1986_General_Instruments_Optoelectronic_Products 1986 General Instruments Optoelectronic Products
User Manual: 1986_General_Instruments_Optoelectronic_Products
Open the PDF directly: View PDF
.
Page Count: 433
| Download | |
| Open PDF In Browser | View PDF |
f
i
I
c
3
Io
_.
n
l
I
I
l. ~
.
~
I
Catalog of Optoelectronic Products 1986/87
Catalog
of Optoelectronic
Products
1986/87
Optoelectronics Division
3400 Hillview Avenue
Palo Alto, California 94304
GENERAL
INSfRUMENT
Copyright ©1986 by General Instrument Corporation.
All rights reserved. No parts of this book may be
reproduced w~hout the written permission
of General Instrument Corporation.
ALL SPECIFICATIONS SUBJECT TO CHANGE
Printed in USA
ii
About General Instrument
Optoelectronics
Experience
For the last seventeen years-first as Monsanto and now as General Instrument-we
have been a leading manufacturer of optoelectronic products. As a result of this
experience and our leadership in developing III-V materials technology, we have
contributed many firsts to the field of optoelectronics-in LED lamps, displays and
optocouplers.
Quality Control
Because we are one of the few vertically integrated optoelectronic manufacturers, we
exercise total control over each stage of production-through growing our own
crystals to epnaxial deposition and water manufacturing. This ensures quality and
reliability in our products.
Reliable Products
At both our manufacturing plants, in Palo Alto and Kuala Lumpur, extensive reliability
testing (see pg. xv) and advanced manufacturing techniques ensure the highest
standards of production. We are commmed to the concept of providing state-of-the-art
dependable products at competitive prices.
Broad Product Range
We offer high performance optoelectronic devices in four major categories;
optocouplers, displays, lamps, and light bars and bargraph arrays. This catalog
contains detailed specifications on our complete line of optoelectronic products.
Product Availability
A worldwide network of stocking distributors assures immediate availability of most
standard products. General Instrument authorized distributors are located worldwide.
In addition, four General Instrument Direct Sales Offices in the United States and
eleven International Sales Offices serving major world markets, provide a complete
range of all General Instrument Optoelectronic products. See how to order in the
following section.
Efficient Service
If you have a question or a problem, just pick up the phone and call the nearest
General Instrument Technical Representative. These highly qualified sales engineers
can offer assistance in design and product selection. The lists on pages 411 and 414
will enable you to locate one in your area.
In addition, our staff of factory product engineers can provide information, discuss
specific problems and offer applications assistance. The answer to your question is
only a phone call away.
You can depend on General Instrument.
iii
About This Catalog
This catalog describes in detail our complete line of optoelectronic products. For your
convenience, the catalog is divided into four major product groups-optocouplers,
displays, lamps, and light bars and bargraph arrays.
A selection guide will be found at the begining of each product section. This provides
brief basic information on the product line to assist you in selecting the device best
su~ed to your requirements.
Full specification sheets are located within each section.
For fast reference, an alphanumeric listing appears on page xi which lists all
products individually 'Nith the appropriate data sheet page number. An alphanumeric
listing also appears at the beginning of each product section.
Application notes starting on page 367 provide useful technical information to assist
you in selecting and testing optoelectronic devices.
DATA SHEET CLASSIFICATIONS
CLASSIFICATION
PRODUCT STAGE
DISCLAIMERS
Preview
DATA SHEET
Formative or Design
This document contains the design
specifications for product under development.
Specifications may be changed in any manner
without notice.
Advance Information
DATA SHEET
Sampling or
Pre-Production
This is advanced information, and
specifications are subject to change without
notice.
Preliminary
DATA SHEET
First Production
Supplementary data may be published at
a later date.
How to Order
All General Instrument Optoelectronic products may be ordered through any of the
International Sales Offices and Direct Sales Offices listed on the back cover. For
immediate delivery of General Instrument optoelectronic products, contact any of the
stocking distributors located in your area. See pages 412 and 414.
Warranties
Seller warrants all items against defects in material and workmanship under normal
use and service for a period of one (1) year from the date of shipment; provided,
however, that Seller's liability under said warranty shall be Iim~ed, at Seller's option, to
crediting Buyer's account or replacing or repairing items or parts thereof which Seller's
inspection shall have disclosed to its satisfaction to have been defective in the form in
which it was shipped by Seller, prior to its use in further manufacture or assembly.
This warranty shall not apply to items or parts thereof that have been (a) subjected to
misuse, neglect, accident, damage in transit, abuse or unusual hazard; (b) repaired,
altered or modified by anyone other than Seller; or (c) used in violation of instructions
furnished by Seller. All requests for return of items must receive the written
authorization of Seller.
Seller's warranties extend to the Buyer and to no other person or entity.
Seller's warranties as hereinabove set forth shall not be enlarged, diminished or
affected by, and no obligation or liability shall arise or grow out of, Seller's rendering of
technical advice or service in connection w~h Buyer's order of the goods furnished
hereunder.
THE FOREGOING ARE IN LIEU OF ALL WARRANTIES, EXPRESS, IMPLIED, OR
STATUTORY, INCLUDING, BUT NOT LIMITED TO, ANY IMPLIED WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE AND ANY
OTHER WARRANTY OBLIGATION ON THE PART OF THE SELLER.
iv
Table of Contents
ALPHANUMERIC PRODUCT LISTING .•..•...•.••••..•..•...•..••••••.
RELIABILITY RESULTS ••.••••••••.••••.•••••••.•..••••••••••••...•
Page
xi
xv
OPTOCOUPLERS
ALPHANUMERIC PRODUCT LISTING •••••••.•.•..•..•..•....•..•••••.
SELECTION GUIDE •••••••.•••••••.•••••.•.•.••.•...•.•.••••••..••
4N25, 4N26, 4N27, 4N28
Phototransistor Optocouplers ••.••.•••.•
Photodarlington Optocouplers ••.••.•••••
4N32,4N33
4N35, 4N36, 4N37
Phototransistor Optocouplers ••...•••••.
6N135, 6N136
High-Speed Transistor Optocouplers ••.•.
Very High-Speed Logic
6N137
Gate Optocoupler •..•..••••••.••.••
High Gain Split-Darlington Optocouplers ••.
6N138,6N139
High-Speed Logic-To-Logic
740L6000, 740L6001,
740L601 0, 740L6011
Optocouplers •••••••••••••••.•••••
Phototransistor Optocoupler .••....••..•
CNX35
VDE Approved Phototransistor
CNY17-1 Ill, CNY17-2/2l,
CNY17-3/3l, CNY17-4/4l
Optocouplers •.••••••••.•••.••.•••
CNY65
VDE Approved High-Voltage
Optocoupler •..•..••••..•.••••.•••
HllAl III
VDE Approved Transistor Output
Optocoupler ••.•.•••••.•..•.••.•••
HllAA1, HllAA2,
HllAA3, HllAA4
AC Input/Phototransistor Optocouplers •••
High-Voltage VDE Approved
Hl1Dl 11 l, Hl1D2/2l,
Hl1D3/3l
Phototransistor Optocouplers ••••••..•
Hl1Gl, HllG2,
High Voltage Photodarlington
HllG3
Optocouplers •.•.••••••••••••.••.•
HCPL-2502, HCPL-2503
High-Speed Transistor Optocouplers •••.•
HCPL-2530, HCPL-2531
Dual High-Speed Transistor
Optocouplers ••••••.••.••.•••.••.•
HCPL-2601
Very High-Speed Logic Gate
Optocoupler •.•.••••.••••••.••••••
HCPL-2630, HCPL-2631
Dual Very High-Speed Logic Gate
Optocouplers .••••••.•.•.••.••••••
HCPL-2730, HCPL-2731
Dual Split-Darlington Optocouplers ••.••.•
MCAllGl, MCAllG2,
High Voltage Photodarlington
MCAllG3
Optocouplers .•..••.••.•••••.••.••
MCA230, MCA231
MCA255
Photodarlington Optocouplers ••••••.••••
MCA2230l, MCA2231 l,
VDE Approved Photodarlington
MCA2255l
Optocouplers ••••••••••••.•••.••.•
MCL2501, MCL2502,
MCL2503
High-Speed Transistor Optocouplers .••.•
MCL2530, MCL2531
Dual High-Speed Transistor
Optocouplers ••••••••••.•.••..••••
MCL2601
Very High-Speed Logic Gate
Optocoupler •.•.••.•..•.••••..•••.
MCL2630, MCL2631
Dual Very High-Speed Logic Gate
Optocouplers ••.••.••••.••••••.•••
MCL2730, MCL2731
Dual Split-Darlington Optocouplers .••••••
MCP3009, MCP3010
MCP3011
Non-lero-Crossing Triacs ••.•••••.••••
MCP3012
Non-lero-Crossing Triac ••.••.•••.••.•
3
4
19
23
27
77
91
31
35
43
47
51
55
59
61
65
77
85
91
97
101
65
69
73
77
85
91
97
101
105
109
v
Page
MCP3020/0Z, MCP3021 /1 Z,
MCP3022/2Z
MCP3023
MCP3030, MCP3031
MCP3032, MCP3033
MCP3040/0Z, MCP3041 /1 Z
MCP3042, MCP3043
MCT2
MCT2E
MCT21 0
MCT2200/0Z, MCT2201 /1 Z
MCT2202/2Z
MCT26
MCT270
MCT271
MCT272
MCT274
MCT275
MCT276
MCT277
MCT4
MCT4R
MCT5200, MCT5201
MCT5210, MCT5211
MCT6, MCT61 , MCT62,
MCT66
MID400
OPTO PLUS
SMD OPTION 100
UL APPROVED OPTOCOUPLERS/
PACKAGE CODES
VDE DATA SHEET
VDE: Approvea Non-Zero-Crossing
Triacs •••••••••••••••••••••••••••
Non-Zero-Crossing Triac ••••••••••••••
VDE Approved Zero-Crossing Triacs •••••
Zero-Crossing Triacs •••••••••••••••••
VDE Approved Zero-Crossing Triacs •••••
Zero-Crossing Triacs •••••••••••••••••
Phototransistor Optocoupler ••••••••••••
Phototransistor Optocoupler ••••••••••••
Phototransistor Optocoup!er •••••••.••••
VDE Approved Phototransistor
Optocouplers •••••••••••••••••••••
Phototransistor Optocoupler ••••••••••••
Phototransistor Optocoupler ••••••••••••
Phototransistor Optocoupler ••••••••••••
Phototransistor Optocoupler ••••••••••••
Phototransistor Optocoupler ••••••••••••
Phototransistor Optocoupler ••••••••••••
Phototransistor Optocoupler ••••••••••••
Phototransistor Optocoupler ••••••••••••
Hermetic Phototransistor Optocoupler ••••
Reliability Conditioned Hermetic
Phototransistor Optocoupler ••••••••••
High-Performance AIGaAs
Phototransistor Optocouplers •••••••••
High-Performance AIGaAs
Phototransistor Optocouplers •••••••••
Dual Phototransistor Optocouplers •••••••
AC Line Monitor Logic-Out Device •••••••
Reliability Conditioned Optocouplers ••••••
.................................
.................................
VDE Approved
High-Voltage Optocouplers •••••••••••
DISPLAYS
ALPHANUMERIC PRODUCT LISTING •••••••••••••••••••••••••••••••••
SELECTION GUIDE •••••••••••••••••••••••••••••••••••••••••••••••
5082-7650,5082-7651,
5082-7653, 5082-7656,
5082-7750,5082-7751,
0.43-1 nch Seven Segment Displays ••••••
5082-7756,5082-7760
0.362-lnch Seven Segment Display ••••••
FND317
FND350, FND357,
0.362-lnch Seven Segment Displays •••••
FND360, FND367
0.27 -Inch Seven Segment Displays ••••••
MAN1A, MAN10A
0.32-lnch Alphanumeric Display. • • • • • • ••
MAN2A
MAN24, MAN27, MAN28
0.32-lnch Dot Matrix Displays. • • • • • • • • • •
MAN29
0.135-lnch 8 Character 14 Segment
MAN2815
Alphanumeric Display. • • • • • • • • • • • • • • • •
MAN3410A, MAN3420A,
0.300-lnch Seven Segment Displays •••••
MAN3440A
vi
113
109
117
121
117
121
125
129
133
137
141
143
147
151
155
159
163
167
171
173
175
181
187
191
15
17
11
13
199
200
205
209
213
217
219
221
225
229
MAN3480A
MAN3610A, MAN3620A,
MAN3630A, MAN3640A
MAN3680A
MAN3810A, MAN3820A,
MAN3840A
MAN3880A
MAN3910A, MAN3920A,
MAN3940A
MAN3980A
MAN4410A, MAN4440A,
MAN4610A, MAN4630A,
MAN4640A, MAN4705A,
MAN4710A, MAN4740A
MAN4910A, MAN4940A
MAN6110, MAN6130,
MAN6140, MAN6150,
MAN6160, MAN6175,
MAN6180, MAN6195
MAN6410, MAN6440,
MAN6460, MAN6480
MAN6610, MAN6630,
MAN6640, MAN6650,
MAN6660, MAN6675,
MAN6680, MAN6695
MAN6710, MAN6730,
MAN6740, MAN6750,
MAN6760, MAN6780
MAN6910, MAN6930,
MAN6940, MAN6950,
MAN6960, MAN6980
MAN71 A, MAN72A,
MAN73A, MAN74A
MAN78A
MAN8410, MAN8440
MAN8610, MAN8640
MAN8910, MAN8940
MMA54420, MMA56420,
MMA58420, MMA59420
0.300-lnch Seven Segment Display. • • . •.
Page
235
0.300-lnch Seven Segment Displays
0.300-lnch Seven Segment Display
229
235
0.300-lnch Seven Segment Displays
0.300-lnch Seven Segment Display
229
235
0.300-lnch Seven Segment Displays
241
0.300-lnch Seven Segment Display •••. 235,241
OAOO-Inch Seven Segment Displays
OAOO-Inch Seven Segment Displays
245
251
0.560-lnch Seven Segment Displays
255
0.560-lnch Seven Segment Displays
259
0.560-lnch High Performance Displays. • • •
263
0.560-lnch High Performance Displays. • •.
267
0.560-lnch Seven Segment Displays •••.•
271
0.300-lnch Seven Segment Displays •••••
0.300-lnch Seven Segment Display ••••••
0.800-lnch Seven Segment
High Performance Displays. . • . • . • . . .•
0.800-lnch High Performance Displays. • ..
0.800-lnch Seven Segment
High Performance Displays. • • • . . • • • .•
0.500-lnch High 16 Segment
High Performance
Alphanumeric Displays. • . . . • . • • . • . ••
229
235
LIGHT BARS AND BARGRAPH ARRAYS
ALPHANUMERIC PRODUCT LISTING. • • • • • • . . • • • • • • . • • . • • • • . • • • • • • . ••
SELECTION GtJlDE ••••••••••••••• '. • • • • • • • • • • • • • • • • • • . • • • • • . • • • • ••
HLMP-2300, HLMP-2350,
HLMP-2400, HLMP-2450,
HLMP-2500, HLMP-2550,
HLMP-2655, HLMP-2670,
HLMP-2685, HLMP-2755,
HLMP-2770, HLMP-2785,
HLMP-2855, HLMP-2870,
HLMP-2885
Led Light Bars ......... .. • .. • . .. .. ••
275
279
283
287
293
294
297
vii
Page
MP73
MV53124
MV53164
MV53173
MV54124
MV54164
MV54173
MV56124. MV57124
MV57164
MV57173
Panel Mounting Grommet for .500-lnch
Rectangular Indicator. • • • • • • • • • • • • • •
Rectangular Reflector Cap
Solid State Lamp. • • • • • • • • • • • • • • • • • •
Bargraph Display • • • • • • • • • • • • • • • • • • ••
Solid State Indicator. • • • • • • • • • • • • • • • ••
Rectangular Reflector Cap
Solid State Lamp. • • • • • • • • • • • • • • • • • •
Bargraph Display • • • • • • • • • • • • • • • • • • ••
Solid State Indicator. • • • • • • • • • • • • • . • • •
Rectangular Reflector Cap
Solid State Lamps. • • • • • • • • • • • • • • • • •
Bargraph Display • • • • • • • • • • • • • • • • • • ••
Solid State Indicator. • • • • • • • • • • • • • • • • •
302
303
309
305
303
309
305
303
309
305
LAMPS
ALPHANUMERIC PRODUCT LISTING ••••••••••••.•.••.•••.•••••••••••
SELECTION GUIDE •••••••••••••••••••••••••••••••••••••••••••••••
FLV110
Second Source T -1 % Solid State Lamp '"
HLMP-0300. HLMP-0301.
HLMP-0400. HLMP-0401,
HLMP-0503. HLMP-0504
Rectangular Solid State Lamps ••••••••••
HLMP-1300. HLMP-1301.
HLMP-1302
Diffused T -100 Solid State Lamps. • • • • • ••
HLMP-1320. HLMP-1321.
HLMP-1340. HLMP-1420.
HLMP-1440
Clear Lens T -100 Solid State Lamps •••••
HLMP-1503
Diffused T -100 Solid State Lamp ••••••••
HLMP-1520. HLMP-1521
Clear Lens T -100 Solid State Lamps •••••
HLMP-1523
Diffused T-100 Solid State Lamp ••••••••
HLMP-1540
Clear Lens T -1 00 Solid State Lamp ••••••
Low Current T-100 & T-1 %
HLMP-1700. HLMP-1719
Solid State Lamps •••••••.••••••••••
HLMP-3300. HLMP-3301.
HLMP-3315. HLMP-3316
Second Source T -1 % Solid State Lamps •••
HLMP-3750. HLMP-3850.
Ultrabright T -1 % Solid State Lamps •••••••
HLMP-3950
HLMP-4700. HLMP-4719
Low Current T -1 00 & T -1 %
Solid State Lamps ••••••••••••••••••
T-1% Panel Mounting Grommets ••••••.•
MP22. MP52
MV5X124 Panel Mounting Grommet ••••••
MP65
MV10B
TO-18 Solid State Lamp •••••••••••••••
Low CurrentT-1 00 & T-1 %
MV2454
Solid State Lamp •••••••••••••••••••
MV3350. MV3450.
Ultrabright T -1 % Solid State Lamps •••••••
MV3750
Rectangular Solid State Lamp •••••••••••
MV49124A
Subminiature T -% Solid State Lamp ••.•••
MV50B
Bullet Profile T -1 % Solid State Lamps •.•.•
MV50152. MV50154
MV5021. MV5022.
Tapered Package T -1 %
MV5023. MV5024.
Solid State Lamps ••••••••••••••••••
MV5025. MV5026
Standard Red T -1 % Solid State Lamps ••••
MV5052. MV5053
MV5054-1. MV5054-2.
Diffused T -1 % Solid State Lamps ••••••••
MV5054-3
viii
317
318
351
359
333
329
333
329
333
329
331
351
341
331
364
365
335
331
341
361
323
339
337
343
345
Page
MV5054A-1 , MV5054A-2,
MV5054A-3, MV5055
MV50640
MV5074C, MV5075C
MV5077C
MV5094A
MV5152
MV5153, MV5154A
MV53B
MV53123
MV53124A
MV53152, MV53154
MV5352
MV5353, MV5354A
MV5360, MV53621 ,
MV53622
MV53640, MV53641,
MV53642
MV5374C
MV5377C
MV54B
MV54123
MV54124A
MV54152, MV54154
MV5452
MV5453, MV5454A
MV5460, MV54624
tylV54643, MV54644
MV5474C
MV5477C
MV5491A
MV55AB, MV57B
MV57123
MV57124A
MV57152, MV57154
MV5752
MV5753, MV5754A
MV5760, MV57620,
MV57621 , MV57622
MV57640, MV57641 ,
MV57642
MV5774C
MV5777C
MV6053
MV6151
MV6152
MV6153, MV6154A
MV6351
MV6352
MV6353, MV6354A
MV64B
MV6451
MV64520, MV64521
MV64530, MV64531,
MV6454A
Standard Red T-1 % Solid State Lamps ••••
Diffused T-100 Solid State Lamp ••••••••
T-1 Solid State Lamps ••••••••••••.•••
Low Profile T-1 Solid State Lamp ••••••..
Bipolar T -1 % Solid State Lamp ••••••••••
Clear Lens T -1 % Solid State Lamp •••••••
Diffused T-1 % Solid State Lamps ••••••••
Subminiature T-% Solid State Lamp •••••.
Rectangular Solid State Lamp •••••••••••
Rectangular Solid State Lamp •••••••••••
Bullet Profile T -1 % Solid State Lamps •••••
Clear Lens T-1 % Solid State Lamp •••••••
Diffused T-1 % Solid State Lamps ••••....
343
333
327
325
355
347
349
323
357
361
339
347
349
Clear Lens T-1 00 Solid State Lamps .••••
329
Diffused T -100 Solid State Lamps ••••••••
T-1 Solid State Lamp •••••••••.••••••.
Low Profile T-1 Solid State Lamp ••••••••
Subminiature T-% Solid State Lamp •.•..•
Rectangular Solid State Lamp •••••..•.••
Rectangular Solid State Lamp ••••••.••••
Bullet Profile T-1 % Solid State Lamps .••••
Clear Lens T-1 % Solid State Lamp ••.••••
Diffused T-1 % Solid State Lamps ••••••••
Clear Lens T-100 Solid State Lamps ••••.
Diffused T-100 Solid State Lamps ••••••••
T-1 Solid State Lamp •••••••••...•••.•
Low Profile T -1 Solid State Lamp ••••••••
Bicolor T -1 % Solid State Lamp ••••••••••
Subminiature T-% Solid State Lamps •••••
Rectangular Solid State Lamp ••••••..•••
Rectangular Solid State Lamp •••••••••••
Bullet Profile T-1 % Solid State Lamps •••••
Clear Lens T-1 % Solid State Lamp •••••••
Diffused T-1 % Solid State Lamps •••.••••
333
327
325
323
357
361
339
347
349
329
333
327
325
355
323
357
361
339
347
349
Clear Lens T-1 00 Solid State Lamps •••••
329
Diffused T-100 Solid State Lamps .••.••••
T-1 Solid State Lamp •••••••.......•••
Low Profile T -1 Solid State Lamp •.••••••
Standard Red T-1 % Solid State Lamp ...••
High Contrast T-1 % Solid State Lamp ....•
Clear Lens T-1 % Solid State Lamp .•.••••
Diffused T-1 % Solid State Lamps ..••.•.•
High Contrast T-1 % Solid State Lamp •••••
Clear Lens T-1 % Solid State Lamp
Diffused T-1 % Solid State Lamps ••••••••
Subminiature T-% Solid State Lamp ••••••
High Contrast T-1 % Solid State Lamp •..••
Clear Lens T- n~ Solid State Lamps ••••••
333
327
325
343
353
347
349
353
347
349
323
353
347
Diffused T -1 % Solid State Lamps ••••••••
349
......
ix
Page
MV6752
MV6753, MV6754A
MV6951
TAPE AND REEL
Clear Lens T-1 % Solid State Lamp. • • • • ••
Diffused T-1 % Solid State Lamps ••••••••
High Contrast T-1 % Solid State Lamp. . • ••
•.••••.••••••••••••••••••••••.•••
347
349
353
363
APPLICATIONS
INDEX
AN601
AN603
AN1071
AN1074
AN1075
AN3000
The Photometry of LED's ••••••••••.•••
Improper Testing Methods
for LED Devices .••••••...••.•.••••
Optocoupler Input Drive Circuits
MCT270 Series ••••••••••••••••••••
Low Current Input Circuit Ideas
6N139/138 Series ............... ..
MID400 Power Line Monitor •.•••.••••••
Applications and Operation of Optologic •••
369
371
375
379
385
389
401
APPENDIX
North American Technical Representatives. • • • • • • • • • • • • • • • • • • . • • • • • . • •• 411
North American Franchised Distributors. • • • • . • • • • • • • • • • • • • • • . • • • . • . • • .• 412
International Stocking Distributors and
Technical Representatives. . • • . • • . • . • • • . • • • • • • • • . • • • • • • • • • • • • • • • • • 414
International Sales Offices and North American
Direct Sales Offices ••..•.••••.•••••..••••••••••••••.••.•••• Back Cover
x
Alphanumeric Product Listing
Product
Page
Product
Page
Product
Page
19
19
19
19
23
H11AA1
H11AA2
H11AA3
H11AM
H11D1/1Z
59
59
59
59
61
HLMP-2550
HLMP-2655
HLMP-2670
HLMP-2685
HLMP-2755
297
297
297
297
297
4N33
4N35
4N36
4N37
5082-7650
23
27
27
27
205
H11D2/2Z
H11 D3/3Z
H11G1
H11G2
H11G3
61
61
65
65
65
HLMP-2770
HLMP-2785
HLMP-2855
HLMP-2870
HLMP-2885
297
297
297
297
297
5082-7651
5082-7653
5082-7656
5082-7750
5082-7751
205
205
205
205
205
HCPL-2502
HCPL-2503
HCPL-2530
HCPL-2531
HCPL-2601
77
77
85
85
91
HLMP-3300
HLMP-3301
HLMP-3315
HLMP-3316
HLMP-3750
351
351
351
351
341
5082-7756
5082-7760
6N135
6N136
6N137
205
205
77
77
91
HCPL-2630
HCPL-2631
HCPL-2730
HCPL-2731
HLMP-0300
97
97
101
101
359
HLMP-3850
HLMP-3950
HLMP-4700
HLMP-4719
MAN1A
341
341
331
331
217
6N138
6N139
740L6000
740L6001
740L6010
31
31
35
35
35
HLMP-0301
HLMP-0400
HLMP-0401
HLMP-0503
HLMP-0504
359
359
359
359
359
MAN10A
MAN2A
MAN24
MAN27
MAN28
217
219
221
221
221
740L6011
AN601
AN603
AN1071
AN1074
35
371
375
379
385
HLMP-1300
HLMP-1301
HLMP-1302
HLMP-1320
HLMP-1321
333
333
333
329
329
MAN29
MAN2815
MAN3410A
MAN3420A
MAN3440A
221
225
229
229
229
AN1075
AN3000
CNX35
CNY17-1/1Z
CNY17-2/2Z
389
401
43
47
47
HLMP-1340
HLMP-1420
HLMP-1440
HLMP-1503
HLMP-1520
329
329
329
333
329
MAN3480A
MAN3610A
MAN3620A
MAN3630A
MAN3640A
235
229
229
229
229
CNY17-3/3Z
CNY17-4/4Z
CNY65
FLV110
FND317
47
47
51
351
209
HLMP-1521
HLMP-1523
HLMP-1540
HLMP-1700
HLMP-1719
329
333
329
331
331
MAN3680A
MAN3810A
MAN3820A
MAN3840A
MAN3880A
235
229
229
229
235
FND350
FND357
FND360
FND367
H11A1/1Z
213
213
213
213
55
HLMP-2300
HLMP-2350
HLMP-2400
HLMP-2450
HLMP-2500
297
297
297
297
297
MAN3910A
241
MAN3920A
241
MAN3940A
241
MAN3980A 235/241
MAN4410A
245
4N25
4N26
4N27
4N28
·4N32
xi
Alphanumeric Product Listing
xii
Product
MAN4440A
MAN4610A
MAN4630A
MAN4640A
MAN4705A
Page
245
245
245
245
245
Product
MAN78A
MAN8410
MAN8440
MAN8610
MAN8640
Page
235
275
275
279
279
MAN4710A
MAN4740A
MAN4910A
MAN4940A
MAN6110
245
245
251
251
255
MAN8910
MAN8940
MCA11 G1
iviCA11G2
MCA11 G3
283
283
65
65
65
MCT271
MCT272
MCT274
iviCT275
MCT276
MAN6130
MAN6140
MAN6150
MAN6160
MAN6175
255
255
255
255
255
MCA230
MCA231
MCA255
MCA2230Z
MCA2231Z
69
69
69
73
73
MCT277
MCT4
MCT4R
MCT5200
MCT5201
167
171
173
175
175
MAN6180
MAN6195
MAN6410
MAN6440
MAN6460
255
255
259
259
259
MCA2255Z
MCL2501
MCL2502
MCL2503
MCL2530
73
77
77
77
85
MCT5210
MCT5211
MCT6
MCT61
MCT62
181
181
187
187
187
MAN6480
MAN6610
MAN6630
MAN6640
MAN6650
259
263
263
263
263
MCL2531
MCL2601
MCL2630
MCL2631
MCL2730
85
91
97
97
101
MCT66
MID400
MMA54420
MMA56420
MMA58420
187
191
287
287
287
MAN6660
MAN6675
MAN6680
MAN6695
MAN6710
263
263
263
263
267
MCL2731
MCP3009
MCP3010
MCP3011
MCP3012
101
105
105
105
109
MMA59420
MP22
MP52
MP65
MP73
287
364
364
365
302
MAN6730
MAN6740
MAN6750
MAN6760
MAN6780
267
267
267
267
267
MCP3020/0Z
MCP3021/1Z
MCP3022/2Z
MCP3023
MCP3030
113
113
113
109
117
MV10B
MV2454
MV3350
MV3450
MV3750
335
331
341
341
341
MAN6910
MAN6930
MAN6940
MAN6950
MAN6960
271
271
271
271
271
MCP3031
MCP3032
MCP3033
MCP3040/0Z
MCP3041/1Z
117
121
121
117
117
MV49124A
MV50B
MV50152
MV50154
MV5021
361
323
339
339
337
MAN6980
MAN71A
MAN72A
MAN73A
MAN74A
271
229
229
229
229
MCP3042
MCP3043
MCT2
MCT2E
MCT21 0
121
121
125
129
133
MV5022
MV5023
MV5024
MV5025
MV5026
337
337
337
337
337
Product
MCT2200/0Z
MCT2201/1Z
MCT2202/2Z
MCT26
MCT270
Page
137
137
137
141
143
147
151
155
159
163
Alphanumeric Product Listing
Product
Page
Product
Page
Product
Page
MV5052
MV5053
MV5054-1
MV5054-2
MV5054-3
343
343
345
345
345
MV5377C
MV54B
MV54123
MV54124
MV54124A
325
323
357
303
361
MV57622
MV57640
MV57641
MV57642
MV5774C
329
333
333
333
327
MV5054A-1
MV5054A-2
MV5054A-3
MV5055
MV50640
343
343
343
343
333
MV54152
MV54154
MV54164
MV54173
MV5452
339
339
309
305
347
MV5777C
MV6053
MV6151
MV6152
MV6153
325
343
353
347
349
MV5074C
MV5075C
MV5077C
MV5094A
MV5152
327
327
325
355
347
MV5453
MV5454A
MV5460
MV54624
MV54643
349
349
329
329
333
MV6154A
MV6351
MV6352
MV6353
MV6354A
349
353
347
349
349
MV5153
MV5154A
MV53B
MV53123
MV53124
349
349
323
357
303
MV54644
MV5474C
MV5477C
MV5491A
MV55AB
333
327
325
355
323
MV64B
MV6451
MV64520
MV64521
MV64530
323
353
347
347
349
MV53124A
MV53152
MV53154
MV53164
MV53173
361
339
339
309
305
MV56124
MV57B
MV57123
MV57124
MV57124A
303
323
357
303
361
MV64531
MV6454A
MV6752
MV6753
MV6754A
349
349
347
349
349
MV5352
MV5353
MV5354A
MV5360
MV53621
347
349
349
329
329
MV57152
MV57154
MV57164
MV57173
MV5752
339
339
309
305
347
MV6951
353
OPTO PLUS
15
SMD OPTION 100 17
TAPE AND REEL 363
ULPACKAGE
CODES
11
MV53622
MV53640
MV53641
MV53642
MV5374C
329
333
333
333
327
MV5753
MV5754A
MV5760
MV57620
MV57621
349
349
329
329
329
VDE DATA SHEET 13
xiii
xiv
General I nstrument Reliability
At General Instrument, product dependability is assured through an active program which includes:
New Product
Qualification
All new products evolve through
an orderly design-to-manufacture
flow. At each stage reliability
engineering is present to ensure that
the defined reliability requirements
are met.
The reliability plan is implemented
in the development stage where
actual testing begins. Stress tests are
performed to show potential problem
areas and the reliability of the new
product is compared directly with
that of a previously qualified product
of a similar generic type.
During limited production, where
components must meet defined
reliability goals, samples from a
minimum of three lots are taken for
extensive testing. These samples
must meet or exceed defined goals
in order for the product to be
considered qualified and transferred
to the reliability monitoring program.
Quality Control
Quality control is a vital function at
General Instrument. To minimize
variations in the product and to
maintain quality and hence reliability,
the following in-process control
activities are routinely performed:
• Incoming inspection of all piece
parts and raw materials.
• Die-attach process control gate.
• Wire-bond control gate.
• Encapsulation control gate.
• Equipment monitors.
• Final QA gate of all lots.
• Finished goods stores monitor.
• Frequent process line audits for
conformance to specification.
Reliability monitoring consists of
the following tests.*
• D.C. Operating Life
TA = 250C or High Temperature
Time = 1000 hours
IF = max. rated
• High Temperature Storage
TA = 150°C or specified
Time = 1000 hours
• Low Temperature Storage
TA = -55°C or specified
Time = 1000 hours
• 85/85 No Bias
TA = 85°C
RH = 85%
Time = 1000 hours
• HTRB
TA = 100°C or specified
Voltage = 80% max. rated
Time = 1000 hours
• Thermal Shock per
MIL-STD-883C, Method 1011
TA = O°C to 100°C (Air to Air)
No. of cycles = 30
• Temperature Cycle per
MIL-STD-883C, Method 1010
Reliability Test Facilities
TA = per device based on storage
temperature (Air to Air)
No. of cycles = 50
• Pressure Pot pressure = 15 PSI
Time = 96 hours
TA = 121°C ± 1°C
• 85/85 and Pressure Pot tests are
not required per MIL-STD-883C
for Hermetic Products.
• Solder Heat Tests (visible
products only) per MIL-STD-883C
Method 2003.3
TA = 260°C ± 5°C
Duration = 10 sec.
Failure Analysis and
Qualitative Reliability
Both in Palo Alto and Kuala
Lumpur (Malaysia), test facilities are
equipped with:
• Automated Testing.
• Life test equipmentHigh and Low Temperature.
• Temperature/humidity chambers.
• High Temperature ovens.
• T/S and T/C equipment.
In addition, the failure analysis lab
facilities in Palo Alto and Kuala
Lumpur have the following
capabilities:
• Electrical testing and verification.
• Pin-to-pin measurements.
• Package dissection and crosssectioning.
• Chemical etching.
• Optical photomicroscopy.
• Micromanipulators.
• Access to scanning electron
microscope with X-ray
spectrometry.
• Access to Augur analysis.
When a reliability failure does
occur, a detailed analysis is per- .
formed to provide data for corrective
action, as well as guidelines for the
design of future new products .
This on-going activity and the
resulting feedback and action is
illustrated in the accompanying
diagram.
Monitor Program
To ensure that qualified products
continue to meet reliability targets, a
monitor program tests generic device
families on a periodic basis and
provides information for the reliability
data bank.
'Not all tests apply to all products.
xv
xvi
Optocouplers
1
2
Optocouplers
Alphanumeric Product Listing
Product
Page
Product
Page
Product
Page
UL Package Codes
VDE Data Sheet
OPTO PLUS
SMD Option 100
4N25
11
13
15
17
19
HCPL-2503
HCPL-2530
HCPL-2531
HCPL-2601
HCPL-2630
77
85
85
91
97
MCP3041/1Z
MCP3042
MCP3043
MCT2
MCT2E
117
121
121
125
129
4N26
4N27
4N28
4N32
4N33
19
19
19
23
23
HCPL-2631
HCPL-2730
HCPL-2731
MCA11G1
MCA11G2
97
101
101
65
65
MCT21 0
MCT2200/0Z
MCT2201/1Z
MCT2202/2Z
MCT26
133
137
137
137
141
4N35
4N36
4N37
6N135
6N136
27
27
27
77
77
MCA11G3
MCA230
MCA231
MCA255
MCA2230Z
65
69
69
69
73
MCT270
MCT271
MCT272
MCT274
MCT275
143
147
151
155
159
6N137
6N138
6N139
740L6000
740L6001
91
31
31
35
35
MCA2231Z
MCA2255Z
MCL2501
MCL2502
MCL2503
73
73
77
77
77
MCT276
MCT277
MCT4
MCT4R
MCT5200
163
167
171
173
175
740L6010
740L6011
CNX35
CNY17-1/1Z
CNY17-2/2Z
35
35
43
47
47
MCL2530
MCL2531
MCL2601
MCL2630
MCL2631
85
85
91
97
97
MCT5201
MCT5210
MCT5211
MCT6
MCT61
175
181
181
187
187
CNY17-3/3Z
CNY17-4/4Z
CNY65
H11A1/1Z
H11AA1
47
47
51
55
59
MCL2730
MCL2731
MCP3009
MCP3010
MCP3011
101
101
105
105
105
MCT62
MCT66
MID400
187
187
191
H11AA2
H11AA3
H11AA4
H11D1/1Z
H11 D2/2Z
59
59
59
61
61
MCP3012
MCP3020/0Z
MCP3021/1Z
MCP3022/2Z
MCP3023
109
113
113
113
109
H11 D3/3Z
H11G1
H11G2
H11G3
HCPL-2502
61
65
65
65
77
MCP3030
MCP3031
MCP3032
MCP3033
MCP3040/0Z
117
117
121
121
117
3
OPTOCOUPLERS HIGH SPEED ~
FAN-IN/FAN-OUT AND CTR AT 0-70° C; ALL WITHSTAND TEST VOLTAGES ARE 2500 VAC RMS 1 MIN.
EQUIVALENT
CIRCUIT
INPUT
OUPUT
VCCINcCO
OR
BVCEO
FAN·IN/FAN·OUT
ORCTRMIN.
@IF=mA
DATA
RATE
(NRZ)TYP.
CMR
TYP.
PAGE
COMMENT
740L6000
Logic
1 LSTTL
Load
Logic
10 TTL Loads
Totem Pole
5V/5V
0.4 mA/16 mA
15 MbiVs
15 kV/p.s
35
Buffer
740L6001
Logic
1 LSTIL
Load
Logic
10 TTL Loads
Totem Pole
5V/5V
0.4 mAl16 mA
15 MbiVs
15 kV/p.s
35
Inverter
740L6010
Logic
1 LSTIL
Load
Logic
10 TTL Loads
Open Call.
5 V/5-15 V
0.4 mAl16 mA
8 Mbills
15 kV/p.s
35
Buffer
740L6011
Logic
1 LSTTL
Load
Logic
10TTL Loads
Open Call.
5 V/5-15 V
0.4 mAl16 mA
8 MbiVs
15 kV/p.s
35
Inverter
6N137
MCL2601
HCPL-2601
LED
a TTL Loads
-15 V
5 mAl13 rnA
Recommended
IF = 6.3 mA
10 MbiVs
10 kVlp.s
91
MCL2630
MCL2631
HCPL-2630
HCPL-2631
Dual
LED
Dual
Logic
a TIL Loads
Open Call.
-/5V
5 mAl13mA
Recommended
IF = 6.3 mA
10 MbiVs
10 kV/p.s
97
MCL2501
LED
Transistor
t015V
14%@8mA
17%@16mA
1 MblVs
10 kV/p.s
6N136'
LED
Transistor
to 15V
15%@16mA
1 MbiVs
10 kVlp.s
MCL2502
HCPL-2502
LED
Transistor
to 15 V
15-22%@16mA
1 MbiVs
10 kV/p.s
MCL2503
HCPL-2503
LED
Transistor
to 15 V
9%@16mA
1 Mbills
10 kVlp.s
6N135
LED
Transistor
to 15V
5%@16mA
1 Mbills
10 kV/p.s
MCL2531
HCPL-2531
Dual
LED
Dual
Transistor
to 15V
15%@16mA
1 MbiVs
10 kV/p.s
PART
NUMBER
~
'f'Bl!~'"
IN
:
OUT
'
~~TA
5 OUT
:
~?ND
OUT
DATAl!
IN Z
- ':
GNO@
IN
CZOR6
NOISE
v,.'
IN [!: JID:~~CC
:
OUT
DATAI2
IN~
::
~:5 0Ul
GI~OlliJ) LL~~:w
-C2087
~
'f'B1I~~
~\""A
IN
DATAl!
1N2
GND@
IN
:
OUT
I
'
5 0Ul
:
~?ND
OUT
CZOR6
NOISE
VeN!:
IN
~~cc
OUT
":12 J)lt ~=
GNO@ J ) L L ~~NO
IN
OUT
C20R7
[!~!I1
1 SHI~L r - - 8 vee
;Ii~ '~21vE
:~
]lv.
I
@ ~B!lGNO
'-----
Open Call.
C2092
~"~~
..
~~:
~Va,
-~}t!tsl~V02
V':@'
+4
Logic
~[
5GND
-C19J9
·"~r
:Ii
I
~[!:
-~
~
~Vs
~vo
~GND
' - - - C1982
:"~r
VF!~
- 2
II
~~:
V,+4
.'@
I
]1
7 VOl
5GND
CI944
MCL2530
HCPL-2530
Dual
LED
'Inqulro About Base-less Version MCL/HCPL-4502
4
77
85
]lVo,
i!I'
Guaranteed
Switch Times
0-70°C
Dual
Transistor
to 15 V
5%@16mA
1 MbiVs
Recommended
IF is 20%
Above Rated IF
Recommended
IF is 20%
Above Rated IF
10 kVlp.s
Continued next page
OPTOCOUPLERS HIGH SPEED
%
Continued
FAN-IN/FAN-OUT AND CTR AT 0-70°C; ALL WITHSTAND TEST VOLTAGES ARE 2500 VAC RMS 1 MIN.
PART
NUMBEr.
EQUIVALENT
CIRCUIT
.IT~~t
V:~~
~
-
I
~:
6N139
INPUT
OUPUT
VCCI/VCCO
OR
BVCEO
FAN·IN/FAN·OUT
ORCTRMIN.
@IF=mA
DATA
RATE
(NRZ)TYP.
CMR
TYP.
LED
Darlington
to 18V
400%@0.5mA
500%@1.6mA
100 kbiVs
10 kVlps
~v.
~Vo
~GND
6N138
LED
Darlington
t07 V
300%@1.6mA
100 kbiVs
10 kVlps
MCL2731
HCPL-2731
LED
Darlington
!018V
400% @ 0.5 m!\
500%@1.6m"':
100 kbiVs
10 kV/pos
MCL2730
HCPL-2730
LED
PAGE
COMMENT
31
Low VCE(SAT)
010.4 V
Recommended
IF is 20%
Above Rated IF
CI9M
~[I~~\
v,~t~BVcC
~~:
Recommended
IF is 20%
Above Rated IF
~Vo'
:~'.J..'
@Vo,
V,:~~~GND
Cl943
OPTOCOUPLERS DUALS
Darlington
t07V
300%@1.6mA
100 kbiVs
10 kVlps
~
ALL WITHSTAND TEST VOLTAGE 2500 VAC RMS 1 MIN.
EQUIVALENT
CIRCUIT
~IT~~
~~
~I'o'
I
:~~~ ~Voz
~GNO
PART
NUMBER
OUPUT
VCCOR
BVCEO
CTRCE(SAT) MIN.
@ IF = mA or FI/FO
DATA RATE
(NRZ)TYP.
CMR
TYP.
PAGE
COMMENT
MCL2630
HCPL-2630
MCL2631
HCPL-2631
Logic
5V
5 mAl13 mA
10 Mbitls
10 kVlpos
97
See Also
High-Speed
MCL2530
HCPL-2530
Transistor
to 15V
5%@HimA
1 Mbitls
10 kVlpos
85
See Also
High-Speed
Vf;[!
-C1979
:IT~r'
v,~~
-2
I
i
~,
71'0,
I~~
v~
I
~Voz
~GND
4
I
CI944
~[I~~Vcc
", ~~.
v,:~~{? ~GND
:@
I
CATH.~
CATH.@
A.DDE~
Transistor
to 15V
15%@16mA
1 Mbitls
10 kVlpos
MCL2730
HCPL-2730
Split
Darlington
!07V
300%@1.6mA
100 kbitls
10 kV/pos
101
]]1'0,
~CI943
ANODE!!
MCL2531
HCPL-2531
~..C llCDLL
!IEMIT.
~70C IDEMIT.
!ICDLL
MCL2731
HCPL-2731
Split
Darlington
to18V
400%@0.5mA
500%@1.SmA
100 kbitls
MCTS2
MCTSl
MCT66
MCTS
Transistor
30V
12.5%@lSmA
12.5%@lSmA
5%@40mA
12.5%@lSmA
15 kbitls
10 kbiVs
5 kbiVs
1 kbiVs
10 kVlpos
187
CTRcE(MIN) = 100, 5 mAl5 V
CTRCE(MIN) = 50, 5 mAl5 V
Low Cos!
Low Cos!
C20SS
5
OPTOCOUPLERS TRANSISTOR-OUTPUT LOW SPEED
LISTED
EQUIVALENT
CIRCUIT
~~
CATH 2
PART
NUMBER
BY INCREASING IF AND
CTRcE(SAT)
MINr'--:@IF~
mA
0-70·C
CTR
~
DECREASING CTRCE(SAT)
CTRcEMIN.
CTRcB
MIN.
@IF~
mA
~IF
BVCEO
MIN.
VOLT.
CMR
TYP.
VDE'
AVAIL.
@VCE~
MCT5211
75%
1.0
110%
1
0.25%
30
5 kV/p.s
5
2500VAC RMS
181
MCT5211
100%
1.6
150%
1.6
0.3 %
30
5 kVlp.s
5
2500 VAC RMS
181
5
2500 VAC RMS
181
2500VAC RMS
133
2500VAC RMS
175
2500VAC RMS
187
Also See Darlington
MCT5210
60%
3.0
70%
3.0
0.2 %
30
5 kVlp.s
MCT210
50%
3.2
150%
10
-
30
-
MCT5201
120%
5.0
TYP 300'*
5.0
0.28%
30
5 kVlp.s
4 EMIT.
C2O)9
,[!~~vcc
:'~~.
~vo
v:@. 1'@,
~GND
' - - - C1987
(MCT6)
'~M-
See Duals
14%
B.O
See High Speed
15
10 kVlp.s
2500 VAC RMS
77
MCL2503
11%
B.O
See High Speed
15
10 kV/p.s
2500VAC RMS
77
75%
10
TYP200%
See High Speed
(MCL2530/31) See Duals
40-160%
10
-
MCT2200
25%
10
20%
MCT2201
25%
10
MCT2202
25%
10
CNX35
CATH.2
10
0.2 %
15
10 kVlp.s
30
5 kVlp.s
85
7500 VAC PEAK
175
-
30
-
4400 VDC
43
10
-
30
-
@
7500 VAC PEAK
137
100%
10
-
30
-
30
~
~
~
~
~
~
137
10
-
7500 VAC PEAK
63-125%
7500 VAC PEAK
137
CNY17-1
25%
10
4()'80%
10
-
70
-
5 CDL
CNY17-2
25%
10
63-125%
10
-
70
-
4 EMIT.
CNY17-3
25%
10
100-200%
10
-
70
-
cm9
CNY17-4
25%
10
160-320%
10
-
70
-
MCT270
20%
10
50%
10
-
30
4N35
20%
10
340%
10
-
4N36
20%
10
340%
10
-
4-PIN
2500VAC RMS
5
-
~
3
5
MCL2501'
MCT~200
1ft
CATH.2
47
7500 VAC PEAK
47
7500 VAC PEAK
47
47
-
2500VAC RMS
143
30
-
2500VAC RMS
27
30
-
2500VAC RMS
27
2500VACRMS
27
4N37
20%
10
340%
10
10%
10
50%
10
-
30
CNY65
32
-
H11A1
5%
10
50%
10
-
30
-
~
~
~
~
~
11.6 kVDC
51
7500 VAC PEAK
55
2500 VAC RMS
59
H11D12
5%
10
20%
10
-
300
-
H11D22
5%
10
20%
10
-
300
-
H11D3 2
5%
10
20%
10
-
200
-
7500 VAC PEAK
61
MCT277
40%
16
100%
10
-
30
-
2500VAC RMS
167
7500 VAC PEAK
61
7500 VAC PEAK
61
MCT2
12.5%
16
20%
10
-
30
-
2500 VAC RMS
125
5 COL
MCT2E
12.5%
16
20%
10
-
30
-
2500 VAC RMS
129
4 EMIT.
MCT271
12.5%
16
45-90%
10
-
30
-
2500VAC RMS
147
C2019
MCT272
12.5%
16
75-150%
10
-
30
-
2500VAC RMS
151
155
-z.;
MCT274
12.5%
16
225-400%
10
-
30
-
2500VAC RMS
MCT275 2
12.5%
16
70-210%
10
-
80
-
2500VAC RMS
159
10
-
30
-
2500VAC RMS
163
10
-
30
-
2500VAC RMS
167
141
MCT276
MCT277
MCT26
12.5%
40%
16
20
15-60%
100%
1.25%
20
6%
10
-
30
-
2500VAC RMS
4%
50
20%
10
-
30
-
2500VAC RMS
19
-
2500VAC RMS
19
4N25
4N26
4%
50
20%
10
-
30
4N27
4%
50
10%
10
-
30
-
2500VAC RMS
19
4N28
4%
50
10%
10
-
30
-
2500VAC RMS
19
Guaranteed Switching Times Over 0-70· C
2 High Volt
3 At TA - -55 to +100·C
6
7500 VAC PEAK
7500 VAC PEAK
H11AA1, 2, 3. 4 See AC-Input
1
PAGE
5 COl.
7,;
3
3
WITHSTAND
TEST
VOLTAGE
, To Order VDE Device, Add Z Suffix To Part Number Except CNY65
"Inquire About Pending VDE Qualification
OPTOCOUPLERS NON-ZERO-CROSS TRIACS ~
PART
NUMBER
EQUIVALENT
CIRCUIT
.'f]-
1FT
MAX.
VDRM
MIN.
VDE'
AVAIL.
109
113
MCP3023
5,mA
400 V
2
MCP3022
10mA
400 V
MCP3021
15mA
400 V
MCP3020
30mA
400 V
Qt
Qt
Qt
MCP3012
5mA
250 V
MCP3011
10mA
250 V
MCP3010
15mA
250V
MCP3009
30mA
250V
TERM,
CATH.2
5 NC*
4~E~:,
3
ClOB1
WITHSTAND
TEST VOLTAGE
PAGE
113
7500 VAC PEAK
113
105
'To Order VDE Device, Add Z Suffix To Part Number
21nquire About Pending VDE Qualification.
OPTOCOUPLERS ZERO-CROSS TRIACS %
PART
NUMBER
EQUIVALENT
CIRCUIT
-w
TERM,
CATH.2
3
5 Nt·
o.x
4:::,
CZ080
1FT
MAX.
VDRM'
MIN.
VDE"
AVAIL.
WITHSTAND
TEST VOLTAGE
121
PAGE
MCP3043
5mA
400 V
3
MCP3042
10mA
400 V
3
121
MCP3041
15mA
400 V
30mA
400 V
Qt
Qt
117
MCP3040
MCP3033
5mA
250 V
121
MCP3032
10mA
250 V
121
7500 VAC PEAK
117
MCP3031
15mA
250 V
117
MCP3030
30mA
250 V
117
"
'InqUire About Availability
of New 600 V Triac Couplers.
2To Order VDE Device, Add Z Suffix To Part Number
31nquire About Pending VDE Qualification.
7
OPTOCOUPLERS DARLINGTON-OUTPUT
~
LISTED BY INCREASING IF AND DECREASING CTRcE(SAT) MIN.
EQUIVALENT
CIRCUIT
"~~"
~:
v~~
~v,
~vo
I
PART
NUMBER
CTRCE(SAT)
D-70"C
MIN.
CTR
@IF~
rnA VCE(SAT)
CTRcE
MIN..."....
@IF~ rnA
-
-
BVCEO
MIN.
VOLT.
CMR
TYP.
18
WITHSTAND
TEST
VOLTAGE
PAGE
COMMENTS
10 kV/p.s
2500 VAG RMS
31
Hi-Speed
10 kV/p.s
2500 VAG RMS
101
Hi-Speed
7500 VAG PEAK
73
2500 VAG RMS
69
VDE'
AVAIL.
6N139
400%
0.5
0.4 V
MGL2731
400%
0.5
0.4 V
See: Duals
MGA2231Z
200%
1.0
1.0V
500%
MGA231
200%
1.0
1.0V
(MGT5211)
75%
1.0
0.4 V
30
.5 kV/p.s
6N139
500%
1.6
0.4 V
18
10 kV/p.s
2500VAGRMS
31
Hi-Speed
MGL2731
500%
1.6
0.4 V
18
10 kV/p.s
2500 VAG RMS
101
Hi-Speed
6N13B
300%
1.6
0.4 V
7
10 kV/p.s
2500 VAG RMS
(MGT5211)
100%
1.6
0.4 V
30
5 kV/p.s
~GND
-@:
C1984
v:.·.G~~'
I ~ffr B Vee
"]~t
J~~
;@
~..,
I
V,:@
tsJGNO
~C'94J
"'i§1~
CATH. 2
""
3
5 COLL
4 EMIT.
200%
10
10
~
30
30
2
7500 VAG PEAK 181
CZOB4
"l'~ ."
'~3+I
21 v.
v~@:
!JVD
-@~!lGNO
•IT
See: Transistor
Output Couplers
C'984
:IT~!l'
v,~I~Bvee
~[!:
II VOl
!jv.,
_@b,.1
See: Duals
V'~@~~GND
CI943
.~~h=~vcc
:~~, I,Ir~v'
IJ~vO
V)
.@
Hi-Speed
:
~~GNO
- = mao
...
~w'
CATH. 2
3
""
5 COLl.
4 EMIT.
CZ084
~
lBl
MGA2231Z
200%
5.0
1.0 V
500%
10
30
-
7500 VAG PEAK
73
MGA231
200%
5.0
1.0 V
200%
10
30
-
2500 VAG RMS
69
4N33
25%
8.0
1.0 V
500%
10
30
-
2500 VAG RMS
4N32
25%
8.0
1.0 V
500%
10
30
-
2500 VAG RMS
'To Order VDE Device, Add Z Suffix To ParI Number
21nquire About Pending VDE Qualification
8
2
See: Transistor
Qulpul Couplers
23
Continued next page
OPTOCOUPLERS DARLINGTON-OUTPUT 9U
Continued
LISTED BY INCREASING IF AND DECREASING CTRcE(SAT) MIN.
EQUIVALENT
CIRCUIT
O'WCAlH. 2;?:
5 COLL
J
4 EMIT.
CTRCE(SAT)
CTRCE
0-70'C
PART
MIN.
Mlb
NUMBER @IF= mA VCE(SAT) CTR @IF=
mA
BVCEO
MIN.
VOLT.
CMR
TYP.
VDE'
AVAIL.
WITHSTAND
TEST
VOLTAGE
PAGE
COMMENTS
MCA11G1
1000% 10
1.0 V
500%
1.0
100
-
2500 VAC RMS
65
H11G1 Hi-Volt
MCA11G2
1000% 10
1.0V
500%
1.0
80
-
2500 VAC RMS
65
H11G2 Hi-Volt
MCA2231Z
500%
10
1.2V
500%
10
30
-
7500 VAC PEAK
73
MCA231
500%
10
1.2 V
200%
10
30
-
2500VAC RMS
69
MCA11G3
250%
20
1.2V
200%
1.0
55
-
2500 VAC RMS
65
MCA2255Z
100%
50
1.0 V
500%
10
55
-
7500 VAC PEAK
73
MCA255
100%
50
1.0 V
100%
10
55
-
2500VAC RMS
69
MCA2230Z
100%
50
1.0 V
500%
10
30
-
7500 VAC PEAK
73
MCA230
100%
50
1.0V
100%
10
30
-
2500VAC RMS
69
C2083
O"~~'
CATH 2
49
5 COLl
'Z;
J
4 EMIT.
C2084
°NCATH. 2
J
5 COlL
'"
H11G3 Hi-Volt
4 EMIT.
C208l
O'l§t
CATH 2
5 COLL
'Z;
3
49
4 EMIT.
C2084
®
'To Order VDE Device, Add Z Suffix To Part Number
'Inquire About Pending VDE Qualification
OPTOCOUPLERS Ae-INPUT LINE MONITORS \\\.
EQUIVALENT
CIRCUIT
~Ir
2
7AUX
J
6 VO
4
5 GNO
PART
NUMBER
OUTPUT
VCCOR
BVCEO MIN.
INPUT/OUTPUT
CURRENT
IN SATURATION
MID400
Logic
10TTL Loads
5V
4 rnA RMS/16 rnA
0-70'C
H11AA1
H11AA2
H11AA3
H11AA4
Transistor
30V
10 mA/0.5 rnA
CTRCE MIN.
@VCE=10V
@IF=10mA
PAGE
191
C2088
~
2
5 COLl
J
4 EMIT
20%
10%
50%
100%
59
C2089
9
10
UL APPROVED OPTOCOUPLERS
UL LISTING - YELLOW CARD
GENERAL
A UL yellow card may either specify the
optocoupler manufacturer's own device part
number or a package code. General Instrument's
optocouplers are listed as a lJackage code
consisting of a single capital letter.
All General Instrument's optocouplers are always
UL approved prior to introduction to the
marketplace. Devices which are approved by
both UL and VDE have a suffix "Z" following the
part number and are marked with both the UL
and VDE logos.
UL "YELLOW CARD"
FPOU2
March 27. 1986
Component - Optical laolator.
GENERAL INSTRUMENT CORP OPTOELECTRONICS DIV
3400 HILLVIEW AVE, PALO ALTO CA 94304
E60161 (S)
InaulMfon system In optlcall.aleted switch, Types Systems C. D. G. #L. M. P. R. S+. May ba
°GIO
CNY17-3Z
followed by fout digits and one letter.
#Preceeds whh 740 and system is prece.dad by numbers and one len.r.
+Model d••ignation: CNY followed by two digits.
Marking: Company nama or trademark "GI" and type designation.
See General Information Preceding These Recognitions.
For us. only in equipment where the acceptability of the combination i. determined by Underwrit.
.... lIIboratorias Inc.
8516R~
®
AepCllt April 2&. 1'72.
C2006
Replaces E50' 5' dated September 4, 1985.
Underwrite,. Laboratori•• Inc.-
678911001
01110027041
UL "yellow card" listing codes C, D, G, L, P, R, and S.
The UL code will be found following
the date code; in this case an "R".
VDE approved devices use "GIO",
while non-VDE parts use "GI" as the
logo for General Instrument
Optoelectronics Division.
UL CODE CONVERSION TO GI PART NUMBER
PACKAGE CODE
RATING
C
D
G
4.4 kVDC, 1 min.
2.5 kVAC RMS,1 min.
2.5 kVAC RMS,1 min.
L
2.5 kVAC RMS,1 min.
P or R
5.3 kVAC RMS, 5 sec.
®
5.3 kVAC RMS, 5 sec.
S
11.6 kVDC, 1 min.
R
GI DEVICE PART NUMBER
CNX36
MCL2XXX, 6NXXX, MID400, HCPL-2XXX
4NXX, H11 GX, MCA 11 GX, MCA2XX, MCT52XX,
MCT2, MCT2X, MCT2XX, MCT6, MCT6X
Optologic 740L6000, 740L6001,
740L6010, 740L6011
CNY17-X, H11AX, H11DX,
MCT22XX, MCP3XXX
CNY17-XZ, H11A1Z, H11DXZ,
MCA22XXZ, MCT22XXZ, MCP3020Z,
MCP3021Z, MCP3022Z, MCP3040Z,
MCP3041Z
CNY65
11
12
VDE RATINGS·
VDE APPROVED OPTOCOUPLERS
Ambient operating temperature
range ••••••••••••••••••• -55° C to +100° C
Storage temperature range ••••• -55° C to +150° C
Climatic test class ••••••..•••••••••• 55/150/21
DC isolation voltage (1 minute) ••••••• 4400 VDC
Nominal operating voltage for isolation
group C acc. to VDE 0110B ••• 500 VAC/SOO VDC
Isolation creepage path •••••••• 8.0 mm minimum
Isolation clearance/air path ••••• 8.0 mm minimum
Internal distance through
insulation •••••••••••••••• 0.4 mm minimum
Package tracking resistance index •••••• KB 275/A
General Instrument Optoelectronics Division's
optocouplers can be supplied with approval to
VDE component standard 0883/S.80 and
equipment standards DIN 57 804IVDE 0804/1.83
and DIN IEC 65IVDE 08S0/8.81.
Approved parts are denoted by a "z" suffix to the
part number.
Transistor Output
·Per approval certificate 39 419
• CNY17-1Z, CNY17-2Z, CNY17-3Z, CNY17-4Z
• MCT2200Z, MCT2201Z, MCT2202Z
• H11A1Z, H11D1Z, H11D2Z, H11D3Z
ELECTRICAL MAXIMUM RATINGS AND
CHARACTERISTICS
• MCA2230Z, MCA2231Z, MCA2255Z
Darlington Output
See standard product data sheet specifications, i.e.
CNY17-1Z see CNY17-1.
Triac, Non-Zero-Crosslng
• MCP3020Z, MCP3021Z, MCP3022Z
PACKAGE DIMENSIONS
Triac, Zero-Crossing
• MCP3040Z, MCP3041Z
o
J
t
6.86 (.270)
15' MAX
6.35 (.250)
0.36 (.014)
.-==~t::::ll 0.20 (.008)
~ 8.89 (.350) ~
-----I
7.62
(.300)
REF
8.38 (.330)
I----"
1.78 (.070) REF
-L
T
OPTIONW
The VDE 0883/S.80 calls for a minimum 8.0 mm
creepage dist& •• ce between any point on the
input terminals to any point on the output
terminals of an optocoupler.
This also applies to the creepage distance over
the PCB. The equipment designer may chose
to break up that creepage path by stamping a
slot in the PCB under the optocoupler or he
may use our lead bend option W.
(Continued next page)
1.78 (.070) TYP
,
I
:
:
I
I
I
I
I
I
---II0.56 (.022)
0.41 (.016)
3.94 (.155) 4.95 (.195)
3.68 (.145)! j MAX
I
I
I t 3.56 (.140) O.Jl (.020)
U3.05 (.120)
MIN
J:
:
1-1.27 (.050)
C2090
DIMENSIONS IN mm (INCHES)
MIN·· _ _ _ _..
~i
(.402)
I
,...'1--_ _ _ 10.2
:..
C2067
13
@
VDE APPROVED OPTOCOUPLERS
MARKING EXAMPLE
OPTION W (Continued)
When ordering a VDE-approved optocoupler
with 10 mm leadbend, then add the suffix W as
in MCT2200ZW. The W will not show on the
optocoupler marking, but on the shipping tube
label.
By making this option available, GIOD does
not assume any responsibility or liability for
meeting 8.0 mm creepage distance in any
customer's product.
OGIO
CNY17-3Z
8516R\u
~
.......
(
)
I
I
C2006
14
OPTO PLUS
DESCRIPTION
OPTO PLUS reliability conditioning is offered for any of General Instrument's 6-lead and 8-lead MCA or MCT optocouplers
with transistor or darlington output. This special conditioning is designed to reduce the infant mortality failures in
optocouplers.
• OPTO PLUS 1 offers 48 hour burn-in
• OPTO PLUS 2 offers 160 hour burn-in
ORDER INFORMATION
To order a MCAXXXX or MCTXXXX with OPTO PLUS 1 add Rl to part number, i.e., MCT5200Rl. To order OPTO PLUS 2 add
R2 to part number, i.e., MCT61 R2.
RELIABILITY CONDITIONING
The following flow outlines the 100% pre-conditioning testing.
TEST PERFORMED
CONDITION
Stabilization Bake
MIL-STD-883C Method 1008.1 Condition C. 150°C, 24 hours.
Temperature Cycle
MIL-STD-883C Method 1010.2 Condition B.
5 Cycles -55° C to 125° C, 30 min. at extremes
Burn-in
PLUS 1- 48 hrs. (+8)
PLUS 2-160 hrs. -0
MIL-STD-883C Method 1015.2 Condition C.
TA =25°C
IF = 10 rnA
VCE = 10 V
Hot Track Testing
TA = 100°C Functional Test
Final Test
TA = 25° C Electrical test per specification
Outgoing QA
0.25%AQL
o
GI
MCT2
PLUS2
86XXG~
Example of Opto Plus marking
C2093
15
16
PRELIMINARY DATA SHEET
PACKAGE DIMENSIONS
FEATURES
•
•
•
•
•
•
Surface mountable
Lead co-planarity with 0.1 mm or .004 inches
Compatible with vapor phase reflow soldering
All 6-pin and 8-pin optocouplers
All electrical specifications remain unchanged
Come in standard anti-static shipping tubes
ORDER INFORMATION
Al
'65(~r
3 .•
,,, TYP
C2075
r:CCII]i
L~-..l(·195)MAX
!I~ bd ,1L
TYP
lit
TIP
C2076A
DIMENSIONS IN mm (INCHES)
6-Pin Optocoupler
DESCRIPTION
~ ~~
889(350)
8
7
6
Option 100 is available for all 6-pin and a-pin
optocouplers in plastic package with certain
minimum quantity restrictions.
To order this SMD version of an optocoupler just
add -100 to the part number, for example:
740L6000-100
Optologic
MCT62-100
Dual Transistor Output
Dual Logic Output
HCPL-2631-100
Single Transistor Output
MCT2-1oo
MCP3041-100
Triac Output, Zero-Cross
5
C2075A
Option 100 is a standard DIP plastic package
optocoupler with the leads cut off at the standoff.
This provides a low cost SMD-version of a large
variety of optocouplers. Option 100, in many
cases, can be tested and handled by the same
equipment as a standard DIP package, which
eliminates costly duplication of testers and
handlers.
The distance from the bottom of the Option 100 to
the PCB is a minimum of 0.51 mm or .020 inches,
in order to accommodate PCB cleaning after
soldering. The height of the Option 100 over the
PCB is maximum 4.95 mm or .195 inches.
SPECIFICATIONS
C207BA
DIMENSIONS IN mm (INCHES)
The electrical specifications for optocouplers with
Option 100 remain unchanged. See applicable
datasheet. In addition, the device will withstand
standard vapor phase reflow soldering at 2150 C
for 30 seconds.
B-Pin Optocoupler
17
18
4N25
4N26
PACKAGE DIMENSIONS
DESCRIPTION
~
W
8.38 (.330)
:
I
I
I
I
I
--II0.56 (.022)
0.41 (.016)
J:
I
15° MAl(
6.35 (.250)
~'8.89 (.350) ~
I
J
t
6.86 (.270)
3.68 (.145) j
0.36 (.014)
-1---"",",,--;, 0.20 (.008)
~
7.62
(.300)
REF
j
f+--=
1.78 (.070) REF
....L
1
MAX
!
1--1.27 (.050)
.
FEATURES & APPLICATIONS
•
•
•
•
•
I t 3.56 (.140) o.~, (.020)
,1.....13.05(.120)
The 4N25, 4N26, 4N27, and 4N28 series of
optocouplers have an NPN silicon planar
phototransistor optically coupled to a
gallium arsenide diode.
MIN
C2090
DIMENSIONS IN mm (INCHES)
•
•
•
•
•
•
AC line/digital logic isolator
Digital logic/digital logic isolator
Telephone/telegraph line receiver
Twisted pair line receiver
High frequency power supply feedback
control
Relay contact monitor
Power supply monitor
Small package size and low cost
Excellent frequency response
UL recognized - File E50151
High isolation voltage
V,SO = 2500 V RMS - 1 minute
C2079
Equivalent Circuit
ABSOLUTE MAXIMUM RATINGS
*Storage temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . _55°C to 150°C
*Operating temperature at junction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . _55°C to 100°C
*Lead temperature (soldering, 10 sec) . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "
260° C
*Total package power dissipation at 25°C ambient (LED plus detector) . . . . . . . . . . . . . . . . . . . . . . . . . . 250 mW
*Derate linearly from 25°C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3 mWtC
Input diode
*Forward DC current continuous . . . . . . . . . 80 mA
* Reverse voltage . . . . . . . . . . . . . . . . . . . . . 3.0 V
*Peak forward current
(300 Jls, 2% duty cycle) . . . . . . . . . . . . . . 3.0 A
*Power disSipation at 25°C ambient . . . . . . 150 mW
*Derate linearly from 25°C . . . . . . . . . 2.0 mWtC
Output transistor
*Collector emitter voltage (BVCEO ) . • . . • . . . 30 V
*Collector base voltage (BV CBO )' . • • • • • . . . 70 V
*Emitter collector voltage (BVECO )' . . . . • • . • 7 V
*Power dissipation at 25°C ambient .•.•.. 150 mW
*Derate linearly from 25°C. . . . . . . . . . 2.0 mWtC
*1 ndicates JEDEC Registered Data.
19
4N25 4N26 4N27 4N28
ELECTRO·OPTICAL CHARACTERISTICS (25 0 C Free Air Temperature Unless Otherwise Specified)
CHARACTERISTICS
SYMBOL
I nput diode
*Forward voltage
Capacitance
*Reverse leakage current
Output transistor
DC forward current gain
. *Collector to emitter
breakdown voltage
*Collector to base
breakdown voltage
*Emitter to collector
breakdown voltage
*Collector to emitter leakage
current (4N25, 4N26, 4N27)
*r.ollector to emitter leakage
current (4N28)
*Collector to base
leakage current
Coupled
*Collector output current (a)
(4N25,4N26)
(4N27,4N28)
MIN.
VF
C
1.20
150
.05
UNITS
1.50
V
pF
100
"A
250
hFE
TEST
CONDITIONS
IF = 10 mA
V R = 0 V, f = 1 MHz
V R = 3.0 V, RL = 1.0 Mil
V CE = 5 V,lc = 500 "A
BVCEO
30
65
V
Ic = 1.0 mA, IB = 0
BVCBO
70
165
V
Ic = 100"A, IE = 0
BVECO
7
14
V
IE = 100 "A, IB = 0
50
nA
VCE = 10 V Base Open
100
nA
20
nA
V CB = 10 V Emitter Open
mA
VeE = 10V,I F = 10mA,IB =0
V
V
V
V
RMS, t = 1 minute
Peak
Peak
Peak
V = 500 VDC
Ic = 2.0 mA, IF = 50 mA
V = 0, f = 1.0 MHz
Ie = 2.0 mA, RL = 100 n
(Figure 13)
3.5
I CEO
0.1
ICBO
Isolation voltage (b)
(4N25, 4N26, 4N27, 4N28)
*(4N25)
*(4N26,4N27)
*(4N28)
Isolation resistance (b)
*Collector·emitter saturation
Isolation capacitance (b)
Bandwidth (c)
(also see note 2)
GUAR.
MAX.
TYP.
Ie
2.0
1.0
V,SO
2500
2500
1500
500
5.0
3.0
1011
0.2
VeElSAT)
1.3
300
Bw
n
0.5
V
pF
kHz
*Indlcates JEDEC Registered Data.
(a) Pulse Test: Pulse Width = 300 J.ls, Duty Cycle';;; 2.0%
(b) For this test LED pins I and 2 are common and Phototransistor pins 4,5 and 6 are common.
(c) If adjusted to Yield Ie = 2 mA and ic = 0.7 mA RMS; Bandwidth referenced to 10 kHz.
SWITCHING TIMES
Non·saturated
Collector
Delay time
Rise time
Fall time
N on-satu rated
Collector
Delay time
Rise time
Fall time
Saturated
ton (from 5 V to 0.8 V)
toff (from SAT to 2.0 V)
Saturated
ton (from 5 V to 0.8 V)
toff (from SAT to 2.0 V)
Non-saturated
Base - Collector photo diode
Rise time
Fall time
20
TYP.
UNITS
TEST CONDITIONS
td
tr
tf
0.5
2.5
2.6
J.ls
J.ls
J.ls
RL = lOOn, Ie'" 2 mA, Vcc = 10V
(Fig. 7 and 13)
td
tr
tf
2.0
15
15
J.ls
J.ls
J.ls
RL = Ikon. Ic 2 mA, Vec = 10 V
(Fig. 7 and 13)
ton (SAT)
toff (SAT)
5
25
J.ls
J.ls
RL = 2kil, IF = 15 mA, Vcc = 5 V
RB = Open (Circuit No.1)
ton (SAT)
toff (SAT)
5
18
J.ls
J.ls
RL = 2kil, IF = 20mA, Vcc = 5 V
RB = 100kil (Circuit No.1)
tr
tf
175
175
ns
ns
RL = lkil, V CB = 10V
4N25 4N26 4N27 4N28
TYPICAL ELECTRO-OPTICAL CHARACTERISTIC CURVES
(25 0 C Free Air Temperature Unless Otherwise Specified)
40
'E"
I
J'
I-
~
:>
"ex:
/'
35
I
30
~
10
~
./
/
I-
II
0
"
.
100.0
IF =40mA
i13
v
om1-
IF =
V
-
~
10
I - r15
20
25
3D
35
'.0
~<)~(:
40
20
20
1I "
I I "
I L
I'--..
-0\
R
L
'-...
1"'- r--
\
\
f--CTR:7;-
0.'
80
~C
v,. =10 VOLTS
-~- \
Vee = IOV
60
10 20 30 40 50 60 70 80 90 100
Fig. 3. Dark Current vs. Temperature
C1112
IF = IOmA
40
V
TA. - TEMPERATURE -
~-
10
60
a
.
-....;:: ~
LOW CURRENTTRANSFEA RATIO
~Ic
//
h·t~
10
\L
\"
VeE'"' 10 VOLTS
./
50~IF~
25V
I
1UJllIIL
111111111
.........
/'
I ...
C1113
Fig. 2. Collector Current vs.
Forward Current
........
70
.
10
-20
.01 L-.l...J..I.J.JJJJJL-J.....I..I.J.I.LW_J....J...J..JJLWI
.1
.5 1.0
5.0 10.0
50.0
FORWARD CURRENT (lFI- mA
40
-..... HIGH CURRENT TRANSFER RATIO
F::::-.
VCE '" SOV'" / /
VeE = 70V
o
Fig. 1. Collector Current vs.
Collector Voltage
./
,0~ v/
[/
,
;'0 ':: t-- VeE
Cl1l1
10
,
I
'F:t mj
COLLECTOR VOLTAGE (V) - VOLTS
90
'0
~ 10
V
30
v
l/~ ~~
'" ,
/
20
15
'F:
.: 10
25
0
J
V ~o ml
100
IK
10K
01
elliS
C1114
Fig. 4. Current Transfer Ratio vs.
Temperature
I I
= 470U
I RL· 100
I I III
lOOK
FREQUENCY (Hz)
AMBIENT TEMPERATURE (OC)
RL
.1'00~n
T
0.20.30.40.608 1 0
2 3 4 567810
COLLECTOR CURRENT Ie ImAo)
CIIIS
Fig. 6. Switching Time vs.
Collector Current
(see Fig. 13 for Circuit)
Fig. 5. Collector Current vs. Frequency
(see Fig. 12 for circuit)
Vee
..
RL
IF
~
)'00'
t..
.
OV
OV
~
t.I
VOUT
eHIO
Circuit 1
Cl117
Fig. 1. Pulse Test Definition
(Note 3)
21
4N25 4N2& 4N27 4N28
TYPICAL ELECTRO-OPTICAL CHARACTERISTIC CURVES (Cont'd)
(25 0 C Free Air Temperature Unless Otherwise Specified)
,
.J_~. FORWARD VOLTAGE vs
FORWARD CURRENT (VF YS IF I
5
B
~' 4r-vs. T,EiiililiTURE
o
6
1 _\
/
i'-... ~ ~
.,
/
t:;!~1
>
"a:
eTA .. 40%
T ...
I
.1
-125-C
0
1
~80
'"w
'"z 60
~
~
....
....
z
'F .15,,tml
1
.5
1
5
10
=
~
".~
20
1
50 100
If , 3 rnA
-
iiiii
1000
100
I
10,000
TIME
ClI20
Fig. 70. Lifetime vs.
Forward Current
Fig. 9. Forward Voltage vs.
Forward Current
24
20
\J~~
6
{
,
- 3td
--
_
25jJA
20,.,A _
1
-f-
-I-
10",A
liilll'5"C
lOOK
l-
I 18 1= 5"A
Vee = IOV
0
100,000
HOURS
1119
/
10K
,~;:~:
T.
15jJA
~20
~
I,'
IF - FORWARD CURRENT - rnA
I
II
a
~a:
2
~i
/1Jm
,;1.
j
~ 40
I,?"l.\
V
~
~
=
'0
V-
B
Fig. 8. Saturation Voltage vs.
Collector Current
~ 100
+100"
9/
.2
.5
10
Ie - COLLECTOR CURRENT (mAl
Cll18
o
:.i-
TA
IF'" 10Kl c
,
+2S"'C
, ,/
:ri ,
50
T~ ':~i~c
,
6'
/
\
4
> 3
w'
CJ
;!
Is =0
o
o
1M
12
16
20
Vc volts
Aae - BASE RESISTANCE - n
Fig. 11. Sensitivity vs. Base Resi~tance
24
C1122
Cl121
Fig. 12. Detector hfe Curves
OPERATING SCHEMATICS
MODULATION
1 F
>---ihl"",........
INPUT
LEO
--
CONSTANT
CURRENT
INPUT
4-
Vee = 10 VOLTS
PULSE
INPUT
4711
-,
I
-.l
DETECTOR
'----~~-. OUTPUT
-
~
V cc ·10VOLTS
DETECTOR
PULSE
'---~~--I" OUTPUT
I,
I,
IC (DC) ~ 2 rnA
ic == 0.7 rnA AMS
Cl124
C1123
Fig. 13. Modulation Circuit Used to Obtain
Output vs. Frequencv Plot
Fig. 14. Circuit Used to Obtain Switching
Time vs. Collector Current Plot
NOTES
22
1.
The current transfer ratio (IC/IF) is the ratio of the detector collector current to the LED input current with
VCE at 10 volts.
2.
The frequency at which ic is 3dB down from the 10 kHz value.
3.
Rise time (tt) is the time required for the collector current to increase from 10% of its final value to 90%.
Fall time (ttl is the time required for the collector current to decrease from 90% of its initial value to 10%.
PACKAGE DIMENSIONS
DESCRIPTION
~
The 4N32 and 4N33 have a gallium
arsenide infrared emitter optically coupled
to a silicon planar photo- darlington_
j
6.06 (.270)
6.35 (.250)
15'MAX
0.36 (.014)
''''=:=='==It:]1 0.20 (.OOO)
~10_09 (_3S0~ ~
-----I I--'"
1.70 (.070) REF
7.62
(.300)
REF
0.30 (.330)
--L
1
1.70 (.070) TVP
:
I
I
I
I
I
I
I
---l
~
0.56 (.022)
0.41 (.016)
J:
:
3.94 (.155) I 4.951,,95)
3.68 (.145) I j MAX
I
I 13.56 (_140)
'U3_0S (.120)
j
FEATURES & APPLICATIONS
•
•
•
•
•
•
•
High isolation resistance - 10" n
High dielectric strength, input to output
2500 V RMS - 1 minute
Low coupling capacitance - 1.0 pF
Convenient package - plastic dual-in-line
Long lifetime, solid state reliability
Low weight - 004 grams
UL recognized - File E50151
o_dl (.020)
MIN
1--1.27 (_050)
C2090
DIMENSIONS IN mm (INCHES)
Equivalent Circuit
ABSOLUTE MAXIMUM RATINGS (TA = 25°C Unless Otherwise Specified)
*Storage Temperature _ . _ .. _ . _ . __ .... _ ... _ . _ . . . . . ___ . _ . _ . . . . . . . . . _ .... ___ ... __ 55°C to IS00C
*Operating Temperature at Junction . . . . . . _ ... _ .. _ .. _ .. _ . _ . _ . __ . . . . . . . _ .. _ . _ -'. _ .. -SSoC to 100°C
*Lead Soldering time @ 260°C . _ ..... _ .. _ ... __ . ___ .. __ ..... _ ... _ .... _ .. _ . __ . ______ 10 seconds
*Total power dissipation @ 2SoC ambient. _ . _ .... _ . _ . __ . _ . _ .. _ . _ . __ .. _ .. __ . __ . ___ . ______ 2S0 mW
*Derate linearly from 25°C . _ . _ .. _ . _ . _ .. _ . _ . _ . _ .... _ ..... _ ... _ .. _ .. __ . __ . ______ . _ 3.3 mWI'C
LED (GaAs Diode)
*Power dissipation @ 25°C ambient. _ . . . . . . _ 150 mW
*Derate linearly from 55°C _. __ .... __ . _ . 2 mWI'C
*Continuous forward current .. _ .. _ . ___ .... 80 mA
Reverse current . ____ . _ . _ . ____ . __ ... _ . 10 mA
*Peak forward current (300 J.Lsec, 2% duty cycle) _ .3_0 A
DETECTOR (Silicon Photo Darlington Transistor)
*Power dissipation @ 25°C ambient _____ .. __ ISO mW
*Derate linearly from 2SoC _______ . ___ . 2_0 mWI'C
*Collector-emitter breakdown voltage (BVCEO ) _ . _. 30 V
*Collector-base breakdown voltage (BVCBO ) . ___ • _ 50 V
Emitter-base breakdown voltage (BVEBO ) ____ . __ 8.0 V
*Emitter-collector breakdown voltage (BVECO ) _ . ___ S V
'Indicated JEDEC Registered data.
23
4N324N33
ELECTRO-OPTICAL CHARACTERISTICS (TA = 25°C Unless Otherwise Specified)
CHARACTERISTIC
SYMBOL
LED CHARACTERISTICS
(TA = 25°C unless otherwise noted)
*Reverse leakage current
*Forward voltage
Ca pac i ta nce
MIN.
IR
VF
C
TYP.
MAX.
UNIT
0.05
1.2
150
100
1.5
/J.A
Volts
pF
VR =3".0 V
IF = 10 rnA
VR =0 V, f = 1.0 MHz
100
nA
Volts
Volts
Volts
VCE = 10 V, base open
Ic = 100/J.A, IE = 0
Ic = 100/J.A, IB = 0
IE = 100/J.A, IB = 0
VCE = 5.0 V, Ic = 500/J.A
TEST CONDITION
PHOTOTRANSISTOR CHARACTERISTICS
(TA = 25°C and IF =0 unless otherwise noted)
*Collector-emitter dark current
*Collector-base breakdown voltage
*Collector-emitter breakdown voltage
*EmiUer-coliector breakdown voltage
DC current gain
ICEO
BVCBO
BVCEO
BVECO
hFE
30
30
5.0
Ic
50
rnA
VISO
2500
2500
1500
V
V
V
Ohms
V RMS, t = 1 minute
VDC
VDC
V = 500 VDC
Volts
pF
kHz
(c = 2.0 rnA, IF = 8.0 rnA
V = 0, f = 1.0 MHz
5000
COUPLED CHARACTERISTICS
(TA = 25°C unless otherwise noted)
*Collector output current (Note 1)
4N32,4N33
Isolation voltage (Note 2)
4N32,4N33
*(4N32)
*(4N33)
Isolation capacitance (Note 2)
*Coliector-emiUer saturation voltage (1)
4N32,4N33
Isolation capacitance (Note 2)
Bandwidth (3) (Test Circuit # 1)
1011
R lso
VCE(SAT)
1.0
0.8
30
VCE
= 10 V, IF = 10 rnA, IB = 0
SWITCHING CHARACTERISTICS
(Test Circuit # 2)
Turn-on time
tON
0.6
5.0
Turn-off time
4N32,4N33
tOFF
45
100
/J.s
Ic '" 50 rnA, IF
Vec = 10 V
Vcc
= 200 rnA,
= 10 V
"'Indicates JEOEC Registered Data.
(1) !'!uls. test: pulse width
300 Ils, duty cycle'; 2.0%
(2) For this test LED pins 1 and 2 are common and phototranslstor'plns 4.5 and 6 are common.
(3) I F adjusted to IC 2.0 mA and Ic 0.7 mA RMS.
=
=
(4),
=
td and tr are Inversely proportional to the amplitude of IF; ts and tf are not significantly affected
CONSTANT CURRENT
INPUT
by
IF.
NC
N.C.
PULSE
MODULATION
INPUT
INPU~I---'V47V'n-+~....J;~..,
1.0.,
I PHOTO DARLINGTON
I TRANSISTOR
I
I
~5,--_"" OUTPUT
I ~o
--
o--Jot'VV--t---.
I
I
1
I
I
ILEa
I
I
I
21
o-_ _ _ _~;;:2..::_::.-:::.::T - - - - - _ _ ..J
'F
::M-~
Ie (DC) • 2.0 mA
Ie (AC SINE WAVEI"O.7 rnA RMS at 1KHz
C1098
-1.0m.
PULSE RATE .100pps
Note 2
FREQUENCY RESPONSE TEST CIRCUIT #1
24
SWITCHING TIME TEST CIRCUIT #2
Cl059
4N324N33
APPLICATION INFORMATION
T2L LOGIC ISOLATION
LATCH
r- - - - - -
]:---------i
I
I
I
I
I
L
I
.J
________
i-----~----..,
t-----1I....-'
I
:I
I/-
L _______
'F
~
:I
e1101
~--...J
R
-:-
GNO
Cl1QO
FORM C CONTACT
+Vee
TRIAC TRIGGER
R- vee -2.0 v
~
r
I
I
I
I
I
I
I
L
NO
~----------,
]
I
...J
I
:_________ !'J
r--------- .,
I
I
Ne
I
'GT
I
IL __________ JI
C1103
Cl102
GND
-:-
OPERATING A RELAY COIL
I l'e
+Vcc
Vee < 9 V
R<8MO
'c< 250mA
'F
'F<50mA
< 1.6mA
C1104
Vcc< 55V
'c<125mA
11--------:
JI _______-_-J.:.--'-:'F-
Cl104
25
4N324N33
TYPICAL ELECTRO-OPTICAL CHARACTERISTIC CURVES
(25 0 C Free Air Temperature Unless Otherwise Specified)
0
~O~M~\.'IZE bTb
if..,
ICO 5 nlA
VeE ~5V
0
1I
0
.t
r'\
I
1I
V"""
10
~
~I
o
01
10
Ie
FORWARD CURRENT If ImAI
10
100
COLLECTOR CURRENT rnA
C1106
Cl105
Fig. 2. Normalized Beta vs.
Collector Current
Fig. 1. Forward Voltage Drop vs.
Forward Current
120
10
/
10
10
,
V
0
1
V
1
:l!J
100
/
1,/
0.5
1./ V
80
V
1/
0.'
~
0.3
40
20
1[[ "121
;>0
rr-- 1/0" 0.6I II
75
T TfMPEAATURE ( C)
100
'2~
0
V
V
V
V
~
I--"
~
r
~
I-
... 1- .....
12
Vc,voits
Cl107
F,tl. 3. Dark Current vs. Temperature
O'fA 1-1~=O;.AI-
16
I
20
24
Cl108
Fig. 4. Detector Standard Transfer Curves
NOTES
1.
2.
3.
26
The current transfer ratio (lCI/F) is the ratio of the detector col/ector current to the LED input current with VCE at
10 volts.
The frequency at which ic is 3dB cfown from the 1 kHz value.
tON il:. .neasured from 10% of the leading edge of the input pulse to the 90% point on the leading edge of the
output pulse. tOFF is measured from 90% of the trailing edge of the input pulse to the 10% point on the trailing
edge of the output pulse.
PACKAGE DIMENSIONS
W
~18.89 (.350) ~
8.38 (.330)
:
I
I
I
I
I
I
--II0.56 (.022)
0.41 (.016)
J: I
I
DESCRIPTION
J
t
15° MAX
6.86 (.270)
6.35 (.250)
0.36 (.014)
.L....--"=-.t-'I 0.20 (.008)
~
7.62
(.300)
REF
3.68 (.145) t
t 3.56 (.140) 0.~1
.L13.05 (.120)
t--='
1.78 (.070) REF
MAX
t
The 4N35, 4N36, and 4N37 series of
optocouplers have an NPN silicon planar
phototransistor optically coupled to a
gallium arsenide infrared emitting diode.
!
(.020)
MIN
1-1.27 (.050)
C2090
DIMENSIONS IN mm (INCHES)
-L
T
FEATURES & APPLICATIONS
•
•
•
•
•
•
•
•
•
•
•
AC line/digital logic isolator
Digital logic/digital logic isolator
Telephoneltelegraph line receiver
Twisted pair line receiver
High frequency power supply feedback control
Relay contact monitor
Power supply monitor
I ndustrial controls
Covered under UL component recognition
program, reference File E50151
High DC current transfer ratio
High isolation voltage
V ISO = 2500 V RMS, 1 minute
C2079
Equivalent Circuit
ABSOLUTE MAXIMUM RATINGS
*Relative humidity 85% @ 85°C
*Storage temperature _55° C to 150° C
*Operating temperature _55°C to 100°C
*Lead temperature (soldering, 10 sec) 260° C
Input Diode
Output Transistor
*Forward DC current (continuous) ..... 60 mA
*Power dissipation at 25°C ambient . . . •. 300 mW
Reverse voltage . . . . . . . . . . . . . . . . . 6 volts
Derate linearly above 25°C . . . . . . • . . . . 4 mWrC
*Peak forward current
*Power dissipation at Tc = 25°C ..•... 500 mWtt
(IllS pulse, 300 pps) . . . . . . . . . . . . . . 3.0 A
(Tc indicates collector lead temp
*Power dissipation at TA = 25°C .... 100 mWt
1/32" from case)
*Power dissipation at Tc = 25°C ..•. 100 mWt
(TC indicates collector lead temp
1/32" from case)
*VCEO . . . . . • . . . . • • • . . . . • • • . • • . . . 30 volts
*VCBO . . . • . • . . . . • . • . . . . • • • . . . . • . 70 volts
* Indicates JEDEC legfstered v~lues
*VECO • • • • • • • • . • . • • . • . . • • . . • • • •• 7 volts
tDerate 1.33 mw/ C above 25 C.
ttDerate 6.7 mW/ C above 25°C.
*Collector current (continuous) . • . . . . . . . 100 mA
27
4N35 4N36 4N37
ELECTRO-OPTICAL CHARACTERISTICS (25°C Free Air Temperature Unless Otherwise Specified)
CHARACTERISTIC
Input Diode
*Forward voltage
*Forward voltage temp. coefficient
* Forward voltage
*Junction capacitance
* Reverse leakage current
Output Transistor
DC forward current gain
*Collector to emitter breakdown
voltage
*Collector to base breakdown
voltage
*Emitter to collector breakdown
voltage
Collector to emitter, leakage current
*Collector to emitter leakage
current (dark)
Capacitance collector to emitter
Capacitance collector to base
Capacitance base to emitter
Coupled
t*DC current transfer ratio
t*DC current transfer ratio
t*DC current transfer ratio
*Saturation voltage-collector
to emitter
Isolation voltage all devices
*Input to output isolation current
(pulse width = 8 msec)
(see Note 1)
*Input to output voltage =
3550 V (peak)
*1 nput to output voltage =
2500 V (peak)
*Input to output voltage =
1500 V (peak)
*Input to output resistance
VF
VF
VF
.8
.9
.7
CJ
.01
V
V
V
100
10
pF
/LA
250
hFE
TEST
CONDITIONS
IF = 10 mA
IF = 10 mA, TA = _55°C
IF = 10mA,
TA = +100o C
V F = 0 V, f = 1 mHz
V R = 6.0 V
VCE = 5 V, Ic = 100 /LA
BVCEO
30
65
V
Ic=10mA,IF=0
BVCBO
70
165
V
Ic = 100/LA
BVECO
I CEO
7
14
5
50
V
nA
TE = 100J.LA, IF = 0
VeE = 10 V, IF = 0
500
/LA
V cE =30V,I F =O,
TA = 100°C
VCE = 0
V CB = 10 V
V BE = 0
I CEO
pF
pF
pF
8
20
10
C BEO
CTR
CTR
100
40
%
%
CTR
40
%
VCE(SAT)
V ISO
2500
II'()
R I.o
.3
volts
volts
4N35
100
/JA
4N36
100
/LA
4N37
100
100
C I.O
*Turn on time-ton
tON
5
10
*Turn off time-t ott
tOFF
5
10
tPulse test: pulse width = 300J.LS,
duty cycle:::; 2.0%
UNITS
1.50
1.7
1.4
*Input to output capacitance
*Indicates JEDEC registered values
28
SYMBOL MIN. TYP. MAX.
2.5
IF = 10 mA, VCE = 10 V
IF = 10 mA, VCE = 10 V,
TA=-55 u c
IF=10mA,VCE =10V,
TA = +lOO°C
IF = 10 mA, Ic = 0.5 mA
RMS, t = 1 minute
IlA
gigaohms I nput to output voltage =
500 V (see Note 1)
picofarads I nput to output voltage =
o V, f = 1 MHz
(see Note 1)
Ilsec
Vcc = 10 V, Ic = 2 mA,
R L = lOOn,
(see Fig. 15)
/Lsec
Vcc = 10V,Ic = 2 mA,
R L = lOOn,
(see Fig. 15)
4N35 4N36 4N37
TYPICAL ELECTRO-OPTICAL CHARACTERISTIC CURVES
(25°C Free Air Temperature Unless Otherwise Specified)
10
F" 15. mA
·
>-
10
V~ ~~
/-~ //
/
w
'";2 ,
~ 10
1
·,
o
;10
10
2.0
4.0
6.0
8.0
10
12
VeE - VOL T5
Fig. 1.
2. 0
~
,
111111111
I
•
111111111
\1
VeE -'0 VOLTS
I. 4
z
~ l. 2
a
I. 0
~
~
o.
,
\",
t,- ~
•
~ o.
\
o. 2
IK
25V
- 10
W15
;:
10
!'
\
:ia:
~
~
::;
'oa:"
"
0 'o
. 20 30 40 50 6o 70 BO 90 100
TA - TEMPERATURE - °C
Cl046
f-- 7of--
Z
5O:""'-'F-...
0.1
Fig. 4. Collector Current vs. Frequency
-eTA
t-
60
40
20
20
40 60
80 100
AMBIENT TEMPERATURE t"C) Cl047
Fig. 3. Current Transfer Ratio
vs. Temperature
tv. -
PULSE WIDTH TIME
~~TIM~
f.cI - DELAY TIME
"
FALL 1\~IE-
.! IRIU~W!
)
8
L·470n
6
4
3
2
IR~"0o
0.2 0.3 D.4 o.sG.8 1.0
2 3 4 567810
C1049
COLLECTOR CURRENT Ie (mA)
Fig. 5. Switching Time
vs. Collector Current
I.
lOrnA
Vee - IOV
o
,
I I II
I
C1048
I,
lC-
~ 1/'//
0
"\
304
f-V CE
o
~
ffi
I I II
I I II
"rf'
~
~
~cE,=7~
YCE r"" 5~V
Cl045
Collector Current vs. Collector Voltage
i'"
-20
14
~ HIGH CURRENT TRANSFER RATIO
1
·,
'"1 10
a~
.. 130
/
10K
• 6 BlOOK 2
4 6 81M
RB -BASE RESISTANCE - n CIOSO
Fig. 6. Switching Time
VB.
Base Resistance
0
>
~ICAl
E5'
~ 160
~
o
140
>
gz
~
12
1\
100
6
-
Ru
~
1
rt III
r--~VCE" vs. RBe
1
o TAl
o
40
lOOK 200K
II III
5001( 1M
'\
98% OF ALL UNITS
2M
5M
RBE - BASE EMITTER RESISTANCE -
10M
u
Cl051
Fig. 7. Collector-Emitter Breekdown
Voltage VI. Base Resistance
'o"20mA
TEST CIRCUIT
t..-Iw-.l
I
I
I
I
OUTPUT < .4
OV
OV--+-..."._
--l
Va
UT
Cl053
;:1052
Fig. 8. Test Pulse Definition (Note 3)
Fig. 9. Pulse Test Circuit for Fig. 7
29
4N35 4N36 4N37
TYPICAL ELECTRO·OPTICAL CHARACTERISTIC CURVES
(25 0 C Free Air Temperature Unless Otherwise Specified)
.50
>
..,
w
;
5
.45
~
IF = 10mA
Ie = 0.5 rnA
.40
;2
::>
.20
~
.15
--
I
~
~
13
~A "~'~~"c
;!
---
0
I-
" TllirliliTURE
o
..,=:
.35
0
> .30
z
>= .25
MCT2: FORWARD VOLTAGE VI.
FORWARD CURRENT (V F vs. IF)
1.4
'lIii';-
2
5"
>
o
'1'l"+25~
.
'" .""'~
0
.....-
I
.• 0
~
.05
o
10
20
30 40
50 60
70
80
.2
,5
TA - AMBIENT TEMPERATURE - ~C Cl054
.. '00 r -
IF -SOmA
I
V
>=
,...
0
6
lI-
Z
1
IF = 2 0 m n .
2'
,
0
<
E
~
1/
::>
>
20
o
10K
ClOSS
fo-
f
••
-r-
25~A
2O,A _ _
1
Vee = lOV
l~ilfrc
>=
~
50 100
15pA -
u
w
20
3U-
8
0
4
~
10
I
IF-lOrnA
/
II
5
Fig. 11. Forward Voltage
vs. Forward Current
;2 B0
'"
'"~
1
If - FORWARD CURRENT - rnA
Fig. 10. Saturation Voltage
vs. Temperature
o
"iJ~
III'
9.....B
.,
90 100
V-
TA = +100
~ 1.0
iO'j'B"'SjJA
IIIIII.M
I
'OOK
ReE - BASE RESISTANCE - II
18 :0
o
o
el057
12
16
20
24
VC,volts
Fig. 12. Sensitivity vs. Base Resistance
Fig. 13. Detector Standard Transfer Curves
OPERATING SCHEMATICS
HhI'V\f'-.
MODULATION
INPUT
1 F
47n
r
LEO
-
CONSTANT
CURRENT
INPUT
I
"'L __ _
-
Ie
l
I
Vee = 10 VOLTS
-
Ie
Vc'C -10VOLTS
DETECTOR
DETECTOR
-.J
'----~._-.OUTPUT
-
L -_ _...._
PULSE
.... OUTPUT
I,
I,
C1059
Fig. 14. Modulation Circuit Used to Obtain Output vs.
Frequency Plot (Fig. 41
4711
PULSE
INPUT
~
C1OS0
Fig. 15. Circuit Used to Obtain Switching Time vs.
Collector Current Plot (Fig. 51
NOTES
1. Tests of input to output isolation current resistance and capacitance are performed with the input terminals (diode)
shorted together and the output terminals (transistor) shorted together.
2. The current transfer ratio (lC/IF) is the ratio of the detector collector current to the LED input current with
VCE at 10 volts.
3. Rise time (tr) is the time required for the collector current to increase from 10% of its final value, to 90%.
Fall time (ttl is the time required for the collector current to decrease from 90% of its initial value to 10%.
30
FOR 6N135/6 SEE MCL2501 DATA SHEET
FOR 6N137 SEE MCL/HCPL-2601 DATA SHEET
PACKAGE DIMENSIONS
W
I~ 9.65 1.380)
9.14 (.360)
_I
DESCRIPTION
6.861·270)
6.35 (.250)
0.36 (.014)
.L----'-n---1, 0.20 1·008)
t-=.,
7.62
1·300)
REF
~
1.78 (.070) REF
-L
T
2.54 1.1001 TYP -11.0.89 1.035) TYP
-I
1I
'I 3.941·155) f
b-.=-'-=--'-=...-'R'
:
~~
:
: I:,
i
lJ :
11~~~
f
4.95 1.195)
3.681.145)1 : MfX
f 3.561·140) 0.51 (.020)
1~3.051.120)
1.6 mA 6N138
0.5 mA 6N139
MIN
1-0.89 (.035) TYP
0.561.022)
C2091
0.41 1.016)
DIMENSIONS IN mm (INCHES)
The 6N138/9 single channel optoeouplers
contain a 700 nm GaAsP LED emitter which is
optically coupled to a high gain detector in a split
Darlington configuration, providing extremely
high current transfer ratio.
The split darlington configuration separating the
input photodiode and the first stage gain from
the output transistor permits lower output
saturation voltage and higher speed operation
than possible with conventional darlington
phototransistor optocoupler.
The combination of a very low input current of
0.5 mA and a high current transfer ratio of 2000%
makes this family particularly useful for input
interface to MOS, CMOS, LSTTL and EIA
RS232C, while output compatibility is ensured to
CMOS as well as high fan-out TTL requirements.
An internal noise shield provides exceptional
common mode rejection of 10 kWfJ.s. An
improved package allows superior insulation
permitting a 480 V working voltage compared to
industry standard 220 V.
FEATURES
•
•
•
•
•
•
•
Low current - 0.5 mA
Superior CTR - 2000%
Superior CMR -10 kV/fJ.s
Double working voltage - 480 V RMS
CTR guaranteed 0-70°C
U.L. recognized (File #Es01s1)
Superior insulation; 2500 VAC RMS, 1 min
APPLICATIONS
•
•
•
•
•
•
Equivalent Circuit
Digital logic ground isolation
Telephone ring detector
EIA RS-232C line receiver
High common mode noise line receiver
fJ.P bus isolation
Current loop receiver
e1984
ABSOLUTE MAXIMUM RATINGS
Storage temperature .............. -55°C to +12SoC
Operating temperature ............... O°C to +70°C
Lead solder temperature .......... 260°C for 10 sec
Average input current ................... 20 mA (1)
Peak input current ......................... 40 mA
(50% duty cycle, 1 ms P.w.)
Peak transient input current - IF ............. 1.0 A
(S 1 fJ.sec P.w., 300 pps)
Reverse input voltage ......•.................. 5 V
Input power dissipation ................. 35 mW (2)
Output current (Pin 6) ................... 60 mA (3)
Emitter-base reverse voltage (Pin 5-7) ..•.........5 V
Supply and output voltage-Vee (Pin 8-5), Vo (Pin 6-5)
6N138 ............................... -0.5 to 7 V
6N139 ..................•........... -0.5 to 18 V
Output power dissipation ............... 100 mW (4)
31
6N138 6N139
ELECTRICAL SPECIFICATIONS (TA =ooe to +7ooe Unless Otherwise Specified)
PARAMETER
Current transfer ratio
(Notes 5, 6)
SYMBOL
DEVICE
MIN.
TYP..*
6N139
400500300-
2000
2000
2000
eTR
6N138
6N139
Logic low output
voltage (Note 6)
MAX.
UNITS
%
%
TEST CONDITIONS
IF = 0.5 rnA, Vo = 0.4 V, Vee = 4.5 V
~ = 1.6 rnA, Vo = 0.4 V, Vcc = 4.5 V
IF - 1.6 rnA, Vo - 0.4 V, Vee - 4.5 V
0.4
0.4
0.4
0.4
V
6N138
0.06
0.08
0.09
0.06
6N139
6N138
0.1
0.001
100250-
,.A
,.A
IF = /J rnA, Vo = Vee = 18 V
IF = 0 rnA, Vo = Vee = 7 V
VOL
V
IF = 1.6 rnA, 10 = 6.4 rnA, Vee = 4.5 V
IF = 5 rnA, 10 = 15 rnA, Vee = 4.5 V
IF = 12 rnA, 10 = 24 rnA, Vee = 4.5 V
IF = 1.6 rnA, 10 = 4.8 rnA, Vee - 4.5 V
Logic high output
current (Note 6)
10H
Logic low supply
current (Note 6)
ICCl
0.20
rnA
IF = 1.6 rnA, Vo = Open, Vee = 5 V
Logic high supply
current (Note 6)
ICCH
10.0
nA
IF = 0 mA, Vo = Open, Vee = 5 V
VF
1.45
Input forward voltage
1.7-
V
IF = 1.6 rnA, TA = 25°C
V
IR = 10,.A, TA = 25°C
Reverse breakdown
voltage
BVR
Temperature coefficient
of forward voltage
ilVF
ilTA
-1.8
mVFC
Input capacitance
Co
60
pF
f = 1 MHz, VF = 0
,.A
45% Relative Humidity, TA = 25°C
VI-O = 3000 V, td = 5 sec
Isolation leakage
(Input-Output) (Note 7)
5-
1.0-
11- 0
IF= 1.6mA
Withstand isolation
test voltage
VISO
Resistance (InputOutput) (Note 7)
RI_o
1012
n
VI-O = 500 Vdc
Capacitance (InputOutput) (Note 7)
CI-O
0.6
pF
f= 1 MHz
2500
VRMS
RH:5 50%, TA = 25°C, t = 1 min
SWITCHING SPECIFICATIONS (TA =25°C, Vee =5.0 V)
MAX.
UNITS
TEST CONDITIONS
6N139
6N139
6N138
5.0
0.2
1.0
25"
1"
10"
,.s
,.s
,.s
IF = 0.5 rnA, Rl = 4.7 k n
IF = 12 rnA, RL = 270 n
IF = 1.6 rnA, RL = 2.2 k n
6N139
6N139
6N138
1.0
1.0
4.0
SO-
,.s
,.s
,.s
IF = 0.5 rnA, RL = 4.7 k n
IF = 12 rnA, Rl = 270 n
IF = 1.6 rnA, Rl = 2.2 k n
SYMBOL
DEVICE
Propagation delay time to
logic low at output
(see Fig. 8; Notes 6, 8)
tpHl
Propagation delay time to
logic h·igh at output
(see Fig. 8; Notes 6, 8)
tplH
Common mode transient
immunity at logic high
level output
(see Fig. 9; Note 9)
CM H
1000
10,000
VI,.s
IF = 0 rnA, RL = 2.2 k n
1Veml = 10 Vp-p
Common mode transient
immunity at logic low
level output
(see Fig. 9; Note 9)
CM l
-1000
-10,000
VI,.s
IF = 1.6 rnA, RL =2.2 k n
1Veml = 10 Vp-p
"JEDEC registered data
"All typica/s at TA = 25°C and Vee
32
TYP;**
PARAMETER
=5 V
MIN.
735-
6N138 6N139
NOTES
1.
2.
3.
4.
5.
6.
7.
8.
9.
Derate linearly above 50'C free-air temperature at a rate of 0.4 mArC.
Derate linearly above 50'C free-air temperature at a rate of 0.7 mWrC.
Derate linearly above 25'C free-air temperature at a rate of 0.7 mArC.
Derate linearly above 25'C free-air temperature at a rate of 2.0 mWrC.
DC CURRENT TRANSFER RATIO is defined as the ratio of output col/ector current, 10, to the forward LED input current,
I", times 100%.
Pin 7 Open.
Device considered a two-terminal device: Pins 1, 2, 3, and 4 shorted together and Pins 5, 6, 7, and 8 shorted together.
Use of a resistor between pin 5 and 7 will decrease gain and delay time.
Common mode transient immunity in Logic High level is the maximum tolerable (positive) dVern/dt on the leading edge of the
common mode pulse, Vern' to assure that the output will remain in a Logic High state (i.e., Va > 2.0 V). Common mode
transient immunity in Logic Low level is the maximum tolerable (negative) dvern/dt on the trailing edge of the common mode
pulse signal, Vern, to assure that the output will remain in a Logic Low state (i.e., Vo < 0.8 V).
ELECTRICAL CHARACTERISTIC CURVES (TA = 25°C Unless Otherwise Specified)
_10.0
lOOr----------,----------,
T
VC~,
I
=)5 V
Vcco = 4.5 V
10H = -400p.A
I--
20
40
g
60
80
o
o
-40 -20
100
(' C)
0
20
740L6000/6001
VCCI = 5.5 V
Vcca = 5.5 V
40
60
80 100
TA - AMBIENT TEMPERATURE - (' C)
C2030
w
~
§2
3
0.4
flIO~~A
I:::J
:=
t-
0.3
:::J
2
o
.J
W
ijj O. 2
r-
llJ4ml
.J
~
o
-40
TA -
-20
0
20
40
60
80
AMBIENT TEMPERATURE -
C2031
Fig. 4. Output Current vs.
Ambient Temperature
~
ICCOH
ICyOl
ICqOH
I-ICCOl
.: ICqOH
ICr L
o
C!l
10H
(740LSOOO/6001 )
0
--740L6010/6011
VCCI = 5.5 V
Vcco=15V
••• 740LS010/S011
VCCI = 5.5 V
Vcco = 5.5 V
en
]
~t-
...::: ::::::::::r::::::r:=::::t::......
6
I-
o
I
~ r--
~
9
~ 0.5
J:
TA - AMBIENT TEMPERATURE -
a:
Fig. 3. Output Supply
Current VS. Ambient
Temperatura
E-20
-30
-40 -20
a
C2029
10L
ifi
-~I--
ifia:
Fig. 2. Input Supply Current
vs. Ambient
Temperature
5
I
100
TA - AMBIENT TEMPERATURE - (' C)
60
I 40
---- -'- -,
r-r-. r-r--
I:::J
C2028
50
12
~
16cIH 740l600i:6011
ICCll - 740L6000-601 0
Fig. 1. Input Current vs.
Ambient Temperature
l
I-
:::J
8
('C)
15
0..
0..
0..
~
«
.§.
I
.§. 14
100
(' C)
I
0.1
-40
vcdl = 4.J V
Vcca = 4.5 V
-20
20
40
60
C2032
Fig. 5. High-level Output
Voltage vs. Ambient
Temperature
80
TA - AMBIENT TEMPERATURE -
100
(' C)
C2033
Fig. 6. Low-Leval Output
Voltage VS. Ambient
Temperature
39
740L6000/01/10/11
TYPICAL CHARACTERISTIC CURVES (TA = 25°C Unless Otherwise Specified)
S
vcL=tv
vcco= 1SV
VOUT=1SV
4
<
.=,
15
I--
"S
"'
.s
w
3
2
I
10
0
§
en
SO
~
Ir=
0
l-
~
10
If~~
If=:::
S
1
-20
0
20
40
60
80
-40 -20
100
0
20
40
60
80 100
.s
I
12
IICC\
10
V
I-
-
vcco= SV
VCCI = SV
VaH = 2V
VOL = 0.8V
.= 470 0 (740LS010/S011)
RL
,
1
o
Z
SOO
,/
).....-
.....
-
~
w
8
0
S '.1-'
Vcco
RANGE FOR 740LSOOO/SOO1
4
II:
II:
::l
~
0..
0..
en
I
2000
SO
80 100
C203S
MAXIMUM ALLOWABL~ poWER
DISSIPATION @ TA = 25° C
h±;"
III
-
~!
-1---
r- r-
....-t"""..J..--r'
0
o
2S00
4
VCM - COMMON MODE TRANSIENT
AMPLITUDE -(VI
C2037
S 6
7
8
9 10 11 12 13 14 1S
~~cel = 4.5V
C2038
Fig. 10. Common Mode
Reiection VS.
Common Mode
Voltage
0
4
~.fA =15Sl c
...vet
-I---''@TA='1tC
-r@TA~s50C
III
III
S 6 7 8 9 1011 1213 1415
VCGa - OUTPUT SUPPLY VOLTAGE - (VI
Vcc - SUPPLY VOLTAGE - (V)
C2039
Fig. 12. Power Dissipation VS.
Ambient Temperature
Fig. 11. Supply Current VS.
Supply Voltage
~ 1.S
-
VCCI = 5.5 V ~
u
1S00
40
Fig. 9. 740L6010/11
Switching Times vs.
Ambient Temperature
.9
1000
20
I
::l
""""'-
0
TA - AMBIENT TEMPERATURE - (0 C)
C20~5
<
-
-40 -20
TA - AMBIENT TEMPERATURE - (0 C)
Fig. 8. 740L6000/01
Switching Times VS.
AmbIent Temperature
1
100
.........
1.5
(!)
...........
1.4
.........
.........
1.3
IZ
r.....
II:
II:
""'-
1.2
o
w
5 -100
I::l
II:
/
0..
1.1
I-
VCCI = S.O~_
VCClo= S'i V
~ 1.0
~
0.9
-40
~ -200
I
/
/
0
20
40
60
80
100
C2040
Fig. 13. Input Threshold
Voltage VS. Ambient
Temperature
/
~
VCCI= 4.S V
-300
-20
TA - AMBIENT TEMPERATURE - (0 C)
40
=
If
I-
C2034
i=
100
=
"S
----- ~ ~ ~~~
z
z
I
Fig. 7. 740L6010/11
Leakage Current vs.
Ambient Temperature
°~
200
RL = 4700
P.W= 200 ns
PERioD = 1
tpLHIPLH
(!)
TA - AMBIENT TEMPERATURE - (0 C)
~
~
o
..J
i=
(!)
_/
-40
w
w
::;
Ir
i=
/
o
"'
.s
tPLH
tPHL
SO
::;
II
~
Veeo=SV
::: --Veeo = 15 V
Veel =SV
VCCI = 5.0 V
Vcea = S.OV
P.W= 200 ns
200 PEII'0DI= 1
100
o
2
3
6
4
V,N - INPUT VOLTAGE - (V)
C2041
Fig. 14. Input Current VS.
Input Voltage
Fig. 15. Switching Time Test
Circuit
740L6000/01/10/11
TYPICAL CHARACTERISTIC CURVES (TA = 25°C Unless Otherwise Specified)
Vceo
-5V
T-
INPUT, VI
'NPUT'V'I~
3211
~
-----------13v
740L6010/1',
(140LG010)
OUPTUT,V,
OUPTUT,V,
(740L601',
OUTPUT, Vo
(740L6001,
::
h1ll\-i-'
___
I
v,.
-Lm
'·1 --tf ~:j
(470U
OUTPUT,Vo
(740L6000)
_____
:"
1~
"
l----" -- 1II" '"
~"~ -
[-"'". ~
C~04~
Fig. 16. Common Mode
Rejection Test
Circuit
Fig. 17. Switching
Parameters
740L6000/01
Fig. 18. Switching
Parameters
740LB010/11
PACKAGE DIMENSIONS
VOHI----__
~-
t
6.86 (.270)
6.35 (.250)
o
I.
'8.89 (.350)
8.38 (.330)
~
CM
- -Vo = 2.0 V
1\
15° MAX
0.36 (.014)
Vo
=0.8 V (MAX,)
VOL------~··
CML
--.--==~gl 0.20 (.008)
---I
7.62
(.300)
REF
i+--=
1.78 (.070) REF
C2046
".L
1
Fig. 19. Common Mods
Rejection Waveforms
INPUT I I
Vee II
BUS I I
I ,INPUT
I I GND
BUS
OUTPUT
I
GND
BUS
I
I
II
DATA
IN
0.41 (.016)
(MIN~)
OUTPUT
Vee
BUS
DATA
OUT
C2090
DIMENSIONS IN mm (INCHES)
!,
II
Fig. 20. Suggested PCB Lay-out
C2027
NOTES
1. The Vcca and VCCI supply voltages to the device must each be bypassed by a 0.1 Pof capacitor or larger. This can be either
a ceramic or solid tantalum capacitor with good high frequency characteristics. Its purpose is to stabilize the operation of
the high-gain amplifiers. Failure to provide the bypass will impair the DC and switching properrias. The total lead length
between capacitor and optocoupler should not exceed 1.5mm. See Fig. 20.
2. Device considered a two-terminal device: Pins 1, 2 and 3 shorted togetnef, and Pins 4, 5.and 6 shorted together.
3. For example, assuming a VCCI of 5.0 II, and an ambient temperature of 70·C, the maximum allowable Veca is 12.1 V.
41
740L60g0/0~/10/11
APPLICATION
PRSG
100 ns BIT
INTERVAL
75!1
TERMINATION
740L6000 BUFFER
Local area data communication
systems can greatly improve their
noise immunity by including
OPTOLOGIC gates in the design.
The Optologic input amplifier
offers t~e feature of very high
input impedance that permits
their use as bridged line receivers.
The system shown above
illustrates an optically isolated
transmitter and multidrop receiver
system. The network uses a
740L6000 and buffer (Figure D) to
isolate the transmitter and drive
the 75 n coax cable. This
application uses a 1000 ft. aerial
suspension 75 n CATV coax
cable with data taps at 250 ft.
intervals. The 740L6001s function
as bridged receivers, and as many
as 30 receivers could be placed
along the line with minimal signal
C2048
degradation. The communication
cable is terminated with a single
75 n load at the far end of
the line.
Signal ql!ality "Eye Pattern" is
shown in Figures A, Band C witr
a 10MBaud NRZ Psuedo-Random
Sequence(PRS). Traces 1-3 in
Figure A describes the transmitter
section. Traces 4-7 in Figure B
show the output of the four
Optologic briqged terminations.
Traces 8-11 in Figure C illustrate
"Eye Patte'rn" as seen at th~
output of a 74LS04 logic gate. The
data quality is well preserved in
that only a 30% Eye closure is
seen at the receiver located 1000
ft. from the transmitter.
The data communication system
is completely optically isolated
from all of the terminal
equipments. Power for the
transmitter (Veea) and
receivers (Veel) is taken from
an isolated power su'pply and
distributed through a drain or
messenger wire.
OPTOLOGIC
OUTPUT
740L6001
74LS04
PASG4+F
250 FT
250 FT.
8
OPTOLOGIC
DRIVER
740LBOOO
500FT.
500 FT.
9
6
750 FT. 10
BUFFER
OUTPUT
1000 FT. 7
1000 FT 11
750 FT
4
VERTICAL= 2 v/OIV
VERTICAL:. 2 VIOl V
Figure A
FigureB
NOTES
- All Optologic Gate Input and Output Amplifiers Bypassed With 0.1 ,.,.F Capacitors
- PRSG = Pseudo Random Sequence Generator
- 1 to 11 Refer To Testpoints; See Waveforms on Figs. A, Band C
ALL DIODES
lN6283
C2047
Figure D Buffer
42
DESCRIPTION
PACKAGE DIMENSIONS
t
6.86 (.270)
6.35 (.250)
o
I.
0.36 (.014)
=-===''"It""11 0.20 (.008)
~
18.89 (.350)
8.38 (.330)
15' MAX
~t----"'-L
7.62
(.300)
REF
1.78 (.070) REF
T
I
I
I
I
I
I
I
I
--II0.56 (.022)
0.41 (.016)
J: I
:
I
FEATURES
•
•
•
1.78 (.070) TYP
I=r-'=~,...;,t::!
The CNX 3X is a phototransistor-type optically
coupled isolator. An infrared emitting diode manufactured from specially grown gallium arsenide is
selectively coupled with an NPN silicon phototransistor. The device is supplied in a standard plastic
six-pin dual-in-line package.
t
3.94 (.155) t 4.95 195)
3.68 (.145) I t MAX
I
t 3.56 (.140) 0.~1 (.020)
,U3.o5 (.120)
MIN
1-1.27 (.050)
C2090
DIMENSIONS IN mm (INCHES)
High isolation voltage
4400V DC 1 min
Minimum saturation current transfer ratio of
CNX35-40%
Underwriters Laboratory (UL) recognized File
#E50151
APPLICATIONS
•
•
•
•
•
Power supply regulators
Digital logic inputs
Microprocessor inputs
Applicance sensor systems
Industrial controls
Equivalent Circuit
ABSOLUTE MAXIMUM RATINGS (TA =25°C Unless Otherwise Specified)
TOTAL PACKAGE
INPUT DIODE
Storage temperature . . . . . . • . • . . . . . . • • • .. -55° 0 to 150° 0
Operating temperature ••...••...••..•... -55°0 to 100°0
Lead temperature
(Soldering, 10 sec) .•••..•......•.....••••...•.. 260°0
Total package power dissipation at 25°0
(LED plus detector) ......................... 260 mlW
Derate linearly from 25° 0 ..•••....•.....•.•• 3.5 mWr 0
Forward DO current .....•...•..••••.••.••.•••..• 100 mA
Reverse voltage ••.••.•••.•••.••••••..•••.••..•••••. 6 V
Peak forward current
(1,.s pulse, 300 pps) .••..••..•...•..•....••..•••• 3.0 A
Power dissipation 25° 0 ambient •..••.••.•••••••.. 150 mV
Derate linearly from 25°0 •.•.•••••..••.•...• 1.8mWrO
OUTPUT TRANSISTOR
Power dissipation at 25°0 •..................... 150 mW
Derate linearly from 25° 0 •••••••••••••.•.•. 2.67 mWr 0
VCEO ....•.•...••...••••....•...•..•.••.•••••••••• 30V
Vcsa .....................•.............•........ 70V
VECO •...........•...••..•••.••.••...••••••••••••.• 7V
Collector Ourrent (continuous) .••.••.•••.••..•••. 100 mA
43
eNX35
ELECTRO-OPTICAL CHARACTERISTICS (TA = 25°C Unless Otherwise Specified)
TRANSFER CHARACTERISTICS
CHARACTERISTIC
SYMBOL
Current Transfer Ratio,
collector to emitter
CTR
40
ICEl
150
MIN.
TYP.
MAX.
160
ICE2
UNITS
%
IF = 10 mA, VCE = 0.4 V
".A
TA < 70DC, IF = 2 mA,
VCE = 0.4 V
TA < 70 DC, VF = 0.8 V,
VCE = 15 V
15
".A
.40
V
200
nA
Working voltage = 1500 Voc
Vcc = 10V,IF =0. see Fig. 16
100
".A
Working voltage = 1500 Voc
Vcc = 10 V. IF = O. T = 70DC
See Fig.16
0
c
Saturation voltage
Collector cut-oil
current (dark)
C!!
~CI)
J:w
VCE (SAT)
0.1
ICEW
TEST CONDITIONS
IF = 10 mA; Ic = 4 mA
Non-saturated
Turn-on
Turn-off time
ton
toff
2
2
Non-saturated
Turn-on
Turn-off time
ton
toft
300
300
Isolation voltage
VI SO
4400
VOC RMS
Relative humidity oS 50%
11-0 oS 10 ".A. 1 minute
VISO
3734
VAcRMS
Relative humidity oS 50%
11-0 oS 10 ".A, 1 second
Isolation resistance
Rlso
10"
Isolation capacitance
CISO
".s
".s
f
(VCE = 10 V. ICE = 2 mAo
RL =10011)
See Fig. 18
0::;;
1--
ilCI)
ns}
ns
Z
0
....~
0
~
ohms
0.5
pF
INDIVIDUAL COMPONENT
CHARACTERISTIC
Forward voltage
w
0
I-
Reverse voltage
VR
II.
Junction capacitance
Reverse leakage current
Q
::J
~
II:
0
I-
CI)
iii
z
<
II:
lI-
::J
II.
I-
::J
0
VI-O
=50 ".A,
=500 VDC
1= 1 MHz
TERISTICS
TYP.
MAX.
UNITS
1.1
1.50
V
TEST CONDITIONS
IF = 10 mA
mVlDC
-1.8
25
V
IR = 10".A
CJ
50
65
pF
pF
VF =0 V, I = 1 MHz
VF = 1 V, I = 1 MHz
IR
0.35
".A
VR
Breakdown voltage
Collector to emitter
Collector to base
Emitter to collector
BVCEO
BVCBO
BVECO
Leakage current
Collector to emitter
Collector to base
ICEO
ICBO
Capacitance
Collector to emitter
Collector to base
Emitter to base
MIN.
VF
Forward voltage temp
coefficient
c
44
SYMBOL
(Vcs =10 V. ICB
RL = 100 ll)
See Fig. 18
3.0
30
70
7
10
45
130
10
5
2
20
10
50
20
=3.0V
V
V
V
Ic =1.0 mA, IF
Ic =10Jl.A
IE = 100 ".A, IF
=0
nA
nA
VCE= 10V, IF=O
VCB = 10 V, IF = 0
pF
pF
pF
VCE = 10, I = 1 MHz
VCB = 5, I = 1 MHz
VEB = O. I = 1 MHz
=0
CNX35
ELECTRICAL CHARACTERISTIC CURVES (TA = 25° C Unless Otherwise Specified)
100
60
40
100
20
I
I
2.0
/ / j
1.0
.6
.4
.2
.§.
!:
20
2
rlill
'/
10
I
/
8
u+
.8
.9
/1/
1.0
1.1 1.2 1.3
VF-(Vo'ts)
1.4 1.5
C1285
0102
60
--
16
~
25/lA
i-"
:;t 12
.§ 10
I
5:
2
4 6 10
2
o
15/lA_
>"
m
i-"
;;
S
1:i
1
5:
50
~~
110
'">-
"
~::;
"~
90
C1244
z
50
120
I 110
,
~ 100
N
::;
"~
16mA--,
I
90
10,000
1.000
iii.
f
~
~
10
80
-50
+100
-25
I----\----+----+----+----l
.7
.6
1----1--+--+--+--1
;; .5
1_--+---+----+----+--7'1
~
1---+----1-
.4
1
" ""
+25
+50
+75
~
.3
~
.2
1-'!$p;."E_"""f-----+-
.1
+100
~
__- L__
+25
~
____
+50
~
1
;;
-"
;;;
~ O.ll-----7''f------,
"
___ • tr
1\',
,tpDIHL'-
\\
~RBE=100Kn r------ Vec = 5 V
RL"'2.7Kn
W,
''''
-"
',:...
1
w
~ ...' -
;::
U'
OOIL_~
____L_______L_____
.......
,~
.01 17":..,,---f-7~£:.--I_----___l
.
UNSATURATED AT _
~ RBE=50Kn
RBE = OPEN
~
~
+100
15
13
1
__
+75
C1248
10~------+--------r--~~~
r--
~
Fig. 9. Col/ector to Emitter
Saturation Voltage vs. Temperature
0
r--
__
-25
V~E
1'--15 ~_
-IOV_
....... -5 V
10Mn
C1246
...8
I.°EEE~~
VeE = 5 V
Fig. 8. Current Transfer Ratio
(unsaturated) vs. Temperature
r-~:30V-20V- r--
1Mn
Fig. 6. Saturated CTR vs.
Base to Emitter Resistance
IOOr-------r-------r-------,
~
100Kn
RBE - (n)
C1247
C1259
IF
10Kn
I Kn
C1245
~
~
'
TEMP - I"e)
5.0
lc=20mA
'\
'"tJ
Fig. 7. Current Transfer Ratio
(saturated) vs. Temperature
I
,) r""
~
'50
0
2.0
,<:IC =2mA
70
100,000
1.0
.6
.4
Fig. 5. Col/ector to Emitter Breakdown
Voltage vs. Base to Emitter Resistance
-tc=16mA
30
-50
100
1.0
130
=
IF = 4mA
.10
ABE -IMnl
VeE =04V
Ie
0
10
6.0
4.0
2.0
.01
.5
.2
'~~
70
,.
C1243
.02
5.0
'"
~
9 10
8
.04
Fig. 4. Col/ector Current vs.
Col/ector to Emitter Voltage
130
7
6
.06
45
VeE -V
5
.2
~-
5.01J.A
20
4
IF - (mA)
2.SpA
1.0
3
Fig. 3. Col/ector Current vs.
Forward Current
1\
lO;lA
1.2.3.4.5 .7
2
IC-1 rnA
-0
~
1
1
C1242
"3 55
20j.lA
~
p-
~
o
20 406010
1\
I-- I-"""
14
V
4
Fig. 2. Col/ector Current vs.
Col/ector to Emitter Voltage
I,
30j./A_
18
10
04
VeE - (Volts)
Fig. 1. Forward Voltage vs.
Forward Current
20
I
/
1
IA"
Vv~E .'4V
/.
6
/
/
IV
0
IF =2mA
1/ /
.1
I
I
4
IF =SmA
60
40
VVCE =5V
6
IF = lOrnA
'/
10
.Y
8
~~".1
20
:t
~'"~
. 1 Mn
Cl
..
20pf
C1625
Fig. 2. Switching Time Tsst Circuit
52
CONDITIONS
CNY65
TYPICAL ELECTRICAL CHARACTERISTIC CURVES (25 0 C Free Air Temperature Unless Otherwise Specified)
I
IIII
. VCI
'5V
1.0
~
100
:>
~ 50
T
a::
0.8
1=
t;
~ 0.6
.~~?~teri~g limit
0
~~L
~
j;-."
5
iii
5
0.1
C1626
J~
~
"II
V·
'F -(mAl
I
0.1
10
'c-(mA)
50
C1627
Fig. 4. VCE (SAT) vo.
Collector Current
'F = 20mA
11'Om~
~
~
rl
2m1
'/
k"
lmA
0.5
IL
r/
0.1
10
VCE (V)
C1628
Fig. 5. Collector Current
VO. Collector Voltage
NOTES
1. Creeping current resistance: Group //I (KB>600-KC>600) according to VDE 0110b/2.79 table 3 and DIN 53
480/VDE 0303 part 1/10.76.
2. According to VDE test certificate dated 3/19/82.
3. Related to standard climate 23/50 DIN 50 014.
53
54
PACKAGE DIMENSIONS
DESCRIPTION
~
The H11A1 is a phototransistor-type optically
coupled isolator. An infrared emitting diode
manufactured from specially grown gallium arsenide
is selectively coupled with an NPN silicon
phototransistor in a standard plastic six-pin dual-inline package.
t
6.86 (.270)
6.35 (.250)
~
I+-
:
I
I
I
I
I
I
---ll0.56 (.022)
0.41 (.016)
-L
1
J: I
I
FEATURES
•
1.18 (.070) TYP
•
•
3.94 (.155) 4.95 {.195}
3.68 (.145) I j MAX
•
I
:
i
r--=
1.78 (.070) REF
7.62
(.300)
REF
8.38 (.330)
-
0.36 (.014)
-'-------="'rt'"11 0.20 (.008)
~'8.89 (.350~ ~
2.54(.100)TYP";
15' MAX
I
I
! 3.56 (.140) O.J, (.020)
,L13.05 (.120)
MIN
1-,.27 (.050)
C2090
DIMENSIONS IN mm (INCHES)
High isolation voltage
5300 VAC RMS - 5 seconds
7500 VAC PEAK - 5 seconds
Minimum current transfer ratio of 50%
Underwriters Laboratory (UL) recognized
File #E50151
VDE approval Certificate 39 419 for H11A1Z
APPLICATIONS
•
•
•
•
•
Power supply regulators
Digital logic inputs
Microprocessor inputs
Appliance sensor systems
Industrial controls
Equivalent Circuit
ABSOLUTE MAXIMUM RATINGS (TA = 25°C Unless Otherwise Specified)
TOTAL PACKAGE
INPUT DIODE
Storage temperature ..................... -55° C to 150° C
Operating temperature ................... -55° C to 100° C
Lead temperature
(Soldering, 10 sec) ............................ 260° C
Total package power dissipation at 25°C
(LED plus detector) ......................... , 260 mW
Derate linearly from 25° C .................... 3.5 mW;o C
Forward DC current ........ ,' ..................... 60 rnA
Reverse voltage ..................................... 6 V
Peak forward current
(1 1'5 pulse, 300 pps) ............................ 3.0 A
Power dissipation 25° C ambient ................. 100 mW
Derate linearly from 25°C .................... 1.8 mW/oC
OUTPUT TRANSISTOR
Power dissipation at 25° C ....................... 150 mW
Derate linearly from 25°C ................... 2.67 mW/oC
VCEO ............................................. 30 V
Vcso ............................................. 70V
VECO ••..••.•••••••..••••........••..•••..•••..•.... 7 V
Collector current (continuous) ............•..... 100 rnA
55
HllAl HllA1Z
ELECTRO-OPTICAL CHARACTERISTICS (TA = 25°C Unless Otherwise Specified)
TRANSFER CHARACTERISTICS
CHARACTERISTIC
TYP.
MAX.
UNITS
VCEISATI
0.1
0.4
V
IF = 10 mA, Ic = 0.5 mA
Ion
toft
2
2
,.,S
,.,S
IVCE = V, ICE 2 mA,
RL = 100 III
See Figure 9
Non-saturated
Turn-on time
Turn-off time
ton
toff
300
300
ns
ns
I VCB = 10 V, ICB 50 ,.,A,
RL= 100 III
See Figure 9
Isolation voltage
Visa
Current Transfer Ratio
collector to emitter
U
0
Saturation voltage
Cl
Z
-(J)
Iw
u::;;
f-§:f(J)
Z
0
~-'
0
!!!
Non-saturated
Turn-on time
Turn-off time
Isolation resistance
Isolation capacitance
SYMBOL
MIN.
CTR
50
Rlso
IF = 10 mA, VCE = 10 V
5300
VAC RMS
7500
VAC PEAK
Relative humidity
1,-0 S 10 ,.,A, 5
Relative humidity
11-0 S 10 ,.,A, 5
VI-O ~ 500 VDC
f ~ 1 MHz
ohms
pF
10"
0.5
elso
TEST CONDITIONS
S 50%.
seconds
S 50%
seconds
INDIVIDUAL COMPONENT CHARACTERISTICS
CHARACTERISTIC
f-W
:JO
11.0
z-0
a:
f-O
:Jfa.!!!
f-(J)
:JZ
0<
a:
f-
56
SYMBOL
Forward voltage
Forward voltage temperature
coefficient
Reverse VOltage
Junction capacitance
VF
Reverse leakage current
IA
Breakdown voltage
Collector to emitter
Collector to base
Emitter to collector
Leakage current
Collector to emitter
Collector to base
Capacitance
Collector to emitter
Collector to base
Em itler to base
VA
CJ
BVCEO
BVCBO
BVECO
ICEO
ICBO
MIN.
3.0
30
70
7
TYP.
MAX.
UNITS
1.1
1.50
V
-1.8
25
50
65
0.35
mVrC
V
pF
pF
10
45
130
10
5
8
20
10
50
20
,.,A
TEST CONDITIONS
IF
~
10 mA
IA ~ 10,.,A
VF ~ 0 V, f
VF ~ 1 V, f
VA ~ 3.0 V
= 1 MHz
~
1 MHz
V
V
V
Ic = 10 mA, IF - 0
Ic = 100 ,.,A, IF = 0
IE = 100 ,.,A, IF = 0
nA
nA
VCE
VCB
pF
pF
pF
VCE
VCB
VEB
~
10V, IF
V, IF
= 10
~
~
=
0, f
5, f
0, f
~
~
~
~
~
0
0
1 MHz
1 MHz
1 MHz
H11A1 H11A1Z
ELECTRICAL CHARACTERISTIC CURVES (TA = 25°C Unless Otherwise Specified)
____
~" 1.25
100
60
40
-
~
75°C/25°C; -25°C
20
I
10
6.0
E 4.0
«
T
.!!, 2.0
0
rI 1.0
......9I
~
I I
0.75
U
fil
I / I
0.50
I
N
::J
«
~
J / /
.2
/
/ /
.1
.8
.9
1.0
/
0.25
a
1.1 1.2 1.3
VF-(Volts)
a
1.4 1.5
C1285
5
lJ
fil
N
::J
«
::<
a:
oz
_=_20-+m_n~21\o\-I-+-d---+_t--
V:~·~~~
0.8 f---'l---,/.t"I~
/'+--+-+--+-"1101-----1
15
20
C1679
1.0
L
...-:--..~Z 0.90 I
/
f---hF-+--+-+--+-+--+--I
F""'"
§
0.80
m
a:
U ~ 0.70
a:
a:
-....9-
0.60
1=U
0.50
~
«
::<
a:
~
0.40
0.30
0.20
~
llU
Vee = 5V
~
I-
fil
/ll
0.6
10
IF - (mA)
Fig. 2. Normalized Current
Transfer Ratio vs.
Forward Current
1.2 ,---,--,----.,--,----.,--,----.,---,
IF = 10mA-~
VeE = 0.3V
------I
"
IF = 5mAVee = 5.0V
F
1.0 f-I-I
1
'"
oZ
Fig. 1. Forward Voltage vs.
Forward Current
JJ
--....
V
UI-
I II
/
1.0
.6
.4
Vee = 0.3V
Vee = 5.0V
E
~
L ' / ./
20~l
V
I
[\IF =
IF = 10mA
IF =5mA
1/
I
J
II
II
0.10
o
0.4 L - - L _ - ' - - - - ' - _ . 1 - - ' - _ . 1 - - L - - - '
-75 -50 -25 0 +25 +50 +75 +100+125
TA - (OC)
C1680
10K
lOOK
RBe - BASE RESISTANCE -
1M
(0)
CI681
Fig. 3. Normalized Current
Transfer Ratio vs.
Ambient Temperature
Fig. 4. CTR vs. RaE
1.00
1.2
----~l';ffi 0.90 1/
'"
U!=a: 0.70 f'- r--...
w
III
J.;
Vee = 0.3V
cl Ii 0.80
I-
-....9-
0.60
1=
U
0.50
ow
0.40
:!
0.30
::<
a:
0.20
«
~
III
0.10
o
-;--,
z
m W
I
I
=
.9
0.9
0
w
::J
j
/
0.8
Vee = 10V
Ie = 2mA
RL = 1000
«
I
::<
a:
0
0.7
J~te F~illl
Z
I
0.6
lOOK
RBe -
""''''1
~1.0
N
10K
1.1
a: ..
~~
IF= 20mA
IF = 10mA
IF = 5mA
BASE RESISTANCE -
1M
(0)
CI682
Fig. 5. C TR vs. RaE
1~
lOOK
1M
RBe - BASE RESISTANCE -
~
(0)
CI683
Fig. 6. Normalized toll vs. RaE
57
HllAl HllA1Z
ELECTRICAL CHARACTERISTIC CURVES (TA = 25°C Unless Otherwise Specified)
1.2
1.2
-----a:WI
Z
~
gg
8
I
=
=
Vee 10V
RL 1000
(See Fig. 10)
[\
m w
1\
1.1
\ "-
c
..9
aw
N
::::;
<{
1.0
~
cr:
Vee = 10V
Ie = 2mA
RL = 100n
(See Fi~~
0
z
0.9
1UK
RBE -
100K
1M
BASE RESISTANCE -
0.4
co
5
Ifll
C1684
Fig. 7. Normalized ton vs. RBE
Vee =
o
1'-...
10
le-(mA)
15
C1685
Fig. 8. Normalized Switching
Time vs. Col/ector Current
10V
OUTPUT
PULSE WIDTH = 100 J-IS
DUTY CYCLE = 10%
INPUT
OV
OUTPUT .....~*"
I
I
10%
I
I I I
I
- t ton...-t toll I C1294
C1296A
Fig. 9. Switching Time Test
Circuit and Waveform
58
20
PRELIMINARY DATA SHEET
H11AA1 H11AA3
H11AA2 H11AA4
PACKAGE DIMENSIONS
DESCRIPTION
The Hl1AAX family of devices has two GaAs
emitters connected in inverse parallel driving a
single silicon phototransistor output.
U
6.86 (.270)
6.35 (.250)
0.36 (.014)
.1-.-=--'+--;1 0.20 (.008)
~18.89 (.350~~
~~-L
7.62
(.300)
REF
8.38 (.330)
1.78 (.070) REF
T
1.78 (.070) TVP
I
1
1
1
1
1
I
1
--II0.56 (.022)
0.41 (.016)
3.94 (.1551 t 4.95 h95)
:
3.68 (.1451 j t MAX
I
I
I t 3.56 (.140) o.ll (.020)
,U3.05 (.1201
MIN
J:
FEATURES
• Bi-polar emitter input
• Built-in reverse polarity input protection
• UL recognized (File #50151)
APPLICATIONS
• AC line monitor
• Unknown polarity DC sensor
1-1.27 (.050)
C2090
DIMENSIONS IN mm (INCHES)
C2089
Equivalent Circuit
ABSOLUTE MAXIMUM RATINGS
TOTAL PACKAGE
Storage temperature ..........•.... -55°C to 150°C
Operating temperature ...•...•..... -55°C to 100°C
Lead temperature (soldering, 10 sec.) ....... 260°C
INPUT DIODE
Forward current ...................... 60 mA RMS
Peak forward current (IllS pulse, 300 pps) ... ±1.0 A
Power dissipation ............•..•..•...• 100 mW
Derate linearly from 25°C ............. 1.33 mW/oC
OUTPUT TRANSISTOR
Power dissipation ............•..•.•..... 300 mW
Derate linearly from 25°C •............. 4.0 mW/oC
59
HllAAl HllAA2 HllAA3 HllAA4
ISOLATION AND INSOLATION (TA = 25°C Unless Otherwise Specified)
CHARACTERISTIC
SYMBOL
MIN.
TYP.
MAX.
UNITS
Package capacitance
input/output
CI·O
Withstand insulation
test voltage
VISO
2500
VAC(RMS)
Insulation resistance
Rlso
10"
Ohms
0.7
TEST CONDITIONS
pF
VI-O=O.f: 1 MHz
Relative humidity::; 50%
11•0 ::; 10 IJ.A 1 minute
VI_O: 500 V
INDIVIDUAL COMPONENT CHARACTERISTICS (TA = 25°C Unless Otherwise Specified)
CHARACTERISTIC
SYMBOL
DEVICE
TYP.
MAX.
UNITS
VF
VF
H11AA1,3,4
H11AA2
1.3
1.5
1.8
V
V
.:!..VF/.:!..TA
ALL
-1.9
mV/oC
~ Junction capacitance
CJ
ALL
18
pF
VF : 0 V, f: 1 MHz
a: Breakdown voltage
Collector to emitter
0
ICollector to base
II)
iii Emitter to base
Z
BVCEO
BVcso
BVESO
ALL
V
V
V
Ic: 10 mA, IF: 0
Ic: 100 IJ.A, IF: 0
Ic : 100/lA, IF : 0
ICEO
ICEO
H11AA1,3,4
H11AA2
nA
nA
VCE : 10 V, IF : 0
VCE : 10 V, IF: 0
pF
pF
pF
VCE : 0, f : 1 MHz
Vcs : 0, f : 1 MHz
VES : 0, f: 1 MHz
w
C
Q
Forward voltage
C
Forward voltage
Icoefficient
::I
MIN.
TEST CONDITIONS
IF :±10mA
IF :±10mA
IF: 2 mA
D.
o
5300
VAcRMS
*V.~o
7500
VAC PEAK
Isolation resistance
Rl!:.o
10"
Isolation capacitance
C'SO
Isolation Voltage
0
1=
«
..J
0
!!!
ohms
0.5
pF
Relative humidityoS50%
11-0:0 10 MA, 5 seconds
Relative humidity s 50%
11-0'" 10 MA.5 seconds
V, 0 = 500 VDC
f= 1 MHz
'Additional specifIcatIon for General Instrument devIces.
INDIVIDUAL COMPONENT CHARACTERISTICS
CHARACTERISTIC
Forward voltage
SYMBOL
0
Forward voltage temp.
coefficient
is
Reverse breakdown voltage
VA
Junction capacItance
CJ
Reverse leakage current
IA
UJ
0
I-
~
C1.
MIN.
VF
II:
0
I1/1
iii
Z
<
II:
II~
IL
I-
~
0
BVCBO
Emitter to base
BVEBO
H11D3
62
UNITS
1.50
V
TEST CONDITIONS
IF = 10 rnA
mV/oC
25
V
50
65
0.35
pF
pF
MA
VF=OV,f=IMHz
VF = 1 V, f = 1 MHz
VA = 3.0 V
300
200
V
V
Ic = 1 rnA; IF = 0,
RBE = 1 meg
300
200
V
V
Ic = 100MA; IF = 0
V
IE = 100MA, IF = 0
100
250
nA
MA
RBE = 1 meg.
VCE = 200V; IF = 0; TA=25° C
VCE = 200V; IF=O; TA= 100°C
100
250
nA
MA
VCE = l00V; IF = 0; TA=25° C
VCE= 100V; IF=0;TA=100° C
10
IA = 10 M A
BVCEH
Collector to base
H11Dl, Hl1D2,
H11D3
Leakage current
Collector to emiller
H11Dl, H11D2,
MAX.
1.1
-1.8
3.0
~
Breakdown voltage
Collector to emitter
Hl1Dl, Hl1D2,
Hl1D3
TYP.
5
7
ICER
ICEA
HllDl/1Z HllD2/2Z HllD3/3Z
TYPICAL CHARACTERISTICS
!zUJ
10
2.4
UJ
2.2
2.0
1.8
a:
a:
:::J
U
:::J
U
~
I-
~
I-
Z
a:
a:
1.0
I-
:::J
1.6
:::J
I-
"
0
1.4
1.2
I-
"-
o
:::J
UJ
NORMALIZED TO:
VeE-10 VOLTS
IF-1OmA
N
~
::;
a:
0.1
RSE-1 meg
o
z
I
ffi
!d 0.0 1
III
IIII
2
46810
20 406080100
IF-INPUT CURRENT-mA
C1770
"N
::;
1.0
.8
.6
0
.4
UJ
:::;
«
a:
z
I
ffi
1000
E
~
a:
a:
10
zUJ
/
:::J
~
1.0
~
O. 1
IF=20mA
t;:
..,..
II
IF-SmA
II
111
-55 -40 -20
0
+20 +40 +60 +80 +100
TA-AMBIENT TEMPERATURE-'C
C1771
Fig. 2. Output Current vs. Temperature
IF=10mA
I-
~
I-
:::J
o
fil
N
:::;
~
l
,....
IF-1OmA
u
/
a:
a:
-
I
I
I 10~~1I~1I~~1I~;;~~;;
~
, ,,'
100
RBE=1MIl. TA=2S'C
'\l
I
.2
!d
Fig. 1. Output Current vs. Input Current
«
N~~~~~1~6~T~~;F=10mA -
\
.01
.001
o
/
I
~
z
I
ffi
!d
1.0
1.5
2.0
VF-FORWARD VOLTAGE-VOLTS
.5
.1
«
::;
.01~~~~WA~LUwm-w~~~~
.01
.1
1
10
100
1000
VeE-COLLECTOR TO EMITTER VOLTAGE-VOLTS
C1773
C1772
Fig. 3. Input Characteristics
IUJ
:::J
u
"a:«
""
:::;
UJ
N
0
I
ffi
10'
~
800
I"
700 VeB=10V
IF=50mA
~600
:::J
~500
I
P-
VeB=200V
IF=10mA
~400 VeB=10V ~
a:
10'
a:
Z
VeE-200V
VeE-100V
VCE-50V
10'
«
::;
.
«
10'
Z
a:
a: 10'
Fig. 4. Output Characteristics
NORMALIZED TO: ~
VeE-200 VOLTS
IF=O
RBE-1meg _~
TA-+25°C
!d 10'
+50
+75
+125
+25
+100
TA-AMBIENT TEMPERATURE-' C
C1774
Fig. 5. Normalized Dark Current VS. Temperature
~300
:J
200
Y 100
f.l
!d
I
IF"'10mA
~
"'
......
VCB=10V
IF=5mA
~ -"".
1::': ~ ~~ ~
I
..........
~-
-50 -25 0 +25 +50 +75 +100
TA-AMBIENT TEMPERATURE_oC
C1775
Fig. 6. Col/ector Base Current vs. Temperature
63
64
MCAllGl (H11Gl)
MCAllG2 (HllG2)
MCAllG3 (HllG3)
PACKAGE DIMENSIONS
CJ
DESCRIPTION
I
6.86 (.270)
6.35 (.250)
0.36 (.014)
-'--------="'"'li-ll 0.20 (.008)
~18.89 (.350~~
~
7.62
(.300)
REF
8.38 (.330)
f----'=
1.78 (.070) REF
-L
"'1
I
I
I
I
I
•
•
I
I
---110.56 (.022)
0.41 (.016)
3.94 (.155) I 4.951.195)
3.68 (.145) j j MAX
:
J:
I
I
FEATURES
•
1.78 (.070) TYP
i
The MCA11G1 and MCA11G2 are photodarlingtontype optically coupled optoisolators. Both devices
have a gallium arsenide infrared emitting diode
coupled with a silicon darlington connected
phototransitor which has an integral base-emitter
resistor to optimize elevated temperature
characteristics.
I
13.56 (.140) O.JI (.020)
,U3.05 (.120)
MIN
•
•
•
High BVCEO
Minimum 100V for MCA11G1
Minimum 80V for MCA11G2
Pin for pin replacementforH11G1, H11G2, H11G3
High sensitivity to low input current-Minimum
500 percent CTR at IF = 1 mA
High isolation voltage
2500 VAC RMS-Steady State Rating
Low leakage current at elevated temperature
(maximum 100 p.A at 80°C).
Underwriters Laboratory (UL) recognized
File #50151
1-1.27 (.050)
C2090
DIMENSIONS IN mm (INCHES)
APPLICATIONS
•
•
•
•
•
CMOS logic interface
Telephone ring detector
Low input TTL interface
Power supply isolation
Replace pulse transformer
Equivalent Circuit
ABSOLUTE MAXIMUM RATINGS
TOTAL PACKAGE
INPUT DIODE
Storage temperature .......•.... -55°C to 150°C
Operating temperature ........... -55° C to 100° C
Lead temperature
(Soldering, 10 sec.) ...................... 260°C
Total package power dissipation @ 25° C
(LED plus detector) ................... 260 mW
Derate linearly from 25°C ............ 3.5 mW/oC
Isolation voltage ................... 2.5 kV RMS
Forward DC current ....................• 60 mA
Reverse voltage ............................ 6 V
Peak forward current (1 p's pulse, 300 pps) .. 3.0 A
Power dissipation 25° C ambient ........ 100 mW
Derate linearly from 25° C ............ 1.8 mW/o C
OUTPUT TRANSISTOR
Power dissipation @ 25°C ............. 200 mW
Derate linearly from 25° C ........... 2.67 mW/o C
Collector to emitter voltage
MCA11G1 ............................. 100 V
MCA11G2 .............................. 80 V
MCA11G3 .............................. 55 V
65
MCA11G1 MCA11G2 MCA11G3 (H11G1 H11G2 H11G3)
ELECTRO-OPTICAL CHARACTERISTICS (25°C Temperature Unless Otherwise Specified)
TRANSFER CHARACTERISTICS
CHARACTERISTIC
Current Transfer Ratio
collector to emitter
U
0
SYMBOL
TYP.
MAX.
TEST CONDITIONS
UNITS
CTR
MCA11G1I2
MCA11G1I3
MCA11G3
Saturation voltage
MIN.
%
IF = 10 mA; VCE = 1 V
IF = 1 mA; VCE = 5 V
IF = 1 mA; VCE = 5 V
V
V
IF
IF
IlS
RL = 100.11; IF = 10mA
VCE = 5V_
Pulse width';; 300 "sec,
f.;; 30 Hz
%
%
1000
500
200
VCE(SAT)
0.85
0.75
ton
toff
5
100
1.0
1.0
= 16 mA; Ic = 50 rnA
= 1 mA; Ic = 1 mA
el
~Ul
J:W
u::;:
1-3:1-
Turn-on time
Turn·off time
IlS
Ul
Surge isolation
Visa
Steady state isolation
Visa
I solation resistance
Rlso
Isolation capacitance
Clso
2
0
j:
o
0
I-
VI '>
E .100
\
1.0
\
1
'I\RL = 10 n ~OO n
::::>
\
Q.
~
V
.010
..!:!:
V' V"
-I-""
O°C 20°C 40°C
.001
60°C
80°C
100°C
TA - (OC)
Fig. 5. Dark Current vs.
Temperature
68
NORMALIZED
TO:IF = 10 mA
RL = 100 n
VeE = 5 V
0.1
0.1
I'.
~
1.0
tON
C1707
1K
+ tOFF
10
NORMALIZED TOTAL
SWITCHING SPEED
C1708
Fig. 6. Switching Speed
MCA230
MCA231
MCA255
PACKAGE DIMENSIONS
DESCRIPTION
t
6.86 (.270)
6.35 (.250)
.L.--''''"rIC"""""i,
WMAX
0.36 (.014)
0.20 (.008)
~ ~-L
7.62
(.300)
REF
The MCA230. MCA231 and MCA255 are
photodarlington optically coupled isolators. An
infrared emitting diode coupled with a silicon
photodarlington transistor. The device is supplied
in a standard plastic six-pin dual-in-line package.
1.78 (.070) REF
1
FEATURES
•
•
1.78 (.070) TYP
I , :
I
,
,
I
I
I
J:I
--II0.56 (.022)
0.41 (.016)
•
3.94 (.155) t 4.951.,95)
3.68(.145)1 t MAX
I
I
t 3.56 (.140) O.J, (.020)
U3.05 (.120)
MIN
1-,.27 (.050)
High current transfer ratio
MCA230/255 - 100% min.
MCA231 I
- 200% min.
Underwriters Laboratory (UL) recognized file
#E50151
55 volt BVCEO for MCA255
APPLICATIONS
•
•
•
•
C2090
DIMENSIONS IN mm (INCHES)
•
Replace reed relays for 50 mAo 55 V DC loads
Replace pulse transformers
Form multiple contact. NO/NC relays
Useful for telephone lines. SCR triggers. hospital
monitoring systems. airborne systems. remote
data gathering systems and remote control
systems.
Use a low-current alarm monitor for battery
powered supplies.
Equivalent Circuit
ABSOLUTE MAXIMUM RATINGS (TA = 25°C Unless Otherwise Specified)
TOTAL PACKAGE
Storage temperature ...•..•......•..•.• -55° C to 150· C
Operating temperatue .•.••.••......... _55· C to 100· C
Lead temperature (soldering. 10 sec.) ...•......•. 260· C
Total package power dissipation at 25· C
(LED plus detector) ....•...•..•..•...•..... 260 mW
Derate linearly from 25·C .•...•.........•.• 3.5 mWrC
DETECTOR
Power dissipation •..........••......•.•...•.. 210 mW
Derate linearly from 25·C .•.•...•....•..... 2.8 mWrC
Collector-emitter breakdown voltage (BVCEO)
MCA230 .•••.•••.•..•........••...•.•.....•••. 30V
MCA231 .•••..•...•........•.•.•...•....•...•. 30V
MCA255 •..•....•...•.•....•........••.••••.•. 55V
Collector-base breakdown voltage (BVCBO)
MCA230 ....•.•.....••..•.••...•.••.•••••••.•• 30V
MCA231 •.•••••..•••.••••••.•.•.•.•••.•••.•.•• 30V
MCA255 •..•..••...•...•.••.•.•..••.•..••••..• 55V
Emitter-collector breakdown voltage (BVeco) ••...•.• 7 V
INPUT DIODE
Forward DC Current. •••.•..•••..•.•••.••.••...• 60 rnA
Reverse voltage ••.•.•.•.•.••.••.•..••.••..•••...•• 6 V
Peak forward current (1 lIS pulse. 300 pps) •....•.•. 3.0 A
Power dissipation .•...•.••...••.••.•••••.•.•• 135 mW
Derate linearly from 25·C ..••.....•.••...•. 1.8 mWrC
69
MCA230 MCA231 MCA255
ELECTRO-OPTICAL CHARACTERISTICS (TA =25°C Unless Otherwise Specified)
TRANSFER CHARACTERISTICS
CHARACTERISTIC
U
Q
DC current transfer ratio
(Collector-emitter)
MCA230, MCA255
MCA231
Saturation voltage
MCA230, MCA255
MCA231
SYMBOL
MIN.
CTR
CTR
100
200
TYP.
MAX.
1.0
1.0
1.0
1.2
VCE(SAT)
VCE(SAT)
UNITS
TEST CONDITIONS
%
%
IF = 10 rnA, VCE = 5 V
IF = 10 rnA, VCE = 5 V
V
V
V
V
Ie = IF = 50 rnA
Ic = 2 rnA, IF = 1 rnA
Ic = 10 rnA,lF = 5 rnA
Ic=50rnA,IF=10mA
ItS
ItS
See switching time
Test circuit (Fig. 7)
CJ
z
-w
J::::E
gi=
~
No', saturated
·rurn-on time
Turn-off time
Ioff
Surge insulation voltage
Viso
3550
Dielectric withstand test voltage
Viso
2500
3150
fsolation resistance
Riso
2250
10"
Package capacitance
(input-output)
C'SO
CHARACTERISTIC
SYMBOL
10
100
Ion
©
a:
1
~
::;;
0.9
f-
N
10
10
1= "~
25
50
TA ("C)
75
o
100
25
50
75
100
T TEMPERATURE ("C)
C17l9
125
C893
Fig. 4. Normalized CTR vs. Temperature
Fig. 5. Normalized VeE
Temperature
Fig. 6. Dark Current vs. Temperature
VS.
10V
PULSE WIDTH ~ 100 liS
DUTY CYCLE = l00f0
INPUT
OV
1
I
1
I
OUTPUT~
1
1
50%
I
I
1
1 I
1
10%
I
I
I I I
I
~""~""J
C1294
C86.
Fig. 7. Switching Time Test Circuit
71
72
MCA2230Z
MCA2231Z
MCA2255Z
DESCRIPTION
PACKAGE DIMENSIONS
6.86 (.270)
6.35 (.250)
o
I.
0.36 (.014)
-'-----='""It"-I 0.20 (.008)
~
8.89 (.350)
8.38 (.330)
The MCA2230, MCA2231 and MCA2255
are photodarlington optically coupled
isolators. An infrared emitting diode
coupled with a silicon photodarlington
transistor. The device is supplied in a
standard plastic six-pin dual-in-line
package.
~
7.62
(.300)
REF
I+--'"
1.78 (.070) REF
-L
t
FEATURES
•
High-isolation voltage
5300 VAC RMS - 5 seconds
7500 VAC PEAK - 5 seconds
• High current transfer ratio
MCA2230
-100% min
MCA2231, 2255-500% min
• Underwriters Laboratory (UL)
recognized file #E50151
• 55 volt BVCEO for MCA2255
1.78 (.070) TYP
:
I
I
I
I
I
I
I
--11-0.S6 (.022)
0.41 (.016)
J: I
:
3.94 (.155) I 4.95 !.t95)
3.68 (.145) t j MAX
I
j
13.56 (.140) o.JI (.020)
,Ll3.o5(.120)
MIN
1-1.27 (.OSO)
C2090
DIMENSIONS IN mm (INCHES)
APPLICATIONS
•
•
•
•
•
Replace reed relays for 50 mA,
55 V DC loads
Replace pulse transformers
Form multiple contact, NO/NC relays
Useful fortelephone lines, SCR triggers,
hospital monitoring systems, airborne
systems, remote data gathering systems
and remote control systems.
Use a low-current alarm monitor for
battery powered supplies.
Equivalent Circuit
ABSOLUTE MAXIMUM RATINGS (TA= 25° C Unless Otherwise Specified)
TOTAL PACKAGE
Storage temperature •••••.•••••••• -55°C to 150°C
Operating temperature •••••••••••• -55° C to 100° C
Lead temperature (Soldering, 10 sec) ••••••• 260°C
Total package power dissipation @ 25°C
(LED plus detector) •••••••••••••••••• 260 mW
Derate linearly from 25°C ••••••••••••• 3.5 mWrC
DETECTOR
Power diSSipation @25°C ambient •••••••• 210 mW
Derate linearly from 25°C ••••••.•••••• 2.8 mW/oC
Collector-emitter breakdown voltage (BVCEO )
MCA2230 ••••••••••••.••••••••••••••• 30 V
MCA2231 •••••••••••••••••••••••••••• 30 V
MCA2255 •••••••••••••••••••••••••••• 55 V
Collector-base breakdown voltage (BVCBO )
MCA2230 •••••••••••••••••••••••••••• 30 V
MCA2231 •••••••••••••••••••••••••••• 30 V
MCA2255 ••.•••••••••••••••••••••••••••••• 55 V
Emitter-base breakdown voltage (BVEBO) ••••••••• 6 V
INPUT DIODE
Forward DC Current •••••••••••••••••••.••• 60 mA
Reverse voltage •••••••••••••••••••••••••••••• 6 V
Peak forward current (1 I'S pulse, 300 pps) • • • •• 3.0 A
Power dissipation 25°C ambient •••••••••• 135 mW
Derate linearly from 25° C ••••••••••••• 1.8 mW/o C
73
MCA2230Z MCA2231 Z MCA2255Z
ELECTRO-OPTICAL CHARACTERISTICS (T A =25° C Unless Otherwise Specified)
TRANSFER CHARACTERISTICS
CHARACTERISTIC
DC current transfer ratio
( Collector-emitter)
MCA2230
MCA2231, MCA2255
U
c
Saturation voltage
MCA2230, MCA2255
MCA2231
Cl
Z
i w
u::E
!::i=
;;:
'lJon saturated
Turn-on time
Turn-off time
SYMBOL
MIN.
CTR
CTR
100
500
200
TYP.
MAX.
UNITS
1.0
1.0
1.0
1.2
VCE{SATI
VCE{SATI
10
100
Ion
toll
TEST CONDITIONS
%
%
%
IF = 10 rnA, VCE = 5 V
IF = lOrnA, VCE = 5 V
IF = lmA, VCE = 1 V
V
V
V
V
Ic = IF = 50 rnA
/lS
/lS
See Switching Time
Test Circuit (Fig. 7)
Ic = 2 rnA, IF = 1 rnA
Ic = 10 rnA, IF = 5 rnA
Ic = 50 rnA, IF = 10 rnA
t/)
Z
0
Isolation Voltage
~
V,SO
5300
VAcRMS
Visa
7500
VAcPEAK
...J
0
!!!
I,solation resistance
Isolation capacitance
Rrso
C'SO
10
ohms
pF
11
0.5
Relative·humidity 00 50%,
' 1•0 00 10 /lA, 5 seconds
Relative humidity 00 50%,
' 1- 0 S 10 /lA, 5 seconds
VI_O = 500 VDC
f= 1 MHz
INDIVIDUAL COMPONENT CHARACTERISTICS
CHARACTERISTIC
w
Q
0
Q
I-
:J
c.
g:
II:
0
IU
w
w
IQ
I-
:J
c.
I-
:J
0
74
Forward voltage
Forward voltage temp.
coefficient
Reverse VOltage
Junction capacitance
Breakdown voltage
Collector to emitter
MCA2230
MCA2231
MCA2255
Collector to base
MCA2230
MCA2231
MCA2255
Emitter to base
Collector dark current
SYMBOL
MIN.
VF
TYP.
MAX.
1.3
1.50
-1.8
25
50
UNITS
TEST CONDITIONS
V
'F = 20 mA
mV/oC
V
pF
IR = 10 /lA
VF=OV,t= 1 MHz
VR
CJ
3.0
BV CEO
BV CEO
BV CEO
30
30
55
V
V
V
Ic = 100 /lA, IF = 0
Ie = 100/lA,IF = 0
Ic = 100 /lA, IF = 0
BV CBO
BVCBO
BVCBO
BVEBO
ICEO
30
30
55
5
V
V
V
V
nA
Ic = 10 /lA, IF = 0
Ic = 10 /lA, IF = 0
Ie = 10 /lA, IF = 0
IE'= 10 /lA, IF 0
VCE = 10 V, IF = 0
100
=
MCA2230Z MCA2231 Z MCA2255Z
ELECTRICAL CHARACTERISTIC CURVES
--:t
100
~
20
75° C
-; II
f,:'!=
25° C /_250 C
60
./
0.6
./
-905
go 0.4
/ I
1 / I
.!: 2.0
0
LO
go
o
w
/
.2
/
,:1 /
12
1.3
1.4
0.1
'n
·t
IF' 10 rnA
U
1.1
TA' 25°C
IF' 10 rnA -
0.4
6 7 8 910
Fig. 2. Normalized CTR vs. IF
r-...
/
0.5
1.3
........
1"
5
IF (rnA)
1.3
1.1
~
o
z
/
V
a:
I
I
2
1
1.5
i
I
I
Fig. 1. Forward Voltage VS.
Forward Current
U
0.6
:::;
C1285
VF (Volts)
w
o
0.2
o
z
11
0.7
03
a:
I
10
.8
~
N
~
::;
/
0.8
..$
U
/'"
/V
@J
N
.6
.4
/'
"
~~ 0.9
f-
I
4.0
-
1.0
0.9
u~ 8·~
10
e(
~1.0
/1/
/Y/I
Unless Otherwise Specified)
2.0
E
60
40
g
(TA=25°C
-50
-25
0
25
50
TA (OC)
C1718
75
o
100
25
50
75
100
T TEMPERATURE (OC)
C1719
125
C893
Fig. 4. Normalized CTR VS. Temperature
--------
47"
:;~:~l~~=n:
I
1
~
Fig. 6. Dark Current vs. Temperatura
Fig. 5. Normalized VCE VS.
Temperature
lOV
!
PULSE WIDTH = 100 ~s
DUTY CYCLE = 10%
INPUT
100'1
1-- 6~~~~T
ov
I
---r------
I
OUT1'UT~1
I
I
90%
:
I
I
1 _____________ JI
L
I
I
''''
I I I
I I I
~~"~""
_I,lQnlA
CB68
I
II
I
f+el294
Fig. 7. Switching Time Test Circuit
75
76
M'CL2501 MCL2503 (HCPL-2503)
MCL2502 (HCPL-2502)
6N136 6N135
PROPAGATION DELAY COMPARISON
MINIMUM CTR SELECTION CHART
MCL2501
MCL/HCPL-2503
6N136
6N135
MCLlHCPL-2502
CTR@I F =8mA
CTR @ IF = 16 mA
0-70"C
25"C
0-70"C
2S"C
0-70"C
2S"C
0-70"C
2S"C
14%
11%
17%
15%
17%
9%
15%
5%
21%
12%
19%
7%
15%-22%
MAX
MCL2501
MCL/
HCPL-2503
MCL2501
MCL/
HCPL-2502
6N136
6N135
-
-
-
PACKAGE DIMENSIONS
W
I~
-I
6.35 (.250)
-I
1-
~ ~...L
7.62
(.JOO)
REF
1.78 (.070) REF
/.0.89 (.035) TYP
I
b-.=-,-=-",-="""",,II 3.94 (.155)+ 4.95 t195)
I
1
I' 3.68 (.145)/ I MAX
I
I
t
I
:~ :lJ :III
j~ (.1~~)
r
0.36 (.014)
"'---"~-'r 0.20 (.008)
_I
9.65 (,380)
9.14 (.360)
2.54 (.100) TYP
6.86 (.270)
I 3.56 (.140)
3.05 (.120)
O.~I (.020)
MIN
1-0.89 (.035) TYP
0,56 (.022)
C2091
0.41 (.016)
DIMENSIONS IN mm (INCHES)
Vee
VB
Vo
T
IF= 8 mA
IF= 16 mA
DESCRIPTION
The MCL2501, MCL/HCPL-2503/02 and 6N136/5
optocouplers contain a 700 nm GaAsP LED
emitter, which is optically coupled to a high
speed photodetector transistor.
A separate connection for the bias of the
photodiode improves the speed by several
orders of magnitude over conventional
phototransistor optocouplers by reducing the
base-collector capacitance of the input
transistor.
An internal noise shield provides superior
common mode rejection of 10 kVlp.s. An
improved package allows superior insulation
permitting a 480 V working voltage compared to
industry standard of 220 V.
The prime device in this family is MCL2501
which guarantees all DC parameters including
CTR as well as all switching parameters over
0-70° C at both 8 mA and 16 mA input current.
FEATURES
• MCL2501 completely guaranteed 0-70"C at 8
and 16 mA.
• High Speed - 1 MBit/s
• Superior CMR - 10 kVlp.s
• Superior insulation - 2500 V RMS 1 min
• Double working voltage - 480 V RMS
• eTR guaranteed 0-70° C
• U.L. recognized (File #E50151)
APPLICATIONS
•
•
•
•
Line receivers
Pulse transformer replacement
Output interfact to CMOS-LSTTL-TTL
Wide bandwidth analog coupling
GND
Equivalent Circuit
C1962
77
MCL2501 MCL2503/2 (HCPL-2503/2) 6N 136/5
ELECTRICAL CHARACTERISTICS (TA = ooe to 700 e Unless Otherwise Specified)
PARAMETER
Current transfer
ratio
SYMBOL
CTR
TEST CONDITIONS
MCL2501
MCLlHCPL-2503 MCL/HCPL-2502
MIN. TYP. MAX. MIN. TYP. MAX. MIN. TYP. MAX. UNITS
I F=16mA, Vo=0.4V, Vcc=4.5V,
TA =25°C
21
IF=16mA, Vo =0.5V, Vee =4.5V
17
IF=8mA, Vo =0.5V, Vce=4.5V,
TA =25°C
17
IF=8mA, Vo =0.5V, Vee =4.5V
Note 5, Fig. 1, 2
14
12
28
VOL
36
%
15
11
IF=16mA, 10=2.4mA, Vec =4.5V
0.1
0.4
IF=8mA, 10=0.7mA, Vee =4.5V
0.2
0.5
0.2
0.5
0.2
0.5
IF=OmA, Vo=Vce=5.5V,
TA =25°C
Logic high
output current
10H
0.01
IF=OmA, Vo=Vee=15V, TA=25°C
IF=OmA, Vo=Vee=15V
Fig. 7
leeL
Logic high
supply current
ICCH
Input forward
voltage
VF
Input reverse
breakdown
voltage
BVR
0.4
.003
.5
0.01
1
V
p.A
50
40
p.A
IF=8mA, Vo=Open, Vcc =5.5V
20
IF=OmA, Vo=Open, Vee=15V,
TA =25°C
0.02
20
1
0.02
2
1
p.A
2
IF=16mA, TA =25°C
1.5
1.7
1.5
1.7
IF=8mA, TA =25°C
Fig. 3
1.5
1.7
1.5
1.7
IF=10p.A, TA =25°C
0.1
50
IF=OmA, Vo=Open, Vcc=15V
1.5
1.7
V
5
5
V
5
Temp. coefficient
of forward
voltage
VF
IF=16mA
Input-Output
insulation
leakage
11-0
45% Relative Humidity t=5sec
VI_o =3000Voe , TA =25°C
Note 6
Withstand
insulation
test voltage
VISO
RH ~ 50% t = 1 min
TA =25°C
Notes 6, 11, 12
Resistance
(Input-Output)
RI_o
VI_o =500Voe
Note 6
1012
1012
1012
n
Capacitance
(Input-Output)
C I_O
F=1MHz
Note 6
0.6
0.6
0.6
pF
DC current gain
hFE
10=3mA, Vo=5V
150
150
150
-
All typical values are at TA=25°C
78
1
IF=16mA, Vo=Open, Vee=15V
Logic low
supply current
22
9
IF=16mA, 10=1.lmA, Vec =4.5V
Logic low
output voltage
15
18
-1.6
-1.6
-1.6
mvrc
-
-
-
p.A
2500
VRMS
2500
2500
MCL2501 MCL2503/2 (HCPL-2503/2) 6N 136/5
ELECTRICAL CHARACTERISTICS (TA =O·C 10 70·C Unless Otherwise Specified)
PARAMETER
Current transfer
ratio
SYMBOL
CTR
MIN.
6N136
TYP.
I F=16mA, Vo=0.4V, Vec=4.5V,
TA=25°C
'19
24
IF=16mA, Vo=O.SV, Vec=4.SV
15
TEST CONDITIONS
MAX.
MIN.
6N135
TYP.
'7
18
MAX.
UNITS
5
IF=8mA, Vo=O.SV, Vcc=4.SV,
TA=25°C
%
IF=8mA, Vo =0.5V, Vcc=4.SV
Note 5, Fig. 1.2
0.1
IF=16mA, 10=1.1mA, Vec =4.5V
Logic low
output voltage
VOL
IF=16mA.l o =2.4mA, Vec =4.5V
0.4
0.1
0.4
V
IF=OmA, Vo=Vee=5.5V,
TA=25°C
.003
'.5
.003
'.5
IF=OmA, Vo=Vee=1SV, TA=25°C
0.01
1
0.01
1
IF=8mA. 10=0.7mA, Vec =4.5V
Logic high
output current
10H
IF=OmA, Vo=Vcc=15V
Fig. 7
lecL
Logic high
supply current
ICCH
SO
SO
IF=16mA, Vo=Open, Vce=15V
Logic low
supply current
p.A
40
40
p.A
IF=8mA, Vo=Open, Vcc =5.5V
IF=OmA, Vo=Open, Vec=1SV,
TA=2SoC
0.02
IF=8mA. TA=25°C
Fig. 3
Input reverse
breakdown
voltage
BVR
IF=10p.A, TA=25°C
'1
p.A
IF=16mA, TA=2SoC
VF
0.02
2
IF=OmA, Vo=Open, Vec=15V
Input forward
voltage
'1
1.5
2
1.7
1.5
1.7
V
'5
'S
V
Temp. coefficient
of forward
voltage
VF
IF=16mA
Input-Output
insulation
leakage
11- 0
45% Relative Humidity t=Ssec
VI_o =3000Voc , TA=25°C
NoteS
Withstand
insulation
test voltage
VISO
RH:SSO%t=1min
TA=25°C
Notes 6, 11, 12
Resistance
(Input-Output)
RI_o
VI_o=SOOVoe
Note 6
1012
1012
n
Capacitance
(Input-Output)
CI_O
F=1MHz
Note 6
0.6
O.S
pF
DC current gain
hFE
10=3mA, Vo=5V
1SO
150
-
-1.6
-1.6
'1.0
2S00
mVI"C
'1.0
p.A
VRMS
2500
'JEDEC Registered Data
All typical values are at TA=25°C
79
MCL2501 MCL2503/2 (HCPL-2503/2) 6N 136/5
SWITCHING CHARACTERISTICS (TA = 25·C Unless Otherwise Specified) Vee = 5.0 V
PARAMETER
SYMBOL
TEST CONDITIONS
MCL2501
MCL/HCPL-2503 MCLlHCPL-2502
MIN. TYP. MAX. MIN. TYP. MAX. MIN. TYP. MAX. UNITS
I F=16mA, RL=4.1K
I F=16mA, RL=1.9K
Propogation delay
time to logic
low at output
.35
IF=16ma, RL=1.9l<, 0-700C
tpHL
.35
0.8
IF=16ma, RL=4.7K
0.4
1.5
I F=8mA, RL=7.5K
1.0
1.5
I F=8mA, RL=7.5K, 0-700C
Notes 8,9 Fig. 12
0.8
.8
1.5
.20
.35
"s
I F=16mA, RL=4.1K
I F=16mA, RL=1.9K
Propogation delay
time to logic
high at output
.25
I F=16ma, RL=1.9K, 0-70·C
tpLH
I F=16ma, RL=4.7K
1.5
2.5
1~8mA, RL=7.51<
1.5
2.5
IF=8mA, RL=7.5K, o-70·C
Notes 8, 9 Fig. 12
.80
0.8
"s
1.30
VcM =10Vp , RL=4.1K
Common mode
transient
immunity at
logic high
output level
10K
VCM =10Vp ' RL=1.9K
CM H
10K
VcM =10Vp ' RL=4.7K
VcM=50Vp ' RL=1.9K
Notes 7, 8, 9 Fig. 11
1K
VI"s
10K
VcM=10Vp ' RL=4.1K
Common mode
transient
immunity at
logic low
output level
CM L
Bandwidth
BW
-10K
VcM=10Vp , RL=1.9K
-10K
VcM=10Vp, RL=4.7K
VcM=50Vp' RL=1.9K
Notes 7, 8, 9 Fig. 11
RL=100
Note 10
Fig. 10
-1K
VI"s
-10K
3
2
2
MHz
*JEDEC Registered Data
ABSOLUTE MAXIMUM RATINGSt
Storage temperature ..............• -55·C to 125·C
Operating temperature ............. -55·C to 100·C
Lead solder temperature ....•........ 260·C for 10s
Average forward input current •.......•.. 25 rnA (1)
Peak forward input current .............. 50 rnA (2)
(50% duty cycle, 1ms P.W.)
Peak transient input current - IF .•..... .... ... 1.0 A
(:51 P.s P.W., 300 pps)
Reverse input voltage ........................• 5 V
Input power dissipation .......•........ 45 mW (3)
Average output current .....•..••........... 8 rnA
Peak output current •......•......••....... 16 rnA
Emitter-base reverse voltage .................. 5 V
Supply and output voltage ...•....... -0.5 V to 15 V
Base current ............................... 5 rnA
Output power dissipation .......•...... 100 mW(4)
t Absolute Maximum Ratings are JEDEC Registered Data for 6N136 and 6N135.
6N136 and 6N135 are the only JEDEC Registered Parts on this data sheet.
BO
MCL2501 MCL2503/2 (HCPL-2503/2) 6N 136/5
SWITCHING CHARACTERISTICS (TA = 25°C Unless Otherwise Specified)
PARAMETER
SYMBOL
TEST CONDITIONS
MIN.
6N136
TYP.
Vcc
MAX.
= 5.0 V
MIN.
IF=16mA, RL=4.1K
IF=16mA, RL=1.9K
Propogation delay
time to logic
low at output
0.35
6N135
TYP.
MAX.
0.5
*1.5
UNITS
'0.8
IF=16ma, RL=1.9K
tpHL
1~16ma,
RL=4.7K
1'5
IF=8mA, RL=7.5K
IF=8mA, RL=7.5K
Notes 8, 9 Fig. 12
IF=16mA, RL =4.1 K
0.4
IF=16mA, RL=1.9K
Propogation delay
time to logic
high at output
.25
*1.5
*0.8
IF=106ma, RL=1.9K
tpLH
IF=16ma, RL=4.7K
I'S
IF=8mA, RL=7.5K
IF=8mA, RL=7.5K
Notes 8, 9 Fig. 12
VcM=10Vp , RL=4.1K
Common mode
transient
immunity at
logic high
output level
VCM=10Vp , RL=1.9K
CM H
1K
1K
VCM=10Vp , RL=4.7K
VcM=50Vp ' RL=1.9K
Notes 7, 8, 9 Fig. 11
VII'S
1K
10K
-1K
-10K
VcM =10Vp ' RL=4.1K
Common mode
transient
immunity at
logic high
output level
CM L
Bandwidth
BW
10K
10K
VcM=10Vp ' RL=1.9K
-1K
-10K
VcM =10Vp , RL =4.7K
VcM=50Vp ' RL=1.9K
Notes 7, 8, 9 Fig. 11
RL=100
Note 10
Fig. 10
VII'S
-1K
-10K
2
2
MHz
*JEDEC Registered Data
NOTES:
1. Derate linearly above 70·C free-air temperature at a rate of O.B mA/·C.
2. Derate linearly above 70·C free-air temperature at a rate of 1.6 mA/·C.
3. Derate linearly above 70·C free-air temperature at a rate of 0.9 mW/·C.
4. Derate linearly above 70·C free-air temperature at a rate of 1.0 mW/·C.
5. CURRENT TRANSFER RATIO is defined as the ratio of output collector current, ' 0 , to the forward LED input current, 'F,
times 100%.
6. Device considered a two-terminal device: Pins 1, 2, 3, and 4 shorted together and Pins 5, 6, 7, and 8 shorted together.
Z Common mode transient immunity in Logic High level is the maximum tolerable (positive) dVCM/dt on the leading
edge of the common mode pulse VCM, to assure that the output will remain in a Logic High state (i.e., Vo > 2.0 V). Common
mode transient immunity in Logic Low level is the maximum tolerable (negative) dVCM/dt on the trailing edge of the common
mode pulse signal, VCM to assure that the output will remain in a Logic Low state (i.e., Vo < O.B V).
B. The 4.1 Kn load represents 1 LSTTL unit load of 0.36 mA and 6.1 KO.
9. The 1.9 KO load represents 1 TTL unit load of 1.6 mA and the 5.6 KO pull-up resistor.
10. The frequency at which the ac output voltage is 3 dB below the low frequency asymptote.
11. This is a proof test to validate the UL440 VAC rating.
12. The 2500 Vac/1 min capability is validated by a factory 3.1 K Vac (rms)/1 sec dielectric voltage withstand test.
81
MCL2501 MCL2503/2 (HCPL-2503/2) 6N 136/5
TYPICAL CHARACTERISTIC CURVES (TA = 25°C Unless Otherwise Specified)
20
..:
E
I
I-
---INDICATES
PULSED OPERATION
TA - 25°C
Vee = 5.0 V
_45 mA
_40 mil-~~~~
I-~ ~~
-~
35mA-
- - -- - -
r~-
Z
W
II:
II:
~~
-~
-- -
510
~~
I-
:::>
0..
:::>
~~
I-
o
I
1.6
I I
,....., 1.5
!z
~Q
~!;(
1i
1.4
1.3
~
Cffi@J@J 1.1
2?mf-
~ ~ ~ ~ 1.0
lTm~10mAI
I
}2
U a:.!: ~ 1.2
~~ ~!i
~
~
I=.l:'.l:'
0.9
bb
0.8
'---'
rimA
o
10
20
Va - OUTPUT VOLTAGE - V
C1945
_10.0
IZ
TA
1.0
= 25°C
U
I-
0..
~
C
II:
U.
,,;
-- r.....
/
.01
1.0
NORMALIZED TO:
1.5 Vee = 5.0 V
IF = 16 mA
1.4
RL = 4.1 K
U 1.3 TA = 25°C
!
0..
f-
=>
o
1.6
I I
. - . 1.5
~Q ~
§t;;: II
o a:: .!!:~
o ffi @J@J
30mA_
I
I
2~mf-
~~~~
iH
f= d:' 0
~~
2?mf15mA_
I
I
l?mf-
I
~
!z
35mA-
~
~
Ii ~ ,mA
52
o
10
Vo - OUTPUT VOLTAGE - V
btl
..........
1.4
1/
1.3
V
1.2
1.1
V
1.0
0.9
1\
\
NORMALlZ~~ ~~:
0.8
Vo ~ 0.4 V
0.7 Vee =5 V
TA=25'C
20
I 1111
C1945
Fig. 2. Normalized Current
Transfer Ratio VS.
Forward Current
_10.0
1.3
<{
g
=>
/
TA
~
25'C
1.0
Z
I
f-
=>
I
0.1
:!! 1.1
fijffi
@J
~~ ~ ~ 0.9
ct:< ww
~ f= d:' d:' 0.8
Q.
0:
<{
~
~
0:
0
u..
E
~Q
~t;:
II
U a: ~~ 1.0
(,)
~
0
r-:;' 1.2
f-
Z
UJ
0:
0:
tt
!I
1.0
~
o
Z
~ I~
(!l
<'"
~J-II
NORMALIZED TO:
1.5 Vee = 5.0 V
IF ~ 16 mA
1.4
RL ~ 4.1 K
TA ~ 25'C
1.3
1.2
~UJUJ 1.1
0:::;:::;:
0..f=f=1.0
fij~~
09
~
0.8
N
::;:
0:
oZ
./
~I::""
'~
<{
,JPHL~ lL
"
~~
I:Z
~~ 10-1 b-l--.jf---1--+--+~'--I
V
(!l 0:
g13
1
TPlH
If-
"1r
-
52 f- 10-26-6....-1=-+--+-+----1
o=>
O. 7
-25
o
25
50
TA - TEMPERATURE - 'C
70
10-."50
-25
0
25
50
75
TA - TEMPERATURE - 'C
100
C1950
C1949
Fig. 5. Normalized
Propagation De/ay VS.
Temperature
88
~
Fig. 4. Normalized Current
Transfer Ratio VS.
Temperature
Fig.3. Forward Input
Current VS. Forward
Input Voltage
UJ
"\
-60 -40 -20 0 20 40 60 80 100
TA - TEMPERATURE - 'C
C1948
1.2
1.4
1.6
VF. FORWARD INPUT VOLTAGE (V)
C1600
...J
-- J'...
NORMALIZED TO:
IF ~ 16 mA
TA ~ 2S'C
Vee ~ 5.0 V
,\Vo = 0.4 V
"--'0.7
/
.i .01
\
l-rm
2
4 6 810
20
40
80
IF - FORWARD CURRENT - mA
C1946
Fig. 1. DC and Pulsed
Transfer Characteristics
f-
\;
IF= 16 mA
Fig. 6. Logic High Output
Current VS.
Temperature
MCL2530 (HCPL-2530) MCL2531 (HCPL-2531)
TYPICAL ELECTRO-OPTICAL CHARACTERISTICS (TA = 25° Unless Otherwise Specified)
w
~ 16 k
0':;;
~
IZ
Vcc = 5.0 V
iJH 16 rnA iJLO rnA
VOH 2.0
VOL 0.8 V RL = 1.9 k _
TA = 25'C
18 k
I 14 k
z'O 12 k
O~
!5 Q 2.0
u!;(
..Ja:
0
w
0
-1
TA" 25'C
-2 IF 16 rnA
-3
-4
-5
-6
-7
-8
-9
,....... ,
\.\.
\
\\
\
RL -1 K-\
RL=470l!' _\--\
RL = 220 II L\-V.\
RL = 100 l!
\\ 1\
~ -10
<
\
\
0
,\
\ \\
\
-11
~ -12
\
0-13
z
11111111
10 k
C1953
11111111
I
11111'
100 k
1M
F - FREQUENCY - Hz
10M
C1954
Fig. 9. Fraquency Response
f---~--O+5
V
VCM10V-~-tr.tf=8ns
90%
90%
OV 10%
10%
tr
Va
L -........--o
If
~----------------5V
Va
A
SWITCH AT A: IF = 0 rnA
Va'~~~~~~~~--~VOL
SWITCH AT B: IF -16 rnA
VCM
+
PULSE GEN.
C1955
Fig. 10. Test Circuit For Transient Immunity and Typical Waveforms
89
MCL2530 (HCPL-2530) MCL2531 (HCPL-2531)
PULSE
GEN.
Zo=50 0
Ir=5 ns
IF~
1 - - - - _ - 0 +5 V
0,
I
I
I
I
I
I
Vo
10% DUTY CYCLE
<--.....-_-
I
+5V
II
Vee =5.0V , _
8.0
w
7.0
«
:;"
6.0
TA = aO _7oDe
0
.1
>
RL
I'F
I-
5.0
~
~ 4.0
I:::>
0
I
Vo
f\=lK!l,\
3.0
L..
1\f\=350!l
-;j 2.0
W
1.0
C1980
"DJ..
1.0
.0
2.0
3.0
4.0
5.0
6.0
FORWARD INPUT CURRENT (IF. mAl
Fig. 3.
Fig. 4. Output Voltage
Input-Output
Schematic
1.0
1
1
Z
t--- Vee'" 5.5V
a:
a:
.2
t--- V, = 2.0V
~ 1.0
:::>
u
.1
I-
~
~
1
IF == 250l'A
:::>
:::> .06
i!::::> .04
0
.J .02
/
o
./
~
I-
,
u
./
Vo = 5.5V
~
I
TA '" 2SOC
w
~
17
V
w
.01
~ ,006
::I:
~.OO4
5'
.11-+----1-+-+-+-+----1
f
II
.0 1
1.4
10
1.6
C1600
20
30
40
Fig.6.
......
;::
~
4
!!i
g:
30
,
20
0
--......
RL = 4K!l_ 1--- 1--
0
~ 50
-
~
>«
.......
RL-1Kn
10
70
Fig. 7.
u:
RL ~ lK!l
IF =7.5m~_
tpLH
Vef = 5.~V
60
«
40
0
30
...
20
g:
,
20
30
40
50
TA - TEMPERATURE lOCI
Fig. 8.
Propegatlon Delay
VB. Temperature
60
70
C1604
RL =350!l,
r-,../' ,;,;
.RL =lK!l
RL=4K!l ...
30
----
......
RL =350!l
-~:1;n
~
..."
t--- - - -
tpLH_
--tpHL
o
f--- Vee
= 5.0V _
TA '" 25D C
10
15
IF - PULSED INPUT CURRENT ImAI
Fig. 9.
40
50
High Level Output
Current VB.
Temperature
10
o
10
......
RL -4KO
... ............
,;
z 50
0
;::
20
TA · TEMPERATURE lOCI
70
0
"~
RL = 4K!2
--'PHL
o
4::: ...
RL~~ ~ I--
-
or-- ---0
V
C1598
80
!
RL =1350!l
70
~w
60
Low Level Output
Voltage VB.
Temperatura
80
o
50
TEMPERATURE ITA. °CI
Forward Input
Current VB. Forward
Input Voltage
]
:t,002
0
1.2
Fig. 6.
:I:
-.001
VF. FORWARD INPUT VOLTAGE IVI
94
.6
.4
I-
f
I-
~rr
VB.
Forward Input
Current
10. 0
rr
C1602
Propegatlon Delay VB.
Pulse 1nput Current
20
C1603
60
70
C1613
61137 MCL2601 (HCPL-2601)
TYPICAL CHARACTERISTIC CURVES (TA = 25° C Unless Otherwise Specified)
PULSE
GEN.
"=II=5n8
Zo=50n
---I"7'5mA
t----r--t---o
I ________
~
INPUT
+5 V
-
(IF)
I ___ IF -3.5mA
I
J
I P1il - " ' :
- - : - : I PlH / _
:--
"::1
ou~~i
-~---1.5V
(Vol
INPUT
MONITOR o--t--I
(IF)
'------:;r-~--i~ OUTPUT
I
I
I
:;:; CL
I
.""
I
I
47
-r\-------z=-
O~~:~T
(Vo)
I
10%
I
:--
I
1
-----:~I~---~I~
n
C1597
':" C1981
Fig. 10.
Test Circuit and Waveforms for tpLH• tf' and
t,
INPUT
MONITOR
(lVE)
I
I
_]t~"L:_
OUTPUT
IVol
1
I
I
C1599
':" 01982
Fig. 11.
Tast Circuit tEHL and tELH
rll>........--------------II>...... ChanA
INPUT
Chan B
t-r---t-r-oO+5 V
)- t__
----_
1=
.=t=
r--t~t:
!w
300
"i= 200
-- --
'\ - 4Kn
....
;i
~
~
"'
ii:
100
80
60
=
Vee - 5.0~
I, • 7.5mA_
-- -- -- -
~'~K~
50
40 I\. - 350n
:=;::
--10--
0
o,A"4-
~
c
z
60
~
:t'"
~w
-'
'"
"1E,
'"
Z
• 5.0V
"'3.0V
VeL =oV
_yEH
40
10
~
4KH
0--.1.
30 Trlll •
20
f\
rlL
~ lK1}
0fIII'!.
v~v
- - T'"r '\ 1 "'1'
=
20
350
30
40
7K
6K
VOL =Dav
"- - 3500
TA = 25°C
~
-
IFH = 7.5mA
IFL =OmA
VOH 2.0V
'--
8K
f.-::: ~
K!l,
r"50
TA - TEMPERATURE (OCI
Fig. 14.
S.ov
1E
~
.
-
~
w
5K
3K
2K
I---
'"
''""
0
"'-
70
IFH '" 7.SmA
"'r-.....
1.0
r-
VeM = SOV
.9
">w
.8
:'iw
.7
'"
VeM - COMMON MODE TRANSIENT AMPLITUDE (V)
Enable Propagation
De/ayvs.
Temperature
~~~ : ~:~~ -
,., f""-..d-+-+----1 ~~: ~~
>=
100 200 300 400 500 600 700 800 900 1000
C1607
Vee = S.DV
1.2 f--f-+-+----1
0
'K
60
, 3
C
c
z
4K
TTELH • F\. = 350n
10
Vee ""
-
50
TE"LH'
:>
9K
IF'" 7.SmA
0
. ,.
..'"
>-
V~
Fig. 15.
0
10
Fig. 16.
Relative Common
Mode Transient
Immunity vs.
Common Mode
Transient Amplitude
20
30
40
50
TA - TEMPERATURE (OC)
60
70
Cl59S
Relative Common
Mode Transient
Immunity vs.
Temperature
j----,-r--o.5 V
5V
SWITCH POS. fAI, If = a
eM,
- - - - V o (MIN)
I\
~ _ _ _~
O.SV
- - - - VO IMAKI
SWITCH POS 18). IF = 7 5 mA
C1594
PULSE GEN.
Fig. 17.
01984
Test Circuit Common Mode Transient Immunity
NOTES
1. The Vcc supply voltage to each 6N137 isolator must be bypassed by a 0.1 p.F capacitor or larger. This can be either a
ceramic or solid tantalum capacitor with good high frequency characteristic and should be connected as close as
possible to the package Vcc and GND pins of each device.
2. tpHL - Propagation delay is measured from the 3.75 mA level on the LOW to HIGH transition of the input current pulse to
the 1.5 V level on the HIGH to LOW transition of the output voltage pulse.
3. tpHL - Propagation delay is measured from the 3.75 mA level on the LOW to HIGH transition of the input current pulse to
the 1.5 V level on the HIGH to LOW transition of the output voltage pulse.
- Fall time ;s measured from the 10% to the 90% levels of the HIGH to LOW transition on the output pulse.
4. t f
5. t,
- Rise time is measured from the 90% to the 10% levels of the LOW to HIGH transition on the output pulse.
6. tEHL - Enable input propagation delay is measured from the 1.5 V level on the LOW to HIGH transition of the input
voltage pulse to the 1.5 V level on the HIGH to LOW of the output voltage pulse.
7. tELH - Enable input propagation delay is measured from the 1.5 V level on the HIGH to LOW transition of the input
voltage pulse to the 1.5 V level on the LOW to HIGH transition of the output voltage pulse.
8, CML - The maximum tolerable rate of fall of the common mode voltage to ensure the output will remain in the low output
state (i.e., Vour < 0.8 V). Measured in volts per microsecond (Vlp.s).
9. CMH - The maximum tolerable rate of rise of the common mode voltage to ensure the output will remain in the high state
(i.e., Vour> 2.0 V). Measured in volts microsecond (V/p.s),
10.
- Device considered a two-terminal device: Pins 1, 2, 3 and 4 shorted together, and Pins 5, 6, 7 and 8 shorted together.
The 2500 VAcil minute capability guarantees 3000 VDc/5 sec. as registered with JEDEC and is validated by a
factory 3.1 K VAc /l second.
11. Enable Input - No pull up resistor required as the device has an internal pull up resistor.
12.
- DC current transfer ratio is defined as the ratio of the output collector current to the forward bias input current times
100%.
96
MCL2630 (HCPL-2630)
DUAL 10 MBil/s LOGIC GATE MCL2631 (HCPL-2631)
DESCRIPTION
PACKAGE DIMENSIONS
w
~ 9.65 (.380) - '
9.14 (.360)
2.54 (.100)lYP
-I
6.35 (.250)
0.36 (.014)
-'---""-rl-""11 0.20 (.008)
r-=.,
7.62
(.300)
REF
~
1.78 (.070) REF
...L
f
--I 1.0.89 (.035)lYP
I I
t
t
I 3.94 (.155) 4.95 (.195)
1- 11
I
I
I
I
; 3.68 (.145)/ t M~X
:~ :U:
I
I
t 3.56 (.140)
~~
6.86 (.270)
(.~~~)
I
\i 3.05 (.120)
t
0.~1 (.020)
FEATURES
MIN
•
•
•
•
•
•
•
•
/-0.89 (.035) TVP
0.56 (.022)
C2091
0.41 (.016)
DIMENSIONS IN mm (INCHES)
The MCL/HCPL-2630 and MCL/HCPL-2631 dual
channel optocouplers have two channels, each
consisting of a 700 nm GaAsP LED, optically
coupled to a very high speed integrated
photodetector logic gate. The outputs feature
open collectors, thereby permitting wired-OR
outputs. The coupled parameters are guaranteed
over the temperature range of 0-70°C. A
maximum input signal of 5 mA will provide a
minumum output sink current of 13 mA (fan-out
of 8).
An internal noise shield provides superior
common mode rejection of typically 10 kWp.s.
The MCL/HCPL 2631 has a minimum CMR of
1 kWp.s.
An improved double-molded package allows
superior insulation, permitting a 480 V working
voltage compared to industry standard 220 V.
Very high speed-10 MBiVs
Superior CMR - 10 kVlp.s
Superior insulation - 2500 V RMS 1 min.
Double working voltage - 480 V
Fan-out of 8 over 0-70° C
Logic gate output
Wired-OR - open collector
UL recognized (File#E50151)
APPLICATIONS
A 0.1 p.F bypass
capacitor must be
connected between
pins 8 and 5. (See
note 1)
•
•
•
•
•
•
•
Ground loop elimination
LSTTL to TTL, LSTTL or 5-volt CMOS
Line receiver, data transmission
Data ml,lltiplexing
Switching power supplies
Pulse transformer replacement
Computer-peripheral interface
e1979
Equivalent Circuit
ABSOLUTE MAXIMUM RATINGS
Storage temperature ....••••... -55° C to + 125° C
Operating temperature •.....••...• 0° C to + 70° C
Lead solder temperature .....•..•. 260°C for 10 s
DC/Average forward input current
(each channel) .....••...•.•....•...•••.. 15 mA
Peak forward input current
(each channel) .••... 30 mA (~1 msec duration)
Reverse input voltage (each channel) .......• 5.0 V
Reverse supply voltage (-Vee) .••....•... -500 mV
Supply voltage, (Vee) ... 7.0 V/1 minute maximum
Output current, (10) (each channel) •.•..... 16 mA
Output voltage, (Vo) (each channel) .•....... 7.0 V
Collector output power dissipation .••.•... 60 mW
97
MCL2630 (HCPL-2630) MCL2631 (HCPL-2631)
RECOMMENDED OPERATING CONDITIONS
SYMBOL
MIN.
MAX.
UNITS
IFL
IFH
Vcc
TA
N
0
6.3"
4.5
0
250
15
5.5
70
8
,.A
mA
V
°c
Input current. low level
Input current, high level
Supply voltage, output
Operating temperature
Fan out (TTL Load)
"6.3 rnA is a guard banded value which allows for at least 20%
SYMBOL
Initial input current threshold value is 5.0 rnA or Jess.
=0° C - 70° C Unless Otherwise Specified)
ELECTRICAL CHARACTERISTICS (TA
PARAMETER
eTR degradation.
MIN.
TYP.
UNITS
MAX.
TEST CONDITIONS
High level output current
10H
2
250
,.A
Vee =5.5 V, Vo =5.5 V
IF = 250 ,.A, Note 6
Low level output voltage
VOL
0.34
0.6
V
Vcc = 5.5 V. IF = 5 mA
Note 6,Iol = 13 mA
High level supply current
ICCH
14
30
mA
Vcc=5.5V,IF=OmA
(Both channels)
Low level supply current
ICCl
26
36
mA
Vcc -5.5 V,IF -10 mA
(Both channels)
1.55
1.75
V
IF = 10 mA, TA = 25°C
V
IR-l0,.A, TA=25°C
VF = O. f= 1 MHz
Input forward voltage
VF
Input reverse breakdown voltage
BVR
Input capacitance
CIN
60
pF
/j,VF//j,TA
-1.4
mVrC
h-I
0.005
,.A
Input diode temperature
coefficient
Input-input insulation
leakage current
5.0
IF=10mA
Relative humidity = 45%
t = 5 S, VI-I = 500 V, Note 7
Resistance (input-input)
Ai-I
1011
n
VI_I = 500 V, Note 7
Capacitance (Input-input)
CI-I
0.25
pF
f = 1 MHz, Note 7
,.A
Relative humidity = 45%
TA=25°C,t=5s
VI-O = 3000 V de
Note 10
Input-output
insulation leakage current
h-o
Resistance (Input to output)
Capacitance (input to output)
RI-O
CI-O
Withstand insulation test voltage
VISO
1.0
n
1012
0.6
VI-O = 500 V, Note 10
f = 1 MHz, Note 10
pF
2500
RH < 50%TA =25°C
t= 1 min
VRMS
"All typical values are at Vee = 5 V, TA 25° e (each channel).
SWITCHING CHARACTERISTICS (TA = 25° C. Vee
PARAMETER
Propagation delay time
(For output high level)
TYp.
MAX.
UNITS
tPlH
48
75
ns
tPHl
48
75
ns
SYMBOL DEVICE
MIN.
TEST CONDITIONS
tr
30
ns
Rl = 350 0
Cl=15pF
IF=7.5mA
Output fail time (90-10%)
tf
14
ns
Notes, 2, 3, 4 & 5. Fig. 8
Common mode transient
immunity
(At output high level)
CMH
Common mode transient
immunity
(At output low level)
CMl
Propagation delay time
(For output low level
Output rise time (10-90%)
98
= 5.0 V Unless Otherwise Specified)
2631
2630
1000
10,000
10,000
VII'S
2631
2630
-1000
-10,000
VII'S
-10,000
VCM - 50 V (peak)
IF = 0 mAo VOL (min) = 2.0 V
Rl = 350 0, Note 9, Fig. 12
VCM - 50 V (peak)
IF=7.5 mAo
VOL (max) = 0.8 V
RL = 350 0, Note 8, Fig. 12
MCL283D (HCPL-283D) MCL2831 (HCPL-2631)
TYPICAL CHARACTERISTIC CURVES (TA = 25° C Unless Otherwise Specified)
1.0
l' .6
. . . .4
z
.8
-
Vo -5.5V
~, .2 ---'- V, ·2.0V
II:
IF = 2501'11
a
/
w
5
5
!'!.004
"~.002 /'
'0 • I.SmA
10 -6.4mA~
~ .2
o
10
20
30
41}
50
60
o
70
5.0
\
RL = lKU
~ 3.0
L...
:J
0
i \ Rl=3501l
I 2.0
~ 1.0
1
oS.D01
i!..J
~
:J 4.0
~ .3
".006
- r--
6.0
I-
.i
w
oJ
TA = 25'C
I 7.0
1&1
10 = 1.8mA
'0 " 16mA"",-
VC~ =5.0~_
> B.O
.5
.4
oJ
/'
w
~ ,01
-
-
w
0
50
~
40
..
..
"c
/
RL -4KSl_
~......
z
0
I
0
30
I
20
.!-
I
/
.01
1.2
1.6
..
...-- -- I~:
~
--
c
~
40
0
30
..
..,
II:
.!-
I, "7.5m~_
V'f •
1IL'3son
.
RL-350n...
~L-1Kn
RL-4Kn ..
...
~
..
r-- ---
tpLH_
-tpHL
t - ~cc = 5.0V _
TA • 25°C
10
5.0,"
....L
20
o
o
010203040606070
20
15
10
'F - PULSED INPUT CURRENT (mAl
T. - TEMPERATURE I'CI
CI600
C1604
CI603
Fig. 7. Propagation Delay VS.
Pulse Input Current
Fig. 6. Propagation Dalay VS.
Temperature
+5
PULSE
GENERATOR
~
'
ZO=50n
1,=5n.
INPUT
(IFI
1-1---+--oVo
BYPASS
-
----IF=7.5mA
-------- ---IF = 3.5 mA
I
PHL=.J
I
1----
OU~
.1 "F
INPUT
MONITORING
MODE
z 50
;::
0
RL -IKn
"'RL -IKn
-
60
0
......RL -4Kn
VF • FORWARD INPUT VOLTAGE (VI
Fig. 5. Forward Input Current
vs. Forward Input
VOltage
5w
.-!
.... --" .,..,..",.-'" .... "'~:'1;:n
~'"",
RL"4Kn
>- 70
......
10 r-- ----t,LH
o
1.4
"'....-
RL..:'
~
II:
-
80
!
RL ,I3son
!
i··-11
(Vol
-~----1.5V
OUTPUT
K,:"--------;I
CL*
OUTPUT
MONITORING
NODE
'
~PI..I1
90%
(Vol
---10'110--
----It,,..-
:
----;tr:---C1790
'CL is approximately 15 pF. which
includes probe and stray wiring
capacitance
C19BO
Fig. 8. Test CircuitZ t pHL•
tpLH< t, and t,
99
MCL263D (HCPL-2&3D) MCL2&31 (HCPL-2631)
TYPICAL CHARACTERISTIC CURVES (TA = 25°C Unless Otherwise Specified)
~
,,----
~"
Vee - 5.0V=:
'F =7.5mA_
1
~10KrT'--r-'--r-.--.-'r-.--r-'
,.....
~ 9Krt+--r-1--t-~-+~L-~~-1
:;;
z
Vee = 5.0V
~ 8K~+--+~--t-4--1 IFH = 7.5mA f--
~ 7K~n--+~--t-4--1
~
~
z
~
....
::OmA
VOH 2.0V
VOL'"
O.BV
~
f--
~
Z
I--
'....a:"
TA = 25·C
5K~H--+~--t-4--+-'r-.--r-i
3Kr-~,,~r-+-4--+-+--r-+-~--1
~ 2K~+-~~--t-~-+~~+-~-1
:;;
8
,
1Kr-+--+~--t-4--+~r-+--r-i
:;;
<..>
TA - TEMPERATURE I·CI
100 200 300400 506 6.00 700 800 9001000
VCM
-
1.3
Vee = S.OV
VOH = 2.0V
O.BV t--'FH :: 7.5mA
'FL =OmA
,
1,1
VOL'"
......
w
0
a
:;; 1.0
1\
.9
<..>
w
.8
~
.7
= 350il
r--..... .......
r--..... r-.....
a
>
~
I---
VCM = 50V
r-....
z
a
:;;
:;;
0
10
COMMON MODE TRANSIENT AMPLITUDE IVI
20
30
40
50
60
C1595
Fig. 10. Relative Common Mode
Transient Immunity vs. Common
Mode Transient Complitude
Fig. 11. Relative Common Mode
Transient Immunity vs.
Temperature
R
+5 V
350n
VCM
ov
A
5V
SWITCH POS. IAI. IF = 0
- - - - V o IMIN.I
Vo
~
f \ - - - - - VO IMAX.I
Vo
O.5V
PULSE GEN.
Zo=50fl
_________J \
SWITCH POS.
181, 'F
= 7.5mA
C1594
C19B1
Fig. 12. Test Circuit for Transient Immunity and Typical Waveforms
NOTES:
1. The Vcc supply voltage to each MCL2630 isolator must be bypassed by a 0.1 pF capacitor or larger. This can be either a
ceramic or solid tantalum capacitor with good high frequency characteristic and should be connected as close as
possible to the package Vcc and GND pins of each device.
2. tpHL - Propagation delay is measured from the 3.75 mA level on the LOW to HIGH transition of the input current pulse to
the 1.5 V level on the HIGH to LOW transition of the output voltage pulse.
3. tpLH - Propagation delay is measured from the 3.75 mA level on the HIGH to LOW transition of the input current pulse to
the 1.5 V level on the Low to High transition of the output voltage pulse.
- Fall time is measured from the 10% to the 90% levels of the HIGH to LOW transition on the output pulse.
4. t f
5. t,
- Rise time is measured from the 90% to the 10% levels of the LOW to HIGH transition on the output pulse.
6. Each channel.
1. Measured between pins 1 and 2 shorted together, and pins 3 and 4 shorted together.
8. CML - The maximum tolerable rate of fall of the common mode voltage to ensure the output will remain in the low output
state (i.e., VOUT > 0.8 V). Measured in volts per microsecond (V/%s).
9. CMH - The maximum tolerable rate of rise of the common mode voltage to ensure the output will remain in the high state
(i.e., VOUT > 2.0 V). Measured in volts per microsecond (V/ps).
Volts/microsecond can be translated to sinusoidial voltages:
(dVCM)
VIps = - - Max. = rrf CM VCM (p.p.)
dt
Example:
10.
100
70
TA - TEMPERATURE I·CI
C1590
C1601
Fig. 9. Rise and Fall Time
vs. Temperature
;::
~ 1.2
~ 4Kr-~-r-1--t-~-+-1~+-~-1
a
1.4
....
'FL
6K~H--+~--t-4--1 RL '" 350n
Z
:::J
VCM = 318 V pp when feM = 1 MHz using CML and CMH = 1000 VIps.
-Device considered a two-terminal device: Pins 1, 2, 3 and 4 shorted together, and Pins 5,6,7 and 8 shorted
together.
1.6 mA DUAL MCL2730 (HCPL-2730)
0.5 mA DUAL MCL2731 (HCPL-2731)
PACKAGE DIMENSIONS
W
E _I
9.65 (.380)
9.14 (.360)
DESCRIPTION
6.86 (.270)
6.35 (.250)
0.36 (.014)
.L..-"'+....." 0.20 (.008)
~
7.62
(.300)
REF
to---'
1.78 (.070) REF
r.1.
-j rO.89 (.035) TYP
2.54 ~OO) TY~
,, ,,
\ HI'R'ruH
I
I
I'~
t 95)
3.94 (.155) t 4.95 (.1
I MtX
Irl 3.68 (.145)j
: t 3.56 (.140) O.~, (.02
j~(Ml,J U~... ""J '"
W :
3.05 (.120)
MIN
•
0.56 (.022)
C2091
0.41 (.016) DIMENSIONS IN mm (INCHES)
The MCUHCPL-2730/31 dual channel
optocouplers contain two completely separated
700nm GaAsP LED emitters. Each channel is
optically coupled to high gain detector in a
split Darlington Configuration, which provides
extremely high current transfer ratio.
The split darlington configuration separating
the input photodiode and the first stage gain
from the output transistor permits lower output
saturation voltage and higher speed operation
than possible with conventional darlington
phototransistor optocoupler. An integrated
emitter-base resistor provides superior stability
over temperature.
The combination of a very low input current of
0.5 mA and a high current transfer ratio of
2000% make this family particularly useful for
input interface to MOS, CMOS, LSTTL and EIA
RS232C, while output compatibility is ensured
to CMOS as well as high :an-out requirements.
An internal noise shield provides exceptional
common mode rejection of 10 kVl,..s. An
improved package allows superior insulation
permitting a 480 V working voltage compared to
industry standard 220 V.
FEATURES
•
•
•
•
•
•
•
Low current - 0.5 mA
Superior CTR - 2000%
Superior CMR - 10 kVl,..s
Double working voltage - 480 V RMS
CTR guaranteed 0-70°C
U.L. recognized (File #50151)
Superior insulation; 2500 VAC RMS, 1 min
APPLICATIONS
Equivalent Circuit
•
•
•
•
Digital logic ground isolation
Telephone ring detector
U.L. recognized (File #E50151)
High common-mode-noise line receiver
ABSOLUTE MAXIMUM RATINGS
Storage temperature ••.•..• '" -55°C to +125°C
Operating temperature. '" ...•• -40°C to +85°C
Lead solder temperature .••...•.•. 260° C for 10 s
DC/Average forward input current
(each channel) •.•.••••.•..••...•. 20 mA (1 )
Peak forward input current
(each channel) ••.••..•••.•..•.•.•..• 40 mA
(:5 1 msec duration, 50% duty cycle)(1)
Reverse input voltage (each channel) •...•. 5.0 V
Input power dissipation
(each channel) .•.. , ••.••..•••.•.. 35 mW (2)
Output current (each channel) .•.•... , 60 mA (3)
Supply and output voltage (Vee, Vol
MCL2730 (HCPL-2730) •••....•.•.. -0.5 to 7 V
MCL2731 (HCPL-2731) ••..•...... -0.5 to 18 V
Output power dissipation
(each channel) .•••.•.••••••....• 100 mW (4)
101
MCL2730 (HCPL-2730) MCL2731 (HCPL-2731)
ELECTRICAL CHARACTERISTICS (TA = O°C to 70°C Unless Otherwise Specified)
PARAMETER
SYM.
Current transfer
ratio
CTR
DEVICE
MIN.
TYp..
2730
300
400
500
2000
2000
2000
2731
2730
UNITS
TEST CONDITIONS
2
5.6
IF =
IF IF =
IF =
IF =
1
5
V
V
V
V
V
2730
2731
0.01
0.D1
100
100
p.A
p.A
IF = 0 mAo Vo = Vee = 7 V
IF = 0 mAo Vo = Vee = 18 V
leel
2730
2731
.4
.5
mA
mA
IFl -IF2 -1.6mA. Vee -7 V
VOl = V02 = Open. Vee = 18 V
leeH
2730
2731
4
5
nA
nA
IFl - IF2 - 0 mAo Vee - 7 V
VOl = V02 = Open. Vee = 18 V
Logic high
output current
10H
Logic low
supply current
Logic high
supply current
Input forward
voltage
VF
Input reverse
breakdown
voltage
BVR
Temperature
coefficient of
foward voltage
ATA
2731
1.5
5
1.7
NOTE
IF = 1.6 mA, Vo = 0.4 V. Vee = 4.5 V
IF - 0.5 mAo Vo - 0.4 V. Vee - 4.5 V
IF = 1.6 mAo Vo = 0.4 V. Vee = 4.5 V
0.4
0.4
0.4
0.4
0.4
VOL
FIG.
%
%
%
.1
.1
.1
.1
.2
Logic low
output voltage
1.6 mAo 10 = 4.8 mAo Vee = 4.5 V
0.5 mAo 10 - 2 mAo Vee - 4.5 V
1.6 mA.lo =8 mAo Vee =4.5 V
5 mA.lo = 15 mAo Vee =4.5V
12 mA.lo =24 mAo Vee =4.5V
5
4
V
IF = 1.6 mAo TA = 25'C
V
IR = 10p.A. TA = 25'C
5
IF=1.6mA
5
VF =0. f= 1 MHz
5
5
AVF
-1.6
mvrc
60
pF
Input capacitance
CIN
Withstand
insulation
test voltage
VISO
Resistance
(Input-Output)
RI-o
1012
{}
VI-O = 500 VDC
10
Capacitance
(Input-Output)
CI-O
0.6
pF
f= 1 MHz
10
Insulation
leakage
current
(Input-Input)
II-I
0.005
p.A
RHS50%.
VI-I = 500 VDC t = 5 sec
7
Resistance
(Input-Input)
RI-I
1011
{}
VI-I = 500 VDC
7
CapaCitance
(Input-Input)
CI-I
0.25
pF
f=1 MHz
7
•All typicals at TA
102
MAX.
= 25' C
2500
VRMS
RH S 50%. TA = 25'C
t= 1 min
10.11
MCL2730 (HCPL-2730) MCL2731 (HCPL-2731)
SWITCHING CHARACTERISTICS 'rA = 25°C, Vcc
= 5.0 V
TYP."
MAX.
UNITS
4
20
2
/-IS
0.5
/-IS
IF = 1.6 mA, RL = 2.2 kO
IF = 12 mA, RL = 2700
25
100
/-IS
IF = 0.5 mA, RL = 4.7 kO
12
35
10
/-IS
4
/-IS
IF -1.6 mA, RL - 2.2 kO
IF = 12 mA, RL = 2700
20
60
/-IS
IF = 0.5 mA, RL = 4.7 kO
PARAMETER
SYM.
Propagation delay
time
(For output
low level)
tPHL
Propagation delay
time
(For output
high level)
tpLH
Common mode
transient
Immunity at
logic high level
output
CMH
Common mode
transient
Immunity at
logic low level
output
CML
•All typicals at TA
DEVICE
MIN.
2730/1
2731
2730/1
2731
TEST CONDITIONS
FIG.
NOTE
6
5
6
5
10000
VI/-Is
iF = OmA, RL = 2.2 kO
VCM=10V p- p
7
5,9
-1000 -10000
VI/-IS
IF = 1.6 mA, RL = 2.2 kO
VCM = 10 Vp_p
7
5,8
1000
=25· C
NOTES:
1. Derate linearly above 70· C free-air temperature at a rate of 0.5 mA/" C.
2. Derate linearly above 70· C free-air temperature at a rate of 0.9 mAl· C.
3. Derate linearly above 70· C free-air temperature at a rate of 0.6 mWI· C.
4. Derate linearly above 35· C free-air temperature at a rate of 1.7 mW/" C.
Output power = (Col/ector output power) + (supply power).
5. Each channel.
6. CURRENT TRANSFER RATIO is defined as the ratio of output col/ector current, ' 0 , to the forward LED input current, 'F,
times 100%.
7. Measured between pins 1 and 2 shorted together, and pins 3 and 4 shorted together.
8. CML - The maximum tolerable rate ofthe common mode voltage to ensure the output will remain in the low output state (i.e.,
Your > 0.8 V). Measured in volts per microsecond (VI/-IS).
9. CMH - The maximum tolerable rate of rise of the common mode voltage to ensure the output will remain in the high state (i.e.,
Your > 2.0 V). Measured in volts per microsecond (VI/-IS).
dVCM
V//-Is=___ Max = trf eM VCM(p.p.)
dt
10. Device considered a two-terminal device: Pins " 2, 3 and 4 shorted together, and Pins 5,6, 7 and 8 shorted together.
". The 2.5 kV RMSI1 minute capability is validated by a factory 3.1 kV RMSI1 sec.
TYPICAL ELECTRO-OPTICAL CHARACTERISTICS (TA = 0° C to 70· C Unless Otherwise Specified)
100
90
E
I 80
!z 70
«
w
MCL2730
MCL2731 - - + - - - - - - - 1
Vee =5 V
TA=2S.C.--+----:~--=---l
IF = 0.5 mAisleg7£.....:,....."'5;__--!
~80r----7~~~~~~---i
a
10,000
Z
J...11 ~
~
1-;11.
!z11000
~~'
50
MCL273~1f
TA 8S·C
ffiu.
MCL2731
Vee - 5,0 V
Vo = 0.4 V
Ul
TA-O·C
TA=-40·C
~~
o
~
1\
~
I
a:
b
1.0
2.0
Vo-OUTPUTVOLTAGE-1V
C1957
Fig. 1.
DC Transfer
Characteristics
100
0.1
1.0
10
100
INPUT FORWARD CURRENT-rnA
C1958
Fig. 2.
Current Transfer
Ratio vs. Input
Forward Current
103
MCL2730 (HCPL-2730) MCL2731 (HCPL-2731)
TYPICAL ELECTRO-OPTICAL CHARACTERISTICS (TA = 25° C Unless Otherwise Specified)
_10.0
100
E
Z
W
.§.
10
a:
a:
::J
~
!5
r7
Ij1
I
l.u~
f-
f-
Q.
f-
::J
0
I
E
1.0
TA 'O'C
TA 40'C
..:
~~
~~
J:a:
~
~
e:.~
g~
~
~Vcc=5V
100
10
1.0
INPUT FORWARD CURRENT - mA
C1959
J£
Vee 18 V
Vee = 7 V
1.0
-::J
en
12
r-Ym~11t
0.1
II IIII
10
()a:
a:::J
W()
/
~ 0.1
I=MCL 2731
Fig. 3.
1.0
MCL2730/31 7V Vee
MCL2731 18. V Vee
:;E
/
()
§~CILI~j~o
0.1
,
TA =25'C
a:
()
::J
100
..:
TA·· B5'C
TA··25'C
..:
/
.01
1.0
0.1
0.1
1.2
1.4
1.6
VF, FORWARD INPUT VOLTAGE (V)
C1600
Output Current vs.
Input Forward
Current
Fig. 4.
1.0
5 10 2
100
IF - FORWARD INPUT CURRENT
C1995
Fig. 5.
Forward Input
Current VS. Forward
Input Voltage
Supply Current Per
Channel vs. Input
Forward Current
PULSE
GEN
Za=50n
tF
IF=r----,
:
0
I
I
"~J'F
l '''___
= 5ns
I!------I
I
1---4--t_-oVa
5V
IF MONITOR
:
loon
tPHL
Cl981
Fig. 6, Switching Test Circuit and Waveforms
+5V
10V---~~---~~
VCM
! - - - -.....--o va
If = Oms
vO----------~VaL
If = 1.6 mA
VFF
l-=VeM
PULSE GEN.
C1962
Fig. 7. Test Circuit for Common Mode Transient Immunity and Waveforms
104
30 mA MCP3009*
NON-lERO-CROSSING 15 mA MCP3010
10 mA MCP3011
DESCRIPTION
PACKAGE DIMENSIONS
}
15'MAX
1
6.86 (.270)
o
0.36 (.014)
6.35 (.250)
-'------"'-'+-'11 0.20 (.008)
~'8.89 (.350) ~
~
7.62
(.300)
REF
8.38 (.330)
t-=
1.78 (.070) REF
-L
T
t
1
I
1
I
1
I
I
--II0.56 (.022)
0.41 (.016)
ANOOE 1
J:I
:
3.94 (.155) t 4.95 195)
3.68 (.145) I I MAX
I
t 3.56 (.140)
ti3.05 (.120)
0.~1
FEATURES
•
1.78 (.070) TYP
:
The MCP3009, MCP3010 and MCP3011 are optically
isolated triac driver devices. These devices contain a
GaAs infrared emitting diode and a light activated
silicon bilateral switch, which functions like a triac.
This series is designed for interfacing between
electronic controls and power triacs to control
resistive and inductive loads for 120 VAC operations.
j
(.020)
MIN
Low input current required (typically 5mA MCP3011)
• Minimum commutating dv/dt is specified at 0.1 V /
fJsec
• Pin for pin replacement for the MOC3009, 3010
and 3011 devices
• High isolation voltage - minimum 7500 VAC peak
• Underwriters Laboratory (U L) recognized - File
E50151
1-1.27 (.050)
C2090
DIMENSIONS IN mm (INCHES)
6 MAIN
TERM.
4 MAIN
TERM.
APPLICATIONS
•
•
•
•
•
•
Triac driver
Industrial controls
Traffic lights
Vending machines
Motor control
Sol id state relay
Equivalent Circuit
* *00 NOT CONNECT C2081
(TRIAC SU8STRATE)
'Not Recommended
For New Designs
ABSOLUTE MAXIMUM RATINGS
TOTAL PACKAGE
Storage temperature ................... -SSO C to 1SO· C
Operating temperature ................. -40·C to 1OO·C
Lead temperature
(Soldering 10 sec ............................ 260·C
Total package power dissipation @ 2S· C
(LED plus detector) ......................... 330 mW
Derate linearly from 2S· C ................... 4.0 mW/· C
Withstand test voltage ........ 7S00 VAC Peak (S0-60 Hz)
INPUT DIODE
Forward DC current ............................ 60 mA
Reverse voltage ................................... 3 V
Peak forward current
(1 I'S pulse, 300 pps) .......................... 3.0 A
Power dissipation 2S·C ambient ................ 100 mW
Derate linearly from 2S·C .................. 1.33 mW/·C
OUTPUT DRIVER
Off-state output terminal voltage ............... 2S0 volts
On-state RMS current
TA; 2S·C .......... 100 mA
(Full cycle, 50 to 60 Hz) TA; 70·C ........... SO mA
Peak non repetitive surge current ................. 1.2 A
(PW; 10 ms, DC; 10%)
Total power dissipation @ TA; 2S·C ........... 300 mW
Derate above 2S·C ....................... 4.0 mWfOC
105
MCP3009 MCP3010 MCP3011
ELECTRO-OPTICAL CHARACTERISTICS (25°C Temperature Unless Otherwise Specified)
TRANSFER CHARACTERISTICS
CHARACTER ISTIC
LED Trigger Current
(Current Required MCP3009
to latch output) MCP3010
MCP3011
U
0
Cl
""-
~~
a:
TYP.
MAX.
UNITS
1FT
-
15.0
10.0
5.0
30
15
10
mA
Main terminal
volt. = 3.0V
200
"A
Either direction
V/"s
Static dv/dt
(see Figure 5)
VI"S
Commutating dv/dt
ILOAD = 15 mA
(see Figure 51
IH
Critical Rate of Rise of
Off-State Voltage
dv/dt
-
10.0
-
Critical Rate of Rise of
Commutating Voltage
dv/dt
0.1
0.2
-
Isolation Voltage
Vlso
5300
VAcRMS
Viso
7500
VACPEAK
Isolation resistance
Rlso
1011
Isolation capacitance
CISD
2
0
i=
"
50
25
75
100
TA - AMBIENT TEMPERATURE (DC)
C1B91
C1690
Fig. 5. dV/dt vs. Load Resistance
.
~
C!1
Fig. 6. dV/dt vs. Temperature
107
MCP3009 MCP3010 MCP3011
TYPICAL ELECTRICAL CHARACTERISTIC CURVES
(25°C Temperature Unless Otherwise Specified)
!f
dV/dl
'"
~"
2.0
!~I[ 2b ~~
:::;
V/~s
~
......
....
dV/dl 8.9 Vonf
RL 1 kfl
w
~
0.2
Test Circuit in Figure 5
~ 1.5
r--
II:
II:
100
::>
......
()
~
w 1.0
CJ
o
II:
w
::>
en
~
~1°11111
w
I
:>
1.0
10
f -
100
1000
10,000
.5
Q.
~
100,000
0
0.01
1.0
0.1
MAXIMUM OPERATING FREQUENCY 1HZ!
PW -
100
10
PULSE WIDTH Imsi
C1696
C1692
Fig, 7. Commutating dV/dt
vs Frequency
Fig. 8. Maximum Nonrepetitive
Surge Current
TYPICAL APPLICATION CIRCUITS
RL
Ron
180
MCP3009
MCP3010
MCP3011
180
120V
60 Hz
MCP3009
MCP3010
MCP3011
C1693
Fig. 10. Inductive Load With
Sensitive Gate Triac
6
180
120 V
60 Hz
MCP3009
MCP3010
MCP3011
0.2
~F
115 rnA < IGT < 50 rnA)
Fig. 11. Inductive Load With
Non-Sensitive Gate Triac
108
0.1 "F
IIGT" 15 mAl
Fifl. 9. Resistive Load
C1695
120 V
60 Hz
C1694
NON-ZERO-CROSSING 5 mA MCP3012
MCP3023
AIGaAs
PACKAGE DIMENSIONS
DESCRIPTION
t
6.86 (.270)
o
I.
6.35 (.250)
0.36 (.014)
-'------""""rl-ll 0.20 (.008)
(.350~ ~
~
'8.89
8.38 (.330)
7.62
(.300)
REF
t-=
1.78 (.070) REF
-L
T
The MCP3011A, MCP3012, MCP3022A and
MCP3023 are optically isolated triac driver devices.
These devices contain a very low degradation
Aluminum Gallium Arsenide (AIGaAs) infrared
emitting diode and a photosensitive silicon bilateral
switch, which functions like a triac. This series is
designed for interfacing between electronic controls
and power triacs to control resistive and inductive
loads for 240 VAC operations.
FEATURES
1.18 (.070) TYP
iii
I
I
I
-~
I
I
I--
I
J.,
J: I
3.94 (.155) t 4.95 95)
3.68 (.145) t I MAX
I
t 3.56 (.140)
,.L13.05 (.120)
I
O.Jl (.020)
MIN
1-1.27 (.050)
0.56 (.022)
C2090
0.41 (.016)
DIMENSIONS IN mm (INCHES)
6 MAIN
TERM.
4 MAIN
TERM.
.. Low input current, 1FT = 5 mA MCP3012,
MCP3023
" Minimum commutating dVldt is specified at 0.1
Vlllsec
" High isolation voltage-minimum 7500 VAC peak
.. Underwriters Laboratory (UL) recognized-File
E50151
" Excellent 1FT stability-IR emitting diode has very
low degradation.
APPLICATIONS
" European applications for 240 VAC
" Triac driver
" Industrial control
II Traffic lights
II Motor control
• Solid state relay
*00 NOT CONNECT
(TRIAC SUBSTRATE) C2U81
Equivalent Circuit
ABSOLUTE MAXIMUM RATINGS (TA = 25°C Unless Otherwise Specified)
TOTAL PACKAGE
Storage temperature ....•............ -55° C to 150° C
Operating temperature .........•..•.. -40°C to 100°C
Lead temperature (Soldering, 10 sec) ........... 260°C
Total package power dissipation
(LED plus detector) ...•.•.•..•.••..•...•.• 330 mW
Derate linearly from 25°C •.•.•.••.•.....• 4.0 mW/oC
Surge isolation voltage ...•....•...... 7500 VAC Peak
INPUT DIODE
Forward DC current .......................... 40 rnA
Reverse voltage .........•........••............. 3 V
Peak forward current (1 /-,s pulse, 300 pps) ...•... 3.0 A
Power dissipation ........................... 100 mW
Derate linearly from 25°C ...•.....•..... 1.33 mW/oC
OUTPUT DRIVER
Off-state output terminal voltage
MCP3012 .................................. 250 V
MCP3023 ................................ " 400 V
On-state RMS current
TA = 25°C ..•.•.•••. 100 rnA
(Full cycle, SO to 60 Hz) TA = 70°C •.•..•.••.• 50 rnA
Peak nonrepetitlve surge current
(PW = 10 ms, DC = 10%) .•...•.•.•.•.•••..••• 1.2 A
Total power dissipation .•••..•.••.•••..•.••• 300 mW
Derate above 25°C ...................... 4.0 mW/oC
109
MCP3012 MCP3023
ELECTRO-OPTICAL CHARACTERISTICS (TA = 25" C Unless Otherwise Specified)
TRANSFER CHARACTERISTICS
u
a
c:J
;;Z
:t~
II:
SYMBOL
LED trigger current (current
required to latch output)
MCP3012. MCP3023
1FT
Holding current
IH
200
,.A
dV/dt
15
10
0.2
VII'S
VII'S
VII'S
Critical rate of rise 01
off-state voltage
MCP3023
MCP3012
Critical rate of rise 01
com mutating voltage
Isolation Voltage
Z
0
S
0
!!!
TYP.
CHARACTERISTIC
Isolation resistance
Isolation capacitance
dVldt
MIN.
0.1
Viso
5300
Viso
7500
Riso
C,sa
10"
MAX.
UNITS
5
mA
TEST CONDITIONS
Main terminal voltage
Either direction
=
Static dv/dt, TA 85°C
(see Figure 6)
Commutatlng dv/dt
ILOAO 15mA
(see Figure 7)
=
VAcRMS
Relative humidity :5 50%,
1t-0:5 10 ,.A, 5 seconds
VAcPEAK Relative humidity :5 50%,
1t-0:5 10 ,.A, 5 seconds
ohms
V,-o = 500 VDC
pF
1= 1 MHz
0.5
INDIVIDUAL COMPONENT CHARACTERISTICS
CHARACTERISTIC
S~
ILO
Z-
-0
I-~
:::)1~u
:::)111
O~
Forward ¥oltage
Forward voltage tamperature
coefficient
Reverse voltage
Junction capacitance
Peak blocking current,
either direction
MCP3012
MCP3023
Peak on-state voltage,
either direction
SYMBOL
MIN.
VF
VR
CJ
3.0
110
TYP.
MAX.
UNITS
1.3
1.5
V
mVloC
V
pF
-1.8
25
50
IORM
IORM
10
10
100
100
nA
nA
VTM
2.0
3.0
V
Note 1. Test voltage must be applied within dVldt rating.
=3 V
TEST CONDITIONS
IF= 10mA
IR=10,.A
VF = 0 V, 1 = 1 MHz
VORM = 250 V, Note 1
VORM = 400 V, Note 1
ITM = 100 mA peak
MCP3012 MCP3023
TYPICAL ELECTRICAL CHARACTERISTIC CURVES (TA = 25°C Unless Otherwise Specified)
+800
II
;(
.s
a:
a:
w
0
!;(
f'.
(.)
ffjl.l
c
::i
+25
Fig. 2. Trigger Current vs.
Temperature
1000
::!
o
TEMPERATURE, TA - (OC) C1803A
C1711
u;
~
iii 0.7
1/
I
~
---r--
:::l
en
10
~
«
i:tiQ.
I
.5
I
S
1.0
10
100
1000
10,000 100,000
I - MAXIMUM OPERATING FREQUENCY (Hz)
~
o
0.01
0.1
1.0
10
100
PW - PULSE WIDTH (ms)
C1696
C1692A
Fig. 3. Com mutating dVldt
VB. Frequency
Fig. 4. Maximum Nonrepetftive
Surge Current
111
MCP3012 MCP3023
TEST CIRCUITS FOR dV/dt MEASUREMENTS
VCC
.------.6
~--..,
~~--------,
,....-_ _2~MCP3012
2 MCP3012
MCP3023
,....----,6
Rin
~--~~----~
MCP3023
1.-_ _....J4
...J4
L..-_ _
dV = WVpack = 2rrf .1.414 Vrms
Cit
dV
dt = 8.88 f
= 8.88 f Vrms
Vrms
C1689A
Fig. 6. Commutating dV/dt
Fig. 5. Static dV/dt
RL
180
120 V
120 V
60 Hz
60 Hz
MCP3012
MCP3012
MCP3023
MCP3023
IIGT :515 mAl
Cl693A
Fig. 7. Resistiva Load
Fig. B. Inductive Load With
Sensitive Gate Triac
120 V
60 Hz
MCP3012
MCP3023
(15 rnA < IGT < 50 rnA)
Fig. g. Inductive Load With
Non-Sensitive Gata Triac
112
C1695A
Cl694A
30 mA MCP3020/0l*
NON-lERO-CROSING 15 mA MCP3021 III
10 mA MCP3022/2l
PACKAGE DIMENSIONS
DESCRIPTION
~
The MGP3020. MGP3021 and MGP3022 are optically
isolated triac driver devices. These devices contain a
GaAs infrared emitting diode and a light activated
silicon bilateral switch. which functions like a triac.
This series is designed for interfacing between
electronic controls and power triacs to control
resistive and inductive loads for 240 VAG operations.
-I-
)
15 MAX
0
6.86 (.270)
6.35 (.250)
0.36 (.014)
..l...-~"'"1t-'1 0.20 (.008)
~18.89 (.350~~
~~...L
7.62
(.300)
REF
8.38 (.330)
1.78 (.070) REF
I
FEATURES
•
•
1.78 (.070) TYP
•
b--c="",=-'--=l 3.94 (.155) I 4.95 1.195)
I I
3.68 (.145) I j MAX
I
I
I
I
I
I
I I 3.56 (.140) O.Jl (.020)
I
I
.J.......13.05(.120)
MIN
•
•
I:
---II0.56 (.022)
1-1.27 (.050)
0.41 (.016)
DIMENSIONS IN mm (INCHES)
ANODE 1
Minimum com mutating dv/dt is specified at
0.1 Vlp.sec
Excellent 1FT stability-IR emitting diode has low
degradation
Pin for pin replacement for the MOG3020.
MOG3021 and MOG3022
High isolation voltage-minimum 7500 VAG peak
Underwriters laboaratory (Ull recognizedFile #E50151
APPLICATIONS
C2090
6 MAIN
TERM.
•
•
•
•
•
"
•
European applications for 240 VAG
Triac driver
Industrial controls
Traffic lights
Vending machines
Motor control
Solid state relay
4 MAIN
TERM.
*DO NOT CONNECT
(TRIAC SUBSTRATE)
C2081
'Not Recommended
For New Designs
Equivalent Circuit
ABSOLUTE MAXIMUM RATINGS
TOTAL PACKAGE
Storage temperature . . . . . . . . . . -55°C to 150°C
Operating temperature ......... _40°C to 100°C
lead temperature
(Soldering. 10 sec) . . . . . . . . . . . . . . . . . . 260°C
Total package power dissipation @ 25°C
(lED plus detector) . . . . . . . . . . . . . . . . 330 mW
Derate linearly from 25°C . . . . . . . . . . 4.0 mW/oC
Surge Isolation voltage. . . . . . . .. 7500 VAC Peak
INPUT DIODE
Forward DC current . . . . . . . . . . . . . . . . . 60 mA
Reverse voltage . . . . . . . . . . . . . . . . . . . . . . 3 V
Peak forward current
(1 I1S pulse. 300 pps) . . . . . . . . . . . . . . . .. 3.0 A
Power dissipation 25°C ambient . . . . . . . . 100 mW
Derate linearly from 25°C . . . . . . . . . 1.33 mW/oC
OUTPUT DRIVER
Off-State Output Terminal Voltage ..... 400 Volts
On·State RMS Current
TA = 25°C ... 100 mA
(Full Cycle. 50 to 60 Hz) TA = 70°C .... 50 mA
Peak Nonrepetitive Surge Current . . . . . . . . 1.2 A
(PW = 10 ms. DC = "10%)
Total Power Dissipation @ TA = 25°C ..... 300 mW
Derate above 25°C . . . . . . . . . . . . . 4.0 mW/oC
113
MCP3020/0Z MCP3021/1Z MCP3022/2Z
ELECTRO-OPTICAL CHARACTERISTICS (250 C Temperature Unless Otherwise Specified)
TRANSFER CHARACTERISTICS
CHARACTERISTIC
u
0
CI
,,~z
~I-
,,«
II:
SYMBOL
MIN.
TYP.
MAX.
UNITS
LED Trigger Current
(Current Required MCP3020
to latch output) MCP3021
MCP3022
1FT
-
Holding Current
15
8
5
30
15
10
mA
Main terminel
voltaga - 3.0 V
IH
-
200
p.A
Either direction
Critical Rate of Rise of
Off-&tate Voltage
dv/dt
-
15
-
V/p.s
Static dv/dt, TA = 85"C
(see Figure 4)
Critical Rate of Rise of
Commutating Voltage
dv/dt
0.1
0.2
-
V/p.S
Com mutating dv/dt
ILOAD = 15mA
(see Figure 5)
Isolation Voltage
V lso
5300
VAc RMS
Visa
7500
VACPEAK
Isolation resistance
Rlso
10"
Isolation capacitance
Ciso
Z
0
j:
...«0
!!!
TEST CONDITIONS
ohms
pF
0.5
Relative humidity .:; 50%,
11.0" 10 p.A, 5 seconds
Relativa humidity .:; 50%,
11.0" 10 p.A, 5 seconds
VI.O = 500 VDC
f= 1 MHz
INDIVIDUAL COMPONENT CHARACTERISTICS
CHARACTERISTIC
SYMBOL
MIN.
MAX.
UNITS
1.3
1.50
V
-1.8
25
50
65
.35
10
mV/"C
V
pF
pF
p.A
I:J
:!:
Reverse leakage current
IR
Peak Blocking Current,
Either Direction
IORM
-
10
100
nA
Peak On-&tate Voltage,
Either Direction
VTM
-
2.0
3.0
Volts
w
0
0
Q
...
II:
1-0
:JI"'u
I-w
:JIOw
VF
BVR
CJ
3.0
Q
Note 1. Test voltage must be applied within dv/dt rating.
114
TYP.
Forward voltage
Forward voltage temp.
coefficient
Reverse breakdown voltage
Junction capacitance
TEST CONDITIONS
IF=30 mA
IR = 10p.A
VF=OV,f=IMHz
VF = 1 V, f = 1 MHz
VR =3.0V
VORM = 400 V, Note 1
ITM = 100 mA Peak
MCP3020/0Z MCP3021 /1 Z MCP3022/2Z
TYPICAL ELECTRICAL CHARACTERISTIC CURVES (25 0 C Free Air Temperature Unless Otherwise Specified)
+800
«E
U
w
~
z
/
0-400
a:
a:
1.0
U
0.9
~
0.8
"~
I
1:"
1.1
a:
/
I
~
I-
:::l
I
I
1.2
zw
/
0
o
z
I
j
:::l
1.3
a:
J
a:
a:
1.4
«
~
:J
/
!z+400
w
o
~
I
-800
~
-3.0 -2.0 -1.0
0
1.0 2.0 3.0
VTM - ON-STATE VOLTAGE (VOLTS)
C1711
"
"
["
I'\.
"
.......
.......
r-.
.......
r--. ...... r--
0.7
0.6
-40
-20
o 20 40 60 80 100
AMBIENT TEMPERATURE (OC)
TA -
C1712
Fig. 1 On-State Characteristics
Fig. 2 Trigger Current vs.
Temperature
TEST CIRCUITS FOR dV/dt MEASUREMENTS
,...-----.6
~{
1----....,
2
MCP3020
MCP3021
MCP3022
L...-----I4
dV
dt = WVpack
= 8.88 f
RL
= 21ff x1.414 Vrms
Vrms
Fig. 3. Static dV/dt
Vee
6
2 MCP3020
,...----1 MCP3021
MCP3022 1--.JvVv----'
L...-_ _- ' 4
RL
dV
dt = 8.88 f Vrms
C1689A
Fig. 4. Commutating dV/dt
115
116
ZERO CROSSING 30 mA MCP3030* MCP3040/0Z*
15 mA MCP3031 MCP3041/1Z
PACKAGE DIMENSIONS
5.-
o
t
6.86 (.270)
)
WMAX
6.35 (.250)
0.36 (.014)
.L.--=--===-nr-I 0.20 (.008)
~18.89 (.350~j
~
7.62
(.300)
REF
8.38 (.330)
I+---"
1.78 (.070) REF
-L
1
DESCRIPTION
These devices are optically isolated zerocrossing triac drivers. They consist of a
Gallium Arsenide infrared emitting diode
optically coupled to a photosensitive silicon detector which functions as a zero
voltage crossing bilateral triac driver. This
series is designed for interfacing between
electronic controls, motors, solenoids and
consumer appliances, etc.
FEATURES
Logic control for 110 VAG or
220 VAG Power
a High isolation voltage - minimum
7500 VAG peak
a Underwriters Laboratory (UL)
recognized File #E50151
• Pin for pin replacement for the
MOG3030, MOG3031, MOG3040,
MOG3041
• Excellent 1FT stability -IR emitting
diode has low degradation.
D
1.18 (.070) TYP
:
I
I
I
--110.56 (.022)
0.41 (.016)
:
J: I
3.94 (.155) t 4.95 1.,95)
3.68 (.145) j t MAX
I
I
t 3.56 (.140)
,l..l.3.05 (.120)
O.~' (.020)
MIN
1-,.27 (.050)
C2090
DIMENSIONS IN mm (INCHES)
6 MAIN
TERM.
APPLICATIONS
•
•
•
•
•
"
Triac driver
Industrial controls
Solid state relay
Traffic lights
Motor controls
Home appliances
4 MAIN
TERM.
* *DO NOT CONNECT
(TRIAC SUBSTRATE)
C2080
'Not Recommended
For New Designs
Equivalent Circuit
ABSOLUTE MAXIMUM RATINGS (TA = 25°G Unless Otherwise Specified)
TOTAL PACKAGE
Storage temperature •••••••••••••• -55°C to 150°C
Operating temperature ••••••••••••• -40° C to 100° C
Lead temperature (Soldering, 10 sec) •••••••• 260° C
Total package power dissipation
@ 25°C (LED plus detector) •••••••••••• 330 mW
Derate linearly from 25° C • • • • • • • • • • • • •• 4.0 mW/o C
Surge Isolation voltage • • • • • • • • • • • •• 7500 VAC Peak
Withstand test voltage ••••• 7500 VAC Peak (50-60Hz)
INPUT DIODE
Forward DC current • • • • • • • • • • • • • • • • • • • •• 60 mA
Reverse voltage ••••••••••••••••••••••••••• 6 V
Peak forward current (1 ,..s pulse, 300 pps) ••••• 3.0 A
Power dissipation 25°C ambient. • • • • • • • • •• 100 mW
Derate linearly from 25° C • • • • • • • • • • • •• 1.33 mW/o C
OUTPUT DRIVER
Off-State Output Terminal Voltage
MCP303O, MCP3031 •••••••••••••••••••• 250 V
MCP3040, MCP3041 •••••••••••••••••••• 400 V
TA = 25°C ••••••• 100 mA
On-State RMS Current
(Full Cycle, 50 to 60 Hz) TA = 70°C ••••••• 50 mA
Peak Nonrepetitive Surge Current
(PW=10ms,DC=10%) ••••••••••••••••• 1.2A
Total Power Dissipation @TA = 25°C ••••••• 300 mW
Derate above 25° C ••••••••••••••••• 4.0 mW/o C
117
MCP3030/31 MCP3040/0Z MCP3041/1Z
ELETRO-OPTICAL CHARACTERISTICS
(TA
=25°C Unless Otherwise Specified)
TRANSFER CHARACTERISTICS
CHARACTERISTIC
(.)
C
CJ
z
iii
VI
0
a:
(.)
0
a:
III
N
z
LED trigger current
(current required to
latch output)
MCP303O. MCP3040
MCP3031. MCP3041
Holding current
Inhibit voltage
(MT1-MT2 voltage
above which device
will not trigger)
Leakage in inhibited
state
MCP3030. MCP3031
MCP3040. MCP3041
Isolation Voltage
SYMBOL
MIN.
1FT
1FT
IH
TYP.
MAX.
UNITS
16
30
15
mA
mA
p.A
25
V
IF
200
p.A
p.A
IF Rated 1FT.
VDRM 250 V
VDRM 400 V
7
200
15
V'H
....~
!!!
Isolation resistance
Isolation capacitance
Main terminal
voltage 3.0 V
Either direction
=
=Rated 1FT
=
100
100
IDRM2
IDRM2
300
VISO
5300
VAcRMS
ViSO
7500
VAcPEAK
RiSO
10"
0
0
TEST CONDITIONS
ohms
pF
0.5
elsa
=
=
Relative humidity,,; 50%.
1,.0"; 10 iJA. 5 seconds
Relative humidity,,; 50%.
1'.0"; 10 p.A. 5 seconds
V,.o 500 VDC
1 1 MHz
=
=
INDIVIDUAL COMPONENT CHARACTERISTICS
...c
0
...a
;:)
A-
!
CHARACTERISTIC
Forward vDltage
Forward voltage temp.
coefficient
Reverse voltage
Junction capacitance
SYMBOL
MIN.
VF
VR
CJ
3.0
...
......
...c
...
...
0
Nota 1. Test voltage must be applied within dV/dt rating.
(.)
;:)
A-
;:)
MAX.
UNITS
1.3
1.50
V
=
=
=
V
pF
pF
IR 10 p.A
VF 0 V. 1 1 MHz
VF 1 V. 1
MHz
VDRM
VDRM
IDRM1
IDRM1
2
2
100
100
nA
nA
VTM
1.8
3.0
Volts
dV/dt
1000
CAUTION: Normal anti-static precautions are required when handling this product.
118
TEST CONDITIONS
IF = 30 rnA
mVioC
-1.8
25
50
65
Peak Blocking Current.
Either Direction
MCP3030. MCP3031
MCP3040. MCP3041
Peak On-State Voltage •
Either Direction
Critical rate 01 rise
01 off-state voltage
a:
0
TYP.
Vlp.s
ITM
=
=,
=250 V. Note 1
=400 V. Note 1
=100 mA Peak
MCP3030/31 MCP3040/0Z MCP3041 /1 Z
TYPICAL ELECTRICAL CHARACTERISTIC CURVES (TA
=25°C Unless Otherwise Specified)
o
+800
a:
a:
:J
U
w
!;(
1.1
~
1.2
1"1'\
1.1
~
1.0
a:
:J
ffi
Cl
Cl
II
1'\
I-
t)
I
1
1.3
z
V
~0-400
~
I
I
0
1.4
a:
I
!Z+400
w
~
::i
II
<"
§.
"r--.
-3.0 -2.0 -1.0
0
1.0 2.0 3.0
VTM - ON-STATE VOLTAGE (VOLTS)
C1711
I"r-. l"'- I"--
-40 -20
0
20
40 60
80 100
TA - AMBIENT TEMPERATURE (0C)
~
Fig. 2.
1.3
Trigger Current vs.
Temperature
1.3
1.2
1.2
TYPICAL @ +25° C = 100 ,..A
TYPICAL @ +25° C = 15V
~ 1.1
~ 1.0
~
~0.9
:::i;
---
'" 1.1
::;:
a:
E 1.0
o
i"'---
~
~ 0.9
::i
1FT = 15mA
0.8
~
a:
0.8
~ 0.7
0.7
0.6
0.5
""
0.8
Fig. 1
On-State Characteristics
:sz
t'-
0.9
~ 0.7
I 0.6
I-
V
-800
o
r-...
0.5
25
85
........
"""-
1FT - 15mA
@ Rated VORM
0.6
o
"-
o
85
C1722
25
C1721
Fig. 3. Normalized Inhibit Voltage (V/H)
Temperature
Fig. 4. Normalized IDRM2
Temperature
VS.
VS.
6
4
<"
oS
:ia:
~
0
w
N
::i
TYPICAL @ +25° C = 2 nA
2
/
10
8
6
«
:::i;
4
0
2
/
LV
a:
Z
1
/
/@
o°
25°
rATED VORM
850
C1723
Fig. 5. Normalized IDRMI vs. Temperature
119
MCP3030/31 MCP3040/0Z MCP3041 /1 Z
APPLICATIONS
Typical TTL Logic - AC Power Interface
I.
LED Trigger Current Requirements
DEVICE
MCP30Xl
MCP30Xl
MCP30XO
MCP30XO
III.
Vcc
5V
12V
5V
12V
RF (MAX)
160!!
560!!
8611
290!!
II.
Device/Line Voltage/Load Selection
DEVICE
Vp
(RMS)
LOAD
TYPE
SNUBBER
REQUIREMENT
MCP303X
MCP304X
MCP303X
MCP304X
';l20V
,;240V
';l20V
O;240V
Resistive
Resistive
Inductive
Inductive
No
No
Yes
Yes
1FT
l5mA
15mA
30mA
30mA
Typical Circuits@TA9'O°C
Vee
A.C.
LOAD
1------,~7I:7:.".,.....
LOGIC
: tK
N.C.
N.C.
Ct73'
Figure 6 For Load Current IL ·~50mA RMS - Direct Load Interface
Vee
C1732
Figure 7 For Load Current IL . 50mA RMS • Interface Via External Tflac (TEXr )
• RG Ik!! optional for sensitive gate TEXT' IG .. 10mA
" RT 180!! for IG· IOOmA
RT=86!! for lOOmA·· IG·· 200mA
0
0
Typical Snubber Values TEXT
Fig. 7. Circuit Driving Inductive Load:
RMS LOAD CURRENT IL (A)
%dt(Vll's)
100mA
500mA
1A
3.3Yn0.15
2A
LEGEND: RslllCs (I'F)
5A
10A
50A
56
~y
lk/n
5Yr
0.22
0.68
1.5
1
33X
56~
0.015
0.068
2
5~
0.0033
86
5.6~
3.3~
82~
56~
8·X
0.022
0.033
0.068
0.22
0.33
5
no snubber
3~
0.0033
10
33Yn
6.Ya
3.~
lk/n
l°Xc
0.005
0.01
0.02
0.05
0.33
no snubber no snubber 3Yn
0.0022
1~
0.0033
6.%
0.015
0.0068 3 X
6~
0.068
NOTES
I. MCP304X and TEXT VORM '" 400 V recommended for 120 V Inductive Loads - Fig. 7
2. Capacitor Working Voltage'" 2X RMS Line Voltage (Vp )
120
~8
h 2.20
Given:
1. RMS Load Current
2. ::0:240 V (RMS) Line
3. Commutating
o
r-.... t--:l1.0
0
w
w
N
r----
<
:;
a:
o
1FT = 10mA
VOAM = 400 V
Zo 1
0
a: 0.9
r--
+25
1.2
1.1
::::;
< 1.0
:;
0
z
I
-40
"'
+75
TEMPERATURE. TA-('C)
0.8
0.7
0.6
0.5
-40
C1B01
Fig. 3. Normalized Inhibit Vol/age (V,H) VB.
Temperature
1FT -5 mA
VOA = 400 V
~
"'
r--
1"\
"- I"\.
"
...........
-
0
25
50
75 100
TEMPERATURE. TA-(OC)
Typical @+25'C41 fJA
C1802
Fig. 4. Normalized 'ORM2 VB.
Temperature
6
4
i
a:
E
2
/
0
w
10
::::;
<
:;
8
6
0
Z
4
N
a:
/
/
/
2
fi ~ATED
0'
25'
VOAM
50'
,
85
TEMPERATURE. TA-(OC)
C1723
Fig. 5. Normalized lOR"" VB. Temperature
123
MCP3032/33 MCP3042/43
APPLICATIONS
Typical TTL Logic - AC Power Interface
I.
LED Trigger Current Requirements
DEVICE
MCP30X2
MCP30X2
MCP30X3
MCP30X3
III.
Vcc
5V
12V
5V
12V
RF
3301!
10001!
6201!
20001!
II.
Device/Line Voltage/Load Selection
vp
DEVICE
(RMS)
LOAD
TYPE
SNUBBER
REQUIREMENT
MCP303X
MCP304X
MCP303X
MCP304X
-S120V
s240V
S120V
s240V
Resistive
Resistive
Inductive
Inductive
No
No
Yes
Yes
1FT
lOrnA
lOrnA
5 rnA
5mA
Typical Circuits @ T AS70° C
Vee
AC.
LOAD
1------:.,..".,.,.",.,,.,,....
LOGiC
N.C.
N.C
C1731
Figure 6 For Load Current IL ,;SOmA RMS • Direct Load Interface
Vee
AC.
AT"
LOAD
NC
AG'
C1732
Figure 7 For Load Current IL
>
SOmA RMS • Interface Via External Triac (TEXT)
• RG = 1 kll optional for sensitive gate
•• RT = 1801l for IG < 100mA
RT=86Jl for 1OOmA < IG < 200mA
Typical Snubber Values -
hx T .
Fig. 7. Circuit Driving Inductive Load:
RMS LOAD CURRENT IL (A)
TEXT
%dl(V/l's)
100mA
500mA
IG " 10mA
lA
2A
LEGEND: Rs!l/Cs (I'F)
SA
lOA
3.3Yn0.15 l k / n0.22 S Y r0.68 33y1.S 56
1
5.~
3~
0.015
0.068
2
5~
0.0033
S.6~
3.3~
82Yr
S6Yn
8·X
0.022
0.033
0.068
0.22
0.33 86
S
no snubber
3~
0.0033
6.Ya
3.Yr
lOX
0.02
O.OOS
0.01
no snubber no snubber 3~
0.0022
10
1~
0.0033
lk~
0.05
A8
~20
33Yn0.33
6.%
6Yo
3X
0.015
0.068
0.0068
NOTES
1. MCP304X and TEXT VORM ~ 400 V recommended for 120 V Inductive Loads - Fig. 7
2. Capacitor Working Voltage ~ 2X RMS Line Voltage (Vp )
124
50A
Given:
1. RMS Load Current
2. "5240 V (RMS) Line
3. Com mutating gy
rating of TexT
MCT2
PACKAGE DIMENSIONS
DESCRIPTION
The MCT2 is a NPN silicon planar phototransistor
optically coupled to a gallium arsenide infrared
emitting diode.
FEATURES AND APPLICATIONS
1.78 (.070) TYP
b
1=.7.=.,,='-.=I 3.941·155) t 4.95 95)
:
:
I
I
I
I
I
I
-II-0.56 (.022)
0.41 (.016)
:
3.681.145)\ I MAX
I
I
t 3.561.140) 0.~1 1·020)
,Ll3.051.120)
MIN
J: I
ANODE~6
CATH.2
1-1.27 (.050)
C2090
DIMENSIONS IN mm (INCHES)
BASE
•
•
•
•
•
•
•
•
AC line/digital logic isolator
Digital logic/digital logic isolator
Telephone/telegraph line receiver
Twisted pair line receiver
High frequency power supply feedback control
Relay contact monitor
Power supply monitor
UL recognized - File E50151
5 COL
2.:
3
4 EMIT.
C2079
Equivalent Circuit
Power dissipation at 25° C ambient ........... 200 mW
Derate linearly from 25°C ................ 2.6 mWI"C
ABSOLUTE MAXIMUM RATINGS
Storage temperature ................... -55°C to 150°C
Operating temperature ................. -55°C to 100°C
Lead soldering temperature (10 sec) ............. 260°C
Output Transistor
Power dissipation at 25° C ambient ........... 200 mW
Derate linearly from 25° C ................ 2.6 mW/o C
Input to output voltage isolation .............. 1500 VDC
Total package power dissipation at 25° C ambient
(LED plus detector) ........................ 250 mW
Derate linearly from 25°C ................... 3.3 mW/oC
Collector-Emiller Current (ICE) .................. 50 mA
Input Diode
Forward current. . . . . . . . . . . . . . . . . . . . . . . . . . . .. 60 mA
Reverse voltage .............................. 3.0 V
Peak forward current
(1 ~s pulse. 300 pps) ....................... 3.0 A
ELECTRO-OPTICAL CHARACTERISTICS
CHARACTERISTIC
(25 0
SYMBOL
C Free Air Temperature
Unless Otherwise Specified)
MIN.
TYP.
MAX.
UNITS
1.25
25
50
1.50
3.0
V
V
pF
10
!J.A
TEST CONDITIONS
Input DIode
Forward Voltage
Reverse Voltage
Junction Capacitance
Reverse Leakage Current
Output TranSistor
VF
VR
CJ
.01
IR
IF = 20 rnA
I R "IOj1A
VF"OV
VR"3.0 V
V cE "5 V. Ic"IOO!J.A
250
DC Forward Current Gain
hFE
Collector To Emitter Break·
down Volt.
BV CEO
30
85
V
IC"I.O rnA. IF"O
BV cBO
70
165
V
Ic"IO j1A
Collector To 'Base Break-
down Voltage
EmItter to Collector Break·
down Voltage
Collector To Emitter. Leakage Current
Collector To Base Leak.lge Current
BV ECO
14
V
IE; lOOJlA, IF; 0
'CEO
5
50
nA
VcE=IOV,IF=O
'eBo
0.1
20
nA
VCB~IO
V, IF"O
125
MCT2
ELECTRO-OPTICAL CHARACTERISTICS (25°C Free Air Temperature Unless Otherwise Specified)
CHARACTERISTIC
SYMBOL
Capacitance Collector To
Emiller
Capacitance Collector To
Base
Capacitance Emiller To Base
MIN.
MAX.
TYP.
UNITS
TEST CONDITIONS
CeEo
CeBo
e ESO
Coupled
DC Collector Current Transfer
Ratio
DC Base Current Transfer Ratio
Isolation Voltage
CTRcE
20
CTRcB
pF
VeE=O
20
10
pF
pF
Ves=IO V
VSE=O
60
%
VeE=IOV. IF=IOmA. Note I
%
Ves=lO V. IF·lO mA
.35
3500
2500
lO"
Isolation Resistance
Isolation Capacitance
Coliector·Emiller. Saturation
Voltage
8
VDC
VRMS
Vedsal)
0.24
Bw
150
Bandwidlh (see note 2)
pF
f=60 Hz
V ,. o =500 V
f=IMH r
V
IC = 2.0 mA, IF = 16 mA
H
10 12
.5
0.4
Ie =2 rnA. VeE=IO V, RL ~IOO
KHz
n
(Circuit No. I)
SWITCHING TIMES
TYP.
Saturated
t on (from 5 V to 0.8 V)
I off (from SAT to 2.0 V)
Saturated
I on (from 5 V to 0.8 V)
t off (from SAT 10 2.0 V)
Non·Saturated
Rise Time
Base
Fall Time
TEST CONDITIONS
UNITS
Ion (SAT)
lOft (SAT)
10
30
/ls
RL =2 KH. I F =15 rnA. Vee=5 V
Rs=open (Circuil No.2)
Ion (SAT)
loft (SAT)
10
27
I'S
RL =2 KH, I F =20 rnA, Vee=5 V
Rs= 100 KSl (Circuil No.2)
I,
If
300
300
ns
ns
RL =1 KSl, VeB=lO V
TYPICAL ELECTRO-OPTICAL CHARACTERISTIC CURVES
(25° C Free Air Temperature Unless Otherwise Specified)
Vee
I,
---
I,
---
vee
)-..
]~
]~
,
)VOUI
Circuit 1
126
-
Circuit 2
MCT2
TYPICAL ELECTRO-OPTICAL CHARACTERISTIC CURVES (Cont'd)
(25 0 C Free Air Temperature Unless Otherwise Specified)
,.
,0
0
"
,30
III
"0%
i= 11 o
!~,
~ 100l--V cc • s.ov
9o!.
~
120
~
*
a:
~
0
0
S0
::J
0
0
a:
"
V
II'iR
/
1/
0.,
.2
::,.....
'111
,II
iii
I---"'
.4.6,B'.0 2 4 6B'0 20 4060BO
IF - FORWARD CURRENT - mA
CB11
Fig. 1. Current Transfer Ratio vs.
Forward Current
4
3
2
u
~ 10
I
B
6
>=
z
r'"
~
~ 10
~ee, 1~V;
Vee "SOV;
't::,0 9
-20
t- Vc~
I",
leei'0 0
t
25V
~ /'
/' ~
V
r'"
,0 20 30 40 50 60 70 BO 90 100
C812
TA, - TEMPERATURE - "C
Fig. 2. Dark Current vs. Temperature
1... - PULSE WIDTH TIME
6
~
,
30~
20%
~h
~~ ~~
/. ~ vV
6
Vs~~
60
iiia:
I
.,
LSol
.;t;.,
of-- T•• 2S·C
.
.
•
,
lOmA
DELAY TIME
4
3
2
l1mA
~TIM~
"
FALL TIME-
,!
UHWJ
H+*-H-Tt-'r*+ti
9.0m""
B
6
4
3
2
eTR
"
'OK
As
6 BtOCK 2
50%
4
6
a 1M
BASE RESISTANCE -!!
20
C816
Fig. 3. Switching Time vs. Base
Resistance
C819
Fig. 5. Circuit for Figure 3
SO
IF - FORWARD CURRENT - mA
100
C818
Fig. 4. Saturation Voltage vs.
Forward Current
C870
Fig. 6. Waveforms for Figure 3
127
MCT2
TYPICAL ELECTRO-OPTICAL CHARACTERISTIC CURVES (Cont'd)
(25°C Free Air Temperature Unless Otherwise Specified)
5
1
I
/
\
\
"
/
eTR
200",
I
CTR 40""
j
>
;0
c:
/
FORWARD CURRENT {V" vs IF J
'" 1
~I
1/
'"
~ 1. 0
IF
10xlc
9
+25'C
"i:.f-
V
V
,
,:
,/
~·I."00'
~
TA (" C
RE
~~ II~I~~ C
IIll";;'-
1. 2
>
o
V
4-"nlmr
3
w
<.:>
/
\
~o "
MeT2. FORWARD VOLTAGE vs
"iJ~
I IVI'
V
1
,1
.5
1(. - COLLECTOR CURRENT (mAl
10
C822
5
.IF
Fig, 7, Saturation Voltage vs,
Collector Current
100
I,
~
~
on
Z
~
'"Zw
'"'"::>
u
w
>
;;:
B0
01/
/
6
20m~
I~
20
V
f-'
16
12
/
20
o
I
lOOK
10K
A!H
-
C823
3U
.... - -
-
f
V
.-
25,.,A
20"A_ f - -
I
15;-
f--
10"A _ _
"
I
IIIII
BASE AESISTANC~
50 100
B ,
IOV
TA'" 25 C
v(.(.
20
I I
I I
10 mA
V
10
CURRENT - rnA
Fig. 8. Forward Voltage vs.
Forward Current
40
:s
:i'
I,
VV
g
'"w
50 mA
~ FORWARD
I I
I
S, ,
"
Il
0
1M
"
12
C825
Fig. 9. Sensitivity vs. Base Resistance
Vc
volt~
16
20
201
ca26
Fig. TO. Detector Typical hfe Curves
NOTES
I, The current transfer ratio (lCll F) is the ratio of the detector collector current to the LED input current with VCE at 10 volts.
2. The frequency at which ic is 3 dB down from the 1 kHz value.
3. Rise time (tr ) is the time required for the collector current to increase from 10% of its final value, to 90%.
Fall time (td is the time required for the collector current to decrease from 90% of its initial value, to 10%.
128
MCT2E
PACKAGE DIMENSIONS
a
DESCRIPTION
t
6.86 (.210)
WMAX
6.35 (.250)
0.36 (.014)
The MCT2E is a NPN silicon planar phototransislor
optically coupled 10 a gallium arsenide infrared
emitting diode.
-'----"'''""rI-"-; 0.20 (.008)
~~-L
1.18 (.010) REF "1
~'8.89 (.350) ~
FEATURES & APPLICATIONS
1.62
(.300)
REF
8.38 (.330)
•
•
•
•
•
•
•
•
•
•
1.18 (.010) TYP
I
I
I
I
I
I
I
--II--
I
0.56 (.022)
0.41 (.016)
:
J: I
3.94 (.155) t 4.95 1.195)
3.68 (.145) I j MAX
I
t 3.56 (.14O)
I
O.JI (.020)
'L.i3.05 (.120)
MIN
Utility/economy isolator
AC line/digital logic isolator
Digital logic/digital logic isolator
Telephone/telegraph line receiver
Twisted pair line receiver
High frequency power supply feedback control
Relay contact monitor
Power supply monitor
UL recognized - File E50151
High isolation voltage
V,SO = 2500 V RMS, 1 minute
1-1.21 (.050)
C2090
DIMENSIONS IN mm (INCHES)
C2019
Equivalent Circuit
ABSOLUTE MAXIMUM RATINGS
Power dissipation at 25° C ambient ......... " 200 mW
Derate linearly from 25° C ................ 2.6 mW/o C
Output Transistor
Power dissipation at 25° C ambienl ........... 200 mW
Derale linearly from 25°C ................ 2.6 mW/oC
Input to output voltage isolation .............. 3550 VDC
Total package power dissipation at 25° C ambient
(LED plus detector) ........................ 250 mW
Derate linearly from 25° C ................... 3.3 mWI" C
COllector-Emiller Current (ICE) .................. 50 mA
Storage temperature ................... -55°C to 150°C
Operating temperature ................. -55° C to 100° C
Lead soldering temperature (10 sec) ............. 260°C
Input Diode
Forward current. . . . . . . . . . . . . . . . . . . . . . . . . . . .. 60 mA
Reverse voltage .............................. 3.0 V
Peak forward current
(1 j.ts pulse. 300 pps) ....................... 3.0 A
ELECTRO·OPTICAL CHARACTERISTICS (25 0 C Free Air Temperature Unless Otherwise Specified)
CHARACTERISTIC
Input Diode
Forward Voltage
Reverse Voltage
Junction Capacitance
Reverse Leakage Current
Output TranSistor
DC Forward Current Gain
Collector To Emiller Break·
down Volt.
Collector To Base Break·
down Voltage
Emiller to COllector Break·
down Voltage
Collector To Em/ller. Leak·
age Current
Collector To Base Leak·
age Current
SYMBOL
VF
VR
CJ
MIN.
TYP.
1.25
3.0
1.50
UNITS
V
V
pF
25
50
.01
'R
MAX.
10
/1 A
TEST CONDITIONS
'F = 20 mA
IR=IO /1 A
VF=OV
V R =3.0 V
V cE =5 V, Ic=IOO/1A
hFE
100
250
BV CEO
30
85
V
BV CBO
70
165
V
Ic=IO /1A
BV ECO
7
14
V
IE =
'CEO
5
50
leBO
0.1
20
nA
nA
Ic=1.0 mA, IF=O
lOO)..!A,
IF =
0
VcE=IOV.I,=O
VCB~IO
V, IF=O
129
MCT2E
ELECTRO·OPTICAL CHARACTERISTICS (25°C Free Air Temperature Unless Otherwise Specified)
CHARACTERISTIC
Capacitance Collector To
Emitter
Capacitance Collector To
Base
Capacitance Emitter To Base
Coupled
DC Collector Current Transfer
Ratio
DC Base Current Transfer Ratio
SYMBOL
GUAR.
MIN.
TYP.
GUAR.
MAX.
UNITS
TEST CONDITIONS
CeEO
8
pF
VeE=O
20
In
pF
pF
Ves=IO V
VSE=O
60
%
VeE=IOV.IF=IOmA. Note I
.35
%
Ves=IO V. IF-IO rnA
CeBo
CESO
CTRcE
20
CTRcB
Surge isolation voltage
Visa
4000
VDC
Visa
3000
3500
VAc~rms
Steady state isolation voltage
VDC
Relative humidity 50 50%
TA=+25°C.I'_050 1OI'A
1 second
Relative humidity
~
50%,
T A = +25° C. 11_0.s: 10 I'A
VAC·rms
12500
Bv(l·O)
1solation Resistance
Isolation Capacitance
Collector-Emitter. Saturation
Voltage
Bandwidth (see note 2)
veE (sat)
Bw
3500
lO"
1 minute
VDC
II
10 12
.5
0.24
150
pF
V,.o=500 V
f=IMH r
V
'c = 2.0 rnA, 'F = 16 rnA
0.4
KH2
Ie =2 rnA. VeE=IO V. RL =100 n
(Circuit No.1)
SWITCHING TIMES
Non-Saturated
Collector
Non·Saturated
Collector
TYP.
Delay Time
Rise Time
Storage T ,me
Fall Time
td
t,
ts
tf
0.5
Delay Time
Rise Time
Storage Time
Fall Time
td
t,
ts
If
Saturaled
Ion (from 5 V to 0.8 V)
t off (from SAT to 2.0 V)
Saturated
Ion (from 5 V to 0.8 V)
t off (from SAT to 2.0 V)
Non-Saturated
Rise Time
Base
Fall T,me
UNITS
TEST CONDITIONS
P'
RL=100ll.le=2mA.Vee=IOV
(Circuit No. I)
2.0
15
0.1
15
ps
RL=I K!!.le=2mA. Vee=IOV
(Circuit No. I)
Ion (SAT)
toff (SAT)
5
25
ps
RL =2 K!!. ' F=15 rnA. Vee=5 V
RB=open (Circuil No.2)
Ion (SAT)
toff (SAT)
5
)8
1"
RL =2 K!!. I F =2D rnA. Vee =5 V
R B = 100 K!! (Circu,1 No.2)
I,
If
175
175
ns
ns
RL =1 Kn. VeB=IO V
2.5
0.1
2.6
Vee
130
C808
Circuit 2
CB09
MCT2E
TYPICAL ELECTRO-OPTICAL CHARACTERISTIC CURVES
(25°C Free Air Temperature Unless Otherwise Specified)
.
l..~
o
10-
51--;0
",
!..-
5
---
..
~
~;;..
.,
/.
,
/.~ ~~
~~ ~V
.,
0
Vee,7OV;
vee',sciv...
If _20mA
'I::-
IF .. 'lamA
5
r-Vce '", 25V~
I
10
15
20
10·
-20
0
25
Fig. 1 Collector Current VI.
Collector Voltage
(for Typical crR 309M
Fig. 2 Current Transfer Ratio VI.
Forward Current
.....
0
C810
2.•
HIGH CURRENT TRANSFER RATIO
0
I.
II 111111
cl.• VeE·
10 VOLTS
r--...
~
/'
./
r-:: ~
~
~ I.
I.
O~
I
I
~Ij
~
-:. ~s
o'r-
2
IOmA
I,
t-
t-CTR
o. •
8o.•
~
10V
V"
4
u
40
20
20
40
60
80
AMBIENT TEMPERATURE (C)
100
lK
4
I
w
l!
...
j!
;:
~
~ 10
Vr "'0VOLTS
I L
'1"'-.
0
~
R,.I,°1"
11
.........
•.r~
•
10K
lOOK
FREQUENCY (H'I
I
C814
0,1
l.·470U
r-
JR:'
1001
I I II
Q,2Q,30AUQ.81.Q
2: 34567810
COLLECTOR CURRENT Ie (mA)
C8tS
Fig. 6 Switching Time VI. Col/ector
Current
I
3
2
~ 10
\1
Fig. 5 Collector Current vs.
Frequency
Fig. 4 Current Transfer Ratio v..
Temperature
u
I I II
I I II
\
C813
CB12
Fig. 3 Oark Current v.. Temperature
1\
o. 2
I
10 20 30 40 50 60 70 BO 90 100
1
1\ I
;:~
aa: 0
eo,•
LOW CURRENT TRANSFER RATIO
~ VV
~
TA - TEMPERATURE - ~C
.
'!t.- \
~\
,
•
•
!.1.
./
0
IIIlIllll
•
.......
10 0
cel'
" - FORWARD CURRENT -mA
I
tiT
,
5
VeE COLLECTOR VOLTAGE DETECTOR jVOLTSl
I
.
B
6
I... PULSE WIDTH TIME
>
~TIM~
W
I, - FALL
.
~11~;e-
I! -b,~l ~!llJ
I·
~
g
- DELAV TIM
4
3
2
I
!
~
..
TyplCAIL
laot-'-'-' fo
ES'
100
12
. :t-~;'" fsl ii'
i
4
3
2
eTR
10K
01
AI
6 atOQK:2
50%
4
BASE RESISTANCE
6 81M
11
'"
lOOK 200K
C816
Fig. 7 SWitching Time vs. Base
Resistance
Ru
I~
MCT2
I
a
.-
1\
100
a:
8
6
IIII
500K 1M
~
*'rt-t+~'0mA
.7
-:;:~ ttt-lt-t1I\t''I-N:ffi &.Om.
~ ,5Hfttl+-+l-++-!fIHtHli+~H:Hiltll8.0mA
~ 4
~ ,
7.0mA
,3
,OmA
,OmA
,OmA
.2f.+.J.#fI---l~~~Wf:~j2:!:+-H=~2:g~~
>
98% OF ALL UNITS
2M
SM
126102050100
10M
C817
Fig. 8 Collector - Emitter Breakdown
Voltage v,. Base Resistllnce
Fig. 10 Circuit for Figure 7
~
~ .6
'\
Rill . BASE EMITTER RESISTANCE - 11
CS19
llmA
w
I~ - FORWAADCUARENT - mA
C81S
Fig. 9 SIIturetion Voltage ....
Forward Current
CB2a
Fig. 11 Waveform, for Figure 7
131
MCT2E
TYPICAL ELECTRO-OPTICAL CHARACTERISTIC CURVES (Cont'd)
(25°C Free Air Temperature Unless Otherwise Specified)
>
I
~
"~
,
50
.'5r--'
.,or- --
I,
lamA
8
'mA
6
.L
/
35f--
0
>
z
.30
;:
I~
;i
r:
;\
10
l- f- I--
I!l
•
--
0
\
,
IOI-+-+--I-+--+-+--I-I+---+--I
\
/
~ ~/
140"
eTR
I
10
20
30 40
50 60
70
80
TAo ~ AMBIENT TEMPERATURE -
90 100
C
I
I
"
C821
Fig. 12. Saturation Voltage vs.
Temperature
a
0
&0""
If
50 rnA
T.
25::~:
1000
1
II
'F
II
2'
J.J.
0
/
II
I
HOURS
a
100 000
CRN
10K
6
,
3U
f-
If
TLlliL' e
lOOK
RBl
Fig. 15. Lifetime vs. Forward Curren<
(Note 41
25/JA
20 IJ A\_
10,JA
18
0
1M
!!
r-
I 18 I-SolA
Uilli
BASE RESISTANCE
t-trr-
B
Vee'" IOV
J
C823
.1
10 rnA
l~A
a
10000
TIME
IF - FORWARD CURRENT - rnA
Fig. 14. Forward Voltage vs.
Forward CUrrent
a
1111
,,
00
10
C822
If-20m~
lL
)m"'_
,"
5
Fig. 13. Saturation Voltage vs.
Collector Current
a
,
,
COLLECTOR CURRENT (rnA)
100.---
a
IOxic
I,
T", (5 C
'"I-+-+-j--I-+-+-i~+-+-l
o
II
/
\
12
C825
Ve.
Fig. 16. Sensitivirv vs. Base Resistance
20
16
~
0
24
e826
vnlt~
Fig. 17. Detector Tvpical hfe Curves
OPERATING SCHEMATICS
~~~~LATION
'/IF
47l!
>-l hlVv--.-.
r-
LED
--
CONSTANT
CURRENT
INPUT
-
I,
Vee'" 10 VOLTS
I
'L __ _
>-----
PULSE
4111
Vee
=
10 VOLTS
INPUT
DEHCTOR
PULSE
OUTPUT
L _ _ _. . ._ - . OUTPUT
I,
Rl = lOO!!
C827
Modulation Circuit Used to Obtain Output vs Frequency Plot
Circuit Used to Obtain Switching Time vs Collector Current Plot
NOTES
1. The current transfer ratio Ii CII FI is the ratio of the detector collector current to the LED input current with VCE at 10 volts.
2. The frequenev at which ic is 3 dB down from the 1 kHz value.
3. Rise time (trl is the time required for the collector current to increase from 10% of its final value, to 90%.
Fall time (tfl is the time required for the collector current to decrease from 90% of its initial value, to 10%.
132
0-70°C MCT210
PACKAGE DIMENSIONS
DESCRIPTION
J-J
t
15° MAl(
6.86 (.270)
6.35 (.250)
The MCT210 incorporales a NPN silicon planar
phototransistor optically coupled to a galium
arsenide infrared emitting diode. The MCT210 has a
specified minimum CTR of 50%, saturated, and
150%, unsaturated.
0.36 (.014)
-'------""""r!--il 0.20 (.008)
~
7.62
(.300)
REF
i----='
1.78 (.070) REF
-L
T
•
•
1.18 (.070) TVP
b-,=~"";""'=I
:
I
I
I
I
:
J: I
3.94 (.155) t 4.951.,95)
3.68 (.145) I I MAX
I
•
TTL compatible 1-10 gate loads
High CTR with transistor output
MCT210-150% min.
Specified CTR over temperature range
Good logic load characteristics
VOL = 0.4 V @ 1.6 mA to 16 mA
output sinking (lOL)
UL recognized (File #50151)
j
t 3.56 (.140) 0.51 (.020)
,U3.05 (.120)
MIN
-J
I- I-- 1.27 (.050)
0.56 (.022)
0.41 (.016)
;
FEATURES
•
•
C2090
DIMENSIONS IN mm (INCHES)
APPLICATIONS
•
•
•
•
Digital logic isolation
line receivers
Feedback control circuits
Monitoring circuits
Equivalent Circuit
ABSOLUTE MAXIMUM RATINGS
TOTAL PACKAGE
<;torage temperature . . . . . . . . . . . -SSoC to IS00C
Operating temperature . . . . . . . . . -SSoC to 100°C
I.ead temperature
(Soldering, 10 sec) . . . . . . . . . . . . . . . . . . . 260°C
Total package power disSipation @ 25°C
(LED plus detector) . . . . . . . . . . . . . . . . 260 mW
Derate linearly from 2SoC . . . . . . . . . . 3.4 mW/c
Surge isolation . . . . . . . . . . . . . . . . . . 4000 VDC
3000 VRMS
Steady state isolation . . . . . . . . . . . . . 3S00 VDC
2S00 VRMS
INPUT DIODE
Forward current . . . . . . . . . . . . . . . . . . . 60 mA
Reverse voltage . . . . . . . . . . . . . . . . . . . . . 3.0 V
Peak forward current
(1 ps pulse, 300 pps) . . . . . . . . . . . . . . . . . . 3.0 A
Power dissipation 2SoC to 70°C ambient ... 90 mW
Derate linearly from +70 oC . . . . . . . . . . 2.0 mW/C
OUTPUT TRANSISTOR
Power dissipation @ 25°C . . . . . . . . . . . . 200 mW
Derate linearly from 25°C . . . . . . . . . 2.67 mW/C
133
MCT210
ELECTRO-OPTICAL CHARACTERISTICS (DOC to +7DoC Temperature Unless Otherwise Specified)
INDIVIDUAL COMPONENT CHARACTERISTICS
w
0
0
is
I-
...
;:)
~
CHARACTERISTIC
SYMBOL
Forward voltage
Forward voltage temp.
coefficient
Reverse breakdown voltage
Junction capacitance
VF
Reverse leakage current
II:
0
Iii
iii
2
c(
II:
DC forward current gain
Breakdown voltage
Collector to emitter
Collector to base
Emitter to collector
Leakage current
Collector to emitter
MIN.
MAX.
UNITS
1.25
-1.8
1.50
V
mV/C
IR
15
50
65
.01
hFE
400
BVR
CJ
BVCEO
BVCBO
BVECO
6.0
TYP.
30
30
6
V
V
V
8
...
;:)
!50
Capacitance
Collector to em itter
Collector to base
Em itter to base
Ic = 1.0 mA, IF = 0
Ic = 10J.LA
IE = 100J.LA, IF = 0
50
nA
30
J.LA
VCE = 5 V, IF = 0,
TA = +25°C
VCE = 5 V, IF = 0,
pF
pF
pF
V CE = 0, f = 1 MHz
V CB = 5, f = 1 MHz
V EB = 0, f = 1 MHz
lI-
I R =10pA
V F =OV,f=IMHz
V F = 1 V, f = 1 MHz
V R =6.0V
VCE = 5 V, Ic = 10 mA
45
5
ICEO
10
V
pF
pF
pA
TEST CONDITIONS
IF = 40 mA
8
20
10
TRANSFER CHARACTERISTICS
CHARACTERISTIC
SYMBOL
Current transfer ratio,
collector to emitter
MCT210 (a)
IcE/IF
Current transfer ratio,
collector to base
Saturation voltage
collector to emitter
MCT210
ICB/IF
u
0
~
j:
MIN.
TYP.
50
70
%
150
225
0.6
%
%
-'
0
III
w
UNITS
CI
2
i
~
i
134
VCE = 0.4 V, IF = 3.2 mA
to 32 mA
VCE = 5.0 V, IF = 10 mA
V CB = 5.0 V, IF = 10 mA
V
Ic = 16 mA, IF = 32 mA
Surge isolation
Visa
4000
0.2
VDC
Steady state isolation
ViSO
3000
3500
VAC-rms
VDC
I solation resistance
R lso
2500
lOll
Isolation capacitance
Relative humidity
50%,
TA = +25°C, I I.e 510 J.LA
1 second
Relative humidity
50%,
TA = +25°C, I I.e 510 J.LA
1 minute
VI.e = 500 VDC,
TA = +25°C
f = 1 MHz
Non-saturated
Rise time
0.4
Fall time
Saturated
Rise time
Fall time
Propagation delay
High to low
Low to high
<
<
5xl0 12
VAC-rms
ohms
Ciso
1.0
pF
tr
4
J.Ls
t,
5
!.Is
RL = lOOn, Ic = 2 mA,
Vcc = 5 V
See Figures 17 and 18
tf
tr
2.5
25
!.Is
!.Is
RL = 560 n, IF = 16 mA
See Figures 17 and 18
TpD(HL)
TpD(LH)
2
10
J.Ls
!.Is
RL = 2.7K, IF = 16 mA
See Figures 17 and 18
:I
1=
TEST CONDITIONS
VCE(SAT)
c(
!!
MAX.
MCT21 0
TYPICAL ELECTRICAL CHARACTERISTIC CURVES (25 C Free Air Temperature Unless Otherwise Specified)
0
100
100
60
40
20
0
6
4
2
1/1
"
2=
Vee'" 5 V
~
"
-tpDIHU
IF '" 3
dtJ~ 16 mA
Vee
5V
RL=2.7KH
50
.~
40
1
~~
O!
;:
~SATURATED AT
RBE"';50Kll
30
20
.~
~
tPDILH)
- --
I
10
1
3,2 4
16
12
IF - (mAl
1M
500K
Rg~
C1252
50K
lOOK
C1253
- Ill!
Fig. 13. Switch-on Time vs.
Fig. 14. Switch-off Time vs. Base to
I F Drive (saturated)
Emitter Resistance (saturated)
8
----vee
0"-'
28
I. 11tLl~I
~1···nIT
4
0
5
24
- - Vcc=20V
Ic=2mA
-Vee" 20V
_,
Ie
=
2 mA
6
b~1
8
0
-JJ ~
20
-
l-rrrr
2
">=
/
500K
f-"
50K
lOOK
L
. t !RL '"
500K
II
l~~
lOOB
1M
RBE - (n)
C1255
Fig. 15. Rise Time VS. Base to Emitter
Resistance (non-saturated)
'"'"' JI
....y
o
1M
RBE - (H)
>f-"
p, ,,410\1
V
RL" lOOl!
lOOK
JI
~
12
~
d70
/
-:{(
'1-'
16
w
~~. ,100<1
4
0
50K
II
- - Vee = 5V
VIII I
b~l. 11~:
~I
~
60
1
RBE=QPEN
1\.,
w
70~
RL - 2.7 K!l
100 KIl
\
"'
80
1
C1254
Fig. 16. Fall Time vs. Base to Emitter
Resistance (non-saturated)
VCC: 1 ,
Vee
f-----
TPDHL - .
,--
! :
I
I
- : :--
TPDl.H
R,
OUTPUT
~'
: '
5V
(SATURATED),:
\
15V-L
_:_15V
r
I
------ SAT
,.(,
rANQUTQF
1 TO 10 TTL LOADS
C1257
INPUT
"t'
"t'
I
I
~
C1258
Fig. 17. Switching Time Waveforms
136
Fig. 18. Switching Time Test Circuits
Fig. 19. Typical TTL Interface at
Operating Temperatures of rf to trf C
GENERAL
INSTRUMENT
VDE APPROVED
PHOTOTRANSISTOR OPTOCOUPLERS
MCT2200/0Z
MCT2201/1Z
MCT2202/2Z
PACKAGE DIMENSIONS
DESCRIPTION
CJ
The MCT2200, MCT2201 and MCT2202 are
opto-isolators with phototransistor output. A
gallium arsenide infrared emitting diode is
selectively coupled with an NPN silicon
phototransistor.
6.35 (.250)
L.l.
~18.89 (.350~~
~
7.62
(.300)
REF
8.38 (.330)
0.36 (.014)
I 0.20 (.008)
t------=-L
1
1.78 (.070) REF
1.78 (.070) TYP
:
:
I
I
I
I
---II0.56 (.022)
0.41 (.016)
:
J:
3.94 (.155) I 4.951.,95)
3.68 (.145) j j MAX
I
I t 3.56 (.140)
,L13.05(.120)
I
o.J 1 (.020)
MIN
FEATURES
• High isolation voltage:
5300 VAC RMS-5 seconds
7500 VAC PEAK-5 seconds
• Minimum current transfer ratio of 100%
• Maximum turn-on, turn-off time:
MCT2200-20 Jl.s
MCT2201-10 Jl.s
MCT2201-10 Jl.s
• Underwriters Laboratory (UL) recognized
File #350151
1-,.27 (.050)
C2090
DIMENSIONS IN mm (INCHES)
APPLICATIONS
•
•
•
•
Power supply regulators
Digital logic inputs
Appliance sensor systems
Industrial controls
Equivalent Circuit
ABSOLUTE MAXIMUM RATINGS
TOTAL PACKAGE
Storage temperature .......•...... -55° C to 150° C
Operating temperature ............ -55° C to 100° C
Lead soldering temperature (10 sec.) ........ 260°C
Total package power dissipation at 25°C ambient
(LED) plus detector) ................... 260 mW
Derate linearly from 25° ............... 3.5 mW/o C
INPUT DIODE
Forward current ........................... 60 mA
Reverse voltage ............................ 3.0 V
Peak forward current (1 Jl.s pulse, 300 pps) .... 3.0 A
Power disipation at 25°C ambient ......... 135 mW
Derate linearly from 25° C ............. 1.8 mW/o C
OUTPUT TRANSISTOR
Power dissipation at 25°C ambient ........ 200 mW
Derate linearly from 25° C ............ 2.67 mW/o C
137
MCT2200/0Z MCT2201/1Z MCT2202/2Z
ELECTRO-OPTICAL CHARACTERISTICS (25°C Unless Otherwise Specified)
TRANSFER CHARACTERISTICS
CHARACTERISTIC
0
c
Current Transfer Ratio,
collector to emitter
MCT2200
MCT2201
MCT2202
Saturation voltage
Cl
~In
:I:W
u:;
t-§:t-
SYMBOL
MIN.
TYP.
MAX.
UNITS
TEST CONDITIONS
200
95
IF= 10 mA;VCE =5 V
125
%
%
%
.21
.40
V
IF = 10 mA; Ic = 2.5 mA
,.
,,8
,,5
,CTR
20
100
63
VCE(SATI
60
Non-saturated
Turn-on time
Turn-off time
ton
6.0
toft
~.5
Isolation voltage
Viso
5300
VAcRMS
Visa
7500
VAcPEAK
Isolation resistance
Aiso
10"
Isolation capacitance
eisa
10
10
{ RL = 100'±; Ic =
VCC = 10V
See Figure 10.
2mA;
In
z
0
~
--} hJV'\I'-e
r
LEO
CONSTANT
CURRENT
IN'tlT
IL __' _
-
'e
Vee -10VOLTS
NUl
INPUT
.70
DETECTOR
>-_.__--J
"
C838
C837
Modulation Circuit Used to Obtain Output VI. Frequency Plot
Circuit Used to Obtein Switching Time VI. Collector Current Plot
NOTES
1. The current transfer ratio (lCII F) is the ratio of the detector collector current to the LED input current with
VCE at 10 volts.
2. The frequency at which ic is 3 dB down from the 7 kHz value.
3. Rise time (tr) is the time required for the collector current to inc,."". from 70'J(, of its final value to SO'J(,.
Fall time (tf) is the time required for the collector current to dec,."". from 90% of its initial value to 10'J(,.
142
MCT270
PACKAGE DIMENSIONS
D
DESCRIPTION
J
t
15° MAX
6.86 (.270)
6.35 (.250)
~'8.89 (.350) ~
(.008)
!+---"
-L
T
7.62
(.300)
REF
8.38 (.330)
0.36 (.014)
-'-----=:""-.1--:1 0.20
~
The MCT270 is a phototransistor-type optically
coupled isolator. A gallium arsenide infrared
emitting diode is selectively coupled with an NPN
silicon phototransistor.
1.18 (.070) REF
FEATURES
•
•
Ii
1.18 (.070) TYP
/:::'-',=~Ad 3.94 (.155) 4.95 (.195)
I
3.68 (.145)! t MfX
......j I-
0.56 (.022)
0.41 (.016)
-
:I t 3.56 (.140)
I,l.J.3.05 (.120)
•
I solation voltage
2500VAC RMS - Steady State Rating
3000VAC RMS - Surge Rating
Minimum current transfer ratio of 50%
Maximum turn-on, turn-off time 10J,l seconds
specified
Underwriters Laboratory (UL) recognized
File E50151
O.~'
(.020)
MIN
1-1.27 (.050)
C2090
DIMENSIONS IN mm (INCHES)
APPLICATIONS
•
•
•
•
•
•
Power supply regulators
Digital logic inputs
Microprocessor inputs
Appliance sensor systems
Power supply regulators
I ndustrial controls
Equivalent Circuit
ABSOLUTE MAXIMUM RATINGS
TOTAL PACKAGE
Storage temperature . . . . . . . . . . _55°C to 150°C
Operating temperature ......... -55°C to 100°C
Lead temperature
(Soldering, 10 sec) . . . . . . . . . . . . . . . . . . 260°C
Total package power dissipation @ 25°C
(LED plus detector! . . . . . . . . . . . . . . . . 260 mW
Derate linearly from 25°C . . . . . . . . . . 3.5 mWtC
INPUT DIODE
Forward DC current ., . . . . . . . . . . . . . . . 90 mA
Reverse voltage . . . . . . . . . . . . . . . . . . . . . . 3 V
Peak forward current
(1 J,lS pulse, 300 pps) . . . . . . . . . . . . . . . . . 3.0 A
Power dissipation 25°C ambient . . . . . . . . 135 mW
Derate linearly from 25°C . . . . . . . . . . 1.8 mW/oC
OUTPUT TRANSISTOR
Power dissipation @ 25°C . . . . . . . . . . . . . 200 mW
Derate linearly from 25°C . . . . . . . . . 2.67 mWtC
143
MCT270
ELECTRO-OPTICAL CHARACTERISTICS (25°C Free Air Temperature Unless Otherwise Specified)
TRANSFER CHARACTERISTICS
CHARACTERISTIC
SYMBOL
MIN.
TYP.
CTRcE
50
115
CTRce
0.045
0.15
MAX.
UNITS
TEST CONDITIONS
Current Transfer Ratio,
u
C
collector to emitter
%
IF= lOrnA; VCE= 10V
Current Transfer Ratio,
collector to base
Saturation voltage
VCE(SATI
.21
ton
toft
6.0
5.5
ton
.40
%
IF
V
IF
= 16 mA; Vce = 10 V
= 10 mA; Ie = 2 mA
Non-saturated
en
w
::;:
j:::
~
2
i
u
I-
~
en
Turn-on time
Turn-off time
j:::
Turn-on time
Turn-off time
toff
3.9
48
IlS
IlS
{IF = 16 mA; RL = 1.9 Kn
See ligures 12, 14
3.9
110
IlS
IlS
{ IF = 16 mA; RL = 4.7 Kn
See figures 12, 14
(Approximates a typical TTL interfacel
Turn-on time
ton
Turn-off time
toft
(Approximates a typical low power TTL interface)
Surge isolation
VISO
4000
VDC
Relative humidity'; 50%,
11_ 0 ,; 10 IlA
Steady state isolation
Visa
3000
3500
VAC·rms
VDC
2500
Isolation resistance
R iso
VAC·rms
ohms
1 second
Relative humiditY .; 50%,
11_ 0 ,; 10 IlA
1 minute
V 1. 0 = 500 VDC
Isolation capacitance
elsa
«
..J
0
!!!
{RL = lOOn; le= 2 mA;
VCC= 5 V
See ligures 11, 13
Saturated
2
0
IlS
IlS
10
10
10 11
pF
0.5
1=1 MHz
INDIVIDUAL COMPONENT CHARACTERISTICS
CHARACTERISTIC
w
C
C
e
I-
::J
I>.
~
II:
0
I-
en
iii
2
«
II:
lI-
::J
I>.
I-
::J
0
144
Forward vol tagc
SYMBOL
MIN.
VF
TYP.
MAX.
UNITS
1.3
1.50
V
TEST CONDITIONS
IF = 20 mA
Forward voltage temp.
coefficient
Reverse vOllage
Junction capncitance
VA
3.0
CJ
-1.8
25
50
65
0.35
Reverse IC>-
I,A
T0
r-
'" 120
3,A-
7
.Y
I.-"i"'""
VeE" 5V
V
I
5,A-
.1 2 3.4 5
10
o
IS,..A-
10
0204
" 160
2a.A-
I,;
10
Fig. 2. Collector Current vs.
Collector to Emitter Voltage
2SJlA
D
f
Hl
VeE - (Volts)
200
V
12
III
III
'/
J
C1285
Fig. 1. Forward Voltage vs.
Forward Current
2a
;{
IF" SmA
,
VF - IVolts)
I.
III
I
,
J J
/
14
ill
I
•
·,II
16
lJI
IF -,OmA
60
40
I
+-,
F
/
I.
18
.,' .;am~
/
20
25° C /-25" C
:ii
w
:;
i=
Cl
2
~
U
I-
~
2
0
i=
Turn·off time
toff
Saturated
Turn-on time
ton
Turn-off time
toff
(Approximates a typical TTL interlace I
Turn-on time
ton
Turn-off time
toff
(Approximates a typical low power TTL interlace I
3.9
48
"s
".
,,5
3.9
110
"s
Surge isolation
Visa
4000
VDC
Steady state isolation
Visa
3000
3500
VAC·rms
VDC
Isolation resistance
Aiso
2500
10"
VAC·rms
ohms
Isolation capacitance
Ciso
iJj
2
l00mW
If"'" I
TA',~'C
60
-50
-25
+25
+50
+75
TEMP -I'CI
Fig. 7. Current Transfer Ratio
(unsaturated) vs. Temperature
+100
C1301
0
100
1000
10.000
100.000
OPERATING TIME - (Hours)
Fig. 8. CurrtJnt Transfer Ratio
Operating Time
C1251
VS.
153
MCT272
TYPICAL SWITCHING CHARACTERISTICS'
40
6
RL
14
=
I F =32to16mA
1.9 Kn
Vee
=
5V
ABE
=
0
Vee
Al
=
=
5V
1.9 Kn
30
12
0
~
8
w
r--...
~
tj.....
20
""
";::
I----
10
'on
o
2
10
IF - (mAl
Fig. 9. Switch-on Time vs.
'F Drive (saturatedl
14
10M
1M
lor
lOOK
ABE - (n)
C1302
f',~
10K
C1303
Fig. 70. Switch-off Time vs. Base to
Emitter Resistance (saturatedl
INPUT
OV
I
I
I
I
:
~
90%
I
OUTPUT
I
I
10%
I
I
I
I
I
I
I
-.ton~ toff
C1293
Fig. 77.
I
I
t--
C1294
Fig. 72.
VCC=50V
}
OUTPUT
C1295
Fig. 13.
154
e1296
Fig. 14.
MCT274
DESCRIPTION
PACKAGE DIMENSIONS
6.86 (.270)
6.35 (.250)
o
I.
'8.89 (.350)
8.38 (.330)
~
The MCT274 is a phototransistor-type optically
coupled isolator. A gallium arsenide infrared
emitting diode is selectively coupled with an NPN
high-gain silicon phototransistor.
0.36 (.014)
-'-----"'........-,1 0.20 (.008)
~~-L
7.62
(.300)
REF
1.78 (.070) REF
l'
FEATURES
• Controlled Current Transfer Ratio - 225% to 400%
(specified conditions)
• Maximum Turn-on time - 25 tlseconds
(specified condition)
• Maximum Turn-off time - 25 tlseconds
(specified condition)
• Surge Isolation Rating 4000 volts DC
3000 volts AC, rms
• Steady-state Isolation Rating 3500 volts DC
2500 volts AC, rms
• Underwriters Laboratory (U.L.) recognized
- File E50151
DIMENSIONS IN nun (INCHES)
APPLICATIONS
•
•
•
•
•
Control Relays
Digital controls
Microprocessor controls
Replace slow photodarlington types with better
switching speeds and equivalent gain devices
Multiple gate interlace
Equivalent Circuit
ABSOLUTE MAXIMUM RATINGS
TOTAL PACKAGE
Storage temperature .. . . . . . . .. -55°C to 150°C
Operating temperature ......... _55°C to 100°C
Lead temperature
(Soldering, 10 sec) . . . . . . . . . . . . . . . . . . 260°C
Total package power dissipation @ 25°C
(LED plus detector) . . . . . . . . . . . . . . . . 260 mW
Derate linearly from 25°C .......... 3_5 mWtC
INPUT DIODE
Forward DC current . . . . . . . . . . . . . . . . . 60 mA
Reverse voltage . . . . . . . . . . . . . . . . . . . ... 3 V
Peak forward current
(1 tis pulse, 300 pps) . . . . . . . . . . . . . . . .. 3.0 A
Power dissipation 25°C ambient ........ 90 mW
Derate linearly from 25°C .......... 1-2 mWtC
OUTPUT TRANSISTOR
Power dissipation @ 25°C ............. 200 mW
Derate linearly from 25°C ......... 2.67 mW/oC
155
MCT274
ELECTRO-OPTICAL CHARACTERISTICS (25° C Temperature Unless Otherwise Specified)
TRANSFER CHARACTERISTICS
CHARACTERISTIC
SYMBOL
MIN.
TYP.
MAX.
UNITS
TEST CONDITIONS
CTRcE
225
12.5
305
400
%
%
IF= 10mA;V CE = 10V
IF= 16 mA; V CE = 0.4 V·
0.15
0.16
.40
%
V
IF=10mA;VCB=10V
I F =16mA;I C =2mA
ton
9.1
25
lOS
toff
7.9
25
lOS
RL = lOOn; Ic= 2 rnA;
VCC= 5 V
See figures 11,13
Turn-on time
ton
Turn·off time
toff
(Approximates a typical TTL interlace)
3.0
95
".
".
IF=16mA;R L =I.9Kn
See figure. 12, 14
Turn-on time
Turn-off time
3.0
185
".
".
IF=16mA;R L =4.7Kn
See figure. 12, 14
Current Transfer Ratio,
U
collector to emitter (al
c
Current Transfer Ratio,
collector to base
Saturation voltage
Non·satu rated
Turn·on time
III
CTRcB
VCEISAT)
w
::E
f=
(!J
Z
~
U
I-
~
Turn-off time
Saturated
'on
toff
(Approximate. a typical low power TTL interface)
Surge isolation
Viso
4000
VDC
Steady state isolation
Visa
3000
3500
VAC·rm.
VDC
Relative humidity" 50%,
11- 0 " 10pA
t = 1 second
Relative humidity .. 50%,
Isolation resistance
Riso
2500
10"
VAC·rms
ohms
11_0" 10"A
t = 1 minute
VI.O = 500 VDC
Isolation capacitance
Ciso
Z
0
f=
«..J
0
!!!
pF
0.5
f = 1 MHz
INDIVIDUAL COMPONENT CHARACTERISTICS
CHARACTERISTIC
w
0
Forward voltage
Forward voltage temp.
I::l
Reverse voltage
~
Junction capacitance
Q
0
...
VR
CJ
hFE
0
Collector to emitter
III
Collector to base
BVCEO
BVCBO
BVEBO
I-
iii
Z
Emitter to base
«
IZ:
Leakage current
...
Capacitance
lI::J
I::l
0
Collector to emitter
Collector to emitter
Collector to base
Emitter to base
3.0
IR
DC forward current gain
Breakdown voltage
IZ:
MIN.
VF
coefficient
Reverse leakage current
156
SYMBOL
ICEO
TYP.
MAX.
UNITS
1.20
1.50
V
-1.8
25
50
65
0.35
mvl"c
V
pF
pF
10
"A
360
30
70
5
45
7
8
20
10
IR = 10"A
VF=OV,I=l MHz
VF = 1 V, 1= 1 MHz
VR= 3.0 V
VCE=5V,IC=100"A
130
5
TEST CONDITIONS
IF = 20mA
50
V
V
V
Ic = 1.0 mA, IF = 0
IC= 10"A
IE=100"A,I F =0
nA
VCE = 10 V, IF = 0
pF
pF
pF
VCE = 0, 1=1 MHz
VCB=5,1= 1 MHz
VEB = 0, I = 1 MHz
MCT274
TYPICAL ELECTRICAL CHARACTERISTIC CURVES (250 C Free Air Temperature Unless Otherwise Specified)
60
0
I
75°
:;t 60
I
_~
0
40
,j{
20
.5
/Y/I
c
e' /
25'
;;{
0
60
40
.5
I
.y
..
1.0
1.4
15
01
--
20
14
iI
.02
04
10
2
4
IS 10
2
a
4
VeE - (Volts)
a 60
o
"
i" IV
g200
50mf\
lOrnA
".5
/'"
z
_1O.A_
... 1-
5
6
7
8
9
10
11
C1310
veE ·O.4V
'F
10
6.0
4.0
20m~
300
.-15jlA
4
20
-,....
I 400
3
Fig. 3. Col/ector Current vs.
Forward Current
100
60
40
z
a
>=
2
'F - (rnA)
500
12
..§. 10
1
CI309
2"5 . A _
:t
V
Fig. 2. Col/ector Current vs.
Col/ector to Emitter Voltage
.... 20.A
/
V
o
10
VvCE"SV
V
8
I
I
I
C1285
/
2 rnA
D
II/
,
1.3
./
4
6
'F
I
Fig. 1. Forward Voltage vs.
Forward Current
18
~A
I
10
"
12
V F - (Volts)
2
II I
20
I I I
,II I /
20rnA
==t7o~~
'/
0
/ I
J j J
20
'F
20
e
-25'
1
40
16
0
'00
100
-"
16mA
'F - 8 rnA
2.0
VI
1.0
.6
4
III
I-
~
5.A
~ lOa
1.A
1,2345./1020
VCI
II
a
3.A
Vee = IOV
10K
lOOK
C 1288
01
1 KU
1M
ABE - BASE RESISTANCE -
Fig. 4. Col1c,cror Current vs.
Col/ector to Emitter Voltage
02
TA=25D C
50
V
10
06
.04
n
100
veE - 5 V
i--
~
socI
80
100Kn
1M!!
RBE - In)
Fig. 5. Sensitivity vs. Base Resistance
600
10Kll
C1334
10MQ
C1311
Fig. 6. Saturated CTR vs.
Base to Emitter Resistance
".IJm~ -
'"
t;
40 0 -
~
I
300
- '-- r--....
"
............
200
i= 60
~
'c=2rnA
a
-...::....
w
N
40
::;
«
~
az
100
0
o
-50
-25
+25
TEMP -
+50
!~C)
+75
+100
C1312
Fig. 7. Current Transfer Ratio
(unsaturated) vs. Temperature
Ponr·'T~~;~CC
OOT
100
1000
10,000
OPERA]"ING TIME - (Hours)
100,000
C1251
Fig. B. Current Transfer Ratio vs.
Operating Time
157
MCT274
TYPICAL SWITCHING CHARACTERISTICS
160
IF =3.2to l6mA
R L "'1.9Kn
140
Vee = 5 V
ABE'" 0
"-...
t on -
R L =1.9Kn
120
:! 100
I\.
Vee = 5 V
w
80
">=
60
--
r-toff
....
40
20
12
3.2 4
IF - (rnA)
Fig. 9. Switch-on Time vs.
IF Drive (saturated)
16
C1313
500K
1M
RBE - (m
100K
50 K
C1314
Fig. 10. Switch·off Time vs. Base to
Emitter Resistance (saturated)
INPUT
OV
(OUTPUT
Cl293
Fig. 11.
C1294
Fig. 12.
V CC =5.0V
V CC =5.0V
}
158
OUTPUT
C1295
C1296
Fig. 13.
Fig. 14.
MCT275
PACKAGE DIMENSIONS
DESCRIPTION
~
The MCT275 is a phototransistor-type optically
coupled isolator. A gallium arsenide infrared
emitting diode is selectively coupled with a high
voltage NPN silicon phototransistor.
6.86 (.270)
6.35 (.250)
0.36 (.014)
====~_II 0.20 (.008)
~'8.89 (.350) ~
~
7.62
(.lOO)
REF
8.38 (.330)
i-=
1.18 (.070) REF
--L
1
I
I
---110.56 (.022)
0.41 (.016)
J: I
•
j
•
MIN
•
t l.56 (.140) 0.~1 (.020)
'iL1l.05 (.120)
High voltage output - 80 volts, BVCEO
Controlled Current Transfer Ratio - 70% to 210%
(specified conditions)
Maximum Turn-on time - 15 /.Iseconds
(specified condition)
Maximum Turn-off time - 15 /.Iseconds
(specified condition)
Surge Isolation Rating 4000 volts DC
3000 volts AC, rms
Steady·state Isolation Rating 3500 volts DC
2500 volts AC, rms
Underwriters Laboratory (U.L.) recognized
- File E50151
•
I=-i-o::::ri-I'="-.=1 l.94 (.155) t 4.951.195)
:
:
3.68 (.145) t t MAX
I
•
•
•
1.78 (.070) lYP
I
I
FEATURES
I- 1.27 (.050)
C2090
DIMENSIONS IN mm (INCHES)
APPLICATIONS
•
•
•
•
Telephone circuits
Digital input to telecommunications
I ndustrial control of high DC voltage
Telephone relay driver
Equivalent Circuit
ABSOLUTE MAXIMUM RATINGS
TOTAL PACKAGE
Storage temperature ... . . . . . .. _55°C to 150°C
Operating temperature ......... -55°C to 100°C
Lead temperature
(Soldering, 10 sec) . . . . . . . . . . . . . . . . . . 260° C
Total package power dissipation @ 25°C
(LED plus detector) . . . . . . . . . . . . . . . . 260 mW
Derate linearly from 25°C . . . . . . . . . . 3.5 mWtC
INPUT DIODE
Forward current . . . . . . . . . . . . . . . . . . . . 60 mA
Reverse voltage . . . . . . . . . . . . . . . . . . . . . . 3 V
Peak forward current
(1 /.Is pulse, 300 pps) . . . . . . . . . . . . . . . .. 3.0 A
Power dissipation 25°C ambient ........ 90 mW
Derate linearly from 25°C . . . . . . . . . . 1.2 mWtC
OUTPUT TRANSISTOR
Pbwer dissipation @ 25°C . . . . . . . . . . . . . 200 mW
Derate linearly from 25°C . . . . . . . . . 2.67 mW/oC
159
MCT275
ELECTRO-OPTICAL CHARACTERISTICS (25°C Temperature Unless Otherwise Specified)
TRANSFER CHARACTERISTICS
CHARACTERISTIC
U
SYMBOL
MIN.
TYP.
MAX.
UNITS
Current Transfer Ratio,
collector to emitter (e)
CTRcE
70
12.5
125
210
%
%
'F=10mA;VCE=10V
'F= 16 mA; VCE= 0.4 V
Current Transfer Ratio,
collector to base
Saturation voltage
CTRcB
VCE(SAT)
0.15
0.25
.40
%
V
'F= 10mA;V CB = 10V
' F =16mA;l c =2mA
4.5
15
IlS
3.5
15
3.2
50
""
""IlS
RL = loon; Ic= 2mA;
Vcc=5V
See figures 11,13
3.1
90
IlS
IlS
' F = 16 mA; RL = 4.7 Kn
See figures 12, 14
Relative humidity < 50%,
Q
Non-saturated
Turn-on time
III
w
::!E
j:
CI
Z
:t
r=
~
Turn-off time
toff
Saturated
Turn-on time
ton
Turn·off time
toff
(Approximates a typical TTL interface)
Turn-on time
ton
Turn-off time
toff
(Approximates a typical low power TTL interface)
Surge isolation
Z
0
j:
ton
Viso
4000
VDC
Steady state isolation
Viso
3000
3500
VAC·rms
VOC
Isolation resistance
Rlso
2500
10"
VAC-rms
ohms
Isolation capacitance
ClIo
...0
c(
!!!
pF
0.5
TEST CONDITIONS
'F= 16mA;R L = 1.9Kn
See figures 12, 14
' 1- 0 <101lA
t = 1 second
Relative humidity < 50%,
'1-0 <101lA
t = 1 minute
V I •O = 500 VOC
f = 1 MHz
INDIVIDUAL COMPONENT CHARACTERISTICS
CHARACTERISTIC
w
Q
0
e
I:::l
"~
II:
0
IIII
iii
z
c(
II:
lI:::l
"-
I:::l
0
160
Forward voltage
Forward voltage temp.
coefficient
Reverse voltage
SYMBOL
MIN.
VF
TYP.
MAX.
UNITS
1.20
1.50
V
10
mVI"C
V
pF
pF
IlA
Reverse leakage current
IR
-1.8
25
50
65
0.35
DC forward current gain
hFE
170
Junction capacitance
Breakdown voltage
Collector to emitter
Collector to base
Emitter to base
Leakage current
Collector to emitter
Capacitance
Collector to emitter
Collector to base
Emitter to base
VR
CJ
BVCEO
BVCBO
BVEBO
'CEO
3.0
80
100
5
8
20
10
IR = 10llA
VF = 0 V, f = 1 MHz
VF= 1 V,f= 1 MHz
VR = 3.0 V
VCE=5V,IC=100 IlA
85
150
7
5
TEST CONDITIONS
'F = 20mA
50
V
V
V
Ic = 1.0 mA, 'F = 0
Ic= 10llA
'E = 100llA, 'F = 0
nA
VCE=10V,IF=0
pF
pF
pF
VCE = 0, f = 1 MHz
Vce=5,f= 1 MHz
VEe = 0, f = 1 MHz
MeT27S
TYPICAL ElECTR ICAl CHARACTERISTIC CURVES (25 0 C Free Air Temperature Unless Otherwise Specified)
..
00
!
••
/Y/l
75·0
...••
'.0
20
26' C/-25'C
..•
....
I I
/I
I
I
I
I
,8
.9
I
1,0
1.1
1.3
t.:Z
CI285
Gi
_
"I
z
5
RBE
g140
.02.04
/
V
1/
/
IF'"' 2 mA
:"-'-1
.10
.2
./
J lL
.4 6 1.0
4-
~
180
~
~ 120
/~
z
.....
~ 80
180
lOmA
J
Vee ·,0V
VCE
~5V
175
100
~
9 10 "
C1316
,',6 ~l
I'F=8mA
iF" 4mA
1//
lOKn
lOOK!}
1M!}
RBE :. 1m
10Mn
C1317
Fig. 6. Saturated CTR vs.
Sase to Emitter Resistance
IF'4L~
80
/I
1 KSl
lOOK
1M
ABe - BASE RESISTANCE - n C133S
Fig. 5. Sensitivity vs. Base Resistance
200
8
.02
.01
~~.25·C
o
Fig. 4. ColIsctor·Emitter Breakdown
Voltage vs. Base Resistance
7
I,I~
1.0
.6
.Y .4
~
10K
6
I
.2
1l
TA;2~'~ 1111
5
II I II
!
.10
.06
.04
40
4
VCE'O.4V
20
10
6.0
4.0
;( 2.0
20m~
""
/V
3
Fig. 3. ColIsctor Current vs.
Forward Current
50mA
-~
2
IF - (rnA)
ff-
40
lOOK 200K some: 1M 2M
5M 10M
RBe - BASE EMITTER RESISTANCE - n C1330
1
<;1315
ill
BVCEX VS. Rae
,/
o
o
2.0 4.06.0 10
100
60
40
o
120
"~ 100
10
_u
200
6
160
:;
~
12
Fig. 2. Collector Current vs.
Collector to Emitter Voltage
180
~
VCE - 6V
J LL
VeE -(Volts)
Fig. t. Forward Voltage·vs.
Forward Current
g
14
IF· 5 rnA
[1 I
•.01
1.5
1.4
VF -(Voltsl
~
16
/
/
.1/ /
w
18
~O~J.
-
J I
2.0
'F- 2OmA
~)
/
•
/
I
.:!-
50
I/I/
20
e
20
lDO
.DO
-
a:
150
t;
-...........
~
-'
..........
I 125
...ua:
100
"
i'-.
;:::
~
0
'C"2mA
~ 40
:;
"'a:"
0
75
z
50
-50
-25
+25
TEMP -I'C)
+50
60
+75
+100
cm8
Fig. 7. Current Transfer Ratio
(unsaturated) VB. Temperature
20
Po (TOTAL) ., 100 mW
o
100
fn~A:;:r,c
1000
I
10,000
OPERATING TIME - (Hours)
100.000
e12S1
Fig. 8. Current Transfer Ratio vs.
Operating Time
161
MCT275
TYPICAL SWITCHING CHARACTERISTICS
16
80
RL -1.9Kn
Vee"" 5 V
R Be = 0
14
Vee'" 5V
RL "'1.9Kn
60
12
~
'F"3.2to16mA
10
10
I\.
];
50
w
40
"
~
""-
ton-
r-Itoff
30
20
10
12
3.2 4
IF - (mAl
16
50aK
1M
Fig. 9. Switch·on Time vs.
IF Drive (saturated)
n
OV
I
I
I
OUTPUT
C1293
50 K
C1320
Fig. 70. Switch·off Time vs. Base to
Emitter Resistance (saturated)
~
INPUT
lOOK
RBE - (ill
C1319
PULSE WIDTH
=
l00~s
, DUTY CYCLE"' 10%
I
I
I
I
I
I
C1294
Fig. 72.
Fig. 77.
VC C =5.0V
VCC=50V
}
OUTPUT
OUTPUT
loon
162
CI295
CI296
Fig. 73.
Fig. 74.
MCT276
PACKAGE DIMENSIONS
~
I.
6.86 (.2701
6.35 (.2501
The MCT276 is a phototransistor-type optically
coupled isolator. A gallium arsenide infrared
emitting diode is selectively coupled with a high
speed NPN silicon phototransistor.
0.36 (.0141
~--="""1I""11 0.20 (.0081
~
'8.89 (.3501
al8 (.3301
DESCRIPTION
~
i--=
1.78 (.0701 REF
7.62
(.3001
REF
...L
T
•
•
1.78 (.070) TYP
!:::r;,,=,+=r-.::::I 194 (.1551 t 4.95 1.,951
I
:
3.68 (.1451 t t MAX
I
I
I
I
I
I
I
I0.56 (.0221
0.41 (.016)
J: I
I
~ 1.27 (.0501
•
!
•
MIN
•
t 156 (.1401 O.~' (.0201
'Li105(.1201
FEATURES
•
•
Highest speed discrete phototransistor optoisolator
Controlled Current Transfer Ratio - 15% to 60%
(specified conditionsl
Maximum Turn-on time - 3.5 ~seconds
(specified condition I
Maximum Turn-off time - 3.5 ~seconds
(specified condition I
Surge Isolation Rating 4000 volts DC
3000 volts AC, rms
Steady-state Isolation Rating 3500 volts DC
2500 volts AC, rms
Underwriters Laboratory (U.L.I recognized
- File E50151
C2090
DIMENSIONS IN nun (INCHES)
APPLICATIONS
•
•
•
•
•
Data communications
Digital ground isolation
Digital logic inputs
Microprocessor inputs
Appliance sensor systems
C2079
Equivalent Circuit
ABSOLUTE MAXIMUM RATINGS
TOTAL PACKAGE
Storage temperature .......... _55°C to 150°C
Operating temperature ......... _55°C to 100°C
Lead temperature
(Soldering, 10 secl . . . . . . . . . . . . . . . . . . 260°C
Total package power dissipation @ 25°C
(LED plus detector) . . . . . . . . . . . . . . . . 260 mW
Derate linearly from 25°C .......... 3.5 mWtC
INPUT DIODE
Forward DC current . . . . . . . . . . . . . . . . . 60 mA
Reverse voltage . . . . . . . . . . . . . . . . . . . . . . 3 V
Peak forward current
(1 ~s pulse, 300 pps) . . . . . . . . . . . . . . . .. 3.0 A
Power dissipation 25°C ambient ........ 90 mW
Derate linearly from 25°C .......... 1.2 mW/oC
OUTPUT TRANSISTOR
Power dissipation @ 25°C . . . . . . . . . . . . . 200 mW
Derate linearly from 25°C ......... 2.67 mW/oC
163
MCT276
ELECTRO-OPTICAL CHARACTERISTICS (25°C Temperature Unless Otherwise Specified)
TRANSFER CHARACTERISTICS
CHARACTERISTIC
SYMBOL
MIN.
TYP.
MAX.
UNITS
CTRcE
15
12.5
30
60
%
%
I F =10mA;V CE =10V
IF= 16mA;V CE =0.4V
0.15
0.24
.40
%
V
I F =10mA;V CB =10V
IF = 16 mA; Ic = 2 mA
2.4
3.5
IlS
2.2
3.5
IlS
R L = 100n;I C =2mA;
VCC = 5 V
See ligures 11, 13
TEST CONDITIONS
Current Transfer Ratio,
u
collector to emitter (a'
C
Current Transfer Ratio,
collector to base
Saturation voltage
CTRcB
VCEISAT)
Non-saturated
Turn-on time
III
ton
w
~
i=
e"
Z
:ru
~
~
III
Z
0
i=
Turn-off time
toft
Saturated
Turn-on time
ton
Turn·off time
toff
(Approximates a typical TTL interface I
Turn-on time
ton
Turn-off time
toff
(Approximates a typical low power TTL interface)
IlS
5.4
32
IlS
IlS
IlS
Surge isolation
Visa
4000
VDC
Steady state isolation
Visa
3000
3500
VAC·rms
VDC
Riso
2500
10"
VAC·rms
Isolation resistance
Isolation capacitance
C iso
«
...
0
!!l
6.8
16
ohms
pF
0.5
I F =16mA;R L =1.9Kn
See ligures 12, 14
IF= 16mA; RL = 4.7 Kn
See ligures 12, 14
Relative humidity .; 50%,
11-0'; 10llA
t : 1 second
Relative humidity.; 50%,
11_0';1 0 IlA
t = 1 minute
VI_O = 500 VDC
1=1 MHz
INDIVIDUAL COMPONENT CHARACTERISTICS
CHARACTERISTIC
w
C
0
E
~
Forward voltage
Forward voltage temp.
Reverse voltage
~
Junction capacitance
II:
0
~
III
iii
Z
«
II:
~
MIN,
VF
coefficient
:::l
Il.
SYMBOL
VR
CJ
Reverse leakage current
IR
DC forward current gain
hFE
Breakdown voltage
Collector to emitter
Collector to base
Emitter to base
Leakage current
Collector to emitter
BV CEO
BVCBO
BVEBO
ICEO
3.0
TYP.
MAX.
UNITS
1.20
1.50
V
10
mV/oC
V
pF
pF
IlA
-1.8
25
50
65
0.35
45
130
5
7
5
IR= 10llA
VF=OV,f=lMHz
V F = 1 V, I = 1 MHz
V R =3.0V
VCE = 5 V, Ic = 100llA
90
30
70
TEST CONDITIONS
IF = 20mA
50
V
V
V
Ic=1.0mA,I F =0
Ic= 10llA
IE': 1001lA, IF=O
nA
VCE=10V,IF=0
pF
pF
pF
VCE = 0, I = 1 MHz
VCB=5,1= 1 MHz
VEB = 0, I = 1 MHz
~
:::l
Il.
~
:::l
0
164
Capacitance
Collector to emitter
Collector to base
Emitter to base
8
20
10
MCT276
TYPICAL ELECTRICAL CHARACTERISTIC CURVES (25°C Free Air Temperature Unless Otherwise Specified)
100
IIlO
60
!/Yll
20
;(
~
,
.!f-
60
'0
.If/I/
••
....nI.
I
.2
..
1.1
12
1.3
1.4
1.5
.01
02
04
10
2
4
610
,/
I I
s
2 rnA
o
'z",
__ 75,A
12
100
60
40
so ,A
60
~
~
:i....
::;
1SpA
20
:>
u
7
1.0
2.0
5.0
VeE - v
lOOK
!!,80
40
'"
t;
:;i
60
w
40
~c"'2mA
..............
20
;::
~
o
J'...
N
~
IX
!il
o
-25
+25
TEMP - 1°C)
+50
10K!}:
l00K[l
lMQ
RBe - In)
IOMQ
C1324
Fig. 6. Saturated CTR vs.
Base to Emitter Resistance
IFd~
-
:;
10
-so
'F;o16mA
'"
C1336
Fig. 5. Sensitivity vs. Base Resistance
50
....
u
11
Cl322
'F -4mA
.0 1
lKSl
1M
Aae - BASE RESISTANCE - n
100
r-
10
j
.1 0
.06
.04
60
a: 30
9
.02
10K
C1323
Fig. 4. Col/ector Current vs.
Col/ector to Emitter Voltage
8
IF -8 rnA
2
10mA
II
1QpA
.1.2.3.4.5
~~
/~
~
30IJA
7
~f-
';i 2. 0
1.0
6
.Y 4
,
40
....
6
S,
50mA
20mA
z
~f-
5
VeE - 0.4 V
6. 0
4. 0
'"
4
,
80
w
4Sp.A_
3
20
0
0
10
2
Fig. 3. Col/ector Current vs.
Forward Current
;::
:i
L
'F - (rnA)
100
_I--"' ....
1
C1321
Fig. 2. Col/ector Current vs.
Col/ector to Emitter Voltage
'.
V
V
204.06010
VeE - (Volts)
eo,A_
iI'
'F
';
I
C12es
20
16
'F - SmA
II
V F -(Volts)
18
~l
I
I
1.0
' F -10mA
/I
10
Fig. T. Forward Voltage vs.
Forward Current
14
I
9 20
J I
III I
veE· 5 V
,/
,
I I
/ I I
2.•
....
-
WA
10
~ :.~
I
l .•
1
'F',507A
20
2f>"C' /-25' C
75° C
+75
+100
C132S
Fig. 7. Cu"ent Transfer Ratio
(unsaturated) vs. Temperature
20
""nr"'TA'O!;WCOT
0
100
1000
I
'0.000
OPERATING TIME - (Hours)
100,000
C1251
Fig. 8. Current Transfer Ratio vs.
Operating Time
165
MCT276
TYPICAL SWITCHING CHARACTERISTICS
20
16
IF '" 3.2 to 16 mA
Vee "" 5 V
Rl=-1.9Kn
RL'" 1.9Kn
Vee'" 5 V
14
Roe =0
15
12
!
'"
10
I'.
"
;::
--
'"
Ion
";::
12
3.2 4
16
........
VI.
IF Drive (saturated}
lOOK
500K
ROE - (HI
1M
C1326
Fig. 9. Switch-on Time
),
r--.
10
Fig. 10. Switch·off Time
VS.
50 K
C1327
Bass to
Emitter Resistance (saturated}
INPUT
OV
C1293
C1294
Fig. 12.
Fig. 71.
Vee· 5.0 V
VCC=5.0V
}
OUTPUT
OUTPUT
loon
166
C1295
C1296
Fig. 13.
Fig. 14.
MCT277
DESCRIPTION
PACKAGE DIMENSIONS
~
J
t
6.86 (.270)
15'MAX
6.35 (.250)
0.36 (.014)
-'----="'"rf-'I 0.20 (.008)
~'8.89 (.350~ ~
~
7.62
(.300)
REF
8.38 (.330)
i+---=
1.78 (.070) REF
-L
l'
(-1.78 (.070) TYP
::~:;::~~1-3.94 (.155) 1
I
I
I
I
I
I
I
I
----II0.56 (.022)
0.41 (.016)
:
J: I
3.68 (.145) t
I
13.56 (.140)
,U3.05 (.120)
4.951.,95)
j MAX
O.~,
The MCT277 is a phototransistor-type optically
coupled isolator. A gallium arsenide infrared
emitting diode is selectively coupled with an NPN
silicon phototransistor.
I
(.020)
MIN
1-,.27 (.050)
FEATURES
40% Transfer ratio at VCE(SAT) of 0.4 volts for
multiple gate interface
EI Temperature - stable from O°C to 25°C
IS Maximum Turn-on time - 15 ,useconds
(specified condition)
II Maximum Turn-off time - 15 ,useconds
(specified condition)
EI Surge Isolation Rating 4000 volts DC
3000 volts AC, rms
'" Steady-state Isolation Rating3500 volts DC
2500 volts AC, rms
II Underwriters Laboratory (U.L.) recognized
- File E50151
C2090
DIMENSIONS IN mm (INCHES)
APPLICATIONS
Digital to digital system interface
Sensor to many gates
'" Ground loop isolation
III Power supply regulation
III
EI
Equivalent Circuit
ABSOLUTE MAXIMUM RATINGS
TOTAL PACKAGE
Storage temperature . . . . . . . . . . _55°C to 150°C
Operating temperature . . . . . . . . . -55°C to 100°C
Lead temperature
(Soldering, 10 sec) . . . . . . . . . . . . . . . . . . 260°C
Total package power dissipation @ 25°C
(LED plus detector) . . . . . . . . . . . . . . . . 260 mW
Derate linearly from 25°C . . . . . . . . . . 3.5 mWtC
INPUT DIODE
Forward DC current . . . . . . . . . . . . . . . . . 60 mA
Reverse voltage . . . . . . . . . . . . . . . . . . . . . . 3 V
Peak forward current
(1 ,us pulse, 300 pps) . . . . . . . . . . . . . . . .. 3.0 A
Power dissipation 25°C .... . . . . . . . . .. 90 mW
Derate linearly from 25°C . . . . . . . . . . 0.8 mWtC
OUTPUT TRANSISTOR
Power dissipation @ 25°C . . . . . . . . . . . . . 200 mW
Derate linearly from 25°C . . . . . . . . . 2.67 mW/oC
167
MCT277
ELECTRO-OPTICAL CHARACTERISTICS (25°C Temperature Unless Otherwise Specified)
TRANSFER CHARACTERISTICS
CHARACTERISTICS
SYMBOL
MIN.
CTRcE
100
40
TYP.
MAX.
UNITS
TEST CONDITIONS
Current Transfer Ratio,
tJ
C
coli ector to emitter (ai
Current Transfer Ratio,
coli ector to base
CTRcB
0.4
%
%
IF = 10mA;VCE = 10V
IF = IS rnA; VCE = 0.4 V
%
IF = 10mA;VCB = 10V
Non·saturated
III
w
Turn-on time
ton
15
"s
Turn-off time
Saturated
toft
15
:e
j:
CI
Z
:i:
tJ
I-
~
III
Z
0
j:
Turn-on time
ton
Turn·off time
toll
(Approximates a typical TTL interface I
Turn-on time
ton
Turn·off time
toft
(Approximates a typical low power TTL interfacel
3.8
90
"s
"s
IF = 1SmA;RL = 1.9 K!1
See figures 16, 18
3.7
190
/lS
'"
IF = 1SmA;RL =4.7 KO
See figures IS, 18
Relative humidity" 50%,
11- 0 " 10/lA
t = 1 second
Relative humidity" 50%,
11_0 " 10 /lA
t = 1 minute
V I .O = 500 VDC
Surge isolation
Viso
4000
VDC
Steady state isolation
Viso
3000
3500
VAC·rms
VDC
Isolation resistance
Rlso
2500
lOll
VAC-rms
ohms
Isolation capacitance
Ciso
<
...I
0
!!l
"s
RL = 1000; Ic= 2mA;
VCC = 5 V
See figures I 5, 17
1.0
pF
f = I MHz
INDIVIDUAL COMPONENT CHARACTERISTICS
CHARACTERISTIC
w
0
Forward voltage
Forward voltage temp.
I::l
Reverse voltege
~
Junction capacitance
C
E
I>.
II:
0
IIII
iii
Z
<
II:
lI::l
I>.
I::l
0
168
SYMBOL
MIN.
VF
TYP.
MAX.
UNITS
1.20
1.50
V
10
mVI"C
V
pF
pF
/lA
Reverse leakage current
IR
-1.8
25
50
65
0.35
DC forward current gain
Breakdown voltage
hFE
420
Coliector to emitter
Coliector to base
Emitter to base
BV CEO
coefficient
VR
CJ
BVCBO
BVEBO
3.0
30
70
5
TEST CONDITIONS
IF=20mA
IR = 10"A
VF = 0 V, f = 1 MHz
VF = 1 V, f = 1 MHz
VR=3.0V
VCE = 5 V,lc = 100/lA
45
130
7
V
V
V
Ic= 1.0mA,IF = 0
Ic= 1O/lA
IE = 100"A, IF = 0
nA
VCE=10V,IF=0
pF
pF
pF
VCE=O,f= I MHz
V CB = 5, f = I MHz
VEB=O,f= I MHz
Leakage current
Coli ector to emitter
ICEO
5
50
Capacitance
Collector to emitter
Coliector to base
Emitter to base
8
20
10
MCT277
TYPICAL ELECTRICAL CHARACTERISTIC CURVES (25°C Free Air Temperature Unless Otherwise Specified)
.00
100
eo
60
40
40
I
0
/Y/I
wc
0
/
0
I
/
'F'" SmA
/I
'I/lf
;: 2.0
r
.4
J J /
,I J /
.8
.9
1.0
2
1,1
1.2
1.3
1.4
VF - (Voltsl
j
1
1.5
'F' j jA
j
VeE - (Volts)
.8
.6
14
12
~
E
10
O!
8
..... ~
~
o
a ,
--
\
..
"
"<
i\
.s
?;;
'" 50
5.01JA
130
110
~
90
C1244
-,
t
VeE =O.4V
~
lX '
,~
~
-50
o
10
+50
TEMP -I'C)
+100
C1259
Fig. 7. Current Transfer Ratio
(saturated) vs. Temperature
11
C1243
~F=I'6~~
'F' 4mA
'(I
1 KG
90
10Mn
C1246
Base to Emitter Resistance
.9
'.0~~~
.8
VeE'" 5 V
.6 I--t---+-+---+--I
!
'\.
a
z
80
-25
lMn
Fig. 6. Saturated CTR vs.
"
N
-50
lOOKn
.7
'\.
100
10KO
RBE-In)
~'c=20mA
::;
~
a:
10
IF"" SmA
1.0
C1245
~
70
30
5.0
I 110
Ie = 16 mA'
50
2.0
c =2mA
120
fa
9
VeE'" 0.4 V
10
6.0
4 .0
2. 0
Fig. 5. Collector to Emitter Breakdown
Voltage VS. Base to Emitter Resistance
'~
,,
,
,
70
1.0
RBE - (Mol
130
~'.6mA
.........
a:•
.5
.2
Fig. 4. Collector Current vs.
Collector to Emitter Voltage
8
.02
.0 1
45
5.0
VeE - V
7
.2
.10
.06
.04
......... r-..
2.5IJ.A
2:0
6
;: :46
U
>
10 lolA
1.0
5
IF - (rnA)
80
40
20
55
I
~-
4
Fig. 3. Collector Current vs.
Forward Current
Ie = 1 rnA
~
15,A_
3
~
100
~
20j.!A
~
2
~
C1242
60
'.
251'A
.1.2.3.45.7
/
I
//
Fig. 2. Collector Current vs.
Collector to Emitter Voltage
3O~A_
~
10
01020410246102.0406010
C1285
Fig. 1. Forward Voltage v••
Forward Current
20
12
!
~~E·I.4V
IF'" 2 rnA
III
2
';{
VI'
J
14
•
u
I
..
10
••
/VCE·5V
IF'" IOmA
I'r
1 :~
I
I
0
y
18
'6
20
25' C' /-25' C
10
0
20
"'~
'~~~Effi
;;::p",~
0
+25
TEMP - fOC)
+50
"
H5
+100
C1247
Fig. B. Current Transfer Ratio
(unsawrated) vs. Temperature
.51--t---+-+---+-~
.4
~
.3
~
.2
I--+--+-
I:::$~$--f---t-
.1 ~--~--~----~--~--~
+25
+50
-25
+75
+100
TEMP - (OC)
C1248
Fig. 9. Collector to Emitter
SaWration Voltage vs. Temperature
169
MCT277
TYPICAL ELECTRiCAL CHARACTERISTIC CURVES (25°C Free Air Temperature Unless Otherwise Specified)
100
100,000
100
IF = 0
VeE'" 5 V
IF =0
10,000
10
'Fdm~
80
-
t,aoo
1,
"
I
I
f,
a:
~
S' 0.1
10
60
!
i
100
l-
u
40
.01
20
Po (TOT ALI = 100 mW
TA71~'C I
Til;"""
o
+25
+50
+75
+100 +125 +150
TEMP - lOCI
+50
C1249
+75
TEMPERATURE
100
+100
tOe)
1000
Fig. 10. Col/ector to Emitter Leakage
Fig. 11. Col/ector to Emitter Leakage
Current vs. Temperature
Current vs. Temperature
40
16
10
IF =3.2to 16mA
RL = 1.9 KG
Vee = 5 V
Vee = 5 V
ABe = OPEN
RL ='.9KO
30
12
I-
~
w
'"
20
"
~
;:
~
10
...... t----,.,
t on-
32 4
12
IF - (mAl
Fig. 13. Switch·on Time vs.
f F Drive (saturated)
16
C1328
1M
tOOK
500K
RBe - 1m
ov
I
I
I
I
:
~
90%
I
10%
I
I
..-.t
I
I
I
I
I
I
.
I
I
on ~ toff
I
r-
C1294
C1293
Fig. 16.
Fig. 15.
VCC=5.0V
VCC=50V
}
OUTPUT
OUTPUT
loon
C1295
Cl296
Fig. 17.
170
50 K
C1329
Fig. 14. Switch·off Time vs. Base to
Emitter Resistance (saturated)
INPUT
OUTPUT
100.000
el251
Fig. 12. Current Transfer Ratio vs.
Operating Time
TYPICAL SWITCHING CHARACTERISTICS
14
10,000
OPERATING TIME - (Hours)
C1250
Fig. 18.
MCT4
PACKAGE DIMENSIONS r~~
r:lt
~
I- .I
•210
:iiiO
~~~DE
DESCRIPTION
"'...,""
The MCT4 is a standard four-lead, TO-18 package
containing a GaAs infrared emitting diode optically
coupled to an NPN silicon planar phototransistor.
J~:g.,~:"'TI'
D
V
~II .."~
P'T COLLECTOR
(ELECTRfCALLYCONNECTED
--1
-:Oti"~
4&".1M6
TO CASE I
r~
FEATURES
Q
~
~~"'-r
•
•
•
•
,l!!!.
028
PfTEMITTER
Hermetic package
High current transfer ratio; typically 35%
High isolation resistance; 10'1 ohms at 500 volts
High voltage isolation emitter to detector
C950
ABSOLUTE MAXIMUM RATINGS
Peak forward current (1 /loS pulse, 300 pps) ....•.... 3.0 A
Total power dissipation ........................ 250 mW
Derate linearly from 25' C ...........•....... 3.3 mW/' C
DETECTOR (Silicon phototransistor)
Power dissipation at 25' C ambient .............. 200 mW
Derate linearly from 25'C .•................ 2.67 mW/'C
Collector-emitter breakdown voltage (BVCEO) ....... 30 V
Emltter-collector breakdown voltage (BVECO) ...... 7.0 V
ISOLATION VOLTAGE ...•...............•.. 1000 VDC
Storage temperature ............•..•... -65' C to 150' C
Operating temperature ................. -55'C to 125'C
Lead soldering temperature (10 sec) ..•.......•.. 260' C
LED (GaAs Diode)
Power dissipation at 25' C ambient ....•.•...•.... 90 mW
Derate linearly from 25'C ........•.......... 1.2 mW/'C
Continuous forward current .....•.•.••...•.•.•.. 40 mA
Reverse voltage ....................•.......•..•. 3.0 V
ELECTRO-OPTICAL CHARACTERISTICS (250 C Free Air Temperature Unless Otherwise Specified)
CHARACTERISTICS
Emitter
Forward voltage
Reverse current
Capacitance
Detector
BV CEO
BV ECO
ICEO(Dark)
Capacitance collector-emitter
Coupled
DC current transfer ratio
Breakdown voltage
Resistance emitter-detector
VCE(SAT)
Capacitance LED to detector
Bandwidth (see figu re 5)
Rise time and fall time
(see operating schematic)
MIN.
TYP.
MAX.
1.3
.15
150
1.5
10
30
7
15
1000
1011
12
5
2
35
1500
10 12
0.1
0.2
1.8
300
2
50
0.5
UNITS
TEST CONDITIONS
V
p.A
pF
I F =40 rnA
V R =3.0 V
V=O
V
V
nA
pF
Ic=1.0 rnA, IF=O
IE=100,.A,IF=0
VcE=lO V, IF=O
VCE=O
%
VDC
ohms
V
V
pF
kHz
p.s
I F =10 rnA, V cE =10 V
t = 1 second
V = 500 VDC
I c =500p.A, IF= 10 rnA
Ic=2 rnA, I F =50 mA
Note 2
Ic=2 rnA, V CE =10 V
Note 3
171
MCT4
TYPICAL ELECTRO-OPTICAL CHARACTERISTIC CURVES
(250 C Free Air Temperature Uniess Otherwise Specified)
0
j~
o
E
;;.5
~-,
5!"'-
10-4
10-5
vc~ -lOvelLTS
§
1l,..
15,
5
a:
/
a:
,..,
:J
u
IF =20rnA
5
IF .. llOrnA
10
15
20
25
/
0
~:J
o
/
5
/
/
~. 0
f--~;'
5
II
;(
Ie
"5
/
/
/
/
20
30
40
50
IF INPUT CURRENT LED (rnA)
60
V
--60 -40 -20
Figure 2 Input Current vs. Output Current
,
•
2.
111111111
8
/
/
7
•
5
c!<
•
VeE "IOVOLTS
aa: •
go.
~\
I.
8
~
o. 6
·20
0
20
40
60
80
AMBIENT TEMPERATURE (0C)
60 80 100 120 140
2
IK
100
c954
Figure 4 Current Output vs. Temperature
10K
lOOK
FREQUENCY (Hz)
C953
Figure 3 Dark Current VB.
Temperature roC}
I I II
I I II
.
v,. -.OVOLTS
"
I I
2~
•
RL
."
•
1\
\
8 o.•
..
\
)~~
a:
/
-40
20 40
I
\1
';,-
~ I. 2
V
·60
111111111
I .6
!,.
LED CURRENT·IOmA
VeE-IO VOLTS
FREE STANDING DEVICE
4
3
a
C952
AMBIENT TEMPERATURE (OC)
Figure 1 Detector Output Characteristics
9
J
/
C95'
8
.VeE'" 10 VOL IS/
J
10-12
10
-
V
"" ./
30
VeE COLLECTOR VOLTAGE DETECTOR (VOLTS)
-
10-6
I I
RL -470n
."-... i""
I R~ - I '
2
,
0.1
C955
.l,oo~n
I I I
0.2 0.3 OA Q.6081.0
2 3 . 567810
COLLECTOR CURRENT Ie (mA)
C968
Figure 6 Switching Time
VB. Collector Current
Figure 5 Output Vs. Frequency
For additional characteristic curves, see MCT2
OPERATING SCHEMATICS
MODULATION
INPUT
H
'IolF
47n
CONSfANT
CURRENT
INPUT
r
LED
-
--z.. ).
I
L ___ _
)----'
Ie
Vee -'DVOLTS
.... OUTPUT
~ :c..--
-
I
L
Ie
~
I
":" ___ 1
Vee. 'OVOLTI
DETECTOR
PUL8&
' - - -....---t~ OUTPUT
I,
I,
C957
Modulation Circuit Used to Obtain Output
47n
LED
DETECTOR
' - - -....-
PULBE
INPUT
VB.
Frequency Plot
C958
Circuit Used to Obtllin Switr:hlng Tim" vs. ColIlICtor Current Plot
NOTES
1.
2.
3.
172
The current transfer ratio (lcil F) is the ratio of- the detector collector current to the LED input cummt with
V CE at 10 volts.
The frequency at which ic is 3 dB down from the 1 kHz value.
Rise time (tr ) is the time required for the collector current to increase from 10% of its final value, to 9O'J6. Fall
time Itf) is the time required for the collector current to decrease from 90% of its initial value to 1M.
MCT4R
DESCRIPTION
PACKAGE DIMENSIONS
The MCT4R is a standard four-lead, TO-18 package
containing a GaAs infrared emitting diode optically
coupled to a silicon planar phototransistor.
Let:- .;~: :'"
~
LED
f
ooV
--j 1-~::3
ANODE
~~LLECT
r .~
>
FEATURES
• Hermetic package
• High current transfer ratio; typically 35%
• High isolation resistance, 10" ohms at 500 volts
• High voltage isolation emitter to detector
• Screened to MIL-STD-883 Class B
APPLICATIONS
//\-
::
The General Instrument MCT4R is designed and
manufactured to conform to the requirements of
military systems. Reliability testing has proven the
product capable of conforming to the screening and
quality conformance requirements of MIL-STD883C Class B devices.
~:
BOTTOM VIEW
PTEMITTER
C950
SCREEN -
100%
Characteristic
Method
Internal Visual
Stabilization Bake
Temperature Cycle
Centrifuge
Hermeticity
Critical Electrical
Burn In
2010 - Characteristics applicable to device
1008 - 150°C. for 48 hours
1010 -10 cycles; -55°C., 25°C., 1500 ., 25°C.
2001 - Test Condition E
1014 - Fine and Gross
Data Sheet
1015 - 160 hours@ 125°C
Final Electrical
Group A Sample I nspeC'tio::m
External Visl,al
5005
2009
-
-
Data Sheet
Table I Subgroups
173
MCT4R
LOT QUALIFICATION TESTS
Characteristic
Method
Subgroup I
Visual Mechanical
Marking Permanency
Physical Dimensions
LTPD
2008
15%
Subgroup II
Solderability
2003
15%
Subgroup III
Thermal Shock
Temperature Cycle
Moisture Resistance
Critical Electrical
1011 -15 cycles; 150°C. to -65°C.
1010 -10 cycles; -55°C., 25°C., 150°C., 25°C.
1004
Data Sheet
Subgroup IV
Mechanical Shock
Vibration Fatigue
Vibration Variable Frequency
Constant Acceleration
Critical Electrical
Subgroup V
Lead Fatigue
Hermeticity
Subgroup VI
Salt Atmosphere
2002
2005
2007
2001
-
Condition B
Condition A
Condition A
Condition E
Data Sheets
15%
15%
2004 - Condition B2
1014 - Fine Condition A
Gross Condition C
15%
1009 - Condition A
15%
LIFE TESTING 7% LTPD
Subgroup VII
High Temperature Storage
Critical Electrical
1008 - 150°C. for 1000 hours
Data Sheet
7%
Subgroup V III
Operating Life
Critical Electrical
1005 - Condition B
Data Sheets
7%
Subgroup IX
Steady State Reverse Bias
1015 - Condition A; 72 hours at 150°C.
7%
Subgroup X
Bond Strength
2001 -Condition C; 10 devices only
Reference:
174
MIL-STD-883C Test Methods and Procedures for Microelectronics.
AIGaAs
10 mA MCT5200
5 mA MCT5201
PACKAGE DIMENSIONS
DESCRIPTION
CJ
The MCT520X are high performance logic
compatible phototransistor type optically coupled
isolator products. They are ponstructed using a very
low degradation and high-efficiency AIGaAs, 890 nm
infrared emitter, coupled to a high speed NPN
phototransistor, in a high insulation double molded
six-pin dual-in-line package. They provide a very
high current transfer ratio (CTR), high switching
speed and 2500 VAC withstand test voltage
performance. The critical circuit design parameters
of CTRcE and CTRcB are guaranteed over a
temperature range of o-70·C resulting in guaranteed
switching propagation delays when interfaced to
LSTTL logic.
).-
t
6.86 (.270)
6.35 (.250)
~
7.62
(.300)
REF
8.38 (.330)
:
:
I
I
I
I
--II0.56 (.022)
0.41 (.016)
1
:
0.36 (.014)
-'---=~_'I 0.20 (.008)
I '8.89 (.350) ~
2.54(.100)TYP
}
15" MAX
t---"
1.78 (.070) REF
-L
'1
1.78 (.070) TYP
t
J: I
3.94 (.155) t 4.95 195)
3.68 (.145) I t MAX
I
I
t 3.56 (.140) O.J, (.020)
U3.05 (.120)
MIN
1-,.27 (.050)
C2090
DIMENSIONS IN mm (INCHES)
The MCT5201 has a minimum saturated CTR of
120% for a LED input current of 5 mAo Maximum
LSTTL interface propagation delays of 30 ,.s are
guaranteed with the use of an external 330K resistor
between the base and emitter. The MCT5200 is
specified for a minimum saturated CTR of 75% for
an input current of 10 mAo
FEATURES
•
•
•
•
•
•
•
High CTRcE (SAD comparable to Darlingtons
Guaranteed switching speed with LSTTL load
Performance guaranteed over O· C to 70· C
High withstand test voltage
2500 VAC
High common mode rejection-5 kVl,.s
Data rates up to 150 kbits/s (NRZ)
Underwriters Laboratory (UL) recognized file
#E50151
APPLICATIONS
Equivalent Circuit
•
•
•
•
•
LSTTL digital logic isolation
IEEE 488 isolated inputs
Switching power supply
High speed industrial interfaces
Isolated microprocessor inputs
ABSOLUTE MAXIMUM RATINGS
TOTAL PACKAGE
Storage temperature ..•.•••••..•.••..••. -55°C to 150°C
Operating temperature .•.•••••••••.•..•. -55° C to 100° C
Lead temperature (soldering, 10 sec) ••.•.•.•.••.•• 260°C
Total package, power dissipation
(LED plus detector) .•.••..••..•..••••..••.••. 260 mW
Derate linearly from 25° C ••.•...•...•.•.•.•.• 3.5 mW/· C
INPUT DIODE
Forward DC current ••••••••••••••••••.•.••••••••• 40 mA
Reverse voltage ••••.•••••.••••••••••••••••••••••••• 6 V
Peak forward current (1 "s pulse, 300 pps) ••••••••••• 1.0 A
Power dissipation ••••••••••••••••••••••••••••••• 54 mW
Derate linearly from 25°C •••••.••••••••••••• 0.7 mWrC
OUTPUT TRANSISTOR
Power dissipation .••••••.•••••••••••••••••••••• 200 mW
Derate linearly from 25°C •••••••••••••••••• 2.67 mW/oC
175
MCT52DD MCT52D1
TRANSFER CHARACTERISTICS (Over Recommended Temperature, TA =0· C 1070· C Unless Otherwise Specified)
CHARACTERISTIC
Saturated current
transfer ratio
(collector to emitter)
Current Iransfer ratio
(colleclor to emitter)
Currenl transfer ratio
(collector to base)
Saturation voltage
(collector 10 emitter)
SYMBOL
CTRCE(SAT)
CTR(CE)
CTRcB
VCEISAT)
DEVICE
MIN.
TYP."
MCT-52oo
75
150
MCT-5201
120
225
0.2
0.28
200
300
0.3
O.S
0.2
0.2
MCT-52oo
MCT-5201
MCT-52oo
MCT-5201
MCT-5200
MCT-5201
MAX.
UNITS
%
%
%
0.4
0.4
V
TEST CONDITIONS
FIG.
IF = 10 rnA, VCE = 0.4V
2,3,4
IF = 5.0 rnA, VCE = 0.4 V
2,3,5
IF = 10 rnA VeF = 5.0 V
IF = 5 rnA Vc~ - 5.0 V
IF = 10 rnA VCB = 4.3V
IF = S.O rnA V"R - 4.3 V
IF - 10 rnA, ICE - 7.5 rnA
IF = 5 rnA, ICE = 6 rnA
NDTE
1
1
2
6,7
•All typicals TA = 2So C
SWITCHING CHARACTERISTICS (Over Recommended Temperature TA = O· C 10 70· C Unless Otherwise Specified)
TYP."
3
2
12
MAX.
7
6
18
If
17
30
IPHL
IPLH
5
13
12
20
Delay lime
Rise lime
Slorage lime
Id
Ir
Is
7
6
8
15
20
13
Fall lime
If
19
30
IPHL
IPLH
12
8
30
13
CHARA~TERISTIC
SYMBOL
Delay time
Rise lime
Slorage lime
Id
Ir
Is
Fall lime
Propagation delay H-L
Propagalion delay L-H
Propagalion delay H-L
Propagalion delay L-H
DEVICE
MCT-5200
MCT-5201
MIN.
UNITS
,,8
TEST CONDITIONS
IF = 10 rnA, VCE = 0.4 V
RL = 1.0 K, RBE = 330 K
VCC= 5.0V
FIG.
NOTE
15,18
3,4
5,6
-
IF = 10 rnA, VCE = 0.4 V
Vcc = 5.0 V, RL = (Fig. 18)
RBE = 330 K
"s
IF = 5 rnA, VCE = 0.4 V
RL = 1.0 K, RBE = 330 K
Vcc =5.0V
IF = 5 rnA, VCE = 0.4 V
Vcc = 5.0 V, RL = (Fig. 18)
RBF = 330 K
7
13,18
3,4
5,6
I---
7
·Alltypica/s TA =2SoC
NOTES
1. DC current transfer ratio (CTRcE ) is defined as the transistor collector current (ICE) divided by input LED current (IF) x 100%, at a specified
voltage collector to emitter (VCE).
Current transfer ratio is defined as the collector to base photocurrent (tcs) divided by the input LED current (IF) times 100%.
Switching delay time (td) is measured for SO% of LED current to 90% falling edge of Vo.
Rise time (tr) is measured from the 90% to 10% of Vo falling edge.
Storage time (Is) is measured from SO% of falling edge of LED current to 10% of rise edge of Vo.
Fall time (t,) is measured from the 10% to 90% of the rising edge of Vo.
The tpLH propagation delay is measured from 50% point on the falling edge of the input pulse to the 1.3 V point on the rising edge of the
output pulse. The tpHL propagation delay is measured from SO% point on the rising edge of input to 1.3 V point on failing edge of output pulse.
B. Device considered a two terminal device: Pins I, 2, and 3 are shorted together. Pins 4, S, and 6 are shorted together.
2.
3.
4.
S.
6.
7.
176
MCT5200 MCT5201
ISOLATION AND INSULATION
CHARACTERISTIC
SYMBOL
(TA = 25° C Unless Otherwise Specified)
DEVICE
MIN.
TYP.
MAX.
UNITS
TEST CONDITIONS
Common mode
rejectionoutput high
CMH
SOOO
v/!-,s
VCM = SO Vp_p
RL = 1 KIl. IF = 0
Common mode
rejectionoutput low
CML
SOOO
v/!-,s
VCM = SO Vp_p
RL = 1 KIl. IF = SmA
Common mode coupling
capacitor
Cern
0.2
pF
Package capacitance
input/output
CI-O
0.7
pF
MCTS200
&
MCTS201
--VI-O
= 0, f = 1 MHz
VIsa
2S00
VAC RMS
Relative humidity s SO%
VIsa
3S00
VAC
Ii 0< 10 pA, 1 minute
Insulation resistance
Rlso
10"
INDIVIDUAL COMPONENT CHARACTERISTICS
CHARACTERISTIC
SYMBOL
Forward vollaae
VF
0
is
Forward voltage
coefficient
j,VFI j,TA
I-
Reverse voltaQe
VR
Junction
capacitance
CJ
DC forward
current gain
hFEfSATI
Q
;:)
IL
!
a:
0
I1/1
iii
Z
C
a:
lI;:)
IL
I-
;:)
0
Breakdown voltage
Colleclor to em iller
Collector to base
Emiller 10 base
Leakage
Collector to emiller
Capacitance
Collector to emiller
Collector to base
Emiller to base
BVCEO
BVCBO
BVEBO
DEVICE
MCT5200
&
MCTS201
MIN.
10
8
FIG.
NOTE
VI-O = SOO V
TYP.
MAX.
UNITS
1.3
1.S
V
IF = S mA
1
mV/oC
IF = 2 mA
1
V
IR = 10 jJ.A
-1.9
18
30
30
5
9
(TA = 25°C Unless Otherwise Specified)
6
MCT5200
&
MCTS201
Peak
Ohms
pF
112
MCTS200
&
MCT5201
NOTE
17
8
Withstand insulation
lest voltage
w
FIG.
TEST CONDITIONS
VF = 0 V, f = 1 MHz
VF = 1 V, f = 1 MHz
400
-
VCE = 0.4 V, ICE = 6 mA
45
70
7
V
V
V
Ic = 1.0 mA, IF = 0
Ic= 10!-,A
IE= 10!-,A
nA
VCE = 10 V, IF = 0,
RBE = 1 Mil
11
pF
pF
pF
VCE = 0, f = 1 MHz
VCB = 5, f = 1 MHz
VEB = 0, f = 1 MHz
12
ICER
5
C
8
20
7
100
8,9
177
MCT5200 MCT5201
TYPICAL ELECTRO-OPTICAL CHARACTERISTICS (TA = 25° C Unless Otherwise Specified)
100
1.3
1.2
1. 1
11.3
«
YS~
1
~
10
~>
2
~ ~ 1. 1
~ ff 1. 0
o ~ o. 9
·o·c
2S·C
so·c
E
7S·C
5
~ 1.0
~ 0.9
/
I ~:
~
~
~l. 0
1
7
6
S
o.4
rt-
o. 1
I ~:
NOTE:
Dotted line segment
indlic~te~ p~ISrdlo~er~tion
1.S
1.0
2.0
.
C1804
1.0
10
IF-Forward Current-mA
-20
100
o-
1--9
C1806
Fig. 3. Normalized CTR VB.
Temperature
6
~
3S
F
(rnA)
I.- 1- 10
-
I-
f-9
~ l- I- ~ I- 8It ...... l- I- l- I- 1--'7
30
2S
fY
~
~ 2o j
S
,-
6
S
4
~ 1SIU
o
4
f":
40
~
7
lv
Ji
«
~
_8
U
3
t
IlL
1 10
2 ·5 V
-~
1
1
01234S6789
Vee-Collection Emitter-v
VeE-Collection Emltter-V
C180e
C1807
Fig. 4. MCT5200 Col/ector Current VS.
Col/ector to Emitter Voltage
Fig. 5. MCT 5201 Col/ector Current vs.
Col/ector to Emitter Voltage
10
iF" 20 mA_
/
10mA=
Mb~2011/
0
0
0
0
./ MCTS200
V
0
0
I~
/'
1/
f.7 1/
I I
4
8 10 12 14 16 18 20
-20
2S
I
so
70
100
TA-Ambient Temperalure-oC
IF-Forward Current-rnA
C1809
Fig. 6. Col/ector Base Photocurrent
vs. Forward Current
178
1.0mA
ieB@iF SmA
TA = 2S·C
1
.0 VeB = 4.3 V
VeB=4.3V
6
~
-I---
1
Normalized to
I
2
S~A===
I-~
~
V
/
100
70
Cl80S
IF
(mA)
I--
so
2S
TA-Ambient Temperature-OC
Fig. 2. Normalized Current Transfer
Ratio VS. Forward Current
Fig. 1. Forward Voltage VB.
Forward Current
f.-
""r--.
Tt
3
2
0.1
VF-Forward VoJtage-V
~~
b
"'
f-I-
1.6mA
I"'IS
0.8 I--~
O. 7
i 0.6 r-+- f- IF = 10 mA
~ 0.5
I
E 0.4
~ 0.3 t-~~~m:~~Z~d
0.2
r-iF =S mA
I
O. 1 f-VCE, = 0.4 V, 1
o. 1
~
N.,.....
t- dm~ t"-;I!'-
/i.
" o. 8
<.J
N
C1810
Fig. 7 Normal/zed Col/ector Base
Photocurrent VB. Ambient Temperature
MCT5200 MCT5201
TYPICAL ELECTRO-OPTICAL CHARACTERISTICS (TA = 25°C Unless Otherwise Specified)
b
35
~
30
l
/--
E
w
0
I
£
~i::::::
5
~
<;
r- 50.
1 6 rnnn--'-T'Tn::t:I'IF="v"'e::~=5;:-...::....c"'07:lV
45.
_40
35'
_30
14
::::-- -
--:::: :::.
5
~
-- -f::::
I--I--
I--
I-- f--
~
; ;~
2
_1
~v
'."-\l--+-++J+f!I.---l
~
~
0.8
,
r--
~
VeE
= Q4V
10
12
100
.-
E
i
u
E
~
<;
0.3
10
14
10
Ib-Base
C1811
w
50
I I I III
I 1000
1lc
1/
100
VeE
10
10 V
--
8
01
S
II
~
w
.il!
10
,I
10
~
50
75
5 rnA
RL
RBE
Vee
I
1K
!
Fig. 12. Base Emitter Capacitance vs.
Base Emitter Voltage
1/
U)
~
I
20
~
E
V
,::
1-"""
'"c
'"
B
~
10
I-
U)
.I.
IF -10 mAJ
RL = 1 K
RBE = 330 K
Vee = 5 0 V
tPHL
100 K
50V
/
/
V
~i-"'"
"" ..... F-
I'~
-
/
I
U)
t
20
E
t,
,::
~ 15
-~
'Bi"
U)
tPlH
10
... -
.I.
25
50
70
100
TA-Amblent TemperaturE"-oC
C1817
Fig. 14. Switching Speed vs. Temperature
IF=5 mA RaE = 100 K
~
./
IP;;'"
I-
K
PLH
::::::-
J;...-
25
20
~ 15
IF 10 mA
Al - 1 K
RBE 100 K
Vee 50 V
50
I-
0
-~
~
tPlH
ItI~
25
50
70
0
100
TA-Ambient Temperature-OC
C1818
Fig. 15. Switching Speed vs. Temperature
IF=5 mA RBE = 330 K
100
70
Refer to figure 18 for
sWitching tet' Circuit
i
-l- I-
E
,:: 10
tPLH
g>
I,
~
~_f-
~
tPHl
Ul
.I.
r-
1'1
-20
Refer to figure 18 for
sWltchmg test circuit
Fig. 13. Switching Time vs. Temperature
'F=5 mA ReE =330 K
Refer to figure 18 for
1--' .....
I,
TA-Amblent Temperature-OC
C1816
sWitching test circuit
Irl=
~;~~hti~~I~~:~cll~cf~~ - ,-+- 1,[-20
"I-""
I--'
I,
-20
-0.4 -0.2
o 0.2 0.4 0.6 0.8
VBE-Base Emitter Voltage-V
C1815
TA-Amblenl Temperature-OC
C1814
30 IF
./
1.0
100
Fig. 11. Col/ector to Emitter Leakage Current
vs. Temperature
L
I;: r-r-T
U
25
80
l-
In
1
75
5 rnA
RL 1 K
RBE 330 K
Vee 5.0 V
100
'E
70
IF
-
s
g
IFO~
iT
65
Fig. 10. Col/ector Current (I GE) vs.
Base Emitter Voltage (VBE)
30
c.
60
Vse - Base Emitter Voltage
C1813
1000
u.
55
C1941
Fig. 9 Normalizec hFE vs. Base Current
50V-
VeE
/
I
100
Current-~A
-.
1
l!
J
-
w
UJ.illL----'--'--L.1l.lllL---1.....l.J...llIllL"-~
o6
J
10
~
::
u
I
,
Fig. 8. Col/ector Current vs.
Col/ector to Emlller Voltage
..
~o~~~~~edl \~ItH+--++1~ttlf-----l
~.~ T.= 25"C I I
1
VeE-Collector Emttter-V
f--
t-I-'Htt-l-;------l
0.7
5
'
I-Htttt-¥t+t.!+IIt----1-+-Plffilt-----l
1.1 rn'f>H'-- ---f--t+t+tHt--IH+++HIt-\---l
1.0
ttttt--+1\-\t-I-HHtt!·\--\-t
09
\
'0
25
0
U
15~~r-+~~~r-f~'11
..... 1-
-r-
....
'-
...
Id
=If
I
-20
25
50
70
100
TA-Amblent Temperature-OC
C1819
Fig. 16. Switching Speed vs. Temperature
IF=5 mA RBE = 100 K
179
MCT5200 MCT5201
TYPICAL ELECTRO-OPTICAL CHARACTERISTICS (TA = 25°C Unless Otherwise Specified)
7000 r----,--,--,--,----,r---r---,
(f)
~
6000I--H---+-+-+
~ 5000
'll
E
~~
f~
:~ :~~a
= 5L -
~~:~5~C
IIH = 5 rnA
-
IlL = 0 rnA
VOH = 2.0 V
VOL = 0.8 V
~
"8'c
:!
vel
4000
3
4
~20ns
___________
5V~
Va
Switch at A /
30001--t--1--+-+-+--1---+----I
Va
/ Switch at B
r-o
1000 II-"'-"t;;;;:+=:j::=~=t=:j
Pulse Gen
C1821
1000 2000 3000 4000 5000 6000
VCM-Common Mode
Fig. 17. Text Circuit for Transient
Immunity and Typical Waveforms
Transient Amplitude-V C1820
Fig. 17. Common Mode Transient Rejection vs.
Common Mode Transient Voltage
Vee = 5.0 V
Pulse Gen
Pulse Gen
Zo = 50 II
f = 10 KHz
Za = 50 II
f=10KHz
10% D.F.
o
>
10% D.F.
D2
IF monitor
IF monitor
D3
100 II
D4
Ir. h, tdo ts
TEST CIRCUIT
tpHL, tPLH
TEST CIRCUIT
C1822
Vee1
= 5.0 V
VCC2 = 5.0 V
1.3V
IF
rnA
10%
t,
C1823
RF
II
1.6 2K
3.0 1.1 K
5.0 620
10.0 330
10.0 330
RL
n
RBE
tPHl
II
"s
15
10 K
4.7 K 470K 10
1 K 330K 12
1 K 100K 7
2K 47 K 3
~
tPLH DATA'
"5
RATE
Nnz
12 37 K
10 50 K
8 50 K
11 56 K
4 140 K
~~~Z= _ _1 _ _
tpLH + tPHL
Fig. 18. Switching Circuit Waveforms
C1824
Fig. 19. Typicaf Non-Inverting LSTTL
to LSTTL fnterface
180
AIGaAs
PACKAGE DIMENSIONS
W
I.
~
18.89 (.350)
8.38 (.330)
DESCRIPTION
1
15'MAX
-'::---=~_II
0.36 (.014)
0.20 (.008)
6.86 (.270)
6.35 (.250)
~t+-----=-L
7.62
(.300)
REF
1.78 (.070) REF
T
1.78 (.070) TYP
I=r-;"""-i-I=""":"'::/ 3.94 (.155) t 4.95 1.195)
I
I
I
I
I
I
I
I
--II0.56 (.022)
0.41 (.016)
J: I
:
I
3.68 (.145)+
t 3.56 (.140)
ti3.0S (.120)
3 mA MCT5210
1 mA MCT5211
t MAX
*
o.llMIN(.020)
1-1.27 (.050)
C2090
DIMENSIONS IN mm (INCHF.S)
The MCT-S21X are high performance CMOS/LSTTL
logic compatible phototransistor type optically
coupled isolator products. They are constructed
using a very low degradation and high-efficiency
AIGaAs, infrared emitter, coupled to a photoefficient
high gain NPN phototransistor in a high insulation
double molded six pin dual-in-line package. This
package provides a minimum of 2S00VAC Withstand Test Insulation, and SOOO VII's common mode
transient rejection.
The MCT-S211 is well suited for CMOS to
LSTTLITTL interfaces, for it offers 2S0% CTRcE(SAT)
with 1 mA of LED input current. When an LED input
current of 1.6 mA is supplied data rates to 20K bits/s
are possible.
The MCT-S210 can easily interface LSTTL to
LSTTLmL, and with use of an external base to
emitter resistor data rates of 100 K bits/s can be
achieved.
FEATURES
• High CTRcE (SAT) comparable to Darlingtons
• CTR guaranteed O· C to 70· C
• High withstand test voltage
2S00VAC
• High common mode transient rejection-S kV/p.s
• Data rates up to SO kbits/s (NRZ)
• Underwriters Laboratory (UL) recognized file
#ES01S1
APPLICATIONS
•
Equivalent Circuit
•
•
•
CMOS to CMOS/LSTTL logic isolation
LSTTL to CMOS/LSTTL logic isolation
RS-232 line receiver
Telephone ring detector
AC line voltage sensing
ABSOLUTE MAXIMUM RATINGS
TOTAL PACKAGE
Storage temperatu re . • . . . . . . . . . . -55· C to 150" C
Operating temperature . . . . . . . . . . . -55°C to 100"C
Lead temperature (soldering, 10 sec.) . . . . • . . . . 260" C
Total package power dissipation at 25° C
(LED plus detector) . . . . • . . . . . . . . . . • . 260 mW
Derate linearly from 25°C . . . . . . . . . . . . 3.5 mwrc
INPUT DIODE
Forward DC current . . . . . . . . . . . . . . . . . .. 40 mA
Reverse voltage • . . . . . . . . . . . . • . . . . • . . . • 6 V
Peak forward current (1 I'S pulse, 300 pps) . . . . ... 1.0 A
Power dissipation . . . . . . . . . . . . . . . . . . . 54 mW
Derate linearly from 25°C . . . • . . . . . . • . 0.7 mwrc
OUTPUT TRANSISTOR
Power dissipation . . . . . • . . • • . . . . • • . • . 200 mW
Derate linearly from 25°C . . . . . . . . . • . 2.67 mwrc
181
IMCT5210 MCT5211
TRANSFER CHARACTERISTICS OVER RECOMMENDED TEMPERATURE
(TA =O°Cto70°C Unless Otherwise Specified)
CHARACTERISTIC
SYMBOL
Saturated current
Transfer ratio
CTRcE
SAT
MIN
TYP'
MCT-5210
60
350
MCT-5211
100
300
75
250
DEVICE
(Coliector to Emitter)
Current transfer ratio
(Coliector to Emitter)
CTRcE
Current transfer ratio
(Coliector to Base)
CTRcB
Saturation voltage
VCE
(Coliector to Emitter)
SAT
MCT-5210
70
400
MCT-5211
150
350
110
300
MCT-5210
0.2
0.9
MCT-5211
0.3
0.75
0.25
0.6
MAX
UNITS
TEST CONDITIONS
FIG.
NOTE
IF = 3.0 rnA. VCE = 0.4 V
2
3
1
IF = 1.6 rnA. VCE = 0.4 V
%
IF = 1.0 rnA. VCE = 0.4 V
IF = 3.0 rnA. VCE = 5.0 V
IF = 1.6 rnA. VCE = 5.0 V
%
5
1
4
IF = 1.0 rnA. VCE = 5.0 V
IF = 3.0 rnA. VCB = 4.3 V
IF = 1.6 rnA. VCB = 4.3 V
%
6
7
2
IF = 1.0 rnA. VCB = 4.3 V
MCT-5210
0.2
0.4
MCT-5211
0.2
0.4
IF = 3.0 rnA. ICE = 1.8 rnA
V
IF = 1.6 rnA. ICE = 1.6 rnA
'AII typica/s TA = 25° C
SWITCHING CHARACTERISTICS (TA = 25°C Unless Otherwise Specified)
I CHARACTERISTIC
SYMBOL
DEVICE
MCT-5210
Propagation delay H-LI
r-
tpHL
MCT-5211
I
MCT-5210
MIN
TYP MAX
UNITS
I
tPLH
MCT-5211
n.
NOTE
IF = 1.6mA
12
3
Vce = 5.0 V
13
00
IF = 3.0 rnA
12
RL = 3.3 K. RBE = 39 K
Vce = 5.0 V
20
RL = 750
25
I'S
RBE =
FIG.
RL = 330
n. RBE = ..
RL = 4.7 K. RBE = 91 K
40
RL = 1.5 K. RBE = ..
IF= 1.0mA
45
RL = 10K. RBE = 160K
Vee = 5.0 V
10
RL = 330
12
RL = 3.3 K. RBE = 39 K
RL = 750
20
Propagation delay L-H I
TEST CONDITIONS
10
n.
n.
RBE = ..
RBE =
00
IF = 3.0 rnA
Vee = 5.0 V
IF=1.6mA
RL = 4.7 K. RBE = 91 K
Vce = 5.0 V
12
40
RL = 1.5 K. RBE =
IF = 1.0 rnA
13
45
RL = 10K. RBE = 160 K
25
I'S
00
4
Vee = 5.0 V
NOTES:
1. DC Current Transfer Ratio (CTR cE ) is defined as the transistor col/ector current (ICE) divided by the input LED current (IF) x 100%.
at a specified voltage between the collector and emitter (VCE )'
2. The col/ector base Current Transfer Ratio (C TRcs) is defined as the collector base photocurrent (lCB) divided by the input LED
current (IF) time 100%.
3. Referring to Figure 13 the tpHL propagation delay is measured from the rising edge of the data input (A) to the rising edge of the rising
edge of the data output (B).
4. Referring to Figure 13 the t pLH propagation delay is measured from the falling edge of data input (A) to the falling edge of the data
output (B).
5. CCM is the capacitance between the LED (input assembly) to the base of the phototransistor.
6. C,_O is the capacitance between the input (pins 1. 2. 3 connected) and the output. (pins 4.5, 6 connected).
7. Device considered a two terminal device: Pins 1. 2, and 3 shorted together, and pins 5, 6, and 7 are shorted together.
182
MCT5210 MCT5211
ISOLATION AND INSULATION (TA = 25°C Unless Otherwise Specified)
-CHARACTERISTIC
SYMBOL
DEVICE
MIN
TYP
MAX
UNITS
TEST CONDITIONS
Common mode transient
Rejection - output high
CMH
SOOO
vlp.s
VCM = 50 Vp- p, RL = 750 !I
IF = 0
co;;:,-mon mode transient
Rejection - output low
CML
SOOO
vlp.s
VCM = 50 Ip_p RL = 7SO
IF= 1.6mA
Common mode coupling
capacitor
CCM
0.2
pF
Package capacitance
input/output
CI-O
0.7
pF
Withstand insulation
test voltage
VISO
2500
VAC(AMS) Relative humdity ~ 50%
Ii-o ~ 10 p.A, 1 minute
VIsa
3500
VAC(Peak)
Insulation resistance
Rlso
1011
Ohms
MCT5210
&
MCT5211
FIG.
NOTE
--
14
n
.
14
VI-O = 0, f = 1 MHz
5
6
7
VI-O = SOO V
INDIVIDUAL COMPONENT CHARACTERISTICS (TA = 25°C Unless Otherwise Specified)
CHARACTERISTIC
III
02i
Q
0
1/1
[0
TYP
MAX
1,5
VF
1.3
.J.VF/.J.TA
-1.9
Junction capacitance
DC forward
current gain
Breakdown voltage
Collector to emiller
iii
Collector to base
z
Emiller to base
C
II:
l- Leakage current
ICollector to emiller
::J
11I- Capacitance
::J
Collector to em iller
Collector to base
Emitter to base
I-
MIN
Forward voltage
coefficient
::J Reverse
11voltage
II:
DEVICE
Forward voltage
I-
!
SYMBOL
VA
CJ
hFE(SAT)
BVCEO
BVCBO
BVEBO
ICER
MCT5210
&
MCT5211
5
30
30
5
TEST CONDITIONS
FIG.
IF = 5 mA
1
mVrC
IF = 2 mA
1
V
IA=10p.A
V
NOTE
VF = 0 V, f = 1 MHz
18
MCT5210
&
MCT5211
MCT5210
&
MCT5211
UNITS
112
pF
VF = 1 V, f = 1 MHz
350
-
VCE = 0.4 V, ICE = 2 mA
V
V
V
Ic = 1.0mA, IF = 0
Ic=10p.A
Ic = 10 p.A, IF = 0
nA
VCE = 10V,IF=O, RBE = 1 M!l
pF
pF
pF
VCE = 0, f = 1 MHz
VCB = 0, f = 1 MHz
VEB = 0, f = 1 MHz
I 7045
7
100
8,9
C
10
80
15
11
183
MCT5210 MCT5211
TYPICAL ELECTRO-OPTICAL CHARACTERISTICS (TA = 25°C Unless Otherwise Specified)
""1
100
«
1.7 r-T""l"TTTTTTr-T""TTnmn---'rT'TTTnn
,; 1.6 f-+-t-+tf++tf-t-++tiH.lll---jP+-t++tttl
,
E
1
I-
_1-
~ ~ 1.3 f-H+tI+tIl----t~'+Itttt-+t-t1H-1tti
~ ~ 1.2 f-+-t-+tf++tf-hl+tiH-ttt-H-t++tttl
~ 1.1 f-+-t-+tf++tf-¥-I+tJH-ttt---JH-t++tttl
1.0
~
0.9
0.8
0.7
c
~ 0.6
~ 0.5
a:
0.4
0
z
0.3
0.1
1.0
10
100
IF-FORWARD CURRENT -mA
Cl836
~~
==
25·6~
a:
a:
50·6=
75·6= ~
::J
U
"«a:
II
;;: 1.0
o
E:
I I
DOTTED LINE
a:
"
~
~~
SE~~ENTINDICATES
l2
PUL ED OPERATION
1
I I
I
0.1
1.0
1.2
1.4
1.6
1.8
2.0
VF - FORWARD VOLTAGE - V
C1835
Fig. 2. Normalized Current Transfer
Ratio vs. Forward Current
Fig. 1. Forward Voltage VB.
Forward Current
1.5
1.4
NORMALIZED To
t-....
I'--....
;: 1.3
<
~
u
~
1.2
1.1
........
U 1.0
"
~ 0.9
~
~ 0.8
~ 0.7
~ 0.6
0.5
0.4
-20
r--
b-..
TA
r---.....
=2S
Q
E
1
l-
i:: 14
:::;;
W12
a:
3 mA
I
I
IF
lrl
8
5
6
...J
T,";;;;;:
I-
1
w
I
2
3.~
3.0
2.5
2.0
1.5
i.o
2
0.5
1 2 3 4 5 6 7 B 9 10
VeE - COLLECTOR EMITTER - V
C183B
25
50
75
100
NORMALIZED CTRCEISAT)
vs. TEMPERATURE
C1837
Fig. 4. DC Characteristics
MCT5210
I. (mA)
«
E
1 30
a:
~ 25
~20
a:
~
15
...J
10
8
4.5
4·9
u 4
I
Fig. 3. Normalized CTR
VB. Temperature
I'
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1 .5
1.0
0.5
1
w
2
01234567
VeE - COLLECTOR EMITTER - V
C1840
Fig. 5. DC Characteristics MCT5211
184
5.0
f?10
IF}1 ;;;;;;
mA
I
ffi16
~
IF
IF
«
C
IF ~ 1.6mA
VeE. 0.4 V
---l-
1.5
~ ~ 1.4 1-+-t-+tf++tf-+-t-hf1H-ttt---JH-t++tttl
/J.if(. ~O·C
Z
w 10
MCT5210 MCT5211
TYPICAL ELECTRO-OPTICAL CHARACTERISTICS (TA = 25°C Unless Otherwise Specified)
rt.
-
'/
~~100
'\'1
a:
0>>-z
llw
wa:
-'a:
a:>-
Oz
lla:
>-w
j~
10
55
llOl.0
MCT5211
0>-
10
wo
8~
NJ:
~J:
~m
1.0
0.1
1.0
10
100
IF - FORWARD CURRENT - mA
Cl842
-
5.0mA==3.0mA -
--.!E
~iiiO.l
z
MCT5210
.!iD.
8.0mA
NOR A IZE
-'D.
10
10mA
~
25
75
100
Fig. 7. Normalized Col/ector Base
Photocurrent vs. Temperature
I
NORMALIZED TO
Ib = 10~A
TA = 2S·C
VeE = 0.4 V
I
1.6
1.5
1.4
1.3
~
~..21-100·
~ .E
-
4
4
3
3
2
2
1
1
W
~
o
W
N
:;
~
~
z
3
4
5
6
VeE-COLLECTOR-EMITTER-V
C1844
g;o.WI
1.0
0.9
0.8
. "'6
0.7
~~"611/
0.6
5 A = 9:,,;;,1
O.
o. 4
0.1
1111111
1111111
1.0
10
100
Ib-BASE CURRENT -~A
1000
C1846
Fig. 8. Transistor DC Characteristics
a:
50
=AMBIENT TEMPERATURE -'C
Cl843
5
w
0.5mA~
¥.:'~ 2~'~'Lt---IF = 0.3 mA""""'"
50
>-
~ot-
Icaat IF -1.6m
-20
TA
Fig. 8. Col/ector Base Photocurrent
vs. Forward Current
r
-
1.6mA~
Fig. 9. hFE {§AT) VS. Ib
vs. Temperature
0
>-
::!i<
wE
15>-z.!.1. 0
llW
wa:
-'a:
-':::>
ll O. 1
V
8
~
.!i
.0
lL
0.5
0.6
0.7
VeE-BASE EMITTER VOLTAGE-V
C1847
Fig. 10. Col/ector Current vs.
Base Emitter Voltage
185
MCT5210 MCT5211
TYPICAL ELECTRO-OPTICAL CHARACTERISTICS (TA = 25°C Unless Otherwise Specified)
TA-25°C
Vee =5.0 V
VeE = 0.4 V
I/)
"-
.L
ffl
",Lti,IF " 1 0 mA, AL = 10 Ki
~lH, IF = 1.SmA,RL=47K
[\,IPlH,!F=3mA,RL=33K
~ 200
.......
~~ 100~~fI~l!~ill!~~!i1l1
SOF
~3 . i ji!li l~!~!HI"I"i=I'1mA!'!R!'=I'I°iKI
I
10
tPHl,IF=16mA,Rl=47K
~ 50
~
tPHL. F=3mA,RL=33K
1.0 L-L-LLl.lJ..IJ.L-L.U.IJ.LJIIIIJ.IL...J
IIILL1-'-llWJ
I
lOOK
1M
10M
10K
RBE-BASE EMITTER
RESISTOR-ohm (II) C1849
-0.4 -0.2
0.2 0.4 0.6 0.8
VBE-BASE EMITTER VOLTAGE-V
C1848
Fig_ 12. Switching Time vs. RaE
Fig. 11. CaE vs. VBE
Veel
= 5.0 V
TYPICAL SWITCHING TIME TA - 2S·C
INP:jL
_d_I r.:=-=:rl-tPHL
OU::J
I tPlH
L
!:AI;;l
10 1 33
10 ,33
Ll.6 20
16 20
~1.1
l!flLl.1
R,
RBE
KII
1.5
10
750
4.7
.33
33
KII
.'
tPHL
·
·
·
40
45
20
25
10
12
160
91
3.
!IKblt/s,!
b'LH I Datas
~
':;~
40
45
20
25
10
50
2:t1j
J_'_~ __ ~
C18S0
Fig. 13. Switching Speed Test Circuit
7000
vJe =sdv
RL =7S0n TA =25°C
~600a
w>
g~ 5000
::;t:
IlL
is ~ 4000
oz
~~ 200 a
o~
1= 1000
=OmA
~g~:~.~~- -
::;~
~;:: 3000
I--
IiH=1.SmA- f---
~20ns
tV
:~:-LO~~
3
4
SV~
SWitch at A /
1
1,-0
Va
I
Va
SWitch at B
~ 1,=l.SmA
a
~
Pulse Gen
C1821A
1000 2000 3000 4000 5000 SOOO
VeM-COMMON MODE
TRANSIENT AMPLITUDE-V
C18S2
Fig. 14. Common Mode Transient Rejection
& Test Circuit
186
MCT6 (20%) MCT62 (100%)
MCT61 (50%) MCT66
(6%)
NEW DUALS
DESCRIPTION
PACKAGE DIMENSIONS
w
6.86 (.270)
6.35 (.250)
0.36 (.014)
-'---------"~-,I 0.20 (.008)
~ 9.65 (.380) _I
~ ~.l..
7.62
(.300)
REF
9.14 (.360)
1.78 (.070) REF
T
2.54 (.loo)TYP -11.0.89 (.035) TYP
-I
~
I
The MCT6X optoisolators have two channels
for high density applications. For four channel
applications, two-packages fit into a standard
16-pin DIP socket. Each channel is an NPN
silicon planar phototransistor optically coupled
to a gallium arsenide infrared emitting diode.
FEATURES
•
•
•
•
•
Two isolated channels per package
Two packages fit into a 16 lead DIP socket
2500 volt isolation
Choice of 4 current transfer ratios
Underwriters Laboratory (U.L.) recognized
File E50151
I I
!!
1:r-.=r''l=<-'-F=ri41 3.94 (.155) 4.95 (.195)
1
:
i
:~ :lJ :
3.68 (.145)j
! 3.56 (.140)
~~
(1~~)
I
~ 3.05
(.120)
I ,X
o.~, (.020)
MIN
1-0.89 (.035) TYP
APPLICATIONS
•
•
0.56 (.022)
C2091
0.41 (.016)
DIMENSIONS IN mm (INCHES)
•
•
~
•
•
C2oD5
•
AC Line/Digital Logic - Isolate high voltage
transients
Digital Logic/Digital Logic - Eliminate spurious
grounds
Digital Logic/AC Triac Control - Isolate high
voltage transients
Twisted pair line receiver - Eliminate ground loop
feedthrough
Telephone/Telegraph line receiver - Isolate high
voltage transients
High Frequency Power Supply Feedback Control Maintain floating ground
Relay contact monitor - Isolate floating grounds
and transients
Power Supply Monitor - Isolate transients
Equivalent Circuit
ABSOLUTE MAXIMUM RATINGS
Storage Temperature. . . . . . . . . .. -55°C to 150°C
Operating Temperature ......... _55°C to 100°C
Lead Temperature ...... (soldering, 10 sec.) 250°C
INPUT DIODE (each channel)
Forward current . . . . . . . . . . . . . . . . . . . . . 60mA
Reverse voltage . . . . . . . . . . . . . . . . . . . . . . 3.0V
Peak forward current (1/.lS pulse, 300 pps) ...... 3A
TOTAL INPUT
Power dissipation at 2SoC ambient ........ 100mW
Derate linearly from 25°C . . . . . . . . . . . 1.3mW/oC
OUTPUT TRANSISTOR (each channel)
Power dissipation @ 25°C ambient ........ 150mW
Derate linearly from 25°C . . . . . . . . . . . . 2mW/oC
Collector Current . . . . . . . . . . . . . . . . . . . . 30mA
COUPLED
Input to output breakdown voltage .. 2500 volts VRMS
Total package power dissipation
@ 25°C ambient . . . . . . . . . . . . . . . . . . 400mW
Derate linearly from 25°C ......•... 5.33mW/oC
187
MCT6 MCT6l MCT62 MCT66
ELECTRO-OPTICAL CHARACTERISTICS (25°C Free Air Temperature Unless Otherwise Specified)
CHARACTERISTICS
MIN.
INPUT DIODE
Rated forward voltage VF
Reverse voltage VR
Reverse current IR
Junction capacitance CJ
3.0
OUTPUT TRANSISTOR (IF = 0)
Breakdown voltage,
collector to emitter BVCEO
Breakdown voltage,
emitter to collector BVECO
Leakage current, collector to emitter ICEO
Capacitance collector to emitter Gee
COUPLED
DC current transfer ratio (lC/IF) = CTR
MCT6
MCT61
MCT62
MCT66
Isolation voltage BV o.o )
Isolation resistance
MCT6X- R(I.o)
Breakdown voltage - channel-to-channel
MCT6X
TYP.
MAX.
UNITS
1.25
25
.001
50
1.50
V
V
IlA
pF
IF = 20mA
IR = 10llA
VR = 3.0V
VF=OV
V
Ic = 1.0mA
V
nA
pF
IE = 100llA
VCE = 10V
VCE = OV
30
85
6
13
5
8
10
100
20
50
100
6
2500
TEST CONDITIONS
VCE = 10V, IF = 10mA
VeE = 5 V, IF = 5 mA
VeE = 5 V, IF = 5 mA
VCE = 10V, IF = 10mA
t. 1 minute
%
%
%
%
VRMS
10JI
1012
n
500
VDC
0.4
pF
Capacitance between channels
Saturation voltage collector to emitter VCE(SAT)
MCT6, 61, 62
MCT66
Bandwidth Bw
0.2
0.2
150
SWITCHING TIMES, OUPUT TRANSISTOR
Non-saturated rise time, fall time
(Note 3)
Non-saturated rise time, fall time
(Note 3)
Saturated turn-on time (from 5.0V to 0.8V)
Saturated turn-off time (from
saturation to 2.0V)
VI.O = 500VDC
Relative humidity = 40%
f = lMHz
V
V
kHz
0.4
0.4
Ic = 2mA, IF = 16mA
Ie = 2mA, IF • 40mA
Ic = 2mA, Vcc = 10V,
RL = lOOn
2.4
IlS
15
IlS
5
IlS
Ie = 2mA, VCE = 10V,
RL = 100n
Ie = 2m A, VCE = 10V,
RL = lKn
RL = 2Kn, IF = 40mA
25
IlS
RL = 2Kn, IF = 40mA
MCT6 TYPICAL ELECTRO-OPTICAL CHARACTERISTIC CURVES
(25°C Free Air Temperature Unless Otherwise Specified)
50
eTR
-
==-
50o,~
w
"ua::
0
....
~
20
j
0
u
1-
30
10
II
~ 10
= 10 I'!1A
--
,...-
40
z
a::
a::
IF
f-
<5
>
60
Jo- r-rT
,
I."......
20
<5
6
~
5
0
f-~
~
'"3
;:; ~
3
" "
4 f-3
"
"~ .3 "
\.i\
>~
3
o
10
VCE
20
30
COLLECTOR VOL TAGE
40
50
VOLTS
ca58
Fig. 1. /- V Curve of Phototransistor
~
j'"
"
.. 0
"\"\""i\:">$,..-;..
oS"
\
i'o.
1
o
~~
..,
!-' 3
IF==- lOrnA
:!
18B
7
>
_40
J'/
">-..
'0
~
..
~
«a:
Z
80
::
60
~
40
U
I
20
"
o
60
10
C859
Fig. 2. /- V Curve in Saturation
90~
/V;~
~
V / Vsck
'yo
l;jV
w
-
1~
VCE = 5.0 V
TA = 25"C
120
Z
...........
If - FORWARD CURRENT - rnA
140
I
~
w
50
'"
~
9
/.: V~
~~
0.1
~~
D
/VJ. r~
~~
..II
.23.4.5 1.0 2 345
10 20 40 100
CB60
IF - FORWARD CURRENT - mA
Fig. 3. CrR vs. Forward Current
MeT6 MeT61 MeT62 MeT66
MCT6 TYPICAL ELECTRO-OPTICAL CHARACTERISTIC CURVES (Cont'd)
(25°C Free Air Temperature Unless Otherwise Specified)
..
~ 130~-r--~~---r--r-~---r~
;:
"
~ 110r--+--~~~-h,-t-~--~-;
~
w
u.
~ 90r--+--+-~~-Hr-~~~~-;
"
lI-
~
"~
~
w
~ 1.2
~
~
~
~
N
I
c
~
::;
IMb~~
MCT66
> 1.3 r-
~ 1.1
~
~
u
1.4
50~-L--~~---Hr-t-~--~-;
IF=10mA
+----++-+V CC • 10 V
30
" 1.0
;:
.9
u.
>
40
20
20
40
60
~
./
:;...-'" / .
10. 6
I-
~
~
V
,,<:fl C /
10"7
,/.
u
:/ ./
/./
w
'"
1.0":
;2 mB
"-'w
CIRCUIT
VCE· 10 V
10. 10
.1
.2
.5
5
10 20
~
W
50 100
==
-
VCE ·50 V
V CE • 25 V
"
2
-
vCE • 70 V
...... ......
./'
~ 10.9
w
;;})VF
~
~
ro 60
60
60 100
TA - AMBIENT TEMPERATURE _·C CB63
IF - FORWARD CURRENT - rnA C862A
C861
Fig. 4. Current Transfer Ratio
vs. Temperature
rrU
...,
~
:;
I'
V
/
/
BO 100
AMBIENT TEMPERATURE I"CI
I)~
~
0.8
10L-----~~---U~L-~--~~
60
I'
~
.~ /
~ p( ~
~;.-
~
~
.+JJ
Fig. 6. Leakage Current vs. Temperature
vs. Collector Voltage
Fig. 5. I-V Curve of LED vs. Temperature
20
lB
,
16
I
14
z
~
;: 12
o
'"'!:
c
~o
~
10
"
~
J:
U
I-
10
~
==
§
==
""'"
-E::
=
~
C
~
§
I-
-
::>
i!:
5
~
=
If'"
6O rn p..
If =3mA
11111
TA
=:
I
25c c
1
100
1000
100.000
C865
10.000
TlME·HOURS
COLLECTOR CURRENT IC ImAI CB64
Fig. 8. Lifetime vs. Forward
Current (Note 1)
Fig. 7. Switching Time vs.
Collector Current
MCT66 TYPICAL ELECTRO-OPTICAL CHARACTERISTIC CURVES
(25°C Free Air Temperature Unless Otherwise Specified)
_ 10.0
JJ...r
"
.§
~
o
I-
~
:;;
7.5
c
I
ffi
5.0
~
~
,,-
~~
i""'"
::>
u
:5
~
8
1.I.20mA
2.5
;'
IF -10mA
10.0
.J
~
~ 5.0
~
a:
a:
5
10
15
20
25
30
VeE COLLECTOR VOLTAGE - DETECTOR (VOLTSI
C830
Fig. 1. Detector Output Characteristics
2.5
V
I-
::>
o
o
V
w
a
.!t
o
/. ~
..." 1.0":
7.5
I-
I!:::>
0
.l 1
VeE -10VOLTS
II:
V
./
./
,/.
~
10
...... ......
./'
20
311
40
50
60
IF INPUT CURRENT - LED ImAb831A
Fig: 2. Input Current vs. Output Current
W
VCE· 70 v
VeE· 50 V
f--
VCE ·25 V
f-f--
VCE' 10 V
10-"'"
10. 10
o
J'
/./
~
~
ro
60
ro 60
TA - AMBIENT TEMPERATURE
E=
~
100
-'c
Fig. 3. LukllfIB Current vs. TtmJptlrllture
vs. Collector Volt/lflfl
189
MCT6 MCT6l MCT62 MCT66
MCT66 TYPICAL ELECTRO-OPTICAL CHARACTERISTIC CURVES (Cont'd)
(25 0 C Free Air Temperature Unless Otherwise Specified)
2•
•
9
I
8
I
•• I111111111
11111111
<"
1/
1.6
!
LED CURRENT-IOmA
I-
VCE-IO vOLTS
FREE 5T ANDING DEVICE
~ 12
Z
a:
a
V
6
VeE· 10 VOLTS
14
1.0
'~" 08
, /
..
~
1 1 II
1\
3
0.6
40
Fig. 4. Current Output
vs. Temperature
'z"
I
10K
1""-
c
'"
I-
"
~
~
''"o"z"
01
C834
~L·
.......
I RL• loon
OlO.30A 0.6o.a 1 0
H
r
LED
_
V
\
...
l-
•.00
-
.EIl"''
---
I
,-,
L __ _
-
'e
3" 567810
Ca3S
Vee'" 10 VOLTS
L---_--.__
OUTPUT
"
Modulation Circuit Used
to Obtain Figure 5
CB37
\ ~3 rnA
f-!
.000
2
Fig. 6. Switching Time vs.
Collector Current
CONSTANT
MOOULATI0:;TI,/-IF
47U
CURRENT
INPUT
INPUT
10
8
1410n1
COLLECTOR CURRENT Ie ImAI
Fig. 5. Output vs. Frequency
50
40
30
.I•••~n
1 1 II
.M
lOOK
FREQUENCY (Hz)
~ 20
"c
"'"
~
Rc
.........
\
'K
20
0
20
40 60 80
100
AMBIENT TEMPERATuRErq Ca33
I !
I'--..
\ 1\
.2
&0
Vr. 10 VOLTS
\
804
4
I I II
.
\"
~- 1\\
)~~
~\
'e
PULSE
INPUT
10,000
100,000
='-------.-- ~~;~~T
ClOG1
TIME·HOURS
Fig. 7. Lifetime vs. Forward Current
Vee'" 10 VOL T5
RL
Circuit Used to Obtain
Figure 6
=
loon
CB38
NOTES
1. Normalized CTR degradation
=
CT~?,.;~TR
2. The current transfer ratio (Ie/IF) is the ratio of the detector collector current to the LED input current with VeE at 10
volts.
3. The frequency at which iC is 3 dB down from the 1 kHz value.
4. Rise time (t,) is the time required for the collector current to increase from 10% of its final value to 90%.
Fall time (t,J is the time required for the collector current to decrease from 90% of its initial value to 10%.
190
,
~
,.
MID400
DESCRIPTION
PACKAGE DIMENSIONS
6.86 (.270)
6.35 (.250)
0.36 (.014)
L---"--.t---ll 0.20 (.008)
~ ~-l
7.62
(.300)
REF
1.78 (.070) REF
T
2.54 (.100) TYP --I 1.0.89 (.035) TYP
-I
I-
II
,
t
t
b-.==r'"""F=f-.=~1 3.94 (.155) 4.95 (.195)
:
:
i 3.68 (.145)1 I MiX
:J:U:
t 3.56 (.140)
~~
1
(1~~)
1
~3.05
(.120)
The MID400 is an optically isolated AC lineto-logic interface device. It is packaged in an
B-Iead plastic DIP. The AC line voltage is
monitored by two back-to-back GaAs LED
diodes in series with an external resistor. A
high gain detector circuit senses the LED
current and drives the output gate to a logic
low condition.
The MID400 has been designed solely for
use as an AC line monitor. It is
recommended for use in any AC-to-DC
control application where excellent optical
isolation, solid state reliability, TTL
compatibility, small size, low power, and low
frequency operation are required.
0.~1 (.020)
~0.89 (.035) TYP
MIN
0.56 (.022)
C2091
0.41 (.016) DIMENSIONS IN mm (INCHES)
FEATURES
•
•
•
•
•
•
•
Direct operation from any line voltage
with the use of an external resistor
Externally adjustable time delay
Externally adjustable AC voltage sensing
level
High voltage isolation between input and
output
Compact plastic DIP package
LogiC level compatibility
UL recognized (File #E50151)
APPLICATIONS
•
•
•
Monitoring of the AC/DC "line-down"
condition
"Closed-loop" interface between electromechanical elements such as solenoids,
relay contacts, small motors, and
microprocessors
Time delay isolation switch
Equivalent Circuit
ABSOLUTE MAXIMUM RATINGS
INPUT - LED CIRCUIT
RMS Current . . . . . . . . . . . . . . . . . . . . . . . 25 mA
DC Current . . . . . . . . . . . . . . . . . . . . . . . ±30 mA
Power Dissipation at 25°C Ambient. . . . . .. 45 mW
Derate Linearly from 70°C . . . . . . . . . . . 2.0 mW/oe
OUTPUT - DETECTOR CIRCUIT
Low Level Output Current (I OL ) . . • • . . . . . • 20 mA
High Level Output Voltage (VOH ) . • . • . • . .• 7.0 V
Supply Voltage (Vcc ) . . . . . . . . . . . . . . . . . 7.0 V
Power Dissipation at 25°e Ambient. . . . . .. 70 mW
Derate Linearly from 70 0 e . . . . . . . . . . . 2.0 mW/oe
TOTAL PACKAGE
Storage Temperature .......... -55°C to +125°C
Operating Temperature .. . . . . . .. -40°C to +85°C
Lead Soldering Temperature, 10 Sec . . . . . . . . 260°C
Power Dissipation at 25°C Ambient ....... 115 mW
Derate Linearly from 70°C . . . . . . . . . . . 4.0 mWI"C
Surge Isolation . . . . . . . . . . . . . . . . . . . 3550 VDe
2500 V RMS
Steady State Isolation . . . . . . . . . . . . . . 3200 VDC
2250 V RMS
191
MID400
ELECTRICAL CHARACTERISTICS
(0° C to 70° C Free Air Temperature Unless Otherwise Specified-All Typical Values Are At 25° C)
PARAMETER
SYMBOL
LED Forward Voltage
VF
On·state RMS I nput Voltage
V liON ) RMS
Off-state RMS Input Voltage
V IIOFF ) RMS
On-state RMS I nput Current
I liON) RMS
Off-state RMS Input Current
I HOFF) RMS
Logic Low Output Voltage
Val
Logic High Output Current
10H
Logic Low Output
Supply Current
Logic High Output
Supply Current
SWITCHING TlMf
(TA
MIN
TYP
MAX
UNITS
1.5
V
IF = ±30 mA DC
V
Va = 0.4 V, 10 = 16 mA
Vee = 4.5 V, RIN = 22 KS1
V
Vo=Vee=5.5V,
10 ::; 1001lA, RIN = 22 KS1
90
5.5
4.0
TEST CONDITIONS
mA
Vo = 0.4 V, 10 = 16 mA
Vee = 4.5 V
24 V::; VI(ONl RMS::; 240 V
.15
mA
Va = Vee = 5.5 V, 10 ::; 1001lA,
VIlOFFl RMS ~ 5.5 V
.18
0.40
V
.02
100
pA
liN = 0.15 mA RMS
Va = Vee = 5.5 V
VI(OFFl RMS ~ 5.5 V
lecl
3.0
mA
liN = 4.0 mA RMS
Vo = Open, Vcc = 5.5 V
24 V ~ VIION ) RMS::; 240 V
leeH
0.80
mA
liN = 0.15 mA RMS
Vec = 5.5 V
V HOFFl RMS ~ 5.5 V
liN = III0Nl RMS
10 = 16 mA. Vce = 4.5 V
24 V::; VI(ONl RMS::; 240 V
= +25°C)
Turn-On Time
tON
1.0
mS
liN = 4.0 mA RMS
10 = 16 mA, Vce = 4.5 V
R IN = 22 KS1 (See Test Circuit 2)
Turn-Off Time
tOFF
1.0
mS
liN 4.0 mA RMS
10 = 16 rnA, Vce = 4.5 V
RIN = 22 KS1 (See Test Circuit 2)
ISOLATION (TA
= +25°C)
Surge Isolation Voltage
Steady State Isolation Voltage
V ISO
VI so
Isolation Resistance
RISO
I solation Capacitance
C ISO
(RMS
192
=
True RMS Voltage at 60 Hz, THO:':';;;; 1%.)
Relative Humidity::; 50%,
11-0 ::; 10pA
1 Second, 60 Hz
3550
VDC
2500
VACRMS
3200
VDC
2250
VACRMS
10"
S1
V I _O = 500 VDC
pF
f = IMHZ
2
Relative. Humidity ~ 50%,
11_0 ::; 10pA
1 Minute, 60 Hz
MID400
DESCRIPTION/APPLICATIONS
The input of the MID400 consists of two back-to-back LED diodes which will accept and convert alternating
currents into light energy. An integrated photo diode-detector amplifier forms the output network. Optical
coupling between input and output provides 3550 V DC voltage isolation. A very high current transfer ratio,
(defined as the ratio of the DC output current and the DC input current) is achieved through the use of a high
gain amplifier. The detector amplifier circuitry operates from a 5 V DC supply ahd drives an open collector
transistor output. The switching times are intentionally designed to be slow in order to enable the MID400, when
used as an AC line monitor, to respond only to changes of input voltage exceeding many milliseconds. The short
period of time during zero-crossing which occurs once every half cycle of the power line is completely ignored.
To operate the MID400, always add a resistor, RIN, in series with the input (as shown in Fig. 1) to limit the current
to the required value. The value of the resistor can be determined by the following equation:
Where V IN (RMS) is the input voltage.
VF is the forward voltage drop across the LED.
liN (RMS) is the desired input current required to sustain a logic "0" on the output.
PIN DESCRIPTION
DESIGNATION
V IN1 , V 1N2
PIN
it
1,3
Vee
AUX.
8
7
Vo
6
GND
5
FUNCTION
SCHEMATIC DIAGRAM
Input terminals.
Supply voltage, output circuit.
Auxiliary terminal. Program·
mabie capacitor input to
adjust AC voltage sensing level
and time delay.
Output terminal; open
collector.
Circuit ground potential.
NOTE: 00 NOT CONNECT PIN 2 AND 4
193
MID400
GLOSSARY
VOLTAGES
VI(ON) RMS
On-state RMS input voltage
The RMS voltage at an input terminal for a sqecified input current with output conditions
applied that according to the product specification will cause the output switching element
to be sustained in the on-state within one full cycle.
VI(OFF) RMS
Off-state RMS input voltage
The RMS voltage at an input terminal for a specified input current with output conditions
applied that according to the product specification will cause the output switching element
to be sustained in the off-state within one fill cycle.
VOL
Low-level output voltage
The voltage at an output terminal for a specific output current IOL with input conditions
applied that according to the product specification will establish a low-level at the output.
VOH
High-level output voltage
The voltage at an output terminal for a specified output current IOH with input conditions
applied that according to the product specification will establish a high-level at the output.
LED forward voltage
The voltage developed across the LED when input current I F is applied to the anode of the
LED.
CURRENTS
I HON ) RMS
On-state RMS input current
The RMS current flowing into an input with output conditions applied that according to the
product specification will cause the output switching element to be sustained in the on-state
within one full cycle.
I HOFF ) RMS
Off-state RMS input current
The RMS current flowing into an input with output conditions applied that according to the
product specification will cause the output switching element to be sustained in the off-state
within one full cycle.
High-level output current
The current flowing into' an output with input conditions applied that according to the
product specification will establish a high-level at the output.
Low-level output current
The current flowing into' an output with input conditions applied that according to the
product specification will establish a low-level at the output.
ICCL
Supply cu rrent, output low
The current flowing into * the Vee supply terminal of a circuit when the output is at a
low-level voltage.
ICCH
Supply current, output high
The current flowing into * the Vee supply terminal of a circuit when the output is at a
high-level voltage.
DYNAMIC CHARACTERISTICS
Turn-on time
The time between the specified reference points on the input and the output voltage waveforms with the output changing from the defined high-level to the defined low-level.
tOFF
Turn-off time
The time between the specified reference points on the input and output voltage waveforms
with the output changing from the defined low-level to the defined high-level.
·Current flowing out of a terminal is a negative value.
194
MID400
OPERATING SCHEMATICS
Vee
RL = 300!1
V'N
ACINPUT
INPUT CURRENT VS. CAPACITANCE, CAUX CIRCUIT
TEST CI RCUIT 1
C1478A
*A-C
INPUT
OV-------,,
~,---------
,,
,,,
,,
,
,
___.: toft :~
---...:tOnl4-
:::_O_~~:~T_: __~~5_0_%_________________________:~}1r5-0-%-O-----'INPUT TURNS ON AND OFF AT ZERO CROSSING.
+4,5 V
Vee
MID 400
1 INPUT
AUX,
N/C
2 INPUT
N/C
Vee
VOUT
GND
8
7
RL
6
~
5
OUTPUT
TEST CIRCUIT
TEST CIRCUIT 2
C1479 B
MID400 Switching Time
195
MID400
TYPICAL CURVES
250
30
=125°c
Vee =5.0 V
tA
Cii 200
::;;
~
a:
~
w 20
~ 150
t!l
~ 100
0..
:7~
«
I-
V
~
o
>
V
..J
U
50
a
V
a
/
15
0
>
:>
0..
10
~
.(
10L
20
V
=;S rnA
R'N (Kfli
10
a
30
/
(.)
40
50
10H"; 1100ilA
R'N (Kfli
a
60
C1474
lr
/
~
-\..::i
I-
\:J~~
Z
.(
/
25
Cii
10
20
30
40
50
60
C1474
Fig. 2. Input Voltage vs. Input Resistance
120
_110
~
,
l.;' ~
II
o
w
!::! 100
..J
«
::;;
a:
o
z
90
..
V
"
V
V
""
60
4.5
""
r.:t
~
""
JI'
~
"
~&+-
4.6 4.7 4.8 4.9 5.0 5.1 5.2 5.3 5.4 5.5
C1475
Vee (V)
Fig. 3. SupplV Current vs. SupplV Voltage
.25
2.B
::;;
a: 2.0
.g
I-
zw
10L
16 rnA
10H ,,; 100liA
~
~
;;(
4.5V
5.0V
=
R'N =22 KIl
TA =25°C
2.4
VI
r-----.---,----,----,-----.,
vel=Ut l
-:.
w
a:
a: 1.2
u
:> O.B
0..
~
.15 I---I---+--.H.I!<---.j-----l
~
.10
I---I---:~'f---.j---.j-----l
.05
I------:M--+---j--+--
>
~~
I-
IliON' = 4.0 rnA, RMS)
;o
t!l
1.6
:>
.20 f-----1f-----j---+--,-/--.~5.5 V
2
0..
I-
:>
o
IHOFF)
0.4
.01OL-__- L____L -__- L____L -__
10
20
50
100
200
500
CAPACITANCE (pF) (AUX. TO GNDI
Fig. 4. Input Current vs. Capacitance
ISee test circuit 1)
196
1000
C1476
01.0
5.0
10.0
15.0
20.0
OUTPUT CURRENT Oocl (mAl
~
25.0
C1477
Fig. 5. Output Voltage vs. Output Current
Displays
2
197
198
Displays
Alphanumeric Product Listing
Product
Page
241
MAN3920A
241
MAN3940A
MAN3980A 235/241
MAN4410A
245
245
MAN4440A
Product
MAN6740
MAN6750
MAN6760
MAN6780
MAN6910
Page
267
267
267
267
271
MAN4610A
MAN4630A
MAN4640A
MAN4705A
MAN4710A
245
245
245
245
245
MAN6930
MAN6940
MAN6950
MAN6960
MAN6980
271
271
271
271
271
213
213
213
217
217
MAN4740A
MAN4910A
MAN4940A
MAN6110
MAN6130
245
251
251
255
255
MAN71A
MAN72A
MAN73A
MAN74A
MAN78A
229
229
229
229
235
MAN2A
MAN24
MAN27
MAN28
MAN29
219
221
221
221
221
MAN6140
MAN6150
MAN6160
MAN6175
MAN6180
255
255
255
255
255
MAN8410
MAN8440
MAN8610
MAN8640
MAN8910
275
275
279
279
283
MAN2815
MAN3410A
MAN3420A
MAN3440A
MAN3480A
225
229
229
229
235
MAN6195
MAN6410
MAN6440
MAN6460
MAN6480
255
259
259
259
259
MAN8940
MMA54420
MMA56420
MMA58420
MMA59420
283
287
287
287
287
MAN3610A
MAN3620A
MAN3630A
MAN3640A
MAN3680A
229
229
229
229
235
MAN6610
MAN6630
MAN6640
MAN6650
MAN6660
263
263
263
263
263
MAN3810A
MAN3820A
MAN3840A
MAN3880A
MAN3910A
229
229
229
235
241
MAN6675
MAN6680
MAN6695
MAN6710
MAN6730
263
263
263
267
267
Product
5082-7650
5082-7651
5082-7653
5082-7656
5082-7750
Page
205
205
205
205
205
5082-7751
5082-7756
5082-7760
FND317
FND350
205
205
205
209
213
FND357
FND360
FND367
MAN1A
MAN10A
199
DISPLAYS
PACKAGE
~
~
B
~
~
~
~
~=
;.......
7o~
50
40
30
0
~1i~~
"
I'\.
I'\.
~~
jw
100
1oo~s
~!5
::>u
x'
I\.
~
1\
1 ms
10 ms
tp - PULSE DURATION - •
C2017
Fig. 1. Maximum Tolerable
Peak Current vs.
Pulse Duration
206
200
« a:
!ti
t.~
1\
0
10~s
300
~~
IL
SERIES
500
400
Q.
«I
1\
~~ 100
::j~
« a:
::>:J
~u
ili
200
«I
5082-7650
"
\"
~
J
\~~
70
50
;g
\
100",5
SER ES
:(; I\~
!I'\
1\
10
10",5
5082-nsh-
lL
~1b
N.IIII ,
20
5082-7650
SE~ESI -
~IIII
5
II~ 1\ 1I1lJJ
1 ms
1C ms
tp - PULSE DURATION - s
C2018
Fig. 2. Maximum Tolerable
Peak Current vs.
Pulse Duration
C2019
Fig. 3. Relative Efficiency
(Average Luminous
Intensity Per Unit
Current) vs. Peak
Current Per Segment
5082-7650 SERIES 5082-7700 SERIES
TYPICAL CURVES (Continued)
NORMALIZED TO IL
AT IF = 20 rnA AND TA = 25'C
~ 2.25
iii 2.00
~
1.75
UJ
1.50
~
::J
fi
~
..J
fil
-
5082-7750
f-SERIES
~
0.75
l-'i
~ 0.50
II:
lfi
0.25
0.00
»
~
VTA=50'
fi
~V
1.00
N
o
z
~ ~:~: f--
TA=25'
/.
1.25
~
~
..J
fil
TA = 70'
1/
~
;;!
~
,/
~
o
10
AT IF
~ 2.25
o
30
50
40
«
E
I
50~~-7650
IZ
TA=25'
_S RIES
w
II:
II:
V...TA=.50'
1/""A= 70'
/~
1.50
1.25
1/IA
1.00
::J
;;or
!/ ~
0.75
0
If - FORWARD CURRENT - rnA
II:
c
50
40
30
til'"
20
I
10
J
IJ,
PULSED
80 OPERATION
70
~
II:
Q.
~
DOTTED LINES , 5082-775X~V,
90 INDICATE
60
u.
/- ~
0.25
100
()
0
v: ~
0.50
z 0.00
20
NORMALIZED TO IL
=20 rnA AND TA =25'C
, ;-,
I
I ,,
I
, V
'5082-765X
S;BIES
/
J/
0
10
20
30
40
50
If - FORWARD CURRENT - rnA
C2020
TSER~S
2
3
VF - FORWARD VOLTAGE - V
C2022
C2021
Fig. 5. Normalized Luminous
Intensity vs. Forward
Current Over
Temperature
Fig. 4. Normalized Luminous
Intensity vs. Forward
Current Over
Temperature
4
Fig. 6. Peak Forward Current
vs. Forward Voltage
RECOMMENDED OPTICAL FILTER
5082-7650 Series
5082-7750 Series
Panelgraphic Red 60
Panelgraphic Scarlet 65
Homalite 100-1670
Panelgraphic Gray 10
Homalite 100-126
Homalite 100-1605
PACKAGE OUTLINE
l
r
T
19.05 ± .025
(.750 ± .010)
I
o
DP
:
10.92
(.430)
.l.
08. L
01
(.276)
Unused
Decimal
Position
T
j
I
PIN~
0.=V' - t
n=ti
10.92
(.430)
U,~U.J..
I
---J:::::: :' =r-'
La
08
·01
( 276)
•
5082-7650
5082-7750
~
MAX.
19.05 ± .025
(.750 ± .010)
0
lOA
COO
E B
=.;- __
I
PIN-!:2
=---t"
0.0.=0
V
..l...c :
I
1.57 DIA.
(.062)
1--(~~;~--1
12 70
(.500)
.
MAX.
PIN-!:2
PART NO. CODE:
5062-XXXX Part No.
YXX Date
Z Light IntenSity
Category
7~0.25 (.010)
(.300)
DIMENSIONS IN MILLIMETERS (INCHES).
TOLERANCES ± 0.25 (± 0.010) UNLESS
OTHERWISE INDICATED.
Co~e
I
L-'
.
0
MAX.
=a
19.05 ± .025
(750 + 010)
1.57 DIA.
(.062)
5082-7651/-7653
5082-77511-7760
1--(1~;~--l
I
a
I
O"'T
oi . . ~)
'7"'---!-!--'
Unused
Decimal
Position
zr±
10.36
1.57 DIA.
(.062)
5082-7656
5082-7756
6.35 (.250)
GI 5082-XXXX YXX
PIN#i.j
4.06 (.160)
L
-11-0.51 (.020)
2.54 (.100)
C2023
207
5082-7650 SERIES 5082-7700 SERIES
PIN CONNECTIONS
ELECTRICAL CONNECTIONS
PIN
NO.
1
2
3
4
A
B
C
D
5082-7650/-7750
5082-7651/-7751
5082-7653/-7760
5082-7656/-7756
Cathode A
Cathode F
Common Anode
No Pin
No Pin
Cathode D.P.
Cathode E
Cathode D
No Connection
Cathode C
Cathode G
No Pin
Cathode B
Common Anode
5
6
7
8
9
10
11
12
13
14
Cathode A
Cathode F
Common Anode
No Pin
No Pin
No Connection
Cathode E
Cathode D
Cathode D.P.
Cathode C
Cathode G
No Pin
Cathode B
Common Anode
Anode A
Anode F
Common Cathode
No Pin
No Pin
No Connection
Anode E
Anode D
Anode D.P.
Anode C
AriodeG
NoPin
Anode B
Common Cathode
Cathode D
Anode D
No Pin
Cathode C
Cathode E
Anode E
Anode C
Anode D.P.
Cathode D.P.
Cathode B
Cathode A
No Pin
Anode A
Anode B
ELECTRICAL SCHEMATIC
14
14
14
14
2
2
13
2
13
2
13
3
3
12
3
12
3
12
4
11
4
11
4
11
4
11
5
10
5
10
5
10
5
10
6
9
6
9
6
9
6
9
7
8
7
8
7
8
7
A
B
C
8
0
C2024
NOTES
The digit average Luminous Intensity is obtained by summing the Luminous Intensity of each segment and dividing by the total
number of segments excluding decimal points. Intensity will not vary more than ±33.S% between all segments within a digit.
2. All displays are categorized for Liminous Intensity. The Intensity category is marked on each part as a suffix letter to the part
number.
S. Intensity adjusted for smaller areas of the "+" and decimal points.
4. Leads immersed to 1/16 inch from the body of the device. Maximum unit surface temperature is 140°C.
5. For flux removal, use Freon TF, Freon TE, Isoproponal, or water up to their boiling points.
1.
208
HIGH EFFICIENCY RED
FND317
FEATURES
• Exactly pin and package compatible with
popular FND357 and FND367 Series displays
• Compact -10 digits in 3-inch panel width
• Right-hand decimal configuration
• Wide viewing angle
• Categorized for Luminous Intensity
• Contrast maximized by integral filter cap
• Rugged plastic construction
• Clear cover and Grey face for maximum
contrast in high light ambients
• Four times brighter than FND360 family
APPLICATIONS
•
•
•
•
DESCRIPTION
Digital readout displays
Instrumentation panels
Point of sales terminals
Business and office equipment
The FND317 is a High Efficiency Red GaP seven
segment LED display with nominal 0.362-inch
digit height. This display is suitable for
applications where the viewer is within fifteen
feet and in high ambient light environments.
MODEL NUMBER
PART NUMBER
FND317
COLOR
High Efficiency Red
DESCRIPTION
Common Cathode Seven Segment Display
ABSOLUTE MAXIMUM RATINGS
Power dissipation at 250 ambient .................•.........•..•...............................•..•. 500 mW
Derate linearly from 250 C ..................•..•.............•...•...............•.•............ -9.8 mWr C
Storage and operating temperature .....••.................•...•..........•.......•............ -250 to +850 C
Continuous forward current
Total •.....••........•...•........•.•....•..........•.••.••...........••..•..•......•......•..... 200 mA
Per segment or decimal point ............•.•.....•..............•.....•............................ 25 mA
Reverse voltage
Per segment or decimal point .....••.............•..•..•................•....•........•.•..•..•....... 6 V
Soldering time at 2600 C (See Note 1) ................................................................ 5.0 sec.
209
FND317
ELECTRO-OPTICAL CHARACTERISTICS
PARAMETER
(TA =
MIN.
TYP.
Iv
2800
4000
IIcd
IF=20 mA
±50
±25
%
%
IF=20mA
IF=20 mA
Luminous Intensity (digit average; per diode.
See Note 2) FND317
Luminous Intensity. matching (exclusive of d.p.)
Segment to segment
Within one light category
25° C Unless Otherwise Specified)
SYMBOL
MAX.
UNITS
TEST CONDITIONS
~lv/lv(AVG)
Viewing angle to half intensity
6'h
±27
deg
IF=20 mA
Peak wavelength
AP
630
nm
IF=20 mA
Forward voltage (per diode)
VF
V
IF=20 mA
Reverse breakdown voltage
VBR
V
IF= 1.0 mA
Dynamic resistance (per diode)
Rd
26
ohm
Capacitance (per diode)
C
35
pF
2.5
TYPICAL THERMAL CHARACTERISTICS
VF (Ih) = 1.67 V
IF(th)=5mA
V = 0, F= 1 MHz
SYMBOL
Thermal resistance junction to free air
Wavelength temperature coefficient (case temp)
Forward voltage temperatUl'tl.coefficient
3OO°C/W
0.1 nm/oC
-2.0 mV/oC
HJA
~AI~T
~VF/~T
TYPICAL CURVES
lOa
80
E
60
~ 100
w
~ 80
I
40
rJl
i5
z
:il
30
20
3
fil
I
10
1/
4
.
60
40
~
Fig. 1. Forward Current vs.
Forward Voltage
u;Z
60
::J
oZ
~
3
w
40
90
""
80
70
10
15
20
25
50
-50
30
-25
25
AMBIENT TEMPERATURE -
\
\
500
.1:100
"-
--
"~
F!.Qulv l2l.!.
:
20
10
90
,,- VIEWING ANGLE - DEGREES
C1733
Fig. 4. Angular Distribution of
Luminous Intensity
I
. . . 1'
"- ......
I- .....
60
70
C1244B
"
I
'\
.\
30
I'-..
",200
E
I\..
a:
I I
BOO
'\.
t--..
Qc
""
Fig. 3. Luminous Intensity vs.
Temperature
\.
~ 20
50
C1825
1000
-'
w
210
"- I'...
100
\.
«
51
/
IF-FORWARD CURRENT -rnA
z
I-
z
........
110
Fig. 2. Normalized Luminous Intensity vs.
Forward Current
I\.
W
I-
120
60
5
o
"-
130
/
0
,
140
V
20
:::;
B 1.2 1.6 2JJ 2.4 28 3.2 3.64.0
C10S0S
00 80
V
N
FORWARD VOLTAGE IVrl -- VOLTS
>
/
"-
150
/
~
I
50
-
"1 '20
I
70
'"
170
180
l'40
90
10
20
40
DC
DUTY CYCLE - %
IF PER SEG 10 rnA AVERAGE
1
2
3
5 8 10
20
DUTY CYCLE - %
30 50 80 100
C1221A
C1222A
Fig. 5. Relative Luminous Efficiency
(mcd per mAl vs. Peak Current
per Segment
Fig. 6. Maximum Average Current
Rating vs. Ambient Temperature
FND317
RECOMMENDED OPTICAL FILTER
For optimum ON and OFF contrast, one of the following filters or equivalents should be used over the display:
AMBIENT
OPTICAL FILTER
DIM
25 - 75 Ie
Long Pass 65% transmission 630 nm
SGL Homalite H100-1670 LR-72
Panelgraphies Scarlet Red #65
Chequers Engraving #110
3M Co. R6310
MODERATE
75 - 200 Ie
RED Long Pass, 40% transmission 630 nm
SGL Homalite H100-1670 LR-92
Chequers Engraving #112
Panelgraphies Scarlet Red #65
3M Co. R6310
BRIGHT
200 - 1000 Ie
Neutral Grey 18-23% transmission 630 nm
SGL Homalite H100-1266
Chequers Engraving #105
3M Co. ND0220
Panelgraphics Grey #10 T=23%
Grey #15 T=17%
Rohm & Haas 2074
PACKAGE OUTLINE
INTENSITY
CATEGORY
ORIENTATION
rTTTTMARKS
-I
(9.195)
TYP
TYP
- '!Joo
(.508)
I
l'
¥~)l
opO
(:iTO)
r:::::!
~:~727~ (1056~4) ~1--(-·~-~0-2)-_--'1
TYP
-310 (7 874)290 (7366)
I
r
.400
150 (10.160)
550
(13.970)
L
095
(2413)L
L
-Oc=::;Jo-r
Qc::JU
.560
(14.224)
362
020 (.508)
.016 (.406)
_.340 (8.636)
330 (8.382)
F
__I
L.D75 (1.905)
_ _ .170 (4.318)
.130 (3.302)
-SEATING PLANE
t
315
(8.001)
295
(7.493)
Lh-n---."r+I
I
-
_
1
-.200(5.080)
012 (.305)
.008 (.203)
C1736
ALL DIMENSIONS IN INCHES AND MILLIMETERS (PARENTHESES)
TOLERANCE UNLESS SPECIFIED ~ ±.015 (±.381)
211
FND317
PIN CONNECTIONS
':o~d'"
~oa8
E
C
0
D
5
0
ELECTRICAL SCHEMATIC
Pin FND317
1 Common Cathode
2 Segment F
3 Segment G
4 Segment E
5 Segment 0
6
7
8
9
to
Common Cathode
Decimal Point DP
Segment C
Segment B
Segment A
r==J
DPQ
FND317
6
C1738
NOTES
1. Leads of the device immersed to 1/16 inch from the body. Maximum device surface temperature 140·C.
2. Luminous Intensity measurements are made under pulsed drive conditions (5 ms), and calibrated to DC via Gamma Scientific
C-3 Spectral Scanning System.
212
RED
HIGH BRIGHT RED
FND35D FND357
FND360 FND367
FEATURES
• Exactly identical to displays with same part
number formerly manufactured by Fairchild
Optoelectronics Division.
• Compact -10 digits in 3-inch panel width
• Right-hand decimal configuration
• Wide viewing angle
• Categorized for Luminous Intensity
• Contrast maximized by integral filter cap
• Rugged plastic construction
APPLICATIONS
•
•
•
•
DESCRIPTION
Digital readout displays
Instrumentation panels
Point of sales terminals
Business and office equipment
The FND350, FND360, FND357 and FND367 are
Red GaAsP seven segment LED displays with a
0.362-inch digit height. These displays are for
applications where the viewer is within fifteen
feet of the panel.
MODEL NUMBER
PART NUMBER
FND350
FND357
FND360
FND367
COLOR
Red
Red
High Bright Red
High Bright Red
DESCRIPTION
Common
Common
Common
Common
Anode Seven Segment Display
Cathode Seven Segment Display
Anode Seven Segment Display
Cathode Seven Segment Display
ABSOLUTE MAXIMUM RATINGS
Power dissipation at 250 ambient •.....•.••.••.•........•.•.....•.••.••.••.••.••.•.•.•.•.....•....•. 400 mW
Derate linearly from 250 C ...••.•...••...........•.•.••.•..•..................................... -6.5 mWr C
Storage and operating temperature •••.•••.•..•..•.•••.•.........•.....•..•....•...•..•.••..•... -250 to +850 C
Continuous forward current
Total ..•.•....••.••.......•••....•••.•.......••••.•.........•.•.....•.•......•....••..••...•.•.•. 200 rnA
Per segment or decimal point .•.•••...••.••..........•.••.•...•..•.•...•.•..•..•.•..•.....•..•.•••.. 25 rnA
Reverse voltage
Per segment or decimal point ••..••.•.•...•....••••.•.........•••.•..••....•..••.•..•............•... 3.0 V
Soldering time at 2600 C (See Note 1) ••..••.••.......•...•.•.......•.•........•.....•.........•.•.•... 5.0 sec.
213
FND350 FND357 FND360 FND367
ELECTRO-OPTICAL CHARACTERISTICS (250 C Free Air Temperature Unless Otherwise Specified)
SYMBOL
PARAMETER
Luminous Intensity (digit average;
per diode, See Note 2)
FND350, 357, 358
FND360, 367, 368
Luminous Intensity
Matching
(exclusive of d.p.)
segment to segment
within one light category
Viewing angle to half
intenSity
Peak wavelength
Forward voltage (per diode)
Reverse breakdown voltage
Dynamic resistance (per diode)
TEST
CONDITION
MIN.
TYP.
240
590
450
900
!Lcd
!Lcd
IF = 20 mA
IF = 20 mA
±50
±25
%
%
IF =20 mA
IF = 20 mA
Rd
±27
665
1.7
12
1.7
deg
nm
V
V
ohm
C
23
MAX.
UNITS
IL
~ILlILAV
6y,
AP
VF
3.0
VBR
Capacitance (per diode)
2.0
IF = 20 mA
IF = 20 mA
IF = 20 mA
IF = 1.0 mA
VF (th) = 1.67V
'F (th) = 5 mA
V=O
pF
TYPICAL THERMAL CHARACTERISTICS
Thermal resistance junction to free air wavelength .•••....••.••••••••••••••••.••••••.
Wave length temperature coefficient (case temperature) ••••••••.•••••••••••••.•.••.•.
Forward voltage temperature coefficient ..•••••.•...•.••••••.•..•••.•••.•••••.•.•.
3000CIW
SYMBOL
0JA
0.3 nml"C
-1.6mVI"C
~VF/~T
~AI~T
TYPICAL CURVES
100
~
UJ
...
L
133
~
70
I
160
en
z
80
'E"
170
;§'.
I
90
~ 100
60
40
o
z
5E
30
UJ
50
:3
>
I
20
§
I
10
.5
1.0
66
33
a:
~
zUJ
(i)
80
...
~
60
::l
o
z
5E
40
:3
;§'.100
,..
z
UJ
U
;::: 90
~
15
20
25
/'
/
II
5E
r- "-
UJ
r-
214
I'\.
50
70
C1244
25
...z
UJ
'\
UJ
'\.
15
'\.
\;:
r"\.
~ 10
40
"
Fig. 3. - Luminous Intensity vs.
Temperature
ffi
0..
a:
u
~ 5.0
::l
~
UJ
a: 0
.9
0
fi:
50
100
150
200
250
IF - FORWARD CURRENT (PULSED) - mA
C1734
Fig. 4. - Angular Distribution of
Luminous Intensity
"-
AMBIENT TEMPERATURE - °C
'en"
::: 20
"
I'..
-25
::; 20
...J
30
60
90
0
0 - VIEWING ANGLE - DEGREES
C1733
50
-50
'E"
-..
::l
S
'"
70
C427
oz
1\
80
30
::l
UJ
0
W100
~ 60
\
> 20
UJ
80
u:
u.
~
a:
.9
Z
Fig. 2. - Luminous Intensity vs.
Forward Current
u
\
"-
~ 120
~ 110
IF (PER SEGMENT) - rnA
Fig. 1. - Forward Current VB.
Forward Voltage
'" "
~ 130
~
10
C426
l\.
I 140
60
2.0
V F - VOLTS
/
V
/
UJ
1.5
/
V
/
"-
150
"-
Fig. 5. - Relative Luminous Efficiency
(mcd per mA) vs. Peak Currflnt
per Segment
0
~
o
20
40
60
80
100
TA - AMBIENT TEMPERATURE
C1735
Fig. 6. - Maximum Average Current
Rating vs. Ambient
Temperature
FND350FND357FND360FND367
RECOMMENDED OPTICAL FILTER
For optimum ON and OFF contrast, one of the following filters or equivalents should be used over the display:
AMBIENT
OPTICAL FILTER
DIM
Long Pass 70% Transmission 655 nm
25 - 75 fc
SGL Homalite H100-1650 LR-72
Rohm & Haas 2423
Panelgraphics Ruby Red #60
Chequers Engraving #11 B
3M Co. R6510
RED Long Pass, 45% Transmission 655 nm
MODERATE
SGL Homalite H100-1650 LR-92
75 - 200 fc
Chequers Engraving #112
Panelgraphics Dark Red #63
3M Co. Purple P7710
BRIGHT
Neutral Grey 18 - 26% Transmission 655 nm
200 -1000 fc
SGL Homalite H100-1266
Chequers Engraving #105
3M Co. ND0220
Panelgraphic Grey #10 T=23%
Panelgraphic Grey #10 T=23%
Rohm & Haas 2074
PACKAGE OUTLINE
--,-!
OLa
I
I -O~O
.362
(9.195)
TVj P
.095 (2.413)
L
TYP
z:::::::::::iO
DP
l_5
I
0
(4~-ih-j
.560
(14.224)
550
(13.970)
.070
(2.73)
-fJoo
(.508)
i
I
II
I
.
(2.540)
I
I
I
L
TYP
-.310 (7.874
.290 (7.366)
I
.400
1liO (10.160)
I
ILI
(1°:~4)
.020 (.508)
.016 (.406)
j
REF
__ L075 (1.905)
1-
.030
(.762)_
.340 (8.636)
.330 (8.382)
.170 (4.318)
.130 (3.302)
~ SEATING PLANE
.3r:-
(8.001)
.295
(7.493)
FND350
LIm---..::nTi
-
_
1
I
-.200(5.080)
-
FND357
FND360
.012 (.305)
.008 (.203)
FND367
C1736
ALL OIMENSIONS IN INCHES AND MILLIMETERS (PARENTHESES)
TOLERANCE UNLESS SPECIFIED = ±.015 (±.381)
215
FND350 FND357 FND360 FND367
PIN CONNECTIONS
o
4
10
nO~O
D~Oo
E
C
0
o
5
0
r:===1
Pin
1
2
3
4
5
6
7
8
9
10
FND357/367
Common Cathode
FND350/360
Common Anode
Segment F
Segment G
Segment E
Segment 0
Common Cathode
Decimal Point DP
Segment C
Segment 8
Segment A
Segment F
Segment G
Segment E
Segment D
Common Anode
Decimal Point DP
Segment C
Segment B
Segment A
DPQ
C1738
ELECTRICAL SCHEMATIC
FND 357
FND 367
FND 350
FND 360
C1740
C1741
NOTES
1. Leads of the device immersed to 1116 in. from the body. Maximum device surface temperature
140"C.
2. Luminous Intensity measurements are made under pulsed drive conditions (5ms), and
calibrated to DC via Gamma Scientific C-3 Spectral Scanning System.
216
RED
RED
PACKAGE DIMENSIONS
DESCRIPTION
r--~--ORIENTATION
The MAN1A and MAN10A are seven segment
diffused planar GaAsP light emitting diode
arrays. They are mounted on a dual-in-line 14 pin
substrate and then encapsulated in Red epoxy
for protection. They are capable of displaying all
digits and nine distinct letters.
MARKS
1::
:::n
If, .Z,
FEATURES
12Jo.30
0.76
1.!Hl&IIII",
11
'1J!JDB1 ...
10
4
0.27
• High brightness
• Categorized for Luminous Intensity (See
Note 6)
• Single plane, wide angle viewing ... 1500
• Unobstructed emitting surface
• Standard 14 pin dual-in-line package
configuration
• Long operating life, solid state realibility
• Shock resistant
• Operates with IC voltage requirements
• Small size; offering unique styling advantages
• All numbers plus 9 distinct letters
• Usable for wide viewing angle requirements
• Usable in vibrating environment, impervious
to vibration
• Directly compatible with integrated circuits
0.60
1
g---L.
6 , r 0 . 1 7W W
..
100
0.10
7 ..
. . 8 (12 PLACES)
L~o:!~=:W
r~-do
T
~
~_
(MIN)
1--
I 0.02DIA. ___ 11
PIN 1
PIN 2
PIN J
PIN 4
PIN 5
PIN 6
PIN 7
PIN 8
CATHODE A
CATHODE F
ANODE COMMON
NO PIN
NOPIN
DECIMAL POINT CATHODE
CATHODE E
CATHODE 0
ALL DIMENSIONS NOMINAL IN
+
C736
APPLICATIONS
ANODE·CQMMON
PIN 9
PIN 10 CATHODE C
PIN1!
CATHODEG
PIN 12 NOPIN
PIN 13 CATHODE B
PIN 14 ANODE·COMMON
JUMP R PINS 3,9. AND 14
The MAN1A1MAN10A are for industrial and
military applications such as:
• Digital readout displays
• Cockpit readout displays
ON CIRCUIT BOARD
INCHE~
MAN1A
MAN10A
DUAL, IN LINE CONFIGURATION
ABSOLUTE MAXIMUM RATINGS
Power dissipation at 250 ambient ......•... 750 mW
Derate linearly from ......•..•..•....•.. 10 mW/o C
Storage and operating temperature ... -550 to 1000 C
Continuous forward current
Total ......•..•..••...•..•.......•..•.. 240 mA
Per segment ......•......•.........•...• 30 mA
Decimal point .......•..••....•.....•.•.• 30 mA
Reverse voltage
Per segment ............................ 10.0 V
Decimal point ..•..•..•..•...•.•.•.•.•.•.• 5.0 V
Soldering time at 2600 C (See Note 5) ..•..... 5 sec.
ELECTRO-OPTICAL CHARACTERISTICS (25 C Ambient Temperature Unless Otherwise Specified)
0
CHARACTERISTICS
MIN.
TYP.
Luminous Intensity (See Notes 1 and 6)
Segment
74
Decimal point
74
Peak emission wavelength
630
Spectral line half width
180
180
MAX.
700
20
UNITS
J,Lcd
J,Lcd
nm
nm
TEST CONDITIONS
MAN1A
MAN10A
IF = 20 mA, A = 660 nm
IF = 20 mA, A = 660 nm
IF = 10 mA, A 660 nm
IF = 10 mA, A 660 nm
217
MAN1A MAN10A
ELECTRO-OPTICAL CHARACTERISTICS (Cont'd) (250 C Ambient Temperature Unless Otherwise Specified)
CHARACTERISTICS
MIN.
Forward voltage
Segment
Decimal, point
Dynamic resistance
Segment
Decimal point
Capacitance
Segment
Decimal point
Reverse current
Segment
Decimal point
TYP.
MAX.
UNITS
3.4
1.6
4.0
2.0
V
V
IF=20 mA
IF=20 mA
IF=10 mA
IF=10 mA
11
5.5
n
n
IF=20mA
IF=20mA
IF=20mA
IF=20mA
80
135
pF
pF
V=O
V=O
V=O
V=O
IJ.A
IJ.A
VR=10.0 volts
VR= 5.0 volts
VR=10.0volts
VR= 5.0 volts
100
100
TEST CONDITIONS
MAN1A
MAN10A
DECODER/DRIVER FUNCTIONAL DIAGRAM
TYPICAL TRUTH TABLE
General I nstru ment MAN 1A/MAN 1OA
D
A'S'
C'
0'
E'
DfCODERlDRIVER
RBO---
j1
:E
::
400
200
•
I.
,.•
15 0
13 0
/
~
/
00
V
0
17 0
/
~
~
/
12
•
11 0
V
100
•
0
0
"
""
'\.
'\.
I\.
'\.
0
10
15
20
25
FORWARD CURRENT PEA SEGMENT (mA)
"-
•
30
50
·55
C1470
Figure 1 Luminous Intensity vs. Forward Current
·25
0
25
50
AMBIENT TEMPERATURE
Figure 2 Luminous Intensity
VI.
...........
75
rC)
100
C1145
Temperature
TYPICAL THERMAL CHARACTERISTICS
Thermal resistance (See Note 4) junction to free air (-)JA •••••••••••••••••••••••••••••••••••••••••••••• 4400 C/W
Wavelength temperature coefficient (case temperature) •.••••.•.•.•.•.............•....•••••..•..•...• 3.0 Ar C
Forward voltage temperature coefficient ..•.••..••.••.........•••.•.•..•......•••.••••.•....•.•••. -3.0 mV/o C
NOTES
1. As measured with a Photo Research Corp. "SPECTRA" Microcandela Meter (Model /V-D). Intensity will not vary more than
±50% between all segments.
The curve in Figure 2 is normalized to the brightness at 25° C to indicate the relative efficiency over the operating temperature
range.
3. For contrast improvement Polaroid HRCP7 circular polarizer filter can be used. Non-glare circular polarizer filter will provide
further enhancement in display visibility.
4. Thermal resistance (junction to ambient) value of anyone segment with all segments in operation.
5. Leads of the device immersed to 1/16 inch from the body. Maximum device surface temperature is 1400 C.
6. All displays are categorized for Luminous Intensity. The Intensity category is macked on each part as a suffix letter to the part
number.
2.
218
RED
PACKAGE DIMENSIONS
DESCRIPTION
The MAN2A is a 35 diode diffused planar GaAsP
LED alphanumeric array with a decimal point. It
is mounted on a dual-in-line, 14-pin substrate
with a high contrast Red epoxy lens. It is capable
of displaying the full character ASCII code.
-=:....;::::::::;O"J"lbORIENTATION MARKS
•-$- 14TIj
13 0.30
121
~~~~~ : 11~~"r'
(7.62)
00000
3 ..
00000"
00000
FEATURES AND APPLICATIONS
0.60
• x-v matrix drive
00000
;t
..
9 0.10
-$-8(2.54)
6
7 ;.
PIN 1
PIN 2
PIN 3
(~·.~i~.
./
0.30
~(7.62)
.L~06~,o6)
0.12
(3.05)
T"I [)
(]
0.02 (dia)
(0.51)
MAN2A
PIN4
OIMENSIONS
IN INCHES
8
9
10
11
PIN 12
020 (min)
(5.08)
-:-T
I
PIN 7
PIN
PIN
PIN
PIN
I
-.i..
--II--
PIN 5
PIN 6
PIN 13
PIN 14
COLUMN 2,
ROW 1,
ROW 3,
AOW4,
COLUMN '.
N.C.
D,P.
COLUMN 3,
RQW7.
ROW 6,
ROWS,
ROW 2,
COLUMN 5,
COLUMN 4.
·
-
··
··
-
TOLERANCE ±.015" (0.381)
C416
• Visible, bright Red, high contrast display
• Categorized for Luminous Intensity
(See Note 5)
• 35 light emitting diodes including decimal
point
• Capable of displaying full ASCII characters
• Single plane, wide angle viewing
• Long life, shock resistant, small size
It is ideal for industrial and military applications
such as:
• Keyboard verifiers
• Film annotation-236 bits available
• Avionics displays
• Computer peripheral displays
ABSOLUTE MAXIMUM RATINGS
Single Diode
DC forward current •....•.•..•...........•.......•.....• 20 mA
Pulsed forward current peak (50 ",s, 20% duty cycle) ...... 100 mA
Reverse voltage ...................••.......••....•••...... 5 V
Storage temperature .......................•.... -400 C to 85° C
Operating temperature .......................... -400 C to 85° C
Diode Array
Average power dissipation at 25° C ambient ............. 750 mW
Derate linearly from 25° C ..................••..... 12.5 mWI" C
DC current per diode for worst case AlN •..•.............. 20 mA
DC current per diode for all 35 diodes plus DP ............. 11 mA
Soldering time at 260° C (See Notes 3 and 4) ................ 5 sec.
row" pin"
(,7'
SCHEMATIC
coJ.N
pin"
ffr'
D.P.
1
S
•
1
8
14
S
13
2
12
3
4
11
,
10
C417
RECOMMENDED FILTERS
For optimum ON and OFF contrast, one of the following filters or equivalents should be used over the dis~lay:
Panelgraphic Red 60
Homalite 100-1670
219
MAN2A
TYPICAL CURVES
100
1000
75
~ 750
/
I
·i
'7" 50
/
~500
/
V
g
'E
25
j
I
/
1.5
VF - Volts
250
/
2.0
10
20
IF-rnA
C1235
Fig. 1. Forward Current vs.
Forward Voltage Each LED
30
40
C1236
Fig. 2. Light Intensity vs.
Forward Current Each LED
150
140
*' 130
I
r::
~
........
............
100
1
...........
00
.~
80
~
70
............
60
50
-50
-25
25
50
AmblentTemperature-OC
70
el237
Fig. 3. Relative Luminous Intensity
vs. Ambient Temperature
ELECTRO-OPTICAL CHARACTERISTICS (PER DIODE)
(250 C Ambient Temperature Unless Otherwise Specified)
CHARACTERISTICS
Average Luminous Intensity per character
(See Notes 1 and 5)
Peak emission wavelength
Spectral line half width
Forward voltage
Capacitance
Reverse current
MIN.
TYP.
125
300
660
MAX.
20
2.0
200
100
UNITS
/Lcd
nm
nm
V
pF
/LA
TEST CONDITIONS
IF=10mA
IF=20mA
V=O
VR=5V
NOTES
1.
2.
3.
4.
5.
220
The characteristic average Luminous Intensity is obtained by summing the Luminous Intensity of each diode and dividing by 35.
As measured with a Photo Research Corp. "SPECTRA" Microcandela Meter (Model IV-D). Intensity will not vary more than
±33.3% between all diodes in a character.
The curve in Figure 3 is normalized to the brightness of 25° C to indicate the relative Luminous Intensity over the operating
temperature range.
Leads of the device immersed to 1/16 inch from the body. Maximum device surface temperature is 140" C.
For flux removal, Freon TF, Freon TE. Isoproponal or water may be used up to their boiling points.
All displays are categorized for Luminous Intensity. The Luminous Intensity category is marked on each part as a suffix letter to
the part number.
PRELIMINARY DATA SHEET
MAN24
MAN27
HIGH EFFICIENCY GREEN
RED
YELLOW
HIGH EFFICIENCY RED
MAN21
MAN29
FEATURES
•
•
•
•
•
•
Bright, O.32-inch character
5 x 7 dot matrix format with left decimal
Available in four crisp colors
Categorized for Luminous Intensity
Rugged, reliable air-gap construction
Tinted wrap-around plastic cover for enhanced
contrast
• Standard 14-pin DIP configuration
• Column common anode X-V matrix drive
• Capable of displaying full ASCII characters
DESCRIPTION
The MAN20A Series is a family of 5 x 7 LED dot
matrix displays with nominal O.32-inch character
height. A wrap-around plastic cover provides an
integral filter for direct viewing. Each unit is
sealed by epoxy backfill.
APPLICATIONS
•
•
•
•
Computer peripherals
Instrumentation
Test and measurement equipment
Industrial control equipment
MODEL NUMBERS
PARTNUMBER
MAN24
MAN27
MAN28
MAN29
LED COLOR
High Efficiency Green
Red
Yellow
High Efficiency Red
PACKAGE
DIMENSIONS
LENS COLOR
Green
Red
Yellow
Red
ELECTRICAL
CONNECTION
14~
13 0.30
12 (7.S2)
11~
10~
9
8
010
(254\
O.SO
(15.24)
DIMENSIONS ARE IN INCHES (mm)
TOLERANCE ±.015" (0.38)
COLUMN 2
ANODE
ROW 1
CATHODE
ROW3
CATHODE
CATHODE
ROW 4
ANODE
COLUMN 1
NO CONNECTION
D.P.
ANODE
ANODE
COLUMN 3
ROW 7
CATHODE
ROW S
CATHODE
CATHODE
ROW 5
CATHODE
ROW 2
COLUMN 5
ANODE
ANODE
COLUMN 4
PIN 1
PIN 2
PIN3
PIN4
PIN5
PINS
PIN 7
PIN 8
PIN9
PIN 10
PIN 11
PIN 12
PIN 13
PIN 14
LUMINOUS
INTENSITY
DATE CODE
,------'r--...",...---, CATEGORY
r~R
0.20
1508\
{--
PIN# 1
2
3
4
5
I
0.20 (MIN )
(5 08)
I
I
L~
-
Cl778
11
020 DIA.
- - 1051\
col. # D.P.
pin# 7
•
1
•
8
•
5
14 13
C1779
221
MAN24 MAN27 MAN28 MAN29
ABSOLUTE MAXIMUM RATINGS
(TA = 25°C Unless Otherwise Specified)
Single DIode
D.C. forward current. ................................•...............................•.•.....•......•.••••..•.•.......20 mA
Pulsed forward current peak (See Figures 1 and 2)
MAN27 .•...•••......•..•.•.•.•.•...•.........•...............................•...•.•.........•..............•.•. 200 mA
MAN24, MAN28, MAN29 ................•.........................................•..•........................•..• 100 mA
Reverse voltage ..........•............•..•......•................................•....•.•.......•.................•....•5 V
Storage and operating tempereture ......................................•....................•.....•....•..... -40· C to 85· C
Junction temperature - pulsed operation .................•.......•...•...........•......................•..........•.•• 50· C
DIode Array: AssumIng 14 DIodes On
Average power dissipation at 25° C Ambient .....•...•......•............................•..•..••......•....••..•..•.. 750 mW
Derate linearly from 25° C ......•......••..•......•.....•..........................•..•.•.........•.•.•.•.....•. -12.5 mW/· C
Pulsed operation average current (See Figures 1 and 2) ...•..•..•.•.•...............•.....•.............................. 20 mA
Solder time at 260° (7 (See Notes 2 and 3) ..................................................................••........•..•... 5 sec
TYPICAL THERMAL CHARACTERISTICS
Thermal resistance (junction to free air) eJA ............................................••.........•....•...•.....•.. 400·C/W
Thermal resistance 325Hz, 1:7 duty factor ..........•...............................•...••..........•..•..•.........• 125·CIW
ELECTRICAL OPTICAL CHARACTERISTICS (TA = 25°C Unless Otherwise Specified)
(EACH DIODE)
TEST
CONDITIONS
SYMBOLS
MAN24
MAN27
MAN28
MAN29
UNITS
Minimum Luminous Intensity
Character average
(See Note 1)
Iv
510
125
510
320
pcd
IF= 10mA
Typical Luminous Intensity
Character average
(See Note 1)
Iv
750
250
600
500
pcd
IF = 10 mA
Ap
VF
565
660
585
635
nm
IF= 10mA
2.2
1.6
2.1
1.9
VFmax
3.0
1.8
2.6
2.6
V
V
iF= 20mA
IF = 20 mA
Peak emission wavelength
Typical forward voltage
Maximum forward voltage
IF = 20 mA
Dynamic resistance
RD
16
3
16
16
n
Threshold voltage
VTH
1.9
1.55
1.8
1.65
V
IFTH = 5 mA
Capacitance
C
35
35
35
35
pF
V= 0, f = 1 MHz
Maximum reverse current
IR
100
100
100
100
pA
VR = 5V
TYPICAL CURVES
(Unless Otherwise Noted)
~200r------r-----'--------,
MAN 24
MAN 28
MAN 29
,.
~1200
w-
...J"
«"'~
I- 100
a: Z
~~
I-~
80
60
:::!!o 40
Tj"IT
i
-"'
en
~
~
i'
"\.
::Jw
:::!!o
~150~----~-----1--------1
o
Z
....
~
I"\,
::J
...J
W
r\
xQ 20
10
10
>
;::
I
10~~~~~~~~~~UW
100
1000
10000
10
100
1000
10000
PULSE DURATION Po (ps)
PULSE DURATION Po (ps)
C1780
Fig. 1. Maximum Tolerable Peak
Diode Current vs.
Pulse Duration
222
Z
C
:s,,~~ ~r.~
~ 11-*,"1f,
~o
1=325Hz
~
C1781
Fig. 2. Maximum Tolerable Peak
Diode Current vs.
Pulse Duration
'S
ll! 1001"'"0------:2'="0------!:40::---=::--:~
DUTY CYCLE D.C. (%)
C1782
Fig. 3. Relative Luminous Intensity
vs. Duty Cycle
MAN24 MAN27 MAN28 MAN29
TYPICAL CURVES (Unless Otherwise Specified)
IA~g =1 20 ~A
750
a:
w_
;:;:
o
E
0.-
r'\
~ ~ 500
"'z
,,0
t-t-
0 0
160
~
150
DOTTED LINES'
INDICATE
MAN 27 i
PULSED --1---1-
-I-
~ " "m",,"
.
140
;::6
t-.
~::!J 130
~ 6 0 1 - - - - - - - - 1 - - - · ;t:MAN 24
\
~t=
o.~
;J, ~ 250
I=J
~
.!: 80
\.
Vl-
_100.---------r------.77-,
'"
§. 90
~
~ 40
\.
~b"T;'0:i5 DIODES
1\
AVERAGE 14ilOiESIONI
IAvg = 20 rnA
1--. M't.~~~8
i II. _ _ _--I
Ill!
50
~
30
o~
20
I··
'------1
~ 101-------+fhL--------~
1\
a.
10 20 30 40 50 60 70 80 90 100
3
FORWARD VOLTAGE VF (V)
AMBIENT TEMPERATURE TA (·C)
~~
120
110
is ~ 100
:;!;::;
::; a: 90
:::>0
~ ~ 80
>
70
~
a:
DUTY
~~,~+J9
I
MAN 28
MAN2~~AN27
~YCLE
Fig. 5. Peak Forward Voltage
vs. Peak Forward Current
1:7
·1-
--- -
i"
..
"
~~
~
60
-30 -20 -10 0 10 20 30 40 50 GO 70
AMBIENT TEMPERATURE TA ("C)
C1784
C1783
Fig. 4. Total Package Power
Dissipation vs. Ambient Temp.
~~
I =d25~Z
C17B5
Fig. 6. Relative Luminous Intensity
vs. Ambient Temperature
RECOMMENDED FILTERS FOR CONTRAST ENHANCEMENT
AMBIENT
COLOR
DIM
(Office)
25-75 FC
MODERATE
(Test Floor)
75-200 FC
BRIGHT
(Outdoors)
200-1000 FC
HIGH EFFICI~NCY RED
635nm
STANDARD RED
670nm
Red Long Pass 65%
H. H10Q-1650
C.11OO
3M. R6310
POL. HNCP37; HTCP
Red Long Pass 40%
H. F1oo-1650
C.112
POL. HACP; HRCP (HT)
Grey 18-23%
H. H10Q-1266
C.105
3M. ND0220
HNCP 10. 22
YELLOW
563nm
YellOW Band Pass 30%
H. H1OQ-1720
C.106
P. Yellow 27
POL. HNCP37
Amber Long Pass 40%
H. H10Q-1726
C.106
P. Amber 23
3M. A5910
POL. HACP
Grey 18-23%
H. H10Q-1266
C.105
P. Grey 10
RH.0538
POL. HACP
HIGH EFFICIENCY GREEN
569nm
Green Band Pass 30%
H. H1OQ-1440
C.107
P. Green 48
POL. HNCP37
Grey 20-25%
H. H100-1425
C.107
P, Green 48
POL. HGCP
Grey 18-23%
H. H1OQ-1266
C.105
p. Grey 10
POL. HGCP
LEGEND:
C. 106 - Chequers #106
RH - Rohm & Haas
3M - 3M Company
POL - Polaroid Corporation
H - SGL Homalite
C - Chequers Engraving
P - Panelgraphics
NOTES
1.
2.
3.
4.
The characteristic avera'le Luminous Intensity is obtained by summing the Luminous Intensity of each diode and dividing by 35.
Intensity will not vary m, re than ±33.3% between all diodes in a character.
Leads of the device immersed to 1/16 inch from the body. Maximum device surface temperature is 140·C.
For flux removal. Freon TF. Freon TE. Isoproponal or water may be used up to their boiling points.
All displays are categorized for Luminous Intensity. The Luminous Intensity category is marked on each part as a suffix letter to
the part number.
223
MAN24 MAN27 MAN28 MAN29
CHARACTER SET
C1786
TYPICAL DRIVE SCHEME
~~~~~~~~~~~~~~~~~~~~~JJIJJ,
6 LINE ASCII
ARRAY SELECT :
MASTER
CLOCK
1
----I
t::::j
2
t:::l
3
t:::l
4
I
(
TIMING
CIRCUITRY
L
6 BIT INPUT STORAGE BUFFERS I
READ ONLY
( B'II~UTPUTSTO,R:~~ BUFFERS,' II MEMORV
----l
1
COLUMN
DRIVERS
ROW
~
~~~~~~~~~~~I
LED
I--
2
3
2
3
LED
:::::
LED
...-'-....4.............,
J
====
4
LED
DISPLAY
f--- DISPLAY==
l~D:R~IV~E=R:S~J=======:tD=I:SP=L:A~YJi~ DISPLAY ;::::::=
~
f---
ROW SCANNING BLOCK DIAGRAM
224
r--'--_----'
C1787
RED
MAN2815
FEATURES
• Low power consumption (as low as 0.5 mA
average current or 1.0 mW per segment)
• Aesthetically designed characters
• Sculptured continuous segments
• Complete alphanumerics plus special
characters
• Voltage and current compatibility for
interfacing ease with microprocessors and
related circuitry
• 0.135-inch character height
• 0.175-inch character spacing allowing as much
as 32 characters in 5.6-inch linear panel space
• Common cathode
• Internally wired for multiplexing
DESCRIPTION
APPLICATIONS
The MAN2815 is an eight character alphanumeric
display which is end-stackable and capable of
displaying all alpha and numeric characters plus
symbols. Each character is constructed from a
monolithic, Red GaAsP chip formatted into a 14
segment font with a decimal point.
• Computer terminals - lightweight, mobile,
compact
• Test and measurement equipment
• Desk top calculators
• Communications - message centers
• Verification systems
ABSOLUTE MAXIMUM RATINGS
Average forward current per segment ................................................................. 10 mA
Peak forward current per segment (:5 200 its, :54% duty cycle) .......................................... 250 mA
Reverse voltage •.•..•..•.....................................•.•...........•......................... 5.0 V
Storage and operating temperature ............................................................. 0° C to 70° C
Soldering temperature (t:5 5 sec.) (See Notes 2 and 3) ..........•..............•...•..............•..... 255° C
Average power dissipation (total package) at TA = 50° C ............................................. 1200 mW
Deratelinearlyfrom50°C ..................................................................... -17.1 mW/oC
RECOMMENDED FILTERS
The following filters or equivalent are recommended to provide optimum ON and OFF contrast ratio:
Panelgraphic Red 60
Homalite 100-1605
Plexiglas 2423
225
MAN2815
PACKAGE DIMENSIONS
1.3.0MAX~
rH
--tI
IJ.--17) EO
I JE3 'L
"rvlH"'''L
,_:-'
,
PIN #1
SO
I
spes.
AT 0175 " 1 225
IAI CHARACTERS
0.075
~.'35·
m-r
007
oto f
-
-
---L 0.60
~
-I
I
r-- '375
131415161718192021222324
tOOOOOOOOOOO
NQPIN
0740
000000000000
12 1110 9 B 7 6 5 4 3
I
TnrlTI rnrlii:
l- ---- - -- - - - - - - -:tT
,
f
C~~:~~TEA '-./ 1--'
REFERENCE DESIGNATOR
PIN NO.
DESCRIPTION
CATHODE
K'
2
K2 CATHODE
3
K3
CATHODE
4
'D) ANODE
K4 CATHODE
5
6
K5 CATHODE
7
IJ)
ANODE
8
K6 CATHODE
lOP) ANODE
.7 CATHODE
'0
11
1M) ANODE
K8 CATHODE
'2
NOPIN
'3
IN) ANODE
'4
Ie) ANODE
'5
IE) ANODE
'6
17
fG2J ANODE
IG1) ANODE
'8
ANODE
20
ILl ANODE
IFI ANODE
2'
(K) ANODE
22
(HI ANODE
23
24
(AI ANODE
r-'OO
'.5··MAX
2 1
•
,.
,.,
TOLERANCES':!: .015
EF
Cl348
ELECTRICAL CONNECTIONS
r
I
I
L
~.~ ~
~-:-:~--~-:-:--:-:~--~-:-.-f 4: .-~ ~~; ~
~~j------------------------- -~ .f-~ -~J~
G'
F
A
G2
J
D
M
D.'
E
el3S1
K,
C1349
K,
K,
Fig. 8. 14 Segment Character Font
226
NOTE: Segments A & D appear as 2
segments each, but both halves are
driven together. (See wiring diagram.)
MAN2815
TYPICAL CURVES (Unless Otherwise Specified)
500
250
Ii
I-
~
200
\1 \} g
~i ~~ ,,."
'~"
~!
~_'OO
~!
80
a:: ~
":w
60
I
~~ 40
~
'"
::>
'"
x
:!
tJ
JiH
1
-
~
~::>
30
20
~
\
10
1
10
100
1000
0
JJ1~
r- ~
o
100 (DCI
10,000
PULSE DURATION (Jlsec)
I
J.m
U!i
100
10
1
DUTY CYCLE
C1341
0.5
Q
CI342
1.0
I
1.5
2.0
2.5
PEAKVOLTAGE-VF-(VOLTSJ C1343
Fig. 3. Peak Current
vso Peak Voltage
180
1300
170
160
_1200
•
"-
E 1toO
150
~1000
"-
~ 900
140
130
BOO
B 700
120
~ 600
11 0
~ 500
~ 400
~300
100
I'
90
80
"
~ ~:
70
60
o
o
10
~
~
~
~
00
70
AMBIENT TEMPERATURE (OCI
Fig. 4. Max. Tolerable
Power Dissipation
R'
(%)
)
o
Fig. 2. Average Luminous
IntensitvlSegment vs. Dutv Cvcle
Fig. 1. Maximum Tolerable Peak
Segment Current vs. Pulse Duration
3;
250
I ~ lol~ll
AVG~
00
00
CT344
50
-4030 20 10 0 10 2030 40 50 60 70 80 90
AMBIENT TEMPERATURE ~c
C1345
Fig. 5. Luminous Intensity
vs. Temperature
vcc -VF -v CES -VCEP
Ip
C,346
Fig. 6. Di.plav Drive Consideration
CI347
Fig. 7. MAN2815 in a Tvpical
Application
227
MAN2815
ELECTRICAL OPTICAL CHARACTERISTICS (TA = 25°C)
Average Luminous Intensity per segment
(See Note 1)
MIN.
TYP.
60
100
MAX.
UNITS
pcd
TEST CONDITIONS
lavg =2.5 mA
Ip k=20 mA
Duty cycle = 118
3.2:1
Luminous Intensity ratio
Segment-ta-segment within a character
Luminous Intensity ratio
Character-to-character within a display
Forward voltage
Reverse voltage
Peak emission wavelength
2.0:1
1.65
2.0
5.0
660
V
V
nm
IPk =20 mA
IR = 100 pAisegment
ELECTRICAL/OPTICAL CONSIDERATIONS
A. DETERMINATION OF MAXIMUM ALLOWABLE STROBING CONDITIONS:
1. From number of characters, determine duty cycle (DC).
Ex:
32 Characters
DC = 1(32 = 3.125%
2. Establish refresh frequency (f) and calculate pulse duration (PW).
Ex:
f = 500 HZ
PW = DC/f = .03125/500 HZ = 62.5!,s
3. The corresponding maximum peak current per segment from Fig. 1 is 250 mAo The intersection of 500 HZ and 62.5!'s pulse duration
lies in the <4% duty cycle condition. IAVG = 250 mA X .03125 = 7.8 mA which is the maximum average current for operation at
TA (ambient temperature) = 25°C.
4. If operating temperature is above 50°C, then power dissipation
...;
.{
~
...
.s-
.{
~
.s-
...Z
e(
:E
e(
C>
...C'.{!
~
co
...
.{
~
...
co
.{
~
...coZ
e(
:E
e(
;:!:
......
.{
...
1....
Z
.{
N
e(
:E
~
....sCD
~
N
...co
.{
..
C>
CD
...
Z
e(
:E
MIN.
TYP.
Luminous Intensity, digit average
(See Notes 1 and 3)
Peak emission wavelength
Spectral line half width
Forward voltage
Segment
Decimal point
Dynamic resistance
Segment
Decimal point
Capacitance
Segment
Decimal point
Reverse current
Segment
Decimal point
510
710
2000
2700
562
30
MAX.
UNITS
Luminous Intensity, digit average
(See Note 1)
Decimal point (See Note 3)
Segment "C" or "0" of MAN3630A
Peak emission wavelength
Spectral line half width
Forward voltage
Segment
Decimal point
Dynamic resistance
Segment
Decimal point
Capacitance
Segment
Decimal paint
Reverse current
Segment
Decimal point
510
265
265
Luminous Intensity, digit average
(See Note 1)
Decimal point (See Note 3)
Segment "C" or "0" of MAN73A
Peak emission wavelength
Spectral line half width
Forward voltage
Segment
Decimal point
Dynamic resistance
Segment
Decimal point
Capacitance
Segment
Decimal point
Reverse current
Segment
Decimal point
125
60
60
Luminous Intensity, digit average
(See Note 1)
Decimal point (See Note 3)
Segment "C" or "0" of MAN73A
Peak emission wavelength
Spectral line half width
Forward voltage
Segment
Decimal point
Dynamic resistance
Segment
Decimal point
Capacitance
Segment
Decimal point
Reverse current
Segment
Decimal point
320
1200
I'cd
IF = 10mA
160
160
600
600
585
40
I'cd
I'cd
nm
nm
IF=10mA
IF=10mA
V
V
IF=20mA
IF =20 rnA
26
26
n
n
IF=20mA
IF =20mA
35
35
pF
pF
V=O
V=O
I'A
I'A
VR=5.0V
VR =5.0V
I'cd
I'cd
nm
nm
TEST CONDITIONS
IF = 10 mA
IF = 60 mA peak,
1:6DF
V
V
IF=20mA
IF=20mA
12
12
n
n
IF=20mA
IF=20mA
40
40
pF
pF
V=O
V=O
I'A
I'A
VR =5.0V
VR =5.0V
1400
I'cd
IF=10mA
700
700
630
40
I'cd
I'cd
nm
nm
IF = 10 mA
IF = 10 mA
V
V
IF=20mA
IF=20 mA
26
26
n
n
IF=20mA
IF=20mA
35
35
pF
pF
V=O
V=O
I'A
I'A
VR=5.0V
VR =5.0V
280
I'cd
IF=10mA
140
140
660
20
I'cd
I'cd
nm
nm
IF=10mA
IF=10mA
V
V
IF=20mA
IF=20mA
n
n
Ipk = 100 mA
Ipk = 100 mA
80
80
pF
pF
v=o
V=O
100
100
I'A
I'A
VR=5.0V
VR=5.0V
2.2
2.2
3.0
3.0
100
100
2.5
2.5
100
100
2.0
2.0
2
2
35
35
3.0
3.0
100
100
231
MAN3400A MAN3600A MAN70A MAN3800A SERIES
TYPICAL CURVES
'00
0-"
"E
I
0-
~
:>
OJ
o
a:
i!a:
0
J
-"
0
iii
ili0-
J
70"
J
;;
/
Ii' ,O~
o
w
>
I DOTTED
LINE
INDICATES
,0
V
V
is
15
20
~ 2400
V
C1OBO
120
20
25
30
FORWARD CURRENT (IFI- mA
60
10
10
VF - VOLTS
H'O
0
/
0
30
20
/
0
•0
20
VF - VOLTS
I
"-
60
so
10
15
20
25
IF (PER SEGMENT! - mA
30
~50
1200
900
600
300
40
30
<429
Fig. 10. Forward Current vs.
Forward Voltage
V
V
IF tPEA SEGMENTI
"
50
"
70
Ct244
Fig. 9. Luminous Intensity vs.
Temperature
1/
1/
1/
-25
AMBIENT TEMPERATURE -'C
C417
MANJ800A SERIES
I
I
~
70
60
0
"""-
90
80
~ 1500
II
0
"'
0
0
1800
I
MAN3800A SEAlES
C1244
MAN70A SERIES
110
Forward Current
I
90
10
C
Fig. 6. Luminous Intensity vs.
Temperature
0
Fig. 8. Luminous Intensity vs.
Fig. 7. Forward Current vs.
Forward Voltage
"'
so
25
150
V
20
C426
15
"-
AMBIENT TEMPERATURE
" "
"
"
/
/
0
/
r"..:
110
tAN701SER'Ek
"
""-
0
"50
C10BI
'000
I
I
"
0
15
/V
20
MAN3600A SERIES
0
0
232
IJ0
Fig. 5. Luminous Intensity vs.
Forward Current
,
100
,oc·
TA
0
10
MAN70A SERIES
30
"'-
75
Fig. 3. Relative Luminous Intensity
vs. Temperature
'00
8Q
I
50
0
600
Fig. 4. Forward Current vs.
Forward Voltage
1
25
1"'-
C1700
0
/
12 t 6 20 24 28 32 3640
'"
-25
TEMPERATURE -
"" "
."
,3~ / 1/
I
I
-55
0
~ 1200
VOLTS
80
IF ,mA,
/V
~
FORWARD VOLTAGE (Vfl
'"'"
0
9
30
~ 1800
0
100
25
}'
a:
~
I
II
8
11 0
!
M~N3600~ SERIE~
I
0
4
AT 2SoC
MAN3400A SERIES
70
~ 3600
0
NORMALIZED
iii
Fig. 2. Relative Luminous Intensity
vs. DC Forward Current
~ 2800
0
~
Cii
o~ ~
C1702
MANJ600A SERI[S
0
~ 12
~ 100
DC FORWARD CURRENT -
I
0
'30
a:
10
0
0
ml/
a:
Fig. 1. Forward Current
vs. Forward Voltage
0
V
~ V
PULSED OPERATIONsee FIGS 13,141
20
40
30
'"0
FORWARD VOLTAGE - VF ,VOLTS,
elS97
100
V
:3
J
0
0
z
40
30
MAN3400A SERIES
'":>o
J
0
0
;;
J
0
6
N+M+ED fT I, J10
~
MAN3400A SERIES I
9
'20
/
I
II
.00
I
MANJ800ASERIES
0 _____
r-- r--......
""'" I"-...
00
80
20
mA
70
25
Cl089
Fig. 11. Luminous Intensitv vs.
Forward Current
-so
-25
2S
AMBIENT TEMPERATURE
50
_·c
70
C"'31
Fig. 12. Luminous Intensitv vs.
Temperature
MAN3400A MAN3600A MAN70A MAN3800A SERIES
TYPICAL CURVES
MAN3400A SERIES
MAN3400A SERIES
1000
_ 800
~800
~
400
g;roo
::l
(J
~ ~;
'" 100 ~
~
:'OF
"
::l
40
"~
~10
,r",~
:Ii>
~-: ~
II
'F PER SEG lOrnA AVERAGE
DC
CI226
Fig. 20. Luminous Intensity vs.
Duty Cycle
233
MAN3400A MAN3600A MAN70A MAN3800A SERIES
ABSOLUTE MAXIMUM RATINGS
HIGH EFF. GREEN
Power dissipation at 250 C ambient •••••.•.••.•••••••••
Derate linearly from 500 C .••••.••.•••••.••••••••••.•
Storage and operating temperature ••••••••••••••.•••.
Continuous forward current
Total .••.••••••••.•...••••••.•••••••••••••.••.•
Per segment ••.••••..•.••••••••••••••.•.•••••••.
Decimal point ••.•••.....••••••••••.••.••••••.•••
Reverse voltage
Per segment ••.•.••.••.•••••••••••.••••.••••.••.
Decimal point •.••••••••••••.••...•••••••••••••••
Soldering time at 2600 C (See Notes 4 and 5) .•.•••.•..••
RED
MAN3410A
MAN3420A
MAN3440A
MAN71A
MAN72A
MAN74A
MAN73A
SOOmW
-12mWI"C
-400 C to +850 C
480mW
-S.9mWI"C
-400 C to +850 C
300mW
-4.29mWI"C
-400 C to +850 C
240 rnA
30mA
30 rnA
240 rnA
30 rnA
30 rnA
150 rnA
30mA
30mA
6.0V
6.0V
5 sec.
6.0 V
6.0V
5 sec.
S.OV
6.0V
5 sec.
YELLOW
Power dissipation at 250 C ambient ••••••.•.••.•.••••••
Derate linearly from 500 C ••.••.••.••••••••••••••••••
Storage and operating temperature •••••••.••••.•••••.
Continuous forward current
Total .••••.•..•.•••••.••••••••••..•.•.••.••.•••
Per segment ••.•.••••••••••.•.••••••.•••••••••••
Decimal point ••.••••••••••..••.•.•••••••••••••••
Reverse voltage
Per segment •••••.•.••.••.•.•..••.••••••••••••••
Decimal point •••••••.••.••••••••••••••••••••••••
Soldering time at 2600 C (See Notes 4 and 5) ..••.•....•.
ORANGE
MAN3810A
MAN3820A
MAN3840A
MAN3610A
MAN3620A
MAN364qA
MAN3630A
SOOmW
-10.3 mWrC
-400 C to +850 C
SOOmW
-8.SmWI"C
-400 C to +850 C
375mW
-5.36 mWrC
-400 C to +850 C
200 rnA
25 rnA
25 rnA
240 rnA
30 rnA
30 rnA
150 rnA
30 rnA
30 rnA
S.OV
S.OV
5 sec.
6.0V
6.0 V
5 sec.
6.0V
S.OV
5 sec.
RECOMMENDED FILTERS
For optimum ON and OFF contrast, one of the following filters or equivalents should be used over the display:
DEVICE TYPE
FILTER
DEVICE TYPE .
MAN3610A}
MAN3620A
MAN3630A
MAN3640A
Panelgraphic Scarlet 65
Homalite 100-1670
MAN71 A
MAN72A
MAN73A
MAN74A
MAN3410A}
MAN3420A
Panelgraphic Green 48
Homalite 100-1440 Green
MAN3810A}
MAN3820A
MAN3840A
MAN34~OA
}
FILTER
Panelgraphic Red 60
Homalite 100-1605
Panelgraphic Yellow 25 or Amber 23
Homalite 100-1720 or 100-1726
Panelgraphic Grey 10
Homalite 100-1266 Grey
TYPICAL THERMAL CHARACTERISTICS
GREENIYELLOW
Thermal resistance junction to free air
"
"
II:
i!
II:
f2
0
0
I
0
I
t-----::;I
1.0
,DDTTED LINE
INDICATES
PULSED OPERATIONSEE FIGS. 13, 14'
2.0
V
40
VF ,VOLTS, C1697
o-
10
15
20
25
80
-55
30
0
~
!
'"
4
/
1200
a
I
V
10
/
~ 1800
3D
600
~
~
VOL T5
Fig. 4. Forward Current vs.
Forward Voltage
10
/'
0
20
25
0
0
#
30
,.
I
0
10
I
'0
Yf - VOLTS
100
IS
V
600
'0
e".
Fig. 10. Forward Current VI.
Forward Voltage
VI.
"'"' I"'
130
170
~
100
•
go
"'
0
8
10
so
10
20
25
30
V
V
10
-50
I'-
"'
-25
."
"'
so
AMBIENT TEMPERATURE _
COO7
".
/
"or100
10
'c
Fig. 9. Luminous Intensity
Temperature
CI244
VI.
~AN38801
'""'- r--.....
..........
10
,/
V
30
~
~
~
~ 15UO
I
J
C1244
MAN78A
'" "'
,,40
V
I, tPEA SEQMENTI - mA
"00
40
"'
SO
eo
60
50
170
100
~ 110
MAN3880A
I
II
MAN3880A
"
Fig. 6. Luminous Intensity
Temperature
./
1800
I
90
"
AMBIENT TEMPERATURE _ C
VI.
Fig. 8. Luminous Intensity vs.
Forward Current
V$.
"'"'I'..
-'"
SO
30
V
'0
c.,.
100
V
/
I
Fi9. 7. Forward Current
Forward Voltage
0
CHII'
LAN7s1
I
/
VOLTS
100
1000
50
10
11 0
SO
15
10
v, -
~
;
~ 80
/V
0
100
C1700
0
0
'"
"'
~1l 0
~ 110
~
MAN,I8OA
10
40
"-
75
=:~~=- -
"'
ISO
FORWAADCUARfNTIIFI- mA
MAN78A
30
50
Fig. 3. Relative Luminous
Intensity V$.
Temperature
./
Fig. 5. Luminous Intensity
Forward Current
,
100
25
0
10
CH180
./
~ /'
81716202428373640
FORWARD VOL rAGE IV, I
'"1"'- "-
TEMPERATURE - TA (oCI
/
MAN3680A /
:
II
40
AT 25°C
M~N34B~A
110
0
~
I
-25
IF rmA' C1702
2800
~~ 2400
0
238
a:
,
r ::~:::
!Z
0
1,
90
~w
~l61I1I
90
~
2:
"" '"
Fig. 2. Relative Luminous
Intensity vs. DC
Forward CUrrent
100
e
100
w
DC FORWARD CURRENT -
Fig. 1. Forward Current
vs. Forward Voltage
<
ill
~
NORMALIZED
70
5
30
FORWARD VOLTAGE -
V
120
Jo
...
/
/
I
130
>
iii 110
V
MAN3480A
I
0
o
N~RMA~zED1T'FJ'0ml~
I
40
30
10
4.0
I
MAN3480A
.........
00
IS
10
IF tPER SEGMENT! - mA
lS
30
CI089
Fig. t t. Luminous Intensity vs.
Forward Current
,.
AMI'ENT TEMfEI!:ATURE
'"
_·c
10
C411
Fig. t 2. Luminous Intensity vs.
Temperature
MAN348DA MAN368DA MAN78A MAN388DA MAN398DA
0
1000
_ BOO
~ 600
- 400
IF{AVG)
~11:200
a
~
1~~~ ~
2.SmA ' /
"-
: r-
~
0;
0
,y~'b"{.
7
":-s.
40
"~
-P
= 20 rnA
0-
100
~
MA,N3~8~A,.11 !I
MAN3480A
r-.
II
~t---.
0
f'.
0
2
0
I0
10
100
(~S)
Fig. 13. Maximum Peak
Current vs. Pulse
Duration
1000
BOO
t-
r--
50
10
20
50
% DUTY CYCLE
DC
e170l
Fig. 14. Relative Efficiency
vs. Duty Cycle
'~-
H-
MAN36BOA
MAN3980A
500
2.0
10,000
C1699
1000
PULSE DURATION
MAN3680A
MAN39BOA
~FREaUENCY '" 200 PPI
.'00
E
,
.
'\..
,
'-
~100
0
Ie 0
~
" '\.. I'.
"
0
10
1
2
3
S 8 10
20
30 50 80 100
DUTY CYCLE - "
e1221
Fig. 15. Max Peak Current vs.
Duty Cycle
1000
800
10
20
r"
e1222
Fig. 16. Luminous Intensity vs.
Duty Cycle
MAN18A
'00
DC
'0
DUTY CYCLE '\
'F PER SEG lOrnA AVERAGE
MAN78A
FREQUENCY = 200 pps
"
"
IS
r-.
...........
r-
0
0
1
2
3
10
JO 50 80100
OUT V CyCLE....
S 8 10
C1223
Fig. 17. Max Peak Current vs.
Duty Cycle
1000
800
SOD
10
.0
20
DC
DUTY CYCLE - ""
I"PERSEG10mAAVERAGE
C1224
Fig. 18. Luminous Intensity vs.
Duty Cycle
2
MAN3B8OA
MANJ8aOA
~REaUENCY '" 200pps
'\.
.200
,,~
E
~
,
100
~ 80
:e
50
"
0
10
2
3
S 8 10
DUTY CYCLE
20
'I>
30
so 8OHx)
C1225
"
I'-
I
10
20
DC
'0
DUTY CYCLE
'II.
'F PER SEG lOrnA AVERAGE
Fig.
'9.
MIIJ( Peak Current VI.
Duty Cycle
C1226
Fig. 20. Luminous Intensity voL
Duty Cycle
239
MAN3480A MAN3680A MAN78A MAN3880A MAN3980A
ABSOLUTE MAXIMUM RATINGS
RED
ORANGE
YELLOW
HIGH EFF. RED
MAN3480A
MAN78A
MAN3680A
MAN3680A
MAN3980A
600mW
-12 mW/oC
-40° C to +85° C
480mW
-6.9 mWf'C
-400 C to +85° C
600mW
-10.3 mWf'C
-40° C to +85° C
24DmA
30mA
30mA
240mA
30mA
30mA
200 mA
2SmA
25mA
6.0V
6.0V
5 sec.
6.0V
6.0V
5 sec.
6.0V
6.0V
5 sec.
HIGH EFF. GREEN
Power dissipation at 25° C ambient .•••.•••..••.••.••
Derate Ii nearly from 50° C ••.•..•..••.•.•••••.••••••
Slo'rage and operating temperature •.••••••••••••••••
Continuous forward current
Total ••••••••••••••••••••••••••.••.••.•••••••
Per segment .•••••••••.••••••••••.•••.•••••.••
Decimal point .••.••.•.••.••••.•••••••••.•••••.
Reverse voltage
Per segment •••••••••••••••••••.••.••••••••.••
Decimal point •••••••••.•••••.••••••••••••••.••
Soldering time at 260° C (See Notes 4 and 5) •...••.••••
TYPICAL THERMAL CHARACTERISTICS
GREEN/YELLOW
Thermal resistance junction to free air j8
II
DID"
---l1--025mm
762mm--i
+ 00r'
• DIS"
_ 000"
2~~~,-1 ~ ~I-o~~~~
+004"
- 000"
C133S
CIJ37
S
A,
E
0
C
o
OP
PIN CONNECTIONS
ELECTRICAL CONNECTIONS
PIN
NO.
1
2
3
4
5
6
7
a
9
10
11
12
13
14
242
A
MAN3910A
Cathode A
Cathode F
Common Anode
No Pin
No Pin
No Connection
Cathode E
Cathode D
Cathode D.P.
Cathode C
Cathode G
No Pin
Cathode B
Common Anode
B
C
MAN3920A
MAN3940A
Cathode A
Cathode F
Common Anode
No Pin
No Pin
Cathode D.P.
Cathode E
Cathode D
No Connection
Cathode C
Cathode G
No Pin
Cathode B
Common Anode
Anode F
Anode G
No Pin
Common Cathode
No Pin
Anode E
Anode D
Anode C
Anode D.P.
No Pin
No Pin
Common Cathode
Anode B
Anode A
0
MAN3980A
Common Cathode
Anode F
Anode G
Anode E
Anode D
Common Cathode
Anode D.P.
Anode C
Anode B
Anode A
C422A
D
MAN3900A SERIES
ELECTRO-OPTICAL CHARACTERISTICS (250 C Free Air Temperature Unless Otherwise Specified)
Luminous Intensity. digit average
(See Note 1)
Decimal pOint (See Note 3)
Segment "C" or "D" of MAN3630A
Peak emission wavelength
Spectral line half width
Forward voltage
Segment
Decimal point
Dynamic resistance
Segment
Decimal point
Capacitance
Segment
Decimal point
Reverse current
Segment
Decimal point
-C
co
co
..,'"
~
..,iI
ci
co
..,'"
N
ci
:;!
..,'"
Z
-C
:::E
100
I I I
90
750
750
635
40
MAX.
UNITS
!Lcd
IF=10mA
IF=10mA
V
V
IF =20 mA
IF =20mA
26
26
n
n
IF =20mA
IF =20mA
35
35
pF
pF
V=O
V=O
!LA
!LA
VR =5.0 V
VR =5.0V
100
100
170
3600
MA~3900A ~E RI ES
160
""'"
I
50
~
~
~
20
JA ......................................................... 1600 p/W
Wavelength temperature coefficient (case temperature) ............................................. 1.0 N° C
Forward voltage temperature coefficient ......................................................... -2.0 mV/0 C
NOTES
1. The digit average Luminous Intensity is obtained by summing the Luminous Intensity of each segment and dividing by the
total number of segments as measured with a Photo Research Corp. "SPECTRA" Microcandela Meter (Model IV-D). Intensity
will not vary more than ±33.3% between al/ segments within a digit.
2. The curve in Figure 3 is normalized to the brightness at 25 0 C to indicate the relative Luminous Intensity over the operating
temperature range.
3. The decimal point is designed to have the same surface brightness as the segments, therefore, the Luminous Intensity of the
decimal point is .3 times the Luminous IntenSity of the segments, since the area of the decimal point is .3 times the area of the
average segment.
4. Leads of the device immersed to 1/16 inch from the body. Maximum device surface temperature is 1400 C.
5. For flux removal, Freon TF, Freon TE, Isoproponal or water may be used up to their boiling points.
6. All displays are categorized for Luminous IntenSity. The Intensity category is marked on each part as a suffix letter to the part
number.
244
HIGH EFFJCIENCY GREEN
ORANGE
RED
MAN4400A SERIES
MAN4600A SERIES
MAN4700A SERIES
FEATURES
•
•
•
•
•
•
•
•
•
•
DESCRIPTION
The MAN4400, MAN4600, MAN4700 and
MAN4800 Series provides superior brightness in a
choice of color LED displays. Standard units are
available in Red, Green, and Orange. They can be
mounted in arrays with 0.400-inch (10.16 mm)
center-to-center spacing. The Green displays are
constructed with Grey face and neutral segment
color. Red displays have Black faces and Red
segment color. Others have face and segment
color corresponding to the emitted light.
Common anode or common cathode models
Red, Green and Orange
Fast switching - excellent for multiplexing
Low power consumption
Bold solid segments that are highly legible
Solid state reliability - long operation life
Impact resistant plastic construction
Directly compatible with integrated circuits
High brightness with high contrast
Categorized for Luminous Intensity (See
Note 6)
• Standard 14 pin dual-in-line package
configuration
• Wide angle viewing ... 150·
• Package size and lead configuration is the
same as MAN50Al3600Al70Al80A Series
APPLICATIONS
For industrial and consumer applications such as:
• Digital readout displays
• Instrument panels
• Point of sale equipment
• Calculators
• Digital clocks
• High ambient light conditions
MODEL NUMBERS
PART
NUMBER
MAN4410A
MAN4440A
MAN4610A
MAN4630A
MAN4640A
MAN4705A
MAN4710A
MAN4740A
COLOR
Green
Green
Orange
Orange
Orange
Red
Red
Red
PACKAGE
DESCRIPTION
DRAWING
Common Anode; Right Hand Decimal
A
A
Common Cathode; Right Hand Decimal
Common Anode; Right Hand Decimal
A
Common Anode; Overflow ±1; Right Hand Decimal
B
Common Cathode; Right Hand Decimal
A
B
Universal (CA or CC) Overflow ±1; Right Hand Decimal
Common Anode; Right Hand Decimal
A
Common Cathode; Right Hand Decimal
A
PIN OUT
SPECIFICATION
A
C
A
B
C
D
A
C
245
MAN4400A MAN4600A MAN4700A SERIES
PACKAGE DIMENSIONS
0010
=c
002 fl
A
B
UOOP .
.386"
PIN
=1
r
738'
IlS.75m ml
'.010
l
i--198mm11
I
'010"
~
D~
.386"
(0 25mml
.4 00"
H~ ."--
110. 16mm)
738 "
(1875m ml
• 010
_l
~11-8
54 mm)
n
+007"--
- 000"
r
-t
1--19.8mml-1
I
'OlD"
B
'[]
0-t
o
°alo, "-110
LEADS ARE TIN/LEAO
SOLDER DIPPED
4 00"
16mml
TOLERANCE
015" {381mml
_l
_J
055" OIA
(140mml
C1458
C1457
~5
010"
PIN
A
~
200"
(508mm)
• 010"
160"
---.
I
(406mm)
• 015"
050"
~1(127mmJ
{762mml
, 015"
-I
~ -1~
100"
020"
(254mml
• 010"
PART NO CODE
MANXXXX " PART NO
YXX" DATE CODE
Z" UGHT INTENSITY
CAT NO
(0 S1mm)
+ 004"
- 000"
PIN CONNECTIONS
ELECTRICAL CONNECTIONS
PIN
NO.
A
MAN4410/4610/4710
1
2
3
4
Cathode A
Cathode F
Common Anode
No Pin
No Pin
No Pin
Cathode E
Cathode 0
Cathode D.P.
Cathode C
Cathode G
No Pin
Cathode B
Common Anode
5
6
7
8
9
10
11
12
13
14
B
MAN4630
Anode C, 0
No Pin
Anode C, 0
No Pin
No Pin
No Connection
Cathode 0
Cathode C
Cathode D.P.
Cathode B
Cathode A
No Pin
No Pin
Anode A, B, & D.P.
C
MAN4440/4640/4740
Anode F
Anode G
No Pin
Common Cathode
No Pin
Anode E
Anode 0
Anode C
Anode D.P.
No Pin
No Connection
Common Cathode
Anode B
Anode A
ELECTRICAL SCHEMATIC
MAN4630
MAN4705
11
10
C1456
246
C1216
D
MAN4705
Anode 01
No Pin
Cathode 01
Cathode C
Cathode 02
Anode 02
Anode C
Anode D.P.
No Pin
Cathode D.P.
Cathode B
Cathode A
Anode A
Anode B
MAN4400A MAN4600A MAN4700A SERIES
ELECTRO-OPTICAL CHARACTERISTICS (25°C Free Air Temperature Unless Otherwise Specified)
~
110
~ ~~ -~ ./~~-I----1
§
:J
U
w
~
'
40
~
100
INDICATES
~
90
a:
B0
1~ --------:; PUl~~~ ~~ESR~il?4~10
20
30
FORWARD VOLTAGE -
5
40
10
15
20
25
DC FORWARD CURRENT -
VF VOLTS
Fig. 1. Forward Current vs.
Forward Voltage
JOOO
MAN4600A SERIES
1500
0
0
1000
/
"00
II
0
1000
0
0
I
0
4
8
I:?
16
500
,,0 14 28 J 2 36 40
FORWARD VOLTAGE IVFI - VOLTS
V
lL
V
I
0
10
v, -
15
VOLTS
25
30
Cl090
Fig. 7. Forward Current vs.
Forward Voltage
0
......
0
/
.........
~
........
50
-50
-25
50
AMBIENT TEMPERATURE -
C
70
C428
Fig. 6. Luminous Intensity vs.
Temperature
0
0
MAN4700A SERIES
0
ob
"
0
-"':
0
-=::::"
100
V
0
~
~
0
0
V
20
MAN4600A SERIES
0
0
V
100
100
Fig. 3. Luminous Intensity vs.
Temperature
0
400
'"
130
LAN4;OOA S~AIES
I
I
75
°c
0
0
0
TA
0
/V
JO
50
Cl70a
"
20
I, (PER SEGMENTI - mA
600
'"
.'"
0
0
60
25
TEMPERATURE -
0
800
BO
0
1"'-
0
V
10
1000
MAN4700A SERIE~
~
-25
0
Fig. 5. Luminous Intensity vs.
Forward Current
I
90
V
CIOBO
Fig. 4. Forward Current vs.
Forward Voltage
100
30
MA~4600.! SERIEk
90
0
~AN4400A Senes
C17Q2
Fig. 2. Luminous Intensity vs.
Forward Current
100
70
-55
IF mA
C1697
0
""
NORMALIZED
AT 2S"C
>
@ 30~---_1_7'~-_1_--_I
~ 20 f-----+I/ ,DOITED LINE
248
#
0
50
10
15
20
25
IF (PER SEGMENT! - rnA
Fig. 8. Luminous Intensity vs.
Forward Current
30
-50
-25
50
AMBIENT TEMPERATunE -
C
C428
Fig. 9. Luminous Intensity vs.
Temperature
MAN4400A MAN4600A MAN4700A SERIES
1000
4. 0
MAN4400 SERIES
800
~600
Ot-
iii
~200
G 100
~ :g
40
"
:J
"~
IMAN44°OSER~
.1
IF(AVG)
;:'400
~~T ~~
1~ ~~
25mA
"7-
&!~"{:
'tt~
==
~
0
r--...
~
20
.1 0
100
10
10,000
1000
f"-
o. 0
2.0
PULSE DURATION I/olSI
5.0
10
20
50
% DUTV CYCLE
DC
C1701
C1699
Fig. 10. Max Peak Current vs.
Duty Cycle
1000
800
so 0
Fig. 11. Luminous Intensity vs.
Duty Cycle
MAN4600SERIES
lJJ.,l,,!.
t'0
'1\
\
"'"
,
['..
MAN4600SERIES
'\
20
0
,
,
3
S 8 10
,
20
DUTY CYCLE
20
MAN4700SERIES
l'
<[
E
200
FREQUENCY
MAN4700SERIES
200pps
"
::-100
"
SO
r--
............
20
10
,
J
,
OC
C1222
r--
~ 80
~
,
Fig. 13. Luminous Intensity vs.
Duty Cycle
800
SOO
'0
DUTY CYCLE
'F PER SEG 10 mA AVERAGE
CI22!
Fig. 12. Max Peak Current vs.
Duty Cycle
1000
10
30 50 80 100
I,
"
1'-
,
8 '0
DUTY C"elE
:/0 JO
50 80100
"
C'223
10
I"'20
40
Fig. 14. Max Peak Current vs.
Duty Cycle
DC
DUTY CYCLE - '"
IF PER SEG 10 rnA AVERAGE
CI224
Fig. 15. Luminous Intensity vs.
Duty Cycle
249
MAN4400A MAN4600A MAN4700A SERIES
ABSOLUTE MAXIMUM RATINGS
Power dissipation at 25°C ambient ••••••••••••••..••
Derate linearly from 50° C .••••.•••••.••••..••••..••
Storage and operating temperature •...••..••.•..••..
Continuous forward current
Total ..••.•.•••••..•••••.•••••.•••••••••...•.
Per segment .••••...•••••.•••••••••••.••••..•.
Decimal point •..•.••..••••••..•••...••.•.•••..
Reverse voltage
Per segment •.••••..•••••••••••••••••.•••••..•
Decimal point •.•.•••.••••••..•••...••••••••..•
Soldering time at 260°C (See Notes 4 and 5) •••••.•••••
MAN4410A
MAN4440A
MAN4705A
MAN4710A
MAN4740A
600mW
-12 mW/oC
-40° C to +85° C
360mW
-5.2 mW/oC
-40° C to +85° C
480mW
-6.9 mW/oC
-40° C to +85° C
240 rnA
30 rnA
30 rnA
180 rnA
30 rnA
30 rnA
240 rnA
30 rnA
30 rnA
6.0 V
6.0 V
5 sec.
6.0 V
6.0V
5 sec.
6.0V
6.0V
5 sec.
MAN4630A
MAN4610A
MAN4640A
450mW
-6.4 mW/oC
-40° C to +85° C
600mW
-8.6 mW/oC
-40°C to +85°C
180 rnA
30mA
30 rnA
240 rnA
30 rnA
30 rnA
6.0 V
6.0 V
5 sec.
6.0 V
6.0V
5 sec.
Power dissipation at 25° C ambient •..••...••....•••.•.•....•.•....••.•..
Derate linearly from 50° C ...••...•••.•••••...•••.•••••.....•...••••.•.
Storage and operating temperature •••.•••••••••••••••••..••••..•••••.••
Continuous forward current
Total •..••••..••...••••.•••••••••••..••...•.•..•.•.•....•.••.....
Per segment ••••••..•••••.•••••.••••..•••.•.•••••••••••.••••••••••
Decimal pOint ••••••.•••••••••••••••••.•••••••••••••••••••.••••••••
Reverse voltage
Per segment .••.•..••...••••...••...••.•.•••..•.••.•.•.••.•••.••..
Decimal pOint ••••••.••••••..••••.•••••..••••••••••..••••.....••...
Soldering time at 260°C (See Notes 4 and 5) ••••••••••••••.•••••..•.•••..•
RECOMMENDED FILTERS
For optimum ON and OFF contrast, one of the following filters or equivalents should be used over the display:
~~~
A~
MAN4410A }
MAN4440A
Panelgraphic Green 48
MAN4610A }
MAN4630A
MAN4640A
Panelgraphic Scarlet 65
Homalite 100-1670
~~~
MAN4705A }
MAN4710A
MAN4740A
A~
Panelgraphic Red 60
Homalite 100-1605
NOTE: When using the Grey face MAN4480 or MAN4880 in situations of high ambient light, a neutral density filter can be used to
achieve a greater contrast. The following or equivalent can be used: Panelgraphic Grey 10.
TYPICAL THERMAL CHARACTERISTICS
GREENIYELLOW
Thermal resistance junction to free air
a
~
30
L
w
~ 1500
Z 1000
:E
:>
..J
20
I
10
V
o
i/
.4
.8
./
500
1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0
FORWARD VOLTAGE (V,I - VOLTS
/
V'
10
20
15
25
I, (PER SEGMENTI- mA
C1OS0
Fig. 1. Forward Current vs.
Forward Voltage
30
C1D90
Fig. 2. Luminous Intensity vs.
Forward Current
170
160
150
*'I
'"'"w
...zr
'"a:
i=
«
..J
140
130
120
....
........ r....
110
.........
............
100
.............
90
............
80
W
a:
70
60
50
-50
-25
25
AMBIENT TEMPERATURE -
70
50
'c
C428
Fig. 3. Luminous Intensity vs.
Temperature
1000
I
I
800
500
I I I
1\
\
~REaUENCY' 200 pps
«
>
....
200
"
E
I
~'OO
~ 80
~
iii....
~
"
50
\
'\..
0;
1.5
r'\.
>
"-,-
~
'\..
I'"
w
a:
~
20
10
2
3
5 8 10
20
30 5080100
DUTY CYCLE - %
C1221
Fig. 4. Max Peak Current vs.
Duty Cycle
1
10
20
......
40
DUTY CYCLE - %
I, PER SEG 10 mA AVERAGE
DC
C1222
Fig. 5. Luminous Intensity vs.
Duty Cycle
253
MAN4900A SERIES
ABSOLUTE MAXIMUM RATINGS
Power dissipation at 25 0 C ambient .........•......................................................• 600 mW
Derate linearly from 500 C ..•.................................................................. -8.6 mW/o C
Storage and operating temperature ..............•..........................................• -400 C to +850 C
Continuous forward current
Total ....................•....•..............•...............•.................................• 240 mA
Per segment ..................•..............•.........................•.......................... 30 mA
Decimal point ............•....................................................................•.. 30 mA
Reverse voltage
Per segment ........•.................................•.........•............................•..... 6.0 V
Decimal pOint ........................................•............................................ 6.0 V
Soldering time at 2600 C (See Notes 4 and 5) .•....•........•................•....•.................... 5 sec.
TYPICAL THERMAL CHARACTERISTICS
Thermal resistance junction to free air 1
-t
A,
.750"
!19.05mml
G
E
.560"
(14.22mmj
i 010"
C
o
GoP
oeo" alA
LIGHT INTENSITY CAT
r--T--T--~
PART
IDENTIFICATION
~
z
(8~~ml
~"
PIN"
100"
i I
-1
(2.~4mm)
r-
-1t-.
•
•050"
(1.27mm)
.020 .. ·.006 ..
R
I
(o.Slmm)-,ODO"
_
C11860
.600"
"eo"
(406mm)
:.015"
__
I
--L2""
_11.25mml-DOO"
(IS.24mmJ
:..015"
C1asOA
PIN CONNECTIONS
PIN
F
MAN6180
MA~~I150
EAn. (1#1)
DAn. (1#1)
CAn. (111)
CAn. (1#1)
DAn. (1#1)
BAn. (111)
E Cath.
DCath.
Com. An.
EAn.
DAn.
Com. Cath.
DP Cath. (111)
DPAn.(1I1)
DPAn. (411)
CCath.
CAn.
E Cath. (112)
DCath. (112)
EAn. (112)
DAn. (/12)
EAn. (112)
DAn. (112)
OP Cath.
BCath.
OPAn.
BAn.
G Cath. (112)
G Cath. (/12)
GAn.(1I2)
G An. (/12)
A Cath.
A An.
CCath. (112)
OP Cath. (112)
B Cath. (/12)
A Cath. (/12)
F Cath. (112)
Digit 112 An.
Digit 111 An.
BCath (111)
ACath. (111)
G Cath. (111)
F Cath. (111)
CCath. (112)
DP Cath. (112)
B Cath. (112)
A Cath. (112)
F Cath. (112)
Digit/12 An.
Digit 111 An.
A Cath. (111)
N.C.
N.C.
N.C.
CAn. (/12)
OPAn. (/12)
BAn. (112)
AAn.(1I2)
FAn. (/12)
Digit 112 Cath.
Digit 111 Cath.
BAn. (111)
AAn. (111)
GAn.(1I1)
F.An. (111)
CAn. (112)
DP An. (/12)
BAn. (/12)
A An. (/12)
FAn. (/12)
Digit /12 Cath
Digit 411 Cath
AAn. (411)
N.C.
N.C.
N.C.
Com. An.
F Cath.
GCath.
Com. Cath.
FAn.
GAn.
EI
IIIlAN61ao
1
2
3
ECath. (1#1)
D Cath. (1#1)
C Cath. (1#1)
C Cath. (1#1)
D Cath (1#1)
BCath. (111)
4
DP Cath. (411)
5
6
E Cath. (112)
o Cath. (112)
7
6
10
11
12
13
14
15
16
17
16
C
MAN6140
MAN6110
9
256
ELECTRICAL CONNECTIONS
A
No.
MANt:6160
G,
MAN6175
Minus Cath.
Com. An. +/Seg. B. Cath.
Com. An.
A,B, DP
DPCath.
Seg. A Cath.
Com. An.
A,B,DP
Com. An. +/Plus Cath.
N.C.
H
MAN6195
Minus An.
Com. Cath. +/Sag. BAn.
Com. Calh.
A,B,DP
OPAn.
Sag.AAn.
Com. Cath.
A,B,DP
Com. Calh. +/Plus An.
N.C.
MAN61DO SERIES
INTERNAL CONNECTIONS
I,.
r~
E
1
r~
,.
I"
SECONOjOIGtT
FtRSTIOIG'T
,.~
.
D
C
B
A
G
2
3
lS
16 17 1B
F
~.
~
DP E
D
G
5
6
1
4
,.
r~
C
B
B
1D
A
F
DP
11
12
9
MAN6ll0
CAB
1
15 J
C
A
2
1
15
B
J
DP
4
E
D
5
6
G
1
C
8
B A
10 11
MAN6l30
F
D
12
9
"
E
1
.~
D
2
C
3
B
15
SECOND lOIGIT
"~
G F
16 17 18
A
.~
. ~~ .~~ ~ to ~A"
~
DP E
4
5
D
•
G
7
C
8
MAN6l40
C1196
8
A
10 11
F
12
DP
9
e1197
I"
"A ~ "A "A "A
2
D
,. ,.
~~
,~
I"
F'RSTI01C3LT
SECONOjOIGIT
1
D
~~
h
C1195
,.
t
t
~~,
[,.
II"
SECOND OIGIT
1
DP E
4
5
D
•
MAN6l50
G
7
~A
C
B
B
10
" ,A"
A
11
F
E
1
D
12 9
MAN6l60
C1198
()
'}
C
B
<1
(j
AFt.
9
10
I
MAN6l60
C1238
5
C1239
A B
9
1
6
3
5
MAN6195
MAN6175
C1828
C1829
257
MAN6100 SERIES
ABSOLUTE MAXIMUM RATINGS
MAN6110
MAN6140
Power dissipation at 2SO C ambient •••.•..
240mW
Storage and operating temperature •..... -40° C to +8So C
Continuous forward current
Total .............•..............•...
120mA
Per segment ....•.•.•............•..•
7.SmA
Decimal point ........•...............
7.S mA
Reverse voltage
Per segment ..............•..........
6.0 V
Decimal point •.•.....................
6.0V
Soldering time at 260°C
5 sec.
(See Notes 4 and S) ................. .
MAN6130
MAN6150
210mW
-40° C to +8So C
MAN6160
MAN61BO
120mW
-40° C to +8S o C
MAN6175
MAN6195
7SmW
-40 0 C to +8So C
10S mA
7.S mA
7.SmA
60mA
7.S mA
7.S mA
38 mA
7.S mA
7.SmA
6.0V
6.0 V
6.0V
6.0V
6.0V
6.0V
5 sec.
5 sec.
5 sec.
ELECTRO-OPTICAL CHARACTERISTICS (25° C Free Air Temperature Unless Otherwise Specified)
Luminous Intensity, digit average
Decimal point, "+" or "-"
Peak emission wavelength
Spectral line half width
Forward voltage
Segment
Decimal point
Dynamic resistance
Segment
Decimal point
Capacitance
Segment
Decimal point
Reverse current
Segment
Decimal point
MIN.
TYP.
200
100
370
MAX.
635
40
1.B
1.B
2.2
2.2
100
100
UNITS
TEST CONDITIONS
/Lcd
/Lcd
nm
nm
IF = 20 mA
IF =20 mA
V
V
IF= 20 mA
IF = 20 mA
n
n
IF = 20 mA
IF= 20 mA
pF
pF
V=O
v=o
/LA
/LA
VA =3.0V
VA = 3.0 V
TYPICAL THERMAL CHARACTERISTICS
Thermal resistance junction to free air '"
PIN=IO
c
C
'"
r:l
NOTE: When placing double
digits and single digits together
on a board, allowance should
be made for .150" spacing
between the end leads of the
double digit and the end leads
of the single digit.
PIN =6
PIN CONNECTIONS
PIN
NO.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
260
C1186C
ELECTRICAL CONNECTIONS
D
A
MAN6410
MAN6440
B
C
MAN6460
MAN6480
Cathode E 1
Cathode D 1
Cathode C 1
Cathode D.P. 1
Cathode E 2
Cathode D 2
Cathode G 2
Cathode C 2
Cathode D.P. 2
Cathode B 2
Cathode A 2
Cathode F 2
Anode Digit 2
Anode Digit 1
Cathode B 1
Cathode A 1
Cathode G 1
Cathode F 1
Anode E 1
Anode D 1
Anode C 1
Anode D.P. 1
Anode E 2
Anode D 2
Anode G 2
Anode C2
Anode D.P. 2
Anode B 2
Anode A 2
Anode F2
Cathode Digit 2
Cathode Digit 1
Anode B 1
Anode A 1
Anode G 1
Anode i= 1
Cathode E
Cathode D
Common Anode
Cathode C
Cathode D.P.
Cathode B
Cathode A
Common Anode
Cathode F
Cathode G
Anode E
Anode D
Common Cathode
Anode C
Anode D.P.
Anode B
Anode A
Common Cathode
Anode F
Anode G
MAN6400 SERIES
TYPICAL CURVES
100
«§
-'"
I-
zw
II:
II:
::J
()
0
II:
~
II:
0
u.
>-
I-
w
I
50
'"0
~
10
o
::J
I
..J
W
1/'
./
1.0
>
,DOTTED LINE
INDICATES
PULSED OPERATIONSEE FIGS. 3, 5,
~
V
V
W
II:
1.0
2.0
3.0
4.0
FORWARD VOLTAGE - VF ,VOLTS,
C1697
~
>-
120
enz
110
I-
~
100
~..J
90
II:
80
I-
w
w
>
'" "'-
200
::J
()
"
100 ~1.
'"~
V
SO
50
"::;;
::J
::;;
X
=~"':'\i.
"
.=-='"
JA ••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 160°.c/W
Wavelength temperature coefficient (case temperature) ..................................•.......... 1.0 A/o C
Forward voltage temperature coefficient .....................•.••................................ -2.0 mV/oC
NOTES
1. The digit average Luminous Intensity is obtained by summing the Luminous Intensity of each segment and dividing by the
total number of segments as measured with a Photo Research Corp. "SPECTRA" Microcandela Meter (Model IV-D). Intensity
will not vary more than ±33.3% between all segments within a digit.
2. The curve in Figure 3 is normalized to the brightness at 25° C to indicate the relative efficiency over the operating temperature
range.
3. Leads of the device immersed to 1116 inch from the body. Maximum device surface temperature is 140°C.
4. For flux removal, Freon TF, Freon TE, Isoproponal or water may be used up to their boiling points.
5. Intensity adjusted for smaller areas of the "+" and decimal points.
6. All displays are categorized for Luminous Intensity. The Intensity category is marked on each part as a suffix letter to the part
number.
266
RED
MAN6700 SERIES
FEATURES
•
•
•
•
•
•
•
•
•
•
•
•
DESCRIPTION
The MAN6700 Series is a family of large digits
which includes double and single digits. The
series features the sculptured font which
minimizes "gappiness" at the segment
intersections. Available models include two-digit,
one and one-half digits with polarity sign, and
single digits. All models have right hand decimal
points and are available in common anode or
common cathode configuration. Units are
constructed with Black face and Red segment
color.
•
•
•
•
High performance GaAsP
Large, easy to read, digits
Common anode or common cathode models
Also available in Orange (MAN6600 Series)
Fast switching - excellent for multiplexing
Low power consumption
Bold solid segments that are highly legible
Solid state reliability - long operation life
Rugged plastic construction
Directly compatible with integrated circuits
High brightness with high contrast
Categorized for Luminous Intensity (See
Note 7)
Wide angle viewing ... 1500
Standard double-dip lead configuration
Low forward voltage
Two-digit package simplifies alignment and
assembly
APPLICATIONS
For industrial and consumer applications such as:
• Digital readout displays
• Instrument panels
• Point of sale equipment
• Digital clocks
• TV and radios
MODEL NUMBERS
PART
NUMBER
MAN6710
MAN6730
MAN6740
MAN6750
MAN6760
MAN6780
COLOR
Red
Red
Red
Red
Red
Red
PACKAGE
DESCRIPTION
DRAWING
2 Digit; Common Anode; Rt. Hand Decimal
A
1'h Digit; Common Anode; Overflow ±1.8; Rt. Hand Decimal
B
2 Digit; Common Cathode; Rt. Hand Decimal
A
1'h Digit; Common Cathode; Overflow ±1.8; Rt. Hand Decimal
B
Single Digit; Common Anode; Rt. Hand Decimal
C
Single Digit; Common Cathode; Rt. Hand Decimal
C
PINOUT
SPECIFICATION
A
B
C
D
E
F
RECOMMENDED FILTERS
For optimum ON and OFF contrast, one of the following filters or equivalents should be used over the display:
DEVICE TYPE
FILTER
Panelgraphic Red 60
MAN6700 Series
Homalite 100-1605
267
MAN6700 SERIES
PACKAGE DIMENSIONS
A
S"· S
A
•
,
G
,
,
C
D
o
0
'
0"
c
aop
a:·
001'
PIN 11
CNOTE SQUARE
BASE ON
LEADI
P'NO'O.
. P,N=,
PlN.'O
......· PlN=,
BOTTOM vIew
BOTTQMVIEW
1:1
..
..
..
..
..
..
..
a
PIN =10
CI
a
a
NOTE: When placing double
digits and single digits together
on a board, allowance should
be made for .150" spacing
between the end leads of the
double digit and the end leads
of the single digit.
PIN =6
B
D·
cg'lJI.
Uoop
,
a:,
c
o
OOP
C1186D
PIN CONNECTIONS
ELECTRICAL CONNECTIONS
PIN
NO.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
268
A
MAN671D
Cathode E 1
Cathode 0 1
Cathode C 1
Cathode D.P. 1
Cathode E 2
Cathode 0 2
Cathode G 2
Cathode C 2
Cathode D.P. 2
Cathode B 2
Cathode A 2
Cathode F 2
Anode Digit 2
Anode Digit 1
Cathode B 1
Cathode A 1
Cathode G 1
Cathode F 1
B
MAN673n
C
MAN674D
Cathode C 1
Anode E 1
Cathode 0 1
Anode 0 1
Cathode B 1
Anode C 1
Cathode D.P. 1 Anode D.P. 1
Cathode E 2
Anode E2
Anode 0 2
Cathode 02
Cathode G 2
Anode G 2
Cathode C 2
Anode C 2
Cathode D.P. 2 Anode D.P. 2
Anode B 2
Cathode B 2
Cathode A 2
AnodeA2
Anode F 2
Cathode F 2
Anode Digit 2
Cathode Digit 2
Anode Digit 1
Cathode Digit 1
Cathode A 1
. Anode B 1
No Connection Anode A 1
No Connection Anode G 1
No Connection Anode F 1
D
MAN675D
E
MAN676D
MAN676D
Anode C 1
Anode 0 1
Anode B 1
Anode D.P. 1
Anode E 2
Anode 02
Anode G 2
Anode C2
Anode D.P. 2
Anode B 2
AnodeA2
Anode F 2
Cathode Digit 2
Cathode Digit 1
Anode A 1
No Connection
No Connection
No Connection
Cathode E
Cathode 0
Com. Anode
Cathode C
Cathode D.P.
Cathode B
Cathode A
Com. Anode
Cathode F
Cathode G
Anode E
Anode 0
Com. Cathode
Anode C
Anode D.P.
Anode B
Anode A
Com. Cathode
Anode F
Anode G
F
MAN&700 SERIES
TYPICAL CURVES
'00
I
""8.
I
600
170
500
.'" "
160
MAN6700 SE R I ES
7.
5.
/
400
60
'"
E
I
~
3D
,.•
I
20
••
/
••
C426
VF - VOLTS
~
;:
25
50
MAX PEAK CURRENT
vs DUTY CYCLE
~EQUENCY
200
80
10
7.
C
el244
MlN6;~ sJ.IE~
.......
~
3
"
50
I
20
2
25
200~llsJ
"-
50
"
Fig. 3. Luminous Intensity vs.
Temperature (See Note 2)
'\.
100
I"-
AMBIENT TEMPERATURE -
,
MAN 6700 SERIES -
500
25
C1284
Fig. 2. Luminous Intensity vs.
Forward Current
1000
800
80
50
'0
15
IF IPER SEGMENT) - rnA
Fig. 1. Forward Current vs.
Forward Voltage
"
100
90
g
'0
60
2.
15
"" :-..
120
~ 110
/
/
.00
J
••
~
/
300
40
140
~ 130
20
50
DUTY CYCLE""
.........
.
10
100
~~
-~
4.
20
DC
PERCENT DUTY CYCL.E
C1199A
01200
Fig. 5. Luminous Intensity vs.
Duty Cycle
Fig. 4. Max Peak Current vs.
Duty Cycle
INTERNAL CONNECTIONS
\14
I~
,~
, ,
0
1
h
0
3
14
\13
I
FIRST!OIGIT
SECOND DIGIT
h In In In
8
A G
1516 17
f
,
(lI'
I!I
E
0
5
6
,
8
C
B
10
A
11
f
DP
J2 9
14
D
.
.~
~
0
A
8
I
15
3
DP ,
4
5
. ~~
• ,
G
~~
0
A
1
15
8
3
DP E
4
5
D
•
MAN6750
G
0
7
8
"
8
10
r~ '~r
A
11
0
8
B
10
A
11
F
J2
D
9
C1198
~
, ,
D
1
DP
J2 •
f
, ,o
1
~
,.~ .~
0
3
13
18
I
I
~
,. ,. ,. ,.
0
8
4
6
,
A
MAN6760
..
G F
16 17 18
8
15
A
Cl,96
MAN6730
113
~ r ~~
.p
h'~
~
D
\13
FIRSTIOIGIT
SECOND DIGIT
SECONol DIGIT
1
,
D
C1195
MANfi710
t~
t,
~~,
h
~
G
\14
\13
I
I
SECONOJOIGIT
". ".
~.
DP ,
4
5
0
6
G
7
0
B
8
~~
A
10 11
F
12 9
C1197
MAN6740
~,
F
G
DP
EDCBAFGQ
9
ID
5
I
C1238
2
4
6
7
MAN6780
9
10
5
C1239
269
MAN6700 SERIES
ABSOLUTE MAXIMUM RATINGS
MAN6710
MAN6740
Power dissipation at 25° C ambient ...................... .
960mW
Derate linearly from 25° C ............................... . -13.7 mW/oC
Storage and operating temperature .....•......•.....•..•. -40°C to +85°C
Continuous forward current
Total ..........................•....•......•..••....••
480mA
Per segment ...........•.••••.••....•.....•.••......•.
30mA
Decimal point .........•.•......•.•...................
30mA
Reverse voltage
Per segment ...................•....•.........•.••..•.
6.0V
Decimal point .•....•......•..•...•...................
6.0V
Soldering time at 260°C
(See Notes 4 and 5) ......•..•.•...•...••.•............
5 sec.
MAN6730
MAN6750
840mW
-12.0 mW/oC
-40° C to +85° C
MAN6760
MAN6780
480mW
-6.9 mW/oC
-40°C to +85°C
420mA
30mA
30mA
240 mA
30mA
30mA
6.0 V
6.0 V
6.0 V
6.0 V
5 sec.
5 sec.
ELECTRO-OPTICAL CHARACTERISTICS
(Per Diode at 25° C Free Air Temperature Unless Otherwise Specified)
Luminous Intensity, digit average
(See Note 1)
Decimal point, "+" or "-" (See Note 5)
Peak emission wavelength
Spectral line half width
Forward voltage
Segment
Decimal point
Dynamic resistance
Segment
Decimal point
Capacitance
Segment
Decimal point
Reverse current
Segment
Decimal point
Segment C or D of "+" (6730/6750)
MIN.
TYP.
125
55
MAX.
UNITS
TEST CONDITIONS
350
!Lcd
IF=10mA
150
650
20
!Lcd
nm
nm
IF= 10 mA
V
V
IF=20 mA
IF=20mA
2
2
!l
!l
IF =20 mA
IF =20 mA
35
35
pF
pF
V=O
V=O
!LA
!LA
!LA
VR= 5.0V
VR =5.0 V
VR = 5.0V
2.0
2.0
100
100
100
TYPICAL THERMAL CHARACTERISTICS
Thermal resistance junction to free air
1ii
"'-
z
W
I-
~
~
~
a:
100
Fig. 3. Maximum Peak Current
vs. Pulse Duration
IF,L.,U !U11-~
2
19~~
2.5mA
r;
=:L
0
I".
70
2S
10,000
Fig. 2. Relative Luminous Intensity
vs. DC Forward Current
".
-25
1000
C1699
0-
SO
100
PULSE DURATION L~S'
4. 0
"'-i'-.
10
10
C1702
NORMALIZED
AT 25 D C
90
-55
30
IF ImAI
C1697
Fig. 1. Forward Current
vs. Forward Voltage
20
"
50
"
75
TEMPERATURE - TA °C
::::-..
0
0
100
2.0
5.0
10
20
50
DC
% DUTY CYCLE
C1701
Fig. 4. Relative Luminous Intensity
vs. Temperature
Fig. 5. Relative Efficiency
vs. Duty Cycle
INTERNAL CONNECTIONS
5 7
o
DP
9,11
10
G
13
14
15
MAN841Q
A
DP
5,7
10
G
11
13
14
MANB440
277
MAN8400 SERIES
ABSOLUTE MAXIMUM RATINGS
Power dissipation at 25° C ambient ................................................................. 600 mW
Derate linearly from 50°C ...................................................................... -12 mW/oC
Storage and operating temperature ................................•......................... -40° C to +85° C
Continuous forward current
Total ...........................................................................................240 mA
Per segment. ..................................................................................... 30 mA
Decimal point .................................................................................... 30 mA
Reverse voltage
Per segment. ...................................................................................... 6.0 V
Decimal point ..................................................................................... 6.0 V
Soldering time at 260°C (See Notes 3 and 4) ........................................................ 5 sec.
ELECTRO-OPTICAL CHARACTERISTICS
(Per Diode at 25°C Free Air Temperature Unless Otherwise Specified)
MIN.
TYP.
MAX.
Luminous Intensity, digit average
(See Notes 1 and 4)
Pulsed Luminous Intensity, digit average
UNITS
TEST CONDITIONS
510
2000
!Lcd
IF=10mA
710
2700
!Lcd
IF = 60 mA peak
1:6 OF
562
567
30
2.2
12
500
40
nm
nm
nm
V
Peak emission wavelength
Dominant wavelength
Spectral line half width
Forward voltage
Dynamic resistance (See Figure 1)
Light rise time
CapaCitance
Reverse current
3.0
n
100
nsec
pF
!LA
IF=20 mA
IF =20 mA
IF=10mA
V=O, f= MHz
VR =3.0V
TYPICAL THERMAL CHARACTERISTICS
Thermal resistance junction to free air cI>JA ••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 1600 0C/W
Wavelength temperature coefficient (case temperature) ............................................. 1.0 AloC
Forward voltage temperature coefficient ......................................................... -1.4 mV/oC
NOTES
1. The digit average Luminous Intensity is obtained by summing the Luminous Intensity of each segment and dividing by the
total number of segments as measured with a Photo Research Corp. "SPECTRA" Microcande/a Meter (Model IV-D). Intensity
will not vary more than ±33.3% between all segments within a digit.
2. Leads of the device immersed to 1/16 inch from the body. Maximum device surface temperature is 1400 C.
3. For flux removal, Freon TF, Freon TE, Isoproponal or water may be used up to their bOiling pOints.
4. Intensity adjusted for smaller areas of the "+" and decimal points.
5. All displays are categorized for Luminous Intensity. The Intensity category is marked on each part as a suffix letter to the part
number.
278
HIGH EFFICIENCY RED (ORANGE)
MAN86PO SERIES
FEATURES
DESCRIPTION
The MAN8600 Series is a family of large digits 0.8inches in height. This series combines high
brightness, large size, good aesthetics and is
designed to be used where accurate readable
displays need to be viewed over a distance. All
models use right hand decimal points. Units are
constructed with Grey face and neutral segment
color.
• High performance nitrogen-doped GaAsP on
GaP
• Large, easy to read, digits
• Common anode or common cathode models
• Fast switching - excellent for multiplexing
• Low power consumption
• Bold solid segments that are highly legible
• Solid state reliability - long operation life
• Rugged plastic construction
• Directly compatible with integrated circuits
• High brightness with high contrast
• Categorized for Luminous Intensity (See
Note 6)
• Wide angle viewing ... 1500
• Low forward voltage
• Grey face for use in high ambient light
conditions
APPLICATIONS
For industrial and consumer applications such as:
• Digital readout displays
• Instrument panels
• Point of sale equipment
• Digital clocks
• TV and radios
MODEL NUMBERS
PART NUMBER
MAN8610
MAN8640
COLOR
DESCRIPTION
High Efficiency Red
(Orange)
Common Anode; Right Hand Decimal
High Efficiency Red
(Orange)
Common Cathode; Right Hand Decimal
PACKAGE
DRAWING
1
RECOMMENDED FILTERS
For optimum ON and OFF contrast, one of the following
filters or equivalents should be used over the display:
Panelgraphic Scarlet 65
Homalite 100-1670
In situations of high ambient light, contrast with the
Grey face can be enhanced by using a neutral density
filter. The following or an equivalent can be used:
Panelgraphic Grey 10
279
MAN8600 SERIES
PACKAGE DIMENSIONS
1
PIN #1
r
735"
(1867mml_1
'.010"
I
r
985"
12502 mml
I~
800"
2032 lillY"
(1161 mmt
415"
LUMINOUS
INTENSITV
DATE CODe CATEGORY
-.
_L
t-
020"_1I~-
160"
/406mml
. 0".-
lSI mml
! 254 mml
• 001"
+
004"
000"
000"
C1370
PIN CONNECTIONS
ELECTRICAL CONNECTIONS
MAN8610
PIN#
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
280
MAN8640
Digit
Digit
Common Anode
Common Cathode
Package Dimensions
No Connection
A Cathode
F Cathode
Common Anode
E Cathode
E Cathode
-
Package Dimensions
No Connection
A Anode
F Anode
Common Cathode
E Anode
-
E Anode
-
DCathode
DPCathode
DCathode
Common Anode
C Cathode
G Cathode
B Cathode
Common Cathode
DP Anode
D Anode
Common Cathode
CAnode
G Anode
BAnode
Common Anode
Common Anode
-
-
-
-
MAN86UU SERIES
TYPICAL CURVES
100
JOOO
0
0
90
2500
.0
70
2000
60
I
I
50
-
'0
1;00
20
I
10
V
V
4
1 <'
8
16 10 ]4 28 ]1 3640
FORWARD VOLTAGE ,V f
)
VOLTS
1000
.00
500
"'-
0
"-
I'..
"-
0
"-
60
IS
IP~R
50
]0
SEGME"-ITI
?l>
JO
50
rl090
,,"
50
AMBIENT TEMPERATURE - C
70
CI244
Fig. 3. Luminous Intensitv vs.
Temperature
(See Note 2)
1'\
.
r--
~
1
DUTY CYCLE
"-
0
""-
0
5
"-
0
I"
"-
50
J
"-
0
0
\
<{2DO
80
0
1\
L
,
"
0
Fig. 2. Luminous Intensitv vs.
Forward Current
~REQUENCY" 200 P>JS
_... 100
/
I,
CIOBO
Fig. 1. Forward Current vs.
Forward Voltage
~
/
1000
JO
V
/
20
",
50
100
20
CI193
flf
Fig. 4. Max Peak Current vs.
Dutv Cvc1e
40
I~Lf
~
DC
.1 Ill!n CYL( f
0
10 20 30
40 50
60 10
8090
T A, AMBIENT TEMPERATURe, °c
CII94
ell11
Fig. 6. Maximum DC Current
vs. Temperature
Fig. 5. Luminous Intensity vs.
Dutv Cvcle
INTERNAL CONNECTIONS
MAN8610
A
DP
5,7
10
11
13
14
15
MAN8640
281
MAN8600 SERIES
ABSOLUTE MAXIMUM RATINGS
Power dissipation at 25°C ambient ........••...•.....•....•..•.•.•.....................•.....••...• 600 mW
Derate linearly from 50°C •..•.•.......•..••.••.•..•...•.......•••...................•......•.. -8.6 mW/oC
Storage and operating temperature .......................................................... -40°C to +85°C
Continuous forward current
Total ..•..............•.••.•••..••.•..••••..••...•..•.........•.••..................••••.••..... 240 mA
Per segment. ............•....•..•........•..........•.......•.•.............................•.... 30 mA
Decimal point •..•....•..•...••....•.....••.••...••..•.•.........••..•................•••.••..•... 30 mA
Reverse voltage
Per segment .•..•.....•..•..........•.......•..••...•...........•...•.....................•.....•.. 6.0 V
Decimal point •.......•..•...••.•..•.....••.••....•..•.•.........•......................•..•....•.. 6.0 V
Soldering time at 260° C (See Note 4) ............•......•..........................................•.• 5 sec.
Peak forward current per segment (Imax) (See Figure 4) .•.••........•..•.........................••......
ELECTRO-OPTICAL CHARACTERISTICS (25°C Free Air Temperature Unless Otherwise Specified)
Luminous Intensity, digit average
(See Notes 1 and 6)
Decimal point (See Note 5)
Peak emission wavelength
Spectral line half width
Forward voltage
Segment
Decimal point
Dynamic resistance
Segment
Decimal point
Capacitance
Segment
Decimal point
Reverse current
Segment
Decimal point
Luminous Intensity Ratio IL
(segment-to-segment)
MIN.
TYP.
UNITS
TEST CONDITIONS
600
1600
!Lcd
IF=10mA
240
600
630
40
!Lcd
nm
nm
IF=10mA
V
V
IF=20 mA
IF= 20 mA
26
26
0.
0.
IF=20 mA
IF=20 mA
35
35
pF
pF
V=O
V=O
/LA
/LA
VA =3.0V
VA=3.0V
IF=10mA
MAX.
2.5
2.5
100
100
2:1
TYPICAL THERMAL CHARACTERISTICS
Thermal resistance junction to free air CPJA ......................................................... 160°CIW
Wavelength temperature coefficient (case temperature) .............................•..••••......... 1.0 N° C
Forward voltage temperature coefficient ......................................................... -2.0 mVfOC
NOTES
1. The digit average Luminous Intensity is obtained by summing the Luminous Intensity of each segment and dividing by the
total number of segments as measured with a Photo Research Corp. "SPECTRA" Microcande/a Meter (Model IV-D). Intensity
will not vary more than ±33.3% between all segments within a digit.
2. The curve in Figure 3 is normalized to the brightness at 25° C to indicate the relative efficiency over the operating temperature
range.
3. Leads of the device immersed to 1/16 inch from the body. Maximum device surface temperature is 140°C.
4. For flux removal, Freon TF, Freon TE, Isoproponal or water may be used up to their boiling paints.
5. Intensity adjusted for smaller areas of the "+" and decimal points.
6. All displays are categorized for Luminous Intensity. The Intensity 'category is marked on each part as a suffix letter to the part
number.
282
HIGH EFFICIENCY RED
MAN89UO SERIES
FEATURES
DESCRIPTION
The MAN8900 Series is a family of large digits 0.8inches in height. This series combines high
brightness, large size, good aesthetics and is
designed to be used where accurate readable
displays need to be viewed over a distance. All
models use right hand decimal points.
• High performance nitrogen-doped GaAsP on
GaP
• Large, easy to read, digits
• Common anode or common cathode models
• Fast switching - excellent for multiplexing
• Low power consumption
• Bold solid segments that are highly legible
• Solid state reliability - long operation life
• Rugged plastic construction
• Directly compatible with integrated circuits
• High brightness with high contrast
• Categorized for Luminous Intensity (See
Note 6)
• Wide angle viewing ... 1500
• Low forward voltage
• Red face and Red segment for good ON or OFF
contrast
• These devices have a Red face and Red
segments
APPLICATIONS
For industrial and consumer applications such as:
• Digital readout displays
• Instrument panels
• Point of sale equipment
• Digital clocks
• TV and radios
MODEL NUMBERS
COLOR
DESCRIPTION
MAN8910
High Efficiency Red
Common Anode; Right Hand Decimal
MAN8940
High Efficiency Red
Common Cathode; Right Hand Decimal
PART NUMBER
PACKAGE
DRAWING
1
RECOMMENDED FILTERS
For optimum ON and OFF contrast, one of the following filters or equivalents should be used over the display:
Panelgraphic Scarlet 65
Homalite 100-1670
283
MANagOO SERIES
PACKAGE DIMENSIONS
1
PIN #1
.735"
1--(1.67 mml-----.i
1·010" I
J.
125.02 mm\
'l~
.t.
(2032 mm)
PIN #10
LUMINOUS
INTENSITY
DATE CODE CATEGORY
C137Q
PIN CONNECTIONS
ELECTRICAL CONNECTIONS
MAN8910
Digit
Digit
Common Anode
Common Cathode
PIN#
Package Dimensions
Package Dimensions
1
2
3
4
5
6
No Connection
A Cathode
FCathode
Common Anode
E Cathode
No Connection
A Anode
F Anode
Common Cathode
EAnode
7
ECathode
E Anode
-
8
-
9
D Cathode
DP Cathode
DCathode
Common Anode
C Cathode
G Cathode
B Cathode
10
11
12
13
14
15
16
284
MAN8940
-
Common Cathode
DP Anode
D Anode
Common Cathode
CAnode
G Anode
BAnode
-
-
17
Common Anode
Common Anode
18
-
-
MAN8900 SERIES
TYPICAL CURVES
"Xl
3000
170
90
0
0
2000
60
I
0
=-
_
'50
.....
140
0
1
"
2500
1/
40
./
1500
.000
0
0
I
0
500
V
V
4
8
16
,;?
./
]0
~
4 HI
FORWARD VOLTAGE WFI
J]
"'
130
~
120
~ 110
V
:!:
100
~
90
g
-"'.
"
I"
80
0
10
15
20
25
IF (PER SEGMENTl- rnA
C!OSO
~
50
30
50
CH190
"
"
AMBieNT TEMPERATURE
Fig. I. Forward Current vs.
Forward Voltage
.....
60
3640
VOLTS
V
:a
V
Fig. 2. Luminous Intensity vs.
Forward Current
50
70
C
eI2""
Fig. 3. Luminous Intensity vs.
Temperature
(See Note 2)
1000
800
;00
I
,
_.. 100
~
~
~
'\
15
80
"
0
0
0
70
DUTY CYCLE %
"
~o
30
• 2.
26
~ 2'
\.
200pps
r--.
10
~
\.
I
~FAEQUENCY
'" 200
~
1'\
~
22
Z
20
18
16
~
ag
"I" 1'.
~
•
14
8
6
x
~
•
100
I~
Fig. 4. Max Peak Current vs.
Duty Cycle
g
DC
40
20
10
C1193
DUTY CYCLE '"
PER SEG 10 rnA AVERAGE
a
10 20 30
40 50
60 70
80 90
TA. AMBIENT TEMPERATURE, °c
C1311
C1222
FIg. 5. Luminous/ntensity vs.
Duty Cycle
Fig. 6. Maximum DC Current
vs. Temperature
INTERNAL CONNECTIONS
MAN8910
A
DP
5,7
10
"
13
14
15
MAN8940
285
MAN8900 SERIES
ABSOLUTE MAXIMUM RATINGS
Power dissipation at 25° C ambient ..•••..•.....•....•.......•..•.•...•.......••..•................. 600 mW
Derate linearly form 50°C ..•.....•...••...•.••...••.....••.•.••..•............•........•....•. -8.6 mW/oC
Storage and operating temperature ....•..••.••.•.•.....•...••.•...•..•.......••..•...•.....• -40° C to +85° C
Continuous forward current
Total ..........•••.••..••.........•...•.•..•..•...•....••••..•...•...........•..........•....... 240 mA
Per segment. ....••..••....•..•....•...••.••...••...•.•..•.•...............••.......••••.••....... 30 mA
Decimal point .•.••.•..•••..••.........••.•.•..•...•.•..••••.••...•............•...•.....••....... 30 mA
Reverse voltage
Per segment. .•.•.•••..•.....•.........•.••...•..•.•.•....•.......•..••....•......•..•..•••.•...... 6.0 V
Decimal point .•.•...•.•••.••.•.........•.•.•..•••.•.....•••.••...••...........•...•......••..•.... 6.0 V
Soldering time at 260°C (See Note 4) ................................................................. 5 sec.
Peak forward current per segment (Imax,) (See Figure 4) ................................................. .
ELECTRO-OPTICAL CHARACTERISTICS (25° C Free Air Temperature Unless Otherwise Specified)
Luminous Intensity. digit average
(See Note 1)
Decimal pOint (See Note 5)
Peak emission wavelength
Spectral line half width
Forward voltage
Segment
Decimal point
Dynamic resistance
Segment
Decimal pOint
Capacitance
Segment
Decimal point
Reverse current
Segment
Decimal point
Luminous Intensity Ratio IL
(segment-to-segment)
MIN.
TYP.
UNITS
TEST CONDITIONS
320
1600
"cd
IF = 10 mA
130
600
635
"cd
nm
nm
IF=10mA
V
V
IF =20 mA
IF=20 mA
26
26
n
n
IF =20 mA
IF=20 mA
35
35
pF
pF
V=O
V=O
"A
"A
VR = 3.0 V
VR = 3.0 V
IF = 10 mA
MAX.
40
2.5
2.5
100
100
2:1
TYPICAL THERMAL CHARACTERISTICS
Thermal resistance junction to free air
400
rr: 300
rr:
~
z
500
~
PEAK FORWARD VOLTAGE VF (V)
DUTY CYCLE (%)
IF per Segment 10mA average
C1747
C1746
Fig. 2. Relative Luminous Intensity
vs. Duty Cycle
Fig. 3. Peak Forward Voltage
vs. Peak Forward Current
MMA54420 MMA56420 MMA58420 MMA59420 SERIES
TYPICAL CURVES (Unless Otherwise Specified)
§'
2500
o
~
f400r----r----,-----r-~rA
,
E
Z 2200
2000
IIF=tL
1500 _TJ:S9.0°C.
Total 34 Segments
is
Average 8 Segments
UJ
~
1000 -ON per Digit
I
()
if....J
«
~
~ 300
1\
gj
(!)
~
0;
I
I
r2imAIDc
500
260
I
o
f-
:!;
rJ)
1\
1\
IF=i mA
5200
z
~
:::J
...J
~ 100r---~~--_r----~--~
~w
I-~
10 20 30 40 50 60 70 808590
AMBIENT TEMPERATURE (TA)"C
cr
10
15
20
25
D.C. FORWARD CURRENT (rnA)
(Normalized to lOrnA)
C1748
Fig. 4. Total Package Power
Dissipation vs. Ambient Temp.
C1750
C1749
Fig. 6. Relative Luminous
Intensity
vs. Ambient Temperature
Fig. 5. Relative Luminous
Intensity vs. Forward Current
MMA5X420 RECOMMENDED FILTERS FOR CONTRAST ENHANCEMENT
DIM
(Office)
25-75 Fe
COLOR
AMBIENT
MODERATE
(Test Floor)
75-200 Fe
BRIGHT
(Outdoors)
200-1000 Fe
HIGH EFFICIENCY RED
ORANGE
635nm
Red Long Pass 65%
H, Hl00-1650
C,l100
3M, R6310
Red Long Pass 40%
H, Hl00-1650
C,l12
Grey 18-23%
H, Hl00-1266
C,105
3M, ND0220
YELLOW
583nm
Yellow Band Pass 30%
H, Hl00-1720
C,lOB
P, Yellow 27
Amber Long Pass 40%
H, Hl00-1726
C,lOB
P, Amber 23
3M, A5910
Grey 18-23%
H, Hl0Q-1266
C,105
P, Grey 10
RH,2538
GREEN
569nm
Green Band Pass 30%
H, Hl00-1440
C,107
P, Green 48
Grey 20-25%
H, Hl00-1425
C,107
P, Green 48
Grey 18-23%
H, Hl0Q-1266
C,105
P, Grey 10
RH,2538
LEGEND:
C, 106 - Chequers #106
RH - Rohm & Haas
3M - 3M Company
POL - Polaroid Corporation
H - SGL Homalite
C - Chequers Engraving
P - Panelgraphics
SOCKETING
DESCRIPTION
Terminal Strip
Right Angle Terminal Strip
Cable Jumpers
Edge Card Connector
Strip Line Plugs
Right Angle Strip Line Plugs
PART NUMBER
TS120 Series
TS120 Series
CJ-20-C-12
100 Series
SP Series
SP Series
SUPPLIER
Samtec Electronic Hardware
Samtec Electronic Hardware
Samtec Electronic Hardware
Circuit Assembly Connectors
Circuit Assembly Connectors
Circuit Assembly Connectors
289
MMA54420 MMA56420 MMA58420 MMA59420 SERIES
TYPICAL DRIVE SCHEMES FOR MMA5X420 DISPLAYS
IF=19mA(lyplcnl)
16 Segments + Decimal POInI ANODES
IF (PEAK) = VLEO·VF-l 4V
AL
MMA5X420
=IF (DC) X Number 01 Olglls
.,v
8 DigIts CATHODES
+VLED
'III MM.,X.,.
C1753
C1752
Figure 1. Direct Drive Method
Figure 2. Discrete Buffering
16 Segmenla
IIIIIIII
8 Dlg,ts CATHODES
ForBOlgllaDutyFactorol12~
I, (PEAK)~ IF(DCIXB
Rep: VLEO-W-25V
IrIPEAK)
RsEG=~
"CPEU)
For 1 BOuty Flctor. Iv ImprOVilmenl
ot5O'llo1075'foesnb.-~.'lled
TYPICAL CALCULATIONS
E>:ampleMMA5&C20
IF (DC)~ 15mA
Vl.EO~
VF ~A~l' 3V
12V
IFIPEAKI= IFIDCJxB=121JmA
Rcp.l~~~!5V
RsEG·l~~~~3V
=5416n(58m
0.415,,(47111
CHAR8 16
CHAA7 '9
CHAR6 20
Figure 3. I. C. Buffering
NOTES
1.
2.
3.
4.
5.
290
The digit average Luminous Intensity is obtained by summing the total number of segments. The standard of measurement is the
Photo Research Spectra Microcandela Meter corrected for wavelength. Intensity will not vary more than ±33.3% from digit to digit.
The curve in Figure 6 is normalized to the brightness at 25° C to indicate the relative efficiency over the operating temperature range.
The decimal point is designed to have the same surface brightness as the segments, therefore, the Luminous Intensity of the decimal
paint is .18 times the luminous Intensity of the segments, since the area of the decimal paint is .18 times the area of the average
segment.
These high performance mUlti-digit displays are not sealed and should not be immersed during flux and clean operations. Immersion
may cause condonsation of flux or cleaner on the inner surface of the lens. Immerse only the edge connectors.
For flux removal, Freon TF or Isoproponal at room temperature.
Light Bars and
Bargraph Arrays
3
291
292
Light Bars and Bargraph Arrays
Alphanumeric Product Listing
Product
Page
HLMP-2300
HLMP-2350
HLMP-2400
HLMP-2450
HLMP-2500
HLMP-2550
HLMP-2655
HLMP-2670
HLMP-2685
HLMP-2755
HLMP-2770
HLMP-2785
HLMP-2855
HLMP-2870
HLMP-2885
297
297
297
297
297
297
297
297
297
297
297
297
297
297
297
MP73
MV53124
MV53164
MV53173
MV54124
MV54164
MV54173
MV56124
MV57124
MV57164
MV57173
302
303
309
305
303
309
305
303
303
309
305
293
LED LIGHT BARS
DESCRIPTION
PART
NUMBER
PACKAGE
I
I
~
I
I
-D
~
1001
-D
294
COLOR
HlMP-2300
Hi. Elf. Red
HlMP-2400
Yellow
HlMP-2500
Green
HlMP-2350
Hi. Elf. Red
HlMP-2450
Yellow
HlMP-2550
Green
HlMP-2655
Hi. Efl. Red
HlMP-2755
Yellow
HlMP-2855
Green
HlMP-2670
Hi. Ell. Red
HlMP-2770
Yellow
HlMP-2870
Green
HlMP-2685
Hi. Elf. Red
HlMP-2785
Yellow
HlMP-2885
Green
PACKAGE
4 Pin In-Line; .100"
Centers; .400"l x
.195"W x .240"H
(0.350" x 0.150"
Emitting Area)
8 Pin In-Line; .100"
Centers; .800"l x
.195"W x .240"H
(0.750" x 0.150"
Emitting Area)
8 Pin DIP; .100"
Centers; .400"l x
.400"W x .240"H
Square
Arrangement
(0.350" x 0.350"
Emitting Area)
16Pin DIP; .100"
Centers; .800"l x
.400"W x .240"H
Dual Square
Arrangement
16 Pin DIP; .100"
Centers; .800"l x
.400"W x .240"H
Single Bar
Arrangement
(0.350" x 0.700"
Emitting Area)
lENS
TYPICAL
lUMINOUS
INTENSITY
@20mA
TYPICAL
FORWARD
VOLTAGE
@20mA
Diff.
20 mcd
2.0V
Diff.
20mcd
2.1 V
Green Difl.
25mcd
2.2V
Dilf.
35mcd
2.0V
Diff.
35mcd
2.1 V
Green Dilf.
50mcd
2.2V
Dill.
35mcd
2.0V
Dill.
35mcd
2.1 V
Green Diff.
50mcd
2.2 V
Dilf.
35mcd
2.0V
Dilf.
35mcd
2.1 V
Green Dill.
50mcd
2.2V
Dill.
70mcd
2.0V
Dill.
70mcd
2.1 V
Green Difl.
100 mcd
2.2 V
PAGE
297
297
297
297
297
BARGRAPHS PANEL INDICATORS RECTANGULARS
PACKAGE
PART
NUMBER
SOURCE
COLOR
FACE COLOR
10
Element
MV53164
Yellow
Untinted DifUGrey
MV54164
Hi. Eft. Green
Untinted Dift./Grey
MV57164
Hi. Eft. Red
Red Diff.lGrey
MV53173
Yellow
Yellow Diff.
MV54173
Hi. Eff. Green
Untinted Dift.
MV57173
Hi. Eft. Red
Red Diff.
~
.5-lnch
Rectangular
~
fQJ
no
MV53124
Yellow
MV54124
Hi. Eft. Green
MV56124
Orange
MV57124
Hi. Eft. Red
SEGMENTI
Tinted
Diffused
Iv TYP.
mcd/mA
2(·)'/'
PAGE
1.0/10
130
309
1.0/20
130
305
4.0/20
100
303
295
296
HIGH EFFICIENCY RED
YELLOW
HIGH EFFICIENCY GREEN
HLMP-2300/2600 SERIES
HLMP-2400/2700 SERIES
HLMP-2500/2800 SERIES
DESCRIPTION
The General Instrument LED Light Bar series are
bright, large emitting area, rectangular devices
that are designed for backlighting legend/
message annunciators.
These devices are offered in single-in-line and
dual-in-line packages that contain single or
segmented light-emitting areas. Each package
style is offered in High Efficiency Red, Yellow, or
Green emission color.
FEATURES
• Large area, uniform, bright light-emitting
surfaces
• Select from six package styles
• Choice of three colors
• Categorized for intensity and color
• X-Y stackable
• Easily driven with I.C.s
• Alternate source for popular backlighting
components
MODEL NUMBERS
COLOR
DESCRIPTION
HLMP-2300
HLMP-2400
HLMP-2500
High Efficiency Red
Yellow
High Efficiency Green
2 LED Single-in-line
0.35 in. x 0.15 in. Area
HLMP-2350
HLMP-2450
HLMP-2550
High Efficiency Red
Yellow
High Efficiency Green
4 LED Single-in-line
0.75 in. x 0.15 in. Area
HLMP-2655
HLMP-2755
HLMP-2855
High Efficiency Red
Yellow
High Efficiency Green
4 LED Dual-in-line
0.35 in. x 0.35 in. Area
HLMP-2670
HLMP-2770
HLMP-2870
High Efficiency Red
Yellow
High Efficiency Green
Dual 0.35 in. x 0.35 in. Area
Dual-in-line package
HLMP-2685
HLMP-2785
HLMP-2885
High Efficiency Red
Yellow
High Efficiency Green
8 LED 0.3.5 i~. x 0.75 in. Area
Dual-m-Ime package
PART NO.
PACKAGE
PIN OUT
A
A
B
B
C
C
D
D
E
D
1c=J1
0
I[][JI
D
29'/
LED LIGHT BARS
ABSOLUTE MAXIMUM RATINGS
TA = 25·e (Unless Otherwise Stated.)
HIGH EFFICIENCY RED
HIGH EFFICIENCY GREEN
HLMP-2300/-2500
-2600/-2800 SERIES
Power dissipation per LED chip (See Note 1) •..•.••.......
Peak forward current per LED chip,
TA = sooe (max. pulse width = 2 IlS) (See Notes 1 and 2) ...
Average forward per LED chip pulsed conditions,
TA =sooe (See Note 2) •.....•....•.......•.......•....
DC forward current per LED chip,
TA = so·e (See Note 3) ••••••••••••••••.••••.•••••.•.••
Reverse voltage per LED chip •..•................••.•....
Storage and operating temperature range .•....•.....•....
Soldering time at 260·C (See Note 4) ...•..........•....•.
YELLOW
HLMP-24001
-2700 SERIES
135 mW
8SmW
90mA
60mA
25 mA
20mA
30 mA
6V
-40·e to +85·e
260·e for 3 sec.
25 mA
6V
-40·e to +85·C
260· e for 3 sec.
NOTES
1.
2.
3.
4.
For HLMP-23001-25001-26001-2800 Series, derate above TA =25°C at 1.8 mWloC per LED chip. For HLMP-24001-2700 Series,
derate above TA = 50°C at 1.8 mWloC per LED chip.
See Figure 1/2 to establish pulse operating conditions.
For HLMP-23001-25001-26001-2800 Series, derate above TA =50° Cat 0.5 mAl· C per LED chip. For HLMP-24001-2700 Series
derate above TA = 60°C at 0.5 mAloC per LED chip.
Leads immersed to 1/16 in. from body of the device. Maximum unit surface temperature is 140·C.
PACKAGE DIMENSIONS
0.508 ± 0.076
(0.020 ± 0.003)
H
3.175 MIN.
(0.125)
r8.890~
4.953
(0.195)
MAX.
(0.350
..L~-
-
I - OPERATION IN THIS REGION
1001'S
1 rns
tp - PULSE DURATION - s
tp - PULSE DURATION - 8
10 rns
C2013
C2014
Fig, 1, Maximum Tolerable Peak
Current per LED Chip vs,
Pulse Duration for HLMP23XO/-26XX/-25XO/-28XX
Fig, 2. Maximum Tolerable Peak
Current per LED Chip vs.
Pulse Duration for HLMP24XO/-27XX Devices
180
100
160
II:
w
~~
l1.E
140 RE ,G
EE~
~Q
x«
«l1.
100
~5
~
60
~iii
rf
Z
70
II:
II:
60
W
'I\..
....
YELLOW
::::l
80
r--..
20
0
o
U
50
0
II:
40
«
"-
40
//1
///
'(fr-- HI EFF.
II V GRIEEN-
~ 30
0
~ 20
«
w
a. 10
C2025
z
~1.5
>
I
w
II:
iii
zW
1\
I-
~2.0
iii
I-
2
FOWARD VOLTAGE VF (VOLTS)
C1833A
Fig. 3. Maximum Power Dissipation
per LED vs. Ambient
Temperature
2
.L!J
o
10 20 30 40 50 60 70 80 90
TA - AMBIENT TEMPERATURE - 0 C
I
I
HII Eff. 1
RED /II
u.
"I
III
.l.
I-
. 120
::::lZ
~
-I-
DOTTED LINES
90 INDICATE
PULSED
~',I
.!O 80 OPERATION-iELLOW I
<"
.§.
o
/
/
/
/
./'
20
40
60
80
INSTANTANEOUS FORWARD
CURRENT IF(rnA) C652A
Fig. 6. Luminous Intensity vs.
Forward Current
LED LIGHT BARS
TYPICAL ELECTRO-OPTICAL CHARACTERISTIC CURVE
(25°C Free Air Temperature Unless Otherwise Specified)
140'A
'\
,
5120'A
c..
f-
I"
:::J
o
~ 100'y,
i=
«
...J
w
a: 80'A,
""" "'"
"~
#.
~
,
60'A
-60 -40 -20 0 20 40 60
TEMPERATURE - °C
80
100
C654B
Fig. 7. Output vs. Temperature
PIN CONNECTIONS TO ELECTRICAL SCHEMATIC
ELECTRICAL CONNECTION
PIN
HLMP-2XOO
1
2
3
4
5
6
7
HLMP-2X50
1 Cathode
1 Anode
2 Cathode
2 Anode
B
9
HLMP-2X70/-2X85
HLMP-2X55
1 Cathode
1 Anode
2 Cathode
2 Anode
3 Cathode
3 Anode
4 Cathode
4 Anode
1 Cathode
1 Anode
2 Anode
2 Cathode
3 Cathode
3 Anode
4 Anode
4 Cathode
5 Cathode
5 Anode
6 Anode
6 Cathode
7 Cathode
7 Anode
BAnode
B Cathode
1 Cathode
1 Anode
2 Anode
2 Cathode
3 Cathode
3 Anode
4 Anode
4 Cathode
10
11
12
13
14
15
16
ELECTRICAL SCHEMATIC
16
2
2
15
3
3
14
4
4
13
5
12
7
6
11
6
7
10
5
8
2
w~
A
HLMP- 2XOO
5
3
6
7
'C'
1
2
3
2
4
8
B
HLMP- 2X50
3
4
4
C
HLMP - 2X55
9
D
HLMP- 2X85
HLMP- 2X70
C2016
301
MP73
PACKAGE DIMENSIONS
DESCRIPTION
Lo
~ ~,~~~.
.008
_II
mml
t'~PLCSlTOL'
NON ACCUM
(4' mm)
TYP. ALL AROUND
SCALE" 20/1
MATTE FINISH,
BEZEL ONLY
DETAIL A
The MP73 mounting grommet is
intended for panel mounting the
MV57173 rectangular lamp. The
grommets are made of Black
plastic and provide the user with
an easy-to-mount, professional
appearance when viewed on a
front panel.
The MP73 can be used on any
panel thickness up to .125-inch
(3.18 mm).
068Lm
FULL RADIUS (4 PLCSI
020
11 73milJm
".3rmI336
---*- "fm
~
~89mm~1
.035
030
17umml
-=HI
~
l
(.51mmJ
_
(4.32mml
17
030
1.76 mm)
MATERIAL" POLYPROPYLENE - BLACK
032
"'Fr
(.81mmj
43
032 '·"'r·"~110.92mml~
r-.;:'"-, I I
20
A
68
1,727mm)
616
11565mm)
~t====::J/
PROTRUSIONS
TO BE SCORE
LINES IN MOLD
12SIDESONLY)
MATERIAL rOL YPROPYLENE - BLACK
302
C 1481
"SEE
_"') DETAIL A
I
60" (4PLCS)
~f
!'889mml~{7'67mml
035
(1575mml
,-
024
(6' mmi
02
555
(14'10mml=j
620
"
,301
10
12.s4mm)
310
(940 mml
C 1480
PANEL HOLE PUNCHING
Punches may be ordered from
one of the following sources:
w'A. WHITNEY COMPANY
650 Race Street
Rockford, IL 61105
(815) 964-6771
ROTEX PUNCH COMPANY, INC.
2350 Alvarado Street
San Leandro, CA 94577
(415) 357-3600
YELLOW
HIGH EFFICIENCY GREEN
MV53124
MV54124
SOFT ORANGE
HIGH EFFICIENCY RED
~~:~ ~
PACKAGE DIMENSIONS
1635
'oUd ,tato
~. w, Red and
indir
~'
1.-- 250 MAX----J
I
MV56124
MV57124
~
,IS
uniformly
I
~~~'T
150 MAX
AREA
'-~
1:G
'F
~
~
-I
'~1
='
t!)~
&.
:""J
26'
~0
gj
~
.~
0
e:,fli
' direction without crosstalk
-typically4mcdat20mA
.Iability
Llgged, lightweight
leakage from unit sides
.mg grommet available (See MP65) as
drate order item
....
APPLICATIONS
.
Legend backlighting
• Illuminated pushbutton
• Panel indicator
• 8argraph meter
,,~"
ABSOLUTE MAXIMUM RATINGS (TA = 25°C Temperature Unless' Otherwise Specified)
Power dissipation ........................................... .
Derate linearly from 50°C .................................... .
Storage and operating temperature ........................... .
Peak forward current ........................................ .
(1 !,sec. pulse width, 300 pps)
Forward current ..........•..................................
Lead soldering time at 260°C (See Note 1) .................... .
Reverse voltage .........•...................................
MV53124
MV56124
MV57124
MV54124
120mW
1.6 mW/oC
-55°C to +100°C
1A
120mW
1.6 mW;oC
-55°C to +100°C
90 mA
35 mA
5 sec.
5.0V
30 mA
5 sec.
5.0V
303
MV53124 MV54124 MV56124 MV57124
ELECTRO-OPTICAL CHARACTERISTICS (25°C Temperature Unless Otherwise Specified)
SYMBOL
MV53124
MV54124
MV56124
MV57124
UNITS
Forward voltage
typo
max.
VF
2.0
3.0
2.2
3.0
2.0
3.0
2.0
3.0
V
V
IF = 20 rnA
IF = 20 rnA
Luminous Intensity
min.
typo
Iv
1.0
4.0
1.0
4.0
1.0
4.0
1.0
4.0
mcd
mcd
IF = 20 mA
IF= 20 mA
AP
565
562
605
635
nrn
IF = 20 mA
45
30
45
45
nrn
IF = 20 mA
5
V
PARAMETER
Peak wavelength
Spectral line hall width
TEST CONDITIONS
Reverse voltage
min.
VBR
5
5
5
Reverse current
max.
IR
100
100
100
VR = 5.0V
V= O. 1= 1 MHz
C
45
20
45
2(-)%
100
100
100
Capacitance
Viewing angle (total)
J.
~\
OOTTEO LINES
o INDICATE--YELLOW
PULSED
OPERATION
' #I,
,1
ORH}~~EI/ ' /
... NGE HI EFF.
RED
If
f\
I
EFFICIENCY",
RED
-
IR= 100!,A
I 1\
I II \ / \
///
I///··'HIGH
EFFICIF
GP
rll
hV
)
J J
.Lb
i\
\
~~
WAVELENGTH
\
\
(~)
- nm
Cl064D
Fig. 2. Spectral Response
~
\
1.5
~
/"
r--.
"
dw
...
a:
......
IF
'":::Jo
Z
:fl.0
:::J
..J
'I-10
,/
20
40
DUTY CYCLE - %
10 rnA AVERAGE
o/
DC
Cl194B
Fig. 3_ Luminous Intensity vs.
Duty Cycle
o
/
/
-
/
20
40
60
BO
INSTANTANEOUS FORWARD
CURRENT IF(mA) C652A
Fig. 4_ Luminous Intensity vs.
Forward Current
140'A \ .
~120 ~
a.
I:::J
o
~100
;::
<
..J
W
~ BO
I\.
........
~
.......
"-
60%
-60 -40 -20 0 20 40 60
TEMPERATURE _. C
........
BO 100
C654A
Fig. 5. Output vS. Temperature
NOTES
1.
2.
304
The leads of the device were immersed in molten solder, heated to a temperature of 260°C. to a point 1/16 inch (1.6 mm) from the body
of the device per MIL-S-750. with dwell time of 5 seconds.
As measured with a Photo Research Corp. "SPECTRA" Microcandela Meter (Model IV-D).
YELLOW
HIGH EFFICIENCY GREEN
HIGH EFFICIENCY RED
DESCRIPTION
PACKAGE DIMENSIONS
The MV5X173 series is a large rectangular lamp
which contains two LED chips with separate
anodes and cathodes for each light. The
illuminated area is 0.500-inches x 0.250-inches
(12.7 mm x 6.35 mm).
RIENTATION MARK
Pin #1
I'
\
250"
1635mmi
_
'1
.125"
+--
(3.18mml
FEATURES
t
f
,~,I
.550"
500"
I 12.70mm)
(13.97mm)
+
.Js"
~
LL
-
I.
I-.295"
(l49mm)
·1
DATE CODE
3r-R !
L
PART NO
LIGHT
INTENSITY
CATEGORY
SEE NOTE 4
(8.00mml
.470" REF
f11.94mm)
14:~~~~i t
i.01S"
.200"
(5.0Bmml :t.015"
I
" Panel indicators
Backlight legends
" Light arrays
---'----!rl
i
APPLICATIONS
II
-f= ~~~~)
(0
.500-inch x .250-inch lighted area available
in three colors
II Solid state reliability
II Fast switching excellent for multiplexing
/I Low power consumption
II Directly compatible with IC's
II Wide viewing angle
II .2 inch DIP lead spacing
.. Mounting hardware available
/I Categorized for Luminous Intensity
(See Note 1)
II
250
(6.35
(699mm)
148"
(376mml
MV53173
MV54173
MV57173
002"
NOTE: TOLERANCE ± 010" UNLESS SPECIFIED
C1467
ABSOLUTE MAXIMUM RATINGS
Power dissipation at 25°C ...............•..•..
Derate linearly from 50°C .....•...............
Storage temperature .••........•..........•..
Operating temperature ...........•..........•
Continuous forward current per light (25°C) ...•
Peak forward current per LED chip •........•..
(1 ILsec pulse width, 300 pps)
Lead soldering time at 260°C ....•............•
(See Notes 3 and 5)
MV53173
MV54173
MV57173
200mW
-4.3 mW/oC
-40°C to +100°C
-40°C to +85°C
25 rnA
1.0 A
200 mW
-4.5 mW/oC
-40°C to +100°C
-40°C to +85°C
30 rnA
90 mA
200mW
-4.3 mW/oC
-40°C to +100°C
-40°C to +85°C
35 rnA
1.0 A
5 sec.
5 sec.
5 sec.
305
MV53173 MV54173 MV57173
ELECTRO-OPTICAL CHARACTERISTICS (25° C Free Air Temperature)
PARAMETER
TEST CONDITIONS
MV53173
MV54173
MV57173
UNITS
IF = 20 mA
IF=20mA
2.0
2.5
2.2
3.0
2.0
2.5
V
V
Luminous Intensity
Min. (See Note 1)
IF = 20mA
4.5
4.5
4.5
moo
Peak wavelength
Typ.
IF = 20 mA
585
562
635
nm
Spectral line half width
IF = 20 mA
45
30
45
nm
Capacitance
Typ.
V= 0, f= 1 MHz
35
20
35
pF
Reverse voltage (VR)
Min.
Typ.
IR = 100/lA
IR = 100/lA
5
25
5
50
5
25
V
V
120
120
120
degrees
Forward voltage (VF)
Typ.
Max.
Viewing angle (total)
TYPICAL THERMAL CHARACTERISTICS
Thermal resistance junction to free air ct>JA ••••••••••••
Wavelength temperature coefficient (case temp.) .......
Forward voltage temperature coefficient ..............
MV53173
MV54173
MV57173
160°C/W
1.0A/oC
-1.5 mV/oC
160°C/W
1.0 AfOC
-1.4 mV/oC
160°C/W
1.0 Arc
-2.0mVrC
TYPICAL CURVES (Per LED Chip Unless Indicated) (25°C Free Air Temperature)
100
3000
/
90
1/
80
2500
MV53173
MV57173
II
70
2000
/MV53173
60
III
50
1500
MV571731
40
Ilj
30
1000
II
20
500
10
"
IJ'
.4
.8
1.2 1.62.0 24 2.8 3236 4.0
V
V
V
10
:L
15
V
20
IF (PER SEGMENT) - nlA
FORWARD VOLTAGE (VF) - VOLTS
25
CloaOA
Fig. 1. Forward Current vs.
Forward Voltage
Fig. 2. Luminous Intensity vs.
Forward Current
(Both LED Chips ON)
170
160
I
"'
150
140
~
"'-MV57173
130
120
110
100 _MV53173
90
80
" "-
-"
~-- :::---:",
-"".
70
60
50
-50
-25
25
'""
50
AMBIENT TEMPERATURE -"C
306
70
C1244A
Fig. 3. Luminous Intensity vs.
Temperature
(See Note 2)
30
Cl090A
MV53173 MV54173 MV57173
1000
800
«
FAEQ. = 200 pps
r--- t....
200
I
~
57173
r--...
M
I
100
\
'--
MV53173
E
~
~
I
500
.~
20
10
20
1'\1'\
f'
MV531-!;-f'
~r'"
1
10
10
1
'\ l'\
15
80
50
50
DUTY CYCLE - %
t\Jv5Ua
100
DC
40
20
C1193
C1194A
PERCENT DUTY - %
DUTY CYCLE - %
IF per seg. 10 mA AVERAGE
Fig. 4. Max Peak Current vs.
Duty Cycle
Fig. 5. Luminous Intensity vs.
Duty Cycle
100
<{
~
.!!o
80
50
()
40
0
II:
30
:::J
~
II:
20
u.
10
0
t-
I
/
./
o
1.0
/
NdRMAJZED
IT IF =1 '0
w 3.0
t-
I
80
II:
II:
>-
ooZ
I
70
tz
w
4.0
I
90
~
MV54173
'"0
:::J
/
z
~
::J
..J
W
>
~
/'DOTTED LINE
INDICATES
PULSED OPERATIONSEE FIGS. 3. 51
2.0
FORWARD VOLTAGE -
2.0
1.0
..J
W
V
II:
3.G
4.0
VF ,VOLTS,
0
V
V
10
V
/
m21
V
MV54173
15
20
25
30
DC FORWARD CURRENT -IF ,rnA,
C1697
C1702
Fig. 6. Forward Current vs.
Forward Voltage
Fig. Z Relative Luminous Intensity vs.
DC Forward Current
(80th LED Chips ON)
1000
BOO
<{BOO
~
zw
400
~ 200
:::J
()
MV54173
~
~&
'" 100
80
0.
80
::;: 40
iii
'"
o
~JT
'
:t~~~
~..Jft~
:::J
::;:
~
::;:
20
10
10
100
1000
PULSE DURATION I~SI
10.000
C1699
Fig. 8. Maximum Peak
Current vs. Pulse Duration
307
MV53173 MV54173 MV57173
130
120
...
...~
>-
enz
110
w
w
>
100
'" '"
V5417
~
...J
90
II:
80
W
70
-55
4.0 ,---.,.---.,.-TT"''1T'"---''-'--'''-TT1rm
NORMALIZED
AT 25'C
~
'"
I'"
I I=Ijlljl r-- ~
u
IF(AVGI
3.0 c-
20 mA
2~~ ~~ +-hI-+--+-+-t-N+t+l
;;!
:;;
l
"'-
:§
ca
"
-25
0
25
50
75
TEMPERATURE - TA I'CI
MV54173
2.0
r--",
_ \
:::::--~
1.0
"'"
0.0 '-----'----'-..J....I..l...U-"-_'----'CJ,..J...J..JLJ.J.J
100
2.0
5.0
10
20
% DUTY CYCLE
50
C1701
C1700
Fig. 9. Relative Luminous
Intensity vs. Temperature
DC
Fig. 10. Relative Efficiency
vs. Duty Cycle
PIN CONNECTIONS
6
PIN
NO.
1
2
3
4
5
6
ELECTRICAL
CONNECTIONS
Cathode 1
No Pin
Anode 2
Cathode 2
NC
Anode 1
5
4
~
3
SCHEMATIC
FILTER RECOMMENDATIONS
For optimum ON and OFF contrast, one of the following filters or equivalents may be used over the lamp:
MV57173
MV53173
MV54173
Panelgraphic Yellow 25 or Amber 23
Panelgraphic Green 48
Panelgraphic Red 60
Homalite 190 - 1720 or 100 - 1726
Homalite 100 - 1440 Green
Homalite 100 - 1605
In situations of high ambient light, a neutral density filter can be used to achieve greater contrast:
Panelgraphic Grey 10
Panelgraphic Grey 10
Homalite 100 - 1266 Grey
NOTES
1.
2.
3.
4.
5.
30B
The average Luminous Intensity is obtained by summing the Luminous Intensity of each segment and dividing by the total number of
segments. The standard of measurement is the Photo Research Corp. "Spectra" Microcandela Meter (Model IV-D) corrected for
wavelength. Intensity will not vary more than ±33.3% between all segments within a unit.
The curve in Figure 3 is normalized to the brightness at 25°C to indicate the relative efficiency over the operating temperature range.
Leads immersed to 1/16 inch (1.6 mm) from the body of the device. Maximum unit surface temperature is 140°C.
All units are categorized for Luminous Intensity. The Intensity category is marked on each part as a suffix letter to the part number.
For flux removal, Freon TF, Freon TE, Isoproponal or water may be used up to their boiling points.
YELLOW
HIGH EffiCIENCY GREEN
HIGH EffiCIENCY RED
PACKAGE DIMENSIONS
(1:~~~~)
±.D02"
~
.200"
15±~a~~1
II..-
DESCRIPTION
-11- (2:~~~~)
\I
+
4J~
110.,:mmJ
-DDDDDDDDmm
1/
~~~~':TOE
PIN #1
The MV5X164 series is a 10 segment bargraph
display with separate anodes and cathodes for
each light segment. The packages are
end-stackable .
±,Ole"
I
400"MAX
1-.
_
4---
FEATURES
011"
(O.2Bmml
•
•
•
•
•
•
•
•
±,OO3"
_
1.00" MAX----..
DATE CODE
(25.27mm)
LIGHT INTENSITY
CATEGORY
SEE NOTE 4
XVV
MV53164
MV54164
MV57164
z
IS,~~o~~) t I I
t ~IO~~~~)
_11_ll~~~~)
100"
(254mm)
+n1n"
_I Ir
'.002"
Large segments, closely spaced
End-stackable
Fast switching - excellent for multiplexing
Low power consumption
Directly compatible with IC's
Wide viewing angle
Standard .3-inch DIP lead spacing
Categorized for Luminous Intensity
(See Note4)
.300"
(7 62m~1
i.01D
NOTE: TOLERANCES ±.010" UNLESS SPECIFIED
C"BSA
ABSOLUTE MAXIMUM RATINGS
Power dissipation at 25°C ambient .......•.....
Derate linearly from 50°C ............•••••....
Storage and operating temperature ...••.......
Continuous forward current
Total ......•.............•.•.•...•.•.......
Per segment ....••.•......••••......••••.•.
Reverse voltage
Per segment .•......•.......•••........•.•.
Soldering time at 2600C
(See Notes 3 and 5) .............•...•.••...
MV53164
MV54164
MV57164
750mW
-14.3 mWrC
-40°C to +85°C
750mW
-14.3 mW/oC
-40°C to +85°C
-40°C to +85°C
200mA
25 mA
300mA
30mA
300mA
30mA
6.0 V
6.0V
6.0 V
5 sec.
5 sec.
5 sec.
MV53164
MV54164
MV57164
160°C/W
1.0 Al"C
-1.5 mVI"C
1600C/w
1.0 Al"C
-1.4 mVI"C
1600C/w
1.0 Al"C
-2.0 mVI"C
-14.3 mWrC
750mW
TYPICAL THERMAL CHARACTERISTICS
Thermal resistance junction to free air JA ••••••••••••
Wavelength temperature coefficient (case temp.) ..•....
Forward voltage temperature coefficient ........•.....
309
MV53164 MV54164 MV57164
ELECTRO-OPTICAL CHARACTERISTICS (25°C Free Air Temperature Unless Otherwise Specified)
MIN.
Forward voltage MV53164, MV57164/MV54164
TYP.
MAX.
2.0/2.2
2.5/3.0
UNITS
TEST
CONDITIONS
V
IF = 10 mA
Luminous Intensity (unit average) (See Note 1)
510
1800
I'cd
IF = 10 mA
Pulsed Luminous Intensity (MV54164)
710
2500
I'cd
IF = 60mA
peak; 1:6 DF
585
562
630
nm
nm
nm
40/30
nm
26/12
35/40
n
IF = 20 mA
pF
V = 0, f= 1 MHz
500
ns
IF = 10 mA
Peak emission wavelength
MV53164
MV54164
MV57164
Spectral line half width MV53164, MV57164/MV54164
Dynamic resistance
Segment MV53164, MV57164/MV54164
Capacitance MV53164, MV57164/MV54164
Switching time
Reverse voltage
6.0
IR = 1OOl'A
TYPICAL DRIVE CIRCUIT
v+
A til
10
11
11
12
12
13
13
14
14
15
15
16
16
17
17
1B
18
19
10
RVS,
MSA,
B,
AB:
REFERENCE VOLTAGE SOURCE
MODE SELECT AMPLIFIER
BUFFER
LED BRIGHTNESS CONTROL
nil
BAn OR
SINGLE
LED
CONTROL
-
SIGNAL
IN ---f'IIV\~
20
ILED
RLO
4
LM3914
C1471
PIN CONNECTIONS
PIN
NO.
1
2
3
4
5
310
ELECTRICAL
CONNECTIONS
PIN
NO.
ELECTRICAL
CONNECTIONS
PIN
NO.
ELECTRICAL
CONNECTIONS
PIN
NO.
ELECTRICAL
CONNECTIONS
Bar 1 Anode
Bar 2 Anode
Bar 3 Anode
Bar 4 Anode
Bar 5 Anode
6
7
8
9
10
Bar 6 Anode
Bar 7 Anode
Bar 8 Anode
Bar 9 Anode
Bar 10 Anode
11
12
13
14
15
Bar 10 Cathode
Bar g Cathode
Bar 8 Cathode
Bar 7 Cathode
Bar 6 Cathode
16
17
18
19
20
Bar
Bar
Bar
Bar
Bar
5 Cathode
4 Cathode
3 Cathode
2 Cathode
1 Cathode
MV53164 MV54164 MV57164
TYPICAL CURVES MV53164 MV57164 (PER SEGMENT) (25°C Free Air Temperature)
100
«
E BO
I
70
I
60
w
a: 50
a:
40
«
30
5:
a:
u.
z
Z 1000
:ii
::J
...J
500
IJI
o
.4
.B
V
O·
1.2 1.6 2.0 2.4 2.B 3.2 3.6 4.0
FORWARD VOLTAGE (VF) - VOLTS
Cl0BOA
170
1000
160
BOO
"
'iii.
I 140
FTO'
z
~
90
a:
~ 100 -MV53164
:s
w
.........
"MV57164
!i: 120
'110
10
15
20
IF (PER SEGMENT) - rnA
'" "-.."-
«
~
"-..
BO
a: 70
-25
o
25
25
30
Cl090A
'c
1.5
MV57164
~100
~
BO
D..
50
w
............
20
10
70
3
1
10
20
DUTY CYCLE - %
C1244A
'"
50
100
Cl193
Fig. 4. Max Peak Current vs.
Duty Cycle
~
\
MV53164
"
Fig. 3. Luminous Intensity vs.
Temperature (See Note 2)
2
= 200 pp'
.......
.......
I
"
50
AMBIENT TEMPERATURE -
200
E
,--
60
50
-50
I-
500
......
13
'" 130
>1
/
MV57164
Fig. 2. Luminous Intensity vs.
Forward Current
Fig. 1. Forward Current vs.
Forward Voltage
150
/
'"o::J
h
10
I/V53164-
w
!z 1500
rt
20
/
"I
~ 2000
iii
1/
a:
0
'8 2500
MV571641.
::J
tJ
0
V
J
I MV53164
/1
~
....
z
3000
I
90
~V57164
'\ l'\
1,\ '\
MV5316?'
'\
'"
dw
a:
u.
..... ~
,~
1
10
20
40
DUTY CYCLE - %
IF per 'ego 10 rnA AVERAGE
DC
Cl194A
Fig. 5. Luminous Intensity vs.
Duty Cycle
311
MV53164 MV54164 MV57164
TYPICAL CURVES MV54164 (PER SEGMENT) (25°C Free Air Temperature)
100
«
E
.!:
z
w
a:
a:
::J
()
0
a:
~a:
0
u..
>iii
I-
I
80
(fl
60
50
40
I
30
/
20
10
./
o
/
::J
/
0
z
MV5164L
2.0
~
::J
-'
w
>
(DOTTED LINE
INDICATES
PULSED OPERATIONSEE FIGS. 3, 51
~
1.0
-'
w
V
a:
4.0
2.0
3.0
1.0
FORWARD VOLTAGE - VF (VOLTS,
C1697
0
130
j!. 120
400
w
a:
a: 200
::J
a.
::;;
::J
::;;
x
«
::;;
I(jj
Ii t:iJ~~,,<-
60 ~~-f:'~
40
>-
¥;~L4164
"'I'><: 100
~o
80
«
w
()
"
~
I-
~
w
>
~-'
"
w
a:
20
10
10
100
1000
PULSE DURATION il'SI
110
Z
w
u>
;...,
'0m.-'·~f.;
~
100
/
5
10
15
20
25
30
DC FORWARD CURRENT - IF ,mAl
'"
90
80
70
-55
10,000
NORMALIZED
AT 25°C
~
~
I
MV54164
I""
"-
'"
25
50
75
-25
0
TEMPERATURE - TA ,oC,
C1699
100
C1700
Fig. 8. Maximum Peak
Current vs. Pulse Duration
Fig, 9. Relative Luminous
Intensity vs. Temperature
2.0
5.0
10
20
% DUTY CYCLE
50
DC
C1701
Fig. 10. Relative Efficiency
vs. Duty Cycle
312
/
Fig. 7. Relative Luminous Intensity
vs. DC Forward Current
1000
800
.;( 600
IZ
V
~
m1(
C1702
Fig. 6. Forward Current
vs. Forward Voltage
§
1T IF =1 10
~
I
MV54164
NdRMAJZED
z
w
I- 3.0
I
70
I-
4.0
I
90
MV53164 MV54164 MV57164
FILTER RECOMMENDATIONS
For optimum ON and OFF contrast. one of the following filters or equivalents may be used over the lamp:
MV53164
MV54164
MV57164
Panelgraphic Green 48
Panelgraphic Yellow 25 or Amber 23
Panelgraphic Red 60
Homalite 190 - 1720 or 100 - 1726
Homalite 100 - 1440 Green
Homalite 100 -1605
In situations of high ambient light. a neutral density filter can be used to achieve greater contrast:
Panelgraphic Grey 10
Panelgraphic Grey 10
Homalite 100 - 1266 Grey
NOTES
1.
2.
3.
4.
5.
The average Luminous Intensity is obtained by summing the Luminous Intensity of each segment and dividing by the total number of
segments. The standard of measurement is the Photo Research Corp. "Spectra" Microcandela Meter (Model IV-D) corrected for
wavelength. Intensity will not vary more than ±33.3% between all segments within a unit.
The curve in Figure 3 is normalized to the brightness at 25°C to indicate the relative efficiency over the operating temperature range.
Leads immersed to 1/16 inch (1.6 mm) from the body of the device. Maximum unit surface temperature is 140°C.
All units are categorized for Luminous Intensity. The Intensity category is marked on each part as a suffix letter to the part number.
For flux removal, Freon TF, Freon TE, Isoproponal or water may be used up to their boiling points.
313
314
Lamps
4
315
316
Lamps
Alphanumeric Product Listing
Page
331
341
341
341
361
Product
MV53154
MV5352
MV5353
MV5354A
MV5360
Page
339
347
349
349
329
Product
MV5754A
MV5760
MV57620
MV57621
MV57622
Page
349
329
329
329
329
MV50B
MV50152
MV50154
MV5021
MV5022
323
339
339
337
337
MV53621
MV53622
MV53640
MV53641
MV53642
329
329
333
333
333
MV57640
MV57641
MV57642
MV5774C
MV5777C
333
333
333
327
325
329
329
329
329
329
MV5023
MV5024
MV5025
MV5026
MV5052
337
337
337
337
343
MV5374C
MV5377C
MV54B
MV54123
MV54124A
327
325
323
357
361
MV6053
MV6151
MV6152
MV6153
MV6154A
343
353
347
349
349
HLMP-1503
HLMP-1520
HLMP-1521
HLMP-1523
HLMP-1540
333
329
329
333
329
MV5053
MV5054-1
MV5054-2
MV5054-3
MV5054A-l
343
345
345
345
343
MV54152
MV54154
MV5452
MV5453
MV5454A
339
339
347
349
349
MV6351
MV6352
MV6353
MV6354A
MV64B
353
347
349
349
323
HLMP-1700
HLMP-1719
HLMP-3300
HLMP-3301
HLMP-3315
331
331
351
351
351
MV5054A-2
MV5054A-3
MV5055
MV50640
MV5074C
343
343
343
333
327
MV5460
MV54624
MV54643
MV54644
MV5474C
329
329
333
333
327
MV6451
MV64520
MV64521
MV64530
MV64531
353
347
347
349
349
HLMP-3316
HLMP-3750
HLMP-3850
HLMP-3950
HLMP-4700
351
341
341
341
331
MV5075C
MV5077C
MV5094A
MV5152
MV5153
327
325
355
347
349
MV5477C
MV5491A
MV55AB
MV57B
MV57123
325
355
323
323
357
MV6454A
MV6752
MV6753
MV6754A
MV6951
349
347
349
349
353
HLMP-4719
MP22
MP52
MP65
MV10B
331
364
364
365
335
MV5154A
MV53B
MV53123
MV53124A
MV53152
349
323
357
361
339
MV57124A
MV57152
MV57154
MV5752
MV5753
361
339
339
347
349
TAPE AND REEL 363
Product
FLVll0
HLMP-0300
HLMP-0301
HLMP-0400
HLMP-0401
Page
351
359
359
359
359
HLMP-0503
HLMP-0504
HLMP-1300
HLMP-1301
HLMP-1302
359
359
333
333
333
HLMP-1320
HLMP-1321
HLMP-1340
HLMP-1420
HLMP-1440
Product
MV2454
MV3350
MV3450
MV3750
MV49124A
317
LAMPS
PART
NUMBER
LENS
TYPE
VIEWING
ANGLE 2(')1/,
MV50B
Standard Red
Water Clear
80
MV54B
Standard Red
Red Clear
80
1.0/20
MV53B
Yellow
Yellow Clear
80
2.0/20
MV64B
High Eff. Green
Green Clear
80
2.0/20
MV55AB
High Eff. Red
Red Clear
40
MV57B
High Eff. Red
Red Clear
80
0.5/5
2.0/20
MV5077C
Standard Red
Red Diffused
110
1.75/20
MV5377C
Yellow
Yellow Diffused
180
2.0/20
MV5477C
Hi. Eff. Green
Green Diffused
180
2.5/20
MV5777C
Hi. Eff. Red
Red Diffused
180
3.0/20
MV5074C
Standard Red
Red Clear
70
2.5/20
MV5075C
Standard Red
Red Diffused
90
1.5/20
MV5374C
Yellow
Yellow Diffused
90
4.0/20
MV5474C
Hi. Eff. Green
Green Diffused
90
4.0/20
MV5774C
Hi. Eff. Red
Red Diffused
90
5.0/20
HLMP-1440
Yellow
Pale Yellow Tint
24
60/20
MV5360 (HLMP-1420)
Yellow
Pale Yellow Tint
45
12/10
MV53621
Yellow
Yellow Clear
45
4/10
MV53622
Yellow
Yellow Clear
45
8/10
Hi. Eff. Green
Pale Green Tint
24
60/20
Pale Green Tint
45
12/20
Hi. Eff. Green
Green Clear
45
12/20
HLMP-1340
Hi. Eff. Red
Pink Tint
24
60/20
MV5760 (HLMP-1320)
Hi. Eff. Red
Pink Tint
45
12/10
MV57620
Hi. Eff. Red
Red Clear
45
2/10
MV57621
Hi. Eff. Red
Red Clear
45
4/10
MV57622 (HLMP-1321)
Hi. Eff. Red
Red Clear
45
12/10
PACKAGE
T -:%
=«Q)==
LUMINOUS
INTENSITY
(TYP. mcd/mA)
SOURCE
COLOR
PAGE
1.4/20
323
T-1
Low Profile
n
T-1
ij
T-100
Clear Lens
HLMP-1540
A
MV5460 (HLMP-1520)
MV54624 (HLMP-1521)
Hi. Eff. Green
DD
318
325
327
329
LAMPS
PART
NUMBER
PACKAGE
T-100
Diffused
H
00
MV50640
SOURCE
COLOR
LENS
TYPE
VIEWING
ANGLE 2~)1"
LUMINOUS
INTENSITY
(TYP. mcd/mA)
PAGE
Standard Red
Red Diffused
90
1.5/20
333
HLMP-1719
Yellow
Yellow Diffused
50
2.0/2
331
MV53640
Yellow
Yellow Diffused
90
2.0/10
333
MV53641
Yellow
Yellow Diffused
90
3.0/10
333
MV53642
Yellow
Yellow Diffused
90
4.5/10
333
MV54643 (HLMP-1503)
Hi. Eff. Green
Green Diffused
90
5/20
333
MV54644 (HLMP-1523)
Hi. Eff. Green
Green Diffused
90
10/20
333
HLMP-1700
Hi. Eff. Red
Red Diffused
50
2.0/2
331
MV57640 (HLMP-1300)
Hi. Eff. Red
Red Diffused
90
2.0/10
333
MV57641 (HLMP-1301)
Hi. Eff. Red
Red Diffused
90
2.5/10
333
MV57642 (HLMP-1302)
Hi. Eff. Red
Red Diffused
90
4.0/10
333
MV10B
Standard Red
Water Clear
90
0.8/10
335
1.6/20
TO-18
W
,
~
T-1%
Taper
W
MV5021
Standard Red
White Diffused
90
MV5022
Standard Red
Red Clear
90
1.6/20
MV5023
Standard Red
Red Diffused
90
1.6/20
MV5024
Standard Red
Red Diffused
60
3.0/20
MV5025
Standard Red
Red Diftused
180
0.4/20
MV5026
Standard Red
Deep Red Diftused
90
0.6/20
T -1'1.
MV50152
Standard Red
Red Clear
45
2.0/10
Bullet
MV53152
Yellow
Amber Clear
45
5.0/10
oa
W
o0
MV54152
Hi. Eft. Green
Green Clear
45
5.0/10
MV57152
Hi. Eft. Red
Orange Clear
45
8.0/10
MV50154
Standard Red
Red. Lightly Dift.
50
1.5/10
MV53154
Yellow
Amber Lightly Dift.
50
-3.0/10
MV54154
Hi. Eft. Green
Green Lightly Diff.
50
3.0/10
MV57154
Hi. Eft. Red
Red Lightly Diff.
50
4.0/10
Standard Red
Red. Diftused
70
3.0/20
337
339
T-l'l..
Low Profile
l(
FLV110
351
0'
319
LAMPS
PART
NUMBER
LUMINOUS
INTENSITY
(TYP. mcd/mA)
SOURCE
COLOR
LENS
TYPE
VIEWING
ANGLE 2(-)';'
HLMP-3850 (Ultrabright)
Yellow
Pale Yellow Tint
24
150/20
HLMP-3950 (Ultrabright)
Hi. Eff. Green
Pale Green Tint
24
150/20
HLMP-3750 (Ultrabright)
Hi. Eff. Red
Pink Tint
24
150/20
PACKAGE
PAGE
T-1'Y,
Clear
Stand-off
n
T-1%
Clear
~
o
a
MV5052
341
Standard Red
Red Clear
72
2.0/20
MV3350 (Ultrabright)
Yellow
Pale Yellow Tint
24
150/20
341
MV5352/MV6352
Yellow
Yellow Clear
28
45/20
347
MV3450 (Ultrabright)
Hi. Elf. Green
Pale Green Tint
24
150/20
341
MV5452/MV64520
Hi. Elf. Green
Green Clear
35
25/20
347
MV64521
343
Hi. Elf. Green
Green Clear
35
60/20
347
MV5152/MV6152
Hi. Eff. Red
Amber Clear
28
40/20
347
MV3750 (Ultrabright)
Hi. Eff. Red
Pink Tint
24
150/20
341
MV5752/MV6752
Hi. Eff. Red
Red Clear
28
40/20
347
HLMP-3315
Hi. Eff. Red
Red Clear
35
18/10
351
HLMP-3316
Hi. Eff. Red
Red Clear
35
30/10
351
MV5054-1
Standard Red
Red Diffused
40
2.0/10
MV5054-2
Standard Red
Red Diffused
40
3.0/10
MV5054-3
Standard Red
Red Diffused
40
4.0/10
T-1%
Stand-off
W
345
, 0
T-H,
Dilfused
Narrow Angle
~
• a
320
MV5054A-1
Standard Red
Red Diffused
40
2.0/10
343
MV5054A-2
Standard Red
Red Diffused
40
3.0/10
343
MV5054A-3
Standard Red
Red Dilfused
40
4.0/10
343
HLMP-4719
Yellow
Yellow Diffused
50
2.0/2
331
MV5354A/MV6354A
Yellow
Yellow Diffused
24
20.0/20
349
MV2454
Hi. Eff. Green
Green Dilfused
35
3.0/3.5
331
MV5454A/MV6454A
Hi. Elf. Green
Green Diffused
24
20.0/20
349
MV5154A/MV6154A
Hi. Eff. Red
Amber Diffused
24
20.0/20
349
HLMP-4700
Hi. Eff. Red
Red Diffused
50
2.0/2
331
MV5754A/MV6754A
Hi. Eff. Red
Red Diffused
24
20.0/20
349
LAMPS
PART
NUMBER
W
..
T-l%
Max. Contrast
White
Diffused
W
..
LUMINOUS
INTENSITY
(TYP_ mcd/mA)
LENS
TYPE
MV5053/MV6053
Standard Red
Red Diffused
80
1.6/20
343
MV5055
Standard Red
Red Diffused
150
0.1/20
343
MV5353/MV6353
Yellow
Yellow Diffused
65
8.0/20
349
MV5453/MV64530
Hi. Eff. Green
Green Diffused
75
6.0/20
349
MV64531
Hi. Eff. Green
Green Diffused
75
14.0120
349
MV5153/MV6153
Hi. Eff. Red
Amber Diffused
65
6.0/20
349
MV5753/MV6753
Hi. Eff. Red
Red Diffused
65
9.0/20
349
HLMP-3300
Hi. Eff. Red
Red Diffused
65
3.5/10
351
HLMP-3301
Hi. Eff. Red
Red Diffused
65
7.0/10
351
PACKAGE
T-l%
Diffused
Wide Angle
VIEWING
ANGLE2(-l'i,
SOURCE
COLOR
PAGE
MV6351
Yellow
White Diffused
70
12.0/20
353
MV6451
Hi. Eff. Green
White Diffused
70
12.0/20
353
MV6151
Hi. Eff. Red
While Diffused
70
12.0/20
353
MV6951
Deep Red
White Diffused
70
12.0/20
353
MV5094A (Bipolar)
Red/Red
White Diffused
75
6.0/20
355
MV5491A (Bicolor)
Red/Green
White Diffused
100
6.0/20
355
MV53123
Yellow
Yellow Diffused
100
4.0/20
MV54123
Hi. Eff. Green
Green Diffused
100
4.0/20
MV57123
Hi. Eff. Red
Red Diffused
100
4.0/20
Rectangular
W
D•
9
HLMP-0400
Yellow
Yellow Diffused
100
2.5/20
HLMP-0401
Yellow
Yellow Diffused
100
5.0/20
HLMP-0503
Hi. Eff. Green
Green Diffused
100
3.0/20
HLMP-0504
Hi. Eff. Green
Green Diffused
100
5.0/20
HLMP-0300
Hi. Eff. Red
Red Diffused
100
2.5/20
HLMP-0301
Hi. Eff. Red
Red Diffused
100
5.0/20
357
359
D'
~
oa
MV53124A
Yellow
Yellow Diffused
100
6.0/20
MV54124A
Hi. Eff. Green
Green Diffused
100
6.0/20
MV57124A
Hi. Eff. Red
Red Diffused
100
6.0/20
MV49124A (Blcolor)
RedlGreen
White Diffused
100
6.0/20
361
321
322
MV53B
MV64B
MV50B HIGH EFFICIENCY RED MV55AB
MV54B HIGH EFFICIENCY RED MV57B
YELLOW
HIGH EFFICIENCY RED
STANDARD RED
STANDARD RED
PACKAGE DIMENSIONS
DESCRIPTION
ALL MVSXB
f
2.28 (.090)
2.03 (.080)
+
I
2 PLS
~6.35M\·~50)
ALL MVSXB
EXCEPT MVSSAB
+
.05tl.27)
C1994A
rt.~~ !~~~!~
r--'~----
~-~~~~."'L-~~~-;~J08(2.~~)
.015 (0 38) NOM
11 (2. )
~'1 I
Tc::l
~~~~---'-.1
'I
.009 ' (0.23)
~
15'
C576A
The family of MV53B, MV54B, MV57B, and
MV64B are non-diffused, tinted subminiature
T-% radial lamps with wide viewing angle.
The MV50B is Water Clear with wide viewing
angle while MV55AB is tinted, non-diffused
narrow viewing angle specified at 5 mA.
FEATURES
These subminiature LED lamps are intended for
high volume, low-cost status indication on PC
boards and for backlighting switches and
keyboard keys. The lamps are compatible with
vapor phase reflow surface mount and
conventional soldering switches.
• Subminiature package
• All colors
• Solid state reliability
• Choice of viewing angle
PHYSICAL CHARACTERISTICS
.042
(107)
NOM
NOTES:
1. ALL DIMENSIONS IN INCHES
(mm)
C593A
2. TOLERANCES ARE ± .010 INCH
UNLESS SPECIFIED
TYPE
MV50B
MV54B
MV53B
MV64B
MV55AB
MV57B
LENS
EFFECT
SOURCE
COLOR
Standard Red
Standard Red
Yellow
High Efficiency Green
High Efficiency Red
High Efficiency Red
Water Clear
Red
Yellow
Green
Red/Narrow
Red
ABSOLUTE MAXIMUM RATINGS (TA = 25° C Unless Otherwise Specified)
PARAMETER
Power dissipation •••••.•••..•••••••...
Average forward current ....••••••••••••
Peak forward current (ll-'s, PW 0.1% DF) •.•
Lead soldering time at 230° C •..••••••..•
Storage and operating temperatures
YELLOW
HI EFF.RED
MVS3B
MVSSAB
MVS7B
105
35 (1)
400
5
STD.
RED
HI EFF.
GREEN
UNITS
MVSOB
MVS4B
105
50 (2)
1000
5
-55°Cto+l00°C
MV64B
105
30 (3)
90
5
mW
rnA
rnA
sec
NOTES
1,2,3
4
NOTES
1. Derate linearly from 50° C at 0.7 mAIo C
2. Derate linearly from 50° C at 1.0 mAIO C
3. Derate linearly from 50° Cat 0.6 mA/o C
323
MV50B MV53B MB54B MV64B MV55AB MV57B
ELECTRO-OPTICAL CHARACTERISTICS
SYMBOL MV50B
PARAMETER
Luminous
Intensity (5)
Forward
voltage
Peak
wavelength
Spectral line
halfwidth
Reverse
breakdown
voltage
Total viewing
angle (6)
'MV55AB Iv min
min.
typo
max.
typo
Iv
VF
Ap
MV53B
(TA
0.5
1.4
2.0
1.65
1.0
2.0
3.0
2.1
0.4
1.0
2.0
1.65
660
585
660
20
35
typo
= 25° C
Unless Otherwise Specified)
MV54B MV55AB MV57B
MV64B
UNITS
2.2
1.0
20
3.0
2.1
1.0
2.0
3.0
2.2
mcd
mcd
V
V
635
635
565
nm
20
45
35
35
nm
2.0
IF = 20 mA
IF=20mA
IF = 20 mA
IF=20 mA
min.
VSR
5
5
5
5
5
5
V
typo
28'h
80
80
80
40
80
80
degrees
= 0.2 mcd/5 mA, IVTVP = 0.5 mcd/5 mA, VF max = 2.0 V/5 mA, VFTVP =
TYPICAL ELECTRO-OPTICAL CHARACTERISTIC CURVES
100 DOTTED LINES
INDICATE
~ 90 PULSED
- 80 OPERATIION-
.7.
w
70
~ 60
:>
u
~o
D
-
STANDARD
RED
....
of
;I()
\~'
Ie I
Unless Otherwise Specified)
-
en
/'
~
U)
:::J
~
III
rr .10
= 25°C
rn 3 0
I
HI EFF. I I
RED II I
2.0
:E
1/1/
·f
1.6V/5 mA
~
1 l r!-
§ :10
IR = 100j.lA
40
II I
ELLOw
(TA
CONDITIONS
:3
~ 1.0
r/;-HIEFF.
GR1EEN-
/iV
~
w
.J.Lh
a:
o/
o
1
FOWARD VOLTAGE VF (VOLTS)
C1833
Fig. 1. Forward Current vs.
Forward Voltage
V
V
/
1/
20
40
60
80
INSTANTANEOUS FORWARD
CURRENT IF(mA) C652A
Fig. 2. Luminous Intensity vs.
Forward Current
120%
.."? 100%
~
I-
w
n.
en
z
:::J
HI.IEFFI. V!LLdw
GREENlf
"
II \
80%
I-
~
:::J
60%
w
0
~
;::
..:
..J
40%
a:
20%
W
>
w
a:
o
f\
1\
I\
\
\
>
..J
W
~EDI ~~~
J
II 1/I \ }
I
\
V
\
~
520 540 560 580 600 620 640 660 680 690
C2095
WAVELENGTH
(A)
0
nm
Cl064A
Fig. 3. Spatial Distribution
Fig. 4. Spectral Distribution
NOTES
4.
5.
6.
324
The leads of the device were immersed in molten solder, heated to a temperature of 230°C, to a point 1/16 inch (1.6mm)
from the body of the device per MIL-S-750, with dwell time of 5 sec.
As measured with a Photo Research Corp. "SPECTRA" Microcandela Meter (Model IV-D).
The axis of spatial distribution are typically within a 10° cone with reference to the central axis of the device.
STANDARD RED
YELLOW
MV5077C
MV5377C
T
~SQ
OT7"(432mm)
ANODE
rl-u~
.....
J
+
•
-
FEATURES
-----.
050" (1.27mm)
REF.
NOTES:
1. ALL DIMENSIONS ARE IN INCHES (mm)
2. TOLERANCES ARE ±.010" INCH UNLESS SPECIFIED
3. AN EPOXY MENISCUS MAY EXTEND ABOUT .040" (lmm)
DOWN THE LEADS
mm_~
--
• Square leads (will fit into .020-inch (.508 mm)
diameter holes)
• Compact size
• Bright (up to 3.0 mcd at 20 mAl
• Very wide viewing angle
• Long life, rugged
• Mount on approximately 3/16-inch (4.72 mm)
centers
• Tinted diffused
~~
..J.
160" (4 06 mm) DIA
ISO"" 27
These solid state indicators offer a low profile
T-1 package. The High Efficiency Red, Green
and Yellow devices are made with a gallium
arsenide phosphide on gallium phosphide. All
are encapsulated in epoxy packages. Their small
size (approximately T-1 size), good viewing
angle, and small square leads contribute to their
versatility as all purpose indicators.
1.00" 125.4 mm) MIN.
045" (1 143 nlm)
MV5477C
MV5777C
DESCRIPTION
PACKAGE DIMENSIONS
Lr"-----i
HIGH EFFICIENCY GREEN
HIGH EFFICIENCY RED
01.0" (1 52mm)
0',0" (127 mm)
C1132A
ABSOLUTE MAXIMUM RATINGS (TA = 25°C Unless Otherwise Specified)
Power dissipation .............••.••••.•...•...•.....................•......•....•.••..•..•.......• 105 mW
Derate linearly from 25° C ....•.....•.•.....••.•.••..••......•..••.•...•................••.... -1.14 mW/o C
Storage and operating temperature ......................................................... -55° C to +100° C
Continuous forward current ...............•.•.•...•..•...........•..........................•.•.•... 35 mA
Peak forward current (I-'sec pulse 0.3% duty cycle) (MV5477C=90 mAl .........•......•...•............... 1.0 A
Reverse voltage ..........••.............••..•.••.••........................•...............•..•...... 5.0 V
Lead soldering time at 260° C (See Note 2) ............................................................ 5 sec.
PHYSICAL CHARACTERISTICS
TYPE
MV5077C
MV5377C
MV5477C
MV5777C
SOURCE
COLOR
LENS
COLOR
Standard Red
Yellow
High Efficiency Green
Red
Red Diffused
Yellow Diffused
Green Diffused
Red Diffused
LENS
EFFECT
Wide
Wide
Wide
Wide
Beam
Beam
Beam
Beam
PACKAGE
STYLE
Low
Low
Low
Low
Profile
Profile
Profile
Profile
325
MV5077C MV5377C MV5477C MV5777C
ELECTRO-OPTICAL CHARACTERISTICS (TA = 25°C Unless Otherwise Specified)
PARAMETER
Forward voltage
SYMBOL TESTCOND.
VF
IF =20 mA
IF =20 mA
typo
max.
Luminous Intensity
(See Noto 1)
min.
typo
Iv
Peak wavelength
Spectral line
half width
Capacitance
Reverse voltage
Ap
typo
min.
typo
Viewing angle (total) (Fig. 3)
C
VA
UNITS
V
V
MV5077C
1.6
2.0
MV5377C
2.1
3.0
MV5477C
2.2
3.0
MV5777C
2.0
3.0
tF=20mA
IF=20 mA
IF =20mA
IF =20mA
mcd
mcd
nm
nm
0.3
1.75
660
20
1.0
2.0
585
35
1.0
2.5
565
35
1.0
3.0
635
45
V=O
IA = 100"A
IR=100"A
pF
V
V
degrees
23
5
15
110
45
5
25
180
20
5
25
180
45
5
25
180
2(·)'h
TYPICAL ELECTRO-OPTICAL CHARACTERISTIC CURVES
(25° C Free Air Temperature Unless Otherwise Specified)
100
1
DOTTED LINES
INDICATE
90 PULSED
80 OPERATIION- jELLoW
ffi
70
I
" 30
'" 20
"~
10
-
I-
111I
~ 60
STANDARD
:>
r..J 50
RED
Cl
a: 40
~
,. 4.0
II I
iii
z
~ 3.0
~
HI EFF. II
RED II I
1/
C/l
:::J
Sl2.0
III
::i
::
//1
~1.0
'1r'HIEFF.
GR1EEN-
h'l
..JLh
~ /
V
~
V
1/
a: 0
o
60
20
80
40
INSTANTANEOUS FORWARD
CURRENT IF(mA)
C652A
FOWARD VOLTAGE VF (VOLTS)
C1833
Fig. 1. Forward Current vs.
Forward Voltage
Fig. 2. Luminous Intensity vs.
Forward Current
120%
?f.
GREE~r ~
I
~
iii
I-
:::J
zW
80%
'\
a.
I-
I-
:::J 60%
~
0
W
W
~
>
;::
«
..J
40%
II:
II:
20%
>
w
W
S~D
HI.I EFJ. VLLbw IREd
100%
o
J
II \
/ II \ I~
1/
J
~ RED
I\
\
I
\
[\
520 540 560 580 600 620 640 660 680 690
WAVELENGTH (1\) - nm
Cl064A
Fig. 3. Spatial Distribution
Fig. 4. Spectral Distribution
NOTES
1. As measured with a Photo Research Corp. "SPECTRA" Microcandela Meter (Model IV-D).
2. The leads 01 the device were immersed in molten solder, at 260° C, to a point 1/16 inch (1.6 mm) from the body of the
device per MIL-S-750, with a dwell time of 5 seconds.
326
MV5374C
STANDARD RED MV5074C HIGH EFFICIENCY GREEN MV5474C
STANDARD RED MV5D75C
HIGH EFFICIENCY RED MV5774C
YELLOW
DESCRIPTION
PACKAGE DIMENSIONS
L
These solid state indicators offer a variety of
color selection. The High Efficiency Red, Green
and Yellow devices are made with a gallium
arsenide phosphide on gallium phosphide. All
are encapsulated in epoxy packages. Their small
size (approximately T-1 size), good viewing
angle, and small square leads contribute to their
versatility as all purpose indicators .
.'90"l3Bmml
FEATURES
.020"l.r mml
1.00"125t mml MIN.
• Square leads (will fit into .020-inch (.50Bmm)
diameter hole)
• Compact size
• Bright (typically 2.0 mcd at 20 mAl
• Long life, rugged
• 1-inch (25.4 mm) minimum lead length
• Mount on approximately 3/16-inch (4.72 mm)
centers
'~~;::::!~~~~:SQ--D: ~-=t
ANODE~
--,-
-
050(127mml
REF
I',J"---"
/CATHODE REF
FLAT
I
I
:
\
NOTES:
1 ALL OIMENSIONS ARE IN INCHES (mm)
2. TOLERANCES ARE ±.010" INCH UNLESS SPECIFIED
3. AN EPOXY MENISCUS MAY EXTEND ABOUT .040" (1mm)
DOWN THE LEADS
-
-"
4 - .060" (1.52 mml
050" (1.27 mm)
C1128B
ABSOLUTE MAXIMUM RATINGS (TA = 25°C Unless Otherwise Specified)
Power dissipation ...............•..••...••....••.....•.•.....••......•...................•........ 105 mW
Derate linearly from 25°C .................................................................... -1.14mW/oC
Storage and operating temperature ......................................................... -55° C to +100° C
Lead soldering time at 260° C (See Note 2) ••..................•.•....••......•.................•...... 5 sec.
Continuous forward current ..........•..•...........•.•.....................................•....... 35 mA
Peak forward current (J.'sec pulse 0.3% duty cycle) (MV5474C=90 mA) .........•............••.•.......... 1.0 A
Reverse voltage ••..............••.••.....•..........•....•.•......•.................................. 5.0 V
PHYSICAL CHARACTERISTICS
TYPE
MV5074C
MV5075C
MV5374C
MV5474C
MV5774C
SOURCE
COLOR
LENS
COLOR
LENS
EFFECT
Standard Red
Standard Red
Yellow
High Efficiency Green
High Efficiency Red
Red Clear
Red Diffused
Yellow Diffused
Green Diffused
Red Diffused
Narrow Beam
Wide Beam
Wide Beam
Wide Beam
Wide Beam
PACKAGE
STYLE
High
High
High
High
High
Profile
Profile
Profile
Profile
Profile
327
MV5074C MV5075C MV5374C MV5474C MV5774C
ELECTRO·OPTICAL CHARACTERISTICS· (TA = 25° C
PARAMETER
Forward voltage
typo
max.
Luminous Intensity
(See Note 1)
SYMBOL TESTCOND. UNITS
VF
IF =20 mA
V
IF = 20 mA
V
min.
typo
Iv
IF=20mA
IF = 20 mA
IF =20 mA
IF = 20 mA
Ap
Peak wavelength
Spectral Ii ne
half width
Capacitance
Reverse voltage
Reverse current
Viewing angle (total)
typo
min.
typo
max.
mcd
mcd
nm
nm
V=O
pF
V
IR=100J.'A
V
IR=100J.'A
VR =5.0V
p.A
See Fig. 3
degrees
C
VBR
2(-)'h
Unless Otherwise Specified)
MVS074C
1.6
2.0
MVS07SC
1.6
2.0
MVS374C
2.1
3.0
MVS474C
2.2
3.0
MVS774C
2.0
3.0
0.7
2.5
660
20
0.6
1.5
660
20
1.5
4.0
585
35
1.2
4.0
565
35
1.5
5.0
635
45
23
5
15
100
70
23
5
15
100
90
45
5
25
100
90
20
5
25
100
90
45
5
25
100
90
TYPICAL ELECTRO·OPTICAL CHARACTERISTIC CURVES
(250 C Free Air Temperature Unless Otherwise Specified)
100
//.1
DOTTED LINES
~
90 INDICATE
...z
70
PULSED
::; 80 OPERAT1'ON- 1ELLowl
:J
(,) 50
.
Cl
I
STANDARD
RED
10
:3
~ 1.0
~
..J
GR1EEN-
W
I
..!/L)
/
~
rlr'HI EFF.
hV
~
./
'"::>~ 2.0
1//
1//
30
u..
'" 20
~
z
~ 3.0
~
HI EFF. "
RED /II
a: 40
~
11I
w
~ 60
4.0
~
iii
a:
0
/
o
lL'
/
20
/
40
60
80
INSTANTANEOUS FORWARD
CURRENT 1,(mA)
C652A
FOWARD VOLTAGE VF (VOLTS)
C1833
Fig. 2. Luminous Intensity vs.
Forward Current
Fig. 1. Forward Current vs.
Forward Voltage
120%
'#.
100%
I
...::>
...n.::>
60%
~..J
40%
a:
20%
W
SO%
30%
10%
a
C1129E
JELLJw
IREd
"
\
80%
0
w
>
HI' EFl
l-'oREEi{",
J I
/ J
V
0/
520 540 560
I\
I~
\
\ IA
J
\
I \
V
\
\
580 600 820 640 660 680 690
WAVELENGTH (A) -
Fig. 3. Spatial Distribution
S+D.
RED
nm
Cl064A
Fig. 4. Spectral Distribution
NOTES
1. As measured with a Photo Research Corp. "SPECTRA" Microcande/a Meter (Model IV-D).
2. The leads of the device were immersed in molten solder, at 260· C, to a point 1/16 inch (1.6 mm) from the body of the
device per MIL-S-750, with a dwell time of 5 seconds.
328
J,
YELLOW MV5362X TINTED, HLMP-1440,
HIGH EFFICIENCY GREEN MV5462X TINTED, HLMP-1540,
HIGH EFFICIENCY RED MV5762X TINTED, HLMP-1340,
PACKAGE DIMENSIONS
DESCRIPTION
These solid state indicators offer a variety of color
selection. The High Efficiency Red and Yellow
devices are made with gallium arsenide phosphide
on gallium phosphide. All are encapsulated in
epoxy packages and have clear lenses. Their small
size, wide viewing angle, and small square leads
contribute to their versatility as all-purpose
indicators. All types are tinted to aid identification.
.185 ,4.70,
:165'4~19",
'25016~L
=~~_-:-_-,.-_~-,-'(" - - L,~
FEATURES
_ , . . . . . ~J ....
1.0 125.4, MIN.
L~;_
CATHODE
J
Jf
:
MV5360 PALE TINT
MV5460 PALE TINT
MV5760 PALE TINT
.050 (1.27)
t
,.:" ___R.,:.E_F"T
.11012.79,
.090'2.29,
NOTES:
1. TOLERANCES, UNLESS
OTHERWISE SPECIFIED.
.XXX ± 010
2 ALL DIMENSIONS IN
INCHES (MILLIMETERS)
C1533G
•
'-•.
•
•
•
•
•
•
•
•
•
.,
Standard and Ultrabright devices
",
Clear tinted lenses
100 mil lead spacing
High efficiency GaP
Versatile mounting on PC board or panel
Long life-solid state reliability
Low power requirements
Compact, rugged, lightweight
T-1 diameter
Replacement for the HLMP-1X20/1 Series
Excellent for switch backlighting
PHYSICAL CHARACTERISTICS
TYPE
SOURCE
C.OLOR
LENS
EFFECT
LUMINOUS INTENSITY
at 25° C (mcd)
MIN.
TYP.
TEST CONDITION
Ultrabright
HLMP-1440
MV5360 (HLMP-1420)
MV53621
MV53622
Yellow
Yellow
Yellow
Yellow
Pale Tint
Pale Tint
Tinted
Tinted
24.0
6.0
3.0
6.0
60.0
12.0
4.0
8.0
IF = 20 mA
Ultrabright
HLMP-1540
MV5460 (HLMP-1520)
MV54624 (HLMP-1521)
High Efficiency Green
High Efficiency Green
High Efficiency Green
Pale Tint
Pale Tint
Tinted
24.0
6.0
6.0
60.0
12.0
12.0
IF =20 mA
Ultrabright
HLMP-1340
MV5760 (HLMP-1320)
MV57620
MV57621
MV57622 (HLMP-1321)
Pale Tint
Pale Tint
Tinted
Tinted
Tinted
24.0
6.0
1.5
3.0
6.0
60.0
12.0
2.0
4.0
12.0
IF =20 mA
High
High
High
High
High
Efficiency Red
Efficiency Red
Efficiency Red
Efficiency Red
Efficiency Red
IF = 10mA
329
HLMP-1 X40 MV5X62X MV5X60
ABSOLUTE MAXIMUM RATINGS (TA = 250 C Unless Otherwise Specified)
Power dissipation .......•..•.............•..•..................•............•..................... 120 mW
Derate linearly from 500 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 0.4 mAr C
Storage and operating temperature .......................................................... -550 C to +1000 C
Lead soldering time at 2600 C (1/16 inch from body) ................•..•.•...........•....••............. 5 sec.
Continuous forward current ••...........•••.•........................................................ 30 mA
Peak forward current (1 Ilsec pulse, 0.3% duty cycle) ...............•..•........•........................ 90 mA
Reverse voltage .....•.....•..•..........•............................................................ 5.0 V
ELECTRO-OPTICAL CHARACTERISTICS (250 C Free Air Temperature Unless Otherwise Specified)
PARAMETER
UNITS
MV5362X
MV5360
MV5462X
MV5460
MV5762X
MV5780
V
nm
2.1
3.0
585
2.1'
3.0'
565
2.0
3.0
635
2.2'
3.0'
635
2.2'
3.0'
585
2.2'
3.0'
565
nm
35
40
45
45
35
40
f= 1 MHz, V=O
pF
45
20
45
45
45
20
IR = 100 I'A
V
5.0
5.0
5.0
5.0
5.0
5.0
See Fig. 3
degrees
45
45
45
24
24
24
TEST CONDITIONS
Forward voltage (VF)
typo
max.
Peak wavelength
Spectral line
half width
Capacitance
typo
Reverse voltage (VR)
min.
Viewing angle (total)
typo
IF = 10
rnA
HLMP-1340 HLMP-1440 HLMP-1540
'IF = 20mA
TYPICAL ELECTRO-OPTICAL CHARACTERISTIC CURVES
(250 C Free Air Temperature Unless Otherwise Specified)
:?
..,.§.>-
100:lt
OTTED
..
-- J
YELLOW
90 INDICATELINES
i'
PULSED
80 OPERATION
,
~ 70
a:
U
HIGH"""'- "
i-ErFICIENCY",
50 t - - RED
a:
40
IT:
30
§
o
~
~
iii
z
~
~
en
=>
60 j - - -
o
z
II,
fi:
?D
'«a."
10
UJ
WI,
~
3
0
0
=>
oJ
//"HIGH
EFFICIENCY
GREEN
r;I
UJ
>
/)1/
!:ioJ:
L/.,
UJ
i
!
0/
~
/
a:
10
20
30
FORWARD CURRENT (1F)-mA
CI563A
FOWARD VOLTAGE V, (VOL TSI
Cla31C
Fig. 1. Forward Current vs. Forward Voltage
Fig. 2. Relative Luminous Intensity vs. Forward Current
,
100°,,
en
X
80
400
~
u..
o
70
i'
I
>=>
a.
80°1,
,
1- 60 0/
o=>
.
~ 400
60
!:i:
u1
a:
20°',
yLLJW
HI EFF
GREEN
'\ f\
I I \ 1\
/ 1/ \l~
j /
J~
l\
HI EFF
RED
\
\
\
0
520 540 560 580 600 620 640 660 680
C1129D
Fig. 3. Spatial Distribution
330
WAVELENGTH (AI - nm C1064C
Fig. 4. Spectral Distribution
2mA
HIGH EFFICIENCY RED
YELLOW
HIGH EFFICIENCY GREEN
HLMP-1700 HLMP-4700
HLMP-1719 HLMP-4719
MV2454
DESCRIPTION
PACKAGE DIMENSIONS
The T-1% HLMP-4700 Series and T-1 HLMP1700 Series are direct pin-for-pin replacements
for the Hewlett-Packard lamps with the same
part numbers. All devices are tinted diffused
with a medium-wide viewing angle. The design
of the LED chips is optimized for low current
applications and is far superior in Luminous
Intensity compared to standard LED lamps at
very low current.
T-1
These low current lamps are primarily intended
for direct view.
NOTES
1 TOLERANCES, UNLESS
OTHERWISE SPECIFIED
FEATURES
XXX ::!::,O1O
2 ALL DIMENSIONS IN
INCHES (MILLIMETERS)
..
..
"
..
..
..
"
C1533G
Very low power - 4 mW
2 mA drive from low power TTL or CMOS
All three colors
Power savings in portable equipment
Sturdier leads for easy assembly
Both T-1'I4 and T-1
Use MP52 panel mounting grommet with
HLMP-4700, HLMP-4719 and MV2454
APPLICATIONS
O0
2
.5(1.7)
REF.
L
I
j,
I
I
I
i
040
1102
}
1,00 (2.54) MIN.
~
NOTES:
1. ALL DIMENSIONS ARE IN INCHES (mm)
2. TOLERANCES ARE ±.OlQ" INCH UNLESS
SPECIFIED
3. AN EPOXY MENISCUS MAY EXTEND ABOUT
.040" (1 mm) DOWN THE LEADS
I
I ]I
017 {043} SQ
023 (058)
~
.. Portable battery driven digital or linear
electronic equipment like test instruments,
robots and toys
.. Multiple lamp application$ to reduce power
drain by 5 to 10 times and decrease power
supply size and cost as in phones, PBX and
signs
050 (1 27)
100 (2 54)
Cl062F
PHYSICAL CHARACTERISTICS
SIZE
T-1
T-l'I.
SOURCE
COLOR
LENS
TYPE
HLMP-1700
HLMP-1719
High Efficiency Red
Yellow
EFFECT
Red Diffused
Yellow Diffused
HLMP-4700
HLMP-4719
MV2454
High Efficiency Red
Yellow
High Efficiency Green
Red Diffused
Yellow Diffused
Green Diffused
331
HLMP-1700 HLMP-1719 HLMP-4700 HLMP-4719 MV2454
ABSOLUTE MAXIMUN RATINGS (TA = 25 C Unless Otherwise Specified)
0
HI.EFF.
RED
PARAMETER
27
7.5
25
5
Power dissipation
DC forward current
Peak forward current (PW:;; 1 ms, DF:;; 30%)
Lead soldering time at 2600 C
Operating and storage temperatures
YELLOW
HI.EFF.
GREEN
24
7.5
25
27
7 Jj
25
5
5
UNITS
NOTES
mW
mA
mA
sec
2
-550 C to +1000 C
NOTES
1)
2)
Derate linearly from 920 C at 1 mAIo C.
At 1/16 inch (1.6 mm) from bottom of lamp.
ELECTRO-OPTICAL CHARACTERISTICS (TA= 25°C Unless Otherwise Specified)
T -1"1.
PARAMETER
Luminous
Intensity
Forward voltage
Peak
wavelength
Reverse
breakdown
voltage
Viewing angle
(total)
SYMBOL
min.
typo
max.
typo
Iv
VF
HI. EFF.
RED
HLMP4700
YELLOW
HLMP4719
HI. EFF.
GREEN
MV2454
HI.EFF.
RED
HLMP1700
YELLOW
HLMP1719
UNITS
TEST
CONDo
1.2
2.0
2.2
1.8
1.2
2.0
2.7
1.9
1.2"
3.0"
2.7
1.9
1.0
2.0
2.2
1.8
1.0
2.0
2.7
1.9
mcd
mcd
V
V
IF =2 mA
IF=2mA
IF=2 mA
IF = 2 mA
IF = 2 mA
typo
Ap
635
565
565
635
585
nm
min.
VBR
5
5
5
5
5
V
typo
2~lV2
50
50
35
50
50
degrees
" MV2454 Luminous Intensity is measured at 3.5 mA
332
T-1
IR = 1OOl'A
RED
YELLOW
HIGH EFFICIENCY GREEN
HIGH EFFICIENCY RED
PACKAGE DIMENSIONS
DESCRIPTION
These solid state indicators offer a variety
of color selection. The High Efficiency Red
and Yellow devices are made with gallium
arsenide phosphide on gallium phosphide.
The High Efficiency Green utilizes an
improved gallium phosphide light emitting
diode. All are encapsulated in epoxy
packages with diffused lenses. Their small
size, wide viewing angle, and small square
leads contribute to their versatility as allpurpose indicators.
.185 (4.70)
1'65'l4.i9)
.250(6.3L
];=:-~-:==::~
l.°r~·:_
CATHODE
J
+i~ __...:..:::c~
!..
.110 (2.79)
MV50640
MV5364X
MV5464X/HLMp·15X3
MV5764X/HLMp·130X
FEATURES
• Replacement for the HLMP-1300 and
-1500 product series
• 100 mil lead spacing T-1
• High efficiency GaP light
• Versatile mounting on PC board or
panel
• Wide viewing angle
• Diffused tinted lens
NOTES:
1. TOLERANCES,UNLESS
OTHERWISE SPECIFIED:
.l!9O"(2.29j
.XXX ±.01O
2. ALL DIMENSIONS IN
INCHES (MILLIMETERS)
Cl533G
PHYSICAL CHARACTERISTICS
TYPE
MV50640
MV53640
MV53641
MV53642
MV54643 (HLMP-1503)
MV54644 (HLMP-1523)
MV57640 (HLMP-1300)
MV57641 (HLMP-1301)
MV57642 (HLMP-1302)
SOURCE
COLOR
LENS
EFFECT
Standard Red
Red Diffused
Yellow
Yellow Diffused
High Efficiency Green
Green Diffused
High Efficiency Red
Red Diffused
LUMINOUS
INTENSITY
at 25°C (mcd)
TYP.
MIN.
0.5
1.0
1.5
2,5
2.0
6,0
1.0
2.0
3.0
1.5
2.0
3.0
4.5
5.0
10.0
2.0
2.5
4.0
TEST
CONDITIONS
IF =20 mA
IF = 10 mA
IF=20mA
IF = 10 mA
333
MV50640 MV5364X MV5464X MV5764X
ABSOLUTE MAXIMUM RATINGS (TA = 25° C Unless Otherwise Specified)
ALL BUT GREEN
GREEN
120mW
1.6mWC
-55° C to +100° C
5 sec.
30mA
1.0 A
5.0 V
120mW
1.6mWC
-55° C to +100° C
5 sec.
30 mA
90 mA
5.0V
Power dissipation at 25° C ambient •...••..................•..••........
Derate linearly from 50° C .•..........................•..•.•.•..........
Storage and operating temperatures ................................... .
Lead soldering time at 260° C (1/16 inch from body) ....•....•..•.........
Continuous forward current at 25° C ............•.......•.......•.......
Peak forward current (1 ",sec pulse, 0.3% duty cycle) ..•..•••••...........
Reverse voltage .........•......•.•...•........•..............•....•...
ELECTRO·OPTICAL CHARACTERISTICS (25° C Free Air Temperature Unless Otherwise Specified)
PARAMETER
Forward voltage
typo
max.
SYMBOL
VF
Peak wavelength
Spectral line
half width
Capacitance
typo
Reverse voltage
min.
Viewing angle (total) typo
'IF = 20mA
TESTCOND.
IF = 10 rnA
IF = 10 rnA
A
IF=10mA
V = 0, f = 1 MHz,
IF = 100 p.A
See Fig. 3
C
VBR
2HV,
nm
MV50640'
RED
1.6
2.0
660
MV5364X
YELLOW
2.1
3.0
585
MV5464X
HI.EFF.
GREEN
2.2'
3.0'
562
MV5764X
HI.EFF.
RED
2.0
3.0
635
nm
pF
V
degrees
20
23
5.0
90
35
45
5.0
90
30
20
5.0
90
45
45
5.0
90
UNITS
V
TYPICAL ELECTRO·OPTICAL CHARACTERISTIC CURVES
(25° C Free Air Temperature Unless Otherwise Specified)
;r:'00 DOTTED LINEs/
INDICATE
.s 90 PULSED
/, '
.~ELLOWI ~
0;
II:
II:
::J
60
HI EFF. /I
RED /I,
en
II:
40
II:
30
L1J
0
0
~
70
50
STANDARD
RED
L1J
~ 3.0
::J
~ 2.0
1/'
~
3
~ 1.0
(I,HIEFF.
GRIEEN-
II V
../.Lt
u. 20
'«"
z
;!!;
!///
0
'0
0-
4.0
~
.!:
80 OPERATI'ONfZ
~
...J
L1J
II:
60
80
20
40
INSTANTANEOUS FORWARD
CURRENT IF(mA)
C652A
Fig. 2. Luminous Intensity vs.
Forward Current
Fig. 1. Forward Current vs.
Forward Voltage
'20%
en
40"
X
~
U.
o
50°
ill
L1J
60°
~
70°
a
L1J
30%
10%
a
Cl129B
Fig. 3. Spatial Distribution
334
L
/
-
0/
FDWARD VOLTAGE VF (VDLTS)
C1833
50%
/
/
V
;f!. ,"""
I
f::J
0-
f::J
0
.""
60%
L1J
>
~
40%
II:
2""
...J
L1J
STANDARD RED
DESCRIPTION
PACKAGE DIMENSIONS
H~~ci:R B:~:::~ f
The MV10B is a GaAsP light emitting diode
mounted on a TO-18 header with a clear epoxy
lens. On forward bias, it emits a spectrally
narrow band of radiation which peaks at 660 nm.
.164 _ ~
WITH
MV10B
EPOXY
LENS
.230"
MAX .
:
.5rN
·_D D. L
FEATURES
•
•
•
•
o:
.019" --,-
:mv
12 Leads}
.048"
/:m""
'-"'"
l
Long life - solid state reliability
Low power requirements
Compatible with integrated circuits
Compact, rugged, lightweight
CONNECTED
INTERNALLY
TO HEADER
TOLERANCES ;1:.010"
e569
ABSOLUTE MAXIMUM RATINGS (TA = 25°C Unless Otherwise Specified)
Power dissipation .........................•............•.................................•......... 175 mW
Derate linearly from 25° C .......•.........•...............................•.................... 2.33 mW/o C
Storage and operating temperatures .•.............•.•....•...........•........•............ -55° C to +100° C
Lead soldering time at 260° C (See Note 2) ................................................•.......... 7.0 sec.
Continuous forward current ........................................••............................... 70 mA
Peak forward current (1 ~sec pulse, 0.3% duty cycle) ..•.•........•....•.........................•....... 1.0 A
Reverse voltage .............•••................................•.......•............................. 5.0 V
ELECTRO-OPTICAL CHARACTERISTICS (TA = 25° C Unless Otherwise Specified)
PARAMETER
Luminous Intensity (See Note 1)
Peak emission wavelength
Spectral line half width
Forward voltage
Forward dynamic resistance
Capacitance
TYP.
0.8
660
20
1.65
2.0
135
MAX.
2.0
UNITS
mcd
nm
nm
V
n
pF
TEST CONDITIONS
IF=10mA
IF =50 rnA
IF = 50 rnA
V=O
335
MV10B
ELECTRO-OPTICAL CHARACTERISTICS (Continued)
MIN.
PARAMETER
Light rise time and fall time
Reverse current
Reverse breakdown voltage
Luminous flux
View angle
TYP.
50
50
15
3.7
90
3
MAX.
UNITS
ns
nA
V
mLumens
degrees
TEST CONDITIONS
50 1I system, IF = 50 mA
VR =3.0V
IR= 100 1'A
IF =50 mA
Between 50% pOints
TYPICAL THERMAL CHARACTERISTICS
Thermal resistance junction to free air JA ••••••••••••••••••• , ••••••••••••••••••••••••••••••••••••••••• , • 3200 CIW
Thermal resistance junction to case JC •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• , 1550 C/W
Wavelength temperature coefficient (case temperature) .•••••••..•..••..••.•••.•••.•• , .•••.•••.•••.•••• , .•• 0.3 nm/o C
Forward voltage temperature coefficient •...••..•••.••..••.••.••• , , •.•••• , , •••• , , •. , ••••••••.•••..•••.. -2.0 mV/o C
TYPICAL ELECTRO-OPTICAL CHARACTERISTIC CURVES
(TA = 25° C Unless Otherwise Specified)
40
I
>30
....
iii
z
W
t-
;;;20
en
-7 ~
--
:::J
o
Z
:1 10
3
o
/
o
V
~
-
100
LL
J
20 0
FREE STANDING DIODE
~z
!i:
I\,
17 5
~60
a:
"i
I"
>
;:
~ 100
~
'"
75
50
20
40
60
80
INSTANTANEOUS FORWARO
CURRENT 1,(mA) C652A
Fig. 1. Luminous Intensity vs. Forward Current
I
-; 70
150
~ 12 5
/
I
I
;(90
.§. 80
·50
~ 50
~
""
a:
40
~ 30
a: 20
~
·25
0
25
50
AMBIENT TEMPERATURE
75
CC)
Fig. 2. Brightness vs. Temperature
10
/
o
lOCI
C571
I
I
I
I
I
I
1
FORWARD VOLTAGE VF (VOLTS)
C1832
Fig. 3. Forward Current vs. Forward Voltage
16r-~--~--~---.---r--'
CONSTANT
DUTY CYCLE = 0 3"0
14r=-'-'-,-"-'-'''''T--'-'-'-t---+-r-
100'1,
1\
II \
~80%
:::J
o
g;!6O%
~
ul
a:
/
40%
#20%
0%
C573A
", 1.2
(
!:i
/
6.... .6r--/~~~~---+---r--l
\
650
660
670
z
~ .4
~
680
WAVELENGTH - A - nm
Fig. 4. Spatial Distribution
(Note 3)
r--/----I---t-~?!:=::+_--l
~ .8 ~-t--+..,
~
\
I
630 640
E
'"
~10~-/----I--.,~-+--~--4
Fig. 5. Spectral Distribution
690
C618
'"
;i
0.6
O.S
1.0
12
PEAK FORWARD CURRENT - AMPS C575A
Fig. 6. Peak Power Output vs.
Pulsed Forward Current
NOTES
1.
2.
3.
336
As measured with a Photo research Corp. "SPECTRA" Microcandela Meter (Model IV-Oj.
The leads of the MV10B were immersed in molten solder, heated to 260 0 C. to a paint 1/16 inch (1.6 mm) from the body of the
device per MIL-S-750, with a dwell time of 5 seconds.
The axis of spa tial distribution are typically within a tOO cone with reference to the central axis of the device.
STANDARD RED
PACKAGE DIMENSIONS
MV502X
DESCRIPTION
The MV502X Series of solid state indicators is
made with gallium arsenide phosphide light
emitting diodes. Encapsulation and lens is
epoxy. Various lens effects are available for
many indicator applications.
.080'
FEATURES
CATHODE
INDEX NOTCH
~ k-+Q040
O3ODI
j '
F
-
CD m:::::I:J
-
11
• Tapered barrel T-H'
• High Intensity Red light source with various
lens colors and effects
• T-1% with stand-off
• Versatile mounting on PC board or panel
• Snap in panel mounting clip available (See
MP22 f9r clip detail)
Dl
TOP VIEW
NOTES:
1. ALL DIMENSIONS ARE IN INCHES (rnm)
r-I
100
2. TOLERANCES ARE ±'010" INCH UNLESS
SPECIFIED
C599
£i~~
~
~
SUGGESTED P.C.
BOARD MOUNTING
C601
ABSOLUTE MAXIMUM RATINGS
Power disSipation at 25° C ambient ••..•...•......•.••......•...................................... 180 mW
Derate linearly from 25° C ...•..••.....•...••.•..•••......•.•........•....................•.....•. 2 mW/o C
Storage and operating temperatures ....................................................... -55° C to +100° C
Lead soldering time at 260° C (See Note 2) .•..•.....••....•.....•......•............................. 5 sec.
Continuous forward current at 25° C .....•.•.••.•...•......•........•...............•.............. 100 mA
Peak forward current (1l'sec pulse. 0.3% duty cycle) .................................................... 1.0 A
Reverse voltage ....•••..•.•.....•.......•••.•......•...•......•.....................• ; ..•........•.• 5.0 V
PHYSICAL CHARACTERISTICS
TYPE
MV5021
MV5022
MV5023
MV5024
MV5025
MV5026
A
.340
.340
.340
.340
.340
.340
B
.190
.190
.190
.160
.160
.160
C
.100
.100
.100
.130
.130
.130
D
.040
.040
.040
.040
.040
.040
SOURCE
LENS
E&F COLOR
COLOR
.025
Red
Clear Diffused
.025
Red
Transparent Red
.025
Red
Red Diffused
.025
Red
Red Diffused
.025
Red
Red Diffused
.025
Red
Dark Red Diffused
LENS
EFFECT
Soft
Point
Soft
Soft
Flooded
Flooded
POP-IN
MOUNTING
X
X
X
X
X
X
CIRCUIT
BOARD
MOUNTING
X
X
X
X
X
X
337
MV502X SERIES
ELECTRO·OPTICAL CHARACTERISTICS (25 C Free Air Temperature
0
PARAMETER
Luminous Intensity
(See Note 1)
Peak wavelength
Spectral Ii ne
half width
Forward voltage
VF
Reverse current IR
Reverse voltage VR
Capacitance
Viewing angle
Rise time
and fall time
min.
typo
typo
max.
max.
min.
typo
typo
Unless Otherwise Specified)
TEST CONDITIONS
20 mA
20mA·
20 mA
UNITS
mcd
mcd
nm
5021
0.5
1.6
660
5022
0.6
1.6
660
5023
0.4
1.6
660
5024
0.9
3.0
660
5025
0.1
0.4
660
5026
0.1
0.6
660
20 mA
20mA
20 mA
VR =5.0V
IR=100"A
V=O
Between 50% Points
10%-90% 50 n system
90%-10% 50 n system
nm
V
V
20
1.65
2.0
100
5.0
35
90
50
50
20
1.65
2.0
100
5.0
35
90
50
50
20
1.65
2.0
100
5.0
35
90
50
50
20
1.65
2.0
100
5.0
35
60
50
50
20
1.65
2.0
100
5.0
35
180
50
50
20
1.65
2.0
100
5.0
35
90
50
50
"A
V
pF
degrees
nsec
nsec
TYPICAL ELECTRO·OPTICAL CHARACTERISTIC CURVES
140
100
%\
~120 %
>-
<"
l"-
§. 80
f-- t-- I"-
0..
::J
o
~ 100 0/0
>=
<
...J
t-- t-- _.
W
~ 80 %
I
I
I
1.
1
90
~
70
Giao
0:
i"-.
"
~ 50
i'.
f'-.
600/0,
-60 -40 -20 0 20 40 60
TEMPERATURE -'c
it
10
/
I
2.5
f--t--t---+--t-r-t-----i
1.5 f--t--t~7'f:.....+-+---1
1.0 f--h.,.~--+--t---t----I
I
0.2
80 100
C554A
FORWARD VOLTAGE VF (VOLTS)
C1832
1.0
1.2
PEAK FORWARD CURRENT - AMPS C606A
Fig. 2. Forward Current vs.
Forward Voltage
Fig. 1. Output vS. Temperature
1/o1SEC
2.0 f--t--t---+r-t---t-----i
I
~30
0:20
r--r----r-.,--,---r----.
CONSTANT DUTY CYCLE· 0.3%
I
g 40
3.0
Fig. 3. Radiated Output Power vs.
Peak Forward Current
4.0
,0"
I
l-
>-3 0
u;>zw
>-
~2
0
en
,0"
'0"
,0"
'0"
~+;!:;:;1~~n±±::f::Jl9O"
0.6 0.50.40.3 0.20.1
C607A
Fig. 4. Spatial Distribution
::J
o
z
:1 ' .0
::
V
V
V
V
lL
01/
20
40
50
80
INSTANTANEOUS FORWARD
CURRENT 1,(mA) C552A
Fig. 5. Luminous Intensity vs.
Forward Current
NOTES
1. As measurod with a Photo Research Corp., "SPECTRA" Microcandela Meter (Model IV-D).
2. The leads of the device were'immersed in molten solder at 2600 C to a point 1/16 inch (1.6 mm) from the body of the device per
MIL-S-750, with a dwell time of 5 seconds.
338
STANDARD RED
YELLOW
MV50152/4 HIGH EFFICIENCY GREEN MV54152/4
MV53152/4
HIGH EFFICIENCY RED MV57152/4
DESCRIPTION
PACKAGE DIMENSIONS
.065"11.65 mm)"I"
1""---...,
.210'j 15.33 mm)
~
055" (1.40 mm)LFLAT DENOTES
CATHODE
I
.00S" (0.46 mml
FEATURES
~ij
~~
iz
.240"(6.10mm)
,220" (ii.59 mm)
,
I
.,
....
~ __ .... .'
, ....
I
ANODE LEAD
IS LONGER
/~
. to" NOM
(2.54mm)
.200" (5 OS" mm)
.170" (4.32 mm)
These solid state indicators offer a variety of lens
effects and color availability in a short barrel
T-1% package. The High Efficiency Red, High
Efficiency Green and Yellow devices are made
with gallium phosphide.
.050 (1.27)
NOMINAL
C1357 A
NOTES:
1 ALL DIMENSIONS ARE IN INCHES (mm)
2. TOLERANCES ARE .010 INCH UNLESS SPECIFIED
3. AN EPOXY MENISCUS MAY EXTEND ABOUT 04011 mm) DOWN THE LEADS
• High intensity light source with two lens
effects
• Red, High Efficiency Red, High Efficiency
Green and Yellow colors available
• Versatile mounting on PC board or panel
• Long life-solid state reliability
• Low power requirements
• Compact, rugged, lightweight
• High efficiency
• MV5X154 diffused, MV5X152 non-diffused
• Short T-1% size
ABSOLUTE MAXIMUM RATINGS (TA = 25° C Unless Otherwise Specified)
Power dissipation (MV5015X) •..•..........•.....•..........•.....•.....•......•.•..••.•.........•. 180 mW
Power dissipation .••.......•........•........••.•..........•.....•............•.•.......•......... 105 mW
Derate linearly from 25°C (MV5015X) ......•.•........••.........•..•.........•.......••.•••.•... 2.0 mW/oC
Derate linearly from 25° C ..•••.•.....•.........•.••.......•...........•........•.•..........•. 1.14 mW/o C
Storage and operating temperatures .•.......••......••.........•...••.......•..........••.• -55° C to +100° C
Lead soldering time at 260° C (See Note 3) ........•..•.......•.......••..•......•.•..•......••.•...... 5 sec.
Continuous forward current (MV5015X) ....•.•.•......••.........•.........•.........••.•.••.•....•.. 100 mA
Continuous forward current ....•...........•.....•...........•.......•..........••..•...........••.. 35 mA
Peak forward current (1J.Lsec pulse, 0.3% duty cycle) (MV5415X=90 mAl ......•..•........•.•....•......•• 1.0 A
Reverse voltage ..........•...•....•.•.•....•.......•..•.......•......••.•.•......••..•.••.•...•..••.• 5.0 V
PHYSICAL CHARACTERISTICS
TYPE
MV50152
MV50154
MV53152
MV53154
MV54152
MV54154
MV57152
MV57154
SOURCE COLOR
Standard Red
Standard Red
Yellow
Yellow
High Efficiency Green
High Efficiency Green
High Efficiency Red
High Efficiency Red
LENS COLOR
Red Clear
Red Lightly Diffused
Amber Clear
Amber Lightly Diffused
Green Clear
Green Lightly Diffused
Red Clear
Red Lightly Diffused
LENS EFFECT
Point Source
Soft Point Source
Point Source
Soft Point Source
Point Source
Soft Point Source
Point Source
Soft Point Source
339
MV50152/4 MV53152/4 MV54152/4 MV57152/4
ELECTRO·OPTICAL CHARACTERISTICS
PARAMETER
Forward voltage
typo
max.
min.
typo
AP
C
VBR
IR
10mA
V=O
IR = 100 itA
VR =5.0 V
SYMBOL
VF
Luminous Intensity
(See Note 1)
Peak wavelength
Spectral line
half width
typo
Capacitance
min.
Reverse voltage
Reverse current
max.
Viewing angle (total)
(See Fig. 3)
(TA = 250 C Unless Otherwise Specified)
TEST
CONDo
10mA
10mA
10mA
10mA
10 mA
Iv
20'h
UNITS
V
50152 50154 53152 53154 54152 54154 57152 57154
mcd
mcd
nm
1.6
2.0
0.6
2.0
660
1.6
2.0
0.4
1.5
660
2.1
3.0
3.0
5.0
585
2.1
3.0
1.5
3.0
585
2.2
3.0
2.5
5.0
565
2.2
3.0
2.0
3.0
565
2.0
3.0
4.0
8.0
630
2.0
3.0
2.0
4.0
630
nm
pF
V
itA
20
30
5.0
100
20
30
5.0
100
35
45
5.0
100
35
45
5.0
100
35
20
5.0
100
35
20
5.0
100
45
45
5.0
100
45
45
5.0
100
degrees
45
50
45
50
45
50
45
50
TYPICAL ELECTRO·OPTICAL CHARACTERISTIC CURVES
(250 C Free Air Temperature Unless Otherwise Specified)
100
;;
.s
I-
Z
w
90
a: 60
a:
:::J
(J
50
0
a: 40
«
;; 30
0
u.
«
'"w
.!.
PULSED
80 OPERATION- iELLOW,
70
20
n. 10
.,
STANDARD
RED
'
H" EFF:' /I
RED /I,
rt-
f.-
I
~3.0
Cii
zW
V
I-
~2.0
///
/1/
'":::J
~1.0
:::J
..J
V
I
o
o
FOWARD VOLTAGE VF (VOLTS)
C1833
/'
1/
oz
'f/HIEFF.
GR,EEN-
II 'f
.J/LJ
4.0
/, '
~N~i6~~i'NES J
V
/
20
40
60
80
INSTANTANEOUS FORWARD
CURRENT 1,(mA) C652A
Fig. 2. Luminous Intensity VS.
Foward Current
Fig. 1. Forward Current vs.
Forward Voltage
I-
:::J
n.
I-
:::J
o
w
>
~..J
W
a:
Cl35S
Fig. 3. Spatial Distribution (Note 2)
WAVELENGTH (A) - nm
C,OB4A
Fig. 4. Spectral Distribution
NOTES
1.
2
3.
340
As measured with a Photo Research Corp., "SPECTRA" Microcandela Meter (Model IV-D).
The axis of spatial distribution are typically within a 10 0 cone with reference to the central axis of the device.
The leads of the device were immersed in molten solder at 2600 C to a point 1/16 inch (1.6 mm) from the body ofthe device per
MIL-S-750, willl a dwell time of 5 seconds.
ULTRABRIGHT
PACKAGE DIMENSIONS
HLMP-3X50 SERIES
MV3X50 SERIES
DESCRIPTION
The Ultrabright HLMP-3X50 Series are direct, pinfor-pin replacements for the Hewlett-Packard
devices with the same part numbers.
HLMP-3X50 in High Efficiency Red, Yellow and
High Efficiency Green are very narrow viewing
angle Clear lamps in a standard T-1% package.
025 (0.64) SQ. TYP
By using more efficient LED chips, these lamps
are superior in Luminous Intensity compared to
other lamps.
NOTES
,. TOLERANCES, UNLESS
OTHERWISE SPECIFIED
XXX±010
100
(254)
2. ALL DIMENSIONS IN
T
Lamps have Pale Tinted package to aid
identification.
INCHES (MILLIMETERS)
FEATURES
Minimum 80 mcd
All three colors
Pale Tint avoids mix problems
Sturdy leads with or without stand-off on T-1%
Excellent for small area backlighting
High Efficiency Red
HLMP-3750
MV3750
II High Efficiency Gree
HLMP-3950
MV3450
.. Yellow
HLMP-3850
MV3350
II
MV3X50
"
"
"
..
..
NOTES.
1. ALL DIMENSIONS ARE IN INCHES (mmj
2 TOLERANCES ARE :t.Ol0" INCH UNLESS
SPECIFIED
3 AN EPOXY MENISCUS MAY EXTEND ABOUT
CWO" (1 mm) DOWN THE LEADS
CHl62F
ABSOLUTE MAXIMUM RATINGS (TA = 25°C Unless Otherwise Specified)
PARAMETER
Power dissipation
Peak forward current
Average forward current
Continuous DC forward current
Lead soldering time at 260° C
Operating and storage temperature
HI. EFF. RED
YELLOW
HI. EFF. GREEN
UNITS
NOTES
135
90
25
30
5
85
60
20
20
5
-55 to +100° C
135
90
25
30
5
mW
mA
mA
mA
seconds
2
3
1) For High Efficiency Red and High Efficiency Green, derate power linearly from 25° C at 1.8 mAIo C. For Yellow derate power
linearly from SOo Cat 1.6 mWo C.
2) For High Efficiency Red and High Efficiency Green derate linearly from 50° C. For Yellow derate linearly from 50° Cat 0.2
mArC.
3) To a point of minimum 1116 inch (1.6 mm) from the bottom of the lamp.
341
HLMP-3X50 SERIES MV3X50 SERIES
ELECTRO-OPTICAL CHARACTERISTICS (TA
MV3450
HLMP-3950
UNITS
C
80
150
3.0
2.2
635
45
80
150
3.0
2.2
585
45
80
150
3.0
2.2
565
20
mcd
mcd
V
V
nm
pF
BVR
5
5
5
V
2(·)%
24
24
24
degrees
min.
typo
min.
typo
typo
typo
Luminous Intensity
Forward voltage
Peak wavelength
Capacitance
Reverse breakdown
min.
voltage
Total viewing angle
between half Luminous
typo
I ntensity points
25 0 C Unless Otherwise Specified)
MV3350
HLMP-3850
SYMBOL
PARAMETER
=
MV3750
HLMP-3750
Iv
VF
AP
TEST
CONDITIONS
IF = 20 mA
IF = 20 mA
IF =20 mA
IF =20 mA
IF = 10 mA
VF=O,f=1 MHz
IR = 100 /lA
TYPICAL ELECTRO-OPTICAL CHARACTERISTIC CURVES
(25 0 C Free Air Temperature Unless Otherwise Specified)
50
,.
t:!
-,-,
w::0
~~
10
a:
1.4
V
/
:5z
w-
...0
"
/
O ...
30
0
3.0
-
./
10
1.6 1.8 20 22 24 2.6 2.8 30
20
30
40
Cl063E
C1792
,
>- 1.0
<
~
400
w
>
~ 0.7
,.z~
500 ~
m
w
a: 0.6
,
!:;
...=>
Y~LLdw
,
HI EFF.
GREEN
80 0A,
w
>
~
,
60DIc
,
40°11
w
20%
o j
HI EFF.
'\ f\ RED
I I \ V 1\
II II \ ~ \\
)
)r\
520 540 560 580 600 620 640 660 680
0.50.40.30.20.1
C1793
342
f\
0..
o
a:
Fig. 3. Spatial Distribution
60
Fig. 2. Relative Luminous Intensity vs.
DC Forward Current
Fig. 1. Forward Voltage!
Forward Current
...
~ 0.9
w
...~ 0.8
50
IF - FORWARD CURRENT - mA
FORWARD VOLTAGE (VFi- VOLTS
WAVELENGTH
(AI -
nm Cl064C
Fig. 4. Spectral Distribution
MV5052
MV5054A-l/2/3
MV5053/6053 MV5055
PACKAGE DIMENSIONS
DESCRIPTION
The MV505X Series of industry standard solid
state indicators is made with gallium arsenide
phosphide light emitting diodes encapsulated
in epoxy lenses. Various lens effects give
different design possibilities.
.040
,(1.02)
! I
050 (1.27)
I
L-
I
J'
1-_ _
.017 (0.43) SQ.
.023 (.058)
1.00 (2.54 MIN)
I '~
REF.
FEATURES
• Standard Red light source with various
lens colors and effects
• Versatile mounting on PC board or panel
• Snap in mounting grommet MP52
• Long .life-solid state reliability
• Low power requirements
• Compact, rugged, lightweight
I
I
NOTES
1 ALL DIMENSIONS ARE IN INCHES (mm)
2 TOLERANCES ARE ± 010" INCH UNLESS
SPECIFIED
3 AN EPOXY MENISCUS MAY EXTEND ABOUT
O4O"(lmm) DOWN THE LEADS
]
_.050 (1 27)
- 100 (2.54)
Cl062L
PHYSICAL CHARACTERISTICS
CATHODE
LONG
MV5052
MV5053'
MV5054A-1
MV5054A-2
MV5054A-3
MV5055
SOURCE
COLOR
Standard
Standard
Standard
Standard
Standard
Standard
Red
Red
Red
Red
Red
Red
LENS
TYPE
LENS
EFFECT
APPLICATION
Red Tint
Red Diffused
Red Diffused
Red Diffused
Red Diffused
Red Diffused
Point Source
Wide Beam
Narrow Beam
Narrow Beam
Narrow Beam
Very Wide Beam
Backlighting
Direct View
DireclView
Direct View
Direct View
Direct View
• MV6053 - Anode Long also available.
ABSOLUTE MAXIMUM RATINGS (TA = 25° C Unless Otherwise Specified)
Power dissipation .....••......•...•.........•..••..........•...•..•.......................•....... 180 mW
Derate linearly from 25° ........•........•.•.•......•.•......................•.•...••.......•..• 2.0 mW/o C
Storage and operating temperatures .............••.................•..•............••...... -55° C to +100° C
Lead soldering time at 2600 C (See Note 3) ...•.............•..•...............................•......• 5 sec.
Continuous forward current •.•...•.....•......••.•.........•......•..•........•...•................ 100 mA
Peak forward current (1~sec pulse, 0.3% duty cycle) ...........•...................•...........•......•. 1.0 A
Reverse voltage .................•.............•.•.•....•..•..•......................•.......•......•. 5.0 V
343
MV5052 MV5053/6053 MV5054A-1/2/3 MV5055
ELECTRO OPTICAL CHARACTERISTICS (TA = 250 C Unless Otherwise Specified)
TESTCOND.
PARAMETER
IF = 20 mA
Luminous Intensity
Iv min. (See Note 1) IF = 10 mA
5052
0.7
6053
5053
0.5
2.2
5054A-1
5054A-2
5054A-3
1.0
2.0
3.0
2.2
2.2
2.2
5055
0.1
UNIT
mcd
mcd
2.2
V
V
Forward voltage
VF mcd
IF = 20 mA
IF = 10 mA
2.2
Peak wavelengths
Ap typical
IF = 20 mA
660
660
660
660
660
660
nm
Spectral line
half width typical
Capacitance
typical
Reverse current
IR max.
Viewing angle
typical, See Figures
IF = 20 mA
20
20
20
20
20
20
nm
v=o
f= 1 MHz
VR =5.0 V
30
30
30
30
30
30
pF
100
100
100
100
100
100
p.A
72
80
40
40
40
150
degrees
TYPICAL ELECTRO-OPTICAL CHARACTERISTICS (25 0 C Free Air Temperature)
100
;;c
So
BO
~
70
r5a:
60
I
I
z
20
I
10
V
....w
~2.0
I
~ 30
/'
Cii
I
~ 50
!5u.
I
i: 3.0
I
ga: 40
-
4.0
I
90
'":::>o
I
I
z
~1.0
/
:::>
..J
o/
o
./
1
.2
FORWARO VOLTAGE VF (VOLTS)
C1B32
V
20
/
\
>
....
Cii
zw
....z
w1.5
a:
40
60
BO
10
IF
Fig. 2. Luminous Intensity vs.
Forward Current
" "r-"-
>
i=
:5w
INSTANTANEOUS FORWARD
CURRENT IF (mA)
C652A
Fig. 1. Forward Current vs.
Forward Voltage
\
ow
a:
u.
........
t"--,
20
40
OUTY CYCLE - %
10 mA AVERAGE
DC
Cl194B
Fig. 3. Luminous Intensity vs.
Duty Cycle
1O~
20~
140
"\
I"
5120 %
a.
5o
~100
i=
:5w
~
>
BO %
t:
100%
""
1=
:::>
o
1\
/ \
BO%
~60%
........
i=
"'-
60%
·60 -40 -20 0
20 40 60
TEMPERATURE - • C
~
a:
r"-...
BO
100
C654A
Fig. 4. Output vs. Temperature
/
40%
II
1fI.
20%
0%
'"Zw
(
5
/
100%
....
~
w
>
~
w
a:
1\
!zw
\
"
630 840 650 660
670 680 690
WAVELENGTH - A - nm C61B
Fig. 5. Spectraf Distribution
&la:
50% 40% 30% 20% 10%
619A
Fig. 6. Spatial Distribution (Note 2)
NOTES
1. As measured with Photo Research Corp., '"SPECTRA'" Microcandela Meter (Model IV-D).
2. The axis of spatial distribution are typically within a 100 cone with reference to the central axis of the device.
3. The leads of tlie device were immersed in molten solder at 260 0 C to a point 1/16 (1.6 mm) from the body of the device per MILS-750, witli a dwell time of 5 seconds.
344
STANDARD RED
STANDARD RED
STANDARD RED
PACKAGE DIMENSIONS
MV5054-1
MV5054-2
MV5054-3
DESCRIPTION
The MV5054 Series lamps are made with gallium
arsenide phosphide diodes mounted in a Red
epoxy package.
FEATURES
II
II
II
II
II
II
Three light intensity selections
Illuminates a %" diameter circle
Straight barrel T-1 % with stand-off
Versatile mounting on PC board
Mounting grommet MP52 available as separate
order item
For new designs see MV5054A-1/2/3 data
sheet
C622B
NOTES
1 ALL DIMENSIONS ARE IN INCHES (mm)
2 TOLERANCES ARE 010 INCH UNLESS SPECIFIED
ABSOLUTE MAXIMUM RATINGS
Power dissipation at 25° C ambient. ..•..........................................................•... 180 mW
Derate linearly from 25° C ............•.....•.........•......•.........•....•..................... 2.0 mW/o C
Storage and operating temperatures •.•...•................................................. -55° C to +1000 C
Lead soldering time at 260° C (See Note 3) .................•..•....................................... 5 sec.
Continuous forward current at 25° C •••....••........................................................ 100 rnA
Peak forward current (,",sec pulse 0.3% duty cycle) ........•.....•........................•.............. 1.0 A
Reverse voltage ....................•..•....•............•.......•.................................... 5.0 V
ELECTRO-OPTICAL CHARACTERISTICS (25°C Ambient Temperature)
CHARACTERISTICS
Luminous Intensity (See Note 1)
MV5054-1
MV5054-2
MV5054-3
Forward voltage
Capacitance
Reverse current
Rise and fall time
Viewing angle (total)
Peak wavelength
UNITS
TEST CONDITIONS
50
40
mcd
mcd
mcd
V
pF
p.A
ns
degrees
660
nm
IF = 10 mA
IF = 10 mA
IF = 10 mA
IF = 10 mA
V=O,f=1 MHz
VR =5.0 V
50 n System
Between 50%
intensity points
IF= 10mA
MIN.
TYP.
1.0
2.0
3.0
2.0
3.0
4.0
1.8
35
MAX.
2.2
100
345
MV5054-1 MV5054-2 MV5054-3
TYPICAL ELECTRO-OPTICAL CHARACTERISTIC CURVES
(2SoC Free Air Temperature Unless OtherWis~ Specified)
100
I
§. 80
~
I
I
70
ili60
§50
40
~
30
II:
20
zw
t-
~2.0
'"o
:>
I
:r 10
I
~
~3.0
(jj
I
I
II:
~
4.0
I
;( 90
z
I
~1.0
:>
-'
V
/
o
o
1
FORWARD VOLTAGE VF (VOLTS)
C1832
Fig. 1. Forward Current vs.
Forward Voltage
/
V
V
60
20
80
40
INSTANTANEOUS FORWARD
CURRENT 1,(mA) C652A
Fig. 2. Luminous Intensity
Forward Current
I mW
~
Ui
~
~'00
!10'\'
Z
~
BO'\
70%
I
MV5054
w
~
>
.lll~tjJI
E
l00~
W
V
/
()
2~
z
«
~
~
a:
!!:
W
II:
@IF· 100mA
TA = 25°C
r-..
10
I
50% 400.. 30''0,
~O'\,
I,m
.1 em
10'\,
C620A
140
~
(jj
zW
tz
\
w1.5
>
5
w
II:
1
10
I,
~120
a.
"-
t:>
o
" r--
~100
@
...
II:
~
C627
i=
:)
w
II:
80
I,
I'..
"-
"-
"
I'--,.
i'-..
~ .....
20
40
DUTY CYCLE - %
10 rnA AVERAGE
Fig. 5. Luminous Intensity vs.
Duty Cycle
346
100cm
Fig. 4. Irradiance vs. Distance
Fig. 3. Spatial Distribution (Note 2)
\
10cm
DISTANCE - em
DC
60%
-60 -40 -20 0 20 40 60
TEMPERATURE _oC
80 100
C654A
C11946
Fig. 6. Output vs. Temperature
ORANGE
YELLOW
HIGH EFFICIENCY GREEN
HIGH EFFICIENCY RED
PACKAGE DIMENSIONS
MVSXS2 - LEAD CUT CATHODE LONG MIN. O.S"
MV6XS2X - LEAD CUT ANODE LONG MIN. 1.02S"
MV5152
MV5352
MV5452
MV5752
MV6152
MV6352
MV64520 MV64521
MV6752
DESCRIPTION
These Clear Tinted solid state indicators offer
high brightness and color availability. The
High Efficiency Red and Yellow devices are
made with gallium arsenide phosphide on
gallium phosphide. The High Efficiency
Green units are made with gallium phosphide
on gallium phosphide. All devices are
available with cathode long as MV5X5X, or
with anode long as MV6X5X.
FEATURES
.017 (0.43) SQ.
.023 (.058)
.040
"
"
"
"
High on-axis light output
High efficiency GaP light sources
Versatile mounting on PC board or panel
Snap in grommet MP52 available as
separate order item
a Long life-solid state reliability
a Low power requirements
" Compact, rugged, lightweight
1(1.02)
!
11 '
.050 (1.27)
I
,
REF.
~
~
1.00 (25.4) MIN.
~
NOTES.
1. ALL DIMENSIONS ARE IN INCHES (mm)
2. TOLERANCES ARE ±.D.D" INCH UNLESS
']_ I
I
SPECIFIED
~
3 AN EPOXY MENISCUS MAY EXTEND ABOUT
.040" (lmm) DOWN THE LEADS
.050 (1.27)
.100 (2.54)
Cl062L
ABSOLUTE MAXIMUM RATINGS (TA = 250 C Unless Otherwise Specified) RED, YELLOW
AND H. E. RED
GREEN
Power dissipation ....•........................•....................•....
120 mW
120 mW
Derate linearly from 250 C (MVX452/4A from 500 C) ........................•
1.6 mW/o C
1.6 mWrC
Storage and operating temperatures ...........•.•......•................. -550 C to +100° C -55° C to +100° C
Lead soldering time at 2600 C (See Note 3) ..........•.................•...
5 sec.
5 sec.
Continuous forward current. •.................•......•.•.................
35 mA
30 mA
Peak forward current (1 I-Isec pulse, 0.3% duty cycle) ...........•...........
1.0 A
90 mA
Reverse voltage .......•.................................................
5.0 V
5.0V
~.
PHYSICAL CHARACTERISTICS
CATHODE
LONG
ANODE
LONG
SOURCE
COLOR
LENS
TYPE
LENS
EFFECT
APPLICATION
MV5152
MV5352
MV5452
MV6152
MV6352
MV64520
MV64521
MV6752
High Efficiency Red
Yellow
High Efficiency Green
High Efficiency Green
High Efficiency Red
Amber Clear
Yellow Clear
Green Clear
Green Clear
Red Clear
Point Source
Point Source
Point Source
Point Source
Point Source
Backlighting
Backlighting
Backlighting
Backlighting
Backlighting
MV5752
347
MV6X52 MV6X52X MV5X52
ELECTRO-OPTICAL CHARACTERISTICS (25 0
PARAMETER
C Free Air Temperature)
TESTCOND.
UNITS
MV6152
MV5152
MV6352
MV5352
MV64520
MV5452
MV64521
MV6752
MV5752
IF = 20 mA
IF = 20 mA
V
V
2.0
3.0
2.1
3.0
2.2
3.0
2.2
3.0
2.0
3.0
mcd
mcd
nm
nm
17.0
40.0
635
45
10.0
45.0
585
35
12.0
25.0
562
30
30.0
60.0
562
30
17.0
40.0
635
45
V = 0, f = 1 MHz
pF
45
45
20
20
45
IR = 100 itA
V
5
5
5
5
5
VR = 5.0 V
See Fig. 4
itA
degrees
100
28
100
28
100
35
100
35
100
28
Forward voltage (VF)
typo
max.
Luminous Intensity
(Soo Note 1) min.
typo
Peak wavelength
Spectral line
half width
Capacitance
typo
Reverse voltage (VR)
min.
Reverse current (IR)
max.
Viewing angle (total)
IF
IF
IF
IF
= 20
= 20
= 20
= 20
mA
mA
mA
mA
TYPICAL ELECTRO-OPTICAL CHARACTERISTIC CURVES (25 0 C Free
Air Temperature Unless Otherwise Specified)
_ 100 DOTTED LINES
~ 4.0
§.
Ui
90
~~~~t;E-- YELLOW
Z
I-
zUJ
70
n: 60
n:
:J
U
0
.
.'"
50
~ 3.0
u.
1./
en
"
::::l
o
~ 2.0
::;
a: 40
::0
l---
W
'" 80 OPERATION--t----Ir+-f-----I
::::l
...J
30
W
>
~
20
...J
UJ
a. 10
W
a:
1.0
V
00
1
2
3
FOWARD VOLTAGE VF (VOLTS)
C1831C
Fig. 1. Forward Current vs.
Forward Voltage
V
/
V
/
20
40
60
80
INSTANTANEOUS FORWARD
CURRENT IF(mA) C652A
Fig. 2. Luminous Intensity vs.
Forward Current
30
I00% I----+--!...,..;.-hrl-'~~_+__l_____l
100 .
>Iiii
90
w
fHl"
~
70""
Z
40
Q.
IW
>
~
..J
W
60%
~ 80%~~~I-W_+_III--~=!:!_-1
::J
50
00
70
a:
80
~ OO%I----+-~~~_H~I_~_l_____l
o
~ ~%I----+-~~~~~I_~_+___l
~
w
a:
OLL~~~~~~-2~
520
Cl066A
Fig. 3. Spatial Distribution (Note 2)
5~
560 580 600 620 640 660 680
WAVELENGTH (AI - nm Cl064C
Fig. 4. Spectral Distribution
NOTES
1. As measured with Photo Research Corp. "SPECTRA" Microcande/a Meter (Model IV-D).
2. The axis of spatial distribution are typically within a 100 cone within reference to the central axis of the device.
3. The leads of the device were immersed in molten solder, at 2600 C, to a pOint 1/16 inch (1.6 mm) from the body of the device
per MIL-S-750, with a dwell time of 5 seconds.
348
MV5153/4A
MV5353/4A
MV5453/4A
MV5753/4A
ORANGE
YELLOW
HIGH EFFICIENCY GREEN
HIGH EFFICIENCY RED
PACKAGE DIMENSIONS
DESCRIPTION
These solid state indicators offer a variety of
diffused lens effects and color availability.
The High Efficiency Red and Yellow devices
are made with gallium arsenide phosphide on
gallium phosphide. The Green units are
made with gallium phosphide on gallium
phosphide. All devices are available with
cathode long as MV5X5X, or with anode long
as MV6X5X.
MV5X5X - LEAD CUT CATHODE LONG MIN O.S"
MV6X5XX - LEAD CUT ANODE LONG MIN. 1.025"
~~J
1
yMr'"
I
.350 (8.89)
330 (8.38)
Li
.017 (043)
023 (.058)
040
FEATURES
sa
" High efficiency GaP light source with
various lens effects
" Versatile mounting on PC board or panel
" Snap in grommet MP52 available as
separate order item
.. Long life-solid state reliability
.. Low power requirements
" Compact, rugged, lightweight
1(102)
!
IJ
'
r-
.050(1.27)
REF.
--L-- ']_
I
I
1.00 (2.54) MIN
'~NOTES
1 ALL DIMENSIONS ARE IN INCHES (mm)
2 TOLERANCES ARE ". 010" INCH UNLESS
SPECIFIED
3 AN EPOXY MENISCUS MAY EXTEND ABOUT
040" (lmm) DOWN THE LEADS
I
~
MV6153/4A
MV6353/4A
MV64530/1 MV6454A
MV6753/4A
.050 (1 27)
-
.100 (254)
Cl062L
ABSOLUTE MAXIMUM RATINGS (TA = 25°C Unless Otherwise Specified)
H.E. RED,
YELLOW, ORANGE
GREEN
Power dissipation at 25° C ambient. . . . • . . . • . . . . . . . . . . • . . . . . • . . . . . . . . . . . . .
120 mW
120mW
Derate linearly from 250 C (MVX453/4A from 50° C) . . . . . . . . . . . . . . . . . . . . . . . . .
1.6 mW/o C
1.6 mWrC
Storage and operating temperatures........... .. ... . .•.....•....•... . .... -550 C to 1·100° C -550 C to +1000 C
Lead soldering time at 2600 C (See Note 3) ....•....•....•.......•..•......
5 sec.
5 sec.
Continuous forward current at 250 C . • • . . . . . • . . . . . . . . . • . . . . . • . . . . • . . . . . . . .
35 mA
30mA
Peak forward current (1 J,tsec pulse, 0.3% duty cycle) • . . • . • . . . • . . . . . . . . . . . . .
1.0 A
90mA
Reverse voltage. . • . • • . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . • . . . • . . . . • . . . .
5.0 V
5.0V
PHYSICAL CHARACTERISTICS
CATHODE
LONG
MV5153
MV5154A
MV5353
MV5354A
MV5453
MV5454A
MV5753
MV5754A
ANODE
LONG
SOURCE
COLOR
LENS
TYPE
LENS
EFFECT
APPLICATION
MV6153
MV6154A
MV6353
MV6354A
MV64530/1
MV6454A
MV6753
MV6754A
High Efficiency Red
High Efficiency Red
Yellow
Yellow
High Efficiency Green
High Efficiency Green
High Efficiency Red
High Efficiency Red
Amber Diffused
Amber Diffused
Yellow Diffused
Yellow Diffused
Green Diffused
Green Diffused
Red Diffused
Red Diffused
Wide Beam
Narrow Beam
Wide Beam
Narrow Beam
Wide Beam
Narrow Beam
Wide Beam
Narrow Beam
Direct View
High Bright Direct View
Direct View
High Bright Direct View
Direct View
High Bright Direct View
Direct View
High Bright Direct View
349
MV5X53 MV5X54A MV6X53X MV6X54A
ELECTRO-OPTICAL CHARACTERISTICS (25 0 C Free Air Temperature)
PARAMETER
TESTCOND.
UNITS
6153
5153
6154A
5154A
6353
5353
6354A
5354A
64530
5453
64531
6454A
5454A
6753
5753
6754A
5754A
IF; 20 mA
IF; 20 mA
V
V
2.0
3.0
2.0
3.0
2.1
3.0
2.1
3.0
2.2
3.0
2.2
3.0
2.2
3.0
2.0
3.0
2.0
3.0
mcd
mcd
nm
nm
3.0
6.0
635
45
10.0
20.0
635
45
2.5
8.0
585
35
10.0
20.0
585
35
3.0
6.0
562
30
7.0
14.0
562
30
10.0
20.0
562
30
3.0
9.0
635
45
10.0
20.0
635
45
V;O
f; lMHz
IR; 100 I'A
pF
45
45
45
45
20
20
20
45
45
V
5
5
5
5
5
5
5
5
5
VR; 5.0 V
See Fig. 3
I'A
degrees
100
65
100
24
100
65
100
24
100
75
100
75
100
24
100
65
100
24
Forward voltage (VF)
typo
max.
Luminous Intensity
(See Note 1) min.
typo
Peak wavelength
Spectral line
half width
Capacitance
typo
Reverse voltage (VR)
min.
Reverse current (IR)
max.
IF;
IF;
IF;
IF;
Viewing angle (total)
20 mA
20 mA
20 mA
20 mA
TYPICAL ELECTRO-OPTICAL CHARACTERISTIC CURVES (250 C Free
100
;{
~N~i6~~i~ ~ELLOW
90
PULSEDi
80 OPERATION
,
fzUJ 70
HIGH_"
a: 60 a:
EFFICIENCY",
;:)
RED
() 50 -
.§.
fi:>
'"a.
«
UJ
z
UJ
f-
;;:: 2.0
en
11//, HIGH
30
rlI
20
EFFICIENCY
G~EEN
hV
10
.d/
1
2
o
z
:i 1.0
;:)
...J
L'
/
o
Fig. 1. Forward Current vs.
Forward Voltage
10
V
;:)
o
3
FOWARD VOLTAGE VF (VOLTS)
C1831C
-
I
~3.0
iii
If,
0
a: 40
«
;;
II!,
Air Temperature Unless Otherwise Specified)
4.0
/
/
V
20
40
60
80
INSTANTANEOUS FORWARD
CURRENT 1,(mA) C652A
Fig. 2. Luminous Intensty
vs. Forward Current
20'
120°11
"
YkLL6w
"
HI EFF.
"..QFl~
"
"
C1065B
Fig. 3. Spatial Distribution
(See Note 2)
J
\
/\
1\
HI EFF.
RED
/ / \ IV 1\
/ / \IA \
\
/1\
J
0
520 540 560 580 600 620 640 660 680
WAVELENGTH IAI - nm Cl064C
Fig. 4. Spectral Distribution
NOTES
1.
2.
3.
350
As measured with Photo Research Corp. "SPECTRA" Microcandela Meter (Model IV-D).
The axis of spatial distribution are typically within a 100 cone with reference to the central axis of the device.
The leads of the device were immersed in molten solder, at 2600 C, to a point 1/16 inch (1.6 mm) from the body of the device
per MIL-S-750, with a dwell time of 5 seconds.
STANDARD RED FLVll 0
HIGH EFF. RED
HIGH EFF. RED
HLMP-3300
HLMP-3301
PACKAGE DIMENSIONS - HLMP
DESCRIPTION
Direct replacements for popular T-1% lamps from
Fairchild and Hewlett-Packard. The FLV110 is a
Standard Red Lamp with a low profile (.285 inch)
lens. HLMP-33XX parts are High Efficiency Red
with a standard T-P/4 package.
FLV110, HLMP-3300 and HLMP-3301 are
diffused.
HLMP-3315 and HLMP-3316 are non-diffused.
rf~J
I
SEE
NOTE4
L
i
I
rI---I---I----L
.040
FEATURES
01aSQ (0.45 mm) NOMINAL
1(1.02)
.050
(1.27)
NOM.
L
I I
,
jk
I
,
1.00 (2.54) MIN.
~
I
']_
I
, -
I
HIGH EFF. RED HLMP-3315
HIGH EFF. RED HLMP-3316
.050 (1.27)
.100 (2.54)
NOTES:
1. ALL DIMENSIONS ARE IN INCHES (mm)
2. TOLERANCES ARE ±.01 0" INCH UNLESS
SPECIFIED
3. AN EPOXY MENISCUS MAY EXTEND ABOUT
.040" (1 mm) DOWN THE LEADS
4. DIMENSION X,
PACKAGE HEIGHT HLMP = .330 (8.38)/.350 (8.88)
FLV = .275 (6.98)/.295 (7.49)
• Replace Fairchild and Hewlett-Packard
devices
• Popular, general purpose lamps
• Wide and narrow viewing angle devices for
direct view or backlighting
• Solid state reliability
• Sturdy leads for easier assembly
C1062M
ABSOLUTE MAXIMUM RATINGS (TA = 25 0 C Unless Otherwise Specified)
Power dissipation ••......•.••............................•....•........•...••.••....••.•....... 135 mW
Derate linearly from 250 C • . • . . • . . • . . . . . . • . . . . • . . . . • . . . . . . . . . • . . . . . . . . . . . . • . . . . • . . . . • . . . . . . . .. 1.8 mW/o C
Storage and operating temperatures ..•....•.....••...... '" ..•.......••....•.••......••. -550 C to +1000 C
Lead soldering time @ 2600 C (See Note 2) ...•...••........•....•....•...•..•.•..•................. 5 sec.
Continuous forward current •.••.........•.•......•................•.•.......•.......•..........•.. 30 mA
Peak forward current (1 /-Lsec pulse, 0.3% duty cycle) (FLV110 1 amp) ..•.•...•....•....•.•............ 90 mA
Reverse voltage ..••.•......•..............•......•.....•..•...•••..............••..........•.•.... 5.0 V
351
FLVll0 HLMP-3300/1
HLMP-3315/&
ELECTRO-OPTICAL CHARACTERISTICS (250 C Ambient Temperature)
PARAMETER
Luminous Intensity
(See Note 1)
Forward voltage
HLMP-
HLMP-
HLMP-
HLMP-
SYMBOL
3300
3301
3315
3316
110
UNITS
TEST CONDITIONS
Iv
"p
C
2.0
3.5
3.0
2.2
635
45
4.0
7.0
3.0
2.2
635
45
12
18
3.0
2.2
635
45
20
30
3.0
2.2
635
45
0.8'
3.0'
2.0
1.6
665
30
mcd
mcd
V
V
nm
pF
IF = 10 mA
IF= 10mA
IF = 10 mA
IF = 10 mA
IF = 10 mA
V=O,f= 1 MHz
V8R
5
5
5
5
5
V
2(-)'h
65
65
35
35
70
degrees
min.
typo
max.
typo
typo
typo
VF
Peak wavelength
Capacitance
Reverse breakdown
voltage
min.
Total viewing angle
between half Luminous
Intensity points
typo
FLV'
IR= lOO IlA
'For FLV110 Test IF = 20 mA
TYPICAL ELECTRO-OPTICAL CHARACTERISTICS CURVES
(250 C Free Air Temperature Unless Otherwise Specified)
120%
100
1
~
w
DOTTED LINES
90 INDICATE
PULSED
80 OPERATI'ON
70
I
~ 60
I
....
~~
/
80%
~
J
40"
II
a:
'" 20
/
10
/
\ RED
I\
60%
>
I
"
;; 30
~
~JD.
"
I
HI EFF. I
RED I
STANDARD
U 50
RED
Cl
a: 40
OJ
"~
II'
I
HI.EFF.
RED
",."
•
,\
\
V
520 640 560 580 600 620 640 SSD 680 690
WAVELENGTH (}.,I- nm
FOWARD VOLTAGE VF (VOLTS)
C18338
Cl084F
Fig. 2. Spectral Distribution
Fig. 1. Forward Current vs.
Forward Voltage
_100
iii
I-
zW
Iz
\
W'·5
>
60
~i~
~
UI
n:
a: 40
I\..
~~~ ~~~ ~~~-ij
~- ~
~ ~
~ ~
1\
1\
1\
OJ
U
Cl 30
a:
a:
~ 20
a:
I'-
oIL
,~
'~"
I'-
a. 10
1
20
10
IF
40
DUTY CYCLE - %
10 mA AVERAGE
DC
1.0
10
C1194B
1000
10000
(~.)
C1674A
Fig. 4. Maximum Peak Forward
Current vs. Pulse
Duration (HLMP)
1. As measured with a Photo Research Corp. "SPECTRA" Microande/a Meter (Model IV-D).
2. From a point minimum 1/16 inch (1.6 mm) from the bottom of the lamp.
352
100
PULSE DURATION
Fig. 3. Luminous Intensity vs.
Duty Cycle
NOTES
80
Z
1'\"
§w
!§.
I-
HI6H EFFICIENCY RED (ORANGE)
YELLOW
MV6151
MV6351
HIGH EFFICIENCY GREEN
AIGaAs RED
MV6451
MV6951
DESCRIPTION
PACKAGE DIMENSIONS
This White Diffused family of T-1% lamps gives
maximum ON/OFF contrast in high ambient
lighting levels. The family features Orange,
AIGaAs Red (Dark Red), Yellow and High
Efficiency Green as well as High Efficiency Red,
which here is Orange. The family exhibits wide
viewing angle intended for direct view.
FEATURES
1(1.0
.01710.43) SQ.
.023 (.058)
.040
21
!
L--jJ'-
.050 11.271
REF.
I
, -
I
'
1.00 (2.54) MIN
~
I
NOTES:
1 ALL DIMENSIONS ARE IN INCHES (mm)
2.
~
• Excellent ON/OFF contrast
• Non-tinted, White Diffused
• AIGaAs Red plus 3 bright colors: High
Efficiency Red/Orange, Yellow and Green
• Alternative for popular MV6X53 family
• Snap-in grommet MP52 available as separate
order item
~~~~~F~~~ES ARE ±.010" INCH UNLESS
3. AN EPOXY MENISCUS MAY EXTEND ABOUT
.040" (mm) DOWN THE LEADS
.050 (1 27)
100 (254)
Cl062F
PHYSICAL CHARACTERISTICS
TYPE
MV6151
MV6351
MV6451
MV6951
SOURCE COLOR
High Efficiency Red
Yellow
High Efficiency Green
AIGaAs Red
LENS
White
White
White
White
COLOR
Diffused
Diffused
Diffused
Diffused
LENS EFFECT
Orange Diffused
Yellow Diffused
Green Diffused
Red Diffused
APPLICATION
Direct View
Direct View
Direct View
Direct View
ABSOLUTE MAXIMUM RATINGS (TA = 25°C Unless Otherwise Specified)
PARAMETER
HI. EFF. RED,
YELLOW, RED GREEN UNITS NOTES
Power dissipation.................. .. . . . .. ... ... .•... .. .. .. .....
120
120
mW
1
35
Continuous forward current ......••.........•...................
rnA
30
Peak forward current (11-'s, 0.3% OF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1000
rnA
90
Lead soldering time at 260° C
5
2
5
seconds
Storage and operating temperatures ••......•.....................
-55° C to +100° C
NOTES
1.
2.
Derate linearly from 25°C (MV6451 from 50· C) at 1.6 mW/·C.
From a point minimum 1/16 inch (1.6 mm) from the bottom of the lamp.
353
MV&151 MV6351 MV&451 MV&951
ELECTRO-OPTICAL CHARACTERISTICS (TA = 25°C Unless Otherwise Specified)
SYMBOL MV61S1 MV63S1 MV8451 MV8eS1
3.0
3.0
Iv
3.0
3.0
12
12
12
12
3.0
3.0
3.0
3.0
VF
2.1
2.2
2.3
2.4
635
585
565
Ap
670
PARAMETER
Luminous Intensity
Peak wavelength
Reverse breakdown voltage
min.
typo
max.
typo
typo
min.
Total viewing angle between
half luminous points
typo
Forward voltage
UNITS
mcd
mcd
V
V
nm
TEST CONDITIONS NOTES
IF = 20mA
IF = 20mA
IF = 20mA
IF = 20mA
IF =20mA
VBR
5
5
5
5
V
IR = 100/JA
2(-)11"
70
70
70
70
degrees
IF = 20mA
TYPICAL ELECTRO-OPTICAL CHARACTERISTIC CURVES
(25°C Free Air Temperature Unless Otherwise Specified)
100
;(
oS
~
z>W
II:
II:
90
?N~~~~~iINES
PULSED
BO OPERATION
70
50
::>
-
u 50 r - 0
II:
~
0
u.
'"U'.i
0..
JELLOW
r
,
~
'L
'I
>-
i!:2.0
rlf
'"
o
::>
11/. . . . HIGH
30
'1/
20
//1
10
.//.)
EFFICIENCY
GREEN
z
:E 1.0
::>
..J
V
I
o
o
1
2
3
FOWARD VOLTAGE VF (VOLTS)
CI831C
V
100~g
fOO%
90%
~
80%
80%
70%
!60%
r
II:
10% 0
20%
1/
w
~
60
60
INSTANTANEOUS FORWARD
CURRENT IF(mA) C552A
O
%
20%
GREEN(\
~%
C1OS5C
Fig. 3. Spatial Distribution
1\ IA
'I
AIGaAs
f-f--f-tf-+---'l--+-+-l'I\HH
I!\
III \
I
/
\
,
IV\
1.
354
1
\.\)
520540 560 560 600620 640660 5BO 590 700
WAVELENGTH (Ap)-nm Cl064F
Fig. 4. Spectral Distribution
NOTES
2.
~
l-f-lJl/-j--\w4hH-1'H--++
o I I
30%
L'
V
/
Fig. 2. Luminous Intensity
vs. Forward Current
Fig. 1. Forward Current vs.
Forward Voltage
50%
-
~3.0
iii
zw
HIGH_"
EFFICIENCY " /
RED
/I
40
4.0
As measured with a Photo Research Corp. "SPECTRA" Microandela Meter (Model IV-D).
The axis of spatial distribution are typically within a 10° cone with reference to the central axis of the device.
2
HIGH EFFICIENCY GREEN/AIGaAs RED
HIGH EFFICIENCY REO/AlGaAs RED
PACKAGE DIMENSIONS
I~I
Ir,r-'f
~
480 ("2 19)
: ~460
l
(11 68)
040
I
850 (21 6)
SO
I
I
I
I
MIN
~
[I---
I i
065(165)
lJ55'"il4ijj
t
I
L~~_[i]~,
050 (I 27) NOM
gg :6~~:
;
(102)
---,--
I
.050 (1.27) NOMINAL
lOO(254)NO~b_
t
'GREEN
CATHODE
MV5094A
DESCRIPTION
1..200 (5 08).1
330 (838)
MV5491A
The Green/Red MV5491A and Red/Red MV5094A
are superior drop-in replacements for General
Instrument's bicolor Green/Red MV5491 or
MV9475 and for bipolar Red/Red MV5094 or
MV9775. The MV5491 A is a White Diffused, very
wide viewing angle, dual chip, 4-state lamp
utilizing Deep Red AIGaAs and High Efficiency
Green. AC-driven, the LED lamp appears Orange.
The MV5094A is a Red Diffused, very wide
viewing angle bipolar Red (AC) lamp featuring
Red AIGaAs and High Efficiency Red chips.
FEATURES
•
•
•
•
•
NOTES:
1 TOLERANCES 010" UNLESS SPECIFIED
2 ALL DIMENSIONS SHOWN IN INCHES
CI826A
(MILLIMETERSI
•
•
•
•
Excellent uniformity and visual appeal
Very wide viewing angle for perfect direct view
Increased reliability
Radically improved die-off-center
characteristics
Same current for both colors for minimum
component count
Improved solder heat durability
4-state; Green, Red, Orange, OFF (MV5491A)
1" leads
May be panel mounted - MP52 is separate
order item
ABSOLUTE MAXIMUM RATINGS (TA = 25° C Unless Otherwise Specified)
PARAMETERS
RATING UNITS NOTES
Power dissipation ...••..••.•.......•........•.......•......•..........••.......
135
mW
1
Peak current ....••...............••.•...•..............••...•.•...............
90
mA
Average current .................•...••.......•............•...................
mA
2
30
Lead soldering time
seconds
5
Storage and operating temperatures .....••..............•....................... -55 0 C to +100° C
3
NOTES
1.
2.
3.
Derate power linearly from 25°C at 1.8 mW/oC.
Derate power linearly from 50° Cat 0.5 mAr C.
To a point minimum 1/16 inch (1.6 mm) from the bottom of the lamp.
355
MV5491 A MV5094A
ELECTRO-OPTICAL CHARACTERISTICS (TA
=25°C Unless Otherwise Specified)
MV5491 A
MV5094A
UNITS
TEST CONDITIONS
Luminous Intensity
min.
typ.
Iv
2.0
6.0
2.0
6.0
mcd
mcd
IF=20 mA
IF=20 mA
Forward voltage
max.
typo
typo
VF
3.0
2.3
568/650
V
V
nm
IF=20 mA
IF=20 mA
IF=20 mA
5.0
3.0
2.3
630/650
5.0
V
IR=1oollA
100
75
degrees
IF=20 mA
PARAMETER
Dominant wavelength
Reverse breakdown
Total viewing angle between half Luminous
Intensity points
SYMBOL
min.
Ad
VBR
typ.
2(~'h
TYPICAL ELECTRO-OPTICAL CHARACTERISTIC CURVES
(TA
=25°C Unless Otherwise Specified)
(-)-OffAxis Angle-Degrees
C1827
Fig. 1. Spatial Distribution
356
YELLOW
HIGH EFFICIENCY GREEN
HIGH EFFICIENCY RED
PACKAGE DIMENSIONS
~------I
J l------r
r
.197
± .005
.078 ± .005
(1.98)
(5.00)
MV53123
MV54123
MV57123
DESCRIPTION
These rectangular LED lamps provide a lighted
surface area 2 x 5 mm. The High Efficiency Red
and Yellow solid state lamps contain a gallium
arsenide phosphide on gallium phosphide light
emitting diode. The High Efficiency Green Lamps
utilize an improved gallium phosphide light
emitting diode.
FEATURES
.295 ± .010
17.501
•
..
•
•
..
2 x 5 mm lighted area
Stackable in X or Y direction
High brightness-typically 4 mcd at 20 mA
Solid state reliability
Compact, rugged, lightweight
APPLICATIONS
•
•
•
•
1.000 MIN.
_J
125.41
Legend backlighting
Illuminated pushbutton
Panel indicator
Bargraph meter
m_+-"·0",,SO,-,1.27) NOMINAL
.020 ± .003
10.511
.049
11.241
t
NOTES:
1. ALL DIMENSIONS ARE IN INCHES (mm)
2. TOLERANCES ARE ±O1O" INCH UNLESS
SPECIFIED
3. AN EPOXY MENISCUS MAY EXTEND ABOUT
.040" (lmm) DOWN THE LEADS. THE BASE
OF THE PACKAGE IS NOT FLAT
C1667A
ABSOLUTE MAXIMUM RATINGS (TA = 25°C Unless Otherwise Specified)
Power dissipation •••...•••.•••.....••.•.•..•••.•••••....•.•.•.••....•...
Derate linearly from 500 C ••.•••.•...•.••••..•...••••.....•.••.••..•.•..•.
Storage and operating temperatures ..................................... .
Peak forward current (1 ~sec pulse width 300 pps) ....................... ..
Forward current •••••••.•••..••.....•.•..••.......••....•.•.•..•...•..•.
Lead soldering time at 2600 C (See Note 1) •...••.••.•.•....•..•..•••....••
Reverse voltage ••••••...••.....•...•••......••.••.•.....•••.•....•.•..•.
MV53123
MV57123
MV54123
120 mW
120 mW
1.6 mW/oC
1.6 mWrC
-55° C to +100° C -55° C to +1000 C
1.0A
90 mA
35 mA
30 mA
5 sec.
5 sec.
5.0V
5.0V
357
MV53123 MV54123 MV57123
ELECTRO OPTICAL CHARACTERISTICS (25 0 C Unless Otherwise Specified)
TESTCOND.
PARAMETER
Forward voltage (VF)
typo
max.
Luminous Intensity
(See Note 2) min.
typo
Peak wavelength
half width
Capacitance
typo
Reverse voltage (VR)
min.
Viewing angle (total)
UNITS
MV53123
MV54123
MV57123
IF =20 mA
IF =20 mA
V
V
2.1
3.0
2.2
3.0
2.0
3.0
IF =20 mA
IF =20 mA
mcd
mcd
nm
nm
1.0
4.0
585
45
1.0
4.0
562
30
1.0
4.0
635
45
pF
45
20
45
V
degrees
5.0
100
5.0
100
5.0
100
IF = 20 mA
V=O, f= 1 MHz
IR = lOOI'A
TYPICAL ELECTRO-OPTICAL CHARACTERISTICS CURVES (250 Free Air Temperature)
100
DOTTED LINES.!
90 INDICATE-- YELLOW
PULSED
::; 80 OPERATION
"
E
I-
I
z
70
0
50 f - -
w
W,f,I
I
100%1--l----'i--!-hrt~h.+-+---1
#-
I
.:. 80%
HIGH ......... II
a: 60 f - a:
-EFFICIENCY",
::J
"a:
40
~
30
l<
20
0
u.
RED
::J
-30
o
DC
Cl194B
Fig. 3. Luminous Intensity vs.
Duty Cycle
:/
:/
:/
-
/
o
20
40
60
80
INSTANTANEOUS FORWARD
CURRENT IF(mA)
C652A
140
%\'
~12D %
....a.
::J
o
~ 100
;::
0(
...J
W
~
80
r\.
""- ~
" ""',
60 %
-60 -40 -20 0 20 40 60
TEMPERATURE - • C
Fig. 4. Luminous Intensity vs.
Forward Current
'"
80 100
C654A
Fig. 6. Output VS. Temperature
NOTES
1.
2.
358
The leads of the device immersed in molten solder, heated to a temperature of 2600 C, to
body of the device per MIL-S-750, with dwell time of 5 seconds.
As measure with a Photo Research Spectra Corp. Microcandela Meter (Model IV-D).
a point 1/16 inch (1.6 mm) from the
HIGH EFFICIENCY RED
YELLOW
HIGH EFFICIENCY GREEN
PACKAGE DIMENSIONS
DESCRIPTION
sa D1al045}+§
NOMINAL
2 PLACES
315(800)
.290(737)
I
t--
t!
i
TOO(25'}
~90 (2 29)
'0:0 (~54) NOMINAL
(_295(749) __ :
I
275(699)
I
_
HLMP-0300/1
HLMP-0400/1
HLMP-0503/4
I
:
The HLMP-OXOX Series of rectangular lamps
are direct replacements for Hewlett-Packard's
series with the same part numbering. The
series is similar to MV5X123 except for the
larger lens size. Like the MV5X123, the HLMPOXOX is stackable. The lamps are tinted
diffused and intended for direct view.
CATHODE
FEATURES
100(254)
MIN
NOTES:
1. ALL DIMENSIONS ARE IN INCHES (mm)
____I
050 (1 27) NOMINAL
ANODE _ . U ._ _- . - _
2.
TOLERANCES ARE ±010" INCH UNLESS
SPECIFIED
3.
AN EPOXY MENISCUS MAY EXTEND ABOUT
.040" ('mm) DOWN THE LEADS. THE BASE
OF THE PACKAGE IS NOT FLAT
•
•
•
•
3 High Efficiency colors
Stackable in both directions
Rectangular light area
Inexpensive panel indicators
C1730
PHYSICAL CHARACTERISTICS
DEVICE
HLMP-0300
HLMP..(J301
HLMP..Q4()O
HLMP-Q401
HLMP-Q503
HLMP-Q504
SOURCE
COLOR
High Efficiency Red
High Efficiency Red
Yellow
Yellow
High Efficiency Green
High Efficiency Green
LENS
COLOR
Red Diffused
Red Diffused
Yellow Diffused
Yellow Diffused
Green Diffused
Green Diffused
LENS
EFFECT
Very Wide
Very Wide
Very Wide
Very Wide
Very Wide
Very Wide
Beam
Beam
Beam
Beam
Beam
Beam
Iv MIN. AT
20mA
1.0
2.5
1.5
3.0
1.5
3.0
ABSOLUTE MAXIMUM RATINGS (TA
= 25° C Unless Otherwise Specified)
Power dissipation at 25° C ambient ............................••.••.........•.•.•...........•..•.. 135 mW
Derate linearly from 25° C ..................•..•........•.••.......•.......•.........•.........• 1.6 mW/o C
Storage and operating temperatures .............••......•..........•..•..•............... . -55° C to +100° C
Lead soldering time at 260° C (See Note 2) ...•..•.•........•••.......•........•.•.•......•...•..•.... 5 sec.
Continuous forward current at 25° C ..•.....•.•...•........•.....•................................... 30 rnA
Peak forward current (1!,sec pulse, 0.3% OF) .••.•..•.•.....•..•......•..•.......•.•......•.......•.... 1.0 A
350
HLMP-0300/1 HLMP-0400/1 HLMP-0503/4
ELECTRO-OPTICAL CHARACTERISTICS (TA=2SoC
Unless Otherwise Specified)
HLMPYELLOW
HI. EFF.RED
PARAMETER
HI. EFF. GREEN
SYMBOL
0300
0301
0400
0401
0503
0504
UNITS
TEST CONDITIONS
Luminous Intensity
(See Note 1)
min.
typo
Iv
1.0
2.5
2.5
5.0
1.5
2.5
3.0
5.0
1.5
3.0
2.5
5.0
mcd
mcd
IF=20 rnA
IF=20 rnA
Forward voltage
max
typo
VF
3.0
2.1
3.0
2.1
3.0
2.2
3.0
2.2
3.0
2.3
3.0
2.3
V
V
IF=20 rnA
IF=20 rnA
Peak wavelength
typo
Ap
635
635
585
585
565
565
nm
IF=20 rnA
Spectral line
half width
typo
J.A/2
45
45
35
35
35
35
nm
IF=20 rnA
Capacitance
typo
C
45
45
45
45
20
20
pF
VF=O, f= 1 MHz
Reverse breakdown
voltage
min.
BVR
5
5
5
5
5
5
V
IR=100"A
typo
2(')112
100
100
100
100
100
100
degrees
Total viewing angle
between half Luminous
Intensity points
TA = 25'C
...
7
>iii-
40r--r~--1-~~~~-1~
~E
~
30r--r~--;'~-7~~~~
:::lu.
20~~-1-,~.f--t-~-4--4
zm
:iE"
:::l:!l
W
3
-'"
(1)11
o
II:
~ 10r--r~r+~-+--r--r~~
f2
1.5
0-
1.0
V
...J=
~~
~5
0.5
...J
W
a:
0.0
1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
FORWARD VOLTAGE (WI - VOLTS
130
/
z<
Zo
II:
II:
2.0
r
/
a
120
~
1""-..
_110
>-u
~~100
V
fE ca
r"
r---..
90
""- ~
~.~ 80
Wo;
~ E 70
~~
a:
"
50
10
20
40
30
FORWARD CURRENT -IF 'rnA,
C1063C
·55
-25
25
50
75
100
TEMPERATURE - TA I'CI
C1671
C1676
Fig. 1 Forward Current vs.
Forward Voltage
"
60
Fig. 3. Relative Luminous Intensity
vs. Temperature
Fig. 2. Luminous Intensity vs.
Forward Current
100 1--±=:I""7'
i= 40 j--++-t-I-l-'H-+-t--++-t--l
S
W
a: 20 j--..Jf--lJ--+-+lf--'oH--+-+r--l
540 560 580 600 620 640 660 680
WAVELENGTH (AI - nm
Fig. 5. Spectral Distribution
(·)-OFFAXIS ANGLE-DEGREES
Cl776
C1064
Fig. 6. Spatial Distribution
NOTES
1. As measured with a Photo Research Corp. "SPECTRA" Microcande/a Meter (Model IV-D).
2. The leads of the device were immersed in molten solder, at 26DoC, to a point 1/16 inch (1.6mm) from the
body of the device per MIL-S-7SD, with a dwell time of S seconds.
360
MV53124A
MV54124A
YELLOW
HIGH EFFICIENCY GREEN
HIGH EFFICIENCY RED
HIGH EFFICIENCY GREEN/AlGaAs RED
DESCRIPTION
PACKAGE DIMENSIONS
The MV5X124A Series of rectangular high
performance LED lamps with reflector cap has
been engineered for much improved light
uniformity which is especially important in direct
view and legend backlighting. Includes a
Green/Red version-MV49124A. The Green chip
is the same as is used in MV54124A, while the
Red chip is AIGaAs at 660 nm to achieve a bright
Dark Red color in the non-tinted diffused epoxy.
---------.I
L
D
.245
r--(6.22)~
T
'12.5
(3.17)
~
D~"
T
.145
(3.68)
'~
J
, ""'-LIGHTED
AREA
.225 ----I
I' - - - (5.71)
- I
O
T
-r45
(3.68) NOM
.280~: 11
r,~.-~-,.-,,~"j";
1,,000","
REFER~E
MARK MAY
CONTAIN ANY
NUMBER BET~EEN
CATHODE
.800 MIN
(2032)
r':1
I
~l
+
Ll.J
1AND16
---.j~
: ___
I 1-
r
:
...J..!L
(2.54)
MV57124A
MV49124A
j.-.020 sa TYP
(.508)
.050 (1.27)
NOMINAL
NOTES:
1. ALL TOLERANCES ARE
.008 INCH (0.20)
2. ALL DIMENSIONS IN
INCHES (mm)
T
FEATURES
• Uniform illumination
• Increased typical brightness.
• Tighter mechanical tolerances for base of
design
• Stackable in X or Y direction without
crosstalk
• .220" x .125" lighted area for direct view or
legend backlighting
• Use Black MP65 two piece grommet for panel
mounting
• Superior quality
APPLICATIONS
• Legend backlighting
• Panel indicator
• High quality bargraphs
C1245B
ABSOLUTE MAXIMUM RATINGS
PHYSICAL CHARACTERISTICS
(TA = 25°C Unless Otherwise Specified)
PARAMETER
Power dissipation
Continous forward current
Peak forward current
(11'5,0.3% DF)
Lead soldering time
at 260·C
Operating and storage
temperature
All DEVICES
UNITS
NOTES
120
30
90
mW
mA
mA
1
5
seconds
2
TYPE
MV53124A
MV54124A
MV57124A
MV49124A
SOURCE COLOR
LENS EFFECT
Yellow
High Eff. Green
High Eff. Red
High Eff. Greenl
AIGaAs Red
Yellow Diffused
Green Diffused
Red Diffused
White Diffused
-55· to + 100·C
NOTES
1) Derate linearly from 25·C at 1.6 mWI·C.
2) From a point 1/16 inch (1.6mm) from the bottom of lamp.
361
MV53124A MV54124A MV57124A MV49124A
ELECTRO-OPTICAL CHARACTERISTICS (25°C Temperature
Luminous
Intensity
Forward voltage
Peak wavelength
Spectral line
half width
Reverse voltage
Reverse current
Capacitance
Viewing angle
(total)
MY
53124A
MY
54124A
MY
56124A
MY
57124A
MY
49124A
UNITS
TEST
CONDo
>.p
1.0
6.0
2.0
3.0
585
1.0
6.0
2.2
3.0
562
1.0
6.0
2.0
3.0
605
1.0
6.0
2.0
3.0
635
1.0
6.0
2.2
3.0
562/660
mcd
mcd
V
V
nm
IF= 20 mA
IF =20 mA
IF=20 mA
'F =20 mA
IF=20mA
V8R
IR
C
45
5
100
45
30
5
100
20
45
5
100
45
45
5
100
45
30/45
5
100
20/30
nm
V
IlA
pF
IF=20 mA
IR = 100llA
VR =5.0V
V= 0, f= 1 MHz
2B'h
100
100
100
100
100
degrees
SYMBOL
PARAMETER
min.
typo
typo
max.
Iv
VF
min.
max.
Unless Otherwise Specified)
NOTES
3
3
NOTE
3) As measured with a Photo Research Corp. "SPECTRA" Microcandela Meter (Model IV-D).
TYPICAL ELECTRO-OPTICAL CHARACTERISTICS (25°C
Temperature Unless Otherwise Specified)
~
f-
zw
c: 60
c:
0
Q.
;;;1.5
w
>
;:: 40%
:sw
20
f-t++I-H-HI+-IrH-t--'H
c: 20% I-f--+l-+-ttl--\I-I'-++t--t-~
>
;::
:sw
c.
c.
IS
1'\
'"
FOWARD VOLTAGE VF (VOLTS)
C1831E
Fig. 1. Forward Current vs.
Forward Voltage
1
10
IF
~'\
~
~~.O
iii
zw
f-
:!::2.0
en
:::J
o
z
:E 1.0
:::J
...J
l./
o
o
V
!/
V
V
/'
20
60
40
80
INSTANTANEOUS FORWARD
C652A
CURRENT IF(mA)
Fig. 4. Luminous Intensity vs.
Forward Current
I'\..
!; 120'y,
'"
Q.
f-
:::J
o
g;!100 'A
;::
«
...J
w
~
.........
"-
"
,
80
.
r-.
20
40
DUTY CYCLE - %
10 rnA AVERAGE
140'
I
u.
"'I-DC
C11948
Fig. 3. Luminous Intensity vs.
Duty Cycle
Fig. 2. Spectral Distribution
4.0
w
c:
~
10
520540 560 580 600 620 640660 680 690 700
WAVELENGTH (hp)-nm
Cl064F
d
'- ....
c:
OULLL~LL~~~~-L~~
362
~
z
c: 40
«
3: 30
'"«w
.
\
f-
:::J
0 50
0
u.
~
~
iii
zw
70
60'\1
-60 -40 -20 0
20 40 60
TEMPERATURE - 'C
"'80
100
C654A
Fig. 5. Output vs. Temperature
PRELIMINARY DATA SHEET
TAPE AND REEL
PACKAGE DIMENSIONS
B
A
---
TAPE FEED
DIRECTION
-I
'-----_ _ _ _-----'J
C1834A
H
Ho
Wo
W
W,
W2
P
Po
d
F
..lh
L
A
16.5
18.5
22.5
-
B
C
16.5
18.5
22.5
22.5
16
-
D
22.5
16
6.0 + 0.3
18.0 + 65
9.0 + 00';
<0.5mm
12.7 + 0.3
6.35 ± 1.0
4.0 ± 0.2
2.54 + g; 5.08 +
+2°
11.0 MAX
FEATURES
• Automatic PCB assembly of most T-1% and
T-1 with radial lead insertion machines
• Meets ANSI/EIA standard RS-464 (1981
• Standard .100-inch lead spacing or preformed
to .200-inch
• Choice of H = 16.5, 18.5 or 22.5 mm
• Standard reel
• T -H'4; MV5X5X, MV5X9XA, GIOD HLMP-3XXX
• T-1; MV5X6XX, GIOD HLMP-1XXX
g; 2.54 + g; 5.08 + g;
All dimensions in mm
363
MP22 MP52
PACKAGE DIMENSIONS
DESCRIPTION
The MP Series of mounting grommets is intended
for panel mounting of any standard T-1¥. General
Instrument light emitting diode indicators. The
grommets are made of plastic and are available in
Black only.
The MP Series will easily mount the applicable
lamps on any panel thickness up to .125-inch (3.18
mm).
rn
I
1_ . , ,
_II
TYPICAL MOUNTING TECHNIQUE
FOR EITHER TYPE
ICo,"
l 1.IID"",,1
.J
II H,,,,,,,lllIA
1_ _ _
11,11
___
MP22 TWO-PIECE POP-INS FOR MV5X2X
PANEL MAX .125"
13.18mml
'-""'-h
""".... ,,,.,
I ~ 250-1
-m
mm
11635mml DIA
I
STRIA~GHT
L
310"
265
1673mml
~
___1
1787m,nlDIA
at
I 635ml111
C621
MP52 TWO·PIECE POp·INS FOR MV6X5X AND MV5X5X
364
C602
MP65
DESCRIPTION
PACKAGE DIMENSIONS
r ,- - - - - - -,
The MP65 mounting grommet is intended for panel
mounting the MV5X124 Series of rectangular
lamps. The grommets are made of Black plastic
and provide the user with an easy-to-mount,
professional appearance when viewed on a front
panel.
i - - - .3'0·· ------.J
I
19.40mml
I
I
D
I'
W
~------------rl
I
.270"
(a.aLamm,
I
I
The MP65 can be used on any panel thickness up
to .125-inch (3.18 mm).
L _____________ .J
'=-------------_-:1
MATTE FINISH
TOP VIEW OF GROMMET
m::.ru1..mml......J
-I
.120"'3.0SmmJ
I.......-
075" 11 91 mml---l
.072"11 B3mm)
c:;:::f::'=====~
-I
'---
1-
c;:t:,===h=l
SIDE VIEW OF GROMMET
END VIEW
OF GROMMET
I.--- f9.40mml
.3'~· -------l
I
I
fDl
I
I
304··
~17:72mml~
TOP VIEW OF RING
1
.200"
...L...Jlmm'
L..J'--_ _ _ _ _ _
sIDe VIEW OF RING
MATERIAL: POLYPROPYLENE BLACK
PANEL HOLE PUNCHING
Punches can be ordered from one of the follow- 'wing sources:
W. A. WHITNEY COMPANY
650 Race Street
Rockford, IL 61105
(815) 964-6771
(Request a 28xx series punch with
dimensions of 5/16" x 7/32")
ROTEX PUNCH COMPANY, INC.
2350 Alvarado Street
San Leandro, CA 94577
(415) 357-3600
(Request a 3506 series punch with
dimensions of 5/16" x 7/32")
C1455
365
366
Applications
5
367
368
Applications Index
Page
371
Number
AN601
The Photometry of LED's -
AN603
Improper Testing Methods for LED Devices
375
AN1071
Optocoupler Input Drive Circuits MCT270 Series
379
ANi 074
Low Current Input Circuit Ideas 6N139/138 Series
385
AN1075
MID400 Power Line Monitor
389
AN3000
Applications and Operation of Optologic
401
A Primer in Photometry
369
370
GENERAL
INSfRUMENT
ANSOl
The Photometry of LED's
A Primer in Photometry
REVIEW OF GEOMETRIC PRINCIPLES
Any short discourse on the subject of photometry requires
a brief review of geometric principles utilized.
RADIAN
In plane geometry the angle whose arc is equal to the radius
generating it is called a radian. Therefore, if C = 211R (Circumference of a circle) 211R = 360°. Radian = 180°/11 =
57.27° (approx.)
Other abbreviations of immediate concern are:
Ae = Area of emitting (or reflecting) surface.
Ap = Apparent area of an emitting source whose image
is projected in space and viewed at some angle, 8.
Ad = Detection area. Whether a physical target or
merely a defined spatial area, it is the area of
interest.
PHOTOMETRIC TERMINOLOGY
FLUX (Symbol F)
Any radiation, whether visible or otherwise, can be expressed by a number of FLUX LINES about the source, the
number being proportional to the intensity of that source.
This LUMINOUS flux is expressed in LUMENS for visible
radiation.
LUMINOUS EMITTANCE (Symbol L)
TWO DIMENSIONAL FIGURE
FIGURE 1
STERADIAN
In solid geometry one steradian is the solid angle subtended
at the center of a sphere by a portion of the surface area
equal to the square of the radius of the sphere. Therefore, if
AR EA/R2 = 1 = 1 steradian and the area on the surface of a
sphere equals 411R 2 , then 411R2 /R2 or 411 steradians of solid
angle w about the center of a sphere. The steradian is
usually abbreviated as STER.
A source measurement parameter. It is defined as the ratio
of the luminous flux emitted from a source to the area of
that source, or L = F/Ae. Typically expressed in units
of:
l.umens/cm 2 or one PHOT,
lumens/m 2 or one LUX (or one METER CANDLE),
lumens/ft> or one FOOT CANDLE.
The foot candle is the more common term used in this
country.
FIGURE 3
THREE DIMENSIONAL FIGURE
FIGURE 2
371
ILLUMINANCE (Symbol EI
This is a target or detector area measurement parameter. It
is the ratio of flux lines incident on a surface to the area of
that surface or E = L/Ad. Typical measurement units are
the same for LUMINOUS EMITTANCE (abovel i.e.
lumen/cm 2 = one phot, lumen/m 2 = one lux, and lumen/ft 2
= one ft. candle.
0.1 the distance to the detector, it can be considered as an
area source. If less than this 10% figure, the source roan be
treated as point in nature. This one to ten ratio of source
diameter to distance is offered as it MATHEMATICALLY
very closely approximates results obtained when comparing
an area source to its point equivalent. LUMINANCE
presents itself as an extremely useful parameter as it applies
a figure of merit to:
1. Apparent or protected area of the source (ApI.
2. Amount of luminous flux contained within the projected area of the source (ApI.
TARGET OR
DETECTOR AREA
3. Solid angle the projected area generates with respect
to the center of the source.
NOTE: The projected area Ap varies directly as the cosine
of e i.e. max. at 0° or normal to the surface and minimum
at 90°
Ap= Ae cose
FIGURE 4
LUMINANCE is defined as the ratio of LUMINOUS IN·
TENSITY to the projected area of the source Ap.
LUMINOUS INTENSITY (Symbol I)
A spatial flux density concept. It is the ratio of luminous
flux of a source to the sol id angle subtended by the
detected area and that source. The LUMINOUS IN·
TENSITY of a source assumes that source to be point
rather than an area dimension. The LUMINOUS
INTENSITY (or CANDLE POWERI of a source is measured
in LUMENS/STERADIAN which is equal to one
CANDELA (or loosely, one CANDLE).
FIGURE 6
LUMINOUS INTENSITY
Ap
POINT SOURCE
FIGURE 5
LUMINANCE (Symbol BI
Sometimes called photometric brightness (although the
term brightness should not be used alone as it encompasses
other physiological factors such as color, sparkle, texture,
etc.1 it is applied to sources of appreciable area size.
Mathematically, if the area of an emitter (circular for
example) has a diameter or diagonal dimension greater than
372
LUMENS
STERADIAN CANDELAS
Ae cos e
- (Sq. Unitl
And depending on the units used for area:
1 CANDELA/cm' = 1 STILB
1 CANDELA/m' = 1 NIT
1 CANDELA/in' = I
.
.
1 CANDELA/ft' = I no designator available.
Also:
1hr candela/cm'
lhr candela/m'
l/rr candela/in'
l/rr candela/ft'
LAMBERT
APOSTILB (or BLONDELl
no designator available
FOOT LAMBERT
CIE CURVE
Following is the standard observer curve or "standard eyeball" established by the Commission Internationale de l'Eclair
(commonly called the CIE curve). Whereas one watt of radiated energy at any frequency corresponds to one watt of radiated
energy at any other frequency, this relationship fails to hold true for photometric measurement. The CIE curve is essential
therefore, not only in determining the eye's efficiency at any particular wavelength, but also the corresponding lumens per
watt conversion of that particular wavelength.
For example, the MV5020 which emits 180 IlW of radiant energy at 6600A (typical) or 41.4 lumens per watt has
180 x 10-6 watts x 41.4 lumens ·=7.45 mLumens
watt
of flux emitted from it.
700
650
/
600
cr:
0
/
550
U
500
Z
450
0
~\
I
\
\
I
I
en
cr:
400
>
Z
350
I
I
I
W
U
I- 300
I-
«
250
z
200
:2:
::J 150
...J
100
50
360
I
-
/
/
I
z
\
w
w
cr:
~
400
420
440
460
,
-50%
\
C')
U'l
"
::i!
/
0
'\
I
w
~
\,
I
I
I
I
I
I
I
,/'
380
-
0
500
520
540
560
-25%
N
0
U'l
>
::
\,v
~
I
480
-75%
\
I
W
o
I
1
I
0
~
en
-100%
"
I
I-
«
LL
v
580
600
620
640
WAVELENGTH - nm
660
~
680
700
710
720
740
0%
C1146A
Similarly, a green emitter such asthe MV5453 operating at an identical input power as the red will emit 10 /Jwatts of radiant
energy or
10
X
10-6 watts x 649 lumens = 6.49 mLumens
watt
of flux emitted from it. In short although there exists at least an order of magnitude difference in radiant power the eyes' compensating effect "magnifies" the green to appear equally bright.
373
LUMINOUS INTENSITY versus LUMINANCE
The successful application of either measurement parameter as a yardstick to duplicate mathematically the visual stimulation
experienced by an observer is a controversy which will probably rage for some time. As the entire electromagnetic spectrum
is bounded only by the capabilities of a detector to discern it, so for within the visual spectrum the eye is the limiting factor.
SUBJECTIVELY speaking, the eye can discern finer increments of arc (computed from target to eye) than a 1 to 10 relationship, or approximately 5° 43 min. In fact, it can be shown that for view angles of much less than 2 minutes, the eye translates
the source into a point and thus the photometric measurement of LUMINOUS INTENSITY (in candelas) most directly correlates with subjective brightness. For view angles of much greater than approximately 2 minutes, the eye sees the source as an
area source, and thus the photometric measurement of LUMINANCE most directly correlates with subjective brightness. A
two minute view angle computes to a 1/1666 ratio of source diameter to distance ratio. For the MV5025 this computes to
approximately 22 feet (1666 x .16" diameter, approximately 22 feet) well within the expected normal viewing distance of
an observer.
~1
El
= 5° 43"
10
Dimensional criteria for
Photometric appro)(imation
9]1
El
=
2"
1666
FIGURE 1
Considering that the usage of the discrete MV5025 LED is as an indicator and as such is utilized arms length or approximately
30" away, it can be seen that the LUMINANCE parameter and its basic unit, the FOOT LAMBERT, most closely correlates
with subjective brightness.
RADIOMETRY
While photometric units are concerned with only the visible spectrum of wavelength, all frequencies of emission, including
the visible nre expressable in RADIOMETRIC terms. Radiometric terms and their photometric equivalents are as follows:
RADIOMETRIC
PHOTOMETRIC
Radiant flux (Symbol P) expressed in watts
Irradiance (Symbol H) expressed in watts/sq. unit
Radiant Emittance (Symbol W) expressed in watts/sq. unit
Radiant Intensity (Symbol J) expressed in watts/steradian
Radiance (Symbol N) expressed in watts/ster/sq. unit
Luminous flux (F) expressed in lumens
Illuminance (E) expressed in lumens/sq. unit
Luminous Emittance (L) expressed in lumens/sq. unit
Luminous Intensity (Symbol I) expressed in lumens/steradian
Luminance (B) expressed in lumens/ster/sq. unit
374
GENERAL
INSfRUMENf
AN603
Improper Testing
Methods for LED Devices
In any manufacturing operation it is essential that the
materials used in the fabrication process meet the min·
imum quality specifications of the device under produc·
tion. To that end, prudent manufacturers establish some
sort of incoming quality assurance system to make sure
that defective materials are culled at the door. It is
equally important, however, that the screening system
used in the a.A. inspection does not reject materials
which are acceptable, and that the testing procedures
utilized in -the system do not inadvertently damage
materials which are otherwise acceptable. Unfortunately,
this latter aspect of quality assurance procedures is often
neglected, and whenever a device is rejected because of
inappropriate testing methods, both the manufacturer
and the vendor are subject to a great deal of unnecessary
expense and inconvenience. Because many manufac·
turers who buy LED components are relatively inexper·
ienced with the features and limitations of III·V devices,
problems involving improper testing methods and unnec·
essary materials rejection are of particular concern to
LED vendors. This note is intended to familiarize the
user with the basic electrical and opto·electrical proper·
ties of LED devices and to clear up some of the
problems involved in testing them.
semiconductor Energy·Band Theory. When an external,
forward·biasing voltage is applied to a p·n junction, the
conduction mechanism is such that electrons are excited
by the electric field, gaining enough energy to cross the
energy gap from the valence band to the conduction
band, and then to relax back from the conduction band
into the valence band. During the transition from the
valence band to the conduction band, the electrons take
energy from the field. As they pass back into the valence
band, the electrons release this energy in the form of
light photons. The amount of energy released is deter·
mined by the width of the energy gap. (The wavelength,
or color, or the light is a function of the energy gap.)
The light is emitted directly from the electrons within
the depletion region formed between the two sides of
the junction.
The electrical characteristics of LED's are also related to
the energy gap. For example, the conduction threshold,
or "knee" point on the ItNt curve in the forward·biased
direction occurs at approximately 1.0 volts for infrared
LED's, at approximately 1.3 volts for visible red LEO's,
and from 1.B to 2 volts for yellow and green LED's. The
brightness of the light is directly proportional to the
operating current flowing in the forward direction.
THE MATERIAL
GALLIUM VS. SILICON
As a semiconductor, III-V compounds using Gallium
have several advantages over silicon and germaniumreverse leakage current is several orders of magnitude
lower; forward current is lower below the "knee" point;
inherent thermal noise is lower; and carrier mobility is
high. Perhaps the greatest advantage, certainly where
LED's are concerned, is the ability to produce light di·
rectly from electron flow.
Historically, silicon and germanium were the first semi·
conductor materials to have been used for p·n junction
devices such as transistors, diodes, and solar cells. How·
ever, following closely upon the invention of the ger·
manium transistor in 194B, work was begun on predict·
ing the semiconductivity of a material from its chemical
compound. Based on energy band·gap experimentation,
it was discovered that III·V materials have semiconduc·
tor properties. 1
Gallium semiconducting materials, Gallium Arsenide
(GaAsl. Gallium Arsenide Phosphide (GaAsPl. and Gal·
lium Phosphide (GaP) are the materials from which
LED's are fabricated. These materials have the ability to
emit a narrow band of monochromatic light in either the
visible or infrared spectrum, depending on the constit·
uent and ratio of ingredients. The mechanism for this
emission of radiant energy is best described in terms of
1 E.G. Bylander, Materials for Semiconductor Functions (New
York, 1971), p.17.
Figure 1 shows a comparison between the forward con·
duction characteristics of diodes formed from III·V
materials and silicon. Notice that the "knee" of the con·
duction curve for the Gallium diodes occurs at higher
voltages, and is harder than the "knee" of silicon diodes.
Notice also that as the wavelength progresses from the
infrared toward the blue end of the spectrum, the GaAsP
"knee" points get progressively higher and the slope of
the If IVf curve tends to decrease. Excluding exotic
devices such as Schottky or Esaki diodes, silicon diode de·
375
600
TA 1= 25"C
500
/
'ii
.3
~ 400
z
in
Si
'.
V
G
V: 2 rnA/DlV
H: O.6V1DIV
~ 300
.,;!;::J
I
I
0
z 200
V
i
::J
-'
I
J
100
J
10
20
30
40
50
60
FORWARD CURRENT PER SEGMENT 'mAl
C449
Fig. 2. Typical LED Curve
Luminous Intensity vs. Forward
Current for Constant Temperature
150
IF =20mA
130
...........
~
~ 110
...........
:I:
C1
~
90
~
a:
70
.............
..........
r--....
>
FORWARD VOLTAGE NIl-VOLTS
11<
Fig. 1. Typicallf/Vf Curves of Silicon, GaAs, and GaAsP, GaP
(Silicon·IN914,IR-ME1024, Red·MV5053,
Yellow-MV5353, Green-MV5253)
50
~55
-25
25
50
AMBIENT TEMPERATURE lOCI
75
100
C450
Fig. 3. Typical LED Curve
Brightness vs. Temperature
for Constant Current
vices normally show little difference in the forward conduction curve.
The reverse characteristics of III-V materials are similar
to those of silicon except that silicon's thermal leakage
current is higher at very low reverse voltages. The reverse
breakdown voltages of silicon are typically higher, and
the characteristics of silicon devices are usually controlled for reverse breakdown at particular voltages. The
reverse breakdown characteristics of diodes used in LED
devices are not particularly controlled, since the quality
of light emission is the first priority. The MANX and
MANXX series displays use LED's which have a typical reverse·mode breakdown voltage range of from 5
to 20 volts. However for guard-band purposes, the reverse voltage is specified on the data sheets at 5 volts
minimum.
If a silicon device is subject to junction damage, it will
often continue to perform adequately because of silicon's inherent annealing capability. When damage
occurs to the junction of an LED device, however, the
result is usually a softening of the "knee" or a flattening
of the IfNf curve. Although the device may continue to
operate, performance will be less than satisfactory, and
early failure may result.
376
DAMAGE MECHANISMS
The discussion which follows will treat, in some detail,
the most common errors in LED test set-ups and will
suggest either alternative testing methods or means by
which improper testing methods can be corrected to
produce more reliably accurate results.
Testing for Fabrication Defects
Thermal Shock-is a passive mode test involving a rapid
refrigerate/heat cycle in which no current is applied to
the device. This test is a good method for detecting weak
bonds and, therefore, locating defective devices, but it
should be used cautiously, especially with LED's. In
LED's a 1-mil gold wire is bonded from the top of the
die over to the side contact, whether it is lead frame or
substrate. The wire is surrounded by the epoxy which
encloses the die and forms the package. When heat is
applied, the epoxy, the gold, and the lead frame all
expand at different rates. Thus, when the device is
heated up too rapidly, the effects on the bond are
similar to giving the wire a hard jerk. This action
constitutes thermal shock and tends to weaken even
good bonding and, consequently, shorten life expectancy.
Burn-tn-consists of operating the device at elevated
temperatures, thus accelerating the effects of opera·
tionally imposed heating. This method is frequently used
in testing semiconductors, but its use is not advised with
LED's, especially if the testing involves operating with
excess current or current which exceeds the device
ratings for several hours. LED's exhibit a gradual degradation of brightness as a function of current, time, and
EXCESSIVE IF
>l00mA
I
NOTES:
AI NORMAL FORWARD IFNF CURVE
B) DAMAGE OCCURRING TO JUNCTION
WHILE REVERSE BIASED
CI PARTIALLY DAMAGED JUNCTION
D) DEFECTIVE OR HEAVILY DAMAGED
JUNCTION
- ---'- + [TEST BENCHMARK
T VF, < VF IMAX) .IF, ITESTIl
A
/
I
Ie:
",/
,;.-
/'.
•
: VF l
AVALANCHE
EXCESSIVE IF! > IOpA
FORWARD AND REVERSE
NOT TO SAME SCALE
<451
Fig. 4. Effects of Improper Testing Procedure
POWE R SUPPLY
(VOLTAGE REGULATED!
SCOPE
C452
Fig. 5. Potentially Damaging Forward·Mode Test Setup
temperature, and the higher the current, the faster the
degradation. The graphs in Figures 2 and 3 illustrate
typical LED responses to forward current and temperature. Exceeding the rated parameters in test can result
in rapid degradation beyond an acceptable level. For the
same reasons, burn-in is particularly inadvisable with
LED's if the test set·up involves slow on-off cycles of
overcurrent (cyclic room temperature to high temperature and then cooling).
Thermal Cycling-is an on·off cycling method which
simulates operational heating effects. The device is
allowed to heat up from room temperature with rated
current, and is then cooled down. Thermal cycling is an
excellent method for finding defective devices (poor
bonds, fractures in the metalization, voids in the die·
attach, etc.), and its use is recommended for testing
LED's. Too often, such thermal cycling occurs in actual
use, and defects are detected too late. However, to
insure against exceeding the rated capabilities of a
particular device, a thermal cycling test program (or
operational program) should not be established without
factory guidance.
Reverse Conduction Mode Problems
Reverse voltage testing can be hazardous since it may
involve a system capable of delivering voltages and
currents which considerably exceed the reverse voltage
and power ratings of the device under test. Too much
current at the avalanche voltage will dissipate excessive
power, resulting in heat which will degrade the junction
rapidly. The importance of adequate current limiting
cannot be over·emphasized. Without it, damage to the
junction can result from testing into the avalanche
region and/or from the sudden application of voltage
which exceeds the rated avalanche breakdown voltage of
the device. Damage in the avalanche region is usually the
result of an improperly set testing apparatus. As Figure 4
indicates, damage may not be immediately apparent, but
it could result in poor performance during other test
situations and possible rejectioll of the device due to
excessive voltage or current values.
Forward Conduction Modc Problems
Forward mode testing is USI!d to check such performance
criteria as the forward V/1 curve of the diode, brightness,
ROP, and luminescence. The potential danger in examin·
ing the forward curve is dama[Jc to the diode junction,
since the test circuitry can sometimes deliver very high
energy bursts. For example, if a 50-volt regulated power
supply is set for 5 volts to supply the test fixture, and if
power is supplied through a switch as shown in Figure 5,
it is possible to deliver current pulses of a high enough
amplitude to result in junction damage. This problem is
easily avoided by supplying low voltage power with
current limiting to the test fixture. Another acceptable
method, and the one which is used by General Instrument quality assurance engineers, is to use a power
supply which is both full voltage regulated and current
limited.
377
RADIOMETRIC
DETECTOR
RESPONSE
800
900
1,000
WAVELENGTH (ll - nm
1,100
C<53
Fig. 6. Responses of Two Detectors to the
Output of a Visible Red LED
Brightness Tests
Optical measurements are typically, and in most instances, unavoidably, of very low accuracy. Optical measurements with errors of less than 1% are rare, and accuracy
within 5% i~ difficult to obtain. With an experienced
technician using good equipment it is possible to secure
accuracy within 10% to 20% on a routine basis, but even
here a slight difference in technique can result in errors
in excess of 50%.
Detectors-A goud detector approximates the CI E curve
area with 2%. However, it is important to note that
even when the detector is within 2% of perfect, it is still
possible to produce mismatches at specific wavelengths
which can cause the percentage of error to increase
considerably. Thl!lefore, in order to determine the
margin of possible ell ur, it is imperative that one know
the detector's spectral response within the wavelength
range of the device to he measured. To illustrate the
problem of spectral mismatch, the reader is referred to
Figure 6 where we show the responses of two detectors,
a radiometric detector and a photometric detector, to
the output of a visible red LED. The response of the
radiometric detector is about 3% high. Notice, however,
that the photometric detector, which provides a very
close match to the CIE curve, produces a +25% error.2
Additional factors which must be considered are detec·
tor aging and fi Iter deterioration, nonlinear detector
responses, circuitry which is not temperaturecompensated, and stray light. Periodic calibration is
essential if a reasonable degree of accuracy is to be
maintained_
Correlation Samples-Unless the testing apparatus is
reciprocally related to a vendor-supplied correlation
sample, test results may erroneously indicate that many
devices in a shipment do not meet the minimum brightness that was specified on the order, and could result in
the rejection of devices which do meet minimum stan-
2Michaet A. Zuha, "Shedding Some Needed Light on Opticat
Measurements," Electronics, November 6,1972, pp. 94-96.
378
dards. Correlation samples are also essential for the
correction of instrumentation drift.
Subjectivity Problems-I n some instances a visual comparison may be the best method for brightness testing.
However, the manner by which the human eye "sees" is
affected by various factors such as the nature of the light
source, viewing distance, color, texture, the observer's
visual acuity, and even the viewer's emotional state.
Therefore, because of these highly subjective factors
involved in human visual perception, such tests alone are
usually inadequate and should be used only as a supplement to or in correlation with instrumentation. It has
been our experience that manufacturers who rely solely
on visual testing return many devices, a fair percentage
of which can be reshipped and accepted.
Testing to Parameters Other Than Those Specified-This
is a particularly important consideration when a manufacturer specifies his own parameters distinct from those
normally specified. To avoid unnecessary rejection of
devices, it is imperative that a device is always tested to
the parameters under which it will be expected to
operate_
SUGGESTIONS FOR PROPER TESTING
That which follows is a quick check list of "do's" which
enable manufacturers to avoid many of the problems
associated with running incoming quality assurance tests
on LED's.
• In cooperation with the vendor, establish specifications which are economically feasible and ensure that
devices are screened at their point of origin.
• Always obtain a correlation sample from the vendor
before setting up the test procedure_
• Establish a reliable test procedure.
• Measure relevant parameters at relevant points.
• Make sure that the test circuitry will not erroneously
indicate defects and that it will not generate failures
later in the manufacturing cycle.
• Work closely with the vendor in establishing the test
system.
GENERAL
INSfRUMENT
AN1071
Optocoupler Input Drive Circuits
MCT270 Series
An optocoupler is a combination of a light source and a
photo-sensitive detector. In the optocoupler, or photon
coupled pair, the coupling is achieved by light being
generated on one side of a transparent insulating gap and
being detected on the other side of the gap without an
electrical connection between the two sides (except for a
minor amount of coupling capacitance). In the General
Instrument optocouplers, the light is generated by an
infrared light emitting diode, and the photo-detector is a
silicon diode, transistor, or SCR. The sensitivity of the
silicon material peaks at the wavelength emitted by the
LED, giving maximum signal coupling.
Since the input to all the optocouplers is a LED, the
input characteristics will be the same, independent of
the type of detector employed. The LED diode characteristics are shown in Figure 1. The forward bias current
threshold is shown at approximately 1 volt, and the current increases exponentially, the useful range of IF
between 1 mA and 100 mA being delivered at a VF
between 1.2 and 1.3 volts. The dynamic values of the
forward bias impedance are current dependent and are
shown on the insert graph for ROF and dR as defined in
the figure. Reverse leakage is in the nanoampere range
before avalanche breakdown.
The LED equivalent circuit is represented in Figure 2,
along with typical values of the components. The diode
equations are provided if needed for computer modeling
and the constants of the equations are given for the IR
LED's. Note that the junction capacitance is large and
increases with applied forward voltage. An actual plot of
this capacitance variation with applied voltage is shown
on the graph of Figure 3. It is this large capacitance
controlled by the driver impedance which influences the
pulse response of the LED. The capacitance must be
charged before there is junction current to create light
emission. This effect causes an inherent delay of 10-20
nanoseconds or more between applied current and light
emission in fast pulse conditions.
The LED is used in the forward biased mode. Since the
current increases very rapidly above threshold, the
device should always be driven in a current mode, not
voltage driven. The simplest method of achieving the
current drive is to provide a series current-limiting
resistor, as shown in Figure 4, such that the difference
between VF and VAPP is dropped across the resistor at
the desired IF, determined from other criteria. A silicon
diode is shown installed inversely parallel to the LED.
Th is diode is used to protect the reverse breakdown of
the LED and is the simplest method of achieving this
protection. The LED must be protected from excessive
power dissipation in the reverse avalanche region. A
small amount of reverse current will not harm the LED,
but it must be guarded against unexpected current
surges.
The forward voltage of the LED has a negative temperature coefficient of 1.05 mW/oC and the variation is
shown in Figure 5.
The brightness of the IR LED slowly decreases in an
exponential fashion as a function of forward current
(IF) and time. The "mount of Iight degradation is
graphed in Figure 6 which is based on experimental data
out to 20,000 hours. A 50% degradation is considered to
be the failure point. This degradation must be considered in the initial design of optoisolator circuits to allow
for the decrease and still remain within design specifications on current-transfer·ratio (CTR) over the design lifetime of the equipment. Also, a limitation on IF drive is
shown to extend usefullih:time of the device.
In some circumstances it is desirable to have a definite
threshold for the LED above the nominal 1.1 volts of
the diode VF. This threshold adjustment can be obtained by shuntinu the LED by a resistor, the value of
which is determined by a ratio between the applied
Voltage, the series resistor, and the desired threshold.
The circuit of Fiuure 7 shows the relationship between
these values. The calculations will determine the resistor
values required for a given 1FT and VA' It is also quite
proper to connect several LED's in series to share the
same IF. The VF of the series is the sum of the individual VF'S. Zener diodes may also be used in series.
Where the input applied voltage is reversible or alternating and it is desired to detect the phase or polarity of
the input, the bipolar input circuit of Figure 8 can be
employed. The individual optocouplers could control
different functions or be paralleled to become polarity
independent. Note that in this connection, the LED's
protect each other in reverse bias.
379
~1+t-H-t-t+H-t-l+HRDF~
FORWARD BIAS
IF
mA
100
" HI+t+-,,-1.-.,-l,·+c+t--lz1:!±±:_::l12011
1.1
J
so
16
12
Cl02
"4R'~
/
/
AVALANCHE
"RoF"f
//lSLOPE
40
IF -FORWARD CURRENT - mA
IS
//
60
O'~~~~~~~~~
01
10
10
100
o
Rp
/SLOPE
lKU
bdtH±:::l:=:lHI::::l:=:l±±±:_::l10KIl
20
LED
EQUIVALENT
CIRCUIT
III
10
4
-,
Vt
20
V
,.
'E
, 0.5
C,
...,'.
I
100
1.0
V,
RANGE OF
SV R
VF VOLTS
0.1
THRESHOLD
REVERSE SIAS
:JOO
II
10
'00
12
100
mA
13
pF
V
10'
1.0
II
IF=rFTexp~
10
VF • VFT
100
NOTE CHANGE OF SCALES
FOR IR IN OPTO·ISOLATORS
mA
IR
IF
+ k log 1FT
V FT =0.9S VOLT
1FT -0.10mA
k = 0.360
Cl0l
R - 0.03 (VI
""iFli'\l
S -
Fig. 1. Characteristics of IR LED
Fig. 2. Equivalent Circuit Equations
Cl04
Fig. 4. Typical LED Drive Circuit
350
~
~
,
~-
300
1.4
250
> 1.3
I
I
~0
1.2
> 1.1
~
«
;::
1.0
u.
.9
a:
0
I
~0.1
"
If)
05012345678
APPLIED VOLTAGE
Cl03
Fig. 3. Voltage Dependence of Junction Capacitance
380
I
J~C
,,":::"--
f'
".
~
,/
CIRCUIT
".".
IF 3)VF
.1
1.5
....
'"
""..
).]1)
c""..
,,\~
;/~ ...
c
a:
".
~~
w
t:l
I i-"'"
~·C
.2.5
2
5
10 20
50 100
Cl0S
IF - FORWARD CURRENT - rnA
Fig. 5. IR Forward Voltage vs.
Forward Current and Temperature
50
40
I.,d-',P
30
20
f'
7~'
"
,~
'0
~
L
,/
",'30 (1'\p. .,...
~
,
'0
~
,; }'~~A
-I""'"
III1
'00
TA = 25 u C
10,000
'000
tOO.OOO
CtOS
TIME - HOURS
Fig. 7. LED Threshold Adjustment
Fig. 6. Brightness Degradation vs.
Forward Current and Time
r
1
Fig. 9. High Threshold Bipolar Input
Fig. 8. Bipolar Input Selects LED
0---/
r
120V
ClOg
A,
EXTEANOA-l~~--'---~-------'
C,
SWITCH
DEVICE
t
~~'lo-___________~_2_+~~A_2
__________
~
I
I
I
"--
-=--I~g!
--
MCl
L-.._ _.....I
CliO
Fig. 10. AC Input to LED Drive Circuit
Another method of obtaining a high threshold for high
level noise immunity is shown in Figure 9, where the
LED's are in inverse series with inverse parallel diodes to
conduct the opposite polarity currents. In this circuit
the VF is the total forward drop of the LED and silicon
diode in series. The resistors serve their normal threshold
and current limiting functions. The silicon diodes could
be replaced by LED's from other optocouplers or visible
signal indicators.
In some situations it may be necessary to drive the LED
from a 120 VRMS, 60 Hz or 400 Hz source. Since the
LED responds in nanoseconds, it will follow the AC
excursions faithfully, turning on and off at each zero-
crossing of the input. If a constant output is desired
from the optocoupler detector. as in AC to logic coupling. it is necessary to rectify and filter the input to the
LED. The circuit of Figure 10 illustrates a simple filtering scheme to deliver a DC current to the LED. In some
cases the filter could be designed into the detector side
of the optocoupler. allowing the LED to pulse at line
frequency. In the circuit of Figure 10, the value of C1 is
selected to reduce the variations in the IF between half
cycles below the current that is detectable by the
detector portion. This condition usually means that the
detector is functioning in saturation, so that minor variations of IF will not be sensed. The values of Rl, R2
381
the optocoupler detector, the leakage can be bypassed
around the LED by the addition of another resistor in
parallel with the LED shown as R,. The value of R, can
be large, calculated so that the leakage current develops
less than threshold VF (-0.8 volt) from Figure 5. The
drive transistor can be the normal output current sink
of a TTL or DTL integrated circuit, which will sink
16 mA at 0.2 volt nominal and up to 50 mA in saturation_
and R3 are adjusted to optimize the filtering function,
R3C, time constant, etc. Speed of turn-off may be a
determining factor. More complicated transistor filtering
may be required, such as that shown in Figure 11, where
a definite time delay, rise time and fall time can be
designed in. In this circuit, C, and R3 serve the same
basic function as in Figure 10. The transistor provides a
high impedance load to the R4C2 filter network, which,
once reaching the VF value, suddenly turns on the LED
and pulls the transistor quickly into saturation. The turnoff transient consists of the discharge of C1 through R3
and the LED.
If the logic is not capable of sinking the necessary IF, an
auxiliary drive transistor can be employed to boost current capability_The circuit of Figure 13 shows how a
PNP transistor is connected as an emitter follower, or
common collector, to obtain current gain_ When the output of the gate (G1) is low, a, is turned on and current
flows through the LED. The calculation of R1 must now
include the base-emitter forward biased voltage drop,
VBE, as shown in the figure.
In logic-to-Iogic coupling using the optocoupler, a
simple transistor drive circuit can be used as shown in
Figure 12_ In the normally-off situation, the LED is
energized only when the transistor is in saturation. The
design equations are given for calculating the value of
the series current limiting resistor. With the transistor
off, only minor collector leakage current will flow
through the LED. If this small leakage is detectable in
DC
INPUT
FROM
BRIDGE
RECTIFIER
In the normally on situation of Figure 14, the transistor
is required to shunt the IF around the LED, with a
VSAT of less than threshold VF. Typical switching
c,
10K
vee - 5V
ell'
IF
-20mA
VSAT - 0.4 V
V,
-1.2V
R _ Vee - VF - VSAT
Fig. 11. R-C-Transistor Filter Circuit
IF
_ 5-1.2-0.4 _ 3.4
20
20
R - 170n
C112
Rl == VCC-VF-VBE-VG~I:;I\TIGATE
I,
vee
Vee
Fig. 12_ Transistor Drive, Normally Off
V8E(O,I- 0.6 V
VeE(SATIIG,I-o.4 V
10K
Cll3
Fig. 13. Logic to LED Series Booster
382
transistors have saturation voltages less than 0.4 volts at
Ic=20 mA or less. The value of the series resistor is
determined to provide the required IF with the transistor off.
the relationship between the amount of overdrive, duty
cycle, and pulse width. The overdrive is normalized to
the IDC value listed as maximum on the device data
sheet. Average power dissipation is the limiting parameter at high duty cycles and short pulse widths. For
longer pulse widths, the equilibrium temperature occurs
at lower duty cycle values, and peak power is the
limiting parameter.
Again, if the logic cannot sink the IF, a booster transistor can be employed as shown in Figure 15. With the
output of the gate low the transistor a, will be on, and
the sum of VCE (SAT) of G, and VBE of a, will be less
than the threshold VF of the LED. With the gate high,
at is not conducting and the LED is. The value of Rt is
calculated normally, but shunt current will be greater
than IF. The normally-on or normally-off conditions are
selected depending on the required function of the
detector portion of the optocoupler and fail-safe operation of the circuits.
For duty cycles of 1% or less the pulse becomes similar
to a non-recurrent surge allowing additional ratings such
as the 12t used in rectifier diodes. Average current is
used for lifetime calculation. The pulse response of the
detector must be considered in choosing drive
conditions.
There are situations where it is not desirable to pass all
of the input current through the LED. One method to
achieve this is to provide a bypass resistor as suggested in
Figure 7 for threshold adjustment. This method is
satisfactory where the input current is switched on and
off completely, but, if the information on the current is
only a small variation riding on a constant DC level, the
bypass resistor also bypasses a large portion of the desired signal around the LED. Two methods can be used
to retrieve the signal with little attenuation. If the signal
In many applications it is found necessary to pulse drive
the LED to values beyond the DC ratings of the device.
In these situations a "pulse" is defined as an on-off
transient occurring and ending before thermal equilibrium is established between the LED, the lead frame,
and the ambient_ This equilibrium will normally occur
within one millisecond. For a pulse width in the microsecond range, the IF can be driven above the DC ratings,
if the duty cycle is low. The chart of Figure 16 shows
R= vee-v,
Vee
Vee
vee
"
=~=
190n
-::-
Cl14
Fig. 14_ Transistor Drive, Normally On
Fig. 15. Logic to LED Shunt Booster
100
,,~
5,.
t--...
10/-15
-'PK ,0
:::""
PW = 130 Ilsec
'DC
~
loaL
,
01
r-::
,......;:
300~S
1.0
10
DUTY CYCLE - %
100
eilB
Fig. 16_ Maximum Peak IF Pulse Normalized to Max IDe
for Pulse Width (PW) and Duty Cycle (%)
383
has a rapid variation (e.g., the audio signal on a telephone line), the DC component can be cancelled in the
detector by feedback circuits. If the variation is slow, a
dynamic shunt can be used instead of the fixed resistor.
If a constant-current device or circuit is used in parallel
with the LED, as shown in Figure 17, the adjusted component of the DC will flow through the dynamic impedance, and any current variations will result in a change of
terminal voltage. Therefore, the total current change will
flow through the paralleled LED circuit. The graph of
Figure 18 shows the performance of this particular circuit adjusted to center on IL = 120 mA and a circuit
node voltage of 3.4 volts. In the circuit shown the
detector portions of the MCT276 and MCT274 were
employed for convenience. Note that in Figure 18 most
of the current variation occurs as IF. The ratio between
the DC resistance (Ro) and dynamic impedance (Rd) for
the shunt is 50, wh ich represents the signal transfer gain
achieved over a fixed resistor.
12 5
.~
-.N\\~\.
~
Ic,
2.7K
120
(MCA2)
r
I
L
I
i
--=rlC:
t __ -:J
_L~
11 0
IL , SANS LED
V105
3.0
C117
Fig. 17. Constant-Current Shunt Impedance
384
R=200n
'"E 11 5
22011
I
Vr'
.......
31
R = 1.6Kn
3.2
3.4
3.6
TERMINAL VOLTAGE - VA
3.8
4.0
ellS
Fig. 18. Shunt Impedance Performance
GENERAL
INSfRUMENT
AN1074
Low Current Input Circuit Ideas
6N139/138 Series
Introduction
Advancements in opto-coupling and LED technology
have given us the MCC671 which also meets the specifications of JEDEC Registration 6N139. This unique
optocoupler, having an input LED current specification at
500 microamperes, has opened some interesting design
doors. Besides the obvious and much written about
ability to be directly driven by CMOS circuits, the
6N139 can be considered for signal detection, transient
detection, matrices and non-loading line receiving.
Following are but a few circuit ideas to stimulate the
designer's interest_
this way, the LED is not causing conduction in its output
circuitry but is prepared to conduct very quickly. Any
noise or oscillation on the "D.C. power source" is
coupled through "C" which develops a signal across the
LED. Even small unwanted signals can cause a large
change in the LED forward current. Once the LED's
forward current equals or exceeds 500 microamperes,
the output circuitry will conduct indicating the presence
of the unwanted signal.
Transient Detection
The detection of the presence or absence of waveforms
can easily be detected by the circuit in Figure 2.
Signal Detection
The detection of noise, spikes or oscillations can easily
and directly be detected by the input of the 6N 139 as
shown in the circuit of Figure 1.
CR
6N139
II,
Input
MCC671/6N139
r ............ --------.. ---.. --...
I
I
+o-----~~--JVV\r_--~--~'~
,,
._-- ....... _-------
R
D.C.
C1460
power source
Figure 2. Pulse or Waveform Detection Circuit
For the detection of the presence of a desired signal,
pulse or waveform use:
L _____ ...... ________ ..
C1459
Figure 1. 6N139 Input Cirucit For Signal Detection
For the detection of undesirable signals on a D_C. power
source use:
CR = Silicon diode
R = (Positive Vpk. of input) - 2.5 volts
L
1 milliampere
Cmin = Pulse interval of lIE
RL
R = Power supply voltage - 1.5 volts
50 microamperes
R
- Pulse width or 1/4F
smax 5C
C = To effect 500 microamperes into LED
X = Latching or non-latching output
circuitry to follow
X = Non-latching output
circuitry to follow
LED = Input diode of 6N139
LED = Input diode of 6N139
The LED is provided with a 50 microampere forward
current to charge the LED capacity to the VF level. In
Examples:
A desired pulse train to be present is shown in Figure 3.
385
The resulting LED forward current that will keep the
output circuitry conducting is shown as the result of
proper design.
'....'
output is now possible as shown in figure 5.
Non·Loading Line Receiver
For virtual non·loading, the 6N139 is compatible with
the differential amplifier circuit of Figure 6.
IVoltll
',D
I~G.I
.....'
r
"n
IV"'" G.4
'T
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __
Figure 3. Pulse Train Waveforms
A desired sine wave to be present is shown in Figure 4.
The resulting L ED forward current that will keep the
output circuitry conducting is shown as the result of
proper design.
C1464A
Figure 6. Differential Amplifier Drive
For a virtual no·load optosiolator circuit use:
X = Non·latching output
circuitry to follow
LED = Input diode of 6N139
Current requirement at "in" will be less than 20 micro·
amperes.
==
:fI~---------------------
c,...
Figure 4. Sine Wave Waveforms
Matrices Opto-Coupling
at "In".
With the low input LED current advantage of the
6N139, the ability to drive matrices with but one TTL
'5V >-?'"1...,.."t-<~..,...,---56KI!
-.:
Example:
If "REF" is made to be +1.4 volts and the resistor
common to the emitters is 1.2Kil, the circuit will respond
nicely to TTL "0" and "1" levels. That is, a "0" at "In"
will cause LED current resulting in the conduction of
the output circuitry. Conversely, a "1" at "In" will
result in no LED current. Notice that depending upon
which collector the LED is in series with it will give the
option of LED current flowing with a "0" or a "1"
all /
- - - -
are input dIodes of
6N139
6N139 Output Circuitries
The following are two examples of 6N139 output
circuitry. One latching (Figure 7); the other non·latching
(Figure 8), but both capable of driving a TTL gate
directly.
15VI
+V,
t--<.Jf-+-H- - - - t---If-+-++ - - - Scan
~
1 of 16
active
16X 16
low
malrlx
..•••....~~.~~
..-.
"-+-o---:7---~"",,,~u~rt
••••••••••••• __ ••••• _ ••••••••••••••.1
"Normally OPEN momentary pUSh-button
o.
TTL output WIth open collector
C1465A
Figure'Z Latching Output Circuit for 6N139
Control
c,_
.::r--'>-------..f=<
,
388
I
Figure 5. Opto·Coupling out of Matrices
Referring to Figure 7 and assuming that the "R ESET"
has been actuated by a momentary ground and no input
signal is being received, all transistors shown are non·
conducting (Output high, "1"). The arrival of an input
signal will cause all transistors to turn on. (Output low,
"0"). The PNP transistor, being turned on by the output
transistor, will in turn latch that same output transistor
or until the "RESET" is again initiated.
tSV)
V
47K!1
47M!!
~_L-t/"""-!>---~-OutPu, 10 TTL
C1466A
Figure 8. Non-Latching Output Circuit For 6N139
In Figure 8, where no signal is being received, the input
transistor is not conducting. The output transistor is
very slightly conducting. The 4.7Mn resistor causing this
slight conduction will not bring the "Output" to a "0"
level. The purpose of this slight conduction is to reduce
the turn-on delay time. When a signal is received, both
input and output transistors are turned on causing the
"Output" to a logic "0" state. The 4.7Mn resistor will
now tend to reduce the output transistor's turn-off time.
If you have not looked over the 6N 139 specification
sheet, you may not be totally aware of the current
capabilities of General Instrument's optocouplers.
387
388
GENERAL
INSfRUMENf
AN1075
MID400 Power Line Monitor
INTRODUCTION
The MID400 is an optically isolated AC line-to-Iogic
interface device for monitoring ON or OF F status of an
AC power line. The logic circuitry operates from a
standard 5V supply. The MID400 is packaged in a compact 8-pin plastic MINI-DIP. The optical isolation provided by the MID400 makes it suitable for power-tologic interface applications such as industrial control
medical equipment computers and other fail-safe type
monitor systems in which status information about the
AC line is essential.
INTERNAL COMPONENTS
During assembly two infrared GaAs LED diodes are
mounted on an input lead frame, and a photodetector/
amplifier chip is mounted on an output frame. Use of
two separate lead frames insures high electrical isolation
between input and output terminals after trimming of
the lead frame edges. Light emitted by the input LED's
is optically coupled through solid transparent material
to the surface of the photodetector. The LED's are
connected back-to·back, and power line status is moni-
(1)0---------,
(N~' D,
tored by the LED's in series with an external current
limiting resistor. When the high gain photodetector and
amplifier senses light output from the two LED's, it
drives an output NPN transistor to the ON state.
The photodetector amplifier circuit is shown in Figure
1. The Photodiode 03 is coupled into a high gain 3 stage
emitter follower current amplifier (Q, Q 3 Q S ) driving
into an output transistor Qs . The emitter follower
loads are comprised of constant current circuits formed
by Q2, R2 , Q4, R3 , Q6, and R4 . Constant current level
in these devices is established by the constant voltage
source formed by the base emitter voltage of Q 7 and Rs.
The common point of the output photodiode/amplifier
is brought out to pin 7 to allow connection of an external integrator capacitor or other circuits. Because
the amplifier has a high current gain factor of 10,000
to 100,000, its input impedance (at pin 7) is extremely
high.
Switching time of the amplifier is intentionally designed
to be slow, so that the MID400 only responds to an
absence of input signal over a few milliseconds, and not
during the short zero-crossing period of the AC input
voltage waveform.
r-----1I>---_--......- - - - t - - - - - - Q VCC (8)
VO (6)
(3)(}---------'
(7)0----------'
'----I-----+----......-oGND (5)
C1436A
Fig. 1. Circuit Schematic of MID400 AC Line Monitor
389
BASIC CIRCUIT OPERATION
Consider the test circuit shown in Figure 2. Back·to·
back input diodes D1 and D2 each conduct on every
half cycle of the AC input waveform, producing 120Hz
light pulses. The light output causes the photodiode to
conduct, raising the potential of the input to the ampli·
fier, and in turn driving the output NPN transistor ON.
When input current is removed, light from the two
LED's ceases, charge established by the photodiode cur·
rent on the input amplifier leaks away, and the NPN
transistor turns OFF. There are basically three operation
modes: Saturated, unsaturated, and the "OFF" STATE
mode.
SATURATED MODE
When input AC is above the recommended 4mA RMS
minimum input current, the 120Hz photodiode pulses
are sufficient to saturate the amplifier, so that the
MID400 output is low at pin 6 as long as AC input signal is present, (see Figure 3).
UNSATURATED MODE
If input current is dropped below the recommended
4mA RMS, the amplifier drops out of saturation during
the zero-crossing periods of the. input AC waveform and
120Hz pulses appear on MID400 output pin 6, (see
Figure 4). Under these conditions the device makes an
attractive, simple 120Hz clock generator that is free
from most of the normal power line transients for many
digital applications.
OFF-STATE MODE
When the input RMS AC input current is below 0.15mA
the MID400 output will be in the high state as per
specifications.
VCC
4.7Kn
3
I
~----------~J_--~(A)
L_____________J
C1512A
Fig. 2. Test Circuit
(B)
Output
(Pin 61
(BI
Output
(Pin 6)
Photo
Diode
(Pin 7)
(A)
Photo
Diode
(Pin 7)
Input
50Hz AC Waveform
Input
60Hz AC Waveform
Horiz. = 5mS/cm
Vert. = Uncalibrated
Fig. 3. Saturated Operation
NOTE: Normal specified 4mA RMS input IF current.
Output saturated (latched). The 120Hz pulses from the
photodiode D3 are above the threshold of the amplifier;
therefore, the MID400 output is low anytime the AC
current is present.
390
Horiz. = 5mS/cm
Vert. = Uncalibrated
Fig. 4. Unsaturated Operation
NOTE: Below normal specified 4mA RMS input IF
current. The level of 120Hz pulses from the photodiode
are now below the input threshold of the amplifier and
the pulses appear on the output. The output pulse width
depends on the AC input drive level.
+5V
vee
MID400
Output
(Pin 6}
(B}
22.
Photo
Diode
(Pin 7}
(A}
31
I
I
'-------<:>----.-_IAI
Il _ _ _ _ _ _ _ _ _ --' iCAUX (7·5)
Input
C1513A
1Oms/em
CAUX = .005 J.lF
Horiz. = 10mS/em
Vert. = Unealibrated
Fig. 5. Circuit With Addition of Capacitor at Pin 7
Fig. 6. Waveforms with Capacitor Added at Pin 7
OPERATION WITH AN EXTERNAL
CAPACITOR
Figure 5 shows a basic delay circuit obtained by addition of an integrating capacitor C x to the photodiode/
amplifier input point pin 7. Delay at POWER ON is
short, as the photodiode, when conducting, has a low
impedance providing a fast charge to the capacitor. The
delay when AC is removed is long, because the capacitor
discharges through various leakages of the amplifier
and the photodiode_ The waveforms in Figure 6 shows
the capacitance on both TURN-ON and TURN-OFF
delays. Figures 7 and 8 show plots of capacitance versus
turn-on and turn-off time_
.10
.10
V"
V
:g
CAPACITOR /
.01 -AUX TO GND
w
<.J
Z
w
<.J
Z
I
«
I-
V
(J
«
11.
«<.J .001
~.
~ .01
r-- f-
~
(J
::5.001
I
/
.0006
.0004
.0006
.0004
.0002
.0002
.0001
1
2
V- I'
CAPACITOR
AUX TO GND
4 6 10
.0001
100
1000
1
I
II
2
4 6 10
100
C1511
C1510
Fig. 7. Plot of Capacitance Versus Turn-on Time
MID400 INTERFACE CIRCUITS
USING A 555 TIMER
Addition of a 555 Timer at the MID400 output, as
1000
Fig. 8. Plot of Capacitance Versus Turn-off Time
shown in Figure 9, produces an interface circuit with
improved drive capability and output switching times,
and better noise immunity. Figure 10 illustrates these
switching time improvements.
391
+5V
VCC
r---------l
1
8
r - - - < p _ - - - - { J -......- - - - - - - . . - - -
--,
22K
V-'-C8;:,.C-r<:)--+-.---....:6{T-H-R-E-SH--:-:
0 -IS"
5
3
"555"
t~..
OUTPUT HIGH
WITH MI0400
INPUT CURRENT
1
I
I
L - - - - - - o - - - - < ; > _ _.... (AI
IL _ _ _ _ _ _ _ _ _ ---.J
~tCAUX
C1513
Fig. 9. Circuit with 555 Timer Added
The 555 Timer is basically being used as a SCHMITT
trigger circuit with well defined input thresholds. The
input HIGH state is 2/3 Vee, (+5 volts in this case),
and its LOW state is 1/3 Vee.
The output may be taken from either 555 pin 3 or from
pin 7 discharge point with a pullup resistor. Both these
pins are high when AC current is applied to the MI 0400.
The 555 output is capable of supplying both sink and
source currents up to 200mA. One advantage of using
the 555 discharge output pin is that it can be tied to
another similar unit to provide the "AND" function.
That is both AC inputs to both units must be present
before the 555 outputs can be high.
555
Output
(C)
MID400
(8)
Output
Horiz. '" O.2mS/cm
Vert. = Uncalibrated
Horiz. = 50}1S/cm
Fig. 10. Output Waveforms for TON TOFF· Pin 7 Auxiliary Input
Open Using the 555 Circuit (Fig. 9)
392
Figure 11 shows a circuit which includes a 555 Timer
for shaping of waveforms. This circuit can provide an
adjustable delay either at power on or power off. Oelay
is adjusted by the time constant of Rx and ex . Insertion
of diode 0, across Rx provides either a fast charge and
slow discharge of ex. or a slow charge and fast discharge
when diode polarity is reversed. See waveforms in
Figures 12 through 14. Because charge on capacitor
is established by the output of M1D400. the delay will
vary according to whether MID400 is operated in
saturated mode or unsaturated mode. In the unsaturated mode delay will depend upon the ratio of the
pulse ON to OFF time (Duty Factor).
'5V
1
1 --------- 1,
Vee
Without 0 ,
Turn on and off Delay
~r_~~------~
I
~I~~-i-..r;;;;;;;:~~_;.J
22.
3
I
I
I
(e)
555
Output
IBI
555
Input
I
l... _ _ _ _ _ _ _ _ _ ~
Ae
C1514
Input
Fig. 11. Adjustable Delay Turn Off/On Circuit
Horiz ..~ 20mS/cm
Vert. = Uncalibratcd
=
Rx 200KH
ex = O.3JlF
Fig. 12. Output Without Dl Diode
WithD,
Turn on delay
With 0 1
Turn off delay
(e)
555
Output
(el
555
Output
(B)
555
Input
(B)
555
Input
AC
Ae
Input
Input
= 20mS/em
= Uncalibrated
Rx = 200Kn
ex = O.3[.(F
Hariz.
Vert.
Fig. 13. Delayed Turn On. Diode Dl Connected
Opposite to Shown in Circuit Schematic
Horiz. = 20mS/cm
Vert. ~ Ullcalibrated
Rx = 200Kr2
ex = O.3JlF
Fig. 14. Delayed Turn Off. Diode Dl Connocwc1
As Shown in Circuit Schematic
3(1:1
r-------------~8
~
.---IVv>V-"":<;f-----,
(BI
I
~ ~CX
(AI
Ry
.1pF OR LARGER
~
~: ~'OMn
..1:.
C1515
Fig. 15. Precision Delav Circuit
Figure 15 shows a precision delay circuit. Here delay is
provided by using the 555 Timer as a missing pulse detector or one-shot. The time out is independent of
whether the M1D400 is operated in saturated or unsaturated mode. In uljsaturated mode the Timer is continuously being reset by the 120Hz pulses from the MI0400
and output of the 555 is high. When an AC line fails,
there are no 120 Hz pulses, the 555 times out and the
output then goes low. Refer to waveforms in Figure 16.
A larger capacitor at ex will increase the time-out
period of the 555 causing it not to detect the missing
input cycles as shown in Figure 17.
With the MI0400 operated in the saturated mode, output of MI0400is low, which turns on the PNP transistor
Ql, stopping Cx from charging, and the 555 output
is high.
(0)
555
Output
(0)
555
Output
Ie)
555
Threshold
Ie)
555
Threshold
MID400
Output
IB)
MID400
Output
(B)
Ae
Input
Ae
Input
20mS/cm
lex
=.1jlF)
Fig. 76. Unsaturated Mode-Detects MissingAC Input
Cvclos (when more than one cvcle is missing)
394
20mS/cm
(ex
=.4jlFI
Fig. 71. Unsawreted Mode-Does NOT Detect Missing
AC Input Cycles
555
(0)
Output
(e)
Threshol(
(S)
MI0400
Output
555
(0)
Output
555
(e)
555
Threshold
MI0400
Output
Ae
Ae
Input
Input
20mS/cm
Fig. 18. Saturated Mode-Detects Missing
AC Input Cycles
Fig. 19. Saturated Mode-Does NOT Detect
Missing AC Input Cycles
r----------------~c~I;;;:-l
I
MONITORING UNIT
:
POWER
SUPPLY
I
,-----...--h
+5V
GND
I i~~[[ci~~~';"~y, ~~Trl~:~Al.
I Clllcumj Will N MONITORING
I SYSl[M IS "01 r",
I
MINICOMPUTER
INPUT
r---I
I
RL
I
I
I
2,
,
IL ___________
I,
7
~
IL _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ I
~
C1516
Fig. 20. Example For Fail·Safe Considerations
On AC line failure the MI0400 goes high,causing 0 1 to
turn off and allowing Cx to charge, so that after the reo
quired time the 555 is allowed to go LOW. Refer to the
waveform in Figure 18.
By the choice of the time constant RxCx the circuit in
either a saturated or unsaturated mode can be made to
either respond or not respond to one or more AC input
cycles as shown in Figures 16 through 19.
OTHER SPECIAL DESIGN
CONSIDERATIONS
Special mention must be made about effects on MI0400
operation caused by leakage at pin 7. To avoid problems
keep impedance at 10 megohm or greater. If a capaci·
tor is connected to pin 7, make sure it is a high quality
type (such as Mylar) that exhibits very low leakage.
(Even current leakage between printed circuit traces can
have noticeable effects on circuit operation if the board
material has poor dielectric insulation characteristics.)
DESIGNS FOR FAIL-SAFE OPERATION
In those indus,trial, military, computer, and medical
system applications where fail·safe operation is impor·
tant, circuit response must also be considered when AC
input or the Vce supply, (or even both), switch off.
Table I lists the MI 0400 output response under these
conditions. This "Truth Table" shows that the MID400
output NPN transistor can btl ON (conducting) only
when AC current is flowing th rough MI D400 input LE D
diodes and the 5V Vee to the MI0400 is present (ON).
Table 1. FAIL·SAFE TRUTH TABLE
AC Line
Input
+5 Vee
Supply
M' 0400 Output
Condition
ON
ON
ON
OFF
OFF
ON
OFF
OFF
ON (conducting)
OPEN (nonconducting)
OPEN (nonconducting)
OPEN (nonconducting)
This truth wble reflects a MI0400 being operated from
a +5 volt supply which has a high impedance when not
"ON." However, other external factors can Influence
the apparent state of the MI0400 output. For example,
Figure 20 shows an application where the MI0400 is
monitoring the AC voltage of a device. The M10400 is
395
r-------------------,
MID400
I
[H
I
l;
~
DIODE
DX
.~
~
I
INTERNAL _ : .
IMPEDANCE
I
OR OTHER
I
CIRCUITS
I
I
3
I
I
I
-----------
7
C1517
Fig. 21. Diode Ox Added to Stop Reverse Current
When MID400 +5v Vee Line is Off
115V
AC
r
I
ISOLATED
REGULATED
POWER OUTPUT TO
COMPUTER. ~p. MEMORY ETC.
MID400
---------,
I
I
+5V
..._-0------.....- - - -
OUTPUT
POWER FAILURE DETECT
I
I
L___ _
GOES HIGH ON POWER FAILURE
C1518
Fig. 22. Circuit for Switching Power SupplV
supplied by a separate 5V supply in the "MONITOR
UNIT" fed from a separate AC line. The output of
MID400 is fed to a remote minicomputer with a TTL
type input circuit.
In this system it is quite feasible to get an erroneous
apparent output from the MID400 if RL is 1000 ohms,
or less, and the 5V power supply in the monitor system
presents a low impedance when OFF. The TTL input
to the minicomputer might appear low due to current
being forced through RL and the low impedance of the
OFF 5V power supply. This can be eliminated by the
addition of a diode Dx as shown in Figure 21.
In some applications additional circuitry may have to
be added to insure fail-safe operation. One such example
is the monitor circuit shown later, Figure 24. There
both voltage and current are monitored.
396
Another interesting condition to consider is operation
of the MID400 if its LED input diodes are "blown
out" by excessive current. In this case the MID400
output will be in the high state, still indicating an error
condition.
APPLICATION CIRCUITS
Figure 22 shows a circuit for a switching power supply
to give advanced warning of power failure to computer,
microprocessor, memory etc., so that an orderly power
down sequence can be initiated. Such a circuit is useful
because a switching power supply inherently provides
power storage for a limited period of time after removal
of AC input power.
r- -
I
I
-------------1
r--_-+v
r---~~------~J_--~--+5V
SUPPLY
I
3.3K
jBd
Ie ~ 13.5mA
MID400
C1519
Fig. 23. Relay Interface Circuit
POWER DIODES
AC INPUT
l10V60Hz
FUSE
R=22KU
1 r-------------'B
t:
LI
VF
r------------2JlK
I
I
NOR
GATE
7402
74LS02
ETC.
I
'5V
RL
. ....,
"
L _ MID400
____ _
OUTPUT NORMALLY HIGH.
OUTPUT LOW WHEN FUSE OR CIRCUIT BREAKEH OJ'I N~;
C1521
Fig. 25. Fuse or Circuit BfI",kar Monitor
C1520
Fig. 24. AC Power Line Voltage and Current Monitor
Figure 23 shows a circuit that allows a relay or solenoid
of almost any voltage and current rating to be controlled
by the MID400. NPN transistor Q 1 must have adequate
beta and voltage/current ratings for the application.
Relay is energized when no AC current is flowing in
the MI D400 input diodes.
Figure 24 shows a circuit that uses two MID400s to
monitor both voltage and current. When both voltage
and current are being supplied to the load, the output of
"NOR" gate is high. If load current drops due to either
open circuit or failure, the output of "NOR" gate is low.
If both voltage and current are not present the output
is low. Care must be taken in overall systems design to
insure fail-safe operation is achieved for all possible conditions_ This topic was discussed previously in this Note.
Figure 25 shows a circuit to monitor a fuse or a circuit
breaker. With this circuit consideration must be given to
Fail-Safe operation. Note that if load is a very high impedance there might not be sufficient current to operate
the MID400. In other words, the output of MID400 is
low on open fuse or breaker. If Vee to MID400 is off
and fuse opens, no MID400 indication will result.
397
01 --.-----.---------------------~
NEUTRAL--~----~==~--~--------------~
POWER
TO
} SYSTEM
~~L---~---+--_+------------~
r---------------~
I
I
+5VVcc
MID400
I
I
....... OUTPUT
~-{"}---
C1522
NOTE: Circuit detects failure of either but not both phases
Fig. 26. Monitor Circuit for Two Phase Power Line
."--;------------_ "
'2
....-0-------------
POWER
TO
SYSTEM
~--~rr------------------·
NEUTRAL+oo-H>-------------02~-~~----------
--~-------------~
__
Cl~2J
NOTE: Circuit detects failure of either or both phases
Fig. 27. Altornato Monitor Circuit for Two Phase Power Line
C1524
Fig. 28. Monitor Circuit for Three Phase Power Line
ADDITIONAL APPLICATION IDEAS
The following circuits are included for their intrinsic
value, but may need further refining for use in a specific
application.
Figure 26 shows a circuit to detect failure of either but
not both phases on a two phase AC power line. The
MID400 output goes LOW when a phase fails. Figure
27 shows a more complicated circuit that will detect
failure of either or both phases on a two phase line.
The NOR gate output stays HIGH so long as both phases
are present, but switches to LOW if either or both
phases fail.
Figure 28 shows a circuit to monitor a three phase line.
This circuit detects a failure on a single phase, as well
as all phases failing simultaneously. The output from
398
the NOR gate is normally high when all phases are present.
The input current limiting resistor RL is chosen so the
MID400s operate in saturated mode. If a phase fails,
for example phase 01 goes open circuit, this effectively
places MID400's #A and #B in series, causing them
now to operate in non-saturated mode and produce
120Hz pulses. Therefore the output "NOR" gate out·
puts pulses to indicate phase failure. The output NOR
gate is low when there is no power on any phase.
In some applications, for example when monitoring the
power to a three phase motor, if a phase opens when
the motor is running, it might run "single phase." The
motor might then generate sufficient back EMF on the
open phase to keep input currentto MI 0400, and under
such a condition this MI0400 monitoring system is not
effective.
1
""50V
ACRMS
AC
INPUT
1_
r-----------
I
+5V
I
I
C1525
Fig. 29. AC Voltage Deviation Monitor
Figure 29 illustrates the basic circuit concept for an AC
voltage deviation monitor. Here the zener diode and
bridge rectifier establish a given AC.voltage, irrespective
of AC input voltage, over a given range. This is compared with the voltage developed by R2 and R3 . Depending upon choice of zener voltage and ratio of R2
and R3 the circuit can operate in a number of modes:
1. Voltage Deviation Monitor to give a low output
when AC voltage deviates from set standard. The
voltage at junction of ~ and R3 is made equal to
zener voltage for given AC input voltage. A devia·
tion from standard causes current flow through
MID400 diodes.
2. Over Voltage Monitor (over given range). For
normal AC input voltage R2 and R3 are chosen
for a current flow through the MI D400; when
AC input voltage goes too high the current ceases
through MID400 input diodes.
3. Under Voltage Monitor (over given range). Similar to above, except R2 and R3 are chosen so current through MID400 input diodes ceases if AC
with low input voltage is too low.
It should be noted that in this circuit the magnitude of
current through the MID400 input diodes is governed
by choice of R, , R2 , and R3 resistor values.
MID400 BENEFITS
This small size device connects through an external resistor directly to AC power lines and offers both inputto-output noise immunity as well as electrical surge isolation, up to 2500 VRMS (or 3550 VDC). Its output is
compatible with TTL logic. Also the MID400· is UL
recognized (File #E50151), has low power consumption, and operates from a single Vcc supply up to 7
volts. Besides inputs from power linos, the M1D400 can
also be connected to AC sources of other frequencies
and even to DC sources (for detection of power)_ Output current is 16mA when a minimum 4mA RMS. input
current is applied to the input LEDs. When the inexpensive and readily available 555 Timer is connected to
the MID400 output, circuits can be built having high
sink and source current drive capabilities_ These simple
circuits can also be designed for a wide range of adjustable delay, and with rise and fall times compatible with
TTL computer circuits.
CONCLUSION
This Application Note has summarized internal operation of the MI D400 and described several classes of
application circuits. Refer to the MID400 Data Sheet
for a listing of Absolute Maximum Ratings and specifications for its Electrical Characteristics.
399
400
GENERAL
INSfRUMENf
AN3000
Applications and
Operation of Optologic™
0Prf'~
TM
INTRODUCTION
Since the introduction of the optically coupled isolator, digital design engineers have
struggled with the problem of achieving logic-in to logic-out compatibility over temperature,
minimizing the effects of LED degradation, and obtaining high speed operation. Typically this
problem is approached by selecting inpuVoutput resistors, and often by trial and error.
This guesswork type of interfacing is now a thing of the past. Enter the new OPTOLOGICTM
family of logic-to-Iogic compatible, optically coupled isolators. This easy to use logic element
offers LSTTL-in to TTL-out or LSTTL-in to CMOS-out. The device oliminates the resistor
selection and features guaranteed DC parameters over temperaturo.
This ease of design-in and operation is made possible through uso of an Input amplifier that
provides the interface between the driving LSTTL gate and the LED omitter. The output
circuitry consists of a multistage high speed amplifier available with either n totem pole or
open collector output. The input amplifier, LED, and output amplifier are assombled in an
industry standard six-pin package.
The Optologic devices not only provide the isolated logic-to-Iogic interface function, but due
to many unique features of the input amplifier, offer solutions for high speed data
communications and precise DC level sensing. These applications, and the operation of the
Optologic interface gate, will be discussed in this application note.
OPTOLOGIC OPERATION
Functionally the Optologic gate consists of an input
amplifier, high speed GaAsP/GaAs LED emitter, and
an output amplifier. Figure 1 illustrates the block
diagram of the LSTTL to TTL logic gate.
The input network is a hybrid assembly of a silicon IC
amplifier and LED emitter. The input functionally
consists of four elements: 1) open emitter input with
Schottky diode clamp, 2) differential comparator, 3)
voltage reference, and 4) current steering LED driver.
OUTPUT SECTION
INPUT SECTION
VCCO
OUTPUT
'----t--- Vo
=
GNDOUT
C2049
Fig. 1. 740L6000 Block Diagram
401
The input of the IC is very similar to standard bipolar
logic. It consists of a Schottky clamp diode connected
between the emitter of an NPN transistor and ground.
The input sources input current over the nominal
LSTTL logic levels. Figure 2 shows the typical input
current/voltage characteristics. The input offers a
20K ohm input resistance between -0.5 to 3.0 V. The
input resistance drops to 7.5 K from 3.0 to 3.4 V, while
between 3.4 to 7 V the resistance is greater than 1
megohm. Input voltages more negative than 0.5 V
activate the Schottky diode clamp.
0.1r-----,----.,----,------,
0.01---1---1----1---,.--1
-O.,I---I---I----::7'"'4='/~_I
il -O.21---::I;;p--...----=-+------I--_I
~-O~~~r---~--+---r--~
ail!
-0.4
~ -{).5~j--I---+--+----j
... --- -.----
i!: .00,
I
·1---+----1
-07
-00
-1
VI-INPUT VOLTAGE-V
C2065
The output IC consists of seven functional circuits.
These include: 1) PN photodiode, 2) transresistance
amplifier, 3) differential gain stage, 4) hysteresis loop,
5) buffer amplifier, 6) output stage, and 7) voltage
regulator.
The optical flux developed by the LED emitter is
converted to an electrical current by a reversed
biased PN photodiode. This photocurrent is amplified
and converted to a voltage by a transresistance gain
stage. This stage is connected to the inverting input of
a differential amplifier, while the hysteresis network is
connected to the non-inverting input. The output of
this amplifier drives a buffer that provides the level
shifts and signal splitting needed to drive the totem
pole output stage. Power supply noise is rejected
through the use of a voltage regulator that powers the
transresistance amplifier and the differential gain
stage.
The output of the amplifier is offered as either an open
collector (740L601 0/11) or a totem pole
(740L6000/01 ). The open collector output is designed
to interface with CMOS logic, with a supply voltage
up to 15 volts. The output transistor will drive 10
standard TTL loads with a VOL of 0.4 V, and its safe
operating range allows it to sink up to 60 mA peak.
The active pull-up will source an IOH in excess of 10
mA with a VOH greater than 2.4 V. The output
characteristics of the Optologic gates are shown in
Figures 4 and 5.
Input Current VS. Input Voltage
The collector of the input transistor is connected to a
differential comparator, whose output switches when
the input signal exceeds the reference voltage. The
effects of temperature and power supply variations
are minimized through the use of a voltage reference.
Figure 3 shows VIN vs Your of the 740L6000 illustrating the input voltage switching point of 1.34 V.
~
~
O~
~
o.2./
f---
10
5r- - - - +-+-1---+-1-1-
g
41-
~
21-ft+H+t+tt+f+i++!+f+ifi++tj--l-!H+.!--
~
§
>
V
V
~
i
//
~ o.4
g
/
V
0.8
o
I
~
~
I
1. d
>
I
20
30
40
50
60
IOL - OUTPUT CURRENT-LOW - rnA
C2...
Fig. 4. 740L6000
VOL VS IOL
1~+-~+-r-r-+-I-r_~
I-I--
o
Y'N - INPUT VOLTAGE - V
Fig. 3. 740L6000
02062
~
3
The output of the comparator controls a current
steering LED driver. The LED is enabled when the
transistor is OFF. When the transistor is driven into
saturation, it steers the current away from the LED by
dropping the LED voltage below its 1.5 V conduction
threshold. This technique of driving has the advantage of pre-biasing the LED, thus minimizing the
switching speed reduction caused by the diode
junction capacitance. It has the added advantage of
greatly reducing power supply noise.
402
2
1
.
r--
"""
"" "
10
~
,.
10M - OUTPUT CURRENT HIGH - rnA
Fig. 5. 740L6000
'"
VOH VS IOH
20
02064
The effects of common mode transients and other
noise sources on the output amplifier are reduced by
an optically transparent, electrically conductive noise
shield, as well as by amplifier hysteresis. The shield
shunts the noise away from the input stage and
channels it to logic ground. The amplifier hysteresis
eliminates false output pulses caused by a slowly
varying input signal, or power supply noise found on
the input network of the Optologic gate.
These three chips are assembled in an industry
standard six-pin dual-in-line package. General
Instrument uses its patented over/under split leadframe assembly process. This process has proven to
be very reliable given environments typically found in
industrial interface applications. This package is
recognized under Underwriters Laboratories File
E#50151, and with a withstand test voltage of 2500
VRMS, guarantees continuous operation at 440 VAC.
The operational sequence of LED and input/output
chips will give the designer insight when combinations of inverters and buffers are used in parallel
data transfer applications. In these types of applications, the rate of data transfer is greatly affected by
the propagation delay difference between the slowest to fastest Optologic gate. The propagation delay
is the sum of the delays of the input chip, LED, and
output amplifier. The typical delay times for the
740L6000/01 are 65ns, with rise times of 45ns and
fall times of 5ns. The rise and fall time difference is
the result of the operation of the output amplifier.
The typical switching characteristics of the
740L6000/01 are shown in Figures 6 and 7. When
output edge detection is used, the fastest response
will be obtained when the falling edge (H-L) is
sensed. This is true for both the inverter and buffer
Optologic gates.
2.00WDIV
SWITCHING OPERATION
The Optologic optocoupler was designed to interface
directly with LSTTL at the input and either TTL or
CMOS at the output. In addition, the switching levels
are identical to the standards established for each of
these logic families.
There are four Optologic devices currently available.
Two of these devices are LS.TTL to TTL compatible.
The 740L6000 is a logic buffer and the 740L6001 is an
inverter logic. LSTTL to CMOS is provided by the
740L6010 buffer and the 740L6011 inverter. The
switching operation is shown below.
DEVICE
740L6000
INPUT
HIGH
LOW
740L6010
HIGH
LOW
HIGH
LOW
740L6011
HIGH
LOW
740L6001
LED
3O.0rlllDIV
n
rf
DATA
IN
rt ~~~PUT
f
I-.
__ .
741.
--
(
r
I \
0"rUTI
I
V
t
J_'---'---_ __ .__
_l_
(;"'''0''11
OUTPUT
OFF
ON
ON
OFF
HIGH
LOW
LOW
HIGH
OFF
ON
OFF
ON
ON
OFF
ON
OFF
The preceding table indicates that the Optologic gate
is effectively two cascaded logic gates. The first is the
input network and the second the output. Both the
totem pole and open collector output amplifier
function as inverters. Thus, when the LED is ON, the
output will be in a logic low state. Therefore, in order
to create an Optologic buffer (740L6000, 740L6010),
the input amplifier must function as an inverter for
controlling the LED emitter. The Optologic inverter
gates (740L6001, 740L6011) use a non-inverting input
amplifier.
One will note that the output chip is always HIGH
(OFF) when the LED is OFF, and the output is forced
LOW (ON) when the LED is ON. Thus, the Optologic
input has a switching threshold of 1.34 V.
Fig. 6. 740L6000 Sw/tcfl/IIY
Charllctor/stics
153.0n.
SO.Dna/DIY
-4.08 V
2.ooVIDIV
:\
II
\
DATA
I
/
7"~:n
"\
,
J
r
/
OUTPUT
-"\
-
74JS04
1
OUTPUT
r:
\
\
Fig. 7. 740L6001 Switching
Charactaristics
403
The CMOS compatible output family (7 40L601 0/11)
satisfies the VOH by using an open collector
transistor and an external pull-up resistor. The high
to low propagation delay and fall time is very similar
to the 740L6000101 Optologic gates. The low to high
propagation delay and rise time is greatly influenced
by the value of the pull-up resistor. When a 470 ohm
pull-up resistor is used, the typical propagation
delay for low to high is 100ns. The typical switching
characteristics of the 740L6010/11 are shown in
Figures 8 and 9.
30,0 ntlDIY
2,ODY/DIV
t.r
\
740L6010
DATA OUTPUT
--
1-
./
J
.,. 1.1.h
3O.0n1lOIV
\
Ra. -4700
Ycc=6V
·r:T~.},.,,11T
/
\
74L.S04
OUTPUT
50
r-
.~
tPLH
Ic~
IPHL=
Ir~
Cl
z
J:
U
If=~
10
f-
If
§
==
'"
0
20
40
60
80 100
(0C)
The Optologic gates have eliminated the need to
perform a worst case analysis for logic family compatability and switching speed. Operational performance degradation is greatly minimized through
the optimal selection of the LED emitter and output
amplifier. These features make the Optologic gates
the easiest optocouplers to use for logic-to-Iogic
interfacing.
The consistent performance of the Optologic
gates will be obtained if the designer ensures that
package power dissipation and operational supply
voltage does not exceed their absolute maximum
ratings. The 740L6000101 were designed to operate
from standard 4.5 to 5.5 volt supplies and, under
these conditions, the devices will operate successfully over a -40°C to 85°C range. The 740L6010/11
output amplifier will operate from a 15V supply over
a temperature range of -40°C to 55°C, however, the
output amplifier power supply voltage must be
derated at a rate of -0.27V/0 C above an operational
temperature of 55° C. This function is shown
graphically in Figure 12.
I
..-"'I
/
-- -- -- - -- -
OPERATIONAL CONSIDERATIONS
C2DS8
*
100
Fig. 11. 74 OL601011 I
Switching Times vs.
Ambient Temperature
Fig. 8. 740L6010 SWitching
Characteristics
I-
Veel = 5 V
RL - 470 II
p.W= 200 ns
PERIOD = 1 pS
_IPLH-
e2036
Vf=5V
J
IN
i=
200
.... =4700
I
74L.S04
-
::i!
f:::
5V
TA - AMBIENT TEMPERATURE -
IT
01lj11T
2.00VlD1Y
w
Veeo
~ --Veeo = 15 V
1
-40 -20
n
Do\TA
IN
.
.s
~.
:~
C205tI
Fig. 9. 740L6011 Switching
Charactoristics
MAXIMUM ALLOWABLE POWER
DISSIPATION @TA = 25°e
The Optologic gate's input and output chips ensure
a constant propagation delay over the temperature
range of-40°C to 85°C. This consistency is shown in
Figures 10 and 11.
veel 5.0V
Veeo 5.0V
p.w- 200 ns
.. 200 PERIOO =1 pS
.s
~
::~~~
100
50
Ir
i=
4
Cl
z
J:
U
f-
=
If
~
1
-40 -20
0
20
40
60
80
TA - AMBIENT TEMPERATURE -
100
(Oe)
e2035
Fig. 10. 740L6000101
Switching Times vs.
Ambient Temperature
404
5
6
7 8 9 1011 1213 1415
Veeo - OUTPUT SUPPLY VOLTAGE - (V)
10
e2039
Fig. 12. Power Dissipation vs.
Ambient Temperature
Operational stability is optimized when low impedance Vee and Voo supplies are used to power the
Optologic gates. This can be ensured by the common practice of including 0.1 "F bypass capacitors
for the input and output amplifier supplies. These
capacitors are placed immediately next to the Vee
and ground connections of the input and output
amplifier. These capacitors minimize output ringing
and improve the power supply noise rejection. A
suggested printed circuit board layout is shown in
Figure 13.
INPUT I I
Vee I I
BUS I I
INPUT
: : GND
BUS
OUTPUT I I
GND I I
BUS I I
II
II
I OUTPUT
,:
Vee
I I
BUS
I I
I I
I I
I I
I I
DATA
IN
DATA
OUT
Fig. 13. Suggested PCB Lay-out
C2027
DATA COMMUNICATIONS INTERFACING
The common LED input/phototransistor output and
high speed logic compatible output have found their
way into point-to-point (simplex) data communications applications. When used as a line receiver the
designer was required to design a matching network
to provide the minimum rofloction caused by the
non-linear input impodanco of tho light omitting
diode. Theso matching notworks woro commonly
designed for a specific cable distanco botwoon tho
receiver and the transmitter. Therefore, if the cable
distance were to be changed, a new matching
network would be required in order to effect proper
operation.
This need of designing matching networks and
allowing only point-to-point communications is a
thing of the past with the introduction of the
Optologic gates. The Optologic gate, when used as
a line receiver, does not require a matching network.
Its input amplifier offers a 22Kohm input resistance
which permits it to bridge the transmission. When it
is used as the only receiver connected to the end of
the transmission line, optimum speed performance
will be obtained when the transmission line is
terminated in its characteristic impedance (Zo).
When multiple data taps are required, all the designer need do is bridge the Optologic gate across
the tranmission line at the desired cable length.
Figure 14 illustrates a simplex multi-drop (tap) data
communications system that has incorporated four
740L6001 gates as receivers, evenly spaced along a
1000 foot, 75 ohms co-axial transmission line. The
cable used in this example is a Times Fiber & Cable
Model RG59/U Series 2000. This cable includes a
third insulated conductor that is used as the Vee
supply source forthe input amplifier of the Optologic
gates connected to the transmission line. This third
conductor permits one simple isolated supply to
power all the Optologic gates connected to the
communications cable.
The common mode rejection and insulation of the
communications system can be greatly improved by
incorporating an Optologic gate as a line driver.
When driving low impedance transmission lines
such as the 75 ohm coax shown in Figure 14, a buffer
is required to drive the line. This buffer is shown in
Figure 15.
The signal quality "Eye Pattern" for the communications system shown in Figure 14 is provided in
Figures 16through 18with a 10 MBaud NRZ PsuedoRandom Sequence (PRS). Traces 1-3 in Figure 16
describe the transmitter section. Traces 4-7 of
Figure 17 show the output of the four Optologic
bridged terminations. Traces 8-11 in Figure 18
illustrate the "Eye Pattern", as seen at the output of
the 74LS04 logic gate. The data quality is well
porsorved, in that only a 30% eye closuro is soon at
tho receiver located 1000 foot from the tran:ilT1ittor.
10n
ALL DIODES
lN6263
C2047A
Fig. 15. Buffer
1000 F T . - - - - - - i..
~1
PRSG
100 ns BIT
INTERVAL
4
75 !l
TERMINI\TION
740L6000 BUFFER
SIMPLEX
NOTES
- All Opt%gic Gate Input and Output Amplifiers Bypassed With 0.1 p.F Capacitors
- PRSG = Pseudo Random Sequence Generator
- 1 to 11 Refer to Testpoints; See Waveforms on Figs. 16, 17 and 18
C2048
Fig. 14. Simplex Multi-drop Data Communications System
40f
PRSG
OPTOlOGIC
DRIVER
740LGOOO
BUFFER
OUTPUT
Through the use of the tri-state line driver, shown in
Figure 19, a half duplex multi-drop communications
system can be configured. This is done by adding
this driver at each of the tap positions shown in
Figure 14. This system provides the most common
data communications configuration of high speed
bi-directional communications, with the added
features of vastly improved common mode transient
rejection and insulation when compared to a common integrated line receiver.
HORIZONTAL = 20 ns/DIV
VERTICAL" 2 VlDIV
OPTICAllY ISOLATED TRI-8TATE
RECEIVER TRANSMITTER
Fig. 16.
All DIODES
1N6263
IN
TRANSMISSION
LINE
OPTOlOGIC
OUTPUT
74016001
250 FT
4
500 FT
5
750 rT
6
I(XJO "
7
VERTICAL= 2 VlDIV
Fig. 17.
MCl -2731
DATA OUT
Fig. 19.
74L~;(M
250 FT
8
500 FT
9
750 FT
10
1000 FT 11
VERTlCAl= 2 V/OIV
Fig. 18.
406
740L6001
C2069A
When high differential and common mode rejection
are required, the differentially driven and received
communications topology is considered. Figure 20
shows a full duplex point-to-point communications
system that is implemented with twisted pair shielded cable. Given the higher impedance of this type of
cable, it is possible for the Optologic gates to drive
the line directly. Here, a 740L6000 and 740L6001
are used in a push-pull mode to differentially drive
the line. The receiving end of the line is simply
terminated in Zoo Bridging this termination is a
DM8820 differential line receiver that is connected
to the 740L6000 Optologic gate. Power for the line
receiver and the Optolog ic gates is derived from two
insulated shields of the twisted pair cable. This
system offers a data rate in excess of 1 MBaud NRZ
at a distance of 600 feet.
ISOLATED DATA LINK
TERMINAL 1
TERMINAL 2
VCCl +5 V
:;;
0.1 p.F
DATA
IN
r-i-+-""
DATA
OUT
DATA
IN
DATA
OUT
L-_..-..J
GNDl
Ul, U3. U6. U8 740L6000
U2. U7
740L6001
U4. US
DM8820
GND2
C2011
Fig. 20. 1 MBaud Full Duplex Differential Optically Isolated Transmit and
Receive Data Transmission System with Shielded Twisted Pair.
AC VOLTAGE LEVEL MONITOR
The machine and process control industry has used
optocouplers as voltage sensing devices for a
number of years. They have proven very versatile
when the presence or absence of power is to be
determined. The monitoring of specific voltage
levels has required the designer to commonly use
selected couplers that have guaranteed gain at a
specific LED drive current. Once armed with this
specification, a resistor divider network is designed
that will support 1 to 10 mA required by the LED. As
the line voltage threshold increases, the power
dissipation in the passive divider network can
approach 2 watts.
AC LINE VOLTAGE
SENSE
)
Using the Optologic gate, a fixed AC or DC level
monitor can easily be designed. Recall the Optologic gate has a fixed reference source built into the
input amplifier. The stability and consistency of this
reference source allows the designer to construct a
level detector using standard product that will offer
an accuracy of ±15%. If higher accuracy is needed,
the factory can provide devices with tighter reference voltage tolerance. Not only is high accuracy
possible, but power required from the line is
typically less than 0.2 W.
R2
~~----------,
lbll K
-~
C2070
Fig. 2l. Optologic Voltage Line
Monitor and Power Supply
407
The most significant feature of the Optologic, in this
application, is the small amount of current that is
required to flow in the voltage divider. Under worst
case design considerations, this sensing current will
not exeeed 500 p.A. This low current permits the use
of .25 W or smaller precision resistors, thus allowing
even greater monitor accuracy.
For example, when sensing a voltage of 110 VAC, the
pewer dissipated in the divider network is only 45mW.
Figure 21 shows a typical AC Line Monitor circuit.
The threshold is determined by selecting the value
o.f R1 and R2. 8est accuracy is achieved when R1 is
elilual to or less than 2.2Kohm. Once R1 is selected,
the value of R2 can be determined with the following
equation.
R1 RN ( Vth -V ref)
R2=-------------------Vref(RN +R1) - R1V
O~--~-------+--~~-------------
,
HIGH
!
G:l
I cow
C2071
Fig. 23. 740LOOO1 AC Level Detection Waveform
Where
Vth = Sel9Cj:tedACorDCswitchinglevel
Vref = 1.34V
RN = 22Kohm
V =4.3V
Thiseqliation has been solved graphically in Figure 22.
450
/
400
~
g
II)
illa:
350
/
300
V
/
250
/
200
V
~ lsO
V
?:
I 100
rf!
50
o
20 40 60 60 100 120 140 160 160 200
Vlh -
THRESHOLD VOLTAGE - VOLTS
02072
Fig. 22. Input Resistor 1'$. Threshold
Voltage
The monitor circuit shown in Figure 21 consists of
three elements. The first is an Optologic power
supply, the second is the voltage divider, and the
third is the retriggerable one-shot.
The power supply consists of a capacitor voltage
divider and 5V tegulator. A capacitor divider was
used to minimize the power consumption from the
AC line. This power supply will provide over 15 mA
when the line voltage exceeds 60V RMS.
The voltage divider (R1, R2) sets the monitor threshold point of the sensor. R1 is used as an Optologic
input pull-down, thus, as the input voltage rises, it
forces current through R1 which raises its voltage up
to the Vref of the Optologic input. Once the reference voltage is exceeded, the output of the
Optologic will change state. Figure 23 illustrates the
relationship of the input voltage to the 740L6001
output. It can be seen that the output is a series of
pulses, whose width is determined by the duration
that the input waveform exceeds the voltage
thr!ilshold.
Ttie final section of the sensor consists of a retriggerable one-shot, constructed with an NE555 timer.
T"is one-shot is included to convert the pulse train
into Ii constant logic level. For best stability, a time
cOllstant of 1 1/4 cycles was selected. When a 60Hz
power main is to be monitored, this becomes a time
constant of 18ms. Thus, as the input voltage exceeds
the monitor threshold, the output of the 740L6001
changes from high to low, thus triggering the NE555
timer. Once triggered, the NE555 outputs a logic
high and will stay high as long as it is triggered every
16ms.
CONCLUSION
The Optologic family of TTL and CMOS compatible
devices is a new and easy-to-use optically coupled
logic circuit element. This Application Note has
provided but few of many new uses for this versatile
device. Not only does thill device provide high noise
immunity and level shifting for logic-to-Iogic interfaces, it also has numerous applications in data
communications and industrial control systems.
Appendlx
6
400
410
North American Technical Representatives
ARKANSAS
Ammon & Rizos
Tulsa (918) 663-8788
KANSAS
Lorenz Sales
Overland Park (913) 649-5556
OKLAHOMA
Ammon & Rizos
Tulsa (918) 663-8788
ALABAMA
(404) 446-2939
MARYLAND
Beacon North, Inc.
(800) 336-3747
OREGON
Western Technical Sales
Hillsboro (503) 640-4621
MASSACHUSETTS
Kanan Associates
Needham Heights (617) 449-7400
PENNSYLVANIA
Russell F. Clark Co., Inc.
Pittsburgh (412) 242-9500
TAl Corporation
Philadelphia (215) 627-6615
ARIZONA
Thom Luke Sales, Inc.
Scottsdale (602) 941-1901
CALIFORNIA
Brooks Technical Group
Mt. View (415) 960-3880
Harvey King, Inc.
San Diego (619) 587-9300
Varigon, Inc.
EI Taro (714) 855-0233
MICHIGAN
Rathsburg Associates, Inc.
(313) 559-9700
MINNESOTA
Mel Foster Technical Sales, Inc.
Edina (612) 941-9790
COLORADO
Elcom, Inc.
Denver (303) 337-2300
MISSOURI
Lorenz Sales
University City (314) 997-4558
CONNECTICUT
Scientific Components, Inc.
Cheshire (203) 272-2963
NEBRASKA
Lorenz Sales
Lincoln (402) 475-4660
DELAWARE
Beacon North, Inc.
(800) 336-3747
NEW JERSEY
TAl Corporation
Bellmawr (609) 933-2600
FLORIDA
(404) 446-2939
NEW MEXICO
SynTech
Albuquerque (505) 266-7951
GEORGIA
(404) 446-2939
PUERTO RICO
(404) 446-2939
SOUTH DAKOTA
Lorenz Sales
Lincoln (402) 475-4660
TEXAS
Ammon & Rlzos
Austin (512) 454-5131
Ammon & Rlzos
Houston (713) 781-6240
Ammon & Rizos
Richardson (214) 644-5591
UTAH
Elcom, Inc.
Salt Lake City (801 ) 483-1025
WEST VIRGINIA
Beacon North, Inc.
(800) 336-3747
(703) 478-2480
NORTH ILLINOIS
Sumer, Inc.
Rolling Meadows (312) 991-8500
NEW YORK
Bob Dean, Inc.
Ithaca (607) 257-1111
Comtronic Associates
Melville (516) 249-0505
SOUTH ILLINOIS
Lorenz Sales
University City (314) 997-4558
NORTH CAROLINA
(404) 446-2939
WASHINGTON
Western Technical Sales
Bellevue (206) 641-3900
Western Technical Sales
Spokane (509) 922-7600
INDIANA
Leslie M. Devoe Company
Indianapolis (317) 842-3245
NORTH DAKOTA
Mel Foster Technical Sales Inc.
Edina (612) 941-9790
WISCONSIN
Sumer, Inc.
Brookfield (414) 784-6641
IOWA
Lorenz Sales
Cedar Rapids (319) 377-4666
OHIO
Midwest Marketing
Chagrin.Falis (216) 247-6655
Midwest Marketing
Columbus (614) 766-2427
Midwest Marketing
Dayton (513) 433-2511
CANADA
DaveTek Marketing
Vancouver, B.C. (604) 430-3680
Vltel Electronics
Montreal, Que. (514) 331-7393
Vltel Electronics
Ottawa, Ont. (613) 592-0090
Vltel Electronics
Toronto, Ont. (416) 676-9720
411
North American Franchised Distributors
ALABAMA
Arrow Electronics
FLORIDA
Arrow Electronics
MASSACHUSETTS
Arrow Electronics
Huntsville (205) 837-6955
Ft. Lauderdale (305) 776-7790
Palm Bay (305) 725-1480
Woburn (617) 933-8130
Kierulff Electronics
Huntsville (205) 883-6070
Hammond Electronics, Inc.
Billerica (617) 667-8331
Pioneer
Ft. Lauderdale (305) 973-7103
Orlando (305) 849-6060
Pioneer
Huntsville (205) 837-9300
Kierulff Electronics
Lexington (617) 861-9200
Kierulff Electronics
ARIZONA
Kierulff Electronics
Ft. Lauderdale (305) 486-4004
St. Petersburg (813) 576-1966
Phoenix (602) 437-0750
Pioneer
Ann Arbor (313) 522-1040
Altamonte Springs (305) 834-9090 G~and Rapids (616) 243-0912
Pioneer
Deerfield Beach (305) 428-8877
Grand Rapids (616) 698-1800
GEORGIA
Livonia (313) 525-1800
Wyle Laboratories
Electronics Marketing Group
Phoenix (602) 249-2232
CALIFORNIA
Arrow Electronics
Chatsworth (818) 701-7500
San Diego (619) 565-4800
Sunnyvale (408) 745-6600
Tustin (714) 838-5422
Kierulff Electronics
Chatsworth (818) 341-2210
Los Angeles (213) 725-0325
San Diego (619) 278-2112
San Jose (408) 971-2600
Tustin (714) 731-5711
Wyle Laboratories
Electronics Marketing Group
EI Segundo (213) 322-8100
Irvine (714) 863-1611
Sacramento (916) 638-5282
San Diego (619) 565-9171
Santa Clara (408) 727 -2500
Arrow Electronics
Atlanta (404) 449-8252
Kierulff Electronics
Atlanta (404) 447-5252
Pioneer
Norcross (404) 448-1711
ILLINOIS
Arrow Electronics
Schaumburg (312) 397-3440
Kierulff Electronics
Itasca (312) 250-0500
Newark Electronics
Chicago (312) 784-5100
Pioneer
Elk Grove Village (312) 437 -9680
INDIANA
Arrow Electronics
MICHIGAN
Arrow Electronics
MINNESOTA
Arrow Electronics
Edina (612) 830-1800
Kierulff Electronics
Edina (612) 941-7500
Pioneer
Minnetonka (612) 935-5444
MISSOURI
Arrow Electronics
St. Louis (314) 567-6888
Kierulff Electronics
Maryland Heights (314) 739-0855
NEW HAMPSHIRE
Arrow Electronics
Manchester (603) 668-6968
COLORADO
Arrow Electronics
Indianapolis (317) 243-9353
NEW JERSEY
Arrow Electronics
Bell Industries
Denver (303) 740-1000
Fairfield (201) 575-5300
Marlton (609) 596-8000
Kierulff Electronics
Ft. Wayne (219) 423-3422
Indianapolis (317) 634-8202
Englewood (303) 790-4444
Pioneer
Fairfield (201) 575-6750
Wyle Laboratories
Electronics Marketing Group
Indianapolis (317) 849-7300
Pioneer
Denver (303) 457 -9953
CONNECTICUT
Arrow Electronics
Wallingford (203) 265-7741
J_V. Electronics
East Haven (203) 469-2321
Kierulff Electronics
Wallingford (203) 265-1115
Pioneer
Norwalk (203) 853-1515
412
IOWA
Arrow Electronics
Cedar Rapids (319) 395-7230
MARYLAND
Arrow Electronics
Columbia (301) 995-0003
Kierulff Electronics
Gaithersburg (301) 636-5800
Pioneer
Gaithersburg (301) 921-0660
Kierulff Electronics
Pine Brook (201) 575-3510
NEW MEXICO
Arrow Electronics
OREGON
Arrow Electronics
UTAH
Kierulff Electronics
Albuquerque (505) 243-4566
Po~and~03)689-1690
Salt Lake City (801) 973-6913
NEW YORK
Wyle Laboratories
Electronics Marketing Group
Wyle Laboratories
Electronics Marketing Group
Portland (503) 640-6000
Salt Lake City (801) 974-9953
PENNSYLVANIA
Arrow Electronics
WASHINGTON
Arrow Electronics
Farmingdale (516) 420-9800
Philadelphia (215) 928-1800
Pittsburgh (412) 856-7000
Kierulff Electronics
Pioneer
CAM/RPC Electronics
Kent (206) 575-4420
Fairport (716) 381-7070
Vestal (607) 748-8211
Woodbury (516) 921-8700
Pittsburgh (412) 782-3770
Wyle Laboratories
Electronics Marketing Group
Arrow Electronics
Hauppauge (516) 231-1000
Liverpool (315) 652-1000
Rochester (716) 427-0300
Milgray Electronics, Inc.
Summit Distributors, Inc.
Buffalo (716) 884-3450
NORTH CAROLINA
Arrow Electronics
Raleigh (919) 876-3132
Winston-Salem (919) 725-8711
Hammond Electronics, Inc.
Pioneer
Horsham (215) 674-4000
Pittsburgh (412) 782-2300
PUERTO RICO
Arrow Electronics
San Turce (809) 763-1365
SOUTH CAROLINA
Hammond Electronics, Inc.
Greensboro (919) 275-6391
Greenville (803) 233-4121
Kierulff Electronics
Raleigh (919) 872-8410
TENNESSEE
Hammond Electronics
Pioneer
(800) 334-0267
Charlotte (704) 527-8188
OHIO
Arrow Electronics
Centerville (513) 435-5563
Columbus (614) 885-8362
Solon (216) 248-3990
CAM/RPC Electronics
TEXAS
Arrow Electronics
Austin (512) 835-4180
Dallas (214) 386-7500
Houston (713) 530-4700
Harrison Equip. Co., Inc.
Stafford (713) 879-2600
Cleveland (216) 461-4700
Kierulff Electronics
Kierulff Electronics
Austin (512) 835-2090
Dallas (214) 343-2400
Houston (713) 530-7030
Cleveland (216) 587-6558
Da~on(513)439-0045
Pioneer
Pioneer
Cleveland (216) 587-3600
Da~on(513)236-9900
Austin (512) 835-4000
Dallas (214) 386-7300
Houston (713) 988-5555
OKLAHOMA
Arrow Electronics
Wyle Laboratories
Electronics Marketing Group
Tulsa (918) 665-7700
Kierulff Electronics
Tulsa (918) 252-7537
Bellevue (206) 643-4800
Bellevue (206) 453-8300
WISCONSIN
Arrow Electronics
Brookfield (414) 792-0150
Kierulff Electronics
Waukesha (414) 784-8160
CANADA
Arrow Canada
Calgary (403) 246-1980
Montreal (514) 735-5511
Ottawa (613) 226-6903
Quebec (410) 6B7-4231
Toronto (41 (l) G61-0220
Cardinal Electronics
Edmonton (403) 483-6266
Future Electronics, Inc.
Calgary (403) 259-6408
Montreal (514) 694-7710
Ottawa (613) 820-9471
Toronto (416) 638-4771
Vancouver (604) 438-5545
R.A.E. Electronics
Edmonton (403) 451-4001
Vancouver (604) 291-8866
Austin (512) 834-9957
Dallas (214) 235-9953
Houston (713) 879-9953
413
International Stocking Distributors and Technical Representatives
EUROPE
"0\';
AUSTRIA
Omnl Ray GesmbH
Vertriebsbuero Wien
Prinz Eugen-Strasse 36
1040 Wien
Tel. 0222/65.64.31
TELEX - 132712
Selfco
31 Rue du Fosse des treize
67000 Strasbourg
Tel. 88/22.08.88
TELEX - 890.706
BELGIUM-LUXEMBOURG
N.V. Telerex
Bisschoppenhoflaan 255
2100 Antwerpen
Tel. 03/325.69.50
TELEX - 33511
Emil ommerlingstrasse 5
Postfach 1563
6780 Pirmasens
Tel. 06331/94065
TELEX - 452269
A Neye-Enatechnik GmbH
2085 Quickborn-Hamburg
Schillerstrasse 14
Postfach 1240
Tel. 04106/612-0
TELEX - 213590
Semitron GmbH
1m Gut 1
7891 Kuessaberg
Tel. 07742/7011
TELEX - 7921472
Servitronic GmbH
Berliner Strasse 140
1000 Berlin 31
Tel. 030/87 04 06
TELEX - 183557
~oerle Electronic KG
ax Planckstrasse 1-3
Postfach 1021 40
6072 Oreieich/Frankfurt
Tel. 06103/304304
TELEX - 417903
DENMARK
Nordlsk Elektronik AS
Transformervej 17
2730 Herlev
Tel. 02/842000
TELEX - 35200
FINLAND
Oy Flntronlc AB
Melkonkatu 24A
00210 Helsinki 21
Tel. 0-692 6022
TELEX - 124224
FRANCE
Direct
151/153 Rue de Constantine
76201 Rauen
Tel. 35/98.40.48
TELEX - 770842
Groupement Electronlque
de Distribution
352 Avenue Georges Clemenceau
92000 Nanterre
Tel. 01/4204.04.04
TELEX - 615051
R.T.F.
9 Rue d~rcueil
94250 Gentilly
Tel. 01/4664.11.01
TELEX - 201069
S.C.T.
37 Avenue Emile Oewoitine
31200 Toulouse
Tel: 61/22.04.22
TELEX - 530219
Sclentech
11 Avenue Ferdinand Buisson
75016 Paris
Tel. 01/4609.91.36
TELEX - 260042
414
GERMANY
Inde~GmbH
GREECE
General Electronics Ltd.
209 Thivon Street
GR-184 54 Nikaia
Piraeus
Tel. 1/4922068
TELEX - 212949
IRELAND
Bloomer Electronics Ltd.
9-10 Cam Industrial Estate
Portadown-Co. Armagh BT63 5RH
Northern Ireland
Tel. 0762/339818
TELEX - 748054
ISRAEL
A. Schneider Ltd.
44 Petach Tikva Road
Po. Box 18055
Tel Aviv 61180
Tel. 3/372089
TELEX - 33613
ITALY
Idac Elettronica s.p.a.
Via Verona 8
35010 Busa di Vigonza (PO)
Tel. 049/725 699
TELEX - 430353
Kontron s.p.a.
Via G. Fantoli 16/15
20138 Milano
Tel. 02/50721
TELEX - 312288
Lasi Elettronlca s.p.a.
Viale Fulvia Testi 126
20092 Cinisello Balsamo (Milano)
Tel. 02/244.00.12
TELEX - 331612
Silvers tar Ltd.
20 Via dei Gracchi
20146 Milano
Tel. 02/4996
TELEX - 332189
NETHERLANDS
Techmation Electronics B.V.
PO. Box 9
4175 ZG Haaften
Bernhardstraat 11
4175 Ed Haaften
Tel. 04189/2222
TELEX - 50423
NORWAY
Nordisk Elektronik AlS
Smedsvingen 4
PO. Box 130
1364 Hvalstad
Tel. 02/846210
TELEX - 77546
SOUTH AFRICA
Electrolink Ltd.
PO. Box 1020
Martin Hammerschlag Way
Cape Town 8000
Tel. 21/5350/1/2
TELEX - 527320
SPAIN
Kontron Electronica
Salvatierra, 4
28034 Madrid
Tel. 729 11 55
TELEX - 23382
Sutelco
Pilar de Zaragoza 23
Madrid 2
Tel. 1/245.86.03
TEL!=)( - 43852
SWEDEN
Nordisk Elektronlk AlB
Box 1409
Huvudstagatan 1
171 27 Solna
Tel. 8/734.97.70
TELEX - 10547
SWITZERLAND
OmniRayAG
Industriestrasse 31
8305 Dietlikon
Tel. 01/835.21.11
TELEX - 53239
TURKEY
Turkelek Elektronik Ltd.
Hatay Sok. 8
Ankara
Tel.~) 25.21.09/18.94.83
TEL - 42120
UNITED KINGDOM
B.A. Electronics Ltd.
Hitchin Road
Arlesey
.
Bedfordshire SE15 6SU
Tel. 0462/834744
TELEX - 826257
Polar Electronics Ltd.
Europa House, West Street
Leighton Buzzard
Beds. LU7 7ND
Tel. 0525/377093
TELEX - 825238
Semtor Electronics Ltd.
Brooklyn House
22 The Green
West Drayton Middlesex UB7 7PQ
Tel. 08954/45832
TELEX - 8814938
STC Electronic Services
Edinbur~h Way
Harlow ssex CM20 2DE
Tel. 0279/26777
TELEX - 81525
Semiconductor
Specialists (U.K.) Ltd.
Carroll House
159 High Street, Yiewsley
West Drayton
Middlesex UB7 7XB
Tel. 08954/46415
TELEX - 21958
YUGOSLAVIA
Belram S.A.
83 Avenue des Mimosas
1150 Brussels/Belgium
Tel. 02/734.33.32
TELEX - 21790
JAPAN
SOUTHEAST ASIA
Dainichl Electronics Inc.
Koraku Bldg.
1-1-8, Koraku
Bunkyo-Ku, Tokyo 112
Tel. (03) 815-4711
Japan Electronics
Research cor~.
Omori Mitsubis i Bldg.
2-3-10 Sanno
Ohta-Ku, Tokyo 143
Tel. (03) 777-4111
Kokuel Tsusho Co., Ltd.
Hiyoshi Building
2-4-3 lidabashi
Chiyodaku, Tokyo, 102
Tel. (03) 230-0191
NagO~a Dengensha
9-27 uruwatari-Cho
Naka-Ku, Nagoya 460
Tel. (052) 322-3511
New Metals and
Chemicals Co. Ltd.
Shin Daiichi Bldg.
3-4-13 Nihonbashi
Chuo-Ku, Tokyo 103
Tel. (03) 201-6585
Takachiho Kohekl Co., Ltd.
Nakamura Bldg.
1-2-8 Yotsuya
Shinjuku-Ku, Tokyo 160
Tel. (03) 355-1111
AUSTRALIA
Allied Capacitors Pty. Ltd.
214 Harbord Road
P.O. Box 198
Brookvale 2100 NSW
Tel. 02/938-2422
TELEX - 790-25400
Rifa PtX. Ltd.
202 Be I Street
Preston, Victoria
3072, Australia
Tel.
480-1211
TEL - AA31001
SOUTH AMERICA
BRAZIL
Hitech
Comercial E Industrial Ltda
Av. Egj. Luiz Carlos Berrini,
801.111/121
04571 - Sao Paulo - SP
Tel. (55-11) 533-9566
TELEX - (391) 11-53288
FAX - (55-11) 61-3770
CHILE
Victronics Ltda.
Casilla 283-\/, Correo 21
Santiago 01, Chile
Tel. 36440 or 30237
TELEX - 3520001
1&)
·'1.
HONG KONG
Astec Agencies Ltd.
RM 706-710, Austin Tower
22-26A, Austin Avenue
Tsimshatsui, Kowloon
Tel. 3/7210346-9
TELEX - 37528 ASAG HX
FAX: 3/690393
INDIA
A.T.E. Pvt. Ltd.
:l£i, SOF-2, SEEPZ
I\ndlmri (F), Bombay· 400 096
Tel. 604 9032/6300195
TELEX - 1171513 DIP IN
Zenith Electro Systems Pvt.
Ltd.
106, Mittal Chambers
Nariman Point
Bombay-400021
Tel. 2027887
TELEX - 011-3152 ZENTRONICS
KOREA
Won IL Commercial Corp.
402, Won IL Building
San 1451-1, Seocho-Dong
Kangnam-Ku, Seoul
Tel. 2/5834321-3
TELEX - K27860 WONIL
NEW ZEALAND
Channel Master (NZ) Ltd.
51, Felix St., Penrose
Auckland, New Zealand
P.O. Box 12-373
Auckland, New Zealand
Tel. 599-003
TELEX - NZ21033
THAILAND
Choakchai Elect. Ltd.
128/22 Thanon Atsadang
Ban~kok, 10200 Thailand
Tel. 21-0432,221-5384
TELEX - 84809 CESLP TH
415
416
Source Exif Data:
File Type : PDF File Type Extension : pdf MIME Type : application/pdf PDF Version : 1.3 Linearized : No XMP Toolkit : Adobe XMP Core 4.2.1-c041 52.342996, 2008/05/07-21:37:19 Create Date : 2017:07:10 18:30:16-08:00 Modify Date : 2017:07:10 18:55:59-07:00 Metadata Date : 2017:07:10 18:55:59-07:00 Producer : Adobe Acrobat 9.0 Paper Capture Plug-in Format : application/pdf Document ID : uuid:ef760921-2a32-af47-aa0e-a4b457f7ccaa Instance ID : uuid:17a5ae42-c94d-bd47-a5a2-47265e101493 Page Layout : SinglePage Page Mode : UseNone Page Count : 433EXIF Metadata provided by EXIF.tools