output (B).
5. CCM is the capacitance between the LED (input assembly) to the base of the phototransistor.
6. C,_O is the capacitance between the input (pins 1. 2. 3 connected) and the output. (pins 4.5, 6 connected).
7. Device considered a two terminal device: Pins 1. 2, and 3 shorted together, and pins 5, 6, and 7 are shorted together.

182

MCT5210 MCT5211
ISOLATION AND INSULATION (TA = 25°C Unless Otherwise Specified)

-CHARACTERISTIC

SYMBOL

DEVICE

MIN

TYP

MAX

UNITS

TEST CONDITIONS

Common mode transient
Rejection - output high

CMH

SOOO

vlp.s

VCM = 50 Vp- p, RL = 750 !I
IF = 0

co;;:,-mon mode transient
Rejection - output low

CML

SOOO

vlp.s

VCM = 50 Ip_p RL = 7SO
IF= 1.6mA

Common mode coupling
capacitor

CCM

0.2

pF

Package capacitance
input/output

CI-O

0.7

pF

Withstand insulation
test voltage

VISO

2500

VAC(AMS) Relative humdity ~ 50%
Ii-o ~ 10 p.A, 1 minute

VIsa

3500

VAC(Peak)

Insulation resistance

Rlso

1011

Ohms

MCT5210
&
MCT5211

FIG.

NOTE

--

14

n

.

14
VI-O = 0, f = 1 MHz

5
6
7

VI-O = SOO V

INDIVIDUAL COMPONENT CHARACTERISTICS (TA = 25°C Unless Otherwise Specified)
CHARACTERISTIC
III

02i
Q

0
1/1

[0

TYP

MAX
1,5

VF

1.3

.J.VF/.J.TA

-1.9

Junction capacitance

DC forward
current gain

Breakdown voltage
Collector to emiller
iii
Collector to base
z
Emiller to base
C
II:
l- Leakage current
ICollector to emiller
::J
11I- Capacitance
::J
Collector to em iller
Collector to base
Emitter to base

I-

MIN

Forward voltage
coefficient

::J Reverse
11voltage

II:

DEVICE

Forward voltage

I-

!

SYMBOL

VA
CJ

hFE(SAT)

BVCEO
BVCBO
BVEBO
ICER

MCT5210
&
MCT5211

5

30
30
5

TEST CONDITIONS

FIG.

IF = 5 mA

1

mVrC

IF = 2 mA

1

V

IA=10p.A

V

NOTE

VF = 0 V, f = 1 MHz

18

MCT5210
&
MCT5211

MCT5210
&
MCT5211

UNITS

112

pF

VF = 1 V, f = 1 MHz

350

-

VCE = 0.4 V, ICE = 2 mA

V
V
V

Ic = 1.0mA, IF = 0
Ic=10p.A
Ic = 10 p.A, IF = 0

nA

VCE = 10V,IF=O, RBE = 1 M!l

pF
pF
pF

VCE = 0, f = 1 MHz
VCB = 0, f = 1 MHz
VEB = 0, f = 1 MHz

I 7045
7
100

8,9

C
10
80
15

11

183

MCT5210 MCT5211
TYPICAL ELECTRO-OPTICAL CHARACTERISTICS (TA = 25°C Unless Otherwise Specified)

""1

100

«

1.7 r-T""l"TTTTTTr-T""TTnmn---'rT'TTTnn
,; 1.6 f-+-t-+tf++tf-t-++tiH.lll---jP+-t++tttl

,

E
1

I-

_1-

~ ~ 1.3 f-H+tI+tIl----t~'+Itttt-+t-t1H-1tti
~ ~ 1.2 f-+-t-+tf++tf-hl+tiH-ttt-H-t++tttl
~ 1.1 f-+-t-+tf++tf-¥-I+tJH-ttt---JH-t++tttl
1.0
~
0.9
0.8
0.7
c
~ 0.6
~ 0.5
a:
0.4
0
z
0.3
0.1
1.0
10
100
IF-FORWARD CURRENT -mA
Cl836

~~
==

25·6~

a:
a:

50·6=
75·6= ~

::J
U

"«a:

II

;;: 1.0

o

E:
I I
DOTTED LINE

a:

"

~

~~

SE~~ENTINDICATES

l2

PUL ED OPERATION

1

I I

I

0.1
1.0

1.2

1.4

1.6

1.8

2.0

VF - FORWARD VOLTAGE - V
C1835

Fig. 2. Normalized Current Transfer
Ratio vs. Forward Current

Fig. 1. Forward Voltage VB.
Forward Current

1.5
1.4

NORMALIZED To

t-....

I'--....

;: 1.3
<

~

u

~

1.2
1.1

........

U 1.0

"

~ 0.9

~

~ 0.8
~ 0.7

~ 0.6
0.5
0.4
-20

r--

b-..

TA

r---.....

=2S

Q

E
1

l-

i:: 14
:::;;
W12
a:

3 mA

I

I
IF

lrl

8

5

6

...J

T,";;;;;:

I-

1
w

I

2

3.~
3.0
2.5
2.0
1.5

i.o

2

0.5

1 2 3 4 5 6 7 B 9 10
VeE - COLLECTOR EMITTER - V
C183B

25
50
75
100
NORMALIZED CTRCEISAT)
vs. TEMPERATURE
C1837

Fig. 4. DC Characteristics
MCT5210

I. (mA)

«

E

1 30
a:
~ 25

~20

a:

~

15

...J

10

8

4.5
4·9

u 4

I

Fig. 3. Normalized CTR
VB. Temperature

I'

5.0
4.5
4.0
3.5
3.0
2.5
2.0
1 .5
1.0
0.5

1
w

2

01234567
VeE - COLLECTOR EMITTER - V
C1840

Fig. 5. DC Characteristics MCT5211

184

5.0

f?10

IF}1 ;;;;;;

mA

I

ffi16

~
IF

IF

«

C

IF ~ 1.6mA
VeE. 0.4 V

---l-

1.5

~ ~ 1.4 1-+-t-+tf++tf-+-t-hf1H-ttt---JH-t++tttl

/J.if(. ~O·C

Z
w 10

MCT5210 MCT5211
TYPICAL ELECTRO-OPTICAL CHARACTERISTICS (TA = 25°C Unless Otherwise Specified)

rt.

-

'/

~~100
'\'1

a:

0>>-z
llw

wa:
-'a:

a:>-

Oz
lla:

>-w

j~

10

55
llOl.0

MCT5211

0>-

10

wo

8~

NJ:

~J:

~m

1.0
0.1

1.0
10
100
IF - FORWARD CURRENT - mA
Cl842

-

5.0mA==3.0mA -

--.!E

~iiiO.l
z

MCT5210

.!iD.

8.0mA

NOR A IZE

-'D.

10

10mA

~

25

75

100

Fig. 7. Normalized Col/ector Base
Photocurrent vs. Temperature

I

NORMALIZED TO
Ib = 10~A
TA = 2S·C
VeE = 0.4 V

I

1.6
1.5
1.4
1.3

~

~..21-100·

~ .E

-

4
4
3
3
2
2
1
1

W
~

o

W
N

:;

~

~

z
3
4
5
6
VeE-COLLECTOR-EMITTER-V
C1844

g;o.WI

1.0
0.9
0.8
. "'6
0.7
~~"611/
0.6
5 A = 9:,,;;,1
O.

o. 4
0.1

1111111
1111111
1.0
10
100
Ib-BASE CURRENT -~A

1000
C1846

Fig. 8. Transistor DC Characteristics

a:

50

=AMBIENT TEMPERATURE -'C

Cl843

5

w

0.5mA~

¥.:'~ 2~'~'Lt---IF = 0.3 mA""""'"

50

>-

~ot-

Icaat IF -1.6m

-20
TA

Fig. 8. Col/ector Base Photocurrent
vs. Forward Current

r

-

1.6mA~

Fig. 9. hFE {§AT) VS. Ib
vs. Temperature

0

>-

::!i<

wE

15>-z.!.1. 0
llW

wa:
-'a:

-':::>
ll O. 1

V

8
~

.!i
.0

lL

0.5
0.6
0.7
VeE-BASE EMITTER VOLTAGE-V
C1847

Fig. 10. Col/ector Current vs.
Base Emitter Voltage

185

MCT5210 MCT5211
TYPICAL ELECTRO-OPTICAL CHARACTERISTICS (TA = 25°C Unless Otherwise Specified)

TA-25°C
Vee =5.0 V
VeE = 0.4 V

I/)

"-

.L

ffl

",Lti,IF " 1 0 mA, AL = 10 Ki
~lH, IF = 1.SmA,RL=47K

[\,IPlH,!F=3mA,RL=33K

~ 200

.......

~~ 100~~fI~l!~ill!~~!i1l1
SOF

~3 . i ji!li l~!~!HI"I"i=I'1mA!'!R!'=I'I°iKI
I

10

tPHl,IF=16mA,Rl=47K

~ 50

~

tPHL. F=3mA,RL=33K

1.0 L-L-LLl.lJ..IJ.L-L.U.IJ.LJIIIIJ.IL...J
IIILL1-'-llWJ
I
lOOK
1M
10M
10K
RBE-BASE EMITTER
RESISTOR-ohm (II) C1849

-0.4 -0.2
0.2 0.4 0.6 0.8
VBE-BASE EMITTER VOLTAGE-V
C1848

Fig_ 12. Switching Time vs. RaE

Fig. 11. CaE vs. VBE

Veel

= 5.0 V

TYPICAL SWITCHING TIME TA - 2S·C
INP:jL

_d_I r.:=-=:rl-tPHL

OU::J

I tPlH

L

!:AI;;l
10 1 33
10 ,33
Ll.6 20
16 20

~1.1

l!flLl.1

R,

RBE

KII
1.5
10
750
4.7
.33
33

KII

.'

tPHL

·
·
·

40
45
20
25
10
12

160
91

3.

!IKblt/s,!

b'LH I Datas

~

':;~

40
45
20

25

10
50
2:t1j

J_'_~ __ ~

C18S0

Fig. 13. Switching Speed Test Circuit

7000
vJe =sdv
RL =7S0n TA =25°C

~600a

w>

g~ 5000

::;t:

IlL

is ~ 4000
oz

~~ 200 a
o~

1= 1000

=OmA

~g~:~.~~- -

::;~

~;:: 3000

I--

IiH=1.SmA- f---

~20ns

tV

:~:-LO~~
3

4

SV~

SWitch at A /

1

1,-0

Va

I

Va

SWitch at B
~ 1,=l.SmA

a

~
Pulse Gen

C1821A
1000 2000 3000 4000 5000 SOOO
VeM-COMMON MODE
TRANSIENT AMPLITUDE-V
C18S2

Fig. 14. Common Mode Transient Rejection
& Test Circuit

186

MCT6 (20%) MCT62 (100%)
MCT61 (50%) MCT66
(6%)

NEW DUALS

DESCRIPTION

PACKAGE DIMENSIONS

w

6.86 (.270)
6.35 (.250)

0.36 (.014)

-'---------"~-,I 0.20 (.008)

~ 9.65 (.380) _I

~ ~.l..

7.62
(.300)
REF

9.14 (.360)

1.78 (.070) REF

T

2.54 (.loo)TYP -11.0.89 (.035) TYP
-I
~
I

The MCT6X optoisolators have two channels
for high density applications. For four channel
applications, two-packages fit into a standard
16-pin DIP socket. Each channel is an NPN
silicon planar phototransistor optically coupled
to a gallium arsenide infrared emitting diode.

FEATURES
•
•
•
•
•

Two isolated channels per package
Two packages fit into a 16 lead DIP socket
2500 volt isolation
Choice of 4 current transfer ratios
Underwriters Laboratory (U.L.) recognized
File E50151

I I
!!
1:r-.=r''l=<-'-F=ri41 3.94 (.155) 4.95 (.195)

1

:

i

:~ :lJ :

3.68 (.145)j

! 3.56 (.140)

~~

(1~~)

I

~ 3.05

(.120)

I ,X

o.~, (.020)
MIN

1-0.89 (.035) TYP

APPLICATIONS
•
•

0.56 (.022)

C2091

0.41 (.016)

DIMENSIONS IN mm (INCHES)

•
•
~

•
•
C2oD5

•

AC Line/Digital Logic - Isolate high voltage
transients
Digital Logic/Digital Logic - Eliminate spurious
grounds
Digital Logic/AC Triac Control - Isolate high
voltage transients
Twisted pair line receiver - Eliminate ground loop
feedthrough
Telephone/Telegraph line receiver - Isolate high
voltage transients
High Frequency Power Supply Feedback Control Maintain floating ground
Relay contact monitor - Isolate floating grounds
and transients
Power Supply Monitor - Isolate transients

Equivalent Circuit

ABSOLUTE MAXIMUM RATINGS
Storage Temperature. . . . . . . . . .. -55°C to 150°C
Operating Temperature ......... _55°C to 100°C
Lead Temperature ...... (soldering, 10 sec.) 250°C
INPUT DIODE (each channel)
Forward current . . . . . . . . . . . . . . . . . . . . . 60mA
Reverse voltage . . . . . . . . . . . . . . . . . . . . . . 3.0V
Peak forward current (1/.lS pulse, 300 pps) ...... 3A
TOTAL INPUT
Power dissipation at 2SoC ambient ........ 100mW
Derate linearly from 25°C . . . . . . . . . . . 1.3mW/oC

OUTPUT TRANSISTOR (each channel)
Power dissipation @ 25°C ambient ........ 150mW
Derate linearly from 25°C . . . . . . . . . . . . 2mW/oC
Collector Current . . . . . . . . . . . . . . . . . . . . 30mA
COUPLED
Input to output breakdown voltage .. 2500 volts VRMS
Total package power dissipation
@ 25°C ambient . . . . . . . . . . . . . . . . . . 400mW
Derate linearly from 25°C ......•... 5.33mW/oC

187

MCT6 MCT6l MCT62 MCT66
ELECTRO-OPTICAL CHARACTERISTICS (25°C Free Air Temperature Unless Otherwise Specified)
CHARACTERISTICS

MIN.

INPUT DIODE
Rated forward voltage VF
Reverse voltage VR
Reverse current IR
Junction capacitance CJ

3.0

OUTPUT TRANSISTOR (IF = 0)
Breakdown voltage,
collector to emitter BVCEO
Breakdown voltage,
emitter to collector BVECO
Leakage current, collector to emitter ICEO
Capacitance collector to emitter Gee
COUPLED
DC current transfer ratio (lC/IF) = CTR
MCT6
MCT61
MCT62
MCT66
Isolation voltage BV o.o )
Isolation resistance
MCT6X- R(I.o)
Breakdown voltage - channel-to-channel
MCT6X

TYP.

MAX.

UNITS

1.25
25
.001
50

1.50

V
V
IlA
pF

IF = 20mA
IR = 10llA
VR = 3.0V
VF=OV

V

Ic = 1.0mA

V
nA
pF

IE = 100llA
VCE = 10V
VCE = OV

30

85

6

13
5
8

10

100

20
50
100
6
2500

TEST CONDITIONS

VCE = 10V, IF = 10mA
VeE = 5 V, IF = 5 mA
VeE = 5 V, IF = 5 mA
VCE = 10V, IF = 10mA
t. 1 minute

%
%
%
%
VRMS

10JI

1012

n

500

VDC

0.4

pF

Capacitance between channels
Saturation voltage collector to emitter VCE(SAT)
MCT6, 61, 62
MCT66
Bandwidth Bw

0.2
0.2
150

SWITCHING TIMES, OUPUT TRANSISTOR
Non-saturated rise time, fall time
(Note 3)
Non-saturated rise time, fall time
(Note 3)
Saturated turn-on time (from 5.0V to 0.8V)
Saturated turn-off time (from
saturation to 2.0V)

VI.O = 500VDC
Relative humidity = 40%
f = lMHz

V
V
kHz

0.4
0.4

Ic = 2mA, IF = 16mA
Ie = 2mA, IF • 40mA
Ic = 2mA, Vcc = 10V,
RL = lOOn

2.4

IlS

15

IlS

5

IlS

Ie = 2mA, VCE = 10V,
RL = 100n
Ie = 2m A, VCE = 10V,
RL = lKn
RL = 2Kn, IF = 40mA

25

IlS

RL = 2Kn, IF = 40mA

MCT6 TYPICAL ELECTRO-OPTICAL CHARACTERISTIC CURVES
(25°C Free Air Temperature Unless Otherwise Specified)

50

eTR

-

==-

50o,~

w

"ua::
0

....

~

20

j

0

u

1-

30

10

II

~ 10

= 10 I'!1A

--

,...-

40

z

a::
a::

IF

f-

<5
>

60

Jo- r-rT

,

I."......

20

<5

6

~

5

0

f-~

~

'"3

;:; ~
3

" "
4 f-3
"
"~ .3 "
\.i\
>~

3

o

10
VCE

20

30

COLLECTOR VOL TAGE

40

50

VOLTS

ca58
Fig. 1. /- V Curve of Phototransistor

~

j'"

"

.. 0

"\"\""i\:">$,..-;..
oS"

\

i'o.

1

o

~~

..,
!-' 3

IF==- lOrnA

:!

18B

7

>

_40

J'/

">-..

'0

~

..

~


«a:

Z

80

::

60

~

40

U
I

20

"

o
60

10

C859

Fig. 2. /- V Curve in Saturation

90~

/V;~

~

V / Vsck
'yo

l;jV

w

-

1~

VCE = 5.0 V
TA = 25"C

120

Z

...........

If - FORWARD CURRENT - rnA

140

I

~

w

50

'"

~

9

/.: V~
~~

0.1

~~

D

/VJ. r~
~~
..II

.23.4.5 1.0 2 345

10 20 40 100
CB60

IF - FORWARD CURRENT - mA

Fig. 3. CrR vs. Forward Current

MeT6 MeT61 MeT62 MeT66
MCT6 TYPICAL ELECTRO-OPTICAL CHARACTERISTIC CURVES (Cont'd)
(25°C Free Air Temperature Unless Otherwise Specified)

..

~ 130~-r--~~---r--r-~---r~

;:

"

~ 110r--+--~~~-h,-t-~--~-;
~

w
u.

~ 90r--+--+-~~-Hr-~~~~-;

"
lI-

~

"~
~

w
~ 1.2

~

~

~

~

N

I

c

~

::;

IMb~~
MCT66

> 1.3 r-

~ 1.1

~

~
u

1.4

50~-L--~~---Hr-t-~--~-;
IF=10mA

+----++-+V CC • 10 V

30

" 1.0
;:

.9

u.

>

40

20

20

40

60

~

./
:;...-'" / .

10. 6

I-

~

~

V
,,<:fl C /

10"7

,/.

u

:/ ./
/./

w

'"

1.0":

;2 mB

"-'w

CIRCUIT

VCE· 10 V

10. 10

.1

.2

.5

5

10 20

~

W

50 100

==
-

VCE ·50 V
V CE • 25 V

"

2

-

vCE • 70 V

...... ......

./'

~ 10.9
w

;;})VF

~

~

ro 60

60

60 100

TA - AMBIENT TEMPERATURE _·C CB63

IF - FORWARD CURRENT - rnA C862A

C861

Fig. 4. Current Transfer Ratio
vs. Temperature

rrU

...,

~
:;

I'

V

/

/

BO 100

AMBIENT TEMPERATURE I"CI

I)~

~

0.8

10L-----~~---U~L-~--~~
60

I'
~

.~ /
~ p( ~

~;.-

~

~

.+JJ

Fig. 6. Leakage Current vs. Temperature
vs. Collector Voltage

Fig. 5. I-V Curve of LED vs. Temperature

20
lB

,

16
I

14

z

~
;: 12

o

'"'!:

c

~o

~

10

"

~

J:

U

I-

10

~
==

§

==
""'"

-E::
=
~

C

~

§

I-

-

::>

i!:

5

~
=
If'"

6O rn p..

If =3mA

11111
TA

=:

I

25c c

1

100

1000

100.000
C865

10.000
TlME·HOURS

COLLECTOR CURRENT IC ImAI CB64

Fig. 8. Lifetime vs. Forward
Current (Note 1)

Fig. 7. Switching Time vs.
Collector Current

MCT66 TYPICAL ELECTRO-OPTICAL CHARACTERISTIC CURVES
(25°C Free Air Temperature Unless Otherwise Specified)

_ 10.0

JJ...r

"

.§
~

o

I-

~

:;;

7.5

c

I

ffi

5.0

~
~

,,-

~~

i""'"

::>

u

:5

~
8

1.I.20mA
2.5

;'

IF -10mA

10.0

.J

~

~ 5.0

~

a:
a:

5

10

15
20
25
30
VeE COLLECTOR VOLTAGE - DETECTOR (VOLTSI
C830

Fig. 1. Detector Output Characteristics

2.5

V

I-

::>

o

o

V

w

a
.!t

o

/. ~
..." 1.0":

7.5

I-

I!:::>

0

.l 1

VeE -10VOLTS
II:

V
./

./

,/.
~

10

...... ......

./'

20

311

40

50

60

IF INPUT CURRENT - LED ImAb831A

Fig: 2. Input Current vs. Output Current

W

VCE· 70 v
VeE· 50 V

f--

VCE ·25 V

f-f--

VCE' 10 V

10-"'"
10. 10

o

J'
/./

~

~

ro

60

ro 60

TA - AMBIENT TEMPERATURE

E=

~

100

-'c

Fig. 3. LukllfIB Current vs. TtmJptlrllture
vs. Collector Volt/lflfl

189

MCT6 MCT6l MCT62 MCT66
MCT66 TYPICAL ELECTRO-OPTICAL CHARACTERISTIC CURVES (Cont'd)
(25 0 C Free Air Temperature Unless Otherwise Specified)
2•

•

9

I

8
I

•• I111111111
11111111
<"

1/

1.6

!

LED CURRENT-IOmA

I-

VCE-IO vOLTS
FREE 5T ANDING DEVICE

~ 12

Z

a:

a

V

6

VeE· 10 VOLTS

14

1.0

'~" 08

, /

..

~

1 1 II
1\

3

0.6

40

Fig. 4. Current Output
vs. Temperature

'z"
I

10K

1""-

c

'"

I-

"
~
~

''"o"z"

01

C834

~L·

.......

I RL• loon

OlO.30A 0.6o.a 1 0

H

r
LED

_
V
\

...

l-

•.00

-

.EIl"''

---

I
,-,
L __ _

-

'e

3" 567810

Ca3S

Vee'" 10 VOLTS

L---_--.__

OUTPUT

"

Modulation Circuit Used
to Obtain Figure 5

CB37

\ ~3 rnA

f-!

.000

2

Fig. 6. Switching Time vs.
Collector Current

CONSTANT
MOOULATI0:;TI,/-IF
47U
CURRENT
INPUT
INPUT

10
8

1410n1

COLLECTOR CURRENT Ie ImAI

Fig. 5. Output vs. Frequency

50
40
30

.I•••~n

1 1 II

.M

lOOK

FREQUENCY (Hz)

~ 20

"c
"'"
~

Rc

.........

\
'K

20
0
20
40 60 80
100
AMBIENT TEMPERATuRErq Ca33

I !

I'--..

\ 1\

.2
&0

Vr. 10 VOLTS

\

804
4

I I II

.

\"
~- 1\\
)~~
~\

'e

PULSE
INPUT

10,000

100,000

='-------.-- ~~;~~T

ClOG1

TIME·HOURS

Fig. 7. Lifetime vs. Forward Current

Vee'" 10 VOL T5

RL

Circuit Used to Obtain
Figure 6

=

loon

CB38

NOTES
1. Normalized CTR degradation

=

CT~?,.;~TR

2. The current transfer ratio (Ie/IF) is the ratio of the detector collector current to the LED input current with VeE at 10
volts.
3. The frequency at which iC is 3 dB down from the 1 kHz value.
4. Rise time (t,) is the time required for the collector current to increase from 10% of its final value to 90%.
Fall time (t,J is the time required for the collector current to decrease from 90% of its initial value to 10%.

190

,

~

,.

MID400
DESCRIPTION

PACKAGE DIMENSIONS

6.86 (.270)
6.35 (.250)

0.36 (.014)

L---"--.t---ll 0.20 (.008)

~ ~-l

7.62
(.300)
REF

1.78 (.070) REF

T

2.54 (.100) TYP --I 1.0.89 (.035) TYP
-I

I-

II
,

t

t

b-.==r'"""F=f-.=~1 3.94 (.155) 4.95 (.195)
:
:
i 3.68 (.145)1 I MiX

:J:U:

t 3.56 (.140)

~~

1

(1~~)

1

~3.05

(.120)

The MID400 is an optically isolated AC lineto-logic interface device. It is packaged in an
B-Iead plastic DIP. The AC line voltage is
monitored by two back-to-back GaAs LED
diodes in series with an external resistor. A
high gain detector circuit senses the LED
current and drives the output gate to a logic
low condition.
The MID400 has been designed solely for
use as an AC line monitor. It is
recommended for use in any AC-to-DC
control application where excellent optical
isolation, solid state reliability, TTL
compatibility, small size, low power, and low
frequency operation are required.

0.~1 (.020)

~0.89 (.035) TYP

MIN

0.56 (.022)
C2091
0.41 (.016) DIMENSIONS IN mm (INCHES)

FEATURES
•
•
•
•
•
•
•

Direct operation from any line voltage
with the use of an external resistor
Externally adjustable time delay
Externally adjustable AC voltage sensing
level
High voltage isolation between input and
output
Compact plastic DIP package
LogiC level compatibility
UL recognized (File #E50151)

APPLICATIONS
•
•

•

Monitoring of the AC/DC "line-down"
condition
"Closed-loop" interface between electromechanical elements such as solenoids,
relay contacts, small motors, and
microprocessors
Time delay isolation switch

Equivalent Circuit

ABSOLUTE MAXIMUM RATINGS
INPUT - LED CIRCUIT
RMS Current . . . . . . . . . . . . . . . . . . . . . . . 25 mA
DC Current . . . . . . . . . . . . . . . . . . . . . . . ±30 mA
Power Dissipation at 25°C Ambient. . . . . .. 45 mW
Derate Linearly from 70°C . . . . . . . . . . . 2.0 mW/oe
OUTPUT - DETECTOR CIRCUIT
Low Level Output Current (I OL ) . . • • . . . . . • 20 mA
High Level Output Voltage (VOH ) . • . • . • . .• 7.0 V
Supply Voltage (Vcc ) . . . . . . . . . . . . . . . . . 7.0 V
Power Dissipation at 25°e Ambient. . . . . .. 70 mW
Derate Linearly from 70 0 e . . . . . . . . . . . 2.0 mW/oe

TOTAL PACKAGE
Storage Temperature .......... -55°C to +125°C
Operating Temperature .. . . . . . .. -40°C to +85°C
Lead Soldering Temperature, 10 Sec . . . . . . . . 260°C
Power Dissipation at 25°C Ambient ....... 115 mW
Derate Linearly from 70°C . . . . . . . . . . . 4.0 mWI"C
Surge Isolation . . . . . . . . . . . . . . . . . . . 3550 VDe
2500 V RMS
Steady State Isolation . . . . . . . . . . . . . . 3200 VDC
2250 V RMS

191

MID400
ELECTRICAL CHARACTERISTICS
(0° C to 70° C Free Air Temperature Unless Otherwise Specified-All Typical Values Are At 25° C)

PARAMETER

SYMBOL

LED Forward Voltage

VF

On·state RMS I nput Voltage

V liON ) RMS

Off-state RMS Input Voltage

V IIOFF ) RMS

On-state RMS I nput Current

I liON) RMS

Off-state RMS Input Current

I HOFF) RMS

Logic Low Output Voltage

Val

Logic High Output Current

10H

Logic Low Output
Supply Current

Logic High Output
Supply Current

SWITCHING TlMf

(TA

MIN

TYP

MAX

UNITS

1.5

V

IF = ±30 mA DC

V

Va = 0.4 V, 10 = 16 mA
Vee = 4.5 V, RIN = 22 KS1

V

Vo=Vee=5.5V,
10 ::; 1001lA, RIN = 22 KS1

90

5.5

4.0

TEST CONDITIONS

mA

Vo = 0.4 V, 10 = 16 mA
Vee = 4.5 V
24 V::; VI(ONl RMS::; 240 V

.15

mA

Va = Vee = 5.5 V, 10 ::; 1001lA,
VIlOFFl RMS ~ 5.5 V

.18

0.40

V

.02

100

pA

liN = 0.15 mA RMS
Va = Vee = 5.5 V
VI(OFFl RMS ~ 5.5 V

lecl

3.0

mA

liN = 4.0 mA RMS
Vo = Open, Vcc = 5.5 V
24 V ~ VIION ) RMS::; 240 V

leeH

0.80

mA

liN = 0.15 mA RMS
Vec = 5.5 V
V HOFFl RMS ~ 5.5 V

liN = III0Nl RMS
10 = 16 mA. Vce = 4.5 V
24 V::; VI(ONl RMS::; 240 V

= +25°C)

Turn-On Time

tON

1.0

mS

liN = 4.0 mA RMS
10 = 16 mA, Vce = 4.5 V
R IN = 22 KS1 (See Test Circuit 2)

Turn-Off Time

tOFF

1.0

mS

liN 4.0 mA RMS
10 = 16 rnA, Vce = 4.5 V
RIN = 22 KS1 (See Test Circuit 2)

ISOLATION (TA

= +25°C)

Surge Isolation Voltage

Steady State Isolation Voltage

V ISO

VI so

Isolation Resistance

RISO

I solation Capacitance

C ISO

(RMS

192

=

True RMS Voltage at 60 Hz, THO:':';;;; 1%.)

Relative Humidity::; 50%,
11-0 ::; 10pA
1 Second, 60 Hz

3550

VDC

2500

VACRMS

3200

VDC

2250

VACRMS

10"

S1

V I _O = 500 VDC

pF

f = IMHZ

2

Relative. Humidity ~ 50%,
11_0 ::; 10pA
1 Minute, 60 Hz

MID400
DESCRIPTION/APPLICATIONS
The input of the MID400 consists of two back-to-back LED diodes which will accept and convert alternating
currents into light energy. An integrated photo diode-detector amplifier forms the output network. Optical
coupling between input and output provides 3550 V DC voltage isolation. A very high current transfer ratio,
(defined as the ratio of the DC output current and the DC input current) is achieved through the use of a high
gain amplifier. The detector amplifier circuitry operates from a 5 V DC supply ahd drives an open collector
transistor output. The switching times are intentionally designed to be slow in order to enable the MID400, when
used as an AC line monitor, to respond only to changes of input voltage exceeding many milliseconds. The short
period of time during zero-crossing which occurs once every half cycle of the power line is completely ignored.
To operate the MID400, always add a resistor, RIN, in series with the input (as shown in Fig. 1) to limit the current
to the required value. The value of the resistor can be determined by the following equation:

Where V IN (RMS) is the input voltage.
VF is the forward voltage drop across the LED.
liN (RMS) is the desired input current required to sustain a logic "0" on the output.

PIN DESCRIPTION
DESIGNATION
V IN1 , V 1N2

PIN

it

1,3

Vee
AUX.

8
7

Vo

6

GND

5

FUNCTION

SCHEMATIC DIAGRAM

Input terminals.
Supply voltage, output circuit.
Auxiliary terminal. Program·
mabie capacitor input to
adjust AC voltage sensing level
and time delay.
Output terminal; open
collector.
Circuit ground potential.

NOTE: 00 NOT CONNECT PIN 2 AND 4

193

MID400
GLOSSARY
VOLTAGES
VI(ON) RMS

On-state RMS input voltage
The RMS voltage at an input terminal for a sqecified input current with output conditions
applied that according to the product specification will cause the output switching element
to be sustained in the on-state within one full cycle.

VI(OFF) RMS

Off-state RMS input voltage
The RMS voltage at an input terminal for a specified input current with output conditions
applied that according to the product specification will cause the output switching element
to be sustained in the off-state within one fill cycle.

VOL

Low-level output voltage
The voltage at an output terminal for a specific output current IOL with input conditions
applied that according to the product specification will establish a low-level at the output.

VOH

High-level output voltage
The voltage at an output terminal for a specified output current IOH with input conditions
applied that according to the product specification will establish a high-level at the output.
LED forward voltage
The voltage developed across the LED when input current I F is applied to the anode of the
LED.

CURRENTS
I HON ) RMS

On-state RMS input current
The RMS current flowing into an input with output conditions applied that according to the
product specification will cause the output switching element to be sustained in the on-state
within one full cycle.

I HOFF ) RMS

Off-state RMS input current
The RMS current flowing into an input with output conditions applied that according to the
product specification will cause the output switching element to be sustained in the off-state
within one full cycle.
High-level output current
The current flowing into' an output with input conditions applied that according to the
product specification will establish a high-level at the output.
Low-level output current
The current flowing into' an output with input conditions applied that according to the
product specification will establish a low-level at the output.

ICCL

Supply cu rrent, output low
The current flowing into * the Vee supply terminal of a circuit when the output is at a
low-level voltage.

ICCH

Supply current, output high
The current flowing into * the Vee supply terminal of a circuit when the output is at a
high-level voltage.

DYNAMIC CHARACTERISTICS
Turn-on time
The time between the specified reference points on the input and the output voltage waveforms with the output changing from the defined high-level to the defined low-level.
tOFF

Turn-off time
The time between the specified reference points on the input and output voltage waveforms
with the output changing from the defined low-level to the defined high-level.

·Current flowing out of a terminal is a negative value.

194

MID400
OPERATING SCHEMATICS
Vee

RL = 300!1

V'N
ACINPUT

INPUT CURRENT VS. CAPACITANCE, CAUX CIRCUIT
TEST CI RCUIT 1

C1478A

*A-C
INPUT

OV-------,,

~,---------

,,
,,,

,,
,
,

___.: toft :~

---...:tOnl4-

:::_O_~~:~T_: __~~5_0_%_________________________:~}1r5-0-%-O-----'INPUT TURNS ON AND OFF AT ZERO CROSSING.

+4,5 V
Vee
MID 400

1 INPUT

AUX,

N/C
2 INPUT
N/C

Vee

VOUT

GND

8
7

RL

6

~

5

OUTPUT

TEST CIRCUIT
TEST CIRCUIT 2

C1479 B

MID400 Switching Time

195

MID400
TYPICAL CURVES
250

30

=125°c
Vee =5.0 V
tA

Cii 200
::;;

~

a:

~
w 20

~ 150

t!l

~ 100

0..

:7~

«
I-

V

~

o
>

V

..J

U

50

a

V
a

/

15

0

>

:>
0..

10

~

.(
10L

20

V

=;S rnA

R'N (Kfli
10

a

30

/

(.)

40

50

10H"; 1100ilA

R'N (Kfli

a

60
C1474

lr

/

~
-\..::i

I-

\:J~~

Z

.(

/

25

Cii

10

20

30

40

50

60
C1474

Fig. 2. Input Voltage vs. Input Resistance
120

_110

~

,

l.;' ~

II

o

w

!::! 100
..J

«

::;;

a:

o
z

90

..
V
"

V

V
""

60
4.5

""

r.:t

~

""
JI'

~

"
~&+-

4.6 4.7 4.8 4.9 5.0 5.1 5.2 5.3 5.4 5.5
C1475
Vee (V)

Fig. 3. SupplV Current vs. SupplV Voltage
.25

2.B

::;;

a: 2.0

.g
I-

zw

10L
16 rnA
10H ,,; 100liA

~
~

;;(

4.5V
5.0V

=
R'N =22 KIl
TA =25°C

2.4
VI

r-----.---,----,----,-----.,

vel=Ut l

-:.
w

a:
a: 1.2
u
:> O.B
0..
~

.15 I---I---+--.H.I!<---.j-----l

~

.10

I---I---:~'f---.j---.j-----l

.05

I------:M--+---j--+--

>

~~

I-

IliON' = 4.0 rnA, RMS)

;o

t!l

1.6

:>

.20 f-----1f-----j---+--,-/--.~5.5 V

2

0..

I-

:>

o

IHOFF)

0.4
.01OL-__- L____L -__- L____L -__
10

20

50

100

200

500

CAPACITANCE (pF) (AUX. TO GNDI

Fig. 4. Input Current vs. Capacitance
ISee test circuit 1)

196

1000
C1476

01.0

5.0

10.0

15.0

20.0

OUTPUT CURRENT Oocl (mAl

~

25.0
C1477

Fig. 5. Output Voltage vs. Output Current

Displays

2

197

198

Displays
Alphanumeric Product Listing
Product
Page
241
MAN3920A
241
MAN3940A
MAN3980A 235/241
MAN4410A
245
245
MAN4440A

Product
MAN6740
MAN6750
MAN6760
MAN6780
MAN6910

Page
267
267
267
267
271

MAN4610A
MAN4630A
MAN4640A
MAN4705A
MAN4710A

245
245
245
245
245

MAN6930
MAN6940
MAN6950
MAN6960
MAN6980

271
271
271
271
271

213
213
213
217
217

MAN4740A
MAN4910A
MAN4940A
MAN6110
MAN6130

245
251
251
255
255

MAN71A
MAN72A
MAN73A
MAN74A
MAN78A

229
229
229
229
235

MAN2A
MAN24
MAN27
MAN28
MAN29

219
221
221
221
221

MAN6140
MAN6150
MAN6160
MAN6175
MAN6180

255
255
255
255
255

MAN8410
MAN8440
MAN8610
MAN8640
MAN8910

275
275
279
279
283

MAN2815
MAN3410A
MAN3420A
MAN3440A
MAN3480A

225
229
229
229
235

MAN6195
MAN6410
MAN6440
MAN6460
MAN6480

255
259
259
259
259

MAN8940
MMA54420
MMA56420
MMA58420
MMA59420

283
287
287
287
287

MAN3610A
MAN3620A
MAN3630A
MAN3640A
MAN3680A

229
229
229
229
235

MAN6610
MAN6630
MAN6640
MAN6650
MAN6660

263
263
263
263
263

MAN3810A
MAN3820A
MAN3840A
MAN3880A
MAN3910A

229
229
229
235
241

MAN6675
MAN6680
MAN6695
MAN6710
MAN6730

263
263
263
267
267

Product
5082-7650
5082-7651
5082-7653
5082-7656
5082-7750

Page
205
205
205
205
205

5082-7751
5082-7756
5082-7760
FND317
FND350

205
205
205
209
213

FND357
FND360
FND367
MAN1A
MAN10A

199

DISPLAYS

PACKAGE

~
~

B
~

~
~

~
~=

;....... 

7o~

50
40
30
0

~1i~~

"

I'\.

I'\.

~~
jw

100

1oo~s

~!5

::>u

x'

I\.

~

1\
1 ms

10 ms

tp - PULSE DURATION - •
C2017

Fig. 1. Maximum Tolerable
Peak Current vs.
Pulse Duration

206

200

« a:

!ti

t.~

1\

0
10~s

300

~~

IL

SERIES

500
400

Q.

«I

1\

~~ 100

::j~
« a:
::>:J
~u

ili

200

«I

5082-7650
"

\"

~
J

\~~

70
50

;g

\

100",5

SER ES

:(; I\~

!I'\

1\

10
10",5

5082-nsh-

lL

~1b

N.IIII ,

20

5082-7650
SE~ESI -

~IIII

5

II~ 1\ 1I1lJJ
1 ms

1C ms

tp - PULSE DURATION - s
C2018

Fig. 2. Maximum Tolerable
Peak Current vs.
Pulse Duration

C2019

Fig. 3. Relative Efficiency
(Average Luminous
Intensity Per Unit
Current) vs. Peak
Current Per Segment

5082-7650 SERIES 5082-7700 SERIES
TYPICAL CURVES (Continued)
NORMALIZED TO IL
AT IF = 20 rnA AND TA = 25'C

~ 2.25

iii 2.00

~

1.75

UJ

1.50

~
::J

fi

~
..J

fil

-

5082-7750
f-SERIES

~

0.75

l-'i

~ 0.50

II:

lfi

0.25
0.00

»

~

VTA=50'

fi

~V

1.00

N

o
z

~ ~:~: f--

TA=25'

/.

1.25

~

~
..J
fil

TA = 70'

1/

~

;;!
~

,/

~

o

10

AT IF

~ 2.25

o

30

50

40

«

E
I

50~~-7650

IZ

TA=25'

_S RIES

w

II:
II:

V...TA=.50'

1/""A= 70'
/~

1.50
1.25

1/IA

1.00

::J

;;or

!/ ~

0.75

0

If - FORWARD CURRENT - rnA

II:

c

50
40

30

til'"

20

I

10

J

IJ,

PULSED
80 OPERATION
70

~
II:
Q.

~

DOTTED LINES , 5082-775X~V,
90 INDICATE

60

u.

/- ~

0.25

100

()

0

v: ~

0.50

z 0.00

20

NORMALIZED TO IL
=20 rnA AND TA =25'C

, ;-,
I
I ,,
I
, V

'5082-765X
S;BIES

/
J/

0

10
20
30
40
50
If - FORWARD CURRENT - rnA

C2020

TSER~S

2
3
VF - FORWARD VOLTAGE - V

C2022

C2021

Fig. 5. Normalized Luminous
Intensity vs. Forward
Current Over
Temperature

Fig. 4. Normalized Luminous
Intensity vs. Forward
Current Over
Temperature

4

Fig. 6. Peak Forward Current
vs. Forward Voltage

RECOMMENDED OPTICAL FILTER
5082-7650 Series

5082-7750 Series
Panelgraphic Red 60

Panelgraphic Scarlet 65
Homalite 100-1670
Panelgraphic Gray 10
Homalite 100-126

Homalite 100-1605

PACKAGE OUTLINE

l
r
T

19.05 ± .025
(.750 ± .010)

I

o
DP

:

10.92
(.430)

.l.

08. L
01
(.276)

Unused
Decimal
Position

T

j

I

PIN~

0.=V' - t

n=ti

10.92
(.430)

U,~U.J..

I

---J:::::: :' =r-'
La

08
·01
( 276)
•

5082-7650
5082-7750

~

MAX.

19.05 ± .025
(.750 ± .010)

0

lOA

COO
E B

=.;- __

I

PIN-!:2

=---t"
0.0.=0
V

..l...c :
I
1.57 DIA.
(.062)

1--(~~;~--1

12 70
(.500)
.
MAX.

PIN-!:2

PART NO. CODE:
5062-XXXX Part No.
YXX Date
Z Light IntenSity
Category

7~0.25 (.010)

(.300)

DIMENSIONS IN MILLIMETERS (INCHES).
TOLERANCES ± 0.25 (± 0.010) UNLESS
OTHERWISE INDICATED.

Co~e

I

L-'

.

0

MAX.

=a

19.05 ± .025
(750 + 010)

1.57 DIA.
(.062)

5082-7651/-7653
5082-77511-7760

1--(1~;~--l

I

a

I

O"'T

oi . . ~)

'7"'---!-!--'
Unused
Decimal
Position

zr±

10.36

1.57 DIA.
(.062)

5082-7656
5082-7756

6.35 (.250)

GI 5082-XXXX YXX

PIN#i.j

4.06 (.160)

L

-11-0.51 (.020)
2.54 (.100)

C2023

207

5082-7650 SERIES 5082-7700 SERIES
PIN CONNECTIONS
ELECTRICAL CONNECTIONS

PIN
NO.

1
2
3
4

A

B

C

D

5082-7650/-7750

5082-7651/-7751

5082-7653/-7760

5082-7656/-7756

Cathode A
Cathode F
Common Anode
No Pin
No Pin
Cathode D.P.
Cathode E
Cathode D
No Connection
Cathode C
Cathode G
No Pin
Cathode B
Common Anode

5

6
7
8
9

10
11
12
13
14

Cathode A
Cathode F
Common Anode
No Pin
No Pin
No Connection
Cathode E
Cathode D
Cathode D.P.
Cathode C
Cathode G
No Pin
Cathode B
Common Anode

Anode A
Anode F
Common Cathode
No Pin
No Pin
No Connection
Anode E
Anode D
Anode D.P.
Anode C
AriodeG
NoPin
Anode B
Common Cathode

Cathode D
Anode D
No Pin
Cathode C
Cathode E
Anode E
Anode C
Anode D.P.
Cathode D.P.
Cathode B
Cathode A
No Pin
Anode A
Anode B

ELECTRICAL SCHEMATIC

14

14

14

14

2

2

13

2

13

2

13

3

3

12

3

12

3

12

4

11

4

11

4

11

4

11

5

10

5

10

5

10

5

10

6

9

6

9

6

9

6

9

7

8

7

8

7

8

7

A

B

C

8
0
C2024

NOTES
The digit average Luminous Intensity is obtained by summing the Luminous Intensity of each segment and dividing by the total
number of segments excluding decimal points. Intensity will not vary more than ±33.S% between all segments within a digit.
2. All displays are categorized for Liminous Intensity. The Intensity category is marked on each part as a suffix letter to the part
number.
S. Intensity adjusted for smaller areas of the "+" and decimal points.
4. Leads immersed to 1/16 inch from the body of the device. Maximum unit surface temperature is 140°C.
5. For flux removal, use Freon TF, Freon TE, Isoproponal, or water up to their boiling points.
1.

208

HIGH EFFICIENCY RED

FND317

FEATURES
• Exactly pin and package compatible with
popular FND357 and FND367 Series displays
• Compact -10 digits in 3-inch panel width
• Right-hand decimal configuration
• Wide viewing angle
• Categorized for Luminous Intensity
• Contrast maximized by integral filter cap
• Rugged plastic construction
• Clear cover and Grey face for maximum
contrast in high light ambients
• Four times brighter than FND360 family

APPLICATIONS
•
•
•
•

DESCRIPTION

Digital readout displays
Instrumentation panels
Point of sales terminals
Business and office equipment

The FND317 is a High Efficiency Red GaP seven
segment LED display with nominal 0.362-inch
digit height. This display is suitable for
applications where the viewer is within fifteen
feet and in high ambient light environments.

MODEL NUMBER
PART NUMBER
FND317

COLOR
High Efficiency Red

DESCRIPTION
Common Cathode Seven Segment Display

ABSOLUTE MAXIMUM RATINGS
Power dissipation at 250 ambient .................•.........•..•...............................•..•. 500 mW
Derate linearly from 250 C ..................•..•.............•...•...............•.•............ -9.8 mWr C
Storage and operating temperature .....••.................•...•..........•.......•............ -250 to +850 C
Continuous forward current
Total •.....••........•...•........•.•....•..........•.••.••...........••..•..•......•......•..... 200 mA
Per segment or decimal point ............•.•.....•..............•.....•............................ 25 mA
Reverse voltage
Per segment or decimal point .....••.............•..•..•................•....•........•.•..•..•....... 6 V
Soldering time at 2600 C (See Note 1) ................................................................ 5.0 sec.

209

FND317
ELECTRO-OPTICAL CHARACTERISTICS
PARAMETER

(TA =

MIN.

TYP.

Iv

2800

4000

IIcd

IF=20 mA

±50
±25

%
%

IF=20mA
IF=20 mA

Luminous Intensity (digit average; per diode.
See Note 2) FND317
Luminous Intensity. matching (exclusive of d.p.)
Segment to segment
Within one light category

25° C Unless Otherwise Specified)

SYMBOL

MAX.

UNITS

TEST CONDITIONS

~lv/lv(AVG)

Viewing angle to half intensity

6'h

±27

deg

IF=20 mA

Peak wavelength

AP

630

nm

IF=20 mA

Forward voltage (per diode)

VF

V

IF=20 mA

Reverse breakdown voltage

VBR

V

IF= 1.0 mA

Dynamic resistance (per diode)

Rd

26

ohm

Capacitance (per diode)

C

35

pF

2.5

TYPICAL THERMAL CHARACTERISTICS

VF (Ih) = 1.67 V
IF(th)=5mA
V = 0, F= 1 MHz

SYMBOL

Thermal resistance junction to free air
Wavelength temperature coefficient (case temp)
Forward voltage temperatUl'tl.coefficient

3OO°C/W
0.1 nm/oC
-2.0 mV/oC

HJA
~AI~T
~VF/~T

TYPICAL CURVES
lOa

80

E

60

~ 100
w
~ 80

I

40

rJl

i5

z
:il

30
20

3
fil

I

10

1/
4

.

60

40

~

Fig. 1. Forward Current vs.
Forward Voltage

u;Z

60

::J

oZ
~

3
w

40

90

""

80
70

10

15

20

25

50
-50

30

-25

25

AMBIENT TEMPERATURE -

\

\

500

.1:100

"-

--

"~

F!.Qulv l2l.!.

:

20

10

90

,,- VIEWING ANGLE - DEGREES
C1733

Fig. 4. Angular Distribution of
Luminous Intensity

I

. . . 1'

"- ......

I- .....

60

70

C1244B

"

I

'\

.\

30

I'-..

",200
E

I\..

a:

I I

BOO

'\.

t--..

Qc

""

Fig. 3. Luminous Intensity vs.
Temperature

\.

~ 20

50

C1825

1000

-'
w

210

"- I'...

100

\.

«

51

/

IF-FORWARD CURRENT -rnA

z

I-

z

........

110

Fig. 2. Normalized Luminous Intensity vs.
Forward Current

I\.

W
I-

120

60

5

o

"-

130

/

0

,

140

V

20

:::;

B 1.2 1.6 2JJ 2.4 28 3.2 3.64.0
C10S0S

00 80

V

N

FORWARD VOLTAGE IVrl -- VOLTS

>

/

"-

150

/

~

I

50

-

"1 '20

I

70

'"

170
180

l'40

90

10

20

40

DC

DUTY CYCLE - %
IF PER SEG 10 rnA AVERAGE

1

2

3

5 8 10

20

DUTY CYCLE - %

30 50 80 100
C1221A

C1222A

Fig. 5. Relative Luminous Efficiency
(mcd per mAl vs. Peak Current
per Segment

Fig. 6. Maximum Average Current
Rating vs. Ambient Temperature

FND317
RECOMMENDED OPTICAL FILTER
For optimum ON and OFF contrast, one of the following filters or equivalents should be used over the display:
AMBIENT

OPTICAL FILTER

DIM
25 - 75 Ie

Long Pass 65% transmission 630 nm
SGL Homalite H100-1670 LR-72
Panelgraphies Scarlet Red #65
Chequers Engraving #110
3M Co. R6310

MODERATE
75 - 200 Ie

RED Long Pass, 40% transmission 630 nm
SGL Homalite H100-1670 LR-92
Chequers Engraving #112
Panelgraphies Scarlet Red #65
3M Co. R6310

BRIGHT
200 - 1000 Ie

Neutral Grey 18-23% transmission 630 nm
SGL Homalite H100-1266
Chequers Engraving #105
3M Co. ND0220
Panelgraphics Grey #10 T=23%
Grey #15 T=17%
Rohm & Haas 2074

PACKAGE OUTLINE

INTENSITY
CATEGORY
ORIENTATION
rTTTTMARKS

-I
(9.195)
TYP

TYP

- '!Joo
(.508)

I

l'

¥~)l
opO

(:iTO)

r:::::!

~:~727~ (1056~4) ~1--(-·~-~0-2)-_--'1

TYP
-310 (7 874)290 (7366)

I

r

.400
150 (10.160)

550

(13.970)

L

095
(2413)L

L

-Oc=::;Jo-r
Qc::JU
.560
(14.224)

362

020 (.508)
.016 (.406)

_.340 (8.636)
330 (8.382)

F

__I

L.D75 (1.905)

_ _ .170 (4.318)
.130 (3.302)
-SEATING PLANE

t

315
(8.001)
295
(7.493)

Lh-n---."r+I

I

-

_
1

-.200(5.080)

012 (.305)
.008 (.203)
C1736

ALL DIMENSIONS IN INCHES AND MILLIMETERS (PARENTHESES)
TOLERANCE UNLESS SPECIFIED ~ ±.015 (±.381)

211

FND317
PIN CONNECTIONS

':o~d'"
~oa8
E

C

0

D

5

0

ELECTRICAL SCHEMATIC

Pin FND317
1 Common Cathode
2 Segment F
3 Segment G
4 Segment E

5 Segment 0
6
7
8
9
to

Common Cathode
Decimal Point DP
Segment C
Segment B
Segment A

r==J
DPQ

FND317

6
C1738

NOTES

1. Leads of the device immersed to 1/16 inch from the body. Maximum device surface temperature 140·C.
2. Luminous Intensity measurements are made under pulsed drive conditions (5 ms), and calibrated to DC via Gamma Scientific
C-3 Spectral Scanning System.

212

RED
HIGH BRIGHT RED

FND35D FND357
FND360 FND367

FEATURES
• Exactly identical to displays with same part
number formerly manufactured by Fairchild
Optoelectronics Division.
• Compact -10 digits in 3-inch panel width
• Right-hand decimal configuration
• Wide viewing angle
• Categorized for Luminous Intensity
• Contrast maximized by integral filter cap
• Rugged plastic construction

APPLICATIONS
•
•
•
•

DESCRIPTION

Digital readout displays
Instrumentation panels
Point of sales terminals
Business and office equipment

The FND350, FND360, FND357 and FND367 are
Red GaAsP seven segment LED displays with a
0.362-inch digit height. These displays are for
applications where the viewer is within fifteen
feet of the panel.

MODEL NUMBER
PART NUMBER
FND350
FND357
FND360
FND367

COLOR
Red
Red
High Bright Red
High Bright Red

DESCRIPTION
Common
Common
Common
Common

Anode Seven Segment Display
Cathode Seven Segment Display
Anode Seven Segment Display
Cathode Seven Segment Display

ABSOLUTE MAXIMUM RATINGS
Power dissipation at 250 ambient •.....•.••.••.•........•.•.....•.••.••.••.••.••.•.•.•.•.....•....•. 400 mW
Derate linearly from 250 C ...••.•...••...........•.•.••.•..•..................................... -6.5 mWr C
Storage and operating temperature •••.•••.•..•..•.•••.•.........•.....•..•....•...•..•.••..•... -250 to +850 C
Continuous forward current
Total ..•.•....••.••.......•••....•••.•.......••••.•.........•.•.....•.•......•....••..••...•.•.•. 200 rnA
Per segment or decimal point .•.•••...••.••..........•.••.•...•..•.•...•.•..•..•.•..•.....•..•.•••.. 25 rnA
Reverse voltage
Per segment or decimal point ••..••.•.•...•....••••.•.........•••.•..••....•..••.•..•............•... 3.0 V
Soldering time at 2600 C (See Note 1) ••..••.••.......•...•.•.......•.•........•.....•.........•.•.•... 5.0 sec.

213

FND350 FND357 FND360 FND367
ELECTRO-OPTICAL CHARACTERISTICS (250 C Free Air Temperature Unless Otherwise Specified)
SYMBOL

PARAMETER
Luminous Intensity (digit average;
per diode, See Note 2)
FND350, 357, 358
FND360, 367, 368
Luminous Intensity
Matching
(exclusive of d.p.)
segment to segment
within one light category
Viewing angle to half
intenSity
Peak wavelength
Forward voltage (per diode)
Reverse breakdown voltage
Dynamic resistance (per diode)

TEST
CONDITION

MIN.

TYP.

240
590

450
900

!Lcd
!Lcd

IF = 20 mA
IF = 20 mA

±50
±25

%
%

IF =20 mA
IF = 20 mA

Rd

±27
665
1.7
12
1.7

deg
nm
V
V
ohm

C

23

MAX.

UNITS

IL

~ILlILAV

6y,

AP
VF

3.0

VBR

Capacitance (per diode)

2.0

IF = 20 mA
IF = 20 mA
IF = 20 mA
IF = 1.0 mA
VF (th) = 1.67V
'F (th) = 5 mA
V=O

pF

TYPICAL THERMAL CHARACTERISTICS
Thermal resistance junction to free air wavelength .•••....••.••••••••••••••••.••••••.
Wave length temperature coefficient (case temperature) ••••••••.•••••••••••••.•.••.•.
Forward voltage temperature coefficient ..•••••.•...•.••••••.•..•••.•••.•••••.•.•.

3000CIW

SYMBOL
0JA

0.3 nml"C
-1.6mVI"C

~VF/~T

~AI~T

TYPICAL CURVES
100

~

UJ

...

L

133

~

70

I

160

en
z

80

'E"

170

;§'.

I

90

~ 100

60

40

o
z
5E

30

UJ

50

:3
>

I

20

§

I

10

.5

1.0

66

33

a:

~
zUJ

(i)

80

...
~

60

::l

o
z
5E

40

:3

;§'.100

,..
z

UJ

U

;::: 90

~

15

20

25

/'

/
II

5E

r- "-

UJ

r-

214

I'\.
50

70

C1244

25

...z

UJ

'\

UJ

'\.

15

'\.

\;:

r"\.

~ 10

40

"

Fig. 3. - Luminous Intensity vs.
Temperature

ffi
0..

a:
u
~ 5.0

::l

~

UJ

a: 0
.9
0

fi:

50
100
150
200
250
IF - FORWARD CURRENT (PULSED) - mA
C1734

Fig. 4. - Angular Distribution of
Luminous Intensity

"-

AMBIENT TEMPERATURE - °C

'en"

::: 20

"

I'..

-25

::; 20

...J

30
60
90
0
0 - VIEWING ANGLE - DEGREES
C1733

50
-50

'E"

-..

::l

S

'"

70

C427

oz

1\

80

30

::l

UJ

0

W100

~ 60

\

> 20
UJ

80

u:
u.

~

a:
.9

Z

Fig. 2. - Luminous Intensity vs.
Forward Current

u

\

"-

~ 120
~ 110

IF (PER SEGMENT) - rnA

Fig. 1. - Forward Current VB.
Forward Voltage

'" "

~ 130

~

10

C426

l\.

I 140

60

2.0

V F - VOLTS

/

V

/

UJ

1.5

/

V

/

"-

150

"-

Fig. 5. - Relative Luminous Efficiency
(mcd per mA) vs. Peak Currflnt
per Segment

0

~

o

20

40

60

80

100

TA - AMBIENT TEMPERATURE

C1735

Fig. 6. - Maximum Average Current
Rating vs. Ambient
Temperature

FND350FND357FND360FND367
RECOMMENDED OPTICAL FILTER
For optimum ON and OFF contrast, one of the following filters or equivalents should be used over the display:
AMBIENT
OPTICAL FILTER
DIM
Long Pass 70% Transmission 655 nm
25 - 75 fc
SGL Homalite H100-1650 LR-72
Rohm & Haas 2423
Panelgraphics Ruby Red #60
Chequers Engraving #11 B
3M Co. R6510
RED Long Pass, 45% Transmission 655 nm
MODERATE
SGL Homalite H100-1650 LR-92
75 - 200 fc
Chequers Engraving #112
Panelgraphics Dark Red #63
3M Co. Purple P7710
BRIGHT
Neutral Grey 18 - 26% Transmission 655 nm
200 -1000 fc
SGL Homalite H100-1266
Chequers Engraving #105
3M Co. ND0220
Panelgraphic Grey #10 T=23%
Panelgraphic Grey #10 T=23%
Rohm & Haas 2074

PACKAGE OUTLINE

--,-!
OLa
I

I -O~O

.362

(9.195)

TVj P

.095 (2.413)

L

TYP

z:::::::::::iO
DP

l_5

I

0

(4~-ih-j

.560
(14.224)
550
(13.970)

.070
(2.73)

-fJoo
(.508)

i

I
II

I

.

(2.540)

I

I

I

L

TYP
-.310 (7.874
.290 (7.366)

I
.400

1liO (10.160)

I

ILI
(1°:~4)

.020 (.508)
.016 (.406)

j

REF

__ L075 (1.905)

1-

.030
(.762)_
.340 (8.636)
.330 (8.382)

.170 (4.318)
.130 (3.302)
~ SEATING PLANE

.3r:-

(8.001)
.295
(7.493)

FND350

LIm---..::nTi
-

_
1

I

-.200(5.080)

-

FND357
FND360
.012 (.305)
.008 (.203)

FND367
C1736

ALL OIMENSIONS IN INCHES AND MILLIMETERS (PARENTHESES)
TOLERANCE UNLESS SPECIFIED = ±.015 (±.381)

215

FND350 FND357 FND360 FND367
PIN CONNECTIONS

o

4

10

nO~O
D~Oo
E

C

0

o

5

0

r:===1

Pin

1
2
3
4
5
6
7
8
9
10

FND357/367
Common Cathode

FND350/360
Common Anode

Segment F
Segment G
Segment E
Segment 0
Common Cathode
Decimal Point DP
Segment C
Segment 8
Segment A

Segment F
Segment G
Segment E
Segment D

Common Anode
Decimal Point DP

Segment C
Segment B
Segment A

DPQ
C1738

ELECTRICAL SCHEMATIC

FND 357
FND 367

FND 350
FND 360

C1740

C1741

NOTES
1. Leads of the device immersed to 1116 in. from the body. Maximum device surface temperature
140"C.
2. Luminous Intensity measurements are made under pulsed drive conditions (5ms), and
calibrated to DC via Gamma Scientific C-3 Spectral Scanning System.

216

RED
RED
PACKAGE DIMENSIONS

DESCRIPTION

r--~--ORIENTATION

The MAN1A and MAN10A are seven segment
diffused planar GaAsP light emitting diode
arrays. They are mounted on a dual-in-line 14 pin
substrate and then encapsulated in Red epoxy
for protection. They are capable of displaying all
digits and nine distinct letters.

MARKS

1::
:::n
If, .Z,

FEATURES

12Jo.30

0.76

1.!Hl&IIII",

11

'1J!JDB1 ...

10

4

0.27

• High brightness
• Categorized for Luminous Intensity (See
Note 6)
• Single plane, wide angle viewing ... 1500
• Unobstructed emitting surface
• Standard 14 pin dual-in-line package
configuration
• Long operating life, solid state realibility
• Shock resistant
• Operates with IC voltage requirements
• Small size; offering unique styling advantages
• All numbers plus 9 distinct letters
• Usable for wide viewing angle requirements
• Usable in vibrating environment, impervious
to vibration
• Directly compatible with integrated circuits

0.60

1

g---L.

6 , r 0 . 1 7W W
..
100
0.10
7 ..
. . 8 (12 PLACES)

L~o:!~=:W

r~-do
T
~
~_

(MIN)

1--

I 0.02DIA. ___ 11
PIN 1

PIN 2
PIN J
PIN 4
PIN 5
PIN 6
PIN 7
PIN 8

CATHODE A
CATHODE F
ANODE COMMON

NO PIN
NOPIN
DECIMAL POINT CATHODE

CATHODE E
CATHODE 0

ALL DIMENSIONS NOMINAL IN

+

C736

APPLICATIONS

ANODE·CQMMON
PIN 9
PIN 10 CATHODE C
PIN1!
CATHODEG
PIN 12 NOPIN
PIN 13 CATHODE B
PIN 14 ANODE·COMMON
JUMP R PINS 3,9. AND 14

The MAN1A1MAN10A are for industrial and
military applications such as:
• Digital readout displays
• Cockpit readout displays

ON CIRCUIT BOARD
INCHE~

MAN1A
MAN10A

DUAL, IN LINE CONFIGURATION

ABSOLUTE MAXIMUM RATINGS
Power dissipation at 250 ambient ......•... 750 mW
Derate linearly from ......•..•..•....•.. 10 mW/o C
Storage and operating temperature ... -550 to 1000 C
Continuous forward current
Total ......•..•..••...•..•.......•..•.. 240 mA
Per segment ......•......•.........•...• 30 mA

Decimal point .......•..••....•.....•.•.• 30 mA
Reverse voltage
Per segment ............................ 10.0 V
Decimal point ..•..•..•..•...•.•.•.•.•.•.• 5.0 V
Soldering time at 2600 C (See Note 5) ..•..... 5 sec.

ELECTRO-OPTICAL CHARACTERISTICS (25 C Ambient Temperature Unless Otherwise Specified)
0

CHARACTERISTICS

MIN.

TYP.

Luminous Intensity (See Notes 1 and 6)
Segment
74
Decimal point
74
Peak emission wavelength
630
Spectral line half width

180
180

MAX.

700
20

UNITS

J,Lcd
J,Lcd
nm
nm

TEST CONDITIONS
MAN1A
MAN10A
IF = 20 mA, A = 660 nm
IF = 20 mA, A = 660 nm

IF = 10 mA, A 660 nm
IF = 10 mA, A 660 nm

217

MAN1A MAN10A
ELECTRO-OPTICAL CHARACTERISTICS (Cont'd) (250 C Ambient Temperature Unless Otherwise Specified)
CHARACTERISTICS

MIN.

Forward voltage
Segment
Decimal, point
Dynamic resistance
Segment
Decimal point
Capacitance
Segment
Decimal point
Reverse current
Segment
Decimal point

TYP.

MAX.

UNITS

3.4
1.6

4.0
2.0

V
V

IF=20 mA
IF=20 mA

IF=10 mA
IF=10 mA

11
5.5

n
n

IF=20mA
IF=20mA

IF=20mA
IF=20mA

80
135

pF
pF

V=O
V=O

V=O
V=O

IJ.A
IJ.A

VR=10.0 volts
VR= 5.0 volts

VR=10.0volts
VR= 5.0 volts

100
100

TEST CONDITIONS
MAN1A
MAN10A

DECODER/DRIVER FUNCTIONAL DIAGRAM

TYPICAL TRUTH TABLE

General I nstru ment MAN 1A/MAN 1OA

D

A'S'

C'
0'
E'
DfCODERlDRIVER

RBO---

j1

:E

::

400

200

•

I.

,.•
15 0

13 0

/

~

/

00

V

0

17 0

/

~

~

/

12

•

11 0

V

100

•

0
0

"

""
'\.
'\.

I\.
'\.

0

10

15

20

25

FORWARD CURRENT PEA SEGMENT (mA)

"-

•

30

50
·55
C1470

Figure 1 Luminous Intensity vs. Forward Current

·25
0
25
50
AMBIENT TEMPERATURE

Figure 2 Luminous Intensity

VI.

...........
75

rC)

100

C1145

Temperature

TYPICAL THERMAL CHARACTERISTICS
Thermal resistance (See Note 4) junction to free air (-)JA •••••••••••••••••••••••••••••••••••••••••••••• 4400 C/W
Wavelength temperature coefficient (case temperature) •.••••.•.•.•.•.............•....•••••..•..•...• 3.0 Ar C
Forward voltage temperature coefficient ..•.••..••.••.........•••.•.•..•......•••.••••.•....•.•••. -3.0 mV/o C

NOTES
1. As measured with a Photo Research Corp. "SPECTRA" Microcandela Meter (Model /V-D). Intensity will not vary more than
±50% between all segments.
The curve in Figure 2 is normalized to the brightness at 25° C to indicate the relative efficiency over the operating temperature
range.
3. For contrast improvement Polaroid HRCP7 circular polarizer filter can be used. Non-glare circular polarizer filter will provide
further enhancement in display visibility.
4. Thermal resistance (junction to ambient) value of anyone segment with all segments in operation.
5. Leads of the device immersed to 1/16 inch from the body. Maximum device surface temperature is 1400 C.
6. All displays are categorized for Luminous Intensity. The Intensity category is macked on each part as a suffix letter to the part
number.
2.

218

RED
PACKAGE DIMENSIONS

DESCRIPTION
The MAN2A is a 35 diode diffused planar GaAsP
LED alphanumeric array with a decimal point. It
is mounted on a dual-in-line, 14-pin substrate
with a high contrast Red epoxy lens. It is capable
of displaying the full character ASCII code.

-=:....;::::::::;O"J"lbORIENTATION MARKS

•-$- 14TIj
13 0.30

121
~~~~~ : 11~~"r'
(7.62)

00000

3 ..

00000"
00000

FEATURES AND APPLICATIONS

0.60

• x-v matrix drive

00000

;t

..

9 0.10
-$-8(2.54)

6
7 ;.

PIN 1
PIN 2
PIN 3

(~·.~i~.
./
0.30
~(7.62)

.L~06~,o6)

0.12
(3.05)

T"I [)

(]

0.02 (dia)
(0.51)

MAN2A

PIN4

OIMENSIONS
IN INCHES

8
9
10
11

PIN 12

020 (min)
(5.08)

-:-T
I

PIN 7
PIN
PIN
PIN
PIN

I
-.i..

--II--

PIN 5
PIN 6

PIN 13
PIN 14

COLUMN 2,
ROW 1,
ROW 3,
AOW4,
COLUMN '.

N.C.

D,P.
COLUMN 3,
RQW7.
ROW 6,
ROWS,
ROW 2,
COLUMN 5,
COLUMN 4.

·
-

··
··
-

TOLERANCE ±.015" (0.381)

C416

• Visible, bright Red, high contrast display
• Categorized for Luminous Intensity
(See Note 5)
• 35 light emitting diodes including decimal
point
• Capable of displaying full ASCII characters
• Single plane, wide angle viewing
• Long life, shock resistant, small size
It is ideal for industrial and military applications
such as:
• Keyboard verifiers
• Film annotation-236 bits available
• Avionics displays
• Computer peripheral displays

ABSOLUTE MAXIMUM RATINGS
Single Diode
DC forward current •....•.•..•...........•.......•.....• 20 mA
Pulsed forward current peak (50 ",s, 20% duty cycle) ...... 100 mA
Reverse voltage ...................••.......••....•••...... 5 V
Storage temperature .......................•.... -400 C to 85° C
Operating temperature .......................... -400 C to 85° C
Diode Array
Average power dissipation at 25° C ambient ............. 750 mW
Derate linearly from 25° C ..................••..... 12.5 mWI" C
DC current per diode for worst case AlN •..•.............. 20 mA
DC current per diode for all 35 diodes plus DP ............. 11 mA
Soldering time at 260° C (See Notes 3 and 4) ................ 5 sec.

row" pin"

(,7'
SCHEMATIC

coJ.N

pin"

ffr'
D.P.

1
S

•
1

8

14

S
13

2
12
3
4

11

,

10

C417

RECOMMENDED FILTERS
For optimum ON and OFF contrast, one of the following filters or equivalents should be used over the dis~lay:
Panelgraphic Red 60
Homalite 100-1670

219

MAN2A
TYPICAL CURVES
100

1000

75

~ 750

/

I

·i

'7" 50

/

~500

/

V

g
'E
25

j

I

/

1.5
VF - Volts

250

/

2.0

10

20
IF-rnA

C1235

Fig. 1. Forward Current vs.
Forward Voltage Each LED

30

40
C1236

Fig. 2. Light Intensity vs.
Forward Current Each LED

150
140

*' 130
I

r::
~

........
............

100

1

...........

00

.~

80

~

70

............

60
50
-50

-25

25

50

AmblentTemperature-OC

70
el237

Fig. 3. Relative Luminous Intensity
vs. Ambient Temperature

ELECTRO-OPTICAL CHARACTERISTICS (PER DIODE)
(250 C Ambient Temperature Unless Otherwise Specified)
CHARACTERISTICS
Average Luminous Intensity per character
(See Notes 1 and 5)
Peak emission wavelength
Spectral line half width
Forward voltage
Capacitance
Reverse current

MIN.

TYP.

125

300
660

MAX.

20
2.0
200
100

UNITS
/Lcd
nm
nm
V
pF
/LA

TEST CONDITIONS
IF=10mA

IF=20mA
V=O
VR=5V

NOTES
1.

2.
3.
4.
5.

220

The characteristic average Luminous Intensity is obtained by summing the Luminous Intensity of each diode and dividing by 35.
As measured with a Photo Research Corp. "SPECTRA" Microcandela Meter (Model IV-D). Intensity will not vary more than
±33.3% between all diodes in a character.
The curve in Figure 3 is normalized to the brightness of 25° C to indicate the relative Luminous Intensity over the operating
temperature range.
Leads of the device immersed to 1/16 inch from the body. Maximum device surface temperature is 140" C.
For flux removal, Freon TF, Freon TE. Isoproponal or water may be used up to their boiling points.
All displays are categorized for Luminous Intensity. The Luminous Intensity category is marked on each part as a suffix letter to
the part number.

PRELIMINARY DATA SHEET

MAN24
MAN27

HIGH EFFICIENCY GREEN
RED

YELLOW
HIGH EFFICIENCY RED

MAN21
MAN29

FEATURES
•
•
•
•
•
•

Bright, O.32-inch character
5 x 7 dot matrix format with left decimal
Available in four crisp colors
Categorized for Luminous Intensity
Rugged, reliable air-gap construction
Tinted wrap-around plastic cover for enhanced
contrast
• Standard 14-pin DIP configuration
• Column common anode X-V matrix drive
• Capable of displaying full ASCII characters

DESCRIPTION
The MAN20A Series is a family of 5 x 7 LED dot
matrix displays with nominal O.32-inch character
height. A wrap-around plastic cover provides an
integral filter for direct viewing. Each unit is
sealed by epoxy backfill.

APPLICATIONS
•
•
•
•

Computer peripherals
Instrumentation
Test and measurement equipment
Industrial control equipment

MODEL NUMBERS
PARTNUMBER
MAN24
MAN27
MAN28
MAN29

LED COLOR
High Efficiency Green
Red
Yellow
High Efficiency Red

PACKAGE
DIMENSIONS

LENS COLOR
Green
Red
Yellow
Red

ELECTRICAL
CONNECTION

14~
13 0.30
12 (7.S2)

11~
10~

9
8

010
(254\

O.SO
(15.24)

DIMENSIONS ARE IN INCHES (mm)
TOLERANCE ±.015" (0.38)

COLUMN 2
ANODE
ROW 1
CATHODE
ROW3
CATHODE
CATHODE
ROW 4
ANODE
COLUMN 1
NO CONNECTION
D.P.
ANODE
ANODE
COLUMN 3
ROW 7
CATHODE
ROW S
CATHODE
CATHODE
ROW 5
CATHODE
ROW 2
COLUMN 5
ANODE
ANODE
COLUMN 4

PIN 1
PIN 2
PIN3
PIN4
PIN5
PINS
PIN 7
PIN 8
PIN9
PIN 10
PIN 11
PIN 12
PIN 13
PIN 14

LUMINOUS
INTENSITY

DATE CODE

,------'r--...",...---, CATEGORY

r~R

0.20
1508\

{--

PIN# 1

2

3

4

5

I

0.20 (MIN )
(5 08)

I

I

L~
-

Cl778

11

020 DIA.
- - 1051\

col. # D.P.
pin# 7

•
1

•
8

•
5
14 13

C1779

221

MAN24 MAN27 MAN28 MAN29
ABSOLUTE MAXIMUM RATINGS

(TA = 25°C Unless Otherwise Specified)

Single DIode
D.C. forward current. ................................•...............................•.•.....•......•.••••..•.•.......20 mA
Pulsed forward current peak (See Figures 1 and 2)
MAN27 .•...•••......•..•.•.•.•.•...•.........•...............................•...•.•.........•..............•.•. 200 mA
MAN24, MAN28, MAN29 ................•.........................................•..•........................•..• 100 mA
Reverse voltage ..........•............•..•......•................................•....•.•.......•.................•....•5 V
Storage and operating tempereture ......................................•....................•.....•....•..... -40· C to 85· C
Junction temperature - pulsed operation .................•.......•...•...........•......................•..........•.•• 50· C
DIode Array: AssumIng 14 DIodes On
Average power dissipation at 25° C Ambient .....•...•......•............................•..•..••......•....••..•..•.. 750 mW
Derate linearly from 25° C ......•......••..•......•.....•..........................•..•.•.........•.•.•.•.....•. -12.5 mW/· C
Pulsed operation average current (See Figures 1 and 2) ...•..•..•.•.•...............•.....•.............................. 20 mA
Solder time at 260° (7 (See Notes 2 and 3) ..................................................................••........•..•... 5 sec

TYPICAL THERMAL CHARACTERISTICS
Thermal resistance (junction to free air) eJA ............................................••.........•....•...•.....•.. 400·C/W
Thermal resistance 325Hz, 1:7 duty factor ..........•...............................•...••..........•..•..•.........• 125·CIW

ELECTRICAL OPTICAL CHARACTERISTICS (TA = 25°C Unless Otherwise Specified)
(EACH DIODE)
TEST
CONDITIONS

SYMBOLS

MAN24

MAN27

MAN28

MAN29

UNITS

Minimum Luminous Intensity
Character average
(See Note 1)

Iv

510

125

510

320

pcd

IF= 10mA

Typical Luminous Intensity
Character average
(See Note 1)

Iv

750

250

600

500

pcd

IF = 10 mA

Ap
VF

565

660

585

635

nm

IF= 10mA

2.2

1.6

2.1

1.9

VFmax

3.0

1.8

2.6

2.6

V
V

iF= 20mA
IF = 20 mA

Peak emission wavelength
Typical forward voltage
Maximum forward voltage

IF = 20 mA

Dynamic resistance

RD

16

3

16

16

n

Threshold voltage

VTH

1.9

1.55

1.8

1.65

V

IFTH = 5 mA

Capacitance

C

35

35

35

35

pF

V= 0, f = 1 MHz

Maximum reverse current

IR

100

100

100

100

pA

VR = 5V

TYPICAL CURVES

(Unless Otherwise Noted)
~200r------r-----'--------,

MAN 24
MAN 28
MAN 29

,.

~1200

w-

...J"

«"'~
I- 100

a: Z

~~

I-~

80

60

:::!!o 40

Tj"IT

i

-"'

en

~
~

i'

"\.

::Jw

:::!!o

~150~----~-----1--------1
o
Z

....

~

I"\,

::J
...J
W

r\

xQ 20
10
10

>

;::

I

10~~~~~~~~~~UW

100

1000

10000

10

100

1000

10000

PULSE DURATION Po (ps)

PULSE DURATION Po (ps)
C1780

Fig. 1. Maximum Tolerable Peak
Diode Current vs.
Pulse Duration

222

Z

C

:s,,~~ ~r.~
~ 11-*,"1f,

~o

1=325Hz

~

C1781

Fig. 2. Maximum Tolerable Peak
Diode Current vs.
Pulse Duration

'S

ll! 1001"'"0------:2'="0------!:40::---=::--:~
DUTY CYCLE D.C. (%)
C1782

Fig. 3. Relative Luminous Intensity
vs. Duty Cycle

MAN24 MAN27 MAN28 MAN29
TYPICAL CURVES (Unless Otherwise Specified)

IA~g =1 20 ~A

750

a:
w_
;:;:
o
E
0.-

r'\

~ ~ 500

"'z
,,0

t-t-

0 0

160

~

150

DOTTED LINES'
INDICATE
MAN 27 i
PULSED --1---1-

-I-

~ " "m",,"

.

140
;::6
t-.

~::!J 130

~ 6 0 1 - - - - - - - - 1 - - - · ;t:MAN 24

\

~t=
o.~
;J, ~ 250

I=J

~

.!: 80

\.

Vl-

_100.---------r------.77-,
'"

§. 90

~

~ 40

\.

~b"T;'0:i5 DIODES

1\

AVERAGE 14ilOiESIONI
IAvg = 20 rnA

1--. M't.~~~8
i II. _ _ _--I
Ill!

50

~

30

o~

20

I··

'------1

~ 101-------+fhL--------~

1\

a.

10 20 30 40 50 60 70 80 90 100

3
FORWARD VOLTAGE VF (V)

AMBIENT TEMPERATURE TA (·C)

~~

120
110

is ~ 100
:;!;::;

::; a: 90
:::>0
~ ~ 80

>

70

~
a:

DUTY

~~,~+J9
I

MAN 28

MAN2~~AN27

~YCLE

Fig. 5. Peak Forward Voltage
vs. Peak Forward Current

1:7

·1-

--- -

i"

..

"

~~

~

60
-30 -20 -10 0 10 20 30 40 50 GO 70
AMBIENT TEMPERATURE TA ("C)

C1784

C1783

Fig. 4. Total Package Power
Dissipation vs. Ambient Temp.

~~

I =d25~Z

C17B5

Fig. 6. Relative Luminous Intensity
vs. Ambient Temperature

RECOMMENDED FILTERS FOR CONTRAST ENHANCEMENT
AMBIENT

COLOR

DIM
(Office)
25-75 FC

MODERATE
(Test Floor)
75-200 FC

BRIGHT
(Outdoors)
200-1000 FC

HIGH EFFICI~NCY RED
635nm
STANDARD RED
670nm

Red Long Pass 65%
H. H10Q-1650
C.11OO
3M. R6310
POL. HNCP37; HTCP

Red Long Pass 40%
H. F1oo-1650
C.112
POL. HACP; HRCP (HT)

Grey 18-23%
H. H10Q-1266
C.105
3M. ND0220
HNCP 10. 22

YELLOW
563nm

YellOW Band Pass 30%
H. H1OQ-1720
C.106
P. Yellow 27
POL. HNCP37

Amber Long Pass 40%
H. H10Q-1726
C.106
P. Amber 23
3M. A5910
POL. HACP

Grey 18-23%
H. H10Q-1266
C.105
P. Grey 10
RH.0538
POL. HACP

HIGH EFFICIENCY GREEN
569nm

Green Band Pass 30%
H. H1OQ-1440
C.107
P. Green 48
POL. HNCP37

Grey 20-25%
H. H100-1425
C.107
P, Green 48
POL. HGCP

Grey 18-23%
H. H1OQ-1266
C.105
p. Grey 10
POL. HGCP

LEGEND:

C. 106 - Chequers #106
RH - Rohm & Haas
3M - 3M Company
POL - Polaroid Corporation

H - SGL Homalite
C - Chequers Engraving
P - Panelgraphics

NOTES
1.
2.
3.
4.

The characteristic avera'le Luminous Intensity is obtained by summing the Luminous Intensity of each diode and dividing by 35.
Intensity will not vary m, re than ±33.3% between all diodes in a character.
Leads of the device immersed to 1/16 inch from the body. Maximum device surface temperature is 140·C.
For flux removal. Freon TF. Freon TE. Isoproponal or water may be used up to their boiling points.
All displays are categorized for Luminous Intensity. The Luminous Intensity category is marked on each part as a suffix letter to
the part number.

223

MAN24 MAN27 MAN28 MAN29
CHARACTER SET

C1786

TYPICAL DRIVE SCHEME

~~~~~~~~~~~~~~~~~~~~~JJIJJ,

6 LINE ASCII
ARRAY SELECT :
MASTER
CLOCK

1

----I

t::::j

2

t:::l

3

t:::l

4

I

(

TIMING
CIRCUITRY

L

6 BIT INPUT STORAGE BUFFERS I

READ ONLY

( B'II~UTPUTSTO,R:~~ BUFFERS,' II MEMORV
----l

1

COLUMN
DRIVERS
ROW

~
~~~~~~~~~~~I
LED

I--

2

3

2

3

LED

:::::

LED

...-'-....4.............,

J
====

4

LED

DISPLAY
f--- DISPLAY==
l~D:R~IV~E=R:S~J=======:tD=I:SP=L:A~YJi~ DISPLAY ;::::::=
~

f---

ROW SCANNING BLOCK DIAGRAM

224

r--'--_----'

C1787

RED

MAN2815

FEATURES
• Low power consumption (as low as 0.5 mA
average current or 1.0 mW per segment)
• Aesthetically designed characters
• Sculptured continuous segments
• Complete alphanumerics plus special
characters
• Voltage and current compatibility for
interfacing ease with microprocessors and
related circuitry
• 0.135-inch character height
• 0.175-inch character spacing allowing as much
as 32 characters in 5.6-inch linear panel space
• Common cathode
• Internally wired for multiplexing

DESCRIPTION

APPLICATIONS

The MAN2815 is an eight character alphanumeric
display which is end-stackable and capable of
displaying all alpha and numeric characters plus
symbols. Each character is constructed from a
monolithic, Red GaAsP chip formatted into a 14
segment font with a decimal point.

• Computer terminals - lightweight, mobile,
compact
• Test and measurement equipment
• Desk top calculators
• Communications - message centers
• Verification systems

ABSOLUTE MAXIMUM RATINGS
Average forward current per segment ................................................................. 10 mA
Peak forward current per segment (:5 200 its, :54% duty cycle) .......................................... 250 mA
Reverse voltage •.•..•..•.....................................•.•...........•......................... 5.0 V
Storage and operating temperature ............................................................. 0° C to 70° C
Soldering temperature (t:5 5 sec.) (See Notes 2 and 3) ..........•..............•...•..............•..... 255° C
Average power dissipation (total package) at TA = 50° C ............................................. 1200 mW
Deratelinearlyfrom50°C ..................................................................... -17.1 mW/oC

RECOMMENDED FILTERS
The following filters or equivalent are recommended to provide optimum ON and OFF contrast ratio:
Panelgraphic Red 60
Homalite 100-1605
Plexiglas 2423

225

MAN2815
PACKAGE DIMENSIONS

1.3.0MAX~
rH
--tI
IJ.--17) EO

I JE3 'L
"rvlH"'''L
,_:-'

,

PIN #1

SO

I

spes.

AT 0175 " 1 225

IAI CHARACTERS

0.075

~.'35·

m-r
007

oto f

-

-

---L 0.60

~

-I
I

r-- '375
131415161718192021222324

tOOOOOOOOOOO
NQPIN

0740

000000000000
12 1110 9 B 7 6 5 4 3

I

TnrlTI rnrlii:

l- ---- - -- - - - - - - -:tT

,

f

C~~:~~TEA '-./ 1--'

REFERENCE DESIGNATOR
PIN NO.
DESCRIPTION
CATHODE
K'
2
K2 CATHODE
3
K3
CATHODE
4
'D) ANODE
K4 CATHODE
5
6
K5 CATHODE
7
IJ)
ANODE
8
K6 CATHODE
lOP) ANODE
.7 CATHODE
'0
11
1M) ANODE
K8 CATHODE
'2
NOPIN
'3
IN) ANODE
'4
Ie) ANODE
'5
IE) ANODE
'6
17
fG2J ANODE
IG1) ANODE
'8
ANODE
20
ILl ANODE
IFI ANODE
2'
(K) ANODE
22
(HI ANODE
23
24
(AI ANODE

r-'OO

'.5··MAX

2 1

•

,.

,.,

TOLERANCES':!: .015

EF

Cl348

ELECTRICAL CONNECTIONS

r
I
I

L

~.~ ~

~-:-:~--~-:-:--:-:~--~-:-.-f 4: .-~ ~~; ~
~~j------------------------- -~ .f-~ -~J~

G'
F
A

G2

J
D
M

D.'
E
el3S1
K,

C1349

K,

K,

Fig. 8. 14 Segment Character Font

226

NOTE: Segments A & D appear as 2
segments each, but both halves are
driven together. (See wiring diagram.)

MAN2815
TYPICAL CURVES (Unless Otherwise Specified)
500

250

Ii

I-

~

200

\1 \} g
~i ~~ ,,."

'~"

~!

~_'OO

~!

80

a:: ~
":w

60

I

~~ 40
~

'"

::>
'"

x
:!

tJ

JiH

1

-

~

~::>

30
20

~

\

10

1

10

100

1000

0

JJ1~
r- ~

o

100 (DCI
10,000

PULSE DURATION (Jlsec)

I

J.m
U!i
100

10

1

DUTY CYCLE

C1341

0.5

Q

CI342

1.0

I

1.5

2.0

2.5

PEAKVOLTAGE-VF-(VOLTSJ C1343

Fig. 3. Peak Current
vso Peak Voltage

180

1300

170
160

_1200

•

"-

E 1toO

150

~1000

"-

~ 900

140
130

BOO

B 700

120

~ 600

11 0

~ 500
~ 400
~300

100

I'

90

80

"
~ ~:

70
60

o
o

10

~

~

~

~

00

70

AMBIENT TEMPERATURE (OCI

Fig. 4. Max. Tolerable
Power Dissipation

R'

(%)

)

o

Fig. 2. Average Luminous
IntensitvlSegment vs. Dutv Cvcle

Fig. 1. Maximum Tolerable Peak
Segment Current vs. Pulse Duration

3;

250

I ~ lol~ll

AVG~

00

00

CT344

50
-4030 20 10 0 10 2030 40 50 60 70 80 90
AMBIENT TEMPERATURE ~c

C1345

Fig. 5. Luminous Intensity
vs. Temperature

vcc -VF -v CES -VCEP
Ip

C,346

Fig. 6. Di.plav Drive Consideration

CI347

Fig. 7. MAN2815 in a Tvpical
Application

227

MAN2815
ELECTRICAL OPTICAL CHARACTERISTICS (TA = 25°C)

Average Luminous Intensity per segment
(See Note 1)

MIN.

TYP.

60

100

MAX.

UNITS
pcd

TEST CONDITIONS
lavg =2.5 mA
Ip k=20 mA
Duty cycle = 118

3.2:1

Luminous Intensity ratio
Segment-ta-segment within a character
Luminous Intensity ratio
Character-to-character within a display
Forward voltage
Reverse voltage
Peak emission wavelength

2.0:1
1.65

2.0

5.0
660

V
V
nm

IPk =20 mA
IR = 100 pAisegment

ELECTRICAL/OPTICAL CONSIDERATIONS
A. DETERMINATION OF MAXIMUM ALLOWABLE STROBING CONDITIONS:
1. From number of characters, determine duty cycle (DC).
Ex:

32 Characters
DC = 1(32 = 3.125%

2. Establish refresh frequency (f) and calculate pulse duration (PW).
Ex:

f = 500 HZ
PW = DC/f = .03125/500 HZ = 62.5!,s

3. The corresponding maximum peak current per segment from Fig. 1 is 250 mAo The intersection of 500 HZ and 62.5!'s pulse duration
lies in the <4% duty cycle condition. IAVG = 250 mA X .03125 = 7.8 mA which is the maximum average current for operation at
TA (ambient temperature) = 25°C.
4. If operating temperature is above 50°C, then power dissipation 

...;

.{

~

...
.s-

.{
~
.s-

...Z
e(

:E

e(
C>

...C'.{!
~
co

...

.{
~

...

co

.{
~

...coZ

e(

:E

e(

;:!:

......
.{
...
1....
Z
.{
N

e(

:E

~

....sCD

~

N

...co
.{

..
C>
CD

...
Z
e(

:E

MIN.

TYP.

Luminous Intensity, digit average
(See Notes 1 and 3)
Peak emission wavelength
Spectral line half width
Forward voltage
Segment
Decimal point
Dynamic resistance
Segment
Decimal point
Capacitance
Segment
Decimal point
Reverse current
Segment
Decimal point

510
710

2000
2700
562
30

MAX.

UNITS

Luminous Intensity, digit average
(See Note 1)
Decimal point (See Note 3)
Segment "C" or "0" of MAN3630A
Peak emission wavelength
Spectral line half width
Forward voltage
Segment
Decimal point
Dynamic resistance
Segment
Decimal point
Capacitance
Segment
Decimal paint
Reverse current
Segment
Decimal point

510
265
265

Luminous Intensity, digit average
(See Note 1)
Decimal point (See Note 3)
Segment "C" or "0" of MAN73A
Peak emission wavelength
Spectral line half width
Forward voltage
Segment
Decimal point
Dynamic resistance
Segment
Decimal point
Capacitance
Segment
Decimal point
Reverse current
Segment
Decimal point

125
60
60

Luminous Intensity, digit average
(See Note 1)
Decimal point (See Note 3)
Segment "C" or "0" of MAN73A
Peak emission wavelength
Spectral line half width
Forward voltage
Segment
Decimal point
Dynamic resistance
Segment
Decimal point
Capacitance
Segment
Decimal point
Reverse current
Segment
Decimal point

320

1200

I'cd

IF = 10mA

160
160

600
600
585
40

I'cd
I'cd
nm
nm

IF=10mA
IF=10mA

V
V

IF=20mA
IF =20 rnA

26
26

n
n

IF=20mA
IF =20mA

35
35

pF
pF

V=O
V=O

I'A
I'A

VR=5.0V
VR =5.0V

I'cd
I'cd
nm
nm

TEST CONDITIONS
IF = 10 mA
IF = 60 mA peak,
1:6DF

V
V

IF=20mA
IF=20mA

12
12

n
n

IF=20mA
IF=20mA

40
40

pF
pF

V=O
V=O

I'A
I'A

VR =5.0V
VR =5.0V

1400

I'cd

IF=10mA

700
700
630
40

I'cd
I'cd
nm
nm

IF = 10 mA
IF = 10 mA

V
V

IF=20mA
IF=20 mA

26
26

n
n

IF=20mA
IF=20mA

35
35

pF
pF

V=O
V=O

I'A
I'A

VR=5.0V
VR =5.0V

280

I'cd

IF=10mA

140
140
660
20

I'cd
I'cd
nm
nm

IF=10mA
IF=10mA

V
V

IF=20mA
IF=20mA

n
n

Ipk = 100 mA
Ipk = 100 mA

80
80

pF
pF

v=o
V=O

100
100

I'A
I'A

VR=5.0V
VR=5.0V

2.2
2.2

3.0
3.0

100
100

2.5
2.5

100
100

2.0
2.0
2
2
35

35

3.0
3.0

100
100

231

MAN3400A MAN3600A MAN70A MAN3800A SERIES
TYPICAL CURVES
'00
0-"
"E

I
0-

~

:>
OJ

o

a:

i!a:

0

J

-"

0

iii

ili0-

J

70"

J

;;

/

Ii' ,O~
o

w

>

I DOTTED

LINE
INDICATES

,0

V

V

is

15

20

~ 2400

V

C1OBO

120

20

25

30

FORWARD CURRENT (IFI- mA

60

10
10
VF - VOLTS

H'O

0

/

0
30

20

/

0
•0

20
VF - VOLTS

I

"-

60

so
10

15

20

25

IF (PER SEGMENT! - mA

30

~50

1200

900

600

300

40

30

<429

Fig. 10. Forward Current vs.
Forward Voltage

V

V

IF tPEA SEGMENTI

"

50

"

70

Ct244

Fig. 9. Luminous Intensity vs.

Temperature

1/
1/

1/

-25

AMBIENT TEMPERATURE -'C

C417

MANJ800A SERIES

I
I

~

70

60

0

"""-

90
80

~ 1500

II

0

"'

0
0

1800

I

MAN3800A SEAlES

C1244

MAN70A SERIES

110

Forward Current

I

90

10

C

Fig. 6. Luminous Intensity vs.
Temperature

0

Fig. 8. Luminous Intensity vs.

Fig. 7. Forward Current vs.
Forward Voltage

"'

so

25

150

V
20
C426

15

"-

AMBIENT TEMPERATURE

" "
"
"

/

/

0

/

r"..:

110

tAN701SER'Ek

"

""-

0
"50

C10BI

'000

I
I

"

0

15

/V

20

MAN3600A SERIES

0

0

232

IJ0

Fig. 5. Luminous Intensity vs.
Forward Current

,

100

,oc·

TA

0

10

MAN70A SERIES

30

"'-

75

Fig. 3. Relative Luminous Intensity
vs. Temperature

'00

8Q

I

50

0

600

Fig. 4. Forward Current vs.
Forward Voltage

1

25

1"'-

C1700

0

/

12 t 6 20 24 28 32 3640

'"

-25

TEMPERATURE -

"" "
."

,3~ / 1/

I

I

-55

0

~ 1200

VOLTS

80

IF ,mA,

/V

~

FORWARD VOLTAGE (Vfl

'"'"

0

9

30

~ 1800

0

100

25

}'

a:
~

I
II

8

11 0

!

M~N3600~ SERIE~

I

0

4

AT 2SoC
MAN3400A SERIES

70

~ 3600

0

NORMALIZED

iii

Fig. 2. Relative Luminous Intensity
vs. DC Forward Current

~ 2800

0

~
Cii

o~ ~

C1702

MANJ600A SERI[S

0

~ 12

~ 100

DC FORWARD CURRENT -

I

0

'30

a:

10

0

0

ml/

a:

Fig. 1. Forward Current
vs. Forward Voltage

0

V

~ V

PULSED OPERATIONsee FIGS 13,141

20
40
30
'"0
FORWARD VOLTAGE - VF ,VOLTS,
elS97

100

V

:3

J

0

0

z

40
30

MAN3400A SERIES

'":>o

J

0

0

;;

J

0

6

N+M+ED fT I, J10

~

MAN3400A SERIES I

9

'20

/

I

II

.00

I

MANJ800ASERIES

0 _____

r-- r--......

""'" I"-...

00

80

20
mA

70

25
Cl089

Fig. 11. Luminous Intensitv vs.
Forward Current

-so

-25

2S

AMBIENT TEMPERATURE

50

_·c

70
C"'31

Fig. 12. Luminous Intensitv vs.
Temperature

MAN3400A MAN3600A MAN70A MAN3800A SERIES
TYPICAL CURVES
MAN3400A SERIES

MAN3400A SERIES

1000

_ 800

~800

~

400

g;roo
::l
(J

~ ~;

'" 100 ~

~

:'OF

"
::l

40

"~

~10

,r",~

:Ii>

~-: ~

II
'F PER SEG lOrnA AVERAGE

DC
CI226

Fig. 20. Luminous Intensity vs.
Duty Cycle

233

MAN3400A MAN3600A MAN70A MAN3800A SERIES
ABSOLUTE MAXIMUM RATINGS

HIGH EFF. GREEN

Power dissipation at 250 C ambient •••••.•.••.•••••••••
Derate linearly from 500 C .••••.••.•••••.••••••••••.•
Storage and operating temperature ••••••••••••••.•••.
Continuous forward current
Total .••.••••••••.•...••••••.•••••••••••••.••.•
Per segment ••.••••..•.••••••••••••••.•.•••••••.
Decimal point ••.•••.....••••••••••.••.••••••.•••
Reverse voltage
Per segment ••.•.••.••.•••••••••••.••••.••••.••.
Decimal point •.••••••••••••.••...•••••••••••••••
Soldering time at 2600 C (See Notes 4 and 5) .•.•••.•..••

RED

MAN3410A
MAN3420A
MAN3440A

MAN71A
MAN72A
MAN74A

MAN73A

SOOmW
-12mWI"C
-400 C to +850 C

480mW
-S.9mWI"C
-400 C to +850 C

300mW
-4.29mWI"C
-400 C to +850 C

240 rnA
30mA
30 rnA

240 rnA
30 rnA
30 rnA

150 rnA
30mA
30mA

6.0V
6.0V
5 sec.

6.0 V
6.0V
5 sec.

S.OV
6.0V
5 sec.

YELLOW

Power dissipation at 250 C ambient ••••••.•.••.•.••••••
Derate linearly from 500 C ••.••.••.••••••••••••••••••
Storage and operating temperature •••••••.••••.•••••.
Continuous forward current
Total .••••.•..•.•••••.••••••••••..•.•.••.••.•••
Per segment ••.•.••••••••••.•.••••••.•••••••••••
Decimal point ••.••••••••••..••.•.•••••••••••••••
Reverse voltage
Per segment •••••.•.••.••.•.•..••.••••••••••••••
Decimal point •••••••.••.••••••••••••••••••••••••
Soldering time at 2600 C (See Notes 4 and 5) ..••.•....•.

ORANGE

MAN3810A
MAN3820A
MAN3840A

MAN3610A
MAN3620A
MAN364qA

MAN3630A

SOOmW
-10.3 mWrC
-400 C to +850 C

SOOmW
-8.SmWI"C
-400 C to +850 C

375mW
-5.36 mWrC
-400 C to +850 C

200 rnA
25 rnA
25 rnA

240 rnA
30 rnA
30 rnA

150 rnA
30 rnA
30 rnA

S.OV
S.OV
5 sec.

6.0V
6.0 V
5 sec.

6.0V
S.OV
5 sec.

RECOMMENDED FILTERS
For optimum ON and OFF contrast, one of the following filters or equivalents should be used over the display:
DEVICE TYPE

FILTER

DEVICE TYPE .

MAN3610A}
MAN3620A
MAN3630A
MAN3640A

Panelgraphic Scarlet 65
Homalite 100-1670

MAN71 A
MAN72A
MAN73A
MAN74A

MAN3410A}
MAN3420A

Panelgraphic Green 48
Homalite 100-1440 Green

MAN3810A}
MAN3820A
MAN3840A

MAN34~OA

}

FILTER

Panelgraphic Red 60
Homalite 100-1605
Panelgraphic Yellow 25 or Amber 23
Homalite 100-1720 or 100-1726
Panelgraphic Grey 10
Homalite 100-1266 Grey

TYPICAL THERMAL CHARACTERISTICS
GREENIYELLOW
Thermal resistance junction to free air 

"

"
II:

i!
II:

f2

0

0

I

0

I

t-----::;I

1.0

,DDTTED LINE
INDICATES
PULSED OPERATIONSEE FIGS. 13, 14'

2.0

V

40
VF ,VOLTS, C1697

o-

10

15

20

25

80

-55

30

0

~

!

'"

4

/

1200

a

I
V

10

/

~ 1800

3D

600

~

~

VOL T5

Fig. 4. Forward Current vs.
Forward Voltage

10

/'

0

20

25

0
0

#

30

,.

I

0
10

I

'0
Yf - VOLTS

100

IS

V

600

'0

e".

Fig. 10. Forward Current VI.
Forward Voltage

VI.

"'"' I"'

130
170

~

100

•

go

"'

0
8
10

so
10

20

25

30

V

V

10

-50

I'-

"'

-25

."

"'

so

AMBIENT TEMPERATURE _

COO7

".

/

"or100

10

'c

Fig. 9. Luminous Intensity
Temperature

CI244

VI.

~AN38801

'""'- r--.....

..........

10

,/

V
30

~
~

~

~ 15UO

I
J

C1244

MAN78A

'" "'

,,40

V

I, tPEA SEQMENTI - mA

"00

40

"'

SO

eo

60

50

170
100

~ 110

MAN3880A

I
II

MAN3880A

"

Fig. 6. Luminous Intensity
Temperature

./

1800

I

90

"

AMBIENT TEMPERATURE _ C

VI.

Fig. 8. Luminous Intensity vs.
Forward Current

V$.

"'"'I'..

-'"

SO

30

V

'0
c.,.

100

V

/

I

Fi9. 7. Forward Current
Forward Voltage

0

CHII'

LAN7s1

I
/

VOLTS

100

1000

50

10

11 0

SO

15

10

v, -

~
;

~ 80

/V

0

100

C1700

0

0

'"

"'

~1l 0
~ 110

~

MAN,I8OA

10

40

"-

75

=:~~=- -

"'

ISO

FORWAADCUARfNTIIFI- mA

MAN78A

30

50

Fig. 3. Relative Luminous
Intensity V$.
Temperature

./

Fig. 5. Luminous Intensity
Forward Current

,

100

25

0
10

CH180

./

~ /'

81716202428373640

FORWARD VOL rAGE IV, I

'"1"'- "-

TEMPERATURE - TA (oCI

/

MAN3680A /

:

II

40

AT 25°C

M~N34B~A

110
0

~

I

-25

IF rmA' C1702

2800

~~ 2400

0

238

a:

,

r ::~:::

!Z

0

1,

90

~w

~l61I1I

90

~

2:

"" '"

Fig. 2. Relative Luminous
Intensity vs. DC
Forward CUrrent

100

e

100

w

DC FORWARD CURRENT -

Fig. 1. Forward Current
vs. Forward Voltage

<

ill
~

NORMALIZED

70

5

30

FORWARD VOLTAGE -

V

120

Jo

...

/

/

I

130

>
iii 110

V

MAN3480A

I

0

o

N~RMA~zED1T'FJ'0ml~

I

40
30
10

4.0

I

MAN3480A

.........

00

IS

10

IF tPER SEGMENT! - mA

lS

30

CI089

Fig. t t. Luminous Intensity vs.
Forward Current

,.
AMI'ENT TEMfEI!:ATURE

'"

_·c

10

C411

Fig. t 2. Luminous Intensity vs.
Temperature

MAN348DA MAN368DA MAN78A MAN388DA MAN398DA
0

1000

_ BOO
~ 600
- 400

IF{AVG)

~11:200

a
~

1~~~ ~

2.SmA ' /

"-

: r-

~

0;

0

,y~'b"{.

7

":-s.

40

"~

-P

= 20 rnA

0-

100

~

MA,N3~8~A,.11 !I

MAN3480A

r-.

II

~t---.

0

f'.

0

2

0

I0
10

100

(~S)

Fig. 13. Maximum Peak
Current vs. Pulse
Duration
1000

BOO

t-

r--

50

10

20

50

% DUTY CYCLE

DC
e170l

Fig. 14. Relative Efficiency
vs. Duty Cycle

'~-

H-

MAN36BOA
MAN3980A

500

2.0

10,000
C1699

1000

PULSE DURATION

MAN3680A

MAN39BOA

~FREaUENCY '" 200 PPI

.'00
E
,

.

'\..

,

'-

~100
0
Ie 0

~

" '\.. I'.

"

0
10

1

2

3

S 8 10

20

30 50 80 100

DUTY CYCLE - "

e1221

Fig. 15. Max Peak Current vs.
Duty Cycle

1000
800

10

20

r"

e1222

Fig. 16. Luminous Intensity vs.
Duty Cycle

MAN18A

'00

DC

'0

DUTY CYCLE '\
'F PER SEG lOrnA AVERAGE

MAN78A

FREQUENCY = 200 pps

"

"

IS

r-.

...........

r-

0
0

1

2

3

10

JO 50 80100

OUT V CyCLE....

S 8 10

C1223

Fig. 17. Max Peak Current vs.
Duty Cycle

1000
800
SOD

10

.0

20

DC

DUTY CYCLE - ""
I"PERSEG10mAAVERAGE

C1224

Fig. 18. Luminous Intensity vs.
Duty Cycle

2

MAN3B8OA

MANJ8aOA

~REaUENCY '" 200pps

'\.

.200

,,~

E

~

,

100

~ 80

:e

50

"

0
10
2

3

S 8 10
DUTY CYCLE

20
'I>

30

so 8OHx)
C1225

"
I'-

I

10

20

DC

'0

DUTY CYCLE

'II.

'F PER SEG lOrnA AVERAGE

Fig.

'9.

MIIJ( Peak Current VI.
Duty Cycle

C1226

Fig. 20. Luminous Intensity voL
Duty Cycle

239

MAN3480A MAN3680A MAN78A MAN3880A MAN3980A
ABSOLUTE MAXIMUM RATINGS
RED

ORANGE
YELLOW
HIGH EFF. RED

MAN3480A

MAN78A

MAN3680A
MAN3680A
MAN3980A

600mW
-12 mW/oC
-40° C to +85° C

480mW
-6.9 mWf'C
-400 C to +85° C

600mW
-10.3 mWf'C
-40° C to +85° C

24DmA
30mA
30mA

240mA
30mA
30mA

200 mA
2SmA
25mA

6.0V
6.0V
5 sec.

6.0V
6.0V
5 sec.

6.0V
6.0V
5 sec.

HIGH EFF. GREEN

Power dissipation at 25° C ambient .•••.•••..••.••.••
Derate Ii nearly from 50° C ••.•..•..••.•.•••••.••••••
Slo'rage and operating temperature •.••••••••••••••••
Continuous forward current
Total ••••••••••••••••••••••••••.••.••.•••••••
Per segment .•••••••••.••••••••••.•••.•••••.••
Decimal point .••.••.•.••.••••.•••••••••.•••••.
Reverse voltage
Per segment •••••••••••••••••••.••.••••••••.••
Decimal point •••••••••.•••••.••••••••••••••.••
Soldering time at 260° C (See Notes 4 and 5) •...••.••••

TYPICAL THERMAL CHARACTERISTICS
GREEN/YELLOW
Thermal resistance junction to free air j8

II

DID"
---l1--025mm
762mm--i
+ 00r'
• DIS"
_ 000"

2~~~,-1 ~ ~I-o~~~~
+004"

- 000"

C133S

CIJ37

S
A,

E

0

C

o

OP

PIN CONNECTIONS
ELECTRICAL CONNECTIONS
PIN
NO.

1
2
3
4
5
6
7

a
9

10
11
12
13
14

242

A
MAN3910A

Cathode A
Cathode F
Common Anode
No Pin
No Pin
No Connection
Cathode E
Cathode D
Cathode D.P.
Cathode C
Cathode G
No Pin
Cathode B
Common Anode

B

C

MAN3920A

MAN3940A

Cathode A
Cathode F
Common Anode
No Pin
No Pin
Cathode D.P.
Cathode E
Cathode D
No Connection
Cathode C
Cathode G
No Pin
Cathode B
Common Anode

Anode F
Anode G
No Pin
Common Cathode
No Pin
Anode E
Anode D
Anode C
Anode D.P.
No Pin
No Pin
Common Cathode
Anode B
Anode A

0
MAN3980A

Common Cathode
Anode F
Anode G
Anode E
Anode D
Common Cathode
Anode D.P.
Anode C
Anode B
Anode A

C422A

D

MAN3900A SERIES
ELECTRO-OPTICAL CHARACTERISTICS (250 C Free Air Temperature Unless Otherwise Specified)
Luminous Intensity. digit average
(See Note 1)
Decimal pOint (See Note 3)
Segment "C" or "D" of MAN3630A
Peak emission wavelength
Spectral line half width
Forward voltage
Segment
Decimal point
Dynamic resistance
Segment
Decimal point
Capacitance
Segment
Decimal point
Reverse current
Segment
Decimal point

-C

co
co

..,'"

~

..,iI

ci
co

..,'"
N

ci
:;!

..,'"
Z
-C

:::E

100

I I I

90

750
750
635
40

MAX.

UNITS
!Lcd

IF=10mA
IF=10mA

V
V

IF =20 mA
IF =20mA

26
26

n
n

IF =20mA
IF =20mA

35
35

pF
pF

V=O
V=O

!LA
!LA

VR =5.0 V
VR =5.0V

100
100

170

3600

MA~3900A ~E RI ES

160

""'"

I

50

~

~

~

20

JA ......................................................... 1600 p/W
Wavelength temperature coefficient (case temperature) ............................................. 1.0 N° C
Forward voltage temperature coefficient ......................................................... -2.0 mV/0 C

NOTES
1. The digit average Luminous Intensity is obtained by summing the Luminous Intensity of each segment and dividing by the
total number of segments as measured with a Photo Research Corp. "SPECTRA" Microcandela Meter (Model IV-D). Intensity
will not vary more than ±33.3% between al/ segments within a digit.
2. The curve in Figure 3 is normalized to the brightness at 25 0 C to indicate the relative Luminous Intensity over the operating
temperature range.
3. The decimal point is designed to have the same surface brightness as the segments, therefore, the Luminous Intensity of the
decimal point is .3 times the Luminous IntenSity of the segments, since the area of the decimal point is .3 times the area of the
average segment.
4. Leads of the device immersed to 1/16 inch from the body. Maximum device surface temperature is 1400 C.
5. For flux removal, Freon TF, Freon TE, Isoproponal or water may be used up to their boiling points.
6. All displays are categorized for Luminous IntenSity. The Intensity category is marked on each part as a suffix letter to the part
number.

244

HIGH EFFJCIENCY GREEN
ORANGE
RED

MAN4400A SERIES
MAN4600A SERIES
MAN4700A SERIES

FEATURES
•
•
•
•
•
•
•
•
•
•

DESCRIPTION
The MAN4400, MAN4600, MAN4700 and
MAN4800 Series provides superior brightness in a
choice of color LED displays. Standard units are
available in Red, Green, and Orange. They can be
mounted in arrays with 0.400-inch (10.16 mm)
center-to-center spacing. The Green displays are
constructed with Grey face and neutral segment
color. Red displays have Black faces and Red
segment color. Others have face and segment
color corresponding to the emitted light.

Common anode or common cathode models
Red, Green and Orange
Fast switching - excellent for multiplexing
Low power consumption
Bold solid segments that are highly legible
Solid state reliability - long operation life
Impact resistant plastic construction
Directly compatible with integrated circuits
High brightness with high contrast
Categorized for Luminous Intensity (See
Note 6)
• Standard 14 pin dual-in-line package
configuration
• Wide angle viewing ... 150·
• Package size and lead configuration is the
same as MAN50Al3600Al70Al80A Series

APPLICATIONS
For industrial and consumer applications such as:
• Digital readout displays
• Instrument panels
• Point of sale equipment
• Calculators
• Digital clocks
• High ambient light conditions

MODEL NUMBERS
PART
NUMBER
MAN4410A
MAN4440A
MAN4610A
MAN4630A
MAN4640A
MAN4705A
MAN4710A
MAN4740A

COLOR
Green
Green
Orange
Orange
Orange
Red
Red
Red

PACKAGE
DESCRIPTION
DRAWING
Common Anode; Right Hand Decimal
A
A
Common Cathode; Right Hand Decimal
Common Anode; Right Hand Decimal
A
Common Anode; Overflow ±1; Right Hand Decimal
B
Common Cathode; Right Hand Decimal
A
B
Universal (CA or CC) Overflow ±1; Right Hand Decimal
Common Anode; Right Hand Decimal
A
Common Cathode; Right Hand Decimal
A

PIN OUT
SPECIFICATION
A

C
A
B

C
D
A

C

245

MAN4400A MAN4600A MAN4700A SERIES
PACKAGE DIMENSIONS

0010
=c
002 fl

A

B

UOOP .
.386"
PIN
=1

r

738'
IlS.75m ml
'.010

l

i--198mm11

I

'010"

~

D~

.386"

(0 25mml

.4 00"

H~ ."--

110. 16mm)

738 "

(1875m ml

• 010

_l

~11-8
54 mm)

n

+007"--

- 000"

r

-t

1--19.8mml-1

I

'OlD"

B

'[]

0-t

o

°alo, "-110

LEADS ARE TIN/LEAO
SOLDER DIPPED

4 00"
16mml

TOLERANCE

015" {381mml

_l

_J

055" OIA

(140mml
C1458

C1457

~5

010"

PIN

A

~

200"
(508mm)

• 010"
160"

---.

I

(406mm)

• 015"

050"

~1(127mmJ
{762mml
, 015"

-I

~ -1~
100"
020"

(254mml

• 010"

PART NO CODE

MANXXXX " PART NO
YXX" DATE CODE
Z" UGHT INTENSITY
CAT NO

(0 S1mm)
+ 004"

- 000"

PIN CONNECTIONS
ELECTRICAL CONNECTIONS
PIN
NO.

A
MAN4410/4610/4710

1
2
3
4

Cathode A
Cathode F
Common Anode
No Pin
No Pin
No Pin
Cathode E
Cathode 0
Cathode D.P.
Cathode C
Cathode G
No Pin
Cathode B
Common Anode

5
6
7
8
9
10
11
12
13
14

B
MAN4630

Anode C, 0
No Pin
Anode C, 0
No Pin
No Pin
No Connection
Cathode 0
Cathode C
Cathode D.P.
Cathode B
Cathode A
No Pin
No Pin
Anode A, B, & D.P.

C
MAN4440/4640/4740

Anode F
Anode G
No Pin
Common Cathode
No Pin
Anode E
Anode 0
Anode C
Anode D.P.
No Pin
No Connection
Common Cathode
Anode B
Anode A

ELECTRICAL SCHEMATIC

MAN4630

MAN4705

11

10

C1456

246

C1216

D
MAN4705

Anode 01
No Pin
Cathode 01
Cathode C
Cathode 02
Anode 02
Anode C
Anode D.P.
No Pin
Cathode D.P.
Cathode B
Cathode A
Anode A
Anode B

MAN4400A MAN4600A MAN4700A SERIES
ELECTRO-OPTICAL CHARACTERISTICS (25°C Free Air Temperature Unless Otherwise Specified)

~

110

~ ~~ -~ ./~~-I----1

§

:J
U

w

~

'

40

~

100

INDICATES

~

90

a:

B0

1~ --------:; PUl~~~ ~~ESR~il?4~10

20

30

FORWARD VOLTAGE -

5

40

10

15

20

25

DC FORWARD CURRENT -

VF VOLTS

Fig. 1. Forward Current vs.
Forward Voltage

JOOO

MAN4600A SERIES

1500

0
0

1000

/
"00

II

0

1000

0
0

I

0

4

8

I:?

16

500

,,0 14 28 J 2 36 40

FORWARD VOLTAGE IVFI - VOLTS

V

lL

V

I

0

10

v, -

15

VOLTS

25

30
Cl090

Fig. 7. Forward Current vs.
Forward Voltage

0

......

0

/

.........
~

........

50
-50

-25

50

AMBIENT TEMPERATURE -

C

70
C428

Fig. 6. Luminous Intensity vs.

Temperature

0
0

MAN4700A SERIES

0

ob

"

0

-"':

0

-=::::"

100

V

0

~
~

0

0

V
20

MAN4600A SERIES

0
0

V

100

100

Fig. 3. Luminous Intensity vs.
Temperature

0

400

'"

130

LAN4;OOA S~AIES

I

I

75

°c

0

0

0

TA

0

/V

JO

50

Cl70a

"

20
I, (PER SEGMENTI - mA

600

'"

.'"

0

0
60

25

TEMPERATURE -

0

800

BO

0

1"'-

0

V

10

1000

MAN4700A SERIE~

~

-25

0

Fig. 5. Luminous Intensity vs.
Forward Current

I

90

V

CIOBO

Fig. 4. Forward Current vs.
Forward Voltage
100

30

MA~4600.! SERIEk

90

0

~AN4400A Senes

C17Q2

Fig. 2. Luminous Intensity vs.
Forward Current

100

70
-55

IF mA

C1697

0

""

NORMALIZED
AT 2S"C

>

@ 30~---_1_7'~-_1_--_I
~ 20 f-----+I/ ,DOITED LINE

248

#

0
50

10

15

20

25

IF (PER SEGMENT! - rnA

Fig. 8. Luminous Intensity vs.

Forward Current

30

-50

-25

50

AMBIENT TEMPERATunE -

C

C428

Fig. 9. Luminous Intensity vs.
Temperature

MAN4400A MAN4600A MAN4700A SERIES
1000

4. 0

MAN4400 SERIES

800

~600

Ot-

iii

~200

G 100

~ :g
40

"
:J

"~

IMAN44°OSER~

.1
IF(AVG)

;:'400

~~T ~~
1~ ~~

25mA

"7-

&!~"{:

'tt~

==

~

0

r--...

~

20

.1 0
100

10

10,000

1000

f"-

o. 0
2.0

PULSE DURATION I/olSI

5.0

10

20

50

% DUTV CYCLE

DC
C1701

C1699

Fig. 10. Max Peak Current vs.
Duty Cycle

1000
800
so 0

Fig. 11. Luminous Intensity vs.
Duty Cycle

MAN4600SERIES

lJJ.,l,,!.

t'0

'1\
\

"'"

,

['..

MAN4600SERIES

'\

20
0

,

,
3

S 8 10

,

20

DUTY CYCLE

20

MAN4700SERIES

l'

<[

E

200

FREQUENCY

MAN4700SERIES

200pps

"

::-100

"

SO

r--

............

20
10

,

J

,

OC
C1222

r--

~ 80
~

,

Fig. 13. Luminous Intensity vs.
Duty Cycle

800

SOO

'0

DUTY CYCLE
'F PER SEG 10 mA AVERAGE

CI22!

Fig. 12. Max Peak Current vs.
Duty Cycle

1000

10

30 50 80 100

I,

"

1'-

,
8 '0

DUTY C"elE

:/0 JO

50 80100

"

C'223

10

I"'20

40

Fig. 14. Max Peak Current vs.
Duty Cycle

DC

DUTY CYCLE - '"
IF PER SEG 10 rnA AVERAGE

CI224

Fig. 15. Luminous Intensity vs.
Duty Cycle

249

MAN4400A MAN4600A MAN4700A SERIES
ABSOLUTE MAXIMUM RATINGS

Power dissipation at 25°C ambient ••••••••••••••..••
Derate linearly from 50° C .••••.•••••.••••..••••..••
Storage and operating temperature •...••..••.•..••..
Continuous forward current
Total ..••.•.•••••..•••••.•••••.•••••••••...•.
Per segment .••••...•••••.•••••••••••.••••..•.
Decimal point •..•.••..••••••..•••...••.•.•••..
Reverse voltage
Per segment •.••••..•••••••••••••••••.•••••..•
Decimal point •.•.•••.••••••..•••...••••••••..•
Soldering time at 260°C (See Notes 4 and 5) •••••.•••••

MAN4410A
MAN4440A

MAN4705A

MAN4710A
MAN4740A

600mW
-12 mW/oC
-40° C to +85° C

360mW
-5.2 mW/oC
-40° C to +85° C

480mW
-6.9 mW/oC
-40° C to +85° C

240 rnA
30 rnA
30 rnA

180 rnA
30 rnA
30 rnA

240 rnA
30 rnA
30 rnA

6.0 V
6.0 V
5 sec.

6.0 V
6.0V
5 sec.

6.0V
6.0V
5 sec.

MAN4630A

MAN4610A
MAN4640A

450mW
-6.4 mW/oC
-40° C to +85° C

600mW
-8.6 mW/oC
-40°C to +85°C

180 rnA
30mA
30 rnA

240 rnA
30 rnA
30 rnA

6.0 V
6.0 V
5 sec.

6.0 V
6.0V
5 sec.

Power dissipation at 25° C ambient •..••...••....•••.•.•....•.•....••.•..
Derate linearly from 50° C ...••...•••.•••••...•••.•••••.....•...••••.•.
Storage and operating temperature •••.•••••••••••••••••..••••..•••••.••
Continuous forward current
Total •..••••..••...••••.•••••••••••..••...•.•..•.•.•....•.••.....
Per segment ••••••..•••••.•••••.••••..•••.•.•••••••••••.••••••••••
Decimal pOint ••••••.•••••••••••••••••.•••••••••••••••••••.••••••••
Reverse voltage
Per segment .••.•..••...••••...••...••.•.•••..•.••.•.•.••.•••.••..
Decimal pOint ••••••.••••••..••••.•••••..••••••••••..••••.....••...
Soldering time at 260°C (See Notes 4 and 5) ••••••••••••••.•••••..•.•••..•

RECOMMENDED FILTERS
For optimum ON and OFF contrast, one of the following filters or equivalents should be used over the display:
~~~

A~

MAN4410A }
MAN4440A

Panelgraphic Green 48

MAN4610A }
MAN4630A
MAN4640A

Panelgraphic Scarlet 65
Homalite 100-1670

~~~

MAN4705A }
MAN4710A
MAN4740A

A~

Panelgraphic Red 60
Homalite 100-1605

NOTE: When using the Grey face MAN4480 or MAN4880 in situations of high ambient light, a neutral density filter can be used to
achieve a greater contrast. The following or equivalent can be used: Panelgraphic Grey 10.

TYPICAL THERMAL CHARACTERISTICS
GREENIYELLOW
Thermal resistance junction to free air 

a

~

30

L

w

~ 1500
Z 1000

:E

:>
..J

20

I

10

V
o

i/
.4

.8

./

500

1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0

FORWARD VOLTAGE (V,I - VOLTS

/

V'

10

20

15

25

I, (PER SEGMENTI- mA

C1OS0

Fig. 1. Forward Current vs.
Forward Voltage

30
C1D90

Fig. 2. Luminous Intensity vs.
Forward Current

170
160
150

*'I
'"'"w

...zr

'"a:


i=

«
..J

140
130
120

....

........ r....

110

.........

............

100

.............

90

............

80

W

a:

70
60
50
-50

-25

25

AMBIENT TEMPERATURE -

70

50

'c

C428

Fig. 3. Luminous Intensity vs.

Temperature

1000

I
I

800
500

I I I

1\

\

~REaUENCY' 200 pps

«

>
....

200

"

E
I

~'OO

~ 80
~

iii....
~

"

50

\

'\..

0;

1.5

r'\.

>

"-,-

~

'\..

I'"

w

a:

~

20
10
2

3

5 8 10

20

30 5080100

DUTY CYCLE - %

C1221

Fig. 4. Max Peak Current vs.
Duty Cycle

1
10

20

......

40

DUTY CYCLE - %
I, PER SEG 10 mA AVERAGE

DC
C1222

Fig. 5. Luminous Intensity vs.
Duty Cycle

253

MAN4900A SERIES
ABSOLUTE MAXIMUM RATINGS
Power dissipation at 25 0 C ambient .........•......................................................• 600 mW
Derate linearly from 500 C ..•.................................................................. -8.6 mW/o C
Storage and operating temperature ..............•..........................................• -400 C to +850 C
Continuous forward current
Total ....................•....•..............•...............•.................................• 240 mA
Per segment ..................•..............•.........................•.......................... 30 mA
Decimal point ............•....................................................................•.. 30 mA
Reverse voltage
Per segment ........•.................................•.........•............................•..... 6.0 V
Decimal pOint ........................................•............................................ 6.0 V
Soldering time at 2600 C (See Notes 4 and 5) .•....•........•................•....•.................... 5 sec.

TYPICAL THERMAL CHARACTERISTICS
Thermal resistance junction to free air 1
-t

A,

.750"
!19.05mml

G

E

.560"
(14.22mmj
i 010"

C

o

GoP

oeo" alA
LIGHT INTENSITY CAT

r--T--T--~

PART

IDENTIFICATION

~

z

(8~~ml

~"

PIN"
100"

i I

-1

(2.~4mm)

r-

-1t-.

•

•050"
(1.27mm)

.020 .. ·.006 ..

R
I

(o.Slmm)-,ODO"

_

C11860

.600"

"eo"

(406mm)

:.015"

__
I

--L2""
_11.25mml-DOO"

(IS.24mmJ
:..015"

C1asOA

PIN CONNECTIONS
PIN

F
MAN6180

MA~~I150

EAn. (1#1)
DAn. (1#1)
CAn. (111)

CAn. (1#1)
DAn. (1#1)
BAn. (111)

E Cath.
DCath.
Com. An.

EAn.
DAn.
Com. Cath.

DP Cath. (111)

DPAn.(1I1)

DPAn. (411)

CCath.

CAn.

E Cath. (112)
DCath. (112)

EAn. (112)
DAn. (/12)

EAn. (112)
DAn. (112)

OP Cath.
BCath.

OPAn.
BAn.

G Cath. (112)

G Cath. (/12)

GAn.(1I2)

G An. (/12)

A Cath.

A An.

CCath. (112)
OP Cath. (112)
B Cath. (/12)
A Cath. (/12)
F Cath. (112)
Digit 112 An.
Digit 111 An.
BCath (111)
ACath. (111)
G Cath. (111)
F Cath. (111)

CCath. (112)
DP Cath. (112)
B Cath. (112)
A Cath. (112)
F Cath. (112)
Digit/12 An.
Digit 111 An.
A Cath. (111)
N.C.
N.C.
N.C.

CAn. (/12)
OPAn. (/12)
BAn. (112)
AAn.(1I2)
FAn. (/12)
Digit 112 Cath.
Digit 111 Cath.
BAn. (111)
AAn. (111)
GAn.(1I1)
F.An. (111)

CAn. (112)
DP An. (/12)
BAn. (/12)
A An. (/12)
FAn. (/12)
Digit /12 Cath
Digit 411 Cath
AAn. (411)
N.C.
N.C.
N.C.

Com. An.
F Cath.
GCath.

Com. Cath.
FAn.
GAn.

EI
IIIlAN61ao

1
2
3

ECath. (1#1)
D Cath. (1#1)
C Cath. (1#1)

C Cath. (1#1)
D Cath (1#1)
BCath. (111)

4

DP Cath. (411)

5
6

E Cath. (112)
o Cath. (112)

7
6
10
11
12
13
14
15
16
17
16

C

MAN6140

MAN6110

9

256

ELECTRICAL CONNECTIONS
A

No.

MANt:6160

G,

MAN6175
Minus Cath.
Com. An. +/Seg. B. Cath.
Com. An.
A,B, DP
DPCath.
Seg. A Cath.
Com. An.
A,B,DP
Com. An. +/Plus Cath.
N.C.

H

MAN6195
Minus An.
Com. Cath. +/Sag. BAn.
Com. Calh.
A,B,DP
OPAn.
Sag.AAn.
Com. Cath.
A,B,DP
Com. Calh. +/Plus An.
N.C.

MAN61DO SERIES
INTERNAL CONNECTIONS

I,.
r~
E
1

r~

,.

I"

SECONOjOIGtT

FtRSTIOIG'T

,.~

.

D

C

B

A

G

2

3

lS

16 17 1B

F

~.

~

DP E

D

G

5

6

1

4

,.

r~
C
B

B
1D

A

F

DP

11

12

9

MAN6ll0

CAB
1
15 J

C

A

2

1

15

B
J

DP
4

E

D

5

6

G
1

C
8

B A
10 11

MAN6l30

F

D

12

9

"
E
1

.~
D

2

C
3

B

15

SECOND lOIGIT

"~

G F
16 17 18

A

.~

. ~~ .~~ ~ to ~A"
~

DP E

4

5

D

•

G
7

C
8

MAN6l40

C1196

8

A

10 11

F

12

DP
9

e1197

I"

"A ~ "A "A "A
2

D

,. ,.

~~

,~

I"

F'RSTI01C3LT

SECONOjOIGIT

1

D

~~

h

C1195

,.

t

t

~~,

[,.

II"

SECOND OIGIT

1

DP E
4
5

D

•

MAN6l50

G
7

~A
C
B

B
10

" ,A"
A
11

F

E
1

D

12 9

MAN6l60

C1198

()
'}

C

B

<1

(j

AFt.
9
10

I

MAN6l60

C1238

5

C1239

A B
9

1

6

3

5

MAN6195

MAN6175
C1828

C1829

257

MAN6100 SERIES
ABSOLUTE MAXIMUM RATINGS
MAN6110
MAN6140
Power dissipation at 2SO C ambient •••.•..
240mW
Storage and operating temperature •..... -40° C to +8So C
Continuous forward current
Total .............•..............•...
120mA
Per segment ....•.•.•............•..•
7.SmA
Decimal point ........•...............
7.S mA
Reverse voltage
Per segment ..............•..........
6.0 V
Decimal point •.•.....................
6.0V
Soldering time at 260°C
5 sec.
(See Notes 4 and S) ................. .

MAN6130
MAN6150
210mW
-40° C to +8So C

MAN6160
MAN61BO
120mW
-40° C to +8S o C

MAN6175
MAN6195
7SmW
-40 0 C to +8So C

10S mA
7.S mA
7.SmA

60mA
7.S mA
7.S mA

38 mA
7.S mA
7.SmA

6.0V
6.0 V

6.0V
6.0V

6.0V
6.0V

5 sec.

5 sec.

5 sec.

ELECTRO-OPTICAL CHARACTERISTICS (25° C Free Air Temperature Unless Otherwise Specified)
Luminous Intensity, digit average
Decimal point, "+" or "-"
Peak emission wavelength
Spectral line half width
Forward voltage
Segment
Decimal point
Dynamic resistance
Segment
Decimal point
Capacitance
Segment
Decimal point
Reverse current
Segment
Decimal point

MIN.

TYP.

200
100

370

MAX.

635
40
1.B
1.B

2.2
2.2

100
100

UNITS

TEST CONDITIONS

/Lcd
/Lcd
nm
nm

IF = 20 mA
IF =20 mA

V
V

IF= 20 mA
IF = 20 mA

n
n

IF = 20 mA
IF= 20 mA

pF
pF

V=O
v=o

/LA
/LA

VA =3.0V
VA = 3.0 V

TYPICAL THERMAL CHARACTERISTICS
Thermal resistance junction to free air  '"

PIN=IO
c

C

'"

r:l

NOTE: When placing double
digits and single digits together
on a board, allowance should
be made for .150" spacing
between the end leads of the
double digit and the end leads
of the single digit.

PIN =6

PIN CONNECTIONS
PIN
NO.

1
2
3
4
5

6
7
8
9
10
11
12
13
14
15

16
17

18
260

C1186C

ELECTRICAL CONNECTIONS
D

A
MAN6410

MAN6440

B

C
MAN6460

MAN6480

Cathode E 1
Cathode D 1
Cathode C 1
Cathode D.P. 1
Cathode E 2
Cathode D 2
Cathode G 2
Cathode C 2
Cathode D.P. 2
Cathode B 2
Cathode A 2
Cathode F 2
Anode Digit 2
Anode Digit 1
Cathode B 1
Cathode A 1
Cathode G 1
Cathode F 1

Anode E 1
Anode D 1
Anode C 1
Anode D.P. 1
Anode E 2
Anode D 2
Anode G 2
Anode C2
Anode D.P. 2
Anode B 2
Anode A 2
Anode F2
Cathode Digit 2
Cathode Digit 1
Anode B 1
Anode A 1
Anode G 1
Anode i= 1

Cathode E
Cathode D
Common Anode
Cathode C
Cathode D.P.
Cathode B
Cathode A
Common Anode
Cathode F
Cathode G

Anode E
Anode D
Common Cathode
Anode C
Anode D.P.
Anode B
Anode A
Common Cathode
Anode F
Anode G

MAN6400 SERIES
TYPICAL CURVES
100

Ǥ
-'"
I-

zw

II:
II:

::J

()

0

II:

~
II:

0

u.

>-

I-

w

I

50

'"0
~

10

o

::J

I

..J
W

1/'
./

1.0

>

,DOTTED LINE
INDICATES
PULSED OPERATIONSEE FIGS. 3, 5,

~

V

V

W

II:

1.0
2.0
3.0
4.0
FORWARD VOLTAGE - VF ,VOLTS,
C1697

~
>-

120

enz

110

I-

~

100

~..J

90

II:

80

I-

w
w
>

'" "'-

200

::J

()

"

100 ~1.

'"~

V

SO

50

"::;;
::J
::;;
X

=~"':'\i.

"

.=-='"
JA ••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 160°.c/W
Wavelength temperature coefficient (case temperature) ..................................•.......... 1.0 A/o C
Forward voltage temperature coefficient .....................•.••................................ -2.0 mV/oC

NOTES
1. The digit average Luminous Intensity is obtained by summing the Luminous Intensity of each segment and dividing by the
total number of segments as measured with a Photo Research Corp. "SPECTRA" Microcandela Meter (Model IV-D). Intensity
will not vary more than ±33.3% between all segments within a digit.
2. The curve in Figure 3 is normalized to the brightness at 25° C to indicate the relative efficiency over the operating temperature
range.
3. Leads of the device immersed to 1116 inch from the body. Maximum device surface temperature is 140°C.
4. For flux removal, Freon TF, Freon TE, Isoproponal or water may be used up to their boiling points.
5. Intensity adjusted for smaller areas of the "+" and decimal points.
6. All displays are categorized for Luminous Intensity. The Intensity category is marked on each part as a suffix letter to the part
number.

266

RED

MAN6700 SERIES

FEATURES
•
•
•
•
•
•
•
•
•
•
•
•

DESCRIPTION
The MAN6700 Series is a family of large digits
which includes double and single digits. The
series features the sculptured font which
minimizes "gappiness" at the segment
intersections. Available models include two-digit,
one and one-half digits with polarity sign, and
single digits. All models have right hand decimal
points and are available in common anode or
common cathode configuration. Units are
constructed with Black face and Red segment
color.

•
•
•
•

High performance GaAsP
Large, easy to read, digits
Common anode or common cathode models
Also available in Orange (MAN6600 Series)
Fast switching - excellent for multiplexing
Low power consumption
Bold solid segments that are highly legible
Solid state reliability - long operation life
Rugged plastic construction
Directly compatible with integrated circuits
High brightness with high contrast
Categorized for Luminous Intensity (See
Note 7)
Wide angle viewing ... 1500
Standard double-dip lead configuration
Low forward voltage
Two-digit package simplifies alignment and
assembly

APPLICATIONS
For industrial and consumer applications such as:
• Digital readout displays
• Instrument panels
• Point of sale equipment
• Digital clocks
• TV and radios

MODEL NUMBERS
PART
NUMBER
MAN6710
MAN6730
MAN6740
MAN6750
MAN6760
MAN6780

COLOR
Red
Red
Red
Red
Red
Red

PACKAGE
DESCRIPTION
DRAWING
2 Digit; Common Anode; Rt. Hand Decimal
A
1'h Digit; Common Anode; Overflow ±1.8; Rt. Hand Decimal
B
2 Digit; Common Cathode; Rt. Hand Decimal
A
1'h Digit; Common Cathode; Overflow ±1.8; Rt. Hand Decimal
B
Single Digit; Common Anode; Rt. Hand Decimal
C
Single Digit; Common Cathode; Rt. Hand Decimal
C

PINOUT
SPECIFICATION

A
B
C
D
E
F

RECOMMENDED FILTERS
For optimum ON and OFF contrast, one of the following filters or equivalents should be used over the display:
DEVICE TYPE
FILTER
Panelgraphic Red 60
MAN6700 Series
Homalite 100-1605
267

MAN6700 SERIES
PACKAGE DIMENSIONS

A

S"· S
A

•

,

G

,

,

C

D

o

0

'

0"

c

aop

a:·

001'

PIN 11
CNOTE SQUARE

BASE ON

LEADI

P'NO'O.
. P,N=,

PlN.'O
......· PlN=,

BOTTOM vIew

BOTTQMVIEW

1:1

..

..

..

..

..

..

..

a

PIN =10

CI

a

a

NOTE: When placing double
digits and single digits together
on a board, allowance should
be made for .150" spacing
between the end leads of the
double digit and the end leads
of the single digit.

PIN =6

B

D·

cg'lJI.

Uoop

,

a:,
c

o

OOP

C1186D

PIN CONNECTIONS
ELECTRICAL CONNECTIONS
PIN
NO.

1
2
3
4
5
6

7
8
9
10
11
12
13
14
15
16
17

18

268

A
MAN671D

Cathode E 1
Cathode 0 1
Cathode C 1
Cathode D.P. 1
Cathode E 2
Cathode 0 2
Cathode G 2
Cathode C 2
Cathode D.P. 2
Cathode B 2
Cathode A 2
Cathode F 2
Anode Digit 2
Anode Digit 1
Cathode B 1
Cathode A 1
Cathode G 1
Cathode F 1

B
MAN673n

C
MAN674D

Cathode C 1
Anode E 1
Cathode 0 1
Anode 0 1
Cathode B 1
Anode C 1
Cathode D.P. 1 Anode D.P. 1
Cathode E 2
Anode E2
Anode 0 2
Cathode 02
Cathode G 2
Anode G 2
Cathode C 2
Anode C 2
Cathode D.P. 2 Anode D.P. 2
Anode B 2
Cathode B 2
Cathode A 2
AnodeA2
Anode F 2
Cathode F 2
Anode Digit 2
Cathode Digit 2
Anode Digit 1
Cathode Digit 1
Cathode A 1
. Anode B 1
No Connection Anode A 1
No Connection Anode G 1
No Connection Anode F 1

D
MAN675D

E
MAN676D

MAN676D

Anode C 1
Anode 0 1
Anode B 1
Anode D.P. 1
Anode E 2
Anode 02
Anode G 2
Anode C2
Anode D.P. 2
Anode B 2
AnodeA2
Anode F 2
Cathode Digit 2
Cathode Digit 1
Anode A 1
No Connection
No Connection
No Connection

Cathode E
Cathode 0
Com. Anode
Cathode C
Cathode D.P.
Cathode B
Cathode A
Com. Anode
Cathode F
Cathode G

Anode E
Anode 0
Com. Cathode
Anode C
Anode D.P.
Anode B
Anode A
Com. Cathode
Anode F
Anode G

F

MAN&700 SERIES
TYPICAL CURVES
'00

I

""8.

I

600

170

500

.'" "

160

MAN6700 SE R I ES

7.
5.

/

400

60

'"

E
I

~

3D

,.•

I

20

••

/

••

C426

VF - VOLTS

~
;:

25

50

MAX PEAK CURRENT
vs DUTY CYCLE

~EQUENCY
200

80

10

7.

C

el244

MlN6;~ sJ.IE~

.......

~
3

"
50

I

20

2

25

200~llsJ

"-

50

"

Fig. 3. Luminous Intensity vs.
Temperature (See Note 2)

'\.

100

I"-

AMBIENT TEMPERATURE -

,
MAN 6700 SERIES -

500

25

C1284

Fig. 2. Luminous Intensity vs.
Forward Current

1000
800

80

50

'0

15

IF IPER SEGMENT) - rnA

Fig. 1. Forward Current vs.
Forward Voltage

"

100
90

g

'0
60

2.

15

"" :-..

120

~ 110

/

/

.00

J

••

~

/

300

40

140

~ 130

20

50

DUTY CYCLE""

.........

.

10

100

~~

-~

4.

20

DC

PERCENT DUTY CYCL.E

C1199A

01200

Fig. 5. Luminous Intensity vs.
Duty Cycle

Fig. 4. Max Peak Current vs.
Duty Cycle

INTERNAL CONNECTIONS

\14
I~

,~

, ,
0

1

h
0
3

14

\13

I

FIRST!OIGIT

SECOND DIGIT

h In In In

8
A G
1516 17

f

,

(lI'

I!I

E

0

5

6

,

8

C
B

10

A
11

f
DP
J2 9

14

D

.

.~

~

0

A

8

I

15

3

DP ,
4
5

. ~~
• ,
G

~~

0

A

1

15

8
3

DP E
4

5

D

•

MAN6750

G

0

7

8

"
8

10

r~ '~r
A
11

0

8

B

10

A
11

F

J2

D
9

C1198

~

, ,
D

1

DP
J2 •
f

, ,o
1

~

,.~ .~

0
3

13

18

I

I

~

,. ,. ,. ,.

0

8

4

6

,

A

MAN6760

..

G F
16 17 18

8
15

A

Cl,96

MAN6730

113

~ r ~~

.p

h'~

~

D

\13

FIRSTIOIGIT

SECOND DIGIT

SECONol DIGIT

1

,

D

C1195

MANfi710

t~

t,

~~,

h

~

G

\14

\13

I

I

SECONOJOIGIT

". ".
~.

DP ,
4
5

0
6

G
7

0
B

8

~~
A

10 11

F

12 9
C1197

MAN6740

~,

F

G

DP

EDCBAFGQ

9

ID

5

I

C1238

2

4

6

7

MAN6780

9

10

5

C1239

269

MAN6700 SERIES
ABSOLUTE MAXIMUM RATINGS
MAN6710
MAN6740
Power dissipation at 25° C ambient ...................... .
960mW
Derate linearly from 25° C ............................... . -13.7 mW/oC
Storage and operating temperature .....•......•.....•..•. -40°C to +85°C
Continuous forward current
Total ..........................•....•......•..••....••
480mA
Per segment ...........•.••••.••....•.....•.••......•.
30mA
Decimal point .........•.•......•.•...................
30mA
Reverse voltage
Per segment ...................•....•.........•.••..•.
6.0V
Decimal point .•....•......•..•...•...................
6.0V
Soldering time at 260°C
(See Notes 4 and 5) ......•..•.•...•...••.•............
5 sec.

MAN6730
MAN6750
840mW
-12.0 mW/oC
-40° C to +85° C

MAN6760
MAN6780
480mW
-6.9 mW/oC
-40°C to +85°C

420mA
30mA
30mA

240 mA
30mA
30mA

6.0 V
6.0 V

6.0 V
6.0 V

5 sec.

5 sec.

ELECTRO-OPTICAL CHARACTERISTICS
(Per Diode at 25° C Free Air Temperature Unless Otherwise Specified)

Luminous Intensity, digit average
(See Note 1)
Decimal point, "+" or "-" (See Note 5)
Peak emission wavelength
Spectral line half width
Forward voltage
Segment
Decimal point
Dynamic resistance
Segment
Decimal point
Capacitance
Segment
Decimal point
Reverse current
Segment
Decimal point
Segment C or D of "+" (6730/6750)

MIN.

TYP.

125
55

MAX.

UNITS

TEST CONDITIONS

350

!Lcd

IF=10mA

150
650
20

!Lcd
nm
nm

IF= 10 mA

V
V

IF=20 mA
IF=20mA

2
2

!l
!l

IF =20 mA
IF =20 mA

35
35

pF
pF

V=O
V=O

!LA
!LA
!LA

VR= 5.0V
VR =5.0 V
VR = 5.0V

2.0
2.0

100
100
100

TYPICAL THERMAL CHARACTERISTICS
Thermal resistance junction to free air 

1ii

"'-

z
W

I-

~

~

~

a:

100

Fig. 3. Maximum Peak Current
vs. Pulse Duration

IF,L.,U !U11-~
2

19~~

2.5mA

r;

=:L

0

I".

70

2S

10,000

Fig. 2. Relative Luminous Intensity
vs. DC Forward Current

".
-25

1000

C1699

0-

SO

100

PULSE DURATION L~S'

4. 0

"'-i'-.

10
10

C1702

NORMALIZED
AT 25 D C

90

-55

30

IF ImAI

C1697

Fig. 1. Forward Current
vs. Forward Voltage

20

"

50

"

75

TEMPERATURE - TA °C

::::-..

0

0

100

2.0

5.0

10

20

50

DC

% DUTY CYCLE
C1701

Fig. 4. Relative Luminous Intensity
vs. Temperature

Fig. 5. Relative Efficiency
vs. Duty Cycle

INTERNAL CONNECTIONS

5 7

o

DP

9,11

10

G

13

14

15

MAN841Q

A

DP
5,7

10

G

11

13

14

MANB440

277

MAN8400 SERIES
ABSOLUTE MAXIMUM RATINGS
Power dissipation at 25° C ambient ................................................................. 600 mW
Derate linearly from 50°C ...................................................................... -12 mW/oC
Storage and operating temperature ................................•......................... -40° C to +85° C
Continuous forward current
Total ...........................................................................................240 mA
Per segment. ..................................................................................... 30 mA
Decimal point .................................................................................... 30 mA
Reverse voltage
Per segment. ...................................................................................... 6.0 V
Decimal point ..................................................................................... 6.0 V
Soldering time at 260°C (See Notes 3 and 4) ........................................................ 5 sec.

ELECTRO-OPTICAL CHARACTERISTICS
(Per Diode at 25°C Free Air Temperature Unless Otherwise Specified)
MIN.
TYP.
MAX.
Luminous Intensity, digit average
(See Notes 1 and 4)
Pulsed Luminous Intensity, digit average

UNITS

TEST CONDITIONS

510

2000

!Lcd

IF=10mA

710

2700

!Lcd

IF = 60 mA peak
1:6 OF

562
567
30
2.2
12
500
40

nm
nm
nm
V

Peak emission wavelength
Dominant wavelength
Spectral line half width
Forward voltage
Dynamic resistance (See Figure 1)
Light rise time
CapaCitance
Reverse current

3.0

n
100

nsec
pF
!LA

IF=20 mA
IF =20 mA
IF=10mA
V=O, f= MHz
VR =3.0V

TYPICAL THERMAL CHARACTERISTICS
Thermal resistance junction to free air cI>JA ••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 1600 0C/W
Wavelength temperature coefficient (case temperature) ............................................. 1.0 AloC
Forward voltage temperature coefficient ......................................................... -1.4 mV/oC

NOTES
1. The digit average Luminous Intensity is obtained by summing the Luminous Intensity of each segment and dividing by the
total number of segments as measured with a Photo Research Corp. "SPECTRA" Microcande/a Meter (Model IV-D). Intensity
will not vary more than ±33.3% between all segments within a digit.
2. Leads of the device immersed to 1/16 inch from the body. Maximum device surface temperature is 1400 C.
3. For flux removal, Freon TF, Freon TE, Isoproponal or water may be used up to their bOiling pOints.
4. Intensity adjusted for smaller areas of the "+" and decimal points.
5. All displays are categorized for Luminous Intensity. The Intensity category is marked on each part as a suffix letter to the part
number.

278

HIGH EFFICIENCY RED (ORANGE)

MAN86PO SERIES

FEATURES

DESCRIPTION
The MAN8600 Series is a family of large digits 0.8inches in height. This series combines high
brightness, large size, good aesthetics and is
designed to be used where accurate readable
displays need to be viewed over a distance. All
models use right hand decimal points. Units are
constructed with Grey face and neutral segment
color.

• High performance nitrogen-doped GaAsP on
GaP
• Large, easy to read, digits
• Common anode or common cathode models
• Fast switching - excellent for multiplexing
• Low power consumption
• Bold solid segments that are highly legible
• Solid state reliability - long operation life
• Rugged plastic construction
• Directly compatible with integrated circuits
• High brightness with high contrast
• Categorized for Luminous Intensity (See
Note 6)
• Wide angle viewing ... 1500
• Low forward voltage
• Grey face for use in high ambient light
conditions

APPLICATIONS
For industrial and consumer applications such as:
• Digital readout displays
• Instrument panels
• Point of sale equipment
• Digital clocks
• TV and radios

MODEL NUMBERS
PART NUMBER
MAN8610

MAN8640

COLOR

DESCRIPTION

High Efficiency Red
(Orange)

Common Anode; Right Hand Decimal

High Efficiency Red
(Orange)

Common Cathode; Right Hand Decimal

PACKAGE
DRAWING
1

RECOMMENDED FILTERS
For optimum ON and OFF contrast, one of the following
filters or equivalents should be used over the display:
Panelgraphic Scarlet 65
Homalite 100-1670

In situations of high ambient light, contrast with the
Grey face can be enhanced by using a neutral density
filter. The following or an equivalent can be used:
Panelgraphic Grey 10

279

MAN8600 SERIES
PACKAGE DIMENSIONS

1
PIN #1

r

735"
(1867mml_1
'.010"

I

r

985"
12502 mml

I~

800"
2032 lillY"

(1161 mmt

415"

LUMINOUS
INTENSITV
DATE CODe CATEGORY

-.

_L

t-

020"_1I~-

160"
/406mml

. 0".-

lSI mml
! 254 mml

• 001"

+

004"

000"

000"
C1370

PIN CONNECTIONS

ELECTRICAL CONNECTIONS
MAN8610

PIN#
1

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

280

MAN8640

Digit

Digit

Common Anode

Common Cathode

Package Dimensions
No Connection
A Cathode
F Cathode
Common Anode
E Cathode

E Cathode

-

Package Dimensions
No Connection
A Anode
F Anode
Common Cathode
E Anode

-

E Anode

-

DCathode
DPCathode
DCathode
Common Anode
C Cathode
G Cathode
B Cathode

Common Cathode
DP Anode
D Anode
Common Cathode
CAnode
G Anode
BAnode

Common Anode

Common Anode

-

-

-

-

MAN86UU SERIES
TYPICAL CURVES
100

JOOO

0
0

90
2500

.0
70

2000

60

I
I

50

-

'0

1;00

20

I

10

V

V
4

1 <'

8

16 10 ]4 28 ]1 3640

FORWARD VOLTAGE ,V f

)

VOLTS

1000
.00
500

"'-

0

"-

I'..

"-

0

"-

60
IS
IP~R

50

]0

SEGME"-ITI

?l>

JO

50

rl090

,,"

50
AMBIENT TEMPERATURE - C

70
CI244

Fig. 3. Luminous Intensitv vs.
Temperature
(See Note 2)

1'\

.

r--

~

1

DUTY CYCLE

"-

0

""-

0
5

"-

0

I"

"-

50

J

"-

0
0

\

<{2DO

80

0

1\

L

,

"

0

Fig. 2. Luminous Intensitv vs.
Forward Current

~REQUENCY" 200 P>JS

_... 100

/
I,

CIOBO

Fig. 1. Forward Current vs.
Forward Voltage

~

/

1000

JO

V

/

20
",

50

100

20

CI193

flf

Fig. 4. Max Peak Current vs.
Dutv Cvc1e

40

I~Lf

~

DC

.1 Ill!n CYL( f

0

10 20 30

40 50

60 10

8090

T A, AMBIENT TEMPERATURe, °c

CII94

ell11

Fig. 6. Maximum DC Current
vs. Temperature

Fig. 5. Luminous Intensity vs.
Dutv Cvcle

INTERNAL CONNECTIONS

MAN8610

A

DP
5,7

10

11

13

14

15

MAN8640

281

MAN8600 SERIES
ABSOLUTE MAXIMUM RATINGS
Power dissipation at 25°C ambient ........••...•.....•....•..•.•.•.....................•.....••...• 600 mW
Derate linearly from 50°C •..•.•.......•..••.••.•..•...•.......•••...................•......•.. -8.6 mW/oC
Storage and operating temperature .......................................................... -40°C to +85°C
Continuous forward current
Total ..•..............•.••.•••..••.•..••••..••...•..•.........•.••..................••••.••..... 240 mA
Per segment. ............•....•..•........•..........•.......•.•.............................•.... 30 mA
Decimal point •..•....•..•...••....•.....••.••...••..•.•.........••..•................•••.••..•... 30 mA
Reverse voltage
Per segment .•..•.....•..•..........•.......•..••...•...........•...•.....................•.....•.. 6.0 V
Decimal point •.......•..•...••.•..•.....••.••....•..•.•.........•......................•..•....•.. 6.0 V
Soldering time at 260° C (See Note 4) ............•......•..........................................•.• 5 sec.
Peak forward current per segment (Imax) (See Figure 4) .•.••........•..•.........................••......

ELECTRO-OPTICAL CHARACTERISTICS (25°C Free Air Temperature Unless Otherwise Specified)
Luminous Intensity, digit average
(See Notes 1 and 6)
Decimal point (See Note 5)
Peak emission wavelength
Spectral line half width
Forward voltage
Segment
Decimal point
Dynamic resistance
Segment
Decimal point
Capacitance
Segment
Decimal point
Reverse current
Segment
Decimal point
Luminous Intensity Ratio IL
(segment-to-segment)

MIN.

TYP.

UNITS

TEST CONDITIONS

600

1600

!Lcd

IF=10mA

240

600
630
40

!Lcd
nm
nm

IF=10mA

V
V

IF=20 mA
IF= 20 mA

26
26

0.
0.

IF=20 mA
IF=20 mA

35
35

pF
pF

V=O
V=O

/LA
/LA

VA =3.0V
VA=3.0V
IF=10mA

MAX.

2.5
2.5

100
100
2:1

TYPICAL THERMAL CHARACTERISTICS
Thermal resistance junction to free air CPJA ......................................................... 160°CIW
Wavelength temperature coefficient (case temperature) .............................•..••••......... 1.0 N° C
Forward voltage temperature coefficient ......................................................... -2.0 mVfOC

NOTES
1. The digit average Luminous Intensity is obtained by summing the Luminous Intensity of each segment and dividing by the
total number of segments as measured with a Photo Research Corp. "SPECTRA" Microcande/a Meter (Model IV-D). Intensity
will not vary more than ±33.3% between all segments within a digit.
2. The curve in Figure 3 is normalized to the brightness at 25° C to indicate the relative efficiency over the operating temperature
range.
3. Leads of the device immersed to 1/16 inch from the body. Maximum device surface temperature is 140°C.
4. For flux removal, Freon TF, Freon TE, Isoproponal or water may be used up to their boiling paints.
5. Intensity adjusted for smaller areas of the "+" and decimal points.
6. All displays are categorized for Luminous Intensity. The Intensity 'category is marked on each part as a suffix letter to the part
number.

282

HIGH EFFICIENCY RED

MAN89UO SERIES

FEATURES

DESCRIPTION
The MAN8900 Series is a family of large digits 0.8inches in height. This series combines high
brightness, large size, good aesthetics and is
designed to be used where accurate readable
displays need to be viewed over a distance. All
models use right hand decimal points.

• High performance nitrogen-doped GaAsP on
GaP
• Large, easy to read, digits
• Common anode or common cathode models
• Fast switching - excellent for multiplexing
• Low power consumption
• Bold solid segments that are highly legible
• Solid state reliability - long operation life
• Rugged plastic construction
• Directly compatible with integrated circuits
• High brightness with high contrast
• Categorized for Luminous Intensity (See
Note 6)
• Wide angle viewing ... 1500
• Low forward voltage
• Red face and Red segment for good ON or OFF
contrast
• These devices have a Red face and Red
segments

APPLICATIONS
For industrial and consumer applications such as:
• Digital readout displays
• Instrument panels
• Point of sale equipment
• Digital clocks
• TV and radios

MODEL NUMBERS
COLOR

DESCRIPTION

MAN8910

High Efficiency Red

Common Anode; Right Hand Decimal

MAN8940

High Efficiency Red

Common Cathode; Right Hand Decimal

PART NUMBER

PACKAGE
DRAWING
1

RECOMMENDED FILTERS
For optimum ON and OFF contrast, one of the following filters or equivalents should be used over the display:
Panelgraphic Scarlet 65
Homalite 100-1670

283

MANagOO SERIES
PACKAGE DIMENSIONS

1
PIN #1

.735"
1--(1.67 mml-----.i
1·010" I

J.

125.02 mm\

'l~

.t.

(2032 mm)

PIN #10

LUMINOUS
INTENSITY
DATE CODE CATEGORY

C137Q

PIN CONNECTIONS
ELECTRICAL CONNECTIONS

MAN8910
Digit

Digit

Common Anode

Common Cathode

PIN#

Package Dimensions

Package Dimensions

1
2
3
4
5
6

No Connection
A Cathode
FCathode
Common Anode
E Cathode

No Connection
A Anode
F Anode
Common Cathode
EAnode

7

ECathode

E Anode

-

8

-

9

D Cathode
DP Cathode
DCathode
Common Anode
C Cathode
G Cathode
B Cathode

10
11
12
13
14
15
16

284

MAN8940

-

Common Cathode
DP Anode
D Anode
Common Cathode
CAnode
G Anode
BAnode

-

-

17

Common Anode

Common Anode

18

-

-

MAN8900 SERIES
TYPICAL CURVES
"Xl

3000

170

90

0

0

2000

60

I

0

=-

_

'50

.....

140

0

1

"

2500

1/

40

./

1500

.000

0
0

I

0

500

V

V
4

8

16

,;?

./

]0

~

4 HI

FORWARD VOLTAGE WFI

J]

"'

130

~

120

~ 110

V

:!:

100

~

90

g

-"'.

"

I"

80
0

10

15

20

25

IF (PER SEGMENTl- rnA

C!OSO

~

50

30

50

CH190

"

"

AMBieNT TEMPERATURE

Fig. I. Forward Current vs.
Forward Voltage

.....

60

3640

VOLTS

V

:a

V

Fig. 2. Luminous Intensity vs.
Forward Current

50

70

C

eI2""

Fig. 3. Luminous Intensity vs.
Temperature

(See Note 2)
1000
800
;00

I

,

_.. 100
~

~

~

'\
15

80

"

0

0

0
70

DUTY CYCLE %

"

~o

30

• 2.
26
~ 2'

\.

200pps

r--.

10

~

\.

I

~FAEQUENCY

'" 200

~

1'\

~

22

Z

20
18
16

~

ag

"I" 1'.

~

•

14

8
6

x

~

•

100

I~

Fig. 4. Max Peak Current vs.
Duty Cycle

g

DC

40

20

10

C1193

DUTY CYCLE '"
PER SEG 10 rnA AVERAGE

a

10 20 30

40 50

60 70

80 90

TA. AMBIENT TEMPERATURE, °c

C1311

C1222

FIg. 5. Luminous/ntensity vs.
Duty Cycle

Fig. 6. Maximum DC Current
vs. Temperature

INTERNAL CONNECTIONS

MAN8910

A

DP
5,7

10

"

13

14

15

MAN8940

285

MAN8900 SERIES
ABSOLUTE MAXIMUM RATINGS
Power dissipation at 25° C ambient ..•••..•.....•....•.......•..•.•...•.......••..•................. 600 mW
Derate linearly form 50°C ..•.....•...••...•.••...••.....••.•.••..•............•........•....•. -8.6 mW/oC
Storage and operating temperature ....•..••.••.•.•.....•...••.•...•..•.......••..•...•.....• -40° C to +85° C
Continuous forward current
Total ..........•••.••..••.........•...•.•..•..•...•....••••..•...•...........•..........•....... 240 mA
Per segment. ....••..••....•..•....•...••.••...••...•.•..•.•...............••.......••••.••....... 30 mA
Decimal point .•.••.•..•••..••.........••.•.•..•...•.•..••••.••...•............•...•.....••....... 30 mA
Reverse voltage
Per segment. .•.•.•••..•.....•.........•.••...•..•.•.•....•.......•..••....•......•..•..•••.•...... 6.0 V
Decimal point .•.•...•.•••.••.•.........•.•.•..•••.•.....•••.••...••...........•...•......••..•.... 6.0 V
Soldering time at 260°C (See Note 4) ................................................................. 5 sec.
Peak forward current per segment (Imax,) (See Figure 4) ................................................. .

ELECTRO-OPTICAL CHARACTERISTICS (25° C Free Air Temperature Unless Otherwise Specified)

Luminous Intensity. digit average
(See Note 1)
Decimal pOint (See Note 5)
Peak emission wavelength
Spectral line half width
Forward voltage
Segment
Decimal point
Dynamic resistance
Segment
Decimal pOint
Capacitance
Segment
Decimal point
Reverse current
Segment
Decimal point
Luminous Intensity Ratio IL
(segment-to-segment)

MIN.

TYP.

UNITS

TEST CONDITIONS

320

1600

"cd

IF = 10 mA

130

600
635

"cd
nm
nm

IF=10mA

V
V

IF =20 mA
IF=20 mA

26
26

n
n

IF =20 mA
IF=20 mA

35
35

pF
pF

V=O
V=O

"A
"A

VR = 3.0 V
VR = 3.0 V
IF = 10 mA

MAX.

40
2.5
2.5

100
100
2:1

TYPICAL THERMAL CHARACTERISTICS
Thermal resistance junction to free air 

400

rr: 300
rr:

~

z

500

~

PEAK FORWARD VOLTAGE VF (V)

DUTY CYCLE (%)
IF per Segment 10mA average

C1747
C1746

Fig. 2. Relative Luminous Intensity
vs. Duty Cycle

Fig. 3. Peak Forward Voltage
vs. Peak Forward Current

MMA54420 MMA56420 MMA58420 MMA59420 SERIES
TYPICAL CURVES (Unless Otherwise Specified)
§'

2500

o

~

f400r----r----,-----r-~rA

,

E

Z 2200
2000

IIF=tL

1500 _TJ:S9.0°C.
Total 34 Segments
is

Average 8 Segments

UJ

~

1000 -ON per Digit
I

()

if....J
«

~

~ 300

1\

gj
(!)

~

0;

I

I

r2imAIDc
500
260

I
o

f-

:!;
rJ)

1\
1\

IF=i mA

5200

z

~

:::J

...J
~ 100r---~~--_r----~--~

~w

I-~

10 20 30 40 50 60 70 808590
AMBIENT TEMPERATURE (TA)"C

cr
10
15
20
25
D.C. FORWARD CURRENT (rnA)
(Normalized to lOrnA)

C1748

Fig. 4. Total Package Power
Dissipation vs. Ambient Temp.

C1750

C1749

Fig. 6. Relative Luminous
Intensity
vs. Ambient Temperature

Fig. 5. Relative Luminous
Intensity vs. Forward Current

MMA5X420 RECOMMENDED FILTERS FOR CONTRAST ENHANCEMENT
DIM
(Office)
25-75 Fe

COLOR

AMBIENT
MODERATE
(Test Floor)
75-200 Fe

BRIGHT
(Outdoors)
200-1000 Fe

HIGH EFFICIENCY RED
ORANGE
635nm

Red Long Pass 65%
H, Hl00-1650
C,l100
3M, R6310

Red Long Pass 40%
H, Hl00-1650
C,l12

Grey 18-23%
H, Hl00-1266
C,105
3M, ND0220

YELLOW
583nm

Yellow Band Pass 30%
H, Hl00-1720
C,lOB
P, Yellow 27

Amber Long Pass 40%
H, Hl00-1726
C,lOB
P, Amber 23
3M, A5910

Grey 18-23%
H, Hl0Q-1266
C,105
P, Grey 10
RH,2538

GREEN
569nm

Green Band Pass 30%
H, Hl00-1440
C,107
P, Green 48

Grey 20-25%
H, Hl00-1425
C,107
P, Green 48

Grey 18-23%
H, Hl0Q-1266
C,105
P, Grey 10
RH,2538

LEGEND:

C, 106 - Chequers #106
RH - Rohm & Haas
3M - 3M Company
POL - Polaroid Corporation

H - SGL Homalite
C - Chequers Engraving
P - Panelgraphics

SOCKETING
DESCRIPTION
Terminal Strip
Right Angle Terminal Strip
Cable Jumpers
Edge Card Connector
Strip Line Plugs
Right Angle Strip Line Plugs

PART NUMBER
TS120 Series
TS120 Series
CJ-20-C-12
100 Series
SP Series
SP Series

SUPPLIER
Samtec Electronic Hardware
Samtec Electronic Hardware
Samtec Electronic Hardware
Circuit Assembly Connectors
Circuit Assembly Connectors
Circuit Assembly Connectors

289

MMA54420 MMA56420 MMA58420 MMA59420 SERIES
TYPICAL DRIVE SCHEMES FOR MMA5X420 DISPLAYS
IF=19mA(lyplcnl)

16 Segments + Decimal POInI ANODES

IF (PEAK) = VLEO·VF-l 4V

AL
MMA5X420

=IF (DC) X Number 01 Olglls

.,v

8 DigIts CATHODES

+VLED

'III MM.,X.,.

C1753

C1752

Figure 1. Direct Drive Method

Figure 2. Discrete Buffering

16 Segmenla

IIIIIIII
8 Dlg,ts CATHODES

ForBOlgllaDutyFactorol12~

I, (PEAK)~ IF(DCIXB
Rep: VLEO-W-25V
IrIPEAK)

RsEG=~
"CPEU)

For 1 BOuty Flctor. Iv ImprOVilmenl
ot5O'llo1075'foesnb.-~.'lled

TYPICAL CALCULATIONS
E>:ampleMMA5&C20
IF (DC)~ 15mA
Vl.EO~

VF ~A~l' 3V

12V

IFIPEAKI= IFIDCJxB=121JmA

Rcp.l~~~!5V
RsEG·l~~~~3V

=5416n(58m
0.415,,(47111

CHAR8 16
CHAA7 '9
CHAR6 20

Figure 3. I. C. Buffering

NOTES
1.
2.
3.

4.
5.

290

The digit average Luminous Intensity is obtained by summing the total number of segments. The standard of measurement is the
Photo Research Spectra Microcandela Meter corrected for wavelength. Intensity will not vary more than ±33.3% from digit to digit.
The curve in Figure 6 is normalized to the brightness at 25° C to indicate the relative efficiency over the operating temperature range.
The decimal point is designed to have the same surface brightness as the segments, therefore, the Luminous Intensity of the decimal
paint is .18 times the luminous Intensity of the segments, since the area of the decimal paint is .18 times the area of the average
segment.
These high performance mUlti-digit displays are not sealed and should not be immersed during flux and clean operations. Immersion
may cause condonsation of flux or cleaner on the inner surface of the lens. Immerse only the edge connectors.
For flux removal, Freon TF or Isoproponal at room temperature.

Light Bars and
Bargraph Arrays

3

291

292

Light Bars and Bargraph Arrays
Alphanumeric Product Listing
Product

Page

HLMP-2300
HLMP-2350
HLMP-2400
HLMP-2450
HLMP-2500
HLMP-2550
HLMP-2655
HLMP-2670
HLMP-2685
HLMP-2755
HLMP-2770
HLMP-2785
HLMP-2855
HLMP-2870
HLMP-2885

297
297
297
297
297
297
297
297
297
297
297
297
297
297
297

MP73
MV53124
MV53164
MV53173
MV54124
MV54164
MV54173
MV56124
MV57124
MV57164
MV57173

302
303
309
305
303
309
305
303
303
309
305

293

LED LIGHT BARS
DESCRIPTION
PART
NUMBER

PACKAGE

I

I

~
I

I

-D
~

1001

-D
294

COLOR

HlMP-2300

Hi. Elf. Red

HlMP-2400

Yellow

HlMP-2500

Green

HlMP-2350

Hi. Elf. Red

HlMP-2450

Yellow

HlMP-2550

Green

HlMP-2655

Hi. Efl. Red

HlMP-2755

Yellow

HlMP-2855

Green

HlMP-2670

Hi. Ell. Red

HlMP-2770

Yellow

HlMP-2870

Green

HlMP-2685

Hi. Elf. Red

HlMP-2785

Yellow

HlMP-2885

Green

PACKAGE

4 Pin In-Line; .100"
Centers; .400"l x
.195"W x .240"H
(0.350" x 0.150"
Emitting Area)

8 Pin In-Line; .100"
Centers; .800"l x
.195"W x .240"H
(0.750" x 0.150"
Emitting Area)

8 Pin DIP; .100"
Centers; .400"l x
.400"W x .240"H
Square
Arrangement
(0.350" x 0.350"
Emitting Area)

16Pin DIP; .100"
Centers; .800"l x
.400"W x .240"H
Dual Square
Arrangement

16 Pin DIP; .100"
Centers; .800"l x
.400"W x .240"H
Single Bar
Arrangement
(0.350" x 0.700"
Emitting Area)

lENS

TYPICAL
lUMINOUS
INTENSITY
@20mA

TYPICAL
FORWARD
VOLTAGE
@20mA

Diff.

20 mcd

2.0V

Diff.

20mcd

2.1 V

Green Difl.

25mcd

2.2V

Dilf.

35mcd

2.0V

Diff.

35mcd

2.1 V

Green Dilf.

50mcd

2.2V

Dill.

35mcd

2.0V

Dill.

35mcd

2.1 V

Green Diff.

50mcd

2.2 V

Dilf.

35mcd

2.0V

Dilf.

35mcd

2.1 V

Green Dill.

50mcd

2.2V

Dill.

70mcd

2.0V

Dill.

70mcd

2.1 V

Green Difl.

100 mcd

2.2 V

PAGE

297

297

297

297

297

BARGRAPHS PANEL INDICATORS RECTANGULARS
PACKAGE

PART
NUMBER

SOURCE
COLOR

FACE COLOR

10
Element

MV53164

Yellow

Untinted DifUGrey

MV54164

Hi. Eft. Green

Untinted Dift./Grey

MV57164

Hi. Eft. Red

Red Diff.lGrey

MV53173

Yellow

Yellow Diff.

MV54173

Hi. Eff. Green

Untinted Dift.

MV57173

Hi. Eft. Red

Red Diff.

~
.5-lnch
Rectangular

~
fQJ
no

MV53124

Yellow

MV54124

Hi. Eft. Green

MV56124

Orange

MV57124

Hi. Eft. Red

SEGMENTI

Tinted
Diffused

Iv TYP.
mcd/mA

2(·)'/'

PAGE

1.0/10

130

309

1.0/20

130

305

4.0/20

100

303

295

296

HIGH EFFICIENCY RED
YELLOW
HIGH EFFICIENCY GREEN

HLMP-2300/2600 SERIES
HLMP-2400/2700 SERIES
HLMP-2500/2800 SERIES

DESCRIPTION
The General Instrument LED Light Bar series are
bright, large emitting area, rectangular devices
that are designed for backlighting legend/
message annunciators.
These devices are offered in single-in-line and
dual-in-line packages that contain single or
segmented light-emitting areas. Each package
style is offered in High Efficiency Red, Yellow, or
Green emission color.

FEATURES
• Large area, uniform, bright light-emitting
surfaces
• Select from six package styles
• Choice of three colors
• Categorized for intensity and color
• X-Y stackable
• Easily driven with I.C.s
• Alternate source for popular backlighting
components

MODEL NUMBERS
COLOR

DESCRIPTION

HLMP-2300
HLMP-2400
HLMP-2500

High Efficiency Red
Yellow
High Efficiency Green

2 LED Single-in-line
0.35 in. x 0.15 in. Area

HLMP-2350
HLMP-2450
HLMP-2550

High Efficiency Red
Yellow
High Efficiency Green

4 LED Single-in-line
0.75 in. x 0.15 in. Area

HLMP-2655
HLMP-2755
HLMP-2855

High Efficiency Red
Yellow
High Efficiency Green

4 LED Dual-in-line
0.35 in. x 0.35 in. Area

HLMP-2670
HLMP-2770
HLMP-2870

High Efficiency Red
Yellow
High Efficiency Green

Dual 0.35 in. x 0.35 in. Area
Dual-in-line package

HLMP-2685
HLMP-2785
HLMP-2885

High Efficiency Red
Yellow
High Efficiency Green

8 LED 0.3.5 i~. x 0.75 in. Area
Dual-m-Ime package

PART NO.

PACKAGE

PIN OUT

A

A

B

B

C

C

D

D

E

D

1c=J1

0
I[][JI

D

29'/

LED LIGHT BARS
ABSOLUTE MAXIMUM RATINGS

TA = 25·e (Unless Otherwise Stated.)
HIGH EFFICIENCY RED
HIGH EFFICIENCY GREEN
HLMP-2300/-2500
-2600/-2800 SERIES

Power dissipation per LED chip (See Note 1) •..•.••.......
Peak forward current per LED chip,
TA = sooe (max. pulse width = 2 IlS) (See Notes 1 and 2) ...
Average forward per LED chip pulsed conditions,
TA =sooe (See Note 2) •.....•....•.......•.......•....
DC forward current per LED chip,
TA = so·e (See Note 3) ••••••••••••••••.••••.•••••.•.••
Reverse voltage per LED chip •..•................••.•....
Storage and operating temperature range .•....•.....•....
Soldering time at 260·C (See Note 4) ...•..........•....•.

YELLOW
HLMP-24001
-2700 SERIES

135 mW

8SmW

90mA

60mA

25 mA

20mA

30 mA
6V
-40·e to +85·e
260·e for 3 sec.

25 mA
6V
-40·e to +85·C
260· e for 3 sec.

NOTES
1.

2.
3.
4.

For HLMP-23001-25001-26001-2800 Series, derate above TA =25°C at 1.8 mWloC per LED chip. For HLMP-24001-2700 Series,
derate above TA = 50°C at 1.8 mWloC per LED chip.
See Figure 1/2 to establish pulse operating conditions.
For HLMP-23001-25001-26001-2800 Series, derate above TA =50° Cat 0.5 mAl· C per LED chip. For HLMP-24001-2700 Series
derate above TA = 60°C at 0.5 mAloC per LED chip.
Leads immersed to 1/16 in. from body of the device. Maximum unit surface temperature is 140·C.

PACKAGE DIMENSIONS
0.508 ± 0.076
(0.020 ± 0.003)

H

3.175 MIN.
(0.125)

r8.890~

4.953
(0.195)
MAX.

(0.350

..L~-

-

I - OPERATION IN THIS REGION

1001'S
1 rns
tp - PULSE DURATION - s

tp - PULSE DURATION - 8

10 rns

C2013

C2014

Fig, 1, Maximum Tolerable Peak
Current per LED Chip vs,
Pulse Duration for HLMP23XO/-26XX/-25XO/-28XX

Fig, 2. Maximum Tolerable Peak
Current per LED Chip vs.
Pulse Duration for HLMP24XO/-27XX Devices

180

100

160
II:

w

~~
l1.E

140 RE ,G

EE~

~Q
x«
«l1.

100

~5
~

60

~iii

rf

Z

70

II:
II:

60

W

'I\..

....

YELLOW

::::l

80

r--..

20
0

o

U

50

0
II:

40

«

"-

40

//1

///
'(fr-- HI EFF.
II V GRIEEN-

~ 30

0

~ 20
«
w
a. 10

C2025

z

~1.5

>

I

w

II:

iii

zW

1\

I-

~2.0

iii

I-

2

FOWARD VOLTAGE VF (VOLTS)
C1833A

Fig. 3. Maximum Power Dissipation
per LED vs. Ambient
Temperature
2

.L!J

o

10 20 30 40 50 60 70 80 90
TA - AMBIENT TEMPERATURE - 0 C

I

I

HII Eff. 1
RED /II

u.

"I

III

.l.

I-

. 120
::::lZ
~

-I-

DOTTED LINES
90 INDICATE
PULSED
~',I
.!O 80 OPERATION-iELLOW I

<"
.§.

o

/

/

/

/

./'

20
40
60
80
INSTANTANEOUS FORWARD
CURRENT IF(rnA) C652A

Fig. 6. Luminous Intensity vs.
Forward Current

LED LIGHT BARS
TYPICAL ELECTRO-OPTICAL CHARACTERISTIC CURVE
(25°C Free Air Temperature Unless Otherwise Specified)
140'A

'\
,

5120'A
c..
f-

I"

:::J

o

~ 100'y,

i=

«

...J

w

a: 80'A,

""" "'"

"~

#.

~

,

60'A

-60 -40 -20 0 20 40 60
TEMPERATURE - °C

80

100

C654B

Fig. 7. Output vs. Temperature

PIN CONNECTIONS TO ELECTRICAL SCHEMATIC
ELECTRICAL CONNECTION

PIN
HLMP-2XOO
1
2
3
4
5
6
7

HLMP-2X50

1 Cathode
1 Anode
2 Cathode
2 Anode

B
9

HLMP-2X70/-2X85

HLMP-2X55

1 Cathode
1 Anode
2 Cathode
2 Anode
3 Cathode
3 Anode
4 Cathode
4 Anode

1 Cathode
1 Anode
2 Anode
2 Cathode
3 Cathode
3 Anode
4 Anode
4 Cathode
5 Cathode
5 Anode
6 Anode
6 Cathode
7 Cathode
7 Anode
BAnode
B Cathode

1 Cathode
1 Anode
2 Anode
2 Cathode
3 Cathode
3 Anode
4 Anode
4 Cathode

10
11
12
13
14
15
16

ELECTRICAL SCHEMATIC

16
2

2

15

3

3

14

4

4

13

5

12

7

6

11

6

7

10

5

8

2

w~

A
HLMP- 2XOO

5
3

6
7

'C'
1

2

3

2

4
8
B
HLMP- 2X50

3

4

4

C
HLMP - 2X55

9
D
HLMP- 2X85
HLMP- 2X70

C2016

301

MP73
PACKAGE DIMENSIONS

DESCRIPTION

Lo

~ ~,~~~.

.008

_II

mml

t'~PLCSlTOL'
NON ACCUM
(4' mm)

TYP. ALL AROUND
SCALE" 20/1

MATTE FINISH,
BEZEL ONLY

DETAIL A

The MP73 mounting grommet is
intended for panel mounting the
MV57173 rectangular lamp. The
grommets are made of Black
plastic and provide the user with
an easy-to-mount, professional
appearance when viewed on a
front panel.
The MP73 can be used on any
panel thickness up to .125-inch
(3.18 mm).

068Lm

FULL RADIUS (4 PLCSI

020

11 73milJm

".3rmI336

---*- "fm

~

~89mm~1
.035

030

17umml

-=HI

~

l

(.51mmJ

_

(4.32mml
17

030
1.76 mm)

MATERIAL" POLYPROPYLENE - BLACK

032

"'Fr
(.81mmj

43

032 '·"'r·"~110.92mml~
r-.;:'"-, I I

20

A

68

1,727mm)
616
11565mm)

~t====::J/
PROTRUSIONS

TO BE SCORE
LINES IN MOLD
12SIDESONLY)

MATERIAL rOL YPROPYLENE - BLACK

302

C 1481

"SEE

_"') DETAIL A

I

60" (4PLCS)

~f

!'889mml~{7'67mml
035

(1575mml

,-

024
(6' mmi

02

555
(14'10mml=j
620

"

,301

10

12.s4mm)

310
(940 mml
C 1480

PANEL HOLE PUNCHING
Punches may be ordered from
one of the following sources:
w'A. WHITNEY COMPANY
650 Race Street
Rockford, IL 61105
(815) 964-6771
ROTEX PUNCH COMPANY, INC.
2350 Alvarado Street
San Leandro, CA 94577
(415) 357-3600

YELLOW
HIGH EFFICIENCY GREEN

MV53124
MV54124

SOFT ORANGE
HIGH EFFICIENCY RED

~~:~ ~

PACKAGE DIMENSIONS

1635

'oUd ,tato
~. w, Red and

indir
~'

1.-- 250 MAX----J

I

MV56124
MV57124

~

,IS

uniformly

I

~~~'T
150 MAX

AREA

'-~
1:G
'F

~

~
-I

'~1

='

t!)~

&.
:""J

26'

~0

gj

~
.~

0

e:,fli

' direction without crosstalk
-typically4mcdat20mA
.Iability
Llgged, lightweight
leakage from unit sides
.mg grommet available (See MP65) as
drate order item
....

APPLICATIONS

.

Legend backlighting
• Illuminated pushbutton
• Panel indicator
• 8argraph meter

,,~"

ABSOLUTE MAXIMUM RATINGS (TA = 25°C Temperature Unless' Otherwise Specified)

Power dissipation ........................................... .
Derate linearly from 50°C .................................... .
Storage and operating temperature ........................... .
Peak forward current ........................................ .
(1 !,sec. pulse width, 300 pps)
Forward current ..........•..................................
Lead soldering time at 260°C (See Note 1) .................... .
Reverse voltage .........•...................................

MV53124
MV56124
MV57124

MV54124

120mW
1.6 mW/oC
-55°C to +100°C
1A

120mW
1.6 mW;oC
-55°C to +100°C
90 mA

35 mA
5 sec.
5.0V

30 mA
5 sec.
5.0V
303

MV53124 MV54124 MV56124 MV57124
ELECTRO-OPTICAL CHARACTERISTICS (25°C Temperature Unless Otherwise Specified)
SYMBOL

MV53124

MV54124

MV56124

MV57124

UNITS

Forward voltage

typo
max.

VF

2.0
3.0

2.2
3.0

2.0
3.0

2.0
3.0

V
V

IF = 20 rnA
IF = 20 rnA

Luminous Intensity

min.
typo

Iv

1.0
4.0

1.0
4.0

1.0
4.0

1.0
4.0

mcd
mcd

IF = 20 mA
IF= 20 mA

AP

565

562

605

635

nrn

IF = 20 mA

45

30

45

45

nrn

IF = 20 mA

5

V

PARAMETER

Peak wavelength
Spectral line hall width

TEST CONDITIONS

Reverse voltage

min.

VBR

5

5

5

Reverse current

max.

IR

100

100

100

VR = 5.0V
V= O. 1= 1 MHz

C

45

20

45

2(-)%

100

100

100

Capacitance
Viewing angle (total)

J.

~\

OOTTEO LINES
o INDICATE--YELLOW
PULSED
OPERATION

' #I,

,1

ORH}~~EI/ ' /

... NGE HI EFF.
RED

If

f\
I

EFFICIENCY",
RED

-

IR= 100!,A

I 1\
I II \ / \

///

I///··'HIGH
EFFICIF
GP

rll

hV

)

J J

.Lb

i\

\

~~

WAVELENGTH

\
\

(~)

- nm
Cl064D

Fig. 2. Spectral Response

~

\

1.5

~

/"

r--.

"

dw

...
a:

......

IF

'":::Jo
Z

:fl.0
:::J
..J

'I-10

,/

20
40
DUTY CYCLE - %
10 rnA AVERAGE

o/
DC
Cl194B

Fig. 3_ Luminous Intensity vs.
Duty Cycle

o

/

/

-

/

20
40
60
BO
INSTANTANEOUS FORWARD
CURRENT IF(mA) C652A

Fig. 4_ Luminous Intensity vs.
Forward Current

140'A \ .

~120 ~
a.

I:::J

o

~100

;::
<
..J
W

~ BO

I\.
........

~

.......

"-

60%
-60 -40 -20 0 20 40 60
TEMPERATURE _. C

........
BO 100
C654A

Fig. 5. Output vS. Temperature

NOTES
1.
2.

304

The leads of the device were immersed in molten solder, heated to a temperature of 260°C. to a point 1/16 inch (1.6 mm) from the body
of the device per MIL-S-750. with dwell time of 5 seconds.
As measured with a Photo Research Corp. "SPECTRA" Microcandela Meter (Model IV-D).

YELLOW

HIGH EFFICIENCY GREEN
HIGH EFFICIENCY RED
DESCRIPTION

PACKAGE DIMENSIONS

The MV5X173 series is a large rectangular lamp
which contains two LED chips with separate
anodes and cathodes for each light. The
illuminated area is 0.500-inches x 0.250-inches
(12.7 mm x 6.35 mm).

RIENTATION MARK
Pin #1

I'

\

250"

1635mmi
_

'1

.125"

+--

(3.18mml

FEATURES

t

f

,~,I

.550"

500"
I 12.70mm)

(13.97mm)

+

.Js"

~

LL

-

I.

I-.295"
(l49mm)

·1

DATE CODE

3r-R !

L

PART NO
LIGHT
INTENSITY
CATEGORY
SEE NOTE 4

(8.00mml

.470" REF
f11.94mm)

14:~~~~i t
i.01S"

.200"
(5.0Bmml :t.015"

I

" Panel indicators
Backlight legends
" Light arrays

---'----!rl
i

APPLICATIONS
II

-f= ~~~~)
(0

.500-inch x .250-inch lighted area available
in three colors
II Solid state reliability
II Fast switching excellent for multiplexing
/I Low power consumption
II Directly compatible with IC's
II Wide viewing angle
II .2 inch DIP lead spacing
.. Mounting hardware available
/I Categorized for Luminous Intensity
(See Note 1)
II

250
(6.35

(699mm)

148"
(376mml

MV53173
MV54173
MV57173

002"

NOTE: TOLERANCE ± 010" UNLESS SPECIFIED

C1467

ABSOLUTE MAXIMUM RATINGS
Power dissipation at 25°C ...............•..•..
Derate linearly from 50°C .....•...............
Storage temperature .••........•..........•..
Operating temperature ...........•..........•
Continuous forward current per light (25°C) ...•
Peak forward current per LED chip •........•..
(1 ILsec pulse width, 300 pps)
Lead soldering time at 260°C ....•............•
(See Notes 3 and 5)

MV53173

MV54173

MV57173

200mW
-4.3 mW/oC
-40°C to +100°C
-40°C to +85°C
25 rnA
1.0 A

200 mW
-4.5 mW/oC
-40°C to +100°C
-40°C to +85°C
30 rnA
90 mA

200mW
-4.3 mW/oC
-40°C to +100°C
-40°C to +85°C
35 rnA
1.0 A

5 sec.

5 sec.

5 sec.

305

MV53173 MV54173 MV57173
ELECTRO-OPTICAL CHARACTERISTICS (25° C Free Air Temperature)
PARAMETER

TEST CONDITIONS

MV53173

MV54173

MV57173

UNITS

IF = 20 mA
IF=20mA

2.0
2.5

2.2
3.0

2.0
2.5

V
V

Luminous Intensity
Min. (See Note 1)

IF = 20mA

4.5

4.5

4.5

moo

Peak wavelength
Typ.

IF = 20 mA

585

562

635

nm

Spectral line half width

IF = 20 mA

45

30

45

nm

Capacitance
Typ.

V= 0, f= 1 MHz

35

20

35

pF

Reverse voltage (VR)
Min.
Typ.

IR = 100/lA
IR = 100/lA

5
25

5
50

5
25

V
V

120

120

120

degrees

Forward voltage (VF)
Typ.
Max.

Viewing angle (total)

TYPICAL THERMAL CHARACTERISTICS
Thermal resistance junction to free air ct>JA ••••••••••••
Wavelength temperature coefficient (case temp.) .......
Forward voltage temperature coefficient ..............

MV53173

MV54173

MV57173

160°C/W
1.0A/oC
-1.5 mV/oC

160°C/W
1.0 AfOC
-1.4 mV/oC

160°C/W
1.0 Arc
-2.0mVrC

TYPICAL CURVES (Per LED Chip Unless Indicated) (25°C Free Air Temperature)
100

3000

/

90

1/

80

2500
MV53173
MV57173

II

70

2000

/MV53173

60

III

50

1500

MV571731

40

Ilj

30

1000

II

20

500

10

"

IJ'
.4

.8

1.2 1.62.0 24 2.8 3236 4.0

V

V

V
10

:L
15

V

20

IF (PER SEGMENT) - nlA

FORWARD VOLTAGE (VF) - VOLTS

25

CloaOA

Fig. 1. Forward Current vs.
Forward Voltage

Fig. 2. Luminous Intensity vs.
Forward Current
(Both LED Chips ON)
170
160

I

"'

150
140

~
"'-MV57173

130
120
110

100 _MV53173
90

80

" "-

-"

~-- :::---:",
-"".

70
60
50
-50

-25

25

'""

50

AMBIENT TEMPERATURE -"C

306

70

C1244A

Fig. 3. Luminous Intensity vs.
Temperature
(See Note 2)

30

Cl090A

MV53173 MV54173 MV57173

1000

800

«

FAEQ. = 200 pps

r--- t....

200

I

~

57173

r--...

M

I

100

\

'--

MV53173

E

~

~

I

500

.~

20

10

20

1'\1'\

f'

MV531-!;-f'

~r'"
1
10

10
1

'\ l'\

15

80
50

50

DUTY CYCLE - %

t\Jv5Ua

100

DC

40

20

C1193

C1194A

PERCENT DUTY - %
DUTY CYCLE - %
IF per seg. 10 mA AVERAGE

Fig. 4. Max Peak Current vs.
Duty Cycle

Fig. 5. Luminous Intensity vs.
Duty Cycle

100
<{
~
.!!o

80

50

()

40

0
II:

30

:::J

~

II:

20

u.

10

0

t-

I

/
./

o
1.0

/

NdRMAJZED

IT IF =1 '0

w 3.0
t-

I

80

II:
II:

>-

ooZ

I

70
tz
w

4.0

I

90

~

MV54173

'"0
:::J

/

z

~

::J
..J
W

>

~

/'DOTTED LINE
INDICATES
PULSED OPERATIONSEE FIGS. 3. 51

2.0

FORWARD VOLTAGE -

2.0

1.0

..J
W

V

II:

3.G
4.0
VF ,VOLTS,

0

V

V
10

V

/

m21

V

MV54173

15

20

25

30

DC FORWARD CURRENT -IF ,rnA,

C1697

C1702

Fig. 6. Forward Current vs.
Forward Voltage

Fig. Z Relative Luminous Intensity vs.
DC Forward Current
(80th LED Chips ON)

1000
BOO
<{BOO

~

zw

400

~ 200

:::J

()

MV54173

~
~&

'" 100
80
0.
80
::;: 40

iii

'"

o

~JT
'

:t~~~

~..Jft~

:::J

::;:

~

::;:

20
10
10

100
1000
PULSE DURATION I~SI

10.000
C1699

Fig. 8. Maximum Peak
Current vs. Pulse Duration

307

MV53173 MV54173 MV57173
130
120

...
...~
>-

enz

110

w

w
>

100

'" '"
V5417

~
...J

90

II:

80

W

70
-55

4.0 ,---.,.---.,.-TT"''1T'"---''-'--'''-TT1rm

NORMALIZED
AT 25'C

~

'"

I'"

I I=Ijlljl r-- ~

u

IF(AVGI
3.0 c-

20 mA

2~~ ~~ +-hI-+--+-+-t-N+t+l

;;!
:;;

l

"'-

:§

ca

"

-25
0
25
50
75
TEMPERATURE - TA I'CI

MV54173

2.0

r--",

_ \

:::::--~

1.0

"'"

0.0 '-----'----'-..J....I..l...U-"-_'----'CJ,..J...J..JLJ.J.J

100

2.0

5.0
10
20
% DUTY CYCLE

50

C1701

C1700

Fig. 9. Relative Luminous
Intensity vs. Temperature

DC

Fig. 10. Relative Efficiency
vs. Duty Cycle

PIN CONNECTIONS
6
PIN
NO.
1
2

3
4
5
6

ELECTRICAL
CONNECTIONS
Cathode 1
No Pin
Anode 2
Cathode 2
NC
Anode 1

5

4

~
3

SCHEMATIC

FILTER RECOMMENDATIONS
For optimum ON and OFF contrast, one of the following filters or equivalents may be used over the lamp:
MV57173
MV53173
MV54173
Panelgraphic Yellow 25 or Amber 23
Panelgraphic Green 48
Panelgraphic Red 60
Homalite 190 - 1720 or 100 - 1726
Homalite 100 - 1440 Green
Homalite 100 - 1605
In situations of high ambient light, a neutral density filter can be used to achieve greater contrast:
Panelgraphic Grey 10
Panelgraphic Grey 10
Homalite 100 - 1266 Grey

NOTES
1.

2.
3.
4.
5.

30B

The average Luminous Intensity is obtained by summing the Luminous Intensity of each segment and dividing by the total number of
segments. The standard of measurement is the Photo Research Corp. "Spectra" Microcandela Meter (Model IV-D) corrected for
wavelength. Intensity will not vary more than ±33.3% between all segments within a unit.
The curve in Figure 3 is normalized to the brightness at 25°C to indicate the relative efficiency over the operating temperature range.
Leads immersed to 1/16 inch (1.6 mm) from the body of the device. Maximum unit surface temperature is 140°C.
All units are categorized for Luminous Intensity. The Intensity category is marked on each part as a suffix letter to the part number.
For flux removal, Freon TF, Freon TE, Isoproponal or water may be used up to their boiling points.

YELLOW
HIGH EffiCIENCY GREEN
HIGH EffiCIENCY RED
PACKAGE DIMENSIONS

(1:~~~~)
±.D02"
~

.200"

15±~a~~1

II..-

DESCRIPTION

-11- (2:~~~~)
\I

+

4J~

110.,:mmJ

-DDDDDDDDmm

1/
~~~~':TOE
PIN #1

The MV5X164 series is a 10 segment bargraph
display with separate anodes and cathodes for
each light segment. The packages are
end-stackable .

±,Ole"

I

400"MAX

1-.

_

4---

FEATURES

011"
(O.2Bmml

•
•
•
•
•
•
•
•

±,OO3"

_

1.00" MAX----..

DATE CODE

(25.27mm)

LIGHT INTENSITY
CATEGORY

SEE NOTE 4

XVV

MV53164
MV54164
MV57164

z

IS,~~o~~) t I I
t ~IO~~~~)

_11_ll~~~~)
100"
(254mm)

+n1n"

_I Ir

'.002"

Large segments, closely spaced
End-stackable
Fast switching - excellent for multiplexing
Low power consumption
Directly compatible with IC's
Wide viewing angle
Standard .3-inch DIP lead spacing
Categorized for Luminous Intensity
(See Note4)

.300"
(7 62m~1

i.01D

NOTE: TOLERANCES ±.010" UNLESS SPECIFIED

C"BSA

ABSOLUTE MAXIMUM RATINGS
Power dissipation at 25°C ambient .......•.....
Derate linearly from 50°C ............•••••....
Storage and operating temperature ...••.......
Continuous forward current
Total ......•.............•.•.•...•.•.......
Per segment ....••.•......••••......••••.•.
Reverse voltage
Per segment .•......•.......•••........•.•.
Soldering time at 2600C
(See Notes 3 and 5) .............•...•.••...

MV53164

MV54164

MV57164

750mW

-14.3 mWrC

-40°C to +85°C

750mW
-14.3 mW/oC
-40°C to +85°C

-40°C to +85°C

200mA
25 mA

300mA
30mA

300mA
30mA

6.0 V

6.0V

6.0 V

5 sec.

5 sec.

5 sec.

MV53164

MV54164

MV57164

160°C/W
1.0 Al"C
-1.5 mVI"C

1600C/w
1.0 Al"C
-1.4 mVI"C

1600C/w
1.0 Al"C
-2.0 mVI"C

-14.3 mWrC

750mW

TYPICAL THERMAL CHARACTERISTICS
Thermal resistance junction to free air JA ••••••••••••
Wavelength temperature coefficient (case temp.) ..•....
Forward voltage temperature coefficient ........•.....

309

MV53164 MV54164 MV57164
ELECTRO-OPTICAL CHARACTERISTICS (25°C Free Air Temperature Unless Otherwise Specified)
MIN.
Forward voltage MV53164, MV57164/MV54164

TYP.

MAX.

2.0/2.2

2.5/3.0

UNITS

TEST
CONDITIONS

V

IF = 10 mA

Luminous Intensity (unit average) (See Note 1)

510

1800

I'cd

IF = 10 mA

Pulsed Luminous Intensity (MV54164)

710

2500

I'cd

IF = 60mA
peak; 1:6 DF

585
562
630

nm
nm
nm

40/30

nm

26/12
35/40

n

IF = 20 mA

pF

V = 0, f= 1 MHz

500

ns

IF = 10 mA

Peak emission wavelength
MV53164
MV54164
MV57164
Spectral line half width MV53164, MV57164/MV54164
Dynamic resistance
Segment MV53164, MV57164/MV54164
Capacitance MV53164, MV57164/MV54164
Switching time
Reverse voltage

6.0

IR = 1OOl'A

TYPICAL DRIVE CIRCUIT
v+

A til

10

11

11

12

12

13

13

14

14

15

15

16

16

17

17

1B

18

19

10
RVS,
MSA,
B,

AB:

REFERENCE VOLTAGE SOURCE
MODE SELECT AMPLIFIER
BUFFER
LED BRIGHTNESS CONTROL

nil

BAn OR
SINGLE

LED
CONTROL

-

SIGNAL
IN ---f'IIV\~

20

ILED

RLO

4

LM3914

C1471

PIN CONNECTIONS
PIN
NO.
1
2
3
4
5
310

ELECTRICAL
CONNECTIONS

PIN
NO.

ELECTRICAL
CONNECTIONS

PIN
NO.

ELECTRICAL
CONNECTIONS

PIN
NO.

ELECTRICAL
CONNECTIONS

Bar 1 Anode
Bar 2 Anode
Bar 3 Anode
Bar 4 Anode
Bar 5 Anode

6
7
8
9
10

Bar 6 Anode
Bar 7 Anode
Bar 8 Anode
Bar 9 Anode
Bar 10 Anode

11
12
13
14
15

Bar 10 Cathode
Bar g Cathode
Bar 8 Cathode
Bar 7 Cathode
Bar 6 Cathode

16
17
18
19
20

Bar
Bar
Bar
Bar
Bar

5 Cathode
4 Cathode
3 Cathode
2 Cathode
1 Cathode

MV53164 MV54164 MV57164
TYPICAL CURVES MV53164 MV57164 (PER SEGMENT) (25°C Free Air Temperature)
100

«

E BO
I
70

I

60

w

a: 50
a:
40

«

30

5:

a:

u.

z

Z 1000

:ii

::J
...J

500

IJI

o

.4

.B

V

O·

1.2 1.6 2.0 2.4 2.B 3.2 3.6 4.0

FORWARD VOLTAGE (VF) - VOLTS

Cl0BOA

170

1000

160

BOO

"

'iii.

I 140

FTO'

z

~

90

a:
~ 100 -MV53164

:s

w

.........

"MV57164

!i: 120
'110

10
15
20
IF (PER SEGMENT) - rnA

'" "-.."-

«

~

"-..

BO

a: 70

-25

o

25

25
30
Cl090A

'c

1.5

MV57164

~100

~

BO

D..

50

w

............

20
10

70

3

1

10

20

DUTY CYCLE - %

C1244A

'"

50

100

Cl193

Fig. 4. Max Peak Current vs.
Duty Cycle

~
\

MV53164
"

Fig. 3. Luminous Intensity vs.
Temperature (See Note 2)

2

= 200 pp'

.......

.......

I

"

50

AMBIENT TEMPERATURE -

200

E

,--

60
50
-50

I-

500

......

13
'" 130
>1

/

MV57164

Fig. 2. Luminous Intensity vs.
Forward Current

Fig. 1. Forward Current vs.
Forward Voltage

150

/

'"o::J

h

10

I/V53164-

w

!z 1500

rt

20

/

"I

~ 2000

iii

1/

a:

0

'8 2500

MV571641.

::J

tJ
0

V
J

I MV53164
/1

~

....
z

3000

I

90

~V57164

'\ l'\

1,\ '\

MV5316?'

'\

'"

dw

a:

u.

..... ~

,~

1
10

20

40

DUTY CYCLE - %
IF per 'ego 10 rnA AVERAGE

DC
Cl194A

Fig. 5. Luminous Intensity vs.
Duty Cycle
311

MV53164 MV54164 MV57164
TYPICAL CURVES MV54164 (PER SEGMENT) (25°C Free Air Temperature)
100

«

E

.!:

z
w

a:
a:

::J

()

0

a:

~a:

0

u..

>iii

I-

I

80

(fl

60
50
40

I

30
/

20
10

./

o

/

::J

/

0

z

MV5164L

2.0

~

::J

-'

w

>

(DOTTED LINE
INDICATES
PULSED OPERATIONSEE FIGS. 3, 51

~

1.0

-'
w

V

a:

4.0
2.0
3.0
1.0
FORWARD VOLTAGE - VF (VOLTS,
C1697

0

130

j!. 120

400

w

a:
a: 200

::J

a.
::;;
::J
::;;

x

«
::;;

I(jj

Ii t:iJ~~,,<-

60 ~~-f:'~
40

>-

¥;~L4164

"'I'><: 100
~o
80
«
w

()

"

~

I-

~

w
>

~-'

"

w
a:

20
10
10

100
1000
PULSE DURATION il'SI

110

Z
w

u>
;...,
'0m.-'·~f.;

~

100

/

5
10
15
20
25
30
DC FORWARD CURRENT - IF ,mAl

'"

90
80
70
-55

10,000

NORMALIZED
AT 25°C

~

~

I
MV54164

I""

"-

'"

25
50
75
-25
0
TEMPERATURE - TA ,oC,

C1699

100

C1700

Fig. 8. Maximum Peak
Current vs. Pulse Duration

Fig, 9. Relative Luminous
Intensity vs. Temperature

2.0

5.0
10
20
% DUTY CYCLE

50

DC

C1701

Fig. 10. Relative Efficiency
vs. Duty Cycle
312

/

Fig. 7. Relative Luminous Intensity
vs. DC Forward Current

1000
800
.;( 600
IZ

V

~

m1(

C1702

Fig. 6. Forward Current
vs. Forward Voltage

§

1T IF =1 10

~

I

MV54164

NdRMAJZED

z

w
I- 3.0

I

70
I-

4.0

I

90

MV53164 MV54164 MV57164
FILTER RECOMMENDATIONS
For optimum ON and OFF contrast. one of the following filters or equivalents may be used over the lamp:
MV53164
MV54164
MV57164
Panelgraphic Green 48
Panelgraphic Yellow 25 or Amber 23
Panelgraphic Red 60
Homalite 190 - 1720 or 100 - 1726
Homalite 100 - 1440 Green
Homalite 100 -1605
In situations of high ambient light. a neutral density filter can be used to achieve greater contrast:
Panelgraphic Grey 10
Panelgraphic Grey 10
Homalite 100 - 1266 Grey

NOTES
1.

2.
3.
4.
5.

The average Luminous Intensity is obtained by summing the Luminous Intensity of each segment and dividing by the total number of
segments. The standard of measurement is the Photo Research Corp. "Spectra" Microcandela Meter (Model IV-D) corrected for
wavelength. Intensity will not vary more than ±33.3% between all segments within a unit.
The curve in Figure 3 is normalized to the brightness at 25°C to indicate the relative efficiency over the operating temperature range.
Leads immersed to 1/16 inch (1.6 mm) from the body of the device. Maximum unit surface temperature is 140°C.
All units are categorized for Luminous Intensity. The Intensity category is marked on each part as a suffix letter to the part number.
For flux removal, Freon TF, Freon TE, Isoproponal or water may be used up to their boiling points.

313

314

Lamps

4

315

316

Lamps
Alphanumeric Product Listing
Page
331
341
341
341
361

Product
MV53154
MV5352
MV5353
MV5354A
MV5360

Page
339
347
349
349
329

Product
MV5754A
MV5760
MV57620
MV57621
MV57622

Page
349
329
329
329
329

MV50B
MV50152
MV50154
MV5021
MV5022

323
339
339
337
337

MV53621
MV53622
MV53640
MV53641
MV53642

329
329
333
333
333

MV57640
MV57641
MV57642
MV5774C
MV5777C

333
333
333
327
325

329
329
329
329
329

MV5023
MV5024
MV5025
MV5026
MV5052

337
337
337
337
343

MV5374C
MV5377C
MV54B
MV54123
MV54124A

327
325
323
357
361

MV6053
MV6151
MV6152
MV6153
MV6154A

343
353
347
349
349

HLMP-1503
HLMP-1520
HLMP-1521
HLMP-1523
HLMP-1540

333
329
329
333
329

MV5053
MV5054-1
MV5054-2
MV5054-3
MV5054A-l

343
345
345
345
343

MV54152
MV54154
MV5452
MV5453
MV5454A

339
339
347
349
349

MV6351
MV6352
MV6353
MV6354A
MV64B

353
347
349
349
323

HLMP-1700
HLMP-1719
HLMP-3300
HLMP-3301
HLMP-3315

331
331
351
351
351

MV5054A-2
MV5054A-3
MV5055
MV50640
MV5074C

343
343
343
333
327

MV5460
MV54624
MV54643
MV54644
MV5474C

329
329
333
333
327

MV6451
MV64520
MV64521
MV64530
MV64531

353
347
347
349
349

HLMP-3316
HLMP-3750
HLMP-3850
HLMP-3950
HLMP-4700

351
341
341
341
331

MV5075C
MV5077C
MV5094A
MV5152
MV5153

327
325
355
347
349

MV5477C
MV5491A
MV55AB
MV57B
MV57123

325
355
323
323
357

MV6454A
MV6752
MV6753
MV6754A
MV6951

349
347
349
349
353

HLMP-4719
MP22
MP52
MP65
MV10B

331
364
364
365
335

MV5154A
MV53B
MV53123
MV53124A
MV53152

349
323
357
361
339

MV57124A
MV57152
MV57154
MV5752
MV5753

361
339
339
347
349

TAPE AND REEL 363

Product
FLVll0
HLMP-0300
HLMP-0301
HLMP-0400
HLMP-0401

Page
351
359
359
359
359

HLMP-0503
HLMP-0504
HLMP-1300
HLMP-1301
HLMP-1302

359
359
333
333
333

HLMP-1320
HLMP-1321
HLMP-1340
HLMP-1420
HLMP-1440

Product
MV2454
MV3350
MV3450
MV3750
MV49124A

317

LAMPS
PART
NUMBER

LENS
TYPE

VIEWING
ANGLE 2(')1/,

MV50B

Standard Red

Water Clear

80

MV54B

Standard Red

Red Clear

80

1.0/20

MV53B

Yellow

Yellow Clear

80

2.0/20

MV64B

High Eff. Green

Green Clear

80

2.0/20

MV55AB

High Eff. Red

Red Clear

40

MV57B

High Eff. Red

Red Clear

80

0.5/5
2.0/20

MV5077C

Standard Red

Red Diffused

110

1.75/20

MV5377C

Yellow

Yellow Diffused

180

2.0/20

MV5477C

Hi. Eff. Green

Green Diffused

180

2.5/20

MV5777C

Hi. Eff. Red

Red Diffused

180

3.0/20

MV5074C

Standard Red

Red Clear

70

2.5/20

MV5075C

Standard Red

Red Diffused

90

1.5/20

MV5374C

Yellow

Yellow Diffused

90

4.0/20

MV5474C

Hi. Eff. Green

Green Diffused

90

4.0/20

MV5774C

Hi. Eff. Red

Red Diffused

90

5.0/20

HLMP-1440

Yellow

Pale Yellow Tint

24

60/20

MV5360 (HLMP-1420)

Yellow

Pale Yellow Tint

45

12/10

MV53621

Yellow

Yellow Clear

45

4/10

MV53622

Yellow

Yellow Clear

45

8/10

Hi. Eff. Green

Pale Green Tint

24

60/20

Pale Green Tint

45

12/20

Hi. Eff. Green

Green Clear

45

12/20

HLMP-1340

Hi. Eff. Red

Pink Tint

24

60/20

MV5760 (HLMP-1320)

Hi. Eff. Red

Pink Tint

45

12/10

MV57620

Hi. Eff. Red

Red Clear

45

2/10

MV57621

Hi. Eff. Red

Red Clear

45

4/10

MV57622 (HLMP-1321)

Hi. Eff. Red

Red Clear

45

12/10

PACKAGE
T -:%

=«Q)==

LUMINOUS
INTENSITY
(TYP. mcd/mA)

SOURCE
COLOR

PAGE

1.4/20

323

T-1
Low Profile

n
T-1

ij
T-100
Clear Lens

HLMP-1540

A

MV5460 (HLMP-1520)
MV54624 (HLMP-1521)

Hi. Eff. Green

DD

318

325

327

329

LAMPS
PART
NUMBER

PACKAGE

T-100
Diffused

H
00

MV50640

SOURCE
COLOR

LENS
TYPE

VIEWING
ANGLE 2~)1"

LUMINOUS
INTENSITY
(TYP. mcd/mA)

PAGE

Standard Red

Red Diffused

90

1.5/20

333

HLMP-1719

Yellow

Yellow Diffused

50

2.0/2

331

MV53640

Yellow

Yellow Diffused

90

2.0/10

333

MV53641

Yellow

Yellow Diffused

90

3.0/10

333

MV53642

Yellow

Yellow Diffused

90

4.5/10

333

MV54643 (HLMP-1503)

Hi. Eff. Green

Green Diffused

90

5/20

333

MV54644 (HLMP-1523)

Hi. Eff. Green

Green Diffused

90

10/20

333

HLMP-1700

Hi. Eff. Red

Red Diffused

50

2.0/2

331

MV57640 (HLMP-1300)

Hi. Eff. Red

Red Diffused

90

2.0/10

333

MV57641 (HLMP-1301)

Hi. Eff. Red

Red Diffused

90

2.5/10

333

MV57642 (HLMP-1302)

Hi. Eff. Red

Red Diffused

90

4.0/10

333

MV10B

Standard Red

Water Clear

90

0.8/10

335

1.6/20

TO-18

W
,
~

T-1%
Taper

W

MV5021

Standard Red

White Diffused

90

MV5022

Standard Red

Red Clear

90

1.6/20

MV5023

Standard Red

Red Diffused

90

1.6/20

MV5024

Standard Red

Red Diffused

60

3.0/20

MV5025

Standard Red

Red Diftused

180

0.4/20

MV5026

Standard Red

Deep Red Diftused

90

0.6/20

T -1'1.

MV50152

Standard Red

Red Clear

45

2.0/10

Bullet

MV53152

Yellow

Amber Clear

45

5.0/10

oa

W
o0

MV54152

Hi. Eft. Green

Green Clear

45

5.0/10

MV57152

Hi. Eft. Red

Orange Clear

45

8.0/10

MV50154

Standard Red

Red. Lightly Dift.

50

1.5/10

MV53154

Yellow

Amber Lightly Dift.

50

-3.0/10

MV54154

Hi. Eft. Green

Green Lightly Diff.

50

3.0/10

MV57154

Hi. Eft. Red

Red Lightly Diff.

50

4.0/10

Standard Red

Red. Diftused

70

3.0/20

337

339

T-l'l..
Low Profile

l(

FLV110

351

0'

319

LAMPS
PART
NUMBER

LUMINOUS
INTENSITY
(TYP. mcd/mA)

SOURCE
COLOR

LENS
TYPE

VIEWING
ANGLE 2(-)';'

HLMP-3850 (Ultrabright)

Yellow

Pale Yellow Tint

24

150/20

HLMP-3950 (Ultrabright)

Hi. Eff. Green

Pale Green Tint

24

150/20

HLMP-3750 (Ultrabright)

Hi. Eff. Red

Pink Tint

24

150/20

PACKAGE

PAGE

T-1'Y,

Clear
Stand-off

n
T-1%
Clear

~
o

a

MV5052

341

Standard Red

Red Clear

72

2.0/20

MV3350 (Ultrabright)

Yellow

Pale Yellow Tint

24

150/20

341

MV5352/MV6352

Yellow

Yellow Clear

28

45/20

347

MV3450 (Ultrabright)

Hi. Elf. Green

Pale Green Tint

24

150/20

341

MV5452/MV64520

Hi. Elf. Green

Green Clear

35

25/20

347

MV64521

343

Hi. Elf. Green

Green Clear

35

60/20

347

MV5152/MV6152

Hi. Eff. Red

Amber Clear

28

40/20

347

MV3750 (Ultrabright)

Hi. Eff. Red

Pink Tint

24

150/20

341

MV5752/MV6752

Hi. Eff. Red

Red Clear

28

40/20

347

HLMP-3315

Hi. Eff. Red

Red Clear

35

18/10

351

HLMP-3316

Hi. Eff. Red

Red Clear

35

30/10

351

MV5054-1

Standard Red

Red Diffused

40

2.0/10

MV5054-2

Standard Red

Red Diffused

40

3.0/10

MV5054-3

Standard Red

Red Diffused

40

4.0/10

T-1%
Stand-off

W

345

, 0

T-H,
Dilfused
Narrow Angle

~
• a

320

MV5054A-1

Standard Red

Red Diffused

40

2.0/10

343

MV5054A-2

Standard Red

Red Diffused

40

3.0/10

343

MV5054A-3

Standard Red

Red Dilfused

40

4.0/10

343

HLMP-4719

Yellow

Yellow Diffused

50

2.0/2

331

MV5354A/MV6354A

Yellow

Yellow Diffused

24

20.0/20

349

MV2454

Hi. Eff. Green

Green Dilfused

35

3.0/3.5

331

MV5454A/MV6454A

Hi. Elf. Green

Green Diffused

24

20.0/20

349

MV5154A/MV6154A

Hi. Eff. Red

Amber Diffused

24

20.0/20

349

HLMP-4700

Hi. Eff. Red

Red Diffused

50

2.0/2

331

MV5754A/MV6754A

Hi. Eff. Red

Red Diffused

24

20.0/20

349

LAMPS
PART
NUMBER

W
..
T-l%
Max. Contrast
White
Diffused

W
..

LUMINOUS
INTENSITY
(TYP_ mcd/mA)

LENS
TYPE

MV5053/MV6053

Standard Red

Red Diffused

80

1.6/20

343

MV5055

Standard Red

Red Diffused

150

0.1/20

343

MV5353/MV6353

Yellow

Yellow Diffused

65

8.0/20

349

MV5453/MV64530

Hi. Eff. Green

Green Diffused

75

6.0/20

349

MV64531

Hi. Eff. Green

Green Diffused

75

14.0120

349

MV5153/MV6153

Hi. Eff. Red

Amber Diffused

65

6.0/20

349

MV5753/MV6753

Hi. Eff. Red

Red Diffused

65

9.0/20

349

HLMP-3300

Hi. Eff. Red

Red Diffused

65

3.5/10

351

HLMP-3301

Hi. Eff. Red

Red Diffused

65

7.0/10

351

PACKAGE

T-l%
Diffused
Wide Angle

VIEWING
ANGLE2(-l'i,

SOURCE
COLOR

PAGE

MV6351

Yellow

White Diffused

70

12.0/20

353

MV6451

Hi. Eff. Green

White Diffused

70

12.0/20

353

MV6151

Hi. Eff. Red

While Diffused

70

12.0/20

353

MV6951

Deep Red

White Diffused

70

12.0/20

353

MV5094A (Bipolar)

Red/Red

White Diffused

75

6.0/20

355

MV5491A (Bicolor)

Red/Green

White Diffused

100

6.0/20

355

MV53123

Yellow

Yellow Diffused

100

4.0/20

MV54123

Hi. Eff. Green

Green Diffused

100

4.0/20

MV57123

Hi. Eff. Red

Red Diffused

100

4.0/20

Rectangular

W
D•

9

HLMP-0400

Yellow

Yellow Diffused

100

2.5/20

HLMP-0401

Yellow

Yellow Diffused

100

5.0/20

HLMP-0503

Hi. Eff. Green

Green Diffused

100

3.0/20

HLMP-0504

Hi. Eff. Green

Green Diffused

100

5.0/20

HLMP-0300

Hi. Eff. Red

Red Diffused

100

2.5/20

HLMP-0301

Hi. Eff. Red

Red Diffused

100

5.0/20

357

359

D'

~
oa

MV53124A

Yellow

Yellow Diffused

100

6.0/20

MV54124A

Hi. Eff. Green

Green Diffused

100

6.0/20

MV57124A

Hi. Eff. Red

Red Diffused

100

6.0/20

MV49124A (Blcolor)

RedlGreen

White Diffused

100

6.0/20

361

321

322

MV53B
MV64B
MV50B HIGH EFFICIENCY RED MV55AB
MV54B HIGH EFFICIENCY RED MV57B
YELLOW

HIGH EFFICIENCY RED

STANDARD RED
STANDARD RED
PACKAGE DIMENSIONS

DESCRIPTION
ALL MVSXB

f

2.28 (.090)
2.03 (.080)

+

I

2 PLS

~6.35M\·~50)

ALL MVSXB
EXCEPT MVSSAB

+

.05tl.27)

C1994A

rt.~~ !~~~!~

r--'~----

~-~~~~."'L-~~~-;~J08(2.~~)
.015 (0 38) NOM
11 (2. )
~'1 I

Tc::l

~~~~---'-.1
'I

.009 ' (0.23)

~

15'

C576A

The family of MV53B, MV54B, MV57B, and
MV64B are non-diffused, tinted subminiature
T-% radial lamps with wide viewing angle.
The MV50B is Water Clear with wide viewing
angle while MV55AB is tinted, non-diffused
narrow viewing angle specified at 5 mA.

FEATURES
These subminiature LED lamps are intended for
high volume, low-cost status indication on PC
boards and for backlighting switches and
keyboard keys. The lamps are compatible with
vapor phase reflow surface mount and
conventional soldering switches.
• Subminiature package
• All colors
• Solid state reliability
• Choice of viewing angle

PHYSICAL CHARACTERISTICS
.042
(107)
NOM

NOTES:
1. ALL DIMENSIONS IN INCHES
(mm)

C593A

2. TOLERANCES ARE ± .010 INCH
UNLESS SPECIFIED

TYPE
MV50B
MV54B
MV53B
MV64B
MV55AB
MV57B

LENS
EFFECT

SOURCE
COLOR
Standard Red
Standard Red
Yellow
High Efficiency Green
High Efficiency Red
High Efficiency Red

Water Clear
Red
Yellow
Green
Red/Narrow
Red

ABSOLUTE MAXIMUM RATINGS (TA = 25° C Unless Otherwise Specified)
PARAMETER

Power dissipation •••••.•••..•••••••...
Average forward current ....••••••••••••
Peak forward current (ll-'s, PW 0.1% DF) •.•
Lead soldering time at 230° C •..••••••..•
Storage and operating temperatures

YELLOW
HI EFF.RED
MVS3B
MVSSAB
MVS7B
105
35 (1)
400
5

STD.
RED

HI EFF.
GREEN

UNITS

MVSOB
MVS4B
105
50 (2)
1000
5
-55°Cto+l00°C

MV64B
105
30 (3)
90
5

mW
rnA
rnA
sec

NOTES

1,2,3

4

NOTES
1. Derate linearly from 50° C at 0.7 mAIo C
2. Derate linearly from 50° C at 1.0 mAIO C
3. Derate linearly from 50° Cat 0.6 mA/o C

323

MV50B MV53B MB54B MV64B MV55AB MV57B
ELECTRO-OPTICAL CHARACTERISTICS
SYMBOL MV50B

PARAMETER
Luminous
Intensity (5)
Forward
voltage
Peak
wavelength
Spectral line
halfwidth
Reverse
breakdown
voltage
Total viewing
angle (6)

'MV55AB Iv min

min.
typo
max.
typo

Iv
VF

Ap

MV53B

(TA

0.5
1.4
2.0
1.65

1.0
2.0
3.0
2.1

0.4
1.0
2.0
1.65

660

585

660

20

35

typo

= 25° C

Unless Otherwise Specified)

MV54B MV55AB MV57B

MV64B

UNITS

2.2

1.0
20
3.0
2.1

1.0
2.0
3.0
2.2

mcd
mcd
V
V

635

635

565

nm

20

45

35

35

nm

2.0

IF = 20 mA
IF=20mA
IF = 20 mA
IF=20 mA

min.

VSR

5

5

5

5

5

5

V

typo

28'h

80

80

80

40

80

80

degrees

= 0.2 mcd/5 mA, IVTVP = 0.5 mcd/5 mA, VF max = 2.0 V/5 mA, VFTVP =

TYPICAL ELECTRO-OPTICAL CHARACTERISTIC CURVES
100 DOTTED LINES

INDICATE
~ 90 PULSED

- 80 OPERATIION-

.7.

w

70

~ 60
:>

u

~o

D

-

STANDARD
RED

....
of

;I()

\~'

Ie I

Unless Otherwise Specified)

-

en

/'

~

U)

:::J
~

III

rr .10

= 25°C

rn 3 0

I

HI EFF. I I
RED II I

2.0

:E

1/1/

·f

1.6V/5 mA

~

1 l r!-

§ :10

IR = 100j.lA

40

II I

ELLOw

(TA

CONDITIONS

:3

~ 1.0

r/;-HIEFF.
GR1EEN-

/iV

~

w

.J.Lh

a:

o/
o

1

FOWARD VOLTAGE VF (VOLTS)
C1833

Fig. 1. Forward Current vs.
Forward Voltage

V

V

/

1/

20
40
60
80
INSTANTANEOUS FORWARD
CURRENT IF(mA) C652A

Fig. 2. Luminous Intensity vs.
Forward Current

120%

.."? 100%

~

I-

w

n.

en
z

:::J

HI.IEFFI. V!LLdw
GREENlf

"
II \

80%

I-

~

:::J

60%

w

0

~

;::
..:
..J

40%

a:

20%

W

>

w

a:

o

f\

1\

I\
\

\

>

..J
W

~EDI ~~~

J

II 1/I \ }
I

\

V

\

~

520 540 560 580 600 620 640 660 680 690

C2095

WAVELENGTH

(A)

0

nm
Cl064A

Fig. 3. Spatial Distribution

Fig. 4. Spectral Distribution

NOTES

4.

5.
6.

324

The leads of the device were immersed in molten solder, heated to a temperature of 230°C, to a point 1/16 inch (1.6mm)
from the body of the device per MIL-S-750, with dwell time of 5 sec.
As measured with a Photo Research Corp. "SPECTRA" Microcandela Meter (Model IV-D).
The axis of spatial distribution are typically within a 10° cone with reference to the central axis of the device.

STANDARD RED
YELLOW

MV5077C
MV5377C

T
~SQ
OT7"(432mm)

ANODE

rl-u~

.....

J

+

•

-

FEATURES

-----.

050" (1.27mm)

REF.

NOTES:
1. ALL DIMENSIONS ARE IN INCHES (mm)
2. TOLERANCES ARE ±.010" INCH UNLESS SPECIFIED
3. AN EPOXY MENISCUS MAY EXTEND ABOUT .040" (lmm)
DOWN THE LEADS

mm_~

--

• Square leads (will fit into .020-inch (.508 mm)
diameter holes)
• Compact size
• Bright (up to 3.0 mcd at 20 mAl
• Very wide viewing angle
• Long life, rugged
• Mount on approximately 3/16-inch (4.72 mm)
centers
• Tinted diffused

~~
..J.

160" (4 06 mm) DIA

ISO"" 27

These solid state indicators offer a low profile
T-1 package. The High Efficiency Red, Green
and Yellow devices are made with a gallium
arsenide phosphide on gallium phosphide. All
are encapsulated in epoxy packages. Their small
size (approximately T-1 size), good viewing
angle, and small square leads contribute to their
versatility as all purpose indicators.

1.00" 125.4 mm) MIN.

045" (1 143 nlm)

MV5477C
MV5777C

DESCRIPTION

PACKAGE DIMENSIONS

Lr"-----i

HIGH EFFICIENCY GREEN
HIGH EFFICIENCY RED

01.0" (1 52mm)

0',0" (127 mm)

C1132A

ABSOLUTE MAXIMUM RATINGS (TA = 25°C Unless Otherwise Specified)
Power dissipation .............••.••••.•...•...•.....................•......•....•.••..•..•.......• 105 mW
Derate linearly from 25° C ....•.....•.•.....••.•.••..••......•..••.•...•................••.... -1.14 mW/o C
Storage and operating temperature ......................................................... -55° C to +100° C
Continuous forward current ...............•.•.•...•..•...........•..........................•.•.•... 35 mA
Peak forward current (I-'sec pulse 0.3% duty cycle) (MV5477C=90 mAl .........•......•...•............... 1.0 A
Reverse voltage ..........••.............••..•.••.••........................•...............•..•...... 5.0 V
Lead soldering time at 260° C (See Note 2) ............................................................ 5 sec.

PHYSICAL CHARACTERISTICS

TYPE
MV5077C
MV5377C
MV5477C
MV5777C

SOURCE
COLOR

LENS
COLOR

Standard Red
Yellow
High Efficiency Green
Red

Red Diffused
Yellow Diffused
Green Diffused
Red Diffused

LENS
EFFECT
Wide
Wide
Wide
Wide

Beam
Beam
Beam
Beam

PACKAGE
STYLE
Low
Low
Low
Low

Profile
Profile
Profile
Profile
325

MV5077C MV5377C MV5477C MV5777C
ELECTRO-OPTICAL CHARACTERISTICS (TA = 25°C Unless Otherwise Specified)
PARAMETER
Forward voltage

SYMBOL TESTCOND.
VF
IF =20 mA
IF =20 mA

typo
max.

Luminous Intensity
(See Noto 1)

min.
typo

Iv

Peak wavelength
Spectral line
half width
Capacitance
Reverse voltage

Ap

typo
min.
typo
Viewing angle (total) (Fig. 3)

C
VA

UNITS
V
V

MV5077C
1.6
2.0

MV5377C
2.1
3.0

MV5477C
2.2
3.0

MV5777C
2.0
3.0

tF=20mA
IF=20 mA
IF =20mA
IF =20mA

mcd
mcd
nm
nm

0.3
1.75
660
20

1.0
2.0
585
35

1.0
2.5
565
35

1.0
3.0
635
45

V=O
IA = 100"A
IR=100"A

pF
V
V
degrees

23
5
15
110

45
5
25
180

20
5
25
180

45
5
25
180

2(·)'h

TYPICAL ELECTRO-OPTICAL CHARACTERISTIC CURVES
(25° C Free Air Temperature Unless Otherwise Specified)
100

1

DOTTED LINES
INDICATE
90 PULSED
80 OPERATIION- jELLoW

ffi

70

I

" 30
'" 20

"~

10

-

I-

111I

~ 60
STANDARD
:>
r..J 50
RED
Cl
a: 40

~

,. 4.0

II I

iii

z

~ 3.0
~

HI EFF. II
RED II I

1/

C/l

:::J

Sl2.0

III

::i

::

//1

~1.0

'1r'HIEFF.
GR1EEN-

h'l
..JLh

~ /

V

~

V

1/

a: 0

o

60
20
80
40
INSTANTANEOUS FORWARD
CURRENT IF(mA)
C652A

FOWARD VOLTAGE VF (VOLTS)
C1833

Fig. 1. Forward Current vs.
Forward Voltage

Fig. 2. Luminous Intensity vs.
Forward Current

120%

?f.

GREE~r ~

I

~
iii

I-

:::J

zW

80%

'\

a.

I-

I-

:::J 60%

~

0

W

W

~

>
;::
«
..J

40%

II:

II:

20%

>

w

W

S~D

HI.I EFJ. VLLbw IREd

100%

o

J

II \
/ II \ I~
1/
J

~ RED

I\

\

I

\

[\

520 540 560 580 600 620 640 660 680 690

WAVELENGTH (1\) - nm

Cl064A

Fig. 3. Spatial Distribution

Fig. 4. Spectral Distribution

NOTES
1. As measured with a Photo Research Corp. "SPECTRA" Microcandela Meter (Model IV-D).
2. The leads 01 the device were immersed in molten solder, at 260° C, to a point 1/16 inch (1.6 mm) from the body of the
device per MIL-S-750, with a dwell time of 5 seconds.

326

MV5374C
STANDARD RED MV5074C HIGH EFFICIENCY GREEN MV5474C
STANDARD RED MV5D75C
HIGH EFFICIENCY RED MV5774C
YELLOW

DESCRIPTION

PACKAGE DIMENSIONS

L

These solid state indicators offer a variety of
color selection. The High Efficiency Red, Green
and Yellow devices are made with a gallium
arsenide phosphide on gallium phosphide. All
are encapsulated in epoxy packages. Their small
size (approximately T-1 size), good viewing
angle, and small square leads contribute to their
versatility as all purpose indicators .

.'90"l3Bmml

FEATURES
.020"l.r mml

1.00"125t mml MIN.

• Square leads (will fit into .020-inch (.50Bmm)
diameter hole)
• Compact size
• Bright (typically 2.0 mcd at 20 mAl
• Long life, rugged
• 1-inch (25.4 mm) minimum lead length
• Mount on approximately 3/16-inch (4.72 mm)
centers

'~~;::::!~~~~:SQ--D: ~-=t
ANODE~

--,-

-

050(127mml
REF

I',J"---"

/CATHODE REF
FLAT

I

I
:
\

NOTES:
1 ALL OIMENSIONS ARE IN INCHES (mm)
2. TOLERANCES ARE ±.010" INCH UNLESS SPECIFIED
3. AN EPOXY MENISCUS MAY EXTEND ABOUT .040" (1mm)
DOWN THE LEADS

-

-"

4 - .060" (1.52 mml

050" (1.27 mm)

C1128B

ABSOLUTE MAXIMUM RATINGS (TA = 25°C Unless Otherwise Specified)
Power dissipation ...............•..••...••....••.....•.•.....••......•...................•........ 105 mW
Derate linearly from 25°C .................................................................... -1.14mW/oC
Storage and operating temperature ......................................................... -55° C to +100° C
Lead soldering time at 260° C (See Note 2) ••..................•.•....••......•.................•...... 5 sec.
Continuous forward current ..........•..•...........•.•.....................................•....... 35 mA
Peak forward current (J.'sec pulse 0.3% duty cycle) (MV5474C=90 mA) .........•............••.•.......... 1.0 A
Reverse voltage ••..............••.••.....•..........•....•.•......•.................................. 5.0 V

PHYSICAL CHARACTERISTICS

TYPE
MV5074C
MV5075C
MV5374C
MV5474C
MV5774C

SOURCE
COLOR

LENS
COLOR

LENS
EFFECT

Standard Red
Standard Red
Yellow
High Efficiency Green
High Efficiency Red

Red Clear
Red Diffused
Yellow Diffused
Green Diffused
Red Diffused

Narrow Beam
Wide Beam
Wide Beam
Wide Beam
Wide Beam

PACKAGE
STYLE
High
High
High
High
High

Profile
Profile
Profile
Profile
Profile
327

MV5074C MV5075C MV5374C MV5474C MV5774C
ELECTRO·OPTICAL CHARACTERISTICS· (TA = 25° C
PARAMETER
Forward voltage

typo
max.

Luminous Intensity
(See Note 1)

SYMBOL TESTCOND. UNITS
VF
IF =20 mA
V
IF = 20 mA
V

min.
typo

Iv

IF=20mA
IF = 20 mA
IF =20 mA
IF = 20 mA

Ap

Peak wavelength
Spectral Ii ne
half width
Capacitance
Reverse voltage
Reverse current
Viewing angle (total)

typo
min.
typo
max.

mcd
mcd
nm
nm

V=O
pF
V
IR=100J.'A
V
IR=100J.'A
VR =5.0V
p.A
See Fig. 3
degrees

C
VBR

2(-)'h

Unless Otherwise Specified)

MVS074C
1.6
2.0

MVS07SC
1.6
2.0

MVS374C
2.1
3.0

MVS474C
2.2
3.0

MVS774C
2.0
3.0

0.7
2.5
660
20

0.6
1.5
660
20

1.5
4.0
585
35

1.2
4.0
565
35

1.5
5.0
635
45

23
5
15
100
70

23
5
15
100
90

45
5
25
100
90

20
5
25
100
90

45
5
25
100
90

TYPICAL ELECTRO·OPTICAL CHARACTERISTIC CURVES
(250 C Free Air Temperature Unless Otherwise Specified)
100

//.1

DOTTED LINES

~

90 INDICATE

...z

70

PULSED
::; 80 OPERAT1'ON- 1ELLowl

:J

(,) 50

.

Cl

I
STANDARD
RED

10

:3
~ 1.0

~
..J

GR1EEN-

W

I

..!/L)

/

~

rlr'HI EFF.

hV

~

./

'"::>~ 2.0

1//
1//

30

u..
'" 20

~

z

~ 3.0
~

HI EFF. "
RED /II

a: 40

~

11I

w
~ 60

4.0

~

iii

a:

0

/

o

lL'

/

20

/

40

60

80

INSTANTANEOUS FORWARD
CURRENT 1,(mA)
C652A

FOWARD VOLTAGE VF (VOLTS)
C1833

Fig. 2. Luminous Intensity vs.
Forward Current

Fig. 1. Forward Current vs.
Forward Voltage

120%

'#.

100%

I

...::>
...n.::>

60%

~..J

40%

a:

20%

W

SO%

30%

10%

a

C1129E

JELLJw

IREd

"

\

80%

0

w
>

HI' EFl

l-'oREEi{",

J I
/ J
V

0/
520 540 560

I\

I~

\

\ IA
J

\

I \

V

\

\

580 600 820 640 660 680 690

WAVELENGTH (A) -

Fig. 3. Spatial Distribution

S+D.
RED

nm

Cl064A

Fig. 4. Spectral Distribution

NOTES
1. As measured with a Photo Research Corp. "SPECTRA" Microcande/a Meter (Model IV-D).
2. The leads of the device were immersed in molten solder, at 260· C, to a point 1/16 inch (1.6 mm) from the body of the
device per MIL-S-750, with a dwell time of 5 seconds.

328

J,

YELLOW MV5362X TINTED, HLMP-1440,
HIGH EFFICIENCY GREEN MV5462X TINTED, HLMP-1540,
HIGH EFFICIENCY RED MV5762X TINTED, HLMP-1340,
PACKAGE DIMENSIONS

DESCRIPTION
These solid state indicators offer a variety of color
selection. The High Efficiency Red and Yellow
devices are made with gallium arsenide phosphide
on gallium phosphide. All are encapsulated in
epoxy packages and have clear lenses. Their small
size, wide viewing angle, and small square leads
contribute to their versatility as all-purpose
indicators. All types are tinted to aid identification.

.185 ,4.70,
:165'4~19",

'25016~L

=~~_-:-_-,.-_~-,-'(" - - L,~

FEATURES
_ , . . . . . ~J ....

1.0 125.4, MIN.

L~;_
CATHODE

J

Jf

:

MV5360 PALE TINT
MV5460 PALE TINT
MV5760 PALE TINT

.050 (1.27)

t

,.:" ___R.,:.E_F"T

.11012.79,
.090'2.29,

NOTES:
1. TOLERANCES, UNLESS
OTHERWISE SPECIFIED.
.XXX ± 010
2 ALL DIMENSIONS IN
INCHES (MILLIMETERS)

C1533G

•
'-•.
•
•
•
•
•
•
•
•
•

.,
Standard and Ultrabright devices
",
Clear tinted lenses
100 mil lead spacing
High efficiency GaP
Versatile mounting on PC board or panel
Long life-solid state reliability
Low power requirements
Compact, rugged, lightweight
T-1 diameter
Replacement for the HLMP-1X20/1 Series
Excellent for switch backlighting

PHYSICAL CHARACTERISTICS
TYPE

SOURCE
C.OLOR

LENS
EFFECT

LUMINOUS INTENSITY
at 25° C (mcd)
MIN.
TYP.

TEST CONDITION

Ultrabright

HLMP-1440
MV5360 (HLMP-1420)
MV53621
MV53622

Yellow
Yellow
Yellow
Yellow

Pale Tint
Pale Tint
Tinted
Tinted

24.0
6.0
3.0
6.0

60.0
12.0
4.0
8.0

IF = 20 mA

Ultrabright

HLMP-1540
MV5460 (HLMP-1520)
MV54624 (HLMP-1521)

High Efficiency Green
High Efficiency Green
High Efficiency Green

Pale Tint
Pale Tint
Tinted

24.0
6.0
6.0

60.0
12.0
12.0

IF =20 mA

Ultrabright

HLMP-1340
MV5760 (HLMP-1320)
MV57620
MV57621
MV57622 (HLMP-1321)

Pale Tint
Pale Tint
Tinted
Tinted
Tinted

24.0
6.0
1.5
3.0
6.0

60.0
12.0
2.0
4.0
12.0

IF =20 mA

High
High
High
High
High

Efficiency Red
Efficiency Red
Efficiency Red
Efficiency Red
Efficiency Red

IF = 10mA

329

HLMP-1 X40 MV5X62X MV5X60
ABSOLUTE MAXIMUM RATINGS (TA = 250 C Unless Otherwise Specified)
Power dissipation .......•..•.............•..•..................•............•..................... 120 mW
Derate linearly from 500 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 0.4 mAr C
Storage and operating temperature .......................................................... -550 C to +1000 C
Lead soldering time at 2600 C (1/16 inch from body) ................•..•.•...........•....••............. 5 sec.
Continuous forward current ••...........•••.•........................................................ 30 mA
Peak forward current (1 Ilsec pulse, 0.3% duty cycle) ...............•..•........•........................ 90 mA
Reverse voltage .....•.....•..•..........•............................................................ 5.0 V

ELECTRO-OPTICAL CHARACTERISTICS (250 C Free Air Temperature Unless Otherwise Specified)
PARAMETER

UNITS

MV5362X
MV5360

MV5462X
MV5460

MV5762X
MV5780

V
nm

2.1
3.0
585

2.1'
3.0'
565

2.0
3.0
635

2.2'
3.0'
635

2.2'
3.0'
585

2.2'
3.0'
565

nm

35

40

45

45

35

40

f= 1 MHz, V=O

pF

45

20

45

45

45

20

IR = 100 I'A

V

5.0

5.0

5.0

5.0

5.0

5.0

See Fig. 3

degrees

45

45

45

24

24

24

TEST CONDITIONS

Forward voltage (VF)
typo
max.
Peak wavelength
Spectral line
half width
Capacitance
typo
Reverse voltage (VR)
min.
Viewing angle (total)
typo

IF = 10

rnA

HLMP-1340 HLMP-1440 HLMP-1540

'IF = 20mA

TYPICAL ELECTRO-OPTICAL CHARACTERISTIC CURVES
(250 C Free Air Temperature Unless Otherwise Specified)
:?

..,.§.>-

100:lt

OTTED

..
-- J
YELLOW
90 INDICATELINES

i'

PULSED
80 OPERATION

,

~ 70

a:
U

HIGH"""'- "
i-ErFICIENCY",
50 t - - RED

a:

40

IT:

30

§
o

~

~

iii

z

~
~

en
=>

60 j - - -

o
z

II,

fi:

?D

'«a."

10

UJ

WI,

~

3

0
0

=>
oJ

//"HIGH
EFFICIENCY
GREEN

r;I

UJ

>

/)1/

!:ioJ:

L/.,

UJ

i

!

0/

~

/

a:

10
20
30
FORWARD CURRENT (1F)-mA
CI563A

FOWARD VOLTAGE V, (VOL TSI
Cla31C

Fig. 1. Forward Current vs. Forward Voltage

Fig. 2. Relative Luminous Intensity vs. Forward Current

,
100°,,
en
X
80

400

~

u..

o

70

i'

I
>=>
a.

80°1,

,

1- 60 0/

o=>

.

~ 400

60

!:i:

u1

a:

20°',

yLLJW
HI EFF
GREEN

'\ f\

I I \ 1\

/ 1/ \l~
j /

J~

l\

HI EFF
RED

\

\

\

0
520 540 560 580 600 620 640 660 680
C1129D

Fig. 3. Spatial Distribution

330

WAVELENGTH (AI - nm C1064C

Fig. 4. Spectral Distribution

2mA

HIGH EFFICIENCY RED
YELLOW
HIGH EFFICIENCY GREEN

HLMP-1700 HLMP-4700
HLMP-1719 HLMP-4719
MV2454

DESCRIPTION

PACKAGE DIMENSIONS

The T-1% HLMP-4700 Series and T-1 HLMP1700 Series are direct pin-for-pin replacements
for the Hewlett-Packard lamps with the same
part numbers. All devices are tinted diffused
with a medium-wide viewing angle. The design
of the LED chips is optimized for low current
applications and is far superior in Luminous
Intensity compared to standard LED lamps at
very low current.

T-1

These low current lamps are primarily intended
for direct view.

NOTES
1 TOLERANCES, UNLESS
OTHERWISE SPECIFIED

FEATURES

XXX ::!::,O1O
2 ALL DIMENSIONS IN
INCHES (MILLIMETERS)

..
..
"
..
..
..
"

C1533G

Very low power - 4 mW
2 mA drive from low power TTL or CMOS
All three colors
Power savings in portable equipment
Sturdier leads for easy assembly
Both T-1'I4 and T-1
Use MP52 panel mounting grommet with
HLMP-4700, HLMP-4719 and MV2454

APPLICATIONS

O0

2

.5(1.7)
REF.

L
I

j,
I

I

I

i

040
1102

}

1,00 (2.54) MIN.

~

NOTES:
1. ALL DIMENSIONS ARE IN INCHES (mm)
2. TOLERANCES ARE ±.OlQ" INCH UNLESS
SPECIFIED
3. AN EPOXY MENISCUS MAY EXTEND ABOUT
.040" (1 mm) DOWN THE LEADS

I

I ]I

017 {043} SQ
023 (058)

~

.. Portable battery driven digital or linear
electronic equipment like test instruments,
robots and toys
.. Multiple lamp application$ to reduce power
drain by 5 to 10 times and decrease power
supply size and cost as in phones, PBX and
signs

050 (1 27)
100 (2 54)

Cl062F

PHYSICAL CHARACTERISTICS
SIZE
T-1

T-l'I.

SOURCE
COLOR

LENS

TYPE
HLMP-1700
HLMP-1719

High Efficiency Red
Yellow

EFFECT
Red Diffused
Yellow Diffused

HLMP-4700
HLMP-4719
MV2454

High Efficiency Red
Yellow
High Efficiency Green

Red Diffused
Yellow Diffused
Green Diffused

331

HLMP-1700 HLMP-1719 HLMP-4700 HLMP-4719 MV2454
ABSOLUTE MAXIMUN RATINGS (TA = 25 C Unless Otherwise Specified)
0

HI.EFF.
RED

PARAMETER

27
7.5
25
5

Power dissipation
DC forward current
Peak forward current (PW:;; 1 ms, DF:;; 30%)
Lead soldering time at 2600 C
Operating and storage temperatures

YELLOW

HI.EFF.
GREEN

24
7.5
25

27
7 Jj
25

5

5

UNITS

NOTES

mW
mA
mA
sec

2

-550 C to +1000 C

NOTES
1)
2)

Derate linearly from 920 C at 1 mAIo C.
At 1/16 inch (1.6 mm) from bottom of lamp.

ELECTRO-OPTICAL CHARACTERISTICS (TA= 25°C Unless Otherwise Specified)
T -1"1.

PARAMETER
Luminous
Intensity
Forward voltage
Peak
wavelength
Reverse
breakdown
voltage
Viewing angle
(total)

SYMBOL
min.
typo
max.
typo

Iv
VF

HI. EFF.
RED
HLMP4700

YELLOW
HLMP4719

HI. EFF.
GREEN
MV2454

HI.EFF.
RED
HLMP1700

YELLOW
HLMP1719

UNITS

TEST
CONDo

1.2
2.0
2.2
1.8

1.2
2.0
2.7
1.9

1.2"
3.0"
2.7
1.9

1.0
2.0
2.2
1.8

1.0
2.0
2.7
1.9

mcd
mcd
V
V

IF =2 mA
IF=2mA
IF=2 mA
IF = 2 mA
IF = 2 mA

typo

Ap

635

565

565

635

585

nm

min.

VBR

5

5

5

5

5

V

typo

2~lV2

50

50

35

50

50

degrees

" MV2454 Luminous Intensity is measured at 3.5 mA

332

T-1

IR = 1OOl'A

RED
YELLOW
HIGH EFFICIENCY GREEN
HIGH EFFICIENCY RED
PACKAGE DIMENSIONS

DESCRIPTION
These solid state indicators offer a variety
of color selection. The High Efficiency Red
and Yellow devices are made with gallium
arsenide phosphide on gallium phosphide.
The High Efficiency Green utilizes an
improved gallium phosphide light emitting
diode. All are encapsulated in epoxy
packages with diffused lenses. Their small
size, wide viewing angle, and small square
leads contribute to their versatility as allpurpose indicators.

.185 (4.70)

1'65'l4.i9)

.250(6.3L

];=:-~-:==::~
l.°r~·:_
CATHODE

J

+i~ __...:..:::c~

!..

.110 (2.79)

MV50640
MV5364X
MV5464X/HLMp·15X3
MV5764X/HLMp·130X

FEATURES
• Replacement for the HLMP-1300 and
-1500 product series
• 100 mil lead spacing T-1
• High efficiency GaP light
• Versatile mounting on PC board or
panel
• Wide viewing angle
• Diffused tinted lens

NOTES:
1. TOLERANCES,UNLESS
OTHERWISE SPECIFIED:

.l!9O"(2.29j

.XXX ±.01O
2. ALL DIMENSIONS IN
INCHES (MILLIMETERS)

Cl533G

PHYSICAL CHARACTERISTICS

TYPE
MV50640
MV53640
MV53641
MV53642
MV54643 (HLMP-1503)
MV54644 (HLMP-1523)
MV57640 (HLMP-1300)
MV57641 (HLMP-1301)
MV57642 (HLMP-1302)

SOURCE
COLOR

LENS
EFFECT

Standard Red

Red Diffused

Yellow

Yellow Diffused

High Efficiency Green

Green Diffused

High Efficiency Red

Red Diffused

LUMINOUS
INTENSITY
at 25°C (mcd)
TYP.
MIN.
0.5
1.0
1.5
2,5
2.0
6,0
1.0
2.0
3.0

1.5
2.0
3.0
4.5
5.0
10.0
2.0
2.5
4.0

TEST
CONDITIONS
IF =20 mA
IF = 10 mA
IF=20mA

IF = 10 mA

333

MV50640 MV5364X MV5464X MV5764X
ABSOLUTE MAXIMUM RATINGS (TA = 25° C Unless Otherwise Specified)
ALL BUT GREEN

GREEN

120mW
1.6mWC
-55° C to +100° C
5 sec.
30mA
1.0 A
5.0 V

120mW
1.6mWC
-55° C to +100° C
5 sec.
30 mA
90 mA
5.0V

Power dissipation at 25° C ambient •...••..................•..••........
Derate linearly from 50° C .•..........................•..•.•.•..........
Storage and operating temperatures ................................... .
Lead soldering time at 260° C (1/16 inch from body) ....•....•..•.........
Continuous forward current at 25° C ............•.......•.......•.......
Peak forward current (1 ",sec pulse, 0.3% duty cycle) ..•..•••••...........
Reverse voltage .........•......•.•...•........•..............•....•...

ELECTRO·OPTICAL CHARACTERISTICS (25° C Free Air Temperature Unless Otherwise Specified)
PARAMETER
Forward voltage

typo
max.

SYMBOL
VF

Peak wavelength
Spectral line
half width
Capacitance
typo
Reverse voltage
min.
Viewing angle (total) typo
'IF = 20mA

TESTCOND.
IF = 10 rnA
IF = 10 rnA

A

IF=10mA
V = 0, f = 1 MHz,
IF = 100 p.A
See Fig. 3

C
VBR
2HV,

nm

MV50640'
RED
1.6
2.0
660

MV5364X
YELLOW
2.1
3.0
585

MV5464X
HI.EFF.
GREEN
2.2'
3.0'
562

MV5764X
HI.EFF.
RED
2.0
3.0
635

nm
pF
V
degrees

20
23
5.0
90

35
45
5.0
90

30
20
5.0
90

45
45
5.0
90

UNITS
V

TYPICAL ELECTRO·OPTICAL CHARACTERISTIC CURVES
(25° C Free Air Temperature Unless Otherwise Specified)

;r:'00 DOTTED LINEs/
INDICATE
.s 90 PULSED

/, '

.~ELLOWI ~

0;

II:
II:
::J

60

HI EFF. /I
RED /I,

en

II:

40

II:

30

L1J

0
0

~

70

50

STANDARD
RED

L1J

~ 3.0

::J

~ 2.0

1/'

~

3

~ 1.0

(I,HIEFF.
GRIEEN-

II V
../.Lt

u. 20

'«"

z

;!!;

!///

0

'0

0-

4.0

~

.!:
80 OPERATI'ONfZ

~
...J
L1J

II:

60
80
20
40
INSTANTANEOUS FORWARD
CURRENT IF(mA)
C652A

Fig. 2. Luminous Intensity vs.
Forward Current

Fig. 1. Forward Current vs.
Forward Voltage

'20%
en
40"

X
~

U.

o

50°

ill
L1J

60°

~

70°

a

L1J

30%

10%

a

Cl129B

Fig. 3. Spatial Distribution

334

L

/

-

0/

FDWARD VOLTAGE VF (VDLTS)
C1833

50%

/

/

V

;f!. ,"""

I
f::J
0-

f::J

0

.""
60%

L1J

>

~

40%

II:

2""

...J
L1J

STANDARD RED

DESCRIPTION

PACKAGE DIMENSIONS

H~~ci:R B:~:::~ f

The MV10B is a GaAsP light emitting diode
mounted on a TO-18 header with a clear epoxy
lens. On forward bias, it emits a spectrally
narrow band of radiation which peaks at 660 nm.

.164 _ ~

WITH

MV10B

EPOXY
LENS

.230"
MAX .

:
.5rN
·_D D. L

FEATURES
•
•
•
•

o:

.019" --,-

:mv
12 Leads}

.048"

/:m""
'-"'"

l

Long life - solid state reliability
Low power requirements
Compatible with integrated circuits
Compact, rugged, lightweight

CONNECTED
INTERNALLY
TO HEADER

TOLERANCES ;1:.010"
e569

ABSOLUTE MAXIMUM RATINGS (TA = 25°C Unless Otherwise Specified)
Power dissipation .........................•............•.................................•......... 175 mW
Derate linearly from 25° C .......•.........•...............................•.................... 2.33 mW/o C
Storage and operating temperatures .•.............•.•....•...........•........•............ -55° C to +100° C
Lead soldering time at 260° C (See Note 2) ................................................•.......... 7.0 sec.
Continuous forward current ........................................••............................... 70 mA
Peak forward current (1 ~sec pulse, 0.3% duty cycle) ..•.•........•....•.........................•....... 1.0 A
Reverse voltage .............•••................................•.......•............................. 5.0 V

ELECTRO-OPTICAL CHARACTERISTICS (TA = 25° C Unless Otherwise Specified)
PARAMETER
Luminous Intensity (See Note 1)
Peak emission wavelength
Spectral line half width
Forward voltage
Forward dynamic resistance
Capacitance

TYP.
0.8
660
20
1.65
2.0
135

MAX.

2.0

UNITS
mcd
nm
nm
V

n
pF

TEST CONDITIONS
IF=10mA

IF =50 rnA
IF = 50 rnA
V=O

335

MV10B
ELECTRO-OPTICAL CHARACTERISTICS (Continued)
MIN.

PARAMETER
Light rise time and fall time
Reverse current
Reverse breakdown voltage
Luminous flux
View angle

TYP.
50
50
15
3.7
90

3

MAX.

UNITS
ns
nA
V
mLumens
degrees

TEST CONDITIONS
50 1I system, IF = 50 mA
VR =3.0V
IR= 100 1'A
IF =50 mA
Between 50% pOints

TYPICAL THERMAL CHARACTERISTICS
Thermal resistance junction to free air JA ••••••••••••••••••• , ••••••••••••••••••••••••••••••••••••••••• , • 3200 CIW
Thermal resistance junction to case JC •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• , 1550 C/W
Wavelength temperature coefficient (case temperature) .•••••••..•..••..••.•••.•••.•• , .•••.•••.•••.•••• , .•• 0.3 nm/o C
Forward voltage temperature coefficient •...••..•••.••..••.••.••• , , •.•••• , , •••• , , •. , ••••••••.•••..•••.. -2.0 mV/o C

TYPICAL ELECTRO-OPTICAL CHARACTERISTIC CURVES
(TA = 25° C Unless Otherwise Specified)
40

I
>30

....
iii
z
W
t-

;;;20

en

-7 ~

--

:::J

o
Z

:1 10

3

o

/

o

V

~

-

100

LL

J

20 0

FREE STANDING DIODE

~z

!i:

I\,

17 5

~60
a:

"i

I"

>
;:

~ 100
~

'"

75

50

20
40
60
80
INSTANTANEOUS FORWARO
CURRENT 1,(mA) C652A

Fig. 1. Luminous Intensity vs. Forward Current

I

-; 70
150

~ 12 5

/

I
I

;(90
.§. 80

·50

~ 50

~

""

a:

40

~ 30
a: 20

~

·25
0
25
50
AMBIENT TEMPERATURE

75

CC)

Fig. 2. Brightness vs. Temperature

10

/

o

lOCI
C571

I

I
I
I
I
I

1
FORWARD VOLTAGE VF (VOLTS)
C1832

Fig. 3. Forward Current vs. Forward Voltage

16r-~--~--~---.---r--'

CONSTANT
DUTY CYCLE = 0 3"0

14r=-'-'-,-"-'-'''''T--'-'-'-t---+-r-

100'1,

1\
II \

~80%

:::J

o

g;!6O%

~
ul
a:

/

40%

#20%
0%
C573A

", 1.2

(

!:i

/

6.... .6r--/~~~~---+---r--l

\
650

660

670

z

~ .4

~
680

WAVELENGTH - A - nm

Fig. 4. Spatial Distribution
(Note 3)

r--/----I---t-~?!:=::+_--l

~ .8 ~-t--+..,
~

\

I

630 640

E

'"
~10~-/----I--.,~-+--~--4

Fig. 5. Spectral Distribution

690
C618

'"
;i

0.6

O.S

1.0

12

PEAK FORWARD CURRENT - AMPS C575A

Fig. 6. Peak Power Output vs.
Pulsed Forward Current

NOTES
1.
2.
3.

336

As measured with a Photo research Corp. "SPECTRA" Microcandela Meter (Model IV-Oj.
The leads of the MV10B were immersed in molten solder, heated to 260 0 C. to a paint 1/16 inch (1.6 mm) from the body of the
device per MIL-S-750, with a dwell time of 5 seconds.
The axis of spa tial distribution are typically within a tOO cone with reference to the central axis of the device.

STANDARD RED

PACKAGE DIMENSIONS

MV502X

DESCRIPTION
The MV502X Series of solid state indicators is
made with gallium arsenide phosphide light
emitting diodes. Encapsulation and lens is
epoxy. Various lens effects are available for
many indicator applications.

.080'

FEATURES

CATHODE
INDEX NOTCH

~ k-+Q040
O3ODI
j '
F

-

CD m:::::I:J

-

11

• Tapered barrel T-H'
• High Intensity Red light source with various
lens colors and effects
• T-1% with stand-off
• Versatile mounting on PC board or panel
• Snap in panel mounting clip available (See
MP22 f9r clip detail)

Dl

TOP VIEW

NOTES:
1. ALL DIMENSIONS ARE IN INCHES (rnm)

r-I

100

2. TOLERANCES ARE ±'010" INCH UNLESS
SPECIFIED

C599

£i~~

~
~

SUGGESTED P.C.
BOARD MOUNTING

C601

ABSOLUTE MAXIMUM RATINGS
Power disSipation at 25° C ambient ••..•...•......•.••......•...................................... 180 mW
Derate linearly from 25° C ...•..••.....•...••.•..•••......•.•........•....................•.....•. 2 mW/o C
Storage and operating temperatures ....................................................... -55° C to +100° C
Lead soldering time at 260° C (See Note 2) .•..•.....••....•.....•......•............................. 5 sec.
Continuous forward current at 25° C .....•.•.••.•...•......•........•...............•.............. 100 mA
Peak forward current (1l'sec pulse. 0.3% duty cycle) .................................................... 1.0 A
Reverse voltage ....•••..•.•.....•.......•••.•......•...•......•.....................• ; ..•........•.• 5.0 V

PHYSICAL CHARACTERISTICS

TYPE
MV5021
MV5022
MV5023
MV5024
MV5025
MV5026

A
.340
.340
.340
.340
.340
.340

B
.190
.190
.190
.160
.160
.160

C
.100
.100
.100
.130
.130
.130

D
.040
.040
.040
.040
.040
.040

SOURCE
LENS
E&F COLOR
COLOR
.025
Red
Clear Diffused
.025
Red
Transparent Red
.025
Red
Red Diffused
.025
Red
Red Diffused
.025
Red
Red Diffused
.025
Red
Dark Red Diffused

LENS
EFFECT
Soft
Point
Soft
Soft
Flooded
Flooded

POP-IN
MOUNTING

X
X
X
X
X
X

CIRCUIT
BOARD
MOUNTING
X
X
X
X
X
X

337

MV502X SERIES
ELECTRO·OPTICAL CHARACTERISTICS (25 C Free Air Temperature
0

PARAMETER
Luminous Intensity
(See Note 1)
Peak wavelength
Spectral Ii ne
half width
Forward voltage
VF
Reverse current IR
Reverse voltage VR
Capacitance
Viewing angle
Rise time
and fall time

min.
typo

typo
max.
max.
min.
typo

typo

Unless Otherwise Specified)

TEST CONDITIONS
20 mA
20mA·
20 mA

UNITS
mcd
mcd
nm

5021
0.5
1.6
660

5022
0.6
1.6
660

5023
0.4
1.6
660

5024
0.9
3.0
660

5025
0.1
0.4
660

5026
0.1
0.6
660

20 mA
20mA
20 mA
VR =5.0V
IR=100"A
V=O
Between 50% Points
10%-90% 50 n system
90%-10% 50 n system

nm
V
V

20
1.65
2.0
100
5.0
35
90
50
50

20
1.65
2.0
100
5.0
35
90
50
50

20
1.65
2.0
100
5.0
35
90
50
50

20
1.65
2.0
100
5.0
35
60
50
50

20
1.65
2.0
100
5.0
35
180
50
50

20
1.65
2.0
100
5.0
35
90
50
50

"A
V
pF
degrees
nsec
nsec

TYPICAL ELECTRO·OPTICAL CHARACTERISTIC CURVES
140

100

%\

~120 %
>-

<"

l"-

§. 80

f-- t-- I"-

0..

::J

o

~ 100 0/0

>=
<
...J

t-- t-- _.

W

~ 80 %

I
I
I
1.
1

90

~

70

Giao
0:

i"-.

"

~ 50

i'.

f'-.

600/0,
-60 -40 -20 0 20 40 60
TEMPERATURE -'c

it

10

/

I

2.5

f--t--t---+--t-r-t-----i

1.5 f--t--t~7'f:.....+-+---1
1.0 f--h.,.~--+--t---t----I

I

0.2

80 100
C554A

FORWARD VOLTAGE VF (VOLTS)
C1832

1.0

1.2

PEAK FORWARD CURRENT - AMPS C606A

Fig. 2. Forward Current vs.
Forward Voltage

Fig. 1. Output vS. Temperature

1/o1SEC

2.0 f--t--t---+r-t---t-----i

I

~30

0:20

r--r----r-.,--,---r----.
CONSTANT DUTY CYCLE· 0.3%

I

g 40

3.0

Fig. 3. Radiated Output Power vs.
Peak Forward Current
4.0

,0"

I

l-

>-3 0

u;>zw

>-

~2

0

en
,0"
'0"
,0"
'0"

~+;!:;:;1~~n±±::f::Jl9O"
0.6 0.50.40.3 0.20.1
C607A

Fig. 4. Spatial Distribution

::J

o
z
:1 ' .0

::

V

V

V

V

lL

01/
20
40
50
80
INSTANTANEOUS FORWARD
CURRENT 1,(mA) C552A

Fig. 5. Luminous Intensity vs.
Forward Current

NOTES
1. As measurod with a Photo Research Corp., "SPECTRA" Microcandela Meter (Model IV-D).
2. The leads of the device were'immersed in molten solder at 2600 C to a point 1/16 inch (1.6 mm) from the body of the device per
MIL-S-750, with a dwell time of 5 seconds.

338

STANDARD RED
YELLOW

MV50152/4 HIGH EFFICIENCY GREEN MV54152/4
MV53152/4
HIGH EFFICIENCY RED MV57152/4
DESCRIPTION

PACKAGE DIMENSIONS

.065"11.65 mm)"I"

1""---...,

.210'j 15.33 mm)

~

055" (1.40 mm)LFLAT DENOTES
CATHODE

I
.00S" (0.46 mml

FEATURES

~ij

~~

iz

.240"(6.10mm)
,220" (ii.59 mm)

,
I

.,
....

~ __ .... .'

, ....

I

ANODE LEAD
IS LONGER

/~
. to" NOM
(2.54mm)

.200" (5 OS" mm)
.170" (4.32 mm)

These solid state indicators offer a variety of lens
effects and color availability in a short barrel
T-1% package. The High Efficiency Red, High
Efficiency Green and Yellow devices are made
with gallium phosphide.

.050 (1.27)
NOMINAL

C1357 A

NOTES:
1 ALL DIMENSIONS ARE IN INCHES (mm)
2. TOLERANCES ARE .010 INCH UNLESS SPECIFIED
3. AN EPOXY MENISCUS MAY EXTEND ABOUT 04011 mm) DOWN THE LEADS

• High intensity light source with two lens
effects
• Red, High Efficiency Red, High Efficiency
Green and Yellow colors available
• Versatile mounting on PC board or panel
• Long life-solid state reliability
• Low power requirements
• Compact, rugged, lightweight
• High efficiency
• MV5X154 diffused, MV5X152 non-diffused
• Short T-1% size

ABSOLUTE MAXIMUM RATINGS (TA = 25° C Unless Otherwise Specified)
Power dissipation (MV5015X) •..•..........•.....•..........•.....•.....•......•.•..••.•.........•. 180 mW
Power dissipation .••.......•........•........••.•..........•.....•............•.•.......•......... 105 mW
Derate linearly from 25°C (MV5015X) ......•.•........••.........•..•.........•.......••.•••.•... 2.0 mW/oC
Derate linearly from 25° C ..•••.•.....•.........•.••.......•...........•........•.•..........•. 1.14 mW/o C
Storage and operating temperatures .•.......••......••.........•...••.......•..........••.• -55° C to +100° C
Lead soldering time at 260° C (See Note 3) ........•..•.......•.......••..•......•.•..•......••.•...... 5 sec.
Continuous forward current (MV5015X) ....•.•.•......••.........•.........•.........••.•.••.•....•.. 100 mA
Continuous forward current ....•...........•.....•...........•.......•..........••..•...........••.. 35 mA
Peak forward current (1J.Lsec pulse, 0.3% duty cycle) (MV5415X=90 mAl ......•..•........•.•....•......•• 1.0 A
Reverse voltage ..........•...•....•.•.•....•.......•..•.......•......••.•.•......••..•.••.•...•..••.• 5.0 V

PHYSICAL CHARACTERISTICS
TYPE
MV50152
MV50154
MV53152
MV53154
MV54152
MV54154
MV57152
MV57154

SOURCE COLOR
Standard Red
Standard Red
Yellow
Yellow
High Efficiency Green
High Efficiency Green
High Efficiency Red
High Efficiency Red

LENS COLOR
Red Clear
Red Lightly Diffused
Amber Clear
Amber Lightly Diffused
Green Clear
Green Lightly Diffused
Red Clear
Red Lightly Diffused

LENS EFFECT
Point Source
Soft Point Source
Point Source
Soft Point Source
Point Source
Soft Point Source
Point Source
Soft Point Source

339

MV50152/4 MV53152/4 MV54152/4 MV57152/4
ELECTRO·OPTICAL CHARACTERISTICS
PARAMETER
Forward voltage

typo
max.
min.
typo

AP
C
VBR
IR

10mA
V=O
IR = 100 itA
VR =5.0 V

SYMBOL
VF

Luminous Intensity
(See Note 1)
Peak wavelength
Spectral line
half width
typo
Capacitance
min.
Reverse voltage
Reverse current
max.
Viewing angle (total)
(See Fig. 3)

(TA = 250 C Unless Otherwise Specified)

TEST
CONDo
10mA
10mA
10mA
10mA
10 mA

Iv

20'h

UNITS
V

50152 50154 53152 53154 54152 54154 57152 57154

mcd
mcd
nm

1.6
2.0
0.6
2.0
660

1.6
2.0
0.4
1.5
660

2.1
3.0
3.0
5.0
585

2.1
3.0
1.5
3.0
585

2.2
3.0
2.5
5.0
565

2.2
3.0
2.0
3.0
565

2.0
3.0
4.0
8.0
630

2.0
3.0
2.0
4.0
630

nm
pF
V
itA

20
30
5.0
100

20
30
5.0
100

35
45
5.0
100

35
45
5.0
100

35
20
5.0
100

35
20
5.0
100

45
45
5.0
100

45
45
5.0
100

degrees

45

50

45

50

45

50

45

50

TYPICAL ELECTRO·OPTICAL CHARACTERISTIC CURVES
(250 C Free Air Temperature Unless Otherwise Specified)
100

;;

.s

I-

Z
w

90

a: 60
a:

:::J
(J

50

0

a: 40

«

;; 30
0
u.

«
'"w

.!.

PULSED
80 OPERATION- iELLOW,

70

20

n. 10

.,

STANDARD
RED

'

H" EFF:' /I
RED /I,

rt-

f.-

I
~3.0

Cii

zW

V

I-

~2.0

///
/1/

'":::J

~1.0

:::J
..J

V

I

o
o

FOWARD VOLTAGE VF (VOLTS)
C1833

/'

1/

oz

'f/HIEFF.
GR,EEN-

II 'f
.J/LJ

4.0

/, '

~N~i6~~i'NES J

V

/

20
40
60
80
INSTANTANEOUS FORWARD
CURRENT 1,(mA) C652A

Fig. 2. Luminous Intensity VS.
Foward Current

Fig. 1. Forward Current vs.
Forward Voltage

I-

:::J

n.

I-

:::J

o
w

>

~..J
W

a:

Cl35S

Fig. 3. Spatial Distribution (Note 2)

WAVELENGTH (A) - nm

C,OB4A

Fig. 4. Spectral Distribution

NOTES
1.
2
3.

340

As measured with a Photo Research Corp., "SPECTRA" Microcandela Meter (Model IV-D).
The axis of spatial distribution are typically within a 10 0 cone with reference to the central axis of the device.
The leads of the device were immersed in molten solder at 2600 C to a point 1/16 inch (1.6 mm) from the body ofthe device per
MIL-S-750, willl a dwell time of 5 seconds.

ULTRABRIGHT
PACKAGE DIMENSIONS

HLMP-3X50 SERIES
MV3X50 SERIES

DESCRIPTION
The Ultrabright HLMP-3X50 Series are direct, pinfor-pin replacements for the Hewlett-Packard
devices with the same part numbers.
HLMP-3X50 in High Efficiency Red, Yellow and
High Efficiency Green are very narrow viewing
angle Clear lamps in a standard T-1% package.
025 (0.64) SQ. TYP

By using more efficient LED chips, these lamps
are superior in Luminous Intensity compared to
other lamps.

NOTES
,. TOLERANCES, UNLESS
OTHERWISE SPECIFIED
XXX±010

100
(254)

2. ALL DIMENSIONS IN

T

Lamps have Pale Tinted package to aid
identification.

INCHES (MILLIMETERS)

FEATURES
Minimum 80 mcd
All three colors
Pale Tint avoids mix problems
Sturdy leads with or without stand-off on T-1%
Excellent for small area backlighting
High Efficiency Red
HLMP-3750
MV3750
II High Efficiency Gree
HLMP-3950
MV3450
.. Yellow
HLMP-3850
MV3350
II

MV3X50

"
"
"
..
..

NOTES.
1. ALL DIMENSIONS ARE IN INCHES (mmj
2 TOLERANCES ARE :t.Ol0" INCH UNLESS

SPECIFIED

3 AN EPOXY MENISCUS MAY EXTEND ABOUT
CWO" (1 mm) DOWN THE LEADS

CHl62F

ABSOLUTE MAXIMUM RATINGS (TA = 25°C Unless Otherwise Specified)
PARAMETER

Power dissipation
Peak forward current
Average forward current
Continuous DC forward current
Lead soldering time at 260° C
Operating and storage temperature

HI. EFF. RED

YELLOW

HI. EFF. GREEN

UNITS

NOTES

135
90
25
30
5

85
60
20
20
5
-55 to +100° C

135
90
25
30
5

mW
mA
mA
mA
seconds

2
3

1) For High Efficiency Red and High Efficiency Green, derate power linearly from 25° C at 1.8 mAIo C. For Yellow derate power
linearly from SOo Cat 1.6 mWo C.
2) For High Efficiency Red and High Efficiency Green derate linearly from 50° C. For Yellow derate linearly from 50° Cat 0.2
mArC.
3) To a point of minimum 1116 inch (1.6 mm) from the bottom of the lamp.

341

HLMP-3X50 SERIES MV3X50 SERIES
ELECTRO-OPTICAL CHARACTERISTICS (TA

MV3450
HLMP-3950

UNITS

C

80
150
3.0
2.2
635
45

80
150
3.0
2.2
585
45

80
150
3.0
2.2
565
20

mcd
mcd
V
V
nm
pF

BVR

5

5

5

V

2(·)%

24

24

24

degrees

min.
typo
min.
typo
typo
typo

Luminous Intensity
Forward voltage

Peak wavelength
Capacitance
Reverse breakdown
min.
voltage
Total viewing angle
between half Luminous
typo
I ntensity points

25 0 C Unless Otherwise Specified)
MV3350
HLMP-3850

SYMBOL

PARAMETER

=

MV3750
HLMP-3750

Iv
VF

AP

TEST
CONDITIONS
IF = 20 mA
IF = 20 mA
IF =20 mA
IF =20 mA
IF = 10 mA
VF=O,f=1 MHz
IR = 100 /lA

TYPICAL ELECTRO-OPTICAL CHARACTERISTIC CURVES
(25 0 C Free Air Temperature Unless Otherwise Specified)

50

,.

t:!
-,-,
w::0

~~

10

a:

1.4

V

/

:5z
w-

...0

"

/

O ...

30

0



3.0

-

./
10

1.6 1.8 20 22 24 2.6 2.8 30

20

30

40

Cl063E

C1792

,

>- 1.0

<

~

400

w
>

~ 0.7

,.z~

500 ~
m

w
a: 0.6

,
!:;

...=>

Y~LLdw

,
HI EFF.
GREEN
80 0A,

w

>

~

,

60DIc

,

40°11

w
20%

o j

HI EFF.
'\ f\ RED

I I \ V 1\
II II \ ~ \\
)

)r\

520 540 560 580 600 620 640 660 680

0.50.40.30.20.1
C1793

342

f\

0..

o

a:

Fig. 3. Spatial Distribution

60

Fig. 2. Relative Luminous Intensity vs.
DC Forward Current

Fig. 1. Forward Voltage!
Forward Current

...
~ 0.9
w
...~ 0.8

50

IF - FORWARD CURRENT - mA

FORWARD VOLTAGE (VFi- VOLTS

WAVELENGTH

(AI -

nm Cl064C

Fig. 4. Spectral Distribution

MV5052
MV5054A-l/2/3
MV5053/6053 MV5055
PACKAGE DIMENSIONS

DESCRIPTION
The MV505X Series of industry standard solid
state indicators is made with gallium arsenide
phosphide light emitting diodes encapsulated
in epoxy lenses. Various lens effects give
different design possibilities.

.040
,(1.02)

! I

050 (1.27)

I

L-

I

J'

1-_ _

.017 (0.43) SQ.
.023 (.058)

1.00 (2.54 MIN)

I '~

REF.

FEATURES
• Standard Red light source with various
lens colors and effects
• Versatile mounting on PC board or panel
• Snap in mounting grommet MP52
• Long .life-solid state reliability
• Low power requirements
• Compact, rugged, lightweight

I
I

NOTES
1 ALL DIMENSIONS ARE IN INCHES (mm)
2 TOLERANCES ARE ± 010" INCH UNLESS
SPECIFIED
3 AN EPOXY MENISCUS MAY EXTEND ABOUT
O4O"(lmm) DOWN THE LEADS

]

_.050 (1 27)
- 100 (2.54)
Cl062L

PHYSICAL CHARACTERISTICS
CATHODE
LONG
MV5052
MV5053'
MV5054A-1
MV5054A-2
MV5054A-3
MV5055

SOURCE
COLOR
Standard
Standard
Standard
Standard
Standard
Standard

Red
Red
Red
Red
Red
Red

LENS
TYPE

LENS
EFFECT

APPLICATION

Red Tint
Red Diffused
Red Diffused
Red Diffused
Red Diffused
Red Diffused

Point Source
Wide Beam
Narrow Beam
Narrow Beam
Narrow Beam
Very Wide Beam

Backlighting
Direct View
DireclView
Direct View
Direct View
Direct View

• MV6053 - Anode Long also available.

ABSOLUTE MAXIMUM RATINGS (TA = 25° C Unless Otherwise Specified)
Power dissipation .....••......•...•.........•..••..........•...•..•.......................•....... 180 mW
Derate linearly from 25° ........•........•.•.•......•.•......................•.•...••.......•..• 2.0 mW/o C
Storage and operating temperatures .............••.................•..•............••...... -55° C to +100° C
Lead soldering time at 2600 C (See Note 3) ...•.............•..•...............................•......• 5 sec.
Continuous forward current •.•...•.....•......••.•.........•......•..•........•...•................ 100 mA
Peak forward current (1~sec pulse, 0.3% duty cycle) ...........•...................•...........•......•. 1.0 A
Reverse voltage .................•.............•.•.•....•..•..•......................•.......•......•. 5.0 V
343

MV5052 MV5053/6053 MV5054A-1/2/3 MV5055
ELECTRO OPTICAL CHARACTERISTICS (TA = 250 C Unless Otherwise Specified)
TESTCOND.
PARAMETER
IF = 20 mA
Luminous Intensity
Iv min. (See Note 1) IF = 10 mA

5052
0.7

6053
5053
0.5
2.2

5054A-1

5054A-2

5054A-3

1.0

2.0

3.0

2.2

2.2

2.2

5055
0.1

UNIT
mcd
mcd

2.2

V
V

Forward voltage
VF mcd

IF = 20 mA
IF = 10 mA

2.2

Peak wavelengths
Ap typical

IF = 20 mA

660

660

660

660

660

660

nm

Spectral line
half width typical
Capacitance
typical
Reverse current
IR max.
Viewing angle
typical, See Figures

IF = 20 mA

20

20

20

20

20

20

nm

v=o
f= 1 MHz
VR =5.0 V

30

30

30

30

30

30

pF

100

100

100

100

100

100

p.A

72

80

40

40

40

150

degrees

TYPICAL ELECTRO-OPTICAL CHARACTERISTICS (25 0 C Free Air Temperature)
100

;;c
So

BO

~

70

r5a:

60

I
I

z

20

I

10

V

....w

~2.0

I

~ 30

/'

Cii

I

~ 50

!5u.

I

i: 3.0

I

ga: 40

-

4.0

I

90

'":::>o

I
I

z

~1.0

/

:::>
..J

o/
o

./

1
.2
FORWARO VOLTAGE VF (VOLTS)
C1B32

V
20

/

\

>
....
Cii

zw

....z

w1.5
a:

40

60

BO

10

IF

Fig. 2. Luminous Intensity vs.
Forward Current

" "r-"-

>
i=

:5w

INSTANTANEOUS FORWARD
CURRENT IF (mA)
C652A

Fig. 1. Forward Current vs.
Forward Voltage

\

ow
a:

u.

........

t"--,

20
40
OUTY CYCLE - %
10 mA AVERAGE

DC
Cl194B

Fig. 3. Luminous Intensity vs.
Duty Cycle
1O~

20~

140

"\

I"

5120 %

a.

5o
~100

i=

:5w

~

>

BO %

t:

100%

""

1=
:::>
o

1\
/ \

BO%

~60%

........

i=

"'-

60%
·60 -40 -20 0
20 40 60
TEMPERATURE - • C

~
a:

r"-...
BO

100

C654A

Fig. 4. Output vs. Temperature

/

40%

II

1fI.

20%
0%

'"Zw

(

5

/

100%

....

~

w

>

~

w
a:

1\

!zw

\

"

630 840 650 660
670 680 690
WAVELENGTH - A - nm C61B

Fig. 5. Spectraf Distribution

&la:
50% 40% 30% 20% 10%

619A

Fig. 6. Spatial Distribution (Note 2)

NOTES
1. As measured with Photo Research Corp., '"SPECTRA'" Microcandela Meter (Model IV-D).
2. The axis of spatial distribution are typically within a 100 cone with reference to the central axis of the device.
3. The leads of tlie device were immersed in molten solder at 260 0 C to a point 1/16 (1.6 mm) from the body of the device per MILS-750, witli a dwell time of 5 seconds.

344

STANDARD RED
STANDARD RED
STANDARD RED
PACKAGE DIMENSIONS

MV5054-1
MV5054-2
MV5054-3

DESCRIPTION
The MV5054 Series lamps are made with gallium
arsenide phosphide diodes mounted in a Red
epoxy package.

FEATURES
II

II
II

II
II

II

Three light intensity selections
Illuminates a %" diameter circle
Straight barrel T-1 % with stand-off
Versatile mounting on PC board
Mounting grommet MP52 available as separate
order item
For new designs see MV5054A-1/2/3 data
sheet

C622B
NOTES
1 ALL DIMENSIONS ARE IN INCHES (mm)
2 TOLERANCES ARE 010 INCH UNLESS SPECIFIED

ABSOLUTE MAXIMUM RATINGS
Power dissipation at 25° C ambient. ..•..........................................................•... 180 mW
Derate linearly from 25° C ............•.....•.........•......•.........•....•..................... 2.0 mW/o C
Storage and operating temperatures •.•...•................................................. -55° C to +1000 C
Lead soldering time at 260° C (See Note 3) .................•..•....................................... 5 sec.
Continuous forward current at 25° C •••....••........................................................ 100 rnA
Peak forward current (,",sec pulse 0.3% duty cycle) ........•.....•........................•.............. 1.0 A
Reverse voltage ....................•..•....•............•.......•.................................... 5.0 V

ELECTRO-OPTICAL CHARACTERISTICS (25°C Ambient Temperature)
CHARACTERISTICS

Luminous Intensity (See Note 1)
MV5054-1
MV5054-2
MV5054-3
Forward voltage
Capacitance
Reverse current
Rise and fall time
Viewing angle (total)
Peak wavelength

UNITS

TEST CONDITIONS

50
40

mcd
mcd
mcd
V
pF
p.A
ns
degrees

660

nm

IF = 10 mA
IF = 10 mA
IF = 10 mA
IF = 10 mA
V=O,f=1 MHz
VR =5.0 V
50 n System
Between 50%
intensity points
IF= 10mA

MIN.

TYP.

1.0
2.0
3.0

2.0
3.0
4.0
1.8
35

MAX.

2.2
100

345

MV5054-1 MV5054-2 MV5054-3
TYPICAL ELECTRO-OPTICAL CHARACTERISTIC CURVES
(2SoC Free Air Temperature Unless OtherWis~ Specified)
100

I

§. 80

~

I
I

70

ili60

§50
40

~

30

II:

20

zw

t-

~2.0

'"o

:>

I

:r 10

I

~

~3.0
(jj

I
I

II:

~

4.0

I

;( 90

z

I

~1.0

:>
-'

V

/

o
o

1
FORWARD VOLTAGE VF (VOLTS)
C1832

Fig. 1. Forward Current vs.
Forward Voltage

/

V

V

60
20
80
40
INSTANTANEOUS FORWARD
CURRENT 1,(mA) C652A

Fig. 2. Luminous Intensity
Forward Current

I mW

~

Ui

~

~'00

!10'\'

Z

~

BO'\
70%

I

MV5054

w

~

>

.lll~tjJI

E

l00~

W

V

/

()

2~

z
«

~

~

a:
!!:

W

II:

@IF· 100mA
TA = 25°C

r-..

10

I
50% 400.. 30''0,

~O'\,

I,m

.1 em

10'\,

C620A

140

~

(jj

zW
tz

\

w1.5

>

5
w
II:

1
10
I,

~120
a.

"-

t:>

o

" r--

~100

@

...
II:

~

C627

i=

:)
w
II:

80

I,
I'..

"-

"-

"

I'--,.

i'-..

~ .....

20
40
DUTY CYCLE - %
10 rnA AVERAGE

Fig. 5. Luminous Intensity vs.
Duty Cycle

346

100cm

Fig. 4. Irradiance vs. Distance

Fig. 3. Spatial Distribution (Note 2)

\

10cm

DISTANCE - em

DC

60%
-60 -40 -20 0 20 40 60
TEMPERATURE _oC

80 100
C654A

C11946

Fig. 6. Output vs. Temperature

ORANGE
YELLOW
HIGH EFFICIENCY GREEN
HIGH EFFICIENCY RED
PACKAGE DIMENSIONS
MVSXS2 - LEAD CUT CATHODE LONG MIN. O.S"
MV6XS2X - LEAD CUT ANODE LONG MIN. 1.02S"

MV5152
MV5352
MV5452
MV5752

MV6152
MV6352
MV64520 MV64521
MV6752

DESCRIPTION
These Clear Tinted solid state indicators offer
high brightness and color availability. The
High Efficiency Red and Yellow devices are
made with gallium arsenide phosphide on
gallium phosphide. The High Efficiency
Green units are made with gallium phosphide
on gallium phosphide. All devices are
available with cathode long as MV5X5X, or
with anode long as MV6X5X.
FEATURES

.017 (0.43) SQ.
.023 (.058)

.040

"
"
"
"

High on-axis light output
High efficiency GaP light sources
Versatile mounting on PC board or panel
Snap in grommet MP52 available as
separate order item
a Long life-solid state reliability
a Low power requirements
" Compact, rugged, lightweight

1(1.02)

!

11 '

.050 (1.27)

I
,

REF.

~

~

1.00 (25.4) MIN.

~

NOTES.
1. ALL DIMENSIONS ARE IN INCHES (mm)
2. TOLERANCES ARE ±.D.D" INCH UNLESS

']_ I
I

SPECIFIED

~

3 AN EPOXY MENISCUS MAY EXTEND ABOUT
.040" (lmm) DOWN THE LEADS

.050 (1.27)
.100 (2.54)
Cl062L

ABSOLUTE MAXIMUM RATINGS (TA = 250 C Unless Otherwise Specified) RED, YELLOW
AND H. E. RED
GREEN
Power dissipation ....•........................•....................•....
120 mW
120 mW
Derate linearly from 250 C (MVX452/4A from 500 C) ........................•
1.6 mW/o C
1.6 mWrC
Storage and operating temperatures ...........•.•......•................. -550 C to +100° C -55° C to +100° C
Lead soldering time at 2600 C (See Note 3) ..........•.................•...
5 sec.
5 sec.
Continuous forward current. •.................•......•.•.................
35 mA
30 mA
Peak forward current (1 I-Isec pulse, 0.3% duty cycle) ...........•...........
1.0 A
90 mA
Reverse voltage .......•.................................................
5.0 V
5.0V

~.
PHYSICAL CHARACTERISTICS
CATHODE
LONG

ANODE
LONG

SOURCE
COLOR

LENS
TYPE

LENS
EFFECT

APPLICATION

MV5152
MV5352
MV5452

MV6152
MV6352
MV64520
MV64521
MV6752

High Efficiency Red
Yellow
High Efficiency Green
High Efficiency Green
High Efficiency Red

Amber Clear
Yellow Clear
Green Clear
Green Clear
Red Clear

Point Source
Point Source
Point Source
Point Source
Point Source

Backlighting
Backlighting
Backlighting
Backlighting
Backlighting

MV5752

347

MV6X52 MV6X52X MV5X52
ELECTRO-OPTICAL CHARACTERISTICS (25 0
PARAMETER

C Free Air Temperature)

TESTCOND.

UNITS

MV6152
MV5152

MV6352
MV5352

MV64520
MV5452

MV64521

MV6752
MV5752

IF = 20 mA
IF = 20 mA

V
V

2.0
3.0

2.1
3.0

2.2
3.0

2.2
3.0

2.0
3.0

mcd
mcd
nm
nm

17.0
40.0
635
45

10.0
45.0
585
35

12.0
25.0
562
30

30.0
60.0
562
30

17.0
40.0
635
45

V = 0, f = 1 MHz

pF

45

45

20

20

45

IR = 100 itA

V

5

5

5

5

5

VR = 5.0 V
See Fig. 4

itA
degrees

100
28

100
28

100
35

100
35

100
28

Forward voltage (VF)
typo
max.
Luminous Intensity
(Soo Note 1) min.
typo
Peak wavelength
Spectral line
half width
Capacitance
typo
Reverse voltage (VR)
min.
Reverse current (IR)
max.
Viewing angle (total)

IF
IF
IF
IF

= 20
= 20
= 20
= 20

mA
mA
mA
mA

TYPICAL ELECTRO-OPTICAL CHARACTERISTIC CURVES (25 0 C Free

Air Temperature Unless Otherwise Specified)

_ 100 DOTTED LINES

~ 4.0

§.

Ui

90

~~~~t;E-- YELLOW

Z

I-

zUJ

70

n: 60
n:

:J

U
0

.
.'"

50

~ 3.0

u.

1./

en

"

::::l

o

~ 2.0

::;

a: 40

::0

l---

W

'" 80 OPERATION--t----Ir+-f-----I

::::l
...J

30

W

>

~

20

...J

UJ
a. 10

W

a:

1.0

V

00

1
2
3
FOWARD VOLTAGE VF (VOLTS)
C1831C

Fig. 1. Forward Current vs.
Forward Voltage

V

/

V

/

20
40
60
80
INSTANTANEOUS FORWARD
CURRENT IF(mA) C652A

Fig. 2. Luminous Intensity vs.
Forward Current

30

I00% I----+--!...,..;.-hrl-'~~_+__l_____l

100 .

>Iiii

90

w

fHl"

~

70""

Z

40

Q.

IW

>

~

..J
W

60%

~ 80%~~~I-W_+_III--~=!:!_-1
::J

50
00
70

a:

80

~ OO%I----+-~~~_H~I_~_l_____l

o

~ ~%I----+-~~~~~I_~_+___l

~

w
a:
OLL~~~~~~-2~

520
Cl066A

Fig. 3. Spatial Distribution (Note 2)

5~

560 580 600 620 640 660 680

WAVELENGTH (AI - nm Cl064C

Fig. 4. Spectral Distribution

NOTES
1. As measured with Photo Research Corp. "SPECTRA" Microcande/a Meter (Model IV-D).
2. The axis of spatial distribution are typically within a 100 cone within reference to the central axis of the device.
3. The leads of the device were immersed in molten solder, at 2600 C, to a pOint 1/16 inch (1.6 mm) from the body of the device
per MIL-S-750, with a dwell time of 5 seconds.

348

MV5153/4A
MV5353/4A
MV5453/4A
MV5753/4A

ORANGE
YELLOW
HIGH EFFICIENCY GREEN
HIGH EFFICIENCY RED
PACKAGE DIMENSIONS

DESCRIPTION
These solid state indicators offer a variety of
diffused lens effects and color availability.
The High Efficiency Red and Yellow devices
are made with gallium arsenide phosphide on
gallium phosphide. The Green units are
made with gallium phosphide on gallium
phosphide. All devices are available with
cathode long as MV5X5X, or with anode long
as MV6X5X.

MV5X5X - LEAD CUT CATHODE LONG MIN O.S"
MV6X5XX - LEAD CUT ANODE LONG MIN. 1.025"

~~J
1

yMr'"
I

.350 (8.89)
330 (8.38)

Li

.017 (043)
023 (.058)

040

FEATURES

sa

" High efficiency GaP light source with
various lens effects
" Versatile mounting on PC board or panel
" Snap in grommet MP52 available as
separate order item
.. Long life-solid state reliability
.. Low power requirements
" Compact, rugged, lightweight

1(102)

!

IJ
'
r-

.050(1.27)
REF.

--L-- ']_
I

I

1.00 (2.54) MIN

'~NOTES

1 ALL DIMENSIONS ARE IN INCHES (mm)

2 TOLERANCES ARE ". 010" INCH UNLESS
SPECIFIED
3 AN EPOXY MENISCUS MAY EXTEND ABOUT
040" (lmm) DOWN THE LEADS

I

~

MV6153/4A
MV6353/4A
MV64530/1 MV6454A
MV6753/4A

.050 (1 27)
-

.100 (254)

Cl062L

ABSOLUTE MAXIMUM RATINGS (TA = 25°C Unless Otherwise Specified)
H.E. RED,
YELLOW, ORANGE
GREEN
Power dissipation at 25° C ambient. . . . • . . . • . . . . . . . . . . • . . . . . • . . . . . . . . . . . . .
120 mW
120mW
Derate linearly from 250 C (MVX453/4A from 50° C) . . . . . . . . . . . . . . . . . . . . . . . . .
1.6 mW/o C
1.6 mWrC
Storage and operating temperatures........... .. ... . .•.....•....•... . .... -550 C to 1·100° C -550 C to +1000 C
Lead soldering time at 2600 C (See Note 3) ....•....•....•.......•..•......
5 sec.
5 sec.
Continuous forward current at 250 C . • • . . . . . • . . . . . . . . . • . . . . . • . . . . • . . . . . . . .
35 mA
30mA
Peak forward current (1 J,tsec pulse, 0.3% duty cycle) • . . • . • . . . • . . . . . . . . . . . . .
1.0 A
90mA
Reverse voltage. . • . • • . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . • . . . • . . . . • . . . .
5.0 V
5.0V

PHYSICAL CHARACTERISTICS
CATHODE
LONG
MV5153
MV5154A
MV5353
MV5354A
MV5453
MV5454A
MV5753
MV5754A

ANODE
LONG

SOURCE
COLOR

LENS
TYPE

LENS
EFFECT

APPLICATION

MV6153
MV6154A
MV6353
MV6354A
MV64530/1
MV6454A
MV6753
MV6754A

High Efficiency Red
High Efficiency Red
Yellow
Yellow
High Efficiency Green
High Efficiency Green
High Efficiency Red
High Efficiency Red

Amber Diffused
Amber Diffused
Yellow Diffused
Yellow Diffused
Green Diffused
Green Diffused
Red Diffused
Red Diffused

Wide Beam
Narrow Beam
Wide Beam
Narrow Beam
Wide Beam
Narrow Beam
Wide Beam
Narrow Beam

Direct View
High Bright Direct View
Direct View
High Bright Direct View
Direct View
High Bright Direct View
Direct View
High Bright Direct View

349

MV5X53 MV5X54A MV6X53X MV6X54A
ELECTRO-OPTICAL CHARACTERISTICS (25 0 C Free Air Temperature)
PARAMETER

TESTCOND.

UNITS

6153
5153

6154A
5154A

6353
5353

6354A
5354A

64530
5453

64531

6454A
5454A

6753
5753

6754A
5754A

IF; 20 mA
IF; 20 mA

V
V

2.0
3.0

2.0
3.0

2.1
3.0

2.1
3.0

2.2
3.0

2.2
3.0

2.2
3.0

2.0
3.0

2.0
3.0

mcd
mcd
nm
nm

3.0
6.0
635
45

10.0
20.0
635
45

2.5
8.0
585
35

10.0
20.0
585
35

3.0
6.0
562
30

7.0
14.0
562
30

10.0
20.0
562
30

3.0
9.0
635
45

10.0
20.0
635
45

V;O
f; lMHz
IR; 100 I'A

pF

45

45

45

45

20

20

20

45

45

V

5

5

5

5

5

5

5

5

5

VR; 5.0 V
See Fig. 3

I'A
degrees

100
65

100
24

100
65

100
24

100
75

100
75

100
24

100
65

100
24

Forward voltage (VF)
typo
max.
Luminous Intensity
(See Note 1) min.
typo
Peak wavelength
Spectral line
half width
Capacitance
typo
Reverse voltage (VR)
min.
Reverse current (IR)
max.

IF;
IF;
IF;
IF;

Viewing angle (total)

20 mA
20 mA
20 mA
20 mA

TYPICAL ELECTRO-OPTICAL CHARACTERISTIC CURVES (250 C Free
100
;{

~N~i6~~i~ ~ELLOW

90
PULSEDi
80 OPERATION
,
fzUJ 70
HIGH_"
a: 60 a:
EFFICIENCY",
;:)
RED
() 50 -

.§.

fi:>

'"a.

«
UJ

z

UJ

f-

;;:: 2.0
en

11//, HIGH

30

rlI

20

EFFICIENCY
G~EEN

hV

10

.d/
1

2

o
z
:i 1.0
;:)
...J

L'

/

o

Fig. 1. Forward Current vs.
Forward Voltage
10

V

;:)

o

3

FOWARD VOLTAGE VF (VOLTS)
C1831C

-

I
~3.0

iii

If,

0

a: 40

«
;;

II!,

Air Temperature Unless Otherwise Specified)

4.0

/

/

V

20
40
60
80
INSTANTANEOUS FORWARD
CURRENT 1,(mA) C652A

Fig. 2. Luminous Intensty
vs. Forward Current

20'

120°11

"

YkLL6w

"

HI EFF.
"..QFl~

"

"

C1065B

Fig. 3. Spatial Distribution
(See Note 2)

J

\

/\

1\

HI EFF.
RED

/ / \ IV 1\
/ / \IA \
\
/1\

J
0
520 540 560 580 600 620 640 660 680
WAVELENGTH IAI - nm Cl064C
Fig. 4. Spectral Distribution

NOTES
1.
2.
3.

350

As measured with Photo Research Corp. "SPECTRA" Microcandela Meter (Model IV-D).
The axis of spatial distribution are typically within a 100 cone with reference to the central axis of the device.
The leads of the device were immersed in molten solder, at 2600 C, to a point 1/16 inch (1.6 mm) from the body of the device
per MIL-S-750, with a dwell time of 5 seconds.

STANDARD RED FLVll 0

HIGH EFF. RED
HIGH EFF. RED

HLMP-3300
HLMP-3301

PACKAGE DIMENSIONS - HLMP

DESCRIPTION
Direct replacements for popular T-1% lamps from
Fairchild and Hewlett-Packard. The FLV110 is a
Standard Red Lamp with a low profile (.285 inch)
lens. HLMP-33XX parts are High Efficiency Red
with a standard T-P/4 package.
FLV110, HLMP-3300 and HLMP-3301 are
diffused.
HLMP-3315 and HLMP-3316 are non-diffused.

rf~J
I

SEE
NOTE4

L

i

I

rI---I---I----L

.040

FEATURES

01aSQ (0.45 mm) NOMINAL

1(1.02)

.050
(1.27)
NOM.

L

I I

,
jk
I

,

1.00 (2.54) MIN.

~

I

']_
I

, -

I

HIGH EFF. RED HLMP-3315
HIGH EFF. RED HLMP-3316

.050 (1.27)
.100 (2.54)

NOTES:
1. ALL DIMENSIONS ARE IN INCHES (mm)
2. TOLERANCES ARE ±.01 0" INCH UNLESS
SPECIFIED
3. AN EPOXY MENISCUS MAY EXTEND ABOUT
.040" (1 mm) DOWN THE LEADS
4. DIMENSION X,
PACKAGE HEIGHT HLMP = .330 (8.38)/.350 (8.88)
FLV = .275 (6.98)/.295 (7.49)

• Replace Fairchild and Hewlett-Packard
devices
• Popular, general purpose lamps
• Wide and narrow viewing angle devices for
direct view or backlighting
• Solid state reliability
• Sturdy leads for easier assembly

C1062M

ABSOLUTE MAXIMUM RATINGS (TA = 25 0 C Unless Otherwise Specified)
Power dissipation ••......•.••............................•....•........•...••.••....••.•....... 135 mW
Derate linearly from 250 C • . • . . • . . • . . . . . . • . . . . • . . . . • . . . . . . . . . • . . . . . . . . . . . . • . . . . • . . . . • . . . . . . . .. 1.8 mW/o C
Storage and operating temperatures ..•....•.....••...... '" ..•.......••....•.••......••. -550 C to +1000 C
Lead soldering time @ 2600 C (See Note 2) ...•...••........•....•....•...•..•.•..•................. 5 sec.
Continuous forward current •.••.........•.•......•................•.•.......•.......•..........•.. 30 mA
Peak forward current (1 /-Lsec pulse, 0.3% duty cycle) (FLV110 1 amp) ..•.•...•....•....•.•............ 90 mA
Reverse voltage ..••.•......•..............•......•.....•..•...•••..............••..........•.•.... 5.0 V

351

FLVll0 HLMP-3300/1

HLMP-3315/&

ELECTRO-OPTICAL CHARACTERISTICS (250 C Ambient Temperature)
PARAMETER
Luminous Intensity
(See Note 1)
Forward voltage

HLMP-

HLMP-

HLMP-

HLMP-

SYMBOL

3300

3301

3315

3316

110

UNITS

TEST CONDITIONS

Iv

"p
C

2.0
3.5
3.0
2.2
635
45

4.0
7.0
3.0
2.2
635
45

12
18
3.0
2.2
635
45

20
30
3.0
2.2
635
45

0.8'
3.0'
2.0
1.6
665
30

mcd
mcd
V
V
nm
pF

IF = 10 mA
IF= 10mA
IF = 10 mA
IF = 10 mA
IF = 10 mA
V=O,f= 1 MHz

V8R

5

5

5

5

5

V

2(-)'h

65

65

35

35

70

degrees

min.
typo
max.
typo
typo
typo

VF

Peak wavelength
Capacitance
Reverse breakdown
voltage
min.
Total viewing angle
between half Luminous
Intensity points
typo

FLV'

IR= lOO IlA

'For FLV110 Test IF = 20 mA

TYPICAL ELECTRO-OPTICAL CHARACTERISTICS CURVES
(250 C Free Air Temperature Unless Otherwise Specified)
120%

100

1
~
w

DOTTED LINES
90 INDICATE
PULSED
80 OPERATI'ON

70

I

~ 60

I

....

~~

/

80%

~

J

40"

II

a:

'" 20

/

10

/

\ RED

I\

60%

>

I

"

;; 30

~

~JD.

"

I

HI EFF. I
RED I

STANDARD
U 50
RED
Cl
a: 40
OJ

"~

II'

I

HI.EFF.
RED

",."

•

,\

\

V

520 640 560 580 600 620 640 SSD 680 690
WAVELENGTH (}.,I- nm

FOWARD VOLTAGE VF (VOLTS)
C18338

Cl084F

Fig. 2. Spectral Distribution

Fig. 1. Forward Current vs.
Forward Voltage
_100
iii

I-

zW
Iz

\

W'·5

>

60

~i~
~

UI

n:

a: 40

I\..

~~~ ~~~ ~~~-ij
~- ~

~ ~

~ ~

1\

1\

1\

OJ

U

Cl 30

a:

a:

~ 20
a:

I'-

oIL

,~

'~"

I'-

a. 10

1

20

10
IF

40

DUTY CYCLE - %
10 mA AVERAGE

DC

1.0

10

C1194B

1000

10000

(~.)

C1674A

Fig. 4. Maximum Peak Forward
Current vs. Pulse
Duration (HLMP)

1. As measured with a Photo Research Corp. "SPECTRA" Microande/a Meter (Model IV-D).
2. From a point minimum 1/16 inch (1.6 mm) from the bottom of the lamp.

352

100

PULSE DURATION

Fig. 3. Luminous Intensity vs.
Duty Cycle

NOTES

80

Z

1'\"

§w

!§.

I-

HI6H EFFICIENCY RED (ORANGE)
YELLOW

MV6151
MV6351

HIGH EFFICIENCY GREEN
AIGaAs RED

MV6451
MV6951

DESCRIPTION

PACKAGE DIMENSIONS

This White Diffused family of T-1% lamps gives
maximum ON/OFF contrast in high ambient
lighting levels. The family features Orange,
AIGaAs Red (Dark Red), Yellow and High
Efficiency Green as well as High Efficiency Red,
which here is Orange. The family exhibits wide
viewing angle intended for direct view.

FEATURES

1(1.0

.01710.43) SQ.
.023 (.058)

.040

21

!

L--jJ'-

.050 11.271
REF.

I

, -

I
'

1.00 (2.54) MIN

~

I

NOTES:
1 ALL DIMENSIONS ARE IN INCHES (mm)
2.

~

• Excellent ON/OFF contrast
• Non-tinted, White Diffused
• AIGaAs Red plus 3 bright colors: High
Efficiency Red/Orange, Yellow and Green
• Alternative for popular MV6X53 family
• Snap-in grommet MP52 available as separate
order item

~~~~~F~~~ES ARE ±.010" INCH UNLESS

3. AN EPOXY MENISCUS MAY EXTEND ABOUT
.040" (mm) DOWN THE LEADS
.050 (1 27)
100 (254)

Cl062F

PHYSICAL CHARACTERISTICS
TYPE
MV6151
MV6351
MV6451
MV6951

SOURCE COLOR
High Efficiency Red
Yellow
High Efficiency Green
AIGaAs Red

LENS
White
White
White
White

COLOR
Diffused
Diffused
Diffused
Diffused

LENS EFFECT
Orange Diffused
Yellow Diffused
Green Diffused
Red Diffused

APPLICATION
Direct View
Direct View
Direct View
Direct View

ABSOLUTE MAXIMUM RATINGS (TA = 25°C Unless Otherwise Specified)
PARAMETER

HI. EFF. RED,
YELLOW, RED GREEN UNITS NOTES
Power dissipation.................. .. . . . .. ... ... .•... .. .. .. .....
120
120
mW
1
35
Continuous forward current ......••.........•...................
rnA
30
Peak forward current (11-'s, 0.3% OF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1000
rnA
90
Lead soldering time at 260° C
5
2
5
seconds
Storage and operating temperatures ••......•.....................
-55° C to +100° C

NOTES
1.
2.

Derate linearly from 25°C (MV6451 from 50· C) at 1.6 mW/·C.
From a point minimum 1/16 inch (1.6 mm) from the bottom of the lamp.

353

MV&151 MV6351 MV&451 MV&951
ELECTRO-OPTICAL CHARACTERISTICS (TA = 25°C Unless Otherwise Specified)
SYMBOL MV61S1 MV63S1 MV8451 MV8eS1
3.0
3.0
Iv
3.0
3.0
12
12
12
12
3.0
3.0
3.0
3.0
VF
2.1
2.2
2.3
2.4
635
585
565
Ap
670

PARAMETER
Luminous Intensity

Peak wavelength
Reverse breakdown voltage

min.
typo
max.
typo
typo
min.

Total viewing angle between
half luminous points

typo

Forward voltage

UNITS
mcd
mcd
V
V
nm

TEST CONDITIONS NOTES
IF = 20mA
IF = 20mA
IF = 20mA
IF = 20mA
IF =20mA

VBR

5

5

5

5

V

IR = 100/JA

2(-)11"

70

70

70

70

degrees

IF = 20mA

TYPICAL ELECTRO-OPTICAL CHARACTERISTIC CURVES
(25°C Free Air Temperature Unless Otherwise Specified)
100
;(

oS
~

z>W

II:
II:

90

?N~~~~~iINES
PULSED

BO OPERATION
70
50

::>

-

u 50 r - 0

II:

~

0
u.

'"U'.i
0..

JELLOW

r

,

~
'L
'I

>-

i!:2.0

rlf

'"
o

::>

11/. . . . HIGH

30

'1/

20

//1

10

.//.)

EFFICIENCY
GREEN

z
:E 1.0
::>
..J

V

I

o
o

1
2
3
FOWARD VOLTAGE VF (VOLTS)
CI831C

V

100~g

fOO%

90%

~

80%

80%
70%

!60%

r
II:

10% 0

20%

1/

w

~
60
60
INSTANTANEOUS FORWARD
CURRENT IF(mA) C552A

O
%

20%

GREEN(\

~%

C1OS5C

Fig. 3. Spatial Distribution

1\ IA

'I

AIGaAs

f-f--f-tf-+---'l--+-+-l'I\HH

I!\
III \

I
/

\

,

IV\

1.

354

1

\.\)

520540 560 560 600620 640660 5BO 590 700
WAVELENGTH (Ap)-nm Cl064F

Fig. 4. Spectral Distribution

NOTES
2.

~

l-f-lJl/-j--\w4hH-1'H--++

o I I
30%

L'

V

/

Fig. 2. Luminous Intensity
vs. Forward Current

Fig. 1. Forward Current vs.
Forward Voltage

50%

-

~3.0

iii

zw

HIGH_"
EFFICIENCY " /
RED
/I

40

4.0

As measured with a Photo Research Corp. "SPECTRA" Microandela Meter (Model IV-D).
The axis of spatial distribution are typically within a 10° cone with reference to the central axis of the device.

2

HIGH EFFICIENCY GREEN/AIGaAs RED
HIGH EFFICIENCY REO/AlGaAs RED
PACKAGE DIMENSIONS

I~I

Ir,r-'f
~

480 ("2 19)

: ~460

l

(11 68)

040

I
850 (21 6)

SO

I
I

I
I

MIN

~

[I---

I i

065(165)

lJ55'"il4ijj

t

I

L~~_[i]~,
050 (I 27) NOM

gg :6~~:

;

(102)
---,--

I

.050 (1.27) NOMINAL

lOO(254)NO~b_

t

'GREEN
CATHODE

MV5094A

DESCRIPTION

1..200 (5 08).1

330 (838)

MV5491A

The Green/Red MV5491A and Red/Red MV5094A
are superior drop-in replacements for General
Instrument's bicolor Green/Red MV5491 or
MV9475 and for bipolar Red/Red MV5094 or
MV9775. The MV5491 A is a White Diffused, very
wide viewing angle, dual chip, 4-state lamp
utilizing Deep Red AIGaAs and High Efficiency
Green. AC-driven, the LED lamp appears Orange.
The MV5094A is a Red Diffused, very wide
viewing angle bipolar Red (AC) lamp featuring
Red AIGaAs and High Efficiency Red chips.

FEATURES
•
•
•
•
•

NOTES:
1 TOLERANCES 010" UNLESS SPECIFIED
2 ALL DIMENSIONS SHOWN IN INCHES
CI826A
(MILLIMETERSI

•
•
•
•

Excellent uniformity and visual appeal
Very wide viewing angle for perfect direct view
Increased reliability
Radically improved die-off-center
characteristics
Same current for both colors for minimum
component count
Improved solder heat durability
4-state; Green, Red, Orange, OFF (MV5491A)
1" leads
May be panel mounted - MP52 is separate
order item

ABSOLUTE MAXIMUM RATINGS (TA = 25° C Unless Otherwise Specified)
PARAMETERS
RATING UNITS NOTES
Power dissipation ...••..••.•.......•........•.......•......•..........••.......
135
mW
1
Peak current ....••...............••.•...•..............••...•.•...............
90
mA
Average current .................•...••.......•............•...................
mA
2
30
Lead soldering time
seconds
5
Storage and operating temperatures .....••..............•....................... -55 0 C to +100° C
3

NOTES
1.
2.
3.

Derate power linearly from 25°C at 1.8 mW/oC.
Derate power linearly from 50° Cat 0.5 mAr C.
To a point minimum 1/16 inch (1.6 mm) from the bottom of the lamp.

355

MV5491 A MV5094A
ELECTRO-OPTICAL CHARACTERISTICS (TA

=25°C Unless Otherwise Specified)
MV5491 A

MV5094A

UNITS

TEST CONDITIONS

Luminous Intensity

min.
typ.

Iv

2.0
6.0

2.0
6.0

mcd
mcd

IF=20 mA
IF=20 mA

Forward voltage

max.
typo
typo

VF

3.0
2.3
568/650

V
V
nm

IF=20 mA
IF=20 mA
IF=20 mA

5.0

3.0
2.3
630/650
5.0

V

IR=1oollA

100

75

degrees

IF=20 mA

PARAMETER

Dominant wavelength
Reverse breakdown
Total viewing angle between half Luminous
Intensity points

SYMBOL

min.

Ad
VBR

typ.

2(~'h

TYPICAL ELECTRO-OPTICAL CHARACTERISTIC CURVES
(TA

=25°C Unless Otherwise Specified)

(-)-OffAxis Angle-Degrees
C1827
Fig. 1. Spatial Distribution

356

YELLOW
HIGH EFFICIENCY GREEN
HIGH EFFICIENCY RED
PACKAGE DIMENSIONS

~------I

J l------r
r
.197

± .005

.078 ± .005
(1.98)

(5.00)

MV53123
MV54123
MV57123

DESCRIPTION
These rectangular LED lamps provide a lighted
surface area 2 x 5 mm. The High Efficiency Red
and Yellow solid state lamps contain a gallium
arsenide phosphide on gallium phosphide light
emitting diode. The High Efficiency Green Lamps
utilize an improved gallium phosphide light
emitting diode.

FEATURES

.295 ± .010
17.501

•
..
•
•
..

2 x 5 mm lighted area
Stackable in X or Y direction
High brightness-typically 4 mcd at 20 mA
Solid state reliability
Compact, rugged, lightweight

APPLICATIONS
•
•
•
•

1.000 MIN.

_J

125.41

Legend backlighting
Illuminated pushbutton
Panel indicator
Bargraph meter

m_+-"·0",,SO,-,1.27) NOMINAL
.020 ± .003
10.511
.049
11.241

t

NOTES:
1. ALL DIMENSIONS ARE IN INCHES (mm)
2. TOLERANCES ARE ±O1O" INCH UNLESS
SPECIFIED
3. AN EPOXY MENISCUS MAY EXTEND ABOUT
.040" (lmm) DOWN THE LEADS. THE BASE
OF THE PACKAGE IS NOT FLAT

C1667A

ABSOLUTE MAXIMUM RATINGS (TA = 25°C Unless Otherwise Specified)
Power dissipation •••...•••.•••.....••.•.•..•••.•••••....•.•.•.••....•...
Derate linearly from 500 C ••.•••.•...•.••••..•...••••.....•.••.••..•.•..•.
Storage and operating temperatures ..................................... .
Peak forward current (1 ~sec pulse width 300 pps) ....................... ..
Forward current •••••••.•••..••.....•.•..••.......••....•.•.•..•...•..•.
Lead soldering time at 2600 C (See Note 1) •...••.••.•.•....•..•..•••....••
Reverse voltage ••••••...••.....•...•••......••.••.•.....•••.•....•.•..•.

MV53123
MV57123
MV54123
120 mW
120 mW
1.6 mW/oC
1.6 mWrC
-55° C to +100° C -55° C to +1000 C
1.0A
90 mA
35 mA
30 mA
5 sec.
5 sec.
5.0V
5.0V

357

MV53123 MV54123 MV57123
ELECTRO OPTICAL CHARACTERISTICS (25 0 C Unless Otherwise Specified)
TESTCOND.

PARAMETER
Forward voltage (VF)
typo
max.
Luminous Intensity
(See Note 2) min.
typo
Peak wavelength
half width
Capacitance
typo
Reverse voltage (VR)
min.
Viewing angle (total)

UNITS

MV53123

MV54123

MV57123

IF =20 mA
IF =20 mA

V
V

2.1
3.0

2.2
3.0

2.0
3.0

IF =20 mA
IF =20 mA

mcd
mcd
nm
nm

1.0
4.0
585
45

1.0
4.0
562
30

1.0
4.0
635
45

pF

45

20

45

V
degrees

5.0
100

5.0
100

5.0
100

IF = 20 mA
V=O, f= 1 MHz
IR = lOOI'A

TYPICAL ELECTRO-OPTICAL CHARACTERISTICS CURVES (250 Free Air Temperature)
100

DOTTED LINES.!
90 INDICATE-- YELLOW
PULSED
::; 80 OPERATION

"
E

I-

I

z

70

0

50 f - -

w

W,f,I

I

100%1--l----'i--!-hrt~h.+-+---1

#-

I

.:. 80%

HIGH ......... II
a: 60 f - a:
-EFFICIENCY",
::J

"a:

40

~

30

l<

20

0
u.

RED

::J
-30

o
DC

Cl194B

Fig. 3. Luminous Intensity vs.
Duty Cycle

:/

:/
:/

-

/

o

20
40
60
80
INSTANTANEOUS FORWARD
CURRENT IF(mA)
C652A

140

%\'

~12D %

....a.
::J
o

~ 100

;::
0(

...J
W

~

80

r\.

""- ~

" ""',

60 %
-60 -40 -20 0 20 40 60
TEMPERATURE - • C

Fig. 4. Luminous Intensity vs.
Forward Current

'"

80 100
C654A

Fig. 6. Output VS. Temperature

NOTES
1.
2.

358

The leads of the device immersed in molten solder, heated to a temperature of 2600 C, to
body of the device per MIL-S-750, with dwell time of 5 seconds.
As measure with a Photo Research Spectra Corp. Microcandela Meter (Model IV-D).

a point 1/16 inch (1.6 mm) from the

HIGH EFFICIENCY RED
YELLOW
HIGH EFFICIENCY GREEN
PACKAGE DIMENSIONS

DESCRIPTION

sa D1al045}+§
NOMINAL
2 PLACES

315(800)
.290(737)

I
t--

t!

i

TOO(25'}

~90 (2 29)

'0:0 (~54) NOMINAL

(_295(749) __ :
I

275(699)

I
_

HLMP-0300/1
HLMP-0400/1
HLMP-0503/4

I

:

The HLMP-OXOX Series of rectangular lamps
are direct replacements for Hewlett-Packard's
series with the same part numbering. The
series is similar to MV5X123 except for the
larger lens size. Like the MV5X123, the HLMPOXOX is stackable. The lamps are tinted
diffused and intended for direct view.

CATHODE

FEATURES

100(254)
MIN

NOTES:
1. ALL DIMENSIONS ARE IN INCHES (mm)

____I
050 (1 27) NOMINAL

ANODE _ . U ._ _- . - _

2.

TOLERANCES ARE ±010" INCH UNLESS
SPECIFIED

3.

AN EPOXY MENISCUS MAY EXTEND ABOUT
.040" ('mm) DOWN THE LEADS. THE BASE
OF THE PACKAGE IS NOT FLAT

•
•
•
•

3 High Efficiency colors
Stackable in both directions
Rectangular light area
Inexpensive panel indicators

C1730

PHYSICAL CHARACTERISTICS
DEVICE
HLMP-0300
HLMP..(J301
HLMP..Q4()O
HLMP-Q401
HLMP-Q503
HLMP-Q504

SOURCE
COLOR
High Efficiency Red
High Efficiency Red
Yellow
Yellow
High Efficiency Green
High Efficiency Green

LENS
COLOR
Red Diffused
Red Diffused
Yellow Diffused
Yellow Diffused
Green Diffused
Green Diffused

LENS
EFFECT
Very Wide
Very Wide
Very Wide
Very Wide
Very Wide
Very Wide

Beam
Beam
Beam
Beam
Beam
Beam

Iv MIN. AT
20mA
1.0
2.5
1.5
3.0
1.5
3.0

ABSOLUTE MAXIMUM RATINGS (TA

= 25° C Unless Otherwise Specified)
Power dissipation at 25° C ambient ............................••.••.........•.•.•...........•..•.. 135 mW
Derate linearly from 25° C ..................•..•........•.••.......•.......•.........•.........• 1.6 mW/o C
Storage and operating temperatures .............••......•..........•..•..•............... . -55° C to +100° C
Lead soldering time at 260° C (See Note 2) ...•..•.•........•••.......•........•.•.•......•...•..•.... 5 sec.
Continuous forward current at 25° C ..•.....•.•...•........•.....•................................... 30 rnA
Peak forward current (1!,sec pulse, 0.3% OF) .••.•..•.•.....•..•......•..•.......•.•......•.......•.... 1.0 A

350

HLMP-0300/1 HLMP-0400/1 HLMP-0503/4
ELECTRO-OPTICAL CHARACTERISTICS (TA=2SoC

Unless Otherwise Specified)

HLMPYELLOW

HI. EFF.RED
PARAMETER

HI. EFF. GREEN

SYMBOL

0300

0301

0400

0401

0503

0504

UNITS

TEST CONDITIONS

Luminous Intensity
(See Note 1)

min.
typo

Iv

1.0
2.5

2.5
5.0

1.5
2.5

3.0
5.0

1.5
3.0

2.5
5.0

mcd
mcd

IF=20 rnA
IF=20 rnA

Forward voltage

max
typo

VF

3.0
2.1

3.0
2.1

3.0
2.2

3.0
2.2

3.0
2.3

3.0
2.3

V
V

IF=20 rnA
IF=20 rnA

Peak wavelength

typo

Ap

635

635

585

585

565

565

nm

IF=20 rnA

Spectral line
half width

typo

J.A/2

45

45

35

35

35

35

nm

IF=20 rnA

Capacitance

typo

C

45

45

45

45

20

20

pF

VF=O, f= 1 MHz

Reverse breakdown
voltage

min.

BVR

5

5

5

5

5

5

V

IR=100"A

typo

2(')112

100

100

100

100

100

100

degrees

Total viewing angle
between half Luminous
Intensity points

TA = 25'C

...

7

>iii-

40r--r~--1-~~~~-1~

~E

~

30r--r~--;'~-7~~~~

:::lu.

20~~-1-,~.f--t-~-4--4

zm
:iE"
:::l:!l

W

3

-'"
(1)11

o

II:

~ 10r--r~r+~-+--r--r~~

f2

1.5

0-

1.0

V

...J=

~~

~5

0.5

...J

W

a:

0.0

1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

FORWARD VOLTAGE (WI - VOLTS

130

/

z<

Zo

II:
II:

2.0

r

/

a

120

~

1""-..

_110

>-u
~~100

V

fE ca

r"

r---..

90

""- ~

~.~ 80

Wo;

~ E 70

~~

a:

"

50
10

20

40

30

FORWARD CURRENT -IF 'rnA,

C1063C

·55

-25

25

50

75

100

TEMPERATURE - TA I'CI
C1671

C1676

Fig. 1 Forward Current vs.
Forward Voltage

"

60

Fig. 3. Relative Luminous Intensity
vs. Temperature

Fig. 2. Luminous Intensity vs.
Forward Current

100 1--±=:I""7'
i= 40 j--++-t-I-l-'H-+-t--++-t--l

S
W

a: 20 j--..Jf--lJ--+-+lf--'oH--+-+r--l
540 560 580 600 620 640 660 680

WAVELENGTH (AI - nm

Fig. 5. Spectral Distribution

(·)-OFFAXIS ANGLE-DEGREES
Cl776

C1064

Fig. 6. Spatial Distribution

NOTES

1. As measured with a Photo Research Corp. "SPECTRA" Microcande/a Meter (Model IV-D).
2. The leads of the device were immersed in molten solder, at 26DoC, to a point 1/16 inch (1.6mm) from the
body of the device per MIL-S-7SD, with a dwell time of S seconds.
360

MV53124A
MV54124A

YELLOW
HIGH EFFICIENCY GREEN

HIGH EFFICIENCY RED
HIGH EFFICIENCY GREEN/AlGaAs RED
DESCRIPTION

PACKAGE DIMENSIONS

The MV5X124A Series of rectangular high
performance LED lamps with reflector cap has
been engineered for much improved light
uniformity which is especially important in direct
view and legend backlighting. Includes a
Green/Red version-MV49124A. The Green chip
is the same as is used in MV54124A, while the
Red chip is AIGaAs at 660 nm to achieve a bright
Dark Red color in the non-tinted diffused epoxy.

---------.I

L

D

.245
r--(6.22)~

T
'12.5

(3.17)

~

D~"

T

.145

(3.68)

'~

J

, ""'-LIGHTED
AREA

.225 ----I
I' - - - (5.71)
- I

O

T

-r45
(3.68) NOM

.280~: 11

r,~.-~-,.-,,~"j";

1,,000","

REFER~E

MARK MAY
CONTAIN ANY
NUMBER BET~EEN

CATHODE

.800 MIN
(2032)

r':1

I
~l

+

Ll.J

1AND16

---.j~
: ___
I 1-

r

:

...J..!L

(2.54)

MV57124A
MV49124A

j.-.020 sa TYP
(.508)

.050 (1.27)
NOMINAL

NOTES:
1. ALL TOLERANCES ARE
.008 INCH (0.20)
2. ALL DIMENSIONS IN
INCHES (mm)

T

FEATURES
• Uniform illumination
• Increased typical brightness.
• Tighter mechanical tolerances for base of
design
• Stackable in X or Y direction without
crosstalk
• .220" x .125" lighted area for direct view or
legend backlighting
• Use Black MP65 two piece grommet for panel
mounting
• Superior quality

APPLICATIONS
• Legend backlighting
• Panel indicator
• High quality bargraphs

C1245B

ABSOLUTE MAXIMUM RATINGS

PHYSICAL CHARACTERISTICS

(TA = 25°C Unless Otherwise Specified)
PARAMETER
Power dissipation
Continous forward current
Peak forward current
(11'5,0.3% DF)
Lead soldering time
at 260·C
Operating and storage
temperature

All DEVICES

UNITS

NOTES

120
30
90

mW
mA
mA

1

5

seconds

2

TYPE
MV53124A
MV54124A
MV57124A
MV49124A

SOURCE COLOR

LENS EFFECT

Yellow
High Eff. Green
High Eff. Red
High Eff. Greenl
AIGaAs Red

Yellow Diffused
Green Diffused
Red Diffused
White Diffused

-55· to + 100·C

NOTES
1) Derate linearly from 25·C at 1.6 mWI·C.
2) From a point 1/16 inch (1.6mm) from the bottom of lamp.

361

MV53124A MV54124A MV57124A MV49124A
ELECTRO-OPTICAL CHARACTERISTICS (25°C Temperature

Luminous
Intensity
Forward voltage
Peak wavelength
Spectral line
half width
Reverse voltage
Reverse current
Capacitance
Viewing angle
(total)

MY
53124A

MY
54124A

MY
56124A

MY
57124A

MY
49124A

UNITS

TEST
CONDo

>.p

1.0
6.0
2.0
3.0
585

1.0
6.0
2.2
3.0
562

1.0
6.0
2.0
3.0
605

1.0
6.0
2.0
3.0
635

1.0
6.0
2.2
3.0
562/660

mcd
mcd
V
V
nm

IF= 20 mA
IF =20 mA
IF=20 mA
'F =20 mA
IF=20mA

V8R
IR
C

45
5
100
45

30
5
100
20

45
5
100
45

45
5
100
45

30/45
5
100
20/30

nm
V
IlA
pF

IF=20 mA
IR = 100llA
VR =5.0V
V= 0, f= 1 MHz

2B'h

100

100

100

100

100

degrees

SYMBOL

PARAMETER

min.
typo
typo
max.

Iv

VF

min.
max.

Unless Otherwise Specified)

NOTES

3
3

NOTE
3) As measured with a Photo Research Corp. "SPECTRA" Microcandela Meter (Model IV-D).

TYPICAL ELECTRO-OPTICAL CHARACTERISTICS (25°C

Temperature Unless Otherwise Specified)

~

f-

zw

c: 60
c:
0

Q.

;;;1.5

w

>

;:: 40%

:sw

20

f-t++I-H-HI+-IrH-t--'H

c: 20% I-f--+l-+-ttl--\I-I'-++t--t-~

>
;::

:sw

c.
c.

IS

1'\

'"

FOWARD VOLTAGE VF (VOLTS)
C1831E

Fig. 1. Forward Current vs.
Forward Voltage

1
10

IF

~'\

~

~~.O

iii
zw
f-

:!::2.0

en
:::J
o

z
:E 1.0
:::J
...J

l./

o
o

V
!/

V

V

/'

20
60
40
80
INSTANTANEOUS FORWARD
C652A
CURRENT IF(mA)

Fig. 4. Luminous Intensity vs.
Forward Current

I'\..

!; 120'y,

'"

Q.

f-

:::J

o

g;!100 'A

;::
«
...J

w

~

.........

"-

"

,
80

.

r-.

20
40
DUTY CYCLE - %
10 rnA AVERAGE

140'

I

u.

"'I-DC
C11948

Fig. 3. Luminous Intensity vs.
Duty Cycle

Fig. 2. Spectral Distribution

4.0

w
c:

~

10
520540 560 580 600 620 640660 680 690 700
WAVELENGTH (hp)-nm
Cl064F

d

'- ....

c:

OULLL~LL~~~~-L~~

362

~

z

c: 40
«
3: 30

'"«w

.

\

f-

:::J
0 50

0
u.

~

~

iii
zw

70

60'\1
-60 -40 -20 0
20 40 60
TEMPERATURE - 'C

"'80

100

C654A

Fig. 5. Output vs. Temperature

PRELIMINARY DATA SHEET

TAPE AND REEL
PACKAGE DIMENSIONS
B

A

---

TAPE FEED
DIRECTION

-I
'-----_ _ _ _-----'J
C1834A

H
Ho
Wo
W
W,
W2
P
Po
d
F
..lh
L

A
16.5
18.5
22.5

-

B

C
16.5
18.5
22.5

22.5
16

-

D

22.5

16

6.0 + 0.3
18.0 + 65
9.0 + 00';
<0.5mm
12.7 + 0.3
6.35 ± 1.0
4.0 ± 0.2
2.54 + g; 5.08 +
+2°
11.0 MAX

FEATURES
• Automatic PCB assembly of most T-1% and
T-1 with radial lead insertion machines
• Meets ANSI/EIA standard RS-464 (1981
• Standard .100-inch lead spacing or preformed
to .200-inch
• Choice of H = 16.5, 18.5 or 22.5 mm
• Standard reel
• T -H'4; MV5X5X, MV5X9XA, GIOD HLMP-3XXX
• T-1; MV5X6XX, GIOD HLMP-1XXX

g; 2.54 + g; 5.08 + g;

All dimensions in mm

363

MP22 MP52
PACKAGE DIMENSIONS

DESCRIPTION
The MP Series of mounting grommets is intended
for panel mounting of any standard T-1¥. General
Instrument light emitting diode indicators. The
grommets are made of plastic and are available in
Black only.
The MP Series will easily mount the applicable
lamps on any panel thickness up to .125-inch (3.18
mm).

rn
I

1_ . , ,

_II

TYPICAL MOUNTING TECHNIQUE
FOR EITHER TYPE
ICo,"

l 1.IID"",,1

.J

II H,,,,,,,lllIA
1_ _ _
11,11
___

MP22 TWO-PIECE POP-INS FOR MV5X2X

PANEL MAX .125"
13.18mml

'-""'-h
""".... ,,,.,
I ~ 250-1

-m

mm

11635mml DIA

I

STRIA~GHT

L

310"

265
1673mml

~

___1

1787m,nlDIA

at

I 635ml111

C621

MP52 TWO·PIECE POp·INS FOR MV6X5X AND MV5X5X

364

C602

MP65
DESCRIPTION

PACKAGE DIMENSIONS

r ,- - - - - - -,

The MP65 mounting grommet is intended for panel
mounting the MV5X124 Series of rectangular
lamps. The grommets are made of Black plastic
and provide the user with an easy-to-mount,
professional appearance when viewed on a front
panel.

i - - - .3'0·· ------.J
I
19.40mml
I

I
D
I'
W
~------------rl

I

.270"

(a.aLamm,

I

I

The MP65 can be used on any panel thickness up
to .125-inch (3.18 mm).

L _____________ .J
'=-------------_-:1

MATTE FINISH

TOP VIEW OF GROMMET

m::.ru1..mml......J
-I

.120"'3.0SmmJ

I.......-

075" 11 91 mml---l
.072"11 B3mm)

c:;:::f::'=====~

-I

'---

1-

c;:t:,===h=l

SIDE VIEW OF GROMMET

END VIEW
OF GROMMET

I.--- f9.40mml
.3'~· -------l
I
I

fDl
I

I

304··

~17:72mml~
TOP VIEW OF RING

1

.200"

...L...Jlmm'

L..J'--_ _ _ _ _ _
sIDe VIEW OF RING

MATERIAL: POLYPROPYLENE BLACK

PANEL HOLE PUNCHING
Punches can be ordered from one of the follow- 'wing sources:
W. A. WHITNEY COMPANY
650 Race Street
Rockford, IL 61105
(815) 964-6771
(Request a 28xx series punch with
dimensions of 5/16" x 7/32")
ROTEX PUNCH COMPANY, INC.
2350 Alvarado Street
San Leandro, CA 94577
(415) 357-3600
(Request a 3506 series punch with
dimensions of 5/16" x 7/32")

C1455

365

366

Applications

5

367

368

Applications Index

Page
371

Number
AN601

The Photometry of LED's -

AN603

Improper Testing Methods for LED Devices

375

AN1071

Optocoupler Input Drive Circuits MCT270 Series

379

ANi 074

Low Current Input Circuit Ideas 6N139/138 Series

385

AN1075

MID400 Power Line Monitor

389

AN3000

Applications and Operation of Optologic

401

A Primer in Photometry

369

370

GENERAL
INSfRUMENT

ANSOl
The Photometry of LED's
A Primer in Photometry
REVIEW OF GEOMETRIC PRINCIPLES
Any short discourse on the subject of photometry requires
a brief review of geometric principles utilized.
RADIAN
In plane geometry the angle whose arc is equal to the radius
generating it is called a radian. Therefore, if C = 211R (Circumference of a circle) 211R = 360°. Radian = 180°/11 =
57.27° (approx.)

Other abbreviations of immediate concern are:
Ae = Area of emitting (or reflecting) surface.
Ap = Apparent area of an emitting source whose image
is projected in space and viewed at some angle, 8.
Ad = Detection area. Whether a physical target or
merely a defined spatial area, it is the area of
interest.

PHOTOMETRIC TERMINOLOGY
FLUX (Symbol F)
Any radiation, whether visible or otherwise, can be expressed by a number of FLUX LINES about the source, the
number being proportional to the intensity of that source.
This LUMINOUS flux is expressed in LUMENS for visible
radiation.
LUMINOUS EMITTANCE (Symbol L)

TWO DIMENSIONAL FIGURE

FIGURE 1

STERADIAN
In solid geometry one steradian is the solid angle subtended
at the center of a sphere by a portion of the surface area
equal to the square of the radius of the sphere. Therefore, if
AR EA/R2 = 1 = 1 steradian and the area on the surface of a
sphere equals 411R 2 , then 411R2 /R2 or 411 steradians of solid
angle w about the center of a sphere. The steradian is
usually abbreviated as STER.

A source measurement parameter. It is defined as the ratio
of the luminous flux emitted from a source to the area of
that source, or L = F/Ae. Typically expressed in units
of:
l.umens/cm 2 or one PHOT,
lumens/m 2 or one LUX (or one METER CANDLE),
lumens/ft> or one FOOT CANDLE.
The foot candle is the more common term used in this
country.

FIGURE 3

THREE DIMENSIONAL FIGURE

FIGURE 2

371

ILLUMINANCE (Symbol EI
This is a target or detector area measurement parameter. It
is the ratio of flux lines incident on a surface to the area of
that surface or E = L/Ad. Typical measurement units are
the same for LUMINOUS EMITTANCE (abovel i.e.
lumen/cm 2 = one phot, lumen/m 2 = one lux, and lumen/ft 2
= one ft. candle.

0.1 the distance to the detector, it can be considered as an
area source. If less than this 10% figure, the source roan be
treated as point in nature. This one to ten ratio of source
diameter to distance is offered as it MATHEMATICALLY
very closely approximates results obtained when comparing
an area source to its point equivalent. LUMINANCE
presents itself as an extremely useful parameter as it applies
a figure of merit to:

1. Apparent or protected area of the source (ApI.
2. Amount of luminous flux contained within the projected area of the source (ApI.
TARGET OR
DETECTOR AREA

3. Solid angle the projected area generates with respect
to the center of the source.
NOTE: The projected area Ap varies directly as the cosine
of e i.e. max. at 0° or normal to the surface and minimum
at 90°
Ap= Ae cose

FIGURE 4

LUMINANCE is defined as the ratio of LUMINOUS IN·
TENSITY to the projected area of the source Ap.
LUMINOUS INTENSITY (Symbol I)
A spatial flux density concept. It is the ratio of luminous
flux of a source to the sol id angle subtended by the
detected area and that source. The LUMINOUS IN·
TENSITY of a source assumes that source to be point
rather than an area dimension. The LUMINOUS
INTENSITY (or CANDLE POWERI of a source is measured
in LUMENS/STERADIAN which is equal to one
CANDELA (or loosely, one CANDLE).

FIGURE 6

LUMINOUS INTENSITY
Ap

POINT SOURCE

FIGURE 5

LUMINANCE (Symbol BI
Sometimes called photometric brightness (although the
term brightness should not be used alone as it encompasses
other physiological factors such as color, sparkle, texture,
etc.1 it is applied to sources of appreciable area size.
Mathematically, if the area of an emitter (circular for
example) has a diameter or diagonal dimension greater than

372

LUMENS
STERADIAN CANDELAS
Ae cos e
- (Sq. Unitl

And depending on the units used for area:
1 CANDELA/cm' = 1 STILB
1 CANDELA/m' = 1 NIT
1 CANDELA/in' = I
.
.
1 CANDELA/ft' = I no designator available.
Also:

1hr candela/cm'
lhr candela/m'
l/rr candela/in'
l/rr candela/ft'

LAMBERT
APOSTILB (or BLONDELl
no designator available
FOOT LAMBERT

CIE CURVE

Following is the standard observer curve or "standard eyeball" established by the Commission Internationale de l'Eclair
(commonly called the CIE curve). Whereas one watt of radiated energy at any frequency corresponds to one watt of radiated
energy at any other frequency, this relationship fails to hold true for photometric measurement. The CIE curve is essential
therefore, not only in determining the eye's efficiency at any particular wavelength, but also the corresponding lumens per
watt conversion of that particular wavelength.
For example, the MV5020 which emits 180 IlW of radiant energy at 6600A (typical) or 41.4 lumens per watt has
180 x 10-6 watts x 41.4 lumens ·=7.45 mLumens
watt

of flux emitted from it.

700
650

/

600

cr:

0

/

550

U

500

Z

450

0

~\
I

\

\

I
I

en
cr:

400

>
Z

350

I

I
I

W

U

I- 300
I-

«

250

z

200

:2:

::J 150
...J

100
50

360

I

-

/

/

I

z

\

w
w
cr:

~

400

420

440

460

,

-50%

\

C')

U'l

"

::i!

/

0

'\

I

w

~

\,

I
I

I
I
I
I
I

,/'

380

-

0

500

520

540

560

-25%

N

0

U'l

>

::

\,v
~

I
480

-75%

\

I

W

o

I

1
I

0

~
en

-100%

"

I

I-

«
LL

v

580

600

620

640

WAVELENGTH - nm

660

~

680

700

710

720

740

0%

C1146A

Similarly, a green emitter such asthe MV5453 operating at an identical input power as the red will emit 10 /Jwatts of radiant
energy or
10

X

10-6 watts x 649 lumens = 6.49 mLumens
watt

of flux emitted from it. In short although there exists at least an order of magnitude difference in radiant power the eyes' compensating effect "magnifies" the green to appear equally bright.

373

LUMINOUS INTENSITY versus LUMINANCE
The successful application of either measurement parameter as a yardstick to duplicate mathematically the visual stimulation
experienced by an observer is a controversy which will probably rage for some time. As the entire electromagnetic spectrum
is bounded only by the capabilities of a detector to discern it, so for within the visual spectrum the eye is the limiting factor.
SUBJECTIVELY speaking, the eye can discern finer increments of arc (computed from target to eye) than a 1 to 10 relationship, or approximately 5° 43 min. In fact, it can be shown that for view angles of much less than 2 minutes, the eye translates
the source into a point and thus the photometric measurement of LUMINOUS INTENSITY (in candelas) most directly correlates with subjective brightness. For view angles of much greater than approximately 2 minutes, the eye sees the source as an
area source, and thus the photometric measurement of LUMINANCE most directly correlates with subjective brightness. A
two minute view angle computes to a 1/1666 ratio of source diameter to distance ratio. For the MV5025 this computes to
approximately 22 feet (1666 x .16" diameter, approximately 22 feet) well within the expected normal viewing distance of
an observer.

~1

El

= 5° 43"

10

Dimensional criteria for
Photometric appro)(imation

9]1

El

=

2"

1666

FIGURE 1

Considering that the usage of the discrete MV5025 LED is as an indicator and as such is utilized arms length or approximately
30" away, it can be seen that the LUMINANCE parameter and its basic unit, the FOOT LAMBERT, most closely correlates
with subjective brightness.
RADIOMETRY
While photometric units are concerned with only the visible spectrum of wavelength, all frequencies of emission, including
the visible nre expressable in RADIOMETRIC terms. Radiometric terms and their photometric equivalents are as follows:

RADIOMETRIC

PHOTOMETRIC

Radiant flux (Symbol P) expressed in watts
Irradiance (Symbol H) expressed in watts/sq. unit
Radiant Emittance (Symbol W) expressed in watts/sq. unit
Radiant Intensity (Symbol J) expressed in watts/steradian
Radiance (Symbol N) expressed in watts/ster/sq. unit

Luminous flux (F) expressed in lumens
Illuminance (E) expressed in lumens/sq. unit
Luminous Emittance (L) expressed in lumens/sq. unit
Luminous Intensity (Symbol I) expressed in lumens/steradian
Luminance (B) expressed in lumens/ster/sq. unit

374

GENERAL
INSfRUMENf

AN603
Improper Testing
Methods for LED Devices
In any manufacturing operation it is essential that the
materials used in the fabrication process meet the min·
imum quality specifications of the device under produc·
tion. To that end, prudent manufacturers establish some
sort of incoming quality assurance system to make sure
that defective materials are culled at the door. It is
equally important, however, that the screening system
used in the a.A. inspection does not reject materials
which are acceptable, and that the testing procedures
utilized in -the system do not inadvertently damage
materials which are otherwise acceptable. Unfortunately,
this latter aspect of quality assurance procedures is often
neglected, and whenever a device is rejected because of
inappropriate testing methods, both the manufacturer
and the vendor are subject to a great deal of unnecessary
expense and inconvenience. Because many manufac·
turers who buy LED components are relatively inexper·
ienced with the features and limitations of III·V devices,
problems involving improper testing methods and unnec·
essary materials rejection are of particular concern to
LED vendors. This note is intended to familiarize the
user with the basic electrical and opto·electrical proper·
ties of LED devices and to clear up some of the
problems involved in testing them.

semiconductor Energy·Band Theory. When an external,
forward·biasing voltage is applied to a p·n junction, the
conduction mechanism is such that electrons are excited
by the electric field, gaining enough energy to cross the
energy gap from the valence band to the conduction
band, and then to relax back from the conduction band
into the valence band. During the transition from the
valence band to the conduction band, the electrons take
energy from the field. As they pass back into the valence
band, the electrons release this energy in the form of
light photons. The amount of energy released is deter·
mined by the width of the energy gap. (The wavelength,
or color, or the light is a function of the energy gap.)
The light is emitted directly from the electrons within
the depletion region formed between the two sides of
the junction.
The electrical characteristics of LED's are also related to
the energy gap. For example, the conduction threshold,
or "knee" point on the ItNt curve in the forward·biased
direction occurs at approximately 1.0 volts for infrared
LED's, at approximately 1.3 volts for visible red LEO's,
and from 1.B to 2 volts for yellow and green LED's. The
brightness of the light is directly proportional to the
operating current flowing in the forward direction.

THE MATERIAL

GALLIUM VS. SILICON
As a semiconductor, III-V compounds using Gallium
have several advantages over silicon and germaniumreverse leakage current is several orders of magnitude
lower; forward current is lower below the "knee" point;
inherent thermal noise is lower; and carrier mobility is
high. Perhaps the greatest advantage, certainly where
LED's are concerned, is the ability to produce light di·
rectly from electron flow.

Historically, silicon and germanium were the first semi·
conductor materials to have been used for p·n junction
devices such as transistors, diodes, and solar cells. How·
ever, following closely upon the invention of the ger·
manium transistor in 194B, work was begun on predict·
ing the semiconductivity of a material from its chemical
compound. Based on energy band·gap experimentation,
it was discovered that III·V materials have semiconduc·
tor properties. 1
Gallium semiconducting materials, Gallium Arsenide
(GaAsl. Gallium Arsenide Phosphide (GaAsPl. and Gal·
lium Phosphide (GaP) are the materials from which
LED's are fabricated. These materials have the ability to
emit a narrow band of monochromatic light in either the
visible or infrared spectrum, depending on the constit·
uent and ratio of ingredients. The mechanism for this
emission of radiant energy is best described in terms of
1 E.G. Bylander, Materials for Semiconductor Functions (New
York, 1971), p.17.

Figure 1 shows a comparison between the forward con·
duction characteristics of diodes formed from III·V
materials and silicon. Notice that the "knee" of the con·
duction curve for the Gallium diodes occurs at higher
voltages, and is harder than the "knee" of silicon diodes.
Notice also that as the wavelength progresses from the
infrared toward the blue end of the spectrum, the GaAsP
"knee" points get progressively higher and the slope of
the If IVf curve tends to decrease. Excluding exotic
devices such as Schottky or Esaki diodes, silicon diode de·

375

600
TA 1= 25"C

500

/

'ii

.3

~ 400
z

in

Si

'.

V

G

V: 2 rnA/DlV
H: O.6V1DIV

~ 300

.,;!;::J

I
I

0

z 200

V

i

::J

-'

I

J

100

J

10

20

30

40

50

60

FORWARD CURRENT PER SEGMENT 'mAl

C449

Fig. 2. Typical LED Curve

Luminous Intensity vs. Forward
Current for Constant Temperature

150
IF =20mA

130

...........

~

~ 110

...........

:I:
C1

~

90

~
a:

70

.............

..........

r--....

>

FORWARD VOLTAGE NIl-VOLTS

11<

Fig. 1. Typicallf/Vf Curves of Silicon, GaAs, and GaAsP, GaP
(Silicon·IN914,IR-ME1024, Red·MV5053,
Yellow-MV5353, Green-MV5253)

50

~55

-25

25

50

AMBIENT TEMPERATURE lOCI

75

100
C450

Fig. 3. Typical LED Curve
Brightness vs. Temperature
for Constant Current

vices normally show little difference in the forward conduction curve.
The reverse characteristics of III-V materials are similar
to those of silicon except that silicon's thermal leakage
current is higher at very low reverse voltages. The reverse
breakdown voltages of silicon are typically higher, and
the characteristics of silicon devices are usually controlled for reverse breakdown at particular voltages. The
reverse breakdown characteristics of diodes used in LED
devices are not particularly controlled, since the quality
of light emission is the first priority. The MANX and
MANXX series displays use LED's which have a typical reverse·mode breakdown voltage range of from 5
to 20 volts. However for guard-band purposes, the reverse voltage is specified on the data sheets at 5 volts
minimum.
If a silicon device is subject to junction damage, it will
often continue to perform adequately because of silicon's inherent annealing capability. When damage
occurs to the junction of an LED device, however, the
result is usually a softening of the "knee" or a flattening
of the IfNf curve. Although the device may continue to
operate, performance will be less than satisfactory, and
early failure may result.

376

DAMAGE MECHANISMS
The discussion which follows will treat, in some detail,
the most common errors in LED test set-ups and will

suggest either alternative testing methods or means by
which improper testing methods can be corrected to
produce more reliably accurate results.
Testing for Fabrication Defects
Thermal Shock-is a passive mode test involving a rapid
refrigerate/heat cycle in which no current is applied to
the device. This test is a good method for detecting weak
bonds and, therefore, locating defective devices, but it
should be used cautiously, especially with LED's. In
LED's a 1-mil gold wire is bonded from the top of the
die over to the side contact, whether it is lead frame or
substrate. The wire is surrounded by the epoxy which
encloses the die and forms the package. When heat is
applied, the epoxy, the gold, and the lead frame all
expand at different rates. Thus, when the device is
heated up too rapidly, the effects on the bond are
similar to giving the wire a hard jerk. This action
constitutes thermal shock and tends to weaken even
good bonding and, consequently, shorten life expectancy.

Burn-tn-consists of operating the device at elevated
temperatures, thus accelerating the effects of opera·
tionally imposed heating. This method is frequently used
in testing semiconductors, but its use is not advised with
LED's, especially if the testing involves operating with
excess current or current which exceeds the device
ratings for several hours. LED's exhibit a gradual degradation of brightness as a function of current, time, and

EXCESSIVE IF
>l00mA

I
NOTES:
AI NORMAL FORWARD IFNF CURVE
B) DAMAGE OCCURRING TO JUNCTION
WHILE REVERSE BIASED
CI PARTIALLY DAMAGED JUNCTION
D) DEFECTIVE OR HEAVILY DAMAGED
JUNCTION

- ---'- + [TEST BENCHMARK

T VF, < VF IMAX) .IF, ITESTIl

A

/

I

Ie:

",/

,;.-

/'.
•

: VF l

AVALANCHE

EXCESSIVE IF! > IOpA

FORWARD AND REVERSE
NOT TO SAME SCALE

<451

Fig. 4. Effects of Improper Testing Procedure

POWE R SUPPLY
(VOLTAGE REGULATED!

SCOPE

C452

Fig. 5. Potentially Damaging Forward·Mode Test Setup

temperature, and the higher the current, the faster the
degradation. The graphs in Figures 2 and 3 illustrate
typical LED responses to forward current and temperature. Exceeding the rated parameters in test can result
in rapid degradation beyond an acceptable level. For the
same reasons, burn-in is particularly inadvisable with
LED's if the test set·up involves slow on-off cycles of
overcurrent (cyclic room temperature to high temperature and then cooling).

Thermal Cycling-is an on·off cycling method which
simulates operational heating effects. The device is
allowed to heat up from room temperature with rated
current, and is then cooled down. Thermal cycling is an
excellent method for finding defective devices (poor
bonds, fractures in the metalization, voids in the die·
attach, etc.), and its use is recommended for testing
LED's. Too often, such thermal cycling occurs in actual
use, and defects are detected too late. However, to
insure against exceeding the rated capabilities of a
particular device, a thermal cycling test program (or
operational program) should not be established without
factory guidance.
Reverse Conduction Mode Problems
Reverse voltage testing can be hazardous since it may
involve a system capable of delivering voltages and
currents which considerably exceed the reverse voltage
and power ratings of the device under test. Too much
current at the avalanche voltage will dissipate excessive

power, resulting in heat which will degrade the junction
rapidly. The importance of adequate current limiting
cannot be over·emphasized. Without it, damage to the
junction can result from testing into the avalanche
region and/or from the sudden application of voltage
which exceeds the rated avalanche breakdown voltage of
the device. Damage in the avalanche region is usually the
result of an improperly set testing apparatus. As Figure 4
indicates, damage may not be immediately apparent, but
it could result in poor performance during other test
situations and possible rejectioll of the device due to
excessive voltage or current values.
Forward Conduction Modc Problems
Forward mode testing is USI!d to check such performance
criteria as the forward V/1 curve of the diode, brightness,
ROP, and luminescence. The potential danger in examin·
ing the forward curve is dama[Jc to the diode junction,
since the test circuitry can sometimes deliver very high
energy bursts. For example, if a 50-volt regulated power
supply is set for 5 volts to supply the test fixture, and if
power is supplied through a switch as shown in Figure 5,
it is possible to deliver current pulses of a high enough
amplitude to result in junction damage. This problem is
easily avoided by supplying low voltage power with
current limiting to the test fixture. Another acceptable
method, and the one which is used by General Instrument quality assurance engineers, is to use a power
supply which is both full voltage regulated and current
limited.

377

RADIOMETRIC
DETECTOR
RESPONSE

800

900

1,000

WAVELENGTH (ll - nm

1,100
C<53

Fig. 6. Responses of Two Detectors to the
Output of a Visible Red LED

Brightness Tests
Optical measurements are typically, and in most instances, unavoidably, of very low accuracy. Optical measurements with errors of less than 1% are rare, and accuracy
within 5% i~ difficult to obtain. With an experienced
technician using good equipment it is possible to secure
accuracy within 10% to 20% on a routine basis, but even
here a slight difference in technique can result in errors
in excess of 50%.

Detectors-A goud detector approximates the CI E curve
area with 2%. However, it is important to note that
even when the detector is within 2% of perfect, it is still
possible to produce mismatches at specific wavelengths
which can cause the percentage of error to increase
considerably. Thl!lefore, in order to determine the
margin of possible ell ur, it is imperative that one know
the detector's spectral response within the wavelength
range of the device to he measured. To illustrate the
problem of spectral mismatch, the reader is referred to
Figure 6 where we show the responses of two detectors,
a radiometric detector and a photometric detector, to
the output of a visible red LED. The response of the
radiometric detector is about 3% high. Notice, however,
that the photometric detector, which provides a very
close match to the CIE curve, produces a +25% error.2
Additional factors which must be considered are detec·
tor aging and fi Iter deterioration, nonlinear detector
responses, circuitry which is not temperaturecompensated, and stray light. Periodic calibration is
essential if a reasonable degree of accuracy is to be
maintained_

Correlation Samples-Unless the testing apparatus is
reciprocally related to a vendor-supplied correlation
sample, test results may erroneously indicate that many
devices in a shipment do not meet the minimum brightness that was specified on the order, and could result in
the rejection of devices which do meet minimum stan-

2Michaet A. Zuha, "Shedding Some Needed Light on Opticat
Measurements," Electronics, November 6,1972, pp. 94-96.

378

dards. Correlation samples are also essential for the
correction of instrumentation drift.

Subjectivity Problems-I n some instances a visual comparison may be the best method for brightness testing.
However, the manner by which the human eye "sees" is
affected by various factors such as the nature of the light
source, viewing distance, color, texture, the observer's
visual acuity, and even the viewer's emotional state.
Therefore, because of these highly subjective factors
involved in human visual perception, such tests alone are
usually inadequate and should be used only as a supplement to or in correlation with instrumentation. It has
been our experience that manufacturers who rely solely
on visual testing return many devices, a fair percentage
of which can be reshipped and accepted.
Testing to Parameters Other Than Those Specified-This
is a particularly important consideration when a manufacturer specifies his own parameters distinct from those
normally specified. To avoid unnecessary rejection of
devices, it is imperative that a device is always tested to
the parameters under which it will be expected to
operate_
SUGGESTIONS FOR PROPER TESTING
That which follows is a quick check list of "do's" which
enable manufacturers to avoid many of the problems
associated with running incoming quality assurance tests
on LED's.
• In cooperation with the vendor, establish specifications which are economically feasible and ensure that
devices are screened at their point of origin.
• Always obtain a correlation sample from the vendor
before setting up the test procedure_
• Establish a reliable test procedure.
• Measure relevant parameters at relevant points.
• Make sure that the test circuitry will not erroneously
indicate defects and that it will not generate failures
later in the manufacturing cycle.
• Work closely with the vendor in establishing the test
system.

GENERAL
INSfRUMENT

AN1071
Optocoupler Input Drive Circuits
MCT270 Series
An optocoupler is a combination of a light source and a
photo-sensitive detector. In the optocoupler, or photon
coupled pair, the coupling is achieved by light being
generated on one side of a transparent insulating gap and
being detected on the other side of the gap without an
electrical connection between the two sides (except for a
minor amount of coupling capacitance). In the General
Instrument optocouplers, the light is generated by an
infrared light emitting diode, and the photo-detector is a
silicon diode, transistor, or SCR. The sensitivity of the
silicon material peaks at the wavelength emitted by the
LED, giving maximum signal coupling.
Since the input to all the optocouplers is a LED, the
input characteristics will be the same, independent of
the type of detector employed. The LED diode characteristics are shown in Figure 1. The forward bias current
threshold is shown at approximately 1 volt, and the current increases exponentially, the useful range of IF
between 1 mA and 100 mA being delivered at a VF
between 1.2 and 1.3 volts. The dynamic values of the
forward bias impedance are current dependent and are
shown on the insert graph for ROF and dR as defined in
the figure. Reverse leakage is in the nanoampere range
before avalanche breakdown.
The LED equivalent circuit is represented in Figure 2,
along with typical values of the components. The diode
equations are provided if needed for computer modeling
and the constants of the equations are given for the IR
LED's. Note that the junction capacitance is large and
increases with applied forward voltage. An actual plot of
this capacitance variation with applied voltage is shown
on the graph of Figure 3. It is this large capacitance
controlled by the driver impedance which influences the
pulse response of the LED. The capacitance must be
charged before there is junction current to create light
emission. This effect causes an inherent delay of 10-20
nanoseconds or more between applied current and light
emission in fast pulse conditions.
The LED is used in the forward biased mode. Since the
current increases very rapidly above threshold, the
device should always be driven in a current mode, not
voltage driven. The simplest method of achieving the
current drive is to provide a series current-limiting
resistor, as shown in Figure 4, such that the difference
between VF and VAPP is dropped across the resistor at

the desired IF, determined from other criteria. A silicon
diode is shown installed inversely parallel to the LED.
Th is diode is used to protect the reverse breakdown of
the LED and is the simplest method of achieving this
protection. The LED must be protected from excessive
power dissipation in the reverse avalanche region. A
small amount of reverse current will not harm the LED,
but it must be guarded against unexpected current
surges.
The forward voltage of the LED has a negative temperature coefficient of 1.05 mW/oC and the variation is
shown in Figure 5.
The brightness of the IR LED slowly decreases in an
exponential fashion as a function of forward current
(IF) and time. The "mount of Iight degradation is
graphed in Figure 6 which is based on experimental data
out to 20,000 hours. A 50% degradation is considered to
be the failure point. This degradation must be considered in the initial design of optoisolator circuits to allow
for the decrease and still remain within design specifications on current-transfer·ratio (CTR) over the design lifetime of the equipment. Also, a limitation on IF drive is
shown to extend usefullih:time of the device.
In some circumstances it is desirable to have a definite
threshold for the LED above the nominal 1.1 volts of
the diode VF. This threshold adjustment can be obtained by shuntinu the LED by a resistor, the value of
which is determined by a ratio between the applied
Voltage, the series resistor, and the desired threshold.
The circuit of Fiuure 7 shows the relationship between
these values. The calculations will determine the resistor
values required for a given 1FT and VA' It is also quite
proper to connect several LED's in series to share the
same IF. The VF of the series is the sum of the individual VF'S. Zener diodes may also be used in series.
Where the input applied voltage is reversible or alternating and it is desired to detect the phase or polarity of
the input, the bipolar input circuit of Figure 8 can be
employed. The individual optocouplers could control
different functions or be paralleled to become polarity
independent. Note that in this connection, the LED's
protect each other in reverse bias.

379

~1+t-H-t-t+H-t-l+HRDF~

FORWARD BIAS
IF
mA
100

" HI+t+-,,-1.-.,-l,·+c+t--lz1:!±±:_::l12011
1.1

J

so

16

12

Cl02

"4R'~

/
/

AVALANCHE

"RoF"f

//lSLOPE

40

IF -FORWARD CURRENT - mA

IS

//

60

O'~~~~~~~~~
01
10
10
100

o

Rp

/SLOPE

lKU

bdtH±:::l:=:lHI::::l:=:l±±±:_::l10KIl

20

LED
EQUIVALENT
CIRCUIT

III

10

4

-,

Vt

20

V

,.

'E

, 0.5

C,

...,'.

I

100
1.0

V,

RANGE OF
SV R

VF VOLTS

0.1

THRESHOLD

REVERSE SIAS

:JOO
II

10
'00
12

100

mA

13

pF
V

10'

1.0

II

IF=rFTexp~

10

VF • VFT

100
NOTE CHANGE OF SCALES

FOR IR IN OPTO·ISOLATORS

mA
IR

IF

+ k log 1FT

V FT =0.9S VOLT
1FT -0.10mA
k = 0.360

Cl0l

R - 0.03 (VI

""iFli'\l

S -

Fig. 1. Characteristics of IR LED

Fig. 2. Equivalent Circuit Equations

Cl04

Fig. 4. Typical LED Drive Circuit

350
~
~

,

~-

300

1.4
250

> 1.3

I

I

~0

1.2

> 1.1

~

«
;::

1.0

u.

.9

a:
0
I

~0.1

"

If)

05012345678
APPLIED VOLTAGE
Cl03

Fig. 3. Voltage Dependence of Junction Capacitance

380

I

J~C
,,":::"--

f'

".

~

,/

CIRCUIT

".".

IF 3)VF

.1
1.5

....

'"

""..
).]1)
c""..
,,\~
;/~ ...

c

a:

".

~~

w

t:l

I i-"'"

~·C

.2.5

2

5

10 20

50 100
Cl0S

IF - FORWARD CURRENT - rnA

Fig. 5. IR Forward Voltage vs.
Forward Current and Temperature

50
40

I.,d-',P

30

20

f'

7~'
"
,~

'0

~

L

,/

",'30 (1'\p. .,...

~

,

'0

~

,; }'~~A

-I""'"

III1
'00

TA = 25 u C

10,000

'000

tOO.OOO
CtOS

TIME - HOURS

Fig. 7. LED Threshold Adjustment

Fig. 6. Brightness Degradation vs.
Forward Current and Time

r

1

Fig. 9. High Threshold Bipolar Input

Fig. 8. Bipolar Input Selects LED

0---/

r
120V

ClOg

A,

EXTEANOA-l~~--'---~-------'

C,

SWITCH
DEVICE

t

~~'lo-___________~_2_+~~A_2

__________

~

I
I

I

"--

-=--I~g!

--

MCl

L-.._ _.....I

CliO

Fig. 10. AC Input to LED Drive Circuit

Another method of obtaining a high threshold for high
level noise immunity is shown in Figure 9, where the
LED's are in inverse series with inverse parallel diodes to
conduct the opposite polarity currents. In this circuit
the VF is the total forward drop of the LED and silicon
diode in series. The resistors serve their normal threshold
and current limiting functions. The silicon diodes could
be replaced by LED's from other optocouplers or visible
signal indicators.
In some situations it may be necessary to drive the LED
from a 120 VRMS, 60 Hz or 400 Hz source. Since the
LED responds in nanoseconds, it will follow the AC
excursions faithfully, turning on and off at each zero-

crossing of the input. If a constant output is desired
from the optocoupler detector. as in AC to logic coupling. it is necessary to rectify and filter the input to the
LED. The circuit of Figure 10 illustrates a simple filtering scheme to deliver a DC current to the LED. In some
cases the filter could be designed into the detector side
of the optocoupler. allowing the LED to pulse at line
frequency. In the circuit of Figure 10, the value of C1 is
selected to reduce the variations in the IF between half
cycles below the current that is detectable by the
detector portion. This condition usually means that the
detector is functioning in saturation, so that minor variations of IF will not be sensed. The values of Rl, R2

381

the optocoupler detector, the leakage can be bypassed
around the LED by the addition of another resistor in
parallel with the LED shown as R,. The value of R, can
be large, calculated so that the leakage current develops
less than threshold VF (-0.8 volt) from Figure 5. The
drive transistor can be the normal output current sink
of a TTL or DTL integrated circuit, which will sink
16 mA at 0.2 volt nominal and up to 50 mA in saturation_

and R3 are adjusted to optimize the filtering function,
R3C, time constant, etc. Speed of turn-off may be a
determining factor. More complicated transistor filtering
may be required, such as that shown in Figure 11, where
a definite time delay, rise time and fall time can be
designed in. In this circuit, C, and R3 serve the same
basic function as in Figure 10. The transistor provides a
high impedance load to the R4C2 filter network, which,
once reaching the VF value, suddenly turns on the LED
and pulls the transistor quickly into saturation. The turnoff transient consists of the discharge of C1 through R3
and the LED.

If the logic is not capable of sinking the necessary IF, an
auxiliary drive transistor can be employed to boost current capability_The circuit of Figure 13 shows how a
PNP transistor is connected as an emitter follower, or
common collector, to obtain current gain_ When the output of the gate (G1) is low, a, is turned on and current
flows through the LED. The calculation of R1 must now
include the base-emitter forward biased voltage drop,
VBE, as shown in the figure.

In logic-to-Iogic coupling using the optocoupler, a
simple transistor drive circuit can be used as shown in
Figure 12_ In the normally-off situation, the LED is
energized only when the transistor is in saturation. The
design equations are given for calculating the value of
the series current limiting resistor. With the transistor
off, only minor collector leakage current will flow
through the LED. If this small leakage is detectable in

DC
INPUT
FROM
BRIDGE
RECTIFIER

In the normally on situation of Figure 14, the transistor
is required to shunt the IF around the LED, with a
VSAT of less than threshold VF. Typical switching

c,
10K

vee - 5V
ell'

IF

-20mA

VSAT - 0.4 V

V,

-1.2V

R _ Vee - VF - VSAT

Fig. 11. R-C-Transistor Filter Circuit

IF

_ 5-1.2-0.4 _ 3.4
20
20
R - 170n

C112
Rl == VCC-VF-VBE-VG~I:;I\TIGATE
I,

vee

Vee
Fig. 12_ Transistor Drive, Normally Off

V8E(O,I- 0.6 V
VeE(SATIIG,I-o.4 V

10K

Cll3

Fig. 13. Logic to LED Series Booster

382

transistors have saturation voltages less than 0.4 volts at
Ic=20 mA or less. The value of the series resistor is
determined to provide the required IF with the transistor off.

the relationship between the amount of overdrive, duty
cycle, and pulse width. The overdrive is normalized to
the IDC value listed as maximum on the device data
sheet. Average power dissipation is the limiting parameter at high duty cycles and short pulse widths. For
longer pulse widths, the equilibrium temperature occurs
at lower duty cycle values, and peak power is the
limiting parameter.

Again, if the logic cannot sink the IF, a booster transistor can be employed as shown in Figure 15. With the
output of the gate low the transistor a, will be on, and
the sum of VCE (SAT) of G, and VBE of a, will be less
than the threshold VF of the LED. With the gate high,
at is not conducting and the LED is. The value of Rt is
calculated normally, but shunt current will be greater
than IF. The normally-on or normally-off conditions are
selected depending on the required function of the
detector portion of the optocoupler and fail-safe operation of the circuits.

For duty cycles of 1% or less the pulse becomes similar
to a non-recurrent surge allowing additional ratings such
as the 12t used in rectifier diodes. Average current is
used for lifetime calculation. The pulse response of the
detector must be considered in choosing drive
conditions.
There are situations where it is not desirable to pass all
of the input current through the LED. One method to
achieve this is to provide a bypass resistor as suggested in
Figure 7 for threshold adjustment. This method is
satisfactory where the input current is switched on and
off completely, but, if the information on the current is
only a small variation riding on a constant DC level, the
bypass resistor also bypasses a large portion of the desired signal around the LED. Two methods can be used
to retrieve the signal with little attenuation. If the signal

In many applications it is found necessary to pulse drive
the LED to values beyond the DC ratings of the device.
In these situations a "pulse" is defined as an on-off
transient occurring and ending before thermal equilibrium is established between the LED, the lead frame,
and the ambient_ This equilibrium will normally occur
within one millisecond. For a pulse width in the microsecond range, the IF can be driven above the DC ratings,
if the duty cycle is low. The chart of Figure 16 shows

R= vee-v,

Vee

Vee

vee

"

=~=

190n

-::-

Cl14

Fig. 14_ Transistor Drive, Normally On

Fig. 15. Logic to LED Shunt Booster

100

,,~

5,.

t--...

10/-15

-'PK ,0

:::""

PW = 130 Ilsec

'DC

~

loaL

,
01

r-::
,......;:

300~S
1.0

10

DUTY CYCLE - %

100

eilB

Fig. 16_ Maximum Peak IF Pulse Normalized to Max IDe
for Pulse Width (PW) and Duty Cycle (%)

383

has a rapid variation (e.g., the audio signal on a telephone line), the DC component can be cancelled in the
detector by feedback circuits. If the variation is slow, a
dynamic shunt can be used instead of the fixed resistor.
If a constant-current device or circuit is used in parallel
with the LED, as shown in Figure 17, the adjusted component of the DC will flow through the dynamic impedance, and any current variations will result in a change of
terminal voltage. Therefore, the total current change will
flow through the paralleled LED circuit. The graph of

Figure 18 shows the performance of this particular circuit adjusted to center on IL = 120 mA and a circuit
node voltage of 3.4 volts. In the circuit shown the
detector portions of the MCT276 and MCT274 were
employed for convenience. Note that in Figure 18 most
of the current variation occurs as IF. The ratio between
the DC resistance (Ro) and dynamic impedance (Rd) for
the shunt is 50, wh ich represents the signal transfer gain
achieved over a fixed resistor.

12 5

.~

-.N\\~\.

~

Ic,
2.7K

120

(MCA2)

r
I
L

I

i
--=rlC:
t __ -:J
_L~

11 0
IL , SANS LED

V105
3.0

C117

Fig. 17. Constant-Current Shunt Impedance

384

R=200n

'"E 11 5

22011

I

Vr'

.......

31

R = 1.6Kn

3.2

3.4

3.6

TERMINAL VOLTAGE - VA

3.8

4.0

ellS

Fig. 18. Shunt Impedance Performance

GENERAL
INSfRUMENT

AN1074

Low Current Input Circuit Ideas
6N139/138 Series
Introduction
Advancements in opto-coupling and LED technology
have given us the MCC671 which also meets the specifications of JEDEC Registration 6N139. This unique
optocoupler, having an input LED current specification at
500 microamperes, has opened some interesting design
doors. Besides the obvious and much written about
ability to be directly driven by CMOS circuits, the
6N139 can be considered for signal detection, transient
detection, matrices and non-loading line receiving.
Following are but a few circuit ideas to stimulate the
designer's interest_

this way, the LED is not causing conduction in its output
circuitry but is prepared to conduct very quickly. Any
noise or oscillation on the "D.C. power source" is
coupled through "C" which develops a signal across the
LED. Even small unwanted signals can cause a large
change in the LED forward current. Once the LED's
forward current equals or exceeds 500 microamperes,
the output circuitry will conduct indicating the presence
of the unwanted signal.
Transient Detection
The detection of the presence or absence of waveforms
can easily be detected by the circuit in Figure 2.

Signal Detection
The detection of noise, spikes or oscillations can easily
and directly be detected by the input of the 6N 139 as
shown in the circuit of Figure 1.

CR

6N139

II,

Input

MCC671/6N139
r ............ --------.. ---.. --...
I
I

+o-----~~--JVV\r_--~--~'~

,,
._-- ....... _-------

R
D.C.

C1460

power source

Figure 2. Pulse or Waveform Detection Circuit

For the detection of the presence of a desired signal,
pulse or waveform use:

L _____ ...... ________ ..

C1459

Figure 1. 6N139 Input Cirucit For Signal Detection

For the detection of undesirable signals on a D_C. power
source use:

CR = Silicon diode
R = (Positive Vpk. of input) - 2.5 volts
L
1 milliampere
Cmin = Pulse interval of lIE
RL

R = Power supply voltage - 1.5 volts
50 microamperes

R
- Pulse width or 1/4F
smax 5C

C = To effect 500 microamperes into LED
X = Latching or non-latching output
circuitry to follow

X = Non-latching output
circuitry to follow
LED = Input diode of 6N139

LED = Input diode of 6N139
The LED is provided with a 50 microampere forward
current to charge the LED capacity to the VF level. In

Examples:
A desired pulse train to be present is shown in Figure 3.

385

The resulting LED forward current that will keep the
output circuitry conducting is shown as the result of
proper design.

'....'

output is now possible as shown in figure 5.
Non·Loading Line Receiver
For virtual non·loading, the 6N139 is compatible with
the differential amplifier circuit of Figure 6.

IVoltll

',D

I~G.I

.....'

r

"n

IV"'" G.4

'T

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __

Figure 3. Pulse Train Waveforms

A desired sine wave to be present is shown in Figure 4.
The resulting L ED forward current that will keep the
output circuitry conducting is shown as the result of
proper design.

C1464A

Figure 6. Differential Amplifier Drive

For a virtual no·load optosiolator circuit use:
X = Non·latching output
circuitry to follow
LED = Input diode of 6N139
Current requirement at "in" will be less than 20 micro·
amperes.

==

:fI~---------------------

c,...

Figure 4. Sine Wave Waveforms

Matrices Opto-Coupling

at "In".

With the low input LED current advantage of the
6N139, the ability to drive matrices with but one TTL
'5V >-?'"1...,.."t-<~..,...,---56KI!

-.:

Example:
If "REF" is made to be +1.4 volts and the resistor
common to the emitters is 1.2Kil, the circuit will respond
nicely to TTL "0" and "1" levels. That is, a "0" at "In"
will cause LED current resulting in the conduction of
the output circuitry. Conversely, a "1" at "In" will
result in no LED current. Notice that depending upon
which collector the LED is in series with it will give the
option of LED current flowing with a "0" or a "1"

all /

- - - -

are input dIodes of
6N139

6N139 Output Circuitries
The following are two examples of 6N139 output
circuitry. One latching (Figure 7); the other non·latching
(Figure 8), but both capable of driving a TTL gate
directly.
15VI
+V,

t--<.Jf-+-H- - - - t---If-+-++ - - - Scan

~

1 of 16

active

16X 16

low

malrlx

..•••....~~.~~
..-.

"-+-o---:7---~"",,,~u~rt

••••••••••••• __ ••••• _ ••••••••••••••.1
"Normally OPEN momentary pUSh-button

o.
TTL output WIth open collector

C1465A

Figure'Z Latching Output Circuit for 6N139
Control

c,_

.::r--'>-------..f=<
,

388

I

Figure 5. Opto·Coupling out of Matrices

Referring to Figure 7 and assuming that the "R ESET"
has been actuated by a momentary ground and no input
signal is being received, all transistors shown are non·
conducting (Output high, "1"). The arrival of an input
signal will cause all transistors to turn on. (Output low,
"0"). The PNP transistor, being turned on by the output

transistor, will in turn latch that same output transistor
or until the "RESET" is again initiated.
tSV)
V

47K!1

47M!!

~_L-t/"""-!>---~-OutPu, 10 TTL

C1466A

Figure 8. Non-Latching Output Circuit For 6N139

In Figure 8, where no signal is being received, the input
transistor is not conducting. The output transistor is
very slightly conducting. The 4.7Mn resistor causing this
slight conduction will not bring the "Output" to a "0"
level. The purpose of this slight conduction is to reduce
the turn-on delay time. When a signal is received, both
input and output transistors are turned on causing the
"Output" to a logic "0" state. The 4.7Mn resistor will
now tend to reduce the output transistor's turn-off time.
If you have not looked over the 6N 139 specification
sheet, you may not be totally aware of the current
capabilities of General Instrument's optocouplers.

387

388

GENERAL
INSfRUMENf

AN1075
MID400 Power Line Monitor
INTRODUCTION
The MID400 is an optically isolated AC line-to-Iogic
interface device for monitoring ON or OF F status of an
AC power line. The logic circuitry operates from a
standard 5V supply. The MID400 is packaged in a compact 8-pin plastic MINI-DIP. The optical isolation provided by the MID400 makes it suitable for power-tologic interface applications such as industrial control
medical equipment computers and other fail-safe type
monitor systems in which status information about the
AC line is essential.

INTERNAL COMPONENTS
During assembly two infrared GaAs LED diodes are
mounted on an input lead frame, and a photodetector/
amplifier chip is mounted on an output frame. Use of
two separate lead frames insures high electrical isolation
between input and output terminals after trimming of
the lead frame edges. Light emitted by the input LED's
is optically coupled through solid transparent material
to the surface of the photodetector. The LED's are
connected back-to·back, and power line status is moni-

(1)0---------,

(N~' D,

tored by the LED's in series with an external current
limiting resistor. When the high gain photodetector and
amplifier senses light output from the two LED's, it
drives an output NPN transistor to the ON state.
The photodetector amplifier circuit is shown in Figure
1. The Photodiode 03 is coupled into a high gain 3 stage
emitter follower current amplifier (Q, Q 3 Q S ) driving
into an output transistor Qs . The emitter follower
loads are comprised of constant current circuits formed
by Q2, R2 , Q4, R3 , Q6, and R4 . Constant current level
in these devices is established by the constant voltage
source formed by the base emitter voltage of Q 7 and Rs.
The common point of the output photodiode/amplifier
is brought out to pin 7 to allow connection of an external integrator capacitor or other circuits. Because
the amplifier has a high current gain factor of 10,000
to 100,000, its input impedance (at pin 7) is extremely
high.
Switching time of the amplifier is intentionally designed
to be slow, so that the MID400 only responds to an
absence of input signal over a few milliseconds, and not
during the short zero-crossing period of the AC input
voltage waveform.

r-----1I>---_--......- - - - t - - - - - - Q VCC (8)

VO (6)

(3)(}---------'

(7)0----------'

'----I-----+----......-oGND (5)
C1436A

Fig. 1. Circuit Schematic of MID400 AC Line Monitor

389

BASIC CIRCUIT OPERATION
Consider the test circuit shown in Figure 2. Back·to·
back input diodes D1 and D2 each conduct on every
half cycle of the AC input waveform, producing 120Hz
light pulses. The light output causes the photodiode to
conduct, raising the potential of the input to the ampli·
fier, and in turn driving the output NPN transistor ON.
When input current is removed, light from the two
LED's ceases, charge established by the photodiode cur·
rent on the input amplifier leaks away, and the NPN
transistor turns OFF. There are basically three operation
modes: Saturated, unsaturated, and the "OFF" STATE
mode.
SATURATED MODE
When input AC is above the recommended 4mA RMS
minimum input current, the 120Hz photodiode pulses

are sufficient to saturate the amplifier, so that the
MID400 output is low at pin 6 as long as AC input signal is present, (see Figure 3).
UNSATURATED MODE
If input current is dropped below the recommended
4mA RMS, the amplifier drops out of saturation during
the zero-crossing periods of the. input AC waveform and
120Hz pulses appear on MID400 output pin 6, (see
Figure 4). Under these conditions the device makes an
attractive, simple 120Hz clock generator that is free
from most of the normal power line transients for many
digital applications.
OFF-STATE MODE
When the input RMS AC input current is below 0.15mA
the MID400 output will be in the high state as per
specifications.

VCC

4.7Kn

3

I

~----------~J_--~(A)

L_____________J

C1512A

Fig. 2. Test Circuit

(B)

Output
(Pin 61

(BI

Output
(Pin 6)

Photo
Diode
(Pin 7)

(A)

Photo
Diode
(Pin 7)
Input
50Hz AC Waveform

Input
60Hz AC Waveform
Horiz. = 5mS/cm
Vert. = Uncalibrated

Fig. 3. Saturated Operation

NOTE: Normal specified 4mA RMS input IF current.
Output saturated (latched). The 120Hz pulses from the
photodiode D3 are above the threshold of the amplifier;
therefore, the MID400 output is low anytime the AC
current is present.

390

Horiz. = 5mS/cm
Vert. = Uncalibrated

Fig. 4. Unsaturated Operation

NOTE: Below normal specified 4mA RMS input IF
current. The level of 120Hz pulses from the photodiode
are now below the input threshold of the amplifier and
the pulses appear on the output. The output pulse width
depends on the AC input drive level.

+5V

vee
MID400
Output
(Pin 6}

(B}
22.

Photo
Diode
(Pin 7}

(A}
31

I
I
'-------<:>----.-_IAI
Il _ _ _ _ _ _ _ _ _ --' iCAUX (7·5)

Input
C1513A

1Oms/em

CAUX = .005 J.lF
Horiz. = 10mS/em
Vert. = Unealibrated

Fig. 5. Circuit With Addition of Capacitor at Pin 7

Fig. 6. Waveforms with Capacitor Added at Pin 7

OPERATION WITH AN EXTERNAL
CAPACITOR
Figure 5 shows a basic delay circuit obtained by addition of an integrating capacitor C x to the photodiode/
amplifier input point pin 7. Delay at POWER ON is
short, as the photodiode, when conducting, has a low

impedance providing a fast charge to the capacitor. The
delay when AC is removed is long, because the capacitor
discharges through various leakages of the amplifier
and the photodiode_ The waveforms in Figure 6 shows
the capacitance on both TURN-ON and TURN-OFF
delays. Figures 7 and 8 show plots of capacitance versus
turn-on and turn-off time_

.10

.10

V"

V
:g

CAPACITOR /
.01 -AUX TO GND

w
<.J
Z

w
<.J
Z

I

«
I-

V

(J

«
11.
«<.J .001

~.

~ .01

r-- f-

~

(J

::5.001

I

/

.0006
.0004

.0006
.0004

.0002

.0002

.0001
1

2

V- I'

CAPACITOR
AUX TO GND

4 6 10

.0001

100

1000

1

I

II
2

4 6 10

100

C1511

C1510
Fig. 7. Plot of Capacitance Versus Turn-on Time

MID400 INTERFACE CIRCUITS
USING A 555 TIMER
Addition of a 555 Timer at the MID400 output, as

1000

Fig. 8. Plot of Capacitance Versus Turn-off Time

shown in Figure 9, produces an interface circuit with
improved drive capability and output switching times,
and better noise immunity. Figure 10 illustrates these
switching time improvements.

391

+5V
VCC

r---------l
1

8
r - - - < p _ - - - - { J -......- - - - - - - . . - - -

--,

22K
V-'-C8;:,.C-r<:)--+-.---....:6{T-H-R-E-SH--:-:
0 -IS"
5

3

"555"

t~..
OUTPUT HIGH
WITH MI0400
INPUT CURRENT

1

I
I
L - - - - - - o - - - - < ; > _ _.... (AI
IL _ _ _ _ _ _ _ _ _ ---.J
~tCAUX

C1513
Fig. 9. Circuit with 555 Timer Added

The 555 Timer is basically being used as a SCHMITT
trigger circuit with well defined input thresholds. The
input HIGH state is 2/3 Vee, (+5 volts in this case),
and its LOW state is 1/3 Vee.
The output may be taken from either 555 pin 3 or from
pin 7 discharge point with a pullup resistor. Both these

pins are high when AC current is applied to the MI 0400.
The 555 output is capable of supplying both sink and
source currents up to 200mA. One advantage of using
the 555 discharge output pin is that it can be tied to
another similar unit to provide the "AND" function.
That is both AC inputs to both units must be present
before the 555 outputs can be high.

555
Output

(C)

MID400

(8)

Output

Horiz. '" O.2mS/cm
Vert. = Uncalibrated

Horiz. = 50}1S/cm

Fig. 10. Output Waveforms for TON TOFF· Pin 7 Auxiliary Input
Open Using the 555 Circuit (Fig. 9)

392

Figure 11 shows a circuit which includes a 555 Timer
for shaping of waveforms. This circuit can provide an
adjustable delay either at power on or power off. Oelay
is adjusted by the time constant of Rx and ex . Insertion
of diode 0, across Rx provides either a fast charge and
slow discharge of ex. or a slow charge and fast discharge
when diode polarity is reversed. See waveforms in

Figures 12 through 14. Because charge on capacitor
is established by the output of M1D400. the delay will
vary according to whether MID400 is operated in
saturated mode or unsaturated mode. In the unsaturated mode delay will depend upon the ratio of the
pulse ON to OFF time (Duty Factor).

'5V

1

1 --------- 1,

Vee

Without 0 ,
Turn on and off Delay

~r_~~------~

I

~I~~-i-..r;;;;;;;:~~_;.J

22.

3

I
I
I

(e)

555
Output

IBI

555
Input

I

l... _ _ _ _ _ _ _ _ _ ~

Ae

C1514

Input

Fig. 11. Adjustable Delay Turn Off/On Circuit

Horiz ..~ 20mS/cm
Vert. = Uncalibratcd

=

Rx 200KH
ex = O.3JlF
Fig. 12. Output Without Dl Diode

WithD,
Turn on delay

With 0 1
Turn off delay

(e)

555
Output

(el

555
Output

(B)

555
Input

(B)

555
Input

AC

Ae

Input

Input

= 20mS/em
= Uncalibrated
Rx = 200Kn
ex = O.3[.(F

Hariz.
Vert.

Fig. 13. Delayed Turn On. Diode Dl Connected
Opposite to Shown in Circuit Schematic

Horiz. = 20mS/cm
Vert. ~ Ullcalibrated
Rx = 200Kr2
ex = O.3JlF
Fig. 14. Delayed Turn Off. Diode Dl Connocwc1

As Shown in Circuit Schematic

3(1:1

r-------------~8

~

.---IVv>V-"":<;f-----,

(BI

I

~ ~CX

(AI

Ry

.1pF OR LARGER

~

~: ~'OMn

..1:.

C1515

Fig. 15. Precision Delav Circuit

Figure 15 shows a precision delay circuit. Here delay is
provided by using the 555 Timer as a missing pulse detector or one-shot. The time out is independent of
whether the M1D400 is operated in saturated or unsaturated mode. In uljsaturated mode the Timer is continuously being reset by the 120Hz pulses from the MI0400
and output of the 555 is high. When an AC line fails,
there are no 120 Hz pulses, the 555 times out and the
output then goes low. Refer to waveforms in Figure 16.

A larger capacitor at ex will increase the time-out
period of the 555 causing it not to detect the missing
input cycles as shown in Figure 17.
With the MI0400 operated in the saturated mode, output of MI0400is low, which turns on the PNP transistor
Ql, stopping Cx from charging, and the 555 output
is high.

(0)

555
Output

(0)

555
Output

Ie)

555
Threshold

Ie)

555
Threshold

MID400
Output

IB)

MID400
Output

(B)

Ae
Input

Ae
Input

20mS/cm

lex

=.1jlF)

Fig. 76. Unsaturated Mode-Detects MissingAC Input
Cvclos (when more than one cvcle is missing)

394

20mS/cm

(ex

=.4jlFI

Fig. 71. Unsawreted Mode-Does NOT Detect Missing
AC Input Cycles

555
(0)

Output

(e)

Threshol(

(S)

MI0400
Output

555

(0)

Output

555

(e)

555
Threshold
MI0400
Output

Ae

Ae

Input

Input

20mS/cm
Fig. 18. Saturated Mode-Detects Missing
AC Input Cycles

Fig. 19. Saturated Mode-Does NOT Detect
Missing AC Input Cycles

r----------------~c~I;;;:-l

I

MONITORING UNIT

:

POWER
SUPPLY

I

,-----...--h

+5V

GND

I i~~[[ci~~~';"~y, ~~Trl~:~Al.
I Clllcumj Will N MONITORING
I SYSl[M IS "01 r",
I
MINICOMPUTER
INPUT

r---I
I

RL

I

I
I

2,
,
IL ___________

I,

7
~

IL _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ I
~

C1516

Fig. 20. Example For Fail·Safe Considerations

On AC line failure the MI0400 goes high,causing 0 1 to
turn off and allowing Cx to charge, so that after the reo
quired time the 555 is allowed to go LOW. Refer to the
waveform in Figure 18.
By the choice of the time constant RxCx the circuit in
either a saturated or unsaturated mode can be made to
either respond or not respond to one or more AC input
cycles as shown in Figures 16 through 19.

OTHER SPECIAL DESIGN
CONSIDERATIONS
Special mention must be made about effects on MI0400
operation caused by leakage at pin 7. To avoid problems
keep impedance at 10 megohm or greater. If a capaci·
tor is connected to pin 7, make sure it is a high quality
type (such as Mylar) that exhibits very low leakage.
(Even current leakage between printed circuit traces can
have noticeable effects on circuit operation if the board
material has poor dielectric insulation characteristics.)

DESIGNS FOR FAIL-SAFE OPERATION
In those indus,trial, military, computer, and medical
system applications where fail·safe operation is impor·
tant, circuit response must also be considered when AC
input or the Vce supply, (or even both), switch off.

Table I lists the MI 0400 output response under these
conditions. This "Truth Table" shows that the MID400
output NPN transistor can btl ON (conducting) only
when AC current is flowing th rough MI D400 input LE D
diodes and the 5V Vee to the MI0400 is present (ON).
Table 1. FAIL·SAFE TRUTH TABLE
AC Line
Input

+5 Vee
Supply

M' 0400 Output
Condition

ON
ON

ON
OFF

OFF

ON

OFF

OFF

ON (conducting)
OPEN (nonconducting)
OPEN (nonconducting)
OPEN (nonconducting)

This truth wble reflects a MI0400 being operated from
a +5 volt supply which has a high impedance when not
"ON." However, other external factors can Influence
the apparent state of the MI0400 output. For example,
Figure 20 shows an application where the MI0400 is
monitoring the AC voltage of a device. The M10400 is

395

r-------------------,
MID400

I

[H
I

l;

~

DIODE

DX

.~

~

I

INTERNAL _ : .
IMPEDANCE
I
OR OTHER
I
CIRCUITS
I

I

3

I
I
I
-----------

7
C1517

Fig. 21. Diode Ox Added to Stop Reverse Current
When MID400 +5v Vee Line is Off

115V
AC

r

I

ISOLATED
REGULATED
POWER OUTPUT TO
COMPUTER. ~p. MEMORY ETC.

MID400
---------,

I

I

+5V

..._-0------.....- - - -

OUTPUT
POWER FAILURE DETECT

I
I
L___ _

GOES HIGH ON POWER FAILURE

C1518

Fig. 22. Circuit for Switching Power SupplV

supplied by a separate 5V supply in the "MONITOR
UNIT" fed from a separate AC line. The output of
MID400 is fed to a remote minicomputer with a TTL
type input circuit.
In this system it is quite feasible to get an erroneous
apparent output from the MID400 if RL is 1000 ohms,
or less, and the 5V power supply in the monitor system
presents a low impedance when OFF. The TTL input
to the minicomputer might appear low due to current
being forced through RL and the low impedance of the
OFF 5V power supply. This can be eliminated by the
addition of a diode Dx as shown in Figure 21.
In some applications additional circuitry may have to
be added to insure fail-safe operation. One such example
is the monitor circuit shown later, Figure 24. There
both voltage and current are monitored.

396

Another interesting condition to consider is operation
of the MID400 if its LED input diodes are "blown
out" by excessive current. In this case the MID400
output will be in the high state, still indicating an error
condition.

APPLICATION CIRCUITS
Figure 22 shows a circuit for a switching power supply
to give advanced warning of power failure to computer,
microprocessor, memory etc., so that an orderly power
down sequence can be initiated. Such a circuit is useful
because a switching power supply inherently provides
power storage for a limited period of time after removal
of AC input power.

r- -

I
I

-------------1
r--_-+v

r---~~------~J_--~--+5V

SUPPLY

I

3.3K

jBd

Ie ~ 13.5mA

MID400

C1519

Fig. 23. Relay Interface Circuit

POWER DIODES

AC INPUT
l10V60Hz

FUSE

R=22KU

1 r-------------'B

t:
LI

VF

r------------2JlK

I

I

NOR
GATE
7402
74LS02
ETC.

I

'5V
RL

. ....,

"

L _ MID400
____ _

OUTPUT NORMALLY HIGH.
OUTPUT LOW WHEN FUSE OR CIRCUIT BREAKEH OJ'I N~;

C1521

Fig. 25. Fuse or Circuit BfI",kar Monitor
C1520

Fig. 24. AC Power Line Voltage and Current Monitor

Figure 23 shows a circuit that allows a relay or solenoid
of almost any voltage and current rating to be controlled
by the MID400. NPN transistor Q 1 must have adequate
beta and voltage/current ratings for the application.
Relay is energized when no AC current is flowing in
the MI D400 input diodes.
Figure 24 shows a circuit that uses two MID400s to
monitor both voltage and current. When both voltage
and current are being supplied to the load, the output of
"NOR" gate is high. If load current drops due to either
open circuit or failure, the output of "NOR" gate is low.

If both voltage and current are not present the output
is low. Care must be taken in overall systems design to
insure fail-safe operation is achieved for all possible conditions_ This topic was discussed previously in this Note.
Figure 25 shows a circuit to monitor a fuse or a circuit
breaker. With this circuit consideration must be given to
Fail-Safe operation. Note that if load is a very high impedance there might not be sufficient current to operate
the MID400. In other words, the output of MID400 is
low on open fuse or breaker. If Vee to MID400 is off
and fuse opens, no MID400 indication will result.

397

01 --.-----.---------------------~

NEUTRAL--~----~==~--~--------------~

POWER
TO
} SYSTEM

~~L---~---+--_+------------~
r---------------~

I
I

+5VVcc

MID400

I
I
....... OUTPUT

~-{"}---

C1522

NOTE: Circuit detects failure of either but not both phases
Fig. 26. Monitor Circuit for Two Phase Power Line

."--;------------_ "

'2

....-0-------------

POWER
TO

SYSTEM

~--~rr------------------·

NEUTRAL+oo-H>-------------02~-~~----------

--~-------------~

__

Cl~2J

NOTE: Circuit detects failure of either or both phases
Fig. 27. Altornato Monitor Circuit for Two Phase Power Line

C1524

Fig. 28. Monitor Circuit for Three Phase Power Line

ADDITIONAL APPLICATION IDEAS
The following circuits are included for their intrinsic
value, but may need further refining for use in a specific
application.
Figure 26 shows a circuit to detect failure of either but
not both phases on a two phase AC power line. The
MID400 output goes LOW when a phase fails. Figure
27 shows a more complicated circuit that will detect
failure of either or both phases on a two phase line.
The NOR gate output stays HIGH so long as both phases
are present, but switches to LOW if either or both
phases fail.
Figure 28 shows a circuit to monitor a three phase line.
This circuit detects a failure on a single phase, as well
as all phases failing simultaneously. The output from

398

the NOR gate is normally high when all phases are present.
The input current limiting resistor RL is chosen so the
MID400s operate in saturated mode. If a phase fails,
for example phase 01 goes open circuit, this effectively
places MID400's #A and #B in series, causing them
now to operate in non-saturated mode and produce
120Hz pulses. Therefore the output "NOR" gate out·
puts pulses to indicate phase failure. The output NOR
gate is low when there is no power on any phase.
In some applications, for example when monitoring the
power to a three phase motor, if a phase opens when
the motor is running, it might run "single phase." The
motor might then generate sufficient back EMF on the
open phase to keep input currentto MI 0400, and under
such a condition this MI0400 monitoring system is not
effective.

1

""50V
ACRMS

AC

INPUT

1_

r-----------

I

+5V

I
I

C1525

Fig. 29. AC Voltage Deviation Monitor

Figure 29 illustrates the basic circuit concept for an AC
voltage deviation monitor. Here the zener diode and
bridge rectifier establish a given AC.voltage, irrespective
of AC input voltage, over a given range. This is compared with the voltage developed by R2 and R3 . Depending upon choice of zener voltage and ratio of R2
and R3 the circuit can operate in a number of modes:
1. Voltage Deviation Monitor to give a low output
when AC voltage deviates from set standard. The
voltage at junction of ~ and R3 is made equal to
zener voltage for given AC input voltage. A devia·
tion from standard causes current flow through
MID400 diodes.
2. Over Voltage Monitor (over given range). For
normal AC input voltage R2 and R3 are chosen
for a current flow through the MI D400; when
AC input voltage goes too high the current ceases
through MID400 input diodes.
3. Under Voltage Monitor (over given range). Similar to above, except R2 and R3 are chosen so current through MID400 input diodes ceases if AC
with low input voltage is too low.
It should be noted that in this circuit the magnitude of
current through the MID400 input diodes is governed
by choice of R, , R2 , and R3 resistor values.

MID400 BENEFITS
This small size device connects through an external resistor directly to AC power lines and offers both inputto-output noise immunity as well as electrical surge isolation, up to 2500 VRMS (or 3550 VDC). Its output is
compatible with TTL logic. Also the MID400· is UL
recognized (File #E50151), has low power consumption, and operates from a single Vcc supply up to 7
volts. Besides inputs from power linos, the M1D400 can
also be connected to AC sources of other frequencies
and even to DC sources (for detection of power)_ Output current is 16mA when a minimum 4mA RMS. input
current is applied to the input LEDs. When the inexpensive and readily available 555 Timer is connected to
the MID400 output, circuits can be built having high
sink and source current drive capabilities_ These simple
circuits can also be designed for a wide range of adjustable delay, and with rise and fall times compatible with
TTL computer circuits.

CONCLUSION
This Application Note has summarized internal operation of the MI D400 and described several classes of
application circuits. Refer to the MID400 Data Sheet
for a listing of Absolute Maximum Ratings and specifications for its Electrical Characteristics.

399

400

GENERAL
INSfRUMENf

AN3000
Applications and
Operation of Optologic™

0Prf'~
TM

INTRODUCTION
Since the introduction of the optically coupled isolator, digital design engineers have
struggled with the problem of achieving logic-in to logic-out compatibility over temperature,
minimizing the effects of LED degradation, and obtaining high speed operation. Typically this
problem is approached by selecting inpuVoutput resistors, and often by trial and error.
This guesswork type of interfacing is now a thing of the past. Enter the new OPTOLOGICTM
family of logic-to-Iogic compatible, optically coupled isolators. This easy to use logic element
offers LSTTL-in to TTL-out or LSTTL-in to CMOS-out. The device oliminates the resistor
selection and features guaranteed DC parameters over temperaturo.
This ease of design-in and operation is made possible through uso of an Input amplifier that
provides the interface between the driving LSTTL gate and the LED omitter. The output
circuitry consists of a multistage high speed amplifier available with either n totem pole or
open collector output. The input amplifier, LED, and output amplifier are assombled in an
industry standard six-pin package.
The Optologic devices not only provide the isolated logic-to-Iogic interface function, but due
to many unique features of the input amplifier, offer solutions for high speed data
communications and precise DC level sensing. These applications, and the operation of the
Optologic interface gate, will be discussed in this application note.

OPTOLOGIC OPERATION
Functionally the Optologic gate consists of an input
amplifier, high speed GaAsP/GaAs LED emitter, and
an output amplifier. Figure 1 illustrates the block
diagram of the LSTTL to TTL logic gate.

The input network is a hybrid assembly of a silicon IC
amplifier and LED emitter. The input functionally
consists of four elements: 1) open emitter input with
Schottky diode clamp, 2) differential comparator, 3)
voltage reference, and 4) current steering LED driver.

OUTPUT SECTION

INPUT SECTION

VCCO

OUTPUT

'----t--- Vo

=

GNDOUT

C2049

Fig. 1. 740L6000 Block Diagram

401

The input of the IC is very similar to standard bipolar
logic. It consists of a Schottky clamp diode connected
between the emitter of an NPN transistor and ground.
The input sources input current over the nominal
LSTTL logic levels. Figure 2 shows the typical input
current/voltage characteristics. The input offers a
20K ohm input resistance between -0.5 to 3.0 V. The
input resistance drops to 7.5 K from 3.0 to 3.4 V, while
between 3.4 to 7 V the resistance is greater than 1
megohm. Input voltages more negative than 0.5 V
activate the Schottky diode clamp.
0.1r-----,----.,----,------,

0.01---1---1----1---,.--1

-O.,I---I---I----::7'"'4='/~_I

il -O.21---::I;;p--...----=-+------I--_I

~-O~~~r---~--+---r--~

ail!

-0.4

~ -{).5~j--I---+--+----j

... --- -.----

i!: .00,

I

·1---+----1

-07
-00
-1

VI-INPUT VOLTAGE-V
C2065

The output IC consists of seven functional circuits.
These include: 1) PN photodiode, 2) transresistance
amplifier, 3) differential gain stage, 4) hysteresis loop,
5) buffer amplifier, 6) output stage, and 7) voltage
regulator.
The optical flux developed by the LED emitter is
converted to an electrical current by a reversed
biased PN photodiode. This photocurrent is amplified
and converted to a voltage by a transresistance gain
stage. This stage is connected to the inverting input of
a differential amplifier, while the hysteresis network is
connected to the non-inverting input. The output of
this amplifier drives a buffer that provides the level
shifts and signal splitting needed to drive the totem
pole output stage. Power supply noise is rejected
through the use of a voltage regulator that powers the
transresistance amplifier and the differential gain
stage.
The output of the amplifier is offered as either an open
collector (740L601 0/11) or a totem pole
(740L6000/01 ). The open collector output is designed
to interface with CMOS logic, with a supply voltage
up to 15 volts. The output transistor will drive 10
standard TTL loads with a VOL of 0.4 V, and its safe
operating range allows it to sink up to 60 mA peak.
The active pull-up will source an IOH in excess of 10
mA with a VOH greater than 2.4 V. The output
characteristics of the Optologic gates are shown in
Figures 4 and 5.

Input Current VS. Input Voltage

The collector of the input transistor is connected to a
differential comparator, whose output switches when
the input signal exceeds the reference voltage. The
effects of temperature and power supply variations
are minimized through the use of a voltage reference.
Figure 3 shows VIN vs Your of the 740L6000 illustrating the input voltage switching point of 1.34 V.

~
~

O~

~

o.2./

f---

10

5r- - - - +-+-1---+-1-1-

g

41-

~

21-ft+H+t+tt+f+i++!+f+ifi++tj--l-!H+.!--

~

§
>

V

V

~

i

//

~ o.4

g

/

V

0.8

o

I

~

~
I

1. d

>
I

20

30

40

50

60

IOL - OUTPUT CURRENT-LOW - rnA

C2...

Fig. 4. 740L6000

VOL VS IOL

1~+-~+-r-r-+-I-r_~

I-I--

o

Y'N - INPUT VOLTAGE - V

Fig. 3. 740L6000

02062

~
3

The output of the comparator controls a current
steering LED driver. The LED is enabled when the
transistor is OFF. When the transistor is driven into
saturation, it steers the current away from the LED by
dropping the LED voltage below its 1.5 V conduction
threshold. This technique of driving has the advantage of pre-biasing the LED, thus minimizing the
switching speed reduction caused by the diode
junction capacitance. It has the added advantage of
greatly reducing power supply noise.
402

2

1

.

r--

"""

"" "

10

~

,.

10M - OUTPUT CURRENT HIGH - rnA

Fig. 5. 740L6000

'"

VOH VS IOH

20

02064

The effects of common mode transients and other
noise sources on the output amplifier are reduced by
an optically transparent, electrically conductive noise
shield, as well as by amplifier hysteresis. The shield
shunts the noise away from the input stage and
channels it to logic ground. The amplifier hysteresis
eliminates false output pulses caused by a slowly
varying input signal, or power supply noise found on
the input network of the Optologic gate.
These three chips are assembled in an industry
standard six-pin dual-in-line package. General
Instrument uses its patented over/under split leadframe assembly process. This process has proven to
be very reliable given environments typically found in
industrial interface applications. This package is
recognized under Underwriters Laboratories File
E#50151, and with a withstand test voltage of 2500
VRMS, guarantees continuous operation at 440 VAC.

The operational sequence of LED and input/output
chips will give the designer insight when combinations of inverters and buffers are used in parallel
data transfer applications. In these types of applications, the rate of data transfer is greatly affected by
the propagation delay difference between the slowest to fastest Optologic gate. The propagation delay
is the sum of the delays of the input chip, LED, and
output amplifier. The typical delay times for the
740L6000/01 are 65ns, with rise times of 45ns and
fall times of 5ns. The rise and fall time difference is
the result of the operation of the output amplifier.
The typical switching characteristics of the
740L6000/01 are shown in Figures 6 and 7. When
output edge detection is used, the fastest response
will be obtained when the falling edge (H-L) is
sensed. This is true for both the inverter and buffer
Optologic gates.
2.00WDIV

SWITCHING OPERATION
The Optologic optocoupler was designed to interface
directly with LSTTL at the input and either TTL or
CMOS at the output. In addition, the switching levels
are identical to the standards established for each of
these logic families.
There are four Optologic devices currently available.
Two of these devices are LS.TTL to TTL compatible.
The 740L6000 is a logic buffer and the 740L6001 is an
inverter logic. LSTTL to CMOS is provided by the
740L6010 buffer and the 740L6011 inverter. The
switching operation is shown below.
DEVICE

740L6000

INPUT

HIGH
LOW

740L6010

HIGH
LOW
HIGH
LOW

740L6011

HIGH
LOW

740L6001

LED

3O.0rlllDIV

n
rf

DATA
IN

rt ~~~PUT

f

I-.

__ .

741.
--

(

r

I \

0"rUTI

I

V

t

J_'---'---_ __ .__

_l_

(;"'''0''11

OUTPUT

OFF
ON
ON
OFF

HIGH
LOW
LOW
HIGH

OFF
ON

OFF
ON

ON
OFF

ON
OFF

The preceding table indicates that the Optologic gate
is effectively two cascaded logic gates. The first is the
input network and the second the output. Both the
totem pole and open collector output amplifier
function as inverters. Thus, when the LED is ON, the
output will be in a logic low state. Therefore, in order
to create an Optologic buffer (740L6000, 740L6010),
the input amplifier must function as an inverter for
controlling the LED emitter. The Optologic inverter
gates (740L6001, 740L6011) use a non-inverting input
amplifier.
One will note that the output chip is always HIGH
(OFF) when the LED is OFF, and the output is forced
LOW (ON) when the LED is ON. Thus, the Optologic
input has a switching threshold of 1.34 V.

Fig. 6. 740L6000 Sw/tcfl/IIY
Charllctor/stics

153.0n.
SO.Dna/DIY

-4.08 V
2.ooVIDIV

:\

II

\

DATA
I

/

7"~:n

"\

,

J

r

/

OUTPUT
-"\

-

74JS04

1

OUTPUT

r:

\

\

Fig. 7. 740L6001 Switching
Charactaristics

403

The CMOS compatible output family (7 40L601 0/11)
satisfies the VOH by using an open collector
transistor and an external pull-up resistor. The high
to low propagation delay and fall time is very similar
to the 740L6000101 Optologic gates. The low to high
propagation delay and rise time is greatly influenced
by the value of the pull-up resistor. When a 470 ohm
pull-up resistor is used, the typical propagation
delay for low to high is 100ns. The typical switching
characteristics of the 740L6010/11 are shown in
Figures 8 and 9.
30,0 ntlDIY

2,ODY/DIV

t.r

\

740L6010
DATA OUTPUT

--

1-

./

J

.,. 1.1.h

3O.0n1lOIV

\

Ra. -4700
Ycc=6V

·r:T~.},.,,11T

/

\

74L.S04

OUTPUT

50

r-

.~

tPLH

Ic~

IPHL=
Ir~

Cl

z
J:

U

If=~

10

f-

If

§

==

'"
0

20

40

60

80 100
(0C)

The Optologic gates have eliminated the need to
perform a worst case analysis for logic family compatability and switching speed. Operational performance degradation is greatly minimized through
the optimal selection of the LED emitter and output
amplifier. These features make the Optologic gates
the easiest optocouplers to use for logic-to-Iogic
interfacing.
The consistent performance of the Optologic
gates will be obtained if the designer ensures that
package power dissipation and operational supply
voltage does not exceed their absolute maximum
ratings. The 740L6000101 were designed to operate
from standard 4.5 to 5.5 volt supplies and, under
these conditions, the devices will operate successfully over a -40°C to 85°C range. The 740L6010/11
output amplifier will operate from a 15V supply over
a temperature range of -40°C to 55°C, however, the
output amplifier power supply voltage must be
derated at a rate of -0.27V/0 C above an operational
temperature of 55° C. This function is shown
graphically in Figure 12.

I

..-"'I

/

-- -- -- - -- -

OPERATIONAL CONSIDERATIONS

C2DS8

*

100

Fig. 11. 74 OL601011 I
Switching Times vs.
Ambient Temperature

Fig. 8. 740L6010 SWitching
Characteristics

I-

Veel = 5 V

RL - 470 II
p.W= 200 ns
PERIOD = 1 pS
_IPLH-

e2036

Vf=5V

J

IN

i=

200

.... =4700

I

74L.S04

-

::i!

f:::

5V

TA - AMBIENT TEMPERATURE -

IT

01lj11T

2.00VlD1Y

w

Veeo

~ --Veeo = 15 V

1
-40 -20

n

Do\TA
IN

.

.s

~.

:~
C205tI

Fig. 9. 740L6011 Switching
Charactoristics

MAXIMUM ALLOWABLE POWER
DISSIPATION @TA = 25°e

The Optologic gate's input and output chips ensure
a constant propagation delay over the temperature
range of-40°C to 85°C. This consistency is shown in
Figures 10 and 11.
veel 5.0V
Veeo 5.0V
p.w- 200 ns
.. 200 PERIOO =1 pS

.s
~

::~~~

100
50

Ir

i=

4

Cl

z

J:

U

f-

=

If

~
1
-40 -20

0

20

40

60

80

TA - AMBIENT TEMPERATURE -

100
(Oe)

e2035

Fig. 10. 740L6000101
Switching Times vs.
Ambient Temperature

404

5

6

7 8 9 1011 1213 1415

Veeo - OUTPUT SUPPLY VOLTAGE - (V)

10

e2039

Fig. 12. Power Dissipation vs.
Ambient Temperature

Operational stability is optimized when low impedance Vee and Voo supplies are used to power the
Optologic gates. This can be ensured by the common practice of including 0.1 "F bypass capacitors
for the input and output amplifier supplies. These
capacitors are placed immediately next to the Vee

and ground connections of the input and output
amplifier. These capacitors minimize output ringing
and improve the power supply noise rejection. A
suggested printed circuit board layout is shown in
Figure 13.
INPUT I I
Vee I I
BUS I I

INPUT
: : GND
BUS

OUTPUT I I
GND I I
BUS I I
II

II

I OUTPUT
,:
Vee
I I
BUS
I I

I I

I I

I I

I I

DATA
IN

DATA
OUT

Fig. 13. Suggested PCB Lay-out

C2027

DATA COMMUNICATIONS INTERFACING
The common LED input/phototransistor output and
high speed logic compatible output have found their
way into point-to-point (simplex) data communications applications. When used as a line receiver the
designer was required to design a matching network
to provide the minimum rofloction caused by the
non-linear input impodanco of tho light omitting
diode. Theso matching notworks woro commonly
designed for a specific cable distanco botwoon tho
receiver and the transmitter. Therefore, if the cable
distance were to be changed, a new matching
network would be required in order to effect proper
operation.
This need of designing matching networks and
allowing only point-to-point communications is a
thing of the past with the introduction of the
Optologic gates. The Optologic gate, when used as
a line receiver, does not require a matching network.
Its input amplifier offers a 22Kohm input resistance
which permits it to bridge the transmission. When it
is used as the only receiver connected to the end of
the transmission line, optimum speed performance
will be obtained when the transmission line is
terminated in its characteristic impedance (Zo).

When multiple data taps are required, all the designer need do is bridge the Optologic gate across
the tranmission line at the desired cable length.
Figure 14 illustrates a simplex multi-drop (tap) data
communications system that has incorporated four
740L6001 gates as receivers, evenly spaced along a
1000 foot, 75 ohms co-axial transmission line. The
cable used in this example is a Times Fiber & Cable
Model RG59/U Series 2000. This cable includes a
third insulated conductor that is used as the Vee
supply source forthe input amplifier of the Optologic
gates connected to the transmission line. This third
conductor permits one simple isolated supply to
power all the Optologic gates connected to the
communications cable.
The common mode rejection and insulation of the
communications system can be greatly improved by
incorporating an Optologic gate as a line driver.
When driving low impedance transmission lines
such as the 75 ohm coax shown in Figure 14, a buffer
is required to drive the line. This buffer is shown in
Figure 15.
The signal quality "Eye Pattern" for the communications system shown in Figure 14 is provided in
Figures 16through 18with a 10 MBaud NRZ PsuedoRandom Sequence (PRS). Traces 1-3 in Figure 16
describe the transmitter section. Traces 4-7 of
Figure 17 show the output of the four Optologic
bridged terminations. Traces 8-11 in Figure 18
illustrate the "Eye Pattern", as seen at the output of
the 74LS04 logic gate. The data quality is well
porsorved, in that only a 30% eye closuro is soon at
tho receiver located 1000 foot from the tran:ilT1ittor.

10n

ALL DIODES

lN6263

C2047A

Fig. 15. Buffer

1000 F T . - - - - - - i..
~1

PRSG
100 ns BIT
INTERVAL

4

75 !l
TERMINI\TION

740L6000 BUFFER

SIMPLEX
NOTES
- All Opt%gic Gate Input and Output Amplifiers Bypassed With 0.1 p.F Capacitors
- PRSG = Pseudo Random Sequence Generator
- 1 to 11 Refer to Testpoints; See Waveforms on Figs. 16, 17 and 18

C2048

Fig. 14. Simplex Multi-drop Data Communications System

40f

PRSG

OPTOlOGIC
DRIVER
740LGOOO

BUFFER
OUTPUT

Through the use of the tri-state line driver, shown in
Figure 19, a half duplex multi-drop communications
system can be configured. This is done by adding
this driver at each of the tap positions shown in
Figure 14. This system provides the most common
data communications configuration of high speed
bi-directional communications, with the added
features of vastly improved common mode transient
rejection and insulation when compared to a common integrated line receiver.

HORIZONTAL = 20 ns/DIV
VERTICAL" 2 VlDIV

OPTICAllY ISOLATED TRI-8TATE
RECEIVER TRANSMITTER

Fig. 16.

All DIODES
1N6263

IN

TRANSMISSION
LINE

OPTOlOGIC
OUTPUT
74016001
250 FT

4

500 FT

5

750 rT

6

I(XJO "

7

VERTICAL= 2 VlDIV

Fig. 17.
MCl -2731
DATA OUT

Fig. 19.

74L~;(M

250 FT

8

500 FT

9

750 FT

10

1000 FT 11

VERTlCAl= 2 V/OIV

Fig. 18.

406

740L6001
C2069A

When high differential and common mode rejection
are required, the differentially driven and received
communications topology is considered. Figure 20
shows a full duplex point-to-point communications
system that is implemented with twisted pair shielded cable. Given the higher impedance of this type of
cable, it is possible for the Optologic gates to drive
the line directly. Here, a 740L6000 and 740L6001
are used in a push-pull mode to differentially drive
the line. The receiving end of the line is simply
terminated in Zoo Bridging this termination is a
DM8820 differential line receiver that is connected
to the 740L6000 Optologic gate. Power for the line
receiver and the Optolog ic gates is derived from two
insulated shields of the twisted pair cable. This
system offers a data rate in excess of 1 MBaud NRZ
at a distance of 600 feet.

ISOLATED DATA LINK

TERMINAL 1

TERMINAL 2

VCCl +5 V

:;;
0.1 p.F
DATA
IN

r-i-+-""
DATA

OUT

DATA
IN
DATA

OUT
L-_..-..J

GNDl
Ul, U3. U6. U8 740L6000
U2. U7
740L6001
U4. US
DM8820

GND2
C2011

Fig. 20. 1 MBaud Full Duplex Differential Optically Isolated Transmit and
Receive Data Transmission System with Shielded Twisted Pair.

AC VOLTAGE LEVEL MONITOR
The machine and process control industry has used
optocouplers as voltage sensing devices for a
number of years. They have proven very versatile
when the presence or absence of power is to be
determined. The monitoring of specific voltage
levels has required the designer to commonly use
selected couplers that have guaranteed gain at a
specific LED drive current. Once armed with this
specification, a resistor divider network is designed
that will support 1 to 10 mA required by the LED. As
the line voltage threshold increases, the power
dissipation in the passive divider network can
approach 2 watts.

AC LINE VOLTAGE
SENSE
)

Using the Optologic gate, a fixed AC or DC level
monitor can easily be designed. Recall the Optologic gate has a fixed reference source built into the
input amplifier. The stability and consistency of this
reference source allows the designer to construct a
level detector using standard product that will offer
an accuracy of ±15%. If higher accuracy is needed,
the factory can provide devices with tighter reference voltage tolerance. Not only is high accuracy
possible, but power required from the line is
typically less than 0.2 W.

R2

~~----------,

lbll K

-~

C2070

Fig. 2l. Optologic Voltage Line
Monitor and Power Supply

407

The most significant feature of the Optologic, in this
application, is the small amount of current that is
required to flow in the voltage divider. Under worst
case design considerations, this sensing current will
not exeeed 500 p.A. This low current permits the use
of .25 W or smaller precision resistors, thus allowing
even greater monitor accuracy.
For example, when sensing a voltage of 110 VAC, the
pewer dissipated in the divider network is only 45mW.
Figure 21 shows a typical AC Line Monitor circuit.
The threshold is determined by selecting the value
o.f R1 and R2. 8est accuracy is achieved when R1 is
elilual to or less than 2.2Kohm. Once R1 is selected,
the value of R2 can be determined with the following
equation.
R1 RN ( Vth -V ref)
R2=-------------------Vref(RN +R1) - R1V

O~--~-------+--~~-------------

,
HIGH

!

G:l

I cow
C2071

Fig. 23. 740LOOO1 AC Level Detection Waveform

Where
Vth = Sel9Cj:tedACorDCswitchinglevel
Vref = 1.34V
RN = 22Kohm
V =4.3V
Thiseqliation has been solved graphically in Figure 22.

450

/

400

~

g
II)

illa:

350

/

300

V

/

250

/

200

V

~ lsO

V

?:

I 100

rf!

50

o

20 40 60 60 100 120 140 160 160 200

Vlh -

THRESHOLD VOLTAGE - VOLTS

02072

Fig. 22. Input Resistor 1'$. Threshold
Voltage

The monitor circuit shown in Figure 21 consists of
three elements. The first is an Optologic power
supply, the second is the voltage divider, and the
third is the retriggerable one-shot.
The power supply consists of a capacitor voltage
divider and 5V tegulator. A capacitor divider was
used to minimize the power consumption from the
AC line. This power supply will provide over 15 mA
when the line voltage exceeds 60V RMS.

The voltage divider (R1, R2) sets the monitor threshold point of the sensor. R1 is used as an Optologic
input pull-down, thus, as the input voltage rises, it
forces current through R1 which raises its voltage up
to the Vref of the Optologic input. Once the reference voltage is exceeded, the output of the
Optologic will change state. Figure 23 illustrates the
relationship of the input voltage to the 740L6001
output. It can be seen that the output is a series of
pulses, whose width is determined by the duration
that the input waveform exceeds the voltage
thr!ilshold.
Ttie final section of the sensor consists of a retriggerable one-shot, constructed with an NE555 timer.
T"is one-shot is included to convert the pulse train
into Ii constant logic level. For best stability, a time
cOllstant of 1 1/4 cycles was selected. When a 60Hz
power main is to be monitored, this becomes a time
constant of 18ms. Thus, as the input voltage exceeds
the monitor threshold, the output of the 740L6001
changes from high to low, thus triggering the NE555
timer. Once triggered, the NE555 outputs a logic
high and will stay high as long as it is triggered every
16ms.

CONCLUSION
The Optologic family of TTL and CMOS compatible
devices is a new and easy-to-use optically coupled
logic circuit element. This Application Note has
provided but few of many new uses for this versatile
device. Not only does thill device provide high noise
immunity and level shifting for logic-to-Iogic interfaces, it also has numerous applications in data
communications and industrial control systems.

Appendlx

6

400

410

North American Technical Representatives
ARKANSAS
Ammon & Rizos
Tulsa (918) 663-8788

KANSAS
Lorenz Sales
Overland Park (913) 649-5556

OKLAHOMA
Ammon & Rizos
Tulsa (918) 663-8788

ALABAMA
(404) 446-2939

MARYLAND
Beacon North, Inc.
(800) 336-3747

OREGON
Western Technical Sales
Hillsboro (503) 640-4621

MASSACHUSETTS
Kanan Associates
Needham Heights (617) 449-7400

PENNSYLVANIA
Russell F. Clark Co., Inc.
Pittsburgh (412) 242-9500
TAl Corporation
Philadelphia (215) 627-6615

ARIZONA
Thom Luke Sales, Inc.
Scottsdale (602) 941-1901
CALIFORNIA
Brooks Technical Group
Mt. View (415) 960-3880
Harvey King, Inc.
San Diego (619) 587-9300
Varigon, Inc.
EI Taro (714) 855-0233

MICHIGAN
Rathsburg Associates, Inc.
(313) 559-9700
MINNESOTA
Mel Foster Technical Sales, Inc.
Edina (612) 941-9790

COLORADO
Elcom, Inc.
Denver (303) 337-2300

MISSOURI
Lorenz Sales
University City (314) 997-4558

CONNECTICUT
Scientific Components, Inc.
Cheshire (203) 272-2963

NEBRASKA
Lorenz Sales
Lincoln (402) 475-4660

DELAWARE
Beacon North, Inc.
(800) 336-3747

NEW JERSEY
TAl Corporation
Bellmawr (609) 933-2600

FLORIDA
(404) 446-2939

NEW MEXICO
SynTech
Albuquerque (505) 266-7951

GEORGIA
(404) 446-2939

PUERTO RICO
(404) 446-2939
SOUTH DAKOTA
Lorenz Sales
Lincoln (402) 475-4660
TEXAS
Ammon & Rlzos
Austin (512) 454-5131
Ammon & Rlzos
Houston (713) 781-6240
Ammon & Rizos
Richardson (214) 644-5591
UTAH
Elcom, Inc.
Salt Lake City (801 ) 483-1025
WEST VIRGINIA
Beacon North, Inc.
(800) 336-3747
(703) 478-2480

NORTH ILLINOIS
Sumer, Inc.
Rolling Meadows (312) 991-8500

NEW YORK
Bob Dean, Inc.
Ithaca (607) 257-1111
Comtronic Associates
Melville (516) 249-0505

SOUTH ILLINOIS
Lorenz Sales
University City (314) 997-4558

NORTH CAROLINA
(404) 446-2939

WASHINGTON
Western Technical Sales
Bellevue (206) 641-3900
Western Technical Sales
Spokane (509) 922-7600

INDIANA
Leslie M. Devoe Company
Indianapolis (317) 842-3245

NORTH DAKOTA
Mel Foster Technical Sales Inc.
Edina (612) 941-9790

WISCONSIN
Sumer, Inc.
Brookfield (414) 784-6641

IOWA
Lorenz Sales
Cedar Rapids (319) 377-4666

OHIO
Midwest Marketing
Chagrin.Falis (216) 247-6655
Midwest Marketing
Columbus (614) 766-2427
Midwest Marketing
Dayton (513) 433-2511

CANADA
DaveTek Marketing
Vancouver, B.C. (604) 430-3680
Vltel Electronics
Montreal, Que. (514) 331-7393
Vltel Electronics
Ottawa, Ont. (613) 592-0090
Vltel Electronics
Toronto, Ont. (416) 676-9720

411

North American Franchised Distributors
ALABAMA
Arrow Electronics

FLORIDA
Arrow Electronics

MASSACHUSETTS
Arrow Electronics

Huntsville (205) 837-6955

Ft. Lauderdale (305) 776-7790
Palm Bay (305) 725-1480

Woburn (617) 933-8130

Kierulff Electronics
Huntsville (205) 883-6070

Hammond Electronics, Inc.

Billerica (617) 667-8331

Pioneer

Ft. Lauderdale (305) 973-7103
Orlando (305) 849-6060

Pioneer

Huntsville (205) 837-9300

Kierulff Electronics

Lexington (617) 861-9200

Kierulff Electronics

ARIZONA
Kierulff Electronics

Ft. Lauderdale (305) 486-4004
St. Petersburg (813) 576-1966

Phoenix (602) 437-0750

Pioneer
Ann Arbor (313) 522-1040
Altamonte Springs (305) 834-9090 G~and Rapids (616) 243-0912
Pioneer
Deerfield Beach (305) 428-8877
Grand Rapids (616) 698-1800
GEORGIA
Livonia (313) 525-1800

Wyle Laboratories
Electronics Marketing Group
Phoenix (602) 249-2232

CALIFORNIA
Arrow Electronics
Chatsworth (818) 701-7500
San Diego (619) 565-4800
Sunnyvale (408) 745-6600
Tustin (714) 838-5422

Kierulff Electronics
Chatsworth (818) 341-2210
Los Angeles (213) 725-0325
San Diego (619) 278-2112
San Jose (408) 971-2600
Tustin (714) 731-5711

Wyle Laboratories
Electronics Marketing Group
EI Segundo (213) 322-8100
Irvine (714) 863-1611
Sacramento (916) 638-5282
San Diego (619) 565-9171
Santa Clara (408) 727 -2500

Arrow Electronics
Atlanta (404) 449-8252

Kierulff Electronics
Atlanta (404) 447-5252

Pioneer
Norcross (404) 448-1711

ILLINOIS
Arrow Electronics
Schaumburg (312) 397-3440

Kierulff Electronics
Itasca (312) 250-0500

Newark Electronics
Chicago (312) 784-5100

Pioneer
Elk Grove Village (312) 437 -9680

INDIANA
Arrow Electronics

MICHIGAN
Arrow Electronics

MINNESOTA
Arrow Electronics
Edina (612) 830-1800

Kierulff Electronics
Edina (612) 941-7500

Pioneer
Minnetonka (612) 935-5444

MISSOURI
Arrow Electronics
St. Louis (314) 567-6888

Kierulff Electronics
Maryland Heights (314) 739-0855

NEW HAMPSHIRE
Arrow Electronics
Manchester (603) 668-6968

COLORADO
Arrow Electronics

Indianapolis (317) 243-9353

NEW JERSEY
Arrow Electronics

Bell Industries

Denver (303) 740-1000

Fairfield (201) 575-5300
Marlton (609) 596-8000

Kierulff Electronics

Ft. Wayne (219) 423-3422
Indianapolis (317) 634-8202

Englewood (303) 790-4444

Pioneer

Fairfield (201) 575-6750

Wyle Laboratories
Electronics Marketing Group

Indianapolis (317) 849-7300

Pioneer

Denver (303) 457 -9953

CONNECTICUT
Arrow Electronics
Wallingford (203) 265-7741

J_V. Electronics
East Haven (203) 469-2321

Kierulff Electronics
Wallingford (203) 265-1115

Pioneer
Norwalk (203) 853-1515

412

IOWA
Arrow Electronics
Cedar Rapids (319) 395-7230

MARYLAND
Arrow Electronics
Columbia (301) 995-0003

Kierulff Electronics
Gaithersburg (301) 636-5800

Pioneer
Gaithersburg (301) 921-0660

Kierulff Electronics

Pine Brook (201) 575-3510

NEW MEXICO

Arrow Electronics

OREGON
Arrow Electronics

UTAH
Kierulff Electronics

Albuquerque (505) 243-4566

Po~and~03)689-1690

Salt Lake City (801) 973-6913

NEW YORK

Wyle Laboratories
Electronics Marketing Group

Wyle Laboratories
Electronics Marketing Group

Portland (503) 640-6000

Salt Lake City (801) 974-9953

PENNSYLVANIA
Arrow Electronics

WASHINGTON
Arrow Electronics

Farmingdale (516) 420-9800

Philadelphia (215) 928-1800
Pittsburgh (412) 856-7000

Kierulff Electronics

Pioneer

CAM/RPC Electronics

Kent (206) 575-4420

Fairport (716) 381-7070
Vestal (607) 748-8211
Woodbury (516) 921-8700

Pittsburgh (412) 782-3770

Wyle Laboratories
Electronics Marketing Group

Arrow Electronics
Hauppauge (516) 231-1000
Liverpool (315) 652-1000
Rochester (716) 427-0300

Milgray Electronics, Inc.

Summit Distributors, Inc.
Buffalo (716) 884-3450

NORTH CAROLINA
Arrow Electronics
Raleigh (919) 876-3132
Winston-Salem (919) 725-8711

Hammond Electronics, Inc.

Pioneer
Horsham (215) 674-4000
Pittsburgh (412) 782-2300

PUERTO RICO
Arrow Electronics
San Turce (809) 763-1365

SOUTH CAROLINA
Hammond Electronics, Inc.

Greensboro (919) 275-6391

Greenville (803) 233-4121

Kierulff Electronics
Raleigh (919) 872-8410

TENNESSEE
Hammond Electronics

Pioneer

(800) 334-0267

Charlotte (704) 527-8188

OHIO
Arrow Electronics
Centerville (513) 435-5563
Columbus (614) 885-8362
Solon (216) 248-3990

CAM/RPC Electronics

TEXAS
Arrow Electronics
Austin (512) 835-4180
Dallas (214) 386-7500
Houston (713) 530-4700

Harrison Equip. Co., Inc.
Stafford (713) 879-2600

Cleveland (216) 461-4700

Kierulff Electronics

Kierulff Electronics

Austin (512) 835-2090
Dallas (214) 343-2400
Houston (713) 530-7030

Cleveland (216) 587-6558
Da~on(513)439-0045

Pioneer

Pioneer

Cleveland (216) 587-3600
Da~on(513)236-9900

Austin (512) 835-4000
Dallas (214) 386-7300
Houston (713) 988-5555

OKLAHOMA
Arrow Electronics

Wyle Laboratories
Electronics Marketing Group

Tulsa (918) 665-7700

Kierulff Electronics
Tulsa (918) 252-7537

Bellevue (206) 643-4800

Bellevue (206) 453-8300

WISCONSIN
Arrow Electronics
Brookfield (414) 792-0150

Kierulff Electronics
Waukesha (414) 784-8160

CANADA
Arrow Canada
Calgary (403) 246-1980
Montreal (514) 735-5511
Ottawa (613) 226-6903
Quebec (410) 6B7-4231
Toronto (41 (l) G61-0220

Cardinal Electronics
Edmonton (403) 483-6266

Future Electronics, Inc.
Calgary (403) 259-6408
Montreal (514) 694-7710
Ottawa (613) 820-9471
Toronto (416) 638-4771
Vancouver (604) 438-5545

R.A.E. Electronics
Edmonton (403) 451-4001
Vancouver (604) 291-8866

Austin (512) 834-9957
Dallas (214) 235-9953
Houston (713) 879-9953

413

International Stocking Distributors and Technical Representatives

EUROPE

"0\';

AUSTRIA
Omnl Ray GesmbH
Vertriebsbuero Wien
Prinz Eugen-Strasse 36
1040 Wien
Tel. 0222/65.64.31
TELEX - 132712

Selfco
31 Rue du Fosse des treize
67000 Strasbourg
Tel. 88/22.08.88
TELEX - 890.706

BELGIUM-LUXEMBOURG
N.V. Telerex
Bisschoppenhoflaan 255
2100 Antwerpen
Tel. 03/325.69.50
TELEX - 33511

Emil ommerlingstrasse 5
Postfach 1563
6780 Pirmasens
Tel. 06331/94065
TELEX - 452269
A Neye-Enatechnik GmbH
2085 Quickborn-Hamburg
Schillerstrasse 14
Postfach 1240
Tel. 04106/612-0
TELEX - 213590
Semitron GmbH
1m Gut 1
7891 Kuessaberg
Tel. 07742/7011
TELEX - 7921472
Servitronic GmbH
Berliner Strasse 140
1000 Berlin 31
Tel. 030/87 04 06
TELEX - 183557
~oerle Electronic KG
ax Planckstrasse 1-3
Postfach 1021 40
6072 Oreieich/Frankfurt
Tel. 06103/304304
TELEX - 417903

DENMARK
Nordlsk Elektronik AS
Transformervej 17
2730 Herlev
Tel. 02/842000
TELEX - 35200
FINLAND
Oy Flntronlc AB
Melkonkatu 24A
00210 Helsinki 21
Tel. 0-692 6022
TELEX - 124224
FRANCE
Direct
151/153 Rue de Constantine
76201 Rauen
Tel. 35/98.40.48
TELEX - 770842
Groupement Electronlque
de Distribution
352 Avenue Georges Clemenceau
92000 Nanterre
Tel. 01/4204.04.04
TELEX - 615051
R.T.F.
9 Rue d~rcueil
94250 Gentilly
Tel. 01/4664.11.01
TELEX - 201069
S.C.T.
37 Avenue Emile Oewoitine
31200 Toulouse
Tel: 61/22.04.22
TELEX - 530219
Sclentech
11 Avenue Ferdinand Buisson
75016 Paris
Tel. 01/4609.91.36
TELEX - 260042

414

GERMANY

Inde~GmbH

GREECE
General Electronics Ltd.
209 Thivon Street
GR-184 54 Nikaia
Piraeus
Tel. 1/4922068
TELEX - 212949
IRELAND
Bloomer Electronics Ltd.
9-10 Cam Industrial Estate
Portadown-Co. Armagh BT63 5RH
Northern Ireland
Tel. 0762/339818
TELEX - 748054
ISRAEL
A. Schneider Ltd.
44 Petach Tikva Road
Po. Box 18055
Tel Aviv 61180
Tel. 3/372089
TELEX - 33613

ITALY
Idac Elettronica s.p.a.
Via Verona 8
35010 Busa di Vigonza (PO)
Tel. 049/725 699
TELEX - 430353
Kontron s.p.a.
Via G. Fantoli 16/15
20138 Milano
Tel. 02/50721
TELEX - 312288
Lasi Elettronlca s.p.a.
Viale Fulvia Testi 126
20092 Cinisello Balsamo (Milano)
Tel. 02/244.00.12
TELEX - 331612
Silvers tar Ltd.
20 Via dei Gracchi
20146 Milano
Tel. 02/4996
TELEX - 332189
NETHERLANDS
Techmation Electronics B.V.
PO. Box 9
4175 ZG Haaften
Bernhardstraat 11
4175 Ed Haaften
Tel. 04189/2222
TELEX - 50423
NORWAY
Nordisk Elektronik AlS
Smedsvingen 4
PO. Box 130
1364 Hvalstad
Tel. 02/846210
TELEX - 77546
SOUTH AFRICA
Electrolink Ltd.
PO. Box 1020
Martin Hammerschlag Way
Cape Town 8000
Tel. 21/5350/1/2
TELEX - 527320
SPAIN
Kontron Electronica
Salvatierra, 4
28034 Madrid
Tel. 729 11 55
TELEX - 23382
Sutelco
Pilar de Zaragoza 23
Madrid 2
Tel. 1/245.86.03
TEL!=)( - 43852

SWEDEN
Nordisk Elektronlk AlB
Box 1409
Huvudstagatan 1
171 27 Solna
Tel. 8/734.97.70
TELEX - 10547
SWITZERLAND
OmniRayAG
Industriestrasse 31
8305 Dietlikon
Tel. 01/835.21.11
TELEX - 53239
TURKEY
Turkelek Elektronik Ltd.
Hatay Sok. 8
Ankara
Tel.~) 25.21.09/18.94.83
TEL - 42120
UNITED KINGDOM
B.A. Electronics Ltd.
Hitchin Road
Arlesey
.
Bedfordshire SE15 6SU
Tel. 0462/834744
TELEX - 826257
Polar Electronics Ltd.
Europa House, West Street
Leighton Buzzard
Beds. LU7 7ND
Tel. 0525/377093
TELEX - 825238
Semtor Electronics Ltd.
Brooklyn House
22 The Green
West Drayton Middlesex UB7 7PQ
Tel. 08954/45832
TELEX - 8814938
STC Electronic Services
Edinbur~h Way
Harlow ssex CM20 2DE
Tel. 0279/26777
TELEX - 81525
Semiconductor
Specialists (U.K.) Ltd.
Carroll House
159 High Street, Yiewsley
West Drayton
Middlesex UB7 7XB
Tel. 08954/46415
TELEX - 21958
YUGOSLAVIA
Belram S.A.
83 Avenue des Mimosas
1150 Brussels/Belgium
Tel. 02/734.33.32
TELEX - 21790

JAPAN

SOUTHEAST ASIA

Dainichl Electronics Inc.
Koraku Bldg.
1-1-8, Koraku
Bunkyo-Ku, Tokyo 112
Tel. (03) 815-4711
Japan Electronics
Research cor~.
Omori Mitsubis i Bldg.
2-3-10 Sanno
Ohta-Ku, Tokyo 143
Tel. (03) 777-4111
Kokuel Tsusho Co., Ltd.
Hiyoshi Building
2-4-3 lidabashi
Chiyodaku, Tokyo, 102
Tel. (03) 230-0191
NagO~a Dengensha
9-27 uruwatari-Cho
Naka-Ku, Nagoya 460
Tel. (052) 322-3511
New Metals and
Chemicals Co. Ltd.
Shin Daiichi Bldg.
3-4-13 Nihonbashi
Chuo-Ku, Tokyo 103
Tel. (03) 201-6585
Takachiho Kohekl Co., Ltd.
Nakamura Bldg.
1-2-8 Yotsuya
Shinjuku-Ku, Tokyo 160
Tel. (03) 355-1111

AUSTRALIA
Allied Capacitors Pty. Ltd.
214 Harbord Road
P.O. Box 198
Brookvale 2100 NSW
Tel. 02/938-2422
TELEX - 790-25400
Rifa PtX. Ltd.
202 Be I Street
Preston, Victoria
3072, Australia
Tel.
480-1211
TEL - AA31001

SOUTH AMERICA
BRAZIL
Hitech
Comercial E Industrial Ltda
Av. Egj. Luiz Carlos Berrini,
801.111/121
04571 - Sao Paulo - SP
Tel. (55-11) 533-9566
TELEX - (391) 11-53288
FAX - (55-11) 61-3770
CHILE
Victronics Ltda.
Casilla 283-\/, Correo 21
Santiago 01, Chile
Tel. 36440 or 30237
TELEX - 3520001

1&)

·'1.

HONG KONG

Astec Agencies Ltd.
RM 706-710, Austin Tower
22-26A, Austin Avenue
Tsimshatsui, Kowloon
Tel. 3/7210346-9
TELEX - 37528 ASAG HX
FAX: 3/690393
INDIA
A.T.E. Pvt. Ltd.
:l£i, SOF-2, SEEPZ
I\ndlmri (F), Bombay· 400 096
Tel. 604 9032/6300195
TELEX - 1171513 DIP IN
Zenith Electro Systems Pvt.
Ltd.
106, Mittal Chambers
Nariman Point
Bombay-400021
Tel. 2027887
TELEX - 011-3152 ZENTRONICS
KOREA
Won IL Commercial Corp.
402, Won IL Building
San 1451-1, Seocho-Dong
Kangnam-Ku, Seoul
Tel. 2/5834321-3
TELEX - K27860 WONIL
NEW ZEALAND
Channel Master (NZ) Ltd.
51, Felix St., Penrose
Auckland, New Zealand
P.O. Box 12-373
Auckland, New Zealand
Tel. 599-003
TELEX - NZ21033
THAILAND
Choakchai Elect. Ltd.
128/22 Thanon Atsadang
Ban~kok, 10200 Thailand
Tel. 21-0432,221-5384
TELEX - 84809 CESLP TH

415

416



Source Exif Data:
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
PDF Version                     : 1.3
Linearized                      : No
XMP Toolkit                     : Adobe XMP Core 4.2.1-c041 52.342996, 2008/05/07-21:37:19
Create Date                     : 2017:07:10 18:30:16-08:00
Modify Date                     : 2017:07:10 18:55:59-07:00
Metadata Date                   : 2017:07:10 18:55:59-07:00
Producer                        : Adobe Acrobat 9.0 Paper Capture Plug-in
Format                          : application/pdf
Document ID                     : uuid:ef760921-2a32-af47-aa0e-a4b457f7ccaa
Instance ID                     : uuid:17a5ae42-c94d-bd47-a5a2-47265e101493
Page Layout                     : SinglePage
Page Mode                       : UseNone
Page Count                      : 433
EXIF Metadata provided by EXIF.tools

Navigation menu